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Résumé

La prévision des incendies de forêt reste un défi puisque vitesse et direction de
propagation dépendent des interactions multi-échelles entre la végétation, la to-
pographie du terrain et les conditions météorologiques. Un modèle d’incendies de
forêt à l’échelle régionale peut donc difficilement prendre en compte le détail des
processus physiques mis en jeu. Toute modélisation est entachée de nombreuses
incertitudes (modélisation incomplète, méconnaissance du terrain, de la végétation
et des interactions flamme/atmosphère, etc.) qu’il est nécessaire de quantifier et de
corriger afin de mieux comprendre la dynamique des incendies et de mieux prévoir
leur progression en temps réel. Ces travaux de thèse proposent ainsi une modélisa-
tion régionale des incendies qui a des meilleures capacités de simulation et prévision,
basée sur une évaluation des modèles et l’assimilation de données.

L’évaluation de modèles a consisté à développer des simulations multi-physiques
détaillées à l’échelle de la flamme d’un feu de laboratoire afin de mieux comprendre
les mécanismes physiques sous-jacents. Ces simulations multi-physiques impliquent
la résolution des équations de Navier-Stokes réactives, l’évaluation du transfert
radiatif vers la végétation, la construction d’un modèle de pyrolyse de la végétation
ainsi que la formulation d’une interface flamme/végétation adéquate. La seconde
approche a consisté à développer un prototype d’assimilation de données pour le
suivi de la propagation du front de feu. L’idée est de rectifier la trajectoire simulée
du front au fur et à mesure que de nouvelles observations sont mises à disposition,
la différence entre les positions observées et simulées du front étant traduite en une
correction des paramètres du modèle de vitesse de propagation ou directement de
la position du front via le filtre de Kalman d’ensemble.

Ces approches, tenant compte des incertitudes à la fois sur la modélisation des in-
cendies et sur les observations disponibles, permettent ainsi d’améliorer la prévision
de la dynamique des feux ainsi que des émissions atmosphériques, ce qui constitue
un enjeu de taille pour la protection civile et environnementale.1

1Publication dans le cadre de l’initiative Un jour, une brève de l’année des mathématiques pour
la planète Terre, http://mpt2013.fr/lutter-contre-les-incendies-depuis-les-airs/.

http://mpt2013.fr/lutter-contre-les-incendies-depuis-les-airs/




Abstract

Because wildfires feature complex multi-physics occurring at multiple scales, our
ability to accurately simulate their behavior at large regional scales remains limited.
The mathematical models proposed to simulate wildfire spread are currently lim-
ited because of their inability to cover the entire range of relevant scales (i.e., from
biomass pyrolysis to atmospheric dynamics), and also because of knowledge gaps
and/or inaccuracies in the description of the physics as well as knowledge gaps
and/or inaccuracies in the description of the controlling input parameters (i.e., the
vegetation, topographical and meteorological properties). For this purpose, the un-
certainty in regional-scale wildfire spread modeling must be quantified and reduced.
In this context, the goals of this thesis are two-fold, model evaluation and data
assimilation.

First, multi-physics detailed simulations of fire propagation, solving for the flame
structure using Navier-Stokes equations for multi-species reacting flow and including
radiation heat transfer, biomass pyrolysis as well as a flame/vegetation interface,
were performed at the laboratory flame scale. These simulations were compared
to measurements to provide a comprehensive understanding of the mechanisms
underlying fire propagation and to examine the assumptions used to estimate fire
spread-rates at regional scales. Second, the use of a data-driven simulator that
sequentially integrates remote sensing (typically infrared imaging) measurements
and that relies on an empirical spread-rate model was explored for regional-scale
fire front tracking. The idea underlying this data assimilation strategy was to
translate the differences in the observed and simulated fire front locations into a
correction of the input parameters of the empirical spread-rate model or directly of
the fire front location through the ensemble Kalman filter algorithm.

Since these two approaches account for uncertainties in fire spread modeling and
measurements, they improve our general ability to forecast both wildfire dynamics
and plume emissions. These challenges have been identified as a valuable research
objective with direct applications in fire emergency response for civil defense and
environmental protection.
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ṡw Wall-normal fuel mass loss rate [kg/m2/s]
Sk Name of species k [-]
t Time [s]
T Gas mixture temperature [K]
T∞ Ambient temperature [K]
Tg Gas-phase temperature in biomass fuel [K]
Tv Solid-phase temperature in biomass fuel [K]
Tchar Activation temperature of char oxidation [K]
Tpyr Activation temperature of pyrolysis [K]
Tvap Activation temperature of drying [K]
Tw Wall gas mixture temperature [K]



xxii Nomenclature

u Flow velocity vector [m/s]
ui Component i of the flow velocity vector [m/s]
u Mean flow velocity [m/s]

u
′

Root mean square of the flow velocity [m/s]
uw Wind velocity vector [m/s]
uw Wind velocity magnitude [m/s]
V Gas mixture volume [m3]
vinj,w Wall-normal injection velocity [m/s]
Vc,j Correction velocity in direction j [m/s]
Vk,j Diffusion velocity in direction j for species k [m/s]
Vk,n,w Wall-normal diffusion velocity for species k [m/s]
(x, y) Two-dimensional spatial coordinates [m]
Xk Molar fraction of species k [-]
Xw,k Wall molar fraction of species k [-]
[Xk] Molar concentration of species k [kg/m3]
Yk Mass fraction of species k [-]
Yw,k Wall mass fraction of species k [-]
Yair,k Mass fraction of species k in air [-]
Yv,k Mass fraction of species k in biomass fuel [-]
Yv,char Mass fraction of biomass char material content [-]
Yv,dry Mass fraction of biomass dry material content [-]
Yv,wat Mass fraction of biomass moisture content [-]
W Mean molecular weight of the gas mixture [kg/mol]
Wk Atomic weight of species k [kg/mol]
Wg Mean molecular weight of the gas-phase in biomass

fuel
[kg/mol]

Zi Mass fraction of atom i [-]
z Mixture fraction [-]
zst Mixture fraction at stoichiometry [-]

⊲ Mathematical operators/quantities

d Innovation/residual vector
e Forecast or analysis errors
E Expectation operator
F Dynamic model of the state variables
G Generalized observation operator (possibly non-linear)
G Linear generalized observation operator
G Tangent-linear of the observation operator
Gpc Surrogate model of the observation operator
G∆ LES filtering operator
H Observation selection operator (possibly non-linear)
H Tangent-linear of the observation selection operator
I Identity matrix



Nomenclature xxiii

J Cost function
K Kalman gain matrix
M Dynamic model (possibly non-linear)
M Linear dynamic model
M Tangent-linear of the dynamic model
n Size of the control vector
ns Number of model state variables
nθ Number of model parameters
n Normal vector
nb Normal vector to the computational domain boundaries
Ne Number of members in Monte-Carlo sampling
Nfr Number of markers along simulated front
No

fr Number of markers along observed front

Ng Number of gas compounds in the gas mixture
Npc Number of terms in the polynomial chaos expansion
Nquad Number of quadrature roots
Nr Number of reactions in the gas mixture
p Size of the observation operator
p Probability density function
P Dynamic model of the parameters
P Forecast/analysis error covariance matrix
Qpo Maximum order of the polynomial basis
R Observation error covariance matrix
R Real numbers
x Control vector
x̂q q-th component of the polynomial chaos expansion
yo Observation vector
y Model counterparts of the observation vector
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Chapter 1

An eye onto wildfire spread

modeling and monitoring

Wildfires, also referred to as wildland, forest or bush fires, constitute a
global issue, affecting almost all climates, tropical belts as much as bo-
real ecosystems, as highlighted in Fig. 1.1. Real-time predictions of the
behavior of a propagating wildfire have been identified by civil defense and
forest agencies as a valuable research objective with direction applications
in fire emergency management (Noonan-Wright et al., 2011). This chapter
provides an introduction to the current operational monitoring of wildfire
spread as well as to the academic research viewpoint. New mathematical
modeling approaches and remote sensing technological breakthroughs are
briefly described. In this context, we propose our novel strategies for in-
creasing fire spread simulation reliability and delivering accurate forecasts,
as these are highly needed but not yet available for wildfire applications.

Figure 1.1: Global active fire map delivered by the MODIS instrument (aboard the Terra
and Aqua orbiting-satellites), representing accumulated locations of fires as colored dots
over a 10-day period (9-18 August 2013). Credit: NASA, earthdata. nasa. gov/ firms .

earthdata.nasa.gov/firms
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1.1 Wildfires, worldwide natural disasters

During summer time, in the northern and southern hemispheres, there is a high fire
danger severity for forest, grassland and savanna regions once vegetation reaches a
high-level of drought. Based on satellite emissions of burned areas, Tansey et al.
(2008) estimated that 350 to 440 million hectares were burned every year on average
over the period 2000-2007, representing nearly 3.4 % of the Earth total vegetation
area. As illustrated in Fig. 1.1, fire maps produced by MODIS1 (Giglio et al., 2003;
Davies et al., 2004) deliver global hot-spot locations (these hot-spots are identified
as fire locations) over ten-day periods, and confirm this annual trend.

The northern shores of the Mediterranean region do not account for a large propor-
tion of burnt areas at a global scale (only 0.1 %). However, they are still subject
to an intense fire activity with the largest peak in summer, experienced in 2007
with the Greek forest fires. On average, nearly half a million hectares of wildland
and forest areas burn in the European Union (EU) every year. Large fires (large
referring to a final burnt area above 50 hectares) account for 75 % of this total
burnt area, while they only account for 2.6 % of the total number of fires. Note
that a burnt area of 50 hectares constitutes a major threat in Mediterranean ecosys-
tems due to the presence of multiple wildland-urban interfaces. Figure 1.2 presents
the EU fire annual statistics provided by the European Forest Institute (2009),
based on the EFFIS2 database. This figure shows in particular the spatial patterns

1MODerate resolution Imaging Spectroradiometer, modis-fire.umd.edu/index.html.
2European Forest Fire Information System, established in 2000 by the Joint Research Centre

(JRC) and the Environment Directorate-General of the European Commission (EC), to support
EU services in charge of forest protection against fires, forest.jrc.ec.europa.eu/effis/.

modis-fire.umd.edu/index.html
forest.jrc.ec.europa.eu/effis/
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of Mediterranean areas subject to recurrent wildfires, mainly located in Portugal,
Spain, Corsica, Sardinia, South of Italy and Greece.

Average burnt area [ha/year]

No fire data

Figure 1.2: Map of EU annual burnt areas. Credit: European Forest Institute (2009).

Because wildfire behavior features complex multi-physical processes occurring at
multiple scales (i.e., from local characteristics of vegetation to meso-scale atmo-
spheric dynamics), which can also be affected by socio-economic factors (e.g., grow-
ing wildland-urban interfaces), wildfire risks can drastically change from one re-
gion to another. Wildfires can be particularly dangerous in canyons and valleys,
where winds can strongly intensify wildfire spread (e.g., Santa Ana winds in Califor-
nia, Kochanski et al., 2013), and where terrain topography can significantly impact
the directions in which wildfires propagate at the fastest rates.

As illustrated in Fig. 1.3, wildfires are also responsible for the release of significant
amounts of CO2 (equivalent to 25 % of the global annual industrial emissions,
van der Werf et al., 2010), trace gases (e.g., CO, nitrogen oxides) and aerosols into
the atmosphere, which can, locally, inhibit vegetation growth, reduce air quality and,
globally, contribute to the greenhouse effect if vegetation does not recover (Miranda
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et al., 2008; Strada et al., 2012). While fire intensity constitutes a local major
threat, its effects can be felt hundreds of kilometers away due to the atmospheric
convection of the smoke plume, as shown in Fig. 1.4 for the 1997 Indonesian
wildfires that were mainly peat fires (Kunii et al., 2002).

Figure 1.3: Snapshot of garrigue wildfires induced by tramontane winds (Pyrénées-
Orientales, France, 9 August 2011). Credit: Pauline Crombette (CNES).

Figure 1.4: Observation of the smoke plume over the Indian ocean due to 1997 Indonesian
wildfires (22 October 1997). White colors represent aerosols in the vicinity of wildfires;
green, yellow and red colors represent increasing amounts of tropospheric ozone (smoky
fog) convected westward by high-altitude winds. Credit: NASA.

Wildfires have recently shown the potential to reach colossal dimensions of highly-
destructive power, beyond any currently-existing suppression capacity. These wild-
fires are commonly referred to as megafires or firestorms (Finney and Mcallister,
2011; Nijhuis, 2012). Typical examples are the Black Saturday wildfires in Australia
in 2009 (Teague et al., 2010). These catastrophic bushfires were ignited under
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extreme weather conditions, with daytime temperatures exceeding 45◦C, strong
changing surface winds and extremely dry conditions. They resulted in the burning
of more than 450,000 hectares (i.e., about one-third of the annual burned area in
Australia, reached only with 400 individual fires), along with the highest number of
casualties on record (i.e., 173 people died, 414 were injured). Recent studies (Cruz
et al., 2012; Engel et al., 2013) showed that meso-scale atmospheric features were
partly responsible for the extreme behavior of these wildfires. In particular, a strong
cooling-off in the late afternoon introduced variability in wind, temperature and
humidity conditions at short temporal and spatial scales. These changes led, in
turn, to high local variations in fire danger that were not predictable.3 These ex-
treme wildfire behaviors highlight the substantial interaction and feedback between
a wildfire and the atmosphere (partly induced by the development of a thermal
plume above active wildfire areas as shown in Fig. 1.5), which can, locally, modify
environmental conditions and dramatically enhance wildfire spread. In this context,
it is of primary importance to investigate physical and chemical processes underly-
ing wildfires, which can be a threat not only to local ecosystems but also to public
health.

Figure 1.5: MODIS imaging of the 2009 Black Saturday bushfires (Victoria, Australia, 7
February 2009). Credit: NASA.

Future perspectives of climate change and global warming tend to favor extreme
drought events and alter precipitations (Milly et al., 2002; Palmer and Räisänen,
2002; Boé et al., 2009). These conditions dramatically increase the risk for the
ignition and development of megafires (Lucas et al., 2007; Liu et al., 2010; Nijhuis,
2012). For instance, IPCC4 expects 25 % rise by 2020 and 70 % rise by 2050
in the likelihood of megafires in Australia (Lucas et al., 2007). In this context,
predictions of future extreme wildfire events cannot only rely on the analysis of past

3Following the carastrophic Black Saturday bushfires, an additional level of fire danger was
incorporated in the fire danger rating system by the Australian Bureau of Meteorology.

4Intergovernmental Panel on Climate Change, i.e., leading international institution for climate
change assessment, www.ipcc.ch/.

www.ipcc.ch/
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observed wildfire events. They inevitably have to rely on complex computer models
to characterize future fire behaviors and intensities that are not observed to date.
As computational capacity increases and more observations become available, these
model simulation capabilities could be extensively evaluated and their uncertainties
could be quantified for current wildfire behavior in a preliminary step. Similarly
to climate change predictions, scenarios of future wildfire behavior could then be
investigated using selected well-established model simulators. Real-time predictions
of the direction and speed of a propagating wildfire have therefore been identified as
a valuable research objective with direct applications in both fire risk management
and fire emergency response for short- and long-term outlooks (Noonan-Wright
et al., 2011).

1.2 Current status of potential fire danger evaluation

Wildfires generally feature a front-like geometry (see Fig. 1.6) and may be described
at regional scales (i.e., at scales ranging from a few tens of meters up to several
kilometers) as a thin flame zone that self-propagates (normal to itself) into unburnt
vegetation. The local propagation speed is commonly referred to as the rate of
spread (ROS) and is defined as the speed of the flame with respect to a fixed
observer. Thus, the ROS can be regarded as the translation rate of the flame-
ignition surface separating the burning zone and the unburnt vegetation; it directly
results from multi-scale multi-physical interactions between vegetation, combustion
and flow dynamics as well as atmospheric dynamics.

Active flame zone!

Burnt zone!

Unburnt zone!

Post-flame 

combustion!

Figure 1.6: Snapshot of Australian grassland controlled burns (200 m × 200 m domain),
in which the orange zone corresponds to the flame zone. Credit: Cheney et al. (1993).

For early warning of potential wildfire danger, operational systems have been de-
signed worldwide by national civil defense authorities to identify geographical areas
that are subject to possible extreme wildfire behavior in the next following days.
Fire danger is a generic term referring to the assessment of both constant and vari-
able fire precursor factors affecting the ignition, spread, intensity and suppression
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capability of wildfires (Chandler et al., 1983). Current operational fire danger rat-
ing systems adopt a regional-scale viewpoint based on empirical and semi-empirical
ROS modeling approaches and integrate remote sensing data (i.e., meteorological,
terrain topography and biomass fuel information) into a reduced set of macroscopic
qualitative and/or numerical indices. Note that due to the complexity of wildfire
spread, a single index is not sufficient to provide a complete prediction of daily fire
danger. An overview of wildfire danger indices follows.

⊲ Forest fire danger index (FFDI). The McArthur forest and grassland fire
danger indices (FFDI/GFDI), originally developed by McArthur (1966), is
currently used by the Australian Bureau of Meteorology as a fire danger
forecasting tool (Noble et al., 1980; Dowdy et al., 2009). While combining a
record of drought, rainfall and weather variables such as wind magnitude, air
temperature and humidity, the evaluation of the ROS is performed based on
the grassland fire spread meter (GSFM), i.e., an operational system managed
by the CSIRO5 Australian national science agency.

⊲ National fire danger rating system (NFDRS). Operational since 1972
in the United States (US), the national fire danger rating system (NFDRS)
combines daily measurements of vegetation (e.g., living and dead fuel mois-
tures6), terrain topography, weather and risk of ignition (i.e., human-caused
and lightning) to provide local indices of fire occurrence or behavior (Deem-
ing et al., 1978; Bradshaw et al., 1984; Burgan, 1988). In particular, the
Keetch-Byram drought index represents the effects of evapo-transpiration
and precipitation processes on soil moisture. Thus, it is useful to quantify
drought in the deep soil/duff layer over seasonal times scales (Keetch and
Byram, 1968). The NFDRS-based products are part of the WFAS7 managed
by the US Forest Service.

⊲ Fire weather index (FWI). The Canadian counterpart of the NFDRS-based
fire danger index is the fire weather index (FWI). The latter is part of CWFIS,8

i.e., a service managed by the Canadian forest service that creates daily maps
of fire weather and fire behavior across Canada (Turner and Lawson, 1978;
Van Wagner, 1987; Hirsch, 1996). The FWI, presented in Fig. 1.7, includes
the following five components:

(i) Fine fuel moisture code (FFMC), which evaluates the moisture content
of litter and other fine fuels at the top of the surface vegetation layer
(this moisture content measures the ignition capacity of fine fuels, which
are of primary importance in wildfire spread and ignition).

5Commonwealth Scientific and Industrial Research Organization,
www.csiro.au/Outcomes/Safeguarding-Australia/GrassFireSpreadMeter.aspx.

6The description of living biomass fuels can be improved through the satellite-based normalized
difference vegetation index (NDVI); this index provides with a spatial resolution on the order of
1 km, the departures from average greenness based on historical records (Burgan et al., 1996).

7Wildland Fire Assessment System, www.wfas.net/.
8Canadian Wildland Fire Information System, cwfis.cfs.nrcan.gc.ca/en_CA/.

www.csiro.au/Outcomes/Safeguarding-Australia/GrassFireSpreadMeter.aspx
www.wfas.net/
cwfis.cfs.nrcan.gc.ca/en_CA/
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(ii) Duff moisture code (DMC), which evaluates the moisture content of
compacted organic layers at moderate depth and thereby, measures the
potential fuel consumption in duff layers.

(iii) Drought code (DC), which evaluates the moisture content of deep com-
pact organic layers and thereby, measures seasonal drought effects on
wildland fuels.

(iv) Initial spread index (ISI), which evaluates the potential value for the
wildfire ROS by combining the effects of wind and FFMC (without
accounting for the influence of the wildland fuel spatial variability).

(v) Build-up index (BUI), which evaluates the total amount of wildland fuel
available for combustion, by combining information coming from DMC
and DC fuel moisture codes.

Fine fuel 
moisture code

(FFMC)



Duff moisture 
code (DMC)



Drought Code
(DC)


Fuel moisture 
codes

Fire weather 
observations

Fire behavior 
indices

Air temperature 
and humidity, 
wind, rainfall

Wind Air temperature 
and humidity, 

rainfall

Air temperature, 
rainfall

Initial spread 
index (ISI)

Buildup index 
(BUI)

Fire weather 
index (FWI)

Figure 1.7: Schematic of the components (e.g., remote sensing measurements, models)
underlying the FWI-based fire danger rating. Credit: Canadian Forest Service, http:

// cwfis. cfs. nrcan. gc. ca/ background/ summary/ ffws .

Thus, the FWI-based fire danger rating provides an evaluation of the poten-
tial intensity of propagating fire fronts, based on daily measurements of air
temperature and relative humidity, wind speed as well as 24-hour rainfall.
Potential wildfire ROS values are included in the FWI evaluation through the
ISI index. This FWI component is an empirical algebraic formulation of the
ROS with respect to wind and fuel moisture content (Van Wagner, 1987;
Camia and Bovio, 2000; Dowdy et al., 2009).

http://cwfis.cfs.nrcan.gc.ca/background/summary/ffws
http://cwfis.cfs.nrcan.gc.ca/background/summary/ffws
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The performance of the Canadian FWI fire danger rating system has been demon-
strated for a wide range of biomass fuels that cover forests and rural geographical
areas, in particular throughout Europe (Viegas et al., 1999). Thus, this rating sys-
tem has been adopted in the EU to produce twice daily, maps of fire danger using
weather forecast data from French (Météo-France) and German (Deutsche Wetter
Dienst) meteorological services. The FWI-based European system is based on six
classes of fire danger (i.e., from very low to extreme), the highest class limit being
based on the analysis of past fire danger conditions observed for 2,000 wildfires of
more than 500 hectares. An example of EFFIS-based daily fire danger forecast map
is provided in Fig. 1.8.

Figure 1.8: Map of FWI-based fire danger forecast over Europe on September, 1st, 2013
(the fire suppression capacity limit is commonly assumed to be between the high and
very-high classes, corresponding to a ROS threshold of about 1 km/h). Credit: EC Joint
Research Centre, ec. europa. eu/ dgs/ jrc/ index. cfm .

Note that the European system accounts for the effects of both biomass moisture
and wind on fire behavior, but does not differentiate biomass fuel types. Thus,
this fire danger rating mainly relies on meteorological information. In general, the
evaluation of fire danger could be improved through a more detailed wildfire spread
modeling and a more accurate forecast of the potential ROS, accounting for the
spatial and temporal variability of environmental conditions, especially of biomass
fuels and also of biomass fuel conditions for extreme meteorological events.

1.3 Overview of wildfire modeling research

The dynamics of wildfires are determined by multi-scale interactions between biomass
dynamics and pyrolysis, combustion and flow dynamics as well as atmospheric dy-

ec.europa.eu/dgs/jrc/index.cfm
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namics and chemistry. As illustrated in Fig. 1.9, these interactions occur at: veg-
etation scales that characterize biomass fuels; flame scales that characterize com-
bustion and heat transfer processes; topographical scales that characterize terrain
and vegetation boundary layer; and meteorological micro-/meso-scales that charac-
terize atmospheric conditions (Viegas, 2011). The magnitude of the wildfire ROS
directly results from the interactions between the multi-physical processes over a
wide range of temporal and spatial scales. These interactions make the modeling
and prediction of wildfire behavior a challenging task.
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Figure 1.9: Schematic of multi-scale multi-physical processes underlying wildfires.

1.3.1 Physical features governing wildfire spread

To highlight important features governing wildfires, a qualitative description of the
different modes of propagation is provided. An overview of the coupled physico-
chemical processes that determine the rate and direction of wildfire spread is also
presented.

→֒ Modes of fire propagation

A fire requires an external heat source to start (e.g., human-induced ignition, thun-
derstorm lightning). However, once being ignited, the fire can self-sustain through
a series of chemical reactions between oxygen and flammable gases that are re-
leased by the pre-heated vegetation (e.g., CH4, CO, H2). As suggested by Fons
(1946), wildfire propagation can be regarded as a succession of ignitions inducing
the displacement of the pyrolysis zone (and thereby of the flame zone) towards
the unburnt region. Viegas (1998) distinguishes two main modes of fire propaga-
tion illustrated in Fig. 1.10, namely flaming and smoldering combustion. A brief
description of these combustion modes follows. It is worth noting that this work
exclusively focuses on the flaming mode (typical of surface fires), which is the main
mode of wildfire spread and also the most studied one.
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Flaming Smoldering

Figure 1.10: Snapshot of undergrowth burning separating two modes of biomass com-
bustion: (1) the flaming mode in grass (the flame is 10 mm tall); and (2) the smoldering
mode in organic soils. Credit: Ashton et al. (2007).

⊲ Flaming combustion can occur when a large amount of pyrolysis gases is in
contact with air, at high temperatures. In this case, combustion-related processes
produce a flame, the visible part of the fire illustrated in Fig. 1.10, either for surface
fires, crown fires or spot fires.

(i) Surface fires consume fine particles that are part of the vegetation at the
ground surface (e.g., forest litter, herbaceous vegetation, shrubs), through
the propagation of a flaming front towards unburnt vegetation areas. These
particles mainly correspond to dead vegetation materials and are therefore
characterized by a low moisture content (generally, in equilibrium with air
humidity).

(ii) Crown fires. Surface fires propagate horizontally along the terrain surface,
but can also spread vertically up to the top of the canopy and tree crowns.
The resulting crown fires burn trees that drastically enhance the heat release
rate and the size of the fire.

(iii) Spot fires. Crowning enhances the production of embers (i.e., glowing hot
particles made of carbon-based materials), which are unexpectedly blown away
by wind (beyond conventional heat transfer distances). These projected em-
bers potentially initiate spot fires far ahead of the crown flaming front and
thereby, drastically enhance fire spread.

⊲ Smoldering combustion (ground fires) is a slow mode of combustion occur-
ring through surface and sub-surface organic layers of the forest ground, at low
temperatures and usually without any flame (Ashton et al., 2007; Hadden et al.,
2013). Thus, smoldering is commonly opposed to the flaming mode of combus-
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tion. The characteristic temperature and heat release of smoldering are significantly
lower (i.e., a peak temperature of about 800 K, compared to 1200 K for the flaming
mode), and the ROS within the fuel layer is at least reduced by a factor 10 compared
to flaming combustion. Duff and peat lands (i.e., partially-decayed vegetation) are
prone to sustain this mode of fire spread, as experienced in the 1997 Indonesian
wildfires and 2010 Russian wildfires.9 Smoldering is also the mode of combustion
occurring behind the flaming front of wildfires (also referred to as post-flame com-
bustion). This is in particular responsible for severe physical, chemical and biological
soil damages as well as for large amounts of emissions into the atmosphere (Page
et al., 2002; Rein et al., 2008).

→֒ Fundamentals of fire dynamics

The combustion-related processes involved in wildfire spread are complex, due to the
heterogeneous properties of vegetation (also referred to as biomass fuel or wildland
fuel) and to the multiple underlying physico-chemical processes (e.g., chemical re-
actions in the gas and solid phases of the vegetation layer, radiation and convection
heat transfer, buoyancy-driven flow).

In industrial applications, combustion systems are carefully controlled so that they
involve a relatively limited set of fuels and the mass fraction of all these compounds
is precisely controlled (except for impurities). However, this description does not
apply to wildfires. Wildland fuels consist primarily of wood, grasses, shrubs, savan-
nas, forests, etc., in different states depending on their age and level of biological
decomposition. They cover therefore a wide range of physical structures and chem-
ical compounds. Besides, these biomass components can absorb humidity from the
atmosphere, a process that drastically modifies their physical and chemical proper-
ties over time. Thus, the temporal variability of vegetation is difficult to track in
real-time, while significantly affecting the rate and direction of wildfire spread.

As shown in Fig. 1.11, the mechanism responsible for degrading biomass surface
fuels and sustaining wildfire spread (once being ignited) can be decomposed into
four main stages described in the following (Williams, 1982).

(1) Flame-induced convection and radiation heat transfer. The combustion
zone, where combustion kinetic reactions occur, releases a large amount of heat
through convection and radiation. In particular, the vegetation ahead of the
combustion zone (in the pre-heated zone) receives a significant external heat
flux from the flame and therefore, its temperature increases. The magnitude
of this external heat flux decreases with distance from the flame.

(2) Moisture evaporation. The moisture contained in the porous vegetation of
the pre-heated zone subsequently evaporates. This moisture evaporation is the
primary stage of the vegetation thermal degradation, which breaks the chemical
bonds within the porous organic material and modifies its composition.

9www.nasa.gov/topics/earth/features/asia-fire.html.

www.nasa.gov/topics/earth/features/asia-fire.html
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(3) Pyrolysis gas release. The temperature of the porous vegetation contin-
ues to rise and above a certain threshold temperature (typically, 450-650 K),
the solid phase of the vegetation starts to release flammable gas compounds
(e.g., CH4, CO, H2) that are convected through the vegetation layer towards
the flame front. This entrainment is due to buoyancy effects. Since the burnt
gases produced by the flame have a significantly lower density than ambient air
(due to temperature discrepancies), they rise by convection and generate air
streams (referred to as air entrainment) that push pyrolysis gas reactants to-
wards the flame. This constitutes the pyrolysis stage, which can be regarded as
a phase transformation (i.e., from solid-phase to gas-phase) within the porous
vegetation.

(4) Onset of combustion kinetic reactions. Once the flammable gases released
during the pyrolysis process are in contact with oxygen, oxidation reactions can
proceed if the gas temperature is sufficiently high. A flame develops above the
previously-mentioned pre-heated zone and in turn, releases heat towards the
vegetation located ahead of the flaming front. This induces the displacement
of the flame towards the unburnt vegetation. Note that the temperature at
which pyrolysis gases are released (nearly 600 K) commonly defines the interface
between the combustion zone and the pre-heated zone.

In this brief description, we highlight that a wildfire propagates due to a strong,
non-linear coupling between heat transfer mechanisms, pyrolysis and combustion
chemistry. Note that stages (2) and (3) can occur simultaneously. The vegeta-
tion is characterized by thermally-thick (e.g., tree trunks) and thermally-thin (e.g.,
leaves) solid particles, implying that the amount of heat absorbed by the solid veg-
etation is non-uniform through the vegetation layer. The composition of pyrolysis
gases depends on the magnitude of the heat flux received by vegetation, since vari-
ations in heat transfer induce variations in the vegetation heating rates and thereby,
variations in the pyrolysis rate (each flammable gas being released at specific tem-
peratures). The presence of O2 is also important. The features of the combustion
kinetic reactions also strongly depend on the nature of these reactants (in terms of
composition and temperature). Besides, the size of the pre-heated zone depends
on the flame angle with respect to the ground surface: the larger the flame tilt
angle, the wider the pre-heated zone and the higher the energy transferred, the
faster flammable gases are emitted and thus, the faster the flame spreads. This
implies that wildfires propagate faster in wind and upslope directions.

At ground level, conduction also plays a role in wildfire spread, independently of
wind and slope. Also advection of pines and firebrands contributes to wildfire spread
by spotting effects (as mentioned previously in the description of spot fires).

Furthermore, large amounts of heat and combustion products are released by the
flame into the atmosphere. They modify the local state of the atmosphere, in par-
ticular local wind conditions and air humidity. These modifications affect, in turn,
the state of the vegetation ahead of the flame zone and the local air flow. Thus,
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they can potentially induce drastic changes in wildfire behavior over time. Wildfire
is therefore a complex multi-scale natural hazard, governed by non-linear, scale-
dependent, multi-physical processes (Viegas, 1998; Finney and Mcallister, 2011),
which can produce unexpected and radical changes in its behavior (e.g., eruptive
fires, Viegas and Simeoni, 2010).

1.3.2 A wide range of wildfire spread modeling approaches

Despite the devastating 1910 Great Fires in the Midwest (Pyne, 2001), interests in
wildfire spread modeling only appeared at the end of the 1940s and quasi-exclusively
in the US, due to the emerging Forest Service and the needs in wildland resource
management. Curry and Fons (1938) and Fons (1946) laid the foundations of a
rigorous physical approach to measure and mathematically model wildfire behavior,
which served as a benchmark for wildfire research in the following decades (Emmons,
1964; Rothermel, 1972; Albini, 1985). However, computer-based wildfire spread
modeling has only emerged during the past two decades, as a powerful tool for
applications in both fire risk management and fire emergency response.

→֒ Modeling aspects and issues

While length-scales of weather processes range over eight orders of magnitude,
from hundred-kilometer-scale weather systems to millimeter-scale turbulent effects
and flame-induced air entrainment, chemical reactions associated with vegetation
thermal degradation and combustion occur at molecular scales to produce flame up
to a few tens of meters height. Thus, the wildfire ROS depends on the ability of the
flame and biomass burning region to supply a sufficient amount of heat to enhance
fuel pyrolysis and ignite the mixture made of pyrolysis products and oxidizer ahead
of the flame. The different length-scales involved in wildfire spread are illustrated in
Fig. 1.12. Firelines travel at a ROS that results from complex interactions between
pyrolysis, combustion and flow dynamics as well as atmospheric dynamics. Thus,
our ability to accurately simulate the behavior of wildfires remains limited.

Due to its front-like topology at regional scales, similar to that of premixed flames,10

a wildfire is generally considered as a propagating interface from the burnt area to
the unburnt vegetation. This propagating interface (see Fig. 1.13) is referred to as
the fire front or fireline. In this context, computer-based wildfire spread modeling
aims at predicting the behavior of the fire front for a given set of environmental
conditions and ignition location. In order to estimate the time-evolving location
and perimeter of the fire front, the anisotropic ROS along the fireline must be
determined at each time step.

10Flames in which the oxidizer is mixed with the fuel reactants before ignition, inducing the
propagation of the flame towards the fresh mixture, in contrast to diffusion flames in which fuel
and oxidizer are initially separated and in which the combustion process is confined at the interface
between both compounds (see Chapter 2).
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Figure 1.12: Schematic of temporal and spatial (from mm-scale ignition to hundred-km-
scale smoke transport) scales underlying wildfire spread. Credit: Rod Linn.

The values for the ROS are determined by complex interactions between pyrol-
ysis (e.g., fuel chemistry, solid-phase reactions, solid fuel transport), combustion
and flow dynamics (e.g., gas-phase reactions, advection, buoyancy, radiation, topo-
graphic interactions) as well as atmospheric dynamics. From a modeling viewpoint,
it is generally accepted that the ROS depends on the following set of factors.

⊲ Vegetation properties. Vegetation can be regarded as porous organic ma-
terials, composed of a gas phase and of an ensemble of solid particles. While
being non-uniformly distributed within the vegetation layer, these particles
exhibit different sizes, chemical compositions, levels of biological decompo-
sition and moisture contents. These properties are of primary importance in
the pyrolysis process and significantly affect the rate at which the fire front
can potentially propagate.

⊲ Weather conditions. Wind velocity and direction are predominant factors
in wildfire spread, since they are partly responsible for tilting the flame to-
wards the unburnt vegetation. Air temperature and humidity, solar radiation,
precipitations also play an important role.

⊲ Terrain topography. Topography is associated with terrain configuration,
altitude, slope, orientation parameters, which directly impact the directions
in which a wildfire can propagate at the fastest rates.

It is worth mentioning that these different factors are not independent. For instance,
terrain topography modifies the wind field near the ground.
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Figure 1.13: Snapshots of surface (left) and crown (right) wildfires, in which active fire
areas are located at the interface between burnt and unburnt zones (referred to as fireline).

Modeling-related issues are due in particular to the wide range of relevant length-
scales, the complex set of coupled physical processes, the lack of knowledge in
boundary and initial conditions (heterogeneous and poorly-defined vegetation, near-
ground wind fluctuations) as well as difficult validation since it is usually limited to
laboratory-scale and field-scale experiments, which are not fully representative of
real-world wildfires.

To cope with the complexity of wildfire spread, different modeling approaches have
been proposed in literature, from physics-based to empirical models as described in
the following (Weber, 1991; Grishin, 1997; Perry, 1998; Pastor et al., 2003).

→֒ Physics-based models

Relevant insight into wildfire dynamics has been obtained in recent years via detailed
numerical simulations performed at flame scale, i.e., with a spatial resolution on
the order of 1 m. These physics-based fire spread models are promising approaches
to explicitly resolve interactions between the vegetation and the flame as well as
between the flame and the atmospheric dynamics (Hanson et al., 2000). These
models intend to simulate the fundamental chemical and physical processes within
and above the vegetation (considered as a porous medium), by explicitly solving
for mass, momentum and energy balance equations (Grishin, 1997; Larini et al.,
1998; Linn et al., 2002; Morvan and Dupuy, 2004; Porterie et al., 2005). The
porous medium includes the solid vegetation (branches, twigs, bark elements, etc.,
represented as solid fuel particles) and its surrounding gas (i.e., gas phase that
incorporates the gas in-between the solid particles and above the vegetation layer
or canopy).

The multiphase formulation implies that balance equations are applied to both
solid and gas phases, which are coupled through non-linear heat and mass flux ex-
changes (e.g., vegetation mass loss, drag force of the fuel solid particles). Thus,
physics-based models combine advanced physical modeling and classical methods of
computational fluid dynamics (CFD) to accurately describe flame-scale processes,
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while running at one or two orders of magnitude slower than real-time for a reason-
able domain size (Hanson et al., 2000; Sullivan, 2009a). In particular, mean flow
advection, large-scale effects of topography and buoyancy-induced flows are explic-
itly solved, while fine-scale turbulence, chemistry and combustion are subgrid-scale
processes that require additional physical modeling.

⊲ Fine-scale two-dimensional models. In FireStar for instance, following the
choices made by Grishin (1997) and the mathematical formulation proposed by
Larini et al. (1998), Morvan and Dupuy (2004) proposed a re-normalisation group
(RNG) k-ǫ model combined with an eddy dissipation concept (EDC) to accurately
account for the coexistence between regions of turbulent (e.g., thermal plume,
burning zone) and laminar (e.g., near the ground) flows at flame scale. In this
solver, the rate of combustion reactions is mainly limited by the turbulent mixing
between the gaseous fuel and the oxidizer following EDC (Magnussen, 2005). Both
radiation and convection are included in the energy balance equations of the gas
and solid phases. In particular, the radiation heat transfer is quantified through
the resolution of the radiation transfer equation (RTE) considering the vegetation
as a black-body (i.e., with an emissivity equal to 1). Similarly to Séro-Guillaume
and Margerit (2002) or Porterie et al. (2005), FireStar relies on an averaging
formulation of the macroscopic vegetation to account for the porous structure
of vegetation and in particular for the effects induced by the vegetation micro-
structures. Based on this formalism, the temporal evolution of the vegetation is
described by mass balance equations for each component of the solid fuel (e.g., dry
material, liquid water, carbon-based char material), in which each reaction source
term is modeled as an Arrhenius-type law. As suggested by Grishin (1997), the
soot volume fraction is imposed as a constant fraction of the pyrolysis rate (nearby
5 %). FireStar was evaluated against experimental fires through a homogeneous
pine needle fuel bed (Morvan and Dupuy, 2001). The study presented in Morvan
and Dupuy (2004) confirmed the existence of the two modes of wildfire spread
proposed by Pagni and Peterson (1973):

(1) plume-dominated fires, in which the radiation heat transfer from the flame (due
to soot particles and embers) is predominant (i.e., cases of surface fires on a
flat terrain and without significant wind-induced convection velocities);

(2) wind-driven fires, in which the convection heat transfer is dominating, with
still a significant radiation contribution (i.e., cases in which the flame is tilted
towards unburnt vegetation due to wind effect).

The same approach has been used to study the propagation of surface fires through
Mediterranean shrublands (Morvan, 2007) and crown fires (Dupuy and Morvan,
2005) in off-line mode and with simulations that are far from achieving real-time
performance. For instance, Fig. 1.14 shows the importance of radiation heat losses
within the flame zone and their effects on the flame topology.

Figures 1.15(a)-(b) illustrate a crown fire upslope propagation (that enchances air
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entrainment and vegetation pre-heating zone). They confirm that the gradient of
the fuel mass density (indicating a drastic vegetation mass loss) coincides with the
temperature gradient at the flame front.

(a)

(b)

(a)

Figure 1.14: Shrubland surface fire. (a) Reconstruction of the flame front from a radiation

heat loss rate equal to 60 kW/m3 for a wind velocity uw = 5 m/s (a pocket of burnt gases
has ignited a secondary flame, propagating downwind of the flame front). (b) Associated
gas temperature field. Credit: Morvan (2007).
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Figure 1.15: Upslope crown fire for a terrain slope angle equal to 30◦. (a) Gas temperature

field T [K]. (b) Associated biomass fuel mass density ρv [kg/m3]. Credit: Dupuy and
Morvan (2005).

One of the objectives of these FireStar studies (Morvan and Larini, 2001; Morvan
and Dupuy, 2004; Morvan et al., 2009) is the improvement of knowledge on the fun-
damental physical and chemical mechanisms controlling wildfire spread. However,
FireStar is limited to two-dimensional (vertical) configurations and therefore can-
not properly capture turbulent features. Note that a similar multiphase approach
is proposed by Porterie et al. (2005), which showed promising results to simulate
rapidly-propagating savanna fires and their emissions (in terms of gas compounds
and soot particles). In contrast to Morvan and Dupuy (2004), Consalvi et al.
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(2011) proposed a more physically-based char oxidation model due to Boonmee
and Quintiere (2005), instead of an Arrhenius-type law.

⊲ Three-dimensional models. Since wildfire spread exhibits fully three-dimensional
features, two-dimensional solvers remain limited for the study of multi-physical
multi-scale interactions. Thus, three-dimensional solvers such as Firetec and
WFDS have been developed in the past years to simulate fire-related processes
with a spatial resolution on the order of 1 to 2 m. Firetec11 is a compressible
multiphase LES solver, in which the pyrolysis of the solid phase and the combus-
tion of the gas phase are treated together (Linn, 1997; Linn et al., 2002). As for
WFDS12, it is an extension of FDS for simulating biomass burning, which is based
on a low-Mach number assumption and which handles gas and vegetation porous
phases separately on different grids (Mell et al., 2007). In particular, WFDS adopts
the pyrolysis model proposed by Morvan and Dupuy (2004), except that it does not
consider char oxidation.

Mell et al. (2005) presented WFDS simulations for a surface fire through a uniform
grassland fuel bed, for which in-situ and airborne measurements were available
for a wide range of conditions (e.g., wind conditions, length of fireline ignition).
Figures 1.16(a)-(b) compare the WFDS LES to the observed controlled burn and
show consistent fire front location and shape (from a qualitative viewpoint). Note
that since the vegetation is uniform, the shape of the fire front is relatively smooth
and symmetric with a faster propagation at the head of the fire (aligned with the
wind direction). However, this fire front does not remain straight, partly due to
high heat losses at the front edges.

Figure 1.16(c) confirms this trend over time and the ability of WFDS to predict
the propagation of the head of the fire as well as its flanks. Note that a wind
shift occurred after 86 s that broke the front symmetry; this drastic change is
not captured by WFDS since a constant wind direction was assumed over the
simulation duration. Furthermore, Linn et al. (2005) highlighted how physics-based
modeling approaches provide some important insights into the processes driving
crown fires and how they are able to capture wind/fire interactions in discontinuous
fuel beds. To illustrate how the canopy structure particularly affects wildfire spread,
a simulation snapshot based on Firetec is shown in Fig. 1.17.

⊲ Successes and limitations. Physics-based models have shown their overall abil-
ity to predict the macroscopic behavior of controlled burns, by explicitly solving for
the multi-scale interactions between the vegetation, the flame and the atmosphere,
and by accounting for each mode of heat transfer (i.e., conduction, radiation and
convection). A review of physics-based models is presented in Sullivan (2009a).

11Los Alamos National Laboratory simulator, ees.lanl.gov/ees16/FIRETEC.shtml.
12NIST Wildland Fire Dynamics Simulator, www.openwfm.org/wiki/WFDS.

ees.lanl.gov/ees16/FIRETEC.shtml
www.openwfm.org/wiki/WFDS
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(a) Experimental fire
(200 m × 200 m).

(b) Snapshot of WFDS sim-
ulation.

(c) Time-evolving fire front.

Figure 1.16: Comparison of WFDS simulation and observation for a uniform grassland
controlled burn. (a)-(b) Instantaneous snapshots at time 56 s. (c) Time-evolving location
of the flame zone. Symbols correspond to experimental measurements and shaded contours
correspond to WFDS simulations. Credit: Cheney et al. (1993), Mell et al. (2005).

.

t = 120 s (after ignition)

Figure 1.17: Firetec simulation of 20 m × 50 m field-scale wildfire spread (Flagstaff,
Arizona) in discontinuous fuel beds, 120 s after ignition. Colors on the horizontal plane
represent the spatial variations in vegetation density, black indicating the absence of fuel
and bright green indicating the 1 kg/m3 iso-contour (corresponding to a tall grass of
0.7-m depth). Dark green iso-surfaces indicate tree locations, while orange, red and grey
iso-surfaces indicate regions of hot gases. Credit: Linn et al. (2005).

Note that because of its high computational cost, flame-scale CFD is currently
restricted to research projects and is not compatible with real-time forecast opera-
tional objectives. WFDS or Firetec are currently used in off-line mode to assess
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the effects of prescribed burns on the vegetation, to evaluate the fire response
to strategic fuel and firebreak policy as well a to study wildland-urban interfaces
subject to fires.

Note also that flame-scale CFD still relies on several input parameters that are
difficult to estimate (e.g., soot volume fraction, ash content, char fraction) and
on modeling approximations (e.g., turbulent combustion model, pyrolysis model).
Thus, their performance must be evaluated for more heterogeneous environmental
conditions. Mell et al. (2005) stated that neither WFDS nor Firetec can ex-
plicitly solve for a detailed description of biomass fuels that differentiates a backing
fire from a heading fire. The fuel bed is indeed unresolved on the computational
grid (the horizontal and vertical spatial resolution being coarser than 1 m). From
this viewpoint, FireStar provides a finer representation of the flame/vegetation
interactions and of the flame-scale combustion processes, even though it is lim-
ited to two-dimensional (vertical) configurations. This implies that further analysis
is required to improve subgrid-scale models, for instance using CFD techniques
primarily developed for gas engine applications. While industrial companies and
policy-makers have been aware for a few decades that CFD could be helpful to
optimize the design and emissions in aeronautical engines, wildfires have been iden-
tified only recently (in the EU at least) as a serious threat for public safety and
ecosystem preservation. However, CFD applications to wildfire spread require signif-
icant modifications in comparison to gas engine applications (e.g., unconfined flow
interacting with atmospheric dynamics, significant radiation heat transfer, partially
known biomass fuel, buoyancy effects). These aspects are detailed further in the
manuscript (see Chapters 2 and 3).

→֒ Empirical models

An approach that is consistent with an operational framework relies on the eval-
uation of the ROS using statistical correlations of experimental data (e.g., wind-
tunnel experiments, field-scale controlled burns). The resulting parameterization
of the ROS depends on a reduced number of factors characterizing environmental
conditions, namely the fuel moisture content Mv (defined as the amount of water
contained in vegetation and expressed as a percentage of its dry mass) along with
fuel intrinsic properties fv (e.g., the vertical thickness of the fuel layer, the fuel
loading, the fuel particle mass density), the wind velocity uw at mid-flame height,
and the terrain slope angle αsl. Using this formalism, the ROS along the fireline
noted Γ is of the following form:

Γ = Γ (uw, αsl,Mv, fv) . (1.1)

In a wildfire spread simulator, this ROS empirical model is combined with La-
grangian or level-set front-tracking techniques (Fendell and Wolff, 2001; Mallet
et al., 2009; Rehm and McDermott, 2009) to simulate the two-dimensional prop-
agation of the fireline. A review of empirical modeling approaches is provided by
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Sullivan (2009b). These approaches are simple and computationally efficient; how-
ever, their domain of validity is limited to the conditions of the experiments used
during their original development. This limitation implies that their extension from
controlled burns to real-world regional-scale wildfires is not fully supported.

→֒ Semi-empirical models

An intermediate approach between physics-based and empirical models consists in
(1) formulating the ROS in Eq. (1.1) using the energy balance equation (applied
to the unburnt vegetation located in the pre-heated zone); and (2) calibrating the
resulting model parameters using experimental data. Resulting semi-empirical mod-
els do not distinguish between the different heat transfer modes. However, they
exhibit the computational efficiency of empirical modeling approaches, while still
including some relevant physical aspects of wildfire spread (through the energy bal-
ance equation). The most widely-used semi-empirical model is due to Rothermel
(1972); its detailed formulation is provided in Appendix A. Further works (Weise
and Biging, 1997) demonstrated that combining the original Rothermel’s formula-
tion (Rothermel, 1972) with Albini’s description of radiation heat transfer (Albini,
1985, 1986) closely mimics the ROS response to multiple combinations of wind and
slope conditions. For instance, Fig. 1.18 illustrates the consistency of Rothermel
model predictions to observed ROS for different biomass fuels.

A CONIFER LOGGING SLASH 

0 GRASS 

0 SOUTHERN ROUGH 

0 LODGEPOLE PINE LITTER / 

OBSERVED RATE OF SPREAD, FT/MIN 

Figure I-2.-Field verification of the linear 

trend between predicted and observed spread 

rates for a wide range of fuels. The logarithmic 
scales dampen scatter at high spread rate 
while increasing it at low values. Data obtained 

from these sources: conifer logging slash (solid 
triangles), Bevins (1976); conifer logging slash 

(open triangles), Brown (1972); grass, Sneeuw- 
jagt and Frandsen (1966); southern rough, 

Hough and Albini (1978); lodgepole pine litter, 
Lawson (1 972). 

Limitations 
The fire model is primarily intended to describe a flame front 

advancing steadily in surface fuels within 6 feet of, and con- 

tiguous to, the ground. Typical of such fuels are dead grasses, 

needle litter, leaf litter, shrubs, dead and down limbwood, and 

logging slash. These are the fuels in which fires start and make 

their initial runs and in which direct attack is usually made. 
The methods and model in this manual do not apply to 

smoldering combustion such as occurs in tightly packed litter, 

duff, or rotten wood. 

Severe fire behavior such as crowning, spotting, and fire 

whirls is not predicted by the fire model. The onset of severe 

fire behavior, however, can often be predicted from surface fire 

intensity as will be explained. 

Short-range firebrands may be blown ahead of the fire where 
they ignite fuels and increase the rate of fire spread. This 

mechanism is not accounted for, but the deficiency does not 

appear to affect the prediction of fire behavior. Short-range 

firebrands must ignite the fuel and start a new fire front before 

the fire overruns that position or the spotting will not be 

significant in increasing spread rate. In many cases the main 

fire does overrun the potential spot fires. Further, the model 

assumes fuels are uniform and continuous. Short-range spotting 

can actually compensate for the discontinuous nature of some 

fuels, giving extended usefulness of the model. 

Although the original model was developed for uniform con- 

tinuous fuels, subsequent research on nonuniform fuels (Frand- 

sen and Andrews 1979) and the introduction of the two-fuel- 

model concept (Rothermel1978)' permit some nonuniformity 

to be considered. 
The methods in this manual describe the behavior at the 

head of the fire where the fine fuels are assumed to carry the 

fire. Backing fires can also be described in some cases. The 

burnout of fuels, usually large fuels and tightly packed litter, 

behind the fire front is not described. 
Only the foliage and fine stems of living plants are consid- 

ered fuels. When moisture content is high, such plants can 

dampen fire spread. When moisture content drops below a 

critical level, however, living plants can increase the rate of fire 

spread. This is accounted for by the fire model. 

It is assumed that the fire has spread far enough so that it is 
no longer affected by the source of ignition. The system is 

therefore of W t e d  usefulness in predicting behavior of 

prescribed fires, where the pattern of ignition is often used to 

control fire behavior. Nevertheless, the model is often used to 

plan prescribed fires by assessing the fire potential both inside 

and outside of the proposed bum area. 

Applications 
This material was drawn from a course for training fire 

behavior officers; therefore predictions are expressed in "real 

time." Predictions are keyed to a specific site, using observed 

weather or weather forecasts and observed fuels and topog- 
raphy. The material is not limited to this application, and has 

been adapted for other purposes, as explained in the following 

section. 

PREDICXING FIRE BEHAVIOR 

Assessing behavior of a running fire or planning strategy on 

a fire that has escaped initial attack is the primary use. Pro- 

cedures are described i r t h e  section titled "The Fire Prediction 
Process." An example is given in appendix G .  

DISPATCHING 

When the decision has been made to suppress a newly 

discovered fire, the initial attack forces do not spend much 

time predicting fire behavior upon reaching the fire because of 

the urgency to direct all of their attention to suppression. Ac- 

tually, it would be more useful to predict fire behavior at the 

dispatching office before initial attack forces are sent. Such 

decisions would require data on fuels, topography, and weather 

comparable to those needed for on-site predictions. Methods 

similar to those in this manual are being streamlined for such a 

purpose. 

PLANNING 

The fire prediction methods described are being used for fire 

management planning in many parts of the world. Although 

cumbersome for long-range planning, they can be effectively 

used for short-range and operational planning. 

2A concept for appraising fire in nonuniform fuels. Presented at 
1978 meeting on fuel and smoke management, Mt. Hood National 
Forest. 

Figure 1.18: Field verification of the consistency between Rothermel-based predictions
and observed ROS for a wide range of biomass fuels (e.g., conifer logging slash, grass,
pine litter). Credit: Rothermel (1983).

Alternative ROS formulations exist in literature (Sullivan, 2009b; Cheney et al.,
1998; Balbi et al., 2009). For instance, Cheney et al. (1998) provided a semi-
empirical model that is specifically calibrated for Australian grassland fires; Balbi
et al. (2009) described a semi-empirical approach that relies on mass, momentum
and energy balance equations, while including geometrical simplifications and heat
transfer assumptions (see Appendix A, in which a comparative study to the ROS
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model due to Rothermel, 1972, is provided).

Since physics-based models exhibit a prohibitive computational cost, current oper-
ational wildfire spread simulators adopt a regional-scale viewpoint (i.e., a viewpoint
that considers scales ranging from a few tens of meters up to several kilometers)
based on empirical or semi-empirical ROS modeling approaches. They simulate a
wildfire as a two-dimensional propagating front within the vegetation bed, using
standard level-set or Lagrangian front-tracking techniques. For instance in the US,
BehavePlus13 (Andrews, 1986; Andrews et al., 2008) and Farsite14 (Finney,
1998) developed at the Missoula fire sciences laboratory use the model due to
Rothermel (1972) and provide guidance tools for fire management as part of
WFDSS.15 While BehavePlus considers uniform environmental conditions for
the forecast period, Farsite relies on a perimeter expansion technique based on
Huygens’ principle (Richards, 1995) to propagate the fire front using anisotropic
ROS values (due to spatially- and temporally-varying environmental conditions).
However, the practitioner-oriented BehavePlus system includes predictions of
fire behavior as well as fire effects (e.g., tree mortality) and fire environment (e.g.,
fuel moisture, wind adjustment factor). It is worth mentioning that in these op-
erational simulators, surface winds are imposed as input parameters in the ROS
models (Forthofer, 2007), while environmental conditions (e.g., vegetation proper-
ties, terrain topography) are integrated through in-situ and remote sensors (Lopez
et al., 2002).

1.3.3 Limitations of wildfire spread modeling

While much progress has been achieved over the past decades in the basic un-
derstanding of wildfire dynamics, while also much progress has been achieved in
the mathematical formulation and numerical simulation of wildfire spread, result
accuracy remains limited for several reasons listed below (Viegas, 2011).

⊲ Absence of a model for fire/atmosphere interactions. The mathemat-
ical models proposed to simulate regional-scale wildfire spread are unable
to cover the entire range of relevant scales and to explicitly account for
fire/atmosphere interactions (see Fig. 1.19). Their domain of validity is lim-
ited to the experimental conditions retained during their original development.
Figure 1.20 shows that a particular form of semi-empirical modeling that is
explicitly calibrated for Australian grasslands (Cheney et al., 1993, 1998)
provides accurate predictions of ROS, consistently with WFDS simulations.
However, Behave that relies on the formulation due to Rothermel (1972) is
not able to track the wind-induced ROS variations, even though the vegeta-
tion conditions are homogeneous. These results confirm that the validity of
a semi-empirical ROS model highly depends on the conditions for which the

13www.firemodels.org/index.php/national-systems/behaveplus.
14www.firemodels.org/index.php/national-systems/farsite.
15US Wildland Fire Decision Support System, wfdss.usgs.gov/wfdss/WFDSS_Home.shtml.

www.firemodels.org/index.php/national-systems/behaveplus
www.firemodels.org/index.php/national-systems/farsite
wfdss.usgs.gov/wfdss/WFDSS_Home.shtml
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underlying parameters were calibrated and that predictions of physics-based
models are valid over a much wider range of environmental conditions. Note
that the WindNinja capability to simulate surface wind flows can improve
Farsite predictions (Forthofer, 2007).

Pyroconvection

PBL

• Convective zone
Atmospheric interaction

Wind Drag

PBL

entrainment

•Vegetation

• Combustion Zone

Convective Flux

27

Figure 1.19: Schematic of fire/atmosphere interactions (PBL standing for planetary
boundary layer). Credit: Martin Wooster (private communication).

 

Figure 1.20: ROS values with respect to the wind magnitude. Symbols correspond
to WFDS predictions; the dashed line corresponds to the grassland-calibrated empirical
model due to Cheney et al. (1998), and the solid line corresponds to Behave predictions.
Credit: Mell et al. (2005).

⊲ Presence of physical modeling inaccuracies. A second limitation is that
semi-empirical modeling approaches exhibit knowledge gaps and/or inaccu-
racies in the description of the physics. While physics-based computational
fire models are able to account for time-dependent wildfire behavior (Viegas,
2004), semi-empirical approaches are based on a steady-state assumption and
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cannot properly capture acceleration processes such as in canyons (Viegas and
Pita, 2004) among others. These accelerations in the upslope direction are
illustrated in Fig. 1.21 for a laboratory-scale fire spread in a canyon experi-
mental configuration.

Figure 1.21: Time-series of a laboratory-scale fire experiment in a canyon configuration.
Credit: D.X. Viegas (private communication).

⊲ Lack of high-resolution environmental conditions. Another limitation
shared by all fire spread models lies in the knowledge of the input variables that
determine the ROS (i.e., vegetation properties, terrain topography, weather
conditions), which are often unknown or are only known with limited accuracy.

Due to their computational requirements, physics-based modeling approaches can-
not replace current operational wildfire spread simulators in the near-future. Still,
they can provide reliable and detailed predictions of the behavior and effects of wild-
fires over a much wider range of conditions than operational simulators, but for very
limited fire sizes. Thus, in spite of their uncertainties, wildfire spread simulators
that adopt a regional-scale viewpoint (i.e., a front propagating approach) remain
to date, the suitable operational tool for forecasting wildfire spread scenarios.

→֒ Coupled fire/atmosphere simulation capabilities

One recent strategy to better account for time-varying weather conditions at re-
gional scales consists in coupling a cost-effective wildfire spread model with a meso-
scale CFD atmospheric model, see for instance WRF-Fire16 (Clark et al., 2004;
Mandel et al., 2011; Kochanski et al., 2013) that combines the weather research
and forecasting (WRF) atmospheric model with the level-set-based surface fire

16www.openwfm.org/wiki/WRF-Fire.

www.openwfm.org/wiki/WRF-Fire
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behavior model Sfire, or ForeFire/Méso-NH (Filippi et al., 2013) coupling
the following components:

⊲ the meso-scale atmospheric solver Méso-NH17 that is a non-hydrostatic LES
solver, which is able to describe kilometer-scale to meter-scale atmospheric
dynamics along with chemical kinetic processes (Lafore et al., 1998).

⊲ the front-tracking solver ForeFire18 that is a Lagrangian front-tracking
solver applied to wildfire spread, evolving the location and width of the flame
front according to a semi-empirical ROS model (e.g., the formulation due
to Balbi et al., 2009). This solver relies on a discrete-event numerical ap-
proach (Filippi et al., 2009, 2011). In contrast to conventional explicit or
implicit schemes, this discrete-event approach performs time-integration in
terms of increments of physical quantities (instead of time increments) and
is therefore time-efficient (i.e., much faster than real-time).

A schematic of the coupled solver ForeFire/Méso-NH is presented in Fig 1.22.
Méso-NH forces wildfire behavior through the surface wind field, while ForeFire
imposes heat and vapor fluxes as surface boundary conditions to Méso-NH. An
on-line chemistry module can also be activated in the coupling mode, in order to
account for chemical kinetic processes of trace gases and aerosols emitted by wild-
fires (Filippi et al., 2011; Strada et al., 2012). Note that ForeFire/Méso-NH
is the coupling approach developed in the project, to which this thesis contributes.

Front marker

Fire surface spread !
model (ForeFire)

Wind !
field

Heat/vapor !
fluxes

Atmospheric model !
(Méso-NH)

Figure 1.22: Schematic of the ForeFire/Méso-NH coupling, in which the red zone
indicates the flame zone discretized by front markers, gray cells correspond to the atmo-
spheric computational grid and overlain vectors indicate the near-ground wind field. Credit:
Filippi et al. (2011).

Filippi et al. (2013) presented a validation study of the ForeFire/Méso-NH cou-
pled simulator applied to the FireFlux grassland controlled burn (Clements, 2007).
In addition, Santoni et al. (2011) demonstrated the improvements in the predic-
tion of the fire front location due to the fire/atmosphere coupling (in comparison
to the stand-alone fire spread simulator ForeFire). Figure 1.23 illustrates this

17www.aero.obs-mip.fr/.
18forefire.univ-corse.fr/.

www.aero.obs-mip.fr/
forefire.univ-corse.fr/
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improvement, since the simulated fire front in the coupling mode is much closer
to the observation than the simulated fire front in the surface mode. Thus, the
ForeFire/Méso-NH coupled simulator allows to investigate atmospheric feed-
back on wildfire behavior and predict fine-scale features of the wildfire behavior.
Detailed simulations of the flow and wildfire patterns over a complex heterogeneous
vegetation with Firetec or WFDS are currently beyond computational capac-
ities. Thus, WRF-Fire and ForeFire/Méso-NH coupled approaches appear
as a promising strategy to forecast the time-evolving location of the fire front (at a
reduced-cost) as well as the atmospheric behavior (in terms of plume size, transport
dispersion and smoke concentration).

Wind magnitude Smoke
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Figure 1.23: Favone wildfire (8 July 2009, Corsica). (a) Comparison of fire front loca-
tions: the blue line represents the simulated fire front 50 min after ignition, the green line
represents the simulated fire front 4 h after ignition (coupling mode), the yellow line is
the equivalent for the non-coupled ForeFire simulation (surface mode), and the red line
represents the final observed fire front. (b) 3-D view of the simulated plume nearly 50 min
after ignition. Credit: Santoni et al. (2011).

Still, many uncertainties remain due to simplifications in the description of the
physics and to knowledge gaps in the description of environmental conditions. Fur-
ther work aims at better representing biomass fuels and combustion, in order to
improve surface fluxes models and to accurately simulate regional-scale wildfire
spreads at a high spatial resolution. Even though these coupled fire/atmosphere
models have already demonstrated their potential for forecasting real-world wild-
fires, they require further validation studies, similarly to the Aullène case study19

presented in Fig. 1.24. Note that the French national database Prométhée20 pro-
vides an extensive record of past wildfire events, which could be useful to evaluate
uncertainties in coupled and non-coupled simulations against past observations (Fil-
ippi et al., 2013). Coupled fire/atmosphere models remain currently limited to
research projects.

19www.cnrs.fr/insis/recherche/actualites/2013/incendie.htm.
20www.promethee.com/prom/home.do.

www.cnrs.fr/insis/recherche/actualites/2013/incendie.htm
www.promethee.com/prom/home.do
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This overview of wildfire spread models (summarized in Table 1.1) highlights that
the use of a regional-scale wildfire spread simulator that takes full advantage of
the recent technological advances for geo-referenced front tracking is essential to
improve fire front location predictions. This is motivated by the uncertainties in-
herent to regional-scale wildfire spread modeling and to the current impossibility of
applying physics-based models to the operational framework of wildfire monitoring.
Thus, data-driven wildfire spread simulators remain to date, the most promising
strategy for wildfire spread forecast and thereby, for reliable fire danger evaluation.

It is worth noting that we use a semi-empirical ROS model due to Rothermel
combined with a front-tracking simulator named Firefly to perform regional-
scale wildfire spread simulations. This simulator has been developed in this work to
allow for more flexibility in the implementation and evaluation of data assimilation
techniques (see Chapter 6).

1.4 Remote sensing technologies for wildfire spread
monitoring

Currently, observations of vegetation areas subject to wildfire spread are of primary
importance for efficient detection and tracking of the location of flame front regions
at large scales, while supporting both research and operational applications. Due
to Earth observation national and international programs, available instruments for
observations are of different nature, from in-situ sensors positioned on the ground to
remote sensors aboard airborne platforms, unmanned aerial vehicles (UAV) or satel-
lites, as reviewed by San-Miguel-Ayanz et al. (2005), Calle and Casanova (2012)
as well as Wooster et al. (2013). We provide here a brief introduction to current
remote sensing systems and emphasize their applicability for tracking regional-scale
wildfire spread in real-time.

1.4.1 Detection of active fire areas

Detection refers to the determination of the location of hot-spots (i.e., areas of
anomalous elevation of temperature above normal environmental temperatures),
independently of their size. Early fire detection is essential for civil defense (due to
the growing number of wildland-urban interfaces) and firefighting efficiency (a wild-
fire is easier to extinguish during its early stages than when it reaches a fairly large
size, for which fire suppression capacities largely depend on meteorological condi-
tions). By measuring the electromagnetic radiation that is emitted from burning
biomass fuels at the Earth surface (i.e., about 10 to 30 % of the heat released by
the flame zone, Byram, 1959), remote sensors are able to locate wildfires through
the detection of either hot spots or smoke plumes formed by wildfire emissions into
the atmosphere. It is worth mentioning that the majority of this emitted radiant
energy can be regarded as a black-body-type radiation.
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Valle Mala Fire,!
 Aullène (Corsica)

(a)

(b)

(c)

Figure 1.24: Micro-scale (50 m resolution) to meso-scale (2400 m resolution)
ForeFire/Méso-NH simulation of the Aullène wildfire (6000 ha, July 2009, Corsica).
(a) Vertical wind profile at micro-scales. (b) Smoke plume at micro-scales compared to
in-situ imaging. (c) Smoke plume at meso-scales compared to MODIS imaging (1 km
resolution). Credit: CNRS-SPE, anridea. univ-corse. fr .

anridea.univ-corse.fr
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Not all wavelengths in the electromagnetic spectrum are effective for remote sens-
ing. However, a combination of spectral bands is generally required to identify a
distinctive spectral response pattern of a particular emitting surface (referred to as
the spectral signature). In practice, continental surfaces and vegetation are mainly
observed within the mid-infrared (MIR) and thermal-infrared (TIR) regions of the
electromagnetic spectrum (1.4 to 15 µm), without significant interference by the
atmosphere. Table 1.2 indicates the common subdivisions of the infrared band in
the geospatial remote sensing field.

Several wavelengths in the electromagnetic spectrum are able to distinguish a hot-
spot fire from the surrounding ambient background. Planck’s law calculates, for
a wide range of wavelengths, the amount of electromagnetic energy radiated by
a black-body in thermal equilibrium. The wavelength associated with the peak of
the black-body radiation curve provides an indication of its temperature (through
Wien’s displacement law). In particular, the higher the temperature, the shorter the
wavelength. In other words, when the temperature of the black-body increases, the
peak of the radiation curve moves to shorter wavelengths as illustrated in Fig. 1.25.
Thus, for the elevated temperatures encountered in wildfires, from some hundreds
to more than 1000 K above the ambient background, the maximum radiant intensity
generally occurs within the SWIR to MWIR regions. Since the SWIR region is also
affected by very significant solar reflected radiation signals, the MWIR (between 3
and 5 µm) is generally the focus of active fire detection algorithms and is commonly
referred to as the MIR region (Robinson, 1991; Kennedy et al., 1994; Arino and
Melinotte, 1995).

Table 1.2: Regions within the infrared electromagnetic spectrum.

Band name Wavelengths Common appellation

Near-infrared (NIR) 0.75-1.4 µm -

Short-wavelength infrared (SWIR) 1.4-3 µm -

Mid-wavelength infrared (MWIR) 3-8 µm MIR

Long-wavelength infrared (LWIR) 8-15 µm TIR

Far-infrared (FIR) 15-1000 µm -

Recent studies (Giglio et al., 1999; Justice et al., 2002; Wooster et al., 2005;
Riggan and Robert, 2009) have confirmed that the MIR region centered on the
3.9-µm wavelength is suitable for wildfire detection using spaceborne sensors, since
this wavelength is both sensitive to flaming and smoldering combustion modes and
since this wavelength is not significantly affected by gaseous absorption and emission
in the flame or in the atmosphere. Figure 1.26 shows indeed that contributions of
both flames and hot ashes are significant at this particular wavelength. Note that
wildfires can be detected even though they occupy a limited area of the sensor pixel
(i.e., 0.1 to 1 % of the pixel area, while the spatial resolution of the MODIS sensor
is 1 km for instance) or even though the Earth surface is covered by a smoke plume
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(with some attenuation when the ground surface is covered by condensed-water
clouds). However, the performance of spaceborne remote sensing also depends on
the size of the fire, since the higher the fire temperature, the smaller the fire size
required for its detection. This limitation can be overcome using airborne or UAV
platforms (Ambrosia and Wegener, 2009).

Figure 1.25: Radiation emitted in the different bands of the electromagnetic spectrum by
different temperatures of a black-body. The sun can be regarded as a 5777 K black-body,
corresponding to a peak emission at 0.5 µm (yellow line), while the Earth surface can be
regarded as a 300 K black-body, corresponding to a peak emission at 10.35 µm (red line).
Credit: www. eumetrain. org/ data/ 3/ 30/ .
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Figure 1.26: Model fire radiances in tropical savanna showing flame (red diamonds) and
hot-ash (grey triangles) contributions; the very low emitted radiance of vegetation (green
line) is shown for comparison. Credit: Riggan and Robert (2009).
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The observation of a smoke plume is usually part of a fire detection system (espe-
cially in the case of extreme fire events) and in particular, it is used to eliminate
false alarms produced by ground areas over-heating. However, this type of detec-
tion techniques presents one critical limitation since the time delay between wildfire
ignition and detection is important (the formation of a large and easily detectable
smoke plume requires a fairly large fire size). Besides ground over-heating, one
of the main sources of false fire detection alarms is the presence of clouds. Sun-
illuminated clouds typically appear as regions of elevated MIR values (due to their
reflecting MIR radiation from the Sun) and thus, can be mistaken with wildfires
(Giglio et al., 1999). Thus, complementary spectral channels (for instance, the
MIR/TIR brightness temperature21 difference between 3.9-µm and 11-µm chan-
nels) can be used to confirm whether each hot-spot pixel does indeed contain an
actively-burning fire. This technique is known as the contextual algorithm, in which
the thresholds for detection are obtained through a statistical analysis of the back-
ground environment (Li et al., 2002; Giglio et al., 2003; Wooster et al., 2005; Calle
and Casanova, 2012). It is worth noting that the view zenith angle at which the
ground surface is observed also affects fire detection capacities in TIR regions (Boles
and Verbyla, 1999; Paugam et al., 2013).

1.4.2 Geo-location of time-evolving fire fronts

Beyond fire detection, remote sensing is regarded as a promising approach to provide
a quantitative description of the fire radiation release to characterize sub-pixel fires
and to estimate fuel consumption as well as smoke emissions (Kaufman et al., 1998;
Wooster et al., 2003). These information are crucial to track the time-evolving fire
front location and to quantify the impact of uncontrolled biomass burning on the
Earth system that is recognized as major source of atmospheric gas pollutants and
aerosol emissions.

→֒ Fireline intensity

In addition to the ROS, a key parameter to characterize regional-scale wildfires
is the fireline intensity Ifr, because the rapidity and completeness of combustion
largely varies with intensity and because fires of different intensities release pollutant
emissions at different rates. Defined by Byram (1959) as being the effective heat
release rate per unit length of the fireline, the fireline intensity Ifr [W/m] reads:

Ifr = ∆hc ×m
′′

v × Γ, (1.2)

with ∆hc [J/kg] the biomass fuel heat release (commonly assumed static with
∆hc = 18.6× 106 J/kg in Rothermel, 1972), m

′′

v [kg/m2] the fuel mass consumed
in the active flaming zone per unit area, and Γ [m/s] the ROS (Alexander, 1982;
Whelan, 1995; Santoni et al., 2010). However, the fireline intensity is difficult to

21The brightness temperature can be easily calculated from the spectral radiance measurement
(at different wavelengths) using the inverse Planck function (Wooster et al., 1995).
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estimate because of uncertainties associated with providing accurate estimates of
the biomass fuel load m

′′

v in particular.

→֒ Fire radiation power (FRP) measurements

Only the radiation fraction of the fire heat release (named fire radiation power and
noted FRP [W]) can be detected using remote sensing technologies. Even though
the flame front of the fire is mainly a sub-pixel phenomenon in spaceborne data, the
MIR region of the electromagnetic spectrum ensures that FRP might be detected
in active wildfire areas using airborne (Kaufman et al., 1996; Riggan et al., 2004)
or spaceborne (Robinson, 1991; Wooster et al., 2003; Roberts and Wooster, 2008)
platforms. In contrast, non-active areas remain blank. Using the Stefan-Boltzmann
law, adapted to multi-thermal component situation,22 the FRP can be theoretically
expressed per unit area of the instantaneous ground-field of view, as follows:

FRP = ζfr σsb

NT∑

i=1

AiT
4
i , (1.3)

with NT the number of separate thermal components in the fire at different tem-
peratures, σsb = 5.67 × 10−8 [J/s/m2/K4] the Stefan-Boltzmann constant, ζfr
the constant fire gray-body emissivity (i.e., lower than 1), Ai the fractional area of
the i-th surface thermal component within the field of view, and Ti [K] the kinetic
temperature of the i-th thermal component.

However, this FRP calculation technique is not reliable for sub-pixel fires observed
with spaceborne sensors. As reviewed by Wooster et al. (2005), there exists dif-
ferent techniques to overcome these issues in practice, the bi-spectral approach
combining MIR and TIR measurements (Dozier, 1981; Giglio and Kendall, 2001;
Riggan et al., 2004), single waveband techniques corresponding to the MODIS ap-
proach (Kaufman et al., 1996, 1998; Justice et al., 2002; Giglio et al., 2003; Ichoku
and Kaufman, 2005) and the MIR spectral radiance approach (Wooster et al., 2003,
2005), among others. The MODIS approach is based on an empirical relationship
between the FRP and the brightness temperature of the fire pixel. Since it was
calibrated specifically for the spectral and spatial characteristics of MODIS, this
approach cannot be extended to lower or higher spatial resolution imagery without
any modification. As discussed by Wooster et al. (2005), the MIR spectral radiance
approach is more flexible and is for instance adapted to low spatial resolution im-
agery (e.g., geostationary satellites that exhibit a high revisit frequency compared to
polar-orbiting satellites). This approach is therefore suitable for monitoring wildfire
spread at high temporal resolution.

While showing promising results for controlled burns, further validation of MIR-
based FRP measurements is required at larger scales. Still, FRP measurements have

22A single wildfire generally consists of multiple flaming and smoldering combustion zones, with
a range of temperatures fluctuating at small spatial scales.
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shown potential to offer new insight into wildfire dynamics (in terms of emissions
and propagation), which provide information of primary importance for wildfire
monitoring.

⊲ Retrieval of wildfire emissions. The heat release measured by remote sensors
directly results from the amount of energy stored in wildland biomass and released
into the atmosphere through combustion processes. These processes also emit
trace gases, soot and aerosols, which are essential to quantify at regional and
global scales (Miranda et al., 2005, 2008; Strada et al., 2012; Urbanski, 2013).
Typically, carbon-based emissions are estimated using the following equation (Seiler
and Crutzen, 1980):

mk =

∫ t

tign

ω̇k dt = EFk

(∫∫

Ab

(BE ×m
′′

v) dx dy

)
, (1.4)

with:

• mk [kg] the total mass of species k released in the smoke plume;

• ω̇k [kg/s] the corresponding mass production rate of species k;

• t, tign [s] the current and ignition times of the fire, respectively;

• EFk [kg (species k)/kg (fuel)] the emission factor for species k (the mass of
k produced per unit mass of biomass fuel consumed);

• Ab [m2] the burnt area;

• m
′′

v [kg/m2] the biomass fuel load (the mass of available fuel per unit wildland
surface area);

• BE [kg (burnt fuel)/kg (available fuel)] the burning efficiency corresponding
to the fraction of available biomass fuel actually pyrolyzed and burned over
the fire duration.

The rate of biomass fuel consumption can be directly inferred through FRP mea-
surements, since there is a semi-empirical linear correlation between the FRP and
the biomass fuel consumption rate (Wooster et al., 2005; Freeborn et al., 2008).
The coefficient of proportionality is referred to as the combustion factor (noted
CF). In practice, the emission of a gas compound k defined in Eq. (1.4) is therefore
estimated based on the measured FRP as follows:

mk =

∫ t

tign

ω̇k dt = CF × EFk

∫ t

tign

FRP dt, (1.5)

in which the combustion factor CF [kg/J] corresponds to the inverse of the ra-
diation energy emitted by the fire per unit mass of fuel consumed. Thus, FRP
measurements provide direct access to biomass fuel consumption and conveniently
avoids uncertainties associated with the terms m

′′

v and BE in Eq. (1.4). However,
the FRP method relies on prior knowledge of the combustion factor CF and the



Chapter 1 - An eye onto wildfire spread modeling and monitoring 37

implicit assumption that this factor can be treated as a (calibrated) constant that
is independent of fuel properties and fire conditions. To summarize, FRP measure-
ments are essential to estimate carbon emissions from wildfires (Lentile et al., 2006;
Roberts and Wooster, 2008).

⊲ Geo-location of active fire areas. Since FRP measurements retrieve brightness
temperatures to calculate wildfire emissions, they are also valuable to geo-locate
spatio-temporal locations of the flame front and thus, derive the time-series of
wildfire ROS. For instance, Paugam et al. (2013) used FRP measurements to track
the temporal evolution of the flame front location on a thousand-meter-square con-
trolled burn. This study showed in particular that FRP measurements based on the
MIR radiance approach are able to properly capture the flaming zone (i.e., zone
where the brightness temperature is above 700 K) and to dissociate it from burnt ar-
eas located immediately behind the fire front (i.e., zones of brightness temperatures
between 500 and 600 K). Figure 1.27(a) presents the location of temperature iso-
contours for one instantaneous snapshot of the controlled burn, while Fig. 1.27(b)
presents the ROS values reconstructed along the flaming zone over the fire duration.
Although further validation is required at larger scales, this study demonstrates the
potential of FRP measurements for wildfire spread monitoring.

ROS (> 0.25 m s−1)

ROS (m s−

t = 340 st = 340 s

R

(a)

(b)

Rate of spread [m/s]

0.00     0.07    0.15    0.23    0.30

Figure 1.27: Field-scale heather controlled burn in Northumberland (March 2010, UK).
(a) Snapshot of the field-scale experiment (45 m×21 m) at time t = 340 s, where the blue
line indicates the 500 K iso-temperature, the green line indicates the 600 K iso-temperature
(assumed to represent the location of the fire front), and the red line indicates the 700 K
iso-temperature. (b) Map of fire front ROS over the controlled burn (overlain vectors
indicate local ROS above 0.25 m/s) reconstructed based on the displacement of the 600 K
iso-contour. Credit: Paugam et al. (2013).
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1.4.3 Overview of remote sensing systems

The use of MIR and TIR imaging aboard airborne and spaceborne platforms al-
lows for the detection and monitoring of active fire areas. A (non-exhaustive) list
of current observation capabilities and emergency response services follows (San-
Miguel-Ayanz et al., 2005; Doche et al., 2012; Wooster et al., 2013).

→֒ Spaceborne systems

Spaceborne systems currently in orbit provide information on a wide range of wildfire
features: the location of active fires, the mapping of burned areas, the tracking of
trace gas and aerosol emissions, etc. A list of these spaceborne systems along with
their related technical capabilities is presented in Table 1.3. These satellite systems
exhibit different monitoring capabilities in terms of the following features:

• spatial resolution, corresponding to the pixel size of the instantaneous field
of view of the sensor (i.e., the surface area being measured on the ground);

• spectral resolution, specifying the number and size of the wavelength in-
tervals that the sensor detects;

• temporal resolution, referring to the amount of time between two successive
observations of the same location of the Earth surface by the remote sensor;

• swath, corresponding to the spatial width of a single pass over the Earth
surface.

⊲ Pioneer generation of sensors. Operating aboard the NOAA (National Oceano-
graphic and Atmospheric Administration) satellites and the EUMETSAT polar sys-
tem,23 the AVHRR (Advanced Very High Resolution Radiometer) sensor has been
used as a research platform for the development of hot-spot detection algorithms
(Arino and Mellinotte, 1998; Li et al., 2000, 2002) due to its high temporal reso-
lution (among the polar-orbiting sensors). It is characterized by a 1.1 km spatial
resolution in red, NIR and TIR spectral channels.

Based on the developments due to the AVHRR sensor, MODIS has significantly
contributed to the emergence of an operational service for fire detection, in partic-
ular due to its high spectral resolution (Ichoku et al., 2003). This sensor operates
aboard Terra and Aqua polar sun-synchronous orbiting satellites at 720 km alti-
tude, with the capability of four daily revisits. It is composed of 36 spectral bands
ranging from 0.4 to 14.4 µm (from visible through thermal-infrared imaging), with
a spatial resolution varying between 250 m (red and NIR channels) and 1 km (MIR
channels) at nadir.24 While 1-km resolution channels operate to deliver the MODIS
Active Fire Product25 using the contextual algorithm due to Giglio et al. (2003),
the 250-m resolution channel is used to reject false hot-spot alarms and to mask

23www.metops10.vito.be/index.html.
24Direction vertically downward from the observer.
25modis-fire.umd.edu/.

www.metops10.vito.be/index.html
modis-fire.umd.edu/
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cloud. This product is made available through the fire information for resource
management system (FIRMS)26 within a few hours after data acquisition. As for
the 500-m resolution channel, sensitive to char and ash deposits in the vegetation
(by locating the occurrence of rapid changes in daily surface reflectance), it is used
to deliver the MODIS Burnt Area Product and allows for the accurate mapping
of fires of approximately 50 hectares or larger (within 3 or 4 days). These fire
products provide an important contribution to the international GOFC project27

and to EFFIS28 through the Active Fire Detection and Rapid Damage Assessment
modules.

⊲ High-spatial resolution platforms. While MODIS is limited by its spatial
resolution, a new generation of infrared sensors such as BIRD (Bi-Spectral InfraRed
Detection) has been developed to explore the potential of high spatial resolution
imagery for tracking hot-spots (e.g., wildfires, volcanoes). While equipped with a
hot-spot recognition system based on a 370-m spatial resolution in MIR and TIR
channels, BIRD has demonstrated its ability to detect small-scale fires down to
15 hectares (Briess et al., 2003), albeit at a much lower revisit frequency. This
illustrates the difficulty to combine requirements of high spatial resolution and wide
swath. The latter is essential for a high revisit frequency of the same location
on the Earth surface. However, high spatial resolution systems exhibit in general
a narrower swath. Still, such high spatial resolution systems play an important
role in validating fire products of lower spatial resolution such as MODIS (Wooster
et al., 2003) as well as in improving wildfire damage assessment over longer temporal
scales. Typically, the additional Damage Assessment module in the EFFIS European
fire system can be delivered with a higher level of details using AWiFS (Advanced
Wide Field Sensor), a high spatial resolution system operating at a 56 m spatial
resolution with four spectral bands (green, red, NIR and SWIR channels) aboard the
polar-orbiting Indian Remote Sensing (IRS) satellite.29 The performance of AWiFS-
based burnt scar mapping has been demonstrated in Sedano et al. (2013) to map
the impact of wildfires larger than 10 hectares over the fire season (corresponding
to 90 % of wildfires in Europe) using the example of the 2007 Greece wildfires.

Alternative high spatial resolution systems are SPOT (Système Pour l’Observation
de la Terre) satellites, RapidEye, DMC30 or the Pléiades constellation. For instance,
SPOT satellites operate along a polar sun-synchronous phased-orbit and exhibit a
spatial resolution ranging between 1 and 20 m, depending on the satellite generation
and on the spectral channel. As for the Pléiades constellation (i.e., Pléiades 1-A
and 1-B), it offers a sub-metric spatial resolution (0.70 m at nadir), with a narrower
field of view than SPOT satellites, but providing a detailed mapping of the Earth
surface and possibly of wildfire spread.

26earthdata.nasa.gov/data/near-real-time-data/firms.
27Global Observation of Forest Cover, www.fao.org/gtos/gofc-gold/.
28forest.jrc.ec.europa.eu/effis/about-effis/technical-background/.
29www.isro.org/satellites/earthobservationsatellites.aspx.
30Disaster Monitoring Constellation, www.dmcii.com/.

earthdata.nasa.gov/data/near-real-time-data/firms
www.fao.org/gtos/gofc-gold/
forest.jrc.ec.europa.eu/effis/about-effis/technical-background/
www.isro.org/satellites/earthobservationsatellites.aspx
www.dmcii.com/
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⊲ Geostationary platforms. Due to their high temporal resolution (in contrast
to polar-orbiting satellites that exhibit a revisit frequency limited to a few times
per day at most locations), geostationary satellites are useful for wildfire detec-
tion. For instance, GOES (Geostationary Operational Environmental Satellites)
and the SEVIRI (Spinning Enhanced Visible and Infared Imager) instrument aboard
MSG (Meteosat Second Generation) acquire images every 15 min, at up to 1 km
resolution in the visible spectrum and 4 km resolution in the thermal-infrared spec-
trum (Prins and Menzel, 1994; Prins et al., 2004; Calle et al., 2006). They are
part of the global geostationary system for fire monitoring (named GOFC/GOLD
fire mapping and monitoring program) with the Japanese MTSAT (Multifunctional
Transport Satellite). However, their spatial resolution remains limited and is not
suitable for tracking the time-evolving location of fire flame fronts. Still, they are
used for detecting wildfires and estimating emissions due to biomass burning (Calle
and Casanova, 2012). Note that the IASI31 instrument aboard EUMETSAT polar-
orbiting satellites could be a valuable remote sensor for measuring amounts of trace
gas compounds (e.g., ozone, CO) in the atmosphere due to its high spectral reso-
lution (i.e., 0.25 cm−1). However, its coarse spatial ground resolution (i.e., 12 km
at nadir) makes IASI focus on atmospheric observations rather than surface obser-
vations (Coheur et al., 2009).

⊲ Operational services of fire monitoring. One strategy to overcome the limited
revisit frequency of high spatial resolution imagery and to allow for regional-scale
wildfire spread monitoring with high spatial and temporal resolutions over the fire
duration is to combine information coming from an ensemble of satellites. At
European scale, a wide range of initiatives supported by the European Space Agency
(ESA) and the European Commission (EC) has led to a strong background in
emergency fire mapping.

• At the initiative of ESA and CNES (the French space agency), the Interna-
tional Charter Space and Major Disasters32 constitutes a unique worldwide
system for disaster response, operating since 2000 and relying on operational
satellites and cooperation among space agencies. A 24-hour on-duty rapid
mapping service (named Emergency Mapping and used as a decision support
tool by civil defense agencies) is specifically dedicated to regional-scale wildfire
monitoring and is notably supported by SERTIT33 and ZKI.34 This rapid map-
ping service consists in delivering geo-referenced maps of the specific natural
hazard within six hours after reception of spaceborne data (e.g., SPOT1-3,
DMC, Pléiades 1-A/1-B, BIRD, RapidEye, SPOT-4) as explained by Sarti
et al. (2005) and Clandillon and Yesou (2011). An example of SERTIT rapid

31Infrared Atmospheric Spectrometer Interferometer, smsc.cnes.fr/IASI/.
32www.disasterscharter.org/.
33Service Régional de Traitement d’Image et de Télédétection, Univ. de Strasbourg (France),

sertit.u-strasbg.fr/RMS/.
34Center for satellite-based crisis information at DLR, the German aerospace center,

www.zki.dlr.de.

smsc.cnes.fr/IASI/
www.disasterscharter.org/
sertit.u-strasbg.fr/RMS/
www.zki.dlr.de
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mapping for 2011 La Réunion wildfires is presented in Fig. 1.28.

• Within the framework of the European project Copernicus,35 supported by
EC and operated by a consortium led by e-GEOS, a network of real-time
geo-location services to monitor natural hazards such as floods and forest
fires has been developed. In this context, geo-referenced maps are delivered
within 24 hours after reception of spaceborne data.

Burnt area extent !
(27 October 2011)

Burnt area extent !
(28 October 2011)

Clouds

Figure 1.28: Examples of wildfire spread monitoring using spaceborne data. Left: Pléiades
1-A optical imaging for 2012 Colorado wildfires. Credit: CNES. Right: RapidEye imaging
with a 6.5 m spatial resolution for 2011 La Réunion wildfires. The orange line indicates the
location of the fireline on October, 27th (710 ha), and the red line indicates the location
of the fireline on October, 28th (1408 ha). Credit: SERTIT.

→֒ Airborne systems

Airborne fire detection usually relies on human surveillance from airplanes flowing
at high altitudes. However, new airborne systems including onboard data process-
ing and automated geo-location of active fire areas (using MIR channels along with
global-positioning system) are currently investigated for operational applications
with a spatial resolution finer than 50 meters and with a very high revisit frequency
(Riggan and Hoffman, 2003; Riggan et al., 2004; Riggan and Robert, 2009). Air-
borne platforms can operate almost continuously over the battery life and map the
fire propagation every few minutes, albeit at a logistical and financial cost. Note
that issues concerning geo-location and calibration are more important than for
spaceborne platforms. Furthermore, airborne platforms are useful to validate future
spaceborne instruments and to develop detection/monitoring algorithms. Typical
examples are the Parefeu program36 supported by CNES (2003-2004) and the
Livefire system (Merlet, 2008; Crombette, 2010), whose flowchart is presented
in Fig. 1.29.

35www.emergencyresponse.eu/gmes/.
36www.pont-entente.org.

www.emergencyresponse.eu/gmes/
www.pont-entente.org
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The US counterpart of the Livefire system is the FireMapper37 LWIR sensor that
has been operationally deployed since 2004 by the US Forest Service in collaboration
with the US Department of the Interior Bureau of Land Management (Riggan and
Robert, 2009). Figure 1.30 highlights the differences in spatial resolution between
MODIS and FireMapper products: the former precisely locates the instantaneous
flame zone, the latter provides a global viewpoint of the fire situation.

Airborne tracking of wildfire spread!
(arbitrary frame)

Middle-infrared imagery!
(arbitrary frame)

Geo-location of active fire contours

LIVEFIRE onboard system

Figure 1.29: Schematic of the Livefire system aboard the monitoring airplane Horus-
66 that has a battery life of 6 hours (Pyrénées-Orientales, France). Credit: i-Tolosa,
www. itolosa. fr/ .

! 65 C
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Figure 1.30: Comparison of MODIS and FireMapper imaging for Esperanza fires (26
October 2006, California). Left: MODIS brightness temperature using blue/green and
NIR channels (satellite). Right: FireMapper surface temperature (in Celsius) measured at
11.9 µm wavelength (airplane). Credit: Riggan and Robert (2009).

This overview shows that recent progress made in airborne/spaceborne remote
sensing provides new ways to examine wildfire behavior (in terms of radiant intensity,
carbon mass flux and sensible heat flux, fuel consumption, etc.). In particular, high
spatial resolution systems (at a scale on the order of a few meters) can locate
the high spectral radiance typical of wildfires and contribute to monitor real-time
locations of flame fronts.

37www.fireimaging.com.

www.itolosa.fr/
www.fireimaging.com
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1.5 Thesis overview

The complexity of regional-scale wildfire spread requires a multi-disciplinary ap-
proach to address issues related to wildfire forecasting, in terms of burnt area ex-
tents and atmospheric emissions. Given the large number of processes and factors
that occur in wildfires, covering several orders of magnitude in spatial and temporal
scales, the collaboration of scientists with different specialized backgrounds is re-
quired to introduce a paradigm-shift in wildfire spread modeling. This could, in the
long run, be part of the firefighter training as well as strengthen civil defense and
environmental protection in fire prevention planning and emergency responses. De-
veloping a novel approach of wildfire spread modeling is the purpose of the present
Ph.D. thesis entitled Towards a more comprehensive monitoring of wildfire spread:
model evaluation and data assimilation strategies.

This Ph.D. thesis was funded by the Agence Nationale de la Recherche (ANR)
under the IDEA (Incendies de forêts: simulation de la dynamique et des émissions
atmosphériques par couplage de code38) project grant ANR-09-COSI-006 (2010-
2013). It was also supported by a LEFE-ASSIM grant (INSU-CNRS program named
Les Enveloppes Fluides de l’Environnement, 2011-2013).

1.5.1 Scope of the thesis

The general objective of this Ph.D. thesis is to demonstrate the feasibility of using
fire sensor technology combined with fire modeling software for real-time in-situ
analysis, in order to improve real-time forecasts of wildfire evolution. From a tech-
nical perspective, it consists in what we consider a very innovative application of
advanced methods for coupling observations and models that are developed in re-
lated scientific and engineering fields (e.g., numerical weather forecasting) to the
area of combustion and fire science. These advanced methods are referred to as
data assimilation methodologies. These methodologies are efficient to reduce un-
certainties in the system predictions, especially if the underlying computer model
properly captures fine-scale features of the system dynamics. Thus, the improve-
ment of combustion models through the detailed analysis of flame-scale processes
is also an important component towards an accurate data-driven wildfire spread
simulator.

This Ph.D. thesis is part of an emerging collaborative, multi-discplinary, interna-
tional research program between Energétique Moléculaire et Macroscopique, Com-
bustion39 (EM2C) CNRS laboratory at Ecole Centrale Paris, Centre Européen de
Recherche et Formation Avancées en Calcul Scientifique40 (CERFACS), and the De-
partment of Fire Protection Engineering41 at the University of Maryland (UMD). In

38anridea.univ-corse.fr/.
39www.em2c.ecp.fr/.
40www.cerfacs.fr/.
41www.fpe.umd.edu/.

anridea.univ-corse.fr/
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this collaboration, EM2C brings extensive experience in combustion physics, com-
bustion modeling and CFD; CERFACS brings experience in cutting-edge massively
parallel scientific computing, CFD and data assimilation, while UMD brings expe-
rience in fire physics and fire modeling.

To overcome some of the limitations of wildfire spread modeling, this Ph.D.
research includes the development of data-driven simulations of regional-
scale wildfire spread through the application of a data assimilation method-
ology, and a critical analysis of available ROS models through LES of flame-
scale fire spread configurations. The two main goals of this thesis can be
summarized as follows.

⊲ PART I - Insight from multi-physics flame-scale large-eddy simulations

Because wildfire dynamics features complex multi-physics occurring at multiple
scales, our ability to accurately simulate the behavior of wildfires remains limited.
The semi-empirical modeling approaches used at operational levels are limited,
partly because of their inability to cover the entire range of relevant scales and their
inaccuracies in the description of the physics. As for physical modeling approaches,
they are too computationally-intensive to provide real-time predictions and still do
not account accurately for all the relevant physical processes. As highlighted by
Linn et al. (2005), only large-scale effects are explicitly solved in current wildfire
LES (e.g., Firetec, WFDS), while fine-scale temperature distributions, mixing,
turbulence, chemistry and combustion are considered as subgrid-scale processes and
require additional models that must be further improved (Zhou et al., 2005, 2007).

To overcome these modeling issues, the ANR-IDEA project was aimed at developing
a scientific computing platform for simulating regional-scale wildfire spread. This
platform is based on the coupling of the wildfire spread model ForeFire and
the meso-scale atmospheric solver Méso-NH. Its purpose is to address the wide
range of scales involved in a wildfire, from the vegetation scales (less than 100 m)
that are essential to describe fine-scale combustion processes, to the atmospheric
scales (more than 100 km) that are of primary importance to account for the
coupling between combustion, flow dynamics and atmospheric dynamics. Note
that this project was piloted by the CNRS-SPE laboratory of the University of
Corsica (J.-B. Filippi), with the following institutional partners: LA (CNRS/Paul
Sabatier University, Toulouse), CERFACS, EM2C, CNRM (CNRS/Météo-France),
INRIA and M2P2 (CNRS/University of Marseille). Within the ANR-IDEA project,
the following issues have been addressed:

• Vegetation scales. Equation (1.4) is the classical way to estimate the
amount of emissions of a specific gas compound k. However, this empir-
ical calculation requires explicit knowledge of biomass fuels properties and
consumption (e.g., flaming or smoldering combustion modes), through the
burning efficiency BE and the emission factor EFk. These parameters are sub-
ject to significant uncertainties; thus, Eq. (1.5) could be an alternative tech-
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nique to estimate fire-induced emissions through FRP measurements. While
megafires are expected to occur more frequently due to climate change and
to induce large-scale air quality issues, there is a growing need to character-
ize gases that are released by the vegetation thermal degradation and that
are partially consumed by flaming combustion (Pérez-Ramirez et al., 2012).
These gases affect combustion dynamics and also determine the composition
of the smoke plume (e.g., carbon monoxide CO, carbon dioxide CO2, nitric
oxide NO, sulphur dioxide SO2, methane CH4, hydrogen cyanide HCN, ace-
tonitrile CH3CN), which potentially extends over hundreds of kilometers in
the atmosphere. Field-scale campaigns and measurements (Miranda et al.,
2005) have been performed to determine emission factors corresponding to
Mediterranean biomass fuels. However, it is evident that the list of emission
factors still remains incomplete.

• Flame scale. The knowledge on flame-scale processes (resulting from multi-
scale interactions between pyrolysis, combustion and flow dynamics) remains
limited due to their high complexity as well as to their spatial and temporal
variability. However, these dynamics are of primary importance to determine
wildfire propagation and the resulting emissions into the atmosphere. While
current operational fire spread simulators rely on empirical formulas for pre-
dicting the wildfire ROS or intensity, new physics-based approaches emerge
and attempt to understand the controlling processes in a wildfire (e.g., wind,
buoyancy-induced flow, combustion, thermal radiation and degradation of the
vegetation). Currently, the limitations induced by insufficient computational
capacities (for instance, resolving the processes of ignition would required
a computational mesh resolution on the order of 1 mm) are addressed by
subgrid-scale modeling as in industrial combustion applications. This subgrid-
scale modeling needs to be improved through detailed analysis of wildfire
spread, in order to build simulations that are more physically-consistent.

• Surface/atmosphere interactions. In a coupled system including surface
wildfire spread and meso-scale atmospheric dynamics, interface conditions
constitute a critical component. Surface forcings induced by ForeFire are
prescribed as heat and vapor fluxes in the boundary layer of the meso-scale
atmospheric model Méso-NH, through the surface modeling platform Sur-
fex42 (see Fig. 1.31). Since ForeFire relies on a front-tracking approach
and a semi-empirical ROS model, surface fluxes need to be represented using
additional physical modeling. For this purpose, reduced models for combus-
tion can be developed (Morvan, 2011).

• Atmospheric scale. The impact of a wildfire at atmospheric scales (over
tens to hundreds of kilometers) is a direct result of the interaction between
atmospheric dynamics and the ongoing chemical kinetics in the smoke plume
(e.g., presence of CO, ozone titration and production). For this purpose, a

42www.cnrm.meteo.fr/surfex/.

www.cnrm.meteo.fr/surfex/
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specific chemical kinetic module is required in the meso-scale atmospheric
model Méso-NH (Strada et al., 2012).
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Figure 1.31: Schematic of SURFEX tiling and coupling with Méso-NH meso-scale
atmospheric model. Credit: Météo-France.

The validation of this coupled fire/atmosphere platform has been performed through
ensemble runs to characterize modeling errors over a large number of wildfire cases
(Filippi et al., 2013). A typical example of coupled ForeFire/Méso-NH simu-
lations is presented in Fig. 1.24.

Within the framework of the ANR-IDEA project, the first part of this Ph.D. the-
sis aims at bringing CERFACS/EM2C extensive expertise in combustion modeling
(developed for industrial combustion applications) to the wildfire spread research
field. As shown in Fig. 1.32, this work is aimed in particular at:

(1) investigating the thermo-chemical structure of typical wildfire flames to offer
insight into the composition of the smoke plume (vegetation-scale issue);

(2) analyzing flame-scale interactions between pyrolysis, combustion and turbu-
lence as well as the delicate balance between convection and radiation heat
transfer (flame-scale issue).

For this purpose, multi-physics flame-scale LES of fire spread are performed at
laboratory flame-scales and are compared to measurements to provide a compre-
hensive understanding of the mechanisms underlying fire spread. In particular, the
assumptions used to estimate the ROS are examined in detail and some insights
into the flame-induced air entrainment are provided through the analysis of particle
image velocimetry (PIV) experimental measurements. To our knowledge, it is the
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first time that a LES approach solving for the flame structure (at a spatial resolu-
tion on the order of 1 mm) and including radiation heat transfer and pyrolysis, is
applied to natural fire propagation. This modular physics-based approach, allowing
for continual improvement of process level models and relying on high-performance
computing, constitutes a research tool for exploration of wildfire behavior and sen-
sitivity to environmental conditions. In particular, this approach is a promising
approach to better parameterize semi-empirical ROS formulations as a function of
a reduced number of dominant factors (e.g., vegetation properties, weather condi-
tions, terrain topography), which could then be used to regional-scale predictions
of wildfire spread.
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Vegetation scales
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Combustion 
processes
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Surface/atmosphere 
interactions

Atmospheric scales

Figure 1.32: Summary of the ANR-IDEA project with thesis objectives presented under
the label Combustion processes.

⊲ PART II - Data assimilation for regional-scale wildfire spread forecast

A further strategy to overcome wildfire modeling limitations consists in coupling
information coming from both measurements and computer model, taking into
account that none of them, when used alone, provides a certain and complete
description of the physical system. The idea is to use observations to improve the
estimate of the set of parameters, initial/boundary conditions, or model state for
the computer model, and improve its accuracy and high-fidelity. While still original
in the field of fire and combustion, data assimilation provides a powerful framework
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to perform such combination of remote sensing measurements and computer model,
while explicitly accounting for the effects of both observation and modeling errors.
The benefit of data assimilation has already been greatly demonstrated in numerical
weather forecasting over the past decades. It fits into the wider domain of dynamic
data-driven application systems, where data are used to formulate some feedback
information on the physical system, leading to the reduction of uncertainties on the
model and its predictions.

In the second part of this Ph.D. thesis, data-driven modeling is proposed as one of
the two cornerstones of a wildfire spread forecasting capability, producing accurate
predictions of the time-evolving location of the flame front with positive lead-times
(consistent with operational applications) and without loss of accuracy. The other
cornerstone corresponds to the integration of a variety of in-situ and remote sensors
providing (real-time) information on fire location, vegetation, terrain topography
and atmospheric conditions. The focus here is on the development and validation
of data assimilation algorithms applied to a regional-scale wildfire spread simula-
tor named Firefly. The problem of availability of the fire front observations
and geographical-information-system-based information for the ROS model param-
eters is outside the scope of this research. In the continuation of Rochoux et al.
(2010) that demonstrated the potential benefits of data assimilation for wildfire
spread (albeit in much simplified configurations), the present work aims at extend-
ing this approach to more realistic configurations. Some critical questions must be
addressed:

• Which type of observations is suitable for data assimilation (in terms of spatial
and temporal resolutions for instance)?

• What are the main uncertainties in a wildfire spread simulator? To which
parameters is wildfire spread sensitive?

• Which data assimilation algorithm is consistent with the features of the wild-
fire spread simulator (e.g., problems of non-linearities and non-Gaussian error
statistics)?

In order to properly quantify modeling/observation uncertainties and to account for
model non-linearities, ensemble-based data assimilation algorithms are explored in
this work. This work has been developed within the framework of a collaboration
between CERFACS and UMD. The main components of the proposed prototype
data-driven simulator are: a regional-scale perspective in which the propagation of
the fire front is described via a local description of the ROS; a semi-empirical model
description of ROS (possibly modified through the analysis of flame-scale LES); a
level-set-based solver for the fire propagation model (also referred to as the forward
model and named Firefly); an assumed set of real-time observations of the flame
front location; and ensemble-based data assimilation algorithms (also referred to as
inverse modeling procedure). The innovation lies in the original application of these
data assimilation algorithms to cases featuring variables conditions, including spatial
variations in fuel properties and topography, as well as temporal variations in the
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wind intensity. These experimental conditions are of great theoretical interest and
are representative of the variability in vegetation, topographical and meteorological
properties found in real-world applications.

The first objective is to evaluate the ability of the prototype data-driven wildfire
spread simulator to correctly respond to temporal and/or spatial variations of the
environmental conditions. In this case referred to as the parameter estimation
approach, the estimation targets are the input parameters of the semi-empirical
ROS model. The second objective is to evaluate the ability of data assimilation
methodologies to reduce modeling uncertainties through the direct correction of the
fire front locations. This approach is referred to as the state estimation approach.
While the estimation targets differ, both approaches are expected to provide more
accurate simulations and forecasts of the time-evolving location of the fire front. A
validation study corresponding to a controlled burn across a small-scale flat open-
field grassland lot is presented to evaluate and compare the performance of data
assimilation algorithms. While the proposed fire spread forecasting capabilities are
still at an early stage of development, it is envisioned that these future capabilities
will be similar to current weather forecasting capabilities and that our general ability
to predict the evolution of wildfires will rely on the continuous assimilation of
observation data into a cost-effective wildfire simulator. The ultimate goal of this
research (beyond this thesis) is to define a prototype data-driven wildfire simulator,
able to produce real-time fire forecasts using thermal-infrared imaging data including
a description of both wildfire dynamics and fire plume emissions.

1.5.2 Outline for the manuscript

⊲ PART I - Insight from multi-physics flame-scale large-eddy simulations

• In Chapter 2, turbulent combustion is introduced. Balance equations are
presented for reacting buoyancy-induced flows. The different approaches for
chemistry description in turbulent combustion, combustion modeling as well
as radiation heat transfer are also introduced along with the different CFD
tools used in this work.

• We describe in Chapter 3 our strategy for building and simulating coupled
multi-physics LES that are representative of laboratory-scale fire spread. In
particular, we detail and validate the Pyrowo biomass thermal degradation
model developed in this work to account for the pyrolysis of the biomass fuel.
We also present the undertaken coupling strategy to combine Pyrowo and
the Avbp LES solver for the reacting gas phase, including the methane/air
flame description and the coupling with the Prissma radiation heat transfer
solver. This coupling capability relies on the Open-Palm dynamic coupler.

• Chapter 4 presents the results of the multi-physics flame-scale LES for a
laboratory-scale fire configuration. We compare these results to laboratory-
scale measurements and in particular, we show the feasibility of PIV to mea-
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sure flame-induced air entrainment. This study demonstrates the feasibility
of this physics-based modeling approach to provide insight into the physi-
cal and chemical processes underlying fire spread and thereby, into the ROS
formulation.

⊲ PART II - Data assimilation for regional-scale wildfire spread forecast

• Chapter 5 introduces general features on data assimilation, in terms of math-
ematical formalism and sequential methodologies for the numerical treat-
ment of model non-linearities and of non-Gaussian modeling/observation er-
ror statistics. The Kalman filter and its extensions are presented along with
an extensive comparison to variational approaches and particle filters.

• The aim of Chapter 6 is to investigate the suitable strategy of data assimi-
lation for tracking wildfire spread. We provide, in a first step, an overview of
the recent efforts made at international level to apply inverse modeling proce-
dures to fires. In a second step, we present our prototype data-driven wildfire
simulator to correct inaccurate predictions of the fire front location and to
subsequently, provide an optimized forecast of the wildfire behavior. This
prototype simulator features a regional-scale wildfire spread model Firefly
that deals with wind and complex terrain topography, coupled with a data
assimilation methodology suitable for parameter or state estimation through
OpenPalm.

• In Chapter 7, we conduct a comparative study between different data assimi-
lation algorithms (extended Kalman filter, ensemble Kalman filter and particle
filters) to highlight their respective benefits and disadvantages for tracking
wildfire spread. Their performance is first evaluated in a series of verification
tests using synthetically-generated observations and including configurations
with spatially-varying vegetation properties and temporally-varying wind con-
ditions. It is subsequently evaluated in a validation test corresponding to
a controlled grassland burn. The data assimilation algorithm also features
a choice between a parameter estimation approach in which the estimation
targets are the input parameters of the ROS model and a state estimation
approach in which the estimation targets are the fire front locations. We
demonstrate in these tests the importance of assessing physically-consistent
modeling errors to allow for an anisotropic correction of the fire front position,
resulting in higher-fidelity data-driven simulations and optimized forecast of
the wildfire behavior at positive lead-times.
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Introduction

Given the large number of processes and factors that occur in wildfires, covering
several orders of magnitude in spatial and temporal scales, semi-empirical modeling
approaches used at operational levels for simulating regional-scale wildfire spread
are limited, partly because of their inability to cover the entire range of relevant
scales and their inaccuracies in the description of the physics. Real-time predictions
of the direction and speed of a propagating wildfire have therefore been identified
as a valuable research objective with direct applications in fire emergency response.
Beyond the production of carbon dioxide CO2 and water vapor H2O, biomass burn-
ing constitutes a significant source of air pollutant emissions, among whom carbon
monoxide CO, unburnt hydrocarbons (UHC), volatile organic compounds (VOC),
nitrogen oxides NOx, sulfur oxides SOx and aerosols (also known as particulate
matter). These greenhouse and trace gases significantly affect the chemistry and
radiation budget of the atmosphere; for instance, they alter the atmospheric com-
position and air quality by producing harmful ozone O3 and inducing acid rains. For
this purpose, civil defense and environmental-related issues need to be addressed,
in particular in terms of fire front tracking and air quality predictions.

To better track regional-scale wildfires and quantify their emissions, biomass com-
bustion processes must be analyzed in details, within the flame zone as well as in
the post-flame zone. Modeling fine-scale interactions between surface processes
and atmospheric dynamics is also an important component to track the life-time of
reacting species, from the combustion zone up to the troposphere, where airborne
or spaceborne observations are available. Still, regional-scale wildfire spread models
are currently limited to a semi-empirical parameterization of the rate of fire spread
(ROS), see Eq. (1.1), and emission models rely on the specification of a burning
efficiency coefficient and emission factors for the targeted chemical compounds, see
Eq. (1.4), Chapter 1.

A possible approach to partly overcome the limitations found in wildfire modeling
and to improve the knowledge on the multi-scale interactions between pyrolysis,
combustion and flow dynamics is to develop flame-scale numerical simulations of
fires (with a spatial resolution on the order of 1 mm). These simulations could
provide insight into the ROS sensitivity to environmental conditions, but also into
the fireline intensity, the vegetation/flame heat exchanges as well as on the com-
position of burnt products released by the flame into the atmospheric boundary
layer. These information are essential for better characterizing wildfires, quanti-
fying real-time emissions and assessing the long-term impacts of wildfires on the
atmosphere. They are also of primary importance to evaluate the assumptions un-
derlying semi-empirical ROS modeling since the Rothermel’s model expresses the
ROS as the ratio between the heat flux received by the unburnt vegetation and
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the energy required to ignite the biomass fuel. The submodels for these quantities
were calibrated using one-dimensional tunnel experiments, but detailed flame-scale
simulations could directly solve for these quantities and thereby, evaluate the range
of validity of these submodels. In particular, such detailed approaches could benefit
to regional-scale wildfire spread models by improving the model parameterization
of the fireline ROS. They can also be viewed as a promising approach to address
modeling uncertainties in regional-scale wildfire spread models such as Firefly.

Numerical simulations of biomass combustion for turbulent flows belong to the
wider area of computational fluid dynamics (CFD) and have recently demonstrated
their potential to improve combustion-based technologies. This, in order to re-
duce fuel consumption in industrial applications (such as vehicles, industrial plants
and furnaces, gas turbines, rocket propulsion, domestic boilers, etc.), consistently
with European and international regulations. Similar CFD simulation techniques
can be developed in wildfire research since they share common features such as
phase-change, combustion/turbulence interactions as well as the importance of
heat transfer. However, their application to wildfires is not straightforward for two
main reasons illustrated in Fig. 1.33:

Figure 1.33: Comparison of gas engines and wildfires (buoyancy-driven) combustion pro-
cesses, sharing three common features: phase change, interactions between the turbulent
flow and combustion as well as heat transfer.
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(i) The characteristic time- and length-scales of combustion processes in com-
bustion chambers and wildfires are not of the same order of magnitude. In
particular, wildfires propagate in an unconfined environment.

(ii) The controlling processes differ: while combustion in gas engines is driven by
turbulent transport, wildfires are controlled by buoyancy (i.e., natural convec-
tion) and radiation. In wildfires, radiation is a key heat transfer mechanism
that is largely responsible for the vegetation pyrolysis and that sustains flam-
ing combustion, thus enhancing their propagation over large distances at the
Earth’s surface.

In spite of these discrepancies, this part of the thesis aims at demonstrating the
feasibility of multi-physics large-eddy simulations (LES) performed at the labo-
ratory flame-scale to provide a comprehensive understanding of the mechanisms
underlying fire spread. This Ph.D.-level project is a collaboration between CER-
FACS (Drs. Bénédicte Cuenot, Florent Duchaine and Eléonore Riber) and the
CNRS-EM2C laboratory at Ecole Centrale Paris (Drs. Nasser Darabiha and De-
nis Veynante), France. HPC resources from CERFACS and GENCI-CCRT43 (Grant
2013-x20132b6074) were used.

43Grand Equipement National de Calcul Intensif, www.genci.fr/en.

www.genci.fr/en




Chapter 2

General features of

multi-physics turbulent

combustion

Turbulent combustion is described in terms of Navier-Stokes equations cor-
responding to mass, momentum and energy balance equations, to which
species transport equations are added to account for reacting flows. Mod-
eling difficulties arise with the description of the exothermic fuel oxidation
reactions producing the flame (that are highly non-linear and stiff reactions)
and of its interactions with the turbulent flow. Based on high-performance
computing (HPC), large-eddy simulation (LES) is the most recent and
successful technique to properly account for unsteady flame/turbulence
interactions as well as for the formation of pollutants in complex configura-
tions. Models are used to account for the predominant physical features, in
particular the fuel oxidation reactions are expressed through empirical pro-
duction/consumption rates and small-scale turbulent features are param-
eterized using subgrid-scale modeling. Thus, by explicitly solving for the
large-scale turbulent features present in the flow, LES is typically well-suited
for simulating wildfires (large-scale buoyancy effects significantly affect the
structure of the flame and of its surrounding flow).

In this chapter, the objective is to introduce the key ideas underlying turbu-
lent combustion modeling. Balance equations governing reacting gas flows
are presented along with filtering strategies and chemistry models.

Combustion

Turbulence Heat transfers

LES
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2.1 Main challenges related to turbulent combustion

2.1.1 Oxidation pathways

A flame requires an external heat source to start, but once this preliminary ignition
stage is reached, it can self-sustain (provided there is a continuous supply of gas
reactants) through a series of chemical reactions between fuel and oxidizer. From
a qualitative viewpoint, the resulting oxidation reactions can be represented as the
following global reaction:

Fuel (F) + Oxidizer (O2) −→ Products (P) + Heat, (2.1)

where the fuel mainly consists of carbon (C), hydrogen (H) and oxygen (O) atoms,
and where a large amount of heat is released and transferred to the surrounding
environment (these oxidation reactions are therefore referred to as exothermic). As
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part of the flaming combustion in wildfires, the global methane/air reaction can be
expressed as:

CH4 + 2O2 −→ CO2 + 2H2O, (2.2)

in which CO2 and H2O are the final products of the global reaction.

However, this global viewpoint is not representative of all the mechanisms occurring
during methane oxidation. Generally, an oxidation reaction can be characterized by
four main steps:

(1) Initiation reactions, corresponding to the production of first intermediate
species (referred to as radicals) from the gas reactants;

(2) Chain-branching reactions, corresponding to a significant increase of the
radical population within the gas mixture (made for instance of H, O and OH
intermediate species);

(3) Chain-carrying reactions once the concentration of radicals is sufficiently
high, corresponding to combustion of reactants and formation of products;

(4) Termination reactions, corresponding to the consumption of radicals (that
can only be partial if the termination reactions are not completed).

This implies that multiple reaction pathways are followed during fuel oxidation;
their detailed description in a chemical kinetic model is not systematically required
to obtain accurate macroscopic quantities of interest such as the burning velocity.
However, pollutant formation (e.g., nitrogen oxides NOx) and rich-mixture com-
bustion (i.e., high fuel/air equivalence ratio) generally require the analysis of more
complex chemical pathways. In particular, challenges found in pollutant predic-
tions are due to their very low concentrations (i.e., a few tenths to a few hundreds
parts-per-million) and to their very specific pathways of production or destruction,
associated with intermediate radical species and slow reactions. Typically, biomass
combustion processes are related to significant pollutant formation (e.g., NOx,
SOx, CO, aerosols) and require specific chemical kinetic modeling associated with
CO and CH4 oxidation (Dagaut and Lecomte, 2003; Pérez-Ramirez et al., 2012;
Battin-Leclerc et al., 2013).

2.1.2 Premixed flames versus diffusion flames

As illustrated in Fig. 2.1, two types of ideal academic flame configurations are
premixed flames and diffusion flames. Their main features are described below.

⊲ Premixed flames. Fuel and oxidizer (referred to as fresh gases, with the
index f standing for fresh) are mixed prior to reach the flame front. These
fresh gases are separated from combustion products (referred to as burnt
gases, with the index b standing for burnt) by the flame region. This thin
flame region is characterized by a high temperature gradient and can be
divided into three different layers:
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(i) the pre-heating zone, in which fresh gas reactants are heated due to dif-
fusion and radiation heat transfer (no chemical kinetic reactions occur);

(ii) the reaction zone, in which (fast) fuel oxidation occurs, leading to a sig-
nificant heat release rate, associated with the production of intermediate
species (e.g., CO) as well as radical compounds (e.g., OH);

(iii) the post-flame zone, in which slower recombination reactions release
final combustion products and pollutants (e.g., NOx).

Thus, the flame region characterized by its thermal thickness δL (i.e., the
thickness over which the temperature gradient is important) is propagating
from burnt gases towards fresh gases at a finite velocity magnitude referred to
as the laminar flame speed and noted sL (the index L standing for laminar).
The thermal thickness δL is commonly estimated from the inverse of the
maximum temperature gradient ∇T as follows:

δL =
Tb − Tf

max (∇T ) , (2.3)

with Tb and Tf the gas temperature in the burnt and fresh gases, respectively.
The reaction zone of thickness δR is confined within the thin thermal region
corresponding to the flame region. Within the fresh gases, the fuel/oxidizer
proportion can be characterized using the equivalence ratio Φ expressed as
follows:

Φ = s
YF
YO

=
(YF /YO)

(YF /YO)st
, (2.4)

with Yk the gas mass fractions (F standing for fuel and O standing for
oxidizer) and s the mass stoichiometric ratio, i.e.,

s =

(
YO
YF

)

st

=
ν

′

O WO

ν
′

F WF
,

for the one-step irreversible reaction scheme [ν
′

F F + ν
′

O O→ Products]. For
instance, s = 4 for methane/oxygen reactions. Gas reactants and oxidizer are
in stoichiometric conditions when Φ = 1 (meaning that they are completely
converted into final products), while Φ < 1 for a lean mixture (i.e., fuel is
the limiting reactant) and Φ > 1 for a rich mixture (i.e., oxidizer is the lim-
iting reactant). Classically in premixed combustion, a dimensionless reaction
progress variable c (also called reduced temperature) is introduced as a flame
marker such that:

c =
T − Tf

Tb − Tf
. (2.5)

This implies that c = 0 in fresh gases (T = Tf ), c = 1 in burnt gases
(T = Tb) and the flame is the region where c takes values between 0 and 1
(describing the progression from fresh to burnt gases).



Chapter 2 - General features of multi-physics turbulent combustion 65

PREMIXED FLAMEPREMIXED FLAME

DIFFUSION FLAME

Pre-heating zone! Reaction zone!

Fresh gases! Burnt gases!
S

L
 

Temperature!

Fuel!

Oxidizer!

Reaction rate!

Reaction thickness !
R
 

Thermal thickness !
L
 

Fuel! Oxidizer!

Reaction zone!
Temperature!

Fuel! Oxidizer!

Reaction rate!

Figure 2.1: Schematic of academic flame configurations: premixed flame (top) versus
diffusion flame (bottom).

⊲ Diffusion flames. In contrast to premixed flames, diffusion flames corre-
spond to a case in which fuel and oxidizer are not mixed prior to combustion
and in which the reaction zone is located at their interface (fuel and oxi-
dizer diffuse towards the reaction zone where they burn and release heat, see
Fig. 2.1). Two boundary states must be defined, fuel (possibly diluted) on
one side, and oxidizer (possibly diluted, for instance in nitrogen) on the other
side. This implies that there is no flame propagation and no characteristic
flame thickness such that the flame region drastically depends on the flow
conditions (e.g., strain) and is more sensitive to velocity fluctuations than pre-
mixed flames (Peters, 1984; Bilger, 1989). Chemical reactions are confined
in a restricted zone, in which the fuel/oxidizer equivalence ratio Φ is near
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stoichiometry (the fuel/oxidizer interface is precisely located at stoichiometry
for infinitely fast chemistry) and defined as follows:

Φ = s

(
Y 0
F

Y 0
O

)
, (2.6)

with Y 0
F and Y 0

O the mass fractions of fuel and oxidizer in their respective
boundary state. A typical example of diffusion flame is a candle.

→֒ Flame structure underlying wildfire spread

The type of flame configuration associated with wildfires depends on the spatial
scale at which their description is provided. At regional scales (i.e., from a few tens
of meters up to several kilometers), wildfires can be regarded at first glance, as
propagating premixed flames. In this configuration, the flame front separates the
burnt zone (burnt gases in the standard terms of premixed flames) and the unburnt
vegetation (fresh gases in the standard terms of premixed flames, corresponding to
the gas reactants emitted by the vegetation when subject to thermal degradation
and mixed with air that is entrained towards the flame).

However, when analyzing the fine-scale features of wildfires (i.e., from a millime-
ter up to a few meters), they are clearly of the diffusion flame type (Zhou and
Mahalingam, 2002): the oxidizer is convected towards the flame through air en-
trainement, while combustion fuel reactants are released in the gas phase by the
vegetation pyrolysis (corresponding to a phase-change process from solid-phase to
gas-phase). Oxidation reactions can therefore proceed when these two reactants
meet at the top of the vegetation bed or inside it for deep fuels at sufficiently high
temperatures, a configuration that is typical of a diffusion flame. As illustrated in
Fig. 2.2, this diffusion flame structure is due to the time delay of fuel injection in-
troduced by the vegetation pyrolysis. Indeed, if the pyrolysis process were to occur
instantaneously, the flammable gas compounds released by the pyrolysis would be
mixed with air prior to flaming ignition and would thereby induce a premixed flame.
Wildfire spread corresponds therefore to a diffusion flame that propagates with the
biomass fuel source, a configuration that does not occur in industrial combustion
and that makes the simulation of wildfires a challenging task.

Fuel!

Flame!
Air!

PREMIXED!

Fuel!

Flame!
Air!

DIFFUSION!

Time delay!

Radiation! Radiation!

Figure 2.2: Schematic of the flame structure of wildfire spread featuring a choice between
a diffusion flame and a premixed flame: the time delay induced by biomass pyrolysis is in
favor of a diffusion flame.
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Note however that fine-scale features of wildfires are more generally described as
partially-premixed flames. Since the vegetation bed is a porous medium, air is
also present. Furthermore, due to buoyancy effects, air entrainment induces a flow
within the vegetation bed and enhances the convection of pyrolysis gases towards
the flame zone. Thus, pyrolysis gases are most likely mixed with a certain proportion
of air before ignition. However, this equivalence ratio is very difficult to quantify
and depends on the (fine-scale) porosity of the vegetation.

2.1.3 Types of fluid flow

→֒ Laminar flows versus turbulent flows

Whether a flow is laminar or turbulent depends on the relative importance of flow
inertial forces compared to viscosity. Typically, flow conditions can be characterized
by the Reynolds number (Re), a dimensionless quantity corresponding to the ratio
of inertial to viscous forces such as:

Re =
|U |L
ν

, (2.7)

with |U | [m/s] the bulk flow velocity, L [m] a characteristic length-scale of the flow
and ν [m2/s] the fluid kinematic viscosity defined as ν = µ/ρ, µ [kg/m/s] repre-
senting the dynamic flow viscosity and ρ [kg/m3] the gas mass density. The higher
the Reynolds number, the more turbulent the flow, implying that turbulent flows
are dominated by inertial forces, while viscous forces are predominant in laminar
flows.

Common to both engineering and geosciences (e.g., boundary layer on an aircraft,
atmospheric boundary layer, oceanic currents), turbulent flows are characterized by
the development, motion and interaction of unsteady eddies (vortices) on a wide
range of length-scales. Thus, turbulence dramatically affects the flow structure and
mixing as illustrated by the tracer trajectory in Fig. 2.3. In the laminar region of
the flow (the flow is uni-directional and does not exhibit any vorticity), the tracer
particle strictly follows the mean free-stream velocity. In contrast, when the tracer
enters the turbulent region of the flow, its trajectory becomes irregular and chaotic.
Using Reynolds decomposition, the time-evolution of the flow velocity u can be
decomposed into a mean component u and a turbulent component u

′

as follows:

u(t) = u+ u
′

(t), (2.8)

where the overbar denotes a time average. This implies that turbulent flow eddies
create temporal fluctuations in velocity that superimpose onto the mean flow. The
trajectory of the tracer is therefore imposed by both the mean flow and the eddies
in Fig. 2.3. In contrast, in steady laminar flows, u(t) = u for all time steps.

Due to the macroscopic mixing of fluid particles, turbulent flows are characterized
by a fast rate of momentum and heat mixing. Thus, the energy is transferred from
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Figure 2.3: Tracer transport (red lines) in laminar and turbulent flows. Credit: MIT.

large-scale to small-scale eddies by non-linear interactions, until it is dissipated
by viscous diffusion in the smallest eddies. Turbulent flows therefore require a
continuous supply of energy to compensate for viscous losses. For more details,
see, for example, Kundu et al. (2011).

→֒ Natural convection versus forced convection

The structure of a flow can also be significantly affected by buoyancy effects. Den-
sity discrepancies ∆ρ in the flow (due to temperature and/or chemical spatial varia-
tions) induce the development of convective cells such as the Rayleigh-Bénard-type
convection occurring in the mantle of Rocky planets (see Fig. 2.4). The importance
of buoyancy effects on a flow can be characterized by the Richardson number Ri, a
dimensionless number that represents the ratio of potential energy to kinetic energy
such as:

Ri =
g (∆ρ/ρ)H

U2
, (2.9)

with g [m/s2] the acceleration induced by gravity, H [m] the vertical length-scale and
U [m/s] the bulk flow velocity. The Richardson number typically represents the rela-
tive importance of natural convection to forced convection, the term

√
g (∆ρ/ρ)H

indicating the order of magnitude of the natural convection velocity. Thus, Ri < 0.1
implies that natural convection is negligible, while for Ri > 10 forced convection is
in-turn negligible; in-between these threshold values, both effects co-exist.

In the context of wildfires, flow dynamics are buoyancy-driven such that the devel-
opment of convective cells is important and induce air entrainment. However, this
natural convection process combines to the wind velocity field (an external forcing
of the flow that can be regarded as a forced convection process) to enhance wildfire
spread. This implies that the fluid dynamics of wildfires is determined by mixed
convection, where natural and forced convections occur simultaneously (Joulain,
1996; Tieszen, 2001; Finney and Mcallister, 2011). The dimensionless Grashof
number (Gr) characterizes the ratio of buoyancy to viscous forces acting on the
flow (i.e., how much of the convection is due to external forcing or to natural con-
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vection) and can be expressed with respect to Reynolds and Richardson numbers
as follows (Jaluria, 1980):

Gr =
g (∆ρ/ρ)H3

ν2
= Re2 Ri. (2.10)

The Richardson number Ri is typically between 1 and 10 in fires, depending on the
wind velocity, with Re in the range [105, 106] and Gr in the range [1012−5×1012].

Figure 2.4: Normalized temperature profile for simulations of terrestrial mantle convection
(in spherical and cartesian geometry). Credit: DLR, http: // www. dlr. de/ pf/ en/ .

2.1.4 Interactions between turbulence and combustion

Combustion can occur if fuel and oxidizer are mixed at molecular scales. However,
in turbulent flows, combustion processes highly depend on turbulent mixing and
especially, on velocity fluctuations. Interactions between turbulent shear flows and
highly exothermic chemical reactions are difficult to account for, in particular due
to the multiplicity of spatial and temporal scales involved (Veynante and Vervisch,
2002; Poinsot and Veynante, 2005). There is a wide range of temporal scales
underlying detailed chemical kinetics: fuel oxidation is governed by fast reactions,
while the production of pollutants (such as nitrogen oxides NOx) results from slower
reaction processes. Turbulence also features unsteady eddies on multiple length-
scales, from integral length-scales (i.e., the largest scales in the energy spectrum
that exhibit the largest velocity fluctuations) to Kolmogorov length-scales (i.e., the
smallest scales in the energy spectrum, where turbulence can be locally regarded as
isotropic and homogeneous). Thus, interactions between turbulence and combustion

http://www.dlr.de/pf/en/
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induce a competition between turbulent mixing and chemical reactions, resulting
in a large variety of turbulent flame structures that can be described based on two
qualitative regimes, flamelet and fast mixing (Damköhler, 1940).

⊲ Flamelet regime. When the time-scale of chemical reactions is much shorter
than the turbulent time-scale, the inner structure of the flame is not significantly
affected by turbulence (although the flame front is wrinkled, stretched and con-
vected by the turbulent flow). Thus, the overall structure of the turbulent flame
is determined by large-scale eddy structures. This is referred to as the flamelet
regime.

In the case of premixed flames, the flame front can be regarded as an ensemble of
premixed laminar flame elements, which are stretched and wrinkled by the turbulent
flow as represented in Fig. 2.5. This wrinkling leads to an increase of the effective
flame surface area that enhances the reactant consumption rate and thereby, the
propagating speed of the flame front. A model for the resulting turbulent flame
speed noted sT is therefore required. Since flamelet elements are supposed to prop-
agate, locally, at the laminar speed sL, the turbulent speed sT is commonly modeled
as the laminar flame speed sL weighted by the ratio of the wrinkled instantaneous
front surface AT to the projected unwrinkled surface AL. To incorporate the ef-
fects of flame strain and curvature due to turbulence, a stretch factor modeled as
(sc/sL) is introduced in the generalized formulation of the turbulent flame speed
(Law and Sung, 2000; Driscoll, 2008):

sT
sL

=

(
AT

AL

)
sc
sL

, (2.11)

with sc [m/s] the mean consumption speed.

!
T
 

S
T

 

!BurntFresh

Figure 2.5: Schematic of turbulent flame subject to wrinkling, with sT the turbulent
flame speed and δT the overall turbulent flame thickness. Credit: Driscoll (2008).

⊲ Fast mixing regime. In contrast, a short turbulence time-scale implies a fast
mixing between oxidizer and fuel reactants, implying that small-scale eddies can
interact with the transport mechanisms within the flame zone and modify the inner
structure of the flame.
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2.2 Equations for reacting flows

Combustion-related processes involve hundreds of species reacting through thou-
sands of chemical reactions (the number of species in the gas mixture is denoted
by Ng). The Navier-Stokes equations apply for such a multi-species multi-reacting
gas; however, they require some additional terms and closure models as presented
in the following. For more details, see Turns (2000), Poinsot and Veynante (2005).

2.2.1 Characterization of the gas phase

The k-th gas species (referred to as index k) is characterized by the following
features:

⊲ the mass fraction Yk = mk/m [−] defined as the ratio of the mass mk of
species k to the total mass m contained in a given homogeneous volume V ,
satisfying:

Ng∑

k=1

Yk = 1;

⊲ the mass density ρk = ρ Yk [kg/m3] corresponding to the mass mk of the
species k in the volume V , with ρ the mass density of the gas mixture;

⊲ the atomic weight Wk [kg/mol];

⊲ the mass specific heat capacity at constant pressure cp,k [J/kg]:

cp =

Ng∑

k=1

cp,k Yk, (2.12)

with cp its counterpart for the gaseous mixture, which is a function both of
temperature and composition;

⊲ the mass enthalpy hk = hs,k + ∆h0f,k [J/kg] that is a composition of the
sensible enthalpy hs,k satisfying:

hs,k =

∫ T

T 0

cp,k(T
′

) dT
′

,

and the chemical enthalpy equal to the mass enthalpy of formation ∆h0f,k
at the reference temperature T 0 (in principle, any value could be assigned
to T 0 but for practical purposes, it is usually set to T 0 = 298.15 K with
∆h0f,k = −4675 kJ/kg for CH4 and −13435 kJ/kg for H2O for instance);

⊲ the partial pressure pk [Pa] that relates to the mass density ρk and atomic
weight Wk through the ideal gas assumption:

pk = ρk
Rg

Wk
T, (2.13)
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with Rg the perfect gas constant (Rg = 8.314 J/mol/K) and T [K] the
temperature of the gaseous mixture;

⊲ the Lewis number Lek, a dimensionless number comparing heat and species
diffusions that is expressed as:

Lek =
λ

ρ cpDk
=

Dth

Dk
, (2.14)

with Dk [m2/s] the diffusivity of species k in the rest of the mixture and
Dth = λ/(ρ cp) [m2/s] the heat diffusivity that partly depends on the heat
diffusion coefficient λ [J/m/K/s].

Using this nomenclature, the equation of state for ideal gas reads:

p =

Ng∑

k=1

pk =

Ng∑

k=1

ρk
Rg

Wk
T, (2.15)

with p the overall pressure of the gaseous mixture. The atomic weight of the
gaseous mixture denoted by W [kg/mol] can be derived from the atomic weight
Wk and the mass fraction Yk of each species k:

W =




Ng∑

k=1

Yk
Wk




−1

. (2.16)

Thus, the equivalence between the mass fraction (Yk) and the molar fraction (Xk =
ρk/ρ) of each gas species k can be expressed as follows:

Xk =

(
W

Wk

)
Yk. (2.17)

2.2.2 Chemical kinetics

During combustion processes, fuel reactants are oxidized once a sufficiently high
amount of energy is available in the gas mixture to activate reactions (in the zones
where the fuel/oxidizer equivalence ratio Φ is within the flammability limits). Con-
sidering Nr reactions between the Ng species, these reactions can be schematized
as follows (as generalization of Eq. 2.1):

Ng∑

k=1

ν
′

r,k Sk ←→
Ng∑

k=1

ν
′′

r,k Sk (r = 1, · · · , Nr), (2.18)

with Sk the symbol of gas species k, ν
′

r,k and ν
′′

r,k the respective forward and
backward molar stoichiometric coefficients for species k in reaction r satisfying:

Ng∑

k=1

(
ν

′′

r,k − ν
′

r,k

)
Wk =

Ng∑

k=1

νr,k Wk = 0 (2.19)
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to enforce mass conservation. νr,k corresponds to the associated net stoichiometric
coefficient. The chemical reaction rate of each gas species k noted ω̇k [kg/m3/s]
yields:

ω̇k = Wk

Nr∑

r=1

νr,k q̇r (r = 1, · · · , Nr). (2.20)

This equation represents the contribution of each reaction r (through the progress
rate of reaction q̇r [mol/m3/s] of the r-th reaction) to the production rate ω̇k

(or consumption rate if negative) of species k. The following condition must be
satisfied to ensure mass conservation:

Ng∑

k=1

ω̇k = 0. (2.21)

Besides, the reaction progress rate q̇r reads:

q̇r = K f
r

Ng∏

k=1

[Xk]
ν
′

r,k −Kb
r

Ng∏

k=1

[Xk]
ν
′′

r,k , (2.22)

with [Xk] [mol/m3] the molar concentration of species k satisfying [Xk] = ρk/Wk,
K f

r the forward reaction rate of the r-th reaction and Kb
r its backward counterpart.

It is worth noting that the forward reaction rate is usually expressed through an
Arrhenius law of the following type:

K f
r = kr T

nr exp

[
− Ea,r

Rg T

]
, (2.23)

where the Arrhenius-parameter triplet (kr, nr, Ea,r) represents the pre-exponential
factor, the temperature exponent and the activation energy of reaction r. These
parameters are generally calibrated for each reaction r against theoretical analysis
or experimental data. From a molecular viewpoint, K f

r represents the probability
of occurrence of atomic exchanges through molecular collisions. It follows that the
activation energy Ea,r represents the minimal amount of collisional energy required
to allow for reaction r to proceed, while the pre-exponential factor kr is related
to the collision frequency, the geometry as well as the orientation of the molecules
during collisions. The backward reaction rate Kb

r is commonly specified as the
ratio between the forward reaction rate K f

r and the reaction equilibrium constant
Keq

r (that is not detailed here), since equilibrium induces the equivalence between
forward and backward reaction rates (i.e., q̇r = 0 in Eq. 2.22). One additional
quantity of interest in combustion is the heat release rate, noted ω̇T [J/m3/s] and
defined as follows:

ω̇T = −
Ng∑

k=1

∆h0f,k ω̇k. (2.24)
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Note that a thermodynamic database including the mass enthalpy of formation
∆h0f,k for each species k is required to calculate the heat release rate and thereby,
the burnt gas temperature.

2.2.3 Balance equations for reacting flows

Reacting flows are described by Navier-Stokes equations to which reaction source
terms are added. The following controlling variables are required: the mass density
ρ, the velocity components ui (i = 1, 2, 3), the total enthalpy ht, the species mass
fractions Yk (k = 1, · · · , Ng) and the pressure p. The resulting (5+Ng) balance
equations can be expressed as follows.

⊲ Mass balance equation

∂ρ

∂t
+

∂(ρ uj)

∂xj
= 0. (2.25)

⊲ Momentum balance equations

∂(ρ ui)

∂t
+

∂(ρ uiuj)

∂xj
= − ∂p

∂xi
+ ρ gi +

∂τij
∂xj

+ Fi (i = 1, 2, 3), (2.26)

with ρ gi the buoyancy force induced by gravity (gi being the i-th compo-
nent of gravitational acceleration), Fi [N/m3] the (volume) body forces and
τij [N/m2] the viscous stress tensor.

⊲ Species balance equations

∂(ρ Yk)

∂t
+

∂(ρ uj Yk)

∂xj
= −∂Jj,k

∂xj
+ ω̇k (k = 1, · · · , Ng). (2.27)

This equation includes convection and diffusion transports as well as the
chemical source term associated with the k-th species. Note that Jj,k corre-
sponds to the molecular diffusive flux of species k, which can be decomposed
into the contributions of the species diffusion velocity Vk,j and of the correc-
tion velocity Vc,j as follows:

Jj,k = ρ (Yk Vk,j + Yk Vc,j) = ρ

(
−Dk

Wk

W

∂Xk

∂xj
+ Yk Vc,j

)
, (2.28)

with Dk [m2/s] the molecular diffusivity associated to species k in the gaseous
mixture (usually characterized in terms of the dimensionless Schmidt number
Sck = ν/Dk, which compares the mixture kinematic viscosity ν to Dk and
which can be regarded as the ratio of momentum diffusion to species diffusion)
and Vc,j [m/s] the correction velocity satisfying:

Vc,j =

Ng∑

k=1

Dk

(
Wk

W

)
∂Xk

∂xj
. (2.29)
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This expression for Vc,j is derived through the approximation due to Hirschfelder
et al. (1954), see Ern and Giovangigli (1995). While replacing the rigorous
multi-species transport equation, this approximation is convenient in prac-
tice. In particular, it relates diffusion coefficients Dk to heat diffusivity Dth

through the Lewis numbers of individual species Lek. Then, Eq. (2.27) can
be rewritten for k = 1, · · · , Ng as follows:

∂(ρ Yk)

∂t
+

∂ (ρ (uj + Vc,j)Yk)

∂xj
=

∂

∂xj

(
ρDk

Wk

W

∂Xk

∂xj

)
+ ω̇k. (2.30)

⊲ Heat balance equation

∂(ρ ht)

∂t
+

∂(ρ uj ht)

∂xj
=
∂p

∂t
− ∂qj

∂xj
+

∂(τi,j uj)

∂xi
+ q̇

+ ρ

Ng∑

k=1

Yk Fk,j (uj + Vc,j),

(2.31)

in which:

• ht [J/kg] corresponds to the total enthalpy of the gaseous mixture,
formally defined as:

ht =

Ng∑

k=1

hk +
1

2
ujuj . (2.32)

• qj [W/m2] corresponds to the energy flux composed by the heat diffusion
term (following Fourier law) and by the diffusion between species with
different enthalpies, such as:

qj = −λ
∂T

∂xj
+ ρ

Ng∑

k=1

hk Yk Vk,j . (2.33)

• τi,j ui and ρ
∑Ng

k=1 Yk Fk,j(uj + Vc,j) correspond to the power due to
viscous forces and volume forces Fk,j applied on species k, respectively.

• q̇ [W/m3] corresponds to the heat source term (due, for instance, to an
electric spark, a laser or a radiation flux). Note that the modeling of
radiation is discussed in Section 2.5.

Note that in this thesis, the species diffusion under temperature gradients (i.e., the
Soret effect), the molecular transport due to pressure gradients and the enthalpy
diffusion due to mass fraction gradients (i.e., the Dufour effect) are neglected. Note
also that there are three main differences with the Navier-Stokes for non-reacting
flows:
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(1) Since heat capacities change significantly with temperature and composition
during combustion, the description of the thermodynamic state of a reacting
gas requires individual tracking of each gas species.

(2) Specific modeling is required to describe the rate ω̇k at which each species k
is produced or consumed.

(3) Attention must be paid to the transport coefficients (e.g., heat diffusivity,
species diffusion, viscosity) in the multi-species gas mixture.

2.3 Turbulence considerations: large-eddy simulation
and filtering

2.3.1 Overview of computational approaches for turbulence

A turbulent flow instantaneously satisfies Navier-Stokes Eqs. (2.25)-(2.26)-(2.30)-
(2.31). However, due to the wide range of scales to be resolved, solving for all the
involved fine scales present in complex configurations is not feasible.

⊲ Reynolds-averaged Navier-Stokes (RANS) equations. Initial efforts have
been devoted to design models for RANS equations (Launder and Spalding,
1974). As an approximate time-averaged solution to the Navier-Stokes equa-
tions, RANS equations only solve for the mean flow; all effects due to fluc-
tuating motions (typically, the turbulent kinetic energy and the dissipation
rate) must be modeled using a turbulence model. Thus, RANS equations
show difficulties in predicting unsteady processes. Due to their relatively low
computational cost, they are still routinely solved to design industrial de-
vices (such as piston engines and aeronautical combustion chambers) using
commercial codes nowadays.

⊲ Direct numerical simulations (DNS). In contrast, DNS solve for the full
instantaneous Navier-Stokes equations without any model for turbulent flows;
all turbulent length-scales are explicitly resolved (Orszag, 1970). Thus, they
can perfectly retrieve the fine-scale features of the flow and predict temporal
variations of quantities of interest such as the temperature. From a historical
perspective, they became feasible in the 1980s due to the development of
HPC as well as to the progress in higher-order numerical schemes. Due to
their high computational cost, they are still restricted to low Reynolds number
and simple academic flow configurations (Trouvé et al., 1994; Poinsot, 1996;
Vervisch and Poinsot, 1998; Poludnenko and Oran, 2010, 2011). Note that
they often use simplified chemical kinetics to reduce their computational cost.

⊲ Large-eddy simulations (LES). As an intermediate strategy, LES explicitly
solve for the large-scale turbulent structures (i.e., at the integral length-scales,
where the eddies containing most of the energy are present and mainly de-
pend on the geometry configuration) and models the effects of the smallest
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eddies (i.e., at the Kolmogorov length-scales involving the smallest length-
scales in the energy spectrum that form the viscous sublayer range and that
are characterized by local isotropic and homogeneous turbulence). Since LES
can be regarded as a filtering procedure in which the smallest length-scales
of the turbulent flow are filtered out, they are less computationally-intensive
than DNS. They allow for a dynamic representation of the large-scale flow
motions, which are essential to describe transient flows in complex configu-
rations (Menon and Jou, 1991).

From a qualitative viewpoint, RANS, DNS and LES properties are summarized in
terms of energy spectrum in Fig. 2.6. Consistently, Fig. 2.7 illustrates the effect of
these different computational approaches for turbulence on the temporal evolution
of the temperature at a specified sensor in a premixed flame.

kkc

E(k)
Modeled in RANS

Computed in DNS

Computed in LES Modeled in LES

Figure 2.6: Schematic of the energy spectrum with respect to the wave number k (in-
versely proportional to the eddy length-scale): DNS resolve all spatial frequencies in the
spectrum, whereas only the largest scales (up to a cut-off wave number kc) are com-
puted in LES and no turbulent motion is explicitly captured in RANS. Credit: Poinsot and
Veynante (2005).

Figure 2.7: Time-evolution of local temperature computed with DNS, LES and RANS in
a turbulent premixed flame. Credit: Poinsot and Veynante (2005).
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→֒ Large-eddy simulations and combustion applications

Many efforts have been recently devoted to the development of LES approaches for
turbulent combustion, which currently appear as the most successful techniques to
simulate turbulent combustion and capture unsteady large-scale gas flow features
in industrial devices (Caraeni et al., 2000; Forkel and Janicka, 2000; Moureau et al.,
2005; Boileau et al., 2008). The information gain obtained on the turbulent flow
using LES instead of RANS is illustrated in Fig. 2.8.

(a) (b)

Figure 2.8: Iso-surface of temperature (1100 K) in a turbulent swirled premixed flame.
(a) RANS-based mean field. (b) LES-based instantaneous field. Credit: Selle et al. (2004).

LES requires high-resolution computational grids to properly represent the flame
and its interaction with turbulence as well as the formation of pollutants. Despite
of its computational cost, LES is well-adapted for many combustion studies for the
reasons listed below.

⊲ While large-scale structures in turbulent flows highly depend on the config-
uration geometry, small-scale structures exhibit more universal features (i.e.,
they can be locally regarded as isotropic and homogeneous) and accordingly,
they can be represented by models referred to as subgrid-scale turbulence
models.

⊲ The knowledge of large-scale turbulent motions may be used to infer the
effects of unresolved small-scale motions, since the energy flows from large
(resolved) structures to smaller (unresolved) scales. For instance, subgrid-
scale models may be based on similarity assumptions between large and small
turbulent scales. This knowledge is also useful to better characterize flow
instabilities, since those are associated with large-scale eddy structures that
are explicitly solved in LES.

⊲ LES allows for a better description of combustion/turbulence interactions by
explicitly identifying instantaneous fresh and burnt gases zones in premixed
flames (in contrast, the RANS approach accounts for the local probability of
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being in fresh or burnt gases). This clear identification of the flame front in
LES is useful to quantify radiation heat transfer for instance.

The potential of LES approaches has been demonstrated for predicting combustion
instabilities (Selle et al., 2006), pollutant emissions (Schmitt et al., 2007) or two-
phase flows (Riber et al., 2009). Papers of Westbrook et al. (2005), Janicka and
Sadiki (2005), Pitsch (2006), Bockhorn et al. (2009) and Gicquel et al. (2012)
provide a very complete view of LES applications to turbulent combustion.

2.3.2 Filtering procedure

To separate large and small scales in LES, a low-pass spatial filter of given size ∆
and noted G∆ is applied to the exact Navier-Stokes equations (see Poinsot and Vey-
nante, 2005, for a description of usual formulations of G∆). From a mathematical
viewpoint, this filter consists of a convolution product of any quantity of interest c
with the filter function G∆:

c(x, t) =

∫

Ω
G∆

(
x− x

′

)
c(x

′

, t) dx
′

, (2.34)

where c(x, t) is a spatially- and temporally-fluctuating quantity standing for the
flow large-scale structures (the eddies of size smaller than the filter size ∆ are
removed), the bar referring to Reynolds-filtering. In contrast, RANS equations
consider a statistically-averaged quantity (the mean component of the quantity).
For variable density flows (e.g., combustion reacting flows), mass-weighted filtering
(referred to as Favre-filtering) is introduced:

ρ(x, t) c̃(x, t) = ρ c(x, t) =

∫

Ω
ρ(x

′

, t)G∆

(
x− x

′

)
c(x

′

, t) dx
′

, (2.35)

with c̃(x, t) = ρ c(x, t)/ρ(x, t).

2.3.3 Filtered balance equations

The LES-filtered Navier-Stokes equations are obtained by Favre-filtering the in-
stantaneous balance equations. Using this formalism, they can be summarized as
follows.

⊲ Mass balance equation

∂ρ

∂t
+

∂(ρ ũj)

∂xj
= 0. (2.36)

⊲ Momentum balance equations

For i = 1, 2, 3,

∂(ρ ũi)

∂t
+

∂(ρ ũi ũj)

∂xj
=− ∂p

∂xi
+ (ρ gi)

+
∂

∂xj

(
τ ij − ρ (ũi uj − ũi ũj)

)
+ F i.

(2.37)
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⊲ Species balance equations

For k = 1, · · · , Ng,

∂(ρ Ỹk)

∂t
+

∂(ρ ũj Ỹk)

∂xj
=

∂

∂xj

(
Vk,j Yk − ρ (ũj Yk − ũj Ỹk)

)
+ ω̇k. (2.38)

⊲ Heat balance equation

∂(ρ h̃t)

∂t
+

∂(ρ ũj h̃t)

∂xj
=− ∂

∂xj

(
ρ (ũj ht − ũj h̃t)

)
+

∂p

∂t
− ∂qj

∂xj

+
∂(τi,j uj)

∂xi
+ q̇.

(2.39)

Assumptions and closure models listed below are required for all right-hand side
terms corresponding to unresolved transport and chemical terms.

⊲ Unresolved Reynolds stresses (ũi uj− ũi ũj). They require a subgrid-scale
turbulence model that reproduces interactions between resolved and unre-
solved turbulent length-scales in terms of energy fluxes. This model aims at
retrieving the fluid turbulent viscosity νT (usually based on turbulence mod-
eling for non-reacting flows, using an eddy viscosity assumption). Reference
subgrid-scale turbulence models are the Smagorinski model (Smagorinsky,
1963; Pope, 2000) and its dynamic counterpart (Germano et al., 1991), the
WALE1 model (Ducros et al., 1998) and the Sigma model (Nicoud et al.,
2011). It is worth noting that the Smagorinski model is widely-used for its
straighforward implementation. However, this model is too dissipative when
approaching a solid boundary. To overcome this issue and to better capture
scaling laws in wall modeling, the WALE model and more recently its upgrade,
the SIGMA model, have been developed.

⊲ Unresolved species (ũj Yk − ũj Ỹk) and enthalpy (ũj ht − ũj h̃t) fluxes.
They are generally closed using a gradient assumption. For instance, the
species fluxes (ũj Yk − ũj Ỹk) can be expressed as follows:

ũj Yk − ũj Ỹk = − νT
Sctk

(
∂Ỹk
∂xj

)
, (2.40)

with νT the subgrid-scale turbulent viscosity (derived from a subgrid-scale
turbulence model) and Sctk the subgrid-scale turbulent Schmidt number.

⊲ Filtered laminar diffusion fluxes for species and enthalpy. They might be
neglected against turbulent transport for high Reynolds numbers, or modeled
through a a classical gradient assumption such that:

Vk,j Yk ≃ −ρDk
∂Ỹk
∂xj

, λ
∂T

∂xj
≃ λ

∂T̃

∂xj
, (2.41)

1Wall-Adapting Local Eddy-viscosity.
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with λ and Dk the respective mean values of the heat diffusion coefficient and
the diffusivity of species k (considering mean thermodynamic conditions).

⊲ Filtered chemical reaction rates ω̇k. The modeling of these spatially-
filtered reaction rates that represent the production or consumption rates of
the k-th species in a turbulent gas flow is an essential step towards accurate
LES for reacting flows. This issue is discussed in the next section of the
manuscript.

2.4 Combustion modeling for large-eddy simulations

Modeling the chemical reactions rates ω̇k in a LES capability relies on the two
following cornerstones.

(1) Tracking the life-time of the gas compounds in a reacting mixture (e.g., fuel and
oxidizer, radicals, combustion products) requires a chemical kinetic scheme, in
which the production or consumption rate ω̇k of gas compounds (without filter-
ing in a preliminary step) is represented through a set of elementary reactions.
This chemical kinetic scheme must be consistent with the LES framework in
terms of computational cost and stiffness, and its accuracy is commonly evalu-
ated on simplified flame configurations (e.g. one-dimensional laminar premixed
or counter-flow flames) for which experimental measurements are available.
Note that this chemical kinetic scheme relevant for combustion does not in-
tend to represent the biomass fuel thermal degradation leading to pyrolysis;
this issue is discussed in Chapter 3.

(2) Accounting for the combustion/turbulence interactions at the LES subgrid-
scale level requires the development of turbulent combustion models, which
address for instance the loss of flame front wrinkling induced by the filtering
size ∆.

2.4.1 Limitations of detailed chemical kinetics modeling

To describe chemical reaction rates ω̇k involved in the Navier-Stokes species balance
Eq. (2.27), detailed chemical kinetic schemes including hundreds of gas species and
thousands of reactions are available for a large number of light hydrocarbon-based
fuels (Simmie, 2003). For instance, the detailed GRI-Mech3.0 scheme2 (325 ele-
mentary reactions, 53 gas species) is used as a reference for (premixed) methane
oxidation in the literature. GRI-Mech3.0 is optimized for an initial gas temperature
varying from 1000 to 2500 K, a pressure varying from 0.01 to 10 atm, and an
equivalence ratio Φ varying from 0.1 to 5. While these detailed kinetic schemes
accurately predict flame dynamics for academic flame configurations (e.g., one-
dimensional laminar premixed or counter-flow flames) and light hydrocarbon-based

2Gas Research Institute, http://www.me.berkeley.edu/gri_mech/.

http://www.me.berkeley.edu/gri_mech/
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fuels, their application to more complex turbulent combustion configurations re-
mains prohibitive for two main reasons:

(1) The computational cost required to solve Navier-Stokes equations for reacting
flows significantly increases with the number of gas species since (i) the spatial
and temporal evolution of each extra gas species is described by an additional
transport equation; and (ii) the determination of the thermo-chemistry of a re-
acting gas mixture induces an additional computational cost (chemical reaction
rates and transport coefficients being complex functions of gas composition and
temperature).

(2) The coupling between combustion and turbulence involves a wide range of
temporal and spatial scales. In particular, pathways followed by detailed ki-
netic schemes for pollutant emissions (e.g., NOx) and radical predictions imply
complex computational treatments.

It is worth noting that in the context of biomass burning, detailed chemical pathways
of pyrolysis products are unknown (no detailed chemical kinetic scheme is available
in the literature since the composition of biomass pyrolysis products is only partially
known). Thus, alternative modeling strategies for the reaction rates ω̇k must be
adopted to represent the combustion of pyrolysis products (e.g., CH4, CO) within
a LES capability.

2.4.2 Effective strategies for chemical kinetics modeling

To overcome these issues, many efforts have been devoted to the development
of simplified strategies for chemical kinetics modeling, partly through reduced and
tabulated chemistry.

→֒ Reduced chemistry

Global kinetic schemes aim at reproducing the main macroscopic flame features
(e.g., burnt gas temperature, ignition delay, flame propagating speed for premixed
flames) without significant loss of accuracy, but using only a few reactions (West-
brook and Dyer, 1981; Selle et al., 2004; Franzelli et al., 2010). While being
computationally efficient, these global kinetic schemes are unable to capture in-
formation on intermediate radical compounds. These information are important
when the objective is to quantify the formation of pollutants or when the fuel/air
equivalence ratio Φ is high (air being the limiting reactant).

To overcome this issue, analytical mechanisms have been proposed in the litera-
ture (Peters, 1985; Jones and Lindstedt, 1988; Chen and Dibble, 1991; Chen et al.,
1993; Boivin et al., 2011). This analytical approach consists in reducing the num-
ber of species and reactions involved in the chemical kinetic scheme by analyzing
the time-scales of the different reactions. For instance, fast intermediate species
or radicals that reach a quasi-steady state exhibit a negligible net reaction rate
(i.e., ω̇k = 0), in which case there is no need to solve for the transport equation
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associated with the consumption or production of the associated species k. An
additional analysis consists in determining which reactions are in equilibrium (at
least partially), implying q̇r = 0 for the r-th reaction. Based on these assumptions,
the number of species is decreased in the remaining chemical kinetic scheme. For
instance, using this approach based on equilibrium approximations, Peters (1985)
proposed a four-step analytical scheme for methane oxidation, including 7 species
(i.e., CH4, H2O, CO, H2, CO2, H, O2). In general, analytical mechanisms provide
a physical insight into the flame structure and ignition delay as well as into inter-
mediate species. However, they require a detailed understanding of the underlying
chemistry to be able to select the relevant chemical steps. Besides, their imple-
mentation in CFD solvers is not straighforward due to the numerical treatments
and the stiffness induced by their complex algebraic relations. For instance, Jones
and Lindstedt (1988) proposed a four-step analytical mechanism for hydrocarbons
of type CnH2n+2 up to butane (n = 4); however, there is a negative water concen-
tration exponent in the third reaction that induces numerical issues in the initiation
of the simulation. An alternative formulation (of reduced accuracy in fuel lean re-
gions, where there is a low fuel/air equivalence ratio) was proposed to avoid such
a negative dependence.

Alternatively, Franzelli (2011) proposed a reduced chemical kinetic scheme (referred
to as 2S-CH4-BFER) for premixed methane/air flames that exhibits a consistent
behavior for a wide range of fuel/air equivalence ratios Φ and in particular, in rich
mixtures. It is worth mentioning that this scheme results from pre-exponential
adjustments (PEA) of the reaction rates as a function of the equivalence ratio Φ
(Fernandez-Tarrazo et al., 2006) as detailed further in the manuscript.

Reduced (global and analytical) kinetic schemes provide a macroscopic description
of the flame characteristics. The species remaining in these schemes incorporate the
effects of a number of modeling choices. Thus, they cannot be directly compared
to the physical species in detailed kinetic schemes (for instance, the H2 species in
Jones and Lindstedt, 1988).

→֒ Tabulated chemistry

Tabulated chemistry represents the flame characteristics (i.e., the thermo-chemical
variables such as the temperature T and the mass fractions Yk) in a look-up ta-
ble using a reduced number of (independent) controlling parameters such as the
mixture fraction, the progress variable or the strain rate. As this number of control-
ling parameters is much lower than in the detailed chemistry formalism, tabulated
chemistry can be regarded as a degraded representation of the detailed oxidation
pathways. However, this degradation can be minimized by identifying the suitable
set of controlling parameters and the appropriate flame reference configuration.

⊲ A typical tabulation technique is ILDM3 (Maas and Pope, 1992; van Oijen

3Intrinsic Low-Dimensional Manifold.
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et al., 2001), based on mathematical arguments with a direct identification of
the dynamic behavior of the non-linear response of the chemical system: using
an eigenvalue decomposition, fast time-scales are identified and neglected in
the resulting chemical system that is referred to as manifold.

⊲ Gicquel et al. (2000) demonstrated that highly-reduced ILDM manifolds (with
a maximum of two coordinates) cannot correctly capture molecular diffusion
in mixing regions and proposed to include physical features into the look-
up table through the FPI4 technique. This approach primarily relies on the
flamelet assumption, which states that a turbulent flame front can be re-
garded as a family of one-dimensional small laminar flame elements known
as flamelets (Peters, 1984; Bradley et al., 1988).

The performance of tabulated chemistry highly depends on the amount of informa-
tion stored in the look-up table and on the choice of the flame model (premixed
or diffusion, adiabatic or with heat losses, etc.) that is adapted to a dedicated
combustion regime. For instance, accounting for heat losses requires an additional
controlling parameter as shown in Cavaliere and de Joannon (2004) and Lamouroux
et al. (2013) for mild (flameless) combustion typical of industrial furnaces, or in
Fiorina (2004) and Mercier et al. (2013) for premixed combustion (using RANS and
LES, respectively). The formation of pollutants is also difficult to track with a low-
dimensional look-up table. Since the formation of nitrogen oxides NOx is governed
by slow reaction processes, and since the classical definition of the progress vari-
able cannot track the evolution of NOx, an additional progress variable specifically
devoted to the description of NOx is required (Ihme and Pitsch, 2008; Pecquery,
2013).

→֒ Selected strategy for biomass combustion large-eddy simulation

Due to the characteristic time- and length-scales involved in wildfires, heat losses
are important to account for in fire simulations, in particular near the interface
between vegetation and flaming combustion. However, accounting for heat losses
in turbulent combustion based on tabulated chemistry is still an ongoing research
(Fiorina et al., 2003; Lamouroux et al., 2013; Mercier et al., 2013). One difficulty is
that accounting for heat losses implies a new control parameter (related to enthalpy)
in the look-up table, in particular for the case of diffusion flames (Lamouroux
et al., 2013), and thereby, an additional computational cost. A second difficulty is
that tabulation techniques are still difficult to extend to complex transient flame
structures and fires precisely feature a transient behavior due to buoyancy effects.
Since the combustion of biomass fuel generally occurs at high equivalence ratios
(Φ > 1) at the scales of fuel solid particles (where pyrolysis gases are released by
the vegetation), reduced kinetic schemes able to represent the combustion in rich
mixtures appear as a relevant strategy for representing the combustion of pyrolysis
gases in this work.

4Flamelet Prolongation of ILDM.
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2.4.3 Reduced kinetic schemes for methane/air flames

Since CFD simulations rely on a chemical kinetic scheme to represent the production
or consumption rates of the gas compounds, the validation of this chemical kinetic
scheme on simplified flame configurations is believed to be of primary importance in
the development of a LES strategy. This validation step generally relies on the study
of one-dimensional laminar premixed flames previously illustrated in Fig. 2.1 (since
they are the most studied flame configuration from numerical and experimental
viewpoints) and evaluates the ability of the chemical kinetic scheme to reproduce
the flame macroscopic features (in terms of flame speed and thickness, burnt gas
temperature, etc.).

Since this part of the thesis aims at applying turbulent combustion to fire configura-
tions and since fuel reactants in fire applications can be considered (in a preliminary
step) as a CO/CH4 mixture, this discussion on reduced kinetic schemes primarily
focuses on methane/air laminar flame properties (CO being an intermediate gas
compound of combustion). In particular, the objective is to highlight the consistent
behavior of the 2S-CH4-BFER reduced kinetic scheme for premixed methane/air
flames with respect to experiments and detailed kinetic schemes (Franzelli, 2011).

→֒ Sensitivity of the laminar flame speed to flow conditions

Since the turbulent flame speed sT can be characterized using the laminar flame
speed sL in the flamelet regime (see Eq. 2.11), it is of primary importance to
understand how this laminar flame speed sL for methane/air combustion varies with
respect to varying flow conditions in terms of fresh gas temperature Tf , pressure p
and equivalence ratio Φ.

⊲ The sensitivity of the flame speed sL with respect to the equivalence ratio Φ is
shown in Fig. 2.9(a) for ambient temperature (Tf = 300 K) and atmospheric
pressure (p = 1 atm). Experimental measurements are compared to GRI-
Mech3.0 predictions; results demonstrate the accuracy of GRI-Mech3.0 pre-
dictions over the range of measured equivalence ratios, even in rich-mixtures
(Φ > 1.2). The flame speed reaches its maximum value (0.4 m/s) near
stoichiometry, while its value significantly decreases towards 0 when moving
away to lean- or rich-mixture conditions.

⊲ The effect of the unity Lewis number assumption on the flame speed sL is
also shown. While this assumption induces a simplified transport modeling
(i.e., same diffusivity for heat and species), it leads to an underestimation of
the flame speed over the whole range of equivalence ratios and in particu-
lar near stoichiometry. In contrast, GRI-Mech3.0 simulations with complex
transport are able to reproduce experimental correlations.

⊲ The initial temperature of the gas reactants Tf is also an important parameter
that significantly modifies the flame speed sL as highlighted in Fig. 2.9(b).
The changes in sL are described by experimental polynomial correlations (Gu
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et al., 2000) such that at atmospheric pressure, the laminar flame speed sL
can be approximated as follows:

sL(Tf ) = sL(T
0
f ) ×

(
Tf

T 0
f

)−γT

, (2.42)

with for Φ = 1, sL(T 0
f ) = 0.360 (for reference initial temperature T 0

f = 300 K)
and γT = 1.612 for methane/air premixed flames. Figure 2.9(b) shows
indeed that the flame speed sL drastically increases with the fresh gas tem-
perature Tf . For instance, at Tf = 600 K, sL is approximately equal to
1.4 m/s and is therefore multiplied by a factor higher than 3 compared to
ambient temperature Tf = 300 K, where sL takes a value of 0.4 m/s.
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Figure 2.9: Sensitivity of the flame speed sL with respect to: (a) the equivalence ratio
Φ (symbols correspond to experimental data, Vagelopoulos and Egolfopoulos, 1998; lines
correspond to GRI-Mech3.0 predictions, the solid line being associated to complex transport
and the dashed line to simplified transport); and (b) the fresh gas temperature Tf at
atmospheric pressure and for Φ = 1 (symbols correspond to experimental data, Gu et al.,
2000; the solid line corresponds to experimental correlations, Gu et al., 2000; and the
dashed line corresponds to GRI-Mech3.0 predictions). Credit: Franzelli (2011).

→֒ Evaluation of reduced kinetic schemes

In the perspective of CFD applications, the computational cost of the chemical
kinetic scheme is of primary importance. For this purpose, Franzelli (2011) proposed
the reduced chemical kinetic scheme 2S-CH4-BFER for methane/air flames,5 which
exhibits a consistent behavior for a wide range of equivalence ratios Φ, in particular
in rich mixtures. This reduced kinetic scheme is a two-step mechanism accounting
for 6 species (i.e., CH4, O2, CO2, CO, H2O and N2) as follows:

CH4 + 1.5O2 −→ CO+ 2H2O

CO+ 0.5O2 ←→ CO2.
(2.43)

52S-CH4-BFER is proposed in this work for the combustion of pine needles, see Chapter 3.
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In this scheme, the first reaction corresponds to methane oxidation into CO and
H2O, whereas the second reaction accounts for the recombination mechanism be-
tween CO and CO2. The related kinetic parameters were calibrated to improve the
description of the chemical flame structures for rich-mixtures and in particular, to
correctly evaluate the burnt gas temperature. This calibration (based on laminar
premixed flames) was performed for varying initial temperature Tf (300 K-800 K),
pressure p (1-10 atm) and equivalence ratio Φ (0.6-1.6) using a PEA technique.
This technique implies that a correction coefficient depending on the equivalence
ratio Φ is introduced in the pre-exponential coefficient of each Arrhenius-based re-
action rate. Formally, the reaction rates (noted q̇1 and q̇2 for reactions 1 and 2,
respectively) are expressed as follows:

q̇1 = A1 k1(Φ) exp [−Ea,1/(Rg T )] [CH4]
nCH4 [O2]

nO2,1 ,

q̇2 = A2 k2(Φ) exp [−Ea,2/(Rg T )] [CO]nCO [O2]
nO2,2 ,

(2.44)

where k1(Φ) and k2(Φ) correspond to the corrected pre-exponential coefficients
associated with reactions 1 and 2, respectively. These PEA-based correction func-
tions, represented in Fig. 2.10(b) with respect to the equivalence ratio Φ, are ex-
pressed as follows:

k1(Φ) = 2

{[
1 + tanh

(
Φ0,1 − Φ

σ0,1

)]

+B1

[
1 + tanh

(
Φ− Φ1,1

σ1,1

)]
+ C1

[
1 + tanh

(
Φ− Φ2,1

σ2,1

)]}−1

,

k2(Φ) =
1

2

{[
1 + tanh

(
Φ0,2 − Φ

σ0,2

)]
+B2

[
1 + tanh

(
Φ− Φ1,2

σ1,2

)]

+C2

[
1 + tanh

(
Φ− Φ2,2

σ2,2

)] [
1 + tanh

(
Φ3,2 − Φ

σ3,2

)]}
.

The Arrhenius parameters as well as the coefficients for the correction functions
k1(Φ) and k2(Φ) are provided in Table 2.1. Note that unity Lewis numbers were
assumed for all species (consistently with the assumptions made in LES solvers).

Figure 2.10(a) shows the effect of the chemical kinetic scheme on the burnt gas
temperature Tb by comparing predictions from GRI-Mech3.0 (53 species), 2S-CH4-
BFER (6 species) and a one-step global kinetic scheme (with 5 species CH4, CO2,
H2O, O2 and N2). It is worth mentioning that this burnt gas temperature is
controlled by the gas reactant composition since it directly results from species
formation enthalpies ∆h0f,k and specific heat capacities cp,k. As highlighted by
Franzelli (2011), neglecting CO in the one-step global kinetic scheme leads to an
overprediction of the burnt gas temperatures Tb for Φ > 1, while 2S-CH4-BFER
is able to retrieve accurate burnt gas temperature in rich mixtures. Consistently
with the flame speed sL, the maximum value for the burnt gas temperature Tb is
reached near stoichiometry.
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It was also found that 2S-CH4-BFER is able to retrieve correct laminar flame speeds
sL with respect to the equivalence ratio Φ, for a wide range of initial fresh gas
temperatures Tf (e.g., 300 K in Fig. 2.11(a) and 700 K in Fig. 2.11(b)). Note that
a similar scheme based on the PEA technique (referred to as 2S-CH4-BFER∗) was
developed for strained flames and could be useful to simulate partially-premixed
turbulent flames, see Franzelli et al. (2010) for further details.
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Figure 2.10: (a) Sensitivity of the burnt gas temperature Tb with respect to the equiva-
lence ratio Φ for a fresh gas temperature Tf = 320 K (symbols correspond to GRI-Mech3.0
predictions; the solid line corresponds to the one-step global scheme and the dashed line
corresponds to 2S-CH4-BFER). (b) Correction functions of pre-exponential factors in 2S-
CH4-BFER (the solid line corresponds to the first reaction, the dashed line corresponds to
the second reaction). Credit: Franzelli (2011).

(a) (b)

Equivalence ratio Φ [-] Equivalence ratio Φ [-]

Fl
am

e 
sp

ee
d
 [

m
/s

]

Fl
am

e 
sp

ee
d
 [

m
/s

]

Figure 2.11: Sensitivity of the laminar flame speed sL with respect to the equivalence ratio
Φ for varying pressures (p = 1, 3, 10 atm) and initial gas temperatures Tf . (a) Tf = 300 K.
(b) Tf = 700 K. Symbols correspond to GRI-Mech3.0 predictions and lines correspond to
2S-CH4-BFER predictions. Credit: Franzelli (2011).
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Table 2.1: Values for Arrhenius parameters and PEA-based correction parameters for the
reduced chemical kinetic scheme 2S-CH4-BFER. Units are: mol, s, cm3 and cal/mol.

CH4 oxidation CO-CO2 equilibrium

Activation energy [cal/mol] Ea,1 = 3.55× 104 Ea,2 = 1.20× 104

Pre-exponential factor [CGS] A1 = 4.90× 109 A2 = 2.00× 108

Reaction exponents [-] nCH4 = 0.50 nCO = 1.00

nO2,1 = 0.65 nO2,2 = 0.50

Correction parameters [-] Φ0,1 = 1.1 Φ0,2 = 0.95

σ0,1 = 0.09 σ0,2 = 0.08

B1 = 0.37 B2 = 2.5× 10−5

Φ1,1 = 1.13 Φ1,2 = 1.30

σ1,1 = 0.03 σ1,2 = 0.04

C1 = 6.7 C2 = 0.0087

Φ2,1 = 1.60 Φ2,2 = 1.20

σ2,1 = 0.22 σ2,2 = 0.04

- Φ3,2 = 1.2

- σ3,2 = 0.05

2.4.4 Overview of turbulent combustion models

Laminar flame configurations provide some important insights into the flame be-
havior for varying flow conditions, leading to the development of chemical kinetic
schemes suitable for fuel oxidation over a wide range of equivalence ratios or gas
mixture temperatures. For the purpose of LES, the next step is to incorporate the
chemical kinetic scheme into a turbulent combustion framework, in order to model
the filtered reaction rates ω̇k for each gas species k = 1, · · · , Ng (see Eq. 2.38).
As the most important contribution to reaction rates occurs in LES at the subgrid-
scale level (Pope, 2000), flame/turbulence interactions also require modeling, either
based on mixing, geometrical or statistical considerations (Fiorina et al., 2013).
Note that the resolved flame thickness is generally controlled by numerical consid-
erations in turbulent combustion models, since the flame front is generally too thin
to be resolved on the LES computational grid.

→֒ Mixing formalism

An early attempt to describe combustion/turbulence interactions consisted in as-
suming that combustion processes are essentially controlled by turbulent mixing
(Spalding, 1971). Based on this assumption, the turbulent filtered reaction rates
can be expressed as a function of the species mass fraction variance (Y

′′

k )
2. The

filtered reaction rate of combustion products (referred to as index P) is for instance
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expressed as follows:

ω̇P = ρCEBU
ǫ

k

(
(Y

′′

P )
2
)1/2

, (2.45)

with k/ǫ the turbulent time scale (k being the turbulent kinetic energy and ǫ the
rate of dissipation). This formulation is the foundation of the eddy break up (EBU)
concept. The underlying constant CEBU must be tuned in practice. The EBU
model as well as the related eddy dissipation concept (in which the filtered mass
fraction of combustion products is replaced by the filtered mass fraction of the
deficient species, i.e., fuel in lean mixtures or oxygen in rich mixtures) eliminate the
influence of chemical kinetics by representing the fast chemistry limit only (Mag-
nussen, 2005). In spite of their limitations for temperature or pollutant predictions,
they are widely spread (in particular in the fire research field) due to their steady
convergence and straightforward implementation.

→֒ Geometrical formalism

The geometrical formalism deals with the flame surface description and flame thick-
ness issues using three different approaches listed below.

⊲ Level-set approach. One approach consists in developing flame front-
tracking techniques based on a level-set approach, also referred as the G-
equation in the combustion research field (Kerstein et al., 1988; Pitsch, 2005,
2006; Moureau et al., 2009). This approach aims at tracking the location of
the turbulent flame front (assumed infinitely thin) using a propagating trans-
port equation that evolves the non-reacting, scalar G-field. The G-equation
reads:

∂G

∂t
+ ũ · ∇G = sT |∇G|, (2.46)

with ũ the filtered flow velocity vector and sT the subgrid-scale turbulent
burning velocity along the normal direction to the iso-contours of G. Based
on the resolution of the Navier-Stokes equations, the flame front is then
conveniently identified as an iso-contour of the G-field. However, sT requires
an additional model.

⊲ Filtering laminar flames. The principle consists in filtering the laminar
flame model with a filter size ∆ larger than the LES computational grid
size to be able to solve for the filtered flame. Thus, this approach solves
for a transport equation that governs the filtered reaction progress variable
c. While being similar to the G-equation, it includes physical, unsteady
effects such as convection fluxes, which can be validated against DNS or
experimental data (Boger et al., 1998; Duwig, 2007; Auzillon et al., 2011).

One solution consists in tabulating the filtered flame in a look-up table with
a modification of the equations, to allow for a physically-consistent flame
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behavior, for instance using F-TACLES6 (Auzillon et al., 2011, 2012). This
model relies on tabulated chemistry, which has demonstrated its ability to
represent thermo-chemical flame structures for LES of academic flames and
laboratory-scale combustors. Note that a specific formalism named tabulated
thermo-chemistry for compressible flows (TTC) is required to include tabu-
lated chemistry in compressible LES solvers (Vicquelin, 2010; Vicquelin et al.,
2011). However, the extension of tabulated chemistry to complex industrial
configurations as well as to transient or non-adiabatic cases is a challenging
task (Mercier et al., 2013; Lamouroux et al., 2013). Indeed, the dimension
of the look-up table rapidly grows with the number of parameters required to
characterize the flame structure, and the choice of the flame model used to
generate the table is difficult when the combustion regime is unknown.

⊲ Artificially-thickened flames. The principle is to operate a transformation
of the spatial and temporal variables to thicken the flame, while conserv-
ing the laminar burning velocity sL. Artificially-thickened flame models are
applied when the flame (characterized by its thermal thickness δL) is much
thinner than the LES filter size ∆. For instance, the TFLES7 model artificially
thickens the flame region by a factor F so that the flame is resolved on the
LES computational grid (Colin et al., 2000; Angelberger et al., 2000; Légier
et al., 2000). This implies that the filtered species and thermal reaction rates
are divided by the factor F such that:

ω̇k =
E ω̇k

F , ω̇T =
E ω̇T

F , (2.47)

while the diffusivities are multiplied by F so that the flame speed sL remains
unchanged, i.e.,

sL ∝
E (F Dth)

F δL
=
E Dth

δL
= sT . (2.48)

Such artificially-thickened flame models have been successfully applied to
LES complex configurations (Selle et al., 2004; Freitag et al., 2007; Schmitt
et al., 2007; Boileau et al., 2008; Staffelbach et al., 2009); the main drawback
of these models is that they change the combustion mode from transport-
controlled to chemistry-controlled. Auzillon et al. (2011) compared F-TACLES
and TFLES techniques and proposed a relation between the LES filter size
∆ and the thickening factor F for a given numerical resolution.

It is worth noting that an efficiency coefficient noted E is introduced in Eq. (2.48)
to overcome the loss in flame front wrinkling induced by artificial thickening (as
illustrated in Fig. 2.12) and to therefore account for flame/turbulence interactions.
The wrinkling factor is determined based on equilibrium considerations between

6Filtered-TAbulated Chemistry for LES.
7Thickened Flame model for LES.
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flame wrinkling and turbulent fluctuations in TFLES (Colin et al., 2000; Charlette
et al., 2002). Alternative formulations rely on similarity assumptions (Knikker et al.,
2002) or dynamic adjustment following works from Germano et al. (1991), Knudsen
and Pitsch (2010), Wang et al. (2011, 2012) or Veynante et al. (2012). In dynamic
models, the thickening operation is only applied within the flame region (through
a dynamic parameter adjustment), in order to preserve diffusion in non-reacting
regions and to account for situations in which non-equilibrium flame/turbulence
interactions occur. For instance, Wang et al. (2011, 2012) showed the ability
of dynamic flame wrinkling factor models to reproduce the transient ignition of a
flame kernel. These models are an important component of turbulent combustion
models to describe unresolved flame/turbulence interactions, in level-set approaches
(Pitsch, 2006), flame surface density modeling (Boger et al., 1998; Hawkes and
Cant, 2000), F-TACLES (Auzillon et al., 2011) or TFLES (Colin et al., 2000).

Figure 2.12: Impact of artificial thickening (TFLES) on the flame front wrinkling. The
flame front represented in black solid lines is superimposed on the velocity field. Left:
F = 1 (no flame thickening). Right: F = 5. Credit: Colin et al. (2000).

→֒ Statistical formalism

Combustion/turbulence interactions can also be formulated using probability den-
sity functions (PDF) to describe unresolved subgrid-scale distributions of thermo-
chemical variables in space and time (Anand and Pope, 1987; Dopazo et al., 1997).
The main issue is the determination of the filtered PDF and of the variable cross-
correlations. Expectation values and correlations of the velocity field and scalar
variables related to reacting flows are described based on presumed filtered PDF
(FDF) using β-functions (Cook and Riley, 1998). A transport equation for the fil-
tered PDF is derived and solved in this statistical formalism, in which the effect of
chemical reactions is in a closed form (Gao and O’Brien, 1993; Colucci et al., 1998).
This FDF approach is therefore suitable for LES of reacting flows. Conditional mo-
ment closure (CMC) is a more refined concept that relies on conditional moments
(i.e., filtered mass fraction values for a given mixture fraction value) and a statis-
tical closure (Bilger, 1993; Klimenko and Bilger, 1999; Garmory and Mastorakos,
2011).
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2.4.5 AVBP, solver for large-eddy simulations

AVBP,8 co-developed since 1993 by CERFACS and IFPEN, is a parallel explicit
CFD code that solves the three-dimensional turbulent compressible Navier-Stokes
equations for reacting flows on massive unstructured and hybrid grid meshes us-
ing DNS or LES approach (Schönfeld and Rudgyard, 1999; Colin et al., 2000; Selle
et al., 2004; Moureau et al., 2005; Schmitt et al., 2007; Riber et al., 2009; Franzelli,
2011). It is dedicated to the prediction of unsteady reacting flows in combustor
configurations. Employing a cell-vertex finite-volume approximation, the numerical
methods underlying Avbp are explicit in time and based on a Lax-Wendroff or
a finite-element type low-dissipation Taylor-Galerkin discretization in combination
with a linear-preserving artificial viscosity model. Characteristics-based NSCBC9

boundary conditions are used to handle acoustics properly (Poinsot and Lele, 1992).
Avbp is highly portable to most standard computing platforms and has proven ef-
ficient on most parallel architectures. Tabulated chemistry based on F-TACLES
formalism (Auzillon et al., 2011; Vicquelin et al., 2011) or Arrhenius-law-based re-
duced chemistry based on the TFLES formalism (Colin et al., 2000; Franzelli, 2011)
allow to investigate combustion in complex configurations. It is worth mentioning
that the methane/air reduced kinetic scheme 2S-CH4-BFER is available in Avbp.

2.5 Heat transfer considerations

One way to increase the physical consistency of solutions is to run multi-physics
CFD simulations, coupling LES to heat transfer in solids, radiation, etc. In partic-
ular, radiation heat transfer must be accounted for in LES predictions of turbulent
combustion, due to the importance of heat losses (e.g., wall heat fluxes) and to
their impact on pollutant formation. Radiation heat transfer is involved in the heat
balance equation through the heat source term q̇ [W/m3] (see Eq. 2.31 in Navier-
Stokes equations) as well as in wall heat transfer. The description of radiation heat
transfer is briefly described below. For a more detailed viewpoint, see Jensen et al.
(2007), Coelho (2007), Poitou (2009) or Amaya et al. (2010).

2.5.1 Formulation of the radiation transfer equation

Radiation refers to the energy transfer in the form of electromagnetic radiation;
this is a non-local, quasi-instantaneous, directional and spectral process (Goody
and Yung, 1952; Viskanta, 1987; Taine and Petit, 1993; Modest, 2003). If not
disturbed by external forcing, radiation propagates along a straight line-of-sight.
However, when a beam of photons propagates across a non-transparent medium
(typically, a reacting medium composed of CO2, H2O and soot particles), energy
absorption, emission and/or scattering can occur. In the specific case of a black-
body medium, all the energy carried by the beam is absorbed (there is no reflection).

8http://www.cerfacs.fr/4-26334-The-AVBP-code.php.
9Navier-Stokes Characteristics Boundary Conditions.

http://www.cerfacs.fr/4-26334-The-AVBP-code.php


94 2.5 - Heat transfer considerations

The radiation transfer equation (RTE) corresponds to the balance equation of the
radiation energy (also referred to as spectral radiance) in a control volume of the
crossing medium. More precisely, the spectral radiance in the direction u associated
with the wavenumber νrad is noted Iνrad [W/m2/sr/Hz] (sr standing for steradian)
and corresponds to the monochromatic heat flux density dΦνrad(u, t) that crosses
the gas surface ds within a time delay dt:

Iνrad(x,u, t) =
dΦνrad(u, t)

u ·n dΩ dt ds
, (2.49)

with n the normal direction to the surface ds and dΩ the solid angle around the
direction u. For clarity purposes, a schematic is presented in Fig. 2.13.
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Figure 2.13: Definition of the spectral radiance Iν . Credit: Poitou (2009).

For a given wavenumber νrad, the differential form of the RTE in a non-scattering
medium can be formulated as follows:

d

ds

(
Iνrad(x,u)

)
= κνrad

(
I0νrad(x)− Iνrad(x,u)

)
, (2.50)

with κνrad the absorption coefficient, I0νrad the equilibrium Planck radiance and
Iνrad the incident intensity at the point x in the direction u. Using this formalism,
the macroscopic heat source term q̇ involved in the fluid heat balance equation is
retrieved by calculating a double integration of the RTE in physical and spectral
spaces such that:

q̇ = q̇(x) =

∫ ∞

0
κνrad

(
4π I0νrad(x)−

∫

4π
Iνrad(x,u) dΩ

)
dνrad. (2.51)

2.5.2 PRISSMA, radiation solver

Prissma10 is a radiation solver specifically designed for combustion applications
and relying on a discrete ordinate method (DOM) with different angular discretiza-
tions and spectral models (Poitou, 2009; Amaya et al., 2010; Poitou et al., 2011,

10http://www.cerfacs.fr/prissma/.

http://www.cerfacs.fr/prissma/
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2012). The numerical strategy is based on the S4 quadrature (i.e., 24 direc-
tions) combined with the tabulated full spectrum SNBcK (FS-SNBcK) spectral
model (Goutiere et al., 2000, 2002), allowing for a suitable balance between accu-
racy and computational cost.

Conclusion

This chapter provides an overview of the state-of-the-art modeling of turbulent
combustion. Large-eddy simulation capabilities are able to capture flame-scale
dynamic processes using subgrid-scale turbulence modeling to account for tur-
bulent wrinkling effects and using chemical kinetic schemes to account for the
production or consumption of chemical gas compounds.

In turbulent combustion research, Avbp is a reference software that has been
validated in multiple configurations for premixed, partially-premixed or diffusion
flames as well as for lean or rich multi-species mixtures. Since it features an
explicit compressible solver with a small computational time step to solve for
acoustics, the chemistry of combustion is accounted for by reduced or tabu-
lated strategies, requiring evaluation and calibration in simplified flame con-
figurations. Thus, Avbp coupled to the radiation solver Prissma provides a
powerful tool to explore flame-scale processes underlying laboratory-scale fire
propagation (if associated with a model for biomass fuel thermal degradation)
and to assess/analyze the validity of empirical wildfire spread-rate modeling at
regional scales.





Chapter 3

Strategy for multi-physics

large-eddy simulations of fire

spread

The direction and speed at which a wildfire propagates results from multi-
scale interactions between multi-physical processes, namely the pyrolysis
processes occurring at vegetation scale, the combustion and flow dynam-
ics at flame scale, and the atmospheric dynamics and chemistry at large
regional scale. Current wildfire spread simulators rely on a semi-empirical
parameterization of the rate of spread (ROS) with respect to local envi-
ronmental conditions (Rothermel, 1972; Balbi et al., 2009). This param-
eterization is based on a global energy balance in the unburnt vegetation
subject to flame-induced pre-heating. Thus, empirical spread-rate models
imply a rough heat transfer description and thereby, significant assumptions
in the ROS behavior (e.g., dominating heat transfer, fuel bed configura-
tion, homogeneity of local wind conditions). In contrast, relevant insight
into wildfire dynamics has been recently obtained via detailed numerical
simulations, which for instance differentiate the heat transfer mechanisms
contributing to vegetation pre-heating (e.g., convection, radiation). Still at
its early stages, this computational fluid dynamics (CFD) approach of wild-
fire spread could be improved by performing large-eddy simulations (LES)
at fine flame scale (on the order of 1 mm), allowing for more accurate
subgrid-scale combustion modeling.

This chapter presents the strategy developed in this thesis to simulate
flame-scale interactions between combustion, turbulence and pyrolysis for
a laboratory-scale fire configuration.
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3.1 Strategy guidelines

This part of the thesis aims at building multi-physics flame-scale LES of a laboratory-
scale fire based on a model coupling strategy and HPC, and then at validating them
against experimental measurements. Typical laboratory-scale experiments are illus-
trated in Fig. 3.1 for flat or upslope propagation. Objectives are (1) to provide
a more comprehensive understanding of the fine-scale mechanisms underlying fire
propagation; and (2) to obtain more accurate correlations between quantities of
interest that could be useful to:1

⊲ improve the ROS parameterization in semi-empirical models and in current
fire spread simulators such as Firefly or Forefire/Méso-NH;

⊲ study wildfire emission factors (i.e., amount of chemical species released into
the atmosphere) involved in current air quality estimations.

In particular, this study focuses on the interactions between combustion and turbu-
lence by introducing fire physics into the existing compressible reactive LES solver
Avbp, which has been actively applied in the field of industrial combustion in recent
decades (see Chapter 2). Solving for laboratory-scale fires requires to generalize
Navier-Stokes balance equations to buoyancy-induced flows and to introduce mod-
els for radiation heat transfer, biomass fuel pyrolysis as well as chemical kinetics of
the combustion of pyrolysis gases. A multi-physics CFD coupling based on HPC is

1The objectives of the ANR-IDEA project are explained in detail in Chapter 1.
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therefore necessary to describe interactions between porous biomass fuel thermal
degradation, gas-phase convection, combustion and heat transfer processes.

Slope = 20°!Flat!

Figure 3.1: Instantaneous snapshots of laboratory-scale fire experiments for flat and 20◦-
upslope configurations. Fires propagate through a fuel bed of 2 m × 1 m forming a
pine needle layer. The mean height of the flame over the fire duration is 47 cm for flat
propagation and 67 cm for upslope propagation. Credit: CNRS-SPE laboratory, http:
// spe. univ-corse. fr/ .

For this purpose, the following aspects are developed in this thesis and in particular
in this chapter:

⊲ Vegetation representation. Vegetation (i.e., layer of pine needles) is con-
sidered as a porous medium made of a solid phase (pine needles) and a gas
phase (air in-between the solid fuel particles).

⊲ Vegetation thermal degradation model. A model to account for the
vegetation thermal degradation named Pyrowo is proposed and verified

http://spe.univ-corse.fr/
http://spe.univ-corse.fr/
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against thermogravimetry experimental data (TGA): its objective is to provide
a time-dependent gas flow from the vegetation solid-phase at the top of the
pine needle layer (this gas flow is constituted by the gas compounds released
during the pyrolysis step, e.g., CH4, CO, CO2, H2O).

⊲ Combustion properties of pyrolysis gases. Combustion properties of the
gas flow from the vegetation solid-phase are studied with respect to its com-
position, temperature and flow-induced strain rate to gain insight into the
related chemical time-scales: this study is performed in a simplified geom-
etry (auto-ignition, one-dimensional premixed and counter-flow flames) and
based on laminar flames using specific softwares (allowing for comparison
with detailed kinetic schemes and complex transport properties). The objec-
tive is to validate the reduced chemical kinetic scheme 2S-CH4-BFER used
in the Avbp fluid solver to simulate the combustion of pyrolysis gases in a
laboratory-scale configuration. A discussion on the choice of the turbulent
combustion model in Avbp is also provided.

⊲ Buoyancy-driven flow. Since the fire plume is subject to buoyancy, the
acceleration due to gravity is added in the Avbp momentum conservation
equation to account for buoyancy-driven flows and induced non-stationary
effects.

⊲ Radiation. The radiation heat transfer from the flame to the vegetation that
enhances its thermal degradation and the pyrolysis process is simulated using
the Prissma radiation solver.

⊲ Coupling strategy for flame-scale simulations. Simulating laboratory-
scale fires requires a coupling strategy based on the most recent MPI2 and
HPC technologies to combine and synchronize Avbp, Prissma and Py-
rowo models. This coupling strategy relies on the OpenPalm dynamic
code coupler (see Appendix B).

3.2 Formulation of the vegetation pyrolysis submodel

While much progress has been achieved in the recent decades in our basic under-
standing of biomass pyrolysis (biomass referring to all organic materials with wood
as the main representative), its simulation remains a challenging task due to the
unknown features of the vegetation and to the complex underlying physico-chemical
mechanisms occurring at vegetation molecular scales. A wide range of modeling
approaches has been proposed in literature, from the consideration of a single par-
ticle decomposition to the macroscopic representation of the vegetation pyrolysis,
within the framework of biomass power generation or fire safety engineering. See
Di Blasi (1993, 2008), Shafizadeh (1977, 1982) or Peters and Bruch (2003) for a
detailed review of biomass pyrolysis modeling.

2Message Passing Interface.
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3.2.1 Characterization of porous vegetation

→֒ Representation of vegetation as a porous medium

As illustrated in Fig. 3.2, the vegetation used in the present laboratory-scale exper-
iments is a fuel bed made of maritime pine needles, typical of the Mediterranean
ecosystem and referred to as Pinus Pinaster. From a macroscopic viewpoint, this
vegetation bed can be regarded as a composition of a solid phase (pine needles
can be assimilated to solid fuel particles with varying properties) and a gas phase
(i.e., air in-between the solid fuel particles). The ratio of the volume occupied by
the solid phase to the total volume of the vegetation bed is characterized by the
packing ratio denoted by βv; typically, βv varies between 0.01 and 5 % for Pinus
Pinaster (alternatively, the term (1 − βv) corresponds to the biomass fuel poros-
ity). This porous structure is essential to account for, since combustion processes
are highly dependent on the fuel/air equivalence ratio Φ and since the flammable
compounds released during thermal degradation are in the gas phase of the biomass
fuel bed before being entrained towards the flame. The macroscopic properties of
the vegetation solid and gas phases (in terms of moisture content Mv and parti-
cle surface-area-to-volume ratio Σv for instance) must be regarded as equivalent
properties to the biomass structure from microscopic to macroscopic scales. Thus,
these macroscopic properties globally represent the mean effects of the underlying
scales, where porous structures could also be identified (see Fig. C.1, Appendix C).

Figure 3.2: Vegetation of thickness δv (5-10 cm) made of pine needles (solid fuel particles
or solid phase) and a gas phase.

Biomass pyrolysis can be considered as the chemical degradation of an organic ma-
terial through thermal decomposition. It is highly related to the material physico-
chemical properties: physical properties characterize macroscopic structures that
define the transport mechanisms as well as the moisture content distribution within
the porous vegetation, while chemical properties refer to the biomass fuel compo-
sition at molecular scale.
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→֒ Chemical composition

Wood is composed of elongated cells, mainly oriented in the longitudinal direction
of the stem (i.e., in the main growth direction) as shown in Fig. 3.3 for soft woods
(e.g., conifers, pines). From a chemical perspective, these wood cells are made
up of polymers (among whom cellulose, hemicellulose and lignin), which form a fi-
brous structural tissue with some amounts of extractives (e.g., resin) and inorganic
compounds (e.g., potassium, sodium and magnesium mineral elements). It is worth
noting that these inorganic compounds represent the non-combustible biomass con-
tent and are responsible for the formation of ashes during thermal degradation.

(a) Schematic of the inner structure. (b) Transverse and longitudinal faces, T:
Tracheid, R: Rays, RC: Resin canals.

Figure 3.3: Typical structure of soft wood species (e.g., conifers, pines). Credit: Siau
(1984), Butterfield (1980).

As the main component of vegetation cell walls, cellulose is composed of long
straight chains commonly represented with the structural formula (C6H10O5)n; n
(typically 10,000 in unaltered wood) indicating the degree of polymerization. The
different chains have a tendency to be tight together via hydrogen bonds that
provide high tensile strength to vegetation. Hemicellulose surrounds the cellulose
fibers of the cell walls and consists of shorter chains than cellulose (only 50 to 200
molecular units). While the cell walls of vegetation are formed by fibers made of
cellulose and hemicellulose, lignin is located between the cells and thereby, serves
the function of binding the fibers together. Thus, lignin is largely responsible for
the rigidity of vegetation.

The proportion and structure of these chemical compounds depend on the biomass
species and on its state of decomposition (living or dead cells). In particular, wood
is known to be constituted by 40-60 % hemicellulose and cellulose, 25-40 % lignin,
4-15 % extractives and 0.5-5 % ash (in weight % on a dry basis). Table 3.1
compares this composition for different biomass types (i.e., soft wood, hard wood,
bark, peat) and for Pinus Pinaster. Note that bark and peat generally contain
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more extractives and less cell wall materials than woody tissues. Also, the lignin
content is substantially higher for peat, indicating that more lignin is present when
a biomass species is significantly decomposed and contains a large amount of dead
cells (lignin could be an important factor enhancing smoldering combustion). A
detailed description of wood composition is provided in Bronli (1996).

Table 3.1: Chemical composition of biomass fuel types (weight % on a dry basis).
PP corresponds to Pinus Pinaster. Credits: http: // www. fao. org/ docrep/ T4470E/
t4470e0a. htm and Leroy (2007) for Pinus Pinaster.

Species Soft wood Hard wood Pine bark Peat PP

Cellulose 41 39 34 10 38

Hemicellulose 24 35 16 32 5

Lignin 28 20 34 44 39

Extractives 2 3 14 11 13

Ash 0.4 0.3 2 6 5

→֒ Anisotropic physical properties

At microscopic scale, the solid phase of the vegetation bed (also referred to as
p-phase) can itself be considered as a porous medium that is made of a skeletal
solid matrix (i.e., cell walls) and a pore network (i.e., voids filled with either liquid
or vapor phase). The volume fraction occupied by the pores over the total solid
vegetation volume is typically characterized by the p-phase porosity variable noted
βp; βp varies from 0 (i.e., no pore within the material) to 1 (i.e., no solid matrix
within the material). More details are provided in Appendix C.

Depending on the pore geometrical arrangement, vegetation exhibits highly anisotro-
pic properties (in terms of thermal conductivity and permeability to gas flow for
instance). It also contains a non-negligible moisture content Mv, either in the pores
(i.e., as free water, liquid or vapor, held by capillary forces) or as bound water in the
cell walls (i.e., water molecules attached to cellulose and hemicellulose via hydrogen
bonds). From a modeling viewpoint, Mv is commonly expressed as the mass of
moisture divided by the mass of dry vegetation (Rothermel, 1972). A description
of some specific properties of vegetation moisture, which are useful to understand
the parameters in semi-empirical ROS models, follows.

⊲ Bound water properties. When organic materials undergo thermal degra-
dation, moisture leaves first cell cavities and second cell walls. This bound
water leaving cell walls transforms into free liquid water. Note that there
always remains a low amount of moisture (a few % typically) in oven-dried
vegetation, in the form of bound water.

⊲ Free water properties. The energy required to evaporate the free liquid
water can be considered to be equal to the latent heat of evaporation noted

http://www.fao.org/docrep/T4470E/t4470e0a.htm
http://www.fao.org/docrep/T4470E/t4470e0a.htm
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∆hvap (∆hvap = 2260 kJ/kg).

⊲ Fiber saturation point. The fiber saturation point (noted Mv,ext) is defined
as the moisture content at which cell walls are saturated with bound water,
while there is no free water within the pore network (i.e., in the cell cavities).
An average value Mv,ext = 30 % is typically assumed for biomass fuels,
corresponding to the moisture of extinction introduced in the semi-empirical
ROS model due to Rothermel (1972).

⊲ Equilibrium moisture content. When only bound water is present in veg-
etation, an equilibrium exists between the biomass moisture content and the
relative humidity of the surrounding air, called the equilibrium moisture con-
tent (EMC). Typical of dead cells in biomass fuels, this EMC is a dynamic
equilibrium as it depends on air humidity and temperature.

→֒ Energy content in biomass fuels

The thermal energy emitted by an active fire is a direct result of the energy stored
in biomass, being released as heat when the biomass fuel undergoes combustion.
It is therefore important to understand the factors affecting the energy content of
vegetation (also called the heat of combustion and noted ∆hc [J/kg]). From a
theoretical viewpoint, ∆hc is defined as the amount of heat released per unit fuel
mass under complete combustion. Since the composition of biomass fuels (on a dry
and ash-free basis) is relatively uniform in terms of carbon, oxygen and hydrogen
atoms, the theoretical heat of combustion remains between 16 and 22 MJ/kg for
most biomass species (Rothermel, 1972; Finney, 1998; Tihay et al., 2009). The
value for ∆hc is set to 18.6 MJ/kg in Rothermel’s ROS model. Note that this
value is low compared to hydrocarbon-based industrial fuels typical of gas turbines,
since the heat of combustion of kerosene (46 MJ/kg), methane (55.5 MJ/kg) and
hydrogen (141.9 MJ/kg) is at least 2.5 times higher than for biomass fuels.

However, the actual amount of heat released during combustion is influenced to
some degree by the presence of moisture, volatile resins or inorganic materials (Or-
fao et al., 1999). While the ash content ranges from about 1 % in wood to more
than 5 % in grass, the moisture content Mv may vary from 2.5 % (e.g., in dead sa-
vanna grasslands) to 200 % (e.g., in fresh needles and leaves) of the dry vegetation
weight. Since flaming combustion starts when the bound moisture is evaporated
from vegetation, and since biomass moisture evaporation is a highly endothermic
process associated with a high latent heat of evaporation ∆hvap, a high moisture
content Mv has the capacity to stop a fire or to significantly slow it down, mak-
ing combustion incomplete. That is why Rothermel’s ROS model assumes that
above a 30-% threshold value for moisture content (named the moisture content at
extinction and noted Mv,ext), a fire cannot propagate. This moisture content at ex-
tinction corresponds to the fiber saturation point: dead fuel particles characterized
by low bound moisture content and size (a few millimeters typically) significantly
contribute to pyrolysis and sustain combustion. Note that the ignition and combus-
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tion of living biomass fuels such as chaparral is still poorly understood (Mcallister
and Finney, 2014).

3.2.2 PYROWO, model for biomass thermal degradation

→֒ Key ideas underlying the PYROWO model

Since Avbp only solves for the gaseous phase, a model that accounts for the thermal
degradation of the porous vegetation subject to strong radiation and convection
heat fluxes is required. In general, physical submodels used to describe solid fuel
sources in CFD solvers belong to two categories: (1) design fire models in which the
fuel mass loss rate is prescribed using an empirical law; and (2) thermal feedback
sensitive models in which the fuel mass loss rate is derived from a physics-based
model as a function of the gas-to-fuel thermal loading (Hopkins and Quintiere,
1996; Novozhilov et al., 1996). In this work, the biomass fuel thermal degradation
model named Pyrowo belongs to the second category and was developed in
the perspective of performing multi-physics flame-scale LES. The ultimate goal of
Pyrowo is to define the interface between the biomass fuel bed and the gaseous
phase solved by Avbp and thereby, to describe properly the production of pyrolysis
gases without considering a fully multiphase formulation retained, for example, in
Linn et al. (2002), Morvan and Dupuy (2004) or Séro-Guillaume and Margerit
(2002).

Pyrowo requires a heat source, provided by the radiation heat flux received at
the top of the vegetation bed. This radiation heat flux is a fraction of the heat
released by the flame (noted χrad), which reaches the unburnt vegetation ahead
of the fire front. It increases the temperature of the vegetation solid phase and
leads to the release of pyrolysis gases. In-turn, these pyrolysis gases (i.e., the fuel
reactants of the combustion) sustain flaming combustion and enhance fire spread,
by providing a fuel-to-gas mass flux. Pyrowo also provides the gas temperature
and composition. The flowchart of Pyrowo is provided in Fig. 3.4.

PYROWO!

0-D model!

Flame-induced radiative !
heat flux!

Properties of porous 
vegetation!

• Solid-phase mass loss rate!
• Gas product temperature !
• Gas product composition!

Kinetic parameters!
of thermal degradation!

Outputs!

Inputs!

Calibration!

External !
forcing!

Figure 3.4: Flowchart of Pyrowo, the biomass thermal degradation model.

Note that the properties of the solid particles of vegetation are difficult to estimate
a priori, while being essential for the performance of a thermal degradation model.
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For this purpose, they are calibrated against experimental data based on thermo-
gravimetry and/or cone calorimeter analyses (Broido, 1969; Huggett, 1980), using
optimization procedures. A set of vegetation properties and kinetic parameters that
best reproduces experimental data can be retrieved and used as model parameters
in Pyrowo.

Note also that particular attention must be paid to the gas composition since
it significantly affects the heat of combustion ∆hc associated with vegetation
and thereby, its flammability potential capacity. Experimental measurements have
shown that there is a wide range of gas compounds emitted by the pre-heated vege-
tation, among whom CH4, CO, CO2, H2O and lower amounts of C2 hydrocarbons
(see Table 3.2). Since vegetation is a porous medium, air is also contained in its gas
phase and therefore, some amounts of N2 and O2 must be accounted for in the gas
mixture released by the vegetation. However, the ratio between air and pyrolysis
gases (i.e., the fuel/air equivalence ratio Φ) in representative configurations of fire
spread is difficult to estimate and thereby, subject to significant uncertainties.

Table 3.2: Example of composition of pyrolysis gases Yv,k [−] (mass fractions) released
during Pinus Pinaster thermal degradation (experimental data). Credit: Tihay et al. (2009).

Species CO2 H2O CO CH4 C2H4 C2H6

Mass fraction 0.640 0.089 0.171 0.029 0.007 0.011

Species C3H6 C3H8 C4H6 C4H8 C4H10 H2

Mass fraction 0.002 0.008 0.022 0.014 0.007 0.0

→֒ Model assumptions

Pyrowo is a 0-D model neglecting the transport within the biomass fuel bed and
including a system of ordinary differential equations (ODE) that (1) accounts for
the radiation source term emitted by the flame and absorbed by the biomass fuel
bed (noted q̇rad,fl [W/m3] in the following3), and (2) reproduces the macroscopic
behavior of vegetation thermal degradation. Inspired by the multiphase formulations
due to Grishin (1997) as well as additional contributions of Larini et al. (1998),
Morvan and Dupuy (2004) and Consalvi et al. (2011), Pyrowo relies on the
following assumptions.

⊲ Homogeneous vegetation. Vegetation is considered as a porous medium
made of a gas phase and a single family of solid particles sharing common
properties (e.g., surface-area-to-volume ratio Σv, moisture content Mv). This
assumption is relevant in the present study since Pinus Pinaster needles are
uniformly-distributed in the target laboratory-scale fuel bed (see Fig. 3.2).

3Surface quantities at the top of the biomass fuel bed are involved in the coupling strategy
presented in Section 3.4; the mathematical formulation underlying Pyrowo considers physical
quantities per unit volume of the fuel bed.
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⊲ Reduced thermal degradation mechanism. The solid phase of the vege-
tation is initially represented as an ensemble of dry wood and liquid moisture
(H2O)l. It is supposed to undergo thermal degradation in three steps (which
can overlap) illustrated in Fig. 3.5 and listed below (Bronli, 1996; Repellin,
2006).

Pyrolysis Char oxidation

Ashes (negligible)

Drying

Figure 3.5: Snapshot of the laboratory-scale fire with a schematic of the different steps
underlying Pinus Pinaster thermal degradation (black zones surrounded by white dashed
lines correspond to partially-burnt fuel where the combustion is momentarily stopped by
oxygen defect).

(i) Drying corresponds to the formation of water vapor (H2O)v in replace-
ment of fuel moisture (H2O)l (i.e., free liquid and bound water) ahead
of the flame zone. This step is represented as follows:

(H2O)l −→ (H2O)v.

(ii) Pyrolysis corresponds to the degradation of dry solid materials into
(1) flammable gas compounds (e.g., CH4, CO), and (2) char materials
in a certain proportion represented by the coefficient χchar and that
depends on the lignin content in vegetation (Di Blasi, 2008). This
degradation of the dry mass content is represented as follows:

dry −→ χchar char + (1− χchar) volatiles.

Note that char refers to a black residue mainly made of carbon, corre-
sponding to the black zones in the post-flame region shown in Fig. 3.5.
These zones are partially burnt and not supplied in oxygen such that
combustion is momentarily stopped by oxygen defect.

(iii) Char oxidation corresponds to a heterogeneous mode of combustion
at high temperatures, between the remaining char solid and the oxygen
that is entrained towards the flame by buoyancy effects. This process
typically occurs in the incandescent zones of the vegetation bed, behind
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the flame region, in Fig. 3.5. This stage can be represented with the
following complete oxidation reaction:

char + χO2 O2 −→ (1 + χO2)CO2.

Once char oxidation is complete, only ashes remain; they are an indi-
cator of the mineral content of vegetation (e.g., potassium, sodium,
calcium). For the laboratory-scale fire experiments studied in this the-
sis, the mass of ashes only represents 2.8 % of the total mass of the
initial fuel bed before ignition and is therefore assumed negligible. It
is worth mentioning that the tar4 intermediate products of vegetation
thermal degradation is not considered here (Di Blasi, 2008). The pri-
ority in developing physically-consistent CFD simulations is to consider
the important features of vegetation thermal degradation (i.e., pyroly-
sis and char reactions) and to fit the related-kinetic parameters against
experimental data.

⊲ Instantaneous release to the gaseous phase. To eliminate the complex-
ity of the gas flow through the solid phase of the vegetation (i.e., p-phase),
pyrolysis products are assumed to be removed out of the solid particles in-
stantaneously upon their release. Thus, there is no accumulation of pyrolysis
products and no further chemical reactions within the solid phase of the
porous vegetation. Mass conservation therefore implies that the mass rate
at which pyrolysis gases are released is equal to the negative counterpart of
the vegetation solid-phase mass loss rate, or equivalently that the vegetation
mass loss is totally gained by the gaseous phase (through the Avbp/Pyrowo
interface as detailed in Section 3.4).

⊲ Thermal equilibrium in the porous vegetation. Thermal equilibrium be-
tween the gas and solid phases of the porous vegetation is assumed, meaning
that the exit temperature of pyrolysis products (referred to as gas tempera-
ture) is assumed equal to the temperature of the vegetation solid phase (solid
fuel particles are considered as thermally-thin).

→֒ Characterization of the biomass solid phase

The solid phase of the biomass fuel bed in the Pyrowo model is characterized by
the following features (the subscript v referring to vegetation):

⊲ the temperature of the gas and solid phases of the vegetation noted Tv [K],
corresponding to the mean value through the vegetation layer thickness δv.

⊲ the moisture content Yv,wat [−], corresponding to the mass fraction of liquid
water (H2O)l contained in the solid phase of the vegetation and consumed

4Detailed models of biomass fuel thermal degradation generally represent a series of primary
reactions where the vegetation transforms into char, flammable gases and tar (i.e., high-molecular
weight products that vaporize at pyrolysis temperatures but condense at ambient temperatures),
and a series of secondary reactions during which tar degrades into flammable gases and char.
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during the drying phase (equivalent to Mv in empirical ROS models and
typically between 1 and 10 % for pine needles). The drying mass rate is
noted ṁv,vap [kg/m3/s].

⊲ the dry wood content Yv,dry [−], corresponding to the mass fraction of
combustible dry materials contained in the solid phase of the vegetation and
thereby, to the proportion of materials that can undergo pyrolysis and release
flammable gases. The pyrolysis mass rate is noted ṁv,pyr [kg/m3/s]. By
considering all hydrocarbons as CH4 in Table 3.2 (Tihay et al., 2009; Con-
salvi et al., 2011), the mass fractions of pyrolysis gases Yk,v are taken as
Yv,CH4 = 0.10, Yv,CO = 0.171, Yv,CO2 = 0.64 and Yv,H2O = 0.089.

⊲ the char content Yv,char [−], corresponding to the mass fraction of char
materials remaining in the biomass solid phase after drying and pyrolysis.
Char formation is represented as a fraction of the pyrolysis mass rate ṁv,pyr

denoted by χchar, typically between 0.30 and 0.40. Initially, Y 0
v,char = 0 and

Y 0
v,wat+Y 0

v,dry = 1, the superscript 0 referring to the initial state. Char oxida-
tion is represented through the char mass loss rate noted ṁv,char [kg/m3/s].

⊲ the mass density of the solid fuel particles ρp [kg/m3] corresponding to
an intrinsic property of the biomass solid phase. Typically, ρp is between 500
and 800 kg/m3 before thermal degradation and decreases when the vegeta-
tion undergoes drying and pyrolysis (i.e., solid-to-gas phase transformations
without change in the volume of the fuel solid particles).

⊲ the fuel packing ratio βv [−], corresponding to the volume fraction of the
solid phase of the vegetation (typically, between 1 and 5 % for pine needles),
which is only subject to change during char oxidation that induces volume
variations of the fuel particles by degrading the remaining char-based solid
materials. Note that in Rothermel’s ROS model, the biomass packing ratio
is assumed constant.

⊲ the specific heat of the vegetation cp,v [J/K/kg], assumed to remain con-
stant during thermal degradation (typically between 1,000 and 1,500 J/K/kg
for dry and char materials).

⊲ the fuel particle surface-area-to-volume ratio Σv [1/m], assumed to
remain constant during thermal degradation (typically between 3,000 and
5,000 1/m for pine needles)

→֒ Balance equations for the biomass solid phase

The governing equations of vegetation thermal degradation are defined in the fol-
lowing set of ODE. These 0-D equations (locally) apply to a control volume of
vegetation, in which the properties of the solid particles are averaged and thereby,
assumed uniform. The detailed derivation of this ODE system with respect to
current multiphase formulation for a biomass porous medium (Larini et al., 1998;
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Séro-Guillaume and Margerit, 2002; Morvan and Dupuy, 2004) is presented in Ap-
pendix C.

⊲ Energy balance in vegetation

βv ρp cp,v
dTv

dt
= q̇v = q̇conv + q̇rad + q̇chem. (3.1)

⊲ Moisture content

d

dt

(
βvρp Yv,wat

)
= −ṁv,vap. (3.2)

⊲ Dry wood content

d

dt

(
βv ρp Yv,dry

)
= −ṁv,pyr. (3.3)

⊲ Char content

d

dt

(
βv ρp Yv,char

)
= χchar ṁv,pyr − ṁv,char. (3.4)

⊲ Mass density of the solid phase

βv
dρp
dt

= −ṁv,vap − (1− χchar) ṁv,pyr. (3.5)

⊲ Vegetation packing ratio

ρp
dβv
dt

= −ṁv,char. (3.6)

→֒ Mass loss rate model

⊲ The drying mass rate ṁv,vap [kg/m3/s] is represented as an endothermic reac-
tion using the following Arrhenius-type formulation (Grishin, 1997; Morvan et al.,
2000):

ṁv,vap = (βv ρp Yv,wat) T
− 1

2
v kvap exp

[−Evap

Rg Tv

]
, (3.7)

with kvap [K1/2/s] and Tvap = Evap/Rg [K] the pre-exponential factor and the
activation temperature related to drying, respectively. Note that moisture evap-
oration can be modeled in several ways, but preliminary tests have shown that a
simple model based on an Arrhenius-type formulation provides macroscopic quan-
tities of interest that are consistent with experiments: the activation temperature
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Tvap triggers the moisture evaporation, the pre-exponential factor kvap represents
the evaporation characteristic time-scale with respect to the vegetation temperature
Tv. This issue could be revisited in future work.

⊲ The pyrolysis mass rate ṁv,pyr [kg/m3/s] is represented as an endothermic
reaction (similarly to the drying process) and is expressed as follows:

ṁv,pyr = (βv ρp Yv,dry) kpyr exp

[−Epyr

Rg Tv

]
, (3.8)

with kpyr [s−1] the pre-exponential factor and Tpyr = Epyr/Rg [K] the correspond-
ing activation temperature.

⊲ The char mass loss rate ṁv,char [kg/m3/s] is determined assuming a complete
char oxidation reaction in a single step:

ṁv,char =

(
Σv βv (1− βv) ρg

Y ∞
v,O2

χO2

)
kchar exp

[−Echar

Rg Tv

]
, (3.9)

with ρg [kg/m3] the density of the vegetation gas phase, Y ∞
v,O2

[−] the oxygen
mass fraction in contact with remaining biomass (assumed constant and equal to
0.233), χO2 [−] the stoichiometric coefficient related to oxygen in the char oxidation
reaction, and kchar [m/s] the pre-exponential factor. The corresponding activation
temperature is noted Tchar = Echar/Rg [K]. The density of the gas phase ρg is
derived from the equation of state for ideal gas:

ρg =
p∞Wg

Rg Tg
, (3.10)

with p∞ = 1 bar the atmospheric pressure, Rg = 8.314 J/K/mol the ideal gas
constant, Wg the mean mass weight of the gas mixture and Tg the temperature
of the gas phase in the vegetation layer. Using the previously-mentioned thermal
equilibrium assumption, Tg is identical to the solid-phase temperature Tv given by
Eq. (3.1). However, this simple global model for char oxidation could be revisited
in future work following Boonmee (2004, 2005).

The total mass loss rate in vegetation noted ṁv [kg/m3/s] is directly linked to the
time-evolution of the bulk mass density of the vegetation defined as ρv = βv ρp.
While ρp represents an intrinsic property of the solid particles, ρv represents the
effective amount of biomass fuel available per unit volume in the vegetation bed.
It is indeed defined as the ratio of the mass of solid particles to the total volume
(i.e., the volume of the solid particles in addition to the gas volume in-between these
particles). Summing Eqs. (3.2) to (3.4) leads to the following equation describing
the temporal evolution of the mass density of the porous vegetation:

dρv
dt

=
d

dt
(βv ρp) = −ṁv = −ṁv,vap− (1− χchar) ṁv,pyr− ṁv,char. (3.11)

The term ṁv is an important diagnostic variable in Pyrowo since it directly
provides the pyrolysis gas mass flux from the vegetation to the gas phase (assuming
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instantaneous release to the gaseous phase). Pyrowo is further validated against
thermogravimetry experimental data for the variable ṁv.

→֒ Heat exchanges in vegetation

The total energy balance q̇v [W/m3] exchanged by convection, radiation and mass
transfer between the solid and gas phases of vegetation is given by the following
equation:

q̇v = q̇v,conv + q̇v,rad + q̇v,chem, (3.12)

with:

(i) q̇v,conv [W/m3] the convection (buoyant) heat exchange modeled as:

q̇v,conv = (βv Σv) kconv (T∞ − Tv), (3.13)

with T∞ the ambient gas temperature and kconv [W/K/m2] the heat transfer
coefficient (approximated using empirical correlations obtained for laminar or
turbulent flows around assumed-circular solid particles, Incropera and DeWitt,
1996). Note that Σv is an important parameter in heat transfer: the higher
Σv, the larger the available surface to absorb energy and release pyrolysis
gases to the surrounding gas phase per unit time.

(ii) q̇v,rad [W/m3] the net radiation heat transfer to the vegetation due to the
cumulative contribution of flame radiation q̇rad,fl and radiation losses q̇rad,l
from the heated vegetation towards the surrounding environment such that:

q̇v,rad = q̇rad,fl − (βv Σv)σsb T
4
v︸ ︷︷ ︸

q̇rad,l

, (3.14)

with q̇rad,fl the radiation source term from the flame that is received by
the vegetation (calculated with Prissma, see Section 2.5 in Chapter 2, while
estimated as a fraction of the total heat released by the flame in empirical ROS
models) and σsb = 5.67 × 10−8 W/m2/K4 the Stefan-Boltzmann constant
(the heated biomass fuel particles are treated as black-bodies). The term
(βvΣv/4) is assumed to represent the optical length-scale for the considered
porous medium.

(iii) q̇v,chem [W/m3] the heat release due to the vegetation thermal degradation
itself. While drying and pyrolysis processes are endothermic reactions, char
oxidation is highly exothermic and provides an additional energy to the porous
vegetation before flaming ignition. Thus,

q̇v,chem = −ṁv,vap∆hvap − ṁv,pyr ∆hpyr + ṁv,char ∆hchar. (3.15)

with ∆hvap [J/kg] the latent heat of evaporation, ∆hpyr [J/kg] the heat of
pyrolysis and ∆hchar [J/kg] the heat of char oxidation.
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Typical values for the kinetic parameters underlying the thermal degradation of pine
needle litters are given in Table 3.3.

Table 3.3: Kinetic parameters for biomass fuel thermal degradation (Grishin, 1997; Mor-
van and Larini, 2001; Consalvi et al., 2011).

Parameter Value (literature) Unit

Tvap 5500-6000 K

kvap 6× 105 K1/2/s

∆hvap 2.25× 106 J/kg

Tpyr 7000-9500 K

kpyr 3.64× 104 1/s

∆hpyr 4.18× 105 J/kg

Tchar 9000 K

kchar 4.3× 102 m/s

∆hchar 3.2× 107 J/kg

χchar 0.30-0.40 -

χO2 2.66 -

→֒ Characterization of the biomass gas phase

Since an instantaneous release from the biomass solid phase to the biomass gas
phase is assumed in Pyrowo, the mass gain of the gas phase is represented by
the term (−ṁv), i.e., the vegetation mass loss is totally gained by the biomass
gas phase. The pyrolysis gases that are injected in this gas phase are characterized
by their temperature Tg taken as equal to Tv (due to the equilibrium assumption
within the biomass fuel layer) and by their mass fractions Yv,k (specified based
on experimental data, since Pyrowo is not detailed enough to characterize the
composition of released gas compounds, see Di Blasi, 2008).

→֒ Numerical resolution

The ODE system made of Eqs. (3.1) to (3.6) is numerically resolved using the
ODEPACK5 Fortran77 library. This library implements a wide range of ODE solvers
(e.g., explicit, implicit, with Krylov-based preconditioning, treatment of sparse ma-
trix). Here the time-integration of Pyrowo relies on the basic explicit solver of
the library named Lsode.6 This Lsode solver is suitable for non-stiff and stiff
systems of the form dy/dt = f(y, t).

5http://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html.
6Livermore Solver for ODE.

http://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html
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3.2.3 Calibration of the pyrolysis kinetic parameters

The production rate of pyrolysis gases is studied with respect to the vegetation
intrinsic properties within the framework of the Pyrowo 0-D model. This means
that a single vegetation cell (corresponding to a control volume) is considered, in
which uniform properties of the porous vegetation are defined. The objective is to
track the time-evolving behavior of the vegetation cell when subject to a constant
radiation source term q̇rad,fl, which increases the temperature of the solid fuel
particles Tv.

→֒ Thermogravimetry experiments

Thermogravimetric analysis (TGA) monitors the weight m of a material sample
subject to a constant thermal heating, with respect to the elapsed time or to the
increasing material temperature in a controlled atmosphere (Tang, 1967; Shafizadeh
and McGinnis, 1971; Broido, 1991; Bronli, 1996). The initial sample mass m0 is
typically on the order of a few milligrams. Thus, TGA is a fundamental tool to
characterize thermal degradation mechanisms and reaction kinetics for a given type
of vegetation in a laboratory-scale configuration. It also allows to determine the
ash content in the sample as the remaining mass at the end of biomass thermal
degradation. TGA data at different heating rates (from 1 to 30 K/min) are avail-
able in literature to calibrate Pyrowo model parameters and thereby, accurately
reproduce the weight loss related to a type of biomass fuel. Figure 3.6(a) provides
an example of weight loss curve with respect to the solid-phase temperature Tv for
oven-dried Pinus Pinaster for two different heating rates, 10 K/min and 30 K/min.
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(a) Mass loss (1−m/m0).
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(b) Mass loss rate d/dt(m/m0).

Figure 3.6: TGA measurements of Pinus Pinaster for different heating rates: the solid
(dashed) line corresponds to 10 K/min (30 K/min). Credit: Leroy (2007).



Chapter 3 - Strategy for multi-physics large-eddy simulations of fire
spread

115

Analyzing the derivative of the TGA weight loss curve presented in Fig. 3.6(b) re-
veals three different peaks; each region can be described in terms of the dominant
active reaction: the first peak between 300 and 400 K corresponds to vegetation
moisture evaporation (the moisture content Mv is released from the vegetation
solid phase), the second peak in the temperature region between 550 and 650 K is
attributed to the degradation of the wood solid particles into flammable gas com-
pounds and char (pyrolysis step), and the third peak between 650 and 800 K is due
to char oxidation. The presence of the first peak below 400 K means that a low
amount of moisture remains in oven-dried dead vegetation cells due to their equi-
librium with the surrounding air. Figures 3.6(a)-(b) indicate a self-similar behavior
of thermal degradation for the studied range of heating rates (10 to 30 K/min),
implying that a unique calibration of the Pyrowo model parameters is sufficient
to capture the three peaks and to retrieve a valid weight loss curve for this range
of heating rates.

For higher heating rates than 30 K/min encountered in real-world fires (about
100 K/s), the three peaks of the solid-phase mass loss rate may significantly over-
lap and induce changes in the material response to thermal heating. However,
the present work assumes a self-similar behavior of the biomass fuel for a wide
range of heating rates since this is a common assumption in fire research. Besides,
TGA measurements are limited by the assumption of thermally-thin materials (the
temperature is assumed to be uniform within the solid particles). To evaluate the
assumptions underlying TGA in the context of biomass burning, cone calorimeter
measurements (using Fire Propagation Apparatus - FPA) could be useful to infer
temperature gradients within fuel solid particles (Bartoli, 2011). This aspect is
out of the scope of this work since TGA provides a global viewpoint of vegeta-
tion thermal degradation, which is sufficient for the preliminary developments of a
multi-physics flame-scale CFD capability.

→֒ Calibrated model behavior

The kinetic parameters in Pyrowo (i.e., pre-exponential factor, activation temper-
ature and heat yield related to moisture evaporation, pyrolysis and char oxidation)
are calibrated against TGA experimental data based on the Friedmann kinetic analy-
sis method (Friedman, 1964; Trick et al., 1997). The proposed calibration procedure
referred to as Calwo separates the three peaks shown in the derivative TGA curve
and (separately) calibrates the Arrhenius-type kinetic parameters associated with
each peak. The criterion for each peak calibration is based on the minimization of
the distance between TGA mass loss measurements (symbols in Fig. 3.7(a)) and
simulated mass loss (over the temperature range related to each reaction involved
in biomass thermal degradation), see Appendix C.

The simulation of pine needles thermal degradation with Pyrowo corresponds to
a case where the moisture content is taken initially as Y 0

v,wat = 0.10 and the wood
dry content as Y 0

v,pyr = 0.90 (the superscript 0 referring to the initial state).
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This case assumes that no char material is initially present in pine needles such that
Y 0
v,char = 0. The mass sample is initially at ambient temperature (T 0

v = 300 K);

pine needle properties are approximately known, i.e., ρ0p = 500 kg/m3, β0
v = 0.05,

cp,v = 1, 500 J/K/kg and Σv = 4, 000 m−1. The convection heat transfer co-
efficient is specified as kconv = 10 W/K/m2. Over the duration of the TGA
experiment, the mass sample is subject to a constant radiation source term, equiv-
alent to a heating rate of 1.6 K/min, with q̇rad,fl = 1.5 × 106 W/m3 (Morvan
and Dupuy, 2004). Note that nearly 60 s (physical time) are required to simulate
the whole thermal degradation of the mass sample (from 0 to 100 % mass-loss,
i.e., from drying to char oxidation) with Pyrowo. The numerical integration is
achieved for a time step ∆tPY that takes values on the order of 10−2/10−3 s.
Results of the calibration procedure are presented in Fig. 3.7(a); the associated
calibrated parameters are indicated in Table 3.4. Their values can be compared to
literature presented in Table 3.3; the calibration procedure mainly modifies the pre-
exponential factors kvap, kpyr and kchar of the three reactions underlying biomass
fuel thermal degradation. Note that these values are not due to physics-based ar-
guments, they are derived from an optimization procedure, in which several sets of
parameters can lead to the same mass loss curve.

Table 3.4: TGA-based calibrated kinetic parameters with Pyrowo.

Parameter Value (calibration) Unit

Tvap 4800 K

kvap 6× 106 K1/2/s

∆hvap 2.25× 106 J/kg

Tpyr 7100 K

kpyr 3.64× 105 1/s

∆hpyr 4.18× 105 J/kg

Tchar 9200 K

kchar 1.0× 105 m/s

∆hchar 1.2× 104 J/kg

χchar 0.48 -

χO2 2.66 -

Results show that the observed behavior of the vegetation weight loss with respect
to its increasing temperature is well captured by the Pyrowo calibrated simulation.
The three main reaction mechanisms (i.e., moisture evaporation, pyrolysis and char
oxidation) are reproduced; they correspond to the different accelerations observed
in the biomass mass loss curve in Fig. 3.7(b), which represents the total mass loss
rate ṁv in the vegetation. This vegetation behavior is consistent with the mass
fractions presented in Fig. 3.7(c), the evaporation of the moisture content Yv,wat is
associated with the first peak of the mass loss rate curve, while the consumption of
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dry materials Yv,dry and the production of char materials Yv,char is closely related
to the second peak associated with pyrolysis. This process leads to the decrease of
the solid particle mass density ρp represented in Fig. 3.7(d). The subsequent char
oxidation enhances the drop in the biomass fuel packing ratio βv, also shown in
Fig. 3.7(d). The proportion of the fuel bed occupied by the solid phase decreases
(the gas volume increases). Thus, the remaining solid particles are exclusively made
of char, Yv,char = 1 above 550 K in Fig. 3.7(c).
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Figure 3.7: Simulated behavior of pine needles with respect to the vegetation temperature
Tv using Pyrowo with calibrated kinetic parameters. (a) Simulated mass loss (1−m/m0)
in solid line; black crosses corresponds to TGA experimental measurements (INRA, private
communication). (b) Simulated mass loss rate ṁv (dashed line). (c) Mass fractions:
moisture content Yv,wat (dashed line), dry material content Yv,dry (solid line), and char
content Yv,char (dashed-dotted line). (d) Solid particle mass density ρp (solid line) and
biomass fuel packing ratio βv (dashed line).
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The Pyrowo-based simulated trend is consistent with TGA data and provides
a good first-order approximation of the observed behavior. The char oxidation
mechanism is the most difficult to calibrate: even though a wide range of values for
the kinetic parameters related to char oxidation was tested, the slope of the mass
loss between 600 and 700 K is not perfectly recovered. However, since this thesis
focuses on the flaming zone, this approximation remains relevant for the preliminary
developments of a multi-physics flame-scale CFD capability.

3.3 Analysis of the flame thermo-chemical properties

During the pyrolysis of wildland vegetation, large amounts of flammable compounds
(referred to as pyrolysis gases) are released and convected towards the flame by
buoyancy effects. Provided their temperature and the amount of air in contact with
pyrolysis gases are large enough, flaming combustion can self-sustain and thereby,
enhance fire propagation.

⊲ Combustion between pyrolysis gases and oxidizer requires a chemical kinetic
scheme adapted to compressible LES capability such as Avbp, in terms of
computational cost and chemical stiffness. It is therefore important to val-
idate the reduced kinetic scheme 2S-CH4-BFER used in this work, against
reference detailed predictions for realistic biomass combustion conditions.

⊲ Since the detailed flame structure is partially known for fires (diffusion or
partially-premixed flame, see discussion in Section 2.1, Chapter 2), it is rele-
vant to perform a parameter study to analyze the impact of pyrolysis gases on
the flame thermo-chemical features (in terms of temperature and fuel/oxidizer
equivalence ratio for instance) and thereby, gain insight into the actual com-
bustion occurring in wildfires. While studies proposed by Grishin (1997) and
Morvan and Dupuy (2004) are limited to the oxidation of CO, the combined
oxidation of CH4/CO is considered here; CH4 and CO are indeed the two
main flammable gases in pyrolysis gases (see Table 3.2). The objective is
therefore to highlight the impact of chemical kinetics on the flame structure.

3.3.1 Characterization of the multi-species reacting gas mixture

→֒ Definition of combustion fuel reactants

During vegetation thermal degradation, a multi-species gas mixture (the pyrolysis
gases) is released when dry wood materials are consumed. In addition to CH4

and CO, recent studies have shown the importance to include H2O in pyrolysis
gases (Tihay and Gillard, 2010). Using a perfectly-stirred reactor7 analysis, Pérez-
Ramirez et al. (2010) showed that oxidation reactions start at a lower temperature

7Ideal reactor in which fuel reactants and oxidizer are mixed at a certain temperature and in
which the time-evolution of the system is studied for a given residence time (when this residence
time tends to infinity, the chemical system tends towards its equilibrium state).
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in presence of H2O. Indeed, the presence of hydrogen-based compounds such as
H2 and H2O enhances the formation of OH radicals that largely consume CO (Kee
et al., 2003). Thus, H2O plays an important role in the initiation of the combined
oxidation of CH4/CO. With regards to emissions, H2O tends to enhance the
formation of CO2, C2H6, C2H4 and to decrease the concentration of CO, nitric
oxide NO and hydrogen cyanide HCN, among others (Pérez-Ramirez et al., 2010).

In this work, pyrolysis gases are taken as a multi-species mixture made of CH4, CO,
CO2 and H2O. Based on experimental measurements (see Table 3.2), this mixture
is described with the following mass fractions: Yv,CH4 = 0.10, Yv,CO = 0.171,
Yv,CO2 = 0.64 and Yv,H2O = 0.089. While transported through the vegetation
layer towards the flame, they are mixed with atmospheric air (Yair,O2 = 0.233,
Yair,N2 = 0.767) in a certain proportion as illustrated in Fig. 3.8. Thus, a 6-species
mixture (CO, CO2, CH4, H2O, O2, N2) is adopted to describe the gas phase
solved by Avbp; the air proportion is defined by the mass dilution coefficient βair
such that the composition of the combustion fuel reactants satisfies:




YCH4 = (1− βair) Yv,CH4

YCO = (1− βair) Yv,CO

YCO2 = (1− βair) Yv,CO2

YH2O = (1− βair) Yv,H2O

YO2 = βair Yair,O2

YN2 = βair Yair,N2

(3.16)
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OxidizerCombustion

Figure 3.8: Composition of combustion reactants. Pyrolysis gases are mixed with air in
a certain mass proportion βair.

→֒ Definition of equivalence ratio

An essential parameter in combustion applications is the fuel/air equivalence ratio
Φ (see Chapter 2); Φ is calculated from the mass dilution coefficient βair. The
individual global oxidation reactions related to CH4 and CO are defined as follows:
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CH4 + 2O2 −→ CO2 + 2H2O

CO+
1

2
O2 ←→ CO2

(3.17)

The associated mass stoichiometric coefficient ratios (noted sCH4 and sCO) are
expressed with respect to the molar stoichiometric coefficient ratios (noted smol,CH4

and smol,CO, respectively):

sCH4 = smol,CH4

(
WO2

WCH4

)
= 4, sCO = smol,CO

(
WO2

WCO

)
=

4

7
, (3.18)

with smol,CH4 =
ν
′

O2/
ν
′

CH4

= 2 and smol,CO =
ν
′

O2/
ν
′

CO
= 0.5 based on previously-

mentioned global reactions. The equivalence ratio Φ for the combined oxidation of
CH4/CO can be expressed as follows:

Φ =
1

YO2

(
sCH4 YCH4 + sCO YCO

)
,

=⇒ Φ =

(
1− βair
βair

) (
sCH4 Yv,CH4 + sCO Yv,CO

Yair,O2

)
.

(3.19)

For the pyrolysis-gas composition adopted in this work, Eq. (3.19) reduces to:

Φ = 2.14

(
1− βair
βair

)
, (3.20)

so that a stoichiometric mixture (Φ = 1) is obtained for βair = 0.68. The equiva-
lence ratio Φ and species mass fractions (CH4, CO and O2) are represented with
respect to βair in Fig. 3.9.

→֒ Tools to study chemical kinetics of pyrolysis gases

Softwares such as Cantera8 and Regath9 may be used to simulate 0-D/1-D
academic flame configurations in order to study detailed chemical kinetics, ther-
modynamics and complex transport processes. For instance, they can be used to
study equilibrium properties (in terms of burnt gas temperature and gas mixture
composition), to evaluate the impact of thermodynamics and transport properties
on the flame speed/thickness of one-dimensional premixed flames, or to analyze
the effect of the flow-induced strain rate on counter-flow diffusion flames. Both
solvers include an adaptive mesh-refining algorithm to properly solve the reaction
zone (in which the temperature gradients are typically steep) at a low computa-
tional cost. Both Cantera and Regath softwares are used in this work to study
the thermo-chemical properties of pyrolysis gases.

8Object-oriented open-source code, https://code.google.com/p/cantera/.
9REal GAs THermodynamics, consisting in a Fortran90 library developed at EM2C laboratory

(Candel et al., 2011; Caudal, 2013) and similar to the Chemkin-II formalism (Kee et al., 1993).

https://code.google.com/p/cantera/
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Figure 3.9: Left: Equivalence ratio Φ with respect to the mass dilution coefficient βair.
Right: Mass fractions of CH4 (red solid line), CO (red dashed line) and O2 (blue-dashed-
dotted line) with respect to the mass dilution coefficient βair. Vertical gray-dashed lines
indicate stoichiometry.

⊲ The detailed GRI-Mech3.0 scheme (see Section 2.4, Chapter 2) is adopted
as reference to study the combined oxidation of CH4/CO. Pérez-Ramirez
et al. (2012) showed indeed that, while being optimized for the stand-alone
oxidation of CH4 (referred to as pure-methane oxidation in the following),
GRI-Mech3.0 is able to retrieve a burnt gas composition that is consistent
with experimental data for the oxidation of pyrolysis gases, for lean and rich
mixtures (i.e., for Φ varying between 0.6 and 1.4) as well as for a wide range
of initial gas temperatures (i.e., from 773 to 1273 K).

⊲ Since the compressible LES solver Avbp cannot integrate detailed kinetic
schemes due to computational cost issues, current strategies rely on reduced
schemes such as 2S-CH4-BFER to model chemical source terms ω̇k (with-
out considering filtering in a preliminary step) for each gas species k. These
strategies simplify the description of combustion kinetics but also biomass
fuel chemistry, and a large amount of chemical compounds released by the
vegetation thermal degradation is not accounted for. In the following, ref-
erence results from GRI-Mech3.0 are compared to the PEA-based reduced
2-step scheme 2S-CH4-BFER retained in this work (see Section 2.4.3, Chap-
ter 2, for the presentation of 2S-CH4-BFER) as well as to a global 5-step
scheme specifically dedicated to pyrolysis gases of Mediterranean biomass fu-
els (Pérez-Ramirez et al., 2012), referred to as 5S-GLO-pyr (see Appendix D
for the presentation and calibration of 5S-GLO-pyr).
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In summary, the impact of pyrolysis gases on the flame thermo-chemical features
is studied in the following with respect to the stand-alone oxidation of CH4 (that
is a reference in literature) using the detailed GRI-Mech3.0 scheme for different
flame configurations: auto-ignition, one-dimensional premixed flames and (diffu-
sion) counter-flow flames. Reduced kinetic schemes (2S-CH4-BFER and 5S-GLO-
pyr) are also evaluated against GRI-Mech3.0 predictions.

3.3.2 Thermo-chemical flame characteristics

→֒ Introduction to auto-ignition calculations

Auto-ignition calculations in adiabatic conditions consist in studying the time-
evolution of a gas mixture based on 0-D unsteady simulations. The induction
period (referred to as auto-ignition delay time) is followed by a rapid heat release
rate, during which the gas temperature rises abruptly and intermediate species are
produced and consumed rapidly. Combustion products are formed; the gas mix-
ture can therefore reach a steady-state or equilibrium state. Thus, auto-ignition
calculations provide insight into the composition of burnt gases and thereby, into
the thermodynamical properties of the gas mixture given its initial temperature
and composition if the residence time of the gas mixture is large enough. Fig-
ure 3.10 compares the temperature evolution of pure-methane and pyrolysis-gas
stoichiometric mixtures, initially at temperature 1000 K, using the detailed kinetic
scheme GRI-Mech3.0. The corresponding evolutions of the mass fraction of main
gas species and radicals (e.g., H2, OH, H) are presented in Fig. 3.11. Temperature
profiles indicate that the heat released by combustion ignition occurs very rapidly
(the temperature gradient following auto-ignition is very steep).The auto-ignition
delay time is more than twice longer for pyrolysis gases than for pure methane:
since flammable gas compounds are diluted in pyrolysis gases, they require more
time to produce radical compounds in a sufficiently high concentration to activate
ignition.

These results also indicate that the burnt gas temperature for a pyrolysis-gas mix-
ture is lower than for a pure-methane mixture (2303 K and 2541 K, respectively).
This temperature is directly determined by the initial composition of the gaseous
mixture and depends on the species considered in the problem. Since CO exhibits
a significantly lower heat of reaction than CH4 (10 MJ/kg versus 50 MJ/kg), the
heat of reaction of the mixed composition is also lower than for a pure-methane
mixture and therefore, the burnt gas temperature is reduced. The variations of
burnt gas temperature and auto-ignition delay time with respect to the initial gas
temperature and composition as well as with respect to the equivalence ratio Φ are
studied in the following.
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Figure 3.10: Temporal evolution of the temperature corresponding to a gas mixture
made of pure methane (dashed line) or pyrolysis gases (solid line) based on GRI-Mech3.0
predictions; both mixtures are stoichiometric and initially at 1000 K.

10001400180022002600

0

0.02

0.04

0.06

M
a

s
s

 f
ra

c
ti

o
n

 [
]

10001400180022002600

0

0.025

0.05

0.075

0.1

10001400180022002600

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Temperature [K]

10001400180022002600

0

0.03

0.06

0.09

0.12

Temperature [K]

M
a

s
s

 f
ra

c
ti

o
n

 [
]

10001400180022002600
0

0.05

0.1

0.15

0.2

0.25

10001400180022002600
0

3

6

9

12
x 10

3

Temperature [K]

H2O

CH4 CO O2

H

H2

OH

RadicalsCO2

H

Figure 3.11: Mass fractions Yk with respect to the temperature of a gas mixture made
of pure methane (dashed lines) or pyrolysis gases (solid lines) based on GRI-Mech3.0
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→֒ Insight from detailed chemical kinetics

In a first step, the adiabatic burnt gas temperature and the auto-ignition delay are
studied based on GRI-Mech3.0 predictions for a wide range of equivalence ratios
(i.e., from 0.5 to 2.5). Figure 3.12 illustrates the results obtained for an initial gas
temperature of 1000 and 1200 K.
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(a) Initial gas temperature: 1000 K.
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(b) Initial gas temperature: 1000 K.
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(c) Initial gas temperature: 1200 K.
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(d) Initial gas temperature: 1200 K.

Figure 3.12: Auto-ignition simulations using GRI-Mech3.0 for 1000 K (top) and 1200 K
(bottom) initial gas temperatures. The squared-dashed line correspond to predictions for
pure methane and the circled-solid line corresponds to predictions for pyrolysis gases. (a)-
(c) Adiabatic burnt gas temperature with respect to Φ. (b)-(d) Auto-ignition delay time
with respect to Φ.

Results show that the pure-methane mixture exhibits the highest burnt gas temper-
ature for all equivalence ratios and initial gas temperatures, partly due to the low
heat of combustion associated with CO. For a given initial gas composition, the
highest burnt gas temperature occurs near stoichiometry. Note that the decrease
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in the burnt gas temperature on both sides of stoichiometry occurs at a similar rate
for all initial gas compositions. Auto-ignition occurs much faster (lower ignition
delays) for pure methane than for a pyrolysis-gas mixture because of dilution. The
differences between these two types of gas mixture composition drastically increase,
either when moving towards richer mixtures or when decreasing the initial gas tem-
perature. These results highlight that the combustion of biomass pyrolysis gases is
a slow burning process (especially at high fuel/oxidizer equivalence ratios Φ) with
burnt gas temperatures much lower than in industrial combustors, typically.

→֒ Predictions from global schemes

In a second step, GRI-Mech3.0 predictions in terms of auto-ignition are used as
reference to analyze the results provided by 2S-CH4-BFER and 5S-GLO-pyr reduced
kinetic schemes. Figure 3.13 displays auto-ignition simulation results with GRI-
Mech3.0 and 2S-CH4-BFER for a wide range of equivalence ratios (i.e., Φ varying
between 0 and 2.5) for the pure-methane and pyrolysis-gas mixtures as well as for
1000 K and 1200 K initial gas temperatures.

Results show that the global scheme 2S-CH4-BFER provides a good approximation
of GRI-Mech3.0 predictions over the considered range of equivalence ratios Φ and
initial gas temperatures. The global scheme 5S-GLO-pyr gives larger errors than 2S-
CH4-BFER, especially near stoichiometry and for rich mixtures above Φ = 2.0 with
high initial gas temperatures. Thus, Appendix D proposes a calibration of 5S-GLO-
pyr to retrieve more physically-consistent burnt gas temperatures and auto-ignition
time delays. The resulting calibrated scheme is named 5S-GLO-pyr∗.
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(a) Initial gas temperature: 1000 K.
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(b) Initial gas temperature: 1200 K.

Figure 3.13: Comparison of auto-ignition simulations based on GRI-Mech3.0 (crosses),
2S-CH4-BFER (solid line) and 5S-GLO-pyr (dashed line) for the pyrolysis-gas mixture; two
initial gas temperatures are considered, (a) 1000 K, and (b) 1200 K.
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This parameter study related to auto-ignition shows that reduced kinetic schemes
such as 2S-CH4-BFER and 5S-GLO-pyr∗ are able to provide accurate macroscopic
features of the combustion of pyrolysis gases, typical of pine needle pyrolysis. Since
they involve a limited number of gas compounds and thereby features a low com-
putational cost, they are possible candidates to model combustion chemistry in
Avbp.

It is worth mentioning that 5S-GLO-pyr∗ induces numerical difficulties due to its
stiffness and to its formulation with a negative exponent factor in the first methane
dissociation reaction (see Table D.1 in Appendix D). Thus, a modification of the
global scheme formulation (out of the scope of this work) is necessary to preserve the
equilibrium state and to avoid numerical instabilities when calculating 1-D laminar
premixed flames (Jones and Lindstedt, 1988; Franzelli, 2011).

3.3.3 Analysis of laminar flame structure and strain effects

One-dimensional (premixed and diffusion) laminar flames are a canonical configura-
tion in combustion, especially to study the effect of multi-species transport proper-
ties neglected in 0-D auto-ignition calculations. This configuration allows extensive
comparison between experiments, theory and simulations; it is also regarded as
the elementary component of turbulent combustion modeling through the flamelet
assumption, in which the turbulent flame front is represented as a collection of
laminar flame elements (Poinsot and Veynante, 2005). From this viewpoint, the
study of 1-D laminar flames constitutes a preliminary and unavoidable step towards
more complex flame configurations and allows to investigate the flame response to
a wide range of conditions, in terms of initial gas temperature/composition and
flow strain rate.

→֒ Flame speed and thickness of one-dimensional premixed flames

In the context of pine needle litter fires, 1-D laminar premixed flames are defined
as planar flames propagating into a premixed mixture made of pyrolysis gases and
air (referred to as fresh gases), which is characterized by the equivalence ratio Φ
given in Eq. (3.19) and an initial gas temperature Tf (see Fig. 2.1, Chapter 2).

⊲ Reference solutions. The computation of 1-D laminar premixed flames in Can-
tera or Regath relies on a Newton-based method that requires an initial guess
of the flame solution and an iterative algorithm with some convergence criterion to
ensure the accurate determination of the solution. This initial guess is obtained in
reference conditions, at ambient temperature, atmospheric pressure and stoichiom-
etry.

Figure 3.14 illustrates a typical solution for the pyrolysis-gas mixture and highlights
the differences with a pure-methane mixture for these reference conditions using
the detailed kinetic scheme GRI-Mech3.0 (i.e., with full chemistry and complex
transport, implying non-unity Lewis numbers for the considered gas species).
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Figure 3.14: Comparison of 1-D premixed flame calculations using GRI-Mech3.0 between
a pure-methane mixture (dashed line) and a pyrolysis-gas mixture (solid line) for reference
conditions (Tf = 300 K, Φ = 1.0). (a) Gas temperature [K]. (b) Flow velocity [cm/s].
(c) Progress variable c [-] (see Eq. 2.5). (d) Gradient of the progress variable ∇c [1/m].

Thermochemistry controls the maximum value of the temperature reached in the
burnt gases. Accordingly, the gap in the burnt gas temperature (2231 K for the
pure-methane mixture versus 1914 K for the pyrolysis-gas mixture) in Fig. 3.14(a)
is due to change in gas composition and thereby, to the lower heat of combustion of
CO compared to CH4. This change in burnt gas temperature has a direct impact
on the flow velocity profile through thermal expansion, explaining the discrepancies
in the flow velocity shown in Fig. 3.14(b) on the burnt gas side. In these calculations
the flame is stationary (the flame is displayed in its frame of reference). The flow
velocity on the fresh gas side then corresponds to the laminar flame speed sL
(13.9 cm/s for the pyrolysis-gas mixture versus 37.7 cm/s for the pure-methane
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mixture). 1-D premixed flame calculations provide additional information on the
flame structure. In particular, the temperature gradient is steeper for the pure-
methane case. Thus, the thickness of the reaction zone that is controlled by the
inverse of the maximum temperature gradient is wider for the pyrolysis-gas mixture
as shown in Figs. 3.14(c)-(d). The flame thickness is indeed multiplied by a factor 2
for the pyrolysis-gas mixture (0.91 mm compared to 0.44 mm for the pure-methane
case).

⊲ Sensitivity analysis. The properties of 1-D laminar premixed flames in terms
of flame speed sL and thickness δL obtained with GRI-Mech3.0 are presented in
Fig. 3.15 for a wide range of pyrolysis conditions: the equivalence ratio Φ varies
between 0.8 and 1.6, and the initial gas temperature varies between 300 and 800 K.
The lower temperature boundary corresponds to reference cases in literature, while
the temperature range 500-800 K is representative of the temperature associated
to pyrolysis during vegetation thermal degradation. From a numerical viewpoint,
the corresponding 1-D premixed flame solutions are obtained by specifying the
initial guess as a perturbation of the reference solution, this perturbation being
imposed as a variation of the physical parameters (e.g., equivalence ratio, fresh gas
temperature). This incremental technique ensures the convergence of the solution
when increasing the equivalence ratio Φ towards richer mixtures and/or the fresh
gas temperature towards the temperature range that is typical of pyrolysis.
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Figure 3.15: Sensitivity analysis of 1-D premixed flames using GRI-Mech3.0 with respect
to the equivalence ratio Φ, for a wide range of fresh gas temperatures Tf (from 300
to 800 K); study for the pyrolysis-gas mixture. (a) Flame speed sL [cm/s]. (b) Flame
thickness δL [mm].

The laminar flame speed sL increases with Tf for the considered range of equiva-
lence ratios. In particular, for a given Tf , the laminar flame speed sL reaches its
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maximum value at stoichiometry (note that this maximum value is reduced by a
factor 2 compared to a pure-methane mixture - not shown here) and significantly
decreases for rich mixtures beyond Φ = 1.2. The decreasing slope in rich mix-
tures increases with the fresh gas temperature such that at Φ = 1.6 the flame
speed is below 0.40 m/s for any considered condition. While the flame thickness
δL remains relatively constant near 1 mm up to Φ = 1.2, its behavior drastically
changes above this threshold value since δL increases rapidly between Φ = 1.2 and
1.6. For instance, between Φ = 1.2 and 1.4 for Tf = 300 K, δL is multiplied by a
factor 4. Thus, Φ = 1.2 corresponds to a threshold in the behavior of the laminar
flame structure. These results highlight the importance of studying properties of
rich mixtures to improve the knowledge on the chemical kinetics underlying wildfire
spread.

⊲ Behavior of the 2S-CH4-BFER global scheme. Predictions of the pyrolysis-
gas mixture behavior provided by the global scheme 2S-CH4-BFER are compared
to GRI-Mech3.0 predictions for the fresh gas temperature Tf = 300 K in Fig. 3.16.
While 2S-CH4-BFER provides realistic values of the flame speed sL for a pure-
methane mixture (i.e., the conditions for which the global scheme was calibrated,
see Chapter 2), Fig. 3.16 indicates a level of accuracy depending on the equivalence
ratio Φ for a pyrolysis-gas mixture. Near stoichiometry and in lean mixtures, the
laminar flame speed is overestimated in comparison to GRI-Mech3.0 predictions.
Still, 2S-CH4-BFER provides accurate flame speeds for rich mixtures above Φ = 1.2.
Since pyrolysis gases are expected to burn in rich-mixture conditions, 2S-CH4-BFER
appears as a promising reduced kinetic scheme to model reaction rates in the multi-
physics LES capability developed in this thesis to simulate laboratory-scale fire
spread.
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Figure 3.16: Comparison of laminar flame speed predictions between the reduced kinetic
scheme 2S-CH4-BFER (lines) and the detailed kinetic scheme GRI-Mech3.0 (symbols) for a
pure-methane mixture (dashed line/circles) and a pyrolysis-gas mixture (solid line/crosses)
with Tf = 300 K.
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→֒ Counter-flow diffusion flames and strain effects

While 1-D laminar premixed flames are a common configuration to evaluate the
ability of a chemical kinetic scheme to reproduce the macroscopic features of the
flame (since they are the most studied flame configuration from numerical and
experimental viewpoints), the fine-scale features of wildfires are clearly of the diffu-
sion flame type (see discussion in Section 2.1, Chapter 2). It is therefore of primary
importance to study the effect of pyrolysis gases on the diffusion flame proper-
ties. Wildfires are buoyant-induced processes, meaning that density gradients in
the flame (∆ρ/ρ) induce the rise of hot burnt gas pockets as well as air motion
on both sides of the flame. As a consequence, the gas mixture is stretched with a
dominant contribution of strain over curvature (Cuenot and Poinsot, 1995). The
impact of the strain rate on laboratory-scale flame properties and in particular on
the extinction limits may also be assessed with 1-D flame configurations (Lecoustre
et al., 2011).

The common diffusion flame prototype used in this study is the counter-flow flame
schematized in Fig. 3.17 and featuring the two following boundaries: air at at-
mospheric pressure on the left side (characterized by the temperature Tair,f ), and
pyrolysis gases on the right side (characterized by the temperature Tpyr,f ). Note
that the equivalence ratio changes from 0 (air boundary) to ∞ (fuel boundary)
in this configuration. Pyrolysis gases and air diffuse towards the reaction zone,
where they meet and burn, leading to a maximum temperature at stoichiometry.
In contrast, far away from this reaction zone, the gas mixture is out of its flamma-
bility limits. At the interface between pyrolysis gases and air, the burning rate is
controlled by the rate of diffusion and is therefore significantly affected by flow per-
turbations. In this configuration, the strain rate is imposed as a user-defined input.
Figure 3.18 illustrates the corresponding counter-flow flame for a strain rate equal
to 50 s−1, air at Tair,f = 298 K and pyrolysis gases at Tpyr,f = 600 K, obtained
with the detailed kinetic scheme GRI-Mech3.0 and simplified transport properties
(i.e., unity Lewis numbers).

Pyrolysis gases
(Fuel)

Air
(Oxidizer)

Reaction zone

Figure 3.17: Schematic of the counter-flow diffusion flame prototype used in the present
study to evaluate the diffusion flame response to the strain rate.

For a given counter-flow configuration, increasing the strain rate enhances heat
losses and thereby, leads to lower burnt gas temperatures but faster combustion.
For instance, multiplying the strain rate by a factor 4 in the configuration presented
in Fig. 3.18 reduces the burnt gas temperature by 200 K.



Chapter 3 - Strategy for multi-physics large-eddy simulations of fire
spread

131

6 4 2 0 2 4 6

300

600

900

1200

1500

1800

X axis [mm]

T
e
m

p
e
ra

tu
re

 [
K

]

6 4 2 0 2 4 6

14

12

10

8

6

4

2

0

F
u

e
l 
c
o

n
s
u

m
p

ti
o

n
 r

a
te

 [
k
g

/m
3
]

(a)

6 4 2 0 2 4 6
0

0.2

0.4

0.6

0.8

X axis [mm]

M
a
s
s
 f

ra
c
ti

o
n

s
 o

f 
g

a
s
 s

p
e
c
ie

s
 [

]

6 4 2 0 2 4 6
0

0.5

1

1.5

2

2.5

3
x 10

3

X axis [mm]

CO

CH4

H2O

N2

O2

CO2 OH

(b)

Figure 3.18: Example of 1-D laminar counter-flow flame based on the detailed kinetic
scheme GRI-Mech3.0 for Tair,f = 298 K, Tpyr,f = 600 K and a flow strain rate equal to
50 s−1. (a) 1-D profile of gas temperature (dashed line) and fuel consumption term (solid
line). (b) 1-D profile of mass fractions of gas species Yk for combustion reactants (left)
and with a zoom on OH radical indicating the flame location (right).

To map all the possible states of the burnt gas temperature in a diffusion flame
typical of the present laboratory-scale experiment, a sensitivity analysis is performed
and shown in Fig. 3.19(a), for the initial temperature of the pyrolysis gases Tpyr,f

varying between 298 and 650 K and the strain rate increasing from 1 to 250 s−1. For
all considered fresh gas temperatures, the increasing strain rate promotes combus-
tion (up to a certain threshold) since more fuel and oxidizer are transported towards
the reaction zone. However, for large values of the strain rate (this threshold value
depends on the fresh gas temperature Tf ), chemistry becomes too slow to make
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combustion possible and extinction occurs; there is indeed a competition between
the supply in fuel reactants and the capacity for burning them, which induces heat
losses (Cuenot and Poinsot, 1995). The maximum strain rate is 100 s−1 before
flame extinction for pyrolysis gases at ambient temperature (i.e., Tpyr,f = 298 K) as
shown in Fig. 3.19(b); the decrease of the integrated fuel consumption rate nearby
100 s−1 is a typical feature of extinction. In contrast, this decrease of the integrated
fuel consumption rate is not observed before a strain rate equal to 250 s−1 for a
temperature representative of the pyrolysis step during vegetation thermal degrada-
tion (Tpyr,f between 500 and 600 K). The higher the fresh temperature of pyrolysis
gases Tpyr,f , the larger strain rate the flame can undergo without extinction.
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Figure 3.19: Counter-flow diffusion flame features with respect to the flow-induced strain
rate with GRI-Mech3.0. (a) Burnt gas temperature for varying initial gas temperatures
(between 298 and 650 K). (b) Integrated fuel consumption rate for varying initial gas
temperatures (298 K in black solid line, 500 K in blue dashed line, 600 K in red dashed-
dotted line). The extinction limit for 298 K is represented with the vertical line.

In summary, macroscopic flame features are subject to significant variations when
heat transfer and flow conditions are modified. In particular, they drastically vary
with change in the temperature at which pyrolysis products (the fuel reactants of
combustion) are released in the gas phase and change in their mixing with entrained
air (through change in the fresh gas temperature and in the fuel/air equivalence ratio
Φ, respectively). The resulting flame exhibits slightly slower burning velocity, lower
burnt gas temperature, wider flame region and higher resistance to flow-induced
strain than in industrial combustion. The next step consists in studying how these
parameters are affected by the buoyancy-induced flow in CFD simulations. The
PEA-based reduced kinetic scheme 2S-CH4-BFER is retained in this thesis, since it
has demonstrated its ability to describe the flame thermo-chemical structure at high
equivalence ratios Φ and for fuel reactants typical of pyrolysis gases (CO, CH4).
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3.3.4 Strategies for turbulent combustion modeling

While previously-described parameter studies offer insight into the main flame fea-
tures in simplified laminar flame configurations (corresponding to pyrolysis condi-
tions simulated by Pyrowo), this section is dedicated to the description of the
turbulent combustion models that are effectively used in the LES solver Avbp to
account for the interactions between turbulence, combustion and buoyancy in this
work.

→֒ Buoyant-driven diffusion flame

Avbp was originally developed for industrial engines associated with momentum-
driven combustion. Gravitational effects (referred to as buoyancy) are negligible in
these applications. However, it is not the case for wildfires, in which the charac-
teristic speeds are much slower and in which the structure of the diffusion flame is
affected by buoyancy effects as illustrated in Fig. 3.20.

Figure 3.20: Temporal series of experimental snapshots representing a propane/air buoy-
ant diffusion flame from a 10 cm porous bed burner. Ambient air are visualized through
smoke trails. Credit: Cetegen (1998).

As described by Joulain (1996) and Tieszen (2001), density variations are respon-
sible for the production of large-scale vortices in the flame region beyond a certain
height, the bottom of the flame being commonly considered as a laminar flow. More
precisely, these vortices are due to thermal instabilities typical of Rayleigh-Bénard
instabilities, i.e., by an unstable equilibrium due to the presence of cold air above a
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layer of hot burnt gas products. Figure 3.20 shows the deformations of the ambient
air streamlines due to the formation of vortices in the fire plume. Large-scale eddies
induce ambient air entrainment towards the flame region, thereby promoting com-
bustion and enhancing thermal expansion through increased heat release. Cetegen
(1998) proposed a macroscopic model to represent air entrainment in the near-field
of turbulent diffusion flames (see Fig. 3.21). In this model, the eddy circulation
acts as a periodic pumping process of ambient air and thereby, governs the rate of
air entrainment that sustains oxidation reactions of pyrolysis gases. The frequency
of these large-scale vortices rising by buoyancy and inducing time-fluctuations of
the flame height is referred to as puffing frequency (Weckman and Sobiesiak, 1988;
Hekestad, 1998; Mandin and Most, 2000).

From this description, buoyancy appears as a key unsteady mechanism in wildfire
spread, which enhances turbulence, affects the flame structure, the heat release
rate as well as the heat transfer towards the vegetation ahead of the flame front.
In this work, the acceleration due to gravity was added in the Avbp momentum
balance equation to account for buoyancy-driven flows and for induced dynamic
thermal instabilities (the buoyancy term is included in the Navier-Stokes balance
equations presented in Chapter 2).

Ambient 
air!

Convection 
velocity due to 
self-induction!

Velocity of entrained flow!

Vortex !
circulation!

Figure 3.21: Schematic of the air entrainment effect induced by buoyancy in fires.
Credit: Cetegen (1998).

→֒ Subgrid-scale turbulent combustion modeling

Flame-scale LES capabilities are commonly based on a subgrid-scale turbulent com-
bustion model to account for unresolved turbulent combustion features. The TFLES
model introduced in Section 2.4.4, Chapter 2, has been designed for premixed flames
to preserve laminar flame speed. A subgrid-scale turbulent combustion model is nec-
essary in a LES framework since the thickness of these premixed flames is usually far
below the computational grid size. In contrast, diffusion flames do not feature an
intrinsic thickness (there is no velocity scale such as the burning velocity by which a
characteristic length-scale such as the premixed flame thickness could be defined).
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Their thickness is controlled by the convection/diffusion transport through the local
flow stretch factor (including flow-induced strain and curvature effects), which leads
to a scalar dissipation and thereby to the diffusive flame length-scale (also referred
to as the diffusive flame thickness). Subsequently, diffusion flames typically have
a thickness that is proportional to the resolved gradient of the flow. This behavior
implies that the flame is numerically stable (i.e., the diffusive flame thickness is
resolved on the LES computational grid).

Note that the only case in which the numerical stability is not secured for diffusion
flames is when combustion occurs too rapidly (in this case, the flame is infinitely
thin). In that case, the temporal resolution of the LES simulation might be insuf-
ficient. One efficient way to overcome this difficulty is to take advantage of the
behavior of fast diffusion flames: if chemistry is fast enough, the flame burning is
not controlled by chemistry but instead by transport. Subsequently, it is possible
to decrease the chemical rates in the combustion kinetic scheme without changing
the global flame burning.

In the present case, no turbulent combustion model is applied at the subgrid-scale
since these effects are evaluated negligible at first approximation. Furthermore,
since large-scale convection due to buoyancy is captured by the computational
grid (on the order of 1 mm), no specific subgrid-scale buoyant combustion model is
required. This aspect (Chomiak and Nisbet, 1985; Ince and Launder, 1989; Tieszen
et al., 2004; Nicolette et al., 2005) needs to be confirmed in future developments
towards a more physically-consistent LES solver for simulating laboratory-scale fires.

3.4 Flame/vegetation coupling interface

3.4.1 Elementary components of the coupling interface

While Avbp only solves equations for the gaseous phase, Pyrowo, developed in
this thesis, describes the thermal degradation within the biomass fuel bed. Thus, the
final step towards flame-scale LES of laboratory-scale fires consists in combining all
the elementary components required for performing multi-physics CFD simulations:

⊲ the combustion LES solver Avbp that describes the state of the gaseous
phase and the flame behavior (see Section 2.4, Chapter 2);

⊲ the DOM-based radiation solver Prissma (see Section 2.5, Chapter 2) that
solves for the radiation source term q̇ within the 3-D computational domain
and for the radiation heat flux q̇w at the upper layer of the pine needle fuel
bed;

⊲ the vegetation thermal degradation solver Pyrowo with calibrated model
parameters (see Section 3.2) that solves for the mass loss rate ṁv in the
porous vegetation.
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The coupling between these solvers is managed by the open-source dynamic coupler
OpenPalm.10 The development of OpenPalm has been committed to provide
a generic environment that ensures the correct exchange and synchronization of
the multiple software components on massively parallel computers. Such technique
is very recent and requires the development of coupling methodologies based on
HPC11 (Duchaine et al., 2009; Amaya et al., 2010; Jauré et al., 2011; Maheu et al.,
2012).

In the proposed coupling strategy, the transport of pyrolysis gases within the veg-
etation is not explicitly solved. Thus, an interface between the gaseous phase
(i.e., Avbp combined to Prissma) and the porous vegetation (i.e., Pyrowo)
must be defined. This corresponds to a surface coupling, where data are exchanged
at the boundaries of the flow/vegetation domain, indifferently referred to as wall,
gas/vegetation interface, top of the vegetation layer or Wall-Pyrowo in the fol-
lowing. This interface, schematized in Fig. 3.22(a) and corresponding to a new
boundary condition in Avbp, is discretized using the Avbp computational grid in
a finite number of grid nodes that define boundary cells along the 2-D interface
as illustrated in Fig. 3.22(b). To each Avbp-related boundary cell corresponds the
top of a control volume in Pyrowo. In this control volume, the properties of pine
needles are assumed uniform and the temporal evolution of the variables of the ODE
system in Pyrowo are solved for. This implies that Eqs. (3.1) to (3.6) are solved
for each boundary cell of the Avbp computational grid; the resulting variables of
Pyrowo for the control volumes are then mapped at the flow/vegetation interface
and interpolated at each Avbp grid node.

3.4.2 Description of the gas/vegetation interface

→֒ Physical quantities of interest at the interface

The Wall-Pyrowo interface is based on the boundary condition proposed by Cabrit
(2009) and Cabrit and Nicoud (2010) to describe wall surface ablation in solid rocket
motors, assuming there is no mechanical erosion and no geometry deformation. The
development of this interface between Avbp and Pyrowo consists in extending
the existing isothermal condition to spatially-varying and temporally-varying profile
along the gas/vegetation interface of the three following variables:

(i) the wall-normal Stephan injection velocity vinj,w [m/s], assumed orthogonal
to the gas/vegetation interface (i.e., no tangential component) and provided
by Pyrowo (Dirichlet boundary condition);

(ii) the wall-normal species mass diffusive flux ∂Yw,k/∂n [1/m], where n indicates
the normal direction to the gas/vegetation interface and where Yw,k [-] repre-
sents the mass fraction of gas species k at this interface (Neumann boundary
condition);

10See Appendix B, www.cerfacs.fr/globc/PALM_WEB/.
11http://cerfacs.fr/coupling/.

www.cerfacs.fr/globc/PALM_WEB/
http://cerfacs.fr/coupling/
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(iii) the gas temperature at the wall Tw [K] (Dirichlet boundary condition).

While the gas temperature at the gas/vegetation interface is directly provided by
Pyrowo since a thermal equilibrium is assumed between the solid and gas phases
of the vegetation (i.e., Tw = Tv), the calculation of the injection velocity vinj,w
and of the wall-normal species diffusive flux ∂Yw,k/∂n is not straightforward and is
explained in the following. By convention, all the variables at the gas/vegetation
interface are projected on the wall normal n directed towards the gaseous phase
(the index w refers to this interface, w standing for wall). Note also that the
height at which the interface is located above the vegetation (i.e., the top of the
vegetation layer) is assumed to remain constant over time. This assumption remains
acceptable for simulating laboratory-scale fire of pine needles (of a few cm high).

Gas/vegetation interface (WALL-PYROWO)!

AVBP/PRISSMA!
(reacting gas-phase solver!

with radiation heat transfer)!

PYROWO!
(vegetation thermal degradation solver)!

Flame!

x
z

y

(a)

Gas/vegetation interface
WALL-PYROWO

AVBP/PRISSMA

PYROWO
PYROWO 0-D calculation
for the boundary cell

AVBP grid node

PRISSMA radiation 
heat flux

x
z

(b)

Figure 3.22: Schematic of the Avbp/Prissma/Pyrowo interface (Wall-Pyrowo).
(a) Two-dimensional (vertical) cross-section view of the simulation in the direction of flame
propagation; and (b) Gas/vegetation (horizontal) interface representation.
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→֒ Wall-normal injection velocity

The variable ṁv represents the vegetation mass loss rate per unit volume provided
by the 0-D Pyrowo solver. The resulting mass flux at the gas/vegetation interface,
noted ṡw [kg/m2/s], is expressed as follows:

ṡw =
ṁv

δv
, (3.21)

with δv [m] the vegetation layer depth. Thus, the surface mass production rate of

each gas species k denoted by ṡ
(k)
w (k = 1, · · · , Ng) satisfies:

ṡw =

Ng∑

k=1

ṡ
(k)
w =

Ng∑

k=1

ṁ
(k)
v

δv
, (3.22)

with ṁ
(k)
v = Yv,k ṁv the mass rate per unit volume and Yv,k the mass fraction

associated with each gas species k (Yv,CH4 = 0.10, Yv,CO = 0.171, Yv,CO2 = 0.64
and Yv,H2O = 0.089, see Section 3.3.1). Then, by applying conservation of the
mass flux ṡw at the gas/vegetation interface, the following relation holds:

ṡw = ρw vinj,w =

Ng∑

k=1

ṡ
(k)
w , (3.23)

with ρw [kg/m3] the gas density at the gas/vegetation interface. Thus, the wall-
normal Stephan injection velocity vinj,w reads:

vinj,w =
1

ρw




Ng∑

k=1

ṡ
(k)
w


 . (3.24)

→֒ Wall-normal species mass diffusion fluxes

Similarly to mass conservation, species conservation at the gas/vegetation interface
leads to the following relation:

ρw Vw,inj Yw,k + ρw Vk,n,w Yw,k = ṡ
(k)
w , (3.25)

where Vk,n,w [m/s] corresponds to the wall-normal diffusion velocity of species k
satisfying:

Ng∑

k=1

Yw,k Vk,n,w = 0

to ensure mass conservation. As for Navier-Stokes balance equations (presented
in Chapter 2), the corrected Hirschfelder-Curtiss approximation is used to evaluate
the wall-normal diffusion flux of each species k such that:

Yw,k Vk,n,w = −Dk
Wk

Ww

(
∂Xw,k

∂n

)
+ Yw,k Vc,n, (3.26)
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with Ww the mean molecular weight of the gaseous mixture at the gas/vegetation
interface and Vc,n the wall-normal correction velocity satisfying:

Vc,n = −
Ng∑

k=1

Dk
Wk

Ww

(
∂Xw,k

∂n

)
. (3.27)

The molar fraction gradients ∂Xw,k/∂n are related to their mass fraction counter-
parts in the wall-normal direction as follows:

∂Xw,k

∂n
=

Ww

Wk

∂Yw,k

∂n
− W 2

w

Wk
Yw,k

Ng∑

q=1

1

Wq

∂Yw,q

∂n
. (3.28)

By reformulating Eq. (3.25), the wall-normal mass species diffusion flux ∂Yw,k/∂n
reads:

∂Yw,k

∂n
=

Yw,k

Dk




Ng∑

q=1

ṡ
(q)
w

ρw
+ Vc,n +Ww Dk

Ng∑

q=1

1

Wq

∂Yw,q

∂n



− ṡ

(k)
w

ρw Dk
. (3.29)

Equation (3.29) is a system of equations of dimension Ng×Ng (Ng being the num-
ber of gas species). In practice, this equation is solved using an iterative algorithm
providing at each time step the wall-normal mass fraction gradient ∂Yw,k/∂n for
each species k of the gas mixture.

Based on the temperature, mass loss rate and composition of the gas compounds
provided at the upper layer of the vegetation, the conservative variables of the
Avbp solver (e.g., temperature, velocity field, mass density, composition) can be
retrieved at the wall. Note that the wall temperature is corrected by accounting for
wall thermal losses through the radiation solver Prissma.

3.4.3 Flowchart of multi-physics large-eddy simulations

In summary, the heat transfer from the flame to the pre-heated vegetation ahead
of the flame zone is represented at the Wall-Pyrowo interface using the radia-
tion solver Prissma. Prissma requires the mass fraction of CO2 and H2O, the
soot volume fraction Ysoot (if soot is considered), the pressure p as well as the
temperature T of the gas phase from Avbp calculations. It also requires the gas
temperature Tw at the wall from Pyrowo. In return, it provides the radiation
source term q̇ [W/m3] to Avbp and the radiation heat flux q̇w [W/m2] at the wall
to Pyrowo. In-turn, Pyrowo provides the wall-normal injection velocity vinj,w,
the wall-normal species mass diffusive flux ∂Yw,k/∂n and the gas temperature Tw

at the wall to Avbp. These variables act then as boundary condition for Avbp.
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The complexity of radiation heat transfer and their non-linear interaction with re-
acting turbulent flows require a parallel coupling strategy between Prissma and
Avbp, presented in Fig. 3.23. Since Avbp is a compressible solver, its time step
is limited by the acoustic time step. There is no need to solve for radiation at this
acoustic time step since the radiation source term q̇ is only modified by the slower
convection motions of fresh and burnt gas pockets. This is governed by a convection
time step that is much larger than the acoustic time step in the present configu-
ration. Thus, one iteration of the radiation solver Prissma is typically performed
every 1,000 iterations of the combined Avbp/Pyrowo solver (i.e., Nit = 1, 000).

Vinj,w, Tw,
∂Yk,w

∂n

Vinj,w, Tw,
∂Yk,w

∂n

AVBP PRISSMA

PYROWO

q̇

q̇w
Vinj,w, Tw,

∂Yk,w

∂n

AVBP PRISSMA

PYROWO

q̇

p, T,Xk

q̇w
Vinj,w, Tw,

∂Yk,w

∂n

Nit iterations  1 iteration

p, T,Xk
∂Yw,k

∂n

∂Yw,k

∂n

Figure 3.23: Parallel-coupling strategy with a coupling frequency 1/Nit (Nit being the
number of LES iterations between two radiation calculations).

The flowchart of the coupling capability proposed in this thesis between Avbp,
Prissma and Pyrowo is provided in Fig. 3.24. Note that the coupling between
Avbp and Prissma via OpenPalm is based on prior work due to Amaya et al.
(2010) and Poitou et al. (2012).
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Conclusion

This chapter presents the strategy developed in Part I of this thesis to per-
form multi-physics flame-scale LES that are representative of the interactions
between turbulence, combustion, radiation and pyrolysis in a laboratory-scale
fire propagation.

Two different chemical mechanisms underlying fire spread are represented
through this coupling simulation capability: (1) the thermal degradation of
the porous vegetation that produces pyrolysis gas reactants for flaming com-
bustion, and (2) the oxidation of these gas reactants that sustains the flame and
its propagation towards unburnt biomass fuel. They are both incomplete in re-
ality and are therefore responsible for the large amount of emissions associated
with wildfire. The proposed strategy includes a LES approach solving for the
flame structure (Avbp), a radiation DOM approach that calculates the radia-
tion heat transfer at the flame/vegetation interface (Prissma), and a thermal
degradation model providing a macroscopic description of the heated porous
vegetation (Pyrowo). The following aspects are important to mention.

⊲ The newly-developed biomass thermal degradation model Pyrowo was
calibrated against TGA experimental data in order to reproduce the ob-
served mass loss of the vegetation and to represent the release of pyrolysis
gases (mainly CH4, CO, CO2 and H2O).

⊲ The flame structure due to oxidation of pyrolysis gases was studied in lam-
inar one-dimensional premixed and counter-flow flame configurations. In
particular, the impact of the fuel/oxidizer equivalence ratio on the flame
features (such as burnt gas temperature, flame speed and thickness) was
highlighted. However, this equivalence ratio is subject to significant un-
certainties since it depends on the flame-induced air entrainment through
the porous vegetation, itself affected by the vegetation packing ratio and
by time-dependent buoyancy effects.

⊲ The most critical point underlying these multi-physics large-eddy simu-
lations remains the gas/vegetation interface Wall-Pyrowo between
the gaseous phase and the porous vegetation. In practice, this boundary
condition is described through the OpenPalm-based parallel coupling
between Pyrowo and Avbp/Prissma solvers.

As a preliminary step towards a research tool for exploring wildfire behavior,
the objective is to demonstrate the potential of such modular capability to
improve our knowledge on the physical processes governing wildfire and on
their interactions. For this purpose, results are compared to laboratory-scale
fire of pine needle litters (see Fig. 3.1).







Chapter 4

Analysis of laboratory-scale

fire simulations

Multi-physics coupled simulations of fire propagation are performed at lab-
oratory flame scale and are compared to measurements to provide a com-
prehensive understanding of the mechanisms underlying fire spread. In par-
ticular, the assumptions used to estimate the semi-empirical rate of spread
(ROS) in regional-scale wildfire spread simulators are examined. To our
knowledge, it is one of the first attempts, with studies due to Zhou et al.
(2005, 2007), to apply a large-eddy simulation (LES) approach solving for
the flame structure and including radiation heat transfer as well as biomass
fuel pyrolysis to natural fire propagation. Insight into the flame-induced
flow entrainment is also provided through the analysis of particle image
velocimetry (PIV) measurements as highlighted in Fig. 4.1.

Figure 4.1: PIV application to laboratory-scale fire spread. Credit: EM2C laboratory.
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4.1 Description of the laboratory-scale fire experiment

4.1.1 Overview of experimental measurements

The target configuration of LES computations is a laboratory-scale experiment
that consists in a biomass fuel bed made of maritime pine needles (Pinus Pinaster)
performed at the CNRS-SPE laboratory (France). As illustrated in Fig. 4.2, this
fuel bed lies on a 2 m × 1 m surface, which can be tilted to study slope-aided
fires and over which there is a 3 m × 3 m hood extractor. The fire is ignited as
a 1-m line; the side of the fuel bed that is 2 m long corresponds to the direction
of the fire propagation. The biomass fuel typically exhibits the properties listed
below (Santoni et al., 2010).

⊲ Pine needles are characterized by a surface-area-to-volume ratio Σv varying
between 3,000 and 4,000 1/m and a mass density ρp varying between 500
and 520 kg/m3.

⊲ Their moisture content Mv typically varies between 4 and 5 % after a 24-hour
drying in oven at 60◦C (due to equilibrium with ambient air).

⊲ The layer of pine needles is 5-10 cm high, with a surface loading m
′′

v varying
between 0.6 and 1.2 kg/m2 and a packing ratio βv varying between 0.03 and
0.05.

Over the fire duration (that lasts between 300 and 400 s depending on the slope
angle), the heat release rate was measured by a 1 MW large-scale calorimeter based
on the oxygen consumption calorimetry principle, valid for both steady and unsteady
fire propagation (Huggett, 1980; Santoni et al., 2010). This principle relies on a
proportional relationship between the heat release and the oxygen consumed for
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complete biomass combustion. Thus, the heat release rate was retrieved based
on the measurement of O2 flow in the exhaust duct (Santoni et al., 2010). The
time-evolving mass loss of the biomass fuel was also measured through the weight
balance (see Fig. 4.2).

Figure 4.2: Snapshot of the laboratory-scale experiment, with a hood extractor above
the biomass fuel bed. Credit: CNRS-SPE laboratory.

Figure 4.3 shows the evolution of the heat release and mass loss rates as a function
of time, measured for flat and 20◦-upslope configurations of the laboratory-scale fire
propagation. These results indicate that combustion rapidly reaches a quasi-steady
state for the flat configuration, with a heat release rate nearly 100 kW and a mass
loss rate maintained at 6 g/s over the fire propagation. In contrast, combustion
exhibits highly unsteady features for the 20◦-tilted configuration since the heat and
mass release rates do not reach stationary values. These release rates exhibit a peak
value corresponding to 300 kW and 15 g/s, respectively, between 100 and 150 s
after fire ignition. This behavior is partly due to increasing flame front surface
over time. Due to increased buoyant effects induced by the upslope configuration,
larger heat exchanges at the head of the fire make the propagation much faster
than in the flat configuration (i.e., 13.1 mm/s versus 5 mm/s) but still at a quasi-
constant value. The edges of the fire front propagate at a much reduced ROS due
to important heat losses and thereby, the flame front surface increases over time.
This is confirmed by Fig. 3.1, Chapter 3, which highlights the curved shape of the
fire front for the 20◦-upslope configuration. Since the flame front surface increases,
biomass fuel burns at a faster rate and more heat is released. Thus, heat and mass
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release rates are enhanced and no quasi-steady state can be reached.
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Figure 4.3: Measurement of heat release rate (top) and mass loss rate (bottom) over
time for the laboratory-scale fire: comparison between flat and upslope (20◦-tilted) con-
figurations. Credit: CNRS-SPE laboratory (private communication).
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As shown in Fig. 4.3, the heat release rate and mass loss rate are highly corre-
lated for both flat and 20◦-upslope configurations; they are indeed related by the
effective heat of combustion ∆hc,ef that is between 17 and 18 kW/kg. This value
is consistent with the heat of combustion ∆hc = 18.6 kW/kg retained in the
Rothermel’s ROS model. Thus, the heat release rate (HRR) is related to the mass
loss rate (MLR) as follows:

HRR = ∆hc,ef︸ ︷︷ ︸
χef ∆hc

×MLR, (4.1)

with χef the effective burning coefficient, equal to 0.88 for the flat configuration
and 0.92 for the 20◦-upslope configuration. The laboratory-scale experiment was
also equipped with three fluxmeters (see Fig. 4.2) located at different heights with
respect to the pine fuel bed: while one fluxmeter measured the total heat flux,
the remaining two others measured only the radiation contribution of the heat flux,
within the litter and in the flame. This configuration allows to estimate the radiation
contribution in the heat release rate, noted χrad,fl for the flame contribution and
χrad,emb for the ember contribution. Results are shown in Fig. 4.4; discrepancies
between total and flame-induced radiation heat fluxes evidence the presence of
convection heat fluxes. The convection contribution χconv to the heat release rate
is estimated based on the analysis of the smoke flow and composition in the exhaust
duct (Santoni et al., 2010).

Measurements performed during the laboratory-scale fire experiments are summa-
rized in Table 4.1 for both flat and 20◦-upslope configurations, in terms of flame
geometry, combustion and heat transfer characteristics.

Table 4.1: Experimental measurements corresponding to laboratory-scale fires.
Credit: CNRS-SPE laboratory (private communication).

Flat Upslope

Flame height [m] 0.47 0.67

Flame tilt angle [◦] -8.2 27.8

Mean ROS [mm/s] 5 13

Effective heat of combustion ∆hc,ef [kJ/kg] 17100 17900

Effective burning coefficient χef [-] 0.88 0.92

Mean MLR [g/s] 5.3 14.0

Total radiation heat flux [kW/m2] 15.1 25.8

Flame-induced radiation heat flux [kW/m2] 12.3 22.2

Radiation contributions [-]

• χrad,fl (flame) 0.10 0.19

• χrad,emb (embers) 0.13 0.11

Convection contribution χconv [-] 0.72 0.66
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The upslope configuration induces larger flame height and ROS than in flat con-
figuration, multiplied by a factor 1.4 and 2.6, respectively. These properties are
due to the tilt of the flame towards unburnt pine needles when propagating in the
upslope direction, increasing the radiation heat flux up to 25.8 kW/m2, compared
to 15.1 kW/m2 in flat configuration (in the latter, the flame is slightly tilted towards
the back side of the flame). Note that these radiation values correspond to the
horizontal component of the radiation heat flux since fluxmeters are horizontally-
positioned.

4.1.2 Flame-induced air entrainment

Displayed in Fig. 4.1, PIV is an optical laser diagnostic to characterize flow ve-
locities (Melling, 1997; Raffel et al., 1998; Adrian, 2005). While being common
in laboratory-scale and industrially-oriented combustion applications (Reuss et al.,
1989; Wolfrum, 1998), and while being used in fire research to characterize the
thermal plume (Zhou et al., 2003), this PIV technique has rarely been applied to
characterize flow velocity in the near-flame field of a pine needle fire (Zhou and
Gore, 1996; Sun et al., 2005; Said et al., 2008). The objective of this work was to
demonstrate the feasibility of the PIV optical diagnostic in a delicate environment
corresponding to the laboratory-scale experiment presented in Fig. 4.1, with slow
flow velocities, buoyant-induced flow, strong flame radiation and flow seeding diffi-
culties, but not to conduct a campaign of systematic measurements. An overview
of the PIV technique is presented in Appendix E.

→֒ Experimental setup

⊲ Particle image velocimetry system. The PIV system classically used a Dantec
Dynamics camera FlowSense1 and a planar cross-correlation light sheet plane
with a double-pulsed Continuum Precision Nd:YAG laser.2 This Powerlite SL3-
PIV laser operates at a monochromatic wavelength of 532 nm per pulse, a pulse
rate of maximum 10 Hz and an intensity of 400 mJ per pulse (350 mJ per pulse
effectively in the experiment). The light sheet plane is 50 cm high and 0.5 mm
wide.

• At about 1.50 m ahead from fire ignition (see Fig. 4.5), the flow is seeded with
oil liquid droplets (whose nominal diameter is lower than 1 µm) by injecting
them at the top of the vegetation layer, ahead of the flame front. Even
though they are subject to strong evaporation, this type of seed particles is
highly recommended for health considerations (solid particles being toxic and
more difficult to seed the flow).

• The seeded flow is illuminated based on two successive laser pulses within a
short time interval fixed at ∆t = 3 ms; this value allows to retrieve instanta-

1www.dantecdynamics.com/ccd-and-scmos-cameras.
2www.continuumlasers.com/products/pulsed_default.asp.

www.dantecdynamics.com/ccd-and-scmos-cameras
www.continuumlasers.com/products/pulsed_default.asp
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neous features of the gas flow since the flame propagates at a rate of 5 mm/s
in flat configuration (the displacement of the flame during this time interval
is 0.015 mm and is therefore negligible compared to the length-scales of the
problem, e.g., the height of the flame is nearby 50 cm).

• The PIV frame in the gas flow is of size 115 mm × 59 mm corresponding to
13.6 pixel/mm. This visualization window is located at 1.50 m ahead from
fire ignition. The gas flow velocity field is reconstructed based on statisti-
cal post-processing using the PIV software Dynamic Studio from Dantec
Dynamics;3 an additional filtering procedure is performed to remove non-
physical features (e.g., noise, interrogation areas with a low amount of tracer
particles) and focus on the zones in which valuable signals were obtained. In
particular, velocity magnitudes lower than 0.01 m/s and characterized by less
than 1 % occurrence are not considered in post-processing.

Flame

Laser sheet
1  2  3  4  

PIV 
camera

Flow 
seeding

Visualization 
window

Propagation direction

1.50 m

0.50 m

Figure 4.5: Schematic of data acquisition for the PIV fire spread application.

⊲ Measurement of ambient air flow conditions. Since the experimental en-
closure is connected to an extractor hood to evacuate combustion products, the
impact of this hood on the air flow must be quantified before applying PIV measure-
ments to flame propagation. For this purpose, PIV measurements were performed
on the ambient gas flow (in the absence of flame). Figure 4.6 shows a typical
example of PIV-based flow velocity field at a given time. There is no directional
preference of air flow, implying that the extractor hood has a limited effect on this
flow. The mean flow velocity magnitude was computed for the whole time-series of
PIV frames (one value of velocity magnitude per PIV frame as shown in Fig. 4.7),
leading to an ambient air flow velocity equal to 2.7 cm/s and characterized by a
standard deviation of 0.8 cm/s. Globally, air flow velocity below 5 cm/s is typical
of ambient conditions.

3www.dantecdynamics.com/particle-image-velocimetry.

www.dantecdynamics.com/particle-image-velocimetry
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(c)!
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Figure 4.6: Example of gas flow velocity field reconstructed from PIV analysis in ambient
flow conditions (no flame). The x-axis corresponds to the horizontal direction, and the
y-axis corresponds to the vertical direction. (a) 2-D velocity field. (b) Distribution of
velocity magnitude. (c) Distribution of velocity magnitude along x- and y-directions (in
blue and green colors, respectively).
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Figure 4.7: Series of spatially-averaged flow velocity magnitude per PIV frame for two
repetitive PIV experiments (solid and dashed lines).
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→֒ Measurements of flame-induced air entrainment

As illustrated in Fig. 4.5, PIV measurements were performed for different positions
of the flame with respect to the PIV camera (the visualization window), ahead from
the flame front in positions indexed by 1, 2 and 3 as well as on the back side of the
flame front in the position indexed by 4. For each position of the flame, 80 set of
images (A/B) were recorded during 40 s, meaning that the flame propagates over
20 cm during each PIV acquisition. Figure 4.8 shows a typical example of PIV-
based flow velocity field on the head side of the flame front (position 3); the flow is
entrained towards the basis of the flame at a velocity magnitude nearby 0.10 m/s.
This magnitude is increased by a factor more than 3 compared to ambient flow
conditions. For comparison, Fig. 4.9 shows a typical example of PIV-based flow
velocity field on the back side of the flame front (position 4); the flow is also
entrained towards the flame, but at a much higher velocity magnitude (nearby
0.2 m/s) compared to the head side of the flame. Due to the lower density of
hot gases, the velocity magnitude is higher on the back side of the fire by nearly a
factor 2 than on the head side of the fire (at an equal distance to the flame). These
discrepancies between the head and back sides of the fire approximately correspond
to the ratio of the ambient air mass density to the pre-heated air mass density (at
575 K as shown in Fig. 4.10), meaning that this increased velocity magnitude is
mainly due to thermal expansion. This explanation relies on the assumption that
the gas entrained towards the flame is composed of air. While the head side of the
flame most likely captures fresh air at ambient temperature, the back side of the
flame could also be made of a gas mixture among whom CO2. In this case, the
temperature of the gas mixture would be higher than 575 K (see Fig. 4.10 for a
pure CO2 mixture). Further analysis is required to correlate these data to the gas
composition and temperature on both sides of the flame.

PIV results for the different flame positions are summarized in Fig. 4.11, where
each symbol corresponds to the mean velocity magnitude per PIV frame. Linear
fits were performed between each dataset, i.e., between each flame position, in
order to obtain the global change of the velocity magnitude with respect to the
distance to the flame. These results confirm that the closer to the flame, the
stronger the air entrainment. They also show that the flame induces significant gas
flow towards the flame on both head and back sides of the fire. While the spatially-
averaged velocity magnitude (one value of velocity magnitude per PIV frame as in
Fig. 4.7) is varying between 0.08 and 0.14 m/s for the PIV acquisition at location
3, it is varying between 0.14 and 0.22 m/s at location 4, consistently with the
instantaneous results presented in Figs. 4.8 and 4.9.

These measurements of gas flow velocity are limited here due to the difficulties
in seeding the flow (e.g., evaporation of oil liquid droplets, difficult injection of
particles in the zones of low velocities without resorting to an artificial flow), which
provide partial information on the PIV frame (certain zones of the PIV frame remain
blank due to the lack of tracer particles in corresponding interrogation areas).
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(a)!

(b)!

(c)!
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Figure 4.8: Flow velocities for the fire head side (position 3). See caption of Fig. 4.6.

(a)!

(b)!

(c)!

[m/s] 

Figure 4.9: Flow velocities for the fire back side (position 4). See caption of Fig. 4.6.
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Figure 4.10: Evolution of mass density with respect to temperature, based on the ideal
gas state equation. The blue circled-solid line corresponds to air; the red squared-solid line
corresponds to CO2; horizontal dashed lines correspond to reference and target values.
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Figure 4.11: Fit of the flow entrainment with respect to the distance to the flame against
PIV measurements for 4 PIV datasets (corresponding to 4 different positions of the flame
with respect to the PIV frame located at 0 cm). Symbols correspond to a subset of PIV
measurements (one color per flame position at the time of PIV acquisition): red stars
correspond to position 1, blue circles to position 2, green squares to position 3 and orange
triangles to position 4; dashed lines correspond to analytical fits and the black solid line
shows the global trend of the spatially-averaged velocity magnitude (per PIV frame).
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These measurements are also limited due to the restricted size of the visualization
window in comparison to the length-scales of the problem. This limitation is due to
the resolution of the camera and the laser power. In particular, the vertical profile
of gas flow velocity at a given distance from the flame needs to be further analyzed
to improve our knowledge on the mechanisms inducing air entrainment and vortex
formation that are typical of buoyant flames. Still, this preliminary study of PIV
applied to laboratory-scale fires has already showed that (1) air entrainment occurs
on both head and back sides of the fire; (2) it is possible to quantify the related
gas flow velocity due to thermal expansion. These information are essential for a
quantitative comparison with detailed simulations of natural fire propagation.

It is worth mentioning that flame spectroscopy is not suitable for identifying the
composition of radicals or burnt gases on the head/back sides of the flame. Indeed,
the discontinuous emissions of minerals such as Na∗ at 588 nm and K∗ at 766 nm
are much more important in biomass fuels than for instance radicals CH∗ or C2 as
illustrated in Fig. 4.12. This implies that gas emissions are difficult to detect and
to capture above the continuous baseline attributed to soot formation in the flame.
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Figure 4.12: Typical (normalized) flame spectrum of natural gas, oil and bio-oil hydrocar-
bon fuels, in which discontinuous emissions superimpose to the continuous baseline (soot).
Credit: Arias and Pezoa (2012).

In summary, PIV results evidenced the presence of gas flow entrainment on the back
side of the flame region. The closer the flame, the stronger the air entrainment and
in particular on the back side of the flame region due to thermal expansion. Thus,
entrained gases are made of pre-heated air and possibly of hot burnt products.
Further experimental analysis is required to infer the detailed composition of these
gases. Still, these PIV measurements provide valuable information in the near-flame
region that are useful for the development and validation of CFD simulations.
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4.2 Radiation-forced two-dimensional case

As a preliminary step, two-dimensional (vertical) simulations combining the Avbp
LES fluid solver and the Pyrowo biomass thermal degradation solver, following the
strategy presented in Chapter 3, are performed to investigate the flame response to
buoyancy and to external radiation forcing, i.e., without coupling with the Prissma
radiation solver.

The combustion of pyrolysis gas products (CH4, CO, CO2 and H2O) with ambient
air is described using the 2S-CH4-BFER reduced kinetic scheme presented in Sec-
tion 2.4.3, Chapter 2. This 2-step scheme involves one reaction for CH4 oxidation
and one reaction for the equibribrium between CO and CO2. The combustion of
biomass fuel is presumed to occur for high equivalence ratios (Φ > 1) at the scale
of biomass fuel solid particles, where pyrolysis gases are emitted. For this purpose
and as the actual equivalence ratio Φ is not known, the operating point studied here
corresponds to a limit case, in which no air is premixed with pyrolysis gases before
flame ignition. A pure diffusion flame is then considered, while in reality fires are
more of the partially-premixed type (see discussion in Section 2.1.2, Chapter 2).

4.2.1 Numerical configuration

→֒ Computational domain

The two-dimensional computational domain corresponds to a vertical cross-section
of the gas flow in the frame of reference (x, y) as shown in Fig. 4.13(a), the
x-axis representing the direction of fire propagation and the y-axis the (vertical)
normal direction to the ground surface. Thus, y = 0 m corresponds to the Wall-
Pyrowo interface, i.e., the interface between the gas-phase solved by Avbp and
the vegetation phase solved by Pyrowo. For increasing values of y, the gas phase
corresponds to the atmosphere, in which the flame is located in the near-ground
region, referred to as flame region in Fig. 4.13(a), and in which the thermal plume
can grow vertically over the fire duration.

→֒ Computational grid

The 10 m×10 m computational grid is meshed with about 235,000 triangular cells
using the Centaur software4 and with a refined zone in the flame region of size
4 m× 2.25 m as shown in Fig. 4.13(b). Therefore, the minimal cell size (1.2 mm)
is obtained at the Wall-Pyrowo interface, where the pyrolysis of the vegetation
is initially located. In the adjacent mesh volume (of size 0.40 m× 0.60 m), the cell
size is 2.5 mm on average. Then, the cell size is slowly increased up to 2 cm in the
region of interest for LES, 10 cm at the inflow/outflow conditions and 30 cm in
ambient atmosphere. The characteristics of the present computational domain are
summarized in Table 4.2. Note that in the following simulations, the flame mainly

4www.centaursoft.com/.

www.centaursoft.com/
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remains in the zone meshed with a resolution of 2.5 mm and that the mesh would
need to be modified for propagating flames over a large distance (for instance, by
moving the zone of highest spatial resolution consistently with the flame propagation
to save computational time). The second-order accurate cell-vertex Lax-Wendroff
scheme is used in Avbp for numerical integration (to save computational time and
because the grid resolution is fine enough to justify a second-order approximation).

Table 4.2: Computational domain characteristics.

x-axis y-axis Cell size Cell numbers

Min. Max. Min. Max. Min. Max.

0 m 10 m 0 m 10 m 1.2 mm 30 cm 235000

→֒ Initial and boundary conditions

Navier-Stokes Characteristic Boundary Conditions (NSCBC) are used to impose the
inflow/outflow conditions (Poinsot and Lele, 1992). On the left side corresponding
to the inlet, fresh air at 300 K is injected with a low horizontal velocity equal to
0.01 m, see Fig. 4.13(a). On the right side and at the top, an imposed pressure
outlet boundary condition is applied (the pressure is relaxed towards the ambient
pressure p∞ = 1 bar). At the bottom, the boundary condition corresponds to the
gas/vegetation coupling interface (Wall-Pyrowo), explained in detail in Sec-
tion 3.4.2, Chapter 3. Note that these different boundary conditions are separated
by no-slip adiabatic walls (i.e., zero-value velocity of the gas phase relative to the
boundary) to avoid conflicts in the definition of the variables of interest (e.g., ve-
locity vector) at corners.

Note also that the computational domain is large enough (10 m× 10 m) to avoid
interactions between the hot thermal plume and boundary conditions and thereby,
to suppose that simulation results are not affected by boundaries. Initially, the
gas phase is made of air (YN2 = 0.767, YO2 = 0.233) at 300 K and atmospheric
pressure 1 bar, with a 0.01-m horizontal velocity from left to right (consistently
with the inflow condition).

→֒ Gas/vegetation interface

⊲ Radiation external forcing. The Avbp/Pyrowo coupling is tested by submit-
ting the vegetation to a constant-imposed radiation profile over the simulation (see
Fig. 4.14). This external forcing noted q̇rad,fl enters in Eq. (3.14) of the Pyrowo
model (see Section 3.2, Chapter 3). The maximum value for the radiation source
term q̇rad,fl is 3.0× 106 W/m3 between x = 3.8 and 4.2 m, and is consistent with
measurements. This region of the x-axis corresponds to the zone where pyrolysis
gases are released during the simulation.



Chapter 4 - Analysis of laboratory-scale fire simulations 159

INLET!

 Velocity field!
Gas temperature!
Gas composition!

WALL-PYROWO!

Injection velocity!
Species mass diffusive fluxes!
Gas temperature!

OUTLET!

Pressure!

WALL!

WALL! WALL!

FLAME REGION!

ATMOPSHERE!
!

  (6.4, 0)!

(6.4, 2.25)!

(3.4, 0)!

(3.4, 2.25)!

x!

y!

(a) Boundary conditions.

10 m!

10 m!

x!

y!

30 cm!

10 cm! 10 cm!

2 cm!

2.5 mm!

1.25 cm!

(b) Computational grid.

Figure 4.13: Numerical configuration of two-dimensional simulations of Avbp coupled to
Pyrowo through the gas/vegetation interface Wall-Pyrowo. The coordinates (x, y)
of the boundaries of the flame region are indicated [m].
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Figure 4.14: Spatial variation of the radiation source term q̇rad,fl = q̇rad,fl(x) along the
x-axis in the Pyrowo biomass fuel thermal degradation model. This view corresponds
to a zoom since the actual x-axis is 10 m long.

⊲ Boundary condition. The pyrolysis gas composition at the flame/vegetation
interface is set to Yw,CH4 = 0.10, Yw,CO = 0.171, Yw,CO2 = 0.64 and
Yw,H2O = 0.089 (the subscript w refers to the flame/vegetation interface). The
related injection velocity vinj,w and temperature Tw at the gas/vegetation interface
result from the time-integration of Pyrowo at each Avbp boundary cell along
the one-dimensional gas/vegetation coupling interface. This 10-m-long interface is
discretized with 771 nodes, corresponding to 770 boundary faces (1-D segments).
This implies that one Pyrowo calculation is performed for any of the 770 bound-
ary faces5 using the calibrated parameters presented in Table 3.4, Chapter 3, with
cp,v = 1, 500 J/K/kg, Σv = 4, 000 1/m, δv = 0.10 m and kconv = 10 W/K/m2

(assumed constant over the simulation).

⊲ Initial condition. Initially, the vegetation is at ambient temperature T 0
v = 300 K;

pine needle properties are specified as ρ0p = 500 kg/m3 (fuel bulk mass density),
β0
v = 0.05 (fuel packing ratio), Y 0

v,wat = 0.10 (fuel moisture content), Y 0
v,dry = 0.90

(dry material content) and Y 0
v,char = 0 (char material content), the superscript 0

referring to the initial state.

→֒ Flame ignition

Since our objective is to study flame propagation, the flame is artificially ignited at
x = 4 m in a three-step process:

(1) Injection of non-reacting gas flow. Radiation external forcing specified as
q̇rad,fl = 3.0×106 W/m3 activates pyrolysis and gases are emitted through the

5The calibration performed in Section 3.2.3, Chapter 3, was performed for a unique boundary
face, also referred to as control volume.
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Wall-Pyrowo interface between x = 3.8 and 4.2 m during the vegetation
pre-heating phase. These gases emitted at an increasing temperature Tw are
non-reacting in this preliminary step and induce the growth of a buoyant thermal
plume as shown in Fig. 4.15.

(a)! (b)!

(c)! (d)!

y!
x!

10 cm!

Figure 4.15: Time-series of the two-dimensional (vertical) temperature field associated to
pyrolysis gases (derived by Pyrowo) at 25 s intervals: (a) 1.32 s. (b) 1.47 s. (c) 1.72 s.
(d) 1.97 s. Images are of size 95 cm× 75 cm (width × height).

Due to natural convection, injected pyrolysis gases are subject to perturbations
that lead to the formation of convective cells, see Fig. 4.15(d). Corresponding
Navier-Stokes fields are shown in Fig. 4.16. As they are injected separately,
oxidizer (i.e., O2 in Fig. 4.16(b)) and fuel reactants (e.g., CH4 in Fig. 4.16(c))
have disjoint distributions; there is no O2 where CH4 reaches its maximum
value Yw,CH4 = 0.10. The velocity magnitude field in Fig. 4.16(d) highlights
the vertical acceleration undergone by pyrolysis gases, which can reach values
between 1.25 and 1.7 m/s as confirmed by the velocity (vertical) y-component
in Fig. 4.16(f). The velocity x-component in Fig. 4.16(e) shows the forma-
tion of convective cells, clockwise on the right side of the thermal plume and
counterclockwise on its left side. They are due to mass density gradients ∆ρ
through the flow as shown in Fig. 4.16(a), resulting from changes in chemical
composition (oxidizer/fuel reactants) and temperature (ambient/pyrolysis).

From an analytical viewpoint, the characteristic velocity induced by natural
convection can be estimated by the following expression (see Section 2.1, Chap-
ter 2):

U =

√
g

(
∆ρ

ρ∞

)
H =

√
g

(
ρ∞ − ρ

ρ∞

)
H, (4.2)
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with H [m] the vertical length-scale corresponding here to the size of convec-
tion cells, ρ∞ [kg/m3] the air density at ambient temperature and U [m/s]
the bulk flow velocity corresponding to the vertical velocity. At time shown
in Fig. 4.15(d), H ∼= 45 cm and ∆ρ ∼= 0.50 kg/m3. Using Eq. (4.2), the
characteristic buoyant velocity is estimated at 1.40 m/s; this value is consis-
tent with the simulated velocity magnitude obtained in the plume with Avbp
in Fig. 4.16(d). It also corresponds to a Richardson number equal to Ri = 1,
with the Reynolds number Re = 40, 000 (considering the air kinematic viscosity
ν = 15.68 × 10−6 [m2/s]) and the Grashof number Gr = 1.6 × 109, a value
typical of the transition to turbulent flows.

(a)!

(b)!

(c)!

(d)!

(e)!

(f)!

10 cm!

y!
x!

Figure 4.16: Two-dimensional fields associated to the injection of pyrolysis gases into
the non-reacting gas phase corresponding to the temperature field shown in Fig. 4.15(d).
(a) Mass density [kg/m3]. (b) Mass fraction of O2 [-]. (c) Mass fraction of CH4 [-].
(d) Velocity magnitude [m/s]. (e) Velocity component along x-axis [m/s]. (f) Velocity
component along y-axis [m/s]. Images are of size 150 cm× 75 cm (width × height).

(2) Ignition using a burnt gas pocket. To start combustion and ensure numer-
ical stability, a pocket of hot burnt gases (burnt gas temperature and mass
fractions based on 0-D calculations in adiabatic conditions) is deposited at
mid-plume height. Then, Avbp solves for the reacting gas flow with a time
step ∆tA = 5 × 10−7 s using the standard isotropic Smagorinsky model for
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subgrid-scale turbulent combustion modeling and no flame thickening. Thus,
the chemistry of the gas phase is described through Arrhenius reaction rates
with pre-exponential adjustment (PEA) via the 2S-CH4-BFER reduced kinetic
scheme (Franzelli, 2011).

(3) Flame attachment/stabilization. Through diffusion processes, the flammable
gas mixture surrounding the burnt gas pocket heats and starts burning. The
flame front then propagates upstream towards the injection of pyrolysis gases.
At the end of the propagation phase, the flame stabilizes above the pyrolysis
zone and anchors to the Wall-Pyrowo interface at locations corresponding
to stoichiometry between the incoming air flow and released pyrolysis gases as
shown in Fig. 4.17(a). Note that this flame attachment is difficult to handle
from a numerical viewpoint, due to the ongoing competition between the veg-
etation supply in pyrolysis gases (low injection velocities) and buoyancy that
convects burnt gases upwards and thereby, stretches the flame.

This ignition procedure is obviously not realistic and must be regarded as a numer-
ical procedure to establish a flame. The activation of combustion reaction rates
constitutes indeed a drastic shock for the simulation (since the thermodynamical
properties of the flow in terms of temperature and mass density abruptly change),
which needs to be carefully handled numerically.

4.2.2 Flame structure

→֒ Macroscopic flame properties

An instantaneous snapshot of the temperature field after ignition is presented in
Fig. 4.17(a). Figure 4.18 shows the corresponding Navier-Stokes variables: since
the gas mass density is drastically reduced in burnt gases (see Fig. 4.18(a)), they are
subject to a much stronger buoyant acceleration (see Fig. 4.18(b)). Figures 4.18(c)
and (d) illustrate the two reaction rates associated with the 2S-CH4-BFER reduced
chemical kinetic scheme: since CO and CO2 are present in pyrolysis gases before
flame ignition, they strongly enhance the second reaction corresponding to the
equilibrium reaction between CO and CO2. This reaction rate is more important
than that of the first reaction corresponding to the dissociation of CH4 (the mass
fraction of CH4 is significantly lower than that of CO2 and CO). This chemical
behavior is consistent with the results provided by the one-dimensional laminar
flame analysis (see Section 3.3.1, Chapter 3).

The mass density of pyrolysis gases is significantly reduced at the flame/vegetation
interface compared to that of the surrounding ambient air (ρw,pyr = 0.58 kg/m3

versus ρw,air = 1.17 kg/m3) and the temperature Tw = 654 K is represen-
tative of the actual pyrolysis temperature. The wall-normal injection velocity
is vinj,w = 0.114 m/s, corresponding to a maximum wall-normal mass rate of
ṡw = 0.066 kg/m2/s (see Eq. 3.23, Chapter 3).

This configuration corresponds to a global equivalence ratio Φ = 2.14 (see Eq. 3.19,
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Chapter 3) based on the composition of pyrolysis gases and air. However, due to
unconfined environment, this value does not describe for which fuel/air proportion
combustion actually occurs in LES. The thin flame region (a few mm) produces
hot gases at a temperature slightly below 2000 K (1920 K at time 2.275 s), which
is consistent with the burnt gas temperature obtained in the laminar counter-flow
diffusion flame studies (see Fig. 3.19, Chapter 3) for strain rate values below 10 s−1.
The flame height is about 55 cm, which is consistent with experimental data (see
Table 4.1). Besides, the fuel reactants are completely burned; there is no CH4

and CO left in the thermal plume above the flame zone, while a large amount of
O2 is still present due to buoyancy and air entrainment, thereby promoting mixing
with surrounding ambient air. The zoom on the temperature field presented in
Fig. 4.17(b) also indicates that the flame is detached from the top of the vegetation
layer. This flame detachment may be due to the non-infinitely fast chemical kinetics,
implying that there is a time delay before combustion starts.

10 cm!

(a) Temperature field.

(b) Zoom on pyrolysis zone.

Figure 4.17: Instantaneous snapshot of the Avbp temperature field at time 2.275 s (time
is reset to 0 at ignition) corresponding to the combustion of pyrolysis gases in a diffusion
flame configuration, with the flame front (the red zone between 1900 and 2000 K) attached
to the top of the vegetation layer. The top-view is of size 95 cm× 100 cm.
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→֒ Analysis of the flame structure

⊲ Analysis tools for diffusion flame. A classical approach taken from the dif-
fusion flame literature is adopted, in which a mixture fraction z is introduced to
locally measure the fuel/oxidizer ratio: z = 0 in pure oxidizer, z = 1 in pure fuel re-
actants. Variables T = T (z, t) and Yk = Yk(z, t) define the structure of a diffusion
flame. Since in the present configuration, fuel reactants are made of several gas
compounds; the mixture fraction z is defined based on the atomic mass fraction
(Bilger, 1989):

z =
2ZC + 1

2 ZH + (ZO
O − ZO)

2ZF
C + 1

2 Z
F
H + ZO

O

, (4.3)

where the superscripts F and O indicate pure fuel reactants and air, respectively,
and where the atomic mass fraction Zi of atom i satisfies:

Zi =

Ng∑

k=1

nk
i Yk
Wk

, (4.4)

with nk
i the number of atoms i in the k-th gas compound. In addition, the scalar

dissipation rate χ [1/s] proportional to |∇z|2 controls mixing. The Takeno flame
index is also defined to identify local combustion regimes (i.e., indicator of how
much a flame tends towards a premixed or diffusion flame) and thereby, understand
the flame structure (Takeno and Nishioka, 1993). This dimensionless index is nor-
malized to be 1 in premixed flames and -1 in diffusion flames; it is conditioned by
the reaction zones as follows:

Takeno =
∇YF · ∇YO

max (∇YF · ∇YO)
. (4.5)

⊲ Simulation results. The field of mixture fraction z is shown in Fig. 4.19(a),
where the isoline zst = 0.32, corresponding to the mixture fraction at stoichiometry
z = zst = 1/(1 + Φ) (Φ = 2.14 taking each reactant in its respective boundary
state, i.e., Yw,CH4 = 0.10, Yw,CO = 0.171 and Yair,O2 = 0.233), is superimposed
as an indicator of the flame region. Figure 4.19(b) shows the map of the Takeno
index. The flame region corresponds to a negative Takeno index, showing that
the combustion regime is of the diffusion type. The Takeno index also reveals the
presence of one zone near the flame/vegetation interface where the Takeno index
is positive, indicating locally the occurrence of premixed combustion (due to the
flame detachement from the top of the vegetation, allowing for premixing between
ambient air and pyrolysis gases). This mixing is confirmed in Fig. 4.19(c) by the
maximum values of the scalar dissipation rate reached in this region. This figure
also highlights that the flame section (between y = 0.10 and 0.20 m) subject to
the strongest buoyancy effects is also where the scalar dissipation rate is maximum.
This confirms that buoyancy enhances mixing.
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(a)

(b) (c)

Figure 4.19: Instantaneous snapshot of the Avbp fields at time 2.275 s corresponding
to Fig. 4.17(a). (a) Mixture fraction z [−] (the white zone corresponds to the mixture
fraction at stoichiometry z = zst = 0.32) with z = 0 in air and z = 1 in fuel reactants.
(b) Takeno index. (c) Scalar dissipation rate χ [1/s].

The particular flame structure is characterized with a scatter plot of temperature
versus mixture fraction z, colored by the Takeno index, in Fig. 4.20. This plot shows
that the 1921-K maximum temperature is reached at the stoichiometric mixture
fraction z = zst and is typical of a diffusion flame: the bottom line between the
non-reacting air at 300 K and the pyrolysis gases injected at 654 K corresponds
to the mixing line; the two curve portions joining at the stoichiometric point zst



168 4.2 - Radiation-forced two-dimensional case

correspond to fully burnt gases. Figure 4.21 shows the corresponding scatter plots of
CH4 (as an example of fuel reactants) and O2 (oxidizer) versus mixture fraction z,
colored by the gas temperature. They are also typical of a diffusion flame structure.

These results highlight that the present buoyant flame exhibits a structure typical
of a diffusion flame. Its thermal thickness can be estimated from the gradient of
the mixture fraction z to δL = 1.3 cm, which is consistent with the length-scales
obtained with the one-dimensional laminar flame calculations (see Section 3.3.3,
Chapter 3). Note that the resolution of the computational grid in the flame zone
is on average 2.5 mm, which is suitable for δL = 1.3 cm.

Figure 4.20: Scatter plot of temperature versus mixture fraction z at time 2.275 s corre-
sponding to Fig. 4.17(a), colored by the Takeno index (ranging from −1 to 1); z = 0 cor-
responds to ambient air, and z = 1 corresponds to pyrolysis gases released at Tw = 654 K.
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(a) Fuel reactant.

(b) Oxidizer.

Figure 4.21: Scatter plot of pyrolysis reactants and oxidizer versus mixture fraction z at
time 2.275 s corresponding to Fig. 4.17(a), colored by the gas temperature [K]. (a) Mass
fraction of CH4. (b) Mass fraction of O2.
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4.2.3 Flame puffing

The flame height significantly fluctuates over time as shown in Fig. 4.22. Consis-
tently, the temporal evolution of the reacting gas phase obtained in the simulation is
presented for the two-dimensional configuration in Fig. 4.23, from 1.40 to 2.525 s.
Figure 4.23 highlights the transient behavior of the flame enhanced by buoyancy
effects (due to large density gradients between ambient air and burnt gases). The
flame height significantly fluctuates over time (the flame height is multiplied by up
to a factor 2): due to high flow strain and large-scale vortices in the fire plume, the
flame is stretched out and then, pockets of hot gases are detached from the flame
(attached to the top of vegetation). Vortices induce ambient air entrainment to-
wards the flame region, increasing the surface between oxidizer and fuel reactants
and thereby, promoting combustion. The detachment of hot gas pockets, also
known as puffing, occurs periodically at 0.4 s intervals, as observed experimentally
in Fig. 3.20, Chapter 3. The mean flame height is 68 cm, which is higher than
experimental measurements (one reason for these discrepancies may be the lack of
heat losses in this simulation).
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Figure 4.22: Time-evolution of the flame height [m], measured as the height of the
1200 K iso-temperature of the main flame component anchored at the gas/vegetation
interface. Solid line: instantaneous value. Dashed line: mean value over the simulation
(i.e., 1.125 s). Images are of size 50 cm× 100 cm (width × height).

The physical time period simulated in Fig. 4.23 (i.e., 1.125 s) corresponds to nearly
4 million iterations of the coupled Avbp/Pyrowo solver (the coupling frequency
between these two solvers is Nit = 1); these iterations require 24 h on 192 pro-
cessors on the CORAIL supercomputer at CERFACS (190 processors are devoted
to Avbp, 1 processor to Pyrowo and 1 processor to the OpenPalm driver, see
Appendix B).
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4.3 Multi-physics three-dimensional case

Three-dimensional flame-scale simulations are performed at laboratory scale. First,
a radiation-forced three-dimensional case with a coupling between Avbp and Py-
rowo (i.e., without coupling with the Prissma radiation solver) is performed
to determine the most suitable numerical strategy to obtain a robust and stable
flame solution. Second, a fully multi-physics three-dimensional case with a coupling
between Avbp, Pyrowo and Prissma is run to investigate the spatial distribu-
tion of radiation that determines the potential rate of fire spread. A comparison
with semi-empirical modeling approaches for macroscopic quantities of interest is
provided.

As for the radiation-forced two-dimensional case, the combustion is described using
the 2S-CH4-BFER reduced chemical kinetic scheme presented in Section 2.4.3,
Chapter 2. The operating point studied here is also a pure diffusion flame.

4.3.1 Numerical configuration

→֒ Computational domain

The three-dimensional case is set up based on the previous two-dimensional case
shown in Fig. 4.13(a) by adding the z-dimension, representing the normal direction
to the fire spread direction in the frame of reference (x, y, z). Thus, y = 0 m
still corresponds to the Wall-Pyrowo interface that is now two-dimensional and
described in terms of x- and z-coordinates. z varies between 0 and 1 m since the
fuel bed litter is 1-m-wide in the experiments (see Fig. 4.2). A schematic of the
computational domain is presented in Fig. 4.24.

→֒ Computational grid

As a preliminary step, the three-dimensional computational domain is meshed based
on the two-dimensional unstructured mesh shown in Fig. 4.13(b). While each plane
(x, y) for a given z-coordinate is still meshed with the two-dimensional unstructured
mesh using 235,000 triangular cells, reaching a resolution of 2.5 mm in the flame
region; the z-direction is discretized with 21 nodes corresponding to a cell size of
5 cm. Globally, the computational grid is composed of 4.7 millions of cells. In
particular, the Wall-Pyrowo at the gas/vegetation interface is discretized with
15,400 cells. As for the two-dimensional case, the second-order accurate cell-vertex
Lax-Wendroff scheme is used in Avbp for the numerical integration with a time
step ∆tA = 3 × 10−7 s. The Pyrowo time step ∆tPY is set to ∆tA, since the
coupling frequency is Nit = 1 and both solvers simulate the same physical time.
Note that the Pyrowo time step ∆tPY could be much larger (on the order of
10−3 s), but for simplicity purposes and since its computational cost is negligible
in comparison to Avbp, ∆tPY = ∆tA.



Chapter 4 - Analysis of laboratory-scale fire simulations 173

x!
y!

z!

WALL-PYROWO!

INLET!

OUTLET!

PERIODIC!

Zone of radiation 
external forcing!

10 m!

10 m!

1 m!

Figure 4.24: Numerical configuration (geometry and boundary conditions) of three-
dimensional simulations of Avbp coupled to Pyrowo through the two-dimensional
gas/vegetation interface Wall-Pyrowo.

In this three-dimensional configuration, the flame is artificially-thickened using the
TFLES model following Eqs. (2.47)-(2.48), see Chapter 2. Motivations for this
choice for a diffusion flame are explained in Section 3.3.4, see Chapter 3. The
adaptive thickening along the y-direction presented in Fig. 4.25 avoids numerical
issues associated with the flow-induced strain that makes the flame thinner and
that leads to puffing.
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Figure 4.25: Adaptive thickening factor F : variation of F along the y-direction (vertical
direction normal to the gas/vegetation interface).
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→֒ Initial and boundary conditions

As shown in Fig. 4.24, boundary conditions are based on the two-dimensional case.
The plane (x, z) for y = 0 m corresponds to the gas/vegetation coupling interface
(Wall-Pyrowo) presented in Section 3.4.2, Chapter 3. In addition, the planes
(x, y) for z = 0 m and z = 1 m are set up as periodic boundary conditions in
a preliminary step. Initially, the spatial profiles of the gas phase and vegetation
are imposed as the two-dimensional solution extended along the z-direction. The
radiation profile shown in Fig. 4.14 for the two-dimensional case is also extended
along the z-direction.

⊲ Gas phase. Figure 4.26(a) represents the temperature cross-section of the
gas mixture, in which the flame height is nearby 2.75 m at the given time (the
flame height is particularly high at this time due to an incoming detachment
of burnt gas pockets) and in which the temperature reaches a maximum value
of 2087 K. Three-dimensional 2000-K iso-temperatures of the flame colored
by the mass fraction of CH4 and by the velocity magnitude are also shown
to represent the flame structure in Figs. 4.26(b)-(c). The first iso-contour in
Fig. 4.26(b) is in the burning region since the mass fraction of CH4 is far
below 0.10 but still non-zero (near 0.008). The second 2000 K iso-contour
corresponds to a zero-value of the mass fraction of CH4, meaning that the
first reaction in 2S-CH4-BFER (methane oxidation) is completed and that this
iso-contour is in the burnt gas region. Consistently, the velocity magnitude is
increased at the top of the second iso-contour in Fig. 4.26(c) due to buoyancy.

(a) (b) (c) 

y!
x!

Figure 4.26: Initial condition of the gas phase for three-dimensional simulations. (a) Cross
section of the temperature field at z = 0.5 m. (b) 3-D iso-contour of the temperature field
(2000 K) colored by the mass fraction of CH4. (c) 3-D iso-contour of the temperature
field (2000 K) colored by the velocity magnitude [m/s].
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⊲ Gas/vegetation interface. Also, the two-dimensional gas/vegetation inter-
face is represented in Fig. 4.27. The pyrolysis zone illustrated in Fig. 4.24
and centered at x = 4 m exhibits a temperature near 680 K in Fig. 4.27(a),
corresponding to the zone where the radiation forcing is maximum as shown
in Fig. 4.27(b). Consistently, Fig. 4.27(c) highlights that the bulk mass den-
sity of the vegetation layer ρv = βvρp is significantly decreased in this zone
below 10 kg/m3, while far from the flame its value remains near 25 kg/m3.

Figure 4.28 presents the different mass contents in the vegetation, in terms
of moisture, dry material and char material contents. Figure 4.29 shows the
corresponding source terms in the vegetation solid phase (i.e., drying, pyrol-
ysis, char oxidation). The mass fraction of char materials is nearby 1 in the
pyrolysis zone, meaning that vegetation is in this zone, at the beginning of the
char oxidation stage of its thermal degradation, with a temperature between
600 and 700 K consistently with Fig. 4.29(c). In contrast, Figs. 4.29(a)-(b)
indicate that biomass drying and pyrolysis are confined at the boundaries of
the pyrolysis zone since moisture is already evaporated and dry materials are
already transformed into pyrolysis gases and char materials in this zone. The
cross-section of the source term fields at z = 0.5 m, representing their spatial
distribution along the x-direction, is presented in Fig. 4.30. From a global
viewpoint, the mass rate at the gas/vegetation interface is about 0.2 kg/m2/s
in the pyrolysis zone (since δv = 0.10 m), leading to a wall-normal injection
velocity approximately equal to 0.30 m/s.

Note that this configuration is a preliminary step towards fully three-dimensional
simulations, whose aim is to demonstrate the feasibility of multi-physics CFD for
studying the flame structure of a propagating fire.

4.3.2 Flame structure

The previously-described three-dimensional case solving for the coupling between
Avbp and Pyrowo is simulated during 0.135 s. A stable solution is obtained from
a numerical viewpoint. In this preliminary step towards a fully multi-physics three-
dimensional simulation, Fig. 4.31 already shows that the flame structure obtained
for the two-dimensional simulation (see Fig. 4.20) is consistent with the present
three-dimensional simulation. The scatter plot colored by the Takeno index shows
that the maximum value for the gas temperature is obtained at the stoichiometric
point zst = 0.32 and that the flame is still of the diffusion type; the burnt gas
temperature is more than 100 K higher than in the two-dimensional case and thereby
closer to the equilibrium temperature.

Simulating such a physical time (0.135 s) corresponds to nearly 440,000 iterations
of the three-dimensional coupled Avbp/Pyrowo solver (Nit = 1); these iterations
require 48 h on 256 processors on the GENCI-CURIE supercomputer (254 processors
are devoted to Avbp, 1 processor to Pyrowo and 1 processor to the OpenPalm
driver, see Appendix B). This simulation is time-consuming and requires further
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time-integration to obtain significant changes in flame behavior such as puffing.
Figure 4.32 provides insight into the flow field (through the representation of the
velocity-based field colored by the gas temperature); air entrainment is induced at
the flame basis and on both sides (consistently with PIV measurements) as well
as near y = 0.5 m (which enhances the detachment of burnt gas pockets that are
subject to buoyant vertical acceleration).

Figure 4.31: Scatter plot of temperature versus mixture fraction z after simulating 0.135 s,
colored by the Takeno index (ranging from −1 to 1); z = 0 corresponds to ambient air,
and z = 1 corresponds to pyrolysis gases released at Tw = 680 K.

Figure 4.32: Velocity magnitude in the flow cross-section (at z = 0.5 m), with arrows
colored by the gas temperature [K], showing air entrainment at the basis of the flame.
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4.3.3 Quantification of radiation heat transfer

A three-dimensional fully coupled simulation including Avbp, Pyrowo and the
DOM-based radiation solver Prissma was performed following the strategy pre-
sented in Section 3.4, Chapter 3. The simulation corresponds to the previously-
described three-dimensional case, starting from the same initial condition extended
from two-dimensional calculations and with the same boundary conditions. In ad-
dition, the emissivity of the gas/vegetation interface is assumed to be equal to 1
(black-body type) in a preliminary step.

Figure 4.33 shows the main variables of interest at the gas/vegetation interface
Wall-Pyrowo after simulating a physical time of 0.018 s. Even though this
computational time is not yet sufficient to study the temporal behavior of the
physical system, radiation properties of the three-dimensional flame and the spatial
distribution of the heat transfer to the vegetation are investigated.

⊲ Vegetation reaches the temperature Tw = 675 K and is subject to a mass
loss rate ranging from 0.12 kg/m2/s in the drying vegetation zone up to
0.19 kg/m2/s due to pyrolysis and char oxidation, see Figs. 4.33(a)-(b).

⊲ The flame is anchored at the boundaries of the pyrolysis zone, where pyrolysis
gases are released towards the gas phase, and produces a radiation heat flux
q̇w [W/m2] that can be decomposed into three components presented in
Figs. 4.33(c)-(d)-(e), along x-, y- and z-directions, respectively. Additionally,
Fig. 4.34 provides the one-dimensional profile of the radiation heat flux for
its x- (horizontal) and y- (vertical) components, along the x-direction that
corresponds to the direction of fire propagation. The latter gives a more
quantitative viewpoint of the spatial distribution of radiation (with respect
to the temperature of vegetation) and thereby, of the state of the physical
system.

• It is shown that the x-component of the radiation heat flux features a
magnitude that is quasi-symmetric with respect to the flame location
(itself marked by the highest values of biomass temperature). This x-
component reaches a magnitude of 18 kW/m2. This value is consistent
with experimental measurements obtained from fluxmeters directed in
the x-direction and evaluated to 12.3 kW/m2 in flat configuration (see
Table 4.1).

• Along the y-direction, the radiation heat flux towards the vegetation
reaches 50 kW/m2 ahead of the flame front. The zone over which the
radiation heat flux is significant is about 60 cm long on the side of the
flame corresponding to increasing x-coordinates. The maximum value
of the radiation heat flux is reached within 20 cm of the flame; this zone
corresponds to the pre-heated zone that enhances the thermal degra-
dation of unburnt vegetation and leads to the propagation of the fire.
Note that the spatial distribution of the y-component of the radiation
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heat flux on both sides of the flame is not totally symmetric; this is due
to the shape of the buoyant flame similar to that shown in Fig. 4.26.

• In contrast, the radiation heat flux along the z-direction is symmetric due
to periodic boundary conditions imposed both for z = 0 m and z = 1 m
in Avbp. However, boundary conditions in Prissma do not satisfy this
periodicity (there is no external heat flux) and further developments are
required to ensure the compatibility of boundary conditions.

z!

x!
1 m!

4 m!x = 4 m!

(a) 

(b) 

(c) 

(d) 

(e) 

 K!

kg/m2/s!

W/m2!

W/m2!

W/m2!

Figure 4.33: Instantaneous snapshots of the two-dimensional gas/vegetation interface
Wall-Pyrowo colored by: (a) vegetation temperature Tv [K]; (b) vegetation mass loss

rate ṡw [kg/m2/s]; (c) x-component of the wall radiation heat flux q̇w [W/m2]; (d) y-

component of the wall radiation heat flux q̇w [W/m2]; and (e) z-component of the wall

radiation heat flux q̇w [W/m2].

Simulating such a physical time (0.018 s) corresponds to nearly 60,000 iterations
of the three-dimensional coupled Avbp/Prissma/Pyrowo solver. The coupling
frequency between Avbp/Pyrowo and Prissma is Nit = 10, 000, corresponding
to a physical time of 0.003 s, which is sufficient to capture the motion of the flow
field and its impact on radiation (Avbp is limited by acoustic time scales, while the
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radiation heat transfer evolves with convection time scales). These iterations require
12 h on 192 processors on the CORAIL supercomputer at CERFACS (190 processors
are devoted to Avbp, 1 processor to Pyrowo and 1 processor to the OpenPalm
driver, see Appendix B). This fully-coupled simulation is computationally expensive
and requires further time-integration to study the time-varying behavior of the flame
and its consequence on the radiation heat flux at the flame/vegetation interface (in
terms of intensity and spatial distribution).
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Figure 4.34: Cross-section of the fields at the two-dimensional gas/vegetation interface
(z = 0.5 m) presented in Fig. 4.33, corresponding to their spatial distribution along the
x-direction. The black solid line represents the vegetation temperature Tv [K]; the orange

solid line represents the x-component of the wall radiation heat flux q̇w [W/m2], while the
orange dashed line represents its y-component.

4.3.4 Towards comparison to empirical spread-rate modeling

The submodels underlying the Rothermel’s semi-empirical model (see Appendix A)
are evaluated for the conditions of the laboratory-scale experiment, i.e., βv = 0.05,
Mv = 0.10, Σv = 4, 000 1/m, δv = 0.10 m and ρp = 500 kg/m3 (corresponding to
input parameters of the Rothermel’s ROS model). The no-wind ROS given by the
Rothermel’s model is Γ0 = 4 mm/s, which is coherent with the experimental ROS
value, 5 mm/s. Note that Γ0 is formulated as follows in the Rothermel’s model:

Γ0 =
Ip,0

ρb ǫQig
=

χ Ir
ρb ǫQig

, (4.6)

where Ip,0 [W/m2] is the propagating heat flux that is expressed as a fraction χ
of the reaction intensity Ir [W/m2], and where ρb ǫQig [J/m3] represents the heat
required to ignite biomass fuel. In the present case, Γ0 = 4 mm/s corresponds to a
propagating heat flux Ip,0 = 4.4× 106 W/m2 with the release rate of combustion
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Ir = 5.5 × 107 W/m2 and the propagating flux ratio χ = 0.075 (a function of
the fuel packing ratio βv and the fuel particle surface-area-to-volume ratio Σv).
This propagating heat flux Ip,0 encompasses all heat transfer contributions to the
vegetation ahead of the flame front (due to the calibration of this term against
wind-tunnel experiments in Rothermel’s approach) and is therefore much higher
than the radiation heat flux simulated by Prissma, equal to 50 kW/m2 along the
vertical direction ahead of the flame front.

In summary, the term Ip,0 is a global characterization of the heat transfer towards
the unburnt vegetation in the Rothermel’s semi-empirical ROS model. Multi-physics
LES appear as a powerful tool to analyze and dissociate the different contributions
to the heat transfer, which lead to biomass fuel pyrolysis and promote combustion.
It is worth mentioning that the calculation with Prissma only accounts for the
radiation in the gas phase and does not yet include the soot volume fraction in
the gas phase. The soot contribution is expected to increase the total propagating
heat flux towards unburnt vegetation. More physically-consistent simulations of the
proposed multi-physics coupled strategy and extensive comparisons with existing
simulation capabilities (e.g. Wfds) require to include soot formation and soot
oxidation in vegetation and gas phase.
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Conclusion

This chapter presents an original development of multi-physics coupled sim-
ulations of fire propagation at laboratory flame scale, solving for the flame
structure (at the millimeter scale) and including radiation heat transfer as well
as biomass pyrolysis. The proposed coupling relies on a multi-model strategy
based on high-performance computing that involves:

⊲ the Avbp large-eddy simulation solver, accounting for reacting multi-
species gas mixture, transport and diffusion processes at flame scale: the
combustion of pyrolysis gases is modeled using the 2S-CH4-BFER re-
duced chemical kinetic scheme with pre-adjusted pre-exponential factors
to obtain consistent flame temperature and burning velocities;

⊲ the Prissma radiation solver, which relies on a discrete ordinate method
and a tabulated spectral model (FS-SNBcK) to account for the radiation
of the gas phase (e.g., CO2, H2O);

⊲ the Pyrowo biomass thermal degradation solver, developed in this work,
to accurately and effectively describe the release of pyrolysis gases from
vegetation (CH4, CO, CO2, H2O) when subject to thermal heating.

This multi-physics coupling is handled by the dynamic code coupler Open-
Palm, which allows for developing the multi-physics simulation in a message
passing interface environment, managing and optimizing computing resources
between the different solvers, offering more flexibility in the future development
of each model component. Such physics-based strategy is useful to provide a
comprehensive understanding of the mechanisms as well as of the characteristic
time-scales and length-scales underlying fire propagation. It is also useful to
estimate wildfire emissions by quantifying the amount of pollutant emissions
such as carbon monoxide, which are produced by the flame zone and released
into the atmospheric thermal plume. In summary, coupled multi-physics large-
eddy simulations have been found promising to simulate propagating buoyant
flames typical of wildfires. Preliminary results were presented in the following
conferences:

⊲ Rochoux, M.C., Cuenot, B., Riber, E., Veynante, D. and Darabiha, N.,
Turbulent combustion simulations of a laboratory-scale fire propagation,
in Conference of Numerical Simulation of Forest Fires, from Combustion
to Emissions, May 13-18, Cargèse, France.

⊲ Rochoux, M.C., Cuenot, B., Riber, E., Veynante, D. and Darabiha, N.,
LES of natural fire propagation in a lab-scale configuration, in 14th Inter-
national Conference of Numerical Combustion, April 8-10, San Antonio.
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However, only the feasibility of the proposed approach has been evidenced here
and extensive tests are now mandatory to assess its performance. To improve
the fine-scale representation of the processes involved in wildfires, future works
could include the following steps:

⊲ Comparative study of experiments and physics-based simulators.
The proposed multi-physics coupled strategy needs to be further evalu-
ated against experiments and current physics-based simulators such as
Wfds and Firetec, in order to evaluate the relevance of each model
component for given fire spread conditions. The assumptions used to es-
timate the rate of fire spread based on empirical/semi-empirical modeling
could be examined in detail.

⊲ Improvement of the pyrolysis model. Pyrowo is currently limited to
a 0-D formulation; it could be extended to a 1-D (vertical) formulation
accounting for the radiation vertical profile in vegetation, from top to
bottom, due to flame and vegetation contributions. The soot formation
during biomass thermal degradation could also be included.

⊲ Refinement of the radiation model. One of the next steps is to
include soot oxidation in the gas phase; one challenge lies in the char-
acterization of the soot volume fraction to provide to Prissma. For
this purpose, current physics-based models such as Wfds or FireStar
could be helpful to provide preliminary estimates of this soot volume frac-
tion. Also, boundary conditions in Prissma need to be carefully studied
to properly represent heat losses at the boundaries as well as biomass
emissivity, based on comparison to measurements. The influence of the
spectral model also needs to be analyzed in detail, when accounting for
the radiation of the gas phase and soot.

⊲ Refinement of the combustion model. From the air quality view-
point, quantifying CO and other pollutants lifetimes remains a challenge
for fire modeling and for better predicting wildfire emissions. To better
track the formation and oxidation of CO at flame scale, a specific chem-
ical kinetic scheme needs to be integrated in Avbp; 2S-CH4-BFER was
only calibrated to properly represent the flame temperature and speed in
rich mixtures, but improvements in the representation of the burnt gas
composition would be required to properly estimate CO emissions. The
need for a subgrid-scale turbulent combustion model adapted for buoyant
flows could also be discussed. For these developments, it is imperative
to use simultaneously diagnostic techniques and simulations, in order to
obtain physically-consistent results.

Note that these developments would not reconsider the coupling strategy based
on OpenPalm, which is of great interest to refine the different submodels
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underlying the multi-physics simulations, while maintaining the same coupled
simulator.

In the long-term, tabulating the quantities of interest derived from flame-scale
simulations (e.g., fireline intensity, rate of spread, radiation heat transfer ahead
of the flame front) in a look-up table could be an alternative to estimating
the rate of spread based on empirical modeling in regional-scale front-tracking
simulators.
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Introduction

The challenges found on the route to developing quantitative wildfire spread models
are two-fold. First, there is the classical modeling challenge associated with pro-
viding accurate mathematical representations of the multi-physical processes that
govern wildfire dynamics (involving biomass pyrolysis, combustion, flow dynamics
as well as atmospheric dynamics and chemistry). Second, there is the less common
challenge associated with providing accurate estimates of the input data and pa-
rameters required by the models. Current fire models are limited in scope because
of the large uncertainties associated with the accuracy of physics-based models,
because also of the large uncertainties associated with many of the environmental
conditions required as input parameters to the fire problem.

A possible approach to overcome the limitations in numerical simulations of wild-
fires compatible with operational forecast is data assimilation. This approach takes
advantage of recent progress made in airborne remote sensing that allows real-
time monitoring of the fire front location. Data assimilation consists in combining
computer simulation tools with sensor observations, or more precisely in using obser-
vations to correct and optimize computer model predictions assuming both sources
of information (model and observations) are subject to uncertainties. While still
original in fire and combustion research, data assimilation is an established approach
in several scientific areas, for instance in the field of numerical weather predictions
(Rabier, 2005) or operational oceanography (GODAE, 2009).

Whereas the source of uncertainties in observing data mostly relate to instrumental
and representativeness errors, the source of uncertainties in numerical models relate
to an incomplete and imperfect knowledge of boundary and initial conditions, an
imperfect knowledge of physico-chemical mechanisms as well as an approximate
evaluation of a large number of model parameters. These uncertainties in the
model inputs translate into uncertainties in the model outputs and thus, do not
allow for the development of fully deterministic models. It is therefore necessary
to adjust model parameters, initial and boundary conditions in order to provide
satisfying simulations and forecasts, as observations of the system become avail-
able. Similar issues can be raised in the field of wildfires. For this purpose, we
aim at demonstrating, in this thesis, the merits and potential benefits of data
assimilation to achieve data-driven predictive simulations of wildfire spread. The
prototype data-driven wildfire simulator adopts a regional-scale viewpoint: it treats
wildfires as propagating fronts at a rate of spread due to Rothermel’s model and
assimilates a time-series of observations of the fire front location. The data as-
similation algorithm features a choice between a parameter estimation approach in
which the control variables (the estimation targets) are the input parameters of the
ROS model, and a state estimation approach in which the control variables are the
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spatial coordinates of the discretized fire front. The performance of the prototype
data-driven wildfire spread simulator is demonstrated in synthetic representative
cases including spatially-varying vegetation properties and temporally-varying wind
conditions as well as in a real-case study corresponding to a controlled grassland
burning experiment.6

This PhD-level project is a collaboration between CERFACS (Drs. Sophie Ricci and
Bénédicte Cuenot), France, and the Department of Fire Protection Engineering,
University of Maryland (Dr. Arnaud Trouvé), USA, with the help of Blaise Del-
motte (Delmotte et al., 2011) and Charlotte Emery (Emery et al., 2013) as Master
students. Additional aspects were studied through a collaboration with Wellington
da Silva (Mines Albi, France, and the Federal University of Rio de Janeiro, Brazil)
for the application of particle filters to wildfire spread forecast and through a col-
laboration with Didier Lucor (Institut d’Alembert, France) for the development of
a polynomial chaos strategy to reduce the computational cost of wildfire spread
forecast.

6The proposed data assimilation strategy is not applied here to a real-world regional-scale fire
spread as Aullène for example (see Fig. 1.24, Chapter 1) due to the required treatment of complex
terrain topography (that was only added recently in the Firefly simulator, see Appendix G) and
to the required post-processing that is heavy for data assimilation, but this is definitely the ultimate
goal of this research.







Chapter 5

General features of data

assimilation

Data assimilation (DA) is an efficient strategy inherited from estimation
theory that incorporates measurements into a computer model of a real
system, while accounting for their uncertainties as weight for the resolu-
tion of an inverse problem. The objective is to formulate some feedback
information to the computer model and to improve the physical under-
standing and/or the numerical prediction of the behavior of this physical
system. Estimation theory provides a broad conceptual framework and
a number of algorithms for addressing the scientific challenges and open
questions of data assimilation. Still, data assimilation is far from being a
simple statistical tool since physical understanding and modern computa-
tional mathematics play a large role in actually solving the practical issues
of data assimilation, in particular in the domain of geosciences that involves
complex, non-linear, multi-scale and multi-physical dynamic models.

In this chapter, the objective is to provide a reasonable starting point for
newcomers to the field of data assimilation and its formalism as well as
to provide some insight on the similitudes and differences between the
classical data assimilation algorithms (e.g., variational approaches, Kalman
filter and extensions, particle filters).

Uncertainty quantification

Observations Computer model

DA
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5.1 Data assimilation: an inverse modeling problem

5.1.1 Inverse modeling problems

→֒ Definition: The dragon analogy

Consider a forward problem that is cast in the (discrete) form y = G(x), with G
the explicit operator that represents the governing equations of the physical prob-
lem and that translates the knowledge on the problem noted x ∈ Rn (e.g., input
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parameters, initial condition, boundary conditions, model variables) into its measur-
able outcomes y ∈ Rp. Using the dragon analogy taken from Bohren and Huffman
(1983), while the forward problem consists in, given a dragon x (the control space),
inferring its tracks y through a mapping function G, the inverse problem consists
in, given its tracks y (the observation space), retrieving the dragon characteristics
x that cannot be directly measured. The inverse problem aims therefore at inferring
a coherent picture of the dragon characteristics x given the available incomplete
information on its tracks y and in some sense, at inverting the mapping function
G. A general schematic of an inverse modeling problem is given in Fig. 5.1. Note
that G is called the observation operator within the data assimilation framework.

ed x y

Observation operator

Inverse modeling problem

Control space Observation space
"dragon" "tracks"

Figure 5.1: Schematic of an inverse modeling problem.

→֒ Challenges found in inverse modeling problems

The resolution of the inverse problem is often confronted with two major difficulties:
(1) the linearity or non-linearity property of the observation operator G and of the
underlying equations; (2) the amount of information available (i.e., the dimension
p of the outcomes y) to determine the unknown inputs x (i.e., the control vector
of dimension n), which can induce an ill-posed inverse problem. From a theoretical
perspective, an inverse problem is ill-posed in the sense of Hadamard (1902) if one
of the three following conditions is not satisfied: existence, unicity and stability of
the solution x. In this context, each unknown is considered as an available degree of
freedom, while each equation introduced in the system G acts as a constraint that
restricts the range of the possible solutions for the unknown x. Different scenarios
can be considered:

⊲ Under-determined problems. When the number of unknowns n is larger
than the number of outcomes p included in the observation operator G, mul-
tiple solutions exist, violating the principle of unicity.

⊲ Over-determined problems. When the number of outcomes p is larger
than the number of unknowns n, there is an inconsistency in the solution
as different series of outcomes y would lead to different values for x. The
existence of the solution is not guaranteed. Thus, a selection criterion has
to be introduced in the resolution of the inverse problem to determine the
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effective physical values for the unknown x.

⊲ Threshold case. When the number of outcomes p and the number of
unknowns n are identical, it is possible to define a unique solution for the
inverse problem. However, in this case, the inverse problem might suffer from
numerical instability when solved with a finite precision or with errors in the
measurements. For instance, if two series of measurements are embedded
with significantly different errors, then the resolution of the inverse problem
may lead to two different solutions x. In this case, the inverse problem
solution is not repeatable.

To overcome the issues related to inverse problems, a large body of literature
presents strategies to reformulate the inverse problem for numerical treatment.
One commonly-used strategy for over-determined and under-determined problems
is called regularization (e.g., generalized Tikhonov regularization) and consists in
considering the prediction of the computer model itself as a source of information on
the physical system. Thus, this model prediction can be introduced as an additional
term or constraint in the inverse problem formulation to give preference to the most
realistic solution. This a priori information is usually referred to as the background.
See Tikhonov and Arsenin (1977), Tikhonov and Leonov (1998), Tarantola (1987)
or Aster et al. (2012) for a more detailed discussion on these aspects.

5.1.2 Key ideas of data assimilation

Data assimilation is the meeting point of physical modeling, uncertainty analysis
and mathematical algorithms that aim at forecasting with accuracy the behavior of
a physical system by combining observations and predictions of a computer model.
Inherited from estimation theory and control theory (Gelb, 1974), it has been mainly
developed in the context of geosciences, where neither observations nor computer
model, when used alone, can provide a complete and certain description of the
real state of a physical system. Data assimilation can therefore be considered as
the probabilistic formulation of an inverse problem, where the uncertainties in the
computer model and in the measurements are used as weights for the resolution of
the inverse problem (Daley, 1991; Ide et al., 1997; Talagrand, 1997; Bouttier and
Courtier, 1999; Kalnay, 2003; Bocquet, 2011).

⊲ Incompleteness of observations. Observations (noted yo in the following)
are usually incomplete and sparse in space and time. They measure a partic-
ular phenomenon, without providing information on the physical mechanism
(e.g., spaceborne spectral radiance measurement). In that case, geophysi-
cal properties are only inferred through physical modeling (e.g., retrieval of
surface temperature or aerosol properties). When observations are available,
their sources of uncertainties mostly relate to instrumental errors (i.e., errors
in raw measurements) as well as representativeness errors (i.e., inconsistency
between what the instrument can measure and what the computer model can
represent).
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⊲ Limitations of physical modeling. Unlike observations, the computer
model (also referred to as the forward model) describes the temporal evo-
lution of a physical system through a set of physical laws (e.g., empirical
formulation, system of partial differential equations). It can provide a highly-
resolved description of the quantities of interest (e.g., temperature, pressure,
velocity fields in fluid-mechanics problems), which is useful to improve the
understanding of the physics-related processes (re-analysis mode) and/or to
estimate future behavior of the physical system (forecast mode). However,
a computer model only provides an approximate solution of the evolution
of the physical system, because of an incomplete knowledge of boundary
and initial conditions as well as an approximate description of a large num-
ber of parameters (free or model parameters, commonly referred to as input
parameters). These uncertainties in the model inputs translate into uncer-
tainties in the model outcomes and thus, do not allow for the development
of fully deterministic and generic forward models. In addition to these errors,
the simplification and discretization of the physics and the use of numerical
methods are also significant sources of uncertainties in a computer model;
these numerical errors can even accumulate over time. The knowledge of
these uncertainties and their quantification is therefore important for the de-
velopment of any physical analysis based on an uncertain model (this has
motivated the development of uncertainty quantification in fluid mechanics
for instance, Lucor et al., 2007). In this context, the uncertain variables
in the computer model are described in the form of a probability distribu-
tion (instead of a unique deterministic value), meaning that the computer
model is considered as stochastic. Thus, the computer model provides some
background information in the form of a prior estimate, useful to initiate the
estimation process.

Given the multiple sources of uncertainties that inevitably exist in both measure-
ments and modeling, the purpose of data assimilation is to combine, with the
proper weighting, all these different sources of information on a physical system
to formulate some feedback information on the system and thus, to adjust input
parameters, initial and boundary conditions and/or model state variables (gener-
ally referred to as control variables x) as shown in Fig. 5.2. It follows that data
assimilation is a particular type of inverse modeling problem with a probabilistic
dimension; the unknown quantities being represented as random variables that are
associated with a probability density function (PDF). In this sense, data assimi-
lation aims at determining the best (optimal) estimate of the unknown x (called
analysis or posterior) using estimated statistical errors for both the prior estimate
of x (indifferently called background, forecast or prior) and the observations yo.
It follows that, within the data assimilation framework, the optimality criterion is
based on maximum-likelihood estimation for the PDF associated with the control
vector x. Note that this is equivalent to the variance error minimization of the
analysis solution when the error statistics are Gaussian as shown further in this
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manuscript. One crucial question to be addressed is which statistics of the errors
are the targets of the optimization process (moments of the PDF or the full PDF).

Numerical 
resolution

of the equations

Parameters

Initial condition

Boundary conditions

Comparison

Model state

Observations

Computer model

Inverse problem
Data assimilation algorithm

Figure 5.2: General framework of data assimilation.

This data assimilation approach fits into the wider domain of inverse problems
and dynamic data-driven application systems, where data are used to derive more
accurate and reliable simulations for improved predictions of the dynamics of a
complex physical system.

5.1.3 Genesis of data assimilation

→֒ A look back in history

The ideas underlying data assimilation appeared at the end of the eighteenth century
thanks to the efforts of astronomers to predict the motion of our solar system’s
planets, moons and asteroids with a limited handful of observations. The young
mathematician Karl Friedrich Gauss (1777-1855) successfully predicted in 1801
where the newly-discovered asteroid Ceres might be found after reappearing from
behind the Sun, without solving the Kepler’s non-linear equations of planetary
motions, but using a very limited set of imperfect observations to compute the
asteroid orbit. At this early stage, he already introduced the idea that the model
can be used as a prior estimate and that the correction has to fit the observations
within their presumed observation errors. This work at the origin of estimation
theory was closely related to the principle of least-squares published in 1805 by
Adrien-Marie Legendre (1752-1834) at that time.

"If the astronomical observations and other quantities on which the compu-
tations of orbits is based, were absolutely correct, the elements also, whether
deduced from three or four observations, would be strictly accurate (so far in-
deed as the motion is supposed to actually take place exactly according to the
laws of Kepler), and therefore, if other observations were used, they might be
confirmed, but not corrected. But since our measurements and observations
are nothing more than approximations to truth, the same must be true of all
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calculations resting upon them, and the highest aim of all computations made
concerning concrete phenomena must be to approximate, as nearly as practi-
cable to the truth. But this can be accomplished in no other way than by a
suitable combination of more observations than the number absolutely requi-
site for the determination of the unknown quantities. This problem can only be
properly be undertaken when an approximate knowledge of the orbit has been
already taken into account, which is afterwards to be corrected, so as to satisfy
all the observations in the most accurate manner possible."

K.F. Gauss, Theoria Motus Corporum Coelestium (1809), English translation.

Due to the fast development of digital computers, the field of estimation theory
began to mature in the 1960s and 1970s. In particular, the concept of maximum
likelihood by Fisher (1890-1962) and of sequential optimal filtering by Rudolf Emil
Kalman (1930- · ) were introduced. The resulting Kalman filter (KF) is particu-
larly suited for sequential estimation in the case of a linear dynamic model with
Gaussian error statistics (Kalman, 1960; Kalman and Bucy, 1961). Its predicting
capability was demonstrated during the Apollo program (between 1961 and 1972)
by sequentially estimating the evolving position of the Apollo module towards the
Moon. A scheme of the technique is presented in Fig. 5.3: the KF algorithm gener-
ated a more realistic estimate of the module position (the analysis) using available
measurements and then, used this new estimate as a prior information to forecast
the trajectory of the Apollo module at future lead-times. This combination of esti-
mation and forecast constitutes an assimilation time window and was sequentially
applied as new observations became available, thus tracking the position of the
Apollo module until it reached the Moon.

Earth

Moon

Onboard measurements

True trajectory

Kalman filter

Prior estimate

Figure 5.3: Sequential estimation of the position of the Apollo module using the KF
algorithm: at a given time, the KF compares model predictions using Newton’s laws (blue
dashed line) with onboard measurements (orange dots) to generate a better estimate of
the module true position (black solid line).
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→֒ Example of numerical weather prediction

Historically, weather forecast has been a pioneer in the operational application of
data assimilation. The dynamics of the atmosphere is governed by a prognostic
model based on the fundamental laws of fluid mechanics such as mass, momen-
tum or energy balance equations; subgrid-scale processes are parameterized and are
therefore embedded with uncertainties. The need for a reliable numerical weather
prediction system and for forecasting natural disasters (e.g., air quality prediction,
tropical cyclone forecasting) has motivated the development of advanced data as-
similation techniques that incorporate the large amount of available observations
(e.g., in-situ sensors, radiosondes, weather satellites, airborne sensors), which in-
equally cover the Earth surface. In this context, the objective of data assimilation
techniques is to estimate the current weather (in terms of temperature or pressure)
and subsequently, to use this estimation as the initial condition of the computer
model for the next assimilation cycle.

Over the past decades, different data assimilation algorithms have been developed
and their performance have been evaluated for weather forecasting. First attempts
of using measurements to constrain the computer model predictions were based on
simple interpolation approaches called objective analyses (in contrast to the sub-
jective analyses based on the expertise of operational meteorologists), see Bergth-
orsson and Döös (1955). For instance, the Cressman analysis scheme (Cressman,
1959; Lorenc, 1986; Daley, 1991; Bouttier and Courtier, 1999) constitutes a basic
algorithm of sequential objective analyses, in which the model state (represented
as grid-point values) is set equal to the observed values in the vicinity of the ob-
servation locations. As shown in Fig. 5.4, this correction of the prior model state
decreases while the distance between the simulated grid-point and the observations
becomes larger. This decrease is controlled by a weight function that is parame-
terized with a user-defined constant called the influence radius, beyond which the
observations have no contribution to the analysis model state. The closer the ob-
servation, the larger its weight in the analysis. In particular, this weight is equal to
one if the grid-point is collocated with the observation location.

In practice, the Cressman method and its variants have severe drawbacks: (1) there
is no direct method to specify the optimal weight function; (2) the precision asso-
ciated with the background information and the observations is not accounted for;
for instance, assimilating poor-quality measurements would degrade a good-quality
estimation of the computer model; and (3) the analysis solution is not guaranteed
to respect the properties of the true system when integrating further the computer
model (e.g., smoothness of the fields, balance relation between the different model
state variables), in which cases unobserved model variables may be significantly
degraded by unphysical features.

The breakthrough of statistical estimation was achieved by Gandin (1963) with the
development of the optimal interpolation (OI) technique. This technique relies on
the idea that the weights given to the observations can be calculated according to
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Control variable ed x
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Prior
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Figure 5.4: Example of Cressman analysis for a 1-D spatially-distributed control variable x
at a given time: the blue dashed curve corresponds to the prior field, orange dots correspond
to observations, and the red solid curve corresponds to the analysis. Credit: Bouttier and
Courtier (1999).

the error statistics of both the prior information (i.e., a climatological information as
OI considers time-invariant, homogeneous, isotropic errors) and the observations.
Within this framework, error statistics are represented with the first and second mo-
ments of the PDF (mean and covariance) associated with the prior and observation
errors (the complete knowledge of the PDF is not required by the OI methodology);
they are numerically implemented by the means of error covariance matrices. Thus,
the weights given to the observations are chosen to minimize the error variance on
the analysis estimate, similarly to the best linear unbiased estimator (BLUE). In a
state estimation problem, a specificity of the OI technique is that it only assimilates
a selection of observations to derive the analysis for each control variable at each
grid-point. The OI only considers the observations in the vicinity of this grid-point
and thereby, the analysis is computed block-by-block over the computational do-
main and at a lower computational cost than the BLUE (Lorenc, 1981; Massart,
2003; Ricci, 2004). Within this framework, poor-quality observations have a very
low weight and thus, do not have a significant impact on the OI-based analysis
solution. Note that even though this technique is widely used due to its easy im-
plementation, it is not designed for a highly non-linear observation operator G and
in particular for tracking extreme meteorological events.

While proposed in the 1960s, the application of the KF in the numerical weather
prediction framework was first investigated in the 1980s (Ghil et al., 1981). In the
KF framework, the weights associated with the uncertainties in the background
information and in the observations are expressed as a Kalman gain matrix. While
similar to the OI technique for the computation of the analysis solution, the KF
technique additionally propagates the error statistics (through the propagation of
the error covariances via the dynamic numerical model) from the previous analysis
time to the current forecast time. Thus, the KF is a sequential data assimila-
tion technique that allows for dynamic error covariances (represented through error
covariance matrices). However, when the computer model is non-linear, the equa-
tions need to be locally linearized for the propagation of the error statistics; thus,
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the non-linear treatment implies the use of tangent-linear operators. If the non-
linearities are weak (Jazwinski, 1970; Bouttier and Courtier, 1999; Evensen, 2007),
the KF technique remains efficient, even though it is no longer optimal. This is
called the extended Kalman filter (EKF). However, due to the high-dimensionality
of meteorological fields, the application of the KF and its extension for numerical
weather prediction is a complex and very time-consuming task. For this purpose,
reduced-rank methodologies (Buehner and Malanotte-Rizzoli, 2003) that reduce the
rank of the error covariance matrices were developed; one example is the singular
evolutive extended Kalman (SEEK) filter introduced by Pham et al. (1998). One
alternative to overcome the issues related to error propagation is to dynamically
estimate the error covariances using a statistical sample (also called an ensemble).
The idea is to stochastically represent the PDF of the control variables using an en-
semble of realizations (based on Monte Carlo sampling techniques for instance) and
thus, to replace the error covariance matrices by their sample counterparts. In this
context of ensemble-based techniques, the non-linear model operator is applied to
perturbations of the model state estimated at the previous analysis time (these per-
turbations are based on the estimated uncertainties over the forecast time period),
thus leading to different realizations of the forecast (prior) errors. This leads to a
prior information expressed as an ensemble of possible trajectories at the forecast
time, which are directly used to model the error covariances and to stochastically
formulate the Kalman gain matrix. This methodology due to Evensen (1994) is
known as the ensemble Kalman filter (EnKF), which is the main data assimilation
technique applied to wildfire spread forecast in this thesis.

The growing number of real-time meteorological measurements combined to the
growing complexity of atmospheric computer models has required the develop-
ment of time-efficient data assimilation techniques. In the 1960s, Sasaki (1958,
1970) proposed a variational approach of the estimation problem based on the
minimization of a cost function, with an application in tracking hurricane trajecto-
ries. This cost function (also called objective function, penalty function or misfit)
is constructed from the discrepancies between the measurements and the model
predictions on the one hand, and from the control deviation from the prior atmo-
spheric state on the other hand. The latter is a penality (regularization) term that
constrains the analysis solution by the computer model dynamics. In particular, it
transfers information from data-rich areas to data-sparse areas through the time-
integration of the computer model (the model state summarizes in an organised
way the information from earlier observations). This variational approach applied at
a single observation time is called three-dimensional variational DA algorithm (3D-
Var) and is still widely used in operational weather forecasting centers (Parrish and
Derber, 1992; Fisher, 1998; Gauthier et al., 1999). In contrast, if the cost function
contains measurements at several different times within an assimilation time inter-
val and if the minimum of this cost function is sought for this interval (by varying
the model initial condition for instance), the technique is named four-dimensional
variational DA algorithm (4D-Var), where 4D refers to the three spatial dimensions
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plus the time dimension. 4D-Var includes dynamic features such as the propagation
of the model to the exact time of the observation as well as the evolution of the
forecast error covariance along the assimilation time window. It is worth noting
that the error covariance evolution is sometimes referred to as implicit because
the assimilation is performed without explicitly computing the full error covari-
ance matrix. The 4D-Var technique is thus more flow-dependent than 3D-Var and
the quality of the estimates improves. Note that Le Dimet and Talagrand (1986)
proposed iteratives techniques to solve non-linear cost function minimizations and
showed in particular how the adjoint model is useful to limit their computatonal
cost. A widely-used algorithm in this context is the Gauss-Newton method, known
under the name of incremental 4D-Var (Courtier et al., 1994; Trémolet, 2007a).
The incremental 4D-Var technique formulates the non-linear inverse problem as a
sequence of quadratic minimization problems, in which case the minimum (i.e., the
analysis solution) is always unique.

Currently, major weather prediction centers, such as the European Centre for
Medium-Range Weather Forecasts (ECMWF), Météo-France, and the US Na-
tional Center for Environmental Prediction (NCEP), produce a medium-range global
weather forecast using an incremental 4D-Var algorithm, typically each six hours (Ra-
bier, 2005; Gauthier et al., 2007; Laroche et al., 2007). This time interval that
encompasses the observations available for the last six hours is the assimilation
window. Thus, the operational objective is to retrieve the state of the atmosphere
at the start of this six-hour time window, to reconstruct the model trajectory consis-
tently with the observations over the whole time window and to forecast the model
behavior at future lead-times. One operational issue concerns the quality of the
forecast, gauged by the number of days for which the forecast is considered accu-
rate. While the quality of the forecast has improved steadily in the recent decades,
partly due to the increased model resolution, the growing number of available me-
teorological measurements and to the development of adapted data assimilation
techniques (based notably on ensemble forecasting), one limitation in the fore-
cast skill of numerical weather prediction systems lies in the chaotic nature of the
weather behavior (i.e., aleatoric uncertainties), meaning that data assimilation has
to be sequentially applied to avoid inevitable deviation from the reality.

The benefit of data assimilation has already been greatly demonstrated in meteo-
rology over the past decades, especially for providing initial conditions for numerical
forecast. Beyond weather forecast, applications of data assimilation arise in many
fields, e.g., oceanography (Ricci, 2004; Weaver et al., 2005; Daget, 2008; GODAE,
2009; Mirouze, 2010; Gürol, 2013), hydrodynamics and hydrology (Moradkhani
et al., 2005; Durand et al., 2008; Ricci et al., 2011; Harader et al., 2012), atmo-
spheric chemistry (Massart, 2003), oil reservoir modeling (Oliver and Chen, 2011),
biomechanics (Moireau, 2008; Beltrán, 2012). Note that engineering applications
based on modelling (e.g., combustion and heat transfer) are also making a growing
use of data assimilation techniques with the increase of quantitative information on
the physical system (Suzuki, 2012; da Silva et al., 2011; Orlande et al., 2012).
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5.1.4 Practical issues of data assimilation

In general, data assimilation appears as a powerful framework to directly improve
predictive simulation results through improved initial and/or boundary conditions,
or improve physical models when applied to parameters. Data assimilation can also
be used to dynamically optimize an observation network (Kalnay, 2003; Bocquet,
2011). The common idea underlying all data assimilation techniques briefly de-
scribed above is that they can be regarded as a generalized least-squares problem,
in which each source of information (i.e., background model estimate and mea-
surements) is weighted by its associated error statistics and in which the analysis
estimate has to fit to the observed data and to the background estimate within
their presumed errors. This implies that the analysis solution minimizes the sum of
square errors between the observed data and the model predictions.

While general theories exist for non-linear data assimilation with non-Gaussian error
statistics, most practical data assimilation techniques in geosciences rely on linear
theory and assume Gaussian error distributions. Earth science systems are indeed
highly-complex and exceedingly large systems with complicated error structures,
which prevent the application of classical advanced optimization methodologies
and which require efficient techniques for operational applications. Depending on
the minimization strategy (directly or iteratively), two families of data assimilation
techniques can be distinguished: filtering (e.g., OI, KF and extensions) on the one
hand, variational algorithms (e.g., 3D-Var, 4D-Var and incremental counterparts)
on the other hand. Both families are based on the minimization of a cost function
that describes the discrepancies between the simulated and observed values as
well as their associated error statistics. There exists one fundamental difference:
while filtering techniques explicitly solve for the analysis using linear algebra (which
is time-consuming and only affordable for an inverse problem with a limited size),
variational approaches require the use of a minimizer and are therefore more adapted
for high-dimensional problems. Note that they produce equivalent analysis results
(under the assumption of linear models) from a theoretical perspective, but their
implementation can be significantly different.

It is worth mentioning that no particular technique has been identified as the ideal
choice for the resolution of a general data assimilation inverse problem (Lorenc,
1986). The choice of the technique highly depends on the features of the physical
system and in this sense, data assimilation is far from being a simple statistical tool;
it cannot be dissociated from a profound physical understanding of the system and
of the sources of uncertainties. These uncertainties are two-fold:

(i) epistemic uncertainty expressing an imperfect knowledge of the key variables
of the dynamic model (e.g., initial conditions, input parameters, boundary
conditions), which could in theory be removed through experiments, improved
numerical approximations and/or higher fidelity physics modeling;

(ii) aleatoric uncertainty resulting from inherent and unpredictable stochastic
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variability of the physical system, which can be probabilistically characterized
through a set of random variables along with their PDF.

For instance, as highlighted by Reichle (2008), atmospheric and ocean data assimi-
lations focus on the estimation of the initial condition due to the chaotic dynamics,
while land surface assimilation deals with uncertain meteorological forcing condi-
tions and model parameterizations. Thus, the choice of estimation targets that are
representative of the system uncertainties is essential. Furthermore, the ingredients
for a successful analysis are listed below.

⊲ Dimension of the physical problem. The resolution of physical processes
at more and more detailed scales significantly increases the number of grid-
points at which the model state variables are considered and thus, significantly
increases the number of unknowns in a state estimation problem. The im-
plementation of effective data assimilation algorithms to perform the analysis
update is therefore essential within operational frameworks.

⊲ Good-quality prior estimate. An estimation process that starts with good-
quality prior information better represents the correlation between the control
variables and makes the analysis update more efficient and robust, in partic-
ular for non-linear extensions of the data assimilation algorithm (e.g., EKF,
incremental 4D-Var) that rely on linearization techniques in the vicinity of
the prior.

⊲ Balance constraints. The analysis solution has to respect the known phys-
ical features of the physical system; otherwise, the physics of the problem
cannot be correctly represented. This implies that the constraint imposed
by the dynamic model has to be accounted for in the inverse problem, for
instance in the prior error covariance matrix if they are not implicitly taken
care of in the algorithm (Weaver et al., 2005).

⊲ Smoothness of the solution. The analysis solution has to be smooth, be-
cause the true state in fluid-mechanics problems is. Thus, data assimilation
algorithms have to ensure that when going away from an observation, the
analysis will relax smoothly to the model prediction on scales that are close
to the physical problem length-scales. This issue could arise if the data as-
similation correction (i.e., the analysis increment) is added to the dynamic
model trajectory in a too abrupt manner. This possibly leads to strong dis-
continuities at analysis times. One solution to overcome this issue is to apply
incremental analysis updates (IAU), meaning that the correction is spread
over time, instead of being applied at a single time step. This IAU strat-
egy therefore reduces the shocks of data assimilation on the dynamic model
and on the unobserved variables, and gradually forces the model integration
throughout the assimilation window.

⊲ Quality control of the measurements. Within an operational framework,
it is essential to develop procedures that remove particularly poor-quality
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measurements to avoid degrading the prior information provided by the com-
puter model and/or measurements that the computer model cannot represent.
Along with on-line quality control routines, these procedures are crucial to
avoid the failure of the data assimilation procedure.

⊲ Bias correction. Unbiased errors are a key assumption in all data assim-
ilation techniques, meaning that on average the model estimates and the
observations must agree with the true control variables. In practice, however,
it is extremely difficult to provide bias estimates and to identify the sources
of the bias (Fertig et al., 2009). If this identification is possible, a bias in the
observations can be removed prior to assimilation, while a bias in the model
can be accounted for including model parameters in the control vector.

⊲ Non-linearities and non-gaussianity of the error statistics. While most
data assimilation algorithms rely on the assumptions of linear models and
Gaussian error statistics, the computer model and the observation opera-
tor are usually non-linear, meaning that the relationship between what is
estimated and what is assimilated noted G is non-linear. If these non-
linearities are limited, they can be approximated using a linearization tech-
nique (e.g., EKF, incremental 4D-Var) or ensemble techniques (e.g., EnKF).
However, if these non-linearities are severe, linearization techniques and/or
assumptions of Gaussian error statistics are no longer valid. Alternative data
assimilation algorithms (e.g., particle filters) need to be considered. Account-
ing for non-Gaussian structures and non-linearities at a computational cost
that is consistent with operational framework is one of the current challenges
of data assimilation.

⊲ Validation. It is essential to evaluate the quality of the analysis solution pro-
vided by a data assimilation algorithm given the multiple assumptions about
non-linearities and error structures. However, this remains a difficult task
since the true trajectory of the system is completely unknown and there-
fore, the precision of the solution becomes difficult to evaluate. Still, consis-
tency diagnostics can be developed (Talagrand, 1997; Chapnik et al., 2004;
Desroziers et al., 2005; Chapnik et al., 2006), in particular in the observation
space (Desroziers et al., 2005) based on a careful analysis of the innovations
(defined as the discrepancies between the model estimates and the observa-
tions) and on comparisons with independent data sets (corresponding to data
that have not been assimilated).

A schematic of the differences between a deterministic 3D-Var approach and the
ensemble-based EnKF technique is presented in Fig. 5.5. They are representative
of two different viewpoints, deterministic versus stochastic.

⊲ Deterministic viewpoint. One can view variational approaches as a purely
deterministic problem of error minimization, in which the error covariance
matrices do not have a probabilistic interpretation and in which the minimiza-
tion (under the assumption of a perfect dynamic model) can be regarded as a
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least-squares curve-fitting of a deterministic model trajectory to the observed
data. The analysis is then used to restart the model and to produce a new
prediction until next observation time, see Fig. 5.5(a). This is a fundamental
difference with ensemble-based filtering techniques such as the EnKF,

⊲ Stochastic viewpoint. As shown in Fig. 5.5(b), an ensemble of model pre-
dictions is generated based on estimated modeling uncertainties in the EnKF.
The prior error covariance matrix is then constructed based on error statis-
tics defined by the scatter in the ensemble trajectories over the assimilation
cycle (corresponding to the time period between two successive observation
times). This is useful to stochastically characterize the Kalman gain matrix
and to produce more accurate estimates of the control variables at observa-
tion times: each member of the ensemble is corrected consistently with the
observations and thereby, the scatter of the analysis estimates is reduced.
These more accurate estimates of the control variables are used to produce
new model predictions beyond the current time.

Time
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Truth Measurements

Model prediction
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Assimilation cycle

Update Update Update Update
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Control variable ed x
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model predictions
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Figure 5.5: Schematic of sequential data assimilation methodologies with successive
prediction/update steps: the true trajectory is represented using a black solid curve; prior
model predictions are represented using a blue dashed curve with blue dots at observation
times; measurements are represented using orange dots; and analyses are represented
using red-squares at observation times. (a) Deterministic viewpoint with error covariance
modeling (e.g., 3D-Var). (b) Stochastic viewpoint (e.g., EnKF), for which the uncertainties
in the control variables are represented using a statistical sample (ensemble) of model
trajectories.
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Instead of comparing the different data assimilation techniques, Gustafsson (2007)
suggested to find hybrid strategies to combine ideas of variational and EnKF ap-
proaches. The study of hybrid variational-EnKF algorithms is currently a major
research topic in the weather forecast field (Liu et al., 2008; Buehner et al., 2010b);
they have already shown great potential in a near-operational framework as demon-
strated by Buehner et al. (2010a) for the Ensemble-4D-Var technique developed at
Environment Canada.1

5.2 Stochastic models and data assimilation variables

Mathematical quantities required by the data assimilation framework to describe the
behavior of the physical system over the assimilation window, also called assimilation
cycle and shown in Fig. 5.6, are introduced here. The definition of the assimilation
window depends on the data assimilation methodology. Since we focus primarily on
sequential filtering techniques in this work, [t−1, t] is referred to as the assimilation
cycle (unless mentioned otherwise). While possibly including multiple time steps
of the dynamic model, [t− 1, t] represents the time-period between two successive
observation times.

Figure 5.6: Definition of the assimilation window: [T − 1, T ] defined as the assimilation
window for the 4D-Var algorithm, include several observation times; each sub-interval
[t−1, t] corresponds to the assimilation window for sequential data assimilation techniques
such as the Kalman filter and the 3D-Var algorithm.

Within this framework, the quantities of interest are considered as random variables
and their inherent uncertainties are therefore described in terms of PDF (see Ap-
pendix F for further details on the notations and definitions of stochastic quantities).
Note that we only present the data assimilation formalism for a discrete problem
perspective and thereby, the discussion on the mapping between the continuum
space and the discrete space associated with numerical models is not addressed
(Bocquet, 2011).

1weather.gc.ca/.

weather.gc.ca/
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5.2.1 Forward model of the physical system

We note ct = [c1,t, c2,t, · · · , cns,t]
T ∈ Rns the prognostic state variable of a physical

system at time t, with ci,t its value at a particular grid-point i (with i = 1, · · · , ns).
The temporal and spatial evolution of this model state variable is described by a
possibly non-linear computer model, denoted by F[t−1,t] for a model integration
from time (t − 1) to time t. This model state variable depends implicitly on a
list of input parameters and external forcings, which are possibly uncertain and of
different spatial and temporal resolutions. They are included in the vector

θt =
[
θ1,t, θ2,t, · · · , θnθ ,t

]T
∈ R

nθ .

These parameters can evolve over time; this evolution from time (t− 1) to time t
is noted P[t−1,t], also referred to as the parameter model operator. Formally, the
dynamics of the physical system from time (t− 1) to time t is expressed as:

{
ct = F[t−1,t](ct−1,θt−1)

θt = P[t−1,t](θt−1).
(5.1)

Note that if the input parameters and external forcing do not evolve in time or if
their evolution is not known because of a lack of physical modeling or knowledge,
then the operator P[t−1,t] is reduced to an identity matrix Inθ

. In this case, the
input parameters and external forcing are assumed invariant, i.e., θt = θt−1.

5.2.2 Control vector and stochastic-dynamic model

The size of the estimation problem is noted n. Thus, the control vector denoted
by xt = [x1,t, x2,t, · · · , xn,t]T ∈ Rn includes the n variables to be dynamically
estimated by data assimilation at the discrete time t. These control variables are
the estimation targets that are identified as important sources of uncertainties in
the physical system and to which the model operators F[t−1,t] and P[t−1,t] are
highly sensitive. In numerical weather prediction applications, the control vector is
formed by the three-dimensional discrete fields of temperature, humidity, pressure
and wind (i.e., the simulated fields defined at the grid-points of the computational
domain); the dimension of the control n is then extremely high with 108/109 control
variables for 106/107 observations to assimilate. However, the control vector xt

is not systematically in the same space as the model state vector; it can include
input parameters and external forcing contained in the vector θt and/or model state
variables ct. Thus, the size n of the estimation problem is defined as follows:

⊲ n = nv×ns for multi-variate state estimation with nv referring to the number
of model variables in the system and with ns to the number of grid-points
at which these model variables are described in the computer model (when
there is a unique model variable, n = ns);.
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⊲ n = np×ns for multi-parameter estimation, with np ≤ nθ only a subset of the
input parameters and external forcing of the problem and with ns the num-
ber of grid-points at which these control parameters are spatially-distributed
(when these parameters are assumed uniform over the computational domain,
n = np);

Note that the spatial distribution of the control parameters is not systematically
provided at the same resolution as the model variables. However, for clarity pur-
poses, we introduce a unique parameter ns to describe the spatial distribution of
both parameter and model state variables. Note also that for joint parameter/state
estimation, n = nv × ns + np × ns.

The n-dimensional space in which the control variables evolve is referred to as the
control space. In the wildfire spread application presented in this work, we deal
with both state and parameter estimations. For this purpose, we adopt a generic
formalism for the presentation of data assimilation techniques.

→֒ Forecast errors

All the control quantities are subject to uncertainties and their prior values at time
t can result from a previous model integration or from the prior knowledge on the
control vector. This prior knowledge, also called background or forecast within
the framework of sequential data assimilation techniques, is denoted by xf

t (the
superscript f referring to forecast). It incorporates the effects of a number of mod-
eling choices (i.e. problem scales, numerical schemes, mesh resolution, subgrid-scale
models, etc.). This implies that the true value of the control vector noted xt

t (the
superscript t referring to true) is completely unknown and thereby, a probabilistic
error treatment is required for xf

t. It is worth noting that, while xf
t is treated as a

random variable, xt
t is a deterministic variable. The associated forecast errors eft

are defined as the difference between the forecast xf
t and the truth xt

t such that:

eft = xf
t − xt

t. (5.2)

→֒ Stochastic model and model errors

The time-integration of the model equations presented in Eq. (5.1) is associated
with errors, which are related to the discretization and numerical errors in the
resolution of the equations and/or to the physical assumptions and simplifications
made for the original development of these equations. These errors exist, even
though the true control variables are known; they are referred to as model errors
noted εFt for the model state operator F[t−1,t] and εPt for the model parameter
operator P[t−1,t]. In this context, Eq. (5.1) can be expressed in terms of the true
parameters, external forcing and model states as follows:

{
ctt = F[t−1,t](c

t
t−1,θ

t
t−1) + εFt

θt
t = P[t−1,t](θ

t
t−1) + εPt .

(5.3)
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For the derivation of the data assimilation algorithms and the simplification of the
notations, we introduce the general model operator M[t−1,t] with the associated
model error εMt that encompasses the model errors related to the parameter evolu-
tion εPt and to the model state evolution εFt . Thus, the system of equations (5.1)
is regarded as equivalent to the following compact form:

xt =M[t−1,t] (xt−1) , (5.4)

with the following definition for the model error εMt :

xt
t =M[t−1,t]

(
xt
t−1

)
+ εMt . (5.5)

Note that the model variables that are not included in the control but that are re-
quired for the time-integration of the dynamic model are not mentioned in Eqs. (5.4)
and (5.5) for clarity purposes.

5.2.3 Observations and observation operator

Suppose that, over the time interval [t − 1, t], a number p of observations are
available and incorporated into an observation vector yo

t ∈ Rp, i.e.,

yo
t =

[
yo1,t, yo2,t, ..., yop,t

]T
.

The p-dimensional space in which the observations evolve is named the observation
space. Note that in most state estimation problems, the observation vector yo

t is
of lower dimension than the control vector xt, while for parameter estimation prob-
lems, the opposite case can occur. These measurable quantities may come from
various observation networks (e.g., spaceborne, airborne or in-situ measurements)
at different spatial and temporal resolutions. In general, they are of different nature
than the model state variables and they need post-treatments before being assim-
ilated. They provide an indirect information on the unknown control variables xt

at time t. This implies that there is a possibly non-linear relationship (noted Gt
in the following) between the control variables xt and the observations yo

t . This
also implies that observations can provide additional information on the physical
features of the true state of the physical system if this relationship between the
control variables and the observations is properly characterized.

→֒ Observation operator

The observation operator Gt maps the control space onto the observation space
over the assimilation cycle [t− 1, t]. The purpose of the observation operator Gt is
to provide the model counterparts of the measurements yo

t at time t. These model
counterparts of the observed quantities are noted yt and are formally expressed as
yt = Gt(xt). yt can also be regarded as the equivalent of the control vector xt in
the observation space. The definition of the observation operator Gt depends on
the choice of the control variables.
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⊲ State estimation. Gt reduces to the composition of a variable substitution
(i.e., from the model state variable to the observed quantity) and of an
interpolation process (i.e., from simulated grid-points to the points where an
actual measurement is made). This composition is denoted by the operator
Ht. Thus, for a state estimation problem, the observation operator Gt can
be defined as follows:

yt = Gt(xt) = Ht(xt). (5.6)

⊲ Initial condition or parameter estimation. Gt includes, on top of the vari-
able substitution and interpolation process, the numerical integration of the
model M[t−1,t] over the assimilation cycle. In this case, the model counter-
parts of the observations yt read:

yt = Gt(xt) = Ht ◦M[t−1,t](xt−1). (5.7)

Gt usually referred to as the generalized observation operator is non-linear if
the dynamic modelM[t−1,t] exhibits non-linearities.

→֒ Observation errors

The definition of the observation operator Gt is subject to errors. For instance,
for remote sensing data from spaceborne platforms, the raw observations (e.g., ra-
diance, radar blackscatter) are non-linear functions of the temperature field and
they require the resolution of the radiation transfer equation (RTE), which is not
straightforward and induces representativeness errors (Janjić and Cohn, 2006). Be-
sides, measurements include scales of motion that are not resolved by computer
models, meaning that representativeness errors in Gt are also due to unresolved
scales. Thus, the observation errors relate to:

⊲ instrumental errors defined as ǫ
µ
t = yo

t − yt
t and existing independently of

the observation operator Gt;
⊲ representativeness errors defined as ǫrt = yt

t − G(xt
t) and quantifying the

imperfect knowledge in the mapping Gt from the control space onto the
observation space, even though the true observed quantities yt

t are known.

Assuming that ǫµt and ǫrt are uncorrelated, the total observation error ǫot is estimated
as the difference between the observations yo

t and the true control vector projected
onto the observation space Gt(xt

t), see Lorenc (1986). Thus, ǫot reads:

ǫot = ǫ
µ
t + ǫrt = yo

t − Gt(xt
t). (5.8)

→֒ Innovation vector

The discrepancies between the observation vector yo
t and the forecast model pre-

diction in the observation space yf
t = Gt(xf

t) at time t are computed through the
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innovation vector df
t that reads:

df
t = yo

t − yf
t = yo

t − Gt(xf
t). (5.9)

Note that the statistical moments of df
t (e.g., mean and standard deviation) pro-

vide a convenient measure of the deviations of model predictions from observations.
From this viewpoint, Eq. (5.9) shows that the stochastic-dynamic model M[t−1,t]

(describing the behavior of the model state and parameters of the physical system
over time) as well as the observation operator Gt (describing the relationship be-
tween the control variables and the measured quantities) are key elements at the
core of all data assimilation methodologies. In particular, characterizing the non-
linearities in the observation operator Gt is a critical step in the formulation and
efficiency of a data assimilation algorithm.

5.2.4 Stochastic treatment of errors

As the true vector xt
t is unknown, the errors on the observations yo

t , on the forecast
xf
t and on the dynamic model M[t−1,t] are also unknown. As justified by Cohn

(1997), these errors are represented as stochastic forcing, i.e., as random variables
using PDF; these PDF describe the relative likelihood for these errors to occur at
a given point in the control or observation space. These errors are defined in the
framework of a white-noise analysis, having zero mean (these errors are referred
to as unbiased) and finite variance. In most data assimilation algorithms, error
statistics are described by Gaussian PDF; this assumption implies that the errors
for random variables can be fully described by two characteristic variables, the
expected value (E[ · ] denotes the mathematical expectation operator) and an error
covariance model.

→֒ Forecast errors

The forecast errors eft = [ef1,t, e
f
2,t, · · · , efn,t]T defined in Eq. (5.2) are due, partly to

limitations in the physical modeling and to numerical errors. Assuming the dynamic
model is unbiased, these forecast errors satisfy E[eft] = 0 and thus, the statistics of
eft are described in a square symmetric, positive definite (invertible) matrix Pf

t of
size n × n (with n the number of control variables). Pf

t called the forecast error
covariance matrix satisfies:

Pf
t = E

[
(xf

t − xt
t)(x

f
t − xt

t)
T
]
= E

[
(eft)(e

f
t)
T
]
. (5.10)

Insight into the structure of Pf
t is provided in the following box for interested readers.

Since the forecast control vector xf
t is assumed to follow the Gaussian distribution

N (xt
t,P

f
t), the forecast error eft is defined as follows:

eft ∼ N (0,Pf
t). (5.11)



216 5.2 - Stochastic models and data assimilation variables

Detailed structure of the forecast error covariance matrix Pf
t

As explained in detail in Appendix F, for a multi-variate control vector xf
t ∈ Rn,

either for spatially-distributed parameter estimation (n = np×ns) or for multi-
variate state estimation (n = nv × ns), the structure of the forecast error
covariance matrix Pf

t that is compactly formulated in Eq. (5.10) can be de-
composed as follows:

Pf
t =




E

[
(ef1,t) (e

f
1,t)

T
]
· · · E

[
(ef1,t) (e

f
n,t)

T
]

...
. . .

...

E

[
(efn,t) (e

f
1,t)

T
]
· · · E

[
(efn,t) (e

f
n,t)

T
]


 .

The diagonal elements represent the error variance associated with each variable
of the multi-variate control vector xf

t. For instance, for the i-th variable of the
control vector, the error variance satisfies (σf

i,t)
2 = E[(efi,t) (e

f
i,t)

T]. The off-

diagonal terms E[(efi,t) (e
f
j,t)

T] for i 6= j, stand for the covariances between
each pair of components of the control vector.

⊲ The covariances between the errors in the different physical variables
(called multivariate covariances) must be representative of the dynamic
balance equations of the system (Gauthier et al., 1999; Ricci, 2004)
through the constraints between the variables of the control vector xt.
These constraints relevant to both parameter estimation (np > 1) and
state estimation (nv > 1) are named balance constraints.

⊲ When spatially-distributed, the control variables include the same physical
quantities at different spatial grid-points. The covariance terms associ-
ated with one physical quantity (called univariate covariances) represent
its spatial correlations, which must be smoothly-defined and representa-
tive of the length-scales of the errors related to the dominant physical
processes (Daley, 1991; Deckmyn and Berre, 2005; Pannekoucke et al.,
2008). For instance, the univariate covariances associated with the first
model variable in the control (n varying between 1 and ns) correspond
to the following block of Pf

t,

E

[
(efi,t) (e

f
j,t)

T
]
, i, j = 1, · · · , ns.

As for the second model variable in the control (n varying between (ns+1)
and 2ns), their univariate covariances correspond to E[(efi,t) (e

f
j,t)

T] for
i and j varying between (ns + 1) and 2ns, etc.

These covariances describe the correlations between the errors in different phys-
ical variables/parameters of the system and thereby, they are responsible for
transferring information between the control variables [x1,t, x2,t, · · · , xn,t] dur-
ing the assimilation process. In particular, these multi-variate components are
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critical for extracting information about unobserved variables from directly ob-
served quantities (some control variables may be observed in the framework
of state estimation). The forecast error covariances are therefore an effective
way of incorporating multi-variate model constraints in the data assimilation
system, useful to map a perturbation in the observation space onto a correction
in the control space. However, it is difficult to build an accurate forecast error
covariance matrix Pf

t that represents all the uncertainties present in a physical
system, since the true control vector xt

t is unknown and since the number of
degrees of freedom considered in a data assimilation application is reduced to
overcome storage and computational cost issues. In any case, the forecast error
variances (σf

i,t)
2 for i = 1, · · · , n must represent as accurately as possible the

variability in the control variables.

→֒ Observation errors

The observation errors ǫot defined in Eq. (5.8) are supposed unbiased and thereby,
satisfy E[ǫot ] = 0. It is worth noting that if the observations are not unbiased,
they are subject to a prior treatment to remove the bias. Thus, the statistics of
ǫot are described in a square symmetric, positive definite (invertible) matrix Rt of
size p× p (with p the number of observations). Rt is called the observation error
covariance matrix and satisfies:

Rt = E[(ǫot )(ǫ
o
t )

T]. (5.12)

Since the observation vector yo
t follows a Gaussian distribution N (G(xt

t),Rt) (pro-
vided that G(xt

t) is a non-random variable), the observation error ǫot satisfies:

ǫot ∼ N (0,Rt). (5.13)

Classically, observational measurements are assumed to have uncorrelated errors in
space. This implies that Rt is reduced to a diagonal matrix of p elements, each
element representing the error variance of one observation quantity (σo

i,t)
2 (i varying

between 1 and p). Rt reads:

Rt =




(σo
1,t)

2 0 0 · · · 0

0 (σo
2,t)

2 0 · · · ...

0 0 (σo
3,t)

2 · · · ...
... · · · · · · . . .

...
0 · · · · · · · · · (σo

p,t)
2




.

Note that this assumption of uncorrelated errors could be questionable for a data
set originating from the same measurement device (e.g., spaceborne data along the
pass of polar-orbiting satellites). However, this aspect is out of the scope of this
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study (Brankart et al., 2009; Gorin and Tsyrulnikov, 2011). In the following, the
observation error variances are noted (σo

t )
2.

The data assimilation framework assumes that forecast and observation errors are
uncorrelated, implying that E[(eft)(ǫ

o
t )

T] = 0. Note that in principle, an exper-
imental measurement considered as a random variable has no reason for being
correlated with an uncertain prior knowledge on the physical system at a given time
step t, except if this forecast estimate is directly reconstructed with the assimilated
measurements.

→֒ Model errors

The model operatorM[t−1,t] inevitably introduces model errors, independently from
the observation and forecast errors, because of their inability to cover the entire
range of relevant scales, because also of knowledge gaps and/or inaccuracies in the
description of the physics, see Eq. (5.3). These model errors εMt can be accounted
for in the data assimilation framework through a model error covariance matrix,
with εMt ∼ N (0,QM

t ). Note that if the model is assumed perfect, QM
t = 0 and

the model dynamics is imposed as a strong constraint.

5.2.5 Formulation of the inverse modeling problem

The resolution of a data assimilation inverse modeling procedure that assumes
Gaussian error statistics requires the following components:

⊲ observations of the physical system yo
t and their associated errors (ǫot , Rt);

⊲ a background/forecast estimate of the control vector xf
t and its associated

errors (eft, P
f
t);

⊲ a model operator M[t−1,t] describing the dynamics of the physical system
and its associated error (εMt , QM

t );

⊲ an observation operator Gt.
Starting from prior information xf

t (i.e., the best estimate of the control vector prior
to assimilation) and from available measurements yo

t , data assimilation identifies
the optimal estimate of the true value xt

t satisfying:

{
xf
t = xt

t + eft

yo
t = Gt(xt

t) + ǫot ,
(5.14)

where the distance between the forecast estimate and the observations is repre-
sented by the innovation vector df

t = yo
t − Gt(xf

t). The computation of this in-
novation vector is detailed in Fig. 5.7 for both parameter and state estimations.
The main difference between these two estimation problems is in the formulation of
the observation operator Gt. While it relies on a selection operator Ht for a state
estimation problem (see Eq. 5.6), Gt includes the model time-integration M[t−1,t]
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from (t − 1) to t (see Eq. 5.7). In the data assimilation feedback, the differences
in the observation space (i.e., the innovation vector) is mapped onto a correction
in the parameter space weighted by the modeling and observation error statistics.
Thus, the optimal estimate called the analysis and xa

t can be generally formulated
as a correction to the forecast xf

t:

xa
t = xf

t + δxa
t , (5.15)

where the term δxa
t is referred to as the analysis increment. The analysis is asso-

ciated with the error eat = xa
t − xt

t, characterized by the analysis error covariance
matrix Pa

t .

Figure 5.7: Flowchart of the innovation vector df
t for (a) parameter estimation; and

(b) state estimation problems.

→֒ Definition of the optimal estimate

One can address the question of how to define an optimal estimate xa
t of the control

vector. The complete knowledge of a physical system with a perfect confidence is
inaccessible. Thus, in practice, the best estimate obtained from the data assimila-
tion system is only a reasonable approximation of the optimal estimate; the analysis
is sufficiently close from this knowledge to be able to provide a consistent repre-
sentation of the behavior of the system without being perfect. Data assimilation
cannot directly reduce the representativeness errors (these errors can for instance
be addressed by increasing the spatial resolution of the modelM[t−1,t] and by im-
proving the description of the physics). However, it can reduce forecast errors eft.
For any data assimilation algorithm, the optimality of the estimation implies that
the uncertainty in the control vector is reduced through the analysis xa

t , meaning
that eat < eft in some sense to be precised. Besides, the distance to the observations
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is reduced. In contrast to the innovation vector df
t defined in Eq. (5.9), we can in-

troduce the concept of residual vector da
t that measures the discrepancies between

the observations and the analysis model counterpart ya
t = Gt(xa

t ) as follows:

da
t = yo

t − ya
t = yo

t − G(xa
t ). (5.16)

The optimality of the analysis control vector xa
t implies that the residual vector

da
t has a lower magnitude than the innovation vector df

t. Posterior diagnostics
can be performed to check the consistency of the error covariance matrices (that
are specified prior to assimilation) and, if necessary, to tune the error variances for
the next assimilation cycles (Chapnik et al., 2004; Desroziers et al., 2005; Chapnik
et al., 2006).

5.3 General Bayesian filtering formulation

Suppose that observations are available at discrete time steps over the time window
[0, T ]. The optimal solution of the inverse problem is derived from the inference of
the control variable xt at a time t given its past history {x0,x1, · · · ,xt−1} and the
history of observations

{
yo
0,y

o
1, · · · ,yo

t−1

}
. Note that index 0 refers to the start

of the time window [0, T ], while index T refers to its end. This is called a Bayesian
filtering problem. The objective of this section is to provide a general conceptual
estimation framework to compare different data assimilation techniques: variational
approaches, KF and extensions as well as particle filters.

5.3.1 Formulation of the Bayes’ theorem

→֒ Assumptions

Data assimilation can be generally formulated as a Bayesian filtering problem, mean-
ing that the formal mechanism to combine available measurements yo

t and the fore-
cast estimate of the control vector xf

t at time t relies on the Bayes’ theorem. The
uncertainty in the forecast control vector xf

t (Lorenc, 1986) can be expressed with
the forecast PDF pf(xt); this represents the probability distribution that the fore-
cast control variables represents the true value xt

t. As for the observations yo
t , their

associated PDF is noted p(yo
t ). Within the Bayesian framework, the sequences

of the random variables are assumed to be discrete-time Markov chains with the
following properties:

⊲ The PDF of the control vector xt at time t is only determined by its most
recent value time (t− 1). This assumption is expressed as:

p
(
xt | x0,x1, · · · ,xt−1

)
= p

(
xt | xt−1

)
. (5.17)

⊲ The PDF of the observations yo
t is a Markovian process with respect to the

history of the control vector {x0,x1, · · · ,xt}, meaning that:

p
(
yo
t | x0,x1, · · · ,xt

)
= p

(
yo
t | xt

)
. (5.18)
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Note that p(yo
t | xt) represents the data likelihood, i.e., the probability dis-

tribution of the measurements yo
t conditioned upon the control vector xt.

⊲ The PDF of the control vector xt at time t depends on the past observations
only through its own history, i.e.,

p
(
xt | xt−1,y

o
1,y

o
2, · · · ,yo

t−1

)
= p

(
xt | xt−1

)
. (5.19)

Note that the information provided by the observations up to time (t−1) are
implicitly contained in xt−1. Note also that the PDF p(xt | xt−1) expresses
the stochastic time-evolution of the control vector from time (t− 1) to time
t and thereby, corresponds to the forecast PDF such that:

pf(xt) = p(xt | xt−1). (5.20)

→֒ Bayes’ theorem

To find an accurate estimate of the true control vector xt
t, the Bayes’ theorem

formulates the analysis as the PDF pa(xt). This analysis is constructed based
on all available information (including prior information and measurements) and
satisfies:

pa
(
xt

)
= p

(
xt | yo

t

)
=

pf(xt) p(yo
t | xt)

p(yo
t )

. (5.21)

More precisely, the analysis is described by the PDF of the current control xt con-
ditioned upon the measurements yo

t noted p(xt | yo
t ): it represents the probability

that the estimate of the control variables represents the true xt
t given that the

model counterparts yt are the observations yo
t at time t. This conditional PDF

provides some confidence in the values of the control variables xt given the infor-
mation conveyed by the observations. Since p(yo

t ) plays the role of a normalizing
constant, Eq. (5.21) can be recast in the following general form:

pa
(
xt

)
= p

(
xt | yo

t

)
∝ pf

(
xt

)
p
(
yo
t | xt

)
, (5.22)

where the symbol ∝ means proportional to.

5.3.2 Sequential Bayesian filtering

The Bayes’ theorem can be applied sequentially to track the time-evolution of the
true control vector through the time-sequence of the analysis PDF pa(xt) with
t = 0, · · · , T . This sequential Bayesian filtering is illustrated in Fig. 5.8. Each
sequence, also called the assimilation cycle [t− 1, t], can be decomposed into two
steps (Gelb, 1974; Tarantola, 1987; Todling and Cohn, 1994; Ide et al., 1997;
Kalnay, 2003):
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(1) a prediction step (forecast), in which the PDF of the control vector xt

(i.e., model state and/or model parameters) is advanced in time, from time
(t− 1) to the next analysis time t given some uncertainty ranges. The target
of this step is the forecast PDF pf(xt) = p(xt | xt−1) that reflects all the
uncertainties of the control variables without the information conveyed by the
measurements, from time (t− 1) to time t.

(2) an update step (analysis), in which new observations are considered at the
analysis time t and the forecast PDF of the control parameters is modified
consistently with the observations yo

t and their associated uncertainties (the
data likelihood). Stated differently, the discrepancies between the observations
yo
t and the model counterparts yt (i.e., the innovation vector) weighted by

the estimated uncertainties is mapped onto the control space to find a more
realistic estimate of the control vector pa(xt). This update step is performed
via the application of the Bayes’ theorem presented in Eq. (5.22). Note that
the analysis estimate at time t can be used as a starting point for deriving a
new forecast over the next assimilation cycle [t, t+ 1] and beyond.

Figure 5.8: Flowchart of sequential Bayesian filtering; each sequence [t − 1, t] including
a prediction step and an update step.

→֒ Conditional mode estimation versus conditional mean estimation

Conceptually, the Bayesian filtering problem searches for the PDF pa(xt). However,
this complete PDF is difficult to track in practice, except for some restricting cases
such as linearity of the models and Gaussianity of the error statistics. Thus, this
PDF is generally approximated by its statistical moments. One important question
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to be addressed is which statistics are essential to evolve; this question is related
to the definition of an optimal estimator and thereby, of an optimality criterion for
a given inverse problem. For instance, the optimal estimator could be the mean
(the center) or the mode (the peak) of the PDF of interest (see Appendix F for
details on PDF characteristics). Lorenc (1986) and Cohn (1997) showed that the
Kalman filter (KF) yields the conditional mean estimate (which has the important
property of being the minimum variance estimate), whereas the conditional mode
estimate is the foundation of variational methodologies (searching for the value of
highest probability of occurrence). It is worth noting that under the assumptions
of linear models and Gaussian conditional PDF, these two estimates are equivalent
(Jazwinski, 1970; Lorenc, 1986; Cohn, 1997; Mirouze, 2010).

5.4 Conditional mode estimation: variational approach

5.4.1 Formulation of the variational cost function

Assuming the forecast control vector xf
t and the observations yo

t follow Gaussian
PDF, their error statistics can be described using an error covariance model. The
forecast PDF can be written as:

pf(xt) ∝ exp

{
−1

2

(
xt − xf

t

)T
(Pf

t)
−1
(
xt − xf

t

)}
, (5.23)

with Pf
t the forecast error covariance matrix representing the errors statistics in the

forecast control variables. The data likelihood can be similarly expressed as:

p
(
yo
t | xt

)
∝ exp

{
−1

2

(
Gt(xt)− yo

t

)T
(Rt)

−1
(
Gt(xt)− yo

t

)}
, (5.24)

with Rt the observation error covariance matrix representing the error statistics in
the observations. Within this framework of Gaussian error statistics, Eq. (5.22)
becomes:

pa(xt) ∝ exp

{
−1

2

(
xt − xf

t

)T
(Pf

t)
−1
(
xt − xf

t

)

−1

2

(
Gt(xt)− yo

t

)T
(Rt)

−1
(
Gt(xt)− yo

t

)}
. (5.25)

Conditional mode estimation searches for the mode of the PDF pa(xt), i.e., the
value of the control vector xt that maximizes the probability to estimate the true
value xt

t. Thus, this technique is also known as maximum likelihood estimation
(Maybeck, 1979). Maximizing the analysis PDF pa(xt) is equivalent to a mini-
mization problem:

max
xt∈Rn

pa(xt) ⇐⇒ min
xt∈Rn

{− ln[pa(xt)]} = min
xt∈Rn

J (xt). (5.26)
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with J the cost function of the estimation problem. Thus, under the assumptions
of Gaussian error statistics, the Bayesian filtering problem can be recast in the
minimization of J defined as follows:

J (xt) =
1

2

(
xt − xf

t

)T
(Pf

t)
−1
(
xt − xf

t

)

+
1

2

(
G(xt)− yo

t

)T
(Rt)

−1
(
G(xt)− yo

t

)
. (5.27)

J measures the statistically-weighted square difference between the forecast xf
t and

the control vector xt on the one hand, between the observations yo
t and the model

counterparts in the observation space yt = Gt(xt) on the other hand. Each term
is weighted by the precision taken as the inverse of the error covariance matrix,
(Pf

t)
−1 for the term related to the forecast and (Rt)−1 for the term related to

the observations. The forecast and observation precisions define a metric, in which
the distance to the observations yo

t and to the forecast xf
t can be minimized with

respect to the control vector xt. Thus, the minimization of the cost function J
(also referred to as the variational approach) can be regarded as equivalent to the
following expression:

min
xt∈Rn

{
|| xt − xf

t ||2(Pf
t)

−1 + || G(xt)− yo
t ||2(Rt)−1

}
, (5.28)

where the norm || . ||N−1 refers to the metric of the problem defined in the sense
of the precision N−1, with N an error covariance matrix. Equation (5.28) can be
considered as a generalized weighted least-squares problem since the variance of
the different sources of information (i.e., forecast estimate of the control vector
and observations) are unequal. Furthermore, a regularization is introduced with
the additional term towards the forecast estimate xf

t, implying that the analysis
estimate must be simultaneously consistent with the forecast and the observations
weighted by their respective error variances (i.e., the diagonal of the error covariance
matrices). Note also that the solution of the problem is physically-constrained by
the univariate and multivariate covariances described in the forecast error covariance
matrix Pf

t.

The direct minimization of the cost function J solves for the control vector xt and
leads to the analysis satisfying ∇J (xa

t ) = 0. Thus, the solution that minimizes the
least-square estimate also maximizes the analysis density pa(xt) and is called the
Bayesian estimate of the filtering problem. It is worth mentioning that errors statis-
tics are only described through their covariances (i.e., moments of second-order)
in the variational approach. While Gaussian error statistics are exactly represented
by their mean and covariances, higher-order moments of non-Gaussian error statis-
tics (e.g., skewness, kurtosis) are disregarded for this approach. Note also that no
assumption on the linearity of the dynamic model M[t−1,t] or on the linearity of
the observation operator Gt is made in the general formulation of the cost func-
tion (5.27). Still, the minimization process could be a difficult task if non-linearities
are present, resulting in a non-quadratic cost function and in possibly multiple local
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minima. Different variational techniques exist in the weather forecast literature,
3D-Var, 4D-Var and their incremental counterparts.

5.4.2 Three-dimensional variational algorithm

→֒ Model and observation tangent-linear operators

We consider the time window [t − 1, t]. Recall that the generalized observation
operator Gt is expressed for both parameter and state estimations as follows:

yt = Gt(xt) = Ht ◦M[t−1,t](xt−1). (5.29)

This non-linear operator can be linearized in the vicinity of the control vector xt.
If we assume that non-linearities in the model operators M[t−1,t] and Gt remain
limited over the time period [t − 1, t], then it is possible to approximate the non-
linear operators by their tangent-linear operators using a first-order Taylor expansion
in the vicinity of a reference control vector usually taken as the forecast xf

t. Then,
the trajectory of the control vector xt from (t − 1) to t can be approximated as
follows:

xt =M[t−1,t](xt−1)

=M[t−1,t](x
f
t−1 + δxt−1)

=M[t−1,t](x
f
t−1) +M[t−1,t]δxt−1 +©(‖ δxt−1 ‖2),

⇒ xt = xf
t + δxt +©(‖ δxt−1 ‖2), (5.30)

where the increment is integrated over time through the linearized model operator
M[t−1,t] such that δxt = M[t−1,t]δxt−1. M[t−1,t] is called the model tangent-linear
operator and is formally defined as follows:

M[t−1,t] =
∂M[t−1,t]

∂xt−1

∣∣∣
xt−1=xf

t−1

. (5.31)

As for the observation operator, its linearized form reads:

yt = Gt(xt)

= Gt(xf
t + δxt)

= Gt(xf
t) +Gtδxt +©(‖ δxt ‖2),

⇒ yt = yf
t + δyt +©(‖ δxt ‖2), (5.32)

where the increment is derived at time t using the linearized observation operator
Gt such that δyt = Gtδxt. Gt is called the observation tangent-linear operator
and reads:

Gt =
∂Gt
∂xt

∣∣∣
xt=xf

t

. (5.33)
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Bouttier and Courtier (1999) discussed the validity of the tangent-linear operators
and the underlying assumptions on the physical system. It is worth noting that for
a state estimation problem, the observation operator Gt reduces to the selection
operator Ht as presented in Eq. (5.6) and thus, Gt = Ht. In contrast, for a
parameter estimation problem, Gt involves the dynamic model integration over the
time period [t−1, t] as indicated by Eq. (5.7). This implies that Gt = HtM[t−1,t]

and that the minimization requires the use of the adjoint operator of the dynamic
model MT

[t−1,t] since GT
t = MT

[t−1,t]H
T
t .

→֒ Variational analysis

Assuming model errors εMt are negligible over the time period [t−1, t], the 3D-Var
cost function (noted J3D(x) and called the strong-constraint formulation) reads:

J3D(xt) =
1

2

(
xt − xf

t

)T
(Pf

t)
−1
(
xt − xf

t

)

︸ ︷︷ ︸
J f
3D

+

1

2

(
G(xt)− yo

t

)T
(Rt)

−1
(
G(xt)− yo

t

)

︸ ︷︷ ︸
J o
3D

. (5.34)

The model physics yt = G(xt) is imposed as a strong constraint in the minimization.
In contrast, the 3D-Var cost function accounting for the model error εMt , noted
J3D∗(xt), is named the weak-constraint problem and includes an additional term
J q
3D∗ such that:

J3D∗(xt) =
1

2

(
xt − xf

t

)T
(Pf

t)
−1
(
xt − xf

t

)

︸ ︷︷ ︸
J f
3D

+

1

2

(
G(xt)− yo

t

)T
(Rt)

−1
(
G(xt)− yo

t

)

︸ ︷︷ ︸
J o
3D

+
1

2
ηTt (Qt)

−1ηt
︸ ︷︷ ︸

J q
3D∗

, (5.35)

with ηt the estimate of the model error at time t (Trémolet, 2007b) and with
the weak constraint yt = G(xt) = H ◦ [M[t−1,t](xt−1 + ηt)]. Note that the
implementation of the weak-constraint formulation is currently an active research
area in the weather forecast field and that the discussion on this technique is out
of the scope of this work. In the following, the evolution models for the input
parameters and the model state are considered as perfect; we only present the
analysis solution for the strong-constraint formulation.

Under the assumption of uncorrelated observations errors, the observation error
covariance matrix Rt is diagonal, meaning that the term J o

3D can be regarded as
a linear combination of the innovations df

t = yo
t − Gt(xt), over space, at time t,

weighted by the variances at the observation points for each variable of the control



Chapter 5 - General features of data assimilation 227

vector. Furthermore, the forecast xf
t is generally obtained through the dynamic

model integration starting at the analysis of the previous time window xa
t−1. The

minimization of Eq. (5.34) is related to the gradient of the cost function J3D as
follows:

∇J3D(xt) = (Pf
t)
−1
(
xt − xf

t

)
+GT

t (Rt)
−1
(
Gt(xt)− yo

t

)
, (5.36)

with Gt the tangent-linear operator defined in Eq. (5.33) and GT
t its adjoint. Thus,

the analysis xa
t reads:

∇J3D(xa
t ) = 0⇐⇒ (Pf

t)
−1
(
xa
t − xf

t

)
+GT

t (Rt)
−1
(
Gt(xa

t )− yo
t

)
= 0,

⇐⇒ xa
t − xf

t = Pf
tG

T
t R

−1
t

(
yo − Gt(xa

t )
)
. (5.37)

J3D is not quadratic with respect to the control vector xt because the observation
operator Gt is usually non-linear, in particular for a parameter estimation problem.
The role of the forecast error covariance matrix Pf

t in the estimation of the analysis
xa
t is highlighted in the following box in the context of a state estimation problem.

Due to the computational expense in the tangent-linear and adjoint operators,
the 3D-Var minimization can be time-consuming. For this purpose, incremental
approaches based on an iterative procedure are implemented in practice.

Role of the forecast error covariance matrix Pf
t (Fisher, 1998)

The forecast error term of the cost function J f
3D is crucial to the performance

of the data assimilation system and involves the forecast error covariance ma-
trix Pf

t. We illustrate its role for a simple example within a state estimation
framework. We consider a single observation of the value of a model field
(e.g., temperature in weather forecast) at one grid-point of the computational
domain, corresponding to the k-th variable of the control vector (p = 1). Note
that the control vector is equivalent to the model state vector in the case of
state estimation. Thus, the observation operator Gt reduces to a linear selec-
tion operator Ht of dimension 1 × n and whose tangent-linear H is constant
over time. The k-th element of H is equal to one and other elements are all
zero, i.e., H = (0, 0, · · · , 0, 1, 0, · · · , 0). The analysis satisfies Eq. (5.37). In
this example, the matrix product Pf

tH
T is simply equal to the k-th column of

Pf
t. Also, since we deal with a single observation, the term R−1

t (yo −Ht x
a
t )

is a scalar value noted (yot − (xat )k)/(σ
o
t )

2, where (xat )k represents the analysis
grid-point value corresponding to the observation and where (σo

t )
2 represents

the variance of the observation error. Thus, Eq. (5.37) can be written as:

δxa
t = xa

t − xf
t =

(
yot − (xat )k

(σo
t )

2

)



(Pf
t)1k

(Pf
t)2k
...

(Pf
t)nk


 .
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This relation means that the analysis increment δxa
t is proportional to a col-

umn of the forecast error covariance matrix Pf
t. This implies that Pf

t controls
how information is spread out from the single available observation, to provide
statistically-consistent increments at the neighboring grid-points and to ensure
that an observation of one model variable produce consistent increments in the
other model variables.

→֒ Incremental form of the cost function

The 3D-Var formulation presented in Eq. (5.34) is difficult to solve for a non-
linear observation operator Gt, in particular within the framework of parameter
estimation. In this case, the cost function J3D can exhibit multiple local minima
and thus, its minimization becomes a challenging and time-consuming task (without
any guarantee that the solution is optimal). This implies that the conditional mode
estimate is generally not unique, in contrast to the conditional mean estimate.
Considering that the extent of non-linearities remains limited, Courtier et al. (1994)
showed that the Gauss-Newton method can be used to transform the non-quadratic
minimization problem onto a sequence of quadratic function minimizations.

Based on the linearization of the observation operator Gt presented in Eq. (5.32),
the 3D-Var cost function presented in Eq. (5.34) can be formulated with respect
to the correction increment δxt = xt − xf

t, instead of the control vector xt. In
the incremental form, the discrepancies between the observations and the model
counterparts of the observed quantities can be expressed as:

yo
t − Gt(xt) = yo − Gt(xf

t)︸ ︷︷ ︸
df
t

−Gtδxt. (5.38)

It follows that the incremental 3D-Var cost function noted Jinc−3D is a quadratic
function in the increment δxt such that:

Jinc−3D(δxt) =
1

2
δxT

t (Pf
t)
−1 δxt (5.39)

+
1

2

(
Gtδxt − df

t

)T
(Rt)

−1
(
Gtδxt − df

t

)
.

The gradient of the incremental cost function satisfies:

∇Jinc−3D(x
a
t ) = 0 (5.40)

⇔ 0 = (Pf
t)
−1
(
xa
t − xf

t

)
+GT

t (Rt)
−1
(
Gt(xf

t) +Gt(x
a
t − xf

t)− yo
t

)
,

⇔ 0 =
(
(Pf

t)
−1 +GT

t (Rt)
−1Gt

)(
xa
t − xf

t

)
+GT

t (Rt)
−1
(
Gt(xf

t)− yo
t

)
,

⇔xa
t = xf

t +
(
(Pf

t)
−1 +GT

t (Rt)
−1Gt

)−1
GT

t (Rt)
−1
(
yo
t − Gt(xf

t)
)
,
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or equivalently,

δxa
t =

(
(Pf

t)
−1 +GT

t (Rt)
−1Gt

)−1
GT

t (Rt)
−1 df

t. (5.41)

In practice, the minimization of the incremental cost function presented in Eq. (5.40)
is obtained through an iterative algorithm (e.g., conjugate gradient, quasi-Newton)
starting from the forecast xf

t, each iteration requiring the evaluation of the quadratic
cost function Jinc−3D and its gradient. However, there is in general no guarantee
that the iterations will converge. Typically, about 50 iterations are performed to
produce the solution xa

t . To move to the next assimilation cycle [t, t + 1], the
forecast xf

t+1 results from the model integration of the analysis xa
t at time t as in

sequential data assimilation approaches. If no term of the analysis error covariance
matrix Pa

t is evaluated (as in most of the 3D-Var applications), the forecast error
covariance matrix is not evolved and by default, Pf

t+1 = Pf
t. Since the minimiza-

tion is performed at a given time t, the 3D-Var approach corresponds to a static
data assimilation technique.

5.4.3 Four-dimensional variational algorithm

→֒ Generalization of the three-dimensional variational algorithm

One issue with the 3D-Var formulation is the discontinuity in the model trajec-
tory induced by the analysis increment at the analysis time. Besides, all obser-
vations cannot be processed at once in a continually operating data assimilation
system. Thus, the sequential assimilation of these data may not be the best solu-
tion to obtain a smooth model trajectory of the system behavior and to produce
physically-consistent forecasts. To overcome this issue, the four-dimensional vari-
ational technique (referred to as 4D-Var) has been introduced as a generalization
of 3D-Var for observations that are distributed over the time window [0, T ], with
yo = {yo

0,y
o
1, · · · ,yo

t , · · · ,yo
T } the (T+1) observation vectors at different times (t

varying between 0 and T ) and with yo
t ∈ Rp the spatially-varying observation vector

at a particular time t. Within the framework of 4D-Var, [0, T ] is the assimilation
window.

In the context of numerical weather predictions, the 4D-Var technique aims at esti-
mating the initial condition of the atmosphere at the start of the assimilation window
(referred to with index 0) given all the observations available over the time window
[0, T ]. We define the sequence of control vectors as x = {x0,x1, · · · ,xt, · · · ,xT },
with t varying between 0 and T , with xt ∈ Rn a control vector at a particular time
t and with yt ∈ Rp its model counterparts in the observation space.2 The 4D-Var
objective is therefore to estimate the control vector x0 starting from a prior estimate
xf
0 and its associated error covariance matrix Pf

0. Note that the pair (xf
0,P

f
0) is

2Time indices of yo and x are equivalent here to simplify notations. This is usually not the
case in practice, implying that the mapping between the control space and the observation space
requires a time interpolation.



230 5.4 - Conditional mode estimation: variational approach

usually denoted by (xb,B) in the 4D-Var literature (the superscript b referring to
background), but the notations introduced in Section 5.2 are maintained for clarity
purposes.

As a generalization of the 3D-Var approach for parameter estimation, the 4D-Var
requires the use of the generalized observation operator G to be able to compare
observations yo and their model counterparts y at the appropriate times over the
assimilation time window.

→֒ Formulation of the four-dimensional cost function

The commonly-used approach relies on the strong-constraint formulation and there-
fore on the assumption that the dynamic modelM is perfect over the assimilation
window [0, T ], meaning that model errors εMt at each time t are negligible with re-
spect to forecast and observation errors. In this context, the variational technique
is referred to as the strong-constraint 4D-Var; originally proposed by Talagrand
and Courtier (1987) and later discussed in Courtier et al. (1994), it consists in
minimizing the following cost function J4D(x0):

J4D(x0) =
1

2

(
x0 − xf

0

)T
(Pf

0)
−1
(
x0 − xf

0

)

︸ ︷︷ ︸
J f
4D

+
1

2

(
y − yo

)T
(R)−1

(
y − yo

)

︸ ︷︷ ︸
J o
4D

, (5.42)

with the strong model constraint y = G(x). The cost function is divided into
two different terms: (1) the term J f

4D representing the weighted-deviation to the
prior estimate xf

0; and (2) the term J o
4D representing the weighted-deviation to the

observations at the different time steps included in the time window [0, T ]. Thus,
the observation operator Gt at time t can be written with respect to the initial
control vector x0 as yt = Gt(xt) = Ht[M[0,t](x0)], including the non-linear model
propagation. Over the assimilation window [0, T ], the model counterparts in the
observation space y can therefore be recast in the following compact form:

y = G(x) =




G0(x0)
G1(x1)

...
Gt(xt)

...
GT (xT )




=




H0(x0)
H1

[
M[0,1](x0)

]
...

Ht

[
M[0,t](x0)

]
...

HT

[
M[0,T ](x0)

]




. (5.43)
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If we consider that the observation errors are uncorrelated in time, the observation
term J o

4D can be expressed as:

J o
4D =

1

2

T∑

t=0

(
Gt(xt)− yo

t

)T
(Rt)

−1
(
Gt(xt)− yo

t

)
, (5.44)

with the constraint xt = M[0,t](x0) for each time t = 1, · · · , T (meaning that
the control vector xt corresponds to an admissible evolution of the physical system,
starting from the initial control vector x0) and with Rt the block of the observation
error covariance matrix R at time t.

→֒ Incremental form of the cost function

As for the 3D-Var approach, the 4D-Var formulation presented in Eq. (5.42) is
difficult to solve for a non-linear generalized observation operator G that involves a
non-linear dynamic model M for both parameter and state estimations. It is also
possible to transform this non-quadratic minimization problem onto a sequence of
quadratic function minimizations.

Based on the generalization of the use of the tangent-linear operators presented
in Eqs. (5.31) and (5.33) over the time window [0, T ], we linearize the operators
in the vicinity of a reference control vector (usually taken as the prior xf

0) for the
perturbation δx0 = x0−xf

0. For the dynamic-model operatorM[0,t], we obtain at
time t:

xt =M[0,t](x
f
0 + δx0) ≈M[0,t](x

f
0) +M[t−1,t]M[t−2,t−1] · · ·M[0,1]δx0,

⇒ xt ≈ xf
t +M[t−1,t]M[t−2,t−1] · · ·M[0,1]δx0. (5.45)

By linearizing the operator Gt in the vicinity of xt at time t for the perturbation
δx0, the following approximation is obtained in the observation space:

yt = Gt(xt) ≈ Ht

[
M[0,t](x

f
0) +M[t−1,t]M[t−2,t−1] · · ·M[0,1]δx0

]

≈ Ht

[
M[0,t](x

f
0)
]
+HtM[t−1,t]M[t−2,t−1] · · ·M[0,1]δx0

≈ Gt(xf
t) +Gtδx0,

⇒ yt ≈ yf
t +Gtδx0. (5.46)

The time-sequence of the model counterparts y of the observed quantities over the
time window [0, T ] can be recast in the following compact form:

G =




G0
...
Gt
...

GT



=




H0
...

HtM[t−1,t]M[t−2,t−1] · · ·M[0,1]
...

HTM[T−1,T ] · · ·M[0,1]



. (5.47)
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Using this formalism, the discrepancies between yo = {yo
0, · · · ,yo

t , · · · ,yo
T } and

their model counterparts G(x) = {G0(x0), · · · ,Gt(xt), · · · ,GT (xT )} read:

yo − G(x) = yo − G(xf)︸ ︷︷ ︸
df

−Gδx0. (5.48)

This is the analogy of Eq. (5.38) over the time window [0, T ]. It follows that the
incremental 4D-Var cost function noted Jinc−4D is not parameterized with respect
to the control vector x0, but instead with respect to the correction increment
δx0 = x0 − xf

0 (at the start of the time window) such that:

Jinc−4D(δx0) =
1

2
δxT

0 (Pf
0)

−1 δx0

︸ ︷︷ ︸
J f
inc−4D

+
1

2

(
Gδx0 − df

)T
(R)−1

(
Gδx0 − df

)

︸ ︷︷ ︸
J o
inc−4D

. (5.49)

As mentioned for the 4D-Var formulation, if the observation errors are assumed to
be uncorrelated in time, the term J o

inc−4D can be expressed as:

J o
inc−4D(δx0) =

1

2

T∑

t=1

{
(Gtδx0 − df

t)
T(Rt)

−1(Gtδx0 − df
t)
}
, (5.50)

with Gt the restriction of the tangent-linear operator G at time t and df
t = yo

t −
Gt(xf

t) = yo
t −Ht[M[0,t](x

f
0)] the innovation at time t. Thus,

Gtδx0 − df
t = HtM[t−1,t]M[t−2,t−1] · · ·M[1,0]δx0 − df

t. (5.51)

Note that the incremental cost function Jinc−4D(δx0) in Eq. (5.49) is quadratic
with respect to the increment δx0: the exact minimizing solution δxa

0 can be
found by solving ∇Jinc−4D(δx

a
0) = 0 for the increment δx0. As for the 3D-Var

incremental form, the analysis solution xa
0 can be expressed as a correction of the

prior xf
0 such that:

xa
0 = xf

0 + δxa
0, (5.52)

with the analysis increment δxa
0 satisfying:

δxa
0 =

(
(Pf

0)
−1 +GTR−1G

)−1
GTR−1 df . (5.53)

This analysis increment is a generalization of the incremental 3D-Var formulation;
a schematic of the incremental 4D-Var solution is shown in Fig. 5.9. The analysis
trajectory is smooth over the time window [T−1, T ] and corresponds to the forecast
trajectory integrated by the computer model, but with a corrected initial state at
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the beginning of the assimilation time window. Since the observations and the
forecast are subject to uncertainties, the analysis provides an intermediate solution
between the forecast trajectory and the observations that is more accurate than if
either of them were taken separately.

Time 0 Time T

Assimilation cycle

Forecast

Analysis increment Analysis
δxa

0

Measurement

(t-1) t

3D-Var analysis

xf
0

xf
t

xa
t

xa
0

yo
t

Figure 5.9: Schematic of the incremental 4D-Var algorithm with a comparison to 3D-Var.

Some limiting cases listed below can be identified; those highlight the role of the
forecast and observation error covariance matrices in the data assimilation process.

⊲ Perfect forecast: (Pf
0 −→ 0) =⇒ (δxa

0 −→ 0), meaning that the assimi-
lation of observations cannot bring more information to the physical system;
the confidence in the forecast control vector x0 is total.

⊲ Worthless observations: (R−1 −→ 0) =⇒ (δxa
0 −→ 0), meaning that

observations are subject to very high uncertainties that prevent them from
capturing any physical feature and thus, from contributing to the analysis.

⊲ Worthless forecast: ((Pf
0)

−1 −→ 0) leads to:

δxa
0 = (GTR−1G)−1GTR−1 df = G−1 df .

This is equivalent to a least-squares weighting of the observations, the forecast
term does not contribute to the analysis and thus, the correction reduces to
the inversion of the generalized observation operator G. This case only
makes sense if the inverse problem is over-determined (i.e., if there are more
observations p than control variables n to estimate); otherwise the term
(GTR−1G)−1 cannot be defined.

⊲ Perfect observations: (R −→ 0) leads to:

δxa
0 = Pf

0G
T (GPf

0G
T)−1 df .

This case is equivalent to a data interpolation (a degenerate case of the
variational cost function) and only makes sense if the inverse problem is under-
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determined (i.e., if there are more control variables n than observations p);
otherwise GPf

0G
T cannot be defined.

→֒ In practice: multi-incremental four-dimensional variational algorithm

In practice, the incremental 4D-Var technique relies on the iterative Gauss-Newton
algorithm, with two different levels at which iterations (loops) are performed:

(1) inner-loops, whose objective is to perform the minimization of the quadratic
cost function presented in Eq. (5.49) based on the model and observation
tangent-linear operators. This constitutes one incremental step for an incre-
ment δx(k)

0 ; the index k referring to the incremental step.

(2) outer-loops, whose objective is to account for the non-linearities in the model
over the full uncertain range of the control variables, meaning that the con-
vergence towards the analysis estimate requires a sequence of minimizations of
quadratic cost functions (i.e., a sequence of incremental 4D-Var steps) with
k varying from 0 to kmax. Note that kmax is usually less than 5 for large-
dimensional systems.

The resulting multi-incremental 4D-Var algorithm is illustrated in Fig. 5.10.

Figure 5.10: Schematic of the outer loops in the multi-incremental 4D-Var algorithm.
The black solid line represents the non-quadratic cost function to minimize due to model
non-linearities and non-Gaussian error statistics. Dashed lines represents successive lin-
earizations (outer-loops). A first linearization (blue dashed line) is performed in the vicinity

of the forecast xf
0, the inner loop allows to determine the increment δx

(0)
0 of the quadratic

cost function Jinc−4D(δx
(0)
0 ). This increment added to the forecast gives the point x

(1)
0 .

A new linearization can be performed in the vicinity of this new reference point (purple

dashed line), providing a new increment and a new reference point x
(2)
0 . This process is

iterated until the minimum of J4D(x0) is found (red dot).
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The formulation of the inverse problem as a sequence of quadratic cost functions
(detailed in the following box) ensures that there is a unique minimum. Still,
Courtier et al. (1994) showed that the convergence of the multi-incremental 4D-
Var algorithm is not guaranteed. Note that the minimization implies that the model
tangent-linear M[t−1,t] and its adjoint MT

[t−1,t] for any time t are required at each
inner loop of the algorithm. Note also that it is possible to perform successive
assimilations with the 4D-Var algorithm beyond the time window [0, T ]. However,
in practice the analysis error covariance matrix Pa

T is not explicitly computed and
the forecast error covariance matrix for the next assimilation window [T, 2T ] is taken
by default as Pf

T = Pf
0. The need for a dynamic estimation of the forecast error

covariance matrix motivates the use of hybrid ensemble/variational techniques.

Multi-incremental 4D-Var algorithm over the time window [0, T ]

⊲ Start with the forecast at initial time: x
(0)
0 = xf

0.

⊲ Outer loops: for k = 1, · · · , kmax

(1) Computation of the innovation at initial time 0:

d
(k−1)
0 = yo

0 − G0
(
x
(k−1)
0

)
.

(2) Model trajectory for any time t:

x
(k−1)
t =M[0,t]

(
x
(k−1)
0

)
, t = 0, · · · , T.

(3) Computation of the innovation at any time t:

d
(k−1)
t = yo

t − Gt
(
x
(k−1)
t

)
, t = 0, · · · , T.

(4) Linearizations of the model and observation operators in the vicinity

of x(k−1)
t , t = 0, · · · , T based on Eqs. (5.45)-(5.46).

(5) Inner loops (with convergence criterion):

(a) Minimization of the quadratic cost function Jinc−4D(δx
(k)
0 ).

(b) Update of the increment δx(k)
0 .

(6) Update of the control vector:

x
(k)
0 = x

(k−1)
0 + δx

(k)
0 .

⊲ Analysis estimate at the initial time: xa
0 = x

(kmax)
0 .

⊲ Analysis model trajectory along the time window [0, T ]:

xa
t =M[0,t](x

a
0), t = 0, · · · , T.

⊲ Analysis at the end of the time window (at time T ) used as the forecast
for the next assimilation cycle [T, 2T ].
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5.5 Conditional mean estimation: Kalman filter

5.5.1 Kalman filter: analytical solution for Bayesian filtering

The Bayesian filtering problem presented in Eq. (5.22) has an analytical solution for
xa
t under the assumptions of linear model operatorsM[t−1,t] (denoted by M[t−1,t])

and Gt (denoted by Gt) as well as of Gaussian error statistics. Under these as-
sumptions, the gradient of the 3D-Var cost function defined in Eq. (5.37) can be
formulated as follows:

xa
t = xf

t +Pf
tG

T
t

(
GtP

f
tG

T
t +Rt

)−1

︸ ︷︷ ︸
Kt

(
yo −Gt x

f
t

)
, (5.54)

with δxa
t = Kt (yo − Gt x

f
t) the analysis increment at time t and Kt the Kalman

gain matrix. This analysis formula is the KF basis (its interpretation and demon-
stration follow in Section 5.5.2); the latter shares this static update with the 3D-Var
approach. However, the KF also explicitly computes the analysis error covariance
matrix Pa

t through an additional matrix equation. Indeed, under the linearity and
Gaussianity assumptions, it can be shown that all forecast and analysis PDF re-
main Gaussian and thus, the analysis PDF pa(xt) can be exactly represented by its
expected value and error covariance matrix Pa

t such that:

pa(xt) ∝ exp

{
−1

2

(
xt − xa

t

)T
(Pa

t )
−1
(
xt − xa

t

)}
. (5.55)

This implies that the KF directly operates on the error covariances of the control
vector xt to produce an exact representation of the posterior PDF pa(xt); Pa

t is the
estimation of the uncertainty in the analysis produced by the KF. Furthermore, the
KF propagates the information from one update time to the next; this propagation
is subject to possibly uncertain model dynamics, but leads to a sequential update
of the control vector as observations becomes available. Thus, the KF exhibits a
prediction step and an update step over one assimilation cycle [t − 1, t] as in the
Bayesian filtering general approach.

→֒ Prediction step (forecast)

The prediction step consists in integrating the dynamic model over time, starting
from the analysis of the previous assimilation cycle xa

t−1 at time (t−1) and thereby
producing the forecast xf

t at time t. The forecast error covariance matrix Pf
t is also

obtained at the update time t via the propagation of the analysis error covariance
matrix Pa

t−1 from the previous assimilation cycle. Thus, the prediction step can be
summarized as the following set of equations:

xf
t = M[t−1,t]x

a
t−1, (5.56)

Pf
t = M[t−1,t]P

a
t−1M

T
[t−1,t]. (5.57)
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If the model errors εMt are accounted for, the prediction step of the error covariance
matrix includes the model error covariance matrix Qt such that Eq. (5.57) becomes
Pf

t = M[t−1,t]P
a
t−1M

T
[t−1,t] +Qt.

→֒ Update step (analysis)

Starting from prior information given by the forecast (xf
t,P

f
t) and the observations

yo
t available at time t, the Kalman update equations read:

xa
t = xf

t +Kt

(
yo
t −Gtx

f
t

)
, (5.58)

Kt = Pf
tG

T
t

(
GtP

f
tG

T
t +R

)−1
, (5.59)

Pa
t =

(
In −KtGt

)
Pf

t. (5.60)

Equation (5.58) shows that the correction of the forecast control vector xf
t (the

analysis increment) is proportional to the innovation vector df
t = yo

t − Gtx
f
t; the

magnitude of this correction being controlled by the gain matrix Kt. This gain
matrix defined in Eq. (5.59) accounts for the sensitivity of the observed quantities
to changes in the control variables through the linear observation operator Gt, and
for the influence of forecast and observation errors through the error covariance
matrices Pf

t and Rt. Besides, Eq. (5.60) provides a posterior estimate of the
analysis error covariance matrix Pa

t .

5.5.2 Properties and interpretation of the Kalman filter

→֒ Scalar example

We consider here a simple example (Maybeck, 1979; Talagrand, 1997; Massart,
2003; Reichle, 2008) to provide insight into the formulation of the KF. The control
vector xt is reduced to a scalar variable (n = 1). The forecast estimate xf

t of error
variance (σf

t)
2 represents prior information; it can be produced from a previous

forecast that is valid at the time of the new observation yo
t . This observation is

a scalar quantity (p = 1) associated with the error variance (σo
t )

2; it represents
the same physical quantity as the control variable (meaning that the observation
operator Gt is reduced to the identity operator and that its tangent-linear is the
identity matrix I). The objective of the KF is to determine the least-square estimate
xa
t of the true control vector xt

t based on available information.

In the update step, the KF searches for the analysis xa
t as a linear combination of

the available information xf
t and yo

t , i.e.,

xa
t = kf xf

t + ko yo
t , (5.61)

where kf and ko become the unknowns of the inverse problem. Generally speaking,
this equation has a wide range of possible estimators xa

t . Thus, we constrain the
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solution to be an unbiased estimate of the truth xt
t, leading to:

E

[
eat

]
= E

[
xa
t − xt

t

]
= E

[
kfxf

t + koyo
t − xt

t

]

= E

[
kf(xt

t + eft) + ko(xt
t + ǫot )− xt

t

]

= kf E[eft] + ko E[ǫot ] + (kf + ko − 1)E[xt
t]

= (kf + ko − 1)E[xt
t]

= 0,

⇒ kf + ko = 1, (5.62)

using the white-noise assumptions E[eft] = 0 and E[ǫot ] = 0 for the forecast and
observation errors, respectively. An additional constraint is required to determine
the unknowns kf and ko; this constraint is based on the idea that the lower the
error variance of the estimate, the more accurate the estimate. The analysis xa

t is
therefore obtained by minimizing the variance of its distance to the truth. Hence,

E

[
(xa

t − xt)2
]
= E

[(
kfxf

t + koyo
t − xt

t

)2]

= E

[(
kf(xt

t + eft) + (1− kf)(xt
t + ǫot )− xt

t

)2]

= (kf)2 E[(eft)
2] + (1− kf)2 E[(ǫot )

2] + 2kf(1− kf)E[eft · ǫot ],
⇒ E

[
(xa

t − xt)2
]
= (kf)2 (σf

t)
2 + (1− kf)2 (σo

t )
2.

The minimization of the variance with respect to the coefficient kf leads to:

dE
[
(xa

t − xt)2
]

dkf
= kf (σf

t)
2 − (1− kf) (σo

t )
2 = 0,

⇒ kf =
(σo

t )
2

(σf
t)

2 + (σo
t )

2
, ko =

(σf
t)

2

(σf
t)

2 + (σo
t )

2
, (5.63)

using the assumption of uncorrelated forecast and observation errors E[eft · ǫot ] = 0
and using Eq. (5.62). The optimal estimate xa

t in this scalar example is obtained
by searching for an unbiased estimator of minimal variance (σa

t )
2, it is called the

best linear unbiased estimator (BLUE) and it is also the solution of the 3D-Var cost
function expressed here as:

J3D(xt) =
(xt − xf

t)
2

(σf
t)

2
+

(xt − yo
t )

2

(σo
t )

2
. (5.64)
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Thus, the analysis xa
t reads:

xa
t =

(
(σo

t )
2

(σf
t)

2 + (σo
t )

2

)
xf
t +

(
(σf

t)
2

(σf
t)

2 + (σo
t )

2

)
yo
t ,

⇒ xa
t =

(σo
t )

2 xf
t + (σf

t)
2 yo

t

(σf
t)

2 + (σo
t )

2
,

⇒ xa
t = xf

t +

(
(σf

t)
2

(σf
t)

2 + (σo
t )

2

)

︸ ︷︷ ︸
Kt

(yo
t − xf

t). (5.65)

This implies that the BLUE solution xa
t is a weighted-sum of the forecast and the

observation. The weights are determined by the relative uncertainties in the model
and the observation; they are recast in the Kalman gain matrix Kt, which is here
a scalar such that 0 6 Kt 6 1. Subsequently, if the measurement error variance
(σo

t )
2 is small compared to the forecast error variance (σf

t)
2, the gain is large and

the resulting analysis is close to the observation. To the contrary, if the forecast
error variance (σf

t)
2 is small compared to the observation error variance (σo

t )
2, the

gain is close to a zero-value and the analysis remains close to the prior control
variable. Equal forecast and measurement error variances lead to the mean value
xa
t = xf

t/2+yo
t /2 with equal weights for each source of information (i.e., Kt = 0.5).

By reformulating Eq. (5.65), the analysis xa
t satisfies:

xa
t

(σa
t )

2
=

xf
t

(σf
t)

2
+

yo
t

(σo
t )

2
, (5.66)

using the following expression for the analysis variance (σa
t )

2:

1

(σa
t )

2
=

1

(σf
t)

2
+

1

(σo
t )

2
, (5.67)

or alternatively,

(σa
t )

2 = (1−Kt) (σ
f
t)

2 = Kt (σ
o
t )

2. (5.68)

If the precision is defined as the inverse of the error variance, Eq. (5.67) demon-
strates that the precision of the analysis is the addition of the precisions of the
available sources of information (i.e., forecast and measurement). The uncertainty
in the analysis estimate is therefore systematically smaller than the error variance
of either the forecast estimate or the stand-alone observation. This reflects the
increased knowledge with data assimilation about the true control variables xt

t by
combining available information on the model and observations along with their
estimated error statistics.
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→֒ Generalization to multi-variate random variables

The scalar analysis can be generalized to a framework with n control variables and
p measurements, which do not evolve in the same space. Still, the observation
operator Gt is assumed to be linear and is noted Gt. Note that Gt is different from
the Jacobian matrix of the observation operator Gt that describes the dynamics
of the perturbations δxt. As in the scalar example, the analysis xa

t ∈ Rn can be
written as a linear combination of the prior information and the observations:

xa
t = Kf

t x
f
t +Ko

t y
o
t , (5.69)

where Kf
t is a n × n matrix and Ko

t is a n × p matrix (Kf
t and Ko

t are linear
operators). The BLUE solution minimizes the error eat = xa

t − xt
t in the sense that

it minimizes the variance of the distance of each control variable to the true value.
Thus, it minimizes the elements of the trace of the analysis error covariance matrix
Pa

t . Using the same constraints of zero-mean and minimum-variance estimator as
in the scalar example, it can be shown that Kf

t = In −KtGt and Kt = Ko
t . This

is the analogy of the scalar relation (5.62) for a non-identity operator Gt. The
analysis xa

t is expressed as a correction of the forecast xf
t:

xa
t = xf

t +Kt

(
yo
t −Gtx

f
t

)

︸ ︷︷ ︸
df
t

, (5.70)

with Gt the linear observation operator and Kt the gain matrix defined as follows:

Kt︸︷︷︸
n×p

= Pf
t︸︷︷︸

n×n

GT
t︸︷︷︸

n×p

(
GtP

f
tG

T
t +Rt︸ ︷︷ ︸

p×p

)−1

=⇒ Kt︸︷︷︸
n×p

=
(
(Pf

t)
−1 +GT

t R
−1
t Gt︸ ︷︷ ︸

n×n

)−1
GT

t︸︷︷︸
n×p

R−1
t︸︷︷︸

p×p

. (5.71)

From a dimensional analysis, we can show that the gain matrix Kt is a linear
operator from Rp to Rn (a n × p matrix), meaning that it maps a perturbation
in the observation space onto a perturbation in the control space to determine the
analysis increment δxa

t as illustrated in Fig. 5.11.

As in the scalar example, we can deduce from Eq. (5.70) and (5.71) that a perfect
confidence in the forecast xf

t leads to a zero gain Kt, meaning that the analysis
xa
t remains equal to the forecast xf

t. In contrast, if the observations are perfect,
then they are the image of the true state by the observation operator Gt. The
analysis xa

t is in this case the direct solution of the inverse problem yo
t = Gt x

a
t

independently of the forecast xf
t. In-between these two limiting cases, Eq. (5.70)

shows that the correction of the forecast xf
t is proportional to the innovation vector

df
t; the less accurate the forecast prediction, the larger the innovation vector and

the larger the correction to the forecast.
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Figure 5.11: Schematic of the 4 main steps underlying the KF algorithm to compute the
gain through the Kalman gain matrix Kt and to derive the analysis xa

t .

In the update step of the KF, the error covariance matrices Pf
t and Rt are fun-

damental ingredients as they provide an estimation of the precisions (confidence)
of the forecast and observations. Thus, they directly impact the magnitude of the
gain matrix Kt. Equation (5.70) can be alternatively expressed as:

xa
t =

(
(Pf

t)
−1 +GT

t R
−1
t Gt

)−1 (
(Pf

t)
−1xf

t +GT
t R

−1
t yo

t

)
, (5.72)

which is the analogy of Eq. (5.65) in a multi-dimensional case: the optimal estimator
is found to be the addition of the information weighted by their precisions (taken
as the inverse of the error covariance matrices), the estimate being itself weighted
by the sum of all the precisions. One difficulty is that the forecast precision (Pf

t)
−1

and the observation precision (Rt)−1 do not act upon the same space: the forecast
is weighted by (Pf

t)
−1, the observation by GT

t R
−1
t (GT

t being applied to map
the observation precision onto the control space) and the analysis by ((Pf

t)
−1 +

GT
t R

−1
t Gt). Thus, the analysis error covariance matrix Pa

t reads:

Pa
t =

(
(Pf

t)
−1 +GT

t R
−1
t Gt

)−1
=
(
In −KtGt

)
Pf

t, (5.73)

indicating that the inverse of the error covariance matrices are additive, i.e.,

(Pa
t )

−1 = (Pf
t)
−1 +GT

t R
−1
t Gt.

Note that the operator (In−KtGt) measures the reduction in the innovation vector
df
t due to data assimilation. The analysis residual da

t is indeed expressed as:

da
t = yo

t −Gt x
a
t =

(
In −KtGt

)(
yo
t −Gt x

f
t︸ ︷︷ ︸

df
t

)
. (5.74)

→֒ Observation influence in the analysis solution

To diagnose the observation influence on the data assimilation results, the degree
of freedom for signal (DFS) has been introduced to quantify the contribution of the
observations yo

t in the reduction of the error variance in the analysis xa
t (Rodgers,



242 5.5 - Conditional mean estimation: Kalman filter

2000; Fisher, 2003; Cardinali et al., 2004; Rabier, 2005). Desroziers and Ivanov
(2001) and Chapnik et al. (2006) showed that DFS may be estimated through the
evaluation of the trace of the GtKt matrix at time t, i.e.,

DFSt = trace(GtKt), (5.75)

with Gt the tangent-linear of the observation operator Gt and Kt the Kalman gain
matrix. A partial DFS, associated with a particular subset of observations, can
also be determined if the associated error statistics of these observations are not
correlated to the rest of the observation errors in the specified observation error
covariance matrix Rt.

5.5.3 Similitudes and differences with variational approaches

Within the framework of the KF, the analysis estimate xa
t is a feedback information

for the dynamic model. xa
t is optimal when the variance of its distance to the

true xt
t gets to a minimum, meaning, for Gaussian cases, that its PDF pa(xt) is

dense around its mean. This implies that the error variances of the control variables
(i.e., the trace of the analysis error covariance matrix Pa

t ) are minimized through
the update step. This is the BLUE property of the KF that is common to the 3D-
Var formulation presented in Eq. (5.37) and to the OI technique (Jazwinski, 1970;
Lorenc, 1986; Cohn, 1997). For linear problems, the mean and the mode of the PDF
are equivalent, meaning that there is a unique best estimate of the control vector
xt. This also implies that the KF and the weak-constraint variational approaches
produce identical estimates at the end of the assimilation time window.

Even though there are many similarities between the 4D-Var approach and the KF
(Talagrand and Courtier, 1987; Bouttier and Courtier, 1999), we highlight here
some fundamental differences between these two data assimilation techniques:

⊲ Filter versus smoother. In the KF, observations are processed separately
and information from a previous update time is explicitly propagated using the
dynamic model, meaning that the analysis estimate at a given time is based
on all observations up to that time. This a sequential filtering algorithm. In
contrast, the 4D-Var approach is an example of smoothing algorithms (Boc-
quet, 2011), in which measurements at different times within an assimilation
time window are processed simultaneously. The analysis estimate at the start
of the time window is therefore based on past and future measurements over
the time window, which is typical of a smoother. These differences between
filtering and smoothing are highlighted in Fig. 5.12: while assimilation is per-
formed at each observation time in a filtering approach, smoothing includes
several observation times in one assimilation, leading to smoother model tra-
jectory and uncertainty evolution over the considered time period.

⊲ Propagation of error statistics. The KF also differs from variational ap-
proaches by the prediction step that allows for the explicit propagation of error
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covariance matrices through the different assimilation cycles. In 4D-Var, the
covariance propagation is implicit and only applies within the assimilation
cycle; there is no propagation of the error covariance matrices from one as-
similation cycle to the next.

⊲ Computational cost. The evolution of the forecast error covariance matrix
Pf

t is often the most computationally-demanding step of the KF, since it in-
volves large matrix multiplications (Todling and Cohn, 1994). The 4D-Var
approach is therefore an attractive operational solution, which is computa-
tionally more efficient than the KF for high-dimensional problems such as in
numerical weather prediction.

Figure 5.12: Comparison of continually-operating data assimilation systems based on
(a) filtering (e.g., 3D-Var, KF); and (b) smoothing (e.g., 4D-Var). Credit: Reichle (2008).
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5.6 Non-linear extensions of the Kalman filter

While theoretically limited to linear model dynamics and Gaussian error statistics,
the KF is the most commonly-used sequential data assimilation technique. However,
in many situations of interest, these assumptions do not hold. One question to be
addressed is therefore the optimality of its solution when these assumptions are
relaxed. Extensions of the KF that partly overcome these limitations have been
proposed, for instance the extended Kalman filter (EKF) that uses local linearization
techniques in a similar way as the incremental 4D-Var approach (Gelb, 1974), and
the ensemble Kalman filter (EnKF) that stochastically represents the time-evolution
of the model and observation error statistics (Evensen, 1994; Houtekamer and
Mitchell, 1998; Evensen, 2007).

5.6.1 Extended Kalman filter

→֒ Prediction and update steps of the extended Kalman filter

The EKF analysis is similar to the incremental 4D-Var analysis since it also relies on
the local linearization of the observation operator Gt and thereby, of the dynamic
model operator M[t−1,t] (Bouttier and Courtier, 1999). Thus, the tangent-linear
operators Gt (Eq. 5.33) and M[t−1,t] (Eq. 5.31) are only valid in the vicinity of a
reference control vector (usually taken as the forecast xf

t of the assimilation cycle
[t− 1, t]). The EKF-based prediction step is based on the following equations:

xf
t =M[t−1,t](x

a
t−1), (5.76)

Pf
t = M[t−1,t]P

a
t−1M

T
[t−1,t], (5.77)

where Eq. (5.76) involves the non-linear model integration over the time period
[t − 1, t] starting from the analysis at the previous assimilation time xa

t−1. As for
the update step, it becomes:

xa
t = xf

t +Kt

(
yo
t − Gt(xf

t)
)
, (5.78)

Kt = Pf
tG

T
t

(
GtP

f
tG

T
t +R

)−1
, (5.79)

Pa
t =

(
In −KtGt

)
Pf

t. (5.80)

Equation (5.79) shows that the tangent-linear of the observation operator Gt is
still involved in the formulation of the gain matrix Kt, while the innovation vector
df
t = yo

t −Gt(xf
t) is evaluated directly using the non-linear observation operator Gt

in Eq. (5.78). This system of equations means that a linearized and approximate
equation is used in the EKF algorithm for the prediction of the error statistics
as well as for the mapping between the control space and the observation space
in the calculation of the Kalman gain matrix Kt. This implies that the EKF is
an approximate non-linear Bayesian filter that provides a consistent analysis if the
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local linearization is sufficient to properly describe non-linearities. Note that the
limitations of the EKF can be partly overcome with an iterative update of the
linearized operators, also called outer-loops (Thirel et al., 2010; Harader et al.,
2012). Note also that a higher-order EKF that retains more terms in the Taylor
expansion exists, but the additional complexity prohibits its development.

→֒ Iterative extended Kalman filter (with outer-loops)

In contrast to the classical KF, the EKF is not an optimal estimator due to the use
of approximate tangent-linear operators. The EKF linearizes, sometimes unrealisti-
cally, the model and observation operators; these linearizations are based on local
derivatives that are often difficult to compute reliably (Ros and Borga, 1997). In
addition, the EKF may quickly diverge if the forecast estimate xf

t is far away from
the true control vector xt

t. For instance, if the associated cost function to minimize
is not quadratic and not strictly monotonic, the EKF may encounter local minima
and thus, not find the optimal analysis. For this purpose, the non-linearities of the
observation operator and the dynamic model are partially accounted for by using
an iterative process in a similar way as in the multi-incremental 4D-Var formulation
with the outer-loop process.

The outer-loops allow for successive applications of the Kalman update equations,
in which the gain matrix Kt is updated at each iteration k via the calculation of the
tangent-linear G(k−1)

t around a new reference control vector: while the forecast is

used as a the reference for the first iteration (x(0)
t = xf

t), the reference is taken as

the analysis vector x(k−1)
t from the previous iteration (k−1) for the next iterations.

This procedure is repeated until convergence to the optimal analysis xa
t is obtained;

the number of iterations is typically between 1 and 10. This iterative process (or
outer-loops) is presented in Fig. 5.13. Similar to the incremental 3D-Var and 4D-Var
algorithms, the idea underlying the outer-loops is to perform a sequence of linear
estimations equivalent to a sequence of minimizations of quadratic cost function.
The algorithm over the time period [0, T ] is detailed in the following box.

Figure 5.13: Schematic of the iterative extended Kalman filter (EKF), with outer-loops
for the iterative approximation of the tangent-linear observation operator when moving
from the forecast estimate xf

t to the analysis estimate xa
t .
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Extended Kalman filter algorithm over the time period [0, T ]

⊲ Start with the prior knowledge of the physical system relying on the
control vector x0 and its error covariance matrix P0.

⊲ Initialization: xa
0 = x0, Pa

0 = P0.

⊲ Sequential estimations: for time t = 1, · · · , T
(1) Prediction step

(a) Forecast control vector xf
t =M[t−1,t](x

a
t−1).

(b) Forecast error covariance matrix Pf
t = M[t−1,t]P

a
t−1M

T
[t−1,t].

(2) Analysis step

(a) Calculation of the innovation vector df
t = yo

t − Gt(xf
t).

(b) Initialization of the reference control vector, x(0)
t = xf

t.

(c) Outer-loops: for k = 1, · · · , kmax

(i) Evaluation of the observation operator G(x(k−1)
t ).

(ii) Linearization of the observation operator in the vicinity of

the reference control vector x(k−1)
t using Eq. (5.33):

G
(k−1)
t =

∂Gt
∂xt

∣∣∣
x
(k−1)
t

.

(iii) Calculation of the gain matrix K
(k−1)
t using Eq. (5.79).

(iv) Update of the control vector using a modified Kalman filter
update (Eq. 5.82):

x
(k)
t = xf

t +K
(k−1)
t

(
df
t +G

(k−1)
t

(
x
(k−1)
t − xf

t

))
.

(d) Analysis for the assimilation cycle [t− 1, t]

(i) Analysis estimate at time t: xa
t = x

(kmax)
t .

(ii) Calculation of the analysis error covariance matrix Pa
t

Pa
t =

(
In −K

(kmax)
t G

(kmax)
t

)
Pf

t.

In the iterative version of the EKF, particular attention must be paid to the analysis
update equation. The formulation of the analysis at iteration k noted x

(k)
t differs

indeed from the classical Kalman update presented in Eq. (5.78). The multi-
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incremental 3D-Var cost function at iteration k can be expressed as follows:

J (k)
inc−3D

(
xt,x

(k−1)
t

)

=
1

2

(
xt − xf

t

)T
(Pf

t)
−1
(
xt − xf

t

)
(5.81)

+
1

2

(
G

(k−1)
t δx

(k−1)
t − d

(k−1)
t

)T
(Rt)

−1
(
G

(k−1)
t δx

(k−1)
t − d

(k−1)
t

)

with δx
(k−1)
t = (xt − x

(k−1)
t ) the control deviation from the truth, d

(k−1)
t =

yo
t −Gt(x(k−1)

t ) the deviation from the observations for the reference control vector

x
(k−1)
t , and G

(k−1)
t the linearized observation operator around this reference at

iteration k. The gradient of this cost function satisfies:

(Pf
t)
−1
(
x
(k)
t − xf

t

)

+ (G
(k−1)
t )T(Rt)

−1
(
G

(k−1)
t

(
x
(k)
t − x

(k−1)
t

)
− d

(k−1)
t

)
= 0,

⇒x
(k)
t = xf

t +K
(k−1)
t

(
df
t +G

(k−1)
t

(
x
(k−1)
t − xf

t

))
, (5.82)

using the linear property of the tangent-linear operator G(k−1)
t at iteration k.

→֒ Successes and limitations

While irrelevant for weather forecasting due to its prohibitive computational cost
(Gelb, 1974), the EKF has been applied successfully for land surface data assim-
ilation. In particular, it has been integrated into the land surface analysis of the
ECMWF global data assimilation system (de Rosnay et al., 2013). Its objective
is to estimate the land surface parameters such as soil moisture, surface temper-
atures, snow and vegetation properties. Furthermore, this EKF approach has also
demonstrated its performance for hydrodynamics applications. For instance, Ha-
rader et al. (2012) showed that an EKF strategy can correct the radar rainfall
forcing of a conceptual hydrological model and be relevant for flood forecasting.

Apart from the non-linearity limits of the EKF, some difficulties might be encoun-
tered to model the forecast error covariance matrix Pf

t because of storage capacities
or simply because the errors do not follow a Gaussian distribution. A large body
of literature addresses the modeling of Pf

t at the start of the assimilation cycle,
based on deformations, wavelets transformations (Deckmyn and Berre, 2005; Pan-
nekoucke et al., 2008; Montmerle and Berre, 2010; Michel, 2013b,a) or a diffusion
equation (Weaver and Courtier, 2001), in order to properly characterize the corre-
lations between the control variables. Ensemble-based data assimilation techniques
such as the EnKF (Evensen, 1994; Houtekamer and Mitchell, 1998) suggest an
alternative to stochastically characterize the forecast error covariance matrix and
thereby, to better account for the non-linearities in the physics, while also avoiding
the storage of the matrix from one assimilation cycle to another.
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5.6.2 Ensemble-based Kalman filters

Originally proposed by Evensen (1994) as an alternative to the EKF that cannot
deal with severe non-linear dynamics (Evensen, 1992, 1993; Miller et al., 1999),
the ensemble Kalman filter (EnKF) is a Monte Carlo approach to stochastically
characterize error covariance matrices and thereby the Kalman gain matrix Kt.
The EnKF remains based on Gaussian error statistics and still works sequentially
from one measurement time to the next, applying in-turn a prediction step and an
update step.

A schematic comparison of EKF and EnKF is presented in Fig. 5.14. In contrast to
the deterministic EKF, the EnKF does not require the explicit use of linearized oper-
ators M[t−1,t] and Gt in the prediction step of the KF. The analysis error covariance
matrix Pa

t−1 from the previous assimilation cycle is not directly propagated to the
next update time to produce the forecast error covariance matrix Pf

t. Instead, the
EnKF approximates the distribution of the forecast control vector using a collection
of Ne independent simulations, each simulation (called a member) corresponding
to a realization of the forecast control vector xf

t. This collection of Ne members
called the ensemble forecast reads:

xf
t =

{
x
f,(1)
t ,x

f,(2)
t , ...,x

f,(Ne)
t

}
.

In this ensemble, the k-th member is a n-dimensional multi-variate random vector
such that x

f,(k)
t ∈ Rn. Thus, the EnKF computes the forecast error covariance

matrix Pf
t from the distribution of the forecast control vectors across the ensemble

at time t, instead of explicitly integrating the error covariance from the previous
assimilation cycle to the current time t (see Fig. 5.14). Over the assimilation cycle
[t− 1, t], the EnKF scheme simply consists in the three following main stages:

(1) constructing an initial ensemble by adding independent random perturbations
to the control variables at time (t− 1);

(2) advancing each ensemble member to the next observation time t to form the
forecast ensemble xf

t;

(3) updating each ensemble member by applying the Kalman update equation that
yields the analysis of the ensemble member and contributes to the analysis
ensemble xa

t .

The stages 1 and 2 are part of the prediction step, while the stage 3 constitutes
the update step. A detailed view of the EnKF and its relative issues follows.

→֒ Prediction step

The propagation of error statistics from time (t− 1) to time t is simply performed
by propagating each member k of the ensemble using the non-linear dynamic model
as follows:

x
f,(k)
t =M[t,t−1]

(
x
a,(k)
t−1

)
, k = 1, · · · , Ne. (5.83)
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Figure 5.14: Schematic comparison of the EKF and EnKF algorithms. Credit: Reichle
et al. (2002).

Each member in the ensemble represents a particular realization of the potential
model trajectories using the (possibly) non-linear dynamic model M[t,t−1]. This
means that the forecast ensemble includes some effects of the non-linear dynamics
that are neglected in the EKF. It is worth mentioning that random perturbations
have to be introduced in the model parameters and/or in the external forcing to
account for the uncertainties present in the physical system over the time period
[t − 1, t]. From a stochastic viewpoint, this is justified by the need to generate a
representative sample of the possible future behaviors of the dynamic system and
thus, to avoid the ensemble to suffer from sample impoverishment. Ideally, the true
control vector xt

t should fall within the predicted ensemble spread xf
t to guarantee

the success of the EnKF. The generation of the ensemble is therefore a crucial step
in the EnKF approach.

The forecast error covariance matrix Pf
t is computed over the ensemble, meaning

that it is replaced by the sample covariance matrix of the ensemble noted P
f,e
t , the

subscript e referring to ensemble. Thus, Pf,e
t reads:

P
f,e
t =

(
1

Ne − 1

) Ne∑

k=1

(
x
f,(k)
t − xf

t

)(
x
f,(k)
t − xf

t

)T
, (5.84)
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where the overline denotes the mean value over the ensemble, calculated as:

xf
t =

1

Ne

Ne∑

k=1

x
f,(k)
t . (5.85)

More details on the structure of a sample error covariance matrix is provided in
Appendix F. Equation (5.84) implies that the ensemble mean (instead of the true
control vector xt

t) is used as the best estimate, and that the ensemble scatter is con-
sistently interpreted as the error standard deviation of the best estimate (Evensen,
1994; Burgers et al., 1998). The accurate estimation of Pf

t depends on the size of
the ensemble Ne and on the representativeness of the actual uncertainties within
the ensemble. This last aspect is closely related to the generation of the forecast
ensemble at the start of the assimilation cycle [t− 1, t].

→֒ Update step

In a stochastic framework, measurements also need to be treated as random vari-
ables. Following Burgers et al. (1998), a stochastic perturbation is introduced in the
original measurements yo

t for each ensemble member. This, to avoid the underesti-
mation of the error variance in the control variables and thereby, to prevent sample
impoverishment (perhaps leading to ensemble collapse) if all ensemble members are
corrected with the same measurements. This process is named data randomization
in the literature (Houtekamer and Mitchell, 1998). It leads to an ensemble of Ne

realizations of the observations with a covariance equal to the measurement error
covariance matrix Rt such that:

y
o,(k)
t = yo

t + ξ
o,(k)
t , ξ

o,(k)
t ∼ N (0,Rt), k = 1, · · · , Ne, (5.86)

where the error realizations ξ
o,(k)
t , k = 1, · · · , Ne, are independent of the forecast

errors eft. The ensemble of observations is then defined as:

yo
t =

{
y
o,(1)
t ,y

o,(2)
t , ...,y

o,(Ne)
t

}
.

Applying the observation operator Gt to each forecast ensemble member provides
Ne model counterparts of the observed quantities designated as:

yf
t = Gt(xf

t) =
{
y
f,(1)
t ,y

f,(2)
t , · · · ,yf,(Ne)

t

}
. (5.87)

Thus, the innovation vector df,(k)
t for each ensemble member reads:

d
f,(k)
t = yo

t + ξ
o,(k)
t − y

f,(k)
t , k = 1, ..., Ne. (5.88)

Within this ensemble-based framework, the observation error covariance matrix
Rt could be modeled either by its sample version or using the observation error
standard deviation σo

t . Note that Rt has to be invertible in the KF formalism.
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Using the sample version of Rt could lead to a non-diagonal matrix (especially
if the ensemble size Ne remains small), which is more computationally expensive
to invert. Thus, the observation error covariance matrix Rt is usually modeled
assuming uncorrelated errors, independently of the ensemble size Ne. This ensures
a diagonal, positive, definite matrix, where each diagonal element is equal to the
observation error variance. In the following, we assume that all the observations
have the same error variance denoted by (σo

t )
2, implying that Rt = (σo

t )
2 Ip, with

p the size of the observation vector yo
t .

During the analysis, each ensemble member is independently updated based on
the classical Kalman update Eq. (5.58), with the difference than the generalized
observation operator Gt is non-linear and that the gain matrix (noted Ke

t) is now
stochastically calculated using the ensemble-based forecast error covariance matrix
P

f,e
t . Each analysis member satisfies:

x
a,(k)
t = x

f,(k)
t +Ke

t

(
yo
t + ξ

o,(k)
t︸ ︷︷ ︸

y
o,(k)
t

−Gt
(
x
f,(k)
t

))
, k = 1, · · · , Ne, (5.89)

with:

Ke
t = P

f,e
t GT

t

(
GtP

f,e
t GT

t +Rt

)−1
. (5.90)

This step produces an ensemble of analyses xa
t , from which an analysis error co-

variance matrix P
a,e
t can be reconstructed. The ensemble of analyses reads:

xa
t =

{
x
a,(1)
t ,x

a,(2)
t , · · · ,xa,(Ne)

t

}
,

with:

P
a,e
t =

(
1

Ne − 1

) Ne∑

k=1

(
x
a,(k)
t − xa

t

)(
x
a,(k)
t − xa

t

)T
, (5.91)

or alternatively, it can be shown that the analysis error covariance matrix P
a,e
t

satisfies:

P
a,e
t = (In −Ke

tGt) P
f,e
t , (5.92)

as an analogy to Eq. (5.60) in the standard KF. The application of the EnKF
with the data randomization procedure has been shown to produce correct error
statistics for the analysis (Burgers et al., 1998; Evensen, 2003). Then, the updated
ensemble xa

t can be propagated forward in time to the next observation time (using
the non-linear dynamic model).
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→֒ Advantages and limitations

In contrast to EKF, the EnKF does not require the propagation and the storage of
the error covariance matrices. They can be reconstructed at each observation time
based on the ensemble trajectories, provided the ensemble size Ne is large enough
to capture all the important physical correlations between the control variables.
Furthermore, Li and Xiu (2009) showed that ensemble errors due to Monte Carlo
sampling in EnKF can be dominant compared to numerical or model errors. In order
to estimate converged statistics in the error covariance matrices, a sufficiently large
number of members Ne is required. Since this technique is well-suited to parallel
computing, the member realizations can be computed independently and therefore,
simultaneously. Thus, the computational cost is limited (depending on the cost
of one model integration). This explains why the development of hybrid methods
combining EnKF and variational advantages are currently active research areas in
the data assimilation field; they could benefit from variational approaches for the
treatment of high-dimensional problems and from the ensemble for the dynamic
estimation of error covariances at a limited computational cost.

Still, the EnKF is a Gaussian filter as the EKF. The error statistics are represented
using an error covariance model, meaning that only the first two moments of the
PDF are accounted for and that the higher-order terms (e.g., skewness, kurtosis)
are disregarded. While the error covariance matrix is a perfect model for Gaussian
error statistics, the higher-moments are important if the dynamic model and obser-
vation operator are highly non-linear, since a non-linear model does not translate
a Gaussian PDF for the inputs into a Gaussian PDF for the outputs. Note that
some variants of the EnKF have been developed to relax these Gaussian assump-
tions (Van Leeuwen and Evensen, 1996; Anderson and Anderson, 2003; Beezley
and Mandel, 2008).

→֒ Variants of the ensemble Kalman filter

⊲ Deterministic ensemble Kalman filters. Whitaker and Hamill (2002) ad-
dressed the sampling issues of the EnKF proposed by Burgers et al. (1998) and
suggested that the use of perturbed observations are partly responsible for them.
Data randomization was shown to cause systematic errors in the posterior error
covariance matrix for a limited size Ne of the ensemble (in particular in weather
forecast applications, where Ne remains small due to the computational cost of the
CFD atmospheric model). As an alternative, deterministic variants of the EnKF
(also referred to as square-root approaches) have been proposed to eliminate the
need of data randomization and improve the convergence of the analysis compared
to the pure Monte Carlo sampling of the standard EnKF (Anderson, 2001; Bishop
et al., 2001; Whitaker and Hamill, 2002; Tippett et al., 2003; Evensen, 2004).
The ensemble transform Kalman filter (ETKF) and the ensemble square-root filter
(EnSRF) are typical examples as reviewed in Bonan (2013).



Chapter 5 - General features of data assimilation 253

Within the framework of deterministic ensemble-based KF, the ensemble of fore-
casts/analyses is formulated in terms of the following perturbation matrix Xt:

Xt =
[
x
(1)
t − xt, x

(2)
t − xt, · · · ,x(Ne)

t − xt

]
. (5.93)

Thus, Xt measures the deviation of each ensemble member from the ensemble
mean xt. Equation (5.84) is then rewritten in terms of the forecast perturbation
matrix Xf

t as follows:

P
f,e
t =

(
1

Ne − 1

)
Xf

t (X
f
t)
T. (5.94)

The key idea underlying the deterministic ensemble KF is to express the analysis er-
ror covariances as a transformation of the forecast error covariances. Subsequently,
the analysis is produced in a three-step process:

(i) The perturbation matrix Xa
t is updated based on the calculation of the trans-

form operator Tt such that Xa
t = Xf

t Tt with (non-unique) Tt satisfying:

Xa
t (X

a
t )

T = Xf
t TtT

T
t (Xf

t)
T, (5.95)

with:

TtT
T
t = INe −

1

Ne − 1
(Xf

t)
TGT

t

(
1

Ne − 1
GtX

f
t(X

f
t)
TGT

t +Rt

)−1

GtX
f
t.

(ii) The mean xa
t is computed according to the equation:

xa
t = xf

t +Ke
t

(
yo
t − Gt(xf

t)
)
, (5.96)

with (Ne − 1)Ke
t = Xf

t(X
f
t)
TGT

t

(
GtX

f
t(X

f
t)
TGT

t + (Ne − 1)Rt

)
.

(iii) The analysis members can be reconstructed out of deviations from the mean
value xa

t with:

x
a,(k)
t = xa

t +X
a,(k)
t , k = 1, · · · , Ne, (5.97)

with X
a,(k)
t the k-th column of the analysis perturbation matrix Xa

t .

As in the standard EnKF, the ensemble of analyses is made up of linear combina-
tions of the ensemble of forecasts. However, the EnSRF for instance is known to
improve, at a fixed ensemble size Ne, the rank of the ensemble using a singular
value decomposition for the determination of Tt, since the ensemble members are
deterministically chosen to exhibit less linear dependencies and to span the largest
possible section of the control space with a limited number of members. The con-
vergence of the EnSRF is therefore increased compared to the EnKF based on Monte
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Carlo sampling that exhibits a slow convergence rate©(1/
√
Ne) (see Appendix F).

Thus, the EnSRF as any deterministic ensemble Kalman filter is an alternative to
the Monte-Carlo-based EnKF to accurately estimate the error covariances in the
control variables with a limited number of members.

⊲ Unscented Kalman filters. The objective of unscented filters is to more ac-
curately represent the propagation of the forecast error statistics than the Monte-
Carlo-based EnKF, using a minimum set of carefully-chosen members (Julier, 1998;
Wan and Van der Merwe, 2000). In particular, they address non-linearity issues
in the propagation of error statistics from one analysis time to the next using an
unscented deterministic transformation. We consider the analysis xa

t and its re-
lated analysis error covariance matrix P

a,u
xx,t produced by the Kalman update step

at time t (this analysis could be obtained by any filtering procedure). The idea
underlying the unscented transformation from time t to time (t + 1) is to define

a minimal set of members x
(k)
t for k = 1, · · · , Nu (the sigma-points) around the

mean value of the analysis ensemble xa
t at time t to represent the exact PDF of

the n-dimensional multi-variate random variable xt with Nu = (2n+1) members.
Then, these sigma-points undergo the non-linear transformation Gt+1 up to time
(t + 1). While capturing high-order information than the EKF and being more
efficient than the EnKF, the unscented transformation is useful to reconstruct the
PDF of the resulting sigma-points y

(k)
t+1, k = 1, · · · , Nu, in the observation space

at time (t + 1). The related error covariance matrix is noted P
f,u
yy,t+1. For this

purpose, the Nu sigma-vectors and their related weights are calculated as follows:

x
(1)
t = xa

t , ω(1) =
κ

n+ κ
, (5.98)

x
(k+1)
t = xa

t +
(√

n+ κPa,u
xx,t

)(k)
, ω(k+1) =

1

2(n+ κ)
, (5.99)

x(k+1+n) = xa
t −

(√
n+ κPa,u

xx,t

)(k)
, ω(k+1+n) =

1

2(n+ κ)
, (5.100)

for k varying between 1 and n (the size of the control space). Note that κ is
a scaling coefficient controlling the spread of the sigma-points (see Julier, 1998)

and
(√

n+ κPu
xx,t

)(k)
represents the k-th column of the matrix square-root. The

image of the sigma-vectors in the observation space at time (t + 1) is computed
through the non-linear observation operator Gt+1 as follows:

y
(k)
t+1 = Gt+1

(
x
(k)
t+1

)
= Ht+1

[
M[t,t+1](x

(k)
t )
]
, k = 1, · · · , Nu. (5.101)

Based on this ensemble, we can derive the weighted-average of the transformed
members yf

t+1, which can be regarded as the ensemble mean of the forecasts at
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time (t+ 1):

yf
t+1 =

Nu∑

k=1

w(k) y
(k)
t+1, (5.102)

as well as the sample error covariance matrix P
f,u
yy,t+1:

P
f,u
yy,t+1 =

Nu∑

k=1

w(k)
(
y
(k)
t+1 − yf

t+1

)(
y
(k)
t+1 − yf

t+1

)T
. (5.103)

The projection of the error statistics from the control space onto the observation
space is recast in the form of a n× p matrix noted P

f,u
xy,t+1 and defined as follows:

P
f,u
xy,t+1 =

Nu−1∑

k=0

w(k)
(
x
(k)
t − xa

t

)(
y
(k)
t+1 − yf

t+1

)T
. (5.104)

As a summary, this unscented transformation allows to accurately represent the fore-
cast control vector xf

t+1 at time (t+1) as well as to capture the non-linear dynamics
of the observation operator Gt+1 in the model counterparts of the observed quan-
tities yf

t+1 and in its related error covariance matrix P
f,u
yy,t+1 = Gt+1P

f,e
t+1G

T
t+1.

Besides, Pf,u
xy,t+1 is the unscented counterpart of the EnKF term P

f,e
t+1G

T
t+1. The

unscented transformation avoids therefore the calculation of the tangent-linear of
the observation operator Gt+1 and its adjoint to estimate the Kalman gain matrix.
Then, the ensemble of analyses reads:

x
a,(k)
t+1 = x

f,(k)
t+1 +Ku

t+1

(
yo
t+1 − y

f,(k)
t+1

)
, (5.105)

with the unscented Kalman gain matrix Ku
t+1 defined as:

Ku
t+1 = P

f,u
xy,t+1

(
P

f,u
yy,t+1 +Rt+1

)−1
. (5.106)

The resulting unscented Kalman filter (UKF) appears as a promising approach to
tackle the non-linearity issues of a data assimilation framework, in particular their
impact on the error statistics of the random variables projected onto the observation
space through the application of non-linear operators. This approach deterministi-
cally selects members from the Gaussian approximate PDF of the control vector;
these members are then propagated via the non-linear dynamic model and observa-
tion model, allowing for an update of the parameters characterizing the PDF. Julier
(1998) demonstrated the performance gains of the UKF compared to the EKF in
the context of state estimation. Its benefits were also shown for a parameter iden-
tification problem in a high-dimensional cardiac biomechanics system (Moireau and
Chapelle, 2011). Compared to the EnKF, the convergence is obtained for fewer
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ensemble members. To avoid data randomization, the unscented transformation
can also been combined to the ensemble square-root approaches as shown by Wan
and Van der Merwe (2000). Still, the UKF only deals with Gaussian PDF of the
errors as the EKF, EnKF or EnSRF. These extensions of the KF cannot properly
describe bi-modal or heavily skewed PDF. For this purpose, more generic Bayesian
filters such as particle filters have been developed.

→֒ Numerical treatment in ensemble-based Kalman filters

A wide range of studies showed that the straightforward implementation of the
EnKF with a relatively small ensemble size can produce inaccurate estimations
of covariance matrices and thereby, significantly degrade the filtering performance
due to sampling errors and/or uncertainty underestimation (Whitaker and Hamill,
2002). In practice, localization and inflation techniques are commonly introduced
in ensemble-based data assimilation algorithms to ensure their convergence and
robustness.

⊲ Localization. Within the framework of state estimation, the sampling error can
introduce artificial correlations in the forecast/analysis error covariance matrices,
for instance for a variable controlled at distant grid-points (Anderson and Ander-
son, 2003). Since in operational frameworks the size of the ensemble Ne is limited
by computational constraints, a numerical treatment is required to remove these
artificial correlations that can significantly degrade the analysis solution. This is the
purpose of localized EnKF algorithms. This process of localization (or tapering) typ-
ically modifies the sample forecast ensemble covariance matrix P

f,e
t by tapering-off

correlations between spatially-distant grid-points. One simple technique to perform
this filtering prior to the Kalman update step is to multiply P

f,e
t by a correlation

matrix generated by a radial shape function monotonically-decreasing when mov-
ing away from control variables. In general, the resulting tapered forecast error
covariance matrix is sparse with bands of non-zeros near the diagonal elements and
replaces P

f,e
t in the Kalman gain matrix Ke

t . This localization allows to overcome
the sampling issues for state estimation problems, even though the ensemble size is
small. The local ensemble transform Kalman filter (LETKF) is one advanced data
assimilation algorithm combining the EnSRF with localization (Hunt et al., 2007),
which has been applied successfully to the WRF meso-scale atmospheric model (see
Chapter 1).

⊲ Inflation. The EnKF is known to underestimate error variances in the ensemble
of analyses. To overcome this unrealistic reduction of the error variances during
the Bayesian update step and to account for the presence of modeling errors that
are difficult to estimate, Anderson and Anderson (2003) and Hamill et al. (2001)
proposed to introduce a multiplicative inflation factor βi (βi > 1) in the prediction
step such that the ensemble of forecasts satisfies:

x
f,(k)
t = βi

(
x
f,(k)
t − xf

t

)
+ xf

t, k = 1, · · · , Ne, (5.107)
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where βi inflates the forecast ensemble variance in the forecast error covariance
matrix P

f,e
t , while keeping the forecast mean value xf

t identical. The optimum
value for this multiplicative inflation factor is usually determined using automatic
procedures based on maximum likelihood (Mitchell and Houtekamer, 2000; Ander-
son, 2007; Brankart et al., 2010) or error statistics diagnostics in the observation
space (Desroziers et al., 2005).

To summarize, localization and inflation are efficient strategies to reduce unphysical
features in the error covariance matrices required by the EnKF, due to ensemble
noise and due to uncertainties that are difficult to represent in the ensemble. They
highlight that the prediction step in ensemble-based Kalman filters is crucial to
produce a reliable ensemble of analyses.

5.7 Non-Gaussian non-linear particle filters

Due to their computational efficiency and flexibility, the EnKF and its multiple
variants have recently become a popular data assimilation technique for both pa-
rameter and state estimations. However, they still rely on Gaussian assumptions
regarding the description of modeling and observation error statistics. Even though
the extensions proposed by the unscented and square-root approaches can deal with
strong non-linearities, they still rely on the error covariance model to describe the
statistical moments of the PDF and cannot be regarded as the exact solution of
the Bayesian filtering problem given in Eq. (5.22). In reality, their assumptions can
introduce systematic bias if the distributions are significantly non-Gaussian and if
the relationship between the control space and the observation space is strongly
non-linear. A filtering approach that is fully adapted to non-linearity and non-
Gaussianity (at least from a theoretical viewpoint) is the particle filter, also referred
to as sequential Monte Carlo filter in the literature (Gordon et al., 1993; Doucet
et al., 2001; Ristic et al., 2004). One of its advantages over the EnKF is that it
provides a complete description of the PDF through a point-mass representation
(i.e., particles), instead of a limited number of statistical moments as in the KF
variants (the covariance is the second-order statistical moment).

5.7.1 Basic principles of particle filters

Based on the idea of combining sequential Bayesian filtering and Monte Carlo
simulations, particle filters were first introduced in the 1950s (Hammersley and
Hanscomb, 1964) but only became popular recently as they are computationally
costly and highly benefit from parallel computing. The basis for most particle fil-
ters is called the sequential importance sampling (SIS) technique. Its key idea is
to describe the forecast PDF of the control variables pf(xt) as a set of Ne random
particles (i.e., equivalent to the members in the EnKF). Each particle is associ-
ated with a weight that depends on the weighted-distance to the measurements
yo
t (i.e., with respect to the observation error statistics). Then, the analysis PDF
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pa(xt) is reconstructed based on this set of weights, a higher weight being given to
the particles providing more consistent model trajectories with respect to the obser-
vations. By increasing the number of particles, this Monte Carlo characterization
becomes an exact representation of the analysis PDF and thereby, approaches the
optimal Bayesian estimate.

→֒ Importance sampling

We note x
(k)
t , k = 1, · · · , Ne, the Ne particles at time t with associated normalized

weights ω
(k)
t satisfying:

Ne∑

k=1

ω
(k)
t = 1. (5.108)

These particles characterize the analysis PDF p(xt | yo
t ) as discrete-random mea-

sures (Arulampalam et al., 2001; Moradkhani and Hsu, 2005) such that:

pa(xt) = p(xt | yo
t ) =

Ne∑

k=1

ω
(k)
t δ

(
xt − x

(k)
t

)
, (5.109)

with δ( · ) the Dirac delta-function. Within this framework, the Bayesian filtering

estimation reduces to the determination of particle weights ω
(k)
t , k = 1, · · · , Ne.

Since direct sampling from the analysis PDF is generally difficult (in particular for
non-Gaussian cases), these weights are determined in practice using the principle of
importance sampling (Bergman, 1999; Doucet et al., 2000). Importance sampling
can be regarded as a variance reduction technique, which estimates the properties
of the target PDF pa(xt) using an alternative PDF q(xt | yo

t ). This alternative
PDF referred to as the proposal distribution gives more weight to the values of the
control variables that have the highest probabilities of occurrence and therefore,
limits the need for sampling the regions of low probabilities associated with model
extreme behaviors (that are difficult to evaluate). It follows that the (importance)
weights used in Eq. (5.109) to approximate the unbiased analysis PDF are defined
based on the following likelihood ratio:

ω
∗(k)
t ∝ p(x

(k)
t | yo

t )

q(x
(k)
t | yo

t )
, (5.110)

with the following normalization:

ω
(k)
t =

ω
∗(k)
t(

Ne∑

k=1

ω
∗(k)
t

) . (5.111)

The choice of the importance distribution q(xt | yo
t ) is a crucial step in the design

of a particle filter algorithm (the SIR and ASIR particles filters described below are
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based on different importance distributions for instance); a poor-performance may
result if the importance PDF is not well chosen.

Within a sequential Bayesian filtering approach, if the time-series of the random
variables are considered as discrete-time Markov chains, Eqs. (5.17)-(5.19) are sat-
isfied, meaning that the complete history of the Bayesian updates is not required to
compute the importance weights; only the weights and the control variables from
the previous assimilation time are necessary. The weights are indeed computed ac-
cording to the following sequential formulation (Doucet et al., 2000; Arulampalam
et al., 2001):

ω
∗(k)
t ∝ ω

∗(k)
t−1




p
(
yo
t | x(k)

t

)
p
(
x
(k)
t | x(k)

t−1

)

q
(
x
(k)
t | x(k)

t−1,y
o
t

)



 , (5.112)

where p
(
yo
t | x(k)

t

)
represents the data likelihood with respect to the k-th particle

and where p
(
x
(k)
t | x

(k)
t−1

)
represents the transition (forecast) PDF from time (t−1)

to time t. Equation (5.112) implies that the SIS particle filter can be regarded as
the sequential propagation of the weights and particles as each observation becomes
available. At time t, two steps can be distinguished:

(1) The particles are drawn from the proposal distribution q(x
(k)
t | x(k)

t−1,y
o
t ) for k

varying between 1 and Ne.

(2) The associated weights ω(k)
t , k = 1, · · · , Ne, are determined using Eq. (5.112)

and are finally normalized using Eq. (5.111).

5.7.2 Sequential importance resampling filter

→֒ Degeneracy issue of the sequential importance sampling filter

The performance of the SIS filter was shown to be significantly deteriorated by the
degeneracy issue (Doucet et al., 2000). As the update step selects the particles
with the highest likelihood, only a very limited number of particles are left after
a few assimilation cycles with a non-zero importance weight and can participate
effectively in the description of the PDF of the control variables. Stated differently,
the analysis PDF becomes more and more skewed along the prediction/update
cycles and thus, the PDF is not sufficiently discretized for a complete description
of all its statistical moments. Besides, a large computational effort is devoted to
updating particles, whose contribution to the approximation of the analysis PDF
is almost zero. A measure of the degeneracy extent is provided by the effective
sample size Nef calculated as:

Nef =

[
Ne∑

k=1

(
ω
(k)
t

)2
]−1

, (5.113)
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where the weights are derived using Eqs. (5.111)-(5.112), and where Nef ≤ Ne is
always satisfied. A low value for Nef indicates a severe degeneracy of the statistical
sample.

→֒ Resampling step

To overcome this degeneracy problem, Gordon et al. (1993) proposed to add to
the SIS algorithm a selection step called resampling. The resulting sequential im-
portance resampling (SIR) algorithm eliminates the particles that have negligible
importance weights and increases the particles of high importance weights (Kita-
gawa, 1996). This resampling can be applied either if the number of effective
particles falls below a specified threshold number Nef , or systematically at each
update step (Liu and Chen, 1998; Bergman, 1999).

The SIR algorithm is presented over the assimilation cycle [t − 1, t]. x
(k)
t−1 with

k varying between 1 and Ne correspond to the Ne particles, whose normalized
weights are ω(k)

t−1 at the previous assimilation time (t−1); the update step consists in

computing the weights ω∗(k)
t , k = 1, · · · , Ne, at time t. The importance distribution

is conveniently taken as the prior (Doucet et al., 2000; Arulampalam et al., 2001)
and reads:

q
(
xt | x(k)

t−1,y
o
t

)
= p

(
xt | x(k)

t−1

)
. (5.114)

Then, Eq. (5.112) simplifies to:

ω
∗(k)
t ∝ ω

(k)
t−1 p

(
yo
t | x(k)

t

)
. (5.115)

After normalizing the weights using Eq. (5.111), a resampling step is added to
eliminate the particles with low importance weights and replicate the particles with
high importance weights. This step involves a mapping of the random measure
(x

(k)
t , ω

(k)
t ) into (x̂

(k)
t , 1/Ne) with uniform weights equal to 1/Ne as described in

the algorithm in the following box. Then, the analysis PDF can be reconstructed
using Eq. (5.109) for (x̂(k)

t , 1/Ne) with k = 1, · · · , Ne.

→֒ Successes and limitations

A large number of recent studies have highlighted the performance of the SIR
filter, in particular for a state estimation in heat transfer (Orlande et al., 2012) and
in hydrodynamics (Jean-Baptiste et al., 2011). For instance, Jean-Baptiste et al.
(2011) showed the advantages of the SIR particle filter over the EKF algorithm to
reconstruct the unknown upstream flow using real-world water-level measurements,
while capturing the non-linear features of the 1-D Saint-Venant equations. Although
the resampling step in the SIR filter reduces the effects of degeneracy, an issue
known as sample impoverishment can lead to a poor-quality SIR estimation due
to a lack of diversity in the particles. In this case, resampling selects many times
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the same few particles with high importance weights and thus, the particle sample
cannot represent the whole stochastic space. This means that for the case of small
error statistics, all particles collapse to a single point within a few iterations. This
also means that if the dynamic system undergoes a radical change of dynamics
from one assimilation cycle to the next, the SIR filter is not able to accurately
track these changes. In this case, the sample is no longer representative of all the
potential trajectories of the dynamic model. In addition, in the forecast step of the
SIR filter, the control space is explored without the information conveyed by the
measurements. Indeed, the ensemble of particles only relies on the prior p(xt|x(k)

t−1)
for k = 1, · · · , Ne, which is indirectly related to the past measurements up to time
(t − 1). Thus, the SIR filter relies on a blind proposal distribution that ignores
the measurements yo

t available at time t, in contrast to auxiliary particle filters
presented in the following.

Sequential importance resampling (SIR) filter
over the assimilation cycle [t− 1, t]

(1) Forecast step

Draw new particles x
(k)
t , k = 1, · · · , Ne, from the prior PDF p(xt | x(k)

t−1)
used as the importance distribution, see Eq. (5.114).

(2) Update step

⊲ Calculate the corresponding weights ω
∗(k)
t , k = 1, · · · , Ne, using

Eq. (5.115) based on the likelihood p(yo
t | x(k)

t ) and using for all

members ω
∗(k)
t−1 = 1/Ne.

⊲ Compute the normalized particle weights ω
(k)
t , k = 1, · · · , Ne, using

Eq. (5.111).

(3) Resampling step

⊲ Construct the cumulative sum of weights by computing

d(k) = d(k−1) + ω
(k)
t , k = 2, · · · , Ne,

with d(1) = 0.

⊲ Draw a starting point u(1) from the uniform distribution U(0, 1/Ne).

⊲ For l = 1, · · · , Ne :
(a) Move along the cumulative sum of weights by making

u(l) = u(1) +
1

Ne
(l − 1).

(b) While u(l) > d(k), k = k + 1.

(c) Assign new particle x̂
(l)
t = x

(k)
t with weight ω(l)

t = 1/Ne.
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5.7.3 Auxiliary sequential importance resampling filter

Despite its performance and efficiency to retrieve the true control vector xt
t, the

SIR filter remains computationally intensive since a large number of particles Ne

is required to obtain a complete and accurate statistical description of the PDF
related to xt. To overcome these issues, Pitt and Shephard (1999) introduced the
auxiliary particle filters, whose main idea is to improve the prior information using
an additional (auxiliary) set of particles. For instance, da Silva et al. (2011) applied
the auxiliary sequential importance resampling (ASIR) filter to solve a non-linear
solification problem, in which synthetically-generated temperature measurements
were assimilated to estimate a transient line heat sink as well as the solidification
front. Colaço et al. (2011) compared the performance of the SIR and ASIR filters
in the estimation of the heat flux applied to a square-cavity in a natural convection
problem, while Orlande et al. (2012) validated the SIR/ASIR estimations against
the KF and showed in particular the drastic reduction on the number of particles
achieved with the ASIR filter compared to the SIR filter. Also, the sequential
propagation of modeling errors was studied to improve the choice of the particles
at the next assimilation cycle (i.e., at the next observation time in a sequential
framework), in particular in the case of joint parameter/state estimation (West,
1993; Doucet et al., 2001).

The ASIR particle filter is an attempt to overcome the drawbacks of the SIR particle
filter by performing the resampling step of time (t− 1) using the measurements yo

t

available at time t (see the steps 1 and 2 of the following algorithm). This new
resampling technique is based on the determination of some reference point estimate
µ
(k)
t that characterizes the control vector xt given the particle x

(k)
t−1 at the previous

assimilation time (t − 1). Stated differently, this characterization µ
(k)
t provides

insight into the forecast PDF p(xt | x(k)
t−1). This characterization could be taken

as the expected value µ
(k)
t = E[xt | x(k)

t−1], or as a sample µ
(k)
t ∼ p(xt | x(k)

t−1),
depending on the inverse modeling procedure under consideration. The use of such
characterization µ

(k)
t means that the SIR and ASIR filters are not based on the same

importance distribution. Here, the ASIR filter introduces an importance distribution

q(xt, k | yo
t ), which samples the pair

{
x̂
(l)
t , kl

}
, l = 1, · · · , Ne, where kl refers

to the index of the particle called the parent particle. A weight is assigned to each
member l = 1, · · · , Ne using the following formulation:

ω
∗(l)
t ∝ ω

(kl)
t−1

p
(
yo
t | x̂(l)

t

)
p
(
x̂
(l)
t | x

(kl)
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yo
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p
(
yo
t | µ

(kl)
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) . (5.116)
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The ASIR filter shares with the SIR filter, the objective of updating the importance
weights of the particles to reduce the mismatch between the measurements and
their model counterparts. An analogy can be performed with the calculation of the
importance weights for the SIR filter given in Eq. (5.115); for the ASIR filter, the

observations are conditioned upon the characterization µ
(kl)
t instead of the particle

x
(k)
t . However, auxiliary particles are introduced to select the particles of high

importance weights ω∗(k)
t in the steps 1 and 2 of the ASIR algorithm; the particles

with very low weights at the previous assimilation time are not resampled. Thus,
the effective number of particles required to perform an accurate update step is
significantly reduced in comparison to the SIR filter. If the error in the dynamic
model is small, then the forecast PDF p(xt | x(k)

t−1) is generally well-characterized

by the point estimate µ
(k)
t (the weights are not significantly spread out and the

ASIR filter is less sensitive to outliers than the SIR filter). In constrast, if the error

in the dynamic model is large, then the single point estimate µ
(k)
t is not sufficient

to capture the features of the forecast PDF and thus, the ASIR filter may not be
as effective as the SIR filter. One advantage of the ASIR over the SIR is that
the forecast PDF p(xt | x(k)

t−1) naturally depends on the ensemble at time (t− 1),
which, conditioned upon the current measurement yo

t , are closer to the truth xt
t.

While particle filters are theoretically more general solutions of the Bayesian esti-
mation problem, their application to operational framework is limited due to the
large computational cost of the underlying Monte Carlo sampling technique, which
grows with the complexity of the physical system. To address this issue, more
advanced algorithms than the SIR and ASIR filters have been developed (Ristic
et al., 2004). These algorithms can reduce the number of particles required for an
appropriate description of the PDF of interest, thus resulting in the reduction of
the computational time, especially when associated with HPC. Besides, surrogate
models or response surfaces for the solution of the forward dynamic model and the
observation operator appear as promising approaches to limit the computational
cost of Monte-Carlo-based Bayesian filtering.
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Auxiliary sequential importance resampling (ASIR) filter
over the assimilation cycle [t− 1, t]

(1) Forecast step

⊲ Start with the ensemble
{
x
(k)
t−1, ω

(k)
t−1

}
, k = 1, · · · , Ne deriving from

the previous analysis time (t− 1).

⊲ For k = 1, · · · , Ne:

• Calculate some characterization µ
(k)
t of the control vector xt

given the particle x
(k)
t−1 at the previous analysis time (t− 1).

• Calculate the corresponding weight ω∗(k)
t based on the observa-

tions conditioned upon the characterization µ
(k)
t , i.e.,

ω
∗(k)
t = q (k | yo

t ) ∝ p
(
yo
t | µ(k)

t

)
ω
(k)
t−1.

• Compute the normalized weight ω(k)
t using Eq. (5.111).

(2) Resampling step

⊲ Construct the cumulative sum of weights by computing:

d(1) = 0, d(k) = d(k−1) + ω
(k)
t , k = 2, · · · , Ne,

⊲ Draw a starting point u(1) from the uniform distribution U(0, 1/Ne).

⊲ For l = 1, · · · , Ne :
(a) Move along the cumulative sum of weights as follows:

u(l) = u(1) +
1

Ne
(l − 1).

(b) While u(l) > d(k), k = k + 1.

(c) Assign new particle x̂
(l)
t = x

(k)
t with weight ω(l)

t = 1/Ne.

(d) Assign particle parent kl = k.

(3) Update step

⊲ Draw new particles x̂
(l)
t , l = 1, · · · , Ne, from the importance distri-

bution p(xt | x(kl)
t−1) using the parent kl.

⊲ Use the likelihood density to assign the corresponding weights:

ω
∗(l)
t =

p
(
yo
t | x̂(l)

t

)

p
(
yo
t | µ

(kl)
t

) , l = 1, · · · , Ne.

⊲ Compute the normalized importance weight ω(l)
t , l = 1, · · · , Ne, using

Eq. (5.111).
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Conclusion

This chapter provides an overview of data assimilation methodologies that have
been developed in a wide range of geosciences and engineering applications over
the past decades. The Kalman filter (a conditional mean estimator) is the most
widely used sequential data assimilation technique. However, this filter assumes
model linear dynamics and a Gaussian statistical distribution for both modeling
and observation errors. Extensions of the Kalman filter that overcome in part
these limitations have been proposed, for instance the extended Kalman filter
(EKF) based on local linearization techniques or the ensemble Kalman filter
(EnKF) and its variants based on a stochastic description of the model behavior
and error statistics. The principles of Kalman filtering has been extensively
compared to variational approaches (3D-Var, 4D-Var and incremental versions)
used for instance in numerical weather prediction and oceanography. Variational
approaches correspond to a conditional mode estimation that is more suitable
for high-dimensional problems and that is usually regarded as a deterministic
viewpoint of data assimilation, in contrast to EnKF.

In contrast to the Kalman filter and its extensions, particle filters have been
specifically developed to deal with non-linear models and non-Gaussian errors
(as summarized in the following table) through the determination of particle
weights that are useful to retrieve any shape of probability density functions.

Technique Gaussian error statistics Model linearity
Variational x
KF x x
EKF x (linearization)
EnKF x (stochastic representation)
Particle filter

The merits of data assimilation have already been greatly demonstrated in
meteorology and oceanography for providing initial conditions for numerical
forecast. Since recent progress made in airborne and spaceborne remote sensing
provides new ways to monitor real-time fire front positions, data assimilation
appears as an efficient framework to formulate some feedback information on
the wildfire dynamics and to achieve data-driven forecasts of regional-scale fire
spread.





Chapter 6

Data assimilation strategy for

wildfire spread

Because wildfire spread involves multiple physical processes through mul-
tiple scales, our ability to predict the behavior of wildfires at large regional
scales (i.e., at scales ranging from a few tens of meters up to several kilo-
meters) remains limited. In this work, a data assimilation methodology is
considered to overcome some current limitations of wildfire spread forecast.
In fire research data assimilation is particularly attractive given the large
uncertainties associated with many of the input variables of the models, in
particular in the representation of fuel sources. For wildfires, these uncer-
tain input variables represent the environmental conditions in which the fire
propagates (e.g., wind conditions, terrain topography, moisture content and
intrinsic properties of the vegetation). Thus, data assimilation provides an
attractive framework for integrating wildfire sensor observations into com-
puter models; this framework explicitly accounts for the effects of both ob-
servation and modeling errors and thereby, aims at improving predictions of
wildfire behavior. This idea of data assimilation has been explored recently
by several research groups, both for wildland and building fire applications,
but still remains original in the field of fire and combustion.

In this chapter, the objective is to provide an overview of the recent devel-
opments in data-driven fire spread modeling as well as to present the data
assimilation strategy and contributions of this thesis.
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6.1 Recent developments in data-driven fire modeling

The present work builds upon several recent studies that have considered data
assimilation and inverse modeling for improved fire modeling performance, in both
building fire and wildland fire applications.

6.1.1 Building fire applications

In building fire applications, data-driven models have received significant interest
because of their potential benefits for detection, spotting and sizing of incipient,
growing or fully-developed fires. Early studies (Richards et al., 1997; Davis and For-
ney, 2001; Lee and Lee, 2005) typically considered ceiling-mounted heat or smoke
detectors providing information on the temperature or composition of the ceiling
jet generated by small fires. Sensor data are continuously monitored and com-
pared to results from a fire model (i.e., a ceiling jet algorithm or a zone model1)
and this comparison yields information on the fire size and location. More recent
studies (Neviackas and Trouvé, 2007; Leblanc and Trouvé, 2009; Koo et al., 2010;

1A zone model corresponds to a solution with an intermediate level of complexity that makes
it faster to run than a CFD model.
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Cowlard et al., 2010; Jahn, 2010; Beji et al., 2011, 2012; Jahn et al., 2012) consid-
ered extensions of earlier work to steady or unsteady fully-developed fire conditions,
multi-compartment fire scenarios, under-ventilated fire conditions, using both zone
models (Neviackas and Trouvé, 2007; Leblanc and Trouvé, 2009; Koo et al., 2010;
Beji et al., 2011, 2012) and CFD models (Jahn, 2010; Jahn et al., 2012). Beji
et al. (2011) motivated the use of a zone model to produce fire forecasts with a
reasonable lead-time. These studies typically provide estimates of the time varia-
tions of the heat release rate, including estimates of future variations. Note that
none of these studies considered the full framework provided by data assimilation
theory; for instance the effects of modeling and observation errors are neglected
(these errors were implicitly assumed to be small).

6.1.2 Wildland fire applications

In wildland fire applications, data-driven modeling is proposed as one of the two
cornerstones of the fire spread forecasting capacity (Mandel et al., 2008). The other
cornerstone corresponds to the integration of a variety of in-situ and remote sensors
providing (real-time) information on fire location, vegetation (i.e., the fuel sources),
terrain topography and atmospheric conditions (Mandel et al., 2011, 2012).

→֒ State estimation applied to the surface temperature field

Mandel et al. (2008), Beezley and Mandel (2008) and Beezley (2009) applied data
assimilation to wildfires as a state estimation problem, in which the control variable
is the ground surface temperature field and in which (synthetic) measurements are
taken as the surface temperature at a finite number of locations in the computa-
tional domain. Early studies (Mandel et al., 2008) implemented a standard EnKF
algorithm and generated the members of the ensemble based on random pertur-
bations of the temperature field (corresponding to one model state variable in a
system of reaction-diffusion partial differential equations, in which the temperature
and the mass fraction of fuel were evolved in space and time). The ensemble of
temperature fields resulted not only from perturbations in magnitude, but also from
spatial shifts of the burnt area as illustrated in Fig. 6.1. This means that perturbed
temperature fields were moved spatially in both x- and y-directions to allow for spa-
tial displacement of the burnt area by the ensemble Kalman filter (EnKF) update. It
was found that the standard EnKF is able to correctly track synthetically-generated
measurements, even though the forecast ensemble started at an erroneous ignition
location that was far away from the location of the true fire, see Fig. 6.2.

While Mandel et al. (2008) showed the feasibility of applying data assimilation to
wildfire spread, further studies (Beezley and Mandel, 2008; Beezley, 2009) showed
that the standard EnKF may fail to track the true location of the active flame zones
in a certain number of configurations and also produce non-physical features.
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Figure 6.1: Iso-temperature contours each 100 K. (a) True (reference) temperature profile
of a fire ignited as a circular burnt area. (b) Perturbed temperature profile (in magnitude
and spatial positions) corresponding to a member of the ensemble. Credit: Mandel et al.
(2008).
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Figure 6.2: Temperature profiles 100 s after ignition. (a) True (reference) solution.
(b) Unperturbed member of the ensemble for comparison. (c) Ensemble mean and standard
deviation of the forecast ensemble (prior to data assimilation). (d) Ensemble mean and
standard deviation of the analysis ensemble (posterior to data assimilation). Credit: Mandel
et al. (2008).
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As highlighted by several studies in hurricane position forecasting (Chen and Snyder,
2006; Wu et al., 2010), the standard EnKF works only when the increment in the
location remains small and fails when there are uncertainties in the spatial location
of time-evolving sharp coherent features. The main reasons for failures of the
standard EnKF when applied to a state estimation problem in wildfires are that:
(1) the EnKF mainly corrects the temperature magnitude and not the location of
the fireline; and (2) the EnKF relies on a Gaussian assumption for the error statistics
of the temperature field. However, this control variable is characterized by a bi-
modal PDF in the vicinity of the flame zone (i.e., burning state or non-burning
state). Thus, in order to satisfy the Gaussian assumption in the EnKF, the idea
of morphing from image processing was introduced by Beezley and Mandel (2008).
The resulting morphing ensemble Kalman filter (MEnKF) manipulates Gaussian
random variables within the EnKF implementation, while still indirectly distorting
and deforming the temperature fields in space (Hoffman et al., 1995; Davis et al.,
2006; Alexander et al., 1998; Lawson and Hansen, 2005; Ravela et al., 2007).
The morphing procedure, also called registration or warping in image processing,
consisted in mapping the ensemble of perturbed temperature fields onto a unique
reference frame. After the spatial transformation of the temperature fields, additive
magnitude corrections could be efficiently performed. In the MEnKF algorithm,
the estimation targets are the ensemble of morphing transformations of simulated
temperature fields. A simple example of the MEnKF algorithm is given in Fig. 6.3.

The performance of the MEnKF over the standard EnKF is illustrated in Fig. 6.4
for a data assimilation prototype based on the coupled simulator WRF-Fire (see
Chapter 2). In this synthetic data assimilation experiment, the ensemble was formed
by Ne = 25 members and the sensible heat flux was used as the morphing variable.
Iso-contours of the heat flux in Fig. 6.4(c) show the unphysical results produced
by the standard EnKF. While assimilating field variables at a limited number of
computational grid-points, the standard EnKF is not able in this experiment to
correct the position of the fire front (the burning area remains close to the forecast
mean) since the ensemble generation is based on perturbations of the heat flux
magnitude. Such ensemble cannot provide a correction on the topology of the
fire front, but a linear combination of heat flux magnitudes that leads to non-zero
heat flux values over a large fraction of the computational domain. These non-zero
heat flux values correspond to the previously-mentioned unphysical values. To the
contrary, the morphing EnKF (MEnKF) produced an analysis ensemble that is closer
to the true burning area in Fig. 6.4(d). Still, the morphing correction was imperfect
and led to technical difficulties in the EnKF implementation, as it relied on an
expensive non-linear optimization algorithm. In addition, the MEnKF algorithm was
not tested against actual measurements of wildfire spread. Actual measurements
is expected to be more noisy than synthetically-generated measurements that were
used in these studies and to exhibit a more complex wildfire behavior (e.g., splitting
and merging of flame fronts), making the morphing procedure even more difficult
to handle.
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Figure 6.3: Example of MEnKF application. The iso-temperature contour at 800 K indi-
cates the location of the fire front. (a) True (reference) solution. (b) Ensemble of forecasts
generated by smooth random morphing of the initial temperature field (prior to data as-
similation). (c) Ensemble of analyses (posterior to data assimilation). Credit: Beezley and
Mandel (2008).
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(c) (d)

Figure 6.4: Example of ensemble-based KF applications to the WRF-Fire coupled
fire/atmosphere simulator. Colors on the horizontal plane corresponds to the fire output
heat flux; the volume shading corresponds to atmospheric vorticity in the ensemble mean.
(a) True (reference) solution. (b) Example of perturbed temperature fields. (c) Anal-
ysis given by the standard EnKF. (d) Analysis given by the morphing EnKF (MEnKF).
Credit: Beezley (2009).
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→֒ Parameter batch-calibration/estimation of environmental conditions

An alternative to state estimation is to directly estimate the variables that are
responsible for the uncertainties in wildfire spread simulations, namely the input
parameters and/or the external forcing of the rate of fire spread (ROS). Param-
eter batch-calibration is commonly achieved manually in Farsite (Finney, 1998)
through specification of a ROS adjustment factor, leading to an improved agree-
ment between model simulations and measurements. Beyond this manual calibra-
tion, a wide range of techniques can be used to perform parameter batch-calibration
(static) or sequential parameter estimation (dynamic).

Denham et al. (2012) showed that automatic optimization algorithms have the
potential to significantly improve the accuracy of wildfire spread simulations and
thereby, to improve the forecast of the location of wildfire active areas. This study
demonstrates, for a simplified scenario of wildfire spread, the good-quality perfor-
mance of a parallel data-driven genetic algorithm to retrieve the input parameters
of a surface fire spread model (fireLib2, i.e., a cellular-automata software derived
from Behave). In this study, the calibrated parameters were the wind direction and
magnitude as well as the moisture content of the dead and/or living biomass fuels.
This proposed sequential genetic algorithm selects the most realistic combinations
of spatially-uniform control parameters among the initial population (i.e., equivalent
to ensemble members in the EnKF and to sample particles in particle filters) using a
two-stage prediction. A pre-search of the probable values for the input parameters
was shown to improve the quality of the update and to significantly reduce the error
in the analysis. This idea is similar to the use of an auxiliary set of particles in the
ASIR particle filter that improves the quality of prior information (see Section 5.7,
Chapter 5).

Lautenberger (2013) followed the same idea as Denham et al. (2012) and applied
a genetic algorithm to the 2007 Moonlight fire. The proposed genetic algorithm
was validated for the calibration of material properties in pyrolysis modeling (Laut-
enberger et al., 2006). Here, in order to track the real-world wildfire event, this
study calibrated simultaneously 10 input parameters of the fire spread simulator
ELMFire3, using in-situ measurements from the US Forest Service combined with
satellite-based fire detection data from MODIS. It is worth noting that ELMFire
is a stand-alone surface fire spread simulator and the weather conditions were spec-
ified as external forcing using the outputs of the WRF numerical weather model in a
non-coupled mode. ELMFire relies on a ROS parameterization due to Rothermel,
including complex effects such as canopy torching, ember spotting and suppression
actions. The calibrated parameters were the ROS adjustment factor, the wind re-
duction factor, the canopy properties, the torching time and the ember ignition
probability, among others. Figure 6.5 shows that the simulation derived from pa-
rameter batch-calibration is in good agreement with the measurements (used as

2www.frames.gov/rcs/0/935.html.
3Eulerian Level-set Model for Fire spread, reaxengineering.com/trac/elmfire.

www.frames.gov/rcs/0/935.html
reaxengineering.com/trac/elmfire
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the calibration targets in the genetic algorithm).

In contrast to classical data assimilation techniques (e.g., Kalman filter and variants,
particle filters), genetic algorithms do not introduce a forecast term in the optimiza-
tion process; they only search for the combinations of input parameters that best fit
the available measurements and do not account for the probabilistic dimension of
the control variables and observations. Also, in the tangent-linear model proposed
by Rios (2013) following work by Cowlard et al. (2010) and Jahn et al. (2012),
the input parameters (e.g., wind magnitude and direction) are calibrated based on
the minimization of a cost function that only accounts for the discrepancies be-
tween observations and model predictions. No background term that measures the
deviation to the prior estimate is introduced to regularize the inverse problem. Fur-
thermore, observation and modeling error statistics are not taken into account to
find the most optimal set of control parameters. However, due to the complexity of
multi-scale multi-physical wildfire spread, these measurement errors are significant
within an operational framework.

  

   (a)             (b) 

(a) (b)

Figure 6.5: Comparison of simulated and calibrated positions of the fire front when ap-
plying a genetic algorithm to the 2007 Moonlight fire (9000 ha, California): the yellow
solid line corresponds to the real fire front position, the red-shaded area corresponds to the
simulated burnt area, and the blue-dashed line is the final position of the real fire front.
(a) 7 hours after simulation ignition. (b) 22 hours after simulation ignition. Credit: Laut-
enberger (2013).

Considering that it is important to account for these measurement errors, Gu (2010)
demonstrated the feasibility of the SIR particle filter for estimating and reducing
the uncertainties in the input parameters of a semi-empirical ROS model. Based on
synthetically-generated measurements of temperature at ground sensors deployed
over the wildfire area, this study estimated either the wind conditions (i.e., wind
magnitude and direction) or the location of the biomass fuel. It showed that the SIR
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particle filter was able to produce more consistent simulations of the propagation of
the fire front, but at a high computational expense since a large number of particles
was required to accurately represent model uncertainties.

This review highlights that efforts are currently made in the fire research community
to adapt optimization and data assimilation techniques that are widely used in
geosciences and beyond, for tracking fire propagation in both building and wildfire
applications. Still, wildfire spread forecast is at an early stage of development and
the proposed solutions in the literature do not demonstrate the full potential of data
assimilation to overcome current limitations of regional-scale wildfire modeling and
to build predictive simulations that are compatible with operational applications.

6.2 Strategy guidelines for wildfire spread forecast

The objective of this study is to address challenges specific to the development of
a robust inverse modeling approach for realistic wildfire spread. For this purpose,
the following aspects are believed to be of primary importance.

⊲ Parameter estimation. Current operational wildfire spread models rely on a
front-tracking solver that includes a semi-empirical ROS model (e.g., Rother-
mel, 1972) and simulates the wildfire spread as a front propagation at regional
scales (i.e., at scales ranging from a few tens of meters up to several kilome-
ters). This viewpoint has some important limitations, partly because of its
inability to explicitly account for the fire/atmosphere interaction and also due
to knowledge gaps and/or inaccuracies in the description of the controlling
input parameters (i.e., vegetation, topographical and meteorological proper-
ties). These uncertainties are a combination of epistemic uncertainty that
expresses an imperfect knowledge of the input parameters of the ROS model
(that could in theory be removed), and aleatoric uncertainty that results from
natural and unpredictable stochastic variations of the physical system. These
uncertainties translate inevitably into errors in the model outputs of interest
(e.g., time-evolving position of the flame front of the fire, size of the burning
area).

While studies presented by Mandel et al. (2008) and Beezley (2009) showed
the potential benefits of a state estimation approach, uncertainties in the
environmental conditions required as input data to the semi-empirical ROS
model (i.e., biomass fuel properties and wind external forcing) must be quan-
tified and reduced in order to develop an efficient data assimilation prototype
for wildfire spread forecast, as indicated by the batch-calibration results de-
rived from genetic algorithms (Lautenberger, 2013). A parameter estimation
approach is expected to increase the knowledge on the environmental con-
ditions and significantly improve the quality of wildfire spread forecasts. In
contrast, a state estimation approach does not provide a complete feedback
on the sources of uncertainties in the physical problem under consideration,
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but, instead, provides a detailed snapshot of the simulation errors made at a
given time step (i.e., at the assimilation times). We consider that parameter
and state estimations are complementary approaches and that it is important
to discuss their benefits and drawbacks for future developments in wildfire
spread forecasting.

⊲ Stochastic characterization of parameter and modeling uncertainties.
The uncertainties inherent in wildfire spread modeling go beyond the limits
of deterministic forecast ability with the dynamical model and thus, suggest
the use of ensemble forecasts to stochastically characterize the non-linear
response of the wildfire spread model to variations in the input environmental
parameters. For instance, Finney et al. (2011) describes an ensemble-based
forecasting method, in which a large number of fire spread scenarios (i.e., the
ensemble members) are generated based on a probabilistic uncertainty in
the weather conditions and in the vegetation moisture content as shown in
Fig. 6.6. In this study, the statistics of the probability for the burnt area
computed over this ensemble of forecasts (i.e., with no data assimilation
feedback) is shown to be consistent with the observation statistics among 91
real-world fire events.

The use of stochastic approaches for uncertainty quantification is supported
by the MEnKF algorithm introduced in Beezley and Mandel (2008) for solving
a state estimation problem. While ensemble-based data assimilation method-
ologies have been widely used as a state estimation approach, they can also
be applied to parameter estimation. Indeed, they avoid the computation of
the tangent-linear of the physical model with respect to the parameters, while
partly accounting for model non-linearities (Tarantola, 1987). Recent stud-
ies (Moradkhani et al., 2005; Andreadis et al., 2007; Durand et al., 2008)
have demonstrated the successful application of EnKF methodologies in hy-
drology and hydrodynamics for estimating river bathymetry depth and slope
parameters as well as friction coefficients. However, the transfer of such
ensemble-based data assimilation techniques to wildfire applications has not
been yet investigated and tested against realistic measurements of wildfire
spread. Still, we are convinced that these techniques provide a new and
powerful framework to combine a physical model with remote sensing mea-
surements, in order to reliably deliver an accurate forecast of wildfire spread.

⊲ Consideration and treatment of non-linearities. An additional difficulty
in parameter estimation results from the fact that most input parameters of
the ROS model cannot be measured directly, thus increasing their uncertainty.
These parameters are indirectly related to wildfire measurements through the
observation operator G that includes the temporal integration of the wildfire
numerical model. Since the wind direction and magnitude may vary and
the vegetation properties may be strongly heterogeneous in realistic cases of
regional-scale wildfire spread, this numerical model is highly non-linear.
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We therefore need to develop a data assimilation strategy that is able to ac-
count for non-linearities in the observation operator G, while maintaining the
optimality of the analysis solution. EnKF and particle filters are appropriate
data assimilation techniques in this context as discussed by Evensen (1994)
and Doucet et al. (2001).

⊲ Consideration of measurement errors. Due to the complexity of wildfire
spread and to the practical difficulties to track wildfire using in-situ, airborne
or spaceborne remote sensors, observations provide an incomplete picture
of wildfire behavior with a limited spatial and temporal resolution (see Sec-
tion 1.4, Chapter 1). For instance, spaceborne observations are available
with a coarse temporal resolution (i.e., a few times per day for polar-orbiting
satellites). In addition, the active fire front is mainly a sub-pixel phenomenon
for spaceborne remote sensors, meaning that there is an indirect relationship
between the raw measured quantity (i.e., fire radiation power, FRP) and the
quantities of interest for the wildfire spread model (e.g., time-evolving loca-
tion of the flame front). As for airborne observations, they are also based on
FRP measurements and, due to the development of a thermal plume above
the active fire areas and the resulting turbulence surrounding the wildfire,
they are usually limited to a certain section of the wildfire active burning
areas. The latter point implies that they only provide a partial picture of
the wildfire as is the case with in-situ measurements deployed on the ground
terrain. Wildfire measurements are then subject to significant uncertainties,
which must be accounted for in a data assimilation strategy that is intended
for operational applications.

⊲ Sequential algorithm for state and/or parameter estimations. Even
though certain input parameters of the fire ROS model can be assumed con-
stant over the fire duration (in particular, intrinsic properties of the vegeta-
tion), other parameters exhibit a dynamic behavior due to the presence of
the propagating fire front. The wind magnitude and direction at mid-flame
height change over time due to the fire/atmosphere interactions and their
retroactive effect on local wind conditions. In addition, the moisture content
of the vegetation also varies, in particular that of the dead vegetation, which
can be considered in thermal equilibrium with the atmosphere. These atmo-
spheric conditions in terms of temperature, wind and air humidity are indeed
significantly modified by the wildfire propagation and emissions. In this con-
text, it is difficult to rely only on parameter calibration; a dynamic estimation
of the time-varying parameters is necessary to produce an accurate feedback
to the wildfire spread model and thereby, reliable wildfire spread forecasts. A
sequential data assimilation technique that strikes a balance between accu-
racy and computational time and that provides forecasts at future lead-times
seems appropriate for the estimation of time-varying input parameters of the
ROS model.
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⊲ Validation against real-world wildfire spreads. Except for the study pre-
sented in Lautenberger (2013), the different approaches described in the pre-
vious state-of-the-art data assimilation applications for wildfire spread were
only validated against synthetically-generated measurements. Even though
these approaches show great potential for fire spread forecast in wildland
fire applications, they still require a detailed evaluation against actual mea-
surements of wildfire spread, starting from controlled burn experiments and
extending to real-world wildfire events, in order to explore their benefits and
drawbacks in experiments that are consistent with an operational framework
(in terms of computational cost, accuracy and performance, for different wild-
fire scenarios subject to a wide range of biomass fuels, terrain topography and
weather conditions).

In this work, we propose and explore a new paradigm for improving wildfire spread
forecasts as new wildfire observations become available, using real-time data as-
similation. The objective is to develop a prototype data-driven wildfire simulator
capable of:

⊲ explicitly accounting for the effects of both measurement and modeling er-
rors and overcoming some of the current limitations of regional-scale wildfire
modeling;

⊲ accounting for the main sources of uncertainty in regional-scale wildfire mod-
eling;

⊲ sequentially estimating input parameters and/or model state variables of a
wildfire spread model, to account for the temporal variabilty of the errors and
to allow for accurate forecasts at different lead-times (i.e., at different time
steps beyond the current observation time);

⊲ forecasting reliable wildfire spread scenarios at a limited computational cost,
consistently with an operational framework;

⊲ assimilating realistic measurements of wildfire, including synthetic representa-
tive cases with spatially-varying vegetation properties and temporally-varying
wind conditions as well as a controlled grassland fire experiment.

The different components required by the prototype data-driven wildfire simulator
are explained in detail in the following, with a focus on the type of assimilated
wildfire spread measurements and on the simulator of regional-scale wildfire spread,
named Firefly and used to deliver the forecast of the wildfire behavior at different
lead-times.
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6.3 Assimilated measurements of wildfire spread

6.3.1 Airborne measurements

The review of the current status of operational wildfire tracking and forecasting
presented in Chapter 1 shows that in-situ, airborne and spaceborne measurements
are currently available. While in-situ sensors can provide some insight on the lo-
cation of the active burning areas and evaluate the local values of some physical
variables (e.g., temperature, wind, air humidity), they remain sparse in time and
space. They highly depend on the deployment of ground sensors and on the strat-
egy of emergency services, and thus, they cannot be systematically performed for
all wildfire events. They also require a complex post-treatment process that is dif-
ficult (if not impossible) to perform in real-time. It is therefore currently difficult
to rely on in-situ measurements for the development of a data assimilation strategy
(sensor network may become available in the future). Airborne and spaceborne
observations produce a more global and frequent picture of the wildfire event and
seem therefore more suitable for data assimilation. However, wildfire front-tracking
requires high-spatial resolution imagery (that is no longer out of reach for satellite
missions such as Pléiades 1-A and 1-B) as well as high revisit frequencies. For this
last reason, only airborne platforms provide currently spatial and temporal resolu-
tions suitable for real-time geolocation of active fire contours. A typical example
of airborne remote sensing systems is the Livefire system (Merlet, 2008; Crom-
bette, 2010). However, in-situ and spaceborne data could be used for validation
and calibration of models and data assimilation procedures in off-line mode. Also
spaceborne data can be useful to monitor wildfires deployed on very large areas as
highlighted by the International Charter Space and Major Disasters.4

In conjunction with the current development in airborne remote sensing technolo-
gies, we assume, in the present study, that observations of the fire front location are
available and can be made at different relevant times with a low measurement error
(e.g., 0-30m for the Livefire system). In the following, the observed fire front
is represented as a segmented line using a pre-defined number of equally-spaced
markers (i.e., the No

fr observation points); the observation vector yo
t contains the

two-dimensional coordinates (xoi , y
o
i ) of the fire front markers observed at time t

(i.e., the assimilation time). Note that the subscript i is the index of a particular
marker in the observation vector, with i = 1, · · · , No

fr. A schematic of observed
time-evolving location of the fire front over the time window [t − 1, t + 1] is pre-
sented in Fig. 6.7. The fire front coordinates are assumed to have independent
Gaussian-like random errors ǫot with zero mean and with standard deviation (STD)
noted σo

t .

Within this framework, the observation space Rp, defined theoretically in Chapter 5,
represents in this wildfire application the space spanned by the different potential
observed locations of the wildfire front (in terms of x- and y-coordinates of the front

4www.disasterscharter.org/web/charter/home.

www.disasterscharter.org/web/charter/home
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marker) such that p = 2No
fr within the proposed data assimilation framework (p

being the dimension of the observation space).

Figure 6.7: Schematic of the observed fire front location over the time window [t−1, t+1].

6.3.2 Available data sets for data assimilation experiments

In this work, two types of data assimilation experiments are presented: (1) observa-
tion system simulation experiments (OSSE), in which observations are synthetically-
generated using a reference solution of the wildfire spread model (called the true
trajectory) modified by random observation errors ǫo; and (2) a controlled grassland
burn experiment, in which observations are reconstructed from measured temper-
ature maps and using a definition of the fire front as the 600 K iso-temperature
contour (corresponding to the apparent temperature provided by infrared camera).

→֒ Observation system simulation experiments

Within the OSSE framework, the true control vector xt
t is supposed to be known.

The observations over the assimilation time window [t − 1, t] are synthetically-
generated using the observation operator Gt( · ) applied to the true value of the
control vector xt

t. The application of the observation operator Gt provides, at
the observation time t, the location of the markers along the true simulated fire
front [(xt1, y

t
1), · · · , (xtNo

fr
, ytNo

fr
)]. A random noise ǫot of zero mean and STD σo

t

is then added at each marker position (x- and y-coordinates), in order to account
for observation errors and define the observation vector yo

t . To define the forecast
control vector xf

t, a perturbation eft of zero mean and STD σf
t is added to the true

value of the control vector xt
t. In this context, the true control vector xt

t as well as
the statistics of the observation and forecast errors ǫot and eft are known. Diagnostics
comparing xa

t and xt
t can therefore be developed and used as verification tools of

the proposed data assimilation prototype. Thus, OSSE experiments are a powerful
tool to quantify the quality of the correction to the forecast and thus, ensure the
optimality of the analysis xa

t . A schematic of the OSSE framework is shown in
Fig. 6.8.
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→֒ Controlled grassland burning experiment

The real case used for assessing the performance of data assimilation methodologies
in this thesis corresponds to a grassland controlled burning experiment, performed
by the wildfire research group at the Department of Geography of King’s College
London.5 This small-scale experiment aimed at testing and validating the technique
consisting in retrieving the flame temperature from fire radiation power (FRP)
measurements (Wooster et al., 2005; Paugam et al., 2013).

⊲ Experimental configuration. As illustrated in Fig. 6.9, the experimental con-
figuration corresponds to a small-scale (4 m× 4 m), flat and horizontal, open-field
grassland lot.

!

"

5 cm! 6.5 cm! 9 cm! 8.5 cm!

8.5 cm  !

13 cm!

16 cm!14 cm!9 cm!6 cm!

7.5 cm!

7.0 cm!
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(height = 50 cm)!

76 cm!

MIR camera!
(height = 11.30 m)!

4 m!

4 m!

74 cm!
Fire ignition!

x!

y!

(a) (b)

(c)

y

x

Ignition

Wind !

Figure 6.9: Configuration of the grassland controlled burning experiment. (a) Top-view
schematic of the burn field with the location of the flame ignition (yellow star), the MIR
camera (red square) and the in-situ sensor (blue circle), at which the wind conditions
and the air humidity were measured. The height of the vegetation layer was measured
at different locations (gray crosses) and varies from 5 cm to 16 cm. (b) Top-view of the
burning field delimited by the black-dotted line (extracted from the MIR camera aboard
the cherry-picker at 11.30-m height). (c) Snapshot of the short grass vegetation.

The short grass was characterized according to field measurements by a mean layer
thickness δv = 9 cm, a mean surface loading m

′′

v = 0.4 kg/m2 and an approximate
moisture content Mv = 21.7 %. Before fire ignition, the mean wind conditions are
moderate, i.e., uw = 1.0 m/s blowing into a western direction (i.e., αw = 307◦, in a
clockwise representation where 0◦ indicates the North direction). An in-situ sensor
(see Fig. 6.9) recorded the wind conditions (in terms of magnitude and direction) as
well as air humidity over the fire duration; the time-variations of these environmental
conditions are shown in Fig. 6.10. The wind conditions significantly fluctuated over

5wildfire.geog.kcl.ac.uk/.

wildfire.geog.kcl.ac.uk/
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the fire duration, with a wind magnitude varying between 0 and 2 m/s and a wind
direction decreasing from 325◦ to 175◦. Furthermore, air humidity had a tendency
to increase during the first part of the fire (the first 100 s), partly due to the strong
water evaporation from the grassland vegetation that is enhanced by a large flame
zone, and started decreasing after reaching a peak at time 120 s, confirming a full
fire development at this time.
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Figure 6.10: In-situ measurements at the sensor represented by a blue circle in Fig. 6.9,
before/during/after the fire (negative times indicate the time period before the fire igni-
tion). (a) Wind magnitude [m/s]. (b) Wind direction [◦]. (c) Air humidity [%]. Credit:
R. Paugam (private communication).

⊲ Experimental database. The fire spread was recorded during 350 s using a
MIR camera (see Chapter 1 for a detailed description on wildfire remote sensing).
This MIR camera was aboard a cherry picker 11.30 m above the burning field and
recorded the fire instantaneous field of view at a rate of four images per second.
Details of the measurement technique to retrieve the temperature field from thermal
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imaging are given in Wooster et al. (2005). Figure 6.11 represents the time-evolving
temperature on the 4 m×4 m-domain, which is extracted from MIR imaging at 14 s
intervals with a spatial resolution of 2.5 cm. This time-series of temperature maps
shows that the maximum apparent temperature reached 900 K in the flame region
and that the width of the active flame region was not uniform along the fireline.
The latter was highly dependent on the angle between the fire spread direction and
the wind direction. This fire was essentially a flank fire, meaning that only the
western part of the fire propagated in the same direction as the north-western wind
and this, only during the first 100 s of the fire. This implies that the apparent
width of the flame region was larger when the wind blew in the same direction
as the fire front propagated, while it became thinner when the fire front continued
spreading in other directions than the wind direction, indicating different fire spread
mechanisms for the two regions of the flame front. This change in the width of the
flame region is also due to the view-angle at which the fire is observed (i.e., at nadir
in the current experiment). However, this effect is currently an active research area
in the fire remote sensing field and is therefore not addressed here.

⊲ Post-processing of temperature maps. Within the data assimilation frame-
work, the observations are the time-evolving locations of the fire front, identified
as the zones where the temperature reaches the value 600 K, assumed to represent
the mean temperature at which flammable compounds are released from the solid
vegetation (see Section 3.2, Chapter 3). The subsequent reconstruction of the fire
front location is illustrated for the observed time t = 92.16 s in Fig. 6.12.

In a preliminary step, the burn domain is reframed to simplify the simulation of the
grassland controlled burn, resulting in a square 4 m× 4 m-domain discretized with
a Cartesian mesh, see Fig. 6.12(b). This figure shows that the burn domain was
delimited by counter-fires; these counter-fires did not move over the fire duration
and did not interfere with the grassland fire, implying that they can be removed
from the representation of the observed fire as shown in Fig. 6.12(c). We ensure
that the fireline is continuous by filling in missing burning pixels along the fire
front. In addition to the geolocated fire front, the burnt area is reconstructed
by binarizing the two-dimensional field, meaning that the fire front represents the
interface between the burned and unburnt regions of the grassland field.

By applying this treatment at all observation times, the arrival times of the fire
front over the 350 s of the fire duration can be reconstructed as shown in Fig. 6.13.
The associated fire front locations are assumed to have a measurement error
σo = 0.05 m in both x- and y-directions; the estimation of this error is based
on the spatial resolution of the camera (i.e., 2.5 cm) and on the post-processing
treatment to extract the fire front location.
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Figure 6.11: Time-series of the fire temperature represented in the two-dimensional
reference frame (x, y) every 14 s, from t = 50.16 s to t = 148.16 s.
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Figure 6.12: Example of temperature map post-processing at time t = 92.16 s. (a) Raw
data. (b) Projection of the grassland burn domain (ABCD) onto the Cartesian frame
(x, y). (c) Reframed location of the fire front. (d) Burnt area.
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Figure 6.13: Arrival times of the observed fire front (colormap). Observed fire fronts at
14 s intervals are represented in black solid lines from t = 64.17 s to t = 106.16 s.
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6.4 Regional-scale wildfire spread simulator FIREFLY

As our objective is to show the feasibility of data assimilation for wildfire spread
forecast, a regional viewpoint is adopted as in current operational wildfire spread
simulators (see Chapter 1 for a discussion on wildfire spread modeling approaches)
and thus, wildfire spread is simulated using a front-tracking simulator based on a
semi-empirical ROS model. This front-tracking strategy consists in a minimalist
treatment of the fire front, idealized as an interface and consistent with the limited
knowledge on the environmental conditions, implying that flame-scale processes
underlying fire spread are not resolved. To allow for more flexibility and adequation
with the proposed data assimilation platform, the wildfire spread simulator named
Firefly has been developed (Rochoux et al., 2010; Delmotte et al., 2011; Emery
et al., 2013) and is now presented in detail.

6.4.1 Front-tracking simulation capability

The Firefly front-tracking solver simulates the regional-scale propagation of sur-
face wildfires (within the biomass fuel bed) as illustrated in Fig. 6.14. In particular,
Firefly tracks the time-evolution of the fire front location using the following
three components: (1) a submodel for the ROS noted Γ and parameterized with
respect to the local environmental conditions (e.g., vegetation, terrain topography
and weather properties); (2) a level-set-based solver for the fire front propagation
equation that simulates the propagating fire front according to the local variations
of Γ (through the integration of the progress variable c); and (3) an iso-contour
algorithm for the reconstruction of the fire front.

Figure 6.14: Level-set-based fire spread simulator. Left: The fire front is the progress
variable isocontour cfr = 0.5; Γ measures the local ROS of the fire along the normal
direction nfr to the fireline. Right: Profile of the spatial variations of the progress variable
c across the fire front.



Chapter 6 - Data assimilation strategy for wildfire spread 289

→֒ The Rothermel-based rate of spread submodel

The ROS submodel is based on the reference semi-empirical model due to Rother-
mel (1972) since it appears as a good starting point for demonstrating the potential
of data assimilation for wildfire spread forecasting. This model focuses on the prop-
agation of the head of the fire and describes its ROS Γ as a function of vegetation
properties associated with a pre-defined fuel category, topographical properties and
meteorological conditions. The original Rothermel’s model includes a database of
11 biomass fuel categories, among whom short grass, chaparral and timber litter.

⊲ Original one-dimensional formulation. Rothermel’s model is derived from
the one-dimensional formulation of the energy balance equation within a unit
volume of the unburnt vegetation ahead of the flame, originally proposed
by Frandsen (1971) and assuming that the wildfire reaches a quasi-steady
propagation rate. The initial acceleration of the wildfire (i.e., the transient
phase in the propagation) is not accounted for. A schematic of this energy
balance in the biomass fuel bed is presented in Fig. 6.15. The physical
quantities involved in this energy balance were parameterized with respect
to the measured input parameters using wind-tunnel experiments in artificial
biomass fuel beds of varying properties.

Heat source

I 
R I P

Unburned vegetation δv

Flame

Heat transfer

Rate of spread Γ

Burned vegetation

Fire front Control volume

Ix
Iz x

z

Figure 6.15: Rothermel’s ROS Γ derived from the energy balance within a unit control
volume located in the unburnt vegetation ahead of the flame zone. Credit: Dupuy and
Valette (1997).

In this formulation, the ROS Γ [m/s] along the normal direction to the fire
front is expressed as the ratio between the heat flux received by the unburnt
vegetation Ip [W/m2] due to the contributions of radiation, convection as
well as conduction, and the energy required to ignite the fuel Hig [J/m3].
Formally, Γ reads:

Γ =
Ip
Hig

=
Ip

ρb εQig
, (6.1)
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where the ignition energy Hig is expressed as Hig = ρb εQig, with Qig [J/kg]
the heat of pre-ignition, ε the dimensionless effective heating number (i.e., a
correction factor to only consider the amount of biomass fuel effectively in-
volved in the combustion process) and ρb [kg/m3] the bulk vegetation density
(i.e., the density of the porous medium that differs from the density of the
solid phase in the porous vegetation ρp).

In the case of a fire spread that is not induced by wind or terrain topography
(also referred to as no-wind no-slope fire spread), Rothermel (1972) showed
that the propagating heat flux Ip is proportional to the energy release rate of
the combustion Ir. The proportionality coefficient is the dimensionless prop-
agating flux ratio ξ (that describes the proportion of energy that is released
by the flame and transferred to the vegetation in the non-flaming zone as
illustrated in Fig. 6.15). The resulting no-wind no-slope ROS is denoted by
Γ0 [m/s] and reads:

Γ0 =
ξ Ir

ρb εQig
. (6.2)

To account for wind and slope contributions to the ROS, correction coeffi-
cients, respectively noted Φ∗

w and Φ∗
sl, are introduced in Rothermel’s formu-

lation as follows:

Γ =
Ip
Hig

=
ξ Ir

ρb εQig︸ ︷︷ ︸
Γ0

(
1 + Φ∗

w + Φ∗
sl

)
. (6.3)

This ROS formulation means that wind and/or slope positively modify the
propagating heat flux Ip since the vegetation located ahead of the fire front is
subject to additional convection and radiation heat fluxes (represented by the
dimensionless correction coefficients Φ∗

w and Φ∗
sl). These coefficients were

determined for the one-dimensional case of heading and upslope fire spread,
meaning that their parameterization is optimal for a wind that blows in the
direction of the fire spread (heading fire) and/or for a fire that spreads in
the uphill direction (upslope fire). While the slope correction coefficient Φ∗

sl

depends on the tangent of the terrain slope angle αsl, the wind correction
coefficient Φ∗

w non-linearly depends on the wind velocity magnitude at mid-
flame height uw such that:

Φ∗
w ≡ Φ∗

w(uw) = C uBw

(
βv

βv,opt

)−E

, (6.4)

with C, B and E calibrated parameters depending on the biomass fuel
surface-to-volume ratio Σv [1/m], with βv the biomass fuel packing ratio
and βv,opt ≡ βv,opt(Σv) its optimum value. Note that no correlation between
the wind and slope effects are accounted for in the ROS formulation since
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their effects are assumed to be additive. Equation (6.3) can be written as
the following compact form:

Γ ≡ Γ(x, y, t) = Γ
(
δv,Mv,Mv,ext, Σv,m

′′

v , ρp, ∆hc, uw, αsl

)
, (6.5)

or alternatively, as a linear function to the biomass fuel layer depth δv:

Γ ≡ Γ(x, y, t) = P
(
Mv,Mv,ext, Σv,m

′′

v , ρp, ∆hc, uw, αsl

)
δv, (6.6)

where input parameters, uniformly- or spatially-distributed over the computa-
tional domain, time-invariant or time-varying, are summarized in Table 6.1. A
full description of the ROS model due to Rothermel is provided in Appendix A.

Table 6.1: Main input parameters of the Rothermel-based ROS model.

Name Symbol Unit

Fuel depth (vertical thickness of the vegeta-
tion layer)

δv m

Fuel moisture (mass of water divided by mass
of dry vegetation)

Mv %

Fuel moisture at extinction Mv,ext %

Fuel particle surface-area-to-volume ratio Σv 1/m

Fuel loading m
′′

v kg/m2

Fuel particle mass density ρp kg/m3

Fuel heat of combustion ∆hc J/kg

Wind velocity at mid-flame height projected
into horizontal plane (x, y)

uw m/s

Terrain slope angle αsl
◦

⊲ Extension to two-dimensional surface wildfire spread. Since it was orig-
inally calibrated for one-dimensional tunnel experiments, Rothermel’s model
is too restrictive to simulate two-dimensional wildfire spread in Firefly.
We therefore adapt the original Rothermel’s model to two-dimensional con-
figurations, in order to account for the wind and slope effects on the shape
of the fireline, while still maintaining a simple parameterization of the ROS
with respect to local environmental conditions. It is worth mentioning that
problems with complex topography are outside the scope of this thesis; the
recent extension of Firefly to complex topography is detailed in Emery
et al. (2013).
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Accounting for wind-induced wildfire spread in Firefly is such that when
the wind blows in the direction of the fire spread (i.e., a head fire configura-
tion), the wind contribution to the ROS is maximum since the wind tilts the
flame towards the unburnt vegetation and thus, enhances the pyrolysis of the
vegetation. On the contrary, the wind contribution to the ROS is zero when
the wind blows in the direction opposite to the direction of the fire spread
(i.e., a rear fire configuration), meaning that the fire propagates at the value
of no-wind ROS on this section of the fire front (i.e., Φ∗

w = 0). On the flanks,
the fire front advances faster than in the absence of wind (i.e., Φ∗

w > 0). This
implies that the ROS can drastically change along the fireline at a given time.
For this purpose, characteristic angles in the horizontal plane (x, y) are de-
fined to represent the direction angle of the wind (referred to as wind angle
and noted αw) and the direction angle of the fire propagation (referred to
as front angle and noted αfr). These angles are defined from the North
direction, namely from the positive y-coordinates and increasing in the clock-
wise direction as represented in Fig. 6.16. More precisely, the front angle
αfr(x, y, t) indicates the outward-pointing normal direction to the fire front
denoted by nfr. Since the shape of the fire front varies in space according to
the heterogeneous environmental conditions, and since the fire front moves
over time, this normal vector is not uniform along the fireline and is modified
over time. Thus, nfr is defined as follows:

nfr ≡ nfr(x, y, t) =

(
nx,fr(x, y, t)
ny,fr(x, y, t)

)
=

(
sin αfr(x, y, t)
cos αfr(x, y, t)

)
. (6.7)

The wind angle αw indicates the direction in which the wind is blowing.
According to the wind magnitude u∗w [m/s] and direction αw [◦] that can be
spatially-distributed and time-dependent, the wind velocity vector u∗

w reads:

u∗
w ≡ u∗

w(x, y, t) =

(
u∗w sin αw

u∗w cos αw

)
. (6.8)

To apply Rothermel’s model, the wind velocity vector u∗
w is projected along

the (local) normal direction to the fireline nfr = nfr(x, y, t). Using these
notations, the wind velocity magnitude at mid-flame height uw (see Table 6.1)
corresponds to the global wind velocity vector u∗

w projected along the front
angle αfr. Thus, uw = uw(x, y, t) is obtained using the following equation:

uw =

{
u∗
w(x, y, t) ·nfr(x, y, t), if nfr(x, y, t) ·u∗

w > 0
0, if nfr(x, y, t) ·u∗

w ≤ 0
. (6.9)

The projected wind velocity at mid-flame height uw = uw(x, y, t) is a time-
dependent and spatially-varying quantity along the propagating fireline. The
wind contribution Φ∗

w is forced to a zero-value in Firefly when the scalar
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product nfr(x, y, t) ·u∗
w is negative to ensure that the ROS Γ remains posi-

tive. This is consistent with the common assumption in fire research that the
fire propagates at least at the no-wind no-slope ROS.

Fire front 
at time (t-1)

Fire front 
at time t

rear

flank

head

nfr (x, y, t)
nfr (x, y, t-1)

u*w

αw
nfr (x, y, t)

α f r

x

y

"East"

"North" time-integration

uw

uw

Figure 6.16: Schematic of wind-induced fire spread for a two-dimensional configuration
in the horizontal map (x, y), in which the wind direction angle αw and the direction angle
of fire propagation αfr are not aligned.

→֒ The level-set-based solver

Since wildfires generally feature a front-like geometry at large regional scales, wild-
fire spread is described within the Firefly simulator as a thin flame zone that
self-propagates normal to itself into unburnt vegetation. This approach relies on
the assumption that a wildfire exhibits a topology similar to premixed flames at
regional scales (see Chapter 2).

A large number of techniques dealing with infinitely thin interfaces are available in
the literature, among whom the Eulerian front-tracking techniques and in particular
the level-set method commonly used to simulate the evolution of a moving inter-
face (Osher and Sethian, 1988; Sethian, 1999). While extensively investigated in
the area of combustion (Kerstein et al., 1988) and computer vision (Chaudhury and
Ramakrishnan, 2007), and while providing a robust and stable solution, the level-set
method has been recently experimented on wildfire spread with promising results
(Fendell and Wolff, 2001; Rehm and McDermott, 2009; Mallet et al., 2009; Mandel
et al., 2011; Lautenberger, 2013). As discussed by Rehm and McDermott (2009)
and Lautenberger (2013), the level-set method offers several advantages over their
Lagrangian counterparts for simulating wildfire spread. In particular, spot fire for-
mation, fire mergers and crossovers can be handled without any specific treatment
unlike Lagrangian methods. For instance, Mandel et al. (2011) showed its ap-
plicability and performance for complex vegetation and terrain topography in the
WRF-Fire coupled fire/atmosphere simulator (see Chapter 1).

In Firefly, an Eulerian level-set approach is adopted to numerically propagate
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the fire front at the Rothermel-based ROS.6 We consider a classical approach taken
from the premixed combustion literature, in which a reaction progress variable noted
c = c(x, y, t) is introduced as a flame marker: c = 0 in the unburnt vegetation,
c = 1 in the burnt vegetation, and the flame is the region where c takes values
between 0 and 1 (the flame front is identified as the progress variable iso-contour
cfr = 0.5) as illustrated in Fig. 6.14. Within the level-set framework, the reaction
progress variable c is calculated as a solution of the following propagation equation
over the computational domain Ω:

∂c/∂t(x, y, t) = Γ |∇c| , ∀(x, y) ∈ Ω, t ≥ 0,

c(x, y, 0) = c0(x, y), ∀(x, y) ∈ Ω,

∇c(x, y, t) ·nb(x, y) = 0, ∀(x, y) ∈ ∂Ω,

(6.10)

where Γ is specified by the Rothermel-based ROS in Eq. (6.5) using the wind pro-
jection uw along the normal direction to the iso-contour cfr = 0.5 of the progress
variable given by Eq. (6.9), and where Ω represents the two-dimensional compu-
tational domain (with ∂Ω the boundary of this computational domain and nb its
normal vector). Thus, the progress variable c = c(x, y, t) is a two-dimensional field
solved over the whole computational domain Ω.

⊲ Numerical treatment. In Firefly, Eq. (6.10) is solved using a second-order
Runge-Kutta scheme for time-integration and an advection algorithm for spatial
discretization based on a second-order total variation diminishing (TVD) scheme
combined with a Superbee slope limiter. This numerical scheme originally proposed
by Rehm and McDermott (2009) is detailed in Appendix G and ensures that the
iso-contour cfr = 0.5 is propagated consistently with Rothermel-based ROS Γ,
i.e., the main physical quantity in Firefly.

→֒ The iso-contour algorithm for the reconstruction of the fire front

Once the spatio-temporal variations of the progress variable c are known, the po-
sition of the fire front is extracted using a simple iso-contour algorithm such that,
formally, the outputs of the Firefly model are

[
(xi, yi), 1 ≤ i ≤ Nfr

]
=M[t−1,t](ct−1, θt−1),

where (xi, yi) represents the two-dimensional coordinates of the Nfr fire front
markers obtained at time t, where ct−1 designates the spatial distribution of the
progress variable c at time (t − 1) (i.e., the initial condition of the time window
[t−1, t]), and where θt−1 designates the list of input parameters of the ROS model

6This Eulerian front-tracking approach differs from Forefire (used in the ANR-IDEA project),
which is based on a Lagrangian discrete-event approach to numerically propagate the flame region,
while still relying on semi-empirical ROS models, see Section 1.3.3, Chapter 1.
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at time (t− 1). According to Table 6.1,

θ =
(
δv,Mv,Mv,ext, Σv,m

′′

v , ρp, ∆hc,uw, αsl

)
.

The general structure of Firefly is schematized in Fig. 6.17. It is worth noting
that the underlying solver requires a two-dimensional progress variable field as initial
condition. If the simulated fire front is corrected at a given time t through a
data assimilation technique, the forward model requires the reconstruction of the
corresponding progress variable field (i.e., the burnt area) to be integrated beyond
time t as explained further in the manuscript.

Local environmental conditions
- weather conditions
- vegetal fuel
- terrain topography

Initial condition of progress 
variable ct-1

Rothermel's model of
rate of spread

Level-set solver

Isocontour cfr = 0.5

Evaluation along the normal 
direction to the fire front

Determination of the two-
dimensional progress variable cInitial condition for time t+1

Location of the fire front
at time t

OUT
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F I R E F LY

Figure 6.17: Schematic of the Firefly front-tracking simulator.

6.4.2 Validation

→֒ Model performance metrics

Diagnostics on the propagating speed and thickness of the fire front, derived from
Kolmogorov–Petrovsky–Piskounov (KPP) analysis (Poinsot and Veynante, 2005)
and extrapolated to heterogeneous vegetations, have been developed to demon-
strate the accuracy of wildfire spread simulations with Firefly7 (Rochoux et al.,

7The proposed KPP-based diagnostics were originally developed for a reaction-diffusion equa-
tion in Rochoux et al. (2010) and then extrapoled for a level-set-based propagating equation in
Delmotte et al. (2011).
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2010; Delmotte et al., 2011). Global quantities characterizing the wildfire spread
are the average speed and thickness along the fire front at a given time t.

The average thickness of the fire front is diagnosed by the inverse of the maximum
gradient of the progress variable c (see Chapter 2). This diagnostic denoted by
δfr,d reads:

δfr,d =

(
max

∣∣∣∣
∂c

∂nfr

∣∣∣∣
c=0.5

)−1

, (6.11)

where nfr represents the normal direction to the isocontours of the progress variable
c and thereby, to the fire front.

Even though the thickness of the fire front has no physical meaning within the level-
set framework, it is useful in practice to evaluate the effect of numerical diffusion.
The average speed along the fire front noted Γ is determined by the rate of change
of the progress variable c = c(x, y, t) over the whole computational domain Ω.
These quantities are defined as follows:

Γ =

(∫

cfr=0.5
ΓdC

)

(∫

cfr=0.5
dC
) , Γd =

1(∫

cfr=0.5
dC
) d

dt

(∫∫

Ω
c(x, y, t) dxdy

)
, (6.12)

where dC corresponds to a small variation in arc length along the fire contour, and
where (

∫
cfr=0.5 dC) corresponds to the fireline perimeter identified as cfr = 0.5.

The formulation of Γd is based on the following arguments:

d

dt

(∫∫

Ω
c(x, y, t) dxdy

)
=

∫∫

Ω

∂c

∂t
(x, y, t) dxdy

=

∫∫

Ω
Γ(x, y, t) |∇c| dxdy

=

∫

cfr=0.5
Γ(x, y, t) dC,

⇒ d

dt

(∫∫

Ω
c(x, y, t) dxdy

)
= Γd

∫

cfr=0.5
dC,

using Eq. (6.10) and the following definition for the flame surface area:

|∇c| = dC
dxdy

. (6.13)

→֒ FIREFLY simulation experiments

The accuracy of the Firefly simulator is validated for different conditions of
vegetation distribution δv [m] and wind magnitude uw [m/s]. These simulations
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correspond to the propagation of a semi-circular front over a two-dimensional do-
main of 200 m × 200 m (with a mesh resolution ∆x = ∆y = 1 m). The initial
condition is described by a semi-circular front centered at (x0 = 100 m, y0 = 0 m)
and of radius r0 = 5 m. Equation (6.10) is integrated during 800 s with a time
step ∆t = 0.5 s. Different simulation experiments listed below are performed to
show the consistency and robustness of Firefly.

⊲ Simulation 1 (uniform vegetation distribution). This simulation repre-
sents a fire spread over a horizontal vegetation layer characterized by a uni-
form distribution δv = 1 m. There is no external flow (uw = 0). Thus, the
proportionality coefficient P in Eq. (6.6) is uniform, i.e., P = 0.1 s−1. This
implies, theoretically, a uniform ROS Γ = 0.1 s and thereby, an isotropic
propagation of the fire front. Figure 6.18 shows that the front propagates
at the prescribed Γ = 0.1 m/s; the rate of change of the progress variable c
over the computational domain noted Γd matches the average speed of the
fire front Γ. Also the fire front thickness δfr,d remains small and relatively
constant over time, with the ratio of the thickness to the cell size satisfying
(δfr,d/∆) ≃ 3 (∆ representing the minimum mesh resolution along the x-
and y-directions, i.e., ∆ = min(∆x,∆y) = 1 m).

⊲ Simulation 2 (random vegetation distribution). This simulation repre-
sents a fire spread over a horizontal fuel layer characterized by a randomly-
distributed δv = δv(x, y), varying between 0.4 m and 0.8 m as illustrated in
Fig. 6.19(a). There is no external flow (uw = 0) and P = 0.1 s−1, leading
to a slight anisotropic propagation as shown in Fig. 6.19(b).8 The ROS Γ
varies, consistently, between 0.065 m/s and 0.075 m/s, see Fig. 6.20.

⊲ Simulation 3 (wind-aided propagation). This simulation represents a
fire spread in presence of a moderate wind uw = 0.5 m/s flowing north-
ward (αw = 0◦), which occurs over a horizontal fuel layer characterized by
a randomly-distributed δv = δv(x, y), varying between 0.4 m and 0.8 m
similarly to Fig. 6.19(a). Figure 6.21 displays the simulated wind-aided prop-
agation of the progress variable isocontour cfr = 0.5 at 200 s intervals,
starting from the initial condition. Consistently, the ROS Γd matching the
reference Γ is higher than in the no-wind configuration (Simulation 2) and
reaches up to 0.125 m/s as demonstrated in Fig. 6.22.

In summary, these diagnostics of ROS and direction for isotropic and anisotropic
fire propagation show a consistent average fire front speed with the ROS submodel
Γ and a relatively constant fire front thickness over time, which demonstrates the
non-diffusive behavior of the TVD-based numerical scheme retained in Firefly.

8The key parameter to define the importance of ROS anisotropy is based here on the length-
scale at which the biomass fuel layer thickness δv fluctuates. In the present no-wind case, this
anisotropy is limited due to the relatively small size of biomass fuel pockets, see Fig. 6.19(b).
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Figure 6.18: Test of Firefly for an isotropic fire spread (Simulation 1). Top: Ratio of
the front thickness δfr,d [m] to the mesh cell size ∆ [m]. Bottom: Comparison of the aver-
age speed Γ in black dashed line with its diagnostic Γd in red solid line. Credit: Delmotte
et al. (2011).

(a) Random distribution of the vegetation layer
depth δv(x, y) [m].

50 100 150 200 250
0

20

40

60

80

100

 

t = 200 s

t = 800 s

50 100 150 2000

x [m]

y 
[m

]

(b) Time-evolving location of the fire front from
t = 200 s to 800 s at 200 s intervals.

Figure 6.19: Firefly simulation of a wildfire spread with no wind and a randomly-
distributed vegetation layer depth (Simulation 2).
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Figure 6.20: See caption of Fig. 6.18 for a no-wind fire spread configuration with a
biomass random distribution (Simulation 2).
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Figure 6.21: Time-evolving location of the fire front at 200 s intervals until t = 800 s in
presence of wind, with uw = 0.5 m/s and αw = 0◦ (Simulation 3).
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Figure 6.22: See caption of Fig. 6.18 for a wind-aided fire spread configuration with a
biomass random distribution (Simulation 3).

6.4.3 Sensitivity study with respect to environmental conditions

To illustrate the sensitivity of the Firefly outputs to the ROS input param-
eters (in terms of fireline topology and behavior), an ensemble of simulations
is performed over a two-dimensional domain of 400 m × 400 m (with a mesh
cell size ∆x = ∆y = 1 m). The fire is ignited as a circular front centered at
(xign, yign) = (200 m, 200 m) and of radius 5 m. It propagates over a flat terrain,
in presence of a moderate wind uw = 1 m/s flowing westward (αw = 315◦). The
vegetation is characterized by a uniform moisture content Mv = 20 % and Rother-
mel’s standard values for short grass (see Appendix A). Besides, the biomass fuel
layer thickness is non-uniform, with δv,1 = 0.5 m (for x < 200 m) and δv,2 = 1.0 m
(for x ≥ 200 m). These values are referred to as the nominal environmental con-
ditions.

The wildfire spread model is integrated during 200 s (with a time step ∆t = 0.5 s)
for different perturbations of the nominal conditions. Figure 6.23 presents the
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resulting scatter of the simulated fire fronts. It was found that changes in the wind
magnitude only affect the head of the fire, while changes in the moisture content
and the vegetation layer depth induce modifications all along the fireline (with a
maximum change in the wind direction). Changes in the wind direction significantly
modify the direction of wildfire spread, but only slightly the shape of the fireline
in the present case. In contrast, the spatially-distributed vegetation layer depth
modifies the shape of the fireline (in particular at the interface between the values
δv,1 and δv,2) and thereby, the direction of wildfire spread. These results imply that
combining perturbations in the different parameters [uw, αw,Mv, δv,1, δv,2] results
in a wide range of fire front shapes and behaviors, which is necessary to describe
modeling uncertainties within a data assimilation system.
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Figure 6.23: Sensitivity of the simulated fire front locations (the colored fire fronts
are discretized using Nfr = 20 markers) using Firefly with respect to perturbations
in nominal environmental conditions. (a) Wind magnitude uw (0.85 m/s ± 0.15 m/s).
(b) Wind direction αw (280◦±40◦). (c) Fuel moisture content Mv (20 %±4 %). (d) Fuel
depth in zone 1 δv,1 (0.4 m± 0.15 m). (e) Fuel depth in zone 2 δv,2 (1.10 m± 0.15 m).
The black circle represents the initial circular front, the vertical dotted line represents the
interface between the two zones of distinct biomass layer depth, δv,1 and δv,2.

In order to identify to which input parameters the ROS Γ is the most sensitive
among the environmental conditions, Fig. 6.24 presents the ROS values of the
head of the fire when uncertainties are assumed in six parameters: in addition to
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Figure 6.24: Sensitivity of the head-fire ROS with respect to perturbations in nominal en-
vironmental conditions. (a) Wind magnitude uw. (b) Fuel moisture content Mv. (c) Fuel
depth in zone 1 δv,1. (d) Fuel particle surface-area-to-volume ratio Σv [1/m]. (e) Fuel
packing ratio βv [%]. (f) Heat of combustion ∆hc [J/kg]. The vertical dotted line repre-
sents the nominal value for each input parameter of the ROS model (either the nominal
value in the present simulation, or the standard value for short-grass in Rothermel’s fuel
database).
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uw, Mv and δv,1 (presented in Fig. 6.23), we also study the ROS sensitivity to
the fuel particle surface-area-to-volume ratio Σv, the fuel packing ratio βv and
the fuel heat of combustion ∆hc. Indeed, the identification of which parameters
are important to include in the control parameters x is an essential step towards
the application of data assimilation to the Firefly wildfire spread simulator. In
particular, the key idea when dealing with parameter estimation is to focus the
correction on a reduced set of parameters that have significant uncertainties and
to which Firefly is the most sensitive.

It was found that the ROS values feature a wide, nearly identical, scatter for the six
parameters. However, it was also shown that the ROS depends non-linearly on the
variations in [uw,Mv, Σv, βv]. Since their variations can induce significant changes
in the wildfire behavior, these four parameters are critical to estimate in order to
correctly forecast wildfire spread and anticipate future responses. These model non-
linearities will be more important when the wind magnitude fluctuates over time or
when the fire active area is covered heterogeneously by different types of vegetation.
This highlights the importance of applying a data assimilation methodology able to
handle multiple sources of non-linearity in the wildfire spread model.

Note that this sensitivity study did not assume any particular type for the PDF
related to the errors in the ROS model parameters. If this study were performed
using a Monte Carlo sampling technique (in a data assimilation framework for
instance), a PDF on the ROS model parameters would be chosen and thereby, the
PDF of the model outputs of interest such as the head fire spread-rate, the burnt
area or the location of the fireline would be studied. Similar plots as Fig. 6.23 would
be obtained in addition to quantile- or moment-based plots.

6.4.4 Comparison between simulations and observations

To apply a data assimilation algorithm for both state and parameter estimations,
we need to map the outputs of the Firefly computer model onto the observation
space that is spanned by discrete observed fire front contours. Thus, the data
assimilation technique uses a discretization of both the simulated and observed fire
fronts, called SFF and OFF, respectively.

⊲ The discretization of SFF is a set of Nfr markers that are characterized at a
given time by the following two-dimensional coordinates

yt =
[
(x1, y1), . . . , (xNfr

, yNfr
)
]
.

⊲ Similarly, the discretization of OFF is a set of No
fr markers; the observation

vector yo
t is defined as:

yo
t =

[
(xo1, y

o
1), . . . (x

o
No

fr
, yoNo

fr
)
]
.

Note that the Firefly solver uses a high-resolution computational grid that allows
for a detailed representation of the local conditions (the spatial resolution is on
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the order of 1 m). In contrast, observations of the fire front position are likely
to be provided with a much coarser resolution; in addition, observations may be
incomplete and cover only a fraction of the fire front perimeter. Thus, we may
expect No

fr to be much lower than Nfr. In the following, we assume for simplicity
that No

fr = (Nfr/r), where r is an integer taking values (much) larger than 1.
In order to map the state variable space (SFF) onto the observation space (OFF),
a selection operator H (see Section 5.2, Chapter 5) is introduced that selects a
subset of No

fr markers among the fine-grained discretization of SFF and pairs each
one of those markers with one of those used in the coarse-grained discretization of
OFF (see Fig. 6.25).
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Figure 6.25: Construction of the innovation vector dt introduced to quantify the differ-
ences between simulated and observed fire fronts. In this illustration, r = 4.

The selection operator H may be defined in several ways (for instance using a
projection scheme as explained in Appendix G) but preliminary tests have shown
that a simple treatment (taking 1 out of every r points) provided reasonable results.
The distance between simulated and observed fire fronts is recast in the vector dt

of dimension 2No
fr and is now simply defined as the vector formed by the directed

distances between the paired SFF-OFF markers as illustrated in Fig. 6.25, with:

dt = yo
t − yt =




xo1 − x1

xo2 − x2

...

xoNo
fr
− xNfr

yo1 − y1

yo2 − y2

...

yoNo
fr
− yNfr




. (6.14)
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6.5 Flowchart for parameter and state estimations

6.5.1 Objectives of the data-driven simulation capability

The prototype data-driven wildfire simulator we propose relies on a sequential data
assimilation algorithm that assimilates observations of the time-evolving location
of the fire front. It features a choice between a parameter estimation approach
(in which the estimation targets are the ROS model parameters θ) or a state
estimation approach (in which the estimation targets are the positions of the fire
front [(xi, yi), 1 ≤ i ≤ Nfr] that can be regarded as the model state in Firefly).
Figure 6.26 highlights the general differences between parameter estimation and
state estimation approaches.
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Figure 6.26: Data assimilation flowchart for (a) parameter estimation and (b) state
estimation (control variables are colored in blue).

The cornerstone of this data-driven simulation capability is to find a data assimila-
tion algorithm that:

(1) accounts for non-linearities in the wildfire spread behavior;

(2) is suitable for the dimensionality of the problem;

(3) is consistent with the operational framework (i.e., low computational cost)
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and the available numerical tools (the tangent-linear and adjoint operators of
Firefly are not available);

(4) reliably delivers an accurate forecast of the time-evolving location of the fire
front with a positive lead-time (i.e., achieving a performance faster than real-
time).

For this purpose, the performance of different data assimilation algorithms is com-
pared in this thesis:

⊲ Extended Kalman filter versus ensemble Kalman filter. The extended
Kalman filter (EKF) and the ensemble Kalman filter (EnKF) are tested for
wildfire spread forecasting, in order to highlight the advantages of Kalman fil-
tering for parameter estimation and to point out the limitations of non-linear
treatments, in particular in the EKF (the model and observation operators
are linearized using finite differences within an iterative algorithm, see Sec-
tion 5.6.1, Chapter 5). The morphing EnKF proposed by Beezley and Mandel
(2008) and Beezley (2009) led to technical difficulties in the data assimilation
implementation due to the registration procedure applied on two-dimensional
temperature and sensible heat flux fields, these variables exhibiting a bi-modal
PDF. In the present study, the time-evolving locations of the fire front are
taken as the observed quantities and these data are expected to feature an
approximately Gaussian PDF, which allows for a straightforward application
of the classical EnKF as presented in Evensen (1994) and Houtekamer and
Mitchell (1998).

⊲ Ensemble Kalman filter versus particle filters. A comparison of the EnKF
with particle filters (SIR and ASIR algorithms) is provided in the context of
parameter estimation to ensure that the Gaussian assumption on the error
statistics used in the derivation of the Kalman filter equations does not de-
grade over time the quality of the EnKF forecast and analysis (the Kalman
filter is an analytical solution of the Bayesian filtering problem for a linear
model and Gaussian error statistics, see Section 5.5, Chapter 5).

⊲ Reduced-cost ensemble-based data assimilation strategy. Both EnKF
and particle filter approaches require a large ensemble to properly describe
uncertainties and correlations between the physical variables that are con-
trolled, and to allow for an anisotropic correction of the fire front location.
To reduce the computational cost of such ensemble-based approaches, we
develop a new cost-effective data assimilation strategy for parameter esti-
mation, inspired by uncertainty quantification techniques and relying on the
generation of an approximate surface response of the wildfire spread model
Firefly to the control variables. This surface response based on a poly-
nomial chaos (PC) expansion, also referred to as surrogate model, is used
in place of the forward model (i.e., the wildfire spread simulator Firefly).
This, in order to build the ensemble of forecasts and analyses with a dra-
matically reduced computational cost compared to the classical EnKF and
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without loss of accuracy.

⊲ Parameter estimation versus state estimation. An EnKF-based state
estimation approach has been developed to directly estimate the location of
the fire front markers and to account for all the possible sources of uncertainty
in Firefly, i.e., in the input parameters of the ROS model as well as in the
parameterization of the ROS. In this approach, attention must be paid in
the ensemble generation to properly characterize the error correlations in the
front marker location along the fireline. and thereby, allowing for a spatialized
correction of the fire front topology and behavior. A comparison of the EnKF-
based performance for parameter and state estimations is performed on the
real-case controlled grassland burn experiment.

This work aims at demonstrating the feasibility of data assimilation for surface
processes of wildfire spread and therefore, does not directly consider fire/atmosphere
interactions. Even though the ultimate goal of this research is to provide real-time
fire forecasts using thermal-infrared imaging including a description of both wildfire
dynamics and plume emissions, multi-scale fire/atmosphere interactions are beyond
the scope of this work. The issues related to data assimilation for coupled physical
systems are therefore not addressed here. Thus, we provide a data assimilation
strategy that is suitable for surface wildfire spread, but that would need further
developments for a coupled surface/atmosphere system.

6.5.2 Technical implementation

In practice, combining Firefly with a data assimilation algorithm is managed by
the OpenPalm9 dynamic coupling software. While OpenPalm is used in Part I
to perform multi-physics flame-scale LES (data parallelism), it is used here in the
context of data assimilation as a task-parallelism manager to handle communica-
tions and data exchanges between Firefly and the different mathematical units
required to sequentially perform Bayesian prediction and update steps. In partic-
ular, ensemble-based data assimilation algorithms (e.g., EnKF, SIR/ASIR particle
filters) require the generation of members (or particles) to stochastically character-
ize modeling uncertainties in the prediction step. This consists in the computation
of the Firefly model trajectory for each ensemble member to be compared to
the observed fire front. Since each member of the ensemble can be integrated
independently, we use the Parasol functionality of OpenPalm to efficiently
launch Firefly model integrations, in parallel, on the available processors. A
schematic of the Parasol functionality based on master/slave principles is pre-
sented in Fig. 6.27: the Master processor of Parasol spawns multiple copies of
the same computer program (the slaves), each on one or several processors with a
different set of input parameters, while each slave processor is in charge of execut-
ing one Firefly instance and producing the associated fire front position. Thus,
starting from an ensemble of input parameters xf

t = [θf,(1), · · · , θf,(Ne)], Parasol

9See Appendix B, www.cerfacs.fr/globc/PALM_WEB/.

www.cerfacs.fr/globc/PALM_WEB/
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provides an ensemble of forecast simulated marker positions designated as:

yf
t = [(xi, yi)

f,(1), (xi, yi)
f,(2), · · · , (xi, yi)f,(Ne)]

for each associated observed marker i, with i varying between 1 and No
fr.

6.5.3 Estimation of the input parameters of the ROS model

In the context of parameter estimation, the estimation targets x are the input
parameters of the Rothermel’s ROS model, in particular the wind magnitude uw
and direction angle αw as well as the properties of the vegetation (e.g., moisture
content Mv, solid particle surface-area-to-volume ratio Σv) to which Firefly is
sensitive.

⊲ Forecast step. For ensemble-based data assimilation methodologies, an en-
semble of realizations of these control parameters is generated based on random
perturbations of the uncertain values (provided by field measurements or physical
analysis and following Gaussian distributions). This ensemble of control parameters
corresponds to the forecast ensemble xf

t. Then, a series of Ne independent Fire-
fly integrations up to the analysis time t (based on these Ne realizations of the
control parameters) is performed using the Parasol functionality of OpenPalm.
This provides Ne fire front positions at time t designated as:

yf
t = Gt(xf

t) =
[
y
f,(1)
t ,y

f,(2)
t , · · · ,yf,(Ne)

t

]
.

⊲ Update step. During the analysis, each ensemble member is updated, either
based on the determination of weights for particle filters, or based on the classical
KF update equation presented in Eq. (5.89), Chapter 5, for the EnKF algorithm.
In EnKF, there is an important difference in the stochastic calculation of the gain
matrix Ke

t between the parameter estimation approach and the widely-used state
estimation approach. In the context of parameter estimation, following Durand
et al. (2008) and Moradkhani et al. (2005), Ke

t reads:

Ke
t = P

f,e
t GT

t︸ ︷︷ ︸
Cxy


GtP

f,e
t GT

t︸ ︷︷ ︸
Cyy

+Rt




−1

, (6.15)

where Cxy ∈ R
n×2No

fr and Cyy ∈ R
2No

fr
×2No

fr are, respectively, the covariance
matrix of the model parameters with the predicted measurements of fire front
positions (that represents the stochastically-based relationship between the control
space of size n and the observation space of size p = 2No

fr) and the covariance
matrix of the predicted measurements. In practice, Cxy and Cyy are directly
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derived from the ensemble of forecasts:

Cxy =

(
1

Ne − 1

) Ne∑

k=1

(
x
f,(k)
t − xf

t

)(
G(xf,(k)

t )− G(xf
t)
)T

, (6.16)

Cyy =

(
1

Ne − 1

) Ne∑

k=1

(
G(xf,(k)

t )− G(xf
t)
)(
G(xf,(k)

t )− G(xf
t)
)T

, (6.17)

where the overline denotes the mean value over the ensemble. This approach avoids
the explicit estimation of Pf,e

t and Gt, which is difficult to compute reliably with
respect to control parameters due to model non-linearity. The update step leads to
the estimation of more accurate control parameters

xa
t =

[
x
a,(1)
t ,x

a,(2)
t , · · · ,xa,(Ne)

t

]
.

Posterior to data assimilation, Firefly is integrated for the analysis ensemble over
the same time period as in the forecast step, in order to simulate the retrospective
fire front locations ya

t associated with the newly-obtained analysis xa
t as well as an

ensemble of forecasts of the fire spread beyond time t. The flowchart for parameter
estimation is schematized in Fig. 6.28.

⊲ Assimilation cycling: Artificial evolution model for ROS input parameters.
In order to allow for a temporal correction of the model parameters between the
assimilation cycles, ensemble-based algorithms are sequentially applied. Along the
assimilation cycles, since there is no dynamic model M available to describe the
time-evolution of the control parameters and since there is a need to cover multiple
possible scenarios for wildfire spread evolution, the parameter evolution is artificially
set up with a random walk model (West, 1993; Moradkhani et al., 2005). Each
member/particle (indexed by k) reads at the next observation time (t+ 1):

x
f,(k)
t+1 = xa

t + e
(k)
t , (6.18)

where xa
t is the mean of the analysis estimates obtained at the previous analysis

time t, and where e
(k)
t is a randomly-generated white-noise following a Gaussian

distribution of zero mean and given STD; this STD is taken here as the forecast
error STD σf

t over the assimilation cycle [t− 1, t]. This approach is referred to as
the artificial evolution method for control parameters.
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Figure 6.28: Flowchart of the EnKF algorithm during the [t−1, t] assimilation cycle for a
parameter estimation approach. Data randomization (Burgers et al., 1998) is used in the

EnKF with ξ
o,(k)
t following observation error statistics for each member k = 1, · · · , Ne.

6.5.4 Estimation of the state of the wildfire spread model

One alternative to parameter estimation is to directly estimate the Firefly model
state, i.e., the time-evolving location of the fire front. This is referred to as a
state estimation approach in the following. This approach is attractive for wildfire
spread applications. Identifying the different sources of uncertainties in wildfire
spread modeling is indeed particularly difficult. For instance, differentiating mod-
eling errors from inaccuracies in input parameters of the ROS model is a complex
task. On top of these inaccuracies (that express an imperfect knowledge and that
could in theory be removed or at least substantially decreased), aleatoric errors
(that result from natural and unpredictable stochastic variability of the physical
system) can even accumulate. Since all these uncertainties translate inevitably into
errors in Firefly outputs, and since aleatoric errors cannot be diagnosed through
parameter estimation, one possible strategy is to deal with the consequences of
those uncertainties by considering the marker positions along the simulated fire
front as control variables. More precisely, the control vector x includes the x- and
y-coordinates of the Nfr markers and is therefore of size n = 2Nfr. This approach
is also relevant for observations made with significant error and/or cases in which
the observations are incomplete, e.g., when only a fraction of the fireline perimeter
is observed. The flowchart for state estimation is shown in Fig. 6.29.
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Figure 6.29: Flowchart of the EnKF algorithm during the [t− 1, t] assimilation cycle for
a state estimation approach.

⊲ Forecast step. In an ensemble-based approach, the first step is to generate
the forecast ensemble for each control variable, while accounting for all sources
of uncertainties. For front-tracking applications, a simple way to perform this
forecast is to randomly perturb each front marker coordinate x and y (with a
zero expectation value and a given STD corresponding to the forecast error STD
σf
t over the assimilation cycle [t − 1, t]). However, if each marker is perturbed

separately (meaning that the error of one marker is uncorrelated to the errors of its
neighbors), the resulting front does not exhibit coherent features. This ensemble
generation is therefore conflicting with the physics of the fireline propagation. An
alternative strategy is to generate an ensemble of simulated fire fronts by randomly
perturbing the input parameters θt of the ROS model (e.g., wind magnitude uw
and direction angle αw, fuel moisture content Mv) and by integrating Firefly
using the Parasol functionality of OpenPalm for each set of parameters as in
the parameter estimation approach. This leads to an ensemble of Ne fire front
positions at time t designated as xf

t and used to describe the error covariance
matrices P

f,e
t and (GtP

f,e
t GT

t ). For a state estimation approach, the observation
operator Gt is reduced to the selection operator Ht, which is straightforward to
compute (a selection of lines and columns of P

f,e
t is sufficient to estimate the

matrix GtP
f,e
t GT

t ). This selection operator Ht is also applied to obtain the model

counterparts of the observations designated as yf
t = [y

f,(1)
t ,y

f,(2)
t , · · · ,yf,(Ne)

t ].
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⊲ Update step. Each ensemble member is updated, either based on weights for
particle filters or based on the EnKF formulation in Eq. (5.89), Chapter 5. This
EnKF update provides corrected positions xa

t for the Nfr simulated markers along
the fireline at time t, but there is no feedback on the ROS model parameters used
to generate variability in the ensemble of forecasts.

⊲ Insight into the forecast error covariance matrix. The theoretical and nu-
merical structure of the forecast error covariance matrix P

f,e
t is highlighted here

for a spatially-uniform test with constant ROS but uncertain fire ignition location
(xign, yign).10 Since the ROS is isotropic, the simulated fire front keeps its initial
circular shape. This implies that the location of the Nfr markers along the forecast
simulated fronts can be parameterized as a function of this ignition location as
follows:

∀k = 1, · · · , Ne, xf,(k) =




x
(k)
ign + rt cos(α1)

x
(k)
ign + rt cos(α2)

...

x
(k)
ign + rt cos(αNfr

)

y
(k)
ign + rt sin(α1)

y
(k)
ign + rt sin(α2)

...

y
(k)
ign + rt sin(αNfr

)




, (6.19)

with rt the radius of the circular fire front at time t (identical for all the ensemble
members Ne) and αi, i = 1, · · · , Nfr, the direction angle with respect to the center
of the initial fire front (assuming that markers with the same index on the simulated
fire fronts are taken at the same location on the circle for each member). Thus,
the difference between each simulated fire front and the mean front sums up to
a difference between the perturbed ignition locations (x

(k)
ign, y

(k)
ign) and the mean

location over all the members (xign, yign) for k varying between 1 and Ne:

∀i = 1, · · · , Nfr, x
f,(k)
i − xfi = x

(k)
ign − xign,

∀i = (Nfr + 1), · · · , 2Nfr, y
f,(k)
i − yfi = y

(k)
ign − yign,

(6.20)

with (x
f,(k)
i , y

f,(k)
i ) the location of the marker i associated with the ensemble mem-

ber k, with (xfi, y
f
i) the mean location of the marker i over the ensemble, and

with

(xign, yign) =

(
1

Ne

Ne∑

k=1

x
(k)
ign,

1

Ne

Ne∑

k=1

y
(k)
ign

)
.

10The role of error covariances in the KF update step applied to wildfire spread is explained
further in the manuscript, see Chapter 7.
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Theoretically, the stochastically-estimated forecast error covariance matrix P
f,e
t is

constant in each block (of dimension Nfr ×Nfr) and can be written as:

P
f,e
t =

1

Ne − 1




Ne∑

k=1

(
x
(k)
ign − xign

)2 Ne∑

k=1

(
x
(k)
ign − xign

)(
y
(k)
ign − yign

)

Ne∑

k=1

(
x
(k)
ign − xign

)(
y
(k)
ign − yign

) Ne∑

k=1

(
y
(k)
ign − yign

)2




,

where the first diagonal block represents the error covariances of the x-coordinates
(within this block, each diagonal element represent the error variance of one marker
x-coordinate), where the second diagonal block represents the error covariances
of the y-coordinates (within this block, each diagonal element represent the error
variance of one marker y-coordinate), and where the cross-diagonal blocks represent
the multi-variate error crossed-covariances between the x- and y-coordinates (see
Section 5.2.4, Chapter 5, for details on the structure of error covariance matrices).
We can define the associated error correlation matrix C

f,e
t composed of 4 uniform

blocks, i.e.,

C
f,e
t =

(
INfr×Nfr

0Nfr×Nfr

0Nfr×Nfr
INfr×Nfr

)
. (6.21)

From this correlation matrix C
f,e
t , one-dimensional correlation functions can be

extracted (i.e., a column of the matrix), indicating how the error on one coordinate
of a particular marker is correlated with the error on the x- or y-coordinate of any
marker along the fireline. This spatial impact of the error correlations is illustrated
in Fig. 6.30 and explained below.

(a)

(d)

(b)

(e)

(c)

Observed marker

Forecast AnalysisCorrelation functions

Figure 6.30: Schematic of the behavior of the analysis with respect to the forecast error
correlation functions and to the observation location (orange dot).

• The case (a)-(b)-(c) shows that when the error correlation function is narrow
(meaning that the error correlation of neighboring markers quickly decreases
to 0), the analysis correction is reduced to a restricted area in the vicinity of
the observed marker;
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• In contrast, the case (a)-(d)-(e) shows that when the error correlation function
is wider on both sides of the observed marker, the analysis correction affects
a larger area along the simulated fireline.

Figure 6.31(b) presents the forecast error correlation matrix C
f,e
t that is obtained

in practice in comparison to the analytical solution in Fig. 6.31(a).
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Figure 6.31: Forecast error correlation matrix C
f,e
t for the isotropic ROS case, in which

(97 m, 103 m) is the ensemble mean location of fire ignition and 10 m is the error
STD. (a) Analytical solution. (b) Numerical representation obtained with EnKF-Firefly.
Credit: Emery et al. (2013).

Note that the error correlation value obtained in each block is slightly different
from the analytical solution in Eq. (6.21). Due to numerical inaccuracies in the
isocontour algorithm (that allows to establish a correspondence between the markers
along the fireline across the ensemble), there is a slight shift in the direction angle
of the markers for each member and therefore, the angles αi, i = 1, · · · , Nfr, are
not identical from one member to another. This results in the slight oscillating
variations on each block of Cf,e

t .

⊲ Assimilation cycling: Reconstruction of the initial condition. To apply
successive assimilations, the analysis fire fronts must be propagated to future ob-
servation times. However, the Firefly simulator evolves the progress variable c,
the location of the fire front being diagnosed a posteriori. To restart Firefly,
the two-dimensional field of the progress variable c(x, y, t)(k) associated with each

analysis member x
a,(k)
t , k = 1, · · · , Ne, is therefore reconstructed and taken as

the initial condition for the next assimilation cycle [t, t+ 1]. This reconstruction is
performed through a binarization of the two-dimensional field, i.e., c(x, y, t)(k) = 0
in the unburnt vegetation and c(x, y, t)(k) = 1 in the burnt vegetation. Thus, the

analysis fire front x
a,(k)
t is the region where c(x, y, t) takes values between 0 and

1. Further discussions on this reconstruction algorithm are provided in Emery et al.
(2013). For demonstration purposes, a schematic of the state estimation approach
is presented in Fig. 6.32.
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Figure 6.32: Schematic of the sequential state estimation approach for each ensemble
member k, with a focus on the reconstruction of the two-dimensional progress variable
field c posterior to data assimilation over the time window [t − 1, t] and prior to forecast
over the time window [t, t+ 1].

Note that this work assumes that observation errors are uncorrelated over the as-
similation cycle [t− 1, t], i.e. the observation error covariance matrix Rt is treated
as a diagonal matrix, in which each diagonal term is the error variance (σo

t )
2 asso-

ciated with the x- or y-coordinate of each marker along the observed fireline yo
t .

This assumption can be questionable for spaceborne observations. Recent works
(e.g., Brankart et al., 2009; Gorin and Tsyrulnikov, 2011) have found significant
temporal and spatial correlations in the resulting observation dataset. In particu-
lar, they showed that adequately parameterizing these correlations could directly
improve the quality of the assimilation updates and the accuracy of the associ-
ated error estimates. However, these issues related to observation error statistics
modeling is out of the scope of this work.

6.5.5 Performance metrics of the data assimilation system

→֒ Definition

For both parameter and state estimation approaches, the statistical moments of the
innovation vector df

t = yo
t − yf

t and residual vector da
t = yo

t − ya
t (e.g., mean and

STD) provide a convenient measure of the deviations of model predictions from
observations and of the improved accuracy using data assimilation. The following
terminology is used: FMO (standing for Forecast Minus Observation) is the distance
between observed and forecast simulated fronts calculated over the assimilation time
window (quantifying the error without data assimilation), while AMO (standing
for Analysis Minus Observation) is the distance between observed and analysis
simulated fronts calculated over the same assimilation time window (indicating



316 6.5 - Flowchart for parameter and state estimations

the error remaining with data assimilation). In the specific context of synthetic
OSSE experiments (see Section 6.3), in which the true reference simulated front is
known, similar metrics can be used with respect to the true simulation, instead of
the observations. This results in FMT (Forecast Minus True) and AMT (Analysis
Minus True) diagnostics. These distance metrics can be characterized in terms of
mean and STD, denoted by the pair of parameters (d, σ) and defined as follows
for ensemble-based forecast/analysis estimates.

⊲ d [m] represents the mean value (over all the Nfr markers along the simulated
front) of the mean distance between reference and simulated fronts over the
Ne ensemble members such that:

dFMT =
1

Nfr

Nfr∑

i=1

dFMT,i, (6.22)

with ∀i = 1, · · · , Nfr,

dFMT,i =
1

Ne

Ne∑

k=1

√
(x

f,(k)
i − xti)

2 + (y
f,(k)
i − y

t,(k)
i )2.

⊲ σ [m] represents the mean value (over all the Nfr markers along the simulated
front) of the STD of the distance between reference and simulated fronts over
the Ne ensemble members such that:

σFMT =
1

Nfr

Nfr∑

i=1

σFMT,i, (6.23)

with ∀i = 1, · · · , Nfr,

σFMT,i =

√√√√ 1

Ne − 1

Ne∑

k=1

(√
(x

f,(k)
i − xti)

2 + (y
f,(k)
i − yti )

2 − dFMT,j

)2

.

The definition of the AMT performance metrics is similar to FMT, with the differ-
ence that it considers (x

a,(•)
• , y

a,(•)
• ) instead of (xf,(•)• , y

f,(•)
• ). Furthermore, when

the reference front is the observation (instead of the true simulation), the difference
in the performance metrics is that the mean value and STD are computed over the
No

fr observed markers instead of the Nfr simulated markers.

→֒ Optimality conditions

Based on this performance metrics, the data assimilation system produces a good-
quality analysis when:

dAMO < dFMO, (6.24)
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meaning that, on average, the markers from the analysis fire front are closer to
the observations than the points along the forecast fronts. However, the main a
posteriori diagnostics of a data assimilation system consists in verifying that the
error variance of the control variables (i.e., the trace of the error covariance matrix)
is reduced. Thus, the analysis xa

t must satisfy the following condition to guarantee
its optimality:

σAMO < σFMO. (6.25)

In the context of OSSE experiments, dAMT < dFMT and σAMT < σFMT are
additional diagnostics.

Conclusion

The objective in Part II of this thesis is to develop a prototype data-driven
wildfire simulator capable of forecasting wildfire spread dynamics at future
lead-times. The prototype simulator features the following main components:
a regional-scale wildfire spread model Firefly that treats wildfires as prop-
agating fronts and uses a description of the local wildfire spread-rate as a
function of environmental conditions based on a modified Rothermel’s model
(i.e., adapted to two-dimensional configurations with wind-aided fire propaga-
tion); a series of observations of the fire front location; and an ensemble-based
data assimilation algorithm (e.g., standard and reduced-cost EnKF, SIR/ASIR
particle filters). This prototype assumes that observations of the fire front po-
sition are available at frequent times but (possibly) provide an inaccurate and
incomplete description of the fire front. To describe accurate error statistics,
ensemble members are generated through variations in estimates of the fire igni-
tion location and/or variations in the ROS model parameters. Furthermore, the
data assimilation algorithm features either a parameter estimation approach (in
which the control variables are the ROS input parameters), or a state estimation
approach (in which the control variables are the two-dimensional coordinates
of the discretized fire front). These two approaches are implemented based on
the OpenPalm dynamic coupler combined with the Parasol functionality
for generating ensembles of Firefly fire front trajectories. The different algo-
rithms associated with parameter estimation and state estimation approaches
have been introduced in this chapter with an emphasis on their benefits for
improving the accuracy of Firefly wildfire spread simulations.





Chapter 7

Evaluation of the data-driven

wildfire spread simulator

The prototype data-driven wildfire simulator presented in this thesis fea-
tures the following main components: a level-set-based fire propagation
solver that adopts a regional-scale viewpoint, treats wildfires as propagat-
ing fronts, and uses a description of the local rate of spread (ROS) of the fire
as a function of vegetation properties and wind conditions based on Rother-
mel’s model; a series of observations of the fire front position; and a data
assimilation algorithm featuring a parameter estimation approach (in which
the control variables are the ROS model parameters) or a state estimation
approach (in which the control variables are the two-dimensional coordi-
nates of the discretized fire front). The prototype simulator is evaluated
in a series of verification tests using synthetically-generated observations;
these tests include representative cases of field-scale fires with spatially-
varying vegetation properties and temporally-varying wind conditions, in
which the ROS takes values on the order of 1 m/s. The prototype sim-
ulator is also evaluated in a validation test corresponding to a controlled
grassland burning experiment.

The objective of these verification and validation tests is to demonstrate
that data assimilation provides a suitable response to the challenge of accu-
rately forecasting wildfire behavior at a computational cost that is consis-
tent with operational framework. This demonstration features an original
technical focus based on the following three steps:

⊲ a discussion on the Kalman-based analysis and forecast behavior for wild-
fire spread (e.g., treatment of model non-linearity, temporal variability of
the errors, existence of multiplicity of solutions);
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⊲ a comparative study of different data assimilation algorithms for param-
eter estimation (e.g., extended and ensemble Kalman filter, particle filters,
hybrid approaches based on uncertainty quantification techniques);

⊲ a comparative study of the parameter estimation approach and the state
estimation approach based on the ensemble Kalman filter, in terms of en-
semble generation, analysis update performance and forecast quality at
different lead-times.
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"Forecasting the behavior of existing wildfires will require a greater degree of
sophistication than this model and our knowledge of fuels will permit at the
present time. Variations in fuel and weather cause departures from predicted
spread and intensity that pose risks unacceptable in fire suppression activities.
A method for forecasting the behavior of a specific fire eventually will be de-
veloped; most likely, it will be patterned on a probability basis similar to that
used for forecasting weather."

Rothermel (1972), US Department of Agriculture, Forest Service.

7.1 Preliminary insight into Kalman filtering

A preliminary version of the prototype data-driven wildfire spread simulator was
proposed in Rochoux et al. (2013, PROCI) and Rochoux et al. (2013, INCA) to
demonstrate the feasibility of data assimilation for wildfire spread, under simplified
but relevant conditions. The initial prototype featured a data assimilation algorithm
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based on an extended Kalman filter1 (EKF) combined to a parameter estimation
approach. This prototype is here useful to offer insight into the behavior of Kalman
filtering. In particular,

⊲ the sensitivity of the Kalman analysis is studied with respect to forecast
uncertainty;

⊲ the interpretation of the analysis with respect to the temporal variability of
the errors on the ROS model parameters is provided and its impact on the
Kalman optimal solution is highlighted for the controlled grassland burning
experiment;

⊲ the impact of the control space on the formulation of the estimation problem
is highlighted through the evaluation of cost functions for different control
parameters (the mapping between control space and observation space can
exhibit non-linearities).

One particularity of the EKF-based data assimilation algorithm is to assume a lin-
ear observation operator Gt(xt) (i.e., a linear mapping between control space and
observation space). The Jacobian matrix Gt related to the observation operator
(i.e., the tangent-linear operator) is calculated by simple differentiation after per-
turbing each element of the control vector xt and evaluating the corresponding
change in the observation operator Gt(xt). In the context of parameter estimation,
the observation operator includes the temporal integration of the regional-scale
wildfire spread model Firefly and is therefore non-linear with respect to the ROS
model parameters that are included in the control vector xt. These non-linearities
are partially accounted for by using an iterative procedure at each assimilation cy-
cle referred to as outer-loops. These loops consist in successive applications of the
Kalman update Eq. (5.78), Chapter 5, in which the gain matrix Kt is updated at
each iteration k through the calculation of the tangent-linear operator Gt around
a reference vector. This reference vector is taken as the forecast vector for the first
iteration (k = 1) and as the analysis vector taken from iteration (k− 1) for k > 1.
The outer-loop procedure explained in detail in Section 5.6, Chapter 5, is repeated
until convergence towards the optimal analysis xa

t is obtained at the assimilation
time t; the number of iterations is typically between 1 and 10.

7.1.1 Sensitivity of the analysis to forecast uncertainty

We present first results from OSSE verification tests, in which synthetic observations
are generated using specified values of the control parameters (i.e., a case in which
the true vector xt exists and is known). The ROS is expressed as Γ = P δv(x, y)
(see Eq. 6.6, Chapter 6), with δv the biomass fuel layer depth that is here a known
randomly-distributed function of x and y over the 300m× 300m two-dimensional
domain as shown in Fig. 7.1(a). Ignition occurs at (x, y) = (150 m, 0 m), and
the true fireline evolution is approximately semi-circular during the assimilation

1See Section 5.6.1, Chapter 5.
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time window [0; 800 s]. The control vector x is taken as the coefficient P such
that x = P (the rank of the estimation problem is n = 1); its true value is
xt = P t = 0.1 s−1. Observations are made at 50 s intervals over the time window
[0; 800 s], meaning that 16 observed fire fronts are available to estimate the control
parameter P . Observation errors are assumed small (i.e., σo = 1 m) in order to
evaluate the ability of the EKF to track the observed fire front location. Note that
the time index is removed here for clarity purposes since only one assimilation cycle
(including a forecast step and an analysis step) is considered.

The EKF-based data assimilation algorithm is applied to different cases correspond-
ing to different initial values of the prior xf = P f , ranging from 0.02 to 0.18 s−1.
This range of values for xf represents different perturbations (from −80 % to
+80 %) of the true value xt = 0.1 s−1. The forecast error standard deviation
(STD) σf is set according to these perturbations as σf = xt − xf , meaning that
these OSSE tests study the sensitivity of the analysis xa to forecast uncertainty. The
perturbation added to the reference parameter value to compute the tangent-linear
operator is taken as 5 % of the reference value at each outer-loop. Figure 7.1(b)
demonstrates the efficiency of the EKF algorithm for a forecast perturbation taken
as −80 % of the true value (i.e., xf = 0.02 s−1) since the analysis (without and
with outer-loop) perfectly coincides with the observed fire front. It is worth men-
tioning that xf and xa represent in EKF the mean value of the PDF related to the
forecast and analysis control vector, respectively.

Figure 7.1(c) presents a global plot of the data assimilation experiment, showing
different performance metrics as a function of the forecast value xf . σFMO rep-
resents the STD of the distance between observed and simulated fronts calculated
over the assimilation time window [0; 800 s] and using x = xf . Thus, σFMO pro-
vides a measure of the error that would be obtained without data assimilation.
σAMO is the same metric but calculated using x = xa, with or without outer-loop.
For all cases, σAMO takes small values that are orders of magnitude lower than
σFMO. Thus, the EKF-based parameter estimation approach was successful both
at significantly decreasing the distance between observed and simulated fire fronts
and at retrieving the true value of the ROS model parameter P within less than
0.1 %. Typically, 2 or 3 outer-loops were sufficient to reach convergence and to
achieve this performance.

7.1.2 Retrieval of mean conditions over the assimilation cycle

In a second series of OSSE tests, the fire configuration is reduced to a straight
line propagation along the x-axis (ignited at x = 150 m and propagating towards
decreasing x during 100 s) and with spatially-uniform ROS parameters that are
representative of the short grass category in Rothermel’s fuel database (see Ap-
pendix A). Thus, the fireline is characterized by a single value of the ROS. The
objective of these tests is to offer insight into the meaning of the EKF-based anal-
ysis over each assimilation cycle in a basic configuration.
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(b) EKF example for xf = 0.02 s−1.
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(c) EKF results for varying forecast uncertainty.

Figure 7.1: OSSE verification tests using the EKF-based parameter estimation approach
with a unique control parameter P [s−1]. (a) Randomly-distributed vegetation layer depth
δv(x, y). (b) Comparison between the forecast xf (blue dashed line), observations (black
crosses), the analysis xa without outer-loop (gray dashed-dotted line) and with outer-loop
(red solid line) at time t = 800 s for an initial parameter uncertainty equal to −80 %
(xf = 0.02 s−1). (c) STD between the simulated fire front and the observation over the
assimilation cycle [0; 800 s] for different perturbations in the forecast P f (−80 % to +80 %
of the true value xt = 0.10 s−1): σFMO (blue circles); σAMO without outer-loop (gray
triangles) and σAMO with outer-loops (red squares).
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The behavior of the analysis xa is illustrated in Fig. 7.2 for a wind-aided fire propa-
gation: the control vector x is taken as the wind magnitude uw in the Rothermel’s
formulation (x = uw); the fire duration is divided into two assimilation cycles
[0; 50 s] and [50; 100 s], with a single observed fire front per cycle at time t1 = 50 s
and t2 = 100 s, respectively. The true wind magnitude varies linearly from 1 to
2 m/s over the whole fire duration [0; 100 s]. Observation errors are assumed small,
implying that observations and the true fire front trajectory are equivalent.

(1) Assimilation cycle 1. The prior (forecast) value for the wind magnitude is
taken as a 20 % perturbation of the true value at initial time t0 = 0 s such
that xf

1 = 0.8 m/s (the index 1 referring to [0; 50 s]). This forecast (F1) leads
to a constant ROS equal to 0.1 m/s, while the true ROS varies between 0.15
and 0.30 m/s, see Fig. 7.2(b). The EKF algorithm with outer-loops is first
performed at t1 = 50 s; the resulting analysis xa

1 (wind magnitude) is equal
to 1.25 m/s and perfectly retrieves the location of the true fire front (A1) as
shown in Fig. 7.2(a).

(2) Assimilation cycle 2. The analysis xa
1 at t1 = 50 s is then used as the forecast

of the next assimilation cycle [50; 100 s] such that xf
2 = 1.25 m/s (the index

2 referring to [50; 100 s]). This forecast (F2) gives a ROS nearby 0.22 m/s
and significantly underestimates the true ROS that varies between 0.30 and
0.55 m/s up to time t2 = 100 s, see Fig. 7.2(b). The EKF algorithm applied
at time t2 leads to the analysis xa

2 = 1.76 m/s (A2), which also significantly
decreases the error in the simulated fire front, see Fig. 7.2(a).
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Figure 7.2: EKF-based sequential assimilation with x = uw [m/s] for a straight fireline
propagation (from right to left); 2 assimilation cycles; time-varying true control parameter.
(a) Comparison between the forecast (blue circles), the truth (black solid lines) and the
analysis (red squares) at t1 = 50 s and t2 = 100 s. (b) Time-evolution of the ROS:
the black solid line corresponds to the time-varying true ROS, blue circles (red squares)
correspond to the forecast (analysis) ROS over the time window [0; 100 s].
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Figure 7.2(b) proves that these two values of the analysis, xa
1 and xa

2, are associated
with a ROS that gives the mean behavior of the true fireline over each assimilation
cycle. Stated differently, the EKF algorithm searches for the value of the control
vector xt that retrieves the mean behavior of the real system between two successive
assimilation times, from time (t−1) to time t. This property of KF and its extensions
implies that the size of the assimilation window (for which a constant optimal
parameter is searched) must be specified according to the temporal variability of
the errors in the physical system (if the observation frequency is compatible).

7.1.3 Analysis of cost function evaluations

The presence of non-linearities in the observation operator is now studied for dif-
ferent control parameters. As explained in Section 5.6, Chapter 5, the iterative
EKF algorithm (with outer-loops) is equivalent to the multi-incremental 3D-Var
cost function given in Eq. (5.81). In the proposed EKF-based approach, the cost
function associated with the control parameters is therefore computed at each
outer-loop as posterior diagnostics of non-linearities in the observation operator Gt
for the assimilation cycle [t− 1, t].

In the following tests, Firefly considers a fire propagation during 200 s with
spatially-uniform vegetation (corresponding to the tall grass category in Rothermel’s
fuel database); ignition occurs at (x, y) = (100 m, 100 m) and in the absence of
wind, the propagation of the fireline is circular over time; there is one observation
at time t = 200 s.

→֒ Simple example

For illustration purposes, the ROS due to Rothermel is reformulated as Γ = P (δv)nv

to introduce a non-linear dependency with respect to the biomass fuel layer depth δv
through the exponent nv. The objective is to highlight the effect of this dependency
on data assimilation results and in particular, on the shape of the cost function to
minimize.2 Since no external flow (uw = 0 m/s) is considered, the fire propagation
is isotropic; the objective of the EKF is to estimate the proportionality coefficient
P (x = P ) or the exponent nv (x = nv) assuming negligible observation errors
(n = 1). The true fireline trajectory is obtained for P t = 0.10 s−1 and nt

v = 1.0,
resulting in a ROS equal to 0.10 m/s.

⊲ Estimation of the proportionality coefficient P . The forecast is taken
as P f = 0.20 s−1. Since there is a linear relationship between the ROS
and the coefficient P in the present isotropic case, the related cost function
is quadratic and therefore, the EKF-based analysis retrieves the true value
without outer-loop as shown in Fig. 7.3(a).

2The model exponent nv is equal to 1 in the other data assimilation experiments presented in
this thesis.
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⊲ Estimation of the coefficient nv. The forecast is taken as nf
v = 1.50.

In this case, the non-linear relationship between this exponent and the ROS
induces a strong non-quadratic cost function with a relatively flat region for
increasing values of the exponent nv as shown in Fig. 7.3(b). Thus, the
minimization of this cost function requires three successive outer-loops to
converge towards the true value nt

v = 1.0, with n
a,(1)
v = 1.369, na,(2)

v = 0.84,

and n
a,(3)
v = 0.98. These results highlight the crucial role of outer-loops in the

determination of the optimal control parameter when the mapping between
control space and observation space is non-linear.
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Figure 7.3: Comparison between the true cost function (black solid line) of the EKF-
based estimation problem and the quadratic cost functions obtained at each outer-loop
for (a) the proportionality coefficient P [s−1], and (b) the ROS model exponent nv [-].
The blue circled-dashed line represents the cost function related to the first outer-loop, the
gray squared-dashed line its counterpart at the second outer-loop and the red squared-solid
line its counterpart at the third outer-loop. Crosses correspond to the reference control
parameter (used as forecast) related to each outer-loop.

→֒ Non-linear response to environmental conditions

The same numerical configuration is used to study the effect of physical parameters
on the cost function to minimize and thereby, on the EKF-based analysis. Since the
fuel moisture content Mv and the fuel particle surface-area-to-volume ratio Σv have
been identified as important sources of uncertainties as well as ROS sensitive pa-
rameters in wildfire spread modeling over a broad range of environmental conditions
(see Fig. 6.24, Chapter 6, and further discussion in Appendix A), the EKF-based
cost function is studied for x = Mv in Fig. 7.4(a) and x = Σv in Fig. 7.4(b),
the size of the estimation problem is n = 1. These figures show that only 2 or 3
outer-loops are enough to make the EKF algorithm efficient at retrieving the true
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value of the control parameter (M t
v = 0.10 % or Σt

v = 5, 000 1/m), even though
the forecast was specified for each experiment as a 100 % perturbation of the true
value (M f

v = 0.05 % or Σf
v = 10, 000 1/m). Note that the forecast error STD σf

was specified accordingly with σf = xt − xf . The analysis at the third outer-loop
provides a consistent estimation with M

a,(3)
v = 0.0996 and Σ

a,(3)
v = 5, 003 1/m.
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Figure 7.4: Cost functions for (a) the fuel moisture content Mv [−], and (b) the fuel
particle surface-area-to-volume ratio Σv [1/m] (see caption of Fig. 7.3).

It is worth mentioning that Fig. 7.4(a) highlights the non-linearity between the
moisture content Mv and the ROS in the model due to Rothermel; the cost function
was found to be non-quadratic, even for an isotropic fire propagation, while the cost
function related to Σv is quadratic in this no-wind configuration. Thus, attention
must be paid to this estimation problem when environmental conditions become
heterogeneously-distributed and thereby, enhance model non-linearity.

→֒ Equifinality issue in multi-parameter estimation

The size of the estimation problem is now n = 2 with the simultaneous estimation
of the fuel moisture content Mv and the fuel surface-area-to-volume ratio Σv to
retrieve the observed fire front at time t = 200 s for a no-wind or a wind-aided fire
spread. The errors on these parameters are rightfully assumed to be independent.
Thus, x = [Mv, Σv] with its true value xt = [0.10, 4, 921 1/m]. The forecast is
taken as a 20 % perturbation of xt such that xf = [0.08, 5, 905 1/m]; these values
induce an overestimation of the ROS compared to the true trajectory.

⊲ Isotropic case. Table 7.1 compares the analysis obtained at each outer-loop with
the forecast and the observations, in both parameter space and observation space,
for the no-wind fire spread configuration. The analysis was found to reproduce the
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observation after only 3 outer-loops since the mean distance between the observed
and analysis fire fronts (AMO) is reduced to less than 1 % of the mean distance
between the observed and forecast fire fronts (FMO). However, 20 outer-loops
must be performed to retrieve the true value of the control parameters in this
case, while the AMO statistics were converged only after 3 outer-loops. This
indicates that for this no-wind simulation configuration, multiple sets of parameters
can reproduce the same observed behavior of the fire spread without guarantee to
obtain physical values for the control parameters. This problem of multiplicity of
solutions is commonly referred to as equifinality (Beven and Freer, 2001). The
presence of equifinality is confirmed by the parameter response surface shown in
Fig. 7.5(a): this figure corresponds to the cost function evaluated for different sets
of parameters, between 6 and 14 % for Mv, between 3,000 and 6,800 1/m for Σv.
This cost function exhibits a plateau in the parameter response corresponding to
the black zone in Fig. 7.5(a), which is difficult to handle in a minimization process.

⊲ Wind-aided case. The same data assimilation experiment is performed for a
wind-aided fire spread (with a wind velocity uw = 0.5 m/s blowing northward,
αw = 0◦), the topology of the cost function is significantly modified as shown in
Fig. 7.5(b). This cost function is indeed characterized by a single minimum and
there is no plateau in the parameter response surface (instead, the cost function
exhibits a bowl shape) such that EKF retrieves the exact true parameters within 2
or 3 external loops (see Table 7.2). The wind velocity adds a physical constraint
to the data assimilation algorithm and thereby, reduces the number of degrees of
freedom for the analysis solution.

Table 7.1: EKF-based experiment for isotropic propagation, x = [Mv, Σv].

xt xf xa,(1) xa,(2) xa,(3) xa,(20)

Mv [-] 0.10 0.08 0.063 0.066 0.068 0.10

Σv [1/m] 4921 5905 3908 4041 4107 4959

FMO/AMO (mean) [m] - 1.34 0.07 0.01 0.007 0.007

FMO/AMO (STD) [m] - 2.00 0.11 0.02 0.01 0.01

Table 7.2: EKF-based experiment for wind-aided propagation, x = [Mv, Σv].

xt xf xa,(1) xa,(2) xa,(3)

Mv [-] 0.10 0.08 0.0960 0.0998 0.10

Σv [1/m] 4921 5905 5120 4951 4922

FMO/AMO (mean) [m] - 1.21 0.22 0.02 0.02

FMO/AMO (STD) [m] - 1.86 0.33 0.03 0.03
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(a) Isotropic fire spread with no external flow.

(b) Wind-aided fire spread.

Figure 7.5: Cost function associated with EKF with respect to the control vector x =
[Mv, Σv]. The blue circle represents the forecast xf = [0.08, 5, 905 1/m]; gray squares
correspond to the reference control vector at each outer-loop; the red square corresponds
to the analysis xa; and the white cross corresponds to the true value xt.
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These EKF results for a two-parameter estimation highlight two key aspects under-
lying Kalman filtering:

(1) The KF-based analysis must be viewed as effective values that incorporate the
effects of a number of modeling choices and that are related to the description
of the sources of uncertainties. While searching for the combination of param-
eter values that best reproduces the observed fire behavior (when observation
errors are assumed small), it does not guarantee to retrieve physical values for
the parameters due to the equifinality issue as well as to knowledge gaps in
fire spread uncertainties. More realistic values of the model parameters may be
expected if the size n of the control vector is increased, thereby including more
physical parameters and more physical constraints in the estimation problem.

(2) The equifinality issue is found to be drastically reduced when the fire propa-
gation is anisotropic. Thus, Kalman filtering can achieve successful parameter
estimation for realistic cases of wildfire spread, in which the wind conditions
may vary and the vegetation may exhibit spatially-varying properties (if it is
affordable to deal with a large size n of the control vector).

7.1.4 Application to the controlled grassland burning

Results from a validation test in which observations are taken from the controlled
grassland burning experiment introduced in Section 6.3, Chapter 6, are now pre-
sented. This corresponds to a real reduced-scale fire occurring under moderate
wind conditions, in which the ROS takes values on the order of 1 cm/s. In contrast
to OSSE experiments, the true control vector xt is not known and may not exist if
the forward model is not sufficiently representative.

Observations are described as full fire contours represented by No
fr = 20 markers,

at 28 s intervals from t0 = 50 s (initial condition) to t1 = 78 s (assimilation
time) and t2 = 106 s (forecast time). The EKF-based data-driven simulation is
studied with respect to the size n of the control vector x for one assimilation
cycle [t0; t1] = [50; 78 s]; [t1; t2] = [78; 106 s] corresponds to the forecast time
window. First, the EKF algorithm searches for the effective values of the fuel
moisture content Mv and the fuel particle surface-area-to-volume ratio Σv (the
rank of the control vector x is n = 2, i.e., x = [Mv, Σv]), while featuring the
presence of a (known) uniform wind velocity (uw = 1.0 m/s, αw = 307◦). Second,
the EKF algorithm considers wind conditions as uncertain and therefore, the control
vector is extended to the wind magnitude uw and to the wind direction αw (the
rank of the control vector x is n = 4, i.e., x = [Mv, Σv, uw, αw]). In all tests,
observation errors are assumed to be small according to the spatial resolution of the
camera (i.e., σo = 5 cm). The ROS parameters are assumed spatially-uniform and
are optimized to reduce discrepancies between simulated and observed fire front
locations. Also in all tests, the location of the origin of the fire is assumed to be
known and is taken as the observed fire front at time t0 = 50 s.
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→֒ Constant and uniform wind conditions

The fire spread model is first used over the assimilation window [50; 78 s]. The
ROS is treated using Rothermel’s model, with M f

v = 21.7% and Σf
v = 4, 921 1/m.

These initial prior values correspond to the best educated guess available using in-
situ measurements and Rothermel’s fuel database; the STD of the forecast error is
arbitrarily specified as a 30 % perturbation of the prior (arbitrarily due to knowledge
gaps and lack of uncertainty quantification in the short grass properties). With
these values, the model predicts a maximum ROS in the wind direction of 0.01m/s
over the time period [50; 78 s]. Figure 7.6(a) shows that the free run simulation
significantly underestimates the ROS, while the EKF algorithm (with outer-loops) is
successful at significantly decreasing the distance between observed and simulated
fronts. The STD of the distance between observed and analysis fire fronts σAMO

is reduced by a factor of 2 compared to the STD of the distance between observed
and forecast fire fronts σFMO; this improved performance is obtained with the
new control parameters xa = [11 %, 13, 193 1/m]. With these new values, the
Firefly model predicts a maximum ROS in the wind direction of 0.04m/s over
the time period [50; 78 s]. As expected from the EKF-based algorithm, the STD
of this corrected control vector is significantly reduced to only 3 % of the analysis
values.

Figure 7.6(b) adopts a slightly different perspective and presents a comparison
of different forecasts of the fire front location at time t2 = 106 s using the fire
spread model Firefly, with or without data assimilation. When using data as-
similation, Firefly is integrated from t0 = 50 s for the new control parameters
xa = [11 %, 13, 193 1/m]. Consistently with previous results, the forecast run with
data assimilation at t1 = 78 s significantly reduces the distance between observed
and simulated fronts; σAMO is reduced by a factor of 2 compared to σFMO. This
result illustrates the improved prediction capability of the fire model that is achieved
when uncertain environmental conditions are calibrated against past observations.

→֒ Extension of the control to wind conditions

Even though the 2-parameter estimation was found to properly retrieve the mean
behavior of the fire front, it was not able to track the temporal variations of the front
curvature at small scales. The extension of the control vector to wind conditions is
able to overcome some of these limitations in the wind direction, since the additional
estimation of the wind magnitude and direction avoids to overestimate the ROS in
the wind direction and retrieves a more accurate fire front location. Figures 7.6(a)-
(b) show indeed that the mean analysis estimate of the fire front obtained with a
4-parameter estimation better tracks the location of the observed fire front, both
at the assimilation and forecast times.

The analysis fire front trajectory is obtained for the following set of parameters,
xa = [7.1 %, 7, 185 1/m, 0.38 m/s, 300◦]. The new values for the fuel mois-
ture content Mv and the fuel particle surface-area-to-volume ratio Σv are largely
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modified compared to the values obtained with the 2-parameter estimation. This
highlights that the EKF-based parameter estimation is a dynamic-learning process,
in which the value of the parameters is case-dependent. Furthermore, while the
analysis values of Mv and Σv obtained in the first test [11 %, 13, 193 1/m] were
realistic, they must be viewed as effective values that incorporate the effects of a
number of modeling choices. With the extension of the control vector to wind con-
ditions, more realistic values of the model parameters were obtained. These results
indicate the need for a dynamic model that represents the temporal variability of the
fuel moisture content Mv over the fire duration to improve prior information (the
prior value was far from being predictive). They also indicate the persistent uncer-
tainty in the modeling of the fuel particle surface-area-to-volume ratio Σv, which
is difficult to measure and therefore crucial to control in parameter estimation due
to its large impact on the wind-aided ROS.
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Figure 7.6: Comparison between simulated and observed fire front positions at t1 = 78 s
and t2 = 106 s. Blue solid lines: free run predictions (without data assimilation). Gray
dashed lines: analysis predictions for 2-parameter estimation x = [Mv, Σv]. Red solid lines:
analysis predictions for 4-parameter estimation x = [Mv, Σv, uw, αw]. Black circled-solid
lines: observations. (a) Assimilation window [50; 78 s]. (b) Forecast window [78; 106 s].

While these EKF-based studies, partly presented in Rochoux et al. (2013, PROCI)
and Rochoux et al. (2013, INCA), produced encouraging results and confirmed the
value of a data assimilation strategy for improved wildfire spread predictions, some
of the design choices made during the initial development of the prototype simulator
were proposed on a preliminary and temporary basis with the understanding that
they would have to be re-visited in subsequent work. The choice of the EKF algo-
rithm was considered questionable because it assumes a linear relationship between
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control space and observation space (i.e., a linear relationship between changes in
the parameters of the Rothermel-based ROS model and the resulting changes in
the fire front positions). This linear assumption is believed to be of limited value
in general wildfire problems, where the wind direction and magnitude vary and the
vegetation properties are potentially strongly heterogeneous. In particular, this as-
sumption can lead to erroneous analysis due to local minima in the cost function,
which prevents the convergence of the outer-loops towards the optimal solution of
the problem. To better account for non-linearity in the observation operator that
relates the ROS model parameters (control space) and the fire front location (ob-
servation space), the modification to an ensemble-based data assimilation approach
is now explored.

7.2 Ensemble-based parameter estimation strategies

Ensemble-based data assimilation approaches, originally developed for dynamic
state estimation (Evensen, 1994), have been extended to sequential parameter es-
timation, for instance in the field of hydrodynamics and hydrology (Durand et al.,
2008; Moradkhani et al., 2005). Following the strategy presented in Section 6.5.3,
Chapter 6, the application of the EnKF-based parameter estimation approach to
regional-scale wildfire spread is explored here based on work presented in Rochoux
et al. (2012, CTR) and Rochoux et al. (2014a, NHESS); its advantages and draw-
backs are shown in comparison to particle filters (PF) and reduced-cost strategies
based on a polynomial chaos surface response model (PC-EnKF).

7.2.1 Behavior of the standard ensemble Kalman filter

→֒ Simple example

As a validation step (referred to as P-OSSE-ANISO), the EnKF algorithm is applied
to correct the proportionality coefficient P [s−1], which accounts here for all the
uncertainties in the ROS model (see Eq. 6.6, Chapter 6). In the following exper-
iments, the fire is ignited at (x, y) = (100 m, 100 m) as a circular front with a
radius of 5 m and spreads upon a random fuel distribution δv = δv(x, y) over a
200m × 200m domain. Observations (represented using No

fr = 20 front mark-
ers) are synthetically generated at 50 s intervals with Firefly and a chosen true
value xt = P t = 0.4 s−1. An observation error characterized by the error STD σo

(assumed constant along assimilation cycles) is also introduced. The ensemble of
prior values for the first cycle xf

1 is drawn from a Gaussian distribution centered in
0.2 s−1 with an error STD σf = 0.05 s−1 (also assumed constant along assimilation
cycles).

⊲ Sensitivity to observation errors. While EKF-based results were produced
with a low value of the observation error STD (relatively to the perimeter of the
fireline), Fig. 7.7(a) examines the influence of this error on the EnKF performance
up to σo = 60 m. Statistics (in terms of mean value and STD) of the analysis
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obtained for Ne = 48 members over one assimilation cycle (i.e., at time t = 50 s)
are presented as a function of the magnitude of observation errors measured by σo.
Vertical bars give a graphical representation of the magnitude of the STD within
the analysis ensemble. When the observation error STD σo is small, the EnKF
algorithm successfully drives the analysis ensemble towards the true value of the
parameter P t = 0.4 s−1; the resulting analysis exhibits a much reduced scatter by
at least a factor 4 in comparison to the forecast STD σf = 0.05 s−1. In contrast,
when the observation error STD is large, the EnKF algorithm has reduced effects
and the analysis ensemble remains close to the forecast ensemble (the analysis
STD is similar to the forecast STD σf = 0.05 s−1). For intermediate values of
the observation error STD, the EnKF algorithm produces optimized predictions
lying between forecast and observation. These different regimes illustrate how data
assimilation combines information from both models and observations and produces
better results than those that would be obtained if models or observations were
considered separately.
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Figure 7.7: Estimation of the coefficient P [s−1] for one assimilation cycle (P-OSSE-
ANISO). (a) Mean and STD of the analysis estimates as a function of the observation
error STD σo. The black solid line corresponds to the true value 0.4 s−1; the blue dashed
line corresponds to the mean value of the forecast 0.2 s−1; and the red squared-solid line
corresponds to the mean value of the analysis. (b) Convergence of the mean analysis
estimates with respect to the number of members Ne within the ensemble for σo = 2 m
(dashed line) and σo = 5 m (solid line). Vertical error bars correspond to the associated
error STD.

⊲ Sensitivity to sampling errors. Convergence properties of the EnKF-based
analysis are studied in Fig. 7.7(b) with respect to the number of members Ne in
the ensemble (when the EnKF ensemble contains Ne members, the regional-scale
wildfire spread simulator is integrated Ne times to produce Ne fire front trajectories
associated with each set of control parameters, i.e., each ensemble member, during
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each assimilation cycle). The EnKF converges for a minimum of Ne = 48 members
in the present configuration (for both σo = 2 m and σo = 5 m). The uncertainty
related to the analysis is also lower for σo = 2 m (by nearly a factor 2 compared to
σo = 5 m); as expected, the more accurate the observations, the more certain the
analysis for a given forecast error.

⊲ Sensitivity to temporal variability in the control parameter. Sequential
application of the EnKF allows for a temporal correction of the parameter P for
a case in which the time-varying profile of the true parameter was artificially set
up between 0.3 and 0.6 s−1 over 7 assimilation cycles as illustrated in Fig. 7.8(a).
Note that for this experiment, Ne = 48 and a constant observation error STD
σo = 5 m is assumed. While the mean value of the prior estimates is set to 0.2 s−1

for the first assimilation cycle, it is set to the mean of the analysis estimates from
the previous assimilation cycle otherwise.
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(a) Control parameter space.
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(b) Observation space.

Figure 7.8: Sequential EnKF estimation of the coefficient P [s−1] over 7 assimilation cy-
cles with Ne = 48 members and σo = 5 m; time-varying true control parameter (P-OSSE-
ANISO). The green triangled-dashed-dotted line corresponds to the free run (without data
assimilation); the blue circled-dashed line corresponds to the mean forecast estimate; the
red squared-solid line corresponds to the mean analysis estimate; and the black solid line
corresponds to the truth. Vertical error bars correspond to the associated error STD.
(a) Parameter estimates. (b) Mean distance to the observed fire front.

As shown in Fig. 7.8(a), the EnKF solution allows an optimal mean value of the
parameter to be identified, which results in an ensemble of fire fronts that is co-
herent with the observation error statistics in Fig. 7.8(b). In contrast, the model
without data assimilation (referred to as free run) significantly underestimates the
ROS. While being not as accurate as the analysis at the assimilation time, the
forecast provides a significant improvement in the prediction of wildfire spread at
future lead-times compared to the free run. For instance, the mean distance to the
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observations is multiplied by a factor 1.3 for the free run compared to the forecast
over the third assimilation cycle. It is worth noting that there is a temporal shift
between the forecast and analysis estimates in Fig. 7.8(a). The analysis estimate is
obtained at the current observation and thereby, provides the most recently-updated
information. In contrast, the forecast only contains information up to the previous
observation time and the correction obtained at the current time through parameter
estimation is only integrated in the forecast further in time. This explains the time
delay of the forecast to gain information on the actual fire spread in comparison to
the analysis. This illustrates that the quality of the forecast highly depends on the
temporal variability of the errors in the control parameters and that the assimilation
frequency must be set according to this variability in order to guarantee a high level
of performance of the data-driven simulation.

→֒ Multi-parameter multi-cycle estimation

Results from OSSE tests, in which multiple parameters of the ROS model due
to Rothermel are controlled (referred to as P-OSSE-ANISO-WIND), are now pre-
sented. The numerical configuration corresponds to a 400 m× 400 m domain with
spatially-varying vegetation properties (short grass vegetation type) and with wind.
The fuel depth is assumed to be spatially-varying taking different values in the two
parts of the square-shaped computational domain (δv,1 for x ≤ 200 m and δv,2
x > 200 m); the fuel moisture content Mv is assumed spatially-uniform. Ignition
occurs at (x, y) = (200 m, 200 m) as a circular front with a radius of 5 m. The true
trajectory of the fire front (see Table 7.3 for the related environmental conditions)
is shown in Fig. 7.9(a) over the time period [0; 200 s]; the time-evolving burnt area
is presented in Fig. 7.9(b). These figures show that the fire front propagates at
an anisotropic ROS along the fireline; faster rates are simulated along the wind
direction; at the flanks and at the back, the fire front propagates faster in the zone
of highest fuel depth (x ≤ 200 m).

Table 7.3: Properties of the ensemble forecast, in terms of mean value and STD.

Input parameter True value Ensemble mean Ensemble STD
δv,1 [m] 0.50 0.40 0.15
δv,2 [m] 1.00 1.10 0.15
Mv [%] 16 20 4
(uw, αw) ([m/s], [◦]) (1.0, 315) (0.85, 280) (0.15, 30)

In the following experiments, uncertainties in the forecast ensemble are due to
variations in as many as 5 input parameters (2 values of δv for the 2 parts of the
domain, plus values of Mv, uw and αw). These parameters are perturbed around
mean values and with prescribed uncertainties presented in Table 7.3. The observed
fire fronts are discretized using No

fr = 20 markers; the observation error STD is
assumed to be small (i.e., σo = 0.1 m) in order to evaluate the ability of the EnKF
to track the observed fire front location.
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Figure 7.9: Time-evolving true trajectory over the time window [0; 200 s] for a wind-
aided fire propagation (P-OSSE-ANISO-WIND). (a) True fire front location at 10 s in-
tervals (solid lines correspond to the fire front location at analysis and forecast times).
(b) Corresponding time-evolving burnt area for the true trajectory.

⊲ Sampling errors in a multi-parameter estimation. The EnKF-based analy-
sis is studied with respect to the number of ensemble members Ne for different
sizes n of the control vector, from 1-parameter (with the stand-alone estima-
tion of the wind magnitude, i.e., x = uw) to 5-parameter estimation (i.e., x =
[uw, αw,Mv, δv,1, δv,2]), corresponding to increasing sources of uncertainties. The
estimation is performed over one assimilation cycle [0; 100 s].

• Figure 7.10 represents the statistics of the distance to the observations for
the forecast (FMO) and analysis (AMO) ensembles, in terms of mean value
and STD, for varying numbers of ensemble members Ne. For any number
Ne, the EnKF-based algorithm is able to retrieve parameters that lead to an
ensemble of simulations that is more consistent with the observations (with
the mean value of AMO always below 1 m). The distance between predicted
and observed fire fronts is drastically reduced through the data assimilation
feedback, even though the performance of the forecast degrades when in-
creasing the number of control parameters n (i.e., when more uncertainties
are represented). The mean FMO is near 4 m for at least 3 control param-
eters (since the wind velocity magnitude and direction angle introduce the
largest scatter in the ensemble), while it is nearly 0.5 m for n = 1 and 2 m for
n = 2. These discrepancies in the representation of uncertainties (in terms
of fire front location and behavior) are illustrated in Fig. 7.11. The analysis
counterparts in the observation space are represented in Fig. 7.12; they show
that despite the increasing level of uncertainties, the EnKF remains capable of
improved performance compared to a stand-alone forecast since the analysis
exhibits a much reduced scatter in terms of fireline location and shape.
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• As illustrated in Fig. 7.12, when the number of control parameters n in-
creases, the scatter in the analysis ensemble is larger. This is due to the
increased complexity of the estimation problem: even though the distance to
the observations is significantly reduced, it is more difficult to retrieve param-
eter values that provide the exact shape of the observed fire front. As shown
in Fig. 7.13 for the 5-parameter estimation case, a large ensemble (at least
Ne = 320 members) is indeed required to find the true values of the control
parameters, in particular of the wind magnitude uw (see Fig. 7.13(b)) and
of the fuel moisture content Mv (see Fig. 7.13(d)). Consistently, the correct
burnt area is retrieved for at least Ne = 320 members. This large ensemble
is necessary to accurately describe the spatial variability in the errors and to
dissociate the effects of each control parameter on the fireline location and
shape, partly due to equifinality issues. Note that the threshold value for Ne

(for which the error statistics are converged) increases with the number of
control parameters n as shown in Table 7.4.

Table 7.4: Threshold number of ensemble members Ne with respect to the size of the
parameter estimation problem n.

Size of the control vector (n) 1 2 3 4 5

Threshold number of members (Ne) 10 40 80 160 320

However, there is no general rule to define this threshold number of members in
the ensemble; this is case-dependent. In practice, the true values of the control
parameters are unknown and cannot be used as reference for the validation of the
data assimilation feedback. Furthermore, the stand-alone criterion of the distance
to the observations is not sufficient here to ensure that the analysis provides physical
values of the control parameters (less than 100 members are sufficient to obtain
converged error statistics in the observation space in Fig. 7.10 for any size of the
control vector n, while Ne must be at least 320 for a 5-parameter estimation to
obtain realistic values of the control parameters). It is therefore recommended
for parameter estimation to include several criteria as for instance the burnt area
extent shown in Fig. 7.13(a) and to generate large ensembles according to the
computational time of the forward model and available computational capacities.

The linear increased computational cost with respect to Ne is shown in Fig. 7.14 for
the present 5-parameter estimation experiment on a 4-processor machine. Thus,
achieving a detailed representation of parameter error covariances is computationally
intensive for increasing number of control parameters.

It is worth noting that the calculation of the ensemble of forecast fire front tra-
jectories is performed using the Parasol functionality in OpenPalm (see Sec-
tion 6.5.2, Chapter 6), which takes advantage of the independence between the
ensemble members and which thereby, already reduces the total computational
cost of the EnKF algorithm if multiple processors are available.
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(a) x = [uw], n = 1.
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(b) x = [uw, αw], n = 2.
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(c) x = [uw, αw,Mv], n = 3.
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(d) x = [uw, αw,Mv, δv,1], n = 4.
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(e) x = [uw, αw,Mv, δv,1, δv,2], n = 5.

Figure 7.10: Spatially-varying wind-aided OSSE test with respect to the number of
members Ne for different sizes n of the control vector (P-OSSE-ANISO-WIND). The blue
dashed line represents the mean distance between the observed and forecast front positions
dFMO; the red solid line represents the mean distance between the observed and analysis
front positions dAMO; error bars indicate the associated STD (σFMO and σAMO).
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(b) n = 2, Ne = 40.
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(c) n = 3, Ne = 80.
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(d) n = 4, Ne = 160.
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(e) n = 5, Ne = 320.

Figure 7.11: Ensemble of forecasts for the spatially-varying wind-aided OSSE test
(P-OSSE-ANISO-WIND) with respect to the size of the control vector n. Blue dashed
lines correspond to the simulated members without data assimilation for different sets of
control parameters; the black solid line corresponds to the true fire front; and black crosses
correspond to observations. Only a subset of the ensemble is presented for clarity purposes.
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(a) n = 1, Ne = 40.
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(b) n = 2, Ne = 40.
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(c) n = 3, Ne = 80.
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(d) n = 4, Ne = 160.
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(e) n = 5, Ne = 320.

Figure 7.12: Ensemble of analyses for the spatially-varying wind-aided OSSE test
(P-OSSE-ANISO-WIND) with respect to the size of the control vector n. Red dashed
lines correspond to the simulated members with data assimilation for different sets of con-
trol parameters; the black solid line corresponds to the true fire front; and black crosses
correspond to observations. Only a subset of the ensemble is presented for clarity purposes.
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(a) Burnt area [m2].
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(b) Wind magnitude uw [m/s].
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(c) Wind direction angle αw [◦].

0 200 400 600 800 1000
4

6

8

10

12

14

16

18

20

22

24

Number of members N
e
 [ ]

F
u

e
l 
m

o
is

tu
re

 c
o

n
te

n
t 

M
v
 [

%
]

(d) Fuel moisture content Mv [%].
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(e) Fuel layer depth in zone 1 δv,1 [m].
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(f) Fuel layer depth in zone 2 δv,2 [m].

Figure 7.13: Spatially-varying wind-aided OSSE test (P-OSSE-ANISO-WIND) with re-
spect to the number of members Ne in the ensemble for a 5-parameter estimation. Blue
circled-dashed lines represent the mean forecast estimate; red squared-solid lines represent
the mean analysis estimate; black solid lines represent the true value. Error bars indicate
the associated ensemble STD.
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In the present test only a few processors were used for illustration purposes, but in
a real-world application it is envisioned that the number of processors devoted to
forecasting wildfire spread will be high, meaning that the computational time will
be significantly lower for each number of members Ne than in Fig. 7.14, allowing
for real-time application.

0 200 400 600 800 1000
0

1

2

3

4

5

6

Number of ensemble members N
e
 [ ]

C
o

m
p

u
ta

ti
o

n
a

l 
ti

m
e

 [
h

]

Figure 7.14: Computational cost [h] with respect to the number of members Ne for the
5-parameter estimation approach (n = 5) on a multi-core processor machine (Intel-Xeon-
E5520, 4 cores).

⊲ Error statistics for multi-parameter estimation. To highlight the key aspects
of the EnKF parameter estimation approach, the error statistics in parameter space
and in observation space are studied here for the 5-parameter estimation experiment
with Ne = 1024 members in the ensemble. The Gaussian distribution of the
forecast control parameters within the ensemble is compared to the distribution
of the analysis control parameters and to their true value in Figs. 7.15 to 7.19.
Consistently with Fig. 7.13, the probability of occurrence of the mean analysis
estimate is higher than that of the mean forecast estimate (this mean analysis is
closer to the true value) and the distribution STD is significantly reduced. The
following aspects are important to mention to explain the complexity related to the
5-parameter estimation approach.

These normalized histograms clearly show that the wind magnitude uw is the most
difficult parameter to estimate among the 5 control parameters; its analysis distri-
bution remains relatively scattered and is not significantly changed compared to its
forecast distribution. In contrast, the wind direction angle αw has a very specific
impact on the fireline position and shape; thus, the EnKF achieves to perfectly re-
trieve its true value (its analysis distribution is dense around its mean value). One
reason for this limited EnKF performance on the correction of the wind magnitude
is that its impact on the fireline is limited to the head of the fire as shown in
Fig. 7.11(a). There is a limited number of observed markers on this section of the
fireline, meaning that a limited amount of information on the wind magnitude is
included in the estimation problem. Thus, the observation of the head of the fire is
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of primary importance to correct the wind magnitude uw. Note that the distribution
associated with the fuel moisture content Mv is not perfectly Gaussian in practice
due to the moisture at extinction Mv,ext = 0.30. This induces a skewed distribu-
tion towards the decreasing moisture values (the tail on the side of lower moisture
contents is longer than on the side of higher moisture contents). This shape of the
distribution might lead to a non-optimal EnKF solution and could partly explained
the remaining bias (with respect to the true value) in the estimation of Mv.
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Figure 7.15: Forecast (left) and analysis (right) normalized histograms for the wind mag-
nitude uw [m/s] in the spatially-varying wind-aided OSSE test (P-OSSE-ANISO-WIND)
for a 5-parameter estimation. Circles correspond to ensemble means; triangles correspond
to ensemble STD; and crosses correspond to true values.
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Figure 7.16: Normalized histograms for the wind direction αw [◦] (see caption of
Fig. 7.15).
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Figure 7.17: Normalized histograms for the fuel moisture content Mv [−].
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Figure 7.18: Normalized histograms for the fuel layer depth in zone 1 δv,1 [m].
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Figure 7.19: Normalized histograms for the fuel layer depth in zone 2 δv,2 [m].
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Figure 7.20(a) shows how uncertainties in the control parameters translate into
uncertainties in the fire front marker locations (there are No

fr = 20 observed markers
in this experiment). The analysis counterpart is presented in Fig. 7.20(b), which
confirms the significant uncertainty reduction in the ensemble of analyses noticed
in Fig. 7.12. Each coordinate of the simulated marker location is associated with a
distribution represented in Figs. 7.21 and 7.22 for the ensemble of forecasts and in
Figs. 7.23 and 7.24 for the ensemble of analyses.
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(a) Forecast estimates.
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(b) Analysis estimates.

Figure 7.20: Comparison of simulated and true fire fronts in the spatially-varying wind-
aided OSSE test (P-OSSE-ANISO-WIND) for a 5-parameter estimation. Colored symbols
correspond to the ensemble mean location of the simulated fire front markers; error bars
indicate the error STD related to the front marker location along x- and y-directions
(horizontal and vertical error bars, respectively); and the black solid line corresponds to
the true fire front.

These figures confirm that the fire front marker positions exhibit approximate Gaus-
sian or log-normal distributions, in particular at the head and flanks of the fire (the
statistics at the rear of the fire present less Gaussian characteristics due to a very
slow propagation in this section of the fireline). This justifies the application of a
standard EnKF in the present parameter estimation approach (see Chapter 6). This
choice of assimilated variables does not lead to bi-modal distributions, in contrast
to temperature assimilation (non-burnt and burnt states) at fixed in-situ locations
(Mandel et al., 2008; Beezley and Mandel, 2008). The definition of the observation
space is of primary importance to obtain approximate Gaussian error statistics and
thereby, make the EnKF parameter estimation approach successful.

⊲ Sensitivity to model errors. The performance of the EnKF-based parameter
estimation approach is now evaluated in a more realistic configuration, in which
the observations are made with significant error (i.e., σo = 2 m per observed
marker along the fireline) and in which there are significant model errors that are
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not controlled (referred to as knowledge gaps). This configuration deviates from
the strict definition of OSSE experiments. Two different experiments listed below
(corresponding to the case P-OSSE-ANISO-WIND and to a 5-parameter estimation
problem with x = [uw, αw, Mv, δv,1, δv,2] and with Ne = 512 members) are
performed to study the EnKF sensitivity to model errors. Figure 7.25 is used as
reference (no model uncertainty is added to generate the ensemble of forecasts).
Due to significant observation errors, the location of the observed markers does
not coincide with the true fire front, in contrast to previously-mentioned results
obtained in the case P-OSSE-ANISO-WIND.

(i) Knowledge gap in ROS input parameter. This test considers a case in
which the fuel particle surface-area-to-volume ratio Σv (an input parameter
of the Rothermel’s ROS model) is not known, while not being included in the
control vector x. Observations are therefore obtained for a reference value of
Σv chosen as 4, 921 1/m, while the ensemble of forecast and analysis fire fronts
are produced for a different value Σv chosen as 11, 485 1/m (the typical short
grass value in Rothermel’s biomass fuel database used in the reference case).
The knowledge gap in Σv constitutes an additional source of uncertainty
that is not accounted for in the data assimilation experiment. As shown in
Table 7.5, the analysis allows to slightly reduce the ensemble scatter in terms of
burnt area and parameter STD. This leads to a more accurate prediction of the
fire front shape, while the true head of the fire is not correctly retrieved by the
analysis (see Fig. 7.26) similarly to the reference case (see Fig. 7.25). Despite
this knowledge gap in Σv (to which the ROS is sensitive, in particular for the
present wind-aided fire propagation), some information are gained through
the EnKF estimation. However, the analysis values of the control parameters
are not systematically more realistic: for instance, the mean moisture content
is increased from 0.20 in the forecast to 0.22 in the analysis, while the true
value is 0.16. The error correction due to the misspecification of Σv induces
an over-correction of the control parameters included in x. This illustrates
the previously-mentioned discussion in Section 7.1.3 related to equifinality;
the analysis must be viewed as effective values that incorporate the effects of
uncertainty representation; physical values can only be retrieved if the main
important sources of uncertainties are included in the control vector.

(ii) Knowledge gap in ROS model parameter. This test considers a case
in which the ROS formulation is subject to uncertainty. As detailed in Ap-
pendix A, the wind coefficient φ∗

w in the ROS model due to Rothermel is
expressed as follows:

φ∗
w = C uBw

(
βv
βv,op

)−E

, (7.1)

with B = 0.02526Σ0.54
v . In the present case, the ROS model parameter

B (that is non-linearly related to the wind coefficient φ∗
w and thereby to

the ROS) is uncertain. The true fire front is obtained for a coefficient B
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multiplied by a factor 2, while the ensemble of forecasts and analyses are
obtained for the standard Rothermel’s coefficient B as presented in Eq. (7.1).
This increased ROS model parameter for the true trajectory intensifies the
effect of the wind on the head of the fire as shown in Fig. 7.27 (this corresponds
to a representative case, in which observations are obtained independently
from the forward model, based on remote measurements and/or based on a
more physically-detailed fire spread model). Figure 7.27(b) shows that the
analysis does not retrieve an accurate location of the fireline, but there is a
significant improvement in the estimation of the shape of the fireline and of
the burnt area compared to the forecast. Table 7.5 also shows that the mean
analysis estimates provide a good approximation of the true values (the bias
between the true and simulated fire fronts is corrected), while their associated
STD remain relatively large.

Even though observation errors are not negligible and uncertainties are not accu-
rately represented in the ensemble in these tests, the EnKF parameter estimation
approach is still able to provide valuable information on the fire, in particular on
the shape of the fireline and on the size of the burnt area. The correction on the
location of the fire front is limited and the control parameters are more difficult to
estimate. While the new values of the control parameters are still realistic, they
must be viewed as effective values that highly depend on the ensemble generation
and on the choice of uncertainty representation. These tests highlight the potential
of a data assimilation strategy for improved wildfire spread predictions in real-world
applications.
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(a) Forecast estimates.
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(b) Analysis estimates.

Figure 7.25: Comparison of the simulated and true fire fronts for a 5-parameter estimation
with x = [uw, αw,Mv, δv,1, δv,2], Ne = 512 and σo = 2 m (P-OSSE-ANISO-WIND);
reference test. Colored symbols correspond to the ensemble mean location of the simulated
fire front markers; error bars indicate the error STD related to the front marker position
along x- and y-directions (horizontal and vertical error bars, respectively); the black solid
line corresponds to the true fire front; and black crosses correspond to observations.
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(a) Forecast estimates.
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(b) Analysis estimates.

Figure 7.26: Test 1 (knowledge gap in ROS input parameter Σv), see caption of Fig. 7.25.
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(a) Forecast estimates.
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(b) Analysis estimates.

Figure 7.27: Test 2 (knowledge gap in ROS modeling in the wind coefficient φ∗

w, the
coefficient B being multiplied by a factor 2 in the true trajectory), see caption of Fig. 7.25.

7.2.2 Application to the controlled grassland burning

The EnKF-based parameter estimation approach is applied to the real-world case
used in Section 7.1.4 to evaluate the EKF approach. Here the EnKF is performed
over two successive assimilation cycles, [50; 78 s] with an analysis update at t1 =
78 s and [78; 106 s] with an analysis update at t2 = 106 s. EKF-based results have
shown the importance to account for uncertainties in wind conditions, i.e., in the
wind magnitude uw and direction angle αw since they are subject to high-frequency
variations as highlighted by measurements in Fig. 7.28. Thus, x = [Mv, Σv, uw, αw]
(n = 4). The observed fire front at t0 = 50 s is taken as the initial condition.



354 7.2 - Ensemble-based parameter estimation strategies

T
a
b
le

7
.5

:
C
om

p
ar

is
on

of
co

n
tr

ol
p
ar

am
et

er
va

lu
es

an
d

b
u
rn

t
ar

ea
s

b
et

w
ee

n
th

e
tr

u
e

co
n
tr

ol
ve

ct
or

,
th

e
en

se
m

b
le

o
f
fo

re
ca

st
s

an
d

th
e

en
se

m
b
le

of
an

al
ys

es
in

th
e

sp
at

ia
lly

-v
ar

yi
n
g

w
in

d
-a

id
ed

O
S
S
E

te
st

(P
-O

S
S
E
-A

N
IS

O
-W

IN
D

)
fo

r
a

5-
p
ar

am
et

er
es

ti
m

at
io

n
w

it
h
x
=

[u
w
,α

w
,M

v
,δ

v
,1
,δ

v
,2
]

an
d

w
it
h

m
o
d
el

er
ro

rs
:

te
st

1
co

rr
es

p
on

d
s

to
m

is
kn

ow
le

d
ge

of
th

e
fu

el
p
ar

ti
cl

e
su

rf
ac

e-
ar

ea
-t

o-
vo

lu
m

e
ra

ti
o
Σ

v
(R

O
S

in
p
u
t

p
ar

am
et

er
)

an
d

te
st

2
co

rr
es

p
on

d
s

to
m

is
kn

ow
le

d
ge

of
th

e
R
O

S
m

o
d
el

p
ar

am
et

er
B

in
E
q
.
(7

.1
).

T
ru

e
F
or

ec
as

t
A
n
al

ys
is

T
es

t
P
ar

am
et

er
B
ur

nt
ar

ea
E
ns

.
m

ea
n/

S
T

D
B
ur

nt
ar

ea
E
ns

.
m

ea
n/

S
T

D
B
ur

nt
ar

ea

R
ef

.

       

1
.0
0

m
/s

31
5
◦

0
.1
6

0.
50

m

1.
0
0

m

       
40

0
m

2

       

0.
85
±
0
.1
5

m
/s

28
0
±
30

◦

0
.2
0
±

0.
04

0
.4
0
±
0
.1
5

m

1
.1
0
±
0
.1
5

m

       
29

8
±
91

m
2

       

0.
90
±
0
.1
5

m
/s

33
2
±
16

◦

0
.1
6
±
0
.0
23

0
.4
9
±

0.
10

m

1
.1
4
±
0
.1
3

m

       
44

2
±
48

m
2

1

       

1
.0
0

m
/s

31
5
◦

0
.1
6

0.
50

m

1.
0
0

m

       
24

2
m

2

       

0.
85
±
0
.1
5

m
/s

28
0
±
30

◦

0
.2
0
±

0.
04

0
.4
0
±
0
.1
5

m

1
.1
0
±
0
.1
5

m

       
29

8
±
91

m
2

       

0.
88
±
0
.1
4

m
/s

33
6
±
17

◦

0
.2
2
±
0
.0
23

0
.5
2
±

0.
09

m

0
.9
7
±
0
.1
3

m

       
27

7
±
38

m
2

2

       

1
.0
0

m
/s

31
5
◦

0
.1
6

0.
50

m

1.
0
0

m

       
48

0
m

2

       

0.
85
±
0
.1
5

m
/s

28
0
±
30

◦

0
.2
0
±

0.
04

0
.4
0
±
0
.1
5

m

1
.1
0
±
0
.1
5

m

       
29

8
±
91

m
2

       

1.
01
±
0
.1
4

m
/s

33
5
±
16

◦

0
.1
5
±
0
.0
24

0
.5
4
±

0.
10

m

1
.1
1
±
0
.1
3

m

       
50

1
±
55

m
2



Chapter 7 - Evaluation of the data-driven wildfire spread simulator 355

Prior estimates of the control parameters are described in Table 7.6 along with
the associated STD. They are based on field measurements (wind conditions are
specified as mean values of the wind magnitude and direction angle before the fire
ignition, in order to mimic real-time data assimilation conditions; measurements
over the fire duration are used for validation), except for Σv that is initially guessed
based on Rothermel’s fuel database (short grass category).
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Figure 7.28: Comparison of in-situ measurements during the controlled grassland fire
experiment (black solid line) to EnKF estimation of wind conditions: red circles correspond
to mean values (forecast at t0 = 50 s, analysis at t1 = 78 s and t2 = 106 s), and red
dashed lines correspond to associated STD.

Table 7.6: Controlled grassland fire experiment using EnKF-based parameter estimation:
forecast and analysis ensemble statistics for x = [Mv, Σv, uw, αw] , n = 4.

Forecast control vector Analysis control vector

EnKF Ens. mean Ens. STD Ens. mean Ens. STD

Cycle 1

0.220

11500 1/m

1.00 m/s

307◦

0.060

4000 1/m

0.40 m/s

20◦

0.089

20995 1/m

0.72 m/s

302◦

0.035

3000 1/m

0.25 m/s

13◦

Cycle 2

0.089

20995 1/m

0.72 m/s

302◦

0.06

4000 1/m

0.40 m/s

20◦

0.112

18959 1/m

1.69 m/s

310◦

0.04

2725 1/m

0.18 m/s

13◦

A prior ensemble of Ne = 1, 000 members is generated and corrected by assimilating
the fire front at time t1 = 78 s. The new values of the control parameters are used
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to produce the forecast over the next assimilation cycle up to t2 = 106 s: they are
taken as the analysis at time t1 = 78 s, while the associated error STD are taken
as those of the prior estimates (random walk model) as shown in Table 7.6. Again,
the new values of the control parameters obtained at t2 = 106 s can be used to
forecast the fire behavior at future lead-times, for instance at t3 = 134 s. Results
for the different temporal sequences are presented in Fig. 7.29: for each map, black
crosses represent the current observed fire front (discretized with 40 markers) that
is compared to the spread of the forward model simulations, without (blue dashed
lines) or with (red solid lines) the EnKF update at the current time. The EnKF
algorithm is found to significantly decrease the distance between observations and
simulated fronts at both assimilation times t1 = 78 s and t2 = 106 s. The scatter
of the fire spread trajectories within the ensemble is also reduced, in particular the
STD of the control parameters is smaller (by at least 30 %) for the analysis than
for the forecast in Table 7.6. It was also found that optimized wind conditions
are consistent with field measurements (see Fig. 7.28) and this confirms that the
EnKF provides realistic values for the control parameters. Note however that the
EnKF is not able to retrieve the exact shape of the observed fireline (in particular
at time t2 = 106 s), even though the observation error is small (σo = 5 cm). The
challenges found in the EnKF update are two-fold.

⊲ First, there is the classical data assimilation challenge associated with provid-
ing accurate representations of uncertainties in the control variables. In this
parameter estimation approach, these control variables are assumed spatially-
uniform over the grassland lot. This assumption introduces some limitations
in the way to correct the location of the simulated fireline; the deformations
at the head of the fire cannot be represented with the current definition of
the control vector x and need to be handled with an algorithm addressing the
spatial variability of the uncertainties without increasing the computational
cost of the data-driven strategy. This aspect is discussed in Section 7.3.

⊲ Second, there is the challenge associated with accounting for the limited ac-
curacy of the semi-empirical ROS model. Rothermel’s model was specifically
designed to represent the propagation at the head of the fire and is there-
fore not able to accurately represent the fire propagation at the flanks. In
the present study, since the wind is blowing westward, the fire spread model
tends to overestimate the ROS in the wind direction to be able to map the
observed fire front on the eastward flank. This behavior is particularly obvious
for the analysis at time t2 = 106 s and for the forecast at time t3 = 134 s
when the fire only propagates on its flanks (since it has reached the field
boundary on the West flank). This behavior is also observed for alternative
data assimilation algorithms such as particle filters.3

For instance, Fig. 7.30 compares the analysis obtained at time t1 = 78 s for
the EnKF with x = [Mv, Σv, uw, αw], n = 4, and for the SIR/ASIR particles

3See Section 5.7, Chapter 5, for details on the principles underlying particle filters.
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filters with x = [Mv, Σv, uw], n = 3. This comparison shows that the op-
timized behavior of the fire spread model is independent from the choice of
the data assimilation algorithm. SIR and ASIR particle filters as the EnKF
are not able to retrieve the exact shape of the fireline: either the ROS is
overestimated in the wind direction to exactly locate the observed fire front
on the eastward flank, or the location of the head of the observed fire in
the wind direction is correctly retrieved but the eastward flank is not. This
choice is made through the estimation of the wind magnitude uw and of the
fuel particle surface-area-to-volume ratio Σv, which significantly affect the
wind contribution to the ROS in the model due to Rothermel. As shown
in Table 7.7, the main differences between the EnKF and particle filters are
indeed in the analysis values for uw and Σv. This discussion shows that
ROS modeling limitations affect the shape of the optimized fireline in spite
of the application of parameter estimation. While parameter estimation can
provide insight into the temporal evolution of the environmental parameters,
a complementary approach is therefore required to overcome ROS modeling
limitations. This aspect is also discussed in Section 7.3 through the appli-
cation of a state estimation approach. Note that the application of SIR and
ASIR particle filters to wildfire spread is explained in detail in da Silva et al.
(2014, HTHP) and da Silva et al. (2013, IPDO); a summary is provided in
Appendix H.
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Figure 7.30: Parameter estimation approaches applied to the controlled grassland fire
experiment at t1 = 78 s: comparison of the EnKF mean analysis obtained for a 4-parameter
estimation (red solid line) to the results provided by SIR (Ne = 200) and ASIR (Ne = 50)
particle filters for a 3-parameter estimation with x = [Mv, Σv, uw]: the orange dashed
line corresponds to the SIR mean analysis estimate and the yellow dashed-dotted line
corresponds to the ASIR mean analysis estimate. Black crosses correspond to observations.
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Table 7.7: Validation of the EnKF for the controlled grassland fire experiment: fore-
cast/analysis mean and STD of the control parameters using SIR/ASIR particle filters for
x = [Mv, Σv, uw] , n = 3.

SIR Forecast control vector Analysis control vector

Ne = 200 Ens. mean Ens. STD Ens. mean Ens. STD

Cycle 1

0.220

11500 1/m

1.000 m/s

0.066

3450 1/m

0.150 m/s

0.102

15094 1/m

0.982 m/s

0.027

2596 1/m

0.064 m/s

Cycle 2

0.102

15094 1/m

0.982 m/s

0.031

4528 1/m

0.147 m/s

0.104

13263 1/m

1.095 m/s

0.028

4038 1/m

0.082 m/s

ASIR Forecast control vector Analysis control vector

Ne = 50 Ens. mean Ens. STD Ens. mean Ens. STD

Cycle 1

0.220

11500 1/m

1.000 m/s

0.066

3450 1/m

0.150 m/s

0.089

14914 1/m

0.986 m/s

0.035

2902 1/m

0.050 m/s

Cycle 2

0.089

14914 1/m

0.986 m/s

0.027

4474 1/m

0.148 m/s

0.096

14230 1/m

1.094 m/s

0.013

1942 1/m

0.057 m/s

Even though the corrected shape of the fireline is not perfectly retrieved along as-
similation cycles, the EnKF algorithm is able to provide more accurate forecasts of
the fire spread than the stand-alone model, with a significant improvement com-
pared to the free run (without data assimilation) as shown in Fig. 7.29. This result
illustrates the improved accuracy of the simulation and forecast using the EnKF on
a real-world controlled grassland burn. However, this estimation is made at the ex-
pense of heavy computational cost (Ne = 1, 000 members for 4 control parameters
and thereby, Ne = 1, 000 forward model integrations for the forecast estimates as
well as for the analysis estimates in observation space).

7.2.3 Reduced-cost ensemble-based data assimilation strategy

→֒ Motivation

The classical EnKF algorithm is based on a Monte Carlo (MC) sampling to stochas-
tically represent the forecast error covariance matrix using the members xf

t and their
associated fire front location yf

t. While this sampling technique is generic for the
simulation of stochastic models and provides accurate access to the full statistics
of modeling uncertainties, it is however computationally expensive due to the slow
convergence rate of the MC technique (Fishman, 1996; Rubinstein and Kroese,



360 7.2 - Ensemble-based parameter estimation strategies

2008; Li and Xiu, 2008). The computational cost of one realization may be already
expensive itself (Lucor et al., 2007). In particular, the large number of realizations
required by the EnKF-based parameter estimation approach to obtain satisfactory
results may prove computationally burdensome within an operational framework
(especially considering that a fire spread model including spatially-distributed in-
formation on vegetation, terrain topography and atmospheric conditions such as
Forefire/Méso-NH would be used in future work). The required size of the sam-
ple significantly increases with the complexity of the physics (i.e., multi-parameter
estimation) and the non-linearity in the model (i.e., complex physics) even if the
MC convergence rate is independent from these factors. These aspects emphasize
the need for a reduced-cost EnKF. Efforts have therefore been devoted to design-
ing ad-hoc variance reduction techniques (Boyaval, 2012) and more efficient EnKF
schemes by reducing sampling errors (Saad, 2007; Szunyogh et al., 2008; Li and
Xiu, 2008, 2009; Blanchard et al., 2010; Xiu, 2010; Rosic et al., 2013).

A large number of sampling methods have been developed to achieve the same
level of accuracy with fewer model simulations than MC-based techniques; in par-
ticular, polynomial chaos (PC) non-intrusive methods issued from spectral-based
representations and introduced by Wiener (1938) are efficient in terms of precision
and cost (Ghanem and Spanos, 1991; Le Maître and Knio, 2010). For this purpose
and following work from Li and Xiu (2009), a hybrid EnKF strategy based on a PC
expansion and referred to as PC-EnKF is proposed in this thesis. Its feasibility was
initially explored in Rochoux et al. (2012, CTR).

The key idea underlying this PC-EnKF approach is to build a polynomial repre-
sentation of the Firefly forward model response (referred to as the surrogate
model) to varying input parameters of the ROS model (Glimm and Sharp, 1999;
Stern et al., 2001). Within the ensemble-based data assimilation framework, the
use of the PC-based surrogate model instead of Firefly significantly reduces the
cost of one realization and thereby, a large number of model simulation members
can be produced to accurately characterize modeling uncertainties, at a lower com-
putational cost than the standard MC-based sampling approach.

→֒ Formulation of the reduced-cost ensemble-based strategy

⊲ General formulation of the surrogate model. The PC-EnKF hybrid strategy
is presented for the assimilation time window [t− 1, t]; its flowchart is provided in
Fig. 7.32. The PC-based surrogate model approximates the generalized observation
operator Gt at time t, denoted by Gpc,t. It is parameterized with respect to the
multi-dimensional control vector xf

t ∈ Rn following the forecast PDF pf(xt). The
random vector xf

t may be regarded as a set of second-order random variables (with
finite variance) expressed in terms of a random event ω such that xf

t = xf
t(ω). It

can be projected onto a stochastic space spanned by orthogonal PC functions of
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independent Gaussian random variables ζ(ω) as follows:

xf
t(ω) =

[
xf1,t, x

f
2,t, · · · , xfn,t

]
=

∞∑

q=0

x̂q ϕq

(
ζ(ω)

)
. (7.2)

The simulated positions of the fire front yf
t = Gt(xf

t(ζ)) can also be viewed as
a random variable and therefore, they can be projected onto a stochastic space
spanned by orthogonal PC functions as follows:

yf
t = Gpc,t

(
xf
t(ζ)

)
=

∞∑

q=0

ŷq ϕq(ζ), (7.3)

where ŷq ≡ ŷq(t) are time-dependent coefficients, and where (ϕq)q=0,··· ,∞ des-
ignate the multi-dimensional approximating polynomial functions forming an or-
thogonal basis with respect to the joint PDF pf(xt) = pf(x1,t, x2,t, · · · , xn,t).
The choice for the basis functions may depend on the type of random variable
functions (Xiu and Karniadakis, 2002).4 Since the control vector xf

t is assumed
to follow a Gaussian PDF pf(xt) within the framework of Kalman filtering and in
particular in EnKF, the surrogate model of the observation operator Gpc,t is built
upon the basis of the Hermite polynomials (Ghanem and Spanos, 1991). Stated
differently, the Hermite polynomials form the optimal basis for random variables
following multi-variate Gaussian PDF. Note that the model outputs yf

t are repre-
sented in terms of the same random event ω as the model inputs xf

t, since the
uncertainty in the model outputs is assumed to be mainly due to the uncertainty
in the ROS model parameters in the context of parameter estimation.

⊲ Truncated expression. In practice, a truncated expansion of Eq. (7.3) is used;
there are several ways of constructing the approximation space. The most common
choice is to constrain the number of terms Npc in the PC expansion by the number
of control parameters n and by the maximum order of the polynomial basis Qpo

such that:

Npc =
(n+Qpo)!

(n! Qpo!)
. (7.4)

This choice of Npc ensures that the PC approximation is of highest order Qpo.
Note that Qpo is a user-defined quantity that must be chosen carefully, according
to the model non-linearity, in order to obtain an accurate representation of the
model outputs yf

t with a high-order convergence rate. Theoretically, Qpo = 1
(i.e., only two terms for n = 1 corresponding to the mean and STD of the control
variable) is enough to approximate exactly a Gaussian random variable. Note also
that Npc rapidly grows with n and Qpo, implying that a balance between accuracy
and computational cost must be found. For instance, if n = 2 and Qpo = 2, there

4For non-Gaussian PDF, this stochastic approach is referred to as generalized polynomial chaos

(gPC) in literature.
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are Npc = 6 terms retained in the PC expansion as illustrated in Fig. 7.31. Using
this formalism, the surrogate model Gpc,t can be formulated as follows:

yf
t
∼= Gpc,t

(
xf
t(ζ)

)
=

Npc∑

q=0

ŷq ϕq(ζ), (7.5)

where the unknowns are the following time-dependent vectors:

ŷq ≡ ŷq(t) =
[
(x̂1, ŷ1)q, . . . , (x̂No

fr
, ŷNo

fr
)q
]
t
,

q varying between 1 and Npc, with No
fr the number of markers along the observed

fire front at time t. Note that the size of the q-th vector ŷq is 2No
fr (each marker

location being represented with both the x- and y-coordinate on the horizontal
plane) and thereby, the computation of (2No

fr Npc) coefficients (also referred to as
the PC modes) is necessary to build the surrogate model Gpc,t.

(ζ1)
2 (ζ2)

2

ζ2ζ1 ζ1ζ2

1

Qpo = 2!

Polynomial !
order!

Figure 7.31: Schematic of the Npc = 6 terms retained in the truncated PC expansion for
n = 2 (ζ = [ζ1, ζ2]) and Qpo = 2.

⊲ Calculation of the PC modes. Due to the orthogonality of the PC basis, it
can be shown that the q-th PC coefficients ŷq are given by:

ŷq =
E

[
Gpc(xf

t)ϕq(ζ)
]

E

[
ϕq(ζ)2

] , (7.6)

where:

• E[ · ] refers to the expectation operator satisfying E[ϕq(ζ)ϕl(ζ)] = 0 if q 6= l,
with the following definition for the inner product:

E

[
ϕq(ζ)ϕl(ζ)

]
=

∫

Rn

ϕq(ζ)ϕl(ζ) p(ζ) dζ = δql

[
ϕ2
q

]
, (7.7)

with δql the Kronecker delta-function;

• E[ϕq(ζ)2] is a normalization factor equal to 1 if the basis is constructed
orthonormal;
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• E[Gpc,t(xf
t)ϕq(xf

t)] is computed using a Gauss-Hermite quadrature rule, with

[x
f,(j)
t ] (j varying between 1 and Nquad) the quadrature roots vector of size

(Nquad)
n constrained by the maximum order of the polynomial basis Qpo

such that 2Qpo < 2(Nquad − 1). Thus, this term is computed as follows:

E

[
Gpc,t(xf

t)ϕq(ζ)
]
=

∫

Rn

Gt(xf
t)ϕq(ζ) dp(ζ)

∼=
(Nquad)

n∑

j=1

Gt(xf,(j)
t )ϕq(ζ)w

(j),

(7.8)

where y
f,(j)
t = G(xf,(j)

t ) corresponds to the Firefly forward model integra-

tion evaluated at the j-th quadrature root x
f,(j)
t with its associated weight

w(j), and where ϕq(ζ) corresponds to the q-th multi-dimensional basis func-
tion formulated as tensor products of one-dimensional polynomial bases:

ϕq ≡ ϕq(ζ) =
n∏

l=1

ϕ1D
i(l)

(
ζl

)
, (7.9)

with ϕ1D
i(l) the one-dimensional polynomial basis and its multi-index i(l) vary-

ing between 0 and Qpo to determine the proper term in the multi-variable
space illustrated in Fig. 7.31.

The mean values of the marker locations along the simulated fire fronts yf
t are

provided by the first mode of the PC expansion ŷ0, while the covariance between
one marker location yfi,t (indexed by i = 1, · · · , No

fr) and the control parameter

xfj,t (indexed by j = 1, · · · , n) is given by:

cov(yfi,t, x
f
j,t) =

Npc∑

q=1

Npc∑

l=1

ŷi,q x̂j,l

∫

Rn

ϕq(ζ)ϕl(ζ) p(ζ)dζ,

⇒





cov(xfi,t, x
f
j,t) =

Npc∑

q=1

x̂i,q x̂j,q E[ϕq(ζ)
2]

cov(yfi,t, x
f
j,t) =

Npc∑

q=1

ŷi,q x̂j,q E[ϕq(ζ)
2],

(7.10)

assuming the control parameters and the front marker locations can be expressed
in the same PC basis.

Based on this formulation, the construction of the surrogate model Gpc,t over the
assimilation window [t− 1, t] requires a limited number of (Nquad)

n forward model
integrations (see the first step in Fig. 7.32). The polynomial approximation Gpc,t
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calculated in Eq. (7.5) is then used in the prediction step of the EnKF algorithm
instead of the observation operator Gt, to compute the predictions of the time-
evolving fire front locations yf

pc,t for a large number of ensemble members Ne (see
the second step in Fig. 7.32). This ensemble of forecasts is used to accurately
estimate the error covariance matrices Cxy ∈ R

n×2No
fr and Cyy ∈ R

2No
fr

×2No
fr

that are required in the Kalman update Eq. (6.15), Chapter 6. Thus, the EnKF
update can be performed with reliable covariance matrices at a reduced computa-
tional cost, compared to the standard EnKF algorithm based on a MC sampling.
This approach leads to analysis estimates of the control parameters x

a,(k)
t and to

accurate PDF of the fire front locations y
a,(k)
t (k = 1, · · · , Ne) using the same

surrogate model as for the forecast estimates.

In order to reduce the computational cost of the EnKF algorithm, a surrogate
model based on a PC expansion is used in place of the forward model, i.e., the
Firefly regional-scale wildfire spread model. The performance of the resulting
PC-EnKF algorithm is assessed on synthetically-generated fire spread cases based
on preliminary work presented in Rochoux et al. (2012, CTR) as well as on the
controlled grassland fire experiment.

→֒ Simple examples

⊲ Convergence of the PC-EnKF algorithm. As for the standard EnKF (see the
first test case named P-OSSE-ANISO in Section 7.2.1), the PC-EnKF algorithm is
applied to correct the proportionality coefficient P [s−1], linearly related to the ROS
Γ. In this test case, the fire is ignited as a circular front at (x, y) = (100 m, 100 m)
and the fuel layer depth δv is randomly-distributed over the 200 m × 200 m com-
putational domain; the anisotropic fire spread is simulated during 50 s, at which
time the EnKF update is performed. The true value of the control parameter is
xt = P t = 0.4 s−1.

A PC approximation (with a polynomial order Qpo = 4 and subsequently a quadra-
ture order Nquad = 5) is used to build the model response surface to the con-
trol parameter x = P corresponding to a forecast taken as xf = 0.2 s−1 and
σf = 0.05 s−1.

• Sensitivity to sampling errors. Convergence properties of the EnKF-based
analysis estimates are studied in Fig. 7.33(a) with respect to the number of
ensemble members Ne for a fixed observation error STD σo = 2 m and for
one assimilation cycle. Since there is no analytical solution of the problem,
the convergence of the EnKF is assumed to be achieved if the mean value of
the control parameter and its STD remain constant when increasing Ne. The
performance of the PC-EnKF algorithm is compared to that of the standard
EnKF algorithm (black squares) for different PC polynomial orders, Qpo = 2
(orange triangled-dashed line) and Qpo = 4 (red circled-dashed line). Fig-
ure 7.33(a) shows that in the present configuration, the EnKF algorithm
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converges for a minimum of Ne = 48 members (meaning that Firefly is
integrated 48 times to produce 48 fire front trajectories associated with each
realization of the control parameter). It is shown that the PC-EnKF algo-
rithm provides a comparable result as EnKF (in terms of mean and STD)
above Ne = 40 members for a polynomial order Qpo = 4. However, the
results achieved with PC-EnKF are obtained for a lower number of Firefly
time-integrations (i.e., 5 Firefly model integrations only since Nquad = 5
quadrature points are used to build the model surface response Gpc) than the
standard EnKF, while considering the same number of members Ne to gener-
ate the forecast/analysis estimates. Thus, the PC-EnKF algorithm provides a
solution that reproduces the converged solution of the EnKF for a computa-
tional cost that is reduced by a factor of at least 8. This implies that for more
complex fire spread cases where more members are required to track spatial
variations in wind and vegetation conditions, the PC-EnKF algorithm appears
as a promising alternative to obtain accurate simulations of fire spread at a
reasonable computational cost. Additionally, the PC-EnKF algorithm pro-
vides a mean estimate that is less fluctuating than the EnKF algorithm, with
a slightly reduced scatter for low values of Ne, indicating that the PC-EnKF
strategy requires less ensemble members Ne to reach convergence.

Figure 7.33(a) also illustrates the sensitivity of the PC-EnKF-based analysis
to the choice of the PC polynomial order Qpo for a varying number of en-
semble members Ne. While Qpo = 2 (i.e., Nquad = 3) provides a reasonable
approximation of the mean analysis estimate when considering the standard
EnKF as reference, Qpo = 4 (i.e., Nquad = 5) leads to a more accurate esti-
mate without loss of accuracy. Even though the fire front marker locations
exhibit approximate Gaussian PDF and in theory n = 1 is sufficient to char-
acterize their distributions, a high polynomial order is required in this case
since the true value (P t = 0.4 s−1) is not in the zone of high probability
occurrence of the forecast estimates (P f = 0.2 s−1 with σf = 0.05 s−1).
Indeed, the true fire front locations are at the tail of the forecast PDF, which
makes the estimation of the fire front locations more difficult. This difficulty
shows the ability of the PC-EnKF procedure to retrieve accurate estimates
of the fire spread at a low computational cost and without loss of accuracy,
even though prior information is very uncertain.

• Example of PC-based surface response. Figure 7.33(b) provides a com-
parison in the observation space between the observed fire front and the
forecast/analysis estimates obtained through the PC-EnKF algorithm for an
observation error STD σo = 2 m, a PC polynomial order Qpo = 4 and a
number of ensemble members Ne = 1, 000. As expected, the analysis
estimates provide a more accurate approximation of the observed fire front
location than the forecast estimates.
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Figure 7.33: Comparison of the analysis estimates between EnKF and PC-EnKF in the
parameter/observation space; one assimilation cycle (P-OSSE-ANISO); fixed observation
error STD σo = 2 m. (a) Convergence of the mean analysis estimates of the control
parameter P [s−1] with respect to the number of members Ne for varying polynomial
orders Qpo. The orange triangled-dashed line corresponds to Qpo = 2; the red circled-
dashed line corresponds to Qpo = 4. Vertical error bars correspond to the associated error
STD. EnKF results (black squares) are indicated as reference. (b) Comparison of fire front
locations using the PC-EnKF approach with an EnKF update at 50 s for Qpo = 4 and
Ne = 1, 000; all fronts correspond to time 50 s. Black crosses correspond to observations;
the blue circled-dashed line corresponds to the mean forecast estimate of the fire front
and the red squared-solid line corresponds to the analysis counterpart. Horizontal and
vertical error bars correspond to the associated error STD along the x- and y-directions,
respectively.

To offer insight into the main ideas underlying the PC-EnKF algorithm,
Fig. 7.34 illustrates the mapping between control space and observation space
for one marker of the fireline; its position on the forecast/analysis fireline is
indicated (indexed by m) in Fig. 7.33(b). The variations in the x- and y-
coordinates of this marker are represented with respect to variations in the
control parameter P : black crosses indicate the simulated marker positions
associated with the Nquad = 5 quadrature roots (i.e., Firefly model inte-
grations) corresponding to the first step of the PC-EnKF algorithm; and blue
circles indicate the forecast estimates obtained through the surrogate model
evaluation combined with MC sampling (Ne = 1, 000) corresponding to the
second step of the PC-EnKF algorithm (see Fig. 7.32). These fire front esti-
mates are associated with the forecast control parameter P f = 0.20 s−1 and
its error STD σf = 0.05 s−1. In contrast, red squares are produced by the
EnKF update applied for any of the 1,000 ensemble members, they correspond
to the analysis estimates related to P a = 0.38 s−1 and σa = 0.01 s−1. The
scatter of the ensemble is significantly reduced in the analysis, around the
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true value P t = 0.40 s−1, highlighting the uncertainty reduction achieved
through data assimilation. This result is obtained all along the fireline as
confirmed by the PDF of the front marker x- and y-coordinates in Fig. 7.35:
the location of high probability occurrence (the red zone) is continuous and
thinner in the analysis than in the forecast for all observed front markers.
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Figure 7.34: Model surface response (or surrogate model) of the x- and y-coordinates of
the front marker indexed by m on the fireline in Fig. 7.33(b), with respect to the control
parameter P [s−1]; one assimilation cycle with an analysis update at 50 s (P-OSSE-
ANISO). Black crosses correspond to quadrature roots (forward model integrations with
Firefly); blue circles correspond to (a) forecast estimates, and red squares to (b) analysis
estimates obtained through the PC-EnKF algorithm at time 50 s. The vertical solid line
indicates the true value P t = 0.4 s−1; the vertical dashed lines indicate the mean forecast
and analysis estimates of P .
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Figure 7.35: PDF in observation space for the estimation of P using PC-EnKF for
σo = 2 m and Ne = 1, 000; one assimilation cycle with an analysis update at 50 s
(P-OSSE-ANISO). PDF of x- (left) and y- (right) coordinates of each fire front marker
location for the forecast (top) and the analysis (bottom). The forecast corresponds to P f =
0.20 s−1 with its error STD σf = 0.05 s−1; the analysis corresponds to P a = 0.38 s−1

with its error STD σa = 0.01 s−1 in parameter space.

• Sensitivity to observation errors. For verification purposes on the behavior
of the PC-EnKF algorithm, Fig. 7.36 examines the influence of the observa-
tion error on the performance of EnKF and PC-EnKF (the EnKF algorithm
is used as reference). Statistics (in terms of mean value and STD) of the
analysis obtained for Ne = 48 members over one assimilation cycle, at time
t = 50 s, are presented as a function of the magnitude of the observation
errors measured by σo (up to σo = 30 m); vertical bars give a graphical rep-
resentation of the magnitude of the STD within the analysis ensemble. The
results show the consistency of PC-EnKF with EnKF in retrieving realistic
values for the control parameter, even though the observation error is signif-
icant. When the observation error STD σo is small, the PC-EnKF algorithm
successfully drives the analysis ensemble towards the true value of the param-
eter P t = 0.4 s−1; the resulting analysis exhibits a much reduced scatter
by at least a factor 4 in comparison to the forecast STD σf = 0.05 s−1. In
contrast, when σo is large, the PC-EnKF algorithm has reduced effects and
the analysis ensemble remains close to the forecast ensemble (the analysis
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STD is similar to the forecast STD σf = 0.05 s−1). For intermediate values
of σo, the PC-EnKF algorithm produces optimized analyses lying between
forecast and observation; as expected, the more accurate the observations,
the more certain the analysis for a given forecast error.
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Figure 7.36: Mean and STD of the analysis estimates of the control parameter P [s−1]
as a function of the observation error STD σo for a fixed number of members, Ne = 48;
comparison between EnKF and PC-EnKF; one assimilation cycle (P-OSSE-ANISO). The
black solid line corresponds to the true value 0.4 s−1; the blue dashed line corresponds to
the mean value of the forecast 0.2 s−1; the red circled-dashed line corresponds to the PC-
EnKF-based mean analysis estimate; and vertical error bars correspond to the associated
error STD. EnKF results (black squares) are indicated as reference.

⊲ Wind-aided propagation. The application of the PC-EnKF algorithm is illus-
trated for a wind-aided grassland fire propagation during 50 s and directed north-
ward with uw = 0.8 m/s and αw = 0◦ (referred to as P-OSSE-ISO-WIND). The
control parameters are the fuel moisture content Mv and the fuel particle surface-
area-to-volume ratio Σv such that x = [Mv, Σv] with n = 2. The observed
fire front is synthetically-generated at time t = 50 s by adding an artificial noise
σo = 1 m to the true trajectory obtained for M t

v = 10 % and Σt
v = 14, 500 1/m.

The mean values of the forecast estimates are 15 % and 13, 000 1/m with 3.3 % and
3, 000 1/m error STD, respectively. A PC approximation (with a polynomial order
Qpo = 4 and a quadrature order Nquad = 5) is used to build the model response sur-
face to the two control parameters. Similarly to the 1-parameter estimation case
presented in Fig. 7.34, Fig. 7.37(a) illustrates the observation operator mapping
onto the space spanned by the control parameters (for x- and y-coordinates of the
front marker positions, top and bottom panels, respectively). Since the size of the
control vector is n = 2, this mapping now features a two-dimensional surface, indi-
cating the Firefly model response to varying values for Mv and Σv. Results are
shown for the fifth marker located on the fireline starting from the westward flank
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(see Fig. 7.38); black crosses represent the simulated front positions associated
with the 25 quadrature roots (i.e., 5 quadrature roots for each control parameter).
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Figure 7.37: Model surface response (or surrogate model) of the front marker coordinates
with respect to the control vector x = [Mv, Σv], n = 2; the true control vector is
xt = [10 %, 14, 500 1/m] (P-OSSE-ISO-WIND). Forecast and analysis estimates (colored
circles) of the x- (top) and y-coordinates (bottom) of the fire front positions mapped onto
the PC-based model surface response (black crosses).

The surrogate model of the observation operator Gpc is then used with Ne =
1, 000 members in the ensemble to evaluate the forecast front positions shown in
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Fig. 7.37(a) for the 1,000 forecast estimates; the mean value of the forecast esti-
mates [15 %, 13, 000 1/m] is indicated. Note that the ensemble members evaluated
with the surrogate model are contained within the surface response constructed with
Firefly, meaning that the PC decomposition Gpc properly approximates the obser-
vation operator (including Firefly model integration for parameter estimation).

Figure 7.37(b) shows the 1,000 analysis estimates of the control parameters ob-
tained using the PC-EnKF update; the mean value of the analysis estimates is
[10.4 %, 14, 088 1/m] that is more consistent with the true value of the con-
trol vector xt = [10 %, 14, 500 1/m]. The scatter of the analysis estimates is
also significantly reduced compared to that of the forecast ensemble. For this ex-
ample, the computational time is significantly reduced compared to the classical
EnKF parameter estimation since only 25 forward model integrations were used
to perform the EnKF update. In contrast, nearly 40 members were necessary on
the previously-mentioned wind-aided test case (see Table 7.4), while it could not
provide converged statistics of the fire front position due to the limited number
of ensemble members (for this purpose, 1,000 members are used in the PC-EnKF
algorithm for the evaluation of error statistics).

Figure 7.38 compares the simulated fire front using the mean value of the analysis
estimates with the most probable fire front derived from the PDF of the analysis
estimates. These fronts are found to feature a similar topology, indicating that the
Gaussian assumption on the error statistics made in EnKF does not degrade the
quality of the analysis for the present tests.
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Figure 7.38: Comparison of the mean analysis estimate (black crosses) with the most
probable front (red zone) at 50 s (P-OSSE-ISO-WIND); the scatter of the ensemble (mea-
sured by STD) is delimited by gray dashed lines.
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→֒ Application to the controlled grassland burning

The PC-EnKF algorithm is now applied to the controlled grassland burning experi-
ment over one assimilation cycle [50; 78 s] with an EnKF update at time t1 = 78 s
(analysis mode) as well as over a forecast time period [78; 106 s] with an EnKF
forecast at time t2 = 106 s (forecast mode); the initial condition at t0 = 50 s is
taken as the observed fire front at t0. The control space includes two biomass fuel
parameters, the moisture content Mv and the particle surface-area-to-volume ratio
Σv such that x = [Mv, Σv] with n = 2. Wind conditions are assumed constant
over the simulated fire duration from t0 = 50 s to t2 = 106 s. Observations at
times t1 = 78 s and t2 = 106 s are discretized with No

fr = 40 front markers with
an observation error STD σo = 5 cm (consistently with previous EKF and EnKF
studies).

A PC approximation (with a polynomial order Qpo = 4 and subsequently a quadra-
ture order Nquad = 5) is used to build the model response surface to the two
control parameters Mv and Σv; this response surface is shown for one particular
simulated front marker in Fig. 7.39(a) using black crosses. A forecast ensemble of
Ne = 1, 000 members (blue circles) is generated at no cost using the PC-based
surrogate model assuming uncertainties in Mv and Σv; the forecast estimates of
these control parameters are described in Table 7.8 along with the associated STD.
Note that the blue circles are contained within the surface response described by the
black crosses that represent the (Nquad)

2 = 25 Firefly model integrations per-
formed to build the PC-based surface response. The forecast ensemble is corrected
by assimilating the fire front at time t1 = 78 s.

Table 7.8: PC-EnKF-based experiment for the controlled grassland burning experiment:
error statistics of the forecast and analysis ensemble estimates for x = [Mv, Σv] , n = 2.
The number of Firefly model integrations is also presented as indicator of the compu-
tational cost.

Forecast control vector Analysis control vector

Cost Ens. mean Ens. STD Ens. mean Ens. STD

PC-EnKF 25
0.150

11500 1/m

0.040

3000 1/m

0.138

22583 1/m

0.014

1157 1/m

EnKF 1000
0.150

11500 1/m

0.040

3000 1/m

0.135

22345 1/m

0.014

1170 1/m

⊲ Analysis mode. The forecast ensemble is corrected by assimilating the fire front
at time t1 = 78 s. The comparison between the observations (black crosses),
the forecast estimates (blue circled-dashed line) and the PC-EnKF-based analy-
sis estimates (red squared-solid line) obtained at time t1 = 78 s are presented in
Fig. 7.40(a). The forecast trajectory represents the ensemble mean of the surro-
gate model simulations obtained without data assimilation (i.e., using the forecast
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estimates of the control parameters), while the analysis trajectory derives from an
EnKF update at t1 using the analysis estimates in the surrogate model integrations.
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(a) Forecast estimates.
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(b) Analysis estimates.

Figure 7.39: Model surface response (or surrogate model) of the x- and y-coordinates of
the front marker indexed by m on the fireline (see Fig. 7.40) with respect to the control
vector x = [Mv, Σv] (n = 2). Black crosses correspond to quadrature roots (Firefly).
(a) Forecast estimates (blue circles), and (b) analysis estimates (red squares) of the x-
(top) and y-coordinates (bottom) of the fire front positions are mapped onto the PC-based
model surface response.

It is found that the PC-EnKF strategy allows to significantly decrease the distance
between the observations and the simulated fronts with the same level of accuracy
as the standard EnKF algorithm (the PC-EnKF algorithm provides similar analysis
mean and STD, see Table 7.8). As illustrated in Fig. 7.39(b), the uncertainty in
the fire front positions is significantly reduced in comparison to the forecast since
the STD related to the analysis estimates is much smaller than that of the forecast
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estimates. This indicates that the PC-EnKF algorithm allows reliable statistical
information to be retrieved for only 25 Firefly model integrations (in contrast,
the standard EnKF algorithm requires 1,000 members to correct n = 2 control
parameters and thereby, 2No

fr = 80 fire front marker coordinates).
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(a) Analysis time, t1 = 78 s.
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(b) Forecast time, t2 = 106 s.

Figure 7.40: Comparison between simulated and measured fire front positions for the
controlled grassland fire experiment: black crosses correspond to observations, the blue
circled-dashed line corresponds to the mean forecast estimate constructed through the
PC-based surrogate model; the red squared-solid line corresponds to the mean analysis
estimate obtained by the PC-EnKF procedure applied at time t1 = 78 s. Black squares
correspond to the standard EnKF used as reference.

Consistently, Fig. 7.41 shows that the support of the analysis PDF is significantly re-
duced compared to the forecast PDF for the x- and y-coordinates of the No

fr = 40
observed front markers. The topology of the PDF along the observed fire front is
found to be overall preserved through the EnKF update, implying that the as-
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sumption of Gaussian error statistics for the modeling error statistics seems not
to deteriorate the performance of the ensemble-based data assimilation algorithms.
Some regions of the PDF related to the x-coordinates of the front marker loca-
tions (nearby x = 2 m) are not sensitive to variations in the fuel moisture content
Mv and Σv. These regions correspond to the flank of the fire, meaning that the
x-coordinates of the surrounding front markers do not vary and the growth of the
burning area only induces variations in the y-coordinates.
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(a) Forecast PDF with respect to the x- (left) and y- (right) coordinates of the observed
fire front markers.
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(b) Analysis PDF with respect to the x- (left) and y- (right) coordinates of the observed
fire front markers.

Figure 7.41: Colormap of the PDF of the fire front marker locations (in terms of x and
y-coordinates) for the controlled grassland fire experiment at the analysis time t1 = 78 s.
(a) PDF related to the ensemble of forecast estimates. (b) PDF related to the ensemble
of analysis estimates.

As discussed for the OSSE test cases, the non-linear response of the observation
operator to the control parameters induces a slightly non-Gaussian PDF for the
forecast estimates: it is indeed found that the mode of the PDF does not exactly
coincide with the mean value. Note that the PDF exhibits a relatively flat tail for
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decreasing x- and increasing y-coordinates of the observed fire front markers: this
is due to a sharp ROS acceleration when decreasing the fuel moisture content Mv

or alternatively, when increasing the fuel particle surface-to-volume ratio.

⊲ Forecast mode. Figure 7.40(b) compares the fire front position at t2 = 106 s
obtained using the forecast estimates (without data assimilation) and the analy-
sis estimates derived from an assimilation update at t1 = 78 s. The PC-EnKF
algorithm appears to properly represent the forecast trajectory at t2 = 106 s in
comparison to the standard EnKF. This result illustrates that a PDF sampling
based on PC (instead of MC in the standard EnKF) can significantly reduce the
computational cost of the EnKF prediction/update steps (in terms of number of
Firefly model integrations that constitute the most time-consuming task in PC-
EnKF) and thereby, provide accurate error statistics on the inputs and outputs of
Firefly. For instance, Ne = 1, 000 forward model integrations were used in EnKF
to accurately represent the error statistics, in contrast to only 25 forward model
integrations in PC-EnKF. Thus, the number of Firefly model integrations is here
divided by a factor of 40.

Additionally, Fig. 7.40(b) shows that the errors in the control parameters do not
significantly change in-between the two observation times (i.e., at t1 = 78 s and
t2 = 106 s), meaning that an observation time period of 28 s seems appropriate
for applying data assimilation (relatively to the temporal variability of the errors in
the control vector x).

While the improved accuracy of EnKF-based data-driven simulations is obtained at
the expense of heavy computational cost (in the context of multi-parameter esti-
mation, see Section 7.2.1), the PC-EnKF strategy appears as a promising strategy
for solving Bayesian filtering problems at a low computational cost that is a re-
quirement of operational frameworks. Future plans include to extend this approach
to a larger size n of the estimation problem (case studies were limited to n = 2
here) and to investigate how this approach can be further optimized in terms of
computational cost to meet operational requirements.

7.3 Contributions of a state estimation strategy

While the previously-presented parameter estimation approaches produced encour-
aging results and confirmed the value of an EnKF strategy for improved predictions
of the fire front location, their application to highly-anisotropic cases in which the
fire front is locally deformed (due partly to unknown spatial variations in local
biomass fuel properties and temporal variations in wind conditions) showed some
limitations. In particular, applying a spatially-uniform correction of the control
parameters to the grassland controlled burning experiment only led to a global cor-
rection of the fire front location and did not retrieve, locally, a topology of the fire
front that is consistent with observations.
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For this purpose, the choice of a stand-alone parameter estimation approach is
considered questionable for more general wildfire problems in which the vegetation,
topographical and possibly meteorological properties exhibit arbitrary spatial vari-
ations. The extension to the estimation of spatialized vegetation and wind ROS
parameters would be indeed computationally prohibitive in the context of real-time
forecast of the fire behavior, since it would dramatically increase the size n of the
control vector. Besides, high-resolution distributions for the ROS parameters are
not available and thereby, there would be no means of assessing if the analysis
values are consistent with the physics of wildfire spread (for validation purposes).

In this context, an extension of the data assimilation strategy is proposed, based
on a change from a parameter estimation approach to a state estimation approach
(see Fig. 7.42). This change was inspired by data assimilation applications in
numerical weather prediction and operational oceanography as well as by previous
studies by Beezley and Mandel (2008) and Beezley (2009). In these studies, the
control variable is the temperature field that is characterized by a bimodal PDF
in the fire region (i.e., burning state or not-burning state). In order to satisfy the
Gaussian assumption on the error statistics in EnKF, the idea of morphing from
image processing was introduced; however, this choice led to technical difficulties
in the EnKF implementation. In the present work, the control variable is the fire
front position and its uncertainty is approximated by a Gaussian PDF, which allows
for a straightforward application of EnKF. In the following,

⊲ OSSE tests cases are performed to highlight the key aspects of the proposed
state estimation approach presented in Rochoux et al. (2014, IAFSS) and
Rochoux et al. (2014b, NHESS);

⊲ a comparative study of the state estimation approach and the parameter
estimation approach (based on the EnKF algorithm) is presented for the con-
trolled grassland burning experiment, in order to discuss the advantages and
limitations of each approach, in terms of ensemble generation, analysis update
performance and forecast quality at different lead-times. This comparative
study is proposed in Rochoux et al. (2014, PROCI).

FIREFLY 
wildfire spread 

simulator

Parameters

Initial condition

Boundary conditions

Comparison

Simulated fronts

Observations

Ensemble Kalman filter
Parameter estimation

State estimation

Figure 7.42: Data assimilation flowchart for parameter estimation and state estimation
approaches (the control variables are colored in blue).
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7.3.1 Analysis behavior with respect to ensemble generation

Results from OSSE experiments representative of field-scale fires are presented.
Synthetic observations are generated from a reference Firefly simulation using
chosen values of the ROS model parameters and of the ignition location (i.e., the
true state is known and can be represented by the model).

→֒ Isotropic case of wildfire spread

An isotropic case (referred to as S-OSSE-ISO), corresponding to a 200 m× 200 m
domain with uniform vegetation properties and no wind, is considered. The ROS
is constant and uniform and is set to 0.2 m/s. The true fire front is initialized
as a circular front centered at (xign, yign) = (100 m, 100 m), with a radius of
5 m. Firefly is first integrated in time in order to produce at the analysis time
(chosen to be t = 200 s) the true fire front location. A forecast ensemble of
Ne = 25 members is then produced based on spatial variations of the ignition
location (xign, yign) around a mean value (97 m, 103 m) and with a 10-m STD
for both x- and y-directions. Uncertainties in the forecast ensemble are only due to
the initial location of the fire. The observed fire front is described by a stand-alone
marker (No

fr = 1), while simulated fire fronts are discretized using Nfr = 100
markers. The observation error STD is assumed small (relatively to the fireline
perimeter), with σo = 1 m.

Figure 7.43(a) presents a comparison between the true and forecast fire front posi-
tions at time t = 200 s. This figure shows that due to uncertainties in the ignition
location of the fire, the predicted front positions are scattered over a large area.
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(b) Analysis with σo = 1 m.

Figure 7.43: Spatially-uniform OSSE test (S-OSSE-ISO) with constant ROS but uncertain
ignition location (xign, yign); single assimilation cycle; all figures correspond to time t =
200 s. (a) Comparison between true (black solid line) and forecast (blue dashed lines) fire
front positions; the cross symbol is the only observation available. (b) Similar comparison
between true (black solid line) and analysis (red dashed lines) fire front positions.
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Since in this test, uncertainties in the distribution of the vegetation properties are
not accounted for in the ensemble generation, the propagation of the fire front is
isotropic (i.e., simulated fire fronts remain circular). Thus, errors in the position
of the Nfr simulated fire front markers are highly correlated within the ensem-
ble. Figure 7.44 presents the error correlation functions along the fire front related
to one simulated marker. Note that these error correlations translate the area of
influence of each marker location error on the other marker location errors (that
are distributed along the fire front) as explained in Fig. 6.30, Chapter 6. This
figure shows that the univariate correlations are almost equal to one, while the
multi-variate correlations are nearly zero.5 This means that information on the
propagation isotropy are mostly contained in the univariate correlations, while the
non-zero multi-variate correlations compensate for the non-unity univariate corre-
lations (Emery et al., 2013). As a result, the data assimilation algorithm translates
the information observed at one point into a uniform correction along the fire front.
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(a) Univariate error correlations along the fireline.
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(b) Multi-variate error correlations along the fireline.

Figure 7.44: Error correlation functions along the fireline associated to one marker loca-
tion (the vertical bar represents its reference marker location indexed by m in Fig. 7.43(a))
for the isotropic propagation case (S-OSSE-ISO) with constant ROS but uncertain ignition
location (xign, yign). (a) Univariate correlations: the dashed (solid) line indicates the error
correlation of the reference marker x-coordinate (y-coordinate) with respect to the errors in
the x-coordinates (y-coordinates) of the other markers along the fireline. (b) Multi-variate
correlations: the dashed (solid) line indicates the error correlation of the reference marker
x-coordinate (y-coordinate) with respect to the errors in the y-coordinates (x-coordinates)
of the other markers along the fireline.

5A detailed explanation is provided in Section 6.5, Chapter 6.
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Figure 7.43(b) presents the comparison between the true and analysis fire front
positions. Here the analysis ensemble corresponds to the updated front positions
that are produced by the EnKF algorithm at the end of the analysis cycle (i.e., at
time t = 200 s), when only one observation is available. As expected, the analysis
estimates of the fire front positions feature a much reduced scatter; they are located
close to the true front position and the EnKF correction is isotropic (due to the
high correlations along the fireline), implying that analyses exhibit the same circular
shape as the forecast members. It is worth mentioning that with this uniform
definition of the forecast ensemble, deforming the fire front through the ensemble-
based analysis is impossible. To be able to stochastically represent more complex
fire front shapes that are representative of the multiple sources of uncertainties in
wildfire spread and of their spatial distributions, it is therefore of primary importance
to consider non-uniform environmental conditions when generating the forecast
ensemble of fire fronts.

→֒ Extension to anisotropic cases of wildfire spread

An anisotropic case of wildfire spread (referred to as S-OSSE-ANISO-WIND), sub-
ject to spatially-varying vegetation properties and wind-aided propagation, is now
considered. In the previous spatially-uniform OSSE test (S-OSSE-ISO), only one
observation was required to produce an optimal analysis. Uncertainties in the fore-
cast ensemble were only due to the initial location of the fire (xign,yign), meaning
that the variety of the uncertainties was very limited in the ensemble. If this type of
ensemble forecast were used for the present spatially-varying OSSE test, the EnKF
would not be able to provide an anisotropic correction of the fire front location. To
allow for a spatialized correction, it is necessary to account for uncertainties on the
spatial distribution of the environmental conditions when generating the ensemble
forecast. An ensemble of Ne = 20 forecasts is therefore produced based on assumed
uncertainties in:

(1) the ROS input parameters, specifically in the fuel depth δv, the moisture con-
tent Mv, the fuel particle surface-area-to-volume ratio Σv and the wind velocity
vector (magnitude uw and direction angle αw);

(2) the ignition location (xign, yign).

In addition, the fuel depth δv is assumed to be spatially-varying, taking different
values in the 4 quadrants of the square-shaped 700 m × 700 m computational
domain. Thus, in this configuration, uncertainties in the forecast ensemble are due
to spatial variations in as many as 10 input parameters, i.e., 4 values of δv for the
4 quadrants as well as values of Mv, Σv, uw, αw and (xign,yign). Corresponding
values for the mean and STD are presented in Table 7.9.

Figure 7.45(a) presents a comparison between the true and forecast fire front
positions at time t = 150 s. Due to uncertainties in the ROS model parame-
ters, the propagation is now anisotropic and the present fire fronts are character-
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ized by stronger irregularities and more complex shapes than results presented in
Fig. 7.43(a), corresponding to uncertainties only in the ignition location. The fea-
tures observed in Fig. 7.45(a) are the consequence of both the presence of wind
and the spatial variations in fuel depth. The observed fire front is described by
No

fr = 20 markers, uniformly-distributed along the true fire front (while the simu-
lated fire fronts are discretized using Nfr = 100 markers), and with an error STD
σo = 1 m. Figure 7.45(b) presents a similar comparison between the true and
analysis fire front positions at time t = 150 s. As expected, the analysis ensemble
features a much reduced scatter, with fire fronts located close to the true one.

Table 7.9: Properties of the ensemble forecast, in terms of mean value and STD, in the
spatially-varying OSSE test (S-OSSE-ANISO-WIND).

Input parameter True value Ensemble mean Ensemble STD
δv,1 [m] 0.25 0.25 0.10
δv,2 [m] 1.25 1.25 0.10
δv,3 [m] 0.75 0.75 0.10
δv,4 [m] 1.75 1.75 0.10
Mv [%] 20 20 10
Σv [1/m] 11500 11500 4000
(uw, αw) ([m/s], [◦]) (1.0, 315) (0.75, 315) (0.15, 45)
xign [m] 350 350 20
yign [m] 350 350 20
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(b) Analysis with σo = 1 m.

Figure 7.45: Spatially-varying OSSE test with uncertain ROS model parameters and
uncertain ignition location; single analysis cycle; all figures correspond to time t = 150 s
(S-OSSE-ANISO-WIND). (a) Comparison between true (black solid line) and forecast (blue
dashed lines) fire front positions. (b) Similar comparison between true (black solid line)
and analysis (red dashed lines) fire front positions. Cross symbols are the observations.
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Since the anisotropy of the wildfire propagation is now represented by a wide range
of uncertainties in the ensemble, the error in the location of one observed point is
only correlated with the error in the location of the other adjacent points along the
fireline as shown in Fig. 7.46 for the forecast ensemble.
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(a) Univariate error correlations along the fireline.
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(b) Multi-variate error correlations along the fireline.

Figure 7.46: Error correlation functions along the fireline associated to one marker loca-
tion (the vertical bar represents its reference marker location indexed by m in Fig. 7.45(a))
for the anisotropic propagation case (S-OSSE-ANISO-WIND). (a) Univariate correlations:
the dashed (solid) line indicates the error correlation of the reference marker x-coordinate
(y-coordinate) with respect to the errors in the x-coordinates (y-coordinates) of the other
markers along the fireline. (b) Multi-variate correlations: the dashed (solid) line indicates
the error correlation of the reference marker x-coordinate (y-coordinate) with respect to
the errors in the y-coordinates (x-coordinates) of the other markers along the fireline.

The estimation problem translates the information coming from one observation
marker into a local correction restricted to the closest neighbours only. The distance
over which the observation marker affects the correction of the simulated front
marker locations is referred to as correlation length-scale (Daley, 1991; Pannekoucke
et al., 2008; Weaver and Mirouze, 2012). This length-scale depends on the spatial
variability of the errors in the ensemble generation. Figure 7.46 shows that the
length-scale associated with the univariate error correlations of the x-coordinate
typically takes values on the order of 15 m on both sides of the considered simulated
marker. This means that if this marker is observed during data assimilation, the
correction of its location modifies the shape of the fire front along 15 m on both
sides of this marker. Figure 7.47(a) maps the univariate error correlations onto the
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mean forecast front and confirms that the section of the fireline over which the error
correlation related to the x-coordinate is above 0.75 is very limited. Consistently,
Fig. 7.48(a) demonstrates that the forecast error correlation matrix is not constant
by block, in contrast to the isotropic case (see Fig. 6.31, Chapter 6).
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Figure 7.47: Error univariate correlation functions along the fireline associated to one fire
front marker (the vertical dashed bar represents this marker) for anisotropic propagation
(S-OSSE-ANISO-WIND). Red dashed (orange solid) lines indicate the error correlation
of the reference marker x-coordinate (y-coordinate) with respect to the x-coordinates (y-
coordinates) of the other markers along the fireline. (a) 3-D view of the forecast univariate
correlations (the black circled line represents the mean forecast front). (b) 3-D view of the
analysis univariate correlations (the black circled line represents the mean analysis front).

The update step induces narrower error correlation length-scales for the analysis
ensemble than for the forecast ensemble as shown in Figs. 7.47(a)-(b). The cor-
rection of the front marker locations (which results from a linear combination of
the error correlation length-scales of each observed marker along the fireline) mod-
ifies the spatial structure of the error correlations as shown by the analysis error
correlation matrix in Fig. 7.48(b). As a consequence, when several observations
are available, a non-uniform correction is obtained and error variances associated
with each simulated front marker are significantly reduced. Thus, the data assim-
ilation algorithm is able to realistically modify the shape of the fireline based on
observation information.
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However, even though accounting for a wide range of uncertainties in the ROS
parameters provides a wide range of possible fire front shapes, the EnKF does not
guarantee an optimal analysis. Sampling errors can indeed degrade the representa-
tion of the error statistics by the forecast ensemble (if Ne is not large enough) and
thereby, the analysis solution. Figure 7.49 examines the impact of the number of
members Ne on the EnKF performance, in terms of mean and STD of the distances
between the true and forecast front positions (FMT) as well as between the true and
analysis front positions (AMT). These results show that for the present anisotropic
propagation, Ne = 20 members are sufficient to obtain converged error statistics.
Below this threshold value, sampling noise induces errors in the representation of
the error covariances.
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(a) Forecast.
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(b) Analysis with σo = 1 m.

Figure 7.48: Error correlation matrices for the anisotropic propagation case (S-OSSE-
ANISO-WIND) with Nfr = 100 simulated front markers.

7.3.2 Sensitivity of the analysis to the observation network

Because in real-world applications measurements will be sparse and imperfect, we
study in the framework of OSSE experiments the sensitivity of the data-driven
solution to the STD of the observation error (σo), to the number of observation
markers along the fireline (No

fr), and to the level of completeness of the observations
(i.e., a case in which only a limited section of the fireline is effectively observed).

→֒ Sensitivity to observation errors

While results in Fig. 7.43(b) were produced with a low value of the observation
error STD (σo = 1 m) relatively to the fireline perimeter, Fig. 7.50(a) examines
the influence of this error on the EnKF performance up to σo = 20 m (similarly
to Fig. 7.7(a) for the EnKF parameter estimation approach). The statistics (in
terms of mean value and STD) of the distance between the true and forecast fire
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Figure 7.49: Spatially-varying OSSE test as a function of the number of members Ne

(S-OSSE-ANISO-WIND). The blue dashed line represents the mean distance between the
true and forecast front positions dFMT (error bars indicate the associated STD σFMT );
the red solid line represents the mean distance between the true and analysis front positions
dAMT (error bars indicate the associated STD σAMT ).

front positions (FMT) as well as between the true and analysis fire front positions
(AMT) are presented as a function of the observation error STD σo. Vertical bars
give a graphical representation of the magnitude of the STD in the forecast and
analysis ensembles, noted σFMT and σAMT , respectively. The figure shows that
when the observation error STD σo is small, the EnKF algorithm successfully drives
the analysis ensemble towards the true state. In contrast, when the observation
error STD is large, the analysis ensemble remains close to the forecast ensemble.
For intermediate values of σo, the EnKF algorithm produces optimized predictions
lying between forecast and observation. In the following tests, observation errors
are assumed to be small in order to evaluate the EnKF ability to track the observed
fire front location, in terms of behavior and shape.

→֒ Sensitivity to the number of observed markers

Figure 7.50(b) examines the influence of the number of uniformly-distributed ob-
servation markers No

fr along the fireline on the EnKF performance. In particular, it
presents the statistics (in terms of mean value and STD) of the distance between the
true and forecast fire front positions (FMT) as well as between the true and analysis
fire front positions (AMT) as a function of the ratio r = No

fr/Nfr varying between
0.01 and 0.5 (since the number of simulated markers is Nfr = 100). For this study,
a forecast ensemble of Ne = 25 members is produced based on spatial variations
of the ignition location (xign, yign) around a mean value (97 m, 103 m) and with a
10-m STD in both x- and y-directions. However, in contrast to the uniform case (S-
OSSE-ISO), this case exhibits non-uniform ROS due to the spatially-distributed fuel
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layer depth δv = δv(x, y); there is no external flow uw. This spatially-distributed
case (referred to as S-OSSE-ANISO) leads to anisotropic propagation of the fire;
the corresponding forecast estimates are presented in Fig. 7.51(a).
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Figure 7.50: EnKF performance with respect to (a) the observation error STD σo (S-
OSSE-ISO) and (b) the number of observed markers No

fr (S-OSSE-ANISO). The blue

circled-dashed line represents the mean FMT dFMT and the red squared-solid line repre-
sents the mean AMT. Error bars indicate the corresponding STD, σFMT and σAMT .

When the number of observed markers No
fr is large, the EnKF algorithm successfully

drives the analysis ensemble towards the true state as confirmed by the analysis
ensemble presented in Fig. 7.51(c) for No

fr = 25. In contrast, when No
fr is small,

the EnKF algorithm has reduced effects as illustrated in Fig. 7.51(b) for No
fr = 1.
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In this case, the analysis remains close to the forecast presented in Fig. 7.51(a).
Besides, above No

fr = 25, the statistics of the distance for the analysis remains
stable, implying that the added observed markers do not contribute to the analysis
solution and constitute repetitive information; they are therefore unnecessary here.
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(a) Forecast.
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(b) Analysis with No
fr = 1.
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(c) Analysis with No
fr = 25.

Figure 7.51: Spatially-varying OSSE test with anisotropic no-wind ROS due to spatially-
distributed vegetation and uncertain ignition location (S-OSSE-ANISO); single analysis
cycle; all figures correspond to time t = 200 s. (a) Comparison between true (solid line)
and forecast (dashed lines) fire front positions. (b) Similar comparison between true (solid
line) and analysis (dashed lines) fire front positions for No

fr = 1. (c) See caption (b) for
No

fr = 25 uniformly-distributed markers. Crosses correspond to observation.

In summary, the performance of the state estimation approach and its ability to
capture the high-resolution features of the fire front strongly depend on both the
spatial variability of the errors in the simulated fire front locations and the density
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of the observation network. If this spatial variability is significant, a large number
of observations with a wide coverage of the fire front perimeter is required. In
contrast, if the errors in the fire front positions do not vary spatially, only a few
observed markers are necessary to produce a consistent analysis.

→֒ Sensitivity to the location of the observed markers

While Figs. 7.45(a)-(b) show that the direct observation of the fire front position
can overcome various uncertainties in the ROS model parameters, Fig. 7.52(b)
illustrates for the same anisotropic configuration (S-OSSE-ANISO-WIND) that the
spatial distribution of the observations along the fireline has a significant impact
on the analysis.
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(b) Analysis with No
fr = 12.

Figure 7.52: Spatially-varying OSSE test with uncertain ROS model parameters and
uncertain ignition location; single analysis cycle; all figures correspond to time t = 150 s
(S-OSSE-ANISO-WIND). (a) Comparison between true (black solid line) and forecast
(blue dashed lines) fire front positions. (b) Comparison between true (black solid line)
and analysis (red dashed lines) fire front positions with No

fr = 12 and with an incomplete
set of observations (non-uniformly distributed along the fireline). Cross symbols are the
observations.

Figure 7.52(b) considers a practically-relevant situation, in which observations are
limited to a certain section of the fire front (i.e., the informed section) and therefore,
provide an incomplete picture of the real situation. Such a situation could occur for
instance due to the opacity of the fire plume standing in the way of the remote sensor
line-of-sight. In this situation, while the EnKF algorithm produces an analysis that
is close to the true state in the informed section, the benefits of data assimilation
are reduced in the non-informed sections.

However, despite a reduced level of performance, the EnKF informed by incomplete
observations remains capable of improved performance compared to a free run. In
particular, the analysis ensemble exhibits errors with lower spatial variability than
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the forecast ensemble presented in Fig. 7.52(a). This improvement is due to the
error correlations of the simulated front markers that are observed. They constrain
(to a certain extent) the shape of the fire front when the position of these markers is
modified through the EnKF update. This constraint is imposed by the correlation
length-scales, which depend on the sources of uncertainties that are represented
during the generation of the forecast estimates. The more spatial variabilities in
the errors are considered, the thinner the length-scales, meaning that local effects
on the behavior and shape of the fire front are represented (in contrast to the
isotropic propagation case S-OSSE-ISO). This is confirmed by the structure of the
analysis error correlation matrix in Fig. 7.53(b), showing that the reduction of the
spatial extent of high error correlations nearby the observed markers is limited to the
closest simulated markers. For comparison, see Fig. 7.48(b), in which this reduction
of the error correlations systematically occurs for all simulated front markers since
the whole front is observed and assimilated.
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(a) Forecast.
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(b) Analysis with σo = 1 m.

Figure 7.53: Error correlation matrices for the anisotropic propagation case (S-OSSE-
ANISO-WIND) with Nfr = 100 simulated markers and No

fr = 12 non-uniformly dis-
tributed assimilated markers.

7.3.3 Performance of wildfire spread forecast

Multiple analysis cycles for the spatially-varying OSSE test (S-OSSE-ANISO-WIND)
are now considered. The behavior of the forecast between successive observations
or after the last observation is examined. The true fire front spread is simulated for
time-varying wind conditions presented in Table 7.10 (observations are representa-
tive of the true fire front since the observation error STD is small, i.e., σo = 1 m),
whereas the forecast ensemble is simulated for constant wind conditions using the
parameters presented in Table 7.9.
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The performance of the forecast is expected to deteriorate in time for two reasons.
First, because the impact of the fire front correction at a previous time decreases
as the forecast lead-time increases. Second, because the present implementation of
the EnKF does not provide any correction for ROS model errors or for uncertainties
in the ROS model parameters (including the incorrect assumption of a constant
wind). The correction of the ROS model parameters can be addressed through
the parameter estimation approach presented in Section 7.2. Accounting for model
errors is out of the scope of this work.

Table 7.10: Time-varying true wind conditions (in terms of magnitude uw and direction
angle αw) in the spatially-varying OSSE test (S-OSSE-ANISO-WIND).

Assimilation cycle Wind magnitude [m/s] Wind direction [◦]
1 1.0 315
2 0.75 290
3 0.83 257
4 1.20 232

In this test, the EnKF-based state estimation approach is applied over four suc-
cessive assimilation cycles: the EnKF update is performed at times t1 = 150 s,
t2 = 300 s, t3 = 450 s, and t4 = 600 s. Each assimilation cycle includes a pre-
diction step that integrates the wildfire spread model until the observation time tn
(n = 1, · · · , 4) and an update step providing the corrected fire front location at
time tn. To move to the next assimilation cycle, the two-dimensional progress vari-
able field c associated with each analysis member must be reconstructed through
a binarization procedure explained in Section 6.5.4, Chapter 6. This field is then
used as initial condition of the next assimilation cycle to further integrate Fire-
fly during the prediction step up to time tn+1. Note that the perturbation of the
ignition location (xign, yign) is only introduced during the first assimilation cycle
(as a means to account for uncertainties in the fire ignition location before remote
sensing detection).

Figure 7.54 presents the successive comparison between the averaged free run
(i.e., the stand-alone Firefly simulation without data assimilation), the aver-
age fire front location related to the forecast and the analysis, and the observations
(considered to be close to the true state) from t1 = 150 s to t4 = 600 s. The
free run simulation does not accurately estimate the fire spread ROS and direction,
and the distance to the observations (and thereby to the true front) is drastically
reduced through the EnKF update. The forecast, resulting from the integration of
Firefly starting from the analysis at the previous assimilation time (for instance,
the forecast at time t2 = 300 s is derived from the analysis at time t1 = 150 s), pro-
vides a better prediction of the fire front location and a more physically-consistent
front shape than the free run at each assimilation time. Still, its prediction quality
is significantly lower than that exhibited by the analysis update, similarly to the
results obtained in previous OSSE tests.
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Figure 7.55 compares the forecast and analysis estimates to the true fire front
for the 4 successive assimilation cycles. The forecast estimates provide a wide
range of fire fronts (in terms of location and shape) due to the prediction step,
including uncertainties in the ROS model parameters to cover all the potential
fire front candidates for the analysis and to foresee any change in the behavior of
the wildfire spread over each assimilation cycle. In contrast, the analysis estimates
exhibit a much reduced scatter due to the EnKF update, thereby drastically reducing
uncertainties in the wildfire spread.

This performance of the EnKF update is confirmed by the error statistics presented
in Fig. 7.56(a). The typical cyclic evolution of the deviations of model predictions
from observations is presented for 5 successive assimilation cycles. During the
update step of the assimilation cycle n, the analysis (An) provides a correction to
the front position and the distance between the true state and the forecast (Fn-1)
is drastically reduced. The ensemble of analyses at the end of cycle n provides
the initial conditions for the next cycle (n + 1); during the prediction step of
cycle (n + 1), the wildfire spread model simulates the fire evolution but, without
additional observations, this forecast deviates from the true state. For instance, the
mean distance between the true state and the forecast derived from the analysis
performed at time t1 (A1) is approximately 80 m at time t5 = 750 s. During
the update step of the analysis cycle (n + 1), the distance between the true state
and the forecast is again reduced. For instance, the mean distance is significantly
reduced by the EnKF algorithm, from 20 m for the forecast (F1) to less than 1 m
for the analysis (A2). Then, the assimilation cycle may be repeated.

Still, EnKF-based data-driven simulations bring valuable information on the wildfire
spread behavior at short lead-times, even though data assimilation is not applied
systematically. This is illustrated in Fig. 7.56(b), which presents a comparison of
different forecasts of the fire front location at time t4 = 600 s using Firefly,
with or without data assimilation. The analysis at t4 = 600 s (A4) provides
the most accurate tracking of the observations, while the forecast runs with data
assimilation performed at previous times (i.e., t1 = 150 s for (F1), t2 = 300 s
for (F2) and t3 = 450 s for (F3)) deviate from the observations. However, the
closer the assimilation time to t4 = 600 s, the lower the forecast deviation from
the observations. Consistently, the free run provides the less accurate prediction
with a mean distance to the observations approximately equal to 70 m; in contrast,
this mean distance is reduced by a factor of nearly 2 for (F2) and by a factor of 70
for (A4). This result illustrates the improved prediction capability of the wildfire
spread model, achieved when calibrated against past observations.

In summary, these results on OSSE test cases show that in a state estimation ap-
proach, EnKF updates provide valuable information on wildfire spread and lead to
more accurate forecasts on the wildfire spread behavior at short lead-times (consis-
tently with the persistence of the model initial condition). Thus, the best strategy
to produce accurate data-driven simulations with Firefly consists in performing
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the EnKF update at regular short-term time intervals. If this condition is satisfied
in the data assimilation system, the data-driven prototype simulator based on a
state estimation approach is capable of efficiently tracking the actual fire front and
shape. Note that this condition is feasible for airborne and/or UAVs systems that
can continuously observe a fire over a certain time period.
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Figure 7.54: Spatially-varying OSSE test with uncertain ROS model parameters and un-
certain ignition location (S-OSSE-ANISO-WIND); multiple analysis cycles from 0 to 600 s.
Comparison between the free run (green dashed-dotted lines), the mean forecast estimate
(blue dashed lines), the observations (black crosses) and the mean analysis estimate (red
solid lines) at the 4 successive analysis times: (a) t1 = 150 s (the gray circle corresponds
to initial condition); (b) t2 = 300 s; (c) t3 = 450 s; and (d) t4 = 600 s.
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(b) Time t2 = 300 s.

275 300 325 350 375 400 425
300

325

350

375

400

425

450

x [m]

y
 [

m
]

275 300 325 350 375 400 425
300

325

350

375

400

425

450

x [m]

y
 [

m
]

(c) Time t3 = 450 s.
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(d) Time t4 = 600 s.

Figure 7.55: Spatially-varying OSSE test with uncertain ROS model parameters and
uncertain ignition location (S-OSSE-ANISO-WIND); multiple analysis cycles from 150 to
600 s. Left: Comparison between the true (black solid line) and forecast estimates (blue
dashed lines) of fire fronts. Right: Similar comparison between the true (black solid line)
and analysis estimates (red solid lines) of fire fronts.
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Figure 7.56: (a) Average distance between the true and forecast/analysis fire front posi-
tions (FMT/AMT) as a function of the assimilation cycle index (S-OSSE-ANISO-WIND);
green circles correspond to the free run (FR); triangles, crosses, diamonds and stars corre-
spond to a forecast with an analysis update at t1 = 150 s (F1), t2 = 300 s (F2), t3 = 450 s
(F3) and t4 = 600 s (F4), respectively; square symbols correspond to an analysis performed
at times t1 (A1), t2 (A2), t3 (A3), t4 (A4) and t5 (A5). (b) Comparison between the free
run (FR) in green dashed-dotted line, the mean forecast estimate (F1, F2, F3) in dashed
lines, the observations in black crosses, and the mean analysis estimate (A4) in red solid
line at time t4 = 600 s.
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7.3.4 Comparative study of state and parameter estimations

EnKF-based parameter and state estimation approaches are evaluated by compar-
ison with data taken from the controlled grassland fire experiment presented in
Fig. 6.13, Chapter 6. The objective is to highlight the benefits and drawbacks of
each approach. This study considers 4 successive, 14-seconds-long, assimilation
cycles with initialization at t0 = 50 s and updates at times t1 = 64 s, t2 = 78 s,
t3 = 92 s and t4 = 106 s. Observations are described as full fire contours repre-
sented by No

fr = 40 markers with an uncertain location σo = 5 cm along the x-
and y-directions. Note that previous studies (EKF, EnKF and PC-EnKF for pa-
rameter estimation) assimilate observations at 28 s intervals; the objective here is
to investigate if assimilating at a higher temporal frequency leads to more accurate
analysis and forecast estimates, in terms of fire front location and shape.

→֒ Ensemble generation

In the parameter estimation approach, 4 parameters are used as control variables
with x = [Mv, Σv, uw, αw]. These parameters are perturbed around mean values
and with prescribed uncertainties (according to assumed levels of uncertainty), but
remain spatially-uniform for each ensemble member. The EnKF ensemble contains
Ne = 1, 000 members, meaning that during each assimilation cycle, Firefly
produces 1,000 fire front trajectories associated with each set of control parameters.

In the state estimation approach, the control variables are the spatial coordinates
of the discretized fire front. The EnKF ensemble now contains Ne = 50 members
corresponding to different choices of the ROS model parameters and of the fire
initial location. In addition to Mv, Σv, uw and αw, the fuel depth δv is varied in
the ensemble in 4 zones. The intent here is to generate a rich forecast ensemble
featuring a wide range of fire front shapes and locations.

The statistical properties (mean and STD) of the variations in the ROS model
parameters are reported in Table 7.11.

Table 7.11: Statistical properties of the ROS model parameters, in terms of mean value
and STD, being treated as random variables to generate the forecast ensemble (the pa-
rameter estimation approach only uses perturbations in [Mv, Σv, uw, αw]).

ROS parameter Ensemble mean Ensemble STD
δv,1 [m] 0.06 0.04
δv,2 [m] 0.08 0.04
δv,3 [m] 0.1 0.04
δv,4 [m] 0.12 0.04
Mv [%] 22 6
Σv [1/m] 11500 4000
(uw, αw) [(m/s, ◦)] (1, 307) (0.4, 45)
xign [m] 2 0.65
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→֒ Update performance

Figures 7.57(a)-(b) present the mean (ensemble-averaged) fire front location at
time t1 = 64 s, as predicted by Firefly starting from initial conditions specified
at time t0 = 50 s. The mean predictions are compared to experimental ob-
servations in Fig. 7.57(a). It is shown that the mean free forecast (without data
assimilation) significantly underestimates the observed ROS of the fire. In contrast,
the predictions made using parameter estimation and state estimation ensembles
after an EnKF update performed at time t1 successfully reduce the distance between
simulations and observations in Fig. 7.57(b). This improvement is achieved by an
adjustment of the ROS model parameters in the parameter estimation approach or
by a direct adjustment of the fire front location in the state estimation approach.
The state estimation does not correct the sources of uncertainties (for instance, the
uncertainties in the ROS model parameters) but provides a new initial condition for
the next prediction step.

Similar comparisons between the mean forecast/analysis and observations at times
t2 = 78 s, t3 = 92 s and t4 = 106 s are presented in Fig. 7.57. Both parameter
estimation and state estimation approaches provide accurate estimates of the fire
front position. Figure 7.58 quantifies this statement and presents the averaged
distance between the observations and the mean fire front position produced by the
forecast (FMO) and the analysis (AMO). The mean distance to the observations is
reduced by a factor 2 in the parameter estimation approach and by a factor of at
least 5 in the state estimation approach. Thus, the agreement between predicted
and observed front positions is significantly better than the level of agreement that
would be obtained in the absence of data assimilation, see Fig. 7.57(a).

The performance of the parameter estimation approach is degraded at times t1
and t4 due to irregularities in the fire shape. These irregularities cannot be cap-
tured in the parameter estimation approach because its EnKF ensemble relies on
spatially-uniform parameters. In contrast, the state estimation approach uses a
richer ensemble and its performance is very good: the mean distance between ob-
served and simulated fronts remains below 0.1 m for all assimilation cycles and the
scatter of the analysis ensemble (measured by the STD) is significantly lower than
that obtained in the parameter estimation approach, see Fig. 7.58(b). This result
suggests that the state estimation approach is able to provide an accurate and
non-uniform correction of the fire front location; it also highlights the importance
of accounting for spatial variations of the environmental conditions to obtain more
accurate fire front shapes at update times.

→֒ Forecast performance

In spite of the overall quality of the correction provided by both EnKF estimation
approaches, the accuracy of the forecast remains limited to short-term predictions,
while still significantly more accurate than the free run (as illustrated for the state
estimation approach in Fig. 7.59).
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(a) Forecast at t1 = 64 s.
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(b) Analysis at t1 = 64 s.
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(c) Forecast at t2 = 78 s.
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(d) Analysis at t2 = 78 s.
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(e) Forecast at t3 = 92 s.
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(f) Analysis at t3 = 92 s.
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(g) Forecast at t4 = 106 s.
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(h) Analysis at t4 = 106 s.

Figure 7.57: Comparison between simulated (lines) and observed (black crosses) fire
front positions at t1 = 64 s, t2 = 78 s, t3 = 92 s and t4 = 106 s. The simulated fire
front position is the mean position calculated as the average of the EnKF ensemble. Solid
lines correspond to the simulation based on state estimation, and dashed lines correspond
to the simulation based on parameter estimation. (a)-(c)-(e)-(g) Mean forecast (without
data assimilation for the first observation time or with data assimilation at the previous
observation time). (b)-(d)-(f) Mean analysis (with a data assimilation update at the
current observation time).
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(a) Forecast.
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(b) Analysis.

Figure 7.58: Evolution over successive assimilation cycles of the averaged distance be-
tween the observations and the mean fire front position produced by the (a) forecast
(dFMO) and (b) analysis (dAMO) estimates. Dashed (solid) lines represent parameter
(state) estimation results; error bars indicate the STD of the distance to the observations,
noted σFMO and σAMO, respectively.

These results suggest that while a data assimilation approach provides excellent
forecast performance at short lead-times, this level of performance may not be
persistent and needs to be renewed by frequent observations with an assimilation
frequency that is high enough to track the temporal variability of the errors on the
control variables, especially when the wildfire behavior is strongly time-dependent.
In the present configuration, due to the increased knowledge in the ROS model
parameters along the assimilation cycles, the parameter estimation approach pro-
vides better forecasts of the fire front position than the state estimation approach
(which only updates the initial condition of the wildfire spread model for a given
assimilation cycle). This improved forecast performance of the parameter estima-
tion approach is illustrated in Fig. 7.58(a) at the successive assimilation times. The
adjustment of the ROS model parameters allows for a correction of inaccuracies in
initial guesses as well as an adaptation to time-dependent properties; the statistical
properties of the EnKF ensemble are dynamically-evolving. In contrast, the state
estimation approach is limited to adjusting the fire front location; in that case, the
statistical properties of the EnKF ensemble are constant. Figure 7.60 shows that
the initial values of the moisture content Mv and the fuel particle surface-to-volume
ratio Σv are not adequate. These values are corrected in the parameter estimation
approach: the mean (ensemble-averaged) value of Mv is decreased from 0.22 to
approximately 0.10; the mean (ensemble-averaged) value of Σv is increased from
11, 500 1/m to approximately 19, 000 1/m. These values are not corrected in the
state estimation approach and therefore induce a significant bias in the wildfire
spread simulations.
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Figure 7.59: Sequential state estimation results at (a) t1 = 64 s, (b) t2 = 78 s,
(c) t3 = 92 s and (d) t4 = 106 s. Black crosses correspond to observations, the gray solid
line corresponds to the initial condition of the assimilation cycle, the green dashed-dotted
line corresponds to the free run, the blue dashed line corresponds to the mean forecast
(without data assimilation for the first observation time or with data assimilation at the
previous observation time), and the red solid line corresponds to the mean analysis (with
a data assimilation update at the current observation time).

→֒ Discussion

Figure 7.58 shows that the parameter estimation approach provides better results
after a prediction step (i.e. a better forecast), while the state estimation approach
provides better results after an update step (i.e. a better analysis). This ranking
between these EnKF estimation approaches is problem-dependent and may not hold
in cases where the assimilation cycle is longer (due to a lower observation frequency)
and the values of the control parameters vary significantly during an assimilation
cycle (i.e., the temporal variability of the errors on the control parameters is higher
than the assimilation frequency). The duration of the assimilation cycle is therefore
of primary importance in the success of the proposed data assimilation approaches.

A parameter estimation approach searching for uniform parameters over the assim-
ilation cycle may not be an efficient data assimilation strategy if the assimilation
is not renewed by frequent observations and if this observation frequency does
not match at least the frequency at which environmental conditions (ROS model
parameters) evolve. To allow for a spatially-varying correction of the fire front posi-
tion, the generation of the EnKF ensemble must represent the anisotropy in wildfire
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spread that results from spatial variations in biomass properties and from the pres-
ence of temporally-fluctuating wind. This anisotropy was implicitly introduced in
EnKF-based state estimation by selecting spatially-dependent biomass properties
and different wind conditions between the members.
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Figure 7.60: Evolution of ROS model parameters over 4 successive assimilation cycles.
Parameter estimation-based ensemble: circle symbols (connected by a dashed line) indicate
mean values in the forecast ensemble; square symbols (connected by a solid line) indicate
mean values in the analysis ensemble; vertical bars indicate the STD. State estimation-
based ensemble: horizontal solid lines indicate mean values; horizontal dashed lines indicate
STD. (a) Fuel moisture content Mv [%]. (b) Fuel particle surface-area-to-volume ratio
Σv [1/m]. (c) Wind magnitude uw [m/s]. (d) Wind direction αw [◦].

However, accounting for the detailed spatial variations of these environmental con-
ditions in a parameter estimation approach would significantly increase its compu-
tational cost, with no means of assessing the consistency of the analysis update to
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in-situ measurements (since those are usually provided with a much coarser spatial
resolution). The state estimation approach appears as the most suitable approach
to retrieve and simulate the real shape of the fire front in strong anisotropic propa-
gation conditions, since it allows for a non-uniform correction of the front location.

Furthermore, the performance of the state estimation approach for long-term pre-
dictions could be improved based on a more realistic prior knowledge of the control
parameters (see Fig. 7.60). Thus, these results indicate that a dual state estima-
tion/parameter estimation approach may overcome some of the limitations seen
in each approach applied separately. In such dual approach, parameter estimation
could be extended to the case of coarse-resolution spatial variations of the ROS
model parameters.

Still, in all tests performed to date (these tests correspond to cases in which the
observation error is small), the agreement between the analysis and observed fire
front positions is very good and significantly better than the level of agreement
that would be obtained in the absence of data assimilation.
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Conclusion

This chapter presents an original application of data assimilation methodologies
to the problem of simulating wildfire spread at regional scales and forecasting
its behavior at future lead-times. It is assumed that airborne and/or space-
borne observations of the fire front location are available at frequent times but
provide an inaccurate and (possibly) incomplete description of the fire front.
Thus, data assimilation provides an attractive framework for integrating (in-
complete) remote sensor observations into the front-tracking wildfire spread
simulator Firefly (limited to flat terrain configurations here). The proto-
type data-driven simulator features a parameter estimation approach or a state
estimation approach based on the ensemble Kalman filter (EnKF). In the pa-
rameter estimation approach, the control variables are the input parameters
of the spread-rate model due to Rothermel (e.g., wind conditions, vegetation
properties) in order to provide feedback to Firefly on the future wildfire
behavior. This approach is limited to spatially-uniform distribution for the con-
trol parameters due to the absence of high-resolution information on these
parameters and to remain consistent with operational forecast. In the state
estimation approach, the control variables are the locations of the fire front
markers (these markers being the chosen representation of the simulated fire
front). This approach aims at providing spatially-distributed corrections of the
fire front location and at accounting for modeling uncertainties that cannot
be assessed by uncertainties in the spread-rate model parameters, for instance
due to the chaotic nature of wildfire spread or due to knowledge gaps in the
spread-rate model formulation itself.

The prototype data-driven simulator was evaluated in a series of synthetic
cases, including configurations with spatially-varying vegetation properties and
temporally-varying wind conditions, and in a validation test corresponding to a
controlled grassland burning experiment. In all test cases, data-driven simula-
tions were successful at significantly decreasing the distance between observed
and simulated fire fronts and at providing an optimized forecast of the wildfire
behavior. In particular, the following aspects are important to mention.

⊲ Ensemble-based data assimilation. While used as a preliminary ap-
proach to wildfire spread forecast in Rochoux et al. (2013, PROCI) and
Rochoux et al. (2013, INCA), the choice of the extended Kalman filter
(EKF) algorithm was considered questionable because it assumes a lin-
ear relationship between control space and observation space; this linear
assumption is believed to be of limited value in general wildfire problems
in which the wind conditions may vary and the vegetation properties
are potentially strongly heterogenous. The modification to an EnKF ap-
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proach was explored in Rochoux et al. (2012, CTR), in which some of
the observation model non-linearities were accounted for.

⊲ Comparison to particle filters. Despite of its linear combination of
ensemble members as well as of its Gaussian assumption on the mod-
eling and observation error statistics, the optimality of the EnKF was
demonstrated based on comparative studies to particle filters that are
more general Bayesian filters and that still produced equivalent results to
the EnKF, see da Silva et al. (2014, HTHP) and da Silva et al. (2013,
IPDO).

⊲ Representation of the error spatial variability. This work also shows
that in order to allow for a spatially-varying correction of the front po-
sition, the generation of the EnKF-based ensemble should represent the
anisotropy in fire propagation, due to spatial variations in vegetation
properties and due to the presence of temporally-fluctuating wind. This
anisotropy was implicitly introduced in the EnKF-based state estimation
by selecting spatially-dependent vegetation properties and different wind
conditions between the members, see Rochoux et al. (2014, IAFSS) and
Rochoux et al. (2014, PROCI). A significant gain in accuracy resulted
in the data-driven simulations compared to the proposed parameter es-
timation approaches, which were limited to a uniform description of the
input parameters of the spread-rate model to remain consistent with op-
erational framework. The benefits of the state estimation approach are
even more evidenced in cases in which the observations are made with
significant error and/or cases in which the observations are incomplete,
e.g., when only a fraction of the fireline perimeter is observed.

⊲ Reduced-cost parameter estimation. Realistic values for the control
parameters could be accurately inferred, with limited equifinality issues,
if the number of members in the ensemble is large enough to describe
properly the error correlations between the members. However, there
is no criterion to assess the accuracy of parameter estimation in real-
world applications. It is therefore important to produce large ensembles.
However, accounting for the spatial variability of the spread-rate model
parameters would increase the size of the control vector in a parameter
estimation approach and the required size of the sample. Consistently,
it would drastically raise the computational cost of the data assimilation
procedure and devote computational time to correct the control parame-
ters in zones of no interest at the assimilation time (i.e., far away from the
front), where no information could be obtained on the wildfire behavior.
Even though the correction of the control parameters could be restricted
to the flame zone, spatially-distributed parameters are difficult to validate
since high-resolution spatial distributions of environmental conditions are
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not yet available. For this purpose, a reduced-cost EnKF strategy based
on polynomial chaos (PC-EnKF) was designed in Rochoux et al. (2012,
CTR), the polynomial-based surrogate model being used in place of the
forward model Firefly during the EnKF prediction step to generate a
large number of model simulation members at no cost and without loss
of accuracy. The benefits of this PC-EnKF strategy are explored in Ro-
choux et al. (2014a, NHESS), with an extensive comparison to the EnKF
performance.

⊲ Forecast performance. The resulting data-driven simulator can in turn
be used to provide a near-future forecast of the wildfire location. Re-
sults indicate that the forecast performance of a parameter estimation
approach or a state estimation approach may be limited to near-term
predictions (i.e., at short lead-times). The forecast performance highly
depends on the consistency between the assimilation frequency and the
spatial/temporal variability of all the errors that are corrected in the data
assimilation procedure (either the ROS model parameters or the loca-
tions of the fire front markers). In particular, the variability of these
errors is determined by the persistence of the initial condition of the
wildfire spread model (i.e., the time period over which memory effects
induced by the dependence on the initial condition affect the simulation)
as well as by the temporal and spatial variability of the environmental
conditions (e.g., wind conditions, vegetation properties) as shown in Ro-
choux et al. (2014, PROCI) and Rochoux et al. (2014b, NHESS). For
instance, if the error variability in the parameters do not change over
time, then a parameter estimation approach exhibits a high persistence.
The size of the assimilation window (for which constant control variables
are searched) must be specified adequately (if the observation frequency
is compatible) to capture the sudden changes in wildfire behavior that
are the most critical to predict.

To guarantee a high level of performance in wildfire spread forecasts, the data
assimilation procedure (for the state estimation approach or for the parameter
estimation approaches) needs to be renewed by frequent observations with a
frequency in adequation to the temporal variability of the errors on the estima-
tion targets.





Conclusion

Real-time predictions of the direction and speed of a propagating wildfire
(typical of Fig. 7.61) have been identified as a valuable research objec-
tive with direct applications in fire emergency management. While much
progress has been achieved over the past few decades in the basic under-
standing of wildfire dynamics, while also much progress has been achieved in
the mathematical formulation and numerical simulation of wildfire spread,
forecasting reliable scenarios of wildfire spread at an operational level re-
mains a challenging task because the problem involves both multi-physics
and multi-scales. In order to overcome some of the current limitations of
regional-scale wildfire spread modeling, uncertainties in the mathematical
representation of the wildfire spread as well as in the input parameters or
external forcing required by the models need to be quantified and reduced.
For this purpose, this thesis explored two complementary strategies, model
evaluation and data assimilation. They include the study of the multi-
physical processes occurring at flame scales to address knowledge gaps in
fire spread modeling as well as the development of a prototype data-driven
simulator to improve the ability to forecast both regional-scale wildfire dy-
namics and plume emissions at future lead-times.

Figure 7.61: Airborne snapshot of Perthus regional-scale wildland fire (Pyrénées-
Orientales, France, July 2012) c© Pauline Crombette.
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In Part I (Insight from multi-physics flame-scale large-eddy simulations), multi-
physics large-eddy simulations of fire spread were performed at laboratory flame
scale and compared to measurements to provide a comprehensive understanding of
the mechanisms underlying natural fires. In particular, a coupling strategy based on
high-performance computing and a multi-model multi-solver approach (based on a
coupling between a large-eddy simulation solver, a radiation solver and a biomass
thermal degradation solver) was developed to simulate propagating buoyant diffu-
sion flames, corresponding to a limit case, in which no air is premixed with pyrolysis
gases before flame ignition. From our perspective, this study constitutes a novel
and original application of a multi-physics computational fluid dynamics strategy
to natural fire propagation, solving for the detailed flame structure (at a scale on
the order of 1 mm) and its interaction with turbulence, including radiation heat
transfer, detailed combustion chemistry and biomass pyrolysis. Valuable informa-
tion were obtained on the characteristic flame features of laboratory-scale fires, in
terms of chemical structure, burnt gas products, puffing behavior, slope-induced
effects as well as spatially-distributed flame radiation received by vegetation. While
further validation studies are required, the proposed coupling strategy constitutes
a preliminary step towards fully physical simulations of fire spread at flame scale,
allowing for future improvement of each model component and for the exploration
of the wildfire response to varying environmental conditions. It also constitutes
a reference to evaluate and improve semi-empirical modeling approaches used in
current regional-scale wildfire spread simulators.

Part II (Data assimilation for regional-scale wildfire spread forecast) presents a novel
analysis of the potential benefits of ensemble-based data assimilation techniques for
wildfire spread. Indeed, uncertainties in wildfire spread modeling go beyond the lim-
its of deterministic forecast abilities with the dynamical model and recent progress
made in airborne remote sensing provides new ways to monitor real-time fire front
locations. These thermal-infrared measurements provide an incomplete description
of the fire spread (in particular due to the opacity of the thermal plume induced by
the fire) and are subject to instrumental errors as well as representativeness errors.
A forecast capability must therefore rely on a computer simulation tool that is com-
patible with operational forecast to provide an accurate prediction of the wildfire
behavior, even in the zones where the flame is not observed.

All data assimilation approaches share the idea of merging measurements and com-
puter models, while accounting for both observation and modeling errors. How-
ever, a wide range of sophistication exists between the different existing algorithms.
Thus, the main challenge in this work was to determine the most suitable data
assimilation procedure to wildfire spread, i.e., a procedure that accounts for non-
linearity in wildfire behavior, that handles spatial and temporal variability in the
errors and that reliably delivers an accurate forecast of the time-evolving location
of the fire front with a positive lead-time (i.e., with simulations achieved faster than
real-time). The ensemble Kalman filter is therefore retained in this work, in order
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to stochastically characterize the non-linear response of the specifically-developed
regional-scale wildfire spread simulator Firefly to variations in the input environ-
mental conditions (e.g., wind conditions, vegetation properties) and in the fire front
locations. This work emphasizes the potential of data assimilation to dramatically
increase fire simulation accuracy and produce high-fidelity data-driven simulations
of wildfire spread. It also emphasizes the need for a reduced-cost strategy to remain
consistent with operational forecast. We propose therefore data-driven modeling
as one of the two cornerstones of a fire spread forecast capability. The other cor-
nerstone corresponds to the integration of a variety of in-situ and remote sensors
providing (real-time) information on fire location, vegetation, terrain topography
and atmospheric conditions.

While fire spread forecast capabilities are still at an early stage of development, it
is envisioned that they will be similar to current weather forecasting capabilities
and that the general ability to predict the evolution of wildfires will rely on the
continuous assimilation of remote sensing observations into a multi-physics fire
model (accounting for fire surface propagation and atmospheric dynamics). It is
also envisioned that these future capabilities for forecasting wildfire spread scenarios
will not uniquely rely on an unique spread-rate model but instead on a variety of
spread-rate models that are characterized by different validity ranges and whose
prediction capacity can thereby vary for different fire regimes. As a complement
to data assimilation, these spread-rate models could be drastically improved using
the critical analysis derived from multi-physics flame-scale large-eddy simulations
(currently restricted to research projects since they are not compatible with real-time
forecast operational objectives). Still, data assimilation has already shown great
potential to relate comprehensively computational fire modeling and fire sensor
technology, which is not yet available in fire research and on a broader level, in
combustion.
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building  
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combustion

uncertainty 
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Contributions of this thesis

The main contributions of this thesis are summarized below:

⊲ the development of the regional-scale wildfire spread simulator Fire-
fly, including a spread-rate model based on Rothermel’s formulation and a
level-set-based front-tracking solver able to deal with heterogeneous biomass
fuel properties, time-varying wind conditions and complex terrain topography.

⊲ the development of a biomass thermal degradation model Pyrowo,
based on a 0-D formulation of the solid phase of porous biomass fuel subject to
an external radiation heating and on a calibration of model parameters. This
approach is cost-effective to allow for multi-physics multi-model coupling.

⊲ the use of a generic platform for these developments, based on the dynamic
code coupler OpenPalm, in particular:

• the development of a coupling strategy based on high-performance com-
puting and message passing interface, including the Avbp large-eddy
simulation solver, the Prissma radiation solver and the Pyrowo bio-
mass thermal degradation solver, to explicitly solve for the strong cou-
pling between the gas and solid phases due to mass, momentum and
energy transfers;

• the development of a generic scheme for applying the ensemble Kalman
filter (EnKF) to wildfire spread, in which the fire spread simulator Fire-
fly can be easily modified and which can serve as a good starting
point for future applications of data assimilation (e.g., biomechanics,
Peyrounette, 2013).

• the validation and application of the Parasol functionality of Open-
Palm, recently developed at CERFACS and particularly attractive for
Monte-Carlo simulations, for uncertainty quantification as well as for
data assimilation purposes. In particular, the reduced-cost Kalman fil-
tering strategy (PC-EnKF) developed in this thesis can be integrated as
a new generic functionality in OpenPalm;

⊲ the demonstration of the feasibility of particle image velocimetry for
inferring the flame-induced air entrainment.

⊲ the introduction of a paradigm-shift in wildfire modeling, including:

• a novel and original description of the observation operator for wildfire
spread, which relates the input parameters of the spread-rate model to
the model counterparts of the observed fire front. The definition of the
observations as a discretized fire front is able to capture much of the
observation information content and allows for approximate Gaussian



Conclusion 411

error statistics and thereby, a straightforward application of ensemble-
based data assimilation;

• the comparison of benefits and drawbacks between a multi-parameter
multi-cycle estimation approach (well-suited for current parallel comput-
ing platforms) and a state estimation strategy (able to deal with high
anisotropy in the rate and direction of wildfire spread);

• the development and validation of a new reduced-cost data assimila-
tion strategy based on the construction of a surface response model
compatible with the operational framework;

• an original application of the data-driven simulation capability to a real
controlled burning experiment;

• the study of flame-scale processes governing fire spread such as flame-
induced radiation heat transfer, combustion of pyrolysis gases and puff-
ing.

⊲ the emergence of collaborations including:

• the multi-disciplinary, international collaboration between Ecole Cen-
trale Paris (France), CERFACS (France) and the University of Maryland
(USA) bridging the gap between the different related but separate re-
search communities that are involved in this thesis (compartment fire,
wildfire, data assimilation and combustion);

• the collaboration between CERFACS (France), Mines Albi (France) and
the Federal University of Rio de Janeiro (Brazil) for the application of
particle filters to wildfire spread forecast and the comparison to data as-
similation methodologies, with a common research project with Welling-
ton da Silva;

• the collaboration between CERFACS (France) and Institut d’Alembert
(France) for the application of polynomial chaos to wildfire spread fore-
cast, with a common research project with Didier Lucor;

• the active participation in the research training of master students for
engineering and scientific fire and data assimilation applications (Blaise
Delmotte, Charlotte Emery, Clément Doche, Myriam Peyrounette).
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Future lines of approach

After climbing a great hill, one only finds
that there are many more hills to climb.

Nelson Rolihlahla Mandela (1918-2013).

⊲ Towards more realistic flame-scale large-eddy simulations

Since the coupling approach for flame-scale large-eddy simulations is modular, it
constitutes a valuable starting point to improve the underlying models based on
systematic quantitative comparison to laboratory-scale measurements. In particular,
the following studies could be useful to gain more physical insight into the physical
mechanisms governing wildfire spread:

• Coupling capability. A comparative study of physics-based fire spread simu-
lators (e.g., WFDS, Firetec) with the coupling capability proposed in this
work could be performed to further assess the validity of our approach and
to investigate its benefits for furthering our understanding of wildfire control-
ling processes. The validity of the underlying models could also be analyzed
for varying fire spread conditions, in conjunction with the simultaneous de-
velopment of adapted experimental diagnostics to reach reliable quantitative
comparisons between simulation and experiment.

• Pyrolysis. The formulation of the Pyrowo biomass thermal degradation
model could be extended to a one-dimensional model accounting for the spa-
tial (vertical) profile of flame-induced radiation in the vegetation layer and
for radiation heat transfer due to the biomass solid particles within the vege-
tation layer. Also, the models for the different physical processes underlying
biomass thermal degradation (i.e., drying, pyrolysis, char oxidation) could be
evaluated against more complex physics-based models (that are not afford-
able for large-eddy simulations) and against a more complete experimental
dataset based on thermogravimetry but also on cone calorimeter experiments.
This evaluation could be performed for varying burning conditions, in terms
of flame-based radiation and biomass properties.

• Combustion. Flame-scale simulations need to be performed for varying
composition of the pyrolysis gases to mimic the behavior of partially-premixed
flames and analyze the differences with the limit case of diffusion flames tested
in this work. The fuel/oxidizer equivalence ratio is indeed unknown and its
impact on the flame structure needs to be quantified to improve knowledge on
the effective burning conditions in real-world fire cases. Such characterization
is useful to choose the most suitable chemical kinetic scheme to describe the
combustion of pyrolysis gases as well as to design an adequate turbulent
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combustion model that accurately accounts for subgrid-scale buoyancy and
strain effects.

• Radiation. The present work focuses on the study of the gas phase, but a
multi-scale analysis needs to be performed to quantify the amount of soot
that is produced during biomass fuel pyrolysis and that is convected to the
gas phase, where its contribution to radiation (in addition to CO2 and H2O)
may be significant and essential to obtain consistent rate of spread values.

• Wildfire emission. Detailed simulations of wildfire spread are useful to de-
scribe the production of burnt gases at flame scale and especially to track the
formation and oxidation of pollutants such as CO. Quantifying the amount
of CO that is released from the flame zone into the atmosphere could be
valuable to improve wildfire air prediction tools, for instance through the
improvement of emission factors.

⊲ Towards operational application of the data-driven strategy

This work demonstrated that in order to allow for a spatially-varying correction
of the front position, the generation of the forecast estimates must represent the
anisotropy in fire propagation that results from spatial variations in vegetation prop-
erties and from temporally-fluctuating wind conditions. A spatially-distributed cor-
rection along the fireline was obtained for a state estimation approach, while a
parameter estimation approach was necessary to obtain persistent predictions at
future lead-times. Future plans to build an efficient strategy to track regional-scale
fire spread are based on the following components:

• Dual state/parameter estimation approach. A dual state/parameter es-
timation (Moradkhani et al., 2005) would overcome the limitations illustrated
in the present and past studies. The parameter estimation approach could
be extended to the case of weak spatial variations of the spread-rate model
parameters. Assuming that the errors on the parameters vary slowly in time,
the correction provided by data assimilation could reasonably be used for
forecast, thus allowing for mid- to long-term forecast. In addition, the state
estimation approach could be used for short-term forecast in order to locally
correct the shape of the fire front.

• Extensive validation for regional-scale wildfire spread. The wildfire
spread model Firefly was extended to treat configurations with complex
topography as explained in Appendix G (see Section G.3). While featur-
ing realistic fire spread, an extensive validation study including representative
field-scale wildfires needs to be performed to evaluate its performance for
complex terrain topography. Once this complex terrain capability is avail-
able, the proposed data-driven strategy could be evaluated for regional-scale
wildfire spread for which in-situ, airborne and/or spaceborne data are available
at high temporal and spatial resolution.
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• Fire/atmosphere interactions. Future plans also include the integration
of the data assimilation algorithm into a CFD atmospheric solver in order
to describe the interactions between the fire and the atmosphere. One ex-
ample of a coupled fire/atmosphere model is ForeFire/Méso-NH (Filippi
et al., 2013), see Section 1.3.3, Chapter 1. The developments of data-driven
modeling for coupled fire/atmosphere models require a significant effort as
the atmospheric state must be corrected in coherence with the correction
of the fire front location. Furthermore, a high spatial resolution description
of vegetation, meteorological conditions and terrain topography is required
to improve forecast accuracy at short lead-times. Such methodology could
be useful to better quantify pollutant/aerosol emissions by wildfires (Filippi
et al., 2011; Strada et al., 2012). For instance, this is the objective of the pro-
posed FireCaster project between SPE, LA (CNRS/Paul Sabatier University,
Toulouse), CERFACS, EM2C, CNRM (CNRS/Météo-France), INRIA, which
is aimed (based on the ANR-IDEA project) at developing a crisis probabilis-
tic model that can quickly evaluate multiple fire spread scenarios in case of
emergency.

• Improved data-driven strategy. From a technical perspective, the rela-
tionship between control space and observation space (i.e., the observation
operator) in the data-driven strategy could be re-visited. In the present work,
the observations are the time-evolving location of the fire front that is ob-
tained by a post-processing of mid-infrared imaging (FRP products, see Sec-
tion 1.4, Chapter 1). One possible strategy currently investigated by the
wildfire research group at the Department of Geography of King’s College
London6 is to directly define the observation as the FRP map to avoid intro-
ducing post-processing errors. The data-driven strategy would then rely on
data assimilation of images, which appear as the next step towards real-world
applications of data assimilation for wildfire spread.

• Assimilation of spaceborne and/or airborne measurements. New ob-
serving systems are now available for wildfire spread monitoring from space,
for instance aerial thermal imagery or remote sensing at high resolution with
the Pléiades constellation for instance, from which the position of the fireline
can be detected. These data could be combined with the data assimila-
tion strategy proposed in this work, to improve the representation of wildfire
dynamics. The SERTIT7 for instance provides regional-scale geo-localized
image of fires from a rich combination of remote sensing data.

The ultimate goal of this research is to provide real-time fire forecasts using thermal-
infrared imaging data including a description of both wildfire dynamics and fire
plume emissions.

6wildfire.geog.kcl.ac.uk/.
7Service Régional de Traitement d’Image et de Télédétection, Univ. de Strasbourg (France),

sertit.u-strasbg.fr/RMS/.

wildfire.geog.kcl.ac.uk/
sertit.u-strasbg.fr/RMS/
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⊲ Extension of data assimilation to combustion applications

In the context of gas turbines, where CFD numerical models have substantive
sources of uncertainties in initial/boundary conditions, numerical and physical pa-
rameters, such a data assimilation methodology may be used for example to im-
prove the prediction of flame ignition and propagation by a quantitative analysis
of images and measurements. Until now, diagnostics and CFD simulations have
been mostly developed independently, with the same goal of quantifiable accuracy
to study reacting flows in a time-resolved, simultaneous, multi-dimensional frame-
work. Introducing a data assimilation approach in combustion would mean to use
measurements (images or probe signals) to reduce uncertainties on, for example, the
turbulent flame speed or the heat transfer to the walls. This could also be applied
to unsteady processes such as burner ignition or extinction. It may directly improve
simulation results, through improved initial and/or boundary conditions (e.g., spray
injection, wall temperatures), or improve physical models when applied to parame-
ters (e.g., soot concentration, flame structure in terms of wrinkling and thickening).
By combining experiments and large-eddy simulations along with their uncertainties
using mathematical tools such as data assimilation or uncertainty quantification,
the accuracy of predictions of turbulent flames could be improved and uncertainties
could be controlled. For example, flame front observations in a burner, obtained
with thermal-infrared visualizations or Laser-Induced Fluorescence (LIF) of the OH
radical, could be used for a data assimilation approach with large-eddy simulation
of the burner, to improve the accuracy of the results or the turbulent combustion
model. Thus, data assimilation could be a powerful framework to better under-
stand the relationship between measurements and simulated reacting flow variables
as well as to increase the accuracy of both experimental and numerical techniques.

⊲ Further developments of data assimilation based on polynomial chaos

A reduced-cost EnKF strategy based on polynomial chaos (PC-EnKF) was pro-
posed in this thesis, the polynomial-based surrogate model being used in place of
the forward model Firefly during the EnKF prediction step to generate a large
number of model simulation members at no cost and without loss of accuracy. As
highlighted by Li and Xiu (2009) and Rosic et al. (2013), alternative polynomial
chaos strategies can be explored to reduce the cost of Kalman filtering and to bet-
ter address model non-linearity. This is equivalent to project the Kalman update
equation onto the polynomial chaos basis. For instance, the estimation targets
could be directly the modes of the polynomial chaos decomposition in parameter
space or in model state space. One advantage of this alternative approach is to
avoid Monte-Carlo sampling, which introduces sampling errors during each assim-
ilation cycle. The benefits of such alternative polynomial chaos approach need to
be further investigated.





Appendix A

Models of rate of spread:

Rothermel versus Balbi

Inspired by past analysis studies from Fons (1946), Byram and Fons (1952),
Emmons (1964) and Frandsen (1971), the rate of spread (ROS) model due
to Rothermel (1972) laid the foundations of the US operational fire danger
rating system (NFDRS) and of the fire behavior simulators Behave (An-
drews, 1986) as well as Farsite (Finney, 1998). Due to its breakthrough
in fire modeling, Rothermel’s model is still a reference in the wildfire re-
search field. New ROS formulations have been proposed in the literature
to overcome some of the uncertainties and knowledge gaps present in the
original semi-empirical approaches, e.g., Cheney et al. (1998), Balbi et al.
(2009). In this appendix, the ROS models due to Rothermel and Balbi
are reviewed along with a sensitivity study to highlight the crucial input
parameters to control in a data-driven simulation capability.

A.1 Rothermel’s model of rate of spread

A.1.1 Historical background

Early work in wildfire spread research conducted by the US Forest Service aimed
at quantifying the effect of measurable variables (e.g., wind velocity, fuel moisture
content, fuel density, fuel compacity) on the fire ROS using both laboratory-based
and field-based burning experiments (see Fig. A.1). Fons (1946) laid the first stones
of a mathematical model for wildfire spread with a focus on the head of the fire.
This theoretical analysis of wildfire spread states that a significant amount of heat
is required ahead of the flame to bring the surrounding vegetation to its ignition
temperature and that a wildfire can be regarded as a series of successive ignitions
in the vegetation, or as the displacement of the biomass pyrolysis zone towards
unburnt vegetation. Thus, the ROS is primarily controlled by the ignition time and
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the properties of the biomass solid particles as illustrated in Fig. A.2.

Figure A.1: Wind-tunnel experiments of fire spread: the test section is 9.2 m long with
a cross section of 1.8 m × 1.8 m and pine needles are used to model typical Californian
vegetations. Credit: Fons (1946), US Forest Service.
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Figure A.2: Schematic of temperature gradients at/near the flame region. Credit: Fons
(1946).

Preliminary studies performed by Fons (1946) provided the key elements to under-
stand the mechanisms underlying wildfire spread and led to a model that mathe-
matically translates these physical insights. In particular, Frandsen (1971) proposed
to apply an energy balance equation within a control volume of the vegetation lo-
cated ahead of the fire front as illustrated in Fig. A.3. Frandsen’s analysis assumed
an infinite straight fireline along the y-direction that spreads at a constant rate
Γ [m/s] (i.e., quasi-steady state assumption) and distinguished the components
along x- and z-directions of the propagating heat flux Ip received in the control
volume. The steady-state ROS can be formulated as the ratio of the flame-induced
heat flux (primarily by radiation) to the heat required for ignition of the biomass
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fuel, i.e.,

Γ =
Ip

ρb εQig
=

1

ρb εQig

[
Ix,ig −

∫ +∞

0

(
∂Iz
∂z

)

z=zc

dx

]
, (A.1)

with:

⊲ ρb ε [kg/m3] the effective fuel density (i.e., the amount of vegetation per unit
volume of the fuel bed raised to ignition ahead of the advancing fire);

⊲ Qig [J/kg] the heat of pre-ignition (i.e., the heat required to bring a unit
weight of fuel to ignition);

⊲ Ix,ig [W/m2] the horizontal heat flux along the x-direction received by the
control volume at the time of ignition;

⊲
(
∂Iz
∂z

)
z=zc

[W/m3] the gradient of the vertical intensity along the z-direction

evaluated at a plane at a constant depth zc of the vegetation bed.
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Figure A.3: Schematic of the wildfire spread mechanism. Credit: Dupuy and Valette
(1997).

Based on the mathematical formulation proposed by Frandsen (1971), Rothermel
(1972) demonstrated that the vertical component of the propagating heat flux Ip
only matters in the case of a wind-aided or up-slope fire propagation due to the
higher flame tilt angle towards the unburned vegetation, which enhances radiation
and convection heat transfer (see Fig. A.4). To the contrary, for a no-slope no-wind
fire propagation, the contribution to the propagating heat flux is mainly horizontal
within the vegetation layer; this horizontal heat flux is noted Ip,0. In the Rothermel’s
ROS formulation, Ip,0 is a constant heat flux to which additional effects of wind
and slope are combined as follows:

Ip = Ip,0 (1 + φ∗
w + φ∗

sl) . (A.2)
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This expression for the propagating heat flux Ip means that the wind and slope
effects on the ROS are assumed additive and proportional to the no-wind no-slope
propagating heat flux Ip,0 through the positive coefficients φ∗

w and φ∗
sl, respectively.

This also implies that radiation is the dominant external heating received by the
unburnt vegetation ahead of the fire front.

of 

lope 

Wind 

o f  

Solid mass transport 
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(a)

(b)

(c)

Figure A.4: Schematic of the wildfire spread for different environmental conditions.
(a) No-wind no-slope fire. (b) Wind-driven fire. (c) Up-slope fire. Credit: Rothermel
(1972).

Rothermel added two points to Frandsen (1971) analysis:

(1) The no-wind no-slope propagating heat flux Ip,0 is directly related to the energy
release rate of the combustion Ir through the following relationship:

Ip,0 = χ Ir, (A.3)

with χ the dimensionless propagating flux ratio, which describes the proportion
of the flame heat release transferred to the vegetation in the non-flaming zone.
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(2) A heterogeneous formulation for the vegetation is included to represent a nat-
ural fuel bed composed of particles varying in size, shape, density and specific
heat. This heterogeneous formulation is based on the weighting concept, mean-
ing that each ROS model parameter can be estimated by properly weighting
the variations in this parameter in the heterogeneous vegetation layer. For
this purpose, biomass fuels are grouped into categories of similar properties
(e.g., dead/living cells, size of solid particles).

As a result, the ROS Γ [m/s] proposed by Rothermel reads:

Γ = Γ0 (1 + φ∗
w + φ∗

sl) =
χ Ir

ρb εQig
(1 + φ∗

w + φ∗
sl) , (A.4)

where Γ0 represents the minimal value for the ROS achieved for no-wind no-slope
conditions, while φ∗

w and φ∗
sl represent the additive wind and slope effects on Γ.

A.1.2 List of input/model parameters

The one-dimensional formulation of the ROS Γ proposed by Rothermel (1972) re-
quires 11 input parameters described in Table A.1. The physical quantities involved
in Eq. (A.4) such as the combustion-induced energy release rate Ir or the wind/slope
correction coefficients φ∗

w and φ∗
sl were parameterized with respect to these param-

eters using statistics derived from wind-tunnel experiments. Thus, Eq. (A.4) can
be expressed as follows:

Γ = Γ
(
δv, βv,Mv,Mv,ext, Σv,m

′′

v , ρp, ∆hc, st, se, uw, αsl

)
. (A.5)

Among this list of input parameters, the moisture content at extinction Mv,ext,
the fuel particle mass density ρp, the fuel low heat of combustion ∆hc, the fuel
particle total mineral content st and the fuel particle effective mineral content se
are assumed to be independent of the biomass fuel type; their nominal value in the
international system (SI) of units is given in Table A.1 and is partly justified below:

⊲ As explained in Chapter 3, the vegetation moisture content at extinction
Mv,ext represents the threshold value of the moisture content Mv, over which
the fire stops propagating and combustion cannot sustain itself due to the
prohibitive amount of energy required to evaporate the biomass moisture.
The nominal value Mv,ext = 30 % was determined experimentally using the
fiber saturation point of common biomass fuels.

⊲ The fuel particle total mineral content st, evaluated on average at 5.55 %,
represents the ratio of mineral mass to oven-dry-wood mass, i.e., the non-
combustible mass content of the vegetation that is responsible for ash for-
mation during the thermal degradation process.

The biomass fuel database related to Rothermel’s ROS model is presented in Ta-
ble A.2; only the properties of the fine dead particles are mentioned since they are
the main particles involved in the propagation of the fire front.
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Table A.1: Input parameters of the Rothermel’s ROS model.

Name Symbol Unit Nominal value

Fuel depth (vertical thickness of the vegeta-
tion layer)

δv m -

Fuel packing ratio βv % -

Fuel moisture (mass of water divided by mass
of dry vegetation)

Mv % -

Fuel moisture at extinction Mv,ext % 30.0

Fuel particle surface-to-volume ratio Σv 1/m -

Fuel loading m
′′

v kg/m2 -

Fuel particle mass density ρp kg/m3 512.4

Fuel low heat of combustion ∆hc J/kg 18.608× 106

Fuel particle total mineral content st % 5.55

Fuel particle effective mineral content se % 1.0

Wind velocity at mid-flame height (projected
into horizontal plane)

uw m/s -

Terrain slope angle αsl
◦ -

A.1.3 Submodels underlying Rothermel’s formulation

Physical quantities of interest are defined in the original Rothermel’s ROS formula-
tion using the units of the Bristish Imperial system (instead of the SI units). In the
following presentation of the ROS submodels, these quantities are defined in the SI
units for clarity purposes.

⊲ Reaction intensity Ir [W/m2]

Ir = γ m
′′

n∆hc nm ns. (A.6)

⊲ Optimum reaction velocity γ [s−1]

γ = γmax

(
βv
βv,op

)A

exp

[
A

(
1− βv

βv,op

)]
, (A.7)

with A =
(
4.774 (Σv)0.1 − 7.27

)−1
.

⊲ Maximum reaction velocity γmax [s−1]

γmax = Σ1.5
v

(
495 + 0.0594Σ1.5

v

)−1
. (A.8)
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Table A.2: Rothermel’s database for 11 fuel models (βv represents the mean packing
ratio over all particle sizes).

Fine particles

Fuel name Σv [1/m] m
′′

v [kg/m2] βv [%] δv [m] βv [%]

(1) Grass (short) 11483 0.166 0.106 0.305 0.106

(2) Grass (tall) 4921 0.674 0.173 0.762 0.172

(3) Brush 6562 0.225 0.072 0.610 0.252

(4) Chaparral 6562 1.123 0.120 1.829 0.383

(5) Timber (grass) 9843 0.449 0.192 0.457 0.383

(6) Timber (litter) 6562 0.337 1.078 0.061 3.594

(7) Timber (understory) 6562 0.674 0.431 0.305 1.725

(8) Hardwood (litter) 8202 0.654 2.094 0.061 2.500

(9) Slash (light) 4921 0.337 0.216 0.305 1.653

(10) Slash (medium) 4921 0.8984 0.25 0.701 2.156

(11) Slash (heavy) 4921 1.5721 0.335 0.914 2.779

⊲ Optimum packing ratio βv,op [-]

βv,op = 3.348Σ−0.8189
v . (A.9)

⊲ Bulk mass density ρb [kg/m3]

ρb = βv ρp. (A.10)

⊲ Fuel loading m
′′

v [kg/m2]

m
′′

v =
ρb δv
1 + st

. (A.11)

⊲ Net fuel loading m
′′

n [kg/m2]

m
′′

n =
m

′′

v

1 + st
. (A.12)

⊲ Moisture damping coefficient nm [-]

nm = 1−2.59

(
Mv

Mv,ext

)
+5.11

(
Mv

Mv,ext

)2

−3.52

(
Mv

Mv,ext

)3

. (A.13)

⊲ Mineral damping coefficient ns [-]

ns = 0.174 s−0.19
e . (A.14)
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⊲ Propagating heat flux χ [-]

χ = (192 + 0.2595Σv)
−1 exp

[(
0.792 + 0.681Σ0.5

v

)
(βv + 0.1)

]
. (A.15)

⊲ Wind coefficient φ∗
w [-]

φ∗
w = C uBw

(
βv
βv,op

)−E

, (A.16)

with:

C = 7.47 exp
[
−0.133Σ0.55

v

]
,

B = 0.02526Σ0.54
v ,

E = 0.715 exp
[
−3.59× 10−4Σv

]

⊲ Slope coefficient φ∗
sl [-]

φ∗
sl = 5.275β−0.3

v (tan αsl)
2 . (A.17)

⊲ Effective heating number ε [-]

ε = exp

[
−138

Σv

]
. (A.18)

⊲ Heat of pre-ignition Qig [J/kg]

Qig = 250 + 1.116Mv. (A.19)

Note that the formulation presented here is slightly different from the original for-
mulation proposed by Rothermel. The difference lays in the determination of the
fuel loading m

′′

v : while m
′′

v was an input parameter provided in the biomass fuel
database for each fuel type in the original model, it is now derived from the packing
ratio βv and the fuel particle mass density ρp [kg/m3] since:

m
′′

v =
ρb δv
1 + st

=
(β ρp) δv
1 + st

.

When the fuel layer thickness δv increases, the same packing ratio βv is maintained
in the vegetation bed, in contrast to the original Rothermel’s model that strains
the distribution of the solid fuel particles in the increasing volume of vegetation.
Thus, the proposed formulation provides a linear dependence of the ROS Γ to the
vegetation layer depth δv.
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A.1.4 Sensitivity study to input parameters

To illustrate the sensitivity of the Rothermel’s ROS to varying input parameters
(associated with the short grass fuel type), the theoretical values of the no-wind
ROS Γ0 and the wind-aided ROS Γ = Γ0 (1+φ∗

w) are calculated for different wind
conditions uw (varying between 0 and 5 m/s) as well as for different properties of
the solid particles summarized in Table A.3.

Table A.3: Range of variations of the vegetation properties in the sensitivity study.

Mv βv Σv δv ∆hc se

0-30 % 0.1-5 % 4000-20000 1/m 0-1 m 9-28 MJ/kg 1-5.55 %

Figure A.5 shows the overall range of values that can take the (a) no-wind and
(b) wind-aided ROS due to variations in the vegetation moisture content Mv. In
particular, Fig. A.5(a) shows that the no-wind ROS Γ0 depends non-linearly on Mv

and rapidly increases when the moisture content becomes lower than 5 %. Besides,
Fig. A.5(b) shows the variations of the wind-aided ROS Γ with respect to the wind
velocity uw, varying between 0 and 5 m/s. Each color line represents the ROS
variation for a specific value of the moisture content Mv; for instance, the red line
corresponds to the case of a 0-% moisture content (i.e., the red dot in Fig. A.5(a))
and shows that under this condition of moisture content, the ROS can be multiplied
by a factor 10 if the wind starts blowing up to 4 m/s.
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Figure A.5: Sensitivity of the Rothermel’s ROS to the fuel moisture content Mv [%]
varying between 0 % and 30 % (i.e., the fuel moisture at extinction). (a) No-wind ROS
Γ0 [m/s]. (b) Wind-aided ROS Γ [m/s] with respect to the wind velocity uw [m/s] (each
color representing a specific value of Mv).

Similar plots can be produced for the fuel packing ratio βv (Fig. A.6), the fuel par-
ticle surface-area-to-volume ratio Σv (Fig. A.7), the fuel layer depth δv (Fig. A.8),
the fuel low heat of combustion ∆hc (Fig. A.9) and the fuel effective mineral con-
tent se (see Fig. A.10). It was found that the wind strongly enhances their effects
on the ROS Γ since the rate of spread is multiplied by a factor 10 when the wind
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blows up to 4 or 5 m/s. In particular, the effect of the fuel particle surface-area-to-
volume ratio Σv on the ROS is severely amplified by the wind with ROS reaching up
to 12 m/s for a 5-m/s wind and a 20000-1/m fuel particle surface-area-to-volume
ratio. This is due to the formulation of the wind correction coefficient φ∗

w, whose
parameters B, C and E explicitly depends on Σv. Σv represents the available
surface for releasing combustion gas reactants per unit volume for a biomass solid
particle; the higher Σv, the larger amount of gas reactants can be released per unit
time to sustain and enhance combustion-related processes.

The ROS values feature a much wide scatter for the fuel particle surface-area-to-
volume ratio Σv and the fuel moisture content Mv than for the effective mineral
content se and the fuel packing ratio βv, indicating that a lack of information in
Σv and Mv results in a significant uncertainty range in the ROS prediction, which
is critical to reduce for improving fire simulation accuracy. This pair of parameters
is therefore important to include in the control vector x for parameter estimation.
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Figure A.6: Sensitivity of the Rothermel’s ROS to the fuel packing ratio βv [%]. (a) No-
wind ROS Γ0 [m/s]. (b) Wind-aided ROS Γ [m/s] with respect to the wind velocity
uw [m/s] (each color representing a specific value of βv).
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Figure A.7: Sensitivity of the Rothermel’s ROS to the fuel particle surface-area-to-volume
ratio Σv [1/m]. (a) No-wind ROS Γ0 [m/s]. (b) Wind-aided ROS Γ [m/s] with respect
to the wind velocity uw [m/s] (each color representing a specific value of Σv).
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Figure A.8: Sensitivity of the Rothermel’s ROS to the fuel layer depth δv [m]. (a) No-wind
ROS Γ0 [m/s]. (b) Wind-aided ROS Γ [m/s] with respect to the wind velocity uw [m/s]
(each color representing a specific value of δv).
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Figure A.9: Sensitivity of the Rothermel’s ROS to the fuel heat of combustion ∆hc [J/kg].
(a) No-wind ROS Γ0 [m/s]. (b) Wind-aided ROS Γ [m/s] with respect to the wind velocity
uw [m/s] (each color representing a specific value of ∆hc).
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Figure A.10: Sensitivity of the Rothermel’s ROS to the fuel effective mineral content
se [%]. (a) No-wind ROS Γ0 [m/s]. (b) Wind-aided ROS Γ [m/s] with respect to the
wind velocity uw [m/s] (each color representing a specific value of se).
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In contrast to the vegetation depth δv and the heat of combustion ∆hc, the ROS
is shown to depend non-linearly on the pair of parameters Mv and Σv. It is worth
noting that these non-linearities will be more important when the wind magnitude
fluctuates over time or when the vegetation is heterogeneously distributed. This
highlights the importance of applying a data assimilation methodology able to han-
dle multiple sources of non-linearity in the wildfire spread model.

A.2 Comparison to Balbi’s model

Alternative ROS formulations exist in the literature as for instance the model due
to Balbi et al. (2009). This model relies on mass, momentum and energy balance
equations, but introduces some approximations to account for geometrical and
thermodynamical characteristics of the flame region and to make the ROS model
cost-effective in practice (in contrast, Rothermel’s semi-empirical formulation is
only based on the energy balance equation). From this viewpoint, Balbi’s approach
still belongs to the semi-empirical category of wildfire spread. One advantage of
the Balbi’s approach is to include a radiation submodel to estimate the amount
of energy transferred to the vegetation ahead of the flame front, which is largely
responsible for its thermal degradation until ignition.

A.2.1 Balbi’s formulation of rate of spread

→֒ Assumptions

With a focus on surface fires, Balbi’s formulation relies on the following set of
assumptions:

(1) The flame zone is assumed to exhibit on average a triangular shape, which
is consistent with observed results and convenient to reduce the number of
geometrical parameters required for the description of heat and mass fluxes.

(2) Thermal radiation is considered as the dominating heat transfer mechanism in
the pre-heated vegetation zone under the flame (as long as the flame is not too
tilted toward the ground, in which cases convection becomes the dominating
heat transfer mechanism), while convection plays an essential role beyond the
zone over which the flame is projected since the flame-induced flow of fresh
air towards the flame has a convective cooling effect on the vegetation. In this
context, the flame is supposed to behave as a radiant plane.

(3) The radiation factor (i.e., the fraction of the total energy released by the flame
that is emitted by radiation), denoted by ξrad in the following, is assumed to be
a decreasing function of the surface-area-to-volume ratio of the flame (denoted
by Σfr in the following).

(4) The flame can be described using a uniformly-distributed average temperature
(denoted by Tfr in the following).
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(5) The combustion chemical reactions are reduced to a single reaction occurring at
stoichiometry, i.e., C + O2 → CO2. The associated stoichiometric coefficient
is denoted by s and is set to s = 9 (meaning that 1 kg of pyrolysis gases is
completely consumed for 9 kg of air).

(6) The vegetation is assumed to be made of solid particles of homogeneous prop-
erties (in terms of moisture content Mv, surface-area-to-volume ratio Σv, tem-
perature Tv, etc.).

(7) A constant mass loss rate (denoted by ṁ
′′

v) is supposed for the vegetation as
soon as the gas temperature reaches the assumed biomass ignition temperature
Tign.

→֒ Input parameters

Nine parameters are common to Rothermel’s and Balbi’s ROS models, namely the
fuel loading m

′′

v , the fuel layer depth δv, the fuel particle surface-area-to-volume
ratio Σv, the fuel heat of combustion ∆hc, the fuel particle mass density ρp, the
fuel moisture content Mv, the wind velocity at mid-flame height uw and the terrain
slope angle αsl. Balbi’s model requires additional parameters related to radiation
and convection heat transfer described in Table A.4.

→֒ Equations underlying Balbi’s spread-rate model

For clarity purposes, we present here the main equations involved in Balbi’s formu-
lation for a fire that propagates in wind and up-slope directions (a schematic of the
flame situation is presented in Fig. A.11). See Balbi et al. (2009) for more details
on the general equations.

αsl
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Slope

Tilt angle

α

δfr

Figure A.11: Schematic of wind- and slope-induced tilt angle of the flame noted αfr, with
uw the wind magnitude in the up-slope direction and αsl the slope angle. The parameter
δfr represents the fire front depth.

(E1) Mass budget. Based on the mass balance equation and on the assumption
of stoichiometric mixture, the vertical velocity component ub [m/s] (also referred
to as the buoyant velocity) satisfies:

ub =
ub,0

cos(αsl)
=

2 ṁ
′′

v (s+ 1)

ρfr cos(αsl)
, (A.20)
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with ub,0 [m/s] the no-slope vertical velocity, s the stoichiometric coefficient,
ρfr [kg/m3] the flame mass density (assumed constant within the flame region)
and ṁ

′′

v [kg/m2/s] the vegetation mass loss rate.

Table A.4: Additional input parameters of the ROS Balbi model related to radiation and
convection heat transfer.

Name Symbol Unit

Flame emissivity εfr -

Vegetation emissivity εv -

Radiation fraction (ratio of the radiation heat to the total
heat received by the vegetation)

χrad -

Buoyancy velocity (upward velocity of the gas reactants
for no-wind no-slope conditions)

ub m/s

Moisture evaporation enthalpy (amount of energy re-
quired to evaporate moisture within the vegetation)

∆hv J/kg

Fuel calorific capacity (specific heat for vegetation at con-
stant pressure)

cp,v J/kg/K

Fuel ignition temperature Tign K

Ambient air temperature Tair K

(E2) Momentum budget. Assuming that the gas velocity field in the flame ufr

is a composition of the buoyancy velocity field ub = (0, ub)
T and the wind velocity

uw = (uw cos(αsl), uw sin(αsl))
T, and assuming that the normal component of

ufr is responsible for tilting the flame, the tilt angle of the flame αfr reads:

tan(αfr) =
uw

ub cos(αsl)
+ tan(αsl), (A.21)

with:

cos(αfr) =
ub cos(αsl)(√

u2w + u2b + 2uwup sin(αsl)
) ,

and:

sin(αfr) =
uw + ub sin(αsl)(√

u2w + u2b + 2uwup sin(αsl)
) .

(E3) Energy budget. The heat release rate by gaseous combustion along the
fireline noted Qfr [W/m] can be expressed as Qfr = ∆hc δfr ṁ

′′

v , with δfr the
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fire front depth and ∆hc [J/kg] the low heat of combustion. Assuming that radi-
ation occurs from the flame region above the fuel and inside the vegetation in the
flaming part, and assuming that out of the flame there is a compensation between
the cooling-induced airflow and the long-range radiation effect, the radiation heat
release rate is given by the term χradQfr. The bulk flame temperature (assumed
constant within the flame and noted Tfr [K]) then reads:

Tfr = Tair + (1− χrad)
∆hc

(1 + s) cp
, (A.22)

with Tair [K] the ambient air temperature and cp [J/kg/K] the gas calorific capacity.

(E4) Flame height. Since fire is a buoyancy-induced mechanism, the buoyant
velocity ub is classically calculated as a function of the mid-flame height (the flame
height being noted Hfr) such as:

ub =

√
g

(
ρair − ρfr

ρfr

)
Hfr =

√
g

(
Tair − Tfr

Tfr

)
Hfr, (A.23)

with ρair [kg/m3] the mass density of the ambient air. Thus, the flame height Hfr

reads:

Hfr =
u2b

g
(
Tair−Tfr

Tfr

) . (A.24)

(E5) Radiation submodel. The flame region above the vegetation and the flaming
and smoldering process within the vegetation layer, respectively noted Rv and Rfr,
are considered as primary sources of radiation in a wildfire. Under the assumption
of a gray-body, Rv is expressed as follows:

Rv = εv σsb T
4
fr

(
1− x

δv,opt

)
δv

δv,opt
, x ≤ δv,opt,

= 0, x > δopt,

with εv the emissivity of the vegetation, σsb [W/m2/K4] the Stefan-Boltzmann
constant, δv [m] the vegetation layer thickness, δv,opt [m] the optical length-scale
satisfying:

δv,opt =
4

Σv βv
. (A.25)

The flame contribution above the vegetation layer Rfr reads:

Rfr = εfr σsb T
4
fr

(
1− cos(αfr,o)

2

)
, (A.26)

with εfr the emissivity of the flame and αfr,o the view-angle of the flame.
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(E6) Pre-heating submodel. The heat budget in a control volume of the pre-
heated zone of the vegetation is expressed as follows:

m
′′

v cp
dTv

dt
+∆hm

dm
′′

H2O

dt
= Rv + νv Rfr, (A.27)

with Tv [K] the mean temperature of the vegetation, ∆hm [J/kg] the moisture
evaporation enthalpy, m

′′

H2O
[kg/m2] the vegetation moisture loading (in contrast

to m
′′

v [kg/m2] the vegetation loading), and νv the fraction of the flame radiation
absorbed by the fuel satisfying:

νv = min

(
δv

δv,opt
, 1

)
, (A.28)

and:

δv
δv,opt

=
δv Σv βv

4
=

Σv

4
(δv βv) =

Σv

4

(
m

′′

v

ρb

)
. (A.29)

Thus, Eq. (A.27) can be rewritten as follows:

ΓΣv

[
cp (Tign − Tair) +m

′′

H2O ∆hm
]

=

∫ δopt

0
Rv dx+ νv

∫ lfr sin(αfr)

0
Rfr dx (A.30)

= εv σsb T
4
fr

δv
2

+ νv εfr σsb T
4
fr lfr

(
1 + sin(αfr)− cos(αfr)

2

)
, (A.31)

with Γ [m/s] the ROS of the flame front, Tign [K] the ignition temperature of the
gas (in contrast to Tair [K], the ambient air temperature) and lfr [m] the flame
length-scale.

(E7) Radiation fraction. The fraction of the heat release rate that is due to
radiation χrad depends on the spread-rate Γ such that:

χrad =
χrad,0(

1 + Γ
12Γ0

cos(αfr)
) , (A.32)

with χrad,0 the radiation fraction when the flame volume-to-surface area converges
to zero and Γ0 [m/s] the no-wind no-slope ROS.

(E8) ROS formulation. As in the ROS due to Rothermel (1972), Balbi model
assumes that the fire front propagates at least at the no-wind no-slope ROS Γ0:

Γ = Γ0 =
εv σsb T

4
fr δv

2m′′

v

(
cp (Tign − Tamb) +m

′′

H2O
∆hm

) , αfr ≤ 0. (A.33)
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Note that a backing fire (i.e., αfr ≤ 0) propagates at least at a minimal speed
Γ0. In this configuration, the minimal speed Γ0 is not decreased by a counter-wind
and is obtained by assuming that the radiation contribution of the flame above the
vegetation Rfr is zero. To the contrary, if the flame is tilted towards the unburned
vegetation (i.e., αfr > 0), the heat flux absorbed by the pre-heated vegetation is
stronger and thereby, the fire propagates at a faster rate given by:

Γ = Γ0

+
νv εfr σsb T

4
fr lfr

2m′′

v

(
cp (Tign − Tamb) +m

′′

H2O
∆hm

) (1 + sin(αfr)− cos(αfr)) .

(A.34)

Equivalently, this ROS Γ reads:

Γ =
1

2

(
Ra+

√
Ra2 +

4Γ0 (12Γ0)

cos(αfr)

)
, (A.35)

with:

Ra = Γ0



1− 12

cos(αfr)
+

12 νv χrad,0∆hc

4
(
cp (Tign − Tamb) +m

′′

H2O
∆hm

) Afr



 ,

and:

Afr =
1 + sin(αfr)− cos(αfr)

cos(αfr)
.

This set of equations highlights the differences with the formulation due to Rother-
mel (1972). The latter relies on the stand-alone energy balance equation, in which
the important quantities of interest are parameterized using wind-tunnel experi-
ments, while the Balbi’s model includes several submodels (in particular to describe
the radiation heat transfer to the vegetation and the pre-heating of the vegetation
ahead of the fire front) and minimizing the number of parameters to calibrate from
experimental data.

A.2.2 Comparative study

Balbi et al. (2009) compared the ROS values predicted by the Balbi’s model to
the reference Rothermel’s semi-empirical model in wind-tunnel laboratory-scale ex-
periments (Weise and Biging, 1997), in which the vegetation was uniform and
composed of wood sticks. The properties of the vegetation are described as fol-
lows: Mv = 3 %, δv = 0.1 m, ρp = 512.6 kg/m3, and βv = 0.98 %. This
comparison for a wide range of wind magnitude uw is presented in Fig. A.12.
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Figure A.12: Comparison of ROS Γ by Balbi (dashed line) and Rothermel (solid line)
models with respect to the wind magnitude uw. Left: ROS variations for a wind magnitude
uw varying between 0 and 5 m/s. Right: Comparison to laboratory-scale data due to Weise
and Biging (1997) represented in black crosses.

The two models predict similar ROS values in the wind velocity range [0, 1 m/s], in
agreement with experimental data. However, their behavior drastically differs for
stronger winds: while Rothermel’s model predicts a quasi-linear increase of the ROS
Γ with the wind velocity uw, Balbi’s model exhibits an exponential increase. Thus,
Balbi’s model is much more sensitive to the wind velocity than the Rothermel’s
model.

A comparative sensitivity study between Balbi’s and Rothermel’s ROS models is
presented here to highlight their behavior discrepancies with respect to environ-
mental conditions. This sensitivity study still relies on the previous configuration
due to Weise and Biging (1997) experiments; the objective is to perturb the param-
eters (e.g., the fuel moisture content Mv, the fuel surface-area-to-volume ratio Σv,
the fuel layer depth δv, the fuel packing ratio βv) and to study the scatter of the
resulting ROS values. Figure A.13 provides the ensemble of no-wind ROS Γ0 and
wind-aided ROS Γ as a function of the wind magnitude uw for the fuel moisture
content Mv. The Balbi’s ROS model is not sensitive to Mv, even for the no-wind
case, in contrast to Rothermel’s model. To the contrary, the fuel packing ratio βv
and the fuel surface-area-to-volume ratio Σv have strong effects on the ROS (in
particular when the fire propagation is induced by wind) as shown in Fig. A.14 and
Fig. A.15, respectively. It is worth noting that Σv has no effect on the no-wind
ROS and that its contribution to the ROS is highly related to the wind flow as
in the Rothermel’s model. Besides, uncertainties in the fuel layer depth δv can
also change drastically the value of the ROS, with or without wind. In particular,
Fig. A.16 shows that similarly to Rothermel’s model, Balbi’s formulation exhibits a
linear dependence on δv.

While the values for the input parameters Mv, βv, Σv and δv are realistic in the
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present comparative study, their effects on the ROS significantly differ between
the Rothermel’s and Balbi’s ROS formulations. The behavior of the Balbi’s model
changes significantly compared to the Rothermel’s model. Further studies based on
comparisons to laboratory-scale and field-scale experiments are required to diagnose
the validity range of each model.
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Figure A.13: Sensitivity of the Balbi’s ROS (dashed line) to the fuel moisture content
Mv [%] varying between 0 % and 30 %, compared to Rothermel’s ROS (solid line). Each
color represents a specific value of Mv. Left: No-wind ROS Γ0 [m/s]. Right: Wind-aided
ROS Γ [m/s] as a function of the wind velocity uw [m/s].
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Figure A.14: Sensitivity of the Balbi’s ROS (dashed line) to the fuel packing ratio βv [%]
compared to Rothermel’s ROS (solid line). Each color represents a specific value of βv.
Left: No-wind ROS Γ0 [m/s]. Right: Wind-aided ROS Γ [m/s] as a function of the wind
velocity uw [m/s].
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Figure A.15: Sensitivity of the Balbi’s ROS (dashed line) to the fuel particle surface-
area-to-volume ratio Σv [1/m], compared to Rothermel’s ROS (solid line). Each color
represents a specific value of Σv. Left: No-wind ROS Γ0 [m/s]. Right: Wind-aided ROS
Γ [m/s] as a function of the wind velocity uw [m/s].

v
 [m]

0
 [

m
/s

]

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

u
w

 [m/s]

 [
m

/s
]

0 1 2 3 4 5

0

1

2

3

4

5

6

7

Figure A.16: Sensitivity of the Balbi’s ROS (dashed line) to the fuel layer depth δv [m],
compared to Rothermel’s ROS (solid line). Each color represents a specific value of Σv.
Left: No-wind ROS Γ0 [m/s]. Right: Wind-aided ROS Γ [m/s] as a function of the wind
velocity uw [m/s].

This example illustrates the current status of semi-empirical models in the fire
research field: a wide range of ROS formulations has been developed, but their
domain of validity is restricted to the conditions of the experiments used during
their original development and calibration. This domain of validity (in terms of
wind velocity range for instance) must to be properly assessed in the perspective
of ensemble-based data assimilation.







Appendix B

The OpenPALM dynamic

code coupler

The OpenPALM software is a flexible and powerful dynamic code coupler
that has been co-developed at CERFACS and ONERA since 1996 (open-
source under lesser general public license) and that has reached a high-
degree of maturity and stability, with applications ranging from operational
data assimilation to multi-physics modeling, from climate change impact
assessment to fluid/structure interactions. It is well-suited for the evolution
of the current coupling technology towards the exaflop machines of next
generations.

In this thesis, the OpenPALM coupler is used for two different applications
illustrated in Fig. B.1, (1) the development of multi-physics flame-scale
large-eddy simulations based on a high-performance coupling of parallel
codes (data parallelism), and (2) the development of a data assimilation
prototype based on an advanced scheduling of tasks of different natures
(task parallelism). A general introduction of this code coupler along with
a focus on both data and task parallelisms is provided in this appendix.

core 1 

core n 

1 dataset

...

...
core 1 

...

task 1

core n 

task n

(a) (b)

Figure B.1: Different forms of parallelism. (a) Data parallelism. (b) Task parallelism.
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B.1 Overview of the OpenPALM code coupler

Code coupling is an appealing method to develop multi-physics and multi-component
applications. For this purpose, the OpenPalm1 software is a library of function-
alities that handles the scheduling of existing components execution, sequentially
or concurrently, as well as data exchange between these components. OpenPalm
allows in a flexible and evolutive way, for the coupling of independent code compo-
nents with a high-level of modularity in the data exchanges and treatment, while
providing a straightforward parallelization environment, striking a balance between
performance, software portability/flexibility and numerical accuracy. This coupling
interface is able to deal with different forms of parallelism across multiple proces-
sors in parallel computing environments, data parallelism and task parallelism, as
schematized in Fig. B.1.

⊲ Data parallelism corresponds to the simultaneous execution on multiple
cores of the same function/task across the elements of a unique dataset.

⊲ Task parallelism corresponds to the simultaneous execution on multiple
cores of many different functions/tasks across the same or different datasets.

OpenPalm is mainly composed of three complementary components, (1) the
Palm library; (2) the Cwipi library; and (3) the graphical interface PrePalm. As
the application programming interface is available in Fortran and C/C++, Open-
Palm can couple codes written in different languages (e.g., F77, F90, C, C++
compiled codes, main interpreted languages such as Python, Perl, Java, Tcl/Tk,
Octave, or black-box codes such as Fluent and Abaqus).

B.1.1 The PALM library

Palm2 has been originally designed for oceanographic data assimilation algorithms
(Fouilloux and Piacentini, 1999; Ferrya et al., 2007) within the MERCATOR global
ocean operational forecast system, in order to couple two different numerical phys-
ical models (e.g. an ocean model with an atmospheric model for climate modeling)
or to couple a physical model with a given mathematical algorithm (e.g., optimiza-
tion, post-treatment algorithm). Currently, its application domain extends to a wide
range of scientific applications (Buis et al., 2006; Piacentini et al., 2011). For in-
stance, it is widely used for data assimilation applications such as the French project
ADOMOCA3 in atmospheric chemistry data assimilation (Massart et al., 2009)
or for flood forecasting using the Saint-Venant solver Mascaret at SCHAPI4

(Habert et al., 2012).

Palm has started to be used as a code coupling interface by the CFD5 team at

1http://www.cerfacs.fr/globc/PALMWEB/.
2Projet d’Assimilation par Logiciel Multi-méthodes.
3Assimilation de DOnnées pour les MOdèles de Chimie Atmosphérique.
4Service Central d’Hydrométéorologie et d’Appui à la Prévision des Inondations.
5Computational Fluid Dynamics.

http://www. cerfacs.fr/globc/PALMWEB/
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CERFACS to perform multi-physics large-eddy simulations on gas turbines6 (Amaya
et al., 2010; Poitou et al., 2011, 2012). Although the simulations of specific com-
ponents gas turbines become accessible, these stand-alone simulations are not suf-
ficient to allow for a high-fidelity characterization of the physical system and thus,
coupled systems combining a detailed description of the reactive flow (e.g. the fluid
solver Avbp) as well as the radiation and conduction heat transfers at the wall of
combustion chambers (e.g. the radiation solver Prissma, the heat transfer solver
in solids Avtp) have been developed within the Palm framework (Duchaine et al.,
2009; Gicquel et al., 2011; Jauré et al., 2011; Maheu et al., 2012). An example of a
fluid-structure coupling is presented in Fig. B.2; this simulation of a cooled turbine
blade results from the coupling between the Avbp fluid large-eddy simulation solver
and the Avtp heat transfer solver, and combines data and task parallelisms.

(a)           (b)

(a) (b)

Figure B.2: Fluid/structure coupling using the Palm software, to predict the cooling of
a turbine blade on an unstructured mesh, composed of 6.5 millions of tetrahedral elements
for the fluid zone and 600,000 elements within the solid. (a) Instantaneous snapshot
of cooling air distribution. (b) Temperature distribution in the fluid and solid domains.
Credit: Piacentini et al. (2011).

Within the framework of Palm, applications are split into elementary components
that can exchange data through message passing interface (MPI) communications.
The main features of Palm are:

⊲ the dynamic launching of the coupled components;

⊲ the full independence of the components from the application algorithm;

⊲ the parallel data exchanges with redistribution;

⊲ the separation of the physics from the algebraic manipulations performed by
the Palm algebra toolbox.

Palm offers the option to merge into a single executable the coupled components
that are started in a sequence. Besides, computing resources such as the required
memory and the number of concurrent processors are handled by the Palm driver.

6cerfacs.fr/coupling/.

cerfacs.fr/coupling/
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This optimized communication scheme handles very complex communication pat-
terns with some very practical features, such as the remapping of objects exchanged
by parallel codes with different distributions, the selection of object subsets entirely
from the user interface, the presence of an explicitly managed permanent repository
for objects to be repeatedly received. Thus, Palm can be defined as a dynamic cou-
pler for its ability to deal with situations, where the component execution scheduling
and the data exchange patterns cannot be entirely defined before execution.

B.1.2 The CWIPI library

Based on the byzantine fault tolerance (BFT) and finite volume method (FVM)
libraries (Fournier et al., 2011), Cwipi7 (Refloch et al., 2011) provides a fully
parallel communication layer for mesh-based coupling between different parallel
solvers with MPI communications. As in most existing coupling libraries for multi-
executables paradigm (DeCecchis et al., 2011; Joppich and Kürschner, 2006; Jauré
et al., 2011; Valcke, 2012), Cwipi is a static coupler, in the sense that all the
components of the simulation are started at the beginning, exchange data during
the run phase and terminate simultaneously. Coupling is performed through one-
dimensional, two-dimensional or three-dimensional exchange zones, which can be
discretized differently in each coupled code as schematized in Fig. B.3. This library is
able to deal with different types of geometrical elements (e.g. polygon, polyhedral)
with an unstructured description. The functionalities in Cwipi involve:

⊲ construction of the communication graph between distributed geometric in-
terfaces through geometrical localization;

⊲ interpolation on non-coincident meshes;

⊲ exchange of coupling fields for massively parallel applications;

⊲ generation of visualization file.

Exchange surface

code 1Mesh discretization 

in code 1

code 2

Mesh discretization 

in code 2

Figure B.3: Schematic of the Cwipi exchange zone for two codes with different mesh
discretizations.

7Coupling With Interpolation Parallel Interface.
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B.1.3 The graphical interface PrePALM

The graphical user interface, called PrePalm, is a portable Tcl/Tk application.
The relevant features of the coupled components are described in identity cards for
each component, which do not depend on the specific coupling algorithms. These
identity cards are loaded by PrePalm, in order to construct the coupled applica-
tions. While the user describes the execution scheduling, the parallel sections, the
data exchange patterns and the algebraic treatments, entirely from the user inter-
face, PrePalm produces the input file for the coupler executable and the source
code for the wrappers of the coupled component that manage the set-up of the
communication framework with no need of change in the component sources. The
same graphic tool can be used at run-time to monitor the simulation status and to
provide post-mortem some statistics on the memory and CPU time resources used
by the different components.

Figure B.4 gives a simple example of the PrePalm interface and highglights that
an OpenPalm application can be described as a set of computational units ar-
ranged in a coupling algorithm.

! Launch unit

Unit output object
" Communication

" Launch unit

# Launch unit

Branch

Figure B.4: The PrePalm graphical user interface.

The different units are controlled by conditional and iterative constructions and
belong to algorithmic sequences called computational branches. A branch is struc-
tured as a sequential program in a high-level programming language. Within a
branch, the coupled independent programs (referred to as units) can be regarded
as subroutines of the branch program. Communications can be defined between
different branches to exchange, send and receive data; they are represented as
markers at the top (received data) or at the bottom (sent data) of the unit box.
Figure B.5 presents the PrePalm interface when using OpenPalm to exchange
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data at the flame/vegetation interface between the Avbp large-eddy simulation
solver, the Prissma radiation heat transfer solver and the Pyrowo vegetation
thermal degradation solver (see Chapter 3).

Figure B.5: Example of the PrePalm graphical user interface for the coupling between
Avbp, Prissma and Pyrowo through the Cwipi library.

B.2 PARASOL functionality

Parasol is a novel functionality of the OpenPalm software (implemented in
Tcl language) allowing to automatically launch, in parallel, a certain number of
instances of the same computer program. Its objective is to spawn Ne instances of
the same computer program with different inputs and consequently, different output
variables of interest, according to the number of allocated processors specified
by the user. Thus, Parasol is particularly adapted to perform ensemble-based
simulations in the context of uncertainty quantification or data assimilation, with
an optimized use of the available computational ressources.

In practice, Parasol creates two types of subroutine, a slave subroutine in charge
of executing the function to parasol-ize on the one hand, and a master subroutine
which calls Ne instances of the slave subroutines and manage input/output data
(i.e., in terms of memory allocation and data exchange). In this thesis, the Para-
sol functionality is applied to the wildfire spread simulator Firefly (i.e., Firefly
is the subroutine to parasol-ize), which simulates the time-evolving location of the
fire front given environmental conditions. Thus, different sets of ROS input pa-
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rameters (e.g., vegetation properties, wind conditions) are provided as inputs to
Parasol and then, the corresponding fire front locations are calculated at the
same simulation time (see Chapter 6). The OpenPalm-Parasol functionality
for the wildfire spread application is illustrated in Fig. B.6.

PARASOL

PARASOL

Figure B.6: Example of the PrePalm graphical user interface for the application of the
ensemble Kalman filter (EnKF) to wildfire spread through the parameter estimation ap-
proach. Black boxes represent the master subroutine encapsulating (parasol-izing) Fire-
fly, for generating (1) the ensemble of fire front forecasts (i.e., without data assimilation)
and (2) the ensemble of fire front analyses (i.e., with data assimilation). The branch named
OBSERVATIONS provides the location of the fire front at the assimilation time; the branch
named CONTROL corresponds to the generation of the forecast parameter estimates; the
branch named FIREFLY corresponds to the different calculations (e.g., innovation vector,
covariance matrices) leading to the computation of the analysis parameter estimates and
to the new initial condition for the next assimilation cycle; and the branch named FIRE-
FLY2 corresponds to the integration of Firefly leading to the analysis estimates of the
fire front positions.





Appendix C

The PYROWO vegetation

thermal degradation model

The Pyrowo vegetation thermal degradation model is designed to char-
acterize the pyrolysis that vegetation undergoes ahead of the flame front,
when subject to an external heat flux due to the flame-induced radiation
heat transfer. In this appendix, it is shown that Pyrowo can be directly
derived from the state-of-the-art multiphase formulations of flame-scale fire
propagation under some assumptions.

C.1 Multiphase model for vegetation thermal degra-
dation

C.1.1 Description of the wildland vegetation

Multiphase formulations of the vegetation thermal degradation at macroscopic
scales are proposed in literature (Grishin, 1997; Larini et al., 1998; Morvan and
Dupuy, 2004; Séro-Guillaume and Margerit, 2002; Linn et al., 2002). In these ap-
proaches, vegetation is regarded as a porous medium with at least three different
length-scales, from macroscopic to microscopic scales as illustrated in Fig. C.1. The
forest canopy is usually modeled as a diphasic medium composed of a gas phase
(i.e., mainly air) and a vegetation phase (e.g., branch, leaf). The latter can in-turn
be considered as a porous medium composed of a gas phase (characterized by the
index g) and a vegetation porous phase (characterized by the index p); this porous
p-phase of the vegetation being itself associated with a solid phase (i.e., made of
wood indexed by w and char indexed by c), a liquid phase (mainly made of moisture
(H2Ol)) and a gas phase (i.e., made of air, water vapor (H2O)g and flammable
gases).
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Mesoscopic scale Microscopic scale

Vegetation stratum
Air phase

Brushwood

Macroscopic scale

Air and gas
(g-phase)

Vegetation phase
(p-phase)

Water

Gas phase

Solid phase

Figure C.1: Porous representation of wildland fuels, from macroscopic to microscopic
scales. Credit: Séro-Guillaume and Margerit (2002)

Multiphase approaches rely on a closed set of equations that characterizes the
successive steps occurring during the vegetation thermal degradation at macro-
scopic scales, namely the drying and pyrolysis of the vegetation phase as well as
the combustion of the gas compounds released by the pyrolysis in the gas phase.
For instance, the multiphase approach due to Séro-Guillaume and Margerit (2002)
relies on the volume averaging method developed by Marle (1982) to account for
the multi-scales of vegetation (i.e., from microscopic scales to macroscopic scales)
in the formulation of the macroscopic vegetation properties. This volume averag-
ing method derives an equivalent medium at macroscopic scales, with macroscopic
properties.

C.1.2 Qualitative description of the vegetation pyrolysis

Di Blasi (1993) demonstrated that the chemical reactions occurring during the veg-
etation thermal degradation and breaking up the polymers (e.g., cellulose, hemicel-
lulose, lignin) can be divided into two main steps:

⊲ a series of primary reactions, in which the vegetation transforms into char
(i.e., carbon-based non-volatile residue), flammable gas compounds and tar
(i.e., high-molecular-weight products behaving as a gas at pyrolysis temper-
atures but condensing at ambient temperatures) in proportions that depend
on the type of vegetation (it is known that cellulose and hemicellulose mostly
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release flammable gas compounds, while lignin enhances char formation).

⊲ a series of secondary reactions, in which intermediate tar materials degrade
into flammable gas compounds and char.

However, pyrolysis-related processes are only partially known, implying necessary
simplifications in biomass pyrolysis modeling. For instance, the model parameters
that are required to describe the kinetics of char, flammable gas compounds and
tar production are usually determined empirically. In the fire research field, fuel
thermal degradation models mainly neglect secondary reactions and thereby, the
intermediate tar production. This implies that the solid phase of the ongoing
thermal degradation produces flammable gas compounds and char solid residue
from a modeling viewpoint. Thus, the vegetation thermal degradation can be
schematized as the sequence of the three following processes, which are active for
different temperature ranges that can overlap:

(1) the drying of vegetation, in which moisture evaporates from the biomass fuel
solid particles, leading to a production of water vapor in the g-phase (mesoscopic-
scale representation);

(2) the release of flammable gas compounds (referred to as pyrolysis gases) from
the biomass fuel solid particles in the gas phase (at microscopic scales), which
are subsequently transported to the g-phase (mesoscopic-scale representation)
due to buoyancy effects and flame-induced air entrainment;

(3) a partial oxidation at the surface of the remaining carbon-based materials (re-
ferred to as char oxidation) at high temperatures.

It is worth mentioning that the variations in time- and length-scales of pyrolysis
can lead to different modes of combustion. If the mass rate of pyrolysis gases (i.e.,
the combustion gas reactants) is sufficiently high to supply the flame in reactants
within the flammability limits (defined in terms of temperature and fuel/oxidizer
equivalence ratio), this process leads to flaming combustion and sustains wildfire
propagation in diffusion flame-type configurations. The features of this diffusion
flame depend on the time delay between the production of the pyrolysis gases and
their ignition (see Chapter 2). To the contrary, when air largely diffuses within the
porous vegetation, the flame can be absent and instead, a slow oxidation of the
remaining solid materials can proceed. This corresponds to the smoldering mode
of combustion. This description highlights the complexity in vegetation thermal
degradation modeling and its high dependencies on the flow and heat transfer
conditions within the vegetation layer.

C.1.3 Mathematical formulation of the vegetation pyrolysis

In practice, a wide range of modeling approaches exist to describe the solid phase
of the vegetation at microscopic scales. In the fire research field, this solid phase
is commonly represented as a single homogeneous material in which primary and
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secondary reactions can be distinguished. However, the specific behavior of each
polymer (i.e., cellulose, hemicellulose, lignin) is not accounted for, implying that the
potential interactions and bonds between polymers are neglected (Shafizadeh, 1982;
Di Blasi, 1993). For instance, Séro-Guillaume and Margerit (2002) represented the
vegetation thermal degradation as the combination of drying and pyrolysis, while
neglecting char oxidation:

(H2O)l −→ (H2O)g

virgin solid vegetation −→ flammable gases + char.

→֒ Microscopic scales

At microscopic scales, the p-phase of the porous vegetation is defined by the porosity
βp, which corresponds to the ratio of the volume occupied by the fluid phase Vfp

(i.e., gas and liquid phases) to the total volume of the p-phase Vp. βp reads:

βp =
Vfp

Vp
. (C.1)

The rest of the volume occupied by the solid phase (noted V sp) is made of char
and wood, indexed by c and w respectively. Thus, the following relation holds:

Vp = Vgp + Vlp︸ ︷︷ ︸
Vfp

+Vwp + Vcp︸ ︷︷ ︸
Vsp

, (C.2)

in which Vgp , Vlp , Vwp and Vcp correspond to the volumes occupied by the gas,
the liquid, the (solid) wood and the (solid) char phases within the p-phase. The
saturation of these components in the fluid and solid phases are defined as follows:

βgp =
Vgp

Vfp

, βlp =
Vlp

Vfp

, βwp =
Vwp

Vsp

, βcp =
Vcp

Vsp

, (C.3)

satisfying βgp + βlp = 1 for the fluid phase, and βwp + βcp = 1 for the solid phase.
This leads to the definition of the mass density of each phase within the p-phase
and thereby, to the total density of the p-phase noted ρp. Indeed,

ρgp =
Mgp

Vgp

, ρlp =
Mlp

Vlp

, ρwp =
Mwp

Vwp

, ρcp =
Mcp

Vcp

, (C.4)

with Mgp the mass of gas contained within the volume Vgp , Mlp the mass of liquid
within Vlp , Mwp the mass of wood contained within Vwp , and Mcp the mass of char
within Vcp . The mass densities of the solid and fluid phases, denoted respectively
by ρsp and ρfp , yield:

ρsp = βwp ρwp + βcp ρcp = 1
Vsp

(
Mwp +Mcp

)
,

ρfp = βgp ρgp + βlp ρlp = 1
Vfp

(
Mgp +Mlp

)
.

(C.5)
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This leads to the following definition for the mass density of the p-phase ρp:

ρp = βp ρfp + (1− βp) ρsp . (C.6)

→֒ Mesoscopic scales

At mesoscopic scales, the multiphase model due to Séro-Guillaume and Margerit
(2002) assumes that the p-phase of the porous vegetation is in thermal equilibrium
with the gas phase. This yields a unique energy balance equation for the vege-
tation mesoscopic description. The structure of the vegetation at these scales is
characterized by the porosity βg, defined as follows:

βg =
Vf

V
, with V = Vp + Vg, (C.7)

with Vp the volume occupied by the p-phase and Vg the volume occupied by the g-
phase. The equation describing the evolution of the temperature Tp of both phases
yields:

[βg ρg cp,g + (1− βg) ρp cp,p]
dTp

dt
+

βg ρg cp,g ug · ∇Tp +∇ · (−λeq∇Tp + ṡp,rad + ṡg,rad) = q̇p,c + q̇g,c,
(C.8)

where:

⊲ ug is the velocity field in the g-phase, commonly modeled based on Darcy’s
law;

⊲ λeq is the equivalent conductivity of the medium at mesoscopic scales;

⊲ cp,p is the specific heat of the p-phase and cp,g its counterpart for the g-phase;

⊲ ṡp,rad and ṡg,rad are the radiation heat fluxes in the p-phase and g-phase,
respectively;

⊲ q̇p,c and q̇g,c are the volumetric heat exchanges resulting, respectively, from
the combustion of flammable gases in the g-phase and from the chemical
reactions in the p-phase. The latter reads:

q̇p,c = − (1− βp)
(
βwp ρwp q̇wp + βlp ρlp q̇lp

)
, (C.9)

with q̇wp the heat flux due to wood pyrolysis and q̇lp the heat flux due to
moisture evaporation.

Since the multiphase model due to Séro-Guillaume and Margerit (2002) neglects
the porosity variations within the p-phase, its mass balance equations for wood,
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char and moisture can be expressed as follows:

d

dt

[
(1− βg)(1− βp)βwp ρwp

]
= −(1− βg)(1− βp)βwp ρwp kwp(Tp),

d

dt

[
(1− βg)(1− βp)βcp ρcp

]
= (1− βg)(1− βp)βwp ρwp kcp(Tp),

d

dt

[
(1− βg)βp βlp ρlp

]
= −(1− βg)βp βlp ρlp klp(Tp),

(C.10)

where kwp corresponds to the mass transfer from virgin solid wood to gas com-
pounds and char as a function of the macroscopic temperature Tp, kcp corresponds
to the rate of char formation, and klp corresponds to the rate of moisture evapo-
ration at temperature Tp. These equations represent the time-evolving mass den-
sity of each compound of the vegetation that is identified at microscopic scales,
i.e., wood, char and liquid moisture, based on the porosity at mesoscopic scales
(βp) and macroscopic scales (βg).

C.2 Derivation of a macroscopic vegetation thermal
degradation model

Within the Pyrowo thermal degradation model developed in this thesis, since the
porosity of the p-phase βp is typically small (below 5 %), it is assumed that the
gas compounds emitted by the pyrolysis are directly entrained toward the g-phase.
There is no residence of the emitted gases within the p-phase, implying that the
fluid phase of the p-phase is saturated in liquid (i.e., Vfp = Vlp). Thus, the p-phase
is reduced to dry wood, char material and liquid water, each component being
characterized by a mass fraction noted Yp,dry, Yp,char and Yp,vap, respectively.

To describe the mass fractions Yp,dry, Yp,char and Yp,vap, the bulk density of the
p-phase for each of these three components is introduced through the variables ρ̂wp ,
ρ̂cp and ρ̂lp , respectively. These quantities represent the mass of each component
contained within the volume of the p-phase Vp, instead of the volume occupied by
the specific component in the classical definition of the mass density. Thus, the
following relations hold for wood, char and moisture contents:

ρ̂wp =
Mwp

Vp
=

(
Mwp

Vwp

)
×
(
Vwp

Vp

)

= ρwp

(
Vwp

Vsp

× Vsp

Vp

)

= ρwp βwp (1− βp)

⇒ ρ̂wp = ρp Yp,dry,

(C.11)
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ρ̂cp =
Mcp

Vp
=

(
Mcp

Vcp

) (
Vcp

Vsp

× Vsp

Vp

)

= ρcp βcp (1− βp)

⇒ ρ̂cp = ρp Yp,char,

(C.12)

ρ̂lp =
Mlp

Vp
=

(
Mlp

Vlp

) (
Vlp

Vfp

× Vfp

Vp

)

= ρlp βlp βp

⇒ ρ̂lp = ρp Yp,vap.

(C.13)

Thus, the total density of the p-phase defined in Eq. (C.6) can be rewritten in terms
of the bulk densities ρ̂wp , ρ̂cp and ρ̂lp as well as in terms of the mass fractions Yp,dry,
Yp,char and Yp,vap as follows:

ρp = βp ρfp + (1− βp) ρsp

= βp ρlp + (1− βp)
(
βwp ρwp + βcp ρcp

)

=
(Mlp +Mwp +Mcp)

Vp

=⇒ ρp = ρ̂lp + ρ̂wp + ρ̂cp = ρp Yp,dry + ρp Yp,char + ρp Yp,vap,

(C.14)

with Yp,dry + Yp,char + Yp,vap = 1. Similarly, the total specific heat cp,p of the
p-phase yields:

cp,p = Yp,dry cp,wp + Yp,char cp,cp + Yp,vap cp,lp . (C.15)

If βv is defined as the vegetation packing ratio at macroscopic scales such that
βv = 1− βg, Eq. (C.10) can be expressed as follows:

d

dt
[βv ρp Yp,dry] = − (βv ρp Yp,dry) kwp(Tp),

d

dt
[βv ρp Yp,char] = (βv ρp Yp,char) kcp(Tp),

d

dt
[βv ρp Yp,vap] = − (βv ρp Yp,vap) klp(Tp).

(C.16)

Since the term (βg ρg cp,g) is negligible in Eq. (C.8) due partly to the low density
of the pyrolysis gases, the equation for the vegetation temperature Tp becomes:

βv ρp cp,p
dTp

dt
+ (1− βv) ρg cp,g ug · ∇Tp +∇ ·

(
q̇
′′

p,rad + q̇
′′

g,rad

)

= q̇
′′′

p,c + q̇
′′′

g,c.

(C.17)
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This derivation demonstrates that the macroscopic formulation of the vegetation
thermal degradation considered by Séro-Guillaume and Margerit (2002) defined in
Eq. (C.14)-(C.16)-(C.17) is equivalent (under some assumptions) to the multiphase
model proposed by Morvan and Dupuy (2004) and thereby, present similarities
to the description of the vegetation involved in Pyrowo, except that the latter
(1) represents chemical source terms using Arrhenius-type kinetic law, (2) describes
char production as a fixed amount of the rate of pyrolysis, and (3) accounts for char
oxidation (i.e., surface oxidation of the remaining solid biomass particles once the
drying and pyrolysis stages are achieved). Besides, the flow velocity field ug within
the vegetation layer is not accounted for since the transport of the pyrolysis gases is
not explicitly solved, and a thermal equilibrium is assumed between the g-phase and
the p-phase at mesoscopic scales (i.e., Tv = Tp). As a conclusion, the vegetation
thermal degradation model proposed in this thesis and named Pyrowo considers
an equivalent medium of the different vegetation sub-scales by including average
macroscopic properties of the vegetation. Instead of relying on volume averaging
methods (typical of the porous medium field), the macroscopic parameters are
obtained in Pyrowo through a calibration procedure against thermogravimetric
analysis (TGA) data. The presentation of this calibration procedure named Calwo
follows.

C.3 Calibration procedure for designing an equivalent
vegetation

C.3.1 Key ideas of the Friedmann kinetic analysis

The current mass of vegetation subject to thermal heating is noted m, its initial
counterpart is noted m0 and the mass content of inorganic compounds (represent-
ing the mass of remaining materials when the vegetation thermal degradation is
finished) is noted mash. From the previous mathematical analysis, this mass de-
creases, while the temperature of the solid vegetation increases since there is an
ongoing phase change from solid-phase to gas-phase due to pyrolysis and char ox-
idation (in particular for vegetation temperature above 500 K). Each mechanism
responsible for the mass loss of the pre-heated vegetation can be generally described
using the following relation:

−dm

dt
= ω̇r = Fr Tv (m−mash)

nr , (C.18)

in which the reaction term Fr is expressed using an Arrhenius-type equation as
follows:

Fr = kr exp

[−Tr,a

Tv

]
, (C.19)

with Tv the temperature of the vegetation and the triplet (kr, Tr,a, nr) the Arrhenius-
type parameters associated with the ongoing reaction referred to as index r.
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It is worth mentioning that the description of the calibration procedure focuses
here on the pyrolysis reaction that occurs within the flame region (i.e., between
550 K and 650 K). However, drying and char oxidation can be similarly interpreted.
Assuming the reaction index nr is equal to 1, Eq. (C.18) can be rewritten as:

− d

dt

(
m0 −m

m0 −mash

)
= (kr Tv) exp

[−Tr,a

Tv

] (
m−mash

m0 −mash

)

⇒ − d

dt

(
m0 −m

m0 −mash

)
= (kr Tv) exp

[−Tr,a

Tv

] (
1− m0 −m

m0 −mash

)
.

(C.20)

The extent of reaction ξr is defined as the percent of reaction progress such that:

ξr =
m−mash

m0 −mash
. (C.21)

Using this notation, Eq. (C.20) becomes:

dξr
dt

= (kr Tv) exp

[−Tr,a

Tv

]
(1− ξr). (C.22)

As explained in Chapter 4, TGA experiments aim at retrieving the weight loss curve
of a material given its temperature Tv for a constant heating rate dTv/dt. This
implies that the time-evolving extent of reaction can be decomposed as follows:

dξr
dt

=

(
dξr
dTv

)(
dTv

dt

)
. (C.23)

Incorporating Eq. (C.23) into Eq. (C.22) and integrating the resulting equation from
the initial state to the current state of the vegetation yield the following equation:

∫ ξr

ξr,0

dξr
(1− ξr)

=

∫ Tv

Tv,0

{
Tv

(dTv/dt)
(kr Tv) exp

[−Tr,a

Tv

]}
dTv, (C.24)

in which the initial state of the vegetation is represented in terms of the initial
reaction extent ξr,0 and the related vegetation temperature Tv,0, while the current
state is represented in terms of the current reaction extent ξr and temperature Tv.
Assuming ξr,0 = 0 at temperature Tv = Tv,0, the extent of reaction ξr is predicted
using the following analytical formulation:

ξr = 1− exp

[
−
∫ Tv

Tv,0

{
Tv

(dTv/dt)
(kr Tv) exp

[−Tr,a

Tv

]}
dTv

]
. (C.25)

This methodology for retrieving the extent of reaction ξr for a constant heating rate
dTv/dt is commonly referred to as the Friedmann kinetic analysis in the literature
(Trick et al., 1997).
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C.3.2 Calibration procedure CALWO

Based on the kinetic analysis method due to Friedmann, the following procedure
is useful to calibrate the kinetic parameters (kr, Ta,r) of reaction r, which best
reproduce available TGA measurements:

(1) Isolate and evaluate separately the extent of reaction ξr based on the TGA
mass loss curve;

(2) Compute and fit each mass loss rate curve dξr/dt with Gaussian relation (the
area under the curve represents the average percent of vegetal mass loss);

(3) Calculate the reaction term Fr at temperature intervals using Eq. (C.22) as
follows:

Fr = Fr(v) =
dξr
dt

Tv (1− ξr)
. (C.26)

(4) Compute the apparent activation temperature Tr,a and apparent pre-exponential
term kr satisfying

ln Fr(Tv) = ln kr − Tr,a

(
1

Tv

)
. (C.27)

The activation temperature Tr,a is computed using linear regression methods,
since it corresponds to the slope of the function ln Fr = f(1/Tv), while ln kr
corresponds to the intercept of the regression line.
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Evaluation of reduced kinetic

schemes for pyrolysis gas

combustion

During the pyrolysis of wildland fuels, large amounts of flammable com-
pounds (referred to as pyrolysis gases) are released and convected towards
the flame by buoyancy. Provided their temperature and the amount of air
in contact with pyrolysis gases are large enough, flaming combustion can
self-sustain and thereby, enhance fire propagation. Combustion between
pyrolysis gases and oxidizer requires a chemical kinetic scheme suitable for
a compressible large-eddy simulation (LES) capability such as Avbp, in
terms of computational cost and chemical stiffness. It is therefore essential
to rely on reduced kinetic schemes to predict realistic biomass combustion
conditions in LES. While 2S-CH4-BFER (see Section 2.4.3, Chapter 2) is
the reduced kinetic scheme retained in this thesis, the possibility of us-
ing a 5-step reduced scheme specifically dedicated to pyrolysis gases of
Mediterranean biomass fuels (Pérez-Ramirez et al., 2012) and referred to
as 5S-GLO-pyr was also explored. See Section 3.3.1 in Chapter 3 for the
complete analysis of the flame thermo-chemical features corresponding to
biomass combustion.

In this appendix, the objective is to present the 5S-GLO-pyr reduced chem-
ical kinetic scheme and to propose an additional calibration named 5S-
GLO-pyr∗, in order to evaluate the possibility of including 5S-GLO-pyr∗ in
more complex flame configurations than perfectly-stirred reactor for future
quantification of wildfire emissions.
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D.1 Original formulation

5S-GLO-pyr is a 5-step kinetic scheme derived from the mechanism due to Revel
et al. (1994) for CH4 oxidation, which was shown to be consistent with the chemical
pathways for methane combustion in wildfires (Leroy, 2007). 5S-GLO-pyr includes
additional species compared to 2S-CH4-BFER (i.e., CH3, CH2O, H2) through the
following reactions:

(R1) 2CH4 −→ 2CH3 +H2

(R2) 2CH3 +O2 −→ 2CH2O+H2

(R3) 2CH2O+O2 −→ 2CO + 2H2O

(R4) 2H2 +O2 ←→ 2H2O

(R5) 2CO +O2 ←→ CO2.

(D.1)

While (R2), (R3) and (R4) correspond to oxidation reactions, the first reaction (R1)
describes a dissociation mechanism of CH4 into methyl radical CH3 and hydrogen
H2. The final reaction (R5) represents the equilibrium between CO and CO2.
Reaction rates q̇r are given in Table D.1.

Pre-exponential coefficients of reactions (R1) and (R5f) depend on the equivalence
ratio Φ, similarly to the pre-exponential adjustment (PEA) technique retained in
the 2S-CH4-BFER scheme. The calibration and validation of the reduced scheme
5S-GLO-pyr were originally performed from PSR simulations (Pérez-Ramirez et al.,
2012), in which combustion is characterized by the residence time (1.3 s) as well as
for the initial temperature and composition of the gas mixture (since reaction rates
are kinetically-controlled). The main objective of the calibration was to provide
predictions of CO that are consistent with PSR-based experimental data (Leroy,
2007; Leroy et al., 2008), since this species is essential in the determination of
kinetics pathways related to pyrolysis gases and in the assessment of emissions.

It is worth mentioning that this calibration of 5S-GLO-pyr does not satisfy the
equilibrium balance for reverse reactions (R4) and (R5); stated differently, the cali-
bration of the related activation energies and pre-exponential factors was performed
independently between the forward and backward reactions. Still, Pérez-Ramirez
et al. (2012) showed that 5S-GLO-pyr follows the overall trend provided by experi-
mental data in terms of the composition of the burnt gas mixture.

D.2 Proposed calibration

The activation temperature of the CO/CO2 equilibrium reaction (R5f) is corrected
to improve the prediction capability of 5S-GLO-pyr as this reaction significantly
affects the burnt gas temperature. This termination reaction modifies the final
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mixture composition and does not satisfy the equilibrium balance. The correction
criterion is based on the deviation from GRI-Mech3.0 predictions of the adiabatic
burnt gas temperature for all considered initial mixture temperatures (i.e., from
900 K to 1200 K) and equivalence ratios (i.e., from 0.5 to 2.0). Based on this
criterion, the activation energy Ea,5f is modified from 47773 to 60773 cal/mol. As
shown in Fig. D.1 for a 1000 K initial gas temperature, Ea,5f = 60773 cal/mol
minimizes the deviation from GRI-Mech3.0 burnt gas temperature predictions for
all considered values of the equivalence ratio Φ.

Since auto-ignition delay times predicted by 5S-GLO-pyr also significantly deviate
from GRI-Mech3.0 predictions, an additional correction step is proposed to predict
more accurate values. Since the dissociation reaction (R1) is mainly responsible for
the initiation of the combustion process, its pre-exponential factor k1 is corrected
as a function of the equivalence ratio Φ based on the kinetic scheme presented in
Table D.1 with Ea,5f = 60773 cal/mol. Thus, the multiplication factor c1(Φ) is
introduced such that the corrected pre-exponential factor reads k1,cor = k1 c1(Φ).
The variations of the auto-ignition delay time with respect to this multiplication
factor c1(Φ) are presented in Fig. D.2(a); the value c1(Φ) = 1 corresponds to the
standard version of the global scheme 5S-GLO-pyr.
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Figure D.1: Burnt gas temperature with respect to Ea,5f for Φ varying between 0.5
and 2.0; the initial gas temperature is 1000 K. Solid lines correspond to GRI-Mech3.0
predictions; dashed lines correspond to 5S-GLO-pyr predictions (blue triangles for Φ = 0.5,
red dots for Φ = 1, orange squares for Φ = 1.5 and green stars for Φ = 2).
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The optimal multiplication factor for the 1000 K initial gas temperature is deter-
mined from Fig. D.2(a) and corresponds to the value that minimizes the deviation
from GRI-Mech3.0 predictions; this value changes with Φ. The corrected pre-
exponential factor k1,cor shown in Fig. D.2(b) is obtained by taking the mean value
of the optimal multiplication factor over the considered range of initial gas tem-
peratures (from 900 K to 1200 K). This behavior is fitted over the whole range of
equivalence ratios from 0.5 to 2 such that k1,cor reads:

k1,cor = k1 c1(Φ) = k1
(
0.20Φ2 − 0.76Φ+ 1.325

)
. (D.2)

Figure D.3 presents the resulting predictions of the calibrated global scheme (re-
ferred to as 5S-GLO-pyr∗) for the 1000 K initial gas temperature. As expected,
they show the overall significant improvement in adiabatic burnt gas temperatures
and auto-ignition delay times of 5S-GLO-pyr∗ for different states of pyrolysis gases
(in terms of the equivalence ratio and the initial gas temperature). Similar behavior
is retrieved for the initial gas temperature varying between 900 K and 1200 K. Be-
sides, the correction of the activation energy Ea,5f induces a change in the CO/CO2

equilibrium; accordingly, the mass fractions of CO and CO2 are modified compared
to 5S-GLO-pyr, while still being consistent with GRI-Mech3.0 predictions. It is
worth noting that both the global scheme 5S-GLO-pyr and its corrected counter-
part 5S-GLO-pyr∗ tend to underestimate the mass fraction of CO2 and consistently,
overestimate the mass fraction of CO for high equivalence ratios Φ. Further im-
provement of 5S-GLO-pyr∗ would be required to quantify wildfire emissions.
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Figure D.2: (a) Auto-ignition delay time with respect to the multiplication factor c1(Φ)
in the corrected formulation of the pre-exponential factor k1 for Φ varying between 0.5 and
2.0; the initial gas temperature is 1000 K. Solid lines correspond to GRI-Mech3.0 predic-
tions; dashed lines correspond to 5S-GLO-pyr predictions (blue triangles for Φ = 0.5, red
dots for Φ = 1, orange squares for Φ = 1.5 and green stars for Φ = 2). (b) Multiplication
factor c1(Φ) with respect to Φ. Crosses correspond to the mean correction over the range
of initial gas temperatures (i.e., 900 K to 1200 K); solid line corresponds to the analytical
fit of the multiplication factor (see Eq. D.2); and dashed lines correspond to the optimal
multiplication factor per initial gas temperature.
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(a) Burnt gas temperature (left) and auto-ignition delay time (right).
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Figure D.3: Predictions of the 5S-GLO-pyr reduced kinetic scheme with (solid line) and
without (dashed line) correction with respect to the equivalence ratio Φ for the 1000 K
initial gas temperature.





Appendix E

Basics and principles of

particle image velocimetry

Particle image velocimetry (PIV) is an optical laser diagnostic that indirectly
measures the gas flow velocity field through the reconstructed displacement
of tracer particles in the flow. This appendix highlights the main aspects
underlying the PIV optical diagnostic and our approach to characterize air
entrainment induced by laboratory-scale buoyant flame propagation. The
objective of this work (within the framework of the ANR-IDEA project) was
to demonstrate the feasibility of PIV to quantify air entrainment effects
induced by buoyancy in typical laboratory-scale fires.

Technical background

PIV measurements generally provide a two-dimensional flow velocity field and thereby,
capture spatial, instantaneous features of the gas flow. The description of the differ-
ent steps involved in these PIV measurements follows (Melling, 1997; Raffel et al.,
1998; Adrian, 2005); the corresponding flowchart is illustrated in Fig. E.1.

⊲ Flow seeding with tracer particles. The reconstruction of the velocity
field is based on tracking tracer particles added to the flow. Typically, these
particles are liquid oil droplets or solid material that can take different sizes
(from 0.5 to 100 µm) depending on experimental requirements. The choice
of these particles is a key aspect in the development of a PIV-based analysis
since the tracer particles must be sufficiently small to track properly the flow
motion (significant discrepancies in density between the gas flow and tracer
particles could induce inertial forces). However, their size must not be too
small in order to preserve their light-scattering efficiency properties. A balance
between these two requirements must be found to ensure the good-quality of
PIV measurements.
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Flow direction!
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pulse
!
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Figure E.1: Principles of particle image velocimetry. Credit: Raffel et al. (1998).

⊲ Illumination of particles using two successive laser pulses. Tracer par-
ticles are illuminated using a laser in a two-dimensional section of the flow
(i.e., the laser light-sheet) twice within a short time interval noted ∆t (see
Fig. E.2). In return, these particles scatter light, which is recorded on separate
frames (named A and B) using a high-resolution digital camera.

Camera

Laser

1 μs

Δt

1st pulse 2nd pulse

1st acquisition 2nd acquisition

Figure E.2: Digital timing diagram illustrating the sequential synchronization between the
PIV camera and the two laser pulses. 1 µs corresponds to the minimal time delay between
two camera acquisitions, and ∆t corresponds to the time delay between two successive
laser pulses to record frames A and B.

⊲ Reconstruction of the tracer particle displacement field. Between the
two laser pulses, the tracer particles move according to the local gas flow ve-
locity. Thus, changes in the spatial pattern of particle scattering within this
time period are used to retrieve the displacement field of the particles based
on sophisticated post-processing. For this purpose, the PIV frame (or visual-
ization window) is divided into small areas referred to as interrogation areas
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as shown in Fig. E.3 for the present fire spread application. Using statistical
methods (e.g., auto- and cross-correlations), the displacement vector is locally
estimated for each interrogation area assuming tracer particles move homo-
geneously within one interrogation area. Thus, the displacement field can be
calculated for the whole PIV frame, and an instantaneous two-dimensional
velocity field on the laser light-sheet can be derived (see Fig. E.4).

Visualization window!

Interrogation 
area!

Camera!

Flow seeding!

Figure E.3: Schematic of the PIV frame or visualization window (115 mm × 59 mm,
i.e., 13.6 pixel/mm) and its related corresponding areas for the PIV fire spread application
(the visualization window is aligned with the top surface of the fuel bed).

Instantaneous  
acquisition!

Image B!

Image A!

Velocity field !
reconstruction!

Fire-induced air 
entrainment!

Figure E.4: Example of PIV acquisition for the gas flow above the pre-heated biomass
fuel ahead of the flame region in the unburnt zone.

Note that the time delay between two successive laser pulses must be consistent
with the mean flow velocity to be able to accurately reconstruct the gas flow velocity
and its statistics. Note also that the spatial resolution of the PIV post-processing
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and in particular the number of interrogation areas within the PIV frame must be
chosen carefully, since each interrogation area must contain a minimum number of
particles to provide reliable statistics of the tracer particle displacement.







Appendix F

Basics of probability and

statistics

Estimation theory provides a broad and natural mathematical foundation for
data assimilation science. Basic notations and definitions for probability and
statistics are reviewed in this appendix in order to provide a comprehensive
introduction to the data assimilation framework.

F.1 Probability density function & Statistical moments

F.1.1 Definitions

In probability and statistics, a random variable or stochastic variable X is a variable
that can take a range of possible different values, each value with an associated
probability P .

→֒ Distribution and probability density function

Consider a multi-variate random variable X = [X1,X2, · · · ,Xn]T ∈ Rn, each
variable Xi (i = 1, · · · , n) being a scalar. X is related to a distribution function
F (x), F : Rn −→ [0, 1], describing the probability P that a realization of X takes
a value less than or equal to x. This distribution function is related to a probability
density function (PDF), noted pX(x), which measures the probability that X takes
a particular value x = [x1, x2, · · · , xn]T through the following relation:

F (x) = P [X < x] =

∫ x1

−∞
· · ·
∫ xn

−∞
pX(ξ) dξ1 · · · dξn. (F.1)

We abbreviate this definition of F (x) by the compact notation:

F (x) = P [X < x] =

∫ x

−∞
pX(ξ) dξ, (F.2)
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where the following conditions on the probability density function pX(x) are satis-
fied: (1) pX(x) ≥ 0 for any realization x; and (2)

∫
Rn pX(x) dx = 1. Note that

in the manuscript no notational distinction is made between a random variable and
its realizations; the stand-alone notation x with its associated PDF p(x) is used.

→֒ Joint and conditional probability density functions

A joint PDF pX,Y(x,y) describes the probability of simultaneous occurrence of
two events x and y, and a conditional PDF pX|Y(x | y) describes the probability
of occurrence of an event x given the occurrence of an event y. The following
expression holds:

pX,Y(x,y) = pX|Y(x | y) pY(y) = pY|X(y | x) pX(x), (F.3)

where the marginal densities pX(x) and pY(y) are defined by:





pX(x) =

∫ y

−∞
pX,Y(x, η) dη

pY(y) =

∫ x

−∞
pX,Y(ξ,y) dξ

. (F.4)

If X and Y are independent, the relation pX,Y(x,y) = pX(x) pY(y) leads to
the intuitive result pX|Y(x | y) = pX(x), or alternatively pY|X(y | x) = pY(y).

F.1.2 Characteristics of the probability density function

→֒ Scalar (univariate) random variable

Consider a scalar random variable X. The PDF pX(x) contains a large amount
of information that characterize the variability in the realizations of the random
variable X. Some important properties of the PDF are briefly defined here:

⊲ mode: the value of the random variable X with highest probability (i.e., the
location of the PDF peak);

⊲ head/tail: the range of values of the random variable X over which the PDF
is relatively high/low;

⊲ mean (or expected value): the weighted average of the possible values for
X using their probabilities as their weights, noted µX and expressed formally
as:

µX = E[X] =

∫ +∞

−∞
ξ pX(ξ) dξ, (F.5)

with E[ · ] referring to the mathematical expectation operator. Note that if
the relation E[X] = 0 is satisfied, the random variable X is unbiased. By
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extension, if g(X) is a deterministic function of X, then its mean value reads:

E[g(X)] =

∫ +∞

−∞
g(ξ) pX(ξ) dξ, (F.6)

⊲ standard deviation/variance: the standard deviation (STD) represents the
average deviation from the mean (in the unit of the random variable) and
thus, the square-root of the variance. This variance noted (σX)2 is given by:

(σX)2 = E

[
(X−E[X])2

]
=

∫ +∞

−∞
(ξ−E[X])2 pX(ξ) dξ = E[X2]−E[X]2

(F.7)

using the linearity property of the expectation operator E[ · ]. The variance is
a convenient measure of the dispersion of the realizations around the mean
value µX = E[X].

In the case of a joint PDF pX,Y(x,y) or a conditional PDF pX|Y(x | y) associated
with the scalar random variables X and Y, we can define additional properties
presented below:

⊲ conditional mean value of X given Y, noted E[X | Y] and expressed as a
function of the random variable Y such that:

E[X | Y] =

∫ +∞

−∞
ξ pX|Y(ξ|y) dξ. (F.8)

⊲ covariance of x and y, noted cov(X,Y) and given by:

cov(X,Y) = E

[
(X− E[X]) (Y − E[Y])

]

=

∫∫ +∞

−∞
(ξ − E[X])(η − E[Y]) pX,Y(ξ, η) dξ dη

=
(∫∫ +∞

−∞
ξη pX,Y(ξ, η) dξ dη

)
− E[X]E[Y].

(F.9)

Note that the covariance of a random variable with itself is the variance,
i.e., cov(X,X) = (σX)2. Note also that if the random variables X and Y

are independent, i.e., pX,Y(x,y) = pX(x)pY(y), the covariance cov(X,Y)
becomes zero.

⊲ correlation of X and Y, noted ρ(X,Y) and given by the Pearson’s formula:

ρ(X,Y) =
E

[
(X− E[X]) (Y − E[Y])

]

σX σY
=

cov(X,Y)

σX σY
(F.10)
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with σX and σY the STD of X and Y, respectively. Equation (F.10) im-
plies that the correlation between a pair of random variables is obtained by
dividing the covariance of the two variables by the product of their STD, and
consequently, the correlation of a random variable with itself is systematically
1. More generally, a correlation is a dimensionless quantity that indicates the
degree of dependence between a set of random variables: the closer the cor-
relation coefficient ρ(X,Y) is to either -1 or 1, the stronger the correlation
between the random variables.

→֒ Multi-variate random variable

In the context of a multi-variate random variable X = [X1,X2, · · · ,Xn]T ∈ Rn, the
definitions given above for a scalar random variable can be extended, in particular
for the mean value E[X] with:

µX = E[X] =




E[X1]
E[X2]

...
E[Xn]


 =




µX1

µX2

...
µXn


 , (F.11)

and for the covariance cov(X,X) = E[(X − E[X]) (X − E[X])] that becomes a
n×n matrix (instead of a scalar for a univariate random variable) noted CXX and
defined as follows:

CXX =



C11 · · · C1n
...

. . .
...

Cn1 · · · Cnn


 (F.12)

⇒ CXX =



σX1

. . .
σXn


ΛXX



σX1

. . .
σXn


 ,

with

ΛXX =



ρ(X1,X1) · · · ρ(X1,Xn)

...
. . .

...
ρ(Xn,X1) · · · ρ(Xn,Xn)


 . (F.13)

The matrix element Cij = Cji = E[(Xi − E[Xi])(Xj − E[Xj ])] corresponds to
the covariance cov(Xi,Xj) of Xi and Xj , and where ρ(Xi,Xj) = Cij/(σXi

σXj
)

corresponds to the correlation of Xi and Xj with σXi
the STD of Xi, σXj

the STD
of Xj and ρ(Xi,Xi) = 1.

F.1.3 Normal/Gaussian probability density function

Important and commonly known probability distribution include the Gaussian PDF,
defined solely by its mean µX (first moment) and its variance (σX)2 (second mo-
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ment). If the random variable X follows a Gaussian PDF noted N (µX, (σX)2), the
PDF is of the following form:

pX(x) =
1

σX
√
2π

exp

{
−(x− µX)2

2(σX)2

}
, (F.14)

Note that µX ± σX spans 68% of the realizations of the random variable X, while
µX±2.57σX spans 99% of its realizations. By applying the variable transformation
U = (X−µX)/σX, the random variable U follows the standard normal distribution
N (0, 1) of zero mean and unit STD; this PDF is represented in Fig. F.1.
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Figure F.1: Standard normal probability density function N (0, 1) (black solid line).

F.2 Sample approximations

The exact evaluation of the PDF properties of a multi-variate random variable
X ∈ Rn becomes impractical when the dimension n increases. One alterna-
tive is to approximate these quantities using Monte Carlo (MC) techniques, con-
sidering a large number (sample) of independent realizations Ne from the PDF
pX(x). In this context, the random variable X is approximated by a sample noted
[x(1),x(2), ...,x(Ne)], where each realization x(k) (the subscript k is the index of a
particular realization of the random variable X) is a vector of dimension n. From
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this set of realizations, the MC-based sample mean µMC
X is calculated as follows:

µMC
X =

1

Ne

Ne∑

k=1

x(k) =




1
Ne

Ne∑

k=1

x
(k)
1

...

1
Ne

Ne∑

k=1

x
(k)
n




=




µMC
X1
...

µMC
Xn


 . (F.15)

Similarly, the MC-based sample covariance matrix (CXX)MC of dimension n × n
reads:

(CXX)MC =
1

Ne − 1

Ne∑

k=1

(
x(k) − µMC

X

)(
x(k) − µMC

X

)T
. (F.16)

The structure of (CXX)MC is equivalent to the covariance matrix CXX with:

(CXX)MC =



(C11)MC · · · (C1n)MC

...
. . .

...
(Cn1)MC · · · (Cnn)MC


 ,

where the diagonal terms (Cii)
MC corresponds to the sample variance associated

with the variable Xi of the multi-variate random variable X such that:

(Cii)
MC = (σMC

Xi
)2 =

1

Ne − 1

Ne∑

k=1

(
x
(k)
i − µMC

Xi

)2
, (F.17)

and where the off-diagonal terms (Cij)
MC = (Cji)

MC (i 6= j) corresponds to the
sample covariance of the variables Xi and Xj such that:

(Cij)
MC = covMC(Xi,Xj) =

1

Ne − 1

Ne∑

k=1

(
x
(k)
i −µMC

Xi

)(
x
(k)
j −µMC

Xj

)
. (F.18)

Note that the statistical moments of the MC-based sample converge towards the
exact properties (µX, CXX) with increasing sample size Ne; the decreasing trend
of the sample error is proportional to 1/

√
Ne as shown in Fig. F.2 for the sample

mean of the standard normal PDF N (0, 1). The errors in the sample mean are

calculated in L1-norm as
∣∣∣µX − µMC

X

∣∣∣.
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Figure F.2: Errors in sample mean (dependent on the realizations and shown in red
circles) of the standard normal PDF N (0, 1) as a function of the sample size Ne, with the
error function 1/

√
Ne represented in solid line.

F.3 Bayes’ theorem

Equation (F.3) leads to a fundamental result in probability theory called the Bayes’
theorem and expressed as:

pX|Y(x | y) =
pX(x) pY|X(y | x)

pY(y)
, (F.19)

stating that the conditional PDF of a random variable X given Y (the posterior) is
obtained by combining the conditional PDF of variable Y given X (the likelihood)
and the marginal PDF of the random variable X (the prior). Note that the marginal
PDF of the random variable Y, noted pY(y), in the denominator of Eq. (F.19) is
a normalizing factor. Thus, the Bayes’ theorem is often formulated as:

pX|Y(x | y) ∝ pX(x) pY|X(y | x), (F.20)

where the symbol ∝ means proportional to. This theorem is the foundation of
the Bayesian filtering technique, from which multiple existing data assimilation
algorithms can be derived (e.g., the Kalman filter and variational approaches), see
Chapter 5.





Appendix G

Numerical treatments in the

FIREFLY wildfire spread

simulator

Firefly simulates the time-evolving fire front location at regional scales
(see Fig. G.1) using the following three components: (1) a submodel for the
rate of spread (ROS) Γ parameterized with respect to local environmental
conditions (e.g., vegetation, terrain topography and weather properties),
(2) a level-set-based solver for the fire front propagation equation that
simulates the propagating fire front along its normal direction according to
Γ and (3) an iso-contour algorithm for the reconstruction of the fire front.

This appendix provides a detailed description of the numerical implemen-
tation of these components (briefly presented in Section 6.4) with a focus
on the implementation of the level-set-based solver and on the treatment
of complex terrain topography.

Rate Of Spread 
Model

Local conditions:
● vegetation,
● wind, 
● slope.

Local Rate 
Of Spread

Front Propagation
Model

Fire Front position

Local Scale Macroscopic Scale

Figure G.1: Regional-scale wildfire spread modeling. Credit: Delmotte et al. (2011).
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G.1 Implementation of the level-set-based solver

G.1.1 Lagrangian approach versus Eulerian approach

Propagating an interface (e.g., the fireline separating the burned and unburned
regions in wildfire spread applications) with a numerical treatment that avoids nu-
merical diffusion and ensures numerical stability requires the use of high-order nu-
merical schemes. Historically, regional-scale simulators of wildfire spread have relied
on a Lagrangian front-tracking approach (Fendell and Wolff, 2001) that describes
the time-evolving fireline using a set of tracers, see Farsite (Finney, 1998). How-
ever, in Lagrangian solvers the number of required tracers significantly increases
with the fire size, and complex numerical treatments are necessary to handle fire
crossovers and fire front merging as highlighted by Filippi et al. (2009). In con-
trast, Eulerian approaches naturally handle complex topology of fire fronts along
with collisions and merging of fire fronts. These approaches inevitably exhibit a
computational cost higher than Lagrangian approaches (Fendell and Wolff, 2001;
Rehm and McDermott, 2009; Mallet et al., 2009; Mandel et al., 2011). An Eulerian
level-set-based approach is adopted in Firefly, largely inspired from Rehm and
McDermott (2009).

G.1.2 Numerical scheme underlying the FIREFLY level-set solver

→֒ Definition of the propagating equation

This section describes in detail the numerical method used to solve for the two-
dimensional scalar progress variable c = c(x, y, t) in the computational domain Ω,
t ≥ 0: c = 0 in the unburnt vegetation, c = 1 in the burnt vegetation, and the flame
is the region where c takes values between 0 and 1 (the flame front is identified as
the progress variable iso-contour cfr = 0.5). The propagation equation presented
in Chapter 6 reads:

∂c

∂t
(x, y, t) = Γ |∇c| = −γ · ∇c, (G.1)

with |∇c| the magnitude of the gradient of the progress variable c defined as:

|∇c| =
√(

∂c

∂x

)2

+

(
∂c

∂y

)2

, (G.2)

and with Γ = γ ·nfr the normal component of the spread velocity vector γ, de-
fined along the normal direction to the iso-contours of the progress variable c (also
referred to as the normal direction to the fire front). This normal direction is repre-
sented using the normal vector nfr = [nfr,x, nfr,y]

T pointing towards the unburnt
vegetation, i.e.,

nfr =
−∇c
|∇c| . (G.3)
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Equation (G.1) can be alternatively formulated as follows:

∂c

∂t
(x, y, t) + γx

(
∂c

∂x

)
+ γy

(
∂c

∂y

)
= 0, (G.4)

where γx and γy are the components of the spread velocity vector γ along the x-
and y-directions with:

γx = Γnfr,x,

γy = Γnfr,y.
(G.5)

Γ is the ROS of the fireline, conveniently identified a posteriori of the resolution
of the progress variable c = c(x, y, t) as the iso-contour cfr = 0.5 in Firefly.
One major difference with Rehm and McDermott (2009) is that the target variable
c represents a two-dimensional bi-modal field (i.e., burned or non-burned states),
instead of a fire front signed function that takes a given constant value (usually
referred to as the level curve). In this sense, the Firefly simulator is not a proper
level-set-based solver. Still, Firefly shares its Eulerian characteristics and tracks
the location of the fireline, derived a posteriori from the solution c = c(x, y, t) at
time t.

→֒ Basic steps in the numerical resolution

The numerical scheme used to solve Eq. (G.4) relies on a second-order Runge-Kutta
scheme for time-integration and an advection algorithm for spatial discretization
based on a second-order total variation diminishing (TVD) scheme combined with
a Superbee slope limiter (Rehm and McDermott, 2009). This flux-limiting scheme
based on the rate and direction of spread Γ is introduced to preserve monotonicity
of the scalar field c and to avoid spurious oscillations (which could be induced by
the convective terms in the absence of a flux-limiting scheme, when the solution
exhibits discontinuities or sharp variations within the computational domain). The
basic steps of the numerical scheme are listed below.

(1) Computation of the node-centered gradient using a centered finite difference
scheme:

(
∂c

∂x

)t

i,j

=
cti+1,j − cti−1,j

2∆x
,

(
∂c

∂y

)t

i,j

=
cti,j+1 − cti,j−1

2∆y
,

(G.6)

with ∆x a uniform mesh cell size along the x-direction and ∆y its counterpart
along the y-direction, i and j corresponding to the respective mesh index, and
with t the time step index.
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(2) Computation of the unit normal vector (nfr)
t
i,j , corresponding to the normal

direction of the fireline at the grid node indexed by (i, j), using Eq. (G.2) and
Eq. (G.3).

(3) Computation of the spread velocity vector (γ)ti,j using Eq. (G.5).

(4) Determination of the monotonicity preserving scalar gradient ∇ct for the prop-
agating equation with a Superbee slope limiter for the convective terms, at
time t.

(5) Time-integration of the propagating Eq. (G.4), from time t to time (t + 1),
using a second-order Runge-Kutta scheme defined as a linear combination of
two forward Euler steps.

This numerical scheme requires two different computations of the progress variable
gradient ∇c, in step 1 for the determination of the normal vector (nfr)

t
i,j as well

as in step 4 for limiting the gradient of the progress variable c near discontinuities
or sharp variations.

→֒ Calculation of the monotonicity preserving scalar gradient (step 4)

The calculation of the progress variable gradient ∇c at time t is similar to a flux
calculation in fluid mechanics (the time index t is not mentioned in this step for
clarify purposes). The values of the progress variable at the cell boundaries (also
referred to as edges) are calculated to determine the progress variable gradients
(along x- and y-directions) required by Eq. (G.4). The x-gradient is defined in
terms of the East and West values of the progress variable c, while the y-gradient
is defined in terms of North and South values as illustrated in Fig. G.2. Using this
formalism, the x- and y-gradients read:

∂c

∂x
=

ceast − cwest

∆x
=

ci+1/2,j − ci−1/2,j

∆x
, (G.7)

∂c

∂y
=

cnorth − csouth
∆y

=
ci,j+1/2 − ci,j−1/2

∆y
, (G.8)

where the values of the progress variable at each edge of the cell (i, j) are determined
using the slope and local direction of the spread velocity vector γ = [γx, γy]T. The
details for the calculation of ceast, cnorth, cwest and csouth follow. The parameter r
and the Superbee flux limiter B(r), based on Toro (1999) and Rehm and McDermott
(2009), are defined as follows:

r =
δcup
δcloc

, B(r) = max
(
0,min(2r, 1),min(r, 2)

)
, (G.9)

where the subscript up refers to upwind and loc refers to local. The parameter r
represents the ratio of the upwind variations to the local variations; it is used as
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an indicator of the discontinuities in the progress variable field c. Note that, in
practice, r = 0 if δcloc = 0.

"East"

"North"

"West"

"South"

ci, j
ci+1/2, j

ci-1/2, j

ci, j+1/2

ci, j-1/2

Δx

Δy

x

y

Figure G.2: Schematic of the progress variable ci,j at the centered node (i, j) with its
East, North, West and South counterparts corresponding to the cell boundaries.

⊲ East edge

δcloc = ci+1,j − ci,j , δcup =

{
ci,j − ci−1,j for (γx)i,j > 0
ci+2,j − ci+1,j for (γx)i,j < 0

⇒ ceast =

{
ci,j +

1
2 B(r) δcloc for (γx)i,j > 0

ci+1,j − 1
2 B(r) δcloc for (γx)i,j < 0

. (G.10)

⊲ West edge

δcloc = ci−1,j − ci,j , δcup =

{
ci−2,j − ci−1,j for (γx)i,j > 0
ci,j − ci+1,j for (γx)i,j < 0

⇒ cwest =

{
ci−1,j − 1

2 B(r) δcloc for (γx)i,j > 0

ci,j +
1
2 B(r) δcloc for (γx)i,j < 0

. (G.11)

⊲ North edge

δcloc = ci,j+1 − ci,j , δcup =

{
ci,j − ci,j−1 for (γy)i,j > 0
ci,j+2 − ci,j+1 for (γy)i,j < 0

⇒ cnorth =

{
ci,j +

1
2 B(r) δcloc for (γy)i,j > 0

ci,j+1 − 1
2 B(r) δcloc for (γy)i,j < 0

. (G.12)
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⊲ South edge

δcloc = ci,j−1 − ci,j , δcup =

{
ci,j−2 − ci,j−1 for (γy)i,j > 0
ci,j − ci,j+1 for (γy)i,j < 0

⇒ csouth =

{
ci,j−1 − 1

2 B(r) δcloc for (γy)i,j > 0
ci,j +

1
2 B(r) δcloc for (γy)i,j < 0

. (G.13)
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Spread-rate γ
x > 0
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2 B(r)

1
Slope

ceast
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Figure G.3: Schematic of the slope-limiting calculation of cwest and ceast along the
x-direction. Credit: Delmotte et al. (2011).

→֒ Stability condition

The calculation of the monotonicity preserving scalar gradient leads to the following
time-integration of Eq. (G.4) using a second-order Runge-Kutta method (step. 5):

c∗i,j = cti,j −∆t

{
γtx

(
cteast − ctwest

∆x

)
+ γty

(
ctnorth − ctsouth

∆y

)}

⇒ ct+1
i,j =

1

2
cti,j+

1

2

{
c∗i,j −∆t

{
γ∗x

(
c∗east − c∗west

∆x

)
+ γ∗y

(
c∗north − c∗south

∆y

)}}
,

where the time step ∆t is limited by the Courant-Friedrichs-Lewy (CFL) condition.
Because of the accuracy of the numerical scheme in space, the CFL condition for
Firefly is more restrictive:

∆t

(
max(γx)

∆x
+

max(γy)

∆y

)
≤ K, (G.14)

where the value of the parameter K was empirically determined; K = 0.3 ensures
a systematic numerical stability of the numerical scheme (Delmotte et al., 2011).
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G.2 Iso-contour algorithms for front reconstruction

G.2.1 Selection scheme versus projection scheme

Firefly simulations indirectly provide the location of the iso-contour cfr = 0.5,
which is discretized using an iso-contour algorithm by Nfr markers, characterized
by the two-dimensional coordinates [(x1, y1), . . . , (xNfr

, yNfr
)]. This discretization

of the simulated fire front with Nfr markers corresponds to the first step of this
iso-contour algorithm.

Within the framework of data assimilation, the innovation vector df measures the
distance between the simulated (forecast) estimates of the fire fronts and the ob-
servations. Note that the Firefly solver uses a high-resolution computational
grid that allows for a detailed representation of the local conditions. In contrast,
observations of the fire front position are likely to be provided with a much coarser
resolution; in addition, observations may be incomplete and cover only a fraction of
the fire front perimeter. Thus, we may expect the number of observed markers No

fr

to be much lower than Nfr. Thus, the second step in the iso-contour algorithm
(also referred to as mapping) consists in determining the equivalent of the No

fr

observed markers onto the simulated iso-contour cfr = 0.5. The observed markers
are defined as

yo
t =

[
(xo1, y

o
1), (x

o
2, y

o
2), . . . , (x

o
No

fr
, yoNo

fr
)
]
.

This mapping can be simply performed through a selection of the No
fr markers

among the fine-grained discretization of the simulated fire front. In Section 6.4
(Chapter 6), the corresponding selection operator H is simply described as an
operator that takes 1 out of every r markers, with No

fr = (Nfr/r) and r an integer
taking values (much) larger than 1. Figure G.4 is an example of this simple selection
procedure.
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Figure G.4: Calculation of the discrepancies between simulated and observed fire fronts.
In this illustration, r = 4.

However, this selection operatorH may be defined in several ways, for instance using
projection schemes (Rochoux et al., 2010; Delmotte et al., 2011). The objective
of projection schemes is to determine the equivalent of the No

fr observed markers
onto the simulated iso-contour cfr = 0.5, equivalent meaning that the location
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of the No
fr simulated markers is calculated by reconstructing the trajectory of the

observed markers in space and by assuming that discrepancies between observed
and simulated fire fronts are due to a temporal shift. Basically, these projection
schemes are performed by advancing every observed marker i, originally located
at (xoi , y

o
i ), along a specified direction until it reaches the target simulated fire

front cfr = 0.5. The location at which this observed marker crosses cfr = 0.5
is its equivalent simulated location (xi, yi). This projection requires two elements:
(1) the choice of the projection direction, and (2) a convergence criterion to ensure
that the target cfr = 0.5 is reached.

G.2.2 Selected schemes for projection

Two different projection schemes could be considered: (1) a progressive scheme
that updates the projection direction at each step of the projection and thereby,
accounts for the variations of the observed fire front topology over the fire duration
(see Fig. G.5); and (2) a direct scheme that projects the observed markers along a
constant direction corresponding to the normal direction to the observed fire front
yo
t (see Fig. G.6). These two algorithms differ in their choice of the projection

direction. A brief technical description follows.

⊲ Progressive projection scheme. The markers of the observed fire front yo
t

are projected step-by-step towards the simulated fire front cfr = 0.5. For each
observed marker, each step can be divided into three stages:

(i) the calculation of the normal direction no
p at the location of the observed

marker: the projection direction is updated at each step as the local normal
direction no

p to the segment crossing the adjacent projected markers;

(ii) the translation of the marker along the projection direction no
p by a user-

defined spatial shift ∆r (see Fig. G.5);

(iii) the interpolation of the value of the simulated progress variable c at the loca-
tion of the translated observed marker to check if the simulated iso-contour
cfr = 0.5 is found.

This iterative scheme ends when the reconstructed trajectory of the observed mark-
ers crosses the isoline cfr = 0.5 (i.e., when c changes from 0.5− to 0.5+, or
vice versa). Note that this type of projection guarantees the equivalence between
(xoi , y

o
i ) and its image (xi, yi) for each observed marker i = 1, · · · , No

fr, since it
reconstructs the time-history of the location of the marker i and indirectly, accounts
for the local environmental conditions during the fire event. However, the definition
of the successive normal directions no

p along the projection trajectory is a difficult
task, especially for a small amount of observed markers (i.e., for a coarse resolution
of the observations).
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Figure G.5: Schematic of the progressive projection scheme. Illustration of the projection
of the observed marker i located at (xo
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o
i ) onto the iso-contour cfr = 0.5 to determine

the location of its equivalent simulated marker (xi, yi) through the update of the local
normal direction no
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Figure G.6: Schematic of the direct projection scheme. Illustration of the projection of
the observed marker i located at (xo

i , y
o
i ) onto the iso-contour cfr = 0.5 to determine

the location of its equivalent simulated marker (xi, yi) through the translation along the
constant normal direction no

c .
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⊲ Direct projection scheme. The markers of the observed fire front yo
t are directly

projected onto the simulated fire front cfr = 0.5, following the normal direction
to the observed fire front noted no

c . This implies that there is no update of the
projection direction, while the observed markers are projected towards cfr = 0.5.
This projection direction is maintained constant and therefore does not depend on
the time-history of the topology of the observed fire front. Thus, this projection
scheme can be regarded as a translation of the observed markers along the constant
direction no

c as illustrated in Fig. G.6.

In summary, these projection schemes perform the projection of the observed mark-
ers onto the simulated iso-contour cfr = 0.5. The simplifications underlying the
direct projection scheme may introduce some errors in the evaluation of the dis-
tance between simulated and observed fire fronts, especially when they are far from
each other. However, it is less computationally expensive than the progressive pro-
jection scheme (since it avoids the update of the projection direction at each step
and for each observed marker). Besides, within the framework of data assimilation,
simulated fire fronts are expected to remain nearby the observed fire front due to
the frequently-renewed data assimilation.

These two projection schemes were compared for the estimation of the proportion-
ality coefficient P in the Rothermel’s ROS formulation (n = 1), using the extended
Kalman filter without outer-loop presented in Section 5.6 (Chapter 6). Firefly
simulates a fire spread during 800 s (with a constant time step ∆t = 0.5 s), over
a horizontal fuel layer of dimension 200 m × 200 m (with a uniform grid cell size
∆x = ∆y = 1 m) and characterized by a random distribution δv(x, y). There is
no external flow (uw = 0). An anisotropic propagation is obtained, even though P
is uniform and constant over the fire duration. The true trajectory of the fire front
associated with xt = P t = 0.1 s−1 is presented in Fig. G.7.
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Figure G.7: Time-evolving location of the true fire front, each 100 s from t = 100 s to
t = 800 s, associated with the true control parameter P t = 0.1 s−1.
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The analysis P a is performed for different prior values P f ranging from 0.02 to
0.18 m/s; the associated error STD σf = P f − P t varies therefore from −80 % to
+80 % of the true value P t. The observed fronts are discretized with 50 markers
at 100 s intervals; observation errors are small. EKF-based results are presented in
Table G.1 for a reaction-diffusion solver1 and the current Firefly level-set solver.

Table G.1: Comparison of EKF-based results for progressive and constant projection
schemes as well as for the simple selection scheme. These results are obtained for a wildfire
spread model based on a reaction-diffusion equation (rd) or the level-set propagating
equation (ls). The control parameter is the proportionality coefficient P and its true value
is P t = 0.1 s−1.

Prior P f Analysis P a

Progressive (rd) Direct (rd) Direct (ls) Selection (ls)
0.02 (−80 %) 0.1106 0.1166 0.0970 -
0.07 (−30 %) 0.0995 0.1001 0.1010 0.1000
0.13 (+30 %) 0.1000 0.0993 0.1002 0.0999
0.18 (+80 %) 0.1033 0.0999 0.1010 0.0999

Results show that the different projection schemes provide consistent analyses P a

that retrieve the true ROS value for a large range of perturbations. Thus, projection
schemes appear as a promising approach for properly capturing the topology of the
fire front along with the heterogeneities of wildfire spread and thereby, for applying
data assimilation to wildfire spread. Still, the data assimilation results presented
in this manuscript rely on the selection scheme (presented in Fig. G.4), since this
scheme is computationally efficient and exhibits a sufficient accuracy for exploring
which data assimilation algorithm is the most adequate for wildfire spread forecast.
Besides, further investigations (out of the scope of this work) are required to extend
the projection schemes and to optimize their algorithms for tracking more complex
fire front topology.

1Preliminary developments of Firefly presented in previous works, Rochoux et al. (2010) and
Delmotte et al. (2011), were based on a reaction-diffusion equation for tracking wildfire spread,
instead of a level-set-based propagation equation.
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G.3 Treatment of wind- and slope-induced wildfire
spread

This section briefly explains how a complex terrain topography is accounted for in
the Firefly wildfire spread simulator. A two-dimensional description of the time-
evolving location of the fire front is maintained by projecting the three-dimensional
propagation onto the horizontal plane (x, y). This formalism induces modifications
in the Rothermel’s ROS model, since the original formulation involving the wind
and slope correction coefficients φ∗

w and φ∗
s (see Appendix A) describes the ROS

Γ in the upslope direction only. More details on these modifications are provided
in Emery et al. (2013), largely inspired from references due to Sharples (2008) and
Lautenberger (2013).

G.3.1 Mathematical variables describing the terrain topography

A rectangular Cartesian coordinate system R(x0, y0, z0) is introduced. The x0-
direction is the horizontal direction pointing towards the East and the y0-direction
towards the North; the z0-direction is the vertical direction. This reference frame is
illustrated in Fig. G.8. The downslope direction is described by the topographical
aspect angle αa, defined in a clockwise representation, where 0◦ indicates the
North direction (i.e., the y0-direction). The reference frame around the axis z0 by
the angle (αa + 180◦) defines the aspect frame noted Ra(xa, ya, z0), where the
xa-direction indicates the normal to the slope direction in the horizontal plane and
the ya-direction indicates the uphill direction. The slope frame Rsl(xa, ysl, zsl) is
defined as the rotation of the aspect frame Ra(xa, ya, z0) around the axis xa, with
the slope angle αsl; αsl takes values between 0◦ (flat terrain) and 90◦ (vertical
wall). In this slope frame, ysl indicates the upslope direction, while zsl indicates
the normal direction to the slope plane. Thus, any terrain topography can be locally
characterized by the pair of aspect and slope angles noted (αa, αsl).

G.3.2 Adaptation of the Rothermel’s spread-rate model to com-
plex terrain topography

A two-dimensional modification of the slope contribution to the ROS due to Rother-
mel was proposed by Lautenberger (2013) to account for wildfire spread in other
directions than the uphill direction. The direction of fire spread is noted αfr and the
new slope correction coefficient in the modified Rothermel’s formulation (in con-
trast to the original slope correction coefficient φ∗

sl) is noted φsl. This modification
relies on the assumptions listed below.

⊲ When the wildfire propagates in the upslope direction (i.e., αfr = αa+180◦),
the slope contribution to the ROS is maximal and therefore, φsl = φ∗

sl.

⊲ If this wildfire propagation occurs in the normal direction to upslope or downs-
lope (i.e., αfr = αa±90◦), the slope does not contribute to the propagation,
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Figure G.8: Three-dimensional reference frames to describe terrain topography.

implying φsl = 0.

⊲ If the wildfire propagates in the downslope direction implying that the di-
rection of the fire spread satisfies αfr ∈ [αa − 90◦;αa + 90◦], an arbitrary
treatment is required for the slope correction coefficient φsl. Since it is com-
monly assumed that a fire cannot spread at a lower ROS than the no-slope
no-wind ROS Γ0, the ROS Γ is forced to the value Γ0 for a downslope con-
figuration.

These assumptions for the no-wind ROS ΓRsl
are reformulated as follows:

ΓRsl
= Γ0 max

(
1, 1 + cos (αfr − αa − π) φ∗

sl︸ ︷︷ ︸
φsl

)
. (G.15)

ΓRsl
corresponds here to the evaluation of the ROS in the slope frame and this

value must be projected onto the horizontal reference frame R(x0, y0, z0) to obtain
Γ = ΓR, the main physical quantity in Firefly. This projection is explained in
detail in the following.

Figure G.9 shows the variations of the slope-aided ROS Γ evaluated using Eq. (G.15),
with respect to the slope angle αsl for different aspect angles αa varying between
0◦ (dark-blue-plain line) and 90◦ (brown-plain line). For αa = 0◦, the fire spreads
in the upslope direction with a ROS reaching up to 1 m/s for a slope angle αsl
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above 65◦; the effect of the slope is considerable since the ROS Γ can be multiplied
by a factor up to 25 compared to the no-slope no-wind ROS Γ0 = 0.048 m/s. To
the contrary, for αa = 90◦, the fire propagates in the transverse direction to the
slope, implying that the slope does not modify the ROS and Γ = Γ0 = 0.048 m/s.
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Figure G.9: Slope-aided ROS Γ with respect to the slope angle αsl for different val-
ues of the aspect angle αa (represented by the colormap) for a plane configuration and
Γ0 = 0.048 m/s. Credit: Emery et al. (2013).

G.3.3 Combined wind and slope effects

In addition to the slope correction coefficient φsl, Lautenberger (2013) proposed
a new formulation of the wind correction coefficient noted φw in the modified
Rothermel’s formulation (in constrast to the original wind correction coefficient φ∗

w).
The wind angle is noted αw in the reference frame R(x0, y0, z0) and is defined in
the horizontal plane, starting from the North direction and turning clockwise around
the axis z0. Attention must be paid here since the wind angle αw represents the
direction from which the wind blows, implying that the wind velocity vector is
provided in the direction (αw + π) in this new formalism. Figure G.10 provides
a representation of the topographical aspect angle αa and wind angle αw in the
horizontal plane to clarify these notations. Besides, Fig. G.11 represents the wind
blowing direction in both the horizontal plane and projected onto the slope frame.
The wind velocity vector is assumed to be provided in the slope frame in Firefly,
since available meteorological data account for the effects of the terrain topography
onto the surface wind conditions.

The Rothermel’s formulation of the wind- and slope-aided ROS ΓRsl
becomes:

ΓRsl
= Γ0max

(
1, 1+cos(αfr − αw − π)φ∗

w︸ ︷︷ ︸
φw

+cos(αfr − αa − π)φ∗
s︸ ︷︷ ︸

φsl

)
. (G.16)

As stated previously, ΓRsl
is the ROS defined with respect to the environmental
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conditions in the slope frame Rsl(xa, ysl, zsl). This ROS must be now projected
onto the two-dimensional reference frame to be combined with the level-set solver
in Firefly. This is the purpose of the next section.
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Figure G.10: Representation of the topographical aspect angle αa and the wind angle
αw in the horizontal reference frame R(x0, y0, z0).
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G.3.4 Projection onto the horizontal plane

The wind correction coefficient φw in Eq. (G.16) differs from the one implemented in
Firefly as described in Chapter 6. The wind correction coefficient φ∗

w is calculated
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with two different approaches: the wind velocity vector is projected onto the normal
direction to the front nfr in Chapter 6 and the resulting wind magnitude uw (i.e.,
the input of the Rothermel’s ROS) is used to evaluate φ∗

w. This approach is referred
to as the Firefly classical approach. On the other hand, the input parameter uw
of the Rothermel’s model is taken directly as the wind velocity vector to calculate
φ∗
w and thereby, the modified coefficient φw in Eq. (G.16) in Lautenberger (2013).

This approach is referred to as the Lautenberger approach. Figure G.12 compares
these two approaches in terms of simulated fire fronts for a wind blowing from the
South-West direction at 0.75 m/s. These results show that these approaches have
a significant impact on the topology of the front at the head of the fire. However,
further investigations (out of the scope of this work) are required to assess which
formulation of the wind correction coefficient φ∗

w is the most consistent with the
dynamics of wildfires. The results presented in this work are obtained using the
classical Firefly approach, unless mentioned otherwise.
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Figure G.12: Time-evolving location of the simulated fire fronts each 100 s on a flat
terrain with a South-West blowing wind (αw = 225◦). Left: Firefly classical approach.
Right: Lautenberger approach.

The ROS in Eq. (G.16) is defined in the slope frameRsl. Representing the simulated
fire fronts in a three-dimensional viewpoint would imply adding the z-coordinate
in the description of the fire fronts and thereby, increase the size of the state and
control vectors within the data assimilation framework. This would translate into
an additional computational cost (due partly to the increased size of the error
covariance matrices), which is not affordable for real-time wildfire spread forecast.
For the purpose of data assimilation, we therefore adopt a strategy consisting in
projecting the ROS ΓRsl

onto the reference frameR(x0, y0, z0), in order to simulate
the propagation of the fire fronts onto the horizontal plane. Thus, the definition
of data assimilation variables remain limited to the two-dimensional x- and y-
coordinates as explained in Chapter 6. Based on geometrical considerations (Emery
et al., 2013), the projected ROS Γ reads:

Γ = ΓRsl

(√
1 + tan2(αsl) cos2(αa − αfr)

)−1

, (G.17)
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where αfr indicates the direction of wildfire spread, consistently represented by the
normal direction to the fire front nfr.

→֒ Altimetric data

The terrain topography is specified in Firefly as altimetric data h(x, y), i.e., as
the topographic elevation h at specified grid nodes (xh, yh) that are interpolated on
the Firefly computational grid. This interpolation step is required since altimetric
data are mostly provided with a much coarser resolution than the spatial resolution
required by Firefly. Vico and Porporato (2009) proposed to reconstruct the slope
aspect αa(x, y) and angle αs(x, y) from altimetric data h(x, y) as follows:

tanαsl =

√(
∂h(x, y)

∂x

)2

+

(
∂h(x, y)

∂y

)2

(G.18)

(
sinαa

cosαa

)
= − 1

tanαsl




∂h(x, y)

∂x
∂h(x, y)

∂y


 . (G.19)

The calculation of the gradient of the topographic elevation h(x, y) is performed
through a classical centered finite difference scheme.

G.3.5 Validation of the modified Rothermel’s rate of spread

A series of three test cases is presented to illustrate the effects of a non-uniform
terrain topography on the ROS and on the shape of the fire front as simulated by
Firefly using the Lautenberger approach. This terrain topography corresponds
to (1) a slope plane, (2) a canyon, and (3) a complex non-uniform elevation h(x, y)
in a mountainous region.

→֒ Fire propagation on a slope plane

The slope-plane fire spread is simulated within a uniform vegetal fuel layer char-
acterized by a fuel depth δv = 1 m, a fuel moisture content Mv = 15 % and a
fuel particle surface-area-to-volume ratio Σv = 11500 m−1. The terrain is a simple
slope plane, tilted by αsl = 15◦ with respect to the horizontal plane, whose aspect
angle is αa = 225◦ and whose dimensions are 600 m×600 m (with a mesh stepsize
∆x = ∆y = 1 m). The initial condition is described by a circular front centered
in (x0 = 300 m, y0 = 300 m) and of radius r0 = 5 m; there is no external flow
(uw = 0). Firefly is integrated during 1000 s (with a time step ∆t = 0.5 s).
Results presented in Fig. G.13 show that the slope induces a constant upslope prop-
agation, while the spread of the back of the fire remains very limited. The effective
simulated ROS of the head of the fire is diagnosed a posteriori and is equal to
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0.264 m/s, which is consistent with the theoretical value 0.261 m/s provided by
Eq. (G.16)/(G.17). The no-slope ROS Γ0 is equal to 0.068 m/s; the slope induces
a propagation that is four times faster than in a no-slope configuration.

0
60

120
180

240
300

360
420

480
540

600

0
60

120
180

240
300

360
420

480
540

600
100

0

100

200

x (m)y (m)

0 60 120 180 240 300 360 420 480 540 600
0

60

120

180

240

300

360

420

480

540

600

x (m)
y
 (

m
)

(a) (b)

Slope plane

x [m]

y [m]

x [m]

y [m]

x
0

y
0

y
a

x
aα

a

Figure G.13: Time-evolving location of the simulated fire fronts each 100 s on a slope
plane with the topographical aspect angle αa = 225◦. (a) Three-dimensional represen-
tation. (b) Projected representation (onto the horizontal plane). Credit: Emery et al.
(2013).

→֒ Fire propagation in a canyon

A canyon (illustrated in Fig. G.14) is the combination of two planes (P1) and (P2)
of respective aspect angle αa,1 and αa,2 and of respective slope angle αsl,1 and
αsl,2. The intersection between these two planes is a line of aspect angle αc in the
reference frameR(x0, y0, z0), which can also be tilted with respect to the horizontal
plane with a slope angle αsl,c. More details on the mathematical description of a
canyon is provided in Emery et al. (2013). To guarantee a realistic description in
Firefly, the user must specify the values of the angles αc, αsl,c, αsl,1 and αsl,2

with the following constraints:




αc ∈ ]−90◦; 90◦[ ,

αsl,c ∈ [0◦,min(αsl,1, αsl,2)] ,

αsl,1, αsl,2 ∈ [0◦, 90◦[ .

(G.20)

These constraints determine a unique pair of aspect angles (αa,1,αa,2) for the two
slope planes, which satisfies the following conditions:

αc − π ≤ αa,1 ≤ αc, αc ≤ αa,2 ≤ αc + π. (G.21)

The canyon configuration tends asymptotically to a plane configuration when the
slope angles αsl,1 and αsl,2 converge towards αsl,c, meaning that the resulting
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slope plane is defined by the slope angle αsl = αsl,c and by the aspect angle
αa = αc ± 180◦.
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Figure G.14: Definition of a canyon terrain. (a) Three-dimensional viewpoint. (b)
Representation of the aspect angles in the horizontal reference frame R(x0, y0, z0).

The simulation of a fire spread in a canyon is performed with Firefly, considering
the same uniform vegetation as in the slope plane case without external flow (uw =
0). The initial circular front is centered at (x0 = 300 m, y0 = 300 m) and its radius
is r0 = 5 m. Firefly is integrated during 200 s (with a time step ∆t = 0.5 s) and
provides the propagation of the fire fronts in the canyon corresponding to αc = 0◦,
αsl,c = 15◦, αsl,1 = αsl,2 = 25◦ and αa,1 = −αa,2 = −125.1◦. These fronts are
represented every 20 s in Fig. G.15 and show that the highest values for the ROS
are, consistently, in the directions of steepest ascent (i.e., upslope the planes (P1)
and (P2)). No significant fire propagation is found in the downslope direction, i.e.,
at the rear of the fire.
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→֒ Fire propagation on a complex terrain topography

A simulation of wildfire spread induced by a complex terrain topography illus-
trated in Fig. G.16 is performed for moderate wind conditions characterized by
uw = 0.75 m/s and αw = 315◦. The vegetation is uniformly distributed over the
200 m × 200 m computational domain, in particular the vegetation layer depth is
δv = 1 m, the fuel moisture content is Mv = 20 % and the fuel particle surface-
area-to-volume ratio is Σv = 10000 m−1.

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

20

0

20

40

60

x (m)
y (m)

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

20

0

20

40

60

x (m)
y (m)

x [m] x [m]

y [m] y [m]

h [m]

(a) (b)

h [m]

Figure G.16: Altimetric data. (a) Reference data (database). (b) Interpolation of refer-
ence data h(x, y) on Firefly mesh grid.

The initial circular front is centered at (x0 = 100 m, y0 = 100 m) and its radius is
r0 = 5 m. Firefly is integrated during 1500 s, providing, every 75 s, the simulated
fire front discretized with Nfr = 2000 markers. Figure G.17 illustrates the growth
of the burnt area over time. Even though validating the physical consistency of
the Firefly simulator for the treatment of wind and slope effects is difficult, this
simulation corresponds to the main features of wildfire spread commonly used in
the fire research field. The fastest ROS is reached upslope (the slope effect is
high compared to the moderate wind effect, partly due to the high topographical
elevation in one corner of the computational domain).
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Figure G.17: Growth of the burnt area from t = 0 s to t = 1500 s simulated with Firefly
over a complex terrain topography; horizontal wind conditions with uw = 0.75 m/s and
αw = 315◦. Credit: Emery et al. (2013).





Appendix H

Application of particle filters

to regional-scale wildfire

spread

Particle filters, also known as sequential Monte Carlo filters, are consid-
ered as a more general solution to the Bayesian filtering problem than the
Kalman filter and its extensions. From a theoretical viewpoint, it is not
limited by linear and Gaussian error statistics assumptions as Kalman fil-
tering and thereby, provides a complete description of the PDF through a
point-mass representation (i.e., particles). In contrast, error statistics in
Kalman filtering are represented through an error covariance model and are
therefore limited to the second-order moments of the PDF.

The potential of particle filters for wildfire spread forecast was explored
in this thesis within the framework of a collaboration between CERFACS
(France), Mines Albi (France) and the Federal University of Rio de Janeiro
(Brazil), in particular through a common research project with Wellington
da Silva. This work led to the following publications da Silva et al. (2014,
HTHP) and da Silva et al. (2013, IPDO).

In this appendix, the objective is to summarize the main ideas developed in
this work on particle filters for wildfire spread and to provide the most recent
study presented in da Silva et al. (2013, IPDO) at the 4th International
Symposium on Inverse Problems, Design and Optimization (IPDO).

Summary

The purpose of this work is to show the capability of particle filters (see Section 5.7,
Chapter 5) for improving wildfire spread simulation and forecast accuracy. This im-
provement is obtained through the sequential correction of input parameters in
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the rate of fire spread (ROS) model as new observations become available. The
performance of the Sequential Importance Resampling (SIR) and Auxiliary Sequen-
tial Importance Resampling (ASIR) algorithms is evaluated for a real-world case
study corresponding to the controlled grassland fire experiment (see Section 6.3,
Chapter 6).

da Silva et al. (2014, HTHP) proposed a two-parameter estimation, in which
the estimation targets (the control vector) includes the fuel moisture content Mv

and the fuel particle surface-area-to-volume ratio Σv with x = [Mv, Σv]. This
estimation problem therefore assumed that the main uncertainties are related to
vegetation properties; the wind properties were assumed constant over the fire
duration, and measurements were assimilated at 14 s time intervals (as for the
comparison between the EnKF-based parameter and state estimation approaches
presented in Section 7.3, Chapter 7). Both SIR and ASIR algorithms are found
to sequentially track the propagation of the observed fire fronts. As the Kalman
filter and its extensions (see Chapter 7), particle filters suffered in this study from
the equifinality issue (also referred to as sample variability), since they did not
manage to converge towards a unique solution for the set of control parameters (in
the parameter space). Several sets of control parameters lead indeed to the same
simulated fire front close to the observations (the error statistics in the observation
space are converged). Still, it was shown that the ASIR algorithm retrieves more
certain values of the parameters (with a narrower 99 %-confidence interval) than
the SIR algorithm at a lower computational cost.

Since the sample variability may be reduced by including more sources of uncer-
tainties in the Bayesian filtering procedure, da Silva et al. (2013, IPDO) added
the wind magnitude uw to the fuel moisture content Mv and the fuel surface-area-
to-volume ratio Σv in the control vector for the same controlled grassland burning
experiment (with assimilation at 28 s time intervals), i.e., x = [Mv, Σv, uw]. This
study showed that controlling the wind magnitude allowed to track the observed
fire front further in time. The estimation of uw was validated against independent
in-situ wind measurements and features a reduced scatter of the analysis estimates
in comparison to the 2-parameter estimation study. Still, the estimation of Mv and
Σv remained consistent with the results presented in da Silva et al. (2014, HTHP),
showing that the analysis estimates provide physical values for the uncertain en-
vironmental conditions. Note that the polynomial chaos (PC) strategy presented
in Section 7.2.3 (Chapter 7) is also considered as a promising approach to limit
the computational cost of particle filters (based on Monte Carlo sampling as the
ensemble Kalman filter).
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Abstract 

This paper demonstrates the capability of particle filters to combine measurements to model 

simulations along with their uncertainties, in order to formulate some feedback information on the 

uncertain model variables and thereby, improve the simulation forecast in moving frontier problems such 

as wildfire spread. Sequential Importance Resampling (SIR) and Auxiliary Sequential Importance 

Resampling (ASIR) filters were built on top of a level-set based front-tracking simulator in order to 

assimilate the time-evolving location of the fire front. This work focuses primarily on the uncertainty in 

the input parameters of the fire spread-rate model (characterizing the vegetation properties and the wind 

conditions) and considers those as the main source of errors in the simulated front positions, neglecting 

simplifications in the fire spread model structure. The good performance of the SIR and ASIR filters for 

the sequential estimation of the input model parameters is illustrated for a controlled grassland burning 

experiment; results indicate that the ASIR filter is able to track the observed fire fronts at the expense of 

a reasonable computational cost in comparison to the SIR filter.  

 

 

Introduction 

Because wildfire spread is a complex multi-physical multi-scale problem, our ability to predict the 

behavior of wildfires at large regional scales (i.e., at scales ranging from a few tens of meters up to 

several kilometers) remains limited [1]. The propagation speed of wildfires, also called the Rate Of 

Spread (ROS), is modeled in current wildfire spread simulators as a semi-empirical function of a reduced 

number of parameters that locally characterize the vegetation properties, the weather conditions and the 

terrain topography [2,3]. In such simulators, the wildfire spread is described as a front propagating 

towards the unburned vegetation (fuel) at the ROS that is relevant to the local conditions, using a 

standard level-set or Lagrangian front-tracking technique. The input model parameters are not easily 

measurable and are therefore embedded with significant levels of uncertainties. For the wildfire spread 

simulation to be predictive and compatible with operational applications, these uncertainties need to be 

quantified and reduced. For this purpose, an inverse modeling approach, based on particle filters for the 

solution of a state estimation problem, is proposed in this study.  

State estimation problems consist in using the available measurements together with prior knowledge 

about the physical phenomena and the associated uncertainties, in order to sequentially produce more 
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accurate estimates of the dynamic variables of interest. Such problems can be solved using the Bayesian 

filtering approach to statistics [4-8].  

The Kalman filter and its extensions [4,7] are widely used in geosciences in fields like hydrology or 

oil reservoir modeling. However, this filter is limited to linear models and Gaussian assumptions 

regarding the statistical description of errors; the quality of its feedback correction can be indeed 

significantly degraded in cases involving high non-linearities and non-Gaussian error statistics. Since 

particle filters do not make assumptions on the linearity of the model or the form of the statistical errors 

in their general formulation, they appear as a promising alternative in those cases [8,9]. The idea behind 

the Sequential Importance Sampling (SIS) technique was to describe the Probability Density Function 

(PDF) of the control variables as a set of random particles (prior); each particle was then associated with 

a weight that was calculated using the measurements along with their uncertainties; the values of the 

particles and their associated weights allowed a more accurate PDF (posterior) to be retrieved. To avoid 

the degeneracy problem (i.e., to avoid that only a few particles participate effectively in the filtering 

process), Gordon et al. [10] added a resampling approach into the SIS filter. Resampling can be either 

applied if the number of effective particles falls below a specified threshold number, or at every step in a 

technique known as the Sequential Importance Resampling (SIR) filter. A large number of recent studies 

have highlighted the performance of the SIR filter over a wide range of applications [11]. Despite these 

applications, the SIR filter remains computationally intensive, as a large number of particles are required 

to obtain a complete and accurate statistical description of the control variables. In order to overcome 

these difficulties, Pitt and Shephard [12] introduced the auxiliary particle filters, whose main idea is to 

improve the prior information by using an additional set of particles (called auxiliary particles), so as to 

reduce the computational cost without degrading the accuracy of the result. In this perspective, Silva et 

al. [13] applied the Auxiliary Sequential Importance Resampling (ASIR) filter to solve a non-linear 

solidification problem, where simulated temperature measurements were used to estimate a transient line 

heat sink as well as the solidification front. Colaço et al. [14] compared the performance of the SIR and 

ASIR filters in the estimation of the heat flux applied to a square cavity in a natural convection problem; 

this study showed excellent estimates for the time variation of the unknown quantity. Also, the sequential 

propagation of modeling errors was studied to improve the choice of the particles at the next observation 

time (i.e., at the next assimilation cycle), in particular in the case of combined parameter/state estimation 

[8,15].  

The application of inverse methods in the context of fire modeling has been considered only recently 

[16-18]. Gu [17] applied the SIR algorithm to synthetic cases of wildfire spread, in order to estimate 

average wind magnitude or wind direction of a semi-empirical model in the fire area using ground-based 

temperature sensor data.  

The objective of this paper is to address the challenges specific to the development of a robust inverse 

modeling approach for realistic wildfire spread. While the preliminary approach adopted in Rochoux et 

al. [18] did provide good results, since data assimilation is to be applied to more realistic cases (i.e., to 

large regional-scale fires that are strongly coupled to atmospheric dynamics), it should be able to deal 

with heterogeneous vegetation properties as well as non-constant wind direction and magnitude. To 

better take into account the underlying model non-linearities and thus to provide a more accurate 

posterior distribution of the control parameters, we propose here a particle filter strategy based on the 

assimilation of the time-evolving fire front locations and the front-tracking fire spread simulator 

FIREFLY as in Ref. [18].  
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1. Physical problem and mathematical formulation 

The propagation of wildfires results from complex interactions between pyrolysis, combustion, heat 

transfer and flow dynamics, and atmospheric dynamics. These interactions occur over a wide range of 

scales: vegetation scales that characterize the biomass fuel; topographical scales that characterize the 

terrain and vegetation boundary layer; and meteorological micro-/meso-scales that characterize 

atmospheric conditions. As in current operational wildfire spread models [3], we adopt in this study a 

regional-scale perspective and simulate a wildfire as a thin flame zone (i.e., as a front) that self-

propagates normal to itself towards unburned vegetation. In this representation, the main quantity of 

interest is the ROS, which is the local propagation speed of the front.  

In this approach based on Rothermel’s model [2], the ROS is formulated as an empirical function of a 

reduced number of parameters that locally characterize the vegetation (fuel) properties, the weather 

conditions and the terrain topography. The local ROS, denoted as Γ [m/s], can be written as [2] 
 

 ! = !(x, y, t) = P M
v
,"

v
,u

w
(x, y, t)( )!v (x, y)  (1) 

 

where δv [m] is the fuel depth (e.g., the vegetation layer thickness) and P [1/s] is a function of the fuel 

moisture content Mv (mass of water divided by mass of dry fuel), the fuel particle surface-area-to-volume 

ratio Σv [1/m], and the wind velocity (at mid-flame height) uw [m/s], among others. In this paper, Mv, Σv, 

and δv are treated as spatially-uniform parameters. Note that uw corresponds to the wind velocity vector 

(defined by the wind velocity magnitude mw and direction dw) projected along the normal direction to the 

front n = n(x,y,t), meaning that uw is a time-varying two-dimensional field. 

In the FIREFLY simulation capability, the propagation of the fire front at the ROS given by Eq. (1) is 

simulated using a standard level-set front-tracking technique [18]. A progress variable noted c is 

introduced as a flame marker, so that: c = 0 in the unburned vegetation, c = 1 in the burnt vegetation; and 

the flame front is identified by the two-dimensional isocontour c = 0.5, as shown in Fig. 1.  

 

 

Figure 1: Schematic of the fire propagation model: (a) 2-D surface fire spread at the ROS Γ along the 

normal direction n to the front (b) Profile of the progress variable c throughout cf = 0.5.  

 

The flame front locations are reconstructed using the two following steps: 

i) The spatio-temporal evolution of the progress variable c = c(x,y,t) is calculated as a solution of the 

following propagation equation using the ROS model (1): 
 

  !c

!t
= ! |"c |,  (2) 

 

c = 1!

c = 0!

fire front!

Rate of spread!

Burned vegetation 

(c = 1) 

Unburnt vegetation (c = 0)!

cf = 0.5!

2-D computational domain!

(a)! (b)!

Γ

n
Γ

cf = 0.5!

(xf ,yf)!
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with Γ the ROS (m/s) along the normal direction n to the isocontours of the progress variable c. 

Equation (2) is solved using a second-order Runge-Kutta scheme for time-integration and a 

second-order total variation diminishing scheme with a Superbee slope limiter [18] for spatial 

discretization.  

ii) The instantaneous position of the fire front (xf, yf) is extracted using a simple isocontour algorithm, 

verifying c(xf, yf, t) = cf  with cf = 0.5. 

 

 

 2. State estimation problem 

State estimation problems, also designated as nonstationary inverse problems [5], are of great interest 

in innumerable practical applications. In such problems the available measured data is used together with 

prior knowledge about the physical phenomena and the measuring devices, in order to sequentially 

produce estimates of the desired dynamic variables. This is accomplished in such a manner that the error 

is minimized statistically.  

Consider a model for the evolution of the state variables x in the form: 
 

( )1
,x f x v

k k k k−
=                                                                                                                          

 (3) 
 

where f is, in the general case, a non-linear function of x  and of the state noise or uncertainty vector 

given by vk ∈ R
n
. The vector xk ∈ R

n
 is called the state vector and contains the n variables to be 

dynamically estimated. This vector advances in time in accordance with the state evolution model (3). 

The subscript k = 1, 2, 3, …, denotes a time instant tk. 

The observation model describes the dependence between the state variables x to be estimated and the 

measurements z
obs

 through the general, possibly non-linear, function h. This can be represented by: 
 

z
k

obs
=h

k
x
k
,n

k( )                                                                
(4) 

 

where zk
obs 
∈ R

nz

 
are available at times tk. Equation (4) is referred to as the observation/measurement 

model. The vector nk∈R
nz

 represents the measurement noise or uncertainty. The evolution and 

observation models given by Eqs. (3) and (4) are based on the following assumptions [5,8,9]: 
 

 

(a) The sequence xk for k = 1, 2, 3, …, is a Markovian process, that is, 
 

! x
k
x
0
,x
1
,…,x

k!1( )=! xk xk!1( )                                                          (5.a) 

 

 

(b) The sequence zk
obs

 for k=1, 2, 3, …, is a Markovian process with respect to the history of xk,  
 

! z
k

obs
x
0
,x
1
,…,x

k( )=! z
k

obs
x
k( )                                         (5.b) 

 

 

(c) The sequence xk 
depends on the past observations only through its own history, that is,  

 

! x
k
x
k!1
,z
1

obs
,z
2

obs
,…,z

k!1

obs( )=! xk xk!1( )                                                          
(5.c)

 
 

where π(a|b) denotes the conditional probability of a when b is given. For the state and observation 

noises, the following assumptions are made [5,8,9]: 
 

(a) For i≠j, the noise vectors vi and vj, as well as ni 
and ni, are mutually independent and also mutually 

independent of the initial state x0. 
 

(b) The noise vectors vi and nj are mutually independent for all i and j.  
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Different problems can be considered for the evolution-observation models described above, such as 

[5,8,9]: 

(i) The prediction problem, in which the objective is to obtain π(xk| 1: 1

obs

k−
z ); 

 

(ii) The filtering problem, in which the objective is to obtain π(xk| 1:

obs

k
z ); 

 

(iii) The fixed-lag smoothing problem, in which the objective is to obtain π(xk| 1:

obs

k p+z ), where p≥1 is 

the fixed lag. 
 

(iv) The whole-domain smoothing problem, in which the objective is to obtain π(xk| 1:

obs

K
z ), where 

1:

obs

K
z

={ obs

i
z ,i=1,...,K} is the complete set of measurements. 

 

We consider here the filtering problem. By assuming that π(x0| 0

obs
z )= π(x0) is available, the posterior 

probability density π(xk| 1:

obs

K
z ) is then obtained with Bayesian filters in two steps [5,8,9]: prediction and 

update. The most widely known Bayesian filter method is the Kalman filter [5,6,8,9]. However, the 

application of the Kalman filter is limited to linear models with additive Gaussian noises. Extensions of 

the Kalman filter were developed in the past for less restrictive cases by using linearization techniques. 

Similarly, Monte Carlo methods have been developed in order to represent the posterior density in terms 

of random samples and associated weights. Such Monte Carlo methods, usually referred to as particle 

filters among other designations found in the literature, do not require the restrictive assumptions of the 

Kalman filter. Hence, particle filters can be applied to non-linear models with non-Gaussian errors 

[5,6,8,9]. 

The idea in particle filters is to represent the required posterior density function by a set of random 

samples with associated weights and to compute the estimates based on these samples and weights 

[5,8,9]. Let  {x
i
k, i=0,...,N} be the particles with associated weights {w

i
k, i=0,...,N} and x0:k={xj, j=0,...,k} 

be the set of all states up to tk, where N is the number of particles. The weights are normalized, so that 

Σi w
i
k=1. Then, the posterior density at tk can be discretely approximated by: 

 

! x
0:k
z
1:k!1( ) " w

k

i! x
0:k
! x

0:k

i( ) ,
i=1

I

#                                                                   (6) 

 

where δ(.) is the Dirac delta function. Using assumptions (5.a-c), the posterior density in Eq. (6) can be 

written as π(xk|z1:k-1) ≈ Σi w
i
k δ(xk-x

i
k).  

A common problem with the particle filter method is the degeneracy phenomenon; after a few 

estimations all but one particle may have negligible weight. The degeneracy implies that a large 

computational effort is devoted to update particles, whose contribution to the posterior density function is 

almost zero. This problem can be overcome by increasing the number of particles, or more efficiently by 

appropriately selecting the importance density as the prior density π(xk|x
i
k-1). In addition, the use of the 

resampling technique is recommended to avoid the degeneracy of the particles [5,8,9].  

Resampling generally involves a mapping of the random measure {x
i
k,w

i
k} into a random measure 

{x
i*

k,1/N} with uniform weights. It can be performed if the number of effective particles with large 

weights falls below a certain threshold number. Alternatively, resampling can also be applied 

indistinctively at every instant tk, as in the Sequential Importance Resampling (SIR) algorithm [8,9].  

Although the resampling step reduces the effects of the degeneracy problem, it may lead to a loss of 

diversity and the resulting sample can contain many repeated particles. This problem, known as sample 

impoverishment, can be severe in the case of small evolution model noise. In this case, all particles 

collapse to a single particle within a few instants 
k
t . Another drawback of the particle filters is related to 
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the large computational cost due to the Monte Carlo sampling, which may limit its application only to 

fast computing problems.  

Different algorithms for the implementation of the particle filters can be found in [9], including those 

that allow for the simultaneous estimation of constant parameters appearing in the model and the 

transient states. One of such algorithms is the Auxiliary Sequential Importance Resampling (ASIR) 

method. 

      In the ASIR filter algorithm, the indexes i
(j)

 (j = 1,…,N) are obtained by resampling (i.e., by 

resampling the particles with higher weights). According to reference [9], the advantage of the ASIR 

algorithm over the SIR algorithm is that it naturally generates points from the sample at (k-1), which, 

conditioned on the current measurement, are most likely to be close to the true state. Still, as described in 

[9], the ASIR filter can be viewed as a resampling at the previous time step, based on some point 

estimates µi
k that characterize π(xk|x

i
k-1). Since a single point µi

k is not able to accurately characterize 

π(xk|x
i
k-1) for a large process noise,  the use of the ASIR filter is limited to small process noises.  

 

3. Results and discussions 

In this paper, the SIR and ASIR particle filter algorithms are applied to a natural fire propagation in 

order to calibrate several physical parameters involved in the formulation of the Rothermel-based ROS 

within the FIREFLY simulator. Data were taken from an experimental database corresponding to a small-

scale (4 m x 4 m) open-field grassland fire occurring under moderate fluctuating wind conditions [18]. 

The time-varying wind magnitude mw was measured during the controlled burning experiment. The fire 

spread was recorded during 350 s using a thermal-infrared camera; the resulting observations are the 

time-evolving positions of the fire front (see Fig. 2) identified as the zones where the temperature reaches 

the value 600 K (generally considered as the temperature of vegetation ignition).  

 
Figure 2: Arrival times of the fire front (colormap), and observed fire fronts (black solid lines) 

separated by 28 s (at t = 78 s, 106 s, 134 s, 162 s and 190 s).  

 

Details of the measurement technique to retrieve the temperature field from thermal imaging are 

given in Wooster et al. [20]. In the following state estimation process, we assimilate measurements of fire 

front locations every 28 s from t = 64 s to t = 190 s (the associated fronts are represented in black solid 

lines in Fig. 2). This means that, in the particle filters, the update step is performed successively at 
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t = 78 s, 106 s, 134 s, 162 s and 190 s, and also that the prediction step allows the PDF of the control 

parameters to be integrated during 28 s between two consecutive observation times. Each observed front 

is represented with 200 markers of coordinates (xf, yf), whose error standard deviation is estimated to 

0.047 m (based on the spatial resolution of the thermal-infrared camera). This error standard deviation is 

used to describe the measurement uncertainty vector ε and the observation error covariance matrix W. 

The fire spread simulator assumes uniform properties of the (fuel) short grass with a fuel layer 

thickness equal to δv = 8 cm (field measure), a moisture content equal to Mv = 22 % (field measure), a 

particle fuel surface-area-to-volume ratio Σv = 11480 1/m (values taken from Rothermel's database [2]) 

and the wind velocity magnitude and direction are initialized to the mean wind conditions recorded 

before ignition, mw = 1 m/s and dw = 307° (in a clockwise representation, where 0° indicates the North 

direction), respectively. The objective of the SIR and ASIR particle filters is to search for the effective 

posterior PDF of the fuel moisture content Mv, the fuel particle surface-area-to-volume ratio Σv and the 

wind velocity magnitude mw, which are subject to significant uncertainties. The error standard deviations 

associated with the vegetal fuel parameters are taken to be 30 % of their initial mean values, that is 

!
M

 = 6.6 % for Mv and σ
Σ

 = 3444 1/m for Σv. As to the wind velocity magnitude, its error standard 

deviation is set to!
w

= 0.1 m/s for mw.  

The three control parameters are assumed to be spatially-uniform, meaning that particle filters aim at 

retrieving the time-profile of these parameters as the fire front propagates through the 4 m x 4 m domain. 

It was found in Rochoux et al. [18] that these prior values of the control parameters significantly 

underestimate the position of the fire fronts (the associated simulation is called the free run) and that a 

state estimation procedure is required to produce fire spread simulations that are more consistent with 

observations. The 4 m x 4 m domain is discretized with a regular mesh (∆x = ∆y = 0.047 m), and the time 

step for integration of the progress variable equation is fixed to ∆t = 0.02 s. For each triplet of control 

parameters taken in the associated Gaussian PDF, the fire spread simulation is initialized using the 

observed fire position at time t = 50 s, and is then integrated by time period of 28 s to update the 

posterior PDF of Mv, Σv and mw at the five different observation times (t = 78 s, 106 s, 134 s, 162 s, 

190s). As there is no explicit formulation of the control vector evolution between two successive 

observation times, a random walk model is applied so that the error standard deviation introduced in the 

parameters from time tk-1 to tk is equal to !
M

for Mv, σΣ
 for Σv and 

w
σ  for mw, respectively. It reads 

 

M
v
(t
k
) = M

v
(t
k!1
) +!

M
R
M                                                                        

 (7) 

!
v
(t
k
) = !

v
(t
k"1
)+!

!
R
!                                                        

                  (8) 

1
( ) ( )

w k w k w w
m t m t Rσ

−
= +         (9) 

with RM, RΣ and Rw random numbers following a Normal distribution, with zero mean and unitary 

standard deviation. Since Mv , Σv and mw directly influence the progress variable c (see Eq. 2), such 

quantity is also included in the inverse problem formulation as a state variable. The state evolution model 

for the vector containing the values of the progress variable at each of the grid points, c(tk), is obtained 

from the discrete integration of Eq. (2). Uncertainties for c(tk) are assumed to be additive, Gaussian, with 

zero mean and a constant standard deviation of 0.01.  

The performance of the particle filters is analyzed in the observation space, in terms of the Root Mean 

Square (RMS) error between the simulated and observed fire front positions, at each observation time. At 

time tk, the RMS is calculated as follows: 
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RMS
k
=

1

p
z
k

obs

k , j
! z

k , j( )
2

j=1

p

" ,

                           (10)

 

 

where zk contains the p simulated fire front positions given by Eq. (4), and zk
obs

 represents the 

corresponding observations. The 99%-credible interval, denoted I99% and defined in the parameter space, 

is used as an additional diagnostic of the performance of particle filters. It reads: 
 

  I
99%

= x!
k
+ 2.576!

x
,                                                                 (11) 

 

where x
!
k

represents the estimated mean value of the control parameter and 
x

σ  represents its associated 

error standard deviation. The performance of both SIR and ASIR particle filters is presented in Table 1 in 

terms of RMS error at each observation/assimilation time and of the required computational time for the 

whole sequential Bayesian process for different numbers of particles. The different solutions of the 

particle filters are also compared to the free run configuration (using standard Rothermel's database).  

Figure 3 represents, along with the observations, the simulated time-evolving fire fronts (from 

t =  78 s to 190 s) using the mean of the posterior PDF of the control parameters obtained through the 

SIR and ASIR filters, respectively. These results show that both the SIR and ASIR filters are able to 

significantly reduce the distance between predicted and observed fire fronts and thereby, to closely track 

the observed fire fronts along time. The free run presents indeed the highest RMS errors for all 

observation times; the RMS errors for the SIR and ASIR filters are reduced by a factor of at least 2 for all 

observation times. Furthermore, these results indicate that the distance to the observations remains 

significant at t = 190 s due to the particular shape of the front as shown in Fig. 3. Note that there is no 

spatial correction of the fire front position per observation time since we assumed that the control 

parameters were spatially uniform. Tracking all the variations of the fire front topology at a given time 

was out of the scope of this study. Still, this representation is able to efficiently describe the propagation 

of the front in the wind direction and to accurately track the head of the fire, which is the main quantity 

of interest within an operational fire spread framework. 

Table 1 shows for the SIR algorithm with 200 particles is similar to the ASIR algorithm with 50 

particles, while the solution provided by the ASIR algorithm is fairly more accurate. The ASIR filter 

presents indeed the smallest RMS total error, 8.831 m, of all test cases with only 50 particles (this total 

error is obtained by summing the RMS errors for all observation times). Table 1 also shows that even 

though the number of particles is increased to 200, the SIR algorithm does not succeed in converging 

towards a solution closer to the observations than for 50 particles, whereas the computational cost is 

multiplied by 25. This might be due to the existence of multiple solutions to the problem, meaning that 

several triplets of control parameters can result in a similar simulated front close to the observation. 

 

Table 1: RMS errors and computation time for SIR and ASIR particle filters. 

Filter Particle nb. (N) RMS error 

 (78 s) 

RMS error 

 (106 s) 

RMS error 

 (134 s) 

RMS error 

 (162 s) 

RMS error 

 (190 s) 

SIR 25 0.1037 m 0.2976 m 2.5683 m 2.8106 m  3.2251 m  

SIR 50 0.1002 m  0.2680 m 2.5669 m  2.8011 m  3.0948 m 

SIR 100 0.1067 m 0.2980 m 2.5664 m  2.8055 m 3.0966 m  

SIR 200 0.0956 m 0.2642 m 2.5710 m  2.8089 m  3.0989 m 

ASIR 25 0.1675 m 0.2842 m 2.5778 m  2.8121 m 3.0995 m 

ASIR 50 0.1033 m 0.2647 m 2.5681 m 2.8078 m 3.0969 m 

ASIR 100 0.1718 m 0.2883 m 2.5715 m 2.8090 m 3.0988 m 

ASIR 200 0.1139 m 0.2640 m 2.5650 m 2.8036 m 3.0965 m 
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Figure 3: Comparison between simulated and measured fire front positions from t = 78 s to t = 190 s 

using the SIR filter (left) and the ASIR filter (right). 

 

These results indicate that the ASIR filter converges better than the SIR filter for the fire spread 

problem. However, it is difficult to assess which of the particle filters provides the most realistic fire 

spread. It is therefore important to perform an additional analysis in the parameter space to further 

analyze the performance of SIR and ASIR filters. Figures 4, 5 and 6 show the mean value of the posterior 

sample along with the 99%-credible interval I99%, associated with the fuel moisture content Mv, the fuel 

particle surface-area-to-volume ratio Σv and the wind speed mw, respectively. The SIR results are shown 

for N = 200 particles, while the ASIR results are shown for N = 50 particles. The posterior mean value 

found in Rochoux et al. [18] for the control of the vegetal fuel parameters only (Mv and Σv) with the EKF 

algorithm is also represented. It is found that the EKF solution is within the confidence interval and 

relatively close to the mean solution of particle filters. Both data assimilation approaches provide 

consistent results, meaning that the EKF algorithm behaves reasonably well in this case, despite of its 

linearity assumption on the observation model. On the other hand, while the SIR filter with 200 particles 

is found to provide the mean of the posterior PDF that is the closest to the EKF result, the ASIR filter 

with 50 particles provides a solution that reduces more effectively the size of the credible interval for 

both control parameters. The ASIR filter with 50 particles provides a more reliable solution and thereby, 

features a better approximation to the real fire spread than SIR. Besides, Fig. 6 shows that the estimation 

of the wind magnitude is in excellent agreement with the in-situ measurement made during the controlled 

burning experiment (the mean value of the wind velocity magnitude follows the same evolution as 

measurements). This result can be viewed as an additional validation of the state estimation problem.  
 

  
Figure 4: Sequential comparison of the fuel moisture content Mv provided by the SIR (left) / ASIR (right) 

algorithm with the EKF [18].  
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Figure 5: Sequential comparison of the estimation of the fuel particle surface-area-to-volume ratio Σv 

provided by the SIR (left) / ASIR (right) algorithm with the EKF [18].  

 

  
Figure 6: Sequential comparison of the estimation of the wind velocity magnitude provided by the SIR 

(left) / ASIR (right) algorithm.  

 

4. Conclusion 

This paper has explored the capability of particle filters (or sequential Monte Carlo approach) to 

improve the predictions of wildfire spread simulations using measurements of a reduced-scale controlled 

grassland burning experiment. The proposed inverse modeling technique relied on the estimation of a 

triplet of parameters characterizing the properties of the short grass vegetation on the one hand, the 

fluctuating wind conditions on the other hand. While both Sequential Importance Resampling (SIR) and 

Auxiliary Sequential Importance Resampling (ASIR) filters were able to sequentially track the 

displacement of the observed fire fronts, the ASIR filter was more efficient at retrieving accurate values 

of the control parameters at the expense of a lower computational cost than the SIR filter. Further 

analysis showed that the two-parameter Extended Kalman filter (EKF) estimation [18] provided similar 

results at the first assimilation time t = 78 s as the three-parameter SIR and ASIR estimations. Thus, the 

EKF algorithm was already able to retrieve physical values of the biomass fuel parameters. Results 

provided by the SIR and ASIR particle filters also showed that controlling the wind velocity magnitude 

in addition to these two biomass fuel properties allowed to keep tracking the fire front further in time 

(until time t = 190 s), even though the wind conditions were subject to significant fluctuations. These SIR 

and ASIR estimations were validated against independent observations, i.e., the in-situ measurement of 

the wind velocity magnitude. Ongoing research aims at further improving the Bayesian filtering strategy 

in order to better account for modeling uncertainties and to limit the computational cost of Bayesian 
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filtering problems using approaches such as Polynomial Chaos approximation [19]. Still, particle filters 

have already shown potential to relate comprehensively computational fire modeling and fire sensor 

technology as it is highly needed in the fire research area. 
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