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Quality of the design of test cases for automotive software: design platform and testing process PREFACE « Quand est ce qu'il faut arrêter de tester un produit logiciel ? » « Comment être sûr qu'un produit logiciel ne contient plus de défauts (bugs) et est prêt à être livré au client » et bien d'autres questions sur la qualité logicielle m'ont interpellé dès les premiers stages d'Ecole d'Ingénieur. En effet, diplômé de l'Ecole polytechnique de l'Université de Nantes en 2004, j'ai effectué 3 stages respectifs en 1 ère , 2 ème et 3 ème années. Durant ces stages, j'ai participé au développement de produits logiciels destinés à des applications PC mais aussi à des applications embarquées. A chaque fois qu'on développait un nouveau module logiciel, il nous fallait le tester. Le mot « tester » en industrie est souvent associé à tout type de techniques de vérification et de validation logicielle. Ayant appris en Ecole d'Ingénieur une panoplie de langages de développement informatique (C, C++, …) et notamment comment concevoir et développer un produit logiciel, les tâches de développement informatique me paraissaient simples et maîtrisables. Mais, une fois le logiciel développé il faut le tester ; je me trouvais alors fort dépourvu méthodologiquement ! En effet, les formations actuelles d'Ingénieur logiciel se focalisent presque exclusivement sur le développement logiciel au détriment du test logiciel. Depuis les débuts du développement logiciel (Années 70), des chercheurs ont montré qu'il était illusoire de penser à effectuer un test logiciel exhaustif. Un Ingénieur doit toujours se contenter de tester un sous-ensemble de cas. Bien que certaines entreprises (les grandes) ont des processus bien définis pour tester un produit logiciel, la tâche de comment choisir les cas de test reste en grande partie basée sur l'expérience des Ingénieurs. Pour cela, et afin de tester les modules logiciels pendant mes stages, je choisissais certains cas de test en fonction de leur utilité et de leur efficacité mais aussi du temps qu'il me restait avant de devoir livrer le module.

Après avoir obtenu le diplôme d'Ingénieur en 2004, je me suis intéressé plus généralement à la question : « Comment sont définis les processus de conception et conçus les méthodes et outils de conception de produits ». Afin de répondre à cette question, j'ai effectué un Master Recherche en ingénierie de conception au sein du laboratoire Génie Industriel de l'Ecole Centrale Paris. Le moment du stage arrivé, je me suis mis à la recherche d'un stage qui porterait sur l'amélioration des processus, méthodes et outils de conception de test logiciel pour établir une jonction entre mes domaines de prédilection. Bien heureusement, un stage sur le sujet était proposé par l'équipementier électronique automobile Johnson Controls. L'automobile, un secteur où l'électronique et le logiciel représentent plus de 30% du prix d'un véhicule. Pendant ce stage de 6 mois, nous avons mis en place une nouvelle approche de conception de cas de test logiciel. Le stage a livré des résultats prometteurs tant au niveau de la qualité du test logiciel que du temps passé pour tester un produit logiciel. De plus, nous avons pu identifier plusieurs pistes de recherche prometteuses.

En se basant sur ces pistes de recherche, nous avons formulé un sujet de thèse de doctorat (avec Bernard Yannou1 et Ludovic Augusto2 ) que nous avons proposé à la société Johnson Controls. En effet, il a fallu mettre en avance l'apport scientifique pour le laboratoire Génie Industriel et surtout l'apport industriel pour la société Johnson Controls qui a financé ce projet en partenariat avec l'ANR sur un statut CIFRE. Suite à une réunion avec des responsables de la société et du laboratoire, l'accord pour lancer ce projet de thèse de doctorat a été donné en janvier 2006. Il est important de noter que la société Johnson Controls (France) n'avait jamais participé à un projet de thèse de doctorat auparavant.

Résumé
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Quality of the design of test cases for automotive software: design platform and testing process RESUME L'électronique dans les voitures devient de plus en plus complexe et représente plus de 30% du coût global d'une voiture. Par exemple, dans une BMW série 5 modèle 2008, on peut trouver jusqu'à 80 calculateurs électroniques communiquant ensemble et représentant aux alentours de 10 millions de lignes de code logiciel. Face à cette montée en complexité, les constructeurs et équipementiers électroniques de l'automobile s'intéressent de plus en plus à des méthodes efficaces de développement, vérification et validation de modules électroniques. Plus précisément, ils focalisent leurs efforts sur la partie logicielle de ces modules puisqu'elle est à l'origine de plus de 80% des problèmes détectés sur ces produits. Dans ce contexte, nous avons mené un travail de recherche dont l'objectif est de proposer une approche globale d'amélioration de la qualité des logiciels embarqués dans les véhicules. Notre recherche part d'un audit des processus et outils actuellement utilisés dans l'industrie électronique automobile. Cet audit a permis d'identifier des leviers potentiels d'amélioration de la qualité logicielle. En se basant sur les résultats de l'audit et en tenant compte de la littérature dans le domaine de la qualité logicielle, nous avons proposé une approche globale de conception de cas de test pour les produits logiciels. En effet, nous avons développé une plateforme de génération automatique de tests pour un produit logiciel. Cette plateforme consiste à modéliser les spécifications du produit logiciel pour le simuler lors de tests, à se focaliser sur les tests critiques (ayant une forte probabilité de détecter des défauts) et à piloter la génération automatique des tests par des critères de qualité ; telles que la couverture du code et de la spécification mais aussi le coût des tests. La génération de tests critiques est rendue possible par la définition de profils d'utilisation réelle par produit logiciel, ainsi que par la réutilisation des défauts et des tests capitalisés sur des anciens projets. En plus des aspects algorithmiques du test logiciel, notre approche prend en compte des aspects organisationnels tels que la gestion des connaissances et des compétences et la gestion de projet logiciel. Notre approche a été mise en oeuvre sur deux cas d'étude réels d'un équipementier électronique automobile, disposant de données de tests historiques. Les résultats de nos expérimentations révèlent des gains de qualité significatifs : plus de défauts sont trouvés plus tôt et en moins de temps. Table 1. 2.1 -Description of the stages of a product project (Johnson Controls source) ............ Table 2.2 -Description of the steps of the high level software life cycle (Mignen 2006a) .... Table 2.3 -Description of the software processes within Johnson Controls (Mignen 2006a) Table 2.4 -Explicit contract, in terms of bugs' occurrence, between a carmaker and an electronic supplier .. 4.3 -Classification of the specification languages (Fraser 1994) 10.5 -Time spent to design the requirements model of the two functionalities ......... Table 10.6 -Characteristics of the requirements models of the two functionalities ............. Table 10.7 -Constraints designed for the two functionalities ............................................... Table 10.8 -"Operation matrices" designed for the two functionalities ............................... Table 10.9 -Guidelines for defining the objectives and constraints of a test case generation . 2.5 -Growth of the number of changes asked by the carmaker all along a project ..... Figure 2.6 -Interaction of the Requirements Specification process with the other software processes [START_REF] Mignen | Software process description -Requirements specification work instruction[END_REF] 
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I. Context

Nowadays, electronics represents more than 30% of the global cost of a car. Car electronic architecture becomes more and more complex and carmakers outsource the design of electronic modules to automotive electronic suppliers. The software part is the added value of these modules and they account for more than 80% of the total number of defects detected on these modules. As automotive electronic products become more and more complex, the size of software embedded in these products increases drastically. As a consequence, the time spent in verifying and validating these software has increased exponentially the last 10 years.

Verification and Validation (V&V) activities account now for more than 50% of an automotive electronic project time and effort. Despite the huge resources spent in verifying and validating a software product and after each delivery to the carmaker (up to 10 may be made), some bugs are still detected by the carmaker and forwarded to the supplier who must react quickly and efficiently. Once an electronic module is launched on the market (e.g. integrated into a vehicle), an average of one software bug per year is detected by the endusers, which may becomes dramatic for the electronic supplier in financial and image terms if the product has to be systematically substituted.

As the automotive market becomes more and more competing, decreasing the development time of outsourced parts and lowering the number of defects detected later in the process becomes of major importance for carmakers and, consequently, a major quality indicator for automotive suppliers. Indeed, the carmakers' process for assigning new projects to suppliers is mainly based on feedbacks from previous projects. Consequently, suppliers work on reducing the development time of their products, delivering on time the products to carmakers and detecting the maximum number of bugs as early as possible in the development process.

Through our research project (PhD), we were asked by Johnson Controls, one of the world's leading suppliers of automotive interior systems, electronics and batteries, to improve the performance of its software V&V activities. Their main purpose is to improve the quality of their products and therefore better satisfy the requirements and expectations of their clients. In our research (Awedikian 2007), we go through this problem with a systemic approach in order to identify levers in any domains from which we might be able to improve the global performance of the software V&V activities. The major added value of the present work is to globally solve the quality issue of the software testing process.

II. Research process

Our research process is based on five main stages:

Stage 1: Industrial audit

The audit of the industrial context aims to identify and determine the overall environment of our research project. This results in identifying a list of anomalies and issues in the current verification and validation practices.

Stage 2: Research topic definition

Based on the results of the industrial audit, the definition of our research topic allows to better determine the scope and focus of our research. This also leads to a better definition of the state-of-the-art focus.

Stage 3: State-of-the-art
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The state-of-the-art on the research issues in the scope of our research pinpoints existing solutions; their advantages, drawbacks and adaptability to our context. This results in a list of potential proposals.

Stage 4: New concepts development

The development of new concepts is the result of the three previous stages. Based on the concepts identified in the literature and taking the requirements of our industrial context into account, new concepts are developed.

Stage 5: Concepts prototyping and validation

The prototype development aims to implement our new concepts in a computer platform. This platform gives us the opportunity to validate our concepts on typical case studies. 

III. Contributions' overview

Through our research project, we perform an audit on the current software practices in automotive industry. The result of the audit is a list of anomalies and lacks (diagnoses) in the current software V&V activities in automotive industry. Based on the audit results and the literature review, we propose a new systemic approach to automate efficiently the design of test cases for software products. Our approach presents a much different workflow than the one presently used in automotive industry. The new workflow is based on eight activities which are manual, semi-automatic or automatic and managed by different individuals. These activities are:

1. Model the software functional requirements using a formal simulation model that we developed keeping in mind the automotive context and its constraints (Awedikian 2008a). 2. Verify and validate the consistency and compliance of the requirements model (Awedikian 2008a). 3. Define some behavioral characteristics of a car driver when using the software product under test (Awedikian 2008b). 4. Reuse the test cases developed in the past for similar software products (Awedikian 2008b). 5. Reuse the bugs detected in the past on similar software products (Awedikian 2008b). 6. Enrich the requirements model with knowledge (from activity 3 to 5) on the driver recurrent operations and the test engineers' experience (Awedikian 2008b). 7. Automate the design of test cases from the enriched model of functional requirements (Awedikian 2008c). 8. Monitor the design of test cases by quality objectives but also time and cost constraints (Awedikian 2008c).

Processes, roles and tools implementing these activities have been developed. The results of the experiment of our approach on two typical industrial case studies (within Johnson Controls) are very promising. We reduce by 70% the number of bugs detected by the carmakers and by 9% the ones detected by the end-users. Moreover, we reduce by 22% the time spent in testing a software product. In fact, we detect the bugs earlier in the software development process and closer to their origin. We also propose to deliver to the carmaker formal quality indicators on the delivered software. All these results contribute to an improvement of the customer satisfaction and as a direct impact; the number of tenders will grow. Unfortunately, estimating the cost of software bugs in an organization is a delicate, strategic and confidential question and therefore we were not allowed to communicate the numbers on the bugs' costs savings via the use of our approach.

As a consequence of these results, managers at Johnson Controls decide to patent our approach3 . However and in order to patent an idea in Johnson Controls, a formal verification and validation process of the idea is required. In our case and before starting this process, Johnson Controls has submitted a worldwide Quick Patent4 in order to protect our approach.

A worldwide survey on software testing approaches has been performed by Johnson Controls patent experts. Moreover, we were formally interviewed by many managers and experts on the contributions of our approach. The final stage will be the decision of the Johnson Controls Intellectual Property (IP) committee to patent or not our approach.

IV. Reading guidelines

This dissertation is composed of 4 parts and each part is composed of two or more chapters.

The structure of the document is illustrated in • Part II develops the research topic and the literature review (Chapters 3 and 4).

• Part III develops our new concepts (Chapters 5, 6, 7 and 8).

• Part IV develops the computer implementation and the validation of our new concepts (Chapters 9 and 10). 

I. Introduction

The world of electronics is living a revolution in the way products are imagined, designed and implemented. The ever growing importance of the internet, the advent of microprocessors of great computational power, the burden of wireless communication, the development of new generations of integrated sensors and actuators are changing the world we live and work in.

The car as a self-contained universe is experiencing a similar revolution. We need to rethink what a "car' really is and the role of embedded electronics. Electronics is now essential to control the movements of a car, of the chemical and electrical processes taking place inside, to entertain the passengers, to constantly be connected with the rest of the world and to ensure safety. However, the growth of electronics in a car might reduce its reliability. Will electronics take the major role in car manufacturing and design? How to control the quality of electronic systems? How to manage the growth of software complexity in automotive electronic parts? What will an automobile manufacturer's core competence be in the next few years? What are the new challenges for automotive electronic suppliers?

Our intent in this chapter is to answer some of these questions. An illustration of the present automotive industry context facing the globalization and the outsourcing issues is carried out in Section 2. Then, the electronic architecture of a modern vehicle is described in Section 3, showing the tendency toward incorporating ever more electronics. An overview of the role of software and the new challenges in automotive electronics industry is done in Section 4 and 5.

Finally, the industrial needs and expectations as it was expressed for the first time by Johnson Controls company are summarized in Section 6.

II. The phenomena of globalization and outsourcing in automotive industry

As we enter the new millennium, globalization has emerged as one of the most salient and powerful forces shaping domestic and world economies.

Definition 1.1: Globalization (Wikipedia -November 2008)

Globalization in its literal sense is the process of transformation of local or regional things or phenomena into global ones. It can also be used to describe a process by which the people of the world are unified into a single society and function together. This process is a combination of economic, technological, sociocultural and political forces. Globalization is often used to refer to economic globalization, that is, integration of national economies into the international economy through trade, foreign direct investment, capital flows, migration, and the spread of technology.

The automobile industry is typically considered to be at the forefront of globalization. Evidences supporting this view have been listed by Spatz (Spatz 2002):

• the intricate network of alliances and cross-shareholdings among automobile companies, within nations and regions but also between regions, • intensified Mergers and Acquisitions (M&A) activities in the 1990s, involving both end-producers and automotive input suppliers, • and the trend towards technologically motivated cooperation agreements, which was caused, inter alia, by end-producers entering into new forms of partnerships for the design of principal modules and subsystems.

The new face of globalization in automotive industry is best revealed by the rise of global suppliers. Companies such as Johnson Controls, Bosch, Denso, Lear Corporation, TRW, Magna, and Valeo have become the preferred suppliers for automakers around the world. Some automakers, particularly American firms, have combined a move to "modular" final assembly with increased outsourcing, giving increased responsibility to first-tier suppliers5 for module design and second-tier sourcing. Many first tier-suppliers started to build a vertical integration (through mergers, acquisitions, and joint-ventures) and to geographically spread so as to be able to provide their customers with modules on a worldwide basis. At the same time, it can be simultaneously observed a deverticalization in automaker companies which leads to create a new global-scale supply-base capable of supporting the activities of final assemblers on a worldwide basis.

The drivers of increased outsourcing include 1) the rising technological complexity of vehicle development, 2) rising logistics complexity as more production locations come on-stream, 3) a desire to "streamline" the final assembly process, 4) a desire to pay for parts only as they are incorporated into vehicles rather than when they are shipped from suppliers, 5) increasing competence in suppliers, and 6) a desire to lower costs by moving production to low cost suppliers.

Twenty years ago, automakers practiced low-level parts assembly within final assembly plants, purchased parts based on price, and paid minimal attention to quality. Now, automakers ask suppliers to do more design and sub-assembly work. This refers to as "modularization" in the automotive industry. For example, vehicle doors can be delivered with the glass, fabric, interior panels, handles, and mirrors pre-assembled. Dashboards can be delivered complete with polymers, wood, displays, lights, and switches. The aim of modularization is to move labor out of the final assembly process (design for manufacturability can serve the same purpose).

According to Sturgeon [START_REF] Sturgeon | Globalization and Jobs in the Automotive Industry[END_REF], fifteen modules represent about 75% of vehicle value. In fact, a supplier can provide groups of related modules, called "module systems". For example, seats, interior trim, and cockpit modules could be supplied as a complete "interior system". Figure 1.1 provides a graphic representation of the apparent trend from discrete parts to modules and systems. III.

Strong growth forecast for electronic parts in automotive

The past four decades have known an exponential increase in the number and sophistication of electronic systems in vehicles. According to Leen (Leen 2002), nowadays, the cost of electronics in luxury vehicles may amount to more than 23 percent of the total manufacturing cost. According to Moavenzadeh (Moavenzadeh 2006), a top R&D6 executive from General Motors said that electronics and software content will account for 40% of the value-added in the vehicle over the new ten years. Moreover, a recent quote7 from Daimler executives says that more than 80% of innovation in the automotive domain will be in electronic modules.

The growth of electronic systems has had implications for vehicle engineering. For example, today's vehicles may have more than 4 kilometers of wiring, compared to 45 meters in vehicles manufactured in 1955. In July 1969, Apollo 11 employed a little more than 150 Kbytes of onboard memory to go to the moon and back. Just 30 years later, a family car might use 500 Kbytes to keep the CD player from skipping tracks.

The resulting demands on power and design have led to innovations in electronic networks for automobiles. Researchers have focused on developing electronic systems that safely and efficiently replace entire mechanical and hydraulic applications. Just as LANs 8 connect computers, control networks connect a vehicle's electronic equipment. These networks facilitate the sharing of information and resources among the distributed applications. In the past, wiring was the standard means of connecting one element to another. As electronic content increased, the use of more and more discrete wiring hit a technological wall. Fortunately, today's control and communications networks, based on serial protocols, counter the problems of large amounts of discrete wiring. Beginning in the early 1980s, centralized and then distributed networks have replaced point-to-point wiring. The electronics and software content of vehicles relies more on electrical and software engineers than on the traditional mechanical engineers associated with the automotive industry. Moavenzadeh (Moavenzadeh 2006) indicates that electronics and software engineering functions are easier to outsource or offshore than mechanical engineering functions. Software engineers across an ocean can discuss a few lines of code easier than mechanical engineers can discuss how to modify the design of a module. Software and electronic systems also tend to follow a more modular product architecture than mechanical systems; therefore, it is easier to offshore both low and high value added functions.

IV. Challenges for the automotive electronic suppliers

The overall goal of electronic embedded system design is to balance production costs with development time and cost in view of performance and functionality considerations. In other words, engineers are encouraged to shorten the overall design and validation cycle without compromising quality, reliability, and cost targets.

A. Lower the production cost

Manufacturing costs mainly depend on the hardware modules of the product. If one considers an integrated circuit implementation, the size of the chip is an important factor in determining production cost. Minimizing the size of the chip implies tailoring the hardware architecture to the functionality of the product. However, the cost of a state-of-the-art fabrication facility continues to grow up. In addition, the Non-Recurring Engineering (NRE) costs associated with the design and tooling of complex chips are rapidly growing. As a consequence, a common hardware platform to be shared across multiple applications may increase the production volume and decrease the overall cost.

B. Lower the development time and cost

Since the times of ignition car electronics in the 1970s, the complexity of automotive electronics architecture is still growing. Presently, Leen (Leen 2002) notices that a BMW 5 series model can have up to 80 electronic control units. However, the market dynamics for automotive electronic systems leads to shorter and shorter development times. Presently, no matter how complex the design problem is, suppliers don't have more than six months from the delivery of the customer requirements to a first and correct implementation. To meet the design time requirements and ensure a high quality of the delivered product, a design methodology that favors automation, reuse and early problem detection is essential. This implies that the design activity must be rigorously defined, so that all stages are clearly identified and appropriate checks are enforced.

V. The role of "software" in automotive electronics

Lets us start by defining what is a software. In this dissertation, we adopt the definition of software proposed by the Institute of Electrical and Electronics Engineers 9 (IEEE).

Definition 1.2: Software or Software product (IEEE Std. 610-1990) -Abbreviation: SW

Software is a general term used to describe a collection of computer programs, procedures, and possibly associated documentation and data pertaining to the operation of a computer system.

Moreover, a software product is composed from a set of software components or modules (Cf. Figure 1.3). The need to improve the quality of software products in automotive industry
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Definition 1.3: Software component or module (Wikipedia -November 2008)

A software component or a software module is a system element offering a predefined service or event, and able to communicate with other components or modules. It is a minimal software item that can be tested in isolation.

A software product can be dedicated for different types of electronics architecture (computer, automotive, airplane etc.). In our research, we only consider the software products written for machines that are not, first and foremost, computers. In software engineering, this type of software products is called embedded software. For example, it is embedded to electronics in cars, telephones, audio equipment, robots, appliances, toys, security systems, pacemakers, televisions and digital watches. This type of software products can become very sophisticated in applications like airplanes, missiles, process control systems, and so on. Embedded software is usually written for special purpose electronics architecture. For instance, the CPUs10 are different from general purpose CPUs that we could find in our desktops or laptops. Moreover, a real-time operating system is required for managing the simulation of embedded software. In fact, tasks' scheduler and priorities are the fundamentals of a real-time operating system.

The design process of software products shares many technologies with the one of hardware products. Nevertheless, there are important differences between the two types. In the following, we identify some of these differences:

• the hardware product quality relies on design, implementation and manufacturing processes, however the software product quality relies only on design and implementation processes. The software manufacturing process is mainly based on a "simple" reproduction activity, • a software product is able to simulate alternative commands on different inputs which lead to a high complexity of the product, • a software product is not a physical entity and therefore, it doesn't wear out over time.

In fact, since problems are detected and corrected, the quality of a software product improves over time. However, the correction and/or evolution activities can introduce new problems in the product, • software problems cannot be prevented. In fact, specific successive commands on the inputs of the software product can reveal a problem which was not detected during the testing activities of the product, • the easiness and the rapidity which with a software product can be modified lead to the fact the software development process should be very well monitored and documented, • and historically, software modules are not frequently standardized and reused.

Nowadays, there is a trend toward a reuse of software modules in order to lower the development time and cost.

One more specific concept to software products is the size. Software sizing (Wikipedia -November 2008) is an important activity in software engineering that is used to estimate the size of a software module. Size is an inherent characteristic of a software in just like weight is an inherent characteristic of any tangible material. Historically, the most common software sizing methodology was counting the Lines Of Code (LOC) written in the application source.

Another famous sizing method is the Function Point analysis. New trends of software sizing have recently emerged.

The need to improve the quality of software products in automotive industry
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Growth of software size in automotive electronic parts

The amount of software in many electronic products is increasing rapidly. For example, the number of lines of source code in a mobile phone is expected to increase from 2 million today to 20 million by 2010; a car will contain 100 million lines of code (Charrette 2005). Consequently, electronics companies no longer find it economically viable to provide all the software in their products.

In fact, the amount of software in cars grows exponentially. Within only thirty years, the amount of software in a car has evolved from zero to tens of millions lines of code. A current premium car, for instance, implements about 270 functions a user interacts with, deployed over about 70 embedded platforms. Altogether, the software amounts to about 100 megabytes of binary code. The next generation of upper class vehicles, hitting the market in about 5 years, is expected to run up to 1 gigabyte of software. This is comparable to what a typical desktop workstation runs today.

A first reason for this growing complexity in software is that software enables the implementation of functionality deemed impossible just twenty years ago. Another reason is that electronics in cars helps to reduce gas consumption and increase performance, comfort and safety, as indicated by the decreasing number of major accidents whereas traffic increases. Information processing technology cuts across all aspects of the car and is a persuasive, sophisticated and differentiating value addition to the product. Furthermore, software enables the car manufacturers and suppliers to tailor systems to particular customers' needs. In other words, software can help differentiate between cars. At least in principle, it is the software that also allows hardware to be reused across different cars. Contrarily to hardware, software has an almost negligible replication cost, which is a further incentive to bet on software as a potential tool in cost-reduction. However, the growing complexity of automotive software products leads to a dramatic increase of the software development costs.

In addition, growing complexity is a driver for numerous challenges in the automotive industries like: definition of key competencies, processes, methods, tools, models, product structures, division of labor, logistics, maintenance, and long term strategies.

B. Software Development Life Cycle

The Software Development Life Cycle (SDLC) models describe activities of the software cycle and the order in which those activities are executed. A variety of SDLC models have been proposed in a paper [START_REF] Green | [END_REF] 

Ad-hoc model

Early systems development often took place in a rather chaotic and haphazard manner, relying entirely on the skills and experience of the individual staff members performing the work (Cf. Figure 1.4). Today, many organizations still practice Ad-hoc Development either entirely or for a certain subset of their development (e.g. small projects). In the absence of an organization-wide software process, repeating results depends entirely on having the same individuals available for the next project. Success that rests solely on the availability of specific individuals provides no basis for long-term productivity and quality improvement throughout an organization.

The waterfall model

The waterfall model prescribes a sequential execution of a set of development and management activities (Cf. Figure 1.5). Some variants of the waterfall model allow revisiting the immediately preceding activity ("feedback loops") if inconsistencies or new problems are encountered during the current activity. The waterfall model is the earliest method of structured system development. Although it has been criticized in recent years for being too rigid and unrealistic when it comes to quickly meeting customer's needs, the waterfall model is still widely used. It provides the theoretical basis for other process models. Each development activity builds a more detailed model of the system than the one before it, and each V&V activity tests a higher abstraction than its predecessor.

The need to improve the quality of software products in automotive industry
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The iterative and incremental model

The problems with the waterfall model created a demand for a new method of developing systems which could provide faster results, require less up-front information, and offer greater flexibility (Cf. Figure 1.7). With iterative development, the project is divided into small parts. This allows the development team to demonstrate results earlier in the process and obtain valuable feedback from system users. Often, each iteration is actually a mini-waterfall process with the feedback from one activity providing vital information for the design of the next activity.

Figure 1.7 -Iterative and incremental development model

The prototyping model

The prototyping model was developed on the assumption that it is often difficult to know all of your requirements at the beginning of a project. Typically, users know many of the objectives that they wish to address with a system, but they do not know all the nuances of the data, nor do they know the details of the system functionalities and capabilities. The prototyping model allows for these conditions, and offers a development approach that yields results without first requiring all information up-front.

When using the prototyping model, the developer builds a simplified version of the proposed system and presents it to the customer for consideration as part of the development process.

The customer in turn provides feedback to the developer, who goes back to refine the system requirements to incorporate the additional information. The need to improve the quality of software products in automotive industry
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The rapid application development model

A popular variation of the prototyping model is called Rapid Application Development (RAD). RAD focuses on developing a sequence of evolutionary prototypes which are reviewed with the customer, both to ensure that the system is developing toward the user's requirements and to discover further requirements. The process is controlled by restricting the development of each integration to a well-defined period of time, called a time box. Each time box includes analysis, design, and implementation of a prototype.

The exploratory model

In some situations it is very difficult, if not impossible, to identify any of the requirements for a system at the beginning of the project. Theoretical areas such as Artificial Intelligence are candidates for using the exploratory model, because much of the research in these areas is based on guess-work, estimation, and hypothesis. In these cases, an assumption is made as to how the system might work and then rapid iterations are used to quickly incorporate suggested changes and build a usable system. A distinguishing characteristic of the exploratory model is the absence of precise specifications. Validation is based on the consistency of the end results and not in compliance with existing requirements.

The spiral model

The spiral model is similar to the incremental model, with more emphases placed on risk analysis. The spiral model has some resemblance to Deming's "Plan, Do, Check, Act" cycle and has four activities: Planning, Risk Analysis, Engineering and Evaluation (Cf. Figure 1.8).

A software project repeatedly passes through these activities in iterations (called Spirals in this model). In the planning activity, requirements are gathered and risk is assessed. In the risk analysis activity, a process is undertaken to identify risk and alternate solutions. A prototype is produced at the end of the risk analysis activity. Software is produced in the engineering activity, along with testing at the end of the activity. The evaluation activity allows the customer to evaluate the output of the project to date before the project continues to the next spiral.

In the spiral model, the angular component represents progress, and the radius of the spiral represents cost.

Figure 1.8 -Spiral development model

Evaluation

Planning
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Common framework between software development life cycles

In conclusion, there are a lot of models and many companies adopt their own, but all have very similar patterns. The general, basic model is shown in Figure 1.9: Requirements are translated into design. Code is produced during implementation that is driven by the design. Testing verifies the deliverable of the implementation activity against requirements.

a. Requirements analysis

Customer requirements are gathered in this activity. Meetings are held in order to determine the requirements. Who is going to use the system? How will they use the system? What data should be input into the system? What data should be output by the system? These are general questions that get answered during a requirements gathering activity. This produces a list of functionality that the software product must provide.

b. Design

The software system design is produced from the results of the requirements analysis activity.

In this activity, the details on how the system has to work are produced. Architecture (including hardware and software), communication and software design are all part of the deliverables of a design activity.

c. Implementation

Code is produced from the deliverables of the design activity during implementation. Implementation may overlap with both the design and testing activities. Many tools exist to actually automate the production of code using information gathered and produced during the design activity.

d. Testing

During testing, the implementation is tested against the requirements to make sure that the product is actually solving the needs addressed and gathered during the requirements analysis activity. Unit, integration and validation tests are done during this activity. Unit tests act on a specific module of the system, while integration and validation tests act on the system as a whole.

C. Two complementary approaches to design "bug-free" software Let us start this section by giving a definition for the term bug. In this dissertation, we adopt the definition proposed by IEEE.

Requirements analysis Design Implementation Testing

The need to improve the quality of software products in automotive industry
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"Error" is a difference between a computed result and the specified or theoretical one.

"Fault" is a defect in a module which is the manifestation of an error.

"Failure" is the inability of a system to perform a required function within specified limits.

The relation between a mistake, an error, a fault and a failure is illustrated in Figure 1.10.

Figure 1.10 -Relation between a mistake, an error, a fault and a failure

The results of a software testing activity is a failure, therefore an analysis activity is necessary to identify the fault.

In our research, we used the term "bug" rather than "failure" Software's complexity and accelerated development schedules make designing "bug-free" software difficult. In this dissertation, we also adopt the definition of software quality proposed by IEEE.

Definition 1.5: Software quality (IEEE Std. 610-1990)

(1) The degree to which a system, module, or process meets specified requirements.

(2) The degree to which a system, module, or process meets customer or user needs or expectations.

A widely accepted premise on software quality is that software is so complex (in combinatorial terms) that it is impossible to have "bug-free" software. One technique commonly used in industry to verify and validate a software product is the software testing. In this dissertation, we adopt the definition of software testing proposed by the National Institute of Standards and Technology11 (NIST).

Definition 1.6: Software testing and execution (NIST 2002)

Software testing is the process of applying metrics to determine product quality. Software testing is the dynamic execution of software and the comparison of the results of that execution against a set of pre-determined criteria. "Execution" is the process of running the software on a computer with or without any form of instrumentation or test control software being present. "Predetermined criteria" means that the software's capabilities are known prior to its execution. What the software actually does can then be compared against the anticipated results to judge whether the software behaved correctly. Software testing is a widespread V&V technique in automotive industry.

In Chapter 8 -Section 2, we demonstrate that the software testing problem is a NP-Complete12 problem. We often hear maxims like "there's always one more bug", and "software V&V techniques can reveal the existence of bugs, but never prove their absence". Therefore, appropriate techniques, methods and procedures must be adopted in order to help engineers to:

• lower the number of bugs introduced in the software system (prevention approach),

• and detect all the bugs that have been introduced in the software system as soon as possible (detection approach).

1.

Prevention approach [START_REF] Mays | Experiences with defect prevention[END_REF][START_REF] Gale | Implement the defect prevention process in the MVS interactive programming organization[END_REF], McDonald 2007) Bugs are a consequence of the nature of human factors in the designing task. They arise from oversights made by engineers during requirements analysis, design, implementation and even testing. Complex bugs can arise from unintended interactions between different parts of the software system. This frequently occurs because software systems can be complex -millions of lines long in some cases -often having been programmed by many people over a great length of time, so that engineers are unable to mentally track every possible way in which parts can interact. The software industry has put much effort into finding methods for preventing engineers from inadvertently introducing bugs while designing a software system. These methods include:

• Engineers practices The need to improve the quality of software products in automotive industry
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• Root cause analysis Even with efficient bugs' prevention techniques and taking the assumption that human is not perfect, we conclude that each software system includes bugs. That is why, verifying and validating the software system before any customer delivery is a necessary activity.

2.

Detection approach: V&V techniques (Beizer 1995, Myers 1978[START_REF] So | An empirical evaluation of six methods to detect faults in software[END_REF] Finding and fixing bugs has always been a major part of designing software systems. Maurice Wilkes 13 , an early computing pioneer, said in the late 1940s (Wilkes 1949) that much of the rest of his life would be spent finding errors in his own programs. As computer programs become more complex, bugs become more common and hard to fix. Usually, the most difficult part of finding a bug is locating the erroneous part of the source code. Once the error is found, correcting it is usually easy. Programs known as debuggers exist to help programmers locate bugs. However, even with the aid of a debugger, locating bugs is something of an art. It is not uncommon for an error in one section of a program to cause bugs in a completely different section, thus making it especially difficult to track. Typically, the first step in locating a bug is finding a way to reproduce it easily. Once the bug is reproduced, the programmer can use a debugger or some other tool to monitor the execution of the program in the faulty region, and find the point at which the program went astray. It is not always easy to reproduce bugs. Some bugs are triggered by inputs to the program which may be difficult for the programmer to re-create. (Beizer 1990, Barezi 2006).

Each of these techniques catches different classes of bugs at different points in the development cycle.

D.

Impacts of detecting bugs later in the software development life cycle

According to a newly released study commissioned by the Department of Commerce's National Institute of Standards and Technology (NIST 2002), software bugs cost the U.S. economy an estimated $59.5 billion annually, or about 0.6 percent of the gross domestic product. The study also found that, although all errors cannot be removed, more than a third of these costs, or an estimated $22.2 billion, could be eliminated by an improved V&V infrastructure that enables earlier and more effective identification and removal of software bugs. These are the savings associated with finding an increased percentage of bugs closer to the development activities in which they are introduced. Currently (Cf. The impact on the software industry due to lack of robust, standardized V&V technology able to detect bugs closer to where they are introduced can be grouped into three general categories:

1.

Poor quality perceived by the customer

The most troublesome effect of a lack of efficient V&V technology is the increased incidence of avoidable bugs that emerge after the product has been delivered to the customer. Poor quality often results in loss of reputation and loss of future business for the company. In addition, legal actions are undertaken against the supplier when bugs are attributable to insufficient V&V.

Increase of the software development cost

Historically, the process of identifying and correcting bugs during the software development process represents over half of development costs. Depending on the accounting methods used, V&V activities account for 30 to 90 percent of labor expended to produce a working program (Beizer 1990). Software engineers already spend approximately 50 percent of development costs on identifying and correcting bugs (Cf. Table 1 .1). Early detection of bugs can greatly reduce costs. Bugs can be classified by where they were found or introduced along the activities of the software development life cycle, namely, requirements analysis, design, implementation, testing, and operational life activities. Figure 1.11 illustrates that the longer a bug stays in the program, the more costly it becomes to fix it.

Increase of the time to market

The lack of efficient V&V technology also increases the time that it takes to bring a product to market. Increased time often results in lost opportunities. For instance, a late product could potentially represent a total loss of any chance to gain any revenue from that product. Lost opportunities can be just as damaging as post-release product bugs. However, they are 

VI. Industrial needs and expectations

Nowadays, electronics represents more than 30% of the global cost of a car (Sangiovanni-Vincentelli 2003). Car electronic architecture becomes more and more complex and carmakers outsource the design of electronic modules to automotive electronic suppliers. The software part is the added value of these modules and they account for more than 80% of the total number of problems detected on these modules (Johnson Controls source). As automotive electronic products become more and more complex, the size of software embedded in these products increases drastically. In fact, a body controller module managing the interior function of a car body account for more than 200 KLOC 15 (Johnson Controls source). As a consequence, the time spent in verifying and validating these software has increased exponentially the last 10 years. V&V activities account now for more than 50% of an automotive electronic project time and effort (Cf. Table 1 .1). Despite the huge resources spent in verifying and validating a software product and after each delivery to the carmaker, some bugs are detected by the carmaker and forwarded to the supplier who must react quickly and efficiently. Once an electronic module is launched on the market (e.g. integrated into a vehicle), an average of one software bug per year is detected by the end-users, which may becomes dramatic for the electronic supplier in financial terms if the product has to be systematically changed. In fact, in term of bug's occurrence, two types of contract engage electronics suppliers with car manufacturers:

• Implicit contract: during software development process, each carmaker delivery must be free of bugs. • Explicit contract: on launched electronic module, carmaker tolerates a certain number of defective products expressed in terms of PPM (Pieces Per Million). PPM includes all software bugs but also electronic, mechanical and production problems.

As the automotive market becomes more and more competing, decreasing the development time of outsourced parts and decreasing the number of problems detected later in the process becomes of major importance for carmakers and consequently a major quality indicator for automotive suppliers. Indeed, the carmakers' process for assigning new projects to suppliers is mainly based on feedbacks from previous projects. Consequently, suppliers work on reducing the development time of their products, delivering on time the products to carmakers and detecting the maximum number of bugs as earlier as possible in the development process.

Through our research project, we were asked by an automotive electronic supplier namely Johnson Controls to improve the performance of its software V&V activities. Their main purpose is to improve the quality of their products and therefore better satisfy the requirements and expectations of their clients. In Johnson Controls, the software development life cycle follows a V-model (Cf. Chapter 2 -Section 3.B). Moreover, the validation test which is the last V&V activity before a carmaker delivery is considered as the ultimate activity to detect all the bugs and therefore deliver carmakers "bug-free" software. (1) A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement.

(2) Documentation specifying inputs, predicted results, and a set of execution conditions for a test item.

While the execution activity is often automated via a test execution platform, the test case design activity remains a manual task that fills in time many engineers. We propose below our definition of a test execution platform. Therefore, for many of software managers and experts in Johnson Controls, automating the design of test cases seems to be the most adapted solution to reduce the testing time, cost and resources while improving the code and requirement coverage. We adopt the definition of coverage proposed by IEEE.

Definition 1.9. Coverage (IEEE Std. 610-1990)

In software engineering, the term "coverage" means the degree, expressed as a percentage, to which a specified coverage item (code or requirement) has been exercised by a test case.

For the definition of code (structural) and requirement (functional) coverage, please refer to Chapter 2 -Section 5.F.

In our research, we go through this problem with a systemic approach in order to identify levers in any domains from which we might be able to improve the global performance of the software V&V activities. The added value of such an approach is the resolution of the problem with a global quality viewpoint. Consequently, in Chapter 2, we characterize the software design environment in automotive industry and point out issues and anomalies (diagnoses). In Chapter 3, based on our industrial audit, we clearly define the scope of our research and we formulate our research topic in accordance with the research issues in software testing. In Chapter 4, we perform a literature review on the existing approaches, techniques and tools in the field of the V&V of software products. More especially, we focus our research on finding or adapting "solutions" for the anomalies and lacks (diagnoses) that we identify via our industrial audit. We identify relevant actions for improving the global performance of the Johnson Controls V&V activities. In Chapter 5, 6, 7 and 8, we specify our proposed models.

A prototype implementing our models has been developed in Chapter 9. Finally, in Chapter 10, we validate our models through two industrial case studies on historical data.

VII. Conclusion

Presently, automotive industry is facing significant difficulties in terms of selling new cars. Therefore, carmakers ask their suppliers to innovate, increase quality, reduce time to market and decrease the development cost. As electronics represents more than 30% of the global cost of a car and stands for a big amount of the problems detected on a car, electronic suppliers are the most concerned. Software technology is at the core of each electronic product; therefore, electronic suppliers focus their efforts on the improvement of their software development and V&V practices. Through our research project, we were asked by an automotive electronic supplier namely Johnson Controls to improve the performance of its software V&V activities. Their main purpose is to better satisfy the requirements and expectations of their clients in terms of quality, cost and delay. In our research, we go through this problem with a systemic approach in order to identify domains from which we might be able to improve the global performance of the Johnson Controls software V&V activities.

In the following chapter, we perform an industrial audit on the software practices and more especially on the V&V techniques currently used in automotive industry. We aim to identify the issues and lacks of the current practices in order to propose relevant improvement actions well adapted to the industrial context. Introduction

The audit of the industrial context permits to identify and determine the overall environment in which our research project has to be performed. This must results in a better understanding of what verifying and validating a software product means and what are the necessary changes to perform.

In this chapter, we perform an industrial audit on the software practices currently used in automotive industry and more especially in Johnson Controls. The audit is divided into four parts:

• The process of managing the carmakers' requirements related to the software domain.

In fact, delivered software products must be compliant with the carmaker's requirements.

• The processes of verifying and validating software products. Many Verification and Validation (V&V) activities are performed on a software product before the delivery to the carmaker. • The process of managing and reusing capitalized bugs. Indeed, bugs detected on previous projects and stored in the problems' database must be regularly reviewed in order to avoid similar bugs on new developments. • The process of managing and reusing capitalized test cases. In automotive industry, the projects related to the same type of product and car platform of one carmaker have up to 70% of common functionalities (Johnson Controls source). Therefore, reusing test cases from one project to another must be done frequently.

For each of these parts, we make our analysis on two stages:

1. A snapshot of the current software practices in Johnson Controls (process, tool, people) 2. Analysis and diagnoses of these practices.

In the conclusion of this chapter, we summarize the performed diagnoses and we locate them within the Johnson Controls software organization.

II. Frame of the audit

Our approach to audit the practices currently used in Johnson Controls when verifying and validating software products can be divided into 7 activities:

• Analyze the documents delivered by the carmakers to their electronic suppliers. Their formats and their evolutions during the software development life cycle • Analyze the main activities of an engineer when designing test cases for a software product. This analysis is performed with a multi point of view: process, tool, and people • Audit engineers when designing test cases • Intervention on the design of test cases for four software projects • Interview managers on the expectations of the carmakers at each stage of the software development life cycle • Interview all types of engineers that can be involved in a software project • Analyze data on the software testing practices of carmakers In the following, the results of the audit are presented.

Industrial audit
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III. The software projects in automotive industry

A.

An incremental software development process

Definition 2.1: Project (Wikipedia -November 2008)

A project is a temporary endeavour undertaken to create a unique product or service. It can also comprise an ambitious plan to define and constrain a future by limiting it to set goals and parameters. The planning, execution and monitoring of major projects sometimes involves setting up a special temporary organization, consisting of a project team and one or more work teams.

A project consists of a set of coordinated and controlled activities organized to achieve an objective conforming to specific requirements. Presently, at Johnson Controls, a product project (hardware, software and mechanical skills) typically represents 24 months of development and involves around 25 engineers (Johnson Controls source). The five main stages of a project are illustrated in Figure 2.1 and described in Table 2.1. Each stage is defined by a procedure that identifies the responsibility, deliverables (inputs, processes and outputs) and applicable references. The main focus of these stages is the design and testing of components and assemblies through product launch. It is a customizable process that is to be applied for all automotive products within Johnson Controls company. Encompassing the activities required to ensure that the product meets all customer requirements when produced Phase 5: Launch

V-model V-model V-model V-model V-model V-model V-model

PHASES DESCRIPTION

Ensuring production preparation to ensure a smooth transition from production initiation to volume production

The objective of the milestones of the product development system is to check the status and the progress of the program. Software skill has to take into account the hardware and mechanical releases availability and carmaker deliveries requirements of the product project to define its life cycle and its planning. In Figure 2.1, the steps of the high level software life cycle are mapped with the product development stages. A detailed description of the software steps is given in Table 2.2. Each process or group of processes (Support processes) of the process map is synthetically described in Table 2.3.

Table 2.3 -Description of the software processes within Johnson Controls (Mignen 2006a)

As illustrated in Figure 2.1, these software processes are carried out before each carmaker delivery of the software product. Despite the V&V of the software product and after each delivery to the carmaker, some bugs are detected by the carmaker. This could lead to the conclusion that carmakers have more efficient testing approaches than their suppliers. But, carmakers do not communicate on their practices and furthermore, they do not often transmit test cases to their suppliers. We analyze data on the software testing practices of carmakers and interview inner experts in touch with the carmakers. As a conclusion, this efficiency in testing software products can be related to many factors such as: 

Component Development (CD)

Develop detailed design, produce and verify components Develop, review and execute unit test procedures

Integration (INT)

Define software integration strategy Perform incremental integration and execute integration tests

Validation (VAL)

Develop software validation strategy Design, implement and perform validation procedure

Support processes (Not detailed for confidentiality reasons)

Control changes to configuration items Plan, track, verify and validate changes / defects Perform document and project reviews Perform Software quality and process audits

• The carmakers benefit from real electronic platforms where the supplier modules are installed and tested. In fact, the modules are tested in a simulated real environment with surrounding modules in a global system approach. • The carmakers use their experience feedback of recurrent bugs to test a given module with the knowledge of bug probabilities and even end-user behavior's profiles to design the most relevant test cases.

Diagnosis 1

Verification and Validation practices and test cases are rarely shared between the carmakers and their electronic suppliers.

C. Functional organization of a software project

Besides the project leader, the coordination team and the quality team, one can identify two technical teams in a software project at Johnson Controls (Cf. The coordination team is located in so called "front office" sites, close to the carmakers. Development and validation teams are in general located in Low Cost Countries (LCC). However, in some cases, they can be spread across several locations. Globally, we have Software Developer (SD or developers) who develop the software product, Software Validation Engineer (SVE or validator) who validate the software product before a carmaker delivery, Software Coordinators (SC) who are responsible for the assignment of the quality, schedule, cost goals and quality engineers who ensures that project quality commitments are respected. For confidentiality reasons, we are not allowed to give more details on the roles within a software project.

Ten years earlier, software V&V was covered only in software engineering courses. Nowadays, American but also European universities have responded to the importance of the V&V practices in industry with new independent courses and specialties in verifying and validating software products [START_REF] Duernberger | Software testing applications in a computer science curriculum[END_REF]. The goal of these courses is to prepare students for software testing management, testing considerations, designing test cases, and 

IV. Management of the carmaker requirements related to software

Let us start by defining a common vocabulary on carmakers' requirements related to the software domain. In this dissertation, we consider the definition of specification and requirement proposed by IEEE.

Definition 2.2: Specification (IEEE Std. 610-1990)

A specification is a document that specifies, ideally in a complete, precise and verifiable manner, the requirements, design, behavior, or other characteristics of a component or system, and, often, the procedures for determining whether these provisions have been satisfied.

Definition 2.3: Requirement (IEEE Std. 610-1990)

A requirement is a condition or capability needed by a user to solve a problem or achieve an objective that must be met or possessed by a system or system component to satisfy a contract, standard, specification, or other formally imposed document. There are two groups of requirement:

-Functional requirement: A requirement that specifies a function that a component or system must perform.

-Non functional requirement: A requirement that does not relate to functionality, but to attributes such as reliability, efficiency, usability, maintainability and portability.

We also adopt some definition proposed by Johnson Controls software experts.

Definition 2.4: (Software) Functionality (Johnson Controls)

A functionality (called also client or software functionality) is described by some features that are described by some requirements. For instance, a speedometer is a functionality of a cluster

The term "Function" is not used in requirement management to avoid misunderstandings with the coding language.

Definition 2.5: Feature (Johnson Controls)

A feature is a "property" or "behavior" of a software. It describes the particularity of a device. Each feature is composed from one or more requirements. For instance, a "Speedometer" is a feature of a cluster. It can be broken down into 3 features:

-Speed display -Speed computation Industrial audit
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-Conversion from Km to miles

The breakdown granularity has to be adjusted according to the project needs.

Definition 2.6: Requirement (Johnson Controls)

A requirement is something to be done to design the device (it is required). For instance, the value of the speed shall be calculated using the X data. Each requirement must contain a subject / object and a predicate: A.

-Subject =
The carmakers specification of software functional requirements: diversity, typology, evolution

At the beginning of a project, automotive suppliers officially receive the electronic product requirements from the carmakers. In fact, there is no standardization between carmakers and electronics suppliers on the way requirements must be expressed. Based on this deliverable, suppliers analyze and identify skill requirements (software, hardware and mechanical).

Afterwards, software requirements are sorted by the software department according to the typology proposed in Definition 2.5. In our research, we focus on the software functional requirements on which we identify two main characteristics:

1. Carmakers consider different standards to express the software functional requirements of a given electronic module. Some carmakers use semi-formal methods,

Example:

The display backlight has to be switched on in less than 1 second after ignition on. object action result performance/measurable such as Statechart or UML 17 illustrated respectively in (Harel 1987) and [START_REF] Omg | Unified Modeling Language: Superstructure." version 2.0[END_REF], others use natural language. Even, one carmaker could use two or more different standards according to each department policy. In 2007, we carried out a study on the evolution of the formalisms used by carmakers to specify software functional requirements. In Chapter 4 -Section 4.D.1, we do a survey on the formalisms used to specify the functional requirements of a software product (Dart 1987, Brinkkemper 1990). Three levels of formalism have been identified: informal, semi-formal and formal. The study was done on eight editions of carmaker requirements documents spanning from 1997 till 2006. We also considered three different carmakers: two Europeans and one Japanese but only one type of electronic product. The results of the study are illustrated in Figure 2.4. We underline the increase of formal methods based on the requirements simulation and the decrease of informal and semi-formal methods. Since this conclusion is fully true for the considered type of product, it is partially true for other types of product where natural language and semi-formal methods are still widely used. However and according to automotive experts, the trend is toward formal methods. Through this study, we also noted that software functional requirements are often expressed in many documents, emails, and even some phone calls. In automotive industry, semi-formal and formal methods are more and more used to specify software functional requirements. However, there is a lack of a standard formalism shared between carmakers and suppliers. In fact, for each project, the supplier has to adapt its processes to the formalism used by the carmaker.

2. Software functional requirements continuously evolve during development phases and also during operational life of the product. In 2007, we analyze the evolution on one project of the carmaker requirements related to software. The studied project started in 2005 and it is considered (by experts) as a typical project in automotive electronics industry. The Figure 2.5 illustrates the results of the study. We note the growth number of changes asked by the carmaker after the date of software requirements freeze. We interview inner software experts and managers, often in contact with the carmakers, in order to understand this phenomenon. In fact, at the beginning of a project, the carmaker does not have a 100%-clear view of what each functionality should perform. It is through the project and after each delivery that the expected behaviors become clearer. Moreover, suppliers are often more experimented in the development of automotive electronic products than some carmakers (system integrator). This leads to the fact that some carmakers lean on the suppliers by letting them identify inconsistencies and ambiguities in the product specifications. 

B. Commitment contract between carmakers and electronic suppliers

As noticed before, a loop-type design process is initiated between the carmaker and the supplier. About ten intermediary client deliveries are carried out. After each delivery, some "bugs" are detected by the carmaker and forwarded to the supplier who must react quickly and efficiently. Once an electronic module is launched on the market (e.g. integrated into a vehicle), an average of one "bug" per year is detected by the end-users, which may becomes dramatic for the electronic supplier in financial terms if the product has to be systematically changed.

We analyze typical contractual documents between carmakers and electronic suppliers. Moreover, we interview Johnson Controls managers in charge of establishing these contracts.

In fact, in term of bugs' occurrence, two types of contract engage electronics suppliers with car manufacturers:

• Explicit contract: on launched electronic module, carmakers tolerate a certain number of defective products expressed in terms of PPM (Pieces Per Million). PPM includes all software bugs but also electronic, mechanical and production defects. For instance, in Table 2.4, when starting production (SOP) the carmaker tolerates X PPM on 0 km cars. It is logical that the required number of PPM on 0 km cars decreases (Y<X) 4 months after the production has started. The number of PPM is negotiated at the beginning of a project. The electronic supplier estimation of their capability in term of PPM number is mainly based on the experience feedback but also on the product complexity and novelty. 

C. Sensitive criteria for carmakers

Carmakers are sensitive to different criteria depending on whether the project is in its proposal, design and development or operational life phase. In order to identify these criteria for each phase, we interview 3 project leaders for 3 projects in each of these phases. 

Proposal phase

In proposal phase, carmakers choose their suppliers basically on economic criteria. An additional cost regarding other suppliers can exist but must be justified on quality and/or delay levels. Moreover, they strongly used their experience feedbacks on other or previous projects with each supplier.

Presently, all the automotive electronic suppliers have almost the same knowledge and know how in the product design, development and maintenance. Therefore, competing with other suppliers on technical criteria remains very hard.

Finally, the process improvement aspect becomes a major quality criterion for the carmakers.

For instance, the carmakers require now that their suppliers have reached a specific maturity level within the SPICE or CMMI18 models. These two models are process improvement approaches that provide organizations with the essential elements of effective processes.

Product design and development phase

During the product design and development phase, intermediate deliveries of the product (including all or part of the product functionalities) are planned. Carmakers are sensitive to:

• Time to delivery: the supplier must respect the planning established at the beginning of the project. • Product quality: the supplier must test the product and validate its conformance with the carmaker requirements before the delivery. "Zero bug" is required by the carmaker. • Additional cost: sometimes, the supplier tries to invoice the modification or evolution requests asked by the carmaker.

Operational life phase

We identify three criteria to which carmakers are sensitive during the operational life of a product. We classify these criteria by priority order:

• Regression risk while modifying or correcting the product: the financial impact on the supplier can be severe especially when the car product lines are stopped because of its product. In order to better illustrate this issue, let us consider the following example excerpted from a real situation. Once, a carmaker required a modification on a product in operational life phase. The modification as it was expressed by the carmaker was to "remove" a piece of software code from the product in order to avoid the hacking of the product and therefore the stealing of the car. The supplier has implemented this modification by erasing the piece of code, full validated and delivered the new product version. The carmaker has also made a full validation of the new version of the product. Unfortunately, when starting the serial car production and when integrating the product in the cars, a bug related to this modification has occurred and thus blocked all the car production lines. A deep analysis of the bug has revealed that the removed piece of code must not be removed from the product but hidden. One more example on the implicit requirements of the carmakers since the carmaker declared that when he asked for "removing the code", he indirectly asked for "hide the code". Introduction

The purpose of the current Requirements Specification process is to ensure that all software requirements reflect allocation of carmaker and/or system requirement to software are identified, documented, maintained, committed and validated to serve as a basis for software design, implementation and validation. As a result of the Requirement Specification process:

• the software requirements to be allocated to the software components of the system and their interfaces are defined, • software requirements are classified and analyzed for correctness and testability,

• the impact of software requirements on the operating environment is evaluated,

• prioritization for implementing the software requirements is defined,

• the software requirements are approved and updated as needed,

• consistency and bilateral traceability are established between system requirements and software requirements; and consistency and bilateral traceability are established between system architectural design and software requirements, • and the software requirements are baselined and communicated to all concerned people.

Interfaces with other software processes

The current Requirements Specification process is considered as the main important process within the software processes. In fact and as shown in Figure 2.6, this process strongly interacts with all other processes. Especially, it delivers the software requirements to allocate them to components (Global Design), to develop these components (Component Development) and to design associated test cases (Validation). This activity aims to establish and maintain carmaker and system needs and expectation that will serve as a basis for specifying requirements allocated to software. The features required by the carmaker are identified and peer projects for these features are identified for use of lessons learned.

b. Define requirements

For each feature, software requirements are specified or updated using the Software Requirement Specification (SRS) model (see next section for the principles of this model).

Requirement Management tools such as Reqtify19 or Doors 20 can be used for managing and storing requirements. All items that need to be clarified are filled in a CLarification Request list (CLR) and discussed with concerned people.

c. Classify and prioritize requirements

For each software requirement identified in the SRS, one has to define:

• the type of the requirement (FCT, CON, INT, DEV, MMI),

• the status (new, accepted, confirmed, dropped),

• the priority (high, normal, low),

• the associated feature,

• and the required verification and validation technique (code analysis, code review, unit test, integration test, validation test).

Other criteria can be added such as safety, revision and so on. A Requirement Management tool can be used for this classification.

d. Define validation criteria

In order to support the validation team and facilitate test case definition, validation criteria need to be specified. These criteria consist of defining when the test can be considered as passed correctly (test case results acceptance). A validation criterion can be applicable on several requirements or group of requirements. Validation criteria can be based on a lesson learned. By default, standard validation criteria are the successfully passing of test cases (in this case, it is not necessary to define specific validation criteria). The validation criteria shall define special conditions for validating some requirements if their validation deviates from the standard use of tests cases. For instance:

• Specific criteria to validate (respect of standard, performance criteria, different situations to validate …). • Condition for validating the requirement (normal and specific conditions for the test, stress situations, tools, or negative tests). • Criteria defining when validation tests can be considered as passed correctly (including thresholds of performance deviation).

e. Establish traceability

Purpose of this activity is to establish and maintain upward bilateral traceability between user requirements (carmaker requirements, system requirements) allocated to software and software requirements in order to verify that all carmaker and system requirements that have been allocated to software are taken into account in the SRS. The result of this activity is a matrix called traceability matrix.

f. Obtain requirements validation and commitments

Each time a step of the SRS elaboration is achieved in order to start a part of software development, the version of SRS is reviewed to make sure the understanding and commitment Johnson Controls has adapted the SRS model to its organization, needs and types of products.

In Figure 2.7, the data model of the SRS currently used is described. The SRS document serves as a basis for software design and validation plan.

The engineer responsible of managing the carmaker requirements shall update the SRS document according to the CLarification Request (CLR) answers and input specification updates as well as change requests. Once the SRS document has been released, the CLR shall be used to ask question or request or give clarification on SRS (the CLR is used with the carmaker and internally in the team). The SRS shall be updated with the content of the CLR.

The change of the specification after the specification freeze milestone shall be an exception.

The specification freeze corresponds to the date where in theory no specification change is allowed.

Diagnosis 5

The Software Requirement Specification (SRS) document is often a large document (about hundreds of pages), difficult to manage, incomplete and not regularly updated.

Diagnosis 6

Sometimes, the SRS document is the official and contractual document between carmaker and supplier. It is also the main document used by the development and V&V teams in their activities. It has a standard structure but there are no standards to specify carmakers' requirements (more especially functional requirements).

F. Quality criteria of a requirement

In order to support reviews and improve the quality of software requirements the following criteria are defined by Johnson Controls software experts. They must be checked during reviews and respected during the set up of the SRS document. The review of the SRS document is supported by a Checklist. It consists of verifying explicitly the criteria listed hereafter.

General criteria

• Use a simple language style to define the requirements.

• Short sentences, not interlocked, need.

• Use present tense.

• Use simple, clear, vocabularies, introduced terms wherever possible • No multiple definitions.

• Reference what is defined correctly by existing specifications (do not copy).

• Apply SRS template and Requirement Management tool template (Styles, fonts, types …). • Do not specify design or implementation. Describe what to do not how to do it.

• In case of complicated conditions use state-, sequence-or flow chart to gain clarity and remove ambiguity. • Describe the interface of the device with the environment not the interface of components within the device. In case of complicated conditions use state-, sequenceor flow chart to gain clarity.

Detailed Quality Criteria

Understandable

• The text is easy to understand and the requirement is clear for the reader.

• Needless or confusing words are not used.

Complete

• The Feature (group of requirements) will contain all the information needed to implement and test the requirement. No information needed to implement the feature will be missing.

Consistent

• There will be no contradictions within a single requirement or between two requirements. • Usage of the same terms as used in other definitions.

Necessary

• The definition is needed for the realization of the feature. Removing the requirement will change the behavior related to the feature and/or will render the feature incomplete.

• Unambiguous.

• The definition is clear and has only one single interpretation.

Atomic

• A further breakdown of the definition is not possible.

Feasible

• It is possible to implement, fulfill and test the definition (time, budget, know-how?).

Maintainable

• There will be no redundancy. Redundancy is allowed only when removing the redundant phrase, sentence or requirement will cause ambiguity.

Testable

• It is possible to test the definition / to develop a test case.

V. Software verification and validation activities in automotive industry

A.

Overview on software verification and validation techniques at Johnson Controls

As we shown in Section 3, within each step of the software standard life cycle, engineering activities are performed in an iterative way according to the standard V-model of the software industry. The Component Development process is the process where the source code is developed. Following the code implementation and before any carmaker delivery, a series of verification and validation techniques have to be applied on the source code in order to check its correctness and its compliance with the carmaker expectations (software requirement specification). 

B. Software V&V techniques in Component Development process

The purpose of the Component Development process, as it is defined in Johnson Controls, is to produce executable software components that properly reflect the global design and software requirements. Moreover, a strategy has been defined in order to verify and validate each software component, after it is produced. This strategy is applicable for all the software components in the projects. For each component in the scope of the V-model, a Component Development process is used. After analyzing internal documents related to the definition of the Component Development process, we identify 3 main activities when developing a new software component (Cf. Table 2.6).

Process Comments

Develop 

Table 2.6 -Process flow of the Component Development process

First activity: Produce component Produce component activity aims to produce components (source code, code generator data …) and/or to fix bug(s) detected in next steps of development (verification and unit test activities). This coding activity is based on global and detailed design and implements the component design made previously. Coding has to be done in accordance with defined coding standards, rules and guidelines and with embedded system constraints (memory size, hardware dependency …).

Second activity: Verify component

In this activity, three software inspection techniques (static V&V techniques) are performed:

• Code review, based on the Review & Verification process.

• Static analysis based on a commercial tool (QAC 21 ).

• Dynamic analysis based on a commercial tool (PolySpace 22 ).

The verify component activity follows a process flow described in 

Process Comments

Produce component Do we need to review the software component?

Code review is performed in filling the nonconformities in an Issue Log.

Do we need to statically analyze the software component?

Static analysis is performed with a static analysis tool: QAC.

Do we need to dynamically analyze the software component?

Dynamic analysis is performed with a dynamic analysis tool: PolySpace. It is possible to perform dynamic analysis only for the whole software

Table 2.7 -Process flow of the verification of a software component

Code reviews are mainly intended for checking respect of coding standard and rules / quality of comments in a software component. Static analysis is intended to check the compliance of the source code with the international automotive software coding rules (MISRA-C23 ). Dynamic analysis is intended for detecting problems, with a dynamic point of view, early in the life cycle. This type of problems could be detected by testing activities. Static and dynamic analysis can be done on the whole software (and not only for each component).

Third activity: Unit test component

This activity consists of testing unitarily each software component. In other words, this software test technique intends to verify the correctness of all functions / conditions / decisions / component inputs and outputs / boundaries and limits in a component source code.

To summarize, the software Component Development process within Johnson Controls performs four V&V techniques on each software component: three inspection techniques (code review, static and dynamic analysis) and one test technique (unit test).

In the following, we develop each of these techniques as it is practiced at Johnson Controls.

Technique 1: Review of a software code

According to the Johnson Controls process, the purpose of the software component review is to:

• Check whether the source code of the produced component respects the design or not.

• Check whether all remaining problems after automatic static/dynamic analysis are properly justified in the source code.

• Verify the quality of the comments written in the source code.

• Verify the traceability of the component to software requirements.

• Check whether the source code respects the coding guidelines, especially those rules that cannot be tested automatically by a tool. Software engineers have to check the compliance of the inspected code to the rules and recommendations. The modifications of these rules can be made by a committee, whose members are appointed by the Software Engineering Process Group 24 (SEPG) of the company. The committee includes representatives of all Johnson Controls sites on which this document is deployed. In fact, there is a document which defines coding rules and recommendations for using the C language 25 in the development of embedded software for the automotive industry. The document is organized as a collection of rules and recommendations illustrated in Figure 2.10: o A rule is a prescription that has mandatory character. It must be always followed. o A recommendation is a prescription that has advisory character. It must be followed as much as possible.

Figure 2.10 -Classification of programming rules and recommendations

24 The SEPG is a group of software experts.
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In order to perform the code review of a software component, a group of Johnson Controls software engineers must read the source code and simultaneously fill an Issue Log with the identified issues. An Issue Log capitalizes the reviewers' names, the date of reviewing, the name of the reviewed component, the review load, the reviewed number of Lines Of Code (LOC) and a list of identified issues. For each issue, reviewers give an ID, the number of the line where the issue was found, a description of the issue and the status of the decision and correction.

In 2006, we carried out a study within Johnson Controls on four projects related to two different electronic products. The aim of this study was to audit the practical implementation of the code review technique. The main result of this study is that number of code reviewers is not aware of the coding rules and recommendations. Moreover, we note that code review is not systematically performed on each new software component. These conclusions were also validated by inner software experts and managers. In fact, in automotive industry, software testing is considered to be the main V&V activity which has to detect all the bugs. Unfortunately and as shown in Figure 1.11, detecting bugs later in the process costs more than detecting them as soon as they are introduced.

Diagnosis 7

Sometimes, the review of software code is badly done or even ignored. In fact, number of code reviewers is not aware of the coding rules and recommendations to be checked. Moreover, the code review is not systematically performed on each new software component. In consequence, the code review does not often detect all the bugs that must be detected through this activity.

Technique 2: Automatic static analysis of a software code

According to the Johnson Controls process, the goals of the static analysis are to:

• Improve the quality of the source code.

• Improve the robustness of the software.

• Make the source code as much as possible portable.

• Be compliant with MISRA-C.

There are two phases of this analysis, executed separately:

• During the verification activity of a single component. This must be done by the developers who create/modify the components. • Overall project static analysis. Done after the integration of all the components. This task could be delegated to an experienced developer.

The static analysis is performed automatically using a computer tool such as QAC, the most used in automotive industry. It is recommended to apply this V&V technique in the beginning of the project in order to be able to detect and fix the issues as early as possible. The criterion to stop the static analysis of a source code is that all QAC errors and warnings are either fixed or justified. A screenshot of the QAC tool is illustrated in Appendix A.

Technique 3: Automatic dynamic analysis of a software code

Industrial audit
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A dynamic analysis of the software code is performed in order to find and fix as early as possible the software bugs that could possibly occur one executing the software product and cannot be detected by code reviews and static analysis. The dynamic analysis is performed automatically thanks to a commercial tool PolySpace. The intention is to get a clear view about the dynamic behavior of the software early in the process. The earlier detection of problems reduces the risk of having serious bugs at late project phases. However, the project has to plan enough time (depending on the project's size and warnings reported) for warning analysis. The criterion to stop the dynamic analysis of a source code is that all Polyspace errors and warnings are fixed or justified. A screenshot of the Polyspace tool is illustrated in Appendix A.

Technique 4: Unit test of a software component

The unit test of a software component is described by the process flow of Presently, in Johnson Controls, the unit test is not responsible to verify the compliance of a software component with the carmaker requirements. In fact, one software component can be tested unitarily (100% of code coverage) without fulfilling the behavior required by the carmaker.

Diagnosis 8 According to the "To Be" process, the unit test of a software component must ensure a 100% source code coverage. However, this V&V technique is not responsible to verify the compliance of the component's behavior with the carmaker requirements. One software component can be tested unitarily (100% of code coverage) without fulfilling the behavior required by the customer.

The language used to design test cases for the unit test of a software component is the C language. A standard unit test structure providing predefined C functions in order to help the test engineer writing test cases is developed in Appendix B.

The designed test cases are reviewed in order to check:

• the relevance of designed test cases in regard with the tests objectives,

• the reached code coverage,

• and the usefulness of the dummy test cases dedicated only to reach the expected code coverage.

Finally, all the designed test cases are executed on the software component under test. 

C. Software verification and validation techniques in Integration process

Once a set of components are produced and verified through the Component Development process, they are integrated together and an integration test (V&V technique) is performed on the overall software product. In Johnson Controls, the purpose of the Integration process is to assemble the software product from the software components, ensure that the software product, as integrated, functions properly, and deliver the tested software product to Validation process.

Technique 5: Integration test of a set of software components

The purposes of the integration test are to ensure that global design requirements work as expected and the quality of the software allows the execution of the Validation process. To do this, three steps have been defined by Johnson Controls software experts:

First step: Interface review

The engineer responsible of integrating the software components reviews each component in order to verify the conformity of interfaces to predefined architecture. According to the relevance of the review, she/he can decide to setup additional verification by adding test steps in the functional and/or change test.

Second step: Change test

Change test cases are defined and executed only once, when change is integrated. The first objective of change test is to verify the good implementation of the requirements involved in the change. The second objective of change test is to verify the good implementation of the architecture expectations involved in the change. Change can be either evolution implementation or bug fixing. For bug fixing, change test cases have to check that bug is not reproduced when sequence used for bug detection is re-executed. For evolution, change test cases have to check main impacts of the change on software requirements.

Third step: Functional test

Functional test cases improve confidence on the verification. The purpose of this test is to detect regression on a new integration. It has to check a limited list of software requirements.

In this perspective, a set of test cases per software functionality has to be defined.

In conclusion, the criteria to stop the integration test of a software product are rather subjective. Indeed, the engineer must verify (according to her/his point of view) that a change does not impact the whole software product and that the main requirements of each functionality are satisfied.

D. Software verification and validation techniques in Validation process

Once a set of components are integrated together, a validation test (V&V technique) is performed on the overall software product.

Technique 6: Validation test of a set of software components

In Johnson Controls, the purpose of the validation test is to confirm that the integrated software meets the carmaker requirements related to software. The validation test is activated at each new iteration when the software product has been successfully integrated. Now, the validation test is completed when:

• The planned validation procedure is executed. A validation procedure is composed from a set of test cases. • All of the requirements (defined in the SRS) in the scope of the delivery are covered.

• And if any testable requirement could not be covered, the reason about it must be justified. The requirement coverage, as it is currently practiced in Johnson Controls, is developed in Section 6.B.

For each iteration, the validation test of a software product is described by the process flow of 

P R E P A R A T I O N E X E C U T I O N
The strategy for Software Validation is defined

Test cases are identified

Test cases are designed

Is there any new software integration?

Execute the selected test cases on the new software integration Is it the final software product?

Execute the whole test cases on the final software product.

Table 2.9 -Process flow of the validation test of a software product

a. Preparation of validation

Develop the software validation plan

The Software Validation Plan (SVP) describes the validation strategy for a project. It serves as a guideline for executing validation tasks by project and by scope of delivery. The strategy of validation may be adjusted for each iteration (according to the delivery content). The SVP supports the following objectives:

1. Define the validation test execution platform, the necessary equipment and the common and reused validation components. A detailed description of the validation test execution platform is performed in Appendix C.

Recommend and describe the strategy for validation test application. The SVP indicates,

for each software functionality in the scope of the delivery, the types of validation tests to be performed and if the execution of the corresponding tests is manual or automatic. In Table 2.10, a description of the test types is provided. 3. Establish the regression strategy. Two kinds of regression strategy are defined: change oriented and priority oriented. The purpose of the change oriented strategy is to define how to test a software product after new functionalities or changes are implemented / applied, in order to ensure that the implementation of not changed requirements is not impacted by the changes. The aim of the priority oriented strategy is to ensure that the quality of implementation of requirements having highest priority has not regressed while adding new capabilities.

Design the validation procedure

The purpose of this activity is to identify the structure of the whole validation procedure and to establish a link between test cases and requirements. In other words, this activity aims to identify the number of required test cases and describe the scope of each one. The software requirements (from the SRS) defined as scope of the following delivery and the SVP are used as inputs for the design of the validation procedure. In Johnson Controls, a list of good practices when designing the validation procedure has been established:

• It is recommended that, for each software requirement, at least one test case has to be defined and one test case could cover more than one requirement. • One test case can cover only one type of test.

• A test case must cover all the aspects and combinations of a requirement.

Implement the validation procedure

The aim of this activity is to design, in a step by step manner, the test cases of the validation procedure. Based on each test case scope, validators analyze the carmaker requirements and design the test case that must verify the compliance of the software product with the corresponding requirement. The test case design process presently used by the engineers at Johnson Controls is deeply described in Section 6. It is important to note that validators do not have access to the source code of the software product under test. It is a considered as a black-box with a set of inputs and outputs. The technique of designing test cases without The language used to design test cases for the validation test of a software product depends on the validation test execution platform. In case of an automatic execution of the test cases, one uses a script language. It is a Johnson Controls property language very similar to the wellknown Visual Basic26 language. A detailed description of this language is provided in Appendix B. In case of a manual execution of the test cases, test cases are written in natural language.

b. Execution of validation

The validation is executed in the following sequence:

1. Configuration and initialization of the validation test execution platform.

2. Execution of the test cases in sequence defined by the regression strategy defined in the SVP (incremental or full validation).

During the execution of the test cases, "OK" and "NOK" results, which are prepared by observing and comparing the expected and the observed results, are set for each test step. The execution of the validation procedure could performed either automatically with the help of a tool or manually (Cf. Appendix C on the validation test execution platform). In the case of a "NOK" result, the comment describing the observed situation must be added and a bug has to be issued in the problems' tracking tool. A detailed description of the Johnson Controls problems' tracking tool is performed in Section 7.

VI. The test case design process presently used in automotive industry

Our audit (Cf. Section 5) on the software V&V activities within Johnson Controls has confirmed the proposal of the National Institute of Standards and Technology (Cf. Definition 1.5): "Software testing is a widespread V&V technique in automotive industry". In fact, we notice that each of the Development (unit test) and Validation (validation test) processes perform software testing in order to verify and validate the correctness of the software delivered at the end of the process.

Presently, most of automotive suppliers have a manual test design process. As the software products become more and more complex (Cf. Chapter 1), it is illusory to be able to check that the software product responds correctly to all possible operations. In Chapter 8 -Section 2, we further demonstrate that software testing is a NP-Complete problem and therefore it is impossible to be able to cover all the operation space. In fact, for each software component or product under test, we can associate a potential operation space (Cf. Figure 2.12). Each engineer has a different perception of the possible and critical operations (based on her/his experience). Therefore, based on a common test objective, two engineers could choose different test cases according to their perception. In Johnson Controls, a software component or product is always tested against predefined objectives. Condition coverage measures the sub-expressions independently of each other. This metric is similar to decision coverage but has better sensitivity to the control flow. However, full condition coverage does not guarantee full decision coverage.

For instance, the piece of code of the Figure 2.14 has: 1 procedure, 1 condition, 2 decisions and 8 statements.

Figure 2.14 -Code (structural) coverage indicators

These criteria are apparently relevant since the goal of the testing activity is to check if all the pieces of the software have been visited. But it is not that simple (according to experts)!

In 2006, we analyze the unitary test reports on more than 5 projects related to different type of products. We also discuss these reports with inner software experts. In fact, even if the 100% code coverage is not reached, managers can decide to stop testing unitary each software component for time and budget reasons.

Diagnosis 9 Sometimes, the unit test of a software component is incomplete or even inexistent. In other words, the source code of the component under test is not covered at 100%. As a consequence, the uncovered pieces of code could hide critical bugs.

27 http://www.bullseye.com/productInfo.html (Consulted on November 2008). 

Diagnosis 10 When testing a software component or product and after an operation on the input signals, test engineers do not check the behavior of all the output signals of the component or product under test. Based on their understanding of the program behavior and/or the carmaker requirements, test engineers decide to check only some output signals in relation

with the performed operation. In fact, they verify the explicit expected behavior but not the implicit one.

Requirement (functional) coverage

The criterion of code coverage does not directly assess the compliance of the software component or product with the carmaker requirements; this is a biased indicator. In fact, the requirement coverage is related to the coverage of the functional requirements of the software under test. Through a literature review (Dalal 1988, Bontron 2005, Yang 2006), several stop testing criteria based on covering software requirements have been identified in Chapter 4 -Section 4.B.1. They primarily deal with the transitions coverage of a graph-based specification. At Johnson Controls, the carmaker requirements related to the software domain are referenced and managed using the SRS model and the coverage rate of these requirements is mainly used as the criterion to stop validation test. Moreover, the requirement coverage is measured subjectively by the validator. Paradoxically and even a 100% coverage of the functional requirements has been reached during the testing of a software product, the carmaker is able to detect a nonconformity between the code and their requirements. In fact, presently, one requirement can hide two or more other requirements. Let us consider in Figure 2.16 an excerpt of software functional requirements as they were defined by a Johnson Controls engineer. These requirements have two inputs and one output: I1 (with domain D(I1)={0,1}), I2 (D(I2)={0,1}), O1 (D(O1{0,1}).

Figure 2.16 -An excerpt of software functional requirements as defined by a Johnson Controls engineer

During the validation test, one inexperienced validator designs one test case (composed from two test steps) in order to cover the previous requirements:

-Test step 1: set I1 to 1, I2 to 0 and check if O1 is equal to 0 -Test step 2: set I1, I2 to 1 and check if O1 is equal to 1
Therefore, she/he decides to stop testing these requirements and to set them as covered. In fact, through test step #1, the validator covers at 100% the first requirement but test step #2 does not cover at 100% the second requirement. Indeed, the second requirement can be split into three "implicit" requirements to be tested:

• In case of input I1 is equal to 1 and input I2 is equal to 1, therefore the output O2 must be set to 1 -covered by test step #2 • In case of input I1 is equal to 0 and input I2 is equal to 1, therefore the output O2 must be set to 1 -not covered by the test case • In case of input I1 is equal to 0 and input I2 is equal to 0, therefore the output O2 must be set to 1 -not covered by the test case 

Diagnosis 11

The present definition of a software requirement is not enough refined. In fact, one requirement can hide two or more implicit requirements. Therefore, inexperienced validators could miss testing some of the carmaker implicit requirements.

Based on our analysis of the present Johnson Controls approaches to design test cases for unit and validation test, we do the four diagnoses listed below.

Diagnosis 12 In validation test and after selecting an operation to be performed on the software under test, test engineers analyze the carmaker requirements in order to assess the expected values to be checked on some output signals of the software. In fact, this assessment is based on the engineers' understanding of the requirements and may lead to errors. Diagnosis 13 For each software component or product under test, a large potential operation space is associated. Each engineer has a different perception of the possible and critical operations based on her/his experience. Therefore, the present strategy to select operations in order to

test a software is irrelevant.

Diagnosis 14 The test cases designed by engineers do not always simulate the real use of the software product under test. The main purpose of testing activities is to cover the software code and requirements. As a direct consequence, basic user operations on the product could be not

tested by the supplier before a carmaker delivery.

Diagnosis 15

Presently, the test cases for a software are manually designed by engineers. As the size of automotive software growth, this task becomes a laborious task and accounts for more than 50% of the total time and budget of a project.

VII. Capitalizing bugs in Johnson Controls

A.

Snapshot on the Johnson Controls problems' tracking tool

Johnson Controls as many other electronic suppliers uses a problems' tracking tool (TeamTrack 28 ) in order to manage and store problems detected during a project. A snapshot of this tool is illustrated in Figure 2.17.

Figure 2.17 -Screenshot of the problems' tracking tool

Problems are classified according to four categories: software, hardware, mechanical and others. In the following, we focus on software problems, called bugs. The tracking tool has a database where all the problems are stored by project. In fact, a project is the combination of a customer (for instance, Renault), a type of product (for instance, a body controller module) and a car platform (for instance, Laguna platform). The problems' database has been created in the late 90's and now we estimate to tens of thousands the number of capitalized software bugs. According to experts, about 60% of these bugs are "true" bugs. The remaining 40% are duplications or without continuation. Moreover, in 2006, we perform a study on the capitalized software bugs and we come up to the conclusion that up to 90% of these bugs were detected during the validation test activity. Software experts and managers confirm that the bugs detected during the other V&V activities (review and unit test) are often not capitalized in the problems' database. Once a bug is detected during these activities, it is corrected immediately by the person who detects it. Most of the capitalized software bugs are detected in validation test.

B. The bug's model currently used in Johnson Controls

One of the support processes (Cf. Figure 2.2) has the responsibility of ensuring that all found software bugs and all changes on the product are identified, analyzed, managed and controlled to resolution and implementation. In fact, once an engineer has recorded a bug in the problems' database, a workflow process is initiated between the team members in order to:

• assess the impacts of the bug,

• make decisions,

• plan and implement the corrections,

• and finally verify and validate the non-regression of the software product.

Apart the evolution of the bug status (dynamic view) since its creation and till its resolution, we focus on the bug's model (static view) currently used in Johnson Controls. Fifteen years

List of projects

List of problems by project Problem details ago, Sagem 29 software experts developed a bug's model with the aims of 1) managing the life cycle of a problem, 2) having traceability of the problems detected internally and by the carmaker, 3) monitoring a project by the number of detected, corrected and uncorrected problems and finally 4) reusing (by experts analysis) critical stored problems to avoid similar problems on future developments. In fact, a total of 111 attributes should be filled in by the engineers for each capitalized problem. We analyze about 2000 bugs from two different projects and products and we come up to the conclusion that 75% of these attributes are filled in; the remaining 25% are systematically unfilled. On the 75% filled attributes, 25% of these attributes are free fields. In Figure 2.18, we classify the 111 attributes according to the major aspects of a software bug [START_REF] Mellor | Failures, faults, and changes in dependability measurement[END_REF], Fenton 1996): location (9 attributes), timing (28 attributes), symptom (2 attributes), impact (2 attributes), cause (7 attributes), type (14 attributes), severity (7 attributes) and cost (2 attributes). The remaining 71 attributes are related to Johnson Controls administrative data necessary for the management of the bug.

Figure 2.18 -Bug's model currently used in Johnson Controls (this figure is voluntarily uncompleted for confidentiality reasons)

As stated before, some attributes of the bug have free fields in the problems' tracking tool and therefore engineers can write anything they want with the main objective of giving as many information as possible on the bug. In Figure 2.19, an excerpt of a bug stored in the problems' database is illustrated. Since the attribute Problem Description has a free field, each engineer has the possibility to fill in this field according to her/his reasoning approach. Technical language (code variables, electronic and software jargon …) is often used in such case. In fact, there is no standard format that engineers must respect when describing a bug. Moreover, attributes such as Cause Type and Description are sometimes not filled in. In fact, through these attributes, one could identify the responsibility of persons in the problem. 

Diagnosis 16 When describing a bug in the problems' tracking tool, there are too many fields to fill in (111 attributes), a lot of free fields (about 25%) and a lack of relevant predefined fields (for instance, a bug's typology). As the detection of bugs comes later in the process, engineers do not have enough time to fill in all the fields of a bug (missing information). Moreover, in case of free fields, an engineer could write anything she/he wants with the main objective of giving as many information as possible on the bug (irrelevant information). Since information is missing and/or irrelevant, it remains a difficult problem to reuse bugs in

order to avoid or detect similar problems on future developments.

C. Existing techniques to reuse capitalized bugs

We analyze many internal documents related to the reuse of bugs stored in the problems' database. We also interview software experts and managers on the current knowledge management practices. We come up to the conclusion that bugs stored in the problems' database are rarely used to avoid similar problems on future developments and ensure that carmakers will not encounter the same problems on two similar products.

Actually, no advanced (formal and automated) techniques have been implemented in order to reuse stored bugs. Nevertheless, three traditional strategies are currently practiced:

• Create and update "Lessons Learned Checklist" for software developments. The process of creating and updating lessons learnt is illustrated in Figure 2.20. On the one hand and once a bug is detected on a project, the project leader decides if this bug must be verified on other projects or not. The decision process is not formal and is mainly based on the experience of the decision maker. In case of a reused bug, this bug is transferred to the Software Engineering Process Group (SEPG) which confirms or not the possible re-use of this bug. The way of describing a bug in the problems' database has a major impact on this process. On the other hand, a software forum exists where engineers can submit their questions, remarks and recommendations to the SEPG which decides or not to generalize the submitted issue. Finally, each reused bug or group of bugs and each general issue is summarized in a lesson learnt (a textual sentence) to be consulted on future developments. In new project, a list of "similar" previous projects (according to experts) is identified. Then, engineers have to review all the problems (including software bugs) detected on these projects and identify a list of "critical" problems to be checked on the new project.

• Increase the reuse of software components from one project to another. A software product is composed from a set of software components fulfilling different services. Therefore, the reuse of a component from one project to another must be a usual process. However, the challenge is to develop components with standard interfaces and configurations. The reuse of components is advocated since it increases the quality and productivity. Indeed, lessons learnt are already included in the reused software components.

However and according to experts, some bugs occur again from one project to another. In order to confirm this citation, we perform a study on the bugs detected on one software functionality, the front wiper management functionality, implemented in five different projects since 1997 and till 2007. In fact and according to experts, all the projects related to the same type of product and car platform of one carmaker have up to 70% of common functionalities. In Table 2.11, for each project, we identify the release year of the project, the number of Lines Of Code (LOC) implementing the front wiper functionality and the number of bugs detected on this functionality. Through the analysis of these five projects, we note that the front wiper functionality has, in common, 7 features. On some projects, there are one or more additional features that we ignored in our study. We make two classifications of the bugs detected on this functionality.

The first one according to the 7 features (Cf. Figure 2.22) and the second one according to a typology of bugs (Cf. Figure 2.23) borrowed from the literature (Beizer 1990, Chillarege 1992[START_REF] Grady | Practical Software Metrics for Project Management and Process Improvement[END_REF], IEEE Std. 1044[START_REF] Musa | Operational Profiles in Software-Reliability Engineering[END_REF]. Then, we make the arithmetic mean by feature and by type of bugs of the number of bugs detected on projects 1, 2, 3 and 4. In fact, we try to demonstrate that before developing the front wiper functionality on the project 5, we were able to predict which feature is the most critical in terms of bugs' occurrence (feature 3) and which types of bugs engineers are vulnerable to (Control flow and sequencing). As a conclusion, the thousands of bugs stored in the problems' database are not systematically nor efficiently reused to avoid or detect recurrent bugs. To better understand the reasons for that, we interview software managers who refers to four main issues for reusing stored bugs:

• Manual analysis by experts of the problems' database is impossible: thousands of bugs and 111 attributes by bug. • Lack of information: 25% of a bug's attributes are systematically not filled in.

• Ambiguous and incomplete information: 25% of the filled attributes are free field and these attributes (for instance, problem description) are the most important to detect recurrent type of bugs. • Lack of knowledge in data mining processes and tools to perform an automatic analysis of the problems' database.

Diagnosis 17

There are no advanced (formal and automated) techniques to reuse bugs stored in the problems' database in order to avoid or detect similar bugs on future developments. In fact, carmakers are unhappy when encountering the same type of problem on two different products delivered by the same supplier.

VIII. Managing and reusing test cases in Johnson Controls

The languages used for designing test cases in each of the unit and validation test activity are usually computer languages. Indeed, test cases for unit test are developed in C language and test cases for validation test are developed in a script language specific to Johnson Controls.

A detailed description of these languages is provided in Appendix B. Presently, the versions of the software components of a project are managed through a commercial version manager tool (PVCS 30 ). In consequence, the test cases for unit and validation tests are also versioned using this tool and stored in the same folder as the related software component or functionality.

As stated before (Cf. Section 7.C), all the projects related to the same type of product and car platform of one carmaker have up to 70% of common functionalities. Therefore, using capitalized test cases seems to be beneficial in automotive context. In other words, when testing a software functionality that we already implemented in the past on another project, it is judicious to reuse existing test cases. A set of standard test cases were developed and classified by functionality of product. In fact, potential bugs by product functionalities are identified and documented in standard test case patterns. These patterns must be systematically consulted (for the given product type) before beginning testing stages. This is a conventional RETEX (RETurn of EXperience) strategy, but which remains to be completed for any product line. The two main difficulties of such an approach are to 1) describe standard test cases with a suitable language level understandable by any test engineer and 2) keep the list of these test cases updated without exploding their number. Two years after, many issues faced this test case reuse strategy and coerced software managers to stop it. The four main issues are 1) the list of standard test cases is no more updated due to a lack of resources, 2) an exploding number of standard test cases, 3) all the standard test cases are stored in the same Word document which becomes unmanageable and finally 4) most of the standard test cases are too much detailed and therefore not understandable by a newly-graduated test engineer.

IX. Conclusion

Through our industrial audit, we analyze the current software practices at Johnson Controls and make diagnoses on the current V&V activities of a software. The performed diagnoses are listed in Table 2.13. In Figure 2.24, we locate each of these diagnoses within the Johnson Controls software organization.

In the following chapter, based on our industrial audit, we clearly define the scope of our research. We also formulate our research topic in accordance with the research issues in software testing. Verification and Validation (V&V) practices and test cases are rarely shared between the carmakers and their electronic suppliers.

2

Now, one cannot get a degree in software V&V. Software V&V is incorporated into the software engineering degree. Moreover, software engineers often prefer development activities compared with verification and validation activities.

3

In automotive industry, semi-formal and formal methods are more and more used to specify software functional requirements. However, there is a lack of a standard formalism shared between carmakers and suppliers. In fact, for each project, the supplier has to adapt its processes to the formalism used by the carmaker.

4

Deadlines for carmaker requirements freeze are specified in the carmaker-supplier contract. Nevertheless, the carmaker's requirements evolve continuously along the software development life cycle without complying with these deadlines. Moreover, suppliers must react quickly by integrating (without regression) the changes in the product.

5

The Software Requirement Specification (SRS) document is often a large document (about hundreds of pages), difficult to manage, incomplete and not regularly updated.

6

Sometimes, the SRS document is the official and contractual document between carmaker and supplier. It is also the main document used by the development and V&V teams in their activities. It has a standard structure but there are no standards to specify carmakers'requirements (more especially functional requirements).

7

Sometimes, the review of software code is badly done or even ignored. In fact, number of code reviewers is not aware of the coding rules and recommendations to be checked. Moreover, the code review is not systematically performed on each new software component. In consequence, the code review does not often detect all the bugs that must be detected through this activity.

8

According to the "To Be" process, the unit test of a software component must ensure a 100% source code coverage. However, this V&V technique is not responsible to verify the compliance of the component's behavior with the carmaker requirements. One software component can be tested unitarily (100% of code coverage) without fulfilling the behavior required by the customer.

9

Sometimes, the unit test of a software component is incomplete or even inexistent. In other words, the source code of the component under test is not covered at 100%. As a consequence, the uncovered pieces of code could hide critical bugs. In fact, they verify the explicit expected behavior but not the implicit one.

11

The present definition of a software requirement is not enough refined. In fact, one requirement can hide two or more implicit requirements. Therefore, inexperienced validators could miss testing some of the carmaker implicit requirements.

12

In validation test and after selecting an operation to be performed on the software under test, test engineers analyze the carmaker requirements in order to assess the expected values to be checked on some output signals of the software. In fact, this assessment is based on the engineers' understanding of the requirements and may lead to errors.

13

For each software component or product under test, a large potential operation space is associated. Each engineer has a different perception of the possible and critical operations based on his/her experience. Therefore, the present strategy to select operations in order to test a software is irrelevant.

14

The test cases designed by engineers do not always simulate the real use of the software product under test. The main purpose of testing activities is to cover the software code and requirements. As a direct consequence, basic user operations on the product could be not tested by the supplier before a carmaker delivery.

15

Presently, the test cases for a software are manually designed by engineers. As the size of automotive software growth, this task becomes a laborious task and accounts for more than 50% of the total time and budget of a project.

16

When describing a bug in the problems' tracking tool, there are too many fields to fill in (111 attributes), a lot of free fields (about 25%) and a lack of relevant predefined fields (for instance, a bug's typology). As the detection of bugs comes later in the process, engineers do not have enough time to fill in all the fields of a bug (missing information). Moreover, in case of free fields, an engineer could write anything she/he wants with the main objective of giving as many information as possible on the bug (irrelevant information). Since information is missing and/or irrelevant, it remains a difficult problem to reuse bugs in order to avoid or detect similar problems on future developments.

17

There are no advanced (formal and automated) techniques to reuse bugs stored in the problems' database in order to avoid or detect similar bugs on future developments. In fact, carmakers are unhappy when encountering the same type of problem on two different products delivered by the same supplier.

18

Currently, test engineers use different formats to specify a test case. Sometimes, engineers specify the test cases in a computer language (C language, script language), others use a more high level test case format (independent from the technology). Moreover, there is a lack of formal process and tools to manage and reuse test cases from one project to another.
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I. Introduction

In our research, we go through the Johnson Controls problem with a systemic approach in order to identify domains from which we might be able to improve the global performance of the software Verification and Validation (V&V) activities. In Chapter 2, we perform an industrial audit and make diagnoses on the current V&V practices within the company. Based on the industrial audit, one could isolate critical anomalies and lacks in the current engineers' practices. A review of related solutions proposed in the literature could help in defining or adapting relevant solutions to our context.

In this chapter, we clearly define the scope of our research and we formulate our research topic based on the performed diagnoses and the related research issues in software testing.

The industrial and academic needs and objectives are summarized in Section 2. A specification of our research topic and focus is done in Section 3. Finally, the main software testing issues is highlighted in Section 4. In the conclusion of this chapter, we identify the diagnoses which are in the scope of our research and associate for each of these diagnoses one or more related software testing issues (as stated in the literature).

II. Industrial and academic needs and objectives

A.

Initial industrial needs

Facing the fierce competition within the automotive industry and the strong pressure that carmakers impose on their suppliers to reduce the cost and the development time, Johnson Controls is looking for new and innovative engineering solutions to increase its performances and therefore better satisfy the requirements and expectations of their clients. As said in Chapter 1 -Section 6, electronic parts represent now up to 30% of the global cost of a car and software bugs represent more than 80% of the problems detected on such a product. Therefore, decreasing the development cost and increasing the quality of software product have become of main interest for carmakers. Johnson Controls as an automotive electronics supplier has launched many initiatives (this PhD is one of these initiatives) inside its engineering centers around the world with the aims of:

1. Decreasing the number of bugs detected by the carmaker -Quality 2. Reducing the development time of electronic projects -Delay 3. Reducing the development cost of electronic projects -Cost Through our research project, we were asked by an automotive electronic supplier namely Johnson Controls to improve the performance of its software Verification and Validation (V&V) activities. Their main purpose is to improve the quality of their products and therefore better satisfy the requirements and expectations of their clients. In Johnson Controls, the validation test which is the last V&V activity before a carmaker delivery is considered as the ultimate activity to detect all the bugs and therefore deliver carmakers "bug-free" software. It represents up to 90% of the time spent in the V&V of a software product (Cf. Chapter 2 -Section 5). While the test cases execution activity is often automated via a test execution platform, the test case design activity remains a manual task that fills in time many engineers. Up to 50% of a software project team is dedicated to design test cases (Cf. Table 1.1). Therefore, for many of software managers and experts in Johnson Controls, automating the design of test cases seems to be the most adapted solution to reduce the testing time, cost and resources while improving the code and requirement coverage.

B. Academic objectives

Since the 1990s, there has been a renewed interest in the development of effective software testing techniques. In the years, the topic has attracted increasing interest from researchers, as testified by the many specialized events and workshops, as well as by the growing percentage of testing papers in software engineering conferences. A recent paper titled "Software Testing Research: Achievements, Challenges, Dreams" of a software engineering pioneer named Bertolino (Bertolino 2007) organizes the many outstanding research challenges for software testing into a consistent roadmap. One of his conclusions was that there is a need to make the process of software testing more effective, predictable and effortless. In addition, the author pinpoints the many fruitful relations between software testing and other research areas. In fact, by focusing on the specific problems of software testing, we may overlook many interesting opportunities arising at the border between software testing and other disciplines.

Unfortunately, few papers exist in which the problem of software testing is considered with a systemic approach.

Our primary scientific goal has been to go through this problem with a systemic approach in order to identify levers in any domains from which we might be able to improve the global performance of the software V&V activities. The added value of such an approach is the resolution of the problem with a global quality viewpoint. Therefore, in Chapter 2, we perform an industrial audit on the software practices currently used in automotive industry and more especially in Johnson Controls. Through the audit, we characterize the overall environment of our problem. We understand what verifying and validating a software product means and we point out the main current issues and lacks in the automotive V&V activities.

III. Research scope

A.

Research topic formulation

Through a primary industrial audit at Johnson Controls, we first analyze the V&V "To Be" processes, activities and techniques. Then, we characterize the software engineers' practices ("As Is" processes, activities and techniques) in verifying and validating a software product. As a conclusion of the audit, we perform a list of diagnoses on the current V&V practices within the automotive industry and more especially automotive electronic suppliers (such as Johnson Controls). Based on these diagnoses, our research topic may now be refined through these two questions:

1. How to detect bugs early in the software development life cycle? In other words, How to detect bugs closer to where they were introduced? 2. How to detect "all" the bugs of a software product before a carmaker delivery? Or, at least, how to measure that few bugs remain to be found?

B. Research focus

Let us define a bit more the exact contour of our research. It was defined in accordance with the Johnson Controls priorities and interests. We were not authorized to intervene within the software design process in itself to a priori lower the number of bugs. It has been considered as another issue. In other words, we do not work on avoiding bugs while designing and developing a software product but on detecting the bugs once the product is developed.

In 

IV. Hot research issues in software testing

The Bertolino's definition (Bertolino 2003) of the software testing technique highlights the four main testing issues (four underlined words in the definition).

Definition 3.1: Software testing (Bertolino 2003)

Software testing consists of the dynamic verification of the behavior of a program on a finite set of test cases, suitably selected from the usually infinite executions domain against the specified expected behavior.

Dynamic: testing implies executing the program on (valued) inputs. Since static techniques (review, inspection …) are useful to evaluate the internal correctness of a software product, testing is the only technique allowing the assessment of its behavior when executed in its real environment.

Research issue 1: How to execute test cases on a software product? (This issue is not in the scope of our research)

Finite: even for simple programs, so many test cases are theoretically possible that exhaustive testing would require years to execute. Dijkstra (Dijkstra 1972) calculated that the exhaustive testing of a multiplier of two 27-bit integers taking "only" some tens of microseconds for a single multiplication would require more than 10000 years. In Chapter 8 -Section 2, we demonstrate that testing exhaustively a software product is a NP-Complete problem from a computational viewpoint. Generally, the whole test set can be considered infinite. In contrast, the number of executions that can realistically be observed must obviously be finite (and affordable). Clearly, "enough" testing to get reasonable assurance of acceptable behavior must be performed. This basic need points to well known issues of testing, both technical in nature (criteria for deciding to stop testing) and managerial in nature (estimating the effort to put in testing). Testing always implies a trade-off between limited resources and schedules, and inherently unlimited test requirements.

Research issue 2: When to decide to stop testing a software product?

Selected: many operation selection techniques differ on their strategy to select a finite number of operations. Test engineers must be constantly aware that different techniques may lead to quite different quality results; they also may be much dependent of context factors such as the kind of application, the maturity of the process and the organization, the expertise of test engineers, the tool platform. How to select the most suitable operations to be performed on the software under test is a complex issue (Vegas 2001).

Research issue 3: How to choose the "relevant" operations to be checked on a software product?

Expected: it must be possible (although not always easy) to decide whether the observed outcomes of program execution are acceptable or not, otherwise, the testing would be useless.

The observed behavior may be checked against specifications and user's expectations. The test pass/fail decision is commonly referred in the testing literature to as the oracle problem.

Research issue 4: How to assess the expected behavior of a software product?

V.

Conclusion: our diagnoses, the scope of our research and the software testing research issues

Based on our research focus, we identify in Table 3.1 the diagnoses which are in the scope of our research (the design of test cases). One diagnosis is related to the static V&V techniques and three diagnoses are related to the carmakers' practices on which a supplier can absolutely not act. We also associate for each of the diagnoses in the scope of our research one or more related software testing issues (as stated in the literature).

Table 3.1 -Our diagnoses, the scope of our research and the software testing research issues

In the following chapter, we perform a literature review on the existing approaches, techniques and tools in the field of the V&V of software products. More especially, we focus our research on finding or adapting "solutions" for the anomalies and lacks (diagnoses) that we identify via our industrial audit. In fact, we mainly develop the literature related to the software testing issues 2, 3 and 4. Constructing reliable products continues to be one of software development's greatest challenges. Testing, one of the most crucial tasks along the software development life cycle can easily exceed half of a project's total effort. A successful testing approach can save significant effort and increase product quality, thereby increasing customer satisfaction and lowering maintenance costs.

Despite these obvious benefits, the state of software testing practice isn't as advanced as software development techniques overall. In fact, testing practices in industry are, most of the time, neither very sophisticated nor effective. This might be due partly to the perceived higher satisfaction from developing something new as opposed to testing something that already exists. Also, many software engineers consider test engineers as second-class executives.

They consider testing as a junior or entry position and use it merely as a springboard into development jobs. However, academia spends significant effort in researching new testing approaches. Promising approaches have started to find acceptance in industry, but the technology transfer between testing research and industry is still insufficient. Academics sometimes say that industry is immature and practitioners are clueless, whereas practitioners might argue that researchers squander their time developing cool but useless testing technologies. As it often happens, the truth lies somewhere in between.

In this chapter, we develop the literature related to the software testing issues 2, 3 and 4 and we focus our research on finding or adapting "solutions" for the anomalies and lacks (diagnoses) that we identify via our industrial audit. An overview on the software verification and validation (V&V) techniques is proposed in Section 2. A classification of the software testing techniques is done in Section 3. Finally, software testing issues and related solutions are developed in Section 4. We identify lacks in these solutions and propose improvement actions in order to fit in our context. In the conclusion of this chapter, we summarize the improvement actions that we propose all along the chapter.

II. Verification and Validation of software products

A. Principles

Verification and Validation (V&V) of software are defined in the present report after the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std. 610-1990).

Definition 4.1: Verification and Validation (IEEE Std. 610-1990) -Abbreviation: V&V

The V&V process is the process of determining whether the requirements for a product or component are complete and correct, the products of each development phase fulfill the requirements or conditions imposed by the previous phase, and the final product or component complies with the specified requirements. The distinction between verification and validation has been well-framed by Barry Boehm, who memorably described verification as "building the product right" and validation as "building the right product".

Software V&V helps the product designers and test engineers to confirm that a right product is build right way throughout the development process and improve the quality of the software product. It makes sure that, certain rules are followed when developing a software product and also makes sure that the developed product fulfills the required specifications. This reduces the risk associated with any software project up to certain level by helping in detection and correction of faults, which are unknowingly done during the development process.

The standard definition of verification is: "Are we building the product RIGHT?" e.g. verification is makes sure that the software product is developed the right way. The software must confirm to its predefined specifications, as the product development goes through different stages, an analysis is performed to ensure that all required specifications are met. 

B. Software verification and validation techniques

Whatever the size of project, software V&V greatly affects software quality. People are not infallible, and software that has not been verified has little chance of working. Gibson in (Gibson 1992) stated that typically, 20 to 50 errors per 1000 Lines Of Code (LOC) are found during development and 1.5 to 4 per 1000 LOC remain even after validation test. Each of these errors could lead to an operational failure (bug) or non-compliance with a requirement. The objective of software V&V is to reduce software errors to an acceptable level. According to Beizer (Beizer 1990), the effort needed can range from 30% to 90% of the total project resources, depending upon the criticality and complexity of the software. The V&V techniques must be applied at each stage in the software process. It has two major objectives 1) the discovery of bugs in a product and 2) the assessment of whether or not the product is useful and useable in an operational situation. V&V must establish confidence that the software is fit for purpose. This does not mean completely free of defects. Rather, it must be good enough for its intended use and the type of use will determine the degree of confidence that is needed. Confidence is certainly subjective and depends on many factors such as software criticity, users and market expectations. The V&V consists of numerous techniques and tools, often used in combination with one another. Due to the large number of V&V approaches in use, we cannot address every technique. In fact, software V&V both use static and dynamic techniques of product checking to ensure that the resulting software product matches with its specifications and that the software product as implemented meets the expectations of the customer. In fact, dynamic techniques involve the execution of the software product under test, whereas static techniques do not:

• Static techniques (Review and Proof) are concerned with analysis of the static product representation to discover errors throughout all stages of the software life cycle. It may be complemented by tool-based document and code analysis. • Dynamic techniques (Testing) are concerned with exercising and observing product behavior. The product is executed with test data and its operational behavior is observed.

Static techniques a. Review

A review is a technique during which a work product, or set of work products, is presented to project personnel, managers, users, customers, or other stakeholders for comment or approval (IEEE Std. 610-1990). Review can be used to examine all the products of the software evolution process. In particular, they are especially applicable and necessary for those

products not yet in machine processable form, such as requirements or specifications written in lateral language. IEEE (IEEE Std. 610-1990) has identified four kinds of review which are often used for software verification: technical review, walkthrough, inspection and audit.

These reviews are all "formal reviews" in the sense that all have specific objectives and explicit rules of procedures. They expect to identify errors and discrepancies of the software regarding the original specifications, plans and standards.

Technical review

The objective of a technical review is to evaluate a specific set of review items (e.g. document, source code) and provide management with evidence that 1) they conform to specifications made in previous phases; 2) they have been produced according to the project standards and procedures and finally 3) any changes have been properly implemented, and affect only those products identified by the change specification. Typical conclusions of a review meeting are 1) authorization to proceed to the next phase, subject to updates and actions being completed, 2) authorization to proceed with a restricted part of the product and 3) a decision to perform additional work.

Walkthrough

Walkthrough should be used for the early evaluation of documents, models, designs and code.

The objective of a walkthrough is to evaluate a specific review item (e.g. document, source code). A walkthrough should attempt to identify errors and consider possible solutions. In contrast with other forms of review, secondary objectives are to educate, and to solve form errors.

Inspection

Inspection can be used for the detection of errors in detailed designs before coding and during the coding stage. Inspection may also be used to verify test cases. A study done by Fagan [START_REF] Fagan | Advances in Software Inspections[END_REF]) has shown that inspection could detect over 50% of the total number of errors introduced in development stages. IEEE (IEEE Std. 610-1990) considers that inspection is a more rigorous alternative to walkthrough, and is strongly recommended for software with stringent reliability, security and safety requirements.

Audit

Audit is an independent review that assesses compliance with software requirements, specifications, baselines, standards, procedures, instructions, codes and contractual and licensing requirements. To ensure their objectivity, audit should be carried out by people independent of the development team.

b. Proof

A proof attempts to logically demonstrate that software is correct. Whereas a test empirically demonstrates that specific inputs result in specific outputs, proof logically demonstrate that all inputs meeting defined pre-conditions will result in defined post-conditions being met. Adrion (Adrion 1986) defines proof as is a collection of techniques that apply the formality and rigor of mathematics to the task of proving consistency between an algorithm solution and a rigorous, complete specification of the intent of the solution. This technique is also referred to as "formal verification". Proof techniques are normally presented in the context of verifying an implementation against a specification.

Prowell and Beizer (Powell 1986, Beizer 1990) have identified several limitations to proof techniques. One limitation is the dependence of each proof technique to a formal specification language. In fact, in order to use a specific proof technique on a project, the software requirements of this project must be written in a specific language associated with the corresponding proof technique. Another limitation has to do with the complexity of using proof techniques. For large programs, the amount of detail to handle, combined with the lack of powerful tools may make the proof technique impractical. According to inner software managers, proof techniques are not suitable to the automotive competitive context and more especially to Johnson Controls. The four main reasons are:

• Proof techniques are often used on critical software products. They often have precise and logical specifications with no loopholes and they require being highly reliable, since failures in this kind of products may lead to deathly consequences. Some areas where proof techniques have been successful are for the specification and verification of safe and critical products such as aircraft avionics, nuclear power plant control and patient monitoring. In Johnson Controls, the developed electronic products are related to the car interior functionalities and are not considered by the carmakers as critical. Controls competitors). This could lead to the conclusion that proof techniques are not adapted to the automotive context. In fact, the difficulty of expressing software requirements in the mathematical form necessary for formal proof has restricted a wider application of this technique. • Finally, many managers highlight the complexity and the additional effort required regarding reviewing or testing techniques.

As said in the research focus (Cf. Chapter 3 -Section 3.B), we do not address the static V&V techniques but we focus our research on the dynamic techniques (e. g. software testing).

Dynamic techniques

Software testing, a V&V dynamic technique is a widespread technique in automotive industry.

In Johnson Controls (Cf. Chapter 2 -Section 5), software testing represents up to 90% of the total time spent in verifying and validation a software product. Moreover, in the academic research, the traditional focus of software V&V techniques has been the software testing. In fact, testing approaches are widely studied in academic research and deployed in software industry. Therefore, in our literature review, the software testing category has been further refined. In the following section, we expose the major testing principles, techniques and issues.

State-of-the-art

R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process 123

III. Software testing techniques

A.

What is "software testing"?

Harrold (Harrold 2000) has identified several advantages of testing over static-analysis techniques. One advantage of testing is the relative ease with which many of the testing activities can be performed. Test cases can be generated automatically. Software can be instrumented so that it reports information about the executions with the test cases. This information can be used to measure how well the test cases satisfy the quality objectives.

Output from the executions can be compared with expected results to identify those test cases on which the software failed. A second advantage of testing is that the software being developed can be executed in its expected environment. The results of these executions with the test cases provide confidence that the software will behave as intended. A third advantage of testing is that much of the process can be automated. With this automation, the test cases can be reused for testing as the software evolves. Although, testing has a number of advantages, it also has a number of limitations. Testing cannot highlight the absence of errors; it can only stress their presence. Additionally, testing cannot show that the software has certain qualities. Despite these limitations, testing is widely used in industry to provide confidence in the quality of software. Therefore, the growth of software complexity and the increased emphasis on software quality, highlight the need for improved testing methodologies. In the following, we list some citations of software pioneers around the world.

"Quality assurance over test designs and testing is essential to a successful quality effort. [...] More than the act of testing, the act of designing tests is one of the most effective bug preventers known. [...] The ideal quality assurance activity would be so successful at this that all bugs would be eliminated during test design. Unfortunately, this ideal is unachievable. We are human and there will be bugs. To the extent that quality assurance fails to reach its primary goal of bug prevention, it must reach its secondary goal of bug detection." Software testing is:

(1) the process of operating a software component or product under specified conditions, observing or recording the results, and making an evaluation of some aspect of the component or product.

(2) the process of analyzing a software item to detect the differences between existing and required conditions (that is, bugs) and to evaluate the features of the software items.

While the NIST definition associates the software testing to a quality measurement tool, the definition of Meyers insists on the fact that testing software must reveal bugs and the IEEE definition claims the good behavior of the software under test.

B. Classification of software testing techniques

There is an excess of testing methods and testing techniques. Classified by life-cycle phase, software testing can be categorized as follows: unit test, integration test, validation test and regression test. Classified by accessibility, software testing can be divided into: white-box test and black box test. All these test methods can be used (individually or in conjunction) at each phase of the software life-cycle. In the following, we provide some details on each of these testing techniques.

According to life-cycle phase

During the development lifecycle of a software product, testing is performed at different levels and can involve the whole product or parts of it. Depending on the process model adopted, then, software testing activities can be articulated in different phases, each one addressing specific needs relative to different portions of a product. Whichever the process adopted, Bernot (Bernot 1991) states that one can at least distinguish in principle between unit, integration and validation test. These are the three testing levels of a traditional phased process (such as in Johnson Controls). Pezze [START_REF] Pezze | [END_REF] considers that these levels are complementary with different goals and execution procedures. In fact, none of these levels is more relevant or important than the others. Each level must address a specific typology of bugs in a software product. The unit test must detect bugs related to the behavior of each software component independently from its environment. The integration test focuses on problems of communications and interfaces that may arise during component integration. And finally the validation test focuses on the behavior of a software product as a whole.

a. Unit or component or module test

A component is the smallest testable piece of software (Cf. Definition 1.3), which may consist of hundreds sometimes thousands of LOC, and generally represents the result of the work of one programmer (developer). Bernot (Bernot 1991) defines the unit test as a V&V technique to ensure that a software component satisfies its functional specification and/or that its implemented structure matches the intended design structure. The unit test can also be applied to check the local data structure (improper typing, incorrect variable name, inconsistent data type) and the boundary conditions. In other words, go through all the source code of a software component.

b. Integration test

Generally speaking, integration is the process by which software components are aggregated to create a software product. Bernot (Bernot 1991) defines the integration test as the technique that aims at verifying that each component interacts with other components according to its specifications. In particular, it mainly focuses on the communication interfaces among integrated components. Even though the single components are individually acceptable when tested in isolation, in fact, they could still result in incorrect or inconsistent behavior when combined. For instance, there could be an improper call or return sequence between two or more components. Fenton (Fenton 2000) has identified two integration test approach: non-incremental and incremental. In a non-incremental approach the components are linked together and tested all at once (big-bang testing). In the incremental approach, we find the classical top-down strategy, in which the modules are integrated one at a time, from the main program down to the subordinated ones, or bottom-up, in which the tests are constructed starting from the modules at the lowest hierarchical level and then are progressively linked together upwards, to construct the whole product. Usually in practice (as in Jonson Controls), a mixed approach is applied, as determined by external project factors (e.g. availability of modules, release policy, availability of test engineers and so on).

c. Validation or system test

Validation test involves the whole software product and is defined by Bernot (Bernot 1991) as the technique that aims at verifying that the whole software behaves according to the customer requirements. In particular it attempts to reveal bugs that cannot be attributed to specific components, but they are due to the inconsistencies between components, or to the planned interactions of components and other objects (which are the subject of integration test). In (Bertolino 2002), Bertolino summarizes the primary goals of validation test:

• Discovering the bugs that manifest themselves only at system level and hence were not detected during unit or integration test. • Increasing the confidence that the developed product correctly implements the required capabilities. • Collecting information useful for deciding the release of the product.

Validation test must therefore ensure that each product function works as expected. In (Bernot 1991), the author consider that the regression test is not a separate level of testing, but may refer to the retesting of a component, a combination of components or a whole software product after modification, in order to ascertain that the change has not introduced new errors. As software produced today is constantly evolving, driven by market forces and technology advances, regression test takes by far the predominant portion of testing effort in industry. Since both corrective and evolutive modifications may be performed quite often, to re-run after each change all previously executed test cases would be prohibitively expensive. Therefore various types of techniques have been developed to reduce regression test costs and to make it more effective. Fernandez (Fernandez 1996) proposes a selective regression test techniques based on selecting a (minimized) subset of the existing test cases by examining the modifications. Other approaches instead prioritize the test cases according to some specified criterion (for instance maximizing the code coverage).

According to accessibility

Testing methods can also be divided into two families, according to the input data from which test cases are selected (Beizer 1990) (Jorgensen 1995[START_REF] Pezze | [END_REF][START_REF] Woodward | [END_REF] state that structural information must not be used as the primary answer to the question, "How shall I choose tests," but it is useful in combination with other test selection criteria such as cover the customer requirements.

Based on our industrial audit (Cf. Diagnosis 8), test engineers in Johnson Controls use the structural approach in the unit test stage and the functional approach in the validation test stage. The purpose of designing test cases using the structural approach is to cover at 100% the source code while using the functional approach, test engineers have to check the compliance of the software with the carmaker requirements. This leads to the fact that bugs related to the behavior (regarding the requirements) of one independent software component are detected later in the process (during the validation test). We propose to perform functional test since the earlier testing stages. One has to verify the compliance of each software component (independently from its environment) with the carmaker requirements.

IV. Software testing research issues and solutions

In this section, we develop the software testing issue identified in Chapter 3 -Section 4. In fact, we analyze the related solutions proposed in the literature, identify lacks in these solutions and propose improvement actions in order to fit in our context.

A.

Research issue 1: How to execute test cases on a software product?

The execution of a test case can occur in a manual or automated way. In other words, the test case descriptions that are the result of the test design activity could be manually or automatically executed against a software product. One issue when automating the test execution is to transcribe the specified test cases into a computer language. Another issue is the ability to put the product into a state from which the specified test cases can be launched. This is sometimes referred to as the test precondition. In fact, before a specific command can be executed, several runs in sequence are required to put the product in the suitable test precondition. An effective way to deal with this is to arrange the selected test cases into suitable sequences, such that each test case leaves the product into a state similar to the precondition of the next test case. This problem has been early formalized and tackled by Dick in (Dick 1993). Moreover, a more complex problem arises when testing only one or more components of a software product (the case of a software unit test). Indeed, the testing task itself requires a large programming effort. To be able to test one software component of a large software product we need to emulate the behavior of its peripheral software components. Fortunately, some commercial test tools exist which can facilitate these tasks. Finally, when testing reveals a bug, the task of recreating the conditions that made it occur is called test replay. Exact test replay requires mechanisms for capturing the happening of synchronization operations, and for forcing the same order of operations when a test is replayed.

As said in the research focus (Cf. Chapter 3 -Section 3.B), we do not address the problem of executing test cases on the software product. In fact, we made the assumption that the present test execution platforms are reliable.

B.

Research issue 2: When to decide to stop testing a software product?

Determining when to stop testing and release a product is an important management decision.

It is clear that there is natural trade-off between the decision to continue testing or to stop: (a) if testing stops too early, many bugs remain. Thus we incur the cost of later bug-fixing and losses due to customers' dissatisfaction. The cost of fixing a bug after release is a lot more than the cost of fixing while testing (Cf. Figure 1.11). (b) if testing continues up to the maximum permissible time, then there is the cost of testing effort and a loss of market initiative.

Criteria to stop testing a software

Several stopping criteria have been proposed for software testing.

a. Stochastic similarity

A stopping criterion based on stochastic similarity is proposed by Whittaker in (Whittaker 1994) and refined by Sayre in (Sayre 2000). This criterion is based directly on the statistical properties of a usage and testing chains. Dissimilarity between the two models is therefore a useful measure of the progress of testing.

When the dissimilarity is small, the test history is an accurate picture of the usage model.

Unfortunately, Johnson Controls test engineers are often subjected to time pressure and therefore test and bug data are note often well organized. Therefore, in this context, the use of the stochastic similarity model to decide stop testing a software may lead to poor results.

b. Reliability estimation

A stopping criterion based on estimated reliability and confidence is proposed by Littlewood in (Littlewood 1997). This criterion relies on a target reliability. IEEE (IEEE Std. 610-1990) defines software reliability as the probability of "bug-free" software operations for a specified period of time in a specified environment. In fact, during the past 30 years, many models have been proposed assessing the reliability measurements of software products. A software reliability model specifies the general form of the dependence of the bug process on the principal factors that affect it: error introduction, error removal, and the operational environment. Software reliability modeling forecasts the curve of the bug rate by statistical evidences. The purpose of this measure is two-fold: 1) to predict the extra time needed to test the software to achieve a specified objective; 2) to predict the expected reliability of the software when the testing is finished. The success of a model is often judged by how well it fits a curve to the observed "number of bugs vs. time" function. It is important to note that all the software reliability models are based on some assumptions 1) The module under test remains essentially unchanged throughout testing, except for the removal of errors as they are found, 2) Removing an error does not affect the chance that a different error will be found, 3) "Time" is measured in such a way that testing effort is constant and finally 4) All errors are of equal importance. Unfortunately, none of these assumptions fit with our industrial context and therefore using such models in deciding when to stop testing a software in Johnson Controls may lead to poor results. Many of the current software reliability models, techniques and practices are detailed in the Handbook of Software Reliability Engineering by Lyu (Lyu 1996).

c. Cost benefit estimation

A cost-benefit stopping criteria based on estimates of the errors remaining in the product and the cost to repair them both before and after release, are proposed by Dalal in (Dalal 1988). A more sophisticated version which includes costs due to lost market and customer dissatisfaction is proposed by Chavez in (Chavez 2000). This model remedies all the assumptions considered by the reliability models. However, this leads to a complex mathematical problem. Since Johnson Controls test engineers are not familiar with mathematical theories (which are not the core of their skills), it remains difficult to apply such a model in our context.

d. Test coverage

A stopping criteria based on test coverage are presented by Offutt in (Offutt 1999a). The decision of when to stop testing is based on covering a software code or requirements in various ways. In practice, code coverage is used to decide when to stop structural test, while requirement coverage is used in a functional test context. On the one hand, researches in code coverage measurement have reached a high level of maturity and many automated tools were commercialized. In a survey done by Yang in (Yang 2006), the author studies and compares 17 code coverage measurement tools. In fact, the code coverage measurement helps engineers detecting "dead code", piece of code that can be never covered and "non specified code", piece of code that does not implement any of the requirements. On the other hand, requirement coverage measurement is still immature. In fact, the accuracy of a requirement coverage measurement depends on the degree of formalism used when specifying a set of requirements. In Section 4.D.1, we develop the three degrees of formalism (informal, semiformal and formal) used to specify software functional requirements. Measuring the coverage of an informal or semi-formal specification is usually done by a manual approach (Bontron 2005). In fact, all the requirements associated to the software product under test are identified and when designing a test case, test engineer has to identify the requirement(s) that has (have) been covered by this test. Obviously, such an approach is imprecise since it strongly depends on the engineers' degree of the specification comprehension and interpretation. Measuring the coverage of a formal specification can be considered as a simple problem that can be easily automated (Offutt 1999a 

C.

Research issue 3: How to choose the operations to be checked on a software product?

Effective testing requires strategies to trade-off between the two opposite needs of amplifying testing thoroughness on the one side (for which a large number of test cases would be desirable) and reducing times and costs on the other (for which the fewer the test cases the better). Given that test resources are limited, how the operations are selected becomes of crucial importance. Indeed, the problem of operation selection has been the major dominating topic in software testing research. A decision procedure for selecting the operation is provided by an operation selection strategy.

A basic strategy is random testing, according to which the operations are randomly chosen from the whole input domain according to a specified distribution, e.g. after assigning to the inputs different "weights" (more properly probabilities). For instance the uniform distribution does not make any distinction among the inputs, and any input has the same probability of being chosen. In contrast with random testing, a broad class of operation selection strategies referred to as partition testing. The underlying idea is that the program input domain is divided into sub domains within which it is assumed that the program behaves the same, e.g. for every point within a sub domain the program either succeeds or fails: we also call this the test hypothesis. Therefore, thanks to this assumption only one or few points within each sub domain need to be checked, and this is what allows for getting a finite set of operations out of the infinite domain. Hence a partition testing strategy essentially provides a way to derive the sub domains. An operation selection strategy yielding the assumption that all operations within a sub domain either succeed or fail is only an ideal, and would guarantee that any fulfilling set of operations always detect the same bugs; in practice, the assumption is rarely satisfied, and different sets of operations fulfilling a same criterion may show varying effectiveness depending on how the operations are picked within each sub domain. The relative merits of these two different operation selection philosophies have been highly debated by Weyuker andFrankl in (Weyuker 1991, Frankl 1998). However, the most practiced operation selection strategy in industry is probably based on reaching an objective; in particular code and/or requirement coverage objective. In fact, the test engineer keeps selecting operations until the predefined objective is reached or her/his manager tells her or him to stop (for time or budget reasons). This strategy is clearly subjective and based on the test engineer's intuition and experience. Nevertheless, expert test engineers can perform a very good selection mechanism taking into account many factors such as the time and cost and the efficiency of the selected operations (Johnson Controls source). When using this operation selection strategy, the test engineer's skill (experienced and skilled) is the factor that mostly affects test effectiveness in finding bugs.

Many are the factors of relevance when an operation selection strategy has to be chosen. An important point to always keep in mind is that what makes a test a "good" one does not have a unique answer, but changes depending on the context, on the specific application, and on the goal for testing. The most common interpretation for "good" would be "able to detect many bugs"; but again precision would require to specify what kind of bugs, as Basanieri has shown in (Basanieri 2002) that different operation selection strategy detect different types of faults. Paradoxically, operation selection seems to be the least interesting problem for test practitioners. In 2006, we did a survey on existing commercial tools supporting the operation selection when testing a software product. We focus our survey on the tools able to select operations that verify the compliance of a software with its specification (functional requirements). We identify 6 tools: An overview of the characteristics of each of these tools is given in Appendix D. The major number of these tools is based on a Model-Based approach. Indeed, the software functional requirements are represented in a specific format from which operations are selected automatically. On the one hand, more than 278 tools supporting the software testing process (test management, test execution and so on) have been referenced in [START_REF] Legeard | Software testing course[END_REF]) by Legeard. On the other hand, we have shown through our industrial audit (Cf. Chapter 2 -Section 6) that the activity of designing manually test cases for software products becomes more and more laborious and time consuming. Therefore, one could highlight the lack of tools supporting the selection of operations when testing a software. 2% (6 over 278) of the commercial software testing tools are dedicated to the software testing activity that accounts more than 50% of the total software project time and budget.

Based on our industrial audit (Cf. Diagnosis 2, 5, 6, 13, 14, 15, 16, 17 and18), the operation selection strategy currently used in Johnson Controls is a manual subjective one based the test engineers' experience and intuition. Their main purpose is to reach a code or requirement coverage objective. In fact, test engineers do not always select operations that simulate the real use of the software product under test. Moreover, there is no formal process to analyze recurrent bugs stored in the problems' database and select operations that detect these bugs on future developments. And finally, there is a lack of formal process and tools to manage and reuse test cases from one project to another. We propose to formalize the process of selecting operations in order to be independent as much as possible from the test engineers' experience. One solution we propose is to automate this process. One could select operations randomly or, select operations based on the end-user behavior's profile or the experience feedback (from bugs and test cases capitalized on similar projects in the past).

Since 2005 and as the design of test cases for software has reached the 50% of the total time and budget of a project in Johnson Controls, the automation of the test case design process became a hot topic. Therefore, inner software experts and managers have evaluated some of the previous listed tools (evaluation version of the tool). None of these tools are fully adapted to the Johnson Controls context. Many issues have been identified by the experts and managers: 1) these tools propose to represent the software requirements in a formal language which is not adapted to the automotive software context, 2) these tools do not propose a relevant stop testing criterion based on the test case quality and software project constraints (test cost and time), 3) some of these tools do not manage the reuse of capitalized bugs and test cases from one project to another ,4) some of these tools do not propose to generate test cases with a end-user behavior's profile and finally 5) the tool licenses and trainings are expensive.

Advantages and drawbacks of automating the design of test cases

The activity of designing test cases for a software product is a major activity in a software development life cycle. 2000) notice that automated testing is a huge investment, one of the biggest that organizations make in testing. Tool licenses are often expensive. Engineers cannot use alone most of these tools and therefore training, consulting, and expert contractors can cost more than the tools themselves. Moreover, the test engineers could resist using an automation tool since they felt that their manual process worked fine. Effort must be invested in incorporating a new automation tool into the process. As we propose to automate the design of test cases within Johnson Controls, we must take into account all these considerations.

Design test cases based on end-user behavior's profile

We propose to define an end-user (driver) behavior's profile for each software under test. Therefore, when testing the software, one could select the operations or succession of operations recurrently performed on the software in real use. In fact, there is no better way to test a product other than testing it in the way that it will be used. The main work in this field is the one of Musa in [START_REF] Musa | Operational Profiles in Software-Reliability Engineering[END_REF]). Musa has proposed a process to define an operational profile for a system. This process involves one or more of the following five levels: Client type list, User type list, System modes, Functional profile and Operational profile. By customizing this process to our context, we only consider the operational profile level. In fact, we consider that a software product is dedicated to only one customer (carmaker) and a client type list is not necessary. The end-users (driver) of an automotive software product can be classified regarding to criteria such job, climate, sexe, age, culture … In our research, we do not deal with these criteria and we consider a nominal end-user behavior's profile. Most software products have more than one mode of operation (normal mode, factory mode and diagnostic mode). However, the occurrence probability of the normal mode is about 99% (Johnson Controls source) and consequently we decide to ignore the other modes. The next step is to break system modes down into the functionalities. It needs, to create a functionality list in determining the occurrence probability of each functionality. The best source of data to determine occurrence probabilities is usage measurements, e.g. frequency measurements of the users operations, taken on the last release or on similar system. In our context, we don't have this type of information (since it is considered as confidential by the carmakers). Finally, for each functionality, a set of operations and sucession of operations is possible (Cf. Chapter 2 -Section 6). Therefore, for each functionality, experts must identify recurrent operations and succession of operations and therefore define occurrence probabilities. Barnaghan (Branaghan 1999) has developed the fundamentals of usability testing. In fact, the usability testing techniques are widely and often used in testing Graphical User Interfaces (GUI).

Design test cases based on experience feedback

We also propose to reuse capitalized bugs and test cases from one project to another. Therefore, when testing the software, one could use the experience feedback on bugs and test cases respectively detected and designed on similar software in the past. Presently, information on stored bugs is missing and/or irrelevant and reusing these bugs in order to avoid or detect similar problems on future developments remains a difficult problem (Cf.

Diagnosis 16). Therefore, classifying stored bugs and identifying the recurrent type of bugs detected on a specific type of software could be useful. In the next section, we perform a survey on the bug classification models. We propose to define a typology of bugs adapted to our context and useful to focus the design of test cases on recurrent type of bugs.

a. A survey on the software bugs classification models

In this section, we present one bug classification scheme proposed by IEEE standard and two industrial schemes: the Hewlett-Packard Scheme (HP) and the Orthogonal Defect Classification Scheme (ODC) developed by IBM. Classification is performed by assigning a set of measurement variables (attributes) to discrete values, which are selected, based from a predefined set of values (attribute values). Therefore, bug classification schemes can differ in the way different attributes or attributes values relate to each other.

Orthogonal Defect Classification (Chillarege 1992)

The ODC scheme has been developed by IBM. Since its definition, this classification has been adopted by more and more organizations. In a survey performed in 1999 by Paulk in (Paulk 2000), 14 out of 37 high-maturity software organizations (according to the CMM maturity model) used this scheme as quantitative analysis practice. The attributes of this scheme are organized according to two process steps:

•

Step OPEN: when a bug has been detected and a bug report is opened in the bug tracking system. • Step CLOSE: when the bug has been corrected and the bug report is closed.

Two interesting attributes was taken into account in this scheme: 1) the attribute defect type which captures the fix that was made to resolve the bug and 2) the attribute trigger which captures the reason why an error turns into a bug. The entire ODC scheme with attribute name, meaning and values is described by Chillarege in (Chillarege 1992). [START_REF] Grady | Practical Software Metrics for Project Management and Process Improvement[END_REF] The HP scheme was developed by HP's Software Metrics Council in 1986. This scheme is based on three descriptors for each bug:

Hewlett-Packard Scheme

• The origin -where was the bug introduced in the product • The type of the bug • The mode -whether information was missing, unclear, wrong, changed or done in a better way

The choice of an attribute value for the attribute Origin defines the possible set of attributes available for the attribute Type. The entire HP scheme with attributes and attribute values is developed by Grady in [START_REF] Grady | Practical Software Metrics for Project Management and Process Improvement[END_REF].

IEEE Standard Classification for Software Anomalies (IEEE Std. 1044-1993)

The IEEE scheme was developed by the Institute of Electrical and Electronics Engineers (IEEE), the world's leading professional association for the advancement of technology. The different attributes of the scheme are organized according to a general bug classification process consisting of four steps:

• First Step: Recognition -the bug is found • Second Step: Investigation -we identify issues and propose solutions • Third Step: Action -we establish a plan of action to resolve the problem • Last Step: Disposition -we complete all required resolution actions and long-term corrective actions

The entire IEEE scheme with attributes and attribute values is developed in (IEEE Std. 1044[START_REF] Musa | Operational Profiles in Software-Reliability Engineering[END_REF].

b. Major aspects of a software bug model

The previous survey reveals several valuable elements to be take into account when designing a new bug classification scheme. Bugs are inserted due to a particular reason into a particular piece of software at a particular point in time. The bugs are detected at a specific time and occasion by noting some sort of symptom and they are corrected in specific way.

Each of these aspects might be relevant for a specific measurement and analysis purpose. [START_REF] Mellor | Failures, faults, and changes in dependability measurement[END_REF]Fenton in (Mellor 1992, Fenton 1996) have proposed a framework of bug key elements that capture on high-level aspects of a bug. Each of these key elements can be refined leading to many attributes that can be captured by means of measurement:

• Location: where in the product? The location of a bug describes where in the product the bug was detected. This attribute can also contain attribute values describing different high-level entities of the entire product (Specification, Design, Code, Documentation …). • Timing: when in the process phases, we introduce, detect and correct the bug? The timing of a bug refers to process phase when the bug was created (origin phase), detected (detection phase) and corrected.

• Symptom: what we observe when the bug occurred? Symptom captures what was observed when the bug occurred or the activity revealing the bug. For instance, the ODC attribute Trigger captures the mechanism that allows a bug to occur. Under symptom it is also possible to classify what is observed during diagnosis or inspection.

For instance, in IEEE classification scheme, the attribute symptom provides a classification of the symptom.

• End result: what are the impacts of the bug on the company itself, on the customer, on

the end-user? End result describes the failure caused by the bug. For instance, in ODC, the attribute impact captures the impact of a bug on the customer (performance, usability, instability …). • Mechanism: in which activity and how, we introduce, detect and correct the bug?

Mechanism describes how the bug was created, detected and corrected. Creation describes activity that inserted bug into the system. Detection describes activity that was performed when the bug was detected (code review, unit test …). Correction refers to the steps taken to remove the bug. • Cause: What is the mistake that leads to the bug? Cause describes the mistake leading to the bug. For instance, in [START_REF] Mays | Experiences with defect prevention[END_REF] 

D.

Research issue 4: How to assess the expected behavior of a software product?

An important component of testing is the oracle. Indeed, a test is meaningful only if it is possible to decide about its outcome ("OK" or "Not OK"). The difficulties inherent to this task, often oversimplified, had been early articulated by Weyuker in (Weyuker 1982). In much of the research literature on software testing, the availability of oracles is either explicitly or tacitly assumed, but applicable oracles are not described. The research literature on test oracles is a relatively small part of the research literature on software testing. Some older proposals [START_REF] Panzl | Automatic Software Test Drivers[END_REF], Chapman 1982) base their analysis either on the availability of pre-computed input/output pairs or on a previous version of the same program, which is presumed to be correct. The former hypothesis is usually too simplistic: being able to derive a significant set of input/output pairs would imply the capability of analyzing the product outcome. In the current industrial practice of software testing, the oracle is often a human being. Relying on a human to assess program behaviors has two evident drawbacks: accuracy and cost. While the human "eyeball oracle" has an advantage over more technical means in interpreting incomplete, natural-language specifications, humans are prone to error when assessing complex behaviors or detailed, precise specifications, and the accuracy of the eyeball oracle drops precipitously with increases in the number of test runs to be evaluated. Even if it were more dependable, the eyeball oracle is prohibitively expensive for large volumes of test cases, and so may become a limiting factor when other parts of testing are accelerated with automation. Therefore, automated oracles could be a well adapted solution to this problem. Baresi's (Baresi 2001) survey proposes approaches to automate the test oracles. In view of these considerations, it must be evident that the oracle might not always judge correctly. So the notion of relevance of an oracle is introduced to measure its accuracy.

Bertolino in (Bertolino 1997) proposes to measure the oracle accuracy by the probability that the oracle rejects a test, given that it must reject it. 

Based on our industrial audit (

1.

Modeling and simulation of software functional requirements a. Types of software requirements

In software domain, several standards organizations (including the IEEE) have identified four categories of requirements:

• Functional requirements are the main customer requirements. They refer to the behavior of the product. For instance, in a body controller product31 , the behavior of the front wiper management functionality is specified by a set of functional requirements.

• Non functional requirements are the interface requirements between functionalities and software performances in terms of CPU load and memory capacity. An example of non functional requirements can be the communication protocols. • GUI (Graphical User Interface) requirements are the customer requirements related to user interfaces. This category of requirements is frequent in electronic display product. • Non technical requirements include all organizational customer requirements.

Confidentiality, return of experience, past defects reviews capitalization is examples of these requirements.

Johnson Controls has adopted this typology of requirements (Cf. Definition 2.6). As demonstrated in Chapter 2 -Section 4, the functional requirements account for more than 90% of the carmaker requirements related to the software domain. Therefore, through our research project, we focus on the software functional requirements and how one could verify the compliance of a software product with its functional requirements.

b. Formalisms in specifying the functional requirements of a software product Both Dart and Brinkkemper in (Dart 1987, Brinkkemper 1990) propose same definitions of informal, semi-formal and formal specification:

• Informal: These techniques do not have complete sets of rules to constrain the models that can be created. Natural language (written text) and unstructured pictures are typical instances. • Semi-formal: These techniques have a defined syntax. Typical instances are diagrammatic techniques with precise rules that specify conditions under which constructs are allowed and textual and graphical descriptions with limited checking facilities. • Formal: These techniques have rigorously defined syntax and semantics. There is an underlying theoretical model against which a description expressed in a mathematical notation can be verified. Simulation languages are typical instances.

In Table 4. 1, Duphy (Duphy 2000) propose a list of advantages and drawbacks for each of the informal, semi-formal and formal formalism.

Table 4.1 -Advantages and drawbacks of informal, semi-formal and formal specification languages (Duphy 2000)

In Table 4.2, Duphy (Duphy 2000) has evaluated these three formalisms based on four criteria: modelling precision, use, communication facility and training cost.

Table 4.2 -Evaluation of the informal, semi-formal and formal specification languages (Duphy 2000)

In Table 4.3, a classification of the specification languages is proposed by Fraser in (Fraser 1994).

Advantages Drawbacks

Informal

Easy to be understand by all the project actors.

No training but need to understand the writing rules. ). An FSM is a hypothetical machine that can be in only one of a given number of states at any specific time. In response to an input, the machine generates an output and changes state. Both the output and the new state are purely functions of the current state and the input. FSMs are applicable to any model that can be accurately described with a finite number (usually quite small) of specific states. Chow in (Chow 1978) was one of the earliest researchers addressing the use of FSMs to specify the behavior of a software. Now, there is work on FSMs in software engineering with varied tones, purposes, and audiences (Apfelbaum 1997, Robinson 1999[START_REF] Liu | Using application states in software testing[END_REF]. Statecharts, extensions to FSMs, were proposed by Harel in (Harel 1987). Statecharts make it even easier to model complex realtime system behavior with less ambiguity. The extensions provide a notation and set of conventions that facilitate the hierarchical decomposition of FSMs and a mechanism for communication between concurrent FSMs. Statecharts are probably easier to read than FSMs, but they are also nontrivial to work with and require some training upfront. A sample of software requirements expressed using Statecharts has been proposed by Hong in [START_REF] Hyoung | A Test Sequence Selection Method for Statecharts[END_REF]. Markov chains are stochastic models proposed by Kemeny in [START_REF] Kemeny | [END_REF]. They are structurally similar to FSM and can be thought of as probabilistic automata. In fact, a probability is associated for each transition. The sum of the probabilities associated to the transitions that get out of the same state must be equal to 1. Many researchers worked on using the Markov chains in specifying the behavior of a software (Whittaker 1994[START_REF] Walton | Measuring complexity and coverage of software specifications[END_REF]. Sometimes there is a need to describe the required external behavior of some aspect of a system when the FSM approach makes no sense. One simple solution is the Decision Table proposed by Moret in (Moret 1982). A DT is used to lay out in tabular form all possible situations on the inputs of a system and to specify which action to take on the outputs in each of these situations. Many researchers (Davis 1988, Sommerville 1997[START_REF] El-Far | Model-Based Software Testing[END_REF] state that there are no software specification languages today that fit all intents and purposes. In fact, for each context decisions need to be made as to what language (or collection of languages) is most suitable. No large-scale studies have been made to verify the claims of any particular language. However, in his paper (Davis 1988), Davis has identified five criteria to help choosing the most adapted specification language for a specific context: 1) understandable to non computer-oriented customers, 2) used as the main input for the development and validation teams, 3) automated checks for ambiguity, incompleteness, and inconsistency, 4) encourage the requirements engineer to think and write in terms of external product behaviour, not internal product components, and finally 5) provide a basis for automated source code and test generation.

Ambiguity

Based on the study that we performed on the evolution of the formalisms used by carmakers to specify functional requirements related to software (Cf. Chapter 2 -Section 4.A), we underline the increase of formal languages and the decrease of informal and semi-formal languages. However, within the formal languages, there not a unique standard formalism shared between carmakers and suppliers (70% of FSMs and Statecharts and 20% of DTs). In fact, for each project, the supplier has to adapt its processes to the formalism used by the carmaker. Duphy (Duphy 2000) highlights many works that try to complete or combine semiformal and formal languages in order to have the fully, consistent and reliable view of a software. Three categories of combination can be identified: 1) create a new formalism based on the existing techniques concepts, 2) complete an existing technique with the aim of reducing its weakness and finally 3) use simultaneously several existing techniques and thus cumulate their advantages. In our context, we propose to develop a new formal (simulation) specification language better adapted to the Johnson Controls context. In fact, for each project, we propose to represent the software functional requirements of the carmaker into this language. In order to be able to represent all the carmaker requirements (now and in the future), it could be judicious to base our specification language on a combination between the FSM (Statechart) and the DT languages; the two languages that carmakers tend to use.

V. Conclusion

We believe that the importance placed on testing will increase as software's pervasiveness in everyday life increases. Our dependence on software, from driving cars to shopping on the Internet, will decrease users' tolerance of defective software. Although testing isn't the only software engineering practice to ensure quality software, it remains an essential component of the software development's life cycle. We focus our research on the design of efficient test cases for improving the quality of software products. In fact, we are interested in any organizational matter that has a positive influence onto the quality of the test case design process: simulation platform, knowledge management, competency management and project management.

In this chapter, we pinpointed the main progress in each of these fields when designing test cases. Many techniques and approaches have been developed and for each one, we identify the advantages and drawbacks to be used or adjusted to our context. As a conclusion, we propose a list of actions that could improve significantly the global performance of the Johnson Controls company:

• Perform functional test since the earlier testing stages. One has to verify the compliance of each software component (independently from its environment) with the carmaker requirements. • Formalize the measurement of the requirement coverage. To do this, one has to specify the requirements using a formal language. Moreover, we suggest integrating project constraints (test time and cost) in the decision to stop testing a software product.

• Formalize the process of selecting operations in order to be independent as much as possible from the test engineers' experience. One solution is to automate this process. One could select operations randomly or, select operations based on the end-user behavior's profile or the experience feedback (from bugs and test cases capitalized on similar projects in the past). 
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CHAPTER 5. MODELING AND SIMULATION OF SOFTWARE FUNCTIONAL REQUIREMENTS

I. Introduction

Ten years ago, formal methods were rarely used in automotive industry, contrarily to medical, avionics and railways industries. The main argument of automotive industry managers was the high cost of deploying and using formal methods. But, as automotive electronic products becomes more and more complex, automotive industry is required to start adapting existing formal methods to their context or developing new ones. Actually, the cost of non-quality (warranty and customer dissatisfaction) exceeds the cost of using formal methods. We still have to change the engineers' practices and even adapt the education in software engineering to the challenge of complex products. Now, in automotive industry, semi-formal and formal methods are more and more used to specify software functional requirements (Cf. Diagnosis 3). However, there is a lack of a standard formalism shared between carmakers and suppliers.

In fact, for each project, the supplier has to adapt its processes (test case design, requirement coverage measurement) to the formalism used by the carmaker (Cf. Chapter 2 -Section 6.B).

Most of the automotive electronic suppliers use the SRS (Software Requirement Specification) model (Cf. Chapter 2 -Section 4.E). This model is mainly used to organize by functionality and by type the carmakers' requirements related to software and to tag them.

In this chapter, we develop our new formal language to model software functional requirements (a simulation model). Advantages and drawbacks of using formal languages in modeling software functional requirements are summarized in Section 2. Our formal model to represent software functional requirements is developed in Section 3. We identify two types of software functional requirements in automotive industry. These types of requirements could be modeled using a Decision Table element or a Finite State Machine element. The simulation process of the requirements model is described in Section 4. Finally, a didactic case study is proposed in Section 5 in order to better illustrate our requirements model.

In the following, we use the shortcut "software specification" to designate the "software functional requirements specification".

II. Advantages and drawbacks of formal languages in modeling software functional requirements

Formal specification is a specification expressed in a language whose vocabulary, syntax, and semantics are formally defined, and which has a mathematical, usually formal logic and basis.

In this dissertation, we adopt the definition of a formal specification language proposed by Wing in [START_REF] Wing | A specifier's introduction to formal methods[END_REF]).

Definition 5.1: Formal Specification Language (Wing 1990)

A formal specification language provides a formal method's mathematical basis. …. A formal specification language provides a notation (its syntactic domain), a universe of objects (its semantic domain), and a precise rule defining which objects satisfy each specification.

Carmakers consider different standards to express the software functional requirements of a given electronic module. Relying on a human to assess program behaviors has two evident drawbacks: accuracy and cost. In fact, after choosing the future operation to be performed on the software product, test engineers analyze the customer requirements and identify the required behavior to be checked on the product. In case of large volumes of test cases or complex behaviors, the accuracy of the eyeball oracle drops precipitously. However, in case of a formal representation of functional requirements, the assessment of the expected values on output signals could be done automatically (by simulation). The use of formal specification methods is expected to lead to increased software quality and reliability.

Hall [START_REF] Hall | Seven myths of formal methods[END_REF]) suggests that benefits of using formal specifications are obtainable without an increase in, and possibly in lowering, development costs. However, Sommerville (Sommerville 1997) indicates that formal specification methods have not been widely accepted in industrial software development. Nevertheless, a number of strategies have been proposed for incorporating formal specification methods into the software development process.

On the one hand, a variety of advantages has been attributed to the use of formal software specifications. These advantages include understanding of specifications, help in the verification of specifications and automatic generation of the source code and test cases.

Firstly, according to Wing [START_REF] Wing | A specifier's introduction to formal methods[END_REF]), the formal specifications help crystallize the customer's vague ideas, and reveal or avoid contradictions, ambiguities, and incompleteness in the specifications. Sommerville (Sommerville 1997) highlights that, depending on the formal specification language used, it may be possible to animate (simulate) a formal system specification to provide a prototype system. The simulation model can be used by inner engineers and by end-users to gain further insights into the behavior of the specified system.

Secondly, as formal specifications can be analyzed using mathematical operators, many researchers [START_REF] Wing | A specifier's introduction to formal methods[END_REF], Kemmerer 1990, Fraser 1994) propose to use mathematical proof procedures to test (and prove) internal consistency and correctness of specifications. Furthermore, the completeness of the specifications can be checked in the sense that all enumerated options and combinations have been specified. Thirdly, from an implementation point of view, as the final problem solution -the implementation-will be in a formal language (e.g. programming language); it is easier to avoid misconceptions and ambiguities in crossing the divide from formal specifications to formal implementations. This raises the possibility of automatic code generation from formal specifications and therefore avoiding the manual and labor coding of the software. Moreover, formal specifications can be used as a guide to the test engineers of software components in identifying and generating automatically appropriate test cases. In our research project, we do not consider the code generation aspect. In conclusion, the use of formal methods can lead to higher-quality specifications, implementations and testing.

On the other hand, a number of reasons by various authors have been suggested to explain the lack of using formal methods in industrial contexts. Firstly, Leveson [START_REF] Leveson | Formal methods in software engineering[END_REF]) pinpoints the lack of methodological and support tool in formal specification research which makes it difficult to develop, analyze, and process large-scale specifications using formal specification languages. Secondly, Sommerville (Sommerville 1997) highlights that the notation and the conceptual grammar of formal specification languages require familiarity with discrete mathematics and symbolic logic which most practicing software engineers do not currently have. Thirdly, the very formality which makes formal specifications desirable during the later phases of software specification makes them an inappropriate tool for communicating with the end-user during the earlier requirement elicitation and confirmation stages. Finally, Sommerville (Sommerville 1997) suggests that management is generally conservative and unwilling to use new techniques whose benefits are not yet established. Given these difficulties in using formal methods, challenges remain in integrating formal methods with the system development effort and in scaling up formal method techniques to large-scale real-world development projects.

In Table 5.1, we summarize the main advantages and drawbacks of formal languages in modeling/specifying software functional requirements.

Table 5.1 -Advantages and drawbacks of formal languages in modeling/specifying software functional requirements

Unfortunately, within the formal languages currently used in automotive industry, there is not a unique formalism shared between carmakers and suppliers (Cf. Diagnosis 3). In Chapter 4 -Section 4.D.4, we pinpoint the benefits of a unified formal (simulation) language able to model all types of software functional requirements.

III.

Our formal language to model software functional requirements for functional simulation

Nowadays, and according to Davis and El-Far (Davis 1988[START_REF] El-Far | Model-Based Software Testing[END_REF], an international unified model to specify and simulate software functional requirements doesn't exist. After studying a variety of models in literature, we came up with the fact that each model has been developed for a specific industrial or academic context. Based on the study that we performed on the evolution of the formalisms used by carmakers to specify functional requirements related to software (Cf. Chapter 2 -Section 4.A), we underline that, within the formal languages, there is not a unique standard formalism shared between carmakers and suppliers (70% of FSMs and Statecharts and 20% of DTs).

In our research project, we define our own formal model, to represent software functional requirement, keeping in mind the automotive context and its constraints. As defined before (Cf. Definition 2.4, 2.5 and 2.6), a software functionality is described by some features that are described by some requirements. In the following, we do not consider the non-functional requirements and we focus our research on modeling software functional requirements. A "Clock" signal (Cf. Figure 5.4) is required since the behavior of a software product is ruled by synchronism. In fact, a "Clock" is just a signal that alternates between zero and one, back and forth, at a specific pace (cycle time). It sets the "pace" for the functional simulation of the model. The value of this "cycle time" depends on some timing characteristics of the software functional requirements. It should be defined by the modeler once analyzing and designing the requirements model. 

B. Two types of modeling elements to model the features of a software functionality

As we stated before, each feature is composed from one or more functional requirements of the same type (combinatorial or sequential). We propose to model these two types of functional requirements thanks to two types of modeling elements.

Decision table element (DT)

Moret and Chvalovsky (Moret 1982, Chvalovsky 1983) were the first to thoroughly explore the uses and capabilities of DT. We use a DT element to model a feature composed from one or more combinatorial functional requirements. A DT is a table (Cf. 

Rules of defining a "Condition" on a signal S i :

1-When Operator is set to ANY, then Signal must be set to " " and Value must be set to 0 2-When Operator is different from ANY and Signal is different from " ", then Value must be set to 0 Examples: S 1 : Condition(ANY, " ", 0) ↔ no matter the value of the signal S 1 S 2 : Condition(LESS, "S 1 ", 0) ↔ if the value of the signal S 2 is LESS than the value of the signal S 1 S 3 : Condition(EQUAL, " ", 10) ↔ if the value of the signal S 3 is equal to 10 S 4 : Condition(GREATER_EQ, " ", 5) ↔ if the value of the signal S 4 is GREATER than or EQUAL to 5 1-When GlobalOperator is set to UNCHANGE, then Signal1 and Signal2 must be set to " ", Operator must be set to NONE and Value1 and Value2 must be set to 0 2-When GlobalOperator is set to EQUAL and Operator is set to NONE, then Signal2 must be set to " " and Value2 must be set to 0. And if Signal1 is different from " ", then Value1 must be set to 0 3-When GlobalOperator is set to EQUAL, Operator is different from NONE and Signal1 and Signal2 are different from " ", then Value1 and Value2 must be set to 0 4-When GlobalOperator is set to EQUAL and Operator is different from NONE, Signal1 is different from " " and Signal2 is equal to " ", then Value2 must be set to 0 5-When Operator is equal to DIV and Signal2 is different from " ", then the value of the Signal2 must be different from 0 6-When Operator is equal to DIV and Signal2 is equal to " ", then Value2 must be different from 0Examples: S 1 : Action(UNCHANGE, " ", " ", NONE, 0, 0) ↔ no actions to do on S 1 S 2 : Action(EQUAL, "S 1 ", " ", NONE, 0, 0) ↔ S 2 must be set to the value of the signal S 1 S 3 : Action(EQUAL, " ", " ", NONE, 5, 0) ↔ S 3 must be set to 5 S 4 : Action(EQUAL, "S 2 ", "S 3 ", ADD, 0, 0) ↔ S 4 must be set to the value of (S 2 + S 3 ) S 5 : Action(EQUAL, "S 4 ", " ", SOUS, 5, 0) ↔ S 5 must be set to the value of (S 4 -5) S 6 : Action(EQUAL, " ", " ", MULT, 5, 10) ↔ S 6 must be set to the value of (5 x 10) S 7 : Action(EQUAL, "S 5 ", "S 6 ", DIV, 0, 0) ↔ S 7 must be set to the value of (S 5 / S 6 ), with S 6 ≠ 0 S 8 : Action(EQUAL, "S 7 ", " ", DIV, 3, 0) ↔ S 8 must be set to the value of (S 7 / 3)

Figure 5.7 -A Decision Table element

Let us consider the DT element illustrated in In fact, when dealing with a small DT, all the possible conditions can be easily identified. In Figure 5.8b, we illustrate the exhaustive DT of the one of Figure 5.8a. On the one hand, a condition could be splitted into 2 or more conditions with the same actions on the output signals (C1 to C1. 1, C1.2 and C1.3). On the other hand, some conditions do not have any impact on the output signals (C4, UNCHANGE). However, in industrial context, the problem is a little bit more difficult since the number of the DT input signals can exceed 10 and the domain length of one signal can exceed 100 (for instance, when sampling the "vehicle speed" signal). In that case, its remains a very difficult task to identify manually all the possible conditions and their corresponding actions. Therefore, an automatic generation of all the possible conditions on the input signals of a DT could be judicious. One could develop a computer macro able to generate automatically an exhaustive list of conditions for a DT. Unfortunately, we do not have enough time to develop this macro and in our experiments (Cf. Chapter 10), we design manually exhaustive DTs. 

Finite State Machine element (FSM)

Gill [START_REF] Gill | Introduction to the theory of finite-state machines[END_REF] introduces FSM theory in 60's. Since, many applications (Chow 1978) such as in software engineering have been performed. We use a FSM element to model a feature composed form one or more sequential functional requirements. In our case and in addition to

Config 1 … O 1 … O n3 Int n4 … Int n5 Config n0 I 1 … I n1 Int 1 … Int n2 Config1 … Confign0 I1 … In1 Int1 … Intn2 O1 … On3 Int4 … Intn5
Req1 C1 * * * (EQUAL, " ", 1) * * * * * → A1 (EQUAL, " ", " ", NONE, 10, 0) ** ** ** ** **

… … … … … … … … … … … → … … … … … … … Reqq Cq … … … → Aq … … … … … … … … … … … … … → … … … … … … … Reqn Cn … … … → An … …
n0, n1, n2, n3, n4, n5, q and n ARE integers * = (ANY, " ", 0) ** = (UNCHANGE, " ", " ", NONE, 0, 0) • an initial state (S0) and a finite number of states (Si) with a set of actions (Ai) on the FSM output, internal and timing signals. The FSM timing signal is set to 0 each time the state of the FSM changes. In fact, the FSM timing signal computes the time spent in each state. • a set of transitions (Tij) from original state (Si) to destination state (Sj), and for each transition (Tij), a set of exclusive conditions (Cij,q) on the FSM input, internal and timing signals. Each set of conditions (Cij,q) represents a requirement in a FSM element.

DT OUTPUT SIGNALS Requirements Conditions Actions DT INPUT SIGNALS (a): Not exhaustive (b): Exhaustive I1 I2 O1 O2 I1 I2 O1 O2 C1.1 =0 =1 → A1 =0 =0 C1.2 =0 =2 → A2 =0 =0 C1.3 =0 =3 → A3 =0 =0 C2 =1 =1 → A4 =0 =1 C2 =1 =1 → A4 =1 =1 C3 =1 =2 → A5 =1 =1 C3 =1 =2 → A5 =1 =1 C4 =1 =3 → A6 UNCHANGE UNCHANGE C1 =0 ANY =0 =0 → A1 Conditions DT INPUT
For one set of conditions (for example, Cij,1 in Figure 5.9), it must require that at least one input signal of the FSM or one FSM internal signal or the FSM timing signal is set to a specific value (I1=1), the other signals of the FSM may be indifferent (ANY). 

TRANSITION (Tij) Config 1 … Config n0 I 1 … I n1 Int 1 … Int n2 O 1 … O n3 Int n4 … Int n5 FSM TIMING SIGNAL Config1 … Confign0 I1 … In1 Int1 … Intn2 FSMInt1 … FSMIntn3 FSMTempo Reqij,1 Cij,1 * * * (EQUAL, " ", 1) * * * * * * * * * … … … … … … … … … … … … … … … Reqij,q Cij,q … … … … … … … … … … … … … … … … … … … Reqij,n Cij,n … … … …
n0, n1, n2, n3, i, j, q and n ARE integers * = (ANY, " ", 0)

FSM INTERNAL SIGNALS Requirements Conditions FSM INPUT SIGNALS FSM TIMING SIGNAL O1 … On4 Intn5 … Intn6 FSMInt1 … FSMIntn3 FSMTempo
Ai (EQUAL, " ", " ", NONE, 10, 0) ** ** ** ** ** ** ** ** (EQUAL, " ", " ", NONE, 0, 0) n3, n4, n5, n6 and i ARE integers ** = (UNCHANGE, " ", " ", NONE, 0, 0)

FSM

INTERNAL SIGNALS Actions

FSM OUTPUTS
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Quality of the design of test cases for automotive software: design platform and testing process 155 transitions and conditions. They only consider the transitions (Tij) and conditions (Ci) which were explicitly specified in the customer requirements (6 out of 8 transitions and 7 out of 9 conditions, Cf. Figure 5.10a). In order to be exhaustive when designing a FSM, modelers must identify all the transitions and conditions that get out of a state even if they do not allow to change the state of the FSM (Cf. 

O1 O2 S0 A0 =0 =0 S1 A1 =0 =1 S2 A2 =1 =0 S3 A3 =1 =1 States Actions FSM OUTPUT SIGNALS I1 I2 =2 T31 C1 =1 ANY T23 C1 C2 ANY ANY T20 C1 ANY =3 =1 T12 C1 =0 ANY T01 =1 ANY C1 T02 C1 =0 ANY FSM INPUT SIGNALS Conditions Transitions I1 I2 C1.1 =1 C1.2 =2 C1.3 =3 C1.1 =1 C1.2 =2 C1.3 =3 C1.1 =1 C1.2 =2 C1.3 =3 C1.1 =1 C1.2 =2 C1.3 =3 C1.1 =0 C1.2 =1 C1.1 =0 C1.2 =1 C2.1 =0 C2.2 =1 C1.1 =1 C1.2 =2 C1.3 =3 C1.1 =1 C1.2 =2 C1.3 =3 =0 =1 =1 =1 =3 =1 =2 T23 T33 T31 T20 =0 T11 T12 =0 T01 T02 Transitions Conditions FSM INPUT SIGNALS
In case of a feature modeled using a Decision Table element, all conditions (Cq) have to be checked. There is no specific checking order for these conditions since up to one condition can be fulfilled at a time. Values on the DT output signals are updated according to the action associated to the satisfied condition. Note that, in some cases, none of the conditions (Cq) can be fulfilled and therefore no actions (Aq) have to be done on the DT output signals. In fact, the DT conditions do not often consider all the possible combinations between the values of all the DT input signals. Let us consider the DT element of the Figure 5.8a. In Figure 5.11, a simulation scenario of this DT is shown.

• (Figure 5.11a): After initialization, I1 is set to 0 and I2 is set to 2. On the next front edge of the "Clock" signal, all the conditions (Ci) are checked following the predefined order. Once a set of conditions is satisfied (C1), the corresponding actions (A1) on the DT output signals are performed and the conditions checking is stopped. • (Figure 5.11b): I1 is set to 1. On the next front edge of the "Clock", C3 is satisfied.

• (Figure 5.11c): I2 is set to 3. On the next front edge of the "Clock", none of the conditions is fulfilled.

Figure 5.11 -An example to illustrate the simulation process of a Decision Table element

In case of a feature modeled using a Finite State Machine element, one state must always be activated. When simulating a FSM, all conditions of all the transitions that get out of the activated state have to be checked. There is no specific checking order for transitions and conditions since they are exclusive and up to one condition (transition) can be satisfied (crossed) at a time. Therefore, after each FSM simulation, at maximum one transition is crossed. The origin state of the transition is deactivated, the destination state is activated and values on output signals are updated. However, in some cases, none of the transitions that get out of the activated state can be satisfied and therefore the activated state remains the same and no actions have to be done on the FSM output signals. In fact, the conditions of all the transitions that get out of the same state do not often consider all the possible combinations 

I1 I2 O1 O2 C1 =0 ANY → A1 =0 =0 C2 =1 =1 → A2 =0 =1 C3 =1 =2 → A3 =1 =1 DT INPUT SIGNALS Actions DT OUTPUT SIGNALS Conditions I1 I2 O1 O2 C1 =0 ANY → A1 =0 =0 C2 =1 =1 → A2 =0 =1 C3 =1 =2 → A3 =1 =1
I1 I2 O1 O2 C1 =0 ANY → A1 =0 =0 C2 =1 =1 → A2 =0 =1 C3 =1 =2 → A3 =1 =1 DT OUTPUT SIGNALS Conditions DT INPUT SIGNALS Actions
between the values of all the FSM input, internal and timing signals. Let us consider the FSM element of the Figure 5.10a. In Figure 5.12, a simulation scenario of this FSM is shown.

(Figure 5.12a):

After initialization, I1 is set to 1 and I2 is set to 1. On the next front edge of the "Clock" signal, all the conditions (Ci) on all the transitions (T0j) that get out of the activated state (S0) are checked following the predefined order. Once a set of conditions is satisfied (T01, C1), the corresponding transitions (T01) is crossed, the origin state (S0) is deactivated, the destination state ( S1) is activated and the action (A1) on the destination state is performed.

(Figure 5.12b): the activated state is S1. I2 is set to 2. On the next front edge of the "Clock", all the conditions (Ci) on all the transitions (T1j) that get out of the activated state (S1) are checked following the predefined order. Since, none of these conditions is satisfied, the activated state does not change (S1) and the values on the FSM output signals no more.

(Figure 5.12c): the activated state is S1. I1 is set to 0. On the next front edge of the "Clock", the transition (T12) is crossed. The new activated state is (S2).

(Figure 5.12d): the activated state is S2. I2 is set to 1. On the next front edge of the "Clock", the transition (T23) is crossed. The new activated state is (S3).
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I1 I2 T01 C1 =1 ANY T02 C1 =0 ANY T12 C1 =0 ANY T20 C1 ANY =3 T23 C1 ANY =1 C2 ANY =2 T31 C1 =1 ANY FSM INPUT SIGNALS Transitions Conditions I1 I2 T01 C1 =1 ANY T02 C1 =0 ANY T12 C1 =0 ANY T20 C1 ANY =3 T23 C1 ANY =1 C2 ANY =2 T31 C1 =1 ANY Transitions Conditions FSM INPUT SIGNALS I1 I2 T01 C1 =1 ANY T02 C1 =0 ANY T12 C1 =0 ANY T20 C1 ANY =3 T23 C1 ANY =1 C2 ANY =2 T31 C1 =1 ANY Transitions Conditions FSM INPUT SIGNALS I1 I2 T01 C1 =1 ANY T02 C1 =0 ANY T12 C1 =0 ANY T20 C1 ANY =3 T23 C1 ANY =1 C2 ANY =2 T31 C1 =1 ANY Conditions FSM INPUT SIGNALS Transitions O1 O2 S0 =0 =0 S1 =0 =1 S2 =1 =0 S3 =1 =1 States FSM OUTPUT SIGNALS O1 O2 S0 =0 =0 S1 =0 =1 S2 =1 =0 S3 =1 =1 States FSM OUTPUT SIGNALS O1 O2 S0 =0 =0 S1 =0 =1 S2 =1 =0 S3 =1 =1 States FSM OUTPUT SIGNALS O1 O2 S0 =0 =0 S1 =0 =1 S2 =1 =0 S3 =1 =1
States and Feature 2 can be modeled using Decision Table elements and Feature 3 can be modeled using a Finite State Machine element. We also identified two intermediate signals: Int1 ("Luminosity_Level") and Int2 ("Follow_Me_Home_Activate"). A graphical illustration of the requirements model of the functionality "Auto_Light" is developed in Figure 5.14.

Feature 1 ("Luminosity_Level_Calculation")

Req1.1: In case of "Luminosity_Sensor" is equal to 1 or 2, then "Luminosity_Level" must be equal to 1

Req1.2: In case of "Luminosity_Sensor" is equal to 3, 4 or 5, then "Luminosity_Level" must be equal to 2

Req1.3: In case of "Luminosity_Sensor" is equal to 6 or 7, then "Luminosity_Level" must be equal to 3

Req1.4: In other cases, "Luminosity_Level" must be equal to 0

Feature 2 ("Follow_Me_Home_Mode")

Figure 5.14 -A graphical illustration of the requirements model of the functionality "Auto_Light"

The Decision Table elements of 

I3= Car_Locked I4= Ignition Int2= Follow_Me_Home_Activate DT2 OUTPUTS I3 I4 Int2 Req2.2 Req2.2.1 C1 =0 =0 → A1 =0 Req2.2 Req2.2.2 C2 =0 =1 → A1 =0 Req2.1 Req2.1 C3 =1 =0 → A3 =1 Req2.2 Req2.2.3 C4 =1 =1 → A4 =0
2 carmaker requirements splitted into 4 requirements in our model and Int2 but also on the current state of the feature. We also define a FSM timing signal (FSM1Tempo) and one FSM internal signal (FSM1Int1, Domain = {0, 1}) in order to model the requirements Req3.5 and Req3.6. 

Config1 Config2 Config3 I1 I4 I5 Int1 Int2 FSM1Int1 FSM1Tempo Req3.1 Req3.1.1 T00 C1 ANY ANY ANY =1 ANY ANY ANY ANY ANY ANY Req3.1 Req3.1.2 T10 C1 ANY ANY ANY =1 ANY ANY ANY ANY ANY ANY Req3.1 Req3.1.3 T20 C1 ANY ANY ANY =1 ANY ANY ANY ANY ANY ANY Req3.1 Req3.1.4 T30 C1 ANY ANY ANY =1 ANY ANY ANY ANY ANY ANY Req3.2 Req3.2.1 C1 =1 ANY ANY =0 =1 =1 =1 ANY ANY ANY Req3.2 Req3.2.2 C2 =1 ANY ANY =0 =1 =1 =2 ANY ANY ANY Req3.3 Req3.3.1 T02 C1 =1 ANY ANY =0 =1 =1 =3 ANY ANY ANY Req3.3 Req3.3.2 T12 C1 =1 ANY ANY =0 =1 =1 =3 ANY ANY ANY Req3.4 Req3.4.1 T13 C1 ANY =1 ANY =0 =0 ANY ANY =1 ANY ANY Req3.2 Req3.2.3 C1 =1 ANY ANY =0 =1 =1 =1 ANY ANY ANY Req3.2 Req3.2.4 C2 =1 ANY ANY =0 =1 =1 =2 ANY ANY ANY Req3.4 Req3.4.2 T23 C1 ANY =1 ANY =0 =0 ANY ANY =1 ANY ANY Req3.5 Req3.5 C1 ANY ANY ANY =0 ANY ANY ANY ANY =1 >Config3 Req3.6 Req3.6 C2 ANY ANY ANY =0 ANY ANY ANY ANY =0 >Config3/2 Req3.2 Req3.2.5 C1 =1 ANY ANY =0 =1 =1 =1 ANY ANY ANY Req3.2 Req3.2.6 C2 =1 ANY ANY =0 =1 =1 =2 ANY ANY ANY Req3.3 Req3.3.3 T32 C1 =1 ANY ANY =0 =1 =1 =3
O1 O2 FSM1Int1 S0 A0 =0 =0 =0 S1 A1 =0 =1 UNCHANGE S2 A2 =1 =0 =1 S3 A3 =0 =1 UNCHANGE FSM1 OUTPUTS States Actions
Even with instructions and guidelines, we are conscious that two different modelers can design two different models for the same software functional requirements. To overcome this problem, we plan to demonstrate that for two or more different models of the same functional requirements, the generated test cases allow to detect the same bugs (Cf. Chapter 10 -Section 8.B).

VI. Conclusion

Managing the software functional requirements is considered as one of the key issues in the software development process. In fact, these requirements are the main input for the design and implementation processes of the software product but also for the verification and validation processes. Ten years ago, formal methods were rarely used in automotive industry, contrary to medical, avionics and railways industries. Now, in automotive industry, semiformal and formal methods are more and more used to specify software functional requirements (Cf. Diagnosis 3). However, there is a lack of a standard formalism shared between carmakers and suppliers. In fact, for each project, the supplier has to adapt its processes to the formalism used by the carmaker.

In this chapter, we developed our new formal and simulation language to model software functional requirements (Cf. In the following chapter, we develop how a modeler can verify and validate the completeness, the consistency, the accuracy and the compliance of a requirements model with the carmaker's requirements.
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CHAPTER 6. VERIFICATION AND VALIDATION OF A SOFTWARE FUNCTIONAL REQUIREMENTS MODEL

I. Introduction

Simulation models are increasingly being used in problem solving and in decision making.

The developers and users of these models, the decision makers using information derived from the results of the models, and people affected by decisions based on such models are all rightly concerned with whether a model and its results are "correct". This concern is addressed through Model Verification and Validation (Model V&V). In this dissertation, we adopt the definition of Model V&V proposed by Balci in (Balci 1997). In this chapter, we develop scenarios in order to verify and validate a software functional requirements model developed using our formal simulation language. A survey on verifying and validating simulation model is performed in Section 2. We consider a simplified version of the modeling process. We discuss the basic approaches used in deciding model validity.

We also describe various Model V&V techniques. Based on the literature review, techniques and rules to help modelers in validating the Conceptual Model, verifying the Computerized Model and finally checking the Operational Validity of a requirements model are respectively proposed in Section 3, 4 and 5. These proposals take the industrial constraints and the automotive context into account.

II. A survey on verifying and validating a simulation model

A model should be developed for a specific purpose and its validity determined with respect to that purpose. If the purpose of a model is to answer a variety of questions, the validity of the model needs to be determined with respect to each question. Several sets of experimental conditions are usually required to define the domain of a model's intended applicability. A model may be valid for one set of experimental conditions and invalid in another. A model is considered valid for a set of experimental conditions if its accuracy is within its acceptable range, which is the amount of accuracy required for the model's intended purpose. Several versions of a model are usually developed prior to obtaining a satisfactory valid model. The substantiation that a model is valid (e.g. Model V&V) is generally considered to be a process and is usually part of the model development process.

It is often too costly and time consuming to determine that a model is absolutely valid over the complete domain of its intended applicability. Tests and evaluations are conducted until sufficient confidence is obtained that a model can be considered valid for its intended application. The relationships of cost (a similar relationship holds for the amount of time) of performing model validation and the value of the model to the user as a function of model confidence is proposed by Sargent in (Sargent 2005) and illustrated in Figure 6.1. The cost of model validation is usually quite significant, particularly when extremely high model confidence is required. 

Computerized Model Verification

Computerized Model Verification ensures that the computer programming and implementation of the Conceptual Model are correct. To help ensure that a correct computer program is obtained, program design and development procedures found in the field of software engineering should be used in developing and implementing the computer program.

One should be aware that the type of computer language used affects the probability of having a correct program. The use of a special-purpose simulation language generally results in having fewer errors than if a general-purpose simulation language is used, and using a general purpose simulation language generally results in having fewer errors than if a general purpose higher order language is used. Not only does the use of simulation languages increase the probability of having a correct program, programming time is usually reduced significantly. After the computer program has been developed and implemented, the program must be tested for correctness. Main functions but also sub-functions must be tested to see if they are correct. It is necessary to be aware while checking the correctness of the computer model that errors may be caused by the Conceptual Model or the computer implementation.

Operational Validity

Operational Validity is concerned with determining that the model's output behavior has the accuracy required for the model's intended purpose over the domain of its intended applicability. This is where most of the validation and evaluation techniques take place. 

B.

How to decide whether a simulation model is valid or not?

According to Sargent (Sargent 2005), three basic approaches are used in deciding whether a simulation model is valid or invalid. Each of the approaches requires the model development team to conduct the Model V&V as part of the model development process:

1. The most common approach is based on the model development team who has to make the decision whether the model is valid or not. This is a subjective decision based on the results of the various tests and evaluations conducted as part of the model development process. 2. Another approach, often called "Independent Verification and Validation" (IV&V), uses a third (independent) party to decide whether the model is valid. The third party is independent of both the model development team and the model user(s). After the model is developed, the third party conducts an evaluation to determine its validity.

Based upon this validation, the third party makes a subjective decision on the validity of the model. The evaluation performed in the IV&V approach ranges from simply reviewing the Model V&V conducted by the model development team to a complete verification and validation effort. According to Wood (Wood 1986), a complete IV&V evaluation is extremely costly and time consuming for what is obtained. 3. Balci (Balci 1989) proposes an approach based on a scoring model for determining whether a model is valid or not. Scores (or weights) are determined subjectively when conducting various aspects of the validation process and then combined to determine category scores and an overall score for the simulation model. A simulation model is considered valid if its overall and category scores are greater than some passing score(s). This approach is infrequently used in practice. Sargent (Sargent 2005) does not believe in the use of a scoring model for determining validity, because 1) the subjectiveness of this approach tends to be hidden and thus appears to be objective, 2) the passing scores must be decided in some (usually subjective) way, 3) a model may receive a passing score and yet have a defect that needs correction, and finally 4) the score(s) may cause overconfidence in a model or be used to argue that one model is better than another.

Several versions of a model are usually developed in the modeling process prior to obtaining a satisfactory valid model. During each model iteration, Model V&V are performed. A variety of techniques could be used. In the next section, we develop these techniques.

C. Model Verification and Validation techniques

Taxonomy of more than 77 Model V&V techniques for simulation models is identified in (Balci 1997). Most of these techniques come from the software engineering discipline and the remaining are specific to the modeling and simulation field. Details on these techniques are proposed in (DoD 1996, Balci 1997). The taxonomy used by the authors classifies the Model V&V techniques into four primary categories: informal, static, dynamic, and formal. The use of mathematical and logic formalism by the techniques in each primary category increases from informal to formal. Likewise, the complexity also increases as the primary category becomes more formal. In the following, we describe various techniques used in Model V&V. Most of the techniques described here are found in the literature (Balci 1984, Sargent 2005), although some may be described slightly differently (adapted to our context). They can be used either subjectively or objectively. By "objectively", we mean using some type of statistical test or mathematical procedure (e.g. confidence intervals). A combination of techniques is often used for validating and verifying the sub-models and the overall model.

Animation: The model's operational behavior is displayed graphically as the model moves through time.

Comparison to Other Models: Various results (e.g. outputs) of the simulation model being validated are compared to results of other (valid) models.

Degenerate Tests:

The degeneracy of the model's behavior is tested by appropriate selection of values of the input and internal parameters.

Event Validity: The events of occurrences of the simulation model are compared to those of the real system to determine if they are similar.

Extreme Condition Tests:

The model structure and output should be plausible for any extreme and unlikely combination of levels of factors in the system.

Face Validity: Face validity is asking people knowledgeable about the system whether the model and/or its behavior are reasonable. This technique can be used in determining if the logic in the Conceptual Model is correct and if a model's input-output relationships are reasonable.

Fixed Values: Fixed values (e.g., constants) are used for various model input and internal variables and parameters. This should allow the checking of model results against easily calculated values.

Historical Data Validation: If historical data exist (or if data are collected on a system for building or testing the model), part of the data is used to build the model and the remaining data are used to determine (test) whether the model behaves as the system does.

Internal Validity: Several replications (runs) of a stochastic model are made to determine the amount of (internal) stochastic variability in the model. A high amount of variability (lack of consistency) may cause the model's results to be questionable and may question the appropriateness of the system being investigated.

Parameter Variability -Sensitivity Analysis: This technique consists of changing the values of the input and internal parameters of a model to determine the effect upon the model's behavior and its output. The same relationships should occur in the model as in the real system.

Predictive Validation: The model is used to predict (forecast) the system behavior, and then comparisons are made between the system's behavior and the model's forecast to determine if they are the same. The system data may come from an operational system or from experiments performed on the system.

Traces:

The behavior of different types of specific entities in the model is traced (followed) through the model to determine if the model's logic is correct and if the necessary accuracy is obtained.

Turing Tests: People who are knowledgeable about the operations of a system are asked if they can discriminate between system and model outputs.

Unfortunately, no algorithms or procedures exist to select which techniques to use. However, some attributes that affect which techniques to use are discussed by Sargent in [START_REF] Sargent | Simulation Model Validation, Simulation and Model-Based Methodologies: An Integrative View[END_REF]).

In the next three sections (Section 3, 4 and 5), we specify techniques, rules and scenarios to help modelers in validating the Conceptual Model, verifying the Computerized Model and finally checking the Operational Validity of a requirements model. Our proposals take not only the Sargent's recommendations into account but also our industrial context.

III. Using the experts' knowledge to validate a Conceptual requirements Model (Conceptual validity)

In our context, the Conceptual Model is developed through an analysis and modeling of the software functional requirements. For each software functionality, modelers draw a sketch of the requirements model by (Cf. Chapter 5 -Section 3):

1. identifying the input and output signals and their domains, 2. grouping the functional requirements according to their types (combinatorial or sequential), 3. identifying the elements (DT and FSM) and the intermediate signals and their domains and 4. finally specifying each element. For a DT, identify the conditions and their associate actions. For a FSM, identify the states and their associate actions, the transitions and their associate conditions and if needed the internal and timing signals.

Once the Conceptual Model is designed, each element and the overall model must be evaluated to determine if they are reasonable, correct and complete regarding the carmaker's requirements. We propose to use Face validity and Turing tests in order to valid our Conceptual Model. In fact, the experts' knowledge is the main source of validating our Conceptual Model. People knowledgeable about the system under test are asked to discriminate between the model and the carmaker's requirements and to give their confidence in the model and/or its behavior.

IV. A set of integrity rules to verify a Computerized requirements Model

The Computerized Model is developed through a computer programming and implementation of the Conceptual Model. We provide modelers a high level graphical language to help them computerizing their Conceptual requirements Models. The main items of this language are illustrated in Figure 6.3.

Figure 6.3 -A high level graphical language to computerize a Conceptual requirements Model

Computerized Model Verification ensures that the computer programming and implementation of the Conceptual Model are correct. The use of a graphical simulation language generally results in having fewer errors and programming time is usually reduced significantly. To help ensure that a correct computer model is obtained, we develop a set of integrity rules to be checked automatically on the computer model. These rules are developed in Table 6 Rule 4 All the input signals of the functionality must be inputs of elements Rule 5 All the output signals of the functionality must be outputs of elements Rule 6 All the intermediate signals of the functionality must be inputs or outputs of elements

Rule 7

All the inputs and outputs of elements must be input, output or intermediate signals of the functionality

Rule 8

Each value of an input, output and intermediate signal of the functionality must be considered in at least one condition or action of an element Rule 9 Each DT must have at least one condition Rule 10 Each condition of a DT must have one associated action

Rule 11

Each condition of a DT must have at least one input or intermediate signal of the functionality

Rule 12

Each action of a DT must have at least one output or intermediate signal of the functionality Rule 13 Each FSM must have at least two states and two transitions Rule 14 Each transition of a FSM must have at least one condition Rule 15 Each state of a FSM must have one associated action

Rule 16

Each condition of a FSM must have at least one input or intermediate signal of the functionality

Rule 17

Each action of a FSM must have at least one output or intermediate signal of the functionality

Rule 18

Each state of a FSM must have at least one transition that gets in the state and one transition that gets out of the state

Rule 19

Each transition of a FSM must have an origin and a destination state
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Quality of the design of test cases for automotive software: design platform and testing process Ten years ago, simulation methods were rarely used in automotive industry. Now, automotive electronics architecture becomes more and more complex and carmakers outsource the design of electronic products. Therefore, it becomes crucial for carmakers to simulate their global electronics architecture in order to better integrate and validate different electronic parts from different suppliers. Presently, in automotive industry, formal (simulation) methods are more and more used to specify software functional requirements (Cf. Chapter 2 -Section 4.A). In fact, simulation helps engineers to make better decisions all along the product life cycle and detect problems early in the development process. Unfortunately, there is a lack of a standard formalism shared between carmakers and suppliers (Cf. 

VI. Conclusion

Assessing credibility of a simulation model is an onerous task. Applying Model V&V techniques throughout a simulation model is time consuming and costly. However, the Model V&V activity is extremely important for successful completion of complex and large-scale Modeling and Simulation (M&S) efforts. Unfortunately, there is no set of specific tests that can easily be applied to determine the "correctness" of the model. In this chapter, we developed a process to verify and validate a software functional requirements model. We use proposals developed in the literature as a starting point for defining methods and techniques more adapted to our context. We consider a simplified version of the modeling process: Problem Entity, Conceptual Model and Computerized Model. Firstly, we propose to validate (Conceptual Validity) a Conceptual requirements Model via experts' knowledge. Secondly, we define a set of integrity rules to verify a Computerized requirements Model. Finally, we develop three possible scenarios to validate (Operational Validity) a Computerized requirements Model.

In the following chapter, we describe how test cases can be generated automatically from a requirements model.

CHAPTER 7. AUTOMATIC GENERATION OF TEST CASES

I. Introduction

As the software products become more and more complex (Cf. Chapter 1), it is illusory to be able to check that the software product responds correctly to all possible operations. In Chapter 8 -Section 2, we further demonstrate that software testing is a NP-Complete problem and therefore it is impossible to be able to cover all the operation space. In Johnson Controls, the current strategy to select operations within the operation space (operation selection strategy) is a manual subjective one based the test engineers' experience and intuition (Cf.

Diagnosis 13). After choosing an operation to be performed on the software under test, test engineers analyze the source code and/or the carmaker requirements of this software in order to assess the expected values to be checked on some output signals. In fact, this assessment is based on the engineers' understanding of the code and/or requirements and may lead to errors (Cf. Diagnosis 12). In automotive industry, these tasks become laborious tasks that account for more than 50% of the total time and budget of a software project. In fact, the stopping criteria used is based on test coverage. Researches in code coverage measurement have reached a high level of maturity and many automated tools were commercialized (Cf. Chapter 2 -Section 6.A.1). However, requirement coverage is still immature and the accuracy of a requirement coverage measurement depends on the degree of formalism used when specifying a set of requirements (Cf. Diagnosis 11). In addition, sometimes, for time and budget reasons, test engineers stop designing test cases even if 100% coverage is not reached.

In this chapter, we develop our strategy to generate test cases (operations and expected outputs) automatically from the requirements model. We also describe our stopping aggregated criterion based on formal measurement of coverage. The test case generation is based on a new concept named "operation matrix" presented in Section 2. The process of generating a test case is described in Section 3. The quality objectives and the time and cost constraints when designing test cases are developed in Section 4. A new stopping aggregated criterion is proposed in Section 5. Finally, our heuristic algorithm to optimize the generation of test cases is specified in Section 6.

II. The new concept of "operation matrix"

The generation of operations and inter-operation times for a test case is performed based on the concept of "operation matrix". In fact, for each software functionality under test, we propose to set probabilities and time intervals between all possible successive operations. Therefore, we build a matrix that we name "operation matrix" which is a square matrix with all possible operations in columns and in rows. Between the two operations of a pair we define:

• The probability that the two operations be in sequence. The total of the probabilities by row must be equal to 1. • The inter-operation time between these two operations, modeled as an interval of possible values (a uniform probability). Moreover and through the "operation matrix", engineers can enrich the requirements model with knowledge on the end-user (driver) recurrent operations and the test engineers' experience. Indeed, high probabilities and specific inter-operation times can be set between recurrent and/or critical operations. The use of driver behavior's profile, past bugs and existing test cases in order to refine the operation space description is developed in Chapter 8.

One major question is: How an engineer can design an "operation matrix"? The basic solution is to fill in manually each case of the "operation matrix" by a succession probability and a time interval. However, a functionality can have more than 20 input signals and 100 possible values for these signals. In fact, the domain length of an analog input signal (for instance, vehicle speed) depends on the level of details when sampling the analog domain. In consequence, the size of an "operation matrix" can easily reach the 10000 cases which become inconceivable to be filled manually. One solution is to generate the "operation matrix" automatically. For each functionality under test, we propose to generate two "operation matrices" automatically. For the two matrices, the time interval can be set automatically to a "generic" interval defined by experts. Let us consider the same example of the Figure 7.1. The first matrix called "Nominal 1" (Cf. Figure 7.2) considers that all the operations have the same succession probability. I n p u t s i g n a l s

I1 I2 I3 Domains 0 1 1 2 3 0 1 0 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 2 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 3 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 0 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {Succession probability ; Time interval } I1 I3 I2
0.14 + 0.14 + 0.14 + 0.14 + 0.14 + 0.14 + 0.14 = 1

Defined by experts
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The second matrix called "Nominal 2" (Cf. Figure 7.3) considers that the probability to choose an operation on the input signal I i is the same than the one on the input signal I j .

Figure 7.3 -An example of a Nominal 2 "operation matrix"

Moreover, once these matrices are generated automatically, engineers have the possibility to adjust manually the succession probability and the time interval between some specific operations. Following the engineers' modifications, the probability distribution by row is updated in order to take into account the matrix constraints. For instance, let us consider the Nominal 1 "operation matrix" of the Figure 7.2. One engineer can decide to:

• set the succession probability between the operation "I1=0" and the operation "I1=1" to 0.8 • and set all the time intervals after the operation "I3=0" to [X1, Y1] The modified Nominal 1 "operation matrix" is presented in Figure 7.4.

I n p u t s i g n a l s

I1 I2 I3 Domains 0 1 1 2 3 0 1 0 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } 1 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } 1 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } 2 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } 3 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } 0 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } 1 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {Succession probability ; Time interval } I1 I3 I2
Defined by experts 0.17+0.17 = 0.33 0.17+0.17 = 0.33 0.11+0.11+0.11 = 0.33 0.33+0.33+0.33 = 1 

III. How to generate a "Test Case"?

Generating a test case automatically requires generating a set of test steps until stopping criterion is validated. The process of generating a test case is illustrated in Figure 7.5.

Figure 7.5 -The process of generating a test case

The definition of our stopping aggregated criterion is developed in Section 5. In the following, we focus on the generation of a test step. Based on the definition of a test step (Cf. Definition 2.11), designing a test step requires to choose an operation, an inter-operation time and assess the expected results to be checked on the output signals of the software under test. Through our approach, two automated activities are necessary to generate a test step:

A. Activity 1: A Monte Carlo simulation on the "operation matrix"

In order to generate an operation and an inter-operation time, we propose to perform a Monte Carlo simulation on the "operation matrix". Two steps are required:

I n p u t s i g n a l s

I1 I2 I3 Domains 0 1 1 2 3 0 1 0 {0,033 ; [X ;Y] } {0,8 ; [X ;Y] } {0,033 ; [X ;Y] } {0,033 ; [X ;Y] } {0,033 ; [X ;Y] } {0,033 ; [X ;Y] } {0,033 ; [X ;Y] } 1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 2 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 3 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } 0 {0
,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } 1 Step1: "I1=1" is the chosen operation (high probability -0.8) Step2: An inter-operation time is randomly chosen within [200,400] 

IV. Test generation objectives and constraints

Testing software exhaustively remains a major problem from the computing point of view. Therefore, software testing must often be based on specific assumptions and objectives which help test engineers and managers to decide when to stop the testing protocol. In order to monitor our automatic generation of test cases, we develop an objective function based on a formal structural (code) and functional (requirement specification) coverage and the execution time and cost of generated tests. In our approach, test engineers can generate test cases according to their quality objectives but also time and cost constraints.

A. Structural (code) coverage objectives

While generating a test case, and for each generation of a test step, we execute the test step on the software product under test and we evaluate the code coverage in terms of statements, procedures, conditions and decisions coverage. To do so, we use C-Cover from Bullseye as a code coverage measurement tool. A detailed description of the code coverage is given in Chapter 2 -Section 6.A.1. Since the code coverage measurement is already formalized using commercial tools, we focus our efforts on formalizing the requirement coverage measurement.

B. Functional (requirement specification) coverage objectives

Once we define a model to formally represent and simulate the software functional requirements, we consider a formal coverage rate of the requirements model. In 7.8, 7.9, 7.10 and 7.11). The coverage rate of a signal domain Each input, output or intermediate signal has a discrete domain. The signal domain coverage of a requirements model consists of the coverage rate of the domains of these signals. In addition, since testing the boundary values of a signal often reveals many problems, we also assess the coverage rate of the minimum and maximum values of each signal. In Figure 7.8, we illustrate the coverage of a signal by a practical example. After generating a test case, some values of the signals domains have been highlighted. In fact, the signal "Signal_3" is covered at 100% while the two values of this signal were visited at least once by the generated test case. The signal "Signal_1" has a coverage rate of 33,33% (1 value visited over 3 values in total).

Figure 7.8 -Signals domain coverage

The coverage rate of an operation matrix

The operation matrix coverage of a requirements model consists of the coverage rate of all successions between pairs of operations visited. Once a succession probability is set between each two operations, we define a coverage rate of the critical successions where the succession probability is above a certain level defined by the engineer. In Figure 7.9, we illustrate the coverage of an "operation matrix" by a practical example. After generating a test case, some cases of the matrix have been highlighted. In fact, in the generated test case, the operation #4 has followed the operation #1, the operation #2 has followed the operation #2, the operation #2 has followed the operation #3 and so on. This way, we compute the coverage rate of successions between pairs of operations (around 38%; 5 successions of operations were covered over 13 possible successions)

Figure 7.9 -Operation matrix coverage

The coverage rate of an element (DT or FSM)

The element coverage of a requirements model consists of the coverage rate of the conditions of each Decision Table (DT) and the coverage rate of the states, transitions and conditions of each Finite State Machine (FSM). In Figure 7.10, we illustrate the coverage of a DT by a practical example. After generating a test case, some conditions of the DT have been highlighted. In fact, the conditions are covered at 75% (3 conditions visited over 4 conditions in total).

Signal covered at 100%

Signal covered at 33,33% In Figure 7.11, we illustrate the coverage of a FSM by a practical example. After generating a test case, some states and transitions of the FSM have been highlighted. In fact, the states are covered at 75% (3 states visited over 4 states in total). The transitions are covered at 43% (3 transitions visited -different from 0%-over 7 transitions in total). The conditions are covered at 29% ((50%+0%+100%+0%+50%+0%+0%)/7=29%).

Operations

Figure 7.11 -Finite State Machine coverage

Moreover, when designing the requirements model, engineers can affect to conditions, states and transitions a normalized criticity level between 0 and 1. Consequently, we define a second set of coverage rates for expressing the degrees of coverage of the most critical conditions, states and transitions (in fact, this is a weighted coverage of an element).

C. Test execution time and cost constraints

Presently, in the automotive industry, the time and money spent to test a software product is the major criterion to stop testing. We have time and money spent to analyze carmakers' requirements, to design test cases and to execute test cases on the software product under test (Cf. Chapter 2 -Section 6). In our approach, we generate test cases automatically and therefore, one can have a tendency to generate too many tests. However, executing test cases on the software product under test and analyzing the results can cost too much time and money (Cf. Chapter 4 -Section 4.C.1) and more especially when the execution is performed manually by a test engineer (Cf. Chapter 2 -Section 5.D.1). In our approach, when generating a test case, test engineers can set targets not to be exceeded (constraints) on time and cost indicators:

• Indicator 1: Execution time. The time that a test engineer will spend in executing manually the generated test case on the software product. perform the same operation "I1=1").

Figure 7.12 -An example of test case

Constraints on time and cost are helpful in case of tight planning and budget on the project. It can also be useful on projects where the test execution is performed manually. In that case, the execution time and number of test steps must be reduced and the repetitive test steps or succession of test steps must be avoided. Typically, when testing a Graphical User Interface (GUI), test engineers have to check visually the expected results. Nevertheless, new testing platforms allow even to automate the testing of GUI using a camera system.

V. Our stopping aggregated criterion

A.

The objective function combining objectives and constraints

Based on the coverage objectives and the time and cost constraints identified in Section 4, we develop a panel interface to allow the test engineers to set precise targets on the test generation objectives and constraints (Cf. Figure 7.13). The quality objectives (code and requirement specification coverage) are expressed in terms of ratios of coverage and, then, are normalized which aim to reach a value of 100%. The execution time constraint is expressed in millisecond (ms). In addition, we define a set of weights (wi) that test engineers can associate for each defined target: 0 (to be ignored), 1 (not very important), 5 (important), 10 (very important). The panel presented in Figure 7.13 helps test engineers to express their targets in terms of the required software quality and tests cost and therefore generate test cases fulfilling their objectives and constraints. In fact, through our approach, the automatic generation of tests is monitored by the set of targets and weights predefined for each of the quality, time and cost indicators. During one test generation session, the targets may be completed following different orders and the first While respecting the constraint:

O1 = 0 O2 = 1 2 I2 = 2 Wait 200 ms O1 = 0 O2 = 1 3 I3 = 1 Wait 300 ms O1 = 1 O2 = 1 4 I1 = 1 Wait 250 ms O1 = 0 O2 = 1
-Do not exceed 30 minutes (108000 ms) of tests execution with a weight of 10

After generating a test case with the objectives and constraints defined below, a test report is generated automatically. An excerpt of this report is illustrated in Figure 7.14. In this report, the reached (current) values on the objective and constraint indicators are illustrated. In fact, even if the inputs and outputs boundaries coverage have respectively reached and exceeded their targets (respectively 85% and 94% of coverage), our optimization algorithm did not stop

i Current et T i Current et T w C C w O O F × - + × - = ∑ ∑ arg arg

F objectives F constraints

Automatic generation of test cases
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Quality of the design of test cases for automotive software: design platform and testing process 192 the generation of test steps expecting that the intermediate boundaries coverage reaches its target. But once the maximum test execution time which has a weight of 10 (very important) has been exceeded (110255 ms instead of 108000 ms), the optimization algorithm decides to stop generating test steps even if the intermediates boundaries coverage is not already reached. The excess of a constraint out of its bounds is accounted for a penalty that irremediably increases the overall objective value. 

VI. Our heuristic algorithm to optimize the objective function

A.

Process flow

In conclusion, for a set of targets and weights on the coverage objectives and the time and cost constraints, the test engineer can generate one or more test cases fulfilling these predefined objectives and constraints. Afterwards, the "Optimal" test case is selected automatically. To do so, we compare the generated test cases in pairs and we select the one which has the lowest value of the aggregated preference F objectives of the quality (coverage) indicators. If the two test cases have the same value of F objectives , we select the one which has the lowest value of the aggregated preference F constraint of the time and cost indicators. If the two test cases have the same value of F constraint , we select the utmost one that respects each individual constraints going from the higher to the lower weights.

Moreover, a software functionality under test has often configuration signals (Cf. Chapter 5 -Section 3.A) which allow to parameterize the functionality (for instance, by activating or deactivating one feature of the functionality). A "Configuration" of a functionality consists to set all the configuration signals of the functionality to fixed values. Through our algorithm, two strategies are possible for managing the "Configuration" of a functionality. In Table 7.1, we describe the process flow of our optimization algorithm. The parameters of this algorithm are identified in Table 7.1 (Parameter i) and described in the next section.

Process flow Brief description

We choose an inter-operation time within the time interval

We set the chosen operation on the requirements model, we simulate the model during the inter-operation time and we assess the expected results on the output signals For a set of "Configurations", we generate an "Optimal "Test Case fulfilling the predefined objectives by accumulating the coverage of the different "Configurations"

A
For each "Configuration", we generate an "Optimal "Test Case fulfilling the predefined objectives

B. Parameters

In the Table 7.1, we identify 8 parameters that must be set by the test engineer before start generating test cases:

• Parameter 1: Test engineer can decide to optimize the coverage of the "operation matrix". To do so, Parameter 1 must be set to 1. Otherwise, it is set to 0. • Parameter 2: In order to optimize the coverage of the "operation matrix", we check if the chosen succession of operations is already covered or not. When it is already covered, we propose to choose another succession of operations and so on. However, we have to avoid the non-stop loop in the algorithm. The Parameter 2 specifies the maximum number of unsatisfied trials (N1) before the algorithm exists the loop. • Parameter 3: Test engineer can decide to optimize the number of test steps in a test case.

To do so, Parameter 1 must be set to 1. Otherwise, it is set to 0. considers a set of predefined "Configurations" of the functionality. To do this, Parameter 6 must be set to 1. When this parameter is set to 0, each generated test case considers only one specific "Configuration". • Parameter 7 (used when Parameter 6 = 1): This parameter defines the number of test cases (N4) to be generated in order to identify the "Optimal" one.

• Parameter 8 (used when Parameter 6 = 0): This parameter defines the number of test cases (N5) to be generated in order to identify the "Optimal" one.

VII. Conclusion

In automotive industry, the activity of designing manually test cases for software products becomes more and more laborious and time consuming. This activity accounts for more than 50% of the total software project time and budget (Cf. Chapter 1 -Section 5.C.2). Despite the huge time and money spent in testing a software product and after each delivery to the carmaker, some bugs are detected by the carmaker. Since the late 90's, the automation of the test case design process became a hot topic and automotive electronic suppliers are still looking for a relevant automation of this process.

In this chapter, we developed our strategy to generate test cases automatically from our formal model to represent software functional requirements (Cf. Diagnosis 15). The selection of operations is performed based on a Monte Carlo simulation on an "operation matrix" (Cf.

Diagnosis 13).

All the expected values on the output signals of the functionality are assessed through a simulation of the requirements model (Cf. Diagnosis 10 and 12). Moreover, test engineers could parameterize the generation of test cases in order to take into account quality objectives but also time and cost constraints. Indeed, the decision to stop designing test cases is based on a formal measurement of the code and requirement coverage and the test time and cost (Cf. Diagnosis 11). A heuristic algorithm is in charge of optimizing the generation of test cases while fulfilling quality objectives and constraints.

In the following chapter, we suggest refining the operation space by focusing on critical operations or succession of operations. To do this, we define driver behavior's profile and propose to reuse bugs and test cases capitalized on similar projects in the past.

CHAPTER 8. REFINING THE OPERATION SPACE DESCRIPTION WITH THE DRIVER BEHAVIOR'S PROFILE, PAST BUGS AND TEST CASES

I. Introduction

As automotive software products become more and more complex (Cf. Chapter 1), it is illusory to be able to check that the software product responds correctly to all possible operations. In other words, it is impossible to cover all the operation space of a software product (Cf. Chapter 2 -Section 6). In fact, each engineer has a different perception of the possible and critical operations (based on her/his experience). When designing test cases, test engineers aim to reach a code or requirement coverage objective. In fact, test engineers do not always select operations that simulate the real use of the software product under test. Moreover, they do not formally use capitalized bugs and test cases in order to improve the test design process on future developments.

In this chapter, we point up how the operation space can be objectively refined by focusing on critical test scenarios. The complexity of testing exhaustively a software product is illustrated in Section 2. An overview on our operation space reducing techniques is proposed in Section 3. In Section 4, 5 and 6, we develop respectively each of these techniques: focusing on test scenarios regularly done by the end-user of the product, focusing on recurrent types of bugs through an analysis of the problems' database and finally focusing on test engineers' experience feedback by reusing test cases capitalized on previous projects.

II. The impossibility of testing exhaustively a software product

Testing exhaustively a software product is a NP-Complete problem from a computational viewpoint. In other words, it is very complex to test all the inputs, combinations of inputs and paths of a software. In computational complexity theory, the complexity class NP-Complete also known as NP-C or NPC, is a subset of the NP class ("Non-deterministic Polynomial time" class, (Karp 1972)). They are the most difficult problems in NP. To prove that an NP problem A is in fact an NP-Complete problem it is sufficient to show that an already known NP-Complete problem reduces to A. There are more than 3000 known NP-Complete problems. Most of the problems are listed in Garey and Johnson's seminal book (Garey 1979).

In [START_REF] Seroussi | [END_REF]), Seroussi and Bshouty prove that the design of an optimal exhaustive test case for an arbitrary logic circuit is an NP-Complete problem. In fact, they demonstrate that finding the minimal test case (and its size) which covers the logic circuit is an NP-Complete problem. In order to do this, they first show that the problem can be solved by a nondeterministic algorithm in polynomial time. Then, they use the standard technique of reduction to prove that the problem is NP-Complete: for a given problem P (the Graph Coloring problem 34 ) known to be NP-Complete, they show that if our problem is solvable in deterministic polynomial time, then so is P. In (Cheng 2003, Hessel 2007), the authors prove that finding optimal test cases for a software product is an NP-Complete problem. Indeed, they reduce the problem of generating test cases to the set-covering problem (an NP-Complete problem).

For our research project, we propose to generate automatically test cases for a software product. Our approach is based on modeling the software functional requirements and generating test cases from this model. To guide the design of test cases, code and/or requirement coverage criteria are used. A coverage criterion can be seen as a set of items (relations between inputs and outputs) in the source code or requirements model to be covered. Therefore, our test generation problem can be formulated as a Reachability problem 35 (an NP-Complete problem) which consists to explore the operation space only if it might increase the total coverage. In fact, a test case is a set of ((TS1,Cov1), (TS2, Cov2), (TS3, Cov3), … (TSn, Covn)), where TSi is a test step and Covi is the coverage contribution performed by TSi. Ideally, this set should be reduced so that the total coverage ΣCovi is not changed, and the length of the test case, e.g. Σ|TSi| is minimized. However and as it was shown above, designing a subset of test steps with this property is an NP-Complete problem (the Reachability problem).

A present, all known algorithms for NP-Complete problems require time that is superpolynomial (for instance, exponential) in the inputs size, and it is unknown whether there are any faster algorithms. The following techniques can be applied to solve computational problems in general and they often give rise to substantially faster algorithms:

• Randomization: Use randomness to get a faster average running time, and allow the algorithm to fail with some small probability. • Heuristic: An algorithm that works "reasonably well" on many cases, but for which there is no proof that it is both always fast and always produces a good result. In Chapter 7 -Section 6, we develop the heuristic algorithm that we use in order to explore the operation space of a software product and monitor the generation of test cases.

In the next sections of this chapter, we develop how to reduce the operation space of a software product by highlighting and eliminating some operations or succession of operations. Our purpose is to explore the operation space of a software product efficiently.

III. Reduce the operation space

As said in the previous section, selecting operations from the whole operation space in order to reach a coverage objective is a NP-Complete problem. For that reason, it can be useful to reduce the operation space by:

A.

Focusing on recurrent operations done by the end-user of the product

We analyzed in 2006 a set of software bugs (the number of these bugs is confidential) detected on different types of products by carmakers and end-users (drivers) and not detected by Johnson Controls. The conclusion which was validated by Johnson Controls software experts is that some of these bugs (more than 50%) can only be detected via successions of operations regularly done by the end-user of the product. Therefore, we propose to generate test cases that simulate the behavior of the end-user of the product. To do so, test cases must be generated from "operation matrices" where illogic (from end-users' viewpoint) successions of operations are eliminated (for instance, set the vehicle speed at 100 km/h then open the trunk) and regular successions of operations are favored (for instance, close the driver door and set the ignition). Our process to define a driver behavior's profile is developed in Section 4.

B.

Focusing on specifics operations with high probability to detect bugs 

IV. Four types of constraints for the definition of a driver behavior's profile

We define four types of constraints that test engineers can affect to each input signal of a requirements model in order to, when generating test cases automatically, eliminate or favor specific successive operations. Each input signal can have one or more constraints. These constraints aim to reduce the number of possible combinations on input signals and to more thoroughly pinpoint which ones are frequently set once the product is launched on the market. These four constraints are: logical constraint, conditional constraint, succession constraint and timing constraint. 

A. Logical constraint

B. Conditional constraint

This constraint characterizes a specific user behavior between two or more correlated input signals. In other words, when one or more inputs fulfill specific conditions, the domain of other inputs is adapted (shrinked) automatically. For instance (Cf. Figure 8.3), the vehicle speed cannot be more than 0 (I1>0), only if the vehicle is running (I2=1) and the vehicle can be running (I2=1) only if the car engine is switched on (I3=1). 

C. Succession constraint

In practical use of an electronic product, two or more operations have a high probability to succeed (sometimes, must intuitively succeed). Through this type of constraint, we favor such successive operations. For example (Cf. Figure 8.4), when drivers close the driver door (I1=1), they often (with a probability of 0,75) switch on the car engine (I3=1).

I1 0 1 2 3 0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3 1 1 1 1 I1 0 1 2 3 0 1 1 0 0 1 1 1 1 0 2 0 1 1 1 3 0 0 1 1 I1 cannot be more than 0 

Only if I2 is equal to 1 I1 I2 >0 =1 I2 cannot be equal to 1 Only if I3 is equal to 1 I2 I3 =1 =1

D. Timing constraint

Major Johnson Controls software experts approve that time interval between operations plays a major role in bugs' detection. On the one hand, two specific operations can be performed with a specific time interval (Cf. Figure 8.5). For instance, in case of a taxi driver, the driver door is closed (I1=1) and the car engine is switched on (I3=1) within a small time interval ([50ms 36 , 100ms] according to experts).

Figure 8.5 -A specific time interval between two operations

On the other hand, a specific operation can be performed during a specific time (Cf. Figure 8.6). For instance, the ignition is switched off (I3=0) for more than 5 seconds (according to experts) in order to reset a functionality. 

Reuse of bugs detected on previous projects

Each bug stored in the bug's database has a set of 111 attributes "theoretically" filled by the engineer while resolving the bug. In Chapter 2 -Section 7.B, we estimate that 75% of these 36 ms: millisecond
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Inter-operation time interval only attributes are filled; the remaining 25% are systematically unfilled. On the 75% filled attributes, 25% of these attributes are free fields. Moreover, we deduce that the problems' database in Johnson Controls is mainly used to manage the bugs and keep their traceability. Unfortunately, none of the 111 attributes is useful to identify critical succession of operations or recurrent types of problem for a specific functionality. In this section, we propose two strategies in order to reuse bugs detected on previous projects. The first strategy consists of defining a specific format to capitalize the initial conditions and the successive operations which lead to detect a bug. The second strategy aims to define a detailed typology of software problems.
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A.

A specific format to capitalize the successive operations leading to a bug Now at Johnson Controls, engineers describe how the bug was detected by filling a free field in the problems' database named "Problem description" (Cf. Figure 2.19). Indeed, apart the requirement of using the English language, no other requirements or recommendations for filling this field are given to database users. In fact, each engineer has to describe the way the bug was detected by giving as much detail as possible. In Figure 8.7, we propose a new specific format to describe the successive operations leading to a bug. 

First operation

The first operation. Here, practitioner must put nothing or an input signal set to a specific value

Inter-operation time (ms)

The waiting time before performing the second operation. 

Problem description

Step 1

Step 2

Step i Automatic generation of an "operation matrix" 

VII. Conclusion

Only exhaustive testing can show that a software product is free from bugs. However, exhaustive testing of a software product is not practical because variable input values and variable sequencing of inputs result in too many possible combinations to test. So it would be useful to concentrate the test on the areas associated with the greatest risks and priorities. However, we have to identify and analyze these risks and priorities.

In this chapter, we developed three strategies able to reduce the operation space of a software product. Our main purpose was to focus on test scenarios with a high probability to detect software bugs. We also developed a detailed software problem typology that helps test engineers to identify recurrent types of problems and better address the generation of test cases. Finally, we set up an automatic process to reuse test cases from one project to another.

In the latest four chapters (Chapter 5, 6, 7 and 8), we specified our approach to improve the global performance of the Johnson Controls V&V activities. In the following two chapters (Chapter 9 and 10), we respectively implement our approach in a computer platform (prototype) and validate it through two industrial case studies.

PART IV -IMPLEMENTATION, VALIDATION AND IMPACTS OF THE PROPOSED APPROACH

I. Introduction

After specifying our new approach to generate efficient test cases automatically (Cf. Chapter 5, 6, 7 and 8), we focus in this chapter on the practical use of this approach within an industrial context. We develop a prototype implementing our models, concepts and theories.

A "functional" view of our approach is illustrated in Section 2. A "process-role-tool" view of our approach is proposed in Section 3. The processes are mainly defined in Chapter 5, 6, 7 and 8. Some specific skills which are mandatory when using our approach are detailed. We also describe the three computer tools that we developed in order to automate the generation of test cases. The main one is the Test Case Generation tool which is a PC application. The main functionalities of this tool are developed in details in Section 4.

II.

A "functional" view of our approach 

Model simulation process

Modeler Computerization

A. Processes

Our approach is composed of seven processes:

1. Modeling process (manual): models the software functional requirements using our formal specification language. 2. Driver profile definition process (manual): defines the driver behavior when using the functionality under test. 3. Bugs reuse process (semi-automatic): establishes a framework in order to reuse the bugs capitalized in the problems' database and related to the functionality under test. 4. Test cases reuse process (semi-automatic): establishes a framework in order to reuse the test cases developed on previous projects and related to the functionality under test. 5. Model verification and validation process (automatic): verifies and validates the requirements model consistency and compliance with the carmaker requirements. 6. Model simulation process (automatic): simulates the requirements model 7. Test Case generation process (automatic): monitors the generation of test cases by quality objectives and time and cost constraints These seven processes have been developed in details in Chapters 5, 6, 7 and 8.

B. Roles

"Roles" can be allocated to one or more people in a software project provided one has the time and the required skills. Three types of roles have been identified:

• Modeler: the main tasks of a modeler are to analyze the software functional requirements, design the requirements model, verify and validate the model and finally simulate it. A modeler has to be familiar with the behavior of the car's software functionalities and a master of the formal specification language. She/he also needs good communication skills. Indeed, she/he has to interact with the carmakers in order to eliminate ambiguities and inconsistencies from the requirements. Finally, analysis skills are necessary for the Verification and Validation (V&V) of the requirements model. • Expert: the main tasks of an expert or a group of experts are to define a driver profile for the functionality under test, to identify related bugs and test cases capitalized on previous projects and to extract from these bugs and test cases relevant lessons learned. An expert has to be a master of automotive electronics. She/He needs to have a global view of all the projects and software practices within the company. • Test engineer: the main tasks of a test engineer are to parameterize the test generation algorithm and to set the quality objectives and the time and cost constraints. The generation of test cases is automatic. However, test engineer has to execute the generated test cases on the software product under test and analyze the results. A test engineer has to be familiar with the behavior of the car's software functionalities and the formal specification language. Knowledge about optimization is necessary to better parameterize the optimization algorithm. In addition, she/he has to be a master in requirements and code coverage in order to set relevant coverage objectives. Finally, analysis skills are mandatory for the analysis of the test results and reports.

C. Tools

In this section, we develop the three computer tools supporting the semi-automatic and automatic processes of our approach: Bugs Reuse tool, Test Cases Reuse tool and Test Case Generation tool.

Bugs Reuse tool

In order to reuse the bugs capitalized in the problems' database, experts have to identify the relevant bugs related to the functionality under test. In Chapter 8 -Section 5.B, we define a new format to fill in the "Problem description" attribute of a bug. Based on this format, we develop an Excel Macro able to analyze the "Problem description" of a bug and to generate the corresponding "operation matrix" (Cf. Figure 9.3). This matrix is used to generate test cases able to detect a similar bug on future development. When analyzing a bug and generating an "operation matrix", the Excel Macro uses a glossary of input signals names on the previous and current projects. The Macro has been developed in Visual Basic language.

Figure 9.3 -Bugs Reuse tool

A detailed description of the process of analyzing the bug and generating the "operation matrix" is given in Chapter 8 -Section 5.A.

Test Cases Reuse tool

In order to reuse the test cases from one project (in the past) to another (in the present or future), experts have to identify the test cases related to the functionality under test. Step 7

Step 5

Step 1

Problem description

Step 2

Step 3

Step 4

Step 6 A detailed definition of the process of analyzing the test case and generating the "operation matrix" is given in Chapter 8 -Section 6.

Test Case Generation tool

Through our research project, we were asked by the automotive electronic supplier Johnson Controls to automate the design of test cases for software products (Cf. Chapter 1 -Section 6). Therefore, we develop a computer tool, the Test Case Generation tool, able to computerize our requirements models and therefore generate test cases automatically.

a. Computer implementation

We use the Visual C++ tool 37 and the C++ language to develop the Test Case Generation tool. First, we perform a global design of the tool using the UML 38 language, then we generate automatically the Visual C++ code-skeleton of the developed UML model and finally, we develop the body of the code-skeleton.

We Test Case 

V. Conclusion

The prototype presented in this chapter takes into account the impacts of our approach on the processes, roles and tools of the software testing skill within the Johnson Controls organization. A new process map for generating automatically test cases from the functional requirements of a functionality is presented. New roles and skills for software engineers in charge of designing test cases using our approach are developed. And finally, computer tools automating up to 70% of our approach are described. The development of these tools is not presently entirely completed. Some improvements can be done and especially on the Graphical User Interfaces.

In the following chapter, we analyze the results of using this prototype on two industrial case studies of practical size. We model, simulate and generate test cases for two software functionalities of a car.

I. Introduction

In order to validate our integrated framework to generate test cases automatically for a software module or product, we consider, at Johnson Controls, two case studies with historical data. Through these case studies, we highlight the benefits of using our approach in the unit test of software modules. In each case study, we consider one functionality that has already been developed and validated in the past using the software Verification and Validation (V&V) techniques currently used in Johnson Controls (Cf. Chapter 2 -Section 5).

For each carmaker delivery (Cf. Chapter 2 -Section 3), historical data on the time spent to verify and validate these functionalities and on the bugs' detection by Johnson Controls and by the carmakers are available. We consider the first version of the two software modules (corresponding to the two functionalities) as it was delivered for the first time by the development team to the validation team. We also consider the version of the software functional requirements of these functionalities when delivering the software modules for the first time to the carmaker. We model, verify, validate and simulate the software functional requirements and then generate test cases automatically for the unit test of each software module. These test cases are executed on the first version of the two modules.

Our process to choose the two functionalities under experiment is described in Section 2. A characterization of the carmakers' requirements related to the software of these two functionalities is performed in Section 3. Modeling, verification and validation activities of the requirements models are respectively presented in Section 4, 5 and 6. A set of "operation matrices" for each functionality is designed in Section 7. Strategies to tune the generation of test cases are developed in Section 8. The generation and execution of test cases for the two functionalities are specified in Section 9. Finally, a deep analysis of the execution results is illustrated in Section 10.

II. Characterization of the two case studies

We experiment our proposals on two software functionalities of automotive electronic products developed within Johnson Controls. The choice of these functionalities has been delicate. Many criteria have guided our choices: Based on these criteria, we choose two functionalities. The first one is the "front wiper management" functionality. This functionality is implemented with other functionalities in an automotive electronic product, named body controller module. The second one is the "fuel gauge management" functionality. It is implemented with other functionalities in another automotive electronic product, named dashboard or cluster. The compliance of the chosen functionalities with the predefined criteria is illustrated in Table 10.1.

Table 10.1 -Criteria for selecting the two functionalities

These two functionalities have already been developed and validated using the Johnson Controls present process. Some characteristics of the two software modules developed respectively for these two functionalities are given in Table 10.2. Among the bugs detected on the two functionalities, some of them are considered to be more critical than others. Severity and Occurrence are two attributes of the current bug model and are filled at 99% for each capitalized bug (Cf. Chapter 2 -Section 7.B). These attributes are not free fields. Indeed, a set of predefined values for each attribute has been defined by Johnson Controls software experts (Cf. Table 10.3). Despite the predefined values and according to experts, the attribution of a severity and an occurrence for a bug detected internally remains a subjective question. In fact, most of the test engineers do not have a global view of the system in order to assess the impact of the detected bug on the end-user. However, the severity and occurrence of bugs detected by the carmakers are more relevant since they are set by the carmaker itself. The distribution of bugs, detected on the two functionalities, across the couple (Severity, Occurrence) is presented in Figure 10.2. For the front wiper functionality, up to 76% of the bugs are (Minor, Systematic) and for the fuel gauge functionality, up to 72% of the bugs are (Major, Systematic). These results could be explained from two different points of view. The first one confirms the notion of subjectivity in defining a criticity level for a bug. In fact, the bugs of these two functionalities were described by two different teams in two different countries. The second one is related to the fact that the functionality of managing the fuel level in a car is more critical than the one managing the wipers. As a consequence, bugs on the fuel gauge functionality are considered to be more critical than the ones of the front wiper functionality. Moreover, bugs detected by the carmakers are often considered as critical. • Analyze the carmaker requirements in order to design validation test cases.

• Design and execute test cases for the validation test of each functionality.

• Manage the bugs detected internally and by the carmaker.

We note that up to 50% and 10% of the total time spent in verifying and validating a software functionality were respectively spent to manually design the test cases and manage the bugs detected by the carmakers. Using the current Johnson Controls testing practices, 

III. Characteristics of the software functional requirements of the two functionalities

The core of our approach is the modeling of software functional requirements. Therefore, one important criterion while choosing the functionalities of the two case studies was the diversity of the software functional requirements. In fact, we want to prove that whatever the formalism used by the carmaker to express the requirements related to software, one can use our approach to generate test cases automatically. In Chapter 2 -Section 4.A, we present the result of a study that we performed on the diversity, typology and evolution of these requirements within Johnson Controls. Moreover, in Chapter 4 -Section 5.C, we identify three formalisms of software functional requirements (Informal, Semi-formal and Formal). Some characteristics of the software functional requirements of the chosen functionalities are presented in Table 10.4. 

IV. Modeling the software functional requirements of the two functionalities

Three stages have been necessary for modeling the software functional requirements. The first one consists of analyzing and understanding the requirements with our modeling language. A loop process was initiated with inner experts in order to well understand and clarify the requirements. The second one consists of sketching "on paper" the requirements models. We identify the input, output and intermediate signals and the elements (Decision Tables or Finite State Machines) of each functionality. Then, we develop each element by identifying all the states, transitions and conditions of the elements (Cf. Chapter 5). The third and last stage has been the computerization of the requirements models using the Test Case Generation tool that we developed (Cf. Chapter 9 -Section 4.A). A comparison of the time spent in each of these stages for the two functionalities is illustrated in Table 10.5. 

V. Verifying the requirements models of the two functionalities

In Chapter 6 -Section 4, we developed a set of integrity rules to be checked on each requirements model in order to verify its correctness. The verification of the requirements models of the two functionalities was performed manually and automatically. In fact, when sketching "on paper" the requirements model, we verify manually the fulfillment of the integrity rules. Moreover and after computerizing the model, the Test Case Generation tool (Cf. Chapter 9 -Section 4.A) allows to check automatically these rules. Therefore, the time spent in verifying these models is integrated to the time of sketching "on paper" and computerizing the models (Cf. Table 10.5). We stop verifying a requirements model when all the integrity rules are checked OK on the model. After verifying the developed requirements models (manually and automatically), around 30 rules violations are detected on each model. The distribution of these violations over the set of integrity rules is presented in Figure 10.4. We first model the "front wiper" functionality then the "fuel gauge" one. As a consequence, violations in Rules 1, 14, 15 and 18 were detected on the first case study and not on the second. In fact, when modeling the "fuel gauge" functionality, we focus on respecting the rules already violated on the previous case study. Moreover, up 

VII. Designing "operation matrices" for the two case studies

The generation of test cases is performed based on the concept of "operation matrix" (Cf.

Chapter 7 -Section 2). Through an "operation matrix", inner engineers can enrich the requirements model with knowledge on the user (driver) recurrent operations (Cf. Chapter 8 -Section 4) and the test engineers' experience (Cf. Chapter 8 -Section 5 and 6). However, one major question is: How engineers can design an "operation matrix"? Five possible scenarios are identified (Cf. Chapter 9 -Section 3 and 4):

1. Design manually one or more "operation matrices" and export them to the Test Case Generation tool. 2. Generate the Nominal "operation matrices" (Nominal The number of cases of an "operation matrix" for the "front wiper" functionality is 9604 (98x98, 98 is the number of possible operations on the functionality). 7921 (89x89) is the one for the "fuel gauge" functionality. Therefore, it was ridiculous to think of manually designing "operation matrices" for these functionalities (Cf. Chapter 7 -Section 2).

As a basic solution, we generate, via the Test Case Generation tool, the two Nominal "operation matrices" for the two functionalities (Cf. Chapter 7 -Section 2, Cf. Chapter 9 -Section 4.B). According to experts, we define one standard time interval and we affect it to all successive operations. 

X. Analysis of the results of the two case studies

A.

Detect bugs earlier in the software life cycle

Once executing all the generated test cases on the software modules of the two functionalities, a total of 29 anomalies were detected on the first case study and 35 anomalies on the second one. In fact, it is important to assess the accuracy of the results delivered by our measurement system. Therefore, we measure (Cf. Figure 10.10):

• The ratio between the number of "false" bugs (bugs in the requirements models) detected by our approach and the total number of detected anomalies. The "false" bugs are the anomalies that are not related to bugs in the software module under test but to bugs in the requirements model itself. As said in Section 6, it is impossible to validate at 100% a requirements model and therefore bugs in this model could be detected later when executing the generated test cases on the software under test. • The ratio between the number of "true" bugs (known bugs in the software modules) detected by our approach and the total number of detected anomalies. • The ratio between the number of "new" bugs (unknown bugs in the software modules) detected by our approach and the total number of bugs in the software module under test.

About 17% (5 over 29) of the anomalies detected on the front wiper functionality were related to bugs in the requirements model and up to 49% (17 over 35) on the fuel gauge functionality. This could be explained by the fact that the requirements models of the two functionalities could not be exhaustively validated (Cf. Section 6). More especially, the one of the fuel gauge functionality because of the informal formalism of the carmaker requirements. Around 65% (19 over 29) of the anomalies detected on the front wiper functionality were related to known bugs in the software module and up to 51% (18 over 35) on the fuel gauge functionality. We also detect 5 "minor" bugs ("minor" from experts' point of view) that neither the conventional validation test of Johnson Controls nor the carmaker test has detected on the front wiper functionality. According to experts, these bugs have no impact on the end-user (driver). It represents 19% (5 over (22+5)) of the total number of bugs in the functionality (22+5).

From another point of view, we were able to detect 86% (19 over 22) of the bugs already detected by the conventional validation test on the first case study and 78% (18 over 23) on the second one. These results prove that many of the bugs detected later in the software life cycle (Validation test) could be detected earlier (Unit test) via our functional unit test.

Figure 10.10 -Origin of the anomalies detected when executing the generated test cases on the two functionalities

After analyzing the remaining 3 (22-19) and 5 (23-18) known bugs not detected respectively on the first and second case studies, we come up to the conclusion that these bugs could be detected by our platform since we reach a 100% of the functional coverage (which is not the case, Cf. Section 9). These non-detected bugs are related to some specific functional requirements that weren't covered by our generated test cases. Indeed, when generating test cases from a Nominal "operation matrix", our computational algorithms didn't succeed to reach 100% of the functional coverage (maximum of 90%). To overcome this lack, we have to improve our computational algorithm in order to focus on covering the non-covered zones of the requirements model. In Figure 10.11, we identify across the carmakers' deliveries the known bugs (Cf. Figure 10.1) not detected by our approach. In Figure 10.12, we illustrate the criticity (Severity, Occurrence) of the non-detected bugs as it was filled in the problems' database (Cf. Figure 10.2). Among the known bugs detected by our approach, some of them are bugs already detected by the conventional Johnson Controls validation test and others by the carmaker (Cf. Figure 10.13). For the front wiper functionality, we detect 60% (3 over 5) of the bugs detected by the carmaker and 94% (16 over 17) of the bugs detected by the conventional validation test. For the fuel gauge functionality, we detect 80% (4 over 5) of the bugs detected by the carmaker and 78% (14 over 18) of the bugs detected by the conventional validation test.

Figure 10.13 -Origin of the known bugs detected by our approach on the two functionalities

In the case of the front wiper functionality, the evolution of the cumulated number of known and unknown bugs that we detect through our approach is illustrated in Figure 10.14. The evolution is drawn according to the execution order of the generated test cases defined in Figure 10.8. detected by Johnson Controls, 2 bugs out of the 5 bugs detected by the carmaker and 3 new "minor" bugs that were neither detected by Johnson Controls nor by the carmaker. As conclusions on the bugs' detection flow:

• All new detected bugs (5 bugs) have occurred in the Test Case and Nominal 2 test stages. This could be explained by the fact that these bugs are related to specific successions of operations, illogical from a use point of view but could probably occur in the serial life of the software product. • At the end of each test stage, the number of the detected bugs tends to stabilize.

Figure 10.14 -Evolution of the cumulated number of bugs detected by our approach on the front wiper functionality

We also execute independently on the first version of the front wiper software module all the test cases generated from each mode of "operation matrix". The result of this experiment is illustrated in Figure 10.15. We identify the number and type of bugs that can be detected by one or more modes of "operation matrix". As a conclusion:

• One mode of the "operation matrix" wasn't able to detect all the bugs already detected by the present Johnson Controls testing processes and by the carmaker.

• Each mode has at least one bug that can only be detected via this mode.

• The Nominal 2 mode "operation matrix" detects the maximum number of bugs. This could be explained by the fact that we generate 60000 test steps from this "operation matrix" and we cover at 90% the requirements model. As stated in Section 2, up to 50% and 10% of the total time spent in verifying and validating a software functionality were respectively spent to manually design the test cases and manage the bugs detected later in the process. The total time that we spent in testing unitarily the two functionalities using our approach is presented in Figure 10.18. It has been approximately spent 39 and 41,5 eight-hour days testing respectively the front wiper and fuel gauge functionalities. In Section 4, 5, 6, 7 and 9, we estimate and comment the time spent analyzing the carmaker requirements, modeling, computerizing, verifying and validating the requirements model, designing the "operation matrices" and finally generating and executing automatically the test cases. After executing the generated test cases, we estimate to 10 and 2 eight-hour days the time respectively spent in analyzing the execution results. It consists, once an anomaly is detected, of answering the question: "Is it a bug in the requirements model or a bug in the software module?". The correction of anomalies is instantaneous. The time spent in analyzing the execution results is proportional to the number of executed test steps (front wiper: 68500 test steps, fuel gauge: 900 test steps). In fact, the task of manually designing the test cases disappears in favor of designing, verifying and validating the requirements model. Once the model is developed, the test design activity is automated but more efforts are necessary to analyze the results of the tests execution. Indeed, test engineers have to understand the generated test cases in order to confirm or not a bug. Moreover, we do not detect 3 and 5 known bugs respectively on the first and second case studies. In Section 10.A, we come up to the conclusion that these bugs could be detected by our platform since we reach a 100% of the functional coverage (now, it is not Conventional Johnson Controls testing approach the case, Cf. Section 9). Based on the assumption that our computational algorithm was improved (to be able to reach the 100% functional coverage), we estimate the time required to detect the remaining bugs on the two case studies. This time take into account the time to generate and execute the test cases and analyze the results. For the first case study, we already cover 90% of the requirements model and 3 bugs are remaining. Therefore, we estimate to 2 eight-hour days the time to detect these bugs. For the first case study, we already cover 70% of the requirements model and 5 bugs are remaining. Therefore, we estimate to 3 eight-hour days the time to detect these bugs. These estimations could be explained by the fact that:

• The requirements model of the first case study is bigger than the one of the second case study (Cf. Table 10.6). • Analyzing the execution results of the second case study takes more time that the one of the first case study. In fact, the requirements model of the second case study (Natural language) is less reliable that the one of the first case study (Cf. Section 3 and 6).

Globally, we spent approximately 39 and 41,5 eight-hour days testing respectively the front wiper and fuel gauge functionalities. In this estimation, we do not consider the time spent in configuring our test platform using the try-and-test protocol (Cf. Chapter 8.A). In conclusion, we lower by 27% (39 instead of 53,75 eight-hour days) and 17% (41,5 instead of 50 eighthour days) respectively the time spent in testing the front wiper and fuel gauge functionalities. 

Our approach

After the first carmaker delivery and for each new delivery, we estimate that an average of 1 eight-hour days can be enough to review and update the test cases of the functionality under test. In fact, as carmaker requirements is suitable to evolve along the different deliveries (Cf.

Chapter 2 -Section 4.A), it will be easier to test engineers to update the requirements model and generate automatically a new set of test cases than to update manually the design of test cases.

C.

Quantitative results' overview: earlier detection of bugs and time saving

Performing a functional unit test, for each functionality (software module), using our approach to generate test cases automatically leads to notably improved results. In Table 10.12, we summarize the results of the two case studies in terms of detecting bugs earlier in the software life cycle. 

XI. Conclusion

In this chapter, we have experimented our new testing methodology through two typical case studies on historical data. Potential benefits (quantitative and qualitative) have been quantified. We reduce by 70% the number of bugs detected by the carmakers and by 9% the ones detected by the end-users. Moreover, we reduce by 22% the time spent in testing a software product. We also propose to deliver to the carmaker formal quality indicators (coverage) on the delivered software. All these results contribute to an improvement of the customer satisfaction and as a direct impact; the number of tenders will grow. Unfortunately, estimating the cost of software bugs in an organization is a delicate, strategic and confidential question and therefore we were not allowed to communicate the numbers on the bugs' costs savings via the use of our approach.

In the following chapter, we give an overview on the contributions, impacts and perspectives of our approach.

I. Contributions' review

In this research project, we were asked by an automotive electronic supplier, namely Johnson Controls, to improve the performance of its software V&V activities. Their main purpose is to improve the quality of their products and therefore better satisfy the requirements and expectations of their clients. We went through this problem with a systemic approach in order to identify levers in any domains from which we might be able to improve the global performance of the software V&V activities. The major added value of the present work is to globally solve the quality issue of the software testing process. Hereafter, we summarize the main ten contributions of our research:

Contribution 1: A list of anomalies and lacks in the software verification and validation (V&V) practices in automotive industry.

Through an industrial audit, we analyze the current software practices in automotive industry.

The audit is divided into four parts: 1) the process of managing the carmakers' requirements related to the software domain, 2) the processes of verifying and validating software products, 3) the process of managing and reusing capitalized bugs and finally 4) the process of managing and reusing capitalized test cases. For each of these parts, we make our analysis in two stages: 1) a snapshot of the current software practices in automotive industry (process, tool, people) and 2) an analysis and identification of issues and lacks (diagnoses) in these practices. Our approach to perform the audit can be divided into 7 activities: 1) analyze the documents delivered by the carmakers to their electronic suppliers, 2) analyze the main activities of an engineer when designing test cases for a software product, 3) audit engineers when designing test cases, 4) intervention on the design of test cases for four software projects, 5) interview managers on the expectations of the carmakers at each stage of the software development life cycle, 6) interview all types of engineers that can be involved in a software project and finally 7) analyze data on the software testing practices of carmakers. The result of the audit is a list of anomalies and lacks (diagnoses) in the current software V&V activities in automotive industry.

Contribution 2: A formal specification language to represent and simulate software functional requirements in automotive industry Managing the software functional requirements is considered as one of the key issues in the software development process. In fact, these requirements are the main input for the design and implementation processes of the software product but also for the verification and validation processes. Ten years ago, formal methods were rarely used in automotive industry, contrarily to medical, avionics and railways industries. Now, in automotive industry, semiformal and formal methods are more and more used to specify software functional requirements. However, there is a lack of a standard formalism shared between carmakers and suppliers. In fact, for each project, the supplier must adapt its processes to the formalism used by the carmaker. In this context, we develop a new formal and simulation language to model software functional requirements. A simulation model of these requirements can help to avoid ambiguity, incompleteness and inconsistency in customers' requirements. Development and validation teams can communicate more easily with the customer and fix specification's problems. Moreover, through a simulation model, one can automate the assessment process of all the expected outputs values of a software product. In fact, when designing test cases, test engineers can perform the selected operation on the requirements model and automatically assess the expected output values by simulating the model. We then name "operation" the fact that an input signal of the software product is set to a given value. Finally, one can now formally measure the coverage of the requirements model, which bring new valuable quality indicators in addition of the sole code coverage for better monitoring the software testing process.

Contribution 3: An automatic process to design test cases for software products

In industry, the activity of manually designing test cases for software products becomes more and more laborious and time consuming. Despite the considerable time and money spent in testing a software product and after each delivery to the customer, some bugs are still detected by the customer. Since the late 90's, the automation of the test case design process has become a hot topic and industrials are still looking for a relevant automation of this process.

In this context, we develop a strategy to automatically design test cases with simulations from our formal model. A test case is a series of operations whose selection is performed based on a Monte Carlo simulation on an "operation matrix". Probabilities are expressed for choosing a next operation and for defining the time interval between both successive operations. Therefore, we build a matrix that we name "operation matrix" with all possible operations in columns and in rows; this "operation matrix" becomes central to our test case generation algorithm. All along the test case generation, the expected values on the output signals of the functionality are assessed through a simulation of the requirements model.

Contribution 4: An objective function for optimizing the design of test cases for software products

Testing software exhaustively remains a major problem from the computing point of view. Therefore, software testing must often be based on specific assumptions and objectives which help test engineers and managers to decide when to stop the testing protocol. In order to monitor our automatic design of test cases, we propose an objective function based on a formal structural (software code) and functional (customer requirement specification) coverage and the execution time and cost of designed test cases. In software engineering, the term "coverage" means the degree, expressed as a percentage, to which a specified item (code or requirement) has been exercised by a test case. In addition, we define an exponential set of weights that test engineers can associate for each defined coverage, time or cost target: 0 (to be ignored), 1 (not very important), 5 (important), 10 (very important).

Contribution 5: A hybrid heuristic algorithm for optimizing the design of test cases for software products When testing a software product, test engineers have to execute the designed test cases on the software under test. The execution could be manual or automatic and is often time and resource consuming. The main purpose of a test engineer is to detect the maximum number of bugs in minimum laps of time. Therefore, optimizing the number and length of test cases while fulfilling predefined objectives and constraints is critical to reach the quality, schedule and cost goals of a software project. To overcome this problem, we propose a heuristic algorithm in charge of optimizing the design of test cases while fulfilling quality objectives and time constraints. In this algorithm, we implement two types of optimization strategies: Look Back and Look Ahead. In fact, when designing test cases, we avoid similar and repetitive operations or successions of operations (Look Back) and we focus on the ones which improve the objective fulfillment (Look Ahead).

Contribution 6: A software bug classification model and a detailed typology of software problems Each software organization uses a problems' tracking tool in order to manage and store problems detected during a software project. Moreover, the tracking tool has a database where all the problems are stored. Such databases hold thousands of software bugs and are difficult to be analyzed. In fact, when describing a bug in the problems' tracking tool, there are often too many fields to fill in, a lot of free fields and a lack of relevant predefined fields. Moreover and as the detection of bugs comes later in the process, engineers do not have enough time to fill in all the fields of a bug. Therefore, analyzing these databases in order to pinpoint issues in the development processes and propose improvement actions is a complicated task. In this context, we propose a new bug classification model. The aim of this model is to be able to identify process improvement actions for the development and V&V processes. In other words, the new bug classification model answers the question of "which types of software problems are injected and detected in which process phase?" To do this, we propose a detailed software problem typology taking the industrial context into account. In addition, identifying recurrent type of software problems allows test engineers to focus the design of test cases on detecting these problems.

Contribution 7: A process to define software users' profiles in order to design test cases that simulate the real use of a software product There is no better way to test a product other than testing it in the way that it will be used. The major number of bugs detected by the end-users of a software product is related to specific operations or successions of operations recurrently performed on the software in real use. Therefore, testing a software product with an end-user point of view seems beneficial. We propose to define an end-user behavior's profile for each software under test. This profile can be used by test engineers when designing test cases. In fact, we define four types of constraints that test engineers can affect to each input signal of a software product in order to eliminate or favor specific successive operations. Each input signal can have one or more constraints. These constraints aim to lower the number of possible combinations on input signals and to more thoroughly pinpoint which ones are frequently set once the product is launched on the market. These four constraints are: logical constraint, conditional constraint, succession constraint and timing constraint.

Contribution 8: An automatic and formal process to use capitalized software bugs in the design of test cases suitable to detect similar bugs on a new software development Only exhaustive testing can show that a software product is free from bugs. However, exhaustive testing of a software product is not practical because variable input values and variable sequencing of inputs result in too many possible combinations to test. So it is useful to concentrate the test on the areas associated with the greatest risks and priorities. In this context, we propose to design test cases which have a high probability to detect software bugs. Therefore, we specify a new format for the "Problem description" attribute of a bug capitalized in the problems' database. This format consists of describing the initial conditions and the successive operations that lead to the capitalized bug. Based on this new format, we propose an automated process able to design one or more test cases from each capitalized bug. These test cases are suitable to detect bugs recurrently done by test engineers on specific software functionalities.

Contribution 9: An automatic and formal process to reuse capitalized test cases for one project to another Reusing capitalized test cases from one project to another seems to be beneficial in an industrial context. In other words, when testing a software functionality that has already been implemented in the past on another project, it is judicious to reuse existing test cases. But unfortunately, test cases are not often reused from one project to another. Two potential main reasons are: 1) the use of different formats when designing manually test cases. Sometimes, test engineers write the test cases immediately in a computer language (C language …) understandable by the test execution platform. Others use a more high level language. 2) the lack of an automated process to reuse the test cases. To overcome this problem, we propose to use one specific format as the standard format to represent a test case. Based on this new format, we develop an automated process able to design one or more test cases from each capitalized test case. In fact, the designed test cases focus on test scenarios based on the returns of experience from previous projects.

Contribution 10: Promising results of the experiment of our testing methodology on two typical case studies within an automotive electronic supplier Through our research project, we propose a new systemic approach to automate efficiently the design of test cases for software products. Apart from the computational aspects of software testing, the approach takes into account organizational matters (Cf. Contributions 2,3,4,5,6,7,8 and 9) such as functional simulation, knowledge management, competency management and project management. Our testing methodology has been implemented in a computer platform and experimented on two typical case studies of Johnson Controls for which historical data are available. Consequently, we reduce by 70% of the number of bugs detected by the carmakers and by 9% the ones detected by the end-users. Moreover, we reduce by 22% the time spent in testing a software product. In fact, we detect the bugs earlier in the software development process and closer to their origin. We also propose to deliver to the carmaker formal quality indicators on the delivered software. All these results contribute to an improvement of the customer satisfaction and as a direct impact; the number of tenders will grow. Unfortunately, estimating the cost of software bugs in an organization is a delicate, strategic and confidential question and therefore we have not been allowed to communicate the numbers on the bugs' costs savings via the use of our methodology.

Contribution 11: A patent on our approach to design test cases for software products The promising results of the deployment of our testing methodology within the industrial context have motivated the automotive electronic supplier Johnson Controls (who grants this PhD) to patent this approach. Presently, the company patent experts are assessing the economical profit of patenting our approach. In the meantime, a worldwide Quick Patent42 (for a preliminary protection of the idea) has been submitted by the company.

II. Impact of our testing methodology in the company organization

Estimating the cost of bugs in a software organization is a delicate, strategic and confidential question. In 2002, the National Institute of Standards and Technology (NIST) has estimated that software bugs cost U.S. economy 59,5 billion dollars annually 43 . In Johnson Controls, there is no model to estimate the cost of software bugs. Unfortunately, these data are confidential. However, the number of software bugs detected by the carmakers during intermediate deliveries or by the end-users after the Start Of Production (SOP) is estimated each month. As the automotive market becomes more and more competing, decreasing the development time of outsourced parts and decreasing the number of problems detected later in the process becomes of major importance for carmakers and consequently a major quality indicator for automotive suppliers. Indeed, the carmakers' process for assigning new projects to suppliers is mainly based on feedbacks from previous projects. Through our testing methodology (Cf. Table 10.12), we reduce by 70% ((60+80)/2, 60% and 80% respectively on the first and second case studies) the number of software bugs detected by the carmakers after intermediate deliveries. Making the assumption that the new "minor" bugs that we detect through our methodology and which were neither detected by Johnson Controls nor by the carmaker have been detected by an end-user, we can state that we reduce by 9% ((18+0)/2, 18% and 0% respectively on the first and second case studies) the number of software bugs detected by the end-users once the product is launched on the market. Moreover, we propose to deliver to the carmaker quality indicators related to code coverage (already done in the industry) but also formal requirements coverage, which may increase its confidence about the quality of the software products. Presently, the measurement of requirements coverage is informal (Cf. Chapter 2 -Section 6.B.1). In conclusion, across our testing methodology, the image of the company (Johnson Controls) in front of its customers (carmakers) will be improved and as a direct impact of the customer satisfaction, the number of tenders will grow.

Moreover, the validation test stage accounts for more than 50% of the project time and resources (Cf. Chapter 1 -Section 5.C.2). In fact, bugs related to the internal behavior of one software module could be detected in unit test stage (earlier in the process). Unfortunately, it is not the case and such bugs are detected later in the validation test stage. Of course, analyzing the origin of a bug in validation test stage (all the software modules are integrated together) is more difficult and time consuming than analyzing the bug's origin in a specific software module. Through our testing methodology (Cf. Figure 10.20), we reduce by 22% ((27+17)/2, 27% and 17% respectively on the first and second case studies) the time spent in testing a functionality. While lowering the number of bugs detected by carmakers and endusers, we lower the resources required for testing a software product.

However, we are conscious of the impact of our testing methodology (model and design platform) on the current software organization in case of an industrial deployment. Indeed, an investment but also personal commitments of all the software players within the company are mandatory for the success of such change of practices. In Chapter 9, we develop a "process-people-tool" view of our testing methodology. Based on this view, we identify three streams of actions necessary for integrating our methodology within the current software organization of the company:

• Integrate the processes of our methodology (Cf. Figure 9.2) within the global software process map of the company (Cf. Figure 2.2). • Train the software engineers to the new testing methodology. Test automation has broad impacts on an organization such as the skills needed to design and implement automated tests, automation tools, and automation environments. The test engineers' practices, roles and competencies change when automation is installed. These impacts have negative aspects that must be considered. When introducing a new methodology and tool to the testing program, mentors and trainings are very important. Even with training, automation skills take time and experience to acquire. The best automation tool in the world will not help the test efforts if the test team resists using it. The test engineers may feel that 1) their manual process works fine, and they don't want to bother with the additional setup work for introducing an automation tool and 2) they may lose their know how in designing manually test cases for software products. Indeed, test engineers' technical skills will have to switch from a manual design to a high level modeling of the test scenarios and objectives in using in a flexible manner our design platform. Nevertheless, based on the literature (Bunse 2007), model-based software development approaches are slowly superseding traditional ways of developing software products and software engineers' required skills tend toward modeling and automation tool monitoring. • Improve the Man Machine Interfaces of the computer tools that we developed to support our testing methodology (Cf. Chapter 8 -Section 3.C and 4). In fact, ergonomic user interfaces play a major role in the practitioners' use and perception of a computer tool.

III. Research perspectives

The open perspectives of this research project are listed by topic.

Perspective 1: Related to the formal language to specify software functional requirements The perspectives concerning our formal language to specify software functional requirements are:

• Perform a broad survey on the carmakers' specification of the software functional requirements. The purpose is to fill out our formal specification language in order to be able to specify any carmakers' software functional requirement. • Develop a list of rules and recommendations to help modelers using efficiently our specification language and therefore develop consistent requirements model at the first attempt.

• Develop more efficient strategies to validate the compliance of a requirements model developed using our specification language with the (original) carmaker requirements. One solution could be to validate the model by the carmaker itself.

• Develop an editor tool to support modelers in designing a requirements model using our specification language. For instance, when designing a DT element, designers can not consider all the possible conditions on the input signals. In fact, in an industrial context, the number of the DT input signals can exceed 10 and the domain length of one signal can exceed 100 (for instance, when sampling the "vehicle speed" signal). In that case, its remains a very difficult task to identify manually all the possible conditions and their corresponding actions. Therefore, an automatic generation of all the possible conditions on the input signals of a DT could be judicious. The editor tool could perform such functionality.

Perspective 2: Related to the knowledge management in terms of capitalized bugs and test cases On the one hand, we propose to reuse capitalized bugs in order to verify the nonexistence of recurrent bugs. To do this, we develop a new bug classification model with a detailed typology of software problems and a specific format to describe the initial conditions and the successive operations that lead to detect a bug. We propose to generate automatically test cases that verify the nonexistence of recurrent (capitalized) bugs on each software functionality (for instance, front wiper) of a new development. To do this, for each software functionality of a product family, a glossary of the functionality's input signals names on previous and new projects are necessary. A family of product is defined by a customer (for instance, Renault), a type of product (for instance, a body controller module) and a car platform (for instance, Laguna platform). We experiment these proposals on two industrial case studies with historical data. However, it could be judicious to experiment our bug classification model (software problems typology and description formalism of a bug) and the inputs glossary on new software projects. Therefore, we could adjust our proposals in order to take practical considerations into account.

On the other hand, we propose to reuse test cases from one project to another. To do this, we define a new formalism to represent a test case and based on this formalism, we develop an automatic process to generate one or more test cases that focus on operations or successions of operations regularly done in a capitalized test case. In fact, we propose to reuse test cases when testing a software functionality that we already tested in the past. Therefore, a test cases library should be specified in order to capitalize the test cases by software functionality and

Figure Conclusion.1 -A Design of Experiments to identify the correlations between the parameters of our approach and the detection of bugs

Perspective 5: Related to the consistency and reliability of our experiment's results Our approach to design test cases for software products can be identified to a measurement system which has to measure the number of bugs in a software product. As a consequence, we have to check the statistical properties of a reliable measurement system: repeatability and reproducibility. We start performing this task but unfortunately, we had not enough time to complete the experiments.

• Reproducibility: In our testing methodology, the two main activities depend on the operator (e.g. human intervention). The first one is the design of the requirements model and the second one is the definition of a set of targets and weights for the test case generation. Therefore, the reproducibility of our experiment results must be verified. In fact, two operators must independently model the same carmaker requirements. Rules and recommendations have to be defined in order to help operators configure the generation of test cases. Each operator has to generate automatically a set of N test cases fulfilling the predefined targets. After executing independently each set of N test cases, one has to assess the ratio of bugs simultaneously detected by the two sets of test cases. • Repeatability: Since our generation of test cases is partly based on a stochastic process, the repeatability must be verified. Consequently, we propose to generate two or more sets of N test cases from the same requirements model and with the same objectives, constraints and optimization parameters. After executing independently each set of N test cases, one has to assess the ratio of bugs simultaneously detected by two or more sets of test cases. Perspective 6: Related to the monitoring of our test case design process We also plan to monitor the quality of our new testing process. To do so, it seems that within the Design for Six Sigma (DFSS) framework, the Define, Measure, Analyze, Design, Optimize, and Verify (DMADOV) methodology is the appropriate approach. This will allow us to put the proper focus on the up front design of the testing process. Therefore, we need to establish the set of measurable, customer-oriented attributes, which can be defined, measured, analyzed, optimized and verified (DMADOV) in the software testing process. These attributes need to be directly built into the testing process so that it is specifically geared to producing pre-defined quality limits. This means embedding specific design intent within the software testing algorithm to meet specific and understood, customer-facing performance metrics. Below, we identify two types of critical-to-customer metrics concerning the software testing process. We plan to assess the following metrics on each software project that undergoes testing:

• Critical-to-Quality (CTQ) metrics: Y1. The capacity to reduce the number of bugs detected by the carmaker: the ratio between the number of bugs detected by carmakers and the total number of bugs Y2. The capacity to reduce the number of bugs detected by the end-user: the ratio between the number of bugs detected by the end-users and the total number of bugs • Critical-to-delivery (CTD) metrics:

Y3. The number of versions of each software module or product Y4. The capacity to deliver software free of bugs since the first delivery: the ratio between the number of bugs detected in the first testing phase and the total number of bugs Since we place a high premium on reducing the number of bugs detected by carmakers and end-users (Y1 and Y2), one solution could be to increase the structural and functional coverage. But, experiments reveal that some bugs cannot be detected even if our requirements model and source code are covered at 100%. This leads to the realization that we need to refine our functional coverage model. Typically, we can consider the coverage rate of the succession of two transitions in a FSM element.

IV. General discussions

In this section, we discuss three major topics related to the deployment and the durability of our testing methodology within an industrial context.

Since 2003, carmakers, suppliers and other companies from the electronics, semiconductor and software industry have been working on the development and introduction of an open, standardized software architecture for the automotive industry (AUTOSAR -AUTomotive Open System ARchitecture). One of the key features of this consortium is the modularity and configurability of automotive software products. This leads to increase the reuse of software components from one project to another. As a consequence, reused software components would reach a high reliability degree and do not require to be tested unitarily after each reuse.

Integration and validation test will be of major importance. Nevertheless, the unit test of software components will remain necessary since 1) the reused software components represent around 50% of the total components of an automotive software product and 2) these reused component will evolve continuously (new functionalities and features) and therefore need to be tested unitarily.

Presently, many researches and industrial projects deal with the automatic generation of the source code of a software product. The main purposes of these actions are to 1) reduce the software development time and 2) avoid some software problems injected by the software engineer when designing and coding the software product. As for the automatic generation of test cases, a formal representation of the software specification is required. Most of the formal specification languages found in the literature attempt to be useful for the code and test case generation. Therefore, it could be useful to explore the automatic generation of source code from our functional requirements model of a software product. Considering the following two assumptions 1) the requirements model is validated at 100% and 2) the generation of the source code is reliable at 100%, the generated source code of a software product does not need to be tested. Unfortunately, it is not the case and a software product needs always to be tested (verified and validated).

Although our testing methodology has been customized to software embedded in cars (carmaker requirements formalisms, automotive constraints …), the use of this approach in industries such as aeronautic, railway, medical, telecommunication … seems beneficial. In these industries, software products properties and architectures are similar to the automotive industry. However, software requirements formalisms and priorities in testing software products could be different. For instance, contrarily to automotive industry, in aeronautic industry, constraints on software project planning and budget are less important than software quality objectives. This could be explained by the fact that avionics software requires being highly reliable, since failures in this kind of products may very likely lead to deathly consequences. One more point is the applicability or adaptability of our testing methodology to computers applications; for instance, testing software products such as the Microsoft Word software.

As developed in Appendix C, a computer platform (X-Car) has been developed in order to execute test cases for the integration and validation test of a software product. This platform has a test language interpreter tool which allows to perform initial check for test script correctness, run automation test script, handle data automatically by script and derive output for reporting. A screenshot of the script language interpreter tool is illustrated in 
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 1 Figure Introduction.1 illustrates our research stages all along the three years of the PhD cursus.
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 1 Figure Introduction.1 -Stages of our research process
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Figure

  design of test cases for automotive software: design platform and testing process 36 • Part I develops the research context and the industrial audit (Chapters 1 and 2).
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  Figure Introduction.2 -Document structure
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 11 Figure 1.1 -From part to module to system (Sturgeon 2000)
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 1 Figure 1.2 shows the sheer number of systems and applications contained in a modern automobile's network architecture.
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 1 Figure 1.2 -A modern vehicle's network architecture (Leen 2002)
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 13 Figure 1.3 -Software product versus software component
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 14 Figure 1.4 -Development based on the skills and experience of the individual staff members performing the work
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 1 Figure 1.5 -Waterfall development model

Figure 1

 1 Figure 1.6 -V development model (V-model)
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 19 Figure 1.9 -General software development life cycle model Each activity produces deliverables required by the next activity in the life cycle. Requirements are translated into design. Code is produced during implementation that is driven by the design. Testing verifies the deliverable of the implementation activity against requirements.
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 1 Figure 1.11 -Rate and cost of bugs introduced and detected across the software development life cycle (Liggesmeyer 1998)
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 21 Figure 2.1 -Product development system at Johnson Controls -Some parts of this figure are voluntarily fuzzyfied for confidentiality reasons (Johnson Controls source)

Phase 1 :

 1 Proposal Responding to customer inquiries regarding new products. The requirements of the customer are identified and proposals are submitted for customer approval Phase 2: Design & Development Expanding upon the proposal through the establishment of the product definition to ensure product feasibility Phase 3: Design Verification Completing product design resulting in a detailed definition of both the product and process Phase 4: Production Validation
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 22 Figure 2.2 -Process map implementing the software V-model at Johnson Controls (Mignen 2006a)

  Define general software architecture, components and interfaces Provide traceability and verify global design

  Figure 2.3): • One in charge of the development of the software product • And the other in charge of its validation.
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 23 Figure 2.3 -Typical functional organization chart of one software project at Johnson Controls -Not detailed for confidentiality reasons (Mignen 2006b)
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 24 Figure 2.4 -Evolution of the formalisms used by carmakers to specify the functional requirements related software
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Figure

  Figure 2.5 -Growth of the number of changes asked by the carmaker all along a project Diagnosis 4 Deadlines for carmaker requirements freeze are specified in the carmaker-supplier contract. Nevertheless, the carmaker's requirements evolve continuously along the software development life cycle without complying with these deadlines. Moreover, suppliers must react quickly by integrating (without regression) the changes in the product.
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 26 Figure 2.6 -Interaction of the Requirements Specification process with the other software processes (Mignen 2008)

Figure 2 . 9 -

 29 Figure 2.9 -Software verification and validation techniques within the Johnson Controls process map Each of these techniques must catch different classes of bugs at different points in the development cycle.

  All these activities are performed by Software Developers (SD) Bugs detected on component can lead to correct detailed design and/or code The "Verify component" activity consists to: -Review the code -Analyze statically the code -Analyze dynamically the code "Unit test" of the software component If the results of the unit test done on the component are OK, the component is promoted to integration

  design of test cases for automotive software: design platform and testing process 92 having access to the source code of the software under test is called functional or black-box or specification-based test. A survey on software testing techniques (Bernot 1991, Beizer 1995) is provided in Chapter 4 -Section 3.B.
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 2 Figure 2.12 -Potential operation space of a software

Figure

  Figure 2.13 -Johnson Controls present approach to design a test case for unit test

Figure 2 .

 2 Figure 2.19 -An excerpt of a bug stored in the problems' database (this figure is voluntarily uncompleted for confidentiality reasons)

  Figure 2.20 -Process of creating and updating "Lessons Learned Checklists" for software skill (Mignen 2005)

Figure 2 .

 2 Figure 2.22 -Classification of the bugs according to the front wiper's features

10

  When testing a software component or product and after an operation on the input signals, test engineers do not check the behavior of all the output signals of the component or product under test. Based on their understanding of the program behavior and/or the carmaker requirements, test engineers decide to check only some output signals in relation with the performed operation.

  Quality of the design of test cases for automotive software: design platform and testing process 126 d. Regression test

1 .

 1 CONFORMIQ TEST GENERATOR by VERYSOFT -GERMANY 2. MATELO by ALL4TEC -FRANCE 3. PRO-TEST/PRAXIS by DIGITAL COMPUTATIONS, INC -USA 4. REACTIS by REACTIVE SYSTEMS, INC -USA 5. RHAPSODY TESTCONDUCTOR/AUTOMATIC TEST GENERATOR by I-LOGIX/TELELOGIC -USA 6. T-VEC RAVE/TESTER for Simulink/Stateflow by T-VEC -USA

  Cf. Diagnosis 2, 5, 6, 10, 12 and 15), the oracle currently used in Johnson Controls is a human being. In fact, after selecting an operation to be performed on a software, test engineers analyze the source code and/or the carmaker requirements of this software in order to assess the expected values to be checked on some output signals. In fact, this assessment is based on the engineers' understanding of the code and/or requirements and may lead to errors. Moreover, as automotive software becomes more and more complex, this task becomes a laborious task and accounts for more than 50% of the total time and budget of a project. We propose to automate the assessment process of all the expected outputs values by developing a simulation model of the software functional requirements. In fact, test engineers could perform the selected operation on the requirements model and assess the output values automatically by simulating the model. Moreover, once developing a simulation model of the software requirements, one could formally measure the requirement coverage.
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Figure

  Figure 5.4 -The shape of a "Clock" signal

  Figure 5.7) that presents a set of exclusive conditions on the DT input signals (Cq) and their corresponding set of actions on the DT output signals (Aq). Each set of conditions (Cq) represents a requirement in a DT element. The characteristics of a "condition" and an "action" on a signal (S i ) are respectively illustrated in Figure 5.5 and Figure 5.6.

Figure

  Figure 5.5 -Characteristics of a "Condition"

Figure 5 . 6 -

 56 Figure 5.6 -Characteristics of an "Action" As said before, each software functionality has a set of configuration (Config), input (I), output (O) and intermediate (Int) signals. These signals interconnect the features (F) of the functionality. In fact, an input signal of a DecisionTable element could be a configuration, input or intermediate signal of the functionality. While an output signal of a Decision Table element could be an output or intermediate signal of the functionality. A Decision Table element is illustrated in Figure5.7, a. For one set of conditions (for example, C1 in Figure5.7), it must require that at least one input of the DT is set to a specific value (I1=1), the other inputs of the DT may be indifferent (ANY).

  Figure 5.8. This DT has 2 input signals and 2 output signals: I1, Domain = {0, 1}; I2, Domain = {1, 2, 3}; O1, Domain = {0, 1}; O2, Domain = {0, 1}. When designing this DT element, designers did not consider all the possible conditions on the input signals of a DT (3 out of 6 possible conditions, Cf. Figure 5.8a). They only identify the conditions (Ci) which were explicitly specified in the customer requirements.
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 58 Figure 5.8 -Not exhaustive vs. exhaustive Decision Table element

  output signals of a FSM, each FSM can have a timing signal (FSMTempo) and a set of internal signals (FSMInt m ). The timing signal helps to model timing requirements and the internal signals characterize the states of a FSM. A graphical illustration of a Finite State Machine element is illustrated in Figure 5.9. It is composed from:

Figure 5 .FSMInt 1

 51 Figure 5.9 -A graphical illustration of a Finite State Machine element Let us consider the FSM element illustrated in Figure 5.10. This FSM has 2 input signals, 2 output signals: I1, Domain = {0, 1}; I2, Domain = {1, 2, 3}; O1, Domain = {0, 1}; O2, Domain = {0, 1}. When designing this FSM element, designers did not consider all the

  Figure 5.10b).

Figure

  Figure 5.10 -Not exhaustive vs. exhaustive Finite State Machine element

Figure

  Figure 5.12 -An example to illustrate the simulation process of a Finite State Machine element

  Figure 5.13 -The software functional requirements of the functionality "Auto_Light" as they were specified by the carmaker Once analyzing the requirements of Figure V13, we came up to the conclusion that Feature 1and Feature 2 can be modeled using Decision Tableelementsand Feature 3 can be modeled using a Finite State Machine element. We also identified two intermediate signals: Int1 ("Luminosity_Level") and Int2 ("Follow_Me_Home_Activate"). A graphical illustration of the requirements model of the functionality "Auto_Light" is developed in Figure5.14.

  the Features 1 and 2 are developed in Figure 5.15 and Figure 5.16. These DT are exhaustive.
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 5 Figure 5.15 -Feature 1 modeled using a Decision Table element

Figure

  Figure 5.16 -Feature 2 modeled using a Decision Table element

Figure

  Figure 5.17 -Feature 3 modeled using a Finite State Machine element -Graphical illustration
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 61 Figure 6.1 -Model confidence (Sargent 2005)

Figure 6 .

 6 Figure 6.2 -A simplified version of the modeling process(Sargent 2005) 
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 65 Figure 6.5 -Simulate the test cases delivered by the carmaker on our requirements model
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 67 Figure 6.7 -Compare our requirements model to another valid model of the requirements

  Furthermore, no algorithm exists to determine what techniques or procedures to use. Every new simulation project Quality of the design of test cases for automotive software: design platform and testing process 178 presents a new and unique challenge. However, there is considerable literature on Model V&V.

  Let us consider a software functionality with 3 input signals and two output signals: I1, Domain = {0, 1}; I2, Domain = {1, 2, 3}; I3, Domain = {0, 1}; O1, Domain = {0, 1}; O2, Domain = {0, 1}. The "operation matrix" associated to this example is illustrated in Figure 7.1.
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 71 Figure 7.1 -An example to illustrate the concept of "operation matrix"
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 72 Figure 7.2 -An example of a Nominal 1 "operation matrix"

Figure 7 . 4 -

 74 Figure 7.4 -An example of a Nominal 1 "operation matrix" after engineers' modifications

  A simulation of the software requirements model The chosen operation is performed on the requirements model and a simulation of the model (synchronized by the cycle time of the Clock signal) starts until the inter-operation time ran out. The values on the output signals of the model are the expected results of the test step. Let us consider the example of Figure 7.1 with the "operation matrix" of Figure 7.4. The process of generating a test step is illustrated using this example in Figure 7.6.

Figure

  Figure 7.6 -The process of generating a test step

  Figure 7.7, we illustrate the functional coverage indicators through the example of Figure 5.3.
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 77 Figure 7.7 -Functional (requirement specification) coverage indicatorsWhile generating a test case, test engineers can visualize in real time the covered zones of the requirements model(Cf. Figure 7.8, 7.9, 7.10 and 7.11).

Figure

  

  Figure 7.10 -Decision Table coverage
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 7 Figure 7.13 -Panel of the quality, time and cost indicators for monitoring the automatic generation of test cases
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 7 Figure 7.14 -An excerpt of the report delivered automatically after generating a test case

Figure

  Figure 8.3 -Conditional constraint

Figure

  Figure 8.4 -Succession constraint

Figure

  Figure 8.6 -An operation set during a specific time

Figure 8 .

 8 Figure 8.7 -A predefined format to fill in the "Problem description" attribute of a bug Let us consider a practical example of a functionality with 3 input signals (I1, Domain = {0, 1}; I2, Domain = {1, 2, 3}; I3, Domain = {0, 1}) and two output signals (O1, Domain = {0, 1}; O2, Domain = {0, 1}). When testing this functionality on a project in 2005, a test engineer

  Figure 9.4 -Test Cases Reuse tool

Figure

  Figure 9.5 -Simplified class diagram of the Test Case Generation tool
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 101 Figure 10.1 -Distribution across the carmakers' deliveries of the bugs detected on the two functionalities

  Of serial ProductionAll these bugs could be detected (earlier in the process) during the UNIT test of each software module of the two functionalities

Figure 10 . 2 -

 102 Figure 10.2 -Distribution across the couple (Severity, Occurrence) of the bugs detected on the two functionalities In Figure 10.3, we illustrate the time spent by the project team in order to debug the software modules of the two functionalities using the conventional testing techniques (unit test and validation test, Cf. Chapter 2 -Section 5). The main activities done are: • Design and execute test cases for the unit test of each software module (Unit test).• Analyze the carmaker requirements in order to design validation test cases.• Design and execute test cases for the validation test of each functionality.• Manage the bugs detected internally and by the carmaker.

Figure

  Figure 10.11 -Distribution according to the carmakers' deliveries of the known bugs not detected by our approach

  Figure 10.17 -An estimate of the total time spent in testing conventionally the two functionalities

Figure 10 .

 10 Figure 10.18 -An estimate of the total time spent in testing unitarily the two functionalities using our approach

Figure 10 .

 10 Figure 10.19 -Reducing the time spent in testing the two functionalities

  Figure B.4. 
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 4 Figure B.4 -Screenshot of the test script interpreter (Johnson Controls sources)Another tool is the test script sequencer which allows to manage a list of test scripts in order to execute them automatically and consecutively in a specified order. Each script in the list has a status and it can be activated or deactivated. Several action can be executed before each script (reset the software, reload the software, launch an initialization script). A screenshot of the test script sequencer tool is illustrated in FigureB.5. 
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 5 Figure B.5 -Screenshot of the test script sequencer (Johnson Controls source)
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	Mistake	Error	Fault	Failure/bug

Quality of the design of test cases for automotive software: design platform and testing process 53

The Figure

1

.11 released by Liggesmeyer

(Liggesmeyer 1998) 

shows that the main part of bugs are introduced during the first life cycle of the software development (around 90% in requirements analysis, design and implementation activities) and detected in the last activities (around 80% during unit test, validation test and serial production). A study done in 2006 by a Johnson Controls software expert

(Le Corre 2006) 

on about 15 projects from different types of products has confirmed the findings of Liggesmeyer.

Table 1 .1 -Time and effort spent during the software development life cycle (Brooks 2007, Le Corre 2006)

 1 Often programmers spend more time and effort finding and fixing bugs than writing new code. Theoretical data proposed by Brooks 14 (Brooks 2007) but also the results of a study done in 2006 by a Johnson Controls software expert (Le Corre 2006) on about 5 projects from different types of products are presented in Table 1.1. The study points out that the validation test activity takes up to 50% of the total development duration of a project. Moreover, a recent study within Johnson Controls (2008) has shown that this ratio number has been exceeded.

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

  Static techniques (Review and Proof) which do not require the execution of the software under test (Ayewah 2008) • Dynamic techniques (Testing) which require the execution of the software under test

	Software life	Johnson	F. Brooks	Hewlett-
	cycle	Controls (%)	(%)	Packard (%)
	Requirements analysis	40	33	37
	Design and implementation	20	17	34
	Unit test		25	
	Integration and validation test	40	25	29
	Therefore, bugs' detection is still a tedious task requiring considerable manpower. Since the
	1990s, particularly following the Ariane 5 Flight 501 disaster, there has been a renewed
	interest in the development of effective automated aids to remove bugs but it's still remaining
	much of a work in progress. Presently, bugs' detection techniques (also called software V&V
	techniques) can be classified into two classes:		

13 http://www.cl.cam.ac.uk/~mvw1/short-biography.html (consulted on November 2008) 14 Frederick P. Brooks is a pioneer of software engineering, http://www.cs.unc.edu/~brooks/ (consulted on November 2008) Quality of the design of test cases for automotive software: design platform and testing process 55 •

Table 1

 1 

.1), over half of all errors are not found until the last testing activity in the development process (validation test) or during post-sale software use (operational life).
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Quality of the design of test cases for automotive software: design platform and testing process 56 notoriously hard to measure. If efficient V&V techniques were readily available, engineers would expend less time developing custom V&V technology.
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  It represents up to 90% of the time spent in the V&V of a software product (Johnson Controls source). Testing a software product requires two main activities. A detailed specification of these activities is done in Chapter 2 -Section 5. The first one consists of designing test cases and the second

Quality of the design of test cases for automotive software: design platform and testing process 57 one of executing these test cases on the software product under test. We adopt the definition of test case proposed by IEEE.

Definition 1.7: Test Case (IEEE Std. 610-1990) -Abbreviation: TC

IEEE defines test case as follows:

Table 2 .1 -Description of the stages of a product project (Johnson Controls source) Software steps

 2 

	V-model

Table 2 .2 -Description of the steps of the high level software life cycle (Mignen 2006a) The software life cycle is initialized during the Proposal step and adjusted during the

 2 

	Preparation step according to carmaker deliveries planning and requirements prioritization
	(Cf. Figure 2.1). 100% functional software means that all functionalities are implemented
	(carmaker and manufacturing requirements are implemented). If significant changes have to
	be implemented for a new release during the Maintenance step, a new software project is
	launched and the program remains in stage #5.			
	B.	The elementary V-model of the software development process	
	Within each step of the software standard life cycle, engineering activities are performed
	according to the standard V-model of the software industry (Cf. Figure 1.6) and in an
	incremental way in order to take the carmaker constraints and requirements priorities into
	account. The number of incrementations per step is defined by the project and adjusted based
	on carmaker inputs and project constraints. Based on the SPICE 16 model, Johnson Controls
	has developed a process map implementing the conventional V-model (Cf. Figure 2.2).
	16	SPICE:	Software	Process	Improvement	and	Capability	dEtermination
	(http://www.sqi.gu.edu.au/spice/contents.html, Consulted on November 2008).		

Industrial audit R. AWEDIKIAN Quality

  of the design of test cases for automotive software: design platform and testing process 66 applying various testing tools and methodologies. The fact remains that industrials give value to software verification and validation roles. In fact, software engineers often prefer development activities compared with verification and validation activities. This observation has been confirmed after interviewing software managers within Johnson Controls.

	Technical Project Leader Project leader	Customer Quality Manager
			Safety Manager
	Software Coordinator	
	Software Product Integrator Coordination team Sw Requirements Engineer	SafetyEngineer Quality team
			Quality Engineer
	Software	SW Configuration	
	Leader	Engineer	Auditor
	Software	Software	
	Development Leader	Validation Leader	
	Software Architect Software Development team	Software Validation Architect Software Validation team	
	Integrator	Validation Engineer	
	Software		
	Developer		

Diagnosis 2 Now, one cannot get a degree in software V&V. Software V&V is incorporated into the software engineering degree. Moreover, software engineers often prefer development activities compared with verification and validation activities.

  

Within the customer requirements, the software functional requirements account for more than 90% (Johnson Controls source). We also validate this proposal by analyzing the carmaker requirements for 5 different software projects (different products) in Johnson Controls. Therefore, through our research project, we focus on the software functional requirements and how one could verify the compliance of a software product with its functional requirements.

  

	system, user
	-Verb / Predicate = action
	The whole Requirement needs to define a result. A performance or measurable indication
	needs to be included
	There are 5 types of requirements:
	-FCT: functional requirement (behavior of the software)
	-CON: constraint requirement (reliability, safety, quality, process, rules, guidelines …)
	-INT: interface requirement (specification of internal and external interfaces)
	-DEV: development requirement for internal development support (interface, parameter …)
	-MMI: man-machine interface requirement (Menus, buttons …)

Table 2 .4 -Explicit contract, in terms of bugs' occurrence, between a carmaker and an electronic supplier • Implicit contract: implicit aspects are usually disclosed later in the development life

 2 

	cycle and are generally based on semantic problems. For instance, during the software
	development process and even if it was not stated in the contract, the carmaker
	expected that each intermediate delivery must be free of bugs. Many other examples
	can be cited. In fact, the requirements specifications delivered by the carmakers are
	usually and purposely unclear and incomplete in order to be able to add, modify or
	remove one or more requirements.

Table 2 .5 -Process flow of the Requirements Specification process

 2 

	C U C s u t o st	Requirements Specification Project Management / Documentation Management Validation Project Management / Documentation Management Validation Requirement Specification
	m o	
	e r / m er / S y s S y st t e e m / m /	Global Design Component Development Integration Quality Assurance Integration Global Design Component Development Quality Assurance
	S a S af	Review & Verification Review & Verification
	f e t et y	Change & Defect Management Support processes Change & Defect Management (Not detailed for confidentiality reasons)
	y R	
	e R e q	Configuration Management Configuration Management
	q	Safety Management Safety Management
	.	

Definition 2.7: Software code review (IEEE Std. 610 1990)

  

	At Johnson Controls, we identify 3 software inspection techniques (Code
	review, static analysis, dynamic analysis) and 3 software test techniques (unit, integration and
	validation test). In this dissertation, we adopt the definitions proposed by IEEE for each of
	these techniques.
	The software code review is a visual examination of a software work product to detect defects,
	e.g. violations of development standards and non-conformance to higher level documentation.

Definition 2.8: Static code analysis (IEEE Std. 610 1990)

  

	The static code analysis is an analysis of source code without execution of that software. A
	static code analyzer is tool that carries out static code analysis. The tool checks source code,
	for certain properties such as conformance to coding standards, quality metrics or data flow
	anomalies.
	Definition 2.

9: Dynamic code analysis (IEEE Std. 610 1990)

  

	The dynamic code analysis is the process of evaluating behavior, e.g. memory performance,
	CPU usage, of a system or component during execution. The dynamic analysis tool provides
	run-time information on the state of the software code. These tools are most commonly used to
	identify unassigned pointers, check pointer arithmetic and to monitor the allocation, use and
	de-allocation of memory and to flag memory leaks.

Definition 2.10: Software Unit, Integration and Validation test (IEEE Std. 610 1990)

  

	Unit test is the test of individual software components.
	Integration test is the test performed to expose defects in the interfaces and interaction
	between integrated components.
	Validation test is the process of testing an integrated software product to verify that it meets
	specified requirements.
	The interactions between these testing techniques are illustrated in Figure 2.8.

Figure 2.8 -Interactions between unit, integration and validation tests The location of these techniques within the Johnson Controls software process map is shown in Figure 2.9.

  

	CMP 1 CMP 2	Unit test Unit test	Unit tested Integration components	Integrated components	Validation	Validated software product
			test		test	
		…				
	CMP n	Unit test				

  Table 2.7.

21 http://www.programmingresearch.com/QAC_MAIN.html (Consulted on November 2008). 22 http://www.mathworks.com/products/polyspace/index.html (Consulted on November 2008).

11 -An excerpt from a test case (two test steps) as designed by Johnson Controls tester engineers Test Step

  Table 2.8. After analyzing many Johnson Controls documents related to the unit test activity and interviewing inner engineers practicing unit test, we identify three main activities: design the test cases, review the test cases and finally execute the test cases and analyze the results. We illustrate below the definition of a test case as it is adopted in Johnson Controls. Test cases for unit test are manually designed. The quality of these test cases is based on the experience of the developer. Designed test cases are reviewed Designed test cases are executed on the software component under test If the results of the unit test done on the component are OK, the component is promoted to integration

		Process			Comments
		2		
	Unit test component		
		Design		
		test cases		
		Review		
		test cases		
	YES	Bugs ?		
		NO		
	Execute test cases		
		& analyze results		
	YES	Bugs ?		
		NO		
		Iteration stop		
		Test Step No	Test Actions	Expected Results
			…	…	…
	Operation	96	Test # 96 Wait 500 ms	Output_1 = 0 Output_2 = 0 Output_3 = 0
			97	Test # 97 Input_1 = 1 Wait 200 ms	Output_1 = 7 Output_2 = 3
	Inter-operation time	…	…	…
					Expected results
					on output signals

Definition 2.11: Test Case, Test Step and Operation (Johnson Controls)

Let us consider a functionality with two input signals: I1(with domain D(I1)={0,1}) and I2 (D(I2)={1,2,3}) and three output signals: O1(D(O1)={0,7,14}), O2 (D(O2)={1,2,3}) and O3 (D(O3)={0,1}). We first call "Operation", the fact that an input signal is set to a value. For example, I2=3 is an operation. A "Test Step" is composed from an operation, an interoperation time and expected results on the output signals. A "Test Case" is a succession of "test steps".

An excerpt from a test case designed is given in the Figure

2

.11:

-In test step 96, test engineers wait for 500 ms without carrying out any actions on the product and check that the outputs of the product haven't changed.

-In test step 97, test engineers activate a switch (Input_1=1), wait for 200 ms and check that the concerned outputs are activated according to the expected behavior. Figure 2.

Table 2 .8 -Process flow of the unit test of a software component

 2 After developing a software component, software developers design manually test cases for the unit test of this component. The main purpose of the unit test is to cover at 100% the source code. It is the main criterion to stop testing unitarily a software component. The principles of code coverage are developed in Section 6.A. In fact, developers analyze the structure of the software component and design test cases that must cover all the source code of the component under test. The test case design process presently used by the engineers at Johnson Controls is deeply described in Section 6. It is important to note that a software component is about 2000 LOC (without blanks and comments), a reasonable number of LOC to be analyzed (according to experts). The technique of designing test cases while having access to the code of the software under test is called structural or white-box or programbased test. A survey on software testing techniques(Bernot 1991, Beizer 1995) is provided in Chapter 4 -Section 3.B.

Table 2

 2 

	Process	Comments
	Iteration start	
	Develop software	
	validation plan	
	Design validation	
	procedure	
	Implement validation	
	procedure	
	NO	
	New Integration ?	
	YES	
	Perform incremental	
	validation	
	NO	
	OK ?	
	YES	
	NO	
	Final product ?	
	YES	
	Perform full	
	validation	
	NO	
	OK ?	
	YES	
	Iteration stop	

.9. After analyzing many Johnson Controls documents related to the validation test activity and interviewing inner engineers practicing validation test, we identify two main stages: Preparation of Validation and Execution of Validation.

Table 2 .10 -Description of the type of tests used in validation test at Johnson Controls (Apostolov 2007)

 2 

  A survey on code coverage based testing tools is done in(Yang 2006). In Johnson Controls, the code coverage is measured by a commercial tool (C-Cover 27 ). Code coverage is a way to measure how thoroughly a set of test cases covers a code (Cf. Figure 2.14): This metric reports whether each executable line of code is encountered. • The coverage rate of procedures: This metric reports whether the test case invokes each procedure (or function) of the software. It is useful during preliminary testing to assure at least some coverage in all areas of the software. • The coverage rate of decisions: This metric reports whether boolean expressions tested in control structures (such as the if-statement and while-statement) evaluated to both true and false. The entire boolean expression is considered one true-or-false predicate regardless of whether it contains logical-and or logical-or operators. Additionally, this metric includes coverage of switch-statement cases, exception handlers, and interrupt handlers.

	1.		Code (structural) coverage						
				Objective:Cover at 100%		What are the expected				
				the source code of the		results on the output				
				component under test		signals?				
										100% code coverage	
	Input	Software	component	Operation and Inter-operation time selection based on the engineers' experience	Operation	Operation Inter-operation time	Human source code analysis	Developers	Expected results on some output signals	Time and Budget Stopping criteria NOK	OK	Test Case Test Step No Test Actions Expected Results … … … 96 Test # 96 Wait500 ms Output_1 = 0 Output_2 = 0 Output_3 = 0 97 Test # 97 Input_1 = 1 Wait200 ms Output_1 = 7 Output_2 = 3 … … …
	Discrete											
	Domains											
							Which pieces of code are				
							not covered?				
							Human					
							source code	Developers				
							analysis					

• The coverage rate of statements: • The coverage rate of conditions: Condition coverage reports the true or false outcome of each boolean sub-expression, separated by logical-and and logical-or if they occur.

End While Send var End Procedure PROCEDURE STATEMENT (Line of Code) CONDITION DECISION Industrial audit R. AWEDIKIAN Quality

  Design test cases for the validation testPresently, in Johnson Controls, the unit test is not responsible to verify the compliance of a software component with the carmaker requirements. In fact, once a set of unitarily tested components are integrated together, validators have the responsibility of verifying the compliance of the whole software product with the carmaker requirements. To do this, validators analyze one or more software requirements (Black-box test) and select one operation within the potential operation space (Cf. Figure2.15). Afterwards, by analyzing the carmaker requirements, they assess the expected values to be checked on some output signals. Idem to the design of a test case for the unit test, validators decide to check only some output signals in relation with the performed operation. In fact, they verify the expected behavior according to their understanding of the carmaker requirements. If the designed test steps allow to cover the carmaker requirements under test, validators stop designing test steps. If not, validators analyze deeply the considered requirements with the goal of designing one or more test steps that cover at 100% the requirements under test. Sometimes, for time and budget reasons, managers could decide to stop validating a software product even if the 100% requirement coverage is not reached. However, the carmaker must be notified on the uncovered requirements. The requirement coverage, as it is currently practiced in Johnson Controls, is developed in the next section.

Procedure AnswerYesNo() var = « » While var <> « Yes » ou var <> « No » Write « Print Yes or No » Read var of the design of test cases for automotive software: design platform and testing process 95 B.

Figure 2.15 -Johnson Controls present approach to design a test case for validation test In

  Through our study, we note that up to 30% of the stored bugs are due to errors in the design of the test cases in validation test. In fact, validators do not assess correctly the expected values to be checked on the output signals. This could be explained by the fact that a human assessment of a program behavior could be inaccuracy since carmaker requirements related to the software domain become more and more complex.

				Objective:Cover at 100%		What are the expected				
				one or more carmaker		results on the output				
				software requirements		signals?				
									100% requirement coverage	
	Input	Software	product	Operation and Inter-experience operation time selection based on the engineers'	Validators Operation	Operation Inter-operation time	Human carmaker software requirements analysis	Developers	Expected results on some output signals	Time and Budget Stopping criteria NOK	OK	Test Case Test Step No Test Actions Expected Results … … … 96 Test # 96 Wait500 ms Output_1 = 0 Output_2 = 0 Output_3 = 0 97 Test # 97 Input_1 = 1 Wait200 ms Output_1 = 7 Output_2 = 3 … … …
	Discrete											
	Domains						Which pieces of the				
							considered requirements				
							are not covered?				
							Human					
							carmaker					
							software	Developers				
							requirements					
							analysis					

2007

, we analyze the bugs of two different projects related to two different electronic products. It is important to note that, in Johnson Controls, bugs detected during review and unit test activities are often not capitalized in the problems' database (Cf. Section 7). Once a bug is detected during these activities, it is corrected immediately by the person who detects it. Therefore, most of the capitalized bugs are detected in validation test.

Table 2 .11 -Characteristics of the front wiper functionality implemented in five different projects since 1997 and till 2007

 2 

				Lessons learned Review			
					Software web-forum		
	BUGS Engineers	Bugs' database	BUGS Filter	Software Engineering Process Group …	ISSUES Filter	ISSUES	Engineers
				Checklist			
				creation or			
				update			
			Technical		SW forum		
			project		administrator		
			leader				
				Checklists Lessons learned			
				Checklists			

Projects Year Number of Lines Of Code implementing the front wiper functionality (without comments and blanks) Number of bugs detected on the front wiper functionality

  

	Project 1	1997	3909	30
	Project 2	2001	1457	4
	Project 3	2003	889	5
	Project 4	2003	1255	16
	Project 5	2007	1229	22
			70%	
	% of detected bugs	20% 30% 40% 50% 60%		Arithmetic mean of the projects 1, 2, 3 and 4 Project 5, 2007
			10%	
			0%	
				Features of the front wiper functionality
		70%	
	% of detected bugs	30% 40% 50% 60%		Arithmetic mean of the projects 1, 2, 3 and 4 Project 5, 2007
		20%	
		10%	
			0%	
				Code	Control Flow And	Data	Processing
				implementation	Sequencing
					Type of software bugs

18 Currently, test engineers use different formats to specify a test case. Sometimes, engineers specify the test cases in a computer language (C language, script language), others use a more high level test case format (independent from the technology). Moreover, there is a lack of formal process and tools to manage and reuse test cases from one project to another.

  Unfortunately, in Johnson Controls capitalized test cases are not always reused from one project to another. We interview software experts and managers on this phenomenon and we identify two main reasons. The first one is the use of different formats to specify a test case. Sometimes, engineers specify the test cases immediately in the computer language (C language, script language) understandable by the test execution platform. Others use the test case format presented in Figure2.11. In fact, the use of computer languages makes the reuse of test cases a difficult task. One has to analyze and adapt test cases written in a computer language from one project to another. It is important to note that now, testing a software product of about 200 KLOC (Kilo Lines Of Code) requires about 1000 KLOC of tests (Johnson Controls source). The second one is the lack of an automated process to reuse test cases. The manual analysis and adaptation of test cases from one project to another seems a laborious task. It could be more time consuming to adapt existing test cases than to design new ones. In this situation, the textual analysis tools could help but unfortunately such tools are absolutely not known in the company. However, one initiative was launched two years ago and had the purpose to create manually standard test cases for software validation. An example of a standard test case as it was developed at Johnson Controls is illustrated in Table2.12.

	Diagnosis VPR ID Type of Test	Date Modified
	VPR.SPEED.0001.01	Functional	22.03.2006
	Goal	Initialization of the pointer
	Applicable if Description of test	-The device displays the vehicle speed with pointer -The Ignition is switched ON.

-Set the signal concerning the Speed to value > 0 km/h. -The ignition is switched Off -Set the signal concerning the Speed to value = 0 km/h. -The Ignition is switched ON.

Expected behavior

-At the second ignition ON the pointer should be on its stop position.

Additional Comments

-If the project contains 2 or more product lines (ex. Low line, High line) repeat the tests on both lines. Bug reference (defect ID)

Table 2 .12 -Example of a standard test case as developed at Johnson Controls

 2 

Table 2 .13 -List of diagnoses on the software V&V practices in Johnson Controls Diagnosis number Diagnosis description 1

 2 

	Industrial audit

Quality of the design of test cases for automotive software: design platform and testing process 105

106 Figure 2.24 -Localization of the diagnoses within the Johnson Controls software organization Requirement engineer

  

	CARMAKER			SUPPLIER		CARMAKER
	Carmaker					
	Requirements	Carmaker requirements	Software requirement specification		Validate the compliance software product	Software product release	test Acceptance
						Validator
	Mechanical		SW requirements		SW product
	Software					
	Hardware		Global design of	Integrate	
			the software	software	
			product		components
			Designer		Integrator	
			SW architecture	SW components
				Design software	
				components	
					Developer	
			Software Verification and Validation techniques
		Code review	Static analysis	Dynamic analysis	Unit test	Integration test	Validation test
					Test Cases
			Problems'	Configuration
			tracking tool	management tool
							Bugs
			Problems'	Test Cases'
			database		database

focus our research on the V&V dynamic techniques. The main dynamic V&V technique is the software testing.

  Chapter 2 -Section 5.B), Johnson Controls presently performs most of the review static techniques (technical review, walkthrough, inspection and audit). On the contrary, the proof static technique is still considered as a non-adapted method to the automotive and more especially Johnson Controls context. Even if static techniques are necessary to detect errors earlier in the development process, they are not sufficient. In fact, these techniques focus on analyzing the static product representation and do not test the product in its real life (dynamic). This could explain the fact that, in Johnson Controls, V&V dynamic techniques are considered as the ultimate techniques to detect all the bugs. They represent up to 90% of the time spent in the V&V of a software product (Cf. Chapter 2 -Section 5). As a consequence, we Testing a software product requires two main activities. A detailed specification of these activities is done in Chapter 2 -Section 6. The first one consists of designing test cases and the second one of executing these test cases on the software product under test.

Chapter 1 -Section 5.C.2, we identify two types of V&V techniques: the static ones and the dynamic ones (e.g. software testing). In Chapter 4 -Section 2.B.1, we perform a survey on the static techniques and on how they are adapted or not to the automotive context. Based on our industrial audit (Cf.

Based on our industrial audit within Johnson Controls

  

(Cf. Chapter 2 -Section 5), the execution of test cases is performed thanks to Johnson Controls property test execution platforms. These platforms are described in Appendix C. On the one hand, the number of bugs related to a wrong execution of a test case is minor regarding the one related to an irrelevant design of a test case (1 over 100 -Johnson Controls source). On the other hand, the design of test cases is a manual task that accounts for up to 50% of a software project time. Therefore, we focus our research on the design of efficient test cases for software. In fact, we

are interested in any organizational matter that has a positive influence onto the quality of the test case design process: simulation platform, knowledge management, competency management and project management.

  

Diagnosis number Diagnosis description (Cf. Table II.13) In the scope of our research Design of test cases Related software testing issues Literature review 1

  

		Verification and Validation (V&V) …	NO -related to carmakers' practices	-
	2	Now, one cannot get a degree in software V&V …	YES	Issue 2, 3 and 4
	3	In automotive industry, semi-formal and formal …	NO -related to carmakers' practices	-
	4	Deadlines for carmaker requirements freeze are …	NO -related to carmakers' practices	-
	5	The Software Requirement Specification (SRS) …	YES	Issue 2, 3 and 4
	6	Sometimes, the SRS document is the official …	YES	Issue 2, 3 and 4
	7	Sometimes, the review of software code is …	NO -related to static V&V techniques	-
	8	According to the "To Be" process, the unit test …	YES	Issue 2
	9	Sometimes, the unit test of a software …	YES	Issue 2
	10	When testing a software component …	YES	Issue 4
	11	The present definition of a software requirement …	YES	Issue 2
	12	In validation test and after selecting an …	YES	Issue 4
	13	For each software component or product under …	YES	Issue 3
	14	The test cases designed by engineers do not …	YES	Issue 3
	15	Presently, the test cases for a software are …	YES	Issue 3 and 4
	16	When describing a bug in the problems'tracking …	YES	Issue 2 and 3
	17	There are no advanced (formal and automated) …	YES	Issue 3
	18	Currently, test engineers use different formats …	YES	Issue 3

Issue 1 is not in the scope of our research Introduction

standard definition of validation is: "Are we building the RIGHT product?"

  The verification part of V&V comes before validation and incorporates software inspections, reviews, audits, etc. During the verification, the work product (the ready part of the software being developed and various documentations) is reviewed / examined by one or more persons in order to find and point out the bugs in it. The verification helps in prevention of potential bugs. e.g. a software product must do what the customer expects it to do. The software product must functionally do what it is supposed to, it must comply with any functional requirement set by the customer. Validation occurs at the end of the development process in order to determine whether the product complies with specified requirements. Validation starts after verification ends (after coding of the product is completed). Testing methods are basically carried out during the validation.

	The

•

  Automotive engineers are not familiar with proof techniques contrary to aeronautic or defense engineers. Software testing is a widespread V&V technique in automotive industry. • Proof techniques are not widely used in automotive industry (carmakers and Johnson

4: Software testing (IEEE Std. 610-1990, IEEE Std. 829-1998)

  However, several different definitions have been given for the software testing technique. Some of them are listed below. In this dissertation, we adopt the definition proposed by the National Institute of Standards and Technology (NIST).Software testing is the process of applying metrics to determine product quality. Software testing is the dynamic execution of software and the comparison of the results of that execution against a set of pre-determined criteria. "Execution" is the process of running the software on a computer with or without any form of instrumentation or test control software being present. "Predetermined criteria" means that the software's capabilities are known prior to its execution. What the software actually does can then be compared against the anticipated results to judge whether the software behaved correctly. Software testing is a widespread V&V technique in automotive industry.

	Definition 4.2: Software testing (NIST 2002)
	Definition 4.3: Software testing (Myers 1979)
	Software testing is the process of executing a program or system with the intent of finding
	errors.
	Definition 4.

B. Beizer,

(Beizer 1984) 

"Reliable Object-Oriented software cannot be obtained without testing." -R.V. Binder Binder,

(Binder 1995) 

"The importance of software testing and its implications with respect to software quality cannot be overemphasized.

[...] 

It is not unusual for a software development organization to expend between 30 and 40 percent of total project effort on testing. In the extreme, testing of human-rated software (e.g. flight control, nuclear reactor monitoring) can cost three to five times as much as all other software engineering activities combined!" R.S. Pressman,

(Pressman 1997) 

  : black-box test and white-box testing. Black-box test, a term most likely borrowed from electronic engineers, involves treating software component or product as a black-box (like an electronic component) to which input can be supplied and from which the corresponding output can be collected and observed, but whose inner intermediate workings of the software cannot be seen. White-box test does allow one to observe the internal workings of the software and to make use of its structural information to adapt or drive the testing process. Functional test case design can (and should) begin as part of the requirement specification process. Even if the source code of a software is not already developed, one can design functional test cases for this software based on the software functional requirements. Moreover, functional test is effective in finding some classes of bugs that typically elude structural test techniques. Functional test techniques can be applied to any description of program behavior, from an informal partial description to a formal specification and at any level of granularity, from software component to product testing.Since, functional test aims at finding any discrepancies between what a software does and what it is intended to do, one must obviously refer to requirements as expressed by users and specified by software engineers. An important side effect of test design is highlighting weaknesses and incompleteness of software functional requirements. A survey on the formalism degree of the software functional requirements is performed in Section 4.D.1. Even expert test engineers can miss important test cases. Systematic processes amplify but do not substitute for skills and experience of the test engineers. In a few cases, functional test can be fully automated. This is possible for example when requirement specifications are expressed in a formal language (for instance, a grammar or an executable model). This approach is known under the name of formal testing or model-based testing and has been described byApfelbaum and Robinson in (Apfelbaum 1997, Robinson 1999). The authors highlight the approach's advantage of guaranteeing a good and formal coverage of the requirements specification. In fact, the test engineers' job is limited to the choice of the test selection criteria, which defines the strategy for generating test cases. Several experiments have been performed in testing using formal specifications. A good summary of these experiments has been done byGaudel and El-Far in (Gaudel 1995, El-Far 2001).b. Structural or white-box or program-based testAccording to Beizer (Beizer 1995), test cases for structural test are derived from the code of the software under test. In fact, the structure of the software itself is a valuable source of information for selecting test cases and determining whether a set of test cases has been sufficiently thorough. We can check whether a test case has covered a specific part of the program. In fact, testing can reveal an error only when the execution of the corresponding erroneous items causes a bug. For instance, if there were an error in the line N of the program, it could be revealed only with test cases that would cause this line to be executed. Based on this observation, a program has not been adequately tested if some of its items have not been

a. Functional or black-box or specification-based test According to Beizer

(Beizer 1995)

, test cases for functional test are derived from the functional specification of the software product under test, apart from the code. The criterion of correctness is the functional specification of the software under test: program behaviors are compared to those required by the specification. The goal is to select test cases that cover each requirement described by the functional specification. Functional test is typically the base-line technique for designing test cases, for a number of reasons. Designing functional test cases is an analytical process which decomposes requirement specifications into test cases. In most cases (as in Johnson Controls), functional test is a human intensive activity. For instance, when test engineers work from informal specifications written in natural language, much of the work is in analyzing the specification for identifying test cases. executed. An item could be a line of code, decision, condition or procedure (Cf. Chapter 2 -Section 6.A.1). Unfortunately, a set of correct program executions in which all structural items are exercised does not guarantee the absence of errors. Execution of an erroneous item may not always result in a bug. The state may not be corrupted when the item is executed with some data values, and a corrupted state may not propagate through execution to eventually lead to a bug. Many software researchers

  The usage chain is a model of ideal testing of the software; e.g. each arc probability is established with the best estimate of actual usage, and no failure states are present. The testing chain, on the other hand, is a model of a specific test history, including bug data. Thus, the usage chain represents what would occur in the statistical test in the absence of bugs, and the testing chain represents what has occurred.

on our industrial audit (Cf. Diagnosis 2, 5, 6, 8, 9, 11 and 16), the stopping criterion used when testing unitarily a software component is the 100% coverage of the component source code. Sometimes, for time and budget reasons, test engineers stop testing a component even if the 100% code coverage is not reached. In validation test, the criterion to stop testing a software product is to cover at 100% the related carmaker requirements. These requirements are documented in the SRS document, a large document difficult to manage, incomplete and not regularly updated. Moreover, there are no standards to specify software requirements and test engineers have to adapt their coverage practices to each requirement's formalism. Finally, the present definition of a software requirement is not enough refined. In fact, one requirement can hide two or more implicit requirements. Therefore, inexperienced validators could miss testing some of the carmaker implicit requirements. Based on the literature review, we consider that ensuring a 100% code coverage is a necessary quality objective when testing a software. Nevertheless, we propose to formalize the measurement of the requirement coverage. To do this, one has to specify the requirements using a formal language. Moreover, we suggest integrating project constraints (test time and cost) in the decision to stop testing a software product.

  ). However, the coverage measurement criteria are specifics for each formalism of formal specification. Now, in Johnson Controls, the code coverage is formally used when testing unitarily each software component. Moreover, in validation test, test engineers have to ensure a 100% coverage of the software functional requirements. In Chapter 2 -Section 4.A, we show that semi-formal and formal methods are more and more used to specify software functional requirements in automotive industry but there is not a unique standard formalism shared between carmakers and suppliers. As an indirect consequence and even with formal specifications, test engineers still measuring the requirement coverage using the tradition manual approach presented in Chapter 2 -Section 6.B.1.

	Based

  To cut down cost of manual test case design and to increase reliability of it, researchers and practitioners have tried to automate it. Many managers today expect test design automation to be a silver bullet; killing the problems of test scheduling, the costs of testing, defect reporting, and more. However, there are many factors to consider when planning for test design automation. It usually has broad impacts on the organization such as the skills needed to design and implement automated tests, automation tools, and automation environments. Development and maintenance of automated tests is quite different from manual tests. The job skills change, test approaches change, and testing itself changes when automation is installed. These impacts have positive and negative components that must be considered. Automation is only a means to help accomplish our task -testing a product. It may reduce staff involvement during testing, thus saving time relatively to manually designing test cases. But, automatic test design may generate a bunch of results that can take much more staff involvement for analysis, thus costing more than manual test design. Often the information obtained from automatic test generation is more cryptic and takes longer to analyze and isolate when bugs are discovered. In fact, successful test automation efforts don't focus on eliminating the test team, they focus on doing a more effective and efficient job of testing with the human resources available. Automatic test generation can be incredibly effective, giving more coverage. It also provides us with opportunities for testing in ways impractical or impossible for manual testing. Indeed, automatic test design can generate millions of test cases limited only by the machine power and time available for running the tests. However, Black (Black

  the author uses attributes values like Education, Oversight, Communication, Tools and Transcription for an attribute Cause. Freimut in(Freimut 2001) has proposed a list of quality properties of a good bug classification scheme:• Orthogonal attributes and orthogonal attributes values: This means that for a particular bug and for each attribute only one attribute value is appropriate. If the attribute values are not orthogonal, it may happen that two or more attribute values may fit so that the engineer has arbitrarily to decide which value to assign. This leads to inconsistent and unreliable data.• Complete attribute values: The set of attributes value must be complete so that for all bugs an appropriate attribute value can be selected. If the set of values are not complete, engineer may decide not to classify the bug or select the nearest possible value.• Small number of attribute values: The scheme must contain a small number of attributes values, as too large a number can make selection of the appropriate attribute value difficult and therefore unreliable. • Clear meaning and definition of attributes and attribute values: The attributes and attribute values of the scheme need a clear definition. This definition has to be developed with all engineers who have to use the attributes and need an understanding of the attribute.

	In (Leszak 2000), the author uses different attributes capturing different kind of
	causes: Human-related Causes (lack of knowledge, communication problems …),
	Project Causes (time pressure, management mistake) and Inspection Causes (no or
	incomplete inspection, inadequate participation …).
	• Severity: what is the severity of the bug? Severity describes the severity of a resulting
	or potential failure on the whole behavior of the product.
	• Cost: How much the bug cost the company? Cost captures the time or effort to locate,
	isolate and correct an error.

Bug classification scheme often have problems including incomplete, ambiguous and overlapping attributes and attribute values. To prevent such problems, a bug classification scheme needs to be well defined.

Table 4 .3 -Classification of the specification languages (Fraser 1994)

 4 In fact, we cannot talk in detail about all the specification languages. In(Davis 1988), the author discussed a variety of informal, semi-formal and formal languages useful for testing. In the Section 4.D, we propose to develop a simulation model of the software functional requirements in order to automate the test oracle and formalize the measurement of the requirement coverage. Only formal languages could be used to simulate software functional

requirements (Cf. Table 4.1)

. Therefore, we focus our research on the most useful (according to the literature) formal languages: Finite State Machines (FSM), Statecharts, Markov Chains and Decision Tables (DT

  • Automate the assessment process of all the expected outputs values by developing a simulation model of the software functional requirements. In fact, test engineers could perform the selected operation on the requirements model and assess the output values automatically by simulating the model. Moreover, once developing a simulation model of the software requirements, one could formally measure the requirement coverage.

Based on our proposals, in the following four chapters

(Chapter 5, 6, 7 and 8)

, we start specifying our approach to improve the global performance of the Johnson Controls V&V activities. Firstly, we develop a new simulation model of the software functional requirements. Secondly, we provide methods and tools to verify and validate the requirements model. Thirdly, we propose to monitor the generation of test cases by quality objectives and cost constraints. And finally, we suggest refining the operation space description with the driver behavior's profile, past bugs and test cases.

  Indeed, a test is meaningful only if it is possible to decide about its outcome. In case of an informal or a semiformal representation of functional requirements, the assessment of the expected values on output signals is always a human being (Cf. Chapter 2 -Section 6D, as in Johnson Controls).

	Based on the study performed in Chapter 2 -Section 4.A, some
	carmakers still use semi-formal and informal methods, but most of them start using formal
	methods (simulation models). Incompleteness and ambiguity are the main characteristics of
	informal and semi-formal methods (Cf. Chapter 4 -Section 4.D.4). More than 30% of the

bugs detected on a software product are related to lacks in and incomprehension of software functional requirements (Johnson Controls source). In fact, when designing test cases for the validation test, test engineers should assess the expected values to be checked on the output signals of the software product under test (Cf. Chapter 4 -Section 4.D).

Graphical illustration of our unified formal model to represent software functional requirements

  Int) signals with discrete domains. These signals interconnect the features (F) of the functionality and each feature is composed from one or more requirements of the same type. Based on our study of the carmakers' requirements related to software (Cf. Chapter 2 -Section 4.A) and the literature review on modeling software specifications(Davis 1988, Apfelbaum 1997, Robinson 1999), we identify two types of software functional requirements:• combinatorial (Cf. Figure 5.1) if the values of the requirement output signals at instant t (O_Req t ) depend on the sole values of the requirement input signals at instant t (I_Req t ). Figure 5.2) if the values of the requirement output signals at instant t (O_Req

	A.	Typology of software functional requirements
	Each software functionality has a set of configuration (Config), input (I), output (O) and
	Advantages Avoid contradictions, ambiguities, and incompleteness in the software specifications Automatically Check consistency, correctness and completeness of software specifications Automatically generate code for software intermediate (Figure 5.1 -"Combinatorial" functional requirement Drawbacks Lack of methodological and support tool Lack of familiarity with discrete mathematics and symbolic logic that most practicing software engineers do not currently have Inappropriate tool for communicating with I_Req O_Req • Sequential (Cf. Req O_Req t = f(I_Req t )
		product		the end user during the earlier
				requirements elicitation and confirmation
				stages
		Automatically generate test cases for	Need to verify and validate the developed
		software functional testing	I_Req	model. Indeed, we have to proove the conformity between carmaker Req O_Req
				requirements and the developed model
		Reduce development cost and time O_Req t = f(I_Req t , O_Req t-1 )
		Easy maintenance	

t ) not only depend on the values of the requirement input signals at instant t (I_Req t ) but also on the values of the requirement output signals at instant t-1 (O_Req t- 1 ).

Figure 5.2 -"Sequential" functional requirement In Figure 5.3, we provide a graphical illustration of our unified functional requirements model. This example is the functional requirements model of a software functionality which has 1 configuration signal, 3 input signals, 4 output signals, 5 intermediate signals and 4 features. Configuration signals allow to parameterize the software functionality (for instance, by activating or deactivating one feature). Input signals could be switches, sensors or car environment variables (for instance, the vehicle speed signal). Output signals could be actuators or any type of command (for instance, the wiper motor command signal). Finally, intermediate signals allow to manage and share data between two or more features.

Figure 5.3 -

Table element

 element 

				« Auto_Light »	
	Config1=Auto_Light_Config						
	Config2=Follow_Me_home_Config				Feature 3	
	Config3=Follow_Me_home_Calib					FSM 1	
		I1=Reset							O1=Head_Lamp
	I2=Luminosity_Sensor	Feature 1	Int1=Luminosity_Level	
			DT 1					O2=Tail_Lamp
		I3=Car_Locked	Feature 2	Int2=Follow_Me_Home_Activate
		I4=Ignition	DT 2				
	I5=Light_Combi_Switch						
			Feature 1 -DT 1		
		Carmaker req ID	Our model req ID	Conditions	DT1 INPUTS I2	Actions	DT1 OUTPUTS Int1
		Req1.4	Req1.4	C1		=0	→ A1	=0
	I2= Luminosity_Sensor	Req1.1 Req1.1 Req1.2	Req1.1.1 Req1.1.2 Req1.2.1	C2 C3 C4		=1 =2 =3	→ A2 → A3 → A4	=1 =1 =2	Int1= Luminosity_Level
		Req1.2	Req1.2.2	C5		=4	→ A5	=2
		Req1.2	Req1.2.3	C6		=5	→ A6	=2
		Req1.3	Req1.3.1	C7		=6	→ A7	=3
		Req1.3	Req1.3.2	C8		=7	→ A8	=3
		4 carmaker requirements splitted into 8 requirements in our model
			Feature 2 -DT 2			

A graphical illustration of the Finite State Machine element of the Feature 3 is developed in Figure

5

.17. This FSM is not exhaustive. Figure 5.18 details the states, transitions and conditions of this FSM. In fact, the Feature 3 has a sequential behavior since the behavior of the signals O1 and O2 depends not only on the signals Config1, Config2, Config3, I1, I5, Int1

  Conceptual Model Validity is determining that 1) the theories and assumptions underlying the Conceptual Model are correct, and 2) the model representation of the Problem Entity and the model's structure, logic, and mathematical and causal relationships are "reasonable" for the intended purpose of the model. Next, each sub-model and the overall model must be evaluated to determine if they are reasonable and correct for the intended purpose of the model. This should include determining if the appropriate detail and aggregate relationships have been used for the model's intended purpose, and if the appropriate structure, logic, and mathematical and causal relationships have been used. The primary validation techniques used for these evaluations are Face validity and Traces (Cf. Section 2.C for more details on these techniques). Face validity is based on experts' evaluation of the Conceptual Model in order to determine if it is correct and reasonable for its purpose (Problem Entity). This usually requires examining the flowchart or graphical model, or the set of model equations. The use of Traces is the tracking of entities through each sub-model and the overall model to determine if the logic is correct and if the necessary accuracy is maintained. If errors are found in the Conceptual Model, it must be revised and Conceptual Model Validity performed again.

	1.	Conceptual Model Validity

  The Computerized Model is used in Operational Validity, and thus any deficiencies found may be due to an inadequate Conceptual Model, an improperly programmed or implemented Problem Entity (or system) is observable, where observable means it is possible to collect data on the operational behavior of the program entity.Finally, Data Validity is defined as ensuring that the data necessary for model building, model evaluation and testing, and conducting the model experiments to solve the problem are adequate and correct.

Conceptual Model (e.g. due to programming errors or insufficient numerical accuracy), or due to invalid data. All of the Model V&V techniques discussed in Section 2.C are applicable to Operational Validity. Which techniques to use must be decided by the model development team and other interested parties. The major attribute affecting Operational Validity is whether the

Verification and validation of a software functional requirements model R. AWEDIKIAN

  .1. 

	Func	
		Functionality
	Clk	Clock
	Config	Configuration signal
	I	Input signal
	O	Output signal
	Int	Intermediate signal
	DT	
	Inputs Outputs	Decision Table element
	FSM	
		Finite State Machine element
	S	State
	T	Transitions
	Internal Signal	FSM internal signal
		FSM timing signal

Quality of the design of test cases for automotive software: design platform and testing process

Table 6 .1 -Integrity rules for verifying a Computerized requirements Model V. Three possible scenarios to validate a Computerized requirements Model (Operational Validity)

 6 Computerized Model Verification ensures that mistakes have not been made in the computer implementation of the Conceptual Model. It does not ensure the compliance of the computer model with the (original) carmaker requirements. The Operational Validity aims to verify that the computer model behavior has the accuracy required by the carmaker. To do this, computer experiments are conducted on the Computerized Model in the experimentation phase. This is where most of the model deficiencies are detected. Errors may be due to an erroneous Conceptual Model or to programming errors in computerizing the Conceptual Model. In our context, all of the Model V&V techniques discussed in Section 2.C are applicable. Which techniques to use must be decided by the constraints on the system under test but also by the model development team. In fact, we identify three possible scenarios to help modelers validating a Computerized requirements Model (Operational Validity). These scenarios can be used concurrently or separately. Each functionality must have one clock Rule 2 Each functionality must have at least 1 input and 1 output signals Each functionality must have at least one element (a Decision Table or a Finite State Machine)

	Rule #	Rule description
	Rule 1 Rule 3	

A graphical interface generated automatically from a formal specification of the "Front Wiper" software functionality

  Diagnosis 3). However, some existing simulation tools (StateMate 32 , Matlab/Simulink 33 ) are currently used by carmakers and suppliers to simulate software specifications. A graphical interface generated automatically from a formal specification (delivered by a carmaker to Johnson Controls) of the "Front Wiper" functionality is illustrated in Figure 5.6. An engineer can animate this model manually or simulate a set of input data automatically (set values on the input signals) and check the expected behavior of the functionality (check values on the output signals).Once a simulation model of the software functionality under test exists (Cf. Figure6.7), an engineer can choose a set of input data (using techniques such as degenerate tests, extreme condition tests, fixed values, parameter variability -sensitivity analysis) and simulate these data on the "valid" model (model delivered by the carmaker) and on our requirements model in order to verify the validity of our model.

			Modifications
	Carmaker's	Our requirements model	
	test cases		
	TC1 TC2 … TCn TC1 TC2 … TCn TCn TC1 … TC2	Input data	Model output data (by simulation)
				No
			Compare	Equal?	Yes
			Output data
	Figure 6.6 -		(from the test cases)

32 http://www.telelogic.com/products/statemate/index.cfm (Consulted on November 2008) 33 http://www.mathworks.com/products/simulink/ (Consulted on November 2008)

  Step 1: an operation is chosen according to the probabilities on successive operations. In software testing[START_REF] Marre | [END_REF]), this technique is known under the statistical testing technique. Before start generating a test case, the input signals of the requirements model are set to specific values. Therefore, the starting operation of the test case is randomly chosen among the initial operations (initial values of the input signals). Sometimes, the starting operation is chosen in order to favor a specific succession of operations at the beginning of the test case.• Step 2: the inter-operation time is randomly chosen within the time interval of the chosen operation.

	•							
	I1							
	I2							
	I3	{0,14 ; [X ;Y] }	{0,14 ; [X ;Y] }	{0,14 ; [X ;Y] }	{0,14 ; [X ;Y] }	{0,14 ; [X ;Y] }	{0,14 ; [X ;Y] }	{0,14 ; [X ;Y] }
		0.8	0.033+ 0.033+ 0.033+ 0.033+ 0.033+ 0.033 = 0.2
				0.8+0.2 = 1			
					Start			
					Generate a			
					Test Step			
				No	Stopping			
					Criterion			
					Yes			
					End			

  (250 ms) 

		Simulation model & Test Case	Process flow		Operation matrix
								Choose the next
								operation according to
								the probabilities
	Starting values on				
	the input signals				
	{0,1} {1,2,3} {0,1}	I1=0 I2=1 I3=0	Software functional requirements model	O1=0 O2=0	
								Probability=0.14
								Time interval=[200,400] (in millisecond)
				Test Case			
	Test Step No	Test Actions	Expected Results	
	{0,1} {1,2,3} {0,1}	I1=1 I2=1 I3=0	Software functional requirements model	O1=0 O2=0	
				Test Case			
	Test Step No	Test Actions	Expected Results	
		1		I1 = 1 Wait 250 ms				Choose the next operation
						"I1=1" is the last chosen operation	according to the probabilities (generation of the next test step)
							0	1	1	2	3	0	1
	{0,1} {1,2,3} {0,1}	I1=1 I2=1 I3=0	Software functional requirements model	O1=0 O2=1	1	0,14 [200,400]	0,14 [200,400]
						I3	
				Test Case			
	Test Step No	Test Actions	Expected Results	
		1		I1 = 1 Wait 250 ms		O1=0 O2=1	
						End	

Table Clock Finite State Machines coverage Decision Tables coverage Signals domain coverage Operation matrix coverage 1.

 Clock 

	Decision	Element N°4
	Table	Finite
		State
		Machine
	Element N°2	
	Decision	

•

  Indicator 2: Number of test steps in the generated test case. Number of "distinct" test steps in the generated test case. Two test steps are distinct if they perform different operations. Let us consider the test case of the Figure 7.12. The total execution time is 1150 ms (250ms+200ms+300ms+400ms=1150ms, around 19 seconds). The test case is composed from 4 test steps and the number of "distinct" test steps is 3 (Test Step 1 and Test Step 4

	• Indicator 3:	Conditions	Actions
	Covered condition	Signal_1 Signal_2	Signal_3
	Non-covered condition		
		50% of the conditions are covered
		=> Covered transition
	Covered state		
		None of the conditions is covered (0%)
	Non-covered state	=> Non-covered transition

  does not immediately stop the process. We stop only when the aggregated preference, F, defined as:where Os are the coverage objectives, Cs are the normalized time and cost constraints and w i s are weights, attains zero or does not decrease for a certain number of successive generated test steps. This number is one of 8 parameters of the heuristic algorithm used to optimize the objective function (F) when generating a test case. The algorithm and its parameters are described in Section 6. Since the objectives Os are normalized to 100% and in order to have a consistent aggregated preference (F), we normalize to 100% the time and cost constraints (test case execution time, test step number, distinct test step number). These constraints are expressed in millisecond (ms) and in number of generated test steps. We illustrate our normalization process of these constraints through an example. At each time, test engineers decide to set a constraint ci, the normalized target of this constraint C Target (ci) is immediately set to 100%. For instance, once a test engineer decide to generate a test case that the total execution time do not exceed 108000 ms (value set in the panel of quality, time and cost indicators, Cf. Figure7.13), the normalized target of the test execution time constraint is set to 100% (C Let us consider a practical software testing problem in order to illustrate the purpose of our objective function. Through the experience feedback of the software testing experts, some software bugs often occur when a signal is set to its boundaries values. Consequently, test engineers could always decide to generate a test case (a set of test steps) which aims to detect potential bugs related to the boundaries values. Hereafter, we consider the functionality which consists in managing the front wiper in a vehicle. The corresponding software component is made of 1229 Lines Of Code (blank and comment lines excluded), 18 input signals and 8 output signals. We decide to generate a test case fulfilling the following targets and weights in terms of coverage objectives (Cf. Figure7.13):

	Automatic generation of test cases	R. AWEDIKIAN
	B.	A simple example to illustrate our stopping aggregated criterion
		Execution
		Execution -Cover the boundaries input signals at 85% with a weight of 5
		-Cover the boundaries output signals at 85% with a weight of 5
		-Cover the boundaries intermediate signals at 85% with a weight of 5

Quality of the design of test cases for automotive software: design platform and testing process 191 target completed Target (test execution time)= 100%). After generating a set of test steps, the normalized current value of this constraint (C Current (ci)) is assessed by calculating the ratio (current_constraint_value*100/target_constraint_value). In our example, we generate a set of test steps with a total execution time of 21600 ms. Therefore, C Current (test execution time) is assessed to (21600*100)/108000 (C Current (test execution time)= 20%).

  Configurations" of the functionality. In this case, the values of the configuration signals can change from one test step to another within the same test case.

	Test Case Indicators	Progress	Current Target Weight
	Functional (specification) coverage objectives
	Test execution time and cost constraints

On the one hand, test engineers can generate one or more test cases for each specific "Configuration" of the functionality. The configuration signals are set to fixed values all over a test case. On the other hand, test engineers can generate one or more test cases where each test case considers a Execution Automatic generation of test cases R. AWEDIKIAN Quality of the design of test cases for automotive software: design platform and testing process 193 set of predefined "

new test step is generated

  If NO, we check if we already generated successively N2 test steps with no decrease of the aggregated preference F.

			A
		5	Choose an inter-operation time within the time interval
			Inter-operation time
			Simulate the requirements
		6	model and assess the
			expected results
			Test Step
			Assess the current values of
		7	the quality, time and cost
			indicators
			O current and C current
		Yes	Optimize the number of test	No
			steps?
			Yes
		F decrease?	
	4	No	
		N2 trials?	
	Delete the test			If NO, we delete the last generated test step and we
	step and generate a new one			generate a new one
			B	If YES, we keep the last generated test step To be continued …

We assess the current values of the coverage objectives and the execution time and cost constraints Did the test engineer decide to optimize the number of test steps in a test case? If NO, we keep the generated test step If YES, we check if the aggregated preference F has decreased If YES, we keep the generated test step

No Yes Parameter 3 Parameter 4 Automatic generation of test cases R. AWEDIKIAN
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	Process flow	Brief description
		We add the test step to the current test case
	196	

The current test case is updated with a new test step We

  

			B	
		8	Add the generated test step to the test case	
			Test Case	
		No	Yes	
			F objectives = 0 ?	
	4			
	Yes			
		F decrease?		
	Generate a	No		
	new test step			
	No	Parameter 5		
		Last N3 Test Steps?		
		Yes		
		Yes	different configurations? Cumulate the coverage of Parameter 6	No	different "Configurations" in order to reach the targets on the Did the test engineer decide to cumulate the coverage of
					coverage objectives?
		C		D
					If YES, follow C
					If NO, follow D
					To be continued …

check if the "set" coverage objectives have reached their targets (F objectives =0) If YES, we stop generating test steps for the current test case If NO, we check if the aggregated preference F has decreased If YES, we generate a new test step for the current test case If NO, we check if the aggregated preference F have not been decreased with the N3 last test steps of the current test case If NO, we generate a new test step If YES, we stop generating test steps for the current test case

•

  Parameter 4: In order to optimize the number of test steps in a test case, we check if a generated test step decreases the aggregated preference F. In case of no decrease of F, we propose to delete the test step and generate a new one. However, we have to avoid the non-stop loop in the algorithm. The Parameter 4 specifies the maximum number of unsatisfied trials (N2) before the algorithm exists the loop. • Parameter 5: In case of generating one or more test cases for each specific "Configuration" of the functionality, this parameter allows to stop generating test steps for each test case. In fact, we check if the aggregated preference F has not been improved on the last (N3) test steps of the current test case. If it is the case, we stop generating test steps. It not, we continue generating test steps. • Parameter 6: Test engineer can generate one or more test cases where each test case

  Chapter 2 -Section 7.C). The studied functionality has 7 features, so we classified these bugs by project and by feature(Cf. Figure 2.22). We also classified these bugs by project and by type of problem(Cf. Figure 2.23). In fact, we only consider 4 types of problem(Beizer 1990, Chillarege 1992[START_REF] Grady | Practical Software Metrics for Project Management and Process Improvement[END_REF], IEEE Std. 1044[START_REF] Musa | Operational Profiles in Software-Reliability Engineering[END_REF]: code implementation, control flow, data and processing. A full typology of software bugs is described in Section 5.B. The conclusions which were validated by Johnson Controls software experts are 1) engineers have the tendency to make errors in implementing the same features of a functionality (Feature 1, 3 and 7) and 2) these errors are related to the same types of problem (Control flow and processing). As a consequence and when testing a functionality, we propose to reuse related stored bugs in order to generate test cases which verify the nonexistence of recurrent bugs. To do so, test cases must be generated from "operation matrices" where the successions of operations that reveal the recurrent bugs are favored. Moreover, classifying the recurrent bugs of a functionality (by feature and/or by type of problem) could help the test engineers to better focus the generation of test cases on critical features or on specific types of problem. More details on reusing stored bugs are provided in Section 5.Using capitalized test cases seems to be beneficial in automotive context since more than 50% of functionalities performed by software products are common to any series of cars (Johnson Controls source). Moreover, test cases management and reuse are considered as one of the main characteristics of a mature software organization. Therefore, when testing a functionality that we already implemented in the past on another project, it is judicious to reuse existing test cases. To do so, we propose to analyze test cases developed in the past for the same functionality and design "operation matrices" where the operation space is reduced by focusing on the test scenarios based on our returns of experience. Test cases generated from these "operation matrices" contain similar successions of operations as in the one designed manually or generated automatically in the past. More details on reusing capitalized test cases are provided in Section 6.

	bugs), 2003 (4 bugs), 2003 (13 bugs) and 2007 (22 bugs) (Cf. C. Focusing on specifics operations recurrently done by the test engineers
	on previous projects
	We performed in 2007 a study on 70 software bugs detected on the same functionality
	developed in Johnson Controls for 5 different projects respectively in 1997 (27 bugs), 2001 (4

  This constraint forbids that an input signal switches between inadequate values from a use point of view. In order to illustrate this constraint, let us consider the input signal I1, which has a domain D(I1)={0,1,2,3}. We classify input signals into two types: Acyclic (Cf. Figure8.1): Input signal I1 is acyclic if, at any moment, all the operations (I1=0 or I1=1 or I1=2 or I1=3) on the signal are possible. A practical example of an acyclic signal is the rain intensity signal measured via a sensor. When it is raining so hard (I1=3), it can stop raining (I1=0) at any moment without a decrease of the raining intensity (I1=3 → I1=2 → I1=1 → I1=0). Input signal I1 is cyclic if the future operation (I1=0 or I1=1 or I1=2 or I1=3) on the signal depends on the one did in the past. A practical example of a cycle signal is the wipers' switch signal. When wiping at a high speed (I1=3), user cannot immediately switch off the wipers (I1=0) via the switcher. In fact, she/he must progressively slow down the wiper speed until the complete stop (I1=3 → I1=2 → I1=1 → I1=0).

	Figure 8.1 -Acyclic signal
	Cyclic (Cf. Figure 8.2): Figure 8.2 -Cyclic signal

Table 8 .2 -Instructions to generate test cases able to detect one specific type of software implementation problems

 8 injected in and detected by each phases of the software development life cycle. Therefore, improvement actions on the design phases (develop new design or development rules …) and on the V&V phases (develop new code review rules, a new testing strategy…) can be performed. The first-level typology of software problems is not enough detailed and the improvement actions that can be raised from will not be enough efficient. For instance, after analyzing a set of bugs related to Specification Update problems, one engineer can note that the total number of these bugs is injected in Specification System and Specification phases and few of them are detected in Specification Review phase. As a conclusion, the Specification Review process has to be improved. However, it is a vague action. Engineers need to know what they have to improve in the review process. Are the requirements unclear? Incorrect? Do the requirements change often? … We work in collaboration with software experts in order to define the second-level software problem typology. Based on the literature review(Beizer 1990, Chillarege 1992[START_REF] Grady | Practical Software Metrics for Project Management and Process Improvement[END_REF], IEEE Std. 1044[START_REF] Musa | Operational Profiles in Software-Reliability Engineering[END_REF] and taking into account the automotive and industrial context, we propose in Appendix E a detailed typology of problems. Through our research project, a new approach to generate test cases automatically for a functionality is proposed. The generated test cases have the responsibility to detect all the bugs injected during the Implementation phase of the source code. Analyzing the bugs injected during the Implementation phase of the same functionality on previous projects allows test engineers to better parameterize the generation of test cases. Instructions to generate test cases able to detect one specific type of software implementation problems (Cf. Appendix E) are listed in Table 8.2.

	The generated
	"Test Cases"

Can this type of problem be detected by test cases? Instructions when generating test cases in order to detect this type of problem

  

	VI.	Reuse of existing	
				Cover at 100% the input signals domain,
				output signals domain, intermediate signals
		Data definition, structure, declaration	YES	domain Cover at 100% the inputs boundaries
				domain, outputs boundaries domain,
				intermediates boundaries domain
				Cover at 100% the input signals domain,
		Data access and handling	YES	output signals domain, intermediate signals
				domain
				Cover at 100% the code conditions and
		Control flow and sequencing	YES	decisions Cover at 100% the FSM transitions and
				conditions
				Cover at 100% the input signals domain,
				output signals domain, intermediate signals
		Processing	YES	domain Cover at 100% the code procedures
				Cover at 100% the DT conditions
				Cover at 100% the FSM states
		Coding and typographical	YES	Cover at 100% the code statements
		Standards violation	NO, code review or other V&V techniques	---
		Documentation	NO, code review or other V&V techniques	---

test cases from previous projects

  Test cases on previous projects are versioned by software functionality and stored in a database. But unfortunately, these test cases are not always reused from one project to another. Two main reasons are identified (Cf. Chapter 2 -Section 8): 1) the use of different formats when designing manually test cases. Sometimes, test engineers write the test cases immediately in a computer language (C language, test script) understandable by the test execution platform. Others use the test case format presented in Definition 2.11. 2) the lack of an automated process to reuse these test cases. However, one initiative was launched two years ago and had the purpose to create manually "Standard Test Cases" for software validation (Cf. Chapter 2 -Section 8). This is a conventional RETEX (RETurn of EXperience) strategy and the main difficulty of such an approach is to keep these test cases updated. Two years after, it is not the case.Through our research project, we adopt the test case format presented in Definition 2.11 as the standard format to represent a test case. Our proposal to reuse existing test cases on previous projects is based on this assumption. When testing a functionality, test engineers could select from previous projects all the test cases related to the functionality under test. A glossary of the input signals names on the previous and current projects is necessary. Then, for each test case (independently from the length of the test case), an "operation matrix" is generated automatically. This "operation matrix" has high probability on the successive operations regularly done in the test case. It also contains the set of inter-operation time used between each couple of operations. Consequently, when generating test cases from these "operation matrices", we reduce the operation space by focusing on the test scenarios based on our returns of experience. Domain = {0, 1}). This functionality was already developed on a previous project in 2005 and one test case has been designed. Therefore, when testing the same functionality on a project in 2007 (2 years after), a test engineer selects from the database the test case already designed in the past (2005) for this functionality. Each test case can be translated automatically into an "operation matrix"(Cf. Figure 8.10). The test cases generated from this "operation matrix" (Cf. Figure8.10) focus on specific test scenarios that test engineers have judged critical to perform in the past.

	Let us consider a practical example of a functionality with 3 input signals (I1, Domain = {0,
	1}; I2, Domain = {1, 2, 3}; I3, Domain = {0, 1}) and 2 output signals (O1, Domain = {0, 1};
	O2, Figure 8.10 -

Process of reusing test cases capitalized on previous projects

  

		Test Case
	Test	Test Actions	Expected Results
	Step No		
			Test Step No	Test Actions Expected Results
			1	I1 = 0 Wait 100 ms	To be filled by simulating the requirements model
			2	I3 = 0 Wait 200 ms	To be filled by simulating the requirements model
			3	Wait 350 ms I1 = 0	To be filled by simulating the requirements model
			4	I2 = 2 Wait 200 ms	To be filled by simulating the requirements model
			5	I3 = 1 Wait 400 ms	To be filled by simulating the requirements model
			6	I2 = 3 Wait 400 ms	To be filled by simulating the requirements model
			7	I1 = 1 Wait 100 ms	To be filled by simulating the requirements model
			…	…	…

  Firstly, we specified four types of constraints that test engineers can set on the input signals of the functionality under test in order to favor or avoid specific successions of operations. Secondly, we developed a new "Problem description" format to capitalize the initial conditions and the successive operations that lead to a bug. Based on this new format, tester engineers can generate automatically one or more test cases from each capitalized bug.

role-tool" view of our approach

  In Chapter 2 -Section 6, we describe how Johnson Controls test engineers currently design test cases for software products. They proceed to a manual design of test cases. The performance of the design is mainly based on their experience. In Chapters 5, 6, 7 and 8, we develop our new approach to design test cases automatically. A functional view of our approach is presented in Figure9.1. It is based on eight activities. These activities are:1. Design a simulation model of the software functional requirements of the functionality under test (Cf. Chapter 5). 2. Verify and validate the requirements model (Cf. Chapter 6). 3. Define some behavioral characteristics of a car driver when using the functionality under test (Cf. Chapter 8). 4. Perform a statistical analysis on bugs detected in the past on the functionality under test (Cf. Chapter 8). 5. Perform a statistical analysis on test cases developed (in the past) on the functionality under test (Cf. Chapter 8). 6. Highlight the relevant, critical and mandatory operations and succession of operations to be chosen from the operation space of the functionality under test (Cf. Chapter 8). 7. Automate the design of test cases from the requirements model (Cf. Chapter 7). 8. Monitor the design of test cases by quality objectives and time and cost constraints (Cf. Chapter 7).Our approach presents a much different workflow for designing test cases than the present one. The new workflow is presented in Figure9.2. It is composed from seven processes which are manual, semi-automatic or automatic and managed by different individuals (experts, modelers and test engineers).
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process-role-tool" view of our approach

  

	Software functional		
	requirements of the functionality under test	Requirements model
			« Auto_Light »
		Config1=Auto_Light_Config	
		Follow_Me_home_Config		Feature 3
		Follow_Me_home_Calib		FSM 1
		I1=Reset		O1=Head_Lamp
		I2=Luminosity_Sensor	Feature 1	Int1=Luminosity_Level
			DT 1	O2=Tail_Lamp
		I3=Car_Locked I4=Ignition	Feature 2 DT 2	Int2=Follow_Me_Home_Activate
		I5=Light_Combi_Switch	
		Constraint 1
	Driver	Constraint 2
			…
		Constraint n
			"Bugs"
	Bugs reuse process		operation
	Bugs' database		matrices
	Bug 1		
	Bug 2		
	… Bug n			Test Cases
	Test cases'		
	database			Parameters	Objectives and
	Test Case 1 Test Case 2			constraints
	…		
	Test Case n		
	Related to the		
	functionality under test		

profile definition process Test cases reuse process

  

	Problems analysis and model correction
	Modeling process	
		Model
		problems
		Model verification and
	Use of the functionality	validation process
	under test	"Driver profile"
		constraints
		Test Cases
		Generation
		tool
		Test case generation
		process
		"Test Cases"
	Test Cases	operation matrices
	Reuse tool	
		Manual
		Manual
		Automatic

Bugs Reuse tool Modeler One or more experts One or more experts One or more experts Modeler Test engineers

  

	Simulation
	results

  In Chapter 8 -Section 6, we adopt the test case format defined in Definition 2.11. Based on this format, we develop an Excel Macro able to analyze a test case and generate the corresponding "operation matrix" (Cf. Figure9.4). In this matrix, the operation space is reduced by focusing on the test scenarios based on the returns of experience. Test cases generated from this "operation matrix" contain similar successions of operations as in the one designed manually or generated automatically in the past. A glossary of the input signals names on the previous and current projects is also necessary. The Macro has been developed in Visual Basic language.

		I1=1
	Initial values on input signals	I2=1
		I3=0
	1st operation	I1=0
	Inter-operation time (ms)	50
	Expected values on outputs	O1=0; O2=0
	Observed values on outputs	O1=0; O2=0
	2nd operation	I1=1
	Inter-operation time (ms)	200
	Expected values on outputs	O1=0; O2=0
	Observed values on outputs	O1=0; O2=0
	3rd operation	I2=2
	Inter-operation time (ms)	100
	Expected values on outputs	O1=1; O2=0
	Observed values on outputs	O1=1; O2=0
	4th operation	I3=1
	Inter-operation time (ms)	800
	Expected values on outputs	O1=1; O2=1
	Observed values on outputs	O1=1; O2=1
	5th operation	I1=0
	Inter-operation time (ms)	200
	Expected values on outputs	O1=0; O2=1
	Observed values on outputs	O1=0; O2=1
	6th operation	I1=1
	Inter-operation time (ms)	300
	Expected values on outputs	O1=1; O2=1
	Observed values on outputs	O1=1; O2=1
	7th operation	I3=0
	Inter-operation time (ms)	150
	Expected values on outputs	O1=1; O2=0
	Observed values on outputs	O1=1; O2=1

  use the UML editor of Rational Rose (Rational Rose Modeler tool ) in order to perform a global design of the Test Case Generation tool. A simplified class diagram with all the classes of the tool is shown in Figure 9.5. Two groups of classes are identified. The first one is related to the design of the requirements model. The second one deals with the generation of test cases. The detailed diagram with the attributes and methods of all the classes and the types of relations between classes is not presented here for confidential reasons.37 http://msdn.microsoft.com/fr-fr/visualc/default.aspx (Consulter on November 2008) 38 http://www.uml.org/ (Consulter on November 2008) 39 http://www-01.ibm.com/software/awdtools/developer/datamodeler/ (Consulter on November 2008)

12 -The test generation toolbox of the Test Case Generation tool

  each test case in a test step by test step manner. Indeed, after each test step generation, the test generating process is stopped. When designing a test step and after choosing an operation and an inter-operation time, the "period by period" mode stops the model simulation (in order to assess the expected outputs) at each period of the Clock signal. Finally, the "feature by feature" mode stops the simulation after each feature simulation. We are conscious of the number of parameters (coverage objectives, constraints, optimization parameters …) required to set our approach. In Chapter 10 -Section 8, we propose two strategies to help test engineers parameterizing the generation of test cases.optimize the number of test steps by keeping only the ones which contribute to the objectives fulfillment (Parameter 3 = 1, Parameter 4 = 10, Cf. Chapter 7 -Section 6). After 10 generated test steps with no improvement in the objectives fulfillment, the corresponding test case must be ended (Parameter 5 = 10, Cf. Chapter 7 -Section 6). And finally, one decides to generate 5 separate test cases in order to choose the "optimal" one (Parameter 8 = 5, Cf. Chapter 7 -Section 6). Since Parameter 6 is equal to 0, Parameter 7 has not to be defined (Cf. Chapter 7 -Section 6.B). A screenshot of the Test Case Generation tool after generating the test cases for the previous exercise is presented in Figure9.13. The generated test cases and their reached objectives are stored in an Excel file. In case the execution of the test cases on the software product under test is automatic, the generated test cases can be translated into a computer language understandable by the test execution platform (Cf. Appendix C). Moreover, while simulating a simulation plan on a requirements model or generating test cases from a requirements model, one can visualize in real time the covered zones of the model (Cf. Chapter 7 -Section 4.B). In fact, the Test Case Generation tool highlights the covered zone of the model (Signals domain, Conditions of Decision Tables, States, Transitions and Conditions of Finite State Machines and Operation matrices). After generating a set of test cases from the computerized requirements model presented in Figure 9.7 the covered zones of this model are illustrated in Figure 9.14.

	Prototype implementation	R. AWEDIKIAN
	C Clock // Attributes // Methods CFuncVariable // Attributes // Methods Generate the test cases fulfilling the CFeature // Attributes // Methods CVariable // Attributes // Methods Requirements model classes CFSMFeature // Attributes // Methods CDTFeature // Attributes // Methods predefined objectives and constraints Generate "step by step" the test cases fulfilling the predefined objectives and constraints After choosing a new operation and inter-operation time, simulate the model "period by period" After choosing a new operation and inter-operation time, simulate the model "feature by feature" Parameters of the optimization algorithm consists of generating Figure 9.Let us consider the example of the Chapter 5 -Section 5. After computerizing and verifying COpMatrix // Attributes // Methods CTestCase // Attributes // Methods CStopCriteria // Attributes // Methods CTestStep // Attributes // Methods Test Generation classes Test Case generation tool Objectives and Constraints (Cf. Chapter 7 -Section 5) (Cf. Chapter 7 -Section 6)	CFSMState // Attributes // Methods CFSMTransitio // Attributes // Methods CDTCondition // Attributes // Methods Association Composition association CCondition // Attributes // Methods CAction // Attributes // Methods Inheritance relationship Legend
	the requirements model (Cf. Figure 9.7), one decides to generate the Nominal 1 and 2	
	"operation matrices" (Cf. Figure 9.8). For a specific "Configuration" of the functionality	
	"Auto_Light" under test (Parameter 6 = 0, Cf. Chapter 7 -Section 6), one decides to generate	
	test cases that covers at 100% the domain of all the input, output and intermediate signals	
	(coverage objectives, Cf. Chapter 7 -Section 4 and 5). Nevertheless, the length of these test	

cases must not exceed 50 test steps (time and cost constraints, Cf. Chapter 7 -Section 4 and 5). The test cases must be generated from the Nominal 2 "operation matrix". When generating the test cases, one decides to avoid already covered successions of operations (Parameter 1 = 1 and Parameter 2 = 30, Cf. Chapter 7 -Section 6). One also decides to Quality of the design of test cases for automotive software: design platform and testing process 239 Figure 9.13 -A

screenshot of the tool after generating test cases for the Chapter 5 -Section 5 example
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14 -A screenshot of the tool while highlighting the covered zones of a requirements model
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Table 10 .2 -Characteristics of the two software modules developed respectively for the two functionalities under experiment

 10 Each software module delivered to the validation team (first version) is considered to be verified and validated independently from its environment (other software modules). This means that a code review, a static and dynamic analysis and a unit test (Cf. Chapter 2 -Section 5) have been performed on each module delivered to the validation team. Unfortunately, at Johnson Controls, bugs detected during these V&V phases are often not capitalized in the problems' database (Cf. Chapter 2 -Section 7.A). Once a bug is detected, it is corrected immediately by the person who detects it. Moreover, in Johnson Controls, these phases mainly focus on answering the question: "Are we building the product RIGHT?" and not on: "Are we building the RIGHT product". In other words, the compliance with the carmaker requirements are not verified on the software modules delivered to the validation team. Presently, when testing unitarily a software module, the main purpose of a test engineer is to cover at 100% the source code of the module (Cf. Diagnosis 8). The validation team integrates the set of modules (already tested unitarily) planned for the carmaker delivery and Chapter 2 -Section 5.C and 5.D). During the validation test, test engineers design manually test cases in order to demonstrate the compliance of the whole software product (integration of at least two software modules) with the carmaker requirements (Cf. Chapter 2 -Section 6). Bugs detected by inner engineers during the validate test stage (before the delivery) and by the carmaker engineers (after the delivery) are capitalized. The distributions of bugs related to the internal behavior of the two functionalities are illustrated in Figure10.1. Until the last carmaker delivery, 22 bugs were detected on the software module of the front wiper functionality and 23 bugs on the one of the fuel gauge functionality. These bugs were detected, on the two functionalities, before (validation test) and after (carmaker test) the carmaker deliveries. Unfortunately, we do not have any information on the bugs detected during the other Johnson Controls V&V activities (code review, unit test …). In fact, after analyzing the total number of the bugs of Figure10.1, we came up to the conclusion that all these bugs could be detected earlier in the process (during the unit test stage). In fact, during the unit test of a software module and in addition to a 100% code coverage, test engineers should verify the compliance of each software module with the carmaker requirements. We call this the functional unit test. In order to comment the Figure10.1, let us consider the front wiper functionality example. 17 bugs were detected by the Johnson Controls validation test and 5 bugs by the carmaker after intermediate delivery. It must be noted that, after developing the software module of the front wiper functionality for the first time, only 12 bugs were detected during the first validation stage. Therefore, a delivery was performed and the carmaker immediately detected 2 more bugs. In the meantime and before the second carmaker delivery, test engineers tried to improve their test cases and design some new test cases. In consequence, they have been able to detect one more bug and after the second intermediate carmaker delivery, no new bug was detected by the carmaker. For the 4 th intermediate delivery, no new test cases have been developed. The complete scenario of bugs' detection until the last carmaker delivery of the two functionalities is summarized in the histogram of Figure10.1. 

	Selection criteria	Front wiper functionality	Fuel gauge functionality
		Project starts in 2005.	Project starts in 2005.
	C1	Start of serial	Start of serial
		production in 2007	production in 2007
	C2	Body controller module of a car	Car Dashboard or Cluster
	C3	Same carmaker
	C4	Two different management teams
	C5	Two different development teams
	C6	Two different validation teams
	C7	Quite complex	Very complex
	C8	Formal	Informal
	C9	Functionalities already verified and validated using the traditional process
	C10	Historical data are available
	C11	At least, one expert of these functionalities is still in the company
	Front wiper functionality	Fuel gauge functionality
	Number of input signals of the software module	18	35
	Number of output signals of the software module	9	25
	Size of the software module		
	(Lines Of Code -without	1229	
	comments and blanks)		

Table 10 .3 -Severity and Occurrence levels as it was defined by Johnson Controls software experts (Johnson Controls source)

 10 

Number of bugs (Severity, Occurence) Front wiper functionality

  

			Severity						Occurrence
	Secondary -cosmetic failure, not customer relevant			Once -low probability, unlikely failure
	Minor -cosmetic failure, customer relevant				Very Rare -low probability, few failures
	Major -workaround exists						Rare -moderate probability, occasional failures
	Critical -no workaround exists					Often -high probability, repeated failures
	Catastrophic -system crash of the vehicle system (risk of person injury)	Systematic -failure unavoidable
	14		13	Bugs detected by the	14				13
	12			Johnson Controls VALIDATION test	12			
	8 10			carmaker Bugs detected by the	8 10			
	6						6			
	4						4			4	4
	2	2	2	1	2	2	2	1		1
	0						0			
	(Minor,	(Minor,	(Minor,	(Major,	(Major,		(Minor,	(Minor,	(Minor,	(Major,	(Major,
	Once)	Often)	Systematic)	Often)	Systematic)		Once)	Often)	Systematic)	Often)	Systematic)

Number of bugs (Severity, Occurence) Fuel gauge functionality

  -hour days were spent to test the front wiper functionality and 50 eight-hour days for the fuel gauge functionality.

	Criticity growth approximately 54 eightFigure 10.3 -	Criticity growth

An estimate of the time spent during each delivery to test the two functionalities using the conventional testing techniques In our experiment, we propose to perform a functional unit test on the software modules of the two functionalities. In other words, we plan to verify unitarily the compliance of each software module with its functional requirements. To do this, we use our new approach to design test cases (Cf. Chapter 5, 6, 7, 8 and 9).

  

Table 10 .4 -Characteristics of the software functional requirements of the two functionalities

 10 

Table 10 .5 -Time spent to design the requirements model of the two functionalities

 10 In fact, it was more difficult and time consuming to design the requirements of the second case study (7 eight-hour days) than the first one (5 eight-hour days). The main reason is that the requirements of the second case study are expressed informally. However, we spent more time in computerizing the first case study (12 eight-hour days) than the second one (6 eighthour days). Indeed, the requirements model of the first case study is bigger than the second one in terms of number of signals, elements, states, transitions and conditions. In Table10.6, we illustrate the characteristics of the requirements models of the two case studies. The requirements model of the "front wiper" functionality has 19 Decision Tablesand 5 FiniteState Machines, while the one of the "fuel gauge" functionality has 2 Decision Tables and 4 Finite State Machines.

		Front wiper functionality	Fuel gauge functionality
	Formalism	Formal	Informal
	(Cf. Chapter 4 -Section 4.D.1)	(Statechart)	(Natural language specifications)
	Size of the software functional		
	requirements document (Number of pages in Microsoft	30	30
	Word format)		

Table 10 .6 -Characteristics of the requirements models of the two functionalities

 10 

Figure 10.5 -Cumulated number of nonconformities on the first case study (Second scenario)

  to 80% of the violations on the first case study (Rule 8) are related to the fact that the domains of the functionality's input, output and intermediate signals are not covered by conditions and actions in elements. Since the requirements model of the second case study is smaller than the one of the first case studyIn case of the first case study, we first simulate on our requirements model the test case (about 10000 test steps) delivered by the carmaker. Once a nonconformity is detected, the requirements model is corrected before restarting the simulation of the test case. The cumulated number of nonconformities detected on the first case study is presented in Figure10.5. After the 2000 th test step, no more nonconformities are detected on the model. Afterwards and in order to increase the confidence in our model, we propose to animate it by an expert. Two simulation plans of 100 steps each (operations and inter-operation times) have been designed by an expert and simulated "step by step" on the model (Cf. Chapter 8 -Section 4.E). No nonconformities have been detected. In consequence, we decide to stop validating the model.In case of the second case study, we animate the model by an expert. Three simulation plans of 300 steps each (operations and inter-operation times) have been designed and simulated successively "step by step" on the model (Cf. Chapter 8 -Section 4.E). Once a nonconformity is detected, the requirements model is corrected before restarting the simulation. The cumulated number of nonconformities detected on the second case study is presented in Figure10.6. Through the first set of 300 steps, we detect and correct 27 nonconformities. The second one allows to detect and correct 14 nonconformities. The third one detects 8 nonconformities. The main question was: Are there other nonconformities in the model? To answer this question, we design a new simulation plan of 50 steps and we simulate it on the model. In fact, this simulation plan allows to detect new nonconformities. At this moment, we realize the difficulty of validating at 100% a model and we decide to consider a tradeoff between the quality of the model and the time spent in validation. In fact, through the three simulation plans, we spent up to 20 eight-hour days simulating and debugging our requirements model and we cover at 90% the requirements model (signals and elements). Therefore, we decide to stop validating the model.

	16								Front wiper functionality			Fuel gauge functionality
	# of input signals # of output signals # of intermediate signals # of Decision Tables # of Conditions in DT # of Finite State Machines # of States in FSM # of Transitions in FSM # of Conditions in FSM 154 0 18 9 24 19 289 5 36 119 2 4 6 8 10 12 14 Number of nonconformities Figure 10.						6 8 31 2 110 4 53 158 nonconf ormities Number of
	50	600	1150	1700	2250	2800	3350	3900	4450	5000	5550	6100	6650	7200	7750	8300	8850	9400	9950
								Number of test steps			

(Cf. Table 10.6)

, it capitalizes up to 60% of Rule 8 violation. The remaining 40% is shared out between the Rules 4, 5, 6 and 7. This is due to the fact that the requirements of the "fuel gauge" functionality are expressed informally (Natural language).

6 -Cumulated number of nonconformities on the second case study (First scenario)

  

  1 and Nominal 2) automatically via the Test Case Generation tool. 3. Design manually a set of constraints on the input signals of the requirements model, export them to the Test Case Generation tool and generate a Driver profile "operation matrix" automatically. 4. Generate via the Bugs Reuse tool one or more Bug "operation matrices" from one or more capitalized bugs and export them to the Test Case Generation tool. 5. Generate via the Test Cases Reuse tool one or more Test Case "operation matrices" from one or more capitalized test cases and export them to the Test Case Generation tool.

steps Figure 10.8 -Order of generating and executing test cases for the front wiper functionality Figure 10.9 -Order of generating and executing test cases for the fuel gauge functionality As

  Section 2), we execute the generated test cases on the first version of the two corresponding software modules (as it was delivered for the first time by the development team to the validation team). In other words, we isolate the first version of the software module which fulfils the front wiper functionality and the one of the fuel gauge functionality and we test them through the generated test cases. To do this, we first translate these test cases, via an inner tool, into the unit test language. It is a computer language understandable by the unit test execution platform (Cf. Appendix B and C). The execution is performed following the order defined in Figure10.8 and 10.9. Once an anomaly is detected, we analyze it in order to identify its origin. The origin can be:• A bug in the requirements model, • A known bug in the software module. It is a bug that the validation test of Johnson Controls or the carmaker has already detected (Cf. Figure 10.1), • An unknown bug in the software module. It is a bug which is not yet detected neither by the validation test of Johnson Controls nor by the carmaker.Whatever the origin, the bug is corrected before restarting the execution of the test cases.It is important to note that the time to generate test cases via the Test Case Generation tool and the time to execution test cases via the unit test execution platform are both trivial from the automotive industry point of view. It can be respectively estimated to 500 and 1000 test steps per minute. These estimations are given for reference only because they depend on many factors (CPU 41 , inter-operations times of the test steps, parameters of the optimization algorithm and so on).

	Modeling and simulating two industrial case studies						R. AWEDIKIAN
	60 10 Bug "operation matrices"		300	300	1 Driver Profile "operation 300 matrix"	
	10 test cases (1 test case	steps	steps		steps 6 test cases from the	
	10 20 30 40 from each Bug "operation 50 matrix") Each test case, around 10 test steps For each test case, objectives are fulfilled at 100% Number of nonconformities FRONT 27 6 test cases from the Test 14 1 Test Case "operation matrix" Case "operation matrix" WIPER	Driver Profile "operation 8 matrix" Each test case, around 1000 test steps For each test case, objectives are fulfilled at 70% FUNCTIONALITY Number of nonconf ormities Nominal 2 "operation matrix" 6 test cases from the Nominal 2 "operation
	0	20	80	140	Each test case, around 200 260 320 380 440 400 test steps For each test case, objectives are fulfilled at	500	560	620	680	740	800	860	matrix" Each test case, around 10000 test steps For each test case,
						99% Number of operations					objectives are fulfilled at 90%
							1 Driver Profile "operation	
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								3 test cases from the	
								Driver Profile "operation	
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								Each test case, around	
									300 test steps		
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		FUEL		GAUGE			FUNCTIONALITY

we plan to do a functional unit test of the two functionalities (Cf.
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  Once a bug is detected, it is corrected before restarting the execution. Through the test cases generated from the Bug "operation matrices", we detect 2 bugs out of the 17 bugs detected by the Johnson Controls software testing processes. The test cases generated from the Test Case "operation matrix" enable to detect 6 bugs out of the 17 bugs detected by Johnson Controls, 1 bug out of the 5 bugs detected by the carmaker after intermediate delivery and 2 new "minor" bugs that were neither detected by Johnson Controls nor by the carmaker. The test cases generated from the Driver Profile "operation matrix" enable to detect 1 bug out of the 17 bugs detected by Johnson Controls. And finally, the test cases generated from the Nominal 2 "operation matrix" enable to detect 7 bugs out of the 17 bugs

			Front wiper functionality				Fuel gauge functionality
		14				Bugs detected by the		14
	Number of bugs	2 4 6 8 10 12			1 1	1 Johnson Controls VALIDATION test Bugs detected by the carmaker	Number of bugs	12 2 4 6 8 10	1	3	1
		0								0
		(Minor,		(Minor,	(Minor,	(Major,	(Major,		(Minor,	(Minor,	(Minor,	(Major,	(Major,
		Once)		Often)	Systematic)		Often)	Systematic)		Once)	Often)	Systematic)	Often)	Systematic)
				(Severity, Occurence)					(Severity, Occurence)
				Criticity growth						Criticity growth
		Percentage of bugs detected by our	approach	10% 20% 30% 40% 50% 60% 70% 80% 90% 100%	60%	94%		80%	78%	Known bugs already detected by the carmaker known bugs already detected by the Johnson Controls validation test
				0%						
					Front wiper functionality	Fuel gauge functionality

Figure 10.15 -Number and type of bugs detected via each "operation matrix" mode In the case of the fuel gauge functionality, the

  The Test Case mode "operation matrix" detects up to 80% of the bugs that the Drive Profile mode can detect. In fact, the capitalized test cases have been designed with an end-user point of view. evolution of the cumulated number of known and unknown bugs that we detect through our approach is illustrated in Figure10.16. Through the test cases generated from the sole Driver Profile "operation matrix" (Cf. Section 8), we detect 14 bugs out of the 18 bugs detected by Johnson Controls and 4 bugs out of the 5 bugs detected by the carmaker. No new bugs have been detected. Comparing to the first case study, we were able through the Driver Profile mode to detect most of the known bugs. This could be explained by two facts:• We cover 90% of the input signals domains in comparison with 70% in the first case study. • According to experts, simulating random operations (Nominal "operation matrices") on the fuel gauge functionality does not make real sense.

	Number of detected bugs	Known bugs already detected by the supplier conventional testing phases Known bugs already detected by the carmaker Unknown bugs (Not detected by the supplier conventional testing phases nor by the carmaker) 0 2 Front wiper functionality Stability zone 8 2 1 • Known bugs already detected by the Stability zone 9 2 1 conventional validation test	Stability zone	16 3 5
		0	Known bugs already detected by the
			carmaker
		10 test cases generated from the 10 Bug "operation matrices" (Each test case from a matrix)	6 test cases generated from the Test Case Unknown bugs (Not detected by the 6 test cases generated from the Driver Profile 6 test cases conventional validation test nor by the generated from the Nominal 2 carmaker
			"operation matrix"	"operation matrix"	"operation matrix"
		Execution order of the test cases
		-Once a bug is detected, it is corrected before restarting the execution -

Bugs detected via the Nominal2 "operation matrix" Bugs detected via the Bug "operation matrices" Bugs detected via the Driver Profile "operation matrix" Bugs detected via the Test Case "operation matrix" Front wiper functionality Bugs not detected by our approach Figure 10.16 -Evolution of the cumulated number of bugs detected by our approach on the fuel gauge functionality

  

	B.	Decrease the time spent in testing a functionality

On the one hand,

we detect bugs earlier in the software life cycle. On the other hand, we lower the time spent in testing a functionality.

  Thanks to historical data, the total time spent in testing conventionally the two functionalities is illustrated in Figure10.17; e.g. 53.75 eighthour days for the front-wiper and 50 days for the fuel gauge. For the front wiper functionality, no unit test has been performed. During the validation test stages, test engineers spent 11,5 eight-hour days analyzing the carmaker requirements before start designing manually test cases (29,5 eight-hour days). 6 eight-hour days were spent executing the designed test cases and analyzing the results. Finally, we estimate at 6,75 eight-hour days the time spent in managing the bugs detected later in the process. For the fuel gauge functionality, 5 eight-hour days were spent testing unitarily the functionality. During the validation test stages, test engineers spent 10 eight-hour days analyzing the carmaker requirements before start designing manually test cases (22 eight-hour days). 6 eight-hour days were spent executing the designed test cases and analyzing the results. Finally, we estimate at 7 eight-hour days the time spent in managing the bugs detected later in the process.

  Time to design, execute and analyze the results of test cases for UNIT test Time to analyze carmaker requirements Time to design test cases for VALIDATION test Time to execute and analyze the results of test cases for VALIDATION test Time to manage bugs detected by Johnson Controls and by the carmaker later in the process

	Front wiper functionality	0	11,5				29,5				6	6,75 53,75	
		0	5	10	15	20	25	30	35	40	45	50	55	60
							Eight-Hour days				
	Fuel gauge functionality	5		10			22			6		7 50	
		0	5	10	15	20	25	30	35	40	45	50	55	60
							Eight-Hour days				

Table 10 .12 -A summary of the results of the two case studies

 10 Moreover, we lower by 27% and 17% respectively the time spent in testing the front wiper and fuel gauge functionalities (Cf. Figure10.19).

Front wiper functionality Fuel gauge functionality

  

	Increase the number of bugs detected		100% (from 12 to 24)	800% (from 2 to 18)
	since the first testing phase					
	Decrease the number of bugs detected by		60% (from 5 to 2)	80% (from 5 to 1)
	the carmaker						
	Increase the number of bugs detected by		41% (from 17 to 24)	22% (from 18 to 22)
	Johnson Controls						
	New bugs detected				18% (5 out of 27)	0% (0 out of 23)
		60	53,75				
	Eight-Hour days	20 30 40 50	39	-27%	50	41,5 -17%	Johnson Controls testing approach Our approach Conventional
		10					
		0					
			Front wiper	Fuel gauge	
			functionality	functionality	

Table C .2 -An excerpt from a software tool list required for the execution of validation test cases

 C Finally, an excerpt of a list of reused components for the execution of validation test cases is illustrated in TableC.3.

	ID	Tool Type	Name	Mandatory	Comments
	[SW_T1]	Report generator	Y/N	Information for the tool configuration
		to				Specific input, output and feature required
			Load	Reload	Play	Stop Work instruction for the tool Save
			Script Reporter Script	Script	execution	Output
						If related with any HW, mention it.
						About If standard guideline/work instruction for the
						tool is available, put it as reference document.
	[SW_T2]	Test tool 1	R-car	Y/N
			Intermat	
	…	…	…	…	…
	ID	Tool Type	Name	Mandatory	Comment
	[SW_V1]	Source code	Library for	Y/N	Brief description
			programming power supply		If related with any HW or SW, mention it.
						Path to the original Configuration management
						base
						Work instruction for the tool
	[SW_V2]	Test script	Test cases for	Y/N
			Script 1 <Functionality	Script 2	Script 3
			i>		
	…	…	…		…	…
						Execution
						status

Table C .3 -An excerpt from a reused components list required for the execution of validation test cases

 C The aim of the software validation test is to test the functional behavior of a software product in its real environment. Therefore, we need to simulate this environment (hardware, other electronic devices, network …). For that purpose, Johnson Controls has developed two types of test execution platform:E-Car (Emulated Car -Cf. Figure C.3) is a simulation on computer of the entire electronic automotive network with all the electronic devices. This platform simulates also the hardware on which the software product under test must perform. It composes network frames on specified periods, fills them with the appropriate signals and sends them on a virtual network bus. It also simulates pressing of buttons and reaction of sensors in the car.

Bernard Yannou, Professeur de l'Ecole Centrale Paris : encadrant de mon stage chez Johnson Controls

Ludovic Augusto, Chef de projet chez Johnson Controls : tuteur industriel de mon stage chez Johnson Controls

Including Bernard Yannou and Mounib Mekhilef as co-inventors.

In France, we associate a Quick Patent to an "Enveloppe Soleau" (http://www.inpi.fr/fr/services-etprestations/enveloppe-soleau.html, Consulted on November 2008).

First-tier supplier means a supplier who directly provides goods and services to the assembly plant of the product

R&D: Research and Development

http://www.dsp.acm.org/view_lecture.cfm?lecture_id=86(consulted on November 2008) 

LAN: Local Area Network 

CPU: Central Processing Unit

http://www.nist.gov/ (Consulted on November 2008)

NP: Non-deterministic Polynomial time

CMMI: Capability Maturity Model® Integration (http://www.sei.cmu.edu/cmmi/, Consulted on November 2008).

http://www.geensys.com/?Outils/Reqtify (Consulted on November

2008). 20 http://www.telelogic.com/Products/doors/doors/index.cfm (Consulted on November 2008).

MISRA-C is a software development standard for the C programming language developed by MISRA (Motor Industry Software Reliability Association, http://www.misra.org.uk/, Consulted on November 2008).

Computer language (http://msdn.microsoft.com/en-us/library/sh9ywfdk(vs.80).aspx, Consulted on November 2008).

A body controller module is an automotive electronic module in charge of managing all electrical currents of a car

In France, we associate a Quick Patent to an "Enveloppe Soleau" (http://www.inpi.fr/fr/services-etprestations/enveloppe-soleau.html, Consulted on November 2008).

43 http://www.nist.gov/public_affairs/releases/n02-10.htm(Consulted on November 2008) 

http://www.programmingresearch.com/QAC_MAIN.html(Consulted on November 2008) 

Computer language (http://msdn.microsoft.com/en-us/library/sh9ywfdk(vs.80).aspx, Consulted on November 2008).

Remerciements

Toute ma gratitude à Philippe Lebreton (Philippe a beaucoup contribué à la mise en oeuvre et à Un remerciement tout particulier à Ludovic Augusto, initiateur et porteur de ce projet de

A case study on modeling software functional requirements using our new formal and simulation language

In this section, we develop a simple case study in order to illustrate how an engineer can design a simulation model of a set of software functional requirements. To do this, we consider a functionality ("Auto_Light") which has 3 configuration signals, The software functional requirements of this functionality were specified by the carmaker using the natural language (Cf. Figure 5.13). In fact, this functionality can be decomposed into 3 features: Feature 1, Feature 2 and Feature 3.

Modeling and simulation of software functional requirements

R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process A.

First scenario: Animate our requirements model

The most used technique to validate a simulation model is obviously to animate and trace it (Cf. Figure 6.4). The behavior of intermediate and output signals is provided graphically through time. However, two questions can be raised when animating a model 1) How do I choose the input data of the model? and 2) How can I be sure that the model behaves well (expected output data)?

In order to answer the first question, we can refer to some of the Model V&V techniques provided in Section 2.C (for instance, degenerate tests, extreme condition tests, fixed values, and parameter variability -sensitivity analysis). The second question is more related to the formalism of the (original) carmaker requirements. In case of informal or semi-formal requirements, modelers have to predict the system behavior by analyzing the requirements. In case of formal and simulated requirements, expected output data can be assessed automatically by simulating the requirements. 
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Process flow Brief description

Test engineers can decide to test a functionality under different "Configurations" (Config1, Config2 …).

We set a new "Configuration" for the functionality under test.

Test engineers have to define the targets and weights for the coverage objectives and for the time and cost constraints Test engineers have to set the parameters of the optimization algorithm.

We start generating a test step by choosing a succession of operations Did the test engineer decide to optimize the coverage of the "operation matrix"? 

Process flow Brief description

Is there other "Configurations" for the functionality that should be tested?

If YES, we change the "Configuration" and continue generating test steps for the same test case

If NO, the current test case is finalized

We choose the "Optimal" test case between the current test case and the previous one.

The "Optimal" test case is chosen Step 7

Step 5

Step 1

Problem description

Step 2

Step 3

Step 4

Step 6

In conclusion, for each functionality, test engineers can generate a set of test cases from the bugs detected on the same functionality on previous projects. Once executing these test cases on the new software of the functionality, test engineers can, at least, guarantee that the new development is free of the bugs already made in the past.

B.

A new typology of software problems

A second way to reuse bugs stored in the problems' database is to analyze these bugs and identify the recurrent type of problems when implementing a software product. • Detection phase: the phase of the process where the bug was detected.

• Injection phase: the phase of the process where the bug was injected. Once the software architecture of the Test Case Generation tool is generated, we start developing in C++ language the body of each method. We have developed about 12500 Lines Of Codes (excluding comments and blank lines). In fact, we have implemented, using a computer language, all the models developed in Chapter 5, 6, 7 and 8.

b. List of main functionalities

The main functionalities of the Test Case Generation tool are:

• Computerize and verify a requirements model 

IV. Main functionalities of the Test Case Generation tool

In this section, the main functionalities of the Test Case Generation tool are detailed.

A.

Computerize and verify a requirements model A screenshot of the tool after generating the Nominal "operation matrices" of the Chapter 5 -Section 5 example is illustrated in Import "operation matrices"

One can import "operation matrices". These matrices can be the results of the bugs and test cases reuse processes. They can also be designed manually by an inner engineer. A screenshot of the tool after importing "operation matrices" is illustrated in Figure 9.9. 

E. Simulate a requirements model

Once the requirements model is computerized, one can simulate it. Modeler has to define a simulation period (the cycle time of the Clock signal, Cf. Chapter 5 -Section 3). Modeler has also to specify the path where the simulation plan is stored. In fact, a simulation plan consists of a finite number of steps. In each step, at most one operation on the input signals is performed and an inter-operation time is defined. The result of a simulation is the behavior of

Design of constraints

Constraints description Constraints definition using the computer language that we developed

The "Ignition" signal is Cyclic // Constraint definition Constraint1(Cyclic); // Set the constraint to an input signal Ignition(Constraint1);

The "Ignition" signal can be different from 2 only if "Light_Combi_Switch" is equal to 0 // Constraint definition Constraint2(NEQUAL, 2, "Light_Combi_Switch", EQUAL, 0); // Set the constraint to an input signal Ignition(Constraint2);

Once "Car_Locked" is set to 0, the "Light_Combi_Switch" signal is set to 1 with a probability of 0.5 9.11, we illustrate the simulation parameters and the four modes of simulating a requirements model. The "nonstop" mode aims to simulate the whole simulation plan nonstop. The "step by step" mode consists of simulating the simulation plan in a step by step manner. Indeed, after each step's simulation, the simulation process is stopped. The "period by period" mode stops the simulation at each period of the Clock signal. Finally, the "feature by feature" mode stops the simulation after each feature simulation. 

F. Generate test cases automatically

The main functionality of the Test Case Generation tool is to generate test cases automatically. In Chapter 7 -Section 4, we developed a set of test generation objectives and constraints. A panel interface to allow the test engineer to set precise targets on these objectives and constraints is presented in Figure 7.13. In Chapter 7 -Section 6, we have developed a heuristic algorithm to optimize the generation of test cases while fulfilling the predefined objectives and constraints. A list of 8 parameters that a test engineer should set before start generating test cases is also introduced.

Through the Test Case Generation tool, one can set targets on the test generation objectives and constraints and parameterize the test generation algorithm. The generation of test cases is automatic. Each generated test case and its reached objectives and constraints are stored in an Excel file. In Figure 9.12, we illustrate the panels where a test engineer can calibrate the generation of test cases. We also identify the four modes of generating test cases. The "nonstop" mode aims to generate the set of required test cases nonstop. The "step by step" mode 

VI. Validating the requirements models of the two functionalities

Once the requirements models are designed, computerized and verified, we validate these models. In other words, we verify that the developed requirements models are compliant with the carmaker requirements related to the software domain. 10.6), we spent more time and detected more nonconformities in validating the second case study. Indeed, the main reason of this result is that the requirements delivered by the carmaker for the second case study are informal, while the ones for the first case study are formal. In the following, we detail the validation process of the two requirements models. Based on these constraints, the Test Case Generation tool generates a Driver Profile "operation matrix" for each functionality (Cf. Chapter 9 -Section 4.D). The number and type of the designed constraints is illustrated in Table 10.7.

Table 10.7 -Constraints designed for the two functionalities

Unfortunately, we do not have enough time to analyze bugs and test cases capitalized on previous projects implementing the "fuel gauge" functionality. In fact, we decide to focus our effort on the "front wiper" functionality. In Chapter 2 -Section 7.C, we perform a study on the bugs detected on the "front wiper" functionality through 5 different projects since 1997 and till 2007. Excluding the last project (Project 5) which is the one on which we carry out our experiments, 55 bugs were detected on this functionality since 1997. In Chapter 8 -Section 5, we propose two strategies to reuse capitalized bugs. One strategy (Cf. Chapter 8 -Section 5.A) consists of representing the "Problem description" of bugs in a specific format in order to generate a Bug "operation matrix" for each bug. One difficult task was to represent the "Problem description" of the 55 identified bugs into our specific format. Based on the experts' advices, we only consider the 10 most critical bugs providing that there exists enough information related to the "Problem description" of the bug. Afterwards, we generate, via the Bugs Reuse tool (Cf. Chapter 9 -Section 3.C.1), the corresponding 10 Bug "operation matrices" that we export to the Test Case Generation tool. A glossary of the input signals names on the previous and current projects was necessary.

Over the 4 projects implementing the "front wiper" functionality (Cf. Chapter 2 -Section 7.C), only one project P has adopted the test case format presented in Definition 2.11. This format of test cases is required for generating a Test Case "operation matrix" automatically for each test case (Cf. Chapter 8 -Section 6). Within P, test engineers have designed one test case (about 2000 test steps) in order to test the "front wiper" functionality. Based on this test case, we generate, via the Test Cases Reuse tool (Cf. Chapter 9 -Section 3.C.2), one Test Case "operation matrix" that we export to the Test Case Generation tool. A glossary of the input signals names on the previous and current projects was necessary.

A summary of the "operation matrices" designed for the two functionalities is illustrated in Table 10.8. We also estimate the time spent in designing these "operation matrices". For the front wiper functionality, we spent 2 eight-hour days and for the fuel gauge functionality, 0,5 eight-hour days. In fact, identifying and preparing the capitalized bugs and test cases have taken about 1,5 eight-hour days. 

VIII.

How to tune the generation of test cases?

Three questions have been raised at this stage of the experiment:

• From which "operation matrix" do we start generating test cases?

• How to tune the coverage objectives and the time and cost constraints?

• How to tune the test generation algorithm?

In order to answer the first question, we propose to generate test cases from the "operation matrices" according to the order presented in Figure 10.7. Firstly, we generate test cases from the Bug "operation matrices". At least, we ensure that our software module is free from bugs similar to the ones already detected in the past. Secondly, we generate test cases from the Test Case "operation matrices". These test cases are suitable to detect bugs since they are based on the test engineers' experience. Thirdly, we generate test cases from the Driver Profile "operation matrix". This aims to check that the software module fulfills the end-user (driver) expectations. Finally, we generate test cases from the Nominal "operation matrices". Improbable successions of operations are generated in order to check the robustness of the software module. In the previous section, we note that no Bug or Test Case "operation matrices" have been designed for the second case study. Moreover and according to experts, simulating random operations (Nominal "operation matrices") on the fuel gauge functionality does not make real sense. Therefore, for this case study, we only generate test cases from the Driver Profile "operation matrix". Before generating test cases from an "operation matrix", we have to define the objectives and constraints of the generation (Cf. Chapter 7 -Section 5, Cf. Chapter 9 -Section 4.F) but also the parameters of the optimization algorithm (Cf. Chapter 7 -Section 6, Cf. Chapter 9 -Section 4.F). In our case studies, we tune these factors based on a try-and-test protocol and on the experts' knowledge. According to the type of the "operation matrix", we propose guidelines for defining the coverage objectives and the time and cost constraints (Cf. Table 10.9). These guidelines have been defined based on our analysis of the different "operation matrix" modes. For instance, in case of a Bug or Test Case "operation matrix" mode, the knowledge extracted from capitalized bugs or test cases is incorporated in the "operation matrix". Therefore, it is necessary to cover at least all the successions of operations of a Bug or Test Case "operation matrix". The constraints' values depend on the context (budget, planning, and resources) of the project.

Table 10.9 -Guidelines for defining the objectives and constraints of a test case generation

Based on these guidelines, we set the objectives and constraints of the test cases generation for the two functionalities (Cf. Once defining objectives and constraints, we have to tune the optimization algorithm of the test case generation. In Chapter 7 -Section 6, we describe the optimization algorithm and its parameters. Eight parameters have been identified. In our case studies, we tune these parameters based on the traditional try-and-test protocol. In fact, we first set the objectives and constraints of the test case generation, then we set specific values on the optimization algorithm parameters and finally we generate test cases. Based respectively on the fulfillment and respect of the objectives and constraints, we adjust the optimization parameters. The purpose is to better fulfill and respect the coverage objectives and the time and cost constraints. For each case study and after 10 trials (approximate), the "optimal" values for the optimization algorithm parameters are identified in Table 10.11. We spent 1 eight-hour day in adjusting these parameters for the two case studies. Let us consider the first case study. We have to generate test cases from a Bug "operation matrix". According to Table 10.9, we first set the objectives and constraints of the test case generation (Cover at 100% the Bug "operation matrix"). Afterwards, we tune the parameters of the optimization algorithm (Cf. Table 10.11). In fact, we decide to optimize the coverage of the Bug "operation matrix" (Parameter 1 = 1). When choosing a new operation in the "operation matrix", the optimization algorithm checks if the corresponding succession of operations is already covered or not. If it is the case, another operation is chosen until a non-covered succession of operations is selected. The maximum number of unsatisfied trials, before the algorithm exits the loop, is 30 (Parameter 2 = 30). Even if the designed test step does not improve the objectives fulfillment, we decide to add it to the test case under construction (Parameter 3 = 0 and Parameter 4 = 0). After 30 test steps generated without an improvement in the objectives fulfillment, we decide to stop designing test steps for the corresponding test case (Parameter 5 = 30). According to experts, we decide to generate test cases for only one "Configuration" of the front wiper functionality (Parameter 6 = 0 and Parameter 7 not defined). In fact, we choose the basic (by default in a car) "Configuration" of the functionality. Finally, only one test case has to be generated (Parameter 8 = 1).

Table 10.11 -Optimization parameters when generating test cases for the two functionalities

IX. Generation and execution of the test cases on the software modules of the two functionalities

In Section 7, we develop the "operation matrices" designed for the two case studies. In Section 8, objectives, constraints and optimization parameters for the generation of test cases for the two functionalities are defined. In this section, we describe the generation and execution of test cases. The number and characteristics of the generated test cases are illustrated in Figure 10.8 and 10.9. In fact, the generation of test cases has been carried out automatically via the Test Case Generation tool (Cf. Chapter 9 -Section 4.F). 

Perspective 3: Related to the test case generation algorithm

Through our experiment, we show that our computational algorithm does not successfully reach 100% of functional coverage (the maximum was 90%). Consequently, we were not able to detect bugs related to the non-covered functional requirements. To overcome this deficiency, we plan to develop a new test case generation algorithm that focuses on covering non-covered zones of a requirements model. In fact and instead of selecting operations via a Monte Carlo simulation on the input signals of a model, we propose to synthesize the operations that lead in covering a specific item (for instance, a state of an FSM, a condition of a DT …) of the model. In other words, one has to select the item that should be covered and the algorithm will propose a list of successive operations to be performed on the model in order to cover this item. We already start a global design of this algorithm but unfortunately, we had not enough time to implement it in our approach.

Perspective 4: Related to the strategy for tuning the generation of test cases

We are conscious of the variability or subjectivity of our current strategy (try-and-test) to set coverage objectives and optimization parameters when generating test cases. In fact, there are a lot of parameters to set. As a consequence, we plan to propose a new strategy to help test engineers to parameterize the generation of test cases. In fact, when testing a software product, the main purpose of a test engineer is to detect the maximum number of bugs in minimum laps of time. Therefore, we have to identify the correlations between the optimization algorithm parameters, the functional coverage, the execution time of the generated test cases and the number and type of detected bugs. Based on these correlations, we might define rules and recommendations to help test engineers parameterizing the generation of test cases. Moreover, we plan to develop parameterization profiles that test engineers could adopt according to the test stage objectives. A parameterization profile consists of a set of predefined optimization parameters, coverage objectives and time constraints. To do this, we plan to perform a Design of Experiments (DoE) on our approach (Cf. Figure Conclusion.1). We set all the functional coverage objectives to 100% with no time or cost constraints. We decide to generate test cases for only one "Configuration" of the functionality under test (Parameter 6 = 0, Parameter 7 not to be defined). We plan to generate one test case for each combination of the parameters (Parameter 8 = 1). The five remaining parameters of the optimization algorithm (Parameter 1, 2, 3, 4 and 5) represent the factors of the DoE. Two factors (Parameter 1 and 3) have two levels (0, 1) and three factors (Parameter 2, 4 and 5) have n levels (n integer). Based on our experience, we sample the domain of these factors into four levels (30, 60, 90 and 120) In Johnson Controls, there is a document which defines coding rules and recommendations for using the C language 44 in the development of embedded software. These rules and recommendations are defined and updated by a committee, whose members are appointed by the Software Engineering Process Group (SEPG) of the company. The committee includes representatives of all Johnson Controls sites on which this document is deployed. An excerpt of the coding rules and recommendations is illustrated in Table A.1.

Rule number Rule type Rule description

Rule 1 General Optimization objectives must be defined before coding. These objectives define priorities between optimization ways (memory…).

Do not optimize unless it is planned.

It has been demonstrated many times that the programmers spend a considerable amount of energy to optimize a piece of code that will almost never be used. Before starting to optimize always identify the exact nature of the problem.

Rule 2 Comments

Comments shall be written in US English language.

Rule 3 Code layout Each variable must be declared on a separate line.

Rule 4 Naming rules Never use names that differ only by uppercase/lowercase.

Rule 5 Functions A function must never return a pointer to one if it is a local function. Doing so, would rather be a bug than just a rule break.

Rule 6

Flow control Give all loops a fixed upper bound.

Rule 7 Variables

No multiple assignments a=b=c=d;

Table A.1 -An excerpt of coding rules and recommendations used in Johnson Controls (Johnson Controls source)

The static analysis is performed automatically using a computer tool such as QAC 45 , the most used in automotive industry. The criterion to stop the static analysis of a source code is that all QAC errors and warnings are either fixed or justified. A screenshot of the QAC tool is illustrated in 

Appendix B: Test description languages

As developed in Chapter 2 -Section 5, three techniques of software testing are performed before a software delivery to the customer: unit, integration and validation test. In case of unit test, the execution of test cases is always automated using a test execution platform (Cf. Appendix C). The language used for describing test cases for unit test is the C language.

However, the language used to design test cases for the validation test of a software product depends on the validation test execution platform. In case of an automatic execution of the test cases, one uses a script language. It is a Johnson Controls property language very similar to the well-known Visual Basic 47 language. In case of a manual execution of the test cases, test cases are written in natural language.

Unit test language

A standard unit test structure provides predefined C functions in order to help test engineers writing test cases for the unit test of a software component:

• The test script language developed in Johnson Controls is mainly based on the universal Visual Basic language. A set of coding rules and recommendations to be taken into account when designing test cases using the test script language has been defined. An excerpt of these rules and recommendations is illustrated in Table B.1.

Rule number Description

Rule 1

The "include" files must not have the full access path indicated. The unit test uses the inputs and outputs of the software component under test. Test cases should know expected output F when input A is applied. The presently produced output has to be compared with the expectation. If they do not match, an error should be generated in the test report.

Integration and Validation test execution platform

During the integration and validation tests of a software product, the test execution platform could be manual or automatic. For each project, managers (in close cooperation with the carmaker) decide to automate or not the execution of the validation test cases. In case of an automatic execution, test cases are designed in a script language (Cf. Appendix B). In case of a manual execution, test cases are written in natural language. The manual execution aims to perform operations manually on the software product via a set of switches and to check visually (by an engineer) the behavior of the output signals (lamps, actuators …). In the following, we develop the automatic test execution platform. • Network viewer: This tool allows to trace or spy different types of data's exchange via the network. Integration test may be executed on E-Car; however, validation test may be executed either on E-Car or on R-Car. When a bug is detected on E-Car, it must be confirmed on R-Car. In fact, E-Car is a simulation on computer while the R-Car is the real physical environment and therefore the behavior of the real hardware can differ from the behavior of the simulation hardware. 

E-Car or R-Car

Requirements incorrect

The requirement or a part of it is incorrect

Requirements logic

The requirement is illogical or unreasonable

Requirements completeness

The requirement as specified is either ambiguous, incomplete, or overly specified

Requirements verifiability

Specification bugs having to do with verifying that the requirement was correctly or incorrectly implemented

Requirements presentation

Bugs in the presentation or documentation of requirements. The requirements are presumed to be correct, but the form in which they are presented is not. 

Requirements changes

Processing

Bugs related to processing under the assumption that the control flow is correct

Coding and typographical

Bugs which can be clearly attributed to simple coding and typographical bugs. If a programmer believed that the correct variable was "ABCD" instead of "ABCE" but she/he changed D to E because of a typewriting bug, then it belongs to this correction type

Standards violation

Bugs having to do with violating or misunderstanding the applicable programming standards and conventions (MISRA, Johnson Controls rules …).
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Implementation update

The software is assumed to work properly

Documentation

Bugs in the documentation associated with the code or the content of comments contained in the code

Integration update

Internal interfaces

Bugs related to the interfaces between communicating components with the program under test.