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Abstract
This thesis is concerned with recovery guarantees and sensitivity analysis of

variational regularization for noisy linear inverse problems. This is cast as a

convex optimization problem by combining a data fidelity and a regularizing

functional promoting solutions conforming to some notion of low complex-

ity related to their non-smoothness points. Our approach, based on partial

smoothness, handles a variety of regularizers including analysis/structured

sparsity, antisparsity and low-rank structure. We first give an analysis of the

noise robustness guarantees, both in terms of the distance of the recovered

solutions to the original object, as well as the stability of the promoted model

space. We then turn to sensivity analysis of these optimization problems

to observation perturbations. With random observations, we build unbiased

estimator of the risk which provides a parameter selection scheme.

Keywords: inverse problem, variational regularization, low complexity prior,

sparsity, robustness, sensitivity, risk estimation, degrees of freedom, parameter

selection, partly smooth function.

Résumé
Cette thèse se consacre aux garanties de reconstruction et de l’analyse de sen-

sibilité de régularisation variationnelle pour des problèmes inverses linéaires

bruités. Il s’agit d’un problème d’optimisation convexe combinant un terme

d’attache aux données et un terme de régularisation promouvant des solu-

tions vivant dans un espace dit de faible complexité. Notre approche, basée

sur la notion de fonctions partiellement lisses, permet l’étude d’une grande

variété de régularisations comme par exemple la parcimonie de type analyse

ou structurée, l’antiparcimonie et la structure de faible rang. Nous analysons

tout d’abord la robustesse au bruit, à la fois en termes de distance entre les

solutions et l’objet original, ainsi que la stabilité de l’espace modèle promu.

Ensuite, nous étudions la stabilité de ces problèmes d’optimisation à des

perturbations des observations. À partir d’observations aléatoires, nous con-

struisons un estimateur non biaisé du risque afin d’obtenir un schéma de

sélection de paramètre.

Mots-clés : problème inverse, régularisation variationnelle, a priori de faible

complexité, parcimonie, robustesse, sensibilité, estimation du risque, degrés

de liberté, sélection de paramètre, fonction partiellement lisse.
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Chapter 1 Introduction

1.1 Inverse Problems and Regularization

Consider the following challenges:

• You are given an image where half of the sensors in your CCD cam-

era are defective ! Could one recover the original image up to a given

accuracy ?

• You work for a major entertainment company which is willing to build

a recommender system to provide recommendations on movies based

on the user’s preferences. However, the data is quite incomplete since

users typically rate only a few movies in the database. Could one infer

the preference of any user for any movie, including the unrated ones ?

• You were recording the best performance with your rock band. Unfortu-

nately, someone near the microphone was talking during the recording.

Can you remove the voice of this uncivil ?

• You want to build a search engine for large-scale images, whose goal is

to retrieve images based on a semantic query. Can one build efficient

compact descriptors/features on which efficient retrieval can be based ?

Several strategies have been proposed in the past decades to solve these

problems (image inpainting, matrix completion, source separation, large-scale

nearest neighbor search). All these problems can be cast in the same frame-

work, where one has access to recover an object of interest (signal, image,

video, matrix, etc.) while only partial, indirect and possibly imperfect infor-

mation of it is available. To handle this class of problems within the same

setting, we hinge on the following triad:

(i) Forward model : One has to model the degradation process underlying

the incomplete and corrupted observations. Throughout this thesis, we

consider the case of linear forward models where both the original object

and the observations live in finite-dimensional vector spaces.

(ii) A priori : While recovering a vector from an underdetermined system

of linear equations seems hopeless by basic arguments, the situation

radically changes if some information is available in the form of a prior.

Here, we consider a variational formulation of this prior encoded into a
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1.1 Inverse Problems and Regularization

convex function. More precisely, we focus on functions promoting low

complexity objects, for instance piecewise constant, sparse or low rank.

(iii) Computational algorithm : In practice, it is necessary to be able to compute

quickly a solution of a convex optimization problem casted as a trade-off

between data fidelity (item (i)) and prior (item (ii)), hopefully unique, up

to a good accuracy. It is thus important to propose an efficient algorithm,

which is the case of the majority of the regularization considered here,

using the structure of the problem.

1.1.1 Forward Model

This thesis is concerned with linear inverse problems in finite dimension. This

framework is used in many applications in the fields of signal processing,

imaging sciences, statistics and machine learning. Although one may object

that this does not always conform to real world applications, where the corre-

sponding objects may be infinite-dimensional or even continuous, our setting

is sufficiently large to covers a wide spectrum of problems and practical appli-

cations in imaging or statistics. It also lends to a unified, generic and rigorous

mathematical analysis.

We model physically the observed data with functions defined on a subspace

Ω ⊆ Rd, where d = 1 for an audio signal, d = 2 for an image, etc. Let us take

the example of images. Intrinsically, a physical image is the projection of an

object on an optical system. Thus, the image is a function f0 defined by the

quantity of energy f0(v) received by the focal plane at the point v, defining

a function Ω→ R, where Ω corresponds to a sub-domain of the focal plane.

From a mathematical point of view, one assumes that f0 belongs to some

functional space H. Typically, we consider f0 as a finite energy function, i.e.

H = L2(Ω).

In order to take into account properties of these signals or images (smooth,

piecewise smooth, oscillating) other richer functional spaces are used. For

instance, one can consider the space of functions with bounded variation, a

Besov or Sobolev space. Sometimes, it is more meaningful to consider f0 as a

distribution. One may think for instances of point sources in an astronomical
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Chapter 1 Introduction

image, e.g. stars, which can be seen as a sum of Dirac masses. Another alter-

native, which is not considered in this thesis, is to place a random model on

the signals, which corresponds to the Bayesian approach.

In many modern digital systems, the physical quantity (light) available at the

focal plane, is directly sampled on a discrete cartesian grid (by construction

on CCD or CMOS camera), hence giving directly equi-spaced samples y ∈ Rq

of the acquired scene. A general forward model relating the original image f0
to the observations reads

y = Ψ(f0)⊙ b, (1.1)

where Ψ is degradation operator from the signal space H to the observation

space Rq, b is a noise term and ⊙ is some composition operator between the

degraded data Ψ(f0) and the noise. Typically, this composition is additive or

multiplicative depending on the nature of the acquisition device. The operator

Ψ model the acquisition device (digital camera, scanner, etc) and typically

entails some sort of degradation and loss of resolution (blurring, missing

pixels, etc). The noise term b may originate from several causes. It models

the fluctuations (deterministic or random) that contaminate the observations

(such as thermal noise).

In the overwhelming majority of applications in image and signal processing,

the forward operator Ψ is considered as linear, either exactly or to a good

approximation, see e.g. (Mallat 2009). Thus, we leave aside the case of non-

linear observations, such as the magnitude of complex measurements, for

instance Fourier in interferometric or diffraction imaging (Hofmann et al.

1993). Moreover, the noise is considered additive in many cases, so that the

forward model (1.1) reduces to the following:

y = Ψf0 + b. (1.2)

In practice, the goal of recovering a continuous function f0 is in many cases

hopeless a numerical point of view. Our goal is thus to find a discrete approx-

imation of this function. To achieve that, we set some basis B(L) of a subspace

L of H with dimension n, for instance taking finite elements, e.g. piecewise

constants on a square grid or piecewise affine on a triangulation. Thus, we
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1.1 Inverse Problems and Regularization

obtain an approximation Bx0 of our original signal f0, where x0 ∈ Rn are the

coefficients of f0 in the basis B(L) and B is the matrix whose columns are the

atoms of the basis. It leads us to consider the following forward model (cf.

Figure 1.1):

y = Φx0 +w (1.3)

where

Φ = ΨB : R
n → R

q and w = b+Ψ(f0 −Bx0). (1.4)

In general, the observation domain Rq and the computational one Rn are

different (q 6= n). Indeed, q is dictated by the acquisition device, whereas n

is a choice made by the numerical user, resulting from a trade-off between

computational cost, precision and theoretical limit. This is the forward model

that we will consider throughout this manuscript. Typically,Φ is not invertible,

or badly conditioned. Beyond signal processing, the linear model is also used

in statistics and machine learning under the name of regression. One can find

its history in the paper of Seal (1967).

f0 x0 y+

w

Φ
B

forward model

inverse problem

Figure 1.1: Forward and Inverse Problem

From now on, we focus on the problem of recovering Bx0. This thus corre-

sponds to a finite dimensional problem: finding a good approximation of x0
from the observation y alone. The behavior when the grid size tends to zero

raises many important and difficult issues, which will be not treated here.

For some problem, it is important to take in account the random nature of the

noise, and thus to consider the stochastic forward model

Y = Φx0 +W, (1.5)
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Chapter 1 Introduction

where the noise W is a random vector with realizations taking values in Rq.

Supposing that the noise follows a centered Gaussian density, W ∼ N(0,σ2Id),

we obviously have Y ∼ N(Φx0,σ2Id). This classical model is studied in details

in (Trevor et al. 2009). Others noise models are considered in image process-

ing, such as Poisson noise for short noise (e.g. CCD cameras, computerized

tomography), and multiplicative noise in SAR imaging. We refer to (Refregier

et al. 2004) and (Boncelet 2005) for a more comprehensive account on noise

models in imaging systems.

When no noise corrupts the data, which is hardly the case for real life appli-

cations, the forward model becomes

y = Φx0. (1.6)

We now list some classical examples of the forward operator Φ used in image

processing.

Denoising. The denoising problem is among the most intensively studied

in the image processing literature. This step may prove crucial prior to more

high-level image analysis and processing tasks, e.g. object segmentation or

detection. The model (1.3) thus reduces to

y = x0 +w.

In other words, the operator Φ is nothing more than the identity Φ = Id.

Deconvolution. In the case of photography, we observe a blur when the cam-

era is not adequately stabilized (motion blur), but also a blur due to the point

spread function (PSF) of the acquisition system. A reasonable approximation

allows to model this degradation as a convolution operator, i.e. Φx = KΦ ⋆ x,

where KΦ is the blurring kernel. In particular, the high frequency content

of x0 may be seriously damaged. An important property of the convolution

is the fact that it is shift invariant. Estimating both x0 and KΦ, a.k.a blind-

deconvolution, is a difficult problem, but we are solely here concerned with

the case where KΦ is known. The deconvolution procedure is popular in
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1.1 Inverse Problems and Regularization

many fields in science and engineering (Biemond et al. 1990), for instance

in astronomy (Starck et al. 2002), in geophysics (Santosa et al. 1986) or mi-

croscopy (Agard 1984).

Inpainting. In presence of occlusion or damages pixels, the inpainting pro-

cedure aims at recovering such parts. In this case, Φ is a binary diagonal

operator such that Φii is 1 if the data are preserved, 0 otherwise. This oper-

ator can be deterministic, or the realization of a random mask. Inpainting is

commonly used in many applications, such as medical fluroscopy (Chan et al.

1993), in colorization (Sapiro 2005) or in data compression (Liu et al. 2007).

Compressed Sensing. The conventional wisdom in signal processing is that

for a continuous band-limited signal to be reconstructed perfectly from its

equi-spaced samples, it has to be acquired at a frequency at least twice its

bandwidth; this is the celebrated Shannon (1948)–Nyquist (1928) theorem.

This theory however precludes many signals of interests that are not band-

limited, but whose intrinsic dimension is small, think for instance of a sparse

signal, or of a smooth signal away from a few singularities. The compressed

sensing theory (Candès et al. 2006a; Donoho 2006) asserts that for such sig-

nals, exact and stable reconstruction is possible, hence allowing to break the

Shannon-Nyquist limit. The reconstruction is moreover achieved by solving a

computationally tractable convex optimization problem. The sampling opera-

tor can be modeled with a matrix Φ which is the realization of an appropriate

random ensemble, such i.i.d. Gaussian or Bernoulli entries, or partial random

Fourier or Hadamard matrices. The corresponding inverse problem can be

shown to be efficiently regularized by some popular low complexity priors

discussed in the next section. This theory has sparkled a whole research field,

and hardware proofs of concept have been also developed. The first one is

the single pixel camera (Wakin et al. 2006) at Rice University, which measures

directly random projections on a single CCD element with a binary reflector

composed of micro-mirrors. Figure 1.2 illustrates this process. Compressed

sensing has been also used for Dirac train recovery in ultrasonic imagery (Tur

et al. 2011). Introducing a partial randomization of the measurements (Lustig

et al. 2007) is also promising in medical imaging applications such as fMRI.
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Chapter 1 Introduction

Figure 1.2: One Pixel Camera project. Source: Rice University

Compressed sensing is also used in astronomy (Bobin et al. 2008), in particular

on the telescope Herschel.

Tomography. Tomography is commonly used in medical imaging (Newton

et al. 1981). Popular CT scanners are X-ray and PET modalities. In this case,

the operator Φ is a discrete Radon transform (Herman 2009), possibly with

a sub-sampling to model incomplete measurements. In practice, only a few

measurements can be collected, leading to an increase of the ill-posedness of

the (continuous) forward operator Ψ.

1.1.2 Variational Regularizations

Solving an inverse problem from the observations (1.3) corresponds to com-

puting an approximation of x0 from the knowledge of y alone. This problem is

said to be well posed (in the sense of Hadamard (1902)) in a space S if Φx = y

has x0 as unique solution on S, and if this solution depends continuously on

y. This means that one recovers exactly x = x0 when there is no noise, and a

good approximation if w is small. In general, the matrix Φ is rank deficient

or ill-conditionned, so that the problem is not well posed on the whole space

S = Rn. In order to recover well-posedness it is thus necessary to restrict the

inversion process to a well-chosen space S that includes x0. A closely related

procedure, that we describe next, is to set-up a variational inversion process

which is penalized by a well-chosen prior.

A first line of works has considered imposing a random model on the sig-

nal x0. This corresponds to the Bayesian formalism, see for instance the

8



1.1 Inverse Problems and Regularization

monograph (Hunt 1977) for an introduction to these methods. We do not

explore these strategies in this thesis. We rather directly impose some prior

on the (deterministic) x0 through some penalty function J. This corresponds to

the usual notion of variational regularization, which was initially introduced

in (Tikhonov et al. 1977) as a way to recover well-posedness of the inverse

problem under investigation.

Within this framework, the computation of an approximation x⋆ to x0 is ob-

tained by solving the following optimization problem

x⋆ ∈ Argmin
x∈Rn

F(x,y) + λJ(x). (PF
y,λ)

Here, F : Rn × Rq → R+ is a data fidelity term. Typically, it is a smooth non-

negative convex function. Thus, we expect that F is small when the prediction

Φx is close enough from y. The factorization F(x,y) = F0(Φx,y) is commonly

used, where F0 : Rq × Rq → R is smooth, non-negative and strongly convex.

This data fidelity term can be the quadratic loss, the Poisson antilog likely-

hood or the logistic loss. Statistically, one may interpret (PF
y,λ) as a Maximum

A Posteriori (MAP). This interpretation can however be misleading, as exem-

plified in (Gribonval 2011), where failures of the MAP approach are analyzed

for sparse distributions.

The function J : Rn → R+ is the regularization term imposing some prior on

the signal class. We assume in this thesis that J is a convex function. Convexity

is important to ensure the ability to compute global optima of (PF
y,λ) with fast

algorithms, and also enables a fine theoretical analysis of the properties of x⋆.

It is however important to realize that non-convex penalties, as well as non-

variational methods (e.g. greedy algorithms) are routinely used and often

outperform their convex counterparts. This is however beyond the scope of

this thesis, and we focus here on convex regularizers. Section 1.1.4 details the

basic properties of these regularizers and sketch some important examples.

The scalar λ is the regularization parameter (or hyper-parameter) allowing a

trade-off between fidelity and regularization. The choice of λ is an important

question, which is treated in the second part of this thesis, and discussed in

Section 1.3.
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Chapter 1 Introduction

Since Φ is generally not injective, note that the objective function of the prob-

lem (PF
y,λ) is not stricly convex. Thus, it may admits several solutions. It is

also possible to use the constrained version, in opposition to (PF
y,λ) qualified

as penalized or Lagrangian form, coined as the Ivanov form in the inverse

problem litterature (Ivanov et al. 1978). It reads

x⋆ ∈ Argmin
x∈Rn

J(x) subject to F(x,y) 6 ε. (P̄F
y,ε)

We mainly focus on the Lagrangian version in this dissertation. However,

problems (P̄F
y,ε) and (PF

y,λ) are equivalent in some sense (Ivanov et al. 1978;

Poljak 1987), but one may take care that the mapping between ε and λ is

generally not explicit. Some recent work (Ciak et al. 2012) in this direction

exploit the Fenchel–Rockafellar duality to overcome this difficulty in some

particular cases.

When there is no noise, i.e. when the observations follow (1.6), we consider

the constrained version of (Py,0) which reads

x⋆ ∈ Argmin
x∈Rn

J(x) subject to Φx = y. (Py,0)

As it will be proved formally in Chapter 5 (more precisely Proposition 5.2),

problems (Py,λ) and (P̄F
y,ε) converge (in an appropriate sense) to (Py,0).

1.1.3 Data Fidelity

The data fidelity is linked to the forward model (1.3). We find in the statistical

literature several data fidelity term for the problem (PF
y,λ). Note that many

of them does not assume that the forward model is of the form (1.3). This

will discussed in details in Chapter 8. One naturally thinks to generalized

linear models (GLMs) introduced by Nelder et al. (1972) which assume that

conditionally on Φ, Yi are independent with distribution that belongs to a

given (one-parameter) standard exponential family. Well-known examples

are Gaussian distribution (linear model), the reciprocal link (Gamma and

exponential distributions), and the logit link (Bernoulli distribution, logistic

regression).
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1.1 Inverse Problems and Regularization

When the noise is the realization of a white Gaussian noise, it is common to

use the quadratic loss as a data fidelity term.

F0(µ,y) =
1

2
||µ− y||22.

The functional F0 can also be chosen for instance as the logistic loss

F0(µ,y) =
q∑

i=1

log (1+ exp(µi)) − 〈y, µ〉,

or Huber loss (smoothed) or a ℓp loss. Note that ℓp loss is not smooth for

p < 1. From a deterministic point of view, F0 can be chosen from the prior on

the noise in the continuous case (for instance a noise in a Banach space) or in

the discrete setting considered, as a prior of ℓp-boundness.

In the case where F0 is the quadratic loss, the problem (PF
y,λ) reads

x⋆ ∈ Argmin
x∈Rn

1

2
||y−Φx||22 + λJ(x). (Py,λ)

This variational formulation is at the core of the first part of this thesis.

1.1.4 Low Complexity Priors

1.1.4.1 Combinatorial Model Selections

Penalizing in accordance to some notion of complexity is a key idea, whose

roots can be traced back for instance to the statistics literature (Mallows 1973;

Akaike 1973). This complexity is measured using a functional pen(T) where

T is some linear subspace containing x, and chosen among a fixed collection

of spaces T. This approach typically makes use of hierarchy of models of

increasing complexity, which should be designed in accordance to some prior

knowledge about the data x0 to recover. A union of linear models is a collec-

tion T of subspaces of Rn which is usually finite but very large, in the case of

finite dimensional problems. These subspaces typically account for some kind

of smoothness or simplicity of the signal. A key example is sparsity, which, in

11



Chapter 1 Introduction

its simplest form, corresponds to a problem of selecting few of active variables

in the data. In this setting, a subspace T has the form T = {x | supp(x) = I} for

some set of indexes I indicating the active variables. With such a set of model

at hand, one can use the following prior

J(x) = inf
x∈T

pen(T). (1.7)

The problem (Py,λ) can be recast as a model selection problem

inf
T∈T,x∈T

||y−Φx||2 + λpen(T).

The model selection literature (Birgé et al. 1997; Barron et al. 1999; Birgé

et al. 2007) proposes many significant results to quantify the performance

of these approaches. A major bottleneck of this class of approaches is that

the corresponding J function defined in (1.7) is non-convex, thus typically

leading to intractable, often NP-hard problems. For instance, the sparsity of

coefficients x ∈ Rn is measured using the ℓ0 pseudo-norm

J0(x) = ||x||0 = | supp(x)|.

Minimizing (Py,λ) or (Py,0) with J = J0 is known to be NP-hard, see for

instance (Natarajan 1995). There is a wide variety of approaches to tackles di-

rectly non-convex optimization problems. A line of research considers greedy

algorithms. The most popular ones are Matching Pursuit (Mallat et al. 1993)

and Orthogonal Matching Pursuit (Pati et al. 1993; Davis et al. 1994), see also

the comprehensive reviews Needell et al. (2008) and references therein. An-

other line of research, which is the one under study in this thesis, consists in

considering convexified versions of (1.7).

1.1.4.2 Convex Encoding of Models

For any subspace T of a real vector space E, we denote PT the orthogonal

vector on T , xT = PT (x) and ΦT = ΦPT . We now introduce the model tangent

subspace at a point x for some finite-valued convex functional J.

12



1.1 Inverse Problems and Regularization

Definition 1 .1 — Model Tangent Subspace For any vector x ∈
RN, we denote ex its model vector,

ex = argmin
e∈aff∂J(x)

||e||,

where aff∂J(x) is the affine hull of the subdifferential (see Definition 2.12)

of J at x, and

Tx = span(∂J(x))⊥.

Tx is coined the model tangent subspace of x associated to J.

This terminology will be clear after we define partly smooth function in Sec-

tion 1.2.2. When J is Gâteaux-differentiable at x, i.e. ∂J(x) = {∇J(x)}, ex = ∇J(x)
and Tx = RN. On the contrary, when J is not smooth at x, the dimension of Tx
is of smaller dimension, and the regularizing functional J essentially promotes

elements living on or close to the affine space x+ Tx. Table 1.1 exemplifies

Definition 1.1 on several regularizers that are popular in the literature. The

details of the exact derivations is provided in Chapter 3.

J Tx ex Comment

|| · ||1
{
η | ∀j 6∈ I, ηj = 0

}
sign(x) I = supp(x)

||D∗ · ||1 Ker(D∗
Ic) PKer(D∗

Ic
) sign(D∗x) I = supp(D∗x)

|| · ||1,2

{
η | ∀j /∈ I, ηj = 0

}
(N(xb))b∈B I = {g ∈ B | xg 6= 0}

|| · ||∗
{
Z | U∗

⊥ZV⊥ = 0
}

UV∗ x = UΛV∗

|| · ||∞ {α | αI = ρsI for ρ ∈ R} sign(x)/|I| I = {i | |xi| = ||x||∞}

Table 1.1: Examples of Model Tangent Subspace. The notations are precised in
the following sections.

1.1.4.3 Sparsity

A dictionary D = (di)
p
i=1 is a (possibly redundant, i.e. when p > n) collection

of p atoms di ∈ Rn. It can also be viewed as a linear mapping from Rp to Rn

13



Chapter 1 Introduction

which is used to synthesize a signal x ∈ Im(D) ⊆ Rn as

x = Dα =

p∑

i=1

αidi,

where α is the coefficient vector that synthesizes x from the dictionary D. Note

that if D is redundant, there is an infinite number of coefficients α such that

x = Dα. An issue beyond our work is to build a good dictionary. We may cite

the wavelet transform (Mallat 1989) and the curvelet transform (Candès et al.

2000) for images that are piecewise smooth away from smooth edge curves,

local Fourier basis for sounds (Allen 1977), or union of dictionaries for im-

age and signal decomposition, see for instance cartoon+texture decomposion

in (Elad et al. 2005).

Synthesis sparsity. When considering sparsity in the canonical basis, i.e.

D = Id, the model subspace and model vector read

Tx =
{
x ′ | supp(x ′) = supp(x)

}
and ex = sign(x).

Looking for the sparsest representation of x in the dictionary D amounts to

solving

min
α∈Rp

||α||0 subject to x = Dα.

Replacing the ℓ0 norm by the ℓ1 norm leads to a convex problem. The sparsest

set of coefficients, according to the ℓ1 norm, defines a signal prior which is

the image of ||.||1 under D,

JS(x) = min
α∈Rp

||α||1 subject to x = Dα.

Therefore any solution x of (Py,λ) using J = JS can be written as x = Dα where

α is a solution of

min
α∈Rp

1

2
||y−ΦDα||22 + λ||α||1. (1.8)
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1.1 Inverse Problems and Regularization

Note that || · ||1 is the convexification of || · ||0 restricted to the ℓ∞-ball. Prob-

lem (1.8) was introduced in the statistical community in (Tibshirani 1996)

where it was coined Lasso. Note that it was originally introduced as an ℓ1-ball

constrained optimization and in the over-determined case. It is also known

in the signal processing community as Basis Pursuit DeNoising (Chen et al.

1999). Such a problem corresponds to the so-called sparse synthesis regular-

ization, as sparsity is assumed on the coefficients α that synthesize the signal

x = Dα. In the noiseless case, the constrained problem (Py,0) becomes

min
α∈Rp

||α||1 subject to y = ΦDα, (1.9)

which goes by the name of Basis Pursuit after (Chen et al. 1999).

Sparse regularization is a popular class of priors to model natural signals and

images, see for instance (Mallat 2009). The idea of ℓ1 regularization finds its

root in the seismic imaging literature (Santosa et al. 1986) for deconvolution. It

is also used in many applications, see (Starck et al. 2010) for a comprehensive

account.

A key problem of active research is to learn and optimize the dictionary in

order to represent optimally a set of given exemplar. We refer to the book

of (Elad 2010, Chapter 12) for a recent overview of the relevant literature.

Analysis sparsity. Analysis regularization corresponds to using J = JA in

(Py,λ) where

JA(x) = ||D∗x||1 =

p∑

i=1

|〈di, x〉|,

It imposes the sparsity of the correlations (〈dj, x〉)j=1,...,p between x and the

atoms in a dictionary D. In this case,

Tx =
{
x ′ | supp(D∗x ′) = supp(D∗x)

}
and ex = sign(D∗x).
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Note that synthesis and analysis regularizations are different as soon as D is

not an invertible square matrix. Hence, (Py,λ) reads

min
x∈Rn

1

2
||y−Φx||2 + λ||D∗x||1. (1.10)

In the noiseless case, the ℓ1-analysis equality-constrained problem is

min
x∈Rn

||D∗x||1 subject to Φx = y. (1.11)

In (Nam et al. 2013), the term cosparse is used, motivated by the role played

by the complement of the support (i.e. cosupport) of the vector D∗x in the

theoretical analysis of (1.11).

The adjoint of any synthesis dictionary (see above) can be used to define

analysis sparsity prior. Analysis sparsity allows for more intricate operators

D∗ because D∗ is not required to be a stable frame of the signal space. One of

the most popular is the finite difference operator used in the total variation

seminorm, first introduced for denoising (in a continuous setting) by Rudin

et al. (1992). Typically, for 1-D discrete signals, D can be taken as a dictionary

of forward finite differences DDIF where

DDIF =




+1 0
−1 +1

−1
. . .
. . . +1

0 −1




. (1.12)

The corresponding prior JA favors piecewise constant signals and images. A

comprehensive review of total variation regularization can be found in (Cham-

bolle et al. 2010). One can also use a wavelet dictionary D which is shift-

invariant, such that the corresponding regularization JA can be see as a multi-

scale total variation in the case of the Haar wavelet (Steidl et al. 2004) for 1D

signals. When using wavelets with m vanishing moment, the corresponding

priors favors discrete piecewise polynomial signals of degree m. A numerical

exploration of the relative performances of analysis and synthesis regular-

ization is performed in (Elad et al. 2007). Selesnick et al. (2009) report an
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1.1 Inverse Problems and Regularization

extensive numerical exploration where they use shift invariant wavelet dictio-

naries to compare analysis and synthesis sparsity priors for several inverse

problems (e.g. deconvolution and inpainting). As a last example of sparse

analysis regularization, we would like to mention the Fused Lasso (Tibshirani

et al. 2005), where D is the concatenation of DDIF and a weighted identity. The

corresponding prior JA promotes both sparsity of the signal and its derivative,

hence favoring the grouping of non-zero coefficients in blocks over which the

signal is constant.

Structured sparsity. To further improve the performance of sparse regu-

larization, it is useful to group the coefficients, imposing the sparsity in a

block-wise manner. It has been first proposed by Hall et al. (1997, 1999); Cai

(1999) for wavelet block shrinkage. For over-determined regression of the

form (1.3), it has been introduced by Bakin (1999); Yuan et al. (2005). Block

regularization is popular in image processing because wavelet coefficients

of a natural image have a group structure (Mallat 2009). Indeed, edges and

textures induce strong local dependencies between coefficients. In multi-task

learning (Obozinski et al. 2010), it is used to control the sparsity pattern of

the covariates. In audio processing, it is also useful to deal with multi-channel

data as studied by Gribonval, Rauhut, et al. (2008) which is also known as the

multiple measurements vector (MMV) model, see for instance (Cotter et al.

2005; Chen et al. 2006).

Suppose what we split the signal space Rn into groups without overlapping.

We formalize this splitting by a disjoint partition B of {1, . . . ,n}, i.e.

⋃

b∈B

b = {1, . . . ,n} and ∀b,b ′ ∈ B, b∩ b ′ = ∅.

Then, we define the ℓ1 − ℓ2 norm as J = JB where

JB(x) =
∑

b∈B

||xb||, (1.13)

where xb is a vector of size |b| containing the entries indexed by b. Thus, the
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Chapter 1 Introduction

model space and model vector reads

Tx =
{
x ′ | ∀b ∈ B, xb = 0⇒ x ′b = 0

}
and ex =

(
xb

||xb||

)

b∈B

,

where we take the convention that if xb = 0 then xb

||xb||
= 0. It is possible

to replace the ℓ2 norm with more general functionals, such as ℓp norms for

p > 1 (Turlach et al. 2005; Negahban et al. 2011; Vogt et al. 2012) or to use

analysis block sparsity

JB(x) =
∑

b∈B

||D∗
bxb||,

where D∗
b are linear operators from R|b| → Rp. For instance, one can express

the 2D isotropic total variation by defining D∗
bx ∈ R2 to be an approximation

by finite differences of the gradient of the image x at the pixel indexed by

b. This block analysis sparsity allows us also to take into account overlap-

ping groups (Jenatton et al. 2011; Cai et al. 2001), or groups structured in a

tree (Peyré et al. 2011; Zhao et al. 2009).

1.1.4.4 Beyond Sparsity

While sparsity has become mainstream in imaging sciences and machine

learning, there is now a flurry of activity to develop novel priors to take into

account various types of low-dimensional structures to model the data.

Low rank prior. The natural extension of sparsity to matrices x ∈ Rn1×n2 ,

where n = n1n2, is to impose a low rank constraint. This should be un-

derstood as imposing the sparsity of the singular values. Denoting x =

Vx diag(Λx)U
∗
x a Singular Value Decomposition of x, where Λx ∈ Rm and

m = min(n1,n2). Hence the rank reads rank(x) = ||Λx||0. Here, the natural

models are not linear subspaces Tx but manifolds of matrices with a fixed

rank, see Chapter 4. The nuclear norm (or trace, 1-Schatten norm) imposes

such a sparsity (Fazel 2002) and is defined as

||x||∗ = ||Λx||1.
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1.1 Inverse Problems and Regularization

The nuclear norm is the convexification of the rank function with respect to

the spectral norm ball, see (Fazel 2002; Hiriart-Urruty et al. 2012). It has been

used for instance to recover low rank matrices by Srebro (2004) (Netflix prize)

or for model reduction in (Fazel et al. 2001).

Spread representation. In some cases, one expects to recover flat vectors, i.e

such that for most i, xi = ||x||∞. A convex function promoting such behavior

is the ℓ∞ norm defined as

||x||∞ = max
i∈{1,...,n}

|xi|.

Such a prior is encoded in a linear model T which is defined w.r.t to the

number of saturating coordinates. More precisely,

Tx =
{
x ′ | x ′I = ρxI for some ρ ∈ R

}
,

where I = {i | xi = ||x||∞}. For applications in computer vision such as image

retrieval in a database (Jégou et al. 2010), it is useful to have a compact sig-

nature of signals, typically with only two values ±1. An approach proposed

in (Jégou et al. 2012) for obtaining this binary quantification is to compute

these vectors as spread approximations in a random dictionary. A study of

this regularization is done in (Fuchs 2011), where an homotopy-like algo-

rithm is provided. Moreover, the use of ℓ∞ regularization is connected to

Kashin’s representation (Lyubarskii et al. 2010), which is known to be useful

in stabilizing the quantization error for instance. Others applications such as

wireless network optimization (Studer et al. 2012) also rely on ℓ∞ prior.

1.1.4.5 From Continuous to Discrete, and Vice Versa.

Even if we focus on finite dimensional problems, an important issue is to un-

derstand the link between these models with their continuous counterparts.

The underlying mathematical problems, for instance the convergence of dis-

crete models to the continuous ones, have practical implications in order to

understand the fine structure of signals computed with these methods, which
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are generally easier to describe in a continuous setting (for instance edges in

images). Two typical questions naturally arise:

(i) How to analyze the convergence of the function Bx⋆ to f0 when n tends

to +∞, where x⋆ is some solution of (Py,λ) and B is the basis defined

in (1.4) ? It is often treated by a control on both the estimation error

||x⋆ − x0|| and the approximation error ||f0 −Bx0||.

(ii) How to define a variational problem directly in the continuous setting ?

It corresponds to replacing the function J par a function f 7→ J(f) such

that J(Bx⋆) is “close enough” to J(x⋆). In this case, we deal with the

following optimization problem

f⋆ ∈ argmin
f∈H

1

2
||y−Ψf||2 + λJ(f). (cPy,λ)

Note that the choice of H should be chosen in accordance to the func-

tional J.

Wavelet sparsity and Besov spaces. Let W(f) ∈ RN be the wavelet trans-

form of f ∈ H in an orthogonal basis introduced by Mallat (1989); Daubechies

(1992); Meyer (1992). Besov Banach spaces are defined using appropriate spar-

sity inducing norms of W(f). Besov spaces form an important class of Banach

spaces since they are a powerful tool to model piecewise regular signals and

image with pointwise singularities, see for instance (Meyer 1992; Chambolle

et al. 1998). Wavelets are known to provide optimally sparse representations

for functions in Besov spaces (Mallat 2009).

These spaces have been widely used in the statistical community to estab-

lish minimaxity of wavelet-based estimators for several problems (e.g. re-

gression, inverse problems, etc.), for instance to quantify the optimality of

the soft thresholding for denoising (Donoho et al. 1994) or for the wavelet-

vaguelettes (Donoho 1995) method which corresponds to applying the soft

thresholding to Ψ+(y). These results have been extended to group spar-

sity (Hall et al. 1998), for instance in the denoising setting (Chesneau et al.

2010a) or deblurring (Chesneau et al. 2010b).
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1.1 Inverse Problems and Regularization

Sparsity and Radon measures. When we wish to recover highly localized

signals, a convenient model is to use sum of Dirac distributions. The finite

dimensional problem (Py,λ), with J = || · ||1 and Φ = Id, is equivalent to consid-

ering that these distributions are on a fixed grid whereas (cPy,λ) can be seen

as its continuous (grid-free) counterpart. In this case, H is the space of finite

Radon measures and J(f) is the total variation of the measure f which should

not be confused with the total variation of a function.

Solving inverse problems on this space of measures has been recently consid-

ered by Bredies et al. (2013) and a theoretical study of the performance is

proposed by Candès and Fernandez-Granda (2013) for the case of deconvo-

lution (super-resolution). The convergence of the solutions of (Py,λ) to those

of (cPy,λ) is studied in (Duval et al. 2013; Tang et al. 2012).

Sparse gradient and bounded variation functions. Analysis sparsity of the

gradient (1.12) can be seen as a discretization by finite difference of the total

variation of a function. More precisely, for f ∈ L1
loc(Ω), we denote the total

variation J as

J(f) = sup

{

−

∫

Ω

fdivψ | ψ ∈ C∞
c (Ω, R

n), ∀x ∈ Ω, |ψ(x)| 6 1

}

. (1.14)

f has bounded variation if J(f) < +∞ and we denote BV(Ω) the Banach spaces

of functions of bounded variations endowed with the norm || · ||L1(Ω)
+ J(·).

Remark that W1,1(Ω) is strictly included in BV(Ω). In fact, if f is C1 then

J(f) = ||∇f||L1(Ω)
.

A useful property of this space with respect to any Sobolev space is the fact

that the problem (cPy,λ) can admit non-continuous solutions when using H =

BV(Ω). The denoising problem has been studied in (Caselles et al. 2007) where

the discontinuity set of its solution is characterized. We refer to (Ambrosio

et al. 2000) for a detailed study of this space. Note that higher order priors

have been introduced recently, e.g the total generalized variation (Bredies et al.

2010).
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1.1.5 Solving the Optimization Problem

Several algorithms exist in order to solve the problem (Py,λ) or (Py,0), depend-

ing on the nature of J.

Solving (Py,λ) corresponds to the minimization of a convex function f. When

J is smooth, one can make use of traditional gradient or Newton descent

schemes. However, the class of low-complexity regularizations J considered in

this thesis are highly non-smooth. It is possible to adapt the gradient descent

scheme when f is convex, lower semi-continuous and proper by replacing

the descent direction grad f by any element of the subdifferential ∂f(x). This

scheme is however quite inefficient for the penalties J considered in this thesis,

which are highly structured. Making use of this structure is crucial to obtain

fast algorithms.

For a large class of J regularizers, such as those introduced in this section (ℓ1,

nuclear norm, total variation, etc), the optimization (Py,λ) can be shown to be

equivalent to a conic program. This cone constraint can be enforced using a

self-concordant barrier function, and the optimization problem can hence be

solved using interior point methods, as pioneered by Nesterov et al. (1994),

see also the monograph (Boyd et al. 2004). This class of methods enjoys fast

convergence rate. Each iteration however is typically quite costly. This class of

solvers is a wise choice for problem of medium size, and when high accuracy

is needed.

Homotopy methods have been introduced in the case of the sparsity J = || · ||1
by Osborne et al. (2000), then adapted to the analysis sparsity J = ||D∗ · ||1
in (Tibshirani et al. 2011) and spread representations || · ||∞ in (Fuchs 2011).

The LARS algorithm (Efron et al. 2004) is closely related and compute an

approximation of the homotopy path with a faster algorithm. These methods

rely on the behavior of λ 7→ x⋆(λ), where x⋆(λ) is a solution of (Py,λ). In the

case of a polyhedral regularization, such as ℓ1 or ℓ∞, this path turns out to be

piecewise polygonal, see Chapter 8.

The cost per iteration of both interior point and homotopy methods scales

badly with the dimension, thus preventing them to be used in large scale

problems such as those encountered in imaging science. Proximal schemes
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1.2 Robustness: Handling the Impact of Noise

are attractive alternatives, since they correspond to first order schemes whose

iterations are in practice quite cheap. We refer to (Beck et al. 2009; Bauschke et

al. 2011; Combettes et al. 2011; Parikh et al. 2013) for comprehensive reviews.

Their slow convergence rate is thus generally not a big issue in imaging or

machine learning, where one typically does not seek for a high precision

solution to the optimization problem (Py,λ).

1.2 Robustness: Handling the Impact of Noise

Observations are in general contaminated by noise. It is thus important to

study the robustness of (Py,λ) to analyze its performance. More precisely, we

aim to derive criteria quantifiying how x⋆ is close to to x0. This notion of

closeness will be analyzed mathematically through two quality criteria: error

distance in the sense of the ℓ2 norm and model selection.

1.2.1 Linear Convergence Rate

Here, we are seeking sufficient conditions under which any solution of (Py,λ)

satisfies

||x⋆ − x0|| = O(||w||).

It depends typically on x0, while λ should be chosen proportionally to the

noise level for the linear convergence to hold. The terminology “linear” in the

convergence rate, which stems from the inverse problem community, pertains

to the fact that the error is within a factor of the noise level. This rate is made

possible by the fact that J is not smooth. For instance, this is not the case for

|| · ||22, see (Scherzer 2009).

1.2.1.1 Dual Certificate and Non-Degeneracy

We introduce the notion of dual certificate which characterizes the solutions

of the noiseless problem (P0(Φx0)). This notion is a key ingredient of our

analysis in the sequel.
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Definition 1 .2 — Dual Certificates . A (dual) certificate for x ∈
Rn is a vector p ∈ Rq such that the source condition is verified:

Φ∗p ∈ ∂J(x). (SCx)

If p is a certificate, and moreover

Φ∗p ∈ ri∂J(x), (SCx)

we say that p is a non-degenerate certificate, where ri denotes the relative

interior.

A subspace T ⊆ Rn satisfies the restricted injectivity condition (INJT ) if Φ is

injective on T .

In practice, it might be difficult to find such a non-degenerate certificate. A

popular strategy in the literature is to single out a particular certificate (that

we coined minimal norm) which in some cases can be actually computed in

closed form. The minimal norm certificate p0 for x ∈ Rn is defined by

p0 = argmin
p∈Rq

||p|| subject to Φ∗p ∈ ∂J(x).

We define also the linearized precertificate pF as

pF = argmin
p∈Rq

||p|| subject to (Φ∗p)Tx
= ex.

Now, suppose that (INJTx
) is satisfied. In this case, pF = Φ+,∗

Tx
ex, see Lemma 5.5.

Then Φ∗pF ∈ ri∂J(x) or Φ∗p0 ∈ ri∂J(x) implies that pF = p0. Thus the lin-

earized precertificate is the minimal norm certificate if it is indeed a non-

degenerate certificate, see Chapter 5 for a precise statement. This is impor-

tant since pF is simple enough to be computed and analyzed mathematically,

leading to an easy way to check if p0 is a non-degenerate certificate. Another

crucial point is that p0 is the certificate that drives the robustness of the model,

as detailed in Section 1.2.2.
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1.2.1.2 Main Contribution

We prove the following Theorem which establishes a linear convergence rate

for any closed convex function, without particular assumption on it, except

the fact that it is finite-valued, hence continuous.

Theorem 1 Let T0 = Tx0
. Suppose that (SCx0

) is verified for Φ∗p ∈
ri∂J(x0) and (INJT0

) holds. If λ = cε, c > 0, then for every minimizer x⋆

of (Py,λ)

||x⋆ − x0||2 6 Cε ,

where

C = C1 (2+ c||p||2) +C2
(1+ c||p||2/2)

2

cCp
,

C1 > 0 and C2 > 0 are two constants independent of p and 0 < Cp < 1.

This theorem is proved in Chapter 6. This result holds for any finite-valued

convex function and holds for any minimizer of (Py,λ) (not necessarily unique).

However, remark that (INJT0
) makes sense only if J promotes subspace of low

dimension. Note that finding a certificate p is not trivial, and that the constant

involved in Theorem 1 depends on it. This leaves a degree of freedom to

optimize the constant for the certificate. The closer to 1 the constant Cp is,

the better is the robustness. It measures how far from the relative boundary

is p. Finally, the constants C1 and C2 are not absolute and may depend on

the dimension. Hence, this theorem does not extend straightforwardly to the

infinite-dimensional problem (cPy,λ).

1.2.1.3 Relations to Previous Works

Convergence rates. The monograph (Scherzer 2009) is dedicated to regular-

ization properties of inverse problems in infinite-dimensional Hilbert and Ba-

nach spaces with application to imaging. In particular, Chapter 3 of this book
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treats the case where J is a coercive gauge for the problem (Py,λ). In (Burger

et al. 2004), the authors consider the case where J is a proper, convex and l.s.c

functional for both the constrained and Lagrangian regularization (cPy,λ). Un-

der the source condition and a restricted injectivity assumption, they bound

the error in Bregman divergence with a linear rate O(||w||). For the classi-

cal Thikonov regularization, i.e. J = || · ||L2(Ω)
, the estimation is in O(

√
||w||),

which is not a linear convergence. Extensions of these results have been proved

in (Resmerita 2005) and (Hofmann et al. 2007) for the Bregman rate.

Lorenz (2008) treats the case where J is a ℓp norm with 1 6 p 6 2 and pro-

vides a prediction error Φx0 −Φx⋆ in O(||w||) and an estimation error x⋆ − x0
in O(

√
||w||). Grasmair et al. (2011) is concerned with the special case of ℓ1 reg-

ularization, and draws some connection with the restricted isometry property

(RIP), see below. The result which is the closed to our appears in (Grasmair

2011). Here, J is a proper, convex, l.s.c and positively homogeneous functional

on some Banach space H. Under a source condition and restricted injectivity

on a an appropriate cone, a linear convergence rate is proved with respect to

J, i.e.

J(x⋆ − x0) = O(||w||).

This result implies ours, but only if J is injective which precludes many im-

portant regularizers, e.g. TV.

Compressed sensing. In a compressed sensing setting, for instance when

Φ is drawn from a i.i.d. normal distribution, it was proved (Rudelson et al.

2008) that if the number of measurements q is such that q & log(n/k) where

k = ||x0||0 then there exists with high probability on Φ a non-degenerate

certificate when J = || · ||1, i.e. (SCx) holds and one can apply the result of

Theorem 1.

The performance of compressed sensing recovery has initially been analyzed

using the so-called restricted isometry property (RIP) introduced in (Candès

et al. 2006a, 2006b; Candès and Tao 2006) for ℓ1. It is defined for a couple

(Φ,k) where k is a targeted sparsity, as the smallest constant δk such that

(1− δk)||x||
2 6 ||Φx||2 6 (1+ δk)||x||

2, (1.15)
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1.2 Robustness: Handling the Impact of Noise

for any vector x such that ||x||0 6 k. It is shown (Candès et al. 2006a) that

if δ2k + δ3k < 1, then for every vector x0 of sparsity k, there exists a non-

degenerate certificate (Candès et al. 2005, Lemma 2.2) as remarked also

by Grasmair et al. (2011). This result thus implies linear convergence rate,

and is applied in (Candès et al. 2006b) to show the robustness to noise of com-

pressed sensing. This was generalized to analysis sparsity (i.e. J = ||D∗ · ||1 with

D tight frame) in (Candès, Eldar, et al. 2011), structured sparsity in (Candès,

Eldar, et al. 2011) and matrix completion (Recht et al. 2010; Candès and Plan

2011b) using J = || · ||∗. A major shortcoming of this approach is that available

designs of matrices satisfying (1.15) for reasonnably large value of k are essen-

tially random. Indeed, in this case, the constant δk can be shown to be small

enough with high probability on Φ for a nearly optimal scaling of (n,q,k).

For instance, when Φ is drawn for the Gaussian ensemble, it is the case when

q < k log(n/k). as proved by Candès and Tao (2006) Note that in general, com-

puting the RIP constants for a given matrix is an NP-hard problem (Bandeira

et al. 2013).

The golfing scheme introduced by Gross (2011) for the nuclear norm allows

to consider non-Gaussian distributions, e.g. partial Fourier measurements. It

is based on an iterative scheme starting from the linearized precertificate pF

in order to construct an (approximate) certificate with high probability on the

matrix for a given vector. It was further studied by Candès and Plan (2011a)

for ℓ1 regularization and Koltchinskii et al. (2011).

1.2.2 Model Selection

So far, we were concerned with ℓ2-stability/robustness. What can be said

about the recovery of the model T0 = Tx0
underlying the original vector itself

x0 ? To be able to state such a result, the regularization has to enjoy some

additional structure. This is the goal of partial smoothness that we introduce

formally hereafter.

27



Chapter 1 Introduction

1.2.2.1 Partly Smooth Functions

The notion of partial smoothness (Lewis 2002) unifies many notions of struc-

tured non-smooth functions known in the literature The notion of partial

smoothness (as well as identifiable surfaces (Wright 1993)) captures essential

features of the geometry of non-smoothness which are along the so-called

”active/identifiable manifold”. Loosely speaking, a partly smooth function

behaves smoothly as we move on the identifiable manifold, and sharply if

we move normal to the manifold. In fact, the behavior of the function and of

its minimizers (or critical points) depend essentially on its restriction to this

manifold, hence offering a powerful framework for sensitivity analysis theory.

In particular, critical points of partly smooth functions move stably on the

manifold as the function undergoes small perturbations (Lewis 2002; Lewis

et al. 2013).

Definition 1 .3 — Partly Smooth Function . A finite-valued

convex function J ∈ Γ+c (Rn) is said to be partly smooth (PSF) at x relative to

a set M ⊆ Rn if there exists a neighborhood U of x such that

(i) M∩U is a C2-manifold and J restricted to M is C2 around x,

(ii) Tx is the tangent plane of M at x, i.e. TM(x) = Tx,

(iii) the set-valued mapping ∂J is continuous at x relative to M.

The manifold M is coined the model manifold of x ∈ Rn. J is said to be partly

smooth relative to a set M if M is a manifold and J is partly smooth at each

point x ∈ M relative to M. J is said to be locally partly smooth at x relative to a

set M if M is a manifold and there exists a neighbourhood U of x such that

J is partly smooth at each point x ′ ∈ M∩U relative to M.

Note that in the previous definition, M needs only to be defined locally around

x, and it can be shown to be locally unique. Hence the notation M = Mx is

unambiguous (locally).

ℓ1, ℓ1-ℓ2 and nuclear norms are partly smooth, where the first two ones are

such that M = Tx. This special class of partly smooth functions is dubbed
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1.2 Robustness: Handling the Impact of Noise

partly smooth with linear manifold functions. Moreover, if J = J0 ◦D∗ and J0
is partly smooth at z = D∗x for the manifold M0

z, then it is shown in (Lewis

2002, Theorem 4.2) that J is partly smooth at x for

M =
{
u ∈ R

N | D∗u ∈ M0
z

}
.

A similar result is also proved for the sum of two partly smooth functions. We

detail these results in Section 4.1.

1.2.2.2 Main Contribution

We prove the following theorem.

Theorem 2 Let J a locally partly smooth function at x0 relative to M.

Assume that (INJT ) holds and Φ∗pF ∈ ri∂J(x0). Then there exist positive

constants C,C ′ such that if w and λ obey

||w|| 6 C and λ = C ′||w||, (1.16)

the solution x⋆ of (Py,λ) with noisy measurements y is unique, and satisfies

x⋆ ∈ M and ||x0 − x
⋆|| = O(||w||).

This theorem is proved in Chapter 7. Obviously, the assumptions of Theorem 2

imply the conclusion of Theorem 1. Contrary to this same result, this theorem

is based on an explicit formulation of the precertificate pF, which makes it

directly effective. Note that there exist vectors which can be stably recovered

in the ℓ2 sense of Theorem 1, but whose underlying manifold model cannot

be stably identified in the sense of Theorem 2, see our numerical experiments

in Chapter 10. When J is partly smooth with linear manifold (M = Tx), i.e. the

manifold is in fact the model subspace, a more precise statement of Theorem 2

is given with the explicit derivation of the constants C,C ′ and the one involved

in the O(.) term, see Chapter 7.
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1.2.2.3 Relation to Previous Works

Special cases. Theorem 2 is a generalization of many previous works that

have appeared in the literature. For the ℓ1 norm, J = || · ||1, to the best of our

knowledge, this result was initially stated by Fuchs (2004). In this setting,

the result x⋆ ∈ M corresponds to the correct identification of the support, i.e.

supp(x⋆) = supp(x0). Moving to a setting where both Φ and w are random,

the condition pF ∈ ri∂J(x0) implies model consistency (also known as sparsis-

tency for ℓ1), i.e. the probability that the support is correctly identified tends

to 0 when the dimensions of the problem increases. Bach proves respectively

in (Bach 2008a) and (Bach 2008b) Theorem 2 (in fact a variant since he consid-

ers randomized Φ and w) for ℓ1 − ℓ2 and nuclear norm gauges, in the special

case where Φ has full rank (i.e. is injective). Our results thus shows that the

same condition ensure rank consistency with the additional constraint that

Ker(Φ)∩ T = {0}. Theorem 2 for a ℓ1 analysis prior was proved by Vaiter, Peyré,

et al. (2013). A similar result was shown in (Duval et al. 2013) for an infinite

dimensional sparse recovery problem over the space of Dirac measures, with

J the total variation of a measure.

Compressed sensing. Condition Φ∗pF ∈ ri∂J(x0) is often used when Φ is

drawn from the Gaussian matrix ensemble to asses the performance of com-

pressed sensing recovery with ℓ1 norm. It has been proved (Wainwright 2009;

Dossal et al. 2012) for J = || · ||1 that if Φ is a random matrix drawn from the

Gaussian ensemble, then for q > 2s logn, Φ∗pF ∈ ri∂J(x) with high probabil-

ity on Φ for k = ||x0||0. One may have observed that the bound on q bears

similarities with that of Section 1.2.1 except in the scaling in the log term. It

was also used to ensure ℓ2 robustness of matrix completion in a noisy setting

by Candès et al. (2010), and our findings show that it also ensures rank consis-

tency for matrix completion at high signal to low noise levels. It generalizes

the result proved for a family of decomposable norms (including in particular

ℓ1-ℓ2 norm and the nuclear norm) by Candès and Recht (2013) when w = 0.

Stronger criteria for ℓ1. Many sufficient conditions can be formulated to

ensure that pF is a non-degenerate certificate, and hence to guarantee the
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1.3 Sensitivity Analysis and Parameter Selection

model stability. The strongest criterion to ensure a noise robustness for ℓ1

regularization is the mutual coherence, introduced by Donoho et al. (2001).

Finer criteria based on Babel functions have been proposed in (Gribonval and

Nielsen 2008; Borup et al. 2008). The Exact Recovery Condition introduced

by Tropp (2006) is weaker than the coherence which in turns is greater that

the weak-ERC (Dossal 2012).

1.3 Sensitivity Analysis and Parameter Selection

Beside studying stability, the second goal of this thesis is to investigate the

sensitivity of any solution x⋆(y) to the parameterized problem (Py,λ) to (small)

perturbations of y. This sensivity analysis is central to construct an unbiased

estimator of the quadratic risk, as described in Section 1.3.2. We suppose here

that J is a partly smooth gauge with linear manifold, i.e. such that Mx = Tx

and J is 1-homogeneous. We conjecture that this statement remains true for

any finite-valued convex partly smooth function, though this has not been

formally proved yet. The technical obstacles faced by this generalization will

be discussed in Chapter 9.

1.3.1 Local Differentiability of the Optimal Solutions

The objective here is find a formula of the derivative of x⋆(y) with respect

to the observations, valid on the biggest set possible. Moreover, since x⋆(y)

is not uniquely defined, it has to be interpreted as a multivalued mapping.

Sensitivity analysis1 is a major branch of optimization and optimal control

theory. Comprehensive monographs on the subject are (Bonnans et al. 2000;

Mordukhovich 1992). The focus of sensitivity analysis is the dependence and

the regularity properties of the optimal solution set and the optimal values

when the auxiliary parameters (e.g. y here) undergo a perturbation. In its

simplest form, sensitivity analysis of first-order optimality conditions, in the

parametric form of the Fermat rule, relies on the celebrated implicit function

theorem.

1. The meaning of sensitivity is different here from what is usually intended in satistical
sensitivity and uncertainty analysis.
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1.3.1.1 Main Contribution

Because of non-smoothness of the regularizer J, it is a well-known fact in

sensitivity analysis that one cannot hope for a global claim, i.e. an everywhere

smooth mapping2 y 7→ x⋆(y). Rather, the sensitivity behavior will be local.

This is the reason why we need to introduce the following transition space H,

which will be shown to contain points of non-smoothness of y 7→ x⋆(y).

We introduce the transition space H defined as

H =
⋃

T∈T

HT , where HT = bd(Πn+p,n(AT )),

where Πn+p,n is the canonical projection onto the first n components, bdC is

the boundary of C, and

AT =

{

(y, xT ) ∈ R
n × T̃ |

1

λ
Φ∗

T (ΦxT − y) ∈ rbd∂J(xT )

}

.

Here, rbd∂J(xT ) is the relative boundary of ∂J(xT ) relatively to its affine hull

and T̃ = {x ∈ Rn | Tx = T }. This set corresponds exactly to the observations y

such that the model space associated to a solution of (Py,λ) is not stable with

respect to small perturbations. In particular, when J = || · ||1, we show that this

set is in fact a union of hyperplanes and when J = || · ||1,2 it is a semi-algebraic

set.

Our main sensitivity analysis is the following.

Theorem 3 Let y 6∈ H and x⋆ a solution of (Py,λ) such that

KerΦT ∩ Ker D2JT (x
⋆) = {0} (Ix⋆)

where T = Tx⋆ . Then, there exists an open neighborhood V ⊂ Rn of y, and a

mapping x̃ : V → T such that

(i) For every ȳ ∈ V, x̃(ȳ) is a solution of (Pλ̄(ȳ)), and x̃(y) = x⋆.

2. To be understood here as a set-valued mapping.
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(ii) The mapping x̃ is C1(V) and

∀ ȳ ∈ V, D1x̃(ȳ) = −(Φ∗
TΦT + λD2JT (x

⋆))−1ΦT .

The mapping y 7→ µ̂(y) = Φx⋆ is single-valued and C1(Rn \ H). For every

y 6∈ H, there exists a solution x⋆ of Pλ(y) such that (Ix⋆) is satisfied. Moreover,

for any y 6∈ H,

div(µ̂)(y) = tr(∆(y))

where

∆(y) = −ΦT (ΦT
∗ΦT + λD2JT (x

⋆))−1 ◦ΦT
∗.

This theorem is proved in Chapter 8.

1.3.1.2 Relation to Previous Works

Sensitivity analysis is a major branch of optimization and optimal control

theory. Comprehensive monographs on the subject are (Bonnans et al. 2000;

Mordukhovich 1992). The focus of sensitivity analysis is the dependence and

the regularity properties of the optimal solution set and the optimal values

when the auxiliary parameters (e.g. y here) undergo a perturbation. In its

simplest form, sensitivity analysis of first-order optimality conditions, in the

parametric form of the Fermat rule, relies on the celebrated implicit function

theorem.

For the Lasso problem, the above divergence formula implies that

div(µ̂)(y) = | supp(x⋆)|,

where x⋆ is a solution of (Py,λ) such that (Ix⋆) holds, i.e. Φsupp(x⋆) has full rank.

This result was proved in (Dossal et al. 2013), see also (Tibshirani et al. 2012)

where a similar result is proved without the condition (Ix⋆).
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The case of analysis sparsity was investigated in (Vaiter, Deledalle, et al. 2013)

and (Tibshirani et al. 2012). In this case, one has

div(µ̂)(y) = dim KerD∗
Λ, Λ = supp(D∗x⋆)c ,

where x⋆ is such that (Ix⋆) holds.

The originality of our contribution in this direction is the following:

(i) We formulate the set H of non-smoothness points, which is crucial for

the application to risk estimation exposed bellow.

(ii) We give an explicit formula of the divergence of the prediction.

(iii) Our sensitivity result deals with a set-valued mapping (even if its image

by Φ is single-valued).

1.3.2 Unbiased Risk Estimation

The degrees of freedom (DOF) of a statistical procedure quantifies its complex-

ity (Efron 1986). Among possible applications is the computation of efficient

risk estimators. These estimator allows an objectively guided choice of the

hyperparameters associated to the statistical procedure.

Let µ0 = Φx0. Suppose that the observations Y ∼ N(µ0,σ2Idn). Following (Efron

1986), the DOF is defined as

df =

n∑

i=1

cov(Yi, µ̂i(Y))

σ2
.

The well-known Stein’s lemma (Stein 1981) asserts that, if y 7→ µ̂(y) is weakly

differentiable function (i.e. typically in a Sobolev space over an open subset

of Rn), such that each coordinate y 7→ µ̂i(y) ∈ R has an essentially bounded

weak derivative3

E

(∣∣∣∂µ̂i
∂yi

(Y)
∣∣∣
)
<∞, ∀i ,

3. We write the same symbol as for the derivative, and rigorously speaking, this has to be
understood to hold Lebesgue-a.e.
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then its divergence is an unbiased estimator of its DOF, i.e.

d̂f = div(µ̂)(Y) = tr(Dµ̂(Y)) and E(d̂f) = df ,

where Dµ̂ is the Jacobian of y 7→ µ̂(y). In turn, this allows to get an unbi-

ased estimator of the prediction risk E(||µ̂(Y) −µ0||
2) through the SURE (Stein

Unbiased Risk Estimate Stein 1981).

1.3.2.1 Main Contribution

To apply Stein’s lemma we need to provide a closed-form of the Jacobian of

y 7→ µ̂(y) which holds true almost everywhere. Roughly speaking, to be able

to control the size of Rq \H, the functions J cannot be too oscillating in order

to prevent pathological behaviors. In order to do this, we use arguments of

o-minimal geometry. More precisely, we ask that the function J is definable in

such a structure and that T = (Tx)x∈Rn is finite. These assumptions exclude

the nuclear norm. Under such assumptions, we prove the following theorem.

Theorem 4 Let Y = Φx0 +W with W ∼ N(0,σ2Idn). Then,

(i) H is of Lebesgue measure zero;

(ii) µ̂ is Lipschitz continuous, hence weakly differentiable, with an essen-

tially bounded gradient.

(iii) d̂f = tr(∆(Y)) is an unbiased estimate of df = E(div(µ̂(Y)).

(iv) The SURE

SURE(µ̂)(Y) =||Y − µ̂(Y)||2 + 2σ2d̂f−nσ2 (1.17)

is an unbiased estimator of the risk E
(
||µ̂(Y) − µ0||

2
)
.

This theorem is proved in Chapter 9. This result holds true for the SURE

within an exponential family, see Chapter 9.
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1.3.2.2 Relation to Previous Works

In the case of standard Lasso (i.e. ℓ1 penalty) with Y ∼ N(Φx0,σ2Idn) and Φ

of full column rank, Zou et al. (2007) showed that the number of nonzero

coefficients is an unbiased estimate for the DOF. Their work was generalized

in (Dossal et al. 2013) to any arbitrary design matrix. Under the same Gaussian

linear regression model, unbiased estimators of the DOF for the Lasso with

ℓ1-analysis penalty, were given independently in (Tibshirani et al. 2012; Vaiter,

Deledalle, et al. 2013).

A formula of an estimate of the DOF for the group Lasso when the design

is orthogonal within each group was conjectured in (Yuan et al. 2005). Kato

2009 studied the DOF of a general shrinkage estimator where the regression

coefficients are constrained to a closed convex set C. His work extends that

of Meyer et al. (2000) which treats the case where C is a convex polyhedral

cone. When Φ is full column rank, Kato (2009) derived a divergence formula

under a smoothness condition on the boundary of C, from which an unbiased

estimator of the degrees of freedom was obtained. When specializing to the

constrained version of the group Lasso, the author provided an unbiased

estimate of the corresponding DOF under the same group-wise orthogonality

assumption on Φ as (Yuan et al. 2005). An estimate of the DOF for the group

Lasso was also given by Solo et al. (2010) using heuristic derivations that

are valid only when Φ is full column rank, though its unbiasedness is not

proved.

1.4 Reading Guide

This thesis is organized in 11 chapters. Figure 1.3 provides a description of the

dependencies between them. A summary in French of the thesis is provided

in appendix.

Chapter 2: Mathematical Background. This chapter provides the necessary

common material used in this thesis. In particular, we recall basic definitions

of convex analysis (in particular gauges), o-minimality and smooth manifolds.
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This chapter contains mainly well known definitions and properties, but we

would like to emphasize that some new results are established. The reader is

invited to take in account the List of Notations in appendix.

1.4.1 Part I: Models, Partial Smoothness and Dual Certificates

This part lays down the three main concepts used in this manuscrit: tangent

model space, partly smooth functions and dual certificates. Each of these tools

has its dedicated chapter.

Chapter 3: Model Tangent Subpace. In Chapter 3, we define the model tan-

gent space and model vector in Definition 3.1 and the subdifferential gauge

in Definition 3.2. This allows us to prove Theorem 3.1 which provides a point-

wise decomposition of the subdifferential of any continuous convex func-

tion.

Chapter 4: Partial Smoothness. Chapter 4 introduces partly smooth func-

tions (Definition 4.1) specialized to convex functions, and partly smooth func-

tions relative to a linear manifold (Definition 4.2). In particular, we provide a

derivation of explicit partial smoothness Lipschitz-constants for the latters.

Chapter 5: Certificates and Uniqueness. In Chapter 5, we introduce the

(non-degenerate) dual certificates (Definition 5.1), minimal norm certificate

(Definition 5.2), linearized precertificate (Definition 5.4) and its associated

identifiability criterion (Definition 5.5). We also define the restricted injectivity

assumption (Definition 5.3). The main result of this chapter is Theorem 5.3

which gives a sufficient condition for uniqueness for (Py,λ) or (Py,0).

1.4.2 Part II: Robustness

Chapter 6: Noise ℓ2 Robustness. In this chapter, we prove Theorem 6.1

showing that if both the non-degenerate source condition and the restricted
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injectivity hold, then (Py,λ) enjoys a linear convergence rate with respect to

the estimation error.

Chapter 7: Model Selection. In Chapter 7, we prove Theorem 7.2 which

ensures that for a partly smooth function J, if the restricted injectivity holds

and that the linearized precertificate is a non-degenerate certificate, then for

a certain regime of small noise, (Py,λ) has a unique solution and x0 is an

element of the manifold relative to x0. Theorem 7.3 proves a similar result for

partly smooth function with linear manifold with more explicit constants.

1.4.3 Part III: Sensitivity

Chapter 8: Local Differentiability of the Optimal Solutions. In this chapter,

we introduce the transition space (Definition 8.2) and the restricted injectiv-

ity for (PF
y,λ). Theorem 8.1 constructs a smooth solution mapping of (PF

y,λ)

on an open neighborhood of some solution x⋆. Theorem 8.2 shows that the

prediction map is well-defined outside the transition space and gives its local

behavior.

Chapter 9: Unbiased Risk Estimation. In this chapter, we prove Proposi-

tion 9.1 stating that that the transition space has zero measure w.r.t Lebesgue

measure. Proposition 9.2 proves that the prediction is Lipschitz continuous.

Theorems 9.1 and 9.2 prove that the (G)SURE is an unbiased estimator of the

risk for non-linear Gaussian regression and generalized linear model.

1.4.4 Numerical Considerations and Conclusion

Chapter 10: Numerical Considerations. This chapter recaps our results from

a numerical point of view. We prove in Theorem 10.1 that under the same

hypothesis of non-degeneracy and partial smoothness of Theorem 7.2, the

forward-backward algorithm identifies the correct manifold after a finite

number of steps. We discuss in Sections 10.2 and 10.3 how the linearized

precertificate behaves in different concrete scenarios. We investigate further
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the noiseless behavior of total variation denoising in Theorem 10.2 and the

compressed sensing with ℓ∞ regularization in Theorem 10.3. We also show

how in practice one can use our sensitivity result (Theorem 9.1) to select the

best hyperparameter λ for ℓ1-analysis regularization in Section 10.4.

Chapter 11: Conclusion. This last chapter summarizes our contributions.

We also discuss several open problems.
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Chapter 2 Mathematical Background

T
his chapter lays the mathematical foundation of our work. In particular,

we recap important results of convex analysis, o-minimal geometry and

some properties of smooth manifolds. An emphasis is done on the notion

of gauge which will be important in order to capture the structure of the

subdifferential of a convex function.

In all the following, Rn will be the signal space, Rq the observation space

and Rp the analysis space. The space Rn will be endowed with its canonical

Euclidian structure and its associated inner product is denoted 〈·, ·〉, i.e.

∀x, x ′ ∈ R
n, 〈x, x ′〉 =

n∑

i=1

xix
′
i,

and the associated norm, the ℓ2 norm1 is denoted

||x|| =

√√√√
n∑

i=1

x2i .

For any subspace T of a real vector space E, we denote PT the orthogonal

projection on T , and

xT = PT (x) and ΦT = ΦPT .

For a subset I of {1, . . . ,n}, we denote by Ic its complement with respect to

{1, . . . ,n}, |I| its cardinality, x(I) is the subvector whose entries are those of x

restricted to the indices in I, and Φ(I) the submatrix whose columns are those

of Φ indexed by I. For any matrix A, A∗ denotes its adjoint matrix and A+ its

Moore–Penrose pseudo-inverse. We denote the right-completion of the real

line by R = R ∪ {+∞}.

Section 2.1 recalls basics of convex analysis, and Section 2.2 is concerned

with differential properties. Then, Section 2.3 details properties of gauges.

1. Any other norm has its own subscript in this manuscrit.
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2.1 Convex Analysis

Finally, in Section 2.4 we sketch some properties of o-minimal geometry, a

generalization of semi-algebraic geometry.

2.1 Convex Analysis

In this section, we recall useful concepts from convex analysis in finite dimen-

sion. The definitive reference book on this subject is (Rockafellar 1996). One

may also refers to (Zalinescu 2002; Hiriart-Urruty et al. 2001) for more details,

or (Ekeland et al. 1974) for the infinite dimensional case.

2.1.1 Functions

We recall basic definitions of real analysis.

Definition 2 .1 — Epigraph and Domain . The epigraph of a func-

tion f : Rn → R̄ is the set

epi f = {(x,α) ∈ R
n × R | α > f(x)} ⊆ R

n+1.

The (effective) domain of f is the set the projection of epi f under the mapping

(x,α) 7→ x, i.e.

dom f =
{
x ∈ R

N | f(x) < +∞
}

.

The function f is proper if dom f 6= ∅.

The epigraph is the set of points lying above its graph. Coercivity and lower

semicontinuity will play an important role.

Definition 2 .2 — Coercivity. A function f : Rn → R̄ is coercive if

lim
||x||→+∞

f(x) = +∞.
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Chapter 2 Mathematical Background

An example of coercive function is any norm over Rn. However, this is not

the case of ||D∗ · || as soon as D∗ has a non trivial kernel.

Definition 2 .3 — Lower Semicontinuity. A function f : Rn → R̄

is lower semi-continuous (l.s.c.) at x ∈ Rn if

lim inf
z→x

f(z) > f(x).

The fact that a function f is l.s.c. is equivalent to epi f closed in Rn × R,

see (Rockafellar et al. 1998, Theorem 1.6). For this reason, we also say that f is

closed. We recall that

lim inf
z→x

f(z) = sup
δ>0

inf
{z| ||z−x||}<δ

f(z).

Definition 2 .4 — Kernel . The kernel of a function is defined as

Ker f = {x ∈ R
n | f(x) = 0} .

Note that the kernel of a function is not necessarily a linear subspace. However,

if f is convex, Ker f is a convex cone.

Definition 2 .5 — Sublevel Set. The sublevel set slevx J of J passing

through x is defined as

slevx J = {z ∈ R
n | J(z) 6 J(x)} .

2.1.2 Convexity

All functionals considered in this manuscrit are convex. We recall the defini-

tion of convexity and give several examples.
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2.1 Convex Analysis

Definition 2 .6 — Convexity. A set C ⊆ Rn is said to be convex if

∀x, x ′ ∈ C, ∀µ ∈ [0, 1], µx+ (1− µ)x ′ ∈ C.

A function f : Rn → R̄ is said to be convex if its epigraph is convex, i.e.

∀x, x ′ ∈ R
n, ∀µ ∈ [0, 1], f(µx+ (1− µ)x ′) 6 µf(x) + (1− µ)f(x ′).

It is strictly convex if

∀x, x ′ ∈ R
n, ∀µ ∈ [0, 1], x 6= x ′ ⇒ f(µx+ (1− µ)x ′) < µf(x) + (1− µ)f(x ′).

It is strongly convex of modulus τ if for every x, x ′ ∈ C and every µ ∈ [0, 1],

f(µx+ (1− µ)x ′) 6 µf(x) + (1− µ)f(x ′) −
τ

2
µ(1− µ)||x ′ − x||2.

The set of all convex, proper and closed functions is denoted Γ0(Rn). The set

of all finite-valued, bounded from below, convex, proper (hence continuous)

functions is denoted Γ+c (Rn).

Definition 2 .7 — Indicator Function . Let C a nonempty closed

convex subset of Rn. The indicator function ιC ∈ Γ0(Rn) of C is

ιC(x) =






0, if x ∈ C ,

+∞, otherwise.

Definition 2 .8 — Conjugate . The Legendre–Fenchel conjugate f∗ ∈
Γ0(R

n) of a proper, closed and convex function f ∈ Γ0(Rn) is

f∗(u) = sup
x∈dom f

〈u, x〉− f(x) .
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Chapter 2 Mathematical Background

Here, f∗ is proper, closed and convex, thus f∗∗ = f. For instance, the conjugate

of the indicator function ιC is the support function of C defined as:

Definition 2 .9 — Support function The support function of a

nonempty closed convex subset C of Rn is

σC(u) = sup
x∈C

〈u, x〉 .

σC is sublinear, is non-negative if 0 ∈ C, and is finite everywhere if, and only

if, C is a bounded set. We have the following property.

Proposition 2 .1 Let C1,C2 two nonempty closed convex subsets. Then,

(i) C1 ⊆ C2 ⇔ σC1
6 σC2

,

(ii) σC1+C2
= σC1

+ σC2
,

(iii) For any ρ ∈ R, σρC1
= ρσC1

.

Definition 2 .10 — Infimal convolution . Let f and g be two

proper closed convex functions from Rn to R. Their infimal convolution

is the function

(f
+

∨ g)(x) = inf
x1+x2=x

f(x1) + g(x2) = inf
z∈RN

f(z) + g(x− z) .

An important property of optimization with convex function is recapped

below.
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2.1 Convex Analysis

Proposition 2 .2 Let F0 be a strictly convex function and J a closed

convex function. Then every solutions of the problem

min
x∈Rn

F0(Φx) + J(x) (2.1)

share the same image by Φ and the same value J. Moreover, given two

solutions of (2.1) x⋆0, x⋆1, there exists δ such that x⋆0 = x⋆1 + δ.

proof Let x⋆0, x⋆1 be two solutions of P(y) such that Φx⋆0 6= Φx⋆1. Take any

convex combination x⋆t = (1− t)x⋆0+ tx
⋆
1, t ∈]0, 1[. Strict convexity of µ 7→ F0(µ)

implies that the Jensen inequality is strict, i.e.

F0(Φx
⋆
t) < (1− t)F0(Φx

⋆
0) + tF0(Φx

⋆
1).

The convexity of the regularization implies

J(x⋆t) 6 (1− t)J(x⋆0) + tJ(x
⋆
1) .

Summing these two inequalities we arrive at

F0(Φx
⋆
t) + J(x

⋆
t) < F0(Φx

⋆
0) + J(x

⋆
0)

a contradiction since x⋆0 is a minimizer of (2.1). �

2.1.3 Special Convex Sets

Definition 2 .11 — Convex Hull and its Closure . The convex

hull of a non-empty set C ⊂ Rn is the intersection of all convex sets contain-

ing C. We denote co (C) the closure of its convex hull.
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Chapter 2 Mathematical Background

Definition 2 .12 — Affine Hull . Its affine hull affC is the smallest

affine manifold containing it, i.e.

affC =

{
k∑

i=1

ρixi | k > 0, ρi ∈ R, xi ∈ C,
k∑

i=1

ρi = 1

}

.

It is included in the linear hull spanC which is the smallest subspace contain-

ing C.

Definition 2 .13 — Interior and Relative Interior . The inte-

rior of C is denoted intC. The relative interior riC of a convex set C is the

interior of C for the topology relative to its affine full.

Definition 2 .14 — Closed Conical Hull . The closed conical hull

of a nonempty set C ⊂ Rn is

cone(C) = cl

{
k∑

i=1

ρixi | k > 0, ρi > 0, xi ∈ C
}

.

Note that the closure operation is necessary. In general, the argument of the

closure is neither compact nor closed, even if C is a convex compact set.

In the following, we give a handy expression of the tangent cone to a closed

convex set, see (Hiriart-Urruty et al. 2001, Proposition III.5.2.1),

Definition 2 .15 — Tangent and Normal Cones . The tangent

cone to a nonempty closed convex set C ⊂ Rn at x is

TC(x) = cone(C− x) = cl
⋃

t>0

t(C− x) .
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2.1 Convex Analysis

The normal cone to C at x is the polar of TC(x), i.e.

NC(x) = {z ∈ R
n | ∀c ∈ C, 〈z, x− c〉 6 0} .

2.1.4 Multivalued Mappings

We refer to (Aubin et al. 2009) for more details about multivalued mappings.

We need the definition of continuity and Lipschitz-property in this work.

Definition 2 .16 — Multivalued Mapping . A multivalued map-

ping S : X⇒ Y from X to Y is a mapping from X to the subsets of Y.

Definition 2 .17 — Continuity. Let S : X ⇒ Y a multivalued map-

ping. We say that S is

• outer semicontinuous at x if lim supz→x S(z) ⊆ S(x) where

lim sup
z→x

S(z) = {u | ∃xν → x, ∃uν → u with uν ∈ S(xν)} .

• inner semicontinuous at x if lim infz→x S(z) ⊇ S(x) where

lim inf
z→x

S(z) = {u | ∀xν → x, with uν ∈ S(xν)} .

• continuous if both conditions holds.

Definition 2 .18 — L ipschitz Map. Let S : X ⊆ Rn ⇒ Y a multival-

ued mapping. We say that S is β-Lipschitz around x ∈ X if there exists a

neighborhood U of x such that

∀x1, x2 ∈ U,S(x1) ⊆ S(x2) +β||x1 − x2||BX,
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Chapter 2 Mathematical Background

where BX is the unit ball of X.

The following lemma is important in the study of partly smooth functions in

Chapter 4.

Lemma 2 .1 Let C : X ⇒ Y be a β-Lipschitz multivalued mapping, such

that C(x) is a compact convex set for every x ∈ X. Then, for every x1, x2 ∈ X
and y ∈ Y,

σC(x1)(y) − σC(x2)(y) 6 β||x1 − x2||||y||.

proof Since C(x1) ⊆ C(x2) +β||x1 − x2||BX, we have by 2.1 (i),

σC(x1) 6 σ⊆C(x2)+β||x1−x2||BX
.

By Proposition 2.1 (ii) and (iii), we obtain

σC(x1)(y) 6 σC(x2)(y) +β||x1 − x2||σBX
(y).

Since σBX
(y) = ||y||, we obtain our claim. �

A proof of this statement can also be found in (Hiriart-Urruty et al. 2001,

Theorem V.3.3.8).

2.1.5 Asymptotic Cone and Function

Definition 2 .19 Let C be a non-empty closed convex set in Rn. Its

asymptotic cone, or recession cone, C∞ is the set

C∞ = {d ∈ R
n | x+ td ∈ C, ∀t > 0} =

⋂

t>0

C− x

t
, ∀x ∈ C .
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2.1 Convex Analysis

The closure assumption on the convex set C is crucial and cannot be re-

moved.

The importance of the asymptotic cone is revealed by the following key prop-

erties, in particular property (iii).

Proposition 2 .3 Let C be a non-empty closed convex set in Rn.

(i) C∞ is independent of x.

(ii) C∞ is a closed convex cone.

(iii) C is compact if and only if C∞ = {0}.

(iv) If C is non-empty closed convex cone, then C∞ = C.

proof (i) (Auslender et al. 2003, Proposition 2.1.5).

(ii) (Auslender et al. 2003, Proposition 2.1.5).

(iii) (Auslender et al. 2003, Proposition 2.1.2).

(iv) (Auslender et al. 2003, Proposition 2.1.1(c) and Proposition 2.1.5). �

Definition 2 .20 For any function f ∈ Γ0(R
n), there exists a unique

function f∞ : Rn → R associated with f, called the asymptotic function,

or the recession function, such that epi f∞ = (epi f)∞.

In (Hiriart-Urruty et al. 2001), the notation f ′∞ is used which is justified by the

properties hereafter.

The epigraph of f∞ is a closed convex cone, see Proposition 2.3. Moreover, f∞
enjoys many important properties some of which we summarize as follows.
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Chapter 2 Mathematical Background

Proposition 2 .4 Let f ∈ Γ0(Rn).

(i) f∞ ∈ Γ0(Rn) and positively homogeneous,

f∞(d) = sup
x∈dom(f)

f(x+ d) − f(x) ,

and

f∞(d) = lim
t→+∞

f(x+ td) − f(x)

t
= sup

t>0

f(x+ td) − f(x)

t
, ∀x ∈ dom(f) .

(ii) In particular, if 0 ∈ dom(f), then ∀d ∈ Rn

f∞(d) = lim
t→+∞

f(td)

t
.

(iii) (ιC)∞ = ιC∞
, for C a non-empty closed convex set.

(iv) If f is a gauge of C containing the origin, then Ker(f) = C∞.

(v) Let fi ∈ Γ0(Rn), i = 1, · · · ,m, f :=
∑p

i=1 fi and
⋂m

i=1 dom(fi) 6= ∅. Then,

f ∈ Γ0(Rn) and

f∞ =

p∑

i=1

(fi)∞ .

(vi) Let A : Rn → Rp be a linear map such that Im(A)∩ dom(f) 6= ∅. Then

(f ◦A)∞(d) = f∞(Ad) .

proof (i) The first statement is a consequence of convexity and (Auslender

et al. 2003, Proposition 2.5.1(a)), which is in turn uses Proposition 2.3(ii).

The equivalent expressions of f∞ follow from (Auslender et al. 2003, Propo-

sition 2.5.2).

(ii) Since 0 ∈ dom(f), f(0) <∞ and the formula follows from (i).

(iii) (Auslender et al. 2003, Corollary 2.5.1).
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(iv) (Auslender et al. 2003, Proposition 2.6.1).

(v) (Auslender et al. 2003, Proposition 2.6.3). �

2.2 Differential Properties

The set of continuously differentiable functions from a set X ⊆ Rn to Rq is

denoted C1(X, Y) and the Jacobian of a function f : X→ Rq at a point x ∈ X is

denoted Df(x).

First of all, we should recall the classical implicit function theorem.

Theorem 2 .1 — Implicit Function . Let f : Rn × Rq → Rn be a C1

function in a neighborhood of (x̄, ȳ) such that

f(x̄, ȳ) = 0.

Assume that the Jacobian matrix D1f(x̄, ȳ) with respect to the first variable

is non-singular at (x̄, ȳ). Then, there exists an open neighborhood U of ȳ

and a mapping x̃ : U→ Rn such that x̃ is C1 on U,

∀y ∈ U, f(x̃(y),y) = 0 and x̃(ȳ) = x̄.

Moreover, its Jacobian reads

∀y ∈ U, Dx̃(y) = −(D1f(x̃(y),y))
−1D2f(x̃(y),y).

We draw the attention of the reader to the fact that this theorem admits several

generalizations such as for instance in the context of multivalued mappings,

see the monograph of Dontchev et al. (2009).

2.2.1 Subdifferential
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Chapter 2 Mathematical Background

Definition 2 .21 — Subdifferential . The subdifferential ∂f(x) of a

convex function f at x is the set

∂f(x) =
{
u ∈ R

n | f(x ′) > f(x) + 〈u, x ′ − x〉, ∀x ′ ∈ dom f
}

.

An element of ∂f(x) is a subgradient. If the convex function f is Gâteaux-

differentiable at x, then its only subgradient is its gradient, i.e. ∂f(x) = {∇f(x)}.

Proposition 2 .5 Let f ∈ Γ0(Rn). Then ∂f is outer semicontinuous.

proof See (Hiriart-Urruty et al. 2001, Theorem 6.2.4). �

This result can be stated as

∀ε > 0, ∃δ > 0, ||x ′ − x|| 6 δ⇒ ∂f(x ′) ⊆ ∂f(x) +B(0, ε).

Note that without additional constraints, ∂f is not inner semicontinuous. This

fact will motivate us to introduce the notion of partial smoothness in Chap-

ter 4.

Definition 2 .22 — D irectional Derivative . The directional

derivative f ′(x, δ) of a finite-valued closed function f at the point x ∈ dom f

in the direction δ ∈ Rn is

f ′(x, δ) = lim
t↓0

f(x+ tδ) − f(x)

t
.

When f is convex, then the function δ 7→ f ′(x, ·) exists and is sublinear. The

subdifferential ∂f(x) is a non-empty compact convex set of Rn whose support

function is f ′(x, ·), i.e.

f ′(x, δ) = σ∂f(x)(δ) = sup
η∈∂f(x)

〈η, δ〉.

54



2.2 Differential Properties

We also recall the fundamental first-order minimality condition of a convex

function.

Proposition 2 .6 A vector x⋆ is the global minimizer of a convex func-

tion f if, and only if, 0 ∈ ∂f(x).

We define the Bregman divergence, a classical tool in convex analysis.

Definition 2 .23 The Bregman divergence DJ
η(x, x0) associated to a con-

vex function J ∈ Γ0(Rn) and a vector η ∈ ∂J(x0) between two points x and

x0 ∈ Rn is defined as

DJ
η(x, x0) = J(x) − J(x0) − 〈η, x− x0〉 .

It is obvious that by convexity, the Bregman divergence is non-negative. When

J is differentiable at x0, the unique Bregman divergence is then associated to

η = ∇J(x0) and we recover the standard smooth case where

DJ(x, x0) = J(x) − J(x0) − 〈∇J(x0), x− x0〉 .

Note that the Bregman divergence is not a distance, since it does not satisfy

the triangle inequality nor the symmetry axioms. However, it is common in

the litterature to find the term Bregman distance. We will drop the exponent

J if the context allows it.

2.2.2 Minimizers Gradients for Composite Problems

The following lemma shows that for a minimization problem min f+ g such

that f ∈ Γ0(Rn) is C2 and g ∈ Γ0(Rn), the solutions share the same gradient.

55
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Lemma 2 .2 Let x⋆0 and x⋆1 be two solutions of

min
x∈Rp

f(x) + g(x) (2.2)

where f is proper, convex and C2(Rp) function, and g is proper, convex and

lower semicontinuous with a non-necessarily full-domain. Then

∇f(x⋆0) = ∇f(x⋆1).

proof Let x⋆0 and x⋆1 be two distinct solutions of (2.2), otherwise, there is

nothing to prove. We denote x⋆t = x⋆0 + th where h = x⋆1 − x
⋆
0, t ∈ [0, 1]. By

convexity, x⋆t is also a minimizer of (2.2). We have −∇f(x⋆t) ∈ ∂g(x⋆t). Convexity
of g then yields

〈∇f(x⋆t) −∇f(x⋆0), th〉 6 0.

Similarly, convexity of f entails

〈∇f(x⋆t) −∇f(x⋆0), th〉 > 0.

Combining these inequalities yields, for any t ∈ [0, 1]

〈∇f(x⋆t) −∇f(x⋆0), h〉 = 0. (2.3)

Since f is C2(Rp), Taylor expansion gives

∇f(x⋆1) −∇f(x⋆0) =
∫1

0

D2f(x⋆t)hdt , (2.4)

which, after taking the inner product of both sides with h and using (2.3), yields

〈∇f(x⋆1) −∇f(x⋆0), h〉 =
∫1

0

〈D2f(x⋆t)h, h〉dt = 0. (2.5)

By convexity, the Hessian D2f(x⋆t) is semidefinite positive, and (2.5) implies that

∀t ∈ [0, 1], 〈D2f(x⋆t)h, h〉 = 0,
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or equivalently

||D2f(x⋆t)
1/2h|| = 0⇔ h ∈ Ker D2f(x⋆t) .

Inserting this again in (2.4) yields the desired claim. �

2.2.3 Smooth Manifolds

In this thesis, we will not use advanced results of differential geometry. How-

ever, we need the structure of smooth manifold to define the central notion

of partial smoothness. This section aims to to recall basic notion on smooth

manifolds. The reader may refer to (Lee 2003).

Definition 2 .24 — Smooth manifold. Let k > 1. A Ck-manifold M

around x ∈ Rn of codimension m is a subset of Rn such that there exists an

open set U of Rn and a Ck-function g : U→ Rm satisfying

M∩U = {x̄ ∈ U | g(x̄) = 0} ,

and g has surjective derivative throughout U. We say that M is a Ck-manifold

if M is a Ck-manifold around every x ∈ M of codimension m.

Note that every linear subspace H of Rn is a manifold around each point

x ∈ H, and this is in particular true for H = Rn. Another example, which will

be used in this thesis, is the set of matrices of fixed rank (Lee 2003).

Definition 2 .25 — Tangent space . Let M be a Ck-manifold

around x ∈ M of codimension m associated to a Ck function g. The tangent

space of M at x is defined as

Tx(M) = Ker Dg(x).

57
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We now introduce the Grassmann manifold, which will be used in Chapter 7.

Proposition 2 .7 — Grassmann Manifold. Let Gk,n be the set of

all linear subspaces of Rn of dimension k. Then, Gk,n is a smooth manifold

of dimension k(n−k), coined the Grassman manifold of k-planes. Moreover,

(Gk,n,d) endowed with

d(V ,V ′) = ||PV − PV ′ ||

is a compact metric space, where || · || is an operator norm.

proof This property is a consequence of the isomorphism between Gk,n and

On/(Ok ×On−k), see (Lee 2003). �

An important property is the fact that the projection onto a manifold is locally

well-defined as a single-valued mapping.

Lemma 2 .3 Let M be a Ck-manifold with k > 2 around a point x ∈ M.

Then, there exists a neigborhood U of x such that for every x̄ ∈ U, x̄ has

a unique projection PM(x̄) onto M. Moreover, the function PM : U → M is

Ck−1, with derivative

DPM(x̄) = PTx̄(M).

proof See (Lewis et al. 2008, Lemma 2.1). �

2.3 Gauges

This section gives some general results on gauges. Again, we refer to (Rock-

afellar 1996) for more insight on this notion. Gauges are equivalently defined
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as nonnegative, convex and positively homegeneous functions or are parame-

terized by convex set containing 0. They are the natural extension of norms or

seminorms, which are indeed gauges. The classical duality is then replaced

by the polarity of convex set parameterizing the gauges.

2.3.1 Gauge and its Polar

2.3.1.1 Definitions and Main Properties.

We start by defining formally a gauge, and prove the associated Lemma 2.4

stating the equivalence between gauges and convex sets containing zero.

We begin with the definition of a gauge.

Definition 2 .26 — Gauge Let C ⊆ Rn be a non-empty closed convex

set containing the origin. The gauge of C is the function γC ∈ Γ0(Rn) defined

on Rn by

γC(x) = inf {λ > 0 | x ∈ λC} .

As usual, γC(x) = +∞ if the infimum is not attained.

We say that γC is bounded (or finite-valued) if, for every x ∈ Rn,γC(x) < +∞.

This is typically not the case if the gauge is of the form γC(x) = f(x) + ιC(x)

where ιC is the indicator function of a convex set C. Some important properties

are stated below. In particular, Lemma 2.4((ii)) is a fundamental result of

convex analysis that states that there is a one-to-one correspondence between

gauge functions and closed convex sets containing the origin. This allows to

identify sets from their gauges, and vice versa.

Lemma 2 .4 Let C ⊆ Rn and γC the associated gauge.

(i) γC is a non-negative, lsc and sublinear function.
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(ii) Suppose C is a closed convex set containing the origin. Then, f is the

gauge associated to C if, and only if, f is positively homegeneous and

C = {x ∈ R
n | f(x) 6 1} .

(iii) γC is bounded if, and only if, 0 ∈ intC, in which case γC is continuous.

(iv) KerγC = {0}, or equivalently γC is coercive if, and only if, C is compact.

(v) γC is bounded and coercive on domγC = spanC if, and only if, C is

compact and 0 ∈ riC. In particular, γC is bounded and coercive if, and

only if, C is compact and 0 ∈ intC.

proof (i)-(iii) are obtained from (Hiriart-Urruty et al. 2001, Theorem V.1.2.5).

(iv) is obtained by combining (Hiriart-Urruty et al. 2001, Corollary V.1.2.6 and

Proposition IV.3.2.5). (v): the second statement follows by combining (iii)-(iv),

while the first part is the second one written in domγC = affC = spanC since

0 ∈ C. �

2.3.1.2 Polar Set and Gauges.

Let us now turn to the polar of a convex set and a gauge.

Definition 2 .27 — Polar set Let C be a non-empty convex set. The

set C◦ given by

C◦ = {v ∈ R
n | ∀x ∈ C, 〈v, x〉 6 1}

is called the polar of C.

C◦ is a closed convex set containing the origin. When the set C is also closed

and contains the origin, then it coincides with its bipolar, i.e. C◦◦ = C.

We are now in position to define the polar gauge.
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2.3 Gauges

Definition 2 .28 — Polar Gauge The polar of a gauge γC is the

function γ◦C defined by

γ◦C(u) = inf {µ > 0 | ∀x ∈ R
n, 〈x, u〉 6 µγC(x)} .

Observe that gauges polar to each other have the property

∀ (x,u) ∈ domγC × domγ◦C, 〈x, u〉 6 γC(x)γ◦C(u) ,

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges

correspond to the best inequalities of this type. The following Lemma 2.5

shows the relation between polar sets and polar gauges.

Lemma 2 .5 Let C ⊆ Rn be a closed convex set containing 0. Then,

(i) γ◦C is a gauge function and γ◦◦C = γC.

(ii) γ◦C = γC◦ , or equivalently

C◦ = {x ∈ R
n | γ◦C(x) 6 1} = {x ∈ R

n | γC◦(x) 6 1} .

(iii) The gauge of C and the support function of C are mutually polar, i.e.

γC = σC◦ and γC◦ = σC .

Proof (i) follows from (Rockafellar 1996, Theorem 15.1). (ii) (Rockafellar 1996,

Corollary 15.1.1) or (Hiriart-Urruty et al. 2001, Proposition V.3.2.4). (iii) (Rock-

afellar 1996, Corollary 15.1.2) or (Hiriart-Urruty et al. 2001, Proposition V.3.2.5).�

2.3.1.3 Subdifferential of a Gauge

The subdifferential of a gauge γC at a point x is completely characterized by

the face of its polar set C◦ exposed by x. Put formally, we have,
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Proposition 2 .8 Let C be a convex set containing 0. Then,

∂γC(x) = FC◦(x) =
{
η ∈ R

N | η ∈ C◦ and 〈η, x〉 = γC(x)
}

,

where FC◦(x) is the face of C◦ exposed by x. The latter is the intersection of

C◦ and the supporting hyperplane
{
η ∈ RN | 〈η, x〉 = γC(x)

}
.

proof See (Hiriart-Urruty et al. 2001, Proposition 3.1.4). �

The special case of x = 0 has a much simpler structure; it is the polar set C◦

from Lemma 2.5(ii)-(iii), i.e.

∂γC(0) =
{
η ∈ R

N | γC◦(η) 6 1
}
= C◦.

2.3.2 Polar Calculus

We here derive the expression of the gauge function of the Minkowski sum

of two sets, as well as that of the image of a set by a linear operator. These

results play an important role in Chapter 7.

First of all, we prove that if a multivalued mapping is Lipschitz, then the polar

mapping is also Lipschitz continuous.

Lemma 2 .6 Let C : X ⇒ Rn be a βC-Lipschitz multivalued mapping,

such that C(x) is a compact convex set containing 0 for every x ∈ X. Then

C◦ defined by as x 7→ C(x)◦ is βC-Lipschitz and the mapping x 7→ γC(x) is

βC-Lipschitz.

proof Using the Lipschitz continuity of C, there exists βC(x) such that

C(x ′) ⊆ C(x) +βC||x
′ − x||BX,
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Using the symmetry of BX, we get that

C(x ′) +βC||x
′ − x||BX ⊆ C(x).

Since the polarity reverse the order for the inclusion, we have

(C(x ′) +βC||x
′ − x||BX)

◦ ⊇ C(x)◦.

Hence,

σ(C(x ′)+βC||x ′−x||BX)◦ > σC(x)◦ ,

or equivalently

γC(x ′)+βC||x ′−x||BX
> γC(x). (2.6)

According to Lemma 2.7, one has

γC(x ′)+βC||x ′−x||BX
(u) = inf

z∈Rn
max(γC(x ′)(u),γβC||x ′−x||BX

(u− z)).

Hence,

γC(x ′)+βC||x ′−x||BX
(u) 6 γC(x

′)(u) + γβC||x ′−x||BX
(u)

= γC(x ′)(u) +βC||x
′ − x||||u||.

Hence, combining with (2.6), we get

γC(x ′)(u) +βC||x
′ − x||||u|| > γC(x),

or equivalently,

γC(x)◦ 6 γC(x ′)◦(u) +βC||x
′ − x||||u||,

which concludes the proof. �
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2.3.2.1 Minkowski Sum

Recall that the Minkowski sum of two sets A and B, subsets of Rn is defined

as

A+B = {a+ b ∈ R
n | a ∈ A,b ∈ B} .

In particular, the (Minkowski) sum of two convex sets containing zero is a

convex set containing zero. The following Lemma 2.7 makes a connection

between the gauge of C1 + C2 with gauges of C1 and C2 through the inf-

convolution operator.

Lemma 2 .7 Let C1 and C2 be nonempty closed convex sets containing

the origin. Then

γC1+C2
(x) = sup

ρ∈[0,1]

ργC1

+

∨ (1− ρ)γC2
(x) .

If x is such that γC1
(x1) + γC2

(x2) is continuous and bounded on

{(x1, x2) | x1 + x2 = x}, then

γC1+C2
(x) = inf

z∈Rn
max(γC1

(z),γC2
(x− z)) .

proof We have from Lemma 2.5 and calculus rules on support functions,

γ(C1+C2)◦ = σC1+C2
= σC1

+ σC2
.

Thus,

(C1 +C2)
◦ = {u | σC1

(u) + σC2
(u) 6 1} . (2.7)

Using the fact that the gauge of a set C is the support function of its polar, we

have

γC1+C2
(x) = σ(C1+C2)◦(x).
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Using (2.7),

γC1+C2
(x) = σσC1

(u)+σC2
(u)61(x).

By definition of the support function,

γC1+C2
(x) = sup

σC1
(u)+σC2

(u)61

〈u, x〉.

Introduction ρ = σC1
(u) + σC2

(u), we rewrite it as

γC1+C2
(x) = sup

ρ∈[0,1]

sup
σC1

(u)6ρ,σC2
(u)61−ρ

〈u, x〉.

This yields

γC1+C2
(x) = sup

ρ∈[0,1]

σσC1
(u)6ρ

+

∨ σσC2
(u)61−ρ(x)

= sup
ρ∈[0,1]

ρσσC1
(u)61

+

∨ (1− ρ)σσC2
(u)61(x).

By definition of the polarity,

γC1+C2
(x) = sup

ρ∈[0,1]

ρσC◦
1

+

∨ (1− ρ)σC◦
2
(x)

= sup
ρ∈[0,1]

σρC◦
1

+

∨ σ(1−ρ)C◦
2
(x)

= sup
ρ∈[0,1]

ργC1

+

∨ (1− ρ)γC2
(x) ,

which is the first assertion.

The last identity can be rewritten

γC1+C2
(x) = sup

ρ∈[0,1]

inf
x1+x2=x

ργC1
(x1) + (1− ρ)γC2

(x2) .

Under the boundedness and continuity assumption of the lemma, the objective2 in

2. The objective function is the function to be optimized.
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the sup inf is a continuous bounded concave-convex function on the set [0, 1]×
{(x1, x2) | x1 + x2 = x}. Since the latter sets are non-empty, closed and convex, and

[0, 1] is obviously bounded, we have from using (Rockafellar 1996, Corollary 37.3.2)

γC1+C2
(x) = inf

z∈Rn
sup

ρ∈[0,1]

ργC1
(z) + (1− ρ)γC2

(x− z)

= inf
z∈Rn

max(γC1
(z),γC2

(x− z)) ,

which concludes the proof. �

2.3.2.2 Image of a Set by a Linear Operator

Considering a linear operator D : Rp → Rn, one constructs the image D(C) of

a convex set C ⊆ Rp by

D(C) = {Dx ∈ R
n | x ∈ C} .

Lemma 2.8 connects the gauge associated to C to the one associated to D(C)

by an optimization problem over the kernel of D.

Lemma 2 .8 Let C be a closed convex set such that 0 ∈ riC, and D a linear

operator. Then, for every x ∈ Im(D)

γD(C)(x) = inf
z∈Ker(D)

γC(D
+x+ z) .

Proof It is immediate to see that D(C) is a closed convex set containing the

origin. Moreover, we have Im(D∗) ∩ dom(σC) 6= ∅, since the origin is in both of

them. Thus, using (Hiriart-Urruty et al. 2001, Theorem X.2.1.1) and Lemma 2.5,

we have

γ(D(C))◦ = σD(C) =
(
ιD(C)

)∗
= σC ◦D∗ .

Now, as by assumption 0 ∈ riC, we have 0 ∈ ri(C◦), and therefore Im(D∗) ∩
ri(C◦) 6= ∅. By virtue of (Hiriart-Urruty et al. 2001, Theorem X.2.2.3) and Lemma 2.5,
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we get

γD(C)(x) = σ(D(C))◦(x)

= σσC◦D∗(u)61(x)

=
(
ισC(w)61 ◦D∗)∗ (x)

= inf
v
σσC(w)61(v) s.t. Dv = x

= inf
z∈Ker(D)

σσC(w)61(D
+x+ z)

= inf
z∈Ker(D)

σσC(w)61(D
+x+ z)

= inf
z∈Ker(D)

γC(D
+x+ z) ,

which concludes the proof. �

In particular, if KerD = 0, then γD(C)(x) = γC(D
+x). Using Lemma 2.4(v), one

can observe that the infimum is bounded if (D+x+ Ker(D))∩ spanC 6= ∅.

2.3.3 Lift to Matrix Spaces

We recall the singular value decomposition theorem.

Proposition 2 .9 For any matrix A ∈ Rn1×n2 , there exists three matrices

U ∈ Rn1×n1 , Σ ∈ Rn1×n2 , V ∈ Rn2×n2 such that U and V are orthogonal

matrices, Σ is empty outside its main diagonal and A = UΣV∗. The matrix

Σ is unique, up to permutation.

proof See (Horn et al. 2012, Theorem 7.3.3). �

Denoting n = min(n1,n2), we call the diagonal elements of Σ the singular

values of A, denoted (σi(A))16i6n. Thus we define a function σ : Rn1×n2 →
Rn such that

σ1(A) > σ2(A) > . . . > σn(A).
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We start by the following definition

Definition 2 .29 A function f : Rn → R is an absolutely symmetric gauge

if f is a gauge and is absolutely symmetric, i.e.

∀x ∈ R
n, ∀P ∈ Pn, f(Px) = f(x),

where Pn is the set of all signed permutation matrices of {1, . . . ,n},

The following proposition makes a connection between absolutely symmetric

gauges and unitarily invariant norms, i.e. norms F such that F(UΛxV
∗) = F(Λx).

Proposition 2 .10 There is a one-to-one correspondance between abso-

lutely symmetric gauges and unitarily invariant norms. More precisely,

(i) If f is an absolutely symmetric gauge, then F = f ◦ σ is a unitarily

invariant norm.

(ii) If F is a unitarily invariant norm, then f = F ◦ diag is an absolutely

symmetric gauge.

proof The proof might be found in (Von Neumann 1961) or (Horn et al. 2012,

Theorem 7.4.7.2, p 464). �

For instance, the nuclear norm is nothing more than a unitarily invariant

norm induced by the ℓ1-norm || · ||1 and the spectral norm is induced by the

ℓ∞-norm.
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2.3.4 Operator Bounds

Since we use more general regularizers than norms, we have to generalize

the concept of operator norm. Recall that if (V , || · ||) is a normed vector space,

we embedded the set of continuous linear operators from V to W using the

operator norm, i.e.

|||A||| = sup
||x||61

||Ax|| = sup
||x||=1

||Ax|| = sup
x∈V

||Ax||

x
.

This motivates the following Definition 2.30.

Definition 2 .30 Let J1 and J2 be two gauges defined on two vector

spaces V1 and V2, and A : V1 → V2 a linear map. The operator bound |||A|||J1→J2

of A between J1 and J2 is given by

|||A|||J1→J2
= sup

J1(x)61

J2(Ax).

Note that |||A|||J1→J2
< +∞ if, and only if AKer(J1) ⊆ Ker(J2). In particular, if

J1 is coercive (i.e. Ker J1 = {0} from Lemma 2.4(iv)), then |||A|||J1→J2
is finite. As

a convention, |||A|||J1→||·||p is denoted as |||A|||J1→ℓp . An easy consequence of this

definition is the fact that for every x ∈ V1,

J2(Ax) 6 |||A|||J1→J2
J1(x).

2.4 O-minimality

The goal of o-minimal geometry is to prevent pathological behavior with

respect to the common operations on sets, such as addition and projection.

To expose our motivation, we take the example of (Coste 1999). Consider the

function f : x 7→ sin 1
x defined on R∗

+ and G its graph on R2. Denote Ḡ the

closure of G in R2. Then, dim(Ḡ \ G) = dimG in the Hausdorff sense. This is

typically this kind of behavior that we wish to avoid.

69



Chapter 2 Mathematical Background

2.4.1 Definition

We briefly recall here the definition and the main properties of o-minimal

structures, that are used for our proof. We refer to (Dries 1998; Coste 1999) for

more details about o-minimal structures.

O-minimal geometry can been seen as a generalization of the notion of semi-

algebraicity.

Definition 2 .31 — Semi -algebraic Subsets . The semi-algebraic

subsets of Rn are the smallest set SAn of subsets of Rn such that:

(i) For every real polynomial P ∈ R[X1, . . . ,Xn],

{x ∈ R
n | P(x) = 0} ∈ SAn and {x ∈ R

n | P(x) > 0} ∈ SAn.

(ii) If A,B ∈ SAn, then A∪B,A∩B, Rn \A ∈ SAn.

The following result is central in the study of semi-algebraic sets.

Theorem 2 .2 — Tarski -Seidenberg . The set SAn of semi-algebraic

sets is closed under projection.

We now define o-minimal structures.

Definition 2 .32 — Structure . An o-minimal structure O expanding

R is a sequence of sets (On)n∈N which satisfies the following axioms:

(i) Each On is a Boolean algebra of subsets of Rn, with Rn ∈ On.

(ii) Every semi-algebraic subset of Rn is in On, i.e. SAn ⊆ On.

(iii) If A ∈ On and B ∈ On ′ , then A×B ∈ On+n ′ .
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(iv) If A ∈ On+1, then Π(A) ∈ On, where Π : Rn+1 → Rn is the projection

on the first n.

(v) o-minimality: O1 is precisely the finite unions of intervals and points.

Definition 2 .33 — Definable Set and Function . Let O be an o-

minimal structure. The elements of On are called the definable subsets of Rn,

i.e. Ω ⊂ Rn is definable if Ω ∈ On. A map f : Ω→ Rp is said to be definable

if its graph G(f) = {(x,u) ∈ Ω× Rp | u = f(x)} ⊆ Rn × Rp is a definable

subset of Rn × Rp.

Note that in this case, the application p times of axiom (iv) implies that Ω

is definable. The fundamental example of o-minimal structure is the set of

semi-algebraic sets, which is in some sense the smallest o-minimal structure.

For example, note that in the special case where q is a rational number, the

functionals || · ||q are actually semi-algebraic. When q ∈ R is not rational, then

|| · ||q is not semi-algebraic, but it can be shown to be definable in a o-minimal

structure.

2.4.2 Properties

In the following results, we collect some important stability properties of o-

minimal structures. To be self-contained, we also provide proofs. To the best

of our knowledge, these proofs, although simple, are not reported in the litera-

ture or some of them are left as exercices in the authoritative references (Dries

1998; Coste 1999). Moreover, in most proofs, to show that a subset is defin-

able, we could just write the appropriate first-order formula, see (Coste 1999,

Page 12) and (Dries 1998, Section Ch1.1.2), and conclude using (Coste 1999,

Theorem 1.13). Here, for the sake of clarity and avoid cryptic statements for

the non-specialist, we translate the first order formula into operations on

the involved subsets, in particular projections, and invoke the above stability

axioms of o-minimal structures.
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Lemma 2 .9 — Addition and Multiplication . Let Ω a subset of

Rn. Let f : Ω→ Rp and g : Ω ⊂ Rn ⊂ Rp be definable functions. Then their

pointwise addition and multplication is also definable.

proof Let h = f+ g, and

B = (Ω× R ×Ω× R ×Ω× R)∩ (Ω× R × G(f)× G(h))∩ S

where S = {(x,u,y, v, z,w) | x = y = z,u = v+w} is obviously an algebraic (in

fact linear) subset, hence definable by axiom 2. Property 1 implies that B is also

definable. Let Π3n+3p,n+p : R3n+3p → Rn+p be the projection on the first n+ p

coordinates. We then have

G(h) = Π3n+3p,n+p(B)

whence we deduce that h is definable by applying 3n+3p times axiom 4. Definability

of the pointwise mutplication follows the same proof taking u = v ·w in S. �

Lemma 2 .10 — Inequalities in Definable Sets . Let f : Ω ⊂
Rn → R be a definable function. Then {x ∈ Ω | f(x) > 0}, is definable. The

same holds when replacing > with <.

Clearly, inequalities involving definable functions are accepted when defining

definable sets.

There are many possible proofs of this statement.

proof (1) Let B = {(x,y) ∈ R × R | f(x) = y}∩ (Ω× (0,+∞), which is defin-

able thanks to axioms 1 and 3, and that the level sets of a definable function are

also definable. Thus

{x ∈ Ω | f(x) > 0} = {x ∈ Ω | ∃y, f(x) = y,y > 0} = Πn+1,n(B) ,

and we conclude using again axiom 4. �

72



2.4 O-minimality

Yet another (simpler) proof.

proof (2) It is sufficient to remark that {x ∈ Ω | f(x) > 0} is the projection of

the set
{
(x, t) ∈ Ω× R | t2f(x) − 1 = 0

}
, where the latter is definable owing to

Lemma 2.9. �

Lemma 2 .11 — Derivative . Let f : I→ R be a definable differentiable

function on an open interval I of R. Then its devivative f ′ : I → R is also

definable.

proof Let g : (x, t) ∈ I× R 7→ g(x, t) = f(x+ t) − f(x). Note that g is definable

function on I× R by Lemma 2.9. We now write the graph of f ′ as

G(f ′) = {(x,y) ∈ I× R | ∀ε > 0, ∃δ > 0, ∀t ∈ R, |t| < δ, |g(x, t) − yt| < ε|t|} .

Let C =
{
(x,y, v, t, ε, δ) ∈ I× R5 | ((x, t), v) ∈ G(g)

}
, which is definable since g is

definable and using axiom 3. Let

B =
{
(x,y, v, t, ε, δ) | t2 < δ2, (v− ty)2 < ε2t2

}
∩C .

The first part in B is semi-algebraic, hence definable thanks to axiom 2. Thus B is

also definable using axiom 1. We can now write

G(f ′) = R
3 \
(
Π5,3

(
R

5 \Π6,5(B)
))

∩ (I× R) ,

where the projectors and completions translate the actions of the existential and

universal quantifiers. Using again axioms 4 and 1, we conclude. �

With such a result at hand, this proposition follows immediately.

Proposition 2 .11 — D ifferential and Jacobian . Let

f = (f1, · · · , fp) : Ω → Rp be a differentiable function on an open

subset Ω of Rn. If f is definable, then so its differential mapping and its

Jacobian. In particular, for each i = 1, · · · ,n and j = 1, · · · ,p, the partial

derivative ∂fi/∂xj : Ω→ R is definable.
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Lemma 2 .12 — Marginal Function . Let g : Rn × Rm → R be a

definable function, and Ω a definable subset of Rm. The function

f(x) = sup
y∈Ω

g(x,y)

is definable. The same conclusion holds true with inf instead of sup.

proof Let the subset

B = {(x,u,y) ∈ R
n × R × R

m | g(x,y) > u}∩ (Rn × R ×Ω) .

B is definable thanks to Lemma 2.10 and axiom 1. Projecting on the components

(x,u), we get the set

Πn+1+m,n+1(B) = {(x,u) ∈ R
n × R | ∃y ∈ Ω,g(x,y) > u}

whose complement is

R
n+1 \Πn+1+m,n+1(B) = {(x,u) ∈ R

n × R | ∀y ∈ Ω,g(x,y) 6 u} = epi(f) ,

and therefore, epi(f) is definable using axioms 4 and 1. Similarly, replacing > with <

in B, we get that the hypograph hypo(f) is definable. Thus G(f) = hypo(f)∩ epi(f)

is definable by axiom 1. The proof for the inf is similar. �

As applications of this result, it follows that the Legendre-Fenchel conjugate

of a definable function is definable, that the support function of a definable

set is definable, and that the infimal convolution of definable functions is also

definable.

Proposition 2 .12 — Polars and Gauges . Let Ω be a closed con-

vex subset of Rn containing the origin. Then the following assertions are

equivalent:

(i) Ω is definable.

(ii) The polar set Ω◦ is definable.
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(iii) The gauge f of Ω is definable.

(iv) The polar gauge f◦ is definable.

proof

(i) ⇐⇒ (ii): We have

Ω◦ = {u ∈ R
n | ∀x ∈ Ω, 〈x, u〉 6 1} = R

n \Π2n,n({(u, x) ∈ R
n ×Ω | 〈x, u〉 > 1}) .

We conclude that Ω◦ is definable using axioms 1-4. The converse statement follows

by exchanging the roles of Ω and Ω◦.

(i) ⇐⇒ (iii): f is the support function of Ω◦

f(x) = σΩ◦(x) = sup
u∈Ω◦

〈x, u〉 ,

We get that f is definable using (i)⇒(ii), and applying Lemma 2.12 with g(x,u) =

〈x, u〉, which is obviously definable by axiom 2. The converse statement follows

from Lemma 2.10 since Ω◦ = {x ∈ Rn | f(x) 6 1} and (ii)⇒(i).

(ii) ⇐⇒ (iv): The proof follows exactly the lines of the previous item replacing f

and Ω with their polars. �

Proposition 2 .13 — Subdifferential of a Gauge . Let f be the

gauge of a closed convex subset Ω of Rn containing the origin as an interior

point. Suppose that f is definable. Then for any x ∈ Rn, the subdifferential

∂f(x) is definable.

proof Let Ω◦ be the polar set of Ω. We have ∀x ∈ Rn

∂f(x) = Argmaxu∈Ω◦〈x, u〉 = {u ∈ Ω◦ | 〈x, u〉 = f(x)} ,

i.e. the exposed face of Ω◦ associated with x, which is a non-empty convex compact

set for all x. Thus, since f is definable, so is Ω◦ by Proposition 2.12, and ∂f(x) is

also definable by axioms 1-2 (the intersection of Ω◦ and a linear set). �
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Lemma 2 .13 — Graph of the Relative Interior . Let f be the

gauge of a closed convex subset Ω of Rn containing the origin in its in-

terior. Suppose that f is definable. Then, the set

{(x,η) | η ∈ ri∂f(x)}

is definable.

proof Denote C = {(x,η) | η ∈ ri∂f(x)}. Combining the characterization of the

relative interior of a convex set (Rockafellar 1996, Theorem 6.4) and the struc-

ture of the subdifferential of a bounded gauge, which is non-empty convex, see

Proposition 2.13), we rewrite C in the more convenient form

C =





(β,η) | ∀u ∈ Ω◦ and 〈u, β〉 = f(β), ∃t > 1 s.t






(1− t)u+ tη ∈ Ωo

〈η, β〉 = f(β)





.

Let Bu = (Rn \Ω◦)∪ (Rn \ {u | 〈u, β〉 = f(β)}) and

B =(Rn × R
n ×Bu×]1,+∞[×Ω◦)

∩ {(β,η,u, t, ξ) | 〈η, β〉 = f(β), ξ = (1− t)u+ tη} .

Bu is definable by virtue of Proposition 2.12, axiom 1, and the fact it involves

algebraic relations and the level sets of a definable function. In turn, B is definable

owing to Proposition 2.12 and axioms 1-3. It then results that

C = R
n \Π4n+1,2n(B) ,

which is then definable after axioms 4 and 1. �
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3
Model Tangent Subpace

Main contributions of this chapter

• Introduction of the model tangent space and model vector in

Definition 3.1 and the subdifferential gauge in Definition 3.2.

• Theorem 3.1 provides a pointwise decomposition of the subdif-

ferential of any function in Γ+c (Rn).
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T
he purpose of this chapter is to introduce one of the main concepts used

throughout this thesis, the model tangent subspace associated to a con-

vex function. The main result, Theorem 3.1 of this chapter, proves that the

subdifferential of any convex function exhibits some kind of decomposability

property.

It is known that the subdifferential, see for instance (Fuchs 2004), of the ℓ1-

norm exhibits a particular structure. More precisely, for any x ∈ Rn,

∂|| · ||1(x) = {η ∈ R
n | ηI = sign(x)I and ||ηIc ||∞ 6 1} ,

where I = supp(x), the support of x. Such a structure is very convenient when

dealing with (Py,λ) or (Py,0), since it allows to split the analysis between

“active” components of x and non-active. One may ask if such a splitting

is always possible for a convex function. More precisely, we aim to split

the subdifferential onto an orthogonal decomposition of Rn in a structured

way. We answer positively in the following sections, replacing the support

I by what we coined the tangent model subspace, the sign pattern sign(x) by

the model vector and the ℓ∞-norm by the subdifferential gauge. However, this

decomposition will be pointwise, an issue that is solved in Chapter 4.
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3.1 Model Tangent Subpace Associated to a Convex Function

3.1 Model Tangent Subpace Associated to a Convex

Function

This section introduces the model tangent subspace associated to a convex

function, and its associated model vector. We can compute the model tangent

space of a sum of convex functions at some point, and also by precomposition

by a linear operator. This section is illustrated by two examples, the ℓ1 −

ℓ2 norm and the ℓ∞ norm. Section 3.3 provides several other examples to

connection these definition to practical applications.

The terminology of model tangent subspace is partly explained in this chapter.

Indeed, the tangent aspect is a consequence of a further property, partial

smoothness, that is studied in Chapter 4. Nevertheless, we stick with this

name right now.

3.1.1 Model Tangent Subspace

Let J ∈ Γ+c (Rn) a regularizer1, i.e. a continuous, bounded from below, proper,

and convex function. We now introduce the model tangent subspace at a point

x.

Definition 3 .1 — Model Tangent Subspace . For any vector x ∈
Rn, we denote by S̄x the affine hull of the subdifferential of J at x

S̄x = aff∂J(x),

and ex, its model vector, the orthogonal projection of 0 onto S̄x

ex = argmin
e∈S̄x

||e||.

We denote

Sx = S̄x − ex = span(∂J(x)) and Tx = S⊥x .

Tx is coined the model tangent subspace of x associated to J.

1. The boundness assumption does not play any role in section. It will however be important
in our results in Chapters 6–9.
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When J is Gâteaux-differentiable at x, i.e. ∂J(x) = {∇J(x)}, ex = ∇J(x) and

Tx = RN.

On the contrary, when J is not smooth at x, the dimension of Tx is of smaller

dimension, and the regularizing function J essentially promotes elements

living on or close to this model subspace.

We start by summarizing some key properties of ex and Tx.

Proposition 3 .1 Let J ∈ Γ+c (Rn). For any x ∈ RN, one has

(i) ex ∈ Tx ∩ S̄x,

(ii) S̄x =
{
η ∈ RN | ηTx

= ex
}

.

Moreover, if J is a gauge, then

(iii) For every u ∈ S̄x, J(x) = 〈u, x〉,

(iv) x ∈ Tx.

proof (i) This is due to the fact that ex is the orthogonal projection of 0

on the affine space S̄x. It is therefore an element of S̄x ∩ (S̄x − ex)
⊥, i.e.

ex ∈ S̄x ∩ Tx.

(ii) This is straightforward from the fact that Sx =
{
η ∈ RN | ηTx

= 0
}
, S̄x =

Sx + ex and ex ∈ Tx from (i).

(iii) Each element of S̄x can be written as u =
∑k

i=1 ρiηi, for k > 0, where

ηi ∈ ∂J(x) and
∑k

i=1 ρi = 1. By Fenchel identity applied to the gauge J, and

using Lemma 2.5(iii), we have

〈x, ηi〉 = J(x) + ιC◦(ηi), ∀i .

Since ηi ∈ ∂J(x) ⊆ C◦, we get

〈x, ηi〉 = J(x), ∀i .
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3.1 Model Tangent Subpace Associated to a Convex Function

Multiplying by ρi and summing this identity over i and using the fact that
∑k

i=1 ρi = 1 we obtain the desired result.

(iv) For any v ∈ Sx, we have v+ ex ∈ S̄x since ex ∈ S̄x. Thus applying (i), we get

〈x, ex + v〉 = J(x) and 〈x, ex〉 = J(x). Combining both identities implies that

〈x, v〉 = 0, ∀v ∈ Sx, or equivalently that x ∈ S⊥x = Tx. �

In general ex 6∈ ∂J(x), which is the situation displayed on Figure 3.1. In this

figure, x is an element of Tx which is not the case for a convex function. This

is however always the case if J is a gauge, as stated in Proposition 3.1(iv).

0

Sx

S̄x

@J(x)

ex

x

Tx

Figure 3.1: Illustration of the geometrical elements (Sx, Tx, ex) for a gauge.

3.1.2 Algebraic Stability

The following proposition determines the model tangent subspace of the sum

of two functions.

H = J+G

in terms of those associated to J and G.

Proposition 3 .2 Let J,G ∈ Γ+c (Rn). Denote TJ and eJ (resp. TG and eG)

the model tangent subspace and vector at a point x corresponding to J (resp.

G). Then the model tangent subspace at x of H = J+G reads

(i) TH = TJ ∩ TG, or equivalently SH = (TH)⊥ = span
(
SJ ∪ SG

)
.

(ii) eH = PTH(eJ + eG).
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proof (i) First, we have

∂H(x) = ∂J(x) + ∂G(x),

Let SJ = span(∂J(x) − ηJ) and SG = span(∂G(x) − ηG), for any pair ηJ ∈
∂J(x) and ηG ∈ ∂G(x). Choosing ηH = ηJ + ηG ∈ ∂H(x) we have

SH = span(∂H(x) − ηH)

= span
(
(∂J(x) − ηJ)+(∂G(x) − ηG)

)

= span
(
span(∂J(x) − ηJ)+ span(∂G(x) − ηG)

)

= span(SJ ∪ SG).

As a consequence we have TH = (SH)⊥ = TJ ∩ TG.

(ii) Moreover, since TH⊥ SJ ∪ SG we have from Proposition 3.1(iii) that

eH = PTH(∂H(x)) = PTH(∂J(x)+∂G(x))

= PTH (eJ + PSJ ∂J(x) + eG + PSG ∂G(x))

= PTH(eJ + eG). �

Functions of the form J0 ◦D∗, where J0 ∈ Γ+c (Rn) is a bounded regularizing

convex function, correspond to the so-called analysis-type regularizers. In the

following, we denote T = Tx = S⊥ and e = ex the subspace and vector in

the decomposition of the subdifferential of J at a given x ∈ RN. Analogously,

T0 = S⊥0 and e0 are those of the function J0 at D∗x. The following proposition

details the decomposability structure of analysis-type functions.

Proposition 3 .3 With the above notation, the model tangent subspace

of J = J0 ◦D∗ reads

(i) T = Ker(D∗
S0
) = D∗T0, or equivalently S = Im(DS0

) = DS0.

(ii) e = PT De0.

proof
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3.1 Model Tangent Subpace Associated to a Convex Function

(i) One has ∂J = D ◦ ∂J0 ◦D∗, hence S = DS0 = Im(DS0
) and T = S⊥ =

Ker(D∗
S0
).

(ii) As S = DS̄0 = De0 + S, we get from Proposition 3.1

e ∈ argmin
z∈S̄

||z|| = argmin
z−De0∈S

||z||

= De0 + argmin
h∈S

||h+De0||.

The second term is the projection of −De0 onto the linear subspace S. Thus,

e = De0 + PS(−De0)

= (Id − PS)De0

= PT De0 ,

which is the result stated. �

It is common in the litterature (Zou et al. 2005) to find regularization of the

form Jε(x) = J(x) + ε
2 ||x||

2
2 in order to stabilize the numerical optimization.

More generally, we consider a function G which is Gâteaux-differentiable.

Corollary 3 .1 Let J ∈ Γ+c (Rn), x ∈ Rn and G ∈ Γ+c (Rn) a function

which is Gâteaux-differentiable at x. Then,

TJ+G
x = TJ and eJ+G

x = eJx + P
T J
x
∇G(x).

proof Indeed, since ∂G(x) = {∇G(x)}, we obtain that TGx = Rn and eGx = ∇G(x).
Applying Proposition 3.2, we get the result. �

Hence, the model tangent space does not vary with the pertubation G (unlike

ex). Remark that the function G : x 7→ ε
2 ||x||

2
2 is C∞ everywhere. If J is a gauge,

hence x ∈ Tx, we get that the model vector reads eJ+G
x = eJx + εx.
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3.1.3 Examples

We illustrate the definition of model tangent subspace with two norms, the

ℓ1-ℓ2 norm used in structured sparsity and the ℓ∞-norm used for spread

representations as discussed in the introduction.

The ℓ1-ℓ2 norm. We consider a uniform disjoint partition B of {1, · · · ,n},

{1, . . . ,N} =
⋃

b∈B

b, b∩ b ′ = ∅, ∀b 6= b ′ .

The ℓ1 − ℓ2 norm of x is

J(x) = ||x||B =
∑

b∈B

||xb||.

Proposition 3 .4 Let J = || · ||B. The tangent model space of J at x 6= 0

reads

Tx =
{
η ∈ R

N | ∀b 6∈ I, ηb = 0
}

,

where I = {b ∈ B | xb 6= 0}, and its orthogonal Sx reads

Sx = S̄x − ex = {η ∈ R
n | ∀b ∈ I, ηb = 0} .

It model vector reads

ex = (N(xb))b∈B,

where N(a) = a/||a|| if a 6= 0, and N(0) = 0.

proof The subdifferential of J at x ∈ Rn is

∂J(x) =

{

η ∈ R
n | ∀b ∈ I, ηb =

xb

||xb||
and ∀g 6∈ I, ||ηg|| 6 1

}

.

Thus, the affine hull of ∂J(x) reads

S̄x =

{

η ∈ R
n | ∀b ∈ I, ηb =

xb

||xb||

}

.
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Hence the projection of 0 onto S̄x is

ex = (N(xb))b∈B

and

Sx = S̄x − ex = {η ∈ R
n | ∀b ∈ I, ηb = 0} ,

which completes the proof. �

The ℓ∞ norm. The ℓ∞ norm is J(x) = ||x||∞ = max
16i6n

|xi|.

Proposition 3 .5 Let J = || · ||∞. The tangent model space of J at x 6= 0

reads

Tx =
{
η | η(I) = ρ(sign(x))(I) for ρ ∈ R

}
,

where I = {i ∈ {1, . . . ,n} | |xi| = ||x||∞} and ex is defined by s(I) = (sign(x))(I)
and s(Ic) = 0.

proof For x = 0, ∂J(x) is the unit ℓ1 ball, hence S̄x = Sx = RN, Tx = {0} and

ex = 0.

For x 6= 0, we have

∂J(x) = {η | ∀ i ∈ Ic, ηi = 0, 〈η, s〉 = 1, ηisi > 0 ∀ i ∈ I} .

It is clear that S̄x is the affine hull of an |I|-dimensional face of the unit ℓ1 ball

exposed by the sign subvector s(I). Thus ex is the barycenter of that face, i.e.

ex = s/|I| and Sx =
{
η | η(Ic) = 0 and 〈η(I), s(I)〉 = 0

}
.

In turn, we have the expression of Tx. �

87



Chapter 3 Model Tangent Subpace

3.2 The Decomposability Property

In the previous section, we defined the model tangent subspace and the model

vector. They are going to play a key role in structuring the subdifferential

of J.

The following proposition gives an equivalent convenient description of the

subdifferential of a gauge γC at x in terms of a particular supporting hyper-

plane to C◦: the affine hull S̄x.

Proposition 3 .6 Let γC be a finite-valued gauge. Then for x ∈ RN, one

has

∂γC(x) = S̄x ∩C◦.

proof Let x ∈ RN. We have

∂γC(x) = FC◦(x) = H∩C◦,

where H =
{
η ∈ RN | 〈η, x〉 = J(x)

}
is the supporting hyperplane of C◦ at x. By

Proposition 3.1(iii), we have

S̄x = aff∂γC(x) ⊆ H,

which implies that

S̄x ∩C◦ ⊆ H∩C◦.

The converse inclusion is true since ∂γC(x) = H∩C◦ ⊆ S̄x. �

Note that this property holds only for gauges. In the following, we propose

an alternative for any kind of convex function.
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3.2.1 The Subdifferential Gauge

3.2.1.1 Definition

Before providing an equivalent description of the subdifferential of J at x in

terms of the geometrical objects ex, Tx and Sx, we introduce a gauge that plays

a prominent role in this description.

Definition 3 .2 — Subdifferential Gauge . Let J ∈ Γ+c (Rn). Let

x ∈ RN \ {0} and fx ∈ ri∂J(x). The subdifferential gauge associated to fx is the

gauge Jx,◦
fx

= γ∂J(x)−fx .

Since ∂J(x) − fx is a closed (in fact compact) convex set containing the origin

as a relative interior point, it is uniquely characterized by the subdifferential

gauge Jx,◦
fx

(see Lemma 2.4(i)).

The following proposition states the main properties of the gauge Jx,◦
fx

.

Proposition 3 .7 The subdifferential gauge Jx,◦
fx

is such that dom Jx,◦
fx

=

Sx, and is coercive on Sx. Moreover, if J is a gauge, then

Jx,◦
fx

(η) = inf
τ>0

max(J◦(τfx + η), τ) + ιSx
(η) .

proof The first assertion follows from Lemma 2.4(v) since 0 ∈ ri(∂J(x) − fx).

Let’s now turn to the second part. Since fx ∈ ri∂J(x) ⊂ S̄x, Proposition 3.1 implies

that fx = PSx
(fx) + PTx

(fx) = PSx
(fx) + ex. Hence, using Proposition 3.6, we get

∂J(x) − fx = (C◦ − fx)∩ (S̄x − fx)

= (C◦ − fx)∩ (Sx − {PSx
(fx)})

= (C◦ − fx)∩ Sx .
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We therefore obtain

Jx,◦
fx

(η) = γ(C◦−fx)∩Sx
(η)

= max(γC◦−fx(η),γSx
(η))

= max(γC◦−fx(η), ιSx
(η))

= γC◦−fx(η) + ιSx
(η) .

At this stage, Lemma 2.7 does not apply straightforwardly since 0 ∈ C◦ but fx 6= 0
in general. However, proceeding as in the proof of that lemma, we arrive at

γC◦+{−fx}(η) = sup
ρ∈[0,1]

ρJ◦
+

∨ (1− ρ)σ{−fx}◦(η)

where, from Definition 2.27, {−fx}◦ = {η | 〈η, fx〉 > −1}, which indeed contains the

origin as an interior point. Continuing from the last equality, we get

γC◦+{−fx}(η) = sup
ρ∈[0,1]

ρJ◦
+

∨ (1− ρ)γ{−fx}◦◦(η)

= sup
ρ∈[0,1]

ρJ◦
+

∨ (1− ρ)γco({−fx}∪{0})(η)

= sup
ρ∈[0,1]

ρJ◦
+

∨ (1− ρ)γ{−µfx| µ∈[0,1]}(η) .

It is easy to see that

γ{−µfx| µ∈[0,1]}(−η) =






τ if η ∈ τfx, τ ∈ R+ ,

+∞ otherwise .

Thus

γC◦+{−fx}(η) = sup
ρ∈[0,1]

inf
τ>0

ρJ◦(τfx + η) + (1− ρ)τ .

Recalling that J◦ is a finite-valued gauge, hence continuous, the objective in the

sup inf fulfills the assumption of the second assertion of Lemma 2.7, whence we
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get

γC◦+{−fx}(η) = inf
τ>0

max(J◦(τfx + η), τ) ,

which completes the proof. �

The second claim gives a formula which links Jx,◦
fx

to the polar gauge J◦. But

they are not equal in general unless some additional assumptions are imposed

on J, as we will see shortly.

3.2.1.2 The Polar of the Subdifferential Gauge

We now turn to the gauge polar to the subdifferential gauge defined by the

relation (Jx,◦
fx

)
◦

= Jxfx . Jxfx comes into play in several results in the rest of

the manuscript. The following proposition summarizes its most important

properties.

Proposition 3 .8 The gauge Jxfx is such that:

(i) Its has a full domain.

(ii) Jxfx(d) = J
x
fx
(dS) = supJx,◦

fx
(ηSx)61〈ηSx

, d〉, where S = Sx.

(iii) Ker Jxfx = Tx and Jxfx is coercive on Sx.

Moreover, if J is a gauge,

(iv) Jxfx(d) = J(dSx
) − 〈fSx

, dSx
〉

proof The gauge Jxfx is the support function of the set

Kx
def.

= ∂J(x) − fx =
{

η ∈ R
N | Jx,◦

fx
(η) 6 1

}

⊂ Sx ,

where the inclusion follows from Proposition 3.7.

(i) Since Kx is a bounded set, its support function is also finite-valued (Hiriart-

Urruty et al. 2001, Proposition V.2.1.3). It follows that dom Jxfx = Rn.
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(ii) We have

Jxfx(d) = sup
η∈Kx

〈η, d〉 = sup
J◦fx(η)61

〈η, d〉 = sup
Jx,◦
fx

(ηSx)61

〈ηSx
, d〉

= sup
η∈Kx

〈η, dTx
〉+ 〈η, dSx

〉 = sup
η∈Kx

〈η, dSx
〉

= Jxfx(dSx
) ,

where we used the fact that 〈η, dTx
〉 = 0 on Kx.

(iii) As a consequence of (ii), Jxfx(dTx
) = 0. Clearly, Tx ⊂ Ker(Jxfx) and Jxfx is

constant along all affine subspaces parallel to Tx. But, since 0 ∈ riKx, ex-

cluding the origin, the supremum in Jfx is always attained at some nonzero

η ∈ Kx ⊂ Sx. Thus Jxfx(d) > 0 for all d such that d /∈ Tx. This shows that
actually Ker(Jxfx) = Tx. In particular, this yields that on Sx, the gauge Jxfx is

coercive.

(iv) Using some calculus rules with support functions and assertion (ii), we have

Jxfx(d) = J
x
fx
(dSx

) = σ(C◦+{−fx})∩Sx
(dSx

)

= co
(
inf(σC◦+{−fx}(dSx

),σS(dSx
))
)

= co
(
inf(σC◦+{−fx}(dSx

), ιT (dSx
))
)

= σC◦+{−fx}(dSx
)

= σC◦(dSx
) − 〈PSx

(fx), dSx
〉

= J(dSx
) − 〈PSx

(fx), dSx
〉 ,

which completes the proof. �

3.2.2 Main Result

Piecing together the above ingredients yields a fundamental pointwise de-

composition of the subdifferential of the regularizer J.
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Theorem 3 .1 — Decomposability. Let J ∈ Γ+c (Rn). Let x ∈ RN \ {0}

and fx ∈ ri∂J(x). Then the subdifferential of J at x reads

∂J(x) =
{

η ∈ R
N | ηTx

= ex and Jx,◦
fx

(PSx
(η− fx)) 6 1

}

.

proof Invoking Proposition 3.1, we get that for every η ∈ ∂J(x), ηTx
= ex, and

PTx
(fx) = ex. It remains now to uniquely characterize the part of the subdifferential

lying in Sx, i.e. ∂J(x) − ex. Since fx ∈ ri∂J(x), we have from the one-to-one

correspondence of Lemma 2.4(i) and the definition of the subdifferential gauge,

η ∈
{

η ∈ R
N | Jx,◦

fx
(ηSx

− PSx
(fx)) 6 1

}

⇐⇒ ηSx
− PSx

(fx) ∈ ∂J(x) − fx
⇐⇒ ηSx

∈ ∂J(x) − ex
⇐⇒ η ∈ ∂J(x) ,

which completes the proof. �

Capitalizing on Theorem 3.1, we are now able to deduce a convenient neces-

sary and sufficient first-order (global) minimality condition of (Py,λ) and (Py,0).

Proposition 3 .9 Let x ∈ Rn, and denote for short T = Tx and S = Sx.

The two following propositions hold.

(i) The vector x is a global minimizer of (Py,λ) if, and only if,

Φ∗
T (y−Φx) = λex and Jx,◦

fx
(λ−1Φ∗

S(y−Φx) − PS(fx)) 6 1.

(ii) The vector x is a global minimizer of (Py,0) if, and only if, there exists

a dual vector p ∈ Rq such that

Φ∗
Tp = ex and Jx,◦

fx
(Φ∗

Sp − PS(fx)) 6 1.

proof This is a convenient rewriting of the fact that x is a global minimizer if,

and only if, 0 is a subgradient of the objective function at x.
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(i) For problem (Py,λ), this is equivalent to

1

λ
Φ∗(y−Φx) ∈ ∂J(x).

Projecting this relation on T and S yields the desired result.

(ii) Let’s turn to problem (Py,0). We have at any global minimizer x

0 ∈ ∂J(x) +Φ∗N{p| p=y}(Φx)

where N{p| p=y}(x) is the normal cone of the constraint set {p | p = y} at

x, which is obviously the whole space Rq. Thus, this monotone inclusion is

equivalent to the existence of p ∈ Rq such that

Φ∗p ∈ ∂J(x) .

Projecting again this on T and S proves the assertion. �

These results can be extended easily when 1
2 ||y−Φx||

2 is replaced by an other

data fidelity term.

3.2.3 Decomposability of the Sum and Precomposition by a Linear

Operator

Following the same path as for the model space, we establish the subdif-

ferential gauge in the case of the sum and the precomposition by a linear

operator. We recall that (Proposition 3.2) denoting TJ and eJ (resp. TG and

eG) the model tangent subspace and vector at a point x corresponding to J

(resp. G), we proved that TH = TJ ∩ TG and eH = PTH(eJ + eG). The following

proposition describes the subdifferential gauge of H = J+G.

Proposition 3 .10 Let J,G ∈ Γ+c (Rn). Let Jx,◦
fJx

and Gx,◦
fGx

denote the subd-

ifferential gauges for the pairs (J, fJx ∈ ri∂J(x)) and (G, fGx ∈ ri∂G(x)), corre-

spondingly. Then, for the particular choice of

fHx = fJx + fGx
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we have fHx ∈ ri∂H(x), and for a given η ∈ SH, the subdifferential gauge of

H reads

Hx,◦
fHx

(η) = inf
η1+η2=η

max(Jx,◦
fJx

(η1),G
x,◦
fGx

(η2)) .

proof As fJx ∈ ri∂J(x) and fGx ∈ ri∂G(x), it follows from (Rockafellar 1996,

Corollary 6.6.2) that

fHx = fJx + fGx ∈ ri∂J(x) + ri∂G(x) = ri (∂J(x) + ∂G(x)) = ri∂H(x) .

The subdifferential gauge associated to H is then

Hx,◦
fHx

= γ∂H(x)−fHx
= γ(∂J(x)−fJx)+(∂G(x)−fGx )

,

which is coercive and finite-valued on SH according to Proposition 3.7. Invoking

Lemma 2.7, we get the desired result since for any ρ > 0,

u 7→ ρJx,◦
fJx

(u) + (1− ρ)Gx,◦
fGx

(η− u) = ργ
∂J(x)−fJx

(u) + (1− ρ)γ∂G(x)−fGx
(η− u)

is finite-valued and continuous on SJ ∩ (SG + η), for η ∈ SH = span(SJ + SG). �

Similarly, we derive the expression of the subdifferential gauge for an analysis-

type prior. In this case, according to Proposition 3.3, the tangent model space

reads T = Ker(D∗
S0
) = D∗T0 and its model vector e = PT De0.

Proposition 3 .11 Let J0 ∈ Γ+c (Rp). Let JD
∗x,◦

0,fD∗x
denote the subdifferential

gauge for the pair (J0, f0,D∗x ∈ ri∂J0(x)). Then, for the particular choice of

fx = Df0,D∗x

we have fx ∈ ri∂J(x), dom Jx,◦
fx

= S and for every η ∈ S

Jx,◦
fx

(η) = inf
z∈Ker(DS0

)
JD

∗x,◦
0,fD∗x

(D+
S0
η+ z) .

The infimum can be equivalently taken over Ker(D)∩ S0.
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proof With such a choice of fx, we have

f0,D∗x ∈ ri∂J0(D
∗x) ⇒ Df0,D∗x ∈ D ri∂J0(D

∗x)

⇐⇒ fx ∈ riD∂J0(D
∗x) ⇐⇒ fx ∈ ri∂J(x) .

We follow the same lines as in the proof of Lemma 2.8, where we additionally invoke

Proposition 3.8(ii) to get

Jxfx(d) = σ∂J(x)−fx(d)

= σD(∂J0(D∗x)−f0,D∗x)
(d)

= σ∂J0(D∗x)−f0,D∗x(D
∗d).

Identifying σ∂J0(D∗x)−f0,D∗x with the gauge γ∂J0(D∗x)−f◦
0,D∗x

, we get

Jxfx(d) = J
D∗x
0,f0,D∗x

(D∗d)

= JD
∗x

0,f0,D∗x
(D∗

S0
d) .

Note that Jxfx is indeed constant along affine subspaces parallel to Ker(D∗
S0
) =

S⊥ = T . We now get that for every η ∈ S = Ker(D+
S0
)⊥

Jx,◦
fx

(η) = σJfx(d)61(η)

= σJD∗x
0,f0,D∗x

(D∗
S0

d)61(η)

=

(
ιJD∗x

0,f0,D∗x
(w)61 ◦D∗

S0

)∗
(η)

= inf
v
σJD∗x

0,f0,D∗x
(w)61(v) s.t. DS0

v = η

= inf
z∈Ker(DS0

)
JD

∗x,◦
0,fD∗x

(D+
S0
η+ z) .

The infimum is bounded and is attained necessarily at some z ∈ Ker(DS0
)∩ S0 6= ∅

since dom JD
∗x,◦

0,fD∗x
= S0 and Im(D+

S0
) = Im(D∗

S0
) ⊂ S0. Moreover, Ker(DS0

)∩S0 =

Ker(D)∩ S0. �

We get the following corollary for smooth perturbation G, see Section 3.1. We

recall that in this case, the model space TJ+G
x = TJx and eJ+G

x = eJx + P
T J
x
∇G(x).

96



3.3 Special Cases

Corollary 3 .2 Let J ∈ Γ+c (Rn), x ∈ Rn and G ∈ Γ+c (Rn) a function

which is Gâteaux-differentiable at x.. Then, for the particular choice of

fJ+G
x = fJx +∇G(x),

we have fJ+G
x ∈ ri(J+G)(x) and for a given η ∈ SJx, the subdifferential gauge

of J+G reads

(J+G)x,◦
fJ+G
x ,x

= Jx,◦
fJx,x

.

proof It is sufficient to remark that the smooth perturbation G translates the

subdifferential ∂J(x) by ∇G(x). Hence, using our choice of fJ+G
x , we find the same

subdifferential gauge. �

3.3 Special Cases

3.3.1 Strong Gauge

In this section, we study a particular subclass of convex functions that we dub

strong gauges. We start with some definitions.

Definition 3 .3 A bounded regularizing gauge J is separable with respect

to T = S⊥ if

∀ (x, x ′) ∈ T × S, J(x+ x ′) = J(x) + J(x ′).

Separability of J is equivalent to the following property on the polar J◦.

Lemma 3 .1 Let J be a bounded gauge. Then, J is separable w.r.t. to T = S⊥

if, and only if its polar J◦ satisfies

J◦(x+ x ′) = max
(
J◦(x), J◦(x ′)

)
, ∀ (x, x ′) ∈ T × S .
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proof Let J = γC, x ∈ T and x ′ ∈ S.

⇒: By virtue of Lemma 2.5, we have

J◦(x+ x ′) = sup
u∈C

〈x+ x ′, u〉

= sup
J(u)61

〈x+ x ′, u〉

= sup
J(uT+uS)61

〈x, uT 〉+ 〈x ′, uS〉

= sup
J(uT )+J(uS)61

〈x, uT 〉+ 〈x ′, uS〉 using the separability.

Rewriting the condition J(uT + uS) 6 1 as J(uT ) 6 ρ, J(uS) 6 1− ρ for ρ ∈ [0, 1],

we arrive to

J◦(x+ x ′) = sup
ρ∈[0,1]

sup
J(uT )6ρ,J(uS)61−ρ

〈x, uT 〉+ 〈x ′, uS〉

= sup
ρ∈[0,1]

ρ sup
J(uT )61

〈x, uT 〉+ (1− ρ) sup
J(uS)61

〈x ′, uS〉

= sup
ρ∈[0,1]

ρ sup
v∈C∩T

〈x, v〉+ (1− ρ) sup
wC∩T

〈x ′, w〉

= sup
ρ∈[0,1]

ρσC∩T (x) + (1− ρ)σC∩S(x
′)

= max(σC∩T (x),σC∩S(x
′)) .

Since

σC∩T (x) = co (inf(σC(x), ιS(x))) = σC(x) = J
◦(x)

and

σC∩S(x
′) = co

(
inf(σC(x

′), ιT (x
′))
)
= σC(x

′) = J◦(x ′) ,

the implication follows.

⇐: Using again Lemma 2.5, we get

J(x+ x ′) = sup
u∈C◦

〈x+ x ′, u〉

= sup
J◦(uT+uS)61

〈x, uT 〉+ 〈x ′, uS〉.
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Using the separability of the polar,

J(x+ x ′) = sup
max(J◦(uT ),J◦(uS))61

〈x, uT 〉+ 〈x ′, uS〉

= sup
J◦(uT )61,J◦(uS)61

〈x, uT 〉+ 〈x ′, uS〉

= sup
v∈C◦∩T

〈x, v〉+ sup
w∈C◦∩S

〈x ′, w〉

= σC◦∩T (x) + σC◦∩S(x
′)

= co (inf(σC◦(x), ιS(x))) + co
(
inf(σC◦(x ′), ιT (x

′))
)

= σC◦(x) + σC◦(x ′)

= J(x) + J(x ′) .

This concludes the proof. �

The decomposability of ∂J(x) as described in Theorem 3.1 depends on the

particular choice of the map x 7→ fx ∈ ri∂J(x). An interesting situation is

encountered when ex ∈ ri∂J(x), in which case, one can just choose fx = ex,

hence implying that fSx
= 0. Strong gauges are precisely a class of gauges for

which this situation occurs.

In the sequel, for a given model subspace T , we denote T̃ the set of vectors

sharing the same T ,

T̃ =
{
x ∈ R

N | Tx = T
}

.

Using positive homogeneity, it is easy to show that Tρx = Tx and eρx = ex ∀ρ >
0. Thus T̃ is a non-empty cone which is contained in T by Proposition 3.1(iv).

Definition 3 .4 — Strong Gauge A strong gauge on T is a bounded

gauge J such that

(i) For every x ∈ T̃ , ex ∈ ri∂J(x).

(ii) J is separable with respect to T and S = T⊥.

The following result shows that the decomposability property of Theorem 3.1

has a simpler form when J is a strong gauge.
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Proposition 3 .12 Let J be a strong gauge on Tx. Then, the subdifferen-

tial of J at x reads

∂J(x) =
{
η ∈ R

N | ηTx
= ex and J◦(ηSx

) 6 1
}

.

proof Let J = γC. We only need to show that Jx,◦
ex (ηSx

) = J◦(ηSx
). This follows

from Proposition 3.7, Lemma 3.1 and Lemma 2.5(ii). Indeed,

Jx,◦
ex

(ηSx
) = inf

τ>0
max(J◦(τex + ηSx

), τ) from Proposition 3.7,

= inf
τ>0

max(τJ◦(ex), J
◦(ηSx

), τ) from Lemma 3.1,

= inf
τ>0

max(J◦(ηSx
), τ) from ex ∈ ∂J(x) ⊂ C◦,

= J◦(ηSx
) ,

which concludes the proof. �

When J is in addition a norm, this coincides with the decomposability defini-

tion of (Candès and Recht 2013). Note however that the last part of assertion

(ii) in Proposition 3.8 is an intrinsic property of gauges, while it is stated as

an assumption in their definition. A notion of decomposability closely related

to that of (Candès and Recht 2013), but different, was proposed in (Negahban

et al. 2009). Typical examples of (strongly) decomposable norms are the ℓ1,

ℓ1 − ℓ2 and nuclear norms. However, strong decomposability excludes many

important cases. One can think of analysis-type semi-norms since strong de-

composability is not preserved under pre-composition by a linear operator, or

the ℓ∞ norm among many others.

3.3.2 Examples

3.3.2.1 ℓ1 Norm

The norm J(x) = ||x||1 is a symmetric (bounded) strong gauge. More precisely,

we have the following result.
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Proposition 3 .13 J = || · ||1 is a symmetric strong gauge with

Tx =
{
η ∈ R

N | ∀j 6∈ I, ηj = 0
}

, Sx =
{
η ∈ R

N | ∀i ∈ I, ηi = 0
}

,

ex = sign(x), fx = ex, Jx,◦
fx

= || · ||∞ + ιSx
,

where I = I(x) = {i | xi 6= 0}.

proof The subdifferential of || · ||1 reads

∂|| · ||1(x) =
{
η ∈ R

N | η(I) = sign(x(I)) and ||η(Ic)||∞ 6 1
}

.

The expressions of Sx, Tx, ex and fx follow immediately. Since ex ∈ ri∂|| · ||1(x)
and || · ||1 is separable, it follows from Definition 3.4 that the ℓ1-norm is a strong

gauge. Therefore Jx,◦
fx

= || · ||∞, and Proposition 3.12 specializes to the stated

subdifferential. �

Figure 3.2 shows the underlying geometry of the ℓ1 regularization in two

dimensions. Note that ∂J(x) is included in the dual closed ball.

Sx S̄x

Tx

‖ · ‖1 ≤ 1

‖ · ‖∞ ≤ 1

∂J(x)

x

Figure 3.2: ℓ1 geometry.

3.3.2.2 Analysis-ℓ1 Seminorm

The semi-norm J(x) = ||D∗x||1 is a symmetric gauge.
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Proposition 3 .14 J = ||D∗ · ||1 is a symmetric (bounded) gauge with

Tx = Ker(D∗
(Ic))) =

{
η ∈ R

N | ∀j 6∈ I, 〈dj, ηj〉 = 0
}

, Sx = Im(DIc),

ex = PKer(D∗
Ic
)D sign(D∗x), fx = D sign(D∗x),

Jx,◦
fx

(η) = inf
z∈Ker(D(Ic))

||D+
(Ic)
η+ z||∞, for η ∈ Sx ,

where I = I(x) = {i | 〈di, xi〉 6= 0}.

proof This is a direct consequence of Proposition 3.11 and Proposition 3.13.�

3.3.2.3 ℓ∞ Norm

The norm J(x) = ||x||∞ is a symmetric gauge, but unlike the ℓ1-norm, it is not

strongly so (except for n = 2). In the following proposition, we rule out the

trivial case x = 0.

Proposition 3 .15 J = || · ||∞ is a symmetric (bounded) gauge for x 6= 0

with

Sx =
{
η | η(Ic) = 0 and 〈η(I), s(I)〉 = 0

}
,

Tx =
{
α | α(I) = ρs(I) for ρ ∈ R

}
,

ex =
s

|I|
, fx = ex, Jx,◦

fx
(η) = max

i∈I
(−|I|siηi)+ for η ∈ Sx ,

where s = sign(x) and I = I(x) = {i | |xi| = ||x||∞}.

proof Recall that for J = || · ||∞, fx = ex = s/|I|, with s = sign(x). Let Kx =

∂J(x) − ex. It can be straightforwardly shown that in this case,

Kx =
{
v | ∀ (i, j) ∈ I× Ic, vj = 0, 〈v(I), s(I)〉 = 0, −|I|visi 6 1

}
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This is rewritten as

Kx = Sx ∩ {v | ∀ i ∈ I, −|I|visi 6 1}
︸ ︷︷ ︸

=K′
x

.

Thus the subdifferential gauge reads

Jx,◦
fx

(η) = γKx
(η) = max(γSx

(η),γK′
x
(η)).

We have γSx
(η) = ιSx

(η) and γK′
x
(η) = max

i∈I
(−|I|siηi)+, where (·)+ is the positive

part, hence we obtain

Jx,◦
fx

(η) =






max
i∈I

(−|I|siηi)+ if η ∈ Sx
+∞ otherwise.

Therefore the subdifferential of || · ||∞ at x takes the form

∂J(x) =

{

η ∈ R
N | ηTx

= ex =
s

|I|
and max

i∈I
(−|I|siηi)+ 6 1

}

,

which concludes the proof. �

Figure 3.3 shows the underlying geometry of the ℓ∞ regularization in three

dimensions.

3.3.2.4 ℓ1 − ℓ2 Norm

The ℓ1 − ℓ2 norm is a symmetric strong gauge.

Proposition 3 .16 The ℓ1 − ℓ2 norm associated to the partition B, as

defined in (1.13), is a symmetric (bounded) strong gauge with

Tx =
{
η | ∀j /∈ I, ηj = 0

}
, Sx = {η | ∀i ∈ I, ηi = 0} ,

ex = (N(xb))b∈B, fx = ex, Jx,◦
fx

= || · ||∞,2 + ιSx
,

where I = I(x) = {b | xb 6= 0}, and N(a) = a/||a|| if a 6= 0, and N(0) = 0.
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Figure 3.3: ℓ∞ geometry.
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Figure 3.4 shows the underlying geometry of the ℓ1 − ℓ2 regularization in

three dimensions. We take J(x) =
√
x21 + x

2
2 + |x3|.

Figure 3.4: ℓ1 − ℓ2 geometry. In red, the ℓ1 − ℓ2 ball. In blue, the dual ball.

3.3.2.5 Nuclear Norm

We show that the nuclear norm is a symmetric strong gauge. Since || · ||1 is an

absolutely symmetric gauge, it is immediate to see that || · ||∗ is an unitarily

invariant norm according to Proposition 2.10.

Proposition 3 .17 The nuclear norm is a symmetric strong gauge with

Sx =
{

U∗
⊥CV⊥ | C ∈ R

(N1−r)×(N2−r)
}

,

Tx =
{
UA∗ +BV∗ | A ∈ R

N2×r,B ∈ R
N1×r

}

=
{

Z ∈ R
(N1−r)×(N2−r) | U∗

⊥ZV⊥ = 0
}

,

105



Chapter 3 Model Tangent Subpace

ex = UV∗, fx = ex, Jx,◦
fx

(x) = max
i
σi + ιSx

,

where U⊥,V⊥ span the orthogonal of the ranges of U,V .

It can be observed that dim(Tx) = r(N1 +N2 − r) and dim(Sx) = N1N2 −

dim(Tx) = N1N2 − r(N1 +N2) + r
2.

proof The subdifferential of the nuclear norm is a classical result in convex

analysis of spectral functions, see e.g. (Watson 1992; Lewis 1995). More precisely,

let x ∈ RN1×N2 be a matrix and x = UΣV∗ its singular value decomposition. Then,

the subdifferential ∂J(x) reads

∂J(x) = {UV∗ +M | ||M|| 6 1, U∗M = 0 and MV = 0} .

The expressions of the subspaces Tx, Sx and ex follow immediately. Since the nuclear

norm is a strong gauge, we get from Proposition 3.12 that the subdifferential gauge

is the spectral norm. �

3.3.2.6 Polyhedral Gauges

The ℓ1 and ℓ∞ norms are special cases of polyhedral priors. There are two

alternative ways to define a polyhedral gauge. The H-representation encodes

the gauge through the hyperplanes that support the polygonal facets of its

unit level set. The V-representation encodes the gauge through the vertices

that are the extreme points of this unit level set. We focus here on the H-

representation.

A polyhedral gauge in the H-representation is defined as

J(x) = max
16i6p

(〈x, di〉)+ = J0(D
∗x) where J0(u) = max

16i6p
(ui)+,

and we have defined D = (di)
p
i=1 ∈ Rn×p. For instance, J = || · ||1 can be

recovered using the matrix D ∈ Rn×2n
enumerating all sign patterns and
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J = || · ||∞ corresponds to taking D = [−Idn Idn]. Observe that the polar of a

polyhedral gauge is again a polyhedral gauge.

Such a polyhedral gauge can also be thought as an analysis gauge. One can

then characterize decomposability of J0 and then invoke Proposition 3.11 to

derive those of J. This is what we are about to do. In the following, we denote

(ai)16i6p the standard basis of Rp. Figure 3.5 shows the geometry of this

regularization when u is on the positive ray R+(1, 1) in two dimensions. Note

that the level-set {J0(·) 6 1} to 1 is unbounded.

J0(·) ≤ 1

J0, S
◦(·) ≤ 1

0

u2

u1

Tu

Su

S̄u

∂J(u)

eu

u

Figure 3.5: Polyhedral geometry.

Proposition 3 .18 J0(u) = max16i6p(ui)+ is a (bounded) gauge and,

• If ui 6 0, ∀i ∈ {1, · · · ,p}, then

Su = span
(
ai
)
i∈I0

, Tu = span
(
ai
)
i/∈I0

,

eu = 0, fu = µ
∑

i∈I0

ai, for any 0 < µ < 1,

Ju,◦
fu

(η) = inf
τ>maxi∈I0

(−ηi)+/µ
max

(
τµ|I0|+

∑

i∈I0

ηi, τ
)

for η ∈ Su ,

where

I0 = {i ∈ {1, · · · ,p} | ui = J0(u) = 0} .
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• If ∃i ∈ {1, · · · ,p} such that ui > 0, then

Su =
{

η | η(Ic+) = 0 and 〈η(I+), s(I+)〉 = 0
}

,

Tu =
{
α | α(I+) = µs(I+) for µ ∈ R

}
,

eu =
s

|I+|
, fu = eu, Ju,◦

fu
(η) = max

i∈I+
(−|I+|ηi)+ for η ∈ Su ,

where

s =
∑

i∈I+

ai and I+ = {i ∈ {1, · · · ,p} | ui = J0(u) and ui > 0} .

proof In general, the subdifferential of J0 reads

∂J0(u) =






∑

i∈I

ρisia
i | ρ ∈ ΣI, si ∈






{1} if ui > 0

[0, 1] if ui = 0

{0} if ui < 0






,

where ΣI is the canonical simplex in R|I|, and I = {i ∈ {1, · · · ,p} | (xi)+ = J0(x)}.

• If ui 6 0, ∀i ∈ {1, · · · ,p}, the above expression becomes

∂J0(u) =






∑

i∈I0

ρisia
i | ρ ∈ ΣI0 , si ∈ [0, 1]





,

where I0 = {i ∈ {1, · · · ,p} | ui = J0(u) = 0}. Equivalently, ∂J0(u) is the inter-

section of the unit ℓ1 ball and the positive orthant on R|I0|. The expressions of

Su, Tu and eu then follow immediately. ∂J0(u) then contains eu = 0, but not

in its relative interior. Choosing any fu as advocated, we have fu ∈ ri∂J0(u).

To get the subdifferential gauge, we some calculus rules on gauges and apply

Lemma 3.7 to get

Ju,◦
fu

(η(I0)) = inf
τ>0, τ(fu)i>−ηi ∀i∈I0

max(||τfu + η||1, τ) ,

where the extra-constraints on τ come from the fact that ∂J0(u) is in the

positive orthant, and the ℓ1 norm is the gauge of the unit ℓ1-ball. We then
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have

Ju,◦
fu

(η(I0)) = inf
τ>0, µτ>maxi∈I0

−ηi

max(τ
∑

i∈I0

(
µai + ηi

)
, τ)

= inf
τ>maxi∈I0

(−ηi)+/µ
max(τµ|I0|+

∑

i∈I0

ηi, τ) .

• Assume now that ui > 0 for at least one i ∈ {1, · · · ,p}. In such a case,

J0(u) = ||u||∞, and the subdifferential becomes

∂J0(u) = ΣI+ ,

where I+ {i ∈ {1, · · · ,p} | ui = J0(u) and ui > 0}. The forms of Su, Tu,

eu, fu and the subdifferential gauge can then be retrieved from those of the

ℓ∞-norm with s(I+) = 1 and s(Ic+) = 0. �
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4
Partial Smoothness

Main contributions of this chapter

• Specialization and application of the theory of partial smooth-

ness (Definition 4.1) to popular gauges in imaging and statistics.

• Derivation of explicit partial smoothness Lipschitz-constants

for a particular sub-class of partly smooth functions (Defini-

tion 4.2).
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T
heorem 3.1 provides a pointwise decomposition of the subdifferential

of a convex function. It actually says nothing about the stability of such a

formula at points x̃ close enough from x. In order to obtain this stability, one

needs to restrict the set of finite-valued convex functions used as regularizers.

We propose two different classes of such regularizers, coined partly smooth

functions and partly smooth functions relative to a linear manifold . The first

one comes directly from the optimization litterature (Lewis 2002), whereas

the second is introduced in order to be able to provide explicit constants in

our robustness results.

4.1 Partly Smooth Functions

The notion of “partly smooth” functions (Lewis 2002) unifies many non-

smooth functions known in the literature. The notion of partial smoothness (as

well as identifiable surfaces (Wright 1993)) captures essential features of the ge-

ometry of non-smoothness which are along the so-called “active/identifiable
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4.1 Partly Smooth Functions

manifold”. Loosely speaking, a partly smooth function behaves smoothly as

we move on the partial smoothness manifold, and sharply if we move normal

to the manifold. In fact, the behaviour of the function and of its minimizers

(or critical points) depend essentially on its restriction to this manifold, hence

offering a powerful framework for sensitivity analysis theory. In particular,

critical points of partly smooth functions move stably on the manifold as the

function undergoes small perturbations (Lewis 2002; Lewis et al. 2013).

4.1.1 Definition

Specialized to convex functions, the definition of partly smooth functions

reads as follows1.

Definition 4 .1 A function J ∈ Γ+c (Rn) is said to be partly smooth (PSF)

at x relative to a set M ⊆ Rn if there exists a neighborhood U of x such that

(i) Smoothness. M∩U is a C2-manifold and J restricted to M∩U is C2,

J U∩M ∈ C2(M∩U).

(ii) Sharpness. The tangent space of M at x is the model tangent space Tx,

TM(x) = Tx.

(iii) Continuity. The set-valued mapping ∂J is continuous at x relative to

M.

The manifold M is coined the model manifold of x ∈ Rn. J is said to be partly

smooth relative to a set M if M is a manifold and J is partly smooth at each

point x ∈ M relative to M. J is said to be locally partly smooth at x relative to a

set M if M is a manifold and there exists a neighbourhood U of x such that

J is partly smooth at each point x ′ ∈ M∩U relative to M.

1. Again, we could define this notion without assumption of boundness from below.
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We denote the set of all partly smooth functions at x relative to a manifold

M as Sx(M) and the set of all partly smooth functions relative to a manifold

M as S(M). The definition of continuity of ∂J is to be understood according

to Definition 2.17. Since J is proper convex continuous, the subdifferential of

∂J(x) is everywhere non-empty and compact and every subgradient is regular.

Therefore, the Clarke regularity property (Lewis 2002, Definition 2.7(ii)) is

automatically verified. In view of (Lewis 2002, Proposition 2.4(i)-(iii)), our

sharpness property is equivalent to that of (Lewis 2002, Definition 2.7(iii)).

Obviously, any smooth function J : Rn → R is partly smooth relative to the

manifold Rn. Moreover, any indicator function ιM of a manifold M is partly

smooth relative to M.

Remark that in the previous definition, M needs only to be defined locally

around x, and it can be shown to be locally unique. Hence the notation M is

unambiguous.

Lemma 4 .1 Let J ∈ Sx(M) be a partly smooth function at x ∈ Rn relative

to both M and M̄. Then, there exists a neighborhood U of x such that

U∩M = U∩ M̄.

proof This is proved in Corollary 4.2 of (Hare et al. 2007). �

4.1.2 Partial Smoothness Calculus

Partial smoothness is preserved under addition, pre-composition by a linear

operator and matrix lift. These results are proved in (Lewis 2002; Daniilidis

et al. 2013).

Proposition 4 .1 Let J0 ∈ Sz(M
0
z) be a partly smooth function at z = D∗x

relative to the manifold M0
z. Then J = J0 ◦D∗ ∈ Sx(M) for the manifold

M =
{
u ∈ R

N | D∗u ∈ M0
z

}
.
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4.2 Partly Smooth Functions With Linear Manifolds

proof This is proved in (Lewis 2002, Theorem 4.2). Contrary to the general

case, the transversality hypothesis is automatically satisfied since J0 is convex and

continuous. �

Proposition 4 .2 Let J and G two partly smooth functions at x ∈ Rn

relative to the manifolds MJ and MG. Then J+G ∈ Sx(M) for the manifold

M = MJ ∩MG.

proof This is proved in (Lewis 2002, Corollary 4.6). Contrary to the general case,

the transversality hypothesis is automatically satisfied since J and G are convex and

continuous. �

Proposition 4 .3 Let j be an absolutely symmetric gauge and x ∈
Rn1×n2 a symmetric matrix. Then the two following statements are equiva-

lent:

(i) j is a partly smooth function at Λx relative to the manifold mΛx
.

(ii) J = j ◦ σ ∈ Sx(M) for the manifold M = σ−1(mΛx
).

proof See (Daniilidis et al. 2013, Theorem 5.3). �

4.2 Partly Smooth Functions With Linear Manifolds

In practice, many of the partly smooth functions we consider are associated to

linear manifolds (i.e. the tangent model subspace is the model manifold M =

Tx). These functions, coined partly smooth functions with linear manifolds,

encompass most of the knowns regularizations in the image processing and

statistics, such as the ℓ1, ℓ1 − ℓ2, ℓ∞ norm and their sums and compositions by

a linear operator, with the noticeable exception of the nuclear norm.
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4.2.1 Definition

We restrict our interest in this section to convex funtions J which are partly

smooth at x ∈ Rn with respect to a linear subspace. In this case, this subspace

is Tx. The following theorem proves that such functions, which enjoy the fact

that ∂J is Lipschitz on Tx are characterized by a set of parameters.

Theorem 4 .1 Let Γ be any coercive gauge bounded on Tx for x ∈ Rn. Let

J ∈ Sx(Mx) for the manifold Mx = Tx and we assume that ∂J : Tx ⇒ Rn is

Lipschitz around x. Then for any Lipschitz-mapping.

f :






Tx → Rn

x̃ 7→ fx̃ ∈ ri∂J(x̃),

there exist four non-negative reals νx,µx, τx, ξx such that

∀x ′ ∈ T , Γ(x− x ′) 6 νx ⇒ Tx = Tx ′ (4.1)

and for every x ′ ∈ T with Γ(x− x ′) < νx, one has

Γ(ex − ex ′) 6 µxΓ(x− x
′), (4.2)

Jx,◦
fx

(PS(fx − fx ′)) 6 τxΓ(x− x
′), (4.3)

sup
u∈S
u 6=0

Jx
′,◦

fx ′ (u) − J
x,◦
fx

(u)

Jx,◦
fx

(u)
6 ξxΓ(x− x

′). (4.4)

Moreover, there exists such a mapping f.

proof We prove this result for Γ = || · ||. This is not restrictive, since for every

x ∈ Rn,

Γ(x) 6 |||Id|||Γ→ℓ2 ||x||.

We start from the hypotheses J ∈ Sx(Mx) for the manifold Mx = Tx and ∂J : Tx ⇒

Rn is Lipschitz around x.
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4.2 Partly Smooth Functions With Linear Manifolds

• Existence of fx. Such a mapping exists according to (Aubin et al. 2009,

Theorem 9.4.3).

• ν-stability. Using (Lewis 2002, Proposition 2.10) the sharpness property (ii)

is locally stable. Hence, for x ′ ∈ Tx in a neighborhood of x, Tx ′ = Tx. The

radius of this neighborhood can be taken as νx.

• µ-stability. Using (Hiriart-Urruty et al. 2001, Corollary VI.2.1.3), we write for

any h ∈ Tx
J(x+ th) = J(x) + t〈s, h〉+ o(t),

where s ∈ F∂J(x)(h). Since J restricted to Tx ∩ U is C2 according to the

smoothness property, repeating this argument at order 2 let us concludes that

the mapping z ∈ Tx ∩U 7→ ez is C1. Hence, this map is Lipschitz.

• τ-stability. One has

Jx,◦
fx

(PS(fx − fx ′)) 6 |||PSx
|||Jx,◦

fx
→ℓ2 ||fx − fx ′ || 6 τx||x− x

′||,

where τx = |||PSx
|||Jx,◦

fx
→ℓ2β and β is the Lipschitz constant associated to fx,

proving (4.3).

• ξ-stability. ∂J is Lipschitz around x and x 7→ fx is Lipschitz. Hence, the

application x 7→ (∂J(x) − fx) is Lipschitz on Tx. Using Lemma 2.6, we get

that

Jx
′,◦

fx ′ (u) − J
x,◦
fx

(u) 6 β||x ′ − x||||u||.

Since ||u|| 6 |||Id|||ℓ2→Jx,◦
fx
Jx,◦
fx

(u), we get bound (4.4) where ξx = β|||Id|||ℓ2→Jx,◦
fx
.

�

This result motivates the following definition.

Definition 4 .2 — PSF Relative to a L inear Manifold. A

finite-valued convex function J is said to be partly smooth relative to a linear

manifold at x ∈ Rn, if J is partly smooth at x for the manifold M = Tx. The

set of all partly smooth functions with linear manifolds at x, such that ∂J

is Lipschitz around x relative to Tx, with parameters (Γ , fx,νx,µx, τx, ξx) is

denoted SLx(Γ , fx,νx,µx, τx, ξx).
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4.2.2 Stability under the Sum and Precomposition by a Linear

Operator

Partial smoothness with linear manifold property is preserved under addition

and pre-composition by a linear operator, and one can give explicit bound on

the corresponding Lipschitz constants.

4.2.2.1 Addition

Proposition 4 .4 Let x ∈ Rn, J and G two partly smooth functions with

linear manifolds such that

J ∈ SLx(Γ
J, fJx,νJx,µJx, τJx, ξJx)

G ∈ SLx(Γ
G, fGx ,νGx ,µGx , τGx , ξGx ).

Then,H = J+G is also partly smooth with linear manifold at x, for the choice

fHx = fJx + fGx and ΓH = max(ΓJ, ΓG), with ∂H Lipschitz and the parameters

νHx = min(νJx,νGx )

µHx = µJx |||PTH |||Γ J→ΓH + µGx |||PTH |||ΓG→ΓH

τHx = τJx + τGx + µJx |||PSH∩T J |||Γ J→Hx,◦
fHx

+ µGx |||PSH∩TG |||ΓG→Hx,◦
fHx

ξHx = max(ξJx, ξGx ).

proof In the following, all operator bounds that appear are finite owing to the

coercivity assumption on the involved gauges in Definition 4.2 of a PSFL.

It is straightforward to see that the function ΓH = max(ΓJ, ΓG) is indeed a gauge,

which is bounded and coercive on TH = TJ ∩ TG. Moreover, given that both J and

G are PSFL at x with corresponding parameters νJx and νGx , we have with the

advocated choice of ΓH and νHx ,

ΓJ(x− x ′) 6 νJx and ΓG(x− x ′) 6 νGx ,
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4.2 Partly Smooth Functions With Linear Manifolds

for every ∀x ′ ∈ THx such that ΓH(x− x ′) 6 νHx . It follows that:

• Since J and G are both PSFL, then we have TJx = TJx ′ and TGx = TGx ′ , and thus

by Proposition 3.10(i)

THx = TJx ∩ TGx = TJx ′ ∩ TGx ′ = THx ′ = TH.

• µHx -stability: we have from Proposition 3.10(ii)

ΓH(eHx − eHx ′) = ΓH
(

PTH(eJx + eGx − eJx ′ − e
G
x ′)
)

6 ΓH
(

PTH(eJx − eJx ′)
)
+ ΓH

(
PTH(eGx − eGx ′)

)

6 |||PTH |||Γ J→ΓH Γ
J
(
eJx − eJx ′

)
+ |||PTH |||ΓG→ΓH Γ

G
(
eGx − eGx ′

)

6
(
µJx |||PTH |||Γ J→ΓH + µGx |||PTH |||ΓG→ΓH

)
ΓH(x− x ′) ,

where we used µJx- and µ
G
x -stability of J and G in the last inequality.

• τHx -stability: the fact that SJ ⊆ SH and SG ⊆ SH and subadditivity of gauges

lead to

Hx,◦
fHx

(
PSH(fHx − fHx ′)

)

= Hx,◦
fHx

(
PSJ(fJx − fJx ′) + PSG(fGx − fGx ′) + PSH(eJx − eJx ′) + PSH(eGx − eGx ′)

)

6 Hx,◦
fHx

(
PSJ(fJx − fJx ′)

)
+Hx,◦

fHx

(
PSG(fGx − fGx ′)

)

+Hx,◦
fHx

(
PSH(eJx − eJx ′)

)
+Hx,◦

fHx

(
PSH(eGx − eGx ′)

)
. (4.5)

According to Proposition 3.10(iii), we have

Hx,◦
fHx

(
PSJ(fJx − fJx ′)

)
= inf

η1+η2=P
SJ

(fJx−fJ
x ′)

max(Jx,◦
fJx

(η1),G
x,◦
fGx

(η2)) .

Since dom Jx,◦
fJx

= SJ, (η1,η2) = (PSJ(fJx − fJx ′), 0) is a feasible point of the

last problem, and we get

Hx,◦
fHx

(
PSJ(fJx − fJx ′)

)
6 Jx,◦

fJx

(
PSJ(fJx − fJx ′)

)
.
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Moreover, as eJx, eJx ′ ∈ TJ (see Proposition 3.1(ii)) and SJ ⊆ SH, we have

min
η1∈T J,η2SJ,η1+η2∈SH

||η1 + η2 − (eJx − eJx ′)||
2

= min
η1∈T J,η2SJ,η1+η2∈SH

||η1 − (eJx − eJx ′)||
2 + ||η2||

2

= min
η1∈T J,η2SJ,η1∈SH

||η1 − (eJx − eJx ′)||
2 + ||η2||

2

= min
η1∈SH∩T J

||η1 − (eJx − eJx ′)||
2 .

That is

PSH(eJx − eJx ′) = PSH∩T J(eJx − eJx ′) .

Thus

Hx,◦
fHx

(
PSH(eJx − eJx ′)

)
6 |||PSH∩T J |||Γ J→Hx,◦

fHx

ΓJ
(
eJx − eJx ′

)
.

Similar reasoning leads to the following bounds

Hx,◦
fHx

(
PSG(fGx − fGx ′)

)
6 Gx,◦

fGx

(
PSG(fGx − fGx ′)

)
,

Hx,◦
fHx

(
PSH(eGx − eGx ′)

)
6 |||PSH∩TG |||Γ J→Hx,◦

fHx

ΓG
(
eGx − eGx ′

)
.

Having this, we can continue to bound (4.5) as

Hx,◦
fHx

(
PSH(fHx − fHx ′)

)

6 Jx,◦
fJx

(
PSJ(fJx − fJx ′)

)
+Gx,◦

fGx

(
PSG(fGx − fGx ′)

)

+ |||PSH∩T J |||Γ J→Hx,◦
fHx

ΓJ
(
eJx − eJx ′

)
+ |||PSH∩TG |||Γ J→Hx,◦

fHx

ΓG
(
eGx − eGx ′

)

6 τJx Γ
J(x− x ′) + τGx Γ

G(x− x ′) + µJx |||PSH∩T J |||Γ J→Hx,◦
fHx

ΓJ
(
x− x ′

)

+ µGx |||PSH∩TG |||ΓG→Hx,◦
fHx

ΓG
(
x− x ′

)

6

(
τJx + τGx + µJx |||PSH∩T J |||Γ J→Hx,◦

fHx

+ µGx |||PSH∩TG |||ΓG→Hx,◦
fHx

)
ΓH(x− x ′) ,

where the last two inequalities J and G follow from µJx-, τ
J
x-, µ

G
x - and τ

G
x -

stability of J and G.
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• ξHx -stability: Proposition 3.10(iii) again yields that for any η ∈ SH

Hx ′,◦
fH
x ′

(η) = inf
η1+η2=η

max(Jx
′,◦

fJ
x ′

(η1),G
x ′,◦
fG
x ′

(η2))

6 max(Jx
′,◦

fJ
x ′

(η̄1),G
x ′,◦
fG
x ′

(η̄2))

for any feasible (η̄1, η̄2) ∈ SJ × SG ∩ {(η1,η2 | η1 + η2 = η}. Now both J and

G are PRF, hence respectively ξJx- and ξ
G
x -stable. Therefore, with the form

of ΓH we have

Jx
′,◦

fJ
x ′

(η̄1) 6 (1+ ξJxΓ
J(x− x ′))Jx,◦

fJx
(η̄1) 6 βJ

x,◦
fJx

(η̄1)

Gx ′,◦
fG
x ′

(η̄2) 6 (1+ ξGx Γ
G(x− x ′))Gx,◦

fGx
(η̄2) 6 βG

x,◦
fGx

(η̄2) ,

where β = 1+ max
(
ξJx, ξGx

)
ΓH(x− x ′). Whence we get

max(Jx
′,◦

fJ
x ′

(η1),G
x ′,◦
fG
x ′

(η2)) 6 βmax(Jx,◦
fJx

(η̄1),G
x,◦
fGx

(η̄2)) .

Taking in particular

(η̄1, η̄2) ∈ Argmin
η1+η2=η

max(Jx,◦
fJx

(η1),G
x,◦
fGx

(η2))

we arrive at

Hx ′,◦
fH
x ′

(η) 6 β inf
η1+η2=η

max(Jx,◦
fJx

(η1),G
x,◦
fGx

(η2)) = βH
x,◦
fHx

(η) .

This completes the proof. �

4.2.2.2 Precomposition by a Linear Operator

Proposition 4 .5 Let J0 be a partly smooth function with linear mani-

fold at u = D∗x with parameter

J0 ∈ SLu(Γ0, f0,u,ν0,u,µ0,u, τ0,u, ξ0,u).
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Then J = J0 ◦D∗ is partly smooth with linear manifold at x, with the choice

fx = Df0,u and Γ any bounded coercive gauge on T , with ∂J Lipschitz and

the parameters

νx =
1

|||D∗|||Γ→Γ0

ν0,u

µx = µ0,u|||PTD|||Γ→Γ0
|||D∗|||Γ→Γ0

τx =

(
τ0,u

∣∣∣
∣∣∣
∣∣∣D+

S0
PSD

∣∣∣
∣∣∣
∣∣∣
Ju,◦
0,f0,u

→Ju,◦
0,f0,u

+ µ0,u

∣∣∣
∣∣∣
∣∣∣D+

S0
PSD

∣∣∣
∣∣∣
∣∣∣
Γ0→Ju,◦

0,f0,u

)
|||D∗|||Γ→Γ0

ξx = ξ0,u|||D
∗|||Γ→Γ0

.

proof In the following, all operator bounds that appear are finite owing to the

coercivity assumption on the involved gauges in Definition 4.2 of a PSFL.

• Let x ′ such that

Γ(x− x ′) 6
1

|||D∗|||Γ→Γ0

ν0,D∗x.

Hence,

Γ0(D
∗x−D∗x ′) 6 |||D∗|||Γ→Γ0

Γ(x− x ′) 6 ν0,D∗x

As J0 is a PSFL at D∗x, we have T0,D∗x = T0,D∗x ′ = T0 and consequently,

using Proposition 3.11(i), Tx = Ker(D∗
S0,D∗x

) = Ker(D∗
S0,D∗x ′ ) = Tx ′ = T =

S⊥.

• µx-stability: we now have

Γ(ex − e ′x) = Γ(PT D(e0,D∗x − e0,D∗x ′)) Proposition 3.11(ii)

6 |||PT D|||Γ0→Γ Γ0(e0,D∗x − e0,D∗x ′)

6 µ0,D∗x|||PT D|||Γ0→Γ Γ0(D
∗x−D∗x ′) using µ0,D∗x-stability of J0

6 µ0,D∗x|||PT D|||Γ0→Γ |||D
∗|||Γ→Γ0

Γ(x− x ′).

• τx-stability: since f0,D∗x ∈ ∂J0(D∗x) and f0,D∗x ′ ∈ ∂J0(D∗x ′), one has

f0,D∗x − f0,D∗x ′ = PS0
(f0,D∗x − f0,D∗x ′) + e0,D∗x − e0,D∗x ′ .
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Thus, subadditivity yields

Jx,◦
fx

(PS(fx − fx ′)) = Jx,◦
fx

(PSD(f0,D∗x − f0,D∗x ′))

6 Jx,◦
fx

(PSDPS0
(f0,D∗x − f0,D∗x ′)) + Jx,◦

fx
(PSD(e0,D∗x − e0,D∗x ′)).

Using Proposition 3.11(iii), we get the following bound on the first term

Jx,◦
fx

(PSDPS0
(f0,D∗x − f0,D∗x ′))

= inf
z∈Ker(D)∩S0

JD
∗x,◦

0,fD∗x
(D+

S0
PSDPS0

(f0,D∗x − f0,D∗x ′) + z)

6 JD
∗x,◦

0,fD∗x
(D+

S0
PSDPS0

(f0,D∗x − f0,D∗x ′))

6
∣∣∣
∣∣∣
∣∣∣D+

S0
PSD

∣∣∣
∣∣∣
∣∣∣
JD

∗x,◦
0,fD∗x

→JD
∗x,◦

0,fD∗x

JD
∗x,◦

0,fD∗x
(PS0

(f0,D∗x − f0,D∗x ′))

Using τ0,D∗x-stability of J0, we get

Jx,◦
fx

(PSDPS0
(f0,D∗x − f0,D∗x ′))

6 τ0,D∗x

∣∣∣
∣∣∣
∣∣∣D+

S0
PSD

∣∣∣
∣∣∣
∣∣∣
JD

∗x,◦
0,fD∗x

→JD
∗x,◦

0,fD∗x

Γ0(D
∗x−D∗x ′)

6 τ0,D∗x

∣∣∣
∣∣∣
∣∣∣D+

S0
PSD

∣∣∣
∣∣∣
∣∣∣
JD

∗x,◦
0,fD∗x

→JD
∗x,◦

0,fD∗x

|||D∗|||Γ→Γ0
Γ(x− x ′).

Now, combining Proposition 3.11(iii) and µ0,D∗x-stability of J0, we obtain

the following bound on the second term

Jx,◦
fx

(PSD(e0,D∗x − e0,D∗x ′)) 6 JD
∗x,◦

0,fD∗x
(D+

S0
PSD(e0,D∗x − e0,D∗x ′))

6
∣∣∣
∣∣∣
∣∣∣D+

S0
PSD

∣∣∣
∣∣∣
∣∣∣
Γ0→JD

∗x,◦
0,fD∗x

Γ0(e0,D∗x − e0,D∗x ′)

6 µ0,D∗x

∣∣∣
∣∣∣
∣∣∣D+

S0
PSD

∣∣∣
∣∣∣
∣∣∣
Γ0→JD

∗x,◦
0,fD∗x

|||D∗|||Γ→Γ0
Γ(x− x ′).

Combining these inequalities, we arrive at

Jx,◦
fx

(PS(fx − fx ′)) 6
(
τ0,D∗x

∣∣∣
∣∣∣
∣∣∣D+

S0
PSD

∣∣∣
∣∣∣
∣∣∣
JD

∗x,◦
0,fD∗x

→JD
∗x,◦

0,fD∗x

+ µ0,D∗x

∣∣∣
∣∣∣
∣∣∣D+

S0
PSD

∣∣∣
∣∣∣
∣∣∣
Γ0→JD

∗x,◦
0,fD∗x

)
|||D∗|||Γ→Γ0

Γ(x− x ′),

whence we get τx-stability.
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• ξx-stability: from Proposition 3.11(iii), we can write for any η ∈ S

Jx
′,◦

fx ′ (η) = inf
z∈Ker(D)∩S0

J◦f0,D∗x ′ (D
+
S0
η+ z)

6 JD
∗x ′,◦

0,fD∗x ′ (D
+
S0
η+ z̄)

for any z̄ ∈ Ker(D)∩ S0.

Owing to ξ0,D∗x-stability of J0, and since D+
S0
η ∈ S0, we have for any feasible

z̄ ∈ Ker(D)∩ S0

JD
∗x ′,◦

0,fD∗x ′ (D
+
S0
η+ z̄) 6

(
1+ ξ0,D∗xΓ0(D

∗x−D∗x ′)
)
JD

∗x,◦
0,fD∗x

(D+
S0
η+ z̄) .

Taking in particular

z̄ ∈ Argmin
z∈Ker(D)∩S0

JD
∗x,◦

0,fD∗x
(D+

S0
η+ z)

we get the bound

Jx
′,◦

fx ′ (η) 6
(
1+ ξ0,D∗xΓ0(D

∗x−D∗x ′)
)

inf
z∈Ker(D)∩S0

JD
∗x,◦

0,fD∗x
(D+

S0
η+ z)

=
(
1+ ξ0,D∗xΓ0(D

∗x−D∗x ′)
)
Jx

′,◦
fx ′ (η)

=
(
1+ ξ0,D∗x|||D

∗|||Γ→Γ0
Γ(x− x ′)

)
Jx

′,◦
fx ′ (η) ,

where we used again Proposition 3.11(iii) in the first equality. �

4.3 Examples

4.3.1 Synthesis Sparsity

The norm J(x) = ||x||1 is a strong partly smooth function.

Proposition 4 .6 J = || · ||1 is a strong partly smooth function with

Γ = || · ||∞, νx = min
i∈I

|xi| and µx = τx = ξx = 0,
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where I = I(x) = {i | xi 6= 0}.

proof Let x ′ ∈ T , i.e. I(x ′) ⊆ I(x), and assume that

||x− x ′||∞ < νx = min
i∈I

|xi| .

This implies that ∀i ∈ I(x), |x ′i| > νx − ||x− x ′||∞ > 0, which in turn yields I(x ′) =

I(x), and thus Tx ′ = Tx. Since the sign is also locally constant on the restriction

to T of the ℓ∞-ball centered at x of radius νx, one can choose µx = 0. Finally

τx = ξx = 0 because fx = ex. �

4.3.2 Analysis Sparsity

Proposition 4 .7 J = ||D∗ · ||1 is a strong partly smooth function with

parameters

νx = min
i∈I

|〈di, xi〉| and µx = τx = ξx = 0.

proof This is a consequence of Proposition 4.5 with J0 = || · ||1. �

4.3.3 Antisparsity

Proposition 4 .8 J = || · ||∞ is a partly smooth function with linear mani-

fold with

Γ = || · ||1, νx =
(
||x||∞ − max

j/∈I
|xj|
)

and µx = τx = ξx = 0.

125



Chapter 4 Partial Smoothness

proof Let x ′ ∈ T , and assume that

||x− x ′||1 < νx =
(
||x||∞ − max

j/∈I
|xj|
)

.

This means that x ′ lies in the relative interior of the ℓ1-ball (relatively to T) centered

at x of radius ||x||∞ − max
j/∈I

|xj|. Within this ball, the support and the sign pattern

restricted to the support are locally constant, i.e. I(x) = I(x ′) and sign(x(I(x))) =

sign(x ′(I(x ′))). Thus Tx ′ = Tx = T and ex ′ = ex, and from the latter we deduce

that µx = 0. As fx = ex we also conclude that τx = ξx = 0, which completes the

proof. �

4.3.4 Group Sparsity

The ℓ1 − ℓ2 norm is a strong partly smooth function. We start by the following

lemma

Lemma 4 .2 Given any pair of non-zero vectors u and v where, ||u− v|| 6

ρ||u||, for 0 < ρ < 1, we have

∥∥∥∥
u

||u||
−
v

||v||

∥∥∥∥ 6 Cρ
||u− v||

||u||
,

where Cρ =
√
2
ρ

√
1−

√
1− ρ2 ∈]1,

√
2[.

proof Let d = v− u and β =
〈u,d〉

||u||||d||
∈ [−1, 1]. We then have the following

identities

∥∥∥∥
u

||u||
−
v

||v||

∥∥∥∥
2

= 2− 2
〈u, v〉
||u||||v||

= 2− 2
||u||2 + ||u||||d||β

||u||
√
||u||2 + ||d||2 + 2||u||||d||β

, (4.6)

for non-zero vectors u and d, the unique maximizer of (4.6) is β⋆ = −||d||/||u||. Note

that the assumption ||d||/||u|| 6 ρ < 1 assures β⋆ to comply with the admissible

range of β and further, the argument of the square root will be always positive.
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Now, inserting β⋆ in (4.6), using concavity of
√· on R+, and that ||d||/||u|| 6 ρ, we

can deduce the following bound

∥∥∥∥
u

||u||
−
v

||v||

∥∥∥∥
2

6 2− 2

√
1−

||d||2

||u||2
= 2− 2

√(
1−

||d||2

ρ2||u||2

)
+

||d||2

ρ2||u||2
(1− ρ2)

6 2− 2

((
1−

||d||2

ρ2||u||2

)
+

||d||2

ρ2||u||2

√
1− ρ2

)

= 2− 2

(
1−

1−
√
1− ρ2

ρ2
||d||2

||u||2

)

= 2
1−

√
1− ρ2

ρ2
||d||2

||u||2
.

Proposition 4 .9 The ℓ1 − ℓ2 norm associated to the partition B is a

strong partly smooth function with

Γ = || · ||∞,2, νx = min
b∈I

||xb||, µx =

√
2

νx
and τx = ξx = 0.

where I = I(x) = {b | xb 6= 0}.

proof Let x ′ ∈ T , i.e. I(x ′) ⊆ I(x), and νx = min
b∈I

||xb||. First, observe that the

condition

||x− x ′||∞,2 = max
b∈B

||xb − x ′b|| < νx

ensures that for all b ∈ I

||x ′b|| > ||xb||− ||xb − x ′b|| > νx − ||x− x ′||∞,2 > 0,

and thus I(x ′) = I(x), i.e. Tx ′ = Tx. Moreover, since the gauge is strong, one has

τx = ξx = 0. To establish the µx-stability we use Lemma 4.2.

By definition of νx, we have ||xb|| > νx, ∀b ∈ I, and thus ||xb − x ′b|| < νx < ||xb||.

Lemma 4.2 then applies, and it follows that, ∀b ∈ I

||N(xb) −N(x ′b)|| 6 Cρ
||x ′b − xb||

||xb||
6 Cρ

||x ′b − xb||

νx
,
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and therefore we get

||N(x) −N(x ′)||∞,2 6
Cρ

νx
||x ′ − x||∞,2,

which implies µx-stability for µx = Cρ/νx. �

4.3.5 Polyhedral Regularizations

Proposition 4 .10 J0(u) = max16i6NH
(ui)+ is a partly smooth function

with linear manifold with parameters (assuming I+ 6= ∅)

νu =
(

max
i∈I+

ui − max
j/∈I+,uj>0

uj
)
, δ ∈]0, 1] and µu = τu = ξu = 0.

proof The parameters are derived following the same lines as for the ℓ∞-norm.

Let u ′ ∈ T , and assume that

||u− u ′||1 < νu =

(
max
i∈I+

ui − max
j6∈I+,uj>0

uj

)
.

This means that x ′ lies in the relative interior of the ℓ1-ball (relatively to T) centered

at x of radius

max
i∈I+

ui − max
j6∈I+,uj>0

uj = ||u||∞ − max
j6∈I+,uj>0

|uj|

Within this set, one can observe that the set I+ associated to u is constant. More-

over, the sign pattern is also constant leading to the fact that Tu ′ = Tu = T . Hence,

we deduce as in the ℓ∞-case that µu = τu = ξu = 0. �

4.3.6 Nuclear Norm
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Proposition 4 .11 Let x ∈ Rn×n The nuclear norm is partly smooth at

x for the manifold

M =
{
u ∈ R

n×n | rank(u) = rank(x)
}

.

proof This is a direct consequence of Proposition 4.3 using j(Λx) = ||Λx||1. �

However, one should note that the nuclear norm is not a partly smooth func-

tion with linear manifold. Indeed, according to Proposition 4.11, the model

subspace reads

Tx =
{
UA∗ +BV∗ | A ∈ R

n×r,B ∈ R
n×r

}
,

which in particular contains matrices of ranks larger than r.
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5
Certificates and Uniqueness

Main contributions of this chapter

• Introduction of (non-degenerate) dual certificates (Defini-

tion 5.1), minimal norm certificate (Definition 5.2), linearized

precertificate (Definition 5.4) and its associated identifiability

criterion (Definition 5.5).

• Introduction of the restricted injectivity assumption (Defini-

tion 5.3).

• Theorem 5.3 gives a sufficient condition for uniqueness

for (Py,λ) or (Py,0).
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Contents

5.1 Primal Problem 132

5.1.1 Existence of Solutions 133

5.1.2 Convergence of the Primal Problem 134

5.2 Certificates and Restricted Injectivity 135

5.2.1 Fenchel–Rockafellar Duality 135

5.2.2 Dual Certificates 136

5.2.3 Restricted Injectivity 140

5.3 Uniqueness 141

5.3.1 Sublevel Set and its Cones 141

5.3.2 The Strong Nullspace Property 142

5.3.3 Topological Conditions 144

5.4 Construction of Non-Degenerate Certificates 146

5.4.1 Linearized Precertificate 146

5.4.2 Analysis Precertificate 149

T
his chapter introduces in particular the notion of dual certificates which

is connected to the solution of the dual problem of (Py,0). Moreover, we

provide a sufficient condition for uniqueness of problem (Py,λ) and (Py,0).

5.1 Primal Problem

We consider J ∈ Γ+c (Rn). Let us split y = y0 +w where y0 = Φx0. We supose

that

Ker(Φ)∩ Ker(J∞) = {0}, (5.1)

We rewrite problems (Py,λ) and (Py,0) as a common regularization problem

min
x∈Rn

f(x, θ) where f(x, θ) =






J(x) + ιHy
(x) if θ = (y, 0)

J(x) + 1
2λ ||Φx− y||

2 otherwise,
(Pθ)

where Hy = {x ∈ Rn | Φx = y} and θ = (y, λ) ∈ Rq × R+.
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5.1 Primal Problem

5.1.1 Existence of Solutions

We recall that in general (Pθ) might have multiple solutions. Here, based on

classical compactness arguments, we show that the set of minimizers of (Pθ)

is non-empty, compact and convex.

Proposition 5 .1 Let f ∈ Γ0(Rn). Then,

(i) If inf f > −∞, then f∞(d) > 0, ∀d.

(ii) The set of minimizers of f is non-empty and compact ⇐⇒ f is coercive

⇐⇒ the sublevel sets of f are bounded ⇐⇒ f∞(d) > 0, ∀d 6= 0.

proof (i) The statement follows from the equivalent analytic representation

of f∞ in Proposition 2.4(i).

(ii) (Auslender et al. 2003, Proposition 3.1.2 and Proposition 3.1.3). �

Let us now turn to the minimization problem

min
x∈Rn

F(Φx) + J(x) (5.2)

where F ∈ Γ0(R
p) and strictly convex, J ∈ Γ0(R

n) and continuous on Rn,

inf J > −∞, and Φ : Rn → Rp.

Lemma 5 .1 The set of minimizers of (5.2) is non-empty and compact if

and only if

Ker(J∞)∩ Ker(Φ) = {0} ,

where J∞ is given by either expressions of Proposition 2.4(i) or (ii).

proof By strict convexity of F, all minimizers of (5.2) share the same image

under Φ. Let x⋆ any minimizer. Thus, (5.2) can be equivalently rewritten

min
δ∈Ker(Φ)

J(x⋆ + δ) .
�
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Let f = J(x⋆ + ·) + ιKer(Φ). Thus, owing to Proposition 5.1(ii)

the set of minimizers is compact ⇐⇒ f∞(d) > 0 ∀d 6= 0
Proposition 2.4(v) ⇐⇒ J∞(d) + (ιKer(Φ))∞(d) > 0 ∀d 6= 0
Proposition 2.4(iii) ⇐⇒ J∞(d) + ιKer(Φ)∞(d) > 0 ∀d 6= 0
Proposition 2.3(iv) ⇐⇒ J∞(d) + ιKer(Φ)(d) > 0 ∀d 6= 0

⇐⇒ J∞(d) > 0 ∀d ∈ Ker(Φ) \ {0}

Proposition 5.1(i) ⇐⇒ Ker(J∞)∩ Ker(Φ) = {0} .

This condition (5.1) is from now on assumed in all propositions.

5.1.2 Convergence of the Primal Problem

We first show the convergence of the solutions of the primal problem toward

x0 when (Py0,0) has a unique solution x0.

Proposition 5 .2 Assume that x0 is the unique solution of (Py0,0). Let

θk = (λk,yk) a sequence such that 0 < λk → 0 and ||yk − y0||
2/λk → 0. Then,

for any sequence (xθk
)k of minimizers to (Pθk

),

xθk
−→ x0.

In order to ease the exposition, we will write in the following this convergence

statement with the following slight abuse of notation.

xθ → x0 when






λ→ 0

||w||2

λ → 0.

proof This is a classical result, whose proof can be found for instance in (Hof-

mann et al. 2007, Theorem 3.5). We recall it by sake of clarity.
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By optimality of xθ one has f(xθ, θ) 6 f(x0, θ) and hence

||Φ(xθ − x0) −w||
2 6 ||w||2 + 2λJ(x0), (5.3)

J(xθ) 6
||w||2

2λ
+ J(x0). (5.4)

Thanks to (5.1), these bounds show that the sequence {xθ}θ is bounded if ||w||2/λ

and λ are bounded. We let x⋆ be any accumulation point.

For the considered asymptotics, (5.3) implies that Φx⋆ = Φx0, while (5.4) implies

that J(x⋆) 6 J(x0). This shows that x⋆ is a solution of (Py0,0) and hence x⋆ = x0.�

5.2 Certificates and Restricted Injectivity

This section introduces the two main objects of the noise stability study. The

first one is the dual certificate, which characterizes the set of solutions of (Py,0).

The second one is the restricted injectivity condition, to be able to ensure the

uniqueness.

5.2.1 Fenchel–Rockafellar Duality

We characterize the dual problem in the following Lemma.

Lemma 5 .2 Let θ = (λ,y) with λ > 0. The dual problem of (Pθ) reads

min
p∈Rq

g(p, θ) (Dθ)

where

g(p, θ) =






J∗(Φ∗p) − 〈y, p〉 if λ = 0

J∗(Φ∗p) − 〈y, p〉+ λ
2 ||p||

2 otherwise.

Moreover, there is no duality gap, i.e.

min
x∈Rn

f(x, θ) = −min
p∈Rq

g(p, θ).
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Observe that domain qualification conditions (on their relative interiors) to

ensure closedness of the dual objective (i.e. the min is attained) are verified

for the penalized problem since 1
2 || · ||22 has full domain.

proof The proof of this result is a simple application of the calculus rules on

Fenchel–Rockafellar duality. The case λ = 0 is the Fenchel–Rockafellar duality for

linear constraints, see for instance (Borwein et al. 2010, Corollary 3.3.11). The case

λ > 0 is due to the fact that (1/2|| · ||2)∗ = 1/2|| · ||2. �

We now relate the solutions of the primal problem (Pθ) to those of the

dual (Dθ).

Proposition 5 .3 Let θ = (λ,y) with λ > 0 and xθ any solution of (Pθ).

Then,

(i) if λ > 0, then (Dθ) has a unique solution Sθ = {pθ} and

pθ =
y−Φxθ

λ
and αθ = Φ∗pθ ∈ ∂J(xθ).

(ii) if λ = 0, then the set of solutions of (Dθ) is

Sθ = {p ∈ R
q | Φ∗p ∈ ∂J(xθ)} .

proof For the first statement, since J is finite-valued, strong duality holds, hence

the result using Fenchel-Rockafellar duality. Similarly, strong duality holds between

(P0,y0
) and (D0,y0

), and the primal-dual relationships states that (x0,y0
,p0,y0

) form

a solution to these problems if and only if Φ∗p0,y0
∈ ∂J(x0,y0

). �

5.2.2 Dual Certificates

These observations lead us to consider the notion of dual certificate, a termi-

nology introduced in (Candès et al. 2006a) and revitalized in (Candès and
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Recht 2013), which corresponds to Lagrange multipliers, which are solution

of the dual problem.

Definition 5 .1 A (dual) certificate for x ∈ Rn is a vector p ∈ Rq such

that the source condition is verified:

Φ∗p ∈ ∂J(x). (SCx)

If p is a certificate, and moreover

Φ∗p ∈ ri∂J(x), (SCx)

we say that p is a non-degenerate certificate.

Hence, according to Proposition 5.3, being a dual certificate is equivalent to

be a solution of the dual problem (D0) where x0 = x,y = y0. One important

certificate is the minimal norm certificate defined as follow

Definition 5 .2 The minimal norm certificate for x0 ∈ Rn is defined by

p0 = argmin
p∈S0,y0

||p||.

Since S0 is a convex set, and p0 is the projection of 0 onto it, p0 is well-defined

as a single-valued mapping. Moreover, we prove the following proposition,

related to the convergence of the dual vectors associated to a solution of (Py,λ)

to the minimal norm certificate.

Proposition 5 .4 One has

||pθ − p0|| 6
||y− y0||

λ
+ ε(λ),

where ε(λ) → 0 when λ→ 0.
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proof This result is already proved by Duval et al. (2013) in the special case

where J is the TV norm of a Radon measure (an infinite dimensional Banach space).

By extension of the Definition 5.2, we denote

p0,y = argmin
p∈S0,y

||p||.

Formulation (Dθ) shows that pθ is the output of proximal operator of the function

J∗(Φ∗·)/λ applied at the point y/λ, This shows that y/λ 7→ pθ is 1-Lipschitz, see

Proposition 10.1, and hence

||pθ − p0|| 6 ||pθ − pλ,y0
||+ ||pλ,y0

− p0|| 6
||w||

λ
+ ||pλ,y0

− p0||.

We now prove that

pθ
λ→0−→ p0,y,

which gives the desired result when setting y = y0 in the previous formula.

Since p0,y is a solution of (D0,y), one has

−〈p0,y, y〉 6 −〈pθ, y〉. (5.5)

By optimality of pθ, one has g(pθ, θ) 6 g(p0,y, θ), and thus

−2〈pθ, y〉+ λ||pθ||2 6 −2〈p0,y, y〉+ λ||p0,y||
2 6 −2〈pθ, y〉+ λ||p0,y||

2

or equivalently

||pθ|| 6 ||p0,y||. (5.6)

This shows that {pθ}θ is bounded. Let p⋆ be any cluster point. Operating as in the

proof of Proposition 5.2, we have ∀x̄ ∈ {x | y = Φx}

||y−Φxθ||
2 6 2λJ(x̄) and J(xθ) 6 J(x̄).

Letting λ→ 0, we get by continuity that

x0,y ∈ {x | y = Φx} and J(xθ) 6 J(x̄) ,
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or equivalently, that x0,y is a minimizer of (Py,0). Morever, from the primal-dual

extremality relationships, we have Φ∗pθ ∈ ∂J(xθ). Since J is a proper closed convex

function, the graph of ∂J is sequentially closed, which yields Φ∗p⋆ ∈ ∂J(x0,y), i.e.

p⋆ ∈ S0,y. Now (5.6) implies that ||p⋆|| 6 ||p0,y|| and hence p⋆ = p0,y, which shows

that pθ is converging to p0,y. �

The following lemma gives a useful characterization of non-degenerate dual

vectors.

Lemma 5 .3 Let J ∈ Γ+c (Rn) and x ∈ Rn. Then,

η ∈ ri∂J(x) ⇐⇒ ∀u ∈ S \ {0}, ∃η ′ ∈ ∂J(x) such that 〈u, η ′ − η〉 > 0 .

Note that if J is a gauge, u can be normalized in the lemma, e.g. by restricting

it to the unit sphere.

proof First, recall that the directional derivative J ′(x,u) of J at x in the direction

u is

J ′(x,u) = lim
t↓0

J(x+ tu) − J(x)

t
.

From the characterization of the relative interior of a non-empty closed convex set

(Hiriart-Urruty et al. 2001, Theorem V.2.2.3) or (Rockafellar 1996, Theorem 13.1),

and sublinearity we deduce that

η ∈ ri∂J(x) ⇐⇒ J ′(x,u) > 〈u, η〉 ∀u such that J ′(x,u) + J ′(−x,u) > 0 .

Using Theorem 3.1 shows that

J ′(x,u) = 〈ex, u〉+ max
η∈PS(∂J(x))

〈η, u〉 .

Sublinearity implies that (Hiriart-Urruty et al. 2001, Corollary V.1.1.5)

J ′(x,u) + J ′(x,−u) > 0 .
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Thus

J ′(x,u) + J ′(x,−u) = max
η∈PS(∂J(x))

〈η, u〉− min
η∈PS(∂J(x))

〈η, u〉 ,

whence we obtain

J ′(x,u) + J ′(x,−u) > 0 ⇐⇒ u /∈ T .

Piecing everything together, we get

η ∈ ri∂J(x) ⇐⇒ ∀u /∈ T , J ′(x,u) > 〈u, η〉
⇐⇒ ∀u /∈ T , ∃η ′ ∈ ∂J(x) such that 〈u, η ′〉 > 〈u, η〉
⇐⇒ ∀u /∈ T , ∃η ′ ∈ ∂J(x) such that 〈u, η ′ − η〉 > 0
⇐⇒ ∀u /∈ T , ∃η ′ ∈ ∂J(x) such that 〈u, η ′S − ηS〉 > 0
⇐⇒ ∀u ∈ S \ {0}, ∃η ′ ∈ ∂J(x) such that 〈u, η ′ − η〉 > 0 ,

which is the statement announced. �

5.2.3 Restricted Injectivity

Let us consider (Py,0) when J = || · ||1. Thus, we want to recover some vector

x0 ∈ Rn from the observations y = Φx0. Assume that we know the support

I0 of x0. Remark that x0 ∈ span(ui)i∈I0 ∩ {x | y = Φx0} where (ui)i∈{1,...,n} is

the canonical basis. Hence, to be uniquely recovered, one needs that Φ(I0) has

full rank. Conversely, if Φ(I0) has not full rank, then any vector of the form

x0 + h with h ∈ KerΦ(I0) will be solution of (Py,0).

In general, this idea leads us to consider the following condition.

Definition 5 .3 A subspace T ⊆ Rn satisfies the restricted injectivity con-

dition (INJT ) if Φ is injective on T .

For instance, (INJT ) is equivalent to Φ(I) being full rank in the case of the

ℓ1-norm, or equivalent to KerΦ ∩ KerD∗
(J) for the analysis ℓ1-norm, where J

is some cosupport.
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5.3 Uniqueness

In this section, we provide several results on the uniqueness of the solutions

of (Py,λ) and (Py,0).

5.3.1 Sublevel Set and its Cones

In the following, we draw a connection between the sublevel sets of a convex

function and the uniqueness of the problem (Py,λ).

The following proposition summarizes some key properties of the above

cones when generated from the sublevel set of a continuous convex function.

It will play a pivotal role in our proof of uniqueness (see Theorem 5.1 and

Theorem 5.2).

Proposition 5 .5 Let J be a continuous convex function on Rn. Then,

Tslevx J(x) ⊂
{
δ | J ′(x, δ) 6 0

}
. (5.7)

proof See (Hiriart-Urruty et al. 2001, Proposition III.5.3.1). �

Figure 5.1 illustrates the tangent cone for the ℓ1-norm and a quadratic regu-

larization 1
2 ||x||

2
2.

Theorem 5 .1 Let J be a continuous convex function on Rn. If Φ is injec-

tive on Tslevx⋆ J(x
⋆) then x⋆ is the unique minimizer of (Pθ). In particular, If

Φ is injective on Tslevx0
J(x0) x0 is the unique minimizer of (Py,0).

proof We provide the proof for (Pθ) when λ > 0, the proof is similar when λ = 0.

According to Proposition 2.2, any other minimizer different from x⋆ can be written

141



Chapter 5 Certificates and Uniqueness

slev
x
‖ · ‖1
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Figure 5.1: Tangent cone generated at x = (1, 0) and its polar for two functions J:
a) ||x||1 and b) 1

2 ||x||
2
2. In both cases, we have the equality (5.7) since

(1, 0) /∈ (∂J)−1(0) = {(0, 0)}.

as x⋆ + δ, where δ ∈ Ker(Φ) \ {0}, and J(x⋆ + δ) = J(x⋆). Therefore, we have

δ /∈ Tslevx⋆ J(x
⋆), ∀δ ∈ Ker(Φ) \ {0} ,

⇒J(x⋆ + δ) > J(x⋆), ∀δ ∈ Ker(Φ) \ {0}

⇒J has a unique minimizer x⋆,

which concludes our proof. �

The last statement coincides with that of (Chandrasekaran et al. 2012, Propo-

sition 2.1) for atomic norms.

5.3.2 The Strong Nullspace Property

We are going to restate the previous Theorem 5.1 in a more meaningful way.

We now compute the directional derivative of a bounded convex function J.
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Lemma 5 .4 Let J ∈ Γ+c (Rn). The directional derivative J ′(x, δ) at point

x ∈ RN in the direction δ reads

J ′(x, δ) = 〈ex, δTx
〉+ 〈PSx

(fx), δSx
〉+ Jxfx(δSx

).

proof This comes directly from the structure of Jxfx . Indeed, one has

Jxfx(δSx
) = Jxfx(δ) Using Proposition 3.8(ii)

= sup
η∈∂J(x)−{fx}

〈η, δ〉

= −〈δ, fx〉+ sup
η∈∂J(x)

〈η, d〉

= −〈δ, fx〉+ J ′(x, δ)

= −〈ex, δTx
〉− 〈PSx

(fx), δSx
〉+ J ′(x, δ) ,

which concludes our proof. �

The following condition is a generalization of the Null Space Property well-

known for ℓ1 regularization (Donoho et al. 2001).

Theorem 5 .2 Let J ∈ Γ+c (Rn). For a minimizer x⋆ of (Py,λ) (resp. a feasi-

ble point of (Py,0)), let T = S⊥, e and f the subspace and vectors associated

to it. If the Strong Null Space Property holds

∀δ ∈ Ker(Φ) \ {0}, 〈e, δT 〉+ 〈PS(f), δS〉 < Jxf (−δS), (NSPS)

then x⋆ is the unique minimizer of (Py,λ) (resp. (Py,0)).

proof From Lemma 5.4, the directional derivative J ′(x, δ) at x ∈ RN in the

direction δ reads

J ′(x, δ) = 〈e, δT 〉+ 〈PSf, δS〉+ Jxfx(δS) .
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Combining (5.7) in Proposition 5.5(i) and (68), applied at x⋆, together with the

fact that Ker(Φ) is a subspace yield

∀δ ∈ Ker(Φ) \ {0}, 〈e, δT 〉+ 〈PSf, δS〉 < Jxfx(−δS)
⇐⇒ ∀δ ∈ Ker(Φ) \ {0}, J ′(x, δ) > 0

=⇒Tslevx⋆ J(x
⋆)∩ Ker(Φ) = {0} .

We then conclude using Theorem 5.1. �

5.3.3 Topological Conditions

A direct consequence of Theorem 5.2 above is the following corollary.

Theorem 5 .3 Let J ∈ Γ+c (Rn). For a minimizer x⋆ of (Py,λ) (resp. a feasi-

ble point of (Py,0)), let T = S⊥, e and f the subspace and vector associated

to it. Assume that (SCx⋆) is verified with η = Φ∗p ∈ ri∂J(x⋆), and that (INJT )

holds. Then, x⋆ is the unique minimizer of (Py,λ) (resp. (Py,0)).

proof The source condition (SCx⋆) implies that ∀ δ ∈ Ker(Φ) \ {0}

〈δ, η〉 = 〈δ, Φ∗p〉 = 〈Φδ, p〉 = 0 .

Moreover

〈δ, η〉 = 〈δT , e〉+ 〈δS, ηS〉 = 〈δT , e〉+ 〈δS, PS f〉+ 〈δS, ηS − PS f〉 .

Thus, applying the duality inequality of gauges we get

〈δT , e〉+ 〈δS, PS f〉 6 Jxfx(−δS)J
◦
f(ηS − PS f) < J

x
fx
(−δS) ,

where the last inequality is strict since δS does not vanish owing to (INJT ), and

α ∈ ri∂J(x⋆) is equivalent to ηT = e and Jx,◦
fx

(ηS − PS f) < 1. �
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The topological condition on the dual certificate required in Theorem 5.3

can be weakened to hold only on a subspace V ⊂ S and the conclusions

of the corollary remain valid, and assuming a stronger restricted injectivity

assumption. We have the following corollary of of Theorem 5.2.

Corollary 5 .1 With the same notations as in Theorem 5.2, suppose

that J is such that Jxfx is separable on S = V ⊕W. Assume that (SCx⋆) is

verified with Jx,◦
fx

(ηV − PV (f)) < 1, and (INJV ) holds. Then, x⋆ is the unique

minimizer of (Py,λ) (resp. (Py,0)).

proof We follow the same lines as the proof of Corollary 5.3 and get

〈δT , η〉 = 〈δT , e〉+ 〈δS, PS f〉+ 〈δV , ηV − PV f〉+ 〈δW , ηW − PW f〉 .

Moreover, by separability of Jf on S, we have

Jx,◦
fx

(ηS) = sup
Jxfx(d)61

〈d, ηS〉

= sup
Jxfx(dS)61

〈dS, ηS〉

= sup
Jxfx(dV)+Jxfx(dW)61

〈dV , ηV 〉+ 〈dW , ηW〉

= sup
ρ∈[0,1]

sup
Jxfx(dV)6ρ,Jxfx(dW)61−ρ

〈dV , ηV 〉+ 〈dW , ηW〉

= sup
ρ∈[0,1]

ρ sup
Jxfx(dV)61

〈dV , ηV 〉+ (1− ρ) sup
Jxfx(dW)61

〈dW , ηW〉

= sup
ρ∈[0,1]

ρJx,◦
fx

(ηV ) + (1− ρ)Jx,◦
fx

(ηW)

= max(Jx,◦
fx

(ηV ), J
x,◦
fx

(ηW)) .

This implies in particular that

Jx,◦
fx

(ηW − PW f) 6 max(Jx,◦
fx

(ηV ), J
◦
f(ηW)) = Jx,◦

fx
(ηS − PS) 6 1 .
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We therefore obtain

〈δT , e〉+ 〈δS, PS f〉 6 Jxfx(−δV )J
x,◦
fx

(ηV − PV f) + J
x
fx
(−δW)Jx,◦

fx
(ηW − PW f)

< Jxfx(−δV ) + J
x
fx
(−δW) = Jxfx(−δS) ,

where we used that δ /∈ T , Jx,◦
fx

(ηV − PV f) < 1 and separability of Jxfx on S. �

5.4 Construction of Non-Degenerate Certificates

5.4.1 Linearized Precertificate

Let us first introduce the definition of the linearized precertificate.

Definition 5 .4 The linearized precertificate pF for x ∈ Rn is defined by

pF = argmin
(Φ∗p)Tx=ex

||p||.

The intuition behind this definition is well-understood if one realizes that

the existence of a dual certificate p is equivalent to η = Φ∗p for some p such

that ηT = ex and J◦fx(ηS − fS) 6 1. Dropping the last constraint, we recover

the definition of pF. A nice property of this vector, is that under the restricted

injectivity condition, it has a closed form expression.

Lemma 5 .5 Let x ∈ Rn and suppose that (INJTx
) is verified. Then pF is

well-defined and

pF = Φ+,∗
Tx
ex.

proof The vector pF is in fact the projection of 0 to the set
{
p | (Φ∗p)Tx

= ex
}
.

In particular,

Φ∗
Tx
pF = ex

Using hypothesis (INJTx
), we multiply both sides by Φ+,∗

Tx
to get the result. �
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In fact, one can show that pF or p0 being non-degenerate certificates are equiv-

alent in some sense.

Proposition 5 .6 Under the hypothesis (INJT ), one has

Φ∗pF ∈ ri(∂J(x0)) =⇒ p0 = pF, (5.8)

Φ∗p0 ∈ ri(∂J(x0)) =⇒ p0 = pF, (5.9)

These conditions implies that x0 is the unique solution of (P0).

proof Owing to Corollary 5.3, this shows that the left hand side conditions of

both (5.8) and (5.9) implies that x0 is a solution of P0.

Proof of (5.8) Under the condition Ker(Φ)∩ T = {0}, one has, from the definition

of Φ∗,+
T , that

pF = argmin
p

{||p|| | Φ∗
Tp = e} (5.10)

Using Proposition 5.3 for w = 0 with x0 being solution of (P0), one sees that the

constraint of problem (5.10) includes the constraint of the Definition 5.2. Indeed,

one has

∀η ∈ ∂J(x), PTx
(η) = ex.

If ηF ∈ ri(∂J(x0)), then it is a feasible point in the definition of p0,w when w = 0.

Hence, necessarily p0 = pF.

Proof of (5.9) Since x0 is a solution of (P0), according to Proposition 5.3, one has

that

p0 = argmin
p

{
||p||2 | Φ∗

Tp = e,Φ∗
Sp ∈ U

}

where we have denoted S = T⊥ and U = PS(∂J(x0)). The first order condition of

this problem state the existence of q ∈ Rn and u ∈ Rq such that

p0 +ΦTq+ u = 0 where






Φ∗
Tp0 = e,

u ∈ NU(p0).
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The condition Φ∗p0 ∈ ri(∂J(x0)) implies that Φ∗
Sp0 ∈ ri(U) and thus NU(Φ

∗
Sp0) =

T . This implies ΦSu = 0 and hence one has the equation

Φ∗
Tp0 +Φ

∗
TΦTq = e+Φ∗

TΦTq = 0

which leads to p0 = (ΦT )
+,∗e = pF. �

Beside condition (INJTx
) stated above, the following Identifiability Criterion

will play a pivotal role.

Definition 5 .5 For x ∈ RN such that (INJTx
) holds, we define the Iden-

tifiability Criterion at x as

IC(x) = Jx,◦
fx

(Φ∗
Sx
Φ+,∗

Tx
ex − PSx

fx).

The fact that IC(x) < 1 is totaly equivalent to Φ∗pF ∈ ri∂J(x) but stated

in analytical form. Note that if J is a strong gauge on T , then it becomes

IC(x) = Jx,◦
fx

(Φ∗
Sx
Φ+,∗

Tx
ex). The Identifiability Criterion clearly brings into play

the promoted subspace Tx0
and the interaction between the restriction of Φ

to Tx0
and Sx0

. It is a generalization of the irrepresentable condition that has

been studied in the literature for some popular regularizers, including the

ℓ1-norm (Fuchs 2004), analysis-ℓ1 (Vaiter, Peyré, et al. 2013), ℓ1-ℓ2 (Bach 2008a)

and nuclear (Bach 2008b).

It turns out that in such a setting, IC(x0) < 1 is a sufficient condition for iden-

tifiability without any any other particular assumption on the finite-valued

function J, such as partial smoothness. By identifiability, we mean the fact that

x0 is the unique solution of (Py,0).

Proposition 5 .7 Let x0 ∈ RN and T = Tx0
. We assume that (INJTx0

)

holds and IC(x0) < 1. Then x0 is the unique solution of (Py,0).
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proof This is a straightforward consequence of the first order condition using p0

as a dual certificate. Denote e = ex0
, f = fx0

and S = T⊥. Taking the dual vector

p = Φ+,∗
T e, we have on the one hand

Φ∗
TΦ

+,∗
T e = e

since e ∈ Im(Φ∗
T ). On the other hand,

Jx,◦
fx

(Φ∗
SΦ

+,∗
T e− PS f) = IC(x0) < 1.

We conclude thanks to Theorem 5.3. �

5.4.2 Analysis Precertificate

In the special case of analysis ℓ1 regularization, Nam et al. (2013) introduced

a different precertificate. We extend their idea to any function of the form

J = J0 ◦D∗

Definition 5 .6 — Analysis Precertificate Let x ∈ Rn and T =

TD∗x. The analysis precertificate pA reads

pA = D argmin
ω∈Rp

||ω|| subject to Dω ∈ ImΦ∗ and ωT = eD∗x.

We can give an explicit form of this certificate using a basis of KerΦ.

Proposition 5 .8 Let N∗ be a basis of KerΦ. Then,

pA = −D(NDS)
+NDeD∗x.

proof Since N∗ be a basis of KerΦ, one has ImΦ∗ = KerN. Thus,

Dω ∈ ImΦ∗ ⇔ NDω = 0.
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Hence,

Dω ∈ ImΦ∗ and ωT = eD∗x ⇔ ND(eD∗x + PSω) = 0.

The least-square solution to this linear equation, which coincides with its minimal

ℓ2 norm solution ω, yields

pA = −D(NDS)
+NDeD∗x,

which concludes the proof. �

We explore numerically the difference between this precertificate and the

linearized in Section 10.2. We draw the attention of the reader to the fact that

in (Nam et al. 2013), the authors look after

∃ω s.t. Dω ∈ ImΦ∗ and ω ∈ ∂J0(D∗x),

and its non-degenerate version, which implies the source condition.
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Robustness
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6
Noise ℓ2 Robustness

Main contributions of this chapter

• Theorem 6.1 shows that if both the non-degenerate source con-

dition and the restricted injectivity hold, then (Py,λ) enjoys a

linear convergence rate with respect to the estimation error.
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T
his chapter is dedicated to seek sufficient conditions under which for any

solution of (Py,λ), one has

||x⋆ − x0|| = O(||w||).

This condition depends on x0, while λ must be chosen proportionaly to the

noise level ||w||. The terminology “linear” in the convergence rate, which stems

from the inverse problems community, pertains to the fact that the error is

within a factor of the noise level.

In Section 6.1, we establish the rate of convergence of any solution x⋆ to x0
with respect to the Bregman divergence, introduced in Definition 2.23. Sec-

tion 6.2 states our main result, namely the fact that any if both the source

condition and the restricted injectivity hold, then (Py,λ) enjoys a linear con-

vergence rate with respect to the estimation error. Finally, in Section 6.3, we

draw connections with previous works on this subject.

6.1 Bregman Rate

The following Lemma 6.1 gives the prediction error and Bregman distance

rates for (Py,λ). Such results can be found in (Scherzer 2009).

Lemma 6 .1 Suppose that (SCx0
) is satisfied with η = Φ∗p ∈ ∂J(x0). Then,

for any minimizer x⋆ of (Py,λ), and with λ = cε for some c > 0 and ε = ||w||,
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6.1 Bregman Rate

we have

Dη(x
⋆, x0) 6 ε

(1+ c||p||2/2)
2

c
Bregman divergence rate,

||Φx⋆ −Φx0||2 6 ε(2+ c||p||2) Prediction error.

proof The proof follows the same lines as (Scherzer 2009). For the sake of

completness, we provide here a proof.

By definition of x⋆, one has

||Φx⋆ − y||2 + λJ(x⋆) 6 ||Φx0 − y||
2 + λJ(x0).

Since Φx0 − y = −w, one has

||Φx⋆ − y||2 + λJ(x⋆) 6 ε2 + λJ(x⋆). (6.1)

Now, by definition of Dη(x
⋆, x0), one has

Dη(x
⋆, x0) = J(x

⋆) − J(x0) − 〈Φ∗p, x⋆ − x0〉
= J(x⋆) − J(x0) − 〈p, Φ(x⋆ − x0)〉. (6.2)

Using the Cauchy-Schwarz inequality, we have that

〈p, Φ(x⋆ − x0)〉 6 ||p|| ||Φ(x⋆ − x0)||.

By the fact that Φ(x⋆ − x0) = Φx
⋆ − y+w and the triangle inequality, one has

〈p, Φ(x⋆ − x0)〉 6 ||p|| (||Φx⋆ − y||+ ||w||) .

Injecting this in (6.2), we get

Dη(x
⋆, x0) 6 J(x

⋆) − J(x0) + ||p||||Φx⋆ − y||+ ||p||ε.

Starting from (6.1), we have

ε2 > ||Φx⋆ − y||2 + λ (Dη(x
⋆, x0) − ||p||||Φx⋆ − y||− ||p||ε) . (6.3)
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Using that a2 + b2 > 2ab,

λ||p||||Φx⋆ − y|| 6 ||Φx⋆ − y||2 +
λ2

4
||p||2.

Thus, we get

ε2 > λDη(x
⋆, x0) − λε||p||−

1

4
λ2||p||2.

Finally, we have

λDη(x
⋆, x0) 6 ε

2 + ε||p||2λ2 +
1

4
λ2||p||2

=

(
ε+

λ||p||

2

)2

,

which proves the first inequality (Bregman divergence rate).

Now, for the second one, we start from

||Φx⋆ −Φx0|| 6 ||Φx⋆ − y||+ ||y−Φx0|| = ||Φx⋆ − y||+ ε.

Using bound (6.3) and the fact that Dη(x
⋆, x0) is nonnegative, we have that

||Φx⋆ − y|| 6 ε+ λ||p||.

Hence,

||Φx⋆ −Φx0|| 6 2ε+ λ||p||,

which concludes our proof. �

6.2 Linear Convergence Rate

6.2.1 Main Result

We are now ready to state our main convergence results. We denote x0 ∈ Rn

and denote T0 = Tx0
, f0 = fx0

.
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Theorem 6 .1 Assume that (SCx0
) holds at x0 with η = Φ∗p ∈ ri∂J(x0),

and that (INJT0
) holds. Choosing λ = cε, c > 0, where ε = ||w||, the following

holds for any minimizer x⋆ of (Py,λ)

||x⋆ − x0||2 6 Cε ,

where

C = C1 (2+ c||p||2) +C2
(1+ c||p||2/2)

2

c
(
1− Jx0,◦

f0
(ηS0

− PS0
f0)
) (6.4)

and C1 > 0 and C2 > 0 are constants independent of p and η.

This result holds for any finite-valued convex function and holds for any

minimizer of (Py,λ) (not necessarily unique). However, remark that (INJT0
)

makes sense only if J promotes subspaces of low dimension. Note that finding

a certificate p is not trivial, and that the constant involved in Theorem 1

depends on it. This leaves a degree of freedom to optimize the constant for

the certificate. The closer to 1 the constant Cp = 1− Jx0,◦
f0

(ηS0
− PS0

f0) is, the

better is the robustness. It measures how far from the relative boundary of

the subdifferential of J at x0 is p. Finally, the constants C1 and C2 are not

absolute and may depend on the dimension. Hence, this theorem does not

extend straightforwardly to the infinite-dimensional problem (cPy,λ).

The constants read as follows.

C1 = C−1
Φ and C2 =

||Φ||2,2 +CΦ

CJCΦ
,

where CΦ is the coercivity constant associated to the hypothesis (INJT0
), i.e.

∃ CΦ > 0 s.t. ||Φx||2 > CΦ||x||2, ∀x ∈ T0 ,

and CJ is defined by the coercivity of Jx0

f0
on S0:

∃ CJ > 0 s.t. ∀x ∈ R
n, Jx0

f0
(η) > CJ||η||2.
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When the decomposable norm is also separable (see Corollary 5.1), the sta-

bility result of Theorem 6.1 remains true assuming that J◦f(ηV − PV f) < 1 for

V ⊂ S0. This however comes at the price of the stronger restricted injectivity

assumption (INJV⊥). To show this, the only thing to modify is the statement

and the proof of Lemma 6.2 which can be done easily using similar arguments

to those in the proof of Corollary 5.1.

6.2.2 Proof of Theorem 6.1

Let T0 and e0 be the subspace and generalized sign vector associated to x0,

and denote S0 = T0
⊥. We choose some f0 ∈ ri∂J(x0). Now as Jx0

f0
is coercive

and bounded on S0 (see Lemma 3.8), we get

∃ CJ > 0 s.t. ∀x ∈ R
n, Jx0

f0
(η) > CJ||η||2.

We obtain the following bound on the projected distance between x⋆ and x0.

Lemma 6 .2 Suppose that (SCx0
) holds at x0 with η ∈ ri∂J(x0). Then,

||PS0
(x⋆ − x0)||2 6

Dη(x
⋆, x0)

CJ

(
1− Jx0,◦

f0
(ηS0

− PS0
f0)
) .

proof From the properties of Jf0 (see Lemma 3.8), there exists v ∈ S0 such that

Jx0,◦
f0

(v) 6 1 and Jx0

f0
(x⋆ − x0) = J

x0

f0
(PS0

(x⋆ − x0)) = 〈PS0
(x⋆ − x0), v〉 .
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Moreover, v+ PS0
f0 + e0 ∈ ∂J(x0). Thus

Dη(x
⋆, x0) > Dη(x

⋆, x0) −Dv+PS0
f0+e0

(x⋆, x0)

= 〈v+ PS0
f0 + e0 − η, x⋆ − x0〉

= 〈v− (ηS0
− PS0

f0), x
⋆ − x0〉

= Jx0

f0
(PS0

(x⋆ − x0)) − 〈ηS0
− PS0

f0, PS0
(x⋆ − x0)〉

> Jx0

f0
(PS0

(x⋆ − x0))
(
1− Jx0,◦

f0
(ηS0

− PS0
f0)
)

> CJ||PS0
(x⋆ − x0)||2

(
1− Jx0,◦

f0
(ηS0

− PS0
f0)
)

,

where in the last two inequalities, we used the duality inequality on dom Jx0,◦
f0

×
dom Jx0

f0
with dom Jx0

f0
= RN and dom Jx0,◦

f0
= S0. �

We now give the proof of Theorem 6.1.

proof

||x⋆ − x0||2 6 ||PT0
(x⋆ − x0)||2 + ||PS0

(x⋆ − x0)||2

6 CΦ
−1||ΦPT0

(x⋆ − x0)||2 + ||PS0
(x⋆ − x0)||2

6 CΦ
−1||Φ(x⋆ − x0)||2 + (1+CΦ

−1||Φ||2,2)||PS0
(x⋆ − x0)||2 ,

where we used assumption (INJT0
), i.e.,

∃ CΦ > 0 s.t. ||Φx||2 > CΦ||x||2, ∀x ∈ T0 .

We finally apply Lemma 6.2 to get

||x⋆ − x0||2 6 CΦ
−1||Φ(x⋆ − x0)||2 +

||Φ||2,2+CΦ

CJCΦ

(
1−J

x0 ,◦
f0

(ηS0
−PS0

f0)
)Dη(x

⋆, x0) .

Using Lemma 6.1 yields the assertion. �

6.3 Relation to Previous Works

Convergence rates. The monograph (Scherzer 2009) is dedicated to regular-

ization properties of inverse problems in infinite-dimensional Hilbert and Ba-
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nach spaces with application to imaging. In particular, Chapter 3 of this book

treats the case where J is a coercive gauge for the problem (Py,λ). In (Burger

et al. 2004), the authors consider the case where J is a proper, convex and l.s.c

functional for both the constrained and Lagrangian regularization (cPy,λ). Un-

der the source condition and a restricted injectivity assumption, they bound

the error in Bregman divergence with a linear rate O(||w||). For the classi-

cal Thikonov regularization, i.e. J = || · ||L2(Ω)
, the estimation is in O(

√
||w||),

which is not a linear convergence. Extensions of these results have been proved

in (Resmerita 2005) and (Hofmann et al. 2007) for the Bregman rate.

Lorenz (2008) treats the case where J is a ℓp norm with 1 6 p 6 2 and pro-

vides a prediction error Φx0 −Φx⋆ in O(||w||) and an estimation error x⋆ − x0
in O(

√
||w||). Grasmair et al. (2011) is concerned with the special case of ℓ1

regularization, and draws some connection with the restricted isometry prop-

erty (RIP), see below. The results that are the closest to our are contained

in (Grasmair 2011). Here, J is a proper, convex, l.s.c and positively homoge-

neous functional on some Banach space H. Under a source condition and

restricted injectivity on a an appropriate cone, a linear convergence rate is

proved with respect to J, i.e.

J(x⋆ − x0) = O(||w||).

This result implies ours, but only if J is injective which precludes many im-

portant regularizers, e.g. TV.

Compressed sensing. In a compressed sensing setting, for instance when

Φ is drawn from a i.i.d. normal distribution, it was proved (Rudelson et al.

2008) that if the number of measurements q is such that q < k log(n/k) where

k = ||x0||0 then there exists with high probability on Φ a non-degenerate

certificate when J = || · ||1, i.e. (SCx) holds and one can apply the result of

Theorem 6.1.

The performance of compressed sensing recovery has initially been analyzed

using the so-called restricted isometry property (RIP) introduced in (Candès

et al. 2006a, 2006b; Candès and Tao 2006) for ℓ1. It is defined for a couple
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(Φ,k) where k is a targeted sparsity, as the smallest constant δk such that

(1− δk)||x||
2 6 ||Φx||2 6 (1+ δk)||x||

2, (6.5)

for any vector x such that ||x||0 6 k. It is shown (Candès et al. 2006a) that

if δ2k + δ3k < 1, then for every vector x0 of sparsity k, there exists a non-

degenerate certificate (Candès et al. 2005, Lemma 2.2) as remarked also

by Grasmair et al. (2011). This result thus implies linear convergence rate,

and is applied in (Candès et al. 2006b) to show the robustness to noise of com-

pressed sensing. This was generalized to analysis sparsity (i.e. J = ||D∗ · ||1 with

D tight frame) in (Candès, Eldar, et al. 2011), structured sparsity in (Candès,

Eldar, et al. 2011) and matrix completion (Recht et al. 2010; Candès and Plan

2011b) using J = || · ||∗. A major shortcoming of this approach is that available

designs of matrices satisfying (6.5) for reasonnably large value of k are essen-

tially random. Indeed, in this case, the constant δk can be shown to be small

enough with high probability on Φ for nearly optimal scaling of (n,q,k). For

instance, when Φ is drawn for the Gaussian ensemble, it is the case when

q & k log(n/k). as proved by Candès and Tao (2006) Note that in general, com-

puting the RIP constants for a given matrix is an NP-hard problem (Bandeira

et al. 2013).

The golfing scheme introduced by Gross (2011) for the nuclear norm allows

to consider structured non-Gaussian measurements, e.g. partial Fourier mea-

surements. It is based on an iterative scheme starting from the linearized

precertificate pF in order to construct an (approximate) certificate with high

probability on the matrix for a given vector. It was further studied by Candès

and Plan (2011a) for ℓ1 regularization.
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7
Model Selection

Main contributions of this chapter

• Theorem 7.2 ensures that for a partly smooth function J, if the

restricted injectivity holds and that the linearized precertificate

is a non-degenerate certificate, then for a certain regime of small

noise, (Py,λ) has a unique solution which belongs in the model

manifold of x0.

• Theorem 7.3 proves a similar result for partly smooth functions

with linear manifold with explicit constants.
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S
o far, we were concerned with ℓ2-stability/robustness. What can be said

about the recovery of the model Tx0
underlying the original vector itself

x0 ? To be able to state such a result, the regularization has to enjoy some

additional regularity assumption. This is the goal of partial smoothness that

we introduced in Definition 4.1.

Section 7.1 states our main result. It ensures that for a partly smooth function

J, if the restricted injectivity holds and that the linearized precertificate pF is

a non-degenerate certificate, then in a small noise regime, (Py,λ) has a unique

solution and it belongs to the same model manifold M as x0. In Section 7.2,

we specialize this result to partly smooth functions with linear manifold. This

specialization does not cover for instance the nuclear norm regularization, but

provides more explicit constants involved in the robustness. Finally, we draw

connections with previous works in Section 7.3.

7.1 Selection Against Small Noise: General Case

7.1.1 Sensitivity of the Lagrangian Problem

Before diving into our main result, we first show of the theory of partly

smooth functions introduced in (Lewis 2002) can be directly applied to study

the sensitivity of (Pθ) for λ > 0.
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7.1 Selection Against Small Noise: General Case

Theorem 7 .1 Let xθ be a solution of (Pθ), with λ > 0, and suppose that J

is locally partly smooth at xθ relative to M. If

Ker(Φ)∩ Txθ
= {0} and ηθ ∈ ri(∂J(xθ)) (7.1)

where we have denoted

ηθ = Φ∗pθ =
1

λ
Φ∗(y−Φxθ),

then for θ ′ close enough from θ, the solution xθ ′ of (Pθ) is unique and

satisfies

xθ ′ ∈ M.

proof It suffies to apply Theorem 5.7 of (Lewis 2002). Indeed, the function f

f(x, θ) = J(x) +
1

2λ
||Φx− y||2

is partly smooth at (xθ, θ) relative to the manifold M×Θ, where Θ = Rq × R+

and condition (7.1) is exactly equivalent to xθ being a strong minimizer of f(·, θ),
see (Lewis 2002, Definition 5.6). �

Condition (7.1) is not very useful because it depends on the solution xθ and

not on the data to recover x0. The rationale behind Theorem 7.2 is to make θ

tends to 0, and under the conditions

λ→ 0 and
||w||

λ
→ 0,

Propositions 5.2 and 5.4 ensure that

xθ → x0 and pθ → p0.

7.1.2 Main Result

We now state our main result, which performs a sensivity analysis at λ = 0.
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Theorem 7 .2 Let J ∈ Sx0
(M) a locally partly smooth function at x0 rela-

tive to M such that (INJT ) with T = Tx0
holds and pF is a non-degenerate

certificate, i.e.

Ker(Φ)∩ T = {0}, and Φ∗pF ∈ ri(∂J(x0)). (7.2)

Then there exists positive constants (C,C ′) such that if ||w|| 6 C and λ =

C ′||w||, then the solution xθ of (Pθ) is unique and satisfies

xθ ∈ M and ||xθ − x0|| = O(||w||). (7.3)

The heuristic underlying the hypotheses of Theorem 7.2 is that the conditions

in (7.1) converge toward those of (7.2). Indeed, according to Proposition 5.6,

(7.2) implies p0 = pF. This is precisely what we need to show in order to prove

Theorem 7.2.

Obviously, the assumptions of Theorem 7.2 imply the conclusion of Theo-

rem 6.1. Contrary to the latter, the former is based on an explicit formulation

of the precertificate pF. Note that there exist vectors which can be stably recov-

ered in the ℓ2 sense of Theorem 6.1, but whose underlying manifold model

cannot be stably identified in the sense of Theorem 7.2, see our numerical

experiments in Chapter 10.

The following proposition shows that Theorem 7.2 is in some sense sharp,

since the hypothesis Φ∗pF ∈ ri(∂J(x0)) (almost) characterizes the stability of

M.

Proposition 7 .1 We suppose that x0 is the unique solution of (Py,0)

and that

Ker(Φ)∩ T = {0}, and Φ∗pF 6∈ ri(∂J(x0))

Then there exists C > 0 such that for ||w|| 6 Cλ and any λ > 0 small enough,

then any solution xθ of (Py,λ) satisfies xθ /∈ M.
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In the particular case where w = 0 (no noise), this result shows that the

manifold M is not correctly identified when solving (Py,λ) for any λ > 0 small

enough.

The only case not covered by neither Theorem 7.2 nor Proposition 7.1 is when

Φ∗pF ∈ rbound(∂J(x0)) (the relative boundary). In this case, one cannot con-

clude, since depending on the noise w, one can have either stability or non-

stability of M. We refer to Chapter 10 where an example illustrates this situa-

tion for the 1-D total variation J = ||∇ · ||1 (here ∇ is a discretization of the 1-D

derivative operator).

7.1.3 Proof of Theorem 7.2

Constrained problem. We consider the following non-convex constrained

minimization problem

x̃θ ∈ Argmin
x∈M

f(x, θ). (7.4)

We aim at showing that for (||w||/λ, λ) small enough, x̃θ is the unique solution

of (Pθ).

The proof of Proposition 5.2 carries over verbatim to this constrained problem,

which shows that

x̃θ → x0 when






λ −→ 0,

||w||2/λ −→ 0.
(7.5)

In the following, to lighten the notations, we denote Tx̃θ
= T̂ .

Convergence of the tangent model subspaces. By definition of the con-

strained problem (7.4), x̃θ ∈ M. Moreover, since f(·, θ) is partly smooth at x0
relative to M, the sharpness property Definition 4.1(ii) holds at all nearby

points in the manifold M, see (Lewis 2002, Proposition 2.10). Thus, as soon

as (||w||2/λ, λ) is small enough, we have that M is a C2-manifold around x̃θ
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and T̂ = TM(x̃θ). Using the fact that M is of class C2, we get the following

convergence

T̂ = TM(x̃θ) −→ TM(x0) = T when






λ −→ 0,

||w||2/λ −→ 0,
(7.6)

where the convergence should be understood over the Grasmanian of linear

spaces with the same dimension (or equivalently, as the convergence of the

projection operators PT̂ → PT ), see Section 2.2. Since Ker(Φ) ∩ T = {0}, (7.6)

implies that for (||w||2/λ, λ) small enough,

Ker(Φ)∩ T̂ = {0}, (7.7)

which we also assume now.

First order conditions. By partial smoothness, the restriction of J to M is

smooth at x̃θ for θ small enough. Hence, since x 7→ 1
2λ ||y−Φx||2 is smooth

everywhere, the smooth perturbation rule (Lewis 2002, Corollary 4.7) implies

that f(·, θ) is also partly smooth at x̃θ for M, and thus its restriction to M

is smooth at x̃θ. Therefore, Lewis (2002, Proposition 2.4(b)) applies, and it

follows that x̃θ is a critical point of (7.5) if, and only if,

0 ∈ aff(∂f(x, θ)) =
1

λ
Φ∗(Φx̃θ − y) + aff(∂J(x̃θ))

=
1

λ
Φ∗(Φx̃θ − y) + ex̃θ

+ T̂⊥.

The first equality comes from the fact that f(·, θ) is a closed convex function

and the second one from the decomposability of the subdifferential. Projecting

this relation onto T̂ , we get

Φ∗
T̂
(Φx̃θ − y) + λex̃θ

= 0, (7.8)

Convergence of primal variables. Since x̃θ and x0 belongs to the same active

manifold, and M is a manifold of class C2 around them, using Lemma 2.3,
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each point in their neighbourhoods has unique projection on M. In particular,

x̃θ = PM(x̃θ) and x0 = PM(x0). Moreover, PM is of class C1 near x̃θ. Thus,

continuous differentiability shows

x̃θ − x0 = PM(x̃θ) − PM(x0) = DPM(x̃θ)(x̃θ − x0) + o (||x̃θ − x0||) .

where DPM(x̃θ) is the derivative of PM at x̃θ. Combining (Lewis et al. 2008,

Lemma 2.3) and (Lewis 2002, Proposition 2.4(i)), the derivative DPM(x̃θ) is

given by

DPM(x̃θ) = PT̂ .

Inserting this in (7.8), we get

Φ∗
T̂
Φ(x̃θ − x0) = Φ

∗
T̂
ΦT̂ (x̃θ − x0) + o (||x̃θ − x0||) = Φ

∗
T̂
w− λex̃θ

.

Using (7.7), ΦT̂ has full rank, and thus

x̃θ − x0 = Φ+

T̂
w− λ(Φ∗

T̂
ΦT̂ )

−1ex̃θ
+ o (||x̃θ − x0||) . (7.9)

Altogether, we obtain the bound

||x̃θ − x0|| = O(||w||, λ).

Convergence of dual variables. We define

η̃θ = Φ∗p̃θ where p̃θ =
y−Φx̃θ

λ
,

Arguing as above, and using (7.9) we have

λp̃θ = Φ(x0 − x̃θ) +w

= ΦT̂ (x0 − x̃θ) +w+ o (||x̃θ − x0||)

= PIm(ΦT̂ )
⊥w+ λΦ+,∗

T̂
ex̃θ

+ o (||x̃θ − x0||) .

We thus arrive at

||p̃θ − pF|| = O

(
||w||

λ
, ||Φ+,∗

T̂
ex̃θ

−Φ+,∗
T e||

)
.
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Since M is a C2 manifold, and by partial smoothness x 7→ ex is C1 on M (recall

that J is C2 on M), one has

||ex̃θ
− e|| = O(||x̃θ − x0||).

Since A 7→ A+,∗ is smooth at A = ΦT along the manifold of matrices of

constant rank, one has

||Φ+,∗
T̂

−Φ+,∗
T || = O(||ΦT̂ −ΦT ||) = O(||PT̂ − PT ||||Φ||) = O(||x̃θ − x0||).

This implies

||Φ+,∗
T̂
ex̃θ

−Φ+,∗
T e|| 6 ||Φ+,∗

T̂
−Φ+,∗

T ||||ex̃θ
||+ ||ex̃θ

− e||||Φ+,∗
T || = O(||x̃θ − x0||).

Altogether, we get the bound

||η̃θ − ηF|| = O(||w||/λ, λ). (7.10)

Convergence inside the relative interior. Using the hypothesis that pF ∈
ri(∂J(x0)), we will show that for (||w||/λ, λ) small enough,

p̃θ ∈ ri(∂J(x̃θ)). (7.11)

We follow the line of proof of (Lewis 2002).

Let us suppose this does not hold. Then there exists a sequence (θn =

(λn,wn))n, with (wn/λn, λn) tending to 0, such that

p̃n ∈ rbound(∂J(x̃n)) (7.12)

where we used the shorthand notations

x̃n = x̃θn
and p̃n = p̃θn

.

According to (7.10) and (7.5),

(x̃n, p̃n) → (x0, pF). (7.13)
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Condition (7.12) is equivalently stated as, for each n

∃zn ∈ T⊥x̃n
, ∀ p ∈ ∂J(x̃n), 〈zn, p − p̃n〉 > 0, (7.14)

where one can impose the normalization ||zn|| = 1. Up to a sub-sequence (that

for simplicity we still denote zn with a slight abuse of notation), since zn is in

a compact set, we can suppose that zn → z⋆.

Since T⊥x̃n
→ T⊥ because M is a C2 manifold, one has that z⋆ ∈ T⊥. We now

show that

∀ v ∈ ∂J(x0), 〈z⋆, p − pF〉 > 0. (7.15)

Indeed, let us consider any v ∈ ∂J(x0). By condition 3 of Definition 4.1, ∂J

is continuous along M, so that since x̃n → x0 there exists vn ∈ ∂J(x̃n) with

vn → v. Applying (7.14) with p = vn gives

〈zn, vn − p̃n〉 > 0.

Taking the limit n→ +∞ in this inequality leads to (7.15), which contradicts

the fact that pF ∈ ri(∂J(x0)).

Conditions (7.11) and (7.7) implies, using Theorem 5.3, that x̃θ = xθ is the

unique solution of (Pθ).

7.1.4 Proof of Proposition 7.1

Let xθ be a solution of (Py,λ). Suppose that xθ ∈ M. In particular, xθ is a

solution of the non-convex minimization (7.4). Arguing as in the proof of

Theorem 7.2, we get the bound (7.10), i.e.

||ηθ − ηF|| = O(||w||/λ, λ) where ηθ = Φ∗y−Φxθ
λ

. (7.16)

Since x0 is the unique solution of (Py,0), p0 is well defined, hence η0 = Φ∗p0 ∈
∂J(x). Thus, there exists K > 0 (for instance K = d(ηF,∂J(x))) such that ||ηF −
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η0|| > K. Moreover,

||ηF − η0|| 6 ||ηF − ηθ||+ ||ηθ − η0||.

According to (7.16) and (5.4), one has

||ηF − ηθ|| → 0 and ||ηθ − η0|| → 0.

This leads to a contradiction since by assumption ηF 6∈ ∂J(x0), hence xθ 6∈ M.

7.2 Selection of Linear Manifold

When J is partly smooth with linear manifold (M = Tx), see Definition 4.2, i.e.

the manifold is in fact the model subspace, we derive a more precise result

with explicit constants.

7.2.1 Main Result

Theorem 7 .3 Let x0 ∈ Rn and T = Tx0
. We suppose that J is a partly

smooth function with linear manifold at x0 with the corresponding pa-

rameters (Γ ,νx0
,µx0

, τx0
, ξx0

) where the constants are defined in (4.2), (4.3)

and (4.4). Assume that (INJT ) holds and IC(x0) < 1. Then there exist posi-

tive constants (AT ,BT ) that solely depend on T and a constant C(x0) such

that if w and λ obey

AT

1− IC(x0)
||w|| 6 λ 6 νx0

min
(
BT ,C(x0)

)
(7.17)

the solution x⋆ of (Py,λ) with noisy measurements y is unique, and satisfies

Tx⋆ = T . Furthermore, one has

||x0 − x
⋆|| = O

(
max(||w||, λ)

)
.
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Clearly this result asserts that exact recovery of Tx0
from noisy partial mea-

surements is possible with the proviso that the regularization parameter λ

lies in the interval (7.17). The value λ should be large enough to reject noise,

but small enough to recover the entire subspace Tx0
. In order for the con-

straint (7.17) to be non-empty, the noise-to-signal level ||w||/νx0
should be

small enough, i.e.

||w||

νx0

6
1− IC(x0)

AT
min (BT ,C(x0)) .

The constant C(x0) involved in this bound depends on x0 and has the form

C(x0) =
1− IC(x0)

ξx0
νx0

H

(
DT µx0

+ τx0

ξx0

)

where H(β) =
β+ 1/2

ET β
ϕ

(
2β

(β+ 1)2

)
and ϕ(u) =

√
1+ u− 1 .

The constants (DT ,ET ) only depend on T . C(x0) captures the influence of

the parameters πx0
= (µx0

, τx0
, ξx0

), where the latter reflect the geometry of

the regularizing function J at x0. More precisely, the larger C(x0), the more

tolerant the recovery is to noise. Thus favorable regularizers are those where

C(x0) is large, or equivalently where πx0
has small entries, since H is a strictly

decreasing function.

7.2.2 Proof of Theorem 7.3

The proof is similar to Theorem 7.2. To lighten the notations, we let ε = ||w||,

ν = νx0
,µ = µx0

, τ = τx0
, ξ = ξx0

, f = fx0
and T = Tx0

.

The strategy is to construct a vector which is the unique solution to

min
x∈T

1

2
||y−Φx||2 + λJ(x) , (PT

θ)

and then to show that it is actually the unique solution to (Pθ) under the

assumptions of Theorem 7.3.

The following lemma gives a convenient implicit equation satisfied by the

unique solution to (PT
θ).
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Lemma 7 .1 Assume that (INJT ) holds. Then (PT
θ) has exactly one mini-

mizer x̂, and the latter satisfies

x̂ = x0 +Φ
+
Tw− λ(Φ∗

TΦT )
−1ẽ where ẽ ∈ PT (∂J(x̂)). (7.18)

proof Assumption (INJT ) implies that the objective in (PT
θ) is strongly convex

on the feasible set T , whence uniqueness follows immediately. By a change of

variable, (PT
θ) be also rewritten in the unconstrained form

x̂ = argmin
x∈RN

1

2
||y−ΦTx||

2 + λJ(PT x) .

Thus, using Proposition 3.9(i), x̂ has to satisfy

Φ∗
T (y−ΦT x̂) + λẽ = 0,

for any ẽ ∈ PT (∂J(x̂)). Owing to the invertibility of Φ on T , i.e. (INJT ), we ob-

tain (7.18). �

We are now in position to prove Theorem 7.3. This is be achieved in three

steps:

Step 1: We show that in fact Tx̂ = T .

Step 2: Then, we prove that x̂ is the unique solution of (Py,λ) using Theorem 5.3.

Step 3: We finally exhibit an appropriate regime on λ and ε for the above two

statements to hold.

Step 1: Subspace equality. By construction of x̂ in (PT
θ), it is clear that x̂ ∈ T .

The key argument now is to use that J is PRG at x0, and to show that

Γ(x0 − x̂) 6 ν, (7.19)

which in turn will imply subspace equality, i.e. Tx̂ = T (see Definition 4.2).
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We have from (7.18) and subadditivity that

Γ(x0 − x̂) 6 Γ(−Φ
+
Tw) + λΓ((Φ

∗
TΦT )

−1ẽ)

6
∣∣∣∣∣∣(Φ∗

TΦT )
−1
∣∣∣∣∣∣

Γ→Γ
{Γ(−Φ∗

Tw) + λΓ(ẽ)}

6
∣∣∣∣∣∣(Φ∗

TΦT )
−1
∣∣∣∣∣∣

Γ→Γ
{|||Φ∗

T |||ℓ2→Γε+α0λ} . (7.20)

where α0 = Γ(ẽ). Consequently, to show that (7.19) is verified, it is sufficient

to prove that

Aε+Bλ 6 ν, (C1)

where we set the positive constants

A =
∣∣∣∣∣∣(Φ∗

TΦT )
−1
∣∣∣∣∣∣

Γ→Γ
|||Φ∗

T |||ℓ2→Γ ,

B = α0

∣∣∣∣∣∣(Φ∗
TΦT )

−1
∣∣∣∣∣∣

Γ→Γ
.

Suppose for now that (C1) holds and consequently, Tx̂ = T . Then decompos-

ability of J on T (Theorem 3.1) implies that

ê = PTx̂
(∂J(x̂)) = PT (∂J(x̂)) = ẽ,

where we have denoted ê = ex̂. Thus (7.18) yields the following implicit

equation

x̂ = x0 +Φ
+
Tw− λ(Φ∗

TΦT )
−1ê. (7.21)

Step 2: x̂ is the unique solution of (Py,λ). Recall that under condition (C1),

J is decomposable at x̂ and x0 with the same model subspace T . To deduce

that x̂ is the unique solution of (Py,λ), it remains to show that

J◦
f̂
(λ−1Φ∗

S(y−Φx̂) − f̂S) < 1. (7.22)

where we use the shorthand notations f̂ = fx̂ and f̂S = PS f̂.
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Under condition (C1), the ξ-stability property (4.4) of J at x0 yields

J◦
f̂
(λ−1Φ∗

S(y−Φx̂) − f̂S) 6
(
1+ ξΓ(x0 − x̂)

)
J◦f(λ

−1Φ∗
S(y−Φx̂) − f̂S). (7.23)

Furthermore, from (7.21), we can derive

λ−1Φ∗
S(y−Φx̂) − f̂S = Φ∗

SΦ
+,∗
T ê+ λ−1Φ∗

SQTw− f̂S, (7.24)

where QT = Id −ΦTΦ
+
T = PKer(Φ∗

T )
. Inserting(7.24) in (7.23), we obtain

J◦
f̂
(λ−1Φ∗

S(y−Φx̂) − f̂S) 6
(
1+ ξΓ(x0 − x̂)

)
J◦f(Φ

∗
SΦ

+,∗
T ê+ λ−1Φ∗

SQTw− f̂S).

Moreover, subadditivity yields

J◦f(Φ
∗
SΦ

+,∗
T ê+ λ−1Φ∗

SQTw− f̂S) 6 J
◦
f(Φ

∗
SΦ

+,∗
T e− fS) + J

◦
f(Φ

∗
SΦ

+,∗
T (ê− e))

+ J◦f(PS(f− f̂)) + J
◦
f(λ

−1Φ∗
SQTw). (7.25)

We now bound each term of (7.25). In the first term, one recognizes

J◦f(Φ
∗
SΦ

+,∗
T e− fS) 6 IC(x0). (7.26)

Appealing to the µ-stability property, we get

J◦f(Φ
∗
SΦ

+,∗
T (ê− e)) 6

∣∣∣∣∣∣−Φ∗
SΦ

+,∗
T

∣∣∣∣∣∣
Γ→J◦f

Γ(e− ê)

6 µ
∣∣∣∣∣∣−Φ∗

SΦ
+,∗
T

∣∣∣∣∣∣
Γ→J◦f

Γ(x0 − x̂). (7.27)

From τ-stability, we have

J◦f(fS − f̂S) 6 τΓ(x0 − x̂). (7.28)

Finally, we use a simple operator bound to get

J◦f(λ
−1Φ∗

SQTw) 6
1

λ
|||Φ∗

SQT |||ℓ2→J◦f
ε. (7.29)

Following the same steps as for the bound (7.20), except using ẽ = ê here,

gives

Γ
(
x0 − x̂)

)
6
∣∣∣∣∣∣(Φ∗

TΦT )
−1
∣∣∣∣∣∣

Γ→Γ
{|||Φ∗

T |||ℓ2→Γε+ λΓ(ê)} . (7.30)
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Plugging inequalities (7.26)-(7.30) into (7.23) we get the upper-bound

J◦
f̂
(Φ∗

SΦ
+,∗
T ê+ λ−1Φ∗

SQTw− f̂S)

6 (1+ ξΓ(x0 − x̂))
(

IC(x0) + Γ (x0 − x̂)
(
µ
∣∣∣∣∣∣−Φ∗

SΦ
+,∗
T

∣∣∣∣∣∣
Γ→J◦f

+ τ
)

+
1

λ
|||Φ∗

SQT |||ℓ2→J◦f
ε
)

6 (1+ ξ(c1ε+ λc2))
(

IC(x0) + (c1ε+ λc2)µ̄+
1

λ
c4ε
)
< 1,

where we have introduced

µ̄ = µc3 + τ and α1 = Γ(ê) = Γ(ẽ) = α0

and
c1 = A, c2 = α1

∣∣∣∣∣∣(Φ∗
TΦT )

−1
∣∣∣∣∣∣

Γ→Γ
,

c3 =
∣∣∣∣∣∣−Φ∗

SΦ
+,∗
T

∣∣∣∣∣∣
Γ→J◦f

, c4 =
∣∣∣∣∣∣Φ∗

SQT

∣∣∣∣∣∣
ℓ2→J◦f

.

If is then sufficient that

(1+ ξ(c1ε+ λc2))
(

IC(x0) + (c1ε+ λc2)µ̄+
1

λ
c4ε
)
< 1. (7.31)

In particular, if

Cε 6 λ

holds for some constant C > 0 to be fixed later, then inequality (7.31) is true

if

P(λ) = aλ2 + bλ+ c > 0 (7.32)

where






a = −ξµ̄ (c1/C+ c2)
2

b = −(c1/C+ c2) (ξIC(x0) + ξc4/C+ µ̄)

c = 1− IC(x0) − c4/C

Let us set the value of C to

C =
2c4

1− IC(x0)
,
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which, for 0 6 IC(x0) < 1, it ensures that c = 1−IC(x0)
2 is bounded and positive,

and thus, the polynomial P has a negative and a positive root λmax equal to

λmax =
b

2a
ϕ
(
−4
ac

b2

)

where






a = −ξµ̄((1− IC(x0))c1/(2c4) + c2)
2

b = −((1− IC(x0))c1/(2c4) + c2) (µ̄+ (1+ IC(x0))ξ/2)

c = (1− IC(x0))/2.

Hence,

λmax =
µ̄+ (1+ IC(x0))ξ/2

ξµ̄((1− IC(x0))c1/c4 + 2c2)
ϕ

(
2ξ(1− IC(x0))µ̄

(µ̄+ (1+ IC(x0))ξ/2)2

)

>
1− IC(x0)

ξ
H(µ̄/ξ),

where

ϕ(β) =
√
1+β− 1, and H(β) =

β+ 1/2

β(c1/c4 + 2c2)
ϕ

(
2β

(β+ 1)2

)
.

Consequently, we can conclude that the bounds

2c4

1− IC(x0)
ε 6 λ 6

1− IC(x0)

ξ
H(µ̄/ξ) (C2)

imply condition (7.31), which in turn yields (7.22).

Step 3: (C1) and (C2) are in agreement. It remains now that show the

compatibility of (C1) and (C2), i.e. to provide appropriate regimes of λ and ε

such that both conditions hold simultaneously. We first observe that (C1) and

the left-hand-side of (C2) both hold for λ fulfilling

λ 6 C0ν where C0 =

(
A

2c4
+B

)−1

6

(
1− IC(x0)

2c4
A+B

)−1

.
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This updates (C2) to the following ultimate range on λ

2c4

1− IC(x0)
ε 6 λ 6 min

(
C0ν,

1− IC(x0)

ξ
H(µ̄/ξ)

)
.

Now in order to have an admissible non-empty range for λ, the noise level ε

must be upper-bounded as

ε 6
1− IC(x0)

2c4
min

(
C0ν,

1− IC(x0)

ξ
H(µ̄/ξ)

)
.

Finally, the constants provided in the statement of the theorem (and subse-

quent discussion) are as follows

AT = 2c4, BT = C0, DT = c3, and ET = c1/c4 + 2c2 ,

which completes the proof.

7.3 Relation to Previous Works

Special cases. Theorems 7.2 and 7.3 are generalizations of many previous

works that have appeared in the literature. For the ℓ1 norm, J = || · ||1, to the

best of our knowledge, this result was initially stated by Fuchs (2004). In this

setting, the result T⋆x = Tx0
corresponds to the correct identification of the

support, i.e. supp(x⋆) = supp(x0). Moving to a setting where both Φ and

w are random, the condition pF ∈ ri∂J(x0) implies model consistency (also

known as sparsistency for ℓ1), i.e. the probability that the support is correctly

identified tends to 1 as the number of measurements grows large. Bach proves

respectively in (Bach 2008a) and (Bach 2008b) Theorem 7.2 (in fact a variant

since he considers randomized Φ and w) for ℓ1 − ℓ2 and nuclear norm gauges,

in the special case where Φ has full rank (i.e. is injective). Our result thus

shows that the same condition ensures rank consistency with the additional

constraint that Ker(Φ)∩ T = {0}. Theorem 7.3 for a ℓ1 analysis prior was proved

by Vaiter, Peyré, et al. (2013). Theorem 7.2 is extended in (Duval et al. 2013)

to the TV norm that endows the infinite dimensional Banach space of Radon

measures, and where Φ has a finite-dimensional range. In this setting, they
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show that pF must be replaced by a different pre-certificate.

Compressed sensing. Condition Φ∗pF ∈ ri∂J(x0) is often used when Φ is

drawn from the Gaussian matrix ensemble to asses the performance of com-

pressed sensing recovery with ℓ1 norm, see (Wainwright 2009; Dossal et al.

2012). It has been proved (Wainwright 2009; Dossal et al. 2012) for J = || · ||1
that if Φ is a random matrix drawn from the Gaussian ensemble, then for

q > 2k logn, Φ∗pF ∈ ri∂J(x) with high probability on Φ for k = ||x0||0. One

may have observed that the bound on q bears similarities with that of Chap-

ter 6.3 except in the scaling in the log term, but induces stronger conclusion.

It is also used to ensure ℓ2 robustness of matrix completion in a noisy setting

by Candès et al. (2010), and our findings show that it also ensures rank con-

sistency for matrix completion at high signal to noise levels. It generalizes a

result proved for a family of decomposable norms (including in particular

ℓ1-ℓ2 norm and the nuclear norm) by Candès and Recht (2013) when w = 0.

Stronger criteria for ℓ1. Many sufficient conditions can be formulated to

ensure that pF is a non-degenerate certificate, and hence to guarantee the

model stability. The strongest criterion to ensure a noise robustness for ℓ1

regularization is the coherence, introduced by Donoho et al. (2001). Finer cri-

teria based on Babel functions have been proposed in (Gribonval and Nielsen

2008; Borup et al. 2008). The Exact Recovery Condition introduced by Tropp

(2006) is weaker than the coherence which in turns is greater that the weak-

ERC (Dossal 2012). More precisely, the coherence of a matrix with unit-norm

is defined as

µ = max
i 6=j

|〈Φi, Φj〉|,

and the associated coherence criterion reads

coh(x0) =
||x0||0µ

1− (||x0||0 − 1)µ
.

The Fuchs’ criterion reads

IC(x0) = ||Φ∗
IcΦ

+,∗
I sign(x0)I||∞ = ||Φ∗pF||∞,
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where I = supp(x0). The Exact Recovery Condition reads

ERC(x0) = ||Φ∗
IcΦ

+,∗
I ||∞,∞.

The weak-ERC reads

wERC(x0) =

max
j 6∈I

∑
i∈I |〈Φi, ΦJ〉|

1− max
j∈I

∑
i6=j∈I |〈Φi, ΦJ〉|

.

These quantity obey the following inequality:

IC(x0) 6 ERC(x0) 6 wERC(x0) 6 coh(x0).

In particular, if any of these quantity is less than 1, then pF is a non-degenerate

certificate.
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Sensitivity
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8
Local Differentiability of the Optimal

Solutions

Main contributions of this chapter

• Theorem 8.1 constructs a smooth map of solutions to (PF
y,λ) on

an open neighborhood of some solution x⋆, and computes its

derivative.

• Theorem 8.2 shows that the prediction map is well-defined out-

side the transition space and gives its derivative.
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T
his chapter is concerned with differentiability of an optimal map of solu-

tion to (PF
y,λ). Moreover, we prove that the prediction map is well-defined

outside the transition space and gives its derivative. The core of our proof

strategy relies on the identification of a certain linear subspace T = Tx⋆(y) as-

sociated to a particular minimizer x⋆(y) of (PF
y). We exhibit explicitly a certain

set of observations, denoted H (see Definition 8.2), outside which the initial

non-smooth optimization (PF
y) boils down locally to a smooth optimization

constrained by T . This part of the proof strategy is in close agreement with

the one developed in (Lewis 2002) for the sensitivity analysis of partly smooth

functions. The robustness analysis of Chapter 7 relies on the manifold stabil-

ity when λ = 0. In contrast, we provide in this chapter a sensitivity analysis

when λ > 0. Even if we state our result only w.r.t to small variations of y,

our result can be extended to analyze the sensibility with respect to other

variable parameterizing F, which could be useful for homotopy-like results.

This sensivity analysis is central to construct an unbiased estimator of the

quadratic risk. We suppose here that J is a partly smooth gauge with linear

manifold, i.e. such that Mx = Tx and J is 1-homogeneous. We conjecture that
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this statement remains true for any convex partly smooth function, though

this has not been formally proved yet. The technical obstacles faced by this

generalization will be discussed in Chapter 9.

8.1 Main Assumptions

This section details our assumptions on both the data fidelity term F and the

regularizer J. We also introduce the restriction and second order derivative of

the regularizer J.

8.1.1 Assumptions on the Regularizer

We assume in this chapter that J is a partly smooth gauge with linear man-

ifold, see Definitions 4.1 and 4.2. More precisely, we need the following as-

sumption.

∀ T ∈ T, J ∈ C2(T̃) . (Csm)

∀ x ∈ R
n, ∃ν > 0, ∀ x ′ ∈ Tx, ||x ′ − x|| < τ⇒ Tx = Tx ′ . (Creg)

The set T is finite. (CT)

J is positively homogeneous. (Chom)

We recall that the set T is defined as

T = {Tx | x ∈ R
n} .

Some remarks are in order. Assumption (Creg) amounts to saying that there

exists a neighbourhood of x on Tx on which this subspace model is constant.

This condition is a part of the assumptions defining the class of partly smooth

function with linear manifold introduced in Definition 4.1. Assumption (CT)

holds in many important cases, including the Lasso (ℓ1-norm) and group

Lasso (ℓ1 − ℓ2) penalties, the ℓ∞-norm, as well as their analysis-type counter-

parts.
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8.1.2 Assumption on the Data Fidelity

In all the following, we consider a variational regularized problem of the form

of (PF
y,λ), i.e. of the form1

x⋆(y) ∈ Argmin
x∈Rn

F(x,y) + J(x). (PF
y)

The fidelity term F is of the following form

F(x,y) = F0(Φx,y) (8.1)

where F0(·,y) is a general loss function assumed to be a proper, convex and

sufficiently smooth function of its first argument ∀y. We assume that the

fidelity term enjoys the following properties.

∀ (y, x) ∈ R
q × R

n, F(·,y) ∈ C2(Rn) and ∇1F(x, ·) ∈ C1(Rq). (CF)

Generalized linear models in the exponential family falls into the class of

losses we consider. Indeed, taking the negative log-likelihood corresponding

to (9.2) gives2

F0(µ,y) =
1

λ

q∑

i=1

ϕi (µi) − 〈y, µ〉 . (8.2)

It is well-known that if the exponential family is regular, then ϕi is proper,

infinitely differentiable, its hessian is definite positive, and thus it is strictly

convex (Brown 1986). Therefore, F0(·,y) shares exactly the same properties. We

recover the squared loss F0(µ,y) = 1
2λ ||y− µ||

2 for the standard linear models

(Gaussian case), and the logistic loss F0(µ,y) =
∑q

i=1 log (1+ exp(µi)) − 〈y, µ〉
for logistic regression (Bernoulli case). GLM estimators with losses (8.2) and

ℓ1 or ℓ1 − ℓ2 (group) penalties have been previously considered and some of

their properties studied including in (Bunea 2008; Van de Geer 2008; Meier

et al. 2008; Bach 2010; Kakade et al. 2010); see also (Bühlmann et al. 2011,

Chapter 3, 4 and 6).

1. Note that here the parameter λ is absorbed within the fidelity term F.
2. Strictly speaking, the minimization may have to be over a convex subset of Rn.
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8.1.3 Restriction and Second-Order Derivative of the Regularizer

For a subspace T ⊂ Rn, and any function g ∈ C2(T × Rq), we denote

D2
1gT (x,y) = PT ◦D2

1g(x,y) ◦ PT

which can be understood as the Hessian of the mapping x ∈ T 7→ g(x,y), i.e.

the restriction of g(·,y) to T . Of course, when T is the whole space, we recover

the ”full” Hessian.

We also denote D2
12g(x,y) the Jacobian of the mapping y ∈ Rq 7→ ∇1g(x,y)

with respect to y, and ∇1g(x,y) is the gradient of g w.r.t the first variable at

(x,y).

We denote

JT : xT ∈ T 7→ J(xT ) ∈ R
+

the restriction of J to T for some subspace T ⊂ T. Hence the hessian of JT
is well-defined on T. Observe that ∇JT (x) = ex for x ∈ T . We illustrate this

definition on several examples.

Lasso and general Lasso. For J = || · ||1, one has

∀ xT ∈ T , ∇JT (xT ) = sign(xT ) ,

and thus, D2JT (xT ) = 0. This is also the case for the analysis ℓ1-penalty (gen-

eral Lasso), see for instance (Vaiter, Deledalle, et al. 2013). This property basi-

cally reflects the fact that these regularizers are polyhedral, hence piecewise

affine.

Group Lasso. For J = || · ||1,2 as defined in (1.13), we have

D2JT (xT ) = δx ◦ Px⊥ ,
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where, for I = suppB(x),

δx : v ∈ R
|I| 7→ (vb/||xb||)b⊂I ∈ R

|I|

and Px⊥ : v ∈ R
|I| 7→ (Px⊥

b
vb)b⊂I ∈ R

|I| ,

where

Px⊥
b
vb = vb −

〈xb, vb〉
||xb||2

xb

is the orthogonal projector on x⊥b .

8.2 Local Behavior of a Solution Mapping

8.2.1 Restricted Injectivity

In this section, we aim at computing the derivative of the map y 7→ x⋆(y)

whenever this is possible. The following condition plays a pivotal role in this

analysis.

Definition 8 .1 — Restricted Injectivity A vector x ∈ Rn with

T = Tx is said to satisfy the restricted injectivity condition if, and only if,

T ∩ Ker(D2
1FT (x,y))∩ Ker(D2JT (x)) = {0}. (Cx,y)

Lasso For the Lasso problem, i.e. J = || · ||1 and F0 is the squared loss, con-

dition (Cx,y) reads Ker(ΦI) = {0}, where I is the support of the vector x. This

condition is already known in the literature, see for instance (Dossal et al.

2013) in the context of DOF estimation.

Group Lasso For the group Lasso, i.e. J = || · ||1,2 and F0 is the squared loss,

condition (Cx,y) amounts to assuming that the collection of vectors (Φbxb)b⊂I

is linearly independent, where I = suppB(x). This condition appears in (Liu
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et al. 2009) to establish ℓ2-consistency of the group Lasso. It goes without

saying that condition (Cx,y) is much weaker than imposing that ΦI is full

column rank, which is standard when analyzing the Lasso.

Under this condition, the derivative of the objective function is invertible on T .

Lemma 8 .1 Let x ∈ Rn, and T = Tx. Assume that (Cx,y) holds. Then the

linear operator D2
1FT (x,y) + D2JT (x) : T → T is invertible on T .

proof Since F(·,y) and J are convex and C2(T) by assumptions (CF) and (Csm),

the (restricted) hessians D2
1FT (x,y) and D2JT (x) are symmetric semidefinite positive

on T . To ensure invertibility of their sum on T , it is necessary and sufficient that their

kernels have a trivial intersection, which is exactly what assumption Cx,y states.�

8.2.2 Transition Space

Let us now turn to the sensitivity of a minimizer x⋆(y) of (PF
y) to perturbations

of y. Because of non-smoothness of the regularizer J, it is a well-known fact in

sensitivity analysis that one cannot hope for a global claim, i.e. an everywhere

smooth mapping3 y 7→ x⋆(y). Rather, the sensitivity behaviour is local. This is

why the reason we need to introduce the following transition space H, which

will be shown to contain points of non-smoothness of x⋆(y).

Definition 8 .2 The transition space H is defined as

H =
⋃

T∈T

HT , where HT = bd(Πq+n,q(AT )),

where we have denoted

Πq+n,q :

{
Rq × T̃ −→ Rq

(y, xT ) 7−→ y

3. To be understood here as a set-valued mapping.
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the canonical projection on the first q coordinates, bdC is the boundary of

the set C, and

AT =
{

(y, xT ) ∈ R
q × T̃ | −∇1F(xT ,y) ∈ rbd∂J(xT )

}

.

Here, rbd∂J(xT ) is the relative boundary of ∂J(xT ) defined as its boundary

in the topology of its affine hull.

In the particular case where F is the square loss, J = || · ||1 (synthesis sparsity)

and J(x) = ||D∗x||1 (analysis sparsity), the same transition set is introduced

in (Dossal et al. 2013) and (Vaiter, Deledalle, et al. 2013). In these specific

cases, since J is a polyhedral gauge, H is a union of affine hyperplane. The

geometry of this set can be significantly more complex for other gauges. For

instance, for J = || · ||1,2, it can be shown to be a semi-algebraic set (union of

algebraic hyper-surfaces).

8.2.3 Main Result

We are now equipped to state our main sensitivity analysis result.

Theorem 8 .1 Let y 6∈ H, and x⋆ a solution of Pλ(y) such that (Cx⋆,y)

holds. Then, there exists an open neighborhood V ⊂ Rq of y, and a mapping

x̃ : V → T such that

(i) For all ȳ ∈ V, x̃(ȳ) is a solution of (Pλ̄(ȳ)), and x̃(y) = x⋆.

(ii) the mapping x̃ is C1(V) and for every ȳ ∈ V,

∂1x̃(ȳ) = −(D2
1FT (x

⋆, ȳ) + D2JT (x
⋆))−1 ◦ PT ◦D2

12F(x
⋆, ȳ), (8.3)

where T = Tx⋆ .

One now may wonder whether condition (Cx⋆,y) is restrictive, and in particu-

lar, whether there exists always a solution x⋆ such that it holds. In Section 8.3,
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8.2 Local Behavior of a Solution Mapping

we give an affirmative answer with the proviso that the loss F0 is strictly

convex.

The above result can be extended to the case where the data fidelity is of the

form F(x, θ) for some parameter θ, with no particular role of y here. One may

think for instance to consider θ = (y, λ). The variations with respect to λ are

important for developing homotopy-like algorithm. Vaiter, Deledalle, et al.

(2013) proved that if J is polyhedral, then the path is locally affine.

proof Let y 6∈ H and x⋆ be a solution of (PF
y) such that (Cx⋆,y) holds. We

denote Tx⋆ = T = S⊥.

We define the following mapping

Γ : (xT ,y) ∈ T × R
q 7→ ∇1F(xT ,y)T + exT

.

Observe that owing to Proposition 3.1(iv), the first equation of the first-order

condition is equivalent to Γ(x⋆T ,y) = 0.

Note that any xT ∈ T̃ such that Γ(xT ,y) = 0 is a solution of the constrained problem

min
α∈T

F(α,y) + J(α) . (P(y)T )

It comes from the fact that Γ(xT ,y) = 0 is the first-order minimality condition over

the subspace T .

We split the proof in three steps. We first show that there exists a mapping

ȳ 7→ x̃(ȳ) ∈ T and an open neighborhood V of y such that every element ȳ of V

satisfies Γ(x̃(ȳ)T , ȳ) = 0 and x̃(ȳ)S = 0. Then, we prove that x̃(ȳ) is a solution of

(PF
ȳ) for ȳ ∈ V. Finally, we obtain (8.3) from the implicit function theorem.

Step 1: construction of x̃(ȳ). The Jacobian of Γ with respect to the first variable

reads

D1Γ(x
⋆
T , ȳ) = D2

1FT (x
⋆
T , ȳ)T + D1ex⋆

T
,

where D1 denotes the derivative with respect to the first variable. Moreover, since

x⋆ ∈ T̃ , Assumption (Csm) yields D1ex⋆
T
= D2JT (x

⋆
T ). Thus, we get

D1Γ(x
⋆
T , ȳ) = D2

1FT (x
⋆
T , ȳ) + D2JT (x

⋆
T ).
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The linear operator mapping D1Γ(x
⋆
T ,y) is invertible on T according to Lemma 8.1.

Hence, using the implicit function theorem (Theorem 2.1) restricted to T , there

exists a neighborhood Ṽ of y such that we can define a mapping x̃T : Ṽ → T which

is C1(Ṽ), and satisfies for ȳ ∈ Ṽ

Γ(x̃T (ȳ), ȳ) = 0 and x̃T (y) = x
⋆
T .

We then extend x̃(ȳ) on S as x̃S(ȳ) = 0 which defines a continuous mapping

x̃ : Ṽ → T ⊂ Rn.

Step 2: checking the first-order minimality condition on S. We now have to

check the first order conditions on S, i.e. to check that −∇1F(x̃(ȳ), ȳ) ∈ ∂J(x̃(ȳ)).
We distinguish two cases.

(i) Assume that −∇1F(x
⋆,y) ∈ ri∂J(x⋆): we show that for a sufficiently small

neighbourhood of y, we also have −∇1F(x̃(ȳ), ȳ) ∈ ri∂J(x̃(ȳ)). First, since x̃

is continuous on T , for any ε > 0, there exists a neighborhood V̄ ⊂ Ṽ of y

such that

||x̃(ȳ) − x⋆|| 6 ε ∀ ȳ ∈ V̄ .

By virtue of Assumption (Creg), one can then choose ε sufficiently small to

conclude that Sx̃(ȳ) = S for any ȳ ∈ V̄.

Suppose that there is a sequence (yℓ)ℓ approaching y such that

−∇1F(x̃(yℓ),yℓ) /∈ ri∂J(x̃(yℓ))

for all ℓ. This can be equivalently written, owing to Lemma 5.3, as

∃uℓ ∈ Sx̃(yℓ), ∀v ∈ ∂J(x̃(yℓ)) 〈uℓ, v+∇1F(x
⋆,y)〉 6 0, ∀ℓ ,

or

∃uℓ ∈ Sx̃(yℓ), sup 〈uℓ, ∂J(x̃(yℓ)) +∇1F(x̃(yℓ),yℓ)〉 6 0, ∀ℓ . (8.4)

Recall that the sequence uℓ can be taken on the unit sphere, and therefore

has a non-zero cluster point, say u, which belongs to S as Sx̃(yℓ) converges
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8.2 Local Behavior of a Solution Mapping

to S. We now claim that

sup 〈u, ∂J(x⋆) +∇1F(x
⋆,y)〉 6 0 .

Consider any η ∈ ∂J(x⋆). Since x̃(yℓ) converges to x⋆ in T , we have from

the argument above that Tx̃(yℓ) = T for ℓ sufficiently large. This together

with Assumption (Csm), which means that ∂J(β) is continuous on T̃ , allow

to deduce that ∂J(x̃(yℓ)) converges to ∂J(x⋆). Thus, there exists a sequence

ηℓ ∈ ∂J(x̃(yℓ)) converging to η. Now, continuity of the mapping

yℓ ∈ Ṽ 7→ ∇1F(x̃(yℓ),yℓ) ∈ R
n

(since x̃ and ∇1F are both continuous on T and Rn × Rq) yields also that

∇1F(x̃(yℓ),yℓ) converges to ∇1F(x
⋆,y). Since

〈uℓ, ηℓ +∇1F(x̃(yℓ),yℓ)〉 6 sup 〈uℓ, ∂J(x̃(yℓ)) +∇1F(x̃(yℓ),yℓ)〉 6 0 , ∀ℓ

we get that

〈u, η+∇1F(x
⋆,y)〉 6 0 .

The latter inequality holds for any η ∈ ∂J(x⋆), which, in view of Lemma 5.3,

means that −∇1F(x
⋆,y) /∈ ri∂J(x⋆). But this contradicts our initial assump-

tion.

(ii) We now turn to the case where −∇1F(x
⋆,y) ∈ rbound∂J(x⋆). Observe that

(y, x⋆) ∈ AT . In particular y ∈ Πq+n,q(AT ). Since by assumption y 6∈ H, one

has y 6∈ bd(Πq+n,q(AT )). Hence, there exists an open ball B(y, ε) for some

ε > 0 such that B(y, ε) ⊂ Πq+n,q(AT ). Thus for every ȳ ∈ B(y, ε), there

exists x̄ ∈ T̃ such that

−∇1F(x̄, ȳ) ∈ rbound∂J(x̄).

Applying Lemma 2.2 with f = F(·,y) and g = J+ ιT , where ιT is the indicator

function of T , we deduce that all solutions of (P(ȳ)T ) share the same gradient.

Thus, we also have that ∇1F(x̄, ȳ) = ∇1F(x̃(ȳ), ȳ). This implies in particular

that e(x̄) = ex̃(ȳ). Since T̃ ⊂ T is an open set for the topology relative to T

and x̃(y) = x⋆ ∈ T̃ , for ȳ sufficiently close to y, Assumption (Creg) allows to
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deduce that

x̃(ȳ) ∈ T̃ =⇒ Tx̃(ȳ) = T .

Thus, we have Tx̃(ȳ) = Tx̄, hence Sx̃(ȳ) = Sx̄. Combining this with Propo-

sition 3.1 and the claim that both vectors have the same image under e·,

yields that they also share the same affine hull, i.e. S̄x̃(ȳ) = S̄x̄. In turn, this

implies the equality of the subdifferential by virtue of Proposition 3.6, i.e.

∂J(x̃(ȳ)) = ∂J(x̄). We conclude that

∀ȳ ∈ B(y, ε), −∇1F(x̃(ȳ), ȳ) ∈ rbound∂J(x̃(ȳ)).

Moreover, by definition of the mapping x̃T , one has for all ȳ ∈ V∩ V̄

∇1F(x̃T (ȳ), ȳ)T + ex̃T (ȳ) = 0 .

According to Lemma 3.9, the vector x̃(ȳ) is a solution of PF
ȳ.

Step 3: computing the differential. By virtue of step 1., we are in position to

use the implicit function theorem, and we get the Jacobian of x̃T as

Dx̃T (ȳ) = −
(
D1Γ(x̃T (ȳ), ȳ)

)−1(
D2Γ(x̃T (ȳ), ȳ)

)

where

D2Γ(xT , ȳ) = PT ◦D2
12F(xT , ȳ),

which leads us to (8.3). �

8.3 Local Behavior of the Prediction Mapping

In this section, we aim to provide a closed-form expression of the local varia-

tions of µ̂(y) with respect to the observation y. Our result is Theorem 8.2. We

assume in this section that F takes the form (8.1) and that

∀y ∈ R
q, F0(·,y) is strictly convex. (Cstrict)
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8.3.1 Single-Valued Prediction Mapping

Under this condition, the following immediate lemma gives a convenient

re-writing of condition (Cx⋆,y).

Lemma 8 .2 We assume that condition (Cstrict) holds. For x ∈ Rn, and

T = Tx, the two following conditions are equivalent.

(i) (Cx⋆,y) holds.

(ii) Ker(ΦT )∩ Ker(D2JT (x)) = {0}.

Furthermore, if x⋆0 and x⋆1 are two solutions of P(y), then Φx⋆0 = Φx⋆1.

proof The first part of the lemma come from the following equivalent statements.

z ∈ Ker(D2
1FT (x,y))∩ T

⇐⇒ 〈z, D2
1FT (x,y)z〉 = 〈ΦTz, D2

1F0(Φx,y)ΦTz〉 = 0
⇐⇒ z ∈ Ker(ΦT ) .

The second part is contained in Proposition 2.2. �

This lemma allows us to define the prediction

µ̂ :






Rq → Rq

y 7→ Φx⋆(y)

without ambiguity given any solution x⋆(y), which in turn defines a single-

valued mapping µ̂.

8.3.2 Well-Posedness of the Restricted Injectivity Condition

The following lemma proves that (Cx⋆,y) is not restrictive, and in particular,

there exists always a solution x⋆ such that it holds.
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Lemma 8 .3 There exists a solution x⋆ of (PF
y) such that (Cx⋆,y) holds.

proof Let x⋆ a solution of (PF
y) such that (Cx⋆,y) does not hold. Consider the

associated subspace T = Tx⋆ . Thus, for any h ∈
(
Ker(Φ)∩ T ∩ Ker(D2JT (x

⋆))
)
\ {0},

we have ΦTh = 0 and D2JT (x
⋆)h = 0. Let vt = x⋆+ th, ∀ t > 0. By Proposition 3.1,

vt ∈ T . Moreover, ΦTvt = ΦTx
⋆, and thus F(ΦTvt,y) = F(ΦTx

⋆,y).

Using convexity of J and h ∈ T , we have ∀η ∈ ∂J(vt)

J(vt) 6 J(x
⋆) + t〈η, h〉

= J(x⋆) + t〈ηT , h〉 .

Since J obeys Assumption (Creg) and vt ∈ T , for t sufficiently small, we have Tvt = T ,

whence we get

J(vt) 6 J(x
⋆) + t〈e(vt), h〉 .

where we used Proposition 3.1. From Assumption (Csm), Taylor expansion gives

e(vt) = e(x
⋆) + tD2JT (x

⋆)h+ tε(th)||h|| = e(x⋆) + tε(th)||h|| ,

with limt→0 ε(th) = 0. Altogether, we arrive at

J(vt) 6 J(x
⋆) + t

(
〈e(x⋆), h〉+ t||ε(th)||||h||2

)
.

Suppose now that there exists no x⋆ such that (Cx⋆,y) holds. Then, we can always

find a solution x⋆ such that4 e(x⋆) /∈
(
Ker(Φ)∩ T ∩ Ker(D2JT (x

⋆))
)⊥

, and therefore

there is some h ∈
(
Ker(Φ)∩ T ∩ Ker(D2JT (x

⋆))
)
\ {0} such that

〈e(x⋆), h〉 < 0

and thus

F(ΦTvt,y) + J(vt) < F(ΦTx
⋆,y) + J(x⋆) ,

for t sufficiently small, leading to a contradiction. �

4. Recall that e(x⋆) is always different from the origin unless x⋆ = 0.
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8.3.3 Main Result

The following theorem provides a closed-form expression of the local varia-

tions of µ̂(y) with respect to the observation y.

Theorem 8 .2 We assume that condition (Cstrict) holds. The mapping y 7→
µ̂(y) is C1(Rn \H). For all y 6∈ H, there exists a solution x⋆ of (PF

y) such that

(Cx⋆,y) is satisfied. Moreover, for all y 6∈ H,

Dµ̂(y) = ∆(y) (8.5)

where

∆(y) = −ΦT ◦ (ΦT
∗ ◦ D2

1F0(Φx
⋆,y) ◦ΦT + D2JT (x

⋆))−1 ◦ΦT
∗ ◦ D2

12F0(Φx
⋆,y)

where x⋆ is any solution of (PF
y) such that (Cx⋆,y) holds and T = Tx⋆ .

proof We can now prove Theorem 8.2. At any y /∈ H, using the previous

Lemma 8.3 we consider x⋆ a solution of (PF
y) such that (Cx⋆,y) holds. According to

Theorem 8.1, one can construct a mapping x̃(ȳ) which coincides with x⋆ at y, and

is C1 for ȳ in a neighborhood of y. Since µ̂(ȳ) = Φx̃(ȳ) on this neighborhood, this

shows that µ̂ is in turn C1 at y, and its divergence is equal to tr(∂yµ̂(y)). Note

that this shows that this computation is independent of the particular choice of x⋆

provided that (Cx⋆,y) holds. �

8.4 Relation to Previous Works

Sensitivity analysis5 is a major branch of optimization and optimal control

theory. Comprehensive monographs on the subject are (Bonnans et al. 2000;

Mordukhovich 1992). The focus of sensitivity analysis is the dependence and

the regularity properties of the optimal solution set and the optimal values

5. The meaning of sensitivity is different here from what is usually intended in statistical
sensitivity and uncertainty analysis.
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when the auxiliary parameters (e.g. y here) undergo a perturbation. In its

simplest form, sensitivity analysis of first-order optimality conditions, in the

parametric form of the Fermat rule, relies on the celebrated implicit function

theorem.

For the Lasso problem, the above differential formula (8.5) implies that

div(µ̂)(y) = | supp(x⋆)|,

where x⋆ is any solution of (Py,λ) such that (Cx⋆,y) holds, i.e. Φsupp(x⋆) has full

rank. This result is proved in (Dossal et al. 2013), see also (Tibshirani et al.

2012). The analysis sparsity case was investigated in (Vaiter, Deledalle, et al.

2013) and (Tibshirani et al. 2012). In this case, one has J = ||D∗ · ||1 and

div(µ̂)(y) = dim KerD∗
Λ, Λ = supp(D∗x⋆)c ,

where x⋆ is such that (Cx⋆,y) holds.

The originality of our contribution in this direction is the following

(i) We formulate the set H of non-smoothness points, which is crucial for

the application to risk estimation exposed in the next chapter.

(ii) We give an explicit formula of the differential of the prediction.

(iii) Our sensitivity result deals with a set-valued mapping (even if its image

by Φ is single-valued).
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9
Unbiased Risk Estimation

Main contributions of this chapter

• Proposition 9.2 proves that the prediction is Lipschitz continu-

ous with respect to the observation.

• Theorems 9.1 and 9.2 prove that the (G)SURE is an unbiased

estimator of the risk for non-linear Gaussian regression and

generalized linear model.
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T
his chapter is concerned with unbiased risk estimation for the variational

problem (PF
y). More precisely, given an estimator family x⋆λ(y) of x0

defined as solution of this problem, we aim to find the best parameter λ. Using

tools from o-minimal geometry, we prove that the divergence formula (8.5)

is valid Lebesgue-a.e. In turn, this allows us to define an unbiased estimate

of the DOF and of the prediction risk (Theorem 9.1 and Theorem 9.2) for

model (9.1) under two scenarios: (i) Lipschitz continuous non-linearity h and

an additive i.i.d. Gaussian noise; (ii) Generalized Linear Models (GLMs) with

a continuous exponential family. Our results encompass some previous ones

in the literature as special cases.

202



9.1 Generalized Linear Models and Degrees of Freedom

9.1 Generalized Linear Models and Degrees of

Freedom

9.1.1 Generalized Linear Models

We consider a more general model than a simple linear regression (1.3)

E(Y|Φ) = h(Φx0), (9.1)

where Y ∈ Rq is the response vector, x0 ∈ Rn is the unknown vector, Φ ∈
Rq×n is the fixed design matrix whose columns are the n covariate vectors,

and the expectation is taken with respect to some σ-finite measure. h is a

known smooth function Rq → Rq. The goal is to design an estimator of

x0 and to study its properties. In the sequel, we do not make any specific

assumption on the number of observations q with respect to the number of

predictors n. Recall that when q < n, (9.1) is underdetermined, whereas when

q > n and all the columns of Φ are linearly independent, it is overdetermined.

Many examples fall within the scope of model (9.1). We here review two of

them.

Generalized Linear Models One naturally thinks of generalized linear mod-

els (GLMs) introduced by Nelder et al. (1972) which assume that condition-

ally on Φ, Yi are independent with distribution that belongs to a given (one-

parameter) standard exponential family. Recall that the random variable Z ∈ R

has a distribution in this family if its distribution admits a density with respect

to some reference σ-finite measure on R of the form

p(z; θ) = B(z) exp(zθ−ϕ(θ)), θ ∈ Θ ⊆ R ,

where Θ is the natural parameter space and θ is the canonical parameter.

For model (9.1), the distribution of Y belongs to the n-parameter exponential
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family and its density reads

f(y|Φ; x0) =

(
n∏

i=1

Bi(yi)

)
exp

(
〈y, Φx0〉−

n∑

i=1

ϕi ((Φx0)i)

)
, Φx0 ∈ Θn ,

(9.2)

where the canonical parameter vector is the linear predictor Φx0. In this case,

h(µ) = (hi(µi))16i6n, where hi is the inverse of the so-called link function in

the language of GLM. Each hi is a monotonic differentiable function, and a

typical choice is the canonical link hi = ϕ ′
i, where ϕ ′

i is known to be one-

to-one if the family is regular (Brown 1986). Well-known examples are the

identity link hi(t) = t (Gaussian distribution, linear model), the reciprocal

link hi(t) = −1/t (Gamma and exponential distributions), and the logit link

hi(t) =
1

1+exp(−t)
(Bernoulli distribution, logistic regression).

Transformations The second example is where h plays the role of a trans-

formation such as variance-stabilizing transformations (VSTs), symmetriz-

ing transformations, or bias-corrected transformations. There is an enormous

body of literature on transformations, going back to the early 1940s. A typical

example is when Yi are indepedent Poisson random variables ∼ P ((Φx0)i), in

which case hi takes the form of the Anscombe bias-corrected VST. See (Das-

Gupta 2008, Chapter 4) for a comprehensive treatment and more examples.

9.1.2 Degrees of Freedom and Unbiased Risk Estimation

The degrees of freedom (DOF) of an estimator quantifies the complexity of a

statistical modeling procedure (Efron 1986). It is at the heart of several risk

estimation procedures and thus allows one to perform parameter selection

through risk minimization.

In this section, we will assume that F0 in (8.1) is strictly convex, so that the

response (or the prediction) µ̂(y) = Φx⋆(y) is uniquely defined as a single-

valued mapping of y (see Lemma 8.2). That is, it does not depend on a partic-

ular choice of solution x⋆(y) of (PF
y). More generally, the degrees of freedom

could be defined for any estimator of the prediction. Let µ0 = Φx0.
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Suppose that h in (9.1) is the identity and that the observations Y ∼ N(µ0,σ2Idn).

Following (Efron 1986), the DOF is defined as

df =

q∑

i=1

cov(Yi, µ̂i(Y))

σ2
.

The well-known Stein’s lemma (Stein 1981) asserts that, if y 7→ µ̂(y) is weakly

differentiable function (i.e. typically in a Sobolev space over an open subset

of Rn), such that each coordinate y 7→ µ̂i(y) ∈ R has an essentially bounded

weak derivative1

E

(∣∣∣∂µ̂i
∂yi

(Y)
∣∣∣
)
<∞, ∀i ,

then its divergence is an unbiased estimator of its DOF, i.e.

d̂f(Y) = div(µ̂)(Y) = tr(Dµ̂(Y)) and E(d̂f) = df ,

where Dµ̂ is the Jacobian of y 7→ µ̂(y). In turn, this allows to get an unbi-

ased estimator of the prediction risk E(||µ̂(Y) −µ0||
2) through the SURE (Stein

Unbiased Risk Estimate, Stein 1981).

Extensions of the SURE to independent variables from an exponential family

are considered in (Hudson 1978) for the continuous case, and (Hwang 1982)

in the discrete case. Eldar (2009) generalizes the SURE principle to continuous

multivariate exponential families.

9.2 GSURE for Gaussian Observations

9.2.1 Definition

The Stein’s lemma is the foundation of risk estimation using the SURE.

1. We write the same symbol as for the derivative, and rigorously speaking, this has to be
understood to hold Lebesgue-a.e.
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Chapter 9 Unbiased Risk Estimation

Lemma 9 .1 — Stein ’s Lemma . Let Y = Φx0+W withW ∼ N(0,σ2Idq).

Assume that g : y 7→ g(y) is weakly differentiable (and a fortiori a single-

valued mapping), then

EW〈W, g(Y)〉 = σ2EW tr

[
∂g(Y)

∂Y

]
.

proof This result is proved in (Stein 1981). �

We here develop an extended version of GSURE, defined by Eldar (2009),

that unbiasedly estimates the risk of reconstructing Aµ0 where A ∈ Rm×q is

an arbitrary matrix. This allows us to cover in a unified framework unbiased

estimation of several classical risks including the prediction risk (with A = Id),

the projection risk when Φ is rank deficient (with A = Φ∗(ΦΦ∗)+), and the

estimation risk when Φ has full rank (with A = Φ+ = (Φ∗Φ)−1Φ∗). A quantity

that will enter into play in the risk of estimating Aµ0 is the degrees of freedom

defined as

dfA =

q∑

i=1

covw((Ay)i, (Aµ̂(y))i)

σ2
.

Definition 9 .1 Let A ∈ Rm×q. We define the Generalized Stein Unbi-

ased Risk Estimate (GSURE) associated to A as

GSUREA(y) =||A(y− µ̂(y))||22 − σ
2 tr(A∗A) + 2σ2d̂f

A
(y) ,

where

d̂f
A
(y) = tr

(
A
∂µ̂(y)

∂y
A∗
)

.

9.2.2 Unbiasedness

The next result shows that GSUREA is an unbiased estimator of an appropriate

ℓ2 risk, and d̂f
A
(y) is an unbiased estimator of dfA
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9.2 GSURE for Gaussian Observations

Theorem 9 .1 Let A ∈ Rm×q. Suppose that y 7→ µ̂(y) is weakly dif-

ferentiable, so that its divergence is well-defined in the weak sense. If

Y = Φx0 +W with W ∼ N(0,σ2Idq), then

EWGSUREA(Y) = EW

(
||Aµ0 −Aµ̂(Y)||

2
2

)
and EW d̂f

A
(Y) = dfA .

proof Since y 7→ µ̂(y) = Φx⋆(y) is weakly differentiable, so is A∗Aµ̂(y) and we

have

∂A∗Aµ̂(y)
∂y

= A∗A
∂µ̂(y)

∂y
.

Then, using Lemma 9.1, we get

EW〈w, A∗Aµ̂(Y)〉 = σ2EW tr

(
A∗A

∂µ̂(Y)

∂y

)
= σ2EW d̂f

A
(Y) .

Using the decomposition AY = AΦx0 +AW, we obtain

EW ||AY −Aµ̂(Y)||22 = EW ||AΦx0 +AW||22 − 2EW〈AΦx0 +AW, Aµ̂(Y)〉
+ EW ||Aµ̂(Y)||22

= EW ||AΦx0||
2
2 + σ

2 tr(A∗A) − 2EW〈AΦx0, Aµ̂(Y)〉
− 2EW〈W, A∗Aµ̂(Y)〉+ EW ||Aµ̂(Y)||22

= EW ||AΦx0 −Aµ̂(Y)||
2
2

+ σ2 tr(A∗A) − 2σ2EW d̂f
A
(Y) .

Moreover,
∑

i covW((AY)i, (Aµ̂(Y))i)=EW〈AW, Aµ̂(Y)〉, which shows that d̂fA(Y)

is indeed an unbiased estimator of dfA. �

Theorem 9.1 can be straightforwardly adapted to deal with any white Gaus-

sian noise with a non-singular covariance matrix Σ. It is sufficient to consider

the change of variable y 7→ Σ−1/2y and Φ 7→ Σ−1/2Φ. This is similar to the

work of Eldar (2009).
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9.2.3 Prediction, Projected and Estimation Risk

All estimators of the form GSUREB with B such that BΦ = AΦ share the

same expectation given by Theorem 9.1. Hence, there are several ways to

estimate the risk in reconstructing Aµ0. For the estimation of the prediction,

projection and estimation risks, we now give the corresponding expressions

and associated estimators (with subscript notations) as direct consequences

of Theorem 9.1:

• A = Id: in which case GSUREId becomes

GSUREΦ(y) = ||y− µ̂(y)||22 − qσ
2 + 2σ2 tr

(
∂µ̂(y)

∂y

)

which provides an unbiased estimate of the prediction risk

RiskΦ(x0) = EW ||Φx⋆(Y) −Φx0||
2
2 .

This coincides with the classical SURE.

• A = Φ∗(ΦΦ∗)+: when Φ is rank deficient, Π = Φ∗(ΦΦ∗)+Φ is the orthog-

onal projector on Ker(Φ)⊥ = Im(Φ∗). Denoting xML(y) = Φ∗(ΦΦ∗)+y

the maximum likelihood estimator (MLE), GSUREΦ∗(ΦΦ∗)+ becomes

GSUREΠ(y)= ||xML(y) −Πx
⋆(y)||22−σ

2 tr
(
(ΦΦ∗)+

)

+2σ2 tr

(
(ΦΦ∗)+

∂µ̂(y)

∂y

)
.

It provides an unbiased estimate of the projection risk

RiskΠ(x0) = EW ||Πx⋆(Y) −Πx0||
2
2 .

If Φ is the synthesis operator of a Parseval tight frame, i.e. ΦΦ∗ = Id,

the projection risk coincides with the prediction risk and so do the

corresponding GSURE estimates

RiskΠ(x0) = RiskΦ(x0) and GSUREΠ(y) = GSUREΦ(y) .
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9.3 Unbiased Risk Estimation

It is also worth noting that if x⋆(y) never lies in Ker(Φ), then RiskΠ(x0)

coincides with the estimation risk up to the additive constant ||(Id −

Π)x0||
2
2.

• A = (Φ∗Φ)−1Φ∗: in this case Φ has full rank, and the mapping y 7→ x⋆(y)

is single-valued and weakly differentiable. The maximum likelihood

estimator is now xML(y) = (Φ∗Φ)−1Φ∗y , and GSURE(Φ∗Φ)−1Φ∗
takes

the form

GSUREId(y) = ||xML(y) − x
⋆(y)||22 − σ

2 tr
(
(Φ∗Φ)−1

)

+2σ2 tr

(
Φ(Φ∗Φ)−1∂x

⋆(y)

∂y

)
.

This is an unbiased estimator of the estimation risk given by

RiskId(x0) = EW ||x⋆(Y) − x0||
2
2 .

9.3 Unbiased Risk Estimation

Throughout this section, we use the same symbols to denote weak derivatives

(whenever they exist) as for derivatives. Rigorously speaking, the identities

have to be understood to hold Lebesgue-a.e. (Evans et al. 1992).

So far, we have shown that ouside the transition space H, the mapping µ̂(y)

enjoys (locally) nice smoothness properties, which in turn gives closed-form

formula of its divergence. To establish that such a formula holds Lebesgue

a.e., a key argument that we need to show is that H is of negligible Lebesgue

measure. This is where o-minimal geometry enters the picture. In turn, for Y

drawn from some appropriate probability measure with density with respect

to the Lebesgue measure, this allows us to establish unbiasedness of quadratic

risk estimators.

Our o-minimality assumptions requires the existence of an o-minimal struc-

ture O, see Definition 2.32, such that

the functionals F and J are definable in O. (CO)
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Section 2.4 argues that this condition is not restrictive.

We assume in this section that F takes the form (8.1) and that

∀y ∈ R
q, F0(·,y) is strongly convex with modulus τ. (Cτ)

and

∃L > 0, sup
(µ,y)∈Rq×Rq

||D2
12F0(µ,y)|| 6 L. (CL)

Obviously, assumption (Cτ) implies (Cstrict), and thus the claims of the pre-

vious section remain true. Moreover, this assumption holds for the squared

loss, but also for some losses of the exponential family (8.2), possibly adding a

small quadratic term in β. As far as assumption (CL) is concerned, it is easy to

check that it is fulfilled with L = 1 for any loss of the exponential family (8.2),

since D2
12F0(µ,y) = Id.

9.3.1 The Transition Space has Zero-Measure

Proposition 9 .1 Suppose that conditions (CO) and (CT) hold. Then, H

is of Lebesgue measure zero.

proof We obtain this assertion by proving that all HT are of zero measure for

all T and that the union is over a finite set, because of (CT). Let C ⊂ Rn be the

set whose gauge is J, and C◦ its polar.

• Since J is definable by (CO), ∇1F(x,y) is also definable by virtue of Proposi-

tion 2.11.

• Given T ∈ T, T̃ is also definable. Indeed, T̃ can be equivalently written

T̃ = {x | ∀ξ ∈ T and 〈di, α〉 = 0 ∀i s.t. 〈di, x〉 = 0⇒ ξ = α} .

which involves algebraic (in fact linear) sets, whence definability follows after

interpreting the logical notations (conjunction and universal quantifiers) in
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9.3 Unbiased Risk Estimation

the first-order formula in terms of set operations, and using axioms 1-4 of

definability in an o-minimal structure.

• Let D : Rn ⇒ Rn the set-valued mapping whose graph is

G(D) = {(β,η) | η ∈ ri∂J(β)} .

From Lemma 2.13, G(D) is definable. Since the graph ∂J is closed (Hiriart-

Urruty et al. 2001), and definable (Lemma 2.13), the set

{(β,η) | η ∈ rbound∂J(β)} = G(∂J) \ G(D) ,

is also definable by axiom 1. This entails that AT is also a definable subset

of Rq × T̃ since

AT = (Rq × T̃ × R
n)∩ {(y, x,η) | ∃η,η = −∇1F(xT ,y)}

∩ {(β,η) | η ∈ rbound∂J(β)} .

• By axiom 4, the canonical projection Πq+n,q(AT ) is definable, and its bound-

aryHT = bd(Πq+n,q(AT )) is also definable by (Coste 1999, Proposition 1.12)

with a strictly smaller dimension than Πq+n,q(AT ) (Coste 1999, Theorem 3.22).

• We recall now from (Coste 1999, Theorem 2.10) that any definable subset

A ⊂ Rq in O can be decomposed (stratified) in a disjoint finite union of q

subsets Ci, definable in O, called cells. The dimension of A is (Coste 1999,

Proposition 3.17(4))

d = max
i∈{1,...,q}

di 6 q ,

where di = dim(Ci). Altogether we get that

dimHT = dim bd(Πq+n,q(AT )) < dimΠq+n,q(AT ) = d 6 q

whence we deduce that H is of zero measure with respect to the Lebesgue

measure on Rq since the union is taken over the finite set T by (CT). �
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9.3.2 The Prediction is Lipschitz Continuous

Proposition 9 .2 Suppose that conditions (Cτ) and (CL) hold. Then, µ̂

is Lipschitz continuous.

proof F0(·,y) is strongly convex with modulus τ if, and only if,

F0(µ,y) = G(µ,y) +
τ

2
||µ||2

where G(·,y) is convex and satisfies (CF), and in particular its domain in µ is

full-dimensional. Thus, (PF
y) amounts to solving

min
x∈Rn

τ

2
||Φx||2 +G(Φx,y) + λJ(x).

It can be recasted as a constrained optimization problem

min
µ∈Rq,x∈Rn

τ

2
||µ||2 +G(µ,y) + λJ(x) s.t. µ = Φx.

Introducing the image (ΦJ) of J under the linear mapping Φ, it is equivalent to

min
µ∈Rq

τ

2
||µ||2 +G(µ,y) + λ(ΦJ)(µ) , (9.3)

where (ΦJ)(µ) = min
{x∈Rn| µ=Φx}

λJ(x). This is a proper closed convex function, which

is finite on Im(Φ). The minimization problem amounts to computing the proximal

point at 0 of G(·,y) + λ(ΦJ), which is a proper closed and convex function. Thus

this point exists and is unique.

Furthermore, by assumption on F0, the difference function F0(·,y1) − F0(·,y2) =
G(·,y1)−G(·,y2) is Lipschitz continuous on Rq with Lipschitz constant L||y1−y2||.

It then follows from (Bonnans et al. 2000, Proposition 4.32) that µ̂(·) is Lipschitz
continuous with constant 2L/τ. �
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9.3 Unbiased Risk Estimation

9.3.3 A Closed Form Expression of the DOF

We now arrive at our main contribution. The following theorem prove that

the quantity ∆(y) defined in (8.5) allows us to define an unbiased estimate of

the degrees of freedom, which is computable in closed form.

Theorem 9 .2 Suppose that conditions (CO), (Cτ) and (CL) hold. Then,

d̂f(y) = tr∆(y) a.e.,

where ∆ is defined in (8.5). Hence, tr∆(y) is an unbiased estimate of df(y).

proof By Proposition 9.2, µ̂ is Lipschitz continuous. From (Evans et al. 1992,

Theorem 5, Section 4.2.3), weak differentiability follows. Rademacher theorem as-

serts that a Lipschitz continuous function is differentiable Lebesgue a.e. and its

derivative and weak derivative coincide Lebesgue a.e., (Evans et al. 1992, Theo-

rem 2, Section 6.2). Its weak derivative, whenever it exists, is upper-bounded by

the Lipschitz constant. Thus

E

(∣∣∣∂(µ̂)i
∂yi

(Y)
∣∣∣
)
< +∞ .

This formula is valid everywhere except on the set H which is of Lebesgue measure

zero as shown in Proposition 9.1. We conclude by invoking (i) and Stein’s lemma

(Stein 1981) to establish unbiasedness of the estimator d̂f of the DOF. �

9.3.4 The (G)SURE is an Unbiased Estimator of the Risk

Gaussian Regression. Assume that the observation model (9.1) specialises

to Y ∼ N(Φx0,σ2Idn).

Corollary 9 .1 Suppose that conditions (CO), (Cτ) and (CL) hold. Then,

the GSURE

GSUREA(Y) =||AY −Aµ̂(Y)||2 + 2σ2d̂f
A
(Y) − σ2 tr(AA∗) (9.4)
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is an unbiased estimator of the risk E
(
||Aµ̂(Y) −Aµ0||

2
)
, and

d̂f
A
(Y) = tr(A∆(Y)) a.e.

proof By the chain rule (Evans et al. 1992, Remark, Section 4.2.2), the weak

derivative of A ◦ µ̂(·) at y is precisely

D(A ◦ µ̂)(y)) = A (µ̂(y))∆(y) a.e.

This formula is valid everywhere except on the set H which is of Lebesgue measure

zero as shown in Proposition 9.1. We conclude by invoking Proposition 9.2 to

establish unbiasedness of the estimator d̂f
A
(Y) and using Theorem 9.1. �

GLM with the continuous exponential family. Assume that the observation

model (9.1) corresponds to the GLM with a distribution which belongs to

a continuous standard exponential family as parameterized in (9.2). Denote

∇ logB(y) =
(
∂ logBi(yi)

∂yi

)
i
.

Corollary 9 .2 Suppose that conditions (CO), (Cτ) and (CL) hold. Then,

the SURE

SURE(Y) =||∇ logB(Y) − µ̂(Y)||2 + 2d̂f(Y) − (||∇ logB(Y)||2 − ||µ0||
2) (9.5)

is an unbiased estimator of the risk E
(
||µ̂(Y) − µ0||

2
)
, and

d̂f(Y) = tr∆(Y) a.e.

proof The proof is similar but uses the result (Eldar 2009, Theorem 1) to con-

clude. �

Though SURE(Y) depends on µ0, which is obviously unknown, it is only

through an additive constant.
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9.3.5 A Simple Example: DOF of Block Thresholding

Consider that Φ = Id, J = || · ||1,2 and F0 = 1
λ || · −y||2 is the square loss. In

this setting, it is known that (PF
y) has a unique solution given by the block

thresholding operator, i.e. for every b ∈ B,

µ̂(y)b = x⋆b =






0 if ||yb|| 6 λ(
1−

λ

yb

)
yb otherwise.

The estimator of the degrees of freedom reads then

d̂f(y) = |Λ|− λ
∑

b⊆Λ

|b|− 1

||yb||
where Λ =

⋃
{b ∈ B | ||yb|| > λ} .

Figure 9.1 illustrates this theorem by showing d̂f(y) as a function of y ∈ R2

for a single block g = {0, 1} of size 2. Note that the DOF is not constant

equal to 2 outside Rλ = {y | ||y|| > λ} (which would be the case for a 1-D soft

thresholding). It tends to 2 when y→ +∞ and is equal to 1 on the boundary

of Rλ.

9.4 Relation to Previous Works

9.4.1 Degrees of Freedom

In the case of standard Lasso (i.e. ℓ1 penalty) with Y ∼ N(Φx0,σ2Idn) and Φ

of full column rank, Zou et al. (2007) showed that the number of nonzero

coefficients is an unbiased estimate for the DOF. Their work was generalized

in (Dossal et al. 2013) to any arbitrary design matrix Φ. Under the same

Gaussian linear regression model, unbiased estimators of the DOF for the

Lasso with ℓ1-analysis penalty, were given independently in (Tibshirani et al.

2012; Vaiter, Deledalle, et al. 2013).

A formula of an estimate of the DOF for the group Lasso when the design

is orthogonal within each group was conjectured in (Yuan et al. 2005). Kato

2009 studied the DOF of a general shrinkage estimator where the regression
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Figure 9.1: Display of d̂f in 2-D for λ = 0.3.

coefficients are constrained to a closed convex set C. His work extends that

of Meyer et al. (2000) which treats the case where C is a convex polyhedral

cone. When Φ is full column rank, Kato (2009) derived a divergence formula

under a smoothness condition on the boundary of C, from which an unbiased

estimator of the degrees of freedom was obtained. When specializing to the

constrained version of the group Lasso, the author provided an unbiased

estimate of the corresponding DOF under the same group-wise orthogonality

assumption on Φ as (Yuan et al. 2005). An estimate of the DOF for the group

Lasso was also given by Solo et al. (2010) using heuristic derivations that

are valid only when Φ is full column rank, though its unbiasedness is not

proved.
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9.4.2 Generalized Stein Unbiased Risk Estimator

In (Eldar 2009), the author derived expressions equivalent to GSUREΠ and

GSUREId up to a constant which does not depend on the estimator. However,

her expressions were developed separately, whereas we have shown that these

GSURE estimates originate from a general result stated in Theorem 9.1. An-

other distinction between our work and (Eldar 2009) lies in the assumptions

imposed. Eldar (2009) supposes x⋆(y) to be a weakly differentiable function

of Φ∗y/σ2. In contrast, we just require that the prediction y 7→ µ̂(y) (a single-

valued map) is weakly differentiable, as classically assumed in the SURE

theory.

Indeed, let u = Φ∗y/σ2, and define x⋆(y) = z⋆θ(u). Assume that u 7→ z⋆θ(u) is

weakly differentiable (and a fortiori a single-valued mapping).

When Φ is rank deficient, Eldar (2009) proves unbiasedness of the following

estimator of the projection risk

GSURE(Eldar)
Π (z⋆θ(u)) =||Πx0||

2
2 + ||Πz⋆θ(u)||

2
2 − 2〈z⋆θ(u), xML(y)〉

+ 2 tr

(
Π
∂z⋆θ(u)

∂u

)
.

Since by assumption
∂Φz⋆θ(u)

∂u = Φ
∂z⋆θ(u)

∂u , and using the chain rule, the follow-

ing holds

σ2 tr

(
(ΦΦ∗)+

∂µ̂(y)

∂y

)
= σ2 tr

(
(ΦΦ∗)+

∂Φz⋆θ(u)

∂u

∂u

∂y

)
= tr

(
Π
∂z⋆θ(u)

∂u

)

whence it follows that

GSUREΠ(x
⋆(y)) − GSURE(Eldar)

Π (x⋆(y)) =||xML(y)||
2
2 − ||Πx0||

2
2

− σ2 tr
(
(ΦΦ∗)+

)
.

A similar reasoning when Φ has full rank leads to

GSUREId(x
⋆(y)) − GSURE(Eldar)

Id (x⋆(y)) =||xML(y)||
2
2 − ||x0||

2
2

− σ2 tr
(
(Φ∗Φ)−1

)
.
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Both our estimator GSUREId and those of (Eldar 2009) are unbiased, but they

do not have necessarily the same variance. Given that they only differ by

terms that do not depend on x⋆(y), and in particular on a parameter (here λ),

selecting the latter by minimizing our GSUREId expressions or those of (Eldar

2009) leads to the same results.

Let us finally mention that in the context of deconvolution, GSUREΠ boils

down to the unbiased estimator of the projection risk obtained by Pesquet

et al. (2009).
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10
Numerical Considerations

Main contributions of this chapter

• We prove in Theorem 10.1 that under the same hypothesis

of non-degeneracy and partial smoothness as those of Theo-

rem 7.2, the forward-backward algorithm identifies the correct

manifold after a finite number of steps.

• We discuss in Sections 10.2 and 10.3 how the linearized precer-

tificate behaves in different imaging applications.

• We investigate further the behavior of total variation denoising

in Theorem 10.2 and the compressed sensing with ℓ∞ regular-

ization in Theorem 10.3.
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T
he effective computation of a solution to (Py,λ) is not the main scope

of this thesis1. However, it seems important to give insight on how to

numerically solve with such a problem in high dimension and we give basics

understanding of optimization in order to compute the linearized precertifi-

cate pF (see Chapter 5).

10.1 Introduction to Proximal Splitting

Suppose that one seeks solutions of

x⋆ ∈ Argmin
x∈Rn

f(x), (10.1)

1. However, we developped a Python module, coined pyprox, available on Github: http:
//github.com/svaiter/pyprox including forward-backward, Douglas-Rachford, ADMM and
generalized forward-backward (Raguet et al. 2013) algorithms. It was used for the numerical
experiments of this chapter. We also refer the reader to the Numerical Tours website http:

//www.numerical-tours.com.
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10.1 Introduction to Proximal Splitting

where f is a differentiable function with a uniformly Lipschitz gradient. Then,

the most common algorithm is the gradient descent, see for instance (Boyd

et al. 2004), which reads

xk+1 = xk − µk∇f(xk),

where the step size µk should be small enough to ensure convergence. A

major issue is that the objective function of (Py,λ) is in general not C1(Rn)

because non-smoothness of J is crucial to induce low complexity models, see

Section 1.1.4. Several solutions exist in the litterature. A powerful class of

methods to cope with such non-smooth, large scales, optimization problems

are so-called proximal splitting schemes. One can refers to (Combettes et al.

2011) for a detailed review.

10.1.1 Proximity Operator

The proximity operator was introduced by (Moreau 1965). Its definition reads

as follows.

Definition 10 .1 — Proximity Operator Let f ∈ Γ0(Rn). The map-

ping

proxf : x 7→ argmin
z∈Rn

f(z) +
1

2
||x− z||2,

is a well-defined single-valued mapping over Rn, and coined the proximity

operator of f.

The following proposition recaps the important properties of the proximity

operator. A proof can be found in (Bauschke et al. 2011).

Proposition 10 .1 — Main properties of proxf Let f ∈ Γ0(Rn).

(i) proxf is firmly non-expansive, i.e. for every x, z ∈ Rn,

||proxf(x) − proxf(z)||
2 + ||(x− proxf(x)) − (z− proxf(z))||

2 6 ||x− z||2.
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(ii) The set of fixed-points
{
x ∈ Rn | proxf(x) = x

}
is the set of solutions

of (10.1).

(iii) For every u, x ∈ Rn, one has

u = proxf(x) ⇐⇒ x− u ∈ ∂f(x).

(iv) The Moreau identity is satisfied, i.e. for every x ∈ Rn,

x = proxf(x) + proxf∗(x). (10.2)

(v) If g ∈ Γ0(Rm), for h(x1, x2) = f(x1) + g(x2), one has

proxh(x1, x2) = (proxf(x1), proxg(x2)).

(vi) Define h(x) = f(tx+ a) with t 6= 0 and a ∈ Rn. Then,

proxh(x) =
1

t

(
proxt2f(tx+ a) − a

)
.

We shall give some examples of proximity operators.

Indicator function. Let C ⊆ Rn be a non-empty closed convex set and f = ιC
its indicator function. Then, proxf = PC the euclidian projection onto C. Note

that when C is a linear subspace, the Moreau decomposition (10.2) reads

Id = PT + PT⊥ which accounts for the decomposition of Rn = T + T⊥ into

orthogonal subspaces

Quadratic objective. Let f(x) = 1
2〈Ax, x〉+ 〈b, x〉+ c be a quadratic function,

where A is a positive symmetric matrix. Its proximity operator reads

proxγf(x) = (Id + γA)−1(x− γb).
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10.1 Introduction to Proximal Splitting

General norms. Let f(x) = ||x|| be a norm on Rn. Its conjugate function is the

indicator function ιB of the dual norm ball B defined as

B = {x ∈ R
n | ||x||∗ 6 1} where ||x||∗ = max

||z||61
〈x, z〉.

Using (10.2), its proximity operator reads proxf = Id − PB.

ℓ1 norm. The proximity operator of ℓ1 is the so-called soft-thresholding op-

erator

(proxγ||·||1(x))i =






xi − γ if xi > γ

0 if |xi| 6 γ

xi + γ if xi 6 γ.

Nuclear norm. The proximity operator of the nuclear norm is the soft-thresholding

operator applies to the singular values. More precisely, ifA = Udiag(σ1, . . . ,σn)V∗

is the SVD of A, then

proxγ||·||∗(A) = Udiag(proxγ||·||1(σ1, . . . ,σn))V
∗.

See (Lewis 1995) for a proof.

ℓ∞-norm. Using Moreau identity, we deduce that

proxγ||·||∞(x) = x− PB
ℓ1

(
x

γ

)
,

where PB
ℓ1

is the orthogonal projection onto the ℓ1 unit-ball. This projector

can be computed using soft-thresholding and sorting, see (Fadili et al. 2011)

for more details.
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10.1.2 Algorithms

10.1.2.1 Proximal Point Algorithm

Point (ii) of Proposition 10.1, namely that the set of fixed-points of proxf

coincides with the minimizer of (10.1), suggests to define an algorithm, coined

proximal fixed point algorithm, where the iteration are of the form

xk+1 = proxγf(xk),

for γ > 0. Even if such a scheme converges, a major issues with these iter-

ations is that for the functionals f considered, computing proxf cannot be

done in closed form, which makes this algorithm intractable. This however

suggests the introduction of more advanced iterations obtained by splitting

the functional f in sum of simpler functions.

For many application in machine learning and imaging sciences, one may

re-write the problem (10.1) as follows

x⋆ ∈ Argmin
x∈Rn

f(x) + g(x), (10.3)

where f and g enjoy some noticeable properties. For instance f or g might be

smooth, or one might be able to compute their proximity operator in closed

form.

10.1.2.2 Forward-Backward

Suppose that f is C1(Rn) with a Lipschitz-continuous derivative and g ∈
Γ0(R

n). In this case, one can use forward-backward iterations in order to

solve (10.3). We denote by β the Lipschitz modulus of ∇f.

Every sequence x(k) generated by Algorithm 1 converges to a solution to the

problem (10.3), see for instance (Combettes et al. 2005). Several versions of

the forward-backward algorithm exists, with different relaxation parameters.

Again, we refer to (Combettes et al. 2005) for a discussion on this subject.

Note that the projection gradient algorithm and the iterative soft-thresholding
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Algorithm 1 Forward–Backward

Choose ε ∈ (0, min(1, 1/β)) and x(0) ∈ Rn

for k > 0 do

µk ∈ [ε, 2/β− ε]

z(k) = x(k) − µk∇f(x(k)) ⊲ forward-step
x(k+1) = proxµkg

(z(k)) ⊲ backward-step
end for

algorithm (Daubechies et al. 2004) are special cases of Algorithm 1. A typical

case of applications of this algorithm is to solve (Py,λ) when f is smooth loss

such as the quadratic loss, and g = J a convex regularizer. Cases where this

algorithm can be applied is when J = || · ||1 or J = || · ||∗. Note however that

for more complicated regularizers, for instance J = ||D∗ · ||1 such as the total

variation, it is not possible to compute proxJ in closed form, so one needs to

use more advanced algorithms.

10.1.2.3 Douglas–Rachford

The forward-backward algorithm works when one of the two functions is

differentiable with a uniformly Lipschitz gradient. Suppose now that f,g ∈
Γ0(R

n) such that ri dom f ∩ ri domg 6= ∅ and f(x) + g(x) → +∞ when ||x|| →
+∞. For any function f in Γ0(Rn), we write rproxf(x) = 2proxf(x) − x. The

Douglas–Rachford has been introduced by Lions et al. (1979), in a special case,

and further studied by Eckstein et al. (1992). The algorithm reads as follows.

Every sequence x(k) generated by Algorithm 2 converges to a solution to the

Algorithm 2 Douglas–Rachford

Choose γ > 0, 0 < µ < 2 and z(0) ∈ Rn

for k > 0 do

z(k+1) = (1− µ/2)z(k) + µ/2(rproxγg ◦ rproxγf)(z
(k))

x(k+1) = proxγf(z
(k+1))

end for

problem (10.3), see for instance (Bauschke et al. 2011). A typical example of

application is to solve (Py,0), where f = ι{x| Φx=y} and g = J.
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10.1.2.4 Primal Dual Splitting

In the case of analysis models, one has to solve a problem of the form

x⋆ ∈ Argmin
x∈Rn

f(x) + g(D∗x), (10.4)

where D is a linear operator from Rp to Rn. Since, in general, there is no

easy way to compute the proximity operator of such mappings g ◦D∗, it is

not possible to apply directly the forward-backward or the Douglas–Rachford

algorithms.

Algorithm 3 Relaxed Arrow-Hurwicz primal-dual splitting.

Choose 0 6 θ 6 1, στ||D∗||2 < 1 and u(0), x(0), z(0) ∈ Rn

for k > 0 do

u(k+1) = proxσg∗(u
(k) + σD∗z(k)) ⊲ dual step

x(k+1) = proxτf(x
(k) − τDu(k)) ⊲ primal step

z(k+1) = x(k+1) + θ(x(k+1) − x(k))

end for

Every sequence x(k) generated by Algorithm 3 converges to a solution to the

problem (10.4), see for instance (Chambolle et al. 2011).

10.1.3 Identifying Activity with Forward-Backward Splitting

While we showed in Chapter 7 that under some mild conditions, the mani-

fold M is stable, this result only holds for the exact minimizer x⋆ of (Py,λ). In

practice, x⋆ is only computed approximately by some iterates x(k) of an opti-

mization scheme. It is thus of practical importance to be able to understand

whether the results of Chapter 7 allow to shed some light on the structure of

manifolds activated by the sequence of iterates, and their relation to the man-

ifold of the original object to recover. In this section, we answer this question

in the case of the forward-backward algorithm when applied to solve (Pθ)

with J partly smooth.

The following theorem shows that M is indeed correctly identified by the

forward-backward after a finite number of iterations.
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10.2 Robust Sparse Analysis Regularization

Theorem 10 .1 Suppose that the assumptions of Theorem 7.2 hold. Then,

for k sufficiently large, x(k) ∈ M, where x(k) is the sequence generated by

Algorithm 1.

proof The proof of this result follows the same line as Theorem 7.2 and use (Hare

et al. 2007, Theorem 5.3) to concludes. A close inspection of the proof of Theo-

rem 7.2 reveals that ηθ = ri(∂J(xθ)) for the assumed regime of (||w||, λ). This in

turn implies that the assumptions of (Hare et al. 2007, Theorem 5.3), are fulfilled.

We then conclude arguing in a similar way as in (Hare et al. 2007, Theorem 2). �

10.2 Robust Sparse Analysis Regularization

We illustrate in this section our theoretical findings on several examples to

study the robustness of the 1-D total variation, shift-invariant Haar and Fused

Lasso regularizations, which are special cases of analysis ℓ1 regularization.

10.2.1 Total Variation Denoising

The discrete 1-D total variation (TV) corresponds to taking D = DDIF as

defined in (1.12). We now define a subclass of signals in order to study the

stability of there jumps.

Definition 10 .2 A signal is said to contain a staircase if there exists i ∈
{1 . . . |I|− 1} such that

sign(D∗
Ix)i = sign(D∗

Ix)i+1 = ±1.

Figure 10.1 shows examples of signals with (left) and without (right) staircase

subsignals.
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i

xi

k

uk
i

xi

k

uk

+1

−1

Figure 10.1: Top row: Two examples of signals x having 2 jumps. Bottom row:
Associated vector Φ∗pF = divu.

The following result allows to characterize robustness of TV regularization

when Φ = Id, i.e. TV denoising.

Theorem 10 .2 We consider the case where Φ = Id. If x0 does not contain

a staircase, then IC(x0) < 1. Otherwise, IC(x0) = 1.

proof Let x⋆ be the unique solution of (Py,λ) with T⋆x = KerDΛ. We denote Ω

the matrix

Ω = D+
(Ic)

(
Φ∗ΦPT (Φ

∗
TΦT )

−1 PT −Id
)
D(I)s(I)

the vector η defined as

η :






ηI = sI = sign(D∗
Ix)

ηJ = σ = ΩsI.

The vector σ satisfies (D∗
JDJ)σ = −(D∗

JDI)sI. One can show that this implies that

η is the solution of a discrete Poisson equation

∀ j ∈ J, (∆η)j = 0 and






∀ i ∈ I, ηi = si,
η0 = ηN = 0.
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10.2 Robust Sparse Analysis Regularization

where ∆ = DD∗ is a discrete Laplacian operator. This implies that for i1 < k < i2
where i1, i2 are consecutive indices of I, m is obtained by linearly interpolating (see

Figure 10.1) the values ηi1 and ηi2 , i.e

ηk = ρηi1 + (1− ρ)ηi2 where ρ =
k− i1

i2 − i1
.

Hence, if x0 does not contain a staircase subsignal, one has IC(x0) < 1. On the

contrary, if there is i1 such that si1 = si2 , where i1 and i2 are consecutive indices

of I, then for every i1 < j < i2,ηj = si1 = ±1 which implies that IC(x0) = 1. �

This theorem together with Theorem 7.2 shows that if a signal x0 does not have

a staircase subsignal, then TV denoising identifies correctly the jump set when

the noise is small. This means that if w is small enough, for λ proportional to

the noise level, the TV denoised version of y contains the same jumps as x0.

To gain a better understanding of the latter situation, we build an instructive

family of signals x0 for which the IC criterion is equal to 1. It turns out that

depending on the structure of the noise w, the D-support of x0, supp(D∗x0),

can be either stably identified or not.

For n a multiple of 4, we split {1, . . . ,n} into 4 sets lk = {(k− 1)M+ 1, ...,kM}

of cardinality M = n/4. Let 1lk be the boxcar signal whose support is lk . We

define the staircase signal x0 = −1l1 + 1l4 degraded by a deterministic noise w

of the form w = ε(1l3 − 1l2), where ε ∈ R. The observation vector y = x0 +w

reads

y = −1l1 − ε1l2 + ε1l3 + 1l4 .

Suppose that ε > 0, then the solution x⋆λ of Pλ(y) is

x⋆λ =

(
−1+

λ

M

)
1l1 − ε1l2 + ε1l3 +

(
1−

λ

M

)
1l4 ,

if 0 6 λ 6 λ1 =M(1− ε), and

x⋆λ =

(
−ε+

λ− λ1

2M

)
(1l1 + 1l2) +

(
ε−

λ− λ1

2M

)
(1l3 + 1l4),

if λ1 6 λ 6 λ2 = λ1 + 2εM, and 0 if λ > λ2. Similarly, if ε < 0, the solution x⋆λ
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reads

x⋆λ =

(
−1+

λ

M

)
1l1 −

(
ε+ 2

λ

M

)
(1l2 − 1l3) +

(
1−

λ

M

)
1l4 ,

if 0 6 λ 6 λ̄1 = −εM2 , and

x⋆λ =

(
−1+

λ

M

)
1l1 +

(
1−

λ

M

)
1l4 ,

if λ̄1 6 λ 6 λ̄2 = M, and 0 if λ > λ̄2. Figure 10.2 displays plots of the the

coordinates’ paths for both cases. It is worth pointing out that when ε > 0, the

x⋆

λ
[i]

λ

0

1

λ̄2

−ε

λ̄1

x⋆

λ
[i]

λ

0

1

λ1

ε

λ2

y[i]

i

0

2ǫ

y[i]

i

0

Figure 10.2: Top row: Signals y for ε < 0 (left) and ε > 0 (right). Bottom row:
Corresponding coordinates’ path of x⋆λ as a function of λ. The solid
lines correspond to the coordinates in l1 and l4, and the dashed ones
to the coordinates in l2 and l3.

D-support of x⋆λ is always different from that of x0 whatever the choice of λ,

whereas in the case ε < 0, for any λ̄1 6 λ 6 λ̄2, the D-support of x⋆λ and sign

of D∗x⋆λ are exactly those of x0.
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10.2 Robust Sparse Analysis Regularization

10.2.2 Total Variation Compressed Sensing

We compare numerically the difference between the linearized precertificate

pF and the analysis precertificate, see Definition 5.6. In this case, the analysis

certificate reads

pA = −D(NDSx
)+NDex,

where N∗ is a basis of KerΦ. Note that this precertificate cannot be used in

Theorem 7.2, but can be used in Theorem 6.1 of ensure ℓ2 noise robustness.

Figure 10.3 shows an example of pF and pA for a single realization of Φ. We

consider the realization Φ drawn from the Gaussian ensemble with redun-

dancy q/n = 1
3 and a signal x with 5 piecewise constant components. In this

compressed sensing scenario, one can see that pA behaves much better than

pF. Indeed, Phi∗pA is strictly within ri(∂J(x0)), which is not the case for Phi∗pF.

10.2.3 Shift-Invariant Haar Deconvolution

Sparse analysis regularization using a 1-D shift invariant Haar dictionary is

efficient to recover piecewise constant signals. This dictionary is built using a

set of scaled and dilated Haar filters

ψ
(j)
i =

1

2τ(j+1)






+1 if 0 6 i < 2j

−1 if − 2j 6 i < 0

0 otherwise,

where τ > 0 is a normalization exponent. For τ = 1, the dictionary is said to be

unit-normed. For τ = 1/2, it corresponds to a Parseval tight-frame. The action on

a signal x of the analysis operator corresponding to the translation invariant

Haar dictionary DH is

D∗
Hx =

(
ψ(j) ⋆ x

)
06j6Jmax

,

where ⋆ stands for the discrete convolution (with appropriate boundary con-

ditions) and Jmax < log2(n), where n is the size of the signal. The analysis

regularization ||D∗
Hx||1 can also be written as the sum over scales of the TV
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Figure 10.3: Total Variation Compressed Sensing with q/n = 1/3. Top: uF such
that Φ∗pF = divuF. Bottom: uA such that Φ∗pA = divuA.

semi-norms of filtered versions of the signal. As such, it can be understood as

a sort of multiscale total variation regularization. Apart from a multiplicative

factor, one recovers Total Variation when Jmax = 0.

We consider a convolution setting (for n = 256) where Φ is a circular convolu-

tion operator with a Gaussian kernel of standard deviation σ. We first study

the impact of σ on the identifiability criterion IC. The original signal xη is a

centered boxcar signal with a support of size 2ηn

xη = 1{⌊n/2−ηn⌋,...,⌊n/2+ηn⌋}, η ∈ (0, 1/2] .

Figure 10.4 displays the evolution of IC(x0) as a function of σ for three dic-
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10.2 Robust Sparse Analysis Regularization

tionaries: the total variation dictionary and the Haar wavelet dictionary with

two normalization exponents τ = 1 and τ = 0.5. In this experiment, we chose

η = 0.2. One can observe that the three curves pass through 1 for the same

value of σ (near 1 here). This shows that for σ small enough, deconvolv-

0.5 1.0 1.5 2.0 2.5 3.0
σ

0.7

0.8

0.9

1.0

1.1

1.2

1.3

IC

unit

tf

tv

Figure 10.4: Behavior of IC for a noiseless deconvolution scenario with a Gaussian
blur and ℓ1-analysis sparsity regularization in a shift invariant Haar
dictionary with Jmax = 4. IC is plotted as a function of the Gaussian
blurring kernel size σ ∈ [0.5, 3.0] for the total variation dictionary
and the Haar wavelet dictionary with two normalization exponents
τ. Dash-dotted line: τ = 1 (unit-normed). Dashed line: τ = 1/2

(tight-frame). Solid line: total variation.

ing a box signal is stable in the sense that the discontinuities are correctly

estimated in the presence of a small additive noise in the observations. In

addition, in the identifiability regime, IC(x0) appears smaller in the case of

the unit-normed normalization (i.e. τ = 1). However, one should avoid to infer

stronger conclusions since a detailed computation of the constants involved

in Theorem 7.2 would be necessary to completely and fairly compare the
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stability performance achieved with each of these three dictionaries.

10.2.4 Fused Lasso Compressed Sensing

Fused Lasso was introduced in Tibshirani et al. 2005. It corresponds to tak-

ing

D =
[
DDIF εId

]
,

and J = ||D∗ · ||1 in (Py,λ), where ε > 0. If x =
∑k

i=1 γi1[ai,bi], where γi ∈ R

and ai 6 bi < ai+1, then the model space Tx reads

Tx =

{
k∑

i=1

ρi1[ai,bi] | ρi ∈ R

}

.

This significates that the Fused Lasso favors sparse sums of boxcar signals.

We consider a compressed sensing setting (with the signal size n = 256) and

examine the behavior of IC with respect to the undersampling ratio q/n and

the true signal properties. Φ is drawn from the standard Gaussian ensemble,

i.e. Φi,j ∼i.i.d. N(0, 1). The sampled signal xη,ρ is the superposition of two

boxcars distant from each other by 2ρN and each of support size ηN

xη,ρ = 1{⌊( 1
2−η−ρ)n⌋,...,⌊( 1

2−ρ)n⌋} + 1{⌊( 1
2+ρ)n⌋,...,⌊( 1

2+η+ρ)n⌋}.

In our simulations, we fixed ρ = 0.1.

Figure 10.5 depicts the evolution of the empirical probability with respect to

the sampling of Φ of the event IC < 1 as a function of the sampling ratio

Q/N ∈ [0.5, 1] and the boxcar support size η ∈ [0.025, 0.15]. This probability is

computed from 1000 Monte-Carlo replications of the sampling of Φ. With no

surprise, one can clearly see that the probability increases as more measure-

ments are collected. This probability profile also seems to be increasing as η

decreases, but this is likely to be a consequence of the choice of the Fused

Lasso parameter ε, and the conclusion may be different for other choices.

This is indeed confirmed in our last experiment whose results are displayed

in Figure 10.6. It shows the evolution of the empirical probability of the event
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Figure 10.5: Behavior of IC for a compressed sensing scenario matrix with a Gaus-
sian measurement matrix and the Fused Lasso regularization. Empiri-
cal probability of the event IC < 1 as a function of the sampling ratio
q/n ∈ [0.5, 1] and the support size η ∈ [0.025, 0.15] with ε = 50/N.

IC < 1 as a function of the Fused Lasso parameter ε ∈ [1/n, 200/n] and the

support size η ∈ [0.025, 0.15]. This probability is again computed from 1000

Monte-Carlo replications. Depending on the choice of ε, the probability profile

does not necessarily exhibit a monotonic behavior as a function of η. For large

values (more weight on Id in the Fused Lasso dictionary), the probability

decreases monotonically as η increases which can be explained by the fact

that higher η corresponds to less sparse signals. As ε is lowered, higher weight

is put on the TV regularization, and the behavior is not anymore monotonic.

Now, the probability reaches a peak at intermediate values of η and then

vanishes quickly. The peak probability also decreases with decreasing ε.
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Figure 10.6: Behavior of IC for a compressed sensing scenario matrix with a Gaus-
sian measurement matrix and the Fused Lasso regularization. Empir-
ical probability of the event IC < 1 as a function of the parameter
ε ∈ [1/n, 200/n] and the support size η ∈ [0.025, 0.15] with q/n = 0.8.

10.3 Robust Antisparse Regularization

In some cases, one aims at recovering flat vectors, i.e such that for most i,

xi = ||x||∞. This is for instance the case in computer vision applications when

performing quantization of random projections, see (Jégou et al. 2012). One

can use as regularizer the ℓ∞ norm defined as

||x||∞ = max
i∈{1,...,n}

|xi|.

In this case, one has

Tx =
{
x ′ | x ′I = ρxI for some ρ ∈ R

}
,
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where I = {i | xi = ||x||∞}. This reflects that fact that J = || · ||∞ favors signal

having the same saturation pattern as x, see Proposition 3.15.

The following result studies the behavior of the linearized precertificate in a

compressed sensing scenario.

Theorem 10 .3 Let x be an arbitrary vector with its saturation support I,

its model subspace Tx = S⊥x and generalized sign vector ex as defined above.

Let β > 1. For Φ drawn from the standard Gaussian ensemble with

m > n− |I|+ 2β|I| log(|I|/2) ,

IC(x) < 1 with probability at least 1− 2(|I|/2)−f(β,|I|) where

f(β, |I|) =

(√
β

2|I|
+β− 1−

√
β

2|I|

)2

.

proof To lighten the notation, we drop the dependence on x of T , S and e.

Without of loss of generality, by symmetry of the norm, we will assume that the

entries of x are positive.

We follow the same program as in the CS literature. The key ingredient of the

proof is the fact that owing to the isotropy of the Gaussian ensemble, pF and Φ∗
S

are independent. Thus, for some τ > 0

Pr (IC(x) > 1) 6 Pr
(

IC(x) > 1
∣∣∣||pF|| 6 τ

)
+ Pr (||pF|| > τ) .

As soon as m > dim(T) = n− |I|+ 1, ΦT is full-column rank. Thus

||pF||
2 = 〈e, (Φ∗

TΦT )
−1 e〉 .

(
Φ∗

TΦT

)−1
is an inverse Wishart matrix with m degrees of freedom. To estimate

the deviation of this quadratic form, we use classical results on inverse χ2 random

variables with m−n+ |I| degrees of freedom and we get the tail bound

Pr

(
||pF|| >

√
1

m−n+ |I|− t
||e||

)
6 e

−
t2

4(m−n+|I|)

237



Chapter 10 Numerical Considerations

for t > 0. Now, conditionally on pF, the entries of αS = PSΦ
∗pF are i.i.d. N(0, ||pF||2)

and so are those of −αS by trivial symmetry of the centered Gaussian. Thus, using

a union bound, we get

Pr
(

IC(x) > 1
∣∣∣||pF|| 6 τ

)
6 Pr

(
max
i∈I

(−(αSx
)i)+ > 1/|I|

∣∣∣||pF|| 6 τ
)

6 Pr

(
max
i∈I

((αSx
)i)+ > 1/|I|

∣∣∣||pF|| 6 τ
)

6 |I|Pr ((z)+ > 1/(τ|I|))

6 |I|Pr (z > 1/(τ|I|))

6 |I|e
−

1
2τ2|I|2 .

Observe that (αS)i = 0 for all i ∈ Ic. Choosing

τ =

√
1

|I|(m−n+ |I|− t)

where we used that ||e|| = 1/
√
I, and inserting in the above probability terms, we

get

Pr (||pF|| > τ) 6 e
−

t2

4(m−n+|I|) ,

Pr
(

IC(x) > 1
∣∣∣||pF|| 6 τ

)
6 e

−

(
m−n+|I|−t

2|I|
−log(|I|/2)

)

.

Equating the arguments of the exponentials and solving

t2

4q
+

t

2|I|
−

(
q

2|I|
− log

(
|I|
2

))
= 0

for t to get equal probabilities, we get

t =
q

|I|




√√√√√1+ 2|I|


1− 2

2|I| log

(
|I|
2

)

q


− 1


 ,
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where q = m−n+ |I| > 1 by the injectivity assumption. Setting

β =
q

2|I| log
(
|I|
2

) ,

we get under the bound on m that β > 1, and

t = 2β log
(
|I|
2

)(√
1+ 2|I|β−1

β − 1

)
.

Inserting t in one of the probability terms, and after basic algebraic rearrangements,

we get the probability of success with the expression of the function f(β, |I|). �

The above bound and probability bears some similarities to what we get

with ℓ1 minimization, except that now the probability of success scales in a

power of |I| and not n directly. The reason underlying such a similarity is the

proof technique usual in CS-type bounds and the use of the minimal ℓ2-norm

dual certificate. In particular, a union bound is behind the log factor. If some

improvements is sought after, it is on this step that it can be gained.

The map f(β, |I|) is an increasing function of |I|, so that lim|I|→∞ f(β, |I|) = β− 1

and the probability of success increases with increasing size of the saturation

support. But this comes at the price of a stronger requirement on the number

of measurements.

For the noiseless problem (Py,0), it can be shown using arguments based on

the statistical dimension (Amelunxen et al. 2013) of the descent cone of the ℓ∞-

norm that there is a phase transition exactly at n− |I|/2, see (Chandrasekaran

et al. 2012, Proposition 3.12). The reason is that each face of the descent cone

of the hypercube at a point living on its k-dimensional face is the direct sum

of a subspace (the linear hull of the face), and of an orthant of dimension

n− k (up to an isometry). The statistical dimension is then (n− k)/2+ k =

(n+ k)/2 = n− |I|/2, observing that k = n− |I|.
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10.4 Efficient GSURE Computation for Analysis ℓ1

In this section, we exemplify the usefulness of our GSURE estimator, see

Definition 9.1, which can serve as a basis for automatically tuning the value

of λ in the case of analysis ℓ1-sparsity, i.e. J = ||D∗ · ||1. This is achieved by

computing, from a single realization of the noise w ∼ N(0,σ2Id), the parameter

λ that minimizes the value of GSURE when solving (Py,λ) from y = Φx0 +w

for various scenarios on Φ and x0. Note that this method can be adapted to

other analysis regularizers.

Specializing Theorem 9.1 to this case, we have the following result.

Corollary 10 .1 We assume that the observation model is Y ∼

N(Φx0,σ2Idn). In this case,

GSUREA(Y) =||A(Y − µ̂(Y))||2 + 2σ2d̂f
A
(Y) − σ2 tr(A∗A) (10.5)

is an unbiased estimator of the risk E
(
||Aµ̂(Y) −Aµ0||

2
)
, where

d̂f
A
(Y) = dim T = dim KerD∗

Λ, Λ = supp(D∗x⋆)c ,

with x⋆ is such that (INJT ), where T = Tx⋆ i.e.

KerD∗
Λ ∩ KerΦ = {0}.

10.4.1 Computing the GSURE

According to Lemma 8.3, there always exists a solution of (Py,λ) such that

(INJT ) holds, and this solution can be computed, see (Vaiter, Deledalle, et al.

2013) for the analysis ℓ1 prior. With assumption (INJT ) at hand, we now define

the following matrix whose role will be clarified shortly.
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Definition 10 .3 Let Λ be a D-cosupport. Suppose that (INJT ) holds. We

define the matrix Γ [Λ] as

Γ [Λ] = U (U∗Φ∗ΦU)−1U∗. (10.6)

where U is a matrix whose columns form a basis of KerD∗
Λ.

Observe that the action of Γ [Λ] can be rewritten as a quadratic optimization

under linear constraint

Γ [Λ]u = argmin
D∗

Λx=0

1

2
||Φx||2 − 〈x, u〉.

The remaining obstacle faced when implementing the GSURE formula of

Theorem 9.1 is to compute the divergence term. However, for large scale-data

as in image and signal processing, the computational storage required for the

matrix in the argument of the trace would be prohibitive. Additionally, com-

puting Γ [Λ] can only be reasonably afforded for small data size. Fortunately,

the structure of d̂f
A
(y) and the definition of Γ [Λ] allows to derive an efficient

and principled way to compute the trace term. This is formalized in the next

result.

Proposition 10 .2 One has

d̂f
A
(y) = EZ(〈ν(Z), Φ∗A∗AZ〉) (10.7)

where Z ∼ N(0, Idp), and where for any z ∈ Rp, ν = ν(z) solves the following

linear system

(
Φ∗Φ DJ

D∗
J 0

)(
ν

ν̃

)
=

(
Φ∗z

0

)
. (10.8)

proof We have

tr
[
AΦΓ [Λ]Φ∗A∗

]
= tr

[
ΦΓ [Λ]Φ∗A∗A

]
.
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Hence denoting ν(z) = Γ [Λ]Φ∗z, and using the fact that for any matrix U, trU =

EZ〈Z, UZ〉, we arrive at (10.7).

We then use the fact that Γ [Λ]Φ∗, the inverse of Φ on KerD∗
Λ, is the mapping

that solves the following linearly constrained least-squares problem

Γ [Λ]Φ∗z = argmin
h∈KerD∗

Λ

||Φh− z||22.

Writing the KKT conditions of this problem leads to (10.8), where ν̃ are the Lagrange

multipliers. �

In practice, the empirical mean estimator is replaced for the expectation in

(10.7), hence giving

1

k

k∑

i=1

〈ν(zi), Φ∗A∗Azi〉 WLLN−→ d̂f
A
(y) , (10.9)

for k realizations zi of Z, where WLNN stands for the Weak Law of Large

Numbers. Consequently, the computational bulk of computing an estimate of

d̂f
A
(y) is invested in solving for each ν(zi) the symmetric linear system (10.8)

using e.g. a conjugate gradient solver.

10.4.2 Parameter Selection using the GSURE

Super-Resolution with Total Variation Regularization In this example, Φ is

a vertical sub-sampling operator of factor two (hence q/n = 0.5). The noise

level has been set such that the observed image y has a peak signal-to-noise

ratio (PSNR) of 27.78 dB. We used an anisotropic total variation regularization;

i.e. the sum of the ℓ1-norms of the partial derivatives in the first and second

direction (not to be confused with the isotropic total variation). Fig. 10.7.d

depicts the projection risk and its GSUREΠ estimate obtained from (10.9) with

k = 1 as a function of λ. The curves appear unimodal and coincide even with

k = 1 and a single noise realization. Consequently, GSUREΠ provides a high-

quality selection of λ minimizing the projection risk. Close-up views of the

central parts of the degraded, restored (using the optimal λ), and true images

are shown in Fig. 10.7(a)-(c) for visual inspection of the restoration quality.

242



10.4 Efficient GSURE Computation for Analysis ℓ1

Compressed Sensing with Wavelet Analysis Regularization We consider in

this example a compressed sensing scenario where Φ is a random partial DCT

measurement matrix with an under-sampling ratio q/n = 0.5. The noise is

such that input image y has a PSNR set to 27.50 dB. We took D as the shift-

invariant Haar wavelet dictionary with 3 scales. Again, we estimate GSUREΠ

with k = 1 in (10.9). The results observed on the super-resolution example are

confirmed in this compressed sensing experiment both visually and qualita-

tively, see Fig. 10.8.

10.4.3 Relation to Previous Work

In least-squares regression regularized by a sufficiently smooth penalty term,

the DOF can be estimated in closed-form (Solo 1996). However even in such

simple cases, the computational load and/or storage can be prohibitive for

large-scale data.

To overcome the analytical difficult for general non-linear estimators, when

no closed-form expression is available, first attempts developed bootstrap-

based (asymptotically) unbiased estimators of the DOF (Efron 2004). Ye (1998)

and Shen et al. (2002) proposed a data perturbation technique to approxi-

mate the DOF (and the SURE) when its closed-form expression is not avail-

able or numerically expensive to compute. For denoising, a similar Monte-

Carlo approach has been used in (Ramani et al. 2008) where it was ap-

plied to total-variation denoising, wavelet soft-thresholding, and Wiener fil-

tering/smoothing splines.

Alternatively, an estimate can be obtained by recursively differentiating the

sequence of iterates that converges to a solution of the original minimization

problem. Initially, it has been proposed by Vonesch et al. (2008) to compute

the GSURE of sparse synthesis regularization by differentiating the sequence

of iterates of the forward-backward splitting algorithm. We have recently

proposed a generalization of this methodology to any proximal splitting algo-

rithm, and exemplified it on ℓ1-analysis regularization including the isotropic

total-variation regularization, and ℓ1 − ℓ2 synthesis regularization which pro-

motes block sparsity (Deledalle et al. 2014).
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In our case, we have shown that the computation of an accurate estimator

of the DOF for analysis ℓ1 regularization, and therefore of GSUREA for vari-

ous risks, can be obtained by solving a linear system. This is more efficient

than the previous general-purpose iterative methods that are computationally

expensive.
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Figure 10.7: Illustration of the selection of λ by minimizing GSUREΠ in a super-
resolution problem (q/n = 0.5) with anisotropic total variation regu-
larization. (a) The observed image y. (b) A solution x⋆(y) of (Py,λ)
at the optimal λ (the one minimizing GSUREΠ). (c) The underlying
true image x0. (d) Projection risk RiskΠ and its GSUREΠ estimate
obtained from (10.9) using k = 1 random realization.
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Figure 10.8: Illustration of the selection of λ by minimizing GSUREΠ in a com-
pressed sensing problem (q/n = 0.5) by an ℓ1-analysis regularization
in a shift-invariant Haar wavelet dictionary. (a) The MLE xML. (b)
A solution x⋆(y) of (Py,λ) at the optimal λ (the one minimizing
GSUREΠ). (c) The underlying true image x0. (d) Projection risk
RiskΠ and its GSUREΠ estimate obtained from (10.9) using k = 1

random realization.
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11
Conclusion

T
his thesis revolves around the theme of sensitivity analysis of optimization

problems. Each part is a variation on a popular theme of sensitivity anal-

ysis, such as Lipschitz continuity of the set of the minimizers of (Py,λ) when

λ > 0 or manifold stability when λ = 0 and λ > 0. This leads us to different

applications: ℓ2-robustness (Chapter 6), model identifiability (Chapter 7), local

differentiability (Chapter 8), unbiased estimation (Chapter 9) and algorithmic

identifiability (Chapter 10).

The theoretical analysis provided by this work draws a connection between

these popular applications in imaging, signal processing and machine learn-

ing. Partial smoothness allows us to recover results already known in the

litterature, within a coherent and unifying framework. It also allows us to

significantly extend these results to a larger class of regularizers and to gain

a better understanding of the effects of these regularizers.

The research program does not stop here. Many extensions of our work are

of interest.

Non convex regularizers and data loss. Non-convex functions are often

used in image processing or statistics. There are two differents kinds of non-

convexity which arise, i.e. on the data fidelity term and the regularizer.

min
x∈Rn

F(x,y) + J(x),
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For instance, one thinks of the analysis ℓp regularization, i.e.

min
x∈Rn

1

2
||y−Φx||2 + λ||D∗x||pp,

where 0 < p < 1 and ||u||p = (
∑

|ui|
p)1/p. In practice, using such a non-convex

functional seems to produce better result in imaging and computer graphics,

most probably because it better fits the high level of sparsity of natural image

gradients. We believe that our results can be extended to non-convex partly

smooth functions.

Unbounded functions. Our analysis does not cover the case of variational

formulation with constraints. A typical example is when one imposes non-

negativity constraints. For instance, the problem

min
x∈Rn

1

2
||y−Φx||2 + λG(x) subject to ∀i, xi > 0,

which can be recasted as

min
x∈Rn

1

2
||y−Φx||2 + λJ(x),

where J = G + ιC and C = {x | ∀i, xi > 0}. Unfortunately, the function J is

unbounded, due to the presence of ιC, hence not covered by our results.

Continuous setting. The continuous problem, defined in (cPy,λ),

f⋆ ∈ argmin
f∈H

1

2
||y−Ψf||2 + λJ(f) (cPλ(y))

leads to the same questions as (Py,λ). For instance, when J is the total variation

of a function (1.14), what can be said about the stability of the discontinuity set

of a solution ? This would extend the result of Caselles et al. (2007) obtained

when Φ = Id and w = 0.
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Résumé des travaux

Contexte. Cette thèse concerne la résolution de problèmes inverses linéaires

en dimension finie. Elle contribue ainsi à l’étude théorique de thématiques

centrales en traitement du signal ou d’image, en statistique ainsi qu’en ap-

prentissage. Un tel problème peut être écrit sous la forme

y = Φx0 +w,

où y ∈ Rq est le vecteur d’observations, x0 ∈ Rn les données inconnues à

retrouver, Φ un opérateur linéaire de Rq dans Rn et w un terme de bruit

additif. Ce modèle inclut de nombreux cas typiques en imagerie tels que

le débruitage, la déconvolution, l’interpolation, l’échantilonnage compressé

ainsi que la tomographie. L’opérateur linéaire Φ est généralement mal condi-

tionné. C’est la raison pour laquelle il s’avère nécessaire de mettre en place

une stratégie de reconstruction. Un cadre classique est celui des méthodes

variationnelles, pouvant s’écrire sous la forme

x⋆ ∈ Argmin
x∈Rn

1

2
||y−Φx||22 + λJ(x), (Py,λ)

où J est une fonction de Rn dans R+ que l’on considérera dans cette thèse

convexe. Il s’agit de réaliser un compromis entre fidélité aux données (terme

quadratique ici) et régularisation, représentée ici par J. Ce compromis est dicté

par le choix du paramètre λ. L’opérateur Φ n’étant généralement pas injectif,

il est important de garder en mémoire le fait que x⋆ n’est pas uniquement

déterminé. Quand w = 0, c’est-à-dire en absence de bruit, (Py,λ) se réduit sous

la forme

x⋆ ∈ Argmin
x∈Rn

J(x) sujet à Φx = y. (Py,0)

255



Chapter 11 Conclusion

Le choix de la pénalité J est un problème de recherche actif. Une des directions

possibles est de considérer J comme promouvant des données dites de faible

complexité. Plus précisément, en se donnant une collection de sous-espaces

vectoriels T de Rn, nous sommes amenés à considérer le problème de sélection

de modèle non-convexe

inf
T∈T,x∈T

||y−Φx||2 + λpen(T),

où typiquement pen(T) = dim T . Ce problème étant non seulement non-

convexe, mais souvent également NP-difficile, il est nécessaire de considérer

une méthode d’approximation. Dans cette thèse, nous nous consacrons aux

relaxations convexes. Ainsi la fonction de comptage (taille du support d’un

vecteur) est relâchée par la norme ℓ1, le rang d’une matrice est approché par la

norme nucléaire, etc. Ayant fixé une régularisation convexe J, nous définissons

le vecteur modèle associé à x ∈ Rn comme

ex = argmin
e∈aff∂J(x)

||e||,

où aff∂J(x) est l’espace affine engendré par la sous-différentielle de J en x.

Nous définissons également l’espace modèle tangent comme

Tx = span(∂J(x))⊥,

où spanC est l’espace linéaire engendré par C. Par exemple, si J = || · ||1, alors

Tx = {η | supp(η) ⊆ supp(x)} et ex = sign(x).

Robustesse. Le premier axe de cette thèse est dédié à l’étude de la robustesse

du problème (Py,λ). Nous cherchons à estimer combien un vecteur solution

x⋆ s’approche du vecteur d’origine x0 à la fois au sens d’une erreur ℓ2, mais

également en terme de sélection de modèle. Nous montrons le théorème

suivant de convergence linéaire.

Théorème 1 Soit T0 l’espace modèle tangent de x0. Supposons que :

• il existe α = Φ∗η ∈ ri∂J(x0), dite condition source, où ri∂J(x) est

l’intérieur relatif de ∂J(x) pour la topologie induite par aff∂J(x),
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• KerΦ∩ T0 = {0} (injectivité restreinte).

Si λ = cε, c > 0, alors pour tout minimiseur x⋆ de (Py,λ),

||x⋆ − x0||2 6 Cε ,

où

C = C1 (2+ c||η||2) +C2
(1+ c||η||2/2)

2

cCη
,

C1 > 0 et C2 > 0 étant deux constantes indépendantes de η et 0 < Cη < 1.

Nous dirons que J est une fonction partiellement lisse (Lewis 2002) pour une

variété M si, pour tout point x ∈ M, J restreinte à M est C2 autour de x, l’espace

tangent TM(x) à M en x est Tx et que l’application multivoque ∂J est continue

au point x relativement à M. Pour ce type de régularisation, incluant les

normes ℓ1, ℓ1 − ℓ2, nucléaire ou encore ℓ∞, nous montrons le résultat suivant

de sélection de modèle.

Théorème 2 Soient x0 ∈ Rn, T = Tx0
et e = ex0

. Supposons que :

• J est partiellement lisse pour la variété M et x0 ∈ M,

• Φ∗Φ+,∗
T e ∈ ri∂J(x0),

• KerΦ∩ T = {0}.

Alors il existe des constantes positives C,C ′ telles que, si w et λ sont choisis

tels que

||w|| 6 C et λ = C ′||w||, (.1)

la solution x⋆ du problème (Py,λ) est unique et satisfait

x⋆ ∈ M et ||x0 − x
⋆|| = O(||w||).
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Sensibilité. Le second axe de cette thèse porte sur l’analyse de sensibilité

de (Py,λ). Cette analyse permet, dans le cadre d’observations aléatoires, la

construction d’un estimateur du risque quadratique non biaisé. Nous intro-

duisons l’espace de transition H, correspondant aux observations y telles que

l’espace T associé à une solution de (Py,λ) ne soit pas stable vis-à-vis de petites

perturbations de y.

H =
⋃

T∈T

HT , où HT = bd(Πn+p,n(AT )),

Πn+p,n est la projection canonique sur les n premières composantes, bdC est

le bord de C, et

AT =
{

(y, xT ) ∈ R
n × T̃ | Φ∗

T (ΦxT − y) ∈ rbd∂J(xT )
}

.

Notre première contribution est de déterminer le comportement local des

solutions du problème (Py,λ) à l’extérieur de cet ensemble. Nous notons JT la

restriction de J à T .

Théorème 3 Soit J une fonction 1-homogène partiellement lisse pour

M = Tx0
. Soient y 6∈ H et x⋆ une solution de (Py,λ) telle que

KerΦT ∩ Ker D2JT (x
⋆) = {0} (Ix⋆)

où T = Tx⋆ . Alors il existe un voisinage V ⊂ Rn de y et une application

x̃ : V → T tels que :

(i) pour tout ȳ ∈ V, x̃(ȳ) est une solution de (Py,λ), et x̃(y) = x⋆,

(ii) l’application x̃ est C1(V) et

∀ ȳ ∈ V, D1x̃(ȳ) = −(Φ∗
TΦT + D2JT (x

⋆))−1ΦT ,

L’application y 7→ µ̂(y) = Φx⋆ est univoque et C1(Rn \H). Pour tout y 6∈ H,

il existe une solution x⋆ de (Py,λ) telle que (Ix⋆) est satisfaite. De plus, pour

tout y 6∈ H,

div(µ̂)(y) = tr(∆(y))
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où

∆(y) = −ΦT (ΦT
∗ΦT + D2JT (x

⋆))−1 ◦ΦT
∗.

Soit Y = Φx0 +W avec W ∼ N(0,σ2Idn). Le degré de liberté (DOF) d’une

procédure statistique quantifie la complexité de celle-ci. Suivant la définition

d’Efron (1986), le DOF est défini comme

df =

n∑

i=1

cov(Yi, µ̂i(Y))

σ2
.

Dans ce cadre, nous montrons le théorème suivant d’estimation du risque.

Théorème 4 Soit J une fonction partiellement lisse pour M = Tx0

définissable dans une structure o-minimale. Alors :

(i) H est de mesure de Lebesgue nulle,

(ii) µ̂ est une fonction Lipschitz, donc faiblement différentiable, avec un

gradient borné p.p,

(iii) d̂f = tr(∆(Y)) est un estimateur sans biais de df = E(div(µ̂(Y)),

(iv) le SURE, défini par

SURE(µ̂)(Y) =||Y − µ̂(Y)||2 + 2σ2d̂f−nσ2, (.2)

est un estimateur non biaisé de E
(
||µ̂(Y) − µ0||

2
)
.
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fixed point, 224
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Bregman divergence, 55
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see Dual certificates, 137
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normal, 49

tangent, 48

Conjugate function, 45

Convex function, 45

Convex set, 45

strict convexity, 45

strong convexity, 45

Definable, 71

Degrees of freedom, 204

Dictionary, 13

Directional derivative, 54

Domain, 43

Dual certificate, 137

minimal norm, 137

non-degenerate, 137

Epigraph, 43

Forward model, 5

noiseless, 6

stochastic, 5

Function

closed, 44

coercive, 43

kernel, 44

lower semi-continuous, 44

proper, 43

sublevel set, 44

Gauge, 59

absolutely symmetric, 68

polar, 61

polyhedral, 106

strong, 99

Generalized linear model, 203

Hull

affine, 48

conical, 48

convex, 47

linear, 48

Identifiablity criterion, 148

Implicit function theorem, 53

Indicator function, 45

Infimal convolution, 46
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Loss
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Low rank, 18

Model selection, 12

Model vector, 81

Multivalued mapping, 49

continuity, 49

Lipschitz continuity, 49

Null space property, 143
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Operator bound, 69

Partly smooth function, 113

locally, 113

model manifold, 113

relative to, 113

relative to a linear manifold, 117

Piecewise regular function, see Partly

smooth function

Precertificate

analysis, 149

linearized, 146

Proximity operator, 221

Moreau identity, 222

Relative interior, 48

Restricted injectivity, 140

generalized, 190

Risk

estimation, 209

prediction, 208

projection, 208

Semi-algebraic set, 70

Singular value decomposition, 67

Smooth manifold, 57

Grassmann, 58

Tangent space, 57

Smooth perturbation, 85

Source condition, 137

non-degenerate, 137

Sparsity

analysis, 15

structured, 17

synthesis, 14

Spread representation, 19

Stein

generalized unbiased risk estima-

tion, 206

lemma, 206

unbiased risk estimation, 205

Subdifferential, 54

Subdifferential gauge, 89

Support function, 46

Tangent model subspace, 81

Total variation, 16
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Variational regularization, 9
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