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In this dissertation, we aim at investigating three supply chain scheduling problems in the make-to-order business model. The first problem is a production and interstage distribution scheduling problem in a supply chain with a manufacturer and a third-party logistics (3PL) provider. The second problem is a production and outbound distribution scheduling problem with release dates and deadlines in a supply chain with a manufacturer, a 3PL provider and a customer. The third problem is a production and outbound distribution scheduling problem with setup times and delivery time windows in a supply chain with a manufacturer, a 3PL provider and several customers. For the three problems, we study their individual scheduling problems and coordinated scheduling problems. We propose polynomial-time algorithms or prove the intractability of these problems, and develop exact algorithms or heuristics to solve the NP-hard problems. We establish mechanisms of coordination and evaluate the benefits of coordination.

Résumé

A supply chain involves a set of organizations, including suppliers, manufacturers, logistics providers, distributors and retailers, who work together to satisfy customers' demands. The cost of a product includes the cost of resources at all stages, such as procurement of raw materials, production, distribution of finished products to customers.

The objective of supply chain management is to incorporate activities across organizations for adding value, reducing cost and increasing customer service quality. [START_REF] Thomas | Coordinated supply chain management[END_REF] provided a literature review on supply chain management.

In recent decades, globalization expands supply chain over national boundaries and brings a fierce competition market. In order to satisfy customers' heightened expectations, the enterprises increasingly find that they must rely on effective supply chains.

A non-efficient supply chain may carry a high cost. For example, the logistics market volume in Europe accounted in 2012 for 930 billion euros [START_REF] Kille | Top 100 in european transport and logistics services 2013/2014[END_REF].

The weight of transportation sector is around 44% of added value and 48% of total employment. According to Eurostat data 2012 [START_REF] Palmer | Characteristics of collaborative business models[END_REF], third party logistics (3PL) providers fail to consolidate their customers' transport orders: about 24% of all road freight kilometers driven in Europe are empty vehicles and the average vehicle is loaded to 56% of its capacity in terms of weight.

As production and distribution are the main business processes in supply chain, the coordination of production and distribution issue is crucial in supply chain management.

In traditional supply chain, production and distribution are separated by a large intermediate inventory and are planned independently. This independence can simplify decision-making but increases the holding inventory cost. Facing the fierce competition at current internal market and the expectations of customers, many enterprises adopt the make-to-order (a.k.a. assemble-to-order, build-to-order) business model. These enterprises include the ones with highly configured product as automobiles, computers, or with expensive inventory as aircraft. In this context, a product starts to be built after the order is received and there is a small or zero intermediate inventory between production and distribution. Consequently, the coordination of production and distribution is required in this business model. This coordination is also essential in supply chains with time-sensitive products as food, ready-mix concrete paste and newspapers.

These products should be delivered to customers immediately or a short time after their production.

In the research literature on supply chain management, coordination issues at the strategic and tactical levels have attracted an extensive research. The issues at the strategic level focus on long-term decision-making, such as allocation of manufacturing equipment, plant opening, selection of distribution centers, etc. Research at the tactical level is targeted at medium-term decision-making, such as planning of production, inventory and distribution in a time period like one year, etc. The issues at the operational level have been investigated during the last decade and are always under developing.

They focus on the order-by-order scheduling decision-making, such as machine scheduling, batch delivery, vehicle routing, etc. My thesis addresses the need of research at the operational level pointed out by [START_REF] Thomas | Coordinated supply chain management[END_REF] .

The coordination model varies with the supply chain models. With the development of the data exchange technology, especially the introduction of enterprise resource planning (ERP) systems and Internet-based collaborative systems, the supply chain can integrate the key business processes for adding value and saving cost. In this integrated supply chain, the involved organizations often belong to one corporation and work in collaborative relationship. In this model, the coordination is controlled by the corporation and the goal is to optimize the performance of the global supply chain. From 1990, some enterprises abandoned the integration and focused on their core competencies and specialization. They outsource the non-core operations to other enterprises for improving their efficiency. According to the European commission 2011, in 2010, the share of own-account transport is around 15% of the tonne-km generated in road freight transport. This means that transport is mostly outsourced to independent partners like Third Party Logistics (3PL) providers. In this non-integrated supply chain, the independent enterprises have their own objectives and accept the coordination only if they can benefit from it. A negotiation-based mechanism is necessary to motivate the coordination.

The integrated production and distribution scheduling (IPDS) issue, motivated by the integrated supply chain, has been investigated from 1980. This issue investigates the integration of production scheduling decision-making and distribution decision-making at the operational level. Chen (2010) provided an extensive review of the literature on the integrated production and outbound distribution scheduling (IPODS) problems.

Outbound distribution deals with a manufacturer shipping his products to the next stage of the supply chain, that typically belongs to another company. As a consequence, the receiving firm may set due dates or deadlines that will constrain the production/distribution problem. The focus of the analysis is on coordinating production decisions (typically, sequencing) and distribution decisions (typically, batching). These two aspects are often conflicting, and require a careful consideration of objectives and roles of the subjects involved. A few articles address the integrated production and interstage distribution scheduling (IPIDS) issues. In most of papers studying IPDS issue, they did not evaluate the benefit of coordination by comparing the integrated solution with the non-coordinated solution. Since the solution of IPDS problems can also be used in the non-integrated supply chain with a compensation mechanism, the IPDS issue is also importance for the non-integrated supply chain.

The term supply chain scheduling was mentioned, by [START_REF] Dawande | Supply chain scheduling: Distribution systems[END_REF] , to define the coordination of scheduling decisions at the operational level. Several subproblems are investigated in this respect: the individual scheduling problems without coordination, where the decision maker optimizes his individual schedule subject to the constraints imposed by the other decision maker in the supply chain; the coordinated scheduling problem, where the decision makers coordinate to decide jointly their schedules; the mechanism of coordination explaining how the decision makers coordinate their activities;

the evaluation of the benefit of coordination. Some researches addressing this need have been made in the last decade. For example, [START_REF] Hall | Supply chain scheduling: Batching and delivery[END_REF] investigated coordinated scheduling problems between the suppliers and the manufacturers in a three stage supply chain. [START_REF] Dawande | Supply chain scheduling: Distribution systems[END_REF] studied the coordination between a manufacturer and a distributor in different bargaining powers scenarios.

Contribution

In this dissertation, we aim at investigating three supply chain scheduling problems in the make-to-order business model. The research objectives are to: study the individual scheduling problems and coordinated scheduling problems:

propose polynomial-time algorithms for some polynomial-time solvable problems, prove the intractability for some NP-hard problems, develop exact algorithms or heuristics to solve the NP-hard problems; establish mechanisms of coordination; evaluate the benefit of coordination.

We consider the following scheduling problems: In this problem, we consider a supply chain with a manufacturer and a 3PL provider.

The manufacturer has to process a set of orders on one machine at upstream and downstream stages. We consider the permutation flow shop environment in production. The 3PL provider is in charge of transportation of semi-finished products from the upstream stage to the downstream stage. A batch cannot be delivered until all orders of the batch are completed at the upstream stage. Two transportation modes are considered: regular transportation, for which delivery departure times are fixed, and express transportation, for which delivery departure times are flexible. The manufacturer's objective is to minimize the makespan and the 3PL provider's objective is to minimize the transportation cost. We investigate four scenarios: (1) manufacturer dominates, 3PL provider adjusts;

(2) 3PL provider dominates, manufacturer adjusts; (3) manufacturer dominates, 3PL provider negotiates; (4) manufacturer and 3PL provider coordinate. For the scheduling problems in each scenario, we provide polynomial-time algorithms or prove their NPcompleteness. We provide two mechanisms of coordination for scenarios [START_REF] Agnetis | Production and interplant batch delivery scheduling: Dominance and cooperation[END_REF] and ( 4) and evaluate the benefit of coordination using numerical experiments.

Problem 2: production and outbound distribution scheduling problem with release dates and deadlines [START_REF] Fu | Solving one-to-one integrated production and outbound distribution scheduling problems with job release dates and deadlines[END_REF] In this problem, we consider a supply chain with a manufacturer, a 3PL provider and a customer. The manufacturer has to process a set of orders on one machine, then the 3PL provider delivers them in batches to the customer. Each order has a release date and a delivery deadline fixed by the customer. The manufacturer's objective is to ensure that all orders are delivered before or at their deadline and the 3PL provider's objective is to minimize the transportation cost. We first investigate individual scheduling problems.

Then we consider three coordinated scheduling problems with different ways how an order can be produced and delivered: non-splittable production and delivery (NSP-NSD) problem, splittable production and non-splittable delivery (SP-NSD) problem and splittable production and delivery (SP-SD) problem. For these scheduling problems, we provide a polynomial-time algorithm for some restricted versions of SP-NSD and SP-SD problems and a branch-and-bound algorithm for NSP-NSD problem which is NP-hard. We evaluate the performance of branch-and-bound algorithm using numerical experiments.

Problem 3: production and outbound distribution scheduling problem with setup times and delivery time windows

This problem is a real problem proposed by a company working in the packaging industry.

We consider a supply chain with a manufacturer, a 3PL provider and several customers.

Organization of the dissertation

The manufacturer has to process a set of orders on unrelated parallel machines and splitting of order is allowed in production. A sequence-dependent setup time and a setup cost occur when production changes from one order to another order. Then the 3PL provider delivers orders in batches to the customers with heterogeneous vehicles subject to delivery time windows. The manufacturer's objective is to minimize the total setup cost and the 3PL provider's objective is to minimize the transportation cost.

We propose mathematical models for individual scheduling problems and coordinated scheduling problem. We develop a first decomposition approach to solve the coordinated scheduling problem using a commercial solver. we evaluate the feasibility of the approach and the potential benefit of coordination using numerical experiments for small instances.

Finally, we propose some directions of improvement for further research.

Organization of the dissertation

This dissertation is organized as follows. Chapter 2 is dedicated to a literature review on production scheduling, distribution scheduling, integrated production and distribution scheduling, and supply chain scheduling. The three investigated problems are presented in two parts. In part I, we investigate a production and interstage distribution scheduling problem, i.e., the problem 1, which is divided to be presented in chapter 3 and chapter 4. In chapter 3, we study the individual scheduling problems, i.e., scenarios [START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF] manufacturer dominates, 3PL provider adjusts and (2) 3PL provider dominates, manufacturer adjusts. In chapter 4, we study the coordinated scheduling problems in different scenarios, i.e., scenarios (3) manufacturer dominates, 3PL provider negotiates and (4) manufacturer and 3PL provider coordinate. Then, we evaluate the benefit of coordination using numerical experiments. In part II, we investigate the two production and outbound distribution scheduling problems, i.e., problem 2 and problem 3, which are studied respectively in chapter 5 and chapter 6. Chapter 7 contains conclusions and perspectives of future research.

Chapter 2

Literature Review

In this chapter, we provide a literature review on the following problems: production scheduling, distribution scheduling, integrated production and distribution scheduling, and supply chain scheduling.

Production scheduling

Production scheduling problem can be presented generally as follows: supposing that a set of orders have to be processed on a set of machines, the problem is how to allocate one or more time intervals for each order to one or more machines while optimizing one or several objective functions. [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF] introduced a three-field classification α|β|γ for production scheduling problem, where α, β and γ specify respectively machine environment, order characteristics and optimality criteria. This classification was extended by [START_REF] Brucker | Scheduling Algorithms[END_REF].

The machine environment is specified by a string α = α 1 α 2 . α 2 denotes the number of machines. If α 1 ∈ {•, P , Q, R, P M P M , QM P M }, then each order consists of a single operation. If α 1 ∈ {G, J, F , O, X}, then each order consists of a set of operations.

If α 1 ∈ {M P T }, then each order requires one or more processors at a time. The values are characterized as: α 1 = •: single machine; α 1 = P : identical parallel machines, i.e., processing speeds of machines are identical; α 1 = Q: uniform parallel machines, i.e., processing speeds of machines are machinedependent; α 1 = R: unrelated parallel machines, i.e., processing speeds of machines are machine-dependent and order-dependent; α 1 = P M P M : multi-purpose identical parallel machines, i.e., an operation can be processed on any machine equipped with the appropriate tool, and the machines are identical; α 1 = QM P M : multi-purpose identical parallel machines, i.e., an operation can be processed on any machine equipped with the appropriate tool, and the machines are uniform; The order characteristics are specified by β ⊆ {β 1 , β 2 , . . ., β 7 }. The values are characterized as: β 1 ∈ {pmtn, split}, i.e., preemption or splitting of order is allowed, and in the splitting environment the split order can be processed simultaneously on several machines, which is different from the preemption environment; β 2 = prec, i.e., precedence relations exist between the orders; β 3 = r j , i.e., orders may have different release dates from which their production can start; β 4 specifies the restrictions on processing times or number of operations; β 5 = d j , i.e., orders may have different deadlines; β 6 ∈ {p -batch, s -batch}, i.e., orders can be scheduled in batches, the length of a batch is equal to the maximum (sum) of processing times of all orders in the batch for p-batching (s-batching) problem; β 7 ∈ {s j , s ij , s ijk }, i.e., a setup time occurs when the production changes from a family (or order) to another family (or order), s j and s ij represent sequenceindependent setup time and sequence-dependent setup time respectively, and s ijk represent sequence-dependent and machine-dependent setup time.

The optimality criteria are commonly specified by the total cost objectives depending on completion times of orders, and the customer service quality objectives depending on due dates of orders. The objectives are characterized by two types of functions: the bottleneck objectives, as makespan C max , maximum lateness L max ; the sum objectives, as (weighted) total flow time, (weighted) total tardiness, (weighted) total earliness, etc.

The objective of scheduling problem is to minimize one or several objective functions.

Production scheduling problem has been extensively investigated from the mid 1950s.

In the book of Brucher (2007), he discussed the classical scheduling algorithms for solving single machine scheduling problems, parallel machine scheduling problems, shop scheduling problems, due dates scheduling problems, batching problems, scheduling problems with setup times, multi-purpose machines problems and multiprocessor tasks scheduling problems.

In the following, we focus on the literature of some problems linked to our research: flow shop scheduling problems, single machine scheduling problems with release dates, and scheduling problems with setup times.

In flow shop scheduling problems, each order has to be processed in a fixed sequence of machines, i.e., the first operation of each order is performed on the first machine, the second operation on the second machine, and so on. For regular objective functions, i.e., functions that are non-decreasing in completion times of orders, the problem is to find a processing sequence of orders for each machine. We focus on some flow shop scheduling problems with makespan objective function C max . [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF] Concerning the single machine scheduling problems with release dates, we focus on the problems with maximum lateness L max objective function. The problem without release dates 1||L max can be solved by Jackson's earliest due date (EDD) rule introduced by [START_REF] Jackson | Scheduling a production line to minimize maximum tardiness[END_REF]. This problem is a special case of the problem 1|prec|L max solved by a polynomial-time algorithm provided by [START_REF] Lawler | Optimal sequencing of a single machine subject to precedence constraints[END_REF]. The problem with release dates and preemption 1|r j , pmtn|L max can be solved by Jackson's preemptive earliest due date (EDD-preemptive) rule introduced by [START_REF] Jackson | Scheduling a production line to minimize maximum tardiness[END_REF]. This problem is a special case of the problem 1|prec, r j , pmtn|L max solved by a polynomial-time algorithm provided by [START_REF] Baker | Preemptive scheduling of a single machine to minimize maximum cost subject to release dates and precedence constraints[END_REF]. [START_REF] Lenstra | Complexity of machine scheduling problems[END_REF] proved the NP-hardness of the problem 1|r j |L max . [START_REF] Carlier | The one-machine sequencing problem[END_REF] provided the first efficient branch-and-bound algorithm to solve this problem. [START_REF] Allahverdi | A survey of scheduling problems with setup times or costs[END_REF] provided a survey of scheduling problems with setup times or costs. They discussed the problems with sequence-independent setup time (s j ) or sequence-dependent setup time (s ij ). s j depends upon only order j processed after the changeover, while s ij depends upon both orders i and j processed before and after the changeover respectively. We focus on the problems with the objective of minimizing makespan C max or sum of setup cost. The single machine problem 1|s j |C max is polynomial-time solvable. The single machine problem 1|s ij |C max is NP-hard [START_REF] Bruno | Complexity of task sequencing with deadlines, set-up times and changeover costs[END_REF] and can be reformulated as a Traveling Salesman Problem (TSP).

The two parallel machine problem with unit processing times and unit setup times P 2|p j = 1; s j = 1|C max is NP-hard [START_REF] Brucker | Batch scheduling with deadlines on parallel machines[END_REF]). The special case of this problem where all families have equal sizes can be solved in polynomial time [START_REF] Brucker | Scheduling Algorithms[END_REF]. Several heuristics and meta-heuristics were provided for the parallel machine problem P 2|s ij |C max : a divide and merge heuristic by [START_REF] Gendreau | A divide and merge heuristic for the multiprocessor scheduling problem with sequence dependent setup times[END_REF], a heuristic and a tabu search algorithm by [START_REF] Mendes | Comparing metaheuristic approaches for parallel machine scheduling problems[END_REF], and a hybrid meta-heuristic by [START_REF] Behnamian | Parallel-machine scheduling problems with sequence-dependent setup times using an aco, sa and vns hybrid algorithm[END_REF]. For the same problem with splitting of order, in that orders can be split and processed simultaneously on different machines, some heuristics were provided by [START_REF] Tahar | A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times[END_REF] and [START_REF] Yalaoui | An efficient heuristic approach for parallel machine scheduling with job splitting and sequence-dependent setup times[END_REF]. Concerning the problems with the sum of setup cost objective function, few papers have investigated this problem. 

Distribution scheduling

Distribution scheduling problem is a central problem in distribution management and is faced by a lot of enterprises every day. There are three types of delivery (Chen 2010): individual delivery, i.e., each order is shipped individually; direct batch delivery, i.e., different orders of a customer can be delivered together in a shipment; routing batch delivery, also named as vehicle routing delivery, i.e., orders of different customers can be delivered together in a shipment. The individual delivery and direct batch delivery are used to deliver the time-sensitive products. The vehicle routing delivery is extensively adopted by many enterprises to reduce distribution cost. In the literature on distribution management, the vehicle routing problem has attracted an extensive research since the first study provided by [START_REF] Dantzig | The truck dispatching problem[END_REF]. In fact, the first two types of delivery can be seen as two special cases of the vehicle routing delivery. There are few articles investigating only the distribution scheduling problem with the first two types of delivery. In many cases, these problems are simple and have been discussed in the integrated production and distribution scheduling problems [START_REF] Chen | Integrated production and outbound distribution scheduling: Review and extensions[END_REF]). However, it is interesting to investigate these problems with some adding characteristics, such as a limited number of vehicles, vehicles with fixed departure dates, heterogeneous vehicles, release dates, delivery deadlines, etc. In this section, we focus on vehicle routing problem.

The classical vehicle routing problem (VRP) is to determine a set of routes for a fleet of vehicles, each of which starts and ends at its own depot, to serve a set of customers on minimizing the total travel cost subject to a set of constraints. The VRP is one of the most popular combinatorial optimization problems and is NP-hard because it generates the traveling salesman problem (TSP) [START_REF] Dantzig | The truck dispatching problem[END_REF]. A lot of exact algorithms and heuristics are provided to solve the VRP. [START_REF] Toth | The Vehicle Routing Problem[END_REF] and [START_REF] Archetti | The split delivery vehicle routing problem: A survey[END_REF].

In the following, we focus on the exact algorithms and heuristics for the VRPTW.

The VRPTW can be defined on a directed graph and formulated as a multicommodity network model with time windows and capacity constraints [START_REF] Desrochers | Vehicle routing with time windows: Optimization and approximation[END_REF]). We focus on the IPIDS problems with order-independent transportation time in 2machine flow shop. Here, we use the three-field classification α|β|γ of production scheduling problem for the IPIDS problems. [START_REF] Maggu | On 2xn sequencing problem with transportation times of jobs[END_REF] developed a polynomial time algorithm based on well-known Johnson's rule [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF] for the problem of minimizing the makespan subject to an unlimited number of transporters with orderdependent transportation time, denoted by F 2|t j , v ≥ n|C max , where t j , v and n represent respectively order-dependent transportation time, number of transporters and number of orders. Since the problem with order-independent transportation time can be seen as a special case of the problem with order-dependent transportation time, the similar problem with order-independent transportation time F 2|t j ∈ {t 1 , t 2 }, v ≥ n|C max can be solved by the same algorithm, where t 1 represents the transportation time from the first stage to the second while t 2 represents the returning time. The problem minimizing the makespan subject to one transporter with capacity of one and order-independent transportation time, denoted by F 2|t j ∈ {t 1 , t 2 }, v = 1, c = 1|C max was proved to be strongly NP-hard even if t 1 = t 2 (Hurinka and Knustb 2001). [START_REF] Tang | Steelmaking and refining coordinated scheduling problem with waiting time and transportation consideration[END_REF] developed an approximation algorithm with worst case ratio of 2 for this problem. [START_REF] Lee | Machine scheduling with transportation considerations[END_REF] proved the NP-hardness of a similar problem with a vehicle capacity more than 2, denoted by F 2|t j ∈ {t 1 , t 2 }, v = 1, c ≥ 3|C max , and provided a polynomial-time dynamic programming algorithm for the special case with equal processing times on one machine and a fixed number of vehicles. [START_REF] Lee | Two-machine shop scheduling with an uncapacitated interstage transporter[END_REF] proved that for the problem F 2|t j ∈ {t 1 , t 2 }, v = 1, c ≥ n|C max , finding the best schedule in class SF (2) of schedules with at most two shipments is NP-hard even if t 1 = t 2 , and provided an approximation algorithm with worst case ratio of 3/2, which is the best possible algorithm in the class of heuristics that construct schedules with at most two shipments. [START_REF] Gong | Two-machine flowshop scheduling with intermediate transportation under job physical space consideration[END_REF] developed an approximation algorithm with worst case ratio of 2 for the problem F 2|t j ∈ {t 1 , t 2 }, v = 1, c ≥ n|C max and an approximation algorithm with worst case ratio of 7/3 for a similar problem with the orders having different sizes of physical storage space in the transporter. There are also other related problems with buffer space constraints studied by [START_REF] Stern | Scheduling parts in a combined productiontransportation work cell[END_REF], [START_REF] Panwalkar | Scheduling of a two-machine flowshop with travel time between machines[END_REF].

While the above articles considered transportation capacity and transportation time, few articles consider transportation cost. As mentioned in previous chapter, in a global supply chain, a product can be processed at different plants located at different geographic locations. So the transportation cost is not negligible. [START_REF] Aloulou | A bicriteria twomachine flow-shop serial-batching scheduling problem with bounded batch size[END_REF] considered a bicriteria 2-machine flow shop serial-batching scheduling problem with a sufficient number of transporters with limited capacity. They developed two approximation algorithms and provided polynomial-time algorithms for some special cases.

They considered two criteria: number of production batches and makespan. This prob- We focus on the IPODS problems related to our considered problems: the IPODS problems with release dates r j ; the IPODS problems with maximum lateness L max or delivery deadline d j , and transportation cost T C; the IPODS problems with setup times s j , s ij ; the IPODS problems with routing delivery and time windows.

lem is equivalent to the problem F 2|t j ∈ {t 1 , t 2 }, v ≥ n, c ≥ 1|T C, C max ,

IPODS problems with release dates:

The research of the IPODS problems with release dates concentrates on the models with individual and immediate delivery, and direct delivery. As proved by Chen (2010), the problems with individual and immediate delivery, (i) 1|r j |V (∞, 1), iid|n|D max , (ii) 1|r j , prec|V (∞, 1), iid|n| D max , (iii) P m|r j |V (∞, 1), iid|n|D max , (iv) F m|r j |V (∞, 1), iid|n|D max are strongly NP-hard. [START_REF] Liu | Scheduling with job release dates, delivery times and preemption penalties[END_REF] proved the NP-hardness of the problem (v) 1|r j , s j , pmtn|V (∞, 1), iid|n|D max . In these problems, the orders are delivered individually and immediately to the customers upon their completion while minimizing the maximum delivery time. For problems (i), (ii), (iii) and (v), approximation algorithms and (or) polynomial-time approximation schemes were provided by [START_REF] Potts | Analysis of a heuristic for one machine sequencing with release dates and delivery times[END_REF], Hall andShmoys (1989, 1992), [START_REF] Mastrolilli | Efficient approximation schemes for scheduling problems with release dates and delivery times[END_REF], Zdrzalka (1994), [START_REF] Liu | Scheduling with job release dates, delivery times and preemption penalties[END_REF] 

Supply chain scheduling

As mentioned in the previous chapter, the supply chain scheduling problem focuses on the coordination of the scheduling decisions [START_REF] Dawande | Supply chain scheduling: Distribution systems[END_REF]). Generally, the following problems are considered: the individual scheduling problems at the conflict models, the coordinated scheduling problem and the mechanisms of coordination, and the evaluation of the benefit of coordination. Since it is difficult to consider the coordination in the whole supply chain, the coordination between two or three stages has been considered in several articles. [START_REF] Hall | Supply chain scheduling: Batching and delivery[END_REF] were the first to study supply chain scheduling problems.

In their model, a three-stage supply chain is formed by suppliers, manufacturers, and customers. A supplier makes deliveries to several manufacturers who also make deliveries In their considered two distribution systems, a manufacturer makes products which are delivered to customers by a distributor. In the first system, the manufacturer focuses on minimizing the makespan and the distributor minimizes the maximum lateness. In the second system, the manufacturer focuses on minimizing the total setup cost and the distributor minimizes the inventory cost. They introduced the cost of conflict, which is the additional cost when the other decision maker imposes his optimal schedule. They provided polynomial-time algorithms for the individual scheduling problems when one decision maker dominates and imposes the requirement to the other decision maker. They developed a polynomial-time algorithm for the coordinated scheduling problem. They also proposed mechanisms of coordination and evaluated the benefit of coordination.

Chen and Hall (2007) studied the conflict and coordination issues in an assembly system, where several suppliers deliver the parts of orders to a manufacturer. They considered two objectives, the makespan and the maximum lateness, for each decision maker. They evaluated the cost of conflict. They investigate the problems in four scenarios: manufacturer dominates, suppliers adjust; suppliers dominate, manufacturer negotiates; manufacturer dominates, suppliers negotiate; manufacturer and suppliers coordinate. They provided either a polynomial-time algorithm or a proof of intractability for the scheduling problems in the above scenarios, and developed heuristics for NPhard problems. They provided mechanisms of coordination and evaluated the benefit of coordination.

Hall and Liu (2010) studied a coordinated scheduling problem between a manufacturer and several distributors. The manufacturer allocates the capacity of production to satisfy all or a set of orders among the distributors. The distributors may share their allocated capacity among themselves before submitting revised orders. Finally, the manufacturer schedules the revised orders to minimize his cost. They considered three mechanisms of coordination: the manufacturer considers the scheduling costs and constraints in making capacity and order allocation decisions; the distributors share their allocated capacity; the manufacturer and the distributors coordinate. They provided optimal algorithms for the scheduling problems and mechanisms of coordination. They evaluated the benefit of coordination. The manufacturer may impose his requirement to the 3PL provider, for example, each order should be delivered within a certain time T from its release at the upstream stage.

Small values of T indicate high responsiveness of the 3PL provider, which is desirable for the manufacturer. However, this may entail higher costs for the 3PL provider. The 3PL provider may impose his delivery schedule to the manufacturer, for example, the delivery schedule fixes the number of available vehicles for some fixed departure dates. In order to decease the transportation cost, the 3PL provider decreases the frequency of delivery and offers the vehicles of large capacity. However, large batch deliveries may increase the makespan at the downstream stage. These conflicts motivate the coordination between the production scheduling and the interstage distribution scheduling.

In the literature, it is commonly assumed that all orders are produced at a single We provide two mechanisms of coordination for scenarios (3) and (4). We evaluate the benefit of coordination using numerical experiments. The most related research was provided by [START_REF] Dawande | Supply chain scheduling: Distribution systems[END_REF]. They analyzed the conflict and coordination issues between a manufacturer and a distributor. In their considered two distribution systems, a manufacturer makes products which are delivered to customers by a distributor. In the first system, the manufacturer focuses on minimizing the makespan and the distributor minimizes the maximum lateness. In the second system, the manufacturer focuses on minimizing the total setup cost and the distributor minimizes the inventory cost.

They introduced the cost of conflict, which is the additional cost when the other decision maker imposes his optimal schedule. They provided polynomial-time algorithms for the individual scheduling problems when one decision maker dominates and imposes the requirement to the other decision maker. They developed a polynomial-time algorithm for the coordinated scheduling problem. They also proposed mechanisms of coordination and evaluated the benefit of coordination. The literature of the IPIDS (integrated production and interstage distribution scheduling) problem can be found in section 2.3 of chapter 2.

In chapter 3, we study the individual scheduling problems, i.e. scenarios (1) and (2).

In section 3.2, we formally describe the problems and introduce notations and terminology. Section 3.3 illustrates some general properties of the optimal delivery schedules which are common to scenarios (1) and (2). Section 3.4 is devoted to scenario (1), section 3.5 to scenario (2). Section 3.6 contains some conclusions and perspectives. Chapter 4 is dedicated to scenarios (3) and ( 4), to the mechanisms of coordination, and to the evaluation of the benefit of coordination.

Problems and Notations

In this section, we formally define the problems addressed in this chapter. We refer to the upstream and downstream stages of a supply chain as machine M 1 and M 2 respectively.

The context is specified by the following points.

A manufacturer has to process a set of n orders, 1, . . . , n. Each order j = 1, . . . , n is first processed on machine M 1 , with processing time p 1 j , then on machine M 2 , with processing time p 2 j .

We consider the permutation flow shop context, i.e. the orders are processed within the same sequence on both machines.

After processing on M 1 , the orders have to be shipped from M 1 to M 2 (typically, located in a different city) for further processing.

Denote by C i j the completion time of order j = 1, . . . , n, on machine M i , i = 1, 2. In particular, C 1 j is the release time of order j from the upstream stage. The quantities C i j specify a production schedule. When it is necessary to denote a production schedule as σ, the related quantities will be indicated as C 1 j (σ). We denote by σ(j) the j-th order in the production schedule σ.

A 3PL provider is in charge of transportation of semi-finished product from M 1 to M 2 .
Transportation must comply with a certain responsiveness requirement, i.e., each order j has to be delivered to M 2 within a time T from its completion on M 1 . In other words, for each order j, a deadline d j = C 1 j + T is specified. The uniform setting of T can be adopted in practice for homogeneous semi-finished products.

We let D j denote the actual delivery time of order j to M 2 , so in a feasible solution D j ≤ d j for all j. This responsiveness requirement can be relaxed in the scenarios with coordination.

The vehicles used by the 3PL provider have a certain capacity, given by the maximum number of orders a vehicle can carry (i.e., orders are supposed to have equal size).

The 3PL provider uses two transportation modes.

-Type-1 transportation is regular transportation. There are V 1 identical vehicles of capacity c 1 ≤ n each of which has a fixed departure time. The transportation time from M 1 to M 2 is denoted by 1 . We assume that each vehicle can be used for at most one trip. So we ignore the return of vehicle. The transportation cost per delivery is denoted by h 1 . We assume we have L fixed delivery departure times t 1 < . . . < t L , v s ≤ n vehicles for departure time t s , s = 1, . . . , L, and consequently V 1 ≤ Ln.

-Type-2 transportation is express transportation. There are V 2 identical vehicles of capacity c 2 ≤ n, each of which can depart at any time, i.e., there are no fixed departure times. The transportation time from M 1 to M 2 is denoted by 2 and the return time by 2 . The transportation cost per delivery is denoted by h 2 .

For both modes, the transportation cost of one shipment depends on the assigned resource by the 3PL provider and does not depend on the quantity of products delivered.

Clearly, if either V 1 = 0 or V 2 = 0, only one transportation mode exists.

For both transportation modes, orders in the same delivery form a batch. A batch B is available for delivery when all orders belonging to B are completed at M 1 .

The delivery time of a batch B, denoted by D B , is the time at which the batch reaches M 2 . We let a regular batch or an express batch be a batch for which regular or express transportation, respectively, is used. Given a production schedule, a delivery schedule θ is a partition of the orders into b batches, along with the specification of a transportation mode and the departure time for each batch.

A production-distribution schedule is specified by a production schedule σ and a delivery schedule θ. We indicate a production-distribution schedule by the pair (σ, θ). Given a production-distribution schedule, we let B(j) denote the batch of order j. The delivery time of an order j is therefore denoted by D B(j) .

In all scenarios, the objective of the 3PL provider is to minimize the transportation cost T C = h 1 n 1 + h 2 n 2 , where n 1 and n 2 are the number of batches of type 1 (regular) and type 2 (express), respectively. If only one transportation mode is present, the objective is to minimize the number of batches. The objective of the manufacturer is to minimize the makespan C max = max j=1,...,n C 2 j . The values of makespan C max and transportation costs T C associated with the productiondistribution schedule (σ, θ) are denoted as C max (σ, θ) and T C(σ, θ) respectively.

Scenarios In this chapter we consider two scenarios: (1) manufacturer dominates, 3PL provider adjusts; (2) 3PL provider dominates, manufacturer adjusts. These are formally defined in the following.

1. Manufacturer dominates, 3PL provider adjusts -scenario 1.

(a) Manufacturer's problem. The manufacturer determines an optimal production schedule in two steps. In the first step, because of the dominance, the manufacturer can plan his schedule disregarding the role of the 3PL provider, i.e., assuming that each order will be transported to M 2 immediately after release from M 1 . Hence, in the first step, the manufacturer faces a 2-machine permutation flow shop scheduling problem with a constant transportation time-lag. Following the three-field notation α|β|γ for machine scheduling problems [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF]), this problem is denoted by F 2|time -lag|C max . In the second step, the manufacturer first imposes the constraints, i.e. the release time C 1 j and the deadline d j of order j, j = 1, . . . , n, to the 3PL provider. Then, the manufacturer adjusts the starting time of the orders on M 2 on minimizing C max subject to the delivery times D j of each order j = 1, . . . , n offered by the 3PL provider and the sequence of production on M 1 .

(b) 3PL provider's problem. Given the release time C 1 j and the deadline d j of each order j, j = 1, . . . , n, the 3PL provider aims at finding a delivery schedule that minimizes the transportation cost T C and such that each order is delivered to M 2 within d j , i.e., it must hold D j ≤ C 1 j + T . The 3PL provider's problem can be seen as an IPODS (Integrated production and outbound distribution scheduling) problem with a single machine, deadlines and direct batch delivery to a single customer, in which the sequence on the machine is fixed. Following the five-field notation α|β|π|δ|γ of Chen (2010), the problem can therefore be denoted as 1|f seq, d j = C γ: this field contains the objective function, which is the total cost to the 3PL provider (T C).

2. 3PL provider dominates, Manufacturer adjusts -scenario 2.

(a) 3PL provider's problem. In this scenario, on the one hand the 3PL provider wants to relax the responsiveness by increasing the value of T , on the other hand he want to find the best constraints of release time by imposing the delivery schedule to the manufacturer. With the necessary information of production, i.e. the processing time of orders on M 1 , the 3PL provider aims at determining a production-distribution schedule (hence, both a production schedule on M 1 and a delivery schedule) such that the transportation cost T C is minimized, while delivering each order within T from its release by M 1 (i.e., d j = C 1 j + T for each order j). We consider production schedules in which M 1 continuously processes orders, with no idle time. This constraint enforces a minimum productivity requirement. This problem can be seen as an IPODS problem, denoted by 1|no-idle,

d j = C 1 j +T |π|1|T C.
In the β field we specify that M 1 must never be idle, while π is as described in the previous 

General properties of optimal delivery schedules

In this section we give some general properties of the optimal delivery schedules that apply to scenarios (1) and ( 2), hence to all problems denoted by 1|•, d j = C 1 j + T |π|1|T C, where • may actually be either f seq (in the 3PL provider's problem when the manufacturer dominates) or no -idle (in the 3PL provider's problem when the 3PL provider dominates).

In what follows, we say that a batch B is split by another batch B if B contains some orders that are processed before some orders of B , and some orders which are processed after some orders of B on M 1 . Also, given a delivery schedule, we say that we swap two orders i and j to mean that we move order i to B(j) and order j to B(i), without changing the production schedule σ on M 1 nor the departure time of each batch. Lemma 3.1 There exists an optimal delivery schedule for the problem 1|•, d j = C 1 j + T |π|1|T C, such that the following properties hold :

1. If orders i and j are delivered by the same transportation mode and

C 1 i < C 1 j , then D i ≤ D j .
2. An express batch can be only split by regular batches and a regular batch can be only split by express batches. 5. If there exists an unlimited number of vehicles for express transportation, each express batch departs at the completion time of the last order in this batch.

6. If there exists a limited number of vehicles for express transportation, each express batch departs either at the completion time of the last order in this batch or as soon as a vehicle for express transportation is available.

Proof.

In what follows, we denote by Se(i, j) the subsequence of orders from σ(i) through σ(j) on M 1 . We do not change the production schedule σ.

Property 1: Suppose that there is an optimal delivery schedule such that order i is delivered after order j by the same transportation mode although

C 1 i < C 1 j , i.e., D B(j) < D B(i) and d i < d j . Since D B(i) ≤ d i , one has D B(j) < D B(i) ≤ d i < d j .
We can then swap i and j obtaining a new delivery schedule which is still feasible and has the same transportation cost. This argument can be repeated until the delivery schedule satisfies Property 1.

Property 2: Suppose there is an optimal delivery schedule which does not respect Property 2, i.e., assume that a regular batch B is split by some express batches and some regular batches. Consider the subsequence Se(i, j), where σ(i) and σ(j) are respectively the first and the last order of batch B. Due to Property 1,

D B(σ(i)) ≤ D B ≤ D B(σ(j)) ,
where B is any regular batch in Se(i, j). Since D B(σ(i)) = D B(σ(j)) , all regular batches in Se(i, j) have the same departure time. In the subsequence Se(i, j), we do the following: as long as there is an h and an k

, i ≤ h < k ≤ j, such that σ(h) ∈ B and σ(k) ∈ B ,
where B is a regular batch different from B, swap σ(h) and σ(k). When no further such swap is possible, we stop. In the resulting delivery schedule, batch B is split only by express batches. By a very similar argument, one can prove that there is an optimal schedule in which any express batch can be only split by regular batches.

Property 3: This is a direct consequence of Property 2. If only one transportation mode exists (i.e., either V 1 = 0 or V 2 = 0), no batch can be split. Property 4(a): Suppose that in an optimal delivery schedule θ, the orders of a regular batch B are not processed consecutively on machine M 1 when 1 ≥ 2 . According to Property 2 above, batch B can be only split by express batches. Let again σ(i) and σ(j) be the first and last order in B, consider the subsequence Se(i, j), and let σ(u) be the first order in Se(i, j) belonging to an express batch such that D σ(u) -2 ≥ C σ(j) (see Figure 3.3, in which σ(i) = 4, σ(j) = 8 and σ(u) = 6). Note that order σ(u) is the first order of an express batch. Hence, in the subsequence Se(i, u -1), we do the following: as long as there is an

h, i ≤ h ≤ u -2, such that σ(h) ∈ B and σ(h + 1) ∈ B ,
where B is an express batch, swap σ(h) and σ(h + 1). When no further such swap is possible, we stop. In the resulting delivery schedule θ, batch B is scheduled after all express batches preceding order u. In θ, the deadline of the first order of batch B has been delayed, so the orders of batch B are not late. For each order σ(k) from any express batch, recalling that

D σ(k) -2 < C σ(j) , C σ(j) + 1 ≤ d σ(i) and 2 ≤ 1 , one has that D σ(k) ≤ C σ(j) + 2 ≤ d σ(i) ≤ d σ(k)
. So no order from any express batch is late. Symmetrically, starting now from θ, consider the subsequence Se(u, j), and do the following: as long as there is an h such that σ(h) ∈ B and σ(h + 1) ∈ B, where B is an express batch, then swap σ(h) and σ(h + 1). When no further such swap is possible, we stop. In the resulting delivery schedule θ, batch B terminates before all express batches following order u. Note that, since neither the leftmost order of B nor D B have changed, no order of batch B is late. Also, the deadline of the first order of no express batch has been anticipated, so again no order from any express batch is late. In conclusion, θ is optimal and the orders of batch B are processed consecutively on machine M 1 (see Figure 3.3). In this section, we address the first scenario, i.e., the manufacturer defines a schedule on M 1 , and the 3PL provider has to comply with such schedule. Thereafter, the manufacturer defines a schedule on M 2 accounting for the delivery times of the orders. We address the manufacturer's problem F 2|time -lag|C max and the 3PL provider's problem 1|f seq, d j = C 1 j + T |π|1|T C separately. In the latter problem, we consider the cases with different delivery characteristics π, i.e. one transportation mode or both transportation modes, unlimited or limited number of vehicles.

Manufacturer's problem

The manufacturer determines an optimal production schedule in two steps. In the first step, because of the dominance, the manufacturer can plan his schedule disregarding the role of the 3PL provider, i.e., assuming that each order will be transported to M 2 immediately after release from M 1 . As observed in the previous section, the problem faced by the manufacturer is a 2-machine permutation flow shop scheduling problem, minimizing C max , with the consideration of a constant transportation time-lag. Fol-lowing the commonly used three-field notation α|β|γ for machine scheduling problems [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF]), this problem is denoted by F 2|time -lag = τ |C max . This problem without permutation, is solved in O(n log n) by the well known Johnson's algorithm [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF]. Since the Johnson's schedule is also a solution for permutation problem, the manufacturer's problem can be solved by the Johnson's algorithm. In fact, F 2|time -lag|C max and F 2||C max are equivalent problems. Indeed, we can delay an optimal schedule of F 2||C max on M 2 by time -lag time units to obtain an optimal schedule for F 2|time -lag|C max , and viceversa, given an optimal schedule for F 2|time -lag|C max , by removing the delays of time -lag time units before machine M 2 one gets an optimal schedule for F 2||C max .

In the second step, the manufacturer first imposes the constraints, i.e. the release time C 1 j and the deadline d j of order j, j = 1, . . . , n, to the 3PL provider, then requires the information about the delivery time d j = C 1 j + T of each order j = 1, . . . , n. In this step, the objective of the manufacturer is to adjust the starting time of orders on M 2 while minimizing C max subject to the delivery times D j and the sequence of production on M 1 . The sequence of production is not allowed to be changed after it is imposed to the 3PL provider. Hence, we can obtain the optimal solution as follows: from the beginning to the end of sequence, schedule the orders one by one as early as possible, i.e. the starting time of order j is the minimum time between its release time and the end of the previous scheduled order on M 2 .

3PL provider's problem

The 3PL provider's problem is to determine an optimal delivery schedule minimizing the transportation cost T C, subject to the release time C 1 j and the deadline d j of each order j, j = 1, . . . , n. As mentioned in the precedent section, this problem can be denoted as

1, f seq|d j = C 1 j + T |π|1|T C.
We consider the cases with different delivery characteristics π, i.e. one transportation mode or both transportation modes, unlimited or limited number of vehicles. Throughout Section 3.4.2, since the production schedule is fixed, we can simplify the notation assuming that the orders are numbered by increasing completion times, i.e. C 1 1 < . . . < C 1 n . In the following subsections, we analyze the complexity of the 3PL provider's problem in different cases. We consider the problems with both transportation modes (subsections (i) and (ii)), the problems with regular transportation only (subsection (iii)), and the problems with express transportation only (subsection (iv)). Table 3.2 summarizes the obtained complexity results. 
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(i) Problems with two transportation modes and an unlimited number of vehicles for express transportation

We first address the problem 1|f seq,

d j = C 1 j + T |V 1 (V 1 , c 1 ), V 2 (∞, c 2 ), 1 >
portation and an unlimited number of vehicles for express transportation, and 1 > 2 .

We present a polynomial-time dynamic programming algorithm to solve this problem.

Recall that according to Property 4(a) of Lemma 3.1, the orders of each regular batch are processed consecutively on M 1 , according to Property 2 of Lemma 3.1 each express batch can be only split by regular batches, and according to Property 5 of Lemma 3.1 each express batch departs at the completion time of the last order in this batch.

Algorithm DP3.1

State and Value Function

The dynamic program considers state (i, j 1 , j 2 , s, v, g 2 , m), in which:

the first i orders have been delivered

order j 1 is the first order of the last regular batch scheduled so far, order j 2 is the first order of the last express batch scheduled so far parameter m indicates the transportation mode of the last batch, namely m = 1 stands for regular transportation, and m = 2 for express transportation the current last regular batch departs at time t s at time t s , v ≤ v s vehicles for regular transportation have been used

the current last express batch consists of g 2 orders. If m = 2, order i is the current last order of such batch, thus it departs at time C 1 i .

We let f (i, j 1 , j 2 , s, v, g 2 , m) denote the minimum transportation cost of all schedules in state (i, j 1 , j 2 , s, v, g 2 , m).

Boundary Condition

f (0, 0, 0, 0, 0, 0, 1) = 0, f (0, 0, 0, 0, 0, 0, 2) = 0.

Optimal Solution Value

min (j 1 ,j 2 ,s,v,g 2 ,m)∈A f (n, j 1 , j 2 , s, v, g 2 , m),
where

A = {(j 1 , j 2 , s, v, g 2 , m)|1 ≤ j 1 ≤ n, 1 ≤ j 2 ≤ n, 0 ≤ s ≤ L, 0 ≤ v ≤ v s , 0 ≤ g 2 ≤ c 2 , m = 1, 2}.

Recurrence Relation

We next consider the recurrence relation for f (i, j 1 , j 2 , s, v, g 2 , m). Actually, such state is only defined for values of the indices such that:

i ∈ {1, . . . , n}, j 1 ∈ {1, . . . , i}, j 2 ∈ {1, . . . , i}, s ∈ {0, . . . , L}, v ∈ {0, . . . , v s },

g 2 ∈ {0, . . . , c 2 }, m ∈ {1, 2} if m = 1, then s > 0, v > 0 and: -C 1 i ≤ t s , i.e.
, order i must be completed before the batch departs

-t s + 1 ≤ C 1 j 1 +T , i.e.
, the vehicle must arrive in M 2 within the most restrictive due date of an order in the batch

-i -j 1 + 1 ≤ c 1 , i.e., the batch size cannot exceed the vehicle capacity if m = 2, then -C 1 i + 2 ≤ C 1 j 2 +T , i.e.
, the vehicle must arrive in M 2 within the most restrictive due date of an order in the batch

-0 < g 2 ≤ c 2 -if i = j 2
, then g 2 = 1 since the current last order only consists of order i If a state does not satisfy all these conditions, we let f (i, j 1 , j 2 , s, v, g 2 , m) = +∞.

We can now express the recursive relation as:

f (i, j 1 , j 2 , s, v, g 2 , m) = min                            f (i -1, j 1 , j 2 , s, v, g 2 , m), if i > j 1 , m = 1 min (j 1 ,m ,s ,v )∈A 1 f (i -1, j 1 , j 2 , s , v , g 2 , m ) + h 1 , if i = j 1 , m = 1 min{f (i -1, j 1 , j 2 , s, v, g 2 -1, 1), f (i -1, j 1 , j 2 , s, v, g 2 -1, 2)}, if i > j 2 , m = 2 min (j 2 ,g 2 ,m )∈A 2 f (i -1, j 1 , j 2 , s, v, g 2 , m ) + h 2 , if i = j 2 , m = 2
where

A 1 = {(j 1 , m , s , v )|1 ≤ j 1 ≤ i -1, m = 1, 2, if v > 1, then s = s and v = v -1, otherwise 0 ≤ s < s and 0 ≤ v ≤ v s }, A 2 = {(j 2 , g 2 , m )|1 ≤ j 2 ≤ i -1, 0 ≤ g 2 ≤ c 2 , m = 1, 2}.
The four terms in the recurrence relation have the following meaning.

The first term corresponds to the case in which order i is added to the current last batch, and such batch is regular. According to Property 4(a) of Lemma 3.1, such batch is not split by other batches, so it contains orders j 1 , . . . , i.

In the second term, order i is the first order of a new regular batch. In this case, we must consider all possible states of the first i -1 orders, in which the last express batch is the same as state (i, j 1 , j 2 , s, v, g 2 , m). All these states are described by set 

A 1 . Note that if v = 1,
(i -1, j 1 , j 2 , s, v -1, g 2 , m )
The third term considers the case in which order i is added to the current last batch, and such batch is express. Note that order i and j 2 are both in such batch, while order i -1 can either be in a regular batch (so that we consider

f (i -1, j 1 , j 2 , s, v, g 2 -1, 1 
)) or in the same express batch as order i (and hence we consider f (i -1, j 1 , j 2 , s, v, g 2 -1, 2)). In the former case, the regular batch splits the current last batch.

The fourth term is similar to the second. In this term, order i is the first order of a new express batch. This term considers all possible states of the first i -1 orders, in which the last regular batch is the same as state (i, j 1 , j 2 , s, v, g 2 , m).

These states are described by set A 2 .

Theorem 3.1 Algorithm DP3.1 finds an optimal delivery schedule for problem 1|

f seq, d j = C 1 j + T |V 1 (V 1 , c 1 ), V 2 (∞, c 2 ), 1 > 2 , direct|1|T C in polynomial time O(n 3 ((L + V 1 ) 2 c 2 + (L + V 1 )c 2 2 )).
Proof. There exists O(n

3 (L + V 1 )c 2 ) states. In fact, for each s ∈ {0, ..., L}, v can assume v s + 1 distinct values. Since s v s = V 1 , one has O(L + V 1 ) possible pairs (s, v).
In the recurrence relation, the first and third term require O(1) time and are applied

respectively for O(n 3 (L + V 1 )c 2 ) states. The second term requires O(n(L + V 1 )) time and is applied for O(n 2 (L + V 1 )c 2 ) states. The fourth term requires O(nc 2 ) time and is applied for O(n 2 (L + V 1 )c 2 ) states.
Therefore, the complexity of algorithm DP3.1 is

O(n 3 ((L + V 1 ) 2 c 2 + (L + V 1 )c 2 2 )). Note that since V 1 ≤ Ln and c 2 ≤ n, this problem is solvable in polynomial time. 2 
Then we provide a similar dynamic programming algorithm for the problem 1|f seq, 

d j = C 1 j + T |V 1 (V 1 , c 1 ), V 2 (∞, c 2 ), 1 < 2 , direct|1|T C. Recall that

Recurrence Relation

We next consider the recurrence relation for f (i, j 1 , j 2 , s, v, g 1 , m). Actually, such state is only defined for values of the indices such that: i ∈ {1, . . . , n}, j 1 ∈ {1, . . . , i}, j 2 ∈ {1, . . . , i}, s ∈ {0, . . . , L}, v ∈ {0, . . . , v s },

g 1 ∈ {0, . . . , c 1 }, m ∈ {1, 2} if m = 1, then s > 0, v > 0, g 1 > 0 and: -C 1 i ≤ t s , i.e.
, order i must be completed before the batch departs

-t s + 1 ≤ C 1 j 1 +T , i.e.
, the vehicle must arrive in M 2 within the most restrictive due date of an order in the batch

-if i = j 1 , then g 1 = 1 since the current last order only consists of order i if m = 2, then C 1 i + 2 ≤ C 1 j 2 + T , i.e.
, the vehicle must arrive in M 2 within the most restrictive due date of an order in the batch, and i -j 2 + 1 ≤ c 2 , i.e., the batch size cannot exceed the vehicle capacity.

If a state does not satisfy all these conditions, we let f (i, j 1 , j 2 , s, v, g 1 , m) = +∞.

We can now express the recursive relation as:

f (i, j 1 , j 2 , s, v, g 1 , m) = min                            min{f (i -1, j 1 , j 2 , s, v, g 1 -1, 1), f (i -1, j 1 , j 2 , s, v, g 1 -1, 2)}, if i > j 1 , m = 1 min (j 1 ,m ,s ,v ,g 1 )∈A 1 f (i -1, j 1 , j 2 , s , v , g 1 , m ) + h 1 , if i = j 1 , m = 1 f (i -1, j 1 , j 2 , s, v, g 1 , m), if i > j 2 , m = 2 min (j 2 ,m )∈A 2 f (i -1, j 1 , j 2 , s, v, g 1 , m ) + h 2 , if i = j 2 , m = 2
where

A 1 = {(j 1 , m , s , v , g 1 )|1 ≤ j 1 ≤ i -1, m = 1, 2, 0 ≤ g 1 ≤ c 1 , if v > 1, then s = s and v = v -1, otherwise 0 ≤ s < s and 0 ≤ v ≤ v s }, A 2 = {(j 2 , m )|1 ≤ j 2 ≤ i -1, m = 1, 2}.
The interpretation of the recurrence relation of algorithm DP3.3 is similar to that of algorithm DP3.1.

Theorem 3.2 Algorithm DP3.2 finds an optimal delivery schedule for problem 1|

f seq, d j = C 1 j + T |V 1 (V 1 , c 1 ), V 2 (∞, c 2 ), 1 < 2 , direct|1|T C in polynomial time O(n 3 ((L + V 1 )c 1 ) 2 ).
Proof. The proof is similar to that of algorithm DP3.1.

2

Finally, we provide a similar polynomial-time dynamic programming algorithm for the problem 1|f seq, From the algorithm DP3.1, we remove g 2 , replace two parameters j 1 and j 2 by one parameter j which represents the first order of the last batch.

d j = C 1 j + T |V 1 (V 1 , c 1 ), V 2 (∞, c 2 ), 1 = 2 , direct|1|T C.

Recurrence Relation

f (i, j, s, v, m) = min                    f (i -1, j, s, v, m), if i > j, m = 1 min (j ,m ,s ,v )∈A 1 f (i -1, j , s , v , m ) + h 1 , if i = j, m = 1 f (i -1, j, s, v, m), if i > j, m = 2 min (j ,m )∈A 2 f (i -1, j , s, v, m ) + h 2 , if i = j, m = 2
where

A 1 = {(j , m , s , v )|1 ≤ j ≤ i -1, m = 1, 2, if v > 1, then s = s and v = v -1, otherwise 0 ≤ s < s and 0 ≤ v ≤ v s }, A 2 = {(j , m )|1 ≤ j ≤ i -1, m = 1, 2}.
The interpretation of the recurrence relation of algorithm DP3.3 is similar to that of algorithm DP3.1.

Theorem 3.3 Algorithm DP3.3 finds an optimal delivery schedule for problem 1|

f seq, d j = C 1 j + T |V 1 (V 1 , c 1 ), V 2 (∞, c 2 ), 1 = 2 , direct|1|T C in polynomial time O((n(L + V 1 )) 2 ).
Proof. The proof is similar to that of algorithm DP3.1.

2

For the other problems with an unlimited number of vehicles for regular transportation, i.e. 1| f seq, 

d j = C 1 j + T |V 1 (∞, c 1 ), V 2 (∞, c 2 ), 1 > 2 , direct|1|T C, 1| f seq, d j = C 1 j +T |V 1 (∞, c 1 ), V 2 (∞, c 2 ), 1 < 2 , direct|1|T C, 1| f seq, d j = C 1 j +T |V 1 (∞, c 1 ), V 2 (∞, c 2 ), 1 = 2 , direct|1|T C,
= C 1 j + T |V 1 (V 1 , c 1 ), V 2 (V 2 , c 2 ), 1 ≥ 2 , direct|1|T C,
C j , C 1 j + ( 2 + 2 ), . . . , C 1 j + u( 2 + 2 )
, for some u = 0, . . . , n -j and j = 1, . . . , n. Assuming that there are L + 1 distinct candidate departure times, we denote them as t 0 , t 1 , t 2 , . . . , t L , where t 0 = 0. Note that L ≤ n(n + 1)/2, hence the possible departure times for vehicles for express transportation are O(n 2 ) (Lee and Chen 2001). We assume that V 2 is fixed. The problem can be solved by a dynamic program which is similar to DP3.1.

Algorithm DP3.4

State and Value Function

The dynamic program considers state (i, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 ), where parameters i, j 1 , j 2 , s, v, g 2 and m are defined exactly as algorithm DP3.1 (see subsection (i)), and the last V 2 express batches depart at times t s 1 , . . . , t s V 2 , where s k ∈ {0, 1, . . . , L } for k = 1, . . . , V 2 and 0 ≤ s 1 ≤ . . . ≤ s V 2 . We let f (i, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 ) denote the minimum transportation cost of all schedules in state (i, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 ).

Boundary Condition

f (0, 0, 0, 0, 0, 0, 1, 0, . . . , 0) = 0, f (0, 0, 0, 0, 0, 0, 2, 0, . . . , 0) = 0.

Optimal Solution Value

min (j 1 ,j 2 ,s,v,g 2 ,m,s 1 ,...,s V 2 )∈A f (n, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 ), where A = {(j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 )|1 ≤ j 1 ≤ n, 1 ≤ j 2 ≤ n, 0 ≤ s ≤ L, 0 ≤ v ≤ v s , 0 ≤ g 2 ≤ c 2 , m = 1, 2, 0 ≤ s k ≤ L , k = 1, . . . , V 2 }.

Recurrence Relation

Considering the recurrence relation for f (i, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 ), we have that this is defined only for values of the indices such that: i ∈ {1, . . . , n}, j 1 ∈ {1, . . . , i}, j 2 ∈ {1, . . . , i}, s ∈ {0, . . . , L}, v ∈ {0, . . . , v s },

g 2 ∈ {0, . . . , c 2 }, m ∈ {1, 2} s k ∈ {0, . . . , L },k = 1, . . . , V 2 , s u ≤ s u+1 , u = 1, . . . , V 2 -1 if m = 1, then s > 0, v > 0 and:
-C i ≤ t s , i.e., order i must be completed before the (regular) batch departs

-t s + 1 ≤ C 1 j 1 +T , i.e.
, the vehicle must arrive in M 2 within the most restrictive due date of an order in the batch

-i -j 1 + 1 ≤ c 1 , i.e., the batch size cannot exceed the vehicle capacity if m = 2, then -C i ≤ t s V 2 , i.e.
, order i must be completed before the (express) batch departs

-t s V 2 + 2 ≤ C 1 j 2 + T , i.e.
, the vehicle (departing at t s V 2 ) must arrive in M 2 within the most restrictive due date of an order in the batch 

-0 < g 2 ≤ c 2 -if i = j 2 , then g 2 =
f (i, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 ) = min                                    f (i -1, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 ), if i > j 1 , m = 1 min (j 1 ,m ,s ,v )∈A 1 f (i -1, j 1 , j 2 , s , v , g 2 , m , s 1 , . . . , s V 2 ) + h 1 , if i = j 1 , m = 1 min{f (i -1, j 1 , j 2 , s, v, g 2 -1, 1, s 1 , . . . , s V 2 ), f (i -1, j 1 , j 2 , s, v, g 2 -1, 2, s 1 , . . . , s V 2 )}, if i > j 2 , m = 2 min (j 2 ,g 2 ,m ,s 1 )∈A 2 f (i -1, j 1 , j 2 , s, v, g 2 , m , s 1 , s 1 , . . . , s V 2 -1 ) +h 2 , if i = j 2 , m = 2
where

A 1 = {(j 1 , m , s , v )|1 ≤ j 1 ≤ i -1, m = 1, 2, if v > 1, then s = s and v = v -1, otherwise 0 ≤ s < s and 0 ≤ v ≤ v s }, A 2 = {(j 2 , g 2 , m , s )|1 ≤ j 2 ≤ i -1, 0 ≤ g 2 ≤ c 2 , m = 1, 2, 0 ≤ s 1 ≤ s 1 , t s 1 + min{1, s 1 } * ( 2 + 2 ) ≤ t s V 2 }.
The four terms in the recurrence relation have the following meaning.

As in DP3.1, the first term corresponds to the case in which order i is added to the current last batch, and such batch is regular. Due to Property 4(a) of Lemma 3.1, such batch is not split by other batches, so it contains orders j 1 , . . . , i.

Also the second term is very similar to the corresponding term in DP3.1. Order i is the first order of a new regular batch. In this case, we must consider all possible states of the first i -1 orders, in which the last express batch is the same as state

(i, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 )
. All these states are described by set

A 1 . If v = 1,
the new regular batch is indeed the first being shipped at time t s , whereas if v > 1 other vehicles have been already planned to depart at t s , so we must only consider

states of type (i -1, j 1 , j 2 , s, v -1, g 2 , m ).
The third term considers the case in which order i is added to the current last batch, and such batch is express. Note that order i and j 2 are both in such batch, while order i -1 can either be in a regular batch (so that we consider

f (i -1, j 1 , j 2 , s, v, g 2 -1, 1, s 1 , . . . , s V 2 )
) or in the same express batch as order i (and hence we consider f (i -1, j 1 , j 2 , s, v, g 2 -1, 2, s 1 , . . . , s V 2 )). In the former case, the regular batch splits the current last batch.

The fourth term is similar to the second. In this term, order i is the first order of a new express batch. This term considers all possible states of the first i -1 orders, in which the last regular batch is the same as state (i, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 ).

These states are described by set A 2 .

Theorem 3.4 Algorithm DP3.4 finds an optimal delivery schedule for problem 1|f seq,

d j = C 1 j + T |V 1 (∞, c 1 ), V 2 (∞, c 2 ), 1 > 2 , direct|1|T C in O(n 2V 2 +3 (L + V 1 ) 2 c 2 + n 2V 2 +5 (L + V 1 )c 2 2 ) time, which is polynomial if V 2 is fixed.
Proof. The proof is similar to that of algorithm DP3.1. 2

For the other problems with two transportation modes and limited number of vehicles for express transportation, similar dynamic programming algorithms can be given by using the same method of transformation as the subsection (i). The results are shown in Table 3.2. If V 2 is fixed, all of the above problems can be solved in polynomial time.

Otherwise, the complexities of problems are open.

(iii) Problems with regular transportation only

We next consider problem 1|f seq, d j = C 1 j + T |V 1 (∞, c 1 ), direct|1|T C, which can be seen as a special case of problem 1|f seq,

d j = C 1 j + T |V 1 (∞, c 1 ), V 2 (V 2 , c 2 ), 1 = 2 , direct|1|T C (see subsection (ii)), with V 2 = 0.
We can give a similar dynamic programming algorithm that runs in O((nL) 2 ) time. Actually, we can give a polynomial-time greedy algorithm having smaller complexity. Hereafter we assume, together with the assumption at the beginning of section 3.4.2, that orders and departure times are numbered in increasing order of completion times on M 1 and departure times respectively. In fact, for each order i, we let t(i) denote the first departure time after the completion of order i on M 1 , i.e.:

t(i) = min{t s : t s ≥ C 1 i , s = 1, . . . , L}
Note that all values t(i) can be computed in O(n + L), simply scanning the two ordered sets.

The algorithm GA3.1 greedily scans the orders in increasing order of completion times, assigning orders to the current batch as long as no deadline is violated. When the addition of the next order would make the first order late, a new batch is started.

The algorithm exploits the fact that there exists an optimal delivery schedule in which no batch is split (Property 3 of Lemma 3.1). In Algorithm GA3.1, i is the index of the last considered order, j is the index of the last considered batch, P contains the delivery schedule and t B j is the departure time of batch B j .

Theorem 3.5 Algorithm GA3.1 finds an optimal delivery schedule for problem 1|f seq,

d j = C 1 j + T |V 1 (∞, c 1 ) , direct|1|T C in polynomial time O(n + L).
Proof. Let φ be the schedule generated by Algorithm GA3.1, and consider an optimal delivery schedule θ. 1 i = 0 ; j = 0 ; P = ∅; compute all t(i) ; t s = t(1) ;

2 while i < n do 3 if C 1 i+1 + T < t s + 1 then 4 
There is no feasible solution, STOP. 

while (i < n)&&(|B j | + 1 ≤ c 1 )&&(C 1 q + T ≥ t s + 1 ) do 11 B j = B j ∪ {i + 1} ;
12 t B j = t s ; //update departure time of the current batch

13 i = i + 1; t s = t(i + 1) ;
14 for w = 1 to j do 15 P = P ∪ B w ;//form delivery schedule by combining all the batches distinguish three cases.

|B k (φ)| > |B k (θ)| and D B k (θ) = D B k (φ). In this case, we add to B k (θ) the orders in B k (φ) \ B k (θ), so that |B k (φ)| = |B k (θ)| without changing D B k (θ), which does not increase the transportation cost. |B k (φ)| = |B k (θ)| and D B k (θ) > D B k (φ). In this case, we anticipate D B k (θ), so that D B k (θ) = D B k (φ)
, and this does not increase the transportation cost.

|B k (φ)| > |B k (θ)| and D B k (θ) > D B k (φ)
. In this case one can perform both previous transformations, to get both

|B k (φ)| = |B k (θ)| and D B k (θ) = D B k (φ),
which does not increase the transportation cost.

Applying the same rule, we can transform the subsequent batches in θ as in φ without increasing the transportation cost. So schedule φ produced by Algorithm GA3.1 is optimal.

For each order, Algorithm GA3.1 checks (at line 13) whether its addition to the current batch violates any deadline or the batch size. This is done in constant time. Since Similarly, viewing problem 1|f seq,

d j = C 1 j + T |V 1 (V 1 , c 1 ), direct|1|T C as a special case of 1|f seq, d j = C 1 j + T |V 1 (V 1 , c 1 ), V 2 (V 2 , c 2 ), 1 = 2 , direct|1|T C with V 2 = 0, one can solve it by dynamic programming algorithm in time O((n(L + V 1 )) 2 ). Actually,
we can give a polynomial-time dynamic algorithm having smaller complexity O(n

+ V 1 min{V 1 , n}).

In what follows, given two integers A and E, E ≥ A, we let [A, E] denote the closed interval of integers

A, A + 1, . . . , E. Recall that C 1 1 ≤ • • • ≤ C 1 n and t 1 < • • • < t L .
Given an instance of the 3PL provider's problem, consider the i-th departure time t i . Denote by [A i , E i ] ⊆ N the maximal interval of orders such that any order from this interval can be feasibly delivered if its delivery starts at time t i , i = 1, . . . , L. Observe that order j can be feasibly delivered by a vehicle departing at time t i if and only if

t i -T + 1 ≤ C 1 j ≤ t i , j = 1, . . . , n. All the intervals [A i , E i ], i = 1, . . . , L, can be constructed in O(n + L) time.
The following two lemmas are trivial.

Lemma 3.2 A 1 ≤ • • • ≤ A L and E 1 ≤ • • • ≤ E L . Lemma 3.3 Problem 1|f seq, d j = C 1 j + T |V 1 (V 1 , c 1 ), direct|1|T C has a solution only if ∪ L i=1 [A i , E i ] = {1, . . . , n}.
Note that if an instance of the 3PL provider's problem has a solution, then A 1 = 1,

E L = n and A i+1 ≤ E i , i = 1, . . . , n -1.
Moreover, a simple order interchange argument can be used to prove the following:

Lemma 3.4 If the problem 1|f seq, d j = C 1 j + T |V 1 (V 1 , c 1 )
, direct|1|T C has a solution, then there exists an optimal solution, in which each batch consists of consecutively indexed orders and a batch with smaller order indices is delivered earlier.

We will consider solutions which satisfy Lemma 3. [START_REF] Agnetis | Two faster algorithms for coordination of production and batch delivery: a note[END_REF]. In what follows, we conveniently represent an instance and a feasible solution by means of the diagram shown in Figure3.5.

There are L rows and n columns. Row i corresponds to departure time t i , and circles in these row correspond to the orders that can be feasibly delivered by a vehicle departing at t i . Note that Lemma 3.4 implies that, if a feasible solution exists, no column can be empty. We represent a feasible solution by framing the orders in the same batch.

Products assigned to a batch are marked in bold. For the example in Figure 3.5, there are L = 4 delivery times, batch sizes are bounded by c 1 = 4, and the numbers of vehicles We call order j ∈ [A i , E i ] an order in row i. Note that an order is in at least one row (because of Lemma 3.3) and, in general, is in several rows. Given a feasible solution, we call a batch full if it contains exactly c 1 orders. In a feasible solution, we call residual orders the last orders in row i which are not assigned to a vehicle departing at t i (and, hence, will be delivered later).

are v 1 = 4, v 2 = 3, v 3 = 3 and v 4 = 2. A 1 = 1 E 1 • • • • • • • • • • • A 2 E 2 • • • • • • • • • • • • • A 3 E 3 • • • • • • • • • • • • • A 4 E 4 = n • • • • • • • • • • •
Lemma 3.5 If the problem 1|f seq, d j = C 1 j + T |V 1 (V 1 , c 1 )
, direct|1|T C has a solution, then there exists an optimal solution which satisfies Lemma 3.4 and in which batches in the same row i, i = 1, . . . , L, satisfy one of the following four properties:

(1) all batches are full and their number is v i ,

(2) all batches are full, their number is less than v i , and the number of residual orders

in row i is at most c 1 -1,
(3) row i contains no batch and the number of residual orders in rows 1, . . . , i is at most c 1 -1, (4) all but one batches are full, the non-full batch is last in row i and it includes order E i .

Proof. Given an optimal solution which satisfies Lemma 3.4, consider row 1 of the diagram. We will modify it according to the following two cases (a) and (b).

Case (a): v 1 c 1 ≤ E 1 . In this case, re-assign orders 1, . . . , v 1 c 1 to v 1 full batches in row 1. It can be easily seen that the solution remains optimal and satisfying Lemma 3.4.

In the obtained solution, the batches in row 1 satisfy property (i).

Case (b):

v 1 c 1 > E 1 . In this case, calculate number x, 0 ≤ x ≤ v 1 -1, such that xc 1 ≤ E 1 and (x + 1)c 1 > E 1 .
Re-assign orders 1, . . . , xc 1 to x full batches in row 1. If, after performing such reassignment, some orders in xc 1 + 1, xc 1 + 2, . . . , E 1 are still assigned to some batch in row 1, then reassign all orders xc 1 + 1, xc 1 + 2, . . . , E 1 to a last non-full batch in row 1. Otherwise, leave orders xc 1 + 1, xc 1 + 2, . . . , E 1 unassigned (residual). It can be easily seen that the solution remains optimal and satisfying Lemma 3.4. For this solution, if x ≥ 1, then the batches in row 1 satisfy property (ii) or (iv), and if x = 0, then they satisfy property (iii) or (iv).

After the above modification has been done, remove all assigned orders of row 1 from the obtained solution. Also, renumber remaining orders to start from number 1, renumber departure times to start from number 1, and consider the reduced solution in the new notation. Now, one has only L -1 departure times and a smaller number of orders.

All the above arguments can be applied for the reduced solution. Repetition of this argumentation at most L times completes the proof.
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Note that the rows 1, 2, 3 and 4 in Figure 3.5 satisfy properties (ii), (iv), (iv) and (i), respectively.

The above properties justify the following dynamic programming algorithm, denoted as DP3.5. In this algorithm, partial batch sequences satisfying Lemmas 3.4 and 3.5 are constructed. A batch sequence is extended by appending a new batch to its end. A state (i, a, k) is associated with each partial batch sequence, where i is the current row, a is number of batches in row i and k is the total number of batches considered so far.

We denote by G(i, a, k) the maximum number of orders that can be feasibly delivered according to the partial batch sequences in the state (i, a, k). It is easy to see that, if there exists a batch sequence in a state (i, a, k) that can be extended to an optimal batch sequence, then the batch sequence corresponding to the value G(i, a, k) can be extended to an optimal batch sequence as well. A batch sequence with the smallest number of batches k, which corresponds to the value G(L, a, k) = n, is optimal. A formal description of algorithm DP3.5 is given below.

As a preprocessing step, compute

v i := min{v i , (E i -A i + 1)/c 1 }, i = 1, . . . , L, and V = L i=1 v i .
In fact, in view of Lemma 3.5, no more than v i vehicles will be used in an optimal solution departing at time t i .

The initialization is

G(1, 0, 0) = 0, G(1, a, a) = min{ac 1 , E 1 }, a = 1, . . . , v 1 ,
and G(i, a, k) = -∞, i = 2, 3, . . . , L, a = 0, 1, . . . , v i , k = 0, 1, . . . , min{V , n}.

The recursion for i = 2, 3, . . . , L is the following.

For k = 0, 1, . . . , min{V , n},

G(i, 0, k) = max 0≤b≤v i-1 {G(i -1, b, k)}.
Note that this represents the maximum number of orders which can be feasibly delivered in k batches, when no batch departs at t i .

For k = 1, . . . , min{V , n},

G(i, 1, k) = min{E i , max 0≤b≤v i-1 {G(i -1, b, k -1} + c 1 }}.
Note that this represents the maximum number of orders which can be feasibly delivered in k batches, when exactly one batch departs at t i . Let the above maximum be attained

at b = b * . If G(i -1, b * , k -1) + c 1 ≤ E i , then the first batch in row i is full and it includes orders G(i -1, b * , k -1) + 1, G(i -1, b * , k -1) + 2, . . . , G(i -1, b * , k -1) + c 1
(case (i) or (ii) of Lemma 3.5). Otherwise, this batch is non-full and it includes orders

G(i -1, b * , k -1) + 1, G(i -1, b * , k -1) + 2, . . . , E i (case (iv) of Lemma 3.5).
Similarly, we have the general formula for k = 1, . . . , min{V , n} and a = 2, 3, . . . , min{k, v i }:

G(i, a, k) = min{E i , G(i, a -1, k -1) + c 1 }.
This is the maximum number of orders which can be feasibly delivered in k batches, when exactly a batches depart at

t i (a ≥ 2). If G(i, a -1, k -1) + c 1 ≤ E i , then the a-th
batch is full and it includes orders G(i, a -1, k -1) + 1, G(i, a -1, k -1) + 2, . . . , G(i, a -1, k -1) + c 1 (case (i) or (ii)). Otherwise, this batch is non-full and it includes orders

G(i, a -1, k -1) + 1, G(i, a -1, k -1) + 2, . . . , E i (case (iv)).
If, for some (i, a, k), one has G(i, a, k) ≤ A i -1, then it is not possible to feasibly accommodate all orders of rows 1, . . . , i -1 in k batches, a of which consist of orders in row i. In this case, no feasible solution can be obtained from such partial solution, and hence we reset

G(i, a, k) = -∞, i = 2, 3, . . . , L, k = 0, 1, . . . , min{V , n}, a = 0, 1, . . . , min{k, v i }. If max G(L, a, k) | a = 0, 1, . . . , v L , k = 1, . . . , min{V , n} ≤ n -1,
then the 3PL provider's problem has no solution. Otherwise, the minimum number of batches is equal to

k * = min k | G(L, a, k) = n, a = 0, 1, . . . , v L , k = 1, . . . , min{V , n} , (3.4.1) 
and the corresponding solution can be found by backtracking.

We are now in the position of proving the final result. Finally, the optimal solution can be computed in O(n) by the (3.4.1). Since V ≤ V 1 , the 3PL provider's problem can be solved in time

Theorem 3.6 Problem 1|f seq, d j = C 1 j + T |V 1 (V 1 , c 1 ), direct|1|T C can be solved in time O(n + V 1 min{V 1 , n}).
O(n + V 1 min{V 1 , n}).

(iv) Problems with express transportation only

Let us now turn to problems in which V 1 = 0. Again, from Property 3 of Lemma 3.1, there exists an optimal delivery schedule in which no batch is split.

If there is an unlimited number of vehicles, considering that 1|f seq, d j =

C 1 j + T |V 2 (∞, c 2 ), direct|1|T C is as a special case of 1|f seq, d j = C 1 j + T |V 1 (V 1 , c 1 ), V 2 (∞, c 2 ), 1 = 2 , direct|1|T C with V 1 = 0,
one can give a dynamic programming algorithm having complexity O(n 2 ). Indeed, also in this case the problem can be solved more efficiently by a greedy algorithm. Such algorithm is identical to Algorithm GA3.1, except that the departure time of a batch now coincides with the completion time of the last order in the batch, and, of course, there is no need to define t(i). Hence, it suffices replacing the step at lines 9 and 13, "t s = t(i + 1)", with "t s = C 1 i+1 ", and the time complexity is therefore O(n).

Let us now turn to the problem with a limited number of vehicles, i.e., 1|f seq, d j =

C 1 j + T |V 2 (V 2 , c 2 ), direct|1|T C. The complexity of this problem is open if V 2 is not fixed. If V 2 is
fixed, the problem can be seen as a special case of problem 1|f seq, d j =

C 1 j + T |V 1 (V 1 , c 1 ), V 2 (V 2 , c 2 ), 1 = 2 , direct|1|T C with V 1 = 0,
and hence one can give a similar dynamic programming algorithm that runs in O(n 2V 2 +4 ) time. Indeed, in this case the problem can be solved more efficiently. We assume, together with the assumption at the beginning of section 3.4.2, that orders and departure times are numbered in increasing order of completion times on M 1 and departure times respectively.

Consider the following batch scheduling problem. There are ñ jobs and m parallel identical machines. All jobs have the same processing time p j = p, j = 1, . . . , ñ. Each job has a release date r j ≥ 0 and a deadline d j , d j ≥ r j + p, j = 1, . . . , ñ. Jobs are performed in batches having bounded capacity q, i.e., a machine can handle up to q jobs in parallel. Jobs in a batch have the same starting and completion time (this is also known as batch availability model with parallel job processing and bounded batch capacity, see [START_REF] Potts | Scheduling with batching: A review[END_REF] for the terminology.) Since all job processing times are identical and equal to p, the processing time of any batch equals p. The problem is to find a feasible batch schedule (i.e., a partition of Ñ = {1, . . . , ñ} into batches and an assignment of batches to machines that respect all release dates and deadlines) with the minimum number of batches.

In what follows, we show that the 3PL provider's problem 1|f seq, q := c 2 ; Hence, all job deadlines in I B are satisfied. Furthermore, batch G in I B starts at time CG -p, and

d j = C 1 j + T |V 2 (V 2 , c 2 ),
r j := C 1 j , d j := r j + T + 2 , p j = p = 2 + 2 , j = 1, . . . , ñ.
τ DEL,H + 2 -p = τ DEL,H -2 ≥ max j∈H {C 1 j } = max j∈G {r j },
so batch G respects job release dates as well. Finally, each vehicle carries one batch and hence no machine will process more than one batch at a time. 2

We are now in the position of proving the following result.

Theorem 3.7 Problem 1|f seq, d j = C 1 j + T |V 2 (V 2 , c 2 ), direct|1|T C can be solved in O(n) time.
Proof. Given an instance of 3PL provider's problem, it can be solved by constructing the corresponding instance of batch scheduling problem according to the reduction and solving it. Koehler and Khuller (2013) developed an O(ñ) time algorithm for batch scheduling problem in the special case in which release dates and deadlines are agreeable, i.e., r i < r j implies d i ≤ d j for any jobs i and j. We observe that, due to the reduction, the instance of batch scheduling problem obtained is indeed agreeable, and as a consequence, the instance of 3PL provider's problem can be solved in O(n) time. 2

3.5 3PL Provider Dominates, Manufacturer Adjusts -scenario 2

In this section, we address the second scenario, i.e., the 3PL provider defines a delivery schedule, and the manufacturer has to adjust the production schedule subject to the fixed number of regular vehicles and express vehicles imposed by the 3PL provider. We address the 3PL provider's problem 1|no -idle, d j = C 1 j + T |π|1|T C and the manufacturer's problem separately. For the 3PL provider's problem, we consider the cases with one transportation mode and other different delivery characteristics π, i.e. unlimited or limited number of vehicles.

3PL provider's problem

As discussed in Section 3.2, the 3PL provider's problem can be seen as an IPODS (Integrated production and outbound distribution scheduling) problem, where the orders are processed on a single machine and the batches are delivered to a single customer, with deadlines depending on the production schedule. We analyze the complexity of the problems in this scenario. Since in the literature the deadlines are independent of the production schedule, known complexity results do not in general apply to our problems.

In this section, after giving some properties, we address the case in which there are only vehicles for express transportation (subsections (a) and (b)) and the case in which there are only vehicles for regular transportation (subsection (c)). As shown in Table 3.3, the problem with express transportation is polynomially solvable only in the case with an unlimited number of vehicles of capacity c 2 ≤ 3. The problem with regular transportation is always strongly NP-hard. Hence the problem with both transportation modes is also strongly NP-hard. 

- V 2 (∞, 3) P O(n 2 ) (a) - V 2 (∞, 2) P O(n log n) (a) - V 2 (∞, 1) P O(n) (a) - V 2 (∞, c 2 ≥ 4) sNP (a) - V 2 (1, 1) sNP (b) V 1 (∞, c 1 ) - sNP (c) V 1 (V 1 , c 1 ) - sNP (c) 
We can prove that the following property holds for the problem 1|no -idle, d j = C 1 j + T |π|1|T C with all possible values of π.

Lemma 3.7 There exists an optimal production-distribution schedule for problem 1|no -idle, d j = C 1 j + T |π|1|T C such that, if the orders of batch B are processed consecutively on M 1 , then the order having longest processing time in the batch is in first position.

Proof. In a given optimal production-distribution schedule (σ, θ), consider a batch B consisting of orders consecutively processed on M 1 , and in which the first order, say order j, is not the longest order. Here the batch B can be a regular batch or an express batch. We first show that if each vehicle can carry at least 4 orders, the problem is difficult.

In what follows, we use the following strongly NP-complete problem (Garey and Johnson

1979):

3-partition. Given 3n integers a 1 , . . . , a 3n , so that a i = nW , and such that W/4 < a i < W/2 for all i, is it possible to partition them into n triples each summing up to W ?

Theorem 3.8 Problem 1|no -idle, d j = C 1 j + T |V 2 (∞, c 2 ), direct|1|T C where c 2 ≥ 4 is strongly NP-hard.
Proof. We reduce 3-partition to our problem. Given an instance of 3-partition, define an instance of 1|no -idle, d j = C 1 j + T |V 2 (∞, c 2 ), direct|1|T C as follows. There are 4n orders, namely n long orders and 3n short orders. Short orders correspond to the integers of 3-partition, so p 1 i = a i , i = 1, . . . , 3n. Each long order has processing time Q >> W . We let T = Q+2W , hence the deadline of an order is C 1 j +T = C 1 j +(Q+2W ). Transportation time is 2 = Q+W . We want to know whether there exists a productiondistribution schedule (σ, θ) consisting of n batches that respects all due dates. Suppose that a solution Σ to 3-partition exists. Then we can build a productiondistribution schedule (σ, θ) for 3PL provider as follows. We put in each batch one long order, followed by one of the triples of Σ. Doing so, the total processing time of each batch is exactly Q + W , and so a long order j which completes at C 1 j will be delivered exactly at C 1 j + Q + 2W , hence on time. Of course, also the three short orders will be on time. So, the obtained schedule (σ, θ) is a solution to 3PL provider. Now suppose that a solution (σ, θ) to 3PL provider exists, i.e., (σ, θ) consists of n batches and respects all due dates. The following facts concerning (σ, θ) hold. Fact 1. Each batch contains exactly one long order. In fact, if in a batch there are two long orders, the first of them would be certainly delivered late. Fact 2. Each batch contains exactly three short orders. If not, there is at least one batch with four short orders, let p be their total processing time. From Lemma 3.7, the long order is the first in the batch, and it would be delivered after p + Q + W from its completion time. Since W/4 < a i , p > W . Hence, the long order would be late. Fact 3. The total processing time of the short orders in each batch equals W . If this is not the case, there would be at least one batch in which the total processing time of the short orders would exceed W and hence, similarly to Fact 2, the long order in this batch would be delivered beyond its due date.

In conclusion, the short orders in each batch define a triple which constitutes a solution to 3-partition.
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Now let us turn to the case c 2 = 3. For the sake of simplicity, we suppose that in a schedule with b batches, there are 3b -n dummy orders with zero processing time, so that we can regard each batch as consisting of exactly three orders.

We can prove that the following properties hold for the problem 1|no -idle, d j =

C 1 j + T |V 2 (∞, 3), direct|1|T C.
In what follows, we suppose the orders numbered in the longest precessing time (LPT) order, i.e., p 1 1 ≥ . . . ≥ p 1 n .

Lemma 3.8 For problem 1|no-idle, d j = C 1 j +T |V 2 (∞, 3), direct|1|T C, there exists an optimal production-distribution schedule, consisting of b batches, such that the following properties hold:

1. The orders 1, . . . , b are the first orders in their respective batch; 2. For each i = 0, . . . , b -1, the orders b + 1 + i and 3b -i are in the same batch.

Proof. Property 1: The proof of this property is illustrated by Figure 3.6. Consider an optimal schedule (σ, θ), and suppose that there is a batch B with an order i such that 1 ≤ i ≤ b, and i is not the first order in B. Since there are b batches, there is at least one batch, say B , in which the first order has index j > i. Now swap the orders i and j among B and B in θ, and update the departure time of each batch by the completion of each batch, hence obtaining a new schedule (σ, θ) with the same number of batches.

Note that (σ, θ) is feasible. In fact, the first order of B is the same in the two schedules, and the difference between the departure time of B and the completion time of the first order of B is smaller in θ, so B is on time in (σ, θ). Concerning B , the first order is longer in (σ, θ) than in (σ, θ) by η = p 1 i -p 1 j , so the departure time increases by η. However, the deadline of the first order increases also by η, so also B is on time in (σ, θ).

We can repeat the same argument for each order k such that 1 ≤ k ≤ b and which is not the first order in its batch, until an optimal schedule respecting Property 1 is obtained. Property 2: Let (σ, θ) be an optimal production-distribution schedule which respects the previous Property 1. Suppose that b + 1 + i and 3b -i are not in the same batch, and b + 1 + i is the smallest-indexed order which is not in the same batch with 3b -i, for i ≤ b -1. Let k denote the order in the same batch with b + 1 + i, and k the order in the same batch with 3b -i. Note that p 1 b+1+i ≥ p 1 k ≥ p 1 3b-i and p 1 b+1+i ≥ p 1 k ≥ p 1 3b-i . We can exchange order k with order 3b-i in θ, and update the departure time of each batch by the completion of each batch, without changing the number of batches, hence obtaining a new schedule (σ, θ). Again,(σ, θ) is feasible. In fact, since

p 1 b+1+i +p 1 3b-i ≤ p 1 b+1+i +p 1 k ≤ T -2 , the batch containing b + 1 + i and 3b -i is on time. The batch containing k and k is also on time, since p 1 k + p 1 k ≤ p 1 b+1+i + p 1 k ≤ T -2 .
One can repeatedly apply the same argument until a schedule with the same number of batches is obtained that respects Property 2.
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According to Lemma 3.7 and Lemma 3.8, we propose a greedy algorithm GA3.2 for the problem 1|no -idle,

d j = C 1 j + T |V 2 (∞, 3), direct|1|T C.
Theorem 3.9 Algorithm GA3.2 finds an optimal production-distribution schedule for problem 1|no -idle,

d j = C 1 j + T |V 2 (∞, 3), direct|1|T C in O(n 2 ) time.
3.8 holds for the problem with c 2 = 2.

Algorithm 3: Algorithm GA3.3

1 Index orders in LPT order, so that p 1 1 ≥ . . . ≥ p 1 n ;

2 b = n 2 ; //b is the initial number of batches 3 for j = 1 to b do 4 B j = {j} ; //put order j in the batch B j A schedule for this problem has a very distinctive structure, in which we call offset O j the difference between the departure time of the vehicle that carries away order j (equal to D j -2 ) and the completion time C 1 j of the same order on M 1 . Note that by definition the offset can never be negative. The offset is zero if an order is completed on M 1 after (or exactly at) the time the vehicle is back in M 1 . It is easy to check that in general, if we let i be the order that immediately precedes j in a schedule:

5 i = b + 1; 6 while i ≤ n do 7 if p 1 i > T -2 then
O j = max{0, O i -p 1 j + 2 + 2 }. (3.5.3) 
Note that if p 1 j > 2 + 2 , then the offset decreases (by 2 + 2 -p 1 j ), while on the contrary, if p 1 j < 2 + 2 , then the offset increases (by 2 + 2 -p 1 j ). No order can be scheduled if the offset becomes larger than T -2 , so in a feasible schedule all the offset values are below this value.

To establish the complexity of the problem, we use the following strongly NP-complete problem (Kellerer et al 1998):

Stock Size Problem (SSP). Given a set I of n nonzero integers a 1 , . . . , a n , and a positive integer Q such that j∈I a j = Q, is there an ordering σ of the n integers such that, denoting by σ(i) the i-th integer in the ordering, for all k = 1, . . . , n it holds

0 ≤ k i=1 a σ(i) ≤ Q? (3.5.4) Theorem 3.11 Problem 1|no -idle, d j = C 1 j + T |V 2 (1, 1), direct|1|T C is strongly NP- hard.
Proof. We reduce SSP to our problem. Given an instance of SSP, we let P and N denote positive and negative integers in I respectively. We let 2 = 2 = Q + 1 and T = 2Q + 1.

For each a i , define an order i having processing time

p 1 i = 2 2 -a i (note that p 1 i < 2 2 if i ∈ P and p 1 i > 2 2 if i ∈ N
). We call J P and J N the order sets corresponding to P and N respectively. Finally, add a dummy order having p 1 0 = ε > 0, where ε is very small. Note that a schedule is feasible iff the offset never exceeds T -2 = Q. We want to show that a feasible schedule exists iff a solution to SSP exists.

Given a solution to SSP, a feasible schedule can be built as follows. The first order is the dummy order, which has therefore to be carried away. We then sequence the orders in the same order as in the solution to SSP. Each order i ∈ J P increases the offset by a i , while each order i ∈ J N decreases it by a i . After the k-th order, the value of the offset is precisely the value k i=1 a σ(i) . From equation (3.5.4), for all k it does not exceed Q, and the sequence is therefore feasible. Now viceversa, suppose that we have a feasible production-distribution schedule (σ, θ). First of all, the dummy order is certainly at the beginning of the schedule, and the initial offset is O σ(0) = 0. Consider now the n equations (3.5.3):

O σ(1) = max{0, 2 2 -p 1 σ(1) } = max{0, a σ(1) } O σ(2) = max{0, O σ(1) + 2 2 -p 1 σ(2) } = max{0, O σ(1) + a σ(2) } O σ(3) = max{0, O σ(2) + 2 2 -p 1 σ(3) } = max{0, O σ(2) + a σ(3) } . . . O σ(n) = max{0, O σ(n-1) + 2 2 -p 1 σ(n) } = max{0, O σ(n-1) + a σ(n) } Suppose that O σ(i) +a σ(i+1) < 0 for some i, 0 ≤ i ≤ n-1.
Summing up all equations, one would get that the final offset O σ(n) > n i=1 a σ(i) = Q, which would make it impossible to deliver σ(n) within T . This would contradict the feasibility of (σ, θ). Hence, O σ(i) +a σ(i) ≥ 0 for all i. This implies that the vehicle is never idle throughout the schedule. As a consequence, the value of the offset after each order k is given precisely by k i=1 a σ(i) which never exceeds Q, since (σ, θ) is feasible. Hence, equation (3.5.4) is satisfied, i.e., the corresponding sequence of integers is feasible for SSP.

(c) Problems with regular transportation only

The last problem we consider concerns the cases in which only regular transportation exists. We next show that the problem is difficult, even if the number of vehicles v s for each known fixed departure time t s is unlimited.

Theorem 3.12 Problem 1|no -idle, d j = C 1 j + T |V 1 (∞, c 1 ), direct|1|T C is strongly NP-hard, for any value of c 1 .

Proof. Given an instance of 3-partition, define an instance of 3PL provider's problem 1|no -idle, d j = C 1 j + T |V 1 (∞, c 1 ), direct|1|T C as follows. There are 4n orders, namely n long orders and 3n short orders. The short orders correspond to the integers of 3partition, so p 1 i = a i for i = 1, . . . , 3n. All long orders have the same processing time Q >> W . We let T = Q + 2W , so the deadline of a order is

C 1 j + T = C 1 j + (Q + 2W ). There are n fixed departure times Q + W, 2(Q + W ), . . . , n(Q + W ). Transportation time is 1 = Q + W .
For different values of capacity, we want to establish whether there is a feasible production-distribution schedule σ with a number of batches given by n (if

c 1 ≥ 4), 2n (if c 1 = 2 or c 1 = 3), or 4n (if c 1 = 1).
Suppose that a solution Σ to 3-partition exists. Then we can build a production schedule (σ, θ) starting with a long order and in which long orders and triples of small orders alternate. For what concerns the delivery schedule: c 1 ≥ 4. In this case we define n batches, each consisting of one long order followed by the subsequent triple of Σ. Doing so, the total processing time of each batch is exactly Q + W , and each batch departs at its completion time, which is precisely one fixed departure time. Each long order is delivered exactly at its deadline. c 1 = 2 or c 1 = 3. In this case we define 2n batches, obtained by splitting in two each batch defined in the previous case. One has therefore that at each fixed departure time i(Q + W ), i = 1, . . . , n, two vehicles start, each carrying two orders (one vehicle will transport the long order and one small order, the other vehicle will transport the other two small orders). Both batches are on time. c 1 = 1. In this case we simply define one batch for each order, so that at each time

i(Q + W ), four vehicles depart from M 1 .
In all cases, the obtained production-distribution schedule is a solution to the 3PL provider's problem. Now suppose that a feasible production-distribution schedule to 3PL provider exists.

The following facts concerning the corresponding production schedule (σ, θ) hold, for any value of the capacity c 1 . Fact 1. In (σ, θ), exactly one long order is entirely processed between (i -1)(Q + W ) and i(Q + W ), for 1 ≤ i ≤ n. In fact, if a long order starts before some i(Q + W ) but ends after i(Q + W ) for some i, it would be certainly delivered late, since it could not depart before (i + 1)(Q + W ), and therefore the long order should wait more than W before leaving. With no loss of generality, we can therefore suppose that the long order starts exactly at i(Q + W ), for 0 ≤ i ≤ n -1. Fact 2. In (σ, θ), each long order is followed by exactly three short orders, and the total processing time of these three short orders equals W . Suppose in fact that there exists a long order followed by a set of short orders whose total processing time is not W . Then, there exists a long order j followed by short orders whose total processing time exceeds W . As a consequence of Fact 1, the last of these short orders, say k, cannot depart in the same batch of the long order j. But the next departure time is too far and order k could not be delivered within its deadline. So, the total processing time of these orders is W , and since W/4 < a i < W/2, there are exactly three short orders after each long order.

In conclusion, the short orders after each long order define a triple which constitutes a solution to 3-partition.
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In theorem 3.12, we observe that in the instance of 3PL provider's problem for each case we consider the minimum number of vehicles. So this proof applies to the 3PL provider's problem with limited number of vehicles for regular transportation. That means the 3PL provider's problem with limited number of vehicles for regular transportation is also strongly NP-hard.

Manufacturer's problem

As discussed in section 3. 

Conclusions

In this chapter, we investigated a collection of models for production and interstage batch delivery scheduling problems in a supply chain, where a manufacturer processes a set of orders in two production locations and a 3PL provider delivers the semi-finished products from the upstream production location to the downstream production location.

We considered the two scenarios: (1) manufacturer dominates, 3PL provider adjusts; (2) 3PL provider dominates, manufacturer adjusts. For each scenario, we investigated the manufacturer's problem and the 3PL provider's problem separately. We focused on the 3PL provider's problem. We provided some polynomial-time algorithms for the 3PL provider's problem when the manufacturer dominates, where the 3PL provider's problem is to determine a delivery schedule minimizing transportation costs, while respecting the orders release times and the deadline of each order imposed by the manufacturer. In particular, we considered several models with different transportation modes and transportation time. When the 3PL provider dominates, the 3PL provider's problem is to determine an optimal production-distribution schedule minimizing transportation cost, while respecting the deadline of each order. We proposed some polynomial-time algorithms for 3PL provider's problems when the 3PL provider dominates in some particular cases and demonstrate the NP-hardness for other 3PL provider's problems. Here we also considered several models with different transportation modes.

A number of important issues remain open. First, the complexities of 3PL provider's problems are open when the manufacturer dominates and the limited number of vehicles for express transportation is not fixed. Second, most of the 3PL provider's problems with 3PL provider dominating, are shown to be intractable, which motivates the need to develop exact or approximate solution algorithms. The coordinated production and interstage distribution scheduling problems will be investigated in the next chapter. In chapter 3, we studied the individual scheduling problems in scenarios (1) and (2).

In this chapter, we investigate the coordinated scheduling problems in scenarios (3) and (4). For the scheduling problems in each scenario, we provide exact polynomial-time algorithms or prove their NP-hardness. We provide two mechanisms of coordination for scenarios (3) and ( 4) and evaluate the benefit of coordination using numerical experiments.

Chapter 4 is organized as follows. In section 4.2, we formally describe the problems and introduce notations and terminology. Section 4.3 is devoted to scenario (3), section 4.4 to scenario (4). In section 4.5, we evaluate the benefit of coordination in scenarios

(3) and (4). Section 4.6 contains some conclusions and perspectives.

Problems and Notations

In chapter 3, we considered several models, i.e. one transportation mode or both transportation modes, limited or unlimited number of vehicle, unique or different transportation time. In this chapter, we consider only one model: there is a limited number of regular vehicles and an unlimited number of express vehicles, and the transportation times of the two transportation modes are identical.

The problem was formally described in section 3.2 of chapter 3. In this chapter, we change two notations: use τ to replace the transportation times of the two transportation modes, i.e.

1 = 2 = τ . use V instead of V 1
to represent the number of regular vehicles.

We consider two scenarios: (3) manufacturer dominates, 3PL provider negotiates; (4) manufacturer and 3PL provider coordinate. These are formally defined in the following.

1. Manufacturer dominates, 3PL provider negotiates -scenario 3.

(a) Manufacturer's problem. It is the same as the manufacturer's problem in scenario (1) (see section 3.2 of chapter 3).

(b) 3PL provider's problem. Given the completion times C 1 j and the deadlines d j = C 1 j + T , the 3PL provider determines a delivery schedule that minimizes the transportation cost T C. Unlike scenario (1), the 3PL provider is allowed to negotiate with the manufacturer. We assume that the sequence of production cannot be changed while responsiveness constraints D j ≤ C 1 j + T can be relaxed. The 3PL provider's problem includes: establishing a mechanism of coordination and determining a delivery schedule under the mechanism of coordination.

2. Manufacturer and 3PL provider coordinate -scenario 4. In this scenario we suppose that the production schedule and the delivery schedule are to be jointly decided by the two actors. The responsiveness constraints D j ≤ C 1 j + T are removed. The objective is to find efficient production-distribution schedules, i.e., such that no better solution for one actor can be obtained without increasing the cost to the other actor. In order to motivate the coordination, it is necessary to establish a mechanism of coordination.

Example We consider the same example of section 3.2. Recall that, in scenario [START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF] manufacturer dominates and 3PL provider adjusts, we find the schedule (σ 1 , θ 1 ) with

C max (σ 1 , θ 1 ) = 40 and T C(σ 1 , θ 1 ) = h 1 + 3h 2 = 31.
1. Manufacturer dominates, 3PL provider negotiates -scenario 3. In this scenario, if the responsiveness constraints are relaxed, a better solution for 3PL provider can be found while guaranteeing that the makespan does not exceed 2. Manufacturer and 3PL provider coordinate -scenario 4. When production and distribution schedules are decided by two actors together and the responsiveness constraints are removed, better solutions can be achieved for both actors. We find an efficient production-distribution schedules which are better than the bench-mark schedule (σ 1 , θ 1 ). This efficient solution (σ, θ) is found and depicted in Figure In this example, we observe that replacing responsiveness constraints with the makespan constraint is highly beneficial for the 3PL provider. In fact, comparing the solutions in scenario (1) and scenario (3), we get that the 3PL provider's benefit is

C max (σ 1 , θ 1 ) = 40.
(T C(σ 1 , θ 1 ) -T C(σ 3 , θ 3 ))/T C(σ 1 , θ 1 )
12.9%, while the manufacturer maintains the same makespan. Comparing (σ 1 , θ 1 ) with (σ, θ), we get better solutions for both actors, since the 3PL provider's benefit is now (T C(σ 1 , θ 1 ) -T C(σ, θ))/T C(σ 1 , θ 1 ) 22.6%, and the manufacturer's benefit is (C max (σ 1 , θ 1 ) -C max (σ, θ))/C max (σ 1 , θ 1 ) 5.0%.

Manufacturer Dominates, 3PL Provider Negotiates -scenario 3

The manufacturer's problem is the same as that of scenario (1) (see section 3.2 of chapter 3), i.e. manufacturer dominates, 3PL provider negotiates. In the first step, the manufacturer adopts the Johnson's schedule on M 1 [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF]). In the second step, the manufacturer first imposes the constraints to the 3PL provider. Then the manufacturer adjusts the starting time of orders on M 2 while minimizing C max subject to the delivery times D j and the sequence of production on M 1 . The schedule on M 2 is determined as follows: from the beginning to the end of sequence, schedule the orders one by one as early as possible, i.e. the starting time of order j is the minimum time between its release date and the end of the previous scheduled order on M 2 .

In scenario (1) the 3PL provider determines a distribution schedule subject to production schedule on M 1 (i.e. C 1 j ) and deadlines d j = C 1 j + T . In scenario (3), the actors can exchange necessary information to coordinate. We assume that the sequence of production cannot be changed while responsiveness constraints D j ≤ C 1 j + T can be relaxed. We provide a mechanism of coordination. Let C max denote the makespan obtained in the 3PL provider's problem of scenario [START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF].

Mechanism 1

1. The 3PL provider demands the manufacturer to use a performance guaranteeing constraint, i.e. C max ≤ C max , to replace the deadline constraints.

2. The 3PL provider determines a distribution schedule subject to the new constraint.

The 3PL provider's problem can be defined as: given the completion times C 1 j for j ∈ N , the 3PL provider determines a distribution schedule that minimizes T C such that the makespan does not exceed the value obtained in scenario [START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF]. This problem can still be solved through algorithm DP3.3 of chapter 3, provided that the responsiveness parameter is now different for each order. Precisely, numbering the orders according to the increasing completion time on M 1 , i.e. C 1 1 < . . . < C 1 n . we can define the deadline of each order as

d j = C max - n u=j p 2 u , ∀j = 1, . . . , n. (4.3.1)
It is easy to see that the makespan constraint is respected if and only if each order j is delivered to M 2 within the deadline d j = C 1 j + T j . In other words, the responsiveness parameter for order j is now T j = d j -C 1 j for j = 1, . . . , n. This problem can be denoted by 1|f seq,

d j = C 1 j + T j |V 1 (V, c 1 ), V 2 (∞, c 2 ), 1 = 2 = τ |1|T C. Note that if C 1 i < C 1 j , we have always d i < d j .
As a consequence, we can prove that the properties of Lemma 3.1 in chapter 3 hold also for this 3PL provider's problem. Comparing this case with Scenario (1), we note that the only difference is that T is replaced by T j in the recurrence relation of algorithm DP3.3 in chapter 3. So, such modified algorithm solves this 3PL provider's problem.

Manufacturer and 3PL Provider Coordinatescenario 4

In this section we address the scenario in which the two parties can share information and define their schedules concurrently. Here we assume that the optimization criteria of manufacturer and 3PL provider are makespan and, respectively, total transportation cost. First we give a MILP(Mixed Integer Linear Programing) for the integrated scheduling problem that allows us generating efficient (or Pareto optimal) solutions, i.e., such that it cannot be improved on one criterion without being depreciated on the other one.

These solutions can be used as input for negotiation between the manufacturer and the 3PL provider. Thereafter, we show that finding a production-distribution schedule is in general NP-hard, and we discuss some special cases, which are polynomially solvable. In order to motivate the coordination, a mechanism is established.

Mixed Integer Linear Programing

As discussed in Section 4.2, we consider the permutation problem, i.e., the production schedule has the same sequence on the two machines. We next give a MILP for the integrated scheduling problem that we used in our experiments (Section 4.5) to generate efficient solutions. Moreover, a simple order interchange argument can be used to change any efficient schedule to an efficient schedule such that the orders of each delivery batch are processed consecutively on machines. Hence, an efficient solution is completely characterized by a batching scheme, a transportation mode associated to each batch, and a starting time of each batch on the two machines. The sequence of orders within each batch is irrelevant.

We introduce the following notations. 

u cs =         
x ik =    1, if order i is in batch k, i = 1, . . . , n, k = 1, . . . , n 0, otherwise w m k =         
1, if batch k contains at least one order and is delivered by transport mode type-m, k = 1, . . . , n, m = 1, 2 0, otherwise

y kc =         
1, if batch k contains at least one order and is delivered by 

regular vehicle c, k = 1, . . . , n, c = 1, . . . , V 0, otherwise min C max (4.4.2) min n k=1 w 1 k h 1 + n k=1 w 2 k h 2 (4.4.3) s.t. n k=1 x ik = 1, i = 1, . . . , n (4. 
t 1 k+1 -t 1 k ≥ n i=1 p 1 i x ik , k = 1, . . . , n -1 (4.4.7) t 2 k+1 -t 2 k ≥ n i=1 p 2 i x ik , k = 1, . . . , n -1 (4.4.8) t 2 k -t 1 k ≥ n i=1 p 1 i x ik + τ w 2 k , k = 1, . . . , n (4.4.9) V c=1 y kc = w 1 k , k = 1, . . . , n ( 
t 1 k + n i=1 p 1 i x ik ≤ L s=1 V c=1 t s u cs y kc + (1 -w 1 k ) n i=1 p 1 i , k = 1, . . . , n (4 
.4.12) 4.4.13) scheduling problem (in decision form):

t 2 k ≥ L s=1 V c=1 t s u cs y kc + τ w 1 k , k = 1, . . . , n ( 
Given a set of n orders, having processing times p 1 j , p 2 j , a set L = {t 1 , . . . , t L } of departure dates of regular vehicles, a number v s of vehicles available at time t s , capacity values c 1 and c 2 for regular and express vehicles respectively, transportation costs h 1 and h 2 for regular and express vehicles respectively, and two positive integers P, H, is there a production-distribution schedule (σ, θ) such that C max (σ, θ) ≤ P and T C(σ, θ) ≤ H? [START_REF] Esswein | Two-machine shop scheduling: Compromise between flexibility and makespan value[END_REF] prove that the integrated scheduling problem, in the case where there is only express transportation mode with unlimited number of vehicles and unbounded capacity is NP-complete. For bounded capacity, [START_REF] Aloulou | A bicriteria twomachine flow-shop serial-batching scheduling problem with bounded batch size[END_REF] prove that this problem is NP-complete when c 2 ≥ 3 even if p 1 j = p 2 j = p j for j = 1, . . . , n. However the problem with c 2 = 2 is open. Therefore, in the following, we consider the problem where there is only regular transportation mode with limited number of vehicles.

Theorem 4.1 The integrated scheduling problem (in decision form) is NP-complete, even if p 1 j = p 2 j = p j for j = 1, . . . , n, τ = 0 and there is only regular transportation mode.

Proof. We use the following NP-complete problem: 3-partition [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Given 3n integers a 1 , . . . , a 3n , so that a j = nW , and such that W/4 < a j < W/2 for all j, is it possible to partition them into n triples each summing up to W ? Given an instance of 3-partition, define an instance of integrated problem as follows.

There are 4n orders, namely n long orders and 3n short orders. The short orders correspond to the integers of 3-partition, so p 1 j = p 2 j = p j = a j for them. The long orders have the same processing time p 1 j = p 2 j = p j = Q >> W . There is only regular transportation mode and transportation time τ equals to zero. There are n periodic fixed departure

dates Q + W, 2(Q + W ), . . . , n(Q + W ). We distinguish different cases.
case where c 1 ≥ 4. For each fixed departure date, there is one regular vehicle. We want to know whether there exists a schedule (σ, θ) consisting of n batches, such that C max (σ, θ) ≤ (n + 1)(W + Q) and T C(σ, θ) ≤ nh 1 .

case where c 1 = 2 or 3. For each fixed departure date, there are two regular vehicles. We want to know whether there exists a schedule (σ, θ) consisting of 2n batches, such that C max (σ, θ) ≤ (n + 1)(W + Q) and T C(σ, θ) ≤ 2nh 1 . case where c 1 = 1. For each fixed departure date, there are four regular vehicles.

We want to know whether there exists a schedule (σ, θ) consisting of 4n batches,

such that C max (σ, θ) ≤ (n + 1)(W + Q) and T C(σ, θ) ≤ 4nh 1 .
Suppose that a solution Σ to 3-partition exists. Then we can build a schedule (σ, θ) for integrated problem in the three different cases as follows.

case where c 1 ≥ 4. We put in each batch one long order and one of the triples of Σ. At time 0 and each fixed departure date

Q + W, 2(Q + W ), . . . , (n -1)(Q + W ),
we schedule one batch on M 1 without idle time. The order of batches and the order of orders in each batch on M 1 are irrelevant. Doing so, the total processing time of each batch is exactly Q + W , and each batch departs at its completion time which is exactly one fixed departure date. Then we schedule each batch on M 2 immediately when it arrives and the orders of each batch are scheduled in the same sequence as on M 1 . We have

C max = (n + 1)(W + Q) et T C = nh 1 .
case where c 1 = 2 or 3. We apply the same rule as the case where c 1 ≥ 4 and replace one batch by two batches. We have

C max = (n + 1)(W + Q) et T C = 2nh 1 .
case where c 1 = 1. We apply the same rule as the case where c 1 ≥ 4 and replace one batch by four batches. We have

C max = (n + 1)(W + Q) et T C = 4nh 1 .
So the obtained schedule (σ, θ) is a solution to integrated problem. Now we suppose that a solution (σ, θ) to integrated problem exists. The following facts concerning (σ, θ) hold. Fact 1. There does not exist idle time between orders on both machines. If there exists idle time on M 1 , there would have at least one order exceed the last fixed departure date n(Q + W ), and we do not have any feasible solution in this case. We must have idle time at the beginning of M 2 , which has length Q + W . Since the total processing time of orders on M 2 is n(Q + W ), so there does not exist idle time between orders on M 2 . Fact 2. At each fixed departure date, orders with total processing time which equals to Q + W are delivered. If not, there would have idle time on M 2 . So at each fixed departure date, the batch(es) is(are) formed by one long order and three short orders, i.e. the total processing time of the short orders equals to W .

if m = 1 (regular transportation), the currently last batch departs at t s , and at this time, v regular vehicles are used (including the vehicle carrying the currently last batch), if m = 2 (express transportation), the currently last batch departs at C 1 i .

n 1 and n 2 regular and, respectively, express batches have been used so far.

We propose Algorithm 1 to solve this integrated problem.

Algorithm 1

Step 1: Index orders by non-increasing processing time on M 2 .

Step 2: Apply the dynamic programming algorithm DP4.1, and get a set of feasible schedules associated to all values of n 1 and n 2 .

Step 3: Remove the dominated schedules. The remaining schedules are efficient.

Algorithm DP4.1

Value Function f (i, j, s, v, m, n 1 , n 2 ) = the minimum C max of all schedules in state (i, j, s, v, m, n 1 , n 2 ).

Initialisation

f (i, j, s, v, m, n 1 , n 2 ) = ∞, i = 0, . . . , n, j = 0, . . . , n, s = 0, . . . , L, v = 0, . . . , v s ,m = 1, 2, n 1 = 0, . . . , n, n 2 = 0, . . . , n.

Boundary Condition

f (0, 0, 0, 0, 1, 0, 0) = 0, f (0, 0, 0, 0, 2, 0, 0) = 0.

Optimal Solution Value

For each n 1 = 0, . . . , n, n 2 = 0, . . . , n, we search min (j,s,v,m)∈A f (n, j, s, v, m, n 1 , n 2 ) which is not infinity, and

A = {(j, s, v, m)|1 ≤ j ≤ n, 0 ≤ s ≤ L, 0 ≤ v ≤ v s , m = 1, 2}.

Recurrence Relation

For state (i, j, s, v, m, n 1 , n 2 ), such that i ∈ {1, . . . , n}, j ∈ {1, . . . , i}, s ∈ {0, . . . , L},

v ∈ {0, . . . , v s }, m ∈ {1, 2}, n 1 =∈ {v, . . . , n}, n 2 =∈ {0, . . . , n}, if m = 1, then C 1 i ≤ t s , s > 0 and v > 0, if m = 2, then n 2 > 0. f (i, j, s, v, m, n 1 , n 2 ) = min                                          f (i -1, j, s, v, m, n 1 , n 2 ) + p 2 i , if i > j, m = 1, i -j + 1 ≤ c 1 max{f (i -1, j, s, v, m, n 1 , n 2 ) -i-1 u=j p 2 u , C 1 i + τ } + i u=j p 2 u , if i > j, m = 2, i -j + 1 ≤ c 2 max{min (j ,m ,s ,v )∈A 1 f (i -1, j , s , v , m , n 1 -1, n 2 ), t s + τ } + p 2 i , if i = j, m = 1 max{min (j ,m )∈A 2 f (i -1, j , s, v, m , n 1 , n 2 -1), C 1 i + τ } + p 2 i , if i = j, m = 2
where

A 1 = {(j , m , s , v )|1 ≤ j ≤ i -1, m = 1, 2, if v > 1, then s = s and v = v -1, otherwise 0 ≤ s < s and 0 ≤ v ≤ v s }, A 2 = {(j , m )|1 ≤ j ≤ i -1, m = 1, 2}.
In the recurrence relation, the first term corresponds to the case where order i and order i -1 are in the same regular batch. The second term corresponds to the case where order i and order i -1 are in the same express batch. In the third term, order i is in a new regular batch. The function max is to find the earliest starting time on M 2 for order i. In the fourth term, order i is in a new express batch. The function max is to find the earliest starting time on M 2 for order i. A symmetric discussion holds in the special case in which all orders have the same processing time on M 2 , i.e. p 2 j = p 2 , for j = 1, . . . , n. With a similar proof to that of Lemma 4.1, one can show that we lose no generality in considering efficient solution in which orders are sequenced by non-decreasing processing times on M 1 . Using such sequencing to index the orders, so that p 1 1 ≤ . . . ≤ p 1 n , Algorithm 1 can be applied to solve the problem also in this case. In conclusion, we have the following result. Theorem 4.2 When either p 1 j = p 1 for all j = 1, . . . , n, or p 2 j = p 2 for all j = 1, . . . , n, the integrated scheduling problem can be solved in polynomial time O(n 4 (L + V ) 2 ).

Mechanism of coordination

The bi-criteria integrated scheduling problem generates a set of efficient productiondistribution schedules which can be used as input for negotiation between the manufacturer and the 3PL provider. We propose a win-win mechanism of coordination for the two actors to find a compromised solution with which the objective functions (i.e. C max , T C) do not exceed the values obtained in the non-coordinated relationship.

Mechanism 2

1. The two actors estimate a production-distribution schedule in the non-coordinated relationship according to the bargaining power of actor(i.e. scenarios (1) and ( 2)) and define it as a benchmark production-distribution schedule, i.e. if the proposed schedule generates a objective function grater than the benchmark, this schedule is rejected. Let (σ 1 , θ 1 ) denote this benchmark schedule.

2. The two actors share the necessary information and try to find two sufficient solutions (σ 4 , θ 4 ) and (σ 5 , θ 5 ):

(a) In the first step, the actors optimize with respect to C max and T C in lexicographic order: i. the manufacturer first seeks a schedule that minimizes C max , provided that the total cost to 3PL provider does not exceed the value in the benchmark schedule, i.e., we seek a schedule (σ , θ ) such that

C max (σ , θ ) = min{C max (σ, θ)|T C(σ, θ) ≤ T C(σ 1 , θ 1 )};
ii. thereafter, the 3PL provider seeks a distribution schedule (σ 4 , θ 4 ) such that

T C(σ 4 , θ 4 ) = min{T C(σ, θ)|C max (σ, θ) ≤ C max (σ , θ )}.
(b) In the second step, the lexicographic order is reversed, i.e.: i. first the 3PL seeks a schedule that minimizes T C, provided that the makespan does not exceed the value in the benchmark schedule, i.e.,

T C(σ , θ ) = min{T C(σ, θ)|C max (σ, θ) ≤ C max (σ 1 , θ 1 )};
ii. thereafter, the manufacturer computes a schedule (σ 5 , θ 5 ) such that

C max (σ 5 , θ 5 ) = min{C max (σ, θ)|T C(σ, θ) ≤ T C(σ , θ )}.
3. If (σ 4 , θ 4 ) and (σ 5 , θ 5 ) are the same solutions, the two actor accept this schedule.

Otherwise, the actor with strong bargaining power proposes his preferred one between (σ 4 , θ 4 ) and (σ 5 , θ 5 ). The actor with weak bargaining power calculates the price of dominance, i.e., how much is he penalized by the dominating position of the other actor, even in a coordinated scenario. If the price of dominance is significant, the actor with weak bargaining power can propose the other one between (σ 4 , θ 4 ) and (σ 5 , θ 5 ) by recompensing the other actor.

Let P rice of Dominance M anu and P rice of Dominance 3P L denote the price of dominance for the 3PL provider and the price of dominance for the manufacturer respectively. 

P rice of Dominance

M anu = C max (σ 5 , θ 5 ) -C max (σ 4 , θ 4 ) C max (σ 5 , θ 5 ) (4.

Computational Results

In the considerations that follow, we evaluate the benefit of coordination in scenarios

(3) manufacturer dominates, 3PL provider negotiates, and (4) manufacturer and 3PL provider coordinate. Our benchmark schedule is (σ 1 , θ 1 ), i.e., the schedule obtained in scenario (1) manufacturer dominates, 3PL provider adjusts. In what follows, let (σ 3 , θ 3 ) denote the schedule obtained in Scenario (3), and recall that (σ 4 , θ 4 ) and (σ 5 , θ 5 ) denote the two schedules obtained in the mechanism 2 for the scenario (4).

We consider the relative benefit for the 3PL provider in Scenario (3):

Γ 31 3pl = T C(σ 1 , θ 1 ) -T C(σ 3 , θ 3 ) T C(σ 1 , θ 1 ) (4.5.22)
Such index is also a measure of how binding are responsiveness constraints, when keeping the production sequence fixed (to Johnson's sequence).

The computation of (σ 4 , θ 4 ) and (σ 5 , θ 5 ) allows to investigate the benefits of coordination in scenario (4). In particular, the ratios

Γ 41 m = C max (σ 1 , θ 1 ) -C max (σ 4 , θ 4 ) C max (σ 1 , θ 1 ) (4.5.23) Γ 41 3pl = T C(σ 1 , θ 1 ) -T C(σ 4 , θ 4 ) T C(σ 1 , θ 1 ) (4.5.24)
and

Γ 51 m = C max (σ 1 , θ 1 ) -C max (σ 5 , θ 5 ) C max (σ 1 , θ 1 ) (4.5.25) Γ 51 3pl = T C(σ 1 , θ 1 ) -T C(σ 5 , θ 5 ) T C(σ 1 , θ 1 ) (4.5.26)
express the benefits of coordination for the two parties with (σ 4 , θ 4 ) and (σ 5 , θ 5 ) respectively. We want to compare the various schedules by means of numerical experiments.

We generate the instances of our experiments as follows.

Processing times p 1 i and p 2 i are randomly generated integers from [START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF][START_REF] Mastrolilli | Efficient approximation schemes for scheduling problems with release dates and delivery times[END_REF].

We consider five values for the number of orders n, i.e. n ∈ {5, 10, 20, 50, 100}.

Vehicle capacities have been fixed as follows. For regular vehicles, we consider three capacity values, c 1 ∈ {2, 3, 5}. For express vehicles, we fix the capacity c 2 equal to αc 1 , with α ∈ {0.5, 1}.

for the two parties (given in (4.5.23) -(4.5.26)) when either of the two lexicographic optimization problems is solved. Table 4.4 shows the values of what we indicated as price of dominance. Table 4.5 illustrates the benefits of coordination under various experiment aggregations. Finally, Table 4.6 shows the benefit stemming from the relaxation of the responsiveness constraint, when keeping Johnson's sequence. A few comments are in order.

From Table 4.3, one can observe that coordination is beneficial to both actors.

However, as the number of orders grows, the relative benefit of 3PL provider increases, and the benefit of manufacturer decreases. The manufacturer's benefits are close. The difference of the 3PL provider's benefits is significant in two efficient solutions (σ 4 , θ 4 ) and (σ 5 , θ 5 ). This difference is represented by the price of dominance defined in 4.4.21 and is shown in Table 4.4. We note that even when the two parties coordinate, the dominant role of the manufacturer results in a "price" (on the 3PL provider) which exceeds 4.5% in largest instances. Hence, the 3PL provider may recompense the manufacturer in order to choose (σ 5 , θ 5 ) as the final solution. From Table 4.5, we notice that β (expressing the ratio between the costs of the two transportation modes) has a major impact on such benefit. In particular, when all vehicles have the same capacity (α = 1) and the transportation cost of an express vehicle is twice that of a regular vehicle (β = 2), the 3PL provider's benefit is high (12.82%). Also the manufacturer has higher benefits in this situation, but it is on the whole less sensitive to the values of α and β.

Still from Table 4.5, the 3PL provider's benefit from coordination is larger when the responsiveness constraint is more binding (6.78% for smaller values of T , i.e.

γ ∈ [0.6, 0.8]). In this respect, the manufacturer's benefit is less sensitive to the value of T .

Still from Table 4.5, aggregating the data according to parameter v, one observes that the dispersion of fixed departure dates has a significant effect on the benefits.

For a given number V of regular vehicles, recall that when v = 1 we have L = V departure dates, i.e., all vehicles have distinct departure dates, while for v = 3, L = V /3 . As the departure dates of regular vehicles are more distributed over time, the 3PL provider's benefit increases significantly while the manufacturer's benefit slightly decreases. This can be explained considering that coordination allows a better adjustment of the production schedule to the regular vehicle timetable. From Table 4.6, it is interesting to observe how binding are responsiveness constraints for the 3PL provider. For the same makespan, replacing responsiveness constraints with the makespan constraint (i.e., moving from Scenario (1) to Scenario (3)) may allow the 3PL provider to save an average 10%. As one could expect, such saving is higher for smaller values of γ, which correspond to smaller (hence, more binding) values of T .

Comparing the benefits with schedule (σ 3 , θ 3 ) (see Table 4.3) and the benefits with (σ 5 , θ 5 ) (see Table 4.6), we observe that if the two parties coordinate without any imposed constraints, the coordination can bring better benefits to both parties.

Conclusions

In this chapter, we considered a production and interstage distribution scheduling problem in a supply chain with a manufacturer and a 3PL provider. The manufacturer's objective is to minimize the makespan and the 3PL provider's objective is to minimize the transportation cost. We analyzed scenario (3) manufacturer dominates, 3PL provider negotiates. We provided a mechanism of coordination, and proposed polynomial algorithms to solve the scheduling problems. We then turned to scenario (4) manufacturer and 3PL provider coordinate, i.e., the two actors may concurrently decide the productiondistribution schedule. We proved the NP-hardness for the integrated scheduling problem and provided polynomial-time algorithms for some special cases. We also established a win-win mechanism of coordination. We performed experiments to investigate the benefits accruing from coordination between the two parties in scenarios (3) and (4). The results showed that the relaxation of the transportation responsiveness can bring a significant benefit for the 3PL provider and the coordination without any imposed constraints can bring better benefits to both actors.

Several important research issues remain open for future investigation. A first important research direction is to develop a heuristic for the integrated scheduling problem.

Another issue is to investigate the extended model with a three-stage supply chain including interstage and outbound distribution, where a manufacturer has to process a set of orders at the upstream stage and the downstream stage. And a 3PL provider is in charge of transportation of semi-finished products from the upstream stage to the downstream stage, and then finished products to clients.

Chapter 5

Production and Outbound Distribution Scheduling Problems with Release Dates and Deadlines

Introduction

In this chapter, we study a production and outbound distribution scheduling problem with the consideration of order release dates and delivery deadlines. A manufacturer has to process a set of orders on a single production line and a 3PL provider deliver them in batches to a customer. The objective of the manufacturer is to determine a feasible production schedule in which the orders are completed before or at their deadline.

The 3PL provider aims at deciding a delivery schedule minimizing the transportation cost. Without coordination, the manufacturer may impose a feasible production schedule which requires that most of the orders have to be delivered immediately after their completion. This may entail higher costs for the 3PL provider. The coordinated problem is motivated to decide an integrated schedule minimizing the transportation cost subject to the delivery deadlines.

We investigate the individual scheduling problems faced by the manufacturer and the 3PL provider in a consecutive order: the manufacturer decides the feasible production schedule subject to the deadlines, then the 3PL provider adjusts a delivery schedule minimizing the transportation cost subject to the deadlines and the given production schedule. Then, we consider three coordinated scheduling problems with different ways how an order can be produced and delivered: non-splittable production and delivery (NSP-NSD) problem, splittable production and non-splittable delivery (SP-NSD) problem and splittable production and delivery (SP-SD) problem. For these scheduling problems, we provide a polynomial-time algorithm for some restricted versions of SP-NSD and SP-SD problems and a branch-and-bound algorithm for NSP-NSD problem which is NP-hard. We evaluate the performance of the branch-and-bound algorithm using numerical experiments.

The most related research was provided by [START_REF] Chen | Integrated order scheduling and packing[END_REF]. They investigated an integrated production and outbound distribution scheduling (IPODS) problem in a supply chain where a manufacturer needs to process a set of orders at a single production line, pack the completed orders to form delivery batches, and deliver them to a customer. They investigated the problems in similar scenarios. Different from their model, we consider the orders with equal size and release dates. The literature of the IPODS problem with release dates can be found in section 2.3 of chapter 2.

This chapter is organized as follows. In section 5.2, we formally describe the problems and introduce notations and terminology. Section 5.3 is devoted to the individual scheduling problems, and section 5.4 to the coordinated scheduling problems. In section 5.5, we evaluate the performance of the branch-and-bound algorithm used to solve NSP-NSD problem. Section 5.6 contains some conclusions and perspectives.

Problems and Notations

The manufacturer has to process a set of orders N = {1, . . . , n} on a single machine.

Each order j ∈ N has a release date r j (the date when raw material is available to process order j), a processing time p j and a delivery deadline d j . After processing on the machine, the orders can be grouped into batches of maximum size c > 0, corresponding to a full truck load, and then sent to the customer locations. The orders are unit sized, i.e. a truck can carry at most c orders at a time. The delivery operation is outsourced by the manufacturer to a 3PL provider that is supposed to be able to deliver any batch at any time. The batch is available to be delivered when all orders of this batch are completed. The transportation time of a batch and the corresponding subcontracting cost are supposed to be independent on the batch constitution. Hence, we can assume without loss of generality that the transportation time is 0 and the transportation cost of a batch is a constant h. Hence, the delivery deadline is also the production deadline.

Let (σ, θ) denote the integrated schedule, where σ and θ are respectively the production schedule and the delivery schedule. In this integrated schedule, C j (σ) is the completion time of order j on the machine and D j (θ) is the delivery time of order j to the customer location. Sometimes, we use C j and D j instead of C j (σ) and D j (θ) to simplify the notations.

We consider two scenarios: (1) the manufacturer and the 3PL provider decide their individual schedule without coordination in a consecutive order (i.e. first the manufacturer, then the 3PL provider); (2) the manufacturer and the 3PL provider coordinate to decide concurrently an integrated schedule. These scheduling problems are formally defined as follows.

1. Individual scheduling problems.

(a) Manufacturer's problem. The manufacturer's objective is to determine a feasible production schedule in which the orders are completed before or at their deadline. We investigate the problem in two cases:

Non-splittable production (NSP) problem: An order is non-preemptable (or non-splittable) in production. Using the three-field notation α|β|γ for machine scheduling problems [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF]), this problem can be denoted by 1|r j , d j |-.

Splittable production (SP) problem: An order can be split in production.

This problem can be denoted by 1|r j , pmtn, d j |-.

(b) 3PL provider's problem. With the production schedule imposed by the manufacturer, the 3PL provider aims at deciding a delivery schedule minimizing the transportation cost T C. A delivery schedule is a partition of the orders into batches, along with the departure time for each batch. We investigate the problem in two cases:

Non-splittable delivery (NSD) problem: A finished order must be delivered in one batch.

Splittable delivery (SD) problem: A finished order can be split and delivered in several batches.

Coordinated scheduling problems.

Clearly, an integrated model minimizing the transportation cost T C subject to the deadline constraints is the best way for the coordination. Since the implementation of coordination is simple, we concentrate on the resolution of the integrated scheduling problem.

We consider the integrated problem in three cases with different ways how an order can be produced and delivered.

Non-splittable production and delivery (NSP-NSD) problem: An order is nonpreemptable (or non-splittable) in production and a finished order must be delivered in one batch. Using the five-field notation proposed by Chen (2010), this problem can be denoted by 1|r j , d j |V (∞, c), direct|1|T C, where V (∞, c)

and direct mean that we consider the direct batch delivery by an unlimited number of trucks with the capacity of c.

Splittable production and non-splittable delivery (SP-NSD) problem: An order can be split in production, and a finished order must be delivered in one batch.

This problem can be denoted by 1|r j , pmtn,

d j | V (∞, c), direct|1|T C.
Splittable production and delivery (SP-SD) problem: An order can be split in both production and delivery. This problem can be denoted by

1|r j , pmtn, d j |V (∞, c), direct, split|1|T C.
We do not consider the non-splittable production and splittable delivery (NSP-SD) problem, because according to Lemma 5.2 in section 5.3.2, for any feasible NSP production schedule, there exists an optimal delivery schedule which is a NSD schedule.

Example 1: To illustrate the integrated problems, we consider the following example with seven orders where the vehicle capacity c is equal to 2. Table 5.1 gives the orders' parameters. .1 shows the optimal schedules for the integrated problems. In a production schedule, [j] means that order j is produced without preemption. In a delivery schedule,

[j] means that order j is delivered without splitting. When [j] is preceded by a constant α, 0 < α < 1, this means that a part α of order j is produced or delivered.

NSP-NSD problem:

In an optimal schedule as shown in Figure 5.1(a), the production sequence is ([2], [START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF], [START_REF] Agnetis | Production and interplant batch delivery scheduling: Dominance and cooperation[END_REF], [START_REF] Agnetis | Two faster algorithms for coordination of production and batch delivery: a note[END_REF], [START_REF] Agnetis | Supply chain scheduling: Sequence coordination[END_REF], [START_REF] Allahverdi | A survey of scheduling problems with setup times or costs[END_REF], [START_REF] Aloulou | A bicriteria twomachine flow-shop serial-batching scheduling problem with bounded batch size[END_REF]). There exists an idle time before order 2, because if another order is processed before 2, then order 2 would be late.

A similar reason for the second idle time holds. There are six delivery batches: 

{[2]}, {[1], [3]}, {[4]}, {[5]},

SP-NSD problem:

In an optimal schedule as shown in Figure 5.1(b), the produc-

tion sequence is ( 1 2 [1], [2], [3], 1 2 [1], [4], 1 3 [6], [5], 2 3 [6] 
, [START_REF] Aloulou | A bicriteria twomachine flow-shop serial-batching scheduling problem with bounded batch size[END_REF]), where orders 1 and 6 are split into two parts. The optimal schedule has five delivery batches: [START_REF] Aloulou | A bicriteria twomachine flow-shop serial-batching scheduling problem with bounded batch size[END_REF]}, which depart respectively at time 4, 8, 10, 15 and 18. Since order 2 cannot be delivered with any other order, the transportation cost cannot be improved for the first 4 orders with the non-splittable delivery. However, we can split order 6 in production in order to deliver orders 6 and 7 in one batch.

{[2]}, {[1], [3]}, {[4]}, {[5]} and {[6],

SP-SD problem:

In an optimal schedule as shown in Figure 5.1(c), the production sequence is the same as SP-NSD problem. The optimal schedule has four delivery batches:

{ 1 2 [1], [2], 1 2 [3]}, { 1 2 [3], 1 2 [1], [4]}, {[5]} and {[6], [7] 
}, which depart respectively at time 5, 10, 15 and 18. For example, the first full filled delivery batch consists of half of order 1, whole order 2 and half of order 3. With the splittable delivery, the first four orders can be delivered in two full batches.

Remark that in the above problems, the orders delivered together are not necessarily sequenced consecutively, which makes the considered problems different from classical batching models.

Example 2:

To illustrate the benefit of coordination, we consider the following example with five orders where the vehicle capacity c is equal to 3. Table 5.2 gives the orders' parameters. NSP-NSD problem: In an optimal schedule as shown in Figure 5.2(b), the production sequence is ([1], [START_REF] Agnetis | Coordination of production and interstage batch delivery with outsourced distribution[END_REF], [START_REF] Agnetis | Supply chain scheduling: Sequence coordination[END_REF], [START_REF] Agnetis | Production and interplant batch delivery scheduling: Dominance and cooperation[END_REF], [START_REF] Agnetis | Two faster algorithms for coordination of production and batch delivery: a note[END_REF]). The optimal schedule has two delivery batches:

{[1], [2], [5]} and {[3], [4] 
}, which depart respectively at time 14 and 28. Comparing with the schedule for individual problems, we observe that with the coordination, the transportation cost reduces 50%.

Individual Scheduling Problems

In the non-coordinated scenario, the manufacturer and the 3PL provider decide their individual schedule consecutively. We review known exact algorithms to solve the manufacturer' problems (i.e. NSP and SP problems) and develop exact algorithms to solve the 3PL provider's problems (i.e. NSD and SD problems).

Manufacturer's Problem

The manufacturer's objective is to determine a feasible production schedule in which the orders are completed before or at their deadline. We introduce first the definitions of production triplet (see definition 5.1) and production block (see definition 5.2). Then we investigate NSP and SP problems.

Definition 5.1 In a production schedule σ, a production triplet is an order or a part of order which is processed without preemption. Let V j (σ) = (J j , a j , b j ) denote production triplet j, where the order J j ∈ N is scheduled in the time interval [a j , b j ], a j and b j represent respectively the starting time and ending time of the triplet. Hence the production schedule σ can be represented by a sequence of production triplets denoted by V (σ).

Definition 5.2 In a production schedule σ, a production block is defined as a subset of orders which are processed consecutively. Set the minimum starting processing time of orders of the block as the starting time of the block and the maximum completion time of orders of the block as the ending time of the block. The sequence of orders is not taken into account in the definition of a block. Let K i (σ) denote the production block i in σ.

NSP problem

In this problem, an order is non-preemptable (or non-splittable) in production. This decision problem 1|r j , d j |-is NP-complete [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]).

Carlier proposed an efficient binary branch-and-bound algorithm to solve a head-tail problem where an order j is available for processing by the machine at release date r j (called also head), and has to spend an amount of time p j on the machine and an amount of time q j (called tail) in the system after its processing, and the objective is to minimize max j∈N (C j + q j ). This problem is equivalent to the problem 1|r j |L max , where L max = max j∈N L j = max j∈N (C j -d j ), L j is the lateness and d j is the due date (i.e. it can be violated). In fact, we can define q j = max i∈N d i -d j , then minimizing max j∈N (C j +q j ) is equivalent to minimizing L max . The problem 1|r j , d j |-is the decision version of the optimization problem 1|r j |L max , i.e. does there exist a production schedule σ such that L max (σ) ≤ 0 ? NSP problem can be solved by applying Carlier's branch-and-bound algorithm and stopping when a feasible solution with L max ≤ 0 is found.

We review the Carlier's branch-and-bound algorithm for the problem 1|r j |L max . The algorithm computes a lower bound and an upper bound for each node based on preemptive and non-preemptive EDD rule [START_REF] Jackson | Scheduling a production line to minimize maximum tardiness[END_REF], respectively.

Preemptive EDD rule: At each decision point t in time, consisting of each release date and each order completion time, schedule an available order j (i.e. r j ≤ t)

with the earliest due date. If no orders are available at a decision point, schedule an idle time until the next release date.

Non-preemptive EDD rule: At each decision point t in time, consisting of each starting time of production block and each order completion time, schedule an available order j (i.e. r j ≤ t) with the earliest due date without preemption. If no orders are available at a decision point, schedule an idle time until the next release date.

At every node u, the algorithm constructs the non-preemptive EDD schedule and renumbers the orders according to the sequence in obtained schedule. Let l be the order with the smallest index such that L l = L max . Let h ≤ l be the order with the largest

index such that h = 1 or C h-1 < s h where s h is the starting time of order h. Let [h, l]
denote the set of orders from h to l. If d l = max k∈[h,l] d k , then the obtained schedule is optimal. Otherwise, the algorithm defines a critical order e ∈ [h, l] with the largest index such that d e > d l and a set of critical set J ∈ [e + 1, l]. The algorithm considers two subsets of schedules corresponding to two nodes u 1 and u 2 . Let r j (u) and d j (u) be the release date and the due date of order j at node u, respectively.

In node u 1 , the algorithm requires the critical order to be processed before the orders of the critical set by setting

d e (u 1 ) = max j∈J d j (u) - j∈J p j (5.3.1) 
d k (u 1 ) = d k (u), k ∈ N \{e} (5.3.2) r k (u 1 ) = r k (u), k ∈ N (5.3.3)
In node u 2 , the algorithm requires the critical order to be processed after the orders of the critical set by setting

r e (u 2 ) = min j∈J r j (u) + j∈J p j (5.3.4) r k (u 2 ) = r k (u), k ∈ N \{e} (5.3.5) d k (u 2 ) = d k (u), k ∈ N (5.3.6)
SP problem In this problem, the preemption is allowed in production. This problem 1|r j , pmtn, d j |-is a decision problem corresponding to the optimization problem 1|r j , pmtn|L max which is solved with the preemptive EDD rule in O(n log n) time [START_REF] Horn | Some simple scheduling algorithms[END_REF]). Hence SP problem can be solved with the preemptive EDD rule in O(n log n)

time. Since the preemption occurs only at release dates in the schedule generated with the preemptive EDD rule, there are at most n -1 preemptions. Hence there are O(n) production triplets in this production schedule.

3PL Provider's Problem

With the production schedule σ imposed by the manufacturer, the 3PL provider aims at deciding a delivery schedule minimizing the transportation cost. We assume that the orders are indexed in the increasing completion time, i.e. C 1 (σ) < . . . < C n (σ).

This sorting operation requires O(n log n) time. Here, σ can be a NSP schedule or a SP schedule. We recall that there are O(n) production triplets in σ (see section 5.3.1). We first provide a general property for NSD and SD problems. Then we investigate NSD and SD problems separately.

Lemma 5.1 There exists an optimal solution for NSD and SD problems, such that each batch is delivered at its completion time, i.e. when all orders (or parts of orders) of the batch are completed.

Proof. Suppose that there is an optimal delivery solution for NSD and SD problem, such that it does not respect the property. We can anticipate the delivery time of each batch to its completion time without changing the number of delivery batches.

2

NSD problem In this case, a finished order must be delivered in one batch. We propose a polynomial-time algorithm (see algorithm GA5.1) for NSD problem.

Algorithm GA5.1

Step 1: Let N ⊆ N denote the set of undelivered orders. Set the current delivery time

T = max j∈N C j (σ).
Step 2: Find the set of undelivered orders with deadline greater than or equal to T .

Let S ⊆ N denote this set. SD problem In this case, a finished order can be split and delivered in several batches.

We propose a polynomial-time algorithm (see algorithm GA5.2) for SD problem.

Algorithm GA5.2

Step 1: Let V ⊆ V (σ) denote the set of production triplets (see definition 5.1) corresponding to the undelivered parts of orders. Set current delivery time

T = max V j ∈V b j .
Step 2: Find the set of production triples corresponding to the orders with a deadline greater than or equal to T from V . Let S ⊆ V denote this set.

Step 3: If V j ∈S (b j -a j )/p J j < c, deliver the parts of orders corresponding to S in one batch which departs at time T . Otherwise, create one batch which departs at time T as follows: Iteratively, if the remaining capacity of the batch, denoted by c , is enough, add the part of order corresponding to the last completed production triplet V j ∈ S in the delivery batch, otherwise split V j into two production triplets V j = (J j , a j , b j -c p J j ) and V j = (J j , b j -c p J j , b j ). Put the part of order J j corresponding to V in the batch to form a full batch. Then update V . If all orders are delivered, then STOP. Otherwise, go to step 1.

Theorem 5.2 Algorithm GA5.2 finds an optimal delivery schedule for SD problem in O(n 2 ) time.

Proof. The proof is similar as for Theorem 5.1. 2

Lemma 5.2 For any given feasible NSP production schedule, there exists an optimal delivery schedule in which the orders are not split.

Proof. For a given NSP schedule, algorithm GA5.2 finds an optimal delivery schedule which is a NSD schedule. In fact, in the case NSP, each production triplet V j corresponds to a non split order J j , i.e., b j -a j = p J j . In the step 3 of algorithm GA5.2, when we create a full batch in the case V j ∈S (b j -a j )/p J j > c, we do not split any production triplet, i.e. the orders are put in the delivery batch without splitting.

As discussed in section 5.2, we do not consider the non-splittable production and splittable delivery (NSP-SD) problem, because according to Lemma 5.2, for any feasible NSP production schedule, there exists an optimal delivery schedule which is a NSD schedule.

Coordinated Scheduling Problems

Recall that the manufacturer's problem is a decision problem and the 3PL provider's problem is an optimization problem, hence clearly, an integrated model minimizing the transportation cost T C subject to the deadline constraints is the best way for the coordination. Concerning the implementation of coordination, since the manufacturer does not benefit from the coordination, the 3PL provider needs to recompense the manufacturer.

In order to guarantee the benefit for both parties, the amount of compensation P has to respect the formulation In what follows, we concentrate on the resolution of the integrated scheduling problems. We first consider SP-NSD and SP-SD problems, then NSP-NSD problem.

T C 2 + P ≤ T C 1 (5.

SP-NSD Problem and SP-SD Problem

In this section, we first give some properties for SP-NSD and SP-SD problems. Then we provide a polynomial-time algorithm that solves these problems in two special cases.

This algorithm will be used to compute lower bounds in the branch-and-bound algorithm that solves NSP-NSD problem.

Lemma 5.3 There exists an optimal integrated schedule for SP-NSD and SP-SD problems, if it exists, such that the following properties hold:

(1) Each order is processed in one production block only.

(2) Each production block starts at the minimum release date of orders within this block.

(3) Each batch is delivered at its completion time when all orders (or parts of orders) of the batch are completed.

Proof. (1) Suppose there exists an optimal integrated schedule (σ * , θ * ) which does not respect property 1, such that order j is the first order which is split and scheduled in several production blocks. Let K i be the first block containing order j (see figure 5.3(a)).

We reschedule as early as possible the rest of order j in the idle times after K i (see figure 5.3(b)). Consequently, the order j is processed only in K i . The delivery schedule θ * is also feasible for the new production schedule. So this new integrated schedule is also optimal. We can repeat this argument in a finite number of times until the property 1 is satisfied. (2) Suppose there exists an optimal integrated schedule (σ * , θ * ) which respects property 1 but does not respect property 2, such that production block K i is the first block which does not respect property 2. Suppose order j has the earliest release date among the orders of block K i . We reschedule order j as early as possible without changing other orders. We distinguish two cases: in the first case, the completion time of the production block K i-1 is less than r j (see figure 5.4(a)), in the new production schedule all blocks before K i respect property 2 (see figure 5.4(b)); in the second case, the completion time of the production block K i-1 is greater than or equal to r j (see figure 5.4(c)), in the new production schedule all blocks before K i respect property 2 (see figure 5.4(d)). In the new production schedules((b) and (d)), we reduce the total size of blocks which do not respect property 2. The delivery schedule θ * is also feasible for these new production schedules. So this new integrated schedule is also optimal. We can repeat this argument in polynomial time until property 2 is satisfied.

(3) The proof is the same as Lemma 5.1. 2

Lemma 5.4 There exists an optimal integrated schedule for SP-NSD and SP-SD problems, if it exists, such that the structure of production blocks, consisting of the orders composition, the starting time and the ending time of each block, is the same as that constructed by the preemptive EDD rule.

Proof. Suppose there exists an optimal integrated schedule (σ * , θ * ) which respects the properties of Lemma 5.3, but does not respect the property of Lemma 5.4. Let (K * 1 , . . . , K * l ) be the set of production blocks of σ * . Let σ denote the production schedule constructed by the preemptive EDD rule. Let (K 1 , . . . , K u ) be the set of production blocks of σ. Suppose K * i and K i are the first block which are different in two schedules. According to the preemptive EDD rule, in σ there is a idle time only if there is no available order. Hence there is no idle time among the split parts of each order. In addition, at each end of idle time, the rule schedules always one of remaining orders with the earliest release date. Consequently, σ respects the properties of Lemma 5.3.

According to property 2 of Lemma 5.3, K * i and K i must start at the same time. Noting that in σ there is a idle time only if there is no available order, we know that all orders of K * i must be in K i , i.e.

K * i ⊆ K i .
Suppose order j is the first order such that j / ∈ K * i and j ∈ K i . Since the orders before j of K i are also in K * i , we know that K * i can finish only at or after r j . According to property 2 of Lemma 5.3, the block including the order j must start before or at r j .

Consequently, the order j must be in K * i , which is in conflict with the assumption of order j. That means that all orders of K i must be in K * i , i.e. K i ⊆ K * i . Hence, we have ∀j ∈ N 1 , j ∈ N 1 such that r j ≤ r j < r j + p j . ∀j ∈ N 1 and i ∈ N 2 , r j + p j ≤ r i .

K i = K * i and
In any production block of the schedule constructed by preemptive EDD rule, the orders of N 2 have the same release date.

Algorithm GA5.3

Step 1: Generate a production schedule σ with the preemptive EDD rule. If C j (σ) ≤ d j , ∀j ∈ N , go to Step 2, otherwise there is no solution and STOP.

Step 2: Let N ⊆ N denote the set of undelivered orders. Set the current delivery time T = max j∈N C j (σ).

Step 3: Find the set of undelivered orders with deadline greater than or equal to T .

Let S denote this set. Proof. We first prove the complexity of algorithm GA5. Next, we prove that the algorithm provides an optimal solution. We use a recursion theorem to prove it. Let (σ, θ) denote the integrated schedule provided by algorithm GA5.3. Let B i denote the i th last batch of θ. Let |B i | denote the size of B i . Let T (B i ) denote the departure date of B i . According to Lemma 5.4, we find a structure of production blocks of an optimal integrated schedule with the preemptive EDD rule.

We can fix the value for minimum T (B 1 ) which equals to the makespan. Suppose that T (B i ) is minimum. We prove the problems in two special cases 1 and 2 separately. if T (B i+1 ) is a production completion time of one order of which the deadline is less than T (B i ), according to the preemptive EDD rule, we cannot anticipate the maximum production completion time of all orders of which the deadlines are less than T (B i ).

if T (B i+1 ) is a production completion time of one order of N 1 of which the deadline is greater than or equal to T (B i ), according to the preemptive EDD rule the completion times of orders of N 1 cannot be anticipated and the SRPT rule does not change the completion times of N 1 , hence we cannot anticipate

T (B i+1 ). If T (B i+1
) is a production completion time of one order of N 2 of which the deadline is greater than or equal to T (B i ), according to the SRPT rule and the characteristic of the special case 2, this order is executed before all orders of B i in σ and B i ⊆ S ∩ N 2 . Since the orders of B i have the longest processing time among the orders of S ∩ N 2 , we cannot anticipate T (B i+1 ).

For the problems in the two special cases, we prove that T (B i+1 ) is minimum. Hence the algorithm GA5.3 generates the minimum number of batches to deliver all orders. 2

Remark that the computational complexities of SP-NSD and SP-SD problems in general case are still open. 

NSP-NSD Problem

(i) Heuristics

In our branch-and-bound algorithm, we will use two heuristics that try to construct a feasible integrated schedule for NSP-NSD problem.

The first heuristic, denoted by H5.1, uses the non-preemptive EDD rule, which forces to create a production schedule without preemption. If the obtained production schedule is feasible, then we apply algorithm GA5.1.

Heuristic H5.1

Step 1: Create a production schedule σ with the non-preemptive EDD rule. If C j (σ) ≤ d j , ∀j ∈ N , go to step 2. Otherwise, the algorithm cannot provide a feasible solution and STOP.

Step 2: Apply algorithm GA5.1 to compute a delivery schedule.

The second heuristic, denoted by H5.2, uses a SP-NSD integrated schedule computed by algorithm GA5.3 to construct, if possible, a feasible integrated schedule for NSP-NSD problem.

Heuristic H5.2

Step 1: Create a priority list of orders, such that in the given schedule (σ, θ), if D i (θ) < D j (θ), order i must be before order j in the list, and if D i (θ) = D j (θ) and C i (σ) < C j (σ), order i must be before order j in the list.

Step 2: Schedule each order as early as possible without preemption. When there are several orders which can be scheduled, we choose the order with the highest priority.

Let σ be the constructed production schedule. If C j (σ ) ≤ d j , ∀j ∈ N , go to step 3. Otherwise, the algorithm cannot provide a feasible solution and STOP.

Step 3: Apply algorithm GA5.1 to compute a delivery schedule.

respectively. Set LB(T C, u) = max{T C(σ 1 , θ 1 ), T C(σ 2 , θ 2 )}.

Upper bound: Firstly, generate a NSP-NSD integrated schedule by applying heuristic H5.2 with the above obtained schedule (σ 2 , θ 2 ) and the original deadlines, i.e. precedence relations rule: k∈N x kj = 0, where x kj = 1 if order k precedes order j, otherwise x kj = 0. Then, require the valid candidate j to be scheduled at the current production position and let u be the corresponding new node. Set r k (u ) = max(r k (u), r j (u) + p j ), ∀k ∈ N . and LB(T C, u). Since U B(T C, 1) = 8, i.e. the algorithm does not find a feasible NSP schedule, the tree branches as Carlier's algorithm. Here, we have the critical order e = 3 and the critical set J = {1, 2, 4}.

In node 2, Carlier's algorithm requires the critical order to be processed before the orders of critical set by setting the deadline of critical order 3, i.e. d 3 (2) = 29. Since LB(L max , 2) = 6 and U B(L max , 2) = 6, the algorithm ensures that there is no feasible NSP-NSD schedule for node 2.

In node 3, Carlier's algorithm requires the critical order to be processed after the orders of the critical set by setting the release date of the critical order 3, i.e. r 3 (3) = 72.

Since LB(L max , 3) = 0 and U B(L max , 3) = 0, the algorithm ensures that there is at least one feasible NSP-NSD schedule. Then it applies algorithm B5.2. The precedence relations include that the order 3 has to be processed after the orders 1, 2 and 4. Since We first present two properties of optimal integrated schedule for NSP-NSD problem.

Lemma 5.5 There exists an optimal integrated schedule for NSP-NSD problem, if it exists, such that each batch is delivered

(1) either at one production completion time of order,

(2) or at one delivery deadline of order.

Proof. Suppose that there is an optimal integrated schedule for NSP-NSD problem, such that it does not respect the property. We can change the delivery time of each batch to respect property (1) or (2) without changing the number of delivery batches.

Then, we propose the first MILP model (see MILP5.1) which extends the well-known positional scheduling model as follows. In this model, according to property (1) of Lemma 5.5, we suppose that each batch departs at one production completion time of order. Let

M 1 = min(max i∈N r i + i∈N p i , max i∈N d i ).
Decision variables:

x iq =    1
, if order i is processed in position q, i, q ∈ {1, . . . , n} 0, otherwise

C [q]
= production completion time of the order processed in position q, q ∈ {1, . . . , n}

y iq =    1, if order i is delivered at time C [q]
, i, q ∈ {1, . . . , n} 0, otherwise w q = number of batches departing at time C [q] , q ∈ {1, . . . , n} Fea: the percentage of instances for which a feasible solution is determined within the given time.

Opt: the percentage of instances which are solved to optimality within the given time.

Node: the average number of explored nodes. solution included).

Gap2: the relative gap for the instances for which we obtained at least one feasible solution (optimal solution excluded).

The results show that the branch-and-bound algorithm B5.1 outperforms the MILP models. From Table 5.4 and Table 5.5, we observe that the average execution time and the number of nodes with the MILP models are always larger than the branch-andbound algorithm, and the MILP models cannot find a feasible solution with n ≥ 70 and 5 minutes as time limit. The branch-and-bound algorithm solves all instances with n ≤ 20 optimally within a very short execution time less than one second, and more than 90% of instances with n ≤ 70 within an average execution time less than 40 seconds.

The branch-and-bound algorithm finds at least a feasible solution and solve 32.5% of instances optimally with n up to 500 and 5 minutes as time limit.

Consulting the gaps in Table 5.6 and Table 5.7, we observe that the branch-and-bound algorithm has a much better performance. In average, Gap1 and Gap2 of branch-andbound algorithm are less than 0.8% and 14% when n ≤ 70. However, the maximum Gap2

shows some hard cases for branch-and-bound algorithm when n ≥ 100. For two MILP models,in average, Gap1 and Gap2 exceed 10% and 20% respectively when n ≤ 50.

Conclusions

In this chapter, we studied a production and outbound distribution scheduling problem in a supply chain with a manufacturer, a 3PL provider and a customer. We considered a single machine production and a direct batch delivery. Moreover, we considered an important feature in production and distribution: splittable or non-splittable. The manufacturer's objective is to determine a feasible production schedule in which the orders are completed before or at their deadline. The 3PL provider aims at deciding a delivery schedule minimizing the transportation cost.

We first investigated the individual scheduling problems. We reviewed the production scheduling problems (i.e. SP and NSP problems) and provided two polynomial-time algorithms to solve the distribution scheduling problems (i.e. SD and NSD problems).

Then we investigated the coordinated scheduling problems (i.e. SP-NSD, SP-SD and NSP-NSD problems). We provided a polynomial algorithm to solve two special cases of SP-NSD and SP-SD problems. We also provided a branch-and-bound algorithm for NSP-NSD problem and evaluated its performance using numerical experiments. The results showed that the proposed algorithm has a better performance than the MILP In this chapter, we investigate a production and outbound distribution scheduling problem proposed by an enterprise working in the packaging industry. The manufacturer has to process a set of orders on unrelated parallel machines with the consideration of sequence-dependent setup times and costs. Then the 3PL provider delivers orders in batches to the customers with heterogeneous vehicles subject to delivery time windows.

The manufacturer's objective is to minimize the total setup cost and the 3PL provider's objective is to minimize the transportation cost. In order to minimize the total setup cost, the manufacturer prefers a special production sequence which may entail higher cost for the 3PL provider. For example it may happen that in a production sequence the completion times of orders are close to their delivery time windows, and consequently there are few flexibilities to group the orders in batches which increases the transportation cost. The coordination is motivated to decide an integrated schedule minimizing the total cost of supply chain while guaranteeing the delivery time windows.

Our objective in this chapter is to model this coordinated scheduling problem and propose a first decomposition approach to solve it using a commercial solver, to evaluate the feasibility of the approach and the potential benefit of coordination, and to propose some directions of improvement for future research.

We first investigate the individual scheduling problems. We also investigate the coordinated scheduling problem. An integrated model is Chapter 6 is organized as follows. In section 6.2, we formally describe the problems and introduce notations and terminology. Section 6.3 is devoted to the individual scheduling problems, and section 6.4 to the coordinated scheduling problems. In section 6.5, we evaluate the feasibility of the approach and the potential benefit of coordination using numerical experiments with small instances. Section 6.6 contains some conclusions and propositions for future research.

Problems and Notations

A manufacturer has to process a set of orders N = {1, . . . , n} from customers on a set of unrelated parallel machines M = {1, . . . , m}. Order j ∈ N requires the processing of q j identical items on machines. Each order can be processed on any machine. We consider splitting property in production, in that each order can be split into parts and processed independently on several machines at the same time. There is no preemption of orders on each machine. Let p e j denote the processing time of unit item of order j ∈ N on machine e ∈ M . Let C j denote the completion time of order j ∈ N . Let j denote the delivery destination of order j ∈ N . Moreover machine e ∈ M has a release time γ e .

On one machine, a sequence-dependent setup time and a setup cost occur when production changes from one order to another order. Let s 0j denote the setup time of order j ∈ N which is processed as the first order on one machine. Let s j 1 j 2 denote the setup time when production changes from order j 1 to order j 2 and s j 1 j 2 = 0 if j 1 = j 2 , j 1 , j 2 ∈ N . The setup times respect the triangle rule, i.e. s j 1 j 2 + s j 2 j 3 ≥ s j 1 j 2 , j 1 , j 2 , j 3 ∈ N . The setup cost is proportional to the setup time. Let ρ be the cost for unit setup-time. Hence ρs j 1 j 2 is the setup cost when production changes from order j 1 ∈ N to order j 2 ∈ N .

After completion of order j ∈ N , order j is delivered by a 3PL provider to its destination j at its delivery time window [a j , b j ]. If one delivery vehicle arrives before the delivery time window, it should wait until time a j to unload. Hence the delivery time is also the beginning time of unloading. We consider batch delivery, i.e. one order can be delivered with other orders in one shipment. There is a set of vehicles denoted by K, consisting of several types of vehicles. For each type of vehicles there are a sufficient number of vehicles. Any order can be delivered by any type of vehicle. Vehicle k ∈ K has a capacity Q k , which is measured by the number of pallets. Let φ j be the number of pallets to deliver order j ∈ N . One pallet cannot contain more than one order. Let τ 0j denote the transportation time from the plant to the destination of order j. τ 0j includes the loading time. Let τ j 1 j 2 denote the transportation time from the destination of order j 1 ∈ N to the destination of order j 2 ∈ N . Let T denote the constant unloading time of an order at its destination. τ j 1 j 2 = 0 if j 1 = j 2 . The transportation times respect the triangle rule, i.e. τ j 1 j 2 + τ j 2 j 3 ≥ τ j 1 j 2 , j 1 , j 2 , j 3 ∈ N .

There are two types of transportation: direct delivery from the plant to one destination; routing delivery from the plant to several destinations in one shipment. There is a limit of length of any shipment, denoted by L.

In a direct delivery, the transportation cost from the plant to the destination of order j ∈ N with vehicle k ∈ K, is denoted by h k 0j . And the transportation time is τ 0j . In a routing delivery, the transportation cost is equal to the most expensive direct batch cost of one order among the orders of this shipment plus the total drop costs. A drop cost occurs when we deliver more than one destination in one shipment. Let ϕ k denote the drop cost per destination with vehicle k ∈ K. The transportation time is equal to the traveling time of the shipment plus the unloading times. Clearly, the direct delivery is a special case of the routing delivery.

Let σ denote a production schedule that specifies how to assign each order on machines and when each order is processed on its assigned machine(s). Let θ denote a delivery schedule that specifies how many batches are used, which orders are in each batch, when each batch departs, and what is the traveling route for each batch. Let (σ, θ) denote an integrated schedule that specifies a production schedule and a delivery schedule. The manufacturer's objective is to minimize the total setup cost, denoted by SC.

The 3PL provider's objective is to minimize the transportation cost, denoted by T C, which is the sum of transportation costs of all batches.

We consider two scenarios: (1) the manufacturer and the 3PL provider decide their individual schedule without coordination in a consecutive order (i.e. first the manufacturer, then the 3PL provider); (2) the manufacturer and the 3PL provider coordinate to decide concurrently an integrated schedule. The scheduling problems are formally defined as follows.

1. Individual scheduling problems. 

Example:

To illustrate the individual and integrated problems, we consider the following example.

Number of orders n = 2, number of machines m = 2.

Quantity of items of order j ∈ N : q j = 25.

Processing time of unit item of order j ∈ N on machines: p 1 j = 1 and p 2 j = 2.

Setup times: s 01 = 5, s 02 = 4, s 12 = s 21 = 3.

Cost of unit setup time: ρ = 100.

Machines release times are zero.

There are 2 identical vehicles with capacity of 20.

Number of pallets to deliver order j ∈ N : φ j = 10.

Unloading time T = 1, and limit of length of shipment L = 30.

Transportation times: τ 01 = 10, τ 02 = 15, τ 12 = τ 21 = 12.

Individual Scheduling Problems

In the non-coordinated scenario, the manufacturer and the 3PL provider decide their individual schedule consecutively. We provide a mixed integer linear programming (MILP) model for each individual scheduling problem.

Manufacturer's Problem

We recall that the single machine scheduling problem 1|s ij |C max is NP-hard [START_REF] Bruno | Complexity of task sequencing with deadlines, set-up times and changeover costs[END_REF]. Since this single machine scheduling problem is a special case of the manufacturer's problem, the manufacturer's problem is also NP-hard. Here, we consider that the deadline d j of order j ∈ N is equal to b j -τ 0j .

We provide a MILP model, which is similar to the model of [START_REF] Zhu | Minimizing the sum of earliness/tardiness in multimachine scheduling: a mixed integer programming approach[END_REF].

We introduce two fictive orders 0 and n + 1. We define decision variables as follows.

X e ij =         
1, if order i precedes order j on machine e, i = 0, . . . , n, j = 1, . . . , n + 1, i = j, e ∈ M 0, otherwise Y e j = number of items of order j processed on machine e, j ∈ N , e ∈ M . C j = completion time of order j, j ∈ N .

MILP6.1: Y e j = q j , j ∈ N (6.3.6) ensure that one order is processed on each machine once at most. Constraints (6.3.3) impose that for each order j ∈ N , the number of its direct predecessors is equal to the number of its direct successors on each machine. Constraints (6.3.4)-(6.3.5) impose the relation between variables X e ij and Y e j : if Y e j > 0, then i=0,...,n,i =j X e ij > 0, otherwise i=0,...,n,i =j X e ij = 0. Constraints (6.3.6) ensure that all orders are processed. Constraints (6.3.7) enforce the order deadline restriction. In constraints (6.3.8), if order i precedes order j on machine e, i.e., X e ij = 1, we ensure that the completion time of order j is far enough after that of order i to include the processing time of processed parts of order j and setup time for order j on machine e. Otherwise, i.e., X e ij = 0, we have C j -C i ≥ -max{b i , b j } ≥ p e j Y e j -p e j q j -max{b i , b j }, hence constraints (6.3.8) are always valid. Constraints (6.3.9) enforce the machine release time restriction. Constraints (6.3.10)- (6.3.11) give the domain of definition of each variable.

min ρ m e=1 n i=0 j∈N,j =i s ij X e ij ( 6 
C j ≤ d j , j ∈ N (6.3.7) C j -C i ≥ p e j Y e j + X e ij s ij + (X e ij -1)(p e j q j + max{b i , b j }), i, j ∈ N, i = j,

3PL Provider's Problem

In the 3PL provider's problem, if the delivery destinations are given for one shipment, the transportation cost of this shipment is fixed. Because of this difference from the classical VRPTW, we need to prove the complexity of the 3PL provider's problem. We consider the following special case of the 3PL provider's problem: each customer has one order only, the delivery time window [a j , b j ] = [0, ∞] for j ∈ N , the production completion time C j = 0 for j ∈ N , the limit of length of a trip L = ∞, the vehicles are identical, the transportation costs

h k 0j 1 = h k 0j 2 = h k for j 1 , j 2 ∈ N and k ∈ K.
Let B denote the number of delivery batches. In this case, we have the following equation for the overall transportation cost T C of a delivery schedule with B batches.

T C = Bh k + (n -B)ψ k (6.3.12)
Hence the objective of minimizing T C is equivalent to the objective of minimizing the number of delivery batches B. This special case is the bin packing problem which is NP-hard in the strong sense [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]). In the bin packing problem, objects of different volumes must be packed into a finite number of bins of equal size in a way that minimizes the number of bins used. So the 3PL provider's problem is NP-hard in the strong sense.

Then, we provide a multicommodity network flow MILP model similar to that of [START_REF] Desrochers | Vehicle routing with time windows: Optimization and approximation[END_REF] for the 3PL provider's problem.

This problem can be defined on a direct graph G = (V, A), where V = {0, 1, . . . , n+1}.

The vertex j ∈ {1, . . . , n} represents the destination j of order j. The vertex 0, n + 1

represent the plant and one fictive ending point, denoted by 0 and n+1 respectively.

The arcs represent the paths between two places. Feasible vehicle routes correspond to paths starting at vertex 0 and ending at vertex n + 1. We set service time ψ i = T for vertex i ∈ N and ψ 0 = ψ n+1 = 0 for vertexes 0 and n + 1. τ ij is the travel time from vertex i to vertex j. We set τ i,n+1 = 0, for i ∈ {0, . . . , n}.

Each vertex i is associated to a time window [a i , b i ]. And we set a 0 = min i∈N C i , b 0 = max i∈N {b i -τ oi }, a n+1 = min i∈N {a i + ψ i } and b n+1 = max i∈N {b i + ψ i }.
Here, completion time C j of order j ∈ N is given by the manufacturer. Arc (i, j), for i, j ∈ N and i = j, exists only if order i can be delivered before order j on respecting their delivery time window, i.e. a i + ψ i + τ ij ≤ b j , the shipment including orders i and j respects the limit of length of a shipment, i.e.

τ 0i + ψ i + max{τ ij , a j -b i -ψ i } ≤ L,
the completion time of order j is no later than the latest possible departure date of the shipment including orders i and j, i.e. b i -τ 0i ≥ C j .

There exists an arc from vertex 0 to each other vertex, and from each other state to vertex n + 1. Let δ + (i) = {j : (i, j) ∈ A} and δ -(j) = {i : (i, j) ∈ A}. We define the decision variables as follows.

x x k ij = 1, i ∈ N (6.3.14)

j∈δ + (0)

x k 0j = 1, k ∈ K (6.3.15)

i∈δ -(j)

x k ij -i∈δ + (j)

x k ji = 0, k ∈ K, j ∈ N (6.3.16)

w k j ≥ w k i + ψ i + τ ij -(1 -x k ij ) max{b i , b j }, k ∈ 
K, (i, j) ∈ A (6.3.17)

a i ≤ w k i ≤ b i , k ∈ K, i ∈ V (6.3.18) i∈N j∈δ + (i) x k ij φ i ≤ Q k , k ∈ K (6.3.19) w k 0 ≥ C j i∈δ -(j)
x k ij , j ∈ N, k ∈ K (6.3.20)

w k j -w k 0 ≤ L + (1 - i∈δ -(j)
x k ij )b j , j ∈ N, k ∈ K (6.3.21) 

H k ≥ h k 0j i∈δ -(j) x k ij + ϕ k ( (u,v)∈A, u = v x k uv -2) j ∈ N,

Coordinated Scheduling Problems

We adopt an integrated model minimizing SC + T C subject to machine availability constraints and delivery time windows. The objective is to optimize the performance of the global supply chain. Clearly, the 3PL provider can benefit from this coordination while the cost of the manufacturer cannot be improved or can be even higher. We propose a savings-sharing mechanism to motivate the manufacturer to join the coordination. The 3PL provider recompense the manufacturer. In order to guarantee the benefit for both actors, the amount of compensation P has to respect the formulation In what follows, we propose a nonlinear programming model and a heuristic to solve the integrated scheduling problem. Since the individual scheduling problems are NPhard, the integrated scheduling problem is also NP-hard.

T C 2 + P ≤ T C 1 (6.

Nonlinear programming model

We combine MILP6. In the first phase, we solve a production scheduling problem in which an approximate of the transportation cost is integrated. We first determine the discrete possible delivery times in each delivery time windows, like {a j , a j + 1, . . . , b j } for the delivery time window [a j , b j ] and j ∈ N . Let I j denote a set of indexes of possible delivery times of order j ∈ N and t j v denote the v th possible delivery time for v ∈ I j . In order to evaluate the transportation cost, we introduce F j v to represent an estimation of the transportation cost of order j if order j is delivered at time t j v , j ∈ N and v ∈ I j . We introduce a decision variable λ j v which is equal to 1 if t j v is chosen, and 0 otherwise. And we use a parameter η j for j ∈ N to modify the completion time constraints (see constraints 6.4.29 of MILP6.4). In the obtained production schedule of the first phase, we remove all idle times on each machine and update C j for j ∈ N . The anticipation of completion times offers a better input for the second phase.

In the second phase, we solve the distribution scheduling problem with fixed C j . We use the solution of the second phase to update F j v and η j for next iteration. The procedure stops when a fixed number of iterations is reached or the solution is not improved for a fixed number of iterations.

(i) The production phase

In this phase, we propose a MILP to solve the production scheduling problem in which an approximate of transportation cost is integrated. The decision variable λ j v is equal to 1 if t j v is chosen for j ∈ N and v ∈ I j , and 0 otherwise. The other decision variables are introduced in MILP6.1. The objective function (6.4.28) minimizes the sum of the total setup cost and the approximate transportation cost. Constraints (6.4.29) ensure that if λ j v = 1, the completion time C j ≤ η j (t j v -τ 0j ), otherwise C j ≤ η j (b j -τ 0j ). And η j is a parameter to production completion time of each order in the first phase (see constraints 6.4.29 of MILP6.3). The objective of the reduction of η j is to force the algorithm to reduce the production completion time of order j and increase the opportunity to find a better transportation cost in the second phase.

MILP6.3:

Computational Results

In this section, we evaluate the feasibility of the approach and the potential benefit of coordination. We propose an approach of generation of instances and analyze the results with small instances.

The benefit of coordination is measured by comparing the integrated schedule generated by the heuristic with the individual schedules generated by MILP6.1 and MILP6.2.

The algorithms are implemented in C++ and Cplex V12.5.1. The experiments are carried out on a DELL 2.50GHz personal computer with 8GB RAM.

We consider n ∈ {5, 10, 15, 20} and m ∈ {2, 3, 5}. The integers q j and φ j , for j ∈ N , are generated from the uniform distributions [START_REF] Desrochers | Vehicle routing with time windows: Optimization and approximation[END_REF]200] and [q j /10, q j /5] respectively. The processing times of unit item p e j , for j ∈ N and e ∈ M , are generated from the uniform distribution [0.01, 0.1]. The machines release times γ e , for e ∈ M , are generated from the uniform distribution [0,4]. The integers s ij , for i = 0, . . . , n, j ∈ N , are generated from the uniform distribution [0.1 min{max e∈M p e i q i , max e∈M p e j q j }, 0.5 min{max e∈M p e i q i , max e∈M p e j q j }]. We set s ij = 0 for i = j. In order to guarantee the triangle property, after generation, if s ij ≤ S/2, where S is the maximum generated setup time, we regenerate another s ij ∈]S/2, S]. The cost per unit setup time ρ is equal to 100.

We suppose that one customer has only one order. The customers are divided into two groups, N 1 = {1, . . . , n/2} and N 2 = {n/2 + 1, . . . , n}. The integers τ 0j , for j ∈ N 1 are generated from the uniform distribution [START_REF] Baker | Solution improvement heuristics for the vehicle routing and scheduling problem with time window constraints[END_REF][START_REF] Behnamian | Parallel-machine scheduling problems with sequence-dependent setup times using an aco, sa and vns hybrid algorithm[END_REF] and for j ∈ N 2 from [START_REF] Bräysy | Vehicle routing problem with time windows, part i: Route construction and local search algorithms[END_REF][START_REF] Brucker | Complexity results for flowshop and open-shop scheduling problems with transportation delays[END_REF]. If i, j are in the same group, the integers τ ij are generated from the uniform distribution [START_REF] Agnetis | Two faster algorithms for coordination of production and batch delivery: a note[END_REF][START_REF] Allahverdi | A survey of scheduling problems with setup times or costs[END_REF],

otherwise from [START_REF] Baker | Solution improvement heuristics for the vehicle routing and scheduling problem with time window constraints[END_REF][START_REF] Behnamian | Parallel-machine scheduling problems with sequence-dependent setup times using an aco, sa and vns hybrid algorithm[END_REF]. We set τ ij = τ ji and set τ ij = 0 if i = j . The limit length of a trip L ∈ {45, 60}. The unloading time T = 1. The integer lower bounds of time windows a j , for j ∈ N , are generated from the uniform distribution [B/2, B], where B = max e∈M γ e + max e∈M j∈N p e j q j /m + L + 0.75nS represents an estimated delivery time if all orders begin their processing at the latest machine release time, each order is split in m parts and processed on m machines, and the transportation time of the trip reaches the limit L. The integer upper bounds of time windows b j , for j ∈ N , are generated from the uniform distribution [a j + -5, a j + ], where 2 = {10, 15}. There are two types of vehicles and 2n vehicles totally, i.e., K = {1, . . . , 2n}. For k ≤ n and j ∈ N , Q k = 30, ϕ k = 50 and h k 0j = 50τ oj . For k > n and j ∈ N , Q k = 60, ϕ k = 80 and h k 0j = 80τ oj . 10 instances are generated for each combination of parameters n, m, L and . Totally 480 instances are generated.

We impose 3 minutes as a limit of execution time of a MILP. We generate individual schedules in three steps: first apply MILP6.1 to create a production schedule, then remove the idle times in the obtained production schedule, and finally apply MILP6.2 to create a distribution schedule. We apply the two-phase iterative heuristic to generate an integrated schedule. Concerning the ending criterion, we set that the total number of iterations cannot exceed 6 and the number of iterations without improvement cannot exceed 3. From Table 6.1, one can observe that the average execution time of the heuristic grows rapidly. When n = 5, all MILPs can be solved optimally in the given time. When n ≥ 15, we observe a difficulty for MILP6.2 which cannot find an optimal solution in the given time.

From Table 6.2, we observe that the average benefit of coordination is not significant.

We think that this small benefit is influenced by: the possible lack of generality of instances and the low efficiency of MILP6.2 in the second phase. In what follows, we explain the above conclusions by analyzing the indicators Improvedand Max Benefit.

When n = 5 and 10, we find that there exists the instance with a significant benefit which can reaches 29.7% when n = 5 and 14.69% when n = 10. At the same time, we find more than 67.5% of instances which cannot be improved. Since the MILPs can find an optimal solution for the instances with n = 5 and 10 in the given time, we have the reason to doubt the generality of instances. When n = 15 and 20, more than 42.5% of instances can be improved, however the low efficiency of MILP6.2 impedes the improvement of the transportation cost.

The significant maximum benefit of coordination verifies the feasibility of the heuristic and the potential benefit of coordination. Moreover, the results point out the possible lack of generality of instances and the low efficiency of MILP6.2 in the second phase.

In order to improve the efficiency of MILP6.2 in the second phase, we tested another time-expanded network flow-based model and found that the new MILP is less efficient than MILP6.2. For future research, we need to provide a better approach of generation of instances, and develop an efficient exact algorithm or an efficient heuristic for the distribution phase of the two-phase iterative heuristic.

Conclusions

In this chapter, we investigated a production and outbound distribution scheduling problem in a supply chain with a manufacturer, a 3PL provider and several customers. This problem is proposed by an enterprise working in the packaging industry. The manufacturer's objective is to minimize the total setup cost and the 3PL provider's objective is to minimize the transportation cost. We first proposed MILP models for individual scheduling problems. Then we provided a nonlinear programming model and a two-phase iterative heuristic for integrated scheduling problem, and developed a savings-sharing mechanism to motivate the coordination.

We also proposed an approach of generation of instances and evaluated the benefit of coordination using numerical experiments with small instances. The significant maximum benefit of coordination verified the feasibility of the heuristic and the potential benefit of coordination. The average benefit of coordination is not significant, which may be influenced by the possible lack of generality of instances and the low efficiency of MILP6.2 in the second phase.

We pointed out the need to improve the approach of generation of instances and the efficiency of the algorithm for the distribution phase of the two-phase iterative heuristic.

In order to evaluate the performance of the two-phase iterative heuristic, one might develop a meta-heuristic and compare their solutions using numerical experiments.

Chapter 7

Conclusions and Perspectives

In this dissertation, we investigated three supply chain scheduling problems in the maketo-order business model.

In part I, we addressed a production and interstage distribution scheduling problem. In the considered supply chain, a manufacturer outsources the transportation of semi-finished products between the two production locations to a 3PL provider. We considered the regular and express transportation modes. In chapter 3, we discussed the individual scheduling problems with the consideration of different bargaining powers of the two decision makers and different transportation settings. Different from the classical production scheduling problems and distribution scheduling problems, the individual scheduling problems considered some imposed constraints of the decision maker with a dominant bargaining power and the reaction of the other decision maker. In chapter 4, we discussed the mechanisms of coordination when one of the imposed constraints was relaxed and when all imposed constraints were removed. For the individual scheduling problems and coordinated scheduling problems, we provided polynomial-time algorithms or proved their NP-completeness. We performed experiments to investigate the benefits accruing from coordination between the two parties in two coordinated scenarios. The results showed that the relaxation of the transportation responsiveness can bring a significant benefit for the 3PL provider and the coordination without any imposed constraints can bring better benefits to both actors.

In part II, we investigated the coordination in outbound distribution environment.

Firstly, in chapter 5, we considered a production and outbound distribution schedul-ing problem with the consideration of order release dates in production and delivery deadlines. In this problem, we considered a single machine production and a direct batch delivery to one customer. Moreover, we considered an important feature in production and distribution: splittable orders or non-splittable orders. We reviewed the individual production scheduling problems and provided two polynomial-time algorithms to solve the distribution scheduling problems. We provided a branch-and-bound algorithm for the coordinated scheduling problem with non-splittable production and distribution (NSP-NSD problem). In order to evaluate the performance of the branch-and-bound algorithm, we provided two MILP models which extended the well-known positional and disjunctive scheduling models. The computational results show that the branch-andbound algorithm outperforms the two MILP models.

Secondly, in chapter 6, we investigated a production and outbound distribution scheduling problem in the real industry environment. In this system, the production and distribution schedules are decided without coordination. We first provided two MILP models for the individual scheduling problems. These problems are both NP-hard because of the complex system consisting of sequence-dependent setup times, unrelated parallel machines and routing batch delivery to several customers with delivery time windows and heterogeneous vehicles. Then, we proposed an integrated model and provided a nonlinear programming model and a two-phase iterative heuristic to solve the integrated scheduling problem. Using numerical experiments with small instances, we verified the feasibility of the heuristic and the potential benefit of coordination. And we also pointed out the need to improve the approach of generation of instances and the efficiency of the algorithm for the distribution phase of the two-phase iterative heuristic, and to develop a meta-heuristic.

We propose some problems for future investigation.

1. Coordinated production and interstage distribution scheduling problem with fixed delivery departure dates.

Chen (2010) pointed out the need of research on the scheduling problems with fixed delivery departure dates in his survey on integrated production and distribution scheduling problems. In chapter 4, we proved that this problem with two criteria, i.e. the makespan and the transportation cost, is NP-hard. There is a need to develop exact algorithms and heuristics for this problem.

2. Coordinated production, interstage distribution and outbound distribution scheduling problem.

In the literature, few paper considers the supply chain with both interstage distribution and outbound distribution. Lee and Chen (2001) considered a supply chain with both interstage and outbound distribution in an integrated production and distribution scheduling problem. However, they considered the two distribution problems separately. We can extend our first problem to a supply chain with a manufacturer, a 3PL provider and a (several) customer(s). The manufacturer has to process a set of orders on one machine at the upstream stage and the downstream stage. The 3PL provider is in charge of the transportation of semi-finished products from the upstream stage to the downstream stage, and the transportation of finished products from the downstream stage to the customer(s).

3. Integrated production and outbound distribution scheduling problem with release dates, deadlines and preemption.

This problem is motivated by our second problem. In this integrated problem, a set of preemptive orders has to be processed on one machine, then be delivered in batches to the customer. Each order has a release date and a delivery deadline.

The objective is to minimize the transportation cost subject to delivery deadlines.

In chapter 5, we proved that this problem is polynomially solvable in two special cases, and the complexity of this problem in general case is open. There is also a need to investigate this problem in more complex models, e.g., the parallel machines production model, the vehicle routing distribution model, etc. In our considered problems, we investigated the coordinated scheduling problem with a manufacturer and a 3PL provider. There is a need to investigate coordinated scheduling problem and mechanisms of coordination in more complex models, e.g., models with several manufacturers and/or several 3PL providers, etc.
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Problem 1 :

 1 production and interstage distribution scheduling problem (Agnetis et al. 2014a, 2014b, 2014c)

α 1 =

 1 G: general shop; α 1 = J: job shop; α 1 = F : flow shop; α 1 = O: open shop; α 1 = X: mixed shop;

  provided a polynomialtime algorithm to solve the 2-machine flow shop scheduling problem F 2||C max . Garey et al. (1976) proved the NP-hardness of the m-machine flow shop scheduling problem F m||C max with m ≥ 3.

  Miller et al. (1999) provided a hybrid genetic algorithm for a single machine scheduling problem with sequence-dependent setup time minimizing the sum of setup cost, inventory cost, and backlog cost. Vignier et al. (1999) considered a parallel machines scheduling problem with sequence-dependent setup time, release dates and deadline. The objective function is to first find a feasible schedule and then to minimize the cost due to assignment and setup time costs. They proposed a hybrid method that consists of an iterative heuristic, a genetic algorithm, and a branch-and-bound algorithm. Anglani et al. (2005) proposed a fuzzy mathematical programming approach to solve a parallel machines scheduling problem with sequence-dependent setup time, uncertain processing time and the objective of minimizing the total setup costs. Some other scheduling problems with setup times have been investigated, such as flow shop scheduling problems with setup times (Cheng et al. 1999, Brucker et al. 2005, etc.), open shop scheduling problems with setup times(Averbakh et al. 2005, Billaut et al. 2008, etc.), job shop scheduling problems with setup times (Cheung and Zhou 2001, Artigues and Roubellat 2002, etc.).

  surveyed the variants of the VRP. The capacitated vehicle routing problem (CVRP) considers the vehicle capacity. In the distance-constrained vehicle routing problem (DVRP), the length of each each route cannot exceed a preset limit. The capacitated distance-constrained vehicle routing problem (DCVRP) considers both the vehicle capacity and the constraint of distance. In the vehicle routing problem with time windows (VRPTW), the service at each customer must start within a given time window and the arrival of vehicles after time windows are prohibited. In the vehicle routing problem with backhauls (VRPB), each customer location may act as a pickup or a delivery node and all deliveries must be performed before any pickup. In the vehicle routing problem with pickup and delivery (VRPPD), the passengers or goods are transported between pickup and delivery locations. All the above problems are NP-hard because they generate the classical VRP. Toth and Vigo (2002) provided a survey of exact algorithms and heuristics for all the above vehicle routing problems. Similar surveys were provided in chapter 6 (Cordeau et al. 2007) and chapter 7 (Cordeau et al. 2007) of the handbook of operations research and management science. Other surveys have been provided for one or some of the above problems, such as VRPTW by Bräysy and Gendreau (2005), VRPB and VRPPD by Parragh et al. (2008), large-scale VRPTW by Gendreau and Tarantilis (2010), CVRP and VRPTW by Kumar and Panneerselvam (2012). There are other variations of the VRP, such as the dynamic vehicle routing problem (DVRP) where part or all of the input is unknown before the start of working day, the heterogeneous fleet vehicle routing problem (HVRP) where a fleet of vehicles is characterized by different capacities and costs, and the split delivery vehicle routing problem (SDVRP). Surveys on DVRP, HVRP and SDVRP were provided respectively by Pillac et al. (2013), Baldacci et al. (2008)

  There are four main exact algorithms for the VRPTW: Lagrangian relaxation based branch-and-bound algorithm where the lower bound is obtained by Lagrangian relaxation (Fishier 1994, Fishier et al. 1997, Kohl and Madsen 1997, Kallehauge et al. 2006); column generation based branch-and-bound algorithm where the linear relaxations are solved by column generation (Desrochers et al. 1992, Kohl et al. 1999, Cook and Rich 1999); branch-and-cut algorithm where the upper bound is obtained by a greedy randomized adaptive search procedure (Bard et al. 2002); genetic and set partitioning twophase approach (Alvarenga et al. 2007). Because of the NP-hardness of the VRPTW, the research has concentrated on heuristics, such as construction heuristics where at a time one customer is inserted into partial routes until a feasible solution is obtained (Solomon 1987, Potvin and Rousseau 1993, Ioannou et al. 2001, Nagata and Bräysy 2009, Pang 2011), improvement heuristics where a feasible solution is improved iteratively with an exchange mechanism (Russell 1977, Baker and Schaffer 1986, Potvin and Rousseau 1995, etc.), combination of construction and improvement heuristics (Russell 1995, Cordone and Wolfler Calvo 2001, Bräysy 2002), tabu search heuristics (Taillard et al. 1997, Chiang and Russell 1997, Cordeau et al. 2001, Lau et al. 2003, etc.), genetic algorithms (Gehring and Homberger 2002, Berger et al. 2003, Mester and Bräysy 2005, etc.), two-phase greedy randomized adaptive search procedure (Kontoravdis and Bard 1995), guided local search algorithm (Kilby et al. 1999), ant colony optimization algorithm (Gambardella et al. 1999), four-phase metaheuristic (Bräysy 2003), two-stage hybrid algorithm (Bent and Van Hentenryck 2004), improved multi-objective evolutionary algorithm (Garcia-Najera and Bullinaria 2011), etc.

2. 3

 3 Integrated production and distribution scheduling In the literature, two types of integrated production and distribution scheduling problems have been investigated: the integrated production and interstage distribution scheduling (IPIDS) problem involving the distribution of orders between manufacturing stages in the shop production, such as flow shop, job shop, open shop, etc; the integrated production and outbound distribution scheduling (IPODS) problem involving the distribution of orders to the customers. In the IPIDS problem, the production and transportation of orders between the stages are taken into account. The problem can be specified by the characteristics of machine environment, i.e., flow shop, job shop, open shop and so on, by the characteristics of transportation time, i.e., order-dependent, order-independent, machine-dependent, machine-independent and constant, by the characteristics of transporters, i.e., sufficient number, limited number, unlimited capacity and limited capacity. Brucker et al. (2004) provided a survey on the IPIDS problem in the flow shop and open shop environments. There are other surveys in the literature on the IPIDS, such as Hurinka and Knustb (2001), and Lee and Chen (2001).

  where T C represents the trip-based transportation cost, where the cost of one delivery batch is order-independent.Chen (2010) surveyed the IPODS problems and introduced a five-field notation, α|β|π|δ|γ, to represent the IPODS models. α, β and γ specify respectively the machine environment, the order characteristics and the optimality criterion as the classical three-field classification[START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF][START_REF] Pinedo | Scheduling Theory, Algorithms, and Systems[END_REF]. Some new objective func-tions of transportation are introduced, such as maximum delivery time denoted by D max , total trip-based transportation cost denoted by T C, etc. π and δ specify respectively the characteristics of delivery process and the number of customers. The number of customers is specified by one value of {1, k, n}, where δ = k ≥ 2 means there are multiple customers, and δ = n means that each order belongs to a different customer. The characteristics of delivery process include vehicle characteristics (number and capacity of vehicles) and delivery methods. The vehicle characteristics are specified by V (x, y), where: x ∈ {1, v, ∞} represents the number of vehicles. y ∈ {1, c, ∞, Q} represents the capacity of vehicles. {1, c, ∞} and Q distinguish, respectively, the possible capacities of vehicles when orders have equal size, and the limited capacity of vehicles when orders have general size. The delivery methods include: iid: individual and immediate delivery. direct: direct batch delivery. routing: batch routing delivery. fdep: shipping with fixed delivery departure dates. split: splittable delivery, i.e., an order can be split and delivered by several vehicles. The IPODS problems are classified by delivery methods: (i) models with individual and immediate delivery; (ii) models with direct batch delivery to a single customer; (iii) models with batch routing delivery to multiple customers; (iv) models with batch routing delivery to multiple customers; (v) models with fixed delivery departure dates. Chen (2010) surveyed the algorithms, heuristics, and complexity for the IPODS problems in each class.

  [START_REF] Gharbi | Minimizing makespan on parallel machines subject to release dates and delivery times[END_REF] developed a branch-and-bound algorithm for problem (iii).[START_REF] Kaminsky | The effectiveness of the longest delivery time rule for the flow shop delivery time problem[END_REF] proposed an asymptotic optimality of the longest delivery time algorithm for problem (iv). Few articles consider direct or routing delivery.[START_REF] Lu | Single machine scheduling with release dates and job delivery to minimize the makespan[END_REF] provided a polynomial-time algorithm for the problem 1|r j , pmtn|V (1, c), direct|1|D max .For the problem 1|r j |V (1, c), direct|1|D max they proved its NP-hardness and proposed an approximation algorithm with worst case ratio of 5/3.Mazdeh et al. (2008) provided a branch-and-bound algorithm for a special case of the NP-hard problem 1|r j |V (∞, ∞), direct|n| F j + T C, where F j represents the total flow time. Mazdeh et al. (2012) provided a branch-and-bound algorithm for a special case of the similar problem with sum of weighted flow time, 1|r j |V (∞, ∞), direct|n| w j F j + T C. Selvarajah et al. (2013) provided an evolutionary meta-heuristic for the same problem in the general case and a polynomial-time algorithm for the special case with common weight and preemption in production, 1|r j , pmtn|V (∞, ∞), direct|n| wF j + T C and 1|r j , pmtn| V (∞, ∞), direct|n| wC j + T C. There are some articles considering the online problem, i.e., the information related to an order becomes known when this order is released. Ng and Lu (2012) investigated the problems of Lu et al. (2008) in on-line environment. Averbakh and Xue (2007) provided an on-line two-competitive algorithm for the on-line problem 1|r j , pmtn|V (∞, ∞), direct|k| D j + T C, where D j represents the total delivery time. IPODS problems with L max and T C: Some IPODS problems with maximum lateness L max or delivery deadline d j , and transportation cost T C have been investigated in the literature. Polynomial-time algorithms were provided for the problems 1||V (∞, ∞), direct|k|L max + T C with a fixed k by Hall and Potts (2003), 1||V (∞, c), direct|k|L max + T C with a fixed k by Pundoor and Chen (2005), 1||V (1, ∞), direct|1|L max + T C by Hall and Potts (2005), 1||V (v, ∞), direct|1|L max + T C with a fixed v and 1||V (1, ∞), routing|k|L max + T C with a fixed k by Chen (2010), 1|pmtn, d j |V (∞, Q), direct|1|T C by Chen and Pundoor (2009). Wang and Lee (2005) proved the NP-hardness of the problem 1|d j |V (∞, 1), iid|n|T C with two types of vehicles and provided a pseudo-polynomial time dynamic programming algorithm for a special case. Chen and Pundoor (2009) proved the NP-hardness of the problems without preemption of production, 1|d j |V (∞, Q)|1|T C and 1|d j |V (∞, Q), direct|1|T C, and provided approximation algorithms with worst-case ratio of 2. IPODS problems with setup times: Few articles investigated the IPODS problem with sequence-independent setup times (s j ) or sequence-dependent setup times (s ij ). The problem with sequence-independent setup time and individual and immediate delivery, 1|s j |V (∞, 1), iid|n| D max , is strongly NP-hard (Chen 2010). Zdrzalka (1991) provided an approximation algorithm with worst case ratio of 5/3 for the problem in the case with unit setup times, and Zdrzalka (1995) provided an approximation algorithm with worst case ratio of 3/2 for the problem in the case with general setup times. Woeginger (1998) developed a polynomial-time approximation scheme for this problem. Liu and Cheng (2002) proved the NP-hardness and provided a polynomial-time approximation scheme for the similar problem with release dates and preemption of production, 1|r j , s j , pmtn|V (∞, 1), iid|n|D max . Zdrzalka (1994) provided an approximation with worst case ratio of 3/2 for this problem. Van Buer, et al. (1999) proved the NPhardness and provided a heuristic for the problem with sequence-dependent setup time and routing delivery, 1|s ij , d j |V (∞, Q), routing|n|T C + V C, where T C and V C represent respectively the trip-based transportation cost and the vehicle-based transportation cost. Wang and Cheng (2009) provided three heuristics for the NP-hard problem with sequence-dependent setup times and direct delivery, P 2|s j |V (∞, c), direct|k|D max + T C. IPODS problems with routing delivery and time windows: While the VRPTW has been well studied, few articles investigated the IPODS problem with routing delivery and time windows. Ullrich (2013) investigated the problem P m, r m |[a j , b j ]|V (v, Q), routing|k| T j , i.e., a set of orders of general size is processed on parallel machines subject to the machine release time r m , and delivered to customers within the time windows [a j , b j ] by a fleet of heterogeneous vehicles on minimizing the sum of tardiness T j . They provided a genetic algorithm for the integrated problem and evaluated its performance by comparing with two classical decomposition approaches. Low et al. (2014) provided an integer nonlinear programming model and two adaptive genetic algorithms for the problem 1|[a j , b j ]|V (∞, Q), routing|n|T C + E j + T j , where retailers' orders are processed in a distribution center and delivered to customers by a fleet of heterogeneous vehicles within the soft time windows, i.e., the violation of time windows incurs a penalty. The objective is to minimize the total cost including the transportation cost, the penalty cost of earliness E j and the penalty cost of tardiness T j . Low et al. (2013) investigated the problem with the same model on minimizing the time required to complete producing the product, delivering it to retailers and returning to the distribution center. Chen (2009) investigated an IPODS problem with routing delivery and time windows for perishable food products, which cannot be represented by the five-field notation of Chen (2010). In this problem, the products of each delivery batch are produced continuously on a single machine and are delivered to customers within soft time windows. The orders are assumed stochastic and the deterioration of products throughout their lifetime is considered. The objective is to maximize the expected total profit of the supplier. He proposed an algorithm composed of the constrained Nelder-Mead method (Nelder and Mead 1965) and a heuristic for the VRPTW.

  to customers. The problems in each stage have been studied. From the viewpoint of the supplier, the problem is to minimize the sum of production and delivery costs, where three production costs are considered respectively: sum of flow times, maximum lateness and number of late orders. From the viewpoint of the one manufacturer, the problem is to minimize the sum of production and delivery costs subject to the release dates of orders imposed by the supplier. The coordinated scheduling problem is to minimize the overall cost. The authors proposed polynomial-time dynamic programming algorithms or proved the NP-completeness for the supplier's scheduling problem, special cases of the manufacturer's scheduling problems and special cases of the coordinated scheduling problems. They also provided mechanisms of coordination and evaluated the benefit of coordination for two examples. Agnetis et al. (2006) studied a coordinated scheduling problem between a supplier and several manufacturers, taking into consideration an intermediate storage buffer. They considered the inventory cost and the interchange cost representing the distances between the actual schedules at the various stages of supply chain and their respective ideal schedules. They investigated the individual scheduling problems and a special case of the coordinated problem. They provided a polynomial-time algorithm for each problem minimizing the interchange cost or both costs. Dawande et al. (2006) analyzed the conflict and coordination issues between a manufacturer and a distributor.

  scheme of coordination and evaluated the benefit of coordination.[START_REF] Cai | Coordination of outsourced operations at a thirdparty facility subject to booking, overtime, and tardiness costs[END_REF] investigated the same problem with the objective of minimizing the booking, overtime, and tardiness costs. They designed a truth-telling mechanism of coordination and evaluated the benefit of coordination.

Order j 1 1 .

 11 scenario. Then according to the obtained schedule, the 3PL provider offers a limited set of regular vehicles and express vehicles with given capacities and transportation times to the manufacturer. (b) Manufacturer's problem. The manufacturer determines a production schedule on both machines minimizing the C max subject to a limited set of regular vehicles and express vehicles with given capacities and transportation times. The responsiveness constraints are not considered. Example We consider the following instance. The manufacturer has to process a set of n = 5 orders. Table 3.1 shows their processing time on the two machines. The 3PL provider has two types of vehicles, V 1 = 2 and V 2 = 5. The capacities of vehicles are c 1 = 3 and c 2 = 1. The transportation times are 1 = 5 and 2 = 2 = 5. The transportation costs are h 1 = 10 and h 2 = 7. For regular transportation, there are L = 2 fixed departure dates, t 1 = 15 and t 2 = 30. For each fixed departure date, there is one regular vehicle, i.e. v s = 1 for s = 1, 2. The responsiveness parameter is T = 12.Table 3.1: Example for problem 1 Manufacturer dominates, 3PL provider adjusts -scenario 1.

Figure 3 . 1 illustrates

 31 the optimal production schedule σ 1 = {1, 3, 2, 5, 4} and the adjusted delivery schedule θ 1 . In θ 1 , there are four batches {1},{3},{2} and {5, 4}, where {5, 4} is a regular batch departing at time 30, while {1},{3} and {2} are three express batches, departing at times 2, 12 and 20 respectively. We have therefore C max (σ 1 , θ 1 ) = 40 and T C(σ 1 , θ 1 ) = h 1 + 3h 2 = 31.

Figure 3 . 1 :

 31 Figure 3.1: Production-distribution schedule when manufacturer dominates, 3PL provider adjusts

  Figure 3.2 illustrates the optimal delivery schedule θ 2 with only two regular batches {2, 1, 4} and {3, 5}, departing at times 15 and 30 respectively. The adjusted production

Figure 3 . 2 :

 32 Figure 3.2: Production-distribution schedule when 3PL provider dominates, Manufacturer adjusts

3 .

 3 If there exists one transportation mode only, the orders of each batch are processed consecutively on machine M 1 . 4. If there exist two transportation modes, (a) If 1 ≥ 2 , no regular batch is split. (b) If 1 ≤ 2 , no express batch is split.

Figure 3 . 3 :

 33 Figure 3.3: Illustration of property 4(a) of Lemma 3.1.

Property 6 : 2 3. 4

 624 Similar to that of Property 5, but since the number of vehicles is limited, now we anticipate the departure time of a batch B either to the completion time of the last order in B or to the time the vehicle transporting B becomes available. Manufacturer Dominates, 3PL Provider Adjusts -scenario 1

  according to Property 4(b) of Lemma 3.1, the orders of each express batch are processed consecutively on M 1 , according to Property 2 of Lemma 3.1 each regular batch can be only split by express batches, and according to Property 5 of Lemma 3.1 each express batch departs at the completion time of the last order in this batch. Algorithm DP3.2 State and Value Function, Boundary Condition, Optimal Solution Value: From the algorithm DP3.1, we replace g 2 by g 1 which represents the number of orders in the current last regular batch and c 2 by c 1 .

  Recall that according to Property 4 of Lemma 3.1, the orders of each batch are processed consecutively on M 1 . Hence we can simplify the dynamic programming as follows. Algorithm DP3.3 State and Value Function, Boundary Condition, Optimal Solution Value, Current relation:

  we can give similar dynamic programming algorithms by removing the parameter v from the algorithms DP3.1, DP3.2 and DP3.3, because we do not need to consider the number of used regular vehicles. The complexity results are shown in Table 3.2. (ii) Problems with two transportation modes and a limited number of vehicles for express transportation Let us consider the problem 1|f seq, d j

  where both the number of vehicles for regular transportation and that for express transportation are limited and 1 > 2 . According to Property 4(a) of Lemma 3.1, the orders of each regular batch are processed consecutively on machine M 1 . From Property 2 of Lemma 3.1, each express batch can be only split by regular batches. Since, according to Property 6 of Lemma 3.1, each express batch departs either at the completion time of the last order in this batch or when a vehicle for express transportation becomes available, the possible departure times for vehicles for express transportation are

  From Property 3 of Lemma 3.1, no batch can be split in θ. Suppose that θ and φ coincide up to the first k -1 batches. According to Algorithm GA3.1, one has D B k (θ) ≥ D B k (φ) and |B k (φ)| ≥ |B k (θ)|, where B k (φ) and B k (θ) denote the k-th batch in φ and θ respectively, |B k (φ)| denotes the number of orders in batch B k (φ). We Algorithm 1: Algorithm GA3.1

2 Figure 3 . 4 :

 234 Figure 3.4: Illustration of Theorem 3.5.

Figure 3 .

 3 Figure 3.4 shows an example of the third case in the proof of Theorem 3.5, where φ, θ 1 and θ 2 represent respectively the schedule created by Algorithm GA3.1, the optimal schedule before change and that after change. In this example, D B k (φ) = t s + l 1 is earlier than D B k (θ 1 ) = t s+1 + l 1 . B k (φ) = {4, 5, 6} has 3 orders while B k (θ 1 ) = {4, 5} has 2 orders. This accords with the condition of the third case. After change as the proof, we obtain a new optimal schedule θ 2 , such that D B k (θ 2 ) = t s + l 1 and B k (θ 2 ) = {4, 5, 6}.

Figure 3 . 5 :

 35 Figure 3.5: Graphical representation of a delivery schedule

Proof.

  The running time of algorithm DP3.5 is determined by the recursive computations of the values G(i, 0, k), G(i, 1, k) and G(i, a, k) for i = 2, 3 . . . , L, a = 2, 3, . . . , min{k, v i }, and k = 1, . . . , min{V , n}. For fixed arguments, values G(i, 0, k) can be computed in O(v i-1 ) time, and hence all values G(i, 0, •) can be computed in O(v i-1 min{V , n}). As iranges from 1 to L, one has O((v 1 +v 2 +• • •+v L ) min{V , n}), i.e., O(V min{V , n}). The same discussion holds for all values G(i, 1, k), while all values G(i, a, k) can be computed in O(1) time. In conclusion, all G-values can be computed in O(V min{V , n}) time.

  direct|1|T C can be reduced to batch scheduling problem. In such reduction, express vehicles in 3PL provider's problem correspond to machines in batch scheduling problem, orders in the 3PL provider's problem to jobs in batch scheduling problem and the vehicle round trip, including batch delivery and return in the 3PL provider's problem, to the processing of the corresponding batch in batch scheduling problem. More formally, given an instance I of 3PL provider's problem, construct an instance I B of batch scheduling problem as follows: ñ := n; m := V 2 ;

Lemma 3 . 6 1 j } + 2 + 2 ≤

 36122 Given a feasible solution for the instance I B of batch scheduling problem, a feasible solution for the instance I of 3PL provider's problem 1|f seq, d j = C 1 j + T |V 2 (V 2 , c 2 ), direct|1|T C can be built having the same value of objective function, and vice versa. Proof. Consider an arbitrary batch G in a feasible solution of I B . Let CG denote the completion time of this batch. Due to the feasibility, the relation max j∈G {r j } + p ≤ CG ≤ min j∈G {d j } is satisfied. This relation can be written as max j∈G {C CG ≤ min j∈G {C 1 j } + T + 2 , which implies max j∈G {C 1 j } ≤ CG -2 -2 and CG -2 ≤ min j∈G {C 1 j }+T . Now, associate with batch G a batch H in the corresponding instance I of 3PL provider's problem, and let CG -2 -2 and CG -2 be its start and delivery times, respectively. The latter two relations prove that the orders in the batch H are feasibly delivered for 3PL provider's problem. Also note that, according to reduction, no two batches in I will be assigned to the same vehicle at the same time and each vehicle returns empty to the upstream stage. Conversely, let H be a batch in a feasible solution of I. The corresponding vehicle departs not earlier than max j∈H {C 1 j } and delivers not earlier than max j∈H {C 1 j }+ 2 . Let τ DEL,H be the delivery time of batch H in the feasible solution to I. Due to feasibility, one must have τ DEL,H -min j∈H {C 1 j } ≤ T. (3.4.2) Now, define the completion time of the corresponding batch G in I B as CG := τ DEL,H + 2 . Then, from (3.4.2), we obtain CG ≤ min j∈H {C 1 j } + T + 2 = min j∈G {d j }.

  Let k be the longest order in B. Due to feasibility, D B ≤ d j = C 1 j (σ) + T . Now consider the new production schedule σ obtained by moving k in first position in its batch, and shifting all other orders forward, without changing the departure time of batch B. Sincek is the longest order in B, C 1 h (σ ) > C 1 h (σ) for all h = k.Hence, since the delivery date D B of the batch has not changed, all these orders are on time in σ . The only order which has been moved backward is k. Since p 1 k > p 1 j , then C 1 k (σ ) > C 1 j (σ), and since j was on time in σ, D B ≤ C 1 j (σ) + T < C 1 k (σ ) + T . In conclusion, also σ is feasible and optimal. By repeatedly applying this argument, one can find a production schedule which respects the property and having the same transportation cost as (σ, θ). 2(a) Problems with express transportation only and an unlimited number of vehicles for express transportationWe address the case in which only express transportation exists and the number of vehicles is unlimited. We show that the complexity of the problem can be fully characterized and the complexity of the problem depends on the capacity of the vehicle.

Figure 3 . 6 :

 36 Figure 3.6: Illustration of property 1 of Lemma 3.8.

8 B 9 b 10 else 11 i = n + 1 ;12 for i = b + 1 to n do 13 B 2 Finally, for c 2 = 1 ,

 891011113221 b+1 = {b + 1} ; //there is no feasible solution with b batches, then we create a new batch with order b + 1 = b + 1; i = b + 1; i-b = B i-b ∪ {i} ; //put order i in the batch B i-b 14 Order the batches randomly to obtain a production-distribution schedule; Theorem 3.10 Algorithm GA3.3 finds an optimal production-distribution schedule for problem 1|no -idle, d j= C 1 j + T |V 2 (∞, 2), direct|1|T C in O(n log n) time.Proof. In the algorithm GA3.3, the first step (line 1) requires O(n log n) time. The second step (lines 2-4) and the forth step (line 14) require O(n) time. The third step (lines 5-13) requires O(n) time. So the algorithm GA3.3 finds an optimal schedule for problem 1|no -idle, d j = C j + T |V 2 (∞, 2), direct|1|T C in O(n log n) time. the problem 1|no -idle, d j = C j + T |V 2 (∞, 1), direct|1|T C, is trivially solved in O(n) by randomly ordering the orders on M 1 , and delivering each order by a different vehicle as soon as it is finished. (b) Problems with express transportation only and one vehicle for express transportation Let us now consider the case in which there is only one vehicle which can carry only one order, i.e., problem 1|no -idle, d j = C 1 j + T |V 2 (1, 1), direct|1|T C. In this case, batches correspond indeed to orders, and each round trip of the vehicle concerns the delivery of a single order, i.e. the transportation cost of any feasible solution is T C = h 2 n. Hence, the only issue is to check whether there exists a feasible production-distribution schedule.

2 ,

 2 the manufacturer determines a production schedule on both machines minimizing the makespan C max subject to a limited set of regular vehicles and express vehicles with given capacities and transportation times. The responsiveness constraints are removed. The manufacturer's problem with only one express vehicle is strongly NP-hard if c 2 = 2 (Lee and Chen 2001). The complexity of the problem with c 2 = 2 is still open. The manufacturer's problems with only regular vehicles or both modes of vehicle are also strongly NP-hard proved in section 4.4 when manufacturer and 3PL provider coordinate.

  Recall that in this part, we consider a production and interstage distribution scheduling problem in a permutation flow shop environment. A set of orders are processed by a manufacturer at the upstream facility, and delivered to the downstream facility belonging to the same manufacturer. The distribution is outsourced to a third-party logistics (3PL) provider.Our objective is to investigate the production and interstage distribution scheduling problem in four scenarios: (1) manufacturer dominates, 3PL provider adjusts; (2) 3PL provider dominates, manufacturer adjusts; (3) manufacturer dominates, 3PL provider negotiates; (4) manufacturer and 3PL provider coordinate.

Figure 4 .

 4 1 illustrates a schedule (σ 3 , θ 3 ). The production sequence in σ 3 is {1, 3, 2, 5, 4}. The θ 3 is composed of three batches {1, 3},{2} and {5, 4}. In it, {2} is an express batch departing at time 20, while {1, 3} and {5, 4} are two regular batches, departing at times 15 and 30 respectively. We have C max (σ 3 , θ 3 ) = 40 and T C(σ 3 , θ 3 ) = 2h 1 + h 2 = 27.

Figure 4 . 1 :

 41 Figure 4.1: Production-distribution schedule when manufacturer dominates, 3PL provider negotiates.

4. 2 .

 2 

Figure 4 . 2 :

 42 Figure 4.2: Production-distribution schedule when manufacturer and 3PL provider coordinate

1 ,

 1 if the regular vehicle c is available at the time t s , c = 1, . . . , V, s = 1, . . . , L 0, otherwise Decision variables: t e k : starting time of batch k on machine M e , k = 1, . . . , n, e = 1, 2

The step 1 of

 1 Algorithm 1 requires O(n log n) time. In algorithm DP4.1, there are O(n 4 (L + V )) states. In fact, for each s ∈ {0, ..., L}, v can assume v s + 1 distinct values. Since s v s = V , one has O(L + V ) possible pairs (s, v). In the recurrence relation, the computation of the first and second term requires O(1) time and is done for O(n 4 (L + V )) states. The computation of the third and the fourth term requires O(n(L + V )) and O(n) time respectively and is done for O(n 3 (L + V )) states. Hence step 2 of Algorithm 1 requires O(n 4 (L+V ) 2 ) time. The dynamic programming algorithm finds O(n 2 ) feasible schedules. Step 3 of Algorithm 1 requires O(n 4 ) time. Therefore, the complexity of Algorithm 1 is O(n 4 (L + V ) 2 ).

4 . 20 )

 420 P rice of Dominance 3P L = T C(σ 4 , θ 4 ) -T C(σ 5 , θ 5 ) T C(σ 4 , θ 4 ) (4.4.21)

Figure 5 . 1 :

 51 Figure 5.1: Optimal schedules for the integrated problems

{[ 6 ]

 6 } and {[7]}, which depart respectively at time 4, 10, 12, 15, 18 and 19.

Figure 5 . 2 :

 52 Figure 5.2: Schedules for the individual problems and the integrated problem

Figure 5 .

 5 Figure 5.2(a) shows a feasible schedule for individual problems: NSP problem and NSD problem.Figure 5.2(b) shows an optimal schedule for NSP-NSD problem. We

Figure 5 .

 5 2(b) shows an optimal schedule for NSP-NSD problem. We compare two schedules to evaluate the benefit of coordination.Individual problems (NSP and NSD): Applying the Non-preemptive EDD rule (see section 5.3.1), we find a feasible production schedule. As shown in Figure5.2(a), the production sequence is ([START_REF] Agnetis | Two faster algorithms for coordination of production and batch delivery: a note[END_REF],[START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF],[START_REF] Agnetis | Coordination of production and interstage batch delivery with outsourced distribution[END_REF],[START_REF] Agnetis | Supply chain scheduling: Sequence coordination[END_REF],[START_REF] Agnetis | Production and interplant batch delivery scheduling: Dominance and cooperation[END_REF]). All orders are completed before their deadline. With this production schedule, the best distribution schedule consists of four delivery batches:{[1]}, {[2]}, {[5]} and {[3], [4]},which depart respectively at time 15, 17, 19 and 27.

Step 3 :

 3 If |S| < c, deliver all orders of S in one batch which departs at time T . Otherwise, deliver the last c completed orders of S in one delivery batch which departs at time T . Then, update N . If all orders are delivered, then STOP. Otherwise, go to step 1. Theorem 5.1 Algorithm GA5.1 finds an optimal delivery schedule for NSD problem in O(n 2 ) time.

4 . 7 )

 47 where T C 1 and T C 2 are the transportation cost in the individual schedule and the integrated schedule respectively.

Figure 5 . 3 : 3 Figure 5 . 4 :

 53354 Figure 5.3: Illustration of property 1 of Lemma 5.3

Step 4 :Theorem 5 . 3

 453 If |S| < c, deliver the orders of S in one batch which departs at time T . Otherwise, reschedule the orders of S in σ with the SRPT rule and do not change the schedule of other orders, then deliver the last c completed orders of S in one batch which departs at time T . Then update N . If all orders are delivered, then STOP. Otherwise, go to step 2. Algorithm GA5.3 finds an optimal integrated schedule for SP-NSD and SP-SD problems in the special case 1 in O(n 2 ) time, and the special case 2 in O(n 2 log n) time.

3 .

 3 At step 1, the generation of σ takes O(n log n) time. We take O(n) time to check feasibility of the solution. At each iteration, step 2 and step 3 take O(n) time respectively. The step 4 takes O(1) time for the case |S| ≤ c and takes O(n log n) time to reschedule the orders of S with the SRPT rule for the case |S| > c. There are O(n) iterations. We note that for the problem in the special case 1, at the step 4 we have always |S| ≤ c, the algorithm GA5.3 finds an optimal integrated schedule for SP-NSD and SP-SD problems in the special case 1 in O(n 2 ) time, and the special case 2 in O(n 2 log n) time.

Case 1 :Case 2 :

 12 Since c = ∞, the algorithm generates a non full batch |B i | < c. Since B i delivers all undelivered available orders at time T (B i ), T (B i+1 ) is a production completion time of one order of which the deadline is less than T (B i ). According to the preemptive EDD rule, we cannot anticipate the maximum production completion time of all orders of which the deadlines are less than T (B i ). Hence T (B i+1 ) is minimum, In this case, if the algorithm generates a non full batch |B i | < c, with the same argument of the case 1, we can prove that T (B i+1 ) is minimum. If the algorithm generates a full batch |B i | = c, we can also prove the minimization of T (B i+1 ) as follows:

  It can be observed easily that problem 1|r j , d j |-reduces to NSP-NSD problem, i.e. it is a special case of NSP-NSD problem with c = 1. Consequently, NSP-NSD problem is NP-hard in the strong sense. In this section, we first present two heuristics to determine upper bounds of T C. Then we describe a branch-and-bound algorithm to solve NSP-NSD problem. Finally, we provide two MILP (mixed integer linear programming) models which are used to evaluate the performance of the branch-and-bound algorithm.

d

  j (root) for j ∈ N . Secondly, generate a second NSP-NSD integrated schedule by applying heuristic H5.1: execute the step 1 of heuristic H5.1 with d j (u) for j ∈ N , and execute the step 2 of heuristic with the original deadlines, i.e. d j (root) for j ∈ N . Finally, if one or both constructed integrated schedules are feasible, set U B(T C, u) as the smallest T C among the two schedules. Otherwise, set U B(T C, u) = n + 1. Update U B * (T C) if necessary.Branching: if LB(T C, u) < U B * (T C, u) for a node u, firstly choose one order to be scheduled in the current production position. Order j is a valid candidate if it respects the following rules. Let N denote the set of unscheduled orders without order j.active scheduling rule: r j (u) < min k∈N (r k (u) + p k ) deadline rule: r j (u) + p j ≤ min k∈N (d k (u) -p k )

Figure 5 . 5 : 1 Figure 5 .

 5515 Figure 5.5: Illustration of branch-and-bound algorithm B5.1

  initially LB(T C, 3) = 4 and U B(T C, 3) = 5, the tree branches as algorithm B5.2. U B * (T C) is updated to 5.For the first position of production schedule, algorithm B5.2 finds that order 5 is the only order that respects the rules of candidate. By scheduling order 5 in the first position, node 4 is generated. Since r k (3) < r 5 (3) + p 5 (3), ∀k ∈ N \{5}, the algorithm does not change the release dates, i.e. r k (4) = r k (4), ∀k ∈ N . Since LB(T C, 4) = 4 and U B(T C, 4) = 5, the tree continues to branch. We still have U B * (T C) = 5.The algorithm finds the only candidate 7 for the second position of production schedule. By scheduling order 7 in the second position, node 5 is generated. Since r k (4) < r 7 (4) + p 7 , ∀k ∈ N \{5, 7}, the algorithm does not change the release dates, i.e. r k (5) = r k (5), ∀k ∈ N . Since LB(T C, 5) = 4 and U B(T C, 5) = 5, the tree continues to branch. We still have U B * (T C) = 5. For the third position of production schedule, algorithm B5.2 finds a set of candidates {1, 2, 4}. By scheduling order 1 in the third position, node 6 is generated. The algorithm sets r 2 (6) = max{r 2 (5), r 1 (5) + p 1 } = 48 and r 4 (6) = max{r 4 (5), r 1 (5) + p 1 } = 48. With this modified setting, there is no feasible solution for SP-NSD problem in the two special cases. Hence there is no feasible solution for NSP-NSD problem. By scheduling order 2 in the third position, node 7 is generated. The algorithm sets r 1 (7) = max{r 1 (5), r 2 (5) + p 2 } = 56 and r 4 (7) = max{r 4 (6), r 2 (6) + p 2 } = 56. With this modified setting, there is no feasible solution for SP-NSD problem in the two special cases. Hence there is no feasible solution for NSP-NSD problem. By scheduling order 4 in the third position, node 8 is generated. The algorithm sets r 1 (8) = max{r 1 (5), r 4 (5) + p 4 } = 41 and r 2 (8) = max{r 2 (5), r 4 (5) + p 4 } = 41. With this modified setting, algorithm B5.1 computes LB(T C, 8) = 5 and U B(T C, 8) = 5, a local optimal solution is found. Since there is no active node, the algorithm stops and an global optimal solution for NSP-NSD problem is found (see figure 5.6).

Figure 5 .

 5 Figure 5.6 shows an optimal solution for NSP-NSD problem. The production sequence is (5, 7, 4, 1, 2, 6, 3). There are five delivery batches: {7}, {5, 1}, {2}, {4, 6}, and {3}, which depart respectively at time 16, 54, 72, 80, and 99.

Figure 5 . 6 :

 56 Figure 5.6: An optimal solution for NSP-NSD problem

Time:

  the average CPU time in seconds. Gap1: the relative gap measured by (U B * (T C) -LB * (T C))/LB * (T C), where U B * (T C) and LB * (T C) are the best upper bound and lower bound. We consider the instances for which we obtained at least one feasible solution (optimal

  models and can solve more than 90% of instances with n ≤ 70 optimally within an average execution time less than 40 seconds. Several important research issues remain open for future investigations. A first research direction is to study the complexities of SP-NSD and SP-SD problems. Another issue is to provide a better lower bound for the branch-and-bound algorithm. Finally, one might consider extending the model to the production system with parallel machines.

  adopted and a mechanism of coordination is developed. The corresponding scheduling problem is an integrated production and outbound distribution scheduling (IPODS) problem with setup times, routing delivery and time windows. The related literature can be found in section 2.3 of chapter 2. Ullrich (2013) investigated an IPODS problem where a set of orders of general size is processed on identical parallel machines subject to the machine release times, and delivered to customers within the time windows by a fleet of heterogeneous vehicles on minimizing the sum of tardiness. They provided a genetic algorithm for the integrated problem and evaluated its performance by comparing with two classical decomposition approaches. Different from his problem, our problem considers sequence-dependent setup cost in production, a new type of transportation cost in distribution and a different objective function.

( a ) 2 .

 a2 Manufacturer's problem. The problem is to determine a production schedule minimizing SC subject to deadlines. We follow the three-field classification α|β|γ introduced by[START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF]. This is a production scheduling problem minimizing the total setup cost with unrelated parallel machines, machine release times, splitting of order, deadlines and sequence-dependent setup times, denoted by R, γ e |split, d j , s ij |SC. (b) 3PL provider's problem. The problem is to determine a delivery schedule minimizing T C subject to release dates of orders and delivery time windows. The completion time of each order imposes a release date of the order for delivery. The problem is a heterogeneous vehicle routing problem with time windows and release dates (HVRPTWRD). Coordinated scheduling problem. The integrated model is adopted to determine an integrated schedule minimizing SC + T C subject to machine availability constraints and delivery time windows. A savings-sharing scheme is necessary to motivate the coordination. Using the five-field notation proposed by Chen (2010), the integrated scheduling problem can be denoted by R, γ e , split|[a j , b j ]|V (∞, Q k ), routing|u|SC + T C, where R means the unrelated parallel machines, split means the order splitting in production, V (∞, Q k ) and routing mean the routing delivery with sufficient heterogeneous vehicles, and u ≤ n represents the number of customers.

4 . 25 )

 425 SC 2 -P ≤ SC 1 (6.4.26) where T C 1 and T C 2 are the transportation costs in the individual schedule and the integrated schedule respectively. SC 1 and SC 2 are the total setup costs in the individual schedule and the integrated schedule respectively.

Algorithm 5 :2 while ending criterion do 3 Solve the production scheduling problem; 4 5 6 Update the best solution so far; 7 8

 5345678 [START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF] proposed a two-phase iterative heuristic to solve an integrated problem considering the integration of production planning and vehicle routing decisions. They considered the production planning different from the production scheduling, and the vehicle routing problem without delivery time windows. We propose a similar two-phase iterative heuristic (see algorithm 5) to solve our integrated scheduling problem. Two-phase iterative heuristic 1 Initialize F j v = 0 and η j = 1, for j ∈ N and v ∈ I j ;Remove all idles times and update C j for j ∈ N ;Solve the distribution scheduling problem with fixed C j for j ∈ N ; Update F j v , for j ∈ N and v ∈ I j ; Update η j for j ∈ N ;

  C j ≤ η j (λ j v t j v + (1 -λ j v )b j -τ 0j ), j ∈ N, v ∈ I j (

Improved:

  the percentage of instances which has a positive benefit.Benefit: the benefit of coordination measured bySC 1 + T C 1 -SC 2 -T C 2 SC 1 + T C 1 (6.5.32)where SC 1 and T C 1 are the values of objective functions of the individual schedules, and SC 2 and T C 2 are the values of objective functions of the integrated schedule.

4 .

 4 Coordinated production and distribution scheduling problem with 3PL provider. As observed in chapter 1, the road freight transport is mostly outsourced to independent partners like Third Party Logistics (3PL) providers, improving the efficiency of transport. In the literature, few papers considered the scheduling problem with 3PL provider (Li et al. 2008, Zhong et al. 2010, Agnetis et al. 2014).

Table 3 .

 3 2: Complexity of 3PL provider's problem when manufacturer dominates and 3PL provider adjusts.

	Vehicle	
	Regular	Express Compl. status Algorithm complexity	Subsection

  1 since the current last order only consists of order i

	If	a	state	does	not	satisfy	all	these	conditions,	we	let

f (i, j 1 , j 2 , s, v, g 2 , m, s 1 , . . . , s V 2 ) = +∞. We can now express the recursive relation as:

Table 3 .

 3 3: Complexity of 3PL provider problems when 3PL provider dominates and manufacturer adjusts.

	Vehicle		
	Regular	Express	Compl. status Algorithm complexity	Subsection

Table 4 .

 4 1: Average computational times of execution of algorithms.

	5	0.02	0.02	0.24	0.25
	10	0.30	0.33	1.59	1.00
	20	1.34	1.56	74.00	50.83
	50	7.79	7.07	145.53	202.64
	100	34.75	49.65	-	-

n (σ 1 , θ 1 ) (σ 3 , θ 3 ) (σ 4 , θ 4 ) (σ 5 , θ 5 )

Table 4 . 2
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	5	0.00%	≤ 0.00%	≤ 0.00%	0.00%	≤ 0.00%	≤ 0.00%
	10	0.00%	≤ 0.00%	≤ 0.00%	0.00%	≤ 0.00%	≤ 0.00%
	20	1.39%	≤ 0.50%	≤ 0.48%	0.37%	≤ 0.27%	≤ 0.38%
	50	54.72%	≤ 0.53%	≤ 2.23%	27.87%	≤ 1.39%	≤ 2.79%

: Failure rates and relative gaps of MILP. n (σ 4 , θ 4 ) (σ 5 , θ 5 ) failure rate Gap of C max Gap of T C failure rate Gap of C max Gap of T C

Table 4 .

 4 3: Benefits of coordination in scenario[START_REF] Agnetis | Two faster algorithms for coordination of production and batch delivery: a note[END_REF] 

			Manufacturer's benefit 3PL's benefit
			Γ 41 m	Γ 51 m	Γ 41 3pl	Γ 51 3pl
	Overall averages 3.19%	2.16%	1.82% 5.97%
		5	3.16%	3.04%	0.26% 0.72%
	n	10	3.99%	3.02%	1.10% 4.20%
		20	3.37%	1.57%	2.73% 8.38%
		50	1.11%	0.53%	5.04% 12.37%

Table 4 .

 4 4: Price of dominance for 3PL provider.

	n P rice of Dominance 3P L
	5	0.46%
	10	3.24%
	20	5.86%
	50	4.56%

Table 4 . 5
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			Manufacturer's benefit Γ 41 m	3PL's benefit Γ 51 3pl
	Overall averages	3.19%	5.97%
		α = 1, β = 1	2.11%	2.03%
		α = 1, β = 2	4.41%	12.82%
		α = 0.5, β = 1	2.98%	0.02%
		α = 0.5, β = 2	3.35%	8.19%
		[0.6,0.8]	2.64%	6.78%
	γ	[0.95,1.05]	3.59%	6.52%
		[1.2,1.4]	3.36%	4.61%
		1	2.45%	10.22%
	v	2	3.46%	4.69%
		3	3.68%	2.90%

: Benefits of coordination in scenario (4) under various experiment aggregations.

Table 4 . 6
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	n	3PL's benefit Γ 31 3pl
	5	0.60%
	10	3.05%
	20	6.48%
	50	9.93%
	100	10.82%
	γ ∈ [0.6, 0.8]	6.70%
	γ ∈ [0.95, 1.05]	6.88%
	γ ∈ [1.2, 1.4]	4.95%

: Benefit of relaxing responsiveness constraints in scenario (3).

Table 5 .

 5 1: Example for the integrated problems

	Order j 1 2 3 4 5 6 7
	p j	4 2 2 2 2 3 1
	r j	0 2 2 2 13 12 17
	d j	12 5 12 12 16 18 19

Table 5 .

 5 2: Example for evaluation of the benefit of coordination

	Order j 1 2 3 4 5
	p j	8 2 8 6 2
	r j	2 10 6 1 12
	d j	16 18 32 28 22

  the ending times of K i and K * i are the same. So K * i and K i are not the first block which are different in two schedules. Hence the property of Lemma 5.4 is satisfied.2Then, we introduce the Shortest Remaining Processing Time (SRPT) rule to construct a production schedule in SP-NSD and SP-SD problems.SRPT rule: at each decision point t in time, consisting of each release date and each order completion time, schedule an available order j (i.e. r j ≤ t) with the shortest remaining processing time. If no orders are available at a decision point, schedule an idle time until the next release date. The set of orders N can be divided into two subset of orders N 1 and N 2 .

	Next, we provide a polynomial-time algorithm (see algorithm GA5.3) for SP-NSD and
	SP-SD problems in the following two special cases:
	case 1: The vehicle capacity is unlimited, i.e. c = ∞.
	case 2:

Table 5 .

 5 3: Example for branch-and-bound algorithm B5.1 Example To illustrate algorithm B5.1, we consider the following example with six orders where the vehicle capacity c is equal to 2 and the transportation cost h per batch is equal to 1.Table 5.3 gives the orders' parameters.

	Order j 1 2 3 4 5 6 7
	p j	13 18 19 20 7 8 2
	r j	35 38 14 21 1 48 14
	d j	69 79 99 80 65 88 51

Table 5 .

 5 4: Performance of branch-and-bound algorithm B5.1.

	n	Fea	Opt	Node Time
	10 100%	100%	2	0.07
	20 100%	100%	16	0.85
	30 100% 96.25%	165	14.82
	50 100%	95%	173	19.16
	70 100% 91.25%	183	36.13
	100 100% 77.5%	324	78.46
	150 100% 66.25%	334	118.18
	200 100% 51.25%	298	150.02
	300 100% 32.5%	240	209.01
	500 100% 32.5%	118	212.98

Table 5 .

 5 5: Performance of two MILP models.

			MILP5.1			MILP5.2	
	n	Fea	Opt	Node	Time	Fea	Opt	Node	Time
	10	100%	100%	155	0.42	100%	100%	1140	0.35
	20	100%	100% 27791 26.59	98.75% 76.25% 262621 82.88
	30 97.5% 62.5% 63950 159.56	63.75% 33.75% 349789 210.06
	50 18.75%	10%	9603 290.07	20%	6.25% 139462 287.76

posing 5 minutes as the limit of execution time, we use the following measures to compare the branch-and-bound algorithm with the two MILP models, i.e., MILP5.1 and MILP5.2.

Table 5 .

 5 6: Gaps of solutions of branch-and-bound algorithm B5.1.

		Gap1		Gap2	
	n	Average	Min	Max	Average
	10	0%	0%	0%	0%
	20	0%	0%	0%	0%
	30	0.4%	6.67% 12.5%	10.56%
	50	0.7%	5.88% 16.67% 13.97%
	70	0.76%	6.25% 12.5%	8.7%
	100	2.5%	4%	28.57%	11.1%
	150	3.92%	2%	31.58% 11.62%
	200	5.64%	2%	30%	11.57%
	300	7.98%	2%	30.23% 11.83%
	500	8.8%	2.22%	32%	13.03%

Table 5 .

 5 7: Gaps of solutions of two MILP models.

			MILP5.1			MILP5.2	
		Gap1		Gap2		Gap1		Gap2	
	n	Average	Min	Max	Average	Average	Min	Max	Average
	10	0%	0%	0%	0%	0%	0%	0%	0%
	20	0%	0%	0%	0%	4.24%	8.33% 34.29% 18.61%
	30	9.67%	6.25% 54.15% 26.93%	10.55%	6.25% 81.25% 22.42%
	50 12.22%	3.85% 64.74% 26.19%	18.81%	7.41% 78.63% 27.36%

  arc (i, j) is visited by vehicle k, (i, j) ∈ A, k ∈ K 0, otherwisew k i = starting time of unloading of vehicle k at vertex i, i ∈ V ,k ∈ K. H k =transportation cost of the trip accomplished by vehicle k, k ∈ K. Remark that since the number of vehicles of each type is sufficient, we can suppose that each vehicle is assigned at most one trip.

	k ij = 1, if MILP6.2:   		
	min	H k	(6.3.13)
	k∈K		
	s.t.		

k∈K j∈δ + (i)

  The objective function(6.3.13) minimizes the transportation cost. Constraints(6.3.14) ensure that one order is delivered once. Constraints(6.3.15) ensure that one vehicle is used once. Constraints (6.3.16) state that the solution satisfy the flow conservation at each vertex. Constraints (6.3.17)-(6.3.18) ensures that each order is delivered at its destination in the delivery time windows. Constraints (6.3.19)-(6.3.20) enforce the vehicle capacity restriction and the order availability restriction. Constraints (6.3.21) enforce the delivery length restriction. Constraints (6.3.22) calculate the transportation cost. Constraints (6.3.23)-(6.3.24) give the domain of definition of each variable.

	H k ≥ 0,	k ∈ K	(6.3.24)

k ∈ K (6.3.22) x k ij ∈ {0, 1}, k ∈ K, (i, j) ∈ A (6.3.23)

  1 and MILP6.2 to construct a nonlinear programming model for the integrated scheduling problem. Since C j and x k ij are both decision variables, this model is nonlinear.

	NLP6.1:			
	m	n		
	min ρ	s ij X e ij +	H k	(6.4.27)
	e=1	i=0 j∈N,j =i	k∈K	
	s.t.	(6.3.2) -(6.3.11)	
		(6.3.14) -(6.3.24)	
	6.4.2 Two-phase iterative heuristic		

Table 6 .

 6 1: Average computational times of execution of heuristic

	n	5	10	15	20
	Time 3.34 238.28 952.30 929.29

Table 6 .

 6 2: Benefit of coordination

	Improved	Average Benefit	Max Benefit

Table 6 .

 6 1 and Table 6.2 illustrate the benefit of coordination. The measures are described as follows.

Time: the average CPU time in seconds to execute the heuristic.

, direct|1|T C, in which there is a limited number V 1 of vehicles for regular trans-

Acknowledgements

Algorithm 2: Algorithm GA3.2

1 Index orders in LPT order, so that p 1 1 ≥ . . . ≥ p 1 n ;

2 b = n 3 ; //b is the initial number of batches 3 Generate 3b -n dummy orders with 0 processing time and add them at the end of the list of orders; 2

We next propose a greedy algorithm GA3.3 for the problem 1|no -idle, d j = C 1 j + T |V 2 (∞, 2), direct|1|T C. In this case, with a similar proof, the Property 

Complexity

In what follows we investigate the complexity of the problem of finding efficient production-distribution schedules. In particular, we consider the following integrated In conclusion, the short orders delivered at each fixed departure date define a triple which constitutes a solution to 3-partition. 2

Special cases

We consider a special case where all orders have a same processing time on M 1 , i.e.

p 1 j = p 1 , for j = 1, . . . , n. The following property holds for this special case.

Lemma 4.1 If p 1 j = p 1 , for all j = 1, . . . , n, for any efficient solution for the integrated scheduling problem, there exists one in which the orders are sequenced by non-increasing processing time on machine M 2 .

Proof. Suppose there exists an efficient solution (σ, θ), such that order j is processed after order i on M 2 , p 2 j > p 2 i and i and j are consecutive in σ. We can swap i and j on both machines and on their delivery batches, we denote this new solution as (σ , θ ).

By doing so, we do not change the transportation cost, i.e. T C(σ , θ ) = T C(σ, θ).

, also the makespan is unchanged, i.e., C max (σ , θ ) = C max (σ, θ). Repeating this argument we eventually obtain a schedule having the same C max and T C as schedule (σ, θ), and in which orders on M 2 are LPT (Longest Processing Time)ordered.

2

Lemma 4.1 states that in the special case of p 1 i = p 1 for all i = 1, . . . , n, we can assume that all efficient schedules respect the Johnson's schedule. In view of this result, we can index orders by non-increasing processing time on M 2 , so that p 2 1 ≥ . . . ≥ p 2 n and the sequences on both machines follow the indexes of orders. The following dynamic programming algorithm allows to finding a schedule that minimizes C max among all the schedules having a certain number of express and regular batches (and hence, a certain value of T C). In such algorithm we use the state (i, j, s, v, m, n 1 , n 2 ), corresponding to the situation in which: the first i orders have been delivered, the currently last batch consists of orders {j, j + 1, . . . , i}, and For what concerns the cost of each trip, we let h 1 = 1 in all experiments and use parameter β to express the relationship between h 1 and h 2 , so that

The transportation time τ is a randomly generated integer from [START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF][START_REF] Mastrolilli | Efficient approximation schemes for scheduling problems with release dates and delivery times[END_REF].

The number of regular vehicles is set to V = n c 1 , where is randomly generated in the interval [0.6, 1.4]. Letting v denote the average number of regular vehicles for each fixed departure date, we determine the number of fixed departure dates

We assign v -1 regular vehicles to fixed departure dates t s where s = 1, . . . , vL -V , and v vehicles to each remaining fixed departure date. In the experiments we consider three values for v, i.e., v ∈ {1, 2, 3}. The L departure dates are periodically fixed, with period t = 

, where (σ * 4 , θ * 4 ) and (σ * 5 , θ * 5 ) are the optimal schedules in mechanism 2. Table 4

.3 compares the relative benefit of coordination

Part II Production and Outbound

Distribution Scheduling

Proof. We first prove the complexity. The steps 1 and 2 require O(n) time both at each iteration. Since the orders of N are sorted in the increasing completion time, the orders of S obtained at the step 2 are also sorted in the increasing completion time. Hence the step 3 requires O(1) time at each iteration. Since there are at most n iterations, the complexity is O(n 2 ).

Then we prove that the algorithm GA5.1 provides an optimal solution. Suppose that there is an optimal delivery schedule θ * respecting Lemma 5. 

since order i is one of the last c completed order. We can interchange orders i and j in θ * without changing the number of batches and update the delivery time of modified batches. We repeat this operation until B k+1 (θ * ) becomes the same as

Hence, we can transform any optimal schedule θ * to θ without increasing the transportation cost. In the search tree, a node u is characterized by: release dates r j (u) and deadlines 

Algorithm B5.2

Lower bound: At node u, we solve two relaxed problems which respect the two special cases of SP-NSD problem:

Problem 2: Divide the set of orders N in two subsets of orders N 1 and N 2 .

. Schedule the orders with preemptive EDD rule, then modify the release dates of the orders of N 2 utile that in each production block the orders of N 2 have the same release date.

We solve these relaxed problems by applying algorithm GA5. 

x iq i, q ∈ {1, . . . , n} (5.4.13)

p i x iq q ∈ {2, . . . , n} (5.4.16)

x iq ∈ {0, 1} i, q ∈ {1, . . . , n} (5.4.17) 5.4.18) w q ∈ N q ∈ {1, . . . , n} (5.4.19) In MILP5.1, the objective function is to minimize the transportation cost. Constraints (5.4.9) and (5.4.10) ensure that one order is processed in only one position and one position is affected to only one order. Constraints (5.4.11) are the constraints of the batch capacity. Constraints (5.4.12) guarantee that one order is delivered at only one possible departure date. Constraints (5.4.13) ensure that the order can be delivered only if it is completed. Constraints (5.4.14) are the constraints of deadlines and M 1 (1 -y iq )

guarantees that the constraints are always true if order i is not delivered at time

Constraints (5.4.15) impose that if order i is processed in position q, the completion time of order i should be after or at time r i + p i . Constraints (5.4.16) impose that if order i is processed in position q, the completion time of order i should be after or at time Decision variables:

, if order i is processed before order j, i, j ∈ {1, . . . , n} 0, otherwise t j = production starting time of order j , j ∈ {1, . . . , n}

, if order i is delivered at time s q , i ∈ {1, . . . , n}, q ∈ {1, . . . , u} 0, otherwise w q = number of batches departing at time s q , q ∈ {1, . . . , u}

MILP5.2:

min h u q=1 w q (5.4.20) s.t.

x ij + x ji = 1, i, j ∈ {1, . . . , n}, i = j (5.4.21)

n i=1

y iq = 0, i ∈ {1, . . . , n}, q ∈ {1, . . . , u}, d i < s q (5.4.27)

In MILP5.2, the objective function is to minimize the transportation cost. Constraints (5.4.21) show that either order i is processed before order j or order j before order i for any two different orders i and j. Constraints (5.4.22) ensure that order j starts its processing after or at the completion of order i if order i is processed before order j. Constraints (5.4.23) guarantee that each order starts its processing after or at its release date. Constraints (5.4.24) ensure that each order is delivered after or at its production completion time. Constraints (5. give the domain of definition of each variable.

Computational Results

In this section, we evaluate the performance of branch-and-bound algorithm B5.1 by comparing it with MILP5.1 and MILP5.2. The branch-and-bound algorithm is implemented in C++ and the MILP models are implemented in Cplex V12.5.1. The experiments are carried out on a DELL 2.50GHz personal computer with 8GB RAM.

We reuse the method of [START_REF] Briand | An efficient ilp formulation for the single machine scheduling problem[END_REF] to generate instances. We consider n ∈ {10, 20, 30, 50, 70, 100, 150, 200, 300, 500}. The integers p j , r j and d j are generated respectively from the uniform distributions [START_REF] Absi | A two-phase iterative heuristic approach for the production routing problem[END_REF][START_REF] Desrochers | Vehicle routing with time windows: Optimization and approximation[END_REF], [0, α n j=1 p j ] and [(1β)a n j=1 p j , a n j=1 p j ], where α, β ∈ {0.2, 0.4, 0.6, 0.8, 1} and a ∈ {100%, 110%}. If d j < r j + p j , d j has been updated by r j + p j . The transportation cost of one batch h is equal to 1. We choose a set of hard instances as follows: we apply the branch-and-bound algorithm of Carlier to find the minimum L max for each instance, if the problem for this instance cannot be solved at the root of the search tree, we consider this instance as a hard instance. If the found L max of this hard instance is positive, we add this value to each d j of this instance to ensure that we have at least one feasible solution. and is reduced at the end of each iteration. Constraints (6.4.30) ensure that each order is delivered exactly once.

At the end of the first phase, in the obtained production schedule, we remove all idle times and update C j for j ∈ N .

(ii) The distribution phase

In this phase, we use MILP6.2 to solve the HVRPTWRD with fixed C j for j ∈ N . Then, we use the solution of second phase to update F j v and η j (see algorithm 6).

Algorithm 6: Procedure of updating F j v and η j 

13 for j ∈ N do 14 if 0.8η j (b j -τ 0j ) ≥ min e∈M (γ e + p e j q j ) + s 0j and order j is delivered by a vehicle of which the number of delivered pallets is less than or equal to max k∈K Q k -min i∈N φ i then 15 η j = 0.8η j ;

In algorithm 6, we update F j v with the consideration of two cases:

1. If order j is visited by vehicle k at time t j v where v ∈ I j , replacing delivery time t j v by t j v in the trip is allowed if (lines 5-8):

The transportation times from its direct predecessor to order j, and from order j to its direct successor are respected.

The new trip does not violate the limit of length of a trip.

If the conditions are satisfied, we update F j v by min{F j v , H 2 -H k }. Remark that if v = v , the above conditions are satisfied.

2. If order j is not visited by vehicle k, the insertion of order j in vehicle k at time t j v is allowed if (lines 9-12):

The biggest capacity of vehicle, i.e. max g∈K Q g , allows.

There exists two successively visited vertexes which allow the insertion of order j with delivery time t j v , i.e., the transportations times are respected.

The new trip does not violate the limit of length of a trip.

If the conditions are satisfied, we update F j v by min{F j v , H 2 -H k }.

After the consideration of all vehicles, F j v represents the cheapest transportation cost to deliver order j at time t j v for j ∈ N and v ∈ I j .

Moreover, we explain how to find the cheapest cost to deliver a set of orders B (lines 7 and 11). For given B and vehicle k ∈ K, the corresponding transportation cost is fixed. Hence we choose the cheapest vehicle to deliver this set of orders.

Concerning the parameter η j for j ∈ N , if η j is small enough or order j is delivered by a vehicle in which the size of delivered orders is close to the biggest vehicle capacity, we do not change η j , otherwise we reduce η j by 20%.

In the distribution schedule obtained in the second phase, F j v approximates the transportation cost if order j is delivered at time t j v , j ∈ N and v ∈ I j . In next iteration, for each order j ∈ N , the algorithm may choose another delivery time with smaller transportation cost. This modification of delivery time of each order can influence the