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École doctorale de Dauphine
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Soutenue le 2 décembre 2014 devant le jury composé de :

Directeur de thèse :
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Abstract

In this dissertation, we aim at investigating three supply chain scheduling problems in

the make-to-order business model. The first problem is a production and interstage dis-

tribution scheduling problem in a supply chain with a manufacturer and a third-party

logistics (3PL) provider. The second problem is a production and outbound distribution

scheduling problem with release dates and deadlines in a supply chain with a manufac-

turer, a 3PL provider and a customer. The third problem is a production and outbound

distribution scheduling problem with setup times and delivery time windows in a sup-

ply chain with a manufacturer, a 3PL provider and several customers. For the three

problems, we study their individual scheduling problems and coordinated scheduling

problems. We propose polynomial-time algorithms or prove the intractability of these

problems, and develop exact algorithms or heuristics to solve the NP-hard problems. We

establish mechanisms of coordination and evaluate the benefits of coordination.

Keywords: Supply chain scheduling, Coordination, Production and distribution schedul-

ing, Dynamic programming, Branch-and-bound algorithm, Heuristic.
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Résumé

Dans cette thèse, nous étudions trois problèmes d’ordonnancement de la châıne logis-

tique dans le modèle de production la demande. Le premier problème est un problème

d’ordonnancement de production et de distribution intermédiaire dans une châıne lo-

gistique avec un producteur et un prestataire logistique. Le deuxième problème est

un problème d’ordonnancement de production et de distribution aval avec des dates

de début au plus tôt et des dates limites de livraison dans une châıne logistique avec

un producteur, un prestataire logistique et un client. Le troisième problème est un

problème d’ordonnancement de production et de distribution aval avec des temps de

réglage et des fenêtres de temps de livraison dans une châıne logistique avec un produc-

teur, un prestataire logistique et plusieurs clients. Pour les trois problèmes, nous étudions

les problèmes d’ordonnancement individuels et les problèmes d’ordonnancement coor-

donnés. Nous proposons des algorithmes polynomiaux ou prouvons la NP-complétude

de ces problèmes, et développons des algorithmes exacts ou heuristiques pour résoudre

les problèmes NP-difficiles. Nous proposons des mécanismes de coordination et évaluons

le bénéfice de la coordination.

Mots clés: Ordonnancement de la châıne logistique, Coordination, Ordonnancement

de production et de distribution, Programmation dynamique, Algorithme B&B, Heuris-

tique.
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Chapter 1

Introduction

1.1 Background

A supply chain involves a set of organizations, including suppliers, manufacturers, lo-

gistics providers, distributors and retailers, who work together to satisfy customers’

demands. The cost of a product includes the cost of resources at all stages, such as pro-

curement of raw materials, production, distribution of finished products to customers.

The objective of supply chain management is to incorporate activities across organiza-

tions for adding value, reducing cost and increasing customer service quality. Thomas

and Griffin (1996) provided a literature review on supply chain management.

In recent decades, globalization expands supply chain over national boundaries and

brings a fierce competition market. In order to satisfy customers’ heightened expecta-

tions, the enterprises increasingly find that they must rely on effective supply chains.

A non-efficient supply chain may carry a high cost. For example, the logistics market

volume in Europe accounted in 2012 for 930 billion euros (Kille and Schwemmer 2013).

The weight of transportation sector is around 44% of added value and 48% of total em-

ployment. According to Eurostat data 2012 (Palmer et al. 2012), third party logistics

(3PL) providers fail to consolidate their customers’ transport orders: about 24% of all

road freight kilometers driven in Europe are empty vehicles and the average vehicle is

loaded to 56% of its capacity in terms of weight.

As production and distribution are the main business processes in supply chain, the

coordination of production and distribution issue is crucial in supply chain management.

1



1.1. Background 2

In traditional supply chain, production and distribution are separated by a large in-

termediate inventory and are planned independently. This independence can simplify

decision-making but increases the holding inventory cost. Facing the fierce competition

at current internal market and the expectations of customers, many enterprises adopt

the make-to-order (a.k.a. assemble-to-order, build-to-order) business model. These en-

terprises include the ones with highly configured product as automobiles, computers,

or with expensive inventory as aircraft. In this context, a product starts to be built

after the order is received and there is a small or zero intermediate inventory between

production and distribution. Consequently, the coordination of production and distri-

bution is required in this business model. This coordination is also essential in supply

chains with time-sensitive products as food, ready-mix concrete paste and newspapers.

These products should be delivered to customers immediately or a short time after their

production.

In the research literature on supply chain management, coordination issues at the

strategic and tactical levels have attracted an extensive research. The issues at the

strategic level focus on long-term decision-making, such as allocation of manufacturing

equipment, plant opening, selection of distribution centers, etc. Research at the tactical

level is targeted at medium-term decision-making, such as planning of production, inven-

tory and distribution in a time period like one year, etc. The issues at the operational

level have been investigated during the last decade and are always under developing.

They focus on the order-by-order scheduling decision-making, such as machine schedul-

ing, batch delivery, vehicle routing, etc. My thesis addresses the need of research at the

operational level pointed out by Thomas and Griffin (1996) .

The coordination model varies with the supply chain models. With the develop-

ment of the data exchange technology, especially the introduction of enterprise resource

planning (ERP) systems and Internet-based collaborative systems, the supply chain can

integrate the key business processes for adding value and saving cost. In this integrated

supply chain, the involved organizations often belong to one corporation and work in

collaborative relationship. In this model, the coordination is controlled by the corpora-

tion and the goal is to optimize the performance of the global supply chain. From 1990,

some enterprises abandoned the integration and focused on their core competencies and
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specialization. They outsource the non-core operations to other enterprises for improv-

ing their efficiency. According to the European commission 2011, in 2010, the share of

own-account transport is around 15% of the tonne-km generated in road freight trans-

port. This means that transport is mostly outsourced to independent partners like Third

Party Logistics (3PL) providers. In this non-integrated supply chain, the independent

enterprises have their own objectives and accept the coordination only if they can benefit

from it. A negotiation-based mechanism is necessary to motivate the coordination.

The integrated production and distribution scheduling (IPDS) issue, motivated by

the integrated supply chain, has been investigated from 1980. This issue investigates the

integration of production scheduling decision-making and distribution decision-making

at the operational level. Chen (2010) provided an extensive review of the literature

on the integrated production and outbound distribution scheduling (IPODS) problems.

Outbound distribution deals with a manufacturer shipping his products to the next

stage of the supply chain, that typically belongs to another company. As a conse-

quence, the receiving firm may set due dates or deadlines that will constrain the pro-

duction/distribution problem. The focus of the analysis is on coordinating production

decisions (typically, sequencing) and distribution decisions (typically, batching). These

two aspects are often conflicting, and require a careful consideration of objectives and

roles of the subjects involved. A few articles address the integrated production and in-

terstage distribution scheduling (IPIDS) issues. In most of papers studying IPDS issue,

they did not evaluate the benefit of coordination by comparing the integrated solution

with the non-coordinated solution. Since the solution of IPDS problems can also be used

in the non-integrated supply chain with a compensation mechanism, the IPDS issue is

also importance for the non-integrated supply chain.

The term supply chain scheduling was mentioned, by Dawande et al. (2006) , to define

the coordination of scheduling decisions at the operational level. Several subproblems

are investigated in this respect:

� the individual scheduling problems without coordination, where the decision maker

optimizes his individual schedule subject to the constraints imposed by the other

decision maker in the supply chain;

� the coordinated scheduling problem, where the decision makers coordinate to decide
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jointly their schedules;

� the mechanism of coordination explaining how the decision makers coordinate their

activities;

� the evaluation of the benefit of coordination.

Some researches addressing this need have been made in the last decade. For example,

Hall and Potts (2003) investigated coordinated scheduling problems between the suppli-

ers and the manufacturers in a three stage supply chain. Dawande et al. (2006) studied

the coordination between a manufacturer and a distributor in different bargaining powers

scenarios.

1.2 Contribution

In this dissertation, we aim at investigating three supply chain scheduling problems in

the make-to-order business model. The research objectives are to:

� study the individual scheduling problems and coordinated scheduling problems:

– propose polynomial-time algorithms for some polynomial-time solvable prob-

lems,

– prove the intractability for some NP-hard problems,

– develop exact algorithms or heuristics to solve the NP-hard problems;

� establish mechanisms of coordination;

� evaluate the benefit of coordination.

We consider the following scheduling problems:

Problem 1: production and interstage distribution scheduling problem (Ag-

netis et al. 2014a, 2014b, 2014c)

In this problem, we consider a supply chain with a manufacturer and a 3PL provider.

The manufacturer has to process a set of orders on one machine at upstream and down-

stream stages. We consider the permutation flow shop environment in production. The

3PL provider is in charge of transportation of semi-finished products from the upstream
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stage to the downstream stage. A batch cannot be delivered until all orders of the batch

are completed at the upstream stage. Two transportation modes are considered: regular

transportation, for which delivery departure times are fixed, and express transportation,

for which delivery departure times are flexible. The manufacturer’s objective is to min-

imize the makespan and the 3PL provider’s objective is to minimize the transportation

cost. We investigate four scenarios: (1) manufacturer dominates, 3PL provider adjusts;

(2) 3PL provider dominates, manufacturer adjusts; (3) manufacturer dominates, 3PL

provider negotiates; (4) manufacturer and 3PL provider coordinate. For the scheduling

problems in each scenario, we provide polynomial-time algorithms or prove their NP-

completeness. We provide two mechanisms of coordination for scenarios (3) and (4) and

evaluate the benefit of coordination using numerical experiments.

Problem 2: production and outbound distribution scheduling problem with

release dates and deadlines (Fu et al. 2014)

In this problem, we consider a supply chain with a manufacturer, a 3PL provider and a

customer. The manufacturer has to process a set of orders on one machine, then the 3PL

provider delivers them in batches to the customer. Each order has a release date and a

delivery deadline fixed by the customer. The manufacturer’s objective is to ensure that

all orders are delivered before or at their deadline and the 3PL provider’s objective is to

minimize the transportation cost. We first investigate individual scheduling problems.

Then we consider three coordinated scheduling problems with different ways how an

order can be produced and delivered: non-splittable production and delivery (NSP-

NSD) problem, splittable production and non-splittable delivery (SP-NSD) problem and

splittable production and delivery (SP-SD) problem. For these scheduling problems,

we provide a polynomial-time algorithm for some restricted versions of SP-NSD and

SP-SD problems and a branch-and-bound algorithm for NSP-NSD problem which is

NP-hard. We evaluate the performance of branch-and-bound algorithm using numerical

experiments.

Problem 3: production and outbound distribution scheduling problem with

setup times and delivery time windows

This problem is a real problem proposed by a company working in the packaging industry.

We consider a supply chain with a manufacturer, a 3PL provider and several customers.
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The manufacturer has to process a set of orders on unrelated parallel machines and

splitting of order is allowed in production. A sequence-dependent setup time and a

setup cost occur when production changes from one order to another order. Then the

3PL provider delivers orders in batches to the customers with heterogeneous vehicles

subject to delivery time windows. The manufacturer’s objective is to minimize the

total setup cost and the 3PL provider’s objective is to minimize the transportation cost.

We propose mathematical models for individual scheduling problems and coordinated

scheduling problem. We develop a first decomposition approach to solve the coordinated

scheduling problem using a commercial solver. we evaluate the feasibility of the approach

and the potential benefit of coordination using numerical experiments for small instances.

Finally, we propose some directions of improvement for further research.

1.3 Organization of the dissertation

This dissertation is organized as follows. Chapter 2 is dedicated to a literature review on

production scheduling, distribution scheduling, integrated production and distribution

scheduling, and supply chain scheduling. The three investigated problems are presented

in two parts. In part I, we investigate a production and interstage distribution schedul-

ing problem, i.e., the problem 1, which is divided to be presented in chapter 3 and

chapter 4. In chapter 3, we study the individual scheduling problems, i.e., scenarios (1)

manufacturer dominates, 3PL provider adjusts and (2) 3PL provider dominates, manu-

facturer adjusts. In chapter 4, we study the coordinated scheduling problems in different

scenarios, i.e., scenarios (3) manufacturer dominates, 3PL provider negotiates and (4)

manufacturer and 3PL provider coordinate. Then, we evaluate the benefit of coordi-

nation using numerical experiments. In part II, we investigate the two production and

outbound distribution scheduling problems, i.e., problem 2 and problem 3, which are

studied respectively in chapter 5 and chapter 6. Chapter 7 contains conclusions and

perspectives of future research.



Chapter 2

Literature Review

In this chapter, we provide a literature review on the following problems: production

scheduling, distribution scheduling, integrated production and distribution scheduling,

and supply chain scheduling.

2.1 Production scheduling

Production scheduling problem can be presented generally as follows: supposing that a

set of orders have to be processed on a set of machines, the problem is how to allocate

one or more time intervals for each order to one or more machines while optimizing one

or several objective functions.

Graham et al. (1979) introduced a three-field classification α|β|γ for production

scheduling problem, where α, β and γ specify respectively machine environment, or-

der characteristics and optimality criteria. This classification was extended by Brucker

(2007).

The machine environment is specified by a string α = α1α2. α2 denotes the number

of machines. If α1 ∈ {◦, P , Q, R, PMPM , QMPM}, then each order consists of a

single operation. If α1 ∈ {G, J , F , O, X}, then each order consists of a set of operations.

If α1 ∈ {MPT}, then each order requires one or more processors at a time. The values

are characterized as:

� α1 = ◦: single machine;

7



2.1. Production scheduling 8

� α1 = P : identical parallel machines, i.e., processing speeds of machines are identi-

cal;

� α1 = Q: uniform parallel machines, i.e., processing speeds of machines are machine-

dependent;

� α1 = R: unrelated parallel machines, i.e., processing speeds of machines are

machine-dependent and order-dependent;

� α1 = PMPM : multi-purpose identical parallel machines, i.e., an operation can be

processed on any machine equipped with the appropriate tool, and the machines

are identical;

� α1 = QMPM : multi-purpose identical parallel machines, i.e., an operation can be

processed on any machine equipped with the appropriate tool, and the machines

are uniform;

� α1 = G: general shop;

� α1 = J : job shop;

� α1 = F : flow shop;

� α1 = O: open shop;

� α1 = X: mixed shop;

The order characteristics are specified by β ⊆ {β1, β2, . . ., β7}. The values are

characterized as:

� β1 ∈ {pmtn, split}, i.e., preemption or splitting of order is allowed, and in the

splitting environment the split order can be processed simultaneously on several

machines, which is different from the preemption environment;

� β2 = prec, i.e., precedence relations exist between the orders;

� β3 = rj, i.e., orders may have different release dates from which their production

can start;
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� β4 specifies the restrictions on processing times or number of operations;

� β5 = dj, i.e., orders may have different deadlines;

� β6 ∈ {p− batch, s− batch}, i.e., orders can be scheduled in batches, the length of a

batch is equal to the maximum (sum) of processing times of all orders in the batch

for p-batching (s-batching) problem;

� β7 ∈ {sj, sij, sijk}, i.e., a setup time occurs when the production changes from

a family (or order) to another family (or order), sj and sij represent sequence-

independent setup time and sequence-dependent setup time respectively, and sijk

represent sequence-dependent and machine-dependent setup time.

The optimality criteria are commonly specified by the total cost objectives depending

on completion times of orders, and the customer service quality objectives depending on

due dates of orders. The objectives are characterized by two types of functions: the

bottleneck objectives, as makespan Cmax, maximum lateness Lmax; the sum objectives,

as (weighted) total flow time, (weighted) total tardiness, (weighted) total earliness, etc.

The objective of scheduling problem is to minimize one or several objective functions.

Production scheduling problem has been extensively investigated from the mid 1950s.

In the book of Brucher (2007), he discussed the classical scheduling algorithms for solving

single machine scheduling problems, parallel machine scheduling problems, shop schedul-

ing problems, due dates scheduling problems, batching problems, scheduling problems

with setup times, multi-purpose machines problems and multiprocessor tasks scheduling

problems.

In the following, we focus on the literature of some problems linked to our research:

flow shop scheduling problems, single machine scheduling problems with release dates,

and scheduling problems with setup times.

In flow shop scheduling problems, each order has to be processed in a fixed sequence

of machines, i.e., the first operation of each order is performed on the first machine, the

second operation on the second machine, and so on. For regular objective functions, i.e.,

functions that are non-decreasing in completion times of orders, the problem is to find a

processing sequence of orders for each machine. We focus on some flow shop scheduling
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problems with makespan objective function Cmax. Johnson (1954) provided a polynomial-

time algorithm to solve the 2-machine flow shop scheduling problem F2||Cmax. Garey

et al. (1976) proved the NP-hardness of the m-machine flow shop scheduling problem

Fm||Cmax with m ≥ 3.

Concerning the single machine scheduling problems with release dates, we focus on

the problems with maximum lateness Lmax objective function. The problem without

release dates 1||Lmax can be solved by Jackson’s earliest due date (EDD) rule introduced

by Jackson (1955). This problem is a special case of the problem 1|prec|Lmax solved by a

polynomial-time algorithm provided by Lawler (1973). The problem with release dates

and preemption 1|rj, pmtn|Lmax can be solved by Jackson’s preemptive earliest due date

(EDD-preemptive) rule introduced by Jackson (1955). This problem is a special case

of the problem 1|prec, rj, pmtn|Lmax solved by a polynomial-time algorithm provided

by Baker et al. (1983). Lenstra et al. (1977) proved the NP-hardness of the problem

1|rj|Lmax. Carlier (1982) provided the first efficient branch-and-bound algorithm to solve

this problem.

Allahverdi et al. (2008) provided a survey of scheduling problems with setup times

or costs. They discussed the problems with sequence-independent setup time (sj) or

sequence-dependent setup time (sij). sj depends upon only order j processed after

the changeover, while sij depends upon both orders i and j processed before and after

the changeover respectively. We focus on the problems with the objective of minimiz-

ing makespan Cmax or sum of setup cost. The single machine problem 1|sj|Cmax is

polynomial-time solvable. The single machine problem 1|sij|Cmax is NP-hard (Bruno

and Downey 1978) and can be reformulated as a Traveling Salesman Problem (TSP).

The two parallel machine problem with unit processing times and unit setup times

P2|pj = 1; sj = 1|Cmax is NP-hard (Brucker et al. 1998). The special case of this

problem where all families have equal sizes can be solved in polynomial time (Brucker

2007). Several heuristics and meta-heuristics were provided for the parallel machine

problem P2|sij|Cmax: a divide and merge heuristic by Gendreau et al. (2001), a heuris-

tic and a tabu search algorithm by Mendes et al. (2002), and a hybrid meta-heuristic by

Behnamian et al. (2009). For the same problem with splitting of order, in that orders

can be split and processed simultaneously on different machines, some heuristics were
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provided by Tahar et al. (2006) and Yalaoui and Chu (2003). Concerning the problems

with the sum of setup cost objective function, few papers have investigated this problem.

Miller et al. (1999) provided a hybrid genetic algorithm for a single machine scheduling

problem with sequence-dependent setup time minimizing the sum of setup cost, inventory

cost, and backlog cost. Vignier et al. (1999) considered a parallel machines scheduling

problem with sequence-dependent setup time, release dates and deadline. The objec-

tive function is to first find a feasible schedule and then to minimize the cost due to

assignment and setup time costs. They proposed a hybrid method that consists of an

iterative heuristic, a genetic algorithm, and a branch-and-bound algorithm. Anglani et

al. (2005) proposed a fuzzy mathematical programming approach to solve a parallel

machines scheduling problem with sequence-dependent setup time, uncertain processing

time and the objective of minimizing the total setup costs.

Some other scheduling problems with setup times have been investigated, such as

flow shop scheduling problems with setup times (Cheng et al. 1999, Brucker et al. 2005,

etc.), open shop scheduling problems with setup times(Averbakh et al. 2005, Billaut et

al. 2008, etc.), job shop scheduling problems with setup times (Cheung and Zhou 2001,

Artigues and Roubellat 2002, etc.).

2.2 Distribution scheduling

Distribution scheduling problem is a central problem in distribution management and is

faced by a lot of enterprises every day. There are three types of delivery (Chen 2010):

individual delivery, i.e., each order is shipped individually; direct batch delivery, i.e.,

different orders of a customer can be delivered together in a shipment; routing batch

delivery, also named as vehicle routing delivery, i.e., orders of different customers can be

delivered together in a shipment. The individual delivery and direct batch delivery are

used to deliver the time-sensitive products. The vehicle routing delivery is extensively

adopted by many enterprises to reduce distribution cost. In the literature on distribution

management, the vehicle routing problem has attracted an extensive research since the

first study provided by Dantzig and Ramser (1959). In fact, the first two types of

delivery can be seen as two special cases of the vehicle routing delivery. There are few



2.2. Distribution scheduling 12

articles investigating only the distribution scheduling problem with the first two types

of delivery. In many cases, these problems are simple and have been discussed in the

integrated production and distribution scheduling problems (Chen 2010). However, it

is interesting to investigate these problems with some adding characteristics, such as a

limited number of vehicles, vehicles with fixed departure dates, heterogeneous vehicles,

release dates, delivery deadlines, etc. In this section, we focus on vehicle routing problem.

The classical vehicle routing problem (VRP) is to determine a set of routes for a fleet

of vehicles, each of which starts and ends at its own depot, to serve a set of customers on

minimizing the total travel cost subject to a set of constraints. The VRP is one of the

most popular combinatorial optimization problems and is NP-hard because it generates

the traveling salesman problem (TSP) (Dantzig and Ramser 1959). A lot of exact algo-

rithms and heuristics are provided to solve the VRP. Toth and Vigo (2002) surveyed the

variants of the VRP. The capacitated vehicle routing problem (CVRP) considers the ve-

hicle capacity. In the distance-constrained vehicle routing problem (DVRP), the length

of each each route cannot exceed a preset limit. The capacitated distance-constrained

vehicle routing problem (DCVRP) considers both the vehicle capacity and the constraint

of distance. In the vehicle routing problem with time windows (VRPTW), the service

at each customer must start within a given time window and the arrival of vehicles after

time windows are prohibited. In the vehicle routing problem with backhauls (VRPB),

each customer location may act as a pickup or a delivery node and all deliveries must

be performed before any pickup. In the vehicle routing problem with pickup and de-

livery (VRPPD), the passengers or goods are transported between pickup and delivery

locations. All the above problems are NP-hard because they generate the classical VRP.

Toth and Vigo (2002) provided a survey of exact algorithms and heuristics for all the

above vehicle routing problems. Similar surveys were provided in chapter 6 (Cordeau et

al. 2007) and chapter 7 (Cordeau et al. 2007) of the handbook of operations research and

management science. Other surveys have been provided for one or some of the above

problems, such as VRPTW by Bräysy and Gendreau (2005), VRPB and VRPPD by

Parragh et al. (2008), large-scale VRPTW by Gendreau and Tarantilis (2010), CVRP

and VRPTW by Kumar and Panneerselvam (2012). There are other variations of the

VRP, such as the dynamic vehicle routing problem (DVRP) where part or all of the
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input is unknown before the start of working day, the heterogeneous fleet vehicle routing

problem (HVRP) where a fleet of vehicles is characterized by different capacities and

costs, and the split delivery vehicle routing problem (SDVRP). Surveys on DVRP, HVRP

and SDVRP were provided respectively by Pillac et al. (2013), Baldacci et al. (2008)

and Archetti and Speranza (2008).

In the following, we focus on the exact algorithms and heuristics for the VRPTW.

The VRPTW can be defined on a directed graph and formulated as a multicommodity

network model with time windows and capacity constraints (Desrochers et al. 1988).

There are four main exact algorithms for the VRPTW: Lagrangian relaxation based

branch-and-bound algorithm where the lower bound is obtained by Lagrangian relax-

ation (Fishier 1994, Fishier et al. 1997, Kohl and Madsen 1997, Kallehauge et al. 2006);

column generation based branch-and-bound algorithm where the linear relaxations are

solved by column generation (Desrochers et al. 1992, Kohl et al. 1999, Cook and Rich

1999); branch-and-cut algorithm where the upper bound is obtained by a greedy ran-

domized adaptive search procedure (Bard et al. 2002); genetic and set partitioning two-

phase approach (Alvarenga et al. 2007). Because of the NP-hardness of the VRPTW,

the research has concentrated on heuristics, such as construction heuristics where at a

time one customer is inserted into partial routes until a feasible solution is obtained

(Solomon 1987, Potvin and Rousseau 1993, Ioannou et al. 2001, Nagata and Bräysy

2009, Pang 2011), improvement heuristics where a feasible solution is improved itera-

tively with an exchange mechanism (Russell 1977, Baker and Schaffer 1986, Potvin and

Rousseau 1995, etc.), combination of construction and improvement heuristics (Russell

1995, Cordone and Wolfler Calvo 2001, Bräysy 2002), tabu search heuristics (Taillard

et al. 1997, Chiang and Russell 1997, Cordeau et al. 2001, Lau et al. 2003, etc.), ge-

netic algorithms (Gehring and Homberger 2002, Berger et al. 2003, Mester and Bräysy

2005, etc.), two-phase greedy randomized adaptive search procedure (Kontoravdis and

Bard 1995), guided local search algorithm (Kilby et al. 1999), ant colony optimization

algorithm (Gambardella et al. 1999), four-phase metaheuristic (Bräysy 2003), two-stage

hybrid algorithm (Bent and Van Hentenryck 2004), improved multi-objective evolution-

ary algorithm (Garcia-Najera and Bullinaria 2011), etc.
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2.3 Integrated production and distribution schedul-

ing

In the literature, two types of integrated production and distribution scheduling problems

have been investigated: the integrated production and interstage distribution scheduling

(IPIDS) problem involving the distribution of orders between manufacturing stages in the

shop production, such as flow shop, job shop, open shop, etc; the integrated production

and outbound distribution scheduling (IPODS) problem involving the distribution of

orders to the customers.

In the IPIDS problem, the production and transportation of orders between the

stages are taken into account. The problem can be specified by the characteristics of ma-

chine environment, i.e., flow shop, job shop, open shop and so on, by the characteristics

of transportation time, i.e., order-dependent, order-independent, machine-dependent,

machine-independent and constant, by the characteristics of transporters, i.e., sufficient

number, limited number, unlimited capacity and limited capacity. Brucker et al. (2004)

provided a survey on the IPIDS problem in the flow shop and open shop environments.

There are other surveys in the literature on the IPIDS, such as Hurinka and Knustb

(2001), and Lee and Chen (2001).

We focus on the IPIDS problems with order-independent transportation time in 2-

machine flow shop. Here, we use the three-field classification α|β|γ of production schedul-

ing problem for the IPIDS problems. Maggu and Das (1980) developed a polynomial

time algorithm based on well-known Johnson’s rule (Johnson 1954) for the problem of

minimizing the makespan subject to an unlimited number of transporters with order-

dependent transportation time, denoted by F2|tj, v ≥ n|Cmax, where tj, v and n represent

respectively order-dependent transportation time, number of transporters and number

of orders. Since the problem with order-independent transportation time can be seen

as a special case of the problem with order-dependent transportation time, the similar

problem with order-independent transportation time F2|tj ∈ {t1, t2}, v ≥ n|Cmax can

be solved by the same algorithm, where t1 represents the transportation time from the

first stage to the second while t2 represents the returning time. The problem minimizing

the makespan subject to one transporter with capacity of one and order-independent
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transportation time, denoted by F2|tj ∈ {t1, t2}, v = 1, c = 1|Cmax was proved to be

strongly NP-hard even if t1 = t2 (Hurinka and Knustb 2001). Tang et al. (2010) devel-

oped an approximation algorithm with worst case ratio of 2 for this problem. Lee and

Chen (2001) proved the NP-hardness of a similar problem with a vehicle capacity more

than 2, denoted by F2|tj ∈ {t1, t2}, v = 1, c ≥ 3|Cmax, and provided a polynomial-time

dynamic programming algorithm for the special case with equal processing times on one

machine and a fixed number of vehicles. Lee and Strusevich (2005) proved that for the

problem F2|tj ∈ {t1, t2}, v = 1, c ≥ n|Cmax, finding the best schedule in class SF (2) of

schedules with at most two shipments is NP-hard even if t1 = t2, and provided an ap-

proximation algorithm with worst case ratio of 3/2, which is the best possible algorithm

in the class of heuristics that construct schedules with at most two shipments. Gong and

Tang (2011) developed an approximation algorithm with worst case ratio of 2 for the

problem F2|tj ∈ {t1, t2}, v = 1, c ≥ n|Cmax and an approximation algorithm with worst

case ratio of 7/3 for a similar problem with the orders having different sizes of physical

storage space in the transporter. There are also other related problems with buffer space

constraints studied by Stern and Vitner (1990), Panwalkar (1991).

While the above articles considered transportation capacity and transportation time,

few articles consider transportation cost. As mentioned in previous chapter, in a global

supply chain, a product can be processed at different plants located at different geo-

graphic locations. So the transportation cost is not negligible. Aloulou et al. (2014)

considered a bicriteria 2-machine flow shop serial-batching scheduling problem with a

sufficient number of transporters with limited capacity. They developed two approx-

imation algorithms and provided polynomial-time algorithms for some special cases.

They considered two criteria: number of production batches and makespan. This prob-

lem is equivalent to the problem F2|tj ∈ {t1, t2}, v ≥ n, c ≥ 1|TC,Cmax, where TC

represents the trip-based transportation cost, where the cost of one delivery batch is

order-independent.

Chen (2010) surveyed the IPODS problems and introduced a five-field notation,

α|β|π|δ|γ, to represent the IPODS models. α, β and γ specify respectively the ma-

chine environment, the order characteristics and the optimality criterion as the classical

three-field classification (Graham et al. 1979, Pinedo 2002). Some new objective func-
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tions of transportation are introduced, such as maximum delivery time denoted by Dmax,

total trip-based transportation cost denoted by TC, etc. π and δ specify respectively

the characteristics of delivery process and the number of customers. The number of

customers is specified by one value of {1, k, n}, where δ = k ≥ 2 means there are mul-

tiple customers, and δ = n means that each order belongs to a different customer. The

characteristics of delivery process include vehicle characteristics (number and capacity

of vehicles) and delivery methods. The vehicle characteristics are specified by V (x, y),

where:

� x ∈ {1, v,∞} represents the number of vehicles.

� y ∈ {1, c,∞, Q} represents the capacity of vehicles. {1, c,∞} and Q distinguish,

respectively, the possible capacities of vehicles when orders have equal size, and

the limited capacity of vehicles when orders have general size.

The delivery methods include:

� iid: individual and immediate delivery.

� direct: direct batch delivery.

� routing: batch routing delivery.

� fdep: shipping with fixed delivery departure dates.

� split: splittable delivery, i.e., an order can be split and delivered by several vehicles.

The IPODS problems are classified by delivery methods: (i) models with individual

and immediate delivery; (ii) models with direct batch delivery to a single customer;

(iii) models with batch routing delivery to multiple customers; (iv) models with batch

routing delivery to multiple customers; (v) models with fixed delivery departure dates.

Chen (2010) surveyed the algorithms, heuristics, and complexity for the IPODS problems

in each class.

We focus on the IPODS problems related to our considered problems: the IPODS

problems with release dates rj; the IPODS problems with maximum lateness Lmax or

delivery deadline dj, and transportation cost TC; the IPODS problems with setup times

sj, sij; the IPODS problems with routing delivery and time windows.
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IPODS problems with release dates: The research of the IPODS problems with

release dates concentrates on the models with individual and immediate delivery, and

direct delivery. As proved by Chen (2010), the problems with individual and im-

mediate delivery, (i) 1|rj|V (∞, 1), iid|n|Dmax, (ii) 1|rj, prec|V (∞, 1), iid|n| Dmax, (iii)

Pm|rj|V (∞, 1), iid|n|Dmax, (iv) Fm|rj|V (∞, 1), iid|n|Dmax are strongly NP-hard. Liu

and Cheng (2002) proved the NP-hardness of the problem (v) 1|rj, sj, pmtn|V (∞,

1), iid|n|Dmax. In these problems, the orders are delivered individually and imme-

diately to the customers upon their completion while minimizing the maximum de-

livery time. For problems (i), (ii), (iii) and (v), approximation algorithms and (or)

polynomial-time approximation schemes were provided by Potts (1980), Hall and Shmoys

(1989, 1992), Mastrolilli (2003), Zdrzalka (1994), Liu and Cheng (2002). Gharbi and

Haouari (2002) developed a branch-and-bound algorithm for problem (iii). Kamin-

sky (2003) proposed an asymptotic optimality of the longest delivery time algorithm

for problem (iv). Few articles consider direct or routing delivery. Lu et al. (2008)

provided a polynomial-time algorithm for the problem 1|rj, pmtn|V (1, c), direct|1|Dmax.

For the problem 1|rj|V (1, c), direct|1|Dmax they proved its NP-hardness and proposed

an approximation algorithm with worst case ratio of 5/3. Mazdeh et al. (2008)

provided a branch-and-bound algorithm for a special case of the NP-hard problem

1|rj|V (∞,∞), direct|n|
∑
Fj + TC, where

∑
Fj represents the total flow time. Mazdeh

et al. (2012) provided a branch-and-bound algorithm for a special case of the similar

problem with sum of weighted flow time, 1|rj|V (∞,∞), direct|n|
∑
wjFj + TC. Sel-

varajah et al. (2013) provided an evolutionary meta-heuristic for the same problem

in the general case and a polynomial-time algorithm for the special case with common

weight and preemption in production, 1|rj, pmtn|V (∞,∞), direct|n|
∑
wFj + TC and

1|rj, pmtn| V (∞,∞), direct|n|
∑
wCj +TC. There are some articles considering the on-

line problem, i.e., the information related to an order becomes known when this order is

released. Ng and Lu (2012) investigated the problems of Lu et al. (2008) in on-line envi-

ronment. Averbakh and Xue (2007) provided an on-line two-competitive algorithm for

the on-line problem 1|rj, pmtn|V (∞,∞), direct|k|
∑
Dj + TC, where

∑
Dj represents

the total delivery time.
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IPODS problems with Lmax and TC: Some IPODS problems with maximum

lateness Lmax or delivery deadline dj, and transportation cost TC have been inves-

tigated in the literature. Polynomial-time algorithms were provided for the prob-

lems 1||V (∞,∞), direct|k|Lmax + TC with a fixed k by Hall and Potts (2003),

1||V (∞, c), direct|k|Lmax + TC with a fixed k by Pundoor and Chen (2005), 1||V (1,∞),

direct|1|Lmax + TC by Hall and Potts (2005), 1||V (v,∞), direct|1|Lmax + TC with

a fixed v and 1||V (1,∞), routing|k|Lmax + TC with a fixed k by Chen (2010),

1|pmtn, dj|V (∞, Q), direct|1|TC by Chen and Pundoor (2009). Wang and Lee (2005)

proved the NP-hardness of the problem 1|dj|V (∞, 1), iid|n|TC with two types of vehicles

and provided a pseudo-polynomial time dynamic programming algorithm for a special

case. Chen and Pundoor (2009) proved the NP-hardness of the problems without pre-

emption of production, 1|dj|V (∞, Q)|1|TC and 1|dj|V (∞, Q), direct|1|TC, and provided

approximation algorithms with worst-case ratio of 2.

IPODS problems with setup times: Few articles investigated the IPODS problem

with sequence-independent setup times (sj) or sequence-dependent setup times (sij). The

problem with sequence-independent setup time and individual and immediate delivery,

1|sj|V (∞, 1), iid|n| Dmax, is strongly NP-hard (Chen 2010). Zdrzalka (1991) provided

an approximation algorithm with worst case ratio of 5/3 for the problem in the case

with unit setup times, and Zdrzalka (1995) provided an approximation algorithm with

worst case ratio of 3/2 for the problem in the case with general setup times. Woeg-

inger (1998) developed a polynomial-time approximation scheme for this problem. Liu

and Cheng (2002) proved the NP-hardness and provided a polynomial-time approxi-

mation scheme for the similar problem with release dates and preemption of produc-

tion, 1|rj, sj, pmtn|V (∞, 1), iid|n|Dmax. Zdrzalka (1994) provided an approximation

with worst case ratio of 3/2 for this problem. Van Buer, et al. (1999) proved the NP-

hardness and provided a heuristic for the problem with sequence-dependent setup time

and routing delivery, 1|sij, dj|V (∞, Q), routing|n|TC + V C, where TC and V C repre-

sent respectively the trip-based transportation cost and the vehicle-based transportation

cost. Wang and Cheng (2009) provided three heuristics for the NP-hard problem with

sequence-dependent setup times and direct delivery, P2|sj|V (∞, c), direct|k|Dmax +TC.
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IPODS problems with routing delivery and time windows: While the

VRPTW has been well studied, few articles investigated the IPODS problem

with routing delivery and time windows. Ullrich (2013) investigated the problem

Pm, rm|[aj, bj]|V (v,Q), routing|k|
∑
Tj, i.e., a set of orders of general size is processed

on parallel machines subject to the machine release time rm, and delivered to customers

within the time windows [aj, bj] by a fleet of heterogeneous vehicles on minimizing the

sum of tardiness
∑
Tj. They provided a genetic algorithm for the integrated problem and

evaluated its performance by comparing with two classical decomposition approaches.

Low et al. (2014) provided an integer nonlinear programming model and two adap-

tive genetic algorithms for the problem 1|[aj, bj]|V (∞, Q), routing|n|TC+
∑
Ej +

∑
Tj,

where retailers’ orders are processed in a distribution center and delivered to customers

by a fleet of heterogeneous vehicles within the soft time windows, i.e., the violation

of time windows incurs a penalty. The objective is to minimize the total cost includ-

ing the transportation cost, the penalty cost of earliness
∑
Ej and the penalty cost of

tardiness
∑
Tj. Low et al. (2013) investigated the problem with the same model on

minimizing the time required to complete producing the product, delivering it to re-

tailers and returning to the distribution center. Chen (2009) investigated an IPODS

problem with routing delivery and time windows for perishable food products, which

cannot be represented by the five-field notation of Chen (2010). In this problem, the

products of each delivery batch are produced continuously on a single machine and are

delivered to customers within soft time windows. The orders are assumed stochastic and

the deterioration of products throughout their lifetime is considered. The objective is to

maximize the expected total profit of the supplier. He proposed an algorithm composed

of the constrained Nelder-Mead method (Nelder and Mead 1965) and a heuristic for the

VRPTW.

2.4 Supply chain scheduling

As mentioned in the previous chapter, the supply chain scheduling problem focuses on the

coordination of the scheduling decisions (Dawande et al. 2006). Generally, the following

problems are considered: the individual scheduling problems at the conflict models, the
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coordinated scheduling problem and the mechanisms of coordination, and the evaluation

of the benefit of coordination. Since it is difficult to consider the coordination in the

whole supply chain, the coordination between two or three stages has been considered

in several articles.

Hall and Potts (2003) were the first to study supply chain scheduling problems.

In their model, a three-stage supply chain is formed by suppliers, manufacturers, and

customers. A supplier makes deliveries to several manufacturers who also make deliveries

to customers. The problems in each stage have been studied. From the viewpoint of the

supplier, the problem is to minimize the sum of production and delivery costs, where

three production costs are considered respectively: sum of flow times, maximum lateness

and number of late orders. From the viewpoint of the one manufacturer, the problem

is to minimize the sum of production and delivery costs subject to the release dates of

orders imposed by the supplier. The coordinated scheduling problem is to minimize the

overall cost. The authors proposed polynomial-time dynamic programming algorithms

or proved the NP-completeness for the supplier’s scheduling problem, special cases of

the manufacturer’s scheduling problems and special cases of the coordinated scheduling

problems. They also provided mechanisms of coordination and evaluated the benefit of

coordination for two examples.

Agnetis et al. (2006) studied a coordinated scheduling problem between a supplier

and several manufacturers, taking into consideration an intermediate storage buffer.

They considered the inventory cost and the interchange cost representing the distances

between the actual schedules at the various stages of supply chain and their respec-

tive ideal schedules. They investigated the individual scheduling problems and a special

case of the coordinated problem. They provided a polynomial-time algorithm for each

problem minimizing the interchange cost or both costs.

Dawande et al. (2006) analyzed the conflict and coordination issues between a manu-

facturer and a distributor. In their considered two distribution systems, a manufacturer

makes products which are delivered to customers by a distributor. In the first system,

the manufacturer focuses on minimizing the makespan and the distributor minimizes the

maximum lateness. In the second system, the manufacturer focuses on minimizing the

total setup cost and the distributor minimizes the inventory cost. They introduced the
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cost of conflict, which is the additional cost when the other decision maker imposes his

optimal schedule. They provided polynomial-time algorithms for the individual schedul-

ing problems when one decision maker dominates and imposes the requirement to the

other decision maker. They developed a polynomial-time algorithm for the coordinated

scheduling problem. They also proposed mechanisms of coordination and evaluated the

benefit of coordination.

Chen and Hall (2007) studied the conflict and coordination issues in an assembly

system, where several suppliers deliver the parts of orders to a manufacturer. They

considered two objectives, the makespan and the maximum lateness, for each decision

maker. They evaluated the cost of conflict. They investigate the problems in four

scenarios: manufacturer dominates, suppliers adjust; suppliers dominate, manufacturer

negotiates; manufacturer dominates, suppliers negotiate; manufacturer and suppliers

coordinate. They provided either a polynomial-time algorithm or a proof of intractability

for the scheduling problems in the above scenarios, and developed heuristics for NP-

hard problems. They provided mechanisms of coordination and evaluated the benefit of

coordination.

Hall and Liu (2010) studied a coordinated scheduling problem between a manufac-

turer and several distributors. The manufacturer allocates the capacity of production

to satisfy all or a set of orders among the distributors. The distributors may share

their allocated capacity among themselves before submitting revised orders. Finally, the

manufacturer schedules the revised orders to minimize his cost. They considered three

mechanisms of coordination: the manufacturer considers the scheduling costs and con-

straints in making capacity and order allocation decisions; the distributors share their

allocated capacity; the manufacturer and the distributors coordinate. They provided

optimal algorithms for the scheduling problems and mechanisms of coordination. They

evaluated the benefit of coordination.

Aydinliyim and Vairaktarakis (2010) studied a coordinated scheduling problem in a

supply chain where several manufacturers outsource certain operations to a single third

part. The objective of each manufacturer is to minimize the total cost consisting of

the booking cost and the sum of weighted flow time cost. The objective of the third

part is to minimize the total cost incurred by all manufacturers, and develop a saving
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sharing scheme which motivates the coordination. They proved that the scheduling

problem of each manufacturer and the third part centralized scheduling problem are

NP-hard, for which they provided three heuristics. They presented a savings-sharing

scheme of coordination and evaluated the benefit of coordination. Cai and Vairaktarakis

(2012) investigated the same problem with the objective of minimizing the booking,

overtime, and tardiness costs. They designed a truth-telling mechanism of coordination

and evaluated the benefit of coordination.



Part I

Production and Interstage

Distribution Scheduling
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Chapter 3

Individual Production and

Interstage Distribution Scheduling

Problems

3.1 Introduction

In part I, we consider a production and interstage distribution scheduling problem in a

permutation flow shop environment. A set of orders are processed by a manufacturer

at the upstream facility, and delivered to the downstream facility belonging to the same

manufacturer. The distribution is outsourced to a third-party logistics (3PL) provider.

The manufacturer may impose his requirement to the 3PL provider, for example, each

order should be delivered within a certain time T from its release at the upstream stage.

Small values of T indicate high responsiveness of the 3PL provider, which is desirable for

the manufacturer. However, this may entail higher costs for the 3PL provider. The 3PL

provider may impose his delivery schedule to the manufacturer, for example, the delivery

schedule fixes the number of available vehicles for some fixed departure dates. In order

to decease the transportation cost, the 3PL provider decreases the frequency of delivery

and offers the vehicles of large capacity. However, large batch deliveries may increase the

makespan at the downstream stage. These conflicts motivate the coordination between

the production scheduling and the interstage distribution scheduling.

In the literature, it is commonly assumed that all orders are produced at a single

25
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plant. However, in our globalized world, many firms have now multiple plants spread

over different countries. Even national firms adopt a multiple plants scheme to reduce

production costs and to expand their production capacity. Therefore, in a global supply

chain, a product can be processed at different plants located at different geographic loca-

tions. So there is a need to analyze the process of planning, scheduling, and distribution

in the multiple plants environment.

Another feature considered in our model is the presence of multiple transportation

resources. As observed by Chen (2010) in his survey on integrated production and

distribution scheduling problems, research has not yet adequately addressed problems

with fixed delivery departure times. These refer to the fact that transportation resources

are available to depart from the upstream stage only at fixed, known departure times.

While a handful of papers (Li et al. 2005, 2006; Stecke and Zhao 2007; Wang et al. 2005)

address coordination between production and outbound distribution with fixed delivery

departure times, we are not aware of articles on production and interstage distribution

scheduling problems with fixed delivery departure times. In this problem, we consider

a general setting in which transportation can be provided by means of resources with

fixed departure times as well as dedicated resources which are always available. We will

refer to the two transportation modes above as regular and express respectively. In

general, deciding which transportation resource is the most appropriate to perform each

delivery is part of the 3PL provider decision problem. Koc et al. (2013) considered

the similar transportation setting for an integrated production and outbound delivery

planning problem. In our problem, the cases with only one transportation mode and

with both transportation modes are considered.

We investigate four scenarios specified by the bargaining powers and the relation-

ship of decision makers: (1) manufacturer dominates, 3PL provider adjusts; (2) 3PL

provider dominates, manufacturer adjusts; (3) manufacturer dominates, 3PL provider

negotiates; (4) manufacturer and 3PL provider coordinate. For the scheduling problems

in each scenario, we provide polynomial-time algorithms or prove their NP-hardness.

We provide two mechanisms of coordination for scenarios (3) and (4). We evaluate the

benefit of coordination using numerical experiments. The most related research was

provided by Dawande et al. (2006). They analyzed the conflict and coordination issues
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between a manufacturer and a distributor. In their considered two distribution systems,

a manufacturer makes products which are delivered to customers by a distributor. In

the first system, the manufacturer focuses on minimizing the makespan and the distrib-

utor minimizes the maximum lateness. In the second system, the manufacturer focuses

on minimizing the total setup cost and the distributor minimizes the inventory cost.

They introduced the cost of conflict, which is the additional cost when the other deci-

sion maker imposes his optimal schedule. They provided polynomial-time algorithms for

the individual scheduling problems when one decision maker dominates and imposes the

requirement to the other decision maker. They developed a polynomial-time algorithm

for the coordinated scheduling problem. They also proposed mechanisms of coordina-

tion and evaluated the benefit of coordination. The literature of the IPIDS (integrated

production and interstage distribution scheduling) problem can be found in section 2.3

of chapter 2.

In chapter 3, we study the individual scheduling problems, i.e. scenarios (1) and (2).

In section 3.2, we formally describe the problems and introduce notations and termi-

nology. Section 3.3 illustrates some general properties of the optimal delivery schedules

which are common to scenarios (1) and (2). Section 3.4 is devoted to scenario (1), section

3.5 to scenario (2). Section 3.6 contains some conclusions and perspectives. Chapter 4

is dedicated to scenarios (3) and (4), to the mechanisms of coordination, and to the

evaluation of the benefit of coordination.

3.2 Problems and Notations

In this section, we formally define the problems addressed in this chapter. We refer to the

upstream and downstream stages of a supply chain as machine M1 and M2 respectively.

The context is specified by the following points.

� A manufacturer has to process a set of n orders, 1, . . . , n. Each order j = 1, . . . , n

is first processed on machine M1, with processing time p1j , then on machine M2,

with processing time p2j .

� We consider the permutation flow shop context, i.e. the orders are processed within

the same sequence on both machines.
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� After processing on M1, the orders have to be shipped from M1 to M2 (typically,

located in a different city) for further processing.

� Denote by Ci
j the completion time of order j = 1, . . . , n, on machine Mi, i = 1, 2.

In particular, C1
j is the release time of order j from the upstream stage. The

quantities Ci
j specify a production schedule. When it is necessary to denote a

production schedule as σ, the related quantities will be indicated as C1
j (σ). We

denote by σ(j) the j-th order in the production schedule σ.

� A 3PL provider is in charge of transportation of semi-finished product from M1 to

M2.

� Transportation must comply with a certain responsiveness requirement, i.e., each

order j has to be delivered to M2 within a time T from its completion on M1. In

other words, for each order j, a deadline dj = C1
j + T is specified. The uniform

setting of T can be adopted in practice for homogeneous semi-finished products.

We let Dj denote the actual delivery time of order j to M2, so in a feasible solution

Dj ≤ dj for all j. This responsiveness requirement can be relaxed in the scenarios

with coordination.

� The vehicles used by the 3PL provider have a certain capacity, given by the maxi-

mum number of orders a vehicle can carry (i.e., orders are supposed to have equal

size).

� The 3PL provider uses two transportation modes.

– Type-1 transportation is regular transportation. There are V1 identical vehicles

of capacity c1 ≤ n each of which has a fixed departure time. The transportation

time from M1 to M2 is denoted by `1. We assume that each vehicle can be used

for at most one trip. So we ignore the return of vehicle. The transportation

cost per delivery is denoted by h1. We assume we have L fixed delivery

departure times t1 < . . . < tL, vs ≤ n vehicles for departure time ts, s =

1, . . . , L, and consequently V1 ≤ Ln.

– Type-2 transportation is express transportation. There are V2 identical vehi-

cles of capacity c2 ≤ n, each of which can depart at any time, i.e., there are no
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fixed departure times. The transportation time from M1 to M2 is denoted by

`2 and the return time by `′2. The transportation cost per delivery is denoted

by h2.

For both modes, the transportation cost of one shipment depends on the assigned

resource by the 3PL provider and does not depend on the quantity of products

delivered.

Clearly, if either V1 = 0 or V2 = 0, only one transportation mode exists.

� For both transportation modes, orders in the same delivery form a batch. A batch

B is available for delivery when all orders belonging to B are completed at M1.

The delivery time of a batch B, denoted by DB, is the time at which the batch

reaches M2. We let a regular batch or an express batch be a batch for which regular

or express transportation, respectively, is used.

� Given a production schedule, a delivery schedule θ is a partition of the orders into

b batches, along with the specification of a transportation mode and the departure

time for each batch.

� A production-distribution schedule is specified by a production schedule σ and a

delivery schedule θ. We indicate a production-distribution schedule by the pair

(σ, θ). Given a production-distribution schedule, we let B(j) denote the batch of

order j. The delivery time of an order j is therefore denoted by DB(j).

� In all scenarios, the objective of the 3PL provider is to minimize the transportation

cost TC = h1n1 + h2n2, where n1 and n2 are the number of batches of type 1

(regular) and type 2 (express), respectively. If only one transportation mode is

present, the objective is to minimize the number of batches. The objective of

the manufacturer is to minimize the makespan Cmax = maxj=1,...,nC
2
j . The values

of makespan Cmax and transportation costs TC associated with the production-

distribution schedule (σ, θ) are denoted as Cmax(σ, θ) and TC(σ, θ) respectively.

Scenarios In this chapter we consider two scenarios : (1) manufacturer dominates, 3PL

provider adjusts; (2) 3PL provider dominates, manufacturer adjusts. These are formally

defined in the following.
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1. Manufacturer dominates, 3PL provider adjusts - scenario 1.

(a) Manufacturer’s problem. The manufacturer determines an optimal pro-

duction schedule in two steps. In the first step, because of the dominance,

the manufacturer can plan his schedule disregarding the role of the 3PL

provider, i.e., assuming that each order will be transported to M2 imme-

diately after release from M1. Hence, in the first step, the manufacturer

faces a 2-machine permutation flow shop scheduling problem with a con-

stant transportation time-lag. Following the three-field notation α|β|γ for

machine scheduling problems (Graham et al. 1979), this problem is denoted

by F2|time − lag|Cmax. In the second step, the manufacturer first imposes

the constraints, i.e. the release time C1
j and the deadline dj of order j,

j = 1, . . . , n, to the 3PL provider. Then, the manufacturer adjusts the start-

ing time of the orders on M2 on minimizing Cmax subject to the delivery times

Dj of each order j = 1, . . . , n offered by the 3PL provider and the sequence

of production on M1.

(b) 3PL provider’s problem. Given the release time C1
j and the deadline dj of

each order j, j = 1, . . . , n, the 3PL provider aims at finding a delivery sched-

ule that minimizes the transportation cost TC and such that each order is

delivered to M2 within dj, i.e., it must hold Dj ≤ C1
j +T . The 3PL provider’s

problem can be seen as an IPODS (Integrated production and outbound dis-

tribution scheduling) problem with a single machine, deadlines and direct

batch delivery to a single customer, in which the sequence on the machine is

fixed. Following the five-field notation α|β|π|δ|γ of Chen (2010), the problem

can therefore be denoted as 1|fseq, dj = C1
j + T |π|1|TC, where:

α: 1 refers to a single machine (M1) and fseq indicates that the sequence on

M1 is fixed,

β: deadlines are defined as C1
j + T ,

π: this field may contain the following values:

� direct indicate the direct batch delivery

� V 1(x1, y1), where x1 ∈ {V1,∞} is the total number of vehicles for reg-



3.2. Problems and Notations 31

ular transportation (either limited or unlimited) and y1 ∈ {c1,∞} is

the capacity of each vehicle for regular transportation (either limited

or unlimited).

� V 2(x2, y2), where x2 ∈ {V2,∞} represents the total number of ve-

hicles for express transportation (either limited or unlimited) and

y2 ∈ {c2,∞} represents the capacity of each vehicle for express trans-

portation(either limited or unlimited).

δ: this field is equal to 1, which refers to a single customer (M2)

γ: this field contains the objective function, which is the total cost to the

3PL provider (TC).

2. 3PL provider dominates, Manufacturer adjusts - scenario 2.

(a) 3PL provider’s problem. In this scenario, on the one hand the 3PL

provider wants to relax the responsiveness by increasing the value of T , on the

other hand he want to find the best constraints of release time by imposing

the delivery schedule to the manufacturer. With the necessary information of

production, i.e. the processing time of orders on M1, the 3PL provider aims

at determining a production-distribution schedule (hence, both a production

schedule on M1 and a delivery schedule) such that the transportation cost

TC is minimized, while delivering each order within T from its release by M1

(i.e., dj = C1
j + T for each order j). We consider production schedules in

which M1 continuously processes orders, with no idle time. This constraint

enforces a minimum productivity requirement. This problem can be seen as

an IPODS problem, denoted by 1|no−idle, dj = C1
j +T |π|1|TC. In the β field

we specify that M1 must never be idle, while π is as described in the previous

scenario. Then according to the obtained schedule, the 3PL provider offers a

limited set of regular vehicles and express vehicles with given capacities and

transportation times to the manufacturer.

(b) Manufacturer’s problem. The manufacturer determines a production

schedule on both machines minimizing the Cmax subject to a limited set of

regular vehicles and express vehicles with given capacities and transportation
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times. The responsiveness constraints are not considered.

Example We consider the following instance. The manufacturer has to process a set

of n = 5 orders. Table 3.1 shows their processing time on the two machines. The

3PL provider has two types of vehicles, V1 = 2 and V2 = 5. The capacities of vehicles

are c1 = 3 and c2 = 1. The transportation times are `1 = 5 and `2 = `′2 = 5. The

transportation costs are h1 = 10 and h2 = 7. For regular transportation, there are L = 2

fixed departure dates, t1 = 15 and t2 = 30. For each fixed departure date, there is one

regular vehicle, i.e. vs = 1 for s = 1, 2. The responsiveness parameter is T = 12.

Table 3.1: Example for problem 1

Order j 1 2 3 4 5

p1j 2 8 10 4 6

p2j 3 4 5 2 3

1. Manufacturer dominates, 3PL provider adjusts - scenario 1. Figure 3.1

illustrates the optimal production schedule σ1 = {1, 3, 2, 5, 4} and the adjusted

delivery schedule θ1. In θ1, there are four batches {1},{3},{2} and {5, 4}, where

{5, 4} is a regular batch departing at time 30, while {1},{3} and {2} are three

express batches, departing at times 2, 12 and 20 respectively. We have therefore

Cmax(σ1, θ1) = 40 and TC(σ1, θ1) = h1 + 3h2 = 31.

Figure 3.1: Production-distribution schedule when manufacturer dominates, 3PL

provider adjusts

2. 3PL provider dominates, Manufacturer adjusts - scenario 2. Figure 3.2

illustrates the optimal delivery schedule θ2 with only two regular batches {2, 1, 4}

and {3, 5}, departing at times 15 and 30 respectively. The adjusted production
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Figure 3.2: Production-distribution schedule when 3PL provider dominates, Manufac-

turer adjusts

schedule σ2 = {2, 1, 4, 3, 5}. We have therefore Cmax(σ2, θ2) = 43 and TC(σ2, θ2) =

2h1 = 20.

3.3 General properties of optimal delivery schedules

In this section we give some general properties of the optimal delivery schedules that

apply to scenarios (1) and (2), hence to all problems denoted by 1|·, dj = C1
j +T |π|1|TC,

where · may actually be either fseq (in the 3PL provider’s problem when the manufac-

turer dominates) or no − idle (in the 3PL provider’s problem when the 3PL provider

dominates).

In what follows, we say that a batch B is split by another batch B′ if B contains some

orders that are processed before some orders of B′, and some orders which are processed

after some orders of B′ on M1. Also, given a delivery schedule, we say that we swap

two orders i and j to mean that we move order i to B(j) and order j to B(i), without

changing the production schedule σ on M1 nor the departure time of each batch.

Lemma 3.1 There exists an optimal delivery schedule for the problem 1|·, dj = C1
j +

T |π|1|TC, such that the following properties hold :

1. If orders i and j are delivered by the same transportation mode and C1
i < C1

j , then

Di ≤ Dj.

2. An express batch can be only split by regular batches and a regular batch can be

only split by express batches.

3. If there exists one transportation mode only, the orders of each batch are processed

consecutively on machine M1.
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4. If there exist two transportation modes,

(a) If `1 ≥ `2, no regular batch is split.

(b) If `1 ≤ `2, no express batch is split.

5. If there exists an unlimited number of vehicles for express transportation, each

express batch departs at the completion time of the last order in this batch.

6. If there exists a limited number of vehicles for express transportation, each express

batch departs either at the completion time of the last order in this batch or as

soon as a vehicle for express transportation is available.

Proof. In what follows, we denote by Se(i, j) the subsequence of orders from σ(i)

through σ(j) on M1. We do not change the production schedule σ.

Property 1: Suppose that there is an optimal delivery schedule such that order i

is delivered after order j by the same transportation mode although C1
i < C1

j , i.e.,

DB(j) < DB(i) and di < dj. Since DB(i) ≤ di, one has DB(j) < DB(i) ≤ di < dj. We

can then swap i and j obtaining a new delivery schedule which is still feasible and has

the same transportation cost. This argument can be repeated until the delivery schedule

satisfies Property 1.

Property 2: Suppose there is an optimal delivery schedule which does not respect

Property 2, i.e., assume that a regular batch B is split by some express batches and some

regular batches. Consider the subsequence Se(i, j), where σ(i) and σ(j) are respectively

the first and the last order of batch B. Due to Property 1, DB(σ(i)) ≤ DB′ ≤ DB(σ(j)),

where B′ is any regular batch in Se(i, j). Since DB(σ(i)) = DB(σ(j)), all regular batches in

Se(i, j) have the same departure time. In the subsequence Se(i, j), we do the following:

as long as there is an h and an k, i ≤ h < k ≤ j, such that σ(h) ∈ B and σ(k) ∈ B′,

where B′ is a regular batch different from B, swap σ(h) and σ(k). When no further

such swap is possible, we stop. In the resulting delivery schedule, batch B is split only

by express batches. By a very similar argument, one can prove that there is an optimal

schedule in which any express batch can be only split by regular batches.

Property 3: This is a direct consequence of Property 2. If only one transportation

mode exists (i.e., either V1 = 0 or V2 = 0), no batch can be split.
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Property 4(a): Suppose that in an optimal delivery schedule θ, the orders of a regular

batch B are not processed consecutively on machine M1 when `1 ≥ `2. According to

Property 2 above, batch B can be only split by express batches. Let again σ(i) and

σ(j) be the first and last order in B, consider the subsequence Se(i, j), and let σ(u) be

the first order in Se(i, j) belonging to an express batch such that Dσ(u) − `2 ≥ Cσ(j)

(see Figure 3.3, in which σ(i) = 4, σ(j) = 8 and σ(u) = 6). Note that order σ(u) is

the first order of an express batch. Hence, in the subsequence Se(i, u − 1), we do the

following: as long as there is an h, i ≤ h ≤ u− 2, such that σ(h) ∈ B and σ(h+ 1) ∈ B′,

where B′ is an express batch, swap σ(h) and σ(h + 1). When no further such swap

is possible, we stop. In the resulting delivery schedule θ̂, batch B is scheduled after

all express batches preceding order u. In θ̂, the deadline of the first order of batch B

has been delayed, so the orders of batch B are not late. For each order σ(k) from any

express batch, recalling that Dσ(k) − `2 < Cσ(j), Cσ(j) + `1 ≤ dσ(i) and `2 ≤ `1, one

has that Dσ(k) ≤ Cσ(j) + `2 ≤ dσ(i) ≤ dσ(k). So no order from any express batch is

late. Symmetrically, starting now from θ̂, consider the subsequence Se(u, j), and do the

following: as long as there is an h such that σ(h) ∈ B′ and σ(h+ 1) ∈ B, where B′ is an

express batch, then swap σ(h) and σ(h+ 1). When no further such swap is possible, we

stop. In the resulting delivery schedule θ, batch B terminates before all express batches

following order u. Note that, since neither the leftmost order of B nor DB have changed,

no order of batch B is late. Also, the deadline of the first order of no express batch

has been anticipated, so again no order from any express batch is late. In conclusion,

θ is optimal and the orders of batch B are processed consecutively on machine M1 (see

Figure 3.3).

Figure 3.3: Illustration of property 4(a) of Lemma 3.1.
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Applying this argument to each regular batch B which is split, we can obtain a new

optimal production-distribution schedule in which no regular batch is split.

Property 4(b): The proof is symmetrical to that of Property 4(a).

Property 5: Simply observe that if, in an optimal delivery schedule, the departure

time of an express batch B is later than the completion time of the last order in B, one

can simply anticipate the departure time of batch B to the completion time of the last

order in batch B. If there is an unlimited number of vehicles for express transportation,

this does not affect the subsequent schedule.

Property 6: Similar to that of Property 5, but since the number of vehicles is limited,

now we anticipate the departure time of a batch B either to the completion time of the

last order in B or to the time the vehicle transporting B becomes available. 2

3.4 Manufacturer Dominates, 3PL Provider Adjusts

- scenario 1

In this section, we address the first scenario, i.e., the manufacturer defines a schedule

on M1, and the 3PL provider has to comply with such schedule. Thereafter, the man-

ufacturer defines a schedule on M2 accounting for the delivery times of the orders. We

address the manufacturer’s problem F2|time− lag|Cmax and the 3PL provider’s problem

1|fseq, dj = C1
j +T |π|1|TC separately. In the latter problem, we consider the cases with

different delivery characteristics π, i.e. one transportation mode or both transportation

modes, unlimited or limited number of vehicles.

3.4.1 Manufacturer’s problem

The manufacturer determines an optimal production schedule in two steps. In the first

step, because of the dominance, the manufacturer can plan his schedule disregarding

the role of the 3PL provider, i.e., assuming that each order will be transported to M2

immediately after release from M1. As observed in the previous section, the problem

faced by the manufacturer is a 2-machine permutation flow shop scheduling problem,

minimizing Cmax, with the consideration of a constant transportation time-lag. Fol-
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lowing the commonly used three-field notation α|β|γ for machine scheduling problems

(Graham et al. 1979), this problem is denoted by F2|time − lag = τ |Cmax. This prob-

lem without permutation, is solved in O(n log n) by the well known Johnson’s algorithm

(Johnson 1954). Since the Johnson’s schedule is also a solution for permutation prob-

lem, the manufacturer’s problem can be solved by the Johnson’s algorithm. In fact,

F2|time− lag|Cmax and F2||Cmax are equivalent problems. Indeed, we can delay an op-

timal schedule of F2||Cmax on M2 by time− lag time units to obtain an optimal schedule

for F2|time− lag|Cmax, and viceversa, given an optimal schedule for F2|time− lag|Cmax,

by removing the delays of time− lag time units before machine M2 one gets an optimal

schedule for F2||Cmax.

In the second step, the manufacturer first imposes the constraints, i.e. the release

time C1
j and the deadline dj of order j, j = 1, . . . , n, to the 3PL provider, then requires

the information about the delivery time dj = C1
j + T of each order j = 1, . . . , n. In this

step, the objective of the manufacturer is to adjust the starting time of orders on M2

while minimizing Cmax subject to the delivery times Dj and the sequence of production

on M1. The sequence of production is not allowed to be changed after it is imposed

to the 3PL provider. Hence, we can obtain the optimal solution as follows: from the

beginning to the end of sequence, schedule the orders one by one as early as possible,

i.e. the starting time of order j is the minimum time between its release time and the

end of the previous scheduled order on M2.

3.4.2 3PL provider’s problem

The 3PL provider’s problem is to determine an optimal delivery schedule minimizing the

transportation cost TC, subject to the release time C1
j and the deadline dj of each order

j, j = 1, . . . , n. As mentioned in the precedent section, this problem can be denoted as

1, fseq|dj = C1
j +T |π|1|TC. We consider the cases with different delivery characteristics

π, i.e. one transportation mode or both transportation modes, unlimited or limited num-

ber of vehicles. Throughout Section 3.4.2, since the production schedule is fixed, we can

simplify the notation assuming that the orders are numbered by increasing completion

times, i.e. C1
1 < . . . < C1

n.

In the following subsections, we analyze the complexity of the 3PL provider’s problem
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in different cases. We consider the problems with both transportation modes (subsections

(i) and (ii)), the problems with regular transportation only (subsection (iii)), and the

problems with express transportation only (subsection (iv)). Table 3.2 summarizes the

obtained complexity results.

Table 3.2: Complexity of 3PL provider’s problem when manufacturer dominates and

3PL provider adjusts.

Vehicle

Regular Express Compl. status Algorithm complexity Subsection

V 1(V1, c1) V 2(∞, c2) P O((n(L + V1))2) when `1 = `2,

O(n3((L+ V1)2c2 + (L+ V1)c22))

when `1 > `2, O(n3((L+V1)c1)2)

when `1 < `2

(i)

V 1(∞, c1) V 2(∞, c2) P O((nL)2) when `1 = `2,

O(n3(L2c2 +Lc22)) when `1 > `2,

O(n3(Lc1)2) when `1 < `2

(i)

V 1(V1, c1) V 2(V2, c2) P when V2 is

fixed, Open

when V2 is

arbitrary

O(n2V2+2(L+V1)2 +n2V2+4(L+

V1)) when `1 = `2, O(n2V2+3(L+

V1)2c2 +n2V2+5(L+V1)c22) when

`1 > `2, O(n2V2+3((L+V1)c1)2 +

n2V2+5(L+ V1)c1) when `1 < `2

(ii)

V 1(∞, c1) V 2(V2, c2) P when V2 is

fixed, Open

when V2 is

arbitrary

O(n2V2+2L2 + n2V2+4L) when

`1 = `2, O(n2V2+3L2c2 +

n2V2+5Lc22) when `1 > `2,

O(n2V2+3(Lc1)2 + n2V2+5Lc1)

when `1 < `2

(ii)

V 1(∞, c1) - P O(n+ L) (iii)

V 1(V1, c1) - P O(n+ V1 min{V1, n}) (iii)

- V 2(∞, c2) P O(n) (iv)

- V 2(V2, c2) P O(n) (iv)

(i) Problems with two transportation modes and an unlimited number of

vehicles for express transportation

We first address the problem 1|fseq, dj = C1
j + T |V 1(V1, c1), V

2(∞, c2), `1 >

`2, direct|1|TC, in which there is a limited number V1 of vehicles for regular trans-
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portation and an unlimited number of vehicles for express transportation, and `1 > `2.

We present a polynomial-time dynamic programming algorithm to solve this problem.

Recall that according to Property 4(a) of Lemma 3.1, the orders of each regular batch

are processed consecutively on M1, according to Property 2 of Lemma 3.1 each express

batch can be only split by regular batches, and according to Property 5 of Lemma 3.1

each express batch departs at the completion time of the last order in this batch.

Algorithm DP3.1

State and Value Function

The dynamic program considers state (i, j1, j2, s, v, g2,m), in which:

� the first i orders have been delivered

� order j1 is the first order of the last regular batch scheduled so far, order j2 is the

first order of the last express batch scheduled so far

� parameter m indicates the transportation mode of the last batch, namely m = 1

stands for regular transportation, and m = 2 for express transportation

� the current last regular batch departs at time ts

� at time ts, v ≤ vs vehicles for regular transportation have been used

� the current last express batch consists of g2 orders. If m = 2, order i is the current

last order of such batch, thus it departs at time C1
i .

We let f(i, j1, j2, s, v, g2,m) denote the minimum transportation cost of all schedules in

state (i, j1, j2, s, v, g2,m).

Boundary Condition

f(0, 0, 0, 0, 0, 0, 1) = 0, f(0, 0, 0, 0, 0, 0, 2) = 0.

Optimal Solution Value

min(j1,j2,s,v,g2,m)∈A f(n, j1, j2, s, v, g2,m),

where A = {(j1, j2, s, v, g2,m)|1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n, 0 ≤ s ≤ L, 0 ≤ v ≤ vs, 0 ≤ g2 ≤

c2,m = 1, 2}.
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Recurrence Relation

We next consider the recurrence relation for f(i, j1, j2, s, v, g2,m). Actually, such state

is only defined for values of the indices such that:

� i ∈ {1, . . . , n}, j1 ∈ {1, . . . , i}, j2 ∈ {1, . . . , i}, s ∈ {0, . . . , L}, v ∈ {0, . . . , vs},

g2 ∈ {0, . . . , c2}, m ∈ {1, 2}

� if m = 1, then s > 0, v > 0 and:

– C1
i ≤ ts, i.e., order i must be completed before the batch departs

– ts+`1 ≤ C1
j1

+T , i.e., the vehicle must arrive in M2 within the most restrictive

due date of an order in the batch

– i− j1 + 1 ≤ c1, i.e., the batch size cannot exceed the vehicle capacity

� if m = 2, then

– C1
i +`2 ≤ C1

j2
+T , i.e., the vehicle must arrive in M2 within the most restrictive

due date of an order in the batch

– 0 < g2 ≤ c2

– if i = j2, then g2 = 1 since the current last order only consists of order i

If a state does not satisfy all these conditions, we let f(i, j1, j2, s, v, g2,m) = +∞.

We can now express the recursive relation as:

f(i, j1, j2, s, v, g2,m) =

min



f(i− 1, j1, j2, s, v, g2,m), if i > j1,m = 1

min(j′1,m
′,s′,v′)∈A1

f(i− 1, j′1, j2, s
′, v′, g2,m

′) + h1, if i = j1,m = 1

min{f(i− 1, j1, j2, s, v, g2 − 1, 1),

f(i− 1, j1, j2, s, v, g2 − 1, 2)}, if i > j2,m = 2

min(j′2,g
′
2,m
′)∈A2

f(i− 1, j1, j
′
2, s, v, g

′
2,m

′) + h2, if i = j2,m = 2

where

A1 = {(j′1,m′, s′, v′)|1 ≤ j′1 ≤ i − 1,m′ = 1, 2, if v > 1, then s′ = s and v′ = v − 1,

otherwise 0 ≤ s′ < s and 0 ≤ v′ ≤ vs′},
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A2 = {(j′2, g′2,m′)|1 ≤ j′2 ≤ i− 1, 0 ≤ g′2 ≤ c2,m
′ = 1, 2}.

The four terms in the recurrence relation have the following meaning.

� The first term corresponds to the case in which order i is added to the current last

batch, and such batch is regular. According to Property 4(a) of Lemma 3.1, such

batch is not split by other batches, so it contains orders j1, . . . , i.

� In the second term, order i is the first order of a new regular batch. In this case, we

must consider all possible states of the first i− 1 orders, in which the last express

batch is the same as state (i, j1, j2, s, v, g2,m). All these states are described by set

A1. Note that if v = 1, the new regular batch is indeed the first being shipped at

time ts, whereas if v > 1 other vehicles have been already planned to depart at ts,

so we must only consider states of type (i− 1, j′1, j2, s, v − 1, g2,m
′)

� The third term considers the case in which order i is added to the current last

batch, and such batch is express. Note that order i and j2 are both in such

batch, while order i − 1 can either be in a regular batch (so that we consider

f(i− 1, j1, j2, s, v, g2− 1, 1)) or in the same express batch as order i (and hence we

consider f(i− 1, j1, j2, s, v, g2 − 1, 2)). In the former case, the regular batch splits

the current last batch.

� The fourth term is similar to the second. In this term, order i is the first order

of a new express batch. This term considers all possible states of the first i − 1

orders, in which the last regular batch is the same as state (i, j1, j2, s, v, g2,m).

These states are described by set A2.

Theorem 3.1 Algorithm DP3.1 finds an optimal delivery schedule for problem 1|

fseq, dj = C1
j + T |V 1(V1, c1), V

2(∞, c2), `1 > `2, direct|1|TC in polynomial time

O(n3((L+ V1)
2c2 + (L+ V1)c

2
2)).

Proof. There exists O(n3(L + V1)c2) states. In fact, for each s ∈ {0, ..., L}, v can

assume vs + 1 distinct values. Since
∑

s vs = V1, one has O(L+ V1) possible pairs (s, v).

In the recurrence relation, the first and third term require O(1) time and are applied

respectively for O(n3(L + V1)c2) states. The second term requires O(n(L + V1)) time
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and is applied for O(n2(L + V1)c2) states. The fourth term requires O(nc2) time and

is applied for O(n2(L + V1)c2) states. Therefore, the complexity of algorithm DP3.1 is

O(n3((L + V1)
2c2 + (L + V1)c

2
2)). Note that since V1 ≤ Ln and c2 ≤ n, this problem is

solvable in polynomial time. 2

Then we provide a similar dynamic programming algorithm for the problem

1|fseq, dj = C1
j + T |V 1(V1, c1), V

2(∞, c2), `1 < `2, direct|1|TC. Recall that according

to Property 4(b) of Lemma 3.1, the orders of each express batch are processed consec-

utively on M1, according to Property 2 of Lemma 3.1 each regular batch can be only

split by express batches, and according to Property 5 of Lemma 3.1 each express batch

departs at the completion time of the last order in this batch.

Algorithm DP3.2

State and Value Function, Boundary Condition, Optimal Solution Value:

From the algorithm DP3.1, we replace g2 by g1 which represents the number of orders

in the current last regular batch and c2 by c1.

Recurrence Relation

We next consider the recurrence relation for f(i, j1, j2, s, v, g1,m). Actually, such state

is only defined for values of the indices such that:

� i ∈ {1, . . . , n}, j1 ∈ {1, . . . , i}, j2 ∈ {1, . . . , i}, s ∈ {0, . . . , L}, v ∈ {0, . . . , vs},

g1 ∈ {0, . . . , c1}, m ∈ {1, 2}

� if m = 1, then s > 0, v > 0, g1 > 0 and:

– C1
i ≤ ts, i.e., order i must be completed before the batch departs

– ts+`1 ≤ C1
j1

+T , i.e., the vehicle must arrive in M2 within the most restrictive

due date of an order in the batch

– if i = j1, then g1 = 1 since the current last order only consists of order i

� if m = 2, then C1
i + `2 ≤ C1

j2
+ T , i.e., the vehicle must arrive in M2 within the

most restrictive due date of an order in the batch, and i − j2 + 1 ≤ c2, i.e., the

batch size cannot exceed the vehicle capacity.
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If a state does not satisfy all these conditions, we let f(i, j1, j2, s, v, g1,m) = +∞.

We can now express the recursive relation as:

f(i, j1, j2, s, v, g1,m) =

min



min{f(i− 1, j1, j2, s, v, g1 − 1, 1),

f(i− 1, j1, j2, s, v, g1 − 1, 2)}, if i > j1,m = 1

min(j′1,m
′,s′,v′,g′1)∈A1

f(i− 1, j′1, j2, s
′, v′, g′1,m

′) + h1, if i = j1,m = 1

f(i− 1, j1, j2, s, v, g1,m), if i > j2,m = 2

min(j′2,m
′)∈A2

f(i− 1, j1, j
′
2, s, v, g1,m

′) + h2, if i = j2,m = 2

where

A1 = {(j′1,m′, s′, v′, g′1)|1 ≤ j′1 ≤ i − 1,m′ = 1, 2, 0 ≤ g′1 ≤ c1, if v > 1, then s′ = s

and v′ = v − 1, otherwise 0 ≤ s′ < s and 0 ≤ v′ ≤ vs′},

A2 = {(j′2,m′)|1 ≤ j′2 ≤ i− 1,m′ = 1, 2}.

The interpretation of the recurrence relation of algorithm DP3.3 is similar to that of

algorithm DP3.1.

Theorem 3.2 Algorithm DP3.2 finds an optimal delivery schedule for problem 1|

fseq, dj = C1
j + T |V 1(V1, c1), V

2(∞, c2), `1 < `2, direct|1|TC in polynomial time

O(n3((L+ V1)c1)
2).

Proof. The proof is similar to that of algorithm DP3.1. 2

Finally, we provide a similar polynomial-time dynamic programming algorithm for

the problem 1|fseq, dj = C1
j + T |V 1(V1, c1), V

2(∞, c2), `1 = `2, direct|1|TC. Recall that

according to Property 4 of Lemma 3.1, the orders of each batch are processed consecu-

tively on M1. Hence we can simplify the dynamic programming as follows.

Algorithm DP3.3

State and Value Function, Boundary Condition, Optimal Solution Value, Current rela-

tion:

From the algorithm DP3.1, we remove g2, replace two parameters j1 and j2 by one
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parameter j which represents the first order of the last batch.

Recurrence Relation

f(i, j, s, v,m) =

min



f(i− 1, j, s, v,m), if i > j,m = 1

min(j′,m′,s′,v′)∈A1 f(i− 1, j′, s′, v′,m′) + h1, if i = j,m = 1

f(i− 1, j, s, v,m), if i > j,m = 2

min(j′,m′)∈A2 f(i− 1, j′, s, v,m′) + h2, if i = j,m = 2

where

A1 = {(j′,m′, s′, v′)|1 ≤ j′ ≤ i − 1,m′ = 1, 2, if v > 1, then s′ = s and v′ = v − 1,

otherwise 0 ≤ s′ < s and 0 ≤ v′ ≤ vs′},

A2 = {(j′,m′)|1 ≤ j′ ≤ i− 1,m′ = 1, 2}.

The interpretation of the recurrence relation of algorithm DP3.3 is similar to that of

algorithm DP3.1.

Theorem 3.3 Algorithm DP3.3 finds an optimal delivery schedule for problem 1|

fseq, dj = C1
j + T |V 1(V1, c1), V

2(∞, c2), `1 = `2, direct|1|TC in polynomial time

O((n(L+ V1))
2).

Proof. The proof is similar to that of algorithm DP3.1. 2

For the other problems with an unlimited number of vehicles for regular trans-

portation, i.e. 1| fseq, dj = C1
j + T |V 1(∞, c1), V

2(∞, c2), `1 > `2, direct|1|TC, 1|

fseq, dj = C1
j +T |V 1(∞, c1), V

2(∞, c2), `1 < `2, direct|1|TC, 1| fseq, dj = C1
j +T |V 1(∞,

c1), V
2(∞, c2), `1 = `2, direct|1|TC, we can give similar dynamic programming algo-

rithms by removing the parameter v from the algorithms DP3.1, DP3.2 and DP3.3,

because we do not need to consider the number of used regular vehicles. The complexity

results are shown in Table 3.2.

(ii) Problems with two transportation modes and a limited number of vehicles

for express transportation

Let us consider the problem 1|fseq, dj = C1
j + T |V 1(V1, c1), V

2(V2, c2), `1 ≥

`2, direct|1|TC, where both the number of vehicles for regular transportation and that



3.4. Manufacturer Dominates, 3PL Provider Adjusts - scenario 1 45

for express transportation are limited and `1 > `2. According to Property 4(a) of Lemma

3.1, the orders of each regular batch are processed consecutively on machine M1. From

Property 2 of Lemma 3.1, each express batch can be only split by regular batches. Since,

according to Property 6 of Lemma 3.1, each express batch departs either at the com-

pletion time of the last order in this batch or when a vehicle for express transportation

becomes available, the possible departure times for vehicles for express transportation

are Cj, C
1
j + (`2 + `′2), . . . , C

1
j + u(`2 + `′2), for some u = 0, . . . , n − j and j = 1, . . . , n.

Assuming that there are L′ + 1 distinct candidate departure times, we denote them as

t0, t1, t2, . . . , tL′ , where t0 = 0. Note that L′ ≤ n(n + 1)/2, hence the possible departure

times for vehicles for express transportation are O(n2) (Lee and Chen 2001). We assume

that V2 is fixed. The problem can be solved by a dynamic program which is similar to

DP3.1.

Algorithm DP3.4

State and Value Function

The dynamic program considers state (i, j1, j2, s, v, g2,m, s1, . . . , sV2), where parameters

i, j1, j2, s, v, g2 and m are defined exactly as algorithm DP3.1 (see subsection (i)), and

the last V2 express batches depart at times ts1 , . . . , tsV2 , where sk ∈ {0, 1, . . . , L′} for

k = 1, . . . , V2 and 0 ≤ s1 ≤ . . . ≤ sV2 . We let f(i, j1, j2, s, v, g2,m, s1, . . . , sV2) denote the

minimum transportation cost of all schedules in state (i, j1, j2, s, v, g2,m, s1, . . . , sV2).

Boundary Condition

f(0, 0, 0, 0, 0, 0, 1, 0, . . . , 0) = 0, f(0, 0, 0, 0, 0, 0, 2, 0, . . . , 0) = 0.

Optimal Solution Value

min(j1,j2,s,v,g2,m,s1,...,sV2 )∈A f(n, j1, j2, s, v, g2,m, s1, . . . , sV2),

where A = {(j1, j2, s, v, g2,m, s1, . . . , sV2)|1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n, 0 ≤ s ≤ L, 0 ≤ v ≤

vs, 0 ≤ g2 ≤ c2,m = 1, 2, 0 ≤ sk ≤ L′, k = 1, . . . , V2}.

Recurrence Relation

Considering the recurrence relation for f(i, j1, j2, s, v, g2,m, s1, . . . , sV2), we have that this

is defined only for values of the indices such that:

� i ∈ {1, . . . , n}, j1 ∈ {1, . . . , i}, j2 ∈ {1, . . . , i}, s ∈ {0, . . . , L}, v ∈ {0, . . . , vs},

g2 ∈ {0, . . . , c2}, m ∈ {1, 2}
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� sk ∈ {0, . . . , L′},k = 1, . . . , V2, su ≤ su+1, u = 1, . . . , V2 − 1

� if m = 1, then s > 0, v > 0 and:

– Ci ≤ ts, i.e., order i must be completed before the (regular) batch departs

– ts+`1 ≤ C1
j1

+T , i.e., the vehicle must arrive in M2 within the most restrictive

due date of an order in the batch

– i− j1 + 1 ≤ c1, i.e., the batch size cannot exceed the vehicle capacity

� if m = 2, then

– Ci ≤ tsV2 , i.e., order i must be completed before the (express) batch departs

– tsV2 + `2 ≤ C1
j2

+ T , i.e., the vehicle (departing at tsV2 ) must arrive in M2

within the most restrictive due date of an order in the batch

– 0 < g2 ≤ c2

– if i = j2, then g2 = 1 since the current last order only consists of order i

If a state does not satisfy all these conditions, we let

f(i, j1, j2, s, v, g2,m, s1, . . . , sV2) = +∞. We can now express the recursive rela-

tion as:

f(i, j1, j2, s, v, g2,m, s1, . . . , sV2) =

min



f(i− 1, j1, j2, s, v, g2,m, s1, . . . , sV2), if i > j1,m = 1

min(j′1,m
′,s′,v′)∈A1

f(i− 1, j′1, j2, s
′, v′, g2,m

′, s1, . . . , sV2) + h1, if i = j1,m = 1

min{f(i− 1, j1, j2, s, v, g2 − 1, 1, s1, . . . , sV2),

f(i− 1, j1, j2, s, v, g2 − 1, 2, s1, . . . , sV2)}, if i > j2,m = 2

min(j′2,g
′
2,m
′,s′1)∈A2

f(i− 1, j1, j
′
2, s, v, g

′
2,m

′, s′1, s1, . . . , sV2−1)

+h2, if i = j2,m = 2

where

A1 = {(j′1,m′, s′, v′)|1 ≤ j′1 ≤ i − 1,m′ = 1, 2, if v > 1, then s′ = s and v′ = v − 1,

otherwise 0 ≤ s′ < s and 0 ≤ v′ ≤ vs′},

A2 = {(j′2, g′2,m′, s′)|1 ≤ j′2 ≤ i − 1, 0 ≤ g′2 ≤ c2,m
′ = 1, 2, 0 ≤ s′1 ≤ s1, ts′1 +

min{1, s′1} ∗ (`2 + `′2) ≤ tsV2}.
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The four terms in the recurrence relation have the following meaning.

� As in DP3.1, the first term corresponds to the case in which order i is added to

the current last batch, and such batch is regular. Due to Property 4(a) of Lemma

3.1, such batch is not split by other batches, so it contains orders j1, . . . , i.

� Also the second term is very similar to the corresponding term in DP3.1. Order i

is the first order of a new regular batch. In this case, we must consider all possible

states of the first i− 1 orders, in which the last express batch is the same as state

(i, j1, j2, s, v, g2,m, s1, . . . , sV2). All these states are described by set A1. If v = 1,

the new regular batch is indeed the first being shipped at time ts, whereas if v > 1

other vehicles have been already planned to depart at ts, so we must only consider

states of type (i− 1, j′1, j2, s, v − 1, g2,m
′).

� The third term considers the case in which order i is added to the current last

batch, and such batch is express. Note that order i and j2 are both in such

batch, while order i − 1 can either be in a regular batch (so that we consider

f(i − 1, j1, j2, s, v, g2 − 1, 1, s1, . . . , sV2)) or in the same express batch as order i

(and hence we consider f(i−1, j1, j2, s, v, g2−1, 2, s1, . . . , sV2)). In the former case,

the regular batch splits the current last batch.

� The fourth term is similar to the second. In this term, order i is the first order of a

new express batch. This term considers all possible states of the first i− 1 orders,

in which the last regular batch is the same as state (i, j1, j2, s, v, g2,m, s1, . . . , sV2).

These states are described by set A2.

Theorem 3.4 Algorithm DP3.4 finds an optimal delivery schedule for problem

1|fseq, dj = C1
j + T |V 1(∞, c1), V

2(∞, c2), `1 > `2, direct|1|TC in O(n2V2+3(L+ V1)
2c2 +

n2V2+5(L+ V1)c
2
2) time, which is polynomial if V2 is fixed.

Proof. The proof is similar to that of algorithm DP3.1. 2

For the other problems with two transportation modes and limited number of vehicles

for express transportation, similar dynamic programming algorithms can be given by

using the same method of transformation as the subsection (i). The results are shown
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in Table 3.2. If V2 is fixed, all of the above problems can be solved in polynomial time.

Otherwise, the complexities of problems are open.

(iii) Problems with regular transportation only

We next consider problem 1|fseq, dj = C1
j + T |V 1(∞, c1), direct|1|TC, which can

be seen as a special case of problem 1|fseq, dj = C1
j + T |V 1(∞, c1), V 2(V2, c2), `1 =

`2, direct|1|TC (see subsection (ii)), with V2 = 0. We can give a similar dynamic pro-

gramming algorithm that runs in O((nL)2) time. Actually, we can give a polynomial-time

greedy algorithm having smaller complexity. Hereafter we assume, together with the as-

sumption at the beginning of section 3.4.2, that orders and departure times are numbered

in increasing order of completion times on M1 and departure times respectively. In fact,

for each order i, we let t(i) denote the first departure time after the completion of order

i on M1, i.e.:

t(i) = min{ts : ts ≥ C1
i , s = 1, . . . , L}

Note that all values t(i) can be computed in O(n+L), simply scanning the two ordered

sets.

The algorithm GA3.1 greedily scans the orders in increasing order of completion

times, assigning orders to the current batch as long as no deadline is violated. When the

addition of the next order would make the first order late, a new batch is started.

The algorithm exploits the fact that there exists an optimal delivery schedule in which

no batch is split (Property 3 of Lemma 3.1). In Algorithm GA3.1, i is the index of the

last considered order, j is the index of the last considered batch, P contains the delivery

schedule and tBj
is the departure time of batch Bj.

Theorem 3.5 Algorithm GA3.1 finds an optimal delivery schedule for problem 1|fseq,

dj = C1
j + T |V 1(∞, c1) , direct|1|TC in polynomial time O(n+ L).

Proof. Let φ be the schedule generated by Algorithm GA3.1, and consider an optimal

delivery schedule θ. From Property 3 of Lemma 3.1, no batch can be split in θ. Suppose

that θ and φ coincide up to the first k − 1 batches. According to Algorithm GA3.1, one

has DBk
(θ) ≥ DBk

(φ) and |Bk(φ)| ≥ |Bk(θ)|, where Bk(φ) and Bk(θ) denote the k-th

batch in φ and θ respectively, |Bk(φ)| denotes the number of orders in batch Bk(φ). We
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Algorithm 1: Algorithm GA3.1

1 i = 0 ; j = 0 ; P = ∅; compute all t(i) ; ts = t(1) ;

2 while i < n do

3 if C1
i+1 + T < ts + `1 then

4 There is no feasible solution, STOP.

5 else

6 j = j + 1 ; Bj = {i+ 1} ; //put order i+ 1 in a new batch

7 tBj
= ts ; //initialize departure time of this new batch

8 i = i+ 1 ; q = i ; //save index of the first order of this new batch

9 ts = t(i+ 1) ;

10 while (i < n)&&(|Bj|+ 1 ≤ c1)&&(C1
q + T ≥ ts + `1) do

11 Bj = Bj ∪ {i+ 1} ;

12 tBj
= ts; //update departure time of the current batch

13 i = i+ 1; ts = t(i+ 1) ;

14 for w = 1 to j do

15 P = P ∪Bw;//form delivery schedule by combining all the batches

distinguish three cases.

� |Bk(φ)| > |Bk(θ)| and DBk
(θ) = DBk

(φ). In this case, we add to Bk(θ) the orders

in Bk(φ) \ Bk(θ), so that |Bk(φ)| = |Bk(θ)| without changing DBk
(θ), which does

not increase the transportation cost.

� |Bk(φ)| = |Bk(θ)| and DBk
(θ) > DBk

(φ). In this case, we anticipate DBk
(θ), so

that DBk
(θ) = DBk

(φ), and this does not increase the transportation cost.

� |Bk(φ)| > |Bk(θ)| and DBk
(θ) > DBk

(φ). In this case one can perform both

previous transformations, to get both |Bk(φ)| = |Bk(θ)| and DBk
(θ) = DBk

(φ),

which does not increase the transportation cost.

Applying the same rule, we can transform the subsequent batches in θ as in φ without

increasing the transportation cost. So schedule φ produced by Algorithm GA3.1 is

optimal.
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For each order, Algorithm GA3.1 checks (at line 13) whether its addition to the

current batch violates any deadline or the batch size. This is done in constant time. Since

there are n orders, lines 2–13 are executed in O(n), and the complexity of Algorithm

GA3.1 is therefore dominated by the computation of values t(i), i.e., O(n+ L). 2

Figure 3.4: Illustration of Theorem 3.5.

Figure 3.4 shows an example of the third case in the proof of Theorem 3.5, where φ,

θ1 and θ2 represent respectively the schedule created by Algorithm GA3.1, the optimal

schedule before change and that after change. In this example, DBk
(φ) = ts+ l1 is earlier

than DBk
(θ1) = ts+1 + l1. Bk(φ) = {4, 5, 6} has 3 orders while Bk(θ1) = {4, 5} has 2

orders. This accords with the condition of the third case. After change as the proof, we

obtain a new optimal schedule θ2, such that DBk
(θ2) = ts + l1 and Bk(θ2) = {4, 5, 6}.

Similarly, viewing problem 1|fseq, dj = C1
j + T |V 1(V1, c1), direct|1|TC as a special

case of 1|fseq, dj = C1
j + T |V 1(V1, c1), V

2(V2, c2), `1 = `2, direct|1|TC with V2 = 0, one

can solve it by dynamic programming algorithm in time O((n(L + V1))
2). Actually,

we can give a polynomial-time dynamic algorithm having smaller complexity O(n +

V1 min{V1, n}).

In what follows, given two integers A and E, E ≥ A, we let [A,E] denote the closed

interval of integers A,A+ 1, . . . , E. Recall that C1
1 ≤ · · · ≤ C1

n and t1 < · · · < tL.

Given an instance of the 3PL provider’s problem, consider the i-th departure time

ti. Denote by [Ai, Ei] ⊆ N the maximal interval of orders such that any order from this

interval can be feasibly delivered if its delivery starts at time ti, i = 1, . . . , L. Observe

that order j can be feasibly delivered by a vehicle departing at time ti if and only if

ti − T + `1 ≤ C1
j ≤ ti, j = 1, . . . , n. All the intervals [Ai, Ei], i = 1, . . . , L, can be

constructed in O(n+ L) time.
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The following two lemmas are trivial.

Lemma 3.2 A1 ≤ · · · ≤ AL and E1 ≤ · · · ≤ EL.

Lemma 3.3 Problem 1|fseq, dj = C1
j + T |V 1(V1, c1), direct|1|TC has a solution only if

∪Li=1[Ai, Ei] = {1, . . . , n}.

Note that if an instance of the 3PL provider’s problem has a solution, then A1 = 1,

EL = n and Ai+1 ≤ Ei, i = 1, . . . , n− 1. Moreover, a simple order interchange argument

can be used to prove the following:

Lemma 3.4 If the problem 1|fseq, dj = C1
j + T |V 1(V1, c1), direct|1|TC has a solution,

then there exists an optimal solution, in which each batch consists of consecutively

indexed orders and a batch with smaller order indices is delivered earlier.

We will consider solutions which satisfy Lemma 3.4. In what follows, we conveniently

represent an instance and a feasible solution by means of the diagram shown in Figure3.5.

There are L rows and n columns. Row i corresponds to departure time ti, and circles in

these row correspond to the orders that can be feasibly delivered by a vehicle departing

at ti. Note that Lemma 3.4 implies that, if a feasible solution exists, no column can

be empty. We represent a feasible solution by framing the orders in the same batch.

Products assigned to a batch are marked in bold. For the example in Figure 3.5, there

are L = 4 delivery times, batch sizes are bounded by c1 = 4, and the numbers of vehicles

are v1 = 4, v2 = 3, v3 = 3 and v4 = 2.

A1 = 1 E1
• • • • • • • • ◦ ◦ ◦

A2 E2
• • • • • • • • • • •◦ ◦

A3 E3
• • • • • • • • • • •◦ ◦

A4 E4 = n
• • • • • • • •◦ ◦ ◦

Figure 3.5: Graphical representation of a delivery schedule

We call order j ∈ [Ai, Ei] an order in row i. Note that an order is in at least one row

(because of Lemma 3.3) and, in general, is in several rows. Given a feasible solution, we

call a batch full if it contains exactly c1 orders. In a feasible solution, we call residual
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orders the last orders in row i which are not assigned to a vehicle departing at ti (and,

hence, will be delivered later).

Lemma 3.5 If the problem 1|fseq, dj = C1
j + T |V 1(V1, c1), direct|1|TC has a solution,

then there exists an optimal solution which satisfies Lemma 3.4 and in which batches in

the same row i, i = 1, . . . , L, satisfy one of the following four properties:

(1) all batches are full and their number is vi,

(2) all batches are full, their number is less than vi, and the number of residual orders

in row i is at most c1 − 1,

(3) row i contains no batch and the number of residual orders in rows 1, . . . , i is at

most c1 − 1,

(4) all but one batches are full, the non-full batch is last in row i and it includes

order Ei.

Proof. Given an optimal solution which satisfies Lemma 3.4, consider row 1 of the

diagram. We will modify it according to the following two cases (a) and (b).

Case (a): v1c1 ≤ E1. In this case, re-assign orders 1, . . . , v1c1 to v1 full batches in

row 1. It can be easily seen that the solution remains optimal and satisfying Lemma 3.4.

In the obtained solution, the batches in row 1 satisfy property (i).

Case (b): v1c1 > E1. In this case, calculate number x, 0 ≤ x ≤ v1−1, such that xc1 ≤

E1 and (x + 1)c1 > E1. Re-assign orders 1, . . . , xc1 to x full batches in row 1. If, after

performing such reassignment, some orders in xc1 + 1, xc1 + 2, . . . , E1 are still assigned

to some batch in row 1, then reassign all orders xc1 + 1, xc1 + 2, . . . , E1 to a last non-full

batch in row 1. Otherwise, leave orders xc1 + 1, xc1 + 2, . . . , E1 unassigned (residual). It

can be easily seen that the solution remains optimal and satisfying Lemma 3.4. For this

solution, if x ≥ 1, then the batches in row 1 satisfy property (ii) or (iv), and if x = 0,

then they satisfy property (iii) or (iv).

After the above modification has been done, remove all assigned orders of row 1

from the obtained solution. Also, renumber remaining orders to start from number 1,

renumber departure times to start from number 1, and consider the reduced solution in

the new notation. Now, one has only L − 1 departure times and a smaller number of

orders.



3.4. Manufacturer Dominates, 3PL Provider Adjusts - scenario 1 53

All the above arguments can be applied for the reduced solution. Repetition of this

argumentation at most L times completes the proof. 2

Note that the rows 1, 2, 3 and 4 in Figure 3.5 satisfy properties (ii), (iv), (iv) and

(i), respectively.

The above properties justify the following dynamic programming algorithm, denoted

as DP3.5. In this algorithm, partial batch sequences satisfying Lemmas 3.4 and 3.5 are

constructed. A batch sequence is extended by appending a new batch to its end. A

state (i, a, k) is associated with each partial batch sequence, where i is the current row,

a is number of batches in row i and k is the total number of batches considered so far.

We denote by G(i, a, k) the maximum number of orders that can be feasibly delivered

according to the partial batch sequences in the state (i, a, k). It is easy to see that,

if there exists a batch sequence in a state (i, a, k) that can be extended to an optimal

batch sequence, then the batch sequence corresponding to the value G(i, a, k) can be

extended to an optimal batch sequence as well. A batch sequence with the smallest

number of batches k, which corresponds to the value G(L, a, k) = n, is optimal. A

formal description of algorithm DP3.5 is given below.

As a preprocessing step, compute

v′i := min{vi, d(Ei − Ai + 1)/c1e}, i = 1, . . . , L, and V ′ =
L∑
i=1

v′i.

In fact, in view of Lemma 3.5, no more than v′i vehicles will be used in an optimal solution

departing at time ti.

The initialization is

G(1, 0, 0) = 0, G(1, a, a) = min{ac1, E1}, a = 1, . . . , v′1,

and G(i, a, k) = −∞, i = 2, 3, . . . , L, a = 0, 1, . . . , v′i, k = 0, 1, . . . ,min{V ′, n}.

The recursion for i = 2, 3, . . . , L is the following.

For k = 0, 1, . . . ,min{V ′, n},

G(i, 0, k) = max
0≤b≤vi−1

{G(i− 1, b, k)}.

Note that this represents the maximum number of orders which can be feasibly delivered

in k batches, when no batch departs at ti.
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For k = 1, . . . ,min{V ′, n},

G(i, 1, k) = min{Ei, max
0≤b≤vi−1

{G(i− 1, b, k − 1}+ c1}}.

Note that this represents the maximum number of orders which can be feasibly delivered

in k batches, when exactly one batch departs at ti. Let the above maximum be attained

at b = b∗. If G(i − 1, b∗, k − 1) + c1 ≤ Ei, then the first batch in row i is full and it

includes orders G(i− 1, b∗, k − 1) + 1, G(i− 1, b∗, k − 1) + 2, . . . , G(i− 1, b∗, k − 1) + c1

(case (i) or (ii) of Lemma 3.5). Otherwise, this batch is non-full and it includes orders

G(i− 1, b∗, k − 1) + 1, G(i− 1, b∗, k − 1) + 2, . . . , Ei (case (iv) of Lemma 3.5).

Similarly, we have the general formula for k = 1, . . . ,min{V ′, n} and a =

2, 3, . . . ,min{k, vi}:

G(i, a, k) = min{Ei, G(i, a− 1, k − 1) + c1}.

This is the maximum number of orders which can be feasibly delivered in k batches,

when exactly a batches depart at ti (a ≥ 2). If G(i, a− 1, k− 1) + c1 ≤ Ei, then the a-th

batch is full and it includes orders G(i, a−1, k−1) + 1, G(i, a−1, k−1) + 2, . . . , G(i, a−

1, k − 1) + c1 (case (i) or (ii)). Otherwise, this batch is non-full and it includes orders

G(i, a− 1, k − 1) + 1, G(i, a− 1, k − 1) + 2, . . . , Ei (case (iv)).

If, for some (i, a, k), one has G(i, a, k) ≤ Ai − 1, then it is not possible to feasibly

accommodate all orders of rows 1, . . . , i − 1 in k batches, a of which consist of orders

in row i. In this case, no feasible solution can be obtained from such partial solution,

and hence we reset G(i, a, k) = −∞, i = 2, 3, . . . , L, k = 0, 1, . . . ,min{V ′, n}, a =

0, 1, . . . ,min{k, vi}.

If

max
{
G(L, a, k) | a = 0, 1, . . . , vL, k = 1, . . . ,min{V ′, n}

}
≤ n− 1,

then the 3PL provider’s problem has no solution. Otherwise, the minimum number of

batches is equal to

k∗ = min
{
k | G(L, a, k) = n, a = 0, 1, . . . , vL, k = 1, . . . ,min{V ′, n}

}
, (3.4.1)

and the corresponding solution can be found by backtracking.

We are now in the position of proving the final result.
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Theorem 3.6 Problem 1|fseq, dj = C1
j + T |V 1(V1, c1), direct|1|TC can be solved in

time O(n+ V1 min{V1, n}).

Proof. The running time of algorithm DP3.5 is determined by the recursive computations

of the values G(i, 0, k), G(i, 1, k) and G(i, a, k) for i = 2, 3 . . . , L, a = 2, 3, . . . ,min{k, v′i},

and k = 1, . . . ,min{V ′, n}. For fixed arguments, values G(i, 0, k) can be computed in

O(v′i−1) time, and hence all values G(i, 0, ·) can be computed in O(v′i−1 min{V ′, n}). As i

ranges from 1 to L, one has O((v′1+v′2+· · ·+v′L) min{V ′, n}), i.e., O(V ′min{V ′, n}). The

same discussion holds for all values G(i, 1, k), while all values G(i, a, k) can be computed

in O(1) time. In conclusion, all G-values can be computed in O(V ′min{V ′, n}) time.

Finally, the optimal solution can be computed in O(n) by the (3.4.1). Since V ′ ≤ V1,

the 3PL provider’s problem can be solved in time O(n+ V1 min{V1, n}). 2

(iv) Problems with express transportation only

Let us now turn to problems in which V1 = 0. Again, from Property 3 of Lemma 3.1,

there exists an optimal delivery schedule in which no batch is split.

If there is an unlimited number of vehicles, considering that 1|fseq, dj =

C1
j + T |V 2(∞, c2), direct|1|TC is as a special case of 1|fseq, dj = C1

j +

T |V 1(V1, c1), V
2(∞, c2), `1 = `2, direct|1|TC with V1 = 0, one can give a dynamic pro-

gramming algorithm having complexity O(n2). Indeed, also in this case the problem can

be solved more efficiently by a greedy algorithm. Such algorithm is identical to Algorithm

GA3.1, except that the departure time of a batch now coincides with the completion time

of the last order in the batch, and, of course, there is no need to define t(i). Hence, it

suffices replacing the step at lines 9 and 13, “ts = t(i + 1)”, with “ts = C1
i+1”, and the

time complexity is therefore O(n).

Let us now turn to the problem with a limited number of vehicles, i.e., 1|fseq, dj =

C1
j + T |V 2(V2, c2), direct|1|TC. The complexity of this problem is open if V2 is not

fixed. If V2 is fixed, the problem can be seen as a special case of problem 1|fseq, dj =

C1
j + T |V 1(V1, c1), V

2(V2, c2), `1 = `2, direct|1|TC with V1 = 0, and hence one can give a

similar dynamic programming algorithm that runs in O(n2V2+4) time. Indeed, in this case

the problem can be solved more efficiently. We assume, together with the assumption at
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the beginning of section 3.4.2, that orders and departure times are numbered in increasing

order of completion times on M1 and departure times respectively.

Consider the following batch scheduling problem. There are ñ jobs and m parallel

identical machines. All jobs have the same processing time pj = p, j = 1, . . . , ñ. Each

job has a release date rj ≥ 0 and a deadline dj, dj ≥ rj + p, j = 1, . . . , ñ. Jobs are

performed in batches having bounded capacity q, i.e., a machine can handle up to q

jobs in parallel. Jobs in a batch have the same starting and completion time (this is also

known as batch availability model with parallel job processing and bounded batch capacity,

see Potts and Kovalyov (2000) for the terminology.) Since all job processing times are

identical and equal to p, the processing time of any batch equals p. The problem is to

find a feasible batch schedule (i.e., a partition of Ñ = {1, . . . , ñ} into batches and an

assignment of batches to machines that respect all release dates and deadlines) with the

minimum number of batches.

In what follows, we show that the 3PL provider’s problem 1|fseq, dj = C1
j +

T |V 2(V2, c2), direct|1|TC can be reduced to batch scheduling problem. In such reduction,

express vehicles in 3PL provider’s problem correspond to machines in batch scheduling

problem, orders in the 3PL provider’s problem to jobs in batch scheduling problem and

the vehicle round trip, including batch delivery and return in the 3PL provider’s prob-

lem, to the processing of the corresponding batch in batch scheduling problem. More

formally, given an instance I of 3PL provider’s problem, construct an instance IB of

batch scheduling problem as follows:

ñ := n;

m := V2;

q := c2;

rj := C1
j , dj := rj + T + `′2, pj = p = `2 + `′2, j = 1, . . . , ñ.

Lemma 3.6 Given a feasible solution for the instance IB of batch scheduling prob-

lem, a feasible solution for the instance I of 3PL provider’s problem 1|fseq, dj =

C1
j + T |V 2(V2, c2), direct|1|TC can be built having the same value of objective function,

and vice versa.

Proof. Consider an arbitrary batch G in a feasible solution of IB. Let C̃G denote the
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completion time of this batch. Due to the feasibility, the relation maxj∈G{rj} + p ≤

C̃G ≤ minj∈G{dj} is satisfied. This relation can be written as

max
j∈G
{C1

j }+ `2 + `′2 ≤ C̃G ≤ min
j∈G
{C1

j }+ T + `′2,

which implies maxj∈G{C1
j } ≤ C̃G−`′2−`2 and C̃G−`′2 ≤ minj∈G{C1

j }+T . Now, associate

with batch G a batch H in the corresponding instance I of 3PL provider’s problem, and

let C̃G− `′2− `2 and C̃G− `′2 be its start and delivery times, respectively. The latter two

relations prove that the orders in the batch H are feasibly delivered for 3PL provider’s

problem. Also note that, according to reduction, no two batches in I will be assigned

to the same vehicle at the same time and each vehicle returns empty to the upstream

stage.

Conversely, let H be a batch in a feasible solution of I. The corresponding vehicle

departs not earlier than maxj∈H{C1
j } and delivers not earlier than maxj∈H{C1

j }+`2. Let

τDEL,H be the delivery time of batch H in the feasible solution to I. Due to feasibility,

one must have

τDEL,H −min
j∈H
{C1

j } ≤ T. (3.4.2)

Now, define the completion time of the corresponding batch G in IB as C̃G := τDEL,H+`′2.

Then, from (3.4.2), we obtain

C̃G ≤ min
j∈H
{C1

j }+ T + `′2 = min
j∈G
{dj}.

Hence, all job deadlines in IB are satisfied. Furthermore, batch G in IB starts at time

C̃G − p, and

τDEL,H + `′2 − p = τDEL,H − `2 ≥ max
j∈H
{C1

j } = max
j∈G
{rj},

so batch G respects job release dates as well. Finally, each vehicle carries one batch and

hence no machine will process more than one batch at a time. 2

We are now in the position of proving the following result.

Theorem 3.7 Problem 1|fseq, dj = C1
j + T |V 2(V2, c2), direct|1|TC can be solved in

O(n) time.
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Proof. Given an instance of 3PL provider’s problem, it can be solved by constructing

the corresponding instance of batch scheduling problem according to the reduction and

solving it. Koehler and Khuller (2013) developed an O(ñ) time algorithm for batch

scheduling problem in the special case in which release dates and deadlines are agreeable,

i.e., ri < rj implies di ≤ dj for any jobs i and j. We observe that, due to the reduction, the

instance of batch scheduling problem obtained is indeed agreeable, and as a consequence,

the instance of 3PL provider’s problem can be solved in O(n) time. 2

3.5 3PL Provider Dominates, Manufacturer Adjusts

- scenario 2

In this section, we address the second scenario, i.e., the 3PL provider defines a delivery

schedule, and the manufacturer has to adjust the production schedule subject to the fixed

number of regular vehicles and express vehicles imposed by the 3PL provider. We address

the 3PL provider’s problem 1|no − idle, dj = C1
j + T |π|1|TC and the manufacturer’s

problem separately. For the 3PL provider’s problem, we consider the cases with one

transportation mode and other different delivery characteristics π, i.e. unlimited or

limited number of vehicles.

3.5.1 3PL provider’s problem

As discussed in Section 3.2, the 3PL provider’s problem can be seen as an IPODS (In-

tegrated production and outbound distribution scheduling) problem, where the orders

are processed on a single machine and the batches are delivered to a single customer,

with deadlines depending on the production schedule. We analyze the complexity of the

problems in this scenario. Since in the literature the deadlines are independent of the

production schedule, known complexity results do not in general apply to our problems.

In this section, after giving some properties, we address the case in which there are

only vehicles for express transportation (subsections (a) and (b)) and the case in which

there are only vehicles for regular transportation (subsection (c)). As shown in Table

3.3, the problem with express transportation is polynomially solvable only in the case
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with an unlimited number of vehicles of capacity c2 ≤ 3. The problem with regular

transportation is always strongly NP-hard. Hence the problem with both transportation

modes is also strongly NP-hard.

Table 3.3: Complexity of 3PL provider problems when 3PL provider dominates and

manufacturer adjusts.

Vehicle

Regular Express Compl. status Algorithm complexity Subsection

- V 2(∞, 3) P O(n2) (a)

- V 2(∞, 2) P O(n log n) (a)

- V 2(∞, 1) P O(n) (a)

- V 2(∞, c2 ≥ 4) sNP (a)

- V 2(1, 1) sNP (b)

V 1(∞, c1) - sNP (c)

V 1(V1, c1) - sNP (c)

We can prove that the following property holds for the problem 1|no − idle, dj =

C1
j + T |π|1|TC with all possible values of π.

Lemma 3.7 There exists an optimal production-distribution schedule for problem

1|no − idle, dj = C1
j + T |π|1|TC such that, if the orders of batch B are processed

consecutively on M1, then the order having longest processing time in the batch is in

first position.

Proof. In a given optimal production-distribution schedule (σ, θ), consider a batch B

consisting of orders consecutively processed on M1, and in which the first order, say order

j, is not the longest order. Here the batch B can be a regular batch or an express batch.

Let k be the longest order in B. Due to feasibility, DB ≤ dj = C1
j (σ) + T . Now consider

the new production schedule σ′ obtained by moving k in first position in its batch, and

shifting all other orders forward, without changing the departure time of batch B. Since

k is the longest order in B, C1
h(σ′) > C1

h(σ) for all h 6= k. Hence, since the delivery date

DB of the batch has not changed, all these orders are on time in σ′. The only order

which has been moved backward is k. Since p1k > p1j , then C1
k(σ′) > C1

j (σ), and since

j was on time in σ, DB ≤ C1
j (σ) + T < C1

k(σ′) + T . In conclusion, also σ′ is feasible

and optimal. By repeatedly applying this argument, one can find a production schedule
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which respects the property and having the same transportation cost as (σ, θ). 2

(a) Problems with express transportation only and an unlimited number of

vehicles for express transportation

We address the case in which only express transportation exists and the number of vehi-

cles is unlimited. We show that the complexity of the problem can be fully characterized

and the complexity of the problem depends on the capacity of the vehicle.

We first show that if each vehicle can carry at least 4 orders, the problem is difficult.

In what follows, we use the following strongly NP-complete problem (Garey and Johnson

1979):

3-partition. Given 3n integers a1, . . . , a3n, so that
∑
ai = nW , and such that

W/4 < ai < W/2 for all i, is it possible to partition them into n triples each summing

up to W?

Theorem 3.8 Problem 1|no− idle, dj = C1
j + T |V 2(∞, c2), direct|1|TC where c2 ≥ 4 is

strongly NP-hard.

Proof. We reduce 3-partition to our problem. Given an instance of 3-partition,

define an instance of 1|no − idle, dj = C1
j + T |V 2(∞, c2), direct|1|TC as follows. There

are 4n orders, namely n long orders and 3n short orders. Short orders correspond to the

integers of 3-partition, so p1i = ai, i = 1, . . . , 3n. Each long order has processing time

Q >> W . We let T = Q+2W , hence the deadline of an order is C1
j +T = C1

j +(Q+2W ).

Transportation time is `2 = Q+W . We want to know whether there exists a production-

distribution schedule (σ, θ) consisting of n batches that respects all due dates.

Suppose that a solution Σ to 3-partition exists. Then we can build a production-

distribution schedule (σ, θ) for 3PL provider as follows. We put in each batch one long

order, followed by one of the triples of Σ. Doing so, the total processing time of each

batch is exactly Q + W , and so a long order j which completes at C1
j will be delivered

exactly at C1
j + Q + 2W , hence on time. Of course, also the three short orders will be

on time. So, the obtained schedule (σ, θ) is a solution to 3PL provider.

Now suppose that a solution (σ, θ) to 3PL provider exists, i.e., (σ, θ) consists of n

batches and respects all due dates. The following facts concerning (σ, θ) hold.
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Fact 1. Each batch contains exactly one long order. In fact, if in a batch there are

two long orders, the first of them would be certainly delivered late.

Fact 2. Each batch contains exactly three short orders. If not, there is at least one

batch with four short orders, let p̃ be their total processing time. From Lemma 3.7, the

long order is the first in the batch, and it would be delivered after p̃ + Q + W from its

completion time. Since W/4 < ai, p̃ > W . Hence, the long order would be late.

Fact 3. The total processing time of the short orders in each batch equals W . If this

is not the case, there would be at least one batch in which the total processing time of

the short orders would exceed W and hence, similarly to Fact 2, the long order in this

batch would be delivered beyond its due date.

In conclusion, the short orders in each batch define a triple which constitutes a

solution to 3-partition. 2

Now let us turn to the case c2 = 3. For the sake of simplicity, we suppose that in a

schedule with b batches, there are 3b − n dummy orders with zero processing time, so

that we can regard each batch as consisting of exactly three orders.

We can prove that the following properties hold for the problem 1|no − idle, dj =

C1
j + T |V 2(∞, 3), direct|1|TC. In what follows, we suppose the orders numbered in the

longest precessing time (LPT) order, i.e., p11 ≥ . . . ≥ p1n.

Lemma 3.8 For problem 1|no−idle, dj = C1
j +T |V 2(∞, 3), direct|1|TC, there exists an

optimal production-distribution schedule, consisting of b batches, such that the following

properties hold:

1. The orders 1, . . . , b are the first orders in their respective batch;

2. For each i = 0, . . . , b− 1, the orders b+ 1 + i and 3b− i are in the same batch.

Proof. Property 1: The proof of this property is illustrated by Figure 3.6. Consider an

optimal schedule (σ, θ), and suppose that there is a batch B with an order i such that

1 ≤ i ≤ b, and i is not the first order in B. Since there are b batches, there is at least

one batch, say B′, in which the first order has index j > i. Now swap the orders i and j

among B and B′ in θ, and update the departure time of each batch by the completion

of each batch, hence obtaining a new schedule (σ̂, θ̂) with the same number of batches.
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Note that (σ̂, θ̂) is feasible. In fact, the first order of B is the same in the two schedules,

and the difference between the departure time of B and the completion time of the first

order of B is smaller in θ̂, so B is on time in (σ̂, θ̂). Concerning B′, the first order

is longer in (σ̂, θ̂) than in (σ, θ) by η = p1i − p1j , so the departure time increases by η.

However, the deadline of the first order increases also by η, so also B′ is on time in (σ̂, θ̂).

We can repeat the same argument for each order k such that 1 ≤ k ≤ b and which is not

the first order in its batch, until an optimal schedule respecting Property 1 is obtained.

i

j i

jB

B′

B

B′
θ: θ̂:

Figure 3.6: Illustration of property 1 of Lemma 3.8.

Property 2: Let (σ, θ) be an optimal production-distribution schedule which respects

the previous Property 1. Suppose that b + 1 + i and 3b − i are not in the same batch,

and b+ 1 + i is the smallest-indexed order which is not in the same batch with 3b− i, for

i ≤ b−1. Let k denote the order in the same batch with b+1+ i, and k′ the order in the

same batch with 3b− i. Note that p1b+1+i ≥ p1k ≥ p13b−i and p1b+1+i ≥ p1k′ ≥ p13b−i. We can

exchange order k with order 3b−i in θ, and update the departure time of each batch by the

completion of each batch, without changing the number of batches, hence obtaining a new

schedule (σ̂, θ̂). Again,(σ̂, θ̂) is feasible. In fact, since p1b+1+i+p
1
3b−i ≤ p1b+1+i+p

1
k ≤ T−`2,

the batch containing b + 1 + i and 3b − i is on time. The batch containing k and k′ is

also on time, since p1k′ + p1k ≤ p1b+1+i + p1k ≤ T − `2. One can repeatedly apply the same

argument until a schedule with the same number of batches is obtained that respects

Property 2. 2

According to Lemma 3.7 and Lemma 3.8, we propose a greedy algorithm GA3.2 for

the problem 1|no− idle, dj = C1
j + T |V 2(∞, 3), direct|1|TC.

Theorem 3.9 Algorithm GA3.2 finds an optimal production-distribution schedule for

problem 1|no− idle, dj = C1
j + T |V 2(∞, 3), direct|1|TC in O(n2) time.
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Algorithm 2: Algorithm GA3.2

1 Index orders in LPT order, so that p11 ≥ . . . ≥ p1n;

2 b = dn
3
e ; //b is the initial number of batches

3 Generate 3b− n dummy orders with 0 processing time and add them at the end of

the list of orders;

4 for j = 1 to b do

5 Bj = {j} ; //put order j in the batch Bj

6 i = 0;

7 while i < b do

8 if p1b+1+i + p13b−i > T − `2 then

9 Bb+1 = {b+ 1} ; //there is no feasible solution with b batches, then we

create a new batch with order b+ 1

10 Generate 3 new dummy orders with 0 processing time and add them at the

end of the list of orders;

11 b = b+ 1; i = 0;

12 else

13 i = i+ 1;

14 for i = 0 to b− 1 do

15 Bi+1 = Bi+1 ∪ {b+ 1 + i, 3b− i} ; //put orders b+ 1 + i and 3b− i in the batch

Bi+1

16 Order the batches randomly to obtain a production-distribution schedule;

Proof. In the algorithm GA3.2, the first step (line 1) requires O(n log n) time. The

second (lines 2-5) and the fourth step (line 16) require O(n) time. The checking action

in the third step (lines 6-13) requires O(n) time and in the worst case we need to check

O(n) times. The assignment in the third step (lines 14-15) requires O(n) time. So

the algorithm GA3.2 finds an optimal schedule for problem 1|no − idle, dj = C1
j +

T |(∞, 3), direct|1|TC in O(n2) time. 2

We next propose a greedy algorithm GA3.3 for the problem 1|no − idle, dj = C1
j +

T |V 2(∞, 2), direct|1|TC. In this case, with a similar proof, the Property 1 of Lemma
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3.8 holds for the problem with c2 = 2.

Algorithm 3: Algorithm GA3.3

1 Index orders in LPT order, so that p11 ≥ . . . ≥ p1n;

2 b = dn
2
e ; //b is the initial number of batches

3 for j = 1 to b do

4 Bj = {j} ; //put order j in the batch Bj

5 i = b+ 1;

6 while i ≤ n do

7 if p1i > T − `2 then

8 Bb+1 = {b+ 1} ; //there is no feasible solution with b batches, then we

create a new batch with order b+ 1

9 b = b+ 1; i = b+ 1;

10 else

11 i = n+ 1;

12 for i = b+ 1 to n do

13 Bi−b = Bi−b ∪ {i} ; //put order i in the batch Bi−b

14 Order the batches randomly to obtain a production-distribution schedule;

Theorem 3.10 Algorithm GA3.3 finds an optimal production-distribution schedule for

problem 1|no− idle, dj = C1
j + T |V 2(∞, 2), direct|1|TC in O(n log n) time.

Proof. In the algorithm GA3.3, the first step (line 1) requires O(n log n) time. The

second step (lines 2-4) and the forth step (line 14) require O(n) time. The third step

(lines 5-13) requires O(n) time. So the algorithm GA3.3 finds an optimal schedule for

problem 1|no− idle, dj = Cj + T |V 2(∞, 2), direct|1|TC in O(n log n) time. 2

Finally, for c2 = 1, the problem 1|no − idle, dj = Cj + T |V 2(∞, 1), direct|1|TC, is

trivially solved in O(n) by randomly ordering the orders on M1, and delivering each

order by a different vehicle as soon as it is finished.
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(b) Problems with express transportation only and one vehicle for express

transportation

Let us now consider the case in which there is only one vehicle which can carry only one

order, i.e., problem 1|no− idle, dj = C1
j + T |V 2(1, 1), direct|1|TC. In this case, batches

correspond indeed to orders, and each round trip of the vehicle concerns the delivery of a

single order, i.e. the transportation cost of any feasible solution is TC = h2n. Hence, the

only issue is to check whether there exists a feasible production-distribution schedule.

A schedule for this problem has a very distinctive structure, in which we call offset

Oj the difference between the departure time of the vehicle that carries away order j

(equal to Dj − `2) and the completion time C1
j of the same order on M1. Note that by

definition the offset can never be negative. The offset is zero if an order is completed on

M1 after (or exactly at) the time the vehicle is back in M1. It is easy to check that in

general, if we let i be the order that immediately precedes j in a schedule:

Oj = max{0, Oi − p1j + `2 + `′2}. (3.5.3)

Note that if p1j > `2 +`′2, then the offset decreases (by `2 +`′2−p1j), while on the contrary,

if p1j < `2 + `′2, then the offset increases (by `2 + `′2 − p1j). No order can be scheduled if

the offset becomes larger than T − `2, so in a feasible schedule all the offset values are

below this value.

To establish the complexity of the problem, we use the following strongly NP-complete

problem (Kellerer et al 1998):

Stock Size Problem (SSP). Given a set I of n nonzero integers a1, . . . , an, and a

positive integer Q such that
∑

j∈I aj = Q, is there an ordering σ of the n integers such

that, denoting by σ(i) the i-th integer in the ordering, for all k = 1, . . . , n it holds

0 ≤
k∑
i=1

aσ(i) ≤ Q? (3.5.4)

Theorem 3.11 Problem 1|no− idle, dj = C1
j + T |V 2(1, 1), direct|1|TC is strongly NP-

hard.

Proof. We reduce SSP to our problem. Given an instance of SSP, we let P and N denote

positive and negative integers in I respectively. We let `2 = `′2 = Q+ 1 and T = 2Q+ 1.

For each ai, define an order i having processing time p1i = 2`2− ai (note that p1i < 2`2 if
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i ∈ P and p1i > 2`2 if i ∈ N ). We call JP and JN the order sets corresponding to P and

N respectively. Finally, add a dummy order having p10 = ε > 0, where ε is very small.

Note that a schedule is feasible iff the offset never exceeds T − `2 = Q. We want to show

that a feasible schedule exists iff a solution to SSP exists.

Given a solution to SSP, a feasible schedule can be built as follows. The first order is

the dummy order, which has therefore to be carried away. We then sequence the orders

in the same order as in the solution to SSP. Each order i ∈ JP increases the offset by ai,

while each order i ∈ JN decreases it by ai. After the k-th order, the value of the offset

is precisely the value
∑k

i=1 aσ(i). From equation (3.5.4), for all k it does not exceed Q,

and the sequence is therefore feasible.

Now viceversa, suppose that we have a feasible production-distribution schedule

(σ, θ). First of all, the dummy order is certainly at the beginning of the schedule, and

the initial offset is Oσ(0) = 0. Consider now the n equations (3.5.3):

Oσ(1) = max{0, 2`2 − p1σ(1)} = max{0, aσ(1)}

Oσ(2) = max{0, Oσ(1) + 2`2 − p1σ(2)} = max{0, Oσ(1) + aσ(2)}

Oσ(3) = max{0, Oσ(2) + 2`2 − p1σ(3)} = max{0, Oσ(2) + aσ(3)}

. . .

Oσ(n) = max{0, Oσ(n−1) + 2`2 − p1σ(n)} = max{0, Oσ(n−1) + aσ(n)}

Suppose that Oσ(i)+aσ(i+1) < 0 for some i, 0 ≤ i ≤ n−1. Summing up all equations, one

would get that the final offset Oσ(n) >
∑n

i=1 aσ(i) = Q, which would make it impossible to

deliver σ(n) within T . This would contradict the feasibility of (σ, θ). Hence, Oσ(i)+aσ(i) ≥

0 for all i. This implies that the vehicle is never idle throughout the schedule. As a

consequence, the value of the offset after each order k is given precisely by
∑k

i=1 aσ(i)

which never exceeds Q, since (σ, θ) is feasible. Hence, equation (3.5.4) is satisfied, i.e.,

the corresponding sequence of integers is feasible for SSP. 2

(c) Problems with regular transportation only

The last problem we consider concerns the cases in which only regular transportation

exists. We next show that the problem is difficult, even if the number of vehicles vs for

each known fixed departure time ts is unlimited.
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Theorem 3.12 Problem 1|no − idle, dj = C1
j + T |V 1(∞, c1), direct|1|TC is strongly

NP-hard, for any value of c1.

Proof. Given an instance of 3-partition, define an instance of 3PL provider’s problem

1|no− idle, dj = C1
j + T |V 1(∞, c1), direct|1|TC as follows. There are 4n orders, namely

n long orders and 3n short orders. The short orders correspond to the integers of 3-

partition, so p1i = ai for i = 1, . . . , 3n. All long orders have the same processing time

Q >> W . We let T = Q+ 2W , so the deadline of a order is C1
j + T = C1

j + (Q+ 2W ).

There are n fixed departure times Q+W, 2(Q+W ), . . . , n(Q+W ). Transportation time

is `1 = Q + W . For different values of capacity, we want to establish whether there is

a feasible production-distribution schedule σ with a number of batches given by n (if

c1 ≥ 4), 2n (if c1 = 2 or c1 = 3), or 4n (if c1 = 1).

Suppose that a solution Σ to 3-partition exists. Then we can build a production

schedule (σ, θ) starting with a long order and in which long orders and triples of small

orders alternate. For what concerns the delivery schedule:

� c1 ≥ 4. In this case we define n batches, each consisting of one long order followed

by the subsequent triple of Σ. Doing so, the total processing time of each batch is

exactly Q + W , and each batch departs at its completion time, which is precisely

one fixed departure time. Each long order is delivered exactly at its deadline.

� c1 = 2 or c1 = 3. In this case we define 2n batches, obtained by splitting in

two each batch defined in the previous case. One has therefore that at each fixed

departure time i(Q+W ), i = 1, . . . , n, two vehicles start, each carrying two orders

(one vehicle will transport the long order and one small order, the other vehicle

will transport the other two small orders). Both batches are on time.

� c1 = 1. In this case we simply define one batch for each order, so that at each time

i(Q+W ), four vehicles depart from M1.

In all cases, the obtained production-distribution schedule is a solution to the 3PL

provider’s problem.

Now suppose that a feasible production-distribution schedule to 3PL provider exists.

The following facts concerning the corresponding production schedule (σ, θ) hold, for any

value of the capacity c1.
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Fact 1. In (σ, θ), exactly one long order is entirely processed between (i− 1)(Q+W )

and i(Q + W ), for 1 ≤ i ≤ n. In fact, if a long order starts before some i(Q + W ) but

ends after i(Q + W ) for some i, it would be certainly delivered late, since it could not

depart before (i + 1)(Q + W ), and therefore the long order should wait more than W

before leaving. With no loss of generality, we can therefore suppose that the long order

starts exactly at i(Q+W ), for 0 ≤ i ≤ n− 1.

Fact 2. In (σ, θ), each long order is followed by exactly three short orders, and the

total processing time of these three short orders equals W . Suppose in fact that there

exists a long order followed by a set of short orders whose total processing time is not

W . Then, there exists a long order j followed by short orders whose total processing

time exceeds W . As a consequence of Fact 1, the last of these short orders, say k, cannot

depart in the same batch of the long order j. But the next departure time is too far and

order k could not be delivered within its deadline. So, the total processing time of these

orders is W , and since W/4 < ai < W/2, there are exactly three short orders after each

long order.

In conclusion, the short orders after each long order define a triple which constitutes

a solution to 3-partition. 2

In theorem 3.12, we observe that in the instance of 3PL provider’s problem for each

case we consider the minimum number of vehicles. So this proof applies to the 3PL

provider’s problem with limited number of vehicles for regular transportation. That

means the 3PL provider’s problem with limited number of vehicles for regular trans-

portation is also strongly NP-hard.

3.5.2 Manufacturer’s problem

As discussed in section 3.2, the manufacturer determines a production schedule on both

machines minimizing the makespan Cmax subject to a limited set of regular vehicles

and express vehicles with given capacities and transportation times. The responsiveness

constraints are removed. The manufacturer’s problem with only one express vehicle is

strongly NP-hard if c2 6= 2 (Lee and Chen 2001). The complexity of the problem with

c2 = 2 is still open. The manufacturer’s problems with only regular vehicles or both
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modes of vehicle are also strongly NP-hard proved in section 4.4 when manufacturer and

3PL provider coordinate.

3.6 Conclusions

In this chapter, we investigated a collection of models for production and interstage

batch delivery scheduling problems in a supply chain, where a manufacturer processes a

set of orders in two production locations and a 3PL provider delivers the semi-finished

products from the upstream production location to the downstream production location.

We considered the two scenarios: (1) manufacturer dominates, 3PL provider adjusts; (2)

3PL provider dominates, manufacturer adjusts. For each scenario, we investigated the

manufacturer’s problem and the 3PL provider’s problem separately. We focused on the

3PL provider’s problem. We provided some polynomial-time algorithms for the 3PL

provider’s problem when the manufacturer dominates, where the 3PL provider’s prob-

lem is to determine a delivery schedule minimizing transportation costs, while respecting

the orders release times and the deadline of each order imposed by the manufacturer. In

particular, we considered several models with different transportation modes and trans-

portation time. When the 3PL provider dominates, the 3PL provider’s problem is to

determine an optimal production-distribution schedule minimizing transportation cost,

while respecting the deadline of each order. We proposed some polynomial-time algo-

rithms for 3PL provider’s problems when the 3PL provider dominates in some particular

cases and demonstrate the NP-hardness for other 3PL provider’s problems. Here we also

considered several models with different transportation modes.

A number of important issues remain open. First, the complexities of 3PL provider’s

problems are open when the manufacturer dominates and the limited number of vehicles

for express transportation is not fixed. Second, most of the 3PL provider’s problems

with 3PL provider dominating, are shown to be intractable, which motivates the need

to develop exact or approximate solution algorithms. The coordinated production and

interstage distribution scheduling problems will be investigated in the next chapter.





Chapter 4

Coordinated Production and

Interstage Distribution Scheduling

Problems

4.1 Introduction

Recall that in this part, we consider a production and interstage distribution scheduling

problem in a permutation flow shop environment. A set of orders are processed by a

manufacturer at the upstream facility, and delivered to the downstream facility belonging

to the same manufacturer. The distribution is outsourced to a third-party logistics (3PL)

provider.

Our objective is to investigate the production and interstage distribution scheduling

problem in four scenarios: (1) manufacturer dominates, 3PL provider adjusts; (2) 3PL

provider dominates, manufacturer adjusts; (3) manufacturer dominates, 3PL provider

negotiates; (4) manufacturer and 3PL provider coordinate.

In chapter 3, we studied the individual scheduling problems in scenarios (1) and (2).

In this chapter, we investigate the coordinated scheduling problems in scenarios (3) and

(4). For the scheduling problems in each scenario, we provide exact polynomial-time

algorithms or prove their NP-hardness. We provide two mechanisms of coordination for

scenarios (3) and (4) and evaluate the benefit of coordination using numerical experi-

ments.

71
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Chapter 4 is organized as follows. In section 4.2, we formally describe the problems

and introduce notations and terminology. Section 4.3 is devoted to scenario (3), section

4.4 to scenario (4). In section 4.5, we evaluate the benefit of coordination in scenarios

(3) and (4). Section 4.6 contains some conclusions and perspectives.

4.2 Problems and Notations

In chapter 3, we considered several models, i.e. one transportation mode or both trans-

portation modes, limited or unlimited number of vehicle, unique or different transporta-

tion time. In this chapter, we consider only one model: there is a limited number of

regular vehicles and an unlimited number of express vehicles, and the transportation

times of the two transportation modes are identical.

The problem was formally described in section 3.2 of chapter 3. In this chapter, we

change two notations:

� use τ to replace the transportation times of the two transportation modes, i.e.

`1 = `2 = τ .

� use V instead of V1 to represent the number of regular vehicles.

We consider two scenarios : (3) manufacturer dominates, 3PL provider negotiates; (4)

manufacturer and 3PL provider coordinate. These are formally defined in the following.

1. Manufacturer dominates, 3PL provider negotiates - scenario 3.

(a) Manufacturer’s problem. It is the same as the manufacturer’s problem in

scenario (1) (see section 3.2 of chapter 3).

(b) 3PL provider’s problem. Given the completion times C1
j and the deadlines

dj = C1
j +T , the 3PL provider determines a delivery schedule that minimizes

the transportation cost TC. Unlike scenario (1), the 3PL provider is allowed to

negotiate with the manufacturer. We assume that the sequence of production

cannot be changed while responsiveness constraints Dj ≤ C1
j + T can be

relaxed. The 3PL provider’s problem includes: establishing a mechanism of

coordination and determining a delivery schedule under the mechanism of

coordination.
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2. Manufacturer and 3PL provider coordinate - scenario 4. In this scenario

we suppose that the production schedule and the delivery schedule are to be jointly

decided by the two actors. The responsiveness constraints Dj ≤ C1
j + T are re-

moved. The objective is to find efficient production-distribution schedules, i.e.,

such that no better solution for one actor can be obtained without increasing the

cost to the other actor. In order to motivate the coordination, it is necessary to

establish a mechanism of coordination.

Example We consider the same example of section 3.2. Recall that, in scenario (1)

manufacturer dominates and 3PL provider adjusts, we find the schedule (σ1, θ1) with

Cmax(σ1, θ1) = 40 and TC(σ1, θ1) = h1 + 3h2 = 31.

1. Manufacturer dominates, 3PL provider negotiates - scenario 3. In this

scenario, if the responsiveness constraints are relaxed, a better solution for 3PL

provider can be found while guaranteeing that the makespan does not exceed

Cmax(σ1, θ1) = 40. Figure 4.1 illustrates a schedule (σ3, θ3). The production

sequence in σ3 is {1, 3, 2, 5, 4}. The θ3 is composed of three batches {1, 3},{2}

and {5, 4}. In it, {2} is an express batch departing at time 20, while {1, 3} and

{5, 4} are two regular batches, departing at times 15 and 30 respectively. We have

Cmax(σ3, θ3) = 40 and TC(σ3, θ3) = 2h1 + h2 = 27.

Figure 4.1: Production-distribution schedule when manufacturer dominates, 3PL

provider negotiates.

2. Manufacturer and 3PL provider coordinate - scenario 4. When production

and distribution schedules are decided by two actors together and the responsive-

ness constraints are removed, better solutions can be achieved for both actors. We

find an efficient production-distribution schedules which are better than the bench-
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mark schedule (σ1, θ1). This efficient solution (σ, θ) is found and depicted in Figure

4.2.

Figure 4.2: Production-distribution schedule when manufacturer and 3PL provider co-

ordinate

The production sequence is {1, 2, 4, 3, 5}. There is one regular batch {1, 2, 4}, which

departs at time 15, while the express batches {3} and {5} depart at time 24 and

30 respectively. Therefore, TC(σ, θ) = h1 + 2h2 = 24 and Cmax(σ, θ) = 38.

In this example, we observe that replacing responsiveness constraints with the

makespan constraint is highly beneficial for the 3PL provider. In fact, comparing the

solutions in scenario (1) and scenario (3), we get that the 3PL provider’s benefit is

(TC(σ1, θ1) − TC(σ3, θ3))/TC(σ1, θ1) ' 12.9%, while the manufacturer maintains the

same makespan. Comparing (σ1, θ1) with (σ, θ), we get better solutions for both actors,

since the 3PL provider’s benefit is now (TC(σ1, θ1)−TC(σ, θ))/TC(σ1, θ1) ' 22.6%, and

the manufacturer’s benefit is (Cmax(σ1, θ1)− Cmax(σ, θ))/Cmax(σ1, θ1) ' 5.0%.

4.3 Manufacturer Dominates, 3PL Provider Negoti-

ates - scenario 3

The manufacturer’s problem is the same as that of scenario (1) (see section 3.2 of chapter

3), i.e. manufacturer dominates, 3PL provider negotiates. In the first step, the manu-

facturer adopts the Johnson’s schedule on M1 (Johnson 1954). In the second step, the

manufacturer first imposes the constraints to the 3PL provider. Then the manufacturer

adjusts the starting time of orders on M2 while minimizing Cmax subject to the delivery

times Dj and the sequence of production on M1. The schedule on M2 is determined

as follows: from the beginning to the end of sequence, schedule the orders one by one
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as early as possible, i.e. the starting time of order j is the minimum time between its

release date and the end of the previous scheduled order on M2.

In scenario (1) the 3PL provider determines a distribution schedule subject to pro-

duction schedule on M1 (i.e. C1
j ) and deadlines dj = C1

j + T . In scenario (3), the actors

can exchange necessary information to coordinate. We assume that the sequence of pro-

duction cannot be changed while responsiveness constraints Dj ≤ C1
j +T can be relaxed.

We provide a mechanism of coordination. Let C ′max denote the makespan obtained in

the 3PL provider’s problem of scenario (1).

Mechanism 1

1. The 3PL provider demands the manufacturer to use a performance guaranteeing

constraint, i.e. Cmax ≤ C ′max, to replace the deadline constraints.

2. The 3PL provider determines a distribution schedule subject to the new constraint.

The 3PL provider’s problem can be defined as: given the completion times C1
j for

j ∈ N , the 3PL provider determines a distribution schedule that minimizes TC such

that the makespan does not exceed the value obtained in scenario (1). This problem can

still be solved through algorithm DP3.3 of chapter 3, provided that the responsiveness

parameter is now different for each order. Precisely, numbering the orders according to

the increasing completion time on M1, i.e. C1
1 < . . . < C1

n. we can define the deadline of

each order as

dj = C ′max −
n∑
u=j

p2u,∀j = 1, . . . , n. (4.3.1)

It is easy to see that the makespan constraint is respected if and only if each order j is

delivered to M2 within the deadline dj = C1
j + Tj. In other words, the responsiveness

parameter for order j is now Tj = dj−C1
j for j = 1, . . . , n. This problem can be denoted

by 1|fseq, dj = C1
j + Tj|V 1(V, c1), V

2(∞, c2), `1 = `2 = τ |1|TC. Note that if C1
i < C1

j ,

we have always di < dj. As a consequence, we can prove that the properties of Lemma

3.1 in chapter 3 hold also for this 3PL provider’s problem. Comparing this case with

Scenario (1), we note that the only difference is that T is replaced by Tj in the recurrence

relation of algorithm DP3.3 in chapter 3. So, such modified algorithm solves this 3PL

provider’s problem.
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4.4 Manufacturer and 3PL Provider Coordinate -

scenario 4

In this section we address the scenario in which the two parties can share information

and define their schedules concurrently. Here we assume that the optimization criteria

of manufacturer and 3PL provider are makespan and, respectively, total transportation

cost. First we give a MILP(Mixed Integer Linear Programing) for the integrated schedul-

ing problem that allows us generating efficient (or Pareto optimal) solutions, i.e., such

that it cannot be improved on one criterion without being depreciated on the other one.

These solutions can be used as input for negotiation between the manufacturer and the

3PL provider. Thereafter, we show that finding a production-distribution schedule is in

general NP-hard, and we discuss some special cases, which are polynomially solvable. In

order to motivate the coordination, a mechanism is established.

4.4.1 Mixed Integer Linear Programing

As discussed in Section 4.2, we consider the permutation problem, i.e., the production

schedule has the same sequence on the two machines. We next give a MILP for the

integrated scheduling problem that we used in our experiments (Section 4.5) to generate

efficient solutions. Moreover, a simple order interchange argument can be used to change

any efficient schedule to an efficient schedule such that the orders of each delivery batch

are processed consecutively on machines. Hence, an efficient solution is completely

characterized by a batching scheme, a transportation mode associated to each batch,

and a starting time of each batch on the two machines. The sequence of orders within

each batch is irrelevant.

We introduce the following notations.

ucs =


1, if the regular vehicle c is available at the time ts, c = 1, . . . , V,

s = 1, . . . , L

0, otherwise

Decision variables:

� tek : starting time of batch k on machine Me, k = 1, . . . , n, e = 1, 2
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� xik =

 1, if order i is in batch k, i = 1, . . . , n, k = 1, . . . , n

0, otherwise

� wmk =


1, if batch k contains at least one order and is delivered by

transport mode type-m, k = 1, . . . , n,m = 1, 2

0, otherwise

� ykc =


1, if batch k contains at least one order and is delivered by

regular vehicle c, k = 1, . . . , n, c = 1, . . . , V

0, otherwise

minCmax (4.4.2)

min
n∑
k=1

w1
kh1 +

n∑
k=1

w2
kh2 (4.4.3)

s.t.
n∑
k=1

xik = 1, i = 1, . . . , n (4.4.4)

2∑
m=1

wmk ≤ 1, k = 1, . . . , n (4.4.5)

n∑
i=1

xik ≤
2∑

m=1

cmw
m
k , k = 1, . . . , n (4.4.6)

t1k+1 − t1k ≥
n∑
i=1

p1ixik, k = 1, . . . , n− 1 (4.4.7)

t2k+1 − t2k ≥
n∑
i=1

p2ixik, k = 1, . . . , n− 1 (4.4.8)

t2k − t1k ≥
n∑
i=1

p1ixik + τw2
k, k = 1, . . . , n (4.4.9)

V∑
c=1

ykc = w1
k, k = 1, . . . , n (4.4.10)

n∑
k=1

ykc ≤ 1, c = 1, . . . , V (4.4.11)

t1k +
n∑
i=1

p1ixik ≤
L∑
s=1

V∑
c=1

tsucsykc + (1− w1
k)

n∑
i=1

p1i , k = 1, . . . , n (4.4.12)

t2k ≥
L∑
s=1

V∑
c=1

tsucsykc + τw1
k, k = 1, . . . , n (4.4.13)
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Cmax ≥ t2n +
n∑
i=1

p2ixin (4.4.14)

t1k ≥ 0, k = 1, . . . , n (4.4.15)

t2k ≥ 0, k = 1, . . . , n (4.4.16)

xik ∈ {0, 1}, i, k = 1, . . . , n (4.4.17)

wmk ∈ {0, 1}, k = 1, . . . , n,

m = 1, 2 (4.4.18)

ykc ∈ {0, 1}, k = 1, . . . , n,

c = 1, . . . , V (4.4.19)

In the MILP, (4.4.2) and (4.4.3) are the objective functions. Constraints (4.4.4)

ensure that each order is assigned to one batch. Constraints (4.4.5) ensure that one batch

either is delivered by one type of vehicle or does not have any order. Constraints (4.4.6)

ensure that a vehicle does not carry more orders than its capacity. Constraints (4.4.7)

and (4.4.8) guarantee the precedence constraints between batches and the assumption

of permutation schedules. Constraints (4.4.9) represent the constraints of delivery time

when one batch is delivered by an express vehicle. Constraints (4.4.10) ensure that one

regular vehicle is assigned to a batch if it is not empty, i.e w1
k = 1. Constraints (4.4.11)

ensure that at most one batch is assigned to a regular vehicle. Constraints (4.4.12) mean

that any batch delivered by an regular vehicle should be available at the fixed departure

date for this regular vehicle. The part (1−w1
k)
∑n

i=1 p
1
i guarantees that if the batch is not

delivered by one regular vehicle, these constraints are always true. Constraints (4.4.13)

represent the constraints of delivery time when one batch is delivered by a regular vehicle.

Constraints (4.4.14) define the makespan Cmax. Constraints (4.4.15) – (4.4.19) give the

domain of definition of each variable.

Formulation (4.4.2) – (4.4.19) is used in our experiments to derive production-

distribution schedules.

4.4.2 Complexity

In what follows we investigate the complexity of the problem of finding efficient

production-distribution schedules. In particular, we consider the following integrated
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scheduling problem (in decision form):

Given a set of n orders, having processing times p1j , p
2
j , a set L = {t1, . . . , tL} of

departure dates of regular vehicles, a number vs of vehicles available at time ts, capacity

values c1 and c2 for regular and express vehicles respectively, transportation costs h1 and

h2 for regular and express vehicles respectively, and two positive integers P,H, is there

a production-distribution schedule (σ, θ) such that Cmax(σ, θ) ≤ P and TC(σ, θ) ≤ H?

Esswein et al. (2005) prove that the integrated scheduling problem, in the case

where there is only express transportation mode with unlimited number of vehicles and

unbounded capacity is NP-complete. For bounded capacity, Aloulou et al. (2014) prove

that this problem is NP-complete when c2 ≥ 3 even if p1j = p2j = pj for j = 1, . . . , n.

However the problem with c2 = 2 is open. Therefore, in the following, we consider the

problem where there is only regular transportation mode with limited number of vehicles.

Theorem 4.1 The integrated scheduling problem (in decision form) is NP-complete,

even if p1j = p2j = pj for j = 1, . . . , n, τ = 0 and there is only regular transportation

mode.

Proof. We use the following NP-complete problem: 3-partition (Garey and Johnson

1979). Given 3n integers a1, . . . , a3n, so that
∑
aj = nW , and such thatW/4 < aj < W/2

for all j, is it possible to partition them into n triples each summing up to W?

Given an instance of 3-partition, define an instance of integrated problem as follows.

There are 4n orders, namely n long orders and 3n short orders. The short orders corre-

spond to the integers of 3-partition, so p1j = p2j = pj = aj for them. The long orders have

the same processing time p1j = p2j = pj = Q >> W . There is only regular transportation

mode and transportation time τ equals to zero. There are n periodic fixed departure

dates Q+W, 2(Q+W ), . . . , n(Q+W ). We distinguish different cases.

� case where c1 ≥ 4. For each fixed departure date, there is one regular vehicle. We

want to know whether there exists a schedule (σ, θ) consisting of n batches, such

that Cmax(σ, θ) ≤ (n+ 1)(W +Q) and TC(σ, θ) ≤ nh1.

� case where c1 = 2 or 3. For each fixed departure date, there are two regular

vehicles. We want to know whether there exists a schedule (σ, θ) consisting of 2n

batches, such that Cmax(σ, θ) ≤ (n+ 1)(W +Q) and TC(σ, θ) ≤ 2nh1.
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� case where c1 = 1. For each fixed departure date, there are four regular vehicles.

We want to know whether there exists a schedule (σ, θ) consisting of 4n batches,

such that Cmax(σ, θ) ≤ (n+ 1)(W +Q) and TC(σ, θ) ≤ 4nh1.

Suppose that a solution Σ to 3-partition exists. Then we can build a schedule (σ, θ)

for integrated problem in the three different cases as follows.

� case where c1 ≥ 4. We put in each batch one long order and one of the triples of

Σ. At time 0 and each fixed departure date Q+W, 2(Q+W ), . . . , (n− 1)(Q+W ),

we schedule one batch on M1 without idle time. The order of batches and the

order of orders in each batch on M1 are irrelevant. Doing so, the total processing

time of each batch is exactly Q + W , and each batch departs at its completion

time which is exactly one fixed departure date. Then we schedule each batch on

M2 immediately when it arrives and the orders of each batch are scheduled in the

same sequence as on M1. We have Cmax = (n+ 1)(W +Q) et TC = nh1.

� case where c1 = 2 or 3. We apply the same rule as the case where c1 ≥ 4 and

replace one batch by two batches. We have Cmax = (n+ 1)(W +Q) et TC = 2nh1.

� case where c1 = 1. We apply the same rule as the case where c1 ≥ 4 and replace

one batch by four batches. We have Cmax = (n+ 1)(W +Q) et TC = 4nh1.

So the obtained schedule (σ, θ) is a solution to integrated problem.

Now we suppose that a solution (σ, θ) to integrated problem exists. The following

facts concerning (σ, θ) hold.

Fact 1. There does not exist idle time between orders on both machines. If there

exists idle time on M1, there would have at least one order exceed the last fixed departure

date n(Q+W ), and we do not have any feasible solution in this case. We must have idle

time at the beginning of M2, which has length Q + W . Since the total processing time

of orders on M2 is n(Q+W ), so there does not exist idle time between orders on M2.

Fact 2. At each fixed departure date, orders with total processing time which equals

to Q + W are delivered. If not, there would have idle time on M2. So at each fixed

departure date, the batch(es) is(are) formed by one long order and three short orders,

i.e. the total processing time of the short orders equals to W .
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In conclusion, the short orders delivered at each fixed departure date define a triple

which constitutes a solution to 3-partition. 2

4.4.3 Special cases

We consider a special case where all orders have a same processing time on M1, i.e.

p1j = p1, for j = 1, . . . , n. The following property holds for this special case.

Lemma 4.1 If p1j = p1, for all j = 1, . . . , n, for any efficient solution for the integrated

scheduling problem, there exists one in which the orders are sequenced by non-increasing

processing time on machine M2.

Proof. Suppose there exists an efficient solution (σ, θ), such that order j is processed

after order i on M2, p
2
j > p2i and i and j are consecutive in σ. We can swap i and j

on both machines and on their delivery batches, we denote this new solution as (σ′, θ′).

By doing so, we do not change the transportation cost, i.e. TC(σ′, θ′) = TC(σ, θ).

Since C2
i (σ′) = C2

j (σ), also the makespan is unchanged, i.e., Cmax(σ
′, θ′) = Cmax(σ, θ).

Repeating this argument we eventually obtain a schedule having the same Cmax and

TC as schedule (σ, θ), and in which orders on M2 are LPT (Longest Processing Time)-

ordered. 2

Lemma 4.1 states that in the special case of p1i = p1 for all i = 1, . . . , n, we can

assume that all efficient schedules respect the Johnson’s schedule. In view of this result,

we can index orders by non-increasing processing time on M2, so that p21 ≥ . . . ≥ p2n and

the sequences on both machines follow the indexes of orders. The following dynamic

programming algorithm allows to finding a schedule that minimizes Cmax among all the

schedules having a certain number of express and regular batches (and hence, a certain

value of TC). In such algorithm we use the state (i, j, s, v,m, n1, n2), corresponding to

the situation in which:

� the first i orders have been delivered,

� the currently last batch consists of orders {j, j + 1, . . . , i}, and
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– if m = 1 (regular transportation), the currently last batch departs at ts, and

at this time, v regular vehicles are used (including the vehicle carrying the

currently last batch),

– if m = 2 (express transportation), the currently last batch departs at C1
i .

� n1 and n2 regular and, respectively, express batches have been used so far.

We propose Algorithm 1 to solve this integrated problem.

Algorithm 1

Step 1: Index orders by non-increasing processing time on M2.

Step 2: Apply the dynamic programming algorithm DP4.1, and get a set of feasible

schedules associated to all values of n1 and n2.

Step 3: Remove the dominated schedules. The remaining schedules are efficient.

Algorithm DP4.1

Value Function

f(i, j, s, v,m, n1, n2) = the minimum Cmax of all schedules in state (i, j, s, v,m, n1, n2).

Initialisation

f(i, j, s, v,m, n1, n2) = ∞, i = 0, . . . , n, j = 0, . . . , n, s = 0, . . . , L, v = 0, . . . , vs,m =

1, 2, n1 = 0, . . . , n, n2 = 0, . . . , n.

Boundary Condition

f(0, 0, 0, 0, 1, 0, 0) = 0, f(0, 0, 0, 0, 2, 0, 0) = 0.

Optimal Solution Value

For each n1 = 0, . . . , n, n2 = 0, . . . , n, we search min(j,s,v,m)∈A f(n, j, s, v,m, n1, n2) which

is not infinity, and A = {(j, s, v,m)|1 ≤ j ≤ n, 0 ≤ s ≤ L, 0 ≤ v ≤ vs,m = 1, 2}.

Recurrence Relation

For state (i, j, s, v,m, n1, n2), such that i ∈ {1, . . . , n}, j ∈ {1, . . . , i}, s ∈ {0, . . . , L},

v ∈ {0, . . . , vs}, m ∈ {1, 2}, n1 =∈ {v, . . . , n}, n2 =∈ {0, . . . , n}, if m = 1, then C1
i ≤ ts,

s > 0 and v > 0, if m = 2, then n2 > 0.
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f(i, j, s, v,m, n1, n2) =

min



f(i− 1, j, s, v,m, n1, n2) + p2i , if i > j,m = 1, i− j + 1 ≤ c1

max{f(i− 1, j, s, v,m, n1, n2)−
∑i−1

u=j p
2
u,

C1
i + τ}+

∑i
u=j p

2
u, if i > j,m = 2, i− j + 1 ≤ c2

max{min(j′,m′,s′,v′)∈A1 f(i− 1, j′, s′, v′,m′,

n1 − 1, n2), ts + τ}+ p2i , if i = j,m = 1

max{min(j′,m′)∈A2 f(i− 1, j′, s, v,m′, n1,

n2 − 1), C1
i + τ}+ p2i , if i = j,m = 2

where

A1 = {(j′,m′, s′, v′)|1 ≤ j′ ≤ i − 1,m′ = 1, 2, if v > 1, then s′ = s and v′ = v − 1,

otherwise 0 ≤ s′ < s and 0 ≤ v′ ≤ vs′},

A2 = {(j′,m′)|1 ≤ j′ ≤ i− 1,m′ = 1, 2}.

In the recurrence relation, the first term corresponds to the case where order i and

order i−1 are in the same regular batch. The second term corresponds to the case where

order i and order i − 1 are in the same express batch. In the third term, order i is in

a new regular batch. The function max is to find the earliest starting time on M2 for

order i. In the fourth term, order i is in a new express batch. The function max is to

find the earliest starting time on M2 for order i.

The step 1 of Algorithm 1 requires O(n log n) time. In algorithm DP4.1, there are

O(n4(L + V )) states. In fact, for each s ∈ {0, ..., L}, v can assume vs + 1 distinct

values. Since
∑

s vs = V , one has O(L + V ) possible pairs (s, v). In the recurrence

relation, the computation of the first and second term requires O(1) time and is done

for O(n4(L + V )) states. The computation of the third and the fourth term requires

O(n(L + V )) and O(n) time respectively and is done for O(n3(L + V )) states. Hence

step 2 of Algorithm 1 requires O(n4(L+V )2) time. The dynamic programming algorithm

finds O(n2) feasible schedules. Step 3 of Algorithm 1 requires O(n4) time. Therefore,

the complexity of Algorithm 1 is O(n4(L+ V )2).

A symmetric discussion holds in the special case in which all orders have the same

processing time on M2, i.e. p2j = p2, for j = 1, . . . , n. With a similar proof to that
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of Lemma 4.1, one can show that we lose no generality in considering efficient solution

in which orders are sequenced by non-decreasing processing times on M1. Using such

sequencing to index the orders, so that p11 ≤ . . . ≤ p1n, Algorithm 1 can be applied to

solve the problem also in this case. In conclusion, we have the following result.

Theorem 4.2 When either p1j = p1 for all j = 1, . . . , n, or p2j = p2 for all j = 1, . . . , n,

the integrated scheduling problem can be solved in polynomial time O(n4(L+ V )2).

4.4.4 Mechanism of coordination

The bi-criteria integrated scheduling problem generates a set of efficient production-

distribution schedules which can be used as input for negotiation between the manufac-

turer and the 3PL provider. We propose a win-win mechanism of coordination for the

two actors to find a compromised solution with which the objective functions (i.e. Cmax,

TC) do not exceed the values obtained in the non-coordinated relationship.

Mechanism 2

1. The two actors estimate a production-distribution schedule in the non-coordinated

relationship according to the bargaining power of actor(i.e. scenarios (1) and (2))

and define it as a benchmark production-distribution schedule, i.e. if the proposed

schedule generates a objective function grater than the benchmark, this schedule

is rejected. Let (σ1, θ1) denote this benchmark schedule.

2. The two actors share the necessary information and try to find two sufficient solu-

tions (σ4, θ4) and (σ5, θ5):

(a) In the first step, the actors optimize with respect to Cmax and TC in lexico-

graphic order:

i. the manufacturer first seeks a schedule that minimizes Cmax, provided

that the total cost to 3PL provider does not exceed the value in the

benchmark schedule, i.e., we seek a schedule (σ′, θ′) such that

Cmax(σ
′, θ′) = min{Cmax(σ, θ)|TC(σ, θ) ≤ TC(σ1, θ1)};
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ii. thereafter, the 3PL provider seeks a distribution schedule (σ4, θ4) such

that

TC(σ4, θ4) = min{TC(σ, θ)|Cmax(σ, θ) ≤ Cmax(σ
′, θ′)}.

(b) In the second step, the lexicographic order is reversed, i.e.:

i. first the 3PL seeks a schedule that minimizes TC, provided that the

makespan does not exceed the value in the benchmark schedule, i.e.,

TC(σ′′, θ′′) = min{TC(σ, θ)|Cmax(σ, θ) ≤ Cmax(σ1, θ1)};

ii. thereafter, the manufacturer computes a schedule (σ5, θ5) such that

Cmax(σ5, θ5) = min{Cmax(σ, θ)|TC(σ, θ) ≤ TC(σ′′, θ′′)}.

3. If (σ4, θ4) and (σ5, θ5) are the same solutions, the two actor accept this schedule.

Otherwise, the actor with strong bargaining power proposes his preferred one be-

tween (σ4, θ4) and (σ5, θ5). The actor with weak bargaining power calculates the

price of dominance, i.e., how much is he penalized by the dominating position of

the other actor, even in a coordinated scenario. If the price of dominance is sig-

nificant, the actor with weak bargaining power can propose the other one between

(σ4, θ4) and (σ5, θ5) by recompensing the other actor.

Let Price of Dominance Manu and Price of Dominance 3PL denote the price

of dominance for the 3PL provider and the price of dominance for the manufacturer

respectively.

Price of Dominance Manu =
Cmax(σ5, θ5)− Cmax(σ4, θ4)

Cmax(σ5, θ5)
(4.4.20)

Price of Dominance 3PL =
TC(σ4, θ4)− TC(σ5, θ5)

TC(σ4, θ4)
(4.4.21)

4.5 Computational Results

In the considerations that follow, we evaluate the benefit of coordination in scenarios

(3) manufacturer dominates, 3PL provider negotiates, and (4) manufacturer and 3PL
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provider coordinate. Our benchmark schedule is (σ1, θ1), i.e., the schedule obtained in

scenario (1) manufacturer dominates, 3PL provider adjusts. In what follows, let (σ3, θ3)

denote the schedule obtained in Scenario (3), and recall that (σ4, θ4) and (σ5, θ5) denote

the two schedules obtained in the mechanism 2 for the scenario (4).

We consider the relative benefit for the 3PL provider in Scenario (3):

Γ31
3pl =

TC(σ1, θ1)− TC(σ3, θ3)

TC(σ1, θ1)
(4.5.22)

Such index is also a measure of how binding are responsiveness constraints, when

keeping the production sequence fixed (to Johnson’s sequence).

The computation of (σ4, θ4) and (σ5, θ5) allows to investigate the benefits of coordi-

nation in scenario (4). In particular, the ratios

Γ41
m =

Cmax(σ1, θ1)− Cmax(σ4, θ4)

Cmax(σ1, θ1)
(4.5.23)

Γ41
3pl =

TC(σ1, θ1)− TC(σ4, θ4)

TC(σ1, θ1)
(4.5.24)

and

Γ51
m =

Cmax(σ1, θ1)− Cmax(σ5, θ5)

Cmax(σ1, θ1)
(4.5.25)

Γ51
3pl =

TC(σ1, θ1)− TC(σ5, θ5)

TC(σ1, θ1)
(4.5.26)

express the benefits of coordination for the two parties with (σ4, θ4) and (σ5, θ5)

respectively. We want to compare the various schedules by means of numerical experi-

ments.

We generate the instances of our experiments as follows.

� Processing times p1i and p2i are randomly generated integers from [1, 100].

� We consider five values for the number of orders n, i.e. n ∈ {5, 10, 20, 50, 100}.

� Vehicle capacities have been fixed as follows. For regular vehicles, we consider three

capacity values, c1 ∈ {2, 3, 5}. For express vehicles, we fix the capacity c2 equal to

bαc1c, with α ∈ {0.5, 1}.
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� For what concerns the cost of each trip, we let h1 = 1 in all experiments and use

parameter β to express the relationship between h1 and h2, so that h2 = β c2
c1
h1,

β ∈ {1, 2}.

� The transportation time τ is a randomly generated integer from [1, 100].

� The number of regular vehicles is set to V = dε n
c1
e, where ε is randomly generated

in the interval [0.6, 1.4]. Letting v denote the average number of regular vehicles

for each fixed departure date, we determine the number of fixed departure dates

L as L = dV
v
e. We assign v − 1 regular vehicles to fixed departure dates ts where

s = 1, . . . , vL − V , and v vehicles to each remaining fixed departure date. In the

experiments we consider three values for v, i.e., v ∈ {1, 2, 3}. The L departure

dates are periodically fixed, with period t = d
∑n

i=1 p
1
i

L
e.

� In the responsiveness constraints, we determine the value of T like T = dγ(t+ τ)e,

where γ is randomly generated in three intervals, [0.6, 0.8], [0.95, 1.05], [1.2, 1.4].

Summarizing, we have 5 values for n, 3 values for c1, 2 values for α, 2 values for β, 3

values for v and 3 values for γ. This yields a total of 540 settings. For each setting,

we generate 10 instances. Hence, we generate 5400 instances in total. The dynamic

programming algorithms are implemented in C++, and the MILP is implemented in

C++ and Cplex V12.2. The experiments are carried out on a DELL 2.50GHz personal

computer with 8GB RAM.

Tables 4.1–4.6 report the average values of various figures. Table 4.1 gives the

average computational time. For scenario (4), we set 200 seconds as the time limit for

solving a single MILP. The computation time required by the polynomial algorithms

described in scenarios (1) and (3) is compatible with all realistic problem sizes.

Computation times required by the solution of (4.4.2)–(4.4.19) grow more rapidly.

Table 4.2 gives the percentage of instances that CPLEX could not solve within the

time limit, and the relative objective gap values for Cmax and TC. These gaps are

upper bounds of the following measures (Cmax(σ4, θ4) − Cmax(σ
∗
4, θ
∗
4))/Cmax(σ

∗
4, θ
∗
4),

(TC(σ4, θ4) − TC(σ∗4, θ
∗
4))/TC(σ∗4, θ

∗
4), (Cmax(σ5, θ5) − Cmax(σ

∗
5, θ
∗
5))/Cmax(σ

∗
5, θ
∗
5),

(TC(σ5, θ5) − TC(σ∗5, θ
∗
5))/TC(σ∗5, θ

∗
5), where (σ∗4, θ

∗
4) and (σ∗5, θ

∗
5) are the optimal

schedules in mechanism 2. Table 4.3 compares the relative benefit of coordination
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for the two parties (given in (4.5.23) - (4.5.26)) when either of the two lexicographic

optimization problems is solved. Table 4.4 shows the values of what we indicated as

price of dominance. Table 4.5 illustrates the benefits of coordination under various

experiment aggregations. Finally, Table 4.6 shows the benefit stemming from the

relaxation of the responsiveness constraint, when keeping Johnson’s sequence.

Table 4.1: Average computational times of execution of algorithms.

n (σ1, θ1) (σ3, θ3) (σ4, θ4) (σ5, θ5)

5 0.02 0.02 0.24 0.25

10 0.30 0.33 1.59 1.00

20 1.34 1.56 74.00 50.83

50 7.79 7.07 145.53 202.64

100 34.75 49.65 - -

Table 4.2: Failure rates and relative gaps of MILP.

n (σ4, θ4) (σ5, θ5)

failure rate Gap of Cmax Gap of TC failure rate Gap of Cmax Gap of TC

5 0.00% ≤ 0.00% ≤ 0.00% 0.00% ≤ 0.00% ≤ 0.00%

10 0.00% ≤ 0.00% ≤ 0.00% 0.00% ≤ 0.00% ≤ 0.00%

20 1.39% ≤ 0.50% ≤ 0.48% 0.37% ≤ 0.27% ≤ 0.38%

50 54.72% ≤ 0.53% ≤ 2.23% 27.87% ≤ 1.39% ≤ 2.79%

Table 4.3: Benefits of coordination in scenario (4)

Manufacturer’s benefit 3PL’s benefit

Γ41
m Γ51

m Γ41
3pl Γ51

3pl

Overall averages 3.19% 2.16% 1.82% 5.97%

n

5 3.16% 3.04% 0.26% 0.72%

10 3.99% 3.02% 1.10% 4.20%

20 3.37% 1.57% 2.73% 8.38%

50 1.11% 0.53% 5.04% 12.37%
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Table 4.4: Price of dominance for 3PL provider.

n Price of Dominance 3PL

5 0.46%

10 3.24%

20 5.86%

50 4.56%

A few comments are in order.

� From Table 4.3, one can observe that coordination is beneficial to both actors.

However, as the number of orders grows, the relative benefit of 3PL provider in-

creases, and the benefit of manufacturer decreases. The manufacturer’s benefits

are close. The difference of the 3PL provider’s benefits is significant in two efficient

solutions (σ4, θ4) and (σ5, θ5). This difference is represented by the price of dom-

inance defined in 4.4.21 and is shown in Table 4.4. We note that even when the

two parties coordinate, the dominant role of the manufacturer results in a ”price”

(on the 3PL provider) which exceeds 4.5% in largest instances. Hence, the 3PL

provider may recompense the manufacturer in order to choose (σ5, θ5) as the final

solution.

Table 4.5: Benefits of coordination in scenario (4) under various experiment aggregations.

Manufacturer’s benefit Γ41
m 3PL’s benefit Γ51

3pl

Overall averages 3.19% 5.97%

α = 1, β = 1 2.11% 2.03%

α = 1, β = 2 4.41% 12.82%

α = 0.5, β = 1 2.98% 0.02%

α = 0.5, β = 2 3.35% 8.19%

γ

[0.6,0.8] 2.64% 6.78%

[0.95,1.05] 3.59% 6.52%

[1.2,1.4] 3.36% 4.61%

v

1 2.45% 10.22%

2 3.46% 4.69%

3 3.68% 2.90%
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� From Table 4.5, we notice that β (expressing the ratio between the costs of the two

transportation modes) has a major impact on such benefit. In particular, when all

vehicles have the same capacity (α = 1) and the transportation cost of an express

vehicle is twice that of a regular vehicle (β = 2), the 3PL provider’s benefit is high

(12.82%). Also the manufacturer has higher benefits in this situation, but it is on

the whole less sensitive to the values of α and β.

� Still from Table 4.5, the 3PL provider’s benefit from coordination is larger when

the responsiveness constraint is more binding (6.78% for smaller values of T , i.e.

γ ∈ [0.6, 0.8]). In this respect, the manufacturer’s benefit is less sensitive to the

value of T .

� Still from Table 4.5, aggregating the data according to parameter v, one observes

that the dispersion of fixed departure dates has a significant effect on the benefits.

For a given number V of regular vehicles, recall that when v = 1 we have L = V

departure dates, i.e., all vehicles have distinct departure dates, while for v = 3, L =

dV/3e. As the departure dates of regular vehicles are more distributed over time,

the 3PL provider’s benefit increases significantly while the manufacturer’s benefit

slightly decreases. This can be explained considering that coordination allows a

better adjustment of the production schedule to the regular vehicle timetable.

Table 4.6: Benefit of relaxing responsiveness constraints in scenario (3).

n 3PL’s benefit Γ31
3pl

5 0.60%

10 3.05%

20 6.48%

50 9.93%

100 10.82%

γ ∈ [0.6, 0.8] 6.70%

γ ∈ [0.95, 1.05] 6.88%

γ ∈ [1.2, 1.4] 4.95%

� From Table 4.6, it is interesting to observe how binding are responsiveness con-

straints for the 3PL provider. For the same makespan, replacing responsiveness
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constraints with the makespan constraint (i.e., moving from Scenario (1) to Sce-

nario (3)) may allow the 3PL provider to save an average 10%. As one could

expect, such saving is higher for smaller values of γ, which correspond to smaller

(hence, more binding) values of T .

� Comparing the benefits with schedule (σ3, θ3) (see Table 4.3) and the benefits with

(σ5, θ5) (see Table 4.6), we observe that if the two parties coordinate without any

imposed constraints, the coordination can bring better benefits to both parties.

4.6 Conclusions

In this chapter, we considered a production and interstage distribution scheduling prob-

lem in a supply chain with a manufacturer and a 3PL provider. The manufacturer’s

objective is to minimize the makespan and the 3PL provider’s objective is to minimize

the transportation cost. We analyzed scenario (3) manufacturer dominates, 3PL provider

negotiates. We provided a mechanism of coordination, and proposed polynomial algo-

rithms to solve the scheduling problems. We then turned to scenario (4) manufacturer

and 3PL provider coordinate, i.e., the two actors may concurrently decide the production-

distribution schedule. We proved the NP-hardness for the integrated scheduling problem

and provided polynomial-time algorithms for some special cases. We also established a

win-win mechanism of coordination. We performed experiments to investigate the ben-

efits accruing from coordination between the two parties in scenarios (3) and (4). The

results showed that the relaxation of the transportation responsiveness can bring a signif-

icant benefit for the 3PL provider and the coordination without any imposed constraints

can bring better benefits to both actors.

Several important research issues remain open for future investigation. A first impor-

tant research direction is to develop a heuristic for the integrated scheduling problem.

Another issue is to investigate the extended model with a three-stage supply chain in-

cluding interstage and outbound distribution, where a manufacturer has to process a

set of orders at the upstream stage and the downstream stage. And a 3PL provider

is in charge of transportation of semi-finished products from the upstream stage to the

downstream stage, and then finished products to clients.
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Chapter 5

Production and Outbound

Distribution Scheduling Problems

with Release Dates and Deadlines

5.1 Introduction

In this chapter, we study a production and outbound distribution scheduling problem

with the consideration of order release dates and delivery deadlines. A manufacturer

has to process a set of orders on a single production line and a 3PL provider deliver

them in batches to a customer. The objective of the manufacturer is to determine a

feasible production schedule in which the orders are completed before or at their deadline.

The 3PL provider aims at deciding a delivery schedule minimizing the transportation

cost. Without coordination, the manufacturer may impose a feasible production schedule

which requires that most of the orders have to be delivered immediately after their

completion. This may entail higher costs for the 3PL provider. The coordinated problem

is motivated to decide an integrated schedule minimizing the transportation cost subject

to the delivery deadlines.

We investigate the individual scheduling problems faced by the manufacturer and the

3PL provider in a consecutive order: the manufacturer decides the feasible production

schedule subject to the deadlines, then the 3PL provider adjusts a delivery schedule

minimizing the transportation cost subject to the deadlines and the given production

95
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schedule. Then, we consider three coordinated scheduling problems with different ways

how an order can be produced and delivered: non-splittable production and delivery

(NSP-NSD) problem, splittable production and non-splittable delivery (SP-NSD) prob-

lem and splittable production and delivery (SP-SD) problem. For these scheduling prob-

lems, we provide a polynomial-time algorithm for some restricted versions of SP-NSD

and SP-SD problems and a branch-and-bound algorithm for NSP-NSD problem which

is NP-hard. We evaluate the performance of the branch-and-bound algorithm using

numerical experiments.

The most related research was provided by Chen and Pundoor (2009). They investi-

gated an integrated production and outbound distribution scheduling (IPODS) problem

in a supply chain where a manufacturer needs to process a set of orders at a single pro-

duction line, pack the completed orders to form delivery batches, and deliver them to

a customer. They investigated the problems in similar scenarios. Different from their

model, we consider the orders with equal size and release dates. The literature of the

IPODS problem with release dates can be found in section 2.3 of chapter 2.

This chapter is organized as follows. In section 5.2, we formally describe the prob-

lems and introduce notations and terminology. Section 5.3 is devoted to the individual

scheduling problems, and section 5.4 to the coordinated scheduling problems. In sec-

tion 5.5, we evaluate the performance of the branch-and-bound algorithm used to solve

NSP-NSD problem. Section 5.6 contains some conclusions and perspectives.

5.2 Problems and Notations

The manufacturer has to process a set of orders N = {1, . . . , n} on a single machine.

Each order j ∈ N has a release date rj (the date when raw material is available to

process order j), a processing time pj and a delivery deadline dj. After processing on the

machine, the orders can be grouped into batches of maximum size c > 0, corresponding

to a full truck load, and then sent to the customer locations. The orders are unit sized,

i.e. a truck can carry at most c orders at a time. The delivery operation is outsourced

by the manufacturer to a 3PL provider that is supposed to be able to deliver any batch

at any time. The batch is available to be delivered when all orders of this batch are
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completed. The transportation time of a batch and the corresponding subcontracting

cost are supposed to be independent on the batch constitution. Hence, we can assume

without loss of generality that the transportation time is 0 and the transportation cost

of a batch is a constant h. Hence, the delivery deadline is also the production deadline.

Let (σ, θ) denote the integrated schedule, where σ and θ are respectively the pro-

duction schedule and the delivery schedule. In this integrated schedule, Cj(σ) is the

completion time of order j on the machine and Dj(θ) is the delivery time of order j

to the customer location. Sometimes, we use Cj and Dj instead of Cj(σ) and Dj(θ) to

simplify the notations.

We consider two scenarios: (1) the manufacturer and the 3PL provider decide their

individual schedule without coordination in a consecutive order (i.e. first the manufac-

turer, then the 3PL provider); (2) the manufacturer and the 3PL provider coordinate

to decide concurrently an integrated schedule. These scheduling problems are formally

defined as follows.

1. Individual scheduling problems.

(a) Manufacturer’s problem. The manufacturer’s objective is to determine a

feasible production schedule in which the orders are completed before or at

their deadline. We investigate the problem in two cases:

� Non-splittable production (NSP) problem: An order is non-preemptable

(or non-splittable) in production. Using the three-field notation α|β|γ for

machine scheduling problems (Graham et al. 1979), this problem can be

denoted by 1|rj, dj|−.

� Splittable production (SP) problem: An order can be split in production.

This problem can be denoted by 1|rj, pmtn, dj|−.

(b) 3PL provider’s problem. With the production schedule imposed by the

manufacturer, the 3PL provider aims at deciding a delivery schedule minimiz-

ing the transportation cost TC. A delivery schedule is a partition of the orders

into batches, along with the departure time for each batch. We investigate

the problem in two cases:
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� Non-splittable delivery (NSD) problem: A finished order must be delivered

in one batch.

� Splittable delivery (SD) problem: A finished order can be split and deliv-

ered in several batches.

2. Coordinated scheduling problems. Clearly, an integrated model minimizing

the transportation cost TC subject to the deadline constraints is the best way for

the coordination. Since the implementation of coordination is simple, we concen-

trate on the resolution of the integrated scheduling problem.

We consider the integrated problem in three cases with different ways how an order

can be produced and delivered.

� Non-splittable production and delivery (NSP-NSD) problem: An order is non-

preemptable (or non-splittable) in production and a finished order must be

delivered in one batch. Using the five-field notation proposed by Chen (2010),

this problem can be denoted by 1|rj, dj|V (∞, c), direct|1|TC, where V (∞, c)

and direct mean that we consider the direct batch delivery by an unlimited

number of trucks with the capacity of c.

� Splittable production and non-splittable delivery (SP-NSD) problem: An order

can be split in production, and a finished order must be delivered in one batch.

This problem can be denoted by 1|rj, pmtn, dj| V (∞, c), direct|1|TC.

� Splittable production and delivery (SP-SD) problem: An order can be

split in both production and delivery. This problem can be denoted by

1|rj, pmtn, dj|V (∞, c), direct, split|1|TC.

We do not consider the non-splittable production and splittable delivery (NSP-SD)

problem, because according to Lemma 5.2 in section 5.3.2, for any feasible NSP

production schedule, there exists an optimal delivery schedule which is a NSD

schedule.

Example 1: To illustrate the integrated problems, we consider the following example

with seven orders where the vehicle capacity c is equal to 2. Table 5.1 gives the orders’

parameters.
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Table 5.1: Example for the integrated problems

Order j 1 2 3 4 5 6 7

pj 4 2 2 2 2 3 1

rj 0 2 2 2 13 12 17

dj 12 5 12 12 16 18 19

Figure 5.1: Optimal schedules for the integrated problems

Figure 5.1 shows the optimal schedules for the integrated problems. In a production

schedule, [j] means that order j is produced without preemption. In a delivery schedule,

[j] means that order j is delivered without splitting. When [j] is preceded by a constant

α, 0 < α < 1, this means that a part α of order j is produced or delivered.

NSP-NSD problem: In an optimal schedule as shown in Figure 5.1(a), the

production sequence is ([2], [1], [3], [4], [5], [6], [7]). There exists an idle time before or-

der 2, because if another order is processed before 2, then order 2 would be late.

A similar reason for the second idle time holds. There are six delivery batches:

{[2]}, {[1], [3]}, {[4]}, {[5]}, {[6]} and {[7]}, which depart respectively at time 4, 10, 12,

15, 18 and 19.

SP-NSD problem: In an optimal schedule as shown in Figure 5.1(b), the produc-

tion sequence is (1
2
[1], [2], [3], 1

2
[1], [4], 1

3
[6], [5], 2

3
[6], [7]), where orders 1 and 6 are split into

two parts. The optimal schedule has five delivery batches: {[2]}, {[1], [3]}, {[4]}, {[5]} and

{[6], [7]}, which depart respectively at time 4, 8, 10, 15 and 18. Since order 2 cannot be
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delivered with any other order, the transportation cost cannot be improved for the first

4 orders with the non-splittable delivery. However, we can split order 6 in production in

order to deliver orders 6 and 7 in one batch.

SP-SD problem: In an optimal schedule as shown in Figure 5.1(c), the produc-

tion sequence is the same as SP-NSD problem. The optimal schedule has four delivery

batches: {1
2
[1], [2], 1

2
[3]}, {1

2
[3], 1

2
[1], [4]}, {[5]} and {[6], [7]}, which depart respectively

at time 5, 10, 15 and 18. For example, the first full filled delivery batch consists of half

of order 1, whole order 2 and half of order 3. With the splittable delivery, the first four

orders can be delivered in two full batches.

Remark that in the above problems, the orders delivered together are not necessarily

sequenced consecutively, which makes the considered problems different from classical

batching models.

Example 2: To illustrate the benefit of coordination, we consider the following ex-

ample with five orders where the vehicle capacity c is equal to 3. Table 5.2 gives the

orders’ parameters.

Table 5.2: Example for evaluation of the benefit of coordination

Order j 1 2 3 4 5

pj 8 2 8 6 2

rj 2 10 6 1 12

dj 16 18 32 28 22

Figure 5.2: Schedules for the individual problems and the integrated problem
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Figure 5.2(a) shows a feasible schedule for individual problems: NSP problem and

NSD problem. Figure 5.2(b) shows an optimal schedule for NSP-NSD problem. We

compare two schedules to evaluate the benefit of coordination.

Individual problems (NSP and NSD): Applying the Non-preemptive EDD

rule (see section 5.3.1), we find a feasible production schedule. As shown in Figure

5.2(a), the production sequence is ([4], [1], [2], [5], [3]). All orders are completed before

their deadline. With this production schedule, the best distribution schedule consists of

four delivery batches: {[1]}, {[2]}, {[5]} and {[3], [4]}, which depart respectively at time

15, 17, 19 and 27.

NSP-NSD problem: In an optimal schedule as shown in Figure 5.2(b), the pro-

duction sequence is ([1], [2], [5], [3], [4]). The optimal schedule has two delivery batches:

{[1], [2], [5]} and {[3], [4]}, which depart respectively at time 14 and 28. Comparing

with the schedule for individual problems, we observe that with the coordination, the

transportation cost reduces 50%.

5.3 Individual Scheduling Problems

In the non-coordinated scenario, the manufacturer and the 3PL provider decide their

individual schedule consecutively. We review known exact algorithms to solve the man-

ufacturer’ problems (i.e. NSP and SP problems) and develop exact algorithms to solve

the 3PL provider’s problems (i.e. NSD and SD problems).

5.3.1 Manufacturer’s Problem

The manufacturer’s objective is to determine a feasible production schedule in which the

orders are completed before or at their deadline. We introduce first the definitions of

production triplet (see definition 5.1) and production block (see definition 5.2). Then we

investigate NSP and SP problems.

Definition 5.1 In a production schedule σ, a production triplet is an order or a part of

order which is processed without preemption. Let Vj(σ) = (Jj, aj, bj) denote production

triplet j, where the order Jj ∈ N is scheduled in the time interval [aj, bj], aj and bj repre-

sent respectively the starting time and ending time of the triplet. Hence the production
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schedule σ can be represented by a sequence of production triplets denoted by V (σ).

Definition 5.2 In a production schedule σ, a production block is defined as a subset of

orders which are processed consecutively. Set the minimum starting processing time of

orders of the block as the starting time of the block and the maximum completion time

of orders of the block as the ending time of the block. The sequence of orders is not

taken into account in the definition of a block. Let Ki(σ) denote the production block i

in σ.

NSP problem In this problem, an order is non-preemptable (or non-splittable) in

production. This decision problem 1|rj, dj|− is NP-complete (Garey and Johnson 1979).

Carlier proposed an efficient binary branch-and-bound algorithm to solve a head-tail

problem where an order j is available for processing by the machine at release date

rj (called also head), and has to spend an amount of time pj on the machine and an

amount of time qj (called tail) in the system after its processing, and the objective is to

minimize maxj∈N(Cj + qj). This problem is equivalent to the problem 1|rj|Lmax, where

Lmax = maxj∈N Lj = maxj∈N(Cj−dj), Lj is the lateness and dj is the due date (i.e. it can

be violated). In fact, we can define qj = maxi∈N di−dj, then minimizing maxj∈N(Cj+qj)

is equivalent to minimizing Lmax. The problem 1|rj, dj|− is the decision version of the

optimization problem 1|rj|Lmax, i.e. does there exist a production schedule σ such that

Lmax(σ) ≤ 0 ? NSP problem can be solved by applying Carlier’s branch-and-bound

algorithm and stopping when a feasible solution with Lmax ≤ 0 is found.

We review the Carlier’s branch-and-bound algorithm for the problem 1|rj|Lmax. The

algorithm computes a lower bound and an upper bound for each node based on preemp-

tive and non-preemptive EDD rule (Jackson 1955), respectively.

� Preemptive EDD rule: At each decision point t in time, consisting of each release

date and each order completion time, schedule an available order j (i.e. rj ≤ t)

with the earliest due date. If no orders are available at a decision point, schedule

an idle time until the next release date.

� Non-preemptive EDD rule: At each decision point t in time, consisting of each

starting time of production block and each order completion time, schedule an
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available order j (i.e. rj ≤ t) with the earliest due date without preemption. If no

orders are available at a decision point, schedule an idle time until the next release

date.

At every node u, the algorithm constructs the non-preemptive EDD schedule and

renumbers the orders according to the sequence in obtained schedule. Let l be the order

with the smallest index such that Ll = Lmax. Let h ≤ l be the order with the largest

index such that h = 1 or Ch−1 < sh where sh is the starting time of order h. Let [h, l]

denote the set of orders from h to l. If dl = maxk∈[h,l] dk, then the obtained schedule

is optimal. Otherwise, the algorithm defines a critical order e ∈ [h, l] with the largest

index such that de > dl and a set of critical set J ∈ [e + 1, l]. The algorithm considers

two subsets of schedules corresponding to two nodes u1 and u2. Let rj(u) and dj(u) be

the release date and the due date of order j at node u, respectively.

� In node u1, the algorithm requires the critical order to be processed before the

orders of the critical set by setting

de(u1) = max
j∈J

dj(u)−
∑
j∈J

pj (5.3.1)

dk(u1) = dk(u), k ∈ N\{e} (5.3.2)

rk(u1) = rk(u), k ∈ N (5.3.3)

� In node u2, the algorithm requires the critical order to be processed after the orders

of the critical set by setting

re(u2) = min
j∈J

rj(u) +
∑
j∈J

pj (5.3.4)

rk(u2) = rk(u), k ∈ N\{e} (5.3.5)

dk(u2) = dk(u), k ∈ N (5.3.6)

SP problem In this problem, the preemption is allowed in production. This prob-

lem 1|rj, pmtn, dj|− is a decision problem corresponding to the optimization problem

1|rj, pmtn|Lmax which is solved with the preemptive EDD rule in O(n log n) time (Horn

1974). Hence SP problem can be solved with the preemptive EDD rule in O(n log n)

time. Since the preemption occurs only at release dates in the schedule generated with

the preemptive EDD rule, there are at most n − 1 preemptions. Hence there are O(n)

production triplets in this production schedule.
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5.3.2 3PL Provider’s Problem

With the production schedule σ imposed by the manufacturer, the 3PL provider aims

at deciding a delivery schedule minimizing the transportation cost. We assume that

the orders are indexed in the increasing completion time, i.e. C1(σ) < . . . < Cn(σ).

This sorting operation requires O(n log n) time. Here, σ can be a NSP schedule or a SP

schedule. We recall that there are O(n) production triplets in σ (see section 5.3.1). We

first provide a general property for NSD and SD problems. Then we investigate NSD

and SD problems separately.

Lemma 5.1 There exists an optimal solution for NSD and SD problems, such that each

batch is delivered at its completion time, i.e. when all orders (or parts of orders) of the

batch are completed.

Proof. Suppose that there is an optimal delivery solution for NSD and SD problem, such

that it does not respect the property. We can anticipate the delivery time of each batch

to its completion time without changing the number of delivery batches. 2

NSD problem In this case, a finished order must be delivered in one batch. We

propose a polynomial-time algorithm (see algorithm GA5.1) for NSD problem.

Algorithm GA5.1

Step 1: Let N ′ ⊆ N denote the set of undelivered orders. Set the current delivery time

T = maxj∈N ′ Cj(σ).

Step 2: Find the set of undelivered orders with deadline greater than or equal to T .

Let S ⊆ N ′ denote this set.

Step 3: If |S| < c, deliver all orders of S in one batch which departs at time T . Other-

wise, deliver the last c completed orders of S in one delivery batch which departs

at time T . Then, update N ′. If all orders are delivered, then STOP. Otherwise, go

to step 1.

Theorem 5.1 Algorithm GA5.1 finds an optimal delivery schedule for NSD problem in

O(n2) time.
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Proof. We first prove the complexity. The steps 1 and 2 require O(n) time both at each

iteration. Since the orders of N are sorted in the increasing completion time, the orders

of S obtained at the step 2 are also sorted in the increasing completion time. Hence the

step 3 requires O(1) time at each iteration. Since there are at most n iterations, the

complexity is O(n2).

Then we prove that the algorithm GA5.1 provides an optimal solution. Suppose that

there is an optimal delivery schedule θ∗ respecting Lemma 5.1 for NSD problem. Let θ

be the delivery schedule generated by algorithm GA5.1. Suppose that the k last delivery

batches are the same in the two schedules and the (k + 1)th last delivery batch Bk+1

is different in the two schedules. According to Lemma 5.1 and the step 1 of algorithm

GA5.1, Bk+1(θ
∗) and Bk+1(θ) are delivered at the same time T = maxj∈N ′ Cj(σ) where

N ′ is the set of delivered orders before the k last delivery batches. Let S be the set

of delivered orders before the k last delivery batches with the deadline greater than or

equal to T . We distinguish two cases:

� if |S| < c, it is clear that the orders of Bk+1(θ
∗) are in Bk+1(θ). We can put all

orders j, such that j ∈ Bk+1(θ) and j /∈ Bk+1(θ
∗), in Bk+1(θ

∗) without increasing

the number of delivery batches. Now Bk+1(θ
∗) becomes the same as Bk+1(θ).

� if |S| ≥ c, we have |Bk+1(θ)| = c and Bk+1(θ
∗) ⊂ S. If |Bk+1(θ

∗)| < c, we fill

Bk+1(θ
∗) with some orders of S which are not in Bk+1(θ

∗) and update the delivery

time of modified batches. Now we do not increase the number of batches and have

|Bk+1(θ
∗)| = c. If there exists an order j such that j /∈ Bk+1(θ) and j ∈ Bk+1(θ

∗),

then there exists another order i such that i ∈ Bk+1(θ), i /∈ Bk+1(θ
∗) and Cj < Ci

since order i is one of the last c completed order. We can interchange orders i and

j in θ∗ without changing the number of batches and update the delivery time of

modified batches. We repeat this operation until Bk+1(θ
∗) becomes the same as

Bk+1(θ).

Hence, we can transform any optimal schedule θ∗ to θ without increasing the transporta-

tion cost. 2
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SD problem In this case, a finished order can be split and delivered in several batches.

We propose a polynomial-time algorithm (see algorithm GA5.2) for SD problem.

Algorithm GA5.2

Step 1: Let V ′ ⊆ V (σ) denote the set of production triplets (see definition 5.1)

corresponding to the undelivered parts of orders. Set current delivery time

T = maxVj∈V ′ bj.

Step 2: Find the set of production triples corresponding to the orders with a deadline

greater than or equal to T from V ′. Let S ⊆ V ′ denote this set.

Step 3: If
∑

Vj∈S(bj − aj)/pJj < c, deliver the parts of orders corresponding to S in

one batch which departs at time T . Otherwise, create one batch which departs at

time T as follows: Iteratively, if the remaining capacity of the batch, denoted by

c′, is enough, add the part of order corresponding to the last completed production

triplet Vj ∈ S in the delivery batch, otherwise split Vj into two production triplets

V ′j = (Jj, aj, bj − c′pJj) and V ′′j = (Jj, bj − c′pJj , bj). Put the part of order Jj

corresponding to V ′′ in the batch to form a full batch. Then update V ′. If all

orders are delivered, then STOP. Otherwise, go to step 1.

Theorem 5.2 Algorithm GA5.2 finds an optimal delivery schedule for SD problem in

O(n2) time.

Proof. The proof is similar as for Theorem 5.1. 2

Lemma 5.2 For any given feasible NSP production schedule, there exists an optimal

delivery schedule in which the orders are not split.

Proof. For a given NSP schedule, algorithm GA5.2 finds an optimal delivery schedule

which is a NSD schedule. In fact, in the case NSP, each production triplet Vj corresponds

to a non split order Jj, i.e., bj − aj = pJj . In the step 3 of algorithm GA5.2, when we

create a full batch in the case
∑

Vj∈S(bj − aj)/pJj > c, we do not split any production

triplet, i.e. the orders are put in the delivery batch without splitting. 2
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As discussed in section 5.2, we do not consider the non-splittable production and

splittable delivery (NSP-SD) problem, because according to Lemma 5.2, for any feasible

NSP production schedule, there exists an optimal delivery schedule which is a NSD

schedule.

5.4 Coordinated Scheduling Problems

Recall that the manufacturer’s problem is a decision problem and the 3PL provider’s

problem is an optimization problem, hence clearly, an integrated model minimizing the

transportation cost TC subject to the deadline constraints is the best way for the coordi-

nation. Concerning the implementation of coordination, since the manufacturer does not

benefit from the coordination, the 3PL provider needs to recompense the manufacturer.

In order to guarantee the benefit for both parties, the amount of compensation P has to

respect the formulation

TC2 + P ≤ TC1 (5.4.7)

where TC1 and TC2 are the transportation cost in the individual schedule and the

integrated schedule respectively.

In what follows, we concentrate on the resolution of the integrated scheduling prob-

lems. We first consider SP-NSD and SP-SD problems, then NSP-NSD problem.

5.4.1 SP-NSD Problem and SP-SD Problem

In this section, we first give some properties for SP-NSD and SP-SD problems. Then

we provide a polynomial-time algorithm that solves these problems in two special cases.

This algorithm will be used to compute lower bounds in the branch-and-bound algorithm

that solves NSP-NSD problem.

Lemma 5.3 There exists an optimal integrated schedule for SP-NSD and SP-SD prob-

lems, if it exists, such that the following properties hold:

(1) Each order is processed in one production block only.

(2) Each production block starts at the minimum release date of orders within this

block.
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(3) Each batch is delivered at its completion time when all orders (or parts of orders)

of the batch are completed.

Proof. (1) Suppose there exists an optimal integrated schedule (σ∗, θ∗) which does not

respect property 1, such that order j is the first order which is split and scheduled in

several production blocks. Let Ki be the first block containing order j (see figure 5.3(a)).

We reschedule as early as possible the rest of order j in the idle times after Ki (see figure

5.3(b)). Consequently, the order j is processed only in Ki. The delivery schedule θ∗ is

also feasible for the new production schedule. So this new integrated schedule is also

optimal. We can repeat this argument in a finite number of times until the property 1

is satisfied.

Figure 5.3: Illustration of property 1 of Lemma 5.3

Figure 5.4: Illustration of property 2 of Lemma 5.3
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(2) Suppose there exists an optimal integrated schedule (σ∗, θ∗) which respects prop-

erty 1 but does not respect property 2, such that production block Ki is the first block

which does not respect property 2. Suppose order j has the earliest release date among

the orders of block Ki. We reschedule order j as early as possible without changing other

orders. We distinguish two cases: in the first case, the completion time of the production

block Ki−1 is less than rj (see figure 5.4(a)), in the new production schedule all blocks

before K ′i respect property 2 (see figure 5.4(b)); in the second case, the completion time

of the production block Ki−1 is greater than or equal to rj (see figure 5.4(c)), in the new

production schedule all blocks before Ki respect property 2 (see figure 5.4(d)). In the

new production schedules((b) and (d)), we reduce the total size of blocks which do not

respect property 2. The delivery schedule θ∗ is also feasible for these new production

schedules. So this new integrated schedule is also optimal. We can repeat this argument

in polynomial time until property 2 is satisfied.

(3) The proof is the same as Lemma 5.1. 2

Lemma 5.4 There exists an optimal integrated schedule for SP-NSD and SP-SD prob-

lems, if it exists, such that the structure of production blocks, consisting of the orders

composition, the starting time and the ending time of each block, is the same as that

constructed by the preemptive EDD rule.

Proof. Suppose there exists an optimal integrated schedule (σ∗, θ∗) which respects

the properties of Lemma 5.3, but does not respect the property of Lemma 5.4. Let

(K∗1 , . . . , K
∗
l ) be the set of production blocks of σ∗. Let σ denote the production sched-

ule constructed by the preemptive EDD rule. Let (K1, . . . , Ku) be the set of production

blocks of σ. Suppose K∗i and Ki are the first block which are different in two schedules.

According to the preemptive EDD rule, in σ there is a idle time only if there is no

available order. Hence there is no idle time among the split parts of each order. In

addition, at each end of idle time, the rule schedules always one of remaining orders with

the earliest release date. Consequently, σ respects the properties of Lemma 5.3.

According to property 2 of Lemma 5.3, K∗i and Ki must start at the same time.

Noting that in σ there is a idle time only if there is no available order, we know that all

orders of K∗i must be in Ki, i.e. K∗i ⊆ Ki.
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Suppose order j is the first order such that j /∈ K∗i and j ∈ Ki. Since the orders

before j of Ki are also in K∗i , we know that K∗i can finish only at or after rj. According

to property 2 of Lemma 5.3, the block including the order j must start before or at rj.

Consequently, the order j must be in K∗i , which is in conflict with the assumption of

order j. That means that all orders of Ki must be in K∗i , i.e. Ki ⊆ K∗i .

Hence, we have Ki = K∗i and the ending times of Ki and K∗i are the same. So K∗i

and Ki are not the first block which are different in two schedules. Hence the property

of Lemma 5.4 is satisfied. 2

Then, we introduce the Shortest Remaining Processing Time (SRPT) rule to con-

struct a production schedule in SP-NSD and SP-SD problems.

SRPT rule: at each decision point t in time, consisting of each release date and each

order completion time, schedule an available order j (i.e. rj ≤ t) with the shortest

remaining processing time. If no orders are available at a decision point, schedule an idle

time until the next release date.

Next, we provide a polynomial-time algorithm (see algorithm GA5.3) for SP-NSD and

SP-SD problems in the following two special cases:

case 1: The vehicle capacity is unlimited, i.e. c =∞.

case 2: The set of orders N can be divided into two subset of orders N1 and N2.

∀j ∈ N1, @j′ ∈ N1 such that rj ≤ rj′ < rj + pj. ∀j ∈ N1 and i ∈ N2, rj + pj ≤ ri.

In any production block of the schedule constructed by preemptive EDD rule, the

orders of N2 have the same release date.

Algorithm GA5.3

Step 1: Generate a production schedule σ with the preemptive EDD rule. If Cj(σ) ≤

dj,∀j ∈ N , go to Step 2, otherwise there is no solution and STOP.

Step 2: Let N ′ ⊆ N denote the set of undelivered orders. Set the current delivery time

T = maxj∈N ′ Cj(σ).

Step 3: Find the set of undelivered orders with deadline greater than or equal to T .

Let S denote this set.
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Step 4: If |S| < c, deliver the orders of S in one batch which departs at time T .

Otherwise, reschedule the orders of S in σ with the SRPT rule and do not change

the schedule of other orders, then deliver the last c completed orders of S in one

batch which departs at time T . Then update N ′. If all orders are delivered, then

STOP. Otherwise, go to step 2.

Theorem 5.3 Algorithm GA5.3 finds an optimal integrated schedule for SP-NSD and

SP-SD problems in the special case 1 in O(n2) time, and the special case 2 in O(n2 log n)

time.

Proof. We first prove the complexity of algorithm GA5.3. At step 1, the generation of

σ takes O(n log n) time. We take O(n) time to check feasibility of the solution. At each

iteration, step 2 and step 3 take O(n) time respectively. The step 4 takes O(1) time for

the case |S| ≤ c and takes O(n log n) time to reschedule the orders of S with the SRPT

rule for the case |S| > c. There are O(n) iterations. We note that for the problem in

the special case 1, at the step 4 we have always |S| ≤ c, the algorithm GA5.3 finds an

optimal integrated schedule for SP-NSD and SP-SD problems in the special case 1 in

O(n2) time, and the special case 2 in O(n2 log n) time.

Next, we prove that the algorithm provides an optimal solution. We use a recursion

theorem to prove it. Let (σ, θ) denote the integrated schedule provided by algorithm

GA5.3. Let Bi denote the ith last batch of θ. Let |Bi| denote the size of Bi. Let

T (Bi) denote the departure date of Bi. According to Lemma 5.4, we find a structure

of production blocks of an optimal integrated schedule with the preemptive EDD rule.

We can fix the value for minimum T (B1) which equals to the makespan. Suppose that

T (Bi) is minimum. We prove the problems in two special cases 1 and 2 separately.

Case 1: Since c =∞, the algorithm generates a non full batch |Bi| < c. SinceBi delivers

all undelivered available orders at time T (Bi), T (Bi+1) is a production completion

time of one order of which the deadline is less than T (Bi). According to the

preemptive EDD rule, we cannot anticipate the maximum production completion

time of all orders of which the deadlines are less than T (Bi). Hence T (Bi+1) is

minimum,

Case 2: In this case, if the algorithm generates a non full batch |Bi| < c, with the same
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argument of the case 1, we can prove that T (Bi+1) is minimum. If the algorithm

generates a full batch |Bi| = c, we can also prove the minimization of T (Bi+1) as

follows:

� if T (Bi+1) is a production completion time of one order of which the deadline is

less than T (Bi), according to the preemptive EDD rule, we cannot anticipate

the maximum production completion time of all orders of which the deadlines

are less than T (Bi).

� if T (Bi+1) is a production completion time of one order of N1 of which the

deadline is greater than or equal to T (Bi), according to the preemptive EDD

rule the completion times of orders of N1 cannot be anticipated and the SRPT

rule does not change the completion times of N1, hence we cannot anticipate

T (Bi+1). If T (Bi+1) is a production completion time of one order of N2 of

which the deadline is greater than or equal to T (Bi), according to the SRPT

rule and the characteristic of the special case 2, this order is executed before

all orders of Bi in σ and Bi ⊆ S ∩N2. Since the orders of Bi have the longest

processing time among the orders of S ∩N2, we cannot anticipate T (Bi+1).

For the problems in the two special cases, we prove that T (Bi+1) is minimum. Hence

the algorithm GA5.3 generates the minimum number of batches to deliver all orders. 2

Remark that the computational complexities of SP-NSD and SP-SD problems in

general case are still open.

5.4.2 NSP-NSD Problem

It can be observed easily that problem 1|rj, dj|− reduces to NSP-NSD problem, i.e. it

is a special case of NSP-NSD problem with c = 1. Consequently, NSP-NSD problem is

NP-hard in the strong sense. In this section, we first present two heuristics to determine

upper bounds of TC. Then we describe a branch-and-bound algorithm to solve NSP-

NSD problem. Finally, we provide two MILP (mixed integer linear programming) models

which are used to evaluate the performance of the branch-and-bound algorithm.
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(i) Heuristics

In our branch-and-bound algorithm, we will use two heuristics that try to construct a

feasible integrated schedule for NSP-NSD problem.

The first heuristic, denoted by H5.1, uses the non-preemptive EDD rule, which

forces to create a production schedule without preemption. If the obtained production

schedule is feasible, then we apply algorithm GA5.1.

Heuristic H5.1

Step 1: Create a production schedule σ with the non-preemptive EDD rule. If Cj(σ) ≤

dj, ∀j ∈ N , go to step 2. Otherwise, the algorithm cannot provide a feasible

solution and STOP.

Step 2: Apply algorithm GA5.1 to compute a delivery schedule.

The second heuristic, denoted by H5.2, uses a SP-NSD integrated schedule computed

by algorithm GA5.3 to construct, if possible, a feasible integrated schedule for NSP-NSD

problem.

Heuristic H5.2

Step 1: Create a priority list of orders, such that in the given schedule (σ, θ), if Di(θ) <

Dj(θ), order i must be before order j in the list, and if Di(θ) = Dj(θ) and Ci(σ) <

Cj(σ), order i must be before order j in the list.

Step 2: Schedule each order as early as possible without preemption. When there are

several orders which can be scheduled, we choose the order with the highest priority.

Let σ′ be the constructed production schedule. If Cj(σ
′) ≤ dj,∀j ∈ N , go to step

3. Otherwise, the algorithm cannot provide a feasible solution and STOP.

Step 3: Apply algorithm GA5.1 to compute a delivery schedule.
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(ii) Branch-and-bound algorithm

We propose a branch-and-bound algorithm (see algorithm B5.1) for NSP-NSD problem

based on the branch-and-bound algorithm of Carlier recalled in section 5.3.1.

Algorithm 4: Algorithm B5.1

1 Generate the root associated with LB(Lmax, root) and UB(Lmax, root) as the

algorithm of Carlier, and put this node in list L;

2 while L 6= ∅ do

3 Choose one node u in L with minimum LB(Lmax, u) ;

4 if UB(Lmax, u) > 0 and LB(Lmax, u) ≤ 0 then

5 Compute LB(TC, u) and UB(TC, u) as algorithm B5.2;

6 if LB(TC, u) < UB∗(TC) then

7 if UB(TC, u) < n+ 1 then

8 Apply algorithm B5.2 with pj, rj(u), dj(u), the original deadlines

dj(root) for j ∈ N , and the precedence relations between orders

imposed at the path from the root to node u;

9 else

10 Branch as Carlier’s algorithm and add new nodes with the bounds

of Lmax in L;

11 else

12 if LB(Lmax, u) ≤ UB(Lmax, u) ≤ 0 then

13 Apply algorithm B5.2 with pj, rj(u), dj(u), the original deadlines

dj(root) for j ∈ N , and the precedence relations between orders

imposed at the path from the root to node u;

14 Remove u from L.

In the search tree, a node u is characterized by: release dates rj(u) and deadlines

dj(u) of orders j ∈ N , a lower bound of Lmax denoted by LB(Lmax, u), an upper bound

of Lmax denoted by UB(Lmax, u), a lower bound of TC denoted by LB(TC, u), an upper

bound of TC denoted by UB(TC, u), the current best upper bound of TC denoted

by UB∗(TC), and precedent constraints between the orders. If the node u is the root
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of search tree, rj(root) and dj(root) represent the original release dates and deadlines,

respectively.

Algorithm B5.1 first applies Carlier’s algorithm. When a feasible solution, i.e.

UB(TC, u) < n + 1 (line 7 of algorithm B5.1) or UB(Lmax, u) ≤ 0 (line 12 of algo-

rithm B5.1), is found at node u, we apply another branch-and-bound algorithm denoted

by algorithm B5.2 from node u to try to find a local optimal solution minimizing TC.

When algorithm B5.2 stops, algorithm B5.1 continues the branching of Carlier’s algo-

rithm for the remaining active nodes (line 10 of algorithm B5.1).

In algorithm B5.2, the lower bound LB(TC, u) is computed by solving two relaxed

problems which respect the two special cases of SP-NSD problem. The upper bound

UB(TC, u) is obtained by applying the two heuristics H5.1 and H5.2. Branching of

algorithm B5.2 is done by assigning to each position of production schedule an order

respecting a set of rules. Moreover, when algorithm B5.2 applies algorithm GA5.3,

heuristics H5.1 and H5.2, the part of production adopts the modified deadlines dj(u)

which are necessary to determine a feasible production schedule according to Carlier’s

algorithm, and the part of delivery adopts the original deadlines dj(root).

Algorithm B5.2

Lower bound: At node u, we solve two relaxed problems which respect the two special

cases of SP-NSD problem:

Problem 1: Set c = n.

Problem 2: Divide the set of orders N in two subsets of orders N1 and N2.

∀j ∈ N1, @j′ ∈ N1 such that rj(u) ≤ rj′(u) < rj(u) + pj. ∀j ∈ N1 and

i ∈ N2, rj(u) + pj ≤ ri(u). Schedule the orders with preemptive EDD rule,

then modify the release dates of the orders of N2 utile that in each production

block the orders of N2 have the same release date.

We solve these relaxed problems by applying algorithm GA5.3: execute step 1 of

algorithm GA5.3 with dj(u) for j ∈ N , and execute the remaining steps of the

algorithm with the original deadlines, i.e. dj(root) for j ∈ N . Let (σ1, θ1) and

(σ2, θ2) denote the obtained SP-NSD integrated schedules for the above problems
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respectively. Set LB(TC, u) = max{TC(σ1, θ1), TC(σ2, θ2)}.

Upper bound: Firstly, generate a NSP-NSD integrated schedule by applying heuris-

tic H5.2 with the above obtained schedule (σ2, θ2) and the original deadlines, i.e.

dj(root) for j ∈ N . Secondly, generate a second NSP-NSD integrated schedule

by applying heuristic H5.1: execute the step 1 of heuristic H5.1 with dj(u) for

j ∈ N , and execute the step 2 of heuristic with the original deadlines, i.e. dj(root)

for j ∈ N . Finally, if one or both constructed integrated schedules are feasi-

ble, set UB(TC, u) as the smallest TC among the two schedules. Otherwise, set

UB(TC, u) = n+ 1. Update UB∗(TC) if necessary.

Branching: if LB(TC, u) < UB∗(TC, u) for a node u, firstly choose one order to be

scheduled in the current production position. Order j is a valid candidate if it

respects the following rules. Let N ′ denote the set of unscheduled orders without

order j.

active scheduling rule: rj(u) < mink∈N ′(rk(u) + pk)

deadline rule: rj(u) + pj ≤ mink∈N ′(dk(u)− pk)

precedence relations rule:
∑

k∈N ′ xkj = 0, where xkj = 1 if order k precedes

order j, otherwise xkj = 0.

Then, require the valid candidate j to be scheduled at the current production

position and let u′ be the corresponding new node. Set rk(u
′) = max(rk(u), rj(u)+

pj), ∀k ∈ N ′.

Table 5.3: Example for branch-and-bound algorithm B5.1

Order j 1 2 3 4 5 6 7

pj 13 18 19 20 7 8 2

rj 35 38 14 21 1 48 14

dj 69 79 99 80 65 88 51

Example To illustrate algorithm B5.1, we consider the following example with six

orders where the vehicle capacity c is equal to 2 and the transportation cost h per batch

is equal to 1. Table 5.3 gives the orders’ parameters.
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Figure 5.5: Illustration of branch-and-bound algorithm B5.1

Figure 5.5 illustrates the search tree of the branch-and-bound algorithm B5.1. At

the root, i.e. node 1, since UB(Lmax, u) > 0 and LB(Lmax, u) ≤ 0, we check UB(TC, u)

and LB(TC, u). Since UB(TC, 1) = 8, i.e. the algorithm does not find a feasible NSP

schedule, the tree branches as Carlier’s algorithm. Here, we have the critical order e = 3

and the critical set J = {1, 2, 4}.

In node 2, Carlier’s algorithm requires the critical order to be processed before the

orders of critical set by setting the deadline of critical order 3, i.e. d3(2) = 29. Since

LB(Lmax, 2) = 6 and UB(Lmax, 2) = 6, the algorithm ensures that there is no feasible

NSP-NSD schedule for node 2.

In node 3, Carlier’s algorithm requires the critical order to be processed after the

orders of the critical set by setting the release date of the critical order 3, i.e. r3(3) = 72.

Since LB(Lmax, 3) = 0 and UB(Lmax, 3) = 0, the algorithm ensures that there is at

least one feasible NSP-NSD schedule. Then it applies algorithm B5.2. The precedence
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relations include that the order 3 has to be processed after the orders 1, 2 and 4. Since

initially LB(TC, 3) = 4 and UB(TC, 3) = 5, the tree branches as algorithm B5.2.

UB∗(TC) is updated to 5.

For the first position of production schedule, algorithm B5.2 finds that order 5 is

the only order that respects the rules of candidate. By scheduling order 5 in the first

position, node 4 is generated. Since rk(3) < r5(3) + p5(3),∀k ∈ N\{5}, the algorithm

does not change the release dates, i.e. rk(4) = rk(4), ∀k ∈ N . Since LB(TC, 4) = 4 and

UB(TC, 4) = 5, the tree continues to branch. We still have UB∗(TC) = 5.

The algorithm finds the only candidate 7 for the second position of production

schedule. By scheduling order 7 in the second position, node 5 is generated. Since

rk(4) < r7(4) + p7,∀k ∈ N\{5, 7}, the algorithm does not change the release dates, i.e.

rk(5) = rk(5), ∀k ∈ N . Since LB(TC, 5) = 4 and UB(TC, 5) = 5, the tree continues to

branch. We still have UB∗(TC) = 5.

For the third position of production schedule, algorithm B5.2 finds a set of candidates

{1, 2, 4}.

By scheduling order 1 in the third position, node 6 is generated. The algorithm sets

r2(6) = max{r2(5), r1(5) + p1} = 48 and r4(6) = max{r4(5), r1(5) + p1} = 48. With

this modified setting, there is no feasible solution for SP-NSD problem in the two special

cases. Hence there is no feasible solution for NSP-NSD problem.

By scheduling order 2 in the third position, node 7 is generated. The algorithm sets

r1(7) = max{r1(5), r2(5) + p2} = 56 and r4(7) = max{r4(6), r2(6) + p2} = 56. With

this modified setting, there is no feasible solution for SP-NSD problem in the two special

cases. Hence there is no feasible solution for NSP-NSD problem.

By scheduling order 4 in the third position, node 8 is generated. The algorithm sets

r1(8) = max{r1(5), r4(5) + p4} = 41 and r2(8) = max{r2(5), r4(5) + p4} = 41. With

this modified setting, algorithm B5.1 computes LB(TC, 8) = 5 and UB(TC, 8) = 5, a

local optimal solution is found. Since there is no active node, the algorithm stops and

an global optimal solution for NSP-NSD problem is found (see figure 5.6).

Figure 5.6 shows an optimal solution for NSP-NSD problem. The production se-

quence is (5, 7, 4, 1, 2, 6, 3). There are five delivery batches: {7}, {5, 1}, {2}, {4, 6}, and

{3}, which depart respectively at time 16, 54, 72, 80, and 99.
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Figure 5.6: An optimal solution for NSP-NSD problem

(iii) Two mixed integer linear programming models

We first present two properties of optimal integrated schedule for NSP-NSD problem.

Lemma 5.5 There exists an optimal integrated schedule for NSP-NSD problem, if it

exists, such that each batch is delivered

(1) either at one production completion time of order,

(2) or at one delivery deadline of order.

Proof. Suppose that there is an optimal integrated schedule for NSP-NSD problem, such

that it does not respect the property. We can change the delivery time of each batch to

respect property (1) or (2) without changing the number of delivery batches. 2

Then, we propose the first MILP model (see MILP5.1) which extends the well-known

positional scheduling model as follows. In this model, according to property (1) of Lemma

5.5, we suppose that each batch departs at one production completion time of order. Let

M1 = min(maxi∈N ri +
∑

i∈N pi,maxi∈N di).

Decision variables:

� xiq =

 1, if order i is processed in position q, i, q ∈ {1, . . . , n}

0, otherwise

� C[q] = production completion time of the order processed in position q, q ∈

{1, . . . , n}

� yiq =

 1, if order i is delivered at time C[q], i, q ∈ {1, . . . , n}

0, otherwise

� wq = number of batches departing at time C[q], q ∈ {1, . . . , n}
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MILP5.1:

min h

n∑
q=1

wq (5.4.8)

s.t.
n∑
i=1

xiq = 1 q ∈ {1, . . . , n} (5.4.9)

n∑
q=1

xiq = 1 i ∈ {1, . . . , n} (5.4.10)

n∑
i=1

yiq ≤ cwq q ∈ {1, . . . , n} (5.4.11)

n∑
q=1

yiq = 1 i ∈ {1, . . . , n} (5.4.12)

q∑
q′=0

yiq′ ≤
q∑

q′=0

xiq′ i, q ∈ {1, . . . , n} (5.4.13)

C[q] ≤ diyiq +M1(1− yiq) i, q ∈ {1, . . . , n} (5.4.14)

C[q] ≥
n∑
i=1

(ri + pi)xiq q ∈ {1, . . . , n} (5.4.15)

C[q] ≥ C[q−1] +
n∑
i=1

pixiq q ∈ {2, . . . , n} (5.4.16)

xiq ∈ {0, 1} i, q ∈ {1, . . . , n} (5.4.17)

yiq ∈ {0, 1} i, q ∈ {1, . . . , n} (5.4.18)

wq ∈ N q ∈ {1, . . . , n} (5.4.19)

In MILP5.1, the objective function is to minimize the transportation cost. Con-

straints (5.4.9) and (5.4.10) ensure that one order is processed in only one position and

one position is affected to only one order. Constraints (5.4.11) are the constraints of the

batch capacity. Constraints (5.4.12) guarantee that one order is delivered at only one

possible departure date. Constraints (5.4.13) ensure that the order can be delivered only

if it is completed. Constraints (5.4.14) are the constraints of deadlines and M1(1− yiq)

guarantees that the constraints are always true if order i is not delivered at time C[q].

Constraints (5.4.15) impose that if order i is processed in position q, the completion time

of order i should be after or at time ri + pi. Constraints (5.4.16) impose that if order

i is processed in position q, the completion time of order i should be after or at time

C[q−1] + pi. Constraints (5.4.17)-(5.4.19) give the domain of definition of each variable.
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Finally, we propose a second MILP model (see MILP5.2) which extends the well-

known disjunctive scheduling model as follows. In this model, according to property

(2) of Lemma 5.5, we can suppose that each batch departs at one order deadline. Let

s1, . . . , su denote the possible departure dates. Let M2 = maxi∈N di.

Decision variables:

� xij =

 1, if order i is processed before order j, i, j ∈ {1, . . . , n}

0, otherwise

� tj = production starting time of order j , j ∈ {1, . . . , n}

� yiq =

 1, if order i is delivered at time sq, i ∈ {1, . . . , n}, q ∈ {1, . . . , u}

0, otherwise

� wq = number of batches departing at time sq, q ∈ {1, . . . , u}

MILP5.2:

minh
u∑
q=1

wq (5.4.20)

s.t. xij + xji = 1, i, j ∈ {1, . . . , n}, i 6= j (5.4.21)

tj − ti ≥ pi − (1− xij)M2, i, j ∈ {1, . . . , n} (5.4.22)

tj ≥ rj, j ∈ {1, . . . , n} (5.4.23)

tj + pj ≤
u∑
q=1

(yjqsq), j ∈ {1, . . . , n} (5.4.24)

n∑
i=1

yiq ≤ cwq, q ∈ {1, . . . , u} (5.4.25)

u∑
q=1

yiq = 1, i ∈ {1, . . . , n} (5.4.26)

yiq = 0, i ∈ {1, . . . , n}, q ∈ {1, . . . , u}, di < sq (5.4.27)

xij ∈ {0, 1}, i, j ∈ {1, . . . , n} (5.4.28)

yiq ∈ {0, 1}, i ∈ {1, . . . , n}, q ∈ {1, . . . , u} (5.4.29)

wq ∈ N, q ∈ {1, . . . , u} (5.4.30)
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In MILP5.2, the objective function is to minimize the transportation cost. Con-

straints (5.4.21) show that either order i is processed before order j or order j before

order i for any two different orders i and j. Constraints (5.4.22) ensure that order j

starts its processing after or at the completion of order i if order i is processed before

order j. Constraints (5.4.23) guarantee that each order starts its processing after or

at its release date. Constraints (5.4.24) ensure that each order is delivered after or at

its production completion time. Constraints (5.4.25) are the constraints of the batch

capacity. Constraints (5.4.26) ensure that each order is delivered in one batch only.

Constraints (5.4.27) are the delivery deadlines constraints. Constraints (5.4.28)-(5.4.30)

give the domain of definition of each variable.

5.5 Computational Results

In this section, we evaluate the performance of branch-and-bound algorithm B5.1 by com-

paring it with MILP5.1 and MILP5.2. The branch-and-bound algorithm is implemented

in C++ and the MILP models are implemented in Cplex V12.5.1. The experiments are

carried out on a DELL 2.50GHz personal computer with 8GB RAM.

We reuse the method of Briand et al. (2010) to generate instances. We con-

sider n ∈ {10, 20, 30, 50, 70, 100, 150, 200, 300, 500}. The integers pj, rj and dj are

generated respectively from the uniform distributions [1,50], [0, α
∑n

j=1 pj] and [(1 −

β)a
∑n

j=1 pj, a
∑n

j=1 pj], where α, β ∈ {0.2, 0.4, 0.6, 0.8, 1} and a ∈ {100%, 110%}. If

dj < rj + pj, dj has been updated by rj + pj. The transportation cost of one batch h is

equal to 1. We choose a set of hard instances as follows: we apply the branch-and-bound

algorithm of Carlier to find the minimum Lmax for each instance, if the problem for this

instance cannot be solved at the root of the search tree, we consider this instance as a

hard instance. If the found Lmax of this hard instance is positive, we add this value to

each dj of this instance to ensure that we have at least one feasible solution. For n ≤ 70,

we consider the batch capacity c ∈ {2, 3, dn
8
e, dn

4
e}, and c ∈ {d n

50
e, d n

30
e, d n

20
e, d n

10
e} for

n ≥ 100. 80 hard instances for each value of n are generated. Totally 800 hard instances

are generated.

Tables 5.4 - 5.7 illustrate the performance of branch-and-bound algorithm B5.1. Im-
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Table 5.4: Performance of branch-and-bound algorithm B5.1.

n Fea Opt Node Time

10 100% 100% 2 0.07

20 100% 100% 16 0.85

30 100% 96.25% 165 14.82

50 100% 95% 173 19.16

70 100% 91.25% 183 36.13

100 100% 77.5% 324 78.46

150 100% 66.25% 334 118.18

200 100% 51.25% 298 150.02

300 100% 32.5% 240 209.01

500 100% 32.5% 118 212.98

Table 5.5: Performance of two MILP models.

MILP5.1 MILP5.2

n Fea Opt Node Time Fea Opt Node Time

10 100% 100% 155 0.42 100% 100% 1140 0.35

20 100% 100% 27791 26.59 98.75% 76.25% 262621 82.88

30 97.5% 62.5% 63950 159.56 63.75% 33.75% 349789 210.06

50 18.75% 10% 9603 290.07 20% 6.25% 139462 287.76

posing 5 minutes as the limit of execution time, we use the following measures to compare

the branch-and-bound algorithm with the two MILP models, i.e., MILP5.1 and MILP5.2.

Fea: the percentage of instances for which a feasible solution is determined within the

given time.

Opt: the percentage of instances which are solved to optimality within the given time.

Node: the average number of explored nodes.

Time: the average CPU time in seconds.

Gap1: the relative gap measured by (UB∗(TC) − LB∗(TC))/LB∗(TC), where

UB∗(TC) and LB∗(TC) are the best upper bound and lower bound. We con-

sider the instances for which we obtained at least one feasible solution (optimal
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Table 5.6: Gaps of solutions of branch-and-bound algorithm B5.1.

Gap1 Gap2

n Average Min Max Average

10 0% 0% 0% 0%

20 0% 0% 0% 0%

30 0.4% 6.67% 12.5% 10.56%

50 0.7% 5.88% 16.67% 13.97%

70 0.76% 6.25% 12.5% 8.7%

100 2.5% 4% 28.57% 11.1%

150 3.92% 2% 31.58% 11.62%

200 5.64% 2% 30% 11.57%

300 7.98% 2% 30.23% 11.83%

500 8.8% 2.22% 32% 13.03%

Table 5.7: Gaps of solutions of two MILP models.

MILP5.1 MILP5.2

Gap1 Gap2 Gap1 Gap2

n Average Min Max Average Average Min Max Average

10 0% 0% 0% 0% 0% 0% 0% 0%

20 0% 0% 0% 0% 4.24% 8.33% 34.29% 18.61%

30 9.67% 6.25% 54.15% 26.93% 10.55% 6.25% 81.25% 22.42%

50 12.22% 3.85% 64.74% 26.19% 18.81% 7.41% 78.63% 27.36%

solution included).

Gap2: the relative gap for the instances for which we obtained at least one feasible

solution (optimal solution excluded).

The results show that the branch-and-bound algorithm B5.1 outperforms the MILP

models. From Table 5.4 and Table 5.5, we observe that the average execution time and

the number of nodes with the MILP models are always larger than the branch-and-

bound algorithm, and the MILP models cannot find a feasible solution with n ≥ 70

and 5 minutes as time limit. The branch-and-bound algorithm solves all instances with

n ≤ 20 optimally within a very short execution time less than one second, and more than

90% of instances with n ≤ 70 within an average execution time less than 40 seconds.
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The branch-and-bound algorithm finds at least a feasible solution and solve 32.5% of

instances optimally with n up to 500 and 5 minutes as time limit.

Consulting the gaps in Table 5.6 and Table 5.7, we observe that the branch-and-bound

algorithm has a much better performance. In average, Gap1 and Gap2 of branch-and-

bound algorithm are less than 0.8% and 14% when n ≤ 70. However, the maximum Gap2

shows some hard cases for branch-and-bound algorithm when n ≥ 100. For two MILP

models,in average, Gap1 and Gap2 exceed 10% and 20% respectively when n ≤ 50.

5.6 Conclusions

In this chapter, we studied a production and outbound distribution scheduling problem

in a supply chain with a manufacturer, a 3PL provider and a customer. We considered

a single machine production and a direct batch delivery. Moreover, we considered an

important feature in production and distribution: splittable or non-splittable. The man-

ufacturer’s objective is to determine a feasible production schedule in which the orders

are completed before or at their deadline. The 3PL provider aims at deciding a delivery

schedule minimizing the transportation cost.

We first investigated the individual scheduling problems. We reviewed the production

scheduling problems (i.e. SP and NSP problems) and provided two polynomial-time

algorithms to solve the distribution scheduling problems (i.e. SD and NSD problems).

Then we investigated the coordinated scheduling problems (i.e. SP-NSD, SP-SD and

NSP-NSD problems). We provided a polynomial algorithm to solve two special cases

of SP-NSD and SP-SD problems. We also provided a branch-and-bound algorithm for

NSP-NSD problem and evaluated its performance using numerical experiments. The

results showed that the proposed algorithm has a better performance than the MILP

models and can solve more than 90% of instances with n ≤ 70 optimally within an

average execution time less than 40 seconds.

Several important research issues remain open for future investigations. A first re-

search direction is to study the complexities of SP-NSD and SP-SD problems. Another

issue is to provide a better lower bound for the branch-and-bound algorithm. Finally, one

might consider extending the model to the production system with parallel machines.





Chapter 6

Production and Outbound

Distribution Scheduling Problems

with Setup Times and Delivery

Time Windows

6.1 Introduction

In this chapter, we investigate a production and outbound distribution scheduling prob-

lem proposed by an enterprise working in the packaging industry. The manufacturer

has to process a set of orders on unrelated parallel machines with the consideration of

sequence-dependent setup times and costs. Then the 3PL provider delivers orders in

batches to the customers with heterogeneous vehicles subject to delivery time windows.

The manufacturer’s objective is to minimize the total setup cost and the 3PL provider’s

objective is to minimize the transportation cost. In order to minimize the total setup

cost, the manufacturer prefers a special production sequence which may entail higher

cost for the 3PL provider. For example it may happen that in a production sequence the

completion times of orders are close to their delivery time windows, and consequently

there are few flexibilities to group the orders in batches which increases the transporta-

tion cost. The coordination is motivated to decide an integrated schedule minimizing

the total cost of supply chain while guaranteeing the delivery time windows.

127
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Our objective in this chapter is to model this coordinated scheduling problem and

propose a first decomposition approach to solve it using a commercial solver, to evaluate

the feasibility of the approach and the potential benefit of coordination, and to propose

some directions of improvement for future research.

We first investigate the individual scheduling problems. The manufacturer’s prob-

lem is a production scheduling problem with setup costs and deadlines. The production

scheduling problem with setup times (costs) has attracted an extensive research. Al-

lahverdi et al. (2008) provided a survey of production scheduling problems with setup

times or costs. We can find the related literature in section 2.1 of chapter 2. The 3PL

provider’s problem is a heterogeneous vehicle routing problem with time windows and

release dates of orders (HVRPTWRD), which is an extension of the vehicle routing prob-

lem with time windows (VRPTW). The literature of VRPTW can be found in section

2.2 of chapter 2.

We also investigate the coordinated scheduling problem. An integrated model is

adopted and a mechanism of coordination is developed. The corresponding scheduling

problem is an integrated production and outbound distribution scheduling (IPODS)

problem with setup times, routing delivery and time windows. The related literature

can be found in section 2.3 of chapter 2. Ullrich (2013) investigated an IPODS problem

where a set of orders of general size is processed on identical parallel machines subject

to the machine release times, and delivered to customers within the time windows by

a fleet of heterogeneous vehicles on minimizing the sum of tardiness. They provided a

genetic algorithm for the integrated problem and evaluated its performance by comparing

with two classical decomposition approaches. Different from his problem, our problem

considers sequence-dependent setup cost in production, a new type of transportation

cost in distribution and a different objective function.

Chapter 6 is organized as follows. In section 6.2, we formally describe the prob-

lems and introduce notations and terminology. Section 6.3 is devoted to the individual

scheduling problems, and section 6.4 to the coordinated scheduling problems. In section

6.5, we evaluate the feasibility of the approach and the potential benefit of coordination

using numerical experiments with small instances. Section 6.6 contains some conclusions

and propositions for future research.
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6.2 Problems and Notations

A manufacturer has to process a set of orders N = {1, . . . , n} from customers on a set

of unrelated parallel machines M = {1, . . . ,m}. Order j ∈ N requires the processing

of qj identical items on machines. Each order can be processed on any machine. We

consider splitting property in production, in that each order can be split into parts and

processed independently on several machines at the same time. There is no preemption

of orders on each machine. Let pej denote the processing time of unit item of order j ∈ N

on machine e ∈ M . Let Cj denote the completion time of order j ∈ N . Let %j denote

the delivery destination of order j ∈ N . Moreover machine e ∈M has a release time γe.

On one machine, a sequence-dependent setup time and a setup cost occur when

production changes from one order to another order. Let s0j denote the setup time of

order j ∈ N which is processed as the first order on one machine. Let sj1j2 denote

the setup time when production changes from order j1 to order j2 and sj1j2 = 0 if

j1 = j2, j1, j2 ∈ N . The setup times respect the triangle rule, i.e. sj1j2 + sj2j3 ≥ sj1j2 ,

j1, j2, j3 ∈ N . The setup cost is proportional to the setup time. Let ρ be the cost for unit

setup-time. Hence ρsj1j2 is the setup cost when production changes from order j1 ∈ N

to order j2 ∈ N .

After completion of order j ∈ N , order j is delivered by a 3PL provider to its

destination %j at its delivery time window [aj, bj]. If one delivery vehicle arrives before

the delivery time window, it should wait until time aj to unload. Hence the delivery

time is also the beginning time of unloading. We consider batch delivery, i.e. one order

can be delivered with other orders in one shipment. There is a set of vehicles denoted by

K, consisting of several types of vehicles. For each type of vehicles there are a sufficient

number of vehicles. Any order can be delivered by any type of vehicle. Vehicle k ∈ K

has a capacity Qk, which is measured by the number of pallets. Let φj be the number

of pallets to deliver order j ∈ N . One pallet cannot contain more than one order.

Let τ0j denote the transportation time from the plant to the destination of order j. τ0j

includes the loading time. Let τj1j2 denote the transportation time from the destination

of order j1 ∈ N to the destination of order j2 ∈ N . Let T denote the constant unloading

time of an order at its destination. τj1j2 = 0 if %j1 = %j2 . The transportation times

respect the triangle rule, i.e. τj1j2 + τj2j3 ≥ τj1j2 , j1, j2, j3 ∈ N .
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There are two types of transportation: direct delivery from the plant to one destina-

tion; routing delivery from the plant to several destinations in one shipment. There is a

limit of length of any shipment, denoted by L.

In a direct delivery, the transportation cost from the plant to the destination of order

j ∈ N with vehicle k ∈ K, is denoted by hk0j. And the transportation time is τ0j.

In a routing delivery, the transportation cost is equal to the most expensive direct

batch cost of one order among the orders of this shipment plus the total drop costs. A

drop cost occurs when we deliver more than one destination in one shipment. Let ϕk

denote the drop cost per destination with vehicle k ∈ K. The transportation time is

equal to the traveling time of the shipment plus the unloading times. Clearly, the direct

delivery is a special case of the routing delivery.

Let σ denote a production schedule that specifies how to assign each order on machines

and when each order is processed on its assigned machine(s). Let θ denote a delivery

schedule that specifies how many batches are used, which orders are in each batch, when

each batch departs, and what is the traveling route for each batch. Let (σ, θ) denote an

integrated schedule that specifies a production schedule and a delivery schedule.

The manufacturer’s objective is to minimize the total setup cost, denoted by SC.

The 3PL provider’s objective is to minimize the transportation cost, denoted by TC,

which is the sum of transportation costs of all batches.

We consider two scenarios: (1) the manufacturer and the 3PL provider decide their

individual schedule without coordination in a consecutive order (i.e. first the manufac-

turer, then the 3PL provider); (2) the manufacturer and the 3PL provider coordinate

to decide concurrently an integrated schedule. The scheduling problems are formally

defined as follows.

1. Individual scheduling problems.

(a) Manufacturer’s problem. The problem is to determine a production sched-

ule minimizing SC subject to deadlines. We follow the three-field classification

α|β|γ introduced by Graham et al. (1979). This is a production scheduling

problem minimizing the total setup cost with unrelated parallel machines,

machine release times, splitting of order, deadlines and sequence-dependent

setup times, denoted by R, γe|split, dj, sij|SC.
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(b) 3PL provider’s problem. The problem is to determine a delivery schedule

minimizing TC subject to release dates of orders and delivery time windows.

The completion time of each order imposes a release date of the order for

delivery. The problem is a heterogeneous vehicle routing problem with time

windows and release dates (HVRPTWRD).

2. Coordinated scheduling problem. The integrated model is adopted to de-

termine an integrated schedule minimizing SC + TC subject to machine avail-

ability constraints and delivery time windows. A savings-sharing scheme is

necessary to motivate the coordination. Using the five-field notation pro-

posed by Chen (2010), the integrated scheduling problem can be denoted by

R, γe, split|[aj, bj]|V (∞, Qk), routing|u|SC + TC, where R means the unrelated

parallel machines, split means the order splitting in production, V (∞, Qk) and

routing mean the routing delivery with sufficient heterogeneous vehicles, and u ≤ n

represents the number of customers.

Example: To illustrate the individual and integrated problems, we consider the fol-

lowing example.

� Number of orders n = 2, number of machines m = 2.

� Quantity of items of order j ∈ N : qj = 25.

� Processing time of unit item of order j ∈ N on machines: p1j = 1 and p2j = 2.

� Setup times: s01 = 5, s02 = 4, s12 = s21 = 3.

� Cost of unit setup time: ρ = 100.

� Machines release times are zero.

� There are 2 identical vehicles with capacity of 20.

� Number of pallets to deliver order j ∈ N : φj = 10.

� Unloading time T = 1, and limit of length of shipment L = 30.

� Transportation times: τ01 = 10, τ02 = 15, τ12 = τ21 = 12.
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� Delivery time windows: [a1, b1] = [50, 60] and [a2, b2] = [60, 70].

� Transportation costs with vehicle k ∈ K: hk01 = 750 and hk02 = 1000.

� Drop costs of vehicle k ∈ K: ψk = 100.

1. Individual scheduling problems. Figure 6.1 illustrates an optimal production

schedule for manufacturer’s individual scheduling problem. With C1 = 30 and

C2 = 54, two orders cannot be delivered in one shipment because of the deadline

of order 1. Hence we have SC = 100 ∗ (5 + 4) = 900, TC = 750 + 1000 = 1750,

total cost is equal to SC + TC = 2650.

Figure 6.1: Optimal production schedule without coordination

2. Coordinated scheduling problem. Figure 6.2 illustrates a production schedule

for coordinated scheduling problem. In this schedule, order 2 is split: 10 items are

processed on machine 1 and 15 items are processed on machine 2. The setup cost

increases to SC = 100 ∗ (5 + 4 + 3) = 1200. With C1 = 30 and C2 = 43, the two

orders can be delivered in one shipment: the shipment departs at time 43, drops

order 1 at time 53 and reaches the destination of order 2 at time 66. Hence we

have TC = 1000 + 100 = 1100, total cost is equal to SC+TC = 2300. The benefit

of coordination of total cost is 13.2%.

Figure 6.2: Optimal production schedule with coordination
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6.3 Individual Scheduling Problems

In the non-coordinated scenario, the manufacturer and the 3PL provider decide their in-

dividual schedule consecutively. We provide a mixed integer linear programming (MILP)

model for each individual scheduling problem.

6.3.1 Manufacturer’s Problem

We recall that the single machine scheduling problem 1|sij|Cmax is NP-hard (Bruno and

Downey 1978). Since this single machine scheduling problem is a special case of the

manufacturer’s problem, the manufacturer’s problem is also NP-hard. Here, we consider

that the deadline dj of order j ∈ N is equal to bj − τ0j.

We provide a MILP model, which is similar to the model of Zhu and Heady (2000).

We introduce two fictive orders 0 and n+ 1. We define decision variables as follows.

Xe
ij =


1, if order i precedes order j on machine e, i = 0, . . . , n,

j = 1, . . . , n+ 1, i 6= j, e ∈M

0, otherwise

Y e
j = number of items of order j processed on machine e, j ∈ N , e ∈M .

Cj = completion time of order j, j ∈ N .

MILP6.1:

min ρ
m∑
e=1

n∑
i=0

∑
j∈N,j 6=i

sijX
e
ij (6.3.1)

s.t.
∑

i=0,...,n,i 6=j

Xe
ij ≤ 1, j = 1, . . . , n+ 1, e ∈M (6.3.2)∑

i=0,...,n,i 6=j

Xe
ij −

∑
g=1,...,n+1,g 6=j

Xe
jg = 0, j ∈ N, e ∈M (6.3.3)∑

i=0,...,n,i 6=j

Xe
ijqj ≥ Y e

j , j ∈ N, e ∈M (6.3.4)∑
i=0,...,n,i 6=j

Xe
ij ≤ Y e

j , j ∈ N, e ∈M (6.3.5)

m∑
e=1

Y e
j = qj, j ∈ N (6.3.6)

Cj ≤ dj, j ∈ N (6.3.7)
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Cj − Ci ≥ pejY
e
j +Xe

ijsij+

(Xe
ij − 1)(pejqj + max{bi, bj}), i, j ∈ N, i 6= j, e ∈M (6.3.8)

Cj ≥ Xe
0j(γ

e + s0j) + pejY
e
j , j ∈ N, e ∈M (6.3.9)

Xe
ij ∈ {0, 1}, i = 0, . . . , n, j = 1, . . . , n+ 1,

i 6= j, e ∈M (6.3.10)

Y e
j ∈ N, j ∈ N, e ∈M (6.3.11)

The objective function (6.3.1) minimizes the total setup cost. Constraints (6.3.2)

ensure that one order is processed on each machine once at most. Constraints (6.3.3)

impose that for each order j ∈ N , the number of its direct predecessors is equal to the

number of its direct successors on each machine. Constraints (6.3.4)-(6.3.5) impose the

relation between variables Xe
ij and Y e

j : if Y e
j > 0, then

∑
i=0,...,n,i 6=j X

e
ij > 0, otherwise∑

i=0,...,n,i 6=j X
e
ij = 0. Constraints (6.3.6) ensure that all orders are processed. Constraints

(6.3.7) enforce the order deadline restriction. In constraints (6.3.8), if order i precedes

order j on machine e, i.e., Xe
ij = 1, we ensure that the completion time of order j is far

enough after that of order i to include the processing time of processed parts of order j

and setup time for order j on machine e. Otherwise, i.e., Xe
ij = 0, we have Cj − Ci ≥

−max{bi, bj} ≥ pejY
e
j − pejqj − max{bi, bj}, hence constraints (6.3.8) are always valid.

Constraints (6.3.9) enforce the machine release time restriction. Constraints (6.3.10)-

(6.3.11) give the domain of definition of each variable.

6.3.2 3PL Provider’s Problem

In the 3PL provider’s problem, if the delivery destinations are given for one shipment,

the transportation cost of this shipment is fixed. Because of this difference from the

classical VRPTW, we need to prove the complexity of the 3PL provider’s problem. We

consider the following special case of the 3PL provider’s problem:

� each customer has one order only,

� the delivery time window [aj, bj] = [0,∞] for j ∈ N ,

� the production completion time Cj = 0 for j ∈ N ,
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� the limit of length of a trip L =∞,

� the vehicles are identical,

� the transportation costs hk0j1 = hk0j2 = hk for j1, j2 ∈ N and k ∈ K.

Let B denote the number of delivery batches. In this case, we have the following equation

for the overall transportation cost TC of a delivery schedule with B batches.

TC = Bhk + (n−B)ψk (6.3.12)

Hence the objective of minimizing TC is equivalent to the objective of minimizing the

number of delivery batches B. This special case is the bin packing problem which is

NP-hard in the strong sense (Garey and Johnson 1979). In the bin packing problem,

objects of different volumes must be packed into a finite number of bins of equal size in a

way that minimizes the number of bins used. So the 3PL provider’s problem is NP-hard

in the strong sense.

Then, we provide a multicommodity network flow MILP model similar to that of

Desrochers et al. (1988) for the 3PL provider’s problem.

This problem can be defined on a direct graphG = (V,A), where V = {0, 1, . . . , n+1}.

The vertex j ∈ {1, . . . , n} represents the destination %j of order j. The vertex 0, n + 1

represent the plant and one fictive ending point, denoted by %0 and %n+1 respectively.

The arcs represent the paths between two places. Feasible vehicle routes correspond

to paths starting at vertex 0 and ending at vertex n + 1. We set service time ψi = T

for vertex i ∈ N and ψ0 = ψn+1 = 0 for vertexes 0 and n + 1. τij is the travel time

from vertex i to vertex j. We set τi,n+1 = 0, for i ∈ {0, . . . , n}. Each vertex i is

associated to a time window [ai, bi]. And we set a0 = mini∈N Ci, b0 = maxi∈N{bi − τoi},

an+1 = mini∈N{ai +ψi} and bn+1 = maxi∈N{bi +ψi}. Here, completion time Cj of order

j ∈ N is given by the manufacturer. Arc (i, j), for i, j ∈ N and i 6= j, exists only if

� order i can be delivered before order j on respecting their delivery time window,

i.e. ai + ψi + τij ≤ bj,

� the shipment including orders i and j respects the limit of length of a shipment,

i.e. τ0i + ψi + max{τij, aj − bi − ψi} ≤ L,
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� the completion time of order j is no later than the latest possible departure date

of the shipment including orders i and j, i.e. bi − τ0i ≥ Cj.

There exists an arc from vertex 0 to each other vertex, and from each other state to

vertex n + 1. Let δ+(i) = {j : (i, j) ∈ A} and δ−(j) = {i : (i, j) ∈ A}. We define the

decision variables as follows.

xkij =

 1, if arc (i, j) is visited by vehicle k, (i, j) ∈ A, k ∈ K

0, otherwise

wki = starting time of unloading of vehicle k at vertex i, i ∈ V ,k ∈ K.

Hk = transportation cost of the trip accomplished by vehicle k, k ∈ K. Remark that

since the number of vehicles of each type is sufficient, we can suppose that each vehicle

is assigned at most one trip.

MILP6.2:

min
∑
k∈K

Hk (6.3.13)

s.t.
∑
k∈K

∑
j∈δ+(i)

xkij = 1, i ∈ N (6.3.14)

∑
j∈δ+(0)

xk0j = 1, k ∈ K (6.3.15)

∑
i∈δ−(j)

xkij −
∑

i∈δ+(j)

xkji = 0, k ∈ K, j ∈ N (6.3.16)

wkj ≥ wki + ψi + τij − (1− xkij) max{bi, bj}, k ∈ K, (i, j) ∈ A (6.3.17)

ai ≤ wki ≤ bi, k ∈ K, i ∈ V (6.3.18)∑
i∈N

∑
j∈δ+(i)

xkijφi ≤ Qk, k ∈ K (6.3.19)

wk0 ≥ Cj
∑

i∈δ−(j)

xkij, j ∈ N, k ∈ K (6.3.20)

wkj − wk0 ≤ L+ (1−
∑

i∈δ−(j)

xkij)bj, j ∈ N, k ∈ K (6.3.21)

Hk ≥ hk0j
∑

i∈δ−(j)

xkij + ϕk(
∑

(u,v)∈A,%u 6=%v

xkuv − 2) j ∈ N, k ∈ K (6.3.22)

xkij ∈ {0, 1}, k ∈ K, (i, j) ∈ A (6.3.23)
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Hk ≥ 0, k ∈ K (6.3.24)

The objective function (6.3.13) minimizes the transportation cost. Constraints

(6.3.14) ensure that one order is delivered once. Constraints (6.3.15) ensure that one

vehicle is used once. Constraints (6.3.16) state that the solution satisfy the flow conser-

vation at each vertex. Constraints (6.3.17)-(6.3.18) ensures that each order is delivered

at its destination in the delivery time windows. Constraints (6.3.19)-(6.3.20) enforce the

vehicle capacity restriction and the order availability restriction. Constraints (6.3.21)

enforce the delivery length restriction. Constraints (6.3.22) calculate the transportation

cost. Constraints (6.3.23)- (6.3.24) give the domain of definition of each variable.

6.4 Coordinated Scheduling Problems

We adopt an integrated model minimizing SC + TC subject to machine availability

constraints and delivery time windows. The objective is to optimize the performance of

the global supply chain. Clearly, the 3PL provider can benefit from this coordination

while the cost of the manufacturer cannot be improved or can be even higher. We propose

a savings-sharing mechanism to motivate the manufacturer to join the coordination. The

3PL provider recompense the manufacturer. In order to guarantee the benefit for both

actors, the amount of compensation P has to respect the formulation

TC2 + P ≤ TC1 (6.4.25)

SC2 − P ≤ SC1 (6.4.26)

where TC1 and TC2 are the transportation costs in the individual schedule and the

integrated schedule respectively. SC1 and SC2 are the total setup costs in the individual

schedule and the integrated schedule respectively.

In what follows, we propose a nonlinear programming model and a heuristic to solve

the integrated scheduling problem. Since the individual scheduling problems are NP-

hard, the integrated scheduling problem is also NP-hard.
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6.4.1 Nonlinear programming model

We combine MILP6.1 and MILP6.2 to construct a nonlinear programming model for the

integrated scheduling problem. Since Cj and xkij are both decision variables, this model

is nonlinear.

NLP6.1:

min ρ
m∑
e=1

n∑
i=0

∑
j∈N,j 6=i

sijX
e
ij +

∑
k∈K

Hk (6.4.27)

s.t. (6.3.2)− (6.3.11)

(6.3.14)− (6.3.24)

6.4.2 Two-phase iterative heuristic

Absi et al. (2014) proposed a two-phase iterative heuristic to solve an integrated problem

considering the integration of production planning and vehicle routing decisions. They

considered the production planning different from the production scheduling, and the

vehicle routing problem without delivery time windows. We propose a similar two-phase

iterative heuristic (see algorithm 5) to solve our integrated scheduling problem.

Algorithm 5: Two-phase iterative heuristic

1 Initialize F j
v = 0 and ηj = 1, for j ∈ N and v ∈ Ij;

2 while ending criterion do

3 Solve the production scheduling problem;

4 Remove all idles times and update Cj for j ∈ N ;

5 Solve the distribution scheduling problem with fixed Cj for j ∈ N ;

6 Update the best solution so far;

7 Update F j
v , for j ∈ N and v ∈ Ij;

8 Update ηj for j ∈ N ;

In the first phase, we solve a production scheduling problem in which an approximate

of the transportation cost is integrated. We first determine the discrete possible delivery

times in each delivery time windows, like {aj, aj +1, . . . , bj} for the delivery time window
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[aj, bj] and j ∈ N . Let Ij denote a set of indexes of possible delivery times of order

j ∈ N and tjv denote the vth possible delivery time for v ∈ Ij. In order to evaluate the

transportation cost, we introduce F j
v to represent an estimation of the transportation

cost of order j if order j is delivered at time tjv, j ∈ N and v ∈ Ij. We introduce a

decision variable λjv which is equal to 1 if tjv is chosen, and 0 otherwise. And we use a

parameter ηj for j ∈ N to modify the completion time constraints (see constraints 6.4.29

of MILP6.4). In the obtained production schedule of the first phase, we remove all idle

times on each machine and update Cj for j ∈ N . The anticipation of completion times

offers a better input for the second phase.

In the second phase, we solve the distribution scheduling problem with fixed Cj. We

use the solution of the second phase to update F j
v and ηj for next iteration. The procedure

stops when a fixed number of iterations is reached or the solution is not improved for a

fixed number of iterations.

(i) The production phase

In this phase, we propose a MILP to solve the production scheduling problem in which

an approximate of transportation cost is integrated. The decision variable λjv is equal to

1 if tjv is chosen for j ∈ N and v ∈ Ij, and 0 otherwise. The other decision variables are

introduced in MILP6.1.

MILP6.3:

min ρ
m∑
e=1

n∑
i=0

∑
j∈N,j 6=i

sijX
e
ij +

n∑
j=1

∑
v∈Ij

F j
vλ

j
v (6.4.28)

s.t. Cj ≤ ηj(λ
j
vt
j
v + (1− λjv)bj − τ0j), j ∈ N, v ∈ Ij (6.4.29)∑

v∈Ij

λjv = 1, j ∈ N (6.4.30)

λjv ∈ {0, 1}, j ∈ N, v ∈ Ij (6.4.31)

(6.3.2)− (6.3.6)

(6.3.8)− (6.3.11)

The objective function (6.4.28) minimizes the sum of the total setup cost and the

approximate transportation cost. Constraints (6.4.29) ensure that if λjv = 1, the com-

pletion time Cj ≤ ηj(t
j
v − τ0j), otherwise Cj ≤ ηj(bj − τ0j). And ηj is a parameter to
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control the degree to force the reduction of completion time. Initially, ηj is equal to 1

and is reduced at the end of each iteration. Constraints (6.4.30) ensure that each order

is delivered exactly once.

At the end of the first phase, in the obtained production schedule, we remove all idle

times and update Cj for j ∈ N .

(ii) The distribution phase

In this phase, we use MILP6.2 to solve the HVRPTWRD with fixed Cj for j ∈ N . Then,

we use the solution of second phase to update F j
v and ηj (see algorithm 6).

Algorithm 6: Procedure of updating F j
v and ηj

1 for j ∈ N do

2 for v ∈ Iv do

3 F j
v =∞;

4 for k ∈ K do

5 if order j is visited by vehicle k at time tjv′ where v′ ∈ Ij, and the

delivery time of order j in vehicle k can be replaced by tjv then

6 Bk = set of orders delivered by vehicle k;

7 H1 = cheapest cost to deliver the orders of Bk \ {j};

8 F j
v = min{F j

v , H
k −H1};

9 if order j is not visited by vehicle k and can be inserted in the trip of

vehicle k and visited at time tjv then

10 Bk = set of orders delivered by vehicle k;

11 H2 = cheapest cost to deliver the orders of Bk ∪ {j};

12 F j
v = min{F j

v , H2 −Hk};

13 for j ∈ N do

14 if 0.8ηj(bj − τ0j) ≥ mine∈M(γe + pejqj) + s0j and order j is delivered by a

vehicle of which the number of delivered pallets is less than or equal to

maxk∈K Q
k −mini∈N φi then

15 ηj = 0.8ηj;
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In algorithm 6, we update F j
v with the consideration of two cases:

1. If order j is visited by vehicle k at time tjv′ where v′ ∈ Ij, replacing delivery time

tjv′ by tjv in the trip is allowed if (lines 5-8):

� The transportation times from its direct predecessor to order j, and from

order j to its direct successor are respected.

� The new trip does not violate the limit of length of a trip.

If the conditions are satisfied, we update F j
v by min{F j

v , H2 −Hk}. Remark that

if v = v′, the above conditions are satisfied.

2. If order j is not visited by vehicle k, the insertion of order j in vehicle k at time tjv

is allowed if (lines 9-12):

� The biggest capacity of vehicle, i.e. maxg∈K Q
g, allows.

� There exists two successively visited vertexes which allow the insertion of

order j with delivery time tjv, i.e., the transportations times are respected.

� The new trip does not violate the limit of length of a trip.

If the conditions are satisfied, we update F j
v by min{F j

v , H2 −Hk}.

After the consideration of all vehicles, F j
v represents the cheapest transportation

cost to deliver order j at time tjv for j ∈ N and v ∈ Ij.

Moreover, we explain how to find the cheapest cost to deliver a set of orders B

(lines 7 and 11). For given B and vehicle k ∈ K, the corresponding transportation

cost is fixed. Hence we choose the cheapest vehicle to deliver this set of orders.

Concerning the parameter ηj for j ∈ N , if ηj is small enough or order j is delivered

by a vehicle in which the size of delivered orders is close to the biggest vehicle capacity,

we do not change ηj, otherwise we reduce ηj by 20%.

In the distribution schedule obtained in the second phase, F j
v approximates the trans-

portation cost if order j is delivered at time tjv, j ∈ N and v ∈ Ij. In next iteration,

for each order j ∈ N , the algorithm may choose another delivery time with smaller

transportation cost. This modification of delivery time of each order can influence the
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production completion time of each order in the first phase (see constraints 6.4.29 of

MILP6.3). The objective of the reduction of ηj is to force the algorithm to reduce the

production completion time of order j and increase the opportunity to find a better

transportation cost in the second phase.

6.5 Computational Results

In this section, we evaluate the feasibility of the approach and the potential benefit of

coordination. We propose an approach of generation of instances and analyze the results

with small instances.

The benefit of coordination is measured by comparing the integrated schedule gener-

ated by the heuristic with the individual schedules generated by MILP6.1 and MILP6.2.

The algorithms are implemented in C++ and Cplex V12.5.1. The experiments are car-

ried out on a DELL 2.50GHz personal computer with 8GB RAM.

We consider n ∈ {5, 10, 15, 20} and m ∈ {2, 3, 5}. The integers qj and φj, for

j ∈ N , are generated from the uniform distributions [50,200] and [qj/10, qj/5] re-

spectively. The processing times of unit item pej , for j ∈ N and e ∈ M , are

generated from the uniform distribution [0.01, 0.1]. The machines release times

γe, for e ∈ M , are generated from the uniform distribution [0,4]. The inte-

gers sij, for i = 0, . . . , n, j ∈ N , are generated from the uniform distribution

[0.1 min{maxe∈M peiqi,maxe∈M pejqj}, 0.5 min{maxe∈M peiqi,maxe∈M pejqj}]. We set sij = 0

for i = j. In order to guarantee the triangle property, after generation, if sij ≤ S/2,

where S is the maximum generated setup time, we regenerate another sij ∈]S/2, S]. The

cost per unit setup time ρ is equal to 100.

We suppose that one customer has only one order. The customers are divided into

two groups, N1 = {1, . . . , n/2} and N2 = {n/2 + 1, . . . , n}. The integers τ0j, for j ∈ N1

are generated from the uniform distribution [15, 19] and for j ∈ N2 from [25, 29]. If i, j

are in the same group, the integers τij are generated from the uniform distribution [4, 6],

otherwise from [15, 19]. We set τij = τji and set τij = 0 if %i = %j. The limit length

of a trip L ∈ {45, 60}. The unloading time T = 1. The integer lower bounds of time

windows aj, for j ∈ N , are generated from the uniform distribution [B/2, B], where



6.5. Computational Results 143

B = maxe∈M γe + maxe∈M
∑

j∈N p
e
jqj/m + L + 0.75nS represents an estimated delivery

time if all orders begin their processing at the latest machine release time, each order

is split in m parts and processed on m machines, and the transportation time of the

trip reaches the limit L. The integer upper bounds of time windows bj, for j ∈ N , are

generated from the uniform distribution [aj + ε− 5, aj + ε], where ε2 = {10, 15}. There

are two types of vehicles and 2n vehicles totally, i.e., K = {1, . . . , 2n}. For k ≤ n and

j ∈ N , Qk = 30, ϕk = 50 and hk0j = 50τoj. For k > n and j ∈ N , Qk = 60, ϕk = 80 and

hk0j = 80τoj. 10 instances are generated for each combination of parameters n, m, L and

ε. Totally 480 instances are generated.

We impose 3 minutes as a limit of execution time of a MILP. We generate individual

schedules in three steps: first apply MILP6.1 to create a production schedule, then

remove the idle times in the obtained production schedule, and finally apply MILP6.2

to create a distribution schedule. We apply the two-phase iterative heuristic to generate

an integrated schedule. Concerning the ending criterion, we set that the total number

of iterations cannot exceed 6 and the number of iterations without improvement cannot

exceed 3.

Table 6.1: Average computational times of execution of heuristic

n 5 10 15 20

Time 3.34 238.28 952.30 929.29

Table 6.2: Benefit of coordination

Improved Average Benefit Max Benefit

n m = 2 m = 3 m = 5 m = 2 m = 3 m = 5 m = 2 m = 3 m = 5

5 25.00% 20.00% 30.00% 2.83% 2.40% 3.15% 21.43% 29.70% 24.28%

10 32.50% 20.00% 32.50% 1.16% 0.68% 1.00% 14.69% 6.47% 6.13%

15 57.50% 57.50% 67.50% 1.52% 1.41% 1.47% 6.61% 6.51% 5.29%

20 42.50% 77.50% 55.00% 1.09% 2.55% 1.63% 5.72% 7.90% 7.98%

Table 6.1 and Table 6.2 illustrate the benefit of coordination. The measures are

described as follows.

Time: the average CPU time in seconds to execute the heuristic.
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Improved: the percentage of instances which has a positive benefit.

Benefit: the benefit of coordination measured by

SC1 + TC1 − SC2 − TC2

SC1 + TC1

(6.5.32)

where SC1 and TC1 are the values of objective functions of the individual schedules,

and SC2 and TC2 are the values of objective functions of the integrated schedule.

From Table 6.1, one can observe that the average execution time of the heuristic

grows rapidly. When n = 5, all MILPs can be solved optimally in the given time. When

n ≥ 15, we observe a difficulty for MILP6.2 which cannot find an optimal solution in the

given time.

From Table 6.2, we observe that the average benefit of coordination is not significant.

We think that this small benefit is influenced by: the possible lack of generality of

instances and the low efficiency of MILP6.2 in the second phase. In what follows, we

explain the above conclusions by analyzing the indicators �Improved�and �Max Benefit�.

When n = 5 and 10, we find that there exists the instance with a significant benefit which

can reaches 29.7% when n = 5 and 14.69% when n = 10. At the same time, we find more

than 67.5% of instances which cannot be improved. Since the MILPs can find an optimal

solution for the instances with n = 5 and 10 in the given time, we have the reason to

doubt the generality of instances. When n = 15 and 20, more than 42.5% of instances

can be improved, however the low efficiency of MILP6.2 impedes the improvement of the

transportation cost.

The significant maximum benefit of coordination verifies the feasibility of the heuristic

and the potential benefit of coordination. Moreover, the results point out the possible

lack of generality of instances and the low efficiency of MILP6.2 in the second phase.

In order to improve the efficiency of MILP6.2 in the second phase, we tested another

time-expanded network flow-based model and found that the new MILP is less efficient

than MILP6.2. For future research, we need to provide a better approach of generation

of instances, and develop an efficient exact algorithm or an efficient heuristic for the

distribution phase of the two-phase iterative heuristic.
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6.6 Conclusions

In this chapter, we investigated a production and outbound distribution scheduling prob-

lem in a supply chain with a manufacturer, a 3PL provider and several customers. This

problem is proposed by an enterprise working in the packaging industry. The manufac-

turer’s objective is to minimize the total setup cost and the 3PL provider’s objective

is to minimize the transportation cost. We first proposed MILP models for individual

scheduling problems. Then we provided a nonlinear programming model and a two-phase

iterative heuristic for integrated scheduling problem, and developed a savings-sharing

mechanism to motivate the coordination.

We also proposed an approach of generation of instances and evaluated the benefit

of coordination using numerical experiments with small instances. The significant max-

imum benefit of coordination verified the feasibility of the heuristic and the potential

benefit of coordination. The average benefit of coordination is not significant, which

may be influenced by the possible lack of generality of instances and the low efficiency

of MILP6.2 in the second phase.

We pointed out the need to improve the approach of generation of instances and the

efficiency of the algorithm for the distribution phase of the two-phase iterative heuristic.

In order to evaluate the performance of the two-phase iterative heuristic, one might

develop a meta-heuristic and compare their solutions using numerical experiments.





Chapter 7

Conclusions and Perspectives

In this dissertation, we investigated three supply chain scheduling problems in the make-

to-order business model.

In part I, we addressed a production and interstage distribution scheduling prob-

lem. In the considered supply chain, a manufacturer outsources the transportation of

semi-finished products between the two production locations to a 3PL provider. We

considered the regular and express transportation modes. In chapter 3, we discussed the

individual scheduling problems with the consideration of different bargaining powers of

the two decision makers and different transportation settings. Different from the classi-

cal production scheduling problems and distribution scheduling problems, the individual

scheduling problems considered some imposed constraints of the decision maker with a

dominant bargaining power and the reaction of the other decision maker. In chapter 4,

we discussed the mechanisms of coordination when one of the imposed constraints was

relaxed and when all imposed constraints were removed. For the individual scheduling

problems and coordinated scheduling problems, we provided polynomial-time algorithms

or proved their NP-completeness. We performed experiments to investigate the benefits

accruing from coordination between the two parties in two coordinated scenarios. The

results showed that the relaxation of the transportation responsiveness can bring a signif-

icant benefit for the 3PL provider and the coordination without any imposed constraints

can bring better benefits to both actors.

In part II, we investigated the coordination in outbound distribution environment.

Firstly, in chapter 5, we considered a production and outbound distribution schedul-

147
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ing problem with the consideration of order release dates in production and delivery

deadlines. In this problem, we considered a single machine production and a direct batch

delivery to one customer. Moreover, we considered an important feature in production

and distribution: splittable orders or non-splittable orders. We reviewed the individ-

ual production scheduling problems and provided two polynomial-time algorithms to

solve the distribution scheduling problems. We provided a branch-and-bound algorithm

for the coordinated scheduling problem with non-splittable production and distribution

(NSP-NSD problem). In order to evaluate the performance of the branch-and-bound

algorithm, we provided two MILP models which extended the well-known positional and

disjunctive scheduling models. The computational results show that the branch-and-

bound algorithm outperforms the two MILP models.

Secondly, in chapter 6, we investigated a production and outbound distribution

scheduling problem in the real industry environment. In this system, the production

and distribution schedules are decided without coordination. We first provided two

MILP models for the individual scheduling problems. These problems are both NP-hard

because of the complex system consisting of sequence-dependent setup times, unrelated

parallel machines and routing batch delivery to several customers with delivery time

windows and heterogeneous vehicles. Then, we proposed an integrated model and pro-

vided a nonlinear programming model and a two-phase iterative heuristic to solve the

integrated scheduling problem. Using numerical experiments with small instances, we

verified the feasibility of the heuristic and the potential benefit of coordination. And we

also pointed out the need to improve the approach of generation of instances and the

efficiency of the algorithm for the distribution phase of the two-phase iterative heuristic,

and to develop a meta-heuristic.

We propose some problems for future investigation.

1. Coordinated production and interstage distribution scheduling problem with fixed

delivery departure dates.

Chen (2010) pointed out the need of research on the scheduling problems with fixed

delivery departure dates in his survey on integrated production and distribution

scheduling problems. In chapter 4, we proved that this problem with two criteria,

i.e. the makespan and the transportation cost, is NP-hard. There is a need to
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develop exact algorithms and heuristics for this problem.

2. Coordinated production, interstage distribution and outbound distribution schedul-

ing problem.

In the literature, few paper considers the supply chain with both interstage distri-

bution and outbound distribution. Lee and Chen (2001) considered a supply chain

with both interstage and outbound distribution in an integrated production and

distribution scheduling problem. However, they considered the two distribution

problems separately. We can extend our first problem to a supply chain with a

manufacturer, a 3PL provider and a (several) customer(s). The manufacturer has

to process a set of orders on one machine at the upstream stage and the down-

stream stage. The 3PL provider is in charge of the transportation of semi-finished

products from the upstream stage to the downstream stage, and the transportation

of finished products from the downstream stage to the customer(s).

3. Integrated production and outbound distribution scheduling problem with release

dates, deadlines and preemption.

This problem is motivated by our second problem. In this integrated problem, a

set of preemptive orders has to be processed on one machine, then be delivered in

batches to the customer. Each order has a release date and a delivery deadline.

The objective is to minimize the transportation cost subject to delivery deadlines.

In chapter 5, we proved that this problem is polynomially solvable in two special

cases, and the complexity of this problem in general case is open. There is also a

need to investigate this problem in more complex models, e.g., the parallel machines

production model, the vehicle routing distribution model, etc.

4. Coordinated production and distribution scheduling problem with 3PL provider.

As observed in chapter 1, the road freight transport is mostly outsourced to in-

dependent partners like Third Party Logistics (3PL) providers, improving the effi-

ciency of transport. In the literature, few papers considered the scheduling problem

with 3PL provider (Li et al. 2008, Zhong et al. 2010, Agnetis et al. 2014). In

our considered problems, we investigated the coordinated scheduling problem with

a manufacturer and a 3PL provider. There is a need to investigate coordinated
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scheduling problem and mechanisms of coordination in more complex models, e.g.,

models with several manufacturers and/or several 3PL providers, etc.
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[104] D. Mester and O. Bräysy. Active guided evolution strategies for large-scale vehicle

routing problems with time windows. Comput. Oper. Res., 32(6):1593 –1614, 2005.

[105] D. Miller, H.-C. Chen, J. Matson, and Q. Liu. A hybrid genetic algorithm for the

single machine scheduling problem. Journal of Heuristics, 5(4):437–454, 1999.
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