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Rémi GILLERON Professeur à l’université de Lille3 Directeur
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Résumée

Apprendre des tâches simultanément peut améliorer le performance

de prédiction par rapport à l’apprentissage de ces tâches de manière

indépendante. dans cette thèse, nous considérons l’apprentissage multi-

tâche lorsque le nombre de tâches est grand. En outre, nous détendons

des restrictions imposées sur les tâches. Ces restrictions peuvent

trouvées dans les méthodes de l’état de l’art. Plus précisément on

trouve les restrictions suivantes : l’imposition de la même espace d’

étiquette sur les tâches, l’exigence des mêmes examples d’apprentissage

entre tâches et / ou supposant une hypothèse de corrélation globale

entre tâches.

Nous proposons des nouveaux classificateurs multi-tâches qui relax-

ent les restrictions précédentes. Nos classificateurs sont considérés en

fonction de la théorie de l’apprentissage PAC des classifieurs faibles,

donc, afin de parvenir à un faible taux d’erreur de classification, un en-

semble de ces classifieurs faibles doivent être appris. Ce cadre est ap-

pelé l’apprentissage d’ensembles, dans lequel nous proposons un algo-

rithme d’apprentissage multi-tâche inspirée de l’algorithme Adaboost

pour seule tâche. Différentes variantes sont proposées également, à

savoir, les forêts aléatoires pour le multi-tâche, c’est une méthode

d’apprentissage d’ensemble, mais fondée sur le principe statistique

d’échantillonnage Bootstrap.

Dans la première approche, les classifieurs faibles que nous considérons

sont des stumps de décision 2-niveau pour différentes tâches. Un clas-



sificateur faible assigne une classe à chaque occurrence de deux tâches

et s’abstenir de voter sur d’autres tâches. Les classifieurs faibles

permettent de gérer les dépendances entre les tâches sur l’espace

d’apprentissage. Nous introduisons différents apprenants efficaces pour

apprendre ces classifieurs. Nous considérons ensuite Adaboost avec les

classifieurs faibles qui peuvent s’abstenir et de l’adapter à la config-

uration de l’apprentissage multi-tâche. Dans une ’etude empirique,

nous comparons les apprenants faibles.

Dans la seconde approche, nous développons l’environnement Ad-

aboost multi-tâches, avec des arbres de décision comme classifieurs

faibles. D’abord nous adaptons l’arbre de décision bien connue au

réglage multi-tâches. Nous révisons la règle du gain d’information

pour l’apprentissage des arbres de décision pour l’adapter au multi-

tâche. Nous utilisons cette fonctionnalité pour développer un nouveau

critère pour l’apprentissage des arbres de décision multi-tâches. Le

critère guide de la construction de l’arbre par l’apprentissage des règles

de décision à partir des données de tâches différentes, et représentant

différents degrés de relations entre les tâches. Ensuite, nous modifions

Adaboost pour pouvoir combiner un ensemble des arbres de décision

multi-tâches.

Enfin, nous donnons une validation expérimentale qui montre que

approche sur-performe des méthodes existants et permet d’apprendre

des nouvelles configurations de tâches qui ne correspondent pas aux

méthodes de l’état de l’art.



Abstract

Learning multiple related tasks jointly by exploiting their underlying

shared knowledge can improve the predictive performance on every

task compared to learning them individually. In this thesis, we ad-

dress the problem of multi-task learning (MTL) when the tasks are

heterogenous: they do not share the same labels (eventually with dif-

ferent number of labels), they do not require shared examples. In

addition, no prior assumption about the relatedness pattern between

tasks is made.

Our contribution to multi-task learning lies in the framework of en-

semble learning where the learned function consists normally of an

ensemble of “weak” hypothesis aggregated together by an ensemble

learning algorithm (Boosting, Bagging, etc.). We propose two ap-

proaches to cope with heterogenous tasks without making prior as-

sumptions about the relatedness patterns. For each approach, we

devise novel multi-task weak hypothesis along with their learning al-

gorithms then we adapt a boosting algorithm to the multi-task setting.

In the first approach, the weak classifiers we consider are 2-level de-

cision stumps for different tasks. A weak classifier assigns a class to

each instance on two tasks and abstain on other tasks. The weak

classifiers allow to handle dependencies between tasks on the instance

space. We introduce different efficient weak learners. We then con-

sider Adaboost with weak classifiers which can abstain and adapt it



to multi-task learning. In an empirical study, we compare the weak

learners and we study the influence of the number of boosting rounds.

In the second approach, we develop the multi-task Adaboost envi-

ronment with Multi-Task Decision Trees as weak classifiers. We first

adapt the well known decision tree learning to the multi-task setting.

We revise the information gain rule for learning decision trees in the

multi-task setting. We use this feature to develop a novel criterion for

learning Multi-Task Decision Trees. The criterion guides the tree con-

struction by learning the decision rules from data of different tasks,

and representing different degrees of task relatedness. We then modify

MT-Adaboost to combine Multi-task Decision Trees as weak learners.

We experimentally validate the advantage of our approaches; we re-

port results of experiments conducted on several multi-task datasets,

including the Enron email set and Spam Filtering collection.
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Chapter 1

Introduction

Multi-task learning Caruana [1997] aims at improving the performance of related

tasks by learning a model representing the common knowledge across the tasks.

Traditionally, the existing techniques assume that tasks share the same instance

and label space Pan and Yang [2008], in the case of classification Evgeniou and

Pontil [2004]; Xue et al. [2007], regression Archembeau et al. [2011]; Dai et al.

[2007], ranking Chapelle et al. [2010a] and feature learning Argyriou et al. [2006a].

However, in many natural settings these assumptions are not satisfied. A

known example is the automatic categorization of Web pages into hierarchical

directories, like DMOZ or Yahoo! Liu et al. [2005]. When building a categorizer

for the Yahoo! directory, it is desirable to take into account DMOZ web directory,

and vice versa. The two tasks are clearly related, but their label sets are not

identical. Moreover, both ontologies can evolve with time when new categories

are added to the directories and some old categories die naturally due to lack of

interest.

Multi-task learning with no label correspondence was considered in

Novi Quadrianto [2010], where the problem is formulated as learning the max-

imum entropy estimator H(Y |X) for each task while maximizing the mutual

information −H(Y, Y ′) among the label sets Y and Y ′ of different tasks. Their

approach relies on the hypothesis of the global correlation between tasks in the
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whole learning space. Tests on the real world datasets show however that this

global relatedness assumption turns to be too strong. Indeed, task relatedness

may show up different degrees or even different signs in different regions of the

learning space. It is therefore important that the multi-task learner copes with

the varying relatedness of tasks, learns its different degrees and accommodates

the inductive bias accordingly.

We are interested in the multi-task learning where label sets are close but

differ from one task to another and the number of classes might be different

across tasks. A motivating example is the automatic classification of e-mails in

personal inboxes Mantrach and Renders [2012]. Similarly to the case of Yahoo!

and DMOZ web directories, categories used in two e-mail inboxes may be related

but not identical. For example, people may use Family or Home categories for

personal e-mails and Finance or Budget for e-mails relevant to financial issues.

The application becomes particularly critical when inboxes are owned by people

from the same organization; they may share the same messages but classify them

according to personal category names. We therefore expect that learning all tasks

simultaneously can benefit to the classification model for each task.

Our contribution to multi-task learning lies in the framework of ensemble

learning where the learned function consists normally of an ensemble of “weak”

hypothesis aggregated together by an ensemble learning algorithm (Boosting,

Bagging, etc.). We propose two multi-task ensemble learning approaches for tasks

with different label sets which makes no assumption on global relatedness. For

each one, we devise novel multi-task weak hypothesis along with their learning

algorithms then we adapt a boosting algorithm to the multi-task setting.

In the first approach Faddoul et al. [2010] we propose a method for multi-

task learning for tasks with different label sets which makes no assumption on

global relatedness. For this purpose, we developed a multi-task learning algorithm

(MT-Adaboost) which extends Adaptive boosting (Adaboost) Freund and Schapire

[1996]; Schapire and Singer [1999] to the multi-task setting. The boosting tech-
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nique is used to generate and combine multiple (weak) classifiers to improve the

predictive accuracy. According to the boosting principle, a smart re-weighting of

examples from different tasks without label correspondences can grasp the local

relatedness of tasks.

As weak classifiers, we consider multi-task decision trees with only two levels

(2T-stumps). When an instance is considered, the 2T-stump assigns a label for at

most two tasks and abstains for all other tasks. Thus, we consider the abstention

not as an exception, but as the first class behavior for a weak classifier because

abstaining on some tasks is a more natural choice that enforcing a weak classi-

fier to make predictions for all tasks. We introduce and compare different weak

learners for 2T-stumps. We consider Adaboost with abstention as introduced

in Schapire and Singer [1999]. We adapt it to the multi task setting and show

convergence for training error. We consider different weighting schemes for Ad-

aboost and compare the weighting schemes when the number of tasks increases.

Last, we design experimental studies to compare the weak learners and to show

the influence of the number of boosting rounds.

The method however suffers from some limitations. The algorithm which

learns a multi-task stump level-by-level, is based on a heuristic choosing at the

root the best N stumps (where the training error is the lowest); then for each

it forwards recursively to the next levels to learn the remaining tasks. In this

kind of a cascade classification on tasks, it learns at each node a classifier for a

task taking into account the other tasks’ classifiers in the node’s ancestors. The

intuition behind is as follows, If the tasks are related then learning one task would

provide information which makes learning the others easier. Unfortunately, such

a sequential design of multi-task stumps might perform poorly when its greedy

algorithm fails to capture task relatedness. In addition, multi-task stumps are

binary classifiers, and their extension to multiple multi-class tasks requires addi-

tional efforts. We have realized this extension by the adaptation of Adaboost.MH

algorithm and a multi-class modification to decision stumps.
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In the second approach, we first propose Multi-Task Decision Tree (MT-DT)

as a multi-task weak classifier. We revisit the well known C4.5 decision tree

learning and adapt it to the multi-task setting. Decision trees are naturally multi-

class classifiers, thus MT-DT can learn multiple multi-class classification tasks.

Our main contribution is in proving that MT-DT can benefit from an improved

information gain criterion due to the multi-tasking. Unlike multi-task stumps,

the criterion used to learn the nodes makes use of the data from several tasks at

each node. Second, we proceed by plugging the MT-DT in the boosting framework;

we modify MT-Adaboost to cope with the multi-class problems accordingly. Our

modification of MT-Adaboost adapts their Adaboost.M1 algorithm.

The ability of MT-DTs to make use of the data from several tasks at each node

is advantageous in capturing tasks relatedness. But, at the same time, it could

cause some limitations -when the number of tasks becomes very large- for two

reasons. First, the higher computational cost of learning the tree. Second, it

becomes more difficult to learn a single tree that fits all tasks.

Abstaining on some tasks is a more natural choice than enforcing a weak

classifier to make predictions for all tasks, especially when we have a large number

of tasks. In such a setting, clustering the tasks by their relatedness is a preferable

choice. Therefore, 2T-stumps can be advantageous for learning large number of

tasks since they predict on two tasks and abstain on the rest, then learning an

ensemble of them by a boosting algorithm will implicitly induce a clustering on

the tasks.

The thesis is organized as follows. In the next chapter we will go briefly

through the statistical learning theory and the different approaches to supervised

classification. Then we narrow the scope and review transfer learning approaches.

Actually, multi-task learning can be seen as a transfer learning approach. We fi-

nally, present the prior-art on multi-task learning. In Chapter 3, we present our

weak classifiers, 2T-stump and MT-DT. Chapter 4 is dedicated to present and ana-

lyze our learning algorithms, the weak learners and the boosters. To this purpose
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we start the chapter by an introduction of ensemble learning. In Chapter 5 we val-

idate empirically our algorithms on synthetic data sets generated from Bayesian

networks that model the task relatedness. Also, we experiment with real large

scale data sets like email spam filtering and Enron emails classification. Finally,

we conclude the manuscript and give our perspectives for the future works.
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This chapter spans the background knowledge needed to understand the rest

of the thesis. Computational machine learning is the large domain which con-

tains the presented work. To be more specific, our work on multi-task learning

has its theoretical foundations in the statistical machine learning theory. This

theory provides a framework and tools to design and analyze new machine learn-

ing methods. We are interested in the setting of supervised learning, where a

teacher (human being) provides the learning machine with annotated data that

serve as the training sample from which the learning model is induced. To this

regard, we start the actual chapter by a section on supervised learning and how

it was approached by statistical learning theory. We then present different basic

supervised learning problems in the literature; they are important to understand

and compare multi-task learning approaches.

Multi-task learning can be viewed as a special case of transfer learning; a do-

main inspired from human ability to share and transfer knowledge across learning

tasks. For instance, a human finds it easy to learn juggling with clubs after hav-

ing learned juggling with balls. Nevertheless, transfer learning is uni-directional,

which means that there is a task that we want to improve its performance by

transferring knowledge acquired by other tasks. However, in multi-task learning

there is no such a notion. All tasks are equal and the goal is to improve each

one by sharing knowledge with others. In order to understand multi-task learn-

ing from transfer learning perspective, we dedicate a section on transfer learning.

We will give a unified definition of transfer learning, then we go through different

transfer learning categories before presenting the approaches used to cope with

transfer learning problems. We conclude the section by addressing a critical issue

for transfer learning named negative transfer. In couple of words, it is when trans-

fer learning gives the opposite to what it is expected; harming the performance

of the task of interest, instead of improving it.
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2.1 Supervised Learning

Supervised learning is the task of learning (inferring) a function (hypothesis)

h : X → Y, from a dataset (training set) S = {(x, y); x ∈ X, y ∈ Y}. A learning

algorithm A (Learner) makes use of the training data to infer h from a space of

functions H. Provided with an input (x), the function should be able to predict

correctly the desired output, even on unseen instances, in other words, it should

be able to generalize over unseen situations. The desired function could have

arbitrary output on the unseen instances, which means that if we are allowed to

chose any function without restrictions on the function space H, we can always

find many functions which perform equally good on the training set but have

different output on unseen instances. Thus, we cannot know if we have learned

a good function or not. In such case, we will easily be able to fit perfectly the

training set with a function which might perform badly on the unseen instances,

this phenomena is called overfitting. So, making such restrictions is necessary to

perform learning. In the terminology of machine learning they are called Induc-

tive Bias Mitchell [1980]. On the other hand, the more the learner is biased the

less variance it has, and so it might not be able to learn a function which fits

the training set, in this case we are faced with underfitting. Figure 2.1 shows a

dummy example of classification problem learned with different function fami-

lies, it explains the tradeoff to be considered between learning complex functions

(variance) and learning simple functions (bias). This tradeoff is a crucial issue

for learning. Generally speaking, supervised problems share three main steps:

1. Preprocessing : define the input space X, then project the examples in this

space. Depending on the learning methods, different kind of representations

may be used: vectors, attribute-value lists, first-order logic, relational rep-

resentations and so forth. The statistical machine learning methods we use

in this thesis mainly use vectorial representations X ⊂ Rd which are func-

tions that map input objects to vectors. The components of the vectors are
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Figure 2.1: Overfitting and Underfitting in binary classification. From
the left to the right we allow more and more complex functions to be learned.
Left: the function family is too simple to fit the training data. Right: the func-
tion family is too complex, the learned function is tailored to the training data.
Middle: a good compromise between underfitting and overfitting.

Figure 2.2: Vectorial representation of an email. The image on the left is a
screenshot of a spam email and on the right its corresponding feature vector (x)
is presented.
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often called features and may describe any aspect of the input objects. For

example, when dealing with textual documents, a common representation

is to have one feature per possible word whose value is the word frequency

(bag-of-words). Figure 2.2 illustrates an eventual vectorial representation

for textual emails.

Choosing the appropriate features for a given learning problem is a difficult

task and usually requires expertise of the domain. From a practical point

of view, it is often observed that the quality of learning crucially depends

on the choice of features. There must be enough features to accurately

describe the input objects, but not too many features, since it may lead to

costly and noisy learning.

2. Training : learn a mapping function h, which is able to predict (almost)

correctly the label of a given example x. Thus, the learned function is

expected to predict the labels on unseen examples with minimum number

of mistakes. In Section 2.1.1 we talk formally about training within the

statistical learning theory scope.

3. Prediction: use the learned function to predict the labels of unlabeled in-

puts. Prediction depends on the learning method, in some methods it is

deterministic (e.g. decision trees), in others it is stochastic (e.g. Markov

Chains Monte Carlo). Prediction cost also varies according to the method

used, in methods like KNN (Nearest Neighbor) the whole computational

complexity lies at prediction time rather than training time. Whereas, in

methods like decision trees the training part is the most computationally

demanding.

2.1.1 Theoretical Framework

Supervised learning problems can be formalized within the framework provided

by Statistical Learning Theory Valiant [1984]; Vapnik [1999]. This framework
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is based on the principle of risk minimization. A learning problem is defined

through a joint distribution over input and output DX×Y and a loss function

l : Y× Y → R
+. l(y, ŷ) quantifies how bad it is to predict ŷ = h(x) instead of y.

Expected Risk (True Risk) The expectation of loss over the distribution

DX×Y is called the expected risk and it is defined by:

R(h) = EDX×Y
{l(h(x), y)} (2.1)

Given a function space H, supervised learning is the problem of selection the

function h ∈ H that minimizes the expected risk:

h∗ = argmin
h∈H

R(h) (2.2)

Depending on the application various loss functions may be defined. The simplest

one is the so called 0\1 loss, which is equal to zero if the prediction is correct and

one otherwise:

l0\1(y, ŷ) = 1{y 6= ŷ} (2.3)

where 1{a} is the indicator function whose value is one if a is true and zero

otherwise. For classification problems with 0\1 loss, the expected risk minimiza-

tion can be rewritten in the following way:

argmin
h∈H

R(h) = argmin
h∈H

EDX×Y
{l(h(x), y)}

= argmin
h∈H

EDX×Y
{1{h(x) 6= y}}

= argmax
h∈H

P [h(x) = y|(x, y) ∼ DX×Y] (2.4)

i.e. the best function is the one maximizing the probability of classifying examples

correctly.
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Empirical Risk Since the distribution DX×Y is unknown, so the expected

risk cannot be computed. However, we usually have a set of training examples

S = {(xi, yi); i ∈ 1 . . . n}}. This set is assumed to be independently and iden-

tically drawn i.i.d. (independently and identically distributed) from DX×Y. The

expected risk can be then approximated with the empirical risk on the training

set:

R̂(h) =
1

n

n
∑

i=1

l(h(xi), yi) (2.5)

Selecting the function h∗ that minimizes the empirical risk is known as the prin-

ciple of empirical risk minimization:

h∗ = argmin
h∈H

R̂(h) ≈ argmin
h∈H

R(h) (2.6)

Statistical learning theory studies the relation between empirical risk minimiza-

tion and excepted risk minimization, it defines the assumptions under which

minimizing the empirical risk ensures -with certain probability- minimizing the

true risk.

Structured (Regularized) Risk Generalization is crucial for machine learn-

ing. In order to improve it, one should avoid overfitting. A way to control overfit-

ting is inspired from the Ockham’s razor principle. This principle is cited as All

other things being equal, the simplest solution is the best. In other words, among

the functions h whose empirical risks are not significantly different, we should

choose the simplest one. One widely used way to induce such a function simplic-

ity is to add a regularization term Ω(.). It is a function returns high scores for

complex models and low scores for simple ones. Learning then aims at finding a

function, which is a good compromise between small empirical risk and simplicity.

Finding such a function is known as the structured empirical risk minimization

principle.

h∗ = argmin
h∈H

R̂(h) + λΩ(h) (2.7)
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where λ is a parameter that gives the control on the tradeoff between the mini-

mization of the empirical risk and the minimization of the regularizer.

Loss Functions The 0\1 loss function might be hard to optimize directly,

because it is not continuous and thus not derivable either. In practice many

methods minimize an alternative loss that has better mathematical properties.

Those alternative loss functions are often upper bounds of the original loss. In

figure 2.3, we find the plots of some of the most common loss functions Maes

[2009]. Following is a brief description of those functions:

• The Perceptron loss penalizes errors linearly w.r.t. socres. For examples,

if the correct class is y = +1, a score of −3 leads to a penalty of 3 and a

score of −1 leads to a penalty of 1. The perceptron loss corresponds to the

problem solved by the early Rosenblatt’s Perceptron algorithm (1957) and

it is defined as follows:

l(m) =







−m if m ≤ 0

0 otherwise
(2.8)

where m = h(x).y a score reflecting the confidence of the prediction. It is

positive in case of correct prediction and negative otherwise.

• The Large-margin (hinge) loss enforces a maximum margin between the

positive examples and the negative examples. Enforcing such a margin leads

to stronger theoretical guarantees Vapnik [1999]. This loss is optimized by

the well-known Support Vector Machines Cortes and Vapnik [1995] and it

is defined as follows:

l(m) =







1−m if m ≤ 1

0 otherwise
(2.9)

• The Exponential loss penalizes errors exponentially w.r.t. the negative scores.
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Figure 2.3: Common loss functions used to upper bound the 0\1 loss.
Each curve represents a loss function for binary classification, such a function
depends on the score y.h(x) that should be positive.

Boosting Schapire and Singer [1999] can be seen as a solution of this risk

minimization problem corresponding to exponential loss. This loss is de-

fined as follows:

l(m) = exp(−m) (2.10)

• The Log-binomial loss can be thought as a continuously derivable approx-

imation fo the large-margin loss. This loss has some strong theoretical

motivations and is minimized by maximum entropy classifiers Guiasu and

Shenitzer [1985]. It is defined as follows for binary classification:

l(m) = log(1 + exp(−m)) (2.11)

Figure 2.4 shows how various losses penalize the training examples on a binary

classification task. The 0\1 loss penalizes all the errors in the same way, whereas

the other loss functions take the score into account: the further examples are from
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Figure 2.4: Losses illustrated on a binary classification task. Empty shapes
correspond to examples with a 0 loss. Otherwise, the size of the filled shapes
reflects the amount of loss the examples suffer from. In this example, ideally, all
the green circle examples should be below the line and the red square examples
should be above

being correctly predicted, the more loss they suffer from. The exponential loss

increases exponentially in function of the score, whereas the Perceptron and large-

margin losses only grow linearly. As soon as the examples are correctly classified

in the Perceptron, their loss becomes null. Instead, the large-margin loss considers

that an example that is near from the separator should be considered as an error.

What Loss Function is Suitable ? Let us explain this point through a

simple example. Suppose we want to fit a function for predicting if it will rain or

not. The input x will be the sky: CLEAR, CLOUDY, or MIXED. The output y will

be either, RAIN (when it rains) or NO (when it does not). The loss is a function

l : {RAIN,NO}2 → R. It is not only the mathematical properties of the loss

function which matter, in addition, the loss function depends on the priorities of

the user. For example, if you hate getting wet, but you do not mind carrying an

umbrella on a clear day, you might use a loss function like the one in Table 2.1.



17 2. CONTEXT AND RELATED WORK

y/h(x) RAIN NO

RAIN 0 1
NO 10 0

Table 2.1: The loss function is case you hate to be wet more than carrying an
umbrella in a clear day

y/h(x) RAIN NO

RAIN 0 1
NO 1 0

Table 2.2: The loss function is case you hate to carry an umbrella when it is not
needed

However, someone who usually carries a lot of things, he might not like to

carry an umbrella when it is not needed, so he may use a loss function as the one

in Table 2.2. For a given distribution D, those two losses will yield in different

learned functions, each of which suits the user defined priorities.

How to ensure (theoretically) a good learning ? The generalization is

the key factor to evaluate the efficiency of a learning algorithm. Generalization

is when the algorithm does not only minimize the empirical risk, but it does in

addition minimize the true risk. In this context the following factors are crucial:

• Consistency : for any given function h, as we get more and more data, we

should expect that the empirical risk tends to the true risk.

• The loss function: as explained previously, the mathematical properties as

we well as the priorities of the user should be taken into consideration when

we choose the loss function. In addition to that, the loss function depends

also on the nature of the algorithm, some algorithms are designed to work

well with certain losses (SVM with hinge loss, boosting with exponential

loss, etc.).

• The function class H. Roughly speaking, if the size of H is large, and the
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functions are complex, the approximation would be worsened (overfitting).

On the other hand, if we choose H to be small with simple functions, we

would worsen the value of the minimum true risk (underfitting).

In the following section we will present a fundamental work in the theory of

statistical machine learning which answers the previous issues.

2.1.1.1 PAC Learning in a Nutshell

The work of this thesis is done within the PAC (Probabilistically and Approxi-

mately Correct) learning framework Valiant [1984]. As mentioned before, study-

ing the relation between the true and empirical risk is central in statistical learn-

ing. The goal is always to minimize the true risk (generalization), which is practi-

cally not possible since we have only an i.i.d. sample of the data (training data).

With this sample we want to minimize the empirical risk while ensuring that by

doing so, we also minimize the true risk.

PAC learning formed a fundamental brick in the statistical learning theory by

introducing the computational complexity theory concepts to machine learning,

those concepts are used to define the PAC-Learnable notion as follows.

We have a concept class C defined on an input space X -with dimension n-

and an output space Y, a distribution over X × Y, an i.i.d. training sample S

with length m, and a learning algorithm L which uses a function class H. We

will first give two basic definitions.

For a concept c ∈ C and parameters ǫ s.t. 0 < ǫ < 1/2 and δ s.t. 0 < δ < 1/2.

A function h ∈ H learned by L on S is called:

• approximately correct if the true risk R(h) is smaller than ǫ:

R(h) < ǫ

• probabilistically correct if the probability P of being approximately correct
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is at least (1− δ) :

P [R(h) < ǫ] ≥ 1− δ ⇔ P [R(h) ≥ ǫ] < δ

Finally, C is PAC-Learnable, if for all c ∈ C, distributions D, ǫ, δ, it exists

a learner L able to learn a probabilistically and approximately correct function

h ∈ H with a polynomial time 1 in |C|, 1/ǫ, 1/δ, n.
To derive the bounds from PAC learning, we first formalize the consistency

by an approximate upper bound on the true risk, i.e.

R(h) ≤ R̂(h) + ǫ. (2.12)

We start form the special case where R̂(h) = 0 ⇒ R(h) ≤ ǫ. We want to

calculate the probability that learning is not feasible (not PAC-Learnable), in

other words, the probability that there exists a function h ∈ H which has null

empirical risk, but its true risk R(h) > ǫ. We call such a function a dangerous

function. The probability that a certain function h makes an error on one training

example is R(h). Thus, the probability of not making an error is

1−R(h) ≤ 1− ǫ

The probability that h predicts perfectly all the m training examples:

≤ (1− ǫ)m

The probability that at least one h ∈ H predicts perfectly all the m training

examples while having a true risk > ǫ:

P [(∃h ∈ H)s.t.(R̂(h) = 0) ∧ (R(h) > ǫ)] ≤ |H|(1− ǫ)m

1Polynomial in the number of training examples and processing time per example
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≤ |H|e−mǫ

|H|e−mǫ ≤ δ

m ≥ 1

ǫ
[ln |H|+ ln

1

δ
]

This is a lower bound on the number of examples needed to make the risk of

ending up with a dangerous function less than δ. This bound depends on the size

of the function class |H|, if this size grows linearly with the dimensionality of the

data the concept class is PAC-Learnable. However, if |H| grows exponentially

with n, the concept class is not PAC-Learnable.

For the more general case (R̂(h) 6= 0), we can derive the bounds using Ho-

effding’s inequality:

P [(∃h ∈ H)s.t.(R(h) > ǫ+ R̂(h))] ≤ |H|e−2mǫ2

The lower bound on the number of examples:

m ≥ 1

2ǫ2
[ln |H|+ ln

1

δ
].

We finally deduce the following bound:

R(h) ≤ R̂(h) +

√

ln |H|+ ln 1
δ

2m

This bound tells that the more we have training examples, the tighter it is, and

thus we get a better generalization. It also depends on the size of the function

class H. Smaller function class tightens the bounds but on the other hand limit

the expressibility of the learned function. That is again, the compromise between

variance and bias.
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x1 ≤ −1

y = △
yes

y = �

no

(a) The decision stump test and leafs (b) Four 2D mixture of Gaussian for a binary clas-
sification task

Figure 2.5: An example of a decision stump

2.1.1.2 Weak Learner Principle

If a learning algorithm L on a concept class C cannot reduce the error to an

arbitrary value ǫ close to zero, C cannot be said to be PAC-learnable by L. But,

it can be studied from the weak learning angle. A concept class C is PAC-weakly

learnable if: ∃γ > 0, L, and ∀c ∈ C,D, δ > 0, such that the learning algorithm L is

able to learn a function h in a polynomial time in 1
δ
, |C|, n (input dimensions),such

that:

P [R(h) ≤ 1

2
− γ] ≥ 1− δ.

The guaranty provided by weak learning is that the learned function will per-

form at least slightly better than random guessing. Clearly, this is not interesting

since the goal of learning is to achieve minimum error rates. But, as we will show

with more details in the next chapter, Kearns and Valiant [1994] proved that any

PAC-weak learnable concept class is also PAC-learnable.

Two of the most widely used weak learners are decision stumps and decision

trees. Figures 2.5 and 2.6 show examples of those learners on a dummy mixture

of Gaussian data.
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x1 ≤ −2

x2 ≤ 23

y = �

yes

y = △
no

yes

y = �

no

(a) A simple two levels decision tree (b) Four 2D mixture of Gaussian for a binary clas-
sification task

Figure 2.6: An example of a decision tree

2.1.2 Supervised Learning Problems

In the literature, many different categories of supervised problems have been in-

troduced. We will focus on such categories that are relevant for the presented

work, namely Binary Classification, Multi-Class Classification, Multi-Label Clas-

sification and Multi-Task Classification. In the following, we will give the defini-

tions of the such problems, real world examples and we will briefly list different

approaches to cope with them.

2.1.2.1 Binary Classification

Binary classification is the oldest and most studied task for supervised learning.

In this setting, the aim is to learn a function mapping h : X → Y from the input

space to one of two possible outcomes. Conventionally, we denote the output

space as Y = {−1,+1} (negative and positive labels). Real world examples

of binary classification include: medical diagnostic, predicting if a patient has

certain disease or not, face recognition, predicting if a given image contains a face

or not, spam filtering, predicting if an email is spam or not. The theory of binary

classification formed the basis on which other problems’ approaches were build.
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Even, some approaches propose to reduce other problems in a way or another to

one or more binary classification problems.

2.1.2.2 Multi-Class Classification

In multi-class setting, the output space is a finite discrete set with cardinality

superior to two, |Y| > 2. The aim, is always to learn a function H : X → Y

that minimizes the probability of the classification error on unseen instances

argminh E(x,y)∼DPr[h(x) 6= y]. Examples of multi-class problems include: objects

recognition, classifying images based on the objects they contain. topic clas-

sification, classifying textual documents by their topics, speaker identification,

recognizing persons from their speech, etc.

We can group the existing methods for multi-class classification into three

main categories: a) problem transformation methods, , b) algorithm support meth-

ods and c) algorithm adaptation methods.

• Problem transformation methods: are those which transform the multi-

class classification problem into one or more binary classification prob-

lems, for which there exists plenty of learning algorithms. Examples: One-

Against-One and One-Against-All binary classification.

• Algorithm support methods: are methods that support naturally multi-

class classification. Examples: Naive Bayes Classifier, decision trees, Hid-

den Markov Models, etc.

• Algorithm adaptation methods: are methods that extend specific bi-

nary classification algorithms in order to handle multi-class data directly.

Examples: Adaboost.M1, Multi-Class SVM where they learn a hyper plane

for each class and the cost function maximizes the difference between the

margin of the right class for a given instance and the maximum margin

among other classes for this instance.
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2.1.2.3 Multi-Label Classification

In multi-label setting, each instance x can have more than one label, thus the

training set becomes: S = {(x, Y )|i ∈ {1, . . . ,M}, xi ∈ X, Yi ⊆ Y} and the

prediction function, h : X → 2(Y). A lot of objects (textual, visual, speech,

etc.) could carry more than one label, for example a certain news article can

be classified as political and economical. An image can be classified as sea and

mountain.

There are different loss measures to minimize in multi-label setting, a common

one is the hamming loss, 1
k
E(x,Y )∼DPr[|h(x)△Y |], where D is a distribution over

observations (x, Y ), and △ is the hamming distance between the predicted set

of labels and the target one. When the goal is to rank the predicted labels, the

ranking loss is used:

E(x,Y )∼D

[ |{(l0, l1) ∈ (Y− Y )× Y : f(x, l1) ≤ f(x, l0)}|
|Y ||Y− Y |

]

,

where f : X×Y → R, is the function to be learned, and it give for each pair (x, l)

a the confidence of giving x the label l.

We can group the existing methods for multi-label classification into two main

categories: a) problem transformation methods, and b) algorithm adaptation

methods.

Problem transformation methods They are the methods which trans-

form the multi-label classification problem either into one or more single-label

classification problems, where there exists plenty of learning algorithms. There

are two common problem transformations in the literature, the first one considers

each different set of labels that exist in the multi-label data set as a single label.

Therefore, it learns a single-label multi-class classifier where each class is a set of

labels. One drawback of this method is that it can result in a large number of

classes and few examples per class. Yet another common problem transformation
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method considers learning a binary classifier for each label. It transforms the

multi-label data set into |Y| data sets, each label y ∈ Y will have it own data set

where its examples will be labeled as positive if they contain y in the original

data set and negative otherwise. The output of the final multi-label classifier is

the union of positive labels predicted by all binary classifiers.

Algorithm adaptation methods They are methods that extend specific

learning algorithms in order to handle multi-label data directly. A state of-the-

art multi-label system is Boostexter Schapire and Singer [2000] which uses two

algorithms Adaboost.MH and Adaboost.MR. Both algorithms are extensions of

Adaboost Freund and Schapire [1996] for multi-label classification. They learn

a function: h : X × Y → R. In Adaboost.MH, for a pair (x, y), h output a

positive (negative) number if y is predicted (not predicted) among the set of

x’s labels. The absolute value of the output is the confidence of the prediction.

Practically, Boostexter uses an implicit reduction to binary classification, where

each example (x, Y ) in the training data set is transformed to |Y| examples of

the form ((x, l), Y [l]) for all l ∈ Y, where Y [l] = 1 if l ∈ Y and −1 otherwise.

Many other algorithms based on SVM, KNN have been adapted to the multi-label

setting.

2.1.2.4 Multi-Task Classification

Human being is able while learning a task to use knowledge induced from another

task and vice versa. Which means that tasks are not learned independently.

Inspired from this ability, learning multiple tasks by the same algorithm could

enrich the learned model and / or save labeling efforts. Many examples can be

cited here; Learning to rank documents for search engines in different geographical

regions, learning to classify textual documents with two or more possible label

sets, but they share a common knowledge that could be transfered from one to

another. Learning shopping preferences of different users each one being a task.



2. CONTEXT AND RELATED WORK 26

Therefore, in multi-task setting, we have different learning tasks. They all

share the same instance space X. However, each task t, has its own label set Yt. In

some problems, different tasks might share the same label set. The objective then

is to solve the N classification tasks simultaneously. A multi-task classification

algorithm will take as input a sample S = {(xi, yi, ji) | xi ∈ X, yi ∈ Yt, ji ∈
{1, . . . , N}, 1 ≤ i ≤ m}. It should be noted that the same instance x can appear

in a sample S with its label for different tasks. The goal is to find an hypothesis

h : X → Y1× . . .×YN which minimizes error(H) = Pr<x,y,j>∼D[Hj(x) 6= y], where

Hj(x) is the j-th component of H(x) and j ∈ {1, . . . , N}.

2.1.3 Problems Transformations

Supervised learning problems are not mutually exclusive, in other words, the

same task can be modeled with several settings (multi-task, multi-label, . . . ). In

the following, we present different possibilities of transforming a task from one

setting to another.

2.1.3.1 Multi-Class ↔ Multi-Label

A direct transformation from multi-label to multi-class is to consider each set of

labels as a possible class. This method will result in a huge number of classes

with few learning examples for each, which in turn, will not help in reaching a

good predictive performance.

On the other hand, no additional work is needed to realize the opposite trans-

formation (from multi-class to multi-label), because multi-label is more general

than multi-class, so transforming multi-class problem to multi-label will not make

the task easier. Nevertheless, if the multi-label algorithm gives a confidence de-

gree for each label; we can by restricting its output to the label with the highest

confidence, solve multi-class problems.
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2.1.3.2 Multi-Class ↔ Multi-Task

Some MTL works have employed multi-class data sets to serve as benchmark

beds for MTL. This has been done by transforming a multi-class dataset to sev-

eral classification tasks and apply MTL approaches to learn them simultaneously.

However, they don’t claim that this transformation is done to improve over multi-

class algorithms. Actually, the domain of multi-task learning is relatively new and

there is not much off-the-shelf multi-task data sets, so the this kind of transfor-

mation is mainly done to simulate multi-task problems.

Such a transformation is simple, a multi-class problem over X with a label set

Y is transformed to |Y| binary classification tasks, where for each label yt ∈ Y will

constitute task with the following label set Yt = {yt,¬yt}. It should be noted

that the transformation is not loose-less, since in multi-class setting each example

has only on label y ∈ Y, nevertheless, after the transformation an example can

be labels by zero or more labels. For instance, if the output of all binary tasks

were positive, it means that this example has all possible labels which was not

possible in multi-class. But, as mentioned, this is not a serious issue as long as

the purpose of the transformation is to simulate multi-task problems, in order to

test the algorithms. Although this simulation can not result in real multi-task

problems but it can give an idea about the performance of the algorithms.

The opposite way transformation (multi-task to multi-class) can be done by

coding each combination of tasks’ labels by a class, which means that the number

of classes is exponential in the number of tasks. It is somehow similar to the

transformation from multi-label to multi-class. We did not come across any work

in the literature that uses this transformation, since it does not have an interesting

application.

2.1.3.3 Multi-Label ↔ Multi-Task

Since multi-label and multi-task classification are the most similar, transform-

ing problems from one to another would help comparing approaches from both
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settings, and understanding when and why shall we use one or another.

From multi-label to multi-task the transformation is similar to the transfor-

mation from multi-class to multi-task. A multi-label problem over X with a label

set Y is transformed to |Y| binary classification tasks, where for each label yt ∈ Y

there will be a task with the label set Yt = {yt,¬yt}. Here both settings can give

zero or more labels to each example and not like multi-class where each example

has only one label.

The opposite way transformation (multi-task to multi-label), is feasible only

when the tasks are all binary, in this case the transformation is done as follows.

We first consider for each task one label as positive and the other as negative,

then the set of labels for each example after the transformation (i.e., in the multi-

label setting) will be all the positive labels it has. For instance, if we have three

tasks with label sets {a, b}, {c, d}, {e, f} and {g, h}, we consider the first label of
each task as positive. For an input example x, which has labels only for the first

three tasks (a, d and e), the transformation will give an example with two labels

a and c because the label d is chosen as a negative label and x does not have a

label for the last task. Clearly, the transformation here is not agnostic toward

the choice positive and negative labels for all tasks.

However, if the tasks are not binary there is no more the positive and negative

notion which has been translated to appearance and disappearance of labels in

the multi-label setting, thus, the transformation is not feasible. Which makes

multi-task setting more general than multi-label.

2.1.4 Summary

In this section, we briefly introduced supervised learning. Which is the process

of inducing -from a sample of input \ output pairs- a mapping function. Binary

classification is the name of supervised problems with only two possible outputs,

when the number of outputs is higher than two but it is still discrete, the problem

is called multi-class classification. However, multi-label classification is the name
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given to problems in which each input instance can have more than one possible

output Multi-task learning is in general sense the name given to problems in which

we want to learn multiple supervised learning tasks simultaneously in order to

boost their predictive performance.

Supervised learning tasks can be formalized according to the principle of ex-

pected risk minimization: the function we are searching for is the function that

leads to the lowest expected value of a task-specific loss function. Computing

the expected risk is not possible, since we do not have access to the distribution

underlying the learning problem. Instead, given a limited amount of training

examples that are sampled from this distribution, the key idea is to approximate

the expected risk with the empirical risk computed over the training set. When

minimizing the empirical risk, a common phenomenon is called overfitting. It

happens when the learned function is too tailored to the particularities of the

training examples. In order to control overfitting, a common approach is to in-

troduce a regularization term that gives a preference for simple models.

Some theoretical guarantees are needed to ensure that minimizing the em-

pirical risk is consistent, which means that in the limits of infinite amount of

data, minimizing the empirical risk will be the same as miminizing the true risk.

In this context, we briefly came across the PAC learning framework, since it is

fundamental for the statistical learning theory..

Different supervised learning tasks (binary, multi-class, multi-label and multi-

task) are not mutually exclusive, therefore, we presented how one can reformalize

a task to transform it from one setting to another.

In the coming section we will introduce multi-task learning from different

scope, namely Transfer Learning. Multi-Task learning is categorized as a special

case of transfer learning, and thus some approaches in the literature are inspired

from transfer learning approaches.
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2.2 Transfer Learning

Transfer Learning (TL) is the ability of an agent to transfer the knowledge ac-

quired from one or more already learned tasks (source tasks) to a new one (target

task). For instance, learning to ride a bike might help in learning to ride a motor-

cycle. Similarly, learning to recognize apples might help to recognize tomatoes.

Figure 2.7 illustrates the abstract process of transfer learning.

The topic of transfer learning in machine learning is motivated by the inherent

ability of humans to use previously learned knowledge for the sake of learning new

tasks more efficiently. In machine learning terms, ”efficiently” can mean faster,

better and / or cheaper. Faster in terms of computational complexity, better in

terms of predictive performance and cheaper in terms of human annotation effort

that is usually costly and not always available.

The short history of TL in machine learning has been initiated in a NIPS-95

workshop on ”Learning to Learn” 1, which focused on the need machine learn-

ing methods capable of reusing previously learned knowledge. Since then, works

on transfer learning have been introduced with different names like learning to

learn, life-long learning, knowledge transfer, inductive transfer, multi-task learn-

ing, knowledge consolidation, context-sensitive learning, knowledge-based induc-

tive bias and incremental/cumulative learning Pan and Yang [2008]. Among

these, a closely related learning technique to transfer learning is the multi-task

learning Caruana [1997]; it tries to learn multiple tasks simultaneously, while in

transfer learning the focus is on improving the performance of the target task by

using the source one(s), in multi-task learning the transfer is multi-directional.

Thus the asymmetry between tasks as source and target does not exist. In Fig-

ure 2.8 we show the information flow directions in both transfer and multi-task

learning.

Transfer learning does not always assure an improvement of the target task,

1http://socrates.acadiau.ca/courses/comp/dsilver/NIPS95_LTL/transfer.

workshop.1995.html.
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Figure 2.7: Transfer learning. Is machine learning with an additional source
of information apart from the standard training data, i.e., knowledge from one
or more related tasks.

Figure 2.8: Information flow. In transfer learning, the information flow in one
direction only. In multi-task learning, information can flow freely among all tasks.
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it could be neutral or even it could hurt the performance, in such case we call it

negative transfer. A major challenge in developing transfer methods is to produce

positive transfer between related tasks while avoiding negative transfer Torrey

[2009].

In this section, we give an overview of transfer learning. There has been a large

amount of work on transfer learning for reinforcement learning in the machine

learning literature. Nevertheless, these works go beyond the scope of this thesis.

The rest of the section is organized as follows: we start by some notation and

definitions. We then give a unified definition of transfer learning and categorize

transfer learning into three different settings (Figure 2.9). For each setting, we

review different approaches (Table 2.3). Finally, we come across the topic of

negative transfer before concluding this chapter.

2.2.1 Notation and Definitions

Before giving the definition of transfer learning, we start by defining the most

basic concepts in its literature, namely, the domain and the task. A domain

D is the context in which a learning task is defined and it constitutes of two

components: an input (feature) space X and a marginal probability distribution

Dx that defines the sampling probability from X. Two domains are considered

different if they have different input spaces or different distributions. We define

a task T in a given domain D = {X,D} by two components: a label space Y

and a predictive function h : X → Y to be learned from a training data S =

{(xi, yi); 1 ≤ i ≤ n}. Most works in the literature consider the common case

where we have we have one source domain DS and one target domain DT . A

unified definition of transfer learning is given in Pan and Yang [2008] as follows:

Definition 2.1 (Transfer Learning). Given a source domain DS, a source

task TS, a target domain DT and a target task TT , transfer learning is a learning

approach whose goal is to improve the learning of the target task using knowledge

from the source task and domain, where DS 6= DT and / or TS 6= TT
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The first condition DS = {X, Dx
S} 6= DT = {XT, D

x
T} implies: 1) the input

spaces are different. In text documents classification it could correspond to the

case of two different languages in the source and target. 2) the distributions are

different, in the same example it could correspond to the case of temporal shift

between the source and the target, which induced a change in the distribution.

The second condition TS = {YT, hS(.)} 6= TT = {YT , ht(.)} implies: 1) the label

spaces are different; classifying text documents with different labels for the source

and the target. 2) the prediction functions are different which correspond to

different classification borders between classes.

2.2.2 Categories and Approaches of Transfer Learning

Traditional machine learning methods can be categorized under different set-

tings based on the availability of the labels (teacher); supervised, semisupervised,

transductive and unsupervised are the most common categories. Similarly, in

the literature of transfer learning, different methods are categorized under three

main categories based on availability of labeled data in source and target tasks.

Those categories are: inductive, transductive and unsupervised transfer learning.

Figure 2.9 shows a hierarchy of categories of TL methods.

In the inductive transfer learning setting, the target task is different from

the source task, no matter whether the source and target domains are the same

or not. For this reason, some labeled data are needed in the target to induce

the predictive function hT . Moreover, according to whether we have or have not

labeled data in the source domain we categorize inductive transfer setting further

into two subcategories: When no labeled data are available in the source domain,

inductive transfer is similar to self-taught learning, which is proposed by Raina

et al. Raina et al. [2007]. However, when we have source labeled data, inductive

transfer is similar to multi-task learning, with one difference. In multi-task, tasks

are symmetric according to the learning interest, whereas in transfer learning,

the goal is to improve the performance of the target task.
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Figure 2.9: TL Categories. Based on the availability of labeled data in the
source and target tasks, different categories are defined.

In the transductive transfer learning setting, we have no target labeled data,

but a lot of source labeled data. Also, transductive transfer is divided to two

subcategories, based on the situation of the source and target domains: if the

domains are different, transductive transfer corresponds to the setting of domain

adaptation Daumé and Marcu [2006]. However, if the domains are identical but

the tasks are different we are in the covariance shift setting Shimodaira [2000].

Finally, unsupervised transfer learning happens when we do not have labeled

data neither for the source nor for the target tasks. However, unsupervised trans-

fer learning focus on solving unsupervised learning tasks in the target domain,

such as clustering, dimensionality reduction, and density estimation Dai et al.

[2008]; Wang et al. [2008]. In the next section, we present different approaches

to cope with transfer learning problems.
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Transfer Learning Approaches Description
Instance Transfer Re-weight some labeled data in the source to use in the

target domain
Bickel et al. [2007]; Huang et al. [2007]; Jiang and Zhai [2007].

Feature Transfer Find the good features that reduce the difference between the
source and the target
Argyriou et al. [2006b, 2007]; Jebara [2004].

Parameter Transfer Learn shared parameters between source and target, which can
boost the target’s performance
Bonilla et al. [2008]; Gao et al. [2008]; Lawrence and Platt [2004].

Relational Knowledge Transfer Build a relational knowledge mapping between the source and the target
Davis and Domingos [2009]; Mihalkova et al. [2007].

Table 2.3: Transfer Learning Approaches.

2.2.3 Transfer Learning Approaches

By answering the question ”What to transfer ?”, we can deduce different ap-

proaches to solve transfer learning problems. Table 2.3 shows four answers to

that questions, each corresponds to an approach. The first can be referred to

as instance-based transfer learning (or instance transfer) approach Bickel et al.

[2007]; Huang et al. [2007]; Jiang and Zhai [2007]. It assumes that certain parts

of the data in the source domain can be reused for learning in the target domain

by using techniques like re-weighting and importance sampling. The second ap-

proach is called feature-transfer Argyriou et al. [2006b, 2007]; Jebara [2004]. It

copes with the issue of learning a good feature representation for the target do-

main using the source domain. A third approach is parameter-transfer Bonilla

et al. [2008]; Gao et al. [2008]; Lawrence and Platt [2004], it assumes that since

tasks are related, we can learn shared parameters under the form of priors or

hyper-parameters. Thus, the transfer of knowledge is done across the parame-

ters. Finally, the last case can be referred to as the relational- knowledge-transfer

problem, which deals with transfer learning for relational domains. The basic

assumption behind this context is that some relationships among the data in the

source and target domains are similar. Thus, the knowledge to be transferred is

the relationships among the data. Recently, statistical relational learning tech-

niques dominate this context Davis and Domingos [2009]; Mihalkova et al. [2007].
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2.2.4 Negative Transfer

Negative transfer happens when a transfer learning method participates in re-

ducing the performance of the target task, rather than improving it. Studying

negative transfer and developing techniques to avoid it is crucial for the domain.

But yet it is modestly studied and only few works have been introduced so far.

One way of approaching negative transfer is to attempt to ignore harmful

source-task knowledge during learning. The goal here is to eliminate or minimize

the amount of bad information transfer from the source to the target. In Rosen-

stein et al. [2005], the authors present an approach for detecting negative transfer

in naive Bayes classification tasks. The basic idea is to learn a hyperprior for both

source and target tasks, whose variance is proportional to the dissimilarity be-

tween the tasks.

Another approach in the literature is at the task level, instead of information

level. It chooses among a pool of candidate source tasks the most related ones to

the target task. An example of this approach is the work of Taylor et al. [2007].

It is based on the idea that transfer is more efficient when it is done from the

easier tasks toward the more difficult task. In this regard, they propose a transfer

hierarchy that orders tasks by difficulty. Similar approaches propose to cluster

tasks into groups. The clustering criterion is tasks relatedness Bakker and Heskes

[2003]; Ben-david and Schuller [2003]. Similar tasks will be clustered in the same

group and then transfer will happen between the tasks of each group.

2.2.5 Summary

In this section, we gave an introduction to transfer learning as a machine learn-

ing approach inspired from human ability to share and transfer knowledge be-

tween different learning tasks. We then reviewed the three categories of transfer

learning: inductive transfer learning, transductive transfer learning, and unsu-

pervised transfer learning. Moreover, each category to transfer learning can be
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classified into four contexts based on what to transfer in learning. They include

the instance-transfer approach, the feature-representation-transfer approach, the

parameter-transfer approach, and the relational-knowledge-transfer approach.

The majority of works in the literature make the assumption that the source

and the target tasks are related, which means that applying the transfer will help

positively. However, this assumption does not hold always, and when it does

not, negative transfer occurs, i.e., transfer learning participates in decreasing

the performance of the target task. Despite its importance, little amount of

work has been done to help developing methods able to avoid negative transfer

and ensure that transfer learning will not cause a decrease of the target task’s

performance. We presented two approaches to deal with negative transfer, one is

on the information or data level, whereas the second is on the tasks level.

2.3 Related work

Multi-task learning (MTL); an approach to improve the inductive bias of related

tasks by learning them simultaneously. One of the earliest works to coin this

notion is Caruana [1993]. The same author gave in his thesis (Caruana [1997])

a broad vision of the perspective and potential of MTL. He defended the idea

saying that related tasks share a common knowledge, thus learning those tasks

jointly might enrich the representation of their common knowledge which in turns

will have a positive effect on their performance. Caruana integrated multi-task

learning approach with different machine learning algorithms, like artificial neural

networks, K-nearest neighbors and others.

Since then, MTL has been gaining more and more interest in the community of

statistical machine learning. Researchers from different backgrounds approached

MTL by different methods. In this section, we review prior art MTL methods

that are relevant to our work. We first start by the methods which model the

shared knowledge on the parameters level, then we discuss couple of methods that
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model the shared knowledge on the features level. As our work is done within

the framework of boosting / ensemble learning, we will discuss two MTL algo-

rithms that are done within the same framework. While going through different

approaches we will be pointing out their different advantages and limitations.

Some limitations, which are critical for multi-task learning, are often not ad-

dressed or listed explicitly in the prior art methods. They are usually in the form

of assumptions or restrictions that help in making the extention of an approach

to MTL feasible. On the other hand, they limit the scope of multi-task problems

that could be covered by such approaches. The limitations we will focus on are:

• Shared label space: Some methods restrict the problems they address

to the ones in which the tasks share the same space of labels. Moreover, a

subset of those methods limit the shared label space to binary labels.

• Same Number of Class Labels: Almost all prior-art methods even when

they address multiple tasks with different label spaces, they do assume that

the tasks have the same number fo class labels. To the best of our knowledge

only one method (Parameswaran and Weinberger [2010]) does not impose

such a restriction.

• Share training examples: A very limiting restriction is the one that

requires all tasks to share the same training examples, differently said, each

example should be labeled by one label per task. It is worth noting, that a

method requiring shared binary label space and shared training examples

can cover only the problems covered by multi-label classification algorithms.

• Global relatedness: Task relatedness is a key assumption to do multi-

task. It is a vague assumption since there is no formal definition of it. As a

consequence, it is usually defined implicitly by the algorithm, then it is used

to learn the common knowledge between tasks. However, MTL algorithms

that assume a certain task relatedness pattern (e.g.: labels correlation),

they usually assume that this pattern is global across the whole learning
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space. Unfortunately, the global relatedness assumption turns often to be

too strong; it might even hurt the performance, similarly to introducing

noise in data. This task relatedness may show up different degrees or even

different signs in different regions of the ”learning space”. It is therefore

important that the multi-task learner determines the relatedness of tasks,

learns its different degrees and accommodates the inductive bias accord-

ingly.

2.3.1 Parameters Transfer MTL

The approach based on kernel based learning with regularization is a common ap-

proach in the literature of MTL. The paper of Evgeniou and Pontil [2004] was the

first to introduce an extension of existing kernel based learning methods for single

task learning, such as Support Vector Machines (SVMs) to multi-task learning.

In a subsequent work (Evgeniou et al. [2005]), the same authors generalized their

first work by introducing the notion of multi-task kernel. The basic idea behind

this work is that related tasks can be mapped to space in which they behave

similarly. In other words, learning is done as in single task learning in the new

space. A kernel defined in the new space is called multi-task kernel. The most

simple instance of this approach is to learn a weight vector wt for each task t and

a common vector for all tasks w0. The final weight vector for t is then wt + w0.

This case is shown in the equation below as a convex optimization problem for T

tasks each having mt training examples. All tasks share the same label space Y:

minw0,wt,ξt,i

{

T
∑

t=1

mt
∑

i=1

ξt,i +
λ1

T

T
∑

t=1

||wt||2 + λ2||w0||2
}

subject to the constraints: ∀t ∈ {1 . . . t}, i ∈ {1 . . .mt}

yt,i(w0 + wt)xt,i ≥ 1− ξt,i
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ξt,i ≥ 0

The work of Zheng et al. [2008] was also inspired from the multi-task kernel

approach, but their contribution consists of learning the mapping of tasks to the

space in which they behave similarly rather than predefining it.

Kernel based learning approach for MTL has been proved efficient and prefer-

ment on real world problems. But, in its current state, it suffers from two limi-

tations, namely, binary shared label space, which narrows the scope of problems

it can cover. And the global relatedness assumption. Actually, sharing the same

labels prevent the tasks from being even negatively correlated (y1 = −1 from the

first task comes often with y2 = +1 from the second).

Within the same framework of regularization, the method of tasks clustering

proposed in Jacob and Bach [2008] aims at designing new regularization norms

that will enforce that sharing of information between tasks. they defend the

hypothesis that the different tasks are in fact clustered into different groups,

and that the weight vectors of tasks within a group are similar to each other.

Their method does not require the clusters’ structure to be given, it can rather

learn them. However, their method suffers from the same limitations as the

previous methods. Shared label space and global relatedness approach. The later

being relatively relaxed by clustering the tasks. But, it still cannot cope with

situations where a pair of tasks have local correlation patterns which differ across

the learning space.

The problem of learning clusters of tasks has been addressed by the Hierar-

chical Baysian learning framework. The assumption says that tasks parameters

are generated from shared priors. The work proposed in Xue et al. [2007] relies

on a Dirichlet process (DP) based statistical model to learn the extent of similar-

ity between classification tasks. They consider two scenarios: first, a symmetric

multi-task learning (SMTL) situation in which classifiers for multiple tasks are

learned jointly. Second, they consider an asymmetric multi-task learning (AMTL)

formulation in which the posterior density function from the SMTL model pa-
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rameters (from previous tasks) is used as a prior for a new task: this approach

has the advantage of not requiring storage and use of all previous data from prior

tasks.

Staying with the very same framework of Hierarchal Bayesian learning; the

authors of Liu et al. [2009] propose a formulation which encodes the information

of each task inside the associated likelihood function, sparing the prior for exclu-

sive use by the information from related tasks. In addition, the formulation lends

itself to a Dirichlet process, allowing the tasks to share information in a complex

manner. A key advantage of their work is the ability to learn from partly la-

beled data in a semi-supervised manner using label propagation by random walk

technique.

Nevertheless, despite the interesting advantages granted by shared priors over

tasks, some drawbacks are worth mentioning. Such a learning model relies on the

tuning of hyperparameters as well as the performance of the inference / sampling

algorithm. In addition, the models proposed above, assume that tasks share the

same label space and a global relatedness pattern.

Yet another Bayesian work for multi-task regression and classification is pro-

posed by Archembeau et al. [2011]. Their model is able to capture correlations

between tasks, while being sparse in the features. They make use of novel group

sparsity inducing priors based on matrix-variate Gaussian scale mixtures. The

main advantage of their Bayesian formalism is that it enables to learn the degree

of sparsity supported by the data and does not require the user to specify the

type of penalization in advance. Despite the interesting empirical performance

of their method, it is worth noting that it is pretty limited when it comes to the

ability of covering multi-task problems. The main limitation is that the method

is able to learn only binary tasks whose examples are exactly the same. However,

multi-task normally brings the advantage of being able to learn multiple tasks

coming from different sources (aka annotators). So, requiring the training exam-

ples to be the same across tasks implies having the same annotators for all tasks,
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Figure 2.10: Graph-based approach to multi-task. Examples from Task 1
and Task 2 (black squares) have both a shared view (diamonds) and the task
specific views (circles and triangles for the 2 views of Task 1, and pluses for the
1 view of task 2). The weight of an edge between an example node and a feature
node is set to the feature value.

which is not the case in the majority of real problems.

Far from Baysian framework, the work of He and Lawrence [2011] models

the problem of multi-task using graphs, in addition they take into account tasks

which have more than one view each (e.g., the data of a task is photos with

comments on them, the photo is a view and the text of the comment constitutes

another view.).

Within each task, they construct a bi-partite graph for each view, modeling

the relationship between the examples and the features in this view. The consis-

tency among different views is obtained by requiring them to produce the same

classification function, which is commonly used in multi-view learning. Across

different tasks, they establish their relationship by imposing the similarity con-

straint on the common views. Figure 2.10 shows an example of their graph-based

modeling for two tasks each with two views, one view being shared and the second

is specific.

The method is interesting since it makes use of unlabeled examples during the

training phase. But, unfortunately, the current formalism works only for binary
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tasks, and it is computational complexity is quadratic in the number of tasks.

Coming back to the convex optimization / regularization framework we cite

here the method of Parameswaran and Weinberger [2010]. The authors propose a

a multi-task approach inspired from (Large Margin Nearest Neighbor lmnn Wein-

berger and Saul [2009]). Similar to svms, the solution of lmnn is also obtained

through a convex optimization problem that maximizes a large margin between

input vectors from different classes. However, instead of positioning a separating

hyperplane, lmnn learns a Mahalanobis metric. One advantage that the kNN de-

cision rule has over hyperplane classifiers is its agnosticism towards the number of

class labels of a particular data set. A new test point is classified by the majority

label of its k closest neighbors within a known training data set additional classes

require no special treatment. Their algorithm learns one metric that is shared

amongst all the tasks and one specific metric unique to each task.

This method is free of the limitations the previous cited methods suffer from.

It does not require neither shared labels nor shared training examples. Also, there

is no global relatedness assumption imposed on the learned model. Nevertheless,

the method shares the same drawbacks of classical KNN: first, the curse of di-

mensionality; in fact, the notion of distances gets distorted in very large spaces.

Second, the computational complexity at classification time: in order to classify

a point we need to find its closet N neighbors, doing so (in the very classical

version of KNN) requires the calculation of the distance between the point to

classify and each point in the training data.

Another work which does not suffer from the limitations of shared examples

and labels is the work of Novi Quadrianto [2010]. It relaxed these constraints by

an iterative learning algorithm based on the duality between maximum entropy

and MAP estimate. They model the relatedness between tasks by the mutual

information among the label sets. On the other hand, their work relies on the

hypothesis that the relation between tasks is the same in the whole learning space

(global relatedness).
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The algorithm’s complexity is exponential with the number of tasks, however,

the authors propose to relax the objective function so the complexity will be

reduced to quadratic which could still cause a problem in the case of large number

of tasks.

2.3.2 Features Transfer MTL

Tasks relatedness might be in the form of a common underlying representation.

For example, in object recognition, the human visual system is organized in a

way that all objects are represented using a common set of features learned.

The work proposed in Argyriou et al. [2006a, 2008] explored feature transfer

approach for task relatedness, that is, they learn a low-dimensional representation

which is shared across multiple related tasks. The method is based on the well

known L1norm regularization which provides such a sparse representation for the

single task case. However, they generalized this formulation to the multiple task

case. Their method learns a few features common across the tasks by regularizing

within the tasks while keeping them coupled to each other. Moreover, the method

can be used, as a special case, to select (not learn) a few features from a prescribed

set.

The first step of their algorithm consists of independently learning the param-

eters of the tasks regression or classification functions. The second step consists

of learning, in an unsupervised way, a low-dimensional representation for these

task parameters. The number of common features learned is controlled, by the

regularization parameter, which means that a tuning effort is required, in addi-

tion to the requirement of a shared binary label space and the global relatedness

assumption.

Another feature-level multi-task work –but in totally different context– is the

work of Collobert and Weston [2008]. In their work they attempt to define a

unified architecture for Natural Language Processing that learns features that

are relevant to the tasks at hand given very limited prior knowledge. This is
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achieved by training a deep neural network which is applied to many well known

NLP tasks including part-of-speech tagging, chunking, named-entity recognition,

learning a language model and the task of semantic role-labeling. All of these

tasks are integrated into a single system which is trained jointly. As in single-task

neural networks, their algorithm is sensitive to the design of the network which is

an effortful task and it become even more demanding when it comes to multi-task

setting.

2.3.3 Ensemble MTL

It is worth to note that boosting has been already used in multi-task learning

for face verification (Wang et al. [2009]). Following ideas different from ours, it

learns a set of boosted classifiers and is based on a probabilistic model where

a multinomial variable indicates how much each boosted classifier contributes

to each task. The learning algorithm involves Expectation-Maximization (EM)

to learn both the multinomial random variables as well as the classifiers. The

algorithm is intrinsically based on the idea that the tasks share the same labels,

more specifically −1 and +1 labels.

Last, in Chapelle et al. [2010b], the authors provided a new boosting algo-

rithm to capture tasks relatedness. Inspired from the common multi-task mod-

eling assumption ( Evgeniou and Pontil [2004]), the algorithm learns a specific

model for each task in addition to one global model that capture the common-

alities among them. However, they learn the models through gradient boosted

regression, rather than SVMs quadratic programs. A worthy advantage of their

algorithm is that it can learn tasks with different features as long as they share a

subset of their features which will be used to the learn the global model. On the

other hand, the algorithm requires the same labels to be shared across tasks.
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2.3.4 Summary

In this section we reviewed a considerable part of the prior-art methods for MTL.

We categorized those methods in two categories based on the transfer of knowl-

edge approach they use (parameters or features transfer). As our contribution

lies within the framework of ensemble methods, we also explored the previously

done Ensemble MTL works in an explicit category.

The pros as well as the cons of the prior-art methods were discussed. We listed

explicitly three limitations which we believe to be crucial for MTL methods but

yet they have not been addressed as they deserve to be. Those limitations are:

sharing the labels and / or examples between tasks, in addition to the assumption

of global relatedness between tasks. Different methods cope with some of them

but very few methods could cope with all of them. In the following chapter, we

will be presenting novel classifiers which do not suffer from the above limitations.

Those classifier are considered as weak classifiers. Thus, it is preferable to learn

ensemble of them in order to achieve low classification error rates.
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As described in the previous chapter, the majority of already existing MTL

approaches are prone to one or more of the following limitations: shared examples,

shared labels and global relatedness across the whole learning space. In this

chapter we present two novel Multi-Task Hypotheses (classifiers) that do not

suffer from those limitations. Therefore, they can cover a wider prospect of MTL

problems.

3.1 Multi-Task Stump 2T-stump

We generalize stumps for multi-task problems. Recall that stumps are one-level

decision trees, i.e. a stump is defined by a test node and prediction nodes. For
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sake of clarity and since n-ary tests are a straightforward generalization of binary

tests, we will consider only binary tests. Stumps can be used as weak classifiers

and they allow to learn accurate strong classifiers when used in boosting algo-

rithms Freund and Schapire [1996]. We first start by describing our Multi-Task

Stumps for binary classification tasks, then we generalize them to multi-class

multi-task setting.

3.1.1 2T-stump for Binary Tasks

For the multi-task setting, the weak classifiers we consider are 2-level decision

stumps called two-task stumps (2T-stump). The first level of a 2T-stump is a

decision stump for one of the N tasks. At the second level, there are two decision

stumps, one attached at each of the two prediction nodes. Each of these two

decision stumps corresponds to one of the N − 1 remaining tasks. An example is

given in Figure 3.1.1.

For classifying a given instance x, the root test is considered and the instance x

will descend to one of the two prediction nodes, which assigns a label for the first-

level task. Then the second-level test is considered, the instance x will descend

to one of the two prediction nodes and a label is assigned for the corresponding

second-level task. It should be noted that the 2T-stump will abstain on x for all

other tasks. Examples are given in Figure 3.1.1. Formally, let us consider that

the value 0 stands for abstention, a 2T-stump defines an hypothesis h : X →
{−1, 0,+1}N , which gives for every instance x and every task j an output hj(x)

in {−1, 0,+1}, where hj(x) is non zero for at most two tasks.

A 2T-stump defines a partition of the instance space dependent on the tasks

it contains. For instance, let us consider the 2T-stump defined in Figure 3.1(a),

it defines a partition of the instance space shown in Figure 3.2(a). The line with

equation x1 = 14 defines the first-level separator for task T2 which allows to define

two different separators for the tasks T1 and T3 in each of the two sub-spaces.

Thus 2T-stumps will allow to capture relations between tasks. One can consider
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x1 ≤ −14

T2 = ∗

x2 ≤ 16

T1 = +

yes

T1 = ×
no

yes

T2 = �

x2 ≤ 37

T3 = ⋄
yes

T3 = ▽

no

no

(a) This 2T-stump has a stump for task T2 at
the first level, and stumps for tasks T1 and
T3 at the second level. Consider an instance
x such that x1 = −7 and x2 = 4 then the
2T-stump assigns to x the class � for task T2

and the class ⋄ for task T3 while abstaining
for other tasks

x2 ≤ 37

T3 = ⋄

x1 ≤ −14

T2 = ∗
yes

T2 = �

no

yes

T3 = ▽

no

(b) This 2T-stump has no right
child. Consider an instance
x such that x2 = 40 then
the 2T-stump assigns to x the
class ∇ for task T3 while ab-
staining for other tasks

Figure 3.1: Two 2T-stumps.

more than two levels but the number of such weak classifiers grows exponentially

with the number of levels. This is why we consider 2T-stumps with only two

levels and we will show that combining 2T-stumps in a boosting algorithm will

allow to capture local dependencies between N tasks, and learn implicitly soft

clusters of tasks. Actually, because each 2T-stump has three nodes, it can predict

for each example only on two tasks and abstain on the rest. Therefore, learning

an a boosting ensemble of 2T-stumps, where each task can appear in more than

one 2T-stump, is like clustering tasks in a soft way using the boosting mechanism.

3.1.2 2T-stumps for Multi-Class Tasks

For multi-class classification we use decision stumps similar to the ones presented

in Schapire and Singer [2000]. The test of such a stump is the same as in an binary

classification stump. Based only on the outcome of this test, the weak hypothesis

(after learning) outputs predictions and confidences that each label is associated

with the document, the label with the highest confidence for an input point x will
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(a) Visualization of the partition defined by the
2T-stump in Figure 3.1(a). It is learned on the
synthetic dataset with algorithms WL-Best-K with
K = 5 or WL-Best-K with K = 25. The score
W− + 1

2
W0 is equal to 0.134

(b) Visualization of the partition defined by the
2T-stump in Figure 3.1(b). It is learned on the
synthetic dataset with a naive greedy algorithm.
The score W− + 1

2
W0 is equal to 0.197

Figure 3.2: Visualization of 2T-stumps learned on a synthetic dataset.

be considered as the class label for x. For example, in a text classification task.

a possible term can be “The Big Bang Theory”, and a learned stump might look

as follows: If the term “The Big Bang Theory” appears in the document then

predict that the document belongs to Physics with high confidence, to TV Series

with medium confidence, and that to Sports with low confidence. If, on the other

hand, the term does not appear in the document, then predict that it does not

belong to any of the classes with low confidence.

As presented above, 2T-stumps can classify tasks with different number of

class labels and without any a priori assumption on the relatedness patterns of

the tasks. As we will show in the next chapter; which is dedicated to the learning

algorithms, learning an 2T-stump does not require any shared examples between

the tasks.

In the following, section, we will present yet another Multi-Task classifier

which comes from the same spirit of decision tree classification but, it does not

have the sequential behavior of 2T-stump, it rather analyzes the data from all

tasks at each node while building the tree.
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3.2 Multi-Task Decision Tree MT-DT

Decision tree learning is a well known technique in machine learning; it uses a

decision tree as a predictive model which maps observations from the instance

space to the target values. In the case of classification, tree leaves represent class

labels and branches represent conjunctions of item attributes that lead to those

class labels Quinlan [1993].

In this section we adapt decision trees to the multi-task setting. We propose

a new multi-task classifier that we call multi-task decision tree (MT-DT). One

obvious difference between one- and multi-task setting is in the tree structure.

One-task decision tree uses the internal test nodes to guide the decision process

while the final decision on assigning a label to a sample is made in a tree leaf.

The structure of an multi-task decision tree (MT-DT) is different in the way

it guides the decision process for multiple tasks. This process is not necessarily

the same for all tasks. An MT-DT can make a final decision for some tasks in an

internal test node, not a tree leaf. This happens when the internal test node has

enough information to classify an instance of a certain task T , in such a case a

decision leaf with the appropriate classification decision for T is added to the tree

and the learning proceeds with the remaining tasks.

Figure 3.3.a gives an example of an MT-DT learned for two synthetic tasks

generated from 2D mixture of Gaussians (see Figure 3.3.b). T1 has four labels

(Y1 ={�, ⋄, △, ◦}) and T2 has two labels (Y2 ={+,∗}). Two labels of T1 (�, ⋄)
are correlated with label + of T2, while two other labels of T1 (△, ◦) are correlated
with label ∗ of T1. The generated MT-DT has three internal test nodes and each

decision leaf carries one rule per task.

Another example of MT-DT is showed in Figure 3.4. Task T1 is the same as

Figure 3.3, while task T2 is generated differently from a mixture of Gaussians (see

Figure 3.4.b). This results in a different correlation pattern between the tasks.

The learned MT-DT has an early decision leaf for T2 since knowing that x1 ≤ −2

is enough to predict the label class ∗ for T2.
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(a) MT-DT with early decision leaf (b) Two 2D mixture of Gaussian tasks.

Figure 3.3: MT-DT-1

Apart from the structure difference, the main challenge when moving from

one- to multi-task learning is in the optimal way of using the information gain

criteria. In the next chapter we show how MT-DT can profit from the multi-task

setting. We prove a theorem which helps increase the multi-task information gain

over one-task case. This improved criterion combined with the boosting leads to

an important performance increase.

As we have seen; like 2T-stumps, MT-DTs can classify tasks with different

number of class labels and without any a priori assumption on the relatedness

patterns of the tasks. Their learning algorithms will show that they do not need

shared examples between tasks. However, our proposed classifiers differ in their

way of modeling shared information between tasks, a 2T-stump uses a sequential

paradigm where a stump learned for a certain task at the root divides the space

in a way that makes learning other tasks easier. Differently said, learning a task

at the root provides additional information to learning other tasks. In the case

of MT-DT, the information sharing is joint in the sense that each node; during

learning, exploits the data of several tasks. Nevertheless, no paradigm can be

said to be absolutely better than the other, it is dependent on the tasks and

how they are related. Another difference is that a 2T-stump is concerned with
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(a) MT-DT with early decision leaf (b) Two 2D mixture of Gaussian tasks.

Figure 3.4: MT-DT-2

a subset of tasks, whereas, an MT-DT makes prediction on all tasks; a property

which can be beneficial as it uses more data for building the classifier, but on the

other hand it might cause problems of computation and generalization when the

number of tasks becomes large.

3.3 Summary

In this chapter we presented novel multi-task hypotheses. They are both decision

tree-like classifiers. The first (2T-stump) uses a sequential knowledge transfer

paradigm, where a stump for a task is learned at the root, then at each split

created by the root stump, other stumps for other tasks are learned. The second

classifier is a multi-task decision tree. Each node of the tree could be shared

among one or more tasks.

In the following chapter we introduce Ensemble methods, then we present our

Ensemble Multi-Task algorithm along with the learning algorithm we propose to

learn 2T-stumps and MT-DTs.
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This chapter covers the learning algorithms contributed by this thesis. Before

presenting them we start by introducing the framework of Ensemble Learning.

We briefly review its history as well as its advantages in comparison to other

machine learning methods. At the core of ensemble learning lies the weak learners

as the key component of the ensemble to be learned. We will present two of

the most widely used weak learners for classification. Afterwards, we elaborate

on Boosting methods by presenting a generic boosting algorithm, then we go

through the popular Adaboost along with its variations theoretical properties

and guarantees. The Bagging method is also addressed because of its interesting

computational efficiency and its ability to avoid overfitting especially in noisy

tasks.

In the sequel, we present our contribution in extending ensemble learning

framework to Multi-Task setting. We start by giving our notation and problem

definition, then we present MT-Adaboost algorithm; a multi-task adaptation of

Adaboost. Variations of the algorithm for multi-class multi-task classification are

addressed, namely MT-Adaboost.M1 and MT-Adaboost.MH. We show the error

convergence bounds on MT-Adaboost which proves that it is a proper boosting



57 4. ENSEMBLE MULTI-TASK LEARNING

algorithm with guarantees on the reduction of the training error. Then, we pro-

pose different learning algorithms to the multi-task weak classifiers presented in

the previous chapter.

4.1 Ensemble of Classifiers

We start this part by a simple motivating example of a human task. This example

is cited from Freund and Schapire [1999a]: A horse-racing gambler, hoping to

maximize his winnings, decides to create a computer program that will accurately

predict the winner of a horse race based on the usual information (number of

races recently won by each horse, betting odds for each horse, etc.). To create

such a program, he asks a highly successful expert gambler to explain his betting

strategy. Not surprisingly, the expert is unable to articulate a grand set of rules

for selecting a horse. On the other hand, when presented with the data for a

specific set of races, the expert has no trouble coming up with a rule of thumb for

that set of races (such as, Bet on the horse that has recently won the most races

or Bet on the horse with the most favored odds). Although such a rule of thumb,

by itself, is obviously very rough and inaccurate, it is not unreasonable to expect

it to provide predictions that are at least a little bit better than random guessing.

Furthermore, by repeatedly asking the expert’s opinion on different collections of

races, the gambler is able to extract many rules of thumb.

In order to use these rules of thumb to maximum advantage, there are two

problems:

• How should he choose the collections of races presented to the expert (train-

ing samples) so as to extract the most useful rules of thumb?.

• Once he has collected many rules of thumb, how can they be combined into

a single, highly accurate prediction rule (final classifier)?.

Different answers are given to the above questions, each define an ensemble
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learning approach. A widely used and one of the most studied approach; on

which the presented work is based, is called boosting. In this approach the two

questions are addressed as follows. Regarding the choice of the collections of

races, boosting puts the most weight (importance) on the examples most often

misclassified by the preceding weak rules of thumb. As a consequence the next

expert will be forced to come up with a rule which is good at handling those

misclassified examples. As for the second question; how to combine the rules ?

Boosting does combine them through a weighted majority vote, where the weights

are correlated with accuracy of each rule, higher weights are granted to the more

accurate rules.

In ensemble learning terms, the expert who is asked to come up with rules

of thumb is called a weak learner or base learner. Nevertheless, there is also the

question of what algorithm to use in order to learn the rules of thumb ? (what

weak learner to use?). This question is answered in the section 4.1.3. However,

in the next section we present advantages of using ensemble learning over single

hypothesis learning.

4.1.1 Motivating Advantages of Ensemble Learning

Learning algorithms that output only a single hypothesis might suffer from three

problems that can be partly resolved by ensemble learning: the statistical prob-

lem, the computational problem and the representation problem.

The statistical problem is encountered when the learning algorithm is search-

ing a space of hypotheses that is too large for the amount of available training

data. In such cases, there may be plenty of different hypotheses that all perform

equally on the training data. In single hypothesis approaches, the algorithm will

choose one of them to output. The risk here is to choose a hypothesis which is

not good at predicting future data points. However, with a simple vote of those

equally-good hypotheses we can reduce the risk of overfitting.

The computational problem arises when the learning algorithm cannot guar-
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antee to find the best hypothesis within the hypothesis space. In some algorithms

like decision trees, finding the best hypothesis that fits the training data is in-

tractable. So, heuristics are used with a risk of getting stuck in a local minima

and hence fail to find the best hypothesis. Again, a simple vote of those local

minima solutions might overcome the problem.

Finally, the representation problem arises when the hypothesis space does not

contain any hypotheses that are good approximations to the target function. In

such cases, a weighted vote of hypotheses expands the space of functions. Thus,

the algorithm might be able to find a more accurate approximation to the target

function.

An algorithm that suffers from the statistical problem is said to have high

variance. An algorithm that suffers from the computational problem is described

as having computational variance. And an algorithm that suffers from the rep-

resentation problem is said to have high bias. So, ensemble methods can reduce

both the bias and the variance of learning algorithms.

4.1.2 A Brief History of Ensemble Learning

In the literature of ensemble learning there are two main approaches. They are

based on the way the ensemble of classifiers or hypotheses is constructed, more

specifically, in the first approach the hypotheses are learned in a coordinated way;

boosting has emerged from this approach. Whereas, in the second approach the

hypotheses are learned independently.

4.1.2.1 Interdependently Constructed Ensemble Methods

The idea of Boosting has its roots in PAC learning (cf. Valiant [1984]). Kearns and

Valiant [1994] proved a counter-intuitive fact: learners which can perform only

slightly better than random guessing, can be combined to form an arbitrarily

good hypothesis (under the condition of data availability). The first polynomial

time boosting algorithm was proposed by Schapire [1990]. However, the first
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application to boosting to real-world OCR task was presented by Drucker et al.

[1993], in their algorithm they used neural networks as base learners.

Although Boosting principle seems intuitive in terms of algorithmic design, a

step forward in the theoretical interpretation was taken by explaining Boosting in

terms of a stage-wise gradient descent procedure in an exponential cost function

(refer to Breiman [1997]; Frean and Downs [1998]; Friedman et al. [1998]). From

practical point of view, a considerable part of the early literature of boosting has

pointed out (based on empirical studies) that boosting does not exhibit overfit-

ting even when running for a large number of iterations. However, simulations

by Grove and Schuurmans [1998] on data sets with higher noise content could

clearly show overfitting effects. In this context and in order to avoid overfitting, it

is important to elucidate the relations between Optimization Theory and Boosting

(e.g. Breiman [1997]; Freund and Schapire [1999b]). Studying this relationship

opened the field to new types of Boosting algorithms: Boosting for regression

tasks was proposed by Duffy and Helmbold [2000]; Rtsch et al. [2000]. Unsuper-

vised learning tasks were approached by boosting algorithms as well Campbell

and Bennett [2001]; Rtsch et al. [2002]. Studying boosting from optimization

theory point of view helped also in establishing convergence proofs for Boosting

algorithms.

4.1.2.2 Independently Constructed Ensemble Methods

Another yet simpler approach, to construct an ensemble is to run the based

learning algorithm several times provided with a different training data each

time. Breiman [1996] introduced the Bagging (Bootstrap Aggregating) method

which functions as follows. Given a set of m training examples, Bagging chooses

in each iteration a set of examples of size ≤ m by sampling uniformly with

replacement from the original data set. This yields in a training set with some

points appearing eventually multiple times whereas others dot appear. If the weak

learning algorithm is unstable -which means that small changes in the training set
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might lead to great changes in the resulting hypothesis-then Bagging will learn

a diverse ensemble of hypotheses, which is a key feature in ensemble learning;

learning an ensemble of almost similar hypotheses would not result in a ensemble

that is significantly better than its componenents.

A second way to induce diversity in the weak learner and to build indepen-

dently an ensemble of diverse hypotheses is to change the features at each iter-

ation instead of changing the training examples. This method is called Random

Sub-Space Sampling.

A third way to induce diversity is to introduce randomness at the algorith-

mic level. For example, the backprpagation algorithm can be run many times,

starting each time from a different random setting of weights. Decision trees

algorithms can be randomized by adding randomness to the process of choosing

which feature and threshold to split on. Dietterich [2000] reported significant

improvements of randomized ensemble of trees over simple trees and other simple

classifiers. Ho [1998] introduced random sub-space method for decision trees. His

method chooses a random subset of the features at each node of the tree, and

constraints the learning algorithm to choose the splitting rule at this node of the

sampled subset of features. This algorithm is called Random Forests algorithm,

it has shown very nice empirical features, from noise resistance, slow overfitting

to computational efficiency.

4.1.3 Common Weak Learners

We present below two of the most common weak learners; they are relevant for

our work as they represent the building blocks for our learners.

Decision Stumps A decision stump is very simple classifier model, it con-

sists of one test on a feature value and two leafs corresponding to the output of

the stump Ai and Langley [1992]. Depending on the type of the input feature,

several variations are possible. For categorical (discrete) features, a stump can
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either contain a leaf for each possible value of a certain feature or it can be with

only two leaves, one of which corresponds to some chosen category, and the sec-

ond one to all the other categories. For continuous features, a threshold feature

value is selected, and the stump contains two leaves one values below and the

other for the values above that threshold. Stumps can be learned by an exhaus-

tive search over all possible stumps in order to chose the one with best predictive

performance. This scheme is costly when the number of features and their pos-

sible values is very large. In this case, one can sample a subset of features and

chose the best stump for this subset. Despite that sampling will not result in

the best possible stump, but knowing that it is better than random guessing is

enough to boost its performance by constructing an ensemble of stumps through

an ensemble learning algorithm.

Decision Trees Decision tree learning is the well known technique in statis-

tics and machine learning; it uses a decision tree as a predictive model which maps

observations from the instance space to the target values. In the case of classifi-

cation, tree leaves represent class labels and branches represent conjunctions of

item attributes that lead to those class labels. In the C4.5 and C5.0 tree genera-

tion algorithms Quinlan [1993], the decision tree learning uses the concept of the

information gain (IG) from the information theory. At the root of the tree, the al-

gorithm chooses an attribute that yields the highest IG on the training set. Such

an attribute splits the training set into two subsets whose sum of labels entropy

is the lowest. The algorithm then recursively applies the information gain rule on

the subsets. The recursion is stopped when all items of a subset have the same

label, a decision leaf corresponding to this label 1. The information gain about a

random variable Y obtained from an observation that a random variable X takes

the value X = x is the Kullback-Leibler divergence DKL(p(Y |X)||p(Y |I)) of the
prior distribution p(Y |I) from the posterior distribution p(Y |X) for Y given X.

1Some pruning is often used to generalize the rules learned to unobserved items.
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Also, the expected value of the information gain is The IG rule defines a preferred

sequence of attributes to investigate to most rapidly narrow down the state of Y .

An attribute with high information gain should be preferred to other attributes.

4.2 Generic Boosting Algorithm

Boosting algorithms share a generic scheme which is summarized as follows:

• A given training set S = {(xi, yi); i ∈ {1 ∈ . . .m}} drawn i.i.d. from an

unknown distribution D.

• A weak learning algorithm L defined on a hypotheses space h ∈ H

• The goal is to construct an ensemble hypothesis H with an arbitrarily close

to zero error ǫ by running L several times (T rounds):

For t = 1, . . . T :

Construct Dt , where Dt is a distribution over the indices 1, . . . ,m

Run L on Dt to produce ht, s.t. :

errDt
(ht) = γt , where γt ≥ γ > 0; ∀t (weak learning assumption)

End

Output H (a combination of the weak hypotheses h1, . . . , hT )

Any concrete boosting algorithm must define how to build the distribution at

each round and how to combine the weak hypotheses to produce H. We present

next Adaboost algorithm as it is the most successful boosting algorithm.

4.3 Adaboost

Adaboost constructs the distributions Dt in a recurrent way. The intuitive idea is

to increase the weights on ”hard” examples (examples which have been misclas-
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sified on earlier round), and decrease the weights on ”easy” examples (examples

which have been classified correctly).

D1(i) = 1/m

Dt+1(i) =
Dt(i)

Zt

×







exp(−αt) if yi = ht(xi)

exp(αt) if yi 6= ht(xi)

where αt > 0 are the weights given to each hypothesis, and Zt is a normalizing

constant to ensure that Dt+1 is a probability distribution. The weak hypotheses

are combined to form the function f(x) =
∑T

t=1 αtht(x), note that in the case

of binary classification where Y = {−1,+1}, the final hypotheses is H(x) =

sign(f(x)).

Also, note that Dt is a probability distribution over the indices {1, . . . ,m} so

that Dt(i) represents the probability of the pair (xi, yi). For the time being, we

did not mention how Adaboost chooses αt(s). Follows, we give an analysis of the

training error which yields in a upper bound on it, then we derive the values of

αt that minimize this bound.

4.3.1 Training Error

One of the reasons that granted AdaBoost its wide popularity and made it more

practical for applications, is that it does not depend on the weak learning pa-

rameter γ. In this sense, the algorithm can adapt to the weak learning algorithm

(hence, the name AdaBoost). Moreover, as this section will show, the training

error of a hypothesis H generated by AdaBoost decreases exponentially fast in

the number of rounds T .

Theorem 4.1. Let H be the output hypothesis of AdaBoost which has a training

error (ǫ̂). Then:

≤
T
∏

t=1

(2
√

ǫt(1− ǫt))
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=
T
∏

t=1

√

1− 4γ2
t

≤ exp(−2
T
∑

t=1

γ2
t )

where ǫt = 0.5− γt is the training error of ht. The last line is obtained from the

inequality 1 + x ≤ exp(x). Thus if ∀t; γt ≥ γ > 0 then:

ǫ̂ ≤ exp(−2Tγ2),

Proof. The proof is given in Freund and Schapire [1997], we sketch its three steps:

1. Unravel the recurrence of distribution update rule in order to write the

distribution at T + 1 as follows:

DT+1(i) =
exp (−yif(i))

m
∏T

t=1 Zt

2. Bound the training error of H by the product of Zts:

ǫ̂ ≤
T
∏

t=1

Zt

3. Now that the training error has been bounded in step 2 by the product of

the normalizing weights Zt , the last step is to express Zt in terms of ǫt :

Zt = 2
√

ǫt(1− ǫt)

In order to do so, we calculate the value of at which minimizes Zt =
∑m

i=1 Dt(i) exp(−atyiht(xi)). This results in at = 0.5 ln(1−ǫt
ǫt

)
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4.3.2 Multi-Class Adaboost Variations

Several algorithms have been proposed to extend AdaBoost to the multi-class

setting. The most straightforward generalization is called AdaBoost.M1 Freund

and Schapire [1997], it is suitable when the base learner is strong enough to

achieve reasonably high accuracy (e.g., decision trees). However, this method

fails if the weak learner cannot achieve at least 50 percent accuracy, which is not

always easy in the case of multiple class labels. For instance, a random guessing

between 5 class labels would achieve 20 percent of accuracy, so requiring at least

50 might not be feasible by many weak learners.

To cope with the latter limitation, several more sophisticated methods have

been developed. These generally work by reducing the multi-class problem to

several binary problems. Freund and Schapire [1997] introduced AdaBoost.MH

algorithm. It works by creating a set of binary problems, one for each class label.

Then it learn them all in a single boosting scheme. Another algorithm introduced

by the same authors is called AdaBoost.M2 (which is a special case of Schapire

and Singer [1999] AdaBoost.MR algorithm). Those also reduce the problem to

binary, but learn instead to discriminate between pairs of (correct, incorrect)

labels.

However, these methods require additional effort in the design of the weak

learner. A different approach Schapire [1997], which makes use of Dietterich and

Bakiri [1995] method of error-correcting output codes, achieves similar provable

bounds to those of AdaBoost.MH and AdaBoost.M2, but it can be used with any

weak learner that can handle binary tasks.

4.4 Bagging

Another well-known method to combine weak hypotheses in order to construct a

stong one is called bootstrap aggregating or bagging, it has been invented by Leo

Breiman (see his paper Breiman [1996].
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Briefly, the method works by training the weak learner at each iteration on

a bootstrap sample of the training set, i.e., a sample with replacement of the

training set with the same size. The multiple hypotheses that are computed are

then combined using a simple majority voting (at = 1). The method can be quite

efficient, especially, for noisy data, because; thanks to its random behavior, it

does not concentrate its effort on noisy examples till they are well learned, thus,

it could avoid overfitting.

4.5 Summary

This part of the chapter presented ensemble learning framework by focusing the

most on Boosting methods as they lie in the center of our interest because of their

nice theoretical properties. We presented also Bagging method as a computation-

ally efficient ensemble method because of its sampling mechanism on the features

and on the examples as well. In the following, we will present our contribution

in extending ensemble learning framework to Multi-Task setting. We start by

giving our notation and problem definition, then we present MT-Adaboost al-

gorithm a multi-task adaptation of Adaboost. We show its error convergence

bounds. Then, we propose different learning algorithms to the multi-task weak

classifiers presented in the previous chapter.

4.6 Multi-Task Ensemble Learning

In the following sections we will be presenting our contribution to Multi-Task

learning. We present the learning algorithms for our Multi-Task classifiers which

were presented in the previous chapter. We then plug them into Boosting algo-

rithms adapted to the Multi-Task setting and discuss their convergence proper-

ties. We first start by defining our notation.

Let X be the instance space, a supervised classification task T is defined as
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follows. Let D be a distribution over X, let f : X → Y be a target function, given

a sample S = {(xi, f(xi)) | xi ∈ X, 1 ≤ i ≤ m}, find an hypothesis function h

which minimizes error(h) = Prx∼D[h(x) 6= f(x)].

Now, let us consider a sample S in the multi-task setting, it can also be written

as S = ∪j=N
j=1 Sj where, for every j, Sj = {ei =< xi, yi, j >| yi = fj(xi)}, i.e. we

decompose S in samples corresponding to the different tasks. Let us consider a

distribution over S.

We consider N classification tasks T1, . . . , TN over the instance space X and

label sets Y1, . . . , YN . For sake of clarity, we consider binary classification tasks

and we assume without loss of generality that the binary labels for all tasks are

encoded as −1 and +1, then we describe how to generalize the work to multi-

class classification tasks with different labels (and eventually different number of

labels) per task.

The objective is to solve the N classification tasks simultaneously. We sup-

pose a distribution D over X × {1, . . . , N}. We will assume that, for every j in

{1, . . . , N}, the projection on the distribution’s j-th component will correspond

to the original distribution for task Tj. A multi-task classification algorithm will

take as input a sample S = {< xi, yi, ji >| xi ∈ X, yi = fji(xi) ∈ {−1,+1}, ji ∈
{1, . . . , N}, 1 ≤ i ≤ m}. It should be noted that a same instance x can appear

in a sample S with its label for different tasks. The goal is to find an hypothesis

h : X → Y1 × . . . × YN which minimizes error(h) = Pr<x,j>∼D[hj(x) 6= fj(x)],

where hj(x) is the j-th component of h(x) and j ∈ {1, . . . , N}.

In the following sections, we first present our Multi-Task Boosting algorithm

with 2T-stump as weak learner. Then we present the algorithm with MT-DT as

weak learner
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4.7 Abstaining Multi-task Adaboost with

2T-stumps

In this section, Then we show that our formalization of multi-task problems

will allow to adapt Adaboost and to benefit from theoretical results of boosting.

Finally, we propose several weak learners in order to provide weak multi-task

hypotheses to Adaboost.

4.7.1 MTAA: Adaboost for Multi-task Learning with Ab-

stention

We consider the multi-task setting as defined above, with 2T-stumps used as

weak classifiers. Given a 2T-stump h : X → {−1, 0,+1}N , we define W0, W−1

and W+1 by

Wb =
i=N
∑

i=1

D({ei =< xi, yi, j >| ei ∈ S, yi × hj(xi) = b})

for b ∈ {−1, 0,+1}. We abbreviate W−1 and W+1 by W− and W+ respectively.

W− is the sum of weights of misclassified instances, W+ is the sum of of weights

of well-classified instances, and W0 is the sum of weights of instances on which h

abstains. Since D is a distribution, W+ +W− +W0 = 1.

4.7.1.1 MTAA.

Adapted from Schapire and Singer [1999], the generic Adaboost algorithm with

abstention for multi-task learning (MTAA) is presented in Algorithm 1 where T is

the number of boosting iterations; init is a procedure to initialize the distribution

D1 over S; and WL is a weak learner that returns a 2T-stump given as input a

sample S and a distribution D over S. The final output is a classifier H from X

into {−1,+1}N . We should note that we suppose that the choice of the number
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of boosting iterations, the choice of the updating coefficients α and the weak

learner WL for MTAA, ensure that H does not abstain for every instance and for

every task.

Require: S = ∪j=N
j=1 {ei =< xi, yi, j >| xi ∈ X; yi ∈ {−1,+1}}

1: D1 = init(S) initialize distribution
2: for t = 1 to T do
3: ht = WL(S,Dt) {train the weak learner and get an hypothesis 2T-stump }
4: Choose αt

5: Dt+1(ei) =
Dt(ei) exp(−αtyih

t
j(xi))

Zt
{update distribution}

6: end for
7: return Classifier H defined by Hj(x) = sign(

∑i=T
i=1 αth

t
j(x)), 1 ≤ j ≤ N

Algorithm 1: A generic version of MTAA

The training error of the final classifier H is defined by

error(H) = Pr<xi,yi,j>∼D1
[Hj(xi) 6= yi].

We now prove that the training error decreases to zero exponentially fast.

Theorem 4.2. Let us consider MTAA with the update rule in line 5 of Algorithm 1

and let us suppose that there exists γ > 0 such that, at each boosting iteration,

W+ −W− ≥ γ, then

(i) error(H) ≤∏T
t=1 Zt,

(ii) Zt is minimized by choosing

αt =
1

2
ln

(

W+

W−

)

, (4.1)

(iii)
∏T

t=1 Zt ≤ e−T γ2

2 .

Proof. Following Schapire and Singer [1999], it can be shown that error(H) ≤
∏T

t=1 Zt. Also, for every t, Zt = W0+ eαW−+ e−αW+ where W0, W− and W+ are
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computed as above with D = Dt. And, it can be verified that Zt is minimized

when αt =
1
2
ln(W+

W−

). With this setting of αt, we have Zt = W0 + 2
√
W−W+ =

1− (
√
W+ −√

W−)
2.

It remains to show property (iii), i.e. to show that the training error decreases

exponentially with the number of boosting iterations. Let W+ −W− = γt ≥ γ >

0, then
√
W+ − √

W− = γt√
W++

√
W−

≥ γt√
2
because

√
W+ +

√
W− =

√
W+ +

√
1−W0 −W+ ≤ √

W+ +
√
1−W+ ≤

√
2. Thus we get Zt ≤ 1 − γ2

t

2
, and then

we have
∏T

t=1 Zt ≤ ∏T
t=1(1 − γ2

t

2
) = e

∑T
t=1

ln(1−γ2
t ). Last using γt ≥ γ > 0 and

ln(1− x) ≥ −x, we obtain: error(H) ≤∏T
t=1 Zt ≤ e−T γ2

2 . �

Thus, the output of the weak learner is a weak classifier that must satisfy

W+ − W− ≥ γ > 0. Or, equivalently, it must satisfy W− + 1
2
W0 ≤ 1

2
− γ

2
< 1

2

because W++W−+W0 = 1. Then, the goal of a weak learner will be to maximize

W+ − W− which is equivalent to minimize W− + 1
2
W0. It should be noted that

these equivalent criteria avoid hypothesis such that W− ≤ W+ with small values

for W− and W+ (and W0 is high). This is consistent with the intuition that weak

classifiers are not allowed to abstain on a sample of high weight.

The optimal rule given in Equation 4.1 for updating coefficients αt may lead

to very large or infinite values, then it can be necessary to smooth the update

rule for coefficients, then leading to the update rule:

αt =
1

2
ln

(

W+ + ǫ

W− + ǫ

)

(4.2)

where ǫ is a small real number.

4.7.1.2 MTAA with conservative weighting strategy.

We now consider a more conservative version of Adaboost for hypotheses that

abstain proposed in Schapire and Singer [1999] with a modified update weighting

rule as defined in Theorem 4.3. We have the following result:
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Theorem 4.3. Let us consider MTAA with the new update rule

Dt+1(ei) =
Dt(ei) exp(−αtyih

t
j(xi))

Zt

if ht
j(xi) 6= 0 (4.3)

=
Dt(ei)(

exp(α)+exp(−α)
2

)

Zt

otherwise, (4.4)

and let us suppose that there exists γ > 0 such that, at each boosting iteration,

W− + 1
2
W0 ≤ 1

2
− γ, then

(i) error(H) ≤∏T
t=1 Zt,

(ii) Zt is minimized by choosing

αt =
1

2
ln

(

W+ + 1
2
W0

W− + 1
2
W0

)

, (4.5)

(iii)
∏T

t=1 Zt ≤ e−2Tγ2

.

The proof is not given because it is very similar to the proof of Theorem 4.2.

4.7.1.3 Discussion on the weighting strategies.

Let us compare the two weighting strategies implied by Theorems 4.2 and 4.3

when the number of tasks N increases. Every 2T-stump must abstain for every

instance onN−2 tasks, which leads to larger values ofW0. Accordingly, the quan-

tities Zt and
∏T

t=1 Zt become close to 1. Moreover, with the weighting strategy

given by Theorem 4.3, large values of W0 may lead to values of αt close to 0 and

the normalization factor Zt converges more quickly to 1. Finally, let us denote by

Z1 and Z2 the normalization factors according to Theorems 4.2 and 4.3, we can

note that Z1 is always smaller than Z2 because Z2
2 − Z2

1 = 2W0(
√
W+ −√

W−)
2.

We show in Figure 4.1 random trajectories of
∏T

t=1 Zt with fixed values of W0

and γ. For small values of W0, the two weighting strategies are similar. But with

a greater value of W0, we obtain very different results for the second strategy:
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Figure 4.1: Evolution of
∏T

t=1 Zt following the two possible strategies for different
values of W0: Theorem 4.2 (left) and Theorem 4.3 (right); W0 = 0.2 (up) and
W0 = 0.9 (down).

the trajectories are close to y = 1. Let us also note that the theoretical bound

for the first strategy on the training error is not precise for small values of the

edge γ induced by great values of W0 and we have to directly minimize
∏T

t=1 Zt

in order to control the training error.

We conclude the section with a note on the number of boosting iterations.

When the number N of tasks increases, the edge γ is small, thus we have to

increase the number of boosting iterations: if T is the number of boosting iter-

ations for a single task boosting algorithm, we suggest to use MTAA with a num-

ber of boosting iterations equal to N.T
2
. And, we recall that the goal of a weak
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learner is to output hypotheses maximizing W+−W− (or equivalently minimizing

W− + 1
2
W0).

In the sequel of the paper, we will only consider the weighting strategy implied

by Theorem 4.2.

4.7.2 The Weak Learners for 2T-stump

A weak learner WL takes as input a sample S and a probability distribution D

over S and returns a 2T-stump h. The objective of WL is that the score W−+
1
2
W0

of the output h w.r.t. S and D is as small as possible. We suppose that a set of

tests has been previously computed according to attributes and values observed

in the sample S. For sake of clarity, we will suppose that the tests are binary.

This defines a set of stumps where every stump is defined by a test, a task and

two decision nodes.

A first naive weak learner compute the score of all 2T-stumps and then select

the best 2T-stump. But the complexity is cubic in the number of tests. A second

naive algorithm is to select at the first level the stump with the best score and then

greedily select, at each of the two decision nodes, the stump with the best score.

It can be easily shown that such an algorithm does not output the best, at least a

good, 2T-stump because the algorithm does not take into account the correlation

between tasks. For instance, a greedy algorithm will learn the 2T-stump shown in

Figure 3.1(b) on a synthetic dataset visualized in Figure 3.2(b) because the best

first-level decision stump is obtained for task T3, while a less naive algorithm, as

defined below, will find the 2T-stump shown in Figure 3.1(a) and visualized in

Figure 3.2(a). Therefore we now introduce weak learners with the aim of finding

a good 2T-stump while avoiding the cubic complexity.

Let S be a (multi-task) sample and W be (a vector of) weights for examples

in S. We define a procedure Score which assigns to every stump st a score w.r.t.

S and W . The score will be chosen equal to W−+
1
2
W0. We define functions Best

and Best-per-Task as follows. Given a sample S and weights W , Best takes as
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input a positive integer K and outputs the set of K stumps with highest score;

Best-per-Task takes as input an integer K and output, for every task task, the

set of K stumps for task with highest score. Also, we can define a distribution

over stumps where the probability of a stump is inversely proportional to its

score. Then, the function Sto-Best takes as input an integer K and output a

list of K stumps drawn randomly according to this distribution.

First, we define the weak learner WL-Best-K in Algorithm 2. Given a score

function, the K stumps with the best scores are chosen as candidates for the root.

Let us suppose that the chosen stump st corresponds to task j. Then, we consider

the set S \Sj and split the training examples according to the test defined by st.

This defines the sets S1 and S2. We define the weights of examples to be equal

to the probabilities given by D. For the second level, we choose the best stump

for each branch. Note that if we consider the score defined by W−+ 1
2
W0, we can

show that this implies to choose the best 2T-stump with root stump st. Then

WL-Best-K output the 2T-stump with the best score among the K candidate

2T-stumps.

Require: S = ∪j=N
j=1 {ei =< xi, yi, j >} and a distribution D on S; parameter K

1: Compute BeST = Best(K) w.r.t. S, D {choose K root stumps}
2: for every stump st in BeST do
3: Compute S1 and S2 {descend examples according to the root test}
4: Let W1 = D|S1

; st1 = Best(1) w.r.t. S1, W1 {the best stump for the left
child}

5: Let W2 = D|S2
; st2 = Best(1) w.r.t. S2, W2 {the best stump for the right

child}
6: Let hst be the 2T-stump with root st, left child st1 and right child st2
7: end for
8: return 2T-stump h with the best score among all hst for st in BeST

Algorithm 2: Weak learner WL-Best-K

The weak learner WL-Best-K chooses the K best stumps as candidates for

the root of the output 2T-stump. It may be the case that these K best stumps
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concern only some of the tasks because slight variations of a test can lead to

slight variations of the score. Therefore, we also consider the weak learner

WL-Best-per-Task-K obtained by replacing the instruction BeST = Best(K)

in line 1 of WL-Best-K by BeST = ∪N
j=1Best-per-Task(k). Let K be an in-

teger and let us consider K = k × N , where N is the number of tasks. The

weak learner WL-Best-per-Task-K with parameter value K will ensure that

among the K stumps chosen at the root, for every task, K stumps are cho-

sen. Thus, all tasks are represented when computing a hypothesis 2T-stump with

WL-Best-per-Task-K which was not the case for WL-Best-K.

It can be shown that neither of these algorithms is ensured to output an

optimal hypothesis because the choice of root stumps is made independently of

the choice of the second-level stumps. And it can be the case that the best

2T-stump has a root stump which is not in the K-best stumps. Thus, we also

consider the idea to introduce diversity in the choice of the candidate root stumps.

For this, we define the weak learner WL-Sto-Best-K by replacing the instruction

BeST = Best(K) in line 1 of WL-Best-K by BEsT = Sto-Best(K).

The three weak learners are not optimal. But, the complexity of WL-Best-K

and WL-Best-per-Task-K is in O((N × Tt × k) where N is the number of

tasks, Tt the number of tests and K is the parameter value. The complexity

of WL-Sto-Best-K must include also a logarithmic factor. We compare empiri-

cally the weak learners in the next chapter.

4.8 Multiple Multi-Class Tasks with

MT-Adaboost

So far we presented MT-Adaboost and 2T-stumps for binary classification tasks.

In this section we propose to extend them to cope with multi-class tasks. We

adapt BoosTexter Schapire and Singer [2000] learning system to multi-task learn-

ing (MTL). BoosTexter is the extention to the original binary classification Ad-
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aboost to multi-class / multi-label problems. It has different variations in terms

of booster (Adaboost.MH, Adaboost.MR, etc). We consider Adaboost.MH as a

booster and multi-class /multi-label stumps, then we plug them into our multi-

task boosting framework. Adaboot.MH transforms a multi-label problem to sev-

eral binary problems each of which corresponds to a label. Each training example

x has a set of labels Y instead of one label. For each training example (x, Y ) and

each label l ∈ Y, we define:

Y [l] =







+1 if l ∈ Y

−1 if l /∈ Y

Each example (x, Y ) in the training data set is transformed to |Y| examples of the

form ((x, l), Y [l]) for all l ∈ Y. The distribution is over the pairs (example, label),

i.e., over X×Y The algorithm can learn multi-class as well as multi-label problems,

multi-class is a special case of multi-label, where |Y | = 1 for all examples. The

output classifier is the following function:

H : X× Y → R,

where the sign of H(x, l) indicates if l is predicted as one of x’s labels (positive)

or not (negative), whereas, the magnitude of H(x, l) indicates the classification

confidence.

Adaboost.MH minimizes the Hamming loss between the predicted labels and

the given labels:

Hamming(S) =
1

m

∑

i∈1,...,m
|Yi∆H(xi)|,

where H(xi) = {H(xi, l); l ∈ Y}

We adapt Adaboost.MH to MTL. The distribution we define is over examples
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and labels from all tasks, i.e.,

D ∈ X× {Y1 ∪ . . . ∪ YN}.

And the output classifier:

H : X× {Y1 ∪ . . . ∪ YN} → R.

Algorithm 3 present the extention to Adaboost.MH to MTL.

Require: S = ∪j=N
j=1 {ei =< xi, yi, j >| xi ∈ X; yi ∈ Yj}

1: D1 = init(S)
2: for t = 1 to T do
3: ht = WL(S,Dt)
4: Choose αt

5: Dt+1(ei, l) =
Dt(ei,l) exp(−αtyi[l]h

t(xi,l))
Zt

{update distribution}
6: end for
7: return Classifier H defined by H(x, l) = (

∑i=T
i=1 αth

t(x, l)), 1 ≤ j ≤ N The
predicted label for task j is: ỳ = argmaxl∈Yj

H(x, l)

Algorithm 3: MT-Adaboost.MH algorithm

4.8.1 Error Analysis of MT-Adaboost.MH

By following the same analysis that is done for MT-Adabosot we can show that

the empirical error of MT-Adaboost.MH decreases exponentially with the number

of boosting iterations:

The training error ǫ̃ is calculated by using the hamming ∆ error as follows:

ǫ̃ =
1

N

∑

<xi,yi,j>∈S

1

mj

|sign(H(xi))∆Yi|,

where H(xi) = {H(xi, l); l ∈ Yj}
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ǫ̃ =
∑

<xi,yi,j>∈S

∑

l∈Yj

1

mj ×Kj ×N
|sign(H(xi, l)) 6= Yi[l]|,

where N is the number of tasks, Kj = |Yj| is the number of class labels of task

j, and mj is the size of j’s training set.

ǫ̃ ≤
∑

<xi,yi,j>

∑

l∈Yj

1

mj ×Kj ×N
exp(−Yi[l]H(xi, l)) (4.6)

Let D(i, l)final be the final distribution over the training data after learning,

if we unveil the recursion of the weights update rule we get:

D(i, l)final =
exp(−Yi[l]H(xi, l))

mj × kj ×N
∏

Zt

,

Using Dfinal in equation 4.6 gives

ǫ̃ ≤
∑

<xi,yi,j>

∑

l∈Yj

Dfinal(i, l)
T
∏

t=1

Zt =
T
∏

t=1

Zt

4.8.2 The Weak Learner: Multi-Task Multi-Class Stump

For multi-class multi-task weak learners (MC-2T-stump) we propose the same

structure as 2T-stump, a.k.a, two levels decision tree with three nodes. The

difference is that, each node is a multi-class decision stump for one of the N

tasks. Those stumps have real valued predictions for multi-class / multi-label

problems. They were introduced in the Boostexter system Schapire and Singer

[2000].

Therefore, a node in MC-2T-stump is a multi-class stump for a certain task.It

takes an example x as input and it give a confidence value for each possible class



4. ENSEMBLE MULTI-TASK LEARNING 80

label in its task. h : X× Y → R

h(x, l) =







c0l if TEST (x)

c1l if !TEST (x)
.

For multi-class setting the predicted label is: argmaxl∈Yh(x, l). Let X0 = {x ∈
X;TEST (x)}, X1 = {x ∈ X; !TEST (x)}.

For an example x, MC-2T-stump predicts labels for two tasks and abstains for

the rest. Let Sj
0 ⊂ S denotes the examples of task j for which an MC-2T-stump

abstains. ∀e =< x, Y, j >∈ Sj
0, l ∈ Yj : H(x, l) = 0 For a given distribution D,

example (x, Y, j) and label l ∈ Yj we calculate the values:

W kl
b =

∑

i/∈S0
j

D(i, l)[[xi ∈ Xk ∧ Yi[l] = b]],

where k ∈ {0, 1} and b ∈ {−1,+1}

W kl
0 =

∑

i∈S0
j

D(i, l)

As for single task case Schapire and Singer [1999], it can be shown that choos-

ing the output of the stump as: ckl = 0.5 ln(
Wkl

+

Wkl
−

), minimizes Z. And by setting a

to 1 the resulted Z will be:

Z =
N
∑

j

∑

k∈{0,1}

∑

l∈Yj

W kl
0 + 2

√

W kl
+ W kl

−

The same learning algorithms proposed for 2T-stump are used to learn MC-2T-stump.

namely N-Best, N-Best-Per-Task.
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4.9 Summary

Adaboost with stumps has been extended to fit the settings of multi-task. MT-

Adaboost with 2T-stumps is a boosting algorithm able to learn multiple tasks

without neither restrictions nor a priori assumptions. MT-Adaboost.MH; an

adaptation to multi-class multi-task setting has been presented along with the

corresponding multi-task weak learners.

In the sequel we continue with boosting for multi-task but with different weak

learner, it is a multi-task decision tree that we call MT-DT. We address the learning

algorithm of MT-DT by proving a criterion which guides the construction of the

multi-task tree. The proposed criterion makes use of the data from several tasks

at each step of the tree learning. We also propose another adaptation of Adaboost

to multi-class, which is this time inspired from Adaboost.M1; a straightforward

adaptation of Adaboost to multi-class and we justify our choice of this algorithm

which is better adapted to be combined with MT-DTs.

4.10 Multi-task Adaboost with MT-DTs

Decision tree learning is based on the entropy-based criteria , in particular, on

the quantity of the mutual dependency between two random variables, the label

variable Y ∈ Y and the observation attribute a which is one of the attributes of

an input vector x ∈ X. The information gain denoted IG(Y ; a) can be expressed

as follows

IG(Y ; a) = H(Y )−H(Y |a), (4.7)

where H(Y ) = −∑y∈Y p(y)logp(y) is the marginal entropy of label set Y and

H(Y |a) =∑v p(v)H(Y |a = v) is the conditional entropy of Y knowing a.

Assume now we cope with N tasks with the corresponding label sets Y1, . . . ,

YN , respectively. For learning the MT-DT, the baseline approach is to treat all
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the tasks together by concatenating the label sets, denoted as ⊕N
j=1Yj. The

concatenated task takes as input a sample S = {< xi, yi >| xi ∈ X, yi =

f(xi) ∈ ⊕N
j=1Yj, 1 ≤ i ≤ m}. It can use the joint information gain for

learning decision rules, defined as IGJ = IG(⊕N
j=1Yj; a). As an alternative to

IGJ , we could use the unweighted sum of individual task information gains,

IGU =
∑T

j=1 IG(Yj; a). Evaluations however show that IGU fails to improve

over IGJ . Instead, we prove below that IGJ is equivalent to the weighted sum of

individual task information gains and infer an IG criterion superior to IGJ . The

novel IG criterion, denoted IGM , takes the maximum value among the individual

IGs, IGM = max{IG(Yj; a), j = 1, . . . , N}.
We first recall the generalized grouping feature of the entropy Gray [2010]

in the following lemma. It establishes a relationship between the entropy of an

entire set of values and the entropies of its disjoint subsets.

Lemma 4.4. For qkj ≥ 0, such that
∑n

k=1

∑m
j=1 qkj = 1, pk =

∑m
j=1 qkj, ∀k =

1, . . . , n, the following holds

H(q11, . . . , q1m, q21, . . . , q2m, . . . , qn1, . . . , qnm) = (4.8)

H(p1, . . . , pn) +
∑

pkH

(

qk1
pk

, . . . ,
qkm
pk

)

, pk > 0, ∀k. (4.9)

Using Lemma 1, we can prove the following theorem on the relationship be-

tween the joint information gain IG(⊕N
j=1Yj; a) of the full task set and of the

individual tasks IG(Yj; a), j = 1, . . . , N .

Theorem 4.5. For N tasks with the class sets Y1, . . . ,YN , let pj denote the

fraction of task j in the full dataset, pj =
|Sj |

∑N
j=1

|Sj |
, j = 1, . . . , N ,

∑N
j=1 pj = 1.

Then we have

IG(⊕N
j=1Yj; a) =

N
∑

j=1

pjIG(Yj; a) ≤ max(IG(Y1; a), . . . , IG(YN ; a)). (4.10)

Proof. First, we use Lemma 1 to develop the entropy term H(⊕N
j=1Yj) of the
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information gain (4.7). We have

H(⊕N
j=1Yj) = H(p1, . . . , pN) +

N
∑

j=1

pjH(Yj), (4.11)

where
∑N

j=1 pj = 1.

Second, we develop the conditional entropy term in (4.7), as follows

H(⊕N
j=1Yj|X) =

∑

x

p(x)H(⊕N
j=1Yj|a = v) (4.12)

=
∑

v

p(v)

(

H(p1, . . . , pN) +
N
∑

j=1

pjH(Yj|a = v)

)

(4.13)

= H(p1, . . . , pN) +
N
∑

j=1

pj
∑

v

p(v)H(Yj|a = v) (4.14)

= H(p1, . . . , pN) +
N
∑

j=1

pjH(Yj|a). (4.15)

Now we combine the entropy (4.11) and the conditional entropy (4.15) terms

to evaluate the joint information gain IG(⊕N
j=1Yj; a). We obtain

IG(⊕N
j=1Yj; a) = H(⊕N

j=1Yj)−H(⊕N
j=1Yj|a) (4.16)

=
N
∑

j=1

pjIG(Yj; a) (4.17)

≤
N
∑

j=1

pjmax(IG(Y1; a), . . . , IG(YN ; a)) (4.18)

= max(IG(Y1; a), . . . , IG(YN ; a)). (4.19)

This completes the proof of the theorem.

Theorem 1 says that criterion IGM for the decision tree learning in the multi-

task case is superior to the joint one IGJ . It suggests that using the maximum
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Figure 4.2: Information gain for synthetic two-task datasets. The relative values
of IGM (in blue) and IGU (in red).

information gain among individual tasks can learn a better decision rule than one

using the full data set.

Figure 4.10 compares three criteria IGU , IGJ and IGM for some randomly

generated two-task datasets. Two label sets are generated by sampling from the

Uniform, Normal (with µ = 0, σ = 1) and Poisson (λ = 1) distributions; the

number of labels in the two sets vary from 2 to 20. Attributes values are sampled

from uniform distributions in all cases. We measure the relative values of IGM

and IGU with respect to IGJ . In all cases, we report the median, the upper

and lower percentiles, and the whiskers over 100 runs. As the figure shows, IGM

yields on average up to 42% more of information gain than IGJ , with the minimal

gain in the case of two Uniform distributions.

The learning algorithm for MT-DT applies one of proposed information gain

criteria to the available training set S:

MTIG(S) ≡ (a∗, v∗) = maxa,vIG∗(S),

where a is an attribute in feature space X of instances xi in set S, value v is



85 4. ENSEMBLE MULTI-TASK LEARNING

a value of a and pair (a∗,v∗) yields the optimal split of set S by the test rule

a∗ ≤ v∗, and IG∗ refers to IGJ , IGU or IGM .

The pseudo code of the MT-DT algorithm is presented in Algorithm 4. The

algorithm makes a call to a function MTIG which returns the node with rule

a ≤ v that maximizes a given information gain on a multi-task training set S,

Then it gets subsets S1, S2 resulting from splitting S on the chosen node. At

each node the algorithm adds decision leaves for the tasks having no items in

the subset or having items with the same label. Then, it calls recursively the

procedure on each of subsets. In the evaluation section, we test three versions of

the IG criterion introduced before, IGJ , IGU and IGM . It is worth noting that

we can limit the depth of the trees by modifying the stopping criterion, instead of

stopping the growth of a certain branch when we have homogenous labels for all

tasks in the subspace corresponding to that branch, we can stop when we exceed

a threshold. For instance, when 80% of the examples are from the same labels.

This should not be an issue as long as we are using an ensemble of trees learned

by a boosting algorithm.

4.10.1 Multi-Task Multi-Class Adaboost

In the previous section we developed a novel technique for learning MT-DT’s with

an improved information gain criterion. To avoid all disadvantages of the decision

trees such as overfitting, in this section we proceed by plugging the MT-DT’s in

the boosting framework.

We adapt Adaboost.M1 which was introduced in Schapire and Singer [1999].

We preferred M1 to MH or other multi-class boosting algorithm because it is the

most straightforward extention to binary Adaboost and it is fast. It has however

a drawback; it puts strong requirement on the weak learner; actually, it requires

the classification error of the weak classifier to be less than 0.5 w.r.t. to the

current weight distribution, regardless the number of class labels. Some weak

learners, such as stumps, are unable to satisfy such a strong boosting condition.
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Require: S = ∪N
j=1{ei =< xi, yi, j >| xi ∈ X; yi ∈ Yj}

Require: MTIG: multi-task information gain criterion
1: res = [] {Will contain the chosen node and early decision leaves, if any}
2: for j = 1 to N do
3: if task j’s examples (Sj) has all the same label or Sj = ∅ then
4: Add to res a leaf for task j and label y. {y is either the unique label

of Sj in case it is homogeneous or it is the majority label of its parent
subset in case Sj = ∅}

5: S = S \ Sj

6: end if
7: end for
8: Get the bestnode rule (a, v) = MTIG(S) which maximizes the information

gain
9: Call split(S, a, v))

10: Get back [S1, S2], two subsets resulted from splitting S based on bestnode

11: Add bestnode to res

12: Call recursively the algorithm on S1 and S2 to get the children of res
13: return res

Algorithm 4: MT-DT algorithm.

We choose multi-task decision tree as a weak learner. Normally, decision trees

perform better than stumps and they can achieve a classification error lower

than 0.5 on multi-class problems which makes them suitable as weak learners for

Adaboost.M1.

The proposed Multi-Task Adaboost algorithm (MTAA) is presented in Algo-

rithm 5. T is the number of boosting iterations; init is a procedure to initialize

the distribution D1 over S; and WL is a weak learner that returns an MT-DT given

as input a sample S and a distribution D over S. The final output is a multi-task

classifier H from X into Y1 × . . . × YN . As in single task boosting algorithms,

MTAA calls WL repeatedly in a series of rounds. On each round t, the algorithm

provides WL with the current distribution Dt and the training sample S, in return

WL learns a classifier ht : X → Y1 × . . . × YN which minimizes the training error

on S with respect to Dt. The distribution Dt+1 is then calculated from Dt and ht

as follows. Correctly classified examples by ht will have their weights multiplied
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by 0 ≤ βt ≤ 1 (i.e., decreased), and the weights of misclassified examples will be

left unchanged. Finally, the weights are renormalized by using the normalization

constant Zt.

The final classifier H for a given task j is a weighted vote of the weak classi-

fiers’ predictions for this task. The weight given to hypothesis ht is defined to be

ln(1/βt) so that greater weight is given to hypotheses with lower error. MTAA has

the same theoretical properties of Adaboost.M1, that is, if the weak hypotheses

have error only slightly better than 1/2, then the (training) error of the final hy-

pothesis H drops to zero exponentially fast in function to the number of boosting

iterations T .

4.11 Random Forests

Random Forests Breiman [2001] is an ensemble learning method that consists of

aggregating a forest of decision trees. The term came from random decision forests

that was proposed by Ho [1998]. The method combines Breiman’s ”bagging”

idea and the random selection of features, introduced independently by Ho [1998]

and Amit and Y [1997].To classify a new data point, get the prediction of each

tree on the data point. The forest chooses the prediction having the most votes

(over all the trees in the forest). Each tree is learned as follows:

• If the number of training examples is m, sample m′ examples at random

- but with replacement, from the original data. This sample will be the

training set for growing the tree.

• If there are F features, a pre-specified number f << F is used s.t. at each

node, f features are randomly selected, then the best split on these f is

used to split the node. The value of f is held constant during the forest

growing. Each tree is grown to the largest extent possible. There is no

pruning.
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In Breiman [2001], it was shown that the forest error rate depends on two

things:

• The correlation between any two trees in the forest. Increasing the correla-

tion increases the forest error rate.

• The strength of each individual tree in the forest. A tree with a low error

rate is a strong classifier. Increasing the strength of the individual trees

decreases the forest error rate.

Reducing f reduces both the correlation and the strength. Increasing it in-

creases both. Somewhere in between is an ”optimal” range of f . This is the

only adjustable parameter to which random forests is somewhat sensitive. Ran-

dom Forests features include:

• It is fast and thus it runs efficiently on large data sets.

• It can handle large number of features.

• It gives estimates of what variables are important in the classification.

We make use of RFs as a method to learn and aggregate our MT-DTs instead

of Adaboost with C4.5 algorithm. In Chapter 5 we report some results comparing

MT-DTs learned by random forests algorithms and those learned by Adaboost.

4.12 Summary

We proposed an adaptation of decision tree learning to the multi-task setting, with

the following important contributions. First, we developed multi-task decision

trees to deal with multi-class tasks with no label correspondence. The criterion to

learn the decision rules makes use of the data from several tasks at each step of the

decision tree learning, thus enabling to capture any degree of relatedness between

the tasks. We then feature an important property of information gain rule when
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working with multiple tasks. This enabled us derive the new information gain

criterion for learning decision trees in the multi-task setting. We also modified

MT-Adaboost to cope with multi-class problems. Next chapter is dedicated to

validate the proposed methods by series of experiments on synthetic and real

large scale data sets.

Require: S = ∪N
j=1{ei =< xi, yi, j >| xi ∈ X; yi ∈ Yj}

1: D1 = init(S) initialize distribution
2: for t = 1 to T do
3: ht = WL(S,Dt) {train the weak learner and get an hypothesis MT-DT }
4: Calculate the error of ht: ǫt =

∑N
j=1

∑

i:ht
j(xi) 6=yi

Dj(xi).

5: if ǫt > 1/2 then
6: Set T = t− 1 and abort loop.
7: end if
8: βt =

ǫt
1−ǫt

{Update distribution:}
9: if ht

j(xi) == yi then

10: Dt+1(ei) =
Dt(ei)×βt

Zt

11: else
12: Dt+1(ei) =

Dt(ei)
Zt

13: end if
14: end for

{Where Zt is a normalization constant chosen so that Dt+1 is a distribution}

15: return Classifier H defined by:

Hj(x) = argmax
y∈Yj

(
i=T
∑

i=1

(ln 1/βt)), 1 ≤ j ≤ N

Algorithm 5: MT-Adaboost.
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In this chapter, we report the results of the experiments we have done on our

algorithms. We tested the algorithms on synthetic tasks generated from random

Bayesian networks which define the relatedness patterns. We also conducted

experiments on real world / large scale email data sets (Enron and ECML’06

spam filtering challenge). Other tests were done on MNIST character recognition

data set to compare our weak learners and to compare our algorithm with the

work of Novi Quadrianto [2010]. It should be noted that multi-task problems with

different number of classes are not quite well addressed in the literature which

makes it difficult to find other methods to compare with for certain scenarios.

5.1 Data Sets

5.1.1 Synthetic

We generate synthetically tasks with local relatedness patterns, by following the

data generation technique described in Freno et al. [2010]. Each pattern is gen-

erated a random Bayesian network (BN) from which one can derive different but

related probabilistic distributions. The BN is created by generating (a) a ran-

dom (directed acyclic) graph, (b) a set of functions (with random parameters)

characterizing the dependence of every node on each one of its parents in the

graph, and (c) a set of functions (with randomly assigned parameters) defining

the probability density of each node.

Figure 5.1.1 shows some examples of the local tasks relatedness generated

using such method. In the plotted examples, the distributions feature cubic,

exponential and linear correlation functions, with Beta, Gaussian and Laplacian

densities. Using the random relatedness generator we generate three multi-task

learning datasets. DS1 consists of two tasks T1 and T2, having three and two

labels, respectively. They are plotted in Figure reffig:mtsynthetic.a. We can

see that the red class of T1 is locally correlated with the light blue class of T2;
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similarly, the green class is locally correlated with the violet. However the dark

blue class of T1 which is locally correlated with the violet in the upper part of

its density and with the light blue in the lower part. The second dataset DS2 is

shown in Figure reffig:mtsynthetic.b with tasks being also locally correlated. For

both DS1 and DS2 we generate 100 examples per class.

We increase both the number of tasks and labels in datasetDS3 (fee Fig. 5.1.1);

it consists of five tasks each having six labels, local relatedness patterns are gen-

erated randomly using the same method 1 , 25 examples are generated per each

class in each task. Finally, random noise is added to the labels of all tasks as

follows. For a certain example with label y we place a discrete probability dis-

tribution over the label set with 90% of mass concentrated over y and the rest

distributed equally over the other labels. Then we sample the noisy label from

this distribution. It should be noted that we generate tasks with different number

of class labels on purpose, in order to test the proposed methods on configurations

not addressed by prior-art methods.

5.1.2 MNIST.

We use this dataset adapted to the multi-task setting because it was used in

Novi Quadrianto [2010] and we follow their protocol. For the experiments, we

consider multi-task learning problems with a number of tasks equal to 5, 7 or 10.

We consider digits {6, 7, 8, 9, 0}, {4, 5, 6, 7, 8, 9, 0} and {1, 2, 3, 4, 5, 6, 7, 8, 9, 0} for

the 5-task, 7-task and 10-task problems, respectively. Every task is a binary

classification task. For instance, in the 5-task problem, the first task has binary

labels {+1,−1}, where label +1 means digit 6 and label −1 means digit 7, 8, 9

or 0; for the second task, label +1 means digit 9 and label −1 means other digits;

and so on for other tasks. Similar one-against-all setting is also used for 7-task

and 10-task problems. We use a small subset of the whole sample as training set

1We do not show DS3’s tasks superposed in a single plot because of low readability of a
plot with 30 classes.
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(a) A correlation pattern from beta-cubic
distributions

(b) A correlation pattern from beta-
quadratic distributions

(c) A correlation pattern from gaussian-
cubic distributions

(d) A correlation pattern from gaussian-
exponential distributions

(e) A correlation pattern from gaussian-
quadratic distributions

(f) A correlation pattern from laplace-cubic
distributions

(g) A correlation pattern from laplace-
linear distributions

(h) A correlation pattern from laplace-
quadratic distributions

Figure 5.1: Tasks Relatedness Patterns for synthetic 2D data
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(a) Two related multi-class tasks (b) Two related multi-class tasks

Figure 5.2: Two classification problems Dataset1 and Dataset2, each with two
multi-class tasks.

to simulate the situation when we only have limited number of labeled examples.

In the experiments, we draw 5 learning sets whose size is recalled in the tables

according to the choices done in Novi Quadrianto [2010]. We present the average

accuracy results over the 5-random runs where the accuracy is estimated on the

fixed test set defined by the dataset creators.

5.1.3 Enron.

Lawsuits involving companies and/or individuals have huge collections of docu-

ments varying from hard copy official documents to emails. A group of lawyers

are engaged to mine those collections of millions of documents in order to decide

which ones are responsive for a certain lawsuit. Case mining is costly, time con-

suming and critical since a single document might have an impact on the lawsuit.

This kind of legal document collections is not easily available and even if they

were, they would require considerable annotation efforts due to their huge size.

To the best of our knowledge the Enron dataset1 is the most known dataset of

this kind and it is widely used by the machine learning community McCallum

1http://www.cs.cmu.edu/~enron/
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(a) Task1 (b) Task2

(c) Task3 (d) Task4

(e) Task5

Figure 5.3: DS3 consists of 5 related classification tasks each of which with 6
classes
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et al. [2007]; Shetty [2005] and Bekkerman et al. [2004]. It contains all e-mails

sent and received by some 150 accounts of the top management of Enron and

spanning a period of several years

Annotations of the Enron dataset come from two different sources. The first is

from the Department Of Justice of the United States DOJ1, which has published

a list of responsive emails used in the trials against the two CEO’s of Enron. This

set along with a manually annotated non-responsive emails constitute a binary

classification task, Responsive Vs. Non-responsive, with total of 372 emails. The

second annotated set comes from students of Berkeley University. Emails in this

set are annotated by topic, for an average of 250 emails per topic. Five topics are

used in our experiments: Business, Legal, Influence, Arrangement and Personal.

Since the two sets are small, and they share a common knowledge (ex. a personal

email is not likely to be a responsive email), so learning them simultaneously

would be advantageous. It should be noted, that those two sets are disjoint, i.e.,

there are no examples provided with both annotations.

We used the textual features of Enron dataset along with the social features

generated from the underlying social network (for more details, see Hovelynck

and Chidlovskii [2010]. The main task is to discover responsive documents. We

will try to improve performance on this task by considering the multi-task setting

by also considering tasks from the topic annotated set: Legal Vs. Personal and

Business Vs. Arrangement.

5.1.4 Spam Filtering

This dataset was used for the ECML/PKDD 2006 discovery challenge. It contains

email inboxes of 15 users. Each inbox has 400 spam/ham emails. The necessity

of multi-task and thus the gain of using its methods increase when we do not have

enough data for each task,to simulate this case, we use 40 emails for training per

each inbox, the rest are used for testing.

1http://www.usdoj.gov/enron/
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Emails are encoded by standard bag-of-word vector representation. We con-

sider each user as a task, the tasks are related because they all aim to filter out

spam emails but they are not identical because each user has different preferences

(a user might consider a certain email as spam whereas another user might not).

5.2 Empirical Studies of MTAA with 2T-Stumps

First, we describe in detail the datasets used, the preprocessing applied on them.

Second, we compare the three weak learners WL-Best-K, WL-Best-per-Task-K

and WL-Sto-Best-K. Third, we study the influence of the number of boosting

rounds on our algorithms MTAA. Last, we report our experimental comparisons

between MTAA with the closest prior art multi-task algorithm MTL Novi Quadrianto

[2010]. Last, we give the performance of MTAA on the ENRON dataset.

5.2.1 Weak Learners Comparison

First, we have done experiments to compare the weak learners independently of

the boosting algorithms. For this, we have considered the datasets MNIST-5,

MNIST-7 and MNIST-10 and a fixed distribution over instances. Here, we only

report our conclusions:

WL-Best-K is the simplest weak learner. When the parameter value K is not

large enough, WL-Best-K may not find an optimal 2T-stump. When the

number of tasks increases, one may need a large value of K. For instance,

K = 30 is enough for MNIST-5 while K = 100 is required for MNIST-10.

This is because a greater value of K is necessary for every task to appear in

a candidate root stump. Nevertheless, the output 2T-stump is always not

far from optimal;

WL-Best-per-Task-K find the optimal 2T-stump in a large number of cases even

with small values of the parameter K (the number of optimal root stumps
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Tasks Train (Test) MTAA-30Best MTAA-3Best-per-task MTAA-30StoBest
1/-1 100 (10000) 94.15± 0.98 94.73± 0.88 93.95± 1.64
2/-2 100 (10000) 86.45± 1.55 86.01± 1.85 86.52± 1.08
3/-3 100 (10000) 84.60± 1.47 86.71± 1.62 86.94± 0.97
4/-4 100 (10000) 88.02± 1.25 86.19± 1.11 85.79± 1.32
5/-5 100 (10000) 83.36± 1.05 81.84± 1.47 84.01± 1.89
6/-6 100 (10000) 92.86± 0.86 92.92± 1.22 93.21± 1.96
7/-7 100 (10000) 91.98± 0.91 91.62± 1.69 90.11± 0.98
8/-8 100 (10000) 82.66± 1.74 80.73± 1.78 83.98± 1.67
9/-9 100 (10000) 84.27± 1.49 84.80± 1.58 84.56± 0.73
0/-0 300 (10000) 96.44± 0.46 96.55± 0.39 95.78± 0.37
Avg 88.48 88.21 88.49

Table 5.1: Comparison on the dataset MNIST-10 of MTAA with the weak learners
WL-Best-K with K = 30, WL-Best-per-Task-K with K = 3, and WL-Sto-Best-K

with K = 30.

per task). For instance K = 5 gives optimal results for all MNIST datasets.

WL-Sto-Best-K allows to introduce diversity in the choice of the root stumps,

but with small values of K (the number of root stumps drawn randomly), it

fails to output an optimal MTAA. Moreover, the output 2T-stump has often

a lower score than the MTAA output by WL-Best-K for the same parameter

value K.

WL-Best-per-Task-K is the more robust w.r.t. the choice of the parameter

value. But WL-Best-K is the simplest and it often output good hypotheses. Thus,

we also compare the weak learners when used in the MTAA algorithm. We give

experimental results on the MNIST-10 dataset in Table 5.1. They show no sig-

nificant differences between the weak learners when used in MTAA. For instance

WL-Best-K with K = 30 gives good results when used in MTAA although non

optimal as an independent weak learner.
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Tasks Train (Test) T = 100 T = 200 T = 500 T = 1000
1/-1 100 (10000) 93.75± 1.31 94.15± 1.42 96.43± 0.78 96.24± 0.88
2/-2 100 (10000) 86.21± 1.65 86.45± 1.48 85.33± 0.54 84.52± 1.01
3/-3 100 (10000) 81.50± 2.31 84.60± 1.03 85.09± 0.89 85.39± 0.95
4/-4 100 (10000) 87.45± 2.61 88.02± 1.15 88.24± 1.25 88.75± 1.21
5/-5 100 (10000) 81.33± 1.11 83.36± 1.15 81.04± 2.46 82.2± 1.76
6/-6 100 (10000) 92.29± 2.86 92.86± 1.16 94.06± 1.25 94.14± 1.32
7/-7 100 (10000) 88.67± 1.32 91.98± 0.93 90.27± 0.64 90.29± 1.03
8/-8 100 (10000) 81.88± 2.2 82.66± 1.81 85.1± 0.97 85.13± 1.61
9/-9 100 (10000) 83.1± 1.56 84.27± 1.29 86.49± 1.82 86.47± 0.68
0/-0 300 (10000) 94.98± 1.01 96.44± 0.66 95.58± 0.41 95.57± 0.38
Avg 87.12 88.48 88.76 88.87

Table 5.2: Experimental results on the dataset MNIST-10 with MTAA when varying
the number T of boosting iterations. The weak learner used is WL-Best-K with
K = 30

5.2.2 Varying the Number of Boosting Iterations

We consider our algorithm MTAA with WL-Best-K chosen as weak learner with a

parameter value chosen to be 30. We consider the MNIST-10 dataset and we let

vary the number of boosting iterations. The experimental results are given in

Table 5.2. They show that the accuracy increases with the number of boosting

iterations as announced in Section 4.7.1.

5.2.3 Comparison between MTAA and MTL

We compare MTAA with MTL defined in Novi Quadrianto [2010] on the MNIST

datasets. We also compare MTAA with (single-task) Adaboost. For MTL, we take

the results from the paper. For Adaboost, we fix the number of boosting iterations

to be T = 100. For MTAA, we fix the number of boosting iterations to be T = 500

and, as before we choose the weak learner WL-Best-K with K set to 30. For the

initial distribution of Adaboost, we balance the probability mass between classes,

which means that the probability of sampling an instance from a certain class is

the same across classes. For MTAA, since we learn many tasks simultaneously, the

probability mass is balanced between each pair (task, class).

The experimental results are presented in Table 5.3. Statistical significant

improvements (according to t-test with α = 0.05) are shown in bold face and
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they show that MTAA outperforms both Adaboost and MTL. It is also worth noting

that the standard deviation of accuracy results is lower for MTAA than for MTL,

which shows the stability of boosting methods across the different runs.

5.2.4 MTAA on the ENRON Dataset

We consider in this paper the Enron dataset because it is a real world large

scale dataset and it is associated with difficult learning tasks because the number

of annotated examples is low. The different learning tasks have been defined

independently by different communities. We consider three tasks: the case mining

task, i.e. responsive Vs. non-responsive; a topic task legal Vs. personal; and

another topic task business Vs. arrangement). The number of tasks is small but

the tasks are difficult enough to study the performance of MTAA on this 3-task

learning problem.

Since there are no available multi-task results on the Enron dataset, we com-

pare MTAA with (single-task) Adaboost. No test set is available thus accuracy is

estimated over 3-runs of 5-fold cross validation. For MTAA, the number of boosting

iterations is set to 300 while the number of boosting iterations for Adaboost is

set to 100. The weak learner used in MTAA is again WL-Best-K with K set to

9. The experimental results are shown in Table 5.8 in which statistical signifi-

cant improvements are shown in bold face. The results on Enron emphasizes the

claimed advantage behind learning multiple related tasks together.

5.3 Experiments with MT-DTs

In this section we present the results of the experiments conducted on MT-DTs.

We first report the results of simple MT-DTs (without ensemble methods), then

we report experimental results on boosted trees using MT-Adaboost.
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Tasks Train (Test) Adaboost MTL MTAA

MNIST-3
6/-6 25 (4949) 89.84± 0.37 83.86± 9.51 91.56± 3.21
7/-7 25 (4949) 85.25± 2.35 72.84± 15.77 83.35± 1.22
8/-8 25 (4949) 81.73± 3.21 66.77± 9.43 84.11± 2.02
9/-9 25 (4949) 73.215± 6.51 67.26± 12.65 76.85± 2.11
0/-0 150 (4949) 96.43± 0.28 96.60± 1.64 97.29± 0.62
Avg - 85.29 77.74 86.63

MNIST-5
4/-4 70 (6823) 86.11± 1.071 73.49± 6.77 87.52± 1.46
5/-5 70 (6823) 83.99± 2.92 70.10± 4.61 86.26± 1.03
6/-6 70 (6823) 92.23± 1.01 87.21± 2.77 93.02± 1.41
7/-7 70 (6823) 87.97± 0.0.51 84.02± 3.69 90.05± 2.01
8/-8 70 (6823) 88.32± 0.13 76.97± 5.12 87.63± 1.38
9/-9 70 (6823) 78.09± 1.33 65.74± 10.15 80.31± 1.38
0/-0 210 (6823) 96.00± 0.81 96.56± 1.67 96.12± 0.61
Avg - 87.53 79.16 88.70

MNIST-10
1/-1 100 (10000) 94.62± 1.23 96.80± 1.91 96.43± 0.78
2/-2 100 (10000) 85.72± 0.58 69.95± 2.68 85.33± 0.54
3/-3 100 (10000) 85.71± 0.99 74.18± 5.54 85.09± 0.89
4/-4 100 (10000) 88.31± 0.64 71.76± 5.47 88.24± 1.25
5/-5 100 (10000) 82.34± 2.11 57.26± 2.72 81.04± 2.46
6/-6 100 (10000) 91.28± 0.4 80.54± 4.53 94.06± 1.25
7/-7 100 (10000) 90.20± 0.50 77.18± 9.43 90.27± 0.64
8/-8 100 (10000) 81.66± 2.13 65.85± 2.50 85.1± 0.97
9/-9 100 (10000) 81.42± 0.38 65.38± 6.09 86.49± 1.82
0/-0 300 (10000) 96.85± 0.35 97.81± 1.01 95.58± 0.41
Avg - 87.77 75.67 88.76

Table 5.3: Comparison on the MNIST datasets of (single-task) Adaboost, MTL
and MTAA.
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Tasks Train (Test) Adaboost MTAA

Responsive Vs. 299 (74) 90.49± 0.90 90.99± 2.74
NonResponsive

Legal Vs. 265 (66) 83.90± 0.75 84.44± 4.90
Personal

Business Vs. 615 (153) 71.69± 1.5 74.32± 3.54
Arrangement

Avg 82.03 83.25

Table 5.4: Comparison on the Enron dataset of (single-task) Adaboost and MTAA

5.3.1 Results on Trees

In this section we show experimental results of MT-DTs learned either by C4.5

or by random forests while using IGJ , IGU or IGM criteria. The results on

MT-DTs are compared to single task learning algorithms: C4.5, Adaboost.MH

with stumps, and to the MTL algorithms MTAA with 2T-stumps.

In all experiments we report average results of 5 random shuffles of 5-fold

cross validation, where each run consists of training on four folds and testing on

the remaining one. In order to avoid large C4.5 trees, the algorithm stops at a

certain branch when 80% of the examples are from the same class label.

Tables 5.5, 5.6 and 5.7 report the evaluation results the three synthetic datasets:

DS1,DS2 and DS3. We note that MT-DT with IGM brings a significant improve-

ment over C4.5. While IGJ and IGU behave comparably to C4.5.

For single task C4.5 and MT-DT we did not use boosting, because the synthetic

data sets are small dimensional (2D), thus, it was not necessary to learn multiple

trees to fit the data. However, for weaker classifiers: stumps, random forests,

2T-stumps, and multi-task random forests we used boosting or random forests

accordingly. The size of the random forests was to 20 by CV. However, the

number of boosting iterations for stump based methods was set to 10 by CV.

The parameter N-Best was set to 2 × N , where N is the number of tasks and

N-Best-Per-Task was set to 2.

The results of experiments on the Enron data set are reported in Table 5.8.
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Single Task Algorithms

AMH M1C45 RF

T1 71.86± 4.45 90.75± 0.08 87.88± 0.45

T2 67.27± 5.96 83.74± 0.55 87.64± 0.23

Avg 69.57 87.24 87.76

Multi Task Learning with 2T-stumps and MT-DTs

MTMH NB MTMHN NBPT MTM1 IGJ MTM1 IGU MT IGM

T1 90.17± 0.17 90.51± 0.07 87.97± 0.80 89.88± 0.06 90.77± 0.07

T2 88.70± 0.77 88.57± 0.64 88.45± 1.56 88.58± 1.50 88.371± 0.26

Avg 89.44 89.54 88.21 89.23 89.57

MT-DTs with Random Forest

MTRF IGJ MTRF IGU MTRF IGM

T1 88.33± 0.46 87.59± 0.61 87.75± 0.43
T2 88.14± 0.53 88.61± 0.40 88.20± 0.37

Avg 88.24 88.10 87.97

Table 5.5: Comparison between all single task and multi-task algorithms on the first DS1 synthetic dataset
in Fig. 5.1.1-a. MH: AdaboostMH, M1C45: Adaboost.M1 /w C45 trees, RF: random forest, MTMH NB:
MT-Adaboost.MH /w N-best 2T-stump, MTMH NBPT: MT-Adaboost.MH /w N-best per task, MTM1 IGx:
MT-Adaboost with MT-DT and IGx as criterion.

Single Task Algorithms

AMH M1C45 RF

T1 67.00± 4.59 86.22± 0.44 85.16± 0.46

T2 71.00± 4.32 89.60± 0.16 89.00± 0.54

Avg 68.98 87.91 87.07

Multi Task Learning with 2T-stumps and MT-DTs

MTMH NB MTMHN NBPT MTM1 IGJ MTM1 IGU MT IGM

T1 87.39± 0.11 87.08± 0.57 86.12± 0.05 86.078± 0.04 87.14± 0.07

T2 88.82± 0.10 88.94± 0.18 89.07± 0.33 89.26± 0.38 89.36± 0.30

Avg 88.10 88.01 87.59 87.67 88.25

MT-DTs with Random Forest

MTRF IGJ MTRF IGU MTRF IGM

T1 85.23± 0.43 85.27± 0.47 85.93± 0.31
T2 87.22± 0.21 86.96± 0.42 86.93± 0.27

Avg 86.23 86.10 86.43

Table 5.6: Comparison between all single task and multi-task algorithms on the second DS2 synthetic
dataset in Fig. 5.1.1-a. MH: AdaboostMH, M1C45: Adaboost.M1 /w C45 trees, RF: random forest, MTMH
NB: MT-Adaboost.MH /w N-best 2T-stump, MTMH NBPT: MT-Adaboost.MH /w N-best per task, MTM1
IGx: MT-Adaboost with MT-DT and IGx as criterion.
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Single Task Algorithms

AMH M1C45 RF

T1 62.72± 3.05 78.63± 1.10 78.90± 0.93
T2 67.14± 4.15 78.02± 0.51 75.58± 1.14
T3 62.42± 4.50 76.91± 0.36 76.34± 1.58
T4 48.83± 3.44 76.29± 0.94 75.83± 1.84
T5 68.35± 1.67 76.10± 0.91 77.42± 2.65

Avg 61.89 77.19 76.82

Multi Task Learning with 2T-stumps and MT-DTs

MTMH NB MTMHN NBPT MTM1 IGJ MTM1 IGU MT IGM

T1 84.37± 0.28 74.15± 4.26 82.28± 0.87 81.23± 0.47 83.33± 1.15
T2 83.49± 0.71 68.43± 4.53 79.00± 0.39 77.41± 0.26 79.96± 0.85
T3 82.77± 0.59 76.39± 5.09 80.02± 0.66 77.71± 0.91 80.72± 0.80
T4 83.36± 0.23 76.43± 4.58 78.78± 0.64 77.23± 0.89 79.20± 1.41
T5 17.20± 1.07 59.87± 1.52 77.24± 1.02 76.09± 0.16 78.92± 0.53

Avg 70.240 71.06 79.46 77.93 80.43

MT-DTs with Random Forest

MTRF IGJ MTRF IGU MTRF IGM

T1 80.51± 1.22 80.81± 0.74 80.84± 1.35
T2 80.51± 1.15 77.53± 1.32 78.53± 1.71
T3 78.16± 0.49 77.20± 1.35 79.30± 1.52
T4 79.89± 1.54 79.72± 1.41 79.92± 1.53
T5 77.61± 0.88 77.52± 1.24 77.74± 1.15

Avg 79.34 78.55 79.27

Table 5.7: Comparison between all single task and multi-task algorithms on the third DS3 synthetic dataset
in Fig. 5.1.1-a. MH: AdaboostMH, M1C45: Adaboost.M1 /w C45 trees, RF: random forest, MTMH NB:
MT-Adaboost.MH /w N-best 2T-stump, MTMH NBPT: MT-Adaboost.MH /w N-best per task, MTM1 IGx:
MT-Adaboost with MT-DT and IGx as criterion.
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Tasks Train (Test) C4.5 IGJ IGU IGM

Res Vs. 299 (74) 80.32± 1.87 80.59± 2.23 80.01± 3.11 81.81±1.16

NonRes

5 Topics 265 (66) 43.12± 1.03 43.65± 1.77 44.12± 0.42 48.11±0.023

Avg 61.72 62.12 62.066 64.96

Table 5.8: Average classification accuracy on Enron tasks.

Tasks Train (Test) C4.5 IGJ IGU IGM

User-1 320 (80) 86.45± 1.23 86.19± 1.14 86.00± 1.88 87.65±3.42

User-2 320 (80) 85.13± 2.16 85.53± 2.22 85.07± 3.16 88.93±3.44

User-3 320 (80) 88.03± 2.11 88.22± 2.56 88.52±1.33 88.19± 2.51

Avg 86.54 86.65 86.53 88.26

Table 5.9: Average classification accuracy on three ECML’06 user inboxes.

It shows a superiority of IGM over other MT-DT criteria in accuracy values.

However, learning tasks simultaneously does not bring the same improvement to

all tasks, some tasks tend to benefit more from multi-task learning than others.

Similarly, the results on ECML’06 data (see Table 5.9) show that more difficult

tasks (tasks with a lower accuracy) have a larger margin of improvement. In

other words, the transfer of knowledge between tasks is not symmetric, easier

tasks provide more knowledge to the more difficult ones.

5.3.2 Results on Boosted Trees

In the previous section we experimentally validated the advantage of learning

related tasks simultaneously, by using multi-task information gain criteria, in

particular IGM . In this section we compare boosted MT-DT’s to the boosted C4.5

trees. We use Adaboost.M1 Schapire and Singer [1999] and MT-Adaboost (see

algorithm 5) as boosters for C4.5 and for MT-DT respectively. Both algorithms

have only one parameter, the number of boosting iterations which we set equally

to 20. Table 5.10 reports the average values of classification accuracy over three

random runs for Enron dataset. With boosted trees we observe an accuracy
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Tasks Train (Test) Adaboost MT-Adaboost MT-Adaboost MT-Adaboost
C4.5 IGJ IGU IGM

Responsive Vs. 299 (74) 85.10± 1.21 84.66± 2.15 84.52± 1.2 86.01±1.53

NonResponsive
5 Topics 265 (66) 51.34± 0.43 52.89± 0.87 52.17± 0.74 57.11±0.02

Avg 68.22 68.78 68.35 71.65

Table 5.10: Average classification accuracy of boosted trees on Enron tasks.

improvement similar to simple trees. Namely, MT-Adaboost+MT-DT is signif-

icantly better than Adaboost+C4.5; also the most difficult tasks enjoy a larger

margin of improvement.

5.4 Summary

In this chapter, we presented the data sets we used to conduct our experimental

studies. We then reported the results of the experiments we have done on our

algorithms. We compared our weak learners for 2T-stump, we also compared

different IG criteria for MT-DT. Comparisons with single task boosting algorithms

were done on synthetic data sets as well as well as large scale email data sets, they

showed that our approach outperforms single task learning. On MNIST character

recognition data set we compared our algorithm with the work of Novi Quadrianto

[2010]. MTL works in the literature do not address tasks with different number

of class labels. We hope in the future we will be able to compare our approach

with more algorithms from the literature.
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Chapter 6

Perspective and Conclusion

This thesis addressed the subject of multi-task learning in order to provide an

approach for the configuration in which the tasks do not share neither their

labels nor their examples. We wanted to cope with the problem without making

prior assumptions about task relatedness patterns. Our contribution lies in the

ensemble learning framework. Two learning algorithms were proposed in this

framework, both consists of devising novel multi-task weak classifier along with

its learning algorithms and adapt ensemble learning algorithms to fit multi-task

setting.

First, we introduced 2T-stumps as weak classifiers that abstain and we defined

weak learners. We adapted Adaboost and defined MTAA as a multi-task learning

algorithm. We gave empirical evidence that MTAA achieves good results and allows

to capture relations between tasks without explicit priors. We think that more

empirical validation and more theoretical work is needed in the case of very large

number of tasks. Also, we should relate our work on Adaboost for multi-task

learning with the recent work of Mukherjee and Schapire Mukherjee and Schapire

[2010] on multi class boosting.

We then, proposed an adaptation of decision tree learning to the multi-task

setting, with the following important contributions. First, we developed multi-

task decision trees to deal with multi-class tasks with no label correspondence.

The criterion to learn the decision rules makes use of the data from several tasks
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at each step of the decision tree learning, thus enabling to capture any degree of

relatedness between the tasks. We then featured an important property of infor-

mation gain rule when working with multiple tasks. This enabled us derive the

new information gain criterion for learning decision trees in the multi-task setting.

We also modified MT-Adaboost to cope with multi-task multi-class problems.

We finally validated the proposed methods by series of experiments on related

tasks synthetically generated from Bayesian networks, in addition to real world

large scale data sets.

We are currently conducting experiments on web pages categorization. We

have extracted two sets of annotated web pages, one set is annotated by Ya-

hoo! web directory categories and the other by DMOZ web directory categories.

Each set constitutes a task related but not identical to the other one. Our ex-

tracted data sets are available on http://mldata.org/repository/tags/data/

web-pages/.

In a future work and on the algorithmic level, we aim to address two crucial

questions for MTL. They are both about online learning. The first is how to

integrate task-level online learning in our algorithms. In other words, the ability of

the algorithm to incorporate new tasks into its learning process without the need

to reconstruct the model from scratch. The second question concerns example-

level online learning: In the case of very large or temporal data, it would be more

suitable if the algorithm has the ability to incorporate new examples as soon as

they are obtained instead of limiting the learning on a batch of training examples.
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