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Analyse et modélisation du
processus de formation de prix à

travers les échelles. Market Impact

Résumé :

Le développement des marchés électroniques organisés induit une pres-
sion constante sur la recherche académique en finance. L’impact sur le prix
d’une transaction boursière portant sur une grande quantité d’actions sur une
période courte est un sujet central. Contrôler et surveiller l’impact sur le prix
est d’un grand intérêt pour les praticiens, sa modélisation est ainsi devenue
un point central de la recherche quantitative de la finance. Historiquement, le
calcul stochastique s’est progressivement imposé en finance, sous l’hypothèse
implicite que les prix des actifs satisfont à des dynamiques diffusives. Mais ces
hypothèses ne tiennent pas au niveau de la “formation des prix”, c’est-à-dire
lorsque l’on se place dans les échelles fines des participants de marché. Des
nouvelles techniques mathématiques issues de la statistique des processus
ponctuels s’imposent donc progressivement. Les observables (prix traité, prix
milieu) apparaissent comme des événements se réalisant sur un réseau discret,
le carnet d’ordre, et ceci à des échelles de temps très courtes (quelques dizaines
de millisecondes). L’approche des prix vus comme des diffusions browniennes
satisfaisant à des conditions d’équilibre devient plutôt une description macro-
scopique de phénomènes complexes issus de la formation des prix.
Dans un premier chapitre, nous passons en revue les propriétés des marchés
électroniques. Nous rappelons la limite des modèles diffusifs et introduisons
les processus de Hawkes. En particulier, nous faisons un compte rendu de la
recherche concernant le maket impact et nous présentons les avancées de cette
thèse.
Dans une seconde partie, nous introduisons un nouveau modèle d’impact à
temps continu et espace discret en utilisant les processus de Hawkes. Nous
montrons que ce modèle tient compte de la microstructure des marchés et est
capable de reproduire des résultats empiriques récents comme la concavité de
l’impact temporaire.
Dans le troisième chapitre, nous étudions l’impact d’un grand volume d’ac-
tion sur le processus de formation des prix à l’échelle journalière et à une plus
grande échelle (plusieurs jours après l’exécution). Par ailleurs, nous utilisons
notre modèle pour mettre en avant des nouveaux faits stylisés découverts dans
notre base de données.



Dans une quatrième partie, nous nous intéressons à une méthode non-
paramétrique d’estimation pour un processus de Hawkes unidimensionnel.
Cette méthode repose sur le lien entre la fonction d’auto-covariance et le noyau
du processus de Hawkes. En particulier, nous étudions les performances de cet
estimateur dans le sens de l’erreur quadratique sur les espaces de Sobolev et sur
une certaine classe contenant des fonctions “très” lisses.

Mots-clefs : processus ponctuel, processus de Hawkes, processus statio-
naire, market impact, loi en racine carrée, estimation non-paramétrique, dis-
crétisation des processus stochastiques.



Analysis and modeling of price
formation process across the

scales. Market Impact

Summary:

The development of organized electronic markets induces a constant pres-
sure on academic research in finance. A central issue is the market impact, i.e.
the impact on the price of a transaction involving a large amount of shares over
a short period of time. Monitoring and controlling the market impact is of great
interest for practitioners; its modeling and has thus become a central point of
quantitative finance research.

Historically, stochastic calculus gradually imposed in finance, under the
assumption that the price satisfies a diffusive dynamic. But this assumption is
not appropriate at the level of “price formation”, i.e. when looking at the fine
scales of market participants, and new mathematical techniques are needed
as the point processes. The price (last trade, mid-price) appears as events on a
discrete network, the order book, at very short time scales (milliseconds). The
Brownien motion becomes rather a macroscopic description of the complex
price formation process.

In the first chapter, we review the properties of electronic markets. We recall
the limit of diffusive models and introduce the Hawkes processes. In particular,
we make a review of the market impact research and present this thesis ad-
vanced.

In the second part, we introduce a new model for market impact model at
continuous time and living on a discrete space using process Hawkes. We show
that this model that takes into account the market microstructure and it is able
to reproduce recent empirical results as the concavity of the temporary impact.

In the third chapter, we investigate the impact of large orders on the price
formation process at intraday scale and at a larger scale (several days after the
meta-order execution). Besides, we use our model to discuss stylized facts dis-
covered in the database.

In the fourth part, we focus on the non-parametric estimation for univariate
Hawkes processes. Our method relies on the link between the auto-covariance
function and the kernel process. In particular, we study the performance of the



estimator in squared error loss over Sobolev spaces and over a certain class
containing “very” smooth functions.

Keywords: point processes, Hawkes processes, stationary processes, market
impact, square-root law, non-parametric estimation, discretization of stochastic
processes.
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2 Chapter 1. Context and thesis results

1.1 PRICE FORMATION PROCESS: CONTINUOUS DOUBLE AUCTION

IN ELECTRONIC MARKETS

Technological innovation has completely transformed the financial market.
Nearly half of the world’s stock exchanges are now organized in electronic mar-
kets such as NYSE (New York Stock Exchange), LSE (London Stock Exchange),
TSE (Tokyo Stock Exchange), etc. which have largely replaced the traditional
floor-based trading. In these markets, the price is formed according to the con-
tinuous double auction process. The auction is called “continuous” because
market participants (traders or agents) can submit or remove their preferences
(or orders) at any moment in a given daily time window. The auction is called
“double” because traders can both buy and sell a particular asset (or share). As
in a conventional auction, a trader informs the rest of the participants of his
preference for a particular asset. If he wants to buy, he announces to the com-
munity the price he is willing to pay for a given quantity. This price is called his
bid price. Similarly, if he wants to sell, he announces to the community the price
he is willing to accept for a given quantity. This price is called his ask price. When
two market participants agree on a price, a transaction (or trade) occurs. Obvi-
ously, if two traders agree on a price, but one intends to buy a quantity Q1 of
shares and the other is willing to sell a quantity Q2 of shares, the transaction oc-
curs for only min(Q1,Q2) shares. If a trader has a bid price which is higher than
another trader’s ask price (which is very unlikely to happen), a trade will occur
at some price they both agree on and both their orders vanish from the market.
Let us point out that at any moment a trader can withdraw his proposal. If no
further agreements can be made, the traders wait for someone to engage with
them. Such a mechanism naturally divides the participants in two separate cat-
egories: buyers (or bid side) and sellers (or ask side). Naturally, buyers want to
purchase shares at prices smaller than the ones proposed by sellers. This allows
to define the best bid price and the best ask price: the maximum buy price and
respectively the minimum sell price. The difference between the best ask price
and the best bid price is then strictly greater than zero and is called the bid-ask
spread. The average between the best ask price and the best bid price is called
the mid-price.

The limit order book

In an electronic market, all the information concerning the traders’ prefer-
ences is handled electronically. The exchange keeps all participants up to date
with market conditions through the Limit Order Book (LOB). When a trader
wants to buy a quantity of shares q at the maximum price P , he sends what
is called a buy limit order of quantity q and price P . Similarly, when a trader
wants to sell a quantity of shares q at the minimum price P , he sends what is
called a sell limit order of quantity q and price P . All traders’ preferences put
together form the Limit Order Book. Any trader authenticated in the electronic
market has access to the LOB. He can see, for a given price P , the total volume
Q available for trading at that price level. However, he does not have access to
the identities of the traders behind those orders or to how many different limit
orders compose the total available volume Q. If a new limit order of quantity q0

arrives at the existing price P , it gets added to the LOB and the available volume
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Figure 1.1 – Example of limit order book. On the left there are the buy orders (bid side), the
best bid represents the highest buy price. On the right there are the sell orders (ask side),
the best ask represents the highest buy price. The bid-ask spread the difference between
the best ask price and the best bid price.

at that price becomes Q + q0. At any moment, a trader can withdraw his limit
order or a part of it through what is called a cancel order; his limit order is then
removed from the LOB.

The tick

A trader who decides to send a limit order does not have complete freedom
for the choice of the price. Indeed, the electronic market fixes a price grid on
which traders can place their orders. The grid step is the smallest difference be-
tween two prices and it is called tick. In some markets, the tick value depends
on the price. For example, stocks trading on the Euronext in Paris with price
smaller than 9.999€ have a tick value of 0.001€, while all stocks above 10€ have
a tick value equal to 0.005€.

Market Orders and Order Matching Algorithm

In addition to placing limit orders and cancel orders, there are other ways
traders can interact with the LOB. More precisely, at any moment, a participant
can decide to buy (or sell) a certain quantity of shares regardless of their price.
This is called a market order. A market order generates immediate transactions
at the best available prices: the entire number of shares are bought (or sold),
even if it means matching several limit orders in order to satisfy it. For example,
if the volume available at the best ask is not enough to fill an ask market order,
the market order is filled with part of the volume existing at the second best ask
price or even third best ask price and so on.

It is interesting to note that traders sometimes choose to send a buy limit
order at a price equal to or higher than the best ask, instead of a buy market
order (likewise, they place sell limit orders at prices equal to or less than the
best bid, instead of sell market orders). In this case, only ask limit orders whose
prices are equal to or less than the buy limit price are executed (similarly, only
bid limit orders whose prices are equal to or higher than the sell limit price
are filled). If any volume of the buy (sell) limit order is left, it will be placed on
the LOB becoming the new best bid (ask). From outside, it is nearly impossible
to distinguish these kinds of orders from market orders. This type of order is
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called marketable limit order. Since an immediate transaction occurs after a
marketable limit order, the two types of orders are mixed up and called market
order.

The dynamic of the LOB resembles a queuing system where limit orders wait
to be executed against market orders or to be canceled. Most of the markets
respect the FIFO rule: First In First Out. This means that there is a time priority:
earlier orders are executed before later orders. To clarify, even if several traders
have similar bid or ask prices, the one who made his preference known first will
have his orders executed before the others. When a market order needs more
than one limit order to be entirely filled, the oldest limit orders are executed first.
For example, suppose that at the best ask price of 25,05€, there are 200 shares
placed by trader A and 300 shares submitted by trader B after A. Now suppose
a buy market order of 300 shares is submitted to the limit order book. The limit
order for 200 shares by trader A will be executed first, because it is at the front of
the queue at the best ask. Then, 100 shares of the order with 300 total shares by
trader B will be traded, since it was second in the queue. 200 shares of the 300
share order remain in the order book at the price 25,05€.

If the market order’s size is greater than the available volume at the best
price, the surplus will be executed at worse price levels until it is completed.
More precisely, once all the available volume at the best price is consumed by a
market order, the matching continues with the oldest order of the immediately
higher price, which has become the new best price.

Note that a cancel order which removes only a part of an existing limit order
maintains the time priority of the original order and it can only lower its size.
This is reasonable because, if size increases were allowed, traders with orders
at the highest time priority for a price level could perpetually increase the size
of their order, preventing others from being able to transact stock using limit
orders at that price level.

Let us remark that this version of the Order Matching Algorithm is adopted
by most of the electronic markets. There are few exceptions - let us mention the
Chicago Mercantile Exchange where orders at same price are executed propor-
tionally to their quantity.

Now that we have presented the most important mechanisms of the price
formation process, we discuss the notion of market impact.

The concept of market impact

Without loss of generality, we assume in this section that the share price at
time t is the mid-price (i.e. the average between the best ask price and the best
bid price), noted pt . Suppose that a market participant wants to buy a quantity
Q of shares. Therefore, he sends a market order of volume Q at time t0 . If Q is
lower than the volume available at the best ask, the price will not change after
the transaction. If the volume Q is greater or equal than the volume available
at the best ask, the price at time t0+ will increase by at least a half tick. Thus,
on average, a buy order pushes the price up. Similarly, on average, a sell order
drives the price down. This price change can be explained by standard eco-
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nomic theory: an increase in demand should increase prices, while an increase
in supply should decrease prices. Accordingly, a transaction has a direct impact
on the market price of the asset. This last effect is known as market impact. Note
that a limit order or even a cancel order could have a market impact, since these
kinds of orders can also change the price.

Liquidity, meta-orders and optimal trading

The liquidity of a market, as well as the market impact, is another term
linked to the transaction cost. A simple way to define a liquid asset is the eas-
iness of selling and buying non-negligible quantities of shares. Indicators of a
liquid asset are: fast arrivals of new limit orders, small bid-ask spread, no im-
portant gap in the limit order book. The importance of liquidity is very high for
investors who decide to invest in some asset by buying a significant quantity of
shares and hold them for a few months (years) before selling. How much will
they pay to buy the shares once they make the investment decision? First of all,
an investor cannot buy them all at once, because there are not enough available
shares in the LOB. Thus, the original large order (or meta-order) must be split in
slices (or child-orders) and executed incrementally. In this case, there is a hard
reality: their second buy trade is on average more expensive than the first be-
cause of their own impact on the price. We might think it suffices to delay two
consecutive child orders long enough so the first has no impact on the second.
However, it may take days to complete the meta-order and during this period
the price can change in an adverse way. Thus, when slicing a meta-order, there
are some optimizations to do by taking into account market risk, market impact
and market liquidity. This branch of quantitative finance is called optimal trad-
ing (see [90] for more details).

As we stress in a previous paragraph, the electronic markets provide updates
of the limit order book at very high frequency, which could be used in order
to make profit from good prices. Since the volume of information received is
tremendous and the limit order book gets updated very often (in much less than
a second in liquid markets), a human trader is not able to take all into account.
Furthermore, a human trader should react very quickly when he thinks there is
an opportunity. This is why trading algorithms are nowadays widely used among
financial agents. This type of algorithmic trading uses mathematical tools and
computer algorithms to rapidly trade shares and is known as high frequency
trading (HFT). In order to optimize the trading strategy to minimize such costs,
it is necessary to understand the market impact. Monitoring and controlling
market impact is one of the most actively researched topics within trading firms;
its modeling and estimation has thus become a central point of the quantitative
finance research.

1.2 MEAN REVERSION AND LIMITS OF DIFFUSIVE MODELS

In the early 1900s, Louis Bachelier was the first to model the price of a finan-
cial asset as a random market. In his thesis, Theory of speculation, he contin-
ued the previous work of Robert Brown (the famous biologist) and Einstein on
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Brownian motion. This work has remained unknown for several decades, until
Kolmogorov quoted him several times. After the Second World War, the world
of finance has begun to discover the richness of Bachelier’s work in financial
mathematics thanks to Benoît Mandelbrot.

From the 1960s, the Black-Scholes-Merton model has emerged in finance.
In this model, it is not the price increments that are supposed as being Gaus-
sian, but their returns. Thus, stochastic calculus gradually obtrudes in finance
via the notion of risk replication under the assumption that asset prices satisfy
a diffusive dynamic (from the Brownian diffusion to the most general model
of Itô’s semi-martingale). The diffusion hypothesis comes as a consequence of
the following argument: if the next value of a financial asset was predictable
by studying the historical values, then this predictability would have been
exploited to extinction. This argument is often known as the assumption of
absence of arbitrage opportunity.

In this section, I will show some stylized facts for the price formation pro-
cess that are in conflict with the diffusive assumptions. For this I use high-
frequency data from CA Cheuvreux. Before going further, I will briefly describe
this database.

Database

The database contains all the single-day meta-orders (nearly 300.000) exe-
cuted by CA Cheuvreux from January 2010 to December 2010 in the European
equity markets and all transactions on the stock from the day the meta-order
was executed. For each meta-order I have access to:

• the exact time (with millisecond precision) of the beginning of the meta-
order,

• the exact duration of the meta-order,
• the total volume of the meta-order,
• the side of the execution (ask or bid),
• the volume, the price and the execution time of each child-order,
• the market place where the meta-order was executed,
• an “identifier” allowing to determine the adjacent stock,
• the type of algorithm used for execution (see below).

For each adjacent stock I have access to:
• the price in each moment of the trading day,
• the price, the volume, the side and the exact time of each transaction,
• the first limit of the limit order book (i.e. the price and volume of the best

ask and the best bid),
• the tick size.

In this entire section, P (t ) will represent the evolution in time of a stock price
during the trading day. More precisely, P (t ) will stand for the last transaction
price that occurred before time t . A trading day lasts 8 hours and a half. In or-
der to simplify expressions, let us note t = 0 the beginning of the trading day
and T = 8h30 the end of the trading day. The price P (t ) lives on a tick grid and
jumps at discrete random times. In the next figure, one can observe the evo-
lution of the price of Deutsche Bank AG shares on 10 January 2010. There are
25527 trades during the entire trading day, or nearly 50 trades per minute. Even
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Figure 1.2 – Evolution of the price of
Deutsche Bank AG on 10 January 2010 -
entire trading day

390 392 394 396 398 400

48.65

48.7

48.75

48.8

48.85

time (min)

P
(t

) 
(e

ur
os

)

Figure 1.3 – Evolution of the price of
Deutsche Bank AG on 10 January 2010
from 3.35 PM to 3:40 PM

if the price seems to be diffusive on the macroscopic scale (Fig. 1.2), at the mi-
croscopic scale the reality is totally different (Fig. 1.3).

Volatility and signature plot

A well known property of a Brownian motion W (t ) of volatility σ is that:

E[(W (t +τ)−W (t ))2] =στ,∀τ> 0. (1.1)

This property gives a simple estimator of σ whatever the sampling τ:

σ̂= 1

T

T /τ∑
i=1

(W (iτ)−W ((i −1)τ))2 . (1.2)

In particular, this estimator converges when τ tends to 0. Thus, if P (t ) is a Brow-
nian motion, then the so-called realized volatility function V (τ) will be flat:

V̂ (τ) =
T /τ∑
i=1

(P (iτ)−P ((i −1)τ))2 . (1.3)

Figure 1.4 shows the realised volatility V̂ (τ) for the Deutsche Bank AG stock price
on 10 January 2010. This behavior is different from what one would expect if
the data were sampled from a Brownian diffusion. We notice an increase of the
observed daily volatility when one goes from large to small scales, i.e. when τ→
0.

Mean reversion

One explanation for the signature plot function is the well-known mean re-
verting effect of price. We are just going to highlight this effect without going in
deeper elucidations (see [90] for more). Even so, let us point out an intuitive en-
lightenment: the mean reverting effect adds additional volatility when the sam-
pling rate is low.

Let t i ck denote the tick-size and k ∈ N?. We say a k-jump occurs on the
price between times t1 and t2 if |P (t1)−P (t2)| ≥ k ∗ t i ck. For k ∈N?, we define a
sequence of stopping times (τ(k)

n )n≥0 such that between τ(k)
n and τ(k)

n+1 a k-jump
occurs on the price:

– τ(k)
0 = 0,



8 Chapter 1. Context and thesis results

0 1 2 3 4 5
3

4

5

6

7

τ (seconds)

V
(τ

)

Figure 1.4 – Signature-plot V̂ (τ) (1.3) of Deutsche Bank AG on 10 January 2010.

– For n ≥ 1, while A(k)
n = {t ∈ [τ(k)

n−1,T ] : |P (t )−P (τ(k)
n−1)| ≥ k ∗ t i ck} is non-

empty:
τ(k)

n = inf
t

A(k)
n .

– Once A(k)
n is empty, we stop and N (k) will denote the number of total k-

jumps of the trading day.
If the price P (t ) was a classical random walk on the tick grid:

P
(
P
τ(k)

n+1
−P

τ(k)
n

≥ k ∗ t i ck
)
=P

(
P
τ(k)

n+1
−P

τ(k)
n

≤−k ∗ t i ck
)
= 1/2 (1.4)

and

P
(
P (τ(k)

n+1)−P (τ(k)
n ) ≥ k ∗ t i ck | P (τ(k)

n )−P (τ(k)
n−1) ≥ k ∗ t i ck

)
= 1/2, (1.5a)

P
(
P (τ(k)

n+1)−P (τ(k)
n ) ≥ k ∗ t i ck | P (τ(k)

n )−P (τ(k)
n−1) ≤−k ∗ t i ck

)
= 1/2. (1.5b)

The first equation (1.4) translates the symmetry of the jumps. The last two equa-
tions (1.5a and 1.5b) translate the Markov nature of the random walk: the next
jump depends only on the current state and not on the sequence of events that
precede it. In order to test the last assumptions (1.5a and 1.5b), let us denote
N (a)(k) the number of alternations, i.e. the number of k-jumps whose direction
is opposite to the one of the preceding k-jump, N (a)(k) = car d

(
A(a)(k)

)
where:

A(a)(k) = {n ∈ [1, N (k)−1] :
(
P (τ(k)

n )−P (τ(k)
n−1)

)(
P (τ(k)

n+1)−P (τ(k)
n )

)
< 0}.

In a similar way we define N (c)(k) the number of continuations, i.e. the number
of k-jumps whose direction is the same as the one of the preceding k-jump. Let
us remark, that N (a)(k)+N (c)(k) = N (k).

We define the probability of “mean-reverting” after a k-jump as

(1.6)

pk = N r (k)

N (k)
.

If the price were a random walk, then pk = 1/2. When pk > 1/2, the price is mean
reverting, since there is a higher probability of return. When pk < 1/2, we are in
the presence of a trend. Figures 1.5,1.6,1.7 and 1.8 shows the histogram of the
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Figure 1.5 – The histogram of the proba-
bility p1 (1.6) of “mean-reverting” after a
1-jump
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Figure 1.6 – The histogram of the proba-
bility p3 (1.6) of “mean-reverting” after a
3-jump
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Figure 1.7 – The histogram of the proba-
bility p5 (1.6) of “mean-reverting” after a
5-jump
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Figure 1.8 – The histogram of the proba-
bility p10 (1.6) of “mean-reverting” after
a 10-jump

mean reverting probability pk for k = 1,3,5,10. We obtain similar pictures for
every k ∈ {1,2, . . . ,20}.

We observe two very different regimes for all k. At the right, a mean-
reversion regime with an important peak centered around pk ≈ 0.65 (slighty
different for each k) . At the left, a trend-following regime with a less impor-
tant peak centered around pk ≈ 0.1. A qualitative explanation is given by the
fundamental value theory. Let us be more specific: economists often argue that
there are some informed traders who know with high precision the fundamen-
tal value, i.e. the intrinsic value of a company. Those traders buy shares when
the stock is underpriced and sell shares when the stock is overpriced. They
make profit because they are informed and through their impact they are mean-
reverting the price toward the fundamental value. In such a framework, the fun-
damental value of a stock can only change as a result of unpredictable news.
When news concerning the asset appears, the informed traders successfully up-
date the new fundamental value, they trade accordingly, price converges toward
its new equilibrium value and the process repeats over and over again.

This explains why most of the time the well-known stylized fact of mean
reversion is observed (right peak). From time to time, the price goes in one
direction and the presence of news could be assumed.

The distribution of p1 can be also interpreted through the uncertainty zones
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Figure 1.9 – The histogram of η̂ (Eq. 1.7)
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Figure 1.10 – Zoom on the peak of the
histogram of η̂ (Eq. 1.7)

model [122] of Robert and Rosenbaum. Let us briefly describe the model. In this
framework, the efficient price X (t ) follows a continuous semi-martingale dy-
namic and cannot be observed directly. Instead, we observe a noisy version X̃ (t )
which represent the last traded price value. The uncertainty zones is denides as
two bands around the efficient price values with width 2ηα, where 0 < η= 1 and
α is the tick value of the asset. Let t be any given time and X̃ (t ) the associated
last traded price value. Let τt be the first time after t where X (t ) hits the uncer-
tainty around X̃ (t ). At time τt we say we have a new transaction of price X̃ (t )+α
if X (t ) hits the upper band or X̃ (t )−α if X (t ) hits the lower band.

When η < 1/2, the model reproduces the mean reversion effect and the
signature-plot stylized fact (see Fig. 1.4). Moreover, in practice, the estimated
values of η are found to be smaller than 1/2.

The authors proved in [?] that as the tick value goes to zero, a consistent
estimator of η si given by:

η̂= N (c)(1)

2N (a)(1)
, (1.7)

or in term of p1:

η̂= 0.5
( 1

p1
−1

)
.

Next figures (Fig 1.9 and 1.10) show the histogram of η. We observe the right peak
from Figure 1.5 centered around p1 ≈ 0.1, is transformed in a much less visible
“cloud” around the value η̂ ≈ 4.5 (see Fig. 1.9). The second Figure 1.10 shows a
zoom of the peak observed in precedent histogram. It is centered around η̂≈ 0.3
and it corresponds to the right peak from Figure 1.5 (which is centered around
pi ≈ 0.6).

Our empirical findings are consistent with uncertainty zones model with η<
1/2. The cases where η̂> 0.

First conclusions

As we explain in Section 1, the development of electronic markets induced
a constant pressure on academic research in finance. Historically, stochastic
calculus gradually imposed in finance after 1960 thanks to the Black-Scholes-
Morton model. Starting from this point, several models have been successively
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introduced under the implicit assumption that asset prices satisfy a diffusive dy-
namic. Let me remind some of the most known models:the Vasicek model [131],
Heston model [76], the Cox-Ingersoll-Ross model [42].

As we empirically proved in the present section, these assumptions are not
appropriate at the level of price formation. Thus, other mathematical tools are
needed.

As events occur, the price appears on a discrete grid, the limit order book,
and this at very short time scales. Thus, the price dynamic is closely related to
the limit order book dynamic. The price seen as a Brownian diffusion satisfying
some equilibrium conditions (under the hypothesis of the absence of arbitrage
opportunity) becomes rather a macroscopic description of the complex price
formation process. At the microscopic level, the price must be rather seen as
a complex stochastic process living continuously in a discrete space. The next
section is devoted to new approaches to price modeling and in particular to the
Hawkes model for microstructure introduced by Bacry et al. in [17], which will
be one of the key point of this thesis.

1.3 OTHERS APPROACHES TO PRICE MODELING. THE HAWKES

MODEL FOR MICROSTRUCTURE.

Other approches to price modeling

We can distinguish three levels for price modeling:

1. The microscopic level: the ultimate level of price formation, describing
the dynamic of the limit order book in continuous time and discrete
space. This is the most reasonable but also the most difficult.

2. The intermediate level: at this level the price becomes a projec-
tion/function (last price, mid-price, etc.) of the limit order book but
remains a point process whose dynamic can be described.

3. The macroscopic level: the price is seen as a Brownian diffusion (or an
avatar of the Brownian diffusion); it is the historical approach.

Without being exhaustive, let us remind some approches for price modeling in
the light of the three levels emphasized above.

One of the most known models for the limit order book is the “zero intelli-
gence” model [55]. This is a simple model describing rigorously the statistical
mechanics of order placement, price formation and accumulation of revealed
supply and demand. In the same framework, Smith et al. [125] used a mean-field
approach to study the properties of the limit order book, under the assumption
of independent Poisson order flows. Remarkably, zero-intelligence models cor-
rectly predict important statistical properties of the order book, even if some
assumptions are not fully believable. But this approach is not very operational
from a mathematical perspective: it is dificult to describe the price at the the
intermediate level or to prove that the price diffuses at the macroscopic level.
Nevertheless, numerical experiments uphold the last part.

The simplicity of these models, even if the Poisson assumption is quite in-
consistent with empirical observations, generated numerous developments. Let
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us cite the work of Cont [40, 39], where the LOB is seen as a high-dimensional
queuing system and orders arrive and depart randomly. The authors compute
the probabilities of various events, such as the probability of a price increase
or the distribution of the duration until the next price move, conditional on the
state of the order book. Stability conditions for the system are studied by Abergel
and Jedidi [1]. The authors prove that the rescaled-centered price process de-
scribed at microscopic level converges to a Brownian motion on the macro-
scopic level.

In order to replace the independent Poisson framework, a more realistic as-
sumption is to consider the order flows as dependent point processes. Hewlett
in [77] and Large in [89] are modeling the order arrival by Hawkes self-exiting
point processes. These types of models are interesting since they allow the re-
production of some clustering properties.

Concerning the intermediate level, where the important factor is the mi-
crostructure noise modeling, let us first cite the seminal work of Gloter and Ja-
cod [64, 65] where the authors used the concept of latent price. In this frame-
work, the price P (t ) (which follows a Brownian motion) is latent, in the sense
that it cannot be observed directly. Instead, we observe a noisy version P̃ (t ) of
P (t ). From a practical point of view, given a sampling scale τ, we rather observe:

P̃ (nτ) = P (nτ)+ξn,τ,

where ξn,τ is the microstructure noise term with zero mean. This model has
raised a large interest in the econometrician and statistician communities, see
[136, 106, 21, 22, 78, 105] and the references therein. Whereas this model repro-
duces the microstructure noise effects at the scale of a few minutes, the realised
volatility V̂ (τ) as defined in the previous section (1.3) explodes when τ goes to 0.
Coherent transition from the intermediate level to the macroscopic level was
for long time unenlightened. Recently, Bacry et al. [17] have proposed a Hawkes
process model for the price, reproducing the classic microscopic feature (mi-
crostructure effect, Epps effect) and diffusing to a Brownian motion at the
macroscopic level [16]. Within this model, the price dynamic depends on a ker-
nel ϕ which must satisfy a L 1 condition, namely ||ϕ||1 < 1 (see the next section
for more details). Starting from empirical measures of ||ϕ||1, which are close to 1,
Jaison et Rosenbaum [86] studied the dynamic of nearly unstable Hawkes pro-
cesses where the L 1-norm of the kernel is close to unitary and showed they
asymptotically behave like integrated Cox-Ingersoll-Ross models (see [42])at the
macroscopic level.

Hawkes price model for microstructure

General Hawkes process

Self-exciting processes were first introduced by Alan Hawkes [74, 73] in or-
der to reproduce the ripple effects generated after the occurrence of an earth-
quake [133]. They are intuitively similar to Poison processes, but unlike ordi-
nary Poisson processes, the intensity of Hawkes processes is stochastic and de-
pends upon their own historic events. Gradually, the model has been used by
scientists from different areas such as biology [68, 112, 115], genome analysis
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[121], neurology [129, 119, 120], seismology [4, 132, 75, 87, 110], social behavior
[29, 43, 123, 138] and epidemiology [135], to name but a few.

Nowadays, Hawkes processes are widely used in finance. Because current
transactions, which are discrete events, cause future trades [118], self-exciting
processes successfully engendered many applications. Without being exhaus-
tive, let us give some examples: microstructure dynamics [17], order arrival
[77, 25], market impact [18, 19], financial price modelling across scales [16, 86],
volatility clustering [50], price co-jumps [30, 99], limit order book modeling
[137, 127, 89, 126, 2] among many other.

In practice, we observe a multivariate counting process N (t ) =
(N1(t ), N2(t ), . . . , Nd (t ))(t≥0), each component Ni representing the number
of events of the i -th component of the system during the period [0, t ]. Under
relatively weak general assumptions 1, the multivariate counting process N is
characterised by its intensity process λ(t ) = (λ1(t ),λ2(t ), . . . ,λd (t )) defined by:

P(Ni has a jump in [t , t +d t ]|Ft ) =λi (t )d t , ∀i ∈ {1,2, . . . ,d},

where P stands for probability and Ft is the sigma-field generated by
{N1(s), N2(s), . . . , Nd (s)}0≤s≤t up to present time t . Acording to Jacod [85], for
all i ∈ {1,2, . . . ,d} the process:

Ni (t )−
∫ t

0
λi (s)d s

is an (Ft )-martingale. This implies that the law of the d-dimensional process
(N1(t ), N2(t ), . . . , Nd (t )) is characterised by (λ1(t ),λ2(t ), . . . ,λd (t )).

Definition 1 (General Hawkes process). As pointed out at the begining of the
section, the particularity of the Hawkes process is the past-dependence of the
intensity λ(t ), more precisely:

λi (t ) = hi

(
d∑

j=1

∫ t

0
ϕ j i (t − s)d N j (s)

)
, ∀i ∈ {1,2, . . . ,d},

where the causal functions ϕ j i : [0,∞) →R model how N j acts on Ni and hi are
nonnegative functions.

Definition 2 (Linear Hawkes process). As first introduced by Alan Hawkes
[74, 73], the most popular example is for linear functions hi (x) = µi + x, with
µi positive real numbers:

λi (t ) =µi +
d∑

j=1

∫ t

0
ϕ j i (t − s)d N j (s), ∀i ∈ {1,2, . . . ,d}, (1.8)

Or in its matrix form:

λ(t ) =µ+
∫ t

0
Φ(t − s)d N (s), (1.9)

where µ= (µ1,µ2, . . . ,µd ) is a vector form Rd+ andΦ(t ) = (
ϕi j (t )

)
1≤i , j≤d .

1. For a complete mathematical study of Hawkes and more general point processes we refer
the interested reader to the Daley and Vera-Jones’ book [45].
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In the degenerate case where ϕ j i = 0, we retrieve a basic Poisson process.
Some conditions on the integrability ofΦ give a non-explosion criterion [16]:

non explosion-criterion :
∫ t

0
Φ(s)d s <∞ componentwise, ∀t > 0. (1.10)

The multivariate Hawkes process can be shown to admit a version with station-
ary increments under the next condition:

stationary condition : the spectral radius of the matrix K =
∫ ∞

0
Φ(t )d t is smaller than 1.

(1.11)
One reason for its popularity is that due to the simple conditional intensity

interpretation, the Hawkes process can be seen as a cluster process. Indeed, any
new point Ni can be of two types: “immigrant” - without existing parents in the
process, arriving with rate µi , or “offsping” - produced by previously existing
points. Consequently, each immigrant produces descendants whose numbers
in successive generations constitute a Galton-Watson branching process (see
[13] for a general introduction to branching processes).

Since self-exciting processes are quite popular in different scientific areas,
they have long been studied in probability theory: see for exemple the books of
Daley-Vere-Jones [45], Brémaud-Massoulié [36, 34, 35] or the recent research of
Zhu [141, 139, 140]. Recent studies (see [59, 47]) investigate the case of large d ,
when the number of components may become increasingly big or possibly infi-
nite. With regard to the simulation of Hawkes processes, we refer the interesting
reader to [102, 103, 62, 46].

From a statistical inference point of view, one of the first studies belongs
to Ogata [111] and Ozaki [113], who investigated the maximum likelihood esti-
mator for some classes of functions, like exponential and power laws. For more
than two decades, these methods have been used for most of the applications.
In 2010, Reynaud-Bouret and Schbath [121] employed a penalized projection
method to estimateϕ in the univariate Hawkes model. The theoretical estimator
is adaptive for Hölderian functions with regularity (1/2,1], under the hypothesis
that the decay kernel has compact support. In 2011, Lewis and Mohler [97] used
a maximum penalized likelihood estimation to simultaneously approximate the
background rate and the decay kernel of a multivariate model and they numeri-
cally studied the convergence rate of the algorithm. Same year (i.e. 2011), Bacry
et al. [15] proposed another non-parametric estimation method for multivari-
ate symmetric Hawkes processes, based on Fourier computations and Bartlett
specter theory and without investigating the convergence speed. The last chap-
ter of my thesis will be dedicated to this aspect. Recently, Bacry et al. [20] pro-
pounded a non-parametric estimation method for general multivariate Hawkes
processes based on the explicit resolution of a Wiener-Hopf system using Gaus-
sian quadrature method. This last method is a generalization of the first one
proposed in [15].

Hawkes price model

Following [17], we represent the asset price P (t ) as the difference between
the positive and negative jumps:

P (t ) = N+(t )−N−(t ),
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where N+(t ) and N−(t ) are two point processes representing respectively the
positive and negative jumps of the price over a time interval [0,T ]. In order to
introduce microstructure, Bacry et al. [17] used multivariate Hawkes processes.
More precisely, they use a bivariate Hawkes process (N+(t ), N−(t )) such that:

λ+(t ) =µ+
∫ t

0
ϕ(t − s)d N−(s), (1.12a)

λ−(t ) =µ+
∫ t

0
ϕ(t − s)d N+(s), (1.12b)

whereµ is a positive number called exogenous intensity andϕ is a causal positive
function, i.e. ϕ : [0,∞) →R+, called kernel.

The interpretation of this model is very simple: the more P (t ) goes up, the
greater the intensity λ−(t ) and conversely, the more P (t ) goes down, the greater
the intensity λ+(t ), which translates the mean reversion. As we stress in the pre-
vious section, the bivariate Hawkes process (N+(t ), N−(t )) can be shown to be
well defined and to admit a version with stationary increments under the stabil-
ity condition:

||ϕ||1 =
∫ ∞

0
ϕ(t )d t < 1. (1.13)

Exponential decay As literature showed us, due to the simplest estimation
[113] and simulation [102], a special case is when the kernel ϕ is exponential:

ϕ(t ) =αe−βt 1t≥0 0 <α,β, (1.14)

such that
||ϕ||1 = α

β
< 1.

In this case, one can show (see [17]) that the signature plot (as defined in (1.3))
has the form:

V (τ) = 2µ

1−α/β

(
1

(1+α/β)2 +
(
1− 1

(1+α/β)2

)
1−e−(α+β)τ

(α+β)τ

)
. (1.15)

The next figure (Fig. 1.11) shows a theoretical signature plot for the case µ = 1,
α= 2 and β= 3, which recalls the empirical signature plot (Fig. 1.4).

1.4 MARKET IMPACT

Generally, the market impact is the link between an incoming order and fu-
ture price changes (see [33]). It seems obvious that a buy (sell) trade should push
the price up (down) and it is easily demonstrated empirically. Thus, market im-
pact tends to increase the execution cost of a strategy. Indeed, the second buy
order is, on average, more expensive than the first, the third more expensive than
the second and so on. Monitoring and controlling market impact is one of the
most active areas of research within trading firms; its modeling and estimation
has thus become a central point of quantitative finance research.

For practitioners, a particular importance is attached to the execution of
big orders whose volume is much larger than the available liquidity in the limit
order book. A common strategy consists in splitting the big order in small orders
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Figure 1.11 – Theoretical signature plot V (τ) for exponential kernel ϕ (1.15) with µ = 1,
α= 2 and β= 3.

(child orders or atomic orders) and executing it incrementally. This sequence of
trades is commonly called meta-order or hidden order. Nowadays, algorithmic
high-frequency trading is the new way of executing those meta-orders. The
investors use algorithmic trading, relying heavily on smart technologies and
mathematical methods in order to provide efficient execution. Analyzing how
the market impact is formed and the path leading to the completion of the
meta-order is important for optimal execution [9, 7, 6, 8, 28, 108].

The market impact literature starts with the seminal work of Kyle [88] in the
early 80’s. The author showed that in order to achieve optimal execution an in-
formed trader who has access to private information about the future value of
the price will execute orders incrementally, at a constant speed, until the price
reaches the target value. The informed trader slowly reveals the “true” price to
the rest of the market; at the end everyone discovers the final price and there
is no reversion. Within the setting of the Kyle model, the informed trader and
other noise traders submit orders that are cleared by a market maker every step
∆τ. At each step, the price increment is:

∆P =λεv,

where v is the volume, ε is the sign of the order (ε = 1 for buy order and ε = −1
for sell order) and λ is a constant linked to the impact and considered to be
inversely proportional to the liquidity of the market. The price change between
t = 0 and T = N∆τ is:

P (T ) = P (0)+
N−1∑
k=0

∆P (k∆τ) = P (0)+λ
N−1∑
k=0

εk vk (1.16)

Thus, in Kyle’s framework, the market impact is both linear in the traded volume
and permanent in time. Starting from a principle of no-quasi arbitrage, Huber-
man and Stanzl [81] show that the linear permanent market impact model is
necessary in order to not allow price manipulations.

However, the Kyle model is not consistent with empirical studies that give a
strictly concave volume dependence. Large trading firms can measure the price
impact of their own trades; despite the diversity of market participants, trading
strategies, execution style or execution time, a very similar concave power law is
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reported. The literature on this topic is often rooted to the Barra Market Impact
Model Handbook [23], who claimed that the price impact of a meta-order of
volume V is remarkably well given by the formula:

Cσ

√
V

Vd
, (1.17)

where Vd is the traded volume per unit time, σ is the volatility of the stock (in
daily units) and C is a constant of order unity. This empirical result is referred
as the square-root law. This “law” has been widely used in practice to estimate
the pre-trade transactions cost. The fame of this formula lies in its simplicity;
in particular, we notice that it does not depend on the execution trading time.
Let us cite other empirical investigations concerning the volume dependence
of market impact. Since access to data is often very difficult and some special
agreement must be reached with the trading firms, there are rather few pub-
lished research papers. The published studies give slightly different exponents
for the power-law. Using US stock trade orders executed by Citigroup Equity
Trading, Almgren et al. [10] find an exponent close to 0.7. Bouchaud et al. [118]
find an exponent close to 0.5 for small tick contracts and 0.6 for large tick con-
tracts, using data from Capital Fund Management.

Autocorrelation of trades sign and propagator model

One explanations for the concavity of the impact function is the persistence
of the order flow (see [118]). Under the Kyle model (1.16), the sign of the trades
must be uncorrelated if the price is to follow an unpredictable random walk.
However, empirical studies shows that the autocorrelation function of the sign
of the trades εk has a very slow decay. More precisely, one considers the function:

S(n) = E[εkεk+n].

Under the assumption E[εk ] = 0 (which is verified empirically), if trades were
random, one should observe that S(n) decays quickly to zero. On the contrary,
this is not observed empirically. The autocorrelation function S(n) decays slowly
to zero as a power-law of n with negative exponent:

S(n) ≈ S(0)n−γ,S(0) > 0.

The value of γ is stock dependent, but always smaller than one, 0 < γ< 1. Thus,
the autocorrelation function is not summable and one says that the order flow
has a long memory. A plausible explanation is the strategic behavior of large
investors who split their orders into many small pieces and execute them in-
crementally (see [98]). More precisely, a large investor who decides to buy an
important number of shares cannot just state his order in the limit order book
because it is unlikely that there will be enough sellers to accommodate him, and
even if there were, unveiling the intention to buy a large quantity of shares would
greatly push the price in the adverse direction.

In order to obtain a long memory property of the order flow and to have a
diffusive price, Bouchaud et al. [118] proposed a price impact model called the
propagator model:

P (n) = ∑
k≤n

G(n −k)εk f (vk )+ηk , (1.18)
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where ηk is a white noise, f is a function describing the volume dependence of
a single trade’s impact, also called instantaneous market impact function, and G
accounts for the temporal dependence of the market order’s impact.

This model provides a different vision from that of Kyle, where the market
impact was linear in volume and permanent in time. In the framework of the
propagator model (1.18), the market impact of a trade of volume v has an in-
stantaneous impact proportional to f (v) and afterwards, the impact decays in
time. Thus, an assumption about the separability of the market impact in a fac-
torized form is implicitly made: one factor depending on volume and the other
depending on time. This has been shown empirically by Bouchaud et al. in [117].

The propagator model was the starting point of numerous articles that
deal with the following questions: what is the shape of the instantaneous mar-
ket impact function f (v) and that of the decay kernel G , is the market impact
permanent or not and how do those quantities affect the impact of a meta-order.

Instantaneous market impact function

The market impact of a single trade was empirically found to be strongly
concave in volume. Using the 1.000 largest firms on the New York Stock Ex-
change in 1995-1998, Lillo et. al discovered that f (v) ∼ vδ with an exponent δ
varying from roughly 0.5 for small transactions in higher-capitalization stocks,
to about 0.2 for larger transactions in lower-capitalization stocks. Hompan [79]
arrived at similar results using data from the Paris Stock Exchange. Bouchaud et.
al, using French and British stocks, found a logarithmic rather than a power-law
dependence of the price impact of an order. One of the explanations is the fact
that a market order rarely consumes more than the volume available at the best
price. For example, on 22 January 2010, on the FCAM stock (F&C Asset Man-
agement), among the 725 trades on the trading day, 184 (or 25%) were executed
against exactly the volume available at the best price, 442 (or 61%) trades con-
sumed only a part of the volume available and only 99 (or 14%) of the trades
consumed more than the volume available. Thus, a lot of trades do not change
the price.

Remark Single order vs. meta-order

There is a very important difference between the market impact of a single
trade, f (v), and the market impact of a meta-order. As we stressed before, the
market impact of a meta-order of size V is “known” to be proportional to

p
V .

Thus, the market impact of the first part V /2 is more important than the second
part. Generally, the impact of the trades becomes less and less important as the
execution of the meta-order evolves. Therefore, even orders belonging to the
same investor have different market impacts.

Decay kernel G

In qualitative finance literature three types of decay kernel are considered:
linear, exponential and power-law. Almgren et. al in [10] consider the function
G to be decreasing instantaneously as a linear function. Obizhaeva and Wang
in [108] assume that the kernel G acts as an exponential decay, in order to find
an optimal trading strategy. Using the slow decay of the autocorrelation of trade
signs and the principle that price changes should be unpredictable, Bouchaud
et. al showed that the kernel G must also decay as a power-law with exponent
β≈ (1−γ)/2. Using the principle of no-quasi arbitrage of Huberman and Stanzl
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[81] and a continuous version of the propagator model (1.18), Gatheral [60] ar-
gues that exponential decay is possible only if the instantaneous market impact
function f (v) is linear in v , which is not verified empirically. In the latter, it is
shown that the power-law decay of the kernel G is compatible with the instan-
taneous market impact power-law, f (v) ∼ vδ, only under the condition δ+β≥ 1.

Permanent vs. non-permanent impact

Concerning permanent market impact, there seems to be some disagree-
ment in the literature; two different opinions have emerged in quantitative
finance. From the point of view of Bouchaud et al. [118, 33], the permanent
market impact is zero. He argues that since the order flow is highly autocorre-
lated (γ < 1), a permanent market impact leads to trends in the market, which
is not consistent with the unpredictability of price changes observed empir-
ically. In the opinion of Farmer et al. [104], the permanent market impact is
non-negligible - they empirically found that its value is equal to roughly 0.5−0.7
of the instant market impact. Recently, Bershova and Rakhlin [27] found a per-
manent market impact equal to roughly 2/3 of the instant market impact. In a
later paper, Bouchaud, Farmer and Lillo [32] argued that these two seemingly
incompatible pictures are equivalent under the assumption that the order flow
follows a long memory FARIMA process (see [26] for definition). In other words,
Farmer&al. [104] consider that the market impact is history dependent, whereas
Bouchaud sees the market impact as the difference between the observed price
moves and what it would have been without this specific order, as defined in
Barra Market Impact Model Handbook [23]. Recently, Gomes and Woelbroeck
[66], using data that allowed them to identify different trades, have empirically
showed that there is no permanent impact.

Latent order book

An intuitive idea in order to explain the square-root law is to link the market
impact to the shape of the limit order book. If the available volume on the limit
order book were growing linearly with the distance from the best price, then
the market impact of an order of volume V executed instantaneously would be
proportional to

p
V . More precisely, suppose the available volume for buys 2 at

price P , v(P ), is a linear function c(P −P0) (where P0 is the best sell price). If a
buy order of volume V moves the price by a value M I , then:

V =
∫ P0+M I

P0

v(P )dP,

so the market impact is a square-root:

M I ≈
p

cV /2.

Unfortunately, this is not what we observe in practice. Indeed, the limit order
book has a roughly linear shape only for the first few limits closest to the best
price, after, the linear shape is no longer maintained and actually decreases
[117].

However, a qualitative explanation for the square-root law is the linearity (or
V-shape) of the latent order book. More precisely, agents place limit orders only

2. Similar reasoning for the impact of a sell order gives an identical result.
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when the actual price is close enough to their vision of the price. From a statical
point of view, the latent order book consists in orders which are not visible in
the order book and only reveal themselves when the price moves closer to their
limit price. Toth et al. successfully tested the V-shape of the latent order book in
[128], providing another ingredient to the explanation of the square-root impact
law.

Informational vs. mechanical impact

The quantitative finance literature comprises two visions about why
meta-orders impact the price: an informational vision, which is favored by
economists, and a mechanical vision, shared by econophysicists:

– Informational impact
One vision refers to market impact as the way information is conveyed to
the market. In this framework, large investors react to new information by
trying to successfully forecast price movements. Thus, they update their
expectation by using meta-orders, which leads to a new global equilib-
rium resulting in new price levels. According to this vision, meta-orders
reveal the fundamental value 3 of the price but do not really provoke it. As
stated in Hasbrouck [70]: “orders do not impact prices, it is more accurate
to say that orders forecast prices”. In particular, if the market participants
were to know a trade is coming from a “noise trader” (i.e. no information
in his trade), the trade should have no price impact. This vision of the
market impact is derived from the neoclassical economic principle that
price is always in equilibrium and only new and unexpected information
change it.
In Kyle’s model [88], it is shown how prices are driven to their new level
through the execution of a meta-order by an informed trader. As we
pointed out before, in this framework the market impact is linear in vol-
ume and there is no reversion.
Farmer et al. [53] consider the case where a large number of investors re-
ceive the same information sign α and generate meta-orders drawn from
a given distribution p(α). Liquidity providers competitively generate bids
and offers to maximize their profits, while noise traders render the mar-
ket uncertain. Market makers know the distribution p(α), but, because of
noise traders, they do not know with certainty whether a meta-order is
present, and if it is, they do not know its size. The authors show that these
assumptions lead to a Nash equilibrium where meta-order sizes reflect in-
formation. This theory is called fair pricing because the average price paid
to execute a meta-order is roughly equal to the post-reversion price.

– Mechanical impact
On the other side, the mechanical vision describes price moves as the re-
sult of antagonist forces: a sell pressure driving prices down and a buy
pressure driving prices up. The market impact of a meta-order is cre-
ated by the interaction between the child orders and the limit order book,
which leads to a long term imbalance in supply and demand. In this
framework, an external observer sees price changes as if all traders are
acting randomly. The adepts of this vision have a phenomenological ap-

3. See page 9 for definition.
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proach: like physicists, they strive to describe the behavior of the price
dynamic through consistent quantitative laws.
The finance literature where a mechanical vision of market impact is as-
sumed, often implicitly, is too big to be included here, since each au-
thor has his various objectives. Far for being exhaustive, let us cite a
few examples of the main topics studied: order book dynamic [55, 125,
39, 40, 80, 128], order arrival [77, 89], meta-order volume distribution
[116, 57, 130], impact of order book events [49, 38], microstructure dy-
namics [17, 18, 64, 65, 122].

As “yin and yang”, these two antagonist visions are complementary: no sin-
gle one can entirely describe the complexity of price formation, but if used
together one can have a large clearer picture of what happens. In Bouchaud’s
words: “reality should lie somewhere in the middle”. For example, using the fair
pricing theory and the empirical observations of Plerou [116] and Gabaix [57]
concerning the Pareto distribution of meta-order sizes, Farmer et al. [53] provide
another explanation for the square-root law. Moreover, in the latter, the perma-
nent impact is 2/3 of the peak impact. Recently, Bershova and Rakhlin [27] have
found a similar Pareto distribution of the meta-order size and have showed that
the fair pricing condition is rather well empirically verified.

An intermediate position is the one of Gomes and Waelbroeck [66], which
observe that after several days, the impact for “informed traders” is larger than
the one for “uninformed traders”, which tends to be null. In order to empirically
prove this result, the authors used brokerage data where clients revealed their
reasons for trading, allowing them to distinguish between “informed traders”
and “uninformed traders”. At intraday time scales, the impact functions of “in-
formed traders” and “uninformed traders” were found to be very close. Thus,
the mechanical vision is more appropriate at the intraday scale, whereas the in-
formational vision is more appropriate at a larger scale (days, weeks).

1.5 THESIS RESULTS

I introduce in this section the thesis results:
• In section 5.1 we propose a new structural model for market impact re-

producing the reaction of market makers in front of un order or a series of
correlated orders (meta-order) using mutually exciting point process ap-
proach. We show the model successfully reproduces important style facts
of the market impact: concave shape of transient market impact and con-
vex shape of the decay.

• In section 5.2 we show the model successfully fits the real data. Exploring
the database, give me the opportunity to point out some new stylized fact
regarding the market impact.

• In section 5.3 we are investigate the non-parametric estimation of the ker-
nel shape in a univariate Hawkes processes proposed by Bacry et al. [15].
More precisely, we study the performance of the estimator for the L 2 loss
over Sobolev spaces and some class containing “very” smooth functions.

A new market impact model using self-exciting point process

Price model
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As presented in Section 1.3, following Bacry et al. [17], we represent the price
as the difference between the sum of positive and negative jumps:

P (t ) = N+(t )−N−(t ),

where N = (N+, N−) is a bivariate Hawkes process defined by the two stochastic
intensities λ+ and λ−:

λ+
t =µ+

∫ t

0
φ(t − s)d N−

s ,

λ−
t =µ+

∫ t

0
φ(t − s)d N+

s .

Market impact model
We consider the next definition for market impact given in Barra Market Im-

pact Model Handbook [23]:
Market impact denotes the difference between the expected change of price of

a given trade (or a series of trade) of given size(s) and sign(s) and the expected
change of market price in absence of this specific transaction.

The market impact of a trade or a series of trades that occur at a certain rate
between t0 and t0+T , for some T > 0, will be modeled by a smooth perturbation
Q of the historical probability P:

EQ
[
Pt −Pt0

]
for every t ≥ t0

or, in other words, the expected price change Pt −Pt0 underQ, i.e. from the point
of view of the trader who has prior knowledge that a certain series of aggressive
orders will be launched over [t0, t0 +T ].

For t0,T > 0, let S (t0,T ) denote the set of functions

h : [0,∞) → [0,∞)× [0,∞)

such that h(t ) = 0 if t ∉ [t0, t0 +T ] and such that (componentwise)∫
[t0,t0+T ]

h(t )d t <∞.

Definition 3. The market impact measure associated to h ∈S (t0,T ) is the prob-
ability measure

Ph = Lt (h)P on Ft ,

where

Lt (h) = exp
(∫ t

0
log

(
1+ h+(s)

λ+
s

)
d N+

s −h+(s)d s +
∫ t

0
log

(
1+ h−(s)

λ−
s

)
d N−

s −h−(s)d s
)

(1.19)
for h = (h+,h−) and where λ = (λ+,λ−) is the stochastic intensity of N =
(N+, N−) under P.

Definition 4. The market impact function of h ∈S (t0,T ) is the function

t ; Mh(t ) = EPh

[
Pt −Pt0

]
for every t ≥ t0.

The transient market impact function of h is the restriction of the market impact
function of h over [t0, t0 +T ]. The decay market impact function of of h is the
restriction of the market impact function of h over [t0 +T,∞). The permanent
impact of h is the limit (if it exists)

Mh(∞) = lim
t→∞Mh(t ).
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Using a classical result of the theory of point processes obtain via the Gir-
sanov formula, for any h ∈S (t0,T ), by 1.19, under Ph , we have

λ+
t =µ+h+(t )+

∫ t

0
ϕ(t − s)d N−

s ,

λ−
t =µ+h−(t )+

∫ t

0
ϕ(t − s)d N+

s .

This representation enables to obtain an explicit formula for the market impact
Mh(t ) 4.

Theorem 1. Work under the stationary condition for Hawkes processes (1.11)
which, in our case, is translated by ||var phi ||L 1 < 1 5. For every h ∈ S (t0,T ),
we have

Mh(t ) =Gh(t )−
∫ t

t0

κ(t − s)Gh(s)d s, t ≥ t0, (1.20)

where

Gh(t ) =
∫ t

t0

(
h+(s)−h−(s)

)
d s, ∀t ≥ t0

and
κ= ∑

n≥1
(−1)n+1ϕ?n , (1.21)

where f ? g (t ) = ∫ ∞
0 f (t − s)g (s)d s denotes the usual convolution product on

L1([0,∞),d t ), ϕ(?1) =ϕ and ϕ(?n) =ϕ(?n−1)?ϕ.

Single trade model

Since a buy order of volume v arriving at time t0 could instantaneously
change the price and following some previous studies [18], it is reasonable to
consider that h+ is “purely” impulsive, i.e.,

h+(t ) = f (v)δt (t0) (1.22)

where δt stands for the Dirac distribution and

f : [0,∞) → [0,∞)

models the influence of the volume v . In practice, a buy order at time t0 encour-
ages an extra-activity on the bid side too (see Bouchaud et al. [118]). Thus, we
consider that the market reacts to the newly arrived order as if it triggered an
upward jump. Doing so leads to the choice:

h−(t ) = c f (v)ϕ(t − t0). (1.23)

Before going further, one remark that the impact of selling order can be modeled
using the exact same principles by interchanging h+ end h−. Let us point out,
h = (h+,h−) ∉ S (t0,T ) for any T > 0. In order to circumvent this difficulty, we
define the market impact of h as the limit market impact of a series of function
hT converging to h 6. Applying Theorem 1 we have an explicit representation
(see Chapter 2 for proof):

4. The proof in Chpater 2 Section 2.7
5. Where || · ||L 1 denites the usual norme one on L1([0,∞),d t )
6. More details can be found in Chapter 2 Section 2.5.
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Figure 1.12 – Market Impact of one trade
(exponential decay)
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Figure 1.13 – Market Impact of a contin-
uous execution (exponential decay)

Theorem 2. Assume that (h) is specified by (1.22) an d (1.23). Then the market
impact function of a single trade is given by:

Mh(t ) = f (v)
(
1− (1+ c)

∫ t−t0

0
κ(s)d s

)
, t ≥ t0. (1.24)

Under the assumption

(A1) ϕ(t ) ≥ϕ(?2)(t ),∀t ≥ 0,

the market impact function Mh(t ) is decreasing on [t0,∞). Moreover, the perma-
nent impact of an instantaneous trade is given by

Mh(∞) = f (v)
1− c‖ϕ‖L1

1+‖ϕ‖L1
(1.25)

and the following bracketing property holds:

Mh(t ) ≥ 0 if and only if c ≤ 1

‖ϕ‖L1
(1.26)

and for c = 1/‖ϕ‖L1 the permanent market impact is zero, Mh(∞) = 0. Finally,
under the assumption:

(A2) κ(t ) is decreasing,

the market impact function Mh(t ) is convex over [t0,∞).

the parameter c give us the some flexibility in order to obtain different
shapes for the market impact function (see Fig. 1.14 and Fig. 1.15). Its interpre-
tation will be discussed in Chapter 2.

The market impact of a continuous strategy

Let us consider the case of the market impact of a meta-order starting at
time t0, lasting a period T and corresponding to a continuous flow of buying 7

orders with a trading rate rt supported by [t0, t0 +T ] (rt 6= 0 only for t ∉ [0,T ]). It
seems natural to consider the class of impact functions h(t )S (t0,T ) of the form:

hc (t ) =
(

f̃ (rt ),c
∫ t

t0

f̃ (rt )ϕ(t − s)d s

)
. (1.27)

Seeing the impact of f̃ (rs)d s as the infinitesimal impact of a buy order of volume
r d t , the previous model it is a superposition of single trade model.

7. The impact of selling meta-order can be modeled using the exact same principles
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Figure 1.14 – Market Impact of one trade
(exponential decay)
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Figure 1.15 – Market Impact of a contin-
uous execution (exponential decay)

Theorem 3. The market impact of an continuous strategy rt is given by

Mhc (t ) =
∫ t

t0

f̃ (rs)H(t − s)d s, t ≥ t0, (1.28)

where H(t ) = 1− (1+ c)
∫ t

t0
κ(s)d s. Under the assumption that f̃ is bounded, the

permanent market impact writes

Mhc (∞) = 1−C

||ϕ||L1
|| f̃ (r )||L1 . (1.29)

In the particular case of a constant strategy, rt = r0,∀t ∈ [t0, t0 +T ], we have:

Mhc (t ) = f̃ (r0)1[0,T ]?H(t ), t ≥ t0. (1.30)

As a consequence, when c ≤ 1
||ϕ||L1

, under the Assumptions (A1) and (A2), the func-

tion t ; Mhc (t ) is increasing and concave over [t0, t0 +T ] and decreasing and
convex over [t0 +T,∞).

The figures 1.14 and 1.15 and represent the market impact function of a
constant strategy rt = r0,∀t ∈ [0,T ] with exponential and respectively power-
law kernel for different values of c. For the exponential kernel 1.14 we took
ϕ(t ) = αe−βt with α = 0.2 and β = 0.3. For the power-law kernel 1.15 we took
κ = α(δ+ t )−β with α = 0.1,β = 1.5 and δ = 0.25. The trading rate have no in-
fluence on the shape of the transient market impact, it is just a multiplicative
constant. We took f̃ (r0) = 1 and T = 10.

Market impacts and the life cycle of investors orders

Empirical market impact definition and latent price

The market impact curve of the meta-order ω quantifies the magnitude of
the (relative) price variation which is due to the meta-orderωbetween the start-
ing time of the meta-order t0(ω) and the current time t . Theoretically, in order
to estimate this curve one should have access to the price variation that would
have occurred if the meta-order was not sent. In the following we shall refer to
that latter price as the latent price.

Let∆Pt (ω) be a proxy for the realized price variation between time t0(ω) and
time t0(ω)+ t and let ∆P (l at )

t (ω) be a proxy for the corresponding latent price
variation. One can then define the price variation due to the meta-order ω:

∆P (η)
t (ω) =∆Pt (ω)−∆P (l at )

t (ω), (1.31)
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When the meta-order is a buy (resp. sell) meta-order, one expects this price to
go up (resp. down), consequently it is very natural to define the impact as

ηs(ω) = ε(ω)∆P (η)
sT (ω), s ≥ 0, (1.32)

where T (ω) repressnts the total duration of the meta-order ω and ε(ω) stands
for the sign of the meta-order: +1 for a buy and −1 for a sell. Let us remark that,
for synchronicity convenience, we have rescaled the time in order that the time
s = 1 always corresponds to the ending-time of the meta-order. All along this
section, we will use the so-called return proxy 8 defined by (1.33) in which Pt

corresponds to the last traded price:

∆P (r et )
t (ω) = Pt0(ω)+t −Pt0(ω)

Pt0(ω)
(1.33)

Finally, we introduce the following terminology in order to address the dif-
ferent parts of the market impact curve:

• ηs=1(ω) as the temporary market impact, i.e., the impact at the end of the
meta-order,

• {ηs(ω)}0≤s≤1 as the transient market impact curve, the impact curve during
the execution of the meta-order,

• {ηs(ω)}1≤s as the decay market impact curve, the impact curve after the
execution of the meta-order and

• ηs>>1(ω) as the permanent impact, where s >> 1 refers to an extraday time
limit, sufficiently far from the ending-time ofω (more precise definition is
given in Chapter 3 Section 3.7).

In the following, we shall compute the estimation of the impact through

η̂s = 1

#Ω

∑
ω∈Ω

∆PsT (ω)(ω), (1.34)

where #Ω denotes the total number of available meta-orders.
When one studies the influence on the impact of a factor X (ω) (e.g., the daily

participation rate or trading time), we shall condition the impact estimation by
the fact that the value of X (ω) belongs to an interval I , i.e.,

η̂s(ω | X (ω) ∈ I ) = 1

M(I )

∑
ω, X (ω)∈I

∆PsT (ω)(ω) (1.35)

where M(I ) is the number of meta-orders ω ∈ Ω (or ∈ Ω(H) or ∈ Ω(F ), when
specified) such that X (ω) ∈ I .

Why is the market impact estimation so difficult

There are mainly two reasons why estimation is very difficult and we will put
them both in evidence.

• One has not access to the latent relative price∆P (l at )
t (ω). The only observ-

able quantities that can be used for estimating the impact are the relative
price variations ∆Pt (ω)

• The variance of the impact is very large as compared to its mean, i.e., the
signal noise/ratio is very low.

8. In Chapter 3 we show that other proxys give very similar market impact curves.
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In order to circumvent these difficulties, most academic works follow the same
path:

1. They (most of the time implicitly) :
i. either make the assumption that the time t1(ω) at which the meta-order
ω is placed is independent from the latent relative price ∆P (l at )

t (ω),
ii. or consider that the eventual dependence do not affect significantly

the results obtained when using ∆P (ω) as a proxy for ∆P (η)(ω) in the
impact definition (3.3)

2. They compute some averages of ηt (ω) on a large number of (more or less
"comparable") meta-orders ω which leads to reducing the variance of the
"noise" term ∆P (l at )

t (ω) (in the case of assumption 1.i.) as well as the vari-
ance of the impact itself.

The assumption 1.i. in most cases does not hold : many agents (e.g. trend-
followers) place their meta-orders at times where some particular patterns are
seen in the latent price. Actually, it does not seem to be a real problem if one
is "only" interested in characterizing the dependence of the impact curve on
some factors, as it is generally the case when studying the temporary market
impact of the transient/decay market impact curve. In that case, the alternative
assumption 1.ii. seems reasonable. However, for addressing questions relative
to the presence or not of permanent impact, i.e., for estimating "absolute" levels
of impact, this assumption is clearly not acceptable.

Figure 1.16 shows a typical market impact curve. We used all meta-orders ω
such that t0(ω)+2T (ω) is a time that takes place before the closing time of the
corresponding asset, i.e., 61.671 meta-orders. We observe that during the exe-
cution, i.e., ηs , 0 ≤ s ≤ 1, the price is pushed in the adverse direction making it
less attractive as time goes by. The price reaches the maximum distance from
the arrival price at the end of the execution. The difference between the two is
the so-called temporary impact. After the execution a reversal effect is noticed.
This is the relaxation part when the price converges back toward its future per-
manent level.

In practice, we have sample our estimations on 201 points using a uniform
sampling grid for s : si = i /100,∀ i ∈ [0;200] and compute the estimation η̂0≤s≤2

as defined by (1.34). We express η̂ in basis points (bp). The next figures (i.e., 1.17,
1.18 and 1.19) show how important is the variance. Figure 1.17 represents the
ratio mean/variance for the precedent market impact curve, i.e., η̂/V (ηs(ω)).
In figure 1.18 is represented the 25% and 75% quantile for the market prece-
dent impact curve. In figure 1.19 we can see the 95% confidence interval for the
market impact curve. In order to build this confidence interval, we make the as-
sumption that the time t0(ω) at which the meta-orderω is placed is independent
from the latent relative price ∆P (l at )

t (ω),

ηs = ηs(ω)+ζs(ω),∀ s ∈ [0,2],

where ζs(ω) are supposeed to be independent and identically distributed ran-
dom variables ∀ s ∈ [0,2]. Thus, the 95% confidence interval market impact
functions write:

[η̂s ±1.96
√

V (ηs(ω))/
p

61.671]. (1.36)

As we mentioned before, we take ∆Pt (ω) instead of ∆P (l at )
t (ω) in order to

build our market impact curves (eq. 1.34). Our next figures 1.20 and 1.21 show
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Figure 1.16 – Tipical market impact
curve
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Figure 1.17 – Ratio mean-variance
η̂/V (ηs (ω)) for the market impact curve
from Figure 1.16.
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Figure 1.18 – The 25% and 75% quantile
for the market impact curve from Figure
1.16.
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Figure 1.20 – Market impact curve with
very low trading speed
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Figure 1.21 – Market impact curve with
high low trading speed

that ∆P (l at )
t (ω) can be non-negligible. The first figure 1.20, represent the market

impact curve for meta-orders with an total duration T ∈ [30,60] (T expressed in
minutes) and a very low trading speed v̇ = rD /T , where rD (ω) represent the daily
participation,

rD (ω) = total volume of the meta-orderω

the daily volume executed on the market
.

The second figure 1.21 represents the market impact curve for meta-orders with
an total duration T ∈ [30,60] and a very high trading speed. Both market impact
curves are built with approximately 2.000 meta-orders.

We observe that the market impact curve where the trading speed is very
low the transient market impact is almost linear in time and the ending point is
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about 4 basis points. The second market impact curve where the trading speed
is very high is also very concave and the ending point is about 20 basis points.
The first group of meta-orders are barely perceptible on the market since the
trading speed whereas the second group of meta-orders are easily perceptible
on the market by others traders. The most choking part is the linearity of the
first group of meta-orders since all empirical studies found a concave transient
market impact curve (see [27, 104]). The only explanation is that in the first case
the latent relative price ∆P (l at )

t (ω) it is non-negligible, even more important

than the ∆P (η)
t (ω).

The temporary market impact

The temporary market impact has been mainly studied in the quantative fi-
nance literature [10, 60, 51, 27, 101, 88, 72, 54, 49]. One common point of these
studies is that the temporary market impact of a meta-order ω of size v(ω) in-
cludes three main components :

• A component reflecting the size of the meta-order, resized by something
reflecting the volume in the order books of the traded security. The daily
participation rD (ω) should capture most of the dynamics of this compo-
nent. This size has to ne rebased using the daily volume VD or the traded
market volume during the meta-order V , leading to two potentially ex-
planatory variables rD := v/VD or r := v/V , where v is the meta-order vol-
ume.

• A component rendering the uncertainty on the value of the traded underly-
ing during the meta-order. The volatility during the meta-order σ(ω) (de-
fined by σ(ω) = σD (ω)p

T (ω)
) is a typical measures for this, where σD stands for

the Garman-Klass annualized daily volatility.
• And a last component that captures the information leakage generated by

the meta-order, a good proxy being the duration T (ω).
We accordingly define the four potential explanatory variables X1 = rD (ω), X2 =
r (ω), X3 = σ(ω) and X4 = T (ω). Let us point out that all authors found mul-
tiplicative relations between each of these components and their correspond-
ing factor, so we expect a linear dependence of the temporary market impact
ηs=1(ω) on the logarithm of these factors.

We tested the daily participation rD as first variable, since it has been iden-
tified as significant by other papers. It means we fit equation:

η1(ω) = a · rD (ω)γ+ε(ω)WT ,

and found an exponent γ ' 0.449 using the L2 distance and a lower exponent
(around 0.40) using the LASSO one. Table 1.1 gives the results of this regression
and fits of other explanatory variables.

The transient market impact curve

Concavity and execution duration. We shall now study the influence of
the duration T of the meta-order on the transient market impact. We chose
meta-orders with the trading rate rD ∈ Ir = [1%,3%] and we study studied
η̂s≤1(ω | T (ω) ∈ Ir , rD (ω) ∈ Ir ) as a function of the interval IT . We chose 6 in-
tervals for IT such that the number of meta-orders in each interval is approxi-
mately the same (the duration are expressed in minutes): T ∈ [3,15], T ∈ [15,30],
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Regression parameter value (log-log) value (L2) value (LASSO)
(R,0)

Daily participation 0.542 0.449 0.400
(R,1)

Trading rate 0.435 0.330 0.426
(R,2)

Daily participation 0.529 0.529 0.529
volatility 0.961 0.961 0.961

(R,3)
Daily participation 0.401 nan 0.401

Trading rate 0.285 nan 0.285
(R,4)

Trading rate 0.317 0.317 0.317
volatility 0.878 0.878 0.878

(R,5)
Daily participation 0.593 0.541 0.593

T −0.230 −0.347 −0.230
(R,6)

Trading rate 0.319 nan 0.319
spread 0.571 nan 0.571

(R,7)
Daily participation 0.438 0.438 nan

spread 0.276 0.276 nan
(R,8)

Trading rate 0.369 0.561 0.453
T 0.152 0.241 0.229

Table 1.1 – Main results for studying the influence of the different factors on the temporary
market impact.

T ∈ [30,60], T ∈ [60,90], T ∈ [90,300] and T ∈ [300,510], each containing around
6.000 meta-order occurrences. We then compute

η̂s≤1(ω | T (ω) ∈ IT , rD (ω) ∈ Ir ) = 1

M(IT , Ir )

∑
ω, T (ω)∈IT , rD (ω)∈Ir

∆PsT (ω)(ω), (1.37)

where M(IT , Ir ) the number of meta-orders ω such that T (ω) ∈ I and rD (ω) ∈
Ir In order to point out the different regimes, on each so-obtained graph, we
performed the power-law fit

η̂s≤1(ω | T (ω) ∈ I , rD (ω) ∈ Ir ) ∝ sβ
(tr )

(1.38)

leading to an estimation of the power-law exponent β(tr ).
We observe that market impact is actually a multi-regime process. The first

five plots of Fig. 1.22 - 1.26 show clearly that, for a fixed participation rate when
the duration of a meta-order decreases

• the transient market impact of a meta-order increases and
• the curvature decreases leading to an almost linear transient market im-

pact for small durations.
Fig. 1.26 seems to show that a kind saturation is reached before the end of
the meta-order. Actually Fig. 1.27 surprisingly shows that when the duration T
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Figure 1.22 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[3,15], β(tr ) ' 0.80
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Figure 1.23 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[15,30], β(tr ) ' 0.66
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Figure 1.24 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[30,60], β(tr ) ' 0.63
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Figure 1.25 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[60,90], β(tr ) ' 0.56
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Figure 1.26 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[90,300], β(tr ) ' 0.53
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curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[300,+∞)
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becomes very large, the market impact curve starts decaying before the end of
the meta-order.

Market prediction of meta-order sizes. In this paragraph, we want to study
whether the market has or has no precise insights about the total size of a given
meta-order before the end of its execution (apart of course from the uncondi-
tional distribution of the meta-order sizes). In order to do so, we consider all the
meta-orders with a given trading speed v̇ = rD /T . Of course, these meta-orders
correspond to different execution durations T (ω), and their volume v(ω) is ba-
sically proportional to their execution duration : v(ω) = T (ω)v̇/VD . If the market
does not have precise insights about v(ω) (i.e., about T (ω)) then, at a given time
t0, there is no way it can differentiate between two meta-orders ω1 and ω2 such
that v̇(ω1) = v̇(ω2) = v̇ and T (ω1) > t0, T (ω2) > t0. Consequently the correspond-
ing transient market impact curves should look alike on the time interval [0, t0].

This assertion above can be translated into the fact that the restrictions on
t ∈ [0, t0] of ηt/T (ω1)(ω1) and of ηt/T (ω2)(ω2) should be very close. In order to test
this assertion, we choose five groups of meta-orders Ai (i = 1, . . . ,5) such that:

Ai =
{
ω ∈Ω(tr ) : rDω ∈ [2i−1r0,2i r0) and T (ω) ∈ [2i−1T0,2i T0)

}
, (1.39)

where r0 = 0.25 and T0 = 5 minutes. Thus, all the selected meta-orders corre-
spond, in a good approximation, to the same trading speed v̇ = r0/T0 = 08.33∗
10−4s−1. Moreover Ai+1 (∀i ∈ [2,5]) corresponds to meta-orders with durations
twice as large as those of Ai . We then compute:

η̂(i )
s≤1(ω ∈Ai ) = 1

M(Ai )

∑
ω∈Ai

∆PsT (ω)(ω), (1.40)

where M(Ai ) is the number of meta-orders in Ai . For each i = 1, . . . ,4, Fig.
1.28 - 1.31 show η̂(i )

s≤1 with the first half of η̂(i+1)
2s≤2 . One can see that, in each of

the subplots, the two market impact curves are very close, indicating that the
market basically does not anticipate the size of the corresponding meta-orders.
Each subplot corresponds to η̂(i )

s≤1 and η̂(i+1)
2s≤2 for s ∈ [0,1] (see (1.40)). Top-left

(resp. top-right) subplot corresponds to i = 1 (resp. i = 2) and bottom-left (resp.
bottom-right) subplot corresponds to i = 3 (resp. i = 4). In each of the subplots,
the two curves are very close, indicating that the market basically does not an-
ticipate the meta-roder size.

The decay market impact curve

The existing empirical literature of decay meta-orders market impact is lim-
ited ([104], [27]) since the difficulty of obtaining data is very high. In the first
study, Moro etal. are the first showing a decay of the impact to a level roughly
equal to 0.5−0.7 of its highest peak. In the second study, Bershova and Rakhlin
show the decay is a two-regime process: slow initial power decay followed by a
faster relaxation. Following the same lines as before, we compute the estimation
(see (1.37))

η̂s≤2(ω | T (ω) ∈ IT , rD (ω) ∈ Ir ) = 1

M(IT , Ir )

∑
ω, T (ω)∈IT , rD (ω)∈Ir

∆PsT (ω)(ω). (1.41)
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Figure 1.28 – The market impact curves
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Figure 1.29 – The market impact curves
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Figure 1.30 – The market impact curves
η̂(3)

s≤1 and η̂(4)
2s≤2

0 0.5 1 1.5 2
0

5

10

15

20

25

s

η s (
in

 b
p)

 

 

r
D

∈ [2,4] and T∈ [40,80]

r
D

∈ [4,8] and T∈ [80,160]

Figure 1.31 – The market impact curves
η̂(4)

s≤1 and η̂(5)
2s≤2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8x 10
−3

t/T

η

 

 

empirical market impact
transient power−law fit, β=0.65
Hawkes fit

Figure 1.32 – Transient and decay market
impact curve estimations ηs≤2 for rd ∈
IR = [1%,3%] and T ∈ IT = [15,30].
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No permanent market impact at daily scale

As we explained in Section 1.4, the debate permanent/non-permanent mar-
ket impact is not closed. In the picture of [53] and of [27] permanent market
impact is important and roughly equals to 2/3 of the temporary impact on an
order by order basis. In the picture of [33], there is no such thing as perma-
nent impact. The author argues that what is called permanent market impact
is a consequence of the long memory of the sign of the meta-orders flow. This
picture is incompatible with the permanent market impact hypothesis because
long memory of order flow would result in trending stock prices and thus con-
tradicting market efficiency. We pretend here to conciliate the two positions of
[53] and [33] even if at first sight they seem pretty much incompatible. In [53] the
long memory of the order flow is not taken in consideration and thus it is shown
that the so-called total effect is non-negligible. On the other hand, in [33] it is
taken into consideration and the total effect is described as an effect of other
correlated meta-orders being executed on the same side. Eventually the relax-
ation taking place at the end of the meta-order execution is an averaging effect.
As previously stated, we consider that the permanent market impact is the ad-
ditional price movement after the execution of a meta-order over the price that
would be in the absence of the meta-order.

In [66], the authors know some of their meta-orders are “cash trades” (i.e.
without any information on price moves; in their case E(ε(ω)Wt ) = 0, to come
back to equation (3.4)), and find these cash trades have no permanent impact.
They perform the same analysis of the subset of their meta-orders, and find they
have a permanent effect, obtaining curves similar to the red one of Figure 1.34.

We intend to remove the informational part of the price move by assuming
the all our meta-orders are coming from large institutional investors whiwh are
trying to “capture some β”, in the sense of the CAPM. The reader should keep
in mind that in [37], authors succeeding in removing most of the information
content of their meta-orders, using their anticipation of the α made by Capital
Fund Management at the initiation of the meta-order.

We have a similar approach, adding the assumption the initiation of meta-
orders by institutional investors in our database has been caused by an antici-
pation of the β of market moves.

Our results are compatible with Capital Fund Management meta-orders
cleaned from α and with the cash trades of [66]: we found no permanent effect
once the informational content associated to the meta-orders. Our methodol-
ogy is described in Chapter 3 Section 3.7.

Estimation of Hawkes kernel

Recently, Bacry et al. [15] proposed a non-parametric estimation method for
multivariate symmetric Hawkes processes, based on Fourier computations and
Bartlett specter theory. In the following, we are investigating the convergence
speed of this method in the case of an univariate counting process, i.e. such that
its intensity λt , satisfies:

λt =µ+
∫ t

−∞
ϕ(t − s)d Ns , (1.42)

where µ> 0 is the exogenous intensity and ϕ is a positive function with support
on (0,∞) called decay kernel.
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Figure 1.34 – Post-execution profile without the impact of other meta-orders. Price moves
are considered relatively to close price the day before execution (units = basis points).

Notation
Let us consider a univariate Hawkes process (Nt )t∈R+ with stationary incre-

ments described by (1.42). The conditional intensity (λt )t∈R+ has itself station-
ary increments with mean:

Λ= E[λt ].

Taking expectation of both sides of (1.42) allow us to compute Λ under the sta-
tionary hypothesis:

Λ=µ+`Λ.

This equation has a meaningful solution only under the condition, `< 1:

Λ= µ

1−` .

The estimation procedure of ϕ proposed by Bacry et al. in [15] is based on
the empirical computation of the auto-covariance function of the Hawkes pro-
cess at scale h and lag t , v (h)(t ):

v (h)(t ) = 1

h
Cov(Nu −Nu−h , Nu+t −Nu+t−h),

hich does not depend on u because the increments of Nt are stationary. The
authors showed in the later cited paper that v (h) can be expressed as a function
of ϕ and g (h), where g (h)(t ) = (1−|t |/h)+:

v (h)(t ) =Λg (h)(t )+Λg (h)?ψ(t )+Λg (h)? ψ̃(t )+Λg (h)? ψ̃?ψ(t ), (1.43)

where ? stands for the convolution product, ψ̃(t ) =ψ(−t ) and ψ is defined as:

ψ(t ) =
∞∑

n=1
ϕ(?n)(t ) (1.44)
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where ϕ(?n) refers to the n-th auto-convolution of ϕ. In the Fourier domain
(1.43) and (1.44) become:

F [v (h)] =ΛF [g (h)]|1+F [ψ]|2 (1.45)

and

F [ψ] = F [ϕ]

1−F [ϕ]
. (1.46)

where F [ f ] is the Fourier transform of f :

F [ f ](ω) =
∫
R

e−iωt f (t )d t , ∀ω ∈R (1.47)

Knowing v (h), we are able to compute |1 +F [ψ]|2 since the function g (h)

is known (see equation 1.45). The central point of the estimation is the Paley-
Wiener theorem which allows to recover F [ψ]. But in the Fourier domain, F [ψ]
corresponds to a unique F [ϕ] (through equation 1.46). Knowing F [ϕ] one can
easily find our decay kernel ϕ.

The Paley-Wiener theorem allows to recover a filter knowing the filter’s am-
plitude under some hypotheses (see [114] for more details). In our case, we can
retrieve 1+F [ψ] knowing R = |1+F [ψ]| and using the Hilbert transform:

1+F [ψ] = Re−iH [logR],

where the Hilbert transform, H [·], is defined as:

H [ f ](t ) = 1

π
lim

0<ε→0

∫
u>|ε|

f (t −u)

u
du, ∀ f ∈S (R),

where S (R) denotes the Schwartz space.
Construction of the estimator
Assume that we have the access of the all jump times t1, t2, . . . , tn of the

Hawkes process on the interval [0,2T ]. Let us summarize the different steps for
the decay kernel estimation:

1. Estimate the average intensityΛ:

Λ̂T = NT

T
. (1.48)

and set Λ̂?T = max(µ0/(1−`0),Λ̂T ).

2. Set h > 0 “small enough” and estimate the auto-covariation function
v (h)(t ) for t ∈ [0,αT ] (αT will be optimally chosed):

v̂ (h)
T (t ) = 1

T

bT /hc∑
i=1

(
∆N (i h)−hΛ̂?T

)(
∆N (i h + t )−hΛ̂?T

)
, (1.49)

where ∆N (i h) = N (i h)−N ((i −1)h). For t ∈ [−αT ,0] put v̂ (h)
T (t ) = v̂ (h)

T (−t )

and for t ∉ [−αT ,αT ] put v̂ (h)
T (t ) = 0. We will need the mass of v (h) to be

concentrated on [−αT ,αT ]. Since v (h) has an exponential decrease, αT

will be a function of logT .

3. Decompose the function v̂ (h)
T − Λ̂?g (h) on a Fourier base ( fn)n≥0 on the

interval [−αT ,αT ].

ĉ(h)
n,T = 1

2αT

∫ αT

−αT

(v̂ (h)
T (t )− Λ̂?T g (t )) fn(t )d t , (1.50)

where fn(t ) = exp(−i 2πnt/αT ).
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4. Approximate the Fourier transform of v (h) by

F [v̂ (h)
T ] = Λ̂?T F [g (h)]+

L∑
−L

ĉ(h)
n,T F [ fn],

where L is a positive integer which will be optimally chose later on.

5. Set R̂?(h)
T = max

{
R̂(h)

T ,1/(1+`0)
}

, where:

R̂(h)
T (ω) =


√

|F [v̂ (h)
T ](ω)|

Λ̂?T F [g (h)](ω)
, if |ω| ≤ π

h

1 if |ω| > π
h

(1.51)

6. Compute the Hilbert transform of log
(
R̂?(h)

T

)
:

ξ̂(h)
T =H [log R̂?(h)

T ] (1.52)

7. Compute the Fourier transform of ϕ using the Paley-Wiener theorem:

F [ϕ̂(h)
T ] = 1− e i ξ̂(h)

T

R̂?(h)
T

(1.53)

8. Invert F [ϕ̂(h)
T ]:

ϕ̂(h)
T =F−1[1− e i ξ̂(h)

T

R̂?(h)
T

]

From a theoretical point of view, the estimation method works for any h.
But F [g ](ω) = (4/ω2h)sin2(ωh/2) cancels for all ω = 2nπ/h,n ∈ Z,n 6= 0 and it
is not straightforward how to invert (4.10). So, as long as h is “small enough”, we
compute R̂ only on the [−π/h,π/h] interval (step 5 of our estimator construc-
tion). Consequently, we need to have the mass of |1+F [ψ]| concentrated on the
[−π/h,π/h] interval, so we need h “small enough”. In order to obtain R̂?

T in equa-
tion (4.21), we divide by F [g (h)], which is close to h on the [−π/h,π/h] interval.
So we need h “large enough”. The last two constraints on h forced us to choose
h in order to obtain our best convergence rate.

Main results
We describe the smoothness of a function by the number of times it is differ-

entiable. In order to extend the notion of differentiability to non-integer values,
we use Sobolev spaces on R defined by:

W s =
{

f ∈L 2(R),
∫
R

(1+ω2)s |F [ f ](ω)|2dω<∞
}

,

equipped with the norm:

|| f ||2W s =
∫
R

(1+ω2)s |F [ f ](ω)|2dω.

For technical reasons, we are not able to accurately control the behavior of
the estimator if µ tends to 0 or infinity, but also if ` tends to 1 or ||ϕ||∞ tends to
infinity. In such cases, the number of point in the process is either exploding or
vanishing. Since our estimator of v (h) will be computed only on a finite interval
I (from practical viewpoint), we need an assumption on ϕ ensuring the mass of
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v (h) on the interval I c is unimportant. This could be done by assuming ϕ has
a compact support. Let us define for all positive real numbers 0 < µ0 < µ1, 0 <
p0 < 1, φ and A the following subsets of R×W s and R×A γ,r :

W s
µ0,µ1,`0,φ,A =

{
(µ, f ) ∈ [µ0,µ1]×W s : supp( f ) ⊂ [0, A],

∫ A

0
f (t )d t ≤ `0, f (t ) ≤φ ∀t ∈ [0, A]

}
.

Theorem 4. We work under the assmption ||ϕ||L 1 < 1. If (µ,ϕ) belongs to
W s
µ0,µ1,`0,φ,A , our estimator ϕ̂(h)

T of the decay kernel ϕ satisfies:

E[||ϕ− ϕ̂(h)
T ||22] > T − 2s−1

2s+1 ,

where > means inequality up to a constant that depends on A,µ0,µ1,`0,φ, and
M only.

One can observe that the convergence rate is not optimal. This is a short-
coming of the estimation method. The problem appears in step 5, when we di-
vide by F [g ]. As we stressed before, since F [g ] cancels for all ω = 2nπ/h,n ∈
Z,n 6= 0, we compute quantity R̂ only on the interval [−π/2h,π/2h]. This give
us our worse bound L/T h which derived from the variance of the coefficients
ĉn . We can show that E[|ĉn − cn |2] > h/T and this is the best we can hope. Thus,
E[|v̂(t )− v(t )|2] has, at least, an order of h/T . In this condition, it is hard to be-
lieve the inequality E[|ĉn − cn |2] > h/T is suboptimal.

At the end of 2000, B.Y. Levit was interested in the estimation of “very” regu-
lar functions, the A γ,r class containing all functions f such that:

|| f ||2A :=
∫
R

e2|γt |r |F [ f ](t )|2d t <∞.

In a series of papers (see for example [12], [11]), he showed that under different
statistical models, the convergence rate of estimators is the best we can hope,
T −1 (where T is the asymptotic parameter). From this point of view, our estima-
tion method is good enough:

Theorem 5. If ϕ ∈A
γ,r
µ0,µ1,`0,φ,A , where

A
γ,r
µ0,µ1,`0,φ,A =

{
(µ, f ) ∈ [µ0,µ1]×A γ,r : supp( f ) ⊂ [0, A],

∫ A

0
f (t )d t ≤ `0, f (t ) ≤φ ∀t ∈ [0, A]

}
,

our estimator ϕ̂(h)
T of the decay kernel ϕ satisfies:

E[||ϕ− ϕ̂(h)
T ||22] >

1

γ2

(
logT

)2/r T −1,

where > means inequality up to a constant that depends on A,µ0,µ1,`0,φ, and
M only.
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2.1 INTRODUCTION

The increasing proportion of financial transaction taking place in electronic
markets has engendered huge changes. In stock (or future) markets, human bro-
kers (dealers) were replaced by the limit order book (LOB) where participants
can place limit, market or cancel order. The dynamic of the LOB resembles at a
queuing system where limit order wait to be executed against market orders or
to be cancel (see Chapter 1 Section 1.1 for detail). One of the central issue of the
quantitative research is the modeling and the analysis of the volume pressures
effects on the price, namely the market impact (see [10, 27, 60, 104, 128, 32, 52]
and the references therein).

It seems obvious that a buy (sell) trade should push the price up (down)
and it is easily demonstrated empirically. Thus, market impact tends to increase
the execution cost of a strategy. Indeed, the second buy order is, on average,
more expensive than the first, the third more expensive than the second and so
on. Controlling the market impact is essential for practitioners in order to limit
execution costs (see [90]), particularly for important investors whose volume is
much larger than the available liquidity in the LOB. A common strategy consists
in splitting in small orders and executes them incrementally. This sequence
of small orders is commonly called meta-order. Nowadays, algorithmic high-
frequency trading is the new way of executing those meta-orders.

The literature on this topic is often rooted to the seminal work of Kyle [88].
The author showed that the market impact is both linear in the traded volume
and permanent in time. However, the Kyle’s model is not consistent with empir-
ical studies that, despite the diversity of market participants, trading strategies,
execution style or execution time, report a strictly concave volume dependence,
i.e. the so-called square-root law (see [23, 10, 118]).

A real breakthrough in the market impact understanding is the “propagator
model” 1 of Bouchaud et al. [118, 32]:

P (n) = ∑
k≤n

G(n −k)εk f (vk )+ηk , (2.1)

where P is the price, ηk is a white noise, f is a function describing the volume
dependence of a single trade’s impact, also called instantaneous market impact
function, and G accounts for the temporal dependence of the market order’s
impact. This model was the starting point of numerous works that deal with
the following questions: what is the shape of the instantaneous market impact
function f (v) ( see[79]) and that of the decay kernel G (see [81, 60]), the market
impact is permanent or not (see [118, 33, 27, 104, 66]).

Nonetheless, the “propagator model” has some inconveniences. First, the
price does not evolve in real time (i.e physical time), but in trading time (i.e. n
accounts for the n-th trade). Thus, the model is rather difficult to be used in high
frequency trading. Moreover, the nature of the white noise ηk is not well defined
and estimating the volatility is not straightforward.

Even if the market impact time dependence presents a real interest in term
of optimal execution, few empirical studies exist in the quantitative finance lit-
erature. In 2009, Moro et al. [104] showed the market impact grows in time ac-
cording to a power-law while trading and, after the order is finished, it reverts to

1. The interested reader could find in [60] a continuous version of the “propagator model”.
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a level of about 0.5− 0.7 of its value at its peak (see Fig. 2.1). We observe that
during the execution, the price is pushed in the adverse direction becoming
less attractive as time goes by. The price reaches the maximum distance from
the arrival price at the end of the execution. The difference between the two is
generally refers as temporary impact. After the execution a reversal effect is no-
ticed. This is the decay part when the price converges back toward its future per-
manent level. The phenomenon is called permanent impact. Recently, Bershova
and Rakhlin [27] found that the temporary market impact is on average a square
root of trade duration and the permanent market impact to be roughly 0.66 of
the temporary impact as predict by the faire price condition (see [53] for more
details).

Figure 2.1 – Market impact time dependence from Moro et al. [104].

There are two visions about why orders impact the price. The informational
vision, which is favored by economists, refers to market impact as the way infor-
mation is conveyed to the market. In this framework, orders reveal the funda-
mental value of the price but do not really provoke it (see [70, 66, 53]). In this pa-
per we share a mechanical vision where price moves are the result of two antago-
nist forces: a sell pressure driving prices down and a buy pressure driving prices
up. The adepts of this vision have a phenomenological approach: like physi-
cists, they strive to describe the behavior of the price dynamic through consis-
tent quantitative laws and models [17, 18, 39, 3, 38, 55, 116, 32, 118, 117, 86, 122].

The goal of this work is to propose a continuous time model for the market
impact using a point process approach [45]. This is a natural framework since
price lives on a tick grid and jumps at discrete random times (see [55, 127, 77, 25,
18, 16, 15] for others studies where a point process approach is used in quantita-
tive finance). A special class of point processes is the self exciting (Hawkes) pro-
cesses. Those processes are intuitively similar to Poisson processes, but unlike
the ordinary Poisson processes, the intensity of Hawkes processes is stochas-
tic and depends upon their own historic events. Because current transactions
cause future trades (see [118]), the self exciting processes naturally recreate the
microstructure price dynamic (see [17]). The Hawkes framework allows us to
propose a market impact model living on the same space as the price and ac-
counting for empirical findings as Fig. 2.1.

Let us insist on the fact that market impact model living on the same space
as the price. Indeed, in various papers concerning the optimal execution, the
price model and market impact model are exogenous (see [9, 6, 124, 84]). In our
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framework, the price and the market impact models reside in the same space
and interact through the Hawkes process. This really is a natural framework for
those who are interested in optimal execution.

2.2 TICK-BY-TICK PRICE MODELS

We consider price modelling at the level of tick-by-tick data. Let

P = (Pt )t≥0

denote the process of price levels at which buy or sell transactions of a given
asset occur. We start with P0 = 0 and the process P has values in Z (tick units),
implicitly defined on a rich enough filtered probability space

(
Ω,F , (Ft )t≥0,P

)
.

We assume that P is piecewise continuous, with jumps of ±1 tick 2. Thus we
have the decomposition

Pt = N+
t −N−

t , t ≥ 0

where N = (N+, N−) is a bivariate point process, 3 each coordinate representing
the cumulated sum of upward or downward jumps respectively. We associate
to N its stochastic intensity λ= (λ+,λ−), i.e. the unique Ft -predictable process
defined 4 by

P
(
N± has a jump in [t , t +d t ] |Ft

)=λ±
t d t

where Ft is the sigma-field generated by N up to time t andP denotes the law of
N = (N+, N−). In the paper, we shall always impose a certain stability property,
which ensures that P behaves like a Brownian diffusion under Pwhen correctly
scaled macroscopically.

Definition 5. The law P of N = (Nt )t≥0 is macroscopically stable if
(
τ−1/2(N+

τv −
N−
τv ), v ∈ [0,1]

)
converges in law to (σWv , v ∈ [0,1]) as τ→∞, where (Wv )v∈[0,1]

is a standard Brownian motion and σ2 > 0.

The simplest example is given by λ±
t = µ for all t ≥ 0 and for some µ > 0.

In that case, P is a compound Poisson process with intensity 2µ and symmetric
Bernoulli jumps {−1,1}. In particular, P = N+−N− has independent increments
and E[Pt ] = 0. The macroscopical stability is obtained with σ2 = 2µ.

2.3 MARKET IMPACT

Following Barra Market Impact Model Handbook [23], market impact de-
notes the difference between the expected change of price of a given trade (or
a series of trade) of given size(s) and sign(s) and the expected change of market
price in absence of this specific transaction. However, such a notion has to be
handled with care if practical measurements are sought.

In this chapter, we consider the point of view of an agent who sends to the
market a trade (or a series of trades) at a certain rate between t0 and t0 +T , for
some T > 0. This may correspond to a trader that will launch aggressive orders

2. A fairly accurate approximation for liquid securities.
3. assumed to have no common jumps
4. See the book Of Jacod and Shiryaev [?] for more details
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starting at time t0 and for a certain duration T . The action of the trader will be
modeled by a smooth perturbationQ of the historical probability P. The market
impact can then be measured as

EQ
[
Pt −Pt0

]
for every t ≥ t0

or, in other words, the expected price change Pt −Pt0 underQ, i.e. from the point
of view of the trader who has prior knowledge that a certain series of aggressive
orders will be launched over [t0, t0+T ]. In practice moreover, thanks to this priv-
ileged information it will be possible to approximate the expectation of the price
change Pt −Pt0 underQ empirically.

For t0,T > 0, let S (t0,T ) denote the set of bounded functions

h : [0,∞) → [0,∞)× [0,∞)

such that h(t ) = 0 if t ∉ [t0, t0 +T ] and such that (componentwise)∫
[t0,t0+T ]

h(t )d t <∞.

Definition 6. The market impact measure associated to h ∈S (t0,T ) is the prob-
ability measure

Ph = Lt (h)P on Ft ,

where

Lt (h) = exp
(∫ t

0
log

(
1+ h+(s)

λ+
s

)
d N+

s −h+(s)d s +
∫ t

0
log

(
1+ h−(s)

λ−
s

)
d N−

s −h−(s)d s
)

(2.2)
for h = (h+,h−) and where λ = (λ+,λ−) is the stochastic intensity of N =
(N+, N−) under P.

The previous definition is nothing more than a change of probability of “Gir-
sanov type” for point processes (see for example Chapter 13 of Daley and Vere-
Jones [45] or Chapter 19 of Lipster and Shiryaev [100]). Thus, the dynamic of
our stochastic processes N = (N+, N−) changes when the original probability P
is changed to an equivalent probability measure Ph . In Section 2.4 we describe
the dynamic of N under Ph in the special case of a Hawkes process.

Definition 7. The market impact function of h ∈S (t0,T ) is the function

t ; Mh(t ) = EPh

[
Pt −Pt0

]
for every t ≥ t0.

The transient market impact function of h is the restriction of the market im-
pact function of h over [t0, t0 +T ]. The decay market impact function of h is the
restriction of the market impact function of h over [t0 +T,∞). The permanent
impact of h is the limit (if it exists)

Mh(∞) = lim
t→∞Mh(t ).

Proposition 1. For every h ∈S (t0,T ), we have

H(P,Ph) <∞, (2.3)

where H(P,Q) = EP
[

log dP
dQ

] ≤∞ denotes the Kullback-Leibler divergence or en-
tropy between the two probability measures P andQ.
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The proof of this result is straightforward since h has compact support and
λ±

t ≥µ,∀t ≥ 0.

Remark 1. The interpretation of the entropy property (2.3) can be the following:
there is no event A such that the market impact of h can be detected by observ-
ing the occurrence or non-occurrence of A . In a statistical oriented language,
there is no possibility to test P against Ph perfectly.

2.4 MARKET IMPACT AND MICROSTRUCTURE

Modeling microstructure

In this paragraph we incorporate microstructure effects following the price
model introduced by Bacry et al. [17]. For most liquid assets, an upward jumps is
more likely followed by a downward jump and vice-versa. Phenomenologically,
this can be reproduced as follows: takeλ= (λ+,λ−) under P as the intensity of a
bivariate Hawkes process specified by

λ+
t =µ+

∫ t

0
φ(t − s)d N−

s ,

λ−
t =µ+

∫ t

0
φ(t − s)d N+

s ,

for a causal kernel

φ :R→ [0,∞), φ(t ) = 0 if t ∉ [0,∞)

that accounts for market manipulation at small scales: baseline Poisson arrivals
with intensity µ for both upward and downward jumps are perturbed as follows:
an upward jump recorded by N+ (respectively, a downward jump recorder by
N−) automatically increases the instantaneous probability λ− (respectively λ+)
of a downward jump (respectively upward jump) by the effect of ϕ?d N− (re-
spectively, ϕ? d N+). This model creates microstructure effects, i.e. it has the
ability to reproduce important empirical stylized facts such as a strong micro-
scopic mean reversion and Epps effect (we refer the interested reader to [17] for
more details about the construction and the properties of the model) and does
not explode as soon as φ(t ) is locally integrable (see [16] for detail):

Assumption 1. ∫ t

0
φ(s)d s <∞ for all t ≥ 0.

Furthermore, the process N = (N+, N−) has a stationary version under the
more restrictive condition:

Assumption 2.

||ϕ||L1 =
∫ ∞

0
φ(t )d t < 1. (2.4)

In this framework, the price is confined to live on a tick grid but preserves a
standard Brownian diffusion behaviour on large scales. Moreover, this approach
enables to track the macroscopical variance in rigorous mathematical terms.
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Theorem 6. Work under Assumption 1 . Then there exists a unique probability
measure P on a rich enough probability space such that under P, the process N =
(N+, N−) has stochastic intensity λ specified as above. If moreover Assumption
2.4 is verified and ∫ ∞

0
t 1/2ϕ(t )d t <∞,

then P is macroscopically stable with variance

σ2 = 2µ

(1−‖ϕ‖L1 )(1+‖ϕ‖L1 )2 .

This property and more general results on scaling limits for Hawkes pro-
cesses can be found in Bacry et al. [16]. Following the guidelines of the proof
exposed in the last cited paper and the fact that h has support compact, we also
have (see Section 2.7 for a sketch of proof):

Proposition 2. Work in the same settings as in Theorem 6. ThenPh is macroscop-
ically stable with same variance σ2 as in previous theorem.

Microstructure and market impact

For any h = (h+,h−) ∈S (t0,T ), by 2.2, under Ph , we have

λ+
t =µ+h+(t )+

∫ t

0
ϕ(t − s)d N−

s ,

λ−
t =µ+h−(t )+

∫ t

0
ϕ(t − s)d N+

s .

This is a classical result of the theory of point processes obtain via the Girsanov
formula (see Daley and Vere-Jones [45]). The previous representation enables to
obtain an explicit formula for the market impact Mh(t ) (see Section 2.7 for the
proof).

Theorem 7 (General formula for market impact). Work under Assumption 2.4.
For every h ∈S (t0,T ), we have

Mh(t ) =Gh(t )−
∫ t

t0

κ(t − s)Gh(s)d s, t ≥ t0, (2.5)

where

Gh(t ) =
∫ t

t0

(
h+(s)−h−(s)

)
d s, ∀t ≥ t0

and
κ= ∑

n≥1
(−1)n+1ϕ(?n), (2.6)

where f ? g (t ) = ∫ ∞
0 f (t − s)g (s)d s denotes the usual convolution product on

L1([0,∞),d t ), ϕ(?1) =ϕ and ϕ(?n) =ϕ(?n−1)?ϕ.

Remark 2. Equation 2.6 reminds the renewal theory. This is normal because, in
order to find 2.5, we solve a renewal equation (see section 2.7).
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2.5 INSTANTANEOUS MARKET IMPACT

In this section, we specify two forms for h ∈ S (t0,T ) introducing moreover
a volume variable throughout a trading strategy. By means of Theorem 7, we
investigate further classical empirical properties of market impact and their link
with microstructure as given by our model.

Instantaneous one-sided market impact

We consider the toy example of measuring the effect of a single buy aggres-
sive order (for instance) of volume v (measured in number of shares say) at time
t = t0 under Ph . This formally corresponds to taking for the impact function 5

h = hi
1 =

(
h+,h−)

with {
h+(t ) = f (v)δt0 (t )
h−(t ) = 0,

where δt0 denotes the Dirac mass at point t0 and

f : [0,∞) → [0,∞)

models the influence of the volume v . However, hi
1 ∉ S (t0,T ) for any T > 0. In

order to circumvent this difficulty, we introduce the family of impact functions
h = h1

T = (
h+

1,T ,h−
1,T

)
defined by{

h+
1,T (t ) = f (v)

T ρ
( t−t0

T

)
, T > 0

h−
1,T (t ) = 0,

(2.7)

where
ρ :R→ [0,∞), ρ(t ) = 0 if t ∉ [0,∞)

is a causal kernel such that ∫ ∞

0
ρ(t )d t = 1.

We are interested in Mh1
T

(t ) in the limit T → 0. Abusing notation slightly, we set

Mhi
1
(t ) = limsup

T→0
Mh1

T
(t ) (2.8)

and refer to the one-sided market impact of an instantaneous trade.

Remark 3. Although Mh1
T

(t ) is implicitly specified through ρ, we will see that the
market impact of an instantaneous trade Mhi

1
(t ) is independent of the choice of

ρ.

Applying Theorem 7 one can prove (see Section 2.7) that:

Theorem 8 (One-sided market impact of an instantaneous trade). Assume that
(h1

T ,T > 0) is specified by (2.7). Then the market impact function of an instanta-
neous trade according to (2.8) is given by

Mhi
1
(t ) = f (v)

(
1−

∫ t−t0

0
κ(s)d s

)
, t ≥ t0 (2.9)

and does not depend on ρ. Moreover, under the assumption

5. The index 1 is from one-sided and i from instantaneous
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(A1) ϕ(t ) ≥ϕ(?2)(t ),∀t ≥ 0,

the market impact function Mhi
1
(t ) is decreasing on [t0,∞) and the permanent

impact of an instantaneous trade is given by

Mhi
1
(∞) = f (v)

1

1+||ϕ||L1
(2.10)

and the following bracketing property holds:

1

2
Mhi

1
(t ) <Mhi

1
(∞) ≤Mhi

1
(t ) (2.11)

for every t ≥ t0. Finally, under the assumption

(A2) κ(t ) is decreasing,

the market impact function Mhi
1
(t ) is convex over [t0,∞).

Remark on the volume-time dependence. The f function corresponds to the
instantaneous market impact function from the propagator model (2.1). As em-
pirical found in [117] and used by others authors before us (see [60, 118]), we
suppose the market impact can be separated in a factorized form: one depend-
ing on volume and other depending only on time.

Remark on Assumptions (A1). The assumption ϕ ≥ ϕ(?2) ensures that κ is
positive (see Section 2.7). This is necessary for the market impact function,
Mhi

1
(t ), to be decreasing in time. Let us point out that even if ϕ is positive and

decreasing, we can not be sure thatκ is non-negative. For example, ifϕhas com-
pact support then κ is negative for some t > 0.

Remark on Assumptions (A2). There is no simple condition on ϕ such that κ
is decreasing. Nevertheless, this assumption is verified for some natural ϕ as we
will see later on. Let us point out that the reciprocal is true: if κ is positive and
decreasing then ϕ is decreasing. This last result is an outcome of the “inverse”
of equation (2.6) (see Section 2.7 for the proof):

ϕ=
∞∑

n=1
κ(?n).

Some particular cases for kernelϕ

Exponential kernel decay. A slightly annoying fact is that the explicit formula
in (2.9) depends on κ=∑

n≥1(−1)n−1ϕ(?n) which is not readily computable for a
given ϕ, except in the case where ϕ is exponential. In that case, we have

Corollary 1 (One sided instantaneous market impact with exponential ker-
nel). For microstructure kernels ϕ with exponential decay

ϕ(t ) =αexp(−βt )1[0,∞)(t ), 0 <α<β,

the Assumptions 2.4, (A1) and (A2) are satisfied and we have (taking t0 = 0 to ease
further notation)

Mhi
1
(t ) = f (v)

(
β

α+β + α

α+βe−(α+β)t
)

. (2.12)
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Figure 2.2 – The functions ϕ (in blue),
ϕ(t ) = 0.1∗(0.25+t )−1.5 and κ (in green).
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Power-law kernel decay. Beyond this specific case, it seems hopeless to ob-
tain simple formulas for the instantaneous market impact. However, there is an
explicit connection between ϕ and κ in terms of their asymptotic decay, which
enables to exploit Theorem 8 further.

Lemma 1 (Asymptotic connection between ϕ and κ). Work under Assump-
tions 2.4 and (A1). Let p ∈ [0,1]. Then

∫
[0,∞) t pκ(t )d t < ∞ if and only if∫

[0,∞) t pϕ(t )d t <∞.

As a consequence, if we specify ϕ with a power-law decay with exponent β,
in the sense that

sup

{
b, :

∫ ∞

1
ϕ(t )t b−1d t <∞

}
=β,

then an analogous result holds true for κ thanks to Lemma 1. Let us point out
that if ϕ(t ) ∼ t−β, β > 1, when t tends to infinity 6, we cannot prove a similar
property for κ without additional assumption on ϕ. Nevertheless, in the special
case when ϕ writes in canonical form:

ϕ(t ) =α(δ+ t )−β1t≥0,β ∈ (1,2), (2.13)

such that ||ϕ||L1 < 1, we empirically verified that ϕ and κ have same equivalent
to infinity. The next figures (Fig. 2.2 and 2.3) represent un example of functions
ϕ and κ=∑

n≥1(−1)n+1ϕ(?n) for α= 0.1,β=−1.5 and δ= 0.25.

Corollary 2 (One-sided instantaneous market impact with power-law kernel).
Work in the same setting as in Theorem 8. For microstructure kernels ϕ such that
κ=∑

n≥1(−1)n+1ϕ(?n) has power-law decay of the form

κ(t ) =α(γ+ t )−β1[0,∞)(t ), α,β,γ> 0, β> 1,

we have (taking t0 = 0 to ease further notation)

Mhi
1
(t ) = f (v)

( 1

1+αγ−β+1/(β−1)
+ α

β−1
(γ+ t )−β+1). (2.14)

Remark 4. We observe that the market impact function, Mhi
1
(t ) (eq. 2.14), de-

creases when t →∞ toward the permanent market impact, Mhi
1
(∞), as t−β+1,

i.e. (
Mhi

1
(t )−Mhi

1
(∞)

)
∼t→∞ t−β+1.

We expect this remains true whenever the kernel ϕ has a canonical form with
exponent β.

6. In this case ϕ has a power-law decay with exponent β according to our definition.
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Figure 2.4 – Market impact of one trade
with exponential decay kernel (2.12)
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Figure 2.5 – Market impact of one trade
with power-law decay (2.14)

The following figures represent the instantaneous one-side market impact
function with exponential and respectively power-law kernel. For the exponen-
tial kernel 2.4 we took ϕ(t ) = αe−βt with α= 0.2 and β= 0.3. For the power-law
kernel2.5 we took κ = α(δ+ t )−β with α = 0.1,β = 1.5 and δ = 0.25. Let us point
out that the volume v have no influence on the shape of the market impact func-
tion, it is just a multiplicative constant. For practical reasons, we took f (v) = 1.

Instantaneous two-sided market impact

Even at a toy modelling level, a slightly annoying fact in our example of Sec-
tion 2.5 is that the choice hi

1 = (h+,h−) = (
f (v)δt0 (d t ),0

)
(or rather its modified

version h1
T (t ) given by (2.7)) for an instantaneous buy order ignores any specific

reaction of the market on the downward change of price, since h−(t ) ≡ 0. In par-
ticular, it is no surprise that we exhibit permanent price impact in the sense that
Mhi

1
(∞) 6= 0. In our restricted context of instantaneous price impact, this draw-

back can easily be circumvented by allowing h−(t ) 6≡ 0, enabling thus to obtain
a new flexibility with respect to permanent market impact.

Our price formation model acts right above the limit order book: we ag-
gregate the effect of agents by two coupled random intensities for the upward
and downward changes of price. So far, we have modeled the activity of a new
buy by a significant perturbation of the stochastic intensity of upward change of
prices (and consistently have obtained a significant permanent market impact).
In practice, a buy order at time t0 encourages an extra-activity on the bid side
too, (see for example [49, 3]). A simple, intuitive and explicit way to integrate
microstructure effects in the price formation process can be the following: right
after time t0, a buy order (modeled 7 by h+(t ) = f (v)δt0 (d t )) acts on the stochas-
tic intensity λ− of downward change of prices as if a certain intensity of upward
jumps had occurred, leading to

λ−
t =µ+

∫ t

0
ϕ(t − s)

(
d N+

s + cδt0 (d s)
)
,

where ϕ is the mutually exciting kernel accounting for microstructure and c ≥ 0
is a constant to be specified, possibly depending on the volume function f (v)
that we shall further parameterise as

c = f (v)
C

||ϕ(t )||L1
for some C ≥ 0. (2.15)

7. or rather its mollified version 2.7.
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We are thus led to consider the class of impact functions h ∈S (t0,T ) of the form
h = hi

2 =
(
h+,h−)

with {
h+(t ) = f (v)δt0 (d t )
h−(t ) = f (v) C

||ϕ||L1
ϕ(t − t0), (2.16)

As in previous section, hi
2 ∉S (t0,T ) 8 for any T > 0. In order to circumvent this

difficulty, we introduce the family of impact functions h = h2
T = (

h+
2,T ,h−

2,T

)
, T >

0 defined by {
h+

2,T (t ) = f (v)
T ρ

( t−t0
T

)
h−

2,T (t ) = f (v) C
||ϕ||L1

ϕ(t − t0),
(2.17)

where ρ is a positive causal kernel with integral 1. Similary, we set

Mhi
2
(t ) = limsup

T→0
Mh2

T
(t ) (2.18)

and refer to the two-sided market impact of an instantaneous trade.

Discussion on the parameter C . The parameter C is very intuitive and it
quantifies the ratio of mean-reversion reaction (i.e., the downward impact)
and of the “trend-following” reaction (the upward impact). Indeed the L1

norm of the upward reaction to an impulsive buying order is f (v)||h+||1 =
f (v)||δ||L1 = f (v), whereas the downward reaction to the same order is
f (v)||h−||1 = f (v)||ϕ||L1C /||ϕ||L1 = C f (v). Thus, one can distinguish 3 cases
of interests.

• C = 0 : no mean-reversion reaction. We have seen in the previous section
that in this case, the permanent market impact is very important, at least
one half of the instantaneous market impact Mhi

1
(t0).

• C = 1 : the mean-reversion reaction is as “strong” (in terms of the norm
||.||L1 ) as the trend-following one. So we expect the two to compensate
asymptotically, i.e., we expect the permanent market impact to be 0 (see
Theorem 9 for confirmation),

• C ∈]0,1[ : the mean-reversion reaction is not zero but strictly smaller than
the trend-following reaction, i.e., we expect the permanent market impact
to be strictly positive but not so important as in the C = 0 case.

Applying Theorem 7 we have an explicit representation of the effect of the
component h−(t ) = cϕ(t − t0) (see Section 2.7 for the proof):

Theorem 9 (Two-sided market impact of an instantaneous trade). Assume that
(h2

T ,T > 0) is specified by 2.17. Then the market impact function of an instanta-
neous trade is given by

Mhi
2
(t ) = f (v)

(
1−

(
1+ C

||ϕ||L 1

)∫ t−t0

0
κ(s)d s

)
, t ≥ t0 (2.19)

and does not depend on ρ. Under the Assumption (A1), the market impact func-
tion Mhi

2
(t ) is decreasing on [t,∞). Moreover, the permanent impact of an instan-

taneous trade is given by

Mhi
2
(∞) = f (v)

1−C

1+‖ϕ‖L1
(2.20)

8. Index 2 for two-sided and i for instantaneous
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and the following bracketing property holds:

Mhi
2
(t ) ≥ 0 if and only if C ≤ 1. (2.21)

In particular, for C = 1 the permanent market impact is zero, Mhi
2
(∞) = 0. Finally,

under the Assumption (A2), the market impact function Mhi
2
(t ) is convex over

(t0,∞).

Remark on the permanent/non-permanent market impact condition. In
the general framework of Theorem 7 the permanent market impact is zero as
soon as

||h+||L1 = ||h−||L1 ,

i.e. the intensities λ+ and λ− are disturbed by functions, h+ and respectively
h−, having same mass. This result have a very intuitive interpretation: the per-
manent market impact is zero if the “activities” on the buy and respectively sell
side are similar. Moreover, the market impact function Mhi

2
(t ) is positive for all

t ≥ t0 if and only if the mass put on λ− is less important than the mass put on
λ+, i.e.

||h+||L1 ≥ ||h−||L1 .

Some particular cases for kernelϕ

Corollary 3 (Two-sided instantaneous market impact with exponential ker-
nel). For microstructure kernels ϕ with exponential decay

ϕ(t ) =αexp(−βt )1[0,∞)(t ), 0 <α<β,

the Assumptions 2.4, (A1) and (A2) are satisfied and we have (taking t0 = 0 to ease
further notation)

Mhi
2
(t ) = f (v)

(
β(1−C )

α+β + Cβ+α
α+β e−(α+β)t

)
. (2.22)

Corollary 4 (Two-sided instantaneous market impact with power-law kernel).
Work in the same setting as in Theorem 9. For microstructure kernels ϕ such that
κ=∑

n≥1(−1)n+1ϕ(?n) has power-law decay of the form

κ(t ) =α(γ+ t )−β1[0,∞)(t ), α,β,γ> 0, β> 1,

we have (taking t0 = 0 to ease further notation)

Mhi
2
(t ) = f (v)

( 1−C

1+αγ−β+1/(β−1)
+ (1+ C

αγ−β+1/(β−1)
)
α

β−1
(γ+ t )−β+1).

(2.23)

Remark 5. As in the previous case of an one-side market impact, the market im-
pact function, Mhi

2
(t ) (eq. 2.23), decreases when t →∞ toward the permanent

market impact, Mhi
2
(∞), as t−β+1, i.e.(

Mhi
2
(t )−Mhi

2
(∞)

)
∼t→∞ t−β+1.

We expect this remains true whenever the kernel ϕ has a canonical form with
exponent β.
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Figure 2.6 – Market impact of one
trade with exponential decay kernel
(2.22) and different ration C of mean-
reversion/trend-following (2.15)
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Figure 2.7 – Market impact of one trade
with power-law decay (2.23) and dif-
ferent ration C of mean-reversion/trend-
following (2.15)

The following figures represent the instantaneous two-sided market impact
function with exponential and respectively power-law kernel for different values
of C . For the exponential kernel (Fig. 2.6) we took ϕ(t ) = αe−βt with α = 0.2
and β= 0.3. For the power-law kernel (Fig. 2.7) we took κ= α(δ+ t )−β with α=
0.1,β= 1.5 and δ= 0.25. As in previous section, we took f (v) = 1.

2.6 MARKET IMPACT OF A CONTINUOUS STRATEGY

In this section, we consider the case of the market impact of a meta-order
starting at time t0, lasting a period T and corresponding to a continuous flow of
buying 9 orders with a trading rate rt supported by [t0, t0 +T ] (rt 6= 0 only for t ∉
[0,T ]). A particular interest will be attached for the case with a constant trading
rate. As stressed in Section 2.5, it seems natural to have a response function h− 6=
0. Thus, we consider the class of impact functions h = hc = (h+,h−) ∈ S (t0,T )
of the form: {

h+(t ) = f̃ (rt )
h−(t ) = C

||ϕ||L1

∫ t
t0

f̃ (rt )ϕ(t − s)d s.
(2.24)

Seeing the impact of f̃ (rs)d s as the infinitesimal impact of a buy order of
volume r d t , the previous model it is a superposition of the instantaneous two-
sided impact model. Let us point out that the case with no response function
(i.e. h− ≡ 0) is simply obtain by taking C = 0.

Remark on the function f̃ . Within this model, we no longer have a function
of volume, but a function of the trading rate rt . In order to mark this difference,
we chose to denote it f̃ instead of f as in previous cases. For the rest of this
chapter, we will suppose that f̃ is positive and bounded. This seems a natural
assumption since, in practice, the market impact of a buying strategy pushes, in
expectation, the price up and is never unbounded. Moreover, this assumption
guarantees that h ∈S (t0,T ).

By the means of Theorem 7, one can prove (see Section 2.7) that :

9. The impact of selling meta-order can be modeled using the exact same principles
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Theorem 10 (Two-sided market impact of a continuous strategy). The market
impact of a continuous strategy rt is given by

Mhc (t ) =
∫ t

t0

f̃ (rs)H(t − s)d s, t ≥ t0, (2.25)

where H(t ) = 1−
(
1+ C

||ϕ||L1

)∫ t
t0
κ(s)d s. Under the assumption that f̃ is bounded,

the permanent market impact writes

Mhc (∞) = 1−C

||ϕ||L1
|| f̃ (r )||L1 . (2.26)

In the particular case of a constant strategy, rt = r0,∀t ∈ [t0, t0 +T ], we have:

Mhc (t ) = f̃ (r0)1[0,T ]?H(t ), t ≥ t0. (2.27)

As a consequence, when C ≤ 1, under the Assumptions (A1) and (A2), the function
t ; Mhc (t ) is increasing and concave over [t0, t0 +T ] and decreasing and convex
over [t0 +T,∞).

Some particular cases for kernelϕ

Corollary 5 (Two-sided continuous market impact with exponential kernel).
In the case of a constant strategy, for microstructure kernels ϕ with exponential
decay

ϕ(t ) =αexp(−βt )1[0,∞)(t ), 0 <α<β,

we have (taking t0 = 0 to ease further notation)
– if t ∈ [0,T ]:

Mhc (t ) = f̃ (r0)
(β(1−C )

α+β t + Cβ+α
(α+β)2 e−(α+β)t

)
(2.28)

– if t > T

Mhc (t ) = f̃ (r0)
(β(1−C )

α+β T + Cβ+α
(α+β)2 (e−(α+β)(t−T ) −e−(α+β)t )

)
. (2.29)

Corollary 6 (Two-sided continuous market impact with power-law kernel).
Work in the same setting as in Theorem 10. In the case of a constant strategy, for
microstructure kernelsϕ such that κ=∑

n≥1(−1)n+1ϕ(?n) has power-law decay of
the form

κ(t ) =α(γ+ t )−β1[0,∞)(t ), α,β,γ> 0, β> 1

such that Assumption 2.4 is satisfied, we have (taking t0 = 0 to ease further nota-
tion)

– if t ∈ [0,T ]:

Mhc (t ) = f̃ (r0)

(
1−C

1+αγ−β+1/(β−1)
t+

(
1+ C

αγ−β+1/(β−1)

)
α

(β−1)(2−β)
(δ+t )2−β

)
(2.30)

– if t > T

Mhc (t ) = f̃ (r0)
1−C

1+αγ−β+1/(β−1)
T+

f̃ (r0)

(
1+ C

αγ−β+1/(β−1)

)
α

(β−1)(2−β)

(
(δ+ t +T )−β+2 − (δ+ t )−β+2

)
(2.31)
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Figure 2.9 – Market impact of a continu-
ous strategy with power-law decay kernel
(2.30) and (2.31) for different ration C of
mean-reversion/trend-following (2.15)

Remark on the case of the power-law kernel decay We work in the case when
β ∈ (1,2). Before going further, let us point out that several recent empirical
results ([15] and [69]) seem to show that the Hawkes kernel ϕ(t ) decays as
t−β,β> 1. Both studies found the exponent in the interval [1,1.5].

Decay. As in the previous cases, the market impact function, Mhc (t ) (eq.
2.31), decreases when t →∞ toward the permanent market impact, Mhc (∞) =
f̃ (r0) 1−C

1+αγ−β+1/(β−1)
T , as t−β+1, i.e.

(
Mhc (t )−Mhc (∞)

)
∼t→∞ t−β+1.

Transient market impact. In the case when the execution time T is very
large, i.e. T → ∞, the transient market impact (eq. 2.31) can have two asymp-
totical behaviors:

• C = 1 (corresponding to no permanent impact): the transient market im-
pact curve has asymptotically a power-law behave, in the sense that

Mhc (T ) ∼ T 2−β when T →∞,

• C < 1: the transient curve has asymptotically a linear behave in the sense
that

Mhc (T ) ∼ T when T →∞.

The following figures represent the market impact function of a constant
strategy rt = r0,∀t ∈ [0,T ] with exponential and respectively power-law kernel
for different values of C . For the exponential kernel 2.8 we took ϕ(t ) = αe−βt

withα= 0.2 andβ= 0.3. For the power-law kernel2.9 we took κ=α(δ+t )−β with
α= 0.1,β= 1.5 and δ= 0.25. The trading rate have no influence on the shape of
the transient market impact, it is just a multiplicative constant. We took f̃ (r0) =
1 and T = 10. Let us remark that, when C > closed to 0, the transient market
impact “seemms” to be linear even if we rigorously prooved it is concave. This is
explained by the ratio mean-reversion/trend-following which is too small.
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2.7 PROOFS

Proof of Theorem 7

This is a consequence of a more general result on Hawkes Processes:

Theorem 11. Let (N1, . . . , Nd ) be a d-multivariate Hawkes process defined by his
intensity λ= (λ1, . . . ,λd ):

λ(t ) =µ(t )+
∫

[0,t )
Φ(t − s)d N (s) (2.32)

where µ= (µ1, . . . ,µd ) and Φ= (ϕi j )1≤i , j≤d are vectors containing functions from
R+ to R+.

Under the assumptions:
• ∫ t

0 µ(s)d s <∞, ∀t > 0,
• the spectral radius of the matrix K = ∫ ∞

0 Φ(t )d t is inferior to 1, ρ(K ) < 1,
we have

E[Nt ] = ν(s)+
∫ t

0
Ψ(t − s)ν(s)d s, (2.33)

where Φ(?n) = Φ? . . .?Φ (with n terms on the right hand-side) and where the
convolution product of two matrices A(t ) = {ai j (t )} and B(t ) = {bi j (t )} is defined
as the matrix C (t ) = {ci j (t )}, such that

ci j (t ) =∑
k

ai k ?bk j .

.

Proof. Let us first remark the elements of the matrix Ψ are in L1. Indeed, by in-
duction we have,

∫ ∞
0 Φ(?n)(t )d t = K n and since ρ(K ) < 1, the seriesψ=∑

n≥1 K n

is finite component-wise, thus one gets:∫ ∞

0
Ψ(t )d t = K (I d −K )−1. (2.34)

We will now show that:

E[Nt ] =
∫ t

0
µ(s)d s +E[

∫ t

0
Φ(t − s)Nsd s] ∀t > 0. (2.35)

Using that N (t )−∫ t
0 λ(s)d s is a (Ft )-martingale (where (Ft )t≥0 be theσ-algebra

generated by the random variables Ni (s); s ≤ t ;1 ≤ i ≤ d), we have:

E[Nt ] = E[
∫ t

0
λ(s)d s] = E[

∫ t

0
µ(s)d s]+E[

∫ t

0
d s

∫ s

0
Φ(s −u)d Nu].

But, by Fubini’s theorem:∫ t

0
d s

∫ s

0
Φ(s −u)d Nudu =

∫ t

0

(∫ t

s
Φ(t −u)d t

)
d Nu =

∫ t

0

(∫ t−s

0
Φ(s)d s

)
d Nu .

We denote F (t ) = ∫ t
0 Φ(s)d s and using an integration by parts we have:∫ t

0
F (t − s)d Ns =

[
F (t − s)N (s)

]t

0
+

∫ t

0
Φ(t − s)Nsd s =
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= F (0)Nt −F (t )N0 +
∫ t

0
Φ(t − s)Nsd s =

∫ t

0
Φ(t − s)Nsd s.

So we obtain:

E[Nt ] = E[
∫ t

0
µ(s)d s]+E[

∫ t

0
Φ(t − s)Nsd s].

Using once again Fubini’s theorem:

E[Nt ] =
∫ t

0
µ(s)d s +

∫ t

0
Φ(t − s)E[Ns] (2.36)

This is a classical renewal equation and the solution is given by (3.31). The
interested reader can find more on renewal theory on the book of David Cox
([41]).

Let us now prove Theorem 7. We work under probability Ph as defined in
2.2. We recall that under Ph the intensities of (N+, N−) write:

λ+
t =µ+h+(t )+

∫ t

0
ϕ(t − s)d N−

s ,

λ−
t =µ+h−(t )+

∫ t

0
ϕ(t − s)d N+

s .

In order to ease further notation we take t0 = 0. We apply the previous theorem
in the particular case of the 2-dimensional Hawkes process (N+, N−) with Φ =(

0 ϕ

ϕ 0

)
and we successively compute:

• Φ?n =
(

0 ϕ?n

ϕ?n 0

)
if n is even andΦ?n =

(
ϕ?n 0

0 ϕ?n

)
if n is odd.

• ν(t ) = (ν+(t ),ν−(t )) = (tµ+∫ t
0 ( f (r )?h+)(u)du, tµ+∫ t

0 ( f (r )?h−)(u)du)
• Mh(t ) = EPh [N+

t −N−
t ] = (ν+(t )−ν−(t ))−κ? (ν+−ν−)(t ).

This proves Eq. 2.5 since ν+−ν− = f (r )?G .

Proof of Lemma 1

We recall that κ=∑∞
n=1(−1)n+1ϕ(?n). Which in the Fourier domain becames:

κ̂(ω) =
∞∑

n=1
(−1)n+1ϕ̂n(ω) = ϕ̂(ω)

1+ ϕ̂(ω)
,

where f̂ stands for the standard Fourier transform of f :

f̂ (ω) =
∫
R

exp(−i tω) f (t )d t .

By reversing the previous formula we get:

ϕ̂(ω) = κ̂(ω)

1− κ̂(ω)
=

∞∑
n=1

κ̂n(ω).

Returning in the time-domain we have:

ϕ=
∞∑

n=1
κ(?n). (2.37)
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Let p ∈ [0,1] and assume that
∫ ∞

0 t pϕ(t )d t <∞. Since we are under Assumption
(A1), i.e. ϕ≥ϕ(?2), κ(t ) ≥ 0. Indeed,

κ=ϕ−ϕ(?2) +
(
ϕ−ϕ(?2)

)
?

∑
n≥1

ϕ(?2n). (2.38)

Since κ is positive, it is easy to see that κ(?n) ≥ 0. So 0 ≤ κ(t ) ≤ ϕ(t ) and than∫ ∞
0 t pψd (t )d t <∞ is obvious .

Now, we will assume that
∫ ∞

0 t pκ(t )d t < ∞ and we will show that∫ ∞
0 t pϕ(t )d t <∞.

Let In = ∫ ∞
0 t pκ(?n)(t )d t ,∀n ≥ 1, and

∫ ∞
0 κ(t )d t = x, x ∈R+. By the concavity

of the function t → t p p ∈ [0,1], we get:

In+1 =
∫ ∞

0
t p

(∫ t

0
κ(t − s)κ(?n)(s)d s

)
d t =

∫ ∞

0

(∫ ∞

0
(t + s)pκ(t )d t

)
κ(?n)(s)d s

≤
∫ ∞

0

(∫ ∞

0
(t p + sp )κ(t )d t

)
κ?(n)(s)d s =

∫ ∞

0

(
I1 +xsp

)
κ(?n)(s)d s = xn I1 +xIn .

Therefore for all integer N :

N∑
n=1

In ≤ I1 +
(N−1∑

n=1
xn

)
I1 +x

N−1∑
n=1

In .

Since 0 ≤ κ(t ) ≤ϕ(t ),∀t ≥ 0, we have x ≤ ||ϕ||L 1 < 1 and we obtain

N−1∑
n=1

In ≤ I1

(1−x)2

Thus, for N →∞: ∫ ∞

0
t pϕ(t )d t =

∞∑
n=1

In ≤ I1

(1−x)2 <∞.

Proof of Theorem 8

Let h1
T = (

h+
1,T ,h−

1,T

)
be as specified by (2.7):{

h+
1,T (t ) = f (v)

T ρ
( t−t0

T

)
, T > 0

h−
1,T (t ) = 0,

where
ρ :R→ [0,∞), ρ(t ) = 0 if t ∉ [0,∞)

is a causal kernel such that ∫ ∞

0
ρ(t )d t = 1.

We apply Theorem 7. We write:

Gh1
T

(t ) = f (v)T −1
∫ t

t0

ρ(T −1(s − t0))d s = f (v)
∫ (t−t0)T −1

0
ρ(u)du.

We have:
limsup

T→0
Gh1

T
(t ) = f (v),∀t > t0.
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Since all quantities are positive, we can invert limit and integral and we obtain:

Mhi
1
(t ) = limsup

T→0

∫ t

t0

κ(t − s)h1
T

(s)d s =
∫ t

t0

κ(t − s) f (v)d s = f (v)
∫ t−t0

0
κ(s)d s.

Under the Assumption (A1), the function κ is non-negative (see 2.38) and we
obtain the permanent market impact by a taking t →∞ in previous equation:

Mhi
1
(∞) = f (v)(1−||κ||L1 ).

We recall the definition of κ 2.6:

κ= ∑
n≥1

(−1)n+1ϕ(?n).

By integration we get:

||κ||L1 = ∑
n≥1

(−1)n+1||ϕ||nL1 = ||ϕ||L1

1+||ϕ||L1
. (2.39)

Which allows us to find:

Mhi
1
(∞) = f (v)

1

1+||ϕ||L1
.

Under the assumption (A2), the function κ is non-negative, the market impact
function Mhi

1
(t ) is decreasing on [t0,∞) and the next bracketing property is easy

to check since ||ϕ||L 1 < 1:

1

2
Mhi

1
(t ) <Mhi

1
(∞) ≤Mhi

1
(t ).

Under the Assumption (A2), κ is decreasing and the market impact function
Mhi

1
(t ) is convex over [t0,∞) since it’s derivative on this interval is equal to

−κ(t − t0) which is an increasing function.

Proof of Theorem 9

Let h2
T = (

h+
2,T ,h−

2,T

)
be as specified by (2.17):{

h+
2,T (t ) = f (v)

T ρ
( t−t0

T

)
h−

2,T (t ) = f (v) C
||ϕ(t )||L 1

ϕ(t − t0),

where
ρ :R→ [0,∞), ρ(t ) = 0 if t ∉ [0,∞)

is a causal kernel such that ∫ ∞

0
ρ(t )d t = 1.

We apply Theorem 7. We denote C1 = C
||ϕ(t )||L 1

to ease the notation:

Gh2
T

(t ) = f (v)
∫ t

t0

(T −1ρ(T −1(s−t0))−C1ϕ(s−t0))d s = f (v)
∫ (t−t0)T −1

0
ρ(u)du−C1

∫ t−t0

0
ϕ(s)d s.

We have

limsup
T→0

Gh2
T

(t ) :=Ghi
2
(t ) = f (v)

(
1−C1

∫ t−t0

0
ϕ(s)d s

)
∀t > t0.
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Since ρ is positive, the previous limit is monotone. Thus, by the monotone con-
vergence theorem we have

Mhi
2
(t ) =Ghi

2
(t )−

∫ t

t0

κ(t − s)Ghi
2
(s)d s.

We observe Mhi
2
(t0) = f (v) before derivate last equation for t > t0:

M ′
hi

2
(t ) =G ′

hi
2
(t )−G ′

hi
2
?κ(t ) = f (v)

(
−C1ϕ(t − t0)−C1κ(t − t0)+C1κ?ϕ(t − t0)

)
.

Let us recall
κ= ∑

n≥1
ϕ(?n) =ϕ−ϕ? ∑

n≥1
ϕ(?n) =ϕ−ϕ?κ.

So we obtain:
M ′

hi
2
(t ) =− f (v)(1+C1)κ(t − t0).

This allows us to find:

Mhi
2
(t ) = f (v)(1− (1+ c)

∫ t−t0

0
κ(s)d s).

We obtain the permanent market impact by a taking t →∞ in previous equation
and using the link between the L1 norms of ϕ and κ (eq. 2.39):

Mhi
2
(∞) = f (v)(1−(1+C1)||κ||L1 ) = f (v)

(
1−(1+C1)

||ϕ||L1

1+||ϕ||L1

)
= f (v)

1−C

1+||ϕ||L1
.

Thus, under the under Assumption (A1), the market impact function is decreas-
ing and we have a positive market impact if and only if C ≤ 1. When C = 1, we
clearly have no permanent market impact, Mhi

2
(∞) = 0.

As in the case of instantaneous one-sided market impact (Theorem 8), the
market impact function Mhi

2
is convex under the(A2).

Proof of Theorem 10

As before, this is a direct application of Theorem 7. Let hc = (h+,h−) be as
specified by (2.24): {

h+(t ) = f̃ (rt )
h−(t ) = C

||ϕ||L 1

∫ t
t0

f̃ (rt )ϕ(t − s)d s.

In order to shorten the proof, we remark that formally we have:

Ghc = f̃ (r )?Ghi
2
.

Thus, using Theorem 9, equation (2.19), we have:

Mhc (t ) = f̃ (r )

f (v)
?H(t ),

where

H(t ) = 1

f (v)
Mhi

2
(t ) = 1− (1+C1)

∫ t

t0

κ(s)d s,

which proves (2.25). Equation (2.27) is a direct consequence of this equation
when the rate rt is constant.
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As in Theorem 9 we have:

lim
t→∞H(t ) = 1−C

1+||ϕ||L1
:= `.

Putting H̃(t ) = H(t )−`, we have for θ > t0 +T :

Mhc (t ) =
∫ t0+T

t0

f̃ (rs)H(t − s)d s = `
∫ t0+T

t0

f̃ (rs)d s +
∫ t0+T

t0

f̃ (rs)H̃(t − s)d s.

Under the assumption that f̃ is bounded, the second term converges to zero as
t tends to infinity

lim
t→∞

∫ t0+T

t0

f̃ (rs)H̃(t − s)d s = 0,

which proves (2.26).
Let us consider the case of a constant strategy, rt = r0. For t ∈ [t0, t0 +T ] we

have

Mhc (t ) = f̃ (r0)
∫ t

t0

H(t − s)d s = f̃ (r0)
∫ t−t0

0
H(s)d s.

When C ≤ 1 we have H(t ) ≥ 0, ∀t ≥ 0, Mhc (t ) is increasing on t ∈ [t0, t0 +T ].
Since M ′

hc (t ) = f̃ (r0)H(t − t0) > 0 ∀t ∈ [t0, t0 +T ], the transient market impact is
convex, i.e. Mhc convex on [t0, t0 +T ].

For t > t0 +T , rt = 0 and we have:

Mhc (t ) = f̃ (r0)
∫ t0+T

t0

H(t − s)d s = f̃ (r0)
∫ t−t0

t−t0−T
H(s)d s.

Thus
M ′

hc (t ) = f̃ (r0)
(
H(t − t0)−H(t − t0 −T )

)
.

But H is decreasing under assumption (A1) since H ′(t ) =−(1+C1)κ(t ) < 0. Thus
H(t − t0)−H(t − t0 −T ) < 0 and Mhc is decreasing on (t0 +T,∞). Differentiating
a second time Mhc we get:

M ′′
hc (t ) = f̃ (r0)

(
H ′(t−t0)−H ′(t−t0−T )

)
=−(1+C1) f̃ (r0)

(
κ(t−t0)−κ(t−t0−T )

)
.

Under the assumption (A2), i.e. κ is decreasing, M ′′
hc (t ) > 0. This finishes the

proof.

Proof of Proposition 2

We can prove Proposition 2 following the guidelines of the proof of Theorem
6 from Bacry et al. [17]. In the last cited paper it is proved a more general result:

Theorem 12. Let (N1, . . . , Nd ) be a d-multivariate Hawkes process defined by his
intensity λ= (λ1, . . . ,λd ):

λ(t ) =µ+
∫

[0,t )
Φ(t − s)d N (s) (2.40)

where µ= (µ1, . . . ,µd ) and Φ= (ϕi j )1≤i , j≤d are vectors containing functions from
R+ to R+. Under the assumptions:

• the spectral radius of the matrix K = ∫ ∞
0 Φ(t )d t is inferior to 1, ρ(K ) < 1,

• ∫ ∞
0 Φ(t )t 1/2d t <∞ componentwise,
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the process p
T

(
1

T
NT v − v(I d −K )−1µ

)
v ∈ [0,1]

converge in law for the Skorokod topology to

(I d −K )−1Σ1/2Wv , v ∈ [0,1],

where (Wv )v∈[0,1] is a standard d-dimensional Brownian motion and Σ is the di-
agonal matrix such that Σi i = ((I d −K )−1µ)i .

Theorem 2 is obtained as a consequence of this result for the special case

d = 2 andΦ=
(

0 ϕ

ϕ 0

)
. In the following we give the sketch of the proof for

Theorem 13. Let N (h)(N (h)
1 , . . . , N (h)

d ) be a d-multivariate Hawkes process defined

by his intensity λ(h) = (λ(h)
1 , . . . ,λ(h)

d ):

λ(h)(t ) =µ(t )+
∫

[0,t )
Φ(t − s)d N (h)(s) (2.41)

where µ(t ) = µ+h(t ), where h is a positive function with support in [a,b] (i.e.
h(t ) = 0, ∀t ∉ [a,b]). Under the assumptions:

• the spectral radius of the matrix K = ∫ ∞
0 Φ(t )d t is inferior to 1, ρ(K ) < 1,

• ∫ ∞
0 Φ(t )t 1/2d t <∞ componentwise,

• h bounded and
∫ b

a h(s)d s <∞ componentwise,
the process p

T

(
1

T
N (h)

T v − v(I d −K )−1µ

)
v ∈ [0,1]

converge in law for the Skorokod topology to

(I d −K )−1Σ1/2Wv , v ∈ [0,1],

where (Wv )v∈[0,1] is a standard d-dimensional Brownian motion and Σ is the di-
agonal matrix such that Σi i = ((I d −K )−1µ)i .

The proof of Theorem 12 is technical. The central idea of the proof is the next
decomposition:

X t := Nt −E[Nt ] = Mt +
∫ t

0
Ψ(t − s)Msd s, (2.42)

where (Mt )t≥0 is the martingale

Mt = Nt −
∫ t

0
λsd s.

Exact the same identity holds for N (h), the proof is identical as for N :

X (h)
t := N (h)

t −E[N (h)
t ] = M (h)

t +
∫ t

0
Ψ(t − s)M (h)

s d s, (2.43)

where (M (h)
t )t≥0 is the martingale

M (h)
t = N (h)

t −
∫ t

0
λ(h)

s d s.
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In the following, we give the steps of the proof of Theorem 12 and we point out
where are changes in order to prove Theorem 13. Before going further, let us
explain why the stability condition, i.e. the convergence after rescaling, holds
also for N (h). We disturb the intensity λ by a function h which is integrable
and with compact support. It is natural that after rescaling this quantity vanish
when the “limit” parameter T tends to infinity.

Theorem 12 is the consequence of the next two theorems:

Theorem 14. Work in the same setting as in Theorem 12. We have:

sup
v∈[0,1]

||T −1NT v − v(I d −K )−1µ||→ 0 as T →∞

almost-surely and in L2(P).

and

Theorem 15. Work in the same setting as in Theorem 12. We have:
p

T (NT v −E[NT v ]) , v ∈ [0,1]

converge in law for the Skorokod topology to

(I d −K )−1Σ1/2Wv , v ∈ [0,1].

Theorem 14 is proved using two lemmas:

Lemma 2. Let p ∈ [0,1] and assume
∫ ∞

0 t pΦ(t )d t <∞ componentwise. Then

T p (
T −1E[NT v ]− v(I d −K )−1µ

)→ 0 as T →∞
uniformly in v ∈ [0,1].

Lemma 3. There exist a constant c(µ,Φ) such that for all t ,∆≥ 0:

E[ sup
t≤s≤t+∆

||Ms −Mt ||2] ≤ c(µ,Φ)∆.

In order to prove a similar result as Lemma 2 for N (h), we use Theorem 11.
We obtain:

E[N (h)
T v] = ν(T v)+

∫ T v

0
Ψ(T v − s)ν(s)d s =

µT v +
∫ T v

0
h(s)d s +

(∫ T v

0
Ψ(T v − s)sd s

)
µ+

∫ T v

0
Ψ(T v − s)h(t − s)d s.

But h has compact support, is integrable and bounded, so

1

T 1−p

(∫ T v

0
h(s)d s +

∫ T v

0
Ψ(T v − s)h(t − s)d s

)
→ 0 as T →∞.

Since E[NT v] = µT v +
(∫ T v

0 Ψ(T v − s)sd s
)
µ (obtain by taking h ≡ 0 in Theorem

11), we have same result as in Lemma 2 for N (h).
The proof of Lemma 3 is based on the Doob inequality and Theorem 11. In

order to show the same property for M (h) we use the same technics as in Bacry
et al. [16]

E[ sup
t≤s≤t+∆

||M (h)
s −M (h)

t ||2] ≤ 4
d∑

i=1
E[(M (h)

i ,t+∆−M (h)
i ,t )2].
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But E[(M (h)
i ,t+∆ − M (h)

i ,t )2] = E[N (h)
i ,t+∆ − N (h)

i ,t ] since the quadratic variation of the

martingale (M (h)
i ,t )t≥0 is the process (N (h)

i ,t )θ≥0. Since h is bounded and integrable,
we can conclude as in [17].

The proof of Theorem 15 is based on the next lemma:

Lemma 4. The martingale M (T ) := (T −1/2MT v )v∈[0,1] converge in law for the Sko-
rokod topology to (I d −K )−1Σ1/2Wv .

In order to prove the same result holds for M (T,h) := (T −1/2M (h)
T v )v∈[0,1], we

remark (as in [17]) that:
• [M (T,h)

i , M (T,h)
j ]v = 0 for i 6= j since the processes N (h)

i , 1 ≤ i ≤ d , are sup-
posed to have no common jump.

• [M (T,h)
i , M (T,h)

i ]v = 1
T N (h)

i →Σi i in L2(P) by Theorem 14 for N (h).

The rest of the proof is based on the decomposition (2.42) and Lemma . Since
similar properties are satisfied by N (h), we finish the sketch of proof for Theorem
13.
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3.1 INTRODUCTION

Interactions between the Price Formation Process (PFP) and market mi-
crostructure are of paramount importance: since regulatory evolution (Reg NMS
in the US and MiFID 1 and now MiFID 2 in Europe, promoting competition
among exchanges via an extensive use of electronic order books) and the 2008
liquidity crisis, academics and market participants try to understand how to
align the order book dynamics with the interests of final investors.

The market impact of large orders (or meta-orders) is at the middle of the
discussion, since market microstructure evolution should target to decreases
it. That for, one should be clear about what is the market impact of such large
meta-orders. On the one hand it seems reasonable the information processed
by investors, drives their decisions. Hence the price should move during the ex-
ecution of their meta-orders, in a detrimental decision (i.e. up if they buy, or
down if they sell). On the other hand, large orders lead to liquidity imbalance,
mechanically moving the price in a detrimental decision. Part of this mechani-
cal move generates trading costs. And trading costs prevent investors to initiate
some trades, or at least decreases the performance of their trades.

Controlling the market impact is essential for investors whose volume is
much larger than the available liquidity in the limit order book. A common strat-
egy consists in splitting in small orders (child order or atomic order) and execute
it incrementally. Nowadays, algorithmic high-frequency trading is the new way
of executing those meta-orders.

The gap between informational move and mechanical reaction to trading
pressure can be empirically investigated for few years only, because of the recent
availability of large databases of investor’s meta-orders. Very specific databases
are needed to give an empirical answer to the nature of market impact: accurate
market data are not enough, a clear identification and time stamping of meta-
orders is needed too.

In this paper we report measures made on a database coming from the
brokerage arm of a large European investment bank, whose trading flow was
around 5% of investors’ flow at the time the meta-orders have been recorded. As
it is detailed in Section 3.2, this database is made of very coherent meta-orders
in terms of trading style, trading universe and market context.

This paper provides information on the impact of large orders on the PFP at
many scales:

• at the scale of each meta-order: the temporary impact and its relationship
with explanatory variables are documented;

• at a lower time scale: the price reaction to trading pressure (i.e. the tran-
sient impact) is measured, and the relaxation of prices once meta-order
ends (i.e. the impact decay) is also studied.

• at a larger scale: we zoom out days after the meta-order ends to document
the permanent impact in an attempt to disentangle it from the informa-
tional price move.

Besides, we use the model introduced in Chapter 2 to discuss stylized facts
discovered in the database. It is based on Hawkes processes, since they have
demonstrated in previous papers to be well suited for order book dynamics
modeling [89, 137, 127, 56, 134].
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3.2 DEFINITIONS, DATABASE AND MARKET IMPACT ESTIMATION

PRINCIPLES

Basic definitions

Let Ω be the set of all the available meta-orders which are entirely executed
in a single day. Each meta-order is made of several transactions, i.e., several
atomic orders. Let us consider ω ∈Ω a meta-order executed on stock S and on a
given day d . It is characterized by several variables :

• ε(ω) : the sign of the meta-order: +1 for a buy and −1 for a sell,
• N (ω) : its number of atomic orders,
• vi (ω) : the volume of its i th atomic order (i ∈ [1, N (ω)]),
• v(ω) =∑N (ω)

i= vi (ω) : its total volume,
• ti (ω) : the time of its i th atomic order,
• T (ω) = tN (ω) − t1 : its total duration,
• VD (ω) : the daily volume executed on the market, on the day d and on the

stock S
• n(ω): the number of transactions, on the day d and on the stock S
• V (ω) : the volume exchanged on the market, on the stock S, during the

duration of ω, i.e., during the time-interval [t1, t1 +T (ω)],
• r (ω) = v(ω)/V (ω) : its trading rate.
• rD (ω) = v(ω)/VD (ω) : its daily participation,
• ψ(ω) stands for daily average spread of the stock S and on the day d . It is

computed using average on the transactions, weighted by their volumes
and expressed in basis points,

• σD (ω) : the Garman-Klass annualized daily volatility of the stock S and on
the day d .

• σ(ω) = σD (ω)p
T (ω)

: the volatility during the meta-order (deduced from the daily

volatility just above).

The main meta-order databaseΩ

The database is made of nearly 300.000 meta-orders, selected from a huge
database of around 400.000. The selected meta-orders have been traded elec-
tronically by this large broker during year 2010 on European markets. We built
three databases from the original 400.000 once to have as much as possible or-
ders for each time scale (see Table 3.1):

• For intraday studies, we only kept orders traded by trading algorithms
which trading speed is as much as possible independent from the mar-
ket conditions, to avoid sudden accelerated trading rates to have a hidden
influence of the price moves. Hence we kept VWAP, PoV and only few Im-
plementation Shortfall instances (see Appendix 3.8 for details).

• We kept orders large enough to protect our data from noise.
• For small time scale study, and especially for the impact decay, we needed

the meta-order to stop halfway to the market close, to observe prices re-
laxation long enough between the end of the meta-order and the close.

We end up with four main databases: Ω(te) to study temporary impact, Ω(tr ) to
study transient impact and imapct decay, andΩ(de) to study decay andΩ(d ay) to
study daily effects. In the next paragraph, we clearly specify the filters we apply
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in order to obtain those different databases. Table 3.1 briefly recalls those filters.
In Appendix 3.8 one finds statistics concerning the differents databases.

Database for intraday market impactΩ(d ay)

Often, a large single-day meta-order is splited in several pieces and recorded
in Ω as different meta-orders. Putting together this pieces we obtain our intra-
day data-base Ω(d ay). This data-base contain 299.824 metra-orders and it will
be used in section for the permanent market impact.

Database for temporary market impactΩ(te)

We selected a subsample of the intraday database Ω(d ay) containing meta-
order with minimum 10 atomic orders and removing those that are not con-
sistent with the market data (volume and time order arrival). We finally obtain
157.061 different occurrences of meta-orders. This data-base is used for the the
temporary market impact (section 3.3).

Database for transient market impactΩ(tr )

In order to eliminate some extreme effects and to stabilize the results, we re-
moved from previous database Ω(te), meta-orders with extreme characteristics.
More precisely, we built a new database Ω(tr ) by selecting the meta-orders ω of
Ω(te) such that:

• T (ω) > 3 minutes,
• r (ω) ∈ [3%,40%],
• rD (ω) ∈ [0.1%,20%] and
• n(ω) ≥ 500 (which removed illiquid stocks).

This database is used for the transient market impact (section 3.4) and contains
M = 92.100 trades out of the original 157.061 meta-orders.

Database for market impact decayΩ(de)

In order to estimate the market impact decay curve (section 3.5), we need
to subsample the database Ω(tr ) selecting only the meta-orders of which do not
end too late in the day. Indeed, we need to have enough time after the ending-
time of the meta-order in order to study the decay of the impact. More precisely,
we built a new databaseΩ(de) by selecting the meta-orders ω ofΩ(tr ) such that

– t0(ω)+2T (ω) is a time that takes place before the closing time of the cor-
responding asset.

The final sample contains 61.671 meta-orders out of the original 92.100 meta-
orders inΩ(tr ).

Market impact definitions and Latent price

The market impact curve of the meta-order ω quantifies the magnitude of
the (relative) price variation which is due to the meta-orderωbetween the start-
ing time of the meta-order t1(ω) and the current time t . Theoretically, in order
to estimate this curve one should have access to the price variation that would
have occurred if the meta-order was not sent. In the following we shall refer to
that latter price as the latent price.
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DatabasesΩ Filters Remaining meta-orders
Original databaseΩ ; 398.812

Intraday databaseΩ(d ay) smooth execution condition 299.824

Database for temporary Ω(te) 10 atomic orders minimum 191.324
consistency with HF market data 157.061

Database for transientΩ(tr )

n ≥ 500 150.100
T > 3 minutes 134.529
r ∈ [3%,40%] 94.818

rD ∈ [0.1%,20%] 92.100
Daily data-base for transientΩ(de) t0(ω)+2T (ω) 61.671

Table 3.1 – Different databases and filters used to obtaint them

Let∆Pt (ω) be a proxy for the realized price variation between time t1(ω) and
time t1(ω)+ t . Like all other authors, we assume the market impact of a meta-
order ω is additive, meaning the price move between t1(ω) and time t1(ω)+ t

is the sum of a mechanical impact ∆P (η)
t (ω) due to the trading pressure of the

meta-order and an exogenous component Wt (the latent price):

∆Pt (ω) =∆P (η)
t (ω)+Wt , (3.1)

where by definition

∆P (η)
t (ω) =∆Pt (ω)−Wt , (3.2)

corresponds to the price variation due to the meta-order ω. When the meta-
order is a buy (resp. sell) meta-order, one expects this price to go up (resp. down),
consequently it is very natural to define the impact as

ηs(ω) = ε(ω)∆P (η)
sT (ω), s ≥ 0, (3.3)

in which, for synchronicity convenience, we have rescaled the time in order that
the time s = 1 always corresponds to the ending-time of the meta-order. Let us
point out that the choice for the proxy is discussed later in this section. As ex-
plained later on, we shall use all along the paper, the so-called return proxy de-
fined by (3.8) in which Pt corresponds to the last traded price.

The market impact η(ω) is thus not directly observable; it is “noised” by price
moves more linked to market moves then to the trading flow generated by ω.
Nevertheless it cannot be excluded that Wt is 100% independent of the deci-
sion the investor took initiating the trade. Like it has been said previously, the
investor share information at the root of his decision with other investors, and
part of Wt independent from the trading flow generated by ω, is not indepen-
dent to the decision that generated ω.

This “informational pollution” of market impact measurement is eluded in
some papers (like [10]), and discussed in others (like [104, 66]). In this paper, we
will neglect it for intraday measurements (Sections 3.3, 3.4 and 3.5), but take it
into account for daily estimates (Section 3.7).

Finally, we introduce the following terminology in order to address the different
parts of the market impact curve :

• ηs=1(ω) as the temporary market impact, i.e., the impact at the end of the
meta-order,

• {ηs(ω)}0≤s≤1 as the transient market impact curve, the impact curve during
the execution of the meta-order,
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• {ηs(ω)}1≤s as the decay market impact curve, the impact curve after the
execution of the meta-order and

• ηs>>1(ω) as the permanent effect. What we exactly mean by the limit s >> 1
will be make clearer in Section 3.7. For now, it is sufficient for the reader
to know that it refers to an extraday time limit, sufficiently far from the
ending-time of ω, so that its impact can be considered as constant.

Market impact estimation principles - First estimations

Estimation via averaging. Usual market impact estimations use an “averag-
ing” of equation (3.3) over “slices” of a variable of interest. Thus, we shall com-
pute the estimation of the impact through

η̂s = 1

#Ω

∑
ω∈Ω

∆PsT (ω)(ω) := E[∆PsT (ω)(ω)], (3.4)

where #Ω denotes the total number of available meta-orders. This approach re-
lies on the assumption that the “exogenous market moves” WsT cancels once
averaged. Meaning that as a random variable, they are centered and with finite
variance (i.e. the central limit theorem can be applied).

Studying the influence of a factor. Following the same lines, when one stud-
ies the influence on the impact of a factor X (ω) (e.g., the daily participation
rate X (ω) = rD (ω)), we shall condition the impact estimation by the fact that
the value of X (ω) belongs to an interval I , i.e.,

η̂s(ω | X (ω) ∈ I ) = E[∆PsT (ω)(ω) | X (ω) ∈ I ]. (3.5)

Note that in this case, if we what the central limit theorem to be applied, it
is needed E(ε(ω)WT (ω)|X (ω) ∈ I ) = 0 and not E(WT (ω)) = 0. This is a strong
supposition and is not always verified in practice.

If an investor systematically buy or sell large quantities when he has reliable
information on future price moves, this assumption will not hold. It will remains
that η̂s is the sum of the “pure” market impact and an “informational bias”. We
will not try to remove this bias in the intraday studies.

Coming back to the averaging approach, note that averaging thanks to quan-
tiles of one explanatory variable allows to identify a dependence with this vari-
able only. To be able to regress the market impact on three variables, one will
need to use K quantiles for each variable, i.e. averaging on K 3 subsets. The num-
ber of meta-orders used to estimate one η̂T (k1,k2,k3) will be divided by K 3.

Last but not least, if linear regressions are used to explain η̂ by the averaging
variables (or any nonlinear transform of them), the usual statistical measures
of regression quality do not have the same meaning. The “R2” for instance can
be very high, even if the relation between the impact and the regressors is very
noisy (since the noise would have been decreased by the averaging across quan-
tiles).

This averaging methodology is nevertheless useful to draw figures (like Fig-
ure 3.1) and obtain qualitative results. It is used through this paper.
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Direct regression. An alternative approach is to fit directly an explicit model
on equation (3.5). Say we want to fit the parameters of a power law linking the
market impact to the daily participation of the meta-order. It leads to the follow-
ing parametric version of (3.3):

ηs = a ·X (ω)γ+ε(ω)WsT . (3.6)

As far as we assume once more the exogenous prices moves are independent
enough from ω to be averaged, we can select a distance d(·, ·) in the space of
returns ∆P and use any minimization method to obtain “fitted” parameters
(a∗,γ∗):

(a∗,γ∗) = argmin
(a,γ)

Eωd
(
∆PT (ω), a ·RT (ω)γ+ε(ω)WT

)2 . (3.7)

If E(ε(ω)WT ) 6= 0 then a∗ and γ∗ will be biased.
This approach uses all the points in the database (and not their averaged

version), and thus produces more accurate results. It nevertheless relies on the
same independence between meta-order initiation and market moves to be un-
biased.

Gaussianity of the market moves Wt is not needed, and it is possible to “take
care of it” by selecting an appropriate distance d . In this paper we use the usual
L2 distance, and the LASSO 1 one (more compatible with fat tails and rare but
intense events).

The usual quality metrics (like the “R2”) will be more reliable but worst
(since the signal/noise ratio for market impact estimation is very low). Notice
the meaning of the residuals of such a regression (i.e. ∆P minus its model) is
straightforward: it is the remaining price move once our estimation of the mar-
ket impact has been removed. They allow to test the dependence of the remain-
ing moves to another variable. This is not accessible to the averaging approach.

Choice of the proxy - First estimations. When averaging on meta-orders of
different sizes and different durations, as done above, it seems natural to per-
form some kind of rescaling on time and price, so that market impact curves are
somewhat homogeneous. Rescaling in time has already been taken care by the
definition (3.3) (indeed, the ending time of any meta-orderω always correspond
to s = 1). Rescaling of the price should be taken care by the choice of the proxy
∆Pt (ω) of the relative price variation during the time period [t1(ω), t1(ω)+ t ].
Mainly three proxies (or combination of these three proxies) are used in the aca-
demic literature (in the following Pt refers indifferently to the last traded price
or the mid-price) :

– The return proxy

∆P (r et )
t (ω) = Pt1(ω)+t −Pt1(ω)

Pt1(ω)
(3.8)

– The spread relative proxy

∆P (spr ead)
t (ω) = Pt1(ω)+t −Pt1(ω)

ψ(ω)
(3.9)

– The log-return proxy

∆P (ln)
t (ω) = ln(Pt1(ω)+t )(ω)− ln(Pt1(ω))(ω) (3.10)

1. See [71] for more detail on LASSO method
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Thus for instance, the return proxy is used by Almgren [10] and by Bershova
and Rakhlin [27]. In order to obtain more heterogeneous prices, some authors
(Lillo and Farmer [104]) prefer to combine the log-return and the spread relative
proxies : they choose to divide the log-return proxy byψ(ω). In Fig. 3.1, we show
empirically that whatever the choice for this proxy and whatever the choice for
the price Pt (either last traded price or mid-price), the average impact curve
"looks" very similar. In the remaining of the paper, we choose to use the last-
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Figure 3.1 – The average market impact curve (3.3) using different proxy for the relative
price variation ∆Pt (ω) and different prices Pt . Each curve corresponds to a color (blue,
red or green) and a type of line (either solid or dashed). The type of line codes the price Pt

used : dashed-lines for the last traded price and solid-lines for the mid-price. The color of
the line codes the relative price variation proxy used: red for the return proxy (3.8), blue
for the spread relative proxy (3.9) and green for the log-return proxy (3.10).

traded price along with the return proxy.

3.3 THE TEMPORARY MARKET IMPACT

Selection of the factors

The temporary market impact has been mainly studied from three view-
points:

• as the main source of trading costs. The obtained model can be then used
in an optimal trading scheme (see [10], [60] and [91] have been written
by authors involved in optimal trading: [9], [61] and [31]), or used by an
investment firm to understand its trading costs (like in [51], [27] or [101]
written by author involved in investment firms).

• It can be viewed as an important factor of price discovery and studied as
such, often by economists, like the seminal work of Kyle [88] or later in
[72] or [54].

• Last but not least, statistical tools have been built to be able to estimate
the temporary market impact at the scale of one trade (see [17] or [49]).
The implicit conditioning of such “atomic” orders by meta-orders is some-
times discussed in such papers, but it is not their main goal.

One common point of these studies is that the temporary market impact of
a meta-order ω of size v(ω) includes three main components :

• A component reflecting the size of the meta-order, resized by something
reflecting the volume in the order book of the traded security. The daily
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participation rD (ω) should capture most of the dynamics of this compo-
nent. This size has to be rebased using the daily volume VD or the traded
market volume during the meta-order V , leading to two potentially ex-
planatory variables: the daily participation rD = v/VD or the trading rate
r = v/V .

• A component rendering the uncertainty on the value of the traded underly-
ing during the meta-order. The volatility during the meta-order σ(ω) (de-
fined by σ(ω) = σD (ω)p

T (ω)
) is a typical measures for this.

• And a last component that captures the information leakage generated by
the meta-order, a good proxy being the duration T (ω).

We accordingly define the four potential explanatory variables X1 = rD (ω), X2 =
r (ω), X3 = σ(ω) and X4 = T (ω). Let us point out that all authors found mul-
tiplicative relations between each of these components and their correspond-
ing factor, so we expect a linear dependence of the temporary market impact
ηs=1(ω) on the logarithm of these factors.

As an example, the left plot of Fig. 3.2 displays (using log-log scales) the scat-
ter plot of ηs=1(ω) versus the daily participation X1(ω) = rD (ω) when ω is vary-
ing (meta-orders for which ηs=1(ω) is negative have been discarded). It clearly
shows the influence of rD on the impact: the higher the daily participation rate
the higher the impact. In the following Section, we explain our methodology for
studying the regressing the impact on the different factors mentioned above.

Figure 3.2 – The estimated market impact η̂s=1(ω) as a function of the traded volume
normalized by the daily volume (left: X1 = rD ) or traded market volume during the meta-
order (right: X1 = r ). Each point is the average of one decile of the X variable, dotted lines
are 25% and 75% quantiles, showing the amplitude of market moves.

Numerical results

To study temporary market impact and its dependence to explanatory vari-
ables, we followed the direction estimation approach described in Section 3.2.
We tested the daily participation rD as first variable, since it has been identified
as significant by other papers. It means we fit equation:

η1(ω) = a · rD (ω)γ+ε(ω)WT ,
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and found an exponent γ ' 0.449 using the L2 distance and a lower exponent
(around 0.40) using the LASSO one. As a reference the log-log regression on 100
bins gives an estimated power of 0.542. Table 3.2 gives all results.

The implication of the difference between the two exponents is that the joint
distribution of η1 and rD is skewed to large values of η1. The L2 distance has no
other choice than to render this skewness by setting an high value to γ, while the
LASSO one focuses on the center of the distribution. The source of this skew-
ness could stem from an informational effect as a dependence between ε (the
sign of the meta-order) and WT (the market move). But we do not have enough
elements to conclude.
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Figure 3.3 – Trace of the duration on the residuals of a regression of η̂ on the daily partic-
ipation. Top: using an L2 metric, bottom: using a LASSO metric.

Once this power coefficient is fit, the effect of any other variable X can be ex-
plored and shown by averaging the residuals over quantiles of X . We will name
the associated chart the trace of X on the residuals. Figure 3.3 shows the trace
of the duration of the meta-orders on the residuals. A negative slope is obvi-
ous. Moreover, one can notice the bump around 0.4 days (meaning 6 hours). We
suspect it stems from the opening of NY markets, 6 hours after the opening of
European ones. At the open of US markets, volatility is higher and the depen-
dence between the side of the meta-order and the market move can be higher
too.

To confirm the dependence in T , we fit a power law on the trading rate r
instead of the daily participation rD :

η1(ω) = a · r (ω)γ+ε(ω)WT .

We found respectively power 0.43, 0.33 and 0.42 for loglog regression, L2 mini-
mization and LASSO minimization. The trace of T on the residuals on this re-
gression (see Figure 3.4) exhibits a positive slope, confirming the way duration
T can be used in combination to daily participation or trading rate to improve
the modeling of impact.

We performed diret fit of other explanatory variables and found the usual
dependencies in σ and ψ (see Table 3.2).
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Regression parameter value (log-log) value (L2) value (LASSO)
(R,0)

Daily participation 0.542 0.449 0.400
(R,1)

Trading rate 0.435 0.330 0.426
(R,2)

Daily participation 0.529 0.529 0.529
volatility 0.961 0.961 0.961

(R,3)
Daily participation 0.401 nan 0.401

Trading rate 0.285 nan 0.285
(R,4)

Trading rate 0.317 0.317 0.317
volatility 0.878 0.878 0.878

(R,5)
Daily participation 0.593 0.541 0.593

T −0.230 −0.347 −0.230
(R,6)

Trading rate 0.319 nan 0.319
spread 0.571 nan 0.571

(R,7)
Daily participation 0.438 0.438 nan

spread 0.276 0.276 nan
(R,8)

Trading rate 0.369 0.561 0.453
T 0.152 0.241 0.229

Table 3.2 – Main results for studying the influence of the different factors on the temporary
market impact.
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Figure 3.4 – Trace of the duration on the residuals of a regression of η̂ on the trading rate.
Top: using an L2 metric, bottom: using a LASSO metric.
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3.4 THE TRANSIENT MARKET IMPACT CURVE

A well known stylized fact: concavity of transient market impact

Previous section confirms, as many other empirical studies before us, that
the temporary market impact of a meta-order of size v is proportional to

p
v (as

predicted by the so-called square-root law). Thus, we expect the temporary mar-
ket impact of the first half of the execution (the first v/2 contracts) to be more
important than the one of the second half (the last v/2 contracts). Generalizing
this argument to any portion of the meta-order, we expect the transient mar-
ket impact curve to be a concave function of the time. The first empirical study
confirming this intuition is due to Moro et al. [104], lately, it has also been con-
firmed by the work of Bershova and Rakhlin [27]. In both cases, behavior close
to power-laws were found. Let us point out that the latent order book model of
[128] can be seen as a possible qualitative explanation of this well established
stylized fact. In this model the agents place limit orders only when the price is
close enough to their vision of the price. Thus, more and more liquidity is re-
vealed as the price is trending, it results in "slowing down" this trend.

In this section we confirm that the transient market impact curve is concave.
Apart from this well known stylized fact, we study the link between the curvature
of the transient market impact curve and the execution duration and the market
prediction of meta-order sizes.

Numerical results

In this Section, we study the transient market impact ηs≤1. In practice, we
sample our estimations on 100 points using a uniform sampling grid for s :
si = i /100, ∀i ∈ [0,100] and compute the estimation η̂s≤1 as defined by (3.4) (in
which Ω is replaced by Ω(tr ) defined at the beginning of this section). Fig. 3.5
illustrates this computation and shows that a power law behavior

η̂s≤1 ∝ sβ
(tr )

(3.11)

with β(tr ) = 0.64 provides an excellent fit (the (tr ) subscript in β(tr ) = 0.64
stands for transient). Our empirical findings are compatible whit Moro et al.
[104] which found an exponent equal to 0.62 for meta-orders executed on Lon-
don Stock Exchange (LSE) and 0.71 for meta-orders executed on Spanish Stock
Exchange (BME, Bolsas y Mercados Espãnoles). Moreover, the market impact
proxy used by the authors is similar to ours.

Concavity and execution duration. We shall now study the influence of the
duration T of the meta-order on the transient market impact. In order to avoid
spurious effects of other factors, we chose to work on the subset of meta-orders
which correspond to a given range Ir of daily participation. We have checked
that the so-obtained results do not significantly change when one changes Ir .
Thus, in the following, we fixed rD ∈ Ir = [1%,3%], selecting in this way 31.105
meta-orders. We then compute

η̂s≤1 (ω | T (ω) ∈ IT , rD (ω) ∈ Ir ) = 1

M(IT , Ir )

∑
ω, T (ω)∈IT , rD (ω)∈Ir

∆PsT (ω)(ω), (3.12)
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Figure 3.5 – The estimated transient market impact curve η̂s≤1 as defined by (3.4) (in

whichΩ is replaced byΩ(tr ) as defined in Section 3.2). A power law behavior η̂s≤1 ∝ sβ
(tr )

with β(tr ) = 0.64 provides an excellent fit.

where IT is a range for the duration T and M(IT , Ir ) the number of meta-orders
ω such that T (ω) ∈ I and rD (ω) ∈ Ir . We studied η̂s≤1(ω | T (ω) ∈ Ir , rD (ω) ∈ Ir )
as a function of the interval IT , choosing different intervals for IT such that
the number of meta-orders in each interval is approximately the same. More
precisely we chose the 6 intervals (the duration are expressed in minutes) :
T ∈ [3,15], T ∈ [15,30], T ∈ [30,60], T ∈ [60,90], T ∈ [90,300] and T ∈ [300,510],
each containing around 6.000 meta-order occurrences. Fig. 3.6 - Fig. 3.11 show
the transient market impact for each of these 6 groups. In order to point out the
different regimes, on each so-obtained graph, we performed the power-law fit

η̂s≤1(ω | T (ω) ∈ I , rD (ω) ∈ Ir ) ∝ sβ
(tr )

(3.13)

leading to an estimation of the power-law exponent β(tr ). The power-law fit
is obtained by linear regression on a log-log representation. The corresponding
log-log plots (for the first 4 figures, Fig. 3.6 - Fig.3.9) can be seen on Fig. 3.12 - Fig.
3.15: the power law fit seems pretty accurate. In order to test the significance of
our results we use bootstrap regressions drawing randomly 500 times 80% of the
available M(IT ) points (see [63] for references on bootstrap). Table 3.3 gives the
estimated transient market impact (3.12) as a function of the renormalized time
s for fixed participation rD ∈ Ir = [1%,3%] and for different duration intervals
IT . On Fig. 3.6 - Fig. 3.10, we see that the larger T the larger the curvature of
the transient market impact and the smaller the temporary market impact. On
figure 3.11 decay seems to happen before the end of market order.

We observe that market impact is actually a multi-regime process. The first
five figures, i.e. Fig. 3.6 - Fig. 3.10, show clearly that, for a fixed participation
rate (as we already mentioned changing the participation rate interval does not
affect the results), when the duration of a meta-order decreases

• the transient market impact of a meta-order increases and
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Figure 3.6 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[3,15], β(tr ) ' 0.80
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Figure 3.7 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[15,30], β(tr ) ' 0.66
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Figure 3.8 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[30,60], β(tr ) ' 0.63
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Figure 3.9 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[60,90], β(tr ) ' 0.56
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Figure 3.10 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[90,300], β(tr ) ' 0.53
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Figure 3.11 – Transient market impact
curve with rD ∈ Ir = [1%,3%], T ∈ IT =
[300,+∞)
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Figure 3.12 – Log-log plot of market im-
pact curve for Fig. 3.6
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Figure 3.13 – Log-log plot of market im-
pact curve for Fig. 3.7
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Figure 3.14 – Log-log plot of market im-
pact curve for Fig. 3.8
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Figure 3.15 – Log-log plot of market im-
pact curve for Fig. 3.9

• the curvature decreases leading to an almost linear transient market im-
pact for small durations.

Thus, when executed faster, a meta-order seems to have a stronger and more
linear impact. These results are rather intuitive: when a meta-order has a short
duration, the market has hardly the time to "digest" it resulting into a strong
linear impact (not time for relaxation). However, Fig. 3.10 seems to show that a
kind saturation is reached before the end of the meta-order. Actually Fig. 3.11
surprisingly shows that when the duration T becomes very large, the market
impact curve starts decaying before the end of the meta-order. From our knowl-
edge, this is the first study pointing out this effect. One possible interpretation
can be found within the fair price theory ([53]). Indeed, within this framework,
the market ecology is explained by the perfect competition between long-term
institutional investors who act on a common informational signal and gener-
ate meta-orders following a distribution pN and market makers supposed very
competitive and knowing the pN distribution. As suggested in [48], this perfect
competition is a utopia and an asymmetry on information is more realistic. In
this case, market makers try to guess the pN distribution. The market makers,
as any others traders, use predictive tools based on statistical models detecting
trends which are obviously noisy and even biased. When the execution time T of
a meta-order is large enough, the market makers stop trading because T do not
match with pN prediction or, even if they perfectly estimate pN , they are aware
of the sensibility of their statistical tools.

Market prediction of meta-order sizes. In this paragraph, we want to study
whether the market has or has no precise insights about the total size of a given
meta-order before the end of its execution (apart of course from the uncondi-
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Execution time Mean Q5% Q25% Q25% Q75% Q95%

T = [3,15] 0.80 0.76 0.78 0.80 0.82 0.85
T = [15,30] 0.66 0.62 0.65 0.66 0.68 0.70
T = [30,60] 0.62 0.58 0.60 0.62 0.64 0.66
T = [60,90] 0.55 0.49 0.52 0.56 0.58 0.62
T = [90,300] 0.54 0.48 0.52 0.55 0.57 0.62

Table 3.3 – Statistics on the distribution of the power-law exponent β(tr ) of the transient
market impact estimation of meta-orders with a participation rate rD ∈ Ir = [1%,3%]
(see (3.13)). The exponent is estimated using log-log regression conditioned on different
duration intervals. The larger T the larger the curvature of the transient market impact
and the smaller the temporary market impact (see Fig. 3.6 - Fig. 3.10).

tionnal distribution of the meta-order sizes). In order to do so, we consider all
the meta-orders with a given trading speed v̇ = rD /T . Of course, these meta-
orders correspond to different execution durations T (ω), and their volume v(ω)
is basically proportional to their execution duration : v(ω) = T (ω)v̇/VD . If the
market does not have precise insights about v(ω) (i.e., about T (ω)) then, at a
given time t0, there is no way it can differentiate between two meta-orders ω1

and ω2 such that v̇(ω1) = v̇(ω2) = v̇ and T (ω1) > t0, T (ω2) > t0. Consequently
the corresponding transient market impact curves should look alike on the time
interval [0, t0].

This assertion above can be translated into the fact that the restrictions on
t ∈ [0, t0] of ηt/T (ω1)(ω1) and of ηt/T (ω2)(ω2) should be very close. In order to test
this assertion, we choose five groups of meta-orders Ai (i = 1, . . . ,5) such that:

Ai =
{
ω ∈Ω(tr ) : rDω ∈ [2i−1r0,2i r0) and T (ω) ∈ [2i−1T0,2i T0)

}
, (3.14)

where r0 = 0.25 and T0 = 5 seconds. Thus, all the selected meta-orders corre-
spond, in a good approximation, to the same trading speed v̇ = r0/T0 = 0.05s−1.
Moreover Ai+1 (∀i ∈ [2,5]) corresponds to meta-orders with durations twice as
large as those of Ai . We then compute:

η̂(i )
s≤1(ω ∈Ai ) = 1

M(Ai )

∑
ω∈Ai

∆PsT (ω)(ω), (3.15)

where M(Ai ) is the number of meta-orders in Ai . For each i = 1, . . . ,4, Fig. 3.16
- Fig. 3.19 show η̂(i )

s≤1 with the first half of η̂(i+1)
2s≤2 . One can see that, in each of the

subplots, the two market impact curves are very close, indicating that the market
basically does not anticipate the size of the corresponding meta-orders. Let us
point out that the same results would be obtained when changing r0 and/or
T0. Each subplot corresponds to η̂(i )

s≤1 and η̂(i+1)
2s≤2 for s ∈ [0,1] (see (3.15)). Top-

left (resp. top-right) subplot corresponds to i = 1 (resp. i = 2) and bottom-left
(resp. bottom-right) subplot corresponds to i = 3 (resp. i = 4). In each of the
subplots, the two curves are very close, indicating that the market basically does
not anticipate the meta-roder size.
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Figure 3.16 – The market impact curves
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Figure 3.17 – The market impact curves
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Figure 3.18 – The market impact curves
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Figure 3.19 – The market impact curves
η̂(4)
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3.5 THE DECAY MARKET IMPACT CURVE

A well known stylized fact : convexity of decay market impact

During the execution of the meta-order the price is pushed in the adverse
direction making it less attractive as time goes by reaching higher level (tem-
porary impact) at the end of the execution. After the execution a reversal effect
is expected as seen in Fig. 3.1. This is the decay part when the price converges
back toward its future permanent level. The full execution of the meta-order has
created some imbalance in the limit order book, this imbalance is "taken care"
by the market after the execution of the meta-order and ultimately, equilibrium
(balance order book) is reached at a new price, the dynamics which conducts to
this new price corresponds to a convex curve of the decay market impact ηs≥1.

The existing empirical literature of decay meta-orders market impact is lim-
ited ([104], [27]) since the difficulty of obtaining data is very high. In the first
study, Moro et al. are the first showing a decay of the impact to a level roughly
equal to 0.5−0.7 of its highest peak. In the second study, Bershova and Rakhlin
show the decay is a two-regime process: slow initial power decay followed by a
faster relaxation.

In this section we confirm that the transient market impact curve is convex
and that it seems to have a slow initial regime.
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Figure 3.20 – Transient and decay market
impact curves with rD ∈ Ir = [1%,3%],
T ∈ IT = [3,15],
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Figure 3.21 – Transient and decay market
impact curves with rD ∈ Ir = [1%,3%],
T ∈ IT = [15,30],
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Figure 3.22 – Transient and decay market
impact curves with rD ∈ Ir = [1%,3%],
T ∈ IT = [30,60],
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Figure 3.23 – Transient and decay market
impact curves with rD ∈ Ir = [1%,3%],
T ∈ IT = [60,90],

Numerical results.

To avoid spurious effects, we did not want to use extraday data in these esti-
mations. Consequently, the larger one chooses K , the smaller number of meta-
orders are available for estimation. We chose to follow [104] and fixed K = 2.
Following the same lines as in previous section, we compute the estimation (see
(3.12))

η̂s≤2(ω | T (ω) ∈ IT , rD (ω) ∈ Ir ) = 1

M(IT , Ir )

∑
ω, T (ω)∈IT , rD (ω)∈Ir

∆PsT (ω)(ω). (3.16)

Fig. 3.20 - Fig. 3.23 show such estimations (of both transient and decay market
impact curves) for the same ranges IT and Ir as the ones used in Fig. 3.6 - Fig.
3.9. Thus the transient parts of Fig. 3.20 - Fig. 3.23 are (respectively) almost the
same as the curves displayed in Fig. 3.20 - Fig. 3.23. The difference between the
lies in the fact that for the Fig. 3.20 - Fig. 3.23 we used meta-orders from Ω(de)

database and for Fig. 3.20 - Fig. 3.23 we used meta-orders from Ω(tr ) database.
Power-law fit of the transient part (exponent β(tr ) in (3.13)) are shown. Fits with
the Hawkes model I-HIM (see Section 3.6) are also displayed.

Log-log plots of the corresponding decay market impacts are shown on Fig.
3.24 - Fig. 3.27. More precisely, these plots display, using logarithm scales, ηs −
logηK as a function of s −1 for s ∈ (1,K ] (let us recall that we chose K = 2). They
clearly show that the decay is much slower at the very beginning (i.e., right after
the end of the execution of the meta-order). We have checked that changing the
daily trading rate range Ir does not affect his result. This is a very stable result
that confirms the results obtained previously by [27] and [66].
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Figure 3.24 – Log-log plot of the decay
market impact curve for Fig. 3.20
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Figure 3.25 – Log-log plot of the decay
market impact curve for Fig. 3.21
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Figure 3.26 – Log-log plot of the decay
market impact curve for Fig. 3.22
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Figure 3.27 – Log-log plot of the decay
market impact curve for Fig. 3.23

We tried to get more insights about this change of regime: Is it power-law in
the first part? In the second part? How does the time-scale at which the change
regime appears depends on T or rD ? . . . Unfortunately, the noise on the estima-
tion is too large; it prevented us from answering any of these questions precisely.

3.6 THE HIM TRANSIENT AND DECAY MARKET IMPACT MODELS

USING HAWKES PROCESSES

Hawkes based models for microstructure

Hawkes processes have already been proved successful for modeling high
frequency financial time-series (see [17, 118, 18, 77, 5]). Hawkes processes are
point processes with a stochastic intensity which depends on the past of the
process.

Following [17], we consider the following price model. Let Pt be a proxy for
the high-frequency price of an asset (e.g., last-traded price, mid-price, . . . ). For
the sake of simplicity, we shall not consider the size of the jumps in the price
and consider that they are only of size 1. Let (J+t , J−t ) be the point processes
representing respectively upward and downward jumps of Pt .

Pt = J+t − J−t . (3.17)

Let λ+ and λ− the respective intensities of (J+t , J−t ). It is well known that at mi-
crostructure level, the price is highly mean reverting (at least for large tick-size
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assets). It has been shown ([17]) that this mean-reversion property is well mim-
icked using a 2-dimensional Hawkes process using only a single "cross" kernel
ϕ(t ) :

λ+
t =µ+ϕ?d J−s and and λ−

t =µ+ϕ?d J+s (3.18)

where ϕ(t ) is a causal (i.e., supported by R+), positive function and where ?
stands for the convolution product ϕ?∗d Jt =

∫ t
−∞ϕ(t − s)d J (t ). The mean re-

version property reads clearly form these last two equations : the more Pt goes
up (resp. down), the greater the intensity λ−

t (resp. λ+
t ) will be. A criteria for the

price increments and the intensities to be stationary is given by ||ϕ||1 < 1, where
||.||1 denotes the L 1(R) norm (for a complete mathematical study of Hawkes
process, see [45]).

The Hawkes Impact Model (HIM) for market impact of a meta-order

We model the impact of a meta-order starting at time t0, ending at time t0+T
and corresponding to a continuous flow of buying 2 orders with a trading rate rt

supported by [t0, t0 +T ] (rt 6= 0 only for t ∉ [t0, t0 +T ]) by a perturbation of the
intensities.

For the sake of simplicity, we will follow the microstructure model above and
just consider mean-reversion reaction of the market (e.g., [18], [44]). Let us point
out that this is clearly not a realistic hypothesis if one is interested in mimicking
precisely the microstructure. However, this is not our goal. In this section, we
want to build a structural model that allows to explain the main dynamics of the
market impact curve. In the same line as Bouchaud [118], Gatheral [60] and [18],
we shall build a linear model, in the sense that the impact of the meta-order is
nothing but the sum of the impact of its children order.

The model HIM. This model consists in replacing (3.18) by the two equations :

λ+
t =µ+ϕ?d J−t +

∫ t

t0

f (rs)g+(s−t0)d s and λ−
t =µ+ϕ?d J+t +

∫ t

t0

f (rs)g−(s−t0)d s,

(3.19)
where f (rs)d s (with f (0) = 0) codes the infinitesimal impact of a buy order of
volume rsd s. The f function corresponds to the instantaneous impact function
and g+ and g− are the impact kernel functions. As empirical found in [117] and
used by others authors before us ([60, 118]), we suppose the market impact can
be separated in a factorized form: one depending on volume (or volume per
time) and the other depending only on time.

The impulsive-HIM (I-HIM) model: a particular choice for the kernels. Fol-
lowing [18], it is reasonable to consider that the only "upward" impact of a sin-
gle buying order is instantaneous, i.e., either the corresponding order ate up the
whole first limit (in which case there is an instantaneous jump in the price) or
it did not (in which case a limit order fills up the missing volume). This case
corresponds to consider that g+ is "purely" impulsive, i.e.,

g+(t ) = g+
i (t ) = δt (t ), (3.20)

where δ(t ) stands for the Dirac distribution. As for the "downward" impact, we
shall consider that the market reacts to the newly arrived order as if it triggered

2. The impact of selling meta-order can be modeled using the exact same principles
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an upward jump. Doing so leads to the choice

g−(t ) = g−
i (t ) =C

ϕ(t )

||ϕ(t )||L1
, (3.21)

where C > 0 is a very intuitive parameter that quantifies the ratio of mean-
reversion reaction (i.e., the downward impact) and of the "trend-following" re-
action (the upward impact). Indeed the L1 norm of the upward reaction to an
impulsive buying order is f (r0)||g+

i ||L1 = f (r0)||δ||L1 = f (r0), whereas the down-
ward reaction to the same order is f (r0)||g−

i ||L1 = f (r0)||ϕ||L1C /||ϕ||L1 = C f (r0).
Thus, one can distinguish 3 cases of interests.

• C = 0 : no mean-reversion reaction,
• C = 1 : the mean-reversion reaction is as "strong" (in terms of the norm

||.||L1 ) as the trend-following one. So we expect the two to compensate
asymptotically, i.e., we expect the permanent market impact to be 0 (see
Eq. (3.26) of Proposition 3 for confirmation),

• C ∈ (0,1) : the mean-reversion reaction is not zero but strictly smaller than
the trend-following reaction.

Thus the model I-HIM corresponds to the equations

λ+
t =µ+ϕ?d J−t + f (rt ) and λ−

t =µ+ϕ?d J+t +C
∫ t

t0

f (rs)ϕ(s − t0)d s, (3.22)

where C is a positive constant that controls the "downward" reaction of the mar-
ket.

Market impact curve within HIM

According to our definition of market impact: the difference between the
observed price moves and what it would have been without this specific order,
within HIM, the market impact of a meta-order writes :

ηt = E[Pt ]. (3.23)

Let us point out that, for convenience purposes, we have used physical time
in this latest definition instead of renormalized time (which is convenient for
estimation purpose see (3.3)).
Then, one can prove (see Appendix 3.8) that :

Proposition 3. (Transient, decay curves and permanent impact)
In the framework of the model HIM (3.19), for all t ≥ t0 (t0 is the starting time of

the meta-order), one has:

ηt =
∫ ∞

t0

f (rs)
(
G(t − s)− (κ?G)(t − s)

)
d s, (3.24)

where
– G(t ) = ∫ t

0 (g+(u)− g−(u))du
– κ=∑∞

n=1(−1)n−1ϕ(?n), where ϕ(?1) =ϕ and ϕ(?n) =ϕ(?n−1)?ϕ.
In the case of the model I-HIM (3.22) , this formula gives

ηt =
∫ t

t0

f (rs)H(t − s)d s, t ≥ t0, (3.25)
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where H(t ) = 1− (1+C /||ϕ||L1 )
∫ t

0 κ(s)d s. Moreover, under the assumption that f
is bounded, the permanent market impact writes:

Mhc (∞) = 1−C

||ϕ||L1
|| f (r )||L1 . (3.26)

Let us point out that several recent empirical results ([15] and [69]) seem to show
that the Hawkes kernel ϕ decays as a power-law. Both studies found the expo-
nent in the interval [−1.5,−1]. The following corollary shows that, in the frame-
work of the model I-HIM, and in the case of a constant rate strategy, then if ϕ
is power-law then the market impact curve asymptotically decays (to the limit
permanent impact) as a power-law, with an exponent which is related to the ex-
ponent of ϕ. More precisely:

Corollary 7. In the framework of the model I-HIM, let us consider a constant rate
strategy, i.e., rt = r, ∀t ∈ [t0, t0 +T ] and rt = 0 otherwise. Assume that ϕ is such
that

– ϕ≥ϕ(?2) and,
– ∃K > 0, limt→∞ϕ(t )t−β

(φ) = K , with β(φ) ∈]−2,−1[.
Then, the market impact curve decays asymptotically as a power-law with expo-
nent β(φ) +1, in the sense that

sup

{
β, :

∫ ∞

1
ηt tβ−1d t <∞

}
=β(φ) +1. (3.27)

The proof of this Corollary can be found in Appendix 3.8.

Back to real data

Let us consider the case of a meta-order of fixed size v and executed on a
period of time T . In the framework of the model I-HIM, for a constant trading
rate rt = r0 =V /T , Eq. (3.24) becomes:

ηt = f (r0)
(
1[t0,t0+T ]?H

)
(t ). (3.28)

Let us point out that the trading rate r0 has no influence on the shape of the
transient market impact, it is just a multiplicative constant. In the following we
want to use the model I-HIM to reproduce the transient and the decay market
impact curves obtained in Sections 3.4 and 3.5 and displayed in Fig 3.20-Fig 3.23.

Following [15] and [69], we choose to use a power-law kernel

ϕ(t ) =α(γ+ t )β.

Thus, apart from the instantaneous impact function f (which is basically re-
sponsible for a rescaling of the whole market impact curve), there are 4 param-
eters left in the I-HIM model, namely, α, β, γ and C . The parameters α and β

are responsible for the endogenous mean-reverting activity of the market itself.
As pointed out previsouly, the parameter C encodes the proportion of mean-
reversion in the impact.

Estimation is performed simultaneously on the four market impact curves
{η̂(i )

s }1≤i≤4 (for s ∈ [0,2]) displayed on Fig. 3.20 - Fig. 3.23. The parameters are α
and β (these two parameters are shared by all the curves) and the parameters
{C (i )}1≤i≤4. Estimation follows the three following principles
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– We constrain the estimation to fit the transitory market impact η̂(i )
s=1 for

each curve i ∈ {1, ..,4}.
– Each curve η̂(i )

s is as a function of the renormalized time s whereas the
model gives the market impact ηt (Eq. (3.28)) as a function of the phys-
ical time, rescaling in time must be performed independently on each
curve. The corresponding rescaling parameter Ti has been chosen to be
the largest duration in the corresponding time ranges, i.e., T1 = 15 min for
curve in Fig. 3.20, T = 30 min for curve in Fig. 3.21, T = 60 min for curve
in Fig. 3.22 and T = 90 min for curve in Fig. 3.23.

– To account for the instantaneous impact function f (.), each curve is
rescaled independentl

Thus, the estimation procedure sums up in

(α̂, β̂,Ĉi ) = ar g mi n(α,β,Ci )

4∑
i

∫ 2

0

(
η̂(i )

1

ηsTi

ηsTi − η̂(i )
s

)2

d s.

The value we find for β̂ is close to −1.5 and for α we find a value such that
||ϕ||L1 ≈ 0.8456 which is rather close to the critical value 1. These results are in
good agreement with the works [15] and [69]. For the parameters {Ci }1≤i≤4, we
find Ĉ1 ≈ 0.5, Ĉ2 ≈ 0.70, Ĉ3 ≈ 0.80 and Ĉ4 ≈ 0.85.

The so-obtained fits are shown in Fig. 3.20 - Fig. 3.23. One can see that the
model I-HIM is able to reproduce precisely the shapes of both transient and
decay market impact curves. Moreover, it also reproduces the dependence on
T of the curvature of the transient market impact, i.e., the smaller T , the more
linear the transient market impact.

3.7 THE IMPACT OF THE TYPE OF STRATEGY ON THE PERMANENT

IMPACT

Positioning

So far very few papers, even if the permanent effect has been extensively
studied, addressed this subject from the perspective of the daily scale. How-
ever one distinguishes two clear different points of view about the nature of the
phenomenon at the origin of permanent impact. A mechanical vision shared by
number of econophysists and an informational vision which is further favoured
by economists:

• In a purely mechanical vision price moves are described as the point of
equilibrium between two antagonist forces: a sell pressure driving prices
down and a buy pressure driving prices up. The effect of these forces on
price dynamic follows a law that the econophysist strive to describe. Even-
tually the price at time t is the sum of all the effects since the beginning.
See [58] and [33].

• On the other side, the informational vision says stock prices move be-
cause new information is made available to market participants. Accord-
ing to this new information investors update their expectations changing
their offer and demand which leads to a new global equilibrium resulting
in new price levels. In a seminal paper, [88], Kyle shows how prices are
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driven to their new level through the execution of a meta-order by an in-
formed trader. The informed trader is constantly adjusting her trading to
her observation of the price in real time: she increases or reduces pressure
whether the price is too far or not from the targeted price.

An important contribution has been made in [66]to the question of the perma-
nent effect at the daily scale. In the paper the authors have at their disposal a
buy side database of meta-orders. The specificity of such a database is to give
the information about the nature of the decision at the root of the execution,
thus giving additional controls to separate purely impact moves from others.
They separated meta-orders into two groups:

• Those triggered by additional or cancelled subscriptions, thus triggered by
heterogeneous and relatively exogenous to the market information. Those
meta-orders are called “uninformed trades”.

• The rest, essentially meta-orders coming from portfolio rebalancing, is
designated the set of “informed trades”.

Waelbroeck and Gomes [66] show that only a daily basis (from execution until
60 days after) informed trades have permanent effect but uninformed trades do
not.

The purpose of the paper is not to settle for one or the other debaters. We be-
lieve that there is no rule; the mechanical - informational dual vision about the
nature of permanent effect renders a good picture of the phenomenon. As every
dual paradigm, this is a principle well known by physicists, taken separately the
two pure concepts fail to give a satisfying picture of the whole phenomenon.

Focus on permanent effect. In the problem of permanent effect the informa-
tional versus mechanical debate boils down to understand the price reversal ob-
served after the execution. Is the price reversal:

• the temporary effect of liquidity providers, counterparts of the meta-order,
who are taking profit thus applying a pressure on the price in the opposite
direction. Let us imagine a strung bow releasing all the tension accumu-
lated during the execution (Mechanical explanation);

• the convergence of the price to its new Walrasian equilibrium. If the price
does not revert until its initial position it means that the market integrated
new information establishing the equilibrium to a new level (informa-
tional explanation)?

To be really fair in the informational versus mechanical debate one should
recognize that the existence of permanent effect is still debated among mecha-
nistists. The two following pictures have emerged:

• In the picture of [53] and of [27] permanent market impact is important
and roughly equals to 2/3 of the temporary impact on an order by order
basis. This is the fair pricing hypothesis.

• In the picture of [33], there is no such thing as permanent impact. The au-
thor argues that what is called permanent market impact is a consequence
of the long memory of the sign of the meta-orders flow. This picture is in-
compatible with the permanent market impact hypothesis because long
memory of order flow would result in trending stock prices and thus con-
tradicting market efficiency.

In this paper we pretend to conciliate the two positions of [53] and [33] even if
at first sight they seem pretty much incompatible. In [53] the long memory of
the order flow is not taken in consideration and thus it is shown that the so-
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called total effect is non-negligible. On the other hand, in [33] it is taken into
consideration and the total effect is described as an effect of other correlated
meta-orders being executed on the same side. Eventually the relaxation taking
place at the end of the meta-order execution is an averaging effect. In this paper,
as previously stated, we consider that the permanent market impact is the ad-
ditional price movement after the execution of a meta-order over the price that
would be in the absence of the meta-order. This explains why we prefer the term
of permanent effect instead of permanent market impact.

Our methodology. To go one step further, we will try to remove as much in-
formational effect as possible from the price move. Since we use the database
of an executing broker, we do not know explicitly what triggered the creation of
the meta-orders.

In [66], the authors know some of their meta-orders are “cash trades” (i.e.
without any information on price moves; in their case E(ε(ω)Wt ) = 0, to come
back to equation (3.4)), and find these cash trades have no permanent impact.
They perform the same analysis of the subset of their meta-orders, and find they
have a permanent effect, obtaining curves similar to the red one of Figure 3.30.

In this paper, we intend to remove the informational part of the price move
by assuming the client of this marge broker, being almost all large institutional
investors, are trying to “capture some β”, in the sense of the CAPM. The reader
should keep in mind that in [37], authors succeeding in removing most of the
information content of their meta-orders, using their anticipation of theαmade
by Capital Fund Management at the initiation of the meta-order.

We have here a similar approach, adding the assumption the initiation of
meta-orders by institutional investors in our database has been caused by an
anticipation of the β of market moves.

Our results are compatible with Capital Fund Management meta-orders
cleaned from α and with the cash trades of [66]: we found no permanent effect
once the informational content associated to the meta-orders.

To conciliate results of [53] and cash trades of [66] or Capital Fund Man-
agement meta-orders of [37], it is enough to assume the mix of informed meta-
orders and non informed ones in the databases available by now to academics
is such that the remaining price move a dozen of days after a decision is around
2/3 of the temporary impact. This assumption can be supported by the natural
selection argument of [66] : portfolio managers learn to select trades which ex-
pected return at the time scale of investment committees are largest than their
trading costs.

Debiasing price moves of the temporary of meta-orders trading during
the post-execution period

When studying the average profile of the post-execution price moves partic-
ular attention should be paid to the presence of autocorrelations in the meta-
order flow. Indeed the temporary impact of correlated meta-orders executed
over the post-execution can be considered as the permanent effect of the meta-
orders executed on the execution day. In [52] the authors discuss the issue of
price efficiency and of order flow correlations. [66] recognizes the presence
of autocorrelations in the flow of meta-order and uses a simple market im-
pact model to withdraw the impact of the meta-orders traded over the post-



90 Chapter 3. Market impacts and the life cycle of investors orders

execution period. Figure 3.28 shows the autocorrelations of the market partici-
pation rate for the meta-orders of our database (bootstrapped quartiles and me-
dian). One clearly sees that the autocorrelation persists beyond 20 days after the
execution day. Removing the effect of the autocorrelations of the meta-order

1 3 5 7 9 11 13 15 17 19
0.3

0.32

0.34

0.36

0.38

0.4

0.42

 

 
Sup. and inf. boot. quartiles
Boostrapped median

Figure 3.28 – Autocorrelations of the market participation of meta-orders with lags in
{1, . . . ,20}. The dashed curves represent the first and the last bootstrapped quartiles, the
solid curve is the bootstrapped median.

flow in order to get an unbiased long term impact picture is not straight for-
ward. The temporary impact of meta-orders on the price moves turns out to be
far from linear. In the paper we followed the methodology introduced in [66],
namely we fitted a square root model on the temporary impact of aggregated
signed participation rates. In concrete terms, for each stock of our universe and
any date we defined the unbiased returns by subtracting the market impact re-
lated to the aggregated signed participation rate of all meta-orders that were
being executed.

To compute statistics, we need to use the day d(ω) during which the meta-
order ω has been traded. Notice that, in the rare cases we have multiple meta-
orders the same day on the same stock, we summarize them in one “synthetic”
meta-order, which volume is the sum of their signed volumes.

As previously stated figure 3.28 shows the autocorrelations of the process
v(d), showing the occurrence of one meta-order on day d is positively correlated
with the issuance of another meta-order on the same stock the day after, etc.

Following [66] we decided to remove part of this effect by removing the ex-
pected market impact associated to d +n days thanks to a rough version of the
models obtained in the previous section:

• we fit a power law on the market impact observed in the daily database,
• we apply it to the price moves observed at d +n, using v(d +n) to deduce

the expected impact.
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The meaning of such a “cleaning” needs to be commented. Assume the fol-
lowing initial event: information affecting the value of a stock is accessible to
investors. They will not simultaneously take it into account in their portfolios.
Each of them has constraints and processes different enough so that their deci-
sion will span several days.
Each time an investor take a decision accordingly to this information, he im-
pacts the price, mechanically ; there should be an informational component to
the price move too, as a consequence to the initial event.

The rough market impact model built on the daily data meant to capture
most of the mechanical effect, and may be some part of the informational one.
Removing it from the data targets to observe the future of the price given the
meta-order traded on day d , as independently as possible to the subsequent
trades.

Systematic + idiosyncratic decomposition

For each meta-order we define a CAPM-like decomposition into a system-
atic and an idiosyncratic component centred on the execution day over a 41 days
period (20 days before and 20 days after),

∀s ∈ {d −20, . . . ,d , . . . ,d +20}, log(Ps)− log(Ps−1) =

β(ω)(log(Is)− log(Is−1))+∆Idio. Components , (3.29)

where d is the date of meta-order execution, Ps is the stock’s close price on date
s, and β(ω) implicitly designates the beta of the traded stock on the period from
d −20 to d +20.

We use the reference index for each stock, which price is noted Is on day s.
• We define the idiosyncratic component as the cumulative sum of the
∆(Idio. Components) from (3.7):

s∑
k=d

∆(Idio. Componentk ) = Idio. Components − Idio. Componentd−1;

• Similarly we define log(Is)− log(Id−1) as the systematic component.
The systematic, the idiosyncratic components and the “total” are considered rel-
atively to the close prices one day before the execution, d −1. This cumulative
version of (3.7) is also called the post-execution profile and is a measure of the
permanent effect.

Remind here our main assumption is the investors initiating the meta-
orders target an exposure in β (i.e. to the systematic component in our sense).
The informational effect should then be capture by this component, and the dy-
namics of the mechanical part of his impact should be seen on its idiosyncratic
component.

Result analysis and figures

The two figures 3.29 and 3.30 present the idiosyncratic, the systematic and
the total post-execution profiles of price moves. Figure 3.29 shows “not-yet-
debiased” post-execution profiles. The observed price jump between day 0 and
day 1 is the daily market impact. This jump is visible on the idiosyncratic and
the systematic components. Over the period extended from day 1 until day 20



92 Chapter 3. Market impacts and the life cycle of investors orders

the prices are slowly trending in the same direction as the jump on the execution
day and no reversal is seen at all. This holds true for idiosyncratic and system-
atic components as well. Figure 3.30 shows the debiased post-execution profile.
The market impact of the meta-orders executed the day after the execution day
has been removed. Over the post-execution period the price is converging back
to a level lower than the one reached on execution day. The idiosyncratic post-
execution profile is even reaching its level before the execution before day 20.
Thus the remaining permanent effect 20 days after the execution is entirely ex-
plained be the systematic component that is to say by the average lvele of the
market.

Figure 3.29 – Post-execution profile relatively to close price on the day before execution
(units = basis points). Idiosyncratic component + Systematique component = Total com-
ponent.

Figure 3.30 – Post-execution profile without the impact of other meta-orders. Price moves
are considered relatively to close price the day before execution (units = basis points). Id-
iosyncratic component + Systematique component = Total component.
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3.8 APPENDIX

Proofs

Proof of Proposition 3
This is a consequence of a more general result on Hawkes Processes:

Theorem 16. Let (N1, . . . , Nd ) be a d-multivariate Hawkes process defined by his
intensity λ= (λ1, . . . ,λd ):

λt =µ(t )+
∫

[0,t )
Φ(t − s)d Ns (3.30)

where µ(t ) = (µ1(t ), . . . ,µd (t )) is a vector of functions from R+ to R+ and Φ(t ) =
(ϕi j (t ))1≤i , j≤d is a matrix containing functions from R+ to R+.
Under the assumptions:

• ∫ t
0 µ(s)d s <∞ ∀t > 0,

• the spectral radius of the matrix K = ∫ ∞
0 Φ(t )d t is inferior to 1, ρ(K ) < 1,

we have

E[Nt ] = h(s)+
∫ t

0
Ψ(t − s)h(s)d s, (3.31)

where Ψ = ∑
n≥1Φ

(?n) and h(s) = ∫ t
0 µ(s)d s, where Φ(?n) = Φ? . . .?Φ (with n

terms on the right hand-side) and where the convolution product of two matrices
A(t ) = {ai j (t )} and B(t ) = {bi j (t )} is defined as the matrix C (t ) = {ci j (t )}, such
that

ci j (t ) =∑
k

ai k ?bk j .

Proof. Let us first remark the elements of the matrix Ψ are in L1. Indeed, by in-
duction we have,

∫ ∞
0 Φ(?n)(t )d t = K n and since ρ(K ) < 1, the seriesψ=∑

n≥1 K n

is finite component-wise, thus one gets:∫ ∞

0
Ψ(t )d t = K (I d −K )−1. (3.32)

We will now show that:

E[Nt ] =
∫ t

0
µ(s)d s +E[

∫ t

0
Φ(t − s)Nsd s] ∀t > 0 (3.33)

Using that Nt−
∫ t

0 λsd s is a (Ft )-martingale (where (Ft )t≥0 is theσ-algebra gen-
erated by the random variables N i

s ; s ≤ t ;1 ≤ i ≤ d), we have:

E[Nt ] = E[
∫ t

0
λsd s] = E[

∫ t

0
µ(s)d s]+E[

∫ t

0
d s

∫ s

0
Φ(s −u)d Nu].

But, by Fubini’s theorem:∫ t

0
d s

∫ s

0
Φ(s −u)d Nudu =

∫ t

0

(∫ t

s
Φ(t −u)d t

)
d Nu =

∫ t

0

(∫ t−s

0
Φ(s)d s

)
d Nu .

We denote F (t ) = ∫ t
0 Φ(s)d s and using an integration by parts we have:∫ t

0
F (t − s)d Ns =

[
F (t − s)Ns

]t

0
+

∫ t

0
Φ(t − s)Nsd s =
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= F (0)Nt −F (t )N0 +
∫ t

0
Φ(t − s)Nsd s =

∫ t

0
Φ(t − s)Nsd s.

So we obtain:

E[Nt ] = E[
∫ t

0
µ(s)d s]+E[

∫ t

0
Φ(t − s)Nsd s].

Using once again Fubini’s theorem:

E[Nt ] =
∫ t

0
µ(s)d s +

∫ t

0
Φ(t − s)E[Ns] (3.34)

This is a classical renewal equation and the solution is given by (3.31). The
interested reader can find more on renewal theory on the book of David Cox
([41]).

Let us now prove the first part of Proposition 3. In order to ease further nota-
tion we take t0 = 0. We apply the previous theorem in the particular case of the

2-dimensional Hawkes process (J+, J−) with Φ =
(

0 ϕ

ϕ 0

)
and we successively

compute:

– Φ?n =
(

0 ϕ?n

ϕ?n 0

)
if n is even andΦ?n =

(
ϕ?n 0

0 ϕ?n

)
if n is odd.

– h(t ) = (h1(t ),h2(t )) = (tµ+∫ t
0 ( f (r )? g+)(u)du, tµ+∫ t

0 ( f (r )? g−)(u)du)
– ηt = E[J+t − J−t ] = (h1(t )−h2(t ))−κ? (h1 −h2)(t ).

This proves Eq. 3.24 since h1 −h2 = f (r )?G .

In the case of I-HIM, we set H(t ) =G(t )−G?κ(t ) and C1 =C /||ϕ||1. Let us com-
pute the derivative of H for t > 0 :

H ′(t ) =G ′(t )−G ′?κ(t ) =−C1ϕ(t )−(δ−C1ϕ)?κ(t ) =−C1ϕ(t )−κ(t )+C1ϕ?κ(t )

Using:

ϕ?κ=ϕ?
∞∑

n=1
(−1)n+1ϕ(?n) =

∞∑
n=2

(−1)nϕ(?n) =ϕ−κ,

we obtain
H ′

t =−(1+C1)κ(t ).

This allows to find H(t ) = 1− (1+C1)
∫ t

0 κ(s)d s which proves (3.25). Eq. (3.26) is
a direct consequence of this equation when the rate rt is constant.

Proof of Corollary 7
This Corollary is a direct consequence of the following Lemma (which links the
power-law exponent of ϕ with the one of κ) and of the expression (3.25).

Lemma 5. Let p ∈ [0,1]. Under the assumption ϕ ≥ ϕ(?2),
∫

[0,∞) t pϕ(t )d t <∞ if
and only if

∫
[0,∞) t pκ(t )d t <∞.

Proof. We recall that κ = ∑∞
n=1(−1)n+1ϕ(?n). Which in the Fourier domain be-

comes:

κ̂(ω) =
∞∑

n=1
(−1)n+1ϕ̂n(ω) = ϕ̂(ω)

1+ ϕ̂(ω)
,

By inverting the previous formula we get:

ϕ̂(ω) = κ̂(ω)

1− κ̂(ω)
=

∞∑
n=1

κ̂n(ω).
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Returning in the time-domain we have:

ϕ=
∞∑

n=1
κ(?n). (3.35)

Let us remark the asumption ϕ ≥ ϕ(?2) ensures that κ is positive. We are ready
for the proof

• Let us assume that
∫ ∞

0 t pϕ(t )d t <∞.
Since κ(t ) ≥ 0, it is easy to see that κ(?n) ≥ 0. So 0 ≤ κ(t ) ≤ ϕ(t ) and than∫ ∞

0 t pκ(t )d t <∞ is evident.
• Let us assume that

∫ ∞
0 t pκ(t )d t <∞.

Let In = ∫ ∞
0 t pκ(?n)(t )d t , ∀n ≥ 1, and

∫ ∞
0 κ(t )d t = c, c ∈R+. Using that the

function t p is concave for p ∈ [0,1], we get:

In+1 =
∫ ∞

0
t p

(∫ t

0
κ(t−s)κ(?n)(s)d s

)
d t =

∫ ∞

0

(∫ ∞

0
(t+s)pκ(t )d t

)
κ(?n)(s)d s

≤
∫ ∞

0

(∫ ∞

0
(t p+sp )κ(t )d t

)
κ?(n)(s)d s =

∫ ∞

0

(
I1+csp

)
κ(?n)(s)d s = cn I1+cIn .

Therefore for all integer N :

N∑
i=1

In ≤ I1 +
(N−1∑

n=1
cn

)
I1 + c

N−1∑
n=1

In .

And we easily obtain:
N−1∑
n=1

≤ I1

(1− c)2

Thus, for N →∞: ∫ ∞

0
t pϕ(t )d t =

∞∑
n=1

In ≤ I1

(1− c)2 <∞

Trading algorithms

All meta-orders of the database have been traded using different trading al-
gorithms. There are mainly three:

• a PoV (i.e. Percentage of Volume) is a trading algorithm for which the vol-
umes of the transactions stays in a narrow band (of width of the order of
a few percents) around a constant chosen as a fixed fraction of the es-
timated daily volume. Thus, "smart" limit orders are sent as long as the
integrated volume is in the band. When it is no longer the case, these limit
orders are canceled and market orders are sent instead.

• a VWAP (i.e. Volume Weighted Average Price) is a trading algorithm pa-
rameterized by a start time and an end time, which tries to make the in-
tegrated transaction volume to be as close as possible to the average in-
traday volume curve of the traded security (i.e. the U-shaped pattern on
the US stocks for instance, see [90] Chapter 2.1. for details about fixing
auctions and intraday volume curves around the world). It means that
the transaction volumes are higher (resp. lower) during the period of high
(resp. low) averaged activity.

• a IS (Implementation Shortfall) is the typical implementation of an
Almgren-Chriss like algorithm.

For more details about trading algorithms, see Chapter 3.3 of [90].
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The structural difference between the different trading algorithms

The relationship between r (ω) (or r (ω)) and T (ω) are very different depend-
ing on the trading algorithm used for executing ω. Tables 3.4, 3.5 and 3.6 give
some basic statistics on the main characteristics of the meta-orders correspond-
ing to each trading algorithm (see Section 3.2 for notations).

Characteristic Mean Std Q5% Q25% Q75% Q95% Kurtosys Skewness

N (ω) 74.5 108.9 11 20 84 247 6.2 79.9
r (ω) 2.33% 3.75% 0.07% 0.31% 2.62% 9.65% 3.55 20.53
σ(ω) 32.86% 73.18% 11.59% 18.89% 38.58% 69.12% 72.9 5918
ψ(ω) 0.231 1.496 0.003 0.013 0.132 1.034 37.1 1797

T (ω)(i nmn) 62.6 92 0.95 6.61 74.38 277 2.42 9.07
r (ω) 20.39% 11.31% 2.97% 13.12% 26.18% 36.3% 1.24 8.15

Table 3.4 – Statistics on the main characteristics of the meta-orders for PoV algorithms
(see Section 3.2 for notation and 3.2 for algorithm description). Qp% stands for the p-
quantile of the distribution.

Characteristic Mean Std Q5% Q25% Q75% Q95% Kurtosys Skewness

N (ω) 78 131 11 19 83 276 7.18 108
r (ω) 2% 3.16% 0.07% 0.292% 2.184% 7.74% 4.97 40.41
σ(ω) 27.30% 44.45% 10.95% 16.99% 32.23% 54.61% 109 15120
ψ(ω) 0.334 1.054 0.003 0.014 0.3 1.441 28.64 1485

T (ω)(i nmn) 250 131 24 129 330 450 -0.29 2.1
r (ω) 5.36% 8.05% 0.2% 0.82% 6.24% 22.03% 3.28 17.86

Table 3.5 – Statistics on the main characteristics of the meta-orders for VWAP algorithm
(see Section 3.2 for notation and 3.2 for algorithm description). Qp% stands for the p-
quantile of the distribution.

Characteristic Mean Std Q5% Q25% Q75% Q95% Kurtosys Skewness

N (ω) 32 35 10 14 38 93 4.97 48.14
r (ω) 1.04% 1.58% 0.07% 0.216% 1.25% 3.75% 5.69 64.73
σ(ω) 25.72% 13.81% 10.79% 16.67% 30.80% 49.21% 2.85 21.92
ψ(ω) 0.409 0.675 0.004 0.022 0.525 1.643 3.76 27.53

T (ω)(i nmn) 24 33 1.76 7 28.3 71.2 4.61 32.16
r (ω) 11.76% 9% 4.26% 6.39% 13% 30.5% 2.71 13.24

Table 3.6 – Statistics on the main characteristics of the meta-orders for IS algorithm
(see Section 3.2 for notations and 3.2 for algorithm description). Qp% stands for the p-
quantile of the distribution.

Other statistics

Table 3.7 shows the distribution of meta-orders function of the stock ex-
change where the meta-orders are executed and Table 3.8 gives some basic
statistics on the main characteristics of those meta-orders (see Section 3.2 for
notations)
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Stock Exchange Ω(i n) Ω(te) Ω(tr ) Ω(de)

Amsterdam 4.89% 5.43% 5.18% 5.65%
Frankfurt 13.34% 13.27% 13.37% 14.54%
London 25.84% 25.56% 24.13% 21.62%
Madrid 4.71% 5.02% 5.05% 5.21%
Milan 6.08% 5.98% 5.34% 5.120%
Paris 22.64% 26.04% 27.94% 29.90%

Others 22.50% 18.67% 18.95% 17.92%

Table 3.7 – Meta-orders distribution on different European Stock Exchanges for different
databases

Characteristic Database Mean Q5 Q25 Q50 Q75 Q95

N

Ω(d ay) 73 11 19 50 80 249
Ω(te) 77 11 20 40 87 261
Ω(tr ) 100 13 28 57 117 326
Ω(de) 78 12 24 47 94 248

T (min)

Ω(d ay) 130 1.6 13.4 52 262 415
Ω(te) 122 1.1 11.1 49 239 410
Ω(tr ) 85 4.5 12.8 33 102 339
Ω(de) 40 4.1 9.8 23 56 140

rD

Ω(d ay) 2.12% 0.07% 0.30% 0.73% 2.33% 8.69%
Ω(te) 1.78% 0.06% 0.25% 0.68% 1.89% 7.19%
Ω(tr ) 2.09% 0.17% 0.48% 1.15% 2.56% 7.21%
Ω(de) 1.20% 0.14% 0.32% 0.70% 1.51% 4%

r

Ω(d ay) 14.25% 0.43% 3.35% 12.11% 22.57% 34.12%
Ω(te) 13.82% 0.38% 3.12% 11.48% 21.93% 34%
Ω(tr ) 16.01% 3.85% 7.98% 15.23% 22.76% 32.41%
Ω(de) 16.99% 2.45% 9.36% 17% 24.13% 32.97%

σD

Ω(d ay) 30.32% 11.27% 17.94% 24.89% 35.56% 63.18%
Ω(te) 28.10% 10.65% 16.91% 23.69% 33.50% 58.98%
Ω(tr ) 27.89% 10.68% 16.89% 23.62% 33.388% 58.35%
Ω(de) 28.92% 10.97% 17.38% 24.42% 34.50% 60.76%

ψ (bp)

Ω(d ay) 15.56 3.57 6.27 10.29 16.83 44.92
Ω(te) 12.08 3.41 5.57 9.01 13.58 31.97
Ω(tr ) 11.98 3.57 6.16 9.73 14.17 28.85
Ω(de) 1.075 3.40 5.47 8.64 12.705 25.75

Table 3.8 – Statistics on the main characteristics distribution of meta-orders for different
databases
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4.1 INTRODUCTION

Self-exciting processes were first introduced by Alan Hawkes [74, 73] in or-
der to reproduce the ripple effects generated after the occurrence of an earth-
quake [133]. They are intuitively similar to Poison processes, but unlike ordi-
nary Poisson processes, the intensity of Hawkes processes is stochastic and de-
pends upon their own historic events. Gradually, the model has been used by
scientists from different areas such as biology [68, 112, 115], genome analysis
[121], neurology [129, 119, 120], seismology [4, 132, 75, 87, 110], social behavior
[29, 43, 123, 138] and epidemiology [135], to name but a few.

Nowadays, Hawkes processes are widely used in finance. Because cur-
rent transactions, which are discrete events, cause future trades [118], self-
exciting processes successfully engendered many applications. Without being
exhaustive, let us give some examples: microstructure dynamics [17], order
arrival [77, 25], market impact [18, 19], financial price modeling across scales
[16, 86], volatility clustering [50], price co-jumps [30], limit order book modeling
[137, 127, 89, 126] among many other.

Every counting process (Nt )t∈R+ can be entirely defined by his intensity
(λt )t∈R+ :

P(N has a jump in [t , t +d t ]|Ft ) =λt d t ,

where P stands for probability and Ft is the sigma-field generated by N up to
present time t . The most basic Hawkes model is a univariate counting process
such that its intensity λt , satisfies:

λt =µ+
∫ t

−∞
ϕ(t − s)d Ns , (4.1)

where µ> 0 is the exogenous intensity and ϕ is a positive function with support
on R+ called decay kernel. If ϕ ≡ 0, we have a basic Poisson process. The uni-
variate Hawkes process can be shown to be well defined and to admit a version
with stationary increments under the stability condition:

Assumption 1 `= ||ϕ||1 =
∫ ∞

0
ϕ(t )d t < 1 (4.2)

where || · ||1 denote the usual L 1(R)-norm. For a complete mathematical study
of Hawkes and more general point processes we refer the interested reader to
the Daley and Vera-Jones’book [45].

Since self-exciting processes are quite popular in different scientific areas,
they have long been studied in probability theory: see for example the books of
Daley-Vere-Jones [45], Brémaud-Massoulié [36, 34, 35] or the recent research of
Zhu [141, 139, 140]. Recent studies (see [59, 47]) investigate the case of large d ,
when the number of components may become increasingly big or possibly infi-
nite. With regard to the simulation of Hawkes processes, we refer the interesting
reader to [102, 103, 62, 46].

From a statistical inference point of view, one of the first studies belongs
to Ogata [111] and Ozaki [113], who investigated the maximum likelihood esti-
mator for some classes of functions, like exponential and power laws. For more
than two decades, these methods have been used for most of the applications.
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In 2010, Reynaud-Bouret and Schbath [121] employed a penalized projection
method to estimateϕ in the univariate Hawkes model. The theoretical estimator
is adaptive for Hölderian functions with regularity (1/2,1], under the hypothesis
that the decay kernel has compact support. In 2011, Lewis and Mohler [97]
used a maximum penalized likelihood estimation to simultaneously approx-
imate the background rate and the decay kernel of a multivariate model and
they numerically studied the convergence rate of the algorithm. Same year (i.e.
2011), Bacry et al. [15] proposed another non-parametric estimation method
for multivariate symmetric Hawkes processes, based on Fourier computations
and Bartlett specter theory and without investigating the convergence speed.
The aim of this chapter will be dedicated to this aspect. Recently, Bacry et al.
[20] propounded a non-parametric estimation method for general multivariate
Hawkes processes based on the explicit resolution of a Wiener-Hopf system
using Gaussian quadrature method.

This chapter is organized as follows. In the next section we introduce the
univariate version of a Hawkes processes and we set some notations. In sec-
tion 2, we present the framework of the article. We provide also the estima-
tion method and our main results. In section 3, we establish some properties of
the martingale representation of the Hawkes processes and the auto-covariance
function. Section 4 is dedicated to the proof of the main results.

Notation and definitions

Let us consider a univariate Hawkes process (Nt )t∈R+ with stationary incre-
ments described by (4.1). The conditional intensity (λt )t∈R+ has itself stationary
increments with mean:

Λ= E[λt ]. (4.3)

Or, using Hawkes notation:

Λ= E[d Nt ]

d t
.

Taking expectation of both sides of (4.1) allow us to compute Λ under the sta-
tionary hypothesis:

Λ=µ+`Λ.

This equation has a meaningful solution only under the condition, `< 1:

Λ= µ

1−` . (4.4)

Inspired by Bartlett’s work ([24]), Hawkes point out the self-exciting point pro-
cess is uniquely defined by its first-order statistics (i.e. the expectation Λ of its
conditional intensity λ(t ) (4.4)) and the second-order statistic (or covariance
density):

v(τ) = E[d Nt+τd Nt ]

(d t )2 −Λ2, (4.5)

which does not depends on t under the stationarity assumption. Indeed, he
proved (see [74, 73]) that ϕ and v are related thanks to the equation:

v(τ) =Λϕ(τ)+ (ϕ? v)(τ) ∀t > 0 (4.6)
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This is a Wiener-Hopf equation, which has unique solution on ϕ under some
hypothesis on v (see [107]). Knowing the ϕ kernel allows to recover µ through
(4.4).

From a practical point of view, the covariance density v cannot be estimated
directly. Nevertheless, a similar quantity can be computed by discretization.

Definition. We define the (normalized) auto-covariance function of the
Hawkes process at scale h and lag t , by:

v (h)(t ) = 1

h
Cov(Nu −Nu−h , Nu+t −Nu+t−h)

= 1

h
E
[(∫ h

0
d Ns −Λh

)(∫ t+h

t
d Ns −Λh

)]
. (4.7)

The second identity does not depend on u because the increments of Nt are
stationary. This quantity is central to our estimation method and can be easily
measured using empirical means. The estimation method proposed by Bacry et
al. in [15] is based on the following theorem:

Theorem 17. Let g (h)(t ) = (1−|t |/h)+. Then v (h) can be expressed as a function
of ϕ and g (h):

v (h)(t ) =Λg (h)(t )+Λg (h)?ψ(t )+Λg (h)? ψ̃(t )+Λg (h)? ψ̃?ψ(t ), (4.8)

where ? stands for the convolution product, ψ̃(t ) =ψ(−t ) and ψ is defined as:

ψ(t ) =
∞∑

n=1
ϕ(?n)(t ) (4.9)

where ϕ(?n) refers to the n-th auto-convolution of ϕ.

Corollary 8. In the Fourier domain (4.8) and (4.9) become:

F [v (h)] =ΛF [g (h)]|1+F [ψ]|2 (4.10)

and

F [ψ] = F [ϕ]

1−F [ϕ]
. (4.11)

where F [ f ] is the Fourier transform of f :

F [ f ](ω) =
∫
R

e−iωt f (t )d t , ∀ω ∈R (4.12)

The estimation procedure of ϕ proposed by Bacry et al. in [15] is based on
the empirical computation of v (h) and after that of F [v (h)]. Thus we are able
to compute |1+F [ψ]|2 since the ffunction g (h) is known (see equation 4.10).
The central point of the estimation is the Paley-Wiener theorem which allows to
recover F [ψ]. But in the Fourier domain, F [ψ] corresponds to a unique F [ϕ]
(through equation 4.11). Knowing F [ϕ] one can easily find our decay kernel ϕ.

The Paley-Wiener theorem allows, under some hypotheses, to recover a filter
knowing the filter’s amplitude 1. Thus, we can retrieve 1+F [ψ] knowing R =
|1+F [ψ]| using the Hilbert transform:

1+F [ψ] = Re−iH [logR],

1. For more details regarding Paley-Wiener theorem see [114]. We do not argue why this the-
orem can be applied in our case, the interested reader is encouraged to see the original paper of
Bacry et al. [15].
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where the Hilbert transform, H [·], is defined as:

H [ f ](t ) = 1

π
lim

0<ε→0

∫
u>|ε|

f (t −u)

u
du, ∀ f ∈S (R),

where S (R) denotes the Schwartz space. The definition can be extended to
any space f ∈ L p (R). Thanks to the Riesz theorem ([67]), we know the Hilbert
transform on L p is a bounded linear operator for any p ∈ (1,∞). Moreover, the
Hilbert transform has a straight link with the Fourier transform via

F [H [ f ]](ω) =−i sgn(ω)F [ f ](ω),

where sgn(·) is the ε function. An immediate consequence of this link is that
H [·] is an isometry on L 2(R). Furthermore, the last formula can be used for
practical computations.

We would like to make some remarks about the quantity R. Using (4.9) we
can express R as a function of ϕ:

(4.13)

R = 1

|1−F [ϕ]| .

Furthermore, R does not depend on h, it is bounded:

1

(1+`)
≤ R(ω) ≤ 1

(1−`)
,∀ω ∈R, (4.14)

and R2 is equal (up to a constant,Λ/2π) to the spectral density (or Bartlett spec-
trum) of the Hawkes process (Nt )t∈R. The interested reader shall find in [35, 34]
more information about the spectral density.

4.2 FRAMEWORK AND MAIN RESULTS

Framework

In non-parametric statistics, classes of functions are in general described by
some smoothness parameters. In this paper the smoothness parameters refer to
the decrease of the Fourier transform.

Sobolev spaces

We describe the smoothness of a function by the number of times it is differ-
entiable. In order to extend the notion of differentiability to non-integer values,
we use Sobolev spaces on R defined by:

W s =
{

f ∈L 2(R),
∫
R

(1+ω2)s |F [ f ](ω)|2dω<∞
}

,

equipped with the norm:

|| f ||2W s =
∫
R

(1+ω2)s |F [ f ](ω)|2dω.

Proposition 4. If ϕ ∈W s than ψ is also in W s .
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Proof. Obviouslyψ ∈L 1(R) because ||ψ||1 = `/(1−`). We rewrite equation (4.9)
as follows:

ψ=ϕ+ϕ?ψ. (4.15)

Using Young’s inequality we have ||ϕ?ψ||2 ≤ ||ψ||1||ϕ||2, so ψ ∈ L 2(R). We find
ψ ∈W s thanks to the link between ϕ and ψ in the Fourier domain (4.11):∫

R
(1+ω2)s |F [ψ](ω)|2dω≤

∫
R

(1+ω2)s |F [ϕ](ω)|2/(1−`)2dω<∞.

Remark 6. We want to emphasize that g (h) ∈ W s if and only if 0 < s < 3/2. This
is obvious after we use the definition of the Sobolev spaces and F [g (h)](ω) =
4sin2(hω/2)/(hω2). So, for s ≥ 3/2, v (h) ∉ W s . Even if ϕ is “very” regular (its
Fourier transform decreases fast or very fast), v (h) is not. Nevertheless, since
g (h) ∈ W 1, v (h) −Λg (h) ∈ W s+1. This is a natural consequence of the previous
proposition (4).

The A γ,r class

The A γ,r class is the collection of all continuous functions f such that:

|| f ||2A :=
∫
R

e2|γt |r |F [ f ](t )|2d t <∞ (4.16)

For all (γ,r ) ∈ R2+ the functions f ∈ A γ,r are infinitely differentiable. Each
of those parameters affects the smoothness, so the accuracy of the best non-
parametric estimator, in its own way. One can verify that f (·) ∈ A 1,r if and only
if 1

γ f ( ·
γ ) ∈ A γ,r . We can refer of γ as a scale parameter. When γ is close to zero,

1
γ f ( ·

γ ) is close to a Dirac distribution. From this point of view, the the biggest γ
is, the smoother are the functions of the A γ,r class. The parameter r has a great
impact on the function type, since for r > 1, the functions in A γ,r class admit
analytic continuation into the whole complex plane. If r = 1 the functions in
A γ,r admit bounded analytic continuation into the strip {z = x+i y, x2+y2 < γ2}
of the complex plane (the scale parameter γ affects once again the smoothness
of the class). If 0 < r < 1, the functions f ∈ A γ,r do not have other interesting
properties except for the fact that they are infinitely differentiable. Nevertheless,
we can say their smoothness increases with r . Ibragimov and Has’miskii [82, 83]
were the first to be interested in this class of function. In the 90’, Lepski and Levit
studied the adaptive estimation of the parameters γ and r [92, 93, 94, 14, 95, 96].

Proposition 5. If ϕ ∈A γ,r than ψ is also in A γ,r .

The proof is straightforward once we use the link between ϕ and ψ in the
Fourier domain (4.11).

Remark 7. As in the case of Sobolev spaces (see Remark 6), v (h) ∉A γ,r , but v (h)−
Λg (h) ∈A γ,r .

Framework

For technical reasons, we are not able to accurately control the behavior of
the estimator if µ tends to 0 or infinity, but also if ` tends to 1 or ||ϕ||∞ tends to
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infinity. In such cases, the number of point in the process is either exploding or
vanishing. Since our estimator of v (h) will be computed only on a finite interval
I (from practical viewpoint), we need an assumption on ϕ ensuring the mass of
v (h) on the interval I c is unimportant. This could be done by assuming ϕ has a
compact support. Let us define for all positive real numbers 0 <µ0 <µ1, 0 < `0 <
1, φ and A the following subsets of R×W s and R×A γ,r :

W s
µ0,µ1,`0,φ,A =

{
(µ, f ) ∈ [µ0,µ1]×W s : supp( f ) ⊂ [0, A] and

∫ A

0
f (t )d t ≤ `0,0 ≤ f (t ) ≤φ ∀t ∈ [0, A]

}
.

A
γ,r
µ0,µ1,`0,φ,A =

{
(µ, f ) ∈ [µ0,µ1]×A γ,r : supp( f ) ⊂ [0, A] and∫ A

0
f (t )d t ≤ `0,0 ≤ f (t ) ≤φ ∀t ∈ [0, A]

}
.

Let us prove that the hypothesis that ϕ has a compact support guarantees
the concentration of the mass of v (h) on a known compact interval:

Proposition 6. If ϕ ∈ W s
µ0,µ1,`0,φ,A or ϕ ∈ A

γ,r
µ0,µ1,`0,φ,A then ψ has an exponential

decreasing. More precisely, there are two constants a > 0 and C > 0 depending on
A, `0 and φ such that:

v (h)(t ) ≤C exp(−at ),∀t ≥ 0. (4.17)

Proof. We recall the ψ definition (4.9):

ψ(t ) = ∑
n≥1

ϕ(?n)(t ).

Since 0 ≤ f (t ) ≤φ, ∀t ∈ [0, A], we have for all t ≥ 0:

ϕ(?2)(t ) =
∫ t

0
ϕ(t − s)ϕ(s)d s ≤φ

∫ t

0
ϕ(s)d s ≤φ`0.

By induction we obtain
ϕ(?n)(t ) ≤φ`n−1

0 .

By another simple induction, it is easy to see that supp(ϕ(?n)) ⊂ [0,n A]. Putting
together the two last remarks, we have for all t ≥ 0:

ψ(t ) = ∑
n≥bt/Ac

ϕ(?n)(t ) ≤ ∑
n≥bt/Ac

φ`n−1
0 .

Thus

ψ(t ) ≤ φ

1−`0
`bt/Ac−1

0 = φ

1−`0
exp

(
− ln(1/`0)(bt/Ac−1)

)
≤

≤ φ

1−`0
exp

(
− ln(1/`0)(t/A−2)

)
.

Finally we obtain:
ψ(t ) ≤C exp(−at ),

where C = φ

(1−`0)`2
0

and a = ln(1/`0)
A .

Corollary 9. If ϕ ∈ W s
µ0,µ1,`0,φ,A or ϕ ∈ A

γ,r
µ0,µ1,`0,φ,A then v (h) has an exponential

decreasing.

This is a direct consequence of previous Proposition and Definition (4.8)
since g (h) has a compact support.
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Construction of the estimator

Assume that we have the access of the all jump times t1, t2, . . . , tn of the
Hawkes process on the interval [0,2T ]. Let us summarize the different steps for
the decay kernel estimation:

1. Estimate the average intensityΛ:

Λ̂T = NT

T
. (4.18)

and set Λ̂?T = max(µ0/(1−`0),Λ̂T ).

2. Set h > 0 “small enough” and estimate the auto-covariation function
v (h)(t ) for t ∈ [0,αT ] (αT will be optimally chosed):

v̂ (h)
T (t ) = 1

T

bT /hc∑
i=1

(
∆N (i h)−hΛ̂?T

)(
∆N (i h + t )−hΛ̂?T

)
, (4.19)

where ∆N (i h) = N (i h)−N ((i −1)h). For t ∈ [−αT ,0] put v̂ (h)
T (t ) = v̂ (h)

T (−t )

and for t ∉ [−αT ,αT ] put v̂ (h)
T (t ) = 0. We will need the mass of v (h) to be

concentrated on [−αT ,αT ]. Since v (h) has an exponential decrease, αT

will be a function of logT .

3. Decompose the function v̂ (h)
T − Λ̂?g (h) on a Fourier base ( fn)n≥0 on the

interval [−αT ,αT ].

ĉ(h)
n,T = 1

2αT

∫ αT

−αT

(v̂ (h)
T (t )− Λ̂?T g (t )) fn(t )d t , (4.20)

where fn(t ) = exp(−i 2πnt/αT ).

4. Approximate the Fourier transform of v (h) by

F [v̂ (h)
T ] = Λ̂?T F [g (h)]+

L∑
−L

ĉ(h)
n,T F [ fn],

where L is a positive integer which will be optimally chose later on.

5. Set R̂?(h)
T = max

{
R̂(h)

T ,1/(1+`0)
}

, where:

R̂(h)
T (ω) =


√

|F [v̂ (h)
T ](ω)|

Λ̂?T F [g (h)](ω)
, if |ω| ≤ π

h

1 if |ω| > π
h

(4.21)

6. Compute the Hilbert transform of log
(
R̂?(h)

T

)
:

ξ̂(h)
T =H [log R̂?(h)

T ] (4.22)

7. Compute the Fourier transform of ϕ using the Paley-Wiener theorem:

F [ϕ̂(h)
T ] = 1− e i ξ̂(h)

T

R̂?(h)
T

(4.23)

8. Invert F [ϕ̂(h)
T ]:

ϕ̂(h)
T =F−1[1− e i ξ̂(h)

T

R̂?(h)
T

]
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Obviously, our procedure depends on the scale parameter h and the asymp-
totic parameter T . As soon as the notation do not lead to confusion, we will not
“write” the dependence on h and T . For the rest of the paper, we will write Λ̂?

instead of Λ̂?T , v̂ instead of v̂ (h)
T , g instead of g (h) and so on.

Discussion on h

From a theoretical point of view, the estimation method works for any h.
But F [g ](ω) = (4/ω2h)sin2(ωh/2) cancels for all ω = 2nπ/h,n ∈ Z,n 6= 0 and it
is not straightforward how to invert (4.10). So, as long as h is “small enough”,
we compute R̂ only on the [−π/h,π/h] interval (step 5 of our estimator con-
struction). Consequently, we need to have the mass of |1+F [ψ]| concentrated
on the [−π/h,π/h] interval, so we need h “small enough”. In order to obtain R̂?

T
in equation (4.21), we divide by F [g (h)], which is close to h on the [−π/h,π/h]
interval. So we need h “large enough”. The last two constraints on h forced us to
choose h in order to obtain our best convergence rate.

Remark on estimation method

As we stressed before, the function g is not “so smooth”., i.e. g ∉ W s for s >
3/2 (or in A γ,r ). Thus, the step 3 is important since the function g is known and
v−Λg verified the same conditions of “smoothness” asϕ. We use the linearity of
Fourier transform and we integrate what we have remove in the step 3, i.e.Λg , in
the next step. The remaining of our estimation method coincides avec the one
of Bacry et al. [15].

Main results

Let us introduce some notation:
– For f ∈ L 1(R)∩L 2(R) and a positive number a we denote by Da( f ) =

|| f ||22 −
∫ a
−a f 2(t )d t .

– For a function f ∈ L 2(R), a positive integer N we denote by BN ,a( f ) =∑
n≥N |cn |2, where cn are the Fourier coefficients of the function f 1[−a,a].

With this notation we have:

Theorem 18. We work under the Assumption 1. If (µ,ϕ) belongs to W s
µ0,µ1,`0,φ,A ,

our estimator ϕ̂(h)
T of the decay kernel ϕ satisfies:

E[||ϕ− ϕ̂(h)
T ||22] > T −1 ∨ L

T h
∨ BL,α(v −Λg )

h2 ∨ Dα(v)

h2 ∨D π
2h

(F [ψ]),

where > means inequality up to a constant that depends on A,µ0,µ1,`0,φ, and
M only.

Remark 8. The hypothesis of compact support of ϕ can be replaced by a hy-
pothesis of power law decrease: ϕ(t ) ≤ t−k , for t ≥ t0 and k ≥ 1. We find similar
bounds and the proof is nearly the same, it suffices to decompose v (h) in a
wavelet basis of L 2 which verifies that the L 1-norm of the functions of the
basis is uniformly bounded by a constant M > 0. For computation’s simplicity,
we work under the compact support hypothesis.
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Corollary 10. If ϕ ∈W s
µ0,µ1,`0,φ,A , for α= 2A

− log` logT,h = L−1 = T − 1
2s+1 we have:

E[||ϕ− ϕ̂(h)
T ||22] > T − 2s−1

2s+1 ,

where > means inequality up to a constant that depends on A,µ0,µ1,`0,φ, and
M only.

Proof. Since ψ ∈W s (Proposition 2.1), D π
2h

(F [ψ]) > h2s = T − 2s
2s+1 .

We bound the term Dα(v) using the exponential decrease of v (h)

(Proposition 2.3). Taking α= 2A
− log` logT we have

Dα(v) > T −2.

Furthermore g ∈W 1, so v −Λg ∈W s+1 and we have:

BL,α(v −Λg ) > L−(2s+2) = T − 2s+2
2s+1 .

Let us remember that BN ,a( f ), is a sum of Fourier coefficients of the function
f 1[−a,a]. So, the last inequality must be detailed. Let us note dn( f ),n ∈ Z the
Fourier coefficients of function f .

BL,α(v −Λg ) = ∑
n≥L

|dn
(
(v −Λg )1[−a,a]

) |2 ≤
2

∑
n≥L

|dn
(
(v −Λg )

) |2 +2
∑

n≥L
|dn

(
(v −Λg )1(−∞,−a)∪(a,−∞)

) |2.

We can use that v −Λg ∈ W s+1 to bound the first term. Since v −Λg has an
exponential decrease (concequence of Proposition 2.1), the second term can
be bound by

2||(v −Λg )1(−∞,−a)∪(a,−∞)||22 > T −2.

The proof is now complet.

Corollary 11. If ϕ ∈ A
γ,r
µ0,µ1,`0,φ,A , for α = 2A

− log` logT,h = L−1 = γ−1
(
logT

)1/r we
have:

E[||ϕ− ϕ̂(h)
T ||22] >

1

γ2

(
logT

)2/r T −1,

where > means inequality up to a constant that depends on A,µ0,µ1,`0,φ, and
M only.

Proof. As in the previous case, α is chosen such as Dα(v) > T −2. Since ψ ∈A γ,r

(Proposition 2.12), D π
2h

(F [ψ]) > T −2. We recall that g ∈ W 1, so v −Λg ∈ A γ,r ,

which give us BL,α(v −Λg ) > T −1. The proof ends by putting all those estimates
together.

Comments At the end of 2000, B.Y. Levit was interested in the estimation

of “very” regular functions (for example the A γ,r class). In a series of papers
(see for example [12], [11]), he showed that under different statistical models,
the convergence rate of estimators is the best we can hope, T −1 (where T is the
asymptotic parameter). From this point of view, our estimation method is good
enough.

In the case where the ϕ function belongs to a larger space, W s in our case,
the convergence rate is not optimal. This is a shortcoming of the estimation
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method. The problem appears in step 5, when we divide by F [g ]. As we stressed
before, since F [g ] cancels for all ω = 2nπ/h,n ∈ Z,n 6= 0, we compute quantity
R̂ only on the interval [−π/2h,π/2h]. This give us our worse bound L/T h which
derived from the variance of the coefficients ĉn . We show in Proposition 4.3 that
E[|ĉn − cn |2] > h/T and this is the best we can hope. Indeed, take step 1 of our
estimator and rewrite:

v̂(t ) = 1

T

T /h∑
i=1

Zi ,

where Zi = (
∆N (i h)−hΛ̂?T

)(
∆N (i h + t )−hΛ̂?T

)
. The variables Zi are positive

correlated and we show latter on that E[Z 2
i ] has the order of h2. This is consis-

tent with the fact that Zi is the product of two martingale increments of length
h. We can easily see:

E[|v̂(t )− v(t )|2] ≥ 1

T 2

T /h∑
i=1

E[Z 2
i ].

Thus, E[|v̂(t )−v(t )|2] has, at least, an order of h/T . In this condition, it is hard to
believe the inequality E[|ĉn − cn |2] > h/T is suboptimal.

Numerical illustrations

Let us illustrate the estimation method as defined previously using simu-
lated Hawkes processes. All the simulations have performed with the thinning
algorithm described in [109]. We consider a power-law decay kernel:

ϕ(t ) = δ(t +γ)β1t≥0,

with β<−1 in order to satisfy ϕ ∈L 1(R). We choosed del t a = 0.1,γ= 0.16 and
β=−1.2. In this case we have ||ϕ||1 = δ

−(β+1)γ
β+1 ≈ 0.72 < 1. The simulated pro-

cess contains around 35.000 jumps for T ≈ 10000 seconds.
We estimate v (h) from the realization of a Hawkes process (Nt )t≥0. We then

strictly follow the method described in previous section in order to estimate the
decay kernel ϕ. Let us point out the importance of the step 3 where, before de-
composing v̂ in a Fourier base we remove the quantity Λg . The reason is the g
function is not smooth enough. Figure 4.1 shows the importance of this step.
Indeed, we observe that around t ≈ 0.5 the auto-covariance function v (h) is not
“so-smooth”.

Let us show the ϕ estimation. One can see that, up to an additive noise, the
estimated kernel fits well the real one:

4.3 PREPARATION FOR THE PROOF

Martingale representation

Let (Mt )t≥0 be the (Ft )-martingale compensated process (Nt )t≥0 defined
by:

Mt = Nt −
∫ t

0
λt d t . (4.24)
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Figure 4.1 – The auto-covariance function v (h) (4.7) and it’s estimation v̂ (h)
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Figure 4.2 – Non parametric estimation of one dimensional Hawkes process using method
described in Section 4.2 from a unique realization with 35.000 jumps with power-law
kernel ϕ(t ) = δ(t +γ)β1t≥0,δ= 0.1,γ= 0.16 and β=−1.2.

This identity can be rewritten in its differential form : d Nt = d Mt −λt d t . It can
be shown (see [16]) that

λt =Λ+ψ?d Mt (4.25)

where ψ?d Mt =
∫
Rψ(t − s)d Ms . These two identities allow us to prove the next

lemma:

Lemma 6. Let t1 ≤ t2 ≤ t3 ≤ t4. Then we have:

1. If t1 6= t2, E[d Mt1 d Mt2 ] = 0;

2. E[d M 2
t1

] =Λd t1;

3. If t3 < t4, E[d Mt1 d Mt2 d Mt3 d Mt4 ] = 0;

4. If t1 < t2 = t3 = t4, E[d Mt1 d M 3
t2

] =Λψ(t2 − t1)d t1d t2;

5. If t1 = t2 = t3 = t4, E[d M 4
t1

] =Λd t1;

6. If t1 < t2 < t3 = t4,

E[d Mt1 d Mt2 d M 2
t3

] =Λψ(t3 − t2)ψ(t2 − t1)d t1d t2d t3;
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7. If t1 = t2 < t3 = t4,

E[d M 2
t1

d M 2
t3

] =
(
Λ2 +Λψ(t2 − t1)+Λψ? ψ̃(t2 − t1)

)
d t1d t2.

Proof. 1. It is only the consequence of the fact that (Mt )t≥0 is a martingale.

2. Using (4.24) we have: E[d M 2
t1

] = E[d N 2
t1

]−2E[dN ]λt1 d t1 +λ2
t1

d t 2
1 . Keeping

only first order terms in d t1:

E[d M 2
t1

] = E[d N 2
t1

] = E[d Nt1 ] =Λd t1.

3. Similar to point 1.

4. Using the notation Ea[·] = E[·|Fa], we have:

E[d Mt1 d M 3
t2

] = E[d Mt1Et−2 [d M 3
t2

]].

We keep only first order terms in d t2:

Et−2 [d M 3
t2

] =λt2 d t2.

This allows us to find:

E[d Mt1 d M 3
t2

] = E[d Mt1λt2 d t2] = E[d Mt1ψ?d Mt2 ]d t2 = E[
∫
ψ(t2−s)d Msd Mt1 d t2].

Using point 1, E[d Msd Mt1 ] 6= 0 only for s = t1. So we finally obtain:

E[d Mt1 d M 3
t2

] =Λψ(t2 − t1)d t1d t2.

5. Same computations as in point 2:

E[d M 4
t1

] = E[d N 4
t1

] = E[d Nt1 ] =Λd t1.

6. Like the previous case, we first have:

E[d Mt1 d Mt2 d M 2
t3

] = E[d Mt1 d Mt2λt3 d t3] = E[
∫
R
ψ(t3−s)d t3d Mt1 d Mt2 d Ms].

Since E[d Mt1 d Mt2 d Ms] = 0 for s 6= t2, we deduce:

E[d Mt1 d Mt2 d M 2
t3

] =ψ(t3 − t2)d t3E[d Mt1 d M 2
t2

].

Using the same technics as before: E[d Mt1 d M 2
t2

] = Λψ(t2 − t1)d t1d t2,
which allows us to complete the proof.

7. First we have: E[d M 2
t1

d M 2
t2

] = Λd t2E[d M 2
t1

]+E[d M 2
t1
ψ?d Mt2 ]d t2. Using

point 2, E[d M 2
t1

] =Λd t1. It remains to calculate:

E[d M 2
t1
ψ?d Mt2 ] = E[

∫
R
ψ(t2 − s)d M 2

t1
d Ms].

The only non-trivial case is for s ≤ t1. If s = t1, E[d M 3
t1

] = Λd t1 (similar
point 1). When s < t1:

E[d Msd M 2
t1

] = E[d Msλt1 d t1] =Λψ(t1 − s)d t1d s.

Putting all together:

E[d M 2
t1
ψ?d Mt2 ] =Λψ(t2 − t1)d t1d t2 +Λ

∫
s<t1

ψ(t2 − s)ψ(t1 − s)d t1d t2

=
(
Λ2 +Λψ(t2 − t1)+Λψ? ψ̃(t2 − t1)

)
d t1d t2.
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Convergence speed of auto-covariance function

Let X t = Nt −E[Nt ]. We know (see [16]) that:

X t = Mt +ψ?M(t ) = Mt +Yt ,

whereψ?M(t ) = ∫
Rψ(t − s)Msd s. This decomposition is very interesting for us:

once we have found a property verified by the martingale Mt , we will prove that
Yt and X t satisfy the same property.

Let us look more closely at the auto-covariance estimator v̂ . Using
E[∆N (i h)] = E[∆N (i h + t )] =Λh, we can rewrite (4.8):

v̂(t ) = 1

T

bT /hc∑
i=1

(
∆X (i h)+ (Λ− Λ̂?)h

)(
∆X (i h + t )+ (Λ− Λ̂?)h

)

= 1

T

bT /hc∑
i=1

∆X (i h)∆X (i h + t )+h(Λ− Λ̂?)
XT+t −X t

T
+h(Λ− Λ̂?)

XT

T
+h(Λ− Λ̂?)2.

We finally find:
v̂ (h)(t ) = v?(t )+ vΛ(t )+ cΛ, (4.26)

where:

v?(t ) = 1

T

bT /hc∑
i=1

∆X (i h)∆X (i h + t ),

vΛ(t ) = h(Λ− Λ̂?)

(
XT+t −X t

T
+ XT

T

)
,

cΛ = h(Λ̂− Λ̂?)2.

Let
v (h)(t ) = v1(t )+ v2(t )+ v3(t )+ v4(t )

and
v?(t ) = v̂1(t )+ v̂2(t )+ v̂3(t )+ v̂4(t ),

with:

v1(t ) =Λg (h)(t ) and v̂1(t ) =
i=bT /hc∑

i=1
∆M(i h)∆M(i h + t ),

v2(t ) =Λg (h)?ψ(t ) and v̂2(t ) =
i=bT /hc∑

i=1
∆M(i h)∆Y (i h + t ),

v3(t ) =Λg (h)? ψ̃(t ) and v̂3(t ) =
i=bT /hc∑

i=1
∆Y (i h)∆M(i h + t ),

v4(t ) =Λg (h)?ψ(t )? ψ̃(t ) and v̂4(t ) =
i=bT /hc∑

i=1
∆Y (i h)∆Y (i h + t ).

Bacry et al. [16] proved that for every t , v̂i (t )− vi (t ) → 0 in L 2(P ) as T → ∞,
∀i ∈ {1,2,3,4}. Our next result indicates the convergence rate of v̂1(t ). Similar
results can be proved for v̂i (t ), i ∈ {2,3,4}, but we don’t need them in this paper.

Proposition 7. Let 0 < h ≤ 1.

1. For any t ≥ h, we have:

E
[
|v̂1(t )− v1(t )|2

]
>

h

T
.
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2. For any 0 ≤ t < h, we have:

E
[
|v̂1(t )− v1(t )|2

]
>

1

T
.

Proof. 1. In this case, t ≥ h, v1(t ) = 0. Introduce Zi = ∆M(i h)∆M(i h + t ), i =
1. . . ,bT /hc, the Zi are centered and uncorrelated random variables. Indeed, the
increments∆M(i h) and∆M(i h+ t ) do not “intersect” and the martingale prop-
erty allows to find E[Zi Z j ] = 0 for i 6= j . Since Mt has stationary increments:

E
[
|v̂1(t )|2

]
= 1

T 2 bT /hcE[Z 2
1 ].

Let us compute:

E[Z 2
1 ] =

∫ h

0

∫ h

0

∫ t+h

t

∫ t+h

t
E[d Mt1 d Mt2 d Mt3 d Mt4 ].

The expectation is non-trivial only when t3 = t4. Since t > h, t3 > t1 and t3 >
t2,we are within point 6 and 7 of the previous lemma:

E[Z 2
1 ] =

∫ h

0

∫ t+h

t
E[d M 2

t1
d M 2

t3
]+2

∫ h

0

∫ h

t1

∫ t+h

t
E[d Mt1 d Mt2 d M 2

t3
] =

∫ h

0

∫ t+h

t
(Λ2 +Λψ(t3 − t1)+Λψ? ψ̃(t3 − t1))d t1d t3+

2
∫ h

0

∫ h

t1

∫ t+h

t
Λψ(t3 − t2)ψ(t2 − t1)d t1d t2d t3.

First term can be bounded directly by h2(Λ2+Λ||ψ||∞+Λ||ψ?ψ̃||∞). In order to
bound the second term we use

∫ t+h
t ψ(t3 − t2)d t3 ≤ ||ψ||1. It follows that:

E[Z 2
1 ] ≤ h2(Λ2 +Λ||ψ||∞+3Λ||ψ||∞||ψ||1), (4.27)

which completes the first part of the proof.

2. Let us decompose v̂1(t ) = S1 +S2 +S3, with:

S1 = 1

T

bT /hc∑
i=1

(
M(i−1)h+t −M(i−1)h

)
∆M(i h + t ),

S2 = 1

T

bT /hc∑
i=1

(
Mi h −M(i−1)h+t

)(
Mi h++t −Mi h

)
,

S3 = 1

T

bT /hc∑
i=1

(
Mi h −M(i−1)h+t

)2
.

Since the increments in S1 and S2 are disjoint, E[S1] = E[S2] = 0. In the same
way as before we bound E[S2

1] > h/T , E[S2
2] > h/T . Using the first 2 points of

the previous lemma, E[
(
Mi h −M(i−1)h+t

)2
] =Λ(h−t ), so E[S3] = v1(t ). It remains

to bound E[(S3 − v1(t ))2]. Let us compute E[A4
i ] and E[A2

i A2
j ], where Ai = Mi h −

M(i−1)h+t .
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• In order to simplify the expressions we write l = h− t . Using the stationar-
ity of the increments of M , we have:

E[A4
i ] =

∫ l

0

∫ l

0

∫ l

0

∫ l

0
E[d Mt1 d Mt2 d Mt3 d Mt4 ] =

∫ l

0
E[d M 4

t1
]+4

∫ l

0

∫ l

t1

E[d Mt1 d M 3
t2

]+12
∫ l

0

∫ l

t1

E[d M 2
t1

d M 2
t2

]+

+24
∫ l

0

∫ l

t1

∫ l

t2

E[d Mt1d Mt2 d M 2
t3

].

The first term is equal toΛl .
The second term is equal to

∫ l
0

∫ l
0 Λψ(t2 − t1)d t1d t2 and can be bounded

by lΛ||ψ||1.

The third and fourth term can be bounded by l 2
(
Λ2 + Λ||ψ||∞ +

Λ||ψ||1||ψ||∞
)
, and l 2Λ||ψ||1||ψ||∞ (similar (4.27)).

In conclusion:
E[Y 4

i ] > l . (4.28)

• Term E[A2
i A2

j ]. Let i < j :

E[A2
i A2

j ] =
∫ i h

(i−1)h+t

∫ i h

(i−1)h+t

∫ j h

( j−1)h+t

∫ j h

( j−1)h+t
E[d Mt1 d Mt2 d Mt3 d Mt4 ].

The expectation is non-trivial only when t3 = t4. We find ourselves in the
case of the previous lemma, point 6 and 7:

E[A2
i A2

j ] =
∫ i h

(i−1)h+t

∫ j h

( j−1)h+t
(Λ2 +Λψ(t3 − t1)+Λψ? ψ̃(t3 − t1))d t1d t3+

2
∫ i h

(i−1)h+t

∫ i h

t1

∫ j h

( j−1)h+t
Λψ(t3 − t2)ψ(t2 − t1)d t1d t2d t3 =

Λ2l 2 +Λ(s1,k + s2,k + s3,k ),

where k = | j − i | and:

s1,k =
∫ l

0

∫ kh+l

kh
ψ(t3 − t1)d t1d t3,

s2,k =
∫ l

0

∫ kh+l

kh
ψ? ψ̃(t3 − t1)d t1d t3,

s3,k = 2
∫ l

0

∫ l

t1

∫
k

hkh+lψ(t3 − t2)ψ(t2 − t1)d t1d t2d t3.

Setting N = bT /hc, we have:

E[(S2
3 − v1(t ))2] = 1

T 2

N∑
k=1

E[A4
k ]+ 1

T 2

∑
i 6= j

E[A2
i A2

j ]− v2
1(t )

≤ 1

T 2

N∑
k=1

E[A4
k ]+| 1

T 2 N (N −1)Λ2l 2−v2
1(t )|+ Λ

T 2

N∑
k=1

(N −k)(s1,k +s2,k +s3,k ).



4.4. Proof of the Theorem 115

First term is bounded by > N l
T 2 ≤ 1

T (because l ≤ h). The second term is

bound byΛ2l 2|N (N−1)
T 2 − 1

h2 | = Λ2l 2

T h ≤ Λ2h
T . It suffices to bound

1

T 2

N∑
k=1

(N −k)s1,k ,

because the same technics can be used for the other two terms. Let us note
Ψ(t ) = ∫ ∞

t ψ(s)d s and ak = ∫ kh
0 Ψ(s)d s. Sinceψ is a positive function,Ψ is

a positive and decreasing function. We deduce

s1,k ≤
∫ h

0

∫ (k+1)h

kh
ψ(t3 − t1)d t1d t3 =

∫ h

0

(
Ψ(kh − t1)−Ψ((k +1)h − t1)

)
d t1 =−ak−1 +2ak +ak+1.

But
N∑

k=1
(N −k)s1,k = N a1 −aN ≤ N a1.

Using a1 ≤ h||ψ||∞, we finally obtain:

1

T 2

N∑
k=1

(N −k)s1,k >
1

T
.

The proof is now complete.

4.4 PROOF OF THE THEOREM

Proposition 8.

E[|Λ− Λ̂|2] >
1

T
. (4.29)

Proof. Clearly E[|Λ− Λ̂|2] = |E[N 2
T /T 2] −Λ2. The previous lemma helps us to

compute:

E[N 2
T ] = E[

∫ T

0

∫ T

0
λt1λt2 d t1d t2] =

E[
∫ T

0

∫ T

0

(
Λ2 +Λψ?d Mt1 +Λψ?d Mt2 +ψ?d Mt1ψ?d Mt2

)
d t1d t2].

The first term gives Λ2T 2, second and third term are trivial. The last term gives
2Λ

∫ T
0

∫ T
t1
ψ? ψ̃(t2 − t1)d t1d t2. We obtain:

E[|Λ− Λ̂|2] = 2Λ

T 2

∫ T

0

∫ T

t1

ψ? ψ̃(t2 − t1)d t1d t2.

Integrating with respect to t2 leads to:

E[|Λ− Λ̂|2] ≤ 2Λ

T 2

∫ T

0
||ψ? ψ̃||1d t1.

Thus we obtain:

E[|Λ− Λ̂|2] ≤ 2Λ||ψ||21
T

,

which finishes the proof.



116 Chapter 4. Non-parametric estimation of Hawkes kernel decay

Proposition 9. For any T ≥ 1 we have:

E[X 4
T ] > T 2. (4.30)

Proof. Let 0 ≤ t ≤ T . We will begin by proving E[M 4
t ] > T 2. The computation of

E[M 4
t ] is similar to (4.28), so we find the upper bound:

E[M 4
t ] > t + t 2 > T 2.

Let us prove that YT satisfies the same kind of inequality:

E[Y 4
t ] =

∫ T

0

∫ T

0

∫ T

0

∫ T

0
ψ(T−t1)ψ(T−t2)ψ(T−t3)ψ(T−t4)E[Mt1 Mt2 Mt3 Mt4 ]d t1d t2d t3d t4.

Using Cauchy inequality we have:

E[Mt1 Mt2 Mt3 Mt4 ] ≤
(
E[M 4

t1
]E[M 4

t2
]E[M 4

t3
]E[M 4

t4
]
)1/4

> T 2.

It follows that:
E[Y 4

t ] > ||ψ||41T 2.

In order to finish the proof, we observe that: X 4
T ≤ 4M 4

t +4Y 4
T .

Proposition 10. For all n ∈N, we have:

E[|cn − ĉn |2] >
h

T
, (4.31)

where

cn = 1

α

∫ α

0
(v(t )− v1(t )) fn(t )d t .

Proof. Let ĉn = ĉ0,n + ĉ1,n + ĉ2,n + ĉ3,n + ĉ4,n + ĉ5,n + ĉ6,n , where:

ĉ0,n = 1

α

∫ α

0
(v1(t )− Λ̂?g (t )) fn(t )d t ,

c0,n = 1

α

∫ α

0
v (h)(t ) fn(t )d t ,

ĉi ,n = 1

α

∫ α

0
v?i (t ) fn(t )d t ,∀i ∈ {1,2,3,4},

ĉ5,n = 1

α

∫ α

0
vΛ(t ) fn(t )d t ,

ĉ6,n = 1

α

∫ α

0
cΛ fn(t )d t .

We plan to use the following inequality

|cn − ĉn |2 > |ĉ0,n |2 +|c1,n − ĉ1,n |2 +|c2,n − ĉ2,n |2 +|c3,n − ĉ3,n |2+

|c4,n − ĉ4,n |2 +|ĉ5,n |2 +|ĉ6,n |2,

and bound each term separately, where:

ci ,n = 1

α

∫ α

0
vi ,n(t ) fn(t )d t .
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• Since v1 =Λg , |ĉ0,n |2 = (Λ?−Λ)2/α2
(∫ α

0 g (t ) fn(t )d t
)2

. Using Proposition

4.1 we obtain:

|ĉ0,n |2 >
h2

T
.

• Let us first remark

c1,n − ĉ1,n = 1

α

∫ α

0
(v1(t )− v̂1(t )) fn(−t )d t .

By the triangle inequality:

|c1,n − ĉ1,n |2 >
1

α2

(∫ α

h
v̂1(t ) fn(t )d t

)2 + 1

α2

(∫ h

0
(v1(t )− v̂1(t )) fn(t )d t

)2
.

We will bound the two terms separately. Using the Cauchy inequality and
Proposition 3.1.1, we successively have:

E[
(∫ α

h
v̂1(t ) fn(t )d t

)2] = E[
∫ α

h

∫ α

h
v̂1(t1)v̂1(t2) fn(t1) fn(t2)d t1d t2]

≤
∫ α

h

∫ α

h
E[v̂1(t1)v̂1(t2)]| fn(t1) fn(t2)|d t1d t2

≤
∫ α

h

∫ α

h
E[v̂2

1(t1)]1/2E[v̂2
1(t2)]1/2| fn(t1) fn(t2)|d t1d t2

>
h

T

∫ α

h

∫ α

h
| fn(t1) fn(t2)|d t1d t2 ≤ hα2

T
.

We reproduce the steps use before and Proposition 3.1.2 to deduce:

E[
(∫ h

0
(v1(t )− v̂1(t )) fn(t )d t

)2] >
1

T

(∫ h

0
| fn(t )|d t

)2 = h2

T
.

Putting all together, we finally obtain

E[|c1,n − ĉ1,n |2] >
h

T
.

• Set Mt = 0 and ψ(t ) = 0 for t ≤ 0. We first have

Yt =
∫ ∞

0
ψ(s)Mt−sd s,

therefore

∆Y (i h + t ) =
∫ ∞

0
ψ(s)∆M(i h + t − s),

hence

v?2 (t ) =
∫ ∞

0
ψ(s)v?1 (t − s)d s.

Second, we now write

c2,n − ĉ2,n = 1

α

∫ α

0
fn(t )d t

∫ ∞

0
d sψ(s)

(
v1(t − s)− v?1 (t − s)

)=
1

α

∫ ∞

0
d s

∫ α

s
d t fn(t )ψ(s)

(
v1(t − s)− v?1 (t − s)

)=
1

α

∫ ∞

0
d s

∫ s+h

s
d t fn(t )ψ(s)

(
v1(t − s)− v?1 (t − s)

)+
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+ 1

α

∫ ∞

0
d s

∫ α

s+h
d t fn(t )ψ(s)

(
v1(t − s)− v?1 (t − s)

)
We reproduce the steps we use before for the previous term, except we
have double integral. Nevertheless, the path of demonstration remains
the same: Proposition 3.1 and Cauchy’s inequality. We will show only the
line of proof for bounding the first integral.

E

[(∫ ∞

0
d s

∫ s+h

s
d tψ(s)

(
v1(t − s)− v?1 (t − s)

))2
]
≤

Ï ∞

0

Ï s+h

s
E[

(
v1(t1 − s1)− v?1 (t1 − s1)

)(
v1(t2 − s2)− v?1 (t2 − s2)

)
]

ψ(s1)ψ(s2)| fn(t1) fn(t2)|d s1d s2d t1d t2 ≤Ï ∞

0

Ï s+h

s
E[

(
v1(t1 − s1)− v?1 (t1 − s1)

)2]1/2E[
(
v1(t2 − s2)− v?1 (t2 − s2)

)2]1/2

ψ(s1)ψ(s2)d s1d s2d t1d t2 >Ï ∞

0

Ï s+h

s

h

T
ψ(s1)ψ(s2)d s1d s2d t1d t2 =

h3||ψ||21
T

>
h3

T
.

Similar technics are sufficient to bound the second integral and to obtain:

E[|c2,n − ĉ2,n |2] >
h

T
.

Thus, this term has also the right order.
• We proceed likewise for the terms E[|ci ,n − ĉi ,n |2], i ∈ {3,4}.
• The arguments needed here are quite similar to those used before:

E[|ĉ5,n |2] = h2

α2T 2 E

[
(Λ− Λ̂?)2

(∫ α

0
(XT+t −X t +XT ) fn(t )d t

)2
]

≤ 2h2

α2T 2 E

[
(Λ−Λ̂?)2

(∫ α

0
(XT+t −X t ) fn(t )d t

)2 ]
+ 2h2

α2T 2 E

[
(Λ−Λ̂?)2X 2

T

(∫ α

0
fn(t )d t

)2 ]
For the second term we use |Λ− Λ̂?| ≤ |Λ− Λ̂| = |XT |/T and Proposition
4.2 in order to find:

2h2

α2T 2 E

[
(Λ− Λ̂?)2X 2

T

(∫ α

0
fn(t )d t

)2 ]
>

h2

T 2

For the second term we successively use the Cauchy’s inequality:

2h2

α2T 2 E

[
(Λ− Λ̂?)2

(∫ α

0
(XT+t −X t ) fn(t )d t

)2 ]

≤ h2

α2T 2 E[(Λ− Λ̂)4]1/2E

[(∫ T

0
(XT+t −X t ) fn(t )d t

)4
]1/2

≤ h2

α2T 2 E[(Λ−Λ̂)4]1/2
(∫∫∫∫ α

0

4∏
i=1
E[(XT+ti −X ti )4]1/4| fn(t1) fn(t2) fn(t3) fn(t4)|d t

)1/2

We remind that (X t )(t≥0) has stationary increments and we use same in-
equalities as for the first term before to conclude:

E[|ĉ5,n |2] >
h2

T 2 .

Thus, this term has also the right order.
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• Using Proposition 4.1 we have

E[|ĉ6,n |2] ≤ h2E[(Λ− Λ̂?)2(Λ̂− Λ̂?)2].

By the definition of Λ̂?, |Λ̂− Λ̂?| ≤µ0, and we deduce:

E[|ĉ6,n |2] >
h2

T
.

This last term have also the right order.
The conclusion follows.

Proposition 11. If ||R − R̂?||2 ≤ ε than ||ϕ− ϕ̂||2 > ε.

Proof. Thanks to Plancherel’s theorem, it remains to show ||F [ϕ]−F [ϕ̂]||2 > ε.
Let us remind:

F [ϕ](ω) = 1− 1

R(ω)
e iH [logR](ω) = 1− cosξ(ω)

R(ω)
− i

sinξ(ω)

R(ω)
,

where ξ(ω) =H [logR](ω).

|F [ϕ̂](ω)−F [ϕ](ω)|2 =
(

cos ξ̂(ω)

R̂?(ω)
− cosξ(ω)

Rω

)2

+
(

sin ξ̂(ω)

R̂?(ω)
− sinξ(ω)

Rω

)2

=

1

R2(ω)
+ 1

R̂?2(ω)
− 2cos(ξ(ω)− ξ̂(ω))

R(ω)R̂?(ω)
=

1

R2(ω)
+ 1

R̂?2(ω)
+ 2

R(ω)R̂?(ω)
− 2

R(ω)R̂?(ω)
− 2cos(ξ(ω)− ξ̂(ω))

R(ω)R̂?(ω)
=

(
R(ω)− R̂?(ω)

)2

R2(ω)R̂?2(ω)
+

4sin2
(
ξ(ω)−ξ̂(ω)

2

)
RωR?

ω

We use the boundless of R (4.14), the definition of R̂? (4.21) and the basic in-
equality sin |x| ≤ |x|, to deduce:

||F [ϕ̂]−F [ϕ]||2 ≤ (1+`0)4||R − R̂?||2 + (1+`0)2||H [log
R

R̂?
]||2.

Since ||H [ f ]||2 = || f ||2,∀ f ∈ L2(R) (see [67] for more technical precisions), it
remains to bound || log R

R̂? ||2. Let M = max(R, R̂?) and m = min(R, R̂?):

| log
R

R̂?
| = log

M(ω)

m(ω)
= log(

M(ω)−m(ω)

m(ω)
+1) ≤ M(ω)−m(ω)

m(ω)

≤ (1+`0)(M(ω)−m(ω)) = (1+`0)|R(ω)− R̂?(ω)|.
This allow us to find ||H [log R

R̂? ]||2 > ||R − R̂?||2, which finishes the proof.

Proof of Theorem 2.1

Proof. We have:
v =Λg + ∑

n∈Z
cn fn + v[−∞,−α]∪[α,∞],

v̂ = Λ̂?g +
L∑
−L

ĉn fn .
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The triangular inequality helps us to find:

||F [v]−F [v̂]||22 = ||v−v̂ ||22 ≤ 4

((
Λ− Λ̂?)2 ||g ||22 +

L∑
n=−L

|cn − ĉn |2 +
∑

|n|>L
|cn |2 +||v[−∞,−α]∪[α,∞]||22

)
.

Concerning the first term, we have ||g ||22 = 2h/3 (direct computation) and using
Proposition 4.1 we obtain:

E[
(
Λ− Λ̂?)2 ||g ||22] >

h

T
.

The bound for the second term is a direct consequence of the Proposition 4.3:

E[
L∑

n=−L
|cn − ĉn |2] >

Lh

T
.

With the notation introduces in section 2.3, we have:

||F [v]−F [v̂]||2 >
Lh

T
∨BL,α(v −Λg )∨Dα(v). (4.32)

According to Proposition 4.4 it remains to control E[||R−R̂?||22]. We recall R̂? = 1
on the interval J =R\[−π/2h,π/2h]. We use the fact that R = |1+F [ψ]| to obtain:

||(1−R(ω))1J (ω)||22 ≤ ||F [ψ]1J (ω)||22 = D π
2h

(F [ψ]). (4.33)

On the interval J c = [−π/2h,π/2h] we have:

|R(ω)− R̂?(ω)| = |
p

F [v](ω)√
ΛF [g ](ω)

− |pF [v̂](ω)|√
Λ̂?F [g ](ω)

| ≤ I (ω)+ I I (ω),

where

I (ω) = |
p

F [v](ω)√
ΛF [g ](ω)

−
p

F [v](ω)√
Λ̂?F [g ](ω)

|

and

I I (ω) = |
p

F [v](ω)√
Λ̂?F [g ](ω)

−
p

F [v̂](ω)√
Λ̂?F [g ](ω)

|.

Let us bound the two terms separately:
– The term I :

I (ω) =
p

F [v](ω)√
F [g ](ω)

Λ− Λ̂?√
ΛΛ̂?(

p
Λ+

√
Λ̂?)

= R(ω)
Λ− Λ̂?√

Λ̂?(
p
Λ+

√
Λ̂?)

.

Using Proposition 4.1 we obtain

E[||I ||22] ≤ 1

(1−`0)2 E[
(Λ− Λ̂?)2

Λ̂?(Λ+ Λ̂?)
] >

1

T
(4.34)

– The term I I :
First, we have

I I (ω) = |F [v](ω)−F [v̂](ω)|√
Λ̂?F [g ](ω)

(p
F [v](ω)+p

F [v̂](ω)
)
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≤ |F [v](ω)−F [v̂](ω)|√
Λ̂?F [g ](ω)

p
F [v](ω)

= |F [v](ω)−F [v̂](ω)|
R(ω)

√
Λ̂?ΛF [g ](ω)

Basic trigonometric inequalities show us that F [g ](ω) > h/4,∀ω ∈
[−π/h,π/h]. We remind R(ω) ≥ 1/(1+`0) (4.14). Using (4.32), we finally
obtain:

E[||I I ||22] >
1

h2

(
Lh

T
∨BL,α(v −Λg )∨Dα(v)

)
. (4.35)

Putting together (4.33), (4.34) and (4.35) we obtain:

E[||R − R̂?||22] > T −1 ∨ L

T h
∨ BL,α(v −Λg )

h2 ∨ Dα(v)

h2 ∨D π
2h

(F [ψ]).

Proposition 4.4 completes the proof of the theorem.
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