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Introduction

L’optimisation, c’est & dire le calcul du minimum d’une fonction f & valeurs
réelles, est un probléme important des mathématiques “numériques”’ et qui
a des applications dans de nombreux domaines. L’approche classique pour
résoudre ce probléme est basée sur des techniques de descente du gradient de
f. L’inconvénient de ces techniques reside dans le fait qu’elles calculent un
optimun local qui n’est pas nécessairement un optimum global. Depuis une
quinzaine d’années, de nouvelles techniques algébriques, dites de relaxation,
visant un meilleur controle des résultats calculés ont été mises au point.

Ces méthodes sont basées sur une reformulation de la question en termes
de matrices de moments. Ainsi, la recherche de solutions réelles (sans tenir
compte des solutions complexes) d’un probléme d’optimisation ou d’un sys-
teme d’équations polynomiale est remplacée par le calcul de mesures ayant des
propriétés spécifiques. Cette approche repose sur des techniques de program-
mation semidéfinie (SDP) et d’algébre linéaire numérique. Toute I'information
nécessaire est alors contenue dans la matrice des moments, dont les lignes et
les colonnes sont indexées par une base de monémes. [’inconvénient majeur
de cette approche est que la taille de la matrice des moments, égale au nombre
de mondémes d’un degré particulier, augmente a chaque boucle de I'algorithme
et devient potentiellement importante.

Récemment, certaines améliorations ont été proposées pour réduire la taille
de la matrice des moment et donc la taille du probléme soumis au solveur SDP.
Elles s’inspirent de la méthode des bases de bord pour la résolution de sys-
téemes d’équations polynomiales. L’idée est de sélectionner certains monémes,
considérés comme des candidats a4 une base de ’espace quotient : Au cours
de l'algorithme, les dimensions des systémes linéaires a résoudre sont alors
liées au nombre de monomes associés a la base de bord et sont donc mieux
controllées. Une fonctionnalité intéressante de cette approche (en contraste
avec les approches de type base de Groebner) est sa robustesse par rapport
aux perturbations de coéfficients dans le systéme d’origine.

Le but du présent manuscrit est d’étudier la combinaison des méthodes de
base de bord, de I'approche de relaxation et des techniques de programmation
semidéfinie, afin de calculer 'optimum d’un polynéme sur un ensemble semi-
algébrique. Plus précisément calculer :

st. gx)=-=¢2(x)=0
97 (x) > 0,...,95 (x) >0



2 CONTENTS

Notre manuscrit comporte une introduction et six chapitres.

Dans le premier chapitre, nous fixons les notations et nous rappelons les
concepts et théorémes sur les idéaux de polynomes, les opérateurs de Hankel,
les formes positives et ['algébre quotient.

Dans le deuxiéme chapitre nous définissons notre probléme d’optimisation
et nous précisons les définitions de variétés de points critiques (variétés gra-
dient, de Karush Kuhn Tucker ou de Fritz John) ainsi que les relations qui
existent entre elles. Dans tous les travaux précédents, les auteurs supposent
que le minimum doit étre un point de la variété de Karush Kuhn Tucker. Nous
pouvons éliminer cette hypothése en utilisant une variété de Fritz John. Ceci
constitue une partie de notre premiére contribution a 'optimisation polyno-
miale.

Dans le troisiéme Chapitre nous expliquons comment les polynémes posi-
tifs, et les matrices de moments interviennent dans ’optimisation polynomi-
ale et (dans la derniére section) nous rappelons la méthode de relaxation de
Lasserre.

Dans le quatrieme chapitre nous traitons de la représentation des
polynomes positifs et nous montrons une propriété de convergence finie (con-
vergence en un nombre fini de pas) dans un cadre plus général que celui
habituellement considéré. Puis, nous déduisons les conséquences de cette con-
vergence dans des cas particuliers intéressants.

Dans le cinquieme chapitre nous expliquons notre algorithme. Nous util-
isons la méthode de relaxation de Lasserre combinée avec les bases de bord
pour réduire la taille des matrices de moments et aussi les nombres de
paramétres & chercher dans notre SDP. Nous donnons aussi un nouveau critére
de terminaison qui vérifie que ’extension est plate et permet ainsi de savoir
quand le minimum est atteint. Dans la derniére partie de ce chapitre nous
expliquons en détail comment fonctionne notre algorithme, en illustrant avec
des exemples.

Dans le sixiéme et dernier chapitre, nous montrons les expérimentations
que nous avons réalisées, puis nous les comparons avec les résultats fournis
par un logiciel déja commercialisé. Nous donnons trois applications de notre
algorithme dans trois domaines différents, ce qui éclaire la facon dont notre
travail peut servir. La fin de ce chapitre fournit des détails sur la maniére
dont nous avons implémente notre algorithme et sur la maniére de 1'utiliser.

Les résultats des deuxiéme et quatriéme chapitre d’une part et du cin-
quiéme chapitre d’autre part font I'objet de deux pre-publications que nous
avons soumises pour publication [Abril Bucero 2013, Abril Bucero 2014].









CHAPTER 1
Ideals, dual space, hankel matrices
and quotient algebra

In this chapter, in the first section we set our notation and we recall definitions
and theorems about ideals and varieties. In Section 2 we give the definition of
Hankel Matrix and its properties and theorems. In Section 3 and 4 we study
the properties of the quotient ring obtained from quotient by the kernel of the
an Hankel operator.

1.1 Ideals and varieties

Let K[x] be the set of the polynomials in the variables x = (z1,..., z,),
with coefficients in the field K. Hereafter, we will choose K = R or C. Let
K denotes the algebraic closure of K. For a € N*, x® = 2" -.. 2% is the
monomial with exponent o and degree |a| = . a;. The set of all monomials
in x is denoted M = M(x). For a polynomial f = ) f,x“, its support
is supp(f) = {x* | fa # 0}, the set of monomials occurring with a nonzero
coefficient in f.

Forte N, N) ={aeN"||a|= ", o <t}

For t € N and D C K[x], we introduce the following sets:

e [, is the set of elements of D of degree < t,

(D) = {Zfes ANeflfeES A€ K} is the linear span of S,

(S1t) = {Zfest prf | pr € KXli—aeg(s)} is the vector space spanned
by {x*f | [ € Si,|al <t —deg(f)},

St =5N K[X]t

Sth={af | f €S |a| <t},

Qf = {X_p?|l€N,p € Rx];} is the set of finite sums of squares
of polynomials of degree < t; QT = QF (sum of squares SOS).

Remark 1.1.1 (S |t) C (5) NK[x]; = (S)¢, but the inclusion may be strict.
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Given an ideal I C K[x] and a field K, we denote by

V() :={z e K" | f(z)=0Vfel}

its associated variety in L". By convention V(I) = Vi(I). For a set
V C K", we define its vanishing ideal

(V)= {f eK[x]| f(v) =0 Vv e V}.

Furthermore, we denote by
VI:={feK[x] | f*el forsomemeN\{0}}

the radical of 1.

For K = R, we have V(I) = V(I), but one may also be interested in
the subset of real solutions, namely the real variety Vr(I) = V(I) N R™. The
corresponding vanishing ideal is I(Vg(1)) and the real radical ideal is

VI = {peR[x||p*™ + >, ¢ €1 for some g; € R[x],m € N\ {0}}.

Obviously,

ICVICI(Ve(I), TCVTCI(Ve(D).

An ideal I is said to be radical (vesp., real radical) if I = /T (resp. I = V/I).
Obviously, I C I(V(I)) € I(Vk(I)). Hence, if I C R is real radical, then [ is
radical and moreover, V(1) = Vg(I) C R"™ if |Vi(I)| < co.

The following two famous theorems relate vanishing and radical ideals:

Theorem 1.1.2
(i) Hilbert’s Nullstellensatz /I = I(Vo(I)) for an ideal I C C[x].
(ii) Real Nullstellensatz /I = I(Vi(I)) for an ideal I C R[x].

By convention, a set of constrains C' = {c{, ..., ; ¢f,..., ¢t } CR[x]isa
finite set of polynomials composed of a subset C° = {c,...,¢) } correspond-
ing to the equality constraints and a subset C™ = {c, ... , ¢} } corresponding

to the non-negativity constraints. For two set of constraints C,C" C R[x], we
say that C c ¢" if C° c C"° and C* C C'*.

Definition 1.1.3 Fort € NU{oco} and a set of constraints C = {c}, ... c) ;
¢, ..., of } CRx|, we define the (truncated) quadratic module of C' by

no n2
Qt(C) = {Z C? hZ+SO+Z C;_ Sj | hl < R[X]Qt—deg(c,?)? So € Q:_7 S; € Q:;(deg(c*)/ﬂ}'
i=1 j=1
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If Cis such that C° = C° and C* = {T[(cf)* -+ (¢} )=2 | &; € {0,1}}, Q4(C)
is also called the (truncated) preordering of C' and denoted Py(C). When
t =00, P(C) :=Px(C) is the preordering of C. The (truncated) preordering
generated by the positive constraints is denoted P+(C) = P(C™).

Definition 1.1.4 For a set of constrains C = (C% C) C R[x],

S(C) = {xeR"| x)=0V e’ c¢f(x)>0Veh € CT},
SHC) = {xeR"|ct(x)>0Vc €C}.

To describe the vanishing ideal of these sets, we introduce the following ideals:

Definition 1.1.5 For a set of constraints C = (C%;C") C R[x],

VOO = {peR[x] | p™ € (C° for somem e N\ {0}}
VOO = {peR[x]|p™+qe (C° forsomemeN\{0},qe Q)
VO = {peR]|p* +qe(C%) for somem e N\{0},q € PH(C)}

These ideals are called respectively the radical of C°, the real radical of C°,
the C*-radical of C°.

Remark 1.1.6 If O+ = ), then “V/C° = ¥/CO.
The following three famous theorems relate vanishing and radical ideals:

Theorem 1.1.7 Let C' = (C°; C") be a set of constraints of R[x].

(i) Hilbert’s Nullstellensatz (see, e.g., [Cox 2005, §4.1]) vC° =
Z(VE(CY)).

(ii) Real Nullstellensatz (see, e.g., [Bochnak 1998, §4.1]) vC° =
Z(VH(CY)).

(11i) Positivstellensatz (see, e.g., [Bochnak 1998, §4.4]) Ve =
Z(8(C)) = ZT(VRC) NnSH(C)).
1.2 Dual space and Hankel operators

This Section is an introduction to the dual space and Hankel operators which
are basic elements in our study.
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Definition 1.2.1 K[x|* := Homg(K|[x]|,K) called dual space of K[x], is the
set of K-linear forms from K[x]| to K.

There exists a natural isomorphism between the ring of formal power series
and the dual space ring of polynomials K[x]. It is given the following pairing:

K[[z]] xK[x] — K
(z%,x%) — <za|xﬁ):{ ol ifa =0

0 otherwise.

If A € Homg (K[x], K) = K[x]* is an element of the dual of K[x], it can be
represented by the series:

=) A= iy K[[z1, .., 2], (1.1)

aeNn

so that we have (A(z)[x*) = A(x?).
This map A € R* — Y o Ax*)Z; € K[[2]] is an isomorphism. And there-
fore any series defined as A(z) = Y cyn AaZ; € K[[2]] can be interpreted as
a linear form in K[x]

Y pax" €K = (Ap(x) = > palla

acACN"™ acACN"®

From now on, we identify the dual Homg(K[x],K) with K[[z]]. Using this
identification, the dual basis of the monomial basis (X*),enn is (J)aeNn The
coefficients o, = (A | x*) are called the moments of A.

Among interesting elements of Hom(K][x], K) = K][z]], we have the evalu-
ations at points of C™:

Definition 1.2.2 The evaluation at a point & € K" s

1, :Klzy,...2,) — K

which corresponds to the formal series:

2
= 2 &=
aceNn
Using this formalism, the series A(z) = > ., w;1¢,(2) can be interpreted
as a linear combination of evaluations at the points §; which coefficients are
w;, fori=1,...,7r.
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Notice that the product of 2%1,(2z) with a monomial x*™ € C[x] is given
by

(a4 B)!
el

so that A(z) = > 77| wi(z)1, (2)can be seen as a sum of polynomial differ-
ential operators w;(0) “at” the points ;, that we call infinitesimal operators:

Vp € Clxl, (A(2)[p(x)) = >oimy wi(@)p(S).-

Definition 1.2.3 For any A(z) € K[[z]], the inner product associated to A(z)
on Kx] is

(2°1,(2)|x*"F) = & = a0 genx (g,

Kx] x K[x] — K
(p(x),q(x)) — (p(x),q(x))a = (A(2)|p(x)q(x)) = Alpg).

The dual space Hom(K][x],K) = K][z]|] has a natural structure of K[x]-
module, defined as follows: Vo(z) € K[[z]], Vp(x), ¢(x) € K[x],

(p(x) xA(2) [ q(x)) = (A(2) | p(x)q(x)) = (p(x), q(x))x = Alpq).
We easily check that VA € K][z]],Vp,q € K[x], (pq) * A =p= (g*A).
Example 1.2.4 If A(z) = 37, wil, (2), withw; € K and & € K" and
p(x) € K[x|, we have

r

p(x)*A(z) = ) wiplé)l, (2). (1.2)

=1

An interesting property of this external product is that polynomials act as
differentials on the series:

Lemma 1.2.5 Vp € K[x|,VA € K[[z]], p(x) * A(2) = p(0s, - - ., 02,)(A).

Proof. We first prove the relation for p = z; and A = 2% Let ¢; =
(0,...,0,1,0,...,0) be the exponent vector of z;. V3 € N", we have

(i % 2°x%) = (2%2x°) = «a! if a=F+e and 0 otherwise
xP).

a—e;

= iz

with the convention that 2% ¢ = 0 if o; = 0. This shows that x; x 2% =
;2% = 0,,(z%) as elements of R* = K[[z]].
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By transitivity and bilinearity of the product x, we deduce that Vp €
K[x],VA € K[[z]], p(x) * A(2) = p(D21,...,0.,)(A). ]

For a subset D C K[[z]], the inverse system generated by D is the vector
space spanned by the elements p(x) x §(z) for §(z) € D and p(x) € K[x|. By
Lemma 1.2.5, the inverse system of D is the space generated by the elements
of D and all their derivative in the variables z at any order.

The external product * allows us to define an Hankel operator as a multi-
plication operator by a dual element € K[[z]]:

Definition 1.2.6 The Hankel operator associated to an element A(z) €
K[[z]] is
Hy: Klx] — K[[z]
p(x) = p(x)*A(z).

Definition 1.2.7 Given a subspace E C R[x|, we define truncated Hankel
operator defined on the subspace E, associated to an element A € (E - E) as

HY:E — FE*
p(x) = p(x)*A
In particular if E = R[x], we define H}.
Definition 1.2.8 The kernel of the Hankel operator associated to an element
A(z) e K][[z]] is
ker Hy = {p(x) € K[x] | p(x) * A = 0} (1.3)
It 1s also denoted 1,.

Definition 1.2.9 We say that the series A has a finite rank r € N if
rank Hy = r < 0.

Example 1.2.10 If A = 1, is the evaluation at a point £ € K", then

Hl'

¢ Kixl — K[[Z]

p(x) = p(§)le
Remark 1.2.11 The matriz of the operator Hy in the bases (X%)qene and
(%O!L)aEN" is

[Hy] = (Aatp)agen = (Ax))g genn = A(x*7) o gern.

In the case n = 1, the coefficients of [H,] depends only the sum of the
indices indexing the rows and columns, which explains why they are called
Hankel operators.
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1.3 Artinian algebra

In this Section, we consider an ideal I C K[x], with K algebraically closed
(i,e, K = K) and the associated quotient algebra A = K[x]/I

Definition 1.3.1 The quotient algebra A is artinian if dimg(A) < oo

A classical result states that the quotient algebra A = K[x]|/I is finite
dimensional, i.e, Artinian if and only if V(I) is finite, that is, I defines a finite
number of isolated points in K”.

Theorem 1.3.2 Let A be an Artinian algebra of dimension r defined by an
tdeal 1. Then we have a direct sum

A=A @"'@Agr, (1.4)
where
e V(I)={&,....&5 } CK" withr' <,

o [ =1N---NQy s a minimal primary decomposition of I with QQ; me, —
primary,

o A, =K[x]/Q; and A¢,- A¢, = 0 if i = j. The multiplicity of an isolated
point & of V(I) is the dimension over R of A localized at &;, that is, Ag,

Definition 1.3.3 The dual A* = Homg(A,K) of A is naturally identified
with the subspace

I*={AeK[x]"|Vpel, pxA =0} (1.5)
called inverse system of I, with I the ideal of K[x| such that A = K[x]/I.

Remark 1.3.4 As I is stable by multiplication by the wvariables x;, the or-

thogonal I+ = A* is stable by the derivations &

dz; *
Proposition 1.3.5 Let Q) be a primary ideal for the mazimal ideal m¢ of the
point & € K" and let Ae = K[x]|/Q. Then there exists a vector space D C K[z]

stable by the derwations % such that

Q' = A; = D 1¢(2).
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Theorem 1.3.6 Let A be an artinian algebra of dimension r with V(I) =
{&,...,&} C K" There exists vector spaces D; C K|z| stable by derivation
of dimension u; with Z:lzl Wi = r, such that the elements of A* are the
elements A € K[[z]] of the form

A@) = Y wi(2)1e (o)

with wi(z) € Dz

Definition 1.3.7 Let g be a polynomial in A. The g-multiplication operator
M, is defined by
Mg: A — A

h +— M,(h) = gh (1.6)

The transpose application MQT of the g-multiplication operator M, is defined
by
MT . * *
A MW - 7
— g( ) =g¢-

Let B be a monomial basis in A and B* its dual basis in A*. As the
matrix M, of the transpose application M in the dual basis B* in A* is
the transpose of the matrix of the application M, in the basis B in A, the
eigenvalues are the same for both matrices.

The main property (see [Elkadi 2007]) that we need is the following

Proposition 1.3.8 Let I be an ideal of K[x| and suppose that V(I) =
{&,..,&}. Then

o for all g € A, the eigenvalues of M, and MgT are the evaluations of the
polynomial g at the roots, namely g(&1), ..., 9(&).

e the etgenvectors common to all MgT with g € A are -up to scalar - the
evaluations 1¢, ..., 1¢

r

1.4 Artinian Gorenstein algebra and positive
linears forms

In this Section, we analyze the properties of an artinian algebra obtained as
a quotient by the kernel of an Hankel operator Hy. It is obvious I, defined
in the Section before is an ideal of K[x]. We construct the quotient algebra
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Apr = K[x]/Iy. By construction, A} = I3 contains the element px A and
Im Hy C Aj. The Hankel operator H, is a map from K[x] into A*:

0— Iy — K[x] 2% A3 (1.8)

The variety defined by I, in K" is denoted hereafter Vi (I)) or simply
V(1)) when K is algebraically closed.

If A(z) = >_i_, wi(2)1, (2) then, by Lemma 1.2.5, the kernel I, is the set
of polynomials p € K[x] such that Vg € K[x], p is a solution of the following
partial differential equation:

Z )(pg)(&) =0

=1

Since Vp(x),q(x) € K[x], (p(x)+1x, ¢(x)+1a)a = (p(x),q(x))a; (-, ) induces
an inner product on Ajy.

Theorem 1.4.1 Let A € K[x]* = K][[2]] \ 0

o rankH, = dimg(Ap) < oo, if and only if,

Z w;(2)1e, (2 (1.9)
with w;(z) € K[z] \ 0 and & € K" pairwise distinct.

o IfA(2) = Z:,:l w;(2)1g, (2) with wi(z) € K[z] \ 0, then
— the map Hy : A — A* induced by Hy is an isomorphism.
— the inner product (-,-)a si non -degenerate on A = K[x|/Ix

— the rank of Hy is Z:lzl 1; where ; is the dimension of the vector
space spanned by w;i(z) and all its derivatives 02} - - - 0fmw;(z) for
a=(ag,...,a,) € N"

— the variety V(1) is the set of points &1, ..., & € K™, with multiplic-
Wy p, e, f

Proof. By definition of Iy and by short exact sequence

0— Iy — K[x] 2 A3 (1.10)
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we have A = K[x|/Iyn ~ Im(Hy). If rank Hy = dim Im(Hy) = r < oo, then
dim(A) = dim(K[x]/I,) and A is artinian algebra (of dimension r over K).
By Theorem 1.3.2, it can be decomposed as a direct sum of sub-algebras

AA:A&@”'@A&,

where Vk(Ip) = {&1, ..., &} and Ag, is a local algebra for the maximal ideal
my, defining the root § € K™ A, = K[x]/Q; with @; an mg,-primary
ideal of K[x]. Moreover, we have the minimal primary decomposition I, =
Ql AEER Qr-

The series A(z) represent an element of the dual A; = I3, which by
Theorem 1.3.6 can be decomposed as

A(z) = Zwi(z)lgi (z) (1.11)

with w;(z) € C[z]. The polynomial w;(z) cannot be zero, otherwise Q); C
ker Hy = In. As Iy = Q1N ---NQ,, we deduce that I, = @; and that
A(z) = wi(z)1, (z) = 0, which contradicts the hypothesis.

Conversely, if A(z) = > 71| wi(2)1, (z) with w;i(z) € K[z]\{0} and §; € K"
pairwise distinct, we easily check that I, contains ﬂ;’:lmg“
degree of w;(z). Thus V(1)) C {&, ..., &}

The ideal I, contains in particular univariate polynomials in each variable
x;. Thus Ay = K[x]/I, is of finite dimension over K and rank Hy < oc.

Let us assume now that A(z) = Z:lzl w;i(z)1, (z) with w;(z) € K[z] \ {0}
so that A, = K[x]/I is of dimension r over K.

As Ay = K[x]/In ~Im(H,), Hj, induces an injection from A, into A}
which is of dimension r. We deduce that H, induces an isomorphism between
Ap and A}, and we have the short exact sequence:

where d; is the

OHIAHK[X}iARHO.

This shows that A} is generated by elements p x A for p € K[x], that is, A}
is the inverse system generated by A.
By definition of Iy, if p € K[x] is such that Vq € K[x]

(p(x), q(x))x = (px Az)|g(x)) = 0,

then px A(z) = 0 and p € Iy. We deduce that the inner product (-,-) is
non-generate on Ay = K[x]/I,.

By Theorem 1.3.6, A € A} has a decomposition of the form (1.9) which
must coincide with the given one: A(z) = E:/:l w;i(z)1, (z). Thus A} =
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Af, @ ®A;, where Iy = QN+ -NQw and Af, = Qi is the inverse system
generated by w;(z)1, (z) fori=1,... 7"

The dimension of y; = dim Af, = dim A, of the inverse system AZ is the
multiplicity of &; it is also the dimension of the vector space spanned by w;(z)
and all its derivatives 03! - -- 0¢"w;(z) for a = (a1, ..., ;) € N*. We deduce
that dim Ay = dim A} =r = Z:,:I -

As Iy = Q1N ---NQ,, we deduce that V(I,) = {&,...,&}, which
concludes the proof of this theorem. [ ]

Remark 1.4.2 An algebra A is called Gorenstein if A and its dual A* are iso-
morphic A-modules. Then the quotient space Ay = K[x|/ker Hy is a Goren-
stein algebra

A special case of interest is when the roots are simple. We characterize it
as follows:

Proposition 1.4.3 Let A € K[x]*. The following conditions are equivalent:

1. A = 3 wil,, withw; € K\ {0} and & € K" pairwise distinct.

2. The rank of Hy is r and the multiplicity of the points &, ..., & in V(Iy)
15 1.

3. A basis of A} is gy, ..., 1¢,.
Proof. 1= 2. The dimension of the vector space spanned by w; € K\ {0}
and its derivatives is 1. By Theorem 1.4.1, the rank A, is 7 = )., 1 and the
multiplicity of the roots &1, ..., & in V(1) is 1.

2 = 3. By Theorem 1.4.1, A} is the inverse system spanned by A. As
Vp e Kx|, pxA =>_, wip(§i)1,,, A} is in the vector space spanned by
le,, ..., 1g,. As dim (A}) =r, it is a basis.

3= 1. As A € A}, there exists w; € K such that A = >7 | w1, . If
one of these coefficients w; vanishes that dim(A}) < r, which is contradicting
point 3. Thus w; € K\ {0}. n

In the case where all the coefficients of A are in R, we can consider the
following notion of positivity:

Definition 1.4.4 An element A € R[x|* is positive if Vp € R[x], (p,p) = (A |
p?) = A(p?) = 0. It is denoted A 3= 0.
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The positivity of A induces the following property on its decomposition
that we can find also in |[Lasserre 2012],:

Proposition 1.4.5 Let A € R[x]* such that rankHy =17, A = 0 iff

i=1
with w; >0, & € R™ for i=1,..,r

Proof. IfA=3"_ w1, withw; >0,§€R" for i=1,.,r, then clearly

Vp € R[x],
(A p?) sz &)

and A =0

Conversely suppose that Vp € R[x], (A | p*) = A(p?) > 0. Then p € I, iff
(A | p*) = A(p®) = 0. We check that I is real radical: If p** + 37 7 € I, for
some k € N, p, ¢; € R[x| then

(A ] p™ + Z ) =Ap™ + Z @) =Ap™) + Z Ag}) =

which implies that (A | p*k) = A(p*) = 0, (A | ¢¢) = A(¢}) = 0 and
pk, q; € ]A-

Let & = [5]. We have (A |p*') = A(p**')) = 0, which implies that p*" € I,.
[terating this reduction, we deduce that p € I,. This shows that I, is real
radical and V(1) C R". By Proposition 1.4.3, we deduce that A =3 7/ w; 1,
with w; € C\ {0} and & € R". Let p; € R[x] be interpolation polynomials
at & € R™ pi(&) =1, pi(§;) = 0 for j #i. Then (A | pf) = A(p}) = w; € Ry
This proves that A = > 77 w; 1, with w; >0, € R*, fori=1,..,n. [









CHAPTER 2
Minimization problem and
varieties of critical points

Let f,97,...,95 .. 97,9}, € R[x] be polynomials functions. The minimiza-
tion problem that we consider all along the manuscrit is the following:
o fx) (21)
st )= =gl (x) =0
9 (%) 2 0,..., g, (x) 2 0

More precisely, the objectives of the method we describe are to compute the
minimum value when f is bounded by below and the points where this mini-
mum value is reached if they exists.

Hereafter, we fix the set of constraints

g={g%eg"t={gl,....0 ;9 ,....q"} (2.2)

and we denote by

S = S(g) = {x € R* | 0(x) = 0,68, (x) = 0; 67 (%) = 0,...., g, (x) = 0}

(2.3)
the basic semi-algebraic set defining the points which satisfy the constraints
of our minimization problem (2.1). And

St (g)={xe€R" | g/ (x) >0,...,9,,(x) > 0} (2.4)

is the basic semi-algebraic set defining the points which satisfy the nonnegative
constraints of our minimization problem (2.1).

When n; = ny = 0, there is no constraint and S = R™. In this case, we
are considering a global minimization problem.

The points x* € S which satisfy f(x*) = infxegs f(x) are called the min-
imizers of f on S. If the set of minimizers is not empty, we say that the
minimization problem is feasible.

Before describing how to compute the minimizer points, we analyse the
geometry of this minimization problem and the varieties associated to its
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critical points. In the following, we denote by y = (x,u,v) and z = (x,u, v, s),
the n +ny + ny and n 4+ ny + 2ny variables of these problems. For any ideal
J C Rlz], we denote J< = J N R[x]. The projection of C" x C™*2"2 (resp.
C" x C™m* ") on C™ is denoted 7*.

2.1 The gradient variety

A natural approach to deal with constraints in optimization problems is to
introduce Lagrangian multipliers. Replacing the inequalities g;~ > 0 by the
equalities g;” — s? = 0 (adding new variables s;) and introducing new parame-
ters for all the equality constraints yields the following minimization problem:
inf X 2.5

(x,u,v,s)ER" xR"1+2 72 f( ) ( )

st.  VF(x,u,v,s)=0

where  F(x,u,v,s) = f(x) — 200 wigl(x) — 3272059 (x) — 57),
U= (Ugy ., Up, ),
V = (01, ..., Upy) and s = (81, ..., Sp,)-

Definition 2.1.1 The gradient ideal of F(z) is:

Iyaa = (VF(2)) = (F1, ..., F.,q?, ...,ggl,gf—s%, ...,Q:{Q—Siwvlsl, ey UnySny ) C R[2]
0 n dg? n dg7

where F; = a—i: — Zjil Ujort — Zjil VjGas -

The gradient variety is Vyaa = V(Igaa) and the real gradient variety is

Virad = Voraa N (R x RM+202),

Its projection on x s V*

ovad = T™(Vgraa), where 7 is the projection of
C" x Cm*2n2 opto C™.

Example 2.1.2
inf —1221 — Tzo + x%;
(z1,22)€ER?
st. 22t —24+2,=0
—11+32>20,—22+2>0,2; > 0,29 >0

His gradient ideal is I0q = (VF(z)) = (—124+8u1x3 — vy +vg, =7+ 219 +u; —
Votuy, 201 2419, —T1+3— 83, —To+2—83 11 —83, To—S3, V151, UaSa, U353, VsS4

Definition 2.1.3 For any F' € R[z], the values of I at the (resp. real) points
of V(VF) = V44 are called the (resp. real) critical values of F.
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We easily check the following property:
Lemma 2.1.4 F ‘ngd: f ’ngd‘

Thus minimizing f on V.. is the same as minimizing F' on V,qq, that is
computing the minimal critical value of F.

2.2 The Karush-Kuhn-Tucker variety

A variant of the gradient variety that we can use in constrained problems is the
well-known Karush-Kuhn-Tucker (KKT) variety which have been used in sev-
eral approches about polynomial optimization (see [Demmel 2007, Ha 2010,
Nie 2011].

Definition 2.2.1 A point x* is called a KKT point if there exists uy, ..., Uy,
V1y...,Upn, € R 8.1

V) =Y wVgl(x) =Y v;Vgl(x) =0, g)(x") =0, v;g (x*) = 0.
i=1 j=0

The corresponding minimization problem is the following:

inf X 2.6
(X7u7v)ERn+n1n2 f< ) ( )
st. Fi=-=F=0
g==g,=0
v gf_ = = Uny gr—tg =0

0 +
_of _xm 99 e 995
where F; = Er Zj:l Uj oz, Zj:l Y5 oz, -

This leads to the following definitions:
Definition 2.2.2 The Karush-Kuhn-Tucker (KKT) ideal associated to Prob-
lem (2.1) is
-[KKT - (Fb ceey Fna g?? RS gglavlgfa ceey UTLQQ;’:’,—Q) C R[y] (27)

The KKT variety is Vigxr = V(Igxr) C C" x C"*™2 and the real KKT
variety is Vigr = Vigr N (R™ x RMTn2),

Its projection on x is V¥ p = m%(Vkkr), where 7 is the projection of C" x
C™tm2 gnto C™.
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The set of KKT points of S is denoted Skxr and a KKT-minimizer of f on
S is a point X* € Sk such that f(x*) = minges, ... f(X).

Notice that Vi, = 7 (Vigr) = m(VE4,), since any linear dependency
relation between real vectors can be realized with real coefficients.

Example 2.2.3 The KKT ideal asociated to the optimization problem 2.1.2
18

It = (=124 8uy 3 — vy +v3, =7+ 229 +uy — Vo + vy, 207 — 2+ 29, vy (— 71 +
3), va(—x9 + 2), v321, V4T2)

The KKT ideal is related to the gradient ideal as follows:

PI‘OpOSitiOIl 2.24 [KKT = [grad N R[y}

Proof. As s;(siv;) + vi(gl — s?) = vig Vi = 1,...,n9, we have Ixgr C
Tgraa N Rly].

In order to prove the equality, we use the property that if K is a Groebner
basis of Iy.qq for an elimination ordering such that s > x,u, v then K NR]y]
is the Groebner basis of I,,.q N R[y] (see [Cox 2005]). Notice that s;(s;v;) +

vi(g — s2) = vig/ (i = 1,...,ny) are the only S-polynomials involving the

variables si,...,S,, which may have a non-trivial reduction. Thus K N R]y]
is also the Groebner basis of Fi, ..., F,, 4%, ..., g0 0197, ..., Un,g;t, and we have
(K) N R[y] = Igrad N R[y] = IKKT- ||

The KKT points on S are related to the real points of the gradient variety
as follows:

Lemma 2.2.5 SKKT = ‘/;:,751 = V;’IH(QT N S+(g)

Proof. A real point y = (x,u,v) of V1 lifts to a point z = (x,u, v, s) in
Vraar if and only if, g (x) > 0 for s = 1,...,ny. This implies that Vgﬁl =
VR rNST(g), which gives by closed projection the equalities Sk xr = Viigr N

S*(g) = V5 since a point x* of Vg’;’ﬁl satisfies gj(x*) >0forjel,ng. m

Remark 2.2.6 This shows that if a minimizer point of f on S is a KKT
point, then it is the projection of a real critical point of F'.
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2.3 The Fritz John variety

A minimizer of f on S is not necessarily a KKT point as show in the example
2.4.1

min T
st 23>0

The KKT ideal is Ixgr = (1 — 3v2%,v123) = (1). As V(1) = 0, there is
not KK'T minimizers but the minimizer is 0.

In order to solve this kind of problems, more general conditions that
are satisfied by minimizers were given by F. John for polynomial non-
negativity constraints and further refined for general polynomial constraints
|John 1948, Mangasarian 1967].

To describe these conditions, we introduce a new variable ug and denote
by y’ the set of variables y' = (x, ug, u, v).
Let

uQ af S ag G 89
= Z j@xj - jz J axj

Definition 2.3.1 For any v C [1,n4], let
I}, = (Fy", o F g ...,ggl,vlgf, ...,vnzg;;,ui,i Zv) C R[y']. (2.8)
For m € N, the m'™ Fritz-John (FJ) ideal associated to Problem (2.1) is
Iy = Opyj=mIfs- (2.9)

Let Vi, = V(I},) € C" x Pratne,

The m™ F.J variety is Vi := V(I%)) = Upyj=m Vi, and the real FJ variety is
VisR = Vi AR™ x RPM+2,

Its projection on x is Vi = wx(VE,).

When m = maxxes rank([Vg)(x),..., Vgl (x)]), the m™ FJ variety is de-
noted Vij.

Proposition 2.3.2 Any minimizer x* of f on S is the projection of a real
point of V3.
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Proof. The proof is similar to Theorem 4.3.2 of [Bazaraa 2006]. For any
minimizer point x* (if it exists), we consider a maximal set of linearly inde-
pendent gradients Vg (x*) for j € v (with |y| < m) and apply the same proof
as |Bazaraa 2006|[Theorem 4.3.2]. This shows that x* € V;/;* € VE,. u

Remark 2.3.3 If ny =0, the m™ Fritz-John (FJ) ideal is

Ipy = (F/",..,F" vg, ...,vm,g:{z) C R[y']. (2.10)
where .
If & 0g;
Fvo — _ I
! to 8902 ]Z_;v] 8$1

Notice that this definition slightly differs from the classical one [John 1948,
Lasserre 2009a, Mangasarian 1967|, which does not provide any information
when the gradient vectors Vg?(x),i = 1...n; are linearly dependent on S,

Definition 2.3.4 We denote by Viing = Viry N V(wg) the intersection of Vi
with the hyperplane ug = 0.

We easily check that the “affine part” of Vg, corresponding to uy # 0 is the
variety Vi xr. Thus, we have the decomposition

Vis = Vsing U Vkkr (2.11)
Its projection on C™ decomposes as
VI?SJ - V;)icng U VI)((KT (2-12)

Let us describe more precisely the projection V3, onto C". For v =
{j1s- -, Jk} C [1,n2], we define

A, = [Vf(x), Vgi(x),-.., Vg, (x), Vg (x),..., Vg (x)]

V, ={xeC"|g(x) =0,i=1...m,9/(x) =0, € v, rank(4,) <
m+ [v[}.

Let AY,..., A} be polynomials defining the variety {x € C" | g¢; (x) =
0,7 € v, rank(4,) < m+ |v|}. If n > m + |v], these polynomials can be
defined as g7, j € v and as linear combinations of (m + || 4 1)-minors of the
matrix A,, as described in [Bruns 1988, Nie 2011]. If n < m+ | v |, we take

I, =0, AV = 0.
Let I'z; be the union of g°, and the set of polynomials
v = AT o (2.13)
J¢v

fori=1,...,0,,v C[0,ns).
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Lemma 2.3.5 V7, = Uyciing Vo = V(T'r).

Proof. For any x € C", let v(x) = {j € [1,n9] | g (x) = 0}.

Let y’ be a point of Vg, x its projection on C" and v(x) = v = {Jj1, ..., ji}-
We have gj(x) #0,v;, =0for j ¢ vand AY =0fori=1,...,[,. This implies
that rank(A,(x)) < m + |v| and there exists (ug, U1, ..., U, V1, ..., Vp,) # 0
and v C [1,n4] of size |y| < m such that

uwVf+u Vel + - +un, Vg, +01Vgh + -+ + v, Vg =0,

with u; = 0, i« € v C [1,n1]. Therefore x € 7*(Vp;), which proves that
V(go, le,m v C [O, nz],i =1... ll,) C WX(VFJ).

Conversely, if x € 7%(Vy) then x € V,(x) C U, V,, which is defined by the
polynomials g7, ..., gp and ¢,; == AY [, g, fori=1,...,0,,v C[0,ny]. m

Remark 2.3.6 The real variety ™(VE,) = VZ, NR"™ can also be defined by
g? and the set ®r; of polynomials

Oy = AV ng— where AY = det(AVAZ)a (214)
JEv

for v C [1,ny] and n > m+ | v |, as described in [Ha 2010].

Similarly the projection VX onto C" can be described as follows. For

sing
V= {jlu s 7.]k} - [17n2]7
B, = Vg (x),...,Vgp,(x),Vg}(x),..., Vg (x)]

W, ={xeC"|gkx =0i=1...n,9/(x)=0j € v rank(B,) <
m + |v| = 1}. Let ©F,...,0] be polynomials defining the variety {x € C" |

g9/ (x) = 0,7 € v,rank(B,) < m+|v| -1} and let T'ypy be the union of g” and
the set of polynomials

0, = 0O Hg;', (2.15)
Jgv
forv C [1,ng],i=1...1,.
With similar arguments, we prove the following

Lemma 2.3.7 VX Uncma Wo = V(L sing)-

sing

If we come back to the example in the begining of the section
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Example 2.3.8

The ideal de Fritz-John is :
_[FJ = (U[) - U13{[‘2, ’Ull’g)

o Ifuy#0 then Ir; correspond to the ideal Ipr = (1 — Z—;3x2,v1x3) and
Virr = 0.

o Ifuy=0 then IryN(uy) = (—v1322 vi23, up) , Vsing = {(0,(0: 1))}.

Then
VFJ - V;mg U VKKT = ‘/sing

Its projection on C" is equal to

V;J = ‘/;i(ng U V;((KT
To compute Vi, we apply Lemma 2.3.5:
There is not equalities so m = 0.
Forv = 0, A4 = [1], V, = {x € C | rank(4y) < 0} = 0
then A} = 1, ¢o1 = 1-2°. For v = 1, A = [1,-327,
Vi={xeC| 2*=0,rank(A;) < 1} = {0} then A} = 2*, ¢11 = 2*, and

FFJ = ($3)

To compute Vi, we apply Lemma 2.3.7:
Forv=0,By=][, Wo={x€C| rank(By) < =1} =0 then ®" =1, 091 =
1-23. Forv=1, By =[-32%], W ={x e C| 23 =0,rank(B;) <0} = {0}
then ©1 = 2®, O = a? ;011 = 2%, 012 = 22 and Tgny = (22).
Then Vv = W1 == V(Fsmg) == {0}

sing

2.4 The minimizer variety

By the decomposition (2.12) and Proposition 2.3.2, we know that the mini-
mizer points of f on S are in

SFJ:SKKTUSsing (216)




CHAPTER 2. MINIMIZATION PROBLEM AND VARIETIES OF

CRITICAL POINTS 27
where
Spy=VrEinS=VvyFinSt(g), (2.17)
SKKT = V[};’[EET NS = V[};’[EET N S+(g) (218)
x,R x,R +
Ssmg = ‘/sing ns= ‘/sing ns (g) (219)

Therefore, we can decompose the initial optimization problem (2.1) into
two subproblems:

1. find the infimum of f on Skgr;

2. find the infimum of f on Sg,,;

and take the least of these two infima. Since the second problem is of the
same type as (2.1) but with the additional constraints o,; = 0 described in
(2.15), we analyse only the first subproblem. The approach developed for this
first sub-problem is applied recursively to the second subproblem, in order to
obtain the solution of Problem (2.1).

Example 2.4.1 We consider the “ill-posed” problem

min x s.t 5 > 0.

The ideal I is Ixxr = (1—3vi2%,v123) = (1). Thus Viggr = 0. According
to the decomposition (2.16), Sp; = Ssing and we compute the minimum of x
on Ssing, Which is defined by z* = 0:

min z s.t 22 = 0.

As we will see in the Section 4.3.4, the relaxation associated to this problem
is exact because VR (x?) = 0 is finite and yields the solution x = 0.

Definition 2.4.2 We define the KK T-minimizer set and ideal of f on S as:

Imm = I(Smm) CR[X]‘

A point x* in S,,,;, is called a KKT-minimizer. Notice that Ixx7 C I, and
that I,,;, is a real radical ideal.

We have I,,;, # (1), if and only if, the KKT-minimum f* is reached in
SKKT-

If ny = ny = 0, I, is the vanishing ideal of the critical points x* of f
(satisfying V f(x*) = 0) where f(x*) reaches its minimal critical value.
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Remark 2.4.3 If we take f = 0 in the minimization problem (2.1), then
all the points of S are KKT-minimizers and I, = Z(S) = gt/@. More-
over, Ixkr NR[X] = (¢9,...,9% ) = (&°) since Fy, ..., F,, 0197, ..., 05,09, are
homogeneous of degree 1 in the variables u,v.









CHAPTER 3
Relation between Optimization
problem and Moment matrices

In this chapter we connect the minimization problem (2.1) with the theory of
Moment matrices and the set of positive polynomials.

For the case in one variable, that is, n = 1, Shor [Shor 1987| showed that
the unconstrained minimization problem

f = mingern f(2) (3.1)

reduces to a convex problem. Afterwards Nesterov [Nesterov 2000], through
a representation of univariate non negative polynomials as a sum of squares,
provided a self-concordant barrier for the cone of nonnegative univariate poly-
nomials so that efficient interior point algorithms become available to compute
the global minimum.

However, the multivariate case is very different from the one-dimensional
case because not every nonnegative polynomial can be written as a sum of
squares of polynomials. For instance the Robinson polynomial and Motzkin
polynomial are such famous polynomials in 2 variables which are non-negatives
but not sum of squares. For the last one we will give the proof in the first Sec-
tion of this Chapter. As mentioned by Nesterov in [Nesterov 2000], the global
unconstrained minimization problem of a 4-degree polynomial is a NP-hard
problem. For constrained minimization problem as (2.1), Shor [Shor 1998]
transforms this problem, via succesive changes of variables, into a quadratic
constrained optimization problem that he solves through a standard convex
linear matrix inequality (LMI) relaxation to obtain a good lower bound. If
we add redundant quadratic constraints we can improve the lower bound and
sometimes obtain the optimal value.

About a decade ago, a relaxation approach was proposed by Lasserre in
[Lasserre. 2001] to solve this difficult problem. Instead of searching points
where the polynomial f reaches its minimum that we will call f*, a probability
measure which minimizes the function f is searched. This problem is relaxed
into a hierarchy of finite dimensional convex minimization problems, which can
be solved by Semi-Definite Programming (SDP) techniques. The sequence
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of SDP minima converges to the minimum f* [Lasserre. 2001| under some
hypothesis that we will see at the end of the chapter. This hierarchy of
SDP problems can be formulated in terms of linear matrix inequalities on
moment matrices associated to the set of monomials of degree ¢ or less, for
increasing values of t. The dual hierarchy can be described as a sequence of
maximization problems over the cone of polynomials that are Sums of Squares
(SoS). A feasibility condition is needed to prove that this dual hierarchy of
maximization problems also converges to the minimum f*, i.e. that there is
no duality gap.

This chapter is organized as follows, in the first Section we give the defini-
tion of positive and sum of squares polynomials, the definition of preordering
and quadratic module and the theorems which rely on these concepts due to
Putinar and Schmudgen. We also talk about the sequence of maximization
problems over the cone of SoS polynomials. In the second Section we recall the
concepts of Moment matrices and the theorems related and the last Section
we explain the relaxation method of Lasserre [Lasserre. 2001].

3.1 Positive Polynomials

First of all we recall definitions as sum of squares, quadratic module and
preordering that we have seen in Chapter 1.
We say that a polynomial p € R[x] is a sum of squares of polynomials (SOS)

if p can be written as p = 7" | u5 for some wuy, ..., u, € R[x].

Let S C R™ be a basic semialgebraic set, defined as in Chapter 2, S :=
S(g) = S(g"g"),

S={xeR"|gi(x) =0,...,9;,(x) =0, (x) > 0,..., g1, (x) > 0}
Definition 3.1.1
o A polynomial f(x) is called nonnegative on S if

f(u) >0VueS.

o A polynomial f(x) is called positive on S if

fu) >0Vues.

Definition 3.1.2
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o The preordering P(g) is the set

—{Zsﬁz )9+ D oulx gy ()7 [ (32)

ve{0,1}m

0,(x) is sos, ¢i(x) € R[x]}

The preordering generated by the positive constraints is denoted P*(g) =
P(g").

e For a finite dimensional subspace E C R[x| we can define the truncated
preordering

g)Z{Z@(X)ngr Y. Xl (x)" gl ()| (33)

ve{0,1}m
71 (3)is 305, (05 (0" -+ 61,00 € (F. )
¢i(x) € E, ¢i(x)g; € (E,E)}

Definition 3.1.3 e The quadratic module Q(S) := Q(g) is the set

_{Z@ x) g +00+ZU] Vg (x) | 0 is sos, ¢i(x) € R[x]}

(3.4)
The quadratic module generated by the positive constraints is denoted

Q" (g) = Qg™).

e For a finite dimensional subspace E C R[x| we can define the truncated
quadratic module

= {Z ¢i(x)g) + Zcrl, )| o,(x) is sos(E), (3.5)

u( )gi() ( ,E),¢i(x) € E, ¢:(x)g; € (B, E)}
Proposition 3.1.4

o The sets P(g) and Q(g) are conver.
o If f(x) € P(g), then f(x) is nonnegative on S.
o If f(x) € Q(g), then f(x) is nonnegative on S.

Theorem 3.1.5 [Schmiidgen 1991] Let S = {x € R | g¢gf(x) >
0,...,9% (x) > 0} be a compact set. If f(x) is positive on S, then f(x) €
Pt(g)-
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Example 3.1.6 The quadratic polynomial f(z1,x2) = x129 + 1 is positive on
the unit sphere S = {(z1,x2) € R* | 2% + 23 < 1} which is compact. Then we
have that f(x) € Pt (g)

1 1 1
T1re + 1= §(x1 + 19)? + §+§(1 — 2 — 22)

Remark 3.1.7 If f(x) is only nonnegative on S, then Schmudgen’s theorem
may not be true. We can see it in the following counter-example.

Example 3.1.8
f(x)=1—2%and K = {(1 — 2*)* > 0}.

f(z) is nonnegative on K. Suppose there are SOS polynomials s1(x), se(x)
such that
1 — 2% = s1(x) + so()(1 — 2?)? (3.6)
then —1 must be a root of s1(x) therefore of multiplicity 2, but —1 has multi-
plicity 1 on the left.

Definition 3.1.9 The module quadratic Q*(g) sastifies the Archimedean
condition (AC) if there exits N > 0 such that

N—|l x[[z€ Q*(g). (3.7)

Remark 3.1.10 If the AC holds, the set S must be compact, but the reverse
might not be true. We can see it in the following counter-example.

Example 3.1.11

1 1
S:{XERQ|ZL‘1—§ZO,I2—§ZO,1—ZL’1IQZO}

This set is clearly compact.
The Archimedean Condition is not verified because there does not exist N
such that

1 1
N — (234 23) = 09 + (21 — 5)01 + (29 — 5)02 + (1 — zyx9)03, with o; sos.
If they exist, then D = max(deg(oy), deg(os)+2) > 1+max(deg(o1), deg(o))
When D = 2, it does not work. When D > 2, the highest even term of
00 + (1 — z129)03 must vanish, which is not possible.
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Theorem 3.1.12 [Putinar 1993] Let S = {x € R* | gf(x) >
0,...,9,1% (x) >0} be a compact set. Suppose the quadratic module Q" (g) ver-
ify the Archimedean Condition. If f(x) is positive on S, then f(x) € Q7 (g)

Remark 3.1.13 If AC fails, the conclusion of Putinar’s theorem migth not
be true.

Example 3.1.14 We take the example 3.1.11, S is compact and the QT (g)
does not verify the Archimedean Condition. The polynomial N — (23 + x3)
with N > 2 is positive on S but N — (2?2 + 23) ¢ QT (g)

The relation between positive polynomials and our minimization problem
is the following. We can reformulate our problem (2.1) as:

f*=suppst f(x)—p>0onS (3.8)

In order to manage this hard problem, we can relaxe it into the following
simpler problem for S = R"

f5f =supp st f(x)—pis SOS (3.9)

The following lemma shows that we can tackl it with Semidefinite Pro-
gramming.

Lemma 3.1.15 Let f € R[x], f = ZaeNgd fax®, be a polynomial of degree
< 2d. The following assertions are equivalent:

1. f is a sum of squares.

2. The following system in the matriz variable X = (X, g)a,penn s feasible:

S (3.10)
ZaﬁENZ\ﬁnw:a Xpy = fa(l o |< 2d). '

Proof. Let z;:= (2 || @ |< d) is the vector containing all monomials of de-
gree at most d. Then for polynomials u; € R[x]q, we have u; = coef f(u;)” 24
and thus > w3 = 2732, coef f(uj)coef f(u;)")za. Therefore, f is a sum of
squares of polynomials if and only if f = 27 Xz, for some positive semidefi-
nite matrix X. Comparing the coefficients of f and 21 Xz, we find the system
(3.10). n
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Example 3.1.16 We want to verify if the polynomial f = x*+ 223y + 322y +
2xy% 4 2y* which is nonnegative is SOS. We can decompose f as:

2

a b c x
f:(x2 xy y2)- b d e xy
c e f y?
——
X
We look for X = 0 such that:
ot = 2?2 l=a
sy =2y =2b

syt =ay - zy=2a*-y* 3=d+ 2
mygzxy-yQ 2 =2e
yvi=y-yt 2=f

Then
1 1 c
X=113-2c1 | %0« -1<c<1
c 1 2
For ¢ = —1 we have the Gram decomposition and we get
1 -1 1 0
X=( 15 1 |= 12.((1);_11)
-1 1 -1 1

and one decomposition as sum of squares of p is: [ = (x*>+xy—y?*)*+ 2xy +
y*)?

Remark 3.1.17 It is obvious that f*°° < f*. But not all the non negative
polynomials are sum of squares as we can see in the next example.

Example 3.1.18 The Motzkin polynomial f(z,y) = 2?y*(2® +y* —3) + 1, is
non negative but not a sum of squares of polynomials (SOS).

Indeed, f(x,y) > 0 if 2> +y* > 3. Otherwise, there exists = € R such
that z2*> = —x? — y?> + 3 and by arithmetic geometric mean inequality, we have
””Qﬂgﬂ > Jx?y?22, giving again f(z,y) > 0.

Now we verify that we can not decompose f(x,y) as a sum of squares of
polynomials. We suppose f = Y, pi, where py = axx’ + bpriz2 + cpaia3 +
dps + ext? + fox1To + gpi + hpry + ixTo + i, with ay, ..., jx € R. Looking at
the coefficients of 2%, x5, x1, 23, 22, 22 in f, we deduce that aj, = dy = e} =
gr = hy =1, =0V k. And if we look at the coefficient of x32% in f, we obtain
—3 =3 f? which implies a contradiction.
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In the case where S = S(g) is a semialgebraic set

[ =supp sit. [ —pecP(g) (3.11)

Remark 3.1.19 [t this case with S = S(g), it is obvious also that in his case
f;os S f*

This formulation does not lead directly to a semidefinite program of finite
size. We need to bound the degree of the polynomials. We can consider for
any integer ¢ with
2t > max(deg(f),deg(gy), ..., deg(gh ), deg(gy), ..., deg(gyt))) the following
semidefinite program

fi¥ =supp st [—pePyg) (3.12)

where the truncated preordering Py(g) , which is the particular case of Pg(g)
where E = R[x], is the set

Pilg) = {D_oix)gl + 3 ov(x)gi ()" g, ()2 | (3.13)

ve{0,1}m

UV(X) & SOSt ng_|7 ¢Z(X) € R[X]%—deg(g?)}
2

We can also define the truncated quadratic module Qi(g), which is the
particular case of Qg(g) where E = R[x];, is the set

- {Z ¢Z g’L + Zal/ ‘ UV(X) 7;8 08 [deq(q+)17 (314)
¢’L(X) € R[X}Qt—deg(g?)}

Proposition 3.1.20 f7o° <[], < f3% < f* and limy_ f75° = f5*°

3.2 Moment matrices

Before defining the relation between our minimization problem and the Mo-
ment Matrices we introduce some definitions. We consider nonnegative Borel
measures on R", thus, all our measures will be nonnegative. A probability
measure p is a measure with total mass pu(R") = 1.

Definition 3.2.1 We call the support of a measure p on R™, denoted
supp(u), the smallest closed set C' C R™ for which u(R™\ C') = 0.
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Definition 3.2.2 We say that p s a measure on K or a measure supported
by K C R" if supp(u) C K.

Definition 3.2.3 Given x € R", iy denotes the Dirac measure at X, with
support, supp(dx) = {x} and:

5X(u):{1 stu=Xx

0 stnon.

Definition 3.2.4 If the support of a measure p is finite, supp(p) =
{1, ...,z } then p is of the form:

= Z)\idm for some Ay, ..., A\ >0 (3.15)
i=1

where x; are called the atoms of .

If the measure p has a representation as 3.15 we say that p is r-atomic
measure.

Definition 3.2.5 We define the moment of order o of a measure p on R”
18:

Yo = / x*(dp). (3.16)

o The sequence (Yo)aenn is called the sequence of moments of the
measure [i.

o Fort € N, the sequence (Yo)aeny s called the truncated sequence of
moments of the measure ;1 up to order t.

o [f the sequence y is the sequence of moments of a measure, we also say
that p is a representing measure fory.

Definition 3.2.6

o Given a sequence Yy = (Yo )aene € RY" its moment matriz is the infinite
matriz M (y) indexed by N", with («, B)th entry yo+p, for a, 5 € N™.

o For at € 7Z, given a truncated sequence y = (Ya)aeny, € RNz gts
moment matriz of order t is the matriz My(y) indexed by N}, with
(o, B)th entry ya s for o, € Nj.
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Example 3.2.7 The Moment matriz of order 2 of a measure is of the form:

I J w10 Yoi|¥%0 Y11 Yoo
Yo | Y20 Y11 | Y30 Y21 Y12
HQ(y> ]l Y10 | Y11 Yo2 | Y21 Y12 Yo3

Y2,0 | Y30 Y2,1 | Y40 Y31 Y22
Y11 | Y21 Y12 | Y31 Y22 Y13
Yo2 | Y12 Yo,3 | Y22 Y1,3 Yo

where y; j represents the (i + j)-order moment [ z'y’ p(d(x,y)

Definition 3.2.8 For a certain degree t we called the truncated localizing
matriz to the matriz H' (g x y) with entries:

Ht(g * y) (Zvj) = Zgay(i,j)Jra

Example 3.2.9 The Moment matriz of order 1 of a measure is of the form:

I 0 You
Hl(y) = | Yo1 Y20 Y11
Y10 Y11 Yoz

IF we take g = 2 — 2% — 1119, then

2 — Y20 — Y11 2yl,o — Y30 — Y21 2yo,l — Y21 — Y12
Hl(g * y) = 2?Jl,o — Y30 — Y21 2Y20 — Ya,0 — Ysi 2?J1,1 — Y31 — Y22
2?Jo,l — Y21 — Y12 2?J1,1 — Y31 — Y22 2yo,z — Y22 —U13

Remark 3.2.10 We can easily verifier that Moment matrices of a degree t
corresponding a truncated hankel matriz where E = R[x|; and its equivalent
in notation is H ,.

Now we relate the Moments matrices with the Hankel Matrix

Definition 3.2.11 Given y € RY", the linear form A, € R[x|* is defined by:

Ay(f) =y vee(f) = Yafa =D fal\y(z®) = vect(1)" H(y)vee(f) (3.17)

for f=>" fax®

Lemma 3.2.12 [Laurent 2009a] Let g € R[x] and d, = [deg(g)/2]
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. Ify € RY2 s the sequences of moments (up to order 2t) of a measure i,

then H'(y) = 0 and rankH'(y) <| supp(p) | . Moreover, for f € R[x],
H'(y)f = 0 implies supp(n) C Ve(f) = {z € R* | f(x) = 0}. Therefore,
supp(pt) C Ve(ker H'(y)).

. Ify € RN (t > d,) is the sequence of moments of a measure ju supported

in the set K ={x € R" | g(x) > 0} then H"%(g*y) = 0.

. If y € RY" is the sequence of moments of measure p, then H(y) = 0.

Moreover, if supp(p) C {x € R | g(z) > 0}, then H(gxy) = 0 and, if
W is r-atomic, then rankH (y) = r.

Proof.

1. For f € R[x];,

FHWS = Y fafansa= Y [a*utdn) = [ f@fuldo) > 0
a,BEND a,BEND

which shows that H'(y) = 0.

If H'(y)f =0, then

o:ﬂmfz/ﬂumum

As VE(f) is a closed set, supp(u) C VE(f) holds if we can show
that u(R™ \ VE(f)) = 0. Indeed, R* \ VE(f) = U Us, setting
Up ={z € R"| f(x)? > +} for positive k € N. As

0= [r@riun = [ frunz [ eiuin 2 g

this implies (Uy) = 0 for all k and thus u(R™\ VE(f)) = 0.

The inequality rank H'(y) <| supp(u | is trivial if 4 has a infinite support.
So assume that p is r-atomic , say, p = > ., \;d,, where \; > 0 and z; €
R" for i = 1,.n. Then H'(y) = > ; MiCtw.$ly,» where Gy = (23)aenn
is the sequence of moments of the Dirac measure J,,, called the Zeta
vector of z; and (; 4, (x-a)aeNg denotes the truncated zeta vector. It

(2

shows that rankH'(y) < r.

. For p € R[x];,

p T H ™% (g% y)p = Z Z DPaPpgnYatpty = / g(@)p(x)*p(dr) > 0
K

a,BeN , yeNT

which shows that H"%(gxy) = 0
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3. The first two claims follow directly from 1,2. Assume now p =
>y Aidy, where \; > 0 and z; € R” for ¢ = 1,.n. Then, as
H(y) = ooy Mile, Gz, rankH(y) =

Corollary 3.2.13 [Laurent 2009a] If y € RY2 is the sequences of moments
(up to order 2t) of a measure supported by the set S then, for any t > dg =
maxdeg(g;),

H'(y) =0, H %i(g;xy) =0 (G =1,...,m) (3.18)

We will study in Chapter 5, several results of Curto and Fialkow showing
that, under certain restrictions on the rank of the matriz H,(y), the condition
3.18 is sufficient for ensuring that y is the sequence of moments of a measure
supported by S

3.3 Lasserre relaxation

Based in the results on Moments Matrices of the previous Section, Lasserre in
[Lasserre. 2001] proposed to solve the optimization problem (2.1) as a sequence
of truncated convex optimization problems which converges to the minimum.

Proposition 3.3.1 The problem (2.1)

[ =infies f(2) (3.19)
s equivalent to the following problem:
[ =inf, [ f(x)pu(dz) (3.20)

where the infimun is taken over all probability measures p on R™ supported by
the set S.

Proof. For any xy € 9, f zo) = [fl(x ) for the dirac measure
w= 5x0 then f* > inf, [, f(z)u(dz). Conversely f( ) > f*forall z € S,
Jo f@)p(dx) > [g f*pu dx) f since y is a probability measure. n

As [ f(x) =Y Jo J2ou(dz) = fTy, where y = [ 2*u(dx) denotes
the sequence of moments of i, we can reformulated 6.3.1 as:

f*=inf fTy sit. yo = 1, y has a representing measure on S|  (3.21)
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According to Lemma 3.2.12 we can imposse the conditions over the Mo-
ment matrices that lead to the following lower bound:

f& = inf cgun ffyst.yo=1, H(y) =0, H(gj*xy) =0 (3.22)

This problem is equivalent to:

f¥ =infacrpg- A(f) st A1) =1, A(p) > 0Vp e P(g) (3.23)

g

We cannot solve this problem because it involves infinite moment matri-
ces so in order to obtain finite dimensional semidefinite problem we consider
truncated moment matrices and we obtain the following hierarchy of truncated
convex optimization problem that we can solve with semidefinite programming
methods.

fte = infyeRNgt ffy st.yo =1, Hy(y) = 0, Ht_dgj (gj*y) =0(j =1,...,n9)

(3.24)

or

ft/fg = ianER[th A(f) s.t A<1) = 17 A(p) Z 0 \V/p € Pt(g> (325)
where t > maz(dy,ds), and

Li(g) = {A e R[5, [ Alp) 2 0, Vp € Pi(g), A(1) = 1} (3.26)
By this definition, for any element A € £;(g) and any g € (g°) N R[x];, we
have A(g) = 0.

Thus (3.24) is equivalent to:

fly = infacrxs, A(f) st A€ Ly(g) (3.27)

This hierarchy of truncated convex optimization problem converges to f*:
fle < fthg< - << f (3.28)
Moreover, we have

Proposition 3.3.2 f79° < fi, < f*.
Proof. We easily check that f72° < fi';, since if there exists p € R such that

f—p=qePug) then VA € Li(g), A(f =) = A(f) =7 = Ag) = 0.
We also have f}'(g) < f* since for any s € S, the evaluation 15 : p €

R[x] + p(s) verify that 15(1) = 1 and 15(q) = ¢(s) > 0 Vq € Pi(g) - u

The relaxation hierarchies introduced in [Lasserre. 2001| correspond to the
case where we take (g°|2t) instead of (g°).
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Hereafter, we will also call Lasserre hierarchy, the full moment matrix
relaxation hierarchy. It corresponds to the sequences

o C Lya(g) C Ly(g) T+ and -+ C Qy(g) C Qiya(g) C -+
which yield the following increasing sequences for ¢t € N:

...ft/fggft/f%gg...gf* and --- tfg;sgf;’iigg...gf*.

The foundation of Lasserre’s method is to show that these sequences converge
to f*. This is proved under some conditions in [Lasserre. 2001].

Remark 3.3.3 The same results hold if we replace g by any other set of
constraints such that S(C) = S(g).






CHAPTER 4

Finite Convergence Certification

We have seen in the previous chapter that the approach proposed by Lasserre
in |Lasserre. 2001], yields a sequence of SDP minima that converges to the
minimimun of f under some hypothesis. We will say that the relaxation
problem is exact if converge to the minimimun in a finite number of steps.
One may wonder if using this approach, the relaxation problem is exact and
how to compute the minimizer points when the mimization problem is feasible.

In order to answers to this question, the following strategy has been con-
sidered: add polynomial inequalities or equalities satisfied by the points where
the function f is minimum.

A first family of methods are used when the set S is compact or when the
minimizer set can be bounded easily. By adding an inequality constraint, one
can then transform S into a compact subset of R", for which exact hierarchies
can be used [Lasserre. 2001|, [Marshall 2003]. It is shown in [Laurent 2007]
that if the complex variety defined by the equalities g° = 0 is finite (and thus S
is compact), then the hierarchy of relaxation problems introduced by Lasserre
in [Lasserre. 2001] is exact. It is also proved that there is no duality gap if the
generators of this ideal satisfy some regularity conditions. In |[Laurent 2009a,
it is proved that if the real variety defined by the equalities g° = 0 is finite,
then the hierarchy of relaxation problems introduced by Lasserre is exact. It
is also proved in [Nie 2013a] using differents techniques.

In a second family of methods, equality constraints which are naturally
satisfied by the minimizer points are added. These constraints are for in-
stance the gradient of f when S = R™ or the Karush-Kuhn-Tucker (KKT)
constraints, obtained by introducing Lagrange multipliers. In [Nie 2006], it
is proved that a relaxation hierarchy using the gradient constraints is exact
when the gradient ideal is radical. In [Marshall 2009], it is shown that this
gradient hierarchy is exact, when the global minimizers satisfy the Boundary
Hessian condition. In [Demmel 2007], it is proved that a relaxation hierarchy
which involves the KK'T constraints is exact when the KKT ideal is radi-
cal. In [Ha 2010|, a relaxation hierarchy obtained by projection of the KKT
constraints is proved to be exact under a regularity condition on the real min-
imizer points'. In [Nie 2011], a similar relaxation hierarchy is shown to be

IThe results of this paper are true but a problem appears in the proof which we fix in
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exact under a stronger regularity condition for the complex points of associ-
ated KKT varieties. These regularity conditions require that the gradient of
the active constraints evaluated at the points of S or of some complex varieties
are linearly independent. Thus they cannot be used for general semi algebraic
sets S, for instance when S is a real non-complete intersection variety.

Moreover, the assumption that the minimum is reached at a KK'T point
is required. Unfortunately, in some cases the set of KKT points of S can be
empty. As we have seen in Chapter 2, this obstacle can be removed using
Fritz John variety (see [John 1948, Mangasarian 1967]). There is not much
work dedicated to this issue (see |Lasserre 2009a]).

The case where the infimum value is not reached has also been studied. In
[Schweighofer 2006], relaxation techniques are studied for functions for which
the minimum is not reached and which satisfy some special properties “at
infinity”. In [Ha 2008|, tangency constraints are used in a relaxation hierarchy
which converges to the global minimum of a polynomial, when the polynomial
is bounded by below over R™. In [Guo 2010], generic changes of coordinates
and a partial gradient ideal are used in a relaxation hierarchy which also
converges to the global minimum of f on R™.

Notice that Problem (2.1) can be attacked from a purely algebraic point
of view. It reduces to the computation of a (minimal) critical value and
polynomial system solvers can be used to tackle it (see e.g. [Parrilo 2003],
|Greuet 2011]). But in this case, the complex solutions of the underlying
algebraic system come into play and additional computation efforts should be
spent to remove these extraneous solutions. Semi-algebraic techniques such as
Cylindrical Algebraic Decomposition or extensions [Safey El Din 2008| may
also be considered here, providing algorithms to solve Problem (2.1), but
suffering from similar issues.

In the cases studied so far, the exactness of the relaxation is proved un-
der a genericity condition or a compactness property. From an algorithmic
point of view, the flat extension condition of Curto-Fialkow |Curto 1996]
is used in most of the works [Henrion 2005, Laurent 2007, Lasserre 2009b,
Laurent 2009a] to detect the exactness of the hierarchy, when the number of
minimizers is finite. In [Lasserre 2012|, a sparse extension |[Laurent 2009b| of
this flat extension condition is used to compute zero-dimensional real radical
ideals.

Our aim is to show that for the general polynomial optimization problem
(2.1), exact SDP relaxations can be constructed, which either detect that the
problem is infeasible (which means there not exists points on S which minimize

this Chapter.
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f) or compute the minimal value and the ideal associated to the minimizer
points. In this Chapter we talk about KKT minimizer ideal Skx7r but how
we have said in Chapter 2 we can apply the same theorems for the singuliers
minimizer ideal Sy, to obtain the result on S. The main contributions of
this Chapter are:

e We prove that exact relaxation hierarchies depending on the variables
x can be constructed for solving the optimization problem (2.1) (see
Theorem 4.3.3 and Theorem 4.2.10).

e We prove that if the set of KK'T minimizers is empty, the SDP relaxation
will eventually be empty (Theorem 4.3.3).

e We prove that the KKT minimizer ideal can be constructed from the
moment matrix of an optimal linear form, when the corresponding re-
laxation is exact, even if the ideal is not zero-dimensional (Theorem
4.2.10).

e We prove that the exactness of the relaxation depends only on the real
points which satisfy these constraints (Theorem 4.2.10).

e We provide a general approach which allows us to treat in a uniform way
and to extend results on the representation of polynomials which are
positive (resp. non-negative) on the critical points (see [Demmel 2007|
and Theorem 4.1.9) and on the exactness of relaxation hierarchies
(see [Nie 2006], [Ha 2008], [Lasserre 2009b|, [Nie 2011]|, [Lasserre 2012],
|Nie 2013a] and Theorem 4.3.2, Theorem 4.3.5, Theorem 4.3.6, Theorem
4.3.7).

4.1 Representation of positive polynomials

In this Section, we analyse the decomposition of polynomials as sum of
squares modulo the gradient ideal. Hereafter, Jy.q is an ideal of Riz]
such that V(Jyred) = Vyraa and C is a set of constraints in R[x] such that
ST(C) =5(g)

The first steps consists in decomposing Vj,.q in components on which f
has a constant value. We recall here a result, which also appears (with slightly
different hypotheses) in [Nie 2006, Lemma 3.3]°.

2In its proof, the Mean Value Theorem is applied for a complex valued function, which
is not valid. We correct the problem in the proof of Lemma 4.1.1.
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Lemma 4.1.1 Let f € R[x| and let V' be an irreducible subvariety contained
in VE(Vf). Then f(z) is constant on V.

Proof. If V is irreducible in the Zariski topology induced from C[x], then
it is connected in the strong topology on C" and even piecewise smoothly
path-connected [Shafarevich 1974]. Let x, y be two arbitrary points of V.
There exists a piecewise smooth path ¢(¢) (0 < ¢t < 1) lying inside V' such
that © = ¢(0) and y = ¢(1). Without loss of generality, we can assume that ¢
is smooth between x and y in order to prove that f(z) = f(y). By the Mean
Value Theorem, it holds that for some t; € (0, 1)

Re(f(y) — f(z)) = Re(f(¢(1)))(t1) = Re((Vf((t1)) * ¢ (t2))) = 0

since V f vanishes on V. Then Re(f(y)) = Re(f(x)). We have the same result
for the imaginary part: for some ¢, € (0, 1)

Im(f(y)) —Im(f(z)) = Im(f(p(£)))'(t2) = Im((Vf(@(t2)) * ¢'(t2))) = 0

since Vf vanishes on V. Then Im(f(y)) = Im(f(z)). We conclude that
f(y) = f(z) and hence f is constant on V. n

Lemma 4.1.2 The ideal J4qq can be decomposed as Jgrqq = JoNJ1N---NJ
with V; = V(J;) and W; = m(V;) where 7(V;) is the projection ofVi on C"
such that

o f(Vi)) =1 €C, fi# [;ifi#7],
o WENSHC)#0D fori=0,...,r,

e WENSH(C)=0 fori=r+1,...,s,
o fo<: < fr

Proof. Consider a minimal primary decomposition of Jy.qq4:

grad QO n---N QS’7

where @); is a primary component, and V(@Q;) is an irreducible variety in
Crtmt2n2 pcluded in V4. By Lemma 4.1.1, F is constant on V(Q;). By
Lemma 2.1.4, it coincides with f on each variety V(Q;). We group the primary
components (); according to the values fy,..., fs of f on these components,

into Jo, ..., Js so that fF(V(J;)) = f; with f; % f; if i # j.
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We can number them so that WX(%)RHS+(C’) isempty fori =r+1,...,s
and contains a real point x; for ¢ = 0,...,r. Notice that such a point x; is
in S, since it satisfies ¢°(x;) = 0 Vg° € C? and ¢g*(x;) > 0 Vg© € CT. As
it is the limit of the projection of points in V(J;) on which f is constant, we
have f; = f(x;) € R for i = 0,...,7. We can then order Jy,...,J, so that

f0<"'<fT. [ |

Remark 4.1.3 If the minimum of f on S is reached at a KKT-point, then
we have fy = mingegs f(x).

Remark 4.1.4 If V', =0, then for alli =0,...,5, WFNST(C) =0 and
by convention, we take r = —1.

Lemma 4.1.5 There exist po, ..., ps € C[x] such that
hd Zf:o bi = 1 mod Jgrad;
® pi €Nz s
o p;, € R[X] fori=0,...,7.
Proof. Let (L;)i—o,. s be the univariate Lagrange interpolation polynomials

at the values fo,..., fs € C and let ¢;(x) = L;(f(x)).
The polynomials ¢; are constructed so that

e qi(V;) =0if j #1,
L4 QZ(‘/’L) - 17

where V; = V(J;). As the set {f.411,...,fs} is stable by conjugation and
fos -+, fr € R, by construction of the Lagrange interpolation polynomials we
deduce that qo, ..., ¢ € R[x].

By Hilbert’s Nullstellensatz, there exists N € N such that ¢V € ﬂ#i J;.
As ijo qjv =1 on Vg and qqujv =0 mod (), Ji = Jyaa for i # j, we

deduce that there exists N’ € N such that

0 = (1—Zq§V)N/ mod Jy,q4
=0
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As the polynomial p; =1 — (1 — qu)N/ € C[x] is divisible by qJN, it belongs to
(2 Jj- Since ¢; € R[x] for j = 0,...,7, we have p; € R[x] for j = 0,...,r,
which ends the proof of this lemma. [ ]

Lemma 4.1.6 —1 € P*(C) + (-, ).

Proof. As (., m(V) N SHC) = VR, Ji N Rx]) N SHC)

=l

VE(Miay JX) NST(C) = 0, we have ZVH(N,-, JX) NST(C)) = R[x] >
and by the Positivstellensatz (Theorem 1.1.7 (iii)),
~1ePHC)+ ()
i>r
m

Corollary 4.1.7 If Spin = 0, then —1 € PT(C) + J3x .4
Proof. 1If S,,;,, = 0, then f has no real KKT critical Value on S(C) and
r = —1. Lemma 4.1.6 implies that —1 € P*(C) +(N;_y /) = P (C) + J35ua-

=

In this case, Vp € R[x], p = 3((p+1)* — (p — 1)?) € PT(O) + J¥oq I C%is
chosen such that V(C?) C de then S,.;, = 0 if and only if —1 € P(C).

We recall another useful result on the representation of positive polynomi-
als (see for instance [Demmel 2007]):

Lemma 4.1.8 Let J C R[z] and V = V(J) such that f(V) = f* with f* € Rt
. There exists t € N, s.t. Ve > 0, 3q € R[x] with deg(q) <t and f + ¢ = ¢*
mod J.

Proof. We know that % — 1 vanishes on V. By Hilbert’s Nullstellensatz

( ]ﬁfg — 1)t € J for some [ € N. From the binomial theorem, it follows that

-1

f+e e 1/2) fre kdr 4
<1+(f*+€ 1)) _Z(k (f*+€ 1) —mmodJ
Then f + ¢ = ¢* mod J. n

In particular, if f* > 0 this lemma implies that f = (f — $/*) + 3/* = ¢°
mod J for some ¢ € R[x].
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Theorem 4.1.9 Let C' C R[x| be a set of constraints such that ST(C) =
St(g), let f € R[x], let fo <--- < [, be the real KKT critical values of f on
S and let pg, . ..,p, be the associated polynomials defined in Lemma 4.1.5.

1 f- Z::O flpz2 < P+(O) + J;rad‘
2. If f >0 on Skkr, then f € PT(C) + /JX

grad’

3. If f >0 on Skgr, then f € PT(C) + JX

grad®

Proof. By Lemma 4.1.5, we have

1= (Zpi)2 = Zp? mod Jy,q4.
i=0 i=0
Thus f =37, fp? mod Jyaa.
By Lemma 4.1.6, =1 € P(C) + (N, JF) so that f = 3((f +1)* = (f —
1)2) € PH(C) + Nyor* and

N ePHCO) + [ TF=P(C)+ Thua (4.1)

i>r j=0

As the polynomial (f — f;) p7 vanishes on Vj,.q, we deduce that

F=2 fiplit D o\ Taa = D Fip PO+ [ T a
i=0 i=r+1 i=0
which proves the first point.
If f>0on Skrr, then f; >0fori=0,...,7and >.;_, f; p} € PT(C) so
that
fePHC) + ,/JX

grad?
which proves the second point.

If f > 0 on Sggr by Lemma 4.1.8, we have fp} = ¢f mod J¥,,; with
¢; € R[x|, which shows that

:E::tfzj? = :5:: qg mod ;;ad

i=0 i=0
Therefore, Y ;_, fp? € PT(C) + Jea and f € PHC)+ Joaq DY (4.1), which
proves the third point. [ ]

This theorem involves only polynomials in R[x] and the points (2) and (3)
generalize results of [Demmel 2007] on the representation of positive polyno-
mials.
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Let us give now a refinement of Theorem 4.1.9 with a control of the degrees
of the polynomials involved in the representation of f as an element of P*(C)+
‘];(rad
Theorem 4.1.10 Let C C R[x] be a set of constraints such that V(C°) C
Vxaa and ST(C) = ST (g). If f > 0 on Skkr, then there exists ty such that
Ve >0,

f + € € PtO(C)

Proof. Let Jyua = (C°) N Iyaa C Rlz], so that V(Jyrea) = Viraa since
V(C?) C V5,4 Using the decomposition (4.1) obtained in the proof of The-

orem 4.1.9, we can choose t, € N and ¢, > t, € N big enough such that
deg(p;) < tp/2 and

prz S P+ ‘I’ Jgrad N R[X]t(j C Pt0<c)’

i>r

since JX ;= (C°) NI, C (C°). Then Ve >0,
Zf+5 prﬁ—ZspzePtO (4.2)

i>T i>r i>r
AsVe>0, f+e>0o0n Skgr, ie, fi+e>0fort=0,...,r, we deduce

from Lemma 4.1.8 that if ¢, is big enough, we have
(f +e)p; =¢q mod (C°|ty) NR[x] (4.3)
with deg(q;) <to/2 fori=0,...,r
Since 1 — 7 ;p7 =0 mod (C°), we can choose ¢, big enough so that

S

(f+2) =Y (f +e)p} € (C°to) NRIx]. (4.4)

=0

From Equations (4.2), (4.3), (4.4), we deduce that if t; € N is big enough,
Ve >0

f+eeP,(C),

which concludes the proof of the theorem. [ ]
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4.2 Finite convergence

In this Section, we show that the sequence of relaxation problems attains its
limit in a finite number of steps and that the minimizer ideal can be recovered
from an optimal solution of the corresponding relaxation problem. We recall
the following notation:

o f*=infyes,pr f(X)
® Spin = {x* € Skt | f(x*) = f*}
o £,(C) = {A € RIXJL | A(p) > 0, ¥p € P,(C), A(1) = 1}.

We first show that S,,;, = 0 can be detected from an adapted relaxation
sequence:

Proposition 4.2.1 Let C = (C% CT) be a set of constraints of R[x], such
that Sy C S(C) and V(C°) C Viraa and Ct =g". Then Syim = 0, if and
only if, there exits to € N such that Yt > to, L;(C) = 0.

Proof. Let Jyuq = (C°) N I 04 and let C7 be a set of constraints such that
(C"?) = Jgraa NR[x] = J¥,; and C'* = g* be a finite set. By hypothesis,

V(Jgrad) = Vgraa- We deduce from Corollary 4.1.7 that if S,,;, = 0, then
—1 € PHC") 4+ (C) C P(C) = UenP:(O).

Thus there exists tg such that —1 € P,(C) for t > t;, which implies that

L,(C) = 0, since if there exists A € £,(C), then A(1) =1 and A(—1) > 0.
Conversely, suppose that S,.;, # 0 contains a point x*. As S,,;, C S(C),

for all t € N the evaluation 1,. at x* restricted to R[x]s is an element of

L(C) # 0. n

This proposition gives a way to check whether S,,;, = 0), using the relaxation
sequence L£;(C). We are now going to analyse the case where f has KKT
minimizers on S.

From now on, we assume that Sy, # 0.

First, we recall a property similar to [Lasserre 2008, Claim 4.7]:

Proposition 4.2.2 Let C = (C% C™) be a set of constraints of R[x]|. There
exists to € N such that Vt > to, VA € L,(C), Vo ¢ (ker M}).
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Proof. Let C°={gy,...,q} and let qy, ..., q be generators of J := Vo,
By the Positivestllensatz, for j € 1,..., k, there exist m; € N* and polynomi-
als u) € R[x] and o; € P+(C) such that

l
2m; i
q]’ T+ 0 = § u1(”J)gr-
r=1

Let us take ty € N big enough such that ugj)gr € (C'|ty) and o; € P;g(C’).
Then for all t > to and all A € £,(C), we have A(u¥g,) = 0, A(qf-mj) >0,
A(oj) > 0 and A(q?mj) + A(o;) = 0, which implies that A(q?mj) = 0 and

q; € ker H}. This proves that (qi,...,q) = J C (ker H}). n

Remark 4.2.3 With the same arguments, we can show that for any t' € N,
there exists ty > t' such that ¥t > ty, VA € L,(C),

(Q|t) C ker H},
where Q ={q1,...,qx} generates J = Vo,

The next result shows that in the sequence of optimization problems that
we consider, the minimum of f on Sk k7 is reached from some degree.

Theorem 4.2.4 Let C be a set of constraints of R[x] such that Sy, C
S(C) C Visip. There ezists t; > 0 such that ¥Vt > t,,

1. fl'o = [* is reached for some A* € L,(C),

2. VA* € Li(C) with A*(f) = flo = f*, we have p; € ker Hy., Vi =
1,...,7,

3. if V(C°) C VX, then f78 = flo = f*.

agra

Proof. By Theorem 4.1.9(1) applied to f — f*, we can write

F=r=>(fi—fri+h+g
i=1
with h € P+(C) and g € \/Igrad N R[X] = \/[KKT N R[X] C \R/[KKT QR[X]
(by Proposition 2.2.4). Since S(C) C Visger = 7(Viiep), we have ¥/Txgr N
R[x] € Z(S(C)) = °/(C°) by the Positivstellensatz. We deduce that g €
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“V/(CY). By proposition 4.2.2, there exists t; > t, such that for all t > #,,
for all A € £,(C), A(g) =0, A(h) > 0.
Let us fix t > ¢; and A* € £(C) such that A*(f) = f/o. Then

A(f = £ =) (fi = N () + A*(R).
i=1
As fi—f*=fi—fo>0fori=1,.,7, A*(p?) > 0and A*(h) > 0 (h € P, (C)),
we deduce that A*(f — f*) = A*(f) — f* > 0.

As 0 # Spin C S(C), we have A*(f) = f'x =< f* (by Proposition 3.3.2),
so that A*(f) = fl'x = f*, which proves the first point. Hence fori =1,...,r,
A*(p?) = 0 and p; € ker H., which proves the second point.

To prove that f#% = f* when V(C°) C V[¥,;, we apply Theorem 4.1.10 to
f— f* which is positive on Sk 7. Let us take Jy.00 = (C°) N Iyeq C Rz]. We
denote by C' the set of constraints such that C is a finite family of generators
of Jyrea N R[x] and Ct=Cr.

By Theorem 4.1.10, there exists ty such that Ve > 0,

= +eeP,(CO).

As (C%) = (C°) N Ipeq C (C°), we can choose t; > to such that (C'|t) C
<C | t1> and Pto (C) C Pt1(0>

Then Vt > ty, f — f*+ ¢ € P,(C). Hence by maximality, Ve > 0, f* — e <

7@ We deduce that f* < f7¢%, which implies that f’%7 = f/'v = f* and

proves the third point. [ ]

As for the construction of generators of °v/Txxr (Proposition 4.2.2), we
can construct generators of [,,;, from the kernel of a truncated Hankel op-
erator associated to any linear form which minimizes f, using the following
propositions:

Proposition 4.2.5 L, = (p1, .., D) + /T ser-

Proof. First of all, we prove that 1%, = (p1, ...,0;)+ \/Iyrad = (D1, -, D)+
]R\/ Igrad-

Using the decomposition of Lemma 4.1.2 and the polynomials p; of Lemma
4.1.5, we have

VR _(%U%U"'UVs)mRn+nl+2n2:‘/ORU“-UV;R,

grad —

By construction, Z(Vyt) = 12, p;(V&) =0 for i =1,...,s and p; € R[x] for
1=20,...,r. This implies that p; € I2. fori=1,..., 7.

min
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As VR C %Riad, we also have °\/I,.q C IZ

min:®

We have proved so far that (pi,...,p,) + “\/Tyraa C I%;,. In order to
prove the reverse inclusion, we denote by q1, ..., ¢, a family of generators of
the ideal I7,,. Take one of these generators ¢; (1 < j < m). By construction,

min-*

qipo(V) = 0 and ¢;po(V;¥) = 0 for @ = 1,...,r, which implies that ¢;py €

C+\/ Igrad-

By Lemma 4.1.5, we have the decomposition

ct

q; = Qj(po +pr+--- —l—ps) mod Igrad C Igﬂld'

Moreover (p,41 + -+ + p,) € R[z] and vanishes on V£ for k = 0,...,r. Thus

(Dry1 + -+ ps) € X /14rqa and we deduce that ¢; € (p1,...,pr) + ct Lyrad-
This proves the other inclusion and the first equality.

As V3g = Vg N ST(C) (Lemma 2.2.5), by the Positivstellensatz,

grad
CV grad = \/ grad, Which proves the second equality.
By the Positivstellensatz and Lemma 2.2.5, we have

Vgt RX] =/ Lrad R[] = (1 (Vi) = Z(m* (Vierr)NSH(O)) = V/Tper

and
Imm ]sznmR[X] = (pl; . 7p7’ mR + \/ g7"adm]R pla' '7p7")+ C+\/ II?KT‘
which proves the equality. [ ]

Theorem 4.2.6 For C set of constraints of R[x| with Sy C S(C) C Visier,
there exists to € N such that Yt > ta, for A* € L,(C) with A*(f) = flo, we
have Iy, C (ker HY.).

Proof. To prove the inclusion we take t, = max{ty,t;} and we combine
Proposition 4.2.5 with Proposition 4.2.2 for C' C R[x| and Theorem 4.2.4. =

We introduce now the notion of optimal linear form for f. Such a linear
form allows us to compute 1,,,;,.

Proposition 4.2.7 For A* € L£,(C) and p € R[x], the following assertions
are equivalent:

(i) rankHj. = maXyer,(o),A(p)=pt . FankH.

P)=P} ¢

(i1) YA € Li(C) such that A(p) = p|/, ker H{. C ker Hj.
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We say that A* € L,(C) is optimal for p if it satisfies one of the equivalent
conditions (i)-(ii).

A proof of this proposition can be found in |Lasserre 2012|(Proposition 4.7).

Remark 4.2.8 A linear form AN* € L,(C) optimal for p can be computed
by solving a Semi-Definite Programming problem by an interior point method
[Lasserre 2009a]. In this case, the solution A* obtained by convex optimization
15 in the interior of the face of linear forms that minimize f.

The next result, which refines Theorem 4.2.6, shows that only elements in
I,,.;n, are involved in the kernel of a truncated Hankel operator associated to
an optimal linear form for f.

Theorem 4.2.9 Let t € N such that f € R[x|y and let C C R[x|o with
Smin C S(C). If A* € L(C) is optimal for f and such that A*(f) = f*, then
ker Hy. C Lin-

Proof. It is similar to proof of Theorem 4.9 in [Lasserre 2012]. Let p €
ker Hi. and x* € S,;: f(x*) = f*. Let 1,. denotes the evaluation at x*
restricted to R[x]y;. Our objective is to show that p(x*) = 0. Suppose for

contradiction that p(x*) # 0. We know that 1X* € L't( ) since Sy C S(C)
and 1,.(f) = f(x*) = f*. We define A= $(A* 4+ 1,.). By construction,
A € Ly(C) and A(f) = 3(A*(f) + Le-(f)) = 3(A (f +/(x7) = [ As
p € ker Hj.,

A = SN 07) + 1, () = 2p7(x) # 0

thus p € ker Hj. \ ker H and by the maximality of the rank of Hj.,
ker HY ¢ kerHA* Hence there exits p € ker Hi \ ker Hj.. Then 0 =

H() = 3L () + Hi_ (5) = 3(HA) + p0x) - L) As Hy.(5) # 0
implies p(x*) # 0. On the other hand
0= HL()(p) = Alpp) = 5(A°(p) + plx")ix")) =

— %(Hf\* (p) (D) + p(x*)p(x")).

As p € ker Hi., we have
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As p(x*) # 0 and we have supposed that p(x*) # 0, it yields a contradiction.
u

The last result of this Section shows that an optimal linear form for f
yields the generators of the minimizer ideal [,,;, in high enough degree.

Theorem 4.2.10 Let g C R[x] be a set of constraints with Sy, # 0. For a
set of constraints C C R[x] with Sy C S(C) C Viier (asociated to g), there
exists to € N (defined in Theorem 4.2.6) such that ¥t > to,

o flo=minesy ., f(X) is reached for some A* € L(C),
o VA* € L,(C) optimal for f, we have N*(f) = f* and (ker HL.) = Lyin,
o if V(C?) C Vi then fiE = fic = 1"

Proof. We obtain the result as a consequence of Theorem 4.2.4, Theorem
4.2.6 and Theorem 4.2.9. [

The same results hold if we replace C' by any other finite set defining a real
variety such that S,,;,, C S(C) C VI’({’ET.

Remark 4.2.11 We can also replace the initial set of constraints g by any
other set g defining the same semi-algebraic set S = S(g) = S(g) and consider
the KKT variety associated to g.

4.3 Consequences

Let us describe now some consequences of these results in specific cases, which
have been previously studied.

4.3.1 Global optimization

We consider here the case n; = ny = 0. Theorem 4.1.9 implies the following
result (compare with [Nie 2006]):

Theorem 4.3.1 Let f € R[x].

1. If f is positive at its real critical points, then f € sos+ (g—f, ceey (98f ).
T Tn
2. If [ is strictly positive at its real critical points, then f € sos +
of of
(a, ey K)



CHAPTER 4. FINITE CONVERGENCE CERTIFICATION 59

In particular, if there is no real critical value, then f € sos + (g—f, LA ).
31

" Do

A consequence of Proposition 4.2.1 and Theorem 4.2.10 is the following:

Theorem 4.3.2 Let f € R[x| and C = {g—f,..,aa—f}. Then, there exists
x1 T
to € N, such that Yt > tq either L,(C) =0 and Sy =0 or

1 f{E = flo = f* = mingegn f(x) is reached for some A* € L,(C),
2. VYA* € L,(C) optimal for f, ker Hy. generates I;,.
The first point of this theorem can also be found in [Nie 2006].

4.3.2 General case

A direct consequence of Proposition 4.2.1 and Theorem 4.2.10 is the following:

Theorem 4.3.3 Let C C R[x| be a set of constraints such that
o (CY) = Ixxr NR[x],
o O =gt

Then there exists to € N such that ¥Vt > tq, either L,(C) =0 and Spin = 0 or

o [78 = flo = Minxesyr f(X) is reached for some A* € Li(C),

o VA* € L,(C) optimal for f, we have A*(f) = f* and (ker Hi.) = Lnin.

The set C° is constructed so that V(C°) = Vg = VX, As we have seen,
the weaker condition Sy, C S(C) C V¥ is sufficient to have an exact
relaxation sequence.

The generators C° of Ixpr N R[x] can be computed by elimination tech-
niques (for instance by Groebner basis computation with a product order on

monomials [Cox 2005]).

4.3.3 Regular case

We consider here a semi-algebraic set S such that its defining constraints
intersect properly. For any x € C", let v(x) = {j € [1,n2] | gj (x) = 0}.

Definition 4.3.4 We say that a set of constraints g = (g9, .. .ggl
01,0t is regular if for all points x € S(g) with v(x) = {j1,...,Jr},
the vectors Vgi(x),..., Vg, (x), Vg (x),..., Vg, (x) are linearly indepen-
dent.
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This condition is used for instance in [Ha 2010]. It implies that Vx € S,
lv(x)| < n—ny and that B, ) (x) is of rank n, 4 [v(x)[. A stronger condition,
called the C-regularity, corresponds to sets of constraints such that Vx € C",
B x)(x) is of rank n; +|v(x)|. This condition is used for instance in [Nie 2011].
It is satisfied for semi-algebraic sets defined by “generic” constraints when
ny < n as shown in [Nie 2011].

If g is regular, then for all points x in S the rank of B, (x(x) is nq + |v(x)]
and Ssing = 0. The decomposition (2.16) implies that Sp; = Skrr and that
all minimizer points of f on S are KKT points. If moreover g is C-regular,
then VX, =V('py) = VEgr =VE

grad*
We deduce from Theorem 4.2.10 the following result:

Theorem 4.3.5 Let g C R[x| be a regular set of constraints and let C C R[x]
be the set of constraints such that

o C" =Ty, defined in (2.13) (resp. C° = ®p; defined in (2.14)),
o« Ot =gt

Suppose that mingesg) f(x) is reached at some point of S(g). Then, there
exists tog € N such that YVt > t,

1. fi'o = [* = minges(g) f(X) is reached for some A* € L(C),

2. YA* € L,(C) optimal for f, ker HY. generates I*

3. If g is C-reqular and C° =Ty, then fie = ftlfo =/

By Lemma 2.3.5 and Remark 2.3.6, C' is constructed so that S,,;, C S(C) =
ST C V;;’[H?T

Points (1) and (3) are proved for C° = T'g; in [Nie 2011] under the con-
dition that g is C-regular. These points can also be found in [Ha 2010] for
C° = g% U ®p; under the condition that g is regular (but a problem appears
in the proof: the vanishing of the polynomials ®r; at a point x € C" does
not imply that rank A, (x) < nq + |v(x)]).

In this case, the relaxation constructed with I'p; (or ®p,) is exact and
can be used to compute the minimizer ideals of f on the semi-algebraic set .S.

4.3.4 Zero dimensional real variety

Let g C R[x] be a set of constraints such that V¥(g°) is finite and let
S := S(g). By Remark 4.2.11, we can assume that S is defined by a set
of constraints g such that (g°) is radical. Then ¥x € V(g°) = V(g°), the
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Jacobian matrix f?,,(x) (x) associated to g° is of rank n. Therefore we have
V(") = V(g°) = VEgr(8) = Vii.a(g) and any point of S is a K KT-point:

S = Spj = Skkr. Consequently, if we take C' =g, Sy, C S(C) C VI}"ET(g),
we deduce from Theorem 4.2.10 the following result:

Theorem 4.3.6 Let g = (g%, g™) C R[x] be a sel of constraints such that
VE(gY) is finite. Then there exists ty € N such that VYt > t,

1. f32 = fig = [* = minges f(x) is reached for some A* € L(g),

2. VYA* € Li(g) optimal for f, ker HY. generates L.

This answers an open question in [Laurent 2009a]. The first point was also
solved in [Nie 2013a| using dedicated techniques.

4.3.5 Smooth real variety

We consider a set of constraints g = {¢{,...,¢% } C R[x] such that V*(g°) is
equidimensional smooth and gt = (). This means that S = S(g) = V¥(g)
is the union of irreducible components of the same dimension d and that for
any point x € S, By(x) = [Vg{(x),...,Vg> (x)] is of rank m = dim S =
n — d. Therefore, Ssn, = 0. In this case, Vf(x) is a linear combination of
Vgi(x),...,Vgd (x), if and only if, rankAg(x) < 7.

The set T'g; defined in (2.13) (or C° = g U ®p; defined in (2.14)), or
the union A"~? of g and the set of (n — d+ 1) X (n — d + 1) minors of the
Jacobian matrix of {f, ¢}, ..., g% }, which contain the first column V f define
the variety Sk k.

We deduce from Theorem 4.2.10, the following result:

Theorem 4.3.7 Let g = {¢),...,¢% } C R[x| such that S = V¥(g) is an
equidimensional and smooth variety of dimension d.

Let C' C R[x] be the set of constraints such that C° = T'p; defined in (2.13)
(or C° = ®p; defined in (2.14), C° = A"~?) Then there exists to € N such
that ¥t > tg, either Li(C) =0 and Sy = 0 or

1. flo = f* = minyes f(x) is reached for some A* € L(C),

2. VA* € L,(C) optimal for f, ker Hy. generates I,;,.
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4.3.6 Known minimum

In the case where we know the minimum f* of f on the basic closed semi-
algebraic set S, we take g’ with g° = {g°% f — f*} and g'* = g. Let
S = S(g), S = S(g'). By construction S,;,, € S and S’ = S} and
V(g®) C VEir(g”). Theorem 4.2.10 applied to g’ implies the following result:

Theorem 4.3.8 Let g ={q?,..., 90 g1,..., 95} CR[X]. Let f* be the min-
imum of [ and C' C R[x| the set of constraints such that C° = {g®, f — f*}
and CT = g*. Then there exists to € N such that V't > tg,

1. f{E = flo = f* = minges(c) f(x) is reached for some A* € L, ¢,

2. VA* € L,(C) optimal for f, ker Hy. generates I,.

4.3.7 Radical computation.

In the case where f = 0, by Remark 2.4.3 all the points of S are KKT
points and minimizers of f so that Sy, = S = Skkxr. Moreover, I% r =
(9%,....95 ) since Fi,..., F,, vigy, ..., vn,0,, are homogeneous of degree 1 in
the variables uq, ..., Up,,v1,...,Us,. We deduce the following result:

Theorem 4.3.9 Let g = {q?,...,¢° ;97,95 } CR[X]. There exists t, €
N such that YVt > to, VA* € Li(g) optimal for 0, we have (ker Hy.) = Z(S) =

=V/(8")-
This gives a way to compute “1/(C?) (see also [Ma 2013]), which gener-

alizes the approach of |Lasserre 2009b|, |Lasserre 2012| or |Rostalki 2009] to
compute the real radical of an ideal.









CHAPTER 5
Border basis relaxation for
polynomial optimization

In Chapter 3 we have seen the relaxation approach proposed by Lasserre in
|Lasserre. 2001] which approximates the problem (2.1) by a sequence of finite
dimensional convex optimization problems. These optimization problems can
be formulated in terms of linear matrix inequalities on moment matrices as-
sociated to the set of monomials of degree < ¢t € N for increasing values of
t. They can be solved by Semi-Definite Programming (SDP) techniques. The
sequence of minima converges to the actual minimum f* of the function under
some hypotheses |[Lasserre. 2001]. In some cases, the sequence even reaches
the minimum f* in a finite number of steps as we saw in Chapter 4. This ap-
proach proved to be particularly fruitful in many problems [Lasserre 2009a].
In contrast with numerical methods such as gradient descent methods, which
converge to a local extrema but with no guaranty for the global solution.

From an algorithmic and computational perspective, some issues need how-
ever to be considered. The size of the SDP problems to be solved is a bottle-
neck of the method. This size is related to the number of monomials of degree
< t and is increasing exponentially with the number of variables and the de-
gree t. Many SDP solvers are based on interior point methods which provide
an approximation of the optimal moment sequence within a given precision in
a polynomial time: namely O((p s*® + cp?s*® + ¢p®s®9) log(e™!)) arithmetic
operations where ¢ > 0 is the precision of the approximation, s is bounding
the size of the moment matrices, p is the number of parameters (usually of
the order s?) and ¢ is the number of constraints |[Nesterov 1994]. Thus re-
ducing the size s or the number of parameters p can improve significantly
the performance of these relaxation methods. Some recent works address this
issue, using symmetries (see e.g. [Riener 2013]) or polynomial reduction (see
e.g. |Lasserre 2012]). We use Border basis in order to obtain a polynomial
reduction. As we know by [Mourrain 2005], border basis extend Groebner
basis and they have more numerical stability.

While determining the minimum value of a polynomial function on a
semi-algebraic set is important, computing the points where this minimum is
reached if they exist, is also critical in many applications. Determining when
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and how these minimizer points can be computed from the relaxation sequence
is a problem that has been addressed for instance in [Henrion 2005, Nie 2012]
using full moment matrices. This approach has been used for solving polyno-
mial equations [Laurent 2007, Lasserre 2008, Lasserre 2009b, Lasserre 2009a].

This chapter is organized as follows. In the first section we give the defini-
tions and main propositions and theorems about border basis. In the second
section we propose a new method which combines Lasserre’s SDP relaxation
approach with polynomial algebra, in order to increase the efficiency of the
optimization algorithm. Border basis computations are considered for their
numerical stability [Mourrain 2005, Mourrain 2008|. In principle, any graded
normal form techniques could be used here.

In the third section a new stopping criterion is given to detect when the re-
laxation sequence reaches the minimum, using a flat extension criterion from
[Laurent 2009b]. We also provide a new algorithm to reconstruct a finite
sum of weighted Dirac measures from a truncated sequence of moments. This
reconstruction method can be used in other problems such as tensor decompo-
sition |Brachat 2010] and multivariate sparse interpolation [Giesbrecht 2009).

In the last section we obtain a new algorithm for polynomial optimiza-
tion be able to compute zero-dimensional minimizer ideals and the minimizer
points, or zero-dimensional G-radical. We show also how the algoritm work
on a detailed and on examples which are particular cases of Section 4.3 of the
Chapter 4. As we will see in Chapter 6, the impact on the performance of the
relaxation approach is significant.

5.1 Border basis

The eigenvalue method for solving polynomial equations from the Section 1.4
requires the knowledge of a basis of A = K|x]/I and an algorithm to compute
the normal form of a polynomial with respect to this basis. In this Section
we will recall a general method for computing such a basis and a method to
reduce polynomials to their normal form.

Throughout B C M is a finite set of monomials in n variables.

Definition 5.1.1 Let B be a finite set of monomials in n variables.

e B is said to be connected to 1 if 1 € B and for every monomial m # 1
in B, m = x;;m’ for some ig € [1,n] and m’ € B.

e Bt =BUx1BUxB---Uuzx,B is the prologantion de B.

e OB =Bt \ B is the border of B.
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Example 5.1.2 The monomial set B = {1,x,y,zy} is connected to 1 as
show the figure (red points). Its prolongation is BT = B U xzB U yB =
{1, z,y, vy, 2%, 2%y, vy*,y*} and ils border is OB = BT\ B = {z?, 2%y, vy?, y*}
(blue points).

Definition 5.1.3 A rewriting family F for a (monomial) set B is a set of
polynomials F = { f;}icz such that

o supp(fi) C B,

e f; has ezractly one monomial in OB, denoted as Y(f;) and called the
leading monomial of f;. (The polynomial f; is normalized so that the

coefficient of v(f;) is 1.)
o if y(fi) =~(f;) theni=j.

Definition 5.1.4 We say that the rewriting family F is graded if deg(y(f)) =
deg(f) for all f € F.

Definition 5.1.5 A rewriting family F' for B is said to be complete in degree
t if it is graded and satisfies (0B), C v(F); that is, each monomial m € 0B of
degree at most t is the leading monomial of some (necessarily unique) f € F.

Example 5.1.6 For the example above for the set B = {1,x,y,xy}, the set
of polynomials F = {x? — 1,y? — 1, 2% — y,y*x — x} is a complete rewriting
family of degree 3 for this set.

Notice that a complete family F' for B in degree t allow us to rewrite
the monomials of B;” modulo F as elements of B;. This lead in fact, to the
definition of the projection mrp, asociated to a complete family for a set B
connected to 1.

Definition 5.1.7 Let F' be a rewriting family for B, complete in degree t. Let
wrg be the projection on (B) along F defined recursively on the monomials
m € M, in the following way:
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o if m € By, then mpp(m) =m,

e if m € (0B); (= (BY\ B%),), then npp(m) = m — f, where f is the
(unique) polynomial in F for which v(f) = m,

o if m € (BW\ BE-1), for some integer k > 2, write m = x;,;m’, where
m' € BFU and iy € [1,n] is the smallest possible variable index for
which such a decomposition exists, then mpg(m) = mpp(x;, Tra(m’)).

If F'is a graded rewriting family, one can easily verify that deg(mpg(m)) <
deg(m) for m € M;. The map 7 extends by linearity to a linear map from
K[x]; onto (B):. By construction, f = v(f) — mrp(v(f)) and mpg(f) = 0 for
all f € F;. The next theorems show that, under some natural commutativity
condition, the map 7pp coincides with the linear projection from K[x]; onto
(B); along the vector space (F'|t). It leads to the notion of border bases.

Definition 5.1.8 Let B C M be connected to 1. A family F C K[x] is a
border basis for B if it is a rewriting family for B, complete in all degrees, and
such that K[x]| = (B) & (F).

An algorithmic way to check that we have a border basis is based on the
following result, that we recall from [Mourrain 2005]:

Theorem 5.1.9 Assume that B is connected to 1 and let F be a rewriting
family for B, complete in degree t € N. Suppose that, for all m € M;_,,

mrp(ximrp(x;m)) = mpg(z; mp(z;m)) for alli,j € [1,n]. (5.1)

Then mpp coincides with the linear projection of K[x|¢ on (B): along the vector
space (F'|t) that is, K[x]; = (B): @ (F|t).

In order to have a simple test and effective way to test the commutation
relations (5.1), we introduce now the commutation polynomials.

Definition 5.1.10 Let F be a rewriting family and f, f' € F. Let m,m’ be the
smallest degree monomials for which m~(f) = m/~v(f"). Then the polynomial
CP(f,f"):=mf—m'f =m'mpg(f) — mrprs(f) is called the commutation
polynomial of f, f'.

Definition 5.1.11 For a rewriting family F with respecet to B, we denote by
CP*(F) the set of polynomials of the form m f—m' ', where f, f' € F and

o cither m~(f) =m'~v(f"),
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e orm~(f) e B andm' =0.

Therefore, CP*(F) C (B*) and CP*(F) contains all commutation polyno-
mials CP(f, f') for f, f' € F whose monomial multipliers m,m’ are of degree
< 1. The next result can be deduced using Theorem 5.1.9.

Theorem 5.1.12 Let B C M be connected to 1 and let F be a rewriting
Jamily for B, complete in degree t. If for all ¢ € CPT(F) of degree < t,
mrg(c) = 0, then g is the projection of Ky on (B); along (F'|t), ie. K; =
(B)e @ (F'[1).

If such a property is satisfied we say that F' is a border basis for B in
degree < t.

Theorem 5.1.13 [Mourrain 2005] Let B C M be connected to 1 and let F
be a rewriting family for B, complete in any degree. Assume that mpg(c) =0
for all ¢ € CP*(F).Then B is a basis of K[x|/(F), K = (B) @ (F), and
(F)y = (F'|t) for all t € N the set F is a border basis of the ideal I = (F')
with respect to B.

This implies the following characterization of border bases using the com-
mutation property.

Corollary 5.1.14 [Mourrain 1999] Let B C M be connected to 1 and let F
be a rewriting family for B, complete in any degree. If for all m € B and all
indices i,j € [1,n], we have:

mrs(vi Trp(x;m)) = mpp(r; TEs(Tim)),

then B is a basis of K/(F), K= (B) & (F), and (F); = (F'|t) for all t € N.

5.2 Border basis hierarchy

The sequence of relaxation problems that we will use hereafter is defined as
follows. For each t € N, we construct the graded border basis Iy, of g° in
degree 2t. Let B be the set of monomials (connected to 1) for which F is a
border basis in degree 2t. We define

[ ] Et = <Bt>,
o (, is the set of constraints such that

- Cz? = {m — T'By,Fyy (m)7 m e Bt ' Bt}
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— G = 7B, r(8")
and consider the relaxation sequence
QEt(Ct) C <Bt : Bt) and CEt(Ct) C <Bt . Bt>* (52)

for ¢ € N. Since the subsets B; are not necessarily nested, these convex sets
are not necessarily included one in the other one. However, by construction
of the graded border basis of g, we have the following inclusions

s C (Fogl2t) C (Forgal2t +2) C - (8°),

and we can relate the border basis relaxation sequences with the corresponding
full moment matrix relaxation hierarchy, using the following proposition:

Proposition 5.2.1 Lett € N, B C Rx]|y be a monomial set connected to
1, F C R[x| be a border basis for B in degree 2t, E = (B,), E' := R[x],,
C,C" be sets of constraints such that C° = {m — ngp(m), m € B; - B;},
C" = (F|2t), CT = C'"". Then for all A € Lg(C), there erists a unique
N € Lp/(C") which extends A. Moreover, N satisfies rank HY, = rank HY
and ker HY, = ker HE + (F | ).

Proof. As F' C R[x] is a border basis for B in degree 2t, we have R[x|o; =
(B)oy @ (F'|2t). As (B;- By) C (B)a; & (C°), (C°) C (C") = (F|2t) and
R[x]o: = (B)2: @ (F|2t), we deduce that for all A € Lg(C), there exists a
unique A" € R[x3, s.t. A p,, = A and N'((F'[2t)) = 0.

Let us first prove that A’ € Lp/(C') = L,(C"). As any element ¢’ of
Qp(C") can be decomposed as a sum of an element g of Qr(C) and an element
p € (F|2t), we have A'(¢') = N(q) + AN'(p) = A(g) > 0. This shows that
N e Lp(C).

Let us prove now that ker HY, = ker Hf + (F'|t) where E := (B,), E' :=
R[x];. As E - (F|t) C (F|2t) = C", we have A'(E - (F'|t)) = 0 so that

(F|t) C ker HE . (5.3)

For any element b € ker HY we have V' € E, A(bb') = A'(bV) = 0. As
N(E-(F|t)) =0and E' = E® (F|t), for any element e € E, A'(be) = 0.
This proves that

ker HE C ker HE . (5.4)

Conversely as E' = E @ (F'|t), any element of E’ can be reduced modulo

(F'|t) to an element of E, which shows that

ker HY  ker HE + (F|t). (5.5)
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From the inclusions (5.3), (5.4) and (5.5), we deduce that ker HY, = ker Hf +
(F|t) and that rank HY, = rank HE. u

We deduce from this proposition that fgmct = ft“<FQt|2t>. The sequence of
convex sets Lg,(C;) can be seen as the projections of nested convex sets

D Lilg) D Lea(g) O

so that we have --- < fgt’ot < fgt%ct+1 < ... < f*. We check that similar
properties hold for Qg,(Ct), Qi(g) and fi%, = fis, taking the quotient
modulo (Fy|2t).

5.2.1 Optimal linear form

We introduce now the notion of optimal linear form for f, involved in
the computation of I,,;, (also called generic linear form when f = 0 in
|[Lasserre 2009b, Lasserre 2012]):

Definition 5.2.2 A* € Lg(C) is optimal for [ if
rank HY, = MATAe Ly, o A(f)=f2 ,Tank HY.

The next result shows that only elements in I,,;, are involved in the kernel of
a truncated Hankel operator associated to an optimal linear form for f.

Theorem 5.2.3 Let £ C R[x] such that 1 € E and f € (E - E) and let
C C R[x] be a set of constraints with Sy, C S(C). If A* € Lg(C) is optimal
for f and such that A*(f) = f*, then ker HE. C Ln.

Proof. Let p € ker HY. and x* € S, which means f(x*) = f*. Let
1,. denotes the evaluation at x* restricted to (£ - E). Our objective is to
show that p(x*) = 0. Suppose for contradiction that p(x*) # 0. We know
that 1,. € Lg(C) since Sy C S(C) and 1,..(f) = f(x*) = f*. We define
A = 3(A*+1,.). By construction, A € L(C) and A(f) = L(A*(f)+1(f)) =
LA (f) + F(x)) = f*. As p € ker HE,

A = LA (07) + Lo () = 51°(¢") £ 0

thus p € ker HY. \ ker HY and by the maximality of the rank of Hf.,
ker HY ¢ ker HY.. Hence there exits p € ker HY \ ker H{.. Then 0 =
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HE(p) = 5(HR-(P) + Hi () = 5(HY.(P) + P(x*) - Ly.). As HL.(D) # 0
implies p(x*) # 0. On the other hand,

Rpp) = S (A*(pp) + p(x)i(x")) =

0= HE(h)(p) 5

_ %(Hf* (0)(§) + p(x")B(x7))-

As p € ker Hf., we have

1

0= HE (5)(p) = 5(p(x")H(x")).

As p(x*) # 0 and we have supposed that p(x*) # 0, it yields a contradiction.
n

The proof is similar e.g. to [Lasserre 2012][Theorem 4.9].

Let us describe how optimal linear forms are computed by solving convex
optimization problems:

Algorithm 5.2.1: OPTIMAL LINEAR FORM

Input: f € R[x], B; = (x*)4ca a monomial set containing 1 of degree
S t with f = Z(XEA+A faXa € <Bt : Bt>7 C C R[X]

Output: the minimum ft’fc of Y cara Aafa subject to:

- Hff = (ha,,@)a,ﬁeA = 07

- Hff satisfies the Hankel constraints
hoo =1, and ha 3 = ho g if a+3=0a + /3,

- A*(go) = ZaeA+A gg)‘a =0
Vgo :Za€A+A ggxa € Ooﬂ <BtBt>
- Hﬁf]{i = 0 for all g* € C* where w = (%fr)]

and A* € (B, - By)* represented by the vector [Ay]acata-

This optimization problem is a Semi-Definite Programming problem, cor-
responding to the optimization of a linear functional on the intersection of a
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linear subspace with the convex set of Positive Semi-Definite matrices. It is a
convex optimization problem, which can be solved efficiently by SDP solvers.
If an Interior Point Method is used, the solution A* is in the interior of a face
on which the minimum A*(f) is reached so that A* is optimal for f. This is
the case for tools such as csdp, sdpa, sdpa-gmp or mosek, that we will use in
the experimentations.

Example 5.2.4 We consider the following problem
min 2% + 3
st.f=at—2*—o+1=(r—-1)@*+2+1)=0

In order to solve this problem we solve the equivalent SDP problem fort = 3

and

1

a b c c+a—1
b c cta—1 c+b—1
c c+a—1 c+b—1 2c¢c—1

HAZ: ?O

where a = A(z), b = A(x?), c = A(x?).

Solution: A*(1) =1, A*(x) =1, A*(2*) =1, A*(2?) =1, ...
The minimum is A(z? + 3) = A(2?) + 3 = 4.

5.3 Convergence certification

To be able to compute the minimizer points from an optimal linear form, we
need to detect when the minimum is reached. In this Section, we describe a
new criterion to check when the kernel of a truncated Hankel operator asso-
ciated to an optimal linear form for f yields the generators of the minimizer
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ideal. It involves the flat extension theorem of [Laurent 2009b| and applies
to polynomial optimization problems where the minimizer ideal I,,;, is zero-
dimensional.

5.3.1 Flat extension criterion

Definition 5.3.1

o A vector space E C K[x]| is said to be connected to 1 if 1 € E and any
non-constant polynomial p € E can be written as p = po+ Y., xip; for
some polynomials po, p; € E with deg(p;) < deg(p) — 1 for i € [0,n].

e [is prolongation EtY := E + 11FE + ...+ x,F is again a vector space.

Remark 5.3.2 Obuviously, E is connected to 1 when E = (C) for some mono-
mial set C C M which is connected to 1. Moreover, E* = (CT) if E = (C).

Definition 5.3.3 Given vector subspaces Ey C E C K[x] and A € (E - E)",
HE is said to be a flat extension of its restriction Hfo if rank HE = rank Hfo.

We recall here a result from [Laurent 2009b|, which extends the result
given by Curto and Fialkow in [Curto 1996|. It gives a rank condition for the
existence of a flat extension of a truncated Hankel operator .

Theorem 5.3.4 Let V C E C R[x] be vector spaces connected to 1 with
VT C E and let A € (E - E)*. Assume that rank HY = rank H = dim V.
Then there exists a (unique) linear form A € R[x]* which extends A, i.e.,
A(p) = A(p) for all p € (E - E), satisfying rank Hj = rank HY. Moreover, we
have ker Hy = (ker HY).

In other words, the condition rank HY = rank H} = dimV implies that the
truncated Hankel operator HY has a (unique) flat extension to a (full) Hankel
operator Hj defined on R[x].

Theorem 5.3.5 Let V C E C R[x]| be finite dimensional vector spaces con-
nected to 1 with V* C E,C°-V C(E-E), Ct- V-V C(E-E).

Let A € Lg(C) such that rank HY = rank HY = dim V. Then there exists
a linear form A € R[x|* which is extending A and supported on points of S(C')
with positive weights:

A= Zwil&, with w; > 0, € S(C).
i=1

Moreover, (ker HF) = T(&,...,&,).

'In [Laurent 2009b], it is stated with a vector space spanned by a monomial set connected
to 1, but its extension to vector spaces connected to 1 is straightforward.
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Proof. Asrank HY = rank HY = dimV, Theorem 5.3.4 implies that there
exists a (unique) linear function A € R[x]* which extends A. As rank H; =
rank H) = |V| and ker H; = (ker HY), any polynomial p € R[x] can be
reduced modulo ker Hj to a polynomial b € V so that p — b € ker H;. Then
A(p?) = A(b?) = A(b?) > 0 since A € L(C). By Proposition 1.4.5 A has a
decomposition of the form A= Z:zl w;le, with w; > 0 and & € R™.

V is isomorphic to R[x|/Z(&y,. .. ,&,) and there exist (interpolation) poly-
nomials by, ..., b, € V satisfying b;(§;) = 1 if i = j and b;(§;) = 0 otherwise.
We deduce that for i = 1,...,r and for all elements g € C°,

A(big) = 0 = A(big) = wig(&)-
As w; > 0 then ¢(&) = 0. Similarly, for all h € C'™,
A(B2h) = A(B2h) = wih(&) >0

and h(&;) > 0, hence & € S(C).
By 1.4.3 and Theorem 5.3.4, we have moreover ker Hy = Z(&4,...,&) =
(ker HE). u

This theorem applied to an optimal linear form A* for f gives a convergence
certificate to check when the minimum f* is reached and when a generating
family of the minimizer ideal is obtained. It generalizes the flat truncation
certificate given in [Nie 2012|. As we will see in the experimentation part, it
allows to detect more efficiently when the minimum is reached. Notice that if
the test is satisfied, necessarily I,,;, is zero-dimensional.

5.3.2 Flat extension algorithm

In this Section, we describe a new algorithm to check the flat extension prop-
erty for a linear form for which some moments are known.

Let E be a finite dimensional subspace of R[x] connected to 1 and let
A* be a linear form defined on (F - E) given by its “moments” A*(e;) := A7,
where eq, ..., e, is a basis of (E - F) (for instance a monomial basis). In the
context of global polynomial optimization over an semialgebraic set that we
consider here, this linear form is an optimal linear form for f (see Section
5.2.1) computed by SDP.

We define the linear form A* from its moments as A* : p = Y7 pie; €
(E - E) — 37, pi\; and the corresponding inner product defined as in Defi-
nition 1.2.3:

ExE — R
(p,q) — P @ax =AN(pq) (5.6)



CHAPTER 5. BORDER BASIS RELAXATION FOR POLYNOMIAL
76 OPTIMIZATION

To check the flat extension property, we are going to define inductively
vector spaces V; as follows. Start with Vo = (1). Suppose V; is known
and compute a vector space L; of maximal dimension in V" such that L; is
orthogonal to V;:  (L;, Vi), = 0 and L; N ker IHTXi+ = {0}. Then we define
Vil =Vi+ L.

Suppose that by, ..., b, is an orthogonal basis of V;: (b;, b;)a« = 0if i # j

and (b;,b;)a« # 0 . Then L; can be constructed as follows: Compute the
vectors

" (@b, D) as
bij = 2;bi — Z—% Lor b,

k=1 <bk7 bk)A*
generating V1t in V;* and extract a maximal orthogonal family b, .1, ..., by, -
for the inner product (.,.)a., that form a basis of L;.  This can

be done for instance by computing a QR decomposition of the matrix
[(bi.j, bir j7) As|1<iir<rs 1<5.57<n- The process can be repeated until either

e V' ¢ E and the algorithm will stop and return failed,

+
e or L; = {0} and V;" = V; @ ker HX . In this case, the algorithm stops
with success.

The complete description of the algorithm is as follow:
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Algorithm 5.3.1: DECOMPOSITION

Input: a vector space E connected to 1 and a linear form
A e (E-E)".

e Take B:={1} s:=1;r:=1

e While s >0 and BT C F do

r o {(@rbj,bi)ax

i=1 " (by,bi) as b for j=1,...,r,

— compute b,y 1= xxb; — >
k=1,...,n;

— compute a maximal subset B’ = {0},...,b.} of (b;x) of
orthogonal vectors for the inner product (.,.)x. and let
B:=BUDB' s=| B'| and r+=s;

e If BT ¢ E then return failed else return success.
Output: failed or success with
e a basis B = {by,...,b.} C R[x];

e the relations zb; — >0, %bz, j=1l...rk=1...n.

Let us describe the computation performed on the moment matrix, during
the main loop of the algorithm. At each step, the moment matrix of A* on
V. is of the form

B;,B;
Vit [ Hy:

Hf*maBi
}[A>k - HE)BZ,BZ
A*

0B;,0B;
HA*

where OB, is a subset of {b;;} such that B; U dB; is a basis of (B;"). By
construction, the matrix H2"" is diagonal since B; is orthogonal for (-,-),.
As the polynomials b; ; are orthogonal to B;, we have Hooo% = gOPiBi — ),
If Hf\)fi’aBi = 0 then the algorithm stops with success and all the elements
b;; are in the kernel of Hy"". Otherwise an orthogonal basis b, ... b is
extracted. It can then be completed in a basis of (b; ;) so that the matrix
HYP:95: in this basis is diagonal with zero entries after the (s+ 1) index. In
the next loop of the algorithm, the basis B, contains the maximal orthogonal
family 0, ..., b, so that the matrix Hff“’Bi“ remains diagonal and invertible.

Proposition 5.3.6 Let A* € Lg(C) be optimal for f. If Algorithm 5.3.1
applied to A* and E stops with success, then
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1. there ezists a linear form A € R[x|* which is extending A* and supported
on points in S(C') with positive weights:

A= Zwil& with w; > 0,& € R".

=1

2. B={by,...,b.} is a basis of Ay = R[x]/I; where I; = ker Hj,

3. wpb; — >, %bz, ] = .1, k=1,....,n are generating I3 =
I(gla"wg’l‘)
4- fg,c =/

5. szn — {fl, s 757"}'

Proof. When the algorithm terminates with success, the set B is such
that rank HP." = rank HZ. = |B|. By Theorem 5.3.5, there exists a linear
form A € R[x]* extending A* and supported on points in S(C)) with positive
weights:

A= Zwil& with w; > 0,¢ € S(C).
i=1
This implies that Aj is of dimension r and that I = Z(&y, ...,&,). As HE
is invertible, B is a basis of Az which proves the second point.

Let K be the set of polynomials x;0; — >, _; x]b b’“ 22 py. If the algorithm
terminates with success, we have ker HE." = <K> and by Theorem 5.3.5, we
deduce that (K) = (ker HZ") = Ix, which proves the third point.

As A(1) =1, we have >, w; = 1 and

=Y wif&)>f
i=1

since §; € S(C) and f(&;) > f*. Therelation ff o < f* implies that f(¢;) = f*
fori=1,...,r and the fourth point is true: f; .= f*.

As f(&) = frfori=1,...,r, we have {&,...,&} C Vipin. By Theorem
5.2.3, the polynomials of K are in I,,;, so that Vi, C V(K) = {&,...,&}.
This shows that V,,,;, = {&1, ..., &} and concludes the proof of this proposition

n
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Example 5.3.7 We consider the follounng global optimization problem
min f(z) = (z—-1)" (2 =2 (2" + 1)+ (y—1)*- (¥ + 1)

We consider the same problem over his gradient ideal and we compute the
optimal linear form solving the SDP problem with t=3.

We obtain the following solution:
A*(1) = 1,A*(z) = 1.5,A*(y) = 1,A*(z?) = 2.5, A*(zy) = 1.5, A*(y?)
LA*(y?) = 1,A*(zy?) = 1.5, A*(2%y) = 25, A*(23) = 45 A (y*) =
1, A*(zy?) = 1.5, A*(2?y?) = 2.5, A*(23y) = 4.5, A*(z*) = 8.5, ...

We apply Algorithm 5.3.1 for E = R[x]3

° BOZ{l}a aBOZ{xvy}a B+ :{17$7y}

. 1 15 1 10 0
He =| 15 25 15 | — HM 0= 0 025 0
1 15 1 0 0 0

rank chT =2,
{y — 1} € ker Hfg, {r — 1.5} L By and {x — 1.5} ¢ ker HfO+

e By =By+ Ly= {1,z — 1.5}, 0B, = {y,2? — 1.5z, zy — 1.5y},
Bf ={1,z —1.5,y,2* — 1.52, 2y — 1.5y}

1 0 1 025 0 1 0 0

X 0 025 0 0375 025 ) 0 025 0
o= 1 0o 1 02 0 |—HI=]0 0 o0
0.25 0.375 0.25 0.625 0.375 0 0 0

0 025 0 0375 025 0 0 0

S OO OO

o OO OO
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where B = {1,z =15,y — 1,22 =3z + 2,2y — 1.5y — o + 1.5}
B+

rank H,* =2, and L, = {0},

The algorithm stops with sucess, the flat extension is satisfied

Ker Hf1+ ={y—1,2° -3z +2,2y — 1.5y — 2 + 1.5}

and
Lnin=(y—1,2>-32+2)=(y—1,(x = 1) (z —2))

5.3.3 Computing the minimizers

The remaining step is the computation of the minimizer points, once Algo-
rithm 5.3.1 stops with success for A* € Lg(C) optimal for f. The mini-
mizers can be computed from the eigenvalues of the multiplication operators
My, 2 a € Apin — xra € Apyp, for k = 1,... n where A,,;,, = R[x]/Inin and
Lin = I3 =I(&1, ..., &)

Proposition 5.3.8 The matriz of M in the basis B of Anin is [My] =
(%)Km—g. The operators My, k = 1...n have r common eigenvec-
tors uy, ..., u, which satisfy Mypu; = & pu;, with & i, the k™" coordinate of the

minimizer point & = (&ia1,....&n) € 5.

Proof. By Proposition 5.3.6 and by definition of the inner-product in Defi-
nition 1.2.3 and recall also in (5.6), B = {by,...,b.} is a basis of Aj; and

! A*(Ik bz bj)

bi d [mina
A (b by) o

forj=1...r,k=1...n.
This yields the matrix of the operator M in the basis B: [M;] =
A* (y bi b
(BRblad)) o e
As the roots of I,,,;, are simple, by [Elkadi 2007|[Theorem 4.23 | the eigen-

vectors of all M, k = 1...n are the so-called idempotents uy,...,u, of A,
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and the corresponding eigenvalues are &, ..., & k. [ ]

Algorithm 5.3.2: MINIMIZER POINTS

Input: B and the relations as output in Algorithm 5.3.1.

A* (g bi bj)

e Compute the matrices [M;] = ( ) Ji<ij<r-

e For a generic choice of [y, ...,[, € R, compute the eigenvectors
ui, ..., U, of ZI[MI] +oeeet ln[Mn]

e Compute & ;, € R such that Mu; = &, pu;.

Output: the minimizers § = (§1,...,&n), i =1...7.

Example 5.3.9 With the basis B and the relations in the kernel which are
solution of the problem 5.3.7 we can compute the multiplication matrices.

: 1 15 2(z —15)=025-1+15 (z — 1.5)

aB=tta—tsy _ (10O y=1-140-(z—1.5)
y 0 1 y(z —1.5)=0-1+1-(z — 1.5)

We take a linear combination of these matrices and compute its eigenvalues
and eigenvectors

2.5 0.25

— AfB B _
M = MP + M! _( C o

>—>)\1:2,)\2:3

M-uy =X -up —uj =(=0.5,1); M -ug=Xg-uy — uj = (0.5,1)

From these eigenvectors, we compute the eigenvalues asociated to each mul-
tiplication matriz. Fach eigenvalue computed corresponds to the i-coordinate
of each minimizer point as we have seen in Proposition 5.3.8

B T _ T 1. \B.,T _ T _
M uy =x1-u; —mx1=1; M, -uy =29-uy — T9 =2

My uf =yi-u] = =1 My uy =ys-uy —yp=1

The minimizers points are (1,1) and (2,1).
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5.4 Minimizer border basis algorithm

In this Section we describe the algorithm to compute the minimum of a poly-
nomial on S, i.e, solve our problem (2.1). It can be seen as a type of border
basis algorithm, in which in the main loop we compute the border basis for
a fix degree, we contruct the truncated moment problem asociated to this
basis, we compute the optimal linear form, solving this truncated moment
problem by Semidefinite programming (SDP) methods as we have seen in the
Section 5.2.1. In the Chapter 6 we will see how this affects the perfomance
of our algorithm. After computing the optimal linear form, we check when
the minimun is reached through a new algorithm (explain in Section which
verifies the flat extension, which was explained in Section 5.3 and which is an
extension of [Laurent 2009a], which come from the flat extension condition of
Curto and Fialkow [Curto 1996]. Eventually we can compute the minimizers
points by multiplication matrices as we have seen in before subsection. The
method is closely connected to the real radical border basis algorithm pre-
sented in [Lasserre 2012] but we include this new criterion to verify that the
minimum is attained. In the some examples we compare the perfomance of
our algorithm with Gloptipoly. Gloptipoly is a Matlab package developped by
Jean Bernard Lasserre et Didier Henrion, which implements Lasserre relax-
ation |Lasserre. 2001| (see Section 3.3 of the Chapter 3). In order to verify the
minimum is reached, they use two criterions (see [Henrion 2002]). The first
consists in when the solution gives by the SDP problem satisfied all the orig-
inal problem constraints and reach the objective fonction then the algorithm
stops and give the solution. The second one is to verify the flat extension
[Curto 1996, Laurent 2009a] by one criterion that consists in taking the com-
plete (with all the monomials) Hankel matrix in a degree t, to compute the
submatrices of this matrix and compare its ranks. This criterion can be found
in the book [Lasserre 2009a]. There exits two main differences between this
criterion and our new algorithm, the first is in many cases our algorithm is
more quicker, because our algorithm only require the hankel matrix in a de-
gree t, which is solution of the SDP and we verify the flat extension using the
orthogal basis how we explain in the section before. The second difference is
that this criterion produces numerical problem in some examples. We will see
it in next section and in Chapter 6.
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Algorithm 5.4.1: MINIMIZATION OF f ON S

Input: A real polynomial function f and a set of constraints g C R[x]
with V,,;, non-empty finite.

1. Take t = ma:p([degT(f)],dO, d*) where

@ = mazgocg ([*52]), d* = mazys g ([#51])
2. Compute the graded border basis Iy, of g° for B in degree 2t.
3. Let B, be the set of monomials in B of degree < t.

4. Let C; be the set of constraints such that
CY ={m —mp, r,(m), m € By- B} and C* =7, g, (g7)

5. [f¢, 5, N] := OPTIMAL LINEAR FORM(f, By, Cy).

6. [c, B', K] := DECOMPOSITION(A*, B;) where ¢ =failed, B’ =0, K =)
or ¢ =success, B’ is the basis and K is the set of the relations.

7. if ¢ =success then V=MINIMIZER POINTS(B’, K)

else go to step 2 with ¢ :=1¢ + 1.

Output: the minimum f* = f¢, p , the minimizers V,,;, =V,
Imin = (K) and B’ such that K is a border basis for B’'.
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5.4.1 Example in detail
We consider the Motzkin polynomial,
min f(x,y) = 1+ 2*y? + 2%y* — 32%°

which is non negative on R? but not a sum of squares in R[z, y| as we proved
in Example 3.1.18

A n.‘."ﬁ
TR

N

Ry

We minimize with respect its gradient ideal, which is not zero-dimensional.

Lyrad(f) = (=62y” + 22y" + 42°y®, —6ya® + 2ya* + 4y°”)

We also know that the minimizer ideal is zero-dimensional.

|FIRST ITERATION |

o ¢° = {—6xy® + 2wyt + 423y, —6yx® + 2yz* + 4322}, then dy = 3 and
t=3

e The border basis is F3 = {z'y — 322y + 2223, y'z — 3y°z + 2y%23}
e The monomial basis associated to t = 3 is:

BS = {17 x,Y, 3;25 Ty, y27 xS’ Z'Qy, $y2, y3}
e The set of constraints

C’g = {ﬂ — 323y + 2x3y3,y5_x — 3xy® + 2233, 2hy? — 22,
y4x2 o x2y2,@ o 33,;23/ + 2$2y3’y4_x - 33/21' + 2@/23:3}

hence we have 6 monomials that we can reduce.
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e We compute [f5, -, A" =OPTIMAL LINEAR FORM (f, B3, Cs),

1. The size of the hankel matrix H3 is 10x10.

2. The number of parameters that we look for are:

27 (total number of parameters)
—6  (number of reduced parameters)

21 parameters.

3. We find A* such that A*(f) = —217.

e When we verify the flat extension through the DECOMPOSITION al-

gorithm:
[c, B', K] := DECOMPOSITION(A*, Bs)

we obtain ¢ = “failed”, so we go to the second iteration with ¢ = 4.

|SECOND ITERATION |

o We taket =4
e The border basis is Fy = {z'y — 322y + 2223, y'z — 3y*z + 2y%23}
e The monomial basis associated to t = 4 is:

By = {1,z,y,2* zy,y* 2°, 2%y, 2y*, y*, 2", 2%y, 2°y%, 2y°, v}

e The set of constraints Cj is :
Cff _ {x_7y _ 9x3y _ 8x3y3,x6y2 B x2y2,x5y3 _ x3y3,x4y4 _ x2y2,
x3y5 _ :c3y3, x2y6 _ x2y2,x_y7 _ 9:(:3/3 n 8x3y3,£y _ 93:23/ I 8x2y3,
1:5y2 _ 933y2, $4y3 _ $2y37 x3y4 _ $3y2, :)32y5 _ :BQyS,x_yﬁ _ 91:y2 i 8:)33y2,
ﬂ o 3x3y + 2x3y3,y5_$ . 3l‘y3 + 2x3y3’ x4y2 . x2y2,y4$2 . x2y27
aty — 327y + 2277 y'e — 3yPx + 2972}
hence we have 19 monomials that we can reduce.

e We compute [f3, o,, A*] =OPTIMAL LINEAR FORM (f, B4, Cy),

1. The size of the hankel matrix Hj is 15x15
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2. The number of parameters that we look for are:

44 (total number of parameters)
—19 (number of reduced parameters)

26 parameters.

3. We find A* such that A*(f) = 0, there is not duality gap, i.e,

= g,
e When we verify the flat extension through the DECOMPOSITION al-
gorithm:

[c, B, K] := DECOMPOSITION(A*, By)
— ¢ = “sucess” which imply A*(f) = fi' = fi*=f*=0
- B'= {L%y@y}
o KZ{I2_1)?J2_1}

e We compute the minimizers points through the MINIMIZERS POINTS
algorithm: MINIMIZER POINTS(B’, K)and we obtain

{(%I 1,y=1),((L’I 17y:_1)7(x:_171/:1)7(3::_173/:_1)}

Remark 5.4.1 For this example, Gloptipoly must go to the order t = 9 in
order to detect that the optimum is reached and to compute the minimizers.

5.4.2 Examples

Example 5.4.2 We consider the following problem that corresponds to one
example of type 4.3.5

min  f(x,y,2) =22 + 9> + 2%

st rank r+z+1 x4y Y+ z <1
T +y y+z z+z+1

or equivalently

min  f(z,y,z) = 2 +y* + 2%

st (z+z+1)(y+2) = (z+y)*=0;
(T+2+1)° = (y+2)(x+y)=0;

(e+z+DE+y) —(y+2)" =0
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This corresponds to computing the closest point on a twisted cubic defined
by 2 x 2 minors. The set of constraints g is not reqular but S(g) = V¥(g) is
a smooth real variety.

In the first iteration of the algorithm, the order is 1, the size of the Hankel
matriz M} is 3, min A(f) = 1 and there is no duality gap, i.e, strong duality
holds. The flat extension condition is satisfied for M} and thus we have found
the minimum. The algorithm stops and we obtain I, = (x,y — 1,z). The
minimizer point of fis {(x =0,y = 1,z =0)}.

Example 5.4.3 We consider the Robinson polynomial
min f(z,y) =1+ 2% — 2" —2® +° — ' —9® — 2"y — 2y + 3277,

which is non negative on R? but not a sum of squares in Rz, y].

/lfﬁ;?%‘\%\\
AT
Y [HCANM
W i

wE
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We minimize f with respect its gradient ideal,
Ipraa(f) = (62° — 42® — 22 — 423y® — 2zy* + 6ay?, 6y° — 4y® — 2y — 4y3a? —
2yt + 6yx?) which is not zero-dimensional.

In the first iteration, the order is 8, the size of the Hankel matriz M3 is
10, min A(f) = —0.93. The flat extension condition is not satisfied hence we
try with degree 4.

In the second iteration the degree is 4, the size of the Hankel matriz My
is 15, min A(f) = 0. There is no duality gap, i.e, fi' = fi** = 0. The flat
extension condition is satisfied.
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The algorithm stops and we obtain f* = fi' = fi% =0, Lym = (23 —
z,y® —y,2%y* — 22 — y?> + 1). The points that minimize [ are {(z = 1,y =
),(z=1Ly=-1),(z=-lLy=1),(xr =-lLy=—-1),(z =1Ly =0),(z =
—1,y=0),(z=0,y=1),(z =0,y = —1)}.

We remark that for this example, Gloptipoly must go to the ordert =7 in
order to detect that the optimum is reached and to compute the minimizers.

Example 5.4.4 We consider the homogeneous Motzkin polynomial with a
perturbation € = 0.005,

min f(z,y, z) = 2ly? + 2%yt — 320%y?2? + 20 + e(2? + y? + 2?);
st h(z,y,2)=1—2>—y*—22>0

This example coming from [Laurent 2009a, Example 6.25] is a case where the
constraints g define a compact semi-algebraic set, but the direct relaxation
using the associated quadratic module or preordering is not exact.

We add the projection of the KKT ideal and we solce the following problem

min z'y? + 2%yt — 3x2y?2% + 25 4+ 0.005(2? + y? + 22);
st —4dzaty — 20z2%y® + 122%y22 — 0.062y° + 12.06y2° = 0;
—20z23y? — dzzy* + 1229?23 — 0.0622° + 12.0622° = 0;
(4239 + 2zy* — 629?22 + 0.032°)(—2% — y? — 22 + 1) = 0;
(2zty + 42?y® — 62%y2% +0.03y°) (=22 —y? — 22+ 1) = 0;
(—62%y?*2 4+ 6.032°) (=22 — y? — 22 + 1) = 0;

where the first three equations are the 2 X 2 minors of the Jacobian matrixz of
f and h and the last three equations are the gradient ideal of f multiplied by h.

In the first iteration the order is 5, the size of the Hankel matriz My is
167, min A(f) = 0, there is no duality gap. The flat extension condition is
satisfied so the algorithm stops and we obtain I, = (x,y, 2).

The minimizer point of f is (0,0,0).

For this example, the criterion to verify the flat extension in comparing
rank of submatrices of the complete (all the monomials in degree t) Hankel
matriz does not hold with Gloptipoly if € < 0.01.

5.4.3 Examples of theorical results for ideals non zero-
dimensional
Finally with these two last examples we show that even the minimizer ideal

I,,.in 18 noOt zero-dimensional we can recover it from a solution of the relaxation
problem.
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Example 5.4.5 We consider Motzkin polynomaial over the unit ball:

min f(z,y, z) = 2ty? + 2%y? — 32%y?2? + 25,

st h(zy,z)=1—2>—y?—-22>0

The polynomial f is homogeneous and non negative on R® but not a sum of
squares in R[z,y, z].

We add the projections of KKT ideal and we have the similar problem

min z%y? + 2%y* — 322y?2? + 25;
st —dxy® + 1221322 + dyx® — 1223y2% = 0;
—4zaty — 20z22y® + 122%y23 + 12y2° = 0;
—20za3y? — dzay* + 122y°23 + 1222° = 0;
(4z3y? + 2zy* — 62y?2?) (=22 —y? — 22 + 1)
22y + 42?y3 — 62%y2?)(—2? — y? — 22 + 1)
(—62%y%z + 62°)(—2? —y* — 22+ 1) = 0;

’

0
0;

where the first three equations are the 2 X 2 minors of the Jacobian matrix of
f and h and the last three equations are the gradient ideal of f multiplied by h.

In the first iteration the order is 5, the size of the Hankel matriz M3 is
156, min A(f) = 0, there is no duality gap. We compute the kernel of this
matriz: ker M} = (z(y? — 2%), x(y? — 22), (2% — 22), y(2® — 2?)). It generates
the minimizer ideal Ly, = (2(y*—22), z(y*—22), 2(2® —2%), y(2® —2?%)) defining
6 lines: (y £z, +£2),(z,2),(y,2). Here V(1) is not included in S.

Example 5.4.6 We consider the minimization of a linear function on a torus:

min f(xvyaz) =z
st 9 —1022 — 10y? + 622 + 2% + 22%9% + 22222 + 222+t + 24 =0
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In the first iteration, the order is 2, the size of the Hankel matriz M3 is 10,
min A(f) = —1, there is no duality gap. We compute the kernel of this matriz:
ker M3 = (2 +y? —4,2(2 + 1),y(z + 1), 2(z + 1), (2 + 1)) which generates
the minimizer ideal I, = (22 +y? — 4,2 + 1), defining a circle which is the
intersection of the torus with a tangent plane. Notice that the multiplicity of
this intersection has been removed in I,,;,.









CHAPTER 6
Experimentations, Applications
and Implementation

In the first Section we analyse the practical behavior of this algorithm. In
all the examples the minimizer ideal is zero-dimensional hence the algorithm
stops in a finite number of steps and yields the minimizer points and genera-
tors of the minimizer ideal. In second Section shows some applications of the
method in three different areas of research as Signal processing and Telecom-
munications (Best low-rank tensor approximation), Biology (Factors in the
growth of the plant roots) and Electronic (Marx generators’ design). In the
last Section of this Chapter, we explain in more details the implementation of
Algorithm 5.4.1.

6.1 Experimentations

In this Section we show the results of some experiments carried out on an
Intel Core 15 2.40GHz. In these experiments, we compare the results between
our algorithm 5.4.1 (bbr) and the full moment matrix relaxation algorithm
(fmr) (inside the borderbasix package), that, as we said in the last Section,
was described by Lasserre in [Lasserre 2009a|, and it was also implemented in
the package Gloptipoly of Matlab developed by D. Henrion and J.B. Lasserre.

In Table 6.1 and Table 6.2, we record the problem name or the source of
the problem, the number of decision variables (v), the number of inequality
and equality constraints (c), the maximum degree between the constraints
and the polynomial to minimize (d), the number of minimizer points (sol).
For the two algorithms bbr and fmr we report the total CPU time in seconds
using SDPA (t) and using MOSEK (tpy-+msk), the order of the relaxation (o),
the number of parameters of the SDP problem (p) and the size of the moment
matrices (s).

The first part of the table contains examples of positive polynomials, which
are not sum of squares. New equality constraints are added following 4.2 to
compute the minimizer points in the examples marked with ¢. The fourth
part of the table contains examples where the real radical g@ is computed.
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When there are equality constraints, the border basis computation reduces
the size of the moment matrices, as well as the number of parameters and the
size of the localization matrices associated to the inequalities. This speeds
up the SDP computation. In the case where there are only inequalities, the
size of the moment matrices is the same but once the optimal linear form is
computed using one of the SDP solvers SDPA, SDPA-GMP, CSDP or MOSEK,
the DECOMPOSITION algorithm which verify the flat extension and computes
the minimizers is more efficient and quicker than the reconstruction algorithm
used in the full moment matrix relaxation approach.

The performance is not the only issue: numerical problems can also occur
due to the bigger size of the moment matrices in the flat extension test and the
reconstruction of minimizers. Such examples where the fmr algorithm fails
because of the numerical rank problems are marked with *. The examples that
Gloptipoly cannot treat due to the high number of variables [Lasserre 2009a]
are marked with ** .

These experiments show that when the size of the SDP problems becomes
significant, most of the time spent by our algorithm occurs during sdp com-
putation and the border basis time and reconstruction time are negligible.
We also show that the use of Mosek software reduces the time between 50
% and 80 %. In all the examples, the new border basis relaxation algorithm
outperforms the full moment matrix relaxation method. In Table 6.3, we can
see in more detail the difference in number of parameters, size of matrices and
time between the algorithm bbr and fmr.
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problem v ¢ d| sol || Ofmr | Prmr | Sfmr tmr
© Robinson 2 0 61| 8 7 119 36 *
© Motzkin 2 0 61| 4 9 189 35 *
© Motzkin perturbed 3 1 6| 1 d 286 26 9.57
o |Lasserre. 2001, Ex. 1 2 0 4] 1 2 14 6 0.050
o [Lasserre. 2001], Ex. 2 2 0 41 2 14 6 0.050
o [Lasserre. 2001], Ex. 3 2 0 61 4 8 152 45 *
|[Lasserre. 2001], Ex. 5 2 3 2| 3 2 14 6 0.053
[Floudas 1999|, Ex. 4.1.4 1 2 4] 2 2 4 3 0.040
[Floudas 1999|, Ex. 4.1.6 1 2 6] 2 3 6 4 0.044
|[Floudas 1999|, Ex. 4.1.7 1 2 44 1 2 4 3 0.042
[Floudas 1999|, Ex. 4.1.8 2 5 441 2 14 6 0.077
[Floudas 1999|, Ex. 4.1.9 2 6 441 4 44 15 0.29
[Floudas 1999|, Ex. 2.1.1 5 11 24 1 3 461 26 12.23
[Floudas 1999|, Ex. 2.1.2 6 13 2 1 2 209 26 1.29
[Floudas 1999|, Ex. 2.1.3 13 35 2 1 2 2379 78 | 417.96
[Floudas 1999|, Ex. 2.1.4 6 15 2| 1 2 209 26 1.48
[Floudas 1999|, Ex. 2.1.5 10 31 2 1 2 1000 66 44.29
[Floudas 1999|, Ex. 2.1.6 10 25 2 1 2 1000 66 43.68
“|Floudas 1999], Ex. 2.1.7(1) |20 30 2| 1 || 2 | 10625 | 231 | 35310.7
% [Floudas 1999], Ex. 2.1.7(5) || 20 30 2| 1 | 2 |10625 | 231 | 36021.3
** |[Floudas 1999], Ex. 2.1.8 24 58 2| 1 2 20475 | 325 >14h
[Floudas 1999|, Ex. 2.1.9 10 11 2 1 2 1000 Hh) 16.76
[Floudas 1999|, Ex. 3.1.3 6 16 2| 1 2 209 26 1.42
|Lasserre 2009a] cbmsl 3 3 315 3 83 20 0.20
[Lasserre 2009a| rediff3 3 3 24 2 2 35 10 0.09
[Lasserre 2009a| quadfor2 4 12 4 2 3 210 35 0.75
5 simplex 15 16 2 1 2 3875 | 136 | 780.371

Table 6.1: Experimentations with fmr-algorithm
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problem v ¢ d| sol| owr | Dobr | Seer tobr Cobr+msk
© Robinson 2 0 61| 8 4 21 15 0.15 0.10
o Motzkin 2 0 61| 4 4 26 15 0.17 0.080
© Motzkin perturbed 3 1 6| 1 5 167 26 3.78 0.90
o |Lasserre. 2001], Ex. 1 2 0 4] 1 2 8 6 0.030 0.022
o [Lasserre. 2001], Ex. 2 2 0 41 2 8 6 0.030 0.022
o [Lasserre. 2001], Ex. 3 2 0 61 4 4 25 15 | 0.432 0.075
|Lasserre. 2001], Ex. 5 2 3 2| 3 2 14 6 0.045 0.037
[Floudas 1999|, Ex. 4.1.4 1 2 4] 2 2 4 3 0.024 0.023
[Floudas 1999], Ex. 4.1.6 1 2 62 3] 6 | 4| 0027 | 0023
|[Floudas 1999|, Ex. 4.1.7 1 2 44 1 2 4 3 0.023 0.022
[Floudas 1999|, Ex. 4.1.8 2 5 41 2 13 6 0.060 0.031
[Floudas 1999|, Ex. 4.1.9 2 6 441 4 44 15 0.20 0.11
[Floudas 1999|, Ex. 2.1.1 5 11 2 1 3 461 o6 7.60 4.61
[Floudas 1999|, Ex. 2.1.2 6 13 2| 1 2 209 26 1.00 0.46
|[Floudas 1999|, Ex. 2.1.3 13 35 2 1 2 2379 | 78 | 383.97 34.55
[Floudas 1999|, Ex. 2.1.4 6 15 2| 1 2 209 26 1.01 0.43
[Floudas 1999|, Ex. 2.1.5 10 31 2 1 2 1000 | 66 29.70 12.31
[Floudas 1999|, Ex. 2.1.6 10 25 2 1 2 1000 | 66 28.60 6.05
“*|Floudas 1999], Ex. 2.1.7(1) |20 30 2| 1 || 2 | 10625 | 231 | 33219.9 | 1083.60
** |Floudas 1999|, Ex. 2.1.7(5) || 20 30 2 || 1 2 110625 | 231 | 33475.2 | 1117.33
** |Floudas 1999], Ex. 2.1.8 24 58 2| 1 2 3875 | 136 | 3929.23 | 311.54
[Floudas 1999|, Ex. 2.1.9 10 11 2§ 1 2 714 44 12.3 1.98
[Floudas 1999|, Ex. 3.1.3 6 16 2| 1 2 209 26 0.96 0.61
|Lasserre 2009a] cbmsl 3 3 315 3 26 17 0.16 0.14
[Lasserre 2009a| rediff3 3 3 24 2 2 7 7 0.07 0.06
|Lasserre 2009a| quadfor2 4 12 4 2 3 48 19 0.6 0.45
5 simplex 15 16 2 1 2 3059 | 120 | 674.534 | 65.73

Table 6.2: Experimentations with bbr-algorithm
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problem Pfmr — Pobr | Sfmr — Sbbr T tmr — Tobr
o Motzkin perturbed 286-167 56-56 9.57-3.78
o |Lasserre. 2001], Ex. 1 14-8 6-6 0.050-0.030
o [Lasserre. 2001], Ex. 2 14-8 6-6 0.050-0.030
|Lasserre. 2001], Ex. 5 14-14 6-6 0.053-0.045
|[Floudas 1999|, Ex. 4.1.4 4-4 3-3 0.040-0.024
[Floudas 1999|, Ex. 4.1.6 6-6 4-4 0.044-0.027
[Floudas 1999|, Ex. 4.1.7 4-4 3-3 0.042-0.023
[Floudas 1999], Ex. 4.1.8 14-13 6-6 0.077-0.060
[Floudas 1999|, Ex. 4.1.9 44-44 15-15 0.29-0.20
|[Floudas 1999|, Ex. 2.1.1 461-461 56-56 12.23-7.60
[Floudas 1999|, Ex. 2.1.2 209-209 26-26 1.29-1.00
[Floudas 1999|, Ex. 2.1.3 2379-2379 78-78 417.96-383.97
[Floudas 1999|, Ex. 2.1.4 209-209 26-26 1.48-1.01
[Floudas 1999|, Ex. 2.1.5 1000-1000 66-66 44.29-29.70
|[Floudas 1999|, Ex. 2.1.6 1000-1000 66-66 43.68-28.60
“[Floudas 1999, Ex. 2.1.7(1) || 10625-10625 | 231-231 | 35310.7-33219.9
** [Floudas 1999], Ex. 2.1.7(5) || 10625-10625 | 231-231 | 36021.3-33475.2
¥ [Floudas 1999], Ex. 2.1.8 20475-3875 325-136 >14h-3929.23
[Floudas 1999|, Ex. 2.1.9 1000-714 55-44 16.76-12.3
[Floudas 1999], Ex. 3.1.3 209-209 26-26 1.42-0.96
|Lasserre 2009a] cbms1 83-26 20-17 0.20-0.16
[Lasserre 2009a| rediff3 35-7 10-7 0.09-0.07
|Lasserre 2009a| quadfor2 210-48 35-19 0.75-0.6
K simplex 3875-3059 136-120 | 780.371-674.534

Table 6.3: Differents between fmr-bbr algorithms

6.2 Applications

In this Section we present some applications of our algorithm in some dif-
ferents domains as Signal processing and Telecommunications (Best low-rank
tensor approximation), Biology (Factors in the growth of the plant roots) and
Electronic (Marx generators’ design). First of all we explain in more detail
the differents applications and after that we show how to apply our algorithm.

6.2.1 Best low-rank tensor approximation

Tensor problems appears in many context and applications. For instance ma-
trices are an example of tensors of order 2. However in many problems, higher
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order tensors are naturally used to collect informations which depend on more
than two variables. These data could be observations of some experimenta-
tion or of a physical phenomena that depends on several parameters. These
parameters are stored in a structure called tensor, according to the dimen-
sional parameters of the problem. For a survey on tensors and applications
(see [Comon 2000]). The tensor decomposition problem consits in decompos-
ing the tensor into a minimal sum of indecomposable tensor, i.e, tensors of
rank 1. We refer to [Bernardi 2013], [Brachat 2010] for more material in ten-
sor decomposition. This decomposition allows to extract invariants properties
and geometry of the tensor. For this reason this tensor decompostion problem
appears in many domains. For example Singular Value Decomposition for the
case of tensor of rank 2 and for higher rank this approach appears in several
domains such as Electrical Engineering, Signal processing, Telecommunica-
tions or Data Analysis.

In many problems, tensor coefficients are given with some error. Instead of
searching an exact decomposition, one can consider the following approximate
decomposition problem: Is there in the neighborhood of a given tensor, a ten-
sor with a small rank? This problem can be seen as an optimization problem.
If we fix the rank r, the problem reduces to compute the tensors of rank r
which are th closest to the input data. Hereafter we study the best rank-1
and rank-2 tensor approximation. As we will see, in the case of rank-1 mnimiz-
ing the value of the distance is equivalent for symmetric tensors to maximize
homogeneous polynomial over unit spheres et for nonsymmetric tensors, this
is equivalent to maximize multihomogeneous forms over multispheres. In par-
ticular we study the examples in the papers [Nie 2013b, Ottaviani 2013] and
we compare our results with the results given in those papers. In the first part
of this Section we treat the best rank-1 tensor approximation problem and in
a second part we treat the best rank-2 tensor approximation problem. Before
to explain these problems we introduce some notations.

Definition 6.2.1 A tensor de order m € Z* and dimension (n1, ...,n,,) € Z'
is an array F that is indexed by integer tuples (i1, ...,10,) with 1 <i; <n;(j =
1,..m),i.e,

F= (El,...,im)1gz’1§n1,...,1gimgnm

Remark 6.2.2 The spaces of all such tensors with real entries is denoted as
RP X Xnm

Definition 6.2.3 A tensor F € R™> X" s symmetric if ny = --+ = ny,
and

Fitresim = Fityegm ¥ (015 8m) ~ (J1, 0, Jim)
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where ~ means that (i1, ...,1,) 15 a permutation of (ji, .., jm)-

Remark 6.2.4 We denote S™(R"™) the space of real symmetric tensors of
order m in dimension n.

Definition 6.2.5 We define the scalar product of two tensor F,F' €
Rn1><~~-><nm as:

ni Tom
AN i . /
(FFY=> > FirimFhim
i1=1 tm=1

i1=1 im=1

Definition 6.2.7 FEvery tensor can be expressed as a linear combination of
outer products of vectors, i.e,

F = Zui’l ® - @ub™  with u™’ € R
i=1
And the smallest positive integer r is called rank of F.

6.2.1.1 Best rank-1 tensor approximation

The problem of find the best rank-1 tensor approximation of a tensor F €
R71*x"m can be described as follows.

Problem :Given a tensor F € R™>**"n " find a scalar \ and unit vectors
ul, ..., u™ such that the rank-1 tensor F = \u! ®@ --- ® u™ minimizes the

least-squares cost function

FF)=I1F-F|P (6.1)

This constrained optimization problem can be analyzed using techninque
of Lagrange multipliers. Therefore, we consider the following combination of
f with the constraint terms

ni Nm

F=3 3 P = Xl P N 1) (62)

i1=1  ipm=1 i
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in which \;(1 < j < m) are the lagrange multipliers. Setting the derivative
with respect to ufk equal to zero yields

ny Nk—1  MNkt1 Nm,
1 k—1_ k+1 m
AD e Do D 2 Pty =
ir=1 ip_1=1ipy1=1 im=1
n1 Ng—1  MNkg+1 Nm
gl a2 ST ST ST S () (2R 2 ()
= Ajuij + A U, (u;,) (Uik_1> (uik+1> (uin)”
i1=1 ik—lzlik-‘—l:l im=1

(6.3)
If we derive with respect \; and A, we obtain, respectively

> )y =1 (6.4)

i i Fir Zulllu;nn —\ Z (ulll)z...(u;:ln)? (6.5)

1 m
E E Firrimthy - ult = A (6.6)
i1=1 im=1
ni Ng—1  Mk41 Nm
Z Z Z Z . 1 k=1, k+1 mo__ (2 VAV
)\ e El ~~~~~ Zmu’Ll Th—1 Tk41 u’im - (A + >\ )uij
11:1 ik_lil ik+1:1 Zm:1

Combining (6.4) with the right-side of (6.7) and compraing this to (6.6),
yields

ni Ng—1  MNk+1 Nim
Z ZZ Z : ol k=1 k1 om ]

e e ‘El ----- lmuh uikiluikJ’,l uim - )\uij (68)
11=1 ip—1=1ip11=1 tm=1

Thus, the Lagrange equations correspond to (1 < j < m):

ni Ng—1  Nk+1 Nm
2: }: E: E: A e T iaat SP 1/ R Wt
s T Fitroosiim Uiy U Yig iy s,y = )‘Uij (6.9)
i1:1 ’ik_lzl Zk-‘rl:l Zmil
ni Nom,
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| |l=1, (6.11)

De Lathauwer, De Moor and Vandenwalle proved in [De Lathauwer 2000|
that the problem (6.1) is is equivalent to maximizer,

__ max | g(ut, ..., u™) |
ul€R™ ... umeRNm (6.12)
stlul = =[|u"[|=1

where g(u', ..., u™) = 3715 cnii<in <n Firvim - (W )iy o (W)

-----

The exact theorem is the following:

Theorem 6.2.8 For a tensor F € R™>**"n the minimization of the cost
function (6.1) is equivalent to the mazimization problem

max | g(ut, ..., u™) |
stllul|l=-=[[u"[|=1

If the scalar A is chosen in accordance with (6.10), then (6.1) and (6.12) are
related by
=l FIP -9 (6.13)

Proof. We have the following:
FE) = F=F|P=I FIP —2F F)+ || F I

According to the definition of \, the value taken by (F,F) equals \2. Since
ul,...,u™ have unit-norm, || F ||*= 1 as well. Combining it with the definition

of g proves the theorem. [ ]

The equivalent result for symetric tensors S™(R") is the following

Theorem 6.2.9 For a tensor F € S™(R™), find a scalar A and unit vectors
ul, ..., u™ such that the rank-1 tensor F = ' ® --- @ u™ minimizes the
least-squares cost function

fF) =l F-F| (6.14)
15 equivalent to the maximization problem

max | g(u, ..., u) |
ueR” (6.15)
stl|ull=1
If the scalar X is chosen in accordance with (6.10), then (6.1) and (6.12) are
related by
=l FIP -9 (6.16)
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Remark 6.2.10 We notice that the problem (6.15) is equivalent to

max | F(u,...,u) | (6.17)

ueSn—1

where S~ s the n-1 dimensional unit sphere.

In Table 6.4, we apply our algorithm bbr+msk to find the best rank-1
approximation for symmetric and non symmetric tensors on examples from
[Nie 2013b]. For the problems with several minimizers (which is the case when
there are symmetries), the method proposed in [Nie 2013b]| cannot certify the
result and uses a local method to converge to a local extrema. We apply the
border basis relaxation algorithm to find all the global minimizers for the best
rank 1 approximation problem.

problem v ¢ d| sol| o | Poor | Stor | tobrsmsk
Nie2013b[ Ex. 31 |2 1 3| L || 2 | 8 | 5 | 0.028
[Ni(‘, 20131)] Ex. 3.2 3 1 3 1 2 24 9 0.025
[Nie 2013b] Ex. 33 |3 1 3| 1| 2 | 24 | 9 | 0035
[Nie 2013b] Ex. 3.4 4 1 4 2 2 24 9 0.097
[Nie 2013b] Ex. 35 ||5 1 3| 1 | 2 | 104 | 20 | 0.078
[Nie 2013b| Ex. 3.6 |5 1 4| 2 | 4 | 824 [ 105| 15.39
[Ni(‘, 20131)] Ex. 3.8 3 1 6 4 3 48 16 1.14
[Nie 2013b] Ex. 3.11 8 4 4 8 3 84 25 0.17
[Nie 2013b] Ex. 3.12 9 3 3 4 2 552 52 1.55
|Nie 2013b| Ex. 3.13 9 3 3| 12 3 13023 | 190 | 223.27
|[Ottaviani 2013] Ex. 4.2 | 6 0 8 4 & 2340 | 210 | 59.38

Table 6.4: Best rank-1 and rank-2 approximation tensors

We explain in more details the examples in Table 6.4 which have several
minimizers and in particular with all the details the example 3.4:

Example 6.2.11 (Example 3.4) Consider the tensor F € S*(R3) with
entries:

Fiis = 0.2883, Fiirs = —0.0031, Friys — 0.1973, Firgs — —0.2458,

Flios = —0.2939,?1133 = (0.3847, Flooe = 0.2972,?1223 = (.1862,

Frass = 0.0919, Fazs — —0.3619, Faggs — 0.1241, Fpgns — —0.3420,

Foazz = 0.2127, Faszz = 0.2727, F3333 = —0.3054

min || F — A-ul* ||
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)

max 0.2883z5—4-0.0031x3z,+4-0.1973x3x9—6-0.24852323 —12-0.293922 21 29+
+6 - 0.38472223 + 4 - 0.2979z023 + 12 - 0.1862z023x2 + 12 - 0.091920 7125+
—4-0.3619z073 + 0.12412] — 4 - 0.342023x5 + 6 - 0.212723 23+
+4 - 0.2727z123 — 0.3054x5;
st xd+ 22423 =1;

We get the rank-1 tensor \ - ui® with:
A = —1.0960, u; = (—0.59148,0.7467,0.3042); uy =
(0.59148, —0.7467, —0.3042) and || F — X\ - uP* ||= 1.9683.

Example 6.2.12 (Example 3.6) Consider the tensor F € S*R5) with
entries:
Fivisisia = arctan((—=1)"2) + arctan((—1)2%2) + arctan((—1)%) +
arctan((—1)"%)
We get the rank-1 tensor X - u®* with:
A = —23.56525, u; = (0.4398,0.2383,0.5604, 0.1354, 0.6459);
ug = (—0.4398, —0.2383, —0.5604, —0.1354, —0.6459) and
| F—A-uf* ||= 16.8501.

Example 6.2.13 (Example 3.8) Consider the tensor F € S°(R3) with
entries:

Finn = 2, Finee = 1/3, Fiinss = 2/5, Fiizeer = 1/3, Fiiaass = 1/6,

Fuissss = 2/5, Fagoooo = 2, Faogoss = 2/5, Foosssz = 2/5, Fasasss = 1

We get the rank-1 tensor X - ul® with:
A=2, u; =(1,0,0); uy =(—1,0,0); uz =(0,1,0); uy = (0,—1,0) and
| F— X-uf ||= 20.59.

Example 6.2.14 (Example 3.11) Consider the tensor F € R¥*2*2X2 yth
entries:
Fun = 25.1, Fiorg = 25.6, Foron = 24.8, Foggp = 23

We get the rank-1 tensor \ - uj ® u? @ u} @ u} with:

%:( 1 0) (07—1) = (=1,0), u3 = (0, -1);
uz = (—1,0),uf = (0, - 1) = (1,0), § = (0,1);
ug = (1, ) U4 = (0 1),u ( 1,0),uj = (0, —1);
uz = (-1 ) = (0, 1) (—170%“? = (0,1);
(13 = (17 ) (07 1)?“2 (170)7u§ = (0, _1);
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= (1.0). 0 = (0, ~1). 2 = (~10).uf = (0.1
u <1,0>, = (0,1),uf = (1,0),uf = (0, ~1).

The distance between F and one of these solutions is
| F =X u! @u?@ul@u} ||=42.1195.

1
U7 =
1 _
8

Example 6.2.15 (Example 3.12) Consider the tensor F € R3¥*3*3 with
entries:

Fi11 = 0.4333, Fro1 = 0.4278, Fi31 = 0.4140, Fo11 = 0.8154, Foo; = 0.0199,
Faz1 = 0.5598, Fz11 = 0.0643, Fzo1 = 0.3815, Fz31 = 0.8834, F112 = 0.4866,
Fioo = 0.8087, Fiza = 0.2073, Fa12 = 0.7641, Faoa = 0.9924, Fozo = 0.8752,
Fz12 = 0.6708, Fz90 = 0.8296, F330 = 0.1325, F113 = 0.3871, Fi23 = 0.0769,
Fiss = 0.3151, Fay3 = 0.1355, Fagg = 0.7727, Faz3 = 0.4089, F315 = 0.9715,
Fsa3 = 0.7726, F333 = 0.5526

We get the rank-1 tensor X\ - u} @ u? ® u? with:
)\ = 2.8166, ul = (0.4279,0.6556, 0. 62209) = (0.5705,0.6466, 0.5063),
= (0.4500,0.7093, 0.5425);
= (0.4279,0.6556, 0.62209), u5 = (—0.5705, —0.6466, —0.5063)
(—0.4500, —0.7093, 0.5425)7
(—0.4279, —0.6556, —0.62209), uz = (0.5705, 0.6466, 0.5063),
(—
(—

0.4500, —0.7093, —0.5425);

0.4279, —0.6556, —0.62209), u3 = (—0.5705, —0.6466, —0.5063),
— (0.4500,0.7093, 0.5425),
The distance between F and one of these solutions is || F — X -u; @ u? @u? ||=
1.3510.

OJJ;)—‘OJOJC&N—‘MQJM

Example 6.2.16 (Example 3.13) Consider the tensor F € R3>*3*3 with

entries:

Fi11 = 0.0072, Fi91 = —0.4413, Fi31 = 0.1941, F511 = —04413, Foe; = 0.0940,
Foz1 = 0.5901, F311 = 0.1941, F307 = —0.4099, F331 = —0.1012, F110 =
—0.4413,

Fra2 = 0.0940, Fi30 = —0.4099, Fa12 = 0.0940, Fage = 0.2183, Faszo = 0.2950,
.7:312 = 0.5901, F322 - 0.2950, Jfggg == 0.2229, ./T113 == 0.1941, .7:123 == 0.5901,
Fiss = —01012, Fory = —0.4099, Fogs = 0.2950, Fazs = 0.2229, Fy13 =
—0.1012,

.;E323 — 0.2229,.;:333 — —04891

We get the rank-1 tensor A - u; ® ui ® u} with A = 1.000 and the 12
solutions
= (0.7955,0.2491, 0.5524), u? = (—0.0050,0.9142, —0.4051),



CHAPTER 6. EXPERIMENTATIONS, APPLICATIONS AND

IMPLEMENTATION 105
u3 = (—0.6060,0.3195,0.7285);

ub = (—0.0050,0.9142, —0.4051), u2 = (—0.6060, 0.3195, 0.7285),

ud = (0.7955,0.2491, 0.5524);

ub = (- 0.6060,0.3195,0.7285),u§ = (0.7955,0.2491, 0.5524),

ud = (—0.0050,0.9142, —0. 4051)

ul = (0.7955,0.2491, 0.5524), u? = (0.0050, —0.9142, 0.4051),

u3 = (0.6060, —0.3195, —0. 7285)

ul = (0.6060, —0.3195, —0.7285), u2 = (0.7955,0.2491, 0.5524),

ud = (0.0050, —0.9142, 0.4051);

ut = (—0.6060,0.3195,0.7285), u2 = (—0.7955, —0.2491, —0.5524),
ud = (0.0050, —0.9142, 0.4051);

ut = (0.6060, —0.3195, —0.7285), u2 = (—0.7955, —0.2491, —0.5524),
u3 = (—0.0050,0.9142, —0.4051);

ub = (—0.7955, —0.2491, —0.5524), u2 = (—0.0050, 0.9142, —0.4051),
ud = (0.6060, —0.3195, —0.7285):

ub = (—0.7955,—0.2491, —0.5524), u2 = (0.0050, —0.9142, 0.4051),
u3 = (—0.6060,0.3195, 0.7285);

uly = (—0.0050,0.9142, —0.4051), u2, = (0.6060, —0.3195, —0.7285),
ui’ 0.7955, —0.2491, —0. 5524)

0.7955,0.2491, 0.5524);

u12 0.0050, —0.9142,0.4051), u2, = (—0.6060,0.3195,0.7285),

Wy = (—0.7955, —0.2491, —0.5524),

The distance between F and one of these solutions is || F — X -u; @ u? @u? ||=
1.4143.

(=

(=
un (0.0050, —0.9142, 0.4051), u?, = (0.6060, —0.3195, —0.7285),

u11 (

(

6.2.1.2 Best rank-2 tensor approximation

Given a tensor F € R™>* X" that can be symmetric or nonsymmetric, we
say that a tensor 7 is a best rank-2 approximation of F if it is a minimizer
of the least squares problem

min | F—X|? (6.18)

XERML X Xm pankX=2

The last example in Table 6.4 is a best rank-2 tensor approximation
example from the paper [Ottaviani 2013]. We explain in more detail this
problem

Example 6.2.17 (Example 4.2) Consider the tensor F € S*(R?) with
entries
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Funn = 01023, Fi112 = —0.002, Fi113 = 0.0581, Fi122 = 0.0039, Fii23 =
—0.00032569,

0.0196,
Fagoa = 0.0197, Fagez = —0.0029, Fagzs = —0.00017418, Fazzs = —0.0021,
Faszzs = 0.1869

We get the rank-2 tensor F(s,t,u) = (as+ bt + cu)* + (ds + et + fu)* with
the 8 solutions:
s1 = (a,b,c,d, e, f) = (0.01877,0.006239, —0.6434, —0.5592, 0.008797, —0.3522);
sy = (—0.01877, —0.006239, 0.6434, 0.5592, —0.008797, 0.3522);
s3 = (0.01877,0.006239, —0.6434, 0.5592, —0.008797, 0.3522);
sq4 = (—0.01877,—0.006239, 0.6434, —0.5592, 0.008797, —0.3522);
s5 = (—0.5592,0.008797, —0.3522,0.01877,0.006239, —0.6434);
s¢ = (0.5592, —0.008797,0.3522, —0.01877, —0.006239, 0.6434);
s7 = (—0.5592,0.008797, —0.3522, —0.01877, —0.006239, 0.6434);
sg = (0.5592, —0.008797,0.3522,0.01877,0.006239, —0.6434).
The distance between F and one of these solutions is || F — F ||= 0.00108483.
The other possible real rank-2 approzimations F(s,t,u) = £(as + bt + cu)* +
(ds + et + fu)* yield solutions which are not as close to F as these solutions.
The eight solutions come from the symmetries due to the invariance of the
solution set by permutation and negation of the factors.

6.2.2 Factors in the growth of the plant roots

There exists many factors wich affects in the growth of the plant roots. The
root system model is complex due to that the functionnning is linked to dy-
namics of the architecture. Water and the nutriment uptake depend on the
root surface. The root system model is studied by a stochastic model com-
posed of 14 parameters, among which only a subset of 4 must be estimated on
images and a total of 15 statistics that give information on the size and shape
of the root system, density of black and white pixels in differents area of the im-
age,... The output of this stochastic model is the image of root system model,
as shown in the following image. This image has been found in the website
http://www.biologie.uni-hamburg.de/b-online /virtualplants /ipimovies.html
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Plastochron:

Figure 6.1: virtual images

One of the main objectives of this stochastic method consists in studying
which statitics are important and wich are not representative. For this purpose
we need to minimize a quadratic problem in 15 variables as we will see in more
detail. We can identify each variable with each statitic (even if it is not exactly
the same because in our minimization problem the 15 variables correspond
the weights of statistics). The variables which are zero correspond to statitics
which are not important. This work is the beginning of a collaboration with
the team of Claude Bruchou of INRA (Avignon). For more information about
this problem see [Cornell 2002, Beaumont 2002, Joyce 2008, Pagés 2011].

In order to determinate the parameters and the statistics and which of
them are more important than the other we use the Approximation Bayesian
Computing (ABC) method.

Approximation Bayesian Computing is a free likehood method to estimate
model parameters. The elements of this method are the followings:

e D = observed data

o D* = simulated data
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e 0 vector of parameters with Prior 7(+)

e S(-) function that computes a set of statistics(descriptor)

e S = 5(D) =vector of statistics for data D.

e S* = 5(D*) =vector de statistics for data D*

In order to estimate if the parameter must be accepted or rejected, we
explain in what consists the ABC algorithm:

Algorithm 6.2.1: ALGORITHM A

1. Supose that we have observed data D and S = S(D).
2. Generate 6* from 7(0).

3. Generate D* from f(- | 0*) from f(D | 6*) where f(- | 6*) is the
probability.

4. Accept 6* if D = D* and return to (2).

The problem of this algorithm is that the condition D = D* is not realistic.
Two aproximations are proposed to overcome this issue:

e First approximation: Replace the condition D = D* by a more flexi-
ble condition: d(D, D*) < & where d(-,-) defines a distance between the
two datasets and uses an threshold € to accept the simulated 6*.

e Second approximation: If it is impossible to compute d(D, D*), the
statistic S(D) = (SY(D), ..., SP(D)) is defined and the condition
d(D, D*) < € is replaced by dw (S(D),S(D*)) < € where dy (-,:) < ¢ is
a weigthed distance between two sets of statistics.

Using the second approximation we have the following algorithm:
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Algorithm 6.2.2: ALGORITHM B

1. Suposse we have observed data D and S = S(D).
2. Generate 6* from 7(0).

3. Generate D* from f(- | 0*) from f(D | 6*) where f(- | 6*) is the
probability.

4. Compute statistics S* from D*.

5. Accept 0* if dw (S(D), S(D*)) < € and return to (2).

The objectives of this last algorithm are the followings
1. Study the effect of weights W

2. Optimize the choice of statistics weights W.

3. Reduce the number of statistics to improve estimate.

To reach these objectives we study the sensitivity analysis of Mean Squared
erreur (MSE). For that we must:

e Find the best weights W of dy to minimize MSE criterion.

e Point estimate will be: § = Mean{0* : dy (S, S*) < e} with

Ng=15 Ng=15
Ay (S(D),S(D*) = Y wi(S;—S;)’ and Y wi =1 with w; >0

i=1 i=1

~

e Criterion to evaluate point estimate () is:

No=4 (a(k) _ p(k)y2
MSEy(W) =) 0 o)

2
1 O k)

We use our Algorithm 5.4.1 in the computation of these best weights.
The next example have been provided by the team of Claude Bruchou
of INRA Avignon:
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Example 6.2.18 Problem

min 918.93287w? + 1151.12909w3 + 908.27977w3+

7T12.77461w3 + 774.14579w?2 + 858.26345wg + 975.01862w2+
+997.92049w2 + 977.09608w?2 + 1071.99133w2, + 1068.41654w?,+
+951.22177w?, + 809.24105w?, + 1094.24424w}, + 942.00255wi;+
+880.4876 7w, w2 4-1658.93140w; w3 + 849.10540wews +390.0716 1w, w4+
+470.11656wsw, + 338.43198wsw, + 165.15394w;ws + 604.05698wows+
+72.0973Twsws + 658.16083w,w; + 91.55077w,we + 975.90816wswe+
+91.99926wsws + 659.0908 7w we + 558.63077Twswe + 456.73235w wr+
+1850.68912wqw7 + 587.35178wsw; 4 282.26909w, w7 +410.73584ws w7+
+569.83072wgw7 + 883.95253wy wg +2052.51531wowg 4 871.8396 Twsws+
+300.15157wsws 4 147.2028 Twswg + 218.10548wgws 4 1509.2802 7w, ws+
+1141.08218w;wg + 1707.4998 Lwywe + 1076.50782wswe+
+443.54919w4wg + 438.58698wswg + 291.41095wswy + 759.49057w7we+
+1161.57519wgwg —456.1023 7w w19+ 1916.74118wew10+86.98672wswi
—7423206w4w10+53O5954w5w10+85663882w6w10+152276133w7w10—|—
—|—164847669w8w10 - 788273111)911110 - 42493661w1w11+
+1989.58896wsw11+21.24866wsw1 —181.48907w4wq1 —96.23656wsw11+
+797.67696wsw11 + 1562.63957wrwqq + 1761.24696wgw;1+
+102.51727wgwyy + 2446.92197w w11 — 79.8348 7w w2+
+1621.99042wow12 +249.81671ws w9+ 80.79488w, w19 — 125.70720ws w1 2
+379.94343we w12 4+ 1433.7964 7w w12 + 1387.49924wgw;2+
+43182652w9w12 -+ 204391638101011}12 + 267595910w11w12+
+485.23186w w13 + 211.50140wsw,3 + 241.29953wgwq3+
+712.80388wrw13 + 872.96338wgw3 + 965.48511wgewi3+
413.93988w1pw13 4 287.60965w11 w13 + 634.30374w2w13+
612.56728w; w14 + 1759.42674wow14 +423.82649w3w 14 + 352.38115w4w14
—90.36056w5w14456.76638wew144929.0171 7w7wq4+1224.39898ws w4+
818.41864wywy4 + 1095.74584w w14 + 1136.56386wo0w1 4+
1397.56386w1 w14 + 794.17985w13w14 + 145.77029w w15+
178855675?1)211)15 + 236689171)311)15 + 2022239311)411)15 + 86725256w5w15—|—
+789.49510wg w15 + 926.91090w7w,5 4 817.26054wgw,5+
1074.44452wyw1 5 + 752.80274w1gwq5 + 688.90470wo0w, 5+
776.27853w12w15 + 521.71013wq w15 — 147.93694w14w15;

s.t. 22121 w; =1 and w; >0

The solution 1s:
wy = 0.27119, wy = 0, w3 = 0, w4 = 0.20533, w5 = 0.21343,
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Weg = 0,21)7 = O,wg = O,’LUg = 0,w10 = 0721]11 = 030636721)12 = O,w13 =
O, W14 = 0, W15 = 0.00367.

This solution is very interesting because it implies that in this consid-
ered position the statistics So, Ss, Sg, S7, Ss, Sg, S10, S12, S13, S14 are not
significant. Therefore only the statistics S1, Sy, S5, S11, S15 are meaning-

ful.

6.2.3 Marx generators design

The optimization problem appears also in physical problem, such as the
design of the Marx generators. This design has an specification wich consists
a resonance condition that must be satisfied by the circuit so that all the
intially energy contained in differents capacitors is carried in a finite time to
one only capacitor. We will see that the differents components of this circuit
can be represented in a structuered real eigenvalue matrix that we can solve
by polynomial optimization. This section is based in the paper [Galeani 2014]
We consider the Marx generator network described in the following figure
consists in n stages (and n + 1 loops) where, disregarding the rigthmost
components of the picture, each one of n stages consists in an upper branch
with a capacitor and a inductor and a vertical branch with a capacitor only.

o

r I I T

Figure 6.2: network model of a N-stages Marx generator network driving a
load capacitor

Following [Antoun 2006, Buchenauer 2010, Zaccarian 2009]|, we assume
that all the capacitors and inductors appearing in the upper branch are
the same (corresponding to some fixed positive reals ¢ and ). We call
these capacitors “storage capacitors”. The design problem addressed here
is the selection of vertical capacitors, which are exactly n, where n is the
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number of stages of the Marx circuit. These capacitors are called “parasitic
capacitors”. Following [Antoun 2006, Buchenauer 2010, Zaccarian 2009], the
inductor and capacitor apparing in the rigthmost loop take the values nl and
c¢/n, respectively. This capacitor is called “load capacitor”. This selection
preserves the resonance property (so that the product of any adjacent
capacitor/inductor pairs is always lc) in addition to ensuring that the load
capacitor is n times larger than each one of the storages capacitors. The
problem that we will solve is the following:

Problem 1: Consider the circuit in Figure 6.2 for a given n and certain
values of ¢ and . Select positive values ¢; > 0, 1 = 1,....,n of the parasitic
capacitors and a time T > 0 such that, initializing at t=0 all the storage
capacitors with the same voltage v(0) = wvo and starting from zero current
i all the inductors and zero voltage across the parasitic capacitors and the
load capacitor, the circuit response is such that at t = T all voltages and
currents are zero except for the voltage across the load capacitor that will be
v (T) = nvy since the circuit is lossless.

Solution: A solution to this problem can be determined from the solution
of a suitable structured eigenvalue assignment problem (see |Galeani 2014]).
We recall the main theorem of this work:

Theorem 6.2.19 Consider any set of n distinct positive even integer o =

(a1, ), a matric B € R™™ defined as
2 -1 0 0 ]
B=| 0 - . . 0
: - .. 2 —1
O e

and any positive definite real diagonal solution P = diag(py,--- ,pn) to the
structured eigenvalue assignement problem

o(BP)={aj—1,---,a2 -1} (6.19)

n

where o(BP) denotes the spectrum of BP, i.e, the set of its complex eigenval-
ues. Then for any value of ¢, the selection ¢; = ¢/p;, i = 1,...,n solves the

Problem 1 for all values of | with T = ﬁ

There exists two methods to solve this problem, using symbolic techniques
such that Grobner basis and using convex polynomial optimization techniques
which is of our interest.
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In order to find the solution of this problem we have two differents formu-
lations:

e First formulation: It consists in computing the diagonal entries p =

[p1,- -+, pnl solution of 6.19. This is equivalent to solve a finite set of n
equations with unknown p, each of them correponding to one coefficient
of the following polynomial identity in the variable s:

det(s] — BP) = ﬁ(s —(a? —1)), Vs € C. (6.20)

i=1

For a fixed value n and fixed values in « (we can select o; = 2i, so that
the circuit resonates at the lowest possible frequency), we can write a
system of n polynomial equations in the variable p with rational coeffi-
cients, namely

hi(p)=0,i=1,...,n (6.21)

Example 6.2.20 For the case n =4,

2 -1 0 0 pr 0 0 O
-1 2 -1 0 0 po 0 O
B: P:
0 -1 2 -1 | 0 0 ps O
0o 0 -1 % 0 0 0 p4
So,
2p1 —p2 O 0
BP — -p1 2p2 —p3 O
0 —p2 2p3 —pau
0 0 —ps %P4
Then,

2p1 —p2 O 0
det(sl — BP) = _éjl 3222 ggs _(])94 -

0 0 —ps %sz
15 3

7
4 3
=5t +8(=204 — — P2 — —py — —py )+
S S( P4 8p3 2]92 8p1)

5,3 5 3 5 3
+5*(5paps + 2papa + —paps + =p1pa + —p1ps + —p1p2)+
2 4 2 4 4
5 1

+s (—p2p3p4 — P1P3P4 — P1P2P4 — §p1p2p3) + §p1p2p3p4
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and if we take o = (2,4,6,8)

4

[](s = (a7 = 1)) = (s = 3)(s — 15)(s — 35)(s — 63) =

=1

= s —116s% + 40145 — 44100s + 99225

So, the system of polynomial equations that verifies 6.20 is the following

15 3 7
2p1 + —ps + Spa+ <p1 = 116
D4 + 8p3+ 2p2+8p1

2 pups + 2pap1 -+ 2paps + Spipy -+ ~pips + pips — 4014

22741?3 P2pP4 4]?2?93 2]911?4 4]01]93 4291]02 =

5
D2P3P4 + P1P3Pa + P1P2p4 + §p1p2p3 = 44100
1

§p1p2p3p4 = 99225

e Second formulation: It corresponds to inverting the eigenvalue assig-
ment problem 6.19, thereby obtaining an alternative set of polynomial
equations in the unknown k = [ky, ..., k,|7 = [p1*, -+ ,p,;!] with ratio-
nal coefficient, which have the advantage of being linear in the capacitor
values, indeed, k; = ¢;/c, i = 1,...,n. In particular, for the inverse
problem, equation 6.20 becomes

det(sI = KB™')=]](s = (e} =1)™"), Vs eC. (6.22)
i=1
where K = diag(k) = P~'. For a fixed value of n and fixed values in «,

one can write a system of n polynomial equations in the variable k with
rational coefficients, namely

(k) =0,i=1,..n. (6.23)

Remark 6.2.21 All the entries of each solution to this polynomial sys-
tem are in the interval (0,1).

Example 6.2.22 For the case n =4,

A ki 0 0 0

33 35 0 k 0 0
Bl=1]14 2 4 and K =

R 00 k0

% 1 % 2 0 0 0 k4
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So,
3k 51{:3 lk;4

3
8 4 2
3 3 5
KB—I _ Zkl §k2 _k3 k4
= 5 £
? 4
2

]{Zl —kQ 1875]{?3 %k’4
—kl ]{32 %k:; 2k4
Then,
s ; %kl %kg §k3 %k4
3 s— 2k 2k k
. -1y _ a1 o2 a3 4 —
det(sI — KB™") ok, Shy  s— Dk 3
7 3 15
= st 4+ 3 (—=ky — —ky — 2ky — —k
st +s°( gk — ke 173 3)+
3 5 3 3 5
+$2(Zk1k2 + Zklks + §k3k’4 + 51{311434 + 2koks + Zk2k3)+

5 1
ts(—ghikaks — kaksky — kaksks — kakaka) + S kikokska

and if we take o = (2,4,6,8)

: 2 -1 1 1 1 1
g(s—(% -1) ):(5—5)(5—B)(3_£><3_@):
4 446 116 1

— 4__ 3 o
S 9% T 11025% T 99225° T 99295

So, the system of polynomial equations that verifies 6.22 is the following

gkl + gkg + 2ky + %ks = g

%’“1’” + Zklkg + ;k;g/@ + gklm + 2koky + Zkzks = %
gk’lkzzk‘g + kokgky + kiksky + kikoky = %

%k1k2k3k4 — T;%

As we said before we are interested in using convex polynomial optimiza-
tion thecniques in order to solve this eigenvalue assigment problem. Indeed,
we center our attention in the inverse eigenvalue problem because all the real
solutions of 6.22 sastify | k; |< 1. A numerical approach solution to this
problem is to formulate it as a nonconvex polynomial optimization:
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q- = mkin qo(k)
sthek (6.24)

where qo € Q[k] is a polynomial in k£ € R™ and the feasible set I is defined as
follow:

K= {k’ e R" ‘ qz(k) = O,Z = 1, N, h](k}) = kj - 2l€j+1 + kj+2 > O7j = 1, = 2}
where the inequalities h; define the fact that we look for regular solutions.

We can choose different objective function ¢o(k). But if we want to do the
capacitors ¢; = k;/c as identical as possible we choose:

2 -1 0 0
n St
C]o(k):Z(k’i—kj)Q:kT 0 . . .0 |k
ij=1 S 9 g
| 0 0 -1 2 |

We can solve this non convex polynomial optimization problem thanks to
our minimizer border basis algorithm. For each n the regular solution which
was given in [Galeani 2014, Buchenauer 2010 is:

n n?< n?< n?c n2< n?<s n2c n?< n?e cond
1 1.5 C C C C C C C 1

2 || 0.63120 1.12660 1.0266
3 || 0.84408 0.77662 1.41217 1.0387
4 || 1.13210 0.78731 0.92450 1.60306 1.0440
51 1.47480 0.86342 0.84481 1.07344 1.72179 1.0448
6 || 1.87892 0.96056 0.85587 0.91518 1.23619 1.77345 1.0592
7 | 2.07061 1.05669 1.04940 1.05715 1.06861 1.08449 1.85298 1.0502
8 11 2.39407 1.17326 1.12475 1.11221 1.10440 1.0996 1.0998 1.87252 || 1.0617

Table 6.5: Regular solutions to the Marx design problem

Indeed, by Theorem 6.2.19, nz% = n2k; then the regular solution in k are:
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n kq ko ks ky ks ke k ks cond
1 1.5 1

2 || 0.1578  0.28165 1.0266
311 0.09378 0.08629  0.1569 1.0387
4 || 0.07075  0.0492  0.05778 0.10019 1.0440
51| 0.05899 0.03453 0.03379 0.04293 0.06887 1.0448
6 || 0.0522 0.026682 0.02377 0.02542 0.03433 0.04926 1.0592
711 0.04225 0.02156 0.02141 0.02157 0.02180 0.02213 0.0378 1.0502
8 || 0.0374 0.01833 0.01757 0.01737 0.01725 0.01718 0.01785 0.02925 || 1.0617

Table 6.6: Regular solutions to the Marx design problem (valeus k;)

Example 6.2.23 In the case n = 4 we formulate the following problem

min  6k2 — dkiky — dky ks — Akyky + 6k2 — Akoks — Akoky 4 6k2 — dksky + 6k2;
st Thy + Sky + 2ks + Bhs — § = 0;
vk + Skiks + Shaky + Skiky + 2koky + Shoks — {255 = 0;
gklkzk:a + koksky + kiksky + k1koky — % =0;
e koksky — g5k = 0
ki —2ky + k3 > 0;

ko — 2ks + ky > 0;

Applying our minimization border basis algorithm 5.4.1 we obtain the fol-
lowing minimizer:

sol := (0.0707,0.0492,0.0577,0.1001)

which coincides with the regular solution for n = 4 of table 6.6 with precision
10e — 4 therefore we can deduce that the solution is very accurate.

Our experimentation have been done until n = 8, the solution obtained
is exactly the same that the table 6.6 which improves the solutions not very
accurate for n = 2,3,4,5 given by Gloptipoly in [Galeani 2014].

6.3 Implementation

The C++ implementation of the previous algorithm has been performed in
the BORDERBASIX package of the MATHEMAGIX! software, which provides a

lwww.mathemagix.org
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C++ implementation of the border basis algorithm of [Mourrain 2012|. This
algorithm was implemented by Philippe Trebuchet and Bernard Mourrain.

For the computation of border basis, we use a choice function which is
tolerant to numerical instability i.e. a choice function that chooses as lead-
ing monomial a monomial whose coeflicient is maximal among the choosable
monomials as described in [Mourrain 2008].

The Semi-Definite Programming problems are solved using four different
solvers

e SDPA? software which work with double precision. It is implemented
in C++ language and utilizes the BLAS and LAPACK libraries for
matrix computations. It is designed to solve small and medium size
SDP problems: usually the number of variables m < 2000 and matrix
sizes n < 2000 but also depend on the available hardware.

e CcSDP? software which work with double precision. Tt is implemented
in C language and utilizes the BLAS and LAPACK libraries for ma-
trix computations. It is designed to solve small and medium size SDP
problems of the same size of SDPA.

e SDPA-GMP? software which works with multiple precision to obtain
highly accurate solutions. It is implemented in C++ language and uti-
lizes GMP library. It is designed to solve small and medium size SDP
problems of the same size as SDPA. On the other side SDPA-GMP is in
general ten or hundred times slower than the SDPA.

e MOSEK® software. Tt is implemented in C/C++ language. Tt is designed
to solve small, medium and big size SDP problems. It is in general
between two and four times faster than the others three.

For the link with SDPA, SDPA-GMP, CSDP we use a file interface since,
input data is the same in the three and the output data change in cSDP. In
the case of MOSEK, we use the distributed binary library.

Once we have computed the moment matrix, we verify the flat extension
using the Decomposer Algorithm with some differences. The Descomposer
Algorithm is in the BORDERBASIX package and it was implemented in C++
by Matthieu Dien. This algorithm decomposes a symmetric tensor in sum of
tensor of rank 1 or equivalently, it decomposes a multivariate polynomial in a

2http:/ /sdpa.sourceforge.net
3https://projects.coin-or.org/Csdp/
4http:/ /sdpa.sourceforge.net
Shttp:/ /www.mosek.com
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sum of powers of linear forms. We introduce some changes in order to use it
for verify the flat extension.

The minimizer points are computed from the eigenvalues of the multiplica-
tion matrices. This is performed using Lapack routines inside the Decomposer
Algorithm that we can get when we have verify the flat extension.

In order to compare inside the same environment our algorithm with the
full moment matrix relaxation algorithm described in [Lasserre 2009a|, which
is implemented in the package Gloptipoly of Matlab developed by D. Henrion
and J.B. Lasserre, we have also implemented in C++ this latter algorithm in
the BORDERBASIX package.

6.3.1 Input arguments, Input data file and Output data
file

In this subsection we describe the different arguments that we need to give in
the input when we want to call to the algorithm 5.4.1. We explain them in
the same order than they need to be introduced.

1. Input data file name. This file contains all the information of the opti-
mization problem: the number of equalities and inequalities, the poly-
nomial to minimize and the differents constraints. We will describe it
in more detail below.

2. SDP Solver : -s n where n=(1-SDPA, 2-SDPA-GMP, 3-CSDP, 4-
MOSEK). If we do not fill this option the default solver is 1-SDPA.

3. Method to wvalidate the flat extension: -m n where n—(0-decomposer
algorithm, 1-rank of submatrices). If we do not fill this option the
default solver is 0-decomposer algorithm.

4. Parameter file name for the SDP Solver: -p f where f is the Parameter
file name. Apply only in the cases -s 1, 2 or 3.

5. Threshold in the Decomposer algorithm: -t threshold. Apply only in the
case -m 0. If we do not fill this option the default threshold is 10e — 3.

6. Complete border basis or not: -b n=(0-if we use complet border basis,
I-border basis of degree minimum). If we do not fill this option we
computed by default the complet border basis.

The input data file of our algorithm has the following format:

e nl; number of equalities
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e n2; number of inequalities
e f: polynomial function to minimize
e g;; equality i

e h;; inequality (>) j

Example 6.3.1 We want to solve this problem:

min ~ —10 + 2z + 6y — 222 + 2zy — 2y°
s.t. —224+2x>0
—8—y*+6y>0
1—a?+ 22y —y?> >0

The input data file will be as follow:

0;

3;
1042520+ 6%l —2% 202 + 2% 20 x 21 — 2 % 1%
—20% + 2 * 20;

—8 — 21?2 + 6 * x1;

1 — 20?4+ 2% 20 21 — 21%

Table 6.7: Input data file‘examplel10”

The output data file of our algorithm will be called the name of input
data file + Solution. For example if the input in the above example is called
“examplel10” the output data file asociated will be called “example10Solution”.
It has the following format:

e sol:=[sy, S9, ..., 5] where s; are the different solutions.

e fmin:=f* where f* is the minimum of the optimization problem.
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Example 6.3.2 The output data file asociated to the above example will be

as follow:

sol:=[[1,2],[2,2], 2, 3]];
fmin;:=2

Table 6.8: Output data file:“examplel10Solution”






Conclusion

Pour conclure, notre travail met en avant deux points importants:

e Permettre de traiter les problémes ou la variété KK'T est vide bien que
le minimum soit atteint dans un point de S. Pour cela, nous util-
isons la variété de Fritz-John que nous définissons comme la réunion
de la variété KKT et de la variété des points singuliers. Notre prob-
léeme d’optimisation sur Sg;,, est du méme type que sur Skgp, nous
avons étudié s’il y a ou pas des points qui minimisent notre fonction
f sur Skxr. Nous appliquons récursivement la méme méthode sur
Ssing- Néanmoins, il reste du travail a faire sur ce point, nous avons
besoin d’une preuve rigoureuse pour montrer que cette séquence de sous-
problémes est finie. Il faudra regarder si la dimension de la région fais-
able et/ou la multiplicité des solutions de la région faisable se réduit de
plus en plus.

e Nous avons développé et codé en c++ un nouvel algorithme pour ré-
soudre des problémes d’optimisation de type (2.1) quand le nombre des
points qui minimisent notre fonction est fini. Cet algorithme utilise
I’algorithme de bases de bord, développé par Mourrain et Trebuchet,
qui permet de réduire la taille et le nombre de paramétrés de notre
probléme SDP, et donc de réduire la complexité de calcul de la SDP.
Notre implantation donne la possibilité de résoudre la SDP avec quatre
logiciels: SDPA, CSDP, SDPA-GMP et MOSEK. Ce dernier permet une
réduction du temps d’exécution comprise entre 50% et 80% par rapport
aux trois autres logiciels. Pour vérifier si le minimum est atteint (par
une généralisation du critére d’extension plate de Curto-Fialkow), nous
avons développé un nouvel algorithme qui utilise des polynémes orthog-
onaux et que nous peut aussi servir pour la décomposition de tenseurs.
Nous avons aussi codé la méthode de Lasserre (Gloptipoly) en c++,
afin de bien comparer les temps de calcul. Notre algorithme est libre-
ment disponible et sera mis en place sur un site web dans les prochaines
mois avec toute 'information nécessaire pour son utilisation. Il reste a
réaliser un travail d’optimisation de code ainsi qu’a concevoir un critére
d’arrét de l'algorithme quand le nombre de points qui minimisent notre
fonction n’est pas fini.
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Résumé étendu

Dans le premier chapitre nous introduisons les définitions et théorémes
principaux sur les idéaux et les variétés, nous introduisons aussi I’espace dual et
définissons un élément important dans notre étude, les matrices et opérateurs de
Hankel et les propriétés de 'anneau quotient qui s’obtient comme quotient par le
noyau de notre opérateur d’Hankel.

Dans le deuxiéme chapitre, nous introduisons notre probléme d’optimisation
polynomial :

fF=infxern f(x) (25)
st. gdx) = =g (x)=0
gl(x) Z 07 "'7gn2(x) Z 0

qui consiste & minimiser une fonction polynomiale a coefficients réels dans I’ensemble
semialgébrique

S:=8(g) = {X €R" ‘ g?<x) = 07"'7921(}() = 0g,(x) = 07"'7gn2(x) > 0} (26)

Nous étudions les différentes variétés associées aux points critiques: la variété
gradiente, la variété de Karush-Kuhn-Tucker (KKT) et enfin la variété de Fritz-
John (FJ). Pour cette derniére variété, il n’y a pas beaucoup de travaux (voir
|Lasserre 2009al) et grace a elle nous allons pouvoir traiter le cas ot le minimum de
notre fonction n’est pas atteint en un point de la variété KKT bien que le minimum
de notre fonction soit atteint en un point de S (voir exemple 2.4.1). Nous montrons
que tout point de S qui minimise notre fonction f est la projection d’un point réel
de la variété de FJ. Nous montrons que la variété de FJ est I'union de la variété
des points singuliers et de la variété de KKT. Comme chercher le minimum de
la fonction f sur la variété des points singuliers est un probléme du méme type
que chercher le minimimun de la fonction f sur la variété de KKT, nous pouvons
réduire notre étude & ce dernier type de problémes sur la variété de KKT.

Dans le troisiéme chapitre, nous présentons d’abord les définitions de polynémes
positifs et sommes de carrés (SOS), de module quadratique Q(g) et de preordering
P(g) et les théorémes de Putinar et Schmudgen qui relient tous ces définitions. Puis
nous relions notre probléme (25) avec la théorie des matrices de moments et avec
I’ensemble des polynémes positifs. D’un ¢6té nous pouvons regarder notre probléme
comme un probléme de maximisation :

’f*:suppt.q. f(x) — p >0 dans S"

Ce probléme est trés difficil a resoudre. Nous avons essayer de le résoudre en utilisant
un autre type de probléme pour S = R"

’fsos =supp t.q. f(X) — pest SOS‘
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Ceci nous rammeénne & un probléme de programmation semidéfinie (SDP).
Dans le cas ou S = S(g) est un ensemble semialgébrique (25)

fe? =supptq f—peP(g)

Quand nous bornons le degré de nos polynémes, la formulation ci-dessus nous con-
duit & un probléeme SDP semidéfinie de dimension finie. Nous considerons pour t
tel que 2t > max(deg(f),deg(g?), ... deg(g5,),deg(gy, ..., deg(g;,)) le probléme
tronqué :

fig =supptq. f—p€Pug)

Nous pouvons alors construire une série de problémes (croissant en le degré t) dont
la série de maximums converge vers le minimum de notre probléme de départ

[l < AP < fee < f*

D’un autre c6té, nous pouvons regarder notre probléme comme un probléme de
minimisation:

fr=infy [ f(2)u(dz)

ou l'infimum est pris sur toutes les mesures de probabilité dans R™ supportée pour
S. Comme [ f(z)u(dz) =, fo [2u(dz) = Ty, ouy = [ 2%u(dz) est le vecteur

de moments associé a u, la formulation ci-dessus est équivalente a :

f* =inf fTy t.q. yo = 1, y a une mesure representative en S |.

Le probléme ci-dessus est aussi tres difficile a resoudre. Nous considerons une borne
inférieure en imposant des conditions sur la matrice des moments:

J& =inf cgun fTy st yo =1, H(y) =0, H(gjy) =0

Comme travailler avec des formes linéaires est la méme chose que travailler avec des
vecteur de moments nous étudions le probléme suivant :

fg = infaerpg- A(f) sT. A(1) =1, A(p) =0 Vp € P(g)

Dans les deux derniers problémes, nous travaillons avec des matrices de moments
infinies et des matrices de Hankel infinies (respectivement). En 2001, Lasserre (voir
|Lasserre. 2001]) a eu l'idée de tronquer ces problémes pour trouver des problémes
de dimension finie que nous pouvons résoudre avec des méthodes SDP.

fe = infy cp ffy sit.yo =1, Hy(y) = 0, Hy_a,, (g5y) = 0(j = 1....,n2)

ou

fe = infacrpgs, A(f) t.g. A(1) =1, Alp) >0 Vp € Pi(g)
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ou t > max(dys,dg), et
Lig:={A R[5 [Alp) =0, Vp € Pi(g), A(1) = 1}.
Donc cette derniére formulation est égale a:

ftlfg = ianER[xEt A(f) t.q. A € Li(g)

Lasserre montre que nous pouvons construire une séquence de problémes
d’optimisation convexes tronqués, dont les minimums convergent vers le minimimun
de notre probléme du départ.

fla < flag < < fr<f

Dans le quatrieme chapitre, nous étudions quand la séquence ci-dessus converge
en un nombre fini de pas, c’est-a-dire, quand s’il y a une convergence exacte. Il
y a de nombreuses études sur ce sujet (voir par exemple [Nie 2006, Laurent 2007,
Laurent 2009a, Nie 2013a, Nie 2011, Marshall 2009, Demmel 2007, Ha 2010]. Dans
une premiére partie nous étendons les résultats sur la représentation de polyndémes
qui sont positifs aux les points critiques (voir théoréme principal 4.1.9). Cette
représentation ne va dépendre que de la variable x et donc ce théoréme généralise le
résultat de [Demmel 2007]|. Nous utilisons ces résultats sur polynémes positifs pour
montrer les deux résultats principaux suivants :

e Si ’ensemble de minimiseurs KKT est vide, notre séquence de problémes est
vide aussi et vice versa (voir Proposition 4.2.1).

e Nous pouvons construire des séquences exactes de problémes qui dépendent
seulement de la variable x. De plus 'exactitude de la séquence ne va dépen-
dre que de points réels et I'idéal minimiseur peut étre construit & partir du
noyau de la matrice des moments associée a la forme linéaire méme si I'idéal
des minimiseurs n’est pas zéro dimensionnel. Sous certaines conditions de
regularité nous montrons qu’il n’y pas d’écart de dualité, c’est-a-dire que le
minimum de p-probléme et le maximum de sos-probléme sont les mémes et
égaux au minimimun de notre probléme initial (voir Théoréme 4.2.10)

Enfin nous montrons des conséquences de ces résultats sir des cas particuliers:
optimisation globale, le cas dont g est régulair, le cas ol la variété réelle des (g°)
est de dimension finie, le cas oil la variété réelle de (g°) (quand g = (g%)) est lisse
et équidimensionnelle et le cas ol nous voulons calculer juste les points réels de S
(en minimisant f = 0).

Dans le cinquiéme chapitre, nous proposons un nouvel algorithme pour résoudre
notre probléme quand le nombre de points qui minimisent notre fonction est
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fini. On utilise les bases de bord que nous présentons dans le début du chapitre
avec des exemples, définitions et théorémes qui nous permettent de connaitre
ces bases en plus détail. Les bases de bord sont une généralisation des bases de
groebner mais avec une meilleure stabilité. Grace a 'usage des bases de bord nous
pouvons réduire la taille de nos matrices de moments et le nombre de paramétres
associés au notre probléme (SDP). La complexité de ces SDP problémes est
O((ps3Scp?s?Pep3sP)log(e71)) ot € > 0 est la précision d’approximation, s est
la taille of the moment matrices, p est le nombre de paramétres et ¢ est le nombre
de contraintes. La solution de la SDP est une forme linéaire qui est optimale
(elle minimise notre function f). Pour vérifier si le minimimun de notre probléme
initiale est atteint, notre matrice de moments (Hankel) solution du probléme SDP
doit vérifier une généralisation du critére de l'extension plate de Curto Fialko
(voir |Laurent 2009b, Curto 1996]) . Nous proposons un nouvel algorithme qui
vérifie ce critére grace a l'usage de polynomes orthogonaux. A la sortie de cet
algorithme si le critére est vérifié nous obtenons une base et les relations dans
le noyau de notre matrice de moments. Avec ces deux éléments nous pouvons
construire les matrices de multiplication associées aux différentes variables et
obtenir les points qui annulent le noyau, c’est-d-dire les points qui minimisent
notre fonction f. A la fin du chapitre nous donnons des exemples qui montrent
comment notre algorithme marche. Le premier montre plus en détail les différentes
étapes de notre algorithme. Dans le cas ou 1’idéal n’est pas zéro dimensionnel,
il n’y a pas de critére pour arréter notre algorithme, mais nous savons que nous
pouvons récupérer les points qui minimisent notre fonction f en regardant le noyau
de la matrice de moments comme le montrent les deux derniers exemples du chapitre.

Dans le dernier chapitre nous analysons le comportement pratique de notre algo-
rithme. Nous decrivons une série d’expérimentations en comparant notre algorithme
avec celui de la méthode de Lasserre implémente en Gloptipoly pour Matlab. Nous
avons codé notre algorithme et celui de gloptipoly en C++ pour pouvoir comparer
dans le méme enviroment. Nous montrons des tableaux ol nous pouvons voir la
différence de taille de matrices, de nombre de paramétres et de temps d’exécution.
Pour la résolution du SDP, on utilise différents logiciels: SDPA, CSDP, SDPA-GMP
et MOSEK. Ce dernier réduit le temps d’exécution entre un 50% et un 80%. Nous
montrons comment utiliser notre algorithme. A la fin, nous donnons trois applica-
tions de notre algorithme dans trois domaines différents:

e Le traitement des signaux et télécommunications : en calculant la meilleure
approximation de range 1 et 2.

e La biologie : détermination des facteurs plus représentatifs dans la croissance
des racines de plantes.

o L’électronique : le probléme du générateur de Marx comme un probléme
d’assignation de valeurs propres.



Matrices de Moments, Géométrie algébrique réelle et
Optimisation polynomiale

Le but de cette thése est de calculer 'optimum d’un polynéme sur un ensemble semi-
algébrique et les points ol cet optimum est atteint. Pour atteindre cet objectif, nous
combinons des méthodes de base de bord avec la hiérarchie de relaxation convexe de
Lasserre afin de réduire la taille des matrices de moments dans les problémes de pro-
grammation semidéfinie positive (SDP). Afin de vérifier si le minimum est atteint,
nous apportons un nouveau critére pour vérifier I’extension plate de Curto Fialkow
utilisant des bases orthogonales. En combinant ces nouveaux résultats, nous four-
nissons un nouvel algorithme qui calcule 'optimum et les points minimiseurs. Nous
décrivons plusieurs experimentations et des applications dans différents domaines
qui montrent les perfomances de I'algorithme. Au niveau théorique nous prouvons
aussi la convergence finie d’une hiérarchie SDP construite & partir d’un idéal de
Karush-Kuhn-Tucker et ses conséquences dans des cas particuliers. Nous étudions
aussi le cas particulier ot les minimiseurs ne sont pas des points de KKT en utilisant
la variété de Fritz-John.

Mots clés: Optmisation polynomiale, Matrices de Moments, Method de
relaxation, Base de Bord, extension plate, Programation SemiDéfinie, variete de
Fritz-John

Moments Matrices, Real Algebraic Geometry and
Polynomial Optimization

The objective of this thesis is to compute the optimum of a polynomial on a closed
basic semialgebraic set and the points where this optimum is reached. To achieve this
goal we combine border basis method with Lasserre’s hierarchy in order to reduce
the size of the moment matrices in the SemiDefinite Programming (SDP) problems.
In order to verify if the minimum is reached we describe a new criterion to verify the
flat extension condition using border basis. Combining these new results we provide
a new algorithm which computes the optimum and the minimizers points. We show
several experimentations and some applications in different domains which prove the
perfomance of the algorithm. Theorethically we also prove the finite convergence of
a SDP hierarchie contructed from a Karush-Kuhn-Tucker ideal and its consequences
in particular cases. We also solve the particular case where the minimizers are not
KKT points using Fritz-John Variety.

Keywords: Polynomial optmization, Moment matrices, relaxation method,
border basis, flat extension, SemiDefinite Programming, Fritz-John variety
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