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Å Ångström 

Ar aryl 

CAAC cyclic (alkyl)(amino) carbene 

COD cycloocta-1,5-diene 

Cp cyclopentadienyl 

Cp* pentamethylcyclopentadienyl 

CPME cyclopentyl methyl ether 

 ! chemical shift (ppm) 

DFT 

Dipp 

density functional theory 

diisopropylphenyl 

DMC dimethyl carbonate 

DME dimethoxyethane 

DMF dimethylformamide 

ee enantiomeric excess 

equiv. equivalent 

ESI electro-spray ionization 

FT-IR Fourier-Transformed Infra Red 

GC gas chromatography 

HMDS 

Mes 

Hexamethyldisilazane 

mesityl 

MS mass spectroscopy 

NHC N-heterocyclic carbene 

NPs nanoparticles 

PMHS polymethylhydrosiloxane 

ppm parts per million 

THF tetrahydrofurane 

TM transition metal 

TMDS tetramethyldisiloxane 

VT NMR Variable Temperature Nuclear Magnetic Resonance 
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 Chaque jour, les exigences économiques et environnementales évoluent et mènent à 

des changements fondamentaux au niveau de l'optimisation des procédés dans l'industrie 

chimique. A cet égard, la catalyse, qui est utilisée dans près de 75% de ces procédés, joue un 

rôle central, contribuant de manière remarquable à la diminution des coûts de production des 

produits chimiques et à celle de leur impact environnemental. Bien qu'un travail considérable 

ait été effectué dans ce domaine depuis de nombreuses années, le manque de catalyseurs qui 

soient à la fois efficaces et bon marché rend crucial le travail de recherche afin de toujours 

mieux répondre à ces exigences. 

 Dans cette optique, l !"#$% &!' !&()* !+!,&,!'-#-.,!/ #*!01,0+2$#+&-$3!' !4+&+05* 6#*!' !

nickel associés à des ligands carbènes N-hétérocyclique (NHCs), en vue de potentielles 

applications dans des réactions chimiques éco-compatibles. Le choix de cette thématique a été 

guidé par trois principales motivations : (i) 016&-0-*+&-$3!'6!3-47 08 un métal abondant et peu 

onéreux, (ii) l'association de ce métal avec des ligands NHCs, qui se révèle souvent bénéfique 

en catalyse, et (iii) la recherche de réactions chimiques produisant le moins de déchets 

possible.  

 

 L'utilisation de catalyseurs à base de nickel a pendant longtemps été éclipsée par le 

succès connu par les métaux nobles tels que le ruthénium pour la métathèse des oléfines, ou 

encore le palladium pour les réactions de couplages croisés impliquant la formation de 

0-+-*$3*!9+#2$3 :9+#2$3 ;!9 " 3'+3&8! 0 6#!<+-20 !+2$3'+34 , corrélée à un prix très élevée, 

incite au développement d'alternatives plus viables à long terme. A cet égard, le nickel 

représente une option économiquement attractive, comme en témoignent les prix actuels des 

métaux (Figure 1). 

 

Figure 1. Prix des métaux exprimés en $/mol en juin 2014 (source : www.infomine.com) 
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 Par ailleurs, l'association de ligands aux métaux de transition permet d'accorder les 

propriétés électroniques et stériques de ces derniers afin d'aboutir à des réactivités et des 

efficacités accrues en catalyse. Dans cette perspective, l'utilisation de NHCs a fortement 

contribué à l'amélioration des performances de la plupart des catalyseurs organométalliques. 

En effet, ces ligands fortement "-donneurs ont tendance à amoindrir la rétrodonnation # du 

métal vers le carbène, les rendant plus riches en électrons qu'avec les trialkylphosphines. En 

outre, la dissociation de la liaison métal:NHC est défavorable, ce qui permet d'aboutir à des 

systèmes catalytiques plus stables, et parfois plus actifs. Ces espèces, initialement considérées 

comme "simples curiosités de laboratoire", sont ainsi rapidement devenues des ligands 

incontournables en catalyse homogène. Comme il a été observé pour la plupart des métaux de 

transition, l'emploi de NHCs a permis la diversification, et dans certains cas l'amélioration des 

performances des catalyseurs à base de nickel. Le Chapitre I de ce manuscrit présente l'état 

de l'art des applications catalytiques ' *!*5*&)= *!>-:>?9!' "6-*!0 6#!"# =-)# !+""0-4+&-$3!

en 1999. De façon impressionnante, ces systèmes sont efficaces dans des réactions aussi 

variées que la formation de liaisons C+#2$3 :Carbone et C+#2$3 :Hétéroatome par couplage 

croisé, impliquant dans la plupart des cas la fonctionnalisation de liaisons 

9+#2$3 :?5'#$.)3 ,  et les réactions d'oxydation et de réduction. Ils sont également actifs en 

couplage réductif à trois composants, ou encore en olygomérisation et polymérisation 

d'oléfines, mais ces thématiques ne seront pas traitées dans le premier chapitre. 

 

 Enfin, notre motivation est centrée sur 0@+""0-4+&-$3!' !4 *!4+&+05* 6#*!>-:>?9!'+3*!

des réactions éco-compatibles. Parmi ces transformations, la fonctionnalisation directe de 

0-+-*$3*!9+#2$3 :?5'#$.)3 , "#-34-"+0 = 3&!"$6#!0+!<$#=+&-$3!' !0-+-*$3*!9+#2$3 :9+#2$3 !

 &! 9+#2$3 :?,&,#$+&$= , a considérablement attiré l'attention des chercheurs. En effet, en 

comparaison, par exemple, avec les couplages croisés classiques qui nécessitent l'utilisation 

de réactifs organométalliques coûteux et/ou non-commerciaux, cette méthodologie plus 

directe est d'un intérêt économique et environnemental certain (Schéma 1). 

 D'autre part, la réduction de composés (pseudo)carbonylés est une réaction 

fondamentale en chimie organique. La réduction de ces fonctionnalités par hydrogénation 

catalytique est considérée comme la voie idéale, car simple et économe en atome. Cependant, 

les conditions très contraignantes requises (pressions et températures élevées) ont poussé les 

chercheurs à développer des alternatives moins coûteuses en énergie et moins dangereuses. A 

cet égard, l'hydrosilylation de fonctions (pseudo)carbonylées catalysée par les métaux de 
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transition constitue une option prometteuse permettant de travailler dans des conditions 

douces, et permettant de réaliser une séquence de réduction/protection en une seule étape, ce 

qui peut s'avérer fort intéressant dans l'optique de fonctionnalisations ultérieures (Schéma 2). 

Cependant, cette méthodologie nécessite souvent l'emploi de métaux nobles, peu abondants et 

4$A& 6B;!C""0-D6 #!' *!*5*&)= *!>-:>?9!'+3s ces transformations représentait ainsi un défi 

de grand intérêt. 

 

 

 

Schéma 1. Comparaison entre couplage croisé classique et fonctionnalisation directe d'une 

0-+-*$3!9+#2$3 :?5'#$.)3  

 

 

 

 

Schéma 2. Hydrosilylation de composés (pseudo)carbonylés catalytique 

 

 Dans ce contexte, notre laboratoire a récemment montré que des complexes demi-

sandwich du type [Ni(NHC)XCp], qui sont stables à l'air et synthétisés de manière très aisée 

par réaction du nickelocène avec le sel d'imidazolium correspondant, sont capables d'activer 

' *! 0-+-*$3*! 9+#2$3 :?5'#$.)3 ! ' ! 0@+4,&$3-&#-0 !  &! ' ! 0@+4,&$3 !  3! présence de quantités 

stoechiométriques d'une base forte. De façon surprenante, l'activation de l'acétone par le 

complexe [Ni(IMes)ClCp] 1 a aboutit à la formation d'un rare exemple de complexe 

3-47 0:+4,&$350e8!  &! E! 0@63-D6 ! <$#=+&-$3! '@63! 4$="0 B ! '-3-47 0:$B5+0050e, provenant 

respectivement de la simple et de la double activation de l'acétone (Schéma 3). 
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Schéma 3. Nickelation de l'acétone en présence d'une base forte 

 

 L'isolement de telles espèces 3-47 0:,3$0+& ! 9-liées, qui sont d'importants 

intermédiaires en $-arylation de composés carbonylés, nous a incité à tester les complexes de 

type [Ni(NHC)XCp] en $-arylation de cétones acycliques. Cette transformation fait intervenir 

la fonctionnalisation d'une liaison Carbone:Hydrogène en $ d'une cétone énolisable 

acyclique avec un halogénure d'aryle en milieu basique. Il est important de noter que dans la 

grande majorité des cas, des catalyseurs à base de palladium sont utilisés en réaction d'$-

arylation de dérivés carbonylés. De plus, les quelques exemples où des catalyseurs de nickel 

ont été employés sont limités à l'emploi de cétones cycliques, avec des charges importantes en 

Ni(COD)2, qui est pyrophorique et sensible à l'air. A notre connaissance, seul un exemple d'un 

4$="0 B !2- 3!',<-3-!3-47 0FGGH:>?9!+!" #=-s l'emploi de cétones acycliques, toujours avec 

d'importantes charges catalytiques, et avec un champ réactionnel relativement limité. Ces 

complexes demi-sandwich se sont effectivement montrés actifs dans cette transformation, et 

cette étude est détaillée dans le Chapitre II de cette thèse. Les meilleurs résultats ont été 

obtenus en faisant réagir les cétones acycliques avec des iodures/bromures d'aryles et 1,5 

équiv. de NaOtBu comme base, dans le toluène à 110°C pendant 24 à 48 h en présence de 3 

mol% du complexe [Ni(IPr)ClCp] 2 (Schéma 4). De façon satisfaisante, la charge en pré-

catalyseur a même pu, dans certains cas, être abaissée à 1 mol%, et les résultats obtenus après 

48 h de réaction soulignent la longue durée de vie de l'espèce active. 
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Schéma 4. $-Arylation de cétones acycliques catalysée par [Ni(IPr)ClCp] 2 

 

 Le Tableau 1 montre qu'une large gamme d'iodures et de bromures d'aryles peut être 

employée, qu'ils soient riches ou pauvres en électrons (entrées 1-4 et 7-11).  
 

Tableau 1. $-Arylation de cétones avec des halogénures d'aryles catalysée par 2a 

Entrée Cétone 
Halogénure 

d'aryle 
Produit de couplage 

Temps 

(h) 

Rendement 

(%)b 

1 
   

24 73 

2  
  

24 < 1c 

3  
  

24 92 

4  
  

24 65 

5 

6 

 

  

24 

48 

10 

17  

7  
  

24 89 

8 

9 

 

  

24 

48 

53 

93  

10 

11 
 

 
 

24 

48 

52 

85  
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Tableau 1. (suite) 

Entrée Cétone 
Halogénure 

d'aryle 
Produit de couplage 

Temps 

(h) 

Rendement 

(%)b 

12 
   

24 42 

13 

14   
 

24 

48 

66 

89 

15 
 

 
 

24 71 

16 

17  

 

 

24 

48 

84 

92  

18 

19  

 

 

24 

48 

13 

21  

20 
 

 
 

24 < 1 

21 

22  

 

 

24 

48 

68 

79  

23 
 

 
 

24 55d 

24 
 

  

 

24 < 1e 

a 
Conditions réactionnelles: cétone (1,2 mmol), halogénure d'aryle (1 mmol), NaOtBu (1,5 mmol), 2 (3 mol%) 

dans le toluène (3 mL) à 110°C pendant 24 ou 48 h. b Rendements isolés ; valeur moyenne de deux expériences. c 

Rendement déterminé par CPG ; valeur moyenne de deux expériences. d Un mélange 2:1 de 2-(p-tolyl)-4-méthyl-

pentan-3-one et 2-(p-tolyl)-2-méthyl-pentan-3-one est obtenu. e Des produits de condensation aldoliques ont été 

observés. 

 

La propiophénone et ses dérivés, ainsi que quelques cétones aliphatiques se sont également 

montrées être des substrats totalement compatibles avec cette méthodologie (entrées 1, 12-19 

et 21-23). Cependant, une limitation majeure de ce système concerne l'emploi de substrats 
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encombrés pour lesquels une nette chute d'activité a été observée (entrées 5, 6, 18 et 19), et de 

cétones méthyléniques avec lesquelles la réaction d'aldolisation prend le pas sur la réaction 

d'$-arylation (entrée 24). Enfin, en présence d'un chlorure d'aryle (entrée 2) ou d'une cétone 

cyclique (entrée 20), aucune activité catalytique n'a été observée. 

 Une étude du mécanisme réactionnel d'$-arylation catalysée par ces complexes demi-

sandwich >-:>?9!+!également été réalisée. En premier lieu, un test au mercure a permis de 

montrer que la réaction était très probablement le résultat d'une véritable catalyse homogène. 

I *!"$& 3&- 0*!-3& #=,'-+-# *!>-:,3$0+& ! &!>-:+#50!',#-/,*!'6!4$="lexe [Ni(IMes)ClCp] 1, 

lui aussi actif en $-arylation de cétones acycliques, ont alors été synthétisés (Schéma 5). Le 

',#-/,!>-:,3$0+& !3 C-lié a été obtenu avec un rendement de 45% par réaction de 1 avec 1 

équiv. de KOtBu et de propiophénone dans le toluène à température ambiante en 4 h. D'autre 

part, la substitution du ligand chlorure de 1 par un groupement phényle, par réaction avec 1 

équiv. de phényllithium à froid, a mené E!0+!<$#=+&-$3!'6!4$="$*,!>-:+#50e 4 qui a été isolé 

avec 63% de rendement après purification. Ce dernier a par ailleurs été caractérisé par 

diffraction de rayons X sur monocristal. 

 

 

Schéma 5. J53&()* !' *!4$="0 B *!>-:,3$0+& !3  &!>-:+#50e 4 dérivés de 1 

 

 Les complexes 3 et 4 ont ensuite été évalués comme potentiels intermédiaires 

réactionnels par une série d'expériences en conditions stoechiométriques et/ou catalytiques 

(Schéma 6). L+!#,+4&-$3! 3&# !0 !4$="0 B !>-:+#50e 4 et la propiophénone en milieu basique 
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n'a rien donné (Schéma 6, éqn. 1), ce qui exclut sa participation au mécanisme. Par contre, la 

#,+4&-$3!  3&# ! 0 ! 4$="0 B ! >-:,3$0+& ! 3 et le 4-bromotoluène dans le toluène à reflux a 

majoritairement résulté en la formation de propiophénone (63%) avec une quantité non 

négligeable du complexe [Ni(IMes)BrCp], ainsi qu'à celles de traces du produit de couplage 

(Schéma 6, éqn. 2). Ce résultat suggère que le complexe [Ni(IMes)BrCp] proviendrait 

majoritairement de la réaction de déhalogénation du 4-bromotoluène étant donné la formation 

majoritaire de propiophénone, mais pourrait également partiellement provenir du couplage de 

3 avec le 4-bromotoluène, étant donné la formation de traces du produit de couplage. Pour 

vérifier cette hypothèse, l'$-arylation de la propiophénone avec le 4-bromotoluène a été 

#,+0-*, !+/ 4!0 !4$="0 B !>-:,3$0+& !3 en conditions catalytiques (Schéma 6, éqn. 3), et un 

rendement de 11% en 1-phényl-2-(p-tolyl)-propan-1-one a été mesuré par GC. Le complexe 3 

est donc un intermédiaire possible de la réaction d'$-arylation, mais la chute d'activité 

observée, en comparaison avec le complexe [Ni(IMes)ClCp] 1 qui donne 25% de rendement 

dans les mêmes conditions, suggère qu'au moins une partie du produit est vraisemblablement 

obtenu via un autre mécanisme.  
 

 
 

Schéma 6. Evaluation des complexes 3 et 4 comme intermédiaires d'$-arylation de cétones 
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 Dans cette perspective, de récents travaux sur l'emploi de catalyseurs de nickel nous 

ont conduit à considérer un mécanisme de type radicalaire. La réaction entre propiophénone et 

4-bromotoluène catalysée par 2 a alors été réalisée en présence d'inhibiteurs et d'initiateurs de 

radicaux (Schéma 7). Un inhibition totale de la réaction a alors été observée en présence d'1 

équiv. d'inhibiteur radicalaire tel que le TEMPO ou le galvinoxyle. De plus, en présence de 20 

mol% d'AIBN comme initiateur radicalaire, sans base ni catalyseur, une légère activité a été 

détectée. En conséquence, nous pensons que le mécanisme principal impliqué dans ce 

processus d'$-arylation est de nature radicalaire, et que si un dérivé énolate C-lié de 2 est 

effectivement impliqué, il n'a qu'un rôle mineur. 

 

 

 

Schéma 7. $-Arylation de la propiophénone avec le 4-bromotoluène en présence d'inhibiteurs 

et d'initiateurs radicalaires 

 

 En conclusion, nous avons démontré que le complexe bon marché et facile à utiliser 

[Ni(IPr)ClCp] 2 est un pré-catalyseur efficace pour l'$-arylation de cétones acycliques. Cette 

méthodologie est complémentaire de celles nécessitant Ni(COD)2, et permet de travailler avec 

des charges catalytiques pouvant descendre jusqu'à 1 mol%, ce qui est sans précédent 

concernant l'emploi de catalyseurs basés sur des métaux non-nobles. En outre, les données 

mécanistiques recueillies suggèrent un mécanisme radicalaire, même si un intermédiaire 

nickel:énolate C-lié est peut-être également impliqué. 

 

 Cette même classe de complexes demi-sandwich a également été évaluée en réaction 

d'hydrosilylation de carbonyles et d'imines, et les résultats obtenus sont présentés dans le 

Chapitre III. Ces travaux ont découlé d'une collaboration avec l'équipe du Pr. Darcel 

(Université de Rennes I) qui avait précédemment montré que des complexes demi-sandwich 
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K :>?9! *$3&! &#)*! +4&-<*!  3! (5'#$*-050+&-$3! 4+&+05&-D6 ! ' ! 4$="$*,*! F"* 6'$H4+#2$350,*;!

L'analogie structurale existante entre ces dérivés du fer et les complexes demi-sandwich de 

type [Ni(NHC)XCp](+) nous a ainsi mené à évaluer l'activité de ces derniers dans ces réactions 

de réduction (Schéma 8). 

 

 

 

Schéma 8. Analogie structurale entre complexes demi-*+3'L-4(!K :>?9!6&-0-*,*!"$6#!

l'hydrosilylation de dérivés (pseudo)carbonylés et les complexes demi-*+3'L-4(!>-:>?9 

 

 Une première étape de cette étude a été d'évaluer l'activité d'une série de complexes, 

dont le complexe neutre [Ni(IMes)ClCp] 1, en hydrosilylation de carbonyles. Ce dernier s'est 

montré relativement actif avec les aldéhydes et les cétones, et après optimisation des 

conditions réactionnelles, il s'est avéré que l'ajout d'une quantité sub-stoechiométrique de 

NaHBEt3 permettait d'observer une activité catalytique plus que satisfaisante. Ainsi, dans le 

cas des aldéhydes, des rendements modestes à excellents ont pu être obtenus avec une large 

gamme de substrats en 1 h de réaction en présence de seulement 1 mol% de pré-catalyseur et 

2 mol% d'additif (Schéma 9). Cette méthodologie est compatible avec une vaste gamme 

d'aldéhydes qu'ils soient riches ou pauvres en électrons (Tableau 2, entrées 1, 3, 4, 6-9, 11-

17), et de façon très satisfaisante, tolère de nombreux groupes fonctionnels (entrées 6 à 9), les 

substrats hétéroaromatiques (entrées 11 à 13) ainsi que les substrats encombrés (entrée 2) sans 

altération notable de l'activité catalytique.  

 

 

 

Schéma 9. Hydrosilylation des aldéhydes catalysée par [Ni(IMes)ClCp] 1 
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Tableau 2. Champ réactionnel de l'hydrosilylation des aldéhydes catalysée par 1-NaHBEt3
a 

Entrée Substrat Conversion (%)b Rendement (%)c 

1 
 

> 97 88 

2 
 

> 97 79 

 
 

  

3                   R = Me > 97 83 
4                   R = Cl > 97 76 
5                   R= Br 13 : 
6d                   R = OMe 81 70 
7d                   R = NMe2 86 75 
8                   R = CN 95 68 
9                   R = NO2 70 59 
10                   R = OH 0 : 

11d,e 
 

> 97 : 

12d 
 

> 97 86 

13d 
 

96 83 

14d 

 

> 97 84 

15e 
 

96 : 

16 
 

75 68 

17d,f 
 

88 65 

a Conditions réactionnelles: activation de 1 (1 mol%) avec NaHBEt3 (2 mol%) dans le THF (4 mL), suivie 
de l'addition de l'aldéhyde (1 mmol) et Ph2SiH2 (1 mmol), et agitation du milieu réactionnel à 25°C pendant 
1 h. b Conversions déterminées par RMN 1H après méthanolyse. c Rendements isolés. d Réaction effectuée à 
70°C. e Conversions déterminées par CPG après méthanolyse. f Un mélange 75:25 d'alcool cinnamique et de 
3-phénylpropan-1-ol a été obtenu. 

 

G0!  *&! ,.+0 = 3&! -="$#&+3&! ' ! 3$& #! D6@ 3! "#,* 34 ! ' ! 0-+-*$3*! 9+#2$3 :9+#2$3 ! '$620 *!

conjuguées ou non, la réduction de la fonction carbonyle est majoritaire (entrées 16 et 17). 

Une limitation de la méthodologie concerne l'emploi d'aldéhydes aromatiques portant un 

groupement iodure ou bromure, pour lesquels une nette chute d'activité a été observée, 
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probablement à cause de réactions secondaires de déhalogénation du substrat (entrées 5 et 6). 

Enfin, les aldéhydes portant un groupement phénole sont incompatibles avec cette 

méthodologie (entrée 10). 

 Dans le cas des cétones, l'optimisation des conditions réactionnelles a permis d'établir 

qu'en présence de 5 mol% de 1, 10 mol% de NaHBEt3 dans le THF à 25°C, de très bons 

rendements sont obtenus pour une large gamme de substrats après 17 h  de réaction (Schéma 

10 et Tableau 3). Les observations concernant le champ réactionnel sont du même ordre que 

pour les aldéhydes. En effet, cette méthodologie chimiosélective tolère les substrats riches ou 

pauvres en électrons, de nombreux groupes fonctionnels, les substrats hétéroaromatiques, les 

*62*&#+&*!  34$=2#,*! +-3*-! D6 ! 0+! "#,* 34 ! ' ! 0-+-*$3*! 9+#2$3 :9+#2$3 ! '$620 *. Comme 

dans le cas des aldéhydes, les cétones aromatiques bromées ou iodées conduisent à des chutes 

très nettes d'activité. 

 

 

Schéma 10. Hydrosilylation des cétones catalysée par [Ni(IMes)ClCp] 1 

 

Tableau 3. Champ réactionnel de l'hydrosilylation des cétones catalysée par 1-NaHBEt3
a
 

Entrée Substrat Conversion (%)b Rendement (%) 

1 
 

> 97 88 

2 
 

> 97 85 

 
 

  

3                R = Me > 97 79 
4                R = Cl > 97 73 
5                R= Br 30 : 
6                R = I 14 : 
7                R = F > 97 73 
8                R = NO2 90 71 

9                R = OMe > 97 88 
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Tableau 3. (suite) 

Entrée Substrat Conversion (%)b Rendement (%) 

10 
 

> 97 75 

11 
 

> 97 83 

12 

 

> 97 88 

13 
 

> 97 83 

14 
 

> 97 78 

15 
 

> 97 79 

16 
 

> 97 86 

17 
 

> 97 79 

18d 
 

95c : 

a Conditions réactionnelles : activation de 1 (5 mol%) avec NaHBEt3 (10 mol%) dans le THF (4 
mL), suivie de l'addition de la cétone (1 mmol) et Ph2SiH2 (1 mmol), et agitation du milieu 
réactionnel à 25°C pendant 17 h. b Conversions déterminées par RMN 1H après méthanolyse. c Un 
mélange 2:1 de 4-phényl-but-3-èn-2-ol et de 4-phénylbutan-2-ol a été obtenu. 

 

 Une deuxième partie de l'étude de la réaction d'hydrosilylation a été d'évaluer l'activité 

de 1 et de son analogue cationique [Ni(IMes)(NCMe)Cp](PF6) 5 (Schéma 8) pour la 

réduction d'imines. Il a ainsi été déterminé, dans le cas des aldimines, des conditions 

optimales semblables à celles employées pour les aldéhydes, c'est-à-dire avec 1 mol% de 1 et 

2 mol% de NaHBEt3 dans le THF à 25°C, le temps réactionnel étant toutefois de 17 h dans ce 

cas (Tableau 4). Alternativement, 1 mol% du complexe 5 peut être employé sans additif, dans 

le THF à 50°C pendant 24 h. Quelque soit le système catalytique employé, des rendements 

modestes à excellents ont été obtenus avec une vaste gamme d'aldimines aromatiques riches 

ou pauvres en électrons (entrées 1-3, 5, 6 et 8-30). A nouveau, la limitation majeure reste 

l'utilisation de substrats iodés ou bromés (entrées 4 et 7). 
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Tableau 4. Champ réactionnel de l'hydrosilylation d'aldimines catalysée par 1-NaHBEt3 ou 5a
 

 

Entrée Substrat  
Pré-

catalyseur 
Conversionb 

(%) 
Rendementc 

(%) 

1 

 

R = Me 1 > 97 83 
2 R = Me 5 > 97 : 
3 R = OMe 1 > 97 90 
4 R = Br 

 
1 20 : 

5 

 

R = p-OMe 1 > 97 89 
6 R = p-OMe 5 > 97 : 
7 R = p-I 1 27 : 
8 R = o-OMe 1 28 : 
9 R = o-OMe 

 
1 48d 39 

10 

 

R = p-OMe 1 > 97 84 
11 R = p-OMe 5 > 97 : 
12 R = p-NMe2 1 77 57 
13 R = p-Cl 1 > 97 80 
14 R = p-Cl 5 71 : 
15 R = p-CO2Me 1 95 76 
16 R = p-CO2Me 5 > 97 83 
17 R = p-Cl 1 94e 74 
18 R = 3,4,5-OMe 

 
1 93 81 

19 

 

R = NHAc 1 70 : 
20 R = NHAc 1 90d 72 
21 R = NO2 1 0 : 
22 R = NO2 

 
1 40f : 

23 

 
 

 1 20 : 
24  

 
 

1 80f 57 

25 

 
 

 1 43 : 
26  1 70f 61 

27 

 

 1 20 : 
28  1 60f : 
29  1 87f,g 70 
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Tableau 4. (suite) 

Entrée Substrat  
Pré-

catalyseur 
Conversionb 

(%) 
Rendementc 

(%) 

30 

 
 

 1 > 97 85 

a 
Conditions réactionnelles : activation de 1 (1 mol%) avec NaHBEt3 (2 mol%) dans le THF (4 mL) à t.a. 

pendant 5 min, ou dissolution de 5 (1 mol%) dans le THF (4 mL) à t.a., suivie de l'addition de l'aldimine (1 
mmol) et Ph2SiH2 (1 mmol), et agitation du milieu réactionnel à 25°C pendant 17 h (1) ou à 50°C pendant 24 h 
(5). b Conversions déterminées par RMN 1H après méthanolyse. c Rendements isolés. d 50°C. e 5% de réduction 
des groupements cyano et aldimine a été observé. f 70°C. g 1 (5 mol%), NaHBEt3 (10 mol%). 

 

 Des conditions un peu plus dures ont été nécessaires pour obtenir des rendements 

similaires avec les cétimines. Ainsi, il a fallu (i) chauffer à 50°C avec le système 1-NaHBEt3, 

et (ii) augmenter la charge catalytique et celle en Ph2SiH2 à respectivement 5 mol% et 2 

équiv. avec le complexe cationique 5 sans additif (Tableau 5). Une fois encore, cette 

méthodologie a pu s'appliquer à un champ réactionnel de cétimines méthyléniques 

relativement étendu (17 exemples).  

 La troisième et dernière partie de cette étude a été centrée sur l'étude du mécanisme 

réactionnel de ces procédures d'hydrosilylation catalysées par 1-NaHBEt3 ou 5. Pour 

rationnaliser le rôle de l'additif dans le système 1-NaHBEt3, le complexe 1 a été traité par un 

équivalent de KHBEt3 dans le THF à froid (Schéma 11). La réaction donne lieu à la formation 

'6!4$="0 B !3-47 0:(5'#6# !M>-FGN *H?9"O!6 qui a pu être isolé avec 63% de rendement et 

caractérisé par diffraction des rayons X sur monocristal. Similairement, la réaction du 

complexe cationique 5 avec 0,5 ou 1 équiv. de Ph2SiH2 donne également le complexe 6, mais 

avec une conversion inférieure à 10% (déterminée par RMN 1H). Ces observations suggèrent 

que 6 serait le véritable précurseur catalytique, ce qui a été confirmé par un test catalytique 

(Schéma 12, éqn. 1). Cependant, lorsque 6 a été traité avec le benzaldéhyde en absence de 

Ph2SiH2, aucune insertion n'a été observée, et le signal de l'hydrure est resté inchangé 

(Schéma 12, éqn. 2). Ainsi, nous pensons que, bien que 6 soit très probablement le véritable 

précurseur catalytique, le ligand hydrure ne participe pas directement à ces réactions de 

réductions, comme l'a conclu Royo et al. dans des travaux analogues publiés simultanément 

aux nôtres (Adv. Synth. Catal. 2012, 354, 2613). 
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Tableau 5. Champ réactionnel de l'hydrosilylation de cétimines catalysée par 1-NaHBEt3 ou 

5
a
 

 

Entrée Substrat  Pré-catalyseur 
Conversionb 

(%) 
Rendementc 

(%) 

1 

 
 

 1 > 97 77 

2 

 
 

 1 > 97 78 
3  5 > 97 : 

4 

 
 
 
 
 
 
 

R = H 1 79 63 
5 R = Me 1 86 73 
6 R = OMe 1 > 97 84 
7 R = OMe 5 > 97 : 
8 R = Cl 1 90 77 
9 R = F 1 90 75 

10 R = F 5 > 97 80 
11 R = CF3 1 30 : 
12 R = CF3 1 52d : 
13 R = CF3 1 85d,e 69 
14 

 
 

 1 90 59 

15 

 
 

 1 20 : 
16  1 48d : 
17  1 80d,e 66 

a 
Conditions réactionnelles : activation de 1 (1 mol%) avec NaHBEt3 (2 mol%) dans le THF (4 mL) à t.a. 

pendant 5 min, ou dissolution de 5 (5 mol%) dans le THF (4 mL) à t.a., suivie de l'addition de la cétimine (1 
mmol) et Ph2SiH2 (1 mmol (1) or 2 mmol (5)), et agitation du milieu réactionnel à 50°C pendant 17 h (1) ou 24 h 
(5). b Conversions déterminées par RMN 1H après methanolyse. c Rendements isolés. d 70°C. e 1 (5 mol%), 
NaHBEt3 (10 mol%). 

 

  



Résumé 

 

 

xxii 
 

 
 

Schéma 11. Formation du complexe 3-47 0:(5'#6# !6 à partir de 1 ou de 5 

 

 

 

 

Schéma 12. Evaluation de 6 en tant qu'intermédiaire réactionnel 

 

 Cette étude nous a donc permis de démontrer que ces complexes demi-sandwich 

>-:>?9!3 !*$3&!"+*!*-="0 = 3&!' *!"#,-catalyseurs efficaces en $-arylation de cétones, mais 

plutôt des outils polyvalents puisqu'ils permettent également l'hydrosilylation de carbonyles et 

d'imines dans des conditions très douces, et avec des charges catalytiques relativement faibles. 

De plus, ces méthodologies sont chimiosélectives et tolèrent une vaste gamme de substrats, ce 

qui est tout à fait remarquable lorsqu'on considère les rares exemples décrivant l'utilisation de 

nickel comme catalyseur. Enfin, ces procédés de réduction tendent à impliquer, comme bien 
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souvent, la formation d'un complexe nickel:hydrure qui serait à l'origine des activités 

observées, même si le ligand hydrure ne semble pas participer directement au mécanisme. 

 

 Enfin, dans le quatrième et dernier chapitre de cette thèse, nous décrivons la 

synthès 8!0+!4+#+4&,#-*+&-$3! &!0@,/+06+&-$3! 3!4+&+05* !' !3$6/ +6B!4$="0 B *!>-:>?9;!9 && !

initiative découle de la volonté de développer ' *!  *")4 *! >-:>?9! "06*! +4&-/ *!  &P$6!

sélectives en catalyse homogène.  

 Lors de cette étude, il a été démontré dans un premier temps qu'il était possible de 

labiliser le ligand Cp %5-coordiné par acidolyse de complexes demi-*+3'L-4(!+07508>?9:>-, 

dont la sphère de coordination du nickel est saturée. La réaction s'effectue de manière très 

sélective, que ce soit dans des dérivés cycliques (Schéma 13, éqn. 1) ou acycliques (éqn. 2), 

pour donner les complexes carré-plan à 16 électrons correspondants avec de bons rendements. 

Ainsi, dans le cas des complexes cycliques 7a,b, leur traitement avec 1 équiv. d'HCl et 1 

équiv. de KPF6 dans l'acétonitrile permet la substitution du ligand Cp par deux molécules 

d'acétonitrile pour donner les complexes cationiques correspondants 8a,b, dont les deux 

molécules d'acétonitrile peuvent être aisément substituées par un ligand acétylacétonate (acac) 

pour donner les complexes carré-plan neutres 9a,b avec de bons rendements. De façon 

remarquable, la même méthodologie a pu être appliquée aux dérivés acycliques 10a,b. Ces 

réactions qui passent par une protonolyse directe du ligand Cp, comme l'ont montré des 

expériences de deutération, est remarquable pour un certain nombre de raisons : (i) la 

démétalation d'un ligand Cp d'un complexe monocyclopentadiènyle à 18 électrons en 

présence d'une source de protons est, à notre connaissance, sans précédent, (ii) cette réaction 

permet la création de deux sites de coordination potentiellement vacants, comme en témoigne 

la substitution aisée des ligands acétonitriles des complexes 8a,b, ce qui est potentiellement 

un avantage pour une éventuelle application en catalyse, et (iii) elle démontre l'exceptionnelle 

#$26*& ** !' *!0-+-*$3*!>-:4+#2)3 ! &!>-:+0750 !' !4 *!4$="0 B *; 
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Schéma 13. Labilisation du ligand Cp dans les complexes cycliques 7a,b et acycliques 10a,b 

 

 Parallèlement à ces travaux, le complexe zwitterionique demi-sandwich 12 portant un 

NHC de type malo-pyrimidine a été synthétisé par réaction du malo-NHC libre généré in situ 

avec le complexe [Ni(IMe)ICp] (Schéma 14). L'intérêt des ligands de type malo-NHC en 

catalyse est la modularité aisée de leurs propriétés électroniques sans affecter leurs propriétés 

stériques. En effet, le ligand anionique malo-NHC de 12 peut être piégé par un vaste choix 

d'électrophiles, permettant l'adaptation du pouvoir "-donneur du NHC au besoin, ce que nous 

avons illustré en le faisant réagir avec MeOTf pour obtenir le complexe cationique 13 

(Schéma 14). En outre, un complexe zwitterionique comme 12 présente l'intérêt d'avoir une 

charge négative dirigée en dehors de la sphère de coordination du nickel peut avoir des 

avantages si la présence d'un autre type d'anion s'avère négative.  

 

Schéma 14. Synthèse des complexes malo->?9:>-!QL-&terionique 12 et cationique 13 
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 Enfin, la chimie de coordination encore balbutiante d'un ligand alkyl-amino carbène 

cyclique (CAAC) au nickel, a également été étudiée. Ces ligands ont un pouvoir "-donneur 

encore plus important que les diaminocarbènes classiques et possèdent un environnement 

stérique différent, ce qui s'est révélé bénéfique dans certaines transformations catalysées par 

les métaux comme le palladium. Le complexe de nickel 14 portant un ligand CAAC a donc 

été synthétisé par réaction du CAAC libre généré in situ avec [Ni(PPh3)2Cl2] dans le THF à 

froid (Schéma 15). Lors de cette synthèse, un sous-produit a également été obtenu. Il s'agit du 

composé ionique 15, présentant un anion nickelate tétraédrique et un contre-ion azolium. 

 

 

 

Schéma 15. J53&()* !'6!4$="0 B !>-:9CC9!14 avec la formation de 15 

 

 L'activité en catalyse homogène des nickelacycles 7-9b et des nouveaux complexes 

12-14 a fait l'objet d'une étude préliminaire dans diverses réactions comme le couplage de 

Suzuki-Miyaura de l'acide phénylboronique avec la 4-bromoacétophénone, l'hydrosilylation 

du benzaldéhyde et l'arylation oxydative du THF.  

 En particulier, l'activité des nickelacycles 7-9b pour le couplage de l'acide 

phénylboronique et de la 4-bromoacétophénone a été comparée afin d'évaluer l'effet de la 

substitution du ligand Cp du complexe 7b sur cette transformation (Tableau 6). Comme 

espéré, les complexes carré-plan 8b et 9b se sont révélés plus actifs que 7b. En outre, le 

complexe cationique 8b possédant deux ligands acétonitriles labiles s'est révélé plus actif que 

le complexe neutre 9b, ce qui montre que plus les ligands autre que ceux du nickelacycle sont 

labiles, plus les complexes sont réactifs. Cependant, les activités obtenues n'excèdent pas 

celles déjà décrites dans la littérature sont réactifs avec certains complexes demi-sandwich de 

type [Ni(NHC)LCpR](+).  
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Tableau 6. Couplage de Suzuki-Miyaura entre l'acide phénylboronique et la 4-

bromoacétophénone catalysée par les complexes >-FGGH:>?9 7-9b et 12-14
a 

 

Entrée Catalyseur  Temps (min) Conversion (%)b 

1 7b 60 20 

2 8b  60 58 

3 9b  60 45 

4 12  60 21 

5 13  60 23 

6 14  60 13 
a Conditions réactionnelles : acide phénylboronique (1,3 mmol), 4-bromoacétophenone (1 mmol), K3PO4 (2,6 

mmol), [Ni] (3 mol%) dans le toluène (3 mL) à 110°C. b Conversions déterminées par RMN 1H; moyenne de 

deux expériences. 

 

 Dans cette même réaction, les complexes malo-NHC 12 et 13 ont montré une activité 

comparable à celle de 7b (Tableau 6, entrées 1, 4 et 5), ce qui peut sans doute s'expliquer par 

le fait que la sphère de coordination du nickel est saturée dans les trois cas. Des tentatives de 

labilisation du ligand Cp en milieu acide n'ont malheureusement aboutit à rien de probant 

avec les complexes 12 et 13.  

 L'activité de ces mêmes complexes a alors été évaluée dans la réaction 

d'hydrosilylation du benzaldéhyde avec le diphénylsilane, en présence ou non de KHBEt3 

comme additif (Tableau 7). Contrairement au couplage du Suzuki-Miyaura, le complexe 

zwitterionique 12 est deux fois plus actif que son analogue cationique 13, que ce soit sans ou 

avec additif (entrées 1 vs. 3 et 2 vs. 4). Néanmoins, 12 reste bien moins efficace que 1 

(Tableau 7, entrée 4 vs. Tableau 2, entrée 1).  

 >$&# !  3.$6 = 3&! "$6#! 0+! /+0$#-*+&-$3! ' ! 4$="0 B *! >-FGGH:>?9! '+3*! ' *!

&#+3*<$#=+&-$3*!-="0-D6+3&!0+!<$34&-$33+0-*+&-$3!' !0-+-*$3*!9:?!3$6*!+! 3<-3!4$3'6-&!E!& *& #!

ces complexes malo-NHC dans la réaction d'arylation directe du THF en présence d'acide 

phénylboronique (Tableau 8). En effet, cette réaction en conditions oxydantes fait intervenir 

la fonctionnalisation directe du THF qui constitue un défi particulièrement important du fait 
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de la très grande stabilité du THF. De façon satisfaisante, une activité certes modeste mais 

non négligeable a été observée, en particulier avec 12, qui est à nouveau deux fois plus actif 

que 13 (entrées 1 et 2). Ainsi, ces résultats, même s'ils sont inférieurs à ceux récemment 

obtenus avec un système Ni(acac)2/PPh3, tendent à montrer un certain potentiel des complexes 

malo-NHC de nickel, et il est certain qu'un travail de recherche dans l'élaboration d'autres 

complexes de ce type devrait permettre d'aboutir à des catalyseurs bien plus performants. 

 

Tableau 7. Hydrosilylation du benzaldéhyde avec le diphénylsilane catalysée par les 

complexes Ni(II):>?9 12-14
a 

 

Entrée Catalyseur Additif (mol%) Temps (min) Conversion (%)b 

1 12 : 60 12 

2 12 KHBEt3 (2) 60 61 

3 13 : 60 5 

4 13 KHBEt3 (2) 60 38 

5 14 KHBEt3 (2) 30 31 
a Conditions réactionnelles : activation de 12-14 avec KHBEt3 dans le THF (4 mL), ou dissolution dans 

le THF, suivie de l'addition de benzaldéhyde (1 mmol) et Ph2SiH2 (1 mmol), et agitation du milieu 

réactionnel à 25°C. b Conversions déterminées par RMN 1H après methanolyse. 

 

 De façon décevante8!0 !4$="0 B !>-:9CC9!14 s'est montré peu, voire très peu actif, 

que ce soit en couplage de Suzuki-Miyaura (Tableau 6, entrée 6), en hydrosilylation du 

benzaldéhyde en présence de KHBEt3 (Tableau 7, entrée 5), ou encore en arylation directe du 

THF (Tableau 8, entrée 3). Cette étude n'étant qu'à son commencement, les raisons d'une 

activité aussi faible dans trois réactions très différentes ne sont pas encore bien comprises. 

Cependant, l'exposition à l'air d'une solution du complexe 14 dans le THF menant 

partiellement à la formation du composé zwittérionique 15 tend à montrer une certaine 

sensib-0-&,! ' ! 0+! 0-+-*$3! >-:9CC9! '  14, ce qui peut être une raison possible de ces 

observations. Une étude plus approfondie de la chimie de coordination, et de l'activité en 

catalyse de composés du nickel comportant des ligands de type CAAC est donc nécessaire 
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afin de mieux comprendre leur comportement, et éventuellement développer des espèces dans 

lesquelles la présence de CAACs s'avèrerait bénéfique en catalyse.  

 

Tableau 8. Arylation directe du THF en présence d'acide phénylboronique et catalysée par les 

4$="0 B *!>-FGGH:>?9 12-14
a 

 

Entrée Catalyseur Rendement (%)b 

1 12 19 

2 13 11 

3 14 4 
a Conditions réactionnelles : acide phénylboronique (0,50 mmol), [Ni] (10 mol%) 

dans le THF (3 mL) à 100°C pendant 16 h. b Rendements isolés. 

 

 En conclusion, ce travail de thèse a permis d'identifier les complexes demi-sandwich 

de nickel de type [Ni(NHC)XCp] comme des outils efficaces et polyvalents en catalyse. Leur 

utilisation a aboutit à des activités sans précédent en $-arylation de cétones acycliques, où des 

charges en pré-catalyseur allant jusqu'à 1 mol% peuvent être utilisées. Cette méthodologie est 

complémentaire à celles développées avec des charges importantes de Ni(COD)2 comme 

catalyseur, et qui ont été appliquées exclusivement à des cétones cycliques. Une étude du 

mécanisme tend à démontrer l'implication d'intermédiaires radicalaires dans ce processus d'$-

arylation de cétones. De plus, ces complexes sont également des pré-catalyseurs permettant 

l'emploi de conditions douces dans les réactions d'hydrosilylation chimiosélectives de dérivés 

carbonylés et d'imines. Le champ réactionnel est remarquablement vaste, et il apparaît qu'un 

-3& #=,'-+-# !' ! &5" !3-47 0:(5'#6# !<$#=,! in situ serait le véritable précurseur catalytique, 

même si l'hydrure ne semble pas directement impliqué dans le mécanisme. Par ailleurs, le 

développement d'une méthodologie de labilisation de ligand Cp dans des complexes 

alkyle8>?9:>-!+!$6/ #&!63 !/$- !originale dans l'élaboration de nouveaux complexes carré-

plan de nickel, potentiellement plus actifs en catalyse. Cette étude a permis de montrer 

0@ B4 "&-$33 00 !*&+2-0-&,!' *!0-+-*$3*!3-47 0:>?9! &!3-47 0:+0750e de ces complexes, fait qui 

n'avait jamais été observé dans d'autres complexes alkyle8>?9:>-. Enfin, la synthèse de 

nouveaux complexes de nickel portant un ligand malo-NHC ou CAAC a également été 
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réalisée. Ce type de composés n'a encore que très peu été étudié, et les premières études en 

catalyse montre un certain potentiel, et donc un intérêt à les étudier de façon plus approfondie. 

Ce travail de thèse démontre le formidable "$& 3&- 0!' *!4$="0 B *!>-FGGH:>?9! &!-0!3 !<+-&!

nul doute que des travaux ultérieurs mèneront à des espèces encore plus efficaces en catalyse. 
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I.   Carbenes and carbene complexes 

 

I.1. Historical aspects 

 

 Since the pioneering work of Buchner,[1] Staudinger[2] and Doering,[3] carbenes have 

become powerful tools in synthetic organic chemistry. However, their relatively high 

reactivity prevented chemists from isolating them in the free state. Generally, the strategy 

employed to stabilize and isolate such species was the complexation of the carbene carbon to 

a metal center. 

 

 The first carbene complex was introduced to organometallic chemistry in 1915 by 

Chugaev[4] (I). However at that time, spectroscopic techniques could not enable an exact 

structural determination, and this was only confirmed in 1970.[5,6] In 1964, Fischer reported 

and structurally characterized the first carbene complex, which was obtained by treatment of 

tungsten hexacarbonyl with phenyl lithium and diazomethane (II).[7] Öfele[8] (III) and 

Wanzlick[9] (IV) described the syntheses of the first diaminocarbene complexes only four 

years later. Starting from 1971, Lappert very rapidly extended the preparative procedures of 

the latter compounds and synthesized more than a hundred diaminocarbene complexes of 

almost all transition metals of groups VI, VIII, IX, X and XI.[10,11] In 1974, Schrock 

developed a new type of alkylidene complex, which was obtained by  -hydride elimination of 

a neopentyl ligand in a tantalum complex[12] (V) (Figure 1). 

 

 

 

Figure 1. Representative examples of the first carbene complexes 

 

 Intensive research on the stabilization of free carbenes quickly followed these 

findings. In the 1980's, Tomioka started to study persistent triplet diarylcarbenes.[13] 
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Remarkably, Bertrand[14] (VI) and Arduengo[15] (VII) isolated and characterized the first 

stable free carbenes in 1988 and 1991, respectively (Figure 2).  

 

 

Figure 2. First isolated free carbenes 

  

 The isolation of carbene VII is now commonly recognized as the starting point of the 

growing impact of this special class of diaminocarbenes, which are more commonly named 

N-heterocyclic carbenes (NHCs). 

 

I.2. Theoretical aspects 

 

 Carbenes are organic species containing a divalent carbon possessing two unshared 

electrons, and display either electrophilic or nucleophilic reactivity depending on whether 

these two electrons are unpaired (triplet carbene) or paired (singlet carbene). Even if there is 

no single way to categorize and rationalize the nature of the metal/carbene bond, three classes 

of carbenes can be coarsely distinguished: Fischer carbenes, Schrock carbenes, and persistent 

carbenes. 

  

 In the case of Fischer carbenes, the !-donating substituent in  -position (see II, 

Figure 1) will partially fill the p! orbital of the carbene thus increasing its energy. As a 

consequence, the difference in energy between the n" and p! orbitals of the carbene (singlet-

triplet gap) favors the singlet state. Moreover, the p! orbital of the carbene is higher in energy 

than the d! orbital of the metal. In this case, the metal/carbene bound is polarized #+ on the 

carbon and #- on the metal (electrophilic carbene). Conversely, Schrock carbenes (triplet 

carbene) have a low singlet-triplet gap and the carbene carbon is nucleophilic. The bonding 

scheme in Schrock carbine complexes is similar to that in carbon/carbon double bonds 

(Figure 3). 
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Figure 3. Partial molecular diagram for Fischer and Schrock carbenes 

 

 Persistent carbenes, and more precisely persistent singlet carbenes, are structurally 

similar to Fischer carbenes. However, they show unique properties and therefore constitute a 

special class of carbenes. They can be divided into three categories: "push-pull" carbenes, 

"push-spectator" carbenes and "push-push" carbenes (Figure 4).[16] "Push-pull" carbenes 

possess one !-donating substituent D partially filling the vacant p! orbital of the carbene, and 

one !-accepting substituent A, which interacts with the occupied orbital of the carbene 

carbon, giving rise to a quasi-linear geometry around the carbene carbon. A typical example 

of this category are (phosphino)(silyl)carbenes (see for example VI, Figure 2),[17,18] which 

behave as electrophiles.[19] "Push-spectator" carbenes possess only one strongly !-donating 

substituent D. These bent carbenes are very reactive and are able to activate small molecules 

such as H2, NH3, CO and P4.
[20,21] This category notably includes (amino)(alkyl)carbenes.[17,18] 

Finally, "push-push" carbenes, which are the most common persistent carbenes, bear two !-

donating substituents resulting in a polarized 4e three-center ! system.[22,23] Consequently, 

these species are less electrophilic than "push-spectator" carbenes.[24,25] 
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Figure 4. Orbital interactions in push-pull, push-spectator and push-push persistent singlet 

carbenes 

 

 Among these "push-push" carbenes, NHCs constitute the most important family. On 

one hand, the !-donation of the two nitrogen atoms (orbital overlap) will increase the energy 

of the p!$orbital of the carbene even more. On the other hand, the inductive attractive effect of 

both nitrogen atoms stabilizes the d!$orbital (Figure 5).[26633]   

 

 

 

Figure 5. Electronic stabilization of NHCs 

 

 Consequently the singlet-triplet gap will be even more important than in the Fischer 

carbenes, thus preventing the p! and the d!$orbitals from almost any interaction. !-back-

donation from the metal to the NHC is therefore relatively low. This is the reason why the 

metal/NHC bond is commonly represented by a single bond (NHCs are virtually "-donating 

ligands) in contrast to Fischer- and Schrock-type carbenes.  

 NHCs can be divided into several families that are depicted in Figure 6. Among the 

imidazolin-2-ylidenes and imidazol-2-ylidenes families, the most commonly employed NHC 

precursors are depicted in Figure 7. 
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Figure 6. Common families of NHCs (the suffix "ylidene" should be added to obtain the 

complete name of each family) 

 

 

Figure 7. Most common imidazolium and imidazolinium salts 

 

I.3. NHC as ligands in catalysis 

 

 The strong "-donating properties of NHCs often prompted chemists to compare them 

to phosphine and even cyclopentadienyl (Cp) ligands, which are commonly used ligands in 

homogeneous catalysis.[34] However, NHCs have relatively different properties. Their 
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significantly weaker ability to receive !-back-donation from the metal to the ligand renders 

them electron-richer than any trialkylphosphine. Dissociation of the metal/carbene bond is 

thus unfavorable, giving rise to more active and stable catalytic systems. Moreover, NHC 

complexes are easily synthesized by reaction of commercially available metal sources and 

free carbenes.[35] The latter are generally generated by simple deprotonation of air-stable and 

readily available azolium salts with a strong base (Scheme 1, eqn. (1)). However, other 

methodologies such as the thermal activation of 5-alkoxytriazolines (eqn. (2)),[36,37] 

imidazolium-2-carboxylates (eqn. (3)),[38640] imidazolium hydrogen carbonates (eqn. (4)),[41] 

imidazolium-2-thioisocyanates (eqn. (5)),[42] 2-alkoxy-,[43645] 2-pentafluorophenyl-[46,47] and 2-

trichloromethyl-imidazolidines[47,48] (eqn. (6)), efficiently give rise to the targeted free 

carbenes. Transmetallation with Ag(I)/NHC complex represents another useful method to 

synthesize metal/NHC complexes due to the weak Ag/carbene bond.[49] 

 

 

 

Scheme 1. Representative methods for generating free carbenes 

 

 Thus, these species have rapidly evolved from laboratory curiosities to powerful 

ligands for transition metal-catalyzed processes, notably after the pioneering work of 

Herrmann in this field. In the first metal/NHC-catalyzed reaction, the Pd/NHC catalysts 
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showed high thermal and hydrolytic durability, and an excess of ligand was not needed in 

contrast to phosphine and phosphite-based catalysts (Scheme 2).[50]  

  

 

 

Scheme 2. First use of a metal/NHC system in homogeneous catalysis in 1995 

 

 Moreover, in the Ru-catalyzed olefin metathesis, replacement of one of the two 

phosphines of the first generation of Grubbs' catalyst by an NHC led to significantly more 

active systems for olefin metathesis reactions (Figure 8).[44,51,52] Such an enhancement in 

activity can be explained by the increased stability of the resulting second generation 

catalysts, and by an easier dissociative substitution of the phosphine ligand with the olefinic 

substrate.[53] 

 

 

 

Figure 8. 1st and 2nd generations of Grubbs' metathesis catalysts 

 

 These two important findings strongly contributed to the democratization of these 

ligands, which have quickly been applied in association with a notable part of the d-block 

metals in a very large array of organic transformations.[54663] 
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II.  N-heterocyclic carbene-nickel complexes in catalysis 

 

II.1. Introduction 

 

 With the discovery of the "nickel effect" by Ziegler and Holzkamp in the mid 

1950's,[64] the importance of nickel complexes in the field of catalysis has considerably 

increased. Nevertheless, the study of new nickel catalysts has remained relatively limited 

compared to noble metals, in particular compared to its d10 counterpart, palladium. Nowadays, 

however, compelling economical and environmental demands are driving researchers to use 

more abundant metals such as iron, copper or nickel. As observed for other metal catalysts, 

the use of NHC ligands in place of phosphines or amines ligands has led to an important 

enhancement of catalytic activity, and therefore to an important diversification of nickel-

based systems. 5!'#!7) #"$"+8(%() "44+%#"$%&'() &1) 9%/95-) #&24+!:!() ;"() "+ !"08) .!!')

reviewed in several reviews and book chapters.[60,65667] Nevertheless, due to the vast scope of 

these catalysts, the latter reports often concern a limited number of applications. Herein, we 

will try to encompass all the examples involving these species, as in situ generated or well-

0!1%'!0)#"$"+8($()%')-/-)"'0)-/5!$! &"$&2).&'0)1& 2%',) !"#$%&'(7)"()<!++)"()%') !03#$%&')

and oxidation reactions, with a special emphasis on the catalytic systems. Rearrangement, 

cycloaddition and multi-component coupling reactions, as well as polymerization and 

oligomerization of olefins are excluded from the present review, as they do not fit with the 

thematic of the rest of this thesis.   

 

II.2. C$=0'(,>)#!*%"($,2)(,4$'4(,>)<*#+$,-<*#+$,)+$,?)5$rmation 

 

II.2.1. Kumada-Tamao-Corriu coupling 

 

 The Kumada-Tamao-Corriu[68,69] (KTC) coupling that involves the selective formation 

of C/C bonds by cross-coupling of Grignard reagents with organic halides, is historically the 

first cross-coupling reaction that involved nickel compounds as catalysts (Scheme 3). 

Moreover, despite their sensitivity towards air and moisture, Grignard reagents are often 

precursors of boronic acids, stannanes and organozincs employed for other cross-coupling 
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methodologies, thus avoiding extra synthetic steps involving stoichiometric amounts of 

organometallic reagents. 

 

Scheme 3. Ni-catalyzed KTC cross-coupling reaction 

 

 The classical mechanism of the KTC reaction involves a M(0)/M(II) catalytic cycle 

(Scheme 4). The M(0) species is generally generated by two subsequent transmetallation 

steps on a di-halogenated metal precursor, followed by a reductive elimination step to form 

the active M(0) species along with the homocoupling product. Oxidative addition of M(0) on 

the aryl halide followed by transmetallation with the Grignard reagent and reductive 

elimination thus affords the coupling product. However, the intermediate before reductive 

elimination can undergo further reaction with a Grignard reagent, which could result in the 

formation of notable amounts of the homocoupling product. Suppression of this step is 

therefore of major importance to obtain selectively the cross-coupling product. 

 

Scheme 4. Classical M(0)/M(II) catalytic cycle for KTC coupling 

(OA = oxidative addition, TM = transmetallation, RE = reductive elimination) 
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a) In situ generated Ni&NHC complexes 

 

 From a practical and economical point of view, in situ generation of a Ni/NHC 

complex from a commercial source of nickel and an azolium salt is the method of choice. 

Such a system was first reported by Herrmann for the KTC coupling of aryl chlorides under 

mild conditions.[70] Remarkably, with only 3 mol% of Ni(acac)2/IPr.HBF4, moderate to 

excellent yields (47 - 99%) were obtained with a large array of (hetero)aryl halides and 

Grignard reagents (Scheme 5). Even di-ortho-substituted arenes could be efficiently coupled. 

Of notable interest is that the same catalytic system was also successfully applied with 

arenesulfonates[71,72] and aryl fluorides[73] as electrophiles. 13C NMR spectroscopy analyses of 

the crude reaction mixtures were consistent with a catalytically active nickel(0) intermediate. 

Moreover, the lower activity observed for the zerovalent complex Ni(IPr)2 suggests that a 

highly reactive 12-electron Ni(IPr) species could act as the real catalyst.[70] 

 

 

Scheme 5. KTC coupling with Herrmann's catalytic system 

 

Interestingly, the use of the NHC precursor 1 (Figure 9) under slightly different reaction 

conditions resulted in improved activities compared to IPr.HBF4.
[74]  

 

Figure 9. NHC precursor 1 
 

 In 2006, Labande and Poli developed zwitterionic complexes 2 containing a 

phosphine-imidazolium ligand.[75,76] The imidazolium counter-anion is deprotonated in situ by 

the Grignard reagent, thus leading to Ni/NHC intermediates in which the phosphine arm 

remains coordinated (Scheme 6). The authors claimed that the activity of these complexes is 



 

Chapter I.  N-heterocyclic carbene-nickel complexes in catalysis 

 

 

12 
 

similar to Herrmann's system with a slightly improved selectivity for the cross-coupling 

product.  

 

Scheme 6. Plausible intermediates formed during the catalysis starting from complexes 2 

 

 An interesting study on the same reaction showed that nickelate complexes 3 (Figure 

10) displayed similar activities, demonstrating that the linking between the imidazolium salt 

and the phosphine is not necessarily required to keep a good activity, thus providing simpler 

precatalysts.[77]  

 

Figure 10. Zwitterionic complex 3 employed in the KTC coupling of aryl chlorides 

 

 In 2009, Nakamura reported a very efficient "catalytical triad" based on the use of 

metal difluorides (Fe, Co and Ni) with an NHC ligand (IPr or SIPr) for the coupling of aryl 

halides with arylmagnesium halides with excellent selectivities for the cross-coupling 

products.[78] Impressively, for activated and unactivated aryl bromides and chlorides, very 

good to excellent yields (84 - 99%) of the biaryl products were obtained with the appropriate 

in situ generated metal/NHC complex. In the case of the Fe/NHC catalyst, highly selective 

coupling using various aryl chlorides were achieved, whereas the Co/NHC catalyst was 

particularly effective in the coupling of heteroaromatics. The Ni/NHC system showed 

notably high catalytic activity when aryl bromides and hindered substrates were employed. 

Experimental results and theoretical calculations suggest that a "fluoride effect" would be 

responsible for the observed excellent selectivities for the cross-coupling products. This effect 

would consist in strong coordination of the fluoride ligands to the magnesium center, which 
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would inhibit reduction of the metal by a conventional transmetallation/reductive elimination 

process. The reaction would therefore proceed via a Ni(II)/Ni(IV) catalytic cycle which is less 

favorable for the formation of the homocoupling product than a Ni(0)/Ni(II) cycle (Scheme 

7).  

 

Scheme 7. M(II)/M(IV) cycle proposed by Nakamura (M = Ni, Fe, Co)  

 

 More recently, Sémeril and Matt described the use of resorcinarenyl-imidazolium salts 

as efficient pre-ligands for the nickel-catalyzed KTC coupling of aryl bromides and 

chlorides.[79] The best activity was achieved with the flexible pentyl-functionalized derivative 

that might allow steric interactions in possible exo-intermediates, which would favor the 

reductive elimination process (Figure 11). 

 

Figure 11. Possible Ni(II) and Ni(0) intermediates formed during the catalysis 
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 A great improvement in the Ni/NHC-catalyzed KTC coupling was the possibility of 

using sterically demanding tertiary alkyl Grignard reagents, which still represents a challenge 

because of the competitive %-hydride elimination and isomerization reactions.[80] In 2011, 

Glorius reported the use of the flexible NHC precursor 4 (Figure 12) that probably acts as a 

bidentate ligand during the catalysis, thus retarding the %-hydride elimination by occupying an 

additional coordination site on the nickel.[81]  

 

 

Figure 12. NHC precursor 4 employed in the KTC coupling of alkyl tertiary Grignard 

reagents 

 

Addition of a base is crucial as it probably helps in the generation of the carbene complex. 

The catalytic system is therefore relatively active for the coupling of aryl bromides and 

triflates at room temperature with moderate to good yields (Scheme 8).  

 

 

 

Scheme 8. Ni/NHC-catalyzed KTC coupling of tertiary Grignard reagents 

 

Control experiments in the presence of radical scavengers suggest that radical intermediates 

are implied in the cross-coupling reaction as the activity was totally inhibited. The same year 

Biscoe used a simpler system to achieve the selective coupling of tertiary substrates.[82] In this 
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case both the nature of the ligand and the hydration of the nickel source are essential. 

Although 10 mol% of pre-catalyst were necessary, the reaction proceeded without the need of 

an additive and at shorter reaction times and lower temperatures. The optimal conditions were 

found when using NiCl2.(H2O)1,5/ICy.HBF4 (1:1), allowing the coupling of a broad scope of 

aryl bromides (26 examples), and also of some aryl triflates (Scheme 8). A Ni(I)/Ni(III) cycle 

with a T-shape tricoordinate active species has been proposed (Figure 13). 

 

Figure 13. Ni(I)/Ni(III) catalytic cycle for the KTC coupling of tertiary Grignard reagents 

 

b) Well-defined Ni&NHC complexes: Monodentate NHCs 

 

 Whereas in situ generated metal catalysts are often preferred, they can give rise to 

"cocktail-type systems" with different metal species present in solution, and sometimes 

decreased selectivities.[83] The use of well-defined Ni/NHC complexes can tackle this 

problem, and much efforts has been devoted to the development of monodentate Ni(II)/NHC, 

Ni(I)/NHC and Ni(0)/NHC complexes (Figure 14).  

 The mixed phosphine/carbene complexes 5a-d and 6a,b were prepared by oxidative 

addition of Ni(PPh3)4 to the corresponding 2-chloroazolium salt, and were briefly evaluated in 

the KTC coupling of electron-rich aryl Grignard reagents with aryl chlorides.[84,85] The 

catalytic activities however did not exceed those observed with Herrmann's initial system,[70] 

or even those observed with Matsubara's more classical and easily prepared complex 7b, 
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which allowed one to observe quantitative yields with aryl iodides and bromides with only 0.5 

mol% of precatalyst within 30 minutes.[86] It is interesting that this system is actually better 

than its analogues Ni(IPr)2Cl2 9b and Ni(PPh3)2Cl2. 
 

 

Figure 14. Monodentate Ni/NHC complexes applied in the KTC coupling reaction 

 

 Considering the mechanism, it is important to note that, at the end of 2010, 

Matsubara[87] and Louie[88] concurrently described the synthesis of paramagnetic 15-electron 

nickel(I)/NHC species 10a,b by reaction of aryl halides with the related zerovalent Ni(NHC)2 

complexes 8a,b (Scheme 9). These T-shaped complexes were obtained  instead of the 

expected oxidative addition product Ni(NHC)2(Ar)X, and show similar activities in the KTC 

coupling of aryl bromides and chlorides when compared to their Ni(NHC)2 and Ni(NHC)2Cl2 

analogues.[88] Additionally, stoichiometric reactions between these species and the cross-
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coupling partner suggested that cross-coupling reactions are initiated by a transmetallation 

reaction between NiI(NHC)nX and the transmetallating reagent.[88] The mechanism depicted in 

Scheme 10 was therefore proposed. 

 

 

Scheme 9. Synthesis of 15-electron Ni/NHC complexes 

 

 

Scheme 10. Plausible mechanism involving Ni(I) intermediates in the KTC reaction 
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 Complexes 10a,b could also be synthesized by addition of one equivalent of the free 

carbene to the dinuclear complex 11.[87,89] However, when adding one equivalent of 

triphenylphosphine to 11, Y-shaped species 12 were obtained, and these proved to be 

significantly better catalysts as reaction times could be decreased from 18 to 3 hours.[89] More 

recently, a comparative study with the ring-expanded nickel(I) complexes 13a,b has shown 

that the NHC ring has a dramatic influence on catalysis.[90] Thus, the six-membered NHC 

complex 13a (n = 1, X = Br, Ar = Ar' = Mes) was found to be the most efficient catalyst of 

this family, as increasing the size of the ring probably induces too much steric hindrance 

around the metal. However, prolonged reaction times are required compared to 12.  

 Always in the context of valuing new monodentate Ni/NHC complexes in the KTC 

reaction, Huynh reported the syntheses of diisothiocyanato bis-NHC complexes 14a,b via 

ligand exchange in the trans-dibromo precursor.[91] Surprisingly, depending on the nature of 

the N-substituents of the carbene, either trans- and cis-diisothiocyanato complexes were 

obtained (Scheme 11).  

 

 

Scheme 11. Synthesis of cis- and trans-diisothiocyanato complexes 14a and 14b 

 

The best activity was achieved with 14a (R = R' = propenyl) which was predictably more 

efficient than complexes 14b. Several (hetero)aryl bromides and chlorides were coupled with 

moderate to excellent yields (49 - 94%) at room temperature with 1 mol% of precatalyst.  

 Significant improvement in the Ni/NHC-catalyzed KTC biaryl coupling came up only 

recently with the use of 15.[92] The latter complex remarkably allowed the use of a vast array 

of challenging heteroaryl chlorides and anisole derivatives, still with reasonable precatalyst 

loadings (Scheme 12). To the best of our knowledge, this is the only example of a KTC 
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coupling involving the functionalization of a CAr/O bond by a Ni/NHC catalyst. The 

observed unprecedented catalytic activity could be explained by the ease of generating an 

active nickel(0) intermediate starting from a nickel(II)/allyl complex,[93] the latter reduction 

probably occurring in a similar manner to that proposed for palladium(II) analogues.[94,95] 

 

 

 

Scheme 12. KTC coupling of heteroaryl chlorides and anisole derivatives catalyzed by 15 

 

 Another breakthrough has been achieved with the use of the naphtoquinone-based 

NHC complex 16 that can be electronically modified (NHC*) by an external redox 

stimulus.[96] Impressively, catalysis can be arrested at anytime by reduction of the 

electronically active NHC upon addition of CoCp2 (Scheme 13). The active state can be 

restored by simple oxidation with [Fc][BF4]. This system represents a significant practical and 

conceptual progress toward the use of redox-switchable control as an effector of tandem 

catalysis.   

 

 

Scheme 13. Redox control of the catalytically active species derived from 16  
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c) Well-defined Ni&NHC complexes: Multidentate NHCs 

 

 Compared to monodentate complexes, chelate complexes often give rise to more 

stable and sometimes more active metal species. This fact was confirmed with the use of the 

Ni/NHC chelate complexes presented in Figure 15 in KTC coupling, which are globally 

more active than the well-defined monodentate Ni/NHC complexes, and thus generally allow 

one to avoid high reaction temperatures and pre-catalyst loadings.  

 

 

Figure 15. Chelate Ni/NHC complexes applied in the KTC coupling reaction 

 

 In particular, (C,N)-chelate NHC complexes 17a,b, 18 and 19 with flexible or rigid 

pyridine/phenanthroline/benzimidazole arms were shown to efficiently catalyze the coupling 

of aryl chlorides with aryl Grignard reagents at room temperature. More precisely, complexes 

17a,b were able to couple a large array of substrates (best activity with 2 to 4 mol% of 17a, 

32 examples, 62 - 99%) including ortho-substituted chloroarenes, vinyl chlorides, and nitrile-
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functionalized aryl chlorides without significant loss of activity.[97] The more rigid 

phenanthroline-based complex 18 notably displayed comparable results (1 mol% of 18 for 24 

h instead of 2 mol% of 17a for 12 h) even if the reaction scope was not as broad as for 17a.[98] 

The use of the flexible bis-pyridine functionalized NHC complex 19 allowed a decrease in the 

precatalyst loading to 0.5 mol% with a comparable efficiency.[99] The higher activity of this 

complex may arise from the ease of generating vacant sites compared to 17a and the rigid 

complex 18.  

 Similarly, although the neutral (20)[100] and cationic (21)[101] benzimidazole-tethered 

Ni/NHC complexes are structurally similar, they behave rather differently during the 

reaction, as the neutral complex 20 allowed the use of aryl chlorides and even fluorides with 

much shorter reaction times (12 - 150 minutes) than the cationic complex 21. The difference 

of activity would indeed result from the possible de-coordination of the anionic 

benzimidazole arm of 20, which would be facilitated by subsequent coordination to a 

magnesium center (Scheme 14). 

 

 

 

Scheme 14. Plausible intermediates in the KTC reaction catalyzed by 20 

 

 The structurally related (C,N,N)- and (C,N,P)-pincer complexes 22a-c, notably 22a 

and 22b (1 to 4 mol% 22a-c, THF, RT or 80°C, 16 or 24 h),[102] all are very active for the 

coupling of aryl chlorides. Nevertheless, the bimetallic complex 23a is certainly among the 

best active well-defined Ni/NHC precatalysts, as it could be used with loadings as low as 0.1 
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mol% with a large array of aryl chlorides (Scheme 15).[103] This high activity was attributed 

to possible bimetallic cooperation (dNi-Ni = 3.22 Å). 

 

 

Scheme 15. KTC coupling catalyzed by 23a under mild conditions 

 

 Cis-chelating bis-NHC complexes of nickel are also of interest, as shown by the use of 

the carbonato complex 24
[104] (best for n = 3) and of the cis-chelating bis-benzimidazolylidene 

complexes 25a
[105] and 25b.[106] Thus, loadings of 24 could be lowered to 0.2 mol% (even if 

long reaction times ranging from 18 to 69 h were required); in addition, 25a,b tolerate 

heteroaromatic and di-ortho-substituted substrates.  

 

 Finally, Kobayashi very elegantly described the use of nickel nanoparticles stabilized 

by NHC ligands supported on cross-linked polymers 26.[107] This recyclable catalyst 

surprisingly competes with homogeneous versions of Ni/NHC complexes, as it allows the 

coupling of aryl iodides and bromides at room temperature (Scheme 16). While the coupling 

of iodides and bromides proceeded very smoothly (0°C or RT), heating at 65 or 100°C was 

required with chloro substrates in order to obtain a good activity. Exceptionally, tertiary alkyl 

Grignard reagents were found to be suitable substrates and 4-fluoroiodobenzene was  notably 

used for the double coupling. Simple filtration allowed recovery of 26, which could be reused 

up to ten times without notable loss of activity. 

 

Scheme 16. NHC-stabilized Ni-NPs as an heterogeneous catalyst for the KTC reaction 
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II.2.2. Suzuki-Miyaura coupling 

 

a) In situ generated Ni&NHC complexes 

 

 The Suzuki-Miyaura[108,109] (SM) cross-coupling is undoubtedly one of the most 

powerful methodologies available for the formation of aryl/aryl bonds. The most frequently 

encountered catalysts are based on palladium. However, significant progress has been made in 

enabling the use of nickel catalysts under mild reaction conditions. In this context, Ni/NHC 

based systems have shown interesting activities, in particular with the use of in situ generated 

monodentate NHC complexes. In contrast to KTC coupling for which various nickel sources 

could be used (vide supra), Ni(COD)2 appeared to be the best nickel source for Suzuki 

coupling, and allowed the coupling of uncommon electrophiles.  

 

 For instance, aryl trimethylammonium salts could be used for the first time as coupling 

partners to give the biaryl products in good to excellent yield with a Ni(COD)2/IMes.HCl 

(1:1) catalytic system (Scheme 17).[110] Moreover, this system allowed the coupling of mono- 

and di-ortho-substituted coupling partners without significant decrease of yields. 

 

 

Scheme 17. First example of the use of aryl trimethylammonium salts as electrophilic 

coupling partners in the SM reaction 

 

 Robins et al. also described the use of uncommon coupling partners, such as azole 

derivatives of purine ribonucleosides.[111] Their coupling with para-substituted arylboronic 

acids efficiently gave 6-arylpurine ribonucleosides which possess cytostatic activities 

(Scheme 18). The same methodology could also be applied to fluoropurine derivatives.[112] 
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Scheme 18. Synthesis of 6-arylpurine ribonucleosides described by Robins 

 

 With a similar catalytic system, benzylic esters could also be employed as 

electrophiles for the efficient synthesis of enantioenriched triarylmethanes.[113] Remarkably, 

the stereoselectivity of the reaction could be modulated with achiral ligands. Whereas 

inversion took place with a Ni/SIMes (1:1) catalyst, the retention product was predominantly 

obtained with a Ni/PCy3 (1:2) catalytic system (Scheme 19).  

 

 

Scheme 19. Stereoselective synthesis of triarylmethanes 

 

 Finally, ionic liquids and silica-immobilized ionic liquids containing a 

tetrachloronickelate ion were used for the coupling of arylboronic acids with aryl 
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chlorides.[114] In the presence of 2 equivalents of PPh3, both systems were very efficient, and 

the immobilized ionic liquid-derivative could be reused up to three cycles without notable loss 

of activity. 

 

b) Well-defined Ni&NHC complexes. Monodentate NHCs 

 

 A number of  well-defined monodentate NHC complexes of nickel were also shown to 

have interesting activities in SM reactions, though usually with more classical aryl halides 

(Figure 16).  

 The first example was described in 1999 by Cavell et al. with the use of the trans-bis-

NHC complexes 27 and 28 in the coupling of 4-bromoacetophenone with phenylboronic acid 

(Scheme 20).[115] Notably, the use of 28 resulted in an increased activity thus sustaining the 

possibility of a Ni(0)/Ni(II) catalytic cycle. 

 

Figure 16. Well-defined Ni/NHC complexes employed in SM reaction 
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Scheme 20. First example of a Ni/NHC-catalyzed SM coupling 
 

 Cyclopentadienyl (Cp) Ni/NHC complexes 29a-c were demonstrated to be efficient 

pre-catalysts for the SM coupling of haloarenes with phenylboronic acid in the presence of 

K3PO4 as the sole additive.[116] The methodology was successfully applied to activated 

haloarenes but a notable loss of activity was observed with unactivated ones. Interestingly, 

using the more hindered and electron-rich pentamethylcyclopentadienyl (Cp*) derivatives led 

to more active systems. In contrast, the cationic or neutral nature of the complexes did not 

seem to have a significant influence. In comparison, bis-NHC complexes 29b did not allow an 

efficient SM coupling, probably because they are too stable to induce some reactivity.[117] 

Encouraged by these results, the authors embraced a study aiming at heterogenizing these 

complexes.[118] In this study, while using N-aryl,N'-butyl-NHC derivatives as models for 

complexes immobilized on a solid support via a three carbon linker (Figure 17), they 

surprisingly uncovered that the iodide complex 29c was even more active than the Cp* 

complexes, and a TOF up to 352 h-1 was observed.  

 

Figure 17. Use of N-aryl,N'-butyl-NHCs of nickel as models for supported derivatives in the 

SM coupling 
 

The significant stabilization of the active species, which allowed this very high TOF for a 

Ni(II) complex under similar conditions, was tentatively attributed to the presence of the 

voluminous iodide ligand, which would play a protecting role. In contrast, Buchowicz 

recently showed that the counter-ion has a non-negligible influence on the catalytic activity of 

cationic half-sandwich complexes.[119] Depending on the nature of that counter-ion, efficiency 

of the reaction could notably be doubled in the best case. 
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 These latter results contrast with that of the bis-NHC complexes Ni(0)(NHC)2 8, 

Ni(II)(NHC)2X2 9 and Ni(I)(NHC)2X 10 in the SM coupling of para-substituted bromoarenes. 

As observed for the KTC coupling, all three complexes display similar activities. Again, the 

proposed mechanisms involve a nickel(I)/NHC complex as the real intermediate (Scheme 10, 

[M] = B(OH)2). 

 

c) Well-defined Ni&NHC complexes: multidentate NHCs 

 

 Bi- and tridentate chelate Ni/NHC complexes were also employed for SM coupling. 

This often resulted in good activities with relatively low pre-catalyst loadings, albeit the use 

of harsher conditions and/or additional triphenylphosphine were generally required. For 

instance, the cationic tetradentate complexes 17a,b catalyzed the coupling of phenylboronic 

acid with para-substituted aryl iodides, bromides and chlorides at catalyst loadings of 1 - 3 

mol%.[120,121] However, except for activated aryl bromides, addition of two equivalents of 

triphenylphosphine relative to the nickel precursor was crucial to obtain good activities.   

 In comparison, the pincer NHC-pyridine systems 30a-c catalyze the SM coupling of a 

wider range of substrates. They notably allow the avoidance of triphenylphosphine in most 

cases. These systems, that have initially been applied to the coupling of simple bromo- and 

chloroarenes[122,123] were later used with more challenging substrates, such as aryl and vinyl 

tosylates, as well as aryl mesylates.[124,125] Comparative studies between complexes 30a and 

30b showed a better activity with the most rigid system. Further studies in the design of 

appropriate ligands showed that the benzimidazolylidene derivative 30c allowed the use of 

anthracenyl carboxylates as coupling partners to form (hetero)aryl-substituted anthracene 

derivatives, though the use of phosphine was again required (Scheme 21).[126]  

 

Scheme 21. Formation of (hetero)aryl-substituted anthracene derivatives with 30c 
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 Other chelate complexes such as 31
[127] or 32

[128] displayed good activities in the 

coupling of para-substituted aryl bromides and chlorides with 1 to 3 mol% of the precatalyst, 

but such complexes still suffer from the requirement of an excess of phosphine in addition of 

a base. It is noteworthy that complex 33
[129] also allowed the coupling of some aryl fluorides, 

though long reaction times as well as high temperatures and catalyst loadings were required 

(Scheme 22).  

 

Scheme 22. SM coupling of aryl halides with and without 33 

 

Importantly, this study pointed out the necessity of performing test reactions as aryl iodides 

and bromides could be coupled without adding the nickel pre-catalyst. As was observed by 

Leadbeater, sub-ppm levels of Pd found in several bases including K3PO4 are likely 

responsible for catalyzing the reaction.[130,131] 

 As observed in KTC coupling, homobimetallic complex 23a was one of the most 

active complexes for the SM coupling of aryl chlorides, probably due to the bimetallic 

cooperative effect.[103] Thus, pre-catalyst loadings as low as 0.04 mol% could be used with 

very good efficiency and applicability (20 examples, 78 - 99%). As for the KTC coupling, the 

catalytic system tolerates hindered substrates and is selective in the presence of other 

functional groups such as ketones, aldehydes and nitriles. However, the major drawback of 

this catalyst was, again, the requirement of additional triphenylphosphine (up to five 

equivalents relative to nickel!).  

 

 Finally, perhaps the most interesting result was obtained with Radius' Ni(0) 

homobimetallic complex 34, which allowed the coupling of aryl chlorides,[132] but more 

importantly for the first selective coupling of perfluoroarenes by C/F activation (Scheme 

23).[133] It is noteworthy that the choice of the base appeared to be highly substrate-dependent.  
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Scheme 23. SM coupling of perfluoroarenes catalyzed by 34 

 

II.2.3. Mizoroki-Heck coupling 

 

 Ni/NHC catalysts have been scarcely applied in the Mizoroki-Heck[134,135] (MH) 

coupling. Thus, only a few examples on the use of acrylates as sole olefinic substrates have 

been reported. Moreover, harsh reaction conditions were required to obtain reasonable yields 

of the trans-cross-coupling product (Scheme 24).[122,129,136]  

 

 

 

Scheme 24. Ni/NHC-catalyzed MH coupling 

 

 Inamoto's in situ generated catalytic system from Ni(acac)2/IMes.HCl was the first 

reported example.[136] It allowed the efficient coupling of aryl iodides and bromides with 
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acrylates (Scheme 24). Interestingly, the observed long induction period suggested that 

reduction of the nickel(II) precatalysts to active nickel(0) was rather difficult. Moreover, the 

mercury drop test resulted in total inhibition of the reaction, thus suggesting the participation 

of a heterogeneous nickel(0) catalyst.  

 Later, the use of the (C,N,C)-pincer complex 30b (R = Me, X = Br) allowed the use of 

activated aryl chlorides as electrophiles, even though reaction times were longer and an iodide 

salt was required.[122] The cationic complex 33 has been proved to be less active, probably due 

to a difficult generation of vacant sites.[129]  

 

II.2.4. Negishi coupling 

 

 Ni/NHC systems were rarely applied in Negishi coupling,[137,138] and to the best of our 

knowledge, only a couple of examples describing the use of well-defined Ni/NHC complexes 

for the coupling of aryl chlorides have been reported.  

 The mononuclear complex 17a, and most importantly, the versatile bimetallic complex 

23a proved to be able of catalyzing the Negishi coupling of a variety of (hetero)aryl chlorides 

and vinyl chlorides under mild conditions (Scheme 25).[139] Again, the bimetallic 

cooperativity was proposed to be responsible for its higher activity. 

 

 

 

Scheme 25. Negishi cross-coupling catalyzed by 23a 

 

 The (C,N,N)- and (C,N,P)-pincer complexes 22a-c have also been valued in the 

Negishi coupling of some activated and unactivated aryl chlorides.[102] Among these 

complexes, 22b exhibited the highest catalytic activity and allowed catalyst loadings as low as 

0.05 - 0.5 mol% for several activated and unactivated aryl chlorides (Scheme 26).  
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Scheme 26. Negishi cross-coupling catalyzed by 22b 

 

Of notable interest, ortho-substituted substrates could also be employed even if slightly lower 

yields were obtained. 

 

II.2.5. Homocoupling reactions 

 

 The timeless Ullmann homocoupling reaction[140] has also seen a small number of 

successful Ni/NHC catalysts. The reported examples concern the exclusive use of 

monodentate bis-NHC complexes of nickel. While 1 mol% of Ni(II) complexes 35
[141] and 

36
[142] (Figure 18) in the presence of Zn powder allowed the use of simple aryl bromides 

under relatively harsh reaction conditions, employing the zerovalent nickel complex 37 with 1 

equivalent of LDA resulted in a clearly better activity, as more challenging aryl chlorides and 

fluorides were coupled under milder reaction conditions (Scheme 27).[143] Unfortunately, this 

methodology suffers from high catalyst loadings. 

 

Figure 18. Ni/NHC complexes applied in the catalytic homocoupling reaction 

 

 

Scheme 27. Homocoupling of aryl chlorides and fluorides catalyzed by 37 
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II.2.6. Other cross-couplings 

 

 An alternative to the KTC, SM and Negishi couplings is the use of less expensive 

organomanganese and titanium reagents. Thus, the combination of Ni(acac)2 with 2 

equivalents of IPr was demonstrated to provide an efficient catalyst for the cross-coupling of 

aryl bromides and organomanganese reagents under very mild conditions (Scheme 28).[144] 

Moreover, the procedure appears to be suitable for electron-deficient and electron-rich aryl 

bromides, as well as for sterically hindered ones. Similarly, Ni(acac)2 and 1-2 equivalents of 

IPr were demonstrated to be an efficient catalytic combination for the cross coupling of aryl 

titanium(IV) alkoxides and various aryl halides (Scheme 28).[145] Of notable interest is the 

much lower catalyst loading required (0.5 - 1 mol%) compared to the previous reaction. A 

limitation, however, concerns the use of electron-rich aryl halides, which could be overcome 

by employing the tris-(2,4,6-trimethoxyphenyl)phosphine ligand instead of IPr. 

 

 

 

Scheme 28. Other C/C bond formation methodologies to form biaryl compounds 

 

 Other alternatives to traditional cross-coupling reactions involve the use of alternative 

electrophiles to the traditional organohalides, such as organosulfur compounds which have 

received far less attention in spite of the seminal publications of Wenkert[146] and Takei.[147] 

Thus, another Ni/NHC-catalyzed cross-coupling reaction was the alkenylative coupling of 

alkyl aryl sulfides with aryl Grignard reagents to produce alkenyl-aryls in high yields by using 

Ni(COD)2 and 2 equivalents of SIPr (Scheme 29).[148] 
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Scheme 29. Ni/NHC-catalyzed alkenylative couling of alkyl aryl sulfides 

 

 Similarly, the use of Ni(acac)2 in the presence of 2.5 equivalents of IMes.HCl, IPr.HCl 

or of a nickel phosphine complex allowed the direct and scalable synthesis of (E,E)-1,4-

diaryl-1,3-butadienes by the coupling of thiophene with aryl Grignard reagents (Scheme 

30).[149] 

 

 

Scheme 30. Ni-catalyzed Wenkert arylation of thiophene 

 

 Finally, a Ni(COD)2/SIPr.HCl (1:1) catalyst was employed for the C/O arylation of 

2,3-dihydrofurans with arylmagnesium bromides.[150] The reaction proceeded with high 

chemoselectivity, allowing the efficient preparation of (Z)-homoallylic alcohols (Scheme 31). 

 

 

 

Scheme 31. C/O arylation of 2,3-dihydrofurans 

 

II.2.7. Carbon-Carbon bond formation via Carbon-Hydrogen bond 

functionalization 

 

 The use of Ni/NHC systems for the functionalization of C/H bonds has mainly 

involved olefinic substrates. In 2010, Ho et al. reported for the first time the highly selective 
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intermolecular tail-to-tail hetero-hydroalkenylation of vinyl arenes with unactivated  -

olefins.[151] Remarkably, branched terminal 1,1-disubstituted olefins were predominantly 

obtained thanks to an in situ generated Ni(IPr)-hydride derivative "[IPr-Ni-H]OTf" (Scheme 

32). The same catalyst was also proved to be efficient in the head-to-tail vinylsilane- -olefin 

hydroalkenylation.[152]  

 

Scheme 32. Selective tail-to-tail hydroalkenylation of olefins 

 

 The hydroalkenylation of pyridines[153] and pyridones[154] has also been described. 

Remarkably, a Ni(COD)2/IPr catalyst in combination with MAD (methyl aluminium bis-(2,6-

di-tert-butyl-4-methylphenoxide) as a Lewis acid led to selective C4-alkylation and C6-

alkylation of pyridines and pyridones, respectively (Scheme 33). The observed selectivities 

were strongly dependent on the Lewis acid. The very bulky MAD gave the best results.  

  

 

Scheme 33. Selective C4- and C6-hydroalkenylation of pyridines and pyridones 

 

In a related example, an amino-NHC Ni-Al complex allowed the C4-hydroalkynylation of 

pyridines with symmetrical alkynes.[155] Of notable interest was the isolation of a &2,&1-

pyridine nickel aluminum intermediate prior to the C/H activation step (Scheme 34), which 

supports bimetallic catalysis.  
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Scheme 34. Ni/NHC-pyridine active intermediate 

 

 Similar catalytic systems also catalyze the hydroalkenylation at the C2-position of 

azole derivatives.[156,157] Remarkably, in these cases, the regioselectivity of the reaction could 

be switched, depending on the presence or absence of trimethylaluminium, to obtain the 

branched instead of the linear product (Scheme 35). 

 

 

Scheme 35. Selective C2-hydroalkenylation of azoles 

 

 A last example involving a Ni-Al bimetallic cooperation has been reported for the 

cyanative aldehyde-alkene coupling catalyzed by a Ni(IPr)-Et2AlCN catalyst with high cis-

selectivities at room temperature.[158]  

$  -Alkenes were also valued in transformations involving formamides and aldehydes 

(Scheme 36). These reactions required the use of very bulky NHC ligands. In the case of 

formamides, Ni(COD)2/IAd (1:1) in combination with triethylaluminium resulted in the 

formation linear amides.[159] However a limitation of this methodology is the use of aryl 

formamides for which a drastic decrease of catalytic activity was observed.  
 

 

Scheme 36. Regioselective hydrocarbamoylation of 1-alkenes 
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 Remarkably, the intramolecular hydroacylation of alkenes was achieved with a 

Ni(COD)2/ItBu system to afford indanones and tetralones derivatives in good to excellent 

yields.[160] Of notable interest is the isolation of two complexes 39a and 39b, which are likely 

to be real active species, as confirmed by control experiments (Scheme 37). 
 

 

Scheme 37. Plausible intermediates involved in the intramolecular hydroacylation of alkenes 

 

$  -olefins were also employed for the Ni/NHC-catalyzed coupling with isocyanates to 

form acrylamides, which are important building blocks in the polymer industry.[161] The 

predominant formation of the exo product was explained by steric factors (Scheme 38). 

 

 

Scheme 38. Plausible intermediates involved in the coupling of  -olefins and isocyanates 
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 Other C/C bond formation methodologies involving the functionalization of C/H 

bonds notably include the Michael reaction of %-dicarbonyl, %-diester, %-keto ester and  -

cyano ester compounds with  ,%-unsaturated carbonyl compounds, catalyzed by the well-

defined Ni/NHC complexes 38a-d (Scheme 39).[1626164]
 The main advantage of this 

methodology is the avoidance of a base, which consequently suppresses side reactions such as 

the aldol-cyclization or the retro-Claisen type decomposition. Moreover, the reaction is 

performed in air and at room temperature. 

 

Scheme 39. Ni/NHC-catalyzed base-free Michael reaction 

 

 The  -arylation of propiophenone derivatives catalyzed by 7b constitute another 

attractive methodology for the formation of C/C bonds via C/H functionalization (Scheme 

40).[165] Although high precatalyst loadings were required, some aryl bromides and chlorides 

could be converted into the corresponding$ -aryl ketone in reasonable yields. Of notable 

interest is the use of the air- and moisture-stable complex 7b, which does not require the 

addition of any reductant.   

 

Scheme 40.  -Arylation of propiophenone derivatives catalyzed by 7b 
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 Finally, the well-defined Ni/NHC complex 39 has been proved to be catalytically 

active in the Friedel-Crafts reaction of indoles with %-nitrostyrenes (Scheme 41).[166] 

 

 

 

Scheme 41. Friedel-Crafts alkylation of indoles with %-nitrostyrenes 

 

II.2.8. Miscellaneous Carbon-Carbon bond formation reactions 

 

 In 2009, Navarro described the Ni/NHC-catalyzed oxidation of secondary 

alcohols[167] (see Oxidations section). The same year, Itami concurrently described the use of 

a similar catalytic system for addition of organoboronate esters to ketones and aldehyde to 

yield tertiary alcohols.[168] As a consequence, these two groups later and independently 

reported the efficient one-pot oxidation-addition of secondary alcohols with boronic esters 

(Scheme 42).[169,170] The rate-determining step is the addition of the boronic compound, 

which depends on its electronic and steric nature.[170] By using slightly different reaction 

conditions than Navarro, Itami was able to employ primary alcohols for a controlled 

sequential double oxidation-addition process.[169] The key of this remarkable reaction seems 

to be the use of an excess of cesium fluoride in a toluene/dioxane media (Scheme 42). This 
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strategy notably allowed the one-pot synthesis of flumecinol, a hepatic microsomal enzyme 

reducer. 

 

 

 

Scheme 42. Domino synthesis of tertiary alcohols from primary and secondary alcohols 

 

 In a totally different context, complex 34 has been shown to be able to activate not 

only C/F bonds, but also C/C bonds.[171] Indeed, the reaction of diphenylacetylene with 

biphenylene led to the product formed by alkyne insertion into the 2,2' bond of biphenylene 

(Scheme 43).  

 

 

 

Scheme 43. Catalytic C/C activation by 34 

 

 Finally, Mori elegantly described the use of 7b for the polycondensation of 

chlorothiophenes in the presence of stoichiometric or catalytically generated magnesium 

amide (Scheme 44).[172] The methodology is atom-efficient, and operates under mild 
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conditions to efficiently give polythiophenes, that are valuable building blocks in materials 

chemistry. The same strategy has been employed for the coupling of thiophene derivatives 

with polyhalogenated thiophenes or arenes to give the corresponding multi-coupled 

product,[173] as well as for the synthesis of polythienylenearylenes.[174]  

 

Scheme 44. Ni/NHC-catalyzed polycondensation of thiophenes 

 

II.3. C$=0'(,>)#!*%"($,2)(,4$'4(,>)<*#+$,-;!"!#$*"$/)+$,?)5$#/*"($, 

 

II.3.1. Carbon-Nitrogen bond formation 

 

 The Ni/NHC-catalyzed amination of aryl halides was first reported by Fort and co-

workers in 2001.[175] The combination of Ni(acac)2 (5 mol%), SIPr.HCl (10 mol%), tBuOH 

and an excess of NaH resulted in the formation of subnanoparticles of NHC/Ni(0), which 

were possibly responsible for the observed catalytic activity. Remarkably, this system already 

allowed for the coupling of aryl chlorides with anilines and primary alkylamines, even if the 

catalytic activity slightly decreased with the latter substrates. One year later, the same group 

extended the methodology to a broader scope of substrates by using slightly modified reaction 

conditions, notably with anilines (Scheme 45).[176] Finally, this methodology was also applied 

in an intramolecular version, to build 5- to 7-membered heterocycles.[177] 

 

Scheme 45. In situ catalytic amination of aryl chlorides 
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 Very recently, the use of NiCl2(PPh3)2/IPr.HCl (1:2) under conditions similar to these 

developed by Fort et al. allowed the coupling of benzophenone hydrazine with bromoarenes 

(Scheme 46).[178] 

 

 

 

Scheme 46. Ni/NHC-catalyzed amination of bromoarenes with benzophenone hydrazine 

  

 The direct use of a nickel(0) source with an imidazolium salt in the presence of a base 

also proved to be very efficient. Thus, the combination of Ni(COD)2, IPr.HCl or SIPr.HCl and 

NaOtBu was shown to promote the amination of aryl carboxylates[179] and sulfamates,[180] 

which are very interesting electrophiles due to their ease of preparation and handling, 

pronounced stability, low toxicity and low cost (Scheme 47). Remarkably, the methodology 

with aryl sulfamates could be used for the expeditious synthesis of linezolid, an antibacterial 

drug.[180] Both reactions allowed the arylation of cyclic and acyclic secondary amines and 

anilines with various arenes, and in the case of sulfamates, heteroarenes.  

 

 

 

Scheme 47. Catalytic amination of aryl sulfamates and carbonates 

 

$ "-Aryl nickel(II) complexes, which are readily available and easy to modulate, were 

demonstrated to be an alternative source of nickel to in situ generate active Ni(0)/NHC 

complexes without need for an additional reductant. Initially, such a system was successfully 

applied in the amination of aryl chlorides with cyclic dialkylamines and anilines.[181,182] 
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Rapidly, it was also used with aryl tosylates, which required slightly higher catalyst loadings 

but much shorter reaction times.[183] More recently, this system also proved to be useful when 

using aryl phosphates as coupling partners.[184] Interestingly, the reaction has a wider scope of 

substrates than other C/O bond functionalization methodologies with respect to the amine. 

Thus, primary alkylamines were efficiently functionalized under these conditions (Scheme 

48). 

 

 

 

Scheme 48. Use of "-aryl nickel(II) complexes in the formation of C/N bonds 

 

 Matsubara et al. isolated the well-defined 18-electron (40a,b), and 14-electron (8a,b) 

Ni(NHC)2 complexes starting from Ni(acac)2, an in situ generated NHC ligand, and NaH, 

which are the reagents employed by Fort and co-workers to in situ generate Ni(0)/NHC 

complexes (Scheme 49).[185]  

 

 

 

Scheme 49. Synthesis of 40a,b and 8a,b described by Matsubara 
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 Catalytic amination of chlorobenzene, carried out in the presence of 8a, gave slightly 

higher yields than with Fort's in situ generated Ni(0)/NHC generation process, which 

suggests that 8a is very close to the active species (Scheme 50). 

 

 

 

Scheme 50. Comparative study between Fort's results and complex 8b in the catalytic 

amination of aryl chlorides 

 

 In another work, the same authors reported the use of the 15-electron electron mixed 

phosphine/NHC complex 12 (Ar = DIPP), in situ generated from 11 and an excess of 

triphenylphosphine.[89] These pre-catalyst efficiently catalyzes the Buchwald-Hartwig 

coupling of diphenylamine with aryl halides under relatively mild reaction conditions 

(Scheme 51).  

 

 

 

Scheme 51. Ni/NHC-catalyzed diphenylamination of aryl halides 

 

 The half-sandwich complexes 30 bearing (S)IPr and (S)IMes ligands also showed 

some activity in the amination of a very restricted number of aryl bromides and chlorides with 

morpholine.[186] More recently, it was found that using the bulkier IPr*OMe ligand (Scheme 

52) led to a significant increase of activity, probably due to a better steric protection of the 

active species that prevents its decomposition.[187]  
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Scheme 52. Buchwald-Hartwig amination of aryl chlorides catalyzed by [Ni(IPr*OMe)ClCp] 

 

The related 16-electron !-allyl nickel complex 15 is not only very efficient for KTC cross-

coupling,[92] but also for the formation of Carbon/Heteroatom bonds.[93] In particular, the 

Buchwald-Hartwig amination of heteroaromatic chlorides with secondary amines and anilines 

proceeded smoothly at room temperature to give the cross-coupling products in good to 

excellent yields (61 - 99%) (Scheme 53). The better results obtained with 15 compared to 

complexes 30 could be explained by presence of the allyl moiety in 15, which would help 

reducing Ni(II) to Ni(0) probably in a way similar to that proposed for Pd(II) analogues.[94,95] 

Again, replacement of the IPr ligand by the bulkier IPr*OMe, this time in 15, resulted in 

increased activities.[188] 

 

 

Scheme 53. Buchwald-Hartwig amination of aryl chlorides catalyzed by 15 

 

 A remarkable improvement has been reported when using the bis-styrene Ni(0)/IPr 

complex 41. The latter indeed allows the coupling of aryl tosylates with secondary cyclic 

amines and anilines in short reaction times (Scheme 54).[189] Interestingly, the catalytic 

system worked well with sterically-hindered anilines.  



Chapter I.  N-heterocyclic carbene-nickel complexes in catalysis 

 

 

45 
 

 

 

Scheme 54. Buchwald-Hartwig amination of aryl tosylates catalyzed by 41 

 

 Finally, complexes 42a,b showed moderate activities in the hydroamination of 

electron-poor  -alkenes (Scheme 55).[190] Remarkably, these nickel complexes were found to 

be more efficient than their palladium analogues. 

 

 

 

Scheme 55. Hydroamination of electron-poor  -olefins catalyzed by 42a,b 

 

II.3.2. Carbon-Sulfur bond formation 

 

 C/S couplings have been much less studied than C/N couplings. Nevertheless, a few 

Ni/NHC systems have been shown to promote the formation of C/S bonds between thiol 

derivatives and electrophiles.  

 

 The first example was only described in 2007 when the bis-NHC-nickel(0) complex 

43, which would be formed by reaction of Ni(COD)2 with two equivalents of the IBn ligand, 

was reported to efficiently couple arylthiols with aryl iodides and bromides (Scheme 56).[191] 
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Scheme 56. First Ni/NHC-catalyzed arylthiolation of aryl halides 

 

 More recently, the readily available and easy-to-handle Ni(OAc)2 was reported to 

catalyze the C/S coupling of a large array of aryl-, benzyl- and alkylthiols with aryl iodides, 

bromides and electron-deficient aryl chlorides in the presence of IPr and KOtBu (Scheme 

57).[192]  

 

Scheme 57. Aryl-, benzyl- and alkylthiolation of haloarenes 

 

 As observed for the formation of Carbon/Nitrogen bonds, monodentate Ni/NHC 

complexes appeared to be the only well-defined Ni/NHC complexes that are suitable for 

these transformations. Thus, the air-stable complex 15, which is highly active in aryl 

amination (see Scheme 53), also shows interesting activities in the thiolation of aryl iodides 

and bromides in the presence of NaOtBu as the sole additive (Scheme 58).[93] Interestingly, it 

appears to be more active than the in situ generated complex 43. Again, replacement of the 

IPr ligand in 15 by an IPr*OMe ligand resulted in increased activities.[188] 

 

Scheme 58. Arylthiolation of aryl iodides and bromides catalyzed by 15 
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 Recyclable Ni/NHC complexes immobilized on Magnetite/Silica nanoparticles have 

been applied in the thiolation of aryl iodides.[193] Catalyst recovery was achieved with the 

assistance of an external magnet after each run, and the catalyst could be reused up to three 

cycles without notable decrease of activity. 

 

 Finally, the CpNi/NHC complexes 30 are efficient pre-catalysts for the atom-efficient 

hydrothiolation of alkynes (Scheme 59).[194] The reaction was performed with good 

selectivities for the Markovnikov addition product and displays good functional group-

tolerance, when employing the IMes derivative 30a. 

 

Scheme 59. Hydrothiolation of alkynes catalyzed by complex 30a 

 

Mechanistic investigations revealed that the thiol complexes 44, which are formed by reaction 

of 30 with one equivalent of thiol in the presence of NEt3, may act as active intermediates in a 

Ni(II)/Ni(II) catalytic cycle (Scheme 60). These intermediates would react by alkyne insertion 

to yield an unstable thioalkenyl intermediate. The latter would then be trapped by another 

equivalent of thiol to yield the desired product and regenerate the active species. 

 

 

Scheme 60. Catalytic cycle proposed by Nolan 
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II.4. Reduction reactions 

 

II.4.1. Dehalogenation reactions 

 

 The dehalogenation of aryl halides was a side reaction observed by Fort and co-

workers during their studies on the Ni-catalyzed amination of aryl halides (see Scheme 

45).[176] By addition of alkoxide as a hydrogen-donor, the same catalytic system proved to be 

efficient for the dehalogenation of aryl iodides, bromides, chlorides[195] and even fluorides[196] 

(Scheme 61).  

 
 

Scheme 61. Catalytic dehalogenation of aryl halides 

 

 The well-defined half-sandwich complexes 30 also catalyze the dehalogenation of 

para-bromotoluene in the presence of sodium isopropoxide.[186] However, their efficiency is 

very limited as a maximum of 40% conversion was observed with a catalyst loading of 5 

mol% in THF or 1,4-dioxane at reflux. Much better yields were observed at room temperature 

with the nickel(I) complex 7a (n = 1) under otherwise similar conditions.[197] However, the 

substrate scope was not studied. 

 

II.4.2. Carbon-Carbon multiple bond reduction 

 

 Montgomery was the first to apply a Ni/NHC system to the reduction of 

Carbon/Carbon multiple bonds in 2006.[198] Generating a catalyst in situ starting from 

Ni(COD)2 and IMes.HCl or IPr.HCl allowed the hydrosilylation of internal and terminal 

alkynes under mild conditions (Scheme 62). It is noteworthy that a key to avoid the formation 



Chapter I.  N-heterocyclic carbene-nickel complexes in catalysis 

 

 

49 
 

of 2:1 coupling products of the alkyne and the silane is the slow addition of the alkyne over 

20 min. With asymmetric alkynes, the regioselectivity depended on the structures of the 

alkyne, silane and NHC ligand. The impact of these variables on the regioselectivity of the 

reaction was compared to that on the regioselectivity of the closely related three-component 

coupling of alkynes, aldehydes and silanes. The result suggests that alkyne hydrometallation 

is not a common first step in both reaction.  

 

 

 

Scheme 62. Hydrosilylation of alkynes catalyzed by a Ni(COD)2/NHC (1:1) system 

 

 In a very elegant study, Montgomery recently extended this reaction to the more 

challenging allenes.[199] Impressively, they observed that the regioselectivity of the reaction 

could be reversed by changing the nature of the metal, within complexes that possess a 

common ligand scaffold. Thus, the nickel complex 41 provided the alkenyl silane as the major 

product, whereas the Pd complex 45 provided the allyl silane as the major product (Scheme 

63). 

 

 

Scheme 63. Metal-induced selective hydrosilylation of allenes 

 

Further optimization of the procedure led to slight ligand variation for both nickel- and 

palladium-catalyzed hydrosilylations, and in situ generated complexes were preferred for 

practical convenience (Scheme 64).  
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Scheme 64. Optimized selective hydrosilylation of allenes 

 

Well-defined Ni(II)/NHCs were also used for the hydrosilylation of alkynes and alkenes. 

Thus a number of nickel(II) dihalide complexes 35 and 46 of the type [Ni(NHC)2X2] with 

small monodentate NHCs were shown to be catalytically active in the hydrosilylation of 

internal alkynes in the presence of ZnEt2 as a reductant. In all cases, the catalytic activity 

yielded the syn product selectively, and the asymmetric alkyne 1-phenyl-1-propyne gave (E)-

1-phenyl-2-(triethylsilyl)propene as the major product (Scheme 65).[200] 

   

 

 

Scheme 65. Hydrosilylation of internal alkynes catalyzed by 46 

 

 The chelate !-allyl complexes 47a,b are efficient tools for the selective reduction of 

styrene and 4-methylstyrene in the presence of phenyl silane to obtain the Markovnikov 

addition product (Scheme 66).[201] Yields were moderate however. 1H NMR monitoring of the 

reaction clearly showed several signals in the metal-hydride region, indicating the presence of 

Ni/H intermediates. 
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Scheme 66. Hydrosilylation of styrene derivatives catalyzed by 47a,b and selectively yielding 

Markovnikov addition products 

 

 The thermally stable nickel(0) complex 48 can be notably used as a synthon to 

synthesize several Ni(0) and Ni(II) complexes.[202] Moreover it is active in the hydrogenation 

of several olefins (Scheme 67). Although relatively high pre-catalyst loadings were required, 

the reaction interestingly proceeded under only 1 atm of hydrogen at 50°C. The negative 

mercury test and the formation of hexane during the catalysis suggest the formation of a 12-

electron Ni(0)/IPr active species. 

 

Scheme 67. Hydrogenation of simple alkenes catalyzed by 48 

 

II.4.3. Carbon-Heteroatom multiple bond reduction 

 

 Fort's versatile catalytic Ni(0)/NHC (see C&N couplings, Scheme 45 and 

Dehalogenation reactions, Scheme 61) system has also been successfully applied in the 

transfer hydrogenation of aldimines and ketimines.[203] Thus, the combination of Ni(acac)2, 

IMes.HCl and NaH allowed the reduction of a relatively broad range of imines in good to 
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excellent yields in the presence of NaOCHEt2 (Scheme 68), which is assumed to have a 3-fold 

role: (i) it could deprotonate IMes.HCl to form the free carbene, that would then coordinate to 

the nickel; (ii) it could activate NaH for the in situ reduction of Ni(II) into Ni(0); and (iii) it 

could act as an hydrogen-donor. 

 

 

 

Scheme 68. Ni/NHC-catalyzed reduction of imines by transfer hydrogenation 

 

 The reduction of C/O multiple bonds has also been targeted. Thus, a chemoselective 

method for the hydrosilylation of ketones has recently been developed, using Ni(COD)2 and 

IMes.HCl with Ph3SiH. The most notable feature of this process is that free hydroxy groups 

are largely unaffected, thus providing an efficient one-step method for the conversion of these 

species to mono-protected diols, wherein the protecting group is exclusively installed on the 

ketone-derived hydroxyl group (Scheme 69).[204] Interestingly, the direct use of air-sensitive 

Ni(COD)2 could be avoided by generating this complex in situ by reducing Ni(acac)2 with 

DIBAL-H in the presence of cyclooctadiene. 

  

 

 

Scheme 69. Chemoselective hydrosilylation of hydroxyketones 

 

 The use of the well-defined half-sandwich chelate complex 49 with PhSiH3 allowed a 

significant improvement of the catalytic activity.[205] Thus, hydrosilylation of aldehydes and 

ketones was performed smoothly at 25°C with lower pre-catalyst loadings ranging between 

0.5 and 2 mol%, and showed good functional group tolerance (although hydroxy groups were 

not tested). Reaction of 49 with 0.3 equiv. of PhSiH3 led to the formation of the nickel-
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hydride complex 50. Further reaction of 50 with PhSiH3 yielded the diphenylsilyl complex 51, 

and reaction with 4-trifluoromethylbenzaldehyde yielded the corresponding Ni/alkoxide 

insertion product 52 (Scheme 70). However, deuterium labeling studies indicated that the 

hydride ligand does not directly participate in the reduction reaction, thus ruling out the 

conventional hydride mechanism.[206] 

 

 

 

Scheme 70. Stoichiometric experiments 

II.5. Oxidation reactions 

 

 In 2009, Navarro started to study the catalytic oxidation of secondary alcohols 

catalyzed by a Ni/NHC complex in situ generated from equimolar amounts of Ni(COD)2 and 

IPr.HCl (see Miscellaneous C&C bond formations, Scheme 42).[167] Actually, this 

methodology refers to Fort's system employed for the dehalogenation of aryl halides, in which 

a secondary alcoolate is used as a hydrogen-donor to form the corresponding ketone as a by-

product.[195] Thus, in the presence of chlorobenzene as an oxidant and KOtBu as a base, 

alcohols were converted in 17 to 26 h at 60°C to the corresponding ketones in good to 

excellent yields.[167] Secondary alcohols bearing an aryl group were mostly studied but the 

reaction was also efficient when using aliphatic secondary alcohols. However, primary 

alcohols were found to be unsuitable substrates. Of notable interest, this reaction can be 

performed under milder reaction conditions and in much shorter reaction times (15 - 120 min) 

by using dichlorotoluene as both the solvent and the oxidant (Scheme 71).[207] In addition, the 



 

Chapter I.  N-heterocyclic carbene-nickel complexes in catalysis 

 

 

54 
 

air-stable Ni(0) complex 53 was also shown to be active under these conditions. Although 

longer reaction times were required, it avoided the use of the highly air-sensitive and 

pyrophoric Ni(COD)2 (Scheme 71). 

 

 

Scheme 71. Ni/NHC-catalyzed oxidation of secondary alcohols 

 

 In another context, a nickel-containing ionic liquid immobilized on mesoporous silica 

has been applied as heterogeneous catalyst for the oxidation of styrene with H2O2 to produce 

benzaldehyde.[208] Interestingly, the reaction proceeded under solvent-free conditions, but a 

better activity was observed in acetonitrile. In both cases the method is very selective for the 

formation of benzaldehyde, and yields are among the highest reported in the literature (37% in 

CH3CN) with only ca. 0.4 mol% of nickel. 

 

II.6. Miscellaneous reactions 

 

 The use of an in situ generated Ni/NHC catalytic system has been successful in the 

Tischenko reaction.[2096211] Thus, the Ni(COD)2/IPrCl (1:1) catalyst was able to promote the 

homo-dimerization of (hetero)aryl and alkyl aldehydes in toluene at 60°C, in moderate to 

excellent yields (Scheme 72). Monitoring the reaction by 1H NMR spectroscopy at /60°C 

showed the formation of a Ni(0)/IPrCl complex with two coordinated molecules of 

aldehydes, which probably acts as a key intermediate, as warming up the reaction to 25°C 

gave quantitatively the homo-dimer ester (Scheme 72). 
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Scheme 72. Ni/NHC-catalyzed Tischenko reaction yielding homo-dimer esters 

 

By a simple change of ligand, the methodology was notably extended to the crossed 

Tischenko reaction between an aryl aldehyde and an alkyl aldehyde (Scheme 73).[210] Thus, 

by using a Ni(COD)2/SIPr (1:1) catalyst, the corresponding cross-coupled esters were 

obtained under fairly mild reaction conditions. Mechanistic studies revealed that, as for the 

homo-dimerization of aldehydes, the active species might include two aldehyde molecules, 

and deuterium labeling experiments suggest that, from the two hydrogen atoms of the formed 

methylene function, one comes from the aryl aldehyde, and the other from the alkyl aldehyde 

(Scheme 73). The mechanism of this reaction has later been supported by DFT calculations, 

and mono-carbonyl activation, in which the carbonyl group of the alkyl aldehyde would be 

activated by oxidative addition, is likely to occur.[211] 

 

Scheme 73. Ni/NHC-catalyzed Tischenko reaction yielding cross-coupled esters 

 

 In a reaction similar to the rearrangement of vinylcyclopropanes, aryl cyclopropyl 

ketones were found to undergo a C/C cleavage of the cyclopropyl ring under Ni/NHC 

catalysis. In the presence of bis-(pinacolato)diboron, the borylative ring opening of the 

cyclopropyl aryl ketones efficiently occurred to yield 4-oxoalkylboronates in poor to excellent 

yields (Scheme 74). Importantly, aryl cylopropyl ketones possessing an additional substituent 

on the cyclopropyl ring were used without notable decrease in selectivity, as the cleavage of 



 

Chapter I.  N-heterocyclic carbene-nickel complexes in catalysis 

 

 

56 
 

the C/C bond mainly takes place on the less sterically hindered side. It is noteworthy that the 

Ni(COD)2/IMes.HCl (1:1) catalyst gave superior results to the Pd(OAc)2/IMes (1:1) catalyst. 

 

 

 

Scheme 74. Borylative ring-opening of aryl cyclopropyl ketones 

 

 Cyclopentadienyl-linked NHC complexes of nickel, that were described as efficient 

pre-catalysts for the hydrosilylation of aldehydes and ketones,[205] are also able to catalyze the 

dehydrogenative coupling of aromatic thiols with Et3SiH (Scheme 75).[212] Thus, using only 1 

mol% of either complex 54a or 54b allowed the formation of the corresponding 

silylthioethers in moderate to excellent yields (60 - 96%). However, the use of alkyl- and 

benzylthiols resulted in an important decrease of activity. 

 

 

 

Scheme 75. Dehydrogenative coupling of aromatic thiols catalyzed by 54a,b 

 

 Finally, probably the most elegant Ni/NHC-catalyzed process was described in 2011 

for the hydrogenolysis of aryl ethers.[213] Thus, the use of a simple Ni(COD)2/SIPr.HCl (1:2) 

system impressively allowed the selective cleavage of aromatic C/O bonds in alkyl aryl, 

benzyl and diaryl ethers at "only" 80 to 120°C, under 1 bar of dihydrogen (Scheme 76). 

Indeed, this transformation usually required heterogeneous catalysts that operate at high 

temperature and pressure, resulting in the formation of products stemming from competing 
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hydrogenolysis of aliphatic C/O bonds and hydrogenation of the arene. Remarkably, in the 

case of unsymmetrical diaryl ethers, C/O cleavage occurred preferentially at the C/O bond 

adjacent to the more electron-poor aryl ring, while in the case of alkyl aryl ethers and benzyl 

ethers, hydrogenation selectively occurred at the CAr/O bond and at the Cbenz/O bond, 

respectively. To rationalize the observed unprecedented selectivity and catalytic activity, the 

hydrogenolysis of diphenyl ether and 2-methoxynaphtalene was conducted in the presence of 

a 300-fold excess of elemental mercury with respect to the Ni catalyst. No decrease in product 

yields was observed. Thus, the homogeneous nature of the catalyst would be responsible for 

the relatively mild reaction conditions employed, and for the selectivities. This process is 

therefore of major importance for the conversion of oxygen-rich lignocellulosic plant biomass 

to deoxygenated fuels and commercial chemicals. 

 

 

 

Scheme 76. Selective hydrogenolysis of aryl ethers 

 

III. Conclusions 

 

 Since the discovery of NHCs as powerful ligands for transition metal-catalyzed 

organic transformations, the field of nickel catalysis has increased exponentially. Over the last 

fifteen years, considerable efforts have been directed towards the development of Ni/NHC 

systems as cheaper alternatives to noble metal-based catalysts. Intensive work has 

impressively demonstrated a very broad scope of applicability of these Ni/NHC catalysts, as 

demonstrated by the number of topics discussed above. However, further contributions in 

ligand design, and scope applicability are still needed in order to valorize these systems, so 

that they will constitute not just cheap and versatile tools, but also very efficient tools for 
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catalysis. In this regard, the very recent Ni(COD)2/SIPr.HCl (1:2)-catalyzed selective 

hydrogenolysis of aryl ethers undoubtedly represents the most encouraging result (see 

Miscellaneous reactions). This example perfectly demonstrates the potential of these systems, 

which will probably become inescapable reagents for synthetic organic chemistry. 
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I.   Introduction 

 

 The sustainable formation of  -aryl carbonyl compounds has remained a challenge for 

years. The adopted strategies often included conventional nucleophilic aromatic substitution, 

which is limited to the use of highly activated aryl halides.[1] Another approach consisted in 

using a preformed enolate derivative in a metal-mediated process requiring stoichiometric 

amounts of catalysts.[2 4] However, these methods generally suffered from the high cost and 

toxicity of the metal sources, and the limited functional-group compatibility. In 1997, 

Miura,[5] Buchwald[6] and Hartwig[7] concurrently reported the serendipitous discovery of the 

palladium-catalyzed  -arylation of ketones,[8 11] which proceeds via the direct 

functionalization of a C!H bond  !to the ketone (i.e. without a preformed metal-enolate). At 

that time, the methodology already included aromatic and aliphatic ketones with aryl iodides 

and bromides, and very soon chlorides.[12] Since then, significant progress has been realized in 

this field, as other carbonyl compounds can be functionalized this way, such as esters,[13 21] 

amides,[22 28] aldehydes[29 34] and nitriles.[35 37] Moreover, the challenging aryl mesylates 

recently also proved to be suitable electrophiles in the  -arylation of ketones.[38] Finally, it is 

noteworthy that efforts from the group of Hartwig has allowed to shed some light on the 

mechanism of the Pd-catalyzed  -arylation process, which possibly proceeds via the catalytic 

cycle depicted in Scheme 1.[39,40] 

 

Scheme 1. Plausible catalytic cycle for the Pd-catalyzed  -arylation of ketones 

(OA = oxidative addition, LS = ligand substitution, RE = reductive elimination) 
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Despite this considerable progress, the TM-catalyzed  -arylation of carbonyl derivatives 

suffers from the high costs of Pd and its associated ligands, as well as from a certain lack of 

catalyst variety, as almost only Pd is used. It is therefore of major interest to develop suitable 

alternatives in terms of both cost and catalyst variety. In this regard, very recent efforts have 

been directed towards the use of copper catalysts, but this field is only at its infancy,[41] and 

another alternative to palladium may be its 1st row counterpart, nickel, with which the direct 

 -arylation of ketone and esters enolates were actually first reported in the 1970s.[42,43] 

Nevertheless, since then, almost all of the few reported examples involves the use of high 

loadings (5 - 10 mol%) of sensitive and pyrophoric Ni(COD)2 for the  -arylation of cyclic 

ketones (exclusively).[40,44 46] Thus, to the best of our knowledge, the only example of an air- 

and moisture-stable nickel(II) pre-catalyst for this transformation has been described by 

Matsubara et al. in 2007 (Scheme 2).[47] In this paper, the mixed phosphine!, N-heterocyclic 

carbene!nickel(II) complex [Ni(IPr)(PPh3)Cl2] 1 was reported to catalyze the coupling of 

some aryl bromides and chlorides with propiophenone derivatives. However, here too, 

relatively demanding conditions (10 mol% of 1) were required to observe respectable yields.  

 

 

 

Scheme 2.  -Arylation of acyclic ketones catalyzed by [Ni(IPr)(PPh3)Cl2] 1 

 

 In this context, our group recently reported that cyclopentadienyl (Cp) nickel!N-

heterocyclic carbene complexes are able to activate C!H bonds of labile acetonitrile[48,49] and 

acetone[50] ligands in the presence of stoichiometric amounts of a strong base. Of notable 

interest, the latter reaction led to the formation of a rare example of the nickel-acetonyl 

complex 4, as well as to the unique formation of the dinickel-oxyallyl complex 5, resulting 

from the mono and double base-promoted nickelation of acetone, respectively (Scheme 3). 

Indeed, in contrast to the heavier group 10 elements, Pd and Pt, where metal-acetonyl or so-
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called C-bound enolate complexes are prevalent,[51 55] the latter have rarely been reported for 

nickel,[56 58] as similar reactions usually generate O-bound enolate nickel complexes.[59 62] 

 

Scheme 3. Base-assisted nickelation of acetone 

 

 The isolation of such nickel-C-bound enolate complexes, which are important 

intermediates in the  -arylation of carbonyl derivatives (see Scheme 1), coupled with the fact 

they could be protonated back from 5 to 4, and from 4 to 2 (Scheme 4), suggested that this 

family of CpNi(II)!NHC complexes might be used as catalyst precursors in such 

C(sp2)!C(sp3) couplings via C!H bond cleavage. Herein, we show that these air-stable 

complexes exhibit high catalytic activity for the  -arylation of acyclic ketones at 

concentration as low as 1 mol%, and give insights to the mechanism of this catalytic process. 

 

Scheme 4. Reprotonation of complexes 4 and 5 
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II.  Results and Discussion 

 

II.1. Choice and syntheses of the pre-catalysts 

 

 Selected half-sandwich Ni!NHC complexes for the catalytic study are depicted in 

Figure 1.  

 

 

 

Figure 1. Selected half-sandwich Ni!NHC complexes 

 

Complexes [Ni(IMes)ClCp] 2,[63] [Ni(Mes-NHC-nBu)ICp] 6,[64] [Ni(IPr)ClCp] 7
[65] and 

[Ni(IPr)ClCp*] 9[66] were prepared according to the published methods. The cationic complex 

[Ni(IPr)(NCMe)Cp](PF6) 8 was synthesized by treatment of an acetonitrile solution of the 

neutral complex 7 with 1 equivalent of KPF6 (Scheme 5). Thus, the chloride atom was 

abstracted, and the cationic complex 8 was isolated as a dark yellow air-stable solid in 87% 

yield. Complex 8 was characterized by 1H and 13C{1H} NMR spectroscopy, IR spectroscopy, 

elemental analyses and X-ray diffraction. 

 

 

 

Scheme 5. Synthesis of [Ni(IPr)(NCMe)Cp](PF6) 8 
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The 1H and 13C{1H} NMR spectra of 8 in CD3CN are straightforward as they clearly show the 

presence of one "5-Cp ligand and one IPr ligand. As for the neutral complex 7, the spectra 

reveal that an effective plane of symmetry that bisects the molecule exists in solution on the 

NMR time scale. This effective mirror plane contains the acetonitrile ligand, the nickel center 

and the NHC carbene carbon atom, as well as the Cp ring centroid. Free CH3CN that results 

from the exchange with CD3CN is seen in the NMR spectrum, indicating that the acetonitrile 

ligand of the cationic species is labile in solution. It is noteworthy that the carbene carbon 

atom in 8 appears at 162.7 ppm (in CD3CN). This signal is slightly upfield of the signal seen 

at 169.3 ppm (in CDCl3) for its neutral derivative 7, as was observed for all other cationic 

complexes of this type in comparison to their neutral derivatives.[67] 

 Crystals of 8 suitable for an X-ray structure determination were grown from an 

acetontrile/diethylether solution at 4°C. The molecular structure of its cationic part is shown 

in Figure 2. Crystallographic data and data collection parameters are listed in Table 4 (see 

Experimental Section), and a list of selected bond lengths and angles appear in Figure 2's 

legend. 

 

Figure 2. Molecular structure of the cationic part of 8 showing all non-H atoms. Ellipsoids 

are shown at the 50% probability level and key atoms are labelled. Selected distances (Å) and 

angles (°) for both cations contained in the asymmetric unit: Ni C1, 1.8885(19)/1.8912(19); 

Ni N3, 1.863(2)/1.8637(19); Ni Cpcent, 1.746/1.749; C1 Ni N3, 97.24(8)/96.29(8); C1 Ni 

Cpcent, 134.55/135.25; N3 Ni Cpcent, 127.89/128.16. 
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 This structure is strikingly similar to that of both its neutral and Cp* analogues, 7[65] 

and [Ni(IPr)(NCMe)Cp*](PF6), and deserves no particular comment.[67] Indeed, all distances 

and angles are in the same range to that of these two analogous complexes, with a nickel atom 

laying at the center of a trigonal plan, with the same range of significant departures from the 

120° angles of a trigonal structure. 

 

II.2. Optimization of the catalytic conditions 

 

 Our initial efforts focused on the coupling of propiophenone with 4-bromotoluene in 

toluene at 110°C in the presence of 1.5 equiv. of NaOtBu as a base and of 5 mol% of a pre-

catalyst, i.e. under conditions similar to those of Matsubara, but with a lower pre-catalyst 

loading (Table 1). Complex 6 was first tested, as this pre-catalyst is highly active in the 

Suzuki-Miyaura cross-coupling reaction.[64] However, it was totally inert in this  -arylation 

process (Table 1, entry 2). Switching to complex 2, which bears the more bulky IMes ligand 

and a chloride instead of an iodide ligand, gave an encouraging 25% GC yield after 24 h 

(entry 1). Moving to the bulkier pre-catalyst 7 allowed a further yield enhancement to 65% 

(entry 3). However, using the cationic 8 and Cp* 9 derivatives of 7 yielded no further 

improvement (entries 4 and 5). Using commercial sources of nickel such as nickelocene 

(entry 6) or Ni(acac)2 (entry 7) without additional ligands resulted in an important decrease or 

total loss of activity, and attempting the reaction without any nickel catalyst resulted in no 

conversion at all (entry 8).  

 Unexpectedly, decreasing the pre-catalyst loading from 5 to 3 mol% showed a 

significant yield improvement to 78% (entry 9). A plausible explanation could be that 7 likely 

catalyzes side-reactions at too high loadings. Indeed, 7 was shown to be active in the catalytic 

dehalogenation of aryl bromides under similar conditions (see Chapter I., Dehalogenation 

reactions).[65] Decreasing the loading even further to 1 mol% still allowed the arylation 

process to proceed, although with a slightly decreased activity (entry 10). It is noteworthy, 

however, that this conversion observed with 1 mol% of 7 after 24 h of reaction (60%) is 

similar to that observed with 10 mol% of Matsubara's complex after the same reaction time 

(65%) (entries 10 vs. 12). Moreover, quantitative yields were obtained by extending the 

reaction time from 24 to 48 h (entry 11), which shows that the active species is long-lived. 
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These results thus make of the 7-NaOtBu mixture in toluene the most efficient nickel-based 

system reported to date for the  -arylation of ketones in terms of pre-catalyst loading. 

 

Table 1. Nickel(II)-catalyzed  -arylation of propiophenone with 4-bromotoluenea 

 

Entry Catalyst (mol%) Time (h) Yield (%)b 

1 2 (5) 24 25 

2 6 (5) 24 < 1 

3 7 (5) 24 65 

4 8 (5) 24 60 

5 9 (5) 24 61 

6 NiCp2 (5) 24 8 

7 Ni(acac)2 (5) 24 < 1 

8 ! 24 < 1 

9 7 (3) 24 78 

10 7 (1) 24 60 

11 7 (1) 48 > 97 

12 1 (10) 24 65c 
a 

Reaction conditions: propiophenone (1.2 mmol), 4-bromotoluene (1 mmol), NaOtBu (1.5 

mmol), [Ni] (1 - 5 mol%) in toluene (3 mL) at 110°C. b Yields determined by GC; average of 

two runs. c temperature = 100°C 

 

II.3. Reaction scope study 

 

 With these optimized conditions in hand (3 mol% of 7, 1.5 equiv. NaOtBu, toluene, 

110°C, 24 h), we then examined the scope of the  -arylation reaction (Table 2). A first part of 

this study concerned the use of propiophenone with various aryl halides (entries 1 - 12). As 

expected, aryl iodides gave excellent results (entry 3) whereas aryl chlorides proved to be 

totally unreactive under these reaction conditions (entry 2). This allowed us to obtain 2-(p-

chlorophenyl)propiophenone selectively in 89% yield from 4-iodo-chlorobenzene (entry 7).  
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The presence of electron-withdrawing or -donating groups at the para position of the tested 

aryl bromides seems to have little influence, as moderate yields were obtained in all cases 

after 24 h of reaction (entries 8, 10 and 12). Nevertheless, running the reactions for 48 h 

allowed us to obtain very good yields with p-methoxy- and p-tert-butylbromobenzene (entries 

9 and 11). Finally, the sterically hindered 2-bromotoluene gave poor yields, even after 48 h of 

reaction (entries 5 and 6). 

  

Table 2.  -Arylation of ketones with aryl halides catalyzed by 7a 

 

Entry Ketone Aryl halide Coupling product 
Time 

(h) 

Yield 

(%)b 

1 
   

24 73 

2  
  

24 < 1c 

3  
  

24 92 

4  
  

24 65 

5 

6 

 

  

24 

48 

10 

17  

7  
  

24 89 

8 

9 

 

  

24 

48 

53 

93  

10 

11 

 

 
 

24 

48 

52 

85  
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Table 2. (continued)
a 

 

12 
   

24 42 

13 

14   
 

24 

48 

66 

89 

15 
 

 
 

24 71 

16 

17  

 

 

24 

48 

84 

92  

18 

19  

 

 

24 

48 

13 

21  

20 
 

 
 

24 < 1 

21 

22  

 

 

24 

48 

68 

79  

23 
 

 
 

24 55d 

24 
 

  

 

24 < 1e 

a 
Reaction conditions: ketone (1.2 mmol), 4-bromotoluene (1 mmol), NaOtBu (1.5 mmol), 7 (3 mol%) in toluene 

(3 mL) at 110°C for 24 or 48 h. b Isolated yields; average value of two runs. c Yield determined by GC; average 

value of two runs. d A 2:1 mixture of 2-(p-tolyl)-4-methyl-pentan-3-one and 2-(p-tolyl)-2-methyl-pentan-3-one 

was obtained. e Aldol condensation products were observed. 

 

 We next studied the reaction of 4-bromotoluene with various ketones (entries 13 - 24). 

Good to excellent yields were obtained with electron-rich and -poor propiophenone 

derivatives in 24 and/or 48 h (entries 13 - 17). Interestingly, the reaction of 3-pentanone with 
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4-bromotoluene selectively gave the monoarylated product with up to 79% yield (entries 21 - 

22). In contrast, a 2:1 mixture of 2-(p-tolyl)-4-methyl-pentan-3-one and 2-(p-tolyl)-2-methyl-

pentan-3-one was obtained with 2-methyl-pentan-3-one (entry 23). The use of the sterically 

encumbered iso-butyrophenone gave poor yields (entries 18 and 19), thus highlighting the 

relative sensitivity of our catalytic system to bulky substrates. Surprisingly, no conversion 

was observed when employing a cyclic ketone (entry 20). The latter result makes our system 

complementary to Ni(COD)2/ligand-based catalysts, which only achieve the  -arylation of 

cyclic ketones.[40,44 46] Finally, as observed by Matsubara et al. with complex 1, acetophenone 

was found to be an unsuitable substrate because of the competitive aldol condensation 

reaction (entry 24). 

  

II.4. Mechanistic studies 

 

 To get an insight into the mechanism, we first checked whether the  -arylation process 

was the result of a true homogeneous catalysis by conducting the coupling of propiophenone 

with 4-bromotoluene in the presence of a 100-fold excess of elemental mercury relative to the 

nickel.[68,69] No inhibition was observed, and thus a process catalyzed by nickel nanoparticles 

seems unlikely.  

 This being established, we then considered the mechanism of the Pd-catalyzed  -

arylation reaction (see Scheme 1), and attempted to synthesize an enolate derivative of 

complex 7. For that purpose, we conducted a series of stoichiometric reactions in toluene with 

7 in the presence of propiophenone. However, using either NaOtBu or KOtBu as the base, or 

working at room temperature or at 100°C always led to the formation of complicated 

mixtures, which prevented the isolation of an enolate nickel complex. The strategy employed 

for the base assisted C!H activation of acetone (see Scheme 3), which consisted in chloride 

abstraction with AgBF4 with the ketone acting as both the solvent and the reactant, followed 

by treatment of the resulting cationic ketone complex with KOtBu, proved also unsuccessful. 

We thus thought that the steric hindrance induced by the IPr ligand might not favor the 

isolation of such species. Consequently, similar reactions were performed with the less bulky 

IMes complex 2, and the target complex, [Ni(IMes){CH(CH3)C(O)Ph}] 10, could be isolated 

after reaction with KOtBu and propiophenone (1 equiv. of each) in toluene, at room 

temperature (Scheme 6). Complex 10 was obtained as an air- and thermally-sensitive reddish 
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solid in 45% yield. The latter was characterized by means of 1H and 13C{1H} NMR 

spectroscopy and elemental analysis. Unfortunately, we were not able to get suitable crystals 

for an X-ray diffraction study. Nevertheless, the C-bonded enolate nature of 10 was 

corroborated, in the 1H NMR spectrum, by the signals of the  -proton and of the #-methyl 

group, which appear at 2.57 and 0.72 ppm as a quadruplet and a doublet integrating for 1 and 

3 protons, respectively. In the 13C{1H} NMR spectrum, the carbonyl carbon appears at 207.8 

ppm.  

 

Scheme 6. Synthesis of complexes 10 and 11 from 2, as possible intermediates of the  -

arylation process 

 

 We also synthesized the nickel!phenyl complex 11 by treatment of 2 with 

phenyllithium, as a nickel!aryl species may also be implied in the reaction mechanism 

(Scheme 1). The phenyl derivative of 2, [Ni(IMes)PhCp] 11, was isolated as air-stable 

crystals in 63% yield after work-up (Scheme 5), and characterized by 1H and 13C{1H} NMR 

spectroscopy, elemental analysis and X-ray diffraction. The NMR spectra of 11 clearly show 

the presence of one NHC ligand, one Cp ligand, and one phenyl group. This is consistent with 

the X-ray diffraction study, that was conducted with a single crystal selected from a batch of 

crystals obtained at room temperature from a toluene/pentane solution, and which allowed us 

to determine the molecular structure of 11 (Figure 3 and Table 4). 

 The latter is closely related to those established for similar [Ni(NHC)XCp] complexes, 

such as 8 (see Figure 2). Thus, the nickel atom is bonded to a "5-Cp group, a NHC moiety 
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and a phenyl group, and if one consider the Cp group as a single ligand, the metal lies at the 

center of a pseudo-trigonal plane with significant departures from the idealized 120° angles of 

a trigonal planar structure (Figure 3's legend). The carbenoid carbon C1 and the phenyl 

carbon C2 subtend an angle of 95.4° at the nickel atom. This value is in the range of the C1 

Ni N3, angle observed for 8 for which values of 97.2/96.3° have been determined (see 

Figure 2). 

 

Figure 3. Molecular structure of 11 showing all non-H atoms. Ellipsoids are shown at the 

50% probability level and key atoms are labeled. Selected distances (Å) and angles (°): Ni 

C1, 1.875(2); Ni C2, 1.908(2); Ni Cpcent, 1.785; C1 Ni C2, 95.35(9); C1 Ni Cpcent, 136.45; 

C2 Ni Cpcent, 128.18. 

 

 We next assessed the viability of complex 10 and 11 as intermediates in the catalytic 

process by conducting a series of control experiments. The stoichiometric reaction of 10 with 

4-bromotoluene in refluxing toluene gave a complicated mixture, from which a violet 

complex, which we have identified as [Ni(IMes)BrCp] by comparison of its NMR data with 

those of [Ni(IMes)ClCp][70] and by its mass spectrum (see Experimental section), was isolated 

in 21% yield (Scheme 7). The latter would mostly result from the dehalogenation of 4-

bromotoluene, as propiophenone was the major organic product, but could also partly result 

from the coupling of the C-bound propiophenone enolate and 4-bromotoluene, as traces of the 

expected product were identified by 1H NMR spectroscopy in one organic fraction. 
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Scheme 7. Stoichiometric reaction of 10 with 4-bromotoluene 
 

 To verify this latter hypothesis, we conducted the coupling of propiophenone and 4-

bromotoluene in the presence of a sub-stoichiometric amount of 10, and an 11% yield of 1-

phenyl-2-(p-tolyl)propan-1-one was measured by GC (Scheme 8). This result suggests that 10 

is a possible intermediate in the Ni-catalyzed! -arylation, but the higher yield observed with 

[Ni(IMes)ClCp] 2 as a catalyst precursor (25%, see Table 1, entry 1) suggests that at least 

some of the product is formed via another intermediate and/or via a different type of 

mechanism. 

 

Scheme 8.  -Arylation of propiophenone catalyzed by 10 

 

 To assess the possibility of 11 being an intermediate in the  -arylation process, we 

reacted it with stoichiometric amounts of propiophenone and NaOtBu in refluxing toluene 

(Scheme 9). No coupling product was formed and most of the propiophenone was recovered, 

thus ruling out 11 as an intermediate. 

 These results and recent reports on Ni-catalyzed organic transformations led us to 

suspect a competing radical pathway.[71] Experiments performed in the presence of radical 

scavengers supported this hypothesis. Thus, the addition of 1 equivalent of TEMPO or 

galvinoxyl completely inhibited the reaction (Scheme 10). 
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Scheme 9. Stoichiometric reaction of 11 with propiophenone 

  

 

 

Scheme 10. Effect of radical inhibitors 

 

Moreover, a "metal-free" version of the reaction using AIBN as a radical initiator ! although 

far less efficient ! led to some conversion, as a 5% yield was measured by GC when the 

reaction was run with 20 mol% of AIBN and no other additive (Table 3, entry 4).  

 

Table 3.  -Arylation of propiophenone with 4-bromotoluene catalyzed by 7 and/or AIBN.a 

 

Entry Catalyst (mol%) NaOtBu (equiv.) Yield (%)b 

1c 7 (3) 1.5 78 

2 7 (3) + AIBN (20) 1.5 < 1 

3 AIBN (20) 1.5 < 1 

4 AIBN (20) 0 5 
a Reaction conditions: propiophenone (1.2 mmol), 4-bromotoluene (1 mmol), NaOtBu (0 or 1.5 mmol), 7 (0 

or 3 mol%), AIBN (0 or 20 mo%) in toluene (3 mL) at 110 °C for 24 h. b Yields determined by GC; average 

value of two runs. 
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Consequently, we believe that the principal mechanism at work in this Ni-catalyzed  -

arylation process is of a radical nature, and that a C-bound ketone enolate derivative of 7, if 

involved, only plays a minor role. 

III. Conclusion 

 

 In summary, we have demonstrated that the inexpensive and easy-to-handle complex, 

[Ni(IPr)ClCp] 7, is an efficient pre-catalyst for the  -arylation of acyclic ketones, and the 

most productive nickel-based catalyst reported to date, as loadings as low as 1 mol% could be 

used. Indeed, we are aware of only five previous examples describing the use of nickel, where 

relatively high loadings of the highly sensitive and pyrophoric nickel(0) complex, Ni(COD)2, 

or high loadings of a nickel(II) complex were used. Our methodology is thus superior in terms 

of practicality and cost, and allows the use of aromatic or aliphatic enolizable acyclic ketones 

to give the corresponding coupling product in moderate to excellent yields. We also isolated 

the C-bound enolate complex 10, which could act as an active intermediate, although other 

mechanistic studies indicate that a radical pathway is more likely. 

 

IV. Experimental section 

 

IV.1. General information 

 

 All reactions were carried out using standard Schlenk techniques under an atmosphere 

of dry argon. Solvents were distilled from appropriate drying agents under argon. 

 Solution NMR spectra were recorded at 298K on FT-Bruker Ultra Shield 300 and 

Bruker Spectrospin 400 spectrometers operating at 300.13 or 400.14 MHz for 1H, at 75.47 or 

100.61 MHz for 13C{1H} and at 376 MHz for 19F{1H}. DEPT 13C spectra and/or 1H/13C 

HSQC correlations were recorded for the new complex [Ni(IPr)(NCMe)Cp](PF6) 8 and for 

the 2:1 mixture of 2-(4-methylphenyl)-4-methyl-3-pentanone and 2-(4-methylphenyl)-2-

methyl-3-pentanone to help in the 13C signal assignments. The chemical shifts are referenced 

to the residual deuterated or 13C solvent peaks. Chemical shifts ($) and coupling constants (J) 

are expressed in ppm and Hz respectively. 
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 The IR spectrum of 7 was recorded on a FT-IR Nicolet 380 spectrometer equipped 

with a diamond SMART-iTR ATR. Vibrational frequencies are expressed in cm-1. 

 Elemental analyses were performed at the Services d'Analyses, de Mesures Physiques 

et de Spectroscopie Optique, UMR CNRS 7177, Institut de Chimie, Strasbourg. 

 GC analyses were performed with an Agilent 7820A GC system equipped with a 30-m 

capillary column (Agilent HP-5, cross-linked 5% phenyl silicone gum, 30 m × 0.32 nm × 0.25 

%m). H2/air was used as a vector gas. The following GC conditions were employed: initial 

temperature 40°C, for 2 min, then ramped up at a rate of 10°C/min until 200°C, and 20°C/min 

until 280°C. 1,3,5-trimethoxybenzene was used as an internal standard. 

 Commercial compounds were used as received. Coupling products that have been 

previously reported were isolated in greater than 95% purity, as determined by 1H et 13C 

NMR spectroscopy. New coupling products were characterized by 1H and 13C NMR 

spectroscopy, and elemental analyses or high-resolution mass spectrometry. Nickelocene,[72] 

complexes [Ni(IMes)ClCp] 2,[63] [Ni(Mes-NHC-nBu)ICp] 6,[64] [Ni(IPr)ClCp] 7
[65] and 

[Ni(IPr)ClCp*] 9[66] were prepared according the published methods. 

 

IV.2. Synthesis of [Ni(IPr)(NCMe)Cp](PF6) (8) 

 

 7 (500 mg, 0.913 mmol) and KPF6 (168 mg, 0.913 mmol) were suspended in 

acetonitrile (10 mL), and the resulting mixture was stirred at room temperature. A quick color 

change from violet to dark yellow was observed. After 15 min, the reaction mixture was 

filtered through Celite, concentrated to ca. 3 mL, and treated with diethylether (10 mL) to 

yield a dark yellow solid that was washed with diethylether (3 × 10 mL), and dried under 

vacuum to give 8 (557 mg, 0.798 mmol, 87%).  

Anal. Calcd for C34H44F6N3NiP: C, 58.47; H, 6.35; N, 6.02. Found: C,58.08; H, 6.36; N, 6.11. 
1H NMR (CD3CN, 400.14 MHz): $ 7.66 (t, 3J = 8.0 Hz, 2H, p-H), 7.59 (s, 2H, NCH), 7.52 (d, 
3
J = 8.0 Hz, 4H, m-H), 4.74 (s, 5H, C5H5), 2.55 (qq, 3

J = 6.8 Hz, 4H, CHMe2), 1.38 (d, 3
J = 

6.8 Hz, 12H, CHMe2), 1.14 (d, 3J = 6.8 Hz, 12H, CHMe2).
a  

13C{1H} NMR (CD3CN, 100.61 MHz): $ 162.7 (NCN), 147.0 (ipso- or o-CAr), 136.7 (o- or 

ipso-CAr), 131.8 (p-CAr), 128.6 (NCH), 125.3 (m-CAr), 94.4 (C5H5), 29.6 (CHMe2), 26.3 and 

22.5 (CHMe2). FT-IR: &(CH) 2963 (m), 2928 (w), 2866 (w); &(P-F) 835 (s). 
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a Free CH3CN that results from exchange with CD3CN is seen as a singlet at 1.96 ppm, on the 

downfield side of the multiplet due to the residual CHD2CN observed at 1.94 ppm. 

 

IV.3. Synthesis of [Ni(IMes){CH(CH3)C(O)Ph}Cp] (10) 

 

 Toluene (5 mL) was added to 2 (500 mg, 1.08 mmol), KOtBu (121 mg, 1.08 mmol) 

and propiophenone (145 %L, 1.08 mmol). The resulting suspension was stirred at room 

temperature for 4 h during which a color change from violet to red-brown was observed. 

Volatiles were then removed in vacuo. Addition of pentane (20 mL) to the residue gave a 

solid that was collected on a frit, washed with pentane until the washings were colorless, 

extracted with THF (40 mL) and filtered over Celite. Concentration of the filtrate to ca. 5 mL 

and addition of 20 mL of pentane then gave a reddish solid that was washed with pentane 

until the washings were colorless. Recrystallization from THF/pentane (1:5) at !28°C finally 

afforded 10 (273 mg, 0.486 mmol, 45%) as red-brown crystals.  

Anal. Calcd for C35H38N2NiO: C, 74.88; H, 6.82; N, 4.99. Found: C, 73.54; H, 6.69; N, 4.99. 
1H NMR (CDCl3, 300.13 MHz): $ 7.40 (d, 3

J = 7.5 Hz, 2H, Ph), 7.28 (m, 1H, Ph), 7.12 (m, 

4H, Ph and m-H), 6.97 (br. s, 2H, m-H), 6.95 (s, 2H, NCH), 4.28 (s, 5H, C5H5), 2.57 (q, 3
J = 

6.0 Hz, 1H, CH(CH3)), 2.38 (s, 6H, o- or p-Me), 2.31 (s, 6H, o- or p-Me), 1.94 (s, 6H, o-Me), 

0.72 (d, 3J = 6.0 Hz, 3H, CH(CH3)).  
13C{1H} NMR (CDCl3, 75.47 MHz): $ 207.8 (CO), 178.2 (NCN), 142.0, 139.1, 137.4, 136.0, 

135.5, 129.6, 129.5, 127.6, 127.3, 124.4 (CAr and NCH), 92.2 (C5H5), 21.2 (p-Me), 20.8 

(CH(CH3)), 19.1 (o-Me), 18.3 (o-Me), 10.2 (CH(CH3)). 

 

IV.4. Synthesis of [Ni(IMes)PhCp] (11) 

 

 A solution of 2 (500 mg, 1.08 mmol) in THF (10 mL) was cooled to !78°C before 

drop-wise addition of PhLi (1.8 M in Bu2O, 0.60 mL, 1.08 mmol). The reaction medium was 

then allowed to warm to room temperature, during which time a color change from violet to 

brown was observed. The reaction mixture was subsequently filtered over Celite, concentrated 

under vacuum to ca. 3 mL and treated with pentane (10 mL), to yield brown crystals after 

standing at !28°C for 16 h. The crystals were washed with pentane (2 × 10 mL) and dried 

under vacuum to give 11 (343 mg, 0.679 mmol, 63%).  

Anal. Calcd for C32H34N2Ni: C, 76.06; H, 6.78; N, 5.54. Found: C, 75.96; H, 6.98; N, 5.38.  
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1H NMR (CDCl3, 300.13 MHz): $ 6.98 (s, 4H, m-H), 6.83 (s, 2H, NCH), 6.80 (dd, 3
J = 7.8 

Hz, 4
J = 1.5 Hz, 2H, Ph), 6.52 (tt, 3

J = 7.1 Hz, 4
J n.r., 1H, Ph), 6.39 (t, 3

J = 7.2 Hz, 2H, Ph), 

4.65 (s, 5H, C5H5), 2.41 (s, 6H, p-Me), 1.98 (s, 12H, o-Me).  
13C{1H} NMR (CDCl3, 75.47 MHz): $ 181.2 (NCN), 143.3, 141.5, 138.5, 137.4, 136.0, 

129.1, 124.1, 123.1, 120.5 (CAr and NCH), 90.5 (C5H5), 21.3 (p-Me), 18.4 (o-Me). 

 

IV.5. X-ray diffraction study of (8) and (11): structure determination and refinement 

 

 Single crystals of 8 and 11 suitable for X-ray diffraction studies were selected from 

batches of crystals obtained at 4°C from an acetonitrile/diethylether solution, and at room 

temperature from a toluene/pentane solution, respectively. Diffraction data were collected at 

173(2) K on a Bruker APEX II DUO KappaCCD area detector diffractometer equipped with 

an Oxford Cryosystem liquid N2 device using Mo-K  radiation (' = 0.71073 Å). A summary 

of crystal data, data collection parameters and structure refinements is given in Table 4. The 

crystal-detector distance was 38 mm. The cell parameters were determined (APEX2 software) 

from reflections taken from tree sets of twelve frames, each at 10 s exposure. The structure 

was solved using direct methods with SHELXS-97 and refined against F2 for all reflections 

using the SHELXL-97 software.[73] A semi-empirical absorption correction was applied using 

SADABS in APEX2. All non-hydrogen atoms were refined with anisotropic displacement 

parameters, using weighted full-matrix least-squares on F
2
. Hydrogen atoms were included in 

calculated positions and treated as riding atoms using SHELXL default parameters. 

 The asymmetric unit of 8 contains two independent cations of 

[Ni{(iPr2Ph)2NHC}(NCMe)Cp]+, two PF6
- anions, and one molecule of acetonitrile. Squeeze 

instruction was used to suppress a second molecule of acetonitrile that exhibits too much 

disorder. 
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Table 4. X-Ray Crystallographic Data and Data Collection Parameters for 8 and 11. 

Complex 8 11 

Empirical formula 2(C34H44N3Q*]^_`36W]^&2H3N C32H34N2Ni 

Formula weight 1437.86 505.32 

Crystal system Monoclinic Monoclinic 

Space group P21/c P21/c 

a (Å) 36.2607 (19) 21.3657 (16) 

b (Å) 16.6530 (9) 8.2297 (7) 

c (Å) 12.6625 (7) 15.7213 (12) 

# (°) 97.198 (1) 104.982 (2) 

V (Å3)! 7586.0 (7) 2670.4 (4) 

Z! 4 4 

Dcalcd (Mg.m-3) 1.259 1.257 

Absorp coeff (mm-1) 0.610 0.749 

Crystal habit, color Prism, green Prism, red 

Crystal size (mm) 0.45 × 0.25 × 0.20 0.28 × 0.20 × 0.15 

h, k, lmax 47, 22, 16 29, 5, 21 

Tmin, Tmax 0.771, 0. 888 0.818, 0.896 

Reflns collected 96242 19927 

R [I > 2((I)]) 0.0485 0.0432 

wR
2 (all data) 0.1099 0.1136 

GOF on F2 1.058 1.004 
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IV.6. Optimization of the catalytic  -arylation of ketones: solvent and base influence 

 
Table 5. Optimization for the  -arylation of propiophenone with 4-bromotoluene catalyzed 

by 7.a 

Entry Base Solvent Yield (%)b 

1c - Toluene 0 

2 LiOtBu Toluene 21 

3 LiOtBu Dioxane 21 

4 NaOtBu Toluene 65 

5c NaOtBu Toluene 78 

6d NaOtBu Toluene 0 

7 NaOtBu Dioxane 3 

8 KOtBu Toluene 0 

9 KOtBu Dioxane 0 

10 NaH Toluene 24 

11 NaH Dioxane 0 

12 NaOH Toluene 4 

13 NaOH Dioxane 0 

14 Cs2CO3 Toluene 0 

15 Cs2CO3 Dioxane 0 

16 K3PO4 Toluene 1 

17 K3PO4 Dioxane 0 
a Reaction conditions: propiophenone (1.2 mmol), 4-bromotoluene (1.0 mmol), base (1.5 mmol), 7 (5 mol%), 

solvent (3 mL), reflux, 24 h. b Yields determined by GC; average value of two runs. c 7 (3 mol%). d Reactions 

run in the absence of 7. 

 
 

IV.7. General procedure for the catalytic  -arylation of ketones 

 

 A 10 mL oven-dried Schlenk tube containing a stirring bar was loaded with 7 (16 mg, 

0.03 mmol), NaOtBu (144 mg, 1.50 mmol), the aryl halide (1.00 mmol), the ketone (1.20 

mmol) and toluene (3 mL). The resulting suspension was stirred in a preheated oil bath at 

110°C for 24 or 48 h. The reaction mixture was then quenched by the addition of a solution of 
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saturated aqueous NH4Cl (10 mL), and the product extracted with CH2Cl2 (3 × 10 mL). The 

combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under 

vacuum. The residue was then purified by column chromatography on silica gel (40-63 %m), 

eluting with toluene to provide the  -arylated ketone. All yields are the average of at least two 

runs. 

 

IV.8. Control experiments 

 

Each experiment described hereafter was performed twice. 

 

IV.8.1. Investigation of the mercury effect 

 

 The experiment was performed as per the general procedure using 4-bromotoluene 

(171 mg, 1.00 mmol), propiophenone (160 %L, 1.20 mmol), 7 (27 mg, 0.05 mmol), and 

mercury (100 mg, 0.50 mmol). GC analysis indicated 59% yield of 1-phenyl-2-(4-

methylphenyl)-propan-1-one (vs. 65% yield without Hg). 

 

IV.8.2. Reaction of complex (10) with 4-bromotoluene 

 

 A suspension of 10 (100 mg, 0.178 mmol) and 4-bromotoluene (31 mg, 0.181 mmol) 

in toluene (5 mL) was stirred at 110°C for 24 h, during which a color change from reddish to 

brown as well as the formation of a black solid were observed. The reaction medium was 

purified by flash silica column chromatography using toluene as eluent. Two fractions were 

collected: one contained propiophenone (15 mg, 0.112 mmol, 63%) and traces of 1-phenyl-2-

(4-methylphenyl)-propan-1-one, and another yielded [Ni(IMes)BrCp] as a violet solid after 

solvent removal.  

ESI-MS: m/z [M]+ calcd for C26H29N2NiBr 506.09, found 506.08; calcd for C26H29N2Ni 

427.17, found 427.16.  
1H NMR (CDCl3, 300.13 MHz): $ 7.11 (s, 4H, m-H), 7.07 (s, 2H, NCH), 4.63 (s, 5H, C5H5), 

2.43 (s, 6H, p-Me), 2.19 (s, 12H, o-Me).  
13C{1H} NMR (CDCl3, 75.47 MHz): $ 167.6 (NCN), 139.2, 136.8, 136.0, 129.4 (CAr), 124.7 

(NCH), 92.5 (C5H5), 21.4 (p-Me), 18.9 (o-Me). 
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IV.8.3. Catalytic  -arylation of propiophenone with (10) as pre-catalyst 

 

 The experiment was performed as per the general procedure using 4-bromotoluene 

(171 mg, 1.00 mmol), propiophenone (160 %L, 1.20 mmol), and 10 (28 mg, 0.05 mmol). GC 

analysis indicated 11% yield of 1-phenyl-2-(4-methylphenyl)-propan-1-one (vs. 25% yield 

with 2). 

 

IV.8.4. Reaction of complex (11) with propiophenone 

 

 To a suspension of 11 (70 mg, 0.139 mmol) and NaOtBu (13 mg, 0.135 mmol) in 

toluene (5 mL) was added propiophenone (20 %L, 0.150 mmol). The resulting mixture was 

stirred at 110°C for 24 h. No color change was observed. The reaction was then quenched by 

the addition of a saturated aqueous solution of NH4Cl (10 mL), and the product extracted with 

CH2Cl2 (3 × 10 mL). The combined organic layers were dried over anhydrous MgSO4, 

filtered and concentrated under vacuum. The resulting residue was then purified by flash 

silica column chromatography using toluene as eluent. No coupling product was collected, 

and 12 mg propiophenone (0.089 mmol, 59%) was recovered. 

 

IV.8.5. Investigation of radical scavenger effect 

 

 The experiments were performed as per the general procedure using 4-bromotoluene 

(171 mg, 1.00 mmol), propiophenone (160 %L, 1.20 mmol), and TEMPO (156 mg, 1.00 

mmol) or galvinoxyl (422 mg, 1.00 mmol). GC analyses indicated no conversion to 1-phenyl-

2-(4-methylphenyl)-propan-1-one in both cases. 

 

IV.8.6. Investigation of radical initiator effect 

 

 The experiments were performed as per the general procedure using 4-bromotoluene 

(171 mg, 1.00 mmol), propiophenone (160 %L, 1.20 mmol), and AIBN (34 mg, 0.20 mmol), 

but without NaOtBu and 7. GC analyses indicated 5% yield of 1-phenyl-2-(4-methylphenyl)-

propan-1-one. In the presence of 7 (16 mg, 0.03 mmol) and/or NaOtBu (144 mg, 1.50 mmol), 

GC analyses indicated no conversion. 
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IV.9. Spectral data of the coupling products 

 

1-phenyl-2-(4-methylphenyl)-propan-1-one
[74] (Table 2, entries 1 and 2) 

 
1H NMR (CDCl3, 300.13 MHz): $ 7.95 (d, 3

J = 7.2 Hz, 2H, HAr), 7.47 (t,  3
J = 7.2 Hz, 1H, 

HAr), 7.37 (d, 3
J = 7.3 Hz, 2H, HAr), 7.17 (d, 3

J = 8.1 Hz, 2H, HAr), 7.10 (d, 3
J = 7.8 Hz, 2H, 

HAr), 4.65 (q, 3
J = 6.9 Hz, 1H, CH(CH3)), 2.28 (s, 3H, CH3), 1.51 (d, 3

J = 6.9 Hz, 3H, 

CH(CH3)).  
13C{1H} NMR (CDCl3, 75.47 MHz): $ 200.5 (CO), 138.6, 136.7, 136.6, 132.8, 129.8, 128.9, 

128.6, 127.7 (CAr), 47.6 (CH(CH3)), 21.1 (CH3), 19.6 (CH(CH3)). 

 

1,2-diphenylpropan-1-one
[74] (Table 2, entries 3 and 4) 

 
1H NMR (CDCl3, 300.13 MHz): $ 7.93 (d, 3

J = 7.2 Hz, 2H, HAr), 7.45 (t,  3
J = 7.5 Hz, 1H, 

HAr), 7.35 (t, 3
J = 7.5 Hz, 2H, HAr), 7.27!7.24 (m, 4H, HAr), 7.19 (m, 1H, HAr), 4.66 (q, 3

J = 

6.9 Hz, 1H, CH(CH3)), 1.51 (d, 3J = 6.9 Hz, 3H, CH(CH3)).  
13C{1H} NMR (CDCl3, 75.47 MHz): $ 200.4 (CO), 141.6, 136.6, 132.9, 129.1, 128.9, 128.6, 

127.9, 127.0 (CAr), 48.0 (CH(CH3)), 19.6 (CH(CH3)). 

 

1-phenyl-2-(2-methylphenyl)-propan-1-one
[74] (Table 2, entries 5 and 6) 

 
1H NMR (CDCl3, 400.14 MHz): $ 7.82 (d, 3

J = 7.2 Hz, 2H, HAr), 7.45 (t, 3
J = 7.4 Hz, 1H, 

HAr), 7.35 (t, 3
J = 7.8 Hz, 2H, HAr), 7.20 (d, 3

J = 6.8 Hz, 1H, HAr), 7.10 (m, 2H, HAr), 7.02 

(dd, 3J = 7.2 Hz, 4J = 2.0 Hz, 1H, HAr), 4.76 (q, 3J = 6.8 Hz, 1H, CH(CH3)), 2.50 (s, 3H, CH3), 

1.47 (d, 3J = 6.8 Hz, 3H, CH(CH3)).  
13C{1H} NMR (CDCl3, 100.61 MHz): $ 201.1 (CO), 140.3, 136.7, 134.7, 132.8, 131.1, 128.6, 

127.1, 127.0, 126.9 (CAr), 44.7 (CH(CH3)), 19.8 and 18.2 (o-CH3 and CH(CH3)). 
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1-phenyl-2-(4-chlorophenyl)-propan-1-one
[75] (Table 2, entry 7) 

 
1H NMR (CDCl3, 300.14 MHz): $ 7.93 (d, 3

J = 7.2 Hz, 2H, HAr), 7.50 (t, 3
J = 7.4 Hz, 1H, 

HAr), 7.39 (t, 3
J = 7.4 Hz, 2H, HAr), 7.27 (d, 3

J = 8.7 Hz, 2H, HAr), 7.22 (d, 3
J = 8.7 Hz, 2H, 

HAr), 4.67 (q, 3J = 6.8 Hz, 1H, CH(CH3)), 1.52 (d, 3J = 6.9 Hz, 3H, CH(CH3)).  
13C{1H} NMR (CDCl3, 75.47 MHz): $ 200.1 (CO), 140.0, 136.4, 133.1, 133.0, 129.3, 128.8, 

128.7 (CAr), 47.3 (CH(CH3)), 19.6 (CH(CH3)). 

 

1-phenyl-2-(4-methoxyphenyl)-propan-1-one
[74] (Table 2, entries 8 and 9) 

 
1H NMR (CDCl3, 400.14 MHz): $ 7.95 (d, 3

J = 7.6 Hz, 2H, HAr), 7.47 (t, 3
J = 7.2 Hz, 1H, 

HAr), 7.38 (t, 3
J = 7.6 Hz, 2H, HAr), 7.20 (d, 3

J = 8.4 Hz, 2H, HAr), 6.83 (d, 3
J = 8.8 Hz, 2H, 

HAr), 4.64 (q, 3
J = 6.8 Hz, 1H, CH(CH3)), 3.75 (s, 3H, OCH3), 1.51 (d, 3

J = 6.8 Hz, 3H, 

CH(CH3)).  
13C{1H} NMR (CDCl3, 100.61 MHz): $ 200.7 (CO), 158.6 (OCAr), 136.7, 133.6, 132.8, 

128.9, 128.9, 128.6, 114.5 (CAr), 55.4 (OCH3), 47.1 (CH(CH3)), 19.7 (CH(CH3)). 

 

1-phenyl-2-(4-tert-butylphenyl)-propan-1-one
[75] (Table 2, entries 10 and 11) 

 
1H NMR (CDCl3, 300.13 MHz): $ 7.98 (d, 3

J = 7.2 Hz, 2H, HAr), 7.49 (t, 3
J = 7.3 Hz, 1H, 

HAr), 7.39 (t, 3
J = 7.3 Hz, 2H, HAr), 7.31 (d, 3

J = 8.4 Hz, 2H, HAr), 7.22 (d, 3
J = 8.4 Hz, 2H, 

HAr), 4.69 (q, 3
J = 6.9 Hz, 1H, CH(CH3)), 1.53 (d, 3

J = 6.9 Hz, 3H, CH(CH3)), 1.28 (s, 9H, 

C(CH3)3).  

13C{1H} NMR (CDCl3, 75.47 MHz): $ 200.6 (CO), 149.8, 138.3, 136.7, 132.8, 128.6, 128.6, 

127.5, 126.0 (CAr), 47.3 (CH(CH3)), 34.5 (C(CH3)3), 31.4 (C(CH3)3), 19.6 (CH(CH3)). 
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1-phenyl-2-[(4-trifluoromethyl)phenyl]-propan-1-one
[76] (Table 2, entry 12) 

 
1H NMR (CDCl3, 300.13 MHz): $ 7.94 (dt, 3J = 7.2 Hz, 4J n.r., 2H, HAr), 7.56 (d, 3J = 8.4 Hz, 

2H, HAr), 7.50 (d, 3
J = 7.2 Hz, 4

J n.r., 1H, HAr), 7.43!7.38 (m, 4H, HAr), 4.77 (q, 3
J = 6.9 Hz, 

1H, CH(CH3)), 1.56 (d, 3J = 6.9 Hz, 3H, CH(CH3)).  
13C{1H} NMR (CDCl3, 100.61 MHz): $ 199.8 (CO), 145.5, 136.3, 133.3, 132.8, 128.9, 128.8, 

128.3 (CAr), 126.1 (q, 1JCF = 3.2 Hz, CF3), 47.7 (CH(CH3)), 19.6 (CH(CH3)). 

 

1-(4-chlorophenyl)-2-(4-methylphenyl)-propan-1-one (Table 2, entries 13 and 14) 

 

ESI-HRMS: m/z [M]+ calcd for C16H15ClONa 281.0704, found 281.0695.  

1H NMR (CDCl3, 300.13 MHz): $ 7.87 (ddd, 3
J = 8.7 Hz, 4

J = 2.4 Hz, 5
J = 2.0 Hz, 2H, HAr), 

7.33 (ddd, 3J = 8.7 Hz, 4
J = 2.4 Hz, 5J = 2.0 Hz, 2H, HAr), 7.12 (m, 4H, HAr), 4.57 (q, 3J = 6.9 

Hz, 1H, CH(CH3)), 2.29 (s, 3H, CH3), 1.50 (d, 3J = 6.9 Hz, 3H, CH(CH3)).  

13C{1H} NMR (CDCl3, 100.61 MHz): $ 199.3 (CO), 139.2, 138.3, 136.9, 134.9, 130.3, 129.9, 

128.9, 127.7 (CAr), 47.8 (CH(CH3)), 21.2 (CH3), 19.6 (CH(CH3)). 

 

1-(4-fluorophenyl)-2-(4-methylphenyl)-propan-1-one (Table 2, entry 15) 

 

Anal. Calcd for C16H15FO: C, 79.32; H, 6.24. Found: C, 79.34; H, 6.38.  
1H NMR (CDCl3, 400.14 MHz): $ 7.89 (m, 3J = 8.8 Hz, 4J = 2.0 Hz, 4JHF = 5.6 Hz, 2H, HArF), 

7.07 (d, 3
J = 8.2 Hz, 2H, HAr), 7.02 (d, 3

J = 8.2 Hz, 2H, HAr), 6.95 (m, 3
J = 8.8 Hz, 4

J = 2.0 

Hz, 3
JHF = 6.6 Hz, 2H, HArF), 4.51 (q, 3

J = 6.8 Hz, 1H, CH(CH3)), 2.21 (s, 3H, CH3), 1.42 (d, 
3
J = 6.8 Hz, 3H, CH(CH3)).  

13C{1H} NMR (CDCl3, 75.47 MHz): $ 198.9 (CO), 165.5 (d, 1
JCF = 254.4 Hz, CArF), 138.5, 

136.8 (CAr), 133.0 (d, 4
JCF = 2.4 Hz, CArF), 131.5 (d, 3

JCF = 9.3 Hz, CArF), 129.9, 127.7 (CAr), 
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115.7 (d, 2
JCF = 21.9 Hz, CArF), 47.7 (CH(CH3)), 21.1 (CH3), 19.6 (CH(CH3)). 

19F{1H} NMR 

(CDCl3, 376 MHz): $  105.70 (s, F). 

 

1-(4-methoxyphenyl)-2-(4-methylphenyl)-propan-1-one
[77] (Table 2, entries 16 and 17) 

 
1H NMR (CDCl3, 400.14 MHz): $ 7.95 (d, 3

J = 8.8 Hz, 2H, HAr), 7.18 (d, 3
J = 8.0 Hz, 2H, 

HAr), 7.10 (d, 3
J = 8.0 Hz, 2H, HAr), 6.85 (d, 3

J = 8.8 Hz, 2H, HAr), 4.61 (q, 3
J = 6.8 Hz, 1H, 

CH(CH3)), 3.81 (s, 3H, OCH3), 2.28 (s, 3H, CH3), 1.50 (d, 3
J = 6.8 Hz, 3H, CH(CH3)). 

13C{1H} NMR (CDCl3, 100.61 MHz): $ 199.1 (CO), 163.2 (OCAr), 139.0, 136.5, 131.1, 

129.7, 129.6, 127.7, 113.7 (CAr), 55.5 (OCH3), 47.2 (CH(CH3)), 21.1 (CH3), 19.7 (CH(CH3)). 

 

1-phenyl-2-methyl-2-(4-methylphenyl)-propan-1-one
[78] (Table 2, entries 18 and 19) 

 
1H NMR (CDCl3, 300.13 MHz): $ 7.49 (dd, 3

J = 8.4 Hz, 2H, HAr), 7.36 (tt, 3
J = 7.3 Hz, 1H, 

HAr), 7.25-7.14 (m, 6H, HAr), 2.34 (s, 3H, CH3), 1.58 (s, 6H, C(CH3)2).  
13C{1H} NMR (CDCl3, 100.61 MHz): $ 204.1 (CO), 142.3, 136.5, 131.7, 129.8, 128.9, 128.0, 

125.7 (CAr), 51.2 (C(CH3)2), 28.0 (C(CH3)2), 21.2 (CH3). 

 

2-(4-methylphenyl)-pentan-3-one
[79] (Table 2, entries 21 and 22) 

 
1H NMR (CDCl3, 300.13 MHz): $ 7.14 (d, 3

J = 8.4 Hz, 2H, HAr), 7.09 (d, 3
J = 8.4 Hz, 2H, 

HAr), 3.72 (q, 3
J = 6.9 Hz, 1H, CH(CH3)), 2.37 (m, 3

J = 7.5 Hz, 2H, CH2CH3), 2.33 (s, 3H, 

CH3), 1.37 (d, 3J = 6.9 Hz, 3H, CH(CH3)), 0.96 (t, 3J = 7.5 Hz, 3H, CH2CH3).
  

13C{1H} NMR (CDCl3, 100.61 MHz): $ 211.9 (CO), 138.1, 136.9, 129.7, 127.8 (CAr), 52.4 

(CH(CH3)), 34.3 (CH2CH3), 21.2 (CH3), 17.7 (CH(CH3)), 8.1 (CH2CH3). 
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2-(4-methylphenyl)-4-methyl-pentan-3-one (Table 2, entry 23) 

 

ESI-HRMS: m/z [M]+ calcd for C13H18ONa 213.1250, found 213.1241.  

1H NMR (CDCl3, 400.14 MHz): $ 7.16-7.08 (m, 4H, HAr), 3.88 (q, 3
J = 6.8 Hz, 1H, 

CH(CH3)), 2.68 (sept., 3
J = 6.8 Hz, 1H, CH(CH3)2), 2.32 (s, 3H, CH3), 1.35 (d, 3

J = 6.8 Hz, 

3H, CH(CH3)), 1.07 (d, 3J = 6.8 Hz, 3H, CH(CH3)2),
 0.91 (d, 3J = 6.8 Hz, 3H, CH(CH3)2).

  

13C{1H} NMR (CDCl3, 100.61 MHz): $ 215.0 (CO), 137.9, 136.8, 129.7, 128.0 (CAr), 50.9 

(CH(CH3)), 39.2 (CH(CH3)2), 21.2 (CH3), 19.4 (CH(CH3)2), 18.4 and 18.3 (CH(CH3)2 and 

CH(CH3)). 

 

2-(4-methylphenyl)-2-methyl-pentan-3-one (Table 2, entry 23) 

 

ESI-HRMS: m/z [M]+ calcd for C13H18ONa 213.1250, found 213.1241.  

1H NMR (CDCl3, 400.14 MHz): $ 7.16-7.08 (m, 4H, HAr), 2.33 (s, 3H, CH3), 2.22 (q, 3J = 7.4 

Hz, 2H, CH2CH3), 1.46 (s, 6H, C(CH3)2), 0.93 (t, 3J = 7.4 Hz, 3H, CH2CH3).
  

13C{1H} NMR (CDCl3, 100.61 MHz): $ 214.3 (CO), 141.5, 136.5, 129.5, 126.0 (CAr), 52.0 

(C(CH3)2), 30.7 (CH2CH3) 25.4 (C(CH3)2), 21.1 (CH3), 8.8 (CH2CH3). 
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I.  Introduction 

 
 Catalytic reduction of carbonyl and pseudocarbonyl compounds is one of the most 

fundamental transformation in organic chemistry.[1] Main group metal hydrides can 

accomplish this transformation,[2,3] but they are relatively air- and water-sensitive and are 

required in stoichiometric amounts, which raises practical, environmental and economical 

problems. Transition metal-catalyzed reduction processes represent a more suitable 

alternative, especially in hydrogenation reactions. However, the latter transformation often 

requires harsh conditions with high temperatures and/or high dihydrogen pressures, and this 

can sometimes affect selectivities in the formation of the desired product. In 1972, Ojima et 

al. discovered that Wilkinson's catalyst, [Rh(PPh3)3Cl], also shows high catalytic activity in 

the hydrosilylation of carbonyl compounds. Moreover, they isolated and characterized the 

rhodium-silyl-hydride complex [Rh(PPh3)2(H)(SiEt3)Cl] (Scheme 1),[4,5] resulting from the 

oxidative addition of the silane to the rhodium catalyst.  

 

Scheme 1. Hydrosilylation of aldehydes and ketones catalyzed by Wilkinson's catalyst 

 

 Since this remarkable finding, milder reaction conditions can be employed in these 

C=O and C=N double bonds reductions with the notable attenuation of the formation of over-

reduced products. Indeed, the hydrosilylation reaction can be regarded as a superior method, 

as it provides a reduction/protection sequence in a single step. A simple subsequent 

deprotection step allows one to obtain the corresponding alcohols or amines. Consequently, 

much effort has been directed towards the development of efficient hydrosilylation catalysts, 

especially with precious metals, and in particular, rhodium.[6] During the last decade, 

however, the development of hydrosilylation reactions based on inexpensive earth-abundant 

transition metals has become an important area of research as the natural reserves of precious 
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metals decline, and their prices increase tremendously. In particular, considerable attention 

has been devoted to the use of metals such as iron,[7 10] zinc,[11 14] titanium[15 17] or copper[18 

20] for the reduction of carbonyl and pseudocarbonyl derivatives via hydrosilylation. In 

contrast, nickel, which is another attractive surrogate for precious metals in terms of its 

abundance and low cost, has been much less studied in this area.[21 27] This rarity coupled with 

the research of Sortais, Darcel and co-workers on iron-catalyzed hydrosilylation,[28 30] notably 

with the half-sandwich iron complexes of type [Fe(NHC)L2Cp](+) (L = CO, I-) (Figure 1),[31 

38] which are structurally similar to our half-sandwich compounds, prompted both of our 

groups to collaboratively investigate the hydrosilylation of carbonyls and imines catalyzed by 

the closely related half-sandwich complexes of type [Ni(NHC)LCpa] (L = NCMe, Cl-; Cpa = 

Cp ("5-C5H5), Cp* = ("5-C5Me5)). 

 

Figure 1. Half-sandwich Fe!NHC complexes applied in the hydrosilylation of carbonyl 

compounds 

II. Results and Discussion 

 

Note: The optimization procedures, as well as the scope studies of the different nickel-

catalyzed hydrosilylations have been performed by the group of Darcel at the University of 

Rennes I (UMR CNRS 6226), while mechanistic studies were carried out by our group in 

Strasbourg. 

 

II.1. Hydrosilylation of aldehydes
[39]

 

 

 Three half-sandwich nickel complexes, which have already been shown to catalyze a 

variety of reactions, such as the Suzuki-Miyaura cross-coupling (see Chapter I),[40] the  -

arylation of acyclic ketones (see Chapter II),[41] the dehalogenation of 4-bromotoluene (see 
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Chapter I),[42] the arylamination of aryl halides (see Chapter I)[42] and even the 

polymerization of styrene,[43,44] were selected for the present study: complexes 1 and 2 bear a 

Cp ring and, respectively, the 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-bis(2,6-

diisopropylphenyl)imidazol-2-ylidene (IPr) as NHC ligands, and complex 3, incorporates the 

Cp* analogue of complex 1 (Figure 2). 

 

Figure 2. Selected half-sandwich NHC-nickel complexes 

 

 Initial studies focused on the reduction of benzaldehyde with one equivalent of 

Ph2SiH2 in THF in the presence of catalytic amounts of complexes 1-3 under various 

conditions, in order to optimize the reaction parameters (Table 1). At 70°C, benzaldehyde 

was fully reduced to the corresponding alcohol after 22 h of reaction and a hydrolysis step, in 

the presence of only 5 mol% of complex 1 (Table 1, entry 1). This promising result prompted 

us to decrease the reaction temperature to 25°C, but no conversion was observed after 17 h 

(entry 2). Addition of 10 mol% of KPF6 as a chloride scavenger led to 38% conversion under 

otherwise unchanged conditions (entry 3). In light of this result and of the involvement of 

nickel hydride species in the rare examples of nickel-catalyzed hydrosilylations of carbonyl 

functionalities,[24,25] we then decided to activate 1 with 2 equivalents of NaHBEt3. 

Satisfyingly, the hydrosilylation of benzaldehyde was complete within 1 h with only 1 mol% 

of 1 and 2 mol% of NaHBEt3 (entry 4). Moreover, the reaction time could be decreased to 15 

min (TOF of 400 h-1) (entry 5) and the catalyst loading could be lowered to 0.5 mol% without 

affecting the reaction (entry 6).  

 

 The catalytic activities of the three complexes were then compared under the 

conditions of entry 4. A lower conversion was obtained with complex 2 bearing the bulkier 

IPr ligand (40%, entry 7), but a good conversion (90%, entry 8) was observed with the more 

electron-rich complex 3 bearing a Cp* ligand. Various other silanes and solvents were then 
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screened with 1 (see Table 10 in Experimental section), but the combination of Ph2SiH2 and 

THF was found to be the best. 

 

Table 1. Optimization for the reduction of benzaldehyde with catalysts 1-3.a 

 

Entry Precatalyst (mol%) Additive (mol%) Time (h) Conversion (%)b 

1c 1 (5) ! 22 > 97 
2 1 (5) ! 17 0 
3 1 (5) KPF6 (10) 17 38 
4 1 (1) NaHBEt3 (2) 1 > 97 
5 1 (1) NaHBEt3 (2) 0.25 > 97 
6 1 (0.5) NaHBEt3 (1) 1 95 
7 2 (1) NaHBEt3 (2) 1 40 
8 3 (1) NaHBEt3 (2) 1 90 

a Typical procedure: activation of 1-3 with the additive in THF (4 mL) was followed by addition of 
benzaldehyde (1 mmol) and Ph2SiH2 (1 mmol), and the reaction mixture was stirred at 25°C. b Conversions 
determined by GC after methanolysis (MeOH, 2M NaOH) and extraction with Et2O. c Reaction run at 70°C. 

 

 

 With these optimized conditions in hand, we then examined the scope of the 

hydrosilylation of various aldehydes with the nickel complex 1 (Table 2). The reaction 

proceeds with high conversions for ortho- and para-methylbenzaldehydes (Table 2, entries 2 

and 3). For halogenated benzaldehydes, the para-chloro derivative was fully reduced without 

dehalogenation (entry 4), whereas para-bromobenzaldehyde gives low conversion (entry 5) 

and a quick deactivation of the catalyst, which can be visually monitored by a color change 

from red-orange, which is the color of the active species generated by the reaction of 1 and 

NaHBEt3 (vide infra), to purple-pink, which is that of complex 1, thus suggesting 

dehalogenation of the substrate.  

 

 With electron-donating-substituted aldehydes such as para-methoxy- and para-

dimethylaminobenzaldehydes, the reaction proceeds more slowly and needs 17 h to reach 

good conversions (entries 6 and 7). In contrast, with electro-deficient aldehydes such as para-

cyano- and para-nitrobenzaldehydes, moderate to good conversions were reached within 1 h, 

and the functional groups remained unchanged (entries 8 and 9). However, the presence of a 
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phenol group is incompatible with our nickel catalyst (entry 10). Interestingly, with 

heteroaromatic aldehydes, the corresponding alcohols were obtained with good yields (entries 

11-13). Moreover, ferrocene-carboxaldehyde and cyclohexanecarboxaldehyde were also 

reduced with good yields (entries 14 and 15). Finally, an excellent chemoselectivity toward 

non-conjugated C=C double bonds was observed, as shown by the sole reduction of the C=O 

double bond of undecenaldehyde (entry 16), and a moderate one was seen toward the 

conjugated C=C double bond of cinnamaldehyde (entry 17).[28] 

 

Table 2. Scope of the nickel-catalyzed hydrosilylation of aldehydes with complex 1-

NaHBEt3.
a 

Entry Substrate Conversion (%)b Yield (%)c 

1 
 

> 97 88 

2 
 

> 97 79 

 
 

  

3                   R = Me > 97 83 
4                   R = Cl > 97 76 
5                   R= Br 13 ! 
6d                   R = OMe 81 70 
7d                   R = NMe2 86 75 
8                   R = CN 95 68 
9                   R = NO2 70 59 
10                   R = OH 0 ! 

11d,e 
 

> 97 ! 

12d 
 

> 97 86 

13d 
 

96 83 

14d 

 

> 97 84 

15e 
 

96 ! 

16 
 

75 68 
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Table 2. (continued) 

Entry Substrate Conversion (%)b Yield (%)c 

17d,f 
 

88 65 

a Typical procedure: activation of 1 (1 mol%) with NaHBEt3 (2 mol%) in THF (4 mL) was 
followed by addition of aldehyde (1 mmol) and Ph2SiH2 (1 mmol), and the reaction 
mixture was stirred at 25°C for 1 h. b Conversions determined by 1H NMR after 
methanolysis. c Isolated yields. d Reaction run at 70°C. e Conversions determined by GC 
after methanolysis. f A 75:25 mixture of cinnamyl alcohol and 3-phenylpropan-1-ol was 
obtained. 

 
 

II.2. Hydrosilylation of ketones
[39]

 

  

 We explored the reduction of ketones, starting with acetophenone as the model 

substrate and Ph2SiH2 as the hydrogen source (Table 3). With 5 mol% of 1 in refluxing THF, 

the conversion was modest without any additives, but could be increased to 57% by the 

addition of KPF6 (Table 3, entries 1 and 2). The activation of 1 with 10 mol% of NaHBEt3 

allowed the reduction to proceed to full conversion in 17 h at 25°C (entry 3). However, in 

contrast to the reduction of aldehydes, decreasing the catalyst and activator loadings led to 

diminished conversions (entries 4 and 5). Furthermore, complex 2 is as effective as 1 here, 

while the Cp* complex 3 gives a lower conversion (entries 6 and 7).  

 

Table 3. Optimization for the reduction of acetophenone with catalysts 1-3.a 

 

Entry Precatalyst (mol%) Additive (mol%) Time (h) Conversion (%)b 

1c 1 (5) ! 24 26 
2c 1 (5) KPF6 (10) 24 57 
3 1 (5) NaHBEt3 (10) 17 97 
4 1 (3) NaHBEt3 (6) 17 94 
5 1 (1) NaHBEt3 (2) 17 58 
6 2 (5) NaHBEt3 (10) 17 > 97 
7 3 (5) NaHBEt3 (10) 17 73 

a Typical procedure: activation of 1-3 with the additive in THF (4 mL) was followed by addition of 
acetophenone (1 mmol) and Ph2SiH2 (1 mmol), and the reaction mixture was stirred at 25°C. b Conversions 
determined by GC after methanolysis (MeOH, 2M NaOH) and extraction with Et2O. c Reaction run at 70°C. 
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 The scope of the reaction was then investigated with 5 mol% of 1 and 10 mol% of 

NaHBEt3 in THF at room temperature (Table 4). High conversions were obtained with both 

electron-rich and electron-poor acetophenone derivatives (Table 4, entries 2-4 and 7-9). As 

observed with para-bromobenzaldehyde (Table 2, entry 5), the active species was deactivated 

with para-iodoacetophenones, and low conversions were obtained (Table 4, entries 5 and 6). 

It is noteworthy that sterically encumbered acetophenones did not hamper the reaction as full 

reduction still occurred (entries 2, 10 and 11). Linear aliphatic ketones, cyclic ketones and 

furfuryl derivatives were also hydrosilylated with good yields under these conditions (entries 

13-17). Unfortunately, the chemoselectivity toward conjugated C=C double bonds was even 

less efficient than in the case of aldehydes, as shown by the 2:1 mixture of 4-phenylbut-3-en-

2-ol and 4-phenylbutan-2-ol obtained from the reduction of benzylideneacetone (entry 18). 

 

Table 4. Scope of the nickel-catalyzed hydrosilylation of ketones with complex 1-NaHBEt3.
a 

Entry Substrate Conversion (%)b Yield (%)c 

1 
 

> 97 88 

2 
 

> 97 85 

 
 

  

3                R = Me > 97 79 
4                R = Cl > 97 73 
5                R= Br 30 ! 
6                R = I 14 ! 
7                R = F > 97 73 
8                R = NO2 90 71 
9                R = OMe > 97 88 

10 
 

> 97 75 

11 
 

> 97 83 

12 

 

> 97 88 

13 
 

> 97 83 
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Table 4. (continued) 

Entry Substrate Conversion (%)b Yield (%)c 

14 
 

> 97 78 

15 
 

> 97 79 

16 
 

> 97 86 

17 
 

> 97 79 

18d 
 

95 ! 

a Typical procedure: activation of 1 (5 mol%) with NaHBEt3 (10 mol%) in THF (4 
mL) was followed by addition of ketone (1 mmol) and Ph2SiH2 (1 mmol), and the 
reaction mixture was stirred at 25°C for 17 h. b Conversions determined by 1H NMR 
after methanolysis. c A 2:1 mixture 4-phenyl-but-3-en-2-ol and 4-phenylbutan-2-ol 
was obtained. 
 
 

II.3. Hydrosilylation of aldimines
[45]

 

 
 Transition metal-catalyzed hydrosilylation of aldimines and ketimines is also an 

interesting target due to the significance and omnipresence of the resulting amines in the field 

of natural products, pharmaceuticals and agronomical compounds.[46 48] Encouraged by our 

results in the hydrosilylation of aldehydes and ketones, and the extreme scarcity of nickel 

catalysts for the hydrosilylation of imines, both of our groups decided to pursue the study of 

half-sandwich nickel!NHC complexes as pre-catalysts for the related hydrosilylation of 

imines. Before our work, we were aware of only one example where Ni catalysts formed in 

situ from [Ni(OAc)2.4H2O] and an (O,N,S)-pincer ligand (1:1 ratio) were shown to reduce a 

small array of imines via hydrosilylation (Scheme 2).[49]  

 

Scheme 2. First Ni-catalyzed hydrosilylation of imines 
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 Initial studies focused on the hydrosilylation of N-benzylidene-4-methoxyaniline 5 

with one equivalent of Ph2SiH2 in THF in the presence of catalytic amounts of complex 1 

under various conditions, in order to optimize the reaction parameters (Table 5). In the sole 

presence of the neutral complex 1 (5 mol%), 70°C was required to observe 50% conversion of 

the aldimine 5 to the corresponding amine 6 after 24 h of reaction and basic quenching (Table 

5, entries 1 and 2). Addition of 10 mol% of KPF6 as a chloride scavenger led to full 

conversion under otherwise unchanged conditions (entry 3). This promising and rather 

surprising result, with respect to what was observed with aldehydes (Table 1, entry 3), led us 

to use the well-defined cationic acetonitrile complex [Ni(IMes)(NCMe)Cp](PF6) 4 (5 mol%), 

with which complete reduction was also observed after 24 h at 70°C (entry 4). Reducing the 

catalytic loading to 1 mol% of 4 also allowed the reaction to reach full conversion (entry 6), 

which contrasts with the result obtained with 1 mol% of the in situ generated cationic 

complex from 1 and KPF6 (40% conversion, entry 5). One possible explanation is that 4 is 

generated in THF instead of acetonitrile, and that THF does not have sufficient coordinating 

ability to stabilize such cationic species. Indeed, no cationic complex of the type 

[Ni(NHC)LCp]+ has ever be isolated when the halide was scavenged in a weakly coordinating 

solvent. Interestingly, the temperature can even be decreased to 50°C without loss of catalytic 

activity (entry 7). However, further lowering of the reaction temperature to 25°C led to a 

dramatic drop in activity, as only 10% conversion was detected after 17 h (entry 8). 

Nevertheless, as observed for the hydrosilylation of aldehydes and ketones, the combination 

of 1 and NaHBEt3 resulted in high catalytic activity. Using 1 mol% of this combination 

allowed us to observe a full conversion when performing the reaction at 25°C for 17 h (entry 

9). Decreasing either the reaction time to 8 h or else the catalytic loading to 0.5 mol% allowed 

us to obtain 90% conversion (entries 11 and 12). Various other silanes and solvents were also 

screened (see Tables 11 and 12 in Experimental section), but the combination of Ph2SiH2 and 

THF was again found to be optimal. 

  

 With these optimized conditions in hand (1 equiv. of Ph2SiH2, 1 mol% of 1, 2 mol% 

NaHBEt3, THF, 25°C; or 1 equiv. of Ph2SiH2, 1 mol% of 4, no additive, THF, 50°C, 24 h), 

we then explored the scope of the hydrosilylation of aldimines (Table 6). 
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Table 5. Optimization for the reduction of aldimines with 1 and 4a 

 

Entry 
Precatalyst 

(mol%) 
Additive (mol%) Temp. (°C) Time (h) 

Conversionb 
(%) 

1 1 (5) ! 25 18 0 
2 1 (5) ! 70 24 50 
3 1 (5) KPF6 (10) 70 24 > 97 
4 4 (5) ! 70 24 > 97 
5 1 (1) KPF6 (2) 70 24 40 
6 4 (1) ! 70 24 > 97 
7 4 (1) ! 50 24 > 97 
8 4 (1) ! 25 17 10 
9 1 (1) NaHBEt3 (2) 25 17 > 97 
10 ! NaHBEt3 (2) 25 17 0 
11 1 (1) NaHBEt3 (2) 25 8 90 
12 1 (0.5) NaHBEt3 (1) 25 24 90 

a 
Typical procedure: activation of 1 with the additive in THF (4 mL) at RT for 5 min or dissolution of 4 in THF 

(4 mL) at RT was followed by the addition of 5 (1 mmol) and Ph2SiH2 (1 mmol), and the reaction mixture was 
stirred at 25, 50 or 70°C for 8 to 24 h. b Conversions determined by 1H NMR spectroscopy after methanolysis: 
2M NaOH (2 mL), MeOH (2 mL), RT, 2 h. 
 

 Electronic effects at the para-position of the benzylidene or aniline moiety were 

generally minor (Table 6, entries 1-3, 5-6 and 10-20). Thus, aldimines bearing an electron-

donating group gave the corresponding amines with good to excellent conversions (entries 1-

3, 5-6 and 10-12). Interestingly, no dehalogenation occurred with a chloro-substituted 

aldimine irrespective of the catalytic system used, 1-NaHBEt3 or 4-no additive (entries 13 and 

14), and the corresponding amine was isolated in good yields (80%, entry 13). However, with 

bromo- or iodo-substituted aldimines, low conversions were obtained, probably due to a rapid 

catalyst deactivation, as observed for the hydrosilylation of aldehydes and ketones (entries 4 

and 7 vs. Table 2, entry 5, and Table 4, entries 5 and 6). Strikingly, functional carbonyl-

groups such as esters and amides were not affected under these catalytic conditions 

irrespective of the catalytic system used, 1-NaHBEt3 or 4-no additive (entries 15-16 and 19-

20), and the corresponding secondary amines were isolated in good yields (83 and 72%, 

entries 16 and 20). Moreover, although 5% of fully reduced compound was detected in the 

crude reaction mixture, the cyano functional group was also well tolerated, and the N-(4-
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cyanobenzyl)-p-toluidine resulting from the selective reduction of the 4-cyanobenzylidene 

derivative was isolated in 74% yield (entry 17). In contrast, only a moderate conversion was 

observed for the hydrosilylation of 4-methoxy-N-(4-nitrobenzylidene)aniline under forcing 

conditions, and a mixture of products resulting from the reduction of the nitro group was 

observed (entries 21 and 22). 

 

Table 6. Scope of the reduction of aldimines with 1-NaHBEt3 and 4a
 

 

Entry Substrate  Precatalyst 
Conversionb 

(%) 
Yieldc (%) 

1 

 

R = Me 1 > 97 83 
2 R = Me 4 > 97 ! 
3 R = OMe 1 > 97 90 
4 R = Br 

 
1 20 ! 

5 

 

R = p-OMe 1 > 97 89 
6 R = p-OMe 4 > 97 ! 
7 R = p-I 1 27 ! 
8 R = o-OMe 1 28 ! 
9 R = o-OMe 

 
1 48d 39 

10 

 

R = p-OMe 1 > 97 84 
11 R = p-OMe 4 > 97 ! 
12 R = p-NMe2 1 77 57 
13 R = p-Cl 1 > 97 80 
14 R = p-Cl 4 71 ! 
15 R = p-CO2Me 1 95 76 
16 R = p-CO2Me 4 > 97 83 
17 R = p-CN 1 94e 74 
18 R = 3,4,5-OMe 

 
1 93 81 

19 

 

R = NHAc 1 70 ! 
20 R = NHAc 1 90d 72 
21 R = NO2 1 0 ! 
22 R = NO2 

 
1 40f ! 

23 

 
 

 1 20 ! 
24  

 
 

1 80f 57 
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Table 6. (continued)
a 

 

Entry Substrate  Precatalyst 
Conversionb 

(%) 
Yieldc (%) 

25 

 
 

 1 43 ! 
26  1 70f 61 

27 

 
 

 1 20 ! 
28  1 60f ! 
29  1 87f,g 70 

30 

 
 

 1 > 97 85 

a 
Typical procedure: activation of 1 (1 mol%) with NaHBEt3 (2 mol%) in THF (4 mL) at RT for 5 min or 

dissolution of 4 (1 mol%) in THF (4 mL) at rt was followed by the addition of the aldimine (1 mmol) and 
Ph2SiH2 (1 mmol), and the reaction mixture was stirred at 25°C for 17 h (1) or at 50°C for 24 h (4). b 
Conversions determined by 1H NMR spectroscopy after methanolysis: 2M NaOH (2 mL), MeOH (2 mL), RT, 2 
h. c Isolated yields. d 50°C. e 5% reduction of both the aldimine and the cyano group was also observed. f 70°C. g 
1 (5 mol%), NaHBEt3 (10 mol%). 
 

 Substitution at the ortho-position of the aniline moiety seems to have an inhibiting 

effect, most probably for steric reasons, as shown by the moderate conversion observed for 

the reduction of benzylidene-o-methylaniline, even at 50°C (entries 8 and 9). Substitution at 

the meta-position of the benzylidene moiety seems, in contrast, to have no notable effect 

(entry 18). 

 As observed with carbonyl derivatives (Table 2, entries 11-13; Table 4, entry 17), this 

reduction can also be conducted with heteroaromatic substrates such as 5-methylfur-2-yl-, 

pyridin-2-yl- and N-methylpyrrol-2-yl-4-methoxyanline, but at higher temperature (50°C or 

70°C), and the corresponding amines were isolated in moderate yields (57 - 70%, entries 23-

29). Finally, 4-methyl-N-(ferrocenylmethylidene)aniline was totally reduced and led to the 

corresponding amine in good yield (85%, entry 30). 
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II.4. Hydrosilylation of ketimines
[45]

 

 
 Given the high activity of both catalytic systems for aldimines, we then investigated 

their potential for the hydrosilylation of ketimines, with N-(1-phenylethylidene)-4-

methoxyaniline 7 as the model substrate (Table 7). To obtain similar activities, slightly 

harsher conditions had to be used, either by performing the reaction at high temperatures 

(with 1-NaHBEt3, entries 5-9), or else by using higher precatalyst and Ph2SiH2 loadings (with 

4, entries 3 and 4). Thus, to observe full conversion of 7 to the corresponding amine 8 after a 

methanolysis step, 50°C for 17 h was required in the presence of 1 mol% of 1 and 2 mol% of 

NaHBEt3 (entry 7), and 2 equiv. of Ph2SiH2 were required in the presence of 5 mol% of 4 

(entry 4). Notably, in the case of 1-NaHBEt3, when the reaction was performed at a lower 

temperature or with a lower catalyst loading, the conversion significantly decreased (entries 6 

and 9). 

 

Table 7. Optimization for the reduction of ketimines with 1 and 4a 

 
Entry Precatalyst 

(mol%) 
Additive (mol%) Temperature 

(°C) 
Time (h) Conversionb 

(%) 
1 1 (5) ! 70 24 10 
2 1 (5) KPF6 (10) 70 24 60 
3 4 (5) ! 50 17 70 
4c 

4 (5) ! 50 24 > 97 
5 1 (5) NaHBEt3 (10) 50 17 > 97 
6 1 (5) NaHBEt3 (10) 25 17 50 
7 1 (1) NaHBEt3 (2) 50 17 > 97 
8 1 (1) NaHBEt3 (2) 50 3 80 
9 1 (0.5) NaHBEt3 (1) 50 17 65 

a 
Typical procedure: activation of 1 with the additive in THF (4 mL) at RT for 5 min or dissolution of 4 in THF 

(4 mL) at RT was followed by the addition of 7 (1 mmol) and Ph2SiH2 (1 mmol), and the reaction mixture was 
stirred at 25, 50 or 70°C for 3 to 24 h. b Conversions determined by 1H NMR spectroscopy after methanolysis: 
2M NaOH (2 mL), MeOH (2 mL), RT, 2 h. c Reaction run with 2 equiv. Ph2SiH2. 
 

 With these optimized conditions in hand (1 equiv. of Ph2SiH2, 1 mol% of 1, 2 mol% of 

NaHBEt3, THF, 50°C, 17 h; or 2 equiv. of Ph2SiH2, 5 mol% of 4, no additive, THF, 50°C, 24 

h), the scope of the hydrosilylation of ketimines was then explored. With several ketimines 
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derived from (substituted) acetophenones and (4-substituted)anilines, the corresponding 

amines were obtained with high conversions and good isolated yields (Table 8, entries 1-10). 

Notably, full conversion and a good isolated yield were obtained with N-(2-

methylphenyl)ethylidene-aniline (entry 1), which demonstrates that steric hindrance at the 

phenylethylidene moiety does not inhibit the reaction. Similarly, a good conversion was 

obtained for the reduction of naphtylethylidene toluidine (entry 14). As observed with 

aldimines, in the presence of a strong electron-withdrawing group such as trifluoromethyl 

group, the reaction was more difficult to carry out and harsher conditions (5 mol% of 1, 10 

mol% of NaHBEt3, 70°C, 17 h) were necessary to reach 85% conversion and 69% isolated 

yield (entries 11-13). Finally, the ferrocenylimine derivative could also be reduced to the 

corresponding amine with 80% conversion and 66% isolated yield by using the latter 

conditions (entry 17). 

 

Table 8. Scope of the reduction of ketimines with 1-NaHBEt3 and 4a 

 

Entry Substrate  Precatalyst 
Conversionb 

(%) 
Yieldc (%) 

1 

 
 

 1 > 97 77 

2 

 
 

 1 > 97 78 
3  4 > 97 ! 

4 

 
 
 
 
 
 
 

R = H 1 79 63 
5 R = Me 1 86 73 
6 R = OMe 1 > 97 84 
7 R = OMe 4 > 97 ! 
8 R = Cl 1 90 77 
9 R = F 1 90 75 

10 R = F 4 > 97 80 
11 R = CF3 1 30 ! 
12 R = CF3 1 52d ! 
13 R = CF3 1 85d,e 69 
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Table 8. (continued)
a 

 

Entry Substrate  Precatalyst 
Conversionb 

(%) 
Yieldc (%) 

14 

 
 

 1 90 59 

15 

 
 

 1 20 ! 
16  1 48d ! 
17  1 80d,e 66 

a 
Typical procedure: activation of 1 (1 mol%) with NaHBEt3 (2 mol%) in THF (4 mL) at RT for 5 min or 

dissolution of 4 (5 mol%) in THF (4 mL) at RT was followed by the addition of the ketimine (1 mmol) and 
Ph2SiH2 (1 mmol (1) or 2 mmol (4)), and the reaction mixture was stirred at 50°C for 17 h (1) or 24 h (4). b 
Conversions determined by 1H NMR spectroscopy after methanolysis: 2M NaOH (2 mL), MeOH (2 mL), RT, 2 
h. c Isolated yields. d 70°C. e 1 (5 mol%), NaHBEt3 (10 mol%). 

 

II.5. Mechanistic studies
[39,45]

 

 

II.5.1. (1)-NaHBEt3 catalytic system 

 
 In order to rationalize the role of the triethylborohydride salt, the purple complex 1 

was treated with KHBEt3 (1.2 equivalents) in THF at !78°C. The reaction mixture turned to 

red immediately, and the nickel hydride complex 9 was isolated as thermally sensitive red 

crystals in 63% yield after work-up (Scheme 3). Complex 9 was characterized by 1H and 
13C{1H} NMR spectroscopy and by elemental analysis. Its molecular structure was 

established by a single-crystal X-ray diffraction study. It is noteworthy that complex 9 had 

been previously reported to be formed by the reaction of NiCp2 with [InH3(IMes)],[50] and had 

even been characterized by X-ray crystallography, but the hydride ligand was not located. In 

our case, the quality of the X-ray data allowed us to determine the position of the hydride 

ligand. 

 As in the case of 1,[51] the 1H and 13C{1H} NMR spectra of 9 reveal that an effective 

plane of symmetry that bisects the molecule exists in solution on the NMR time scale (Figure 

3). This effective mirror plane contains the hydride ligand, the nickel center and the NHC 
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carbene carbon atom, as well as the Cp ring centroid. Most informative signals are the hydride 

resonance, which appears as a singlet at !23.27 ppm in the 1H NMR spectrum (Figure 3), and 

the carbene carbon resonance, which appears at 185.4 ppm in the 13C{1H} NMR spectrum (in 

C6D6). One can note that the latter resonance is significantly shielded compared to the 

corresponding resonance of the chloride complex 1, which appears at 165.9 ppm (in 

CDCl3).
[51] 

 

Scheme 3. Synthesis of the nickel hydride complex 9 

  

 

 

Figure 3. 1H NMR spectrum of 9 
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 Crystals suitable for X-ray structure determination were grown from a concentrated 

pentane solution of 9 at !28°C. The molecular structure is shown in Figure 4. 

Crystallographic data and data collection parameters are listed in Table 10 (see Experimental 

section). A list of selected bond lengths and angles is given in Table 9. The structure of 9 

features a nickel atom bonded to a "5-C5H5 group, one IMes ligand and the hydride ligand, as 

earlier reported by Jones.[50] The coordination is globally similar to that of other half-

sandwich complexes of the general formula [Ni(NHC)LCpa], such as its precursor 1, and 

features a nickel atom laying at the center of a pseudo-trigonal plan. However, significant 

variations in the geometry of 9 are observed when compared to 1, such as the more open 

C1!Ni!Cpcent angle (147.0° vs. 132.4(2)° in 1), which is compensated by the lower C1!Ni!H 

angle value (83.0° for 9 vs. 98.4(2)° for the C1!Ni!Cl of 1). Moreover, the Ni!C1 distance is 

shortened in 9 (1.858(3) Å for 9 vs. 1.917(9) Å for 1), whereas other bond angles and 

distances are globally similar to 1. Finally, the Ni!H distance is comparable to that of the few 

other mono-nickel hydride species known, such as [2,6-(tBu2PO)2C6H3]NiH[24] (Ni!H = 

1.37(3) Å) or [N(o-NMe2C6H4)2NiH][52] (Ni!H = 1.50(2) Å).  

 

Figure 4. Molecular structure of  9. Key atoms are labeled. The only hydrogen atom shown is 

that bonded to Ni. 
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Table 9. Selected distances (Å) and angles (°) in complex 9 

Complex 9 

Ni!C1 1.844(3) 

Ni!H 1.42(6) 

Ni!Cpcent 1.771 

C1!Ni!H 83(3) 

C1!Ni!Cpcent 147.0 

H!Ni!Cpcent 130 

 

 The isolated complex 9 was then tested as the catalyst for the reduction of 

benzaldehyde under the optimized conditions (1 mol% 9, Ph2SiH2, THF, room temperature), 

but without any additive. Full conversion was obtained after 1 h of reaction (Scheme 4), 

which strongly suggests that 9 is the true pre-catalyst in this process.  

 Similarly, Royo et al. simultaneously reported an analogous Cp-NHC tethered nickel-

hydride complex B, in situ generated by reaction of the corresponding alkoxide complex A 

with 0.3 equiv. of PhSiH3 (Scheme 5), that would most probably be the active species in a 

very similar hydrosilylation process (see also Chapter I., Scheme 70).[53] The latter complex 

reacted with excess PhSiH3 to give the silyl-nickel complex C, and with 4-

trifluoromethylbenzaldehyde to give the corresponding nickel-alkoxide insertion complex D. 

Nevertheless, a deuterium labeling experiment conducted with a 1:1:1 mixture of 

benzaldehyde, Ph2SiD2 and B in C6D6 instantaneously yielded PhC(O)HD SiDPh2, while the 

Ni H complex B remained unchanged, which rules out the conventional hydride mechanism, 

(i.e.: via carbonyl insertion into the M H bond) in spite of 4-trifluoromethylbenzaldehyde 

insertion into the nickel hydride in the absence of silane.[54] 

 

Scheme 4. Hydrosilylation of benzaldehyde with diphenylsilane catalyzed by  

[Ni(IMes)HCp] 9 
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Scheme 5. Control experiments performed by Royo et al. 

 

 To test whether complex 9 catalyzed this hydrosilylation via a non-hydride mechanism 

as suggested by Royo's deuterium labeling experiment,[53] or by insertion of the aldehyde into 

the Ni!H bond,[52,55] as reported by Guan with a PCP-pincer nickel hydride complex, and 

supposed by Mindiola with a dimeric [(P,N)Ni(%2-H)]2,
[25] we conducted a series of control 

experiments. First, 9 was reacted with Ph2SiH2 in the absence of benzaldehyde. A reaction 

clearly occurred, but no product could be identified. Then, 9 was reacted with benzaldehyde 

in the absence of Ph2SiH2, and as observed by Jones with another (P,C,P)-nickel hydride 

complex,[26] no insertion of benzaldehyde was observed after 3 h at room temperature and the 

hydride signal remained unchanged in the 1H NMR spectrum of the crude reaction mixture. 

This, of course, contrasts with 4-trifluoromethylbenzaldehyde insertion into the nickel 

hydride bond of complex A,$Y=/$@6.E$*+$/;.$E.+E.$6b$c616JE$).=/.(ium labeling experiment. 

We therefore believe that, although 9 is the true pre-catalyst, the hydride ligand does not 

directly participate in the reduction reaction, as concluded by Royo et al. with the related Cp-

NHC tethered nickel-hydride complex A. 

 

II.5.2. (4)-no additive catalytic system 

 

 We, of course, wondered if such hydride species was also generated with the catalytic 

system composed of the sole cationic complex 4 and Ph2SiH2.
[52,53,56] 
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 For that purpose, we reacted 4 with 0.5 or 1 equivalent of Ph2SiH2 in THD-d8 at room 

temperature and at 50°C, and monitored the reactions by 1H NMR spectroscopy. In all cases, 

we observed the formation of small amounts (generally less than 10% with respect to the 

remaining amounts of 4) of a nickel hydride species, after 5 min of reaction time, which we 

unambiguously identified as being 9 by comparison with the 1H NMR spectrum of a pure 

sample in THF-d8 (Scheme 6). Concomitantly, new signals started to appear in the aromatic 

area (probably resulting from the oligomerization and/or polymerization of Ph2SiH2), as well 

as a singlet at 1.94 ppm, which we tentatively attribute to free CH3CN. The rest of the 

reaction mixture mostly consisted in non-reacted 4 and Ph2SiH2 (Figure 4). 

 

 

 

Scheme 6. Reaction of [Ni(IMes)(NCMe)Cp](PF6) 4 with Ph2SiH2 

 

It is noteworthy that in all cases, we also observed the immediate and steady evolution of a 

gas which we believe is H2, as observed by Zargarian et al. in the reaction of analogous nickel 

complexes of the type [Ni(PR3)Me(1-Me-indenyl)] with PhSiH3.
[57] Finally, after a reaction 

time varying from 20 min for the reactions conducted at 50°C to 6 - 22 h for the reactions 

conducted at RT (with 0.5 or 1 equiv. Ph2SiH2), all Ph2SiH2 was consumed, and the reaction 

medium consisted in a complicated mixture of products with small remaining amounts of 

complexes 4 and 9 (Figures 5 and 6). In contrast, the neutral complex 1 strictly gave no 

reaction with Ph2SiH2 (0.5 equiv.) in THF-d8 at RT, even after 6 h, and required 70°C to 

produce trace amount of 9. 
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Figure 4. Spectrum after 5 min reaction at RT between 4 and Ph2SiH2 (1.0 equiv.) 
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Figure 5. Spectrum after 25 min reaction at RT between 4 and Ph2SiH2 (1.0 equiv.) 
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Figure 6. Spectrum after 22 h reaction at RT between 4 and Ph2SiH2 (1.0 equiv.) 

 

 These results may explain (i) the total absence of reduction of the aldimine 5 when the 

reaction was performed in the sole presence of 5 mol% of 1 at RT (Table 5, entry 1), as well 

as the moderate conversion observed in the sole presence of 5 mol% of 1 at 70°C (Table 5, 

entry 2), and (ii) the slightly harsher conditions (50°C) required with 4 (with respect to 1-

NaHBEt3) to observe full reduction (Table 5, entries 7 and 8); only small amounts of 1 and 4 

are converted to 9 by reaction with Ph2SiH2 (even with a large excess of silane), whereas all 1 
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is converted to 9 by reaction with 2 equiv. of NaHBEt3 (Scheme 2). Additionally, although (i) 

another true pre-catalyst (or active species) cannot be ruled out in the absence of NaHBEt3, 

and (ii) the hydride ligand of 9 does probably not directly participate in the reduction reaction, 

these results nevertheless tend to confirm the necessity to generate the nickel hydride complex 

9 to observe a catalytic activity. 

 

III. Conclusion 

 

 In summary, we have demonstrated that half-sandwich Ni!NHC complexes can be 

used as efficient pre-catalysts for the chemoselective reduction of carbonyl (aldehydes and 

ketones) and imine (aldimines and ketimines) compounds via hydrosilylation. In the reduction 

of carbonyl compounds, the combination of complex 1 and NaHBEt3 proved to efficiently 

catalyze this transformation at room temperature, for a large array of substrates and with 

moderate to excellent yields. We have shown that this 1-NaHBEt3 combination results in the 

in situ formation of the corresponding nickel!hydride complex 9, which is likely to be the 

true pre-catalyst of this hydrosilylation, even if the hydride ligand does not seem to be directly 

implied in the reaction, as shown by control experiments. It is noteworthy that this 1-

NaHBEt3 system also allowed the reduction of aldimines and ketimines, leading to the 

corresponding amines in moderate to excellent yields. Interestingly, the cationic complex 4 

can be used on its own instead of 1-NaHBEt3 for these imine reductions with comparable 

activity, even if reaction conditions are slightly harsher in this case. Furthermore, the reaction 

of the cationic complex 4 in the presence of Ph2SiH2 led to the formation of small amounts of 

the nickel!hydride complex 9, which reinforces the fact that 9 probably acts as the true pre-

catalyst.[58 60] 

  

IV. Experimental section 

 

IV.1. General information 

 
 All reagents were obtained from commercial sources and used as received, except for 

the liquid aldehydes, which were distilled prior to use. All reactions were carried out under an 
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argon atmosphere. Solvents were distilled following conventional methods and stored under 

an argon atmosphere. Technical grade petroleum ether (40-60°C bp) and diethylether were 

used for chromatography column. 

 Solution NMR spectra were recorded at 298 K on FT-Bruker Ultra Shield 300, FT-

Bruker Spectrospin 400 (Univ. of Strasbourg), FT-Bruker AVANCE I 300 and Ascend TM 

400 (Univ. of Rennes I) spectrometers operating at 300.13 or 400.14 MHz for 1H, and at 

75.47 or 100.61 MHz for 13C{1H}. The chemical shifts are referenced to residual deuterated 

solvent peaks. Chemical shifts ($) and coupling constants (J) are given in ppm and in Hz, 

respectively. The peak patterns are indicated as follows: (s, singlet; d, doublet; t, triplet; q, 

quartet; m, multiplet, and br. for broad).  

 GC analyses were performed with GC-2014 (Shimadzu) 2010 equipped with a 30-m 

capillary column (Supelco, SPBTM-20, fused silica capillary column, 30 m×0.25 mm×0.25 

mm film thickness), with N2/air as vector gas. GCMS were measured by GCMS-QP2010S 

(Shimadzu) with GC-2010 equipped with a 30-m capillary column (Supelco, SLBTM-5ms, 

fused silica capillary column, 30 M×0.25 mm×0,25 mm film thickness), with helium as vector 

gas. The following GC conditions were used: initial temperature 80 °C, for 2 min, then rate 10 

°C/min. until 220 °C and 220 °C for 15 min. 

 HR-MS spectra and elemental analysis were carried out by the corresponding facilities 

'/$/;.$&c2WI$`&.+/(.$cD@*6+'8$).$2.E=(.E$W;1E*\=.E$).$8JI=.E/],$d+*9.(E*/1$6b$c.++.E$e# 

FTIR spectra were recorded on an IR-ATR Affinity-1 Shimadzu apparatus. 

 Elemental analyses of complex 9 U.(.$ 5.(b6(<.)$ Y1$ /;.$ A.(9*H.$ )JF+'81E.E,$ ).$

Mesures Physiques et de Spectroscopie Optique, UMR CNRS 7177, Institut de Chimie, 

Université de Strasbourg. 

 [Ni(IMes)ClCp] (1),[42,61,62] [Ni(IPr)ClCp] (2),[42] [Ni(IMes)ClCp*] (3)[63] and 

[Ni(IMes)(NCMe)Cp](PF6)  (4)[40] were prepared according to published methods. 

 

IV.2. Synthesis of [Ni(IMes)HCp] (9) 

 
 To a violet solution of [Ni(IMes)ClCp] 1 (500 mg, 1.04 mmol) in THF (10 mL) at !78 

°C was added dropwise a solution of KHBEt3 (1.25 mmol, 1.0 M in THF). The solution was 

then allowed to warm to 0°C, and an immediate color change to red was observed. The 

solution was rapidly filtered through dry Celite, and the filtrate evaporated under vacuum. The 
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red residue was then extracted with n-pentane (20 mL), and the resulting solution allowed to 

stand at !28 °C for 24 h to afford 9 as red crystals (290 mg, 0.65 mmol, 63 %).  

Anal. Calcd for C26H30N2Ni: C, 72.75; H, 7.04; N, 6.53. Found: C, 72.57; H, 7.17; N, 6.43. 
1H NMR (300.13 MHz, 298 K, C6D6): $ 6.80 (s, 4H, m-H), 6.14 (s, 2H, NCH), 4.99 (s, 5H, 

C5H5), 2.11 (s, 18H, o- and p-CH3), !23.27 (s, 1H, Ni-H). 13C{1H} NMR (100.61 MHz, 298 

K, C6D6): $ 185.4 (NCN), 138.6 and 138.3 (ipso-/p-CAr), 135.8 (o-CAr), 129.2 (m-CAr), 121.0 

(NCH), 86.8 (C5H5), 21.1 (p-CH3), 18.3 (o-CH3).  

 

IV.3. Reactions of [Ni(IMes)(NCMe)Cp](PF6) (4) and Ph2SiH2 

  

 To a solution of [Ni(IMes)(NCMe)Cp](PF6) 4  (33 mg, 54.3 x 10-3 mmol) in THF-d8 

(0.5 mL) placed in an NMR tube was added freeze-pump-thaw degassed Ph2SiH2 (5 %L, 27.1 

× 10-3 mmol for 0.5 equiv.; 10 %L, 54.3 x 10-3 mmol for 1 equiv.). A slight color change from 

dark green to dark red immediately occurred, as well as a gas release. The reactions were then 

either conducted at RT or 50°C, and were monitored by 1H NMR spectroscopy. For the 

reactions run at RT, the first spectra were recorded after ca. 5-10 min, and then regularly until 

all Ph2SiH2 was consumed, i.e. after 6 to 22 h. For the reactions run at 50°C, the first spectra 

were recorded after ca. 5 min at RT, and then every 10 min at 50°C for 40 min. In all cases, 

all Ph2SiH2 was consumed after 20 min. The spectra, after 5 min, 25 min and 22 h, of the 

reaction of 4 with 1.0 equiv. of Ph2SiH2 at room temperature are shown in the Mechanistic 

studies section (see Figures 3-5). For a comparison purpose, the 1H NMR data of 4, 9 and 

Ph2SiH2 in THF-d8 are given hereafter. 

 

[Ni(IMes)(NCMe)Cp](PF6) (4) 

1H NMR (400.14 MHz, 298 K, THF-d8): $ 7.57 (s, 2H, NCH), 7.20 (s, 4H, m-H), 4.81 (s, 5H, 

C5H5), 2.41 (s, 6H, p-CH3), 2.17 (s, 15H, o-CH3 and NCMe). 

[Ni(IMes)HCp] (9) 

1H NMR (300.13 MHz, 298 K, THF-d8): $ 7.00 (s, 2H, NCH), 6.98 (s, 4H, m-H), 4.46 (s, 5H, 

C5H5), 2.34 (s, 6H, p-CH3), 2.07 (s, 12H, o-CH3), - 24.04 (s, 1H, Ni-H). 

Ph2SiH2 

1H NMR (400.14 MHz, 298 K, THF-d8): $ 7.58 (dd, 3J = 7.8, 4J = 1.6, 4H, Ph), 7.41-7.32 (m, 

6H, Ph), 4.90 (s, 2H, SiH2) 
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IV.4. X-ray diffraction study of (9): structure determination and refinement 

 
 Single crystals of 9 suitable for X-ray diffraction studies were selected from batches of 

crystals obtained at !28 °C from a pentane solution. Diffraction data were collected at 173(2) 

K on a Bruker APEX II DUO KappaCCD area detector diffractometer equipped with an 

Oxford Cryosystem liquid N2 device using Mo-K  radiation (' = 0.71073 Å). A summary of 

crystal data, data collection parameters and structure refinements is given in Table 9. The 

crystal-detector distance was 38 mm. The cell parameters were determined (APEX2 software) 

from reflections taken from tree sets of twelve frames, each at 10 s exposure. The structure 

was solved using direct methods with SHELXS-97 and refined against F2 for all reflections 

using the SHELXL-97 software.[64] A semi-empirical absorption correction was applied using 

SADABS in APEX2. All non-hydrogen atoms were refined with anisotropic displacement 

parameters, using weighted full-matrix least-squares on F
2
. The hydride H1 and, due to the 

symmetry, the hydrogen atoms H9A, H9B, H15A and H15B were located from Fourier 

difference maps and refined isotropically. The hydrogen atoms H9A and H9B were refined 

with restraints. The other H-atoms were included in calculated positions and treated as riding 

atoms using SHELXL default parameters. 

  

Table 9. X-Ray Crystallographic Data and Data Collection Parameters for 9. 

Complex 9 

Empirical formula C26H30N2Ni 
Formula weight 429.23 
Crystal system Orthorhombic 
Space group Pnma 
a (Å) 22.906(5) 
b (Å) 11.178(3) 
c (Å) 8.9631(19) 
V (Å3) 2295.0(9) 
Z 4 
Dcalcd (Mg.m-3) 1.242 
Absorb coeff (mm-1) 0.859 
Crystal habit, color prism, red 
Crystal size (mm) 0.38 × 0.25 × 0.20 
h, k, lmax 30, 15, 7 
Tmin, Tmax 0.736, 0.847 
Reflns collected 10258 
R [I > 2((I)] 0.0542 
wR

2 (all data) 0.1594 
GOF on F2 1.061 
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IV.5.  Hydrosilylation of aldehydes and ketones 

 

IV.5.1.  Optimization studies 

 

Table 10. Influence of the silane and of the solvent in the hydrosilylation of benzaldehyde 

with catalyst 1 at 25°C.a 

Entry 
Catalyst 

(mol%) 

Additive 

(mol%) 

Silane 

(equiv.) 
Solvent 

Time 

(h) 

Conversion 

(%)b 

1 - NaHBEt3 (2) Ph2SiH2 (1) THF 17 0 

2 1(1) NaHBEt3 (2) PhSiH3 (1) THF 1 15 

3 1(1) NaHBEt3 (2) Ph3SiH (1) THF 1 0 

4 1(1) NaHBEt3 (2) Et3SiH (1) THF 1 0 

5 1(1) NaHBEt3 (2) Me(EtO)2SiH (1) THF 1 14 

6 1(1) NaHBEt3 (2) Me2PhSiH (1) THF 1 0 

7 1(1) NaHBEt3 (2) TMDS (1) THF 1 31 

8 1(1) NaHBEt3 (2) Ph2SiH2 (1) Toluene 1 97 

9 1(1) NaHBEt3 (2) Ph2SiH2 (1) CPME 1 97 

10 1(1) NaHBEt3 (2) Ph2SiH2 (1) DMC 1 76 

11 1(1) NaHBEt3 (2) Ph2SiH2 (1) CH2Cl2 1 0 
a
 Typical procedure: activation of 1 with the additive in THF (4 mL) was followed by addition of 

benzaldehyde (1 mmol) and the silane (1 mmol), and the reaction was stirred at 25 °C. b Conversions 
determined by GC after methanolysis (MeOH, 2M NaOH) and extraction with Et2O.  

 

IV.5.2.  General procedure: nickel-catalyzed hydrosilylation of aldehydes 

 
 
 A 10 mL oven dried Schlenk tube containing a stirring bar was loaded with 

[Ni(IMes)ClCp] 1  (4.6 mg, 1.10-5 mol) and 4 mL of THF. The resulting purple solution was 

stirred for 5 min. A solution of NaHBEt3 in THF (20 fl, 1 M in THF, Acros, 2.10-5 mol) was 

added dropwise, and the solution was stirred until the color turned to deep red. The aldehyde 

(1.10-3 mol) and Ph2SiH2 (186 %L, 1.10-3 mol) were then added, in this order, and the reaction 

mixture was stirred in a preheated oil bath at 25 °C for 1 or 17 h. The reaction mixture was 
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then quenched by the addition of methanol (2 mL) and 2M NaOH (2 mL) and stirred for 2 h. 

After the addition of water (5 mL), the product was extracted with diethylether (3 x 10 mL). 

The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated 

under vacuum. The conversion was determined by 1H NMR. The product was purified by 

silica gel column chromatography using a petroleum ether/diethyl ether mixture. 

 

IV.5.3.  General procedure: nickel-catalyzed hydrosilylation of ketones 

 
 A 10 mL oven-dried Schlenk tube containing a stirring bar, was loaded with 

[Ni(IMes)ClCp] 1, (23 mg, 5.10-5 mol) and 4 mL of THF. The resulting purple solution was 

stirred for 5 min. A solution of NaHBEt3 in THF (100 fl, 1 M in THF, Acros, 10.10-5 mol) 

was added dropwise, and the solution was stirred until the color turned to deep red.  The 

ketone (1.10-3 mol) and Ph2SiH2 (186 %L, 1.10-3 mol) were then added, in this order, and the 

reaction mixture was stirred in a preheated oil bath at 25°C for 17 h. The reaction mixture was 

then quenched by the addition of methanol (2 mL) and 2M NaOH (2 mL), and stirred for 2 h. 

After the addition of water (5 mL), the product was extracted with diethylether (3 x 10 mL). 

The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated 

under vacuum. The conversion was determined by 1H NMR. The product was purified by 

silica gel column chromatography using a petroleum ether - diethyl ether mixture. 

 

IV.6.  Hydrosilylation of aldimines and ketimines 

 

IV.6.1.  Optimization studies 

 
Table 11. Influence of the silane in the hydrosilylation of 5 with catalyst 4.a 

Entry Catalyst 

(mol%) 

Silane 

(equiv.) 

Solvent Temp Time 

(h) 

Conversion 

(%)b 

1 4(1) Ph2SiH2 (1 equiv.) THF 50 oC 24 > 98% 

2 4(1) TMDS (2 equiv.) THF 70 oC 24 0 

3 4(1) PMHS (4 equiv.) THF 70 oC 24 30% 
a Typical procedure: To a solution of 4 (6.1 mg, 1 mol%) in THF (4 mL) at RT was added 5 (1 mmol) and the 
silane (1-4 equiv.) and the reaction mixture was stirred at 50 or 70 oC for 24 h. b Conversions determined by 1H 
NMR  after methanolysis: MeOH (2 mL), 2M NaOH (2 mL), RT, 2 h. and extraction with Et2O. 
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Table 12. Influence of the solvent in the hydrosilylation of 7 with catalysts 1 and 4.a 

Entry Catalyst 

(mol%) 

Silane 

(equiv.) 

Solvent Temp Time 

(h) 

Conversion 

(%)b 

1 
4(5) Ph2SiH2 (2 equiv.) THF 70 oC 24 > 98% 

2 4(5) Ph2SiH2 (1 equiv.) THF 70 oC 24 85% 

3 4(5) Ph2SiH2 (1 equiv.) 2-Me-THF 80 oC 24 60% 

4 4(5) Ph2SiH2 (1 equiv.) Toluene 100 oC 24 20% 

5 4(1) Ph2SiH2(1 equiv.) CH3CN 70 °C 24 0% 

6 1(1)c Ph2SiH2(1 equiv.) CH3CN 70 °C 24 0% 

a Typical procedure: To a solution of 4 or 1 in the solvent (4 mL) at RT was added 7 (1 mmol) and the Ph2SiH2 

(1 - 2 mmol), and the reaction mixture was stirred at 70, 80 or 100 oC for 24 h. b Conversions determined by 1H 
NMR after methanolysis: MeOH (2 mL), 2M NaOH (2 mL), RT, 2 h. and extraction with Et2O. c KPF6 (2 mol%) 
was added. 

 

IV.6.2.  General procedure: nickel-catalyzed hydrosilylation of aldimines with (1) 

and NaHBEt3 

 
 A 10 mL oven dried Schlenk tube containing a stirring bar is loaded with 

[Ni(IMes)ClCp] 1 (4.6 mg, 1.10-5 mol) and THF (4 mL). To the resulting purple solution is 

added dropwise a solution of NaHBEt3 in THF (20 fl, 1 M in THF, Acros, 2.10-5 mol), and 

the medium is stirred until the color turns to deep red. The aldimine (1.10-3 mol) and Ph2SiH2 

(186 %L, 1.10-3 mol) are then added in this order, and the reaction mixture is stirred in a 

preheated oil bath at 25 °C for 17 h. The reaction is then quenched by adding methanol (2 

mL) and 2M NaOH (2 mL), and further stirring the medium for 2 h. After the addition of 

water (5 mL), the product is extracted with diethylether (3 x 10 mL). The combined organic 

layers are dried over anhydrous MgSO4, filtered and concentrated under vacuum. The 

conversion is determined by 1H NMR spectroscopy, and the product purified by silica gel 

column chromatography using a petroleum ether/diethylether mixture. 

 

IV.6.3.  General procedure: nickel-catalyzed hydrosilylation of aldimines with (4) 

 
 A 10 mL oven dried Schlenk tube containing a stirring bar is loaded with 

[Ni(IMes)(NCMe)Cp](PF6) 4 (6.1 mg, 1.10-5 mol) and THF (4 mL) to give a yellow solution. 
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The aldimine (1.10-3 mol) and Ph2SiH2 (186 %L, 1.10-3 mol) are then added in this order, and 

the reaction mixture is stirred in a preheated oil bath at 50 °C for 24 h. The reaction mixture is 

then quenched by adding methanol (2 mL) and 2M NaOH (2 mL), and further stirring the 

medium for 2 h. The work-up is done as described in the typical procedure for the 

hydrosilylation of aldimines with [Ni(IMes)ClCp] 1 and NaHBEt3. 

 

IV.7. Characterization of the hydrosilylation products 

 
 Characterization of the hydrosilylation products was conducted by Linus P. Bheeter in 

the group of C. Darcel and J.-B. Sortais at the University of Rennes I (UMR CNRS 6226). 

Full data can be found in references 39 and 45. 
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I.   Introduction 

 

 As shown in the first chapter of this manuscript, N-heterocyclic carbenes of nickel 

have become an important class of pre-catalysts, which have been applied to a large array of 

organic transformations. Moreover, the low cost and high abundance in the Earth's crust of 

nickel compared to many other of transition metals (84 g/ton of Ni vs. 0.015 g/ton of Pd, for 

instance)[1] prompts chemists to pay more and more attention to these systems. However, even 

if the scope of applicability is impressive, most of the Ni!NHC-catalyzed reactions deserve to 

be optimized if one considers potential industrialization of these processes. In this regard, 

main challenges include: (i) the reduction of catalyst loadings, (ii) the use of less demanding 

reaction conditions, and (iii) the development of user-friendly pre-catalysts. Achieving these 

goals goes through the development of novel, efficient well-defined Ni(II) pre-catalysts (in 

contrast to the highly air sensitive and pyrophoric Ni(COD)2/NHC systems used in the vast 

majority of the applications developed up to now). To enhance the activity of well-defined 

Ni(II)!NHC pre-catalysts, one evident option is to fine tune the steric and electronic 

properties of the NHC and/or of the other ligands. 

 

 In this context, recent efforts from our group have been directed towards the 

diversification of well-defined cyclopentadienyl (Cp) Ni!NHC complexes. In particular, the 

intramolecular version of the base-assisted C!H activation of acetonitrile[2] (Scheme 1, eqn. 

(1)) led to a series of half-sandwich (C,C)-nickelacycles 2a-d, starting from complexes 1a-d 

(Scheme 1, eqn. (2)).[3] Regarding the latter work, the introduction of chelating and 

polyfunctional NHC ligands into the coordination sphere of a metal catalyst generally has 

interesting consequences, since this can increase the thermal stability[4] of the complex and 

also impose the rigidity required for the preparation of effective asymmetric catalysts in the 

presence of a chiral center.[5] Nevertheless, in the case of "CpM!NHC" complexes, such a 

chelating ligand may lead to catalyst inhibition since an additional coordination site is now 

occupied.[6] Thus, in the nickelacycles 2a-d, apart from an eventual Cp ring slippage from the 

 
5- to an  3- or  1-coordination mode, there is no other potentially available coordination site. 

It was therefore of interest to explore any potential lability of the Cp ligands in these 

systems,[7] and we describe, in this chapter, the facile removal of the Cp ligand of these 18-

electron complexes under acidic conditions to afford the corresponding 16-electron cis-(C,C)-

nickel square planar complexes, [Ni{R!NHC!(CH2)2CH(CN)}(NCMe)2](PF6), and the 



Chapter IV. Synthesis, characterization and applications of new Ni NHC complexes 

 

 

139 
 

subsequent substitution of the new MeCN ligands by an acetylacetonate (acac-) anion to give 

the corresponding neutral complexes [Ni{R!NHC!(CH2)2CH(CN)}(acac)]. Preliminary 

results regarding their catalytic activities in Suzuki-Miyaura coupling are also given. 

 

 

 
Scheme 1. Base-assisted C!H activation of acetonitrile and alkylnitrile-NHC side arms in 

CpNi!NHC complexes 

 

 In the quest of efficient well-defined Ni!NHC catalysts, we were also interested in 

synthesizing the closely related 16-electron square-planar nickel derivatives of 

[Pd(NHC)(acac)Cl] complexes (Scheme 2), which were shown to be very efficient tools for 

various applications in Pd-catalyzed C!C and C!N bond formations.[8 15] Herein, we present 

our approach to synthesize such [Ni(NHC)(acac)Cl] complexes, which could be interesting 

precursors to generate catalytically active mono-ligated Ni!NHC systems. 

 

 

 

Scheme 2. [Pd(NHC)(acac)Cl] complexes and potential [Ni(NHC)(acac)Cl] derivatives 
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 Another approach that can give rise to more active systems, as mentioned above, 

consists in the modification of the NHC ligand. Classically, imidazolin- and imidazolylidene 

are the most frequently studied ligands. However, replacement of these species by other types 

of carbenes were recently found to have a positive effect in some metal-catalyzed 

processes.[16 19] Among those new carbene ligands, anionic pyrimidinylidene groups, which 

possess a malonate backbone (also called malo-NHC ! Figure 1) constitute a promising class 

of carbenes that give rise to zwitterionic complexes upon complexation to a metal center.[20 25] 

The use of such species in catalysis can indeed be beneficial, as the anionic moiety of the 

backbone of the malo-NHC is pointing toward the outer coordination sphere, and does thus 

not interfere with the metal's cavity shape.[20] Moreover, the electronic properties of malo-

NHCs can be easily tuned by trapping them with an electrophile, without modification of the 

steric environment (Figure 1). We consequently decided to study the yet unknown 

coordination chemistry of malo-NHCs with nickel, and the activity of the resulting complexes 

in various organic transformations. 

 

 

 

Figure 1. Electron-donicity of representative examples of malo-NHCs derivatives 

 

 Another type of carbenes that attracted our attention are pyrrolidinylidenes, also 

known as cyclic (alkyl)(amino)carbenes (CAAC), that were first described in 2005 by 

Bertrand and co-workers.[26,27] Indeed, the replacement of one of the electronegative amino 

substituent of NHCs by a !-donor alkyl group make CAAC ligands more electron-rich than 

NHCs, and of course trialkyl phosphines. In addition, the slightly higher energy of the 

HOMO, and the significantly smaller singlet-triplet gap make CAAC ligands more 

electrophilic and nucleophilic at the same time, compared to NHCs (see also Chapter I, 

Theoretical aspects). Finally, the different and more encumbered steric environment 

generated by the quaternary carbon " to the carbene carbon may also be of interest when 

compared to phosphines and NHCs (Figure 2).[19]  
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Figure 2. Representation of the steric environment in phosphines, NHCs, and CAACs 

 

 Among the variety of CAAC ligands that have been described, we chose a CAAC 

ligand bearing a 2,6-diisopropylphenyl (Dipp) group on the nitrogen atom, and a non-

substituted cyclohexane ring at the carbon " to the carbene. This CAAC ligand indeed 

illustrates the concept of "flexible steric bulk", introduced by Glorius and co-workers,[28 30] as 

it can adopt a conformation that generates a small steric bulk to accept sterically hindered 

substrates (Scheme 3, (a)), and another conformation that generates a more important steric 

bulk in order to facilitate the reductive elimination process (Scheme 3, (b)). We thus thought 

that the steric and electronic properties of this CAAC ligand could give rise to promising 

Ni!CAAC catalysts[31,32] ! as illustrated by the Pd!CAAC-catalyzed "-arylation of 

propiophenone and isobutanal with aryl chlorides, which gave the best results observed so far 

for this reaction, with TON of up to 7200 at room temperature[26] ! and describe herein the 

synthesis and catalytic applications of a nickel complex bearing this CAAC ligand. 

 

 

 

Scheme 3. Representation of the "flexible steric bulk" in the C-cyclohexyl functionalized 

Dipp-CAAC ligand 
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II. Results and discussion 

 

II.1. Facile displacement of  
5
-cyclopentadienyl ligands from half sandwich alkyl, 

NHC nickel complexes 

 

 To check the possibility of labilizing the Cp ligand of the half-sandwich 

alkyl,NHC!nickel complexes 2, a suspension of 2b and KPF6 (1 equiv.) in acetonitrile was 

treated at room temperature by the drop-wise addition of an equimolar amount of HCl (37%) 

diluted in acetonitrile to 1.0 M. When the equivalence was reached, an immediate color 

change from dark green to dark yellow was observed, and 1H NMR spectra (CD3CN) of the 

reaction medium indicated quantitative loss of the Cp ligand and generation of a cationic 

square planar complex 3b (Scheme 3). The latter was isolated as a dark yellow solid in 76% 

yield after the removal of salts and solvents. However, it proved to be difficult to recrystallize, 

and this precluded its isolation as an analytically pure solid. Nevertheless, its in situ treatment 

with potassium acetylacetonate (1 equiv.) allowed the substitution of the two labile 

acetonitrile ligands, and the formation of the more stable neutral chelate derivative 4b, which 

was isolated as a light green solid in 55% yield after work up (Scheme 4). 

 

 

 

Scheme 4.  
5-Cp acidolysis in acetonitrile and subsequent substitution of the resulting 

acetonitrile ligands by an acetylacetonate chelate 

 

 Similarly, the reaction of the five-membered nickelacycle 2a with equimolar amounts 

of HCl and KPF6, followed by treatment of the resulting solution with potassium 

acetylacetonate afforded the corresponding neutral square planar complex 4a in good yield as 

well (Scheme 4).  
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 An X-ray diffraction study of a single crystal of 4b (Figure 3), selected from a batch 

)D$'458>;B8$)E>;+<3F$;>$!28°C from a THF/pentane solution, confirmed that the nickel atom is 

bound in a square-planar geometry (bond angles around 90 ± 5°; Table 1) to a (C,C)-chelate 

unit composed of the NHC ligand and its cyanoalkyl side arm, and to an acetylacetonate 

ligand (that binds in a cis-geometry to the nickel atom) through its two oxygen atoms. In 

addition, it can be noticed that the geometric parameters of the nickelacycle 4b are almost 

identical to that of its half-sandwich precursor 2b (see Table 1). 

 

 

 

 

Figure 3. Molecular structure of the (R)-enantiomer of 4b. The only hydrogen atom shown is 

that of the CHCN group (as an isotropic sphere). Ellipsoids are shown at the 50% probability 

level. Key atoms are labeled. 

 

 Spectroscopic data of 4a and 4b are consistent with the molecular structure of 4b, and 

clearly establish the absence of a  5-Cp ligand, together with the presence of both a (C,C)-

chelate NHC ligand and an acac ligand. The 1H NMR (CD3CN) spectrum of the cationic 

complex 3b 8()*8$ >(3$ @4383<'3$ )D$ >(3$ G3>;B;'5'B3-$ *()83$ 8+H<;B8I$ '(3G+';B$ 8(+D>8$ ;<F$

multiplicities are similar to those of 4b. 
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Table 1. Selected Bond Lengths (Å) and Angles (°) for Complexes 2b and 4b  !"#$%&'(&$!)$

parentheses 

Complex 2b
 

4b 

Ni*C1 1.8560(19) 1.8686(19) 

Ni*C2 1.9718(19) 1.961(2) 

Ni*O1 * 1.8835(14) 

Ni*O2 * 1.8968(14) 

C2*C3 1.438(3) 1.447(3) 

C3*N3 1.143(3) 1.145(3) 

C1*Ni*C2 93.95(8) 91.91(8) 

O1*Ni*O2 * 93.29(6) 

C1*Ni*O2 
* 89.71(7) 

C2*Ni*O1 * 84.97(7) 

Ni*C2*C3 106.91(15) 107.00(13) 

C2*C3*N3 177.7(3) 178.0(2) 

 

However, it should be pointed out that the spectrum of 3b is concentration dependent (see 

Figures 4 and 5). Thus, while both meta-protons of the mesityl ring each appear as two 

relatively sharp singlets when [3b] ~ 3.10-2 mol.L-1, one signal of the meta-protons shifts 

significantly to lower field when [3b] ~ 0.15 mol.L-1, and then appears as a very broad singlet 

(Figure 4). Similar behavior is observed for the two ortho-methyls of the mesityl ring. Thus, 

while both appear as two relatively sharp singlets when [3b] ~ 3.10-2 mol.L-1, one 

significantly shifts to lower field when [3b] ~ 0.15 mol.L-1, and then appears as a very broad 

singlet (Figure 5). Apart from the CHCN proton, whose chemical shift is also concentration 

dependent, all the other protons give well-resolved sharp signals and hardly change upon 

concentration variation. The exact reason of this behavior is not well understood, but may 

well originate from enhanced intermolecular interactions at higher concentrations, and/or 

from a fluxional process involving mesityl group rotation, that could be linked to the rate of 

acetonitrile exchange. The presence of free CH3CN as a singlet on the downfield side of the 

multiplet due to residual CHD2CN (Figure 5) indicates that CH3CN/CD3CN exchange is 
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indeed occurring,[7] and a VT NMR experiment run in CD3CN from +27°C to +75°C on a 

diluted solution of 3b indeed allowed to observe a slight broadening at high temperature (at + 

70 and + 75°C) of the mesityl methyl groups that resonate at 2.6 and 2.1 ppm. 

 

Figure 4. Aromatic area of the 1H NMR spectra (CD3CN, 298 K) of 3b at [3b] ~ 3.10-2  

mol.L-1 (bottom) and 0.15 mol.L-1 (top) 

 

Figure 5. Mesityl methyl groups area of the 1H NMR spectra (CD3CN, 298 K) of 3b at [3b] ~ 

3.10-2 mol.L-1 (bottom) and 0.15 mol.L-1 (top) 
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 To gain insight into the reaction mechanism and the fate of the Cp ligand, a deuterium 

labeling experiment with DCl was undertaken. A solution of concentrated DCl in D2O (35%), 

diluted in CD3CN to 1.0 M, was added to a suspension of 2b and KPF6 in CD3CN (Scheme 

5), and a 1H NMR spectrum of the reaction medium was immediately recorded. The obtained 

spectrum (Figure 6) clearly showed the clean and quantitative formation of 3b-D and of free 

mono-deuterated cyclopentadiene in a 1:1 ratio.  

 

 

 

Scheme 5.  
5-Cp acidolysis of 2b with DCl in CD3CN 

 

 

 

 

Figure 6. 
1H NMR spectra of the  5-Cp acidolysis reaction of 2b with DCl in CD3CN 
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 This reaction thus goes through a direct protolysis of the Cp ligand, and is remarkable 

for a number of reasons: (i) clean Cp ligand demetalation from 18-electron 

monocyclopentadienyl transition metal complexes in the presence of a proton source is, to our 

knowledge, unprecedented with non substituted cyclopentadienyl rings,[33 36] as these are 

normally considered to have extremely robust M C5H5 bonds;[37] (ii) it allows the creation of 

two potentially vacant coordination sites on the nickel, as illustrated by the lability of the two 

acetonitrile ligands of 3a,b and their easy substitution by the acetylacetonate chelate to give 

4a,b; and (iii) it demonstrates the robustness of these nickelacycles and, in particular, of the 

base-generated Ni alkylnitrile bonds. 

 The inertness of the Ni alkylnitrile bonds under acidic conditions is in sharp contrast 

with the high reactivity of a Fe alkyl bond found in a closely related alkyl,NHC!iron 

metalacycle: [Fe(iPr-NHC-CHMeCH2)( 
5-C5Me5)], which was also formed by deprotonation 

(of an NHC-isopropyl arm), and is readily reprotonated by reaction with heteroarenes via a 

proton transfer reaction from the 2-postion of the heteroarenes to the methylene group of the 

cyclometalated NHC ligand (Scheme 6).[38]  

 

 

 

Scheme 6. J!K$E)<F$;'>+L;>+)<$)D$(3>34);43<38$G3F+;>3F$E5$;$;B65B-MKJ!+4)<$G3>;B;'5'B3 

 

Moreover, the inertness of the Ni alkylnitrile and Ni carbene bonds also contrasts with the 

catalytic annulation of imidazolium salts bearing N-alkenyl substituents, reported by Cavell, 

and which presumably proceeds via analogous cyclonickelated NHC/alkyl complexes that 

would undergo reductive elimination (Scheme 7).[39,40] We therefore decided to investigate 

whether the robustness of the alkyl nickel bonds in 2a,b was due to a chelate effect or to its 

electronic nature, and just as importantly, whether the remarkably clean Cp acidolysis could 

be extended to other systems.  
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Scheme 7. Catalytic annulation of imidazolium salts via the formation of NHC/alkyl 

nickelacycles 

 

 For that purpose, we decided to subject the acyclic methyl[41] and cyanomethyl 

complexes [Ni(IMes)(CH2R)Cp] (R = H, 5a; R = CN, 5b) to similar reaction conditions. They 

were thus reacted with HCl in the presence of 1 equiv. of KPF6 in acetonitrile at room 

temperature, followed by filtration and treatment of the resulting solution with potassium 

acetylacetonate. The acyclic square planar cyanomethyl complexes [Ni(IMes)(CH2R)(acac)] 

6a,b were isolated as yellow-green solids in ca. 70% yield after work-up (Scheme 8). 

 

 

Scheme 8.  
5-J@$;'+F)B58+8$*+>($;'5'B+'$;B65B-$;<F$'5;<);B65B-MKJ!<+'63BNOOP$')G@B3Q38 

 

 Spectroscopic data of 6a,b clearly establish the absence of a  5-Cp ligand, together 

with the presence of an IMes ligand, an acetylacetonate chelate and a methyl or cyanomethyl 

group. In the 13C NMR spectra, the nickel-bonded carbon atoms are seen at 179.5 (6a) and 

169.8 ppm (6b) for the NHC groups, and at  13.7 (6a) and  22.5 ppm (6b) for the alkyl 

groups. The (cyano)alkyl  and carbene nickel bonds are thus preserved in an acidic medium 

within acyclic compounds, and Cp ligand displacement also takes place under these 

conditions. This unequivocally shows that, once formed, the Ni C bonds in these Ni NHC 

complexes are extremely stable whether they are part of a metalacycle or not, and, in the 
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particular case of the alkyl nickel bonds, whether they are substituted by a stabilizing 

electron-withdrawing group or not. Finally, this alkyl nickel bond inertness towards acid 

probably allows these Cp ligand removal reactions to take place cleanly, as several attempts to 

carry out a similar methodology on the neutral chloride complex, [Ni(IMes)ClCp],[41] and on 

the cationic complex, [Ni(IMes)(NCCH3)Cp]+PF6
-, always led to intractable mixtures.[42] 

  

II.2. Attempts to synthesize [Ni(IMes)(acac)Cl]: unexpected formation of 

[IMes.H
+
]3[(NiCl4

2-
)(Cl

-
)] 

 
 Our approach to synthesize closely related monodentate [Ni(NHC)(acac)Cl] 

complexes via a direct method (i.e. without going through a Cp removal step) was inspired by 

the work of Nolan and co-workers, who synthesized the Pd derivatives by simple reaction of 

Pd(acac)2 with an imidazolium salt.[9] However, when attempting to synthesize 

[Ni(IMes)(acac)Cl] by reaction of Ni(acac)2 with IMes.HCl in refluxing toluene for 24 h, the 

formation of the target complex did not occur. Instead, predominant recovery of the starting 

material along with formation of small amounts (ca. 10%) of a blue solid, which proved to be 

the nickelate complex [IMes.H+]3[(NiCl4
2-)(Cl-)] 7, took place (Scheme 9, eqn (1)). Further 

work showed that the yield of this serendipitous synthesis of this blue compound could be 

slightly improved by increasing the reaction time to 48 h, and the imidazolium salt loading to 

3 equiv. relative to Ni(acac)2 (Scheme 9, eqn (2)). 

 

 

Scheme 9. Unexpected synthesis of the tetrachloro nickelate species  

[IMes.H+]3[(NiCl4
2-)(Cl-)]  7 

 

 An X-ray diffraction study of a single crystal of this blue compound, that was selected 

from a batch of crystals obtained at room temperature by diffusion in n-pentane of a 
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concentrated solution in acetone, allowed to determine its structure as being that of a 

tetrachloronickelate anion surrounded by three IMes.H+ cations and one chloride 

[IMes.H+]3[(NiCl4
2-)(Cl-)] 7 (Figure 7). The [NiCl4]

2- has somewhat distorted tetrahedral 

symmetry (the Cl!Ni!Cl angles are 106.9(1)° and 112.0(1)°) while the two independent 

Ni!Cl distances are 2.203(1) and 2.246(1) Å (Table 2). These values are very close to what 

has been observed in another single crystal X-ray diffraction studies of this di-anion.[43,44] 

 

 

 

Figure 7. Structures of the cation and anions present in crystals of 7. The only hydrogen atom 

shown is that of the NCHN group (as an isotropic sphere). Ellipsoids are shown at the 50% 

probability level. Key atoms are labeled. 

 

Table 2. Selected Bond Lengths (Å) and Angles (°) for Complex 7 *+>($R8FI8$+<$@;43<>(3838 

Complex 7 

Ni!Cl1 2.203(2) 

Ni!Cl2 2.2465(12) 

Cl1!Ni!Cl2 106.86(5) 

Cl2!Ni!Cl2 111.95(4) 

H1SSSCl3 2.606 
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 In agreement with the molecular structure determined by X-ray diffraction, the 1H 

NMR spectrum of 7 CDCl3 only showed the signals of the imidazolium salt but, surprisingly, 

the signal of the C2 proton was considerably downfield shifted (Figure 8, # = 6.81 ppm for 7 

vs. 11.02 ppm for IMes.HCl in CD2Cl2). A plausible explanation for such observation is that 

the paramagnetic nature of NiCl4
2- could influence the chemical shift value of the C2 proton. 

 

 

 

 

 

Figure 8. Comparison of the 1H NMR spectra of IMes.HCl and [IMes.H+]3[(NiCl4
2-)(Cl-)] in 

CD2Cl2 
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 The difficulty encountered in obtaining the target complex [Ni(IMes)(acac)Cl] might 

arise from (i) the low solubility of Ni(acac)2, and (ii) the fact that Ni(acac)2 exists as a trimer 

in the solid state,[45] where each nickel atom is octahedrally coordinated to six oxygen atoms 

coming from three acac ligands. The nickel atoms are therefore less accessible than the 

palladium atoms in Pd(acac)2. Remarkably, the formation of such tetrachloro-imidazolium 

salts nickelate is not unprecedented in the literature, but only halide sources of nickel were 

used in all previous cases.[46 51]  

 Regarding the reactivity of 7, it is noteworthy that its treatment with KOtBu in THF at 

room temperature led to the formation of the bis-NHC complex trans-[Ni(IMes)2Cl2] 8 in 

64% isolated yield (Scheme 10).[52] 

 

 

 

Scheme 10. Reaction of 7 with a strong base 

 

II.3. Synthesis of malo-NHC nickel complexes 

 
 For the synthesis of malo-NHC!nickel complexes, we choose the pyrimidinium 

betaïne 9a, that we synthesized according the literature procedures (Scheme 11).[20,53,54] The 

formamidine (Mes)N=CH!NH(Mes) was synthesized in moderate yield (ca. 50%) by reaction 

of 2,6-diisopropylaniline with triethylorthoformate in the presence of sub-stoichiometric 

amounts of acetic acid.[53] In parallel, the synthesis of methylmalonic acid was achieved with 

an almost quantitative yield by simple hydrolysis of diethyl malonate in basic medium.[54] A 

dicyclohexylcarbodiimide (DCC)-mediated double peptide-type coupling between the 

formamidine and the methylmalonic acid finally afforded the corresponding pyrimidinium 

betaïne 9a with ca. 90% yield.[20]   

 



Chapter IV. Synthesis, characterization and applications of new Ni NHC complexes 

 

 

153 
 

 

 

Scheme 11. Three-steps synthesis of the pyrimidinium betaïne 9a 

 

 By analogy with the known syntheses of half-sandwich nickel complexes bearing a 

classical imidazolylidene- or imidazolinylidene-NHC ligand,[41,55] we investigated the reaction 

between 9a and nickelocene in refluxing THF. However, no reaction occurred, and unreacted 

starting materials were recovered. We then investigated the complexation of the free carbene 

9b, generated by deprotonation of 9a with KHMDS at room temperature, to different nickel 

sources (Scheme 12). The reaction of 9b with NiCl2(DME), Ni(acac)2, nickelocene and 

[Ni(PPh3)ClCp] led to intractable mixtures in all cases. In contrast, the reaction of 9b with 

[Ni(PPh3)2Cl2] led to the relatively clean formation complex 10, which we have isolated as a 

light violet solid, and tentatively identified as [Ni(PPh3)2(malo-NHC)Cl] according to its 1H 

NMR spectrum in DMSO-d6. The presence of the malo-NHC was confirmed by its 

characteristic signals, integrating in a 1:2 ratio relative to the triphenylphosphine signals. 

However, its very low solubility in organic solvents precluded its recrystallization and thus its 

isolation as an analytically pure solid. 

 



Chapter IV. Synthesis, characterization and applications of new Ni NHC complexes 

 

 

154 
 

 

 

Scheme 12. Attempted syntheses of malo-NHC-nickel complexes 

 

 This result and the preferential substitution of Cl- rather than that of PPh3, tended to 

confirm César and Lavigne's assumption that malo-NHCs behave more like X-type ligands 

than NHCs.[20] We thus decided to react 9b with [Ni(IMe)ICp] 11 with the hope of 

substituting the iodide ligand. And indeed, when 9b (generated in situ from 9a) was reacted 

with 11 in THF at room temperature, clean formation of the cationic bis-carbene complex 12, 

which was isolated with a 75% yield after work-up, occurred at room temperature (Scheme 

13).  

 

 
 

Scheme 13. Synthesis of 12 via iodide substitution of [Ni(IMe)ICp] 11 
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 The 1H and 13C{1H}NMR spectrum of 12 are straightforward, as they show the 

presence of one  5-Cp ligand, one IMe NHC and one malo-NHC. In addition, they reveal that 

a molecular mirror plane that bisects the molecule is present on the NMR time scale. This 

effective mirror plane contains the nickel atom, the IMe and malo-NHC carbene carbons, and 

the Cp centroid. The protons of the IMe ring and the NMe groups thus resonate as two 

singlets in a 1:3 integrated ratio, in the 1H NMR spectrum. The protons of the malo-NHC ring, 

the ortho-methyl groups, the meta-hydrogens, and the para-methyl groups of the mesityl 

groups appear as four singlets in a 3:6:2:3 integrated ratio. Nevertheless, the signals of the two 

ortho-methyls and the two meta-hydrogens of the malo-NHC are somewhat broad at room 

temperature. A variable-temperature 1H NMR experiment was thus performed on a CD2Cl2 

solution of 10 between 296 and 243 K (Figure 9). As the temperature was decreased, the 

ortho-methyl resonances became even broader, and eventually splitted into two signals at a 

temperature (TC) of ca. 283 K. Similar signal splitting was observed for the aromatic meta-

hydrogen atom signals at ca. 273 K. The free energies of activation ($G
T) for this fluxional 

process (based on the coalescence temperature of the ortho-methyl groups and of the meta-

aromatic protons) are of the order of 55 - 58 kJ.mol-1.[56] The similar values of the two free 

energies of activation suggest that the two signal splittings/coalescences are associated to the 

same dynamic process in compound 12, which we believe is restricted rotation about the N-

mesityl bonds at low temperature. This phenomenon was previously observed in a closely 

related sterically congested bis-carbene complex [Ni(IMes)(Me-NHC-iPr)]+ (at RT),[57] as 

well as in the Cp* mono-carbene complex [Ni(IMes)ClCp*].[58]  
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Figure 9. VT 1H NMR analysis of 12 showing signal splitting/coalescences for the para-

methyl groups and the meta-aromatic protons 

 

 The addition of 1.05 equiv. MeOTf on a dichloromethane solution of the zwitterionic 

complex 12 at 0°C cleanly afforded the corresponding ionic complex 13, which was isolated 

as a dark yellow solid in excellent yield (Scheme 13). The 1H NMR spectrum of 13 clearly 

indicates the formation of the methoxy moiety of the six-membered NHC backbone by a 

singlet integrating for 3 protons at 3.50 ppm. In addition, in contrast to what is observed in the 
1H NMR spectrum of 12, due to the molecular mirror plane that bisects the molecule, the 

para-methyl groups of the two mesityl N-substituents of complex 13 appear as two different 

signals integrating in a 1:1 ratio, confirming the asymmetry of the MeO-malo-NHC. 

Similarly, the ortho-methyl groups appear as two singlets integrating for 6 protons each. 

Furthermore these signals are broad, which likely indicates a restricted rotation about the N 

Mesityl bond as observed in 12. Finally and in contrast, the meta-protons coincidentally 

appear as one singlet integrating for 4 protons. All other signals of 13 are comparable to those 

of 12, and deserve no particular comment. 
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Scheme 13. Post-functionalization of the malonate backbone of 12 

 

II.4. Synthesis of Ni CAAC complexes 

 

 The synthesis of the CAAC precursor 14 has been realized according to the previously 

reported procedure (Scheme 14).[59] Simple condensation of 2,6-diisopropylaniline on 

cyclohexanecarboxaldehyde allowed us to obtain the corresponding aldimine nearly 

quantitatively. Subsequent deprotonation of this aldimine, followed by reaction with 3-bromo-

2-methylpropene resulted in the formation of the corresponding alkenyl aldimine in ca. 90% 

yield. Addition of a stoichiometric amount of a 2 M solution of HCl in Et2O resulted in the 

formation of a white solid that was isolated, and heated in a sealed tube with acetonitrile at 

50°C, this gave the CAAC precursor 14 quantitatively. 

 

 

 

Scheme 14. Four-step synthesis of 14 

 



Chapter IV. Synthesis, characterization and applications of new Ni NHC complexes 

 

 

158 
 

 Initial studies then focused on the screening of several nickel sources for 

complexation. Generation of the free carbene by addition of 1.1 equiv. of KHMDS on 14, and 

subsequent reaction with either NiCl2(DME), Ni(acac)2, [Ni(PPh3)ClCp] or nickelocene in 

THF led, however, to intractable mixtures in all cases. In contrast, when a THF solution of the 

free carbene was added to a suspension of [Ni(PPh3)2Cl2] in THF at !78°C before warming to 

room temperature, a color change from dark green to reddish took place within minutes, and a 

violet solid, which we have identified as [Ni(CAAC)(PPh3)Cl2] 15 based on its 1H NMR 

spectrum, was isolated in 34% yield after work-up (Scheme 15). The 1H NMR spectrum of 15 

clearly shows the presence of one PPh3 and one CAAC ligand in a 1:1 integrated ratio. 

Unfortunately, no other spectroscopic data have been obtained yet, and this result still needs 

to be confirmed by 13C {1H} NMR spectroscopy, elemental analysis, and/or X-ray diffraction 

studies. Nevertheless, in contrast to the reaction of the free malo-NHC 9b with  

[Ni(PPh3)2Cl2], the CAAC ligand would substitute one triphenylphosphine ligand instead of a 

chloride, and would thus behave as a L-type ligand, like NHCs.  

 

 

 

Scheme 15. Synthesis of [Ni(CAAC)(PPh3)Cl2] 15 

 

 In the former reaction, however, it is noteworthy that if the deprotonation of 14 is not 

complete, non negligible amounts (depending on the amount of 14 left) of a blue compound 

16 are formed after the addition of the reaction mixture onto [Ni(PPh3)2Cl2] under otherwise 

unchanged reaction conditions (Scheme 16, eqn. (1)). This blue species could not be 

identified by 1H NMR spectroscopy as its spectrum in CD2Cl2 showed rather broad signals 

from 0 to 14 ppm, which suggests that it is paramagnetic. Nevertheless, X-ray quality crystals 

were obtained by diffusion in n-pentane of a concentrated solution in dichloromethane, and 

the molecular structure of 16 could be determined by a single-crystal X-ray diffraction study. 

Crystallographic data and data collection parameters are listed in Table 6 (see Experimental 
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Section). Selected bond lengths and angles are collected in Table 3, and the structure is shown 

in Figure 10. 

 

 

 

Scheme 16. Unexpected synthesis of the nickelate salt 16 

 

 The molecular structure of 16 revealed that it was a nickelate salt akin to 7 with one 

[CAAC]+ cation and one [Ni(PPh3)Cl3]
- anion present in the crystallographic unit. The 

structure of the [CAAC]+ cation does not change significantly compared to the previously 

reported structure of the triflate salt.[26] The phenyl ring of the [CAAC]+ cation is oriented 

perpendicular to the azolium ring with a dihedral angle of 90.5°. In the [Ni(PPh3)Cl3]
- anion, 

the nickel atom is coordinated by three chlorines atoms and one phosphorus atom in a 

distorted tetrahedral geometry, with Ni!Cl, and Ni!P bond lengths of 2.2327(5)-2.2573(5) Å, 

and 2.3121(5) Å, respectively. The angles at nickel are in the ranges 96.226(19)-118.97(2)°. 

These values lie within the ranges found for other complexes containing a [Ni(PPh3)X3]
-  

anion.[60 62] 

 The zwitterionic complex 16 was also obtained when attempting to crystallize 

complex 15 in THF that contained traces of water (Scheme 16, eqn. (2)). Slow decomposition 

of 15 into 16 thus shows a certain sensitivity of the Ni!CAAC bond, which might raise a 

problem for catalytic applications of 15. 
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Figure 10. Structure of the cation and anion present in crystals of 16. Ellipsoids are shown at 

the 50% probability level. Key atoms are labeled. 

 

Table 3. Selected Bond Lengths (Å) and Angles (°) for Complex 16 *+>($R8FI8$+<$@;43<>(3838 

Complex 16 

Ni!Cl1 2.2327(5) 

Ni!Cl2 2.2428(6) 

Ni!Cl3 2.2573(5) 

Ni!P 2.3121(5) 

Cl1!Ni!Cl2 118.97(2) 

Cl1!Ni!Cl3 107.93(2) 

Cl2!Ni!Cl3 118.80(2) 

Cl1!Ni!P 109.07(2) 

Cl2!Ni!P 96.226(19) 

Cl3!Ni!P 103.583(18) 
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II.5. Catalysis applications of the new nickel carbene complexes 

 

 Nickelacycles 2b, 3b, and 4b, as well as the malo-NHC!nickel complexes 12 and 13, 

and the Ni!CAAC complex 15 have been evaluated as pre-catalysts in different reactions: (i) 

in the Suzuki-Miyaura coupling of 4-bromoacetophenone with phenylboronic acid in the 

presence of K3PO4 as the sole additive (Table 4), and/or (ii) in the hydrosilylation of 

benzaldehyde with Ph2SiH2 (Table 5), as well as (iii) in the "-arylation of propiophenone 

with 4-bromotoluene. These three transformations were chosen for comparison purposes with 

the previously reported half-sandwich nickel complexes.[42,57,63 65]  

 As we are greatly interested in evaluating our nickel complexes in stoichiometric[2,3,66] 

and catalytic[65] C!H bonds transformations (see Chapter II), we decided to test some of 

these complexes in the elegant direct arylation of THF (Table 6), which has been very 

recently described by Lei and co-workers.[67] Thus, the use of a Ni(acac)2/PPh3 (1:1 - 10 

mol%) catalyst with phenylboronic acids, K3PO4 as a base and di-tert-butylperoxide (DTBP) 

as an additive in THF ! which acts as both the solvent and the reactant ! at 100°C for 16 h 

impressively allowed a series of mono-arylation at the " position of  THF in moderate to 

excellent yields (52 - 93%).[67] 

 In the case of the square planar alkyl,NHC!nickelacycles 3b and 4b, we thought that 

their robustness may open interesting perspectives for their use in catalysis. As expected, the 

labilization of the Cp ring of the half-sandwich complex 2b, and its substitution by two labile 

acetonitrile ligands (complex 3b) was found to be beneficial in the Suzuki-Miyaura coupling 

of phenylboronic acid with 4-bromoacetophenone. Thus, only 20% conversion was obtained 

after 1 h with 3 mol% 2b, whereas 58% conversion was obtained with 3b under otherwise 

unchanged conditions (Table 4, entries 1 vs. 2). Although it was less efficient than the 

cationic complex 3b, the neutral acac complex 4b also gave a better activity than 2b, with a 

45% conversion after 1 h (entry 3). Consequently, with nickelacycles 2b, 3b and 4b, the 

reactivity trend, which is as follows: 3b > 4b > 2b, shows that the more stabilizing the 

ligands, the less catalytically active the complexes are. Nevertheless, the activity of 3b does 

not reach that of the half-sandwich complex [Ni(Mes-NHC- nBu)ICp], which was found to be 

among the most active Ni!NHC catalysts for this reaction, with 88% conversion observed 

after 15 min with a catalyst loading of 1 mol% only (entries 2 vs. 8).[63] The reasons for these 

moderate activities of the square-planar complexes 3b and 4b could arise from: (i) the 

increased stability of such nickelacycles, compared to acyclic complexes such as [Ni(Mes-



Chapter IV. Synthesis, characterization and applications of new Ni NHC complexes 

 

 

162 
 

NHC- nBu)ICp], and/or (ii) the inductive electronic effect of the nitrile group, which would 

inhibit the generation of an active nickel(0) species, and/or (iii) the much less hindered nature 

of the alkylnitrile carbon atom bound to the nickel, compared, for instance, to that of a NHC, 

which would not favor the reductive elimination step. 

  

Table 4. Suzuki-Miyaura coupling of 4-bromoacetophenone with phenyl boronic acid 

catalyzed by complexes 2b, 3b, 4b, 12, 13 and 15
a 

 

Entry Catalyst (mol %) Time (min) Conversion (%) 

1 2b (3) 60 20 

2 3b (3) 60 58 

3 4b (3) 60 45 

4 12 (3) 60 21 

5 13 (3) 60 23 

6 15 (3) 60 13 

7 [Ni(IMes)(IMe)Cp](PF6) (1) 60 20[57] 

8 [Ni(Mes-NHC- nBu)ICp] (1) 15 88[63] 
a Reaction conditions: phenylboronic acid (1.3 mmol), 4-bromoacetophenone (1 mmol), 

K3PO4 (2.6 mmol), [Ni] (1 - 3 mol%) in toluene (3 mL) at 110°C. b Conversions determined 

by 1H NMR; average of two runs. 

 

 We also evaluated the half-sandwich malo-NHC!nickel complexes 12 and 13 in this 

transformation. However, the activities of these catalysts proved to be rather low, with only 

21 and 23% conversion, obtained with 3 mol% of 12 and 13, respectively (entries 4 and 5). 

The bis-NHC analogue of 12 and 13, [Ni(IMes)(IMe)Cp](PF6), similarly gave a rather 

disappointing result in a previous study, with only 20% conversion after 1 h of reaction with a 

catalyst loading of 1 mol% only (entries 4 and 5 vs. 7).[57] As the half-sandwich nickelacycles 

2, complexes 12 and 13 are coordinatively saturated and sterically congested, this probably 

renders the nickel atom almost inaccessible. Apart from a possible Cp ring slippage from the 

 
5- to an  3- or  1-coordination mode, there thus seems to be no other possibility of accessing 

the metallic center. Consequently, we studied the potential labilization of the Cp ring in an 
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acidic medium, as described for complexes 2a,b and 5a,b (Schemes 4 and 6).[65] However, 

when treating either complex 12 or 13 with HCl (1 equiv. or large excess) and KPF6 (1 equiv.) 

in acetonitrile at room temperature, no reaction occurred, and the starting materials were 

predominantly recovered (Scheme 17), similar to what was observed with the related bis-

NHC complexes [Ni(IMes)(IMe)Cp](PF6) and [Ni(IMes)(Me!NHC!iPr)Cp](PF6) in previous 

work.[57] 

 
 

Scheme 17. Attempts to labilize the Cp ring of 12 and 13 with HCl 
 

 Finally, the Ni!CAAC complex 15 was also tested in the coupling of 4-

bromoacetophenone with phenylboronic acid, but proved to be even less active than 12 and 13 

(entries 6 vs. 4 and 5). 
 

 In the hydrosilylation of benzaldehyde with diphenylsilane (Table 5), complexes 12 

and 13 proved to be slightly active at room temperature in the absence of additive (entries 1 

and 3), which is in marked contrast to [Ni(IMes)ClCp], which did not show any activity in the 

absence of an additive after 17 h at room temperature (entry 6, see also Chapter III).[64] 

However, the activities of 12 and 13 were relatively low compared to the 

[Ni(IMes)ClCp]/NaHBEt3 (1:2) system, for which quantitative conversion was observed 

within 15 min (entry 7).[64] Moreover, in the presence of 2 mol% of KHBEt3, the activities of 

12 and 13, with only 61% (12) and 28% (13) conversions after 1 h (entries 2 and 4), proved to 

be much lower, than that of the [Ni(IMes)ClCp]/NaHBEt3 (1:2) system. Interestingly, in 

contrast to what was observed in the Suzuki-Miyaura coupling reaction, complex 12 was 

twice as active as 13. 

 T(3$ M+!J..J complex 15 was also briefly evaluated in the hydrosilylation of 

benzaldehyde with diphenylsilane, in the presence of 2 mol% of KHBEt3, and allowed 31% 

conversion in 30 min (entry 5). This result, also, does not attain that of the 

[Ni(IMes)ClCp]/NaHBEt3 (1:2) system. 
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Table 5. Nickel(II)-catalyzed hydrosilylation of benzaldehyde with diphenylsilanea 

 

Entry Catalyst Additive (mol%) Time (min) Conversion (%)b 

1 12 ! 60 12 

2 12 KHBEt3 (2) 60 61 

3 13 ! 60 5 

4 13 KHBEt3 (2) 60 38 

5 15 KHBEt3 (2) 30 31 

6 [Ni(IMes)ClCp] ! 17 h 0[64] 

7 [Ni(IMes)ClCp] NaHBEt3 (2) 15 > 97[64],c 
a Reaction conditions: activation of 1-3 with the additive in THF (4 mL) was followed by addition of 

benzaldehyde (1 mmol) and Ph2SiH2 (1 mmol), and the reaction mixture was stirred at 25°C. b 

Conversions determined by 1H NMR after methanolysis (MeOH, 2M NaOH) and extraction with Et2O. c 

Conversions determined by GC after methanolysis (MeOH, 2M NaOH) and extraction with Et2O. 

 

 Nevertheless, we were especially interested in evaluating complex 15 as a pre-catalyst 

in the "-arylation of propiophenone with 4-bromotoluene to provide a direct comparison with 

[Ni(IPr)(PPh3)Cl2] (which only differs in its carbene ligand), and was previously tested in the 

same reaction.[68] Thus, under the exactly same reaction conditions as those employed for 

[Ni(IPr)(PPh3)Cl2] (10 mol% of Ni, 1.5 equiv. NaOtBu, toluene, 100°C, 24 h), a 38% yield 

(determined by GC) was obtained with 15 (Scheme 18) vs. 65% isolated yield for 

[Ni(IPr)(PPh3)Cl2].
[68] This result shows that replacement of an IPr ligand by a CAAC ligand 

in the complex of type [Ni(carbene)(PPh3)Cl2] obviously does not have a beneficial impact in 

this reaction. 

 

Scheme 18. "-Arylation of propiophenone with 4-bromotoluene catalyzed by 

[Ni(CAAC)(PPh3)Cl2] 15 
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 Finally, complexes 12, 13 and 15 *343$;B8)$3L;B&;>3F$+<$ >(3$F+43'>$J!K$;45B;>+)<$)D$

THF (Table 6). Performing the coupling of THF with phenylboronic acid in the presence of 

10 mol% of the well-defined malo-NHC complexes 12 or 13, satisfyingly allowed us to obtain 

19% (12) and 11% (13) isolated yields of 2-phenyl-THF (entries 1 and 2). Nevertheless, these 

results are far from matching those obtained by Lei and co-workers with Ni(acac)2/PPh3 

(entry 4). Besides, they again show that 12 is twice more active than 13, which illustrates the 

benefit of the anionic backbone of the malo-NHC. The reason is not yet well understood, as 

these differences in activity may arise from (i) a possible negative interaction of the triflate 

anion in '()   as already observed in the nickel-catalyzed Suzuki-Miyaura reaction with 

cationic half-8;<F*+'($M+!MKJ$')G@B3Q38
[69] !$and/or (ii) their difference in donicity, the 

malo-NHC being more donor in 12.[22]  

 Under otherwise unchanged reaction conditions, a poor yield of 4% was obtained with 

Ni!CAAC complex 15 (entry 3), which has thus proven to be poorly to moderately active in 

all tested reactions. The reason is not yet well understood, but further studies on the strength 

of the Ni!CAAC bond in 15 might allow us to understand this phenomenon. 

 

Table 6. Nickel(II)-catalyzed C!H arylation of THF with phenylboronic acida
 

 

Entry Catalyst Yield (%)b 

1 12 19 

2 13 11 

3 15 4 

4 Ni(acac)2 + PPh3 88[67] 
a Reaction conditions: phenylboronic acid (0.50 mmol), [Ni] (10 mol%) in THF (3 

mL) at 100°C for 16 h. b Yields of isolated products. 

 

III. Conclusion 

 

 In summary, an original methodology for the facile and clean removal of the Cp ligand 

from cyclic and acyclic half-sandwich alkyl,NHC!nickel complexes, which do not present 
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any readily available coordination sites, has been developed. Of notable interest is the 

preservation, in the presence of the acid, of the nickel!alkyl and nickel!NHC bonds 

irrespective of whether they are part of a metalacycle or not. The robustness of these bonds 

indeed may open up interesting perspectives for the use of this novel class of square planar 

alkyl,NHC!nickel complexes in coordination chemistry and/or catalysis, even though the first 

catalytic results obtained in Suzuki-Miyaura coupling were rather disappointing. 

 Moreover, new nickel!NHC complexes based on malo-NHC and CAAC ligands were 

synthesized, and the coordination chemistry of these ligands with nickel has clearly shown 

that malo-NHCs behave as anionic X-type ligands, whereas CAACs behave as neutral L-type 

ligands. The catalytic activity of these complexes has been briefly evaluated in several 

reactions, and although they were generally moderately active, these results are encouraging. 

This study is only at its infancy, and we have no doubt that further work on ligand design, on 

the complexation of these carbenes to other nickel sources, and on their potential in catalytic 

applications, will give rise to interesting nickel!carbene catalysts in a near future. 

 

IV. Experimental section 

 

IV.1. General information 

 

 All reactions were carried out using standard Schlenk or glove-box techniques under 

an atmosphere of dry argon. Solvents were distilled from appropriate drying agents under 

argon. Solution NMR spectra were recorded at 298 K on FT-Bruker Ultra Shield 300 and FT 

Bruker Spectrospin 400 spectrometers operating at 300.13 or 400.14 MHz for 1H and at 75.47 

or 100.61 MHz for 13C{1H}. The 1H NMR variable-temperature experiments were recorded at 

400 MHz in CD2Cl2, from 243 K to 296 K for complex 12. 1H 2D COSY spectra were 

obtained for complexes 3b and 4a,b to help in the 1H signal assignments. The chemical shifts 

are referenced to the residual deuterated or 13C solvent peaks. Chemical shifts (#) and 

coupling constants (J) are expressed in ppm and Hz respectively. Chemical shifts and full 

NMR data of 3b are given for [3b] ~ 3.10-2 mol.L-1 in CD3CN. IR spectra of solid samples of 

3b, 4a,b and 6a,b were recorded on a FT-IR Nicolet 380 spectrometer equipped with a 

diamond SMART-iTR ATR. Vibrational frequencies are expressed in cm-1. Elemental 
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+)+,-&.&$  ./.$ 0./12/3.'$ 4-$ "#.$ 5./6!7.$ '(8)+,-&.&9$ '.$ :.&;/.&$ <#-&!=;.&$ ."$ '.$

Spectroscopie Optique, UMR CNRS 7177, Institut de Chimie, Université de Strasbourg. 

Commercial compounds were used as received. [Ni{Me-NHC-CH2CH(CN)}Cp] 2a,[3] 

[Ni{Mes-NHC-(CH2)2CH(CN)}Cp] 2b,[3] [Ni(IMes)(CH3)Cp] 5a,[41] [Ni(IMes)(CH2CN)Cp] 

5b
[2], the pyridinium salt 9a

[20,53,54] [Ni(IMe)ICp][58] and the CAAC precursor 14
[59] were 

prepared according to the published methods. 

 

IV.2. Synthesis of [Ni{Mes-NHC-(CH2)2CH(CN)}(NCCH3)2]
+
PF6

-
 (3b) 

 
 To a dark green suspension of 2b (300 mg, 0.798 mmol) and KPF6 (147 mg, 0.799 

mmol) in acetonitrile (5 mL) at room temperature was added drop-wise an equimolar amount 

of aqueous HCl (37%) diluted in acetonitrile to 1.0 M (0.80 mL, 0.800 mmol). The reaction 

mixture readily turned ochre yellow and was stirred for 10 min before filtration on a Celite 

pad, which was subsequently rinsed with acetonitrile until the washings were colorless. 

Volatiles were evaporated under vacuum, and the resulting solid was washed with pentane (3 

x 10 mL), diethyl ether (3 x 10 mL) and dried under vacuum at 50°C to afford 3b as a dark 

yellow solid (325 mg, 0.604 mmol, 76%).  
1H NMR (CD3CN, 300.13 MHz): # 7.32 (d, 3

J = 1.8 Hz, 1H, NCH), 7.24 (s, 1H, m-H), 7.05 

(s, 1H, m-H), 7.03 (d, 3J = 1.8 Hz, 1H, NCH), 4.13 and 4.03 (2m, 2 x 1H, NCH2), 2.56 (s, 3H, 

p-Me), 2.38 (s, 3H, o-Me), 2.33, (m, 1H, CHCN), 2.03 (s, 3H, o-Me), 1.69 (m, 1H, 

NCH2CH2), 1.08 (m, 1H, NCH2CH2). Free CH3CN that results from exchange with CD3CN is 

seen as a singlet (at 1.96 ppm) on the downfield side of the multiplet due to residual CHD2CN 

observed at 1.94 ppm. 13C{1H} NMR (CD3CN, 100.61 MHz): # 156.1 (br., NCN), 140.3 (p- 

or ipso-CAr), 136.5, 136.2, 135.7 (ipso- or p-CAr, o-CAr and CHCN), 130.4 and 130.0 (m-CAr), 

125.4 and 123.6 (NCH), 50.6 (NCH2), 29.2 (NCH2CH2), 21.1 (p-Me), 19.2 and 18.3 (o-Me),  

 2.0 (br., CHCN). IR [ATR]: %(Csp2 H) 3176 (w), 3145 (w); %(Csp3 H) 2923 (w), 2861 (w); 

%(CH3CN) 2352(w), 2322 (w), 2293 (w); %(CUN) 2234 (m); %(P F) 826 (s). 

 

IV.3. Deuterium labeling experiment; reaction of (2b) with DCl 

 
 To a dark green suspension of 2b (50 mg, 0.133 mmol) and KPF6 (25 mg, 0.133 

mmol) in CD3CN (2 mL) (C ~ 7.10-2 mol.L_1) at room temperature was added drop-wise a 
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solution of DCl (35 wt.% in D2O) diluted in CD3CN to 1.0 M. The addition was stopped as 

soon as a color change from dark green to ochre yellow was observed. The reaction mixture 

was then stirred for 5 min, before it was allowed to settle and a sample was removed with a 

syringe and directly analyzed by 1H NMR. The obtained spectrum shows the presence of 

[Ni{Mes-NHC-(CH2)2CH(CN)}(NCCD3)2]
+PF6 3b-D and mono-deuterated cyclopentadiene 

C4H4CHD in a 1:1 ratio.  
1H NMR (CD3CN, 300.13 MHz): # 7.33 (s, 2H, NCH and m-H), 7.07 (s, 1H, m-H), 7.04 (s, 

1H, NCH), 6.56 and 6.48 (2d, 3
J n.r, 2 x 2H, C4H4CHD), 4.11 and 4.02 (2m, 2 x 1H, NCH2), 

2.95 (br. s, 1H, C4H4CHD), 2.56 (s, 3H, p-Me), 2.41 (br. s, 4H, o-Me and CHCN), 2.03 (s, 

3H, o-Me), 1.66 (br. s, 1H, NCH2CH2), 1.05 (br. s, 1H, NCH2CH2). 

 

IV.4. Synthesis of [Ni{Mes-NHC-(CH2)2CH(CN)}(acac)] (4b) 

 
 To a dark green suspension of 2b (1.00 g, 2.66 mmol) and KPF6 (490 mg, 2.66 mmol) 

in acetonitrile (20 mL) at room temperature was added drop-wise an equimolar amount of 

aqueous HCl (37%) diluted in acetonitrile to 1.0 M (2.66 mL, 2.66 mmol). The reaction 

mixture turned yellow and was stirred for 10 min before filtration on a Celite pad, which was 

subsequently rinsed with acetonitrile until the washings were colorless. Potassium 

acetylacetonate (368 mg, 2.66 mmol) was then added to the filtrate and the reaction mixture 

was stirred for 30 min. The resulting light green suspension was filtered through Celite and 

the solvent evaporated under vacuum. Recrystallization from a thf/pentane mixture then 

afforded 4b as light green microcrystals (650 mg, 1.46 mmol, 55%) that were washed with 

pentane (3 x 10 mL) and dried under vacuum.  

Anal. Calcd for C21H25N3NiO2&
1/2C4H8O: C, 61.91; H, 6.55; N, 9.42. Found: C, 61.99; H, 

6.60; N, 9.30. [The crystals contain half a molecule of thf per formula unit, as shown by the 

NMR data and the X-ray diffraction study]. 1H NMR (CD2Cl2, 400.14 MHz): # 7.04 (d, 3
J = 

1.8 Hz, 1H, NCH), 7.04 (s, 1H, m-H), 6.88 (s, 1H, m-H), 6.70 (d, 3J = 1.8 Hz, 1H, NCH), 5.11 

(s, 1H, CH[C(O)Me]2), 4.13 (m, 1H, NCH2), 4.01 (m, 1H, NCH2), 3.68 (m, 2H, 0.5 thf), 2.59 

(s, 3H, o-Me), 2.31 (s, 3H, p-Me), 2.10 (s, 3H, o-Me), 1.82 (m, 2H, 0.5 thf), 1.78-1.71 (m, 2H, 

CHCN and NCH2CH2), 1.74 (s, 3H, C(O)Me), 1.27 (s, 3H, C(O)Me), 1.15 (m, 1H, 

NCH2CH2). 
1H NMR (CD3CN, 400.14 MHz): # 7.22 (d, 3

J = 1.8 Hz, 1H, NCH), 7.07 (s, 1H, 

m-H), 6.94 (s, 1H, m-H), 6.83 (d, 3
J = 1.8 Hz, 1H, NCH), 5.15 (s, 1H, CH[C(O)Me]2), 4.07 
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(2m, 2 x 1H, NCH2), 3.65 (m, 2H, 0.5 thf), 2.51 (s, 3H, o-Me), 2.31 (s, 3H, p-Me), 2.08 (s, 

3H, o-Me), 1.80 (m, 2H, 0.5 thf), 1.75 (dd, 3
J = 8.8 Hz, 3J = 7.6 Hz, 1H, CHCN), 1.70 (s, 3H, 

C(O)Me), 1.65 (m, 1H, NCH2CH2), 1.31 (s, 3H, C(O)Me), 1.01 (m, 1H, NCH2CH2). 
13C{1H} 

NMR (CD3CN, 75.47 MHz): # 187.8 and 186.8 (CO), 163.1 (NCN), 138.9 (p- or ipso-CAr), 

138.1 (ipso- or p-CAr), 136.3 (o-CAr), 135.7 (CHCN), 129.6 (m-CAr), 124.4 and 122.5 (NCH), 

100.7 (CH[C(O)Me]2), 68.3 (thf), 50.9 (NCH2), 30.8 (NCH2CH2), 27.0 and 25.2 (C(O)Me), 

26.3 (thf), 21.1 (p-Me), 18.9 (o-Me), *2.2 (CHCN). IR [ATR]: %(Csp2*H) 3152 (w), 3121 (w), 

3093 (w); %(Csp3*H) 2966 (w), 2916 (w), 2858 (w); %(CUN) 2187 (m); %(C=O) + %(C=C) 

1581 (m), 1520 (s). 

 

IV.5. Synthesis of [Ni{Me-NHC-CH2CH(CN)}(acac)] (4a) 

 
 To a dark green suspension of 2a (300 mg, 1.16 mmol) and KPF6 (214 mg, 1.16 

mmol) in acetonitrile (5 mL) at room temperature was added drop-wise an equimolar amount 

of aqueous HCl (37%) diluted in acetonitrile to 1.0 M (1.16 mL, 1.16 mmol). The reaction 

mixture turned yellow and was stirred for 10 min before filtration on a Celite pad, which was 

subsequently rinsed with acetonitrile until the washings were colorless. Potassium 

acetylacetonate (160 mg, 1.16 mmol) was then added to the filtrate and the reaction mixture 

was stirred for 30 min. The resulting light brown-green suspension was filtered through Celite 

and the solvent evaporated under vacuum. The residue was then redissolved in THF (5 mL), 

filtered through Celite again, and precipitated from a thf/pentane (1:4) mixture to afford 4a as 

a yellow powder (235 mg, 0.805 mmol, 69%) that was washed with pentane (3 x 10 mL) and 

dried under vacuum.  

Anal. Calcd for C12H15N3NiO2: C, 49.37; H, 5.18; N, 14.39. Found: C, 49.47; H, 5.37; N, 

14.10. 1H NMR (CDCl3, 300.13 MHz): # 6.78 (d, 3
J = 1.8 Hz, 1H, NCH), 6.58 (d, 3

J = 1.8 

Hz, 1H, NCH), 5.38 (s, 1H, CH[C(O)Me]2), 3.79 (dd, 2
J = 12.2 Hz, 3

J = 8.1 Hz, 1H, NCH2), 

3.72 (s, 3H, NCH3), 3.51 (dd, 2
J = 12.2 Hz, 3J = 3.3 Hz, 1H, NCH2), 2.20 (dd, 3

J = 8.1 Hz, 3J 

= 3.3 Hz, 1H, CHCN), 1.88 (s, 3H, C(O)Me), 1.84 (s, 3H, C(O)Me). 13C{1H} NMR (CDCl3, 

75.47 MHz): # 187.5 and 185.9 (CO), 160.8 (NCN), 136.3 (CHCN), 123.8 and 117.3 (NCH), 

100.5 (CH[C(O)Me]2), 52.4 (NCH2), 35.5 (NCH3), 27.2 and 26.5 (C(O)Me), 4.0 (CHCN). IR 

[ATR]: %(Csp2 H) 3147 (w), 3116 (w); %(Csp3 H) 2940 (w); %(CUN) 2185 (m); %(C=O) + 

%(C=C) 1575 (m), 1518 (s). 
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IV.6. Synthesis of [Ni(IMes)(CH3)(acac)] (6a) 

 
 To a brownish suspension of 5a (300 mg, 0.677 mmol) and KPF6 (125 mg, 0.679 

mmol) in acetonitrile (5 mL) at room temperature was added drop-wise an equimolar amount 

of aqueous HCl (37%) diluted in acetonitrile to 1.0 M (0.68 mL, 0.680 mmol). The reaction 

mixture turned yellow and was stirred for 10 min before filtration on a Celite pad, which was 

subsequently rinsed with acetonitrile until the washings were colorless. Potassium 

acetylacetonate (94 mg, 0.680 mmol) was then added to the filtrate and the reaction mixture 

was stirred for 30 min at room temperature. The resulting light brown suspension was filtered 

through Celite and the solvent evaporated under vacuum. The residue was then extracted in 

toluene (5 mL) and filtered through Celite again. Solvent evaporation afforded 6a as a yellow 

solid (228 mg, 0.478 mmol, 71%) that was washed with pentane (3 x 10 mL) and dried under 

vacuum.  

Anal. Calcd for C27H34N2NiO2: C, 67.95; H, 7.18; N, 5.87. Found: C, 67.98; H, 7.35; N, 5.65. 
1H NMR (CD3CN, 300.13 MHz): # 7.12 (s, 4H, m-H), 7.10 (s, 2H, NCH), 5.06 (s, 1H, 

CH[C(O)Me]2), 2.40 (s, 6H, p-Me), 2,17 (s, 12H, o-Me), 1.54 (s, 3H, C(O)Me), 1.51 (s, 3H, 

C(O)Me),  1.13 (s, 3H, CH3). 
13C{1H} NMR (CD3CN, 75.47 MHz): # 186.6 and 186.1 (CO), 

179.5 (NCN), 139.6 (p- or ipso-CAr), 137.9 and 136.4 (br. o-CAr), 137.7 (ipso- or p-CAr), 

129.9 (m-CAr), 124.3 (NCH), 100.0 (CH[C(O)Me]2), 27.2 and 26.5 (C(O)Me), 21.2 (p-Me), 

18.6 (br. o-Me),  13.7 (CH3). IR [ATR]: %(Csp2 H) 3164 (w), 3134 (w), 3079 (w); %(Csp3 H) 

2951 (m), 2917 (m), 2854 (m); %(C=O) + %(C=C) 1578 (s), 1515 (s). 

 

IV.7. Synthesis of [Ni(IMes)(CH2CN)(acac)] (6b) 

 
 To a dark green suspension of 5b (500 mg, 1.07 mmol) and KPF6 (197 mg, 1.07 

mmol) in acetonitrile (10 mL) at room temperature was added drop-wise an equimolar amount 

of aqueous HCl (37%) diluted in acetonitrile to 1.0 M (1.07 mL, 1.07 mmol). The reaction 

mixture turned yellow and was stirred for 10 min before filtration on a Celite pad, which was 

subsequently rinsed with acetonitrile until the washings were colorless. Potassium 

acetylacetonate (148 mg, 1.07 mmol) was then added to the filtrate and the reaction mixture 

was stirred for 30 min. The resulting greenish suspension was filtered through Celite and the 

solvent evaporated under vacuum. The residue was then redissolved in THF (5 mL), filtered 

through Celite again, and recrystallized from a thf/pentane (1:4) mixture at 4°C to afford 6b 
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as a yellow-green solid (378 mg, 0.753 mmol, 70%) that was washed with pentane (3 x 10 

mL) and dried under vacuum.   

Anal. Calcd for C28H33N3NiO2: C, 66.96; H, 6.62; N, 8.37. Found: C, 67.12; H, 6.64; N, 8.26. 
1H NMR (CD3CN, 300.13 MHz): # 7.17 (s, 6H, m-H and NCH), 5.18 (s, 1H, CH[C(O)Me]2), 

2.41 (s, 6H, p-Me), 2,16 (br. s, 12H, o-Me), 1.60 (s, 3H, C(O)Me), 1.59 (s, 3H, C(O)Me),  

 0.13 (s, 2H, CH2CN). 1H NMR (CDCl3, 300.13 MHz): # 7.10 (s, 4H, m-H), 6.95 (s, 2H, 

NCH), 5.06 (s, 1H, CH[C(O)Me]2), 2.41 (s, 6H, p-Me), 2,23 (s, 12H, o-Me), 1.66 (s, 3H, 

C(O)Me), 1.53 (s, 3H, C(O)Me),  0.02 (s, 2H, CH2CN). 13C{1H} NMR (CD3CN, 75.47 

MHz): # 187.0 and 186.9 (CO), 169.8 (NCN), 140.1 (p- or ipso-CAr), 137.6 and 136.0 (br. o-

CAr), 136.7 (ipso- or p-CAr), 130.1 (m-CAr), 125.2 (NCH), 100.6 (CH[C(O)Me]2), 26.9 and 

26.1 (C(O)Me), 21.3 (p-Me), 18.4 (br. o-Me),  22.4 (CH2CN). IR [ATR]: %(Csp2 H) 3171 

(w), 3128 (w), 3079 (w); %(Csp3 H) 2957 (m), 2918 (m), 2859 (w); %(CUN) 2193 (m); %(C=O) 

+ %(C=C) 1578 (s), 1519 (s). 

 

IV.8. Synthesis of [IMes.H
+
]3[(NiCl4

2-
)(Cl

-
)]  (7) 

 

A light-green suspension of anhydrous Ni(acac)2 (154 mg, 0.599 mmol) and the 

imidazolium salt IMes.HCl (613 mg, 1.797 mmol) in toluene (20 mL) was stirred at 110°C for 

48 h. A blue solid slowly formed, which was directly filtered on a sintered glass frit and 

washed with toluene (3 x 5 mL) and n-pentane (3 x 5 mL). Removal of the volatiles in vacuo 

afforded 2 as a blue solid (145 mg, 0.126 mmol, 21 %).  
1H NMR (CD2Cl2, 300.13 MHz): # 7.82 (s, 2H, NCH), 5.18 (s, 1H, CH[C(O)Me]2), 7.24 (s, 

4H, m-H), 6,81 (s, 1H, NCHN), 2.52 (s, 6H, p-Me), 2.23 (s, 12H, o-Me). 13C{1H} NMR 

(CD2Cl2, 75.47 MHz): # 141.7 (CAr), 139.0 (NCN), 134.7 (CAr), 131.1 (CAr), 130.6 (CAr), 

123.9 (NCH), 23.6 (o-Me), 21.5 (p-Me). 

 

IV.9. Synthesis of [Ni(IMes)2Cl2] (8) 

 

 A suspension of 7 (50 mg, 0.043 mmol) and KOtBu (11 mg, 0.095 mmol) in toluene 

(10 mL) was stirred at room temperature for 24 h, during which the color slowly changed 

from blue to pale-orange. The reaction mixture was then filtered over Celite, and washed with 
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toluene until the washings were colorless. Evaporation of the solvents afforded 8 as an orange 

solid (20 mg, 0.028 mmol, 64 %). 
1H NMR (CDCl3, 300.13 MHz): # 7.01 (s, 8H, m-H), 6.62 (s, 4H, NCH), 2.54 (s, 12H, p-Me), 

1.95 (s, 24H, o-Me). 13C{1H} NMR (CDCl3, 75.47 MHz): # 167.5 (NCN), 137.4 (CAr), 136.2 

(CAr), 129.0 (CAr), 122.4 (NCH), 21.3 (o-Me), 19.1 (p-Me). 

  

IV.10. Synthesis of [Ni(PPh3)2(maloNHC)Cl] (10) 

 

 A solution of the pyridinium salt 9a (mg, mmol) in THF (mL) was treated at room 

temperature by drop-wise addition of a 0.5M solution of KHMDS in toluene (mL, mmol). The 

reaction mixture was stirred for 30 min before addition of [Ni(PPh3)2Cl2] ( mg, mmol) to the 

solution containing the free carbene, and the resulting dark green suspension was stirred for a 

further 10 min to give a violet suspension. The reaction media was filtered, and 10 was 

predominantly recovered as a light violet solid that was washed with n-pentane before drying 

under vacuum. 
1H NMR (DMSO-d6, 300.13 MHz): # 7.38 (m, 18H, m- and p-H(PPh3)), 7.22 (m, 12H, o-

H(PPh3)), 7.03 (s, 4H, m-H(malo-NHC)), 2.27 (s, 6H, p-Me), 2.05 (s, 12H, o-Me), 1.80 (s, 

3H, CH3 apical). 

 

IV.11. Synthesis of [Ni(IMe)(maloNHC)Cp] (12) 

 
 A solution of the pyridinium salt 9a (210 mg, 0.579 mmol) in THF (3 mL) was treated 

at room temperature by drop-wise addition of a 0.5M solution of KHMDS in toluene (1.27 

mL, 0.636 mmol). The reaction mixture was stirred for 30 min before addition of 

[Ni(IMe)ICp] 11 (200 mg, 0.579 mmol) to the solution containing the free carbene. The 

resulting red-brown solution quickly gave a brown suspension. After 30 min at room 

temperature, the reaction medium was evaporated to dryness before extraction of the 

brownish residue with CH2Cl2 (3 × 10 mL), and filtration over Celite. The filtrate was then 

concentrated to ca. 5 mL before addition of Et2O (20 mL) to afford 12 as a light brown solid 

that was subsequently washed with Et2O until the washings were colorless, and dried under 

(252 mg, 0.433 mmol, 75%).  
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1H NMR (CDCl3, 300.13 MHz): # 6.96 (s, 4H, m-H), 6.84 (s, 2H, NCH), 4.72 (s, 5H,  5-

C5H5), 3,32 (s, 6H, NCH3), 2.36 (s, 6H, p-Me), 2.00 (br. s, 12H, o-Me), 1.86 (s, 3H, CH3 

apical). 13C{1H} NMR (CDCl3, 75.47 MHz): # 189.8 (CO), 162.6 and 162.0 (NCN), 141.7 

and 137.9 (ipso-/p-CAr), 137.4 (o-CAr), 129.3 (m-CAr), 124.2 (NCH), 93.3 (C5H5), 90.5 (C 

apical), 39.2 (NCH3), 21.2 (p-Me), 18.8 (o-Me), 9.0 (CH3 apical). 

 

IV.12. Synthesis of [Ni(IMe)(MeO-maloNHC)Cp](OTf) (13) 

 
 A solution of 12 (200 mg, 0.344 mmol) in CH2Cl2 (10 mL) was placed at 0°C before 

drop-wise addition of MeOTf (40 'L, 0.361 mmol). The reaction mixture was then stirred for 

30 min at 0°C before the volatiles were removed in vacuo to afford 13 (235 mg, 0.315 mmol, 

92%) as a brown solid that washed with Et2O (4 × 10 mL), and dried under vacuum. 

1H NMR (CDCl3, 400.13 MHz): # 7.13 (s, 4H, m-H), 7.07 (s, 2H, NCH), 4.77 (s, 5H,  5-

C5H5), 3.50 (s, 3H, OCH3), 3.28 (s, 6H, NCH3), 2.46 (s, 3H, p-Me), 2.42 (s, 3H, p-Me), 2.01 

(br. s, 9H, o-Me + CH3 apical), 1.93 (br. s, 6H, o-Me). 

 

IV.13. Synthesis of [Ni(CAAC)(PPh3)Cl2] (15) and of [CAAC.H
+
][Ni(PPh3)Cl3

-
] (16) 

 

To a suspension of the CAAC precursor 14 (500 mg, 1.38 mmol) in Et2O (10 mL) at 

!78°C was added drop-wise a 0.5 M solution of KHMDS in toluene (3.04 mL, 1.52 mmol). 

The reaction mixture then was allowed to warm to room temperature, and stirred for 1 h 

before the volatiles were removed in vacuo. The free carbene was extracted with THF (2 × 10 

mL), and added to a suspension of [Ni(PPh3)2Cl2] (903 mg, 1.38 mmol) in THF (20 mL) at 

!78°C. The reaction medium was then allowed to warm to room temperature during which a 

color change from dark green to reddish was observed. The suspension was immediately 

filtered over Celite, and the filtrate was concentrated to ca. 10 mL before addition of n-

pentane (30 mL). The precipitation of a white solid (triphenylphosphine) was observed. The 

suspension was again filtered on Celite, and the filtrate concentrated to ca. 5 mL. Depending 

on the quantity of 14 still present in the reaction medium, a notable amount of blue crystals 

were formed, and subsequently filtered before washing with n-pentane (3 × 10 mL) and 

drying under vacuum to afford 16. The reddish filtrate was placed at !28°C overnight to yield 
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15 (335 mg, 0.467 mmol, 34%) as a violet solid that was washed with n-pentane (3 × 20 mL) 

and dried under vacuum. 

15: 1H NMR (C6D6, 300.13 MHz): # 7.84 (d, 3
J = 6.6 Hz, 6H, o-H(PPh3)), 7.37 (s, 3H, 

HAr(CAAC)), 7.10-6.94 (m, 9H,(m- and p-H(PPh3)), 3.77 (t, 2
J = 13.4 Hz, 2H,), 3.23 (sept, 3

J 

= 6.2 Hz, 2H, CH(CH3)2), 2.02 (d, 2
J = 13.4 Hz, 2H,), 1.79 (d, 2

J = 13.4 Hz, 2H,), 1.72-1.53 

(m, 4H,), 1.46 (d, 3
J = 6.1 Hz, 6H, CH(CH3)2), 1.41-1.32 (m, 2H,), 1.20 d, 3

J = 6.1 Hz, 6H, 

CH(CH3)2), 0.98 (s, 6H, C(CH3)2). 

 

IV.14. X-ray Diffraction Studies. Structure Determination and Refinement 

 
Single crystals of 4b, 7 and 16 suitable for X-ray diffraction studies was selected from batches 

of crystals obtained at *28 °C from a THF/pentane solution, at RT from an acetone/pentane 

solution, and at RT from a dichloromethane/pentane solution respectively. Diffraction data 

were collected at 173(2) K on a Bruker APEX II DUO KappaCCD area detector 

diffractometer equipped with an Oxford Cryosystem liquid N2 device using Mo-K" radiation 

() = 0.71073 Å). A summary of crystal data, data collection parameters and structure 

refinements is given in Table 6. The crystal-detector distance was 38 mm. The cell 

parameters were determined (APEX2 software) from reflections taken from three sets of 

twelve frames, each at ten s exposure. The structure was solved using direct methods with 

SHELXS-97 and refined against F2 for all reflections using the SHELXL-97 software.[70] A 

semi-empirical absorption correction was applied using SADABS in APEX2. All non-

hydrogen atoms were refined with anisotropic displacement parameters, using weighted full-

matrix least-squares on F
2
. Hydrogen atoms were included in calculated positions and treated 

as riding atoms using SHELXL default parameters. 
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Table 6. X-Ray Crystallographic Data and Data Collection Parameters for 4b, 7 and 16 

Complex 4b 7 16 

Empirical 
formula 

 

2(C21H25N3NiO2)&C4H8O 3(C21H25N2)&Cl4Ni&Cl C23H36N&C18H15Cl3NiP 

Formula weight 892.40 1152.25 753.85 

Crystal system Tetragonal Hexagonal Triclinic 

Space group I -4 P63 P1 

a (Å) 18.4575(4) 15.975(1) 11.7585(10) 

c (Å) 13.1542(4) 15.450(1) 15.0414(12) 

V (Å3)( 4481.36(19) 3414.6(4) 2080.8(3) 

Z( 4 2 2 

Dcalcd (Mg.m-3) 1.323 1.121 1.203 

Absorp coeff 
(mm-1) 

0.891 0.52 0.72 

Crystal habit, 
color 

block, yellow prism, blue prism, blue 

Crystal size 
(mm) 

0.20 × 0.15 × 0.10 0.55 × 0.15 × 0.15 0.30 × 0.28 × 0.20 

h, k, lmax 24, 23, 17 17, 18, 18 16, 17, 21 

Tmin, Tmax 0.842, 0.916 0.764, 0.926 0.634, 0.746 

Reflns collected 29009 17385 34754 

R [I > 2!(I)] 0.0259 0.066 0.030 

wR
2 (all data) 0.0677 0.125 0.119 

GOF on F2 1.048 0.91 1.08 
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 The manuscript of this thesis deals with the syntheses, coordination chemistry and 

catalysis applications of N-heterocyclic carbenes (NHCs) coordinated to a nickel atom. The 

choice of such compounds was motivated by the use of nickel, which is an abundant and 

cheap metal that exhibits interesting activities in a large array of catalytic organic 

transformations. Furthermore, the use of NHCs, which are easily accessible and tunable 

 !"#$%&'( )#$( *+,-!%.( #( /!%.( )0,!).( ,1( . .)2+,$!)#  3( #$%( &2.+!)#  3( %!11.+.$2( 4!5467(

complexes. 

 

 Chapter I briefly summarizes the historical and theoretical aspects of carbenes as 

transition-metals ligands. A %.2#! .%(*+.&.$2#2!,$(,1()#2# 3&!&(#** !)#2!,$&(,1( 20.&.(4!5467(

systems is also given, especially in cross-coupling reactions involving the formation of 

7#+8,$57#+8,$( #$%( 7#+8,$56.2.+,#2,9( 8,$%&'( #&( /.  ( #&( !$( +.%:)2!,$( #$%( ,;!%#2!,$(

reactions.  

 

 In Chapter II'( /.( *+.&.$2( #$( .11!)!.$2( 9.20,%, ,"3( 1,+( 20.( 4!5467-catalyzed  -

arylation of acyclic ketones with the inexpensive and easy-to-handle half-sandwich complex 

[Ni(IPr)ClCp]. The latter complex is the most productive nickel-based catalyst to date, as 

loadings as low as 1 mol% could be used with aromatic and aliphatic enolizable acyclic 

ketones, as well as aryl iodides and bromides, to give the coupling products in moderate to 

excellent yields. This methodology is complementary to the few others Ni-catalyzed  -

arylation processes, where only cyclic enolizable ketones were used with high loadings of air-

sensitive and pyrophoric Ni(COD)2. Our methodology is thus superior in terms of cost and 

practicability. We also synthesized #( 4!5<0( ),9* .;( [Ni(IMes)(Ph)Cp] and a 

4!5*+,*!,*0.$,$.( ),9* .;( =4!>?@.&AB76>763)C(O)Ph}Cp], that were then evaluated as 

potential active intermediates. Nevertheless, control experiments suggest that 

[Ni(IMes)(Ph)Cp] is not an intermediate, whereas [Ni(IMes){CH(CH3)C(O)Ph}Cp] could 

partly act as an active intermediate. However, experiments in the presence of radical 

inhibitors and initiators strongly suggest that a radical mechanism is more likely. 

 

 Half-&#$%/!)0(4!5467(),9* .;.&(# &,(*+,-.%(2,(8.(-.+3(#)2!-.(*+.-catalysts in the 

hydrosilylation of (pseudo)carbonyl derivatives, which is presented in Chapter III. The use 

of [Ni(IMes)ClCp]/NaHBEt3 (1:2) was found to efficiently catalyze the reduction of 
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aldehydes, ketones, aldimines and ketimines via hydrosilylation. Interestingly, the cationic 

complex [Ni(IMes)(NCMe)Cp](PF6) can be alternatively used without additive for the 

reduction of aldimines and ketimines, even if slightly harsher reaction conditions are 

necessary, compared to the [Ni(IMes)ClCp]/NaHBEt3 (1:2) catalyst. Mechanistic studies 

%.9,$&2+#2.%( 20#2( 20.(4!503%+!%.( ),9* .;( =4!>?@.&A67*C( !&( *+.%,9!$#$2 3( 1,+9.%( in situ 

starting from the [Ni(IMes)ClCp]/NaHBEt3 (1:2) combination. The same hydride complex 

was obtained in small amounts by reaction of the cationic complex 

[Ni(IMes)(NCMe)Cp](PF6) with diphenylsilane. This hydride species was evaluated in the 

hydrislylation process, and the results show that it is thought to be the true pre-catalyst. 

Furthermore, control experiments tend to show that these hydrosilylation processes proceed 

via a non-hydride mechanism. 

 

 Finally, in Chapter IV, we present the syntheses, characterizations and catalysis 

#** !)#2!,$&( ,1( $./( 4!5467( ),9* .;.&D( E:+!$"( 20!&( &2:%3'( /.( %.-. ,*.%( #$( ,+!"!$# (

methodology for the facile and clean removal of the Cp ligand from cyclic and acyclic half-

&#$%/!)0( # F3 '4675$!)Fel complexes, which do not present any readily available 

),,+%!$#2!,$( &!2.&D( G.9#+F#8 3'( 20.( $!)F. 5# F3 ( #$%( $!)F. 5467( 8,$%&( ,1( 20.&.( &*.)!.&'(

irrespective of whether they are part of a metalacycle or not, are preserved in the presence of 

acid. Furthermo+.'( $./( 4!5467( ),9* .;.&( 8#&.%( ,$( malo-NHC and CAAC ligands were 

synthesized, and the coordination chemistry of these ligands with nickel has clearly shown 

that malo-NHC behave as anionic X-type ligands, whereas CAACs behave as neutral L-type 

ligands. Prel!9!$#+3( +.&: 2&( !$( 0,9,".$.,:&( )#2# 3&!&( 5( #$%( 9,+.( *+.)!&. 3( !$( 20.( H:I:F!-

Miyaura reaction, the hydrosilylation of benzaldehyde, the  -arylation of propiophenone and 

20.( %!+.)2( 756( #+3 #2!,$( ,1( J6K( 5( &0,/.%( #( 9,%.+#2.( #)2!-!23( ,1( 20.( #8,-.( 9.$2!,$.%(

complexes. Nevertheless, further work on ligand design and on their potential catalytic 

#** !)#2!,$&(/!  (:$%,:82.% 3("!-.(+!&.(2,(!$2.+.&2!$"($!)F. 5)#+8.$.()#2# 3&2&(!$(#($.#+(1:2:+.D 
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Synthèse et applications en catalyse homogène de 
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Résumé 

Une étude détaillée a été effectuée sur des composés organométalliques de carbènes N-hétérocycliques 

(NHC) de nickel(II), et plus particulièrement sur des complexes demi- !"#$%&'( "%&)*+,--./0123( 2* (

complexes ont montré des activités sans précédent en catalyse homogène, notamment en  -arylation de 

cétones acycliques, où des charges en pré-catalyseur de seulement 1 mol% ont pu être utilisées. L' 

étude mécanistique de cette réaction tend à montrer l'implication d'intermédiaires radicalaires. De plus, 

ces complexes demi-sandwich se sont révélés être des pré-catalyseurs performants en hydrosilylation de 

dérivés carbonylés et d'imines. Les méthodologies qui en découlent fournissent de façon efficace et 

sélective les produits de réduction correspondants, dans des conditions réactionnelles douces. Un 

intermédiaire réactionnel demi-sandwich de type nickel/'4#565*, agissant probablement comme le 

véritable précurseur catalytique, a en outre pu être isolé. D'autre part, la synthèse de nouveaux 

complexes 0%/012 a remarquablement mené à une nouvelle méthodologie de substitution du ligand 

cyclopentadienyl dans des dérivés demi- !"#$%&'( !+)4+7012/Ni. Enfin, l'utilisation de NHCs moins 

classiques, comme les NHCs possédant un squelette malonate, ou encore les carbènes (alkyl)(amine) 

cycliques, a mené à l'isolement de nouveaux complexes carbéniques de nickel(II), dont les premiers 

résultats catalytiques sont encourageants. 
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Abstract 

A detailed study has been conducted on organometallic compounds of N-heterocyclic carbenes (NHC) of 

nickel(II), in particular on half- !"#$%&'( "%&)*+,--./012( &:;<+*=* . These complexes showed 

unprecedented catalytic activity in homogeneous catalysis, especially in the  -arylation of acyclic 

ketones, where catalyst loadings as low as 1 mol% could be used. Mechanistic experiments suggest that 

radicals are implied. Furthermore, these half-sandwich complexes proved to be efficient pre-catalysts in 

the hydrosilylation of carbonyl compounds and imines, allowing the reduction processes to proceed 

under mild reaction conditions. During the course of these studies, a half- !"#$%&'( "%&)*+/'4#5%#*(

intermediate that probably acts as the true pre-catalyst was isolated. Remarkably, the synthesis of new 

0%/012(&:;<+*=* ( +*#( >:(!(;*>':#:+:?4( @:5( &4&+:<*">!#%*"4+ ligand substitution in stable 18-electron 

!+)4+7012/Ni derivatives. Finally, the use of less common NHC ligands, such as NHCs possessing a 

malonate backbone, or else, the use of cyclic (alkyl)(amino) carbenes, led to the isolation of new 

"%&)*+/&!58*"*(&:mplexes, which gave encouraging preliminary catalytic results. 
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