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Abstract

Our society has entered a dathiven era, in which not onlyn®rmous amounts of data are being
generated every day, but there are also growing expectations placed on the analysis of these data.
OpenData programs, in which data are available for free, are growing in number. Analyzing these
massive and complex datasds essential to making new discoveries and creating benefits for people,
but it remains a very difficult task. In many cases, the ability to make timely decisions based on
available data is crucial to business success, clinical treatments, cyber aodaha@curity, ad
disaster management. As suaghpst data have become simply too large and often haweo short
lifespan i.e.it changes too rapidly for classical visualization or analysis methods to be able to handle
it properly. One potential solutia isnot only to visualize data, but also to allow userd®able to
interact with them

Therefore my research activitieeave essentially focused on two main topics: large dataset
visualization and interaction design. During my investigations, | toi¢akie advantage of graphic card
power with techniques called GPGPihce data storage and memory limitation is less and less of an
issue, | tried to reduce computation time by using memory as a new tool to solve catigmatly
challenging problems.have tested this approach to improve brushing techniqwesmationbetween
different data representations, to compute static and dynamic bundling and to profhsteenough
visualization to be interactive.

During my research also investigatel innovative dta processingwhile classical algorithmare
expressed in the data space (e.g. computation on geographic locatibmEvelopedalgorithms
expressed in the graphic space (e.g. raster map like a screen composed of phiglspnsists of two

steps: fist, a data representation is built using straightforward InfoVis techniques; second, the
resulting image undergoes purely graphical transformations using image processing techniques. This
type a technique is calleichage based algorithm

My goal was to eXpre new computing techniques with image based algorithm to provide efficient
visualizations and user interfaces for the exploration of large datasets. My project themes belong to
the areas of Information Visualization, Visual Analytics, Computer Graphit$luman Computer
Interaction. This opens a whole field of study, including the scientific validation of the method, its
limitations, and its generalization to different types of datasets, other algorithms, and other time
dependent representation patterns

Keywords: HumanComputer Interaction, Interaction Techniques, Visualization Techniques,
Information Visualization
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Chapter
Introduction

ur society has entered a datiriven era, in which not only enormous amounts of data are
being generated every day, but also growing expectations are placed on their analysis
(Thomas and Cook, 2009)ith the support of companidike Googlé big data has become
a fast emerging technology. OpenData programs, in which data are available for free, are growing in
number. A number of popular web sites, instead of protecting their data against "scripting", have
opened access to theirada through web services in exchange for pecuniary retribution (eg.’SNCF
France's national railway company, IMDb movie data ¥aJaking advantage of this, new activities
are emerging such as data journalism that consists in extracting interestimmatfon from available
data and presenting it to the public in a striking fashion. Analyzing these massive and complex datasets
is essential tanakenew discoveries andreatebenefits for people, but it remains a very difficult task.
Most data have become simply too large to be displayed and even the number of available pixels on a
screen are not sufficient to carry evgpieceinformation (Fekete and Plaisant, 2002}hese data can
also have to short a lifespani.e. they change too rapidly, for classical visualization or analysis
methods to handlehem properly.

These statements are especially true with time dependent data: these data are by their intrinsic nature
larger than static data,ral their analysis must be performed incanstraired time frame: the data
validity time. Movement data, which are multidimensional tidependent data, describe changies

the spatial positions of discrete mobile objects. Automatically ctdi@éanovement data (e.g. GPS,
RFID, radars, and others) are semantically poor as they basically consist of object identifiers,
coordinates in space, and time stamps. Despite this, valuable information about the objects and their
movement behavior as well about the space and time in which they move can be gained from
movement data by means of analysis. Analyzing and understandingdépendent data poses
additional nontrivial challenges to information visualization. First, such datasets are by their very
nature several orders of magnitude larger than static datasets, which underlines the importance of
relying on efficient interactions with multiple objects and fast algorithms. Secondly, while patterns of
interest in static data can be naturally depictegdpecific representations in still visualizations, we do
not yet know how to best visualize dynamic patterns, which are inherent to-tiepeendent data.
While there are many solutions for displaying patterns of interest in static data with still visioalgza

little work has addressed the issue of dynamic pattgum Landesbeer et al., 2011)

During my research work,havetried to address the two following scientific challeng@$ie first
concerndarge data representatiorhow can these datasets be represented and how can this be done
in an efficient manner8econd challenge addresses datanipulation:how can we interact effectively
with them and how can this be done in a way which fosters discovery.

1 http://www.google.fr
2 http://data.sncf.com/
3 http://www.imdb.com/
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When dealing with large data, both interaction and representation heavily rely on algorithms:
algorithms to compute and display the representation, and algorithms to toamsthe manipulation

by the user into updates of the view and the data. Not onlgsline performance of these algorithms
determine what representations can be used in practlng, their nature also has a strong influence
on wha the visualizations lookke.

The classical usage dlgorithm in InfoVisis expressed in the data space (e.g. computation on
geographic locations). In my research projectgJeinvestigated an alternative approach: algorithms
expressed in the graphic spadmégebased algothms). This consists of two steps:

x First, a data representation c®nstructedusing straightforward InfoVis techniques.

X Secondy, the resulting image undergoes purely graphical transformations using image processing
techniques. Furthermore, ratherhan only modifying the datto-image mapping, user
manipulations also modify the image processing. For instance, users manipulate the lighting of
the scene to reveal interesting data.

This approaclgaledimagebased InfoVisdiffers from most other Infais works in thait not only use
pixetbased visualizatiortechniques but it also perforns data exploration using imageased
algorithms. | ainto explorea domain that is not just classical InfoVis because it relies on Computer
Graphics, ad not just Computer Graphics either because it still focuses on interaction rather than just
the creation of graphics. My gohés beerto explore new computing techniques to provide efficient
visualizations and user interfaces for the exploration ofjidadatasets. My research project is at the
crossroads of Information Visualization, Visual Analytics, Computer Graphics and Human Computer
Interaction.

Asafirst example, | investigated the mean shift algoriti@@omaniciu and Meer, 20023 clustering
computer graphic algorithm, and developed Kernel Density Estimation Edge Bundling, KDEEB
Hurter et al., 2012% new imagebased bundling algorithm (Figure 1).

Bundling and shading

(pixel based techn% AW
(

Figurel: Countyto-county migration flow fileslttp://www.census.gov/population/www/cen2000/ctytoctyflptiue Census
2000): people who moved between counties within 5 years. Original data only shows the outline of the USA (left), bundled
and shaded path (right) shows multiple information liketBgest and norttSouth paths, [Hurter et al 2012].

1.1 Imagebased assets
Thelmagebased approach takes advantage of changes in the bottlenecks of computer graphics: since
data storage and memory limitation Ecomingless and less of an iss(utherland, 2012we can
plan to reduce computation time by using memory as a new tool to solve computationally challenging


http://www.census.gov/population/www/cen2000/ctytoctyflow/
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problems. Furthermore, even if graghcardswere initially developed to produce 2D/3D views close
to photo-realistic images, their power has also been used to perform parallel computations (so called
GPGPU technique&pwens et al., 2007)

I have recently tested this approach to compute representations based on static and dynamic bundling
of transport flows(Figurel1) and it proved to be a most efficient way of producing inténse
representations(Hurter et al., 2013b)This opens avhole field of study, including the scientific
validation of the method, its limitations, and its generalization to different types of datasets, other
algorithms, and other timelependent representation patterns.

Conceptually, this approach takes its redh thefollowing pioneering works

texturing as a fundamental primiti€ohen et al., 1993)

cushion Treemap&/an Wijk and van de Wetering, 1999)

densepixel visualizationgFekete and Plaisant, 200@hich useevery available pixel of an
image to carry information

These works are consistent with how most laboratories, including the Interactive Computing
Laboratoryat ENAC, have approbhed InfoVis so far: as a branch of H@t aims to exploit all human
ability to absorbor find information, including through interaate representations.

1.2 Imagebased algorithmopportunities
Based on my research resultgliscovered three potential befits ofthe pixetbased algorithm:

First, pixeltbased algorithms can greatly benefit from the use of graphic cards and their massive
memory and parallel computation power. They are highly scalable (each pixel can be used to display
information) and graplu cards can easily handlalargequantity of them. In addition, classical image
processing techniques such as sampling and filtering can be used to construct continuous multiscale
representations, which further hefscalability.

Secondly, imageprocessing field offers many efficient algorithms that are worth applying to image
based information visualization. By synthesizing color, shading, and texture at a pixel level, we achieve
a much higher freedom in constructing a wide variety of represemaiiat is able to depict the rich

data patterns we aim t@analyze

Thirdy, | amstrongly convinced that the use of memory instead of computation can reduce algorithm
complexity. Under a given set of restrictions, reduced complexity shodleteecomputation time and
thus improve the ability of users to interact with complex representations. Furthermore, reduced
complexity should facilitate comprehension by programmers, and thus foster maintainability,
dissemination and reuse by third parties.

1.3 Structure of the presented document
In this document, havesummarize and structura@ my work during my PhD andy position as an
assistant professoin addition tothe outlines of keypapers I will also give details #t have not
been publishedThis document is an ideal occasiomptovide the reasoning behind published work,
extensions anddeas which did not find a concrete form
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This document ishronologicallyordered with a lisof works thatstarted from the characterization
of visualization anthat led me to investigateimage based algoritheto develop visualization and
interaction techniques.

1.4 Timeline of projects and student advisory
As an assistant professor | had the opportunity to eelvsupervise and work with many PhD students.
Figure 2 summarizes my academic activities with PhD students, my academic positions and my
projects. The following list gives detaitsgarding my involvement with these PhD students and the
projectsconducted

Maxime CordeilPhD advisorStéphane Conversypfter my PhDmany research questions regarding
multidimensional dataset exploratiowarranted further investigationUpon theadvises of Stéphane
Conversy, my former PhD advisor, we decided to investigate in more detail how animations and
smooth transitions could improviie data exploration process. As aadvisor, | defined the research
project and | advised Maxime Cordeil to investigate this tofie.investigated the design of visual and
animated transitions and proposed a taxonomy of animated transitions. Withtéxisnomy, we
studied the features of 3D animated transitions and proposed a set of new interactions to control
animated transitions in data visualizations. With regards to visual transitions, we analyzed the visual
path of air traffic controllers and desigd animated transitions which improve the search and retrieval

of information anongst different visualizationdlaximedefended his PhD in 2013 and we published
severalresearch papergCordeilet al., 2013, 2011a, 2011b; Savery et al., 2013)

JeanPaul Imbert(PhD advisorFrédérc Dehais) As a co advisor, | supervised J&aul Imbert during

his PhD. He investigated how situation awareness can be improved and monitored to support
supervisioractivities like air traffic control. During his PhD, my role was to guide him to fulfill academic
and scientific requirements.

Gwenael Bothore(PhD advisorJearrMarc Alliot): During his PhD, Gwenael Bothorel investigated the
visualization of frequent itesets and association rules. | helped him with my knowledge réuard
large dataset exploratiorl.advised him to developdsual analytics version &romDaDyHurter et

al., 2009b) a multidimensional exploratin tool developed during my PhDalso providedim with
edge bundling algorithm&. Hurter et al., 2012)nd data density computatiofHurter et al., 2010b)
We published several research papésthorel et al., 2013a, 2013b, 2013c, 2011)

Ozan ErsoyPhD advisar Alexandru Telea)During his PhD, Ozan Ersoy investigated irimped

graph visualization and we worked together in a fruitful collaboration with his PhD advis@néle

Telea. Together, we developed new edge Bundling algorithms and interactive systems to support data
exploration. We published several research pafé&soy et al., 2011; Hurter et al., 2011b; C. Hurter

et al., 2012; Hurter et al., 2013a, 2013b)

Cheryl SaveryPhD advisorNick Grahanx During the LEIF exchange program between Canada and
France (http://www.leifexchange.org), | had the chanae gupervise Cheryl Savery. She worked on
§Z S vellv }((Chaisiopte[lddrter et al., 201,2an augmented papebasedsystem to
support air traffic controller activity. During her internship, we worked together to improve the system
usingmulti touch capability and we conducted one design study. We published one research paper on
this topic(Savery et al., 2013)

-10-
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Sarah Magg(PhD advisorSara Fabrikant As a member of her PhD programmmittee, | hadthe
opportunity to work with Sarah Maggi. Wevestigated with Maxime Cordeil specific desigaed by

air traffic controlles (the radar comet). We defined and conducted experimentations to assess how
animations of these designs can carry perceivable information.

Aude Marzuoli (PhD advisorEric Fera): Aude Marzuoli started her Phd in 2010 at the Georgia
Institute of Technology, Atlanta, USA. While visiting ENAC, she investigategsonute dataset
exploration to support esroute air traffic flow management optimization. | introduced her to new
data visualization toosl and advised her on existing multidimensional data exploration methods and
specifically on how to use my current data exploration tools and graph simplification methods. We
published a research paper modeling aircraft trajectories ffdws to support the analysis of airspace
complexity (Marzuoli et al., 2012)She is currently looking into using the same tools to estimate
airspace efficiency

Vsevolod PeysakhovictiPhD advisorFrédérc Dehais) During his PhD which started in Octo2613,

Vsevolod Bysakhovicthas beerinvestigatingy A u $@E] ¢ 8} eeo e pe E+[ Z AJ}E 3Z VI
and gaze recorded dath.coadvise him and ware workingtogether to improve and to apply edge

bundling algorithmgo eye tracker recorded data.
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Position Students Projects
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2009 - PhD.
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2013 = )
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Figure2: Timeline of my academic activities
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Chapter
From visualization characterization to data exploration

n this ction, 1 will give additional details concerning fiD(Hurter, 2010)nd | will outline my

first 2 PhDyearswhere | focused on visual design issuérom this topicl evolved toward large

data exploration. Even if this changerekearchdirection seens drastic, it is a natural evolution
based orthe data transformation pipelin¢Card et al., 1999¥hichboth visualization characterization
and data exploration tol share This initial work helped metstructure my reasoning, and help me
discover GPU usages

2.1 Evaluation of visualizations
The evaluatiorof visualizationss a long and difficult procesghichis often based oithe completion
time and errommeasuremento perform a taskSinceusers are involved in the evaluation procdbss
method is time costly andequires numerousisers to yield reliable resultS&omemethods existo
assess visualizations before user tests but they only conbtereffectivenessf interaction. These
methods rely on models of the systeand theyhave proved to be accurate and efficient when
designing new interfaces. For example, KeySt(@lard et al., 1983nd CISAppert et al., 2005are
predictive models that help compute a measurement of expected effectiveness, and enable
guantitative comparison between intaction techniqueslf methodsto assesinteractive systems do
exist, very fewcanassess visualization before user tests.

During the first part of my PhD, | trie go beyondtime and error evaluation and propose an
assessment of thdandwidth of available informationin a visualization. Therefore, | focused

analyzing visualizations &xtractrelevant characterization dimensions. My goal was to perform an

acarate visualization evaluation and} veA E §Z ¢ «<p *3]}veW ~tZ § ] 3Z Ale] o ]
"MZ S E SZ %Z viuwlelwe ¥Z § u | 3Z u TAhhractdlizeisuahtion,| then

faced the followingissues:

x Howcouldthe relevant characterization dimensions for the descripti@nfound(the content
of the description)?

X Howcouldan accurate and exhaustive description of a visualizdi®formated?
x How could they be representedo enable comparisongthe representation of the
description)?

Previous works use thdata transformation pipelinéo find relevant characterization dimensionga
vistalization(Card and Mackinlay, 1996his pipehe model uses raw data as an input and transforms
them with a transformation function to produce visual entities as an output. Thus, the characterization
of visualization consists of describing the Transformation Functitmweverthis method is not
sufficient to fully describe visualization, especially with a specific class of design that uses emerging
information (Hurter and Conversy, 2008Basically, emerging information is perceived by users
without being transformed bythe pipelinemodelfunctions.

The first step of this work was to gather enougkamples ofATCvisualization to cover the largest
design space. Then | proposed to apply available characterization models, to assesswiérhey
suitablefor the activity to be supportednd if the needarose to improve hem. This characterization

-13-



ChapterFrom visualization characterization to datxploration

had tobe done with objective and formal assessments. The designer shaudbeerable to use this
characterization to list the available information, to compare the differences between views, to
understand them, anda communicate with accurate statementidurter, 2010.

2.2 Application domain
In order to benefit from concreteases, we usethe Air Traffic Control (AT@pplication domain. ATC
activities employ two kinds of visualization systems: -teaé traffic views, which are used by Air
Traffic Controllers (ATGpto monitor aircraft positions, and data analysis systems, used by experts to
analyze past traffic recording (e.g. conflict analysis or traffic workld2ath types of systeramploy
complex and dynamic visualizations, displaying hundreds @fitiahs that must be understandable
with the minimum of cognitive workload.

As traffic increases together with safety concerns, 8yigstemsneed to display more data items with

at least the same efficien@sexisting visualizationslowever the lackf efficient methods to analyze

and understand why a particular visualizatisneffectivespoils the design process. Since designers
have difficulty analyzingprevious systems, they are not able to improteem successfully or to
communicate accurately about desigeoncerns Visualization analysis can hmerformed by
characterizinghem. In the InfoVis field, existing characterizing tools are based on the dataflow model
(Card et al., 1999hat takes as input raw data and produces visualizations with transformation
functions. Even if this model is able to build mobthe existing classes of visualization, we show in
the following that it is not able to characterize them fully, especially ecological designs that allow
emerging information.

2.2.1 Instance of design evaluation: the radar comet
The main task for an ATCo isnaintain a safe distance between aircraft. To be compatible with this
task, the processf retrieving and analyzing informatianust not be cognitively costly. Especially in
this field, the precise analysis of visualiaatis useful to list the visually available information, and to
forecast the resulting cognitive workload.

Figure3: The design of the radar comet used by Air Traffic Controllers.

ODS coded information Visual code
Aircraft position Position
ageing of each position Size
Aircraft speed Size (comet length)
Aircraft tendency (left, right) Comet curvature
Aircraft acceleration Regular/irregular point spacin
Aircraft entity Gestalt (proximity and size)

Tablel : information coded with a Radaomet.

As an example, in the radar view, comets display the position of air@iadt.design of the comet is
constructedwith squares Figure 3), whose sizevary with th % &} A ]Ju]SC ]Jv SJu }( §Z
position: the biggest square displays the latest position of the aircraft, whereas the smallest square
displays the least recent aircraft position. The positions of the aircraft merge through the effect of
Gestalt coninuity, in which a line emerges with its particular characteristics (curve, regularity of the
§ ASuE (}CEu C 8Z %}]vSeU Y «Nar§eZamounZ ginformpton (Tablel).

-14-

]G



ChapterFrom visualization characterization to data exploration

Beforedescribing thecomet desigriully, it isinterestingto understandwherethe design comes from

In fact the visual features of the comet wefigst used in the early 17th century by Edmond Halley
(Thrower, 1969 (Figure5). In this drawing, the comet helps to understand the trade wind direction
with a thicker stoke representingthe head of the comet.

The radar comet, used by Air Traffic Controllers, has the saogepres as the one introduced by
Halley, but this design was createdlith technological considerations in mind. Early radar screens used
the phosphorescenscreeneffect to display the position of aircraft. Between two radar updates, the
previous pogion of an aircraft was still visible, with a lower intensity. Thus, the Radar plot has a longer
lifetime than the Radar period={gure4). The resulting shape codes the direction of the aircraft, its
speed, its aceleration, and its tendency (the aircraft is tending to turn right or left). For insta&figere

3 displays an aircraft thais turningto the rightand it has accelerated (the naronstant spacing
indicatesthe increase in aircraft spe@dWith technological improvements, remanence disappears,
together with the additional information it provides. Designers and users felt the need to keep the
remanence #ect, and emulated it.

\T Tornado's
I~

| NN
~ ¥ NN \;L,{ ( L
< LN N N '
hS AU
\0! N \ N\ \ VoA \ . . . h
Figure5: Halley drawing (1686) of the trade wind

A deeper analysis of the comet design allows us to understand that the user perceives an emerging
shape: the regular layout of squares, and the regudacrease in sizeconfigure in a line with the

Gestalt effec{Koffa, 1963)Not onlydoesa new visual entity emergéut its own graphical properties

(length and curvature) emerge as well. The graphical proggegicode additional informatiosgeed

and tendencyrespectivelyy X &pESZ Eu}E U 5Z]e o]v ]everlappiag; th€usefcadan }u $
still understandwhich comet is whicjdespite tangling.

The design of the comet and issociated information are summarized Tiable2. All emerging
information is due to the comet design that uses remanerse¥eral instances of the same objadtt
different times.
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ChapterFrom visualization characterization to data exploration

Transformation Source ofemerging .
. . . Emerging data
Function information
Point comet length speed
(latitude,
longitude) curvature tendency
Regular size

. direction
progression

Size(time)

square spacing| acceleration

Table2 : Radar comet characterisation

It can benoted that this design exhibits large amounbf emerging information. We can thus say that
the radar comet i€fficientin this respect This is the reason why thislli of design is widely used in
other visualizations (Memonic Renderin(Bezerianos et al., 2008YhosphofBaudisch et al., 2008)

2.3 The Card and Mackinlay model improvements
| applied the Gard and Mackinlay model (Card and Mackinlay, 199&) different kinds of ATC
visualizationHurter and Conversy, 2008 urter et al., 2008) assesseits effectiveness in exhibiting
visual propertiesWhen studying the radar comethe concept of current timavas introducedTcur:
the time when the image is displayed). The size of the square is linearly proportional to current time
with respect to its aging. The grey row acolumn are two additional items from the original C&M
model (Table3).

Name D F B X Y| Z| T|R 0j|cp
X QLon f Q -E
Lon =
Q £
\ QLat f Lt P 5
T Q f(Tcur) Q S

Table3 : C&M Radar Cometharacterization
However, tZ Z E § E]l §]}v vv}s ]Jvs PE § }IVSE}oo E[ % E %S]}
evolution (speed, evolution of speed and direction). For instancEigare3, the shapeof the comet
indicates that the plane has turned 90° to the right and that it has accelerated (the variation of the dot
spacing). These data are important for the ATCo. The comet curvature and the aircraft acceleration
cannot be characterized witthis model because they constitute emerging information (there is no
E A 3 00 Z UEA SUE [ 8§} % E} HEA]JVP TabglAthiz 5Z S
script represents emerging information.

Whereas Cardnd Mackinlay depicted some InfoVis visualizati@@erd and Mackinlay, 199@jthout
explicitly demonstrating how to use their model, we have shown the practical effectiveness of the
C&M model when characterizing the radar confefurter and Conversy, 2008\though the C&M

tables make visualization amenable to analysis as well as to comparison, this model does not allow
essential informatia to be highlighted for designers, and does not allow any exhaustive comparison
of different designs. We extended this model with the characterization of emerging data. The emerging
process stems from the embedded time in the radar plot positions. Thedamdoe easily derived into
speed and acceleration. Wessmmunicated about this work a workshopHurter et al., 2009aand
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we have extended it with the analysis of the visual scan patlugieehas to perform to retrieve a given
information (Conversy et g/2011)

2.4 Characterization or data exploration tool

To support the characterization of visualizations, | developed a simple software based on the dataflow
model. | started with the following statement: if | managed to produce one visualization tharts to i
description, then this description is one valid characterization. | found my inspiration in the previous
work of J. Bertir§Bertin, 1983)with a graphical description, T. Bau@@hudel, 2004&nd (Wilkinson et

al.,, 2005)with a description close to a programmable language and finally with C&M
characterization tabl¢Card and Mackinlay, 1996)

| called this prototype DataScreenBinder since it takes as an input a dateatabMith connected
lines then binds fields of the dataset to visual variabl@ertin, 1983) Thanks to this prototype |
managel to replicate and thus to provide a potential characterization of the radar screen used by Air
Traffic ControllersKigure6).

Fichier  Edition  Outils  Aide

Raw Data | Bindings | Fiteing
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Figure6: The visual caracterization of the radar screerafotraffic controlers.

Even if this prototype is able to duplicate existing visualization, the produced characterization was not
fully suitable to support their detailed comparisddnly a visual comparison between connected lines
and the data field naes can be performed which is too limited.

Neverthelesshis prototypebetter fits someother purpose such agdata exploration with different
visual mapping. For instance the same datggégure6) can be visualized with a circular layout of
aircraft speedFigure7). Such visuaation shows that aircraft figg at high altituds (large,blue dots)
alsohave fast speed (close to the bordr of the circular shape).
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This prototype has been intensively extended with interactive techrsdiie pan, zoom, dynamic
filtering, * 0 3]}v 0 C EeY dZ]* % E}3}5C% Athe SE pEphic lJbrary, whichp e
hindered the visualization of large datasets (up to0DD displayed dots). Therefore | started to use
OpenGL/DirectX to support large dataset visualization. Wuigked very well until 1 decided to
implement animation and brushing technigues. To support suctstaigh an interactive frame rate, |
had to investigate GPGPU technigi@wens et al., 2008nd thus | developed, thanks to Benjamin
Tissoires, the software FromDalurter et al., 2009b)At that time, Benjamin was a Pldudent
working on graphical compile(§issoires, 20119nd he was a great hetp me by explainingexisting
GPGPU techniques.

2.5 FromDaDy: from data to Bplay

Thanks to the first investigtion with DataScreenBinder, waeveloped FromDaDy (From Data to
Display (Hurter et al., 20091) This multidimensional data exploratios based on scatterplots,
brushing, pick and drop, juxtaposed viewsapid visual desigr{fFigure8) and smooth transition
between different visualization layout§&igurel0). Users can organize the workggacomposed of
multiple juxtaposed views. They can define the visual configuration of the views by connecting data

Ju vel]}ve (E}u §Z § « § 3} (ES35]OphecAd bush trajeddries) and with a pick
and drop operation spreathhem across iews.Onecan repeat these interactionstil a set of relevant
datahas been extractedherebyformulating complex queries.
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Figure8: One day of recraded aicraft trajectory over France.

FromDadyeasesBoolean operations since any operation of the interaction paradigm (brushing,
picking and dropping) implicitly performsuch operations. Boolean operations aresually
cumbersome to produce, even with an astute interface, as results are difficult tedef®oung and
Shneiderman, 1993)he following example illustrates the unidntersection and negatioBoolean
operations. With these three basic operations the user can perform any kind of Boobesation:

E U KZU EKd [FigueR|¥the user wants to select trajectories that pass through regiar A
through region B. He or she just has to brush the two desired regions and Pick/Drop the selected tracks

into a new view. The resulting view contains his or her query, andptbeious one contains the
negation of the query.

Figure9: Union Boolean operation
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Figure10: FromDaDy with two layouts and its animation

The brushing technique withumerouspoints is technologicallghallenging. Therefore we had to take
full advantage of modern graphic card features. FromDaDy uses a fragment shader and théaender
texture technique(Harris, 2005) Each trajectory has a unique identifier. A texture (stored in the
graphic card) contains theoBlean selection value of each trajectory, false by default. When the
trajectory is brushed its value is set to true. The graphic card uses parallel rendering which prevents
reading and writing in the same texture in a single pass. Therefore we used-step/aendering
process[Figure11): firstly we tesed the intersection of the brushing shape and the point to be
rendered to update the selected identifier texture, and, secondly,dnewv all the points with their
correspondilg selected attribute (gray color if selected, visual configuration color otherwidas.
technique illustrates my very first usage of an imdgsed algorithm to outperform brushing
technique.

Figurell GPU implementation of thbrushing technique

2.6 Conclusion
In this chapter, summarized thevork | conducted during my Phid support the characterization of
visualizations witlad hoc methodto depict thebandwidthof available information in designs. With
a table as a represeation for the description] managed to describeesigns that use emerging
information. Thiswork is the very first step towards more formal methods to improve the design and
re-use of visualizationThe characterization of visualizations remains an opezaof investigation
with the following itemdeft for future work:

xRefinethe presented d hoc method to retrieve all the information of a design and then define
completely and automatically theandwidthof each design.
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xDefine dher relevant characterizing dimensions like tHiieectnessof perception, the amount of

emerging information, and its value with regard to specific user tasks.
xhe 18Z E E %E * v3 S]}ve §} e (E] *]PveX &}E ]JvesS v- t]Jol]ve}v
11« E]%Wikidson et al., 2005and Bertin preferred a graphical representati@@ertin,

1983) All of these formalisms allow compas of visualization at different levels.

xPropose a generic method to compare designs. Tables can be compared row by row; textual
information has to be integrated by the user to make comparisons; training is required to be able
to compare graphic informati.

Starting from the characterization of visualization, | developed FromDaDy, a data exploration tool. An
increasing number of researchers and ATC practitioners were using it and numerous improvements
and open questionslso had to be investigated.Graphic card usages were also fascinating and
promising with emerging technologies like OpenCL/Cuda. For these reasons, | focusesktmy
researches on large dataset exploration with interactive techniques. With serendipity, the
characterizatiorof visualization led me toward the usage of image based techniques with the brushing
within FromDaDy. The characterization of visualizations needs more longitudinal study and will be part
of my long term research topics.

In the following chapters, | willrpsent the research that | performed after my PhD:

Chapter 3Density map investigatign
Chapter 4: Edge bundling technigues
Chapter 5: Animation

Z %8 & OW "SE]%[d]
Chapter 7Future research program

X X X X X
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Chapter
Data Exploration with data density maps

n this chapter | will detail research mainly performed with FromDaDy regarding data exploration

with density map computation. This work tried to address the exploration of dense dat&sete

data density hinders data exploration with nuroeis overlapping visual marks, | focused part of
my research on this topic.

The use of the popular scatterplot meth¢@leveland, 19933 not sufficient to display all information
becausea lotof overlapping occur&Vhen transforming dad to graphical marks, a regular visualization
system draws each graphical mark independently from the otheesmifrk to be drawn happens to
be at the same position as previously drawn maitke& system replaces (or mergesing color
blending the pixe$ in the resultingmage. The standard visualization of this pixel accumulation
process is not sufficient to accurately assess their density. For infEagae12)left shows one day of
recorded aircraft trajectories over Franeeth the standard color blending methofFigure12]right
shows the same dataset with a 3D and shaded density map and one carpeasilivethat the data
density is drastically higher ovtre Paris area which is not & obvious with the standard view.

Figure12 day aircraft trajectory over France (left), 3D density map (right).

| investigated thislensity computation algorithrwith a hardwareacceleratedextension of FromDaDy
(Hurter et al., 2009bjo support the exploration of aircraft trajectorigbliurter et al., 2010byvith the
Kernel Density Estimatidi®ilverman, 1986)

3.1 Kernel Density Estimatio: an image based technique
Kernel Density Estimation (KOEj)lverman, 1986% a mathematical method that computes density by
a convolution of a kernel 1Fi©urel3: Kernel profile]; with data points. This method produces a
smooth data agregation whichalsoreduces data sampling artefacésd is suitable for showing an
overview of amounts of data.
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Given a graph) L <Ass ¢ ¢ consisting of edgesy, D 9%and a point T ), we can estimate the
local spatial densityeof points Tusing the kernel density estimation:

, ¢ TFU
éT, L1 = - @TA
tes | P

Where - 896\ 97 is the secalled density of bandwidttD P r. Typical kernel choices are Gaussian

and Epanechnikov (quadratic) functigigure13). écan be computed by convolvingwith -, or
building an accumulation map cfover ).

Figurel3: Kernel profiles

The densityécan bevisualized as a 2D height field by a straightforward color map, contotirgslo
terrain map{Figure12). Landscape visualization with hills and valleys have been shown to be easy to
interpret (Wise et al., 1995)or quantitative analysis, a contour plot is preferred over a colormap,
since value estimation lgolors is perceptuallgiifficult. Since contour plots only use isolines, color can
be used for other purposes. In 2D, the density plot becomes visually detadedby using shading

and can be enriched to a contour mapan Wijk and Telea, 2001KDE maps can be interactively
explored and modified(Van Liere ad Leeuw, 2003)The KDE algorithmhas also been used to
investigateobjectsmovemens (Willems et al., 2009)Scheepens et al., 2011)

Figurel4: Kernel Density Estimation convolving principle tvia raster map.

Figurel4|shows a simple principle to compute thecal spatial density of points with a kernel and a
density raster map. The kernel map is applied (convolved) at every point location. This technique can
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be consideed as an imagéased algorithm and produces a grid with a smooth transition between the
cells.

The nitial version ofFfromDaDy computkthe density mapand storal it in an oftscreen buffer with
additive blending enabled o achieve thifromDaDyused a 32-bit floating colortexture. More recent
versions use OpenCL with the full support of the convolution process with tabular daasdiedata
integrity with the multithreaded data processing, FromDaDy uses atomic functions. This GPU
implemertation allows interactive manipulation and visualizatiorilef density map. Theomputation

time varies with the number of points in the data set and the Kernel size. As an example, the frame
rate is around 10 frames per second with 40@0 points and a &nel point size of 20 pixels and a
Nvidia GTX 275 graphic card.

3.2 Density map visualization and interaction techniques
In the following, | describe a set of interactioand visualization techniques wittlensity maps to
perform interactivedata exploration.Thanks toa GPU implementatiothe userscaninteract in real
time with the density map and the procesdiiwided into three steps:

Users can choose which data dimensions to accumulate, and can adjust the kernel size,
X he B v N EU*eZU %] Ito xemoGe iem frons, or add them tthe density
map,
X Users can explicitly choose to use the computed density values with one of the available
design customizations (color, size or position).

3.2.1 Brushing Techniquevith density maps
Originally, FromDaDy supped the brushing of trajectories with their spreading across views. This
interaction helps to select an entire trajectory with the brushing of only few poioitsin certain cases,
the data exploration requires only parts of trajectories. We addeditiushing of points, which allows
the selecion and manipulation of point§.he user can brush in the standard view or in the accumulator
view. The user uses a size configurable round shape to brush the view to selected trajectories or points
Figurelb).

Figurel5: Brushing over a density map.

Thanks to the brushing technique, the user can select and highlight parts of the displayed data. By
pressingthe space bar, the user can extt previously selected data and attach them to the mouse

cursor. By default, the selected data aiekedW $Z C & & u}A (E}u 3Z A] AU Vv %o
}JA & _ A] AX tzZ \présBediper sgEce bar for the second timedeop occurs in anther view

under the cursor. Although it resembles & Ppo E & P[v][ E}% }% E 3]}vU A % E (
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N%o] |[v [ (@Kk¥saoto, 1997)n the sense that data is removed from the previous view and is
attached to the mouse even if the space bar is released.

We also added the pick and drop paradigm to the accumulator |fRjrel6|shows the difference
between the point and the trajectory mode. With the point mode athlg brushed points are selected
and isolated. With the trajectory modérushingpoints also selesttheir entire trajectory.

Figure16: Points or pick and drop trajectories ondamsitymap

The pick and drop of brushed dafepm the accumulation map to another view, is useful during the
exploration process for three reasons:

Xt helps to isolate data to perform separate analyses,

xIn the trajectory mode, the brush selects entire trajectories. When picking these trajectories; a
accumulation map is computed and unveils new accumulation initially hidden by the picked
trajectories (imagel in|Figurel6),

XWith the point and the trajectory mode, FromDaDy uses the full gradient scalehinasway that
the minimum accumulation value has the first gradient color and the maximum accumulation value
has the last gradient color. When brushing/picking and dropping points with minimum or maximum
accumulation value, FromDaDy computes a new accunionlahap that unveila new maximum
value with the maximum gradient color and then unveils new patterns (comparidéigofe15]
andFigurelg).

1.1.1 Interactive lighting directon
In order to compute theshadeddensity map, one can consider it as a height map and use the standard
Phong light computatiofiPhong, 1975incethis technique needs a normakctor, anormal mapcan
be generated thanks tehe computation of the gradient of the deitg map. e user can choose to
display the accumulator map with, or withouhis shadingand interactively set the lighting direction
with the mouse pointer. High accumulation values are considered as mountains that create shade, and
low accumulation vaies are considered as val\By pointing with the mouse pointéo a specific
area, the lighting direction can be interactively manipulated. This manipulation afion@wvs or
ridgesto be emphasizedWhen defining the lighting directiondm the left or from the right, vertical
furrows areaccentuatedwhereas a lighting direction from the top or bottom emphasizes horizontal

furrows |q:igure17 .
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Figurel7: Interactive light manipulation to emphasise ridges &mdowson a shaded density map.

3.2.2 Densitymaps as data sources
The colorblending process computesan implicit density mapsince it combinegixels with the
following blending formula:

OutputPixel = SourceRIx SourceBlendFactor + DeationPixel x DegtationBlendFactorwith 4D color vector (r,g,b,a)
and the x symbol denotes componewtse multiplication.

Even if this formulacan be customizedthe pixels produced do not always provide an efficient

quantitative canparison otthe accumulation valuelnfFigure18] the visualized data base is a one day

record of aircraft flight plans (the routes that aircraft are supposed to follow) vidveshowsa matrix

of points with the aircraftdeparture airport on the X axis and the aircraft tyg®oing 747, Airbus
T61Yen the Y axis. Since many aircraft have the sdeparture airport and aircraft typeouple

many points in the matxi have the same location on the screém.the standard blended view, the

brighter points show thenostfrequent couple in one day's traff|Eigurel8|left).

Figure18 Matrix view with standard color blendineft) and customized visual mapping with the size (right).
FromDaDy offers another solution with a specific visual mapping. First, the user defines the data fields
he or she wants to investigate (departure, aircraft type). Sebonthe system computes the
corresponding density map. Finally the user defines the visual mapping of the output

the density is mapped to the size and the cqléigure19|summarizes this configuratio.his
process operates as if a new field was provided into the dataset. The computed density map acts as a

new data source.
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Figure19: KDE maps value displayed with the size visual variablegpldy a matrix

3.3 Application domains
In this section | will give some examples of usage in specific application domains. Additional examples
are provided in a survey dedicated to air traffic conftéuirter et al., 2014a)

3.3.1 Exploration of aircraft proximity
Themain activity of air traffic controllers consists of maintaining safe distances between aircraft by
giving clearanceto pilots (heading, speed, or altitude orderkjowever,when aircraft fly below the
safety distance, an alarm is triggered. Thesenagaare common since IATraffic Controllers supervise
aircraft in dense areas. Nevertheless they arenahitoredto avoid aircraft collision. In thisxample
the dataset contains only safetljstancealarms with the recorded aircraft positis. The user connects
the X and Y position of each aircraft to the X amndelsity entries. The computed accumulation is
visualized with a blue (low accumulation values) to red (high accumulation values) color scale.

Figure20. Densitymap of the safetgistance alarmsiggered over France over a one year period. Red colored areas
correspond to dense alarm areas where aircraft triggered proximity alerts

Paris is of course the main dense area withltrgest proportio of alarms. However, when visualizing
all these alarms ovea one year period, users discovered that some unexpected denses aneerge
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Figure20): for exampleMontpellier, which isafar smaller airportshowsa lot of alarmsThe usercan
usethe selective brushintp retrieve the exact number of alarms.

3.3.2 Patterns detection in dense datasets
This first examplshowshow densitymapsand their height mapvisualizationcan be used to isolate
relevant aircraft trajectoriesWith the recordivP }( }v C[* (0]PZ%« }A E &E v
represents the position of an aircraft at a certain time. Toeresponding densitynap [Figure21} is
the result of the accumulation of plots with a triangular kdrridence, the X and Y position of each
plot is mapped on the X and Y dimensions ofdkasitymap and on the X and Y dimensions of the

U

resulting image. The image produced shows very dense areas over the main airports in France (Roissy,

Ony, Lyon...), whih was expected.

Figure21: Design configuration and accumulation maps without shading

Whenvisualizing the density maith illumination, circular shapes emerff@igure21] right) that were
not initially noticeable left). Thanks to the shading process, density gracieste
emphasized anthis is the reason why these circular hi#&andout. The user can then brush these
shapes to extracthe aircraft that causehis accumulation of data recordinghus, the user brushes
the hillsand dropsthese data onto a second viewhe user discovers that the picked trajectories
correspond to stationaryadartest plots recorded throughouthe whole dayTheseradar test plos
are mandatory to assess the correctness of the whole Radar data processimgngof multiple radar
sources|Renso et al., 2013)

3.3.3 Density flaw detection in a dense dataset
In thisexample, we use thdata densityas a tool to highlight flaws in the dataset. The dataset is a one
day record of aircraft positions. Radaend data over networks with a constant stream rate (in our
dataset, one radar position of each aircraft every 43tminutesshowsthe contentof our
dataset The X screen axis shows the time of each radar plot and the Y screen axithehofW& & (S|
identifier. Since the identifier of each aircraft is a rhen incremented over the day, the resulting
shape shows eemarkablecontinuouspattern in which each horizontal line represents the lifetime of
one flight (each flight has a unique identifier). The longest lines at the bottom of the visuadizai
the stationary Radar test points recorded all day long. The width of this shape gives the average flight
duration in the dataset: it is aboutéhd a half hours/hich represergthe averagdime to cross France
by airplane ihostaircraft cross France at a high altitude).
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Figure22: Time series of the incremental number of aircoattr time (left) and the corresponding density map (right).

Due to the large number of records, a lot of cluttgy occurs when displaying the time series of the

JE & (3[- [FigukepQ). Thselutter hides the areas where, during a small time period, no data
are recorded. Hence the user is unable to discoverfléwg in the database, unless chancdo zoom
over the specific areas to reduce the cluttering of points, which is uni[key€22 zoom part). To
notice this flaw without serendipity, the user cdisplay thecorresponding data density with shading
[Figure 22| right). Thus, the density viewnveils continuousand discontinuous data stresnA
continuous data stream over time produces flat accumuladigthe same amountof data are
accumulated over time), whereasdiscontinuous data stream produces ridges (increase of the data
stream rate) or furrows (decrease of the data stream rdftelo data are recordediuring a specific
time-span,the produced accumulation view displays many furrows. Each of these furrows initiatte
during the time corresponding to the thicknessloé furrows, no data vere recorded which reflects a
failure in the recording system.

3.3.4 Exploration ofgazerecording
In the lastexample | conducted an experiment that used an eye tracker. During the experiment, users
were required to look at the center of the screen, then at a target located elsewhere on the screen,
and finallyto look back at the center of thscreen. The database contains 200 eye trails avtotal of
100,000 pointst pe 3$Z pHupo 3}JE u % 3} E A o0 §Z efdeyefatdd pe E|
locations.To do this, we used the following configuratimmcompute the densitynap: tragctory Id is
mappedto the Y axis and curvilinear distance tthe X axis[Figure24]a). The curvilinear distance
corresponds to 0 at the beginning of the trails and increases until the trajectory €higslistarce is
correlatedwith time, sincetrails are regularly sampled: hence, accumulation occurs between sampled
points when the gazepeedslows down. The last step of the design is to retrieve for egaepoint
its correspondinglensity.To do sowe map thedensityresult to the size and the color of tlisplayed
lines|Figure20).
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Figure23: Density map computation with gaze recording.

d shows the eyerails with standard color blendingecorded gaze are displayed with
transparent dots):main stops are visibldFigure 24|c shows the sametrails with the use of the
computed densitymap. The stops are visible wiffiner details thanks to the color scaknd the
variation of size. Thanks to the interactive brushing technique, the user can investigate specific trails
in more detail

Figure24: Accumulation view and its configuration togoluce a per trajectory distance accumulatahb)( Comparison
between traivisualization with or without the accumulatior\d).
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3.4 Conclusion
In thischapter, | describal a way tointeractdynamicallywith densitymaps. Usescan customize tm
(data fields kernel size), manipulate them with the%.] | v t€EhMgueand setup the shaded
viewto support data exploration.

Thanks to the graphic card computation power, this image based density computation can support
interactive data explorationEven if graphic cargower never stopsmproving density computation
remains challenging with large dataset or with big kernel size. Improvesiretitis area are possible

by, for instance, using a better aldgthhm such aPivide andConquer to implement an efficient parallel
density map computation.

| started the investigation dhe density map with graph splatting to address the data overlapping
issue, but as | will explain the following chapterthe KDE algorithm was the first stop toward a far
more efficient technique: edge bundling.
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Chapter
Edge bundling

his chapter relates how my adventure with edge bundling started and how it has become one

of my major topics. This story started i0ZD with Jason Dykes who invited mea®agstuhl

s ulv @ A Z u 8]l §]}v ]Jv  ES}PE %ZCU s]eu o]l §]}vU v
presentedmy work regarding the schematization of Flight Resutor air traffic controllergHurter et
al., 2010a) This was my very first experience where we preedrdur work but also our ongoing
research projects. | had many fascinating discussénd one of them with Alex C. Telea whelre
presentedmy semantic lens prototypt® him]Figure25

Figure25: First mole view prototype with a semantic lens

This prototype was inspired b§ Z %o Bewes 6f ten thousandLieberman, 1994)hen navigating

in large information space. My rationale was to use data deformation rather than data fijtarid

thus displayall information in a distoréd context.| started the development of this prototyps#uring
InfoVis 2010and | knew it was far from kiag ready for publication. Its contribution remagd too
small. In this prototype, a lens puss at its border poirgwhose semantic do not correspond to the
requested ondfocus plus context techniquel)also had labels with a basic avoidance process (gradient
computation)(Tissoires, 2011)his prototype was CPU based and thus pretty slow (maximum 40000
points could be handled with a reasonable frame rate). Duringlaigstuhlseminar ljoined o A |-
group on schematization and edge bundlingribg these fascinating discussions, Alex taught us the
current state of the art in this area, and the available techniques. From these disamsiergal two
possible directions: one was to usiee skeletisation technique to produce edge bundling (Aled a
one of his PhD student®©zan Ersowere currently investigating this area), atite other was the
development of an interactive tool to investigate bundling results. After this seminar we codtioue
work on these topicsrying to finda suitabletool to help usesin the investigation process.
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4.1 MoleView
My initial prototypecomputationis a vector force base interactive systarichresemblego the dust
and magnet systen(Yi et al., 2005)With a small change in the algorithm, | could handle dual layout
visualization, and use the lens as an interactive tool to navigate between these two layouts. Therefore,
| sentAlex one of my grag(airlinemovemens), and he senme back its bundled version wifts new
Skeleton Based Edge Bundling. Emémationsproduced[Figure26) were smooth andsignificantly
helped to link edges from their original location tteeir bundled one. This investigation helped to
detect flaws and parameter isssi the bundling process: toiight bends, incorrect bundieY

Figure26: Exploration of the original version and the bundle version ofplgiHurter et al., 2011b)

The following investigations with the mole view were fast, since the technicat@mdibution part
were already performed: we developed the first tool to interactivénvestigate a dual layout witd
bundled andanunbundled graph.

4.2 SBEBSkeletonrbased edge bundling

When ljoined this project,it was already advanced. The mole vi@durter et al., 2011bprovided a
suitable tool to investigate the bundleddgesresults. | also provied aircraft datasets andmy
aeronautical expertise. Thisundling technique isa pixel based techniquevhich computes the
skeleton of a splatted graph and attracts edges towaf@igure27). A clustering stage is mandatory
to produce detailed bundles. Qzd&rsoy, one of A. Telea PhD students implemethediirectioral
clustering method anedgebundlingprocessingErsoy et al., 2011)his algorithm only needs two
parameters to make it workits attraction factor and its smoothing factor. Somesp processing can
be performed to improve the visualization such as edge borfletea and Ersoy, 201éndrelaxation
(to slightly unbundlghe graph).

(a) (b) (©) (d)
Figure27: Skeleton computation. A set of edges (a) is taflab), then the distance tansform is computed (c) and finally the
skeleton is extracted (d).

4.3 KDEEBKernel Density Edge Bundling
In October 2011, Alexwvited meto the University of Groningeim the Netherlands Duringthe visit
Alexand | hadnumerousdiscussios while tryingto improve the mole view, and discussgaround
time depencknt datases (e.g. trajectories). In the middle of my stay, | had tegent two papers at
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InfoVis 2011in Providence USA: SBEB with Ozan Ersoy and The molénYo¥ie. is the best place to
gain inspirationand | found at that time the rational of a new bundling algorithm. My main concern
with edge bundling algorithswas theircomplexity andtheir data requirements. krachical Edge
Bundling(Holten, 2006)s the fastest algorithm but neesd data hierarchy whichrastically restricd

its usage.Force Directed Edge Bundlingdolten and van Wijk, 2009% flexible enough but
computation time is prohibitive when using largedataset such as one day of @aft trajectories
Skeleton Based Edge Bundl{Ersoy et al., 20113 scalable, but neesdata clustering and the skeleton
computation takes timgone can use CUDA, hitgd implementationremainscomplex). SBEB was the
first algorithmto use pixel based algorithmfor the skeleton computation and the gradient map
computation. Tlesegradient maps will attract edgdoward the medium skeleton axis. My idea was
simple since the skeleton and the gradiemvere the complex ad time consuming pag of this
algorithm, | wondeed if there were not another solution to computéhem. | had the intuition that
usinga density map rathethan askeleton map to compute the gradieabuld be a potential solutian

| postulated that when attractingan edgetoward a dense area, | wuld make them overla@nd thus
createadenser area but also empty spacdhis iterative algorithm may prodwe a clearer view, and
a new bundling algorithm. | remember when Inmaback from Groningenand | explaied this
algorithm to Alex who answed that this could notwork since we coulehot understandwhy this
algorithmmight converge. | shoed him my prototype with a very bad bundling result, nipractce
this algorithm converge

Original Dataset Density map (KDE) Bundled version

Figure28: First bundling prototype based on density computation

Thanks to Alex and Ozare drastically improved this algorithm by adding aaepling process,
smooth density map computation, and many investigations with different dasa3étis algorithm
uses a density map and thus we can diretake this informationto improve the visualizationf

other techniquesfor instance bump mappingFigure29). We aded at that time a new bundling
algorithm, but no formal explanatiowas provided to explain how it convemdt took us almost one
year to findthe explanatiorandthe Mean shift algorithmhadalready provedt in a differentfield:
dataclustering(Comaniciu and Meer, 2002)
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Figure29: US migration graph. Original (top), bundled (bottom), wiladed density (bottom right).

As an extension we also adti®zan[ work with obstacle avoidanoghichuses the distance
transformto compute a way thaanarea will not be overlapped by bundled edgegue 30).

Figure 30: Bundling of dependency graph with obstacle ovoidance (right).

4.4 Dynamc KDEEB
We did many extra investigations after our publication of KDEEBIurter et al., 2012PDre of them
was to discover why this algorithm converg@omaniciu and Meer, 2002and why it is noise
resistant with the same parameters (kernel size, attraction, interaction, smoothieagampling a
bundled graph remainslmostthe same everfia smallnumberof edges are added or removed. $hi
property is a great assgtspecially to producabundled version of a dynamic graphdynamic graph
has a given amourtdf edges that change over tinfeemowed, addedor displaced)Previous attemts
only managed to produce dynamic graph visualization \githejumps between key frames, and with
reduced datasetgNguyen et al., 2013aKDEEB us@n accumulation map which will ndrastically
changeovertime and thusensures continuity of the bundleddynamicgraph. Furthermee, KDEEB use
a pixel based technigughichis highy scalable, ad isprobably the faststbundling algorithm (e>apt
for HEB(Holten, 2006Wwhich has only a display timand no data processing). With the algorithm
assets, nothing prevented amymorefrom producinghe first bundling ajorithm ofadynamic graph.
This initialpublication depicts the dynamic bundling principle waiininesand software visualization
dynamic graph exploratiofHurter et al., 2013b)And thanks to my new interest in eye tracking
systens, we also discovered a very promising usage of bundling techniques witllaggéHurter et
al., 2013a)As an example, one can bunthe %]Jo}3«[ P I HE]VP o0 v ]vd®verthe v

standard monitoring patterr{FﬁgureSl :
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Figure31: Eye gaze recording of a pilot when landing with a flight simulator. Bundled trails (withtKDEEB.

4.5 3D DKEEB
| also investigate@n extenson of the Kernel Density Edge Bundling to take into account 3D graphs
(x,y,2). This work is a simple extension of the original algorftbntHurter et al., 2012y which a 3D
density map is computed with a 3D gradient. The computation time drastically increases due to the
additional volume of data. The density map becomes a 3D texture ¥a.g.voxels) and thgradient
becomes a 3D vector.

Figure32 3D DKEEB, top view.

The resulsarevisually compelling by reducing the cluttErthe 3D visualization of aircraft trajectories
Figure32) but do not provide sufficient increment to be publishé@dlsoinvestigatedspace time cube
bundling, withis not subject taany technical limitationthe z axis can directly be mapped to the time
dimension.

4.6 Directional KDEEB
KDEEB has prodéo be a very promising algénim as it isscalableand convergent, but one limitation
remainsin the usage of direction graph/trajectories. When vikziag anaggregated view of airaft
trajectories, it is nosen to bundle oppositedirection trajectories. @ solve this issue, one can use
preprocessinglustering During a discussion wit¥sevolod Bysakhovich, one of my PhD studerits
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suggested a Biple extension of KDEEB to take into account the direction. Instead of using a gradient
map, wealsocomputed an accumulation direction map. For each pixel in a raster wapomputed

the average direction of the edgehich would be locatedover this pixel. To apply the gradient, we
first tested the compatibiity of the edge directio and the average directiorf. they were close, the
gradientwas applied, if not, the edgedid not move. This extension id not hinder the algorithm
complexity which remaied linear O(E)In addition, we managed to take into account the eelg
direction. We also implemert afast GPU software to help the sahllity.

Figure33: Investigation of aircraft trails with directional bundling algorithm.

[Figure33Jshows the globalata visualization with the iBection-KDEEB technique. Trails with the same
direction have been bundled. The color corresponds to the global trail direction; we computed the
direction for each trail with its start and end point. This is va&iioce durirg a flight aircraft can change
directions (followa specific flight route, avoid dense areftraffic, apply air traffic controller orders),

but each aircraft has a main direction given by the start and end poiréhase color codingith a

bright cola at the start anda darkone at the end point; in this wawe emphasizé the visualization

of outcoming and inoming bundles. As sudfne London and Paris areaontainnumerous incoming

and ougoingflows, which makes #seareas dense and compbe

The visualization also highlights the complex configuration theetyon Area (s¢Eigure33|ieft). The
Lyon area is a central crossing for European flight romtbich does not have thesame flow
configuration as Paris. Where#lse Paris area desnot have transit aircraft (aircrafthat fly over a
given area without landing),the Lyon area des have major transit flows (e.qg.
Switzerland/France/Spain, arrows. In terms of traffic managemengne canobservethat many
airways are groupeth pairs with opposite directions. This is especially the case with amaeaveeach
and to exitthe London area, and the airwaypetween Switzerland/France/Spain (arrohvs'sn
. The width of the bundlesalso highlights traffic density between aircraftrrowsb, trails between
Switzerland/France/Spain, are balanced in their thections In the Paris area, flows are mainly
incoming, or outgoingrbm the North/South rather thanrdbm the EasiWest. This can be explained by
the traffic from/to United Kingdom and the location of Paris which is in the north of France (a lot of
aircraftconnectsouthern cities).
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In[Figure33] right, we applied the Dection-KDEEB algorithm on a subset of the trail dataset. Due to
the density and the dataset size of aircraft trajectory, no previous investigation had been previously
able to bundle andextracta meanindul result, especially oveahe Paris AredFigure34).

Figure34: Paris area with the KDEB algorithm.

[Figure33right shows thespecific flow configuration with 4 incoming flows and 4gaingones.The

Paris Area hasvo main airports: Roissy Charles de GaCDG) and Orly (ORY). This visualization
showsby the traffic densitythat Weserly departuresarethe leastdense, and Soutbkrly and Easrly

the highest Since Paris is in the north of France, local traffic is meonllge south. Easrly traffic
corresponds to European destinations. Specific analysis of this visualization shows that Orly, the
second biggst airport in France hga strong departure flow to the south but a reduced one to the
north (barely visiblen the map with the arrown). Since Orly is @omesticairport (fights remaining

in France) located in in the north of France, only &seraft head to the north.

4.7 Conclusions
In this chapter | explained how my initial investigations with densityshapgame the cornerstone of
the developed edge bundling algorithm. This work contributes to the dense graph visualization and
provided adefinition for the edge bundling algorithm:

Edge bundling techniques trade clutter for overdraw by routing related edges along similar paths.

Graph visualization supports various comprehension tasks such as understanding connectivity
patterns, finding fregently-taken communication paths, and assessing the overall interaction
structure in relational datasetféLee et al., 2006 Much further work isrequired to fully understand

how edge bundling algorithms support such tasks. These extensions will be discussed in the
perspectiva chapter of the presentiocument.

These works also highlight how the mole vi@durter et al., 2011band dual layout animation help
improve and explore bundled graphs. Interactive animation techniques are also one of my
investigation topics and | will provide additional details in the following chapter.
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Animation as an efficient data exploration tool

n 2011, during my visib the University of Groningen, | had the opportunity to work on a possible

extensionof the mole View(Hurter et al., 2011b)Alexandru Teleaand Idecided to extend this

work by usinga 3D layout rather than 2D dual structures. Adexru had alreadybeen working
quite a whileon 3D modeling and 3D Direct Volume Rendering (CRRhermore,l had fascinating
discussions wittMoritz Ger| a PhD studentat Groningen University, who was investigattogls to
improve 3D DVR Scan visualizatidducha scan contains ® voxe$ with a density value which
corresponds to the density of the tissues: skin has a low density daohigh densityl firstmanaged
to gather such 3D datasgtand tried to use the mole view with then. My first attgtd used pseudo
color without a color transfer function, but tleveloped a simple prototypeith a sphereon which
voxels can bpushed tothe edgeof a semantic 3D len§igure35).

Figure35: Point based retering of a 3D ball with pseudo color and a semantic 3D lense

| also improved the visualization by using a point sprite techni@aarola et al., 2004; Sainz and
Pajarola, 2004)As such, eachioxel isdisplayed with a 2D point spritwhoseborder is transparent.
This transparency follosva Gaussian transfer function. With a able transfer functionone can
visualizea more realistic picturéFigure35).

Figure36: Visualization of a 3D scan with point based rendering and color transfer function.

This first ersion of the 3D mole had mantechnical limitations (number of voxed, limited
interactions...Jandthus areducedcontribution. Even if ny implementation producd more aesthetic
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visualizatios thanks to recent improvemestwith a powerful graphic card previous workshave

already investigated such interactive technigue explore such 3D visualizatidiMcGuffin et al.,
2003)and(Elmqvist, 2005My prototype could not handle more than 400000 voxelth a reasonable
frame rate (10 fps). The bottlenedles n the rendering processhe blending of point sprite is
computationally challenging and the phyginovements around the 3D semantic I¢md the point

sprite is also difficult This prototype needs to update these point sprite posgiewery frane to

ensuresmooth animationAt that time, this bottleneckcould not be resolvedvly knowledge was too
limited to find a suitable solutioand to propose an actual contributioRor these reasa) this project

had tostop and | focused on the other possible extension of the mole view: the dual layout.

5.1 From theMole View to ColorTunneling:the animation as a data exploration tool
At the end of presentation at InfoVis 20dithe Mole Mew (Hurter et al., 2011h) showed a demof
the possible mole view extensisnwith the dual layout animation between an image and its
corresponding histogram of luminositligure37).

Figure37: First prototye of an animation between an image and its corresponding histroram.

Afterthis presentationPierre Dragiceviand Istarted to discuss ani exchangéasic idearegarding
possibleusages of such visual transitiorurihg the train trip back from Providee toBoston,Fanny
Chevalier joined us and we decidednvestigate together image manipulationsinghistogramsThe
developmentof this new prototype as relatively quick (3 months) since n&PU aceleratingwas
provided Fannyhandled the core programming of this prototype and did a fabulous work
implementingit. With Histonage, hstograms are a new tool to linkelect and change the color of
pixekin an imaggChevalier et al., 2012Puring that time | tried very hard to find a solution to the
scalability issues. Histomage can handle insag®o a certan size butimagesmore than 1 M Pixeh
size cannot belevelopedinteractively This limitation is linked to the intrinsic histomage visualization
process and suffers from the same limitatias the Mole View(Hurter et al., 2011b)Since the
animation is appkd to every pixel of the image, the computation time is directly linked to their
number.

5.2 GPGPU usagdo address scalability issues
Thanks to recent progress withe graphic card programming pipe linehdve founda solution to the
scalability $sue. Beforepresentingthe solution | will first give some GPU/GPU background. The
following is mainly extracted from a book chapter iemte where we discusseithe scalability issue
with multivariate grapls during a Dagstuhl semin&lankurKelly et al., 2014)

5.2.1 GP/GPU technique and history
In this section, | focus on how graphics processors can enable scalable visualization and | give some
limitations.
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GPU Pipeline, fixed vprogrammable: the rise of specigburpose graphics hardware for the
accelerated monochromand color display of 2D/3D raster and vector graphics began during the mid
to late 1970s ad widespread consumer adopticgspecially of hatware 3Dacceleration solutions

was obtained during the late 1990s. Such hardwaas originally built aroundéixed functionality
pipelines(FFPs), i.e., special purpose hardware that supports a limited and fixed set of instructions
(drawing commands) to display various types of graphics primitives. Typical FFPs support operations
such as geometric transformation, lijing, and rasterization, all of which are necessary for displaying
and projecting 3D graphics on 2D raster displaffFsom themid-2000sonwards, graphics hardware
manufacturers as well as graphics API developers gradually shifted their focus to programmabl
pipelines instead of FFPBrogrammable pipelineallow the graphics processing unit (GPU) to run
proprietary code(Owens et al., 20075uch code can be used to implemerw types of drawing
commands and can even be usedlthough initially indirecthto perform (nongraphicsrelated)
computational tasks on a GPU, i.e., "general purpose computation on the GPU" or GRQRpkon

et al., 2002)The latter is useful because of the massive parallelism offered by GPUs as well as the ease
with which GPUs generally handle vector and matrix operations; a direct result of the fact that 2D/3D
transformations and pra@ctions within FFPs reheavily on vector/matrix math.

GPU Programming-APIls andpitfalls: programming each level of the graphics card pipeline can be
performed through different languages, such as NVidia's Cg, Microsoft'd gt Shading bguage

(HLSL), and the OpenGL shading language (GLSL). Other specialized languages exist to do specific data
processing: CUDA, OpenCL. If we exclude specific data processing languages (CUDA and OpenCL) which
use specific data structures, output data mugt &tored in image textures. Graphics cards propose
massive parallel computing but some pitfalls must be avoided in order to adkantage of this
worthwhile power.

X Graphics card are optimized to compute data in parallel and therefore sequelga@ithms
cannot be parbelized without insuring data integrity (memory protection). Reading and
writing graphics memory is not possible at the same time; this avoids memory corruption
(one process reading at the same timeanother is updating the igirmation).

X Synchronization features such as mutex or memory protection (atomic functinsfbe
avoided as much as possible. Specific computation teciestan be applied such as
MapReduce, a programming model for processing large data setawinallel, distributed
algorithm on a clustefHe et al., 2008)

X Bottlenecks exist within the GPUWqgeessing, especially when transferring data between the
CPU and the GPU. When this occurs, the graphics card needs to wait until every process has
ended, and then start the memory transfea dramatically slower process. Memory transfer
between the GPUral the CPU must be limited as much as possible.

X Many other pitfalls must be taken into account regardaaghlanguage, such as texture
coordinates that differ between OpenGL and DirectX, debugging issues, and graphics card
crashes that hinder the delopment process.

5.2.2 Instances of GPUsages
Given the above, will list belowGPU usages to address scalability interaction and visualization. The
key to these techniques is how they overcome the limitations of the GPU mentioned prigvious
facilitate multivariate graph exploratierthey use multi pass readrite cycles, minimize CPGPU
memory transfer, and accommodate variation in graphical hardware:
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Rendering Graphics cards can render numerous items on the screen and thus can display large
datasets. In the following examples, GPUs are used to display data and to perform image based
rendering techniques. Auber developed Tuluber, 2004)an information visualization framework
dedicated to the analysis and visualization of relational data. This software useRGRechniges to

render large multivariate graphsicDonnel(McDonnel and Elmqgvist, 2008gveloped a framework

and an application using shaders to display multivariate datet on the dataflow model with a final
image based stage. In this final step, the multivariate data of the visualization are sampled in the
resolution of the current viewA more specific rendering technique is used by Hoftdolten, 2006)

to improve edge visualization by an interesting variatmmstandard alpha blending, i.e. how color
transparency is combine@heepengScheepens et al., 201d3ed the GPU to compute density maps

and then apply shading techniques to emphasize multivarita on thedensity map of moving
vessels.

Computation:Graphics cards can perform fast and parallel data processinggaand used to process
information at the data level. As previously explained, FromDOa&iDyter et al., 2009bj)ises the GPU

for interactive exploration of multivariate relational data. Given a spatial embedding of the data, in
terms of a scatter plot or graph layout, the Mole Vi@durter et al., 2011b)ses a semantic lsrwhich
selects a specific spatial and attribeielated data range. The lens keeps the selected data in focus
unchanged and continuously deforms the data out of the selection range in order to maintain the
context around the focus. Animation is also penfi@d between the bundled and the unbundled layout

of a graph. Kernel Density Edge Bundling (KDEBJurter et aJ.2012)computes bundled layouts of
general graphs. This technique is also applied on dynamic g(ajmser etal., 2013a)Other GPU
bundling techniquesalsoexist Winding roads uses a voronoi diagram to comgsitaph bundlingnd

its density(A. Lambert et al., 2010Finally, he GPU has been used directly for graph layout as well
(Frishman and Tal, 2007)

Interaction: Interaction with the data is an important manipulation paradigm to perform data
exploration. Graphics cards can be used to provide tools to helstsérteract with large datasets.
Rolling the dic€EIlmqvist et al., 2008)elps the user to define the appropriated displayed variables
with a smooth animation when changing visual configuration; Grapl{@iegerianos et al., 2010%es

the same paradigms but with gragpiFromDaDyHurter et al., 2009b)ses related animation with GP

GPU techniques. In order to addsdhe dataset size issue, FromDaDy loads the whole dataset within
the graphics card, so that when changing visual configuration, no memory transfer is needed. This
helps to improve interaction with fast and continuous animations. Furthermore,-&BP techique

is implemented to support brushing and data manipulation across multiple vihesusercan then

brush trajectories, and with a pick and drop operation he or she can spread the brushed information
across views. This interaction can be repeatedektract a set of relevant data, thus formulating
complex queries. Each trajectory has a unique identifier. A texture (stored in the graphics card)
contains the Boolean selection value of each trajectory. When the trajectory is brlighealue is set

to true. The graphics card uses parallel rendering which prevents reading and writing in the same
texture in a single pass. Therefore FromDaiSgs a two-step rendering process: firstly it tests the
intersection of the brushing shape and the point te kendered to update the selected identifier
texture, and, secondly, it draws all the points with their corresponding selected attribute (gray color if
selected, visual configuration color otherwise).
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5.3 Color Tunneling: a scalable solution to large dataseampulation with image
based interaction

Thanks to GPGPU techniques, the scalability issues when visualizing and interacting with large datasets
can be addresgk In order to extend the Mole View and Histomage techniqi@sevalier et al., 2012;
Hurter et al., 2011h)ldirectlytook advantage obne ofthe most advanceé GPU usaget that time)
the feedback render buffer. This new type of shader techniguegrammable graphic pipelina)lows
one to store inGPUmemories the output of the geometry shader. Usually, the programmable pipeline
modifies the geometrpf vertexes and uses thegtar map to display itThis computatiomeedsto be
performedat every frame The rendered back bigr allowsthe storing of vertex modificatiors and
thus optimizs the computationof vettexesgeometry. This process isainly used to compute the
location of particles in particles systems, but other usages are possible. Sidelthdew uses point
sprites (close to particle systejnl managed tospeed up the geometry computation betwedwo
consecutive frames. The investigation of sagitocess took almost on@onth and Ifinalizedthe first
prototype in 2012 with a GPU versionkiftomage animation. Sucka prototype could animateip to
20M pixel with a frame rate of more thag0 fps ona 480 GTX nvidia car@his technological
improvement was the missirfgctorto addresghe scalability issue ith the 3D moleView extension.

During the Dagstuhl seminafPutting Data on the Map | had a long discussion with Sheelagh
Carpendale whdtnad intensively worked on lenses and data distorti@arpendale et al., 1997fhe
invited mefor 2 months toCalgary were | spentmost of my time finalizinthis prototype During that
visit, | met Dr. Russ Taylavho hadinvestigateda 3D cube of astrophysicaleasurements of the large
scale structure of hydrogen gas intsities in the Milky Way Galax§faylor et al., 2003)The
investigation of this dataset wagery helpful to finalize color tunnelingHurter et al.,
2014b)

Figure38: Color Tunneling (Hurter et al., 2014b), finding intensity outliers with isolated ranges in anasical data cube
(Taylor et al., 2003).

During my stay in Calgy lalsohad theopportunity to workwith John Brosz, Miguel Nacenta and Ricky
Puschon their projectTransmogrificationThis progctwas about developing a multi touch interactive
sydem to deform visualization and thusverag interactive data visualization and introducthe
casual InfoVidlt is termed “casual asthe user is the onevho transformsthe view to find a better
datavisualization As suchone can take the visualization ¢fv [Reart beat (time series) and make it
still on ts path displayed o@ooglemap(Figure39). This is wherehe casual InfoVisterveneswhere

the user has the poweto transmogrify data representation to suit his or her wiWhen ljoined this
project, the system was already working wah advanced prototype, butfound it difficultto fully
understand the data trasformation. The current version did not provide animation between the
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transformation steps. Therefore | exported the animation principle from Color tunneling and Ricky
Push integrated it into the working prototy8rosz et al., 2013)

Figure39: A) Cycling data: a map with a route and area graphs with average altitude (purple) amdtégarange) at each
kilometer. B) The rectified route map aliephunder the linear graphs enables comparison of the measured variables to the
map features. C) The headte graph wrapped around the route in the map shows effort in spatial context. D) Same as C, but

with multiple variables. Map used contains OrdnaBiuevey data ¢ Crown

5.4 Conclusions
In this chapter | explained how the simple id&ausingevery pixel as discreteitem becamea major
challenge in my research. The extension of the Mole View was cumbersorrietané me almost
three yearsto find the technical solution. Wwas also verjucky toencounter peoplevho already had
part of the solution. Animations aréeaturing alongsideexisting visualization $ovare and are
becoming a standard design feature. As an example, | can cite the recent work with graph and matrix
exploration(Bachet al., 2014a)Bach et al., 2014b)ith Maxime Corélil, my first PhD student, we
managed to show how animation cdisplayrelevant information(Cordeil et al., 2013We identified
three expected benefits of sucanimation tracking graphical marks, understanding their relative
arrangements, and perceiving structural elements. We studied existing implementatibns o
progressive 3D rotatioEImqvist et al., 2008nd found problems thatanreducethose benefits
when dealing with dense soes.

Color Tunneling takes fudidvantageof animations and we showed howdanbe an efficient tool to
dig intothe dataset. Even if we provided many instances of concrete data exploration success, we still
lack a proper evaluation to fully assess the power of animations to supptatekploration.

As a conclusion, my previous investigations show how my resgaoject is at the crossroads of
Information Visualization, Visual Analytics, Computer Graphics and Human Computer IntgfCtipn

In the following chapter | will detaahy HCI investigations with Air Traffic Controllers while investigating
prospective interactions to support their activity.
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\-tracking and augmented rear and front projection. In this section, | will de&ilesign process

that leadour team tovard the development bsuch a system.

dz ~3@E&3$twey dtarted in 2010 at CHI Atlantde premier international conference of Human
Computerinterface At that time, | was about to defendy PhD but | was also working on developing
tools to improwe air traffic contrdier activities. | knew the work Whdy MacKayhad doneregarding
the Chameleorsystem(MacKay, 1999)Mackay and Medini spémore than one year studyg Ar
Traffic Control (ATChctivity and with the research center férenchcivil avidion (CENA AthisMons,
France)they developed a prototype called Chameleon to study possible gsafjénnovative
technology to impove ATC activityrollowing that, anember of the CENA developed Btgp (Mertz

et al., 2000) an electronic stripping systemhich uses an electronic metaphor of the paper strip to
support ATC adtity.

Conferences like Cldre the perfect opportunity to discovewhat researches havemanaged to do
with brand new available technol@s. Even ithe digital pen was nohew, Idiscovered its usages with
MouseLighi{Song et al., 2010) met Hyunyoung Song§hDstudent, the first authorof this paper and
we had a very interesting discussion around the technical issues when using Anoto pens

On the 16th April 2010, the Eyjafjallajdkwolcano eruption transformed Western Europe and
Scandinavia into an unprecedented-fip zone.As a resull had to spend ®xtra days in Atlanta.
Stéphane Conversy and | took advantage of this free time to travel to Tybee Island and 8dwanna
practice Kite surfingpur favorite sport Duringthe trip, we started a discussion arounthis Anoto pen
idea forAir Traffic Controllerswhile we were eating slices of pizza (optimizing our lunch time to travel)
Anhecticbrainstormingsessiorstarted with manyideas and technology features to be tested. At that
precise moment” § (& ]| %gsdblorn with the core ideaannotatedon this pizza box. The first and the
strongest ideas were to make the system aware of the handing information on ter g#ip and to
give feedback to the user.

Backin France, | contacted the Anoto Company to buy the devitlesre was a long delayith grant
agreementsand Intellectual property issugand finally after 3 moths | receive atest setof 5 pers.
The software development wasgery fast lasting just a few weekand | ended up with a simple
prototype where the pen could pointa paper strip and the systerrould tellthe username of the
corresponding sip andhighlightit on the radar screen.

I knew thata lot of work remained tdoe done and | decided to start a student project to study ATC
activity and to findareas that might besuitablefor interaction witha digital pen. 4 students wéed
for 6 montrs }v §Z]e % @E&}i § v A uv P S} %o 0]Z SZ (]E*S "SE] %[

4mp://fr.wikipedia.orq/wiki/Centre d'%C3%A%tudes de la navigation a%C3%A9(ienne
WWW.anoto.co

(61
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conference on human comper interaction(Hurteret al., 2011a)This initial version only contained a
radar screen and paper stripsigure40).

Figure4Q: very first paper based prototygeadar screen with and without the Anoto yer (right)

This initial work highlighted the need improve the prototype withadditionalfeedback The user was

not able totell if his or her actions with the paper strip were correctly integrated by the system. We
first used an audio feedback bthis was apoor solution with too many audio notifications which
spoiledthe pe E[s BuAdgtBeArip to Savannah,amhadthought of tracking the position of the
paper strips with AR tags on their back in order to project video on tdpewh. During the summet
worked withRémi Lesbafes air traffic controllerand Frangois Rég®llin, engineerto setup a strip
trackingsystem.The main technological issue was the detection of the paper strip locatfmrefore

we spent more than onamonth testing differenttechnologicaland physical saips. We finally
managed to achieve suitable paper strip detection thanks to the ARToalkit a specific image
processing algorithriFigure41).

Figure4l: Strip tracking system with bottom and top projection.

In order to improve usability and toapture user actions (hand writing, pointingye thought of
pointing at the radar screen anthe strip board with the digital pen. @/faced some issues with the
pen detection. Even if the luminosity is reduced, wediaesimple technique with a fine infrared
reflective plastic laye(Hofer and Kunz, 201@Figure41). Finally, we added a bottom beamer and
summarized our investigation in a technical paf@hristophe Hurter et al., 201figure42}. 519 [d
is nd a monolithic system, but aet of interconnected modules. | developed a simple radar screen,
the bottom and top projectiorandthe supervision; | usednair traffic simulator calledRejey and the

8 http://www.hitl.washington.edu/atoolkit/ |
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middle ware Ivy(Buisson et al., 20029 allow communication between modules. Additional modules
can easily beleveloped to supporadditional features

Figure42 Radar screen with and without the Anoto ldyer.

The next gps were technological improvemessuch asavoiding digging into the floor to setupe
back beamer (lens projection improvemes}, designimprovements and additional ATC featare
developments. Masters students worled on this project to assestsiusages for air traffic controller
in a control tower.*SE& ]| % [d/ Z e¥#ect upon & @sign of a papebased tangiblénteractive
space to support air traffic contrgLetondal et al., 2013(Vinot et al., 2014)Cheryl Savery?hD
studentfrom Y v[e hv]An@Eariagspent 3 mounsin our lab to develop and assess multi
touch featuresA 13 Z 3§ @Sp%efdet al., 2013Ylore recently 4 moreMastersstudentshaveworked
on this prototype to assess gesture integration into the system.

6.1 "S&E] % [dmhagevbaded techniques
The S E ] %0 [ d/ hash&@pedtoetter understandandto investgate ATC activity. tascontributed
to the HJ community with augmented reality, tangibiliandcollaboration. ® make this sgtem work,
I had to addressnany technical challenges. Even if none of thepecificallycontributes to the
computergraphic domain, | had to use some image based techniques.

The first one was to handle the system calibration prodess simple manneto correct lens
deformation when projecting on the top and on the bottom of the strip bod@ this end lused a
simple homogrphy computation (scalingnd rotation matrix). Thanks to the graphic card, the
projected image is first computed off line (in an object buffer) and then mapped as a texture on a grid
to support the homography computatiorihis simple process avaignultiple projection matrix
computation, and only the graphi@ae compute itwhen mapping the texture on a distorted grid.

| also developedsimple image based algthm to improve AR toolkitpad Ev 8§ S]}vouseS E] %o [d]
a complex environment with many light sourcaedthe complex arrangements are of both the plastic

layer and materialTo trackthe paper strip, a webcam captus¢he image below thestripboard The

luminosity there is not uniform, which hindethe ARtoolki process. With a simple noise and gradient

scale removal, | managed to find a way to greatigrove pattern detection. At that time, | couldot

find an easy way to process the images, geiformed the computation in C+#vith an image
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processing algorithniChristophe Hurter et al., 2012)oday this computation can be easitanaged
with API like OgnCV, and we could greatly rezithe computation time devoted fpattern detectian.

6.2 Conclusion
SSE]%[d/ } « v}S ]E&in®yithagelbased @Esearch, even if it embeds image processing
techniques. This project is the only one whetealetried to explore in detail the Air Traffic Control
activity with aHuman Centered Design processpént countless hours discussing with controllers,
studying their activity, trying tainderstanddesign requirements and exploring innovative tools. The
NEE]) %o [d] Z v uC u ]v f& amodE twlo YedEs} This system is nowgsla suitable
tool to support innovation in ATC and can also be usednore practical activities like evaluations.
My nextresearcleshassteppedaway fromthis project to concentrate my efforts acanimage based
algorithm devot §} s E%O0}E S]}vX "SE]%[d/ ] v & § £ u% 0
people[ willingnessoutside of any planned project with proper funding. This pluridisciplinary project
gathered many researchers, enginearsd students and was an unig occasion to work together
without temporal constraing but with reduced funding.
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During my research | hauavestigated visual designs, interactive techniques, methods and algarithm
to outperform existingnethodsand more especially data manipulation and knowledge discovery. My
work has been inspired by exchanges and interactions with other researchers, engineers and
application specialists mostly in the aeronautical field. My rededsc built upon technological
improvements and advancan graphic card powers and is directly linked to the Ben Shneiderman
mantra «overview first» (Shneiderman, 1996When | started my PhD thesis, | felt frustrated not
being able to manipulate or even display one dayaoEcorded aircraft trajectory dataset with a
reasonabldrame rate. This is the reason why | developed FromaDster et al., 2009h)MoleView
(Hurter et al., 2011hrndColor TunnelingHurter et al., 2014b)Today visualization dad large dataset

is still a challenge and the bottleneck lies in the available pixels on the scregmavhinot numerous
enough to visualize evepiece ofinformation in large datasets. Therefore, | investigated aggregation
techniques to simplify the visualization of trails and grapWwith edge bundling techniques. In the
meantime, | developed variousteractive techniques to manipulate and to link data thanks to image
based algorithre. Smooth animations and continuous space interactions are the cornerstone of
seamless data exploration techniques and decision making.

My contribution is to provide interdive scalable tools that are built upon image based algorithms.
These techniques provide a widecaof investigatiorwheremuch stillremains to be done.dmonly
scratclingits surface by picking some application donsaimere these oP}E]5Zue Vv Ju% E}A
activities. In the following, | will discuss their assets, their limitations and give my plan for future
usages.

7.1 Computed graphic and raster data
In this section | reporon evidenceof image based usages. | will take the epéerofthe physics of
light model for computer graphic rendering, followed by identified usages in data manipukatitn
exploration

The physis of light is a rendering process with modern graphic cardSIGGRAPH is the premier
international forum ér disseminating newtudiesin computer graphics and interactive techniques. In
this conference many papers deal with the rendering process3i scene with computer graplsic
Among the rendering technical challenges, the computationlaihations and shadows is still an
active investigation aredhe ay castingRoth, 1982)echnique relies on the reverse propagation of
light. This technique can take into account reflection, distractiowl absorption of material and
produces realistic rendering. This is especially true with soft shadow watign, optical lens
distortions which can be easily computed thanks to the physical modification of the lightiehay
casting algorithm is a simplified modellgfht propagation which omits the fact that every object in a
3D scene can refleet given amount of light in every direction and thus be another light source. This
simplification can prevent the illumination of object when no direct light source is applied and thus
produces area without any shade. To address this issue more complekrigues have been
developed such athe defining rendering equatiofKajiya, 1986yvith uses light emission in many
directions. This technique is far more computationally challenging cordganay casting, even with
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some simplification and optimizatigiPurcell et al., 2002Nevertheless the rendering results are high
guality images and are among tharrent techniques to produce theater movies.

However these techniques have a drawback: itheomputation time preventsendering in reatime

even with modern graphic cards. Therefore other simplification model® baen developed and
especidly one thatrelieson rasterisation and texturing. Textures are composed of juxtaposed colored
pixels which form aectanghr shape. Texture can be applied aiBD object and thus map specific
shading or lightning features. These textur® the cornerstone of the simplified light rendering
process. Instead of computing the complex physique of light, the rendering space is discretized and
restricted to texturesA light model like Phong shadiriBhong, 1975 applied to vertexes (and then
interpolated) or by pixels (fragment shader). Shades are computed by changing the point of view and
then projecingthe result on a texturéEngel, 2006)An environment magHeidrich ad Seidel, 1998)

is computed and applied ta3D object to simulate reflection. Many of these textures or pixel based
techniques are currently used to produce fast rendering in video games. The computation process
consists of a successiohtexture rendering and compositions with raster mapocessing.

These raster usages produce a drastic simplification avithh inaccurate or even incorreandering
but aretodayessential rendering techniqeeFast, reatime rendering isachievablewith rasterisation
techniques, and wstill rely heavily on them

Data exploration and manipulation with image based techniques.

Taking into account that computer display® arctual raster screens composed of juxtapbselor
pixels,an image based technigue naturallytsfitheir rendering process. Even if many image based
techniques do exist, few of them are used to perform data exploration. Color tunneling isuche
system, where everpiece ofdata is mapped to a disdeinteractive item.

Recent advances in discretization and rasterisation have introduced point cloud visualizations
(Rusinkiewicz and Levoy, 200®ather than displaying textursurfacesthe point cloud technique

uses each pixel as an individual object (i.e. clamneling(Hurter et al., 2014H)) These techniques
arose withthe development oBD scaners andhe management of largguantities of 3D pixels.

These techniques allow flexible data deformation and visualization. Data deformation can be
performed with image based techniqueach asSBEEErsoy et al., 2019nd KDEERC. Hurter et al.,
2012)to simplify graph and traWisualization These recent techniques have also proven to be usable
and scalable even if they rely orsignificantdata space simplificatiortata rasterisation.

7.2 Raster data inaccuracy
Raster data is less accurate than continuoigems; in computer grahics, floating values are more
accurate than integers. Usingisidata simplification benefits computation time, but hinders accuracy.
Nowthe question is taassess ifhis gain of performance worth this data inaccuracy.

As previouslgxplainedvideo games benefit from such a simplification and provide high visual quality
video ganng with an interactive frame rate. If we take into account the KDEEB algorithm, small
definition accumulation mag can perform bundling, but we can easdge these discretization
artifacts.
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Figure43: Raster map size effects. Original graph (left), bundled version with a small raster map (middle) arndrgdth a
raster map (right).

Figure44: small size density map (leffgrgesize density map (right).

We also use very high quality accumulation magherethe producel results arevery smooth, buta

lot of computation time isvastedby computingdata from very similalocations Parameters setting

are openguestions and | do not havereeasy way to compute thsize of the accumulation majmage
based bundling techniques show an interesting use case wherstichily reduced accuracy
(accumulation map of 100 pixels width) can produce exploitable bundling rel$igtaiotstrictly true

that this algorithm is only pixel based, sirmecumulation andlata densityare the solely pixel based
techniques, and once the computation of the densitcdsnpleted computation isperformedin a
double floating accuracy with the computation of the gradient value. Then the pixel based/
rasterisation is applied, since vertewill move accordig to the raster map, which also produces
artefact, and then again we switch inlmuble accuracy by smoothing the result. This example showed
how the high frequency data distortion can be reduced by using low level filtdrdgummaize, low
accuacy produces high frequency artefact that can be easily filterecodtthis is still worthwhile if
computational speed is a requested feature.

7.3 Technical challenges
My workhastried to prove the efficiency of such Image based techniques: they can provide a scalable
solution and can also rely on technological advances such as faster anda@agable memory for
storage. The current bottleneck regarding GPGPU computatithreimemory transfer between the
GPU and the CRbut we can foecast that future architecture improvement will address this issue.

In terms of technoloigalimprovements, one can expect a simpler way to program these powerful GPU
processrs, by providig high level API, and more advadaestruction. The major flaw today is the
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lack of easy debugging tools. SucBRU progranespecially with shadeyseeds special care tebug.
It appends lesfrequently, but the system can lock. Theeis noeasy way to investigate memory value
andthe debugging of high parallel threads is challieggeven in a CPU arghrticularly sdn the GPU.

Another interestingarea of investigationlies in the use of massive memaoayd onecan envisage
memory aspowerful as that of computation. This investigation needo be validated, but since
memory is cheajandavailable in large quantityt is a valuable resourcé-or instance, multitteaded
computers are often in the idle stée. We can take advantage of this waiting period to process
information and store the result for future usages. This optimization process of available resisurce
a weltknown technique, but canndie gereralized.

7.4 Personal image based road map
In this section | willprovide research investigation areas with image based techrsquiéhese
extensions are part of my ongoing project but adeltiressesdentified research questia) technical
challerges which remaito be addresse.

Image based technig@aean be appedin many research araabut | will emphagie some on them. |
will especially focus oanexisting technique which uses raster data or algoriamd thus will directly
benefit fromthese image based technigsie

Bundling techniques are powerful tools for graph simplification. Bundlings have shown their ability to
visually aggregate the links between nodes and thus to produce empty spaces to inagyoehp
global readability. Thiaggregation helps to retrieve information, like highlighting main flow, and is
often associated with interactive methods to improve this process.

Bundling techniques are useful for visual simplification of graphs and address liegaeding data
density. Recent bundling techniques use graphic card power to support interactive visualization
(OpenGL /WebGL /DirectX) or their ability to perform parallel computation (OpenCL / CUDA). The
latest bundling techniques usmage based technique to reduce computatitme with a complexity

close toO(Edges).

The aesthetic criteria is undeniable with the production of smooth curves and the addition of image
processing such as bump mappirtgb{e 2). These aesthetic criteria have never been evaluated in
terms of an &set to investigate datasets and it remains an open question

-52-



ChapterResearch program

Figure45: bundling,original US migration graptop), KDEEB bundled versiomgiddle), with bump mapping (bottom
Neverthelesdundling techniques are not an glurpose tool, andheir ability to simplify visual
graprshas many limitationsThe following sections listundling technique open questistthat have
not yet been investigated

7.4.1 Tasks
There is no available task taxongitinat can help to assign specific bundling methods to a given task.
For instance, if one is interested in investigatangmall world grapt{Auber et al., 2003)van Ham
and Wattenberg, 2008which bundling method will provide the best results?

Taking into account the taxonomy of graph tagkmar et al., 200%).ee et al., 20063 bundling
algorithm only allows the following one:

x follow a link or a path , but only under certain conditions with reduced density and with
interactive tools (e.g melView),
X see an attribute (only the densijyof a link.

Figure46: interactive tools to explortae dual layouof a graplgbundled and unbundlgd
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Bundlingis a tool for the exploration of gréys at the macroscopic level and will not allgou to find
information that concerns only a small number of links. For exantipefollowing task are not fully
supported by the bundling algorithm:

x finding an outlier ( e.g. a single link)
x Ordeiingthe nodes by their number of connections.

7.4.2 Dynamic graphs
Dynamic grapshave notyet been intensely investigatedheyneed fast bundling computation to
ensure that the bundle showthe up to date gaph layout. Since a graph evolves over time, their
bundled version must be updatewithout abrupt changes. Only KDEEB Hurter et al., 20123 able
to offer a solution in this area. KDEEB has proved its effectiveness with a computatiaf tmg a
few millisecond®f calculation andensures a continuous evolution of the graph layout thanks to the
Mean shift algorithm(Comaniciu and Meer, 2002yDE§Holten and van Wijk, 200@pnnot ensure
such continuity and the graph bundle can thehow abrupt changes of structuréNguyen et al.,
2013a) Neverthelessthe lack of dynamicbundle exploiation tools remainsand today there is no
effective method providedOne can onlyvatch the animation to interpret it.

7.4.3 Algorithm setting
My experiencein the use of bundling algorithms has shown that the bundled end result is highly
dependenton the values of algorithm parameters. This is particularly the case with theq@eessing
and clustering parameters that will strongly influence the final result. The bundled graph can thus be
very highly or partially aggregated, and it is difficaltietermine the correct settings withoeixtensive
testing.

Furthermore, lundling parameters are complex arlthked to thealgorithm Tosome extent, these
parameters should not be related to the bundling algorithm, but to the task thewaststo perform.
For instance, one can adjust the ink ratio and the algorithm prositite corresponding bundling
result.

7.4.4 Bundling faithfunessand accuracy
No previous workasinvestigated the accuracy of the displayed bundled information. As such, no
metricshave beemrovided to assess the bundling algorithm quality. This limitation hinders their
usages and the validation of new atgbms.

Finally and most controversiglwe can considethe faithfulness of the bundled resul(slguyen et
al., 2013b) In this sense, there is no guarantee that the bundle versiogpiesentingnformation
that isactually embedded in the data sets. For example, the processing of a random graph with
KDEEB will highlight aggregates links. @Gdusbepartially explained, because it is not possible to

provide a unifom density graph linkblurring ofthe edges of the scredirigure47), but still shapes
emerge
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Figure47: Graph pseudorandom and bundle version KDEEB Hurter et al., 2012)

7.5 Proposal to improve bundling techniques
These proposals are the result of my experience with the use aflimgn The following lisis
extracted from the previous sectioPérsonal image based road map

Provide or evaluag metric bundle links: Today, there is no metric to quantify the result dfendling
algorithm. The only metric available is theicat ink/background proposed by Tuft@ufte, 1986)
whichfar from fully qualifesthe result of an algorithnfiEigure48[shows examples of bundling results
with very different visual renderings on the same datasets.

Provide reference data seteach new implementabn of a bundling algorithm uses new datasets
which makes their comparison difficult. Mindl@ansner et al., 201 Lisedsets of reference datéDavis

and Hu, 2011put provided no indication of any information to be extracted. It would therefdre

useful to collect a set of validated data sets with ground truth data such as reference calculation speed,
rendering qualityanddata mining references.

Link bundling algorithms to tasksfo improve Edge bundling usage, one should be able to choose
suitable technique which matchest the requested graph simplification tasks. This is a difficult
problem since each algorithm has technical constraints that are not correlated to specific tasks. For
example hierarchical data is mandatory to apply HEE®Iten, 2006) data clustering must be aped

before processing them with SBEBsoy et al., 2011jpnd FDEBHolten and van Wijk, 2009eeds

rules of proximity.

Improve the parameterization of algorithmseach bundling algorithrhas its own complexity witha
different sebf parameters. HEBHolten, 2006)s by far the simpl&t, but also the most constrained

with the need fora hierarchical data structure. Mingle is by fae most complex to implement with

the use of the GPU to export a dependency graph. All these algorithms use many parameters for their
computation (except HEB that uses only BeSplineparamete)). These parameters are often too
abstract and related tthe technical constraits of the algorithm For example, KDEEB. Hurter et al.,
2012)uses the size in pixels of a density nthat has no direct connection with the exploration task

of a graph. Finally, each bundling technique should be provided with a set of reference data sets and
their set of gtimal parameters. For example, KDEEB uses multiple bundling iterations with changing
parameters.
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Directional graphsEdge bundling techniques help to reduce visual clutter of graphs. Many algorithms
exist but seldom treat directed graphs. When dealwith dense and occluded directed graphs, edges
with different directions should not be bundled together. It would lead to information loss and is an
important issue in all applications where the exploration task(s) sdedake directionality into
account such as trajectory exploration. Most existing techniques cannot take edge direction into
account without adding extra algorithm complexitixamples of such graphs are trails or eye
m