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Detection tests for worst-case scenarios with optimized dictionaries.
Applications to hyperspectral data.

Abstract: This Ph.D dissertation deals with a “one among many” detection problem,

where one has to discriminate between pure noise under H0 and one among L alternatives

that are known up to an amplitude factor under H1. This work focuses on the study and

implementation of robust reduced dimension detection tests using optimized dictionaries.

The proposed approaches are principally assessed on hyperspectral data.

In the first part of this dissertation, several technical topics associated to the framework

of this dissertation are presented. These topics are hypothesis testing, minimax strategy,

detection in Hyperspectral Imaging, dimension reduction techniques and sparse representa-

tions.

The second part of this work highlights the theoretical and algorithmic aspects of the

proposed methods. Two issues linked to the large number of alternatives arise in this

framework. First, the computational complexity associated to the Generalized Likelihood

Ratio (GLR) test with the constraint of sparsity-one inflates linearly with L, which can be

an obstacle when multiple data sets have to be tested. Second, standard procedures based

on dictionary learning aimed at reducing the dimensionality may suffer from severe power

losses for some alternatives, thus suggesting a worst-case scenario strategy.

In the case where the learned dictionary has K = 1 column, we show that the exact

solution of the resulting detection problem, which can be formulated as a minimax problem,

can be obtained by Quadratic Programming.

Furthermore, the case K > 1 allows a better sampling of the intrinsic diversity of the

alternatives, but it is much more complex to implement. The worst-case analysis of this

case, which is more involved, leads us to propose three minimax learning algorithms.

Finally, the third part of this manuscript presents applications of the proposed reduced

dimension detection tests using optimized dictionaries. The principal application regards

astrophysical hyperspectral data of the Multi Unit Spectroscopic Explorer (MUSE)

instrument. Numerical results show that the proposed algorithms are indeed robust and in

the case K > 1 they allow to increase performances over the K = 1 case. The resulting

performances are in fact comparable to the GLR using the full set of alternatives, while

being computationally simpler. Other possible applications are also taken into account

such as learning minimax faces and worst-case recognition of handwritten digits.

Keywords: Statistical Signal Processing, Detection, Minimax, Dimensionality Re-

duction, Dictionary Learning, Sparsity, Hyperspectral Imaging.





Méthodes de détection robustes avec apprentissage de dictionnaires.
Applications à des données hyperspectrales.

Résumé : Le travail dans cette thèse porte sur le problème de détection «one among

many» où l’on doit distinguer entre un bruit sous H0 et une parmi L alternatives connues à

un facteur d’amplitude près sous H1. Ce travail se concentre sur l’étude et la mise en œuvre

de méthodes de détection robustes de dimension réduite utilisant des dictionnaires optimisés.

Les approches proposées sont principalement évaluées sur des données hyperspectrales.

Dans la première partie de cette thèse, plusieurs sujets techniques associés à cette thèse

sont présentés: les tests d’hypothèse, la stratégie minimax, la détection en imagerie hyper-

spectrale, les techniques de réduction de dimension et les représentations parcimonieuses.

La deuxième partie de ce travail met en évidence les aspects théoriques et algorith-

miques des méthodes proposées. Deux inconvénients liés à un grand nombre d’alternatives

L se posent. Tout d’abord, la complexité de calcul associée au test de Rapport de Vraisem-

blance Généralisé (GLR) sous contrainte de 1-parcimonie augmente linéairement avec L,

ce qui constitue une limitation dans le cas où le test doit être répété sur plusieurs jeux

de données. Ensuite, les approches standards basées sur l’apprentissage d’un dictionnaire

visant à réduire la dimensionnalité peuvent conduire à une perte de puissance élevée pour

certaines alternatives.

Nous proposons dans ce cadre des techniques d’apprentissage de dictionnaire basées

sur un critère robuste de type minimax. Dans le cas où l’on cherche un dictionnaire à

K = 1 atome, nous montrons que la solution exacte peut être obtenue par Programmation

Quadratique.

Par ailleurs, nous montrons que le cas K > 1 permet un meilleur échantillonnage de la

diversité intrinsèque des alternatives, mais que la résolution exacte du problème minimax

dans ce cas est aussi beaucoup plus difficile à obtenir. Nous proposons dans ce cas trois

algorithmes d’apprentissage minimax qui permettent d’approcher cette solution.

Finalement, la troisième partie de ce manuscrit présente plusieurs applications.

L’application principale concerne les données astrophysiques hyperspectrales de l’instrument

Multi Unit Spectroscopic Explorer (MUSE). Les résultats numériques montrent que les

méthodes proposées sont robustes et que le cas K > 1 permet d’augmenter les performances

de détection minimax par rapport au cas K = 1. Les méthodes proposées sont comparables

au test GLR utilisant la bibliothèque complète, tout en réduisant considérablement le

coût de calcul. D’autres applications possibles sont également prises en compte telles que

l’apprentissage minimax de visages et la reconnaissance de chiffres manuscrits dans le pire

cas.

Mots clés : Traitement Statistique du Signal, Détection, Robustesse, Réduction

de Dimension, Apprentissage de Dictionnaire, Parcimonie, Imagerie Hyperspectrale.





Acknowledgements

Growing up in a developing country located in Southeast Asia, my childhood dream was

to see the other part of the world: especially Europe. This dream was realized when I

was awarded a scholarship from the Malaysian government after graduating high school to

pursue higher education abroad. In 2004, a small group of young and ambitious students

arrived in south of France: Nice (including me, of course). After 5 years of blood, sweat

and tears, my friends and I graduated with a Master’s degree in 2009 and we went back to

our hometown. During the study in Nice, we have met many great lecturers including Mr.

David Mary and Mr. André Ferrari. Little that I know at that time that they will be my

future Ph.D advisors.

In 2011, my husband and I decided to pursue our studies abroad. We managed to obtain

a scholarship from a Malaysian government agency, MARA (Majlis Amanah Rakyat).

Lucky for me, Mr. André Ferrari accepted to be my advisor, along with Mr. David Mary.

During the course of my Ph.D studies, I worked closely with Mr. David Mary. I thank

him for every piece of advices and discussions related to this research work, not to forget

his particular attention in the importance of explaining well our works for publications. I

would like to thank Mr. André Ferrari for his supervision, especially for his expertise in

the theory of statistical signal processing. I feel blessed to have them as my advisors, for

their continuous supports, and for the opportunities to participate in both national and in-

ternational conferences. I have gained ample knowledge in my research area thanks to them.

I would like to thank the members of my dissertation committee: Prof. Brie, Prof.

Collet, Prof. Rodet and Dr. Chainais for their time and insightful comments.

My sincere thanks goes to Mr. Roland Bacon, the principal investigator of the MUSE

instrument and the MUSE consortium for providing spectral data. To Antony Schutz,

thanks for providing the code to visualize the 3D atoms. The administration team of

Laboratoire J.-L. Lagrange has been a great help in preparing paperworks, claims, etc. I

thank Caroline, Delphine and Jocelyne for this.

A special thanks to my ex-labmates: Silvia, Jie Chen and Nguyen for sharing their

knowledge and experiences. To Gao Wei, Rita and Roula, thanks for the fun, encourage-

ments and your sincere friendship. Rita and Roula are the best listener to all my stories:

work related or not. I would like to thank Norazah, a personal friend for hanging out with

me during stressful time.

Finally, my most heartfelt thanks to my dear husband for his patience and emotional

support, my parents, my late grandparents, my parents-in-law, and my siblings for their

constant care and presence.





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

General Overview 1

I Introduction to technical topics connected to the dissertation 7

1 Testing statistical hypotheses and the minimax strategy 11
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Stating the detection problem into hypothesis model . . . . . . . . . . . . . 12
1.3 Test statistics and associated probabilities . . . . . . . . . . . . . . . . . . . 13
1.4 Tests based on likelihood function . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 A glance at Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Minimax approach in detection . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Target detection in Hyperspectral Imaging 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Target detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Dimension reduction and sparse representations 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Low rank matrix approximation . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 A glance at sparsity promoting method in signal processing . . . . . . . . . 41
3.4 Sparse dictionary learning algorithms . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II Subspace Learning in Minimax Detection: proposed methods 47

4 Detection test for the exact model with sparsity-constrained 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Exact detection model and associated GLR test . . . . . . . . . . . . . . . . 52
4.3 Complexity and loss of performances . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Detection tests for reduced dimension models 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Reduced model with sparsity constraint . . . . . . . . . . . . . . . . . . . . 63
5.3 An alternative: unconstrained reduced model . . . . . . . . . . . . . . . . . 75
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



viii Contents

6 Minimax learning techniques of an arbitrary size dictionary 79
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Greedy minimax: a heuristic approach . . . . . . . . . . . . . . . . . . . . . 80
6.3 K-minimax: a variant of K-SVD approach . . . . . . . . . . . . . . . . . . . 83
6.4 Clustering technique combined with 1D minimax . . . . . . . . . . . . . . . 85
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

III Applications: Astrophysics and Machine Learning 89

7 An application in Astrophysics 93
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 The MUSE spectrograph and the Lyman-↵ emitters . . . . . . . . . . . . . 94
7.3 Worst-case detection of spectral profiles . . . . . . . . . . . . . . . . . . . . 97
7.4 Worst-case detection of spatio-spectral (3D) profiles . . . . . . . . . . . . . . 103
7.5 Strategies for determining best number of K atoms w.r.t. minimax criterion 108
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Machine learning applications 111
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Minimax learning of faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3 Worst-case recognition rate of handwritten digits . . . . . . . . . . . . . . . 113
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Conclusions and Future Works 119

A Appendix of Part I 123
A.1 Proof of Neyman-Pearson Lemma . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 Proof of the Bayes detector that minimizes the probability of error . . . . . 124
A.3 Examples of several detection methods in literature . . . . . . . . . . . . . . 125
A.4 Analysis sparse model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.5 The algorithms of several RD learning techniques . . . . . . . . . . . . . . . 129

B Appendix of Part II 133
B.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.3 Gradient descent for 1D minimax problem . . . . . . . . . . . . . . . . . . . 136

Bibliography 139



List of Figures

1.1 Distributions under hypotheses H0 and H1 of model (1.14), and illustration

of the probabilities associated to the test statistic (1.17). This test is called

one sided and right-tailed test (Λ?H1
H0
γ and ✓1 > ✓0). . . . . . . . . . . . . . 19

1.2 Illustration of the probability density functions (under H0 and H1) for high

SNR and low SNR associated to the test statistic (1.17) for model (1.14).

For high SNR, the PDFs become sharper and thinner (green line and black

dash-dots). For low SNR, the PDFs become flatter and wider (dark purple

line and blue dash-dots), yielding PDet ⇡ PFA. . . . . . . . . . . . . . . . . . 20

1.3 Comparison of ROC curves: probability of detection against probability of

false alarm for two curves. Test 1 shows better performance than test 2. The

yellow area depicts the Area Under Curve of the ROC for test 2. The ROC

curve can be used to compare different tests at fixed SNR, or to evaluate the

detection power of a same test for varying SNR (i.e., SNR for blue dash dots

ROC curve > SNR for solid red ROC curve). The “random line” indicates

that PDet = PFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 An example of a Hyperspectral image cube illustrated for the Multi Unit

Spectroscopic Explorer (MUSE) instrument, of dimension 300⇥300 pixels at

3600 wavelength channels [Caillier et al. 2012]. Image credit to the European

Southern Observatory (ESO). . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Illustration of the Hyperspectral image acquisition by satellite. The instru-

ment mounted on the satellite retrieves the reflectance radiations from all

objects in the scene: trees, soil and military tank, along with the atmospheric

noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Each pixel of the image cube represents a contiguous reflectance spectrum

along the wavelength channels. The knowledge on spectral signatures of each

objects (e.g., atmosphere, soil, water, and vegetation) concedes the processing

of Hyperspectral images. These pure signatures are called “endmembers”.

Image credit to the Jet Propulsion Laboratory (JPL) and NASA. . . . . . . 30

3.1 Singular Value Decomposition of matrix S 2 R
N⇥L and its low rank approx-

imation bS of the same dimension. White areas represent zero elements and

yellow areas indicate irrelevant values. The first subfigure illustrates the de-

composed matrices U 2 R
N⇥N ,Σ 2 R

N⇥L(diagonal matrix) and V
> 2 R

L⇥L

obtained from SVD of S. The rows N + 1 to L of the matrix V
> are ir-

relevant w.r.t. S. The second subfigure depicts low rank approximation of

S, where Σr contains the r largest singular value of S with the others set

to zero. The last subfigure shows that ΣrV
> is a (row) sparse matrix. Ur

contains the r atoms representing S in lower dimension. . . . . . . . . . . . 41



x List of Figures

3.2 The concept of synthesis sparse modeling. The signal s 2 R
N can be approx-

imated by linear combination of few atoms, where D 2 R
N⇥K is a known

dictionary and bα 2 R
K is the sparse representation vector. In this example,

sparsity of bα is kαk0 = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 (a) 100 alternatives (spectral lines) in S. (b) ROC curves showing that PDet

(B.4) for S orthonormal decreases as L grows, at fixed PFA. Figures (c)

and (d): Atom u (the rank-one approximation of library S105) and the two

instances of alternatives s` activated under H1 in Section 4.3. Figures (e)

and (f): ROC curves in each case (ONPD: Oracle NPD). . . . . . . . . . . . 56

4.2 Comparison of detection performances via ROC curves, for Max tests and

RD tests, for different values of ↵. ONPD denotes the Oracle NPD. The

relative behavior of the tests is the same for different noise levels, i.e., in case

1, RD tests perform better than the Max test, however they perform poorly

in case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Convex and non convex domain. If we draw a line segment between two

samples s1 and s2, every point on this (red) line segment does not belong

to dom kdk2 = 1. Instead, it belongs to dom kdk2  1. This is why the

constraint kdk2 = 1 of (5.13) is non convex. . . . . . . . . . . . . . . . . . . 65

5.2 Geometrical view of One-dimensional minimax optimization problem (5.13)-

(5.14) as One-class classifiers. The set of alternatives si lie at the intersection

of a unit sphere Σ1. The problem is equivalent to minimizing the largest angle

✓i between d and si, to finding the circle C of minimum radius R that contains

all si, to maximizing the distance ⇢ of hyperplane Pd to the origin (i.e., one-

class SVM), or to minimizing the volume of an enclosed sphere Σ containing

all si (i.e., SVDD). In this setting, Σ admits C as a great circle. . . . . . . . 66

5.3 d⇤ is held by three marginal alternatives (at the border of the smallest en-

closed circle C). These marginal samples induce the worst probability of

detection. For comparison, u represents well the most populated area of the

alternatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Probability distribution under H1. The left subfigure shows the initial distri-

bution corresponding to N (µi, 1). The right subfigure depicts the equivalent

distribution after subtracting µi. The red line marks the equivalent area (to

its right) of the CDF Φ(−⇠ − µi). . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Spherical coordinates of the atom d used to represent the mean and minimax

cost functions on the sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



List of Figures xi

5.6 Cost functions of the two distinct criteria mean and minimax illustrated on

the unit sphere. Cyan dots are the alternatives si 2 S. There are one alterna-

tive si in the first cluster, and nine alternatives in the second cluster which lie

near the y-axis of the unit sphere. (a) The average detection criterion (5.15)

is smoothly increasing toward the most populated cluster. We also show here

the learned SVD atom u (black star). (b) The minimax detection criterion

(5.17) is maximum somewhere between the two clusters, taking into account

the single alternative, situated far from the other alternatives. The minimax

learned atom d⇤ (blue star) of (5.13) is also shown here and is exactly at the

maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Illustration of the greedy minimax algorithm for K = 3. Black dots: alterna-

tives si on the unit sphere, red stars: minimax atoms, white dots: the least

correlated alternative w.r.t. D⇤. The blue lines delimitate the classes. After

initialization i), the farthest alternative si⇤ w.r.t. D⇤
1 is identified and the

alternatives are divided into two clusters. Minimax atoms for each cluster

are computed, its concatenation forms D⇤
2. These processes are continued in

sequences, until obtaining the desired K atoms. . . . . . . . . . . . . . . . 81

6.2 Illustration of the K-minimax algorithm for K = 3. Black dots : alternatives

si on the unit sphere, cyan dots: initial dictionary atoms. The blue lines

delimitate the classes and the red stars are the minimax atoms for each class.

After initialization i), the algorithm iterates between steps ii) and iii). These

are done until a stopping rule. We obtain a “K-minimax dictionary” of K

atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 (a) An example of the atoms learned by the proposed approaches (greedy

minimax: red stars, K-minimax: white circles and SKM-minimax: yellow

squares) and by K-SVD: blue diamonds on the unit sphere for K = 3. (b)

Comparison of the PFA(D
⇤
3) by Monte Carlo simulation to the upper bound

(5.25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 AUC of the ROCs over 100 alternatives activated one by one, under H1. . . 88

7.1 (a) Example of a noiseless and corresponding noisy spectrum in MUSE data

cube. (b) The structure of MUSE (Image credit to ESO). We can see different

parts such as the calibration unit on top (in yellow and green), the electronic

cabinets on each side, and all 24 of the integral field spectrographs (in gray). 95

7.2 The acquisition process of the MUSE instrument. Once the light arrives, the

optical rotator compensates the rotation of the field of view (of the telescope).

Then, it passes through a set of optics. The light is then split into 24 subfields,

each directed to one IFU. In each IFU, the light is split again into 48 slices.

Then, a spectrograph disperses the light w.r.t. wavelength, which finally

arrives at a detector that stores the signal, yielding a data cube. Image

credit to ESO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



xii List of Figures

7.3 AUCs for all i, {i = 1, . . . , 100} instances under H1. The Figure compares

the detection performances of RD models using 6 learned dictionaries. Two

of them are one-dimensional atoms, and the rest of them are K = 6 atoms.

The exact model S100 (red dashes, close to the blue and gray lines) and

the reference AUC are also provided (Oracle NPD: black dots). We can see

that RD tests using the classical approaches (SVD: pink dash-dots, and K-

SVD: green solid line) suffer from large losses for certain alternatives, e.g.,

s60 and s90. On the contrary, minimax approaches maintain as much power

as possible in these worst-case scenarios. . . . . . . . . . . . . . . . . . . . . 99

7.4 (a) 100 of the alternatives in library S9745. (b) d⇤ (minimax) and u (SVD)

atoms, learned over 9745 alternatives. (c) The 16 alternatives of S9745 lying

on the smallest enclosing circle C w.r.t. d⇤. (d) Minimax correlations ⇢(K)

for the greedy minimax, where K = 1, . . . , 70. . . . . . . . . . . . . . . . . . 101

7.5 AUC shown for 100 alternatives under H1, {i = 41, . . . , 140}. The simula-

tions were done for {i = 1, . . . , 9745}, activated one by one under H1 (given

S9745). Results over the whole alternatives are summarized in Table 7.2. We

compare here the detection performances of RD models using 5 learned dic-

tionaries, and the exact model S9745 (red dashes, close to the blue circles and

orange crosses). Two of the learned dictionaries are 1D (d⇤: cyan diamond

line and u: pink dash-dots), and the rest of them consist of K = 70 atoms.

We also include the reference AUC (Oracle NPD: black dots). Minimax ap-

proaches are more robust w.r.t. some alternatives inducing maximum power

losses (e.g., s90, s108, s111, s125 and s131). . . . . . . . . . . . . . . . . . . . . 102

7.6 The PSF of MUSE’s instrument. Figure (a) shows a spectral view and Figure

(b) shows a spatial view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.7 Example of 3D (spatio-spectral) learned atoms. (a) Minimax atom, and (b)

SVD atom. For both subfigures, the left panels show the spectral profiles,

the middle panels show the corresponding 3D learned atoms and the right

panels show a cut of the 3D atoms. . . . . . . . . . . . . . . . . . . . . . . . 105

7.8 (a) Noiseless data cube (with spectral profiles convolved by the 3D PSF),

averaged over spectral channels. This cube contains 9 Lyman-↵ profiles.

Profiles 1 to 5 have a similar shape, while the rest are marginal profiles

(number 5 to number 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.9 (a) and (b) show respectively the mean (over the wavelengths) of the noiseless

and noisy data cube. (c) and (d): Detection maps for spatio-spectral hypoth-

esis testing at fixed PFA = 0.01, for SNR = −17dB. The results show that

tests using minimax 3D atom (subfigure (b)) yield better detection power

for the marginal alternatives (in circles, particularly for profiles 7 to 9) than

using SVD 3D atom (subfigure (b)). Subfigure (e) depicts the difference of

performances of test using 3D minimax vs. using 3D SVD (see text). . . . . 107



List of Figures xiii

7.10 The blue line represents worst-case performances (minimum AUC of the ROC

curves) of D⇤
(K), for K = 1, . . . , 100 over 100 alternatives (S100), for SNR =

8dB (↵ = 2.5). In this example, there are no improvements of the detection

power for K ≥ 36. One can then choose K = 36. The red circles mark some

picked values of K and the corresponding worst-case performances. . . . . . 109

8.1 (a) 20 faces in the database of 40 faces, front-facing. (b) One-dimensional

minimax face, and (c) SVD face. (d) Greedy minimax faces, K = 3, and (e)

K-SVD faces, K = 3. K-SVD represents average features while worst-case

algorithms capture marginal features. . . . . . . . . . . . . . . . . . . . . . . 112

8.2 (a) Some samples in the database of handwritten digits. Figures (b) and (c)

learned atoms (K = 1) for each digit by different approaches: minimax and

SVD, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 The concept of analysis sparse modeling. Ω 2 R
W⇥N is the analysis dictio-

nary. Sparsity constraint is imposed on Ωs, by the co-sparsity l (which is

the number of zeros in Ωs). The rows in Ω that are orthogonal to s define

the co-support of s (shown in orange). Here, the size of the co-support is 4. 128

B.1 The concept of general gradient descent w.r.t. (B.11). (a) Step size between

two iterations ∆bd. (b) Function J is minimized in the direction of the neg-

ative gradient when evaluating in term of distance. Between two iterations:

J(bdk+1) <J(bdk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2 Illustration of the elements in dJ. . . . . . . . . . . . . . . . . . . . . . . . . 137

B.3 Two examples of gradient descent simulations to find minimax atom bd. The

initialization point (red circle) is the mean of S (black crosses represent si 2
S, where here, S 2 R

3⇥5 is random normalized alternatives). The red line

indicates the path of the gradient descent method to find bd. The minimax

atom d⇤ (cyan star) is generated from a QP solver, based on (5.13). These

simulations show that, bd ⇡ d⇤ (i.e., the exact solution) for N = 3. The gray

dashes line indicates the smallest circle enclosing S. . . . . . . . . . . . . . . 138





List of Tables

1.1 Probabilities associated to the decision making process. . . . . . . . . . . . . 14

4.1 AUCs corresponding to the ROC curves in Figure 4.2. Uncertainty: ±0.0011.

We compare the AUC of 5 tests, in two cases. In each case, we set three

different levels of SNR (by varying ↵, shown in different columns) in order

to study the tests’ performances w.r.t. SNR. The third row shows the AUC

values of the Oracle NPD as reference. For all the other tests (fourth until

the last row), we can see that, in both cases, the detection performances of

each test clearly depend on the noise level (low SNR yields lower performance

than those for high SNR). The behavior however, remains the same as seen

in Section 4.3.1 regardless of the noise levels (i.e., RD tests perform better

than the Max tests in case 1, but perform poorly in case 2). . . . . . . . . 59

4.2 AUCs for different values of ↵ (SNR levels, shown by rows). Uncertainty:

±0.0013. By performing Max test S102 and RD test S102 over all alternatives

s` activated one by one under H1, where ` = 1, . . . , 102, we compute the

average and worst-case (i.e., minimum AUC) performances of each test, at

different SNR levels. Second column shows the AUC of Oracle NPD as

reference. Comparing the third and the fifth columns, we can see that RD

test performs better on average than the Max test. However, the worst-case

performance of RD test is inferior than the Max test (i.e., compare the last

column with the fourth column). Both of these observations hold true for

various SNR levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1 Results over 100 alternatives. (Uncertainty due to the estimation noise of the

ROCs: ±0.001). This table shows that RD detection test using SVD (u) suf-

fers from a large loss w.r.t. Oracle NPD, while the loss for the minimax atom

(d⇤) is (maximally) minimized. By adding more atoms to the learned dictio-

nary (K = 6), the worst-case performance is improved (compare for instance

the test using greedy minimax D⇤
6 to the test using one-dimensional minimax

d⇤). The average performances of RD tests for K = 6 are comparable to that

of Max test using S100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Results over 9745 alternatives. Uncertainty due to the estimation noise of the

ROCs: ±0.003. SKM-minimax is not included here, because the clustering

for K = 70 yields some empty clusters. Similar to Table 7.1, the maximum

loss in a worst-case scenario for these simulations, occurs for RD test using

SVD (u) (for K = 1) and K-SVD (DK-SVD
70 ) (for K > 1). While for greedy

minimax (D⇤
70), the worst-case performance is equivalent to those of the

exact model (S9745). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.1 Worst-case recognition rates for handwritten digits. . . . . . . . . . . . . . . 114





Notations and Definitions

Notations

a Scalar

a Vector

A Matrix

A> Transpose of a matrix A

AM
K Matrix A containing K columns learned from method M

0 Vector of zeros

I Identity Matrix

a ⇠ N a follows distribution N

a ? b a is greater or less than b

|a| Absolute value of a

kak0 `0 pseudo-norm:= #{n : an 6= 0}: total number of non-zero elements in vector a

kakp `p norm:=
⇣PN

n=1 |an|p
⌘1/p

kak1 `1 norm:= max
n

|an|

ka− bk2 Euclidean distance (a, b): =
qPN

n=1(an − bn)2 =
p

(a− b)>(a− b)

a Average of a

H0,H1 Hypothesis 0 (null), Hypothesis 1 (alternative)

N (µ, σ2) Normal distribution of mean µ and variance σ2

p(a) Probability density function of a

p(a,θ) Joint probability density function of a, θ

p(a;θ) Probability density function of a with θ as parameter

p(a;Hi) Probability density function of a when Hi is true

p(a|θ) Conditional probability density function of a conditioned on θ

p(a|Hi) Conditional probability density function of a conditioned on Hi being true

P Probability

R
N N -dimensional Euclidean space

Φ Cumulative distribution function

Abbreviations

i.i.d. independent and identically distributed

inf infimum: greatest lower bound

PCR Probability of correct rejection



xviii Notations and Definitions

PDet Probability of detection

PE Probability of error

PFA Probability of false alarm

PM Probability of miss

sup supremum: least upper bound

vs. versus

w.r.t. with respect to

Acronyms

1D One-dimensional

3D Three-dimensional

ASD Adaptive Subspace Detectors

AVIRIS Airborne Visible/Infrared Imaging Spectrometer

AUC Area Under Curve

CDF Cumulative Distribution Function

CFAR Constant False Alarm Rate

ESO European Southern Observatory

GAP Greedy Analysis Pursuit

GLR Generalized Likelihood Ratio

HSI Hyperspectral Imaging

IFU Integral Field Unit

JPL Jet Propulsion Laboratory

KKT Karush-Kuhn-Tucker

LASSO Least Absolute Shrinkage and Selection Operator

LR Likelihood Ratio

ML Maximum Likelihood

MOD Method of Optimal Directions

MP Matching Pursuit

MSD Matched Subspace Detector

MSE Mean Square Error

MUSE Multi Unit Spectroscopic Explorer

NN Nearest Neighbor

NP Neyman-Pearson

NPD Neyman-Pearson Detector

OMP Orthogonal Matching Pursuit

ONPD Oracle Neyman-Pearson Detector

PCA Principal Component Analysis



Notations and Definitions xix

PDF Probability Density Function

PSF Point Spread Function

QP Quadratic Programming

RD Reduced Dimension

ROC Receiver Operating Characteristic

RX Reed-Xiaoli

SDT Signal Detection Theory

SKM Spherical K-Means

SMF Spectral Matched Filter

SNR Signal to Noise Ratio

SVD Singular Value Decomposition

SVDD Support Vector Data Description

SVM Support Vector Machine

VQ Vector Quantization





General Overview

Introduction

Imagine that a chef is cooking fugu (i.e., a possibly highly toxic japanese puffer fish) for 100

guests, and that to avoid a long wait, the chef has to respect a time constraint: each fugu

has to be prepared within ten minutes time frame. The chef has to make sure that each

fugu is well-prepared. If one of the fugu is not prepared well, the guest who eats it will die.

If the chef prepares the fishes fairly well, they are non-poisonous and taste quite good, but

not great. If the preparation is really well, then they taste very delicious.

In such a situation, it is likely that the chef will follow a minimax strategy, that is, he

will optimize the preparation of the fish with the aim that no fish is badly prepared, so

that none of the guests will be poisoned to death (i.e., the chef will minimize the maximum

risk). If he applies an “average performance strategy”, this could lead to a large fraction of

perfectly prepared fugus, but risking a small number of fatal fugus. In this setting, clearly

the chef cannot follow an average performance strategy, although on average, the fugus

would presumably be better prepared.

In connection to this illustrative example, this dissertation is about detection tests which

are designed to minimize some maximum loss instead of focusing on good average detection.

Signal Detection Theory (SDT) assesses mathematically the ability to distinguish between

correct and wrong decisions when facing uncertainty. From the point of view of SDT, signal

is an informative data plus noise, and noise is a random unwanted disturbance. Various

fields apply detection theory to analyze different kinds of decision problems. For instance,

in astrophysics, some scientists are interested in the study of very distant galaxies (known as

Lyman-↵ emitters) characterized by very faint spectral lines. Once the data (typically high

dimension) is acquired by a dedicated instrument, the first task is to detect the presence of

these targeted Lyman-↵ lines (at random unknown position) in the data. This is not an easy

task, as the data generally contains high noise. Moreover the spectral lines are very weak

with respect to (w.r.t.) noise and may present very different signatures. For this particular

application, focusing on average detection performance may lead to leave “atypical” spectral

profiles undetected. Since such atypical profiles may also be the most interesting ones, a

minimax approach appears relevant. This specific application case clearly motivated the

minimax detection study developed in this dissertation.

Other examples of possible applications for the proposed minimax detection strategy are

worst handwritten digits recognition, detection of cancerous cell or mines detection. For

the first example, minimax strategy would maintain correct recognition rate of handwritten

digits in worst-case scenarios, i.e., when the digits are written “badly” (hardly recognizable).

For the second example, cancer screening may involve the analysis of a tissue sample taken

from a patient. This sample contains a large number of cells and the cancerous cells have

specific signatures. If we miss the detection of even one cancerous cell, a wrong diagnostic

would be given to the patient. In regard of the last example, mines detection is very

important for civilian security. Some countries are contaminated with a large area of buried
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mines, left from the wars. This case requires a robust detector aiming at minimizing the

miss detection of all types of mines.

When dealing with a general detection problem, we are deciding whether a target is

present or is absent. This can be translated as forming statistical hypothesis models where

one assumes that only noise is present under the null hypothesis (H0), and the signal of

interest along with noise is present under the alternative hypothesis (H1). When there

are more than two uncertain events, one can also form multiple hypothesis models. The

observed data under each hypothesis are characterized by probability density functions

(PDFs), which are known entirely or just partially. A figure of merit in hypothesis testing is

the probability of detection (also termed power of a test) and its complement is called the

probability of miss. Following the minimax strategy, we will seek to minimize the maximum

probability of miss for a given set of possible alternatives.

The number of possible alternatives can be arbitrary, ranging from small sets (i.e., in

the tens or hundreds, in telecommunications symbols for instance) to very large sets (in

the hundred of thousands or more; e.g., in genomics or for samples drawn from numerical

models as we will see for hyperspectral application). In this dissertation, we focus on the

most interesting setting where we have a large number of possible target signals. This case

often arises when there are few known target signals, but those are registered with systematic

disturbances that can be modeled and sampled, leading to a large set of alternatives. In

other applications, the unknown target signal can have arbitrary variations. Numerical

simulations can then provide numerous possible templates of the target signal, yielding

again a large number of alternatives.

With regard to the large data set that we will consider, the detection problem dealt

with in this dissertation involves dictionary learning techniques. A dictionary is a smaller

representation of a large known data set (often called a library). The columns of this

dictionary are called atoms. In dimension reduction techniques, a dictionary is learned from

the reference library w.r.t. an optimization criterion. In line with the strategy mentioned

above, we shall apply worst-case (minimax) criteria to build the dictionary, instead of using

more common criteria such as the minimum Mean Squared Error (MSE).

Motivation

The main objective of this Ph.D thesis is to study techniques for detecting the presence of

very faint targets in highly noisy large data set. The spectral profiles are assumed known,

but the amplitude and position of the possible targets in the data, activated one at a time

under H1, are however unknown. Thus, our hypothesis model is composite.

These targets exhibit some diversity in their signatures. Some of them may share similar

features, which define an average or typical behavior. Some others may show very specific

or unique signatures. Those represent a dissimilar or atypical behavior. As a simple il-

lustration of this, assume our library is a a basket of mix fruits, where most of them are

apples, but there is also one banana in the basket. In this case, the average, typical shape

of the known fruits is roughly a sphere, while the atypical shape is a long curved-cylinder.

A classical detection test such as the Generalized Likelihood Ratio (GLR) test consists
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in this context of testing all the possible positions of the target signatures in the data with

amplitudes estimated by maximum likelihood. As a result, this test leads to a prohibitive

computation complexity if the size of the library is large.

Generally, when having a large library, a standard approach is to operate in subspaces

of reduced dimension (RD). There exists many reduction dimension methods such as the

Principal Component Analysis (PCA), the low rank approximation by SVD (Singular Value

Decomposition) or dictionary learning algorithms (e.g., K-SVD). An extreme example of

dimension reduction is by representing the large reference library by its sample mean vector.

As we will see, such an RD approach is indeed good for detecting most target signatures,

because it tends to represent the average behavior of the considered data. Reducing the

dimension in such a way leads to low detection power for atypical signatures because these

dissimilar targets may lie quite apart from the learned subspace (e.g., in the illustration

above, testing for a spherical shape when a “banana” is present under H1 yields a poor

matching). These effects are actually common to most classical dimension reduction tech-

niques, and will be illustrated in this dissertation.

Missing the target whilst it is present is a loss of interesting and important information,

for instance in the case of the detection of spectral lines emitted by galaxies in astrophysics.

Furthermore, for some applications such as mine detection, missing a single target may be

highly damageable.

We therefore choose to focus here on minimax RD approach relying on the classical GLR

test, where the subspaces are learned from the known library, with the aim to minimize (over

all alternatives) the maximum probability of miss of the GLR (i.e., a minimax strategy),

while controlling the probability of false alarm. We restrict the studies in this dissertation

to the GLR test as it can provide implementable testing procedures and further benefits

from important properties. It also allows to keep the complexity low. The identification

of the corresponding subspace is tackled as a dictionary learning problem for worst-case

detection scenarios. An important highlight in our framework is that conventional learning

algorithms do not perform well w.r.t. worst-case objectives, which call for specific learning

algorithms.

The optimization problem can equivalently be defined as maximizing the minimum

detection power i.e., a maximin problem. In the rest of this dissertation, we shall generically

use the term minimax.

Contributions

After a detailed study of the detection problems induced by classical detection methods

when testing a very large reference library, we propose reduced dimension models using

adapted (minimax) dictionaries that are learned from the reference library.

i. The first approach solves a one-dimensional (1D) subspace minimax learning problem,

in the form of quadratic programming (QP). Connections between this 1D optimiza-

tion problem and One-class classifiers of Support Vector Machine (SVM) type are also

investigated.



4 General Overview

ii. We find that the minimax optimization problem for general K-dimensional subspaces

(K > 1) is intricate. As a consequence, we turn to algorithms that solve approximately

the minimax optimization problem. The first algorithm which we call the Greedy

minimax algorithm functions in a greedy approach. The second algorithm is a variant

of the classical K-SVD technique, where the dictionary learning step is replaced by the

1D exact minimax solution (of i.), and the sparsity of the representation vectors is set to

one. We name this method K-minimax. Apart from these two minimax algorithms, we

also combine the 1D exact minimax solution with several clustering methods taken from

literature. This is a two-step approach. In the first step, we apply a chosen clustering

technique on the unit sphere to partition the known alternatives into K clusters. Then,

for each cluster, the minimax atom is generated. The concatenation of the resulting K

minimax atoms (each representing one cluster) forms the final dictionary of K columns.

The proposed algorithms (of i. and ii.) yield detection performances as good as testing

using the full library S, yet with lower complexity.

iii. Applications:

• The main motivation for elaborating the proposed methods is for the detection of

very faint and noisy Lyman-↵ spectral profiles in the MUSE (Multi Unit Spectro-

scopic Explorer) data cube. Comparing with K-SVD technique, we show that RD

tests using the proposed approaches yield higher detection power in worst-case

scenarios.

• Apart from astrophysics, we also illustrate in this dissertation minimax dictionary

for learning faces and consider a possible machine learning application for worst

handwritten digits recognition.

Several scientific publications and communications were presented in the framework of this

dissertation. The list of related publications is:

Journal article and International conference proceedings

1. Raja Fazliza Raja Suleiman, David Mary and André Ferrari. “Dimension reduction for

hypothesis testing in worst-case scenarios”. IEEE Transactions on Signal Processing,

vol. 62, no. 22, pp. 5973-5968, November 2014. [Suleiman et al. 2014a]

2. Raja Fazliza Raja Suleiman, David Mary and André Ferrari. “Subspace learning in

minimax detection”. IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), May 2014, pp. 3062-3066. [Suleiman et al. 2014b]

3. Raja Fazliza Raja Suleiman, David Mary and André Ferrari. “Minimax sparse de-

tection based on one-class classifiers”. IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), May 2013, pp. 5553-5557. [Suleiman

et al. 2013a]

4. Silvia Paris, Raja Fazliza Raja Suleiman, David Mary and André Ferrari. “Con-

strained likelihood ratios for detecting sparse signals in highly noisy 3D data”. IEEE
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International Conference on Acoustics, Speech, and Signal Processing (ICASSP),

May 2013, pp. 3947-3951. [Paris et al. 2013b]

Francophone conference proceeding

5. Raja Fazliza Raja Suleiman, David Mary and André Ferrari. “Parcimonie, appren-

tissage et classification pour une approche minimax en détection”. Actes du 24e

Colloque GRETSI sur le Traitement du Signal et Images, September 2013. [Suleiman

et al. 2013b]

Communication without proceeding

6. David Mary, André Ferrari and Raja Fazliza Raja Suleiman. “Détection de sources

astrophysiques dans les données du spectographe intégral de champ MUSE”. Actes

du 3e colloque scientifique SFPT-GH sur l’Imagerie Hyperspectrale, May 2014. [Mary

et al. 2014]

Organization of the dissertation

This Ph.D dissertation consists of three main Parts. The first Part introduces some fun-

damentals in detection theory and the principles of several techniques in fields related to

the framework of this dissertation (minimax criterion, spectral matching, dimensionality

reduction, sparsity). Chapter 1 deals with detection problems, associated tests and with

the minimax approach. Chapter 2 deals with target detection in Hyperspectral Imaging

(HSI), which is the primary application of this dissertation. The final Chapter in the first

Part, Chapter 3, describes basic principles in sparse modeling and RD learning techniques.

The second Part presents the main contributions of this research work. Chapter 4

investigates issues induced by classical detection methods which test exhaustively very large

reference libraries. In Chapter 5, two types of detection tests for RD models using minimax

dictionary learning methods are proposed. The first is a constrained GLR test, and the

second test is an unconstrained GLR. Next, Chapter 6 is dedicated to algorithmic aspects

based on the theoretical analysis in preceding Chapter. The proposed minimax (worst-case)

learning techniques for an arbitrary size dictionary are presented in this Chapter.

The third Part depicts some applications of the proposed worst-case detection tests.

Chapter 7 evaluates the proposed methods for the detection of spectral profiles in astro-

physical hyperspectral data of the MUSE instrument. Chapter 8 illustrates two applications

of the considered worst-case scenario from the viewpoint of machine learning: the first con-

cerns minimax learning of faces, and the second involves the recognition of handwritten

digits.





Part I

Introduction to technical topics

connected to the dissertation
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The first Part of this dissertation discusses basic aspects of several topics connected

to the principal detection problem investigated in this dissertation. These topics will be

further addressed in the following Parts II and III.

Chapter 1 conveys fundamental principles of statistical hypothesis testing. The as-

sociated probabilities characterizing a detection test are presented. It summarizes various

aspects to be considered when building a detection test and assessing its performances. The

Chapter outlines a comparison between frequentist and Bayesian approaches to hypothesis

testing.

Furthermore, we discuss in Chapter 1 some of the earlier works related to minimax

hypothesis testing. Generally, these approaches attempt to establish conditions with data

size and/or the Signal to Noise Ratio allowing to distinguish the null hypothesis from the

alternatives. We contrast this view with the definition of minimax (worst-case) criterion

retained in this dissertation. In our work, we aim to minimize the maximum probability of

miss, among a known and countable (large) set of possible alternatives, while controlling

the probability of false alarm.

Hyperspectral images are the main application of our proposed approaches in detection

testing. In line with this, Chapter 2 presents general knowledge on target detection in

Hyperspectral Imaging. Two categories of detectors often used in Hyperspectral Imaging,

namely Spectral Matching detectors and Anomaly detectors, are introduced.

The final Chapter in the first Part of this dissertation, Chapter 3, is dedicated to

various dimension reduction techniques found in the literature. In particular, sparse learning

algorithms are highlighted as they will be closely related to the proposed minimax detection

algorithms.





Chapter 1

Testing statistical hypotheses and the

minimax strategy

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Stating the detection problem into hypothesis model . . . . . . . . 12

1.3 Test statistics and associated probabilities . . . . . . . . . . . . . . 13

1.3.1 Test statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Performance characterization of a test . . . . . . . . . . . . . . . . . . 13

1.4 Tests based on likelihood function . . . . . . . . . . . . . . . . . . . 15

1.4.1 The Likelihood Ratio test . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 The Generalized Likelihood Ratio test . . . . . . . . . . . . . . . . . . 16

1.4.3 Decision rule and type of hypothesis tests . . . . . . . . . . . . . . . . 16

1.4.4 Evaluation of the test performances . . . . . . . . . . . . . . . . . . . 17

1.5 A glance at Bayesian approach . . . . . . . . . . . . . . . . . . . . . 21

1.6 Minimax approach in detection . . . . . . . . . . . . . . . . . . . . . 22

1.6.1 General minimax strategy . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.2 Minimax testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 Introduction

By means of Signal Detection Theory, one can assess statistically a decision making process

when facing uncertainty. The first approach to decision making was initiated in 1908 by

W. Gosset for small data sample, introducing the t-test to monitor the quality of beer for

his employer (Guinness) [Student 1908]. In the 1920s - 1930s, R. Fisher [Fisher 1925], J.

Neyman and E. Pearson [Neyman & Pearson 1933] concentrated their research works in this

domain, constituting groundbreaking theories and methods in the probability theory and

hypothesis testing. Making a decision (or conclusions) from observational or experimental

data is known as statistical inference. These data are modeled by probability distribution

functions, involving parameters which may be of interest (i.e., related to the signal one

wishes to detect) or not (they are then called nuisance parameters).
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The parameters of interest may be known or unknown. In the latter case, one have

to estimate these parameters w.r.t. a defined criterion such as the minimum MSE or the

minimax criteria.

In statistical inference, two main problems are

i. estimating the parameters of interest,

ii. testing hypotheses related to the probabilistic model.

The first problem seeks the “best” (w.r.t. a defined criterion) approximation of the param-

eters, while the second problem provides answers on the “best” match between the stated

hypotheses and the data.

The most basic form of hypothesis testing consists of two exclusive hypotheses, and

lead to the so-called binary hypothesis tests. Their extension is termed multiple hypothesis

tests.

There are basically four steps when making a hypothesis test: stating statistical hy-

potheses for the problem at hand, identify (derive) the test statistic, select a significance

level for the test, and draw conclusions for the data at hand.

There are two major approaches in statistical inference: the frequentist and Bayesian

approaches. The frequentist approach draws conclusions by inferring on a large number

of realizations, where the (possibly unknown) parameters remain fixed (i.e., deterministic).

The Bayesian approach fixes the data obtained from the realization, but the parameters are

not fixed and are described via probabilistic manner. This approach requires consequently

the knowledge of prior probabilities for each hypothesis. As we restrict the research work in

this dissertation to the GLR test (which is a frequentist method), this Chapter highlights

this approach. The Bayesian approach is nevertheless also presented briefly in this Chapter.

In relation to the framework of this dissertation, we present the minimax strategy in

hypothesis testing at the end of this Chapter.

1.2 Stating the detection problem into hypothesis model

In essence, a signal detection problem involves deciding whether a signal is absent or is

present in a noisy data set. The first step in hypothesis testing is to cast these exclusive

events into a pair of hypotheses. A binary hypothesis model can be written as

⇢ H0 : The signal is absent. This is the null hypothesis,

H1 : The signal is present. This is the alternative hypothesis.
(1.1)

If we have more than two exclusive events to be tested, this calls for multiple hypothesis

models, where there will be several alternative hypotheses (H1,H2, . . . ,HN ). For example,

multiple hypothesis testing is widely used in Genomics, for simultaneous detection of genes

w.r.t. hundreds of markers [Manly et al. 2004].

The objective of hypothesis testing is to quantify the decision making process and

draw conclusions w.r.t. the considered data set (whether to accept H0 or to reject H0,
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i.e., accepting the alternative). Owing to the randomness inherent to any data acquisition

process, each hypothesis is statistical in nature and described by PDFs, whose parameter(s)

may be known or unknown. In the case where the distributions are completely known, we

talk about simple hypothesis tests. In the contrary case, the tests are called composite.

1.3 Test statistics and associated probabilities

1.3.1 Test statistics

The second step in hypothesis testing is the computation of the test statistic, which allows to

evaluate H0 w.r.t. a decision rule. The test statistic (denoted by T ) is a single mathematical

function derived from the data set and allowing to perform the hypothesis test.

Let x = [x1, x2, . . . , xN ]
> be an experimental data vector (superscript > denotes a

transposition), the test statistic is expressed as a function of x

T (x) = T (x1, x2, . . . , xN ), (1.2)

where here, T : R
N 7! R. T (.) is deterministic but T (x) is random because x is the

realization of a random process.

Depending on the data PDF under both hypotheses, and on the available knowledge

on their parameters, there exists many ways to derive test statistics. For instance, the

well-known Likelihood Ratio (LR) test, as presented in Section 1.4.1 is the most powerful

test for a given probability of false alarm, but requires perfect knowledge of all parameters.

Deriving a statistically controllable test statistic is often not a straightforward task, as the

distribution of T (x) under H0 should be known and there should be a clear distinction

between its distribution under both hypotheses.

1.3.2 Performance characterization of a test

The significance level of a test (often denoted by ↵) is the probability of rejecting the null

hypothesis by mistake; meaning that we decide H1 but H0 is true. This is a so-called type

I error and the probability of making such error is known as the probability of false alarm:

PFA = P(decide H1;H0 is true). (1.3)

The complement of the probability of false alarm is named the probability of correct rejection

(PCR), which is the probability of correctly rejecting H1:

PCR = P(decide H0;H0 is true). (1.4)

Besides the probability of false alarm, another kind of mistake is deciding H0 when H1 is

true, namely a type II error. It happens with a probability called the probability of miss
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(PM) also denoted by β in the literature:

PM = P(decide H0;H1 is true). (1.5)

The complement of the probability of miss is termed the probability of detection (PDet),

also known as power of the test. This is the probability of correctly rejecting H0:

PDet = P(decide H1;H1 is true). (1.6)

Table 1.1 summarizes these probabilities.

a
a
a
a
a
a
a
a

a
aa

Truth

Decision

Decide H0 Reject H0

H0 True
Correct Rejection (1− ↵) Type I error (↵)

PCR = P(H0; H0) PFA = P(H1; H0)

H0 False
Type II error (β) Hit (1− β)

PM = P(H0; H1) PDet = P(H1; H1)

Table 1.1: Probabilities associated to the decision making process.

In hypothesis testing, the larger the probability of detection w.r.t. the probability of

false alarm, the most powerful the test is. A classical approach in optimizing a detector

is to fix one of the error while minimizing the other error (for instance fix the probability

of false alarm and calculate the test threshold, and maximize the probability of detection).

The Neyman-Pearson (NP, or LR test) detector does this (see Section 1.4.1).

Note finally that a detector is called “optimal” w.r.t. a specific criterion. For instance,

the NP maximizes the probability of detection for a fixed probability of false alarm consid-

ering deterministic and known parameters. This approach cannot be followed in the case of

composite hypotheses. A Bayesian approach (see Section 1.5) aims to minimize the overall

probability of errors which is evaluated under a probabilistic distribution of the parame-

ters and of the hypotheses themselves. We will see in this dissertation that under some

circumstances, a minimax criterion can be relevant in the case of deterministic parameters

for composite hypotheses. This approach aims at minimizing the maximum probability of

miss.

On another note, a post-data probability called the p-value represents the smallest sig-

nificance level at which H0 would be rejected, given observed data. When comparing the

p-value to the significance level of a test ↵ (1.3), one will either reject H0 or accept H0.

Assuming that H0 is true, the p-value associated to an observed test statistic Tobs is the

probability of observing the test statistic T as extreme as Tobs, namely (for a one-sided

right-tailed test)

p = P(T (x) ≥ Tobs|H0). (1.7)
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For instance, if the significance level of a (one-sided right-tailed) test ↵ = 0.05, and p = 10−4,

this means that one is confident to reject H0 because p⌧ ↵.

1.4 Tests based on likelihood function

This Section presents two hypothesis tests (LR and GLR) following the frequentist approach,

and their evaluation procedures. Let us consider the following statistical model

⇢ H0 : θ = θ0,

H1 : θ = θ1, θ1 6= θ0.
(1.8)

1.4.1 The Likelihood Ratio test

The LR test statistic, often denoted by Λ, is a simple hypothesis test (i.e., all the parameters

are known). Through a likelihood function, LR measures the fit of the data w.r.t. the

hypotheses. This function represents a probability function p(x;θ) of the observed data set

(x = [x1, . . . , xN ]
> 2 R

N ) parametrized by the parameters θ of the model. The likelihood

ratio for (1.8) under H1 against H0 is

Λ(x) :=
p(x;θ1)

p(x;θ0)
. (1.9)

This LR test statistic is compared to a test threshold γ which tunes the probability of false

alarm. This yields the test

LR : Λ(x)
H1

?
H0

γ. (1.10)

An important lemma addressing the detector that maximizes probability of detection

at a fixed probability of false alarm was introduced by Neyman & Pearson [Neyman &

Pearson 1933].

Lemma 1. The Neyman-Pearson Lemma (see Appendix A.1 for a proof). The likeli-

hood ratio test which rejects H0 : θ = θ0 in favor of H1 : θ = θ1 if

Λ(x) > γ, (1.11)

where

PFA = P(Λ(x) > γ;H0) = ↵, (1.12)

is the “Most Powerful test” of size ↵ for a threshold γ.

The NP lemma defines a rejection region of H0 and maximizes the Lagrangian associated

to probability of detection at fixed probability of false alarm. An example of LR testing is

given in Appendix A.3.1. Given the above lemma, the Neyman-Pearson Detector (NPD)

often acts as the reference for composite tests (see the comparisons of Section 4.3 and

Chapter 7).
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In the case where there are unknown parameters, LR cannot be implemented. In such

a case, one can turn to one generalization of LR test, termed the Generalized Likelihood

Ratio test.

1.4.2 The Generalized Likelihood Ratio test

The GLR test is a classical approach in composite hypothesis testing, widely applied in

decision theory because it is often simple to implement. Moreover, it can be shown that

asymptotically (in the number of data), GLR test is Uniformly Most Powerful1 among all

tests that are invariant2 (see, e.g., [Scharf & Friedlander 1994,Lehmann & Romano 2005]).

As its name indicates, GLR test is a generalization of the LR test, in which the unknown

parameter θ is replaced by its Maximum Likelihood (ML) estimate. This yields the test:

GLR : TGLR(x) :=

max
θ1

p(x;θ1)

max
θ0

p(x;θ0)

H1

?
H0

γ, (1.13)

where the sets over which the maxima are sought are disjoint. Appendix A.3.2 shows an

example of GLR test of a model with an unknown mean vector under H1.

For a GLR test, when the distribution of TGLR(x) under the null hypothesis is known,

we can compute the threshold (see for instance (A.22)) to obtain a desired probability of

false alarm. A detector that uses fixed threshold w.r.t. probability of false alarm is known

as a Constant False Alarm Rate (CFAR) detector.

1.4.3 Decision rule and type of hypothesis tests

To evaluate whether one rejects or accepts a hypothesis via the test statistic T , a decision

rule is required. In the Examples A.3.1 and A.3.2, we see that the decision rule is in the

form

T
H1

?
H0

γ,

where γ is a certain value of threshold. The null hypothesis is rejected if the test statistic

is more extreme than the threshold. Decision rule depends on the type (or, direction) of

hypothesis tests, which is determined by the alternative hypothesis. There are three types

of hypothesis testing: right-tailed, left-tailed, and two-tailed tests.

1Uniformly Most Powerful test: the test that maximizes the power of all alternatives against a fixed null
hypothesis among all tests of a given size.

2Invariant: the test statistic remains unchanged under transformations (rotations, translations and scal-
ings).
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Example 1.4.1. One-tailed and two-tailed parameter testing problems

Assume that H0 is the same for each type of hypothesis test given by the following

model

H0 : ✓ = ✓0.

The alternative hypothesis can be defined as

H1 : ✓, with ✓0 62 H1.

The associated models w.r.t. each type of hypothesis test are

i. right-tailed test: H1 : ✓ > ✓0,

ii. left-tailed test: H1 : ✓ < ✓0,

iii. two-tailed test: H1 : ✓ 6= ✓0.

H0 is rejected if the test statistic T falls within the critical region (i.e., the rejection region

of H0) . For the one-tailed tests (i. and ii.), there is only one side of critical region. For the

two-tailed test, the critical region is on both sides of the data distribution under H0. ⌅

1.4.4 Evaluation of the test performances

A common evaluation of detection test’s performance in a frequentist approach is by

plotting probability of detection w.r.t. probability of false alarm as a function of the test

threshold. This curve is called the Receiver Operating Characteristic (ROC) curve, a tool

developed in the 1950s. We show an example below.

Example 1.4.2. Associated probabilities for a one sided, right-tailed test.

Assume that we observe a realization of a scalar random variable X, which is distributed

according to the Gaussian PDF under both hypotheses, with known parameters ✓0, ✓1 where

✓1 > ✓0 and known variance σ2.

⇢ H0 : x ⇠ N (✓0, σ
2),

H1 : x ⇠ N (✓1, σ
2), ✓1 > ✓0

. (1.14)

The PDF under both hypotheses is given by

p(x;Hi) =
1p
2⇡σ2

exp

✓
− 1

2σ2
(x− ✓i)

2

◆
, i = 0, 1. (1.15)



18 Chapter 1. Testing statistical hypotheses and the minimax strategy

Following the LR approach, we have

Λ(x) =

1p
2⇡σ2

exp
(
− 1

2σ2 (x− ✓1)
2
)

1p
2⇡σ2

exp
(
− 1

2σ2 (x− ✓0)2
)

H1

?
H0

γ0

= exp

✓
− 1

2σ2
(x2 − 2✓1x+ ✓21 − x2 + 2✓0x− ✓20)

◆H1

?
H0

γ0 (1.16)

Taking the logarithm of (1.16) conducts to

Λ(x) =

✓
✓1 − ✓0

σ2

◆
x −

✓
✓21 − ✓20
σ2

◆ H1

?
H0

ln γ0

= x
H1

?
H0

σ2

✓1 − ✓0

✓
ln γ0 +

✓
✓21 − ✓20
σ2

◆◆

Λ(x) = x
H1

?
H0

γ. (1.17)

According to (1.17), we reject H0 if the test statistic is larger than γ, and since ✓1 > ✓0, the

critical region (where we reject H0) is on the right side of the data set distribution under

H0. This is a one-sided, right-tailed test as illustrated in Figure 1.1.

Next, we describe the associated probabilities of the test (1.17). The first type of error,

which gives the significance level of the test is formulated as

PFA = P(Λ(x) > γ;H0) =

Z +1

γ
p(x;H0) dx, (1.18)

and its complement, the probability of correct rejection

PCR = P(Λ(x) < γ;H0) =

Z γ

−1
p(x;H0) dx. (1.19)

The second type of error

PM = P(Λ(x) < γ;H1) =

Z γ

−1
p(x;H1) dx, (1.20)

which is also the complement of the power of the test

PDet = P(Λ(x) > γ;H1) =

Z 1

γ
p(x;H1) dx. (1.21)

Denoting by Φ the Cumulative Distribution Function (CDF) of a standard normal distri-

bution

Φ(x) =
1p
2⇡

Z x

−1
e−

u2

2 du, (1.22)
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we can write the probability of false alarm (1.18) and probability of detection (1.21) as

PFA = 1− Φ

✓
γ − ✓0

σ

◆
, (1.23)

PDet = 1− Φ

✓
γ − ✓1

σ

◆
. (1.24)

These probabilities are illustrated in Figure 1.1. As depicted, one cannot minimize

simultaneously the probabilities of error (probability of false alarm and probability of miss),

because minimizing the probability of false alarm results to maximizing the probability of

miss (consequently minimizing as well the probability of detection, PDet = 1− PM).



Figure 1.1: Distributions under hypotheses H0 and H1 of model (1.14), and illustration of

the probabilities associated to the test statistic (1.17). This test is called one sided and

right-tailed test (Λ?H1
H0
γ and ✓1 > ✓0).

⌅

The performance of a detector depends also on the Signal to Noise Ratio (SNR) associ-

ated to the test statistic. For instance, if a signal associated to NP detector (e.g., (1.17)) has

very low SNR, its PDFs are nearly flat and very wide, as shown in Figure 1.2 (dark purple

line under H0 and blue dash-dots under H1). In such a case, the probability of detection is

approximately equivalent to the probability of false alarm. If the associated SNR is high,

its PDFs become sharper and thinner (green line and black dash-dots in Figure 1.2).

The power of any test increases with the probability of false alarm (as also visible in

Figure 1.1). The ROC curve can be plotted to evaluate the power of a test at any probability

of false alarm. The ROC curve can be used to compare different tests at fixed SNR, or to

evaluate the evolutions of power for varying SNR.

Several examples of ROC curves are depicted in Figure 1.3, varying in performances.

The probability of detection and probability of false alarm decrease when the threshold

increases. An ideal detector would produce a ROC curve with a
L

shape (i.e., PDet = 1 at

all probability of false alarm values). However, such detector generally does not exist. For

example, NP detector tends towards this ideal detector only when its SNR ! 1. As the
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SNR increases, the PDFs in Figure 1.1 become sharper and thinner, as shown in Figure 1.2

(green line under H0 and black dash-dots under H1).

On the contrary, if we obtain a diagonal ROC curve (commonly called the “random

line”) where the detection rate is equal to the false alarm rate, this means that the SNR

is too low for the two hypotheses to be statistically distinguished, or that the particular

detector under investigation is completely inefficient to distinguish them. To measure

precisely the closeness of a curve to the diagonal (or vice versa, to the ideal), one can

compute the Area Under Curve (AUC) of the ROC, thus obtaining AUC value between

0.5 to 1 (random line to ideal detector). AUC will be used in Chapter 7).

DecideDecide

high SNR

high SNR

low SNR

low SNR

Figure 1.2: Illustration of the probability density functions (under H0 and H1) for high
SNR and low SNR associated to the test statistic (1.17) for model (1.14). For high SNR,
the PDFs become sharper and thinner (green line and black dash-dots). For low SNR, the
PDFs become flatter and wider (dark purple line and blue dash-dots), yielding PDet ⇡ PFA.
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Figure 1.3: Comparison of ROC curves: probability of detection against probability of false
alarm for two curves. Test 1 shows better performance than test 2. The yellow area depicts
the Area Under Curve of the ROC for test 2. The ROC curve can be used to compare
different tests at fixed SNR, or to evaluate the detection power of a same test for varying
SNR (i.e., SNR for blue dash dots ROC curve > SNR for solid red ROC curve). The
“random line” indicates that PDet = PFA.

1.5 A glance at Bayesian approach

The Bayesian method considers the unknown parameters as realizations of random variables

and assigns prior PDFs to them. Given a data vector x = [x1, . . . , xN ]
> 2 R

N , where

x = θ + n, let us consider the following model

⇢ H0 : θ ⇠ p0(θ),

H1 : θ ⇠ p1(θ),

where pi(θ) are the prior probabilities on the random parameter under Hi, i = 0, 1. The

Bayes’ theorem (also known as Bayes’ rule) defines the joint probability p(x,θ) in function

of posterior probability p(θ|x) and prior probability on the data p(x)

p(x,θ) = p(θ|x) p(x) = p(x|θ) p(θ), (1.25)

or in function of the likelihood p(x|θ) and the prior probability on the unknown parameters

p(θ). The posterior probability p(θ|x) is related to the probability of event θ given event
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x, which can be reformulated from (1.25) to

p(θ|x) = p(x,θ)

p(x)
=
p(x|θ) p(θ)

p(x)
. (1.26)

The PDF of the data under both hypotheses (H0 and H1) is

p(x|Hi) =

Z
p(x|θ) pi(θ) dθ for i = 0, 1. (1.27)

The Bayesian strategy to obtain an optimal detector is to minimize the probability of

error (PE)

PE = P{decide H0,H1 is true}+ P{decide H1,H0 is true}
= P(H0,H1) + P(H1,H0)

= P(H0|H1)P(H1) + P(H1|H0)P(H0)

PE = PM P(H1) + PFA P(H0). (1.28)

The probabilities P(H1) and P(H0) represent an initial belief in the stated hypotheses, and

it can be shown that (see Appendix A.2 for a proof) if one decides H1 when

p(x|H1)

p(x|H0)
>
p(H1)

p(H0)
= γ, (1.29)

then an optimal detector (i.e., one that minimizes PE) is obtained. This detector is termed

the Bayes Factor.

The test statistic minimizing the probability of error is

TBayes(x) :=
p(x|H1)

p(x|H0)
=

R
p(x|θ) p1(θ) dθR
p(x|θ) p0(θ) dθ

H1

?
H0

γ. (1.30)

In practice, it can be difficult to choose the prior PDFs and the integration might be

complicated. Appendix A.3.3 shows an example of a Bayesian test statistic.

1.6 Minimax approach in detection

The minimax strategy also sometimes called MinMax or MM aims to minimize a loss func-

tion in a worst-case scenario, hence the term minimax. The concept of minimax was first

applied in the game theory by Von Neumann [Neumann 1928] with the objective of mini-

mizing the maximum loss of each player in a zero-sum game. It can equivalently be viewed

as maximizing the minimum gain, a problem of type maximin.

In this dissertation, the detection problem is to maximize the minimum detection power

(i.e., probability of detection), following a maximin rule. We shall generically use the term

“minimax” to refer to this objective.

The first application of minimax strategy to statistical decision theory was introduced by
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Abraham Wald in the 1940s [Wald 1945,Wald 1950]. Following the work of Von Neumann,

A. Wald interpreted the zero-sum two players game as a statistical inference problem. He

restricted the game procedure to the case where the first player is viewed as “Nature”, which

follows distribution F . This distribution is made known to everybody. On the other hand,

the second player acts as a statistician, seeking a decision rule D to maximize the minimum

payoff of the game. The outcome (i.e., the payoff) represents a risk function: f(F,D). The

Wald’s maximin risk is defined as

D⇤ = sup
D

inf f(F,D). (1.31)

In the specific framework of detection, minimaxity has been studied widely in the lit-

erature. For instance, in Chapter 8 of [Lehmann & Romano 2005], maximin principle for

general decisions problems is discussed.

In Chapter 9 of the same book, maximin algorithmic aspects (of the problem introduced

in Chapter 8) are presented where the parameters and data samples are considered to be

finite or infinite.

In [Kassam & Poor 1985], minimax detection strategy is viewed as a robust approach

in signal processing because the worst-case detection performance is maximized, yielding

“stable” overall performances than other strategies that usually rely on minimizing the MSE

or minimizing the probability of error.

On another note, minimax arguments related to estimation risks paved in the 90’s

the road of sparsity promoting methods based on thresholding functions for denoising and

inverse problems [Donoho & Johnstone 1998]. Chapter 3 tackles the related topics on

sparsity.

This Section discusses the general strategy to minimax approach, and the particularity

of this approach applied in our framework.

1.6.1 General minimax strategy

Assume that we have an unknown parameter ✓ 2 Θ and a measurable function  2 Ψ,

associated to a function f . Minimax strategy deals with determining  to minimize the

function f , whilst computing ✓ to maximize f

inf
 2Ψ

sup
✓2Θ

f( , ✓). (1.32)

Consequently, a maximin problem can be defined as

sup
 2Ψ

inf
✓2Θ

f( , ✓). (1.33)

The minimax problem (1.32) is equivalent to the maximin problem (1.33) if f has a sad-

dle point [Sion 1958]. This type of problem not only occurs in statistical signal processing

for estimation theory or hypothesis testing, but also in machine learning for classification

tasks. In a classification task, minimax strategy consists in searching a decision bound-

ary that separates maximally the distance between this boundary and the data set [Boser
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et al. 1992].

In statistical decision theory, we often take f( , ✓) as a risk function, that is the expected

value of some loss function L w.r.t. the realizations of a random variable X

f( , ✓) =

Z

dom(X)
L( (x), ✓) p✓(x) dx, (1.34)

where ✓ 2 Θ is an unknown continuous parameter,  is a decision function and p✓(x) is the

probability distribution function of X (e.g., see [Lehmann & Romano 2005]). We then seek

to determine the decision function  minimizing f , which usually depends on an unknown

parameter ✓ 2 Θ. In this context, the minimax procedure is the form of (1.32).

1.6.2 Minimax testing

In the literature of (multiple) hypothesis testing, the case where rare and weak deviations

are suspected among a large number of null hypotheses has received an increasingly large

interest in the last decade, e.g., [Ingster & Suslina 2003,Donoho & Jin 2004,Arias-Castro

et al. 2010,Mary & Ferrari 2014]. In these works, the minimax approach attempts to estab-

lish conditions under which the joint null hypothesis can be asymptotically distinguished

from all alternatives of specific sets (typically sparse signals in `p balls3, with 0  p  1)

and to derive test statistics that provide such distinguishability.

Example 1.6.1. Minimax testing: distinguishing H0 and H1

In [Ingster & Suslina 2003], the authors considered the following model

⇢ H0 : ✓ = 0

H1 : ✓ 2 Θn
. (1.35)

For a given type I error, ↵ 2 [0, 1], the minimax criterion in this case is formulated as

minimizing over level-↵ tests, the maximum type II error (β)

TMM(↵,Θn) = inf
 2Ψ↵

sup
✓2Θn

β( , ✓), (1.36)

where Ψ↵ is a set of tests  of size smaller than ↵, 8↵ 2 [0, 1]. Here, Θn ⇢ R
n is considered

as continuous parameter (`p ball) and the hypotheses H0 and H1 are said to be

• distinguishable if TMM(↵,Θn) ! 0, n! 1.

• indistinguishable if TMM(↵,Θn) ! 1− ↵, n! 1.

These authors concluded that the condition of distinguishability holds if sets Θn contain

large enough signals.

3A close `p ball of radius r is defined as the set {x 2 R
N :

PN
n=1 |xn|

p  rp}.
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Note that a possible approach (e.g., [Jiao et al. 2012]) is to associate priors under the

alternative H1 in the form of distribution of the parameters ✓ 2 Θn. ⌅

1.7 Discussion

This Chapter presented some basic aspects of detection theory. We first showed how to

model a set of hypotheses given a detection problem, and detailed the four steps in hy-

pothesis testing: stating hypotheses from the problem, identify and derive the test statistic,

select a significance level of the test, and finally draw conclusions.

An example to calculate the probability of detection (power of the test) and probability

of false alarm once the corresponding test statistic is obtained was shown. These quantities

allow to evaluate the performance of a detector, for instance via a ROC curve where the

detection rate is plotted against the false alarm as a function of the test threshold. When

comparing many tests’ performances, we can assess the Area Under Curves of the ROCs.

The research work in this dissertation is based on a GLR test, hence the highlight on

the frequentist approach. Nevertheless, the Bayesian approach to hypothesis testing was

discussed briefly in this Chapter. Several examples of both approaches are provided in

Appendix A.3.1-A.3.3.

The general minimax (and maximin) strategy was also discussed in this Chapter. Min-

imax hypothesis tests in literature are usually asymptotic in the number of tests (thus in

the number of alternatives) and the amplitude under H1 has to be large (tends to infinity)

for a distinguishability between both hypotheses.

In contrast, we consider a “one among many” detection problem where under H1, only

one alternative si is activated belonging to a possibly large known library S 2 R
N⇥L =

[s1, . . . , sL]. This model writes

⇢ H0 : x = n, n ⇠ N (0, I)

H1 : x = Sα+ n, kαk0 = 1
,

where x and n 2 R
N . The alternatives of S are `2 normalized and we consider that N

and L are fixed. In our setting, we apply the maximin strategy to maximize the worst

probability of detection, at fixed probability of false alarm. Chapter 4 presents observations

at the origin of this strategy to our framework of detection. The following Chapter (5)

describes in detail the resulting theoretical aspects.

Before going into the detail of our proposed approaches in Part II, the next Chapter

talks about target detection in Hyperspectral Imaging and provides important elements to

understand the applicative part of this dissertation.
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2.1 Introduction

A picture represents a captured scene, and consists of two spatial dimensions (say, x and

y). The acquisition of spectral information on every spatial sample (or pixel) of a two-

dimensional picture is known as Spectral Imaging, which introduces a third dimension,

termed spectral dimension, represented by wavelength (λ) or frequency. Spectral Imaging

combines two scientific branches, namely spectroscopy and imaging (or, photography), al-

lowing the recording of electromagnetic spectrum beyond the range of visible frequencies.

Spectroscopy concerns the interaction between an object (or matter) and the radiation

energy as a function of the spectral channels. Gathering images from more than one fre-

quency band (i.e., different channels) along the spectrum is known as Multispectral Imaging,

yielding a three-dimensional image cube. Multispectral scanners deliver several images in

discrete and narrow bands, thus the data spectrum of an observed object is non continuous.

The advancement in remote sensing and the need to obtain ample spectral information of a

target (thousands of channels), led to a new paradigm termed Hyperspectral Imaging (HSI).

Hyperspectral Imaging opens a new variety of studies in signal and image processing

community as it provides contiguous and very narrow spectral bands that typically span

hundreds to thousands wavelength channels (Figure 2.1 depicts an example of a HSI data

cube). Thus, a vast portion of the electromagnetic spectrum is collected, providing more

spectral information than a classical multispectral image cube.

Note that, according to some authors, the difference between Multispectral and Hyper-

spectral Imaging is not the number of wavelength channels it spans, but the narrowness

of each band [Govender et al. 2007]. This distinction emphasizes the contiguous aspect

of spectral channels obtained from HSI. It means that a scanner with say only 18 bands
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but each 10nm wide covering the Near Infrared range is considered as Hyperspectral. In

contrast, a scanner with 18 discrete bands, covering the Visible, Near Infrared and Middle

Infrared range is considered as Multispectral (the width of each band is not very narrow,

hence non continuous spectral bands).

Spectral Imaging in general is used for Earth (ground and sky) and also space monitor-

ing, but it is not limited to only these applications. For instance, military uses this tech-

nology to surveil country’s frontiers, while astronomers observe planets, stars and galaxies.

With HSI, the obtained data cube expands the horizon of spectral imaging, where

the acquisition (as shown in Figure 2.2), is made by spectrometers, that can be airborne

(i.e., carried through the air by aircrafts, for example the AVIRIS instrument [Green

et al. 1998]), on the ground (e.g., integral field spectrographs built for telescope, like

the MUSE instrument [Caillier et al. 2012], see Section 7.2), or in space attached to

satellites (e.g., the Hyperion instrument [Pearlman et al. 2011]). Beside these large

instruments, handheld HSI sensors, which are far less expensive are also being used for

specific applications such as food monitoring (safety and quality) [Huang et al. 2014] and

the detection of aerosols in air [Hinnrichs et al. 2004].

Three core tasks in the processing of Hyperspectral Images are

• classification (i.e., assignment) of single pixels to a set of classes defined w.r.t. some

chemical or physical characteristics,

• unmixing of the pixel spectra to separate the pure spectrum of a certain material

(known as endmember) from the mixed pixels,

• detection of a target spectrum presents in the image cube, or more generally an

“object” which can spread on several pixels.

As one can imagine, HSI provides high spectral resolution images (very narrow band, typ-

ically  10nm wide), yielding thus huge data cubes. Despite the advantages of HSI, the

first difficulty (as far as information extraction in concerned) is due to the cost of high

volume data storage, and the second concerns the processing part, where the computa-

tion can be very complex (e.g., in astrophysics, the dimensions of the MUSE data cube

is 300 ⇥ 300 ⇥ 3600, which may lead to about 3.24 ⇥ 108 elementary mathematical opera-

tions for post-processing [Paris et al. 2013a]). For such very large data, the computation of

sophisticated algorithms might be intractable.

Note that most of the study in this dissertation focuses on techniques that exploit only

spectral information. Towards the end (Section 7.4), a numerical spatio-spectral simulations

are however also presented.

This chapter focuses on classical methods for the detection of target signatures present

in noisy hyperspectral image cubes. In the HSI literature, detectors can be categorized in

two types, namely the Spectral Matching and the Anomaly detectors [Manolakis et al. 2009].
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Figure 2.1: An example of a Hyperspectral image cube illustrated for the Multi Unit Spec-
troscopic Explorer (MUSE) instrument, of dimension 300 ⇥ 300 pixels at 3600 wavelength
channels [Caillier et al. 2012]. Image credit to the European Southern Observatory (ESO).

Figure 2.2: Illustration of the Hyperspectral image acquisition by satellite. The instrument
mounted on the satellite retrieves the reflectance radiations from all objects in the scene:
trees, soil and military tank, along with the atmospheric noise.



30 Chapter 2. Target detection in Hyperspectral Imaging

2.2 Target detectors

The similarity between target detection and classification in HSI is that both of these tasks

use spectral signatures to process the data pixels. Figure 2.3 from JPL-NASA shows the

concept of HSI for the AVIRIS (Airborne Visible InfraRed Imaging Spectrometer) instru-

ment. Each type of matter or objects (e.g., atmosphere, soil, water and vegetation) has

unique pure spectral signature and are known as the “endmembers”. Often, in classifica-

tion, the main objective is to separate the background from the object of interest (binary

classifier). A good classifier presents a low probability of misclassification.

Figure 2.3: Each pixel of the image cube represents a contiguous reflectance spectrum along
the wavelength channels. The knowledge on spectral signatures of each objects (e.g., atmo-
sphere, soil, water, and vegetation) concedes the processing of Hyperspectral images. These
pure signatures are called “endmembers”. Image credit to the Jet Propulsion Laboratory
(JPL) and NASA.

In the framework of target detection, the aim is to identify the target signature in the

noisy signals of the data cube. This is no difference with the classical binary detection

problem described in Chapter 1 (1.1), where one distinguishes the alternative hypothesis

(target present in the data) against the null hypothesis (target absent). The null is in this

case often considered as the background of the observed scene.

In the case where there are more than one target to be detected, it becomes a multiple

hypothesis detection problem. In classification, this conducts to a multiclass problem.
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A general strategy is then to treat multiclass problems as multiple binary classifications

problems. In this type of problems, there exists two approaches: one against all and one

against one. In the first approach, the distinction is made between each class and the rest

of the noisy signals. While for the one against one approach, the distinction is between one

class and another class (through a pairwise evaluation).

Geologists were the earliest who benefited from HSI for the detection of minerals and

vegetations in parks [Kokaly et al. 1998]. Not long after that, this technology (specifically in

detection) received a lot of interests in other communities such as military (e.g, for civilian

rescue [Eismann et al. 2009]), astrophysicists (detection of galaxies [Caillier et al. 2012,Paris

et al. 2013a]) and arborists (detection of infected trees in natural forests [Lee & Cho 2006]).

Beside the computation complexity of dealing with large data, other challenges of HSI target

detectors are low SNR of the image cube due to many factors such as atmospheric noise,

instrument’s noise: increased spatio-spectral resolution leading to low photon counts, or

inherently low amplitude target signatures. Furthermore, due to the high dimensionality of

a HSI data cube, testing a large number of pixels increases substantially the probability of

false alarm (see Section 4.3). To control the false alarm rate, the threshold level has to be

raised, resulting in the non detection of weak signals.

HSI target detection algorithms of the literature can be designed using statistical, phys-

ical or heuristic approaches. The performances of any detector are always evaluated using

statistical inference. Typically, an ideal detector is the one that maximizes the probability

of detection at a fixed probability of false alarm (i.e, the Neyman-Pearson criterion). Al-

ternatively, one can sometimes opt for a minimax criterion, as presented in the previous

Chapter 1.

For future reference, detailed comparison of the existing target detection algorithms for

HSI can be found in [Manolakis et al. 2009, Manolakis et al. 2014, Nasrabadi 2014]. The

following Sections discuss the particularity of the two detectors mentioned earlier, namely

Spectral Matching and Anomaly detectors.

2.2.1 Spectral Matching

The major difference between a Spectral Matching detector and an Anomaly detector is

that Spectral Matching requires a prior knowledge of the target spectral. This type of

detectors relies on Matched Filter principles, where one matches (or correlates) a known

target signal with the data spectrum under test to make a decision on its presence or

not in the data. Some examples of the existing methods in this category are Spectral

Matched Filter (SMF) [Robey et al. 1992], Matched Subspace Detector (MSD) [Scharf &

Friedlander 1994] and Adaptive Subspace Detector (ASD) [Kraut et al. 2001].
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Example 2.2.1. Spectral Matched Filter.

Let us consider the following detection problem, where we assume that target is absent

under the null hypothesis, and target is present under the alternative hypothesis in the form

⇢ H0 : x = n, n ⇠ N (0,Σ),

H1 : x = ↵s+ n, ↵ > 0,
(2.1)

where ↵ is an unknown amplitude, s 2 R
N is the known target spectral and n 2 R

N is

Gaussian random (background) noise, with zero mean, known and same covariance matrix

Σ under both hypotheses. The GLR for (2.1) is

TGLR(x) :=
max
↵>0

p(x;↵s)

p(x;0)

H1

?
H0

γ0, (2.2)

where γ0 is a threshold. Next, we calculate the ML estimate of ↵

↵ML = arg max
↵>0

p(x;θ) = arg min
↵>0

1

2
(x− ↵s)>Σ−1(x− ↵s)

∂

∂α

✓
1

2
(x>Σ−1x− 2s>αΣ−1x+ α2s>Σ−1s)

◆
= 0 ) αML =

s>x
s>s

. (2.3)

Injecting αML in (2.2) and taking the logarithm leads to

TGLR(x) = −1

2
(x− αMLs)>Σ−1(x− αMLs) +

1

2
x>Σ−1x

H1

?
H0

ln γ0

TSMF(x) =
s>Σ−1 xp
s>Σ−1 s

H1

?
H0

γ , s> (Σ− 1
2 )> IΣ− 1

2 x

kΣ− 1
2 sk2

H1

?
H0

γ, (2.4)

where γ =
p
2 ln γ0.

TSMF is thus a test that computes the (normalized) correlation between the whitened

target Σ− 1
2s and the whitened data Σ− 1

2x, and compares the result to a threshold γ. ⌅

Example 2.2.2. Matched Subspace Detector.

MSD deals with the problem of detecting under H1 a signal s = Sy 2 R
N that lies

in the subspace spanned by S (with S 2 R
N⇥p and presents in some independent noise

subspace (characterized by B 2 R
N⇥r). Let us consider the following model

⇢ H0 : x = Bθ0 + n, n ⇠ N (0,σ2
I),

H1 : x = Sy +Bθ1 + n, kyk22 > 0.
(2.5)

Bθi, i = 0, 1 lies in the subspace spanned by B, where θi 2 R
r, r < N−p, is considered un-

known. Matrices B and S are considered known, full-rank and linearly independent of each

other. The covariance matrix σ2
I is considered known and equal under both hypotheses.
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The GLR for (2.5) is

TGLR(x) :=

max
θ1

p(x;Sy +Bθ1)

max
θ0

p(x;Bθ0)

H1

?
H0

γ0, (2.6)

where γ0 is a threshold. The noise ni, i = 0, 1 under both hypotheses can be written as

n0 = x−Bθ0, (2.7)

n1 = x− [SB]


y

θ1

]
. (2.8)

Taking the logarithm of the GLR (2.6) and defining

nML
0 = arg max

θ0

n0, (2.9)

nML
1 = arg max

θ1

n1. (2.10)

leads to

TGLR(x) = − 1

2σ2
knML

1 k22 +
1

2σ2
knML

0 k22
H1

?
H0

ln γ0

=
1

σ2

(
knML

0 k22 − knML
1 k22

)H1

?
H0

γ = 2 ln γ0. (2.11)

Denoting PB = B(B>B)−1B> as the orthogonal projection onto the subspace spanned

by B, and PSB = [SB]
(
[SB]>[SB]

)−1
[SB]> as the orthogonal projection onto the

subspace spanned by SB, the ML estimates of n0 and n1 are [Scharf & Friedlander 1994]

nML
0 = (I− PB)x = P?

B x, (2.12)

nML
1 = (I− PSB)x = P?

SB x, (2.13)

where notation P?
M denotes the orthogonal projection on the subspace orthogonal to M

(in (2.12), M = B, and in (2.13), M = SB). Injecting nML
0 and nML

1 in (2.11) and using

the fact that a projection matrix is idempotent PM = PMPM and symmetric P>
M = PM

conducts to

TMSD(x) =
1

σ2

⇣
x>P?

B x− x>P?
SB x

⌘H1

?
H0

γ

=
1

σ2

⇣
x>(P?

B − P?
SB)x

⌘H1

?
H0

γ

TMSD(x) =
1

σ2
x>P?

B PG P
?
B x

H1

?
H0

γ, (2.14)

where G = P?
B S, the orthogonal projection of S on the subspace orthogonal to B. TMSD(x)
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is in the form of a generalized energy detector. The energy kPG P
?
B xk22: of x projected on

B? then on S then on B?. ⌅

The SMF (with Σ = I) projects the test pixel x onto the direction of the target signal

s to detect its presence in the noisy observation. In contrast, MSD projects the test

pixel x on B?, then on S and again on B?. The ASD [Kraut et al. 2001] is a general-

ization of the MSD for unknown covariance matrices. Those are estimated from the data set.

2.2.2 Anomaly Detection

When there is no prior knowledge of the target signature, a standard approach in HSI is to

use Anomaly Detection methods aimed at discriminating the pixels that are significantly

different from the background exhibited by the scene. The benchmark algorithm in this

category is the Reed-Xiaoli (RX) detector [Reed & Yu 1990]. The RX algorithm relies

on GLR and it is a CFAR type detector, where a threshold is computed by fixing the

probability of false alarm.

Example 2.2.3. Reed-Xiaoli anomaly detector.

To illustrate the RX detector, we assume that the background under H0 is modeled

as a Gaussian distribution with known mean µ0 and covariance Σ estimated from the

background scene. Under H1, the signal has unknown mean µ1 and the covariance is

assumed known and equal to the one under H0

⇢ H0 : x ⇠ N (µ0,Σ),

H1 : x ⇠ N (µ1,Σ),
(2.15)

where x 2 R
N . The GLR for (2.15) is

TGLR(x) :=

max
µ1

p(x;µ1)

p(x;µ0)

H1

?
H0

γ0, (2.16)

where γ0 is a threshold. Maximizing the numerator of (2.16) gives µML
1 = x, and injecting

this into the corresponding GLR (and taking the logarithm) yields

TRX(x) = (x− µ0)
>
Σ

−1(x− µ0)
H1

?
H0

γ, (2.17)

where γ = 2 ln γ0 is a threshold that will be calculated at a fixed PFA. Under H0, x ⇠
N (µ0,Σ) conducts to TRX ⇠ χ2

N . Then, PFA = P(TRX(x) > γ;H0) = 1 − Φχ2
N
(γ). The

corresponding threshold can be calculated according to a desired value of PFA

γ (PFA) = Φ−1
χ2
N
(1− PFA). (2.18)
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The probability of detection writes PDet = P(TRX(x) > γ (PFA);H1). The obtained test

statistic (2.17) shows that the RX anomaly detector measures the square of Mahalanobis

distance [Mahalanobis 1936] between the active pixel x and the background mean distri-

bution µ0. It is thus an energy detector. Note that, if the background is assumed to be

distributed according to the standard normal distribution (i.e, x ⇠ N (0, I)), the test statis-

tic (2.17) amounts to TRX(x) = kxk22?H1
H0
γ, which is a classical energy detector. ⌅

There are many variants of the RX test proposed in the literature. For instance, the

kernel RX addresses a non linear model where the original model is projected in a new high

dimensional feature space [Kwon & Nasrabadi 2005].

Other than the RX-based approaches, Anomaly detectors often rely on discriminative

principles, like in the Support Vector Data Description (SVDD) introduced by Tax and

Duin [Tax & Duin 2004]. This algorithm aims at finding the minimum volume of a closed

boundary sphere containing all data pixels. Banerjee et al. proposed for instance, an

Anomaly detector based on SVDD [Banerjee et al. 2006].

In the paper [Matteoli et al. 2007], the authors compare several Anomaly detection

strategies for the detection of man-made targets (e.g., car, building) in rural scenes. They

concluded that Anomaly detection method based on Orthogonal Subspace Projection (op-

erating with other methods: SVD, highest kurtosis1 and local RX) yielded the best per-

formance, in term of background suppression. This technique identifies the orthogonal

subspace w.r.t. the background, and projects the pixel vectors onto this subspace (thus

eliminating the background from the target).

2.3 Discussion

This Chapter first introduced briefly the concept of HSI. The main focus was then on the

target detection techniques in HSI, which can be categorized in two types, namely Spectral

Matching and Anomaly detection. Spectral Matching methods benefit from the known

reliable knowledge of the target spectra, hence they have larger detection power than the

Anomaly detectors. As we will see, the detection techniques considered in this dissertation

(described in Part II), may be seen as particular (i.e. robust, or minimax) cases of subspace

Spectral Matching.

When prior knowledge is encapsulated in a spectral data set, and that this data set is

large, detection tests traditionally operate in subspaces of reduced dimensions [Ardekani

et al. 1999,Fernandes 2010] which can be obtained by several techniques. In the framework

of this dissertation, we are interested in such data sets (known and high dimensional) and

in reduction dimension methods. Recent dimension reduction techniques are based on the

concept of learning from the samples. These topics, among others, will be studied in the

next Chapter.

1Kurtosis is a measure of “peakedness” and “tailedness” of a PDF [Pearson 1905,DeCarlo 1997], often
w.r.t. the normal distribution (whose kurtosis is µ4/σ

4 = 3, and its excess kurtosis is µ4/σ
4 − 3 = 0. µ4

denotes the fourth central moment and σ is the standard deviation).
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3.1 Introduction

3.1.1 Dimension reduction

Representing the complexity of data by means of a reduced but significant number of random

variables or parameters is the main objective of dimension reduction. This procedure is

particularly important in the modern age where most systems produce high dimensional

data, making the data processing and analysis very complex or even impossible.

In many fields such as astrophysics, medical, or information theory, the redundancy of

the data set allows an efficient dimension reduction. This is because the information of in-

terest always presents a particular statistical structure that makes it differentiable from pure

stochastic fluctuations (i.e., from the “noise”). This characteristic is called compressibility

in source coding.

For future use, let us assume that we have a known large data set S 2 R
N⇥L , whose

column vectors si, i = {1, . . . , L} are the information signals (a.k.a. features). In this

context, S is a reference library (or training samples) and dimension reduction on S consists

of representing it in lower dimension by statistical means, for instance via sparse learning
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algorithms. The obtained subspace, say the subspace spanned by matrix D 2 R
N⇥K ,

K < L, is a new mathematical representation of the reference library S.

The well-known Principal Component Analysis (PCA) method [Pearson 1901] is an ex-

ample of statistical dimension reduction. PCA is widely used for linear dimension reduction

because of its simplicity and efficiency. It involves an orthogonal transformation of the (pos-

sibly) correlated samples of library S into the same or smaller dimension of uncorrelated

atoms, namely the principal components. PCA relies on eigen analysis, where the first

principal component is associated to the largest eigenvalue, the second principal component

is associated to the second largest eigenvalue and so on. Such computations can be done

through the Singular Value Decomposition (SVD) of the library S (see Section 3.2).

We present next (in Sections 3.1.2 - 3.1.4) three families of approaches to dimension

reduction: classification and clustering, sparse learning, and other methods.

3.1.2 Classification and Clustering

When a data set is partitioned into a set of groups, there are two approaches used. The first

is called Classification, often used in supervised learning. The second approach is Clustering

(in an unsupervised learning context), where a set of available data is sorted into K groups,

each sample belonging to the same group (also called cluster) presents the same degree of

similarity w.r.t. a specific criterion.

Classification relies on two sets of data. One set termed training data is known. It is

used to obtain the learned atoms (which will be the representatives of specific classes) or to

find representative parameters through an optimization problem. The second set is a new

data set, called test data. When the new data arrives, it will be classified (i.e., assigned)

according to the learned atoms or the computed parameters. The algorithms of this type

aim to minimize the probability of misclassification.

In clustering, data set is partitioned into K-clusters based on some distance function,

and clusters’ representatives (termed centroids) are computed. The distance function has

to be defined between each samples, and for some algorithms, it is also defined between

clusters. For instance, this distance function can be the conventional Euclidean distance,

or it can be a correlation function. Clustering can be divided in two categories: Nearest

Neighbor (NN) clustering and Hierarchical clustering.

i. NN clustering first starts by fixing the number of clusters, then the samples are

partitioned into different clusters w.r.t. a distance criterion. The canonical clustering

algorithm is the K-Means algorithm [Lyold 1982, MacQueen 1967], which uses the

nearest mean (i.e., distance of data samples to their corresponding cluster centroids

computed as the intra cluster means) as the distance metric (the pseudo-code of

K-means algorithm is provided in Appendix A.5.1).

ii. Hierarchical clustering can be divided into two types: Agglomerative and Divisive

clusterings. Agglomerative clustering starts with one sample representing one cluster

(thus, for L samples, we have L clusters at initialization). Then the closest (as
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defined by a distance function) pair of clusters are merged into one cluster. This

is done successively, until obtaining the desired number of clusters (e.g., [Gowda

& Krishna 1978] proposed a hierarchical procedure using the nearest Euclidean

distance between clusters, and the stopping rule is based on the number of distinct

patterns they observed from the data set). Agglomerative clustering is often pre-

sented by tree diagrams (dendrograms), also known as “bottom up” approach. In

contrast, the Divisive clustering is a “top down” approach, where all data samples are

grouped in a single cluster at initialization, then the samples are partitioned recursively

into many clusters, towards L clusters. The algorithm stops before obtaining L clusters.

3.1.3 Sparse learning

Sparse learning techniques deal with the approximation of S by linear combination of few

vectors. The matrix collecting all the learned vectors (also named atoms) is called dictio-

nary, which is associated to a sparse representation vector, or matrix.

In regard to Section 3.1.2, sparse learning can be viewed as subspace clustering where

the centroids represent the atoms of the learned dictionary.

Sparsity of a signal refers to the number of non-zero elements it contains, e.g., the

sparsity of y = [0.8, 0, 0, 1, 0, 0.9, 0]> is three. Mathematically, sparsity is expressed by

the `0 pseudo-norm: kyk0 = #{n : yn 6= 0}.
If the dictionary is assumed known, we can find the sparse representation vector(s)

using sparse coding algorithms such as the Matching Pursuit (MP) [Mallat & Zhang 1993],

the Orthogonal Matching Pursuit (OMP) [Mallat et al. 1994,Pati et al. 1993] or the Least

Absolute Shrinkage and Selection Operator (LASSO) [Tibshirani 1994].

If the dictionary is unknown, we turn to sparse dictionary learning techniques. One of

the earliest work in dictionary learning is called the Method of Optimal Directions (MOD)

[Engan et al. 1999] shown in Appendix A.5.2. A reference algorithm in this category is called

K-SVD [Aharon et al. 2006] (see Appendix A.5.3 for an example), which is a generalization

of the K-means method.

The Compressed Sensing theory and technique were introduced in 2004 which exploit the

naturally sparse signal present in specific applications and rely on sparse coding algorithm to

recover unknown signals [Donoho 2004a,Emmanuel et al. 2004]. One of its most successful

application is in medical imaging, where the costs in term of time and price are reduced

significantly through the the small number of measurements. This is particularly a major

advantage when treating young patients that cannot stay still for a long duration (e.g., for

an MRI1 examination).

On other note, around 2007, Elad, Milanfar and Rubinstein were among the first who

highlighted two different models in sparse regression problems: synthesis and analysis [Elad

et al. 2007]. We focus on the synthesis model in our framework. Nevertheless, the analysis

sparse model is described in Appendix A.4.

1MRI: Magnetic Resonance Imaging
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3.1.4 Other methods

The third approach to dimensionality reduction is based on the projection of reference

library onto interesting directions (as defined by each method), or onto manifolds that best

represent the samples. Most of the approaches in this category are non linear. A classical

non linear dimension reduction method is termed Sammon projection [Sammon 1969] and

involves a gradient descent algorithm to map high dimensional space onto lower dimensional

space. As another example, the Locally Linear Embedding technique [Roweis & Saul 2000]

uses linear weighted coefficients and seek to maintain the neighborhood structure of the

data in the ambient space.

The following Sections of this Chapter present further explanations on dimensionality

reduction approaches, emphasizing the sparse learning approach in the search of data-driven

dictionaries.

3.2 Low rank matrix approximation

Dimensionality reduction exploits the compressibility of the considered data set S. A math-

ematical procedure often used for data reduction is the low rank matrix approximation

(through the Eckart-Young theorem, [Eckart & Young 1936]), which can be formulated by

the constrained optimization problem

min
bS

kS − bSk2F subject to rank(bS) = rank(S) (3.1)

where k · kF denotes the Frobenius norm. This problem can be solved through SVD (of

rank bS, say r). The approximated matrix is

bS = UΣrV
>, (3.2)

where Σr 2 R
N⇥L is a diagonal matrix containing the r largest singular value of S. U 2

R
N⇥N and V 2 R

L⇥L are respectively left-singular and right-singular matrices. ΣrV
> is a

sparse matrix (by rows, see Figure 3.1) and Ur (gray columns of U in the third subfigure

of Figure 3.1) is often used in dimension reduction techniques to represent S in lower

dimension.

As we will see, the approximation by SVD tends to produce atoms (columns of Ur here)

that capture some average behavior of the data set (like most optimization method based on

minimizing the MSE). Indeed, it is well known that `2 norm is sensitive to outliers (the large

distance of these outliers being magnified by the `2 norm). Hence, it seems a bit paradoxical

that this criterion represents “well” the average behavior of the data samples. In fact, MSE

estimates are perturbed by outliers, but not explicitly seek to represent well such samples

that are far from the mean. A minimax dimension reduction does this. This observation is

an important point of Part II (e.g, see Section 4.3, Examples 5.2.1 and 6.3). In Part III, we

will compare, among others, SVD based algorithms with the proposed minimax approaches.
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}irrelevant

=

sparse (row)

=

=

}

Figure 3.1: Singular Value Decomposition of matrix S 2 R
N⇥L and its low rank ap-

proximation bS of the same dimension. White areas represent zero elements and yellow
areas indicate irrelevant values. The first subfigure illustrates the decomposed matrices
U 2 R

N⇥N ,Σ 2 R
N⇥L(diagonal matrix) and V

> 2 R
L⇥L obtained from SVD of S. The

rows N + 1 to L of the matrix V
> are irrelevant w.r.t. S. The second subfigure depicts

low rank approximation of S, where Σr contains the r largest singular value of S with
the others set to zero. The last subfigure shows that ΣrV

> is a (row) sparse matrix. Ur

contains the r atoms representing S in lower dimension.

3.3 A glance at sparsity promoting method in signal

processing

3.3.1 Basic model for the sparse representation of vectors

The concept of sparse modeling originated from the problem of recovering a high dimensional

signal from a low dimensional signal [Chen et al. 1998]. In a viewpoint of linear algebra, it

is equivalent to seeking a solution of an underdetermined linear system where the number

of unknown variables exceeds the number of equations.

Assume that an informative signal s 2 R
N admits linear relation

s = Dα, (3.3)

where the dictionary D 2 R
N⇥K is a full rank matrix (typically, K > N) and α 2 R

K is an

unknown sparse vector. In this setting, D is fixed or assumed known. Sparse approximation

(also termed sparse coding) typically approximates s by the following optimization problem

bα = arg min
α

kαk0 subject to ks−Dαk22  ε, (3.4)

where ε is an error threshold. According to (3.4), we are searching the sparsest solution of an

underdetermined system. By this, we expect that the sparsity of kαk0 := k is inferior to the

dimension N of s. In this setting, the estimated vector bα is called the sparse representation



42 Chapter 3. Dimension reduction and sparse representations

of signal s.

Once we obtain bα, the signal of interest can be approximated by: bs = Dbα. Figure 3.2

illustrates the approximation, where bα points out the k-columns of D that best represent

s (once weighted by the non-zero amplitudes of α). In other words, the signal s can be

approximated by linear combination of few atoms. Often, this is a good approximate model

of initial signals for appropriately chosen D.

=

0

0

0

0

0

0

0

Figure 3.2: The concept of synthesis sparse modeling. The signal s 2 R
N can be approx-

imated by linear combination of few atoms, where D 2 R
N⇥K is a known dictionary and

bα 2 R
K is the sparse representation vector. In this example, sparsity of bα is kαk0 = 3.

3.3.2 Basic approaches for sparse approximation

The optimization problem (3.4) is however combinatorial. In 1993, Mallat and Zhang set a

stepping stone in the sparse representation field [Mallat & Zhang 1993]. They proposed a

greedy method, named Matching Pursuit (MP) to solve approximately this `0 optimization

problem. MP consists of finding a good (if not best) matching projection on the known

dictionary D, in the sense that the resulting estimate of s is close to yield the smallest

possible representation error for a given k. In this setting, representation error is defined

by : e = s−Dbα. MP identifies exploratory atoms dj (columns of D) by projection of the

current representation error. However, MP only projects the representation residual onto

the last identified atom. This decreases the ability of the algorithm to efficiently capture

a large part of the signal’s energy in the subspace generated by the identified atoms. As

a remedy, an extension termed Orthogonal Matching Pursuit (OMP) has been proposed

[Mallat et al. 1994,Pati et al. 1993], where the residual is orthogonalized w.r.t. all previously

selected atoms. This assures that the same atom will not be selected again. Many other

greedy sparse coding algorithms exist (e.g., SP [Dai & Milenkovic 2009], IHT [Blumensath

et al. 2007], CoSaMP [Needell & Tropp 2009]).

In a global (instead of greedy) approach, the `0 pseudo-norm can be relaxed to `1 norm,

such as the problem [Donoho 2004b]

bα = arg min
α

kαk1 subject to ks−Dαk22  ε, (3.5)
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or through `1 norm regularizer

bα = arg min
α

ks−Dαk22 + µ1 kαk1, (3.6)

a problem termed LASSO [Tibshirani 1994]. `1 promotes strict sparsity [Donoho 2004b]

and benefits from convexity properties.

Problem (3.6) can more generally be written in `p norm, yielding a regularization term

µp kαkpp, where 0 < p  1. For p < 1, the regularization problem maintains its sparsity

promoting property, but it is more difficult to solve because of the non-convexity of the

objective function.

3.3.3 Basic model for the sparse representation of matrices

If we have many column vectors si belonging to a large matrix S 2 R
N⇥L, relation (3.3)

becomes

S = DA, (3.7)

where D 2 R
N⇥K is a known or fixed dictionary and A 2 R

K⇥L, (K  L) is the unknown

representation matrix to be estimated. The sparse approximation problem corresponding

to (3.4) is

8i, cαi = arg min
αi

kαik0 subject to kS −DAk2F  ε, (3.8)

where αi are the columns of the sparse representation matrix A. We can indeed use sparse

coding algorithms such as MP or OMP to estimate each sparse vectors cαi.

In a different problem, we may be interested in optimizing on D such that the error

E = S − DA is minimized (in Frobenius norm) for fixed A. This is called dictionary

update, see Section 3.4.

In view of the previous discussion, an efficient sparse approximation is possible when we

have a “good” dictionary D. Image and audio processing communities have been using some

generic dictionaries to reconstruct signals (such as the wavelets (localized in time-frequency)

[Mallat 2008], and Discrete Cosine Transform (represent oscillations)). Although these

pre-defined dictionaries work well, dictionary adapted to specific data sets are sometimes

more appealing and efficient in some applications. Learned dictionaries may outperform

generic dictionaries for image denoising [Aharon et al. 2006,Elad & Aharon 2006] and be

very efficient for other tasks such as blind source separation [Abolghasemi et al. 2012] or

classification for object recognition [Zhang & Li 2010,Kong & Wang 2012]. The following

Section 3.4 presents the principles underlying sparse dictionary learning techniques, allowing

to obtain optimized, data-driven, dictionaries.
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3.4 Sparse dictionary learning algorithms

In contrast to Section 3.2, where the dictionary was optimized using SVD, sparse learning

methods incorporate in the dictionary learning problem sparsity promoting criteria and

build an optimized dictionary from the samples. Here, we seek both the representation

vector or matrix, and the dictionary.

In the synthesis sparse linear problem presented in Section 3.3, S = DA, the dictionary

is assumed known. For sparse learning, we search two variables, the dictionary D and the

representation matrix A, where each columns αi, i = 1, . . . , L are k sparse. Extending the

problem (3.8) by imposing constraint on A, it now becomes a joint optimization problem

min
D,A

kS −DAk2F subject to 8i = 1, . . . , L, kαik0  k. (3.9)

With regard to (3.9), sparse learning techniques most often alternate between a sparse

coding step and a dictionary update step. In the sparse coding step, the dictionary D

is fixed and the unknown representation matrix, A, is calculated. In the second stage,

the dictionary is updated. In many dictionary learning algorithms, the columns of D are

normalized (i.e., kdjk22 = 1, j = 1, . . . , k).

The idea of sparse learning originated back in 1996, when Olshausen and Field searched

an answer on how to determine a model that best describes the population of simple cells

in the primary visual cortex [Olshausen & Field 1996]. According to them, a classical

learning method such as PCA is not suitable in describing natural images (e.g., containing

curves and edges). Since most of natural images have a sparse structure, they exploited

this characteristic. Their investigations were fruitful as they obtained learned dictionaries

that possess similar properties resembling the simple cells, suggesting that optical cells are

in some sense sensitive to the sparse structure contained in the images.

Following this work, many other algorithms were proposed such as the Method of Opti-

mal Directions [Engan et al. 1999] (see pseudo-code in Appendix A.5.2) or the well-known

K-SVD algorithm described in Appendix A.5.3. The K-SVD algorithm will be used as

comparison to the proposed approaches in the following Parts II and III of this dissertation.

Both of the mentioned algorithms, MOD and K-SVD proceed in two-steps dictionary

learning approach. The sparse coding stage is the same: the sparse representation matrix

A is computed through pursuit algorithms. However, in K-SVD, the corresponding values

of these sparse coefficients are also updated in the dictionary update stage through the

decomposition by SVD. As another difference between these two algorithms, MOD uses

the general solution to least squares problem to learn its dictionary (i.e., all columns are

computed simultaneously). In contrast, K-SVD updates its dictionary one atom at a time

by the best rank one approximation (in Frobenius norm) of the restricted residual data ER

(and simultaneously updates the non-zero coefficients in A). MOD is an effective learning

method, but when the known data is large, it induces a large computation complexity (due

to the matrix inversion in the dictionary update stage).
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3.5 Discussion

We have reviewed in this Chapter various basic aspects related to dimensionality reduction,

in particular clustering and low-rank sparse dictionary learning techniques. The emphasis

on sparse learning techniques is related to the principal application of our research work in

detection, where under the alternative hypothesis only one signal (in the form of a spectral

emission line) from a known library can be activated in the data under the test. In addition,

some spectral lines can be very atypical (see Chapter 7), posing the question of a criterion

allowing robust detection of such profiles.

In the next Chapter, numerical simulations will show that conventional learning algo-

rithms (based on SVD) do not perform well w.r.t. minimax objectives in a GLR test. These

observations will lead to specific optimization issues and will call for dedicated learning al-

gorithms investigated in Chapter 5.





Part II

Subspace Learning in Minimax

Detection: proposed methods
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The second Part of this dissertation investigates the problem of detecting a target signal

belonging to a known and possibly large library S 2 R
N⇥L = [s1, . . . , sL]. In the considered

framework, we will assume that under the alternative H1, only one si 2 S can be activated

in the test data under the alternative, with some amplitude ↵, in the presence of known

Gaussian noise n ⇠ N (0, I). The index i and amplitude ↵ are however both unknown.

This problem can be modeled under H1 as: x = αS + n with a sparsity constraint

kα|k0 = 1 (imposing that only one si is activated). We call this the “exact” model, because

it precisely corresponds to our assumptions.

Some of the target signals can however be very atypical w.r.t. the others, in the sense

that their geometry may be quite different from the prototyped geometry of the targets S.

This poses the question of the robustness of the detection scheme w.r.t. such profiles.

The specific application that motivates the study of this problematic concerns the

detection of faint spectral line of primordial galaxies (also known as the Lyman-↵ emitters)

in HSI data. In the data, each spectral line appears, if present, shifted in wavelengths by

an a priori unknown amount (which depends on the galaxies’ distances), leading to a very

large library of possible features under H1. Other illustration of this problem occur for

other large sets of target spectra, e.g., for rare minerals detection or for identification of

infected trees.

Chapter 4 examines detection performances based on the 1-sparsity-constrained GLR

using the exact model above. A first and immediate issue of this approach when operating

with large sets of alternatives is the computation complexity. In this regard, we also study

a GLR test using a toy reduced dimension method (SVD) but computationally low and

we compare it with the test using the exact model. The investigations’ results show that

reducing the dimension of the test may lead to a substantial loss of detection power for some

(atypical) alternatives. We will see that this effect should not be attributed to the overly

simplistic dimension reduction used, but to the very principles used in traditional dimension

reduction techniques. This conducts us to propose reduced models w.r.t. a robust criterion,

as presented in the succeeding Chapter.

We propose in Chapter 5 reduced dimension detection tests based on the GLR and

aimed at maximizing the detection performance in the worst-case scenarios occurring

under H1. The dimensionality reduction is performed by learning from S a low dimension

dictionary D⇤ 2 R
N⇥K , (K < L). The minimax criterion is set up to address the

problem of maintaining as much power as possible for the detection of atypical signatures,

while reducing the computational complexity of the test w.r.t. a 1-sparse GLR over S.

The considered reduced dimension model used to implement the test imposes a sparsity

constraint on the unknown amplitude vector, similarly as for the exact model.2

2As a separate research axis, we also propose in Section 5.3 an alternative reduced dimension test, which
does not promote sparsity. However, for an arbitrary size dictionary (K > 1), the optimization problem
for this second reduced model is non-convex. Owing to the satisfying results obtained with the approach
proposed in Section 5.2.4, we have not pursued in this direction (by trying to find suboptimal algorithms
in the spirit of those of Section 5.3.
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Following the analytical analysis of Chapter 5, the succeeding Chapter 6 describes in

detail the proposed minimax learning algorithms. The learned dictionaries D⇤ are expected

to capture all shapes of signatures in S, particularly the atypical ones (as those generally

induce the worst-case scenarios). The first approach is a greedy type learning algorithm

based on the analysis of Section 5.2.4. We call this algorithm “greedy minimax”. The

second approach arises from the general strategy of injecting minimax objectives in standard

dictionary learning algorithms. In this regard, we propose a variant of K-SVD algorithm,

where the dictionary update stage is replaced by the exact one-dimensional minimax solution

found in Chapter 5. We name it K-minimax algorithm. The last algorithm combines

clustering techniques found in the literature (e.g., Spherical K-Means (SKM)) with the

exact one-dimensional minimax solution.

The proposed greedy minimax and K-minimax algorithms constitute the most inter-

esting detection tests used for the application to astrophysical data in Part III (Chapter

7).
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Some analyses and results presented in this Chapter were published in [Suleiman

et al. 2013a,Suleiman et al. 2014a].

4.1 Introduction

We have seen in Part I the basic aspects of various topics related to our research work

in detection. This chapter introduces the principal detection problem that we are dealing

with: assume S 2 R
N⇥L = [s1, . . . , sL] is a known reference library of L alternatives.

Assume further that under the alternative H1, only one target signature si 2 S is activated.

The amplitude of the active signal and its index i (location in S) are however considered

unknown.

The number of possible target signatures L can be arbitrary, ranging from small sets

(i.e., in the tens or hundreds, in telecommunications symbols for instance [Sklar 2011]) to

very large sets (in the hundred of thousands or more; e.g., for samples drawn from numerical

models [Berk et al. 2005]). In this dissertation, we focus on the most interesting setting

where L is very large (but always fixed and finite).

In some applications like in HSI, the case where L is very large systematically arises when

there are few known target signatures, but those are registered with systematic disturbances

than can be modeled and sampled [Berk et al. 2005]. This leads to a possibly huge library

S. In other applications, the unknown target signal can have arbitrary variations. In such

cases, numerical simulations can provide numerous possible templates of the target signal

yielding again a large reference library. We will see an example of such case in Chapter 7

when dealing with the detection of spectral lines in an astrophysical application.
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When facing with this specific detection problem, a straightforward approach is to test

with a GLR all the possible alternatives in S (what we call below using the exact model).

Consequently, we investigate in this Chapter the detection performances of such a test. As

previously mentioned, the framework of this dissertation is restricted to the GLR approach.

In addition, to decrease the computation complexity of using the full library in the

detection approach, we also examine in this Chapter the effects of a test which uses a

very simple reduced dimension method (SVD). This toy test allows nevertheless to exhibit

important effects related to dimension reduction, in particular regarding the power loss that

may affect some alternatives.

4.2 Exact detection model and associated GLR test

The detection problem discussed in Introduction can be written using the following com-

posite hypotheses ⇢ H0 : x = n, n ⇠ N (0, I)

H1 : x = Sα+ n, kαk0 = 1
, (4.1)

where x and n 2 R
N . Throughout the second Part of this dissertation, the corresponding

composite hypotheses models assume no (or perfectly subtracted) background, and a co-

variance matrix that is known and equal under both hypotheses. In the case of a correlated

noise model with covariance matrix Σ, i.e., H1 : x = Sα + n, n ⇠ N (0,Σ), “whitening”

the data by Σ
− 1

2 indeed yields a model of the form (4.1).

Without loss of generality, the columns of the known library S 2 R
N⇥L = [s1, . . . , sL]

are normalized1 : ksik22 = 1, {i = 1, . . . , L}. By this, we consider that the finite set

S = {s1, . . . , sL} is a collection of points on the unit sphere as a function of their shapes,

all having the same energy. This normalization is due to the unknown amplitude ↵.

The 1-sparse constraint on the unknown vector α 2 R
L imposes that under H1, only

one signal si of unknown amplitude ↵i is activated. The SNR of x is then controlled by the

magnitude of the amplitude ↵ under H1: SNR(dB) = 10 log10
↵2ksk
σ2 = 10 log10 (↵

2). Thus,

we compare the detectability of alternatives as a function of their shapes, all having the

same energy.

Model 4.1 specifies no distribution under H1, i.e., we do not specify a discrete distri-

bution reflecting the probability of activation of each possible alternative under H1; all

alternatives are considered equally likely to be activated. As a final remark, in our frame-

work, the dimensions of S, set by N and L, together with the SNR, are fixed and finite

numbers.

The constrained GLR for model (4.1) is

TGLR(x,S) = max
α:kαk0=1

p(x;Sα)

p(x;0)

H1

?
H0

γ0, (4.2)

1If the set si, i = 1, . . . , L are not normalized, we can obtain (4.1) as follows. Assume S0 is a non
normalized matrix. The normalization writes S0 = SH, where H 2 R

L⇥L is a diagonal matrix, containing
the inverses of the norms of the vectors of S0.
Then under H1: x = S0β + n, kβk0 = 1 , x = SHβ

|{z}

α

+n = Sα+ n, kαk0 = 1 as in (4.1).
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where γ0 is a threshold. Under H1

p(x ;Sα) =
1

(2⇡)N/2
exp

✓
−1

2
kx− Sαk22

◆
. (4.3)

We shall seek the Maximum Likelihood estimate of α. The maximization has to be per-

formed over the index i, {i = 1, . . . , L} of the non-zero component, and over the corre-

sponding value ↵i. Maximizing the numerator of (4.3) conducts to2

αML = arg min
α:kαk0=1

kx− Sαk22, (4.4)

and fixing i implies

↵ML
i = arg min

↵i:k↵ik0=1
(kxk22 − 2↵is

>
i x+ ↵2

i ksik22), (4.5)

where ksik22 = 1 for {i = 1, . . . , L}, which leads to

∂(−2α>
i s

>
i x+ α2

i )

∂αi
= 0 ) αML

i = s>i x. (4.6)

Maximizing over the index i gives

bi = arg min
i=1,...,L

(kxk22 − 2αML
i s>i x+ (αML

i )2),

= arg min
i=1,...,L

(kxk22 − 2(s>i x)
2 + (s>i x)

2), (4.7)

bi = arg max
i=1,...,L

(s>i x)
2.

The non-zero element of the constrained ML estimate of α is αML
bi

= s>
bi
x. Taking the

logarithm of (4.2) and injecting αML
bi

yield

max
i

−1

2

⇣
kxk22 − 2(s>i x)

2 + (s>i x)
2
⌘
+

1

2
kxk22

H1

?
H0

ln γ0. (4.8)

Or equivalently the following test

TMax(x,S) = max
i=1,...,L

|s>i x|
H1

?
H0

γ, (4.9)

where γ =
p
2 ln γ0 is a threshold controlling the probability of false alarm. This threshold

can always be computed by Monte Carlo simulations. This is necessary in the general

setting where S is not orthogonal.

This test (4.9) is known as the scan statistics, extreme value test or Max test [Donoho &

Jin 2004,Arias-Castro et al. 2005,Arias-Castro et al. 2010,Arias-Castro et al. 2011]. In this

2In (4.2) the max is a sup but having αML = 0 happens with probability zero in practice.
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dissertation, we refer to it as Max test. The following Section investigates the evolution of

the detection performances of TMax(x,S) as the size L of library S grows.

4.3 Complexity and loss of performances

The alternatives under consideration in the illustrative example considered in this Section

are signals modeling spectral signatures of distant galaxies obtained by numerical mod-

els [Verhamme et al. 2012], 100 of which are shown in Figure 4.1(a). We consider these

signatures may appear as emission or absorption lines and in this example have all their

maximum at the same spectral channel (50).

In the cases considered below, let us denote by s` the alternative likely activated under

H1. Starting from the alternative s`, we build three nested libraries of alternatives of

respectively 1, 102 and 105 spectral lines: S = s`, S102 = [s1, . . . , s`, . . . , s102 ] and S105 =

[s1, . . . , s`, . . . , s105 ]. It can be noted that for S = s`, the test (4.9) becomes |x>s`|?H1
H0
γ,

which is a reference test (called “Oracle NPD”) as we are testing only the active alternative

under H1. Here, the term “Oracle” is used because the index l is known but the amplitude

↵ is unknown. If both are known, then the reference test is directly the Neyman-Pearson

detector (see Section 1.4.1). These different sizes of reference libraries will allow us to

examine the performances of TMax(x,SL) as a function of L and we will see that TMax is

also in function of s`.

We are interested in the relative detection performances of

• Oracle NPD: |x>s`|?H1
H0
γ.

• Max test (4.9): max
i=1,...,L

|s>i x|?H1
H0
γ, (for S102 and S105),

• a simple prototype of reduced dimension (RD) techniques: |x>u|?H1
H0
γ, where u is the

eigenvector associated to the largest singular value of S (see Section 3.2). Notice from

Figure 4.1(c) that the atom u tends to represent a common profile of the alternatives

in S: compare u in Figure 4.1(c) or 4.1(d) to Figure 4.1(a).

The performances of each test will be evaluated in terms of ROC curves, plotted for PFA 
0.1.

The tests presented above are compared in two configurations of the alternative s` under

H1:

- Case 1: s` has a typical similar shape w.r.t. the atom u generated from library S105

(s>` u = 0.93, see Figure 4.1(c)) and it is thus well correlated to most atoms of S105 .

- Case 2: s` has an atypical dissimilar shape w.r.t. the atom u generated from library

S105 (s>` u = 0.50, see Figure 4.1(d)) and it is thus less correlated to most atoms of

S105 than in case 1.

This study is divided in two Sections: the first Section (4.3.1) focuses on the performances’

comparisons between the Max tests and the RD tests, emphasizing the influence of size S

on TMax(x,S). The second Section (4.3.2) examines the influence of SNR on the detection

performances of these tests.
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4.3.1 Detection performances as library S grows

Let us consider Figure 4.1(e). The first interesting observation is that the RD test is more

powerful in this setting than the Max test (compare blue line to cyan circles, and red crosses

to pink diamonds). This comes perhaps as a surprise, since the Max test contains the exact

alternative under H1, while the RD test uses only an approximate version of it. But the RD

test is close to the Oracle NPD in this case (since u is close to s`), while as L grows, the

Max test correlates increasingly many alternatives to the data. When L is large, this causes

substantially increased false alarms with only marginal improvement in the detection rate.

This effect is not easy to address analytically for a general library such as the S con-

sidered in this example. It can however be evidenced in closed form in a simplified setting

allowing to express the probability of detection and probability of false alarm as a function

of L:

Proposition 1. (see Appendix B.1 for a proof). Assume that S is orthonormal (s>i sj =
δi,j) and that the active alternative under H1 of (4.1) is ↵`s` (without loss of gener-

ality, we assume that amplitude ↵` = 1, 8`). Then for a fixed value 0 < PFA < 1,

PDet(s`, L) as obtained by the Max test (4.9) is a decreasing function of L, 8`. Moreover

lim
L!+1

PDet(s`, L) = PFA, 8`.

Proposition 1 reflects a well known fact in multiple testing: as L increases, the amplitude

↵` must be increasingly large (precisely, it must slightly dominate
p
2 logN , the level of the

maximum under the null as L! 1) for H0 and H1 to be distinguishable (see, e.g., Theorem

1.3 of [Donoho & Jin 2004]). Figure 4.1(b) depicts the behavior of the ROC curves of the

Max test as L grows for an orthonormal matrix S. For a fixed probability of false alarm,

the probability of detection (B.3) decreases when L increases, and for a very large number

of alternatives L, PDet(s`, L) ! PFA: the GLR test has asymptotically no power in a finite

amplitude setting.

Coming back to Figure 4.1(e), we see that in contrast to the Max test, the RD test

incurs only slight losses as L grows. An interpretation is that as the number of alternatives

increases, the learned atom u represents a larger diversity of alternatives and may thus

become dissimilar from s`. It can however not be significantly different from s` if the vast

majority of alternatives of S are similar to s`. In this situation, the detection rate of the

RD test is indeed inferior to that of the Oracle NPD, but not significantly so. Thus, in this

configuration of s` w.r.t. S, there is a clear advantage in operating in reduced dimension.

Figure 4.2 depicts a very different configuration, where s` is less correlated to the atoms

of S than in case 1. In this case, the relative behavior of the tests is inverted, with the

RD test below the Max test. Indeed, testing a RD template obtained from 102 or 105

alternatives that are mostly dissimilar from s` strongly penalizes the detection rate for the

RD test, while the Max test still contains (among others) the right alternative.

Finally, the lower performance of the Max test in case 2 relatively to case 1 can be

explained by the fact that the alternatives of S do not help as much in the detection as

in case 1 (because they are mostly dissimilar to s`), while the effect on the false alarm is

comparable.
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(d) Case 2: active s` has dissimilar shape to u.
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Figure 4.1: (a) 100 alternatives (spectral lines) in S. (b) ROC curves showing that PDet

(B.4) for S orthonormal decreases as L grows, at fixed PFA. Figures (c) and (d): Atom
u (the rank-one approximation of library S105) and the two instances of alternatives s`
activated under H1 in Section 4.3. Figures (e) and (f): ROC curves in each case (ONPD:
Oracle NPD).
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4.3.2 Influence of SNR on detection performances

In this Section, we study the influence of noise levels on the detection performances of the

tests presented earlier in Section 4.3.1. To recall, the noise level for (4.1) is given by

SNR(dB) = 10 log10 (↵
2).

Here, ROC curves are plotted for different values of ↵, as depicted in Figure 4.2. In

addition, Table 4.1 displays the corresponding values of Area Under Curves (AUCs) of each

ROC.

As visible in these numerical results (Figure 4.2 and Table 4.1), the detection perfor-

mances of all tests indeed depend on the noise level, where low SNR yields lower perfor-

mances than high SNR. Noticeably, the behavior of Max tests and RD tests remains the

same in term of relative performances (i.e., RD tests perform better than the Max test in

case 1, but perform poorly in case 2) regardless of the value of ↵. The results of Tables 4.1

and 4.2 have to be evaluated w.r.t. the uncertainty caused by estimation noise on the ROC.

The uncertainty is evaluated by the difference between the average and the minimum values

of AUC of Oracle NPD. The estimation noise is Gaussian and the value of the uncertainty

is related to the standard deviation σ by uncertainty = cσ, where c is a constant (typically

c = 3 for most numerical simulations shown below).

Table 4.2 compares the average and worst-case performances of Max test (using reference

library S102) with RD test (using atom u learned from S102), for various SNR levels.

To compute these quantities, s`, ` = 1, . . . , L has to be activated one by one under H1.

At each `, a high number of Monte Carlo simulations has to be done in order to evaluate

the ROC (e.g., here 2 ⇥ 105 realizations). This explains the limitation of this study to

L = 102 for the reference library. Note that performing 2 ⇥ 105 Monte Carlo realizations

of the Max test for all instances ` = 1, . . . , 105 is too complex (in fact, it is intractable)

for a standard machine3. Following this testing approach in practice also yields the same

computation complexity when the index of active alternative is unknown. Lowering the

number of realizations is possible, but at the cost of increasing the estimation noise on the

ROC (thus, possibility of obtaining inaccurate results because the uncertainty is higher).

Returning to Table 4.2, the AUC of Oracle NPD is also included in the second column as

reference. Numerical simulations show that for different SNR levels, the RD test has better

detection performances in most cases (average AUC, compares the fifth column to the third

column) than the Max test. However, the standard RD test considered here (SVD) is not

robust with respect to some marginals alternatives. Its worst-case detection performances

(as written in the last column) are inferior to those of the Max test using reference library

S102 (see the fourth column). The RD test has better overall detection performances than

Max test using full library, for low SNR and high SNR because it is close in this case to the

Oracle NPD.

To summarize, this Section highlights that the observations of Section 4.3.1 hold true

for different SNR levels.

3A 2.7GHz processor and 4Go of DDR3 RAM.
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(b) ROC of case 2, ↵ = 0.8, SNR = −1.94dB.
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(c) ROC of case 1, ↵ = 2.2, SNR = 6.85dB.
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(d) ROC of case 2, ↵ = 2.2, SNR = 6.85dB.
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(e) ROC of case 1, ↵ = 3, SNR = 9.54dB.
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(f) ROC of case 2, ↵ = 3, SNR = 9.54dB.

Figure 4.2: Comparison of detection performances via ROC curves, for Max tests and RD
tests, for different values of ↵. ONPD denotes the Oracle NPD. The relative behavior of
the tests is the same for different noise levels, i.e., in case 1, RD tests perform better than
the Max test, however they perform poorly in case 2.
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AUC of ROC

Case 1 Case 2

↵ = 0.8 ↵ = 2.2 ↵ = 3 ↵ = 0.8 ↵ = 2.2 ↵ = 3

(−1.94dB) (6.85dB) ( 9.54dB) (−1.94dB) (6.85dB) (9.54dB)

Oracle NPD 0.5919 0.8884 0.9669 0.5931 0.8871 0.9660

Max test S102 0.5763 0.8527 0.9483 0.5624 0.8177 0.9257

Max test S105 0.5724 0.8383 0.9397 0.5521 0.7884 0.9041

RD test S102 0.5891 0.8820 0.9640 0.5364 0.6961 0.7997

RD test S105 0.5871 0.8764 0.9608 0.5320 0.6793 0.7791

Table 4.1: AUCs corresponding to the ROC curves in Figure 4.2. Uncertainty: ±0.0011. We

compare the AUC of 5 tests, in two cases. In each case, we set three different levels of SNR

(by varying ↵, shown in different columns) in order to study the tests’ performances w.r.t.

SNR. The third row shows the AUC values of the Oracle NPD as reference. For all the other

tests (fourth until the last row), we can see that, in both cases, the detection performances

of each test clearly depend on the noise level (low SNR yields lower performance than those

for high SNR). The behavior however, remains the same as seen in Section 4.3.1 regardless

of the noise levels (i.e., RD tests perform better than the Max tests in case 1, but perform

poorly in case 2).

↵ (SNR)
AUC of AUC of Max test S102 AUC of RD test S102

Oracle NPD Average Worst-case Average Worst-case

0.5 −6dB 0.5379 0.5290 0.5229 0.5348 0.5136

1 0dB 0.6371 0.6105 0.5905 0.6218 0.5503

1.5 3.5dB 0.7521 0.7112 0.6793 0.7312 0.6056

2 6dB 0.8563 0.8135 0.7780 0.8304 0.6722

2.5 8dB 0.9262 0.8919 0.8623 0.9035 0.7389

Table 4.2: AUCs for different values of ↵ (SNR levels, shown by rows). Uncertainty:

±0.0013. By performing Max test S102 and RD test S102 over all alternatives s` activated

one by one under H1, where ` = 1, . . . , 102, we compute the average and worst-case (i.e.,

minimum AUC) performances of each test, at different SNR levels. Second column shows

the AUC of Oracle NPD as reference. Comparing the third and the fifth columns, we can

see that RD test performs better on average than the Max test. However, the worst-case

performance of RD test is inferior than the Max test (i.e., compare the last column with

the fourth column). Both of these observations hold true for various SNR levels.
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4.4 Discussion

In conclusions, these experiments show that in the “one among many” detection problem

set by (4.1), the “curse of dimensionality” [Bellman 1957] has two effects. First, the com-

putational complexity of this test grows linearly with L, which can be far too demanding

for applications involving large L and multiple data sets [Paris et al. 2013b]. Second, the

performances of the Max test (i.e., the constrained GLR using the full library) degrade as

L grows.

This study also shows that GLR testing in learned subspaces of reduced dimension

(exemplified using the first eigenvector here) is indeed advantageous w.r.t. Max test

computationally-wise and also performance-wise as far as the active alternative is well corre-

lated to the learned template. For alternatives for which this is not the case, dimensionality

reduction results in weak detection power. These observations suggest that desirable prop-

erties in this framework may be to devise tests of low complexity while uniformly controlling

the worst-case performances over the alternatives.

The next Chapter will do so. We will further investigate how to devise a test that could

perform as well as the constrained GLR of exact model, but without testing all the possible

alternatives, while still being robust for all of them. With this in mind, we will formulate

the optimization problem as maximizing the worst probability of detection occurring for all

si, {i = 1, . . . , L}.
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Some analyses and results presented in this chapter were published in [Suleiman

et al. 2013a, Suleiman et al. 2013b, Paris et al. 2013b, Suleiman et al. 2014a, Suleiman

et al. 2014b].

5.1 Introduction

In the preceding Chapter, we have concluded that the performance of the GLR for the

“exact” model ⇢ H0 : x = n, n ⇠ N (0, I)

H1 : x = Sα+ n, kαk0 = 1
,

(i.e., testing the full reference library S 2 R
N⇥L) degrades as L increases, and the computa-

tion complexity increases w.r.t. L. On the contrary, reducing the dimension not only saves

computing power, but may also result in power gain for typical alternatives and power loss

for the marginal ones.

Based on these observations, this Chapter is dedicated to devise a RD test that is robust

for all alternatives. Robustness may be essential in some applications such as detection of

very faint spectral lines or detection of gas leakage in pipelines.

Given these points, the optimization problem of the RD test is formulated as maximizing

the worst probability of detection occurring for all si, {i = 1, . . . , L} (which is a maximin

problem). Equivalently, it can be viewed as minimizing the maximum detection power

loss (which is a minimax problem). We will use below the first formulation leading to an
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optimized dictionary D⇤ 2 R
N⇥K , where K < L. We shall generically refer to the resulting

optimization as minimax optimization (superscript ⇤ will denote “minimax optimized”).

It may be useful for clarity to recall that the minimax optimization problem addressed

in our framework differs with the usual setting considered in the literature (see Section 1.6).

Some of the important differences are

- We consider the case where the set of all alternatives in the reference library S 2 R
N⇥L

is countable.

- The alternatives are known up to finite amplitude factor, are in fixed number (L) and

fixed size (N).

- No distribution is specified under H1 of the exact model (4.1) (i.e., we do not attempt

to specify a discrete distribution reflecting the probability of activation of each possible

alternative under H1; equivalently, all alternatives are considered equally likely).

- There will be no degree of freedom in the choice of the test that will support the

worst-case testing procedure. The test is based on constrained and unconstrained

GLR. It only depends on the dictionary to be optimized D 2 R
N⇥K .

In line with this setting, we propose two RD models on the basis of which the dictionary

will be optimized to obtain minimax tests.

i. The first RD model imposes a 1-sparsity constraint on the unknown vector, similar

to the exact model (4.1) but with D instead of S. We will consider first the mono

dimensional case (K = 1, the dictionary D has only one atom that will be optimized).

This particular case will be the base for constructing algorithms in more general case

K > 1 proposed in Chapter 6.

ii. The second RD model (presented in Section 5.3) does not impose any sparsity con-

straint under H1. The sparsity is controlled by the number of columns in the learned

dictionary.
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5.2 Reduced model with sparsity constraint

5.2.1 The model and associated GLR test

We propose to replace the exact model (4.1) by

⇢ H0 : x = n, n ⇠ N (0, I)

H1 : x = Dβ + n, kβk0 = 1
. (5.1)

Here D 2 R
N⇥K = [d1, . . . ,dK ] is a low dimension (K < L) dictionary with `2 normalized

columns, kdjk22 = 1, {j = 1, . . . ,K}. The 1-sparse constraint on unknown vector β is

imposed to encourage the axes of D to align, when optimized, with the main “modes”

(possibly represented by isolated alternatives) of the distribution of S over the unit sphere.

For the analysis that follows, we consider that all alternatives have the same amplitude

when activated under H1. As explained above, this makes them comparable in terms of

SNR and we assume without loss of generality unit amplitude. The dictionary D will be

optimized to maximize the worst-case detection performance.

The constrained GLR for model (5.1) involves the constrained Maximum Likelihood

estimate of β

TGLR(x,D) = max
β:kβk0=1

p(x;Dβ)

p(x;0)

H1

?
H0

⇠0, (5.2)

where ⇠0 is a threshold. Following the steps (4.2)-(4.9), the GLR for (5.1) and for a given

D = [d1, . . . ,dK ] leads to

TD(x) = max
j=1,...,K

|d>
j x| =

H1

?
H0

⇠ , max
j=1,...,K

(d>
j x)

2
H1

?
H0

⇠2, (5.3)

where ⇠ is a threshold.

The corresponding probability of false alarm and probability of detection of (5.3) write

PFA(D) = P

✓
max

j=1,...,K
(d>
j x)

2 > ⇠2;H0,D

◆
, (5.4)

PDet(s`,D) = P

✓
max

j=1,...,K
(d>
j x)

2 > ⇠2;H1, s`,D

◆
. (5.5)

Following a minimax strategy, we seek to optimize dictionary D, so as to maximizes

the minimum probability of detection occurring for all alternatives si, {i = 1, . . . , L}, at a

fixed probability of false alarm (PFA0). Hence we define

D⇤ := arg max
D

min
i=1,...,L

PDet(si,D)

subject to PFA(D)  PFA0 , (5.6)

kdjk2 = 1, j = {1, . . . ,K}.

We examine first the particular case of one-dimensional minimax problem (K = 1), then

we extend this study for an arbitrary value of K.
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5.2.2 One-dimensional minimax problem (K = 1)

In this setting, the one-dimensional dictionary to be optimized is D = d. The GLR com-

puted above (5.3) for arbitrary value of K becomes

Td(x) = (d>x)2
H1

?
H0

⇠2. (5.7)

In this case, the corresponding probabilities of test (5.7) are

PFA(d) = P((d>x)2 > ⇠2;H0), (5.8)

PDet(s`,d) = P((d>x)2 > ⇠2;H1, s`). (5.9)

The one-dimensional minimax optimization problem can be written as

d⇤ := arg max
d

min
i=1,...,L

PDet(si,d)

subject to PFA(d)  PFA0 , (5.10)

kdk2 = 1,

where PFA0 is a fixed alarm rate. The previous Proposition 4 and the result of Proposition

2 below will guide us to resolve this one-dimensional problem (5.10).

Proposition 2. Generalized Marcum-Q function [Nutall 1974].

Let Q k
2
(x, y) be the generalized Marcum-Q function of order k

2 , with x 2 R
⇤+ and y 2 R

+.

Then Q k
2
(x, y) = 1 − Φχ2

k,x2
(y2), with Φχ2

k,x2
the CDF of a χ2

k,λ variable, with k degrees of

freedom and non-centrality parameter λ. Q k
2
(x, y) is monotonically increasing in x.

Assuming that under H1 of the exact model (4.1), an alternative s` is activated, x ⇠
N (s`, I). Since (d>x)2 = x>(dd>)x, Proposition 4 applied to A = dd> gives:

PFA = P((d>x)2 > ⇠2;H0) = 1− Φχ2
1
(⇠2), (5.11)

PDet(s`,d) = P((d>x)2 > ⇠2;H1, s`) = 1− Φχ2
1,λ

(⇠2) (5.12)

PDet(s`,d) = Q 1
2
(
p
λ, ⇠),

where here, λ = s>` (dd
>)s` = (d>s`)2 and Q is the generalized Marcum-Q function. By

Proposition 2, Q 1
2
(
p
λ, ⇠) is increasing in

p
λ = |d>s`|. Hence, maximizing the probability

of detection is equivalent to maximizing λ.

Now, from (5.11), the probability of false alarm for K = 1 is independent of d. Hence,

maximizing at fixed false alarm rate the probability of detection occurring in the worst-case

alternative(s) under H1 requires to solve

d⇤ = arg max
d:kdk2=1

min
i=1,...,L

(d>si)
2 = arg max

d:kdk2=1
min

i=1,...,L
|d>si|, (5.13)
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which is non convex because of the non convex constraint kdk2 = 1 (see Figure 5.1).

1

2

 dom

 dom

R +
N

Figure 5.1: Convex and non convex domain. If we draw a line segment between two samples
s1 and s2, every point on this (red) line segment does not belong to dom kdk2 = 1. Instead,
it belongs to dom kdk2  1. This is why the constraint kdk2 = 1 of (5.13) is non convex.

Under some conditions, the exact solution of d⇤ can however be obtained by solving a

convex optimization problem in the form of quadratic programming (QP), as evidenced in

the following Proposition:

Proposition 3. (see Appendix B.2 for a proof) The solutions of (5.13) are {d⇤,−d⇤}, and

assuming that all S 2 R
N
+ , then d⇤ 2 R

N
+ is the solution of the QP:

d⇤ = minimize −t
subject to t− d>si  0, i = {1, . . . , L}

kdk2  1.

(5.14)

The main condition for this Proposition to hold is that the elements of the set S are,

up to a common rotation, in R
N
+ . This condition is not very restrictive in practice, as many

applications in signal or image processing deal with spectra or images contain only positive

values. QP problem (5.14) can be solved via a standard toolbox such as the CVX [Grant &

Boyd 2014].

As a side remark, we also present in Appendix B.3 a possible gradient descent type

method to solve one-dimensional minimax optimization problem (5.13). We investigated

this approach (gradient descent) for K = 1, hoping to generalize it to the case K > 1

and to obtain exact minimax solution for such cases. This generalization is however not

achieved yet because it poses several important issues (complexity of the coordinate system

in N > 3-dimensional Euclidean space and the case where the function to be optimized is

non-differentiable).
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5.2.3 Connections of 1D minimax problem to 1-class classifiers

The minimax optimization problem for K = 1 (5.13) entails finding the vector d⇤ that

minimizes the largest angle between si and d. This is equivalent to finding the smallest

circle C containing the set S, whose center then corresponds to d⇤. Or finding a plane that

maximizes the worst probability of detection, and this plane is perpendicular to d⇤. As

depicted in Figure 5.2, this type of optimization problem can also be viewed as a One-class

classifiers problem of SVM type [Boser et al. 1992,Cortes & Vapnik 1995].

As discussed in Chapter 3, a conventional classification task is typically a k-ary (k > 1)

problem where the new sample is to be assigned to one of the k classes built from the

available data. In one-class classification however, the problem is to maximally discriminate

between the known samples and possible outliers w.r.t. this class [Khan & Madden 2010].

This involves finding the hyperplane of farthest distance from the origin which rejects all

training samples aside, termed one-class SVM [Schölkopf 1997]. In addition, it is also

equivalent to finding the minimal volume of a closed boundary sphere (Σ in Figure 5.2, of

center a and radius R) containing all si. This is known as SVDD method [Tax & Duin 2004].

Figure 5.2: Geometrical view of One-dimensional minimax optimization problem (5.13)-

(5.14) as One-class classifiers. The set of alternatives si lie at the intersection of a unit

sphere Σ1. The problem is equivalent to minimizing the largest angle ✓i between d and si,

to finding the circle C of minimum radius R that contains all si, to maximizing the distance

⇢ of hyperplane Pd to the origin (i.e., one-class SVM), or to minimizing the volume of an

enclosed sphere Σ containing all si (i.e., SVDD). In this setting, Σ admits C as a great

circle.
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Example 5.2.1. 1D minimax dictionary vs. best rank-one approximation of S

A simple numerical experiments using random positives alternatives forming a reference

library S 2 R
3⇥115 is examined, as shown in Figure 5.3. The `2 normalization implies

that all alternatives si (black crosses) lie on the unit sphere (in green). From S, we learn

one-dimensional dictionaries based on two approaches

i. best rank-one approximation (in Frobenius norm) of S, yielding atom u (see Section

3.2).

ii. 1D minimax optimization (5.13)-(5.14), yielding atom d⇤.

Figure 5.3 shows that there are three worst-case alternatives (small red circles) w.r.t.

d⇤ (red star), which belong to the smallest circle C enclosing set S. These “outliers” (i.e.,

marginal alternatives) induce the worst probability of detection when using d⇤ for detection.

By definition, no single atom dictionary can achieve best worst-case performances than d⇤.
Comparing the minimax atom to the eigenvector u associated to the largest eigenvalue

S (i.e., best rank-one approximation), we notice that u (blue diamond) lies in the core of

the most populated area of alternatives, and thus tends to represent a common behavior of

the alternatives. This comes of course at the price of a smaller correlation w.r.t. marginal

alternatives, hence lower worst-case detection power. The minimum correlation between u

and set S is 0.47, while it is 0.71 for d⇤ (this happens for the three worst-case alternatives

in C).

C

d*

worst-case

 

si+

alternatives

for d*

Figure 5.3: d⇤ is held by three marginal alternatives (at the border of the smallest enclosed
circle C). These marginal samples induce the worst probability of detection. For comparison,
u represents well the most populated area of the alternatives.

Another obvious observation evidenced by this example is that representing S by only

one (even minimax) atom may indeed be insufficient w.r.t. the intrinsic diversity of S.

For instance, Figure 5.3 suggests the existence of three subpopulations. In such situations,

learning dictionaries with K > 1 columns might increase the worst-case power w.r.t. K = 1.

This is the point of the next analysis. ⌅
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We now turn to an illustrative example in regard to the test statistic (5.7) to compare the

cost function of average probability of detection vs. the cost function of minimax probability

of detection. Let us assume that si⇤ is one of the alternatives in S that is the most poorly

correlated to atom d.

Example 5.2.2. Study of detection rate: illustration on unit sphere

From (5.9), assuming ↵i = 1, we define the average probability of detection as

PDet(S,d) =
LX

i=1

P(si) P(|d>(si + n)| > ⇠ ; si).

If P(si) =
1
L , 8i (same probability of activation), PDet(S,d) becomes

PDet(S,d) =
1

L

LX

i

P(|µi + ε| > ξ ; si), with µi = d>si, and ε = d>n

=
1

L

LX

i=1

P(|N (µi, 1) | > ξ ; si).

PDet(S,d) =
1

L

LX

i=1

[1− Φ(ξ − µi) + Φ(−ξ − µi)], (see Figure 5.4).

The CDF: Φ(−ξ−µi) is equal to 1−Φ(ξ+µi) i.e., the area to the right from the threshold

ξ + µi (marked by red line in the left subfigure of Figure 5.4), hence PDet(S,d) also writes

PDet(S,d) =
1

L

LX

i=1

[2− Φ(ξ − µi)− Φ(ξ + µi)]. (5.15)

0_ 0

Figure 5.4: Probability distribution under H1. The left subfigure shows the initial distribu-

tion corresponding to N (µi, 1). The right subfigure depicts the equivalent distribution after

subtracting µi. The red line marks the equivalent area (to its right) of the CDF Φ(−ξ−µi).
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The minimum probability of detection Pi
⇤

Det can be defined as

Pi
⇤

Det = min
i

PDet(si,d) = [2− Φ(⇠ − d>si⇤)− Φ(⇠ + d>si⇤)]. (5.16)

This conducts to the minimax detection criterion

max
d

Pi
⇤

Det = max
d

[2− Φ(⇠ − d>si⇤)− Φ(⇠ + d>si⇤)]. (5.17)

We can visualize the cost functions of two distinct criteria: average (5.15) and minimax

(5.17) in function of d (see Figure 5.5) on unit sphere, as shown in Figure 5.6 below.

Assume that S 2 R
3⇥L, we define an unknown atom d

d =

0
@
x

y

z

1
A =

0
@
r sinφ cos ✓

r sinφ sin ✓

r cosφ

1
A , (5.18)

where the norm r = kdk2 = 1, ✓ 2 [0, 2⇡] is the azimuth angle and φ 2 [⇡2 ,−⇡
2 ] is the

elevation angle (see Figure 5.5).

z

x

y

Figure 5.5: Spherical coordinates of the atom d used to represent the mean and minimax
cost functions on the sphere.

To illustrate the minimax criterion we proceed as follows. First, we form a random

library S of L = 10 (cyan dots). These data points si, i = 1, . . . , L are distributed on the

unit sphere into two groups. The first (isolated) cluster contains only one alternative, and

the other nine alternatives are in the second cluster. Then, plotting the average detection

criterion of (5.15) and minimax detection criterion of (5.17) as a function of the location

✓, φ on the sphere yield the shown results (Figure 5.6). The learned SVD atom u and

minimax atom d⇤ of (5.13) are also illustrated in the Figure.

We can see (in Figure 5.6(b)) that even though most of the data points are gathered

in the second cluster (near the y-axis), the minimax criterion takes into account the single

(isolated) alternative of the first cluster. The minimax detection rate is large somewhere
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between these two separated populations of S (see Figure 5.6(b)). The minimax atom d⇤

(blue star) is in agreement with the minimax cost function, i.e., d⇤ is situated in the area

where the minimum probability of detection is large (precisely at the maximum).

In contrast, the average detection rate is smoothly increasing toward the second cluster

where most of the alternatives lie, as depicted in Figure 5.6(a). The rank-one SVD atom

u (black star) represents the most populated cluster: u is situated in the area where the

average probability of detection is large (but not precisely at this maximum, though).
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x
y

z

(a) Average detection rate of (5.15)

x
y

z

(b) Minimax detection rate of (5.17)

Figure 5.6: Cost functions of the two distinct criteria mean and minimax illustrated on

the unit sphere. Cyan dots are the alternatives si 2 S. There are one alternative si in

the first cluster, and nine alternatives in the second cluster which lie near the y-axis of the

unit sphere. (a) The average detection criterion (5.15) is smoothly increasing toward the

most populated cluster. We also show here the learned SVD atom u (black star). (b) The

minimax detection criterion (5.17) is maximum somewhere between the two clusters, taking

into account the single alternative, situated far from the other alternatives. The minimax

learned atom d⇤ (blue star) of (5.13) is also shown here and is exactly at the maximum.

⌅
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Now we get back to the minimax optimization problem presented below for K > 1 .

5.2.4 Optimization for K-dimensional subspaces

Solving the optimization problem (5.6) for K > 1 is an extremely intricate task as it involves

the distributions of the maximum of correlated variables (d>
j x, j = 1, . . . ,K are correlated).

For the same reason, the computation of PFA(D) (5.4) is analytically intractable. To recall,

the corresponding probabilities defined earlier (5.4)-(5.5) of the RD minimax test (5.3) are

PFA(D) = P

✓
max

j=1,...,K
(d>
j x)

2 > ⇠2;H0,D

◆
,

PDet(s`,D) = P

✓
max

j=1,...,K
(d>
j x)

2 > ⇠2;H1, s`,D

◆
.

To circumvent these difficulties, we propose to replace the exact expressions of probability of

false alarm and probability of detection by appropriate upper and lower bounds with simpler

expressions. These bounds will be used as proxies to guide the optimization process. We

study the bounds for probability of detection in Section 5.2.4.1, and for probability of false

alarm in Section 5.2.4.2.

5.2.4.1 Study of detection rate for K > 1

We start by analyzing the bound for the probability of detection which is derived using the

following result on extrema distributions.

Lemma 2. CDF of the maximum of variables (e.g. [Nelsen 2006], chap. 2).

Let (X1, . . . , XN ) be N continuous random variables with distribution functions

(F1, . . . , FN ). Then

Fmax(X1,...,XN )(t)  min (F1(t), . . . , FN (t)). (5.19)

From (5.5),

PDet(s`,D) = P

✓
max

j=1,...,K
(d>
j x)

2 > ⇠2;H1, s`,D

◆

= 1− P

✓
max

j=1,...,K
(d>
j x)

2 < ⇠2;H1, s`,D

◆

PDet(s`,D) = 1− Fmax((d>
1 x)2,...,(d>

Kx)2)(⇠
2).

(5.20)
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Then, applying the inequality (5.19) of Lemma 2 to (5.20) yields:

1− Fmax((d>
1 x)2,...,(d>

Kx)2)(⇠
2) ≥ 1−min(F(d>

1 x)2(⇠
2), . . . , F(d>

Kx)2(⇠
2))

PDet(s`,D) ≥ max(1− F(d>
1 x)2(⇠

2), . . . , 1− F(d>

Kx)2(⇠
2))

≥ max
j=1,...,K

P((d>
j x)

2 > ⇠2;H1, s`,D)

≥ max
j=1,...,K

Q 1
2
(|d>

j s`|, ⇠).

Based on this computation,

PDet(s`,D) = P

✓
max

j=1,...,K
(d>
j x)

2 > ⇠2;H1, s`,D

◆
≥ max

j=1,...,K
Q 1

2
(|d>

j s`|, ⇠).

Similarly to (5.12), Q 1
2
(
p
λ, ⇠) is the generalized Marcum-Q function, which is increasing

w.r.t.
p
λ = |d>

j s`|. We obtain

PDet(s`,D) ≥ Q 1
2

✓
max

j=1,...,K
|d>
j s`|, ⇠

◆
.

Let s⇤D := argmins` PDet(s`,D) denote one of the alternatives in S that is the most poorly

correlated to the columns of dictionary D. The associated probability of detection can then

be lower bounded by

PDet(s
⇤
D,D) ≥ Q 1

2

✓
max

j=1,...,K
|d>
j s

⇤
D|, ⇠

◆
≥Q 1

2

⇣
⇢(K)(D), ⇠

⌘
(5.21)

where

⇢(K)(D) = min
i=1,...,L

max
j=1,...,K

|dj>si| (5.22)

denotes the minimax correlation of dictionary D with set S.

Instead of solving (5.6) or equivalently maximizing the left term of (5.21) w.r.t. D, we

propose to maximize the rightmost term, or equivalently ⇢(K)(D). A possible strategy for

a minimax learning algorithm (see Section 6.2) is then to construct the dictionary D =

[d1, . . . ,dK ], where kdjk22 = 1, {j = 1, . . . ,K}, so that the minimum correlation ⇢(K)(D) is

made “as large as possible”. The learning algorithm should thus produce a value ⇢(K) that

increases rapidly with K (see Figure 7.4(d) for an example with K = 70 atoms). In this

case, the approximation criterion for the optimal minimax dictionary is

D⇤ ⇡ arg max
D:kdjk2=1

min
i=1,...,L

max
j=1,...,K

|dj>si|. (5.23)

Note that if K = 1, ⇢(1)(d) = min
i=1,...,L

|d>si| and (5.23) is indeed equivalent to (5.13).
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5.2.4.2 Study of false alarm rate for K > 1

We now study the effect of the dictionary size K on the probability of false alarm. A tight

upper bound can be obtained by applying the inequality of the following theorem:

Theorem 1. CDF of multivariate normals [Khatri 1968].

P(|vi|  ci, i = 1, . . . ,m) ≥ Qm
i=1 P(|vi|  ci) provided that v = (v1, . . . , vm)

> is distributed

as multivariate normal v ⇠ N (0,Σ).

From (5.4), we can write, noting v = D>x,

PFA(D) = 1− P(|v1| < ⇠, . . . , |vK | < ⇠), (5.24)

where v ⇠ N (0,Σ) with Σ = D>D and Σj,j = d>
j dj = 1. Applying Theorem 1 bounds

the probability of false alarm (5.24) to

PFA(D)  1−
KY

j=1

P(|uj |  ⇠)

which finally yields

PFA(D)  1− ΦKχ2
1
(⇠2). (5.25)

If D is orthogonal, the upper bound on PFA(D) is the exact PFA(D). In our framework,

D is not restricted to be orthogonal. However, the learned minimax atoms represent the

outliers of the set S which, by definition, are marginally correlated. So we expect the

columns of D to be weakly correlated to each other, and the bound (5.25) to be reasonably

tight.

Based on the study of Section 5.2, we conclude that the minimax learning problem

can be solved by the exact solution (5.13) in the case where a single minimax atom d⇤

has to be obtained. For an arbitrary number of K atoms, analytical solutions do not

appear feasible. We will however see that algorithms can be designed according to the

approximation criterion (5.23) to obtain a minimax dictionary D⇤ 2 R
N⇥K . Chapter 6 is

dedicated to the design of learning algorithms in this case.

Before moving further, we present below another possible reduced model (5.26), which

does not impose a sparsity constraint under H1.
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5.3 An alternative: unconstrained reduced model

⇢ H0 : x = n, n ⇠ N (0, I)

H1 : x = Dβ + n,
(5.26)

where D 2 R
N⇥K = [d1, . . . ,dK ], kdjk22 = 1, {j = 1, . . . ,K}, K < N , and β 2 R

K . The

GLR test for (5.26) is :

TGLR(x,D) : max
β

p(x;Dβ)

p(x;0)

H1

?
H0

⇠0 (5.27)

where under H1

p(x ;Dβ) =
1

(2⇡)N/2
exp

✓
−1

2
kx−Dβk22

◆
. (5.28)

Maximizing the numerator of (5.27) conducts to

βML = arg min
β

kx−Dβk22

= arg min
β

kxk22 − 2β>D>x+ β>D>Dβ, (5.29)

which leads to

∂(−2β>D>x+ β>D>Dβ)

∂β
= 0 ) βML = (DT D)−1 DTx. (5.30)

Substituting βML in the GLR test (5.27) and taking the logarithm conduct to

−1

2

⇣
kxk22 − 2(βML)>D>x+ (βML)>D>DβML

⌘
+

1

2
kxk22

H1

?
H0

ln ξ0

2((DT D)−1 DTx)>D>x− ((DT D)−1 DTx)>D>D(DT D)−1 DTx
H1

?
H0

2 ln ξ0

x>D(DT D)−1DTx
H1

?
H0

2 ln ξ0.

This finally leads to

TAlt(x,D) = x>ΠD x
H1

?
H0

ξ , kΠD xk22
H1

?
H0

ξ, (5.31)

where ξ = 2 ln ξ0 and ΠD = D(D>D)−1 D> is an orthogonal projection matrix. The

test (5.31) is an energy detector where the data vector x is projected on the orthogonal

subspace of dictionary D.
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The probability of false alarm and the probability of detection of test (5.31) writes

PFA(D) = P

⇣
x>ΠD x > ⇠;H0,D

⌘
, (5.32)

PDet(s`,D) = P

⇣
x>ΠD x > ⇠;H1, s`,D

⌘
. (5.33)

Following the minimax criterion and definitions (5.32)-(5.33), the optimization problem

for model (5.26) can be formulated as

D⇤Alt := arg max
D

min
i=1,...,L

PDet(si,D)

subject to PFA(D)  PFA0 , (5.34)

kdjk2 = 1, j = {1, . . . ,K},

where PFA0 is a fixed probability of false alarm.

Similar to the previous analysis (Section 5.2.2), let us assume that under H1, the target

active signal is s`, and the corresponding amplitude ↵` = 1. Then by (4.1), x ⇠ N (s`, I)

under H1. Since the projection matrix ΠD is idempotent (ΠDΠD = ΠD), symmetric

(ΠTD = ΠD) and of rank K, the distributions of the test statistics xT ΠD x in (5.31) under

H1 can be obtained by Proposition 4, which gives

TAlt(x;H1) = (s` + n)>ΠD (s` + n) ⇠ χ2
K,λ, (5.35)

where the non centrality parameter is here λ(s`,D) = s>` ΠD s` = kΠD s`k22. Thus,

Proposition 2 implies

PDet(s`,D) = P(TAlt > ⇠;H1) = 1− Φχ2
K,λ

(⇠) = QK
2
(
p
λ,

p
⇠), (5.36)

where Φχ2
K,λ

denote the corresponding CDFs, and Q the generalized Marcum Q-function.

Since QK
2
(
p
λ,

p
⇠) is an increasing function of λ, maximizing the probability of detection

is equivalent to maximizing λ. The minimax optimization (5.34) becomes

D⇤Alt = arg max
D:kdjk22=1

min
i=1,...,L

PDet(si,D) , arg max
D:kdjk22=1

min
i=1,...,L

kΠD sik22. (5.37)

Here, the minimax optimization problem depends on the plane ΠD. If we write problem

(5.37) in an epigraph form, we have

D⇤Alt = minimize −t
subject to t− kΠD sik2  0, i = {1, . . . , L}

kdjk2  1, j = {1, . . . ,K}
, (5.38)

which is a non convex function (for K > 1) because the constraint t− kΠD sik2  0 is non

linear.
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Under H0 of (4.1), x ⇠ N (0, I). Following the computation of the probability of

detection above, the distributions of the test statistics xT ΠD x in (5.31) under H0 leads to

TAlt(x;H0) = n>ΠD n ⇠ χ2
K . (5.39)

Then, the probability of false alarm can be written as function of the corresponding CDF,

denoted by Φχ2
K

PFA = P(TAlt > ⇠ ;H0) = 1− Φχ2
K
(⇠). (5.40)

For this model, the probability of false alarm is independent of D (8D: rank(D) = K).

In the case where D⇤Alt has single atom (K = 1), the orthogonal projection matrix on

the subspace of D becomes Π(D=d) = d(d>d)−1d> = dd> (as d has normalized columns).

d⇤Alt is equivalent to the solution (5.13) found for the previous reduced model (5.1).

For the first RD model (5.1), the 1-sparse constraint (kβk0 = 1) under the alternative

hypothesis means that we are working on the axes, one dimension at each instance. This

model is close to the exact model (4.1) which uses S. For the second RD model (5.26), we

work on the hyperplanes where we want to maximize the energy.

It is not clear which RD model should be the best, but imposing kβk0 = 1 under H1

allowed to find greedy solution easily (which is not the case for the second RD model).

5.4 Discussion

The main (theoretical) contributions of this dissertation were presented in this Chapter.

Following the study of detection problem investigated in Chapter 4, we identified the neces-

sity to devise robust detection tests that operate in subspaces of reduced dimension while

still maintaining good performances in worst-case scenarios.

Studies done in the present Chapter produced an exact solution to one-dimensional

minimax (worst-case) optimization problem (5.13). We have seen in Example 5.2.1 that this

approach improved the worst-case performance w.r.t. the classical low-rank approximation

(SVD). Such an extreme reduction in dimension might however be exaggerated w.r.t. the

intrinsic diversity of the reference library S (see Figure 7.4(c)). With this in mind, we

investigated an approximation to the exact minimax optimization problem for an arbritary

number of learned columns K, for the first reduced model. As a follow-up of these analyses,

we propose in the next Chapter (6) two learning algorithms aimed at building D⇤ using the

minimax correlation function (5.22), or the approximation criterion (5.23).

An alternative RD model (5.26) without sparsity constraint under H1 was also investi-

gated in this Chapter which yields the same optimization problem as the previous one for

K = 1. Between the two minimax RD models, it is not clear which one should be the best.

However imposing kβk0 = 1 under H1 in the first RD model (5.1) allowed to find greedy

solution easily (which is not the case for the alternative RD model). We have not pursued

our investigations on the alternative RD model because the algorithms based on the first

model proposed in the next Chapter give satisfactory results. Furthermore, the first RD

model is closer to the true model (4.1).
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In Chapter 6 the one-dimensional minimax atom d⇤ will be the basis of three mini-

max learning algorithms. The first algorithm functions in a greedy approach based on the

analysis of Section 5.2.4. As a second algorithm, a variant arises from the general strategy

of injecting minimax objectives in standard dictionary learning algorithms. The third al-

gorithm combines clustering techniques found in the literature with the exact solution of

one-dimensional minimax optimization problem.
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Some analyses and results presented in this Chapter were published in [Suleiman

et al. 2013b,Suleiman et al. 2014a,Suleiman et al. 2014b].

6.1 Introduction

This Chapter proposes several minimax (or worst-case) learning algorithms for an arbitrary

size dictionary according to problem (5.6). The first algorithm (Section 6.2) is a greedy type

minimax learning algorithm based on the analysis of Section 5.2.4. The second algorithm

involves a general strategy of incorporating a minimax criterion in standard dictionary

learning algorithms, specifically in the dictionary update stage using (5.13)-(5.14). In this

regard, we propose a variant of K-SVD algorithm, or more precisely in our setting, a variant

of the gain-shape Vector Quantization [Gersho & Gray 1991]. We call the resulting algorithm

K-minimax (Section 6.3). As a third algorithm, we propose a possible variant for worst-case

learning approach, where we combine clustering techniques existing in literature (such as

the Spherical K-means [Dhillon & Modha 2001]) with one-dimensional minimax solution

(5.13)-(5.14).

Aside from these worst-case learning techniques, we also study a possible gradient de-

scent type method to solve the one-dimensional minimax optimization problem (without

using quadratic programming). We investigate this gradient descent method hoping to gen-

eralize it to the case K > 1. This approach is however not fully worked out. A description

and related issues are provided in Appendix B.3.
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Note that we use the term clusters or classes interchangeably in this Chapter. Both

terms refer to the groups to which the alternatives belong, regardless of the methods defined

in Chapter 3.

6.2 Greedy minimax: a heuristic approach

Following the analytical analysis in Section 5.2.4, we propose a heuristic optimization to

learn a minimax dictionary. This algorithm (see the pseudo-code in Algorithm 1 below)

samples the distribution in a greedy manner to open new cluster, and the dictionary update

stage for each cluster is done through the one-dimensional minimax solution (5.13)-(5.14).

The approach is described below, and illustrated in Figure 6.1 for K = 3:

i). Compute through (5.13) the global minimax atom d⇤ (red star) representing the whole

set of alternatives in S (black dots).

ii). Identify the alternative si⇤ that is the most poorly represented by the dictionary (i.e.,

of minimum correlation) (white dot). If there are several, pick one at random. The ex-

pected result of this step is to obtain subspaces that are well separated, thus producing

learned atoms that are discriminative and sample well the diversity of the alternatives.

The set S is then classified into j = 2 classes (C⇤
1,C

⇤
2) by nearest neighbor rule, and

one atom d⇤ is generated through (5.13) for each cluster, representing the updated

learned dictionary columns (red stars).

iii). A new class is opened using one of the farthest alternatives to the current columns.

Nearest neighbor rule results in three new classes whose minimax centers constitute

the final dictionary D⇤
3.

In regard to clustering techniques in literature, greedy minimax learning algorithm can

be viewed as a special case of Divisive clustering (top to bottom approach), where all data

are initially grouped in a cluster an then split into many clusters. In our case however, the

number of clusters (equivalent to the number of atoms K) is fixed at initialization.
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Figure 6.1: Illustration of the greedy minimax algorithm for K = 3. Black dots: alter-
natives si on the unit sphere, red stars: minimax atoms, white dots: the least correlated
alternative w.r.t. D⇤. The blue lines delimitate the classes. After initialization i), the
farthest alternative si⇤ w.r.t. D⇤

1 is identified and the alternatives are divided into two
clusters. Minimax atoms for each cluster are computed, its concatenation forms D⇤

2. These
processes are continued in sequences, until obtaining the desired K atoms.
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Algorithm 1 Greedy minimax

Inputs: Data set S 2 R
N⇥L = [s1, . . . , sL], number of atoms K.

Initialization: j = 1, D⇤
j = d⇤ 2 R

N as obtained in (5.13).
Set: j = 2,
si⇤,j−1 = arg min

s1,...,sL
|d⇤>si|,

eD⇤
j = [d⇤ si⇤,j−1],

while j  K do
• Clustering stage:

for i = 1, . . . , L
Assign si to the class of atom ed⇤

l of eD⇤
j if

|s>i ed
⇤
l | > |s>i ed

⇤
n|, 8n 6= l.

end
This yields j clusters C

⇤
l , l = 1, . . . , j.

• Dictionary update stage:
for l = 1, . . . , j

d⇤
l = arg max

d:kdk2=1
min
si2C⇤

l

|d> si|.
end
D⇤
j = [d⇤

1, . . . ,d
⇤
j ],

si⇤,j = argmin
si

kD⇤>
j sik1,

eD⇤
j+1 = [D⇤

j si⇤,j ] ,
j = j + 1.

end while

Output: Greedy minimax dictionary of K atoms: D⇤
K = D⇤

j .
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6.3 K-minimax: a variant of K-SVD approach

Here, we focus on dictionary learning for dimension reduction of some known library S. As

an example of an algorithm that can be useful for such a task, we focus on the classical K-

SVD algorithm [Aharon et al. 2006] (the pseudo-code is given in Appendix A.5.3). K-SVD

would in our notations optimize the dictionary D by finding an approximate solution of

min
D,A

kS −DAk2F subject to 8i 2 [1, L], kαik0  k,

where A is an unknown sparse representation matrix. In our framework, we set the K-SVD

sparsity parameter t0 to 1, in agreement with the unit `0 pseudonorm considered in the test

(5.1)-(5.3). This encourages each si, {i = 1, . . . , L}, to be well represented by at least one

column of D. The K-SVD algorithm in this setting is equivalent to gain-shape VQ [Gersho

& Gray 1991].

In Chapter 3, we have discussed some fundamental aspects on sparse dictionary learning.

Most often, they rely on a MSE criterion, which may not be suitable for a minimax approach

(e.g., see Examples 5.2.1 and 6.4.1). Hence, we propose to replace the SVD dictionary

update step of each class by the minimax optimization (5.13) applied to the alternatives of

the considered class. Figure 6.2 depicts this approach:

i). Start with an initial dictionary of K atoms.

ii). Sparse coding stage: Identify the most correlated atom of the dictionary to each si.

Divide accordingly the set S into K clusters CK⇤
j , {j = 1, . . . ,K}, by nearest neighbor

rule (largest correlation).

iii). Minimax dictionary update : d⇤ is computed for each class C
K⇤
j by (5.13), resulting

in a minimax centroid DK⇤
j .

The steps ii) and iii) are repeated until convergence or a stopping rule, as in K-SVD. The

final dictionary is noted DK⇤
K . The pseudo-code of K-minimax is given in Algorithm 2.

This algorithm can for instance be initialized by K samples randomly chosen among

S, or by first computing the global (K = 1) minimax atom d⇤, and then selecting K − 1

atoms among the atoms that are less correlated to d⇤. We have found that the latter

initialization samples better the marginal alternatives. This will be the initialization used

for the applications in Chapter 7.



84 Chapter 6. Minimax learning techniques of an arbitrary size dictionary

Figure 6.2: Illustration of the K-minimax algorithm for K = 3. Black dots : alternatives
si on the unit sphere, cyan dots: initial dictionary atoms. The blue lines delimitate the
classes and the red stars are the minimax atoms for each class. After initialization i), the
algorithm iterates between steps ii) and iii). These are done until a stopping rule. We
obtain a “K-minimax dictionary” of K atoms.

Algorithm 2 K-minimax

Inputs: Data set S 2 R
N⇥L = [s1, . . . , sL], number of atoms K.

Initialization:

Choose an initial dictionary DK⇤
K 2 R

N⇥K .

Set: k = 1, D
K⇤(1)
K = DK⇤

K .

Repeat until convergence (stopping rule):
• Sparse Coding (Clustering) stage:

for i = 1, . . . , L

Assign si to the class of atom d
K⇤(k)
j of D

K⇤(k)
K if

|s>i d
K⇤(k)
j | > |s>i d

K⇤(k)
n |, 8n 6= j.

end
This yields K clusters C

K⇤(k)
j , j = 1, . . . ,K.

• Dictionary update stage:

Update dictionary column d
K⇤(k)
j for each class C

K⇤(k)
j :

for j = 1, . . . ,K

d
K⇤(k)
j = arg max

d:kdk2=1
min

si2CK⇤(k)
j

|d> si|.

end
D

K⇤(k+1)
K = [d

K⇤(k)
1 , . . . ,d

K⇤(k)
K ],

k = k + 1.

Output: K-minimax dictionary of K atoms: DK⇤
K = D

K⇤(k−1)
K .
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6.4 Clustering technique combined with 1D minimax

6.4.1 SKM-minimax

Apart from the learning algorithms proposed above, we present here another possible ap-

proach to learn minimax dictionary. We combine clustering technique on the unit hyper-

sphere from the literature with the one-dimensional minimax solution. We exemplify this

approach here with the Spherical K-Means (SKM) clustering [Dhillon & Modha 2001]. The

dictionary obtained from this “SKM clustering-1D minimax” combination is denoted as

DSKM⇤.
This approach results in a simple two-step method without any iteration:

i). Partition the data samples S into K clusters using the SKM algorithm (presented

below in Section 6.4.2).

ii). For each cluster j, j = 1, . . . ,K compute the corresponding minimax atom

dSKM⇤
j . The concatenation of these K minimax atoms forms the final dictionary

DSKM⇤
K = [dSKM⇤

1 , . . . ,dSKM⇤
K ].

Example 6.4.1 illustrates the atoms learned using this approach, and compares them to

those learned using the above minimax proposed approaches and to K-SVD dictionary. In

Section 7.3.1, we will show numerical comparison of RD detection tests using DSKM⇤.

6.4.2 Spherical K-Means

Spherical K-Means is a variant of the K-Means method, which uses cosine similarity instead

of minimizing the (squared) Euclidean distance. Assume that we have two `2 normalized

vectors s and c 2 R
N
+ , then the angle ✓ between these two vectors is defined 0  ✓(s, c) 

⇡/2. The cosine similarity is the inner product between these two vectors, that is

s>c = kskkck cos(✓(s, c)) = cos(✓(s, c)). (6.1)

The centroid of each cluster is the nearest in cosine similarity with all the members belonging

to its cluster. SKM is a heuristic approach that approximates the solution to the following

optimization problem [Dhillon & Modha 2001]

{CSKM
j }Kj=1 = arg max

{Cj}Kj=1

KX

j=1

X

S2Cj

s>cj , (6.2)

where s 2 S are `2 normalized data samples to be partitioned, {Cj}Kj=1 are K disjoint

clusters (Cj \ Ck = ; if j 6= k and
SK
j=1Cj = {s1, . . . , sL}) and cj is the normalized mean

centroids (also called the concept vectors) associated to each cluster.

SKM may sometimes yield empty cluster(s) for some values of K. This happens when

no data sample is assigned to the corresponding cluster(s). As a result, we could not build

DSKM⇤
K for some values of K. In such cases, SKM-minimax will not be evaluated in the

main applicative part (Chapter 7) of this dissertation.
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Example 6.4.1. Comparison of four dictionary learning methods for K = 3.

This is an extension of the previous Example 5.2.1 concerning a simple numerical exper-

iments using random positives alternatives forming a reference library S 2 R
3⇥115. Here,

we will learn more than one atoms (K = 3.) We compare the corresponding atoms learned

using four learning algorithms. The first, denoted by DK-SVD
3 , is obtained by the standard

K-SVD approach (in which the sparsity k = 1), and the other three (D⇤
3, D

K⇤
3 and DSKM⇤

3 )

are respectively the greedy minimax, the K-minimax and the SKM-minimax approaches

described above.

Figure 6.3(a) shows the alternatives (black crosses, which exhibit here three subpopula-

tions or clusters) and the learning results of each method. Two of the K-SVD atoms (blue

diamonds) lie within the main subpopulation of the alternatives. In contrast, all three

of the minimax approaches: greedy minimax (red stars), K-minimax (white circles) and

SKM-minimax (yellow squares) approaches have one atom in or close to each of the three

clusters. The minimax approaches yield nearly similar results and on this example one of

the K-minimax atoms coincides with one of the greedy minimax atoms.

Turning to the minimax correlations (5.22), which are the figures of merit retained for the

worst-case optimization, we obtain ⇢(3)(DK-SVD
3 ) = 0.797, ⇢(3)(D⇤

3) = 0.913, ⇢(3)(DK⇤
3 ) =

0.881 and ⇢(3)(DSKM⇤
3 ) = 0.873. W.r.t. the case K = 1 (see Example 5.2.1), where

⇢(1)(u) = 0.475 and ⇢(1)(d⇤) = 0.714, the minimax correlations are improved for K > 1,

with indeed better scores for the minimax algorithms.

Figure 6.3(b) also compares the PFA(D
⇤
3) as estimated by Monte Carlo simulations with

the bound (5.25) derived in Chapter 5 as a function of the threshold ⇠2. This numerical

experiment shows that the exact PFA is indeed upper bounded by (5.25). For small and

large PFA, these values are nearly the same and the bound is tight.

si
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+
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Figure 6.3: (a) An example of the atoms learned by the proposed approaches (greedy

minimax: red stars, K-minimax: white circles and SKM-minimax: yellow squares) and by

K-SVD: blue diamonds on the unit sphere for K = 3. (b) Comparison of the PFA(D
⇤
3) by

Monte Carlo simulation to the upper bound (5.25).

⌅
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Example 6.4.2. Marginal alternatives as dictionary atoms for worst-case detec-

tion testing

In this example, we show the results of an intuitive approach in forming a worst-case

dictionary. This approach uses the marginal alternatives directly as the dictionary atoms.

This type of approach can be viewed as a direct Feature Selection method to dimension

reduction. Feature Selection is a method that selects few data samples from the library

w.r.t. a criterion and uses them as a reduced representatives set without applying any

transformation (e.g., see [Guyon & Elisseeff 2003]).

One might think that since there is only a couple of alternatives in S that dominate the

worst-case detection performances (see Figure 5.3), including these marginal alternatives in

the dictionary should do a good job in improving the minimax performance. The present

example investigates this strategy and shows that it is infact inefficient and yields very poor

performance.

From a reference library of 100 spectral lines, S 2 R
100⇥100, we learn the optimized

minimax atom d⇤ (5.13). Then, we identify K alternatives that are the least correlated to

d⇤. In this example, we choose K = 3. The concatenation of these 3 marginal alternatives

forms a dictionary, named D
marginals
3 . Then, we train a greedy minimax dictionary of 3

atoms, denoted by D⇤
3.

We perform next a RD test of the form presented in Section 5.2.1, that is

TD(x) = max
j=1,...,K

(d>
j x)

2
H1

?
H0

⇠2,

where the {dj} are K columns of the considered dictionaries (D⇤
3 and D

marginals
3 ). The

results are obtained by Monte Carlo simulations, where under H0 : x = n, under H1 : x =

si↵i + n, with n ⇠ N (0, I), and ↵i = 2.2, 8i 2 [1, 100]. To study the worst-case detection

performances, the tests are executed for all possible alternatives activated one by one under

H1, i.e., i = 1, . . . , 100.

Figure 6.4 depicts the numerical results of this test (evaluated by AUCs of the resulting

ROC curves). We can see that testing using the greedy minimax dictionary D⇤
3 yields

(far) better worst-case (and also average) detection performances than using the marginal

dictionary D
marginals
3 .

The reason of this behavior is that in order to be efficient in worst-case scenarios, the

algorithm should be able to separate the distribution of the alternatives into distinct classes

and place representative (minimax) centroids for each class. Simply including the marginal

alternatives in the dictionary is a too extreme way of accounting for marginal alternatives

as it results in letting aside many alternatives of the core of the distribution.

Note finally that without the proposed method for computing the “center” d⇤, it may be

difficult (apart from running exhaustive Monte Carlo simulations) to know a priori which

alternatives are “marginals” when all si are correlated.
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⌅

6.5 Discussion

Several minimax dictionary learning techniques were presented in this Chapter. Among

them, we will be focusing on greedy minimax and K-minimax algorithms for the application

part in the next Chapter.

Apart from the evaluation of detection performances of different tests, we discuss in

Chapter 7 the problem of choosing the optimal number of K atoms w.r.t. the worst-case

criterion in these learning process. Although there is no specific formulation derived, we

will however outline a possible way to choose K.

In Chapter 8, we present further possible machine learning applications of algorithms

presented in this Chapter, where we will learn minimax dictionaries of faces and apply the

proposed algorithms for worst-case handwritten digits recognition.
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The third Part of this manuscript highlights some possible applications and presents

numerical results regarding the sparsity constrained GLR detection tests and minimax

learning algorithms proposed in this dissertation. This final Part consists in two Chapters,

each Chapter considering a different application framework.

In Chapter 7, we evaluate detection performances of a testing scheme using a specific

reference library S, and we compare the results with approaches using different learned

dictionaries of reduced dimension. The considered reference library contains approximately

10000 spectral lines, provided by the MUSE (Multi Unit Spectroscopic Explorer) consor-

tium. These spectral lines are obtained from highly realistic astrophysical simulations.

The worst-case detection performances for each test are compared for tests using spectral

profiles and spatio-spectral profiles. Furthermore, we will suggest an approach to determine

the best number of K atoms for dictionary learning in our worst-case setting.

Chapter 8 investigates the interest of the approach for pattern recognition tasks. This

Chapter shows two possible applications of the proposed minimax learning algorithms, for

learning faces and for worst-case recognition of handwritten digits.





Chapter 7

An application in Astrophysics
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Some results presented in this Chapter were published in [Suleiman et al. 2013b,Suleiman

et al. 2014a,Mary et al. 2014].

7.1 Introduction

Numerical results presented in this Section regard the detection of spectral lines in HSI

data that are acquired by the integral field spectrograph MUSE (Multi Unit Spectroscopic

Explorer). This instrument delivers data images of 300⇥ 300 pixels at approximately 3600

spectral channels in the visible spectrum (see Figure 7.1).

One of the main objectives of the MUSE instrument is the detection and characteriza-

tion of very distant and faint galaxies known as Lyman-↵ emitters. Their spectra contain

essentially one single emission line, whose profile varies with the considered object (see

Figures 7.4(a) and 7.4(c)). These signatures can be simulated using astrophysical models

leading to a large library of alternatives. We consider that this spectral library represents

all possible alternatives under H1.

In our case, we obtained from astrophysical simulations performed by the MUSE consor-

tium a library of 9745 specific profiles (S 2 R
3600⇥9745). In the data, the emission lines can

essentially be centered at any of the 3600 wavelength channels (because the astronomical

redshift is related to the distance of the galaxy to Earth), thus the effective dimension of S

is L = 9745⇥3600 ⇡ 3.5⇥107. Using the constrained GLR (4.9) on the exact model, the L



94 Chapter 7. An application in Astrophysics

alternatives should be tested over each of the 90000 spectra of the data cube, an approach

whose complexity is prohibitive [Paris et al. 2013b].

The problem of detecting a spectral profile in a data spectrum is typically the “one

among many” detection problem stated by (4.1). We face the two associated difficulties,

computational complexity and worst behavior of standard RD tests. Minimax RD tests are

of particular interest here because the most “exotic” emission profiles (the typical ones) may

also be the most interesting ones from an astrophysical viewpoint (precisely because they

are atypical), so such profiles should not be left aside from the detection process.

Before evaluating the proposed approaches for detection tests, we introduce in Section

7.2 an overview of the MUSE instrument and we show the spectral line possibly presents

in its data cubes. Most of the works in this Chapter focus on spectral model (i.e., pixel-

vectors along the wavelength channels without taking into account the spatial leakage in

neighboring pixel-vectors) but we also consider a case of “spatio-spectral” profiles in Section

7.4. A spatio-spectral profile is a three-dimensional signal (or, subcube) at spatial position

(x, y) along the wavelength channels (third dimension, see Figure 7.7 for an illustration).

This Chapter ends with an approach allowing to evaluate the best number of atoms K

that should be used in the minimax RD tests.

7.2 The MUSE spectrograph and the Lyman-α emitters

MUSE is a wide-field optical integral-field spectrograph [Caillier et al. 2012] built for the

Very Large Telescope (VLT) in Chile, of the European Southern Observatory (ESO). An

integral field spectrograph provides spectral information at every pixel of a two-dimensional

scene (spatial sky positions x, y) forming three-dimensional image cubes (with the wave-

length information as third dimension). The spectral range that this instrument covers is

from 0.465µm to 0.93µm visible spectrum, with a spectral resolution of 0.13µm. MUSE is

considered as a wide field spectrograph because it has 24 integral field unit (IFU), allowing

to capture a large field of view. Figure 7.1(b) depicts the architecture of this instrument.

The main objective of MUSE is to study the formation of young galaxies (e.g., high

redshift Lyman-↵ emitters), of nearby galaxies (e.g., supermassive back holes, interacting

galaxies), of starts and resolved stellar populations (e.g., early stages of stellar evolution) and

the study of solar system. In the framework of this Ph.D thesis (which started in December

2011), we use highly realistic simulated data set S provided by the MUSE consortium

[Verhamme et al. 2012] (the MUSE instrument was successfully mounted on VLT on 19

January 2014, and saw first light on 31 January 2014).

Figure 7.2 shows the data acquisition process of MUSE. In brief, once the light reaches

the telescope, it is split two times and dispersed by the spectrograph, before being stored

into a data cube. The first splitting divides the light into 24 subfields, each directed to the

integral field unit (IFU). The second splitting is in each IFU, where each ray is split into

48 slices.

The study of formation of galaxies is a real challenge because it involves the observation

of very far galaxies, more than ten billion light years from earth. The emission lines of

young galaxies are associated to Hydrogen emission lines. They can be characterized by
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redshifted Lyman-↵ emitters which are visible only through a faint and narrow emission

line. Furthermore, the acquired data presents a very low SNR, affected by atmospheric

perturbation and by Poisson and detectors’ noise. Figure 7.1(a) compares a noisy Lyman-↵

spectral line against a noiseless Lyman-↵ spectral line. We can see that the target signature

is buried in noise. These characteristics make the detection of Lyman-↵ sources in the data

cube a difficult task (e.g., see [Paris et al. 2013a]).
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Figure 7.1: (a) Example of a noiseless and corresponding noisy spectrum in MUSE data
cube. (b) The structure of MUSE (Image credit to ESO). We can see different parts such
as the calibration unit on top (in yellow and green), the electronic cabinets on each side,
and all 24 of the integral field spectrographs (in gray).
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Figure 7.2: The acquisition process of the MUSE instrument. Once the light arrives, the
optical rotator compensates the rotation of the field of view (of the telescope). Then, it
passes through a set of optics. The light is then split into 24 subfields, each directed to one
IFU. In each IFU, the light is split again into 48 slices. Then, a spectrograph disperses the
light w.r.t. wavelength, which finally arrives at a detector that stores the signal, yielding a
data cube. Image credit to ESO.
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7.3 Worst-case detection of spectral profiles

For the purpose of computing sufficiently averaged ROC curves over the whole library for all

tests, we make two simplifications in the simulations below. First, we consider alternatives

of smaller dimension. To do so, we restrict the spectrum of each line to an interval of about

N = 100 contiguous wavelength channels centered around the line maximum, see Figure

4.1(a). There is almost no energy at the rest of the wavelength channels anyway. Second, we

do not consider possible translations under H1. These simplifications have no impact on the

validity of the presented results but allow an exhaustive statistical analysis. Testing using a

smaller sample of alternatives allow much more realizations of Monte Carlo simulations in

shorter duration. Full size detection tests can be performed following the approach of [Paris

et al. 2013b]. Here, we train the considered test dictionaries for a set of L = 100 (Section

7.3.1) and set of L = 9745 spectral profiles (Section 7.3.2).

In this Section, we compare the performances of several RD tests:

i. 1-dimensional reference test: Oracle NPD using the active alternative si under H1.

ii. 1-dimensional test using minimax atom d⇤.

iii. 1-dimensional test using the best rank-one approximation (SVD) of S, u.

iv. K-dimensional test using K-SVD dictionary DK-SVD
K .

v. K-dimensional test using greedy minimax dictionary D⇤
K .

vi. K-dimensional test using K-minimax dictionary DK⇤
K .

vii. K-dimensional test using SKM-minimax dictionary DSKM⇤
K , if applicable.

To recall, the one-dimensional tests above (i, ii, iii) are of the form1

|x>a|
H1

?
H0

γ, (7.1)

where a is replaced by the corresponding atom (i.e., si for Oracle NPD i, d⇤ for ii, and u

for iii). In contrast, the K-dimensional tests above (iv, v, vi, vii) have the form

TD(x) = max
j=1,...,K

|d>
j x|

H1

?
H0

γ, (7.2)

where D = [d1, . . . ,dK ] corresponds to the learned dictionary of different approaches (i.e.,

D = DK-SVD
K for iv, D = D⇤

K for v, D = DK⇤
K for vi and D = DSKM⇤

K for vii).

Note that we also include in this study the Max test over all alternatives (see (4.9):

max
i=1,...,L

|s>i x|?H1
H0
γ), but only for comparison purposes, since it may not be implementable

in practice on a full size data set.

For all the tests above, under H0: x = n and under H1: x = si↵i + n, where n ⇠
N (0, I), i and ↵i are unknown. From the library S, the alternatives si are activated one

1The absolute value correspond to a two sided test where the amplitude can be positive (emission) or
can be negative (absorption). Considering only emission lines will remove the absolute values in (7.1)-(7.2).
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by one from i = 1 until i = L, allowing to perform an exhaustive worst-case performances

evaluation. The corresponding amplitude ↵i is fixed for all i (so that the performances are

comparable w.r.t. SNR). Thus, ↵i is the parameter controlling the SNR of the simulation.

The threshold γ is obtained by Monte Carlo simulations for the case where D has more

than one atom (K > 1). In the case K = 1, the threshold can be computed analytically.

7.3.1 Results using a library of 100 spectral lines

For the considered reference library of L = 100 spectral lines (denoted by S100), it turns out

that 5 alternatives fall on the smallest enclosing circle defined by (5.13), whose center is the

minimax atom d⇤ (learned from the 100 spectral lines). We called these the most marginal

alternatives. To train dictionaries of K > 1 atoms, we would naturally choose the number

of atoms K superior to the number of the most marginal alternatives. By this, we expect

that the learned dictionaries will sufficiently capture the intrinsic diversity of the library

SL. Recall that in Chapter 5, the numerical simulations for N = 3 showed that in the

case of K = 1 (Example 5.2.1), the optimized minimax atom was hold by three marginal

alternatives. Thus, learning a dictionary of K = 1 might be insufficient to represent well

the various profiles of SL. Then, in Example 6.4.1 where K = 3, we have seen that the

minimax correlation function (5.22) increases w.r.t. the case where K = 1. With this in

mind, we investigate the detection performances of tests using K = 1 (d⇤ and u) and K = 6

atoms in the learned dictionaries (DK-SVD
6 , D⇤

6, D
K⇤
6 and DSKM⇤

6 ).

The results presented here (Figure 7.3 and Table 7.1) are obtained from 2 ⇥ 105 re-

alizations (uncertainty: ±0.001). The uncertainty is calculated by the difference between

the minimum and the average AUC of the Oracle NPD. This value is close to 3 times the

standard deviation of the (roughly) Gaussian estimation noise on the ROC.

Table 7.1 summarizes the AUCs of the ROC curves for different tests. The best worst-

case (or minimax) performances are achieved by tests using greedy minimax (blue circles

line) and K-minimax (orange crosses line) dictionaries, respectively D⇤
6 of Section 6.2 and

DK⇤
6 of Section 6.3. This is followed by the test using the SKM-minimax (gray line) dic-

tionary DSKM⇤
6 (presented in Section 6.4). The one-dimensional test using d⇤ (studied in

Section 5.2.2) is the third best minimax performance (cyan circle line).

More classical RD methods based on minimizing the MSE in the dictionary update

stage, (K)-SVD algorithm (cf. Example A.5.3) suffer from a large detection power loss for

some alternatives, particularly in one-dimensional testing (using u). These power losses

can be seen in Figure 7.3 (pink, dash-dots) for alternatives such as s1, s4, etc., with a

particularly large detection power loss at s90.

The third column of Table 7.1 shows the average detection performances of these tests.

Testing using SVD atom (u) yields the best average performance, as it is close to the Oracle

NPD (black dots). The average performances of minimax RD tests (K > 1) are equivalent

to that of Max test (using S100: red dashes, close to the blue and gray lines in Figure 7.3).

In summary, the proposed minimax RD tests perform indeed better in worst-case sce-

narios than the (K)-SVD RD tests. Increasing the number K from one atom to a few

atoms improves the worst-case performance and the upshot of better sampling increases the

average power.
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Figure 7.3: AUCs for all i, {i = 1, . . . , 100} instances under H1. The Figure compares

the detection performances of RD models using 6 learned dictionaries. Two of them are

one-dimensional atoms, and the rest of them are K = 6 atoms. The exact model S100

(red dashes, close to the blue and gray lines) and the reference AUC are also provided

(Oracle NPD: black dots). We can see that RD tests using the classical approaches (SVD:

pink dash-dots, and K-SVD: green solid line) suffer from large losses for certain alternatives,

e.g., s60 and s90. On the contrary, minimax approaches maintain as much power as possible

in these worst-case scenarios.

Dictionary Min AUC (worst-case) Average AUC

Oracle NPD 0.886 0.887

S100 0.813 0.847

d⇤ 0.768 0.836

u 0.700 0.863

DK-SVD
6 0.753 0.843

D⇤
6 0.794 0.846

DK⇤
6 0.792 0.854

DSKM⇤
6 0.788 0.848

Table 7.1: Results over 100 alternatives. (Uncertainty due to the estimation noise of the

ROCs: ±0.001). This table shows that RD detection test using SVD (u) suffers from a large

loss w.r.t. Oracle NPD, while the loss for the minimax atom (d⇤) is (maximally) minimized.

By adding more atoms to the learned dictionary (K = 6), the worst-case performance is

improved (compare for instance the test using greedy minimax D⇤
6 to the test using one-

dimensional minimax d⇤). The average performances of RD tests for K = 6 are comparable

to that of Max test using S100.
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Numerical simulations in the next Section regard a library SL with much more diversity

(where L is approximately 10000).

7.3.2 Results using a library of approximately 10000 spectral lines

For the full size reference library, it turns out that 16 alternatives out of 9745 lie on the

smallest enclosing circle defined by (5.13) for the minimax atom d⇤ (those are shown in

Figure 7.4(c)). Thus, we set in the following K to a sufficiently large value (K = 70) for

the proposed minimax approaches. As mentioned in the previous Section 7.3.1, a too low

value of K would not allow to capture the diversity of the marginal subpopulations of S,

resulting in no or little improvement of the worst-case performance w.r.t. the case K = 1.

Before turning to the tests comparison, let us first consider Figure 7.4(d), which shows

that the function ⇢(K) (5.22) used as a proxy for greedy minimax learning (Section 6.2) is

increasing rapidly in K. This fulfills the objective set in Section 5.2.4: increase the minimax

correlation as a proxy for the worst detection power.

Table 7.2 and Figure 7.5 summarize the results in terms of AUC of the ROC. For these

simulations, the uncertainty caused by estimation noise on the ROC is ±0.003.

If we first consider AUC results averaged over all alternatives (i.e., the most usual

criterion, but indeed not the one under focus), the second column of Table 7.2 shows that

the best performances are obtained by the standard SVD: the first is u (pink, dash-dots),

which is nearly as good as the reference (i.e., the Oracle NPD for each alternative, black

dots), and the second is DK-SVD
70 (green solid). As argued before, u and K-SVD tend to

capture sketchy features shared by most alternatives (compare, in Figure 7.4(b), u to the

learned minimax spectral profile d⇤ for K = 1). In terms of detection power this translates

into good results in average. As visible in Figure 7.5 however, this comes at the price of

large power losses for some alternatives (e.g., s90, s108, s111 and others).

In contrast, RD testing with the proposed dictionaries d⇤,D⇤
70 and DK⇤

70 perform better

than with u and K-SVD dictionary in terms of worst-case scenario performances. The

overall performances is more stable (e.g., limited power loss for s90, s108, see Figure 7.5).

Comparing now the proposed optimization approaches for K > 1 (in Figure 7.5: greedy

minimax D⇤
70, blue circles; K-minimax DK⇤

70 , orange crosses) to the minimax dictionary for

K = 1 (d⇤, cyan diamonds), we see that the worst-case performances are improved w.r.t.

K = 1, which was the main objective of the study of Section 5.2.4. Note that as a side effect

of better sampling the diversity of the alternatives, we also gain in average performances.

Table 7.2 shows that the worst-case performance of the Max test using S9745 is compa-

rable to those of the RD tests with d⇤,D⇤
70 and DK⇤

70 . The proposed approaches thus allow

here to obtain essentially the same performances as the Max test (red dashes, close to the

blue circles and orange crosses in Figure 7.5) with much lower complexity by limiting the

power losses inherent to classical dimensionality reduction methods.

As a final remark, comparing the results obtained in Section 7.3.1 for L = 100 with the

results obtained here for L ⇡ 10000, the relative behaviors of the RD tests are the same.

However, for a very large library of alternatives, the number of K atoms has to be increased

sufficiently, hence the interest of Section 5.2.4.
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(c) 16 marginal alternatives of S9745

0.75

0.8

0.85

0.9

0.95

0.7

K
0       10      20      30       40      50       60     70 

ρ
(K

)

1 ρ(K)
Greedy minimax

(d) Minimax function of (5.22)

Figure 7.4: (a) 100 of the alternatives in library S9745. (b) d⇤ (minimax) and u (SVD)
atoms, learned over 9745 alternatives. (c) The 16 alternatives of S9745 lying on the smallest
enclosing circle C w.r.t. d⇤. (d) Minimax correlations ⇢(K) for the greedy minimax, where
K = 1, . . . , 70.
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Figure 7.5: AUC shown for 100 alternatives under H1, {i = 41, . . . , 140}. The simulations
were done for {i = 1, . . . , 9745}, activated one by one under H1 (given S9745). Results over
the whole alternatives are summarized in Table 7.2. We compare here the detection perfor-
mances of RD models using 5 learned dictionaries, and the exact model S9745 (red dashes,
close to the blue circles and orange crosses). Two of the learned dictionaries are 1D (d⇤: cyan
diamond line and u: pink dash-dots), and the rest of them consist of K = 70 atoms. We
also include the reference AUC (Oracle NPD: black dots). Minimax approaches are more
robust w.r.t. some alternatives inducing maximum power losses (e.g., s90, s108, s111, s125
and s131).

Dictionary Min AUC (worst-case) Average AUC

Oracle NPD 0.884 0.887

S9745 0.772 0.841

d⇤ 0.763 0.838

u 0.670 0.870

DK-SVD
70 0.737 0.856

D⇤
70 0.773 0.844

DK⇤
70 0.769 0.846

Table 7.2: Results over 9745 alternatives. Uncertainty due to the estimation noise of the
ROCs: ±0.003. SKM-minimax is not included here, because the clustering for K = 70
yields some empty clusters. Similar to Table 7.1, the maximum loss in a worst-case scenario
for these simulations, occurs for RD test using SVD (u) (for K = 1) and K-SVD (DK-SVD

70 )
(for K > 1). While for greedy minimax (D⇤

70), the worst-case performance is equivalent to
those of the exact model (S9745).
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7.4 Worst-case detection of spatio-spectral (3D) profiles

7.4.1 3D PSF and 3D atoms

Extending the spectral composite hypothesis models (4.1) and (5.1) presented in Chap-

ter 4 and Chapter 5, we examine here a spatio-spectral model, taking into account the

spatial Point Spread Function (PSF) of the MUSE instrument2. This PSF describes the

instrument’s spatial and spectral response to a point source. The instrument induces a

spatio-spectral leakage of a point source found in the spectral and spatial domains. Figure

7.6 illustrate the PSF of MUSE in spectral form and in a spatial scene respectively.
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Figure 7.6: The PSF of MUSE’s instrument. Figure (a) shows a spectral view and Figure
(b) shows a spatial view.

The motivation for accounting for the spatio-spectral PSF is to gain in power because

the test will then account for the corresponding spatio-spectral information leakage under

H1. With regard to the spectral model of (4.1), we obtain a corresponding “spatio-spectral”

model by convolving each si 2 R
N with the spatio-spectral PSF (represented by a cube of

13⇥ 13⇥ 7) yielding 3D sub-cubes representing the spatio-spectral signatures of the {si}.
Similarly, for the first reduced composite hypothesis model (5.1), the atoms of the dic-

tionary D 2 R
N⇥K are convolved with the PSF yielding a dictionary of 3D atoms. The

numerical simulations presented in Section 7.4.2 studies the case where D = d (single

atom, K = 1). Figures 7.7 illustrate respectively the resulting 3D minimax atom d⇤, and

the resulting 3D SVD atom u in three dimensions.

2This is a simplified model for the purpose of illustration. In reality, this PSF is both variable spectrally
and spatially.
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7.4.2 Detection results on simulations

The numerical simulations presented below deal with a simulated 3D data cube of dimension

50⇥50⇥100. This data cube contains 9 spatio-spectral profiles, as shown in Figure 7.8. For

simplicity we do not simulate the fact that the spectral lines of the 9 objects may actually

be centered at any of the 3600 wavelengths. All are centered at spectral channel 50 and the

data cube is thus shorter in wavelength than actual MUSE data cubes.

Figure 7.8(a) depicts the mean (in wavelength, N = 100) of the noiseless data cube.

Figures 7.8(b) - 7.8(f) illustrate the corresponding 9 Lyman-↵ profiles under H1. Five

of them have similar shapes (s1 to s5) and four of them were chosen among marginal

alternatives (s6 to s9). In the presence of high noise (SNR = −17dB), all of the 9 profiles

are totally buried in noise as shown in Figure 7.9(b).

The numerical results (at fixed PFA = 0.01 and SNR = −17dB) show that testing using

minimax 3D atom (Figure 7.9(c)) yields better detection power for the marginal alternatives

(in circles, particularly profiles number 7 to 9, while the powers are almost equals for profile

number 6) than using SVD 3D atom (Figure 7.9(d)). The comparative evaluation of the

performances is more clear in Figure 7.9(e) where we plot the difference of detection powers

(i.e., ∆PDet = PDet(d
⇤)−PDet(u)). We can see (in Figure 7.9(e)) that ∆PDet are positives

for profiles number 7 to 9 (it is near to zero for profile number 6), meaning that the detection

powers of testing using minimax 3D atom are larger than those using SVD 3D atom for these

profiles. In contrast, ∆PDet are negatives for profiles 1 to 5, meaning that the detection

powers of testing using SVD 3D atom are larger than those using minimax 3D atom for

these profiles.

The worst detection rate for the test using SVD atom is 0.3649 (profile number 9), while

it is 0.4770 for the test using minimax atom (profile number 8), which illustrate the better

behavior of the proposed test in worst-case scenario.
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Figure 7.7: Example of 3D (spatio-spectral) learned atoms. (a) Minimax atom, and (b) SVD
atom. For both subfigures, the left panels show the spectral profiles, the middle panels show
the corresponding 3D learned atoms and the right panels show a cut of the 3D atoms.
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Figure 7.8: (a) Noiseless data cube (with spectral profiles convolved by the 3D PSF),
averaged over spectral channels. This cube contains 9 Lyman-↵ profiles. Profiles 1 to 5
have a similar shape, while the rest are marginal profiles (number 5 to number 9).
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Figure 7.9: (a) and (b) show respectively the mean (over the wavelengths) of the noiseless
and noisy data cube. (c) and (d): Detection maps for spatio-spectral hypothesis testing
at fixed PFA = 0.01, for SNR = −17dB. The results show that tests using minimax 3D
atom (subfigure (b)) yield better detection power for the marginal alternatives (in circles,
particularly for profiles 7 to 9) than using SVD 3D atom (subfigure (b)). Subfigure (e)
depicts the difference of performances of test using 3D minimax vs. using 3D SVD (see
text).



108 Chapter 7. An application in Astrophysics

7.5 Strategies for determining best number of K atoms w.r.t.

minimax criterion

Generally, when performing classification or clustering tasks, we have to set the number of

desired classes, K. Finding an optimal procedure to choose K is still an open problem. A

common practice is to execute a large number of numerical simulations and pick the best

value of K w.r.t. a defined criterion.

For the considered worst-case criterion, a similar approach to evaluate the best number

of K atoms is to train several dictionaries (train greedy minimax dictionary of K = 1

atom and several dictionaries of K = 2, . . . , 100 atoms). Then we evaluate the AUCs over

L alternatives for each dictionary, noting the worst-case AUC value for each “K-trained”

dictionary.

We plot below the values of these worst-case performances w.r.t. the number of atoms

K for SNR = 8dB: we obtain the curve shown in Figure 7.10. From this example, we can

see that increasing the number of learned atoms K does not necessarily improve the worst-

case performance (for low values of K the minimum AUC drops). However, the minimax

performance globally increases with K until we reach a roughly constant level of minimum

AUC. We can then pick the value of K corresponding to the left side of the plateau (about

K = 36 here).

Of course, this method is time consuming especially if the number of alternatives L is

very large. For instance, if L ⇡ 10000, it is not possible to learn dictionaries until say,

K = L/2 = 5000 (with L ⇡ 10000 this means, in order to obtain the worst-case scenario

in each case, performing K(K + 1)L = 2.5⇥ 1011 Monte Carlo simulations of at least 1000

realizations each, which is completely out of reach). So much so, we could not go beyond

K ⇡ 100.

Another simple approach is to try a restricted number of values for K, with values

sufficiently larger than the number of marginal alternatives (w.r.t. d⇤), and evaluate the

minimax detection performances only for those values. For example, there are 16 marginal

alternatives of S9745 on the circle that defines d⇤. We can try testing dictionaries of for in-

stance K = 17, 20, 35, 70, 100 atoms (red circles in Figure 7.10). For S9745, the computation

time3 to train a greedy minimax dictionary of K = 10 atoms (D⇤
10) is about 1.94 minutes.

Performing Oracle NPD and greedy minimax RD tests (using D⇤
10) over 9745 alternatives

(for 105 Monte Carlo realizations) takes about 12 hours.

3Using a standard machine of 2.7GHz processor and 4Go of DDR3 RAM.
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Figure 7.10: The blue line represents worst-case performances (minimum AUC of the ROC
curves) of D⇤

(K), for K = 1, . . . , 100 over 100 alternatives (S100), for SNR = 8dB (↵ = 2.5).
In this example, there are no improvements of the detection power for K ≥ 36. One can
then choose K = 36. The red circles mark some picked values of K and the corresponding
worst-case performances.

7.6 Discussion

This Chapter illustrates on an astrophysical application our studies of Part II, where we had

proposed minimax RD tests based on GLR. The interest of the minimax strategy resides in

this application in the implementation of tests that are robust for marginal spectral profiles,

allowing astrophysicists to better detect such unusual sources. Choosing the best number

of columns for the dictionary (w.r.t. minimax objectives) remains an issue, but we have

suggested two approaches that can be used in practice.

In the next Chapter, two other possible applications are presented for worst-case pat-

tern recognition. By using the proposed minimax learning algorithms, we will first learn

dictionaries of faces from a known database. Then we will turn to the worst-case recognition

rates when identifying handwritten digits.
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Machine learning applications
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Some results presented in this Chapter were published in [Suleiman et al. 2014a,Suleiman

et al. 2014b].

8.1 Introduction

In this Chapter, we turn to a more “visual” application, which is about image (or pattern)

recognition. Pattern recognition methods generally seek to assign a new input to an appro-

priate cluster based on a similarity criterion. The performance of a recognition algorithm is

usually evaluated in term of average recognition rate. The approach of this thesis instead

focusing on the worst-case recognition rate.

First, we compare the proposed minimax dictionaries with (K)-SVD dictionaries learned

from a known database of 40 faces. Next, we apply the proposed algorithm in a one-

dimensional setting to train minimax dictionaries of handwritten digits. We also use for

comparison a trained dictionary corresponding to the best rank-one approximation (SVD)

of handwritten digits. We test then the recognition rate on another set of data using each

of the learned dictionaries described above in the worst-case setting.

8.2 Minimax learning of faces

We illustrate in this Section the results of the algorithms in terms of learned atoms in the

case where the library S is a database of faces. In the next Section 8.3, we will evaluate

the worst-case recognition rates. L = 40 subjects were selected from the ORL Database of

Faces by AT&T Laboratories Cambridge [Samaria & Harter 1994], representing the set of

possible alternatives under H1 (Fig. 8.1(a) shows 20 faces).

For K = 1, the one-dimensional learned atoms exhibit the behaviors discussed in pre-

vious Chapters. The minimax atom d⇤ (Fig. 8.1(b)) captures marginal features (glasses,

different eyes, noses, and mouths positions), while the SVD atom u (Fig. 8.1(c)) represents

an “average face” with shared and smoothed characteristics.



112 Chapter 8. Machine learning applications

Setting K > 1 allows for more atoms to be learned, forming worst-case detection dic-

tionaries whose axes dissociate to focus on specific sets of “atypical” signatures. For K = 3

for instance (see Fig. 8.1(d)), the second minimax atom is identified to a woman face alter-

native whose features are very dissimilar (in a correlation sense) from the others. The first

atom of D⇤
3 is similar to d⇤, with some features removed that are transferred to the third

atom. In contrast, the K-SVD method (Fig. 8.1(e)) yields in this case three “smooth faces”.

(a) Some alternatives in library S

(b) d⇤ (c) u

(d) D⇤
3 = [d⇤

1, d
⇤
2, d

⇤
3] (e) DK-SVD

3 = [dK-SVD
1 , dK-SVD

2 , dK-SVD
3 ]

Figure 8.1: (a) 20 faces in the database of 40 faces, front-facing. (b) One-dimensional
minimax face, and (c) SVD face. (d) Greedy minimax faces, K = 3, and (e) K-SVD faces,
K = 3. K-SVD represents average features while worst-case algorithms capture marginal
features.
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8.3 Worst-case recognition rate of handwritten digits

Another possibly interesting application of this minimax approach is for the recognition of

handwritten digits. We use the MNIST database [LeCun et al. 1998] which contains 60000

examples of handwritten digits (from 0 to 9), collected from approximately 250 writers. For

our demonstration, we use 4121 training examples and 1300 test examples for each digit.

In this case, classification methods aim at maximizing the probability that the digits

are correctly classified (e.g., a handwritten 1 should be correctly classified in class 1). In

our framework, we wish to learn dictionaries aimed at maximizing the probability of correct

classification in the worst-case of the training database (for instance, a dictionary will be

learnt for class 1 in order to be robust for all instances of handwritten 1 digits).

For each database (library) Sc, c = 0, . . . , 9 (each composed of 4121 alternatives), we

learned the corresponding minimax atom d⇤ c. We concatenated these ten atoms into a

matrix B⇤ = [d⇤ 0, . . . ,d⇤ 9]. The same was done for the SVD method resulting in a matrix

BSVD. Figure 8.2(b) and 8.2(c) depicts the atoms of the learned dictionaries for the two

methods.

We evaluated the probability of correct classification in the worst-case scenario for each

method and for each class. To do so, in the case of B⇤ for instance, we identified for

each class c which of the 1300 test alternatives had the minimum correlation with B⇤ =

[d⇤ 0, . . . ,d⇤ 9]. Let sci⇤ denote this alternative. Correct classification is achieved for this

worst-case alternative if arg max
j=0,...,9

d⇤ j>sci⇤ = c. The same procedure was used to evaluate

the correct classification of the SVD approach with BSVD.

We executed this experiment 1000 times (allowing random permutation between training

and test examples). Table 8.1 shows the probability of correct recognition in the worst-

case scenario for this experiment. These results show that the “minimax approach” always

classifies better the worst alternative than SVD.

Note that SVD is always mistaken (null recognition rate) by such alternatives in seven

cases out of ten. The minimax approach is indeed more robust.

Of course, a much better classification results could be obtained in this context by

injecting discriminative principles between classes in the learning process and by increasing

K. The purpose of these simulations is only to illustrate another application where the

proposed worst-case scenario learning methods could be used and elaborated.
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(a) Some samples of the handwritten digits in the library Sc

(b) B⇤ = [d⇤ 0,d⇤ 1, . . . ,d⇤ 9]

(c) BSVD = [u0,u,1, . . . ,u9]

Figure 8.2: (a) Some samples in the database of handwritten digits. Figures (b) and
(c) learned atoms (K = 1) for each digit by different approaches: minimax and SVD,
respectively.

Digit
Worst-case recognition (%)
Minimax SVD

0 45.6 27.7

1 31.9 0

2 0.8 0

3 5.8 0

4 21.3 13.7

5 18.8 0

6 14.3 0

7 15.5 0

8 20.9 0.9

9 2.4 0

Table 8.1: Worst-case recognition rates for handwritten digits.
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8.4 Discussion

This Chapter glanced at other possibly interesting applications for minimax learning, beside

detection tests. The proposed approach may be advantageous in certain applications where

we want to maintain the recognition rate in worst-case scenarios.

The purpose of this Chapter was to propose other illustrations of the algorithms of

Chapter 6. Of course, a comprehensive evaluation w.r.t. the existing methods in the

considered field (i.e., machine learning) would require more elaborated studies.
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Conclusions

Before diving into the core of this research work, we found it important to present several

technical topics connected to this dissertation. Those are fundamentals aspects which are

required to understand the proposed contribution.

Both of the initial chapters were related to detection theory. In Chapter 1, basic princi-

ples of statistical hypothesis testing for a detection problem were reviewed, and the concept

of minimax strategy was outlined. Conforming with the main applicative part of this

dissertation, namely application to astrophysical hyperspectral data, Chapter 2 reviewed

approaches for target detection in HSI. With respect to the two categories defined in HSI

(Spectral Matching detector and Anomaly detector), our method can be viewed as a par-

ticular case of Spectral Matching, where the learned subspaces are robust in the worst-case

scenario.

Moving away from detection topics, Chapter 3 was dedicated to dimension reduction

techniques. We discussed several families of RD approaches: classification, clustering, and

sparse learning. A branch of this approach, namely sparsity-based learning techniques,

were particularly emphasized. We have recalled some classical sparse dictionary learning

algorithms such as the MOD and K-SVD. In our work, (K)-SVD was the approach that

acted as a benchmark to our proposed learning methods.

The preliminary observations reported in Chapter 4 showed that RD tests using low

rank matrix approximation (SVD) yield good detection performances on average. However,

the behavior of such approach (whose learning process is based on the MSE) tends to

capture common forms of the elements in the reference library. The intrinsic diversity of

the very large library S is not totally covered and this results in low detection power for

some alternatives.

With these observations in mind, we tried in Chapter 5 to devise a RD test which is

robust against all shapes of target signatures. This translated into a minimax (or worst-

case) criterion. Designing this robust RD test entailed learning subspaces that maximize

the worst probability of detection. Chapter 5 explained the corresponding optimization

problems and investigated the theoretical framework in learning minimax dictionaries. In

the first stage, we examined the simplest case of K = 1 atom. The exact solution of the one-

dimensional minimax problem was found in (5.13), which can be resolved by a QP solver.

Next, we examined the optimization problem for an arbitrary value of K. The resulting

problem (5.6) is very intricate to be solved because it involves correlated variables. As a

remedy, we proposed to study the corresponding bounds for the probability of detection

and the probability of false alarm, resulting in a proxy minimax function. This function

was used to design strategies to build greedy minimax algorithm as elaborated in Chapter

6.

Following the theoretical studies of Chapter 5, Chapter 6 elaborated several minimax

learning algorithms. Three variants were proposed. The first was called greedy minimax,

based on the approximation to the optimization problem (5.6). It can be viewed as a

special case of Divisive clustering (top to down approach), where all data are initially set
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in a cluster and then split into many clusters, but the number of clusters K in our case is

fixed at initialization. The second algorithm (named K-minimax) relied on injecting one-

dimensional minimax solution in the dictionary update stage of K-SVD algorithm (or more

precisely gain-shape VQ). The third kind of algorithm (SKM-minimax) combined the SKM

clustering technique on the unit hypersphere with the one-dimensional minimax solution.

Some applications of the proposed approaches were presented in Part III of this dis-

sertation. The principal application was presented in Chapter 7, where we focused on the

target detection of Lyman-↵ emission lines in astrophysical data cubes. The results showed

that RD tests using minimax learned dictionaries attained the main objectives of this dis-

sertation. The proposed testing approach is far less complex than testing the full library

(via the Max test over S), and in the same time robust against all alternatives under H1.

Their worst-case performances are in fact as high as those of Max test (which would test all

alternatives). Moreover, quite good average performances were also obtained for a number

of atoms K sufficiently large.

Apart from this detection application, we also outlined in Chapter 8 other possible appli-

cations that may be interesting in a worst-case recognition framework. Minimax dictionaries

were learned from known databases of faces and handwritten digits. The one-dimensional

minimax atom showed a much better worst-case recognition rate w.r.t. a (naive) approach

based on SVD.

In summary, the originality of this dissertation lies in the proposition of detection tests

for composite hypothesis testing that are optimized w.r.t. a minimax criterion. Recognizing

the modern problem of computation complexity when testing a very large known library S,

we pointed out the importance to devise RD tests. The proposed minimax RD tests appear

original w.r.t. the literature and also relevant for many applications.

This type of strategy can be very advantageous in all domains where detection concerns

known (up to an amplitude factor) alternatives (which are possibly in large number), and

where it is important that the detection is robust w.r.t. all possible alternatives. Other

instances of such application include the determination of cancerous cells (where the known

alternatives are cells taken from blood samples or bone marrow samples) or for the detection

of gas leakage in pipelines (where the known alternatives are chemical spectra collected from

gas flow measurements).



Future works

We list below several future works that can be conducted following the studies of this

dissertation.

1. Real data from MUSE instrument

Firstly, the minimax subspaces learning for detection tests proposed in this disserta-

tion were mainly evaluated on simulated astrophysical data (presented in Chapter 7). It

will be interesting to see the outcome of these approaches for the application of real data

cubes from the MUSE instrument which will be available in the future months.

2. One target Vs. the rest of alternatives

Problem (4.1) can be viewed as one-class detection problem, where the model is

pure noise under the null hypothesis against a “one among many” alternative model. An

extension branch that one can think of is a multi-class detection problem, where the model

is one target against the rest of the alternatives:

⇢ H0 : y = s` + n, n ⇠ N (0, I)

H1 : y = S0α+ n, kαk0 = 1, α unknown
(8.1)

where y, n and s` 2 R
N , s` /2 S0, s` and S0 2 R

N⇥L are column-normalized. Assuming

that s` is known under H0, the GLRT for model (8.1) is:

TGLR(y) = max
α:kαk0=1

p(y|S0α)

p(y|s`)
H1

?
H0

γ0 (8.2)

Maximizing the numerator implies: maxα:kαk0=1 p(y|S0α) = minα:kαk0=1
1
2ky−S0αk22.

For index i fixed (8i 6= `), we obtained ↵ML
î

= s>
î
y, then î = argmaxi=1,...,L |s>i y|. Taking

the logarithm of the GLRT and injecting ↵ML
î

in (8.2) yields:

TGLR(y, s`,S
0) = max

i=1,...,L
i 6=`

(s>i y)
2 − 2s>` y

H1

?
H0

γ, where γ = 2 ln γ0 − ks`k22. (8.3)

This is an interesting problem for future works (along with generalization to unknown

amplitudes under H0. This goes in the direction of extending MSD [Scharf & Friedlan-

der 1994] to minimax principle).
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3. RD Model with k > 1 sparse constraint under H1

The RD model (5.1) imposes 1-sparse constraint under H1. We have seen that the

Lyman-↵ spectral library S9745 possesses intrinsic diversity. Some of the spectral lines

have two peaks (see Figures 7.8(d) and 7.8(e)). Thus, it may be interesting to study the

case where the sparse constraint under H1 is set to superior to one:

⇢ H0 : x = n, n ⇠ N (0, I)

H1 : x = Dβ + n, kβk0 = k, k > 1
. (8.4)

4. Best number of K atoms

In clustering and classification tasks, there is no definitive procedure allowing to ob-

tain the number of optimal clusters (or classes) K. We have presented in Section 7.5 two

possible ways to determine K. This value depends on the intrinsic diversity of the samples

in the reference library S but also on the SNR. We have not investigated the dependencies

of the best value of K w.r.t. SNR. This could easily be done through simulations from

which theoretical insight would be foreseen.

5. Concatenation of greedy minimax and K-SVD dictionaries

We have seen throughout this dissertation that testing using K-SVD dictionaries

yielded a very good average detection performance, while testing using minimax dictio-

naries optimized the worst-case detection performances. In practice, an efficient strategy

would be to concatenate, say, greedy minimax dictionaries D⇤ with K-SVD dictionary

DK-SVD. GLR testing using D0 = [D⇤DK-SVD] should give both a good worst-case and

average detection performances. Note however that the issue of optimizing the number of

columns remains.
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Appendix of Part I

A.1 Proof of Neyman-Pearson Lemma

Proof. We seek the rejection region of H0, in which we decide H1: R1 = {x : H1} so that

PDet is maximum for a fixed PFA = ↵, as described below

maxPDet = max

Z

R1

p(x;H1) dx subject to PFA =

Z

R1

p(x;H0) dx = ↵. (A.1)

In the problem above, p(x;Hi) is the probability distribution function of x under hypothesis

Hi, i = 0, 1. Let us consider the following Lagrangian L

L = PDet + λ(PFA − ↵), (A.2)

where λ 2 R is a Lagrange multiplier. Injecting the corresponding expression of PDet and

PFA of (A.1) in L yields

L =

Z

R1

p(x;H1) dx+ λ

✓Z

R1

p(x;H0) dx− ↵

◆

=

Z

R1

(p(x;H1) + λ p(x;H0)) dx− λ↵. (A.3)

To maximize L, x should be included in R1 if

p(x;H1) + λ p(x;H0) > 0 ) p(x;H1)

p(x;H0)
> −λ. (A.4)

LR is nonnegative, hence if we denote by γ = −λ, a positive threshold (γ > 0) obtained

from PFA = ↵, we decide H1 when

p(x;H1)

p(x;H0)

H1
> γ, (A.5)

which proves the Neyman-Pearson lemma (as described in lemma 1).
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A.2 Proof of the Bayes detector that minimizes the probabil-

ity of error

Proof. Let us denote the Bayes risk as R, and Aij are constants correspond to the cost if

we decide Hi but Hj is true. The Bayes risk is defined as

R =

1X

i=0

1X

j=0

AijP(Hi|Hj)P(Hj)

R =A00P(H0|H0)P(H0) +A01P(H0|H1)P(H1) +A10P(H1|H0)P(H0)

+A11P(H1|H1)P(H1). (A.6)

Recall that the probability error (1.28) defined in Section 1.5 is

PE = P(H0|H1)P(H1) + P(H1|H0)P(H0),

where R = PE if A01 = A10 = 1 and A00 = A11 = 0. Thus, to proof that relation (1.29)

allows to minimize PE, we can use the definition of R. Denote by R1 = {x : H1}, the

rejection region of H0, and R0 = {x : H0} the acceptance region of H0. We can write from

(A.6)

R =A00P(H0)

Z

R1

p(x|H0)dx+A01P(H1)

Z

R0

p(x|H1)dx+A10P(H0)

Z

R1

p(x|H0)dx

+A11P(H1)

Z

R1

p(x|H1)dx. (A.7)

Using Z

R0

p(x|Hi)dx = 1−
Z

R1

p(x|Hi)dx,

equation (A.7) becomes

R =A00P(H0) +A01P(H1)

+

Z

R1

{ [A10P(H0)−A00P(H0)] p(x|H0) + [A11P(H1)−A01P(H1)] p(x|H1) } dx.

(A.8)

From the integral in (A.8), we decide H1 if

(A10 −A00)P(H0) p(x|H0) < (A01 −A11)P(H1) p(x|H1).

If we assume that A10 > A00 and A01 > A11, we have

p(x|H1)

p(x|H0)
>

(A10 −A00) p(H1)

(A01 −A11) p(H0)
= γ, (A.9)

which is equivalent to the relation (1.29), and corresponds to the minimum PE detector.
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A.3 Examples of several detection methods in literature

Example A.3.1. LR test statistic for testing a known mean vector.

Consider the following hypotheses model for normally distributed data x ⇠ N (θ,Σ)

⇢ H0 : θ = 0

H1 : θ = θ1
, (A.10)

where x 2 R
N , θ1 is a known vector parameter under H1 and Σ is a known covariance

matrix. Applying the definition of LR test (1.9)-(1.10) to the above hypothesis model

implies

LR : Λ(x) :=
p(x;θ1)

p(x;0)

H1

?
H0

γ0, (A.11)

where under H1

p(x;θ) =
det(Σ−1/2)

(2⇡)N/2
exp

✓
1

2
(x− θ1)

>Σ−1(x− θ1)

◆
. (A.12)

The likelihood ratio is

Λ(x) =

det(Σ−1/2)

(2⇡)N/2 exp
(
−1

2(x− θ1)
>Σ−1(x− θ1)

)

det(Σ−1/2)

(2⇡)N/2 exp
(
−1

2x
>Σ−1x

)

= exp

✓
1

2
(2θ>

1 Σ
−1x− θ>

1 Σ
−1θ1)

◆

= exp

✓
θ>
1 Σ

−1x− 1

2
θ>
1 Σ

−1θ1

◆
. (A.13)

Taking the logarithm of (A.13) yields

LR : θ>
1 Σ

−1x
H1

?
H0

γ, (A.14)

where γ = ln γ0 + 1
2θ

>
1 Σ

−1θ1. ⌅

Example A.3.2. GLR test statistic for testing an unknown mean vector

Consider the following hypotheses model for normally distributed data x ⇠ N (θ,Σ)

⇢ H0 : θ = 0

H1 : θ 6= 0
, (A.15)

where x 2 R
N , θ is unknown and Σ is a known covariance matrix. Applying the definition
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of GLRT (1.13) to the model (A.15) implies

TGLR(x) :=

max
θ 6=0

p(x;θ)

p(x;0)

H1

?
H0

γ0, (A.16)

where under H1

p(x;θ) =
det(Σ−1/2)

(2⇡)N/2
exp

✓
1

2
(x− θ)>Σ−1(x− θ)

◆
. (A.17)

We shall first calculate the ML estimate of the unknown parameter, by maximizing the

numerator of (A.16)

bθML
= arg max

θ 6=0
p(x;θ)

= arg min
θ 6=0

1

2
(x− θ)>Σ−1(x− θ). (A.18)

Computing the derivative of (A.18) w.r.t. θ and equating to 0 yields

Σ−1(θ − x)
∣∣
θ=bθ

ML = 0 (A.19)

bθML
= x. (A.20)

Injecting bθML
in the test statistic (A.16) leads to

TGLR(x) =

det(Σ−1/2)

(2⇡)N/2 exp
(
−1

2(x− θML)>Σ−1(x− θML)
)

det(Σ−1/2)

(2⇡)N/2 exp
(
−1

2x
>Σ−1x

)

= exp

✓
1

2
(x>Σ−1x)

◆
. (A.21)

Taking the logarithm of (A.21) implies the following test

TGLR(v) = kvk22
H1

?
H0

γ, (A.22)

where v = Σ−1/2x and γ = 2 ln γ0. This kind of test statistic (A.22) is an Energy Detector,

where the energy of the “whitened” signal v is compared to a threshold. The SNR of each

data component in this example may be different, because the test statistic depends on the

elements of Σ. ⌅
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Example A.3.3. Bayesian test statistic.

Let us consider x = θ + n with the following hypotheses

⇢ H0 : θ = 0

H1 : θ ⇠ p1(θ)
(A.23)

where x, n, and θ 2 R
N , n is an independent and identically distributed (i.i.d.) noise,

θ = [✓1, . . . , ✓1]
> and p1(θ) is the prior probability of the random parameter under H1.

Applying the definition (1.30) to the current model conducts to

TBayes(x) =
p(x|H1)

p(x|H0)
=

R
p(x|θ) p1(θ) dθ

p(x|0)
H1

?
H0

γ, (A.24)

and for a separable prior under H1, p1(θ) =
NQ
n=1

p1n(✓n), we have

TBayes(x) =

NY

n=1

R
R
p(xn|✓n) p1n(✓n) d✓n

p(xn|0)
H1

?
H0

γ. (A.25)

⌅

A.4 Analysis sparse model

Elad, Milanfar and Rubinstein were among the first who highlighted two different models

in sparse regression problems: synthesis and analysis [Elad et al. 2007]. The analysis sparse

model is described below.

Assume that we have a signal s. The analysis model (as illustrated in Figure A.1)

imposes sparsity constraint on Ωs, where Ω 2 R
W⇥N is the analysis dictionary (typically,

W > N). Contrary to the synthesis model, this model accentuates on the locations and

number of zeros in Ωs (which is called co-sparsity denoted by l). The sparsity of Ωs

is related to l by kΩsk0 = W − l . The optimization problem for an analysis sparse

approximation problem can be written as

bs = arg min
x

kΩxk0 subject to kbs− xk22  ε, (A.26)

or

bs = arg min
s

kbs− xk22 subject to kΩxk0 W − l. (A.27)

The rows in Ω that are orthogonal to s (shown in orange in Figure A.1) define the co-support

of s.
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In a dictionary learning context, (A.27) in matrix form leads to the optimization problem

min
Ω,X

kS −Xk2F subject to kΩxik0 W − l, 8i = 1, . . . , L, (A.28)

kωjk2 = 1, 8j = 1, . . . ,W,

where ωj is the rows of Ω and xi the columns of X.

Following (A.27) and (A.28), quite a number of algorithms were proposed for analysis

learning. For instance, the counterpart of OMP in analysis is called Greedy Analysis Pursuit

(GAP) [Nam et al. 2011]. At initialization, GAP algorithm fixes the co-sparsity l and sets all

rows ωj 2 Ω
(0), j = 1, . . . ,W to be the co-support of s (i.e., all rows in Ω

(0) are orthogonal

to s). Then, the non-zero elements in Ωs are identified, reducing the size of the co-support

from W to l.

In [Rubinstein et al. 2012], the co-support is initialized to zero and the zero elements in

Ωs are iteratively identified. So the co-support increases in dimension until a stopping rule.

This analysis sparse coding step is named the Backward Greedy algorithm. This is used

together with a dictionary update step via SVD, in an algorithm called Analysis K-SVD

algorithm, which parallels with the Synthesis K-SVD algorithm described in Example A.5.3.

=

0

0

0

0

l: #0 = 4

Ω

Figure A.1: The concept of analysis sparse modeling. Ω 2 R
W⇥N is the analysis dictionary.

Sparsity constraint is imposed on Ωs, by the co-sparsity l (which is the number of zeros in
Ωs). The rows in Ω that are orthogonal to s define the co-support of s (shown in orange).
Here, the size of the co-support is 4.
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A.5 The algorithms of several RD learning techniques

A.5.1 K-Means algorithm

Algorithm 3 K-Means

Inputs: Data set S 2 R
N⇥L = [s1, . . . , sL], number of clusters K.

Initialization: Set t = 0, choose initial centroids M (0) 2 R
N⇥K = [µ

(0)
1 , . . . ,µ

(0)
K ]

(e.g., random K data vectors from S).

Repeat until convergence (stopping rule):
• Clustering stage:

for i = 1, . . . , L

Assign si to the cluster C
(t)
j of centroid µ

(t)
j of M (t)

C
(t)
j = {ksi − µ

(t)
j k22 < ksi − µ

(t)
l k22, 8j 6= l, j = 1, . . . ,K},

end
This yields K clusters C

(t)
1 , . . . , C

(t)
K .

• Centroids update stage:
for j = 1, . . . ,K

v = size cluster C
(t)
j ,

µ
(t+1)
j = 1

v

vP
c=1

sc 2 C
(t)
j ,

end

Set t = t+ 1,

M (t) = [µ
(t)
1 , . . . ,µ

(t)
K ],

Output: The centroids M 2 R
N⇥K = M (t) and the K clusters C

(t)
1 , . . . , C

(t)
K .
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A.5.2 MOD algorithm

Algorithm 4 MOD

Inputs: Data set S 2 R
N⇥L = [s1, . . . , sL], number of atoms K, sparsity k,

error threshold ε.

Initialization: Set t = 0, choose an initial dictionary D(0) 2 R
N⇥K = [d1, . . . ,dK ]

(e.g., random vectors). Perform column-normalization on D.

Set t = 1, set error e(t) = 1,

Repeat until e(t)  ε:

• Sparse coding stage:

for i = 1, . . . , L

Compute the sparse vectors cαi via any pursuit algorithm (e.g., MP, OMP)

cαi
(t) ⇡ arg min

αi

ksi −D(t−1)αik22 subject to kαik0  k,

end

This yields sparse matrix A(t) = [cα1
(t)
, . . . , cαL

(t)].

• Dictionary update stage:

MOD dictionary is obtained by the general solution to a least squares problem

D(t) = arg min
D

kS −DA(t)k2F = SA>(t)(A(t)A>(t))−1 = SA+(t),

where A+ is the Moore-Penrose pseudoinverse of A.

Set t = t+ 1,

Compute error e(t) = kS −D(t−1)A(t−1)k2F ,

Output: MOD optimized dictionary of K atoms: DMOD
K = D(t−1).
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A.5.3 K-SVD algorithm.

Algorithm 5 K-SVD

Inputs: Data set S 2 R
N⇥L = [s1, . . . , sL], number of atoms K, sparsity k.

Initialization: Set t = 0, choose an initial dictionary D(0) 2 R
N⇥K = [d1, . . . ,dK ]

(e.g., random vectors). Perform column-normalization on D.

Set t = 1,

Repeat until convergence (stopping rule):

• Sparse coding stage:

for i = 1, . . . , L

Compute the sparse vectors cαi via any pursuit algorithm

cαi
(t−1) ⇡ arg min

αi

ksi −D(t−1)αik22 subject to kαik0  k,

end

This yields sparse matrix A(t−1) = [cα1
(t−1)

, . . . , cαL
(t−1)].

• Dictionary update stage:

for j = 1, . . . ,K

Compute the overall representation error matrix Ej , where all the dictionary atoms

are froze, except one (dj):

Ej = S − P
l 6=j

dlαl.

For row j in A(t−1), locate the ↵j,i that use(s) dj :

wj = {i|i  i  L, |↵j,i 6= 0}.

Restrict the columns in Ej according to the indexes in wj , yielding ER
j . Then

decompose ER
j according to SVD (3.2), and update the atom dj and the sparse

coefficients ↵j,R by the best rank-one approximation of ER
j in Frobenius norm:

ER
j = UΣrV

>, r = rank of ERj , U = [u1, . . . ,uN ], V = [v1, . . . ,vR],

dSVD
j = u1,

↵
(t)
j,R = v1 Σr(1, 1).

end

The updated matrices are D(t) = [dSVD
1 , . . . ,dSVD

K ] and A(t) = [α
(t)
1 , . . . ,α

(t)
L ].

Set t = t+ 1,

Output: K-SVD optimized dictionary of K atoms: DK-SVD
K = D(t−1).
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Appendix of Part II

B.1 Proof of Proposition 1

Proof. The following well-known result will be used :

Proposition 4. Projections matrices (e.g., p.291 of [Sen & Srivastava 1990]).

Let A be a symmetric (A> = A) and idempotent (AA = A) matrix of rank k, and let

z ⇠ N (µ, I). Then z>Az is distributed as a noncentral chi-squared distribution noted χ2
k,λ

with k degrees of freedom and noncentrality parameter λ = µ>Aµ.

Under H0 of (4.1), evaluating the PFA(S) for (4.9) yields

PFA(S, L) = P( max
i=1,...,L

(s>i n)
2 > γ2;H0)

= 1− P((s>1 n)
2 < γ2, . . . , (s>Ln)

2 < γ2) (B.1)

The s>i n being normally distributed and decorrelated for i 6= j (since S is assumed orthonor-

mal) they are independent. Noting that (s>i n)
2 = n>(sis>i )n and applying Proposition 4

with λ = 0 leads to

PFA(S, L) = 1−
LY

i=1

P((s>i n)
2 < γ2)

PFA(L) = 1− (Φχ2
1
(γ2))L, (B.2)

where Φχ2
1

is the CDF of χ2
1. Inverting Eq. (B.2) yields γ2 = Φ−1

χ2
1

⇣
(1− PFA)

1
L

⌘
where the

dependence of PFA w.r.t. S has been dropped.

Under H1 of (4.1), using a similar reasoning and the orthogonality of S conducts to

PDet(s`,S, L) = P( max
i=1,...,L

(s>i (s` + n))2 > γ2;H1, s`)

= 1− P((s>1 (s` + n))2<γ2, . . . , (s>L (s` + n))2<γ2)

= 1− Φχ2
1,λ

(γ2)

L−1Y

i=1
i 6=`

P((s>i n)
2 < γ2)

PDet(s`, L) = 1− Φχ2
1,λ

(γ2) (Φχ2
1
(γ2))L−1, (B.3)

where Φχ2
1,λ

is the CDF of χ2
1,λ with the noncentrality parameter λ = s>` (s`s

>
` )s` = 1.
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Using the expression of γ2 as a function of PFA in (B.3) yields

PDet(s`, L) = 1− Φχ2
1,1

⇣
Φ−1
χ2
1

⇣
(1− PFA)

1
L

⌘⌘
(1− PFA)

L−1
L . (B.4)

where the dependence of PDet w.r.t S has been dropped. Using the limits of the CDF of

χ2
1,1 and the inverse CDF of χ2

1, it can easily be shown that for 0 < (1− PFA) < 1:

lim
L!+1

Φχ2
1,1

⇣
Φ−1
χ2
1

⇣
(1− PFA)

1
L

⌘⌘
= 1, hence

lim
L!+1

PDet(s`, L) = 1− (1− PFA) = PFA. (B.5)

Using the monotonicity of the two CDFs in (B.4) and of L 7! (1 − PFA)
1
L it can be

verified that for a fixed value 0 < PFA < 1, PDet(s`) is a decreasing function of L.

B.2 Proof of Proposition 3

We first remark that problem (5.13) is invariant by rotation: if d⇤ is a solution, for any

rotation matrix Q, Qd⇤ is also solution of (5.13) where all the si are replaced by Qsi.

This can be verified by replacing in (5.13) d and si by Qd⇤ and Qsi respectively, where

Q> = Q−1. We then assume that all si, {i = 1, . . . , L} are in the interior of a cone. Since

the one-dimensional minimax problem is invariant by rotation, without loss of generality,

S is restricted to be in the interior of the positive orthant R
N
+ .

Lemma 3. If d⇤ is a solution of (5.13), −d⇤ is also a solution, and d⇤ or −d⇤ 2 R
N
+ .

Proof. The proof is by contradiction. It is obvious from (5.13) that if d⇤ is the solution,

−d⇤ is also the solution. Consider a decomposition of a solution of (5.13) as d⇤ = d+ + d−

where d+ (resp. d−) contains the positive (respectively negative) coordinates of d⇤. Assume

that d+ 6= 0 and d− 6= 0, i.e., d⇤ has positive and negative components. If we define

d• = d+ − d−, we have

(d•>si)
2 − (d⇤>si)

2 = −4(d+>si)(s
>
i d

−) > 0 (B.6)

where the first term of the scalar product is strictly positive and the second term is strictly

negative. Consequently we have min
i
(d⇤>si)2 < min

i
(d•>si)2 which contradicts that d⇤ is

solution of (5.13).

This implies that d− = 0 or d+ = 0. In the first case, d⇤ is in the interior of RN+ . Then,

−d⇤ is also a solution which corresponds to the second case d+ = 0.

It is then possible to add, without loss of generality, the constraint d 2 R
N
+ to the

optimization problem (5.13). In this case d>si = cos(✓i) ≥ 0 where ✓i is the angle between

the two unit norm vectors d and si. This shows that this new problem is equivalent to

d⇤ = arg max
d:d2RN

+ ,

kdk2=1

min
i

d>si. (B.7)
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The epigraph form of this optimization problem [Boyd & Vandenberghe 2004] is:

minimize −t
subject to t− d>si  0, i = {1, . . . , L}

−di  0, i = {1, . . . , L}
kdk2 = 1.

(B.8)

Optimization problem (B.8) is non convex because of the equality constraint kdk2 = 1.

Lemma 4 proves that the solution of (B.8) is solution of the convex QP (5.14).

Lemma 4. The solution of (B.8) is the solution of the convex QP optimization problem

(5.14)

Proof. The Lagrangian of (5.14) is:

L = −t+
LX

i=1

λi(t− d>si) + µ(kdk2 − 1) (B.9)

The KKT1 conditions at the optimum are the primal constraints: 8i, t  d>si and kdk2  1,

the dual constraints: 8i λi ≥ 0 and µ ≥ 0,

• the complementary slackness: 8i, λi(t− d>si) = 0 and µ(kdk2 − 1) = 0,

• the gradient of the Lagrangian w.r.t. primal variables equals zero:

∂L
∂t

= 0 :

LX

i

λi = 1;
∂L
∂d

= 0 :

LX

i

λisi = 2µd. (B.10)

Suppose µ = 0. The second gradient condition in (B.10) implies that
PL

i=1 λisi = 0.

This implies that 8i, λi = 0, which contradicts the sum-to-one constraint imposed by the

first gradient condition in (B.10). Hence, µ > 0.

The complementary slackness implies that kdk2 = 1. The second condition of (B.10)

implies that d = 1
2µ

PL
i λisi. Since µ > 0, 8i, λi ≥ 0 and 8i, si 2 R

N
+ , this implies that

d 2 R
N
+ .

1KKT: Karush-Kuhn-Tucker.
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B.3 Gradient descent for 1D minimax problem

Based on the gradient descent approach, we seek the minimax atom for N = 3. We denote
bd the minimax atom by gradient descent. The objective of this study is to resolve the

minimax optimization problem for K = 1, then contemplate to generalize it to the case

K > 1.

Gradient descent takes the form

bdk+1 = bdk −∆bd −−!
grad J(bdk), (B.11)

where ∆bd is the step size between two iterations and J(bdk) is the objective function to be

minimized in the direction of the negative gradient as shown in Figure B.1 when evaluating

in term of distance.

(a) View of the step size between two iterations.

x

y

z

k =1 J=0

(b) Minimizing the function J by iterations k.

Figure B.1: The concept of general gradient descent w.r.t. (B.11). (a) Step size between

two iterations ∆bd. (b) Function J is minimized in the direction of the negative gradient

when evaluating in term of distance. Between two iterations: J(bdk+1) <J(bdk).

By iterations k, we seek to minimize the maximum distance between a point bdk in the

space to to the farthest alternative si⇤(k) without increasing the distance of bdk to the other

alternatives si(k). However, in term of correlation (which is considered in our setting), we

want to maximize the minimum correlation between S and bd, that is the problem (5.13).

In this regard, we define J as

J(bd) = min
i=1,...,L

|bd>
si|. (B.12)

Thus, by gradient descent, we want to “maximize” J at each iteration k: J(bdk+1) >J(bdk).
The optimization problem becomes

bdk+1 = bdk +∆bd −−!
grad J(bdk). (B.13)

Note that if bd>
si = 0, the function J(bd) is non-differentiable and this case has to be
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managed apart.

In spherical coordinates, by defining the norm of bd as r (where r = 1), the elevation

angle φ 2 [⇡2 ,−⇡
2 ] and the azimuth angle ✓ 2 [0, 2⇡], the total derivative of J writes

dJ =
∂J

∂r
dr +

∂J

∂φ
dφ+

∂J

∂θ
dθ

dJ =
−−!
grad J · −!dl (B.14)

dJ =
−−!
grad J ·

∣∣∣∣∣∣

dr = 0

r dφ

r sinφ dθ

.

d

z

x

y

d

dl

Figure B.2: Illustration of the elements in dJ.

Following the problem (B.13) (and thus (B.14)), when the point bdk arrives at an in-

tersection of two planes, that is the distance or correlation of bdk and the two farthest

alternatives in S (say, sa and sb) is the same: J(bdk) = |bd>
k sa| = |bd>

k sb|, then the func-

tion J is non-differentiable. When this happen, we have to projects bdk to a new plane of

mean(sa,sb). To do so, we denote first A = [bdk, mean(sa, sb)]. Then, we seek a new dl,

defined as dl0 = Aβ⇤, where

β⇤ = k dl −Aβk22 ) β⇤ = (A>A)−1A> dl. (B.15)

By using dl0 = Aβ⇤, we can then find bdk+1.
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Figure B.3: Two examples of gradient descent simulations to find minimax atom bd. The

initialization point (red circle) is the mean of S (black crosses represent si 2 S, where

here, S 2 R
3⇥5 is random normalized alternatives). The red line indicates the path of the

gradient descent method to find bd. The minimax atom d⇤ (cyan star) is generated from a

QP solver, based on (5.13). These simulations show that, bd ⇡ d⇤ (i.e., the exact solution)

for N = 3. The gray dashes line indicates the smallest circle enclosing S.

In Figure B.3, we show two examples of minimax gradient descent approach using dif-

ferent set of S. For these numerical demonstrations, the initial point bd0 is the normalized

mean of the set S (bd0 is represented by red circles in Figure B.3). The results obtained are

compared to the minimax atom d⇤ (5.14), which is in the form of QP.

In Example 1 (Figure B.3(a)), at k = 0, bd0 sees that s5 is the farthest from it. So at each

iteration k, bdk will find the direction that yields J(bdk) >J(bdk−1), i.e., in this example, the

direction that minimizes the distance between bdk and s5, while assuring that its distance

to the other alternatives (s1, . . . , s4) does not increase. At the final point, when there is no

more significant improvement of the value J, (J(bdk)−J(bdk−1) ⇡ 0), the minimax bdk is found

and it conforms to d⇤. Here, three alternatives (s1, s2, s5) are at the minimax distance from
bdk.

Using a different set of S, Example 2 (Figure B.3(b)) shows that at initialization, bd0 sees

that s5 is the farthest from it. Following towards this direction, bdk arrives at a point where

its distance is equivalent to s1 and s5. bdk changes into the plane of mean(s1, s5). Then, bdk
continues to find direction that minimizes its distance w.r.t. the farthest alternative(s). In

the end, we found bd ⇡ d⇤, where there are two alternatives (s1, s5) lie on the border of the

smallest circle of center bdk.
We investigated this gradient descent approach for K = 1, hoping to generalize it to

the case K > 1 and to obtain exact minimax solution for such cases. This generalization is

however not achieved yet because it poses several important issues (complexity of coordinate

system in N > 3-dimensional Euclidean space and the case where the function J (B.12) is

non-differentiable).
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