
HAL Id: tel-01132316
https://theses.hal.science/tel-01132316

Submitted on 17 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving memory consumption and performance
scalability of HPC applications with multi-threaded

network communications
Sylvain Didelot

To cite this version:
Sylvain Didelot. Improving memory consumption and performance scalability of HPC applications
with multi-threaded network communications. Distributed, Parallel, and Cluster Computing [cs.DC].
Université de Versailles-Saint Quentin en Yvelines, 2014. English. �NNT : 2014VERS0029�. �tel-
01132316�

https://theses.hal.science/tel-01132316
https://hal.archives-ouvertes.fr

Université de Versailles Saint-Quentin École Doctorale des Sciences et Technologies de Versailles

Improving memory consumption and
performance scalability of HPC applications
with multi-threaded network communications

Amélioration de la consommation mémoire et
de l’extensibilité des performances des

applications HPC par le multi-threading des
communications réseau

THÈSE
présentée et soutenue publiquement le 12 Juin 2014

pour l’obtention du

Doctorat de l’université de Versailles Saint-Quentin
(spécialité informatique)

par

Sylvain Didelot

Composition du jury

Directeur de thèse : William Jalby - Professeur, Université de Versailles

Président : Alain Bui - Professeur, Université de Versailles

Rapporteurs : Brice Goglin - Chargé de Recherche, INRIA
Torsten Hoefler - Professeur Assistant, ETH Zürich

Examinateurs : William Jalby - Professeur, Université de Versailles
Alain Bui - Professeur, Université de Versailles
Marc Pérache - Ingénieur de Recherche, CEA/DAM
Patrick Carribault - Ingénieur de Recherche, CEA/DAM

Invités : Jean-Pierre Panziera - Ingénieur de Recherche, Bull SAS

Acknowledgments / Remerciements

Je tiens tout d’abord à remercier mon directeur de thèse, William Jalby,
pour la confiance et la liberté qu’il m’a accordé tout au long de mes travaux de
recherche. Je remercie également Messieurs Marc Pérache et Patrick Carribault
pour m’avoir donné la chance de réaliser cette thèse et pour leur suivi durant ces
trois années.

J’adresse aussi mes remerciements à mes rapporteurs, Messieurs Torsten Hoefler
et Brice Goglin pour la lecture scrupuleuse de mon manuscrit, leurs conseils avisés
et les différentes propositions d’amélioration.

Une thèse, c’est aussi un contexte propice à des rencontres exceptionnelles, le
bonheur de partager ses travaux avec des collègues passionnés. Merci tout d’abord
à Marc T. qui a toujours su se rendre disponible pour des séances de réflexion
dans l’exa-kitchen et son travail méticuleux de relecture de mon manuscrit. De
plus, son optimisme contagieux est le meilleur encouragement qui soit quand tout
va de travers. Adepte de l’optimisation au quotidien, on se rappelle certainement
tous de ses discussions autour des billets "SNCF" et des engagements 3 ans des
opérateurs mobile. Merci également aux collègues et maintenant amis de l’UVSQ:
Asma la picoreuse de graines et aficionada compulsive de chocolat noir. Copine de
galère pendant la rédaction, je me souviens des moments où nous cherchions à nous
motiver mutuellement pour garder notre rythme d’une page de manuscrit par jour.
Eric le franc-comtois bourrin qui allume son barbecue à l’essence et au décapeur
thermique. Pablo, chercheur obstiné de "Poivre et Sel". Thomas, expert en un peu
près tout et testeur assidu de solutions de backup de données. Othman, passionné
par la photographie et toujours prêt à partager ses talents culinaires autour d’une
savoureuse choucroute au vin d’Alsace ou d’un délicieux kouglof.

Je n’oublie évidemment pas mes amis thésards du CEA. Jean-Baptiste, celui qui
m’a fait découvrir le rythme endiablé de la musique de "Papa Pingouin". Jean-
Yves Vet, l’homme toujours au courant des bons plans pour se faire de l’argent
ou en dépenser le moins. Merci enfin à Sebastien qui a réussi à imposer le git
pull –rebase au lieu du git merge ainsi que pour les après-midi enrichies pas des
discussions aussi passionnantes les unes que les autres.

Enfin, je remercie tous les membres du laboratoire Exascale et plus particulière-
ment Bettina, Augustin, Michel, Alexis, Emmanuel, Cédric et Soad. Un grand merci
à François Diakhaté et aux équipes du TGCC pour leur support (et la réparation
des nœuds que j’ai pu casser) durant l’utilisation du supercalculateur Curie. Sans
oublier les étudiants que j’ai eu le plaisir d’encadrer et qui font partie de la généra-
tion 2.0 des thésards MPC : Antoine a qui j’ai cédé la paternité du module SHM et
Thomas le nouvel expert réseau.

Je ne pourrais terminer cette section sans remercier ma famille. Merci tout
d’abord à mon papa et ma maman qui ont toujours cru en moi et soutenu dans mes
choix. Ils m’ont appris la niaque d’aller jusqu’au bout de ce que j’entreprends sans
jamais baisser les bras. Merci à ma sœur Marina, son mari Cédric, leurs enfants et
Kloé. Rien de tel qu’une matinée passée à la piscine ou d’un bon repas autour d’une
table toujours bien remplie pour oublier les semaines difficiles. Je tenais également
à remercier Gilles, Bernadette et Lucie qui continuent à m’accepter comme leur

II

"futur gendre" alors que leur fille a été kidnappée par un thésard fou pour habiter
en région parisienne.

Enfin, je remercie tout particulièrement ma chère et tendre, Aurélie qui a vécu et
partagé mon quotidien tourmenté de thésard. Elle a toujours été l’oreille attentive
dont j’avais besoin et la voix raisonnée qui a su me réconforter durant les moments
de doute. Bien que difficiles, ces années nous ont pourtant rapproché.

III

À mes parents et Aurélie.

IV

V

Abstract:

A recent trend in high performance computing shows a rising number of cores
per compute node, while the total amount of memory per compute node remains
constant. To scale parallel applications on such large machines, one of the major
challenges is to keep a low memory consumption. Moreover, the number of compute
nodes clearly increases, which implies more memory to manage network connections.

In shared-memory systems, thread programming typically allows a better mem-
ory usage because of data sharing. Multi-threaded applications may however run
slower than single-threaded executions since the model requires synchronization
points. In this thesis, we develop a multi-threaded communication layer over In-
finiband which provides both good performance of communications and a low mem-
ory consumption. We target scientific applications parallelized using the Message
Passing Interface (MPI) standard in pure mode or combined with a shared memory
programming model.

This thesis proposes three contributions. Starting with the observation that
network endpoints and communication buffers are critical for the scalability of MPI
runtimes, the first contribution proposes three approaches to control their usage.
We introduce a scalable and fully-connected virtual topology for connection-oriented
high-speed networks. This topology provides a support for on-demand connection
protocols and reliably transfers short messages between not-connected processes. In
the context of multirail configurations, we then detail a runtime technique which re-
duces the number of network connections compared to regular implementations and
thus with similar performance. We finally present a protocol for dynamically resizing
network buffers over the RDMA technology. This protocol enlarges buffer regions
until it covers the requirement of the MPI application and reduces or destroys them
when the free memory becomes short. The second contribution proposes a run-
time optimization to enforce the overlap potential of MPI communications without
introducing the overhead of a threaded message progression. Used with scientific
applications, we show an improvement of communications up to a factor of 2. The
third contribution evaluates the performance of several MPI runtimes running a
seismic modeling application in a hybrid context. On large computes nodes up to
128 cores, the introduction of OpenMP in the MPI application saves up to 17% of
memory. Compared to a master-only approach, the domain decomposition method
allows a concurrent participation of all OpenMP threads to MPI communications.
In this case, our multi-threaded communication layer brings a 37% performance
improvement compared to the full MPI version.

Keywords: high performance computing, multi-threading, high-speed net-
works, MPI, NUMA

VI

VII

Résumé:

Problématiques

Depuis l’apparition des premiers super-calculateurs dans les années 60 et jusqu’à
aujourd’hui, la course effrénée à la puissance de calcul n’a cessé d’offrir aux scien-
tifiques des machines toujours plus puissantes pour leurs simulations numériques.
Le terme "super-calculateurs" et plus généralement le Calcul Haute Performance
qui est la science relative aux super-calculateurs remontent aux années 1960. Les
premières machines étaient alors équipées d’une unique unité de calcul (le CPU)
chargée d’exécuter les instructions d’un programme informatique, et ceci de ma-
nière séquentielle. Freinés par la loi Moore qui limite l’utilisation à haute fréquence
des processeurs, les fabricants de matériel informatique eurent l’idée dans les an-
nées 1970 de rassembler plusieurs unités de calcul. Ces nouvelles machines dites
"parallèles" introduisirent cependant de nouvelles problématiques à la conception
des applications puisque toutes les unités de calcul devaient à présent travailler de
concert sur le même problème numérique. Le "calcul parallèle" était né.

Afin de faciliter le développement des applications parallèles, les grappes de
calcul proposent une grande variété de modèles de programmation aux dévelop-
peurs. D’une part, la programmation à base de threads optimise l’exécution sur des
machines à mémoire partagée. D’autre part, l’interface de programmation par pas-
sage de message MPI permet l’échange de données sur des architectures à mémoire
distribuée. Dans ce but, l’interface MPI regroupe un ensemble de fonctions qui per-
mettent les communications pair-à-pair et les communications collectives impliquant
plusieurs entités communément appelées "tâches MPI".

Le matériel réseau actuel intègre généralement des puces embarquées qui per-
mettent notamment la prise en charge des communications de manière autonome.
Tout d’abord et contrairement aux bibliothèques de communications traditionnelle-
ment implémentées dans le noyau (i.e., sockets UNIX), les nouvelles interfaces réseau
fournissent des mécanismes permettant le court-circuitage du système d’exploitation
(SE). Par conséquent, les ralentissements liés au SE sont éliminés et les communi-
cations ne requièrent plus l’intervention du CPU. Ensuite, ce nouveau matériel offre
bien souvent une technologie RDMA (Remote Direct Memory Access) qui permet à
un processus de lire directement la mémoire exposée par un autre processus. Cette
aptitude aussi connue sous le nom de zero-copy empêche aux données d’être reco-
piées dans le SE, ce qui ralentirait les communications. La plupart des bibliothèques
MPI implémente une classe de protocoles spécialisés appelés rendezvous. Cepen-
dant, puisqu’une tâche MPI émettrice ne connait pas a priori l’adresse du message
dans la mémoire du destinataire, les protocoles de rendezvous requièrent une syn-
chronisation explicite entre les deux tâches ainsi que l’envoi de plusieurs messages
de contrôle. Par conséquent et dans le cadre d’une communication asynchrone, le
contrôleur réseau et/ou la pile logicielle doivent traiter ces messages de contrôle de
manière transparente.

De nos jours, l’augmentation de la puissance de calcul implique l’assemblage
d’un grand nombre d’unités de calcul. Celles-ci sont tout d’abord assemblées sous la
forme de "nœuds de calcul" à l’intérieur desquels une mémoire unique est partagée.

VIII

Les nœuds de calcul sont ensuite interconnectés via un réseau haut-débit, distribuant
ainsi la mémoire. Les plus grands systèmes pétaflopiques actuellement en production
représentent plusieurs dizaines de milliers de nœuds de calcul et les systèmes exaflo-
piques à venir (1018 opérations à virgule flottante par seconde) annoncent repousser
cette limite avec plusieurs centaines de milliers de nœuds de calcul [Ama+09] et
plus [Ash+10]. En outre, les mêmes sources prévoient une diminution importante
de la mémoire par unité de calcul et cela jusqu’à quelques dizaines de mega-bytes
par thread, soit moins de dix fois la mémoire actuelle par thread. L’un des principaux
défis pour les bibliothèques MPI visant ces machines massivement parallèles est l’uti-
lisation raisonnable de la mémoire quel que soit le nombre de cœurs utilisés. En effet,
si celles-ci allouent trop de mémoire, la taille du problème numérique que la machine
permet de résoudre se verra réduite. À l’intérieur d’un nœud de calcul, les biblio-
thèques MPI multi-threadées sont reconnues comme une solution efficace permettant
de diminuer la quantité de mémoire tout en partageant des ressources [PCJ09]. Ce-
pendant, avec l’accroissement du nombre de cœurs par nœud de calcul s’en suivent
un volume plus large de communications réseau et l’augmentation du nombre de
connections réseau. Par conséquent, le nombre de endpoints réseau (i.e., structures
en mémoire qui définissent une connexion réseau) augmente théoriquement d’autant
que le nombre de nœuds de calcul. De plus, bien que les récents contrôleurs réseau
proposent des mécanismes zero-copy, des buffers de communication sont toujours
requis pour (1) échanger les messages de contrôle des protocoles rendezvous et (2)
pour améliorer les performances des messages MPI de petites et moyennes tailles.
Par conséquent, un réseau plus large implique l’allocation d’un plus grand nombre
de ces buffers réseau.

Pour finir, bien que les bibliothèques MPI multi-threadées permettent de réduire
la mémoire sur les nœuds de calcul, le standard MPI requiert tout de même la du-
plication de certaines données utilisateur. À l’intérieur d’un nœud, cette duplication
inutile peut empêcher une application de passer à l’échelle à cause d’une pénurie de
mémoire adressable. Une solution à ce problème est de mélanger MPI avec un modèle
de programmation à mémoire partagée et ainsi réduire la consommation mémoire
dans son ensemble [RHJ09 ; Jow+09]. À première vue la programmation hybride
semble séduisante, notamment car le standard MPI propose un mode où plusieurs
threads sont autorisés à communiquer simultanément via MPI. Cependant, c’est
sans compter que ce mode, généralement implémenté par les bibliothèques MPI,
montre bien souvent de faibles performances à cause d’une mauvaise gestion de la
concurrence entre threads [TG07].

Contributions

Cette thèse vise à améliorer l’exécution à large échelle de programmes informatiques
parallèles sur les grappes de calcul actuelles et à venir. Dans le but de démontrer la
pertinence des contributions présentées, cette thèse s’articule autour du paradigme
de programmation par passage de messages MPI (Message Passing Interface) et de
l’interface de programmation verbs pour réseaux Infiniband.

Nous présentons dans un premier temps les réseaux d’interconnexion commu-
nément utilisés dans le contexte du calcul haute performance. Par la suite, nous
décrivons les principaux défis qui sont à relever lors de la réalisation d’un moteur
d’exécution implémentant MPI. Une fois le contexte posé, cette thèse propose trois
contributions.

IX

Partant du constat que le nombre de connexions réseau et le volume des buffers
associés sont critiques pour la mise à l’échelle en mémoire, la première contribution
propose des mécanismes permettant de maîtriser l’utilisation de ces ressources. Nous
détaillons la réalisation d’une topologie virtuelle entièrement connectée et chargée
d’acheminer de manière sûre des communications entre deux processus non connec-
tés tout en gardant un faible nombre de connexions actives. Nous examinons ensuite
une technique de partage de connexions dans un contexte agrégeant plusieurs cartes
réseau par nœud de calcul. Cette technique vise à exploiter le potentiel de paral-
lélisme offert par ces configurations tout en minimisant l’impact en mémoire des
structures réseau. En outre, nous proposons un protocole permettant d’ajuster dy-
namiquement la taille et le nombre de buffers réseau utilisant la technologie RDMA.
Le protocole étend les ressources en mémoire de ces buffers jusqu’à les faire corres-
pondre au volume de communication que requiert l’application utilisateur. De plus,
ces buffers sont détruits dans le cas où la mémoire disponible sur les nœuds de calcul
devient faible.

La seconde contribution présente le Collaborative-Polling, une optimisation qui
renforce le potentiel d’asynchronisme des applications MPI et qui ne nécessite pas
l’intervention de threads de progression. Une tâche MPI inactive peut venir assister
l’avancement des communications d’une seconde tâche bloquée alors dans une phase
de calcul.

La troisième contribution évalue l’efficacité des implémentations MPI actuelles
dans un contexte de programmation hybride. Après une étude de performance me-
née sur des micro-benchmarks, nous mesurons l’apport du modèle de programma-
tion OpenMP dans une application de modélisation sismique réalisée en MPI. Nous
présentons notamment une version hybride par décomposition de domaine qui au-
torise un accès concurrent de tous les threads OpenMP à la bibliothèque MPI. Nous
soulignons ensuite les limitations actuelles du standard MPI pour ce type de pro-
grammation et expliquons comment le concept de endpoints MPI pourrait lever ces
limitations.

Mots-Clés: Calcul haute performance, multi-threading, réseaux haut débit,
MPI, NUMA

X

Contents

I Context 1

1 Introduction 3
1.1 Overview of Supercomputer Architecture 6
1.2 Programming Models for HPC . 8

1.2.1 Shared-Memory Systems . 8
1.2.2 Distributed Memory Systems 9
1.2.3 The Message Passing Interface 9
1.2.4 Discussion . 12

1.3 MPI Challenges . 13
1.3.1 High Performance of Communications 13
1.3.2 Scalability and Reliability . 13
1.3.3 Independent Message Progression 14
1.3.4 Memory Consumption . 14
1.3.5 Hybrid Programming . 15
1.3.6 Data Locality . 16

1.4 Dissertation Contributions . 17
1.5 Document Organization . 18

2 Interconnection Networks for High Performance Computing 19
2.1 Introduction to High-Speed Networks 19

2.1.1 Kernel Level Messaging Libraries 19
2.1.2 Facilities of Modern Interconnects 20
2.1.3 Overview of Interconnects for HPC 22
2.1.4 Programming Infiniband . 25
2.1.5 Discussion . 26

2.2 Infiniband Overview . 27
2.2.1 Communication Semantics . 27
2.2.2 Queue Pairs and Infiniband Transport Modes 28
2.2.3 Memory Registration . 30
2.2.4 Completion and Event Handling Mechanisms 30
2.2.5 Memory-Friendly Infiniband Endpoints 31

2.3 Experimental Platforms . 31
2.3.1 Thin Cluster: 16-core nodes, 1 HCA 32
2.3.2 Medium Cluster: 32-core nodes, 1 HCA 32
2.3.3 Large Cluster: 128-core nodes, 4 HCAs 32

II Contributions 33

XII Contents

3 Memory-Scalable MPI Runtime 35
3.1 Memory Footprint: a Limit to the Scalability of MPI Runtimes . . . 35

3.1.1 Scalability of Network Endpoints 36
3.1.2 MPI Communication Protocols and Buffer Usage 38

3.2 Scalable Multi-Purpose Virtual Topology for High-Speed Networks . 42
3.2.1 Scalability Concerns of Connection-Oriented Networks 42
3.2.2 Contribution: Scalable and Fully-Connected Signalization

Topology for Connection-Oriented Networks 44
3.2.3 Limit of the Design and Possible Enhancements 47

3.3 Optimizing Network Endpoint Usage for Multi-Threaded Applications 48
3.3.1 Performance Implications of Multi-Threaded Endpoints . . . 48
3.3.2 Contribution: Multi-Threaded Virtual Rails 50
3.3.3 Multi-Threaded Network Buffers Management 56
3.3.4 Evaluation of the Design . 58
3.3.5 Future Work: Contention-Based Message Stripping Policy . . 67
3.3.6 Related Work . 67

3.4 Automatic Readjustment of Network Buffers 68
3.4.1 Eager Network Buffers over RDMA Protocol 68
3.4.2 Contribution: Auto-Reshaping of Eager RDMA Buffers . . . 69
3.4.3 Multi-Threaded Implementation 74
3.4.4 Experiments . 74
3.4.5 Discussion and Future Work 75

3.5 Partial Conclusion . 75

4 Improving MPI Communication Overlap With Collabora-
tive Polling 77
4.1 Introduction . 77
4.2 Related Work . 78

4.2.1 Message Progression Strategies 78
4.2.2 Thread-Based MPI . 80

4.3 Our Contribution: Collaborative Polling 80
4.4 Implementation . 81

4.4.1 Discussion on Message Sequence Numbers 81
4.4.2 Polling Concerns . 82
4.4.3 Extension to Process-Based MPI 83
4.4.4 Extension to Other High-Speed Interconnects 84

4.5 Experiments . 84
4.5.1 NAS Parallel Benchmarks . 84
4.5.2 EulerMHD . 87
4.5.3 Gadget-2 . 88

4.6 Conclusion and Future Work . 90

5 Evaluation of MPI Runtimes in Hybrid Context 91
5.1 Introduction to Hybrid Programming 91

5.1.1 Fine-Grain Parallelization . 94
5.1.2 Coarse-Grain Parallelization 94

5.2 Performance Evaluation of MPI Runtimes in Multi-Threaded Context 95

Contents XIII

5.2.1 Related Work . 95
5.2.2 Motivations . 96

5.3 Micro-Evaluation: MPI_THREAD_MULTIPLE Test Suite 97
5.3.1 Thread-Safe MPI Runtimes 98
5.3.2 Thread Overhead on Small Compute Nodes (16 cores) 98
5.3.3 Multi-Threading MPI Scalability on Large Compute Nodes

(128 cores) . 100
5.4 Reverse Time Migration Proto-Application 100

5.4.1 Hybrid RTM-proto . 102
5.4.2 Discussion on Non-Contiguous Data 105
5.4.3 Experimental Results . 105

5.5 Limitations to Hybrid Mode . 112
5.5.1 MPI Endpoints and Unified Runtimes 114

6 Conclusion and Future Work 117
6.1 Summary of the Research Contributions 117
6.2 Scope of the Contributions . 119
6.3 Future Work . 120

List of figures 137

List of tables 141

Glossary 143

Part I

Context

Chapter 1

Introduction

"If you were plowing a field, which
would you rather use? Two strong
oxen or 1,024 chickens?"

Seymour Cray 1925–1996

Over the last decades, numerical simulation has become an essential tool at the
center of academic and industrial research programs all over the world. The con-
stant needs in computational power allow the implementation of even more efficient
machines, in order to increase the size and the accuracy of numerical problems. As
an example, in 2008, the Blue Brain Project1 has successfully simulated the neo-
cortical column of a rat (10,000 cells) on a supercomputer. More recently, in 2012,
the first-ever simulation of the structuring of the entire observable universe was per-
formed, from the Big Bang to the present time2. Without the computational power
of supercomputers, it is certain that all these scientific advances would have never
been achieved.

Before 1960s, computers were equipped with a single Central Processing Unit
(CPU) and every program instruction was sequentially executed by the same CPU.
With the rise of CPU frequency, heat dissipation rapidly began an issue and com-
puter manufacturers have started to combine several execution units into a single
parallel machine. These new machines however introduced a new complexity to
applications since every execution unit has to efficiently work together on the same
problem. The developer must explicitly decompose its application into independent
sequences of instructions that can be run in parallel and express the interactions
between execution units. The High Performance Computing was born.

In order to ease the development of parallel applications, supercomputers now
expose a variety of programming models (i.e., programming interfaces) to developers.
On the one hand, thread programming optimizes the execution of applications in a
context of shared-memory where a unique memory is shared between all CPUs. In
contrast to processes that require complex mechanisms for moving data, all threads
have the same address space and directly access the data inside a node. On the other
hand, the Message Passing Interface (MPI) provides an interface to exchange data
across distributed-memory systems where each CPU has its own private memory. In
practice, each parallel instance of the user application is executed by one MPI task
running on one CPU. Communications between MPI tasks are then performed using
the MPI interface which exhibits a substantial set of functions including one-to-one
and collective operations.

With MPI, the domain decomposition method is often used to parallelize numer-
ical applications. The domain is first represented as a grid, generally with two or
three dimensions. In each timestep, each cell (i.e., element of the grid) is updated
using the value of the neighbor cells in a fixed pattern called the stencil. As shown

1Project continued with the Human Brain Project: http://www.humanbrainproject.eu
2Deus: full universe run : http://www.deus-consortium.org

http://www.humanbrainproject.eu
http://www.deus-consortium.org

4 Chapter 1. Introduction

in figure 1.1, the method then splits the domain into subdomains and maps one
subdomain to each MPI task with the purpose of processing each subdomain con-
currently. In addition to the inner domain, ghost cells are introduced on the edges
of each subdomain: they locally replicate the neighbor cells which are required to
update the inner domain. At each time step, every task exchanges its ghost zones
to its neighborhood. The main challenge here is to balance the workload between
computational units.

One MPI communication can be decomposed into processing time (i.e., time to
process message) and synchronization time (i.e., idle time while waiting for the be-
ginning of message transmission). While the processing time grows with the amount
of data to transfer, synchronization time mainly depends on the load-imbalance be-
tween MPI tasks. Indeed, if the sender task takes longer to complete its work than
the receiver task, the transmission of ghost cells will be delayed and the receiver will
consequently waste CPU cycles inside the MPI library due to synchronization over-
heads. To address domain-decomposition applications that exhibit a non-uniform
distribution of work, methods such as Adaptive Mesh Refinement (AMR) provide
a solution where the grid resolution is different in some subdomains than others.
Furthermore, AMR codes generally provide load-balancing protocols where the grid
resolution is dynamically reevaluated during the application lifespan: the work-
imbalance needs to be detected and the domain to be repartitioned into equivalent
sizes.

Figure 1.1 – Parallelization using a domain decomposition method

Recent network hardware generally integrates specialized chips that are capa-
ble of independently driving complex communication operations. In contrast to
regular kernel-based communication libraries such as UNIX sockets, they include
mechanisms to minimize the involvement of the operating system (OS) and the net-
work drivers (e.g., OS-bypass, zero-copy). Consequently, the overhead induced by
the OS on the critical path (e.g., memory copies) is reduced and the user applica-
tions have a direct access to the network controller. Moreover, the implementation
of OS-bypass and zero-copy mechanisms is facilitated with modern communication
protocols like Remote Direct Memory Accesses (RDMA) that enable a process to
directly access the memory exposed by another process. Most MPI libraries actu-
ally implement a specialized class of messaging protocols over zero-copy mechanisms
called rendezvous. However, since a sender task does not a priori know the final
address where the data on the receiver side will be copied to, the rendezvous proto-
cols require the synchronization of both tasks and the transmission of several control
messages. Consequently to an asynchronous progression of MPI communications,
the network controller and/or the software stack need to transparently retrieve and

5

handle control messages related to rendezvous protocols.

Nowadays, the increase of computational power typically involves a large number
of computational units that are clustered together. Behind the scene of clustering,
subsets of computational units are grouped into shared-memory compute nodes,
which are then interconnected using high-speed networks. Today’s largest systems
aggregate tens of thousands compute nodes and upcoming exaflop systems (1018

floating point operations per seconds) are expected to push the limit further with
severals hundreds of thousands compute nodes [Ama+09] and even more [Ash+10].
Furthermore, the same sources expect a significant diminution of the amount of
per-core memory down to a few dozens of mega-bytes per thread, which is less than
ten times the current amount of memory per thread. One of the major challenges
for MPI implementations targeting such large systems is to keep a decent memory
footprint whatever the number of cores. Indeed, if the runtime allocates too much
memory, the size of the numerical problem that can be handled on the machine is
much smaller. Inside the compute nodes, thread-based MPI runtimes have been
recognized as practical solutions for lowering memory usage because they allow to
share runtime resources between MPI tasks [PCJ09]. However, the increasing num-
ber of compute nodes typically means a larger volume of data exchanged through
the network and a higher number of network connections. As a result, the number of
network endpoints (structures that define a network entry in memory) theoretically
increases in the same order of magnitude as the total number of nodes. Furthermore,
although recent network controllers propose zero-copy mechanisms, communication
buffers are still required (1) to exchange synchronization messages related to the
rendezvous protocols and (2) to improve the performance of short/medium-sized
MPI messages. Consequently, a larger network involves the allocation of more com-
munication buffers.

Finally, although thread-based MPI runtimes are able to reduce the amount of
memory on compute nodes, the MPI standard still requires the application to repli-
cate some data across MPI tasks (e.g., ghost cells in figure 1.1). Inside a node, these
data are unnecessary replicated and can prevent an application from scaling because
of a lack of available memory. One solution to tackle this issue is to mix MPI with
a shared-memory programming model in order to reduce the overall memory con-
sumption [RHJ09; Jow+09]. At first sight, hybrid programming looks appropriate
to cluster of shared-memory systems, especially as the MPI standard provides a
mode where multiple threads can simultaneously call MPI functions. This mode
generally implemented inside mainstream MPI runtimes however often exhibits low
performance because of a poor management of thread concurrency [TG07].

This chapter aims at presenting the state-of-the-art of high performance com-
puting. Starting with the observation from the Top500 website [Top] that parallel
computing is largely controlled by clusters of multi-processor machines, we first de-
tail how such machines are structured. In the second part, we list and characterize
programming models commonly used for parallelizing applications on supercom-
puters. We then introduce the different challenges to overcome when designing a
message passing communication layer targeting current and upcoming clusters of
massively multi-core machines. Finally, we detail the contributions of the thesis and
present document organization.

6 Chapter 1. Introduction

(a) SMP (b) NUMA

Figure 1.2 – Example of SMP (a) and NUMA (b) architectures

1.1 Overview of Supercomputer Architecture

As predicted by Gordon Moore in 1965 [Moo+65], the processors seem to follow the
general rule where the number of transistors on integrated circuits doubles every
18 months. Since 1965 and timelessly over the last decades, the Moore’s Law has
been continuously applying. With the reduction in component size, CPUs began to
integrate powerful optimizations to accelerate the flow of instructions by tracking
CPU stalls while waiting for a resource. Among them, (1) pipelining consists in
decomposing an instruction into a set of individual data processing elements in order
to overlap their execution and (2) out-of-order execution can reorder instructions
according to the availability of data and operands instead of the original order of
the instructions. Additionally, vector instructions now allow operations to operate
on large vectors (up to 512 bits) with a minimum of CPU cycles.

Due to energy issues with high frequency, dissipating heat generated by proces-
sors rapidly became a real challenge. To face it, the idea of multiplying the number
of computation units emerged in mid 1970s. One representative examples of this
trend is the Curie supercomputer composed of 77,184 general purpose execution
units which can work together on the same numerical problem. Twice a year, the
Top500 project [Top] ranks and details the 500 most powerfull computers in the
world. According to the June 2013 Top500 list summarized in table 1.1, Curie
Thin nodes is the fifth European supercomputer and world-ranked at the 15th posi-
tion with a computational power of 1.359 PetaFLOPS (1.359× 1015 FLoating-point
Operations Per Second).

Rank System Name Site # Cores Rmax

(GFlop/s)
1 TH-IVB-FEP

Cluster
Tianhe-2 National University of

Defense Technology
3,120,000 33.863

2 Cray XK7 Titan Oak Ridge National
Laboratory

560,640 17.590

3 10510.0IBM
BlueGene/Q

Sequoia Lawrence Livermore
National Laboratory

1,572,864 17.173

4 Fujitsu
SPARC64

K computer RIKEN Advanced In-
stitute for Computa-
tional Science

705,024 10.510

5 IBM Blue-
Gene/Q

Mira Argonne National Lab-
oratory

786,432 8.587

.
15 Bullx B510 Curie Thin Nodes CEA/TGCC-GENCI 77,184 1.359

Table 1.1 – Top 5 supercomputers and Curie Thin nodes ranked at the 15th po-
sition. Rmax is the maximal performance achieved using the High Performance
LINPACK (HPL [Don88]). List extracted from the June 2013 Top500 list

Clustering all processing units into the same chip is however impractical, par-
ticularly because keeping the coherency of a unique memory with so many units

1.1. Overview of Supercomputer Architecture 7

would result in poor performance. Instead, Curie’s processing units are grouped
into compute nodes that share the same memory address space and no coherency
is ensured between compute nodes. Inside the compute nodes, SMP systems (see
figure 1.2(a)) began to be an important bottleneck with a large number of processors
since a single bus accesses a unique memory. To address this issue, Curie enables
a non-uniform memory access (NUMA architecture depicted in figure 1.2(b)) and
provides a separate memory for each NUMA socket (i.e., group of processes). Every
processor however keeps a global vision of the main memory. To handle the case of
multiple processors requiring the same data, NUMA systems provide mechanisms to
move data between memory banks. Because this operation is costly and increases
the time to access a piece of data, the performance gain that an application can
expect from NUMA architectures largely depends on data locality. Furthermore,
to reduce the distance between the main memory and the processor and enhance
memory accesses, a few amount of memory is now engraved directly on the die and
commonly called memory cache. Memory cache is smaller than the main memory
(20 MB on Curie Thin nodes) but because it is integrated on the same chip, it allows
a fast access to the cached data. The goal here is to leverage spatial and temporal
locality of applications to store least recently used data and reuse those data in the
near future. Since the introduction of specialized hardware inside HPC, the archi-
tecture of compute nodes is even more complex. In the form of Graphical Processing
Units (GPU) and coprocessors (e.g., Intel MIC), they are often connected using PCI
Express or equivalent buses and provide a high parallelism potential.

For the purpose of interconnecting compute nodes together, Curie relies on In-
finiband, a high-speed and low latency network. To carry the communication vol-
ume of the 4,824 compute nodes that compose Curie, the network is hierarchically
structured following a 2-level Fat Tree topology [Lei85]. According to the location
of the destination node to reach, communications consequently involve a variable
number of network switches that affect both latency and bandwidth. Furthermore,
in some cases, one network interface may be insufficient for addressing the rise of
shared-memory parallelism. With 128 cores per compute node, the Curie Fat nodes
supercomputer is an example of this trend since every compute node is equipped
with 4 distinct network interfaces.

In a nutshell, one of the most key performance factor on Curie – and more broadly
on cluster-based supercomputers – is data-movement that is required for exchang-
ing information from one execution unit to another. On the one hand, compute
nodes expose a highly-hierarchical memory where data-locality is crucial for rapidly
accessing data in order to prevent processor stalls. On the other hand, the inter-
node communication networks ensure the transmission between distributed memory
address space. According to the Top500 project, two metrics in PetaFLOPS are
used to rank supercomputers: the RPeak and the RMax that respectively inform on
the cumulative peak performance of every processing unit that the system could
theoretically achieve and on the highest score measured using the High Performance
LINPACK (HPL [Don88]). Additionally, the ratio between the RMax and the RPeak

is also an important metric since it reflects the efficiency of the system. For instance
on Curie Thin nodes, the maximum computational efficiency achieved on HLP is
81%. In this case, 19% of the computational power is not exploited by the applica-
tion.

8 Chapter 1. Introduction

1.2 Programming Models for HPC

Over the years, the architecture of supercomputers has become increasingly com-
plex. Whether inside a compute node or across interconnection networks, the large
spectrum of different hardware makes difficult the development of efficient applica-
tions. In addition, it would be unrealistic to request such a level of programming
expertise to every application developer, especially as scientists from other fields do
not necessarily have an advanced background in computer science.

Because supercomputers should be accessible to everyone, they must provide
a software stack that abstracts low-level complex operations and exhibits clear
and portable interfaces to application developers. Some tools already exist to
automatically parallelize a sequential application intended for unicore architec-
tures [Kim+10]. However, the quality of the code produced is occasionally sub-
optimal due to the need of a complex program analysis and because some factors
are only available during execution. In fact, it is often the responsibility of the
developer to specify how the application will be executed in parallel. For that pur-
pose, many programming models are available, each with its own special features.
In practical terms, developers divide the workload of their application in order to
feed each execution unit with computations. Then, according to the chosen pro-
gramming model, the interactions between running instances of the application are
explicitly managed by the programmer.

Since there are plenty of programming models targeting the development of
parallel applications, the following section only focuses on the three predominant
models. The thread model is intended to leverage the shared memory context of
multi-core architectures. The message passing paradigm and the partitioned global
address space model are designed to distributed memory systems where each task
has only access to its private memory, inaccessible to other tasks.

1.2.1 Shared-Memory Systems

The most explicit way for expressing shared memory parallelism consists in directly
manipulating threads, or light-weight processes, which share the same address space
of the underlying UNIX process. The PThread interface (for POSIX Threads) allows
for developing portable multi-threaded applications on systems which are compli-
ant with the POSIX standards. The programmer has a total control on thread
creation/destruction and, in particular, it must explicitly manage synchronizations
to avoid race conditions and keep memory consistent. A large set of functions is
available for this usage among which mutexes guarantee an exclusive access to a
shared resource.

To keep an independent execution flow, each thread has a private execution
context (call stack, processor registers such as Instruction Pointer). It allows the
Operating System (OS) scheduler to put a thread to sleep and switch to another
thread. This context switching may for example occur when a thread enters a
blocking call or reaches the end of its quantum of time allowed by a preemptive
scheduling. Despite the light-weight aspect of threads, creating them and manag-
ing context switches are not trivial operations. Furthermore, the overhead due to
thread management is actually magnified by the fact that thread scheduling is often
achieved by the OS.

The PThread standard is however barely used because taking full advantages

1.2. Programming Models for HPC 9

of this model is painful on large applications. Parallel programmers often resort to
higher level interfaces like OpenMP [Ope13] which abstracts low-level thread oper-
ations such as thread managing (e.g., create, join) and provide a user-friendly inter-
face for sharing work (e.g., distribute for-loop iterations among multiple threads).

Finally, task parallel programming models like Cilk [Blu+96] or Intel TBB [Intd]
offer a way for application programmers to expose the parallelism by identifying the
operations that can concurrently be executed in parallel. The runtime then decides
during execution how to distribute the work to the execution units. These pro-
gramming models are well suited for nested parallelism in recursive like in recursive
divide-and-conquer algorithms.

1.2.2 Distributed Memory Systems

Partitioned Global Address Space (PGAS [EGS07]) is a parallel programming model
that assumes a user-level global address space that is logically partitioned such that
a portion of it is local to each process. Compared to the explicit message passing
interfaces such as the Message Passing Interface detailed in the next section, PGAS
languages allow any process to have a direct access to the shared data. Furthermore,
since PGAS languages exclusively communicate using one-sided communications,
they are well suited for networks that support a direct access to the memory of
remote processes.

However, because the compiler is responsible for the code generation related
to communications, the lack of efficient communication optimizations can result
in poor performance. This statement is especially true for applications that use
fine-grain communications where accessing a remote memory region is orders of
magnitude slower compared to operations on the local memory [CIY05]. The two
main PGAS languages are Co-array Fortran (CAF [NR98]) and Unified Parallel C
(UPC [EgCD03]).

In the distributed memory programming model, the message passing paradigm
is undoubtedly the most prevalent model for developing applications aimed to be
run on a large number of cores. In the message-passing model, processes executing
in parallel have separate address spaces and communications occur when a portion
of one process address space is copied into another process address space.

1.2.3 The Message Passing Interface

Historically, the message-passing paradigm has been popularized by PVM (Parallel
Virtual Machine [Sun90]), an open-source and portable project publicly released in
1989. Before PVM, application developers had to settle for proprietary communi-
cation libraries provided by parallel computer vendors.

Thereafter, the Message Passing Interface (MPI [MPI93]) replaced PVM. MPI is
a message-passing standard proposed in 1993 by the MPI forum and now available
for C, C++ and Fortran. The standard provides a set of portable messaging inter-
faces that could be implemented on any machine, independently of the underlying
node and network hardware. Nowadays, MPI is the de-facto programming model
for developing parallel applications. A large number of parallel codes have been
ported to MPI and some libraries natively support MPI such as Intel MKL [Inta]
or ScaLAPACK [Tre89]. The key to success has probably been a high-portability
of code and performance. At first glance dedicated to distributed memory systems,
MPI nevertheless provides good performance on shared memory systems.

10 Chapter 1. Introduction

Since the first revision of the standard, MPI provides a two-sided point-to-point
communication model where communicating pairs of processes call Send and Recv
functions to transmit a message. In addition, the standard exposes a variety of
powerful and efficient collective operations.

1.2.3.1 Point-to-point Communications

The basic communication model of MPI is point-to-point communication, in which
a piece of data is exchanged between two tasks. Point-to-point send routines specify
the address of the data, its size, the destination and a message identifier as well.
Conversely, receive routines specify the address of the remote buffer, its size, the
emitter and the message identifier expected. Once a message is received, the MPI
library walks through the list of pending receive requests and determines which re-
ceive buffer matches the description of the incoming message. Additionally, MPI
provides two modes for point-to-point communications. The blocking mode blocks
the MPI task until it is safe to re-use the communication buffer. The non-blocking
alternative returns control to the application as soon as the MPI request is inter-
nally registered, leaving the opportunity for the messaging library to progress the
communication in background. Both sender and receiver then wait or poll for the
completion of operation by calling an appropriate library function such as MPI_Wait
or MPI_Test.

1.2.3.2 Collective Communications

Another important concept is blocking collective communications that involves a
pre-defined group of MPI tasks called communicator. Collective communications
are categorized into three groups:

1. Data movement operations are used to rearrange data among MPI tasks.
They include the broadcast operation and many elaborate scattering and gath-
ering operations.

2. Collective computation operations such as minimum, maximum, sum and
logical OR using a reduce operation.

3. Synchronization operations such as barriers that block the calling task
until all processes in the communicator have reached this routine.

1.2.3.3 From MPI-1 to MPI-3

Since MPI-2, the standard supports I/O and one-sided messaging where processes
perform remote accesses to exposed regions of memory. In this model, MPI tasks
collectively expose a window of memory and remote tasks may passively or actively
access data. Concerning the active target mode, the remote task explicitly synchro-
nizes its window between accesses. In the passive target mode, the origin task may
update the target window without involving the remote task.

MPI is actively developed and the third version of the standard has been re-
leased in 2012. Among the available enhancements, the standard now introduces
the possibility for collective communications to be non-blocking and to progress
asynchronously. Additionally, the standard extends the one-sided communication
operations of MPI-2.

1.2. Programming Models for HPC 11

1.2.3.4 Message Passing Interface Implementations

During the last twenty years, a large number of MPI libraries have emerged. On
the one hand, several open-source MPI libraries such as Open MPI [GWS06],
MPICH [Gro+96] (and its successor MPICH2 [Labb]) are freely available and ef-
ficiently leverage the widespread underlying hardware, whether the MPI tasks are
communicating on the same compute node or on two different compute nodes. Nowa-
days, MPICH and Open MPI are certainly the predominant MPI runtimes and nu-
merous MPI runtimes derivate their codes from these two projects. Moreover, these
runtimes are recognized as stable (because they are intensively evaluated by a large
community) and feature-complete with a support of the latest MPI standard. On
the other hand, some libraries provide an optimized support for specific hardware
and architectures. MVAPICH2 [Hua+06], runtime derived from MPICH2 and de-
veloped at the Ohio State University provides an inter-node communication layer
tuned for Infiniband, 10GigE/iWARP and RoCE (RDMA over Converged Ether-
net) networks. MPICH-GM and MPICH-MX [Inc] are both MPI implementations
on top of Myricom GM and MX interconnects. It is now commonplace that parallel
computer vendors provide their own MPI runtimes, tuned for the underlying hard-
ware they set up. Intel MPI [Intc], BullxMPI [Bul], IBM Platform MPI [IBM] and
Cray MPI are some examples. Finally, a few projects aim at including new soft-
ware features to MPI. Fault Tolerant MPI (FT-MPI [FD00]) and MPICH-V [Bos+]
are both projects focusing on reliability of MPI applications. FT-MPI provides a
process-level fault tolerance at the MPI API level. In case of failure, a notification is
transmitted to the application. The application can make the decision to abort the
job, respawn the dead process, shrink/resize the application to remove the missing
processes or create holes in the communicator. During job execution, MPICH-V
processes periodically emit an "alive" message to a "dispatcher" which monitors
the communication. If it detects a potential failure, the dispatcher launches a new
instance of the dead process. If a failure happens during a communication, both FT-
MPI and MPICH-V runtimes ensure that in-flight messages will be either canceled
or received after the process restart.

The point of mutual interest of previously cited MPI runtimes is that they
are all process-based, meaning that every MPI task is a UNIX process. Be-
cause the MPI standard does not restrict MPI tasks to be processes, a few num-
ber of MPI libraries have early emphasized the potential of encapsulating MPI
tasks into threads. The main reason concerns performance aspects as thread-
based MPI runtimes only require one memory copy for intra-node communica-
tions. A large number of thread-based MPI runtimes has thus emerged among
them AMPI [HLK04], AzequiaMPI [RGM11], FG-MPI [KW12], MPC [PCJ09],
TOMPI [Dem97], TMPI [TY01], USFMPI. More recently, Friedley et al. pro-
posed Hybrid MPI (HMPI) [Fri+13], a hybrid MPI runtime that proposes MPI
tasks as processes but enables one memory copy mechanism for intra-node commu-
nications. Finally, several process-based MPI runtimes now rely on kernel modules
(KNEM [GM12], LiMIC2 [Jin+07]) to mimic the one-copy mechanism of thread-
based MPI runtimes.

In the next paragraph, we detail MPC, a framework that implements a thread-
based MPI runtime.

12 Chapter 1. Introduction

MPC: The MultiProcessor Computing Framework
The MPC framework depicted in figure 1.3 aims at improving the scalability

and performance of applications running on large clusters of multi-processor/multi-
core NUMA nodes3. It provides a unified runtime and exposes to the user its own
implementation of the POSIX threads, OpenMP 2.5 and MPI 1.3. MPC relies on
its own lightweight two-level and non-preemptive MxN thread scheduler where N
user-level threads are scheduled on top of M kernel threads (depicted as Virtual
Processors in the figure). This processor virtualization brings a total control over
scheduling and a fast context switching between threads. This point is attractive to
efficiently oversubscribe CPU cores with several MPI tasks.

Figure 1.3 – MPC runtime overview

More precisely on the MPI implementation, MPC is a thread-based runtime
where MPI tasks are encapsulated inside POSIX threads. Additionally to a full
support of the standard, MPC provides the MPI_THREAD_MULTIPLE level of thread-
safety from MPI 2.0. In a few words, this level allows multiple threads to simultane-
ously call MPI functions. To deal with global variables and ensure the correctness of
MPI applications on top of a thread-based MPI runtime, MPC includes a compiler
based on the GNU Computer Collection (GCC) that enables auto-privatization of
end-user global variables to Thread Local Storage (TLS) variables. MPC also ex-
tends the regular TLS mechanism to nested hybrid MPI/OpenMP codes where the
user may choose the level at which a variable must be shared or privatized [CPJ11].
As an example, a variable can be privatized at an MPI level and shared across the
OpenMP tasks owning the same MPI task.

At the time of this writing, the inter-process communication layer of MPC sup-
ports IP-based networks and accesses high-speed networks over Infiniband.

1.2.4 Discussion

The message passing programming model can be considered as a low-level approach
but portable since users keep a fine-grain control on how the work is distributed
and what are the interactions between computing entities. Since each entity works

3The MPC framework is freely available at http://mpc.sourceforge.net

http://mpc.sourceforge.net

1.3. MPI Challenges 13

on its own private data, the model naturally ensures locality of memory accesses.
Furthermore, there is an implementation of the MPI standard for pretty much all
systems, making MPI portable in terms of performance and by far the most adopted
standard for parallel applications.

1.3 MPI Challenges

In the following section we describe what we believe are the six more important chal-
lenges an MPI runtime shall overcome for current and upcoming large-scale parallel
systems: (1) the high performance of communications, (2) the runtime scalability
and reliability, (3) the independent progression of messages, (4) the runtime memory
consumption, (5) the efficient support of hybrid programming and (6) the locality
of data.

1.3.1 High Performance of Communications

MPI runtimes are a predominant link which connects the user application to su-
percomputers: they supervise process spawning/finalization and manage communi-
cations between tasks. One of the main relevant criteria for MPI runtimes is the
high-performance of communications while most efficiently utilizing the underly-
ing hardware. With the evolution of hardware, MPI runtimes must continuously
be reconsidered for maximizing the performance potential of the underlying sys-
tem. As an example, mainstream runtimes like MPICH2 provide highly optimized
intra-socket intra-node MPI communications [BMG06; GM12]. On the other side,
inter-node communications of MVAPICH2 over Mellanox ConnectX-3 FDR Infini-
band HCAs deliver latencies close to 1 microseconds and unidirectional bandwidths
up to 6,000 MB/s on the same architecture4.

Designing an efficient communication layer for MPI runtime usually requires
the consideration of two decisive points for performance. First, the runtime should
provide a support for recent network protocols in order to improve network commu-
nications of end-user applications. On recent NICs, RDMA is by far the protocol
that brings both the lower latency and the fastest communications. Second, the
MPI library should optimize the critical path and hunt idle CPU cycles. With
thread-based MPI runtimes, this implies, for example, to design efficient algorithms
in order to minimize synchronizations due to resource sharing.

1.3.2 Scalability and Reliability

HPC trends over the last 20 years show a continuously rise in the number of cores.
According to the June 2013 Top500 project [Top], with 3,120,000 cores, the Tianhe-2
supercomputer from National University of Defense Technology in China is the first
system with three million or more cores.

To run MPI applications on such large machines, the runtime should provide
equivalent performance of communications regardless of the number of cores. Par-
allel applications are however subject to phenomena that are insignificant or absent
with a few number of tasks but that become critical for scalability on one million
cores.

4Benchmark results extracted from MVAPICH2’s wesite and available at http://mvapich.cse.
ohio-state.edu/

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

14 Chapter 1. Introduction

With the high level of nowadays supercomputer hierarchy, one common opti-
mization to provide efficient communications is to design algorithms that fit the
underlying hardware layout. First, runtimes should implement NUMA-aware al-
gorithms to limit the saturation of NUMA interconnects in NUMA architectures.
Second, algorithms such as collective communications should carefully consider the
network topologies (e.g., multi-dimensional torus, tree-like topologies, hypercubes)
of current and upcoming machines.

Moreover, large-scale applications are more exposed to hardware failures (e.g.,
dead link, NIC out of service) and software anomalies (e.g., process crash, resource
exhaustion). New techniques should consequently be designed for dynamically di-
agnosing the source of the error and restoring lost services.

1.3.3 Independent Message Progression

Nowadays trends in high-speed network cards are to improve raw performance while
offloading communication operations to the NIC. One challenge for optimizing MPI
runtimes is to provide independent progression of communications, which aims at
(1) minimizing the time inside the communication library and (2) releasing the host
CPU to the application.

Independent progression of communications actually focuses on two aspects.
First, runtimes should provide an efficient support of hardware capabilities related
to independent message progression. This approach however leads to expensive
hardware since the NIC should integrate a programmable micro-controller or should
fully support the MPI standard in hardware. Second, the software stack should pro-
vide some mechanisms for asynchronously progressing MPI messages. One common
strategy to achieve this goal is to rely on progression threads, which however have
two severe implications. If the progression and the computation threads share the
same core, the high number of context-switches may generate an overhead. Other-
wise, if some cores are dedicated to progression threads, less cores are available for
computations.

1.3.4 Memory Consumption

The most up-to-date studies on plausible exascale system architectures highlight a
large growth in CPU numbers with a factor of more than 2,000 compared to Tianhe-
2, the current world’s fastest supercomputer [Ama+09; Ash+10]. On the contrary,
the same sources expect a significant drop to less than 50 MB of memory per core
where 1 GB is commonplace in today’s supercomputers like Curie. Furthermore, one
promising hardware candidate for exascale machines is the Intel MIC architecture
depicted in figure 1.4. The 5100 family provides a single chip up to 1 teraflops
double-precision performance and integrates 60 x86 cores for a total of 240 threads
and 8 GB of memory [Inte]. As a result, this architecture represents less than 33 MB
of memory per thread.

To run MPI applications on exascale machines, one of the most challenging
points to consider for scalability is memory footprint at all levels, from the runtime
to the end-user code [Tha+10]. As regards MPI runtimes, efforts should address
structures that linearly increase with the number of tasks inside the communication.
Alternatively, the behavior of the runtime should adapt to the end-user application
and dynamically adjust its memory consumption according to the free memory. If

1.3. MPI Challenges 15

Figure 1.4 – Intel Many Integrated Core (MIC) architecture block diagram (cour-
tesy of Intel)

a compute node runs out of memory, users would certainly better admit a slower
application than a job that fails and needs to be restarted from the beginning.

With upcoming memory restrictions of future exascale machines, thread-based
MPI runtimes are a relevant solution because they provide an efficient way to de-
crease the overall memory footprint. First, threaded MPI runtimes allows for sharing
common structures across MPI tasks such as buffers and inter-node communication
endpoints. Most MPI runtimes implement the rendezvous protocols over buffer-
less zero-copy transfers. However, since a sender MPI task does not a priori know
the final address at the receiver side, rendezvous protocols require the synchro-
nization of both tasks and the transmission of several control messages. As a re-
sult of these control messages, the communication latency over these protocols is
high. Consequently, short and medium-sized messages are generally transmitted
using the regular Send/Receive semantics which involves network buffers. Second,
threaded MPI tasks do no require extra-memory for intra-node communications
while process-based MPI runtimes usually allocate extra buffers inside a shared
memory segment [BMG06]. Recently, HMPI [Fri+13] proposed a mechanism to
enable zero-copy for intra-node messages inside a process-based MPI runtime. Al-
though this design decreases the number of shared-memory buffers, at the time of
writing, it does not allow network resources to be shared among MPI tasks.

Designing MPI tasks as threads is however not a silver bullet to low-memory
systems. Because sharing resources in a multi-threaded environment requires syn-
chronizations, thread-based MPI runtimes make developments more complex and
often exhibit performance overheads.

1.3.5 Hybrid Programming

Exascale machines are expected to have many more cores per node than today, but
the amount of per-core memory is likely to decrease. Applications want however to
address more and more memory and the amount of memory available to an MPI task

16 Chapter 1. Introduction

is insufficient to solve emerging problems. One answer to that concern is to com-
bine message-passing and shared-memory programming models, often referred to as
hybrid programming. With this approach, MPI is dedicated to move data between
different compute nodes and some shared-memory model is used for parallelizing
data within the node. Candidates for X are the following:

• OpenMP, Cilk and TBB [Intd]

• PGAS languages such as UPC or CoArray Fortran. Some research groups have
started to investigate advantages of combining MPI+UPC [Din+10]. MVA-
PICH2 has been extended to unfify both UPC and MPI runtimes [Jos+10].

• CUDA [Nvi08]/OpenCL [Mun+09]. In that regard, a version of MVAPICH2
(MVAPICH2-GPU) is available and focuses on Hybrid MPI+CUDA[Wan+11]

Since the first revision of the standard, MPI makes hybrid programming pos-
sible and defines four levels of thread-safety for multi-threaded applications. This
mechanism allows the runtime to avoid more thread safety than the user actually
needs.

The highest level of thread-safety is MPI_THREAD_MULTIPLE. With this level, mul-
tiple threads may concurrently call MPI without any restriction, which is particu-
larly useful for hybrid codes. Although it is often implemented, the related work
has proven the poor efficiency of MPI_THREAD_MULTIPLE inside regular MPI run-
times [TG07]. Indeed, multiple threads accessing the runtime at the same time
requires the implementation to use locks which turn out to be expensive and com-
plicate developments. Aware of this concern, application developers often avoid
multi-threaded accesses to MPI and rather rely on a master-only approach: MPI
is initialized without thread support and communications are all handled by the
same thread. This solution however increases the sequential portion of the appli-
cation and, according to the Amdahl’s Law, considerably reduces the application
parallelism.

To conclude on hybrid programming, one of the most anticipated challenges for
MPI runtimes is certainly the ability to allow several threads to efficiently share
internals from the runtime.

1.3.6 Data Locality

Today’s compute node architectures are cache coherent NUMA where the memory is
hierarchically organized. As an example of this trend, systems with the proprietary
Bull Coherent Switch (BCS5) exhibit two different levels of NUMAness for a total
of 16 NUMA nodes.

Figure 1.5 shows the consequence of non-uniform memory accesses over the mem-
ory bandwidth considering a 128 MB memory copy on a 128-core architecture im-
plementing the BCS. As we can see, the NUMA interconnect significantly affects
the memory accesses and communication passing by the BCS are slowed down by
a factor of 2. NUMA effects are however not ineluctable and can be mitigated by
maximizing local memory accesses and avoiding latency and bandwidth penalties
induced by remote accesses. In addition, since the BCS is shared across the whole

5see http://www.bull.com

http://www.bull.com

1.4. Dissertation Contributions 17

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Source thread

D
es
ti
n
at
io
n
th
re
a
d

1,000

2,000

3,000

4,000

Bandwidth (MB/s)

Figure 1.5 – NUMA effects between processes on an architecture implementing
the BCS. Efficiency of a memory copy (128 MB) in MB/s according to the memory
affinity between the 128 physical cores

compute node, a large memory traffic may cause a bottleneck. Even worse, Infini-
band communications may also be subjected to this bottleneck effect since they may
pass through the BCS as well.

These locality concerns involve just as much application developers (i.e., hybrid
programming) than runtime designers. Because the MPI standard has been de-
signed for distributed memory architectures, it slightly suffers from data locality.
Implementing MPI tasks as threads however requires to carefully considering the
locality of the runtime internals in order to minimize non-local data accesses.

1.4 Dissertation Contributions

The following thesis investigates the memory scalability issues and performance
concerns in high-speed networks for the Message Passing Interface (MPI) inside a
multi-threaded context.

The first contribution targets the memory usage of network endpoints and com-
munication buffers in MPI runtimes. Starting with the observation that these re-
sources are critical for achieving large-scale executions of parallel applications, we
present three new approaches to reduce their usage in memory.

• We expose a scalable and fully-connected virtual topology for
connection-oriented high-speed networks. This work aims at providing
a convenient, reliable and high-speed transportation protocol to exchange data
between processes without connecting them and for any underlying network.

• We design a novel approach for leveraging multi-rail configurations in a
multi-threaded context with network endpoint sharing. The method is new
since it provides similar results as the related work but reduces the number of
network structures required for communicating.

• We propose a protocol for dynamically resizing network buffers over
the RDMA technology. Network buffers over RDMA is a relevant solution
for optimizing latency and bandwidth of MPI messages. This protocol however

18 Chapter 1. Introduction

induces the allocation of a large amount of memory, which would limit their
usage. The contribution develops an approach for dynamically readjusting the
amount of RDMA buffers allocated by the runtime according to (1) the volume
of data that the MPI application communicates and (2) the free memory in
the compute nodes.

The second contribution named Collaborative-Polling allows an efficient auto-
adaptive overlapping of communications by computations. This runtime
approach enforces the overlap potential of MPI applications without introducing
the overhead of a state-of-the-art threaded message progression. While waiting for
messages, the idle MPI tasks can progress and handle outstanding messages for
other MPI tasks running on the same compute node. This contribution led to one
publication in a scientific conference [Did+12] and another in a journal [Did+13].

The third contribution evaluates the performance of MPI runtimes in the
context of hybrid programming. Using micro-benchmarks, the contribution
highlights an overhead inside mainstream MPI runtimes due to multi-threaded ac-
cesses to the runtime’s internals. Focusing on a modelling seismic application par-
allelized with MPI, the contribution evaluates the introduction of OpenMP to the
application. Moreover, it presents a domain decomposition method which allows a
concurrent participation of all OpenMP threads to MPI communications. With this
method, experiments demonstrate the relevance of using an MPI runtime that effi-
ciently supports multi-threading. Furthermore, this thesis highlights the limitations
induced by the MPI standard on hybrid applications and discusses how they could
be addressed with the concept of MPI endpoints.

Finally, the last contribution involves the conception of a multi-threaded
communication layer over Infiniband that integrates the functionalities previ-
ously mentioned into a mainstream runtime interfacing several programming models.

1.5 Document Organization

Chapter 2 describes past and current high-speed networks that compose shared-
memory clusters. In particular, it presents the verbs Application Programming In-
terface (API) that is used to implement communication layers over RDMA-capable
networks like Infiniband. With the observation that network endpoints and buffers
are two dominant factors for memory scalability of communication libraries, Chap-
ter 3 proposes three techniques for controlling their usage. In Chapter 4, the thesis
investigates regular threaded message progression and introduces a runtime opti-
mization that enforces the asynchronousity of MPI communications. Chapter 5
then explores hybrid programming and demonstrates the needs of a thread-safe
MPI runtime through a scientific application. It also shows the limitations of the
current MPI standard for supporting this model. Finally, Chapter 6 concludes on
the work achieved in this thesis and proposes some outlooks that emerge from this
work.

Chapter 2

Interconnection Networks for
High Performance Computing

"Never underestimate the bandwidth
of a station wagon full of tapes
hurtling down the highway."

Andrew S. Tanenbaum,
Computer Networks, 4th ed., p. 91

2.1 Introduction to High-Speed Networks

Since high-speed networks are governed by electrical limitations more severe than
the scaling performance of semiconductors, they need to radically change every few
years in order to maintain a balance with the CPU performance. From the beginning
of clusters made of commodity computers to nowadays HPC centers, networks have
evolved, not only in terms of performance, but also in terms of capabilities natively
supported by the hardware.

In the following section, we present high-speed networks for interconnecting HPC
clusters. We first describe the overhead of regular communication libraries imple-
mented in the kernel and detail some capabilities of modern networks for improving
performance. We then describe several low-level interfaces and high-level commu-
nication libraries commonly used to program interconnection networks. More pre-
cisely, we emphasize the Infiniband network and introduce the mechanisms provided
by the verbs Application Programming Interface (API) from OpenFabrics. Finally,
we introduce the experimental platforms that we used to evaluate the contributions.

2.1.1 Kernel Level Messaging Libraries

Traditional communication libraries reside in the kernel space. In other ways, to
access the network structures, the kernel exposes a regular client/server socket API
to end-applications.

TCP/IP is one example of a kernel level protocol. Known as the Internet Proto-
col, it was initiated in the 70’s and it is the most widespread communication protocol
for interconnecting computers on a network. It uses four independent stacked layers
of general functionalities that provide a high portability from both a hardware and
software perspective. While TCP/IP perfectly fits the requirements of an hetero-
geneous and decentralized network like Internet, it is not suitable for HPC mainly
because the software stack lacks to deliver both low network latencies and high
network bandwidth.

These inefficiencies originate from different levels [Foo+03]. First and as de-
picted in figure 2.1, left part, the TCP/IP stack is generally implemented inside

20
Chapter 2. Interconnection Networks for

High Performance Computing

Figure 2.1 – Comparison of two communication libraries. The regular TCP/IP
stack (on the left) involves the OS during communications. Modern interconnects
such as Infiniband (on the right) support technologies to bypass the OS.

the OS. Thus, reading/writing through a UNIX socket induces OS overhead, socket
and protocol processing, which inevitably increases latency. Second, sending and re-
ceiving data generally involves a memory copy from the user space to the restricted
kernel space. It is mainly because the Network Interface Controllers (NIC, i.e., com-
ponent that connects the compute node to the network) do not have the information
where the received data are placed in memory. This causes the memory caches to
be flushed with data from communications. Furthermore, a significant part of the
network protocol (e.g., message fragmentation, Direct Memory Access initiations
for data movements) is driven by the host processor, which avoids asynchronous
progression of communications while the CPU is busy.

2.1.2 Facilities of Modern Interconnects

On the strength of earlier experience gained from TCP/IP sockets, interconnect
vendors have started to develop new technologies for improving high-speed networks.
One of the major innovations is the arrival of embedded processors in the NICs,
allowing complex operations to be offloaded from the CPU to the network card.
NICs can now drive themselves communications and deliver data directly to the
application, bypassing the OS and avoiding any involvement from the CPU.

2.1.2.1 OS Bypass and Zero-Copy

On regular platforms, the OS keeps an exclusive access to computer devices and
network operations must be handled by a device driver. This intermediate operation
is required because of security concerns. Indeed, a direct access to a device could
corrupt the system integrity and violate the resource partitioning: any program
could intercept the data from another program passing through the device. As a
result of regular networks that involve the OS, user-space applications suffer from
high overheads while accessing network devices (see section 2.1.1).

When network bandwidth began to approach the bandwidth of memory copies,
the buffering of network data internally performed by the OS rapidly became an issue
for performance. This concern led to the development of zero-copy message-passing

2.1. Introduction to High-Speed Networks 21

protocols in which intermediate messages copies are eliminated to avoid the loss of
bandwidth. A typical zero-copy protocol requires the network card to generate an
interruption for the CPU when a message becomes ready. The interrupt handler then
manages the message transfer into the final virtual address of the right application.
This approach however increases latency because the time required by the OS to
start the interrupt handler is fairly significant. Additionally, the CPU remains busy
during the interruption handler and cannot perform useful computations.

To avoid these overheads, some modern NICs are assisted by a processor that can
be programmed to implement part of a message-passing protocol. As an example on
conventional TCP networks, it is possible to program the NIC to take in charge the
whole protocol stack, including segmentation, checksum, sequence number calcula-
tion and acknowledgement of packets without requiring even a single cycle from the
CPU. Because this technique does not need to involve the OS on message transfers,
it is frequently called "OS bypass". This technology is depicted in figure 2.1, right
part.

To support OS bypass with communication offload and achieve highly efficient
data transmissions, a few networks like Infiniband and the BlueGene/Q network rely
on RDMA operations: a process can directly read from (RDMA get) and write to
(RDMA put) the memory exposed by another process and without requiring its par-
ticipation. This communication model however raises two issues: first, the network
card manipulates virtual addresses and only the OS knows the virtual to physical
addresses mapping. Second, the OS may swap virtual pages at any times. To tackle
these concerns, the network card must query the OS for the physical address of each
virtual page to be transmitted. In addition, to prevent page swapping, virtual pages
must be registered as "unmovable" in the OS.

2.1.2.2 Connectionless

Regular sockets API that use TCP/IP are connection-oriented. It requires the OS
to allocate a few amount of memory to maintain the state of each active connection
and store internal buffers. In fully-connected systems (i.e., all processes are con-
nected together), the number of connections rapidly increases with the number of
processes, exhibiting an O(n2) memory usage (for a system with n processes). As a
consequence, maintaining a state per connection imposes a limit on the application
scalability. Some modern interconnects like Infiniband or the BlueGene/Q network
provide connectionless facilities. In contrast to the TCP/IP stack, processes do not
need to explicitly establish a connection to communicate.

2.1.2.3 Independent Progress and Application Bypass

Many protocols that support OS bypass still require the application to actively par-
ticipate in the messaging protocol to ensure a proper message progression. Indepen-
dent progress enables a transparent data progression and completion independently
of entering or not the network progression function. This enhancement is particu-
larly relevant for some current parallel programming languages such as MPI where
complex messaging protocols are involved. First, nearly all MPI runtimes support
a set of specialized protocols dedicated to large messages using RDMA and called
rendezvous: before starting data transmission, sender and receiver tasks synchro-
nize on the destination buffer where the message will be copied at the receiver side.
In practice, the sender emits a rendezvous request to the receiver, which in turn

22
Chapter 2. Interconnection Networks for

High Performance Computing

returns to the sender the address in memory of the destination buffer. If the re-
ceiver replies in late to the rendezvous request, the delivery of the message may
be delayed. Consequently, offloading the reply process to the NIC may accelerate
MPI message progressions, and so reduce message latency. Second, research groups
have started to emphasize the benefits of offloading a portion of the MPI collective
communications, especially as the third version of the standard enables collective
operations to be non-blocking [BP03; Gup+03; Kan+11; Kan+12].

The capability to offload MPI operations to recent NICs may however lower
communication performance. As an example, because processors embedded with
NICs are slower than host CPU, the time to execute long operations (such as process
long queues of posted receives and unexpected messages) may be degraded [UB04;
Bri+05]. Moreover, offload capabilities are often specific to a particular network and
often require dedicated hardware (i.e.,: the collective offload from Mellanox involves
network switches that are compatible with this technology).

Nowadays, most of the networks provide an hardware or software facility to
ensure a transparent message progression. Other networks such Infiniband do not
support a fully independent progress but rely on interrupts to simulate this capa-
bility.

2.1.3 Overview of Interconnects for HPC

When designing HPC systems, a preliminary study should highlight what aspects
can widely influence application performance. With the growth in compute nodes
number, one of the key tenants of performance is the network. It includes different
aspects, from the latency to the network throughput, including the capabilities
supported and the topology. Undervaluing any of the previous points would be
critical, once the supercomputer has gone into production: an inappropriate network
would for example lead to link or switch congestion which finally would provide poor
performance of end-applications. At the opposite, overvaluing a network would
considerably increase the total cost of the machine.

In the next section, we describe the characteristics of widespread past and present
networks for interconnecting HPC supercomputers. We categorized them into (1)
system-on-a-chip networks that integrate networking components directly on the
same chip as CPUs and RAM and (2) off-chip networks that involve independent
interconnection switches to relay communications. Furthermore, we describe the
fundamental capabilities of each network and define some user interfaces that are
available to program them.

2.1.3.1 System-on-a-Chip Networks

IBM’s Blue Gene/Q network [Che+12] and Cray’s Gemini [Inc10] are two propri-
etary networks that integrate a System-on-a-Chip (SoC) connected to a multidimen-
sional torus network (3D for Cray, 5D for IBM). Both networks are reliable, support
RDMA operations and connectionless communications.

To program Cray’s Gemini interconnects, two communication libraries are ex-
posed to end-users. On the one hand, the Gemini Network Interface (GNI [Inc11])
directly exposes the communications capabilities of the network to the user-space
software. This interface is commonly chosen for developing MPI implementa-
tions [PGB11]. On the other hand, the Distributed Memory APPlication (DMAPP)
API implements a logically shared, distributed memory library for interfacing the

2.1. Introduction to High-Speed Networks 23

PGAS languages detailed in section 1.2.2. The Blue Gene/Q network is capable of
2 GB/s unidirectional bandwidth and natively supports collective operations such
as barrier, broadcast, reduce and allreduce over the same physical torus. Further-
more, since a physical core is composed of four hardware threads, MPI libraries can
dedicate one or two threads per core to communications in order to enable indepen-
dent progress. The Parallel Active Messaging Interface (PAMI [Kum+12]) provides
a common interface to MPI runtimes and other programming paradigms such as
PGAS for accessing IBM’s network.

2.1.3.2 Off-Chip Fabric-Based Interconnection Networks

Ethernet
Ethernet was commercially introduced in 1980 as a standard for interconnecting

computers in Local Area Networks (LAN). Nowadays, it equips a large part of the
world’s Top500 supercomputers [Top] (43% according to the list of June 2013) .
Behind its success, Ethernet is a cost-effective and easy-to-deploy technology with
(for the 40Gbit version) a competitive peak bandwidth.

Programming Ethernet cards usually relies on UNIX sockets and TCP/IP since
this protocol is natively supported for reliable communications on modern OS. In
order to minimize the involvement of the CPU into communications, some techniques
propose to offload expensive TCP communication tasks directly to the network card.
For this purpose, a few top-of-the-range network cards are certified TCP Offload
Engine (TOE) where the hardware takes partially or totally in charge the TCP
protocol. The adoption of this technology is however limited since it raises several
concerns for the operating system (eg: security, complexity of integration1).

To provide low latency and high throughput, the Internet Wide Area RDMA
Protocol (iWarp [Hil+03]) introduced in 2002 delivers RDMA services over stan-
dard, unmodified IP networks. Besides a support of a broad range of network
characteristics, iWarp’s usage is very limited due to implementation challenges and
is mainly limited to long-distance TCP connections. During the last few years,
there has been an increasing focus on a new standard called RDMA over Converged
Enhanced Ethernet (RoCE). RoCE provides a superior solution compared to iWarp
and allows for performing native Infiniband communications over lossless (i.e., Data
Center Bridging (DCB) capable switches) and non-lossless Ethernet links. Alterna-
tively, a "pure" software implementation of RoCE is available for ordinary Ethernet
NICs [KKB14].

Finally, in 2013, Cisco announced the Userspace NIC (usNIC) technology that
allows low-latency (' 2 us MPI ping-pong latency) on Ethernet links with OS-
bypass support2.

QsNet and Myrinet
QsNetII [Bee+03] interconnect released by Quadrics and Myrinet [Bod+95] intro-

duced in 1994 by Myricom are two switch-based interconnects that involve individual
network switches for relaying communications. Furthermore, both provide a sup-
port for RDMA transfers and propose to connect the compute nodes using a fat-tree
topology.

1Linux TOE workgroup: http://www.linuxfoundation.org/collaborate/workgroups/
networking/toe

2Jeff Squyres’ EuroMPI’13 usNIC presentation: http://blogs.cisco.com/performance/
eurompi13-cisco-slides/

http://www.linuxfoundation.org/collaborate/workgroups/networking/toe
http://www.linuxfoundation.org/collaborate/workgroups/networking/toe
http://blogs.cisco.com/performance/eurompi13-cisco-slides/
http://blogs.cisco.com/performance/eurompi13-cisco-slides/

24
Chapter 2. Interconnection Networks for

High Performance Computing

QsNetII consists of two hardware parts: (1) a programmable network card called
Elan-4 and (2) a communication switch called Elite-4. To program Elan-4 cards,
Quadrics proposes the Tports interface which exposes basic mechanisms for point-
to-point message passing such as MPI [Yu+05]. The interface allows a process to
execute a programmable thread in the network card. This innovative approach pro-
vides facilities to implement complex message passing protocols in hardware and
enables independent progress. Furthermore, the NIC supports a memory manage-
ment unit (MMU) to transparently register virtual pages to be transmitted in the
OS.

The last Myrinet device named Myri-10G provides a bandwidth of 10 GB/s and
natively handles two network modes: the MX (Myrinet eXpress) protocol mainly
dedicated to HPC applications and the standard Ethernet protocol for interfacing
an already existing network such as a storage network. The high performance of
the MX protocol makes it a good candidate for HPC. The latency falls to 2 µs

and the bandwidth can reach 1.25 GB/s in each direction (for single lane (x1) PCI-
Express). Furthermore, the high-level programming interface covers up memory
registering/unregistering which are internally managed by the MX library and ex-
ecuted on the host CPU. Finally, the basic communication primitives of MX-10G
are non-blocking send and receive operations, which can directly be used in the
implementation of MPI communication primitives.

In spite of the well-featured hardware of QsNet and Myrinet, their HPC market
share has never stopped to decline in the past ten years. Quadrics has stopped its
activities in 2007 and Myricom has gone from the market before being acquired by
CSP in 2013. Currently, Myrinet only equips 3 of the world’s Top500 supercomput-
ers and Quadrics is not ranked anymore.

Infiniband
Infiniband is a server and storage interconnection standard initiated in 1999 by a

consortium regrouping computer science companies such as Compaq, IBM, Hewlett-
Packard, Intel, Microsoft and Sun. The Infiniband Architecture (IBA [Inf]) released
by the Infiniband Trade Association (IBTA) specifies a set of abstract definitions
called Infiniband verbs that provides a software interface for programming over
the end nodes. Because of a lack of standardization, manufacturers have began to
implement their own interface but they were incompatible with each other. It was
not until the availability of the OpenFabrics project that a low-level portable pro-
gramming interface was provided. The adoption of the Infiniband network has been
strengthened by the availability of high-level socket-based interfaces such as SDP
(Socket Direct Protocol) or IPoIB (IP over Infiniband). The latter solution allows
for encapsulating the TCP/IP protocol inside Infiniband network frame, ensuring a
backward compatibility of applications.

In the HPC context, the verbs are used because the highest performance can
be achieved with this interface. Indeed, the verbs interface is very low-level and
the responsibility of communication protocols, buffer and connection management
are left to the developer. Especially, the verbs interface exposes many capabilities
supported by the network hardware like one-sided RDMA operations, OS bypass,
atomic operations and network reliability. The volume 2 of the architecture specifi-
cations offers a wide range of both copper and optical cables that implementers can
aggregate in units of 4 or 12, called 4X and 12X. In addition, the Infiniband speci-
fications define five speed grades from SDR (Single Data Rate) to EDR (Enhanced

2.1. Introduction to High-Speed Networks 25

Data Rate). The last generation Infiniband Host Channel Adapters (HCA, i.e., net-
work hardware that connects to Infiniband network) from Mellanox based on the
FDR (Fourteen Data Rate) standard aggregates 4 links running at 14.0625 Gb/s.
It results in an effective unidirectional bandwidth of 54.54 Gb/s.

In summary, Infiniband is a very low latency network and provides a bandwidth
generally higher than current other equipments [Vie+12]. Moreover, according to
the Top500 list from June 2013, it now equips more than 41% of the world’s fastest
supercomputers.

2.1.4 Programming Infiniband

During the last decade, Infiniband has been successfully succeeding in providing a
valuable network that is suited to HPC supercomputers. It now equips some of the
largest computing centers around the world. In France, the Tera-100 supercomputer
from CEA and the Curie supercomputer owned by GENCI use Infiniband networks.
To develop applications for Infiniband, a large spectrum of user-level interfaces is
available from the highest communication libraries to the lowest-level with Infini-
band verbs.

2.1.4.1 High-Level Communication Libraries

The Common Communication Interface (CCI [Atc+11]) and the Lawrence Berkeley
National Lab’s GASNet [Bon02] project are two high-level communication libraries
that support various interconnects including Infiniband. CCI intends to create a
simple, high-level communication interface while providing scalability, resiliency and
performance. It uses an active message style [Eic+92] for small/control messages
and RDMA transfers with a zero-copy mechanism for large data movements. Fur-
thermore, buffer management (allocation and recycling) is operated by the CCI
library itself. The interface yet supports the UDP/TCP sockets, the Cray’s Gemini
network and Infiniband networks through the verbs interface. The authors also
provide a proof-of-concept for the Portals interface and the MX protocol.

GASnet allows a standard application interface to be implemented over a wide
variety of standard and high-performance networks. It aims at being a portable,
language-independent, high-performance, one-sided communication interface that
provides an abstraction of the network and operating system for the implementa-
tion of the PGAS languages detailed in section 1.2.2. Currently, GASNet supports
execution on many networks amongst Myrinet, Quadrics and Infiniband thanks to
the OpenFabrics verbs interface described in the next section.

2.1.4.2 Low-Level Programming Interfaces

Low-level programming interfaces are generally restricted to a few interconnection
networks but allow a direct access to the capabilities proposed by the hardware. In
the following section, we introduce four low-level programming interfaces for Infini-
band: Portals, uDAPL, verbs and Mellanox VAPI/MXM which are two proprietary
extensions to the regular verbs.

Portals
Cray/Sandia’s Portals [Bri+] is an interface for message passing between nodes

of a parallel computing system. Originally developed for Cray’s networks, it has

26
Chapter 2. Interconnection Networks for

High Performance Computing

evolved into an interface that can be efficiently implemented for different operating
systems and networking hardware. Although focusing on the MPI standard, it is
flexible enough to support a variety of higher-level data movement layers based on
one-sided operations. To improve scalability, Portals is connectionless. It supports
reliable, ordered delivery of messages without explicit point-to-point connection es-
tablishment between pairs of processes. It combines both channel and memory
semantics respectively with regular two-sided Send/Receive and RDMA operations.
To the best of our knowledge, only the Portals 4 Reference Implementation [Laba]
implements Portals 4 over Infiniband verbs.

uDAPL
Direct Access Transport (DAT) defines a transport-independent and platform-

independent set of APIs that benefits from the RDMA capabilities of modern in-
terconnects. The Direct Access Programming Library (DAPL) was released by
DAT Collaborative and defines both user level (uDAPL [Len+03]) and kernel-level
(kDAPL)3 APIs. An open source reference implementation of the uDAPL v1.0 in-
terface is available and currently supports Infiniband. DAT however targets other
systems than Infiniband and provides a solution for programming future RDMA-
based interconnect. Nowadays, some well-known MPI libraries attempt to leverage
the portability of uDAPL and provide a compatible layer, such as Intel MPI, Open
MPI and MVAPICH2.

Infiniband verbs and Mellanox VAPI/MXM
To enhance portability across equipments from different vendors, the OpenFab-

rics Alliance evolved the verbs specification from the IBA standard into a complete
open-source API, which is called the OpenFabrics verbs (initially known as OpenIB
verbs). The OF verbs are included in the OpenFabrics Entreprise Distribution
(OFED), an open-source software stack which is available for many Linux and Win-
dows distributions. It includes a support for legacy 10 GB Ethernet, iWARP for
Ethernet, RDMA over Converged Ethernet (RoCE) and 10/20/40 GB Infiniband.
The OpenFabrics verbs interface is currently the most widely used API for writing
applications over Infiniband networks.

The Mellanox IB-Verbs API (VAPI [Tec13b]) and its successor, the Mellanox
Messaging (MXM [Tec14]) are interfaces that implement the regular verbs from the
Infiniband standard plus additional features related to the recent HCAs that support
the ConnectX CORE-Direct technology. For example, they provide an interface for
offloading collective operations [Tec11] and propose two additional transport pro-
tocols: the eXtended Reliable Connection (XRC) and the Dynamically Connected
Transport (DCT [Tec13a]). The both interfaces will be discussed in section 2.2.5.

2.1.5 Discussion

Table 2.1 summarizes the hardware capabilities of high-speed networks previously
presented and their system share according to the Top500 list as well. Because of
its dominant position in HPC with 41% of the 500 world’s fastest supercomputers,
the following thesis focuses on Infiniband networks. Furthermore, from the various
APIs and high-level libraries available for programming Infiniband, the thesis uses
the OpenFabrics verbs. Indeed, this low-level interface provides the most fine-grain

3uDAPL reference implementation: http://sourceforce.net/projects/dapl

2.2. Infiniband Overview 27

Table 2.1 – Comparison between capabilities of high-speed interconnects for HPC
and their system share

Network Memory
Access

Connection-
less

MPI
matching in
hardware

Collectives
support

System
Share1

E
th
er
ne

t iWarp,
RoCE RDMA Partial,

unreliable2 No

Unreliable multicast2

(verbs) + collective
offload (Mellanox
VAPI/MXM) 43.0 %

usNIC DMA
Unreliable2.
Reliable
planned

No No

QsNet RDMA Yes Hardware
support Collective offload 0.0 %

Myrinet DMA No, unreliable
network No No 0.6 %

BG/Q Net. RDMA Yes, reliable
network

Software helper
thread (PAMI)

Supported in
hardware 4.4 %

Gemini RDMA Yes, reliable
network No No 3.2 %

Infiniband RDMA Partial,
unreliable2 No

Unreliable multicast2

(verbs) + collective
offload (Mellanox
VAPI/MXM)

41.0 %

1 According to the Top500 list from June 13
2 "Unreliable" means that the network hardware does not guarantee the reliable delivery of data to
the destination.

control over the HCA for developing complex communication protocols. Moreover,
verbs interface gives the lowest latencies through a direct access to low-level op-
erations such as RDMA transfers, memory registration and buffer management.
Finally, the OpenFabrics Alliance well-documents the verbs interface, which facili-
tates developments.

2.2 Infiniband Overview

In the following section, we describe the structures involved in Infiniband develop-
ments over the verbs API. As a first step we introduce the available communication
semantics as well as various transport modes for delivering messages. Second, we
detail the memory registration process and mechanisms involved in message com-
pletioning. To finish, we present some hardware optimizations and enhancements
from the Infiniband specifications to reduce the memory consumption of Infiniband
resources.

2.2.1 Communication Semantics

Infiniband supports two types of communication semantics which allow for devel-
oping a wide range of applications. The two-sided channel semantics involves send
and receive methods while the memory semantics enables zero-copy data transfers
with RDMA put and get operations.

28
Chapter 2. Interconnection Networks for

High Performance Computing

2.2.1.1 Send-Receive

With the channel semantics, after the sender posted the send request to the verbs
internals, the network card then drives the data transfer to the corresponding mem-
ory region at the receiver side. Infiniband requires the receiver to post a buffer
in the remote communication endpoint before the sender initiates the communica-
tion. This requirement is actually prevalent in most high-performance networks like
Myrinet [Bod+95] and Quadrics [Pet+01]. Compared to the memory semantics, the
sender has no control over where the data will reside in the remote process. Further-
more, the channel semantics implements a control flow mechanism that prevents the
sender to complete until a request has been posted by the receiver. At the receiver
side, the buffer size must be equal or greater than the one posted at the sender
side since the size is not checked prior to the transfer. In case of reliable transports
where the reliability of data is guaranteed during transmission, if the receive buffer
is undersized, both send and receive communication endpoints enter into an error
state and the connection has to be reinitialized.

2.2.1.2 RDMA Put/Get & Atomic Operations

With the memory semantics, RDMA enables the network adapter to transfer data
directly from or to the memory of a remote process. The caller specifies the remote
virtual address to acess as well as a local memory address to copy. For security
concerns, the remote host must provide appropriate permissions to its memory prior
to the RDMA transfer. By default, the remote host is not informed that an RDMA
transfer is completed. The user may request the HCA to generate a notification
on the remote host as soon as the RDMA operation completes. Furthermore, this
notification can contain a 16-byte immediate data to be set by the local host before
posting the RDMA request.

Two atomic operations are also available and extend the regular RDMA put/get
operations. The compare-and-swap operation atomically compares a value pointed
by an address with a given value. If both values match, the specified value is stored
at the provided address and the old value is returned to the caller. The fetch-and-
add operation atomically adds the value pointed by an address with a given number.
The previous value is returned to the caller.

2.2.2 Queue Pairs and Infiniband Transport Modes

To exchange messages, HCAs communicate through a logical connection endpoint
composed of a send and a receive queue, both referred to as Queue Pair (QP). As a
comparison, this is roughly equivalent to a UNIX socket. To communicate data, the
user posts a Send Request (SR) to the available send QP. A SR defines how much
and which data will be sent to which remote QP. It also defines the protocol to use
(Send/Receive or RDMA) and the target address that will be used on the remote
process for RDMA operations. Optionally, the user may require the hardware to
signal the application when a SR completes. At the receiver side, the remote QP
associated to the send QP must have previously queued an Receive Request (RR)
to retrieve the data. A RR defines a buffer where data are being received for non-
RDMA operations.

The Infiniband specifications provide four different transport modes which are
detailed in table 2.2. The following thesis however only focuses on Reliable Con-

2.2. Infiniband Overview 29

Operation
Unreliable
Datagram

(UD)

Unreliable
Connection

(UC)

Reliable
Connection

(RC)

Reliable
Datagram

(RD)
Send (with immediate) X X X X
Receive X X X X
RDMA Write (with immediate) X X X
RDMA Read X X
Atomic: fetch-and-add/
compare-and-swap X X

Max message size MTU 2 GB 2 GB 2 GB

Table 2.2 – Capabilities of Infiniband transport modes (courtesy of Mellanox’s
RDMA Aware Networks Programming User Manual).

nection (RC) and Unreliable Datagram (UD) transport modes. Indeed, since the
Infiniband specifications do not require Reliable Datagram (RD) to be supported by
any HCA, it is (as far as we know) not available in current hardware. Concerning
Unreliable Connection (UC), it is roughly a mix between RC and UD, where the
connection is not reliable and a QP is associated with only one other QP.

RC is actually the most commonly used transport mode for developing applica-
tions over Infiniband: a QP is associated with only one other QP and messages using
this transport are reliably transmitted and delivered to the receiver. It is roughly
comparable to TCP. In addition, hardware control flow guarantees that packets
are delivered in order regardless the semantics, channel or memory. Because RC is
connection-oriented, it requires a connection to be explicitly established between two
QPs prior to any communication. At first glance, developers could be encouraged to
use an IP-based network such as Ethernet or IPoIB – most of the time supplemen-
tary to Infiniband networks for cluster administration – for interconnecting QPs.
However, as described in section 2.1.1, TCP-based networks induce several over-
heads and this solution may rise performance issues on large-scale applications. To
assist the developer with QP management, the IBA community provides the RDMA
Communication Management (RDMA CM). RDMA CM exposes an interface close
to socket programming and includes the protocols and mechanisms used to estab-
lish, maintain and tear down QP connections. A few MPI runtimes such MVAPICH
already leverage RDMA CM and enable a fast QP interconnection mechanism on
top of this interface [YGP06].

Only recently, applications have started to emphasize the advantages of UD for
large-scale applications over Infiniband. Where RC requires a separate QP for each
connection, one QP is enough with UD to transmit and receive packets to/from
any other QP. As a consequence, UD aims at providing a near-constant memory-
footprint of network structures, regardless the number of processes. However, UD
requires much more software infrastructure that makes the communication layer
more complex and usually degrades the performance. First, like UDP connections,
ordering and delivering are not guaranteed by the hardware. Applications that
require reliability have consequently to implement their own reliability protocol.
Second, packets cannot exceed the size represented by the Message Transfert Unit
(MTU) and must be manually split, operation normally handled by the software
with RC.

30
Chapter 2. Interconnection Networks for

High Performance Computing

2.2.3 Memory Registration

Compared to networks such as Quadrics, Infini-
band does not provide hardware-assisted facilities
for registering memory, meaning that all data used
for communication must be manually pinned by
the user [Tez+98]. As depicted in figure 2.2, mem-
ory registration is a four-step operation that (1)
prevents virtual pages from being swapped out
by the operating system and (2) allows the Host
Channel Adapter (HCA) to get the corresponding
physical to virtual page mapping. The procedure
is summarized as follows:

Figure 2.2 – Infiniband
memory pinning process

1. The application requests a memory registration. It sends to the OS the virtual
address and the length of the contiguous data.

2. During the registration, the OS checks the permissions of the memory region to
register. Then, it pins the region into physical memory and translates virtual
to physical mapping.

3. The physical address table is transmitted and written to the network adapter.
A handle is issued by the network card. It is composed of a pair of keys: the
remote and local key (r_key, l_key). Local keys are used by the local HCA
to access local memory, for example during a receive operation. Remote keys
are required by the remote HCA to allow a remote process to access the main
memory during RDMA operations.

4. Finally, the handle is returned to the application.

To conclude on memory registration, it is an expensive operation which intro-
duces a significant overhead in communications. Furthermore, its cost is propor-
tional to the number of pages to register and depends on whether the pages are
present in physical memory on not [Mie+06].

2.2.4 Completion and Event Handling Mechanisms

Infiniband is an event-based network: when a previously posted Send Request (SR)
or Receive Request (RR) completes, a notification can be posted by the HCA into
an event-queue called the Completion Queue (CQ). A CQ can service send queues,
receive queues or both. Additionally, a single CQ can be associated to multiple QPs.
As a result of a completed event, a Completion Queue Entry (CQE) is filled and
provides a brief description of the event which has been generated. It includes for
example the status of the transfer and, in case of failure, the error code from the
faulty transaction.

Because Infiniband does not support independent progression, it is the user’s
responsibility to regularly poll the CQ to check for completed messages. If the CQ
encounters an overrun, it is shut down and an asynchronous event is generated by
the HCA.

To check the completion of messages, the verbs interface makes available two
strategies: the polling-based and the event-based. The polling-based synchronous

2.3. Experimental Platforms 31

strategy requires the user to manually and periodically poll the network for retrieving
messages. This method however raises two severe issues. First, because the CQ is
checked whether it contains outstanding CQEs or not, it may waste useful CPU
cycles. Second, if the CPU is busy on computations for a long time, the CQ may
fill up in the background and lead to a fatal overrun. To address these issues, the
verbs interface provides an event-based asynchronous message progression. The
application may create an additional thread which remains blocked until an incoming
message becomes ready in the HCA. When it happens, an event is generated to the
application and the progression thread is scheduled to receive the message. The
majority of MPI implementations usually support the two strategies and let the user
decides which one to use. In a fully-subscribed context where the progression-thread
and the MPI task share the computational unit, a threaded message progression
may not be recommended. It is partially due to the overhead that is generated by
a high number of context-switches (see section 4.2.1). Consequently, MPI runtimes
often combine the two approaches: CQs are polled entering MPI functions and
only messages that have low latency constraints are generating events [Sur+06a;
Kum+08].

2.2.5 Memory-Friendly Infiniband Endpoints

Infiniband normally requires each QP to have a dedicated Receive Queue (RQ)
where Receive Requests (RR) are posted. This model may however be inefficient in
terms of memory usage. First, in cases where a RQ runs out of RRs, it cannot use
RRs from another RQ. Second, if too many RRs are allocated to a RQ that receives
a few messages, some RRs will never be used and will waste memory. To reduce
the memory required by RQs, the Infiniband specifications has been enhanced and
introduce since the version 1.2 a new mechanism called Shared Receive Queues
(SRQ). Instead of allocating one dedicated RQ per QP, a single SRQ can be shared
between all QPs in the same process. As a result, a smaller number of RRs are
needed and the memory required per QP is reduced [Sur+06b; Shi+06].

On the same topic, hardware vendors propose proprietary and non-standard solu-
tions to reduce the amount of memory required by the network. ConnectX, the most
recent generation of Infiniband HCAs released by Mellanox Technologies support
two memory-friendly alternatives to the Infiniband Reliable Connection transport
called eXtended Reliable Connection (XRC) and Dynamically Connected Transport
(DCT [Tec13a]). When a XRC QP is connected to another process on a different
node, it can reach all processes on that remote node via the same QP [Shi+08;
KSP08]. As for DCT, it improves scalability by setting up and tearing down the
connections by the adapter hardware on an ’as needed’ basis. This transport pro-
tocol is available in a stable version since April 2014 and only Open MPI supports
it for the moment.

2.3 Experimental Platforms

To run large-scale experiments, we dispose of the Curie supercomputer owned by
GENCI and operated into the TGCC by CEA. It is the first French Tier0 system
open to scientists through the French participation into the PRACE research infras-
tructure. All nodes are interconnected together on an Infiniband network following
a 2-level Fat Tree network [Lei85]. The first level of the tree is composed of 36-port

32
Chapter 2. Interconnection Networks for

High Performance Computing

switches, each connected to 18 324-port top switches. Compute nodes are connected
to the Infiniband network through Mellanox MT26428 ConnectX III 1-port 4x QDR
HCAs for a total of 32Gbit/s of unidirectional theoretical throughput. As of the
time of writing, compute nodes are running GNU/Linux x86_64 2.6.32 customized
by Bull and SLURM [JG04] is responsible for jobs allocation. Moreover, the version
1.5.4.1 of OFED is installed on the cluster, which includes the verbs library version
1.1.4.

Without including the hybrid nodes for GPU computing, Curie is now offering
2 different compute nodes. An additional partition composed of 32-core nodes was
temporary available on Curie. In mid 2012, every 32-core nodes of this partition
were converted into 90 super nodes of 128 cores.

2.3.1 Thin Cluster: 16-core nodes, 1 HCA

The Thin Cluster is composed of 5040 B510 Bullx nodes, each equipped with 2 eight-
core Intel processors Sandy Bridge EP (E5-2680) clocked at 2.7GHz and assisted
with 64 GB of main memory. According to the June 2013 Top500 list, Curie Thin
nodes is the 15th most powerful supercomputer with 1,359.0 TFlop/s on the Linpack
benchmark.

2.3.2 Medium Cluster: 32-core nodes, 1 HCA

The Medium Cluster is no more available for production. It regrouped 360 compute
nodes, each composed of 4 eight-core Intel Nehalem-EX X7560 processors clocked
at 2.26GHz with 128 GB of main memory.

2.3.3 Large Cluster: 128-core nodes, 4 HCAs

The Large Cluster relies on a specific and proprietary Bull Coherent Switch (BCS)
grouping 4 motherboards from the Medium Cluster together for a total of 128 cores
and 512 GB of memory (see figure 2.3). This cluster targets hybrid parallel codes
(e.g., MPI+OpenMP) that require large memory and a multi-threading capacity.
Each level-2 NUMA nodes (groups of 32 processors) is topologically close to 1 HCA.

Figure 2.3 – Architecture of the compute nodes that compose the Curie’s Large
Cluster

Part II

Contributions

Chapter 3

Memory-Scalable MPI Runtime

"When comparing human memory
and computer memory it is clear that
the human version has two distinct
disadvantages. Firstly, as indeed I
have experienced myself, due to aging,
human memory can exhibit very poor
short term recall."

Kevin Warwick

3.1 Memory Footprint: a Limit to the Scalability of MPI
Runtimes

Since the first revision of the standard by the MPI Forum, MPI is targeting ex-
tremely large-scale parallel systems. Until now with the large amount of memory
available per execution unit, MPI developers did not have to worry too much about
the memory consumption of the runtime for large-scale runs. As previously discussed
in section 1.3.4, the trend however seems to be revering since the last exascale re-
ports [Ama+09; Ash+10] and the recent hardware (e.g., Intel MIC architecture)
suggest that the number of cores per node will increase by a factor of 4-5 while the
amount of per-core memory will decrease by a factor of 4-6. Indeed, the memory
per core envisaged is around 10-20 MB. To scale parallel applications on such future
machines, efforts are needed to reduce the memory consumption from the MPI users
down to the runtime [Tha+10].

Because MPI targets distributed memory architectures, the standard actually
requires some user-level data to be duplicated across MPI tasks. To limit this du-
plication, MPI users may first share memory consuming data via a shared memory
segment. With the aim at automatizing this cumbersome process, Tchiboukdjian et
al. [TCP12] propose a technique based on pragmas to share at a node-level data that
are often read and barely written. A second technique to reduce data duplication
is to implement a hybrid version of regular full MPI codes using a shared-memory
programming model like OpenMP, TBB or Cilk (see section 1.2.1). Both trans-
formations presented however rely on source-code modifications and some cannot
easily be implemented.

Changing the numerical schemes of MPI applications and implementing
communication-avoiding algorithms may also be an interesting alternative for lower-
ing the communication volume and so, the memory required to communicate. First,
MPI developers may for example limit the usage of fully-connected collective com-
munications such as All-To-All primitives in order to reduce the number of connected
peers that could lead to scalability concerns. Alternatively, they may restrict the
number of pending MPI operations to prevent bursts of memory allocations and a

36 Chapter 3. Memory-Scalable MPI Runtime

large number of outstanding messages. Second, and to accelerate communications,
MPI runtimes may occasionally buffer MPI messages in their internals [SGY10].
With the purpose of limiting this buffering, users may use MPI ready communica-
tions which guarantee that the message is transferred only when the receive buffer is
posted. Finally, the MPI standard provides the concept of derived datatypes which
avoid the packing/unpacking of non-contiguous data into temporary buffers. To be
effective, this solution however requires the underlying runtime to efficiently support
datatypes [WWP04; KHS12; Aum+07].

In the following section, we discuss the runtime resources that can limit the
memory scalability of MPI applications. We first focus on network endpoints and we
present mainstream mechanisms to reduce their impact on the memory consumption.
We then detail state-of-the-art communication protocols and show that the memory
consumption of network buffers is critical for enabling large-scale runs.

3.1.1 Scalability of Network Endpoints

One of the most challenging points for decreasing memory is certainly to address
data structures whose size linearly increases with the number of MPI tasks. In fact,
most MPI implementations store O(t) data per task where t is the total number
of tasks in the communication. This includes for example, sequence numbers for
message reordering (arrays that are stored locally in each task and which contain
sequence numbers for each distant task) or information related to MPI communi-
cators and groups [Bal+09]. MPI applications can also use a significant number
of communicators since a common practice in HPC libraries requires to duplicate
MPI_COMM_WORLD in order to separate their internal communications from the end-
user application and other libraries in the same program [HS11b]. Finally, the
runtime has to manage inter- and intra-node connections to the remote MPI tasks.
These connections are by far the most memory consuming parts of the runtime and
are composed of:

• network-independent structures that virtually connect two MPI tasks (for
MPICH2 and MVAPICH2, these structures are stored in a virtual connection
object [Goo+11]);

• several pools of network and shared-memory buffers for send and receive op-
erations [BMG06];

• translation tables to topologically find where a remote MPI task is located on
the cluster (i.e., on which node);

• sets of low-level communication endpoints related to the underlying intercon-
nection network: e.g., Queue Pairs (QP) for Infiniband, Sockets for Ethernet;

As previously described in section 2.2.2, Infiniband supports Reliable Connec-
tions (RC) where the network library stores in memory the connection state between
two QPs. Figure 3.1 estimates the memory usage for one process in a fully-connected
graph with up to 32,000 processes and according to the number of WQEs in send
and receive queues. It demonstrates that QP structures are a critical point for scal-
ability: with 32,000 processes, more than 2 GB of memory are allocated per process
and exclusively dedicated to QP management.

3.1. Memory Footprint: a Limit to the Scalability of MPI
Runtimes

37

0 10,000 20,000 30,000
0

500

1,000

1,500

2,000

2,500

Number of processes

M
em

or
y
u
sa
g
e
in

M
B

p
er

p
ro
ce
ss

(l
ow

er
is

b
et
te
r)

50 WQEs
100 WQEs
200 WQEs

Figure 3.1 – Estimation of memory usage for Infiniband RC in the case of a
fully-connected graph with 128 bytes of inline data and without SRQ nor XRC ca-
pabilities (see section 2.2.5). WQEs correspond to the entries in QPs which describe
how messages will be sent (i.e., Send Requests in Send Queues) and how they will
be received (i.e., Receive Requests in Receive Queues). They include for example
the semantics, the target RDMA address or the data size). Inline data allows the
reduction of latency of short messages by storing data directly into the WQE.

Aware of this scalability concern, MPI runtimes have already started to inves-
tigate alternative solutions to decrease the memory allocated per endpoints and/or
reduce their number. The first generic proposal aims at optimizing the MPI task
placement to maximize the volume of data exchanged within a compute node [MJ11;
JM10]. The initial goal was to make an efficient use of high-speed intra-node com-
munications but because two communicating tasks are spawned in priority in the
same compute node, it may also reduce the number of network structures required
to communicate. Another solution would be to create a virtual network where only
a few processes are interconnected. This solution that is convenient for Grid com-
puting [VU05] however induces a high latency penalty since communications require
a software routing algorithm involving several hops. Finally, the size of inline data
could be reduced, but it would consequently increase the latency of short messages.

As presented in section 2.2.5, the XRC protocol provides a better scalability on
multi-core clusters since fewer QPs are required to communicate. This protocol has
started to be integrated inside regular MPI runtimes and experimental results show
a significant memory reduction [Shi+08; KSP08]. The Unreliable Datagram (UD)
presented in section 2.2.2 is an attractive alternative to RC for memory-friendly
MPI runtimes [Koo+07; Fri+07]. Experiments have however proven that a slight
overhead is noticed while using UD. It is mainly because many RC capabilities are
natively handled by the network hardware whereas it has to be implemented in the
software stack for UD. As an example, RDMA operations as well as reliability and
ordering are not supported with this transport mode [KSP07]. Additionally, UD
requires messages to be manually split to the size of the Message Transfer Unit (up
to 4 KB). This operation natively driven by the HCA in RC requires the involvement
of the host CPU with UD. Thus, due to performance issues with UD, MPI runtimes
often rely on hybrid RC-UD approaches where UD is used for the first few messages

38 Chapter 3. Memory-Scalable MPI Runtime

before an RC connection is set up [YGP06; KJP08].
In practice, maintaining a fully-connected network is not required for regular

parallel programs [VM03]. Because not all pairs of MPI tasks communicate with
each other in most applications, MPI runtimes often implement an on-demand con-
nection mechanism [Wu+02; YGP06]. Initially, the application starts with a mini-
mum of connections. During the application lifespan, communication channels are
dynamically created according to the affinity between the MPI tasks. When a
communication requires a connection between two tasks, an on-demand connection
protocol is triggered by the sender task. Once the protocol is completed, MPI tasks
are connected and the data transmission can begin. As a result, only the pairs of
endpoints that communicate are allocated in memory.

3.1.2 MPI Communication Protocols and Buffer Usage

For most of MPI runtimes, the whole inter-node communication infrastructure is
built on top of regular point-to-point communications. Even communications that
involve multiple tasks such as communicator management or collective operations
commonly rely on point-to-point messages. With that observation in mind, we
clearly understand why optimizing point-to-point communications is so crucial for
achieving the best performance. For this purpose, mainstream MPI runtimes im-
plement a large spectrum of different protocols that are most often dynamically
selected according to the size of the message being transmitted [KJP08].

3.1.2.1 Low-Latency Eager Protocol

By opposition to the PGAS languages presented in section 1.2.2, the MPI standard
is two-sided, meaning that a sender task does not know, a priori, the destination
of the message in the receiver’s virtual address space. To communicate data, every
MPI runtime implements a basic algorithm called eager. As depicted in figure 3.2,
the data is sent as soon as possible to the destination task, whether the receive
buffer is posted or not.

When MPI sends data, it includes with the buffer additional information called
the envelope. This information is, at least, composed of a message tag, a com-
municator, a source and a destination. Once the message has been received, the
runtime extracts the envelope and reads it. According to its content, there are two
possible cases: when no matching receive request is found, the unexpected message
is stored inside the runtime internals until a matching receive request gets posted.
In the other case, the message is expected and the envelope matches a previously
posted receive request. Following the matching operation, the target address where
the message has to be transferred is calculated. The data are then copied into the
target buffer and the eager buffer used to move the data is finally released for a
later reuse.

The major drawbacks of the eager protocol are the memory consumption and
the lack of control flow. In fact, because it is a one-sided protocol, the receiver
stores unexpected messages into an extra memory space until corresponding receive
requests get posted (e.g., MPI_Recv or MPI_Bcast). Let us consider a sender task
that sends a 100 MB message. If the message does not fit the available memory on
the receiver, the application may crash. In such a case, the receiver should begin to
retrieve the message only when the application has posted the receive buffer. Taking
this concern into account, MPI runtimes implement an additional class of protocols

3.1. Memory Footprint: a Limit to the Scalability of MPI
Runtimes

39

called rendezvous which is complementary to the eager protocol and represented
in figure 3.3.

3.1.2.2 High-Bandwidth Rendezvous Protocols

Rendezvous are two-sided protocols that require the sender and the receiver to nego-
tiate the buffer availability on both sides before the message transmission actually
takes place. Contrary to the eager protocol, the first clear advantage of using
rendezvous protocols is that no temporary copy of the message is performed and
the sender waits for the receiver buffer to get ready. The sender initially sends only
the message envelope to the destination task. Whenever the matching operation oc-
curred and the final destination address calculated, the receiver requests the sender
to send the data. Furthermore, rendezvous protocols enable the efficient RDMA
put and get operations of modern interconnects to transmit the data.

Figure 3.2 – One-sided eager
Protocol

Figure 3.3 – Two-sided rendezvous Protocol
(based on RDMA write operations)

Designing a rendezvous protocol over RDMA however requires the considera-
tions of two severe implications for message latency and bandwidth.

First and as depicted in figure 3.3, rendezvous protocols usually require to ex-
change three control messages which are sent eagerly. More specifically on Infiniband
networks, the DONE message is usually not transferred by the communication layer
and an immediate value can be automatically returned to the receiver by the hard-
ware when the RDMA completes (see section 2.2.1.2). Thus, the DONE message can
be transferred without involving the sender task. To evaluate the cost of communi-
cations using a rendezvous protocol, let the network latency be l. The cost in terms
of latency to exchange short expected messages using a rendezvous protocol is 3× l.
In contrast to the eager protocol where messages are transmitted with a latency
cost equals to l, the rendezvous methods are three times slower. In fact, many im-
plementations usually restrict rendezvous protocols to large messages. For smaller
messages, each MPI task reserves a limited amount of space for eagerly delivering
messages. The message size at which a message switches from eager to rendezvous
protocol usually differs from an MPI runtime to another and often depends on the
performance of the underlying network. For mainstream MPI implementations over
Infiniband, this threshold usually varies from 8 KB to 16 KB.

Second, and as mentioned in section 2.2.3, RDMA operations require a costly
memory registration process on both local and distant memory regions prior to
transfers. Previous researches have concluded that HPC applications exhibit lo-
cality of MPI communication patterns in the spatial domain [KL98] (i.e., a small

40 Chapter 3. Memory-Scalable MPI Runtime

number of communication patterns) and in the temporal domain [Fre+04] (i.e, iter-
ative patterns). To optimize the bandwidth of rendezvous protocols, MPI runtimes
often implement techniques where the memory unregistering is delayed and cached
in the runtime internals for a hypothetical later reuse [Hua+06; Gab+04; Liu+03].
When a memory registration is requested, the runtime first searches into the regis-
tration cache (or Rcache) if an already registered memory region overlaps the one
being registered. If so, the registration process is skipped and no overhead is finally
induced.

3.1.2.3 Pipeline Protocols

In addition to the regular eager and rendezvous protocols, several MPI runtimes
have developed specialized communication protocols such as pipelines. In their most
basic form, "flat" pipelines consist in splitting a message into several fixed-size eager
buffers in order to pipeline their transmission on the network. Figure 3.4 compares
the rendezvous protocol (based on RDMA write operations, registration-cache en-
abled) and the buffered protocol of the MPC runtime introduced in section 1.2.3.4.
The IMB Ping-Pong benchmark [Intb] executes two tasks on different nodes without
buffer reuse (a) and with buffer reuse (b). The MPC buffered protocol implements
a flat pipeline where the transmission of the message is overlapped with memory
copies from the end-user buffer into eager buffers. Without buffer reuse (see figure
(a)), MPC buffered outperforms the standard rendezvous protocol up to 256 KB
because no memory registration is required by the protocol. However in the case of
buffer reuse in (b), the rendezvous protocol clearly improves up to 8% the band-
width of large messages. This overhead is actually due to the multiple memory
recopies involved in the buffered protocol and that prevent communications to
reach the maximal bandwidth. Furthermore, the rendezvous protocol only regis-
ters once the communication buffers for each message size sample. The registration
overhead is consequently substantially reduced.

105 106
0

1,000

2,000

3,000

Message size in Bytes

B
an

d
w
id
th

in
M
B
/
s

(h
ig
h
er

is
b
et
te
r)

MPC Buffered

MPC rendezvous + registration cache

(a) without buffer reuse
(-off_cache 32M)

105 106
0

1,000

2,000

3,000

Message size in Bytes

B
an

d
w
id
th

in
M
B
/s

(h
ig
h
er

is
b
et
te
r)

MPC Buffered

MPC rendezvous + registration cache

(b) with buffer reuse

Figure 3.4 – MPI evaluation of the rendezvous protocol (based on RDMA write
operations, registration cache enabled) and the buffered protocol of MPC. The
IMB Ping-Pong benchmark executes two tasks on different nodes without buffer
reuse (a) and with buffer reuse (b). No buffer reuse means that communication
buffers are different within all repetitions and the registration cache consequently
fails to re-use previously registered memory regions.

3.1. Memory Footprint: a Limit to the Scalability of MPI
Runtimes

41

To optimize the performance of flat pipelines, Denis et al. [Den11] propose the
superpipeline. While this pipeline is running, chunk size is increased from chunk
to chunk, which leads to a lower number of gaps due to splitting. Experiments on
benchmarks with low buffer reuse show better performance than regular rendezvous
algorithms because the superpipeline is capable of achieving a high overlap of RDMA
write operations with memory registration operations. In the same line of think-
ing, Open MPI [Woo+06] implements an RDMA pipeline protocol that efficiently
overlaps the cost of memory registration with RDMA operations.

3.1.2.4 Discussion on Network Buffers

To communicate data, MPI runtimes use many network buffers. They are involved at
all levels, from the eager to the rendezvous protocols including pipelines. Table 3.1
reports the amount of memory reserved by send and receive Infiniband buffers inside
Open MPI 1.7 running a seismic modeling application. According to the results,
Infiniband buffers represent a large amount of memory with 35% of the total memory
allocated by the runtime. This observation inside a mainstream MPI runtime such as
Open MPI clearly highlights the impact of network buffers on memory consumption.

Table 3.1 – Seismic modelling application on 1,024 MPI tasks with Open MPI 1.7
and a domain size of 5, 1923. The table reports the memory allocated for different
groups: the application, Infiniband buffers and the remaining memory allocated but
not profiled.

Group Memory Footprint (GB)
aggregated on all nodes

% memory
(w/o application)

application 1,096.10
Infiniband recv buffers 19.53 34.23
Infiniband send buffers 0.63 1.10
other1 36.89 64.66
1 Other regroups the memory allocated but not profiled such as thread stacks, intra-node structures,
Infiniband endpoints and others structures allocated inside the runtime.

As a first optimization to reduce the memory footprint of these buffers, main-
stream MPI runtimes usually rely on dynamic buffer allocations. An initial pool of
buffers is allocated during MPI_Init and this pool is extended with additional buffers
when needed [Hua+06]. Second, and as presented in section 2.2.5, Shared Receive
Queue (SRQ) helps to reduce the memory usage of Infiniband receive queues since
receive requests are shared between multiple receive queues. Because SRQ pools use
fixed-sized buffers and may waste memory, Open MPI allocates several SRQ pools
per process, each with a different buffer size. This approach called "Bucket SRQ"
aims at providing a better receive buffer utilization [Shi+07].

Third, Koop et al. propose a technique called message coalescing where mes-
sages with the same envelope may be fused into the same network buffer [KJP07].
Moreover, Aumage et al. suggest a similar optimization in NewMadeleine where
messages are accumulated while the NICs are busy [Aum+07]. As a result, the
two latter approaches may both reduce the number of network buffers for short
messages and increase the network bandwidth. These optimizations may however
often increase network latency since transmission of messages is delayed. As for the
message coalescing, it was mainly developed for the micro-benchmarks of commu-
nications since it imposes many restrictions on the message description (e.g., same

42 Chapter 3. Memory-Scalable MPI Runtime

tag, same communicator) and does not always reflect the communication pattern of
scientific applications.

Finally and for a better utilization of buffers over RDMA, Veloblock [KSP09]
provides a mechanism to allow variable-sized memory buffers while the majority of
implementations proposes a fixed-size version. The size of RDMA buffers conse-
quently fits the size of the message to send, leading to a better memory usage.

3.2 Scalable Multi-Purpose Virtual Topology for High-
Speed Networks

In the following section, the thesis proposes a scalable and fully-connected virtual
topology for connection-based high-speed networks. In this topology, messages are
transmitted using a routing protocol that requires the allocation of a few network
endpoints. The contribution has been implemented inside MPC and supports TCP
and Infiniband networks. Furthermore, we demonstrate the pertinence and the
low-memory footprint of this work in a protocol for interconnecting MPI peers on
demand.

3.2.1 Scalability Concerns of Connection-Oriented Networks

By definition, connection-oriented communications require a connection to be es-
tablished before any data can be transferred. The difficulty here is to provide an
alternative communication path to reliably exchange endpoint identifiers required
to establish this connection.

As previously discussed in section 2.2.2, only the OpenFabrics stack provides a
unified interface for RDMA devices to manage the connections of connection-based
protocols (e.g., RC). RDMA Connection Manager (RDMA CM) is conceptually
equivalent to a socket for RDMA communications. It provides a mode that reliably
supports handshakes for connecting and disconnecting peers but unlike stream-based
protocols such as TCP, communications are message-based. RDMA CM is however
only portable to OFA devices including Infiniband, RoCE and iWarp, and prevents
non-supported networks such as TCP to be used. In addition, it is restricted to
QP connection and disconnection and does not allow users to develop their own
communication protocols. To conclude on RDMA CM, it is even uncertain if the
next-generation of connection-oriented networks will be supported by the interface:
supporting a new connection-oriented network might require to totally rewrite the
connection manager.

A virtual network defines a network which is designed in software and which is
independent of the underlying interconnection network and its topology. Let us now
envisage an alternative user-level virtual network that would permanently provide
a reliable virtual communication path between all processes. First, this secondary
network would offer a portable solution for managing endpoint connection and dis-
connection originating from the data network (i.e., MPI network). In addition, it
would exhibit a unique interface to application developers for implementing their
own protocols over a variety of underlying networks. Second, this network would
be particularly interesting for supporting fault-tolerance algorithms. As presented
in section 1.2.3.4, most fault-tolerant runtimes rely on keep-alive techniques where
processes periodically emit alive messages to a manager which monitors the com-
munication. This kind of communication is generally implemented using all-to-one

3.2. Scalable Multi-Purpose Virtual Topology for High-Speed
Networks

43

communications which naturally does not scale. In such a case, the signalization
network would provide a reliable communication path to carry alive-messages to
the monitor. Additionally, when a failure on the data network prevents any mes-
sage to be exchanged, the secondary network would provide a convenient way for
exchanging notifications between the two-disconnected processes.

Optionally, communications may fallback to this secondary network when an
MPI function which requests a fully-connected graph is called. This communica-
tion pattern is commonplace in HPC applications since some collective algorithms
require a direct connection between the source and the destination tasks. It in-
cludes for example (1) the pairwise exchange and the linear algorithms that are
usually used in the MPI_Alltoall functions and (2) irregular operations where send
count and displacements values are only known at the root task (e.g., MPI_Gatherv,
MPI_Scatterv) [PG07]. Additionally, for some applications such as HERA from
CEA [Jou05], the input dataset is opened by a single task (generally task 0) which
then distributes it to other MPI tasks using an MPI_Scatterv operation. The MPI
task 0 consequently establishes a connection to every other tasks during the ini-
tialization step and only a few of these links are later reused. As a consequence,
these unused extra links remain in memory and could limit the scalability of the
application.

Finally, this solution is even more efficient on systems embedding several HCAs
or network ports: the primary (e.g., MPI communications) and the secondary net-
works could ideally be bound to two different HCAs.

Figure 3.5 – Data and signalization networks. The data network is dedicated
to MPI communications whereas the signalization network carries control messages
(e.g., control messages used for on-demand endpoints interconnection)

In this contribution, we propose a flexible interface for exchanging control mes-
sages between not-connected MPI peers over connection-oriented networks. As de-
picted in figure 3.5, every process has a projection in both signalization and data
networks. The signalization network establishes a fully-connected virtual topol-
ogy where only a few connections are active, regardless of the underlying network.
Whenever the data network needs to deliver a message to a not-connected process,
the message is sent to the signalization network where it is routed to the final pro-
cess. As a result, the signalization network allows any process to communicate with
any other and only requires a low amount of memory to operate.

44 Chapter 3. Memory-Scalable MPI Runtime

Topology Degree Average Distance
1D array 2 N/3
1D ring 2 N/4

2D mesh 4 2
3 ×N

1
2

2D torus 4 1
2 ×N

1
2

k-ary n-cube 2n n×k
4

Hypercube n = logN n

Table 3.2 – Degree and average distance of several topologies. N is the total
number of nodes in the graph.

3.2.2 Contribution: Scalable and Fully-Connected Signalization
Topology for Connection-Oriented Networks

The signalization network allows to exchange point-to-point control messages across
processes. Because latencies on this network are expected to be good, the virtual
topology should support modern high-speed interconnects such as Infiniband. It
should also be flexible enough for interfacing any network such as regular TCP/IP
networks which does not rely on hardware-based features.

Furthermore, because the signalization network shares the same execution unit
and the same memory than the data network, it should scale in terms of memory
consumption regardless of the number of cores in the communication. As previously
highlighted in section 3.1.1, the number of connections established is critical for
scalability. Thus, the signalization network cannot rely on a fully-connected graph.
Rather, it should keep active a low number of connections and provide an efficient
routing algorithm. To finish, messages should be handled as soon as they are ready
on the network card, even if the process is not in the communication library (i.e.,
executing a user function from the MPI application). Moreover, message reception
should generate the minimum of extra-work to the CPU.

The torus topology is a n-dimensional grid network connected circularly where
every node of the graph is also a network endpoint. According to the table 3.2, the
average distance between two nodes of a torus graph (i.e., the number of hops) is
d×k
4 where d is the torus dimension and k = n1/d represents the number of elements

along each dimension. An interesting feature of the torus topology is the ability
to easily reduce the average distance by increasing the number of dimensions. A
tradeoff must then be found between the number of dimensions and the degree of
the graph (i.e., the number of connections per node). Additionally, the number
of connections per node remains constant for a fixed dimension regardless of the
number of nodes in the graph where each pair of processes is directly connected.
Finally, the torus topology shows a good path diversity, i.e., the number of shortest
paths between source/destination pairs. It allows a better load balancing in the
network and provides several alternative routes to a same destination in case of a
node failure.

Because the torus topology perfectly fits the requirements of the signalization
network, we decided to choose this topology for the following contribution.

3.2.2.1 Multidimensional Torus Implementation

To bootstrap the signalization network, processes should be able to exchange
endpoint identifiers to their neighborhood. The Process Manager Interface

3.2. Scalable Multi-Purpose Virtual Topology for High-Speed
Networks

45

(PMI) [Bal+10] provides a portable "key-value" database for parallel applications.
A process can append information to the database and query information previ-
ously committed by other processes. In addition to "put" and "get" functions, it
also provides a collective "fence".

Currently, both the Hydra process manager [Labc] and the SLURM resource al-
locator support PMI. Because of its proven reliability inside MPICH, a wide number
of supported resource managers (such as SLURM, PBS, loadlevel, lfs, sge) and a
portable implementation of the PMI-1 interface, we decided to rely on the Hydra
process manager for developing our multi-purpose signalization network. Open-
source PMI implementations are however subject to significant drawbacks which
limit the scalability and performances. First, as far as we know, PMI implemen-
tations released as open-source all rely on UNIX TCP/IP sockets and lack to use
native high-speed transport protocols like Infiniband. Second, the entire database
is centralized in a unique process, leading to scalability issues.

Algorithm 1 Bootstrapping of the communication ring using the PMI interface
1: function connect_ring
2: prev = (rank + size− 1)%size
3: next = (rank + 1)%size
4: prev_ep = new_endpoint() . e.g., QP for IB, Socket for Ethernet
5: next_ep = new_endpoint()
6: PMI_KVS_Put(key=”rank : prev”, input=prev_ep)
7: PMI_Barrier
8: PMI_KVS_Get(key=”next : rank”, output=next_ep)
9: PMI_Barrier . Communication ring established

10: end function

To address the two previously mentioned scalability concerns of the PMI inter-
face, we propose a two-step virtual topology bootstrapping. As a first step, processes
are spawned on compute nodes by the resource manager and they immediately join
the same PMI Key-Value Space (KVS, i.e., name that identifies a database). A
protocol described in algorithm 1 is then executed which aims at connecting each
process on a ring. Endpoint identifiers (QP keys for Infiniband or the hostname/port
for socket-based networks) are thus exchanged using PMI "put" and "get" opera-
tions. Because only the minimum number of links is created, the required number of
entries in the database as well as the number of operations are significantly reduced.
Once that minimalist network has been established between the p processes, each
process requires a linear O(p) time to communicate with any other process. As a
second and final step, the higher-level torus topology is then bootstrapped using
the previously established communication-ring and a routing algorithm based on
the shortest distance.

3.2.2.2 MPI Connection Establishment over Infiniband

In the Infiniband specifications, each QP has a unique integer used for identifica-
tion and called QP-ID. For reordering messages in connection-based protocols (e.g.,
RC), the two communicating QPs must be synchronized on the same Packet Se-
quence Numbers (PSN). Moreover, an additional unique Local Identifier (LID) is
also registered in each HCA for network identification.

46 Chapter 3. Memory-Scalable MPI Runtime

Figure 3.6 – On-demand QP connection
algorithm over Infiniband. The RTR and
RTS states respectively indicate that the
QP is Ready To Receive and Ready To
Send messages

One way to establish a connection
between two QPs is to exchange the
QP keys (QP-ID, PSN and LID) and
manually program the QP state transi-
tions. As depicted in figure 3.6, imple-
menting an on-demand QP connection
over Infiniband usually requires a three-
way connection protocol. Upon the first
communication between the sender and
the receiver, the sender sends its QP
keys via a request for new connection
to the receiver. At the end of the three-
way exchange, both processes are finally
interconnected and the communication
can start.

To demonstrate either the efficiency
and the scalability of the multi-purpose
signalization network, we developed it
inside MPC. MPC was a good candi-
date for this contribution since it im-
plemented a not-scalable on-demand connection manager where control messages
were exchanged over regular TCP/IP-based networks. We therefore modified the
on-demand connection manager of MPC to use the signalization network for trans-
mitting these control messages. As a consequence, on Infiniband networks, MPC
now interconnects QPs using the same high-speed network than the MPI communi-
cations.

Latency and Memory Constraints over Infiniband Networks
To keep a small bounded latency, the signalization network relies on an event-

driven message progression. As explained in section 2.2.4, this message progression
allows the runtime to preempt any computation threads for retrieving messages from
the HCA.

Because communications are less intensive on the signalization network, a low
number of entries are posted to QPs, SRQs and CQs. Furthermore, the rendezvous
protocol is disabled and the size of eager buffers is set to 1 KB because the signal-
ization network mostly communicates short messages.

On-Demand Connections Evaluation
With the aim of evaluating the performance of peers interconnection over differ-

ent MPI runtimes, we designed a benchmark where a root task sequentially sends
a ping-pong message to each other nodes. Because MPI tasks are initially discon-
nected, the time for performing the ping-pong exchange includes the time required
for connecting the two peers. From this value, the benchmark then subtracts the
time required for performing a regular ping-pong test when both peers are already
connected. Thus, we ensure that only the time required to establish the connection
is measured. Additionally, one single MPI task is spawned per compute node since
a few runtimes such as MPC create QPs at the granularity of the compute node.

Table 3.3 reports the average time to connect a peer using 128 compute nodes

3.2. Scalable Multi-Purpose Virtual Topology for High-Speed
Networks

47

from the Thin Cluster1 among a variety of MPI implementations with on-demand
connections enabled. We compare MPC implementing different dimensions of the
torus topology (1D to 3D), Bullx MPI, MVAPICH2 and Intel MPI. Furthermore,
the table prints the number of QPs allocated for the signalization network over
the torus topology. Since Bullx MPI is derived from Open MPI, it also sup-
ports the B-Buckets optimization [Shi+07] and initially allocates multiple QPs
per MPI task. With the purpose of fairly comparing runtimes together, we forced
Bullx MPI to allocate a single QP per MPI task with the following runtime option:
–mca btl_openib_receive_queues S,65536,256,128,32. Moreover, the UD ca-
pability of MVAPICH2 has been disabled to force the runtime to use of RC.

As expected, the time required to establish a connection decreases while the
number of dimensions (and so, the number of links) increases. Furthermore, the 3D
version of the torus topology only requires a negligible number of 6.36 additional
QPs per compute node. One would notice that the number of QPs is slightly more
than 6, which is actually the number of neighbors in a 3D torus. It is due to the ad-
ditional endpoints that are created for connecting the communication-ring described
in section 3.2.2.1. Indeed, some of these links connect some peers that do not be-
long to the torus neighborhood. Compared to the other runtimes, Infiniband peers
connection over the 3D torus virtual topology gives competitive results and provides
performance close to the regular on-demand protocols. These timings do however
not exclusively reflect the time to exchange control messages required by peers inter-
connection. Indeed, lots of operations are performed during peers interconnection
such as QP allocation/initialization and buffer creation. Furthermore, QP creation
may significantly vary from a runtime to another according to the volume of buffers
allocated and the number of WQEs into the QPs.

Runtimes 1D torus 2D torus 3D torus Bullx MPI MVAPICH2 Intel MPI
Time (µs) per
connection

11,624 7,249 7,030 10,321 2,645 3,355

Speedup related
to torus 3D

0.60 0.97 1.00 0.68 2.66 2.10

Number of QPs
per node (signal-
ization network)

2.00 4.19 6.36 No signalization network

Table 3.3 – Average time to connect two peers over Infiniband using different MPI
runtimes and 128-core compute nodes

3.2.3 Limit of the Design and Possible Enhancements

Designing a user-level virtual network often leads to performance issues because
the software is involved in operations that the hardware normally handles. First
of all, as the routing algorithm is implemented in software, each hop requires pro-
cesses to actively participate to message forwarding. As a result, a task performing
computation from the MPI application may be descheduled for retrieving messages
from the signalization network. One way of investigation would be to offload the
routing algorithm onto the hardware. On Infiniband clusters, the Mellanox CORE-
Direct technology discussed in 2.1.4.2 provides a convenient solution for offloading
collective communications onto the HCA [Gra+10; Kan+11] and could be used for

1The Thin Cluster is detailed in section 2.3.1

48 Chapter 3. Memory-Scalable MPI Runtime

routing messages. Second, because the signalization network involves several hops
for routing communications, it cannot leverage zero-copy RDMA operations from
source to destination. Thus, it is not well-suited for sending large messages.

With the aim of extending our work, we propose to export the signalization
network into a dedicated process, i.e., a process different than the one executing
the MPI application. This extension would imply that a faulty MPI application
would not prevent the signalization network to exchange messages. Second, a dedi-
cated process would be convenient for plugging the signalization network under any
MPI runtime or HPC application that would need a scalable communication path
for exchanging messages. To finish, since the network topology affects communi-
cation performance [SVP13], a possible way for optimizing communications of the
signalization network would be to map the virtual topology on the physical cluster
topology [HS11a; Peñ+13].

3.3 Optimizing Network Endpoint Usage for Multi-
Threaded Applications

As discussed in section 1.3.4, thread-based MPI runtimes conveniently allow to share
some internal structures such as connection endpoints or network buffers for reducing
the memory required by the runtime. This "everything-shared" model involving
one unique set of network resources can however have an impact on performance
compared to the "nothing-shared" approach: it increases the time spent in inter-
thread synchronizations while accessing shared data structures and implies distant
memory accesses in NUMA architectures (see section 1.3.6). In addition, some user-
level network interfaces such as the verbs for Infiniband associate a single network
endpoint with one unique HCA. As a result, one network endpoint per compute node
prevents the use of multi-rail configurations where multiple HCAs are available per
compute node. The runtime consequently has to allocate as many network endpoints
as the number of HCAs and thus duplicate network resources over the compute node.

With the purpose of addressing the overheads due to multi-threading and over-
coming the limitations imposed by one unique set of network endpoints, the thesis
exposes a runtime technique for duplicating in software network-related resources
across the compute node. This contribution proposes a hybrid design between
the memory-friendly "everything-shared" strategy and the performances of the
"nothing-shared" approach. We first explore several routing algorithms for trans-
porting messages in multi-rail configurations. We then demonstrate the relevance of
our contribution on compute nodes equipped with multiple HCAs. We finally show
that our proposal can also benefit to single HCA configurations since it ensures the
locality of network-related data in NUMA architectures.

3.3.1 Performance Implications of Multi-Threaded Endpoints

Because of the implicit shared-memory context between MPI tasks, thread-based
MPI runtimes allow more flexibility for developing inter-node messaging protocols.
Unlike process-based MPI runtimes where each MPI task has its own and private
network endpoints (e.g., QP for Infiniband), thread-based MPI runtimes do not re-
quire a network endpoint to be set up for each remote task. In fact, a unique network
endpoint can be shared among MPI tasks running in the same UNIX process. To
clarify this point, let us consider two compute nodes referred to as A and B: tasks

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 49

0 and 1 are running in node A, tasks 2 and 3 in node B. In this configuration, the
tasks 0 and 1 can communicate with the tasks 2 and 3 using the same network end-
point. By extension, a unique receive queue centralizes all incoming messages for all
destination tasks in the compute node. As a result, when checking the completion
of its messages, the task 0 is able to check and progress messages of the task 1 and
vice-versa.

As highlighted in section 3.1.1, the number of connections is critical for scala-
bility. In theory, thread-based runtimes can achieve better scalability on multi-core
systems as they decrease the number of endpoints in proportion to the number of
cores per compute node. First, and besides memory aspects, reducing the num-
ber of endpoints may improve overall performance. Indeed, because one endpoint
centralizes all communications from one compute nodes, the progression function
consequently requires to poll less network endpoints. Second, Infiniband HCAs pro-
vide an embedded memory for caching information of a limited number of endpoints
(less than 128 QPs for a Mellanox MT25218 HCA [Sur+05], shared across processes
on the node). When the HCA attempts to read the information related to an end-
point that is not cached, it results in a significant latency penalty because the HCA
must access the host memory. To illustrate the latter point, Sur et al. show that
transferring messages shorter than 1 KB to a QP that is not cached nearly doubles
the latency [Sur+05]. Consequently, thread-based MPI runtimes push back the lim-
its of this cache since the same number of QPs can actually address more MPI tasks
than for process-based runtimes.

Naturally, sharing low-level network structures in a multi-threaded context re-
quires locks to protect network structures from concurrent accesses to the same
resource [Luo+11]. It means for example that several tasks cannot simultaneously
post a message to the same endpoint or poll the same completion queue. To il-
lustrate this point, figure 3.7 reports the results of an MPI bandwidth test on 2
nodes where all the 16 tasks in the first node send messages back and forth to the
remote tasks located in the second node. In addition, one unique QP is allocated
per compute node. As we can see in the figure, the contention on the QP for post-
ing new buffers participates to the high latency of short messages since QP posting
represents more than 20% of the total latency for 1-byte messages. As soon as the
overhead in QP posting falls, the latency decreases from 133 to 117 µs. At 1 KB,
the latency starts to increase since messages are getting larger.

Another drawback of having only one network endpoint per compute node con-
cerns the maximum number of entries an endpoint can handle. For example with
Infiniband, due to hardware restrictions, the HCAs limit the number of Send Re-
quests that can be posted to the same QP. With ConnectX-2 HCAs, this limit is set
to 15,000 entries. In other words, no further entry can be posted while the QP is
full and the MPI tasks accessing the QP have to wait a free entry when such a case
happens. As a consequence when dealing with large compute nodes, having only
one endpoint per node may be insufficient to efficiently carry all messaging traffic.

To finish, with the increasing number of cores per compute node, one workaround
commonly considered is to equip compute nodes with several HCAs since multiple
HCAs scale better with the number of cores. Some network manufacturers such as
Mellanox even propose solutions which regroup several ports on the same HCA. One
example of this trend is the Curie’s Large Cluster2 which is composed of 4 physi-

2The Large Cluster is detailed in section 2.3.3

50 Chapter 3. Memory-Scalable MPI Runtime

(a) Algorithm of the bandwidth test

100 101 102 103
0

50

100

Message size in Bytes

1-
it
er
at
io
n
la
te
n
cy

in
µ
s

(l
ow

er
is

b
et
te
r)

Latency

0

10

20

30

%
of

ti
m
e
in

Q
P

p
o
st
in
g
(r
el
a
ti
v
e
to

la
te
n
cy
)

QP posting

(b) Latency of one iteration and QP posting
overhead

Figure 3.7 – MPI Bandwidth test on 2 compute nodes and 16 MPI tasks per
node using the eager protocol. MPI tasks perform pairwise communications with a
task from the other node following the pattern depicted in figure (a). In figure (b),
performance of short messages is low, partially because of a high contention on the
QPs while posting new network buffers.

cally distinct HCAs. The aggregation of multiple HCAs has been demonstrated to
be a relevant solution for breaking-up the network bandwidth limitation due to the
increase in the number of cores inside compute nodes [CRS09; LVP04]. According
to the Infiniband specifications, it is however impossible to configure an endpoint
to share several HCAs and one distinct endpoint must consequently be created for
each HCA. In this case, one unique endpoint would definitely waste the parallelism
potential of multiple HCAs since one single HCA would be used. Moreover, pre-
vious research teams have also demonstrated that the Infiniband hardware is able
to process multiple send requests in parallel [Fri+07] and using one unique QP per
node would waste this HCA parallelism.

In the following section, we present a flexible and multi-threaded communication
layer that replicates network structures in the NUMA nodes. The contribution
accelerates MPI communications since it enhances data locality and easily leverages
the parallelism potential of multi-HCA configurations. Moreover, it reduces the
memory allocated since fewer network endpoints are required compared to a process-
based approach.

3.3.2 Contribution: Multi-Threaded Virtual Rails

For the purpose of this contribution, the thesis refers to "virtual rail" (or vrail) as an
abstract representation of the network resources used for communicating messages
between processes. In concrete terms, a vrail is composed as follows:

• a configuration: describes the configuration of the vrail such as the number
of buffers or their size. This configuration takes the form of an XML file and
users may write their own configuration files.

• a device: defines which device (Infiniband HCA) and which port to open.

• network structures: QPs, SRQ and CQ for Infiniband.

• a pool of send and receive network buffers.

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 51

• a routing protocol: defines what are the conditions to use the vrail . This
point is detailed in the next section.

The vrail model is designed to be as modular as possible. It means that depend-
ing on the hardware available in the compute nodes (i.e., number of cores, memory
available), MPI users may easily configure the communication layer to stack several
vrails. There are numerous different purposes for which stacking multiple vrails is
interesting. MPI users could for example consider creating multiple vrails, each
with a different size of buffers and select the vrail that best fits the message size
being sent. This proposition similar to the Open MPI’s "B-Buckets" described in
section 3.1.2.4 would aim to better use buffers and save memory.

The following contribution focuses on multi-rail configurations where multiple
HCAs or ports are available in the compute node to communicate. More precisely,
an application supports multi-rail configurations only if (1) several independent
communication paths are available between two compute nodes and (2) these com-
munication paths are accessible in the same UNIX process. To clarify this point, we
do not consider configurations where several processes of the same compute node
open a distinct HCA. In this case, all HCAs are used at the compute node level but
only one HCA is opened per process and the application does not support multi-rail
configurations.

3.3.2.1 Multiple HCAs Configurations

In regular HPC systems, Hyper Transport (AMD), QPI (Intel), BCS (Bull) are
some technologies which allow multiple processor sockets to share the same memory
(see section 1.1). These technologies introduce new effects on network communi-
cations such as Non-Uniform Input/Output Access (NUIOA) where the network
performance varies according to the locality of memory banks that are being ac-
cessed [MG+07]. Certainly one of the most representative examples of this trend
is the compute nodes that compose the Curie’s Large Cluster and that count 128
cores in 4 groups of 4 NUMA nodes. As presented in section 2.3.3, the compute
nodes consist of four HCAs in total and each level-2 NUMA node is topologically
close to one physically distinct HCA. As a consequence, accessing a distant HCA
induces communication penalties because of the high NUMA factor induced by the
BCS.

Multi-rail configurations have been widely studied in the literature and many
policies have already been investigated for parallelizing communications such as:

1. round-robin: the HCA to use is selected according to a circular order over all
available HCAs;

2. weighted and not weighted message stripping : the message is stripped into
multiple segments and each segment is sent through a different HCA. The
stripping process may also adjust the size of each segment according to the
NUIOA effects of the underlying hardware (weighted policy) or not [MGN10;
LVP04];

3. idle-based routing: the runtime selects an idle HCA for the transmis-
sion [Aum+07].

52 Chapter 3. Memory-Scalable MPI Runtime

(a) Process-based MPI (e.g., MVAPICH2 [LVP04])

(b) Multi-threaded MPI runtime and few NUMA effects

(c) Multi-threaded MPI runtime with logical cross-links between HCAs and without NUMA
effects

Figure 3.8 – Estimation of the number of vrails (or virtual subchannels) in a
multi-rail configuration for a process-based runtime (a) and a multi-threaded MPI
runtime (b and c). In (a), each MPI task locally opens four vrails (number of remote
tasks multiplied by the number of HCAs) and the runtime prevents the vrails to be
shared between the MPI tasks. The design depicted in (b) requires one unique vrail
per HCA and per compute node to utilize the total network bandwidth available.
In (c) the runtime connects HCA0 and HCA1 of the two compute nodes using two
logical cross-links and referred to as Virtual Channels (VC). Additionally, this design
requires per NUMA node as many vrails as the number of HCAs in the compute
node.

In some aspects, our vrail design is close to the concept of virtual subchannels
described in [LVP04] where the MPI tasks can open several HCAs (or ports) to com-
municate. This design depicted in figure 3.8(a) creates a set of virtual subchannels
(referred to as vrail in the figure) per MPI task and there is no way for an MPI task
to access a virtual subchannel from another task.

In multi-threaded MPI runtimes, all vrails can be accessed by any MPI tasks
running in the same node. Figure 3.8(b) creates one unique vrail per HCA and per
compute node and the design utilizes the total network bandwidth available. Thus,
whenever the tasks 0 or 1 send a message, they can choose between both vrail 0
and vrail 1. As a consequence, our approach reduces the number of endpoints by

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 53

a factor equals to the square of the number of cores per node compared to the
approach depicted in figure 3.8(a). The major drawback of this design occurs when
the remote destination MPI task is located in a NUMA node ID different than the
one where the source task is running in. Let us consider that every task depicted
in figure 3.8 runs in a different NUMA node and that task 0 sends a message to
task 3. Moreover, communication buffers are allocated in the same NUMA node
than the one where the task is executing. In such a case, whatever the HCA used
for the communication (HCA0 or HCA1), it will require a distant memory access to
transmit the data. It has however to be noticed that this overhead only affects the
communication performed by the HCA and does not involve the CPU.

In a shared-memory context, an alternative design is presented in figure 3.8(c)
where the runtime asymmetrically interconnects compute nodes using cross-links
between the HCAs. This approach does actually not involve the NUMA effects
highlighted in figure 3.8(b) but it requires per NUMA node as many vrails as the
number of HCAs in the compute node. Additionally, since there is a unique phys-
ical Infiniband cable between an HCA and its network switch, symmetrically (e.g.,
HCA0–HCA0) and asymmetrical virtual channels (VC) are not independent. As
a consequence, the bandwidth is shared between the two VCs and no speedup is
expected from two communications concurrently operating in two VCs that share
the same HCA.

The section 3.3.1 has previously established that one vrail per compute node
gives the lowest memory consumption. However, it has also been demonstrated that
this design may adversely affect the performance. Because a single vrail allocated
per HCA appears to have a balanced trade-off between performance and memory
consumption, the following thesis focuses on the design depicted in figure 3.8(b).
Our motivations for such a configuration are threefold. First, the contribution in-
creases the network bandwidth of MPI communications since all HCAs available in
the compute nodes are used. Second, the runtime can improve locality in NUMA ar-
chitectures since the data from a vrail are accessed locally. Finally, the contribution
significantly reduces the number of endpoints (so the memory consumption) since
one unique vrail is allocated per NUMA node where the majority of MPI runtimes
open as many endpoints as MPI tasks. In the next section, we detail two routing
strategies used for selecting which vrail is the most appropriate to use for an MPI
message being sent.

3.3.2.2 Sender-Driven and Receiver-Driven Routing Strategies

A routing strategy defines how a vrail is elected to transmit a message to a remote
compute node. Two different routing strategies are possible for a vrail selection:
on the one hand, the sender-driven routing policy is based on the location of the
sender (figure 3.9(a)) and on the other hand, the receiver-driven policy focuses on
the location of the receiver (figure 3.9(b)).

The sender-driven routing policy depicted in figure 3.9(a) is the easiest technique
to implement. Whenever the MPI task 1 sends a message, the vrail from the closest
NUMA node is chosen to transmit the message. At the receiver side, the MPI task 6
polls all the available vrails as it can potentially receive a message from any CQ from
any vrail . The main advantage of a sender-driven routing policy is the opportunity
to optimize the access to the same vrail when several threads attempt to send a
message. Indeed, as the vrail is local to the NUMA node, posting a message to

54 Chapter 3. Memory-Scalable MPI Runtime

(a) Sender-Driven Routing Policy

(b) Receiver-Driven Routing Policy

Figure 3.9 – Comparison of two routing policies for selecting a vrail : the sender-
driven (a) and the receiver-driven (b). On both figures, the MPI task 1 sends a
message to the MPI task 6.

a NUMA-aware vrail should provide better results than accessing a vrail from a
remote NUMA node. While waiting for a message, the receiver task has however to
poll all the vrails in order to guarantee the proper progression of all outstanding MPI
messages. On large NUMA nodes with a large number of cores, this technique will
definitely not scale since the time required to progress messages linearly increases
with the number of vrails. In addition, message progression requires repetitive
accesses to CQs and their corresponding locks. It would consequently generate a
large traffic in the NUMA interconnect.

The receiver-driven routing policy is much more complicated to implement than
the one previously described. For each message being sent, the sender task deter-
mines where the remote task is executing and consequently selects the proper vrail
that delivers the message to the NUMA node where the distant task is running in.
As an illustration of this strategy, MPI task 1 in figure 3.9(b) chooses to communi-
cate through HCA1 because task 6 is running in NUMA node 1. Contrary to the
sender-driven policy, the sender may potentially access a remote vrail located in a
different NUMA node. At the receiver side, MPI task 6 is however guaranteed to
receive all its messages through the local vrail connected to HCA1. Thus, an MPI
task only requires to poll the closest vrail for progressing messages and there is no
memory access to a remote vrail (i.e., to a remote NUMA node) while polling.

Since the sender-driven policy has been previously discarded because non-
scalable, we only consider the receiver-driven routing policy. In the next section, we
discuss the design of a rendezvous protocol with a receiver-driven routing policy
when using multiple vrails.

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 55

3.3.2.3 rendezvous Protocol with the Receiver-Driven Routing Policy

Unlike the eager protocol, rendezvous protocols involve control messages to syn-
chronize the two MPI peers. In a multi-vrails context, efforts must focus on ensuring
that control messages and RDMA operations are delivered using the proper vrails.
Indeed, if a message is sent through a wrong vrail , the remote task would never be
notified that a network message is pending in this vrail .

Let us now consider the configuration depicted in figure 3.11(a) and which re-
groups two compute nodes. Each compute node is composed of two NUMA nodes
attached with two HCAs and connected as follows: NUMA 0 and NUMA 1 are
respectively connected to HCA0 and HCA1. For routing MPI message across the
different vrails, we assume the receive-driven policy where the receiver always pools
the vrail local to the NUMA node it belongs to. According to this routing policy,
NUMA 0 only polls the vrail connected to HCA0 and does not access the vrail
bound to HCA1.

(a) rendezvous vrail selection (b) rendezvous message flow-
graph

Figure 3.11 – rendezvous message transmission from a task running in node
0/NUMA 0 to a task running in node 1/NUMA 1 with a receive-driven routing
policy. The selection of the vrail is determined according to the type of the message
to transfer and the location of the destination task (receiver-driven routing policy).

In order to highlight what are the challenges when developing a rendezvous
protocol in a multi-vrail context, we examine the following statement: the MPI task
running in NUMA node 0 attempts to send a message to a task located in the NUMA
node 1 using the 5-step rendezvous protocol described in figure 3.11(b). In such
a configuration, the REQ and the ACK control messages are respectively delivered
using 1○ HCA1 and 2○ HCA0. In 3○, the RDMA write operation is initiated by
HCA0 while one would expect HCA1 to be used. In fact, when a memory operation
is completed, an acknowledgment referred to as step 4○ is automatically returned
by the remote HCA to the HCA which has initiated the RDMA operation (see
section 2.2.1.2). Moreover, the Infiniband specifications do not allow this acknowl-

56 Chapter 3. Memory-Scalable MPI Runtime

edgment to be returned to another HCA (e.g., HCA1 posts the RDMA operation
and the acknowledgment is received via HCA0).

The Infiniband standard specifications defines a convenient capability where the
HCA may automatically generate an immediate value to notify the remote HCA
that an RDMA operation has completed. In a receive-driven configuration, this
mechanism cannot however be used to notify the receiver that a rendezvousmessage
is done. Indeed, in our example, the immediate value would be returned to the
wrong CQ (so to the wrong vrail) and the receiver would never be notified that
the rendezvous message is completed. Instead, we disabled the immediate value
and in 5○, the sender manually sends the done message to the proper vrail . As
a consequence, each MPI task only requires to pool the vrail associated with its
NUMA node for being notified of a completed message and thus, regardless of the
protocol used (eager, buffered or rendezvous).

3.3.2.4 Implementation and Locality Concerns

As presented in section 1.3.6, locality while accessing data is primordial for achieving
performance and it is the runtime’s responsibility to ensure that the data related to
a vrail (buffers, network structures) are allocated in the right NUMA node during
initialization.

We developed our modular multi-threaded communication layer inside MPC
because, as presented in section 1.2.3.4, it is a thread-based MPI runtime that effi-
ciently implements a high-speed inter-process communication layer over Infiniband.
During the initialization of MPC, one thread is responsible for allocating each vrail
one by one. As it is, the issue is that every vrail is allocated in the same NUMA
node because of the first-touch policy. To address this locality issue and before
initializing a vrail , the runtime determines according to the configuration provided
by the user in which NUMA node the vrail shall be initialized. The initialization
thread is then bound to a CPU belonging to the target NUMA node using the hwloc
library [Bro+10b]. Finally, the network structures are then initialized. In this way,
the runtime ensures that all data related to a vrail are allocated in the right NUMA
node.

3.3.3 Multi-Threaded Network Buffers Management

Network buffers are the smallest entities used for communicating data between a pair
of MPI tasks. They are involved in every communication protocol, from the eager
to the rendezvous protocols, including pipelines. Since they are frequently accessed
by the runtime, it is easy to understand why it is important to optimize their usage
for achieving efficient communications. In the following section, we describe the
techniques that have been designed to optimize the utilization of network buffers in
NUMA architectures. For ease of reading, this section denotes as ibuf a network
buffer over Infiniband.

Send and receive network buffers (ibufs) are usually designed as a centralized
FIFO list where push and pop manipulations are protected using locks. A centralized
design does however not take into account the non-uniform memory accesses of
NUMA architectures.

As a first optimization to provide an efficient ibuf management on these ar-
chitectures, we designed one list of send ibufs per NUMA node. First and most
importantly, this approach aims at reducing the contention on the list because (a)

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 57

it is replicated in all NUMA nodes and (2) the lock protecting the list during ma-
nipulations is only accessed by local threads. As a result of the second point, the
lock latency is reduced since the NUMA interconnect (e.g., QPI or BCS) is not
involved. Second, prior to message sending, the eager protocol requires to copy the
user buffer to the ibuf. This operation is faster if the memory pages belonging to
the ibuf are allocated in the same NUMA node than the one where the MPI task
is running in.

The second optimization focuses on ibufs dedicated to message reception. Con-
trary to send ibufs, we designed the poll of receive ibufs as a single global list
shared across the compute node. Indeed, a unique SRQ is allocated per vrail and
using only one thread is sufficient for posting ibufs to the SRQ. Moreover, the run-
time determines with hwloc which NUMA node is the closest to the HCA to open
and subsequently allocates receive ibufs in this NUMA node. Once the number of
remaining ibufs posted to the SRQ is running low, a task is in charge of re-filling
the SRQ with ibufs from the list. This verification is actually carried out when
a receive ibuf is released to the global list. To prevent a heavy contention on the
global list, MPI tasks do not directly release their free receive ibufs to the global
list. Instead, the receive ibufs to free are cached into a queue local to the NUMA
node where the task is scheduled. At this point, it is important to point out that
cached receive ibufs cannot receive network messages. When the queue reaches the
maximum number of receive buffers accepted in cache, the cache is merged with the
global receive buffer queue and these buffers can then be posted to the SRQ.

Lastly, it should be noted that one pool of send ibufs is allocated per NUMA
node and per vrail . Furthermore with the aim of saving memory, send and receive
pools are initially created with a minimum of entries and they dynamically enlarge
during the execution.

3.3.3.1 NUMA-Aware ibufs Micro Evaluation

To handily demonstrate the performance of the NUMA-aware ibufs introduced in
section 3.3.3, figure 3.12 presents some results extracted from the IMB Exchange
benchmark on 2 compute nodes of the Thin Cluster3. In this benchmark, each
task t sends and receives data to/from both left (t− 1) and right (t+ 1) neighbors
and the time reported per iteration includes the four messages. Additionally, an
MPI task and its two neighbors are running in two different compute nodes and
the benchmark exclusively communicates using Infiniband (IMB argument -map).
The version of MPC without buffer locality is compared to the the version of MPC
that implements the previously described NUMA optimizations for managing ibufs
(denoted as "Opt. ibufs " in the figure). The figure reports the average latency
of 1-iteration and the MPC runtime was modified to report the time spent inside
locks protecting push and pop operations on ibuf lists as well as the time in locked
regions (e.g., it includes the time spent while posting receive buffers to the SRQ).

The figure shows that NUMA-aware ibufs decrease the latency from 82 µs to
64 µs for eagermessages up to 1 KB. Compared to the regular ibuf implementation,
this performance increase with NUMA-aware ibufs is due to the large amount
of time saved in locks protecting ibuf lists. Indeed, the time spent in locks and
regions falls from 32 µs to 5 µs while the same work is performed inside locked
regions between both versions. From 1 KB, we observe a reduction of the contention

3The Thin Cluster is detailed in section 2.3.1

58 Chapter 3. Memory-Scalable MPI Runtime

101 102 103 104
0

50

100

150

200

Message size in Bytes

1-
it
er
at
io
n
la
te
n
cy

in
µ
s

(l
ow

er
is

b
et
te
r)

ibufs / Latency

ibufs / Locks+Region

Opt. ibufs / Latency

Opt. ibufs / Locks+Region

Figure 3.12 – IMB Exchange benchmark on 2 nodes, 16 MPI tasks per node with
the eager protocol. The tasks communicate exclusively using the network (IMB
argument -map 16x2). The latency is relative to 1 iteration.

on locks and both ibuf implementations perform the same way. As a conclusion
to these results, a locality-aware management of network buffers is primordial for
achieving performance for messages up to 1 KB, even with architectures exhibiting
a few NUMA nodes (2 in this case).

3.3.4 Evaluation of the Design

In the following section, we evaluate the performance and the impact on the mem-
ory consumption of our multi-vrail design described in section 4.4.2. First, we
examine how much the BCS impacts the performance of network communications.
Second, we present the relevance of our contribution on a micro-benchmark involv-
ing AllToAll communications and extracted from the Intel MPI Benchmarks suite.
Finally, we perform scalability experiments on Athena, a real-world scientific appli-
cation [Sto+08].

3.3.4.1 Bull Coherence Switch and Network Communications

As a first evaluation, we propose to analyze the impact of the BCS on network com-
munications. Figure 3.13 presents the results from an IMB Ping-Pong benchmark
on 2 nodes from the Large Cluster according to the location of the HCA being used.
Local HCA version indicates that the MPI tasks communicate using the closest HCA
whereas Infiniband transfers of the Distant HCA configurations traverse the BCS.
Figure 3.13(a) reports the bandwidth achieved for messages up to 4 MB and fig-
ure 3.13(b) focuses on latency of messages shorter than 256 bytes. According to the
results, it is clear that the BCS significantly degrades network performance. Indeed,
due to the NUIOA effects introduced in section 3.3.2.1, the maximum bandwidth
is divided by 1.6 and the BCS adds 3 µs to communication latencies when using
the Distant HCA compared to the Local HCA. These measures show that locality is
primordial for achieving performance on such a system.

As a second experiment, we evaluate the impact on communications of several
threads accessing the BCS while a network transfer is concurrently operating in this
bus. To do so, we developed a micro-benchmark that is schematically represented
in figure 3.14. The IMB Ping-Pong test is executed on 2 nodes, 1 MPI task per

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 59

100 101 102 103 104 105 106 107
0

500

1,000

1,500

2,000

2,500

Message size in Bytes

B
a
n
d
w
id
th

in
M
B
/
s

(h
ig
h
er

is
b
et
te
r)

Local HCA
Distant HCA

(a) Bandwidth

0 50 100 150 200 250
0

2

4

6

8

10

12

Message size in Bytes

L
a
te
n
cy

in
µ
s

(l
ow

er
is

b
et
te
r)

Local HCA
Distant HCA

(b) Latency

Figure 3.13 – IMB Ping-Pong benchmark on 2 nodes from the Large Cluster ,
1 MPI task per node according to the HCA used (local or distant). In figure (a), the
bandwidth is represented for messages up to 4 MB whereas the latency for messages
shorter than 256 bytes is represented in figure (b).

node and the runtime is configured to use a distant HCA. While the Ping-Pong
benchmark is executing, additional threads are created and each of them performs
large memory copies (128 MB) across level-1 NUMA nodes. As a consequence, these
threads generate memory traffic in the BCS. Figure 3.14 illustrates the design of the
experiment with 4 threads: 4 memory copies are operated from the NUMA nodes
4 to 0, 5 to 1, 6 to 2 and 7 to 3, respectively by threads in the NUMA nodes 0, 1,
2 and 3. Moreover and concurrently to these copies, a thread in the NUMA node 4
is performing a communication with HCA0.

Figure 3.14 – Schematic representation of the benchmark that evaluates the impact
of BCS on network communications

The results presented in figure 3.15 are decomposed into (a) bandwidth for mes-
sages up to 4 MB and (b) latencies for messages shorter than 256 bytes. Each curve
defines a different number of memory copies that are performed in parallel. From
0 to 4 simultaneous memory copies, the network bandwidth falls from 1,564 MB to
690 MB. Furthermore, a slight overhead of 0.7 µs is noticeable for messages up to
256 bytes. To determine if the BCS is the unique component responsible for the
performance degradation, we reproduced the same experiment but using the closest
HCA so that Infiniband transfers are not traversing the BCS. In such a configura-
tion, no overhead on network communication was observed. This experiment shows
that it is primordial to limit the access to remote NUMA nodes to preserve the BCS
bandwidth.

60 Chapter 3. Memory-Scalable MPI Runtime

100 101 102 103 104 105 106 107
0

200

400

600

800

1,000

1,200

1,400

1,600

Message size in Bytes

B
a
n
d
w
id
th

in
M
B
/
s

(h
ig
h
er

is
b
et
te
r)

0 memcpy
1 memcpy
2 memcpy
3 memcpy
4 memcpy

(a) Bandwidth

0 100 200
0

2

4

6

8

10

12

Message size in Bytes
L
a
te
n
cy

in
µ
s

(l
ow

er
is

b
et
te
r)

0 memcpy
4 memcpy

(b) Latency

Figure 3.15 – IMB Ping-Pong benchmark on 2 nodes from the Large Cluster ,
1 MPI task per node. A varying number of threads perform memory copies that
are concurrently operating to network transfers. In figure (a), the bandwidth is
represented for messages up to 4 MB whereas the latency for messages smaller than
256 bytes is represented in figure (b).

3.3.4.2 Multi-vrails Evaluation on Micro-Benchmark

To evaluate the performance as well as the impact on the memory consumption of
multiple vrail configurations, we choose the AllToAll micro-benchmark from the In-
tel MPI Benchmarks Suite. This test-case performs MPI_Alltoall communications
which require every task to communicate a unique set of data to the others, ex-
hibiting a fully-connected graph. Experiments are conducted on the Large Cluster
because it provides a large number of cores and compute nodes are equipped with
4 Infiniband HCAs. We set up three different vrail configurations as presented in
figure 3.17 and described as follows. The first configuration in figure 3.17(a) allo-
cates one unique vrail shared between 128 cores forming the compute node. In this
case, the runtime uses one HCA in four available and the total network bandwidth
is low. In the second configuration in figure 3.17(b), one vrail is created per level-2
NUMA node for a total of 4 vrails per compute node. In the last configuration in
figure 3.17(c), one vrail is created per level-1 NUMA node for a total of 16 vrails
per compute node.

As a first group of experiments, we set the configurations depicted in fig-
ures 3.17(b) and 3.17(c) to use the 4 available HCAs. Then, a second group of
experiments examines how multiple vrails can improve the performance when only
one HCA is used in the node.

Multiple HCAs evaluation
Figure 3.18(a) compares the execution times obtained on MPC with 1 vrail per

compute node, 1 vrail per level-2 NUMA node (4 vrails) and 1 vrail per level-1
NUMA node (16 vrails) to Intel MPI in DAPL mode using Reliable Connection
and Adaptive MPI (AMPI is a thread-based implementation of MPI on top of the

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 61

(a) 1 vrail per compute node

(b) 4 vrails per compute node

(c) 16 vrails per compute node

Figure 3.17 – Three possible configurations for the multi-threaded communication
layer on 128-core nodes. One vrail is allocated and 1 HCA is used in figure (a). For
polling and posting messages, every NUMA node accesses the same vrail , resulting
in a large traffic on the BCS. In figure (b), one vrail is allocated per level-2 NUMA
node and in figure (c), one vrail is allocated per level-1 NUMA node. For figures (b)
and (c), the closest HCA is opened and no access through the BCS is required to
poll the vrails

Charm++ runtime system [KK93]). Moreover, the evaluation was conducted on
the IMB AllToAll micro-benchmark and for 1 MB messages. All the results are
relative to MPC with 1 vrail . Bullx MPI does not appear in the figure because, in
this case, the benchmark deadlocks with messages larger than 256 bytes with multi-
node configurations. Furthermore, MVAPICH2 is not represented in these results
as it fails to initialize on the machine. Concerning Adaptive MPI, the runtime
was compiled with SMP and IBVERBS supports and the communication thread
was disabled through the +CmiNoProcForComThread argument because we faced
performance issues as long as it was activated.

From 256 to 512 cores, the speedup of multi-vrail configurations compared to
1 vrail significantly increases. This can be explained by the fact that they are
three times more inter-node messages from 256 to 512 tasks, resulting in a heavy
contention on the unique vrail . On 512 cores, MPC with 16 vrails exhibits a speedup
of 3.5 compared to the version with 1 vrail . Additionally, MPC with 16 vrails gets
a slight performance gain over the 4-vrail configuration. We believe this gain is due
to the vrail structures that are accessed locally by MPI tasks running in the same
level-1 NUMA node. Indeed, an in-depth study has demonstrated that the mean
access time to CQs is dramatically reduced in a 16 vrail configuration compared to
the versions with 1 or 4 vrail (s).

Compared to other MPI runtimes, the multi-vrail versions of MPC show perfor-
mance improvement between 2x and 3.5x. The poor performance of Adaptive MPI
can be explained by two factors. First, Adaptive MPI achieves low performance on

62 Chapter 3. Memory-Scalable MPI Runtime

256 512
0

0.5

1

1.5

2

2.5

3

3.5

Number of cores

S
p
ee
d
u
p
re
la
ti
ve

to
M
P
C

1
v
ra
il

(h
ig
h
er

is
b
et
te
r)

MPC 1 vrail (1 HCA)
MPC 4 vrails (4 HCAs)
MPC 16 vrails (4 HCAs)
Intel MPI (DAPL/RC, 1 HCA)
Adaptive MPI (1 HCA)

(a) Execution time – Various runtimes

256 512
0

1

2

3

4

5

6

7

Number of cores
S
p
ee
d
u
p
re
la
ti
ve

to
O
F
A

(4
H
C
A
s)

(h
ig
h
er

is
b
et
te
r)

OFA4 (4 HCAs)
OFA1 (1 HCA)
DAPL/UD (1 HCA)
DAPL/RC (1 HCA)

(b) Execution time – Intel MPI

256 512
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of cores

M
em

or
y
u
se
d
re
la
ti
ve

to
M
P
C

1
v
ra
il

(l
ow

er
is
b
et
te
r)

MPC 1 vrail (1 HCA)
MPC 4 vrails (4 HCAs)
MPC 16 vrails (4 HCAs)
Intel MPI (DAPL/RC, 1 HCA)
Adaptive MPI (1 HCA)

(c) Physical memory footprint per core
– Various runtimes

256 512
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of cores

M
em

or
y
u
se
d
re
la
ti
ve

to
O
F
A

(4
H
C
A
s)

(l
ow

er
is
b
et
te
r)

OFA4 (4 HCAs)
OFA1 (1 HCA)
DAPL/UD (1 HCA)
DAPL/RC (1 HCA)

(d) Physical memory footprint per core
– Intel MPI

Figure 3.18 – IMB AllToAll micro-benchmark evaluation up to 512 cores (4 nodes)
with 4 HCAs and 1 MB messages. Comparison of execution time and memory used
between MPC with a various number of vrails, Intel MPI using different config-
urations and Adaptive MPI (AMPI). MPC with 1 vrail per compute node uses
1 HCA whereas MPC with 4 vrails (1 vrail per level-2 NUMA node) and MPC
with 16 vrails (1 vrail per level-1 NUMA node) opens 4 HCAs. Intel MPI OFA4
and OFA1 respectively refers to as Intel MPI using the OpenFrabrics fabric with
4 HCAs and 1 HCA (I_MPI_FABRICS=shm:ofa and I_MPI_OFA_NUM_ADAPTERS=4
and 1). DAPL/UD and DAPL/RC open 1 HCA and respectively refers to as
Intel MPI using the DAPL fabrics with Unreliable Datagram (UD enabled with
I_MPI_DAPL_UD=enable) and with Reliable Connection (RC)

one compute node (128 cores) and runs two times slower than MPC. These results
are unexpected since it supports the same one-copy intra-node communication than
MPC and thus should perform similarly to MPC with 1 compute node. Second and

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 63

as far as we know, Adaptive MPI does not support multi-rail configurations and
each MPI task communicates through the same HCA. Concerning Intel MPI, the
DAPL fabric does not support multi-rail configurations. The only way to use several
HCAs with Intel MPI is to enable the OFA interface and to set the environment
variable I_MPI_OFA_NUM_ADAPTERS according to the number of HCAs in the node.
Figure 3.18(b) shows the execution times with various configurations of Intel MPI.
As we can see, the OFA interface using 4 HCAs surprisingly performs poorly com-
pared to the DAPL fabric. We suppose that the OFA fabric is not as much optimized
as the one based on DAPL and lacks in providing competitive results using multiple
HCAs. This assumption is confirmed since the OFA interface using 1 HCA performs
slower by a factor of 2 on 256 cores and 3 on 512 cores compared to the DAPL/RC
interface.

Figure 3.18(c) focuses on the physical memory allocated per core (i.e., per MPI
task) including the runtime and the application. When comparing the different
versions of MPC together, MPC with 1 vrail has the lower memory consumption.
For MPC with 4 and 16 vrails, the physical memory allocated slightly increases
compared to the 1-vrail version because both configurations respectively allocates 4
and 16 times more Infiniband endpoints. If we correlate results from figure 3.18(c)
with figure 3.18(a), we notice that MPC with 16 vrails is the best trade-off on this
machine because the number of vrail is multiplied by a factor of 4 and the speedup
achieved is nearly 3.5.

When comparing MPC with other MPI runtimes, we notice that MPC allocates
significantly less memory, especially when the number of cores grows. There are
two main factors that are responsible for this memory overhead. First, as discussed
in section 1.3.4, process-based MPI runtimes like Intel MPI usually allocate a large
shared-memory segment for intra-node MPI messages whereas thread-based MPI
runtimes like MPC or Adaptive MPI perform direct memory copy between end-user
buffers. Results obtained with one 128-core node confirm this assumption as, in
this configuration, the inter-node communication layer is not initialized and MPC
uses less memory. Second, the MPI_Alltoall communication pattern requires a
fully-connected graph to be established among MPI tasks and MPC allocates less
network endpoints than the other runtimes.

To understand why MPC allocates less network endpoints, table 3.4 reports
the number of QPs required by several transport protocols including our design
referred to as RC-vrails. In RC mode, the AllToAll benchmark running on 512 cores
requires the creation of 196,608 QPs per compute node to fully support multirail
configurations (i.e., every MPI tasks can communicate using the 4 HCAs). As
regards the DAPL fabric, it does however not support multirail configurations and
only one HCA is used for a total of 49,152 QPs per compute node.

With 512 tasks, figure 3.18(d) shows that the UD mode from Intel (DAPL/UD)
is able to reduce by 23% the physical memory used per core compared to RC
(DAPL/RC). As presented in table 3.4, UD only requires a single endpoint to con-
nect all compute nodes and it consequently decreases down to 128 the total number
of QPs per compute node and per HCA. As shown in figure 3.18(a), UD however
affects the performance and communications are slower by a factor of 2. First and as
presented in section 3.1.1, UD natively performs sub-optimally because some capa-
bilities normally handled by the HCA are handled by the CPU in this mode. Second
and as RC, the DAPL fabric using UD does not support multirail configurations and
one single HCA is used.

64 Chapter 3. Memory-Scalable MPI Runtime

The OFA fabric of Intel MPI supports the XRC capability previously presented
in 2.2.5. We reproduced the same experiments with this mode but surprisingly,
no memory gain nor performance degradation was observed compared to the OFA
interface with 1 HCA.

Finally, MPC with 4 vrails and 4 HCAs only allocates 12 Infiniband QPs per
compute node. Furthermore, these 12 QPs are reliably connected using RC and do
not express the regular overhead of UD.

Transport Protocols # of QPs
RC (N − 1)× C2 ×H
XRC (N − 1)× C ×H
RC 4 vrails (N − 1)×H
RC 16 vrails (N − 1)× 4×H
UD C ×H

Table 3.4 – Comparison in the number of network endpoints per compute nodes
for several transport protocols with multirail support. Fully-connected cluster with
N nodes, C cores per node and H Infiniband HCAs per node. H = 1 if no multirail
support.

Single HCAs evaluation
We now evaluate the benefits of using multiple vrails while only one HCA is

opened in the compute node. Figure 3.19 reports the results of the IMB AllToAll
micro-benchmark up to 512 cores but, in contrast to the figure 3.18, the same
HCA is opened for all vrails. We split the results in two figures: in figure 3.19(a),
short 1-byte MPI messages are exchanged while large 1-Mbyte messages are used in
figure 3.19(b). As we can see in the figure dedicated to short messages, multi-vrail
configurations exhibit a speedup of 3.5 on 256 cores compared to the mono-vrail
configuration. With 512 cores, the benefits of multi-vrail configurations are even
more significant with speedups of 7 and 20 respectively with 4 and 16 vrails. This
performance gain is actually due to a lower contention on network endpoints. Indeed,
4 vrails and 16 vrails improve the time spent while posting Send Requests to the
Send Queues respectively by a speedup of 5 and 36 compared to 1 vrail .

In figure 3.19(b), both versions of MPC with 4 and 16 vrails perform similarly.
These results are expected because large messages are involved and saturate the
network bandwidth. Furthermore, the multi-vrail configuration outperforms the
regular mono-vrail version with a speedup of nearly 2. With 1 vrail , tasks waiting
for MPI messages aggressively poll the unique vrail and potentially access the BCS
to read data that reside in a distant NUMA node. As investigated in section 3.3.4.1,
repeated accesses to the BCS can lead to the degradation of network communica-
tions that also traverse the same bus. As a result, we suspect the MPI tasks to
generate a large traffic on the BCS while polling, leading to a penalty of network
communications. However, since we do not have sufficient permissions on the ma-
chine, we cannot confirm this assumption with an access to hardware counters to
measure NUMA traffic.

3.3.4.3 Weak-scaling Evaluation on Athena

Athena is a grid-based code for astrophysical magnetohydrodynamics
(MHD) [Sto+08] written in C and parallelized using the MPI interface. We

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 65

256 512
0

10

20

30

Number of cores

S
p
ee
d
u
p
re
la
ti
v
e
to

M
P
C

1
v
ra
il

(h
ig
h
er

is
b
et
te
r)

MPC 1 vrail (1 HCA)

MPC 4 vrails (1 HCA)

MPC 16 vrails (1 HCA)

(a) Short MPI messages (1 byte)

256 512
0

1

2

3

Number of cores

S
p
ee
d
u
p
re
la
ti
v
e
to

M
P
C

1
v
ra
il

(h
ig
h
er

is
b
et
te
r)

MPC 1 vrail (1 HCA)

MPC 4 vrails (1 HCA)

MPC 16 vrails (1 HCA)

(b) Large MPI messages (1 MB)

Figure 3.19 – IMB AllToAll micro-benchmark evaluation up to 512 cores (8 nodes)
with 1 HCA. Comparison of execution times on MPC with 1 vrail per compute
node, 1 vrail per level-2 NUMA node (4 vrails) and 1 vrail per level-1 NUMA node
(16 vrails). Benchmark conducted on the AllToAll micro-benchmark for short MPI
messages (a) and large MPI messages (b)

decided to use this application to evaluate the performance and the memory
consumption of our multi-threaded communication layer for several reasons.
First, Athena fits the requirement of the majority of MPI runtimes as it only
requires MPI 1.3. Second, the scalability of the application has been proven up to
25,000 cores4.

We now evaluate the scalability of MPI runtimes in terms of execution time
and memory consumption on Athena running the 3D Rayleigh-Taylor instability
problem on the Large Cluster , from 256 to 6,144 cores. In order to fit the conditions
of a real run, we saturate the compute nodes with the maximum amount of physical
memory. To do so, we determined on 2 compute nodes the maximum grid resolution
for which all the MPI runtimes successfully run. In these conditions, Adaptive MPI
is our reference point for this weak-scaling experiment as it consumes the largest
amount of memory. Moreover, we fix to 1543 the grid resolution per core because it
is the highest resolution achievable with Adaptive MPI on 2 compute nodes.

For this case study, we use the –mem-per-core option from the SLURM job
manager , which bounds the maximum amount of physical memory a task is allowed
to use. We set this option to 3 GB, which is the maximal value. One would notice
that the maximum amount of per-core memory in this machine is actually 4 GB. In
fact, only 3/4 of memory is usable in this cluster because compute nodes should be
able to react to the job manager without swapping in case of memory shortage (no
swap is actually configured on the system). If a job allocates too much memory, all
running MPI tasks are killed and the job manager automatically aborts the job and
releases all allocated nodes.

Figure 3.20(a) compares the amount of free memory per core on MPC with
1 vrail per compute node, 1 vrail per level-2 NUMA node (4 vrails/4 HCAs) In-
tel MPI 4.1.0.024 in DAPL mode (1 HCA), Bullx MPI 1.1.16.5 (4 HCAs) and
Adaptive MPI from the Charm++ 6.5.0 package up to 6,144 cores. We slightly
modified Adaptive MPI to support the MPI_STATUS_IGNORE status flag and manu-
ally privatized Athena’s global variables to TLS variables using the __thread key-

4From Athena’s website: https://trac.princeton.edu/Athena/

https://trac.princeton.edu/Athena/

66 Chapter 3. Memory-Scalable MPI Runtime

word. This manual privatization allows us to compile all MPI runtimes (especially
thread-based runtimes) using the same Intel Compiler 13.0.0 with the same compi-
lation flags. Furthermore, we disabled any output file that Athena could generate.
Because Bullx MPI is derived from Open MPI, it inherits the multirail support
from Open MPI where all available network links are used to transfer long mes-
sages [Woo+06]. Moreover, we set to 4 the maximum number of HCAs to use with
the btl_openib_max_btls argument. As regards MPC, we only provide the 4-vrail
version (1 vrail per level-2 NUMA node) because we observed minor improvements
using 16 vrails (1 vrail per level-1 NUMA node) with Athena.

On 1,024 cores, Adaptive MPI is the first runtime to be killed by SLURM due
to memory shortage. From 256 to 4,096 cores, the free physical memory per core
quickly decreases for Bullx MPI and the job is finally killed at 6,144 cores. Intel MPI
perfectly passes the test and the runtime exhibits a good scalability up to 6,144 cores
and the memory used per core slowly decreases. Concerning MPC with 1 and
4 vrails, both versions perfectly scale and the free memory per core is nearly constant
whatever the number of cores allocated for the job.

256 1024 4096 6144
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

Number of cores

P
h
y
si
ca
l
m
em

or
y
fr
ee

p
er

co
re

in
M
B

(h
ig
h
er

is
b
et
te
r)

MPC 1 vrail (1 HCA)
MPC 4 vrail (4 HCAs)
Intel MPI (1 HCA)
Bull MPI (4 HCAs)
Adaptive MPI (1 HCAs)

(a) Amount of physical free memory per core

256 1024 4096 6144
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of cores

S
p
ee
d
u
p
re
la
ti
ve

to
M
P
C

1
v
ra
il

(h
ig
h
er

is
b
et
te
r)

MPC 1 vrail (1 HCA)
MPC 4 vrails (4 HCAs)
Intel MPI (1 HCA)
Bull MPI (4 HCAs)
Adaptive MPI (1 HCA)

(b) Execution time

Figure 3.20 – MPC, MVAPICH2, Intel MPI and Open MPI weak-scalability eval-
uation on Athena using the Rayleigh-Taylor instability problem with a constant
resolution of 1543 per core. Experiences conducted on Large Cluster from 32 to
6,144 cores.

Figure 3.20(b) reports the execution time of Athena. Adaptive MPI gets a large
overhead due to communications. We believe that Adaptive MPI relies on a unique
thread for communicating MPI messages. This model is however not appropriate
for large-scale NUMA nodes because one unique thread cannot saturate the net-
work bandwidth and does not leverage the multi-HCA configuration of the cluster.
From 256 to 6,144 cores, execution times obtained through the different runtimes,
not including Adaptive MPI, are really competitive. More precisely, Bullx MPI and
MPC with 16 vrails perform slightly better (speedup of 1.06 on 4,096 cores compared
to MPC with 1 vrail) since both runtimes support multi-rail and open one unique
HCA. However, although Bullx MPI efficiently leverages multi-rail configurations,
it fails to scale in terms of memory and crashed at 6,144 cores. On the other hand,

3.3. Optimizing Network Endpoint Usage for Multi-Threaded
Applications 67

MPC with 4 vrail provides both best performance and good scalability in memory,
even in multi-rail configurations. Finally, Intel MPI shows competitive results while
it only uses one HCA.

3.3.5 Future Work: Contention-Based Message Stripping Policy

Thread-based MPI runtimes allow a general overview of the status of all MPI tasks
and vrails (HCAs) running in the compute node. As an example, when an MPI
task sends a message, it can query the status of any vrails in the compute node and
determine if they are already accessed by another MPI task. If a vrail is busy, the
message could ideally be sent using another vrail .

As a future work, we plan to examine the integration of our contribution with a
idle-based (like the one developed for NewMadeleine [Aum+07]) or more generally
a contention-based routing policy where the HCA that has the lowest workload is
used for the communication. Indeed, thread-based MPI runtimes would provide
better performance of communications since the routing decision is evaluated at the
compute node level and not at the granularity of an MPI task. Additionally, we
intend to combine this contention-based routing policy with a stripping algorithm
in order to integrate the link contention as a parameter to determine the size of each
message fragment.

A message stripping policy with one vrail per NUMA node would however face
the same scalability issue than the one highlighted in section 3.3.2.2. Indeed, the
receiver task would have to poll all vrails in order to gather every segment of a
previously stripped message. Thus, we plan to design an approach similar to the
one implemented by MVAPICH2 and previously depicted in figure 3.8(a). Although
this design increases the number of vrails, implementing it inside a thread-based
MPI runtime would reduce the number of network endpoints by a factor equal to
the number of cores per NUMA node.

Finally, some network controllers support new hardware optimization like the
Single Root I/O Virtualization specification. Originally developed for hypervizor
virtualization like KVM [Kiv+07] or Xen [Bar+03], SR-IOV enables the creation
of virtual devices, all bound to the same physical devices. We plan to evaluate the
performance of SR-IOV in the context of vrails and investigate how it could reduce
the overhead due to the multi-threaded access to Infiniband endpoints.

3.3.6 Related Work

Previous research papers have demonstrated the benefits of aggregating multiple
network interfaces [LVP04; Col+03]. With Ethernet networks, Penoff et al. evalu-
ate the advantage of Concurrent Multipath Transfer (CMT) on MPI [Pen+10]. A
few network libraries such as Elan on QsNetII and MX on Myrinet are capable of
providing automatic stripping of RDMA messages and a few collective communi-
cations [QA08]. With Infiniband networks, Vishnu et al. focused on MPI-2 one
sided communication and achieved good performance with MPI_Put and MPI_Get
operations for large messages [Vis+06]. To optimize the message stripping pol-
icy, Moreaud et al. presented a new scheduling policy that strips MPI messages
according to the underlying NUMA effects [MGN10]. In addition, NewMadeleine
distributes messages over available network links according to the state (idle or
busy) of each NIC [Aum+07]. However as far as we know, no previous work allows
to share network endpoints among several MPI tasks.

68 Chapter 3. Memory-Scalable MPI Runtime

3.4 Automatic Readjustment of Network Buffers

A widespread MPI optimization for two-sided communications is to leverage RDMA
operations of the memory semantics for the eager protocol and the control mes-
sages of the rendezvous protocol [KSP09]. This optimization often referred to as
eager RDMA (or RDMA Fast-Path) was first implemented by the MVAPICH2’s
team [LWP04] and later integrated in other runtimes such as Open MPI.

As presented in section 2.2.1.1 the Send/Receive (SR) semantics requires to
negotiate the availability of a receive buffer. By opposition to the SR semantics,
the eager RDMA directly copies the message to the final address and consequently
provides better latency since it induces a lower overhead at the receiver side. In
addition, the memory semantics does not involve the Completion Queues described
in section 2.2.4 for detecting incoming messages. Indeed, the message detection for
the eager RDMA protocol is actually performed by polling a specific address in
memory.

Despite performance aspects of eager RDMA, the usage of this communication
protocol is often limited to a few connections. The root cause is a high memory
footprint for each connection established since the network buffers cannot be shared
between connections. In the following section, we expose a novel runtime technique
for dynamically adjusting the memory consumption of RDMA connections according
to the MPI application being executed. We prove the efficiency of this approach on a
real scientific application where it successfully reduces the communication latencies.
We finally explore different future directions to reduce the memory reserved for
RDMA connections or, as a last resort to selectively disconnect RDMA channels
when the compute node is running out of memory.

3.4.1 Eager Network Buffers over RDMA Protocol

Eager RDMA channels use two memory regions for communicating unidirectionally
with a remote process. It means that for communicating in both directions, the
protocol requires the allocation of four RDMA regions.

As depicted in figure 3.21, the eager RDMA channels are composed of a set of
fixed-size buffers at both sender and receiver sides. All buffers of the same channels
are grouped together using linked-lists and each buffer at the sender side has its
corresponding receive buffer at the receiver side. To manage the lists, a set of two
flags are involved: the Head flags corresponds to the next buffer that is free and the
Tail flag refers to as buffers that have not been yet acknowledged by the receiver.
Finally, buffers are consumed in a FIFO way from the Head until the Tail is reached,
meaning no more buffers are free.

To detect the arrival of network messages, the receiver polls a specific memory
address and no event is generated to the CQ. Because the sender does not know when
reusing buffers, the receiver acknowledges the sender for each completed message
using an RDMA write operation. For more details about the eager RDMA protocol,
the reader may refer to the corresponding paper [LWP04].

Unlike the SR semantics, the eager RDMA protocol uses persistent memory
regions. It means that a set of buffers is associated with a unique remote process
and cannot be shared with other processes. Because the memory allocated for
RDMA regions may be large, standard MPI runtimes often implement ondemand
eager RDMA connections. Initially, MPI tasks are connected using the SR protocol.

3.4. Automatic Readjustment of Network Buffers 69

Figure 3.21 – Schematic decomposition of the eager RDMA protocol

An eager RDMA connection is only established between MPI tasks communicating
a large amount of data. When the number of messages exchanged between two MPI
tasks excesses a threshold value fixed by the runtime, an eager RDMA connection
is requested to the remote task.

3.4.2 Contribution: Auto-Reshaping of Eager RDMA Buffers

In the following section, we motivate our contribution with an application extracted
from the NAS Parallel Benchmarks Suite [Bai+95]. Then, we introduce our contri-
bution that resizes (reshapes) RDMA buffers during the execution of an application.
This contribution is twofold. First it saves memory since network buffers are ideally
sized to fit the communication volume of each pair of MPI tasks. Second, if an
RDMA region has been under-evaluated during a previous allocation, the runtime
can enlarge this region (i.e., allocate more memory) to increase the performance.

3.4.2.1 Motivations

RDMA
Semantics Execution Time # Slots % Miss Memory (MB)
RDMA 36.11 1,024 0.00 1,009
RDMA 36.10 512 6.05 505
RDMA 36.61 256 17.97 252
RDMA 36.67 128 31.83 126
RDMA 36.96 64 45.90 63
RDMA 37.10 32 58.81 32
RDMA 37.27 16 71.30 16
RDMA 37.61 8 82.66 8
SR 37.63 0 100.00 0

Table 3.5 – NAS Fourier Transform (FT) Class D on 512 MPI tasks, 32 nodes
from the Thin Cluster . Size of SR and RDMA slots are set to 16 KB. Results are
reported per process.

Table 3.5 reports the NAS Fourier Transform application (FT) Class D on 32

70 Chapter 3. Memory-Scalable MPI Runtime

nodes for a total of 512 MPI tasks from the Thin Cluster5. For a number of RDMA
buffers varying from 0 (full SR without RDMA buffers) to 1,024, the table shows the
memory allocated per process as well as the percentage of RDMA misses over the
total number of messages exchanged (RDMA + SR). The table refers to RDMA miss
as a buffer which has been sent using the SR protocol while the RDMA connection
between the pair of tasks was being established. A high number of RDMA misses
denotes that the amount of memory allocated for RDMA communications is not
sufficient for the volume of data exchanged by the application.

At first glance, the table shows that the more RDMA buffers are allocated, the
better execution time is: from full SR buffers without RDMA buffers to 1,024 RDMA
buffers, the application gets a speedup of 1.04. Furthermore, the best configuration
that allocates 1,024 eager RDMA buffers exhibits a large memory consumption up
to 1 GB per process. Indeed, since FT performs plenty of MPI_Alltoall operations,
it requires a fully-connected graph where 253,952 ((512− 16)× (512)) network mes-
sages are transmitted during each iteration. As a conclusion to this experiment, it is
important to fit the requirements of the application in terms of buffers. Indeed, un-
dersizing RDMA buffers may slow communications since the runtime continuously
fallbacks to SR buffers.

In fact, RDMA misses may originate from several levels. Mainstream MPI run-
times usually check the completion of outstanding messages using a polling-based
strategy. As a result, long periods of time without calling any MPI function may
prevent the polling function to check incoming messages, leading to a large num-
ber of buffers waiting for being completed in RDMA channels. Moreover, a high
number of unexpected MPI messages may quickly fill RDMA buffers. In such a
case, network buffers are received but cannot be released because no matching re-
ceive requests have yet been posted. Finally, the communication pattern as well as
the MPI neighborhood may change during execution. At some point, the volume
of RDMA buffers determined during a previous allocation may thereafter become
insufficient. On the contrary, oversizing RDMA buffers may waste useful memory
in the compute node. In the worst case, it could even require the node to swap or
the job to abort.

As far as we know, current mainstream MPI implementations lack to provide an
adaptive eager RDMA protocol that dynamically readjusts the amount of memory
to fit the application’s requirements. At best, the amount of memory allocated to
eager RDMA depends on the number of MPI tasks in the communication. It means
that the more MPI tasks are in the communication, the less memory allocated to
eager RDMA. As an example with MVAPICH2, from less than 8 compute nodes
to more than 128, the maximum amount of memory allocated for eager RDMA
buffers per connection is decreased from 384 KB (32 × 12 KB) to 8 KB (4 × 2 KB)
with Curie’s Infiniband HCAs.

In the next section, we describe the protocol used for reshaping RDMA buffers.

3.4.2.2 Auto-Reshaping Protocol

Dynamically reshaping eager RDMA buffers is a two-sided operation where the
sender and the receiver actively participate to the reshaping of RDMA buffers. To
synchronize the sender and the receiver, we designed a three-way handshake protocol

5The Thin Cluster is detailed in section 2.3.1

3.4. Automatic Readjustment of Network Buffers 71

close to the one used for on-demand MPI peers connection. The figure 3.22 highlights
the protocol used when the sender is the initiator of the reshaping request.

Figure 3.22 – RDMA buffer reshaping workflow. The sender initiates the request.

When a reshaping operation is initiated, a request that defines the configuration
of eager RDMA buffers to use for the next reshaping is transmitted to the receiver.
Once the request is delivered to the destination, the receiver may accept or decline
the new configuration. There are several reasons why a receiver may cancel a request:
the receiver may for example be out of memory and cannot allocate additional
buffers or a disconnection request may already be in progress. Moreover, before re-
initializing RDMA buffers, every buffer must be flushed at both send and receiver
sides to ensure that outstanding buffers have been properly sent and received.

Once an eager RDMA connection is established between two MPI tasks, the
previous SR connection remains active. During the reshaping of an eager RDMA
channel, communications cannot use the RDMA protocol on this channel and au-
tomatically fallback to the SR semantics. In other words, while the eager RDMA
reshaping protocol is progressing, message passing between involved MPI tasks is
never interrupted. At worst, communications are penalized with higher latencies
induced by the SR semantics. Additionally, no further Infiniband structures – apart
from communications buffers – are allocated to communicate using RDMA since SR
and RDMA protocols use the same QP, SRQ and CQ structures.

To motivate the need for auto-reshaping eager RDMA buffers, we present two
typical HPC use cases. First, reshaping eager RDMA channels allows to dynami-
cally increase the size of buffers and their number until it covers the requirements
of the MPI application. The runtime consequently limits the number of messages
sent using the SR semantics and maximizes the usage of RDMA buffers to acceler-
ate communications. Second, we propose to undersize RDMA memory regions for
preserving memory. In this context, we present a protocol to dynamically under-
size RDMA regions and, as a last resort, selectively release RDMA channels if the
compute node is running out of memory.

3.4.2.3 Resizing To Accelerate Communications

As discussed in section 3.4.2.1, eager RDMA is a fast communication protocol on
the condition that the runtime allocates enough communication buffers to cover the
requirement of the application.

72 Chapter 3. Memory-Scalable MPI Runtime

During execution, the MPI runtime should collect several informations to esti-
mate the configuration of the network buffers required by the application. The first
naïve implementation would be to profile the MPI application to get an estimation
of the average size and the number of MPI messages. This solution would however
not be efficient as it is too coarse-grain and does not take into account the varia-
tions in communication patterns (e.g., bursts of MPI messages during short periods
of time). To dynamically adapt RDMA buffers, we rather chose a sampling-based
approach where the runtime records the details of the last messages exchanged.

Let us consider sizebuffer and numberbuffer the size and the number of RDMA
buffers to allocate for a specific RDMA channel. For each neighbor process, a process
stores two different data: (1) messages_size cumulates the size of the last MPI
messages sent and (2) messages_number registers the number of theses messages.
Moreover, the runtime records the messages that are transmitted using the eager
and buffered protocols, including the control messages of the rendezvous protocol.
The requesting process calculates the value of sizebuffer as it:

sizebuffer =
messages_size

messages_number
(3.1)

To approximate the number of buffers numberbuffer, the runtime should de-
termine the maximum amount of data pending in the network since the ap-
plication startup. This value is private to each RDMA channel and it is re-
ferred to as max_pending_data in the current paragraph. In addition to the
max_pending_data variable, the current_pending_data variable indicates the
current amount of data pending in the network for a specific RDMA channel. Be-
fore sending a buffer, current_pending_data is incremented with the payload’s
size of the buffer that is being to be sent. Once the send buffer is free to be reused,
an entry that describes the message sent is generated to the corresponding Com-
pletion Queue. When this entry is polled, current_pending_data is decremented
with the value of the payload’s size of the buffer sent. At this precise moment, if
current_pending_data is larger than max_pending_data, the runtime updates
max_pending_data with the value of current_pending_data. The requesting
process then calculates the value of numberbuffer as it:

numberbuffer =
max_pending_data

sizebuffer
(3.2)

When an RDMA connection occurs, both sizebuffer and numberbuffer are cal-
culated by the sender and are finally transfered to the receiver through a request
for eager RDMA connection (see figure 3.22).

3.4.2.4 Resizing to Reduce Memory Consumption

As established before in section 3.4.2.1, the eager RDMA protocol may consume a
large amount of memory. The memory aspect however becomes critical as soon as
the amount of free memory becomes short.

Some applications may express variations in the memory consumption during
their execution. This is for example the case of the Adaptive Mesh Refinement
(AMR) applications where the grid evolves during the execution time. To illustrate
this point, figure 3.23 reports the evolution of the physical memory on two compute
nodes executing HERA, an AMR application from CEA [Jou05]. Two observations

3.4. Automatic Readjustment of Network Buffers 73

Figure 3.23 – HERA on 64 nodes, 1,024 MPI tasks running on top of MPC. Grid
of size 2563 on 300 timesteps. The figure reports the physical memory allocated on
compute nodes 13 and 21.

can be drawn from the figure. First, with the input dataset used for generating the
figure, the physical memory reported slightly increases over time. During the first
iterations, the runtime could establish RDMA connections because enough memory
is available on the node, but over the long term, these RDMA connections may
require the job to abort due to the shortage of memory. Second, several phases
in the communication can be observed, which correspond to load-balancing and
computation phases. During computation phases, it could for example be relevant
to disconnect some RDMA channels to limit the memory consumption that slightly
increases. At the opposite, the runtime could reconnect RDMA connections to
leverage the performance of RDMA eager buffers during load-balancing operations
that are communication-intensive and consume less memory.

To dynamically reduce the memory allocated for eager RDMA, we propose a
protocol which, at first, reduces the memory requirements of eager RDMA before
disconnecting RDMA channels as a last resort. To do so, we suggest three different
algorithms to select RDMA connections that shall be reshaped.

• Emergency: Disconnect the channels that consume the most memory. This
protocol is the most aggressive and should be used when the memory reaches
a critical threshold;

• Normalization: Select all RDMA regions that consume more than x bytes
and reduce their size to x (x can be tuned by the user);

• Least Recently Used (LRU): Disconnect channels according to an LRU
algorithm until enough memory has been released.

Finally, RDMA channels are one-sided, meaning that communications are unidi-
rectional inside a single RDMA region. In certain circumstances, it may happen that
the receiver is running out of memory while the sender is not. In such a case, the
receiver should be able to initiate the auto-reshaping protocol for reducing memory
dedicated to RDMA channels.

74 Chapter 3. Memory-Scalable MPI Runtime

3.4.3 Multi-Threaded Implementation

We decided to develop our auto-reshaping protocol inside the MPC runtime pre-
sented in section 1.2.3.4 and thus for several reasons. First, because it is a thread-
based MPI runtime, RDMA connections are at a compute node level and a unique
connection may address any task on the node. In addition, MPC supports the
Collaborative-Polling (technique later described in chapter 4) and allows a task to
poll a message for any other task on the node. This optimization has been extended
to RDMA channels.

We developed the eager RDMA protocol described in 3.4.1 with several modi-
fications. First, we implemented the eager RDMA protocol as a one-way protocol.
If two tasks require to communicate using eager RDMA, they need to establish two
connections, one per direction. Second, we protected structures using a fine-grain
locking strategy to enable several threads to access the same RDMA connection.

To communicate control messages for reshaping RDMA buffers, MPC utilizes the
signalization network previously described in section 3.2. When a reshaping-request
occurs, the runtime reads the /proc/ pseudo-filesystem for evaluating the physical
memory allocated by the process (one unique process is spawned per compute node).
To this value is added the memory required for the RDMA channel that is being to
be allocated and the result is then compared to a limit set by the user at runtime.
If the memory requested overflows the limit, the RDMA connection is rejected and
the sender is acknowledged. Furthermore, 10% more buffers are allocated for each
connection to limit the aggressiveness of the reshaping.

3.4.4 Experiments

To evaluate the impact of RDMA buffers reshaping on MPI communications, we
execute the HERA application on 32 compute nodes of the Thin Cluster for a
total of 512 tasks. Because HERA uses plenty of packed messages that prevent
the runtime to leverage zero-copy communications, we set to 256 KB the switching
point from eager to buffered protocols. Indeed, according to the section 3.1.2.3,
buffered protocol without cache reuse performs better than rendezvous under this
threshold. In addition, the last 2,000 messages are profiled to approximate the
communication requirements of the application.

Table 3.6 reports the execution times obtained for the full SR mode and three
several configurations for the RDMA mode. The RDMA "best config" is the best
configuration we have been able to achieve after manually setting up 128 RDMA
buffers and tuned their size to 32 KB. The RDMA mode with 1 reshaping initially
allocates RDMA buffers with 0 entries and limit to 1 the number of reshaping
that can occur during execution. The RDMA mode with an infinite number of
reshaping allows RDMA connections to be established while enabling an unlimited
number of reshaping. For each configuration, the execution time decomposes into
initialization and working times. Furthermore, we instrumented MPC to report the
average per process of the memory dedicated to RDMA connections, the number
of connections, the number of reshaping and the ratio of RDMA misses. RDMA
"best config" shows no RDMA miss because RDMA regions are large enough for
supporting the volume of messages that are transmitted. Finally, the miss ratio of
the version with an unlimited number of reshaping includes the RDMA misses that
are generated before a reshaping protocol is initiated.

Focusing on the initialization time, RDMA with the best configuration performs

3.5. Partial Conclusion 75

Times (s) RDMA (average per process)
Mode Init Work Mem. (MB) # conn. # reshaping miss ratio
SR 432.22 554.97 0 0 0 0
RDMA (best config) 420.39 541.63 130.38 32.19 0 0.00
RDMA (1 reshaping) 428.38 545.31 2.38 32.19 32.19 0.33
RDMA (∞ reshaping) 429.22 538.40 76.70 32.19 42.13 0.06

Table 3.6 – HERA on 32 nodes, 512 MPI tasks. Grid of size 2563 and 40 timesteps.
Comparison between the SR protocol, eager RDMA with the best configuration
manually achieved, eager RDMA limited to 1 reshaping and eager RDMA unlim-
ited in the number of reshaping

by far better than versions with one and an infinite number of reshaping. They are
different possible explanations. First, RDMA buffers with one reshaping are once
allocated at the beginning of the application and remains for the whole applica-
tion lifespan. As a consequence, the slot configuration does not fit the application
requirements. This assumption is confirmed by the high value of the miss ratio. Sec-
ond, RDMA with an infinite number of reshaping requires some time to converge to
a stable value. Indeed, 10 reshaping requests occur, leading to a slight increase in
initialization time.

Concerning the working time, the RDMA version with an infinite number of
reshaping outperforms other versions. Because the size of the buffers may exceed
32 KB, data are split in less segments and larger buffers are sent than the best RDMA
configuration. As a consequence, fewer accesses to network structures are required to
send and receive a single message and a 3-second gain can be observed. In addition,
because buffers are optimally dimensioned for fitting the size and the number of MPI
messages of each connection, physical memory allocated for eager RDMA channels
is decreased by a factor of 1.7 compared to the best RDMA configuration.

3.4.5 Discussion and Future Work

As an extension to this work, we propose to undersize and disconnect RDMA chan-
nels following the protocol described in section 3.4.2.4. However, disconnecting
RDMA channels may not be sufficient when facing memory starvation. Indeed,
since MPI communications fallback to SR, a heavy network traffic would require
SR buffers to be extended and thus, the memory to be increased. More broadly, we
plan to investigate disconnection and reshaping of SR buffers, QP disconnection and
automatically fallback to the signalization network or over a not-connected network
protocol (e.g., UD). A similar approach to QP disconnection has been investigated
by for PGAS languages [VKB11].

3.5 Partial Conclusion

In this chapter, we proposed three techniques to reduce the memory consumption
of MPI runtimes in order to achieve large-scale executions of parallel applications.
First, we have presented a scalable and fully-connected virtual topology for rout-
ing messages over connection-based high-speed networks. This contribution imple-
mented inside MPC allows fast MPI peers interconnection over Infiniband and carry
control messages during eager RDMA reshaping operations. Then we proposed a
technique for replicating network structures (or vrails) at the NUMA-node level

76 Chapter 3. Memory-Scalable MPI Runtime

for improving data locality while accessing network endpoints in a multi-threaded
context. We have evaluated two routing policies for selecting a vrail and we pro-
posed a protocol for sending rendezvous messages across the vrails available on
the node. The experiments have demonstrated the relevance of the contribution on
both, mono- and multi-rails architectures where our design allocates significantly
less Infiniband endpoints than the related work for similar performance. Finally, we
designed a protocol for dynamically reshaping eager RDMA regions. This protocol
was implemented for increasing the volume of RDMA buffers and we proposed an
extension to release buffer regions when the free memory becomes low.

Chapter 4

Improving MPI Communication
Overlap With

Collaborative Polling

"Our prime purpose in this life is to
help others. And if you can’t help
them, at least don’t hurt them"

Dalai Lama

As detailed in section 1.2.3, the regular two-sided communications of MPI require
a matching operation to resolve where the message will be copied to. However,
section 2.1.3 has previously shown that a wide variety of interconnects such as
Infiniband do not fully support the MPI standard in hardware. As a consequence,
the host CPU is required to ensure the asynchronous progression of MPI messages.
This observation notably poses a problem for the rendezvous protocols introduced
in section 3.1.2.2. Indeed, this protocol implies the transmission of several control
messages that cannot easily be offloaded to the network controller.

This chapter presents a message progression based on Collaborative-Polling,
which allows an efficient auto-adaptive overlapping of communication phases by
performing computing. This contribution is new as it increases the application over-
lap potential without introducing the overheads of a threaded message progression.
In addition, the proposition improves the independent progression of the control
messages involved in rendezvous protocols.

4.1 Introduction

The scalability of a parallel application is mainly driven by the amount of time in
the communication library. One solution to decrease the communication cost is to
hide communication latencies by performing computation during communications.
From the application developer’s point of view, parallel programming models offer
the ability to express this mechanism through non-blocking communication prim-
itives. The MPI standard defines non-blocking send and receive primitives (i.e.,
MPI_Isend and MPI_Irecv) that allow the application to overlap communication
with computation. As an example to illustrate those communication patterns, fig-
ure 4.1(a) exposes one MPI task performing a non-blocking communication without
overlapping capabilities. In such a situation, the message is actually received from
the network during the MPI_Wait call. As regards the figure 4.1(b), the same ex-
ample with overlapping shows a significant improvement reducing the overall time
consumed.

Achieving overlap usually requires a lot of code restructuring and transforma-
tions. Users are often disappointed after spending a lot of time to enforce over-

78
Chapter 4. Improving MPI Communication Overlap With

Collaborative Polling

(a) No Overlapping (b) Overlapping

Figure 4.1 – Influence of Communication/Computation Overlapping in MPI

lap because the runtime does not provide an efficient support for asynchronous
progress [IB99; BRU05]. Since MPI is a standard, it does not define how asyn-
chronous communications should be implemented inside the runtime. In fact, most
of the current MPI libraries do not support true asynchronous progression and per-
forms message progression within MPI calls (i.e., inside MPI_Wait or MPI_Test func-
tions). The main difficulty with these implementations occurs when an MPI task
performs a time consuming function with no call to MPI routines for progressing
messages (i.e., calls to BLAS kernels).

In this chapter, we propose a Collaborative-Polling approach for improving the
communication overlap without disturbing compute phases. This runtime opti-
mization has been implemented inside the MPC runtime previously presented in
section 1.2.3.4. Collaborative polling allows message progression when a task is
blocked waiting for a message, enabling overlapping with any other task within
the same compute node. This method expresses a significant message-waiting re-
duction on scientific codes. For this contribution, we focus on the MPI standard
and Infiniband networks but the Collaborative-Polling could be adapted to any net-
work interconnect and could be extended to other distributed-memory programming
models.

4.2 Related Work

4.2.1 Message Progression Strategies

Previous work has shown significant speedups using overlap of communication on
large-scale scientific applications [Bel+06; Sub+11]. For common MPI runtimes,
message progression is accomplished when the main thread calls a function from the
MPI library. To achieve overlap at user level, MPI applications may be instrumented
with repeated calls to the MPI_Test function to test all outstanding requests for com-
pletion. This solution is not convenient for the developer and irrelevant for not MPI-
aware functions (e.g., optimized algebra libraies). For implementations supporting
the MPI_THREAD_MULTIPLE level of thread safety, (1) Thakur et al. [TG07] present
an alternative overlapping technique where an additional user-thread is created and
blocked inside a MPI_Recv function. (2) Hager et al. [HJR09] investigate a hybrid
MPI/OpenMP implementation with explicit overlap optimizations. (3) Nguyen et
al. [Ngu+12] propose Bamboo, a source-to-source translator for enabling automatic
overlap of communications in MPI programs. However, these three techniques rely
on source-code modifications and some involve multiple programming models.

As discussed in section 2.1.2.3, some recent Host Channel Adapters (HCAs) pro-
vide hardware support for total or partial independent progress. To enable software
overlapping without user source code modifications, FG-MPI [KW12] extends the
MPICH2 runtime and allows over-subscribed and non-preemptive MPI threads to

4.2. Related Work 79

Figure 4.2 – Overheads in a threaded message progression

share the same MPICH2 process. The proposed solution however limits the mes-
sage progression strategy to a physical core whereas Collaborative-Polling enables
it at the compute node level. MPI libraries also investigate a threaded message
progression. Additional threads (also known as progression threads) are created to
retrieve and complete outstanding messages even if large computation loops prevent
the main thread to call the runtime library. For accessing the network hardware,
progression threads may be set to use the two strategies previously presented in
section 2.2.4: the polling and the interrupted-driven strategies.

In a full MPI context, the polling approach increases performance on a spare-core
thread subscription where the progression thread is bound on a dedicated core. This
strategy is for example adopted by IBM in the Bluegene systems (see section 2.1.3.1).
Because the spare-core mode wastes computational resources, it is however used in
a few limited cases. As an example, the users may under-populate CPU cores when
the application faces a memory scalability issue. In fact, MPI is often used in a
fully subscribed mode where the same core is shared between the progression thread
and the user thread. The decision when and how often the polling function should
be called is however non-trivial. Too many calls may cause an overhead and not
enough calls may waste the overlap potential.

The interrupted-driven message detection is different from the polling approach
since it allows the sender or the receiver to have an immediate notification of com-
pleted messages [AA04]. If no work has to be done, the progression thread enters
into the wait queue and goes to sleep. When a specific event is generated from the
network card (i.e., an incoming message), an interruption is emitted and the pro-
gression thread goes back to the run queue. Because generating an interruption for
each message may be costly, MPI runtimes often implement a selective interrupt-
based solution [Sur+06a; Kum+08]. Only messages that are critical for overlapping
performance may generate an interruption.

For the fairness of the CPU resource sharing, each process has a maximum time
to run on a CPU: the time-slice. For example, with a Linux kernel it varies from
1 to 10 milliseconds. Once the time-slice is elapsed, the scheduler interrupts the
current running thread, places it at the end of the run queue for its static priority
and schedules a new runnable thread.

When an interruption occurs, the progression thread has to be immediately
scheduled, raising two main concerns. First, it is unclear how much time is required
to switch from the active thread to the progression thread: the scheduler may wait
for the running thread to finish its time-slice and it is uncertain that the progression
thread is the next to be scheduled. Second, one time-slice may be insufficient to
poll, match and, if needed, recopy the network message to the end-user buffer. These

80
Chapter 4. Improving MPI Communication Overlap With

Collaborative Polling

overheads are respectively referred to as "Startup Time" and "Reception Time" on
Figure 4.2. One solution to increase the reactivity would be to use real-time threads.
However, this could increase the context switching overheads since the progression
thread is scheduled every time an interrupt occurs [HL08].

The approach most closely related to our proposition is described in the I/O
Manager PIOMan [TD09] where the preemptive scheduler is able to run tasks in
order to make the communication library progress, leading to an efficient overlap
messages in a multi-threaded context. We applied the idea behind PIOMan to MPI
runtimes and we propose an optimization where an MPI task may progress messages
from another task.

4.2.2 Thread-Based MPI

As introduced in section 1.2.3, thread-based MPI runtimes allow the MPI tasks to
share the same memory address space within the same UNIX process.

Because of the implicit shared-memory context among tasks, thread-based run-
times are well suited for implementing global policies, such as message progression,
within a compute node. We implemented our contribution in the MPC framework
presented in section 1.2.3.4. According to our needs, MPC brings the three following
features:

• A thread-based MPI runtime;

• A customizable two-level thread scheduler. It helps to tune the message pro-
gression strategies;

• A support for a high-speed and scalable network. It provides an access to
Infiniband networks using the OF verbs library with an OS-bypass technology;

• An automatic privatization of user’s global variables to thread-private vari-
ables using a patched version of GCC [CPJ11].

4.3 Our Contribution: Collaborative Polling

During the execution of a parallel MPI application, the time spent while waiting for
messages or collective communications is wasted. This idle time is often responsible
for the poor scalability of the application on a large number of cores. Even on a
well-balanced application at user level, some imbalance between tasks may appear
from several factors such as:

• Distance between communicating MPI peers: inter/intra-node communica-
tions, the number of network hops.

• Number of neighbors.

• Micro-imbalance of communication (network links contention, topology).

• Micro-imbalance of computation (non-deterministic events such as preemp-
tion) [Sub+11].

The main idea of the Collaborative-Polling is to take advantage of idle cycles due to
imbalance for progressing messages at the compute node level. During its unused
waiting cycles, an MPI task is able to collaborate on the message progression of

4.4. Implementation 81

any other MPI task located in the same compute node. Figure 4.3 compares the
processing of messages arriving from a Network Interface Controller (NIC) with a
regular message progression and with our Collaborative-Polling method.

Figure 4.3 – MPI runtime without Collaborative-Polling (left) and MPI with
Collaborative-Polling (right)

Figure 4.3 depicts an MPI application performing the following algorithm: each
MPI task executes an MPI-unaware function (Compute) with an unbalanced work-
load between tasks before waiting for a message and calling a synchronization bar-
rier. On the left part, a regular message progression is presented. On the right
part, the Collaborative-Polling method is used. Collaborative-Polling allows task 1
to benefit from the unused cycles while waiting for its message: it can poll, receive
and match messages for task 0 which is blocked into a non-interruptible computa-
tion loop. Once the computation loop is done on task 0, the expected message has
already been retrieved by task 1 and the MPI_Wait primitive immediately returns.

As described in section 4.2.1 most message progression methods require to sus-
pend the computing phase (with an interruption, an explicit call to MPI or a context
switch to the progression thread) to perform progression. Collaborative-Polling does
not require these interruptions as it only uses idle time to perform progression. Thus,
the impact of Collaborative-Polling on compute time is reduced compared to other
methods. Collaborative-Polling also provides an auto-adaptive polling frequency.
Indeed, the frequency of calls to the polling function is correlated with the amount
of tasks waiting for a communication. For example, when the number of tasks wait-
ing on a barrier increases, the frequency of calls to the message progression method
increases as well.

4.4 Implementation

4.4.1 Discussion on Message Sequence Numbers

We designed and implemented our Collaborative-Polling approach into MPC. Since
the Infiniband implementation of MPC uses the Reliable Connection (RC) service,
the message order is guaranteed and messages are reliably delivered to the receiver.
Three message transfer protocols are available: eager, buffered (see section 3.1.2.3)
and rendezvous based on RDMA write (see section 3.1.2.2). To guarantee the order

82
Chapter 4. Improving MPI Communication Overlap With

Collaborative Polling

Figure 4.4 – Collaborative-Polling Implementation inside MPC Infiniband Module

across these three protocols, MPC relies on a reordering interface in charge of sorting
incoming messages. MPI runtimes usually rely on a Packet Sequence Number (PSN)
variable for each pair of MPI tasks. Every message sent carries the current PSN for
the corresponding pair of MPI tasks and also increment it. Each receiver maintains
an Expected Sequence Number (ESN). When an out-of-order message arrives, it is
put into a dedicated queue and its processing is deferred until the missing messages
have been handled. Moreover, the reordering interface of MPC guarantees that a
stolen message uses the PSN/ESN couple of the stolen MPI task.

4.4.2 Polling Concerns

Recent interconnects such as Infiniband usually exploit Event Queues. When a
message is completed by the NIC, a new completion descriptor is posted to the
corresponding completion queue (CQ). Then, the CQ is polled to read incoming
descriptors and process messages. MPC implements two CQs per vrail (see): one
for send, another for receive. Both of them are shared among tasks meaning that
all notifications are received and multiplexed into the same CQ.

As depicted in figure 4.4, each MPI task implements one private pending list for
point-to-point messages. An additional global pending list is dedicated to collective
operations and may be concurrently accessed by several tasks. To ensure message
progression, the MPC scheduler calls the polling function every time a context switch
occurs. The polling function is divided into three successive operations. First the
task tries to access the CQ and returns if another task is already polling the same
CQ. we limit to one the number of tasks authorized to simultaneously poll the NIC
because we observed a performance-loss with a concurrent access to the same CQ.
Then, each Completion Queue Entry found in the CQ is disseminated and enqueued
to the corresponding pending list. At this time, the message is not processed.
Secondly, the global and the private pending lists are both polled. If some messages
reside in the lists, they are processed until an expected MPI message is found.
Thirdly, with Collaborative-Polling, if a task does not find any message to match,
it tries to steal a CQE from a task located in the same NUMA node before lastly

4.4. Implementation 83

trying another NUMA node.

4.4.2.1 Progression of the rendezvous Protocol

As described in section 3.1.2.2, the performance of the rendezvous protocol is driven
by the capability of the MPI runtime and the network controller to progress syn-
chronization messages. MPC implements such a rendezvous protocol based on
RDMA write operations. In addition and to reduce the impact of memory registra-
tion [Tez+98], this protocol also combines a lazy deregistration and a registration
cache to re-use existing registered addresses. Finally, no intermediate copy is allo-
cated, meaning that the receiver waits the receive buffer to be posted before sending
the ACK message and proceeding to an RDMA write operation.

Figure 4.5, left part, depicts the reception of a rendezvous message without
Collaborative-Polling. While computing, the receiver cannot handle the REQ mes-
sage. As a result, the matching and the reply only occur inside the wait function.
With Collaborative-Polling (right part), an idle MPI task may steal the REQ mes-
sage, register the memory for the RDMA operation and finally reply the ACK to the
sender. As a result, the message transfer can even begin whereas the receiver is still
computing.

Figure 4.5 – The rendezvous protocol with Collaborative-Polling (left) and with-
out (right). With Collaborative-Polling, an idle MPI task may steal a rendezvous
control message, match and send the ACK to the sender.

4.4.3 Extension to Process-Based MPI

Collaborative-Polling requires the underlying MPI runtime to share some internal
structures among tasks located in the same compute node. Within a regular process-
based MPI runtime, Collaborative-Polling could be implemented by mapping the
same shared-memory segment in each process. The first cumbersome job here is to
extract the polling-related structures from the existing runtime and place them in
the shared memory.

The second difficulty is to bypass the OS security which prevents several pro-
cesses to share the same network endpoint. For Infiniband, the Protection Domain
(PD) provides an increased level of protection against inadvertent and unauthorized

84
Chapter 4. Improving MPI Communication Overlap With

Collaborative Polling

accesses: a process cannot affect a QP in a different Protection Domain. As far as
we know, two processes cannot share the same PD and the compliance C10-7 from
the Infiniband Architecture Specification[Inf] requires that each QP in an HCA shall
be associated with a unique Protection Domain. To address this issue, we propose
an implementation guideline where the runtime spawns and pins for each process as
many POSIX threads as physical cores on the compute node. When an MPI task
is idle, it can wake and schedule a thread from another process running the same
core than it. The newly scheduled thread then may call the progression function
and handle incoming messages. Since this approach however requires O(p) threads
to be scheduled on each core (p is the number of processors on the compute node),
it should be evaluated to quantify the overhead due to context-switching.

An alternative approach would be to use the Linux XPMEM Kernel module that
enables a process to expose its virtual address space to other MPI processes [BP11].
This solution was for example adopted by Open MPI in the vader Byte Trans-
fer Layer (BTL). However, since installing an external kernel module on an HPC
center is discouraged for security reasons and because the project seems no more
maintained, we did not focus on this solution.

4.4.4 Extension to Other High-Speed Interconnects

For the following contribution, we designed the Collaborative-Polling for Infiniband
networks. However, this approach would be ported to any interconnect, in condition
that the HCA does not support a fully independent message progression. In the
case of MPI over Infiniband, computation parts such as message matching cannot
be offloaded to the HCA and require the involvement of the host CPU to complete
the reception. In addition, Collaborative-Polling does not require the underlying
network to support communication offload but should be more efficient on such
networks.

4.5 Experiments

This section presents the impact of Collaborative-Polling on three MPI applications:
EulerMHD [Wol+12], the NAS Parallel Benchmark suite [Bai+95], and Gadget-
2 [Spr05] from the PRACE benchmarks. These codes run on the Curie’s Medium
Cluster1 and we compare our approach (MPC CP) against the regular version of
MPC (MPC), MVAPICH2 1.7 (MV2), Open MPI 1.6.1 (OMPI) and Intel MPI
4.0.3.088 (IMPI) which is based on the MPICH runtime. Both, the application and
the runtimes have been compiled using GNU GCC 4.4.0 and same compilation flags,
except for the MPI runtime from Intel. The results are an average of three runs and
the same nodes have been used for comparing the different runtimes.

4.5.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPBs) are a collection of MPI applications that are
distilled from real computational fluid dynamics applications. We omitted the EP
benchmark from our study as it is exchanging a negligible number of MPI messages.

Figure 4.6 illustrates the results obtained running the NAS SP, MG, BT, FT,
CG and IS with class D on 1,024 cores on several MPI implementations. It decom-

1The Medium Cluster is detailed in section 2.3.2

4.5. Experiments 85

poses the time spent inside the MPI runtime from the computational time. For SP,
MG and BT, Collaborative-Polling significantly reduces the time in MPI communi-
cations. Apart from Intel MPI on MG where MPI_Wait and MPI_Barrier functions
slow down the execution time, Collaborative-Polling provides performance close to
the related work. It respectively gives a speedup of 1.34, 1.25 and 1.69 on the com-
munication time for SP, MG and BT. Figure 4.7 depicts how much time is spent
for an MPI task to retrieve its own messages as well as to steal and process mes-
sages from another task. For these three benchmarks, we observe a large amount of
time stolen by MPI tasks. It causes a significant reduction of the time spent for a
task to receive its own messages. We also notice a slight overhead in the message
processing. Since we do not have sufficient permissions on the cluster to access the
hardware counters, we can only assume that this effect is due to NUMA effects.
Indeed, the copy of network buffers to end-user buffers is more costly when it is
processed by an MPI task located on a different NUMA node than the node where
the end-user buffer is posted. However, this overhead does not negatively affect the
total execution time as the message processing occurs during idle time.

On NAS CG, MPC with Collaborative-Polling behaves like the regular version
of MPC. Some messages are stolen but the stolen time does not accelerate the
execution of the application, probably because the workload is well balanced across
the tasks. The same benchmark shows an overhead for Open MPI and MVAPICH2
due to a slowdown in the MPI_Send function.

4.5.1.1 Collaborative-Polling and Collective Operations

On the other hand, NAS FT and IS exhibit an overhead using Collaborative-
Polling. These benchmarks mostly communicate using collective operations like
MPI_Alltoall, MPI_Alltoallv and MPI_Allreduce. The MPC implementation
of collective operations uses point-to-point messages and tree-like communications.
Collective communication patterns consist of multiple communication stages (a.k.a
rounds): let assume a communication round k, each MPI task waits a message from
the tasks involved in round k − 1 after sending a message to the tasks of round
k + 1. When a task steals a message from a collective operation, it does not emit
the messages corresponding to the next round of the stolen task. In this case,
Collaborative-Polling cannot benefit from idle time to recover the time lost while
stealing messages.

MPI-3 and non-blocking collective communications could address this issue.
Once the collective buffer has been posted, the task should compute and record
the communication graph corresponding to the collective for each round. When a
steal occurs, the stealing task may access the previously computed communication
graph of the stolen task and easily determine which tasks are involved in the next
round.

A look at Open MPI and MVAPICH2 shows that, in this configuration, they
are both penalized on CG because of a high amount of time spent in MPI_Send.
Furthermore, Open MPI gets a high overhead in MPI_Alltoallv on IS.

4.5.1.2 Block Tridiagonal Solver (NAS-BT)

In this section, we focus on the Block Tridiagonal Solver (BT). This benchmark
solves three sets of uncoupled systems of equations. It uses a balanced three-
dimensional domain partition in MPI and performs coarse-grained communications.

86
Chapter 4. Improving MPI Communication Overlap With

Collaborative Polling

M
P
C

M
P
C

C
P

O
M

P
I

IM
P
I

M
V
2

0

50

100

150

SP

T
im

e
(s
)

M
P
C

M
P
C

C
P

O
M

P
I

IM
P
I

M
V
2

0

5

10

MG

M
P
C

M
P
C

C
P

O
M

P
I

IM
P
I

M
V
2

0

50

100

BT

M
P
C

M
P
C

C
P

O
M

P
I

IM
P
I

M
V
2

0

50

100

FT

M
P
C

M
P
C

C
P

O
M

P
I

IM
P
I

M
V
2

0

100

200

CG

M
P
C

M
P
C

C
P

O
M

P
I

IM
P
I

M
V
2

0

20

40

60

IS

Compute time MPI time

Figure 4.6 – NPB MPI Evaluation. Class D on 1,024 cores

MPC MPC CP

0

5

10

SP

T
im

e
(s
)

MPC MPC CP

0

0.2

0.4

0.6

MG MPC MPC CP

0

1

2

3

BT

MPC MPC CP

0

5

10

15

FT MPC MPC CP

0

0.1

0.2

CG MPC MPC CP

0

2

4

IS

Time own Time steal

Figure 4.7 – NPB Steal statistics. Class D on 1,024 cores

Figure 4.1 exposes the details of the time spent in the MPI runtime. The gain
in MPI time comes from the time spent inside the wait functions (MPI_Wait and
MPI_Waitall) because the messages have already been processed by another task
when reaching such function. Indeed, Fig. 4.8 shows the amount of messages stolen
per task (locally on the same NUMA node or remotely on another NUMA node
located on the same computational node). It clearly shows that the number of
stolen messages is high, leading to the acceleration of the wait functions.

4.5. Experiments 87

Function MPC MPC CP Speedup

Execution time 97.69 77.09 1.27
MPI time 46.70 27.58 1.69

Compute time 50.99 49.51 1.03

MPI Wait 30.58 12.73 2.40
MPI Waitall 12.59 12.47 1.01
MPI Isend 1.22 1.33 0.92
MPI Irecv 1.83 0.67 2.75

Table 4.1 – BT MPI Time Showdown (class D)

MPC MPC CP

64,671

53,936

160,707

42,101

N
u
m
b
e
r
o
f
m
e
ss
a
g
e
s

Own

Steals same NUMA node

Steals other NUMA nodes

Figure 4.8 – BT steal statistics

4.5.2 EulerMHD

EulerMHD is an MPI application solving both the Euler and the ideal magneto-
hydrodynamics (MHD) equations at high order on a two dimensional Cartesian
mesh. At each iteration, the ghost cells are manually packed into contiguous buffers
and sent to neighbors through non-blocking calls with no-overlap capabilities. Fur-
thermore, each timestep, a set of global reductions on one float number each is
performed.

MPC MPC CP OMPI IMPI MV2
0.00

50.00

100.00

150.00

200.00

32.50
13.87 19.78 22.04 16.06

162.92 160.93 160.18 159.12 160.70

T
im

e
(s
e
c
o
n
d
s)

Compute time MPI time

Figure 4.9 – EulerMHD Evaluation

In these experiments, we use a mesh of size 4, 096×4, 096 for a total of 1,024 MPI
tasks and 193 timesteps. As depicted in Fig. 4.9, the Collaborative-Polling decreases
the time spent in MPI functions by a factor of 2. Details of time decomposition is
illustrated in Table 4.2. The first time-consuming MPI call, the MPI_Wait function,
shows a significant speedup by more than 2.5. Surprisingly, the MPI_Allreduce
function highlights a speedup of 1.58 in this application. It can be easily explained:

88
Chapter 4. Improving MPI Communication Overlap With

Collaborative Polling

Function MPC MPC CP Speedup

Execution time 195.43 174.80 1.12
MPI time 32.50 13.87 2.34

Compute time 162.92 160.93 1.01

MPI Wait 26.27 10.36 2.53
MPI Allreduce 4.17 2.63 1.58

MPI Irecv 1.24 0.18 6.84
MPI Isend 0.83 0.69 1.19

Table 4.2 – EulerMHD MPI Time Showdown

with Collaborative-Polling, faster MPI tasks already inside MPI_Allreducemay help
the progression of tasks that did not yet reach this function. Thus, Collaborative-
Polling aims to diminish the imbalance across MPI tasks and so the time in global
synchronization points such as MPI_Allreduce.

The computation loop is also impacted and exhibits a minor improvement. With
Collaborative-Polling enabled, the polling function is less aggressive while waiting
for messages. This aims to reduce the overall memory traffic.

4.5.2.1 The rendezvous Protocol

We run EulerMHD with the same dataset as previous but we disable the Buffered
protocol and force MPC to switch to rendezvous protocol. In this configuration,
97% of MPI messages are exchanged using rendezvous. Figure 4.10 decomposes
the time spent inside the MPI runtime from the computational time and it clearly
shows that Collaborative-Polling reduces the time to communicate. For a depth
investigation, the rendezvous interface of MPC has been instrumented with three
timers:

1. Time to reply: time between the REQ and the ACK messages on the sender
side.

2. Request reception: time to handle the message while it as already been
polled from the CQ at the receiver side.

3. Matching: time to match the message at the receiver side.

Table 4.3 previously presented in section 4.4.2.1 reports the value of these timers
on EulerMHD, with and without Collaborative-Polling. On the sender side, the time
to reply expresses a speedup of 2,77 using Collaborative-Polling. On the receiver
side, because an idle task may handle the REQ message from a computing task im-
mediately after it has been polled from the CQ, the request reception time is signifi-
cantly faster with Collaborative-Polling. Since Collaborative-Polling allows multiple
tasks to handle messages for the same remote task, several rendezvous messages
can be matched in parallel, reducing the time required for matching messages.

4.5.3 Gadget-2

Gadget-2 is an MPI application for cosmological N-body smoothed particle hy-
drodynamic simulations. At each timestep, the domain is decomposed and the
workload is balanced across MPI tasks using a combination of Allgather, Allgath-
erv and Ssend/Recv functions. During the force computation, each task exchanges

4.5. Experiments 89

MPC MPC CP
0.00

100.00

200.00
41.76

21.45

164.09 162.08

T
im

e
(s
e
c
o
n
d
s)

Compute time MPI time

Figure 4.10 – EulerMHD Evaluation

Function MPC MPC CP

Time to reply 27.68 9.98
Matching 13.56 5.50

Request reception 6.27 0.08

Table 4.3 – EulerMHD rendezvous
timers

the number of outgoing particles with a call to MPI_Allgather before sending a
point-to-point message to each neighbor containing the new positions of the moving
particles. From a task to another, the construction of the local tree differs causing an
imbalanced workload and a variation in the number of neighbors. The configuration
simulates 1e7 particles for 16 timesteps on 256 cores.

MPC MPC CP OMPI IMPI MV2
0.00

50.00

100.00

29.78 27.46

66.73

34.61 33.63

38.40 38.27 34.14 36.81 36.83

T
im

e
(s
e
c
o
n
d
s)

Compute time MPI time

Figure 4.11 – Gadget Evaluation

Function MPC MPC CP Speedup

Execution time 68.18 65.73 1.04
MPI time 29.78 27.46 1.08

Compute time 38.40 38.27 1.00

MPI Allgatherv 9.51 8.86 1.07
MPI Allgather 9.34 8.41 1.11
MPI Sendrecv 3.75 3.47 1.08
MPI Barrier 3.06 3.04 1.01

MPI Allreduce 2.03 2.12 0.95
MPI Recv 0.91 0.69 1.31

MPI Reduce 0.76 0.52 1.47
MPI Bcast 0.19 0.15 1.29
MPI Ssend 0.14 0.14 0.99

Table 4.4 – Gadget MPI Time Showdown

90
Chapter 4. Improving MPI Communication Overlap With

Collaborative Polling

Collaborative-Polling exhibits an improvement in message-waiting time (see
Fig. 4.11). Open MPI gets an abnormal slow-down of approximately 10 on the
MPI_Allreduce function compared to the other runtimes. Table 4.4 details the time
acceleration of MPI functions: Collaborative-Polling allows speedup on MPI_Recv
and MPI_Sendrecv functions leading to a 8% improvement for the MPI time com-
pared to regular MPC run.

4.6 Conclusion and Future Work

In this contribution, we proposed a transparent runtime optimization called
Collaborative-Polling. This solution does not require to modify the source code
of the application nor the programming model. With Collaborative-Polling, the ex-
periments on scientific codes show a significant improvement of the communication
time up to a factor of 2. Regular blocking/non-blocking point-to-point communi-
cations can benefit from this optimization. Collaborative-Polling may also reduce
the imbalance across MPI tasks, diminishing the idle time spent inside global collec-
tive operations like barrier, alltoall and allreduce. Additionally to this contribution,
Collaborative-Polling was designed for MPI and Infiniband but may be extended
to any programming model and any interconnect which does not implement a full
independent message progression.

In the worst case of a perfectly well-balanced application, Collaborative-Polling
fails to progress message asynchronously. We plan to investigate a mixed-solution
with an interrupt-based polling in a future work.

Moreover, although recent network controllers support more and more operations
in hardware, the main CPU is still required for completing messages that involve
complex operation. It is for example the case with the collective offload capabil-
ity of the ConnectX-2 interface that only support calculation operations of scalar
values [Tec11]. As a consequence, the runtime cannot offload reductions on vector
data for now [Kan+12]. Thus, we intend to evaluate the Collaborative-Polling on
non-blocking collective communications of MPI 3.0. More specifically, we plan to
integrate the NBC library to MPC [HLR07].

Finally, we also plan to focus on hybrid MPI/OpenMP codes where idle OpenMP
tasks (i.e., tasks blocked in a barrier) would participate to Collaborative-Polling and
progress messages of any MPI task located on the same compute node.

Chapter 5

Evaluation of MPI Runtimes in
Hybrid Context

"When someone says: "I want a
programming language in which I
need only say what I wish done", give
him a lollipop."

Alan J. Perlis 1922 – 1990

5.1 Introduction to Hybrid Programming

As discussed in section 1.3.4, the memory per core is likely to decrease and main-
taining one MPI task per core is already an issue for the scalability of the MPI
applications. Moreover, this issue will become more significant over the years.

To reduce the memory of an MPI application, one workaround commonly used
on clusters of shared-memory systems is to under-populate CPU cores. As an ex-
ample, HELIUM is an application that solves the Schrödinger equation to simulate
the behavior of helium atoms [SPT98]. Because HELIUM uses a lot of memory,
it requires under-populated CPUs for large problem sizes on the BlueGene/P sys-
tem [Jow+09]. Although this solution improves the scalability of the applications,
it clearly under-utilizes the cluster and wastes computational resources.

In a shared-memory context, previous works have already proposed efficient
mechanisms for reducing the memory footprint of MPI runtimes by sharing re-
sources [PCJ09]. Inside a compute node, the MPI standard does however not allow
the application developer to take full advantage of the shared-memory context be-
tween MPI tasks and some user-data are unnecessarily duplicated in the memory. It
is for example the case of communication buffers that replicate some cells from the
neighborhood in domain decomposition codes whereas a direct memory access would
be enough. To limit data replication, the OS and the MPI runtime may propose
some mechanisms to share some data between MPI tasks [TCP12]. These solutions
are nevertheless barely used because their implementation is either cumbersome or
not portable from an MPI runtime to another. Moreover, many HPC applications
make use of collective communications like MPI_Alltoall where the number of MPI
messages and so the number of communication buffers grows with the square of the
number of MPI tasks. This issue is much more severe with process-based MPI
runtimes where the number of network endpoints increases as much.

Mixing a parallel message passing paradigm for inter-node communications with
a shared-memory programming model for intra-node communications intuitively
appears to better match these clusters of multiprocessors. The approach typically
used and which exhibits the lower memory consumption is to create one unique
MPI task per compute node and to spawn as many OpenMP threads as cores. In

92 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

(a) Full MPI (b) Hybrid MPI+OpenMP

Figure 5.1 –Memory representation of an application parallelized using the domain
decomposition method in a shared-memory context

this mode, the single MPI task handles all the network traffic of all OpenMP tasks
executing in the compute node.

Although the hybrid approach does not completely solve the scalability that
MPI applications may face, it can at least increase the scalability by a factor equal
to the number of cores per node. To illustrate this point, figure 5.1 represents the
virtual address space of an application parallelized using a domain decomposition
method. In the full MPI version (see figure 5.1(a)), the more MPI sub-domains
a domain is divided into, the larger amount of memory required for halos (e.g.,
memory for mirroring neighbor side-domain cells). Additionally to halos, the MPI
runtime internally stores in memory structures such as communication buffers, net-
work endpoints or lookup tables. In hybrid mode (see figure 5.1(b)), the memory
required by the MPI runtime to work and the number of halo cells are reduced. The
combination of the two models has been widely studied and previous works have
already successfully improved scalability of full MPI codes by combining them with
OpenMP [Bal+09]. As an example, Quantum Espresso (QE) is an integrated suite
of computer codes for electronic-structure calculations and materials modelling that
consumes a large amount of memory. With the introduction of OpenMP to QE,
the hybrid version has made possible the code to scale large datasets up to 65,000
cores on a BlueGene/P machine whereas it was not possible with the full MPI ver-
sion [Jow+09]. In addition to the memory reduction, hybrid codes propose some
other advantages over full MPI codes.

First, shared-memory programming models most often exhibit a convenient in-
terface for automatically balancing workload across the available threads. Since the
OpenMP 2.5 specification and earlier versions, the standard defines the for con-
struct and the "dynamic" and "guided" scheduling [Ope13]. With the introduction
of task parallelism in OpenMP 3.0, the language has become more dynamic. Dynam-
ically sharing work across shared-memory tasks is particularly interesting for codes
which express a high imbalance such as Adaptive Mesh Refinement codes [Key+00].
On the contrary, implementing a user-level load-balancing mechanism over MPI
usually leads to significant communication overhead, particularly on fine grain par-
allelism problems.

Second, to communicate in shared memory, OpenMP threads only require con-

5.1. Introduction to Hybrid Programming 93

ventional memory read and write operations. As discussed in section 1.2.3.4, main-
stream process-based runtimes usually involve two memory recopies for intra-node
communications: the message is first temporary buffered into a shared memory
segment before being copied back to the receive buffer [BMG06]. With the aim
of reducing these memory copies, some process-based MPI runtimes rely on kernel
modules (KNEM [GM12], LiMIC2 [Jin+07]) for providing one-copy mechanisms.
These optimizations are however restricted to large messages as they involve an ex-
plicit synchronization between the sender and the receiver and increase the latency.
More recently, Friedley et al. proposed Hybrid MPI (HMPI) [Fri+13], a runtime
that performs zero-copy messaging between shared-memory processes. When the
application requests memory, the runtime returns a memory space from a shared
memory segment. Thus, each buffer passed to MPI calls is visible to every pro-
cess at a node level. Although these optimizations improve intra-node communica-
tions, the MPI standard imposes at least one memory copy and the OpenMP model
is consequently more appropriate for shared memory communications. Regarding
inter-node communications, hybrid MPI/OpenMP applications typically exchange
the same amount of data over the network but the number of inter-node messages
is reduced and their size is increased as well.

Figure 5.2 – Taxonomy of parallel programming models for hybrid MPI+OpenMP
applications [RHJ09]

Developing a hybrid MPI/OpenMP application usually means integrating
OpenMP into an existing MPI application and, for this purpose, two different ap-
proaches are typically used. As depicted in figure 5.2, the incremental approach
consists in parallelizing loops one by one whereas the SPMD-like programming style
defines an approach close to the regular MPI programming where the work is stati-
cally decomposed and processed according to the thread IDs.

94 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

5.1.1 Fine-Grain Parallelization

The incremental approach (or fine grain parallelization) consists in gradually hy-
bridizing loop nests of an existing MPI application. In this context, programmers
usually resort to profiling tools to select the loop nests that contribute the most to
the global execution time.

Achieving efficient parallelization with OpenMP is actually not just about sur-
rounding for -loops with omp parallel for constructs. Indeed, OpenMP like any
other shared-memory programming model requires attention when accessing data in
NUMA architectures and a high number of synchronization points may slow the per-
formance of the application [Ric98]. To improve the parallel efficiency of the hybrid
code, additional optimizations should then be performed such as loop permutation,
loop exchange or use of temporary variables.

In practice, the incremental approach generally performs sub-optimally [CPP01].
To understand the results, let us decompose the execution time ttot of a hybrid
application into:

ttot = tseq + tcomm +
tcompute

p
(5.1)

tseq, tcomm and tcompute are respectively the sequential time (i.e., synchroniza-
tions, not-parallelized code sections, thread management including opening and clos-
ing parallel regions), the MPI communication time (that is performed by only one
OpenMP thread) and the computation time fully parallelized with OpenMP. Fur-
thermore, p corresponds to the number of OpenMP threads per MPI task. The
incremental approach has actually two limitations which may increase the time in
tseq. First, a high number of parallel constructs implies a high cost due to thread
management and second, there is no guarantee of affinity between threads and pro-
cessors for consecutive parallel regions. Moreover, because tseq and tcomm cannot be
accelerated, the Amdahl’s law applies and the speedup is limited by 1 +

tcompute

tseq+tcomm
.

Thus, if tseq and tcomm represent for example 10% of the execution time, the max-
imum speedup that can be achieved with an infinite number of OpenMP threads
and using the incremental approach is 10×.

5.1.2 Coarse-Grain Parallelization

To overcome the weaknesses of the fine-grain model, the coarse-grain method opens
an OpenMP parallel region at the beginning of the program (just after the spawn
of the MPI tasks) and the region remains active until the end of the execution.
The programmer must then use synchronization directives such as single, barrier
or critical in order to ensure the memory coherency of shared variables and non
parallel sections. Although this model solves the performance issue due to the
consecutive parallel regions, it still includes the cost to access critical sections due
to data-sharing.

To reduce this cost, the SPMD programming style tries to limit the data ex-
changes between OpenMP threads [KC03; Ber+05]. In practice, each OpenMP
thread acts similarly to an MPI task. The OpenMP for directive is no longer used
for distributing loop iterations and the programmer rather calculates the OpenMP
work distribution according to the OpenMP thread ID (obtained via a call to
omp_get_thread_num()). Moreover, this approach goes against the principle of
shared-memory programming models since shared-memory variables are recopied
and stored into thread-private memory regions. As a result of the SPMD approach,

5.2. Performance Evaluation of MPI Runtimes in Multi-Threaded
Context

95

the sequential time (referred to as tseq in the formula 5.1) is notably reduced but
this solution however exhibits three important disadvantages that must be consid-
ered when mixing an application with OpenMP: (1) the programming complexity
is significantly increased, (2) the SPMD approach sacrifices the availability of the
OpenMP dynamic load-balancing since the work is statically distributed and, (3)
more memory is used since the approach requires as much user buffers (e.g., com-
munication buffers) as the full MPI version.

As a conclusion to the coarse-gain hybrid parallelization, one limitation is actu-
ally the MPI communication time referred to as tcomm in the formula 5.1. Indeed,
with process-to-process communications depicted in figure 5.2, MPI calls are serial-
ized into OpenMP master directives of equivalent. To reduce the value of tcomm, the
thread-to-thread communication model proposes a concurrent access of the OpenMP
threads to the MPI runtime. Although this model efficiently parallelize MPI com-
munications, it however requires the MPI runtime to be thread-safe.

5.2 Performance Evaluation of MPI Runtimes in Multi-
Threaded Context

5.2.1 Related Work

The research community has already spotted the need for an MPI implementation
that efficiently supports multi-threading [PS98; TG07]. Since the version 2.0 of the
standard, MPI introduces four levels of thread safety, which define how the runtime
should behave in a multi-threaded environment. Thus, it is the user’s responsibility
to declare with the function MPI_Init_thread which level to use for the application.
These levels are as follows:

1. MPI_THREAD_SINGLE: Each process has a single thread of execution.

2. MPI_THREAD_FUNNELED: A process can be multi-threaded, but only the thread
that initialized MPI can perform MPI calls. A thread can determine if it is
the master thread with the MPI_Is_thread_main call. In fact, this determines
whether it is the same thread that called MPI_Init.

3. MPI_THREAD_SERIALIZED: A process can be multi-threaded, but only one
thread at a time can call MPI.

4. MPI_THREAD_MULTIPLE: A process can be multi-threaded, and multiple threads
can simultaneously call MPI functions.

Most share memory programming models have already been evaluated in com-
bination with the MPI standard such as SMPSs [Mar+10], Habanero-C [Cha+13],
OpenMP [Hag+], StarPU [Aug+12] or the distributed version of CnC on top of
MPI [SBK13]. Results have demonstrated that threads enable better progression
of asynchronous non-blocking MPI communications and that hybrid programming
can outperform the original pure MPI version of the code. The previously cited
implementations however rely on one unique thread that handles and progress MPI
communications of the whole node. It is certain that this solution will not scale with
large compute node and in the long term, one thread will be insufficient to saturate
the network bandwidth [RW03].

96 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

Hager et al. in [RHJ09] present common overheads while developing hybrid
MPI/OpenMP applications, most notably performance issues due to a bad thread
placement policy over the cluster. Several researches have previously concluded that
the benefit a hybrid application may be obtained is not trivial and requires consid-
eration of issues such as the level of shared memory parallelization achievable, the
communication cost, the performance balance of machine’s main components, the
domain decomposition and the memory access patterns [CE00; SB01; DK04; RW03].
Some researchers have demonstrated success programming real-world OpenMP ap-
plication in a SPMD way where the thread id is using for explicitly managing
data [KC03; Ber+05].

Focusing OpenMP, it is often cumbersome to get good performance with this
programming interface due to the memory model that is not aware of the non-
uniform memory access characteristics of the underlying compute node’s architec-
ture. To better match the hierarchical memory structure of modern architectures,
ForestGomp (extension to the GNU OpenMP implementation [Bro+10a]) and the
authors in [Jin+11] present an extension for augmenting locality in OpenMP.

Finally, another aspect to take into consideration is the multi-threaded abil-
ity of MPI runtime. Benchmark Suites have been developed for evaluating MPI
performance using the MPI_THREAD_MULTIPLE level on a variety of platforms/MPI
libraries and results have pointed out that MPI implementations behave very dif-
ferently in a multi-threaded context [TG07; BEA09]. Developing a thread-safe MPI
runtime actually requires to consider many aspects for achieving performance and
correctness [GT06]. Furthermore, several extensions to the MPI standard have been
proposed to provide a better combination of MPI and shared-memory programming
models [Din+13; Hoe+10].

5.2.2 Motivations

In practice, hybrid applications are often designed using process-to-process commu-
nications. The basic justification for this choice is that some MPI runtimes have only
to support the MPI_THREAD_FUNNELED level since communications are sequentially
executed by the master thread. Using this model, hybrid applications may however
perform sub-optimally for several reasons. First of all, because only one thread com-
municates at any moment, it increases the sequential portion of the code. Second, it
is uncertain if one thread communicating is sufficient for reaching the maximum net-
work bandwidth [RW03]. This statement is even more true when they are multiple
HCAs available on the compute node.

As shown in section 5.1.1, the coarse-grain parallelization approach with thread-
to-thread communications seems more suitable for developing hybrid applications
since it reduces the sequential portion of the code and parallelize MPI commu-
nications. However and as detailed in section 5.2.1, developing a thread-safe
MPI runtime actually requires to consider many aspects for achieving performance
and correctness. Most MPI runtimes efficiently implement thread levels up to
MPI_THREAD_SERIALIZED but do not perform as well with the MPI_THREAD_MULTIPLE
level. For example on Infiniband with MPI_THREAD_MULTIPLE, Open MPI disables
its verbs communication interface and fall-backs to another communication proto-
col (e.g., TCP/IP). As a result, implementing the thread-to-thread communication
model usually increases the sequential portion of the code and consequently provides
poor performance [SB01; DK04].

5.3. Micro-Evaluation: MPI_THREAD_MULTIPLE Test Suite 97

In this chapter, we evaluate the performance of MPI runtimes in a multi-threaded
context. We first focus on different hybrid MPI+Threads latency benchmarks on
small and large compute nodes up to 96 cores. We then detail the parallelization of
a hybrid seismic modeling applications using MPI+OpenMP. Three different hybrid
versions of the code are evaluated on 2,048 cores and compared to the original full
MPI version. We finally introduce the limitations of hybrid modes and discuss how
these limitations could be addressed with the MPI Endpoints, i.e., an extension to
the MPI standard.

5.3 Micro-Evaluation: MPI_THREAD_MULTIPLE Test Suite

To evaluate how MPI runtimes behave in a multi-threaded environment, we sub-
mitted MPC and Intel MPI to multiple different hybrid MPI+Threads benchmarks
that require the MPI_THREAD_MULTIPLE level of thread safety.

(a) single-rank (b) multi-rank

Figure 5.3 – Hybrid latency benchmarks with 3 threads per compute node

The first benchmark named single-rank latency test (see figure 5.3(a)) has
been originally developed by Thakur et al. [TG07] for the MPI_THREAD_MULTIPLE
test-suite1. The benchmark runs on two nodes with one unique MPI task on each
node. A set of threads are spawned using the POSIX API and each of them com-
municates with another thread from the second node. The goal of this benchmark
is to highlight the fine-grain locks that protect runtime internals from concurrent
accesses to the structures of the same MPI task. We slightly modified the original
version of the code from the Thakur’s paper in order to provide a fair comparison
between the different runtimes. First, and to prevent thread migration, the bench-
mark manually pins each pthread in a compact mode using the sched_setaffinity
Linux-specific system call. Second, start addresses of MPI buffers are manually
aligned to a system page for achieving best performance on DMA-based networks
such as Infiniband. This optimization is sometimes automatically performed by run-
times (e.g., Intel MPI, Open MPI). Indeed, during execution, the runtime captures
dynamic memory allocations and aligns the block of memory to the size of a sys-
tem page. Third, the benchmark now performs a warm-up iteration to bypass the
on-demand connection mechanism of MPI runtimes and fill the cache memory.

The second benchmark named multi-rank latency test (see figure 5.3(b)) is
a benchmark from our contribution. It is similar to the single-rank benchmark

1The test-suite is available for download at http://www.mcs.anl.gov/~thakur/thread-tests

http://www.mcs.anl.gov/~thakur/thread-tests

98 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

previously described but all POSIX threads running on a same node communicate
with different MPI tasks, so different compute nodes. This benchmark eliminates
fine-grain locks and only focuses on coarse-grain locks that are taken whatever the
remote MPI task to reach.

Our reference point for evaluating the overhead due to multi-threading is the
full-MPI latency benchmark provided by Thakur. This code runs on two nodes
and each task on the first node communicate with a task located on the second
node.

5.3.1 Thread-Safe MPI Runtimes

For this multi-threading evaluation, we need to select MPI runtimes that combine
both (1) a support for the MPI_THREAD_MULTIPLE level of thread-safety and, (2) an
access to Infiniband networks.

Based on our experiments, Bullx MPI does not provide a level of thread
safety higher than MPI_THREAD_SERIALIZED. Moreover, we attempted to com-
pile OpenMPI 1.6.1 with a support of multi-threading (compilation flags
–enable-mpi-thread-multiple and –enable-opal-multi-thread associated to
–with-openib) but the runtime refuses to execute with another MCA (Mod-
ular Component Architecture) than TCP. As regards MVAPICH2 1.9, we
compiled the library with the highest level of thread-safety (compilation flag
–enable-threads=multiple combined with –with-ibverbs) but the application
fails to correctly initialize with the MPI_THREAD_MULTIPLE level. Finally, we installed
MVAPICH2-X 1.9, a runtime from Ohio State University and optimized for hybrid
programming models but the execution fails in the MPI_Init_thread function.

MPC presented in section 1.2.3.4 and Intel MPI are two MPI runtimes that
fulfill our requirements for this evaluation. Indeed, they both support the
MPI_THREAD_MULTIPLE level of thread safety detailed in section 5.2 and provide
high-speed communications over Infiniband networks.

5.3.2 Thread Overhead on Small Compute Nodes (16 cores)

For this first set of results, we run the three latency benchmarks (single-rank , multi-
rank and full-MPI) previously described in section 5.3 on the Thin Cluster2. More-
over, the benchmarks are executed using MPC and Intel MPI, two MPI runtimes
that support the MPI_THREAD_MULTIPLE level of thread safety as discussed in sec-
tion 5.3.1.

Figures 5.4 and 5.5 respectively report the latency of the three versions for
eager messages up to 16 KB and rendezvous messages up to 1 MB. As we can see
in figure 5.4(a), Intel MPI expresses a high and constant overhead of 170 µs for both
the single-rank and multi-rank versions due to multi-threading. In contrast, MPC in
figure 5.4(b) is slightly penalized by multi-threading and the multi-rank benchmark
even performs better than the regular full-MPI version. To understand this speedup,
let us focus on the implementation of the MPI matching semantics. MPI runtimes
(including MPC) regularly implement two main queues for message matching: (1)
a posted receive queue, which stores pending receives posted by an MPI task and,
(2) an unexpected message queue for incoming messages, which have not been yet
matched. In hybrid mode, those two MPI matching queues are actually shared

2The Thin Cluster is detailed in section 2.3.1

5.3. Micro-Evaluation: MPI_THREAD_MULTIPLE Test Suite 99

100 101 102 103 104
0

100

200

300

400

500

Message size (Bytes)

T
im

e
(u
s)

(l
ow

er
is

b
et
te
r)

FullMPI

Hybrid multi rank

Hybrid single rank

(a) Intel MPI

100 101 102 103 104
0

10

20

30

40

50

Message size (Bytes)

T
im

e
(u
s)

(l
ow

er
is

b
et
te
r)

FullMPI

Hybrid multi rank

Hybrid single rank

(b) MPC

Figure 5.4 – Hybrid and full-MPI latency benchmarks on 16 cores node.
Eager messages from 0 KB to 16 KB.

105 106
0

1,000

2,000

3,000

4,000

5,000

Message size (Bytes)

T
im

e
(u
s)

(l
ow

er
is

b
et
te
r)

FullMPI

Hybrid multi rank

Hybrid single rank

(a) Intel MPI

105 106
0

1,000

2,000

3,000

4,000

5,000

Message size (Bytes)

T
im

e
(u
s)

(l
ow

er
is

b
et
te
r)

FullMPI

Hybrid multi rank

Hybrid single rank

(b) MPC

Figure 5.5 – Hybrid and full-MPI latency benchmarks on 16 cores node.
Rendezvous messages from 16 KB to 1 MB.

across all POSIX threads spawned by the same MPI task and the runtime does not
distinguish two messages from two different threads. As a result, when a thread is
waiting for a message, it can progress and match an incoming message with a request
previously posted by another thread. This is actually what happens with the multi-
rank benchmark and one would notice that this mechanism is similar to the one
proposed by the Collaborative-Polling in chapter 4. Moreover, the multi-rank test is
not subjected to overhead due to multi-threading because each thread in a compute
node communicates with a different remote MPI task. As regards the single-rank
benchmark, it slightly suffers from an overhead due to multi-threading. Indeed,
compared to the multi-rank benchmark, the single-rank benchmark generates a
higher contention on both MPI matching queues and network endpoints since 16
threads access the structures of the same remote MPI task [GT06].

Figure 5.5 reports the results obtained with Intel MPI and MPC for rendezvous
messages up to 1 MB. In this case, Intel MPI gets a significant overhead for messages
from 16 KB to 256 KB because of multi-threading. This overhead is even amplified
with the single-rank benchmark where Intel MPI clearly shows a coarse-grain locking
strategy for protecting network endpoints from concurrent accesses. From 256 KB,
this overhead is attenuated since the contention on network structures decreases.
As regards MPC, the three benchmarks provide really close results. From 512 KB,

100 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

a minor overhead due to multi-threading appears and MPC finally performs in the
same order of magnitude than Intel MPI for 4 MB messages.

5.3.3 Multi-Threading MPI Scalability on Large Compute Nodes
(128 cores)

In the following section, we propose to analyze the multi-threading scalability of
MPI runtimes on the single-rank benchmark with 2 compute nodes from the Large
Cluster3. We have actually limited the number of cores to 96 as the runtime from
Intel fails to complete the test and crashes with a higher number of cores.

0 20 40 60 80 100
0

0.5

1

1.5

·104

Threads

T
im

e
(u
s)

(l
ow

er
is

b
et
te
r)

Intel MPI
MPC

(a) Eager protocol: 1 KB messages

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

·105

Threads

T
im

e
(u
s)

(l
ow

er
is

b
et
te
r)

Intel MPI
MPC

(b) Rendezvous protocol: 100 KB mes-
sages

Figure 5.6 – Latency single-rank test up to 96 cores

Figure 5.6 reports the latencies obtained with Intel MPI and MPC for 1 KB
eager messages and 100 KB rendezvous messages. For both short and large mes-
sages, MPC slightly outperforms Intel MPI with 32 or less threads (one level-2
NUMA node). At this point, the latency of Intel MPI rapidly increases with 96
cores, the runtime is finally slower than MPC by a factor 3.3 and 34.8 respectively
with eager and rendezvous protocols. As a conclusion to these experiments, an
MPI runtime that efficiently supports multi-threading is primordial for achieving
performance with hybrid applications. The results up to 96 cores highlight the limi-
tation of Intel MPI and prove the viability of MPC to support hybrid programming
on large NUMA nodes.

5.4 Reverse Time Migration Proto-Application

With the purpose of evaluating the multi-threading ability of MPI runtimes on
a scientific application, we have developed our own parallel seismic modeling
proto-application that mimics a real Reverse Time Migration (RTM) application.
RTM [Ort+08] is an imaging algorithm used in seismic exploration for geologically
complex subsurface areas. For simplification reasons, our proto-application (called
RTM-proto in the remainder of the thesis) does not solve the standard two-way
wave equation and the model is limited to the forward step, which simulates a wave
propagation into an isotropic media. The one-way wave equation is solved using a

3The Large Cluster is detailed in section 2.3.3

5.4. Reverse Time Migration Proto-Application 101

order-8 in 3D space stencil where updating a stencil point requires the values of the
24 neighbor points.

We designed the full-MPI version of RTM-proto using a regular domain-
decomposition method. As a first optimization to decrease the memory access costs
when updating the stencil, our RTM-proto application applies a blocking technique.
This technique aims at filling the cache that is closer to the CPU for preserving the
locality of data being accessed. In addition, the blocks along the x-axis have been
enlarged as much as possible in order to maximize linear accesses to the memory
and to allow the CPU to pre-fetch useful data. To enforce data locality, the compu-
tational units (MPI tasks or OpenMP threads) process the stencil blocks following
a z-curve pattern which increases the locality of blocks for a later buffer reuse (see
figure 5.7). Although this optimization exhibits a minor advantage with the full
MPI code, it shows significant speedups when applied on hybrid versions. More-
over, nowadays operating systems often rely on first-touch policies where virtual
memory pages are physically allocated only when the application accesses memory
pages for the first time. Thus, in order to prevent memory pages to be allocated
during the first iteration, each computational unit (MPI task or OpenMP thread)
first-touches its stencil blocks before entering the computation loop. Moreover, this
strategy guarantees that stencil blocks are allocated in the local NUMA node in
hybrid mode.

(a) Linear function (b) Z-order curve

Figure 5.7 – Different functions for accessing data in a two-dimension mesh. The
linear function in figure (a) does not preserve locality of data whilst the Z-order
curve in figure (b) preserves locality for improving later cache reuse.

The domain of RTM-proto is decomposed using the set of cartesian functions
provided by the MPI interface. However, since most implementations of the MPI
cartesian constructors barely consider the underlying topology of the machine (e.g.,
MPC and Intel MPI linearly distribute MPI tasks in the mesh), we designed our
own cartesian interface that maps the MPI tasks in a 3D cartesian mesh using a
z-curve function [Tra03]. Moreover, this user-level mapping ensures that the task
mapping is constant from a runtime to another.

To deal with non-contiguous messages due to halo-exchange, sender and receiver
tasks respectively pack and unpack halos into contiguous user-level buffers. Al-
though the MPI standard provides an interface for sending non-contiguous data,
we do not use this interface. We will detail the reasons of this choice later in sec-
tion 5.4.2.

As depicted in listing 5.1, RTM-proto is based on persistent point-to-point com-
munications that are started with MPI_Start(all) routines. Moreover, no collective

102 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

operations are involved in the computational loop. As regards communication op-
erations, receive buffers are posted at the beginning of each iteration to prevent
unexpected messages (line 16) and halos are sent after the stencil computation
(line 27). Because communication overlapping usually shows a minimal speedup
and complicates the writing of code (see chapter 4), the application only uses the
blocking semantics of MPI. Moreover, the MPI tasks wait the completion of all out-
standing send and receive requests using a call to MPI_Waitany (line 33). Unlike
MPI_Waitall, MPI_Waitany enables a slight opportunity for the application to over-
lap communications with useful computation. Indeed, as soon a message is received,
the communication buffer is unpacked to the stencil (line 36) and other communi-
cations not yet received may progress asynchronously to the unpacking operation.
To conclude with the full MPI version of RTM-proto, it obviously only requires the
MPI_THREAD_SINGLE level of thread-safety.

Listing 5.1 – Full MPI version of RTM-proto (simplified source code)

1 int main (int argc , char ∗∗ argv) {
2 MPI Request req [1 2] ;
3 int t , i ;
4 i n i t i a l i z e d oma i n () ;
5 i n i t i a l i z e d mp i b u f f e r s () ;
6 MPI Init(&argc , &argv) ; /∗ e q u i v a l e n t to MPI THREAD SINGLE ∗/
7
8 /∗ I n i t i a l i z e MPI b u f f e r s ∗/
9 for (i =0; i <6; ++i) {

10 MPI Send init (. . . , ne ighbor [i] , . . . , &req [i]) ;
11 MPI Recv init (. . . , ne ighbor [i] , . . . , &req [i +6]) ;
12 }
13
14 for (t=0; t<t max ; ++t) {
15 /∗ Post r e c e i v e b u f f e r s ∗/
16 MPI Starta l l (6 , &req [6]) ;
17
18 /∗ Compute s t e n c i l b l o c k s ∗/
19 for (i =0; i<blocks max ; i++) {
20 compute s t enc i l b l o ck (i) ;
21 }
22
23 for (i =0; i <6; ++i) {
24 /∗ pack ha l o s ∗/
25 pack ha los (i) ;
26 /∗ Send ha lo s ∗/
27 MPI Start(&req [i]) ;
28 }
29
30 for (i =0; i <12; ++i) {
31 int ne i g index ;
32 /∗ Wait f o r a l l communications ∗/
33 MPI Waitany (12 , req , &ne ig index , . . .) ;
34 i f (ne i g index >=6) {
35 /∗ Unpack ha l o s i f r e c e i v e r e que s t ∗/
36 unpack halos (ne ig index −6);
37 }
38 }
39 swap domain pointers () ;
40 }
41 MPI Final ize () ;
42 }

start

start

stencil

wait

halos

halos

5.4.1 Hybrid RTM-proto

In the following section, we give the implementation details of three hybrid versions
of RTM-proto and we present some guidelines to any developer who would hybridrize

5.4. Reverse Time Migration Proto-Application 103

an MPI domain-decomposition code with OpenMP. First, the MPI communications
of the master-only version are performed inside an OpenMP Master region. Then,
the hybrid version with taskification of communications encapsulates each MPI com-
munication into taks, which can be processed in parallel by the OpenMP threads.
Finally, the domain-decomposition design proposes a coding style close to the SPMD
programming.

Listing 5.2 – MASTER version of RTM-
proto (simplified source code)

1#pragma omp p a r a l l e l
2for (t=0; t<t_max ; ++t) {
3#pragma omp master
4{
5/∗ Post r e c e i v e b u f f e r s ∗/
6MPI_Startall (6 , &req [6]) ;
7}
8
9/∗ Compute s t e n c i l b l o c k s ∗/
10#pragma omp for schedu le (stat ic)
11for (i =0; i<blocks_max ; i++) {
12compute_block (i) ;
13}
14#pragma omp ba r r i e r
15
16#pragma omp master
17{
18/∗ Send ha l o s ∗/
19for (i =0; i <6; ++i) {
20pack_halos (i) ;
21MPI_Start(&req [i]) ;
22}
23
24/∗ Wait f o r communications ∗/
25for (i =0; i <12; ++i) {
26int neig_index ;
27MPI_Waitany(12 , req ,
28&neig_index , . . .) ;
29i f (neig_index >=6) {
30/∗ Unpack ha lo s i f
31r e c e i v e r e que s t ∗/
32unpack_halos (neig_index −6);
33}
34}
35
36swap_domain_pointers () ;
37}
38#pragma omp ba r r i e r
39}

Listing 5.3 – DD version of RTM-proto
(simplified source code)
#pragma omp p a r a l l e l
for (t=0; t<t_max ; ++t) {

/∗ Post r e c e i v e b u f f e r s ∗/
MPI_Startall (6 , &req [6]) ;

/∗ Compute s t e n c i l b l o c k s ∗/
for (i =0; i<blocks_max ; i++) {

compute_block (i) ;
}

/∗ Send ha l o s ∗/
for (i =0; i <6; ++i) {

pack_halos (i) ;
MPI_Start(&req [i]) ;

}

/∗ Wait f o r a l l communications ∗/
for (i =0; i <12; ++i) {

int neig_index ;
MPI_Waitany(12 , req ,

&neig_index , . . .) ;
i f (neig_index >=6) {

/∗ Unpack ha lo s i f
r e c e i v e r e que s t ∗/

unpack_halos (neig_index −6);
}

}

#pragma omp ba r r i e r
#pragma omp master
{

swap_domain_pointers () ;
}
#pragma omp ba r r i e r

}

5.4.1.1 Hybrid Programming with Single-Threaded Communications

The MASTER version depicted in listing 5.2 is parallelized using the incremental
approach described in section 5.1.1. The main for -loop is surrounded by a call
to pragma omp for construct to distribute stencil blocks among OpenMP threads
(line 10). Moreover, we statically decomposed the work using the schedule(static)
attribute since the workload of RTM-proto is well balanced. At the end of the sten-

104 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

cil computation, the OpenMP threads are synchronized using a barrier (line 14)
and the master thread starts all inter-node communications before waiting for them
using a call to MPI_Waitany (lines 16 to 35).

One benefit of this version is that it requires a low-level of thread safety
(MPI_THREAD_FUNNELED). Indeed, only the master thread is allowed to communi-
cate and no concurrent calls to the runtime are performed. Moreover, other threads
than the master thread are idle during all MPI communications because no work
can be performed until the communications are completed.

In addition to MPI communications, the master thread has also to manage halos
packing and unpacking (lines 20 and 32). These operations consequently increase
the execution time, especially if they are sequentially executed. To reduce this
overhead, the buffer packing and unpacking functions have been parallelized and
decomposed into OpenMP tasks (8 tasks per communication buffer). These tasks
are generated by the master thread and distributed by the OpenMP runtime to any
idle thread.

5.4.1.2 Hybrid Programming with Manual Taskification of Communi-
cations

The TASKS version is similar to the MASTER version, except that every MPI commu-
nication is encapsulated inside an OpenMP task region and all these regions can be
executed in parallel. Because several OpenMP tasks can be concurrently executed,
the MPI_THREAD_MULTIPLE is required for this version.

One of the major issues of the OpenMP standard is actually the lack of opti-
mizations for hierarchical memory systems such as NUMA architectures [Jin+11].
For example with the task directive, it is uncertain that the same task will be per-
formed by the same thread between two consecutive stencil iterations. For this
hybrid version of RTM-proto, the task construct has been removed and replaced
with a regular if-statement. Communication tasks are statically distributed among
available OpenMP threads and each thread selects which task it has to perform
thanks to its thread ID. This transformation is legitimate as long as they are as
many or more physical cores as OpenMP tasks and if no imbalance is noticed be-
tween threads entering the communication tasks. For RTM-proto, it limits the
execution on machines with at least 12 cores per compute node (the 3D-cartesian
mesh requires 12 communications tasks). Moreover, a moderate imbalance is ob-
served since the OpenMP threads are explicitly synchronized before entering the
task directive.

5.4.1.3 Highly Parallel Hybrid Programming using Domain Decompo-
sition

The Domain Decomposition (DD) code depicted in listing 5.3 is similar to the SPMD
programming previously described in section 5.1.2. The domain is equitably di-
vided into subdomains as for the full MPI version and subdomains are distributed
to OpenMP threads according to their thread IDs. At the beginning of the code,
each thread determines (according to its ID) the subdomain it has to process and
initializes it. Inside a node, the stencil is contiguously allocated in memory and
whenever an OpenMP thread needs a value from another subdomain, it directly
accesses it by reading the main memory. Previous studies have shown good perfor-
mance using the SPMD programming where halos are privatized into thread-private

5.4. Reverse Time Migration Proto-Application 105

memory regions [KC03; Ber+05]. This approach has however not been investigated
in this thesis since it requires as many communication buffers as the full MPI ver-
sions.

This hybrid version of RTM-proto actually provides the maximum parallelism
since all OpenMP threads participate to MPI communications. The only sequential
part of the code is a synchronization barrier used to wait the completion of MPI
communications and to swap pointers referencing the current and next domains. To
maximize locality between OpenMP threads, the subdomains are distributed to the
OpenMP threads following a z-curve function previously presented in figure 5.7(b).
This distribution ensures that the neighborhood of an OpenMP thread is physically
close and the memory accesses are consequently more efficient. Finally, the applica-
tion associates a tag to every MPI message in order to distinguish a message from an
OpenMP thread to another. Before being sent, MPI messages are tagged with the
ID of the remote thread and receiver threads tag the corresponding receive requests
with their own ID.

5.4.2 Discussion on Non-Contiguous Data

To deal with non-contiguous messages, the MPI standard provides several methods
to define user-level data types, which are called derived data types. With derived
data types, buffer packing and unpacking operations are not performed by the appli-
cation anymore and the runtime has now the opportunity to optimize the transmis-
sion of non-contiguous messages. For our RTM-proto application, we however did
not use this interface and halos are manually managed as depicted in figure 5.8(a).
They are several reasons to this. First, specifying the layout of the non-contiguous
data is usually a laborious work, especially for multi-dimensional cartesian meshes
where the gap between segmented data is not always constant. Second, most MPI
runtimes do not efficiently implement data types and non-contiguous data are copied
into buffers which are internally managed by the runtime. This behavior is conse-
quently similar to the one manually performed by the application and no speedup is
expected from derived data types. As depicted in figure 5.8(b), a few MPI runtimes
are actually able to suppress two memory copies when using derived data types
in a shared-memory context. This is for example the case with thread-based MPI
runtimes where an MPI task can directly access the data from another task inside
a compute node. However, although data are directly accessible in shared memory,
the MPI standard still requires a memory copy. Furthermore, it is uncertain if the
network efficiently enables zero-copy mechanism for derived data types [WWP04].

In a hybrid context where one unique MPI task is allocated per compute node,
MPI is not used for intra-node communications and the OpenMP threads directly
access data using memory read operations (see figure 5.8(c)). As a consequence,
the memory traffic is reduced and because no halos are involved for intra-node
communications, more memory is available for larger simulations.

5.4.3 Experimental Results

In the following section, we compare the performance of the three hybrid versions
and the full-MPI version of RTM-proto previously described in section 5.4. We
first detail an algorithm for progressing MPI messages in a multi-threaded context.
This optimization aims at minimizing the memory traffic while polling, which con-
sequently improves the computation time of memory-bandwidth bound applications

106 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

(a) Manual halo packing/unpacking with MPI

(b) Halo swaps with MPI and derived
data types

(c) Direct access to data with OpenMP

Figure 5.8 – Halo swaps with the domain decomposition method in a shared-
memory context. In figure (a), the user manually packs and unpacks halos into
contiguous buffers and three memory copies are involved. In figure (b), optimized
MPI derived data types are used and the runtime can suppress two memory copies.
This is for example the case with thread-based MPI. With OpenMP in figure (c),
threads directly access data from the neighborhood and no more halos are allocated
for intra-node communications.

like our RTM-proto application. We then present the results of RTM-proto on top
of MPC and Intel MPI, two MPI runtimes implementing the MPI_THREAD_MULTIPLE
level of thread-safety with a support of high-speed networks.

5.4.3.1 Multi-threaded Message Progression

In hybrid mode with one MPI task per compute node, a unique set of network
endpoints is generally allocated for the entire compute node. Moreover and as we
will discuss in section 5.5.1, the MPI standard combined with a shared memory pro-
gramming model makes difficult the efficient use of several vrails (concept previously
presented in section 4.4.2). As a consequence to a polling-based message progression
in hybrid mode, all idle threads attempt to access the same CQs, which leads to a
high memory traffic and a high contention on these structures. For example with
RTM-proto, we have experimented significant slowdown and a large imbalance of
the computation functions while using the polling-based message progression.

The Infiniband specifications propose the event-driven method, which does not

5.4. Reverse Time Migration Proto-Application 107

require to access the completion queues to detect the arrival of new messages. How-
ever, generating an event for each incoming message can lead to significant overhead.
First, on fully-subscribed systems, the progression thread, which is scheduled follow-
ing an interruption can be executed on any core and would potentially de-schedule
another computing thread. Then, section 2.2.4 has previously shown that an event
driven message progression can be subject to overheads due to a longer reactivity
than the polling-based to detect incoming messages.

To minimize the memory traffic while waiting for network messages, we designed
the multi-threaded progression policy depicted in algorithm 2, which optimizes the
polling of completion queues. The CQ polling is moved to a critical section only
accessible by a unique thread and which extends from line 7 to line 25. As for
Collaborative-Polling presented in chapter 4, each MPI task implements a pending
list which stores the CQEs waiting for being processed by the task. Moreover, if
several threads (e.g., OpenMP threads) from the same MPI tasks are idle, multiple
CQEs from the same pending list can be processed in parallel.

When a thread waits a message, it first tries to poll the pending list of the MPI
tasks it belongs to (line 2). If no messages are found and if the critical section is
free (line 7), the polling thread accesses the CQs (line 10) and disseminates CQEs
into the appropriate pending lists. Otherwise the critical section is busy and the
polling thread goes to sleep (line 27). In line 11, some CQEs may be waiting in the
pending lists. In this case, the polling thread releases other threads waiting on the
conditions (line 27) and leaves the polling function since the incoming CQEs may
be for any threads. Otherwise if no CQEs are pending and if the polling thread
has called the progress function in a blocking-mode (line 17), it returns on line 10
and polls again the CQs. This technique aims at maximizing cache reuse as the
same thread successively accesses the CQs and data related to polling are already
cached. In those cases where the polling thread calls the progression function in a
non-blocking mode, a signal is emitted on the condition (line 22), the next thread
to poll is scheduled and the polling thread leaves the progression function.

5.4.3.2 Conditions of the Evaluation

In the following section, we detail the environment of the evaluation. Both MPI
runtimes and all versions of RTM-proto have been compiled with the same Intel
Compiler and the same OpenMP runtime provided by the Intel Compiler suite ver-
sion 13.0.0.079. Moreover, we enabled the -O3 compilation flag and -xHost/-xAVX
flags are selected according to the underlying architecture. Concerning MPC, its
scheduler has been disabled in hybrid mode and the scheduling of the OpenMP
threads is now only managed by the OS. All RTM-proto versions have been in-
strumented with RDTSC counters4, which register the start and the end of each
regions into thread-private arrays. Furthermore, experiments have proven that the
instrumentation interface has a negligible impact on performance (1% overhead).

4The Read Time Stamp Counter (RTSC) counts the number of CPU cycles since reset

108 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

Algorithm 2 Multi-threaded message progression for hybrid programming
Input:

• busy: shared variable to determine if the current task is the first to enter the polling
function.

• cond: shared condition variable used for signaling threads waiting on the polling
function.

• mutex: shared mutex associated to the condition variable cond.

• retry: shared variable used for indicating if the polling function must be re-executed
by the next thread to poll (retry = 1).

• blocked: integer that indicates whether the polling function is called in blocking mode
(e.g., MPI_Wait) or not (e.g., MPI_Test).

1: function Progress_function
2: Poll_pending_lists
3: if message found then
4: return
5: end if
6: mutex_lock(mutex)
7: if busy == 0 then . If nobody is currently polling
8: busy = 1
9: mutex_unlock(mutex)

10: Poll_CQ . Poll Send and Recv Completion Queues
11: if at least 1 CQE waiting on pending lists then
12: retry = 0
13: mutex_lock(mutex)
14: cond_broadcast(cond)
15: mutex_unlock(mutex)
16: else
17: if blocking = 1 then . Function called in blocking mode
18: go to line 10
19: else
20: retry = 1
21: mutex_lock(mutex)
22: cond_signal(cond) . Release the next thread to poll
23: mutex_unlock(mutex)
24: end if
25: end if
26: else
27: cond_wait(cond) . Non-polling threads are waiting
28: if retry == 1 then
29: go to line 7
30: end if
31: mutex_unlock(mutex)
32: end if
33: end function

5.4. Reverse Time Migration Proto-Application 109

Figures 5.9 to 5.11 decompose the CPU time of RTM-proto into six different
regions. These regions are represented in listing 5.1 and are detailed as follows:

• stencil: stencil update. With hybrid versions, this timer implicitly includes
the time spent by OpenMP threads for accessing neighbor halos in shared
memory;

• buffer: halo packing and unpacking;

• start: MPI buffer posting (send and receive requests initiated with
MPI_Start(all);

• wait: idle time due to MPI communications (e.g., MPI_Waitall, MPI_Wait,
MPI_Waitany);

• idle: idle time due to OpenMP synchronization directives (e.g., Barrier,
Master). This time is actually the total time subtracted from the time inside
each individual regions and may include the overhead due to the instrumen-
tation;

MASTER (see section 5.4.1.1), TASKS (see section 5.4.1.2), and DD (see section 5.4.1.3),
are respectively referring to as the version where only the master thread commu-
nicates using MPI, the version encapsulating MPI communications into OpenMP
tasks and the hybrid domain decomposition version where OpenMP threads inde-
pendently communicate inter-node halos using MPI.

The reference point to compare hybrid versions is the full MPI version that is
denoted as FULLMPI.

FULLMPI MASTER TASKS DD
0

50,000

100,000

150,000

200,000

1.52 · 105
1.74 · 105

1.86 · 105 1.81 · 105

RTM versions

C
P
U

ti
m
e
(s
)

(l
ow

er
is

b
et
te
r)

(a) MPC results (4 vrails, 1 HCA)

FULLMPI MASTER TASKS DD
0

50,000

100,000

150,000

200,000

1.51 · 105
1.73 · 105 1.78 · 105 1.77 · 105

RTM versions

C
P
U

ti
m
e
(s
)

(l
ow

er
is

b
et
te
r)

stencil

buffer
start

wait

idle

(b) Intel MPI results

Figure 5.9 – Comparison between RTM-proto FULLMPI, MASTER, TASKS and DD
versions on Thin Cluster , 2,048 cores (128 MPI tasks, 16 OpenMP threads per MPI
task, 2, 5603 domain size, 2,000 iterations)

5.4.3.3 Thin Compute Nodes

Figure 5.9 reports the results of all RTM-proto versions with MPC and Intel MPI
on 128 compute nodes from the Thin Cluster for a total of 2,048 physical cores and
a domain of size 2, 5603. As we can see, both runtimes perform similarly on all
versions of the code and the introduction of OpenMP has two direct implications
compared to the FULLMPI version. First, the time inside halo packing and unpacking
is significantly reduced since there is no halo for intra-node communications. Second,

110 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

we notice a slight overhead in stencil computation in hybrid versions. It is due to
the OpenMP threads that require distant NUMA accesses while updating cell on
the subdomain edges. This observation is not true for the FULLMPI version since no
data are shared and memory accesses are exclusively local to the NUMA node.

We now compare the three hybrid versions together. The figure shows that the
MASTER version dramatically reduces the time in MPI wait functions. Nevertheless,
as only one thread participates to MPI communications, it represents a large portion
of code that cannot be parallelized. As a result, the Amdhal’s law does apply on
MPI communications and the idle time increases. The TASKS version should a priori
outperform the MASTER version as it parallelizes communications on 12 threads and
reduces the sequential portion of the code. This expectation is actually not true for
the two runtimes and the TASKS version gets a high overhead in the wait functions.
On 16-core compute nodes, the DD version also fails to outperform the FULLMPI
version. Although the time spent inside buffer packing/unpacking and idle regions
is low with the DD version, the communication time is larger than the FULLMPI version
due to the overhead generated by multi-threaded accesses to the MPI runtime.

5.4.3.4 Large Compute Nodes with Single HCA

Figure 5.10 reports the results of RTM-proto on 16 compute nodes from the Large
Cluster with 2,048 MPI tasks, a domain size of 2, 5603 and 500 iterations. Although
the cluster embeds 4 HCA, we only use a single HCA for these experiments and
multirail configurations will later be discussed in section 5.5. MPC sets up 16 vrails
since this configuration gives the best performance and the runtime was configured
for using one HCA. Moreover, the multi-threaded algorithm presented in Listing 2
was implemented into MPC and activated for this evaluation on these large compute
nodes. Regarding Intel MPI, it accesses the Infiniband network through the DAPL
fabric and uses the same HCA than MPC.

FULLMPI MASTER TASKS
0

100,000

200,000

300,000

1.85 · 105

2.63 · 105

2.2 · 105

RTM versions

C
P
U

ti
m
e
(s
)

(l
ow

er
is

b
et
te
r)

(a) MPC results (16 vrails, 1 HCA)

FULLMPI MASTER TASKS
0

100,000

200,000

300,000

2.2 · 105 2.29 · 105

1.6 · 105

RTM versions

C
P
U

ti
m
e
(s
)

(l
ow

er
is

b
et
te
r)

stencil

buffer
start

wait

idle

(b) Intel MPI results

Figure 5.10 – Comparison between RTM-proto FULLMPI, MASTER and TASKS ver-
sions on the Large Cluster , 2,048 cores (16 MPI tasks, 128 OpenMP threads per
MPI task, 2, 5603 domain size, 500 iterations).

When focusing on MASTER and TASKS versions, both versions significantly reduce
the time inside wait and buffer packing/unpacking functions. However, as expected
with the increasing number of cores, these two hybrid versions generate a lot of
imbalance as only a minor subset of OpenMP threads communicates using MPI.
It results in a high idle time, even for the TASKS version that only parallelizes

5.4. Reverse Time Migration Proto-Application 111

communications on 12 tasks while the 116 other cores are idle. We now compare
the MASTER and TASKS versions to the FULLMPI version. As we can see on the figure,
Intel MPI outperforms MPC on the MASTER and TASKS versions respectively with a
speedup of 1.15 and 1.38. We suppose it is due to Infiniband communications that
are better optimized by the Intel runtime than they are for MPC. As an example
with the MASTER version, an overhead of x seconds in the MPI communications
consequently results in 127 × x seconds of additional idle time. In this case and
compared to Intel MPI, MPC gets an overhead of 17% in the wait functions, which
in part contributes to the 16% overhead of the idle time. This observation is not
valid for the FULLMPI version where MPC outperforms Intel MPI certainly because
of the single copy of intra-node communications (see section 5.4.2).

Figure 5.11 focuses on the results from the DD version. The IMPI/WAIT runtime
refers to as Intel MPI with the WAIT mode activated. According to the documen-
tation from Intel, this mode allows the MPI tasks to wait the reception of messages
without polling the network endpoints. The IMPI/SOCKET version corresponds to In-
tel MPI configured with one MPI rank per level-2 NUMA node for a total of 64 MPI
ranks and 32 OpenMP threads per MPI rank (I_MPI_PIN_DOMAIN=omp:compact).

As shown on the figure, MPC reduces by a factor of 3.1 the time inside the
MPI_Wait functions from the FULLMPI version to the DD version. In the Large Cluster ,
NUMA effects are substantial, especially for communications traversing the BCS (see
figure 1.5 in section 1.3.6). Without optimized derived data types, section 5.4.2 has
previously established that the communication model of MPI requires at least three
memory copies for swapping halos in a shared-memory context. We believe that the
FULLMPI version generates much more memory traffic than the DD version. Thus, the
FULLMPI consequently leads to a larger portion of time in MPI_Wait functions due to
the saturation of the memory bandwidth. Moreover, the DD version fully parallelizes
the network communications compared to other hybrid versions. Indeed, it has
to be noticed that the same amount of data is exchanged in the network between
the three hybrid versions. The only difference is that messages are shorted and in
largest number for the DD version. Consequently to the higher number of messages,
communications benefit from a higher potential of overlap.

With Intel MPI in its default configuration (denoted as IMPI in figure 5.11), the
DD version gets a huge overhead due to the 128 OpenMP threads simultaneously
accessing the MPI runtime. We believe that Intel MPI does not efficiently allow
several threads to process message reception in parallel, which leads to significantly
delay the message progression. The WAIT mode, generally used for saving CPU time
in a fully-subscribed mode also preserves the memory bandwidth. At some point,
the WAIT mode improves the execution time and a speedup of 1.16 is observed inside
wait functions. Despite this improvement, Intel MPI however runs the DD version
4.32 times slower than MPC. Regarding Intel MPI with one rank per level-2 NUMA
node (IMPI/SOCKET), it solves a large part of the performance issue and enhances
the execution of the DD version by a factor of 4.7. This optimization is nevertheless
insufficient to reach the performance of MPC. It is due to a larger amount of time
inside wait functions because of intra-node MPI communications between shared
memory tasks.

Table 5.1 finally reports the physical memory used for the FULLMPI and DD ver-
sions of RTM-proto with MPC and Intel MPI. From the total memory used, the
table extracts the memory dynamically allocated by the application, which includes
various buffers, array of MPI requests and the stencil grid. Regarding the mem-

112 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

IMPI MPC
0

200,000

400,000

600,000

800,000

2.2 · 105
1.85 · 105

MPI runtime (FULLMPI version)

C
P
U

ti
m
e
(s
)

(l
ow

er
is

b
et
te
r)

MPCIMPI IMPI
/WAI

T

IMPI
/SOC

KET

1.35 · 105

6.89 · 105

5.84 · 105

1.48 · 105

MPI runtime (DD version)

stencil

buffer
start

wait

idle

Figure 5.11 – Comparison between Intel MPI in various configurations and MPC
on FULLMPI and DD versions with 2,048 cores from the Large Cluster (16 MPI tasks,
128 OpenMP threads per MPI task, 2, 5603 domain size, 500 iterations). IMPI/WAIT
refers to as Intel MPI with WAIT-mode activated whereas IMPI/SOCKET creates one
MPI task per level-2 NUMA node

ory allocated by the application, 17.2% of memory is saved by mixing MPI with
OpenMP compared to the full-MPI version of the code. This gain is due to halos,
which are not duplicated for intra-node communications between OpenMP threads.
Furthermore, we notice that more memory than 17.2% is actually saved with 19.9 %
of total memory for MPC and 28.5 % for Intel MPI compared to the full-MPI RTM-
proto code. Indeed, combining MPI with OpenMP reduces by a factor of 128 the
total number of MPI runtimes instantiated.

One would also notice that MPC consumes more memory than Intel MPI in
hybrid mode. It is because, in hybrid mode, MPC allocates some resources that
scale according to the number of cores on the machine. It includes for examples
network buffers over all NUMA nodes (see section 3.3.3). As far as we know, the
MPI runtime from Intel keeps a constant amount of memory per process, whatever
the underlying architecture and the number of cores available in hybrid mode.

Intel MPI with one MPI rank allocated per level-2 NUMA node (In-
tel MPI/SOCKET) is a relevant trade-off. Indeed, the total memory saved in this
configuration is 26.6 % against 28.5 % for the regular DD version and the applica-
tion gets a speedup of 4.67 compared to the full-MPI version. This configuration is
however suboptimal in both execution time and memory since it implies additional
buffers for halos and intra-node communications using MPI.

5.5 Limitations to Hybrid Mode

For runtime designers, an efficient hybrid support implies to carefully consider the
overhead due to concurrent accesses to the runtime internals. This point includes
for example the queues for message matching, the MPI requests (since two threads
cannot simultaneously use the same request ID) and operations on the registration
cache and the pool of network buffers.

5.5. Limitations to Hybrid Mode 113

Memory (total) Memory (application)
Version Runtime MB % saved MB % saved

FULLMPI
MPC 168,462 159,448Intel MPI 187,114

DD
MPC 134,937 19.9 132,053 17.2Intel MPI 133,734 28.5

DD Intel MPI/SOCKET 137,425 26.6 136,460 14.4

Table 5.1 – Comparison of the physical memory used for the FULLMPI and DD
versions of RTM-proto with MPC and Intel MPI

Regarding the MPI standard, it was not originally defined to allow multiple
threads to communicate independently: they have no MPI rank and they constantly
need to access the context of the MPI task they belong to for communicating. This
limitation is actually due to the matching semantics of MPI that ignores the notion
of threads. Let us consider the hybrid configuration depicted in figure 5.12. Two
OpenMP threads share the same address space and concurrently communicate in-
dependent messages to the same remote MPI task but for two different destination
threads. This communication pattern is what is typically happening in our DD ver-
sion of RTM-proto. In such a case, the two messages conflict since they access the
context of the same MPI task while thread-to-thread communications are indepen-
dent. As a consequence, the critical path involves multiple synchronization points,
which results in overhead.

Figure 5.12 – Thread-to-thread communications using the actual interface of the
MPI standard. A synchronization is required between thread 0 and thread 1 to
access the context of the MPI task they belong to.

Another drawback of the current MPI interface concerns multi-HCA and multi-
port configurations. In the previous section 5.4.3, the evaluation was performed
using only one HCA and, in this case, the DD version obtained the best results.
Figure 5.13 now compares the FULLMPI version of RTM-proto with 1 and 4 HCA(s)
(both using 16 vrails) to the hybrid DD version. As we can see, the FULLMPI version
using 4 HCAs outperforms the one using 1 HCA with a speedup of 4 in wait func-
tions. Compared to the DD version, the FULLMPI version with 4 HCAs is now the
configuration that gives the best results compared to other hybrid versions.

With the current MPI interface, providing an efficient multi-rail configuration
for hybrid applications is not an easy operation. First, it is impossible for the
runtime to determine if two messages being exchanged by two different threads are

114 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

FULL
MPI

1 HCA

FULL
MPI

4 HCAs
DD

0

50,000

100,000

150,000

200,000
1.85 · 105

78,475.61

1.35 · 105

RTM versions

C
P
U

ti
m
e
(s
)

(l
ow

er
is

b
et
te
r)

stencil

buffer
start

wait

idle

Figure 5.13 – Comparison between the FULLMPI version of RTM-proto with 1 HCA,
the FULLMPI version with 4 HCAs and the DD hybrid code on 2,048 cores from the
Large Cluster (16 MPI tasks, 128 OpenMP threads per MPI task)

independent. Indeed, this information is manually handled by the user who generally
tags MPI messages with a unique value for each pair of threads. A second solution
which is barely used consists in allocating one distinct communicator for each pair
of threads. One runtime aware of these user-specific information would be able to
independently route messages to different HCAs according to the MPI tag or the
value of the communicator. It is however evident that the two solutions are both
(1) not portable from an MPI runtime to another and, (2) inconvenient for users
since applications must be rewritten to integrate such a design.

A second issue is the lack of topology information on where the threads are
executing in hybrid mode. As an example, the current OpenMP standard [Ope13]
does not expose any interface that could be used by MPI runtimes to topologically
locate OpenMP threads on the compute nodes. Focusing on our vrail contribution
proposed in section 4.4.2, the receiver-driven routing strategy requires the runtime
to collect where the remote threads are running. Since the MPI runtime cannot
identify a thread among others, this solution simply becomes unenforceable. As
a second proposition, the sender-driven message routing strategy could be used to
send messages through the closest HCA from the sender thread. This solution has
however been previously discarded because non-optimal. In fact, the only way for
achieving multi-rail optimizations for hybrid applications is to split every single MPI
message in as many fragments as HCAs available on the compute node and send
each fragment through different HCAs. This optimization is already available in
mainstream MPI runtimes and efficiently improves the communications of multi-rail
configurations [LVP04; MGN10]. Stripping messages however requires to consider
some overhead because the receiver has to poll all HCAs to recompose the previously
split message.

5.5.1 MPI Endpoints and Unified Runtimes

The concept of MPI endpoints was originally designed as a part of the MPI 3.0
standard. Several interfaces were explored for integrating MPI endpoints to the
standard but the MPI Forum finally delayed this concept.

5.5. Limitations to Hybrid Mode 115

We define as an MPI endpoint an entity that is able to directly and independently
communicate MPI messages. Conceptually, an MPI endpoint corresponds to an
MPI rank attached into a specific communicator. Once the communicator created
and the endpoints allocated, the threads can attach to endpoints and make MPI
calls using the resources of this endpoint. Let us consider this concept with a 1:1
mapping, where an MPI endpoint is accessible by a unique OpenMP thread. In
such a configuration, an OpenMP thread could directly communicate data to a
remote OpenMP thread and thread-to-thread communications could independently
perform in parallel. Thus, MPI runtime becomes aware of the overlying running
threads (e.g., OpenMP threads) and considers them as fully-fledged MPI ranks. As
a consequence, matching and sequence numbering occur at a thread level and the
overheads spotted in section 5.3.2 are eliminated.

Recently, Dinan et al. exposed a new dynamic semantics that does not restrain
the maximum number of threads to a static value [Din+13]. This powerful interface
keeps the backward compatibility with the current MPI interface and only requires
a few new MPI functions to be implemented. In the research paper, the authors give
an example of their interface using OpenMP. This example is depicted in listing 5.4
and detailed bellow.

For each parallel region, a communicator inherited from MPI_COMM_WORLD is cre-
ated by calling MPI_Comm_create_endpoints. It should be noted that this opera-
tion could slow down the parallel region since (1) it involves a collective operation
and, (2) this communication needs to be protected by a master directive. As a
consequence, this solution would not be efficient with the fine-grain parallelization
described in section 5.1.1 where parallel sections are generally short and numerous.
Once the creation of endpoints successfully accomplished, nt endpoints are created
and ep_comm contains as many communicators as the number of endpoints (i.e.,
n). Finally, each thread attaches to the communicator associated to the endpoint
and this communicator is used to distinguish an OpenMP thread among others in
MPI calls (line 21 and 23).

Listing 5.4 – Example of a hybrid MPI+OpenMP program where endpoints are
used to enable all OpenMP threads to participale in a collective MPI_Allreduce
operation (listing extracted from [Din+13])

1 int main (int argc , char ∗∗ argv) {
2 int world_rank , t l ;
3 int max_threads = omp_get_max_threads () ;
4 MPI_Comm ep_comm[max_threads] ;
5
6 MPI_Init_thread(&argc , &argv , MULTIPLE, &t l) ;
7 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank) ;
8
9 #pragma omp p a r a l l e l
10 {
11 int nt = omp_get_num_threads () ;
12 int tn = omp_get_thread_num () ;
13 int ep_rank ;
14 #pragma omp master
15 {
16 MPI_Comm_create_endpoints (MPI_COMM_WORLD,
17 nt , MPI_INFO_NULL, ep_comm) ;
18 }

116 Chapter 5. Evaluation of MPI Runtimes in Hybrid Context

19 #pragma omp ba r r i e r
20 MPI_Comm_attach(ep_comm[tn]) ;
21 MPI_Comm_rank(ep_comm[tn] , &ep_rank) ;
22 . . . // d i v i d e up work based on ’ ep_rank ’
23 MPI_Allreduce (. . . , ep_comm[tn]) ;
24
25 MPI_Comm_free(&ep_comm[tn]) ;
26 }
27 MPI_Finalize () ;
28 }

A unified runtime combines several programming models into the same execution
model [PJN08]. Programming models can consequently collaborate together, share
the same resources in memory or communicate informations concerning their own
behavior.

We believe that a unified MPI+OpenMP would give a convenient solution for
designing the concept of MPI endpoints. First and in order to use our vrail design
with the receiver-driven routing strategy depicted in section 4.4.2, threads must not
migrate between NUMA nodes. Indeed, if a thread migrates and in the meanwhile, it
receives a message in the wrong NUMA node, this message could never be received.
In this case, a unified runtime would allow the OpenMP runtime to communicate the
thread binding policy and the topological location of every OpenMP threads to the
MPI runtime. Thus, our vrail design with the receiver-driven routing strategy could
be used in this case. Second, MPI endpoints using the interface presented in 5.4
must be re-created for each new parallel region. It is because the placement and
the number of OpenMP threads can change between consecutive parallel regions.
In this context, if the OpenMP runtime assumes the same configuration of threads
from a parallel region to another, the MPI runtime could reuse the same endpoints
and skip their creation.

As a future work, we plan to implement MPI endpoints through the dynamic
interface proposed by Dinan et al. [Din+13]. Because MPC provides a unified sched-
uler for hybrid MPI+OpenMP programming, we plan to develop this interface inside
MPC. The section 5.3.2 has however demonstrated that a unique matching queue
shared between several OpenMP threads may be more efficient since an OpenMP
thread can progress communications from another thread. Thus, MPI endpoints
may prevent this effect from happening because every OpenMP thread has now
its own matching queue. Finally, the Collaborative-Polling presented in chapter 4
would be an efficient solution to develop MPI endpoints while keeping the ability
for an OpenMP thread to progress messages from other threads when idle.

Chapter 6

Conclusion and Future Work

The thesis is focused on improving the memory consumption and the performance
scalability of network communications in HPC clusters of multiprocessors. It is
concentrated on high-performance interconnects namely Infiniband and targets the
MPI interface. With the purpose of showing the relevance of the contributions, the
thesis relies on the multi-threading of MPI tasks inside an MPI runtime called MPC
(MultiProcessor Computing).

Chapter 1 presented the design of nowadays supercomputers and the program-
ming models commonly used to develop parallel applications. The chapter concluded
on the six more important challenges an MPI runtime should overcome to efficiently
use current HPC clusters and upcoming new platforms. Chapter 2 focused on in-
terconnection networks for HPC. After introducing the overhead generated by the
kernel-level communication libraries, we described some capabilities of recent in-
terconnects for optimizing network performance and memory scalability. We then
examined the high-speed Infiniband network and provided an in-depth analysis of
the low-level verbs interface. More specifically on the Infiniband network, we finally
emphasized that (1) the network is unreliable and only supports reliable communi-
cations through the connection-based protocols and, (2) the current programming
interfaces do not support a fully independent progression of MPI messages.

6.1 Summary of the Research Contributions

The first contribution proposed new methods for enhancing scalability in memory
of MPI runtimes while providing competitive results compared to the related work.
Chapter 3 started with the demonstration that network endpoints and network
buffers are by far the two predominant factors involved in the memory consumption.

To reduce the number of network endpoints required by connection-oriented
high-speed networks, we proposed a signalization network that virtually and reliably
exposes a fully-connected topology. Messages are routed through a torus topology
and the design provides an extensible interface for developing user-level communi-
cation algorithms. Implemented inside MPC, the signalization network allows fast
peer connections over Infiniband and drives control messages of the eager RDMA
protocol while maintaining a constant amount of per-core memory.

The multi-threaded virtual rails (vrails) proposed a novel strategy for sharing
network endpoints between MPI tasks in a shared-memory MPI runtime. The con-
tribution focused on multi-rail configurations where several HCAs are symmetrically
connected in pairs and one vrail is created per HCA. Two routing strategies were
examined and the thesis established that the receiver-driven polling strategy (i.e.,
the vrail to use is determined according to the location of the receiver) provides
the best results because it preserves the data locality of polling-related structures.
Furthermore, we proposed a new strategy for rendezvous messages by designing a
receiver-driven routing strategy in a multi-vrail context. On 128-core compute nodes

118 Chapter 6. Conclusion and Future Work

equipped with 4 HCAs, our approach reduces by 16,384 the number of network end-
points compared to the multi-rail strategy commonly embraced by mainstream MPI
runtimes. Moreover, and on the same architecture, the contribution has demon-
strated performance improvements using a single HCA. On mono-HCA configura-
tions, we proposed to duplicate network structures across the compute node and to
allocate one vrail per NUMA node. Although this strategy slightly increases the
memory consumption, it significantly accelerates network communications. With
16 vrails per compute node and a micro-benchmark performing AllToAll communi-
cations, small and large messages respectively get speedups of 20 and 2 compared
to one unique vrail shared by the whole compute node. This improvement is due to
network resources that are locally accessed by the MPI tasks and because less con-
tention is observed on synchronization points. More specifically, the BCS bandwidth
is preserved and network communications passing this NUMA interconnect are less
affected. We finally evaluated the contribution on a real-world astrophysical appli-
cation where we show both a near perfect memory scaling and results comparable
to the related-work up to 6,144 cores.

Auto-reshaping of eager RDMA buffers established new protocols for dynami-
cally re-adjusting the memory attributed to network buffers during execution. This
runtime optimization aims at reserving the precise amount of buffer memory cor-
responding to the communication volume of the MPI application being executed.
We first proposed a protocol for enlarging memory regions of RDMA buffers for
accelerating communications if a previous allocation has been under-evaluated. The
experimental evaluation shows good results and a memory consumption reduced by
a factor of 1.7 compared to the best configuration achieved by manually tweaking
RDMA buffers. We then focused on an AMR application from CEA and demon-
strated that the memory consumed (1) continuously increases during execution and
(2) briefly grows during compute phases. As a result, previously allocated eager
RDMA buffers could require the job to abort due to the shortage of memory fol-
lowing a memory increase. Thus, with the purpose of releasing memory, we finally
introduced three different algorithms for reducing and disconnecting RDMA chan-
nels if the free memory becomes short.

The second contribution proposed a runtime optimization for improving overlap
capabilities of MPI applications. Chapter 4 investigated several threaded message
progressions and concluded that such progressions may generate an overhead. We
then proposed a Collaborative-Polling approach where an idle MPI task can as-
sist the message progression of any other busy MPI task (e.g., a task performing a
computation loop). The experiments on the NAS Parallel Benchmarks have demon-
strated a significant improvement of MPI wait functions due to a large number of
messages stolen. Moreover, the Collaborative-Polling is able to give a speedup of
2 on real-world scientific applications and an in-depth study has proven the abil-
ity of the Collaborative-Polling to improve the asynchronous progression of control
messages involved in the rendezvous protocol. Finally, this contribution led to one
publication in a scientific conference [Did+12] and another in a journal [Did+13].

The third contribution evaluated the multi-threaded capability of MPI runtimes
in hybrid MPI+threads context. Chapter 5 emphasized the need of an MPI runtime
where several threads can concurrently and efficiently access the MPI runtime. We
implemented our multi-threaded communication layer in MPC and compared its
performance to Intel MPI. Indeed, both the runtimes combine both (1) the highest
level of thread-safety and (2) an access to high-speed networks including Infini-

6.2. Scope of the Contributions 119

band. On hybrid MPI+PThreads latency benchmarks with 96 cores, MPC shows a
speedup of 3.5 and 34.8 respectively on eager and rendezvous protocols compared
to Intel MPI. We then evaluated both MPI runtimes on a seismic modeling applica-
tion hybridized with OpenMP. Different hybrid versions of the code were examined
and the domain decomposition method is the only version that fully parallelizes MPI
communications. With one Infiniband HCA and 128-core compute nodes, MPC with
the hybrid domain decomposition (DD) method outperforms the full-MPI version of
the code with a speedup of 1.37. As regards Intel MPI, we highlighted a thread
concurrency issue with the DD method and one MPI task per compute node. With
one MPI task per level-2 NUMA node (4 MPI tasks per compute node), Intel MPI
enhances the execution time of the DD version by a factor of 4.7 but the execution
time is still 9% slower than MPC. In addition to reducing the execution time, the
DD version with 1 MPI task per compute node saves 17.2% of memory compared
to the full-MPI version. Overall, 19.9% and 28.5% of memory is saved respectively
with MPC and Intel MPI due to the lower number of MPI runtimes instantiated.
Finally, we presented some limitations of the hybrid mode due to the current MPI
interface and we showed how the MPI endpoints could solve these limitations.

6.2 Scope of the Contributions

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

0

20

40

60

80

100

Year

%
S
y
st
em

S
h
ar
e

Myrinet
Infiniband
1-GigE
10-GigE
Other

Figure 6.1 – Interconnect family system share over ten years, from 2003 to 2013
(from TOP500’s website [Top])

Over a short period of ten years in High Performance Computing, interconnect’s
landscape has been considerably evolving. First and as depicted on figure 6.1,
Myrinet was leading the market up to 2004 and began falling to give the way to
Ethernet and Infiniband interconnects. Furthermore, although the graph seems to
stabilize over the last three years, it is uncertain if Infiniband will remain a valuable
network for future HPC platforms. As a consequence, it is important to propose
contributions that will serve future supercomputers based on different hardware and
software solutions.

First, the Collaborative-Polling relies on a limitation of actual Infiniband HCAs
that provide only a few mechanisms to progress MPI messages in hardware. With

120 Chapter 6. Conclusion and Future Work

the offload of collective communications on the HCA, only Mellanox’s ConnectX
products actually propose a hardware progression. This interface is however very
limited as it only supports calculation operations of scalar values [Tec11]. More
generally, we observe that most current network interconnects do not propose hard-
ware facilities for message progression and the table 2.1 previously presented clearly
shows this trend. Indeed, offloading the progression engine of MPI requires to move
many MPI-specific structures from the runtime to the network card (e.g., the MPI
matching lists). This would first limit the network card to the very specific message
matching of the MPI standard. Finally, it would definitively increase the complexity
and so the market price of network controllers.

Second, the thesis targets the verbs interface because it supports a wide range
of Infiniband hardware. Originally designed to unify Infiniband hardware under
a unique and standardized interface, the verbs make now difficult the support of
new hardware functionalities. The proprietary Mellanox VAPI/MXM and the Cisco
usNIC interfaces are some example of this observations1. Moreover the verbs is the
single low-level interface to access all Infiniband networks. Contrary to MX library
for Myrinet and Tports for Quadrics, Infiniband does not facilitate the development
of message passing implementations with specialized programming interface. In the
light of these limitations, it is possible that the verbs interface will be reconsidered
in the next years. We however consider that the contributions could be extended to
a variety of communication libraries since most network concepts seen in the verbs
also exist in other programming interfaces.

Then, the design of future exascale machines is not clearly defined as the time
of writing. Some design attempts have been proposed by several exascale labora-
tories in 2010 (the US Department of Energy [Ash+10] and the Defense Advanced
Research Projects Agency [Ama+09]) but since, no updates are available. Thus, it
is uncertain if the next machine will express different levels of memory architecture.
As an example, the Intel MIC architecture is one representative hardware of future
supercomputers but the actual products released with this architecture only expose
uniform memory accesses.

Although our contributions propose optimizations for NUMA architectures, they
are especially based on the expectation that the intra-node concurrency of future
architectures will increase. Moreover, we agree that the Bull’s BCS architecture is
not representative of mainstream supercomputers. Indeed, the BCS compute nodes
were originally deployed on Curie for parallel applications developed using shared-
memory programming models. We however think that the BCS is a good illustration
of the large compute nodes that are expected for the upcoming exascale machines.

6.3 Future Work

In the following section we propose different research axes to extend the proposed
contributions.

The section 4.5.3 concluded that the main CPU is still required for completing
collective communications that involve complex operation. We plan to integrate the
NBC library [HLR07] to MPC and we believe that the Collaborative-Polling could
improve the non-blocking collective communications of MPI 3.0 without involving
the overheads generated by a thread-based progression.

1Cisco modified the verbs interface to allow packets with arbitrary sizes like Ethernet

6.3. Future Work 121

With the decrease in the amount of per-core memory and the increase of cores
per compute node, we believe that MPI runtimes should be more dynamic and
should adapt their memory consumption to the free memory in the compute nodes.
More precisely, we plan to investigate disconnection of network endpoints (using
the software solution presented in section 3.4.2.4 or using the Dynamically Con-
nected Transport (DCT) protocol recently proposed by Mellanox and presented in
section 2.2.5) for automatically resizing the communication buffers. The purpose
here is to design a degraded mode where the runtime is able to run with the lowest
memory footprint. In this mode, performance would not the priority and the run-
time would do everything possible to prevent the job to be killed. As soon as the
free memory increases, resources would be reallocated and the runtime performance
would be finally restored.

Chapter 5 has demonstrated the efficiency of our multi-threaded communication
layer combined with OpenMP. We plan to extend our previous evaluation to other
shared-memory programming models. More specifically, we plan to look toward
Intel Concurrent Collections (CnC [SBK13]). This recent programming model uses
MPI in back-end for performing inter-node communications and threads for com-
municating data inside a node. We believe that our work could directly contribute
to CnC since in the current implementation, multiple threads concurrently access
the MPI interface. Additionally, we noted a genuine interest in MPI endpoints for
supporting multi-rail configurations in an hybrid context [Din+13]. As a future
work, we intend to integrate the MPI endpoints in MPC. Indeed, MPC would be
an ideal candidate for integrating the MPI endpoints because the runtime efficiently
supports multi-threaded MPI ranks and provides a unified scheduler for MPI and
OpenMP.

Finally, while this thesis has targeted the MPI interface, other programming
models like Chapel, Fortress, X10, UPC or Charm++ [KK93] also require messaging
between nodes. We plan to investigate how our contributions would support these
programming models.

Bibliography

[AA04] G. Amerson and a. Apon. “Implementation and design analysis of a
network messaging module using virtual interface architecture”. In: In-
ternational Conference on Cluster Computing (2004) (see p. 79).

[Ama+09] Saman Amarasinghe et al. “Exascale software study: Software chal-
lenges in extreme scale systems”. In: DARPA IPTO, Air Force Research
Labs, Tech. Rep (2009) (see p. VIII, 5, 14, 35, 120).

[Ash+10] Steve Ashby et al. “The opportunities and challenges of exascale com-
puting—summary report of the advanced scientific computing advisory
committee (ASCAC) subcommittee. US Department of Energy Office
of Science”. In: US Department of Energy Office of Science (2010) (see
p. VIII, 5, 14, 35, 120).

[Atc+11] Scott Atchley et al. “The Common Communication Interface (CCI)”.
In: Hot Interconnects. 2011, pp. 51–60 (see p. 25).

[Aug+12] Cédric Augonnet et al. StarPU-MPI: Task Programming over Clusters
of Machines Enhanced with Accelerators. conference proceeding. 2012
(see p. 95).

[Aum+07] Olivier Aumage et al. “NEW MADELEINE: a Fast Communication
Scheduling Engine for High Performance Networks”. In: International
Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2007,
pp. 1–8 (see p. 36, 41, 51, 67).

[Bai+95] David Bailey et al. The NAS Parallel Benchmarks 2.0. 1995 (see p. 69,
84).

[Bal+09] Pavan Balaji et al. “MPI on a Million Processors”. In: Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface
(PVM/MPI). Ed. by Matti Ropo, Jan Westerholm, and Jack Dongarra.
Sept. 2009 (see p. 36, 92).

[Bal+10] Pavan Balaji et al. “PMI: A Scalable Parallel Process-Management In-
terface for Extreme-Scale Systems”. In: Recent Advances in the Message
Passing Interface (EuroMPI). Ed. by Rainer Keller et al. Vol. 6305. Lec-
ture Notes in Computer Science (LNCS). 2010, pp. 31–41 (see p. 45).

[Bar+03] Paul Barham et al. “Xen and the art of virtualization”. In: ACM
SIGOPS Operating Systems Review 37.5 (2003), pp. 164–177 (see p. 67).

[BEA09] J. Mark Bull, James P. Enright, and Nadia Ameer. “A Microbenchmark
Suite for Mixed-Mode OpenMP/MPI”. In: Evolving OpenMP in an Age
of Extreme Parallelism (IWOMP). Ed. by Matthias S. Muller, Bronis
R. de Supinski, and Barbara M. Chapman. Vol. 5568. Lecture Notes in
Computer Science (LNCS). June 2009, pp. 118–131 (see p. 96).

[Bee+03] Jon Beecroft et al. “QsNet-II: An Interconnect for Supercomputing Ap-
plications”. In: The Proceedings of Hot Chips. 2003 (see p. 23).

[Bel+06] Christian Bell et al. “Optimizing bandwidth limited problems using
one-sided communication and overlap”. In: International Parallel and
Distributed Processing Symposium (IPDPS). 2006 (see p. 78).

124 Bibliography

[Ber+05] M. J. Berger et al. “Performance of a New CFD Flow Solver using a
Hybrid Programming Paradigm”. In: Journal of Parallel and Distributed
Computing 65.4 (Apr. 2005) (see p. 94, 96, 105).

[Blu+96] R. Blumofe et al. “Cilk: An Efficient Multithreaded Runtime System”.
In: Journal of Parallel and Distributed Computing 37.1 (1996), pp. 55–
69 (see p. 9).

[BMG06] Darius Buntinas, Guillaume Mercier, and William Gropp. “Design and
evaluation of Nemesis, a scalable, low-latency, message-passing commu-
nication subsystem”. In: Cluster Computing and the Grid (CCGRID).
Vol. 1. IEEE. 2006, 10–pp (see p. 13, 15, 36, 93).

[Bod+95] Nanette J. Boden et al. “Myrinet: A Gigabit-per-Second, Local Area
Network”. In: IEEE Micro 15.1 (Feb. 1995), pp. 29–36 (see p. 23, 28).

[Bon02] Dan Bonachea. GASNet Specification, v1.1. Tech. rep. 2002 (see p. 25).

[Bos+] George Bosilca et al. “MPICH-V: toward a scalable fault tolerant MPI
for volatile nodes”. In: pp. 1–18 (see p. 11).

[BP03] Darius Buntinas and Dhabaleswar K Panda. “NIC-based reduction in
Myrinet clusters: is it beneficial?” In: In SAN-02 Workshop (in con-
junction with HPCA). 2003 (see p. 22).

[BP11] Ron Brightwell and Kevin Pedretti. “An Intra-Node Implementation of
OpenSHMEM Using Virtual Address Space Mapping”. In: Fifth Parti-
tioned Global Address Space Conference. 2011 (see p. 84).

[Bri+] R. Brightwell et al. “Portals 3.0: Protocol Building Blocks for Low Over-
head Communication”. In: International Parallel And Distributing Pro-
cessing Symposium (IPDPS). Ed. by Bob Werner, pp. 164–164 (see
p. 25).

[Bri+05] Ron Brightwell et al. “A Hardware Acceleration Unit for MPI Queue
Processing”. In: International Parallel and Distributed Processing Sym-
posium. 2005 (see p. 22).

[Bro+10a] François Broquedis et al. “ForestGOMP: An Efficient OpenMP Envi-
ronment for NUMA Architectures”. In: International Journal of Parallel
Programming 38.5-6 (2010), pp. 418–439 (see p. 96).

[Bro+10b] François Broquedis et al. “hwloc: A generic framework for managing
hardware affinities in hpc applications”. In: Parallel, Distributed and
Network-Based Processing (PDP). IEEE. 2010, pp. 180–186 (see p. 56).

[BRU05] Ron Brightwell, Rolf Riesen, and Keith D. Underwood. “Analyzing
the Impact of Overlap, Offload, and Independent Progress for Message
Passing Interface Applications”. In: IJHPCA (2005) (see p. 78).

[Bul] Bull. Bullx MPI. http://bull.com (see p. 11).

[CE00] Franck Cappello and Daniel Etiemble. “MPI versus MPI+OpenMP on
IBM SP for the NAS Benchmarks”. In: Proceedings of Supercomputing.
LRI. Nov. 2000 (see p. 96).

[Cha+13] Sanjay Chatterjee et al. “Integrating Asynchronous Task Parallelism
with MPI”. In: Department of Computer Science, Rice University, Tech-
nical Report TR12-07 (2013) (see p. 95).

http://bull.com

Bibliography 125

[Che+12] Dong Chen et al. “Looking Under the Hood of the IBM Blue Gene/Q
Network”. In: SC’12 CD-ROM: Conference on High Performance Com-
puting Networking, Storage and Analysis. Salt Lake City, UT, USA:
ACM SIGARCH/IEEE Computer Society, Nov. 2012 (see p. 22).

[CIY05] Wei-Yu Chen, Costin Iancu, and Katherine A. Yelick. “Communication
Optimizations for Fine-Grained UPC Applications”. In: IEEE PACT.
IEEE Computer Society, 2005, pp. 267–278 (see p. 9).

[Col+03] Salvador Coll et al. “Using multirail networks in high-performance clus-
ters”. In: Concurrency and Computation: Practice and Experience 15.7-
8 (2003), pp. 625–651 (see p. 67).

[CPJ11] Patrick Carribault, Marc Pérache, and Hervé Jourdren. “Thread-Local
Storage Extension to Support Thread-Based MPI/OpenMP Applica-
tions”. In: 7th International Workshop on OpenMP (IWOMP). Ed. by
Barbara M. Chapman et al. Lecture Notes in Computer Science. 2011,
pp. 80–93 (see p. 12, 80).

[CPP01] Barbara M. Chapman, Amit Patil, and Achal Prabhakar. “Performance
Oriented Programming for NUMA Architectures”. In: OpenMP Shared
Memory Parallel Programming, International Workshop on OpenMP
Applications and Tools, WOMPAT 2001. Ed. by Rudolf Eigenmann and
Michael Voss. Vol. 2104. Lecture Notes in Computer Science (LNCS).
West Lafayette, IN, USA: Springer-Verlag (New York), July 2001,
pp. 137–154 (see p. 94).

[CRS09] Jie Cai, Alistair P. Rendell, and Peter E. Strazdins. “Non-threaded and
Threaded Approaches to MultiRail Communication with uDAPL”. In:
NPC. IEEE Computer Society, 2009, pp. 233–239 (see p. 50).

[Dem97] E. Demaine. “A Threads-Only MPI Implementation for the Develop-
ment of Parallel Programming”. In: Proceedings of the 11th Interna-
tional Symposium on High Performance Computing Systems. 1997 (see
p. 11).

[Den11] Alexandre Denis. A High-Performance Superpipeline Protocol for In-
finiBand. proceeding with peer review. Aug. 2011 (see p. 41).

[Did+12] Sylvain Didelot et al. “Improving MPI Communication Overlap with
Collaborative Polling”. In: Recent Advances in the Message Passing
Interface (EuroMPI). Ed. by Jesper Larsson Träff, Siegfried Benkner,
and Jack J. Dongarra. Vol. 7490. Lecture Notes in Computer Science.
Springer, 2012, pp. 37–46 (see p. 18, 118).

[Did+13] Sylvain Didelot et al. “Improving MPI communication overlap with
collaborative polling”. In: Computing (2013), pp. 1–16. doi: 10.1007/
s00607-013-0327-z. url: http://dx.doi.org/10.1007/s00607-
013-0327-z (see p. 18, 118).

[Din+10] James Dinan et al. “Hybrid parallel programming with MPI and unified
parallel C”. In: Proceedings of the 7th ACM international conference on
Computing frontiers. ACM. 2010, pp. 177–186 (see p. 16).

[Din+13] James Dinan et al. “Enabling MPI Interoperability Through Flexible
Communication Endpoints”. In: (2013) (see p. 96, 115, 116, 121).

http://dx.doi.org/10.1007/s00607-013-0327-z
http://dx.doi.org/10.1007/s00607-013-0327-z
http://dx.doi.org/10.1007/s00607-013-0327-z
http://dx.doi.org/10.1007/s00607-013-0327-z

126 Bibliography

[DK04] Nikolaos Drosinos and Nectarios Koziris. “Performance Comparison of
Pure MPI vs Hybrid MPI-OpenMP Parallelization Models on SMP
Clusters”. In: International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE Computer Society, 2004 (see p. 96).

[Don88] Jack J Dongarra. “The LINPACK benchmark: An explanation”. In:
Supercomputing. Springer. 1988, pp. 456–474 (see p. 6, 7).

[EgCD03] Tarek A. El-ghazawi, William W. Carlson, and Jesse M. Draper. UPC
Language Specification v1.1.1. Oct. 2003 (see p. 9).

[EGS07] Tarek El-Ghazawi and Vivek Sarkar. “Programming using the Parti-
tioned Global Address Space (PGAS) Model”. In: SC’07 USB Key.
Reno, NV: ACM/IEEE, Nov. 2007 (see p. 9).

[Eic+92] Thorsten von Eicken et al. “Active Messages: a Mechanism for Inte-
grated Communication and Computation”. In: International Sympo-
sium on Computer Architecture. 1992 (see p. 25).

[FD00] Graham E. Fagg and Jack J. Dongarra. FT-MPI: Fault Tolerant MPI,
supporting dynamic applications in a dynamic world. Oct. 2000 (see
p. 11).

[Foo+03] Annie P. Foong et al. “TCP performance re-visited”. In: ISPASS. IEEE
Computer Society, 2003, pp. 70–79 (see p. 19).

[Fre+04] Felix Freitag et al. “Predicting MPI Buffer Addresses”. In: ICCS. Ed.
by Marian Bubak et al. Vol. 3036. Lecture Notes in Computer Science
(LNCS). June 2004, pp. 10–17 (see p. 40).

[Fri+07] Andrew Friedley et al. “Scalable high performance message passing over
InfiniBand for Open MPI”. In: Proceedings of 2007 KiCC Workshop,
RWTH Aachen. 2007 (see p. 37, 50).

[Fri+13] A. Friedley et al. “Hybrid MPI: Efficient Message Passing for Multi-
core Systems”. In: IEEE/ACM International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC13). 2013
(see p. 11, 15, 93).

[Gab+04] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation”. In: Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface(PVM/MPI). Ed. by Di-
eter Kranzlmüller, Péter Kacsuk, and Jack Dongarra. Vol. 3241. Lecture
Notes in Computer Science. 2004, pp. 97–104 (see p. 40).

[GM12] Brice Goglin and Stéphanie Moreaud. “KNEM: A generic and scalable
kernel-assisted intra-node MPI communication framework”. In: Journal
of Parallel and Distributed Computing (2012) (see p. 11, 13, 93).

[Goo+11] David Goodell et al. “Scalable Memory Use in MPI: A Case Study
with MPICH2”. In: Recent Advances in the Message Passing Interface
(EuroMPI). Lecture Notes in Computer Science. 2011 (see p. 36).

[Gra+10] Richard L Graham et al. “Overlapping computation and communi-
cation: Barrier algorithms and ConnectX-2 CORE-Direct capabili-
ties”. In: Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW). IEEE. 2010, pp. 1–8 (see p. 47).

Bibliography 127

[Gro+96] William Gropp et al. “A High-Performance, Portable Implementation of
the MPI Message Passing Interface Standard”. In: Parallel Computing
22.6 (1996), pp. 789–828 (see p. 11).

[GT06] William D. Gropp and Rajeev Thakur. “Issues in Developing a Thread-
Safe MPI Implementation”. In: PVM/MPI. 2006, pp. 12–21 (see p. 96,
99).

[Gup+03] Rinku Gupta et al. “Efficient collective operations using remote memory
operations on VIA-based clusters”. In: Parallel and Distributed Process-
ing Symposium. IEEE. 2003, 9–pp (see p. 22).

[GWS06] Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres.
“OpenMPI: A Flexible High Performance MPI”. In: Parallel Process-
ing and Applied Mathematics. 2006 (see p. 11).

[Hag+] Georg Hager et al. “Prospects for Truly Asynchronous Communication
with Pure MPI and Hybrid MPI/OpenMP on Current Supercomputing
Platforms”. In: () (see p. 95).

[Hil+03] Jeff Hilland et al. RDMA Protocol Verbs Specification. http://www.
rdmaconsortium.org/home/draft- hilland- iwarp- verbs- v1.0-
RDMAC.pdf. Apr. 2003 (see p. 23).

[HJR09] Georg Hager, Gabriele Jost, and Rolf Rabenseifner. “Communication
Characteristics and Hybrid MPI/OpenMP Parallel Programming on
Clusters of Multi-core SMP Nodes”. In: Proceedings of Cray User Group.
2009 (see p. 78).

[HL08] Torsten Hoefler and Andrew Lumsdaine. “Message progression in par-
allel computing – to thread or not to thread?” In: International Con-
ference on Cluster Computing. 2008 (see p. 80).

[HLK04] Chao Huang, Orion Lawlor, and L. V. Kalé. “Adaptive MPI”. In: Lan-
guages and Compilers for Parallel Compution (LCPC). 2004 (see p. 11).

[HLR07] Torsten Hoefler, Andrew Lumsdaine, and Wolfgang Rehm. “Implemen-
tation and Performance Analysis of Non-blocking Collective Operations
for MPI”. In: SC. Nov. 2007 (see p. 90, 120).

[Hoe+10] Torsten Hoefler et al. “Efficient MPI support for advanced hybrid pro-
gramming models”. In: Recent Advances in the Message Passing Inter-
face. Springer, 2010, pp. 50–61 (see p. 96).

[HS11a] T. Hoefler and M. Snir. “Generic Topology Mapping Strategies for
Large-scale Parallel Architectures”. In: Proceedings of the 2011 ACM
International Conference on Supercomputing (ICS). June 2011, pp. 75–
85 (see p. 48).

[HS11b] Torsten Hoefler and Marc Snir. “Writing parallel libraries with MPI-
common practice, issues, and extensions”. In: Recent Advances in the
Message Passing Interface. Springer, 2011, pp. 345–355 (see p. 36).

[Hua+06] Wei Huang et al. “Design of High Performance MVAPICH2: MPI2 over
InfiniBand”. In: CCGRID. 2006, pp. 43–48 (see p. 11, 40, 41).

[IB99] J. B. White Iii and S. W. Bova. Where’s the Overlap? - An Analysis of
Popular MPI Implementations. Tech. rep. Aug. 1999 (see p. 78).

http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf

128 Bibliography

[IBM] IBM. IBM Platform MPI. http : / / www - 03 . ibm . com / systems /
technicalcomputing / platformcomputing / products / mpi/ (see
p. 11).

[Inc] Myricom Inc. MPICH-MX. https://www.myricom.com/support/
downloads/mx/mpich-mx.html (see p. 11).

[Inc10] Cray Inc. The Gemini Network, v1.1. 2010 (see p. 22).

[Inc11] Cray Inc. Using the GNI and DMAPP APIs. 2011 (see p. 22).

[Inta] Intel. Intel Math Kernel Library (Intel MKL). http : / / software .
intel.com/en-us/intel-mkl (see p. 9).

[Intb] Intel. Intel MPI benchmarks (IMB). http://software.intel.com/en-
us/articles/intel-mpi-benchmarks (see p. 40).

[Intc] Intel. Intel MPI Library. http://software.intel.com/en-us/intel-
mpi-library (see p. 11).

[Intd] Intel. Intel Threading Building Blocks (Intel TBB). http://software.
intel.com/en-us/intel-tbb?wapkw=tbb (see p. 9, 16).

[Inte] Intel. Intel Xeon Phi Coprocessor 5110P. http://www.intel.com/
content/www/us/en/processors/xeon/xeon-phi-detail.html (see
p. 14).

[JG04] M Jette and M Grondona. SLURM: Simple Linux Utility for Resource
Management. June 2004 (see p. 32).

[Jin+07] Hyun-Wook Jin et al. “Lightweight kernel-level primitives for high-
performance MPI intra-node communication over multi-core systems”.
In: Cluster Computing, 2007 IEEE International Conference on. IEEE.
2007, pp. 446–451 (see p. 11, 93).

[Jin+11] Haoqiang Jin et al. “High performance computing using MPI and
OpenMP on multi-core parallel systems”. In: Parallel Computing 37.9
(Sept. 2011), pp. 562–575 (see p. 96, 104).

[JM10] Emmanuel Jeannot and Guillaume Mercier. Near-Optimal Placement of
MPI processes on Hierarchical NUMA Architectures. proceeding with
peer review. Aug. 2010 (see p. 37).

[Jos+10] Jithin Jose et al. “Unifying UPC and MPI runtimes: experience with
MVAPICH”. In: Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. ACM. 2010, p. 5 (see p. 16).

[Jou05] Hervé Jourdren. “HERA: A Hydrodynamic AMR Platform for Multi-
Physics Simulations”. In: Adaptive Mesh Refinement - Theory and Ap-
plication, LNCSE. 2005 (see p. 43, 72).

[Jow+09] M. Jowkar et al. D6.4 Report on approaches to Petascaling. PRACE,
Technical Report. 2009 (see p. VIII, 5, 91, 92).

[Kan+11] Krishna Kandalla et al. “High-performance and scalable non-blocking
all-to-all with collective offload on InfiniBand clusters: a study with par-
allel 3D FFT”. In: Computer Science-Research and Development 26.3-4
(2011), pp. 237–246 (see p. 22, 47).

http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/mpi/
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/mpi/
https://www.myricom.com/support/downloads/mx/mpich-mx.html
https://www.myricom.com/support/downloads/mx/mpich-mx.html
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://software.intel.com/en-us/intel-mpi-library
http://software.intel.com/en-us/intel-mpi-library
http://software.intel.com/en-us/intel-tbb?wapkw=tbb
http://software.intel.com/en-us/intel-tbb?wapkw=tbb
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

Bibliography 129

[Kan+12] Krishna Chaitanya Kandalla et al. “Designing Non-blocking Allreduce
with Collective Offload on InfiniBand Clusters: A Case Study with Con-
jugate Gradient Solvers”. In: International Parallel and Distributed Pro-
cessing Symposium (IPDPS). Shanghai, China: IEEE Computer Soci-
ety, May 2012, pp. 1156–1167 (see p. 22, 90).

[KC03] Géraud Krawezik and Frank Cappello. “Performance comparison of
MPI and three OpenMP programming styles on shared memory mul-
tiprocessors”. In: Proceedings of the 15th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM SIGACT,
ACM SIGARCH. 2003, pp. 118–127 (see p. 94, 96, 105).

[Key+00] D Keyes et al. “A Parallel Computing Framework for Dynamic Power
Balancing in Adaptive Mesh Refinement Applications”. In: Parallel
Computational Fluid Dynamics’ 99: Towards Teraflops, Optimization
and Novel Formulations (2000), p. 249 (see p. 92).

[KHS12] Fredrik Kjolstad, Torsten Hoefler, and Marc Snir. “Automatic datatype
generation and optimization”. In: Proceedings of the 17th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP). Ed. by J. Ramanujam and P. Sadayappan. 2012, pp. 327–
328 (see p. 36).

[Kim+10] Keiji Kimura et al. “OSCAR API for real-time low-power multicores
and its performance on multicores and SMP servers”. In: Languages
and Compilers for Parallel Computing. Springer, 2010, pp. 188–202 (see
p. 8).

[Kiv+07] Avi Kivity et al. “kvm: the Linux virtual machine monitor”. In: Pro-
ceedings of the Linux Symposium. Vol. 1. 2007, pp. 225–230 (see p. 67).

[KJP07] Matthew J. Koop, Terry Jones, and Dhabaleswar K. Panda. “Reducing
Connection Memory Requirements of MPI for InfiniBand Clusters: A
Message Coalescing Approach”. In: CCGRID. 2007, pp. 495–504 (see
p. 41).

[KJP08] Matthew J. Koop, Terry Jones, and Dhabaleswar K. Panda.
“MVAPICH-Aptus: Scalable high-performance multi-transport MPI
over InfiniBand”. In: International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2008, pp. 1–12 (see p. 38).

[KK93] L. V. Kale and Sanjeev Krishnan. “CHARM++ : A Portable Concur-
rent Object-Oriented System Based on C++”. In: Proceedings of the
Conference on Object Oriented Programming Systems, Languages and
Applications (OOPSLA). Ed. by Andreas Paepcke. ACM Press, Sept.
1993, pp. 91–108 (see p. 61, 121).

[KKB14] Gurkirat Kaur, Manoj Kumar, and Manju Bala. “Comparing Ethernet
& Soft RoCE over 1 Gigabit Ethernet”. In: International Journal of
Computer Science and Information Technologies (IJCSIT) 5.1 (Feb.
2014), pp. 323–327 (see p. 23).

[KL98] JunSeong Kim and David J. Lilja. “Characterization of Communication
Patterns in Message-Passing Parallel Scientific Application Programs”.
In: Lecture Notes in Computer Science 1362 (1998), 202–?? (See p. 39).

130 Bibliography

[Koo+07] Matthew J. Koop et al. “High performance MPI design using unreli-
able datagram for ultra-scale InfiniBand clusters”. In: Proceedings of
the 21th Annual International Conference on Supercomputing (ICS).
Ed. by Burton J. Smith. June 2007, pp. 180–189 (see p. 37).

[KSP07] Matthew J. Koop, Sayantan Sur, and Dhabaleswar K. Panda. “Zero-
copy protocol for MPI using infiniband unreliable datagram”. In: Pro-
ceedings of the IEEE International Conference on Cluster Computing
(CLUSTER). Sept. 2007, pp. 179–186 (see p. 37).

[KSP08] Matthew J. Koop, Jaidev K. Sridhar, and Dhabaleswar K. Panda. “Scal-
able MPI design over InfiniBand using eXtended Reliable Connection”.
In: CLUSTER. 2008, pp. 203–212 (see p. 31, 37).

[KSP09] MJ Koop, AP Sampat, and D. K. Panda. Veloblock: Efficient and Scal-
able RDMA Fast Path for InfiniBand. Tech. rep. 2009 (see p. 42, 68).

[Kum+08] Rahul Kumar et al. “Lock-Free Asynchronous Rendezvous Design for
MPI Point-to-Point Communication”. In: Recent Advances in Parallel
Virtual Machine and Message Passing Interface (PVM/MPI). 2008 (see
p. 31, 79).

[Kum+12] Sameer Kumar et al. “PAMI: A Parallel Active Message Interface for
the Blue Gene/Q Supercomputer”. In: International Parallel and Dis-
tributed Processing Symposium (IPDPS). Shanghai, China: IEEE Com-
puter Society, May 2012, pp. 763–773 (see p. 23).

[KW12] Humaira Kamal and Alan Wagner. “Added Concurrency to Improve
MPI Performance on Multicore”. In: ICPP. 2012, pp. 229–238 (see p. 11,
78).

[Laba] Sandia National Laboratories. Portals 4 Reference Implementation.
https://code.google.com/p/portals4/ (see p. 26).

[Labb] Argonne National Laboratory. MPICH2. http://www.mcs.anl.gov/
mpi/mpich2 (see p. 11).

[Labc] Argonne National Laboratory. Using the Hydra Process Manager. url:
http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_
Process_Manager (see p. 45).

[Lei85] Charles E Leiserson. “Fat-trees: universal networks for hardware-
efficient supercomputing”. In: Computers, IEEE Transactions on 100.10
(1985), pp. 892–901 (see p. 7, 31).

[Len+03] James Lentini et al. “Implementation and Analysis of the User Direct
Access Programming Library”. In: 2nd Workshop on Novel Uses of Sys-
tem Area Networks, SAN. Vol. 2. 2003 (see p. 26).

[Liu+03] Jiuxing Liu et al. Design and Implementation of MPICH2 over Infini-
Band with RDMA Support. Comment: 12 pages, 17 figures. Oct. 2003
(see p. 40).

[Luo+11] Miao Luo et al. “Multi-threaded UPC runtime with network endpoints:
Design alternatives and evaluation on multi-core architectures”. In:
HiPC. IEEE, 2011, pp. 1–10 (see p. 49).

https://code.google.com/p/portals4/
http://www.mcs.anl.gov/mpi/mpich2
http://www.mcs.anl.gov/mpi/mpich2
http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager

Bibliography 131

[LVP04] Jiuxing Liu, Abhinav Vishnu, and Dhabaleswar K. Panda. “Building
Multirail InfiniBand Clusters: MPI-Level Design and Performance Eval-
uation”. In: SC. Nov. 2004 (see p. 50–52, 67, 114).

[LWP04] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. “High Perfor-
mance RDMA-Based MPI Implementation over InfiniBand”. In: Inter-
national Journal of Parallel Programming (IJPP) 32.3 (June 2004),
pp. 167–198 (see p. 68).

[Mar+10] Vladimir Marjanovic et al. “Effective communication and computation
overlap with hybrid MPI/SMPSs”. In: ACM SIGPLAN Notices 45.5
(May 2010), pp. 337–338 (see p. 95).

[MG+07] Stéphanie Moreaud, Brice Goglin, et al. “Impact of NUMA effects on
high-speed networking with multi-opteron machines”. In: PDCS. 2007
(see p. 51).

[MGN10] Stéphanie Moreaud, Brice Goglin, and Raymond Namyst. “Adaptive
MPI Multirail Tuning for Non-Uniform Input/Output Access”. In:
(2010) (see p. 51, 67, 114).

[Mie+06] Frank Mietke et al. “Analysis of the Memory Registration Process in the
Mellanox InfiniBand Software Stack”. In: Euro-Par. Ed. by Wolfgang E.
Nagel, Wolfgang V. Walter, and Wolfgang Lehner. Vol. 4128. Lecture
Notes in Computer Science (LNCS). Aug. 2006, pp. 124–133 (see p. 30).

[MJ11] Guillaume Mercier and Emmanuel Jeannot. “Improving MPI Applica-
tions Performance on Multicore Clusters with Rank Reordering”. In:
Recent Advances in the Message Passing Interface (EuroMPI). Ed. by
Yiannis Cotronis et al. Vol. 6960. Lecture Notes in Computer Science.
2011, pp. 39–49 (see p. 37).

[Moo+65] Gordon E Moore et al. Cramming more components onto integrated
circuits. 1965 (see p. 6).

[Mun+09] Aaftab Munshi et al. “The opencl specification”. In: Khronos OpenCL
Working Group 1 (2009), pp. l1–15 (see p. 16).

[Ngu+12] Tan Nguyen et al. “Bamboo – Translating MPI Applications to a
Latency-Tolerant, Data-Driven Form”. In: SC’12 CD-ROM: Conference
on High Performance Computing Networking, Storage and Analysis.
Salt Lake City, UT, USA: ACM SIGARCH/IEEE Computer Society,
Nov. 2012 (see p. 78).

[NR98] R. Numrich and J. Reid. “Co-Array Fortran for Parallel Programming”.
In: ACM Fortran Forum 17.2 (Aug. 1998), pp. 1–31 (see p. 9).

[Nvi08] CUDA Nvidia. Programming guide. 2008 (see p. 16).

[Ort+08] Francisco Ortigosa et al. “Evaluation of 3D RTM on HPC platforms”.
In: 2008 SEG Annual Meeting. 2008 (see p. 100).

[PCJ09] Marc Pérache, Patrick Carribault, and Hervé Jourdren. “MPC-MPI:
An MPI Implementation Reducing the Overall Memory Consumption”.
In: PVM/MPI. 2009 (see p. VIII, 5, 11, 91).

[Pen+10] Brad Penoff et al. “Employing transport layer multi-railing in cluster
networks”. In: J. Parallel Distrib. Comput 70.3 (2010), pp. 259–269 (see
p. 67).

132 Bibliography

[Pet+01] Fabrizio Petrini et al. “The Quadrics Network (QsNet): High-
Performance Clustering Technology”. In: 2001 (see p. 28).

[Peñ+13] Antonio J. Peña et al. “Analysis of topology-dependent MPI perfor-
mance on Gemini networks”. In: Recent Advances in the Message Pass-
ing Interface (EuroMPI). Ed. by Jack Dongarra, Javier García Blas,
and Jesús Carretero. ACM, 2013, pp. 61–66 (see p. 48).

[PG07] Jelena Pjesivac-Grbović. “Towards Automatic and Adaptive Optimiza-
tions of MPI Collective Operations”. PhD thesis. The University of
Tennessee, Knoxville, Dec. 2007 (see p. 43).

[PGB11] Howard Pritchard, Igor Gorodetsky, and Darius Buntinas. “A uGNI-
Based MPICH2 Nemesis Network Module for the Cray XE”. In: Recent
Advances in the Message Passing Interface (EuroMPI). Ed. by Yiannis
Cotronis et al. Vol. 6960. Lecture Notes in Computer Science. Springer,
2011, pp. 110–119 (see p. 22).

[PJN08] Marc Pérache, Hervé Jourdren, and Raymond Namyst. “MPC: A Uni-
fied Parallel Runtime for Clusters of NUMA Machines”. In: Euro-Par.
2008 (see p. 116).

[PS98] Boris V. Protopopov and Anthony Skjellum. A multi-threaded Message
Passing Interface (MPI) architecture: performance and program issues.
Sept. 1998 (see p. 95).

[QA08] Ying Qian and Ahmad Afsahi. “Efficient shared memory and RDMA
based collectives on multi-rail QsNetII SMP clusters”. In: Cluster Com-
puting 11.4 (2008), pp. 341–354 (see p. 67).

[RGM11] Juan A. Rico-Gallego and Juan Carlos Díaz Martín. “Performance Eval-
uation of Thread-Based MPI in Shared Memory”. In: Recent Advances
in the Message Passing Interface (EuroMPI). 2011 (see p. 11).

[RHJ09] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. “Hybrid
MPI/OpenMP parallel programming on clusters of multi-core SMP
nodes”. In: Parallel, Distributed and Network-based Processing. IEEE.
2009, pp. 427–436 (see p. VIII, 5, 93, 96).

[Ric98] Olivier Richard. Intra node parallelization of MPI programs with
OpenMP. Jan. 1998 (see p. 94).

[RW03] Rolf Rabenseifner and Gerhard Wellein. “Communication and Opti-
mization Aspects of Parallel Programming Models on Hybrid Architec-
tures”. In: IJHPCA 17.1 (2003), pp. 49–62 (see p. 95, 96).

[SB01] Lorna Smith and Mark Bull. “Development of mixed mode MPI /
OpenMP applications”. In: Scientific Programming 9.2-3 (2001). EPCC,
pp. 83–98 (see p. 96).

[SBK13] Frank Schlimbach, James C Brodman, and Kath Knobe. “Concurrent
Collections on Distributed Memory Theory Put Into Practice”. In: Par-
allel, Distributed and Network-Based Processing (PDP). IEEE. 2013,
pp. 225–232 (see p. 95, 121).

[SGY10] M. Small, Z. Gu, and X. Yuan. “Near-optimal Rendezvous protocols
for RDMA-enabled clusters”. In: International Conference on Parallel
Processing (ICPP). 2010 (see p. 36).

Bibliography 133

[Shi+06] Galen M. Shipman et al. “Infiniband scalability in Open MPI”. In: In-
ternational Parallel and Distributed Processing Symposium (IPDPS).
2006 (see p. 31).

[Shi+07] Galen M. Shipman et al. “Investigations on InfiniBand: Efficient Net-
work Buffer Utilization at Scale”. In: Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface (PVM/MPI). Ed. by
Franck Cappello, Thomas Herault, and Jack Dongarra. Vol. 4757. Lec-
ture Notes in Computer Science (LNCS). Oct. 2007, pp. 178–186 (see
p. 41, 47).

[Shi+08] Galen M. Shipman et al. “X-SRQ– Improving Scalability and Per-
formance of Multi-core InfiniBand Clusters”. In: Recent Advances in
Parallel Virtual Machine and Message Passing Interface (PVM/MPI).
Ed. by Alexey L. Lastovetsky, M. Tahar Kechadi, and Jack Dongarra.
Vol. 5205. Lecture Notes in Computer Science (LNCS). Sept. 2008,
pp. 33–42 (see p. 31, 37).

[Spr05] Volker Springel. “The cosmological simulation code gadget-2”. In:
Monthly Notices of the Royal Astronomical Society 364 (2005) (see
p. 84).

[SPT98] Edward S Smyth, Jonathan S Parker, and Ken T Taylor. “Numerical
integration of the time-dependent Schrödinger equation for laser-driven
helium”. In: Computer physics communications 114.1 (1998), pp. 1–14
(see p. 91).

[Sto+08] James M Stone et al. “Athena: a new code for astrophysical MHD”. In:
The Astrophysical Journal Supplement Series 178.1 (2008), p. 137 (see
p. 58, 64).

[Sub+11] Vladimir Subotic et al. “The Impact of Application’s Micro-Imbalance
on the Communication-Computation Overlap”. In: Parallel, Distributed
and Network-based Processing (PDP). 2011 (see p. 78, 80).

[Sun90] Vaidy S. Sunderam. “PVM: A framework for parallel distributed com-
puting”. In: Concurrency: practice and experience 2.4 (1990), pp. 315–
339 (see p. 9).

[Sur+05] Sayantan Sur et al. “Can memory-less network adapters benefit next-
generation infiniband systems?” In: High Performance Interconnects.
IEEE. 2005, pp. 45–50 (see p. 49).

[Sur+06a] Sayantan Sur et al. “RDMA Read Based Rendezvous Protocol for MPI
over InfiniBand: Design Alternatives and Benefits”. In: Alternatives
(2006) (see p. 31, 79).

[Sur+06b] Sayantan Sur et al. “Shared receive queue based scalable MPI design
for InfiniBand clusters”. In: International Parallel and Distributed Pro-
cessing Symposium (IPDPS). 2006 (see p. 31).

[SVP13] Hari Subramoni, Jerome Vienne, and Dhabaleswar K DK Panda. “A
scalable infiniband network topology-aware performance analysis tool
for MPI”. In: Euro-Par 2012: Parallel Processing Workshops. Springer.
2013, pp. 439–450 (see p. 48).

134 Bibliography

[TCP12] Marc Tchiboukdjian, Patrick Carribault, and Marc Pérache. “Hierar-
chical Local Storage: Exploiting Flexible User-Data Sharing Between
MPI Tasks”. In: International Parallel and Distributed Processing Sym-
posium (IPDPS). 2012, pp. 366–377 (see p. 35, 91).

[TD09] François Trahay and Alexandre Denis. “A scalable and generic task
scheduling system for communication libraries”. In: International Con-
ference on Cluster Computing. 2009 (see p. 80).

[Tec11] Mellanox Technologies. Collectives Offload - API (revision 1.3). 2011
(see p. 26, 90, 120).

[Tec13a] Mellanox Technologies. Connect-IB: Architecture for Scalable High Per-
formance Computing. 2013 (see p. 26, 31).

[Tec13b] Mellanox Technologies. RDMA Aware Networks Programming User
Manual. 2013 (see p. 26).

[Tec14] Mellanox Technologies. MellanoX Messaging Library User Manual.
2014 (see p. 26).

[Tez+98] Hiroshi Tezuka et al. “Pin-Down Cache: A Virtual Memory Manage-
ment Technique for Zero-Copy Communication”. In: IPPS/SPDP. 1998,
pp. 308–314 (see p. 30, 83).

[TG07] Rajeev Thakur and William Gropp. “Test Suite for Eval-
uating Performance of MPI Implementations That Support
MPI_THREAD_MULTIPLE”. In: PVM/MPI. 2007, pp. 46–55
(see p. VIII, 5, 16, 78, 95–97).

[Tha+10] Rajeev Thakur et al. “MPI at Exascale”. In: Procceedings of SciDAC 2
(2010) (see p. 14, 35).

[Top] Top500 Supercomputer Sites. http://top500.org. June 2013 (see p. 5,
6, 13, 23, 119).

[Tra03] Jesper Larsson Traff. “SMP-aware message passing programming”. In:
Parallel and Distributed Processing Symposium, 2003. Proceedings. In-
ternational. IEEE. 2003, 10–pp (see p. 101).

[Tre89] Lloyd N. Trefethen. SCPACK User’s Guide. Numerical Analysis Report
89-2. (An earlier edition appeared as an ICASE internal report in 1983.)
Dept. of Mathematics, MIT, 1989 (see p. 9).

[TY01] Hong Tang and Tao Yang. “Optimizing Threaded MPI Execution on
SMP Clusters”. In: International Conference on Supercomputing (ICS).
2001 (see p. 11).

[UB04] Keith D. Underwood and Ron Brightwell. “The Impact of MPI Queue
Usage on Message Latency”. In: ICPP. IEEE Computer Society, 2004,
pp. 152–160 (see p. 22).

[Vie+12] Jerome Vienne et al. “Performance Analysis and Evaluation of Infini-
Band FDR and 40GigE RoCE on HPC and Cloud Computing Systems”.
In: High-Performance Interconnects (HOTI). IEEE. 2012, pp. 48–55
(see p. 25).

http://top500.org

Bibliography 135

[Vis+06] Abhinav Vishnu et al. “Supporting MPI-2 One Sided Communication
on Multi-rail InfiniBand Clusters Design Challenges and Performance
Benefits”. In: High Performance Computing – (12th HiPC’05), Pro-
ceedings 12th International Conference. Ed. by David A. Bader et al.
Vol. 3769. Lecture Notes in Computer Science (LNCS). Goa, India:
Springer-Verlag (New York), Dec. 2006, pp. 137–147 (see p. 67).

[VKB11] Abhinav Vishnu, Manojkumar Krishnan, and Pavan Balaji. “Dynamic
Time-Variant Connection Management for PGAS Models on Infini-
Band”. In: Parallel and Distributed Processing Workshops and Phd Fo-
rum (IPDPSW). IEEE. 2011, pp. 740–746 (see p. 75).

[VM03] Vetter and Mueller. “Communication Characteristics of Large-scale
Scientific Applications for Contemporary Cluster Architectures”. In:
JPDC: Journal of Parallel and Distributed Computing 63 (2003) (see
p. 38).

[VU05] Theewara Vorakosit and Putchong Uthayopas. “Building a Highly Scal-
able MPI Runtime Library on Grid using Hierarchical Virtual Cluster
Approach”. In: International Conference on Parallel and Distributed
Computing Systems (PDCS’05). Ed. by S. Q. Zheng. Phoenix, AZ,
USA: IASTED/ACTA Press, Nov. 2005, pp. 524–529 (see p. 37).

[Wan+11] Hao Wang et al. “MVAPICH2-GPU: optimized GPU to GPU commu-
nication for InfiniBand clusters”. In: Computer Science-Research and
Development 26.3-4 (2011), pp. 257–266 (see p. 16).

[Wol+12] Marc Wolff et al. “High-order dimensionally split Lagrange-remap
schemes for ideal magnetohydrodynamics”. In: Discrete and Continuous
Dynamical Systems - Series S (2012) (see p. 84).

[Woo+06] Timothy S. Woodall et al. “High Performance RDMA Protocols in
HPC”. In: Recent Advances in Parallel Virtual Machine and Message
Passing Interface (PVM/MPI). Ed. by Bernd Mohr et al. Vol. 4192.
Lecture Notes in Computer Science (LNCS). Sept. 2006, pp. 76–85 (see
p. 41, 66).

[Wu+02] Jiesheng Wu et al. “Impact of On-Demand Connection Management in
MPI over VIA”. In: CLUSTER. 2002, pp. 152–159 (see p. 38).

[WWP04] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. “High Per-
formance Implementation of MPI Derived Datatype Communication
over InfiniBand”. In: International Parallel and Distributed Processing
Symposium (IPDPS). IEEE Computer Society, 2004 (see p. 36, 105).

[YGP06] Weikuan Yu, Qi Gao, and Dhabaleswar K. Panda. “Adaptive connection
management for scalable MPI over InfiniBand”. In: International Par-
allel and Distributed Processing Symposium (IPDPS). 2006 (see p. 29,
38).

[Yu+05] Weikuan Yu et al. “Design and Implementation of Open MPI over
Quadrics/Elan4”. In: International Parallel and Distributed Processing
Symposium (IPDPS). Apr. 2005 (see p. 24).

[Inf] InfiniBand Trade Association. InfiniBand Architecture Specification.
http://www.infinibandta.com (see p. 24, 84).

http://www.infinibandta.com

136 Bibliography

[MPI93] MPI Forum. “MPI: A Message Passing Interface”. In: Proceedings of
Supercomputing ’93. Nov. 1993, pp. 878–883 (see p. 9).

[Ope13] OpenMP Architectural Board. “OpenMP Application Program Inter-
face (version 4.0)”. In: July 2013 (see p. 9, 92, 114).

List of Figures

1.1 Parallelization using a domain decomposition method 4
1.2 Example of SMP (a) and NUMA (b) architectures 6
1.3 MPC runtime overview . 12
1.4 Intel Many Integrated Core (MIC) architecture block diagram (cour-

tesy of Intel) . 15
1.5 NUMA effects between processes on an architecture implementing the

BCS. Efficiency of a memory copy (128 MB) in MB/s according to
the memory affinity between the 128 physical cores 17

2.1 Comparison of two communication libraries. The regular TCP/IP
stack (on the left) involves the OS during communications. Modern
interconnects such as Infiniband (on the right) support technologies
to bypass the OS. 20

2.2 Infiniband memory pinning process 30
2.3 Architecture of the compute nodes that compose the Curie’s Large

Cluster . 32

3.1 Estimation of memory usage for Infiniband RC in the case of a fully-
connected graph with 128 bytes of inline data and without SRQ nor
XRC capabilities (see section 2.2.5). WQEs correspond to the entries
in QPs which describe how messages will be sent (i.e., Send Requests
in Send Queues) and how they will be received (i.e., Receive Requests
in Receive Queues). They include for example the semantics, the tar-
get RDMA address or the data size). Inline data allows the reduction
of latency of short messages by storing data directly into the WQE. 37

3.2 One-sided eager Protocol . 39
3.3 Two-sided rendezvous Protocol (based on RDMA write operations) 39
3.4 MPI evaluation of the rendezvous protocol (based on RDMA write

operations, registration cache enabled) and the buffered protocol of
MPC. The IMB Ping-Pong benchmark executes two tasks on differ-
ent nodes without buffer reuse (a) and with buffer reuse (b). No
buffer reuse means that communication buffers are different within
all repetitions and the registration cache consequently fails to re-use
previously registered memory regions. 40

3.5 Data and signalization networks. The data network is dedicated to
MPI communications whereas the signalization network carries con-
trol messages (e.g., control messages used for on-demand endpoints
interconnection) . 43

3.6 On-demand QP connection algorithm over Infiniband. The RTR and
RTS states respectively indicate that the QP is Ready To Receive
and Ready To Send messages . 46

138 List of Figures

3.7 MPI Bandwidth test on 2 compute nodes and 16 MPI tasks per node
using the eager protocol. MPI tasks perform pairwise communica-
tions with a task from the other node following the pattern depicted
in figure (a). In figure (b), performance of short messages is low,
partially because of a high contention on the QPs while posting new
network buffers. 50

3.8 Estimation of the number of vrails (or virtual subchannels) in a
multi-rail configuration for a process-based runtime (a) and a multi-
threaded MPI runtime (b and c). In (a), each MPI task locally opens
four vrails (number of remote tasks multiplied by the number of
HCAs) and the runtime prevents the vrails to be shared between
the MPI tasks. The design depicted in (b) requires one unique vrail
per HCA and per compute node to utilize the total network band-
width available. In (c) the runtime connects HCA0 and HCA1 of the
two compute nodes using two logical cross-links and referred to as
Virtual Channels (VC). Additionally, this design requires per NUMA
node as many vrails as the number of HCAs in the compute node. . 52

3.9 Comparison of two routing policies for selecting a vrail : the sender-
driven (a) and the receiver-driven (b). On both figures, the
MPI task 1 sends a message to the MPI task 6. 54

3.11 rendezvous message transmission from a task running in node
0/NUMA 0 to a task running in node 1/NUMA 1 with a receive-
driven routing policy. The selection of the vrail is determined ac-
cording to the type of the message to transfer and the location of the
destination task (receiver-driven routing policy). 55

3.12 IMB Exchange benchmark on 2 nodes, 16 MPI tasks per node with
the eager protocol. The tasks communicate exclusively using the
network (IMB argument -map 16x2). The latency is relative to 1
iteration. 58

3.13 IMB Ping-Pong benchmark on 2 nodes from the Large Cluster , 1 MPI
task per node according to the HCA used (local or distant). In figure
(a), the bandwidth is represented for messages up to 4 MB whereas
the latency for messages shorter than 256 bytes is represented in figure
(b). 59

3.14 Schematic representation of the benchmark that evaluates the impact
of BCS on network communications 59

3.15 IMB Ping-Pong benchmark on 2 nodes from the Large Cluster ,
1 MPI task per node. A varying number of threads perform memory
copies that are concurrently operating to network transfers. In figure
(a), the bandwidth is represented for messages up to 4 MB whereas
the latency for messages smaller than 256 bytes is represented in fig-
ure (b). 60

List of Figures 139

3.17 Three possible configurations for the multi-threaded communication
layer on 128-core nodes. One vrail is allocated and 1 HCA is used
in figure (a). For polling and posting messages, every NUMA node
accesses the same vrail , resulting in a large traffic on the BCS. In
figure (b), one vrail is allocated per level-2 NUMA node and in fig-
ure (c), one vrail is allocated per level-1 NUMA node. For figures (b)
and (c), the closest HCA is opened and no access through the BCS
is required to poll the vrails . 61

3.18 IMB AllToAll micro-benchmark evaluation up to 512 cores (4 nodes)
with 4 HCAs and 1 MB messages. Comparison of execution
time and memory used between MPC with a various number of
vrails, Intel MPI using different configurations and Adaptive MPI
(AMPI). MPC with 1 vrail per compute node uses 1 HCA
whereas MPC with 4 vrails (1 vrail per level-2 NUMA node)
and MPC with 16 vrails (1 vrail per level-1 NUMA node) opens
4 HCAs. Intel MPI OFA4 and OFA1 respectively refers to as In-
tel MPI using the OpenFrabrics fabric with 4 HCAs and 1 HCA
(I_MPI_FABRICS=shm:ofa and I_MPI_OFA_NUM_ADAPTERS=4 and 1).
DAPL/UD and DAPL/RC open 1 HCA and respectively refers to as
Intel MPI using the DAPL fabrics with Unreliable Datagram (UD en-
abled with I_MPI_DAPL_UD=enable) and with Reliable Connection
(RC) . 62

3.19 IMB AllToAll micro-benchmark evaluation up to 512 cores (8 nodes)
with 1 HCA. Comparison of execution times on MPC with 1 vrail
per compute node, 1 vrail per level-2 NUMA node (4 vrails) and
1 vrail per level-1 NUMA node (16 vrails). Benchmark conducted on
the AllToAll micro-benchmark for short MPI messages (a) and large
MPI messages (b) . 65

3.20 MPC, MVAPICH2, Intel MPI and Open MPI weak-scalability evalu-
ation on Athena using the Rayleigh-Taylor instability problem with a
constant resolution of 1543 per core. Experiences conducted on Large
Cluster from 32 to 6,144 cores. 66

3.21 Schematic decomposition of the eager RDMA protocol 69
3.22 RDMA buffer reshaping workflow. The sender initiates the request. . 71
3.23 HERA on 64 nodes, 1,024 MPI tasks running on top of MPC. Grid of

size 2563 on 300 timesteps. The figure reports the physical memory
allocated on compute nodes 13 and 21. 73

4.1 Influence of Communication/Computation Overlapping in MPI . . . 78
4.2 Overheads in a threaded message progression 79
4.3 MPI runtime without Collaborative-Polling (left) and MPI with

Collaborative-Polling (right) . 81
4.4 Collaborative-Polling Implementation inside MPC Infiniband Module 82
4.5 The rendezvous protocol with Collaborative-Polling (left) and with-

out (right). With Collaborative-Polling, an idle MPI task may steal
a rendezvous control message, match and send the ACK to the sender. 83

4.6 NPB MPI Evaluation. Class D on 1,024 cores 86
4.7 NPB Steal statistics. Class D on 1,024 cores 86
4.8 BT steal statistics . 87

140 List of Figures

4.9 EulerMHD Evaluation . 87
4.10 EulerMHD Evaluation . 89
4.11 Gadget Evaluation . 89

5.1 Memory representation of an application parallelized using the do-
main decomposition method in a shared-memory context 92

5.2 Taxonomy of parallel programming models for hybrid MPI+OpenMP
applications [RHJ09] . 93

5.3 Hybrid latency benchmarks with 3 threads per compute node 97
5.4 Hybrid and full-MPI latency benchmarks on 16 cores node. Eager

messages from 0 KB to 16 KB. 99
5.5 Hybrid and full-MPI latency benchmarks on 16 cores node.

Rendezvous messages from 16 KB to 1 MB. 99
5.6 Latency single-rank test up to 96 cores 100
5.7 Different functions for accessing data in a two-dimension mesh. The

linear function in figure (a) does not preserve locality of data whilst
the Z-order curve in figure (b) preserves locality for improving later
cache reuse. 101

5.8 Halo swaps with the domain decomposition method in a shared-
memory context. In figure (a), the user manually packs and unpacks
halos into contiguous buffers and three memory copies are involved.
In figure (b), optimized MPI derived data types are used and the run-
time can suppress two memory copies. This is for example the case
with thread-based MPI. With OpenMP in figure (c), threads directly
access data from the neighborhood and no more halos are allocated
for intra-node communications. 106

5.9 Comparison between RTM-proto FULLMPI, MASTER, TASKS and DD
versions on Thin Cluster , 2,048 cores (128 MPI tasks, 16 OpenMP
threads per MPI task, 2, 5603 domain size, 2,000 iterations) 109

5.10 Comparison between RTM-proto FULLMPI, MASTER and TASKS ver-
sions on the Large Cluster , 2,048 cores (16 MPI tasks, 128 OpenMP
threads per MPI task, 2, 5603 domain size, 500 iterations). 110

5.11 Comparison between Intel MPI in various configurations and MPC
on FULLMPI and DD versions with 2,048 cores from the Large Cluster
(16 MPI tasks, 128 OpenMP threads per MPI task, 2, 5603 domain
size, 500 iterations). IMPI/WAIT refers to as Intel MPI with WAIT-
mode activated whereas IMPI/SOCKET creates one MPI task per level-
2 NUMA node . 112

5.12 Thread-to-thread communications using the actual interface of the
MPI standard. A synchronization is required between thread 0 and
thread 1 to access the context of the MPI task they belong to. 113

5.13 Comparison between the FULLMPI version of RTM-proto with 1 HCA,
the FULLMPI version with 4 HCAs and the DD hybrid code on
2,048 cores from the Large Cluster (16 MPI tasks, 128 OpenMP
threads per MPI task) . 114

6.1 Interconnect family system share over ten years, from 2003 to 2013
(from TOP500’s website [Top]) . 119

List of Tables

1.1 Top 5 supercomputers and Curie Thin nodes ranked at the 15th po-
sition. Rmax is the maximal performance achieved using the High
Performance LINPACK (HPL [Don88]). List extracted from the June
2013 Top500 list . 6

2.1 Comparison between capabilities of high-speed interconnects for HPC
and their system share . 27

2.2 Capabilities of Infiniband transport modes (courtesy of Mellanox’s
RDMA Aware Networks Programming User Manual). 29

3.1 Seismic modelling application on 1,024 MPI tasks with Open MPI
1.7 and a domain size of 5, 1923. The table reports the memory
allocated for different groups: the application, Infiniband buffers and
the remaining memory allocated but not profiled. 41

3.2 Degree and average distance of several topologies. N is the total
number of nodes in the graph. 44

3.3 Average time to connect two peers over Infiniband using different MPI
runtimes and 128-core compute nodes 47

3.4 Comparison in the number of network endpoints per compute
nodes for several transport protocols with multirail support. Fully-
connected cluster with N nodes, C cores per node and H Infiniband
HCAs per node. H = 1 if no multirail support. 64

3.5 NAS Fourier Transform (FT) Class D on 512 MPI tasks, 32 nodes
from the Thin Cluster . Size of SR and RDMA slots are set to 16 KB.
Results are reported per process. 69

3.6 HERA on 32 nodes, 512 MPI tasks. Grid of size 2563 and 40
timesteps. Comparison between the SR protocol, eager RDMA with
the best configuration manually achieved, eager RDMA limited to 1
reshaping and eager RDMA unlimited in the number of reshaping . 75

4.1 BT MPI Time Showdown (class D) 87
4.2 EulerMHD MPI Time Showdown . 88
4.3 EulerMHD rendezvous timers . 89
4.4 Gadget MPI Time Showdown . 89

5.1 Comparison of the physical memory used for the FULLMPI and DD
versions of RTM-proto with MPC and Intel MPI 113

Glossary

CPU (Central Processing Unit) The Central Processing Unit is a chip that car-
ries out the instructions of a computer program.

CQ (Completion Queue) A queue (FIFO) which contains CQEs.

CQE (Completion Queue Entry) An entry in the CQ that describes the infor-
mation about the completed WR (its status and size, value of the immediate
data, etc. . .) .

HCA (Host Channel Adapter) An HCA provides the point at which an Infini-
band end node (compute node) connects to an Infiniband network. They are
the equivalent of the Ethernet (NIC) card.

Infiniband Verbs Low-level end-user API for programming Infiniband HCAs.
Provided by the OpenFabrics Entreprise Distribution software stack.

IP (Internet Protocol) A protocol used for communicating data across a packet-
switched internetwork.

lkey A number that is received upon registration of MR is used locally by the WR
to identify the memory region and its a ssociated permissions.

MTU (Maximum Transfer Unit) The maximum size of a packet payload (not
including headers) that can be sent /received from a port.

NIC (Network Interface Controller) A NIC is a computer hardware compo-
nent that connects a computer to a computer network.

OFED (OpenFabrics Entreprise Distribution) The OFED stack distributed
by the OpenFabrics Alliance includes software-drivers, core kernel-code, mid-
dleware and user-level interfaces for accessing the three major RDMA fab-
ric technologies – Infiniband, iWARP and RDMA over Converged Ethernet
(RoCE).

OS (Operating System) An Operating System is a collection of software that
manages computer hardware resources. To access hardware, operating systems
expose a set of services that computer programs can use.

QP (Queue Pair) The pair (Send Queue and Receive Queue) of independent WQs
packed together in one abstract object. These network endpoints (similar to
TCP sockets) aim at transferring data between nodes of a network. There are
two major types of QP: Unreliable Datagram and Reliable Connection..

RDMA (Remote Direct Memory Access) Accessing memory in a remote side
without involvement of the remote CPU.

Remote Key (rkey) A number that is required to remotly access a memory re-
gion. It is used to enforce permissions on incoming RDMA operations.

144 Glossary

RoCE (RDMA over Converged Ethernet) A network protocol that allows re-
mote direct memory access over an Ethernet network.

RQ (Receive Queue) A Work Queue which holds RRs posted by the user.

RR (Receive Request) A WR which was posted to an RQ and describes where
incoming data (Send-Receive and Memory channels) is going to be written.
Also note that a RDMA Write with immediate will consume a RR.

RTR (Ready To Receive) A QP state in which an RR can be posted and be
processed.

RTR (Ready To Send) A QP state in which an SR can be posted and be pro-
cessed.

SQ (Send Queue) A Work Queue which holds SRs posted by the user.

SR (Send Request) A WR which was posted to an SQ and describes how much
data is going to be transferred, its address, and which channel (Send-Receive
and Memory).

SRQ (Shared Receive Queue) A queue which contains WQEs for incoming
messages from any QP which is associated with it. More than one QPs can
be associated with one SRQ.

WQ (Work Queue) A Send Queue or Receive Queue.

WQE (Work Queue Element) An element in a Work Queue.

WR (Work Request) A request which was posted by a user to a work queue.

	I Context
	Introduction
	Overview of Supercomputer Architecture
	Programming Models for HPC
	Shared-Memory Systems
	Distributed Memory Systems
	The Message Passing Interface
	Discussion

	MPI Challenges
	High Performance of Communications
	Scalability and Reliability
	Independent Message Progression
	Memory Consumption
	Hybrid Programming
	Data Locality

	Dissertation Contributions
	Document Organization

	Interconnection Networks for High Performance Computing
	Introduction to High-Speed Networks
	Kernel Level Messaging Libraries
	Facilities of Modern Interconnects
	Overview of Interconnects for HPC
	Programming Infiniband
	Discussion

	Infiniband Overview
	Communication Semantics
	Queue Pairs and Infiniband Transport Modes
	Memory Registration
	Completion and Event Handling Mechanisms
	Memory-Friendly Infiniband Endpoints

	Experimental Platforms
	Thin Cluster: 16-core nodes, 1 HCA
	Medium Cluster: 32-core nodes, 1 HCA
	Large Cluster: 128-core nodes, 4 HCAs

	II Contributions
	Memory-Scalable MPI Runtime
	Memory Footprint: a Limit to the Scalability of MPI Runtimes
	Scalability of Network Endpoints
	MPI Communication Protocols and Buffer Usage

	Scalable Multi-Purpose Virtual Topology for High-Speed Networks
	Scalability Concerns of Connection-Oriented Networks
	Contribution: Scalable and Fully-Connected Signalization Topology for Connection-Oriented Networks
	Limit of the Design and Possible Enhancements

	Optimizing Network Endpoint Usage for Multi-Threaded Applications
	Performance Implications of Multi-Threaded Endpoints
	Contribution: Multi-Threaded Virtual Rails
	Multi-Threaded Network Buffers Management
	Evaluation of the Design
	Future Work: Contention-Based Message Stripping Policy
	Related Work

	Automatic Readjustment of Network Buffers
	Eager Network Buffers over RDMA Protocol
	Contribution: Auto-Reshaping of Eager RDMA Buffers
	Multi-Threaded Implementation
	Experiments
	Discussion and Future Work

	Partial Conclusion

	Improving MPI Communication Overlap With Collaborative Polling
	Introduction
	Related Work
	Message Progression Strategies
	Thread-Based MPI

	Our Contribution: Collaborative Polling
	Implementation
	Discussion on Message Sequence Numbers
	Polling Concerns
	Extension to Process-Based MPI
	Extension to Other High-Speed Interconnects

	Experiments
	NAS Parallel Benchmarks
	Gadget-2

	Conclusion and Future Work

	Evaluation of MPI Runtimes in Hybrid Context
	Introduction to Hybrid Programming
	Fine-Grain Parallelization
	Coarse-Grain Parallelization

	Performance Evaluation of MPI Runtimes in Multi-Threaded Context
	Related Work
	Motivations

	Micro-Evaluation: MPI_THREAD_MULTIPLE Test Suite
	Thread-Safe MPI Runtimes
	Thread Overhead on Small Compute Nodes (16 cores)
	Multi-Threading MPI Scalability on Large Compute Nodes (128 cores)

	Reverse Time Migration Proto-Application
	Hybrid RTM-proto
	Discussion on Non-Contiguous Data
	Experimental Results

	Conclusion and Future Work
	Summary of the Research Contributions
	Scope of the Contributions
	Future Work

	List of figures
	List of tables
	Glossary

