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Abstract

This work focuses on the many-body properties of semiconductor nanostructures for
quantum engineering of infrared optoelectronic devices. In particular, we theoretically
investigate the optical response accounting for collective effects in systems of tunnel-
coupled quantum wells. A clear manifestation of these effects appears in the optical
spectrum of highly doped quantum wells, where the absorption peaks are at completely
different energies with respect to the single-particle electronic transitions.

We calculate light-matter interaction in two steps. First, we consider the microscopic
polarization associated with the electronic transitions between confined levels of the
wells, which are all coupled by dipole-dipole Coulomb interaction. Then we calculate the
interaction of the resulting collective states with the electromagnetic field. The absorption
spectrum is finally expressed in terms of microscopic currents, describing the collective
charge oscillations. The theoretical model is applied to a series of relevant systems, and
its outcomes are compared with experimental results.

As the collective states are issued from the coherent superposition of several electronic
excitations, they have the properties of superradiant states. They are thus a promising
entity for the realization of efficient light emitters in the mid- and far-infrared frequency
range.





Résumé

Ce travail de thèse est centré sur l’étude des effets multicorps dans des nanostructures
semiconductrices pour l’ingénierie quantique de dispositifs optoelectroniques infrarouges.
Plus particulièrement, nous étudions la réponse optique de gaz d’électrons confinés dans
des puits quantiques couplés par effet tunnel, en incluant les effets collectifs. On peut
trouver une manifestation de ces effets dans les spectres d’absorption de puits quantiques
très dopés, qui présentent des résonances optiques à des énergies complètement différentes
par rapport aux transitions électroniques.

L’interaction lumière-matière est calculée en deux étapes. Nous commençons par
considérer les polarisations microscopiques associées aux transitions électroniques entre
niveaux confinés des puits quantiques. Le couplage dipôle-dipôle entre polarisations
électroniques donne lieu à des états collectifs, dont nous calculons successivement
l’interaction avec le champ électromagnétique. Le spectre d’absorption est donc exprimé
au travers de courants microscopiques, qui décrivent les oscillations collectives de charge.
Le modèle théorique est appliqué à des systèmes pertinents et ses prédictions sont
comparées aux résultats expérimentaux.

Comme les états collectifs sont issus de la superposition cohérente de plusieurs exci-
tations électroniques, ils ont les propriétés d’états superradiants. Ils représentent ainsi un
système prometteur pour la réalisation de sources lumineuses efficaces dans les régions
spectrales du moyen et lointain infrarouge.
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Introduction

Semiconductor structures with dimensions of a few tens of nanometers can be realized
thanks to nanotechnology. In these systems, quantum effects naturally arise as a conse-
quence of the reduced dimensions, and strongly affect electronic and optical properties of
the matter. To bring these phenomena to the macroscopic world, it is necessary to create
an interface capable to connect the realm of quantum with the sizeable effects. This
interface is what we want from a quantum device [1]. The design of devices completely
relying on quantum effects is called quantum engineering.

Quantum Cascade Lasers (QCLs) [2] are one example of this approach. In a QCL,
laser emission takes place between confined levels (subbands) in tunnel-coupled semicon-
ductor quantum wells. The emission wavelength does not depend on the material system,
but on the thickness of the quantum wells. As a consequence, QCLs span a very wide
frequency interval, from the mid- to the far-infrared. Since their first realization in 1994,
these devices have seen impressive progresses [3]. Their maturity has allowed several
industrial applications, especially in mid-infrared spectroscopy for sensing systems [4–6].
The operation of QCLs depends on a bandstructure and lifetime engineering, ingeniously
combining quantum confinement and resonant tunneling. A QCL represents a fascinating
macroscopic result of controlling quantum effects.

QCLs rely on quantum engineering to achieve stimulated emission and realize powerful
mid- and far-infrared sources. On the other hand, in this frequency range spontaneous
emission cannot be exploited to produce light-emitting structures as efficient as in the
visible. This is due to the characteristic time for spontaneous emission τsp, which scales
with ω−3, ω being the emission frequency. In the mid- and far-infrared range, τsp is much
longer than the non-radiative lifetime, giving rise to quantum efficiencies of the order of
10−6.

The general context of this theoretical work is the possibility of modifying the char-
acteristic time of light-matter interaction by introducing new coherences in a quantum
system. An example of this phenomenon is the strong coupling between an intersubband
excitation in a quantum well and a microcavity photon mode [7, 8]. In this case, the
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2 Introduction

interaction frequency is controlled by the electronic density in the well. Another possible
way to modify light-matter interaction is to exploit the phenomenon of superradiance,
already demonstrated in atomic physics [9, 10], occurring when a dense ensemble of
two-level emitters is placed in a small volume. The spontaneous emission becomes
in this case a cooperative effect, resulting in a dramatic increase of the spontaneous
emission rate, depending on the number of emitters involved. The possibility of realizing
solid-state devices based on superradiance is an open and challenging research field [11–13].

In this direction, it has been recently experimentally demonstrated [14] that it is
possible to create a collective state with superradiant properties in a condensed-matter
system. The structure considered in Ref. [14] is a large and highly doped quantum well,
where the important density of charge makes many-body effects crucial. As a result, the
measured absorption spectrum consists of a single resonance concentrating the whole
interaction with light, at a higher energy than all the bare electronic transitions. This
single resonance corresponds to the excitation of a collective mode of the system: the
electron gas responds to the electromagnetic field in a cooperative way, with a giant
dipole depending on the electronic density, as it is typical of superradiant states. With
electronic densities achievable in semiconductor quantum wells, lifetimes of the order of
100 fs can be attained. This collective mode is thus a promising entity for the realization
of efficient light emitters in the mid- and far-infrared [15].

Most of this work has been focused on the study of optical properties of dense elec-
tronic gases, confined by a one-dimensional potential. After theoretically demonstrating
the emergence of collective modes from dipole-dipole Coulomb interaction, different
confining potentials have been investigated. In these systems, two couplings are present:
tunneling, which creates a coherence between electronic levels, and Coulomb interaction,
which couples transitions involving a high density of electrons. Particular consideration
has been devoted to the study of the interplay between the two effects. This analysis is a
first step toward a novel engineering of quantum devices, based on many-body excitations,
rather than on single-particle properties.

A further step in this direction would be the description of electron transport in
the presence of tunnel and Coulomb coupling. A density matrix model accounting for
coherent tunneling has been studied and applied to examples of THz and mid-IR QCLs.
A preliminary analysis of the inclusion of collective effects in electron transport has also
been performed.

The structure of the manuscript is the following.

Chapter 1 provides a general overview on the single-particle properties of semicon-
ductor quantum wells, in particular regarding the calculation of electronic levels. A
brief introduction to quantum cascade lasers is given, along with references for various
concepts exploited in the rest of the work.

Chapter 2 presents a quantum model to calculate the optical response of high-density



Introduction 3

electron gases confined by heterostructure potentials, where coherence induced by
tunneling combines with the coherence induced by the high density of charge [16]. A
description of the collective states, issued from the coherent oscillation of all the optically
active dipoles in the system, is provided in terms of microscopic current densities.

Chapter 3 is devoted to applications of this quantum model to relevant examples. The
starting point is the single heavily doped quantum well, for which the experimental results
of Ref. [14] are recovered. The interplay between Coulomb interaction and tunneling is
then systematically discussed in the case of tunnel-coupled quantum wells. An analytical
tight-binding model to describe these systems in the limit of low doping and thick barriers
is provided.

In Chapter 4, the effects of the two couplings on electron transport are investigated.
First, a density matrix model accounting for coherent tunnelling is introduced, and
applied to a quantum cascade laser operating in the THz range.
The final part of the chapter represents a preliminary study of the inclusion of many-body
effects due to Coulomb interaction. After considering a single-particle density matrix
method, equations accounting for second-order correlations, following a cluster-expansion
approach [17], are presented.

Some supplementary material has been included in appendices, with the intent of
simplifying the flow of the main text. Appendix A presents the structure of the programs
used for numerical calculations. Appendix B presents the details of intersubband and
intrasubband scattering times calculations. Appendix C contains an introduction to the
density matrix formalism used in Chapter 4, and describes the algorithm used to extend
the calculation to an arbitrary number of levels. Finally, Appendix D reports the results
of a post-growth study of a MOCVD- (MetalOrganic Chemical Vapour Deposition) grown
mid-IR QCL, whose electrical and optical characteristics have been simulated with the
technique introduced in Chapter 4.
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1

Semiconductor quantum wells:
single-particle electronic and optical

properties

This first chapter is devoted to an introduction to the properties of semiconductor quantum
wells in a single-particle picture, where interactions between electrons are neglected. We
provide an overview on theoretical concepts that will be widely used in the rest of the work.
Section §1.1 presents the basics of electronic levels (subbands) calculation in quantum
wells. We discuss the choice of the basis to solve the wavefunctions eigenproblem in §1.2.
Section §1.3 is dedicated to a brief review of intersubband absorption in a single-particle
picture, in a classical and semiclassical framework. We introduce intersubband scattering
processes in §1.4. Finally, we present Quantum Cascade Lasers (QCLs)[3], the major
example of device based on intersubband transitions, in §1.5.

1.1. Band structure calculation

The semiconductor nanostructures that will be considered in this work are based on III-V
semiconductor alloys. In this section, we briefly review the band structure calculations in
these materials. We recall the k · p approximation and the Kane model.

1.1.1. Bulk III-V semiconductors

Bulk III-V semiconductors are compounds of materials of group III and materials of group
V of the periodic table, like InAs, GaAs, and AlAs. They crystallize in the zinc-blende
structure: two interpenetrating face-centered cubic Bravais lattices, displaced along the
body diagonal of the cubic lattice with the two-point basis 0 and a

4 (x + y + z), with a
lattice constant [see Fig. 1.1(a)]. In the zincblende structure there are two atoms in the
elementary cell, one for each of the two different elements of the compound. The first
Brillouin zone is a truncated octaedron, as shown in Fig. 1.1(b).

It is possible to find III-V semiconductors both with an indirect gap (for instance AlAs,
BN, GaP) and a direct gap (e.g. GaAs, GaN, InAs). Figure 1.2 shows the band structure

5



6 1.1. Band structure calculation

Figure 1.1: From Ref. [18]: a) Crystalline structure of III-V semiconductors (zinc-blende),
with two types of atoms, represented in black and white. b) First Brillouin zone with high
symmetry points.

Figure 1.2: From Ref. [19]: Electronic band structure of bulk GaAs calculated by the pseu-
dopotential technique [18]. At the Γ point, the parabolic energy dispersion approximated with
the k · p is sketched in red.



Chapter 1. Semiconductor QWs: single-particle properties 7

in the case of GaAs, where both the minimum of the conduction band and the maximum
of the valence band are located at the Γ point, center of the Brillouin zone.

k · p analysis and effective masses

The electronic states in a crystalline solid are determined by the time-independent
Schrödinger equation [

p2

2m0
+ V (r)

]
ψ(r) = Eψ(r) (1.1)

where V (r) is the periodic potential due to the crystal structure, and m0 is the mass of the
electron. The periodicity of V (r) is that of the crystal: V (r+R) = V (r) where R is in the
Bravais lattice. Bloch Theorem [20] states that the eigenstates of the Hamiltonian (1.1)
have the form

ψn,k(r) =
eik·r√
V
un,k(r) (1.2)

where V is the volume of the unit cell, n is the band index, and k is a vector of the
reciprocal space. un,k(r) are a set of functions with the same periodicity as the crystal
structure: un,k(r + R) = un,k(r). We see than that the eigenstates are expressed
as the product of a plane wave and a periodic function. The quantity ~k is called
crystal momentum. It is not the actual momentum of the electron, as ψn,k cannot be
eigenfunction of p and H at the same time.

We are not interested in the calculation of the full semiconductor band structure
(which can be done using tight-binding or pseudopotential methods [18]), but rather
we want to calculate the dispersion Enk for a small range of k values around the band
extrema. Indeed, a local description of the extrema of the conduction band and valence
band is often sufficient to describe the electronic and optical properties of semiconductors
relevant for optoelectronic devices. The band structure near the k = 0 point can be
determined within the k · p method, which we summarize here briefly. For a complete
discussion, see for example Refs. [18, 21].

If one inserts the wavefunction expression (1.2) in Schrödinger equation (1.1), a differ-
ential equation for the periodic functions unk(r) is obtained:(

p2

2m0
+ V (r)︸ ︷︷ ︸

H(k=0)

+
~k · p
m0

+
~2k2

2m0︸ ︷︷ ︸
W (k)

)
unk(r) = Enkunk

We can treat the k-dependent terms as perturbations in k and calculate the band disper-
sion around a given point k0. The fundamental idea of the k · p approximation is indeed
to use the un0 as a basis for the expansion of the wavefunctions and energies at finite k
value.

Let us assume that the band structure is non degenerate in k = 0 and has an extremum
at the energy En0. It can be shown [18] that the k · p perturbation of non-degenerated
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bands gives a parabolic energy dispersion in the vicinity of the Γ point (see red curve in
Fig. 1.2). Enk can be expressed in a free-electron form as

Enk = En0 +
~2k2

2m∗
(1.3)

where m∗ is defined as the effective mass of the band, in general written as [20]1

1

m∗
=

1

~2

∂2Enk
∂k2

and in the k · p approximation reads [18]

1

m∗
=

1

m0
+

2

m2
0k

2

∑
n′ 6=n

|〈un0|k · p|un′0〉|2
En0 − En′0

(1.4)

Equation (1.4) shows that an electron in a solid has a different mass from that of a free
electron because of coupling between electronic states in different bands via the term k ·p.
As an example, we may consider just two bands, conduction and valence, and write the
conduction band energy as

Eck = Ec0 +
~2k2

2m0
+

~2k2

m0

|pcv|2
Eg

= Ec0 +
~2k2

2m0

(
1 +

EP
Eg

)
where pcv = 〈uc0|p|uv0〉 is the isotropic interband momentum matrix element, and we have
introduced the Kane energy EP = 2|pcv|2/m0 (≈ 20 eV in III-V semiconductors [3, 18]).

If the parabolic approximation is valid, the overall effects of the band structure on an
electron (i.e. the fact that it experiences the periodic potential V (r) instead of moving in
the vacuum) are included in the use of the constant effective mass (1.4) instead of the free
electron mass. The notion of effective mass is at the heart of the semiclassical description
of carrier motion in semiconductors [20]. The carrier velocity in a Bloch state |nk〉 in the
parabolic approximation (1.3) is equal to

v =
1

~
∂Enk
∂k

=
~k
m∗

which is reminiscent of the familiar relation v = p/m0 for free particles in vacuum.

Beyond the quadratic dispersion relations: Kane model

For a given k, the range of validity of the k ·p approximation is dependent on the effective
mass values: the parabolic approximation is less and less valid the lighter the effective
mass. The reason for this is that the influence of valence bands closer to the conduction
band becomes rapidly more important for smaller energy gaps, which vary proportionally

1We neglect here the tensorial nature of m∗ (see for example [21]), because the effective mass can be
considered mostly isotropic in III-V compounds in the vicinity of k = 0.
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to effective masses [22].

A method to account for conduction band nonparabolicity was proposed by Kane [23],
who applied it to InSb. In this compound, the topmost valence bands and the conduction
bands are very close and well-separated from the other bands. The perturbation W (k)
can in this case be diagonalized exactly for this subset of bands, and the coupling with
other remote bands considered as a second order perturbation.

The model considers then just the four states represented in Fig. 1.3: one state in the
conduction band and three in the valence band (light holes, heavy holes and split-off).
Note that in k = 0 heavy and light hole bands are degenerate. Their separation with
the split-off band is denoted ∆so. In order to find the energy dispersions, one writes the
Hamiltonian composed of the matrix elements of the perturbation W (k) on the four states
(with a factor of two due to spin). The energies ε(k) are then given by the eigenvalues
of this 8 × 8 matrix. An important result of this approach is that the dispersions ε(k)
are found to be no more parabolic, which can be reformulated with an energy dependence
of the mass. We omit here the details of the procedure for bulk, which can be found in
Ref. [21].

Figure 1.3: Schematic band structure of a direct gap III-V compound in the vicinity of the Γ
point.

1.1.2. Heterostructures and the envelope-function approximation

We shall now consider the determination of eigenstates in heterostructures, artificial semi-
conductors composed of more than one material, with the same lattice constant but differ-
ent energy gaps. In this case, the difference in energy gaps between the different materials
is shared between valence and conduction bands, ultimately determining for the latter a
profile Ec(z) (see Fig. 1.4).
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Figure 1.4: Conduction and valence band profiles in a type I heterostructure. W (well) denotes
the smaller gap material and B (barrier) the greater gap material.

Even in this situation, it is possible to keep a description similar to the bulk semicon-
ductor, where the electron wavefunction is expressed as the product of a function uk(r)
with the same periodicity as the crystal, and an envelope function χik(r) slowly varying
on the scale of the lattice constant:

ϕi,k(r) = uk(r)χik(r)

The envelope function χi,k is determined by the potential profile Ec(z) plus, if it is the
case, an external contribution Vext(r) (for example an external electrical field applied to
the structure, or the electrostatic potential due to electrons and ionized impurities). With
this approach, it is possible to describe the electrons in the conduction band just with their
envelope function, considering for them an effective mass m∗ that includes the effects of
the crystal potential, as above [21].

The Schrödinger equation for the envelope function reads:[
−~2

2
∇ 1

m∗(Ei,k, z)
∇+ Ec(z) + Vext(r)

]
χi,k(r) = Ei,kχi,k(r)

In the structures discussed in this manuscript, Vext depends only on z. The problem can
then be separated and the envelope function expressed as the product of a plane wave
propagating in the layers plane and a function of the growth direction z:

χik(r) = ψi(z)
eik‖·r‖√

S

where S is the surface of the plane. The function ψi(z) is then solution of the one-
dimensional Schrödinger equation:[

−~2

2

∂

∂z

1

m∗(Ei, z)

∂

∂z
+ Ec(z) + Vext(z)

]
ψi(z) = Eiψi(z) (1.5)

The total energy Ei,k is then the sum of the eigenenergy Ei and the kinetic energy asso-
ciated with the free movement in the plane of the layers.
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Quantum wells

A quantum well can be obtained by sandwiching a semiconductor layer between two layers
of another semiconductor with a greater gap, as schematized in Fig. 1.4. The disconti-
nuity in the conduction band confines the movement of electrons in the growth direction,
while leaving it free on the layer (parallel) plane. In this case, the confinement in the z
direction makes the eigenenergies Ei of Eq. (1.5) discrete. If one considers also the kinetic
contribution in the layer plane, the total energies are given by

Eik = Ei +
~2k2
‖

2m∗(E)

The index i labels a set of states called subbands, whose dispersion on the plane (x, y) is
parabolic if the effective mass does not depend on the energy (see Fig. 1.5). In this case,
the energy separation between consecutive subbands is constant and independent of k‖.

Figure 1.5: a) Schematization of a GaAs/AlGaAs quantum well: conduction band (in black)
and square moduli of wavefunctions associated with three bound states (colored lines), rep-
resented at their respective energies. b) Dispersion curves on the parallel plane (parabolic
approximation).

In the general case, Eq. (1.5) cannot be solved analytically, and electronic states must
be obtained numerically. It is however instructive to consider the problem of an infinite
quantum well of width L, with constant effective mass, for which the exact wavefunctions
and eigenenergies can be calculated as [24, 25]:

ψinfinite
i (z) =

√
2

L
sin

(
iπz

L

)
Einfinite
i =

~2π2i2

2m∗L2

(1.6)

We see from the above expression of the energies Ei that the separation between subbands
depends on the width of the quantum well L. This remains true also in the case of finite
potential, and is a fundamental feature in the design of devices based on intersubband
transitions, i.e. transitions between different subbands.
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Three-band Kane model in the envelope-function approximation

In a certain number of cases, for example InGaAs/AlInAs, the approximation of a
constant effective mass (i.e. parabolic bands) is not sufficient for an accurate description
of the system.

Band structure calculations in this work accounting for non parabolicity were per-
formed following Ref. [26]. The approach used is the three-band Kane model in the
envelope function approximation. In this model, the conduction states are coupled to
the light-hole and spin-orbit valence states, as the heavy-hole state is decoupled from the
original 4 × 4 Hamiltonian (8 × 8 reduced by spin degeneracy). The remaining 3 × 3
Hamiltonian in the Kane approximation reads:

Ec(z)
√

2
3
pcv
m0
pz −

√
1
3
pcv
m0
pz

−
√

2
3
pcv
m0
pz Elh 0√

1
3
pcv
m0
pz 0 Eso


and it is acting on a three-dimensional vector of envelope functions:

H

Φc

Φlh

Φso

 = E

Φc

Φlh

Φso

 (1.7)

where c, lh and so label conduction, light-hole and split-off position-dependent band
edges (see also schematization in Fig. 1.3). As previously mentioned, the matrix element

pcv can be expressed in terms of the Kane energy EP as pcv = i
√

m0EP
2 .

Considering the eigenproblem (1.7), we get the valence band wavefunctions in terms
of the conduction band wavefunction:

Φlh = − 1

E − Elh

√
2

3

pcv
m0

pzΦc

Φso =
1

E − Eso

√
1

3

pcv
m0

pzΦc

which combined with (1.7) give

(Ec − E)Φc −
Ep

2m0
pz

[
2

3

1

E − Elh
+

1

3

1

E − Eso

]
pzΦc = 0 (1.8)

From Eq. (1.8) it is finally possible to define m(E, z) as

1

m(E, z)
=
Ep
m0

[
2

3

1

E − Elh
+

1

3

1

E − Eso

]
In the following, we will set the zero of the energy scale to the conduction band edge, so
that Ec = 0. In this case, we express the energy-dependent mass as

1

m(E, z)
=
Ep
m0

[
2

3

1

E + Eg
+

1

3

1

E + ∆so + Eg

]
(1.9)



Chapter 1. Semiconductor QWs: single-particle properties 13

where we have adopted the same naming convention as Fig. 1.3, and used the relations

Ec − Elh = Eg

Ec − Eso = Eg + ∆so

Numerical resolution

The band structure calculations performed in this work are either based on the Kane
model described above (for non-parabolic bands, namely in the case of GaInAs/AlInAs),
or on a simplified one-band version where the coupling with valence bands is not
considered. The latter approximation has been applied only to the case of AlGaAs/GaAs
systems, where non-parabolicity does not play a crucial role.

The numerical method that implements the resolution of Schrödinger equation (1.5) is
a shooting method [27, 28], an iterative method for the resolution of differential equations
based on the calculation of the solutions point by point. This procedure makes it possible
to solve the eigenproblem for arbitrary potentials, also in the case of nonzero applied
electric fields.

1.2. Effect of tunneling: extended and localized basis

The heterostructure potentials considered in this work are often composed of more than
one quantum well, separated by barriers thin enough for the wavefunctions to tunnel
from one well to the other [25]. Figure 1.6 presents the example of a GaInAs/AlInAs
structure observed with a Transmission Electron Microscope (upper panel), along with
the corresponding conduction band profile (lower panel). The TEM image shows the
abruptness of the interfaces between different semiconductors. Growth imperfections
occur on the Å length scale, over one monolayer2.

In structures consisting of multiple quantum wells, one has the choice of the basis
to use in order to calculate the eigenstates of the system. An illustrative example of a
three-well potential is shown in Fig. 1.7.

� If the calculation is applied to the whole potential, the resulting wavefunctions are
the eigenstates of the potential considered as a unique quantum-mechanical system.
These eigenstates include the effect of tunneling, and the wavefunctions are delocal-
ized over the whole structure. In the following, we will refer to this as extended basis
solution. As an example, see the upper panel of Fig. 1.7.

� Alternatively, one can choose to solve the problem on subsets of the whole potential,
considered as isolated: this is a localized basis approach. In this way, the tunnel
coupling between the localized regions is no more included in the calculated wave-
functions, and it has to be added as a coupling potential between states belonging

2This creates static scatterers that may diffuse electrons (see §B.1 for a discussion on interface roughness
scattering).
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Figure 1.6: Upper panel: Transmission Electron Microscopy (TEM) image of a MOCVD-grown
AlInAs/InGaAs quantum cascade laser (see §1.5) active region (courtesy of Isabelle Sagnes
and Grégoire Beaudoin, Laboratoire de Photonique et de Nanostructures). Lower panel:
schematization of the resulting conduction band profile, confining potential for electrons.

to different subsets. A possible method for achieving this is discussed in the next
subsection.
The choice of the subsets is arbitrary (see lower panel of Fig. 1.7). The whole system
could for instance be decomposed on zone (a)+(b), or on a single-well basis composed
of regions (b)+(c)+(d), or using (c)+(d)+(e). It is usually reasonable to choose as
limits of the localized regions the thicker barriers in the structure, therefore the last
two solutions would normally be avoided.
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Figure 1.7: Band structure and squared moduli of wavefunctions in a GaAs/Al0.15Ga0.85As
structure, measures (in Å) 185/42/80/20/80. Upper panel: Extended basis calculation. Lower
panel: Choices of localized regions: the full structure can be decomposed as (a)+(b), or
(b)+(c)+(d), or (d)+(e).
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1.2.1. Tight-binding approximation

It is possible to estimate the tunnel coupling between localized wavefunctions through an
analytical procedure called tight-binding approximation. We sketch here the basic details
of this approximation, as it will be used in the following (§3.2). A full discussion can be
found for example in [21, 25].

We start by considering a simple system of two coupled quantum wells, like the one
schematized in Fig. 1.8.

Figure 1.8: Coupled quantum wells: extended and tight-binding basis

If the ground and first excited state of the individual quantum wells are sufficiently
separated in energy, the extended basis wavefunctions can be written on left- and right-
basis:

ψ1(z) = ψ11(z) = L11ϕ1L(z) +R11ϕ1R(z)

ψ2(z) = ψ12(z) = L12ϕ1L(z) +R12ϕ1R(z)

ψ3(z) = ψ21(z) = L21ϕ2L(z) +R21ϕ2R(z)

ψ4(z) = ψ22(z) = L22ϕ2L(z) +R22ϕ2R(z)

(1.10)

In order to find the coefficients L and R, we define the quantities

sLR =

∫
ϕL(z)ϕR(z) dz overlap integral

tLR =

∫
ϕL(z)VL(z)ϕR(z) dz tunneling (or transfer) integral

cLR =

∫
ϕL(z)VR(z)ϕL(z) dz shift integral

where VL and VR are the conduction band profiles of individual quantum wells.
For each couple of states of energy εL and εR associated with the ground (i = 1) and
excited (i = 2) state, the Hamiltonian on the tight-binding basis is

Hi =

(
εL + cLR εRsLR + tLR

εLsRL + tRL εR + cRL

)
Coefficients L and R can be obtained via the solution of the generalized eigenproblem

Hia = ESa (1.11)
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with the overlap matrix

S =

(
1 sLR
sRL 1

)
(1.12)

reflecting the fact that ϕR and ϕL are not orthogonal.
The eigenvalues of (1.11) are the new energies E− and E+. The eigenvectors contain the
coefficients L and R:

a1 =

(
L11 L12

R11 R12

)
a2 =

(
L21 L22

R21 R22

)
(1.13)

In the case of identical quantum wells, εR = εL = ε, the eigenenergies can be found to be

E± = ε− c

1∓ s ±
t

1∓ s (1.14)

If the overlap between wells is weak, the splitting in energy between the two eigenenergies
is ∆E ≈ 2t. The tunneling integral t is thus responsible for the splitting between the
energy levels.

Validity of tight-binding approximation

The founding hypothesis of the presented tight-binding approximation is that the single
quantum well wavefunctions are a good basis for the coupled structure; it is then clear
that this approximation has a strong dependence on the tunneling barrier width, thus on
the strength of tunnel coupling.

To show this, we consider two symmetrical GaAs/AlGaAs quantum wells of width 70
Å separated by a barrier of variable width. Figure 1.9 presents the four wavefunctions
calculated in the localized basis.

Figure 1.9: 70 Å GaAs/Al0.45Ga0.55As quantum well, localized basis.

We implement numerically the procedure described in the previous section, and report
in Fig. 1.10 the wavefunctions of the coupled wells structure calculated by the tight-binding
expansion (solid lines), along with the ’exact’ wavefunctions calculated in the extended
basis (dashed lines). Note that in this simple case we clearly see the appearance of two
doublets composed of a bonding (symmetrical) and an antibonding (antisymmetrical)
state, in analogy with a diatomic molecule. As it can be seen from Fig. 1.10, the tight-
binding expansion is more accurate for thicker barriers. Figure 1.11 shows the calculated



18 1.2. Effect of tunneling: extended and localized basis

Figure 1.10: GaAs/Al0.45Ga0.55As structure, 70/b/70 Å. Comparison between wavefunctions
calculated in the extended basis (dashed lines) and tight-binding basis (solid lines).

Figure 1.11: GaAs/Al0.45Ga0.55As structure, 70/b/75 Å. Absolute values of L and R coeffi-
cients calculated for the expansion (1.10) for different values of barrier b. Inset: scheme of the
coupled wells. Solid lines represent the localized basis states, dashed lines the extended basis
states.
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coefficients of the tight-binding expansion for two tunnel-coupled quantum wells.

By exploiting the results shown in Figs. 1.10 and 1.11, we can identify three barrier
ranges:

� For very small barriers b (smaller than ≈ 10 Å), the tight-binding expansion is not
valid (see Fig. 1.10), because the localized wavefunctions are not a good basis for
the system.

� For finite barriers b, L and R coefficients are different from zero: each extended
wavefunction contains both a left and a right component.

� For wide barriers b (greater than ≈ 60 Å), the system wavefunctions are localized
in each well, so the extended basis wavefunctions coincide with the localized basis,
and L,R coefficients assume only 0 or 1 values.

In the following, we will calculate the eigenenergies and wavefunctions in the extended
basis, except for particular applications where the role of tunnel coupling will be explicitely
considered.

1.3. Light-matter interaction: intersubband absorption

We describe in this section two models for the calculation of the intersubband absorp-
tion of semiconductor quantum wells: Lorentz model (classical) and Fermi’s golden rule
(semiclassical). Both these models consider a single-particle picture, in which electrons
are seen as independent. However, collective effects can have an important influence on
the intersubband optical absorption, as it will be discussed in Chapters 2 and 3.

1.3.1. Lorentz model

The Lorentz oscillator model is a classical description of a medium, where electrons are
supposed to be bound to the (fixed) positive ions by a harmonic force [29]. If such a
medium is excited by an external electric field, the movement of the microscopic bound
charges results in a polarization. In this model, NV electrons per unit volume are
therefore seen as NV oscillators at frequency ω0.

Under the influence of an electric field E(ω) associated with an electromagnetic radi-
ation, the movement of an electron is described by the relation

m0

(
−ω2 − iγω + ω2

0

)
r(ω) = −eE(ω)

corresponding to a polarization

P(ω) = −NV er =
NV e

2

m0

1

ω2
0 − ω2 − iγω E(ω)

The proportionality between P(ω) and E(ω) is normally expressed as

P(ω) = ε0χ(ω)E(ω)
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and we recognize that the electrical polarizability χ(ω) reads in this framework

χ(ω) =
NV e

2

m0ε0

1(
ω2

0 − ω2 − iγω
) (1.15)

The electric displacement D of the medium is related to the electric field E and polarization
P through:

D = ε0E + P (1.16)

where P is composed of a part due to the non-resonant background plus the resonant part:
P = Pbackground + Presonant, with Pbackground = ε0χbgE. If we assume that the material is
isotropic, the relative dielectric function ε is defined by:

D = ε0εE (1.17)

By combining Eqs. (1.15)-(1.17) we obtain the complex relative dielectric function ε(ω):

ε(ω) = 1 + χbg + χ(ω) =

= ε∞ −
NV e

2

m0ε0

1

ω2 − ω2
0 + iγω

(1.18)

where ε∞ = 1 + χbg is the limit for high frequencies of the real part of ε. If the system
presents many different resonance frequencies ωj , Eq. (1.18) is generalized to

ε(ω) = ε∞ −
∑
j

Nje
2

m0ε0

1

ω2 − ω2
j + iγω

where Nj is the volume density of oscillators at frequency ωj .

In order to apply this model to quantum wells, we need to replace the electron free
mass m0 with the effective mass m∗. It is also necessary to introduce a phenomenological
oscillator strength fj for each transition. For instance, to describe absorption from level
1 to level 2, one can write

ε(ω) = ε∞

(
1− NSe

2

m∗ε0ε∞Leff

f12

ω2 − ω2
12 + iγω

)
where the factor NV has been replaced by NS/Leff , with NS surface density and Leff

effective length of the quantum well [30]. The oscillator strength can be calculated in the
framework of the semiclassical model.

1.3.2. Semiclassical model: Fermi’s golden rule

The absorption rate between two bound states |ψi,k〉 and |ψj,k′〉 in a quantum well can
be calculated with Fermi’s golden rule [24]. This corresponds to a semiclassical approach,
in which the quantization of the photon field is ignored, and a classical electromagnetic
wave is considered.
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Let us suppose a linearly polarized electromagnetic plane wave with an electric field

E = E0ε̂ cos(q · r− ωt)

of polarization ε̂, angular frequency ω, and propagation vector q such that ω = cq/n, with
c speed of light and n =

√
ε∞ refractive index of the substrate. The vector potential A

associated with this incident electromagnetic wave is given by the relation E = −∂A
∂t and

can be written

A =
iE0ε̂

2ω

[
ei(q·r−ωt) − e−i(q·r−ωt)

]
The Schrödinger equation for an electron (charge −e) in an electromagnetic field is ob-
tained by replacing the p term in Eq. (1.1) with (p + eA). We can employ the dipole
approximation, valid if the wavelength of the radiation is much larger than any character-
istic dimension of electronic origin (in the case of intersubband transitions, the quantum
well width). This condition is fulfilled in the mid- and far-infrared frequency range (≈
3-300 µm), which allows one to neglect the wave vector q, and the spatial dependence
of A. We also neglect the A2 term, which becomes important just for high electronic
densities, as we will see in Chapter 2. In the effective mass description, the interaction
Hamiltonian finally reads [21]:

Hint =
e

m∗
A · p =

ieE0

2m∗ω
ε̂ · p

Fermi’s golden rule gives the rate of a transition i→ j under this perturbation Hamil-
tonian, describing absorption (W−ij ) or stimulated emission (W+

ij ):

W±ij (ω) =
2π

~
e2E2

0

4m∗2ω2
|〈ψj,k′ |ε̂ · p|ψi,k〉|2δ(Ej − Ei ± ~ω) (1.19)

In the envelope function approximation, the transition rate is then proportional to the
square of the matrix element

〈ψj,k′ |ε̂ · p|ψi,k〉 = εzδk,k′〈ψj(z)|pz|ψi(z)〉 (1.20)

where ψj(z) and ψi(z) are the envelope functions of final and initial states. The matrix
element (1.20) expresses the intersubband polarization selection rule: optical transitions
can only occur when the electric field has a non-zero component in the direction of
growth z. In fact, only the εz component of the polarization is left in the expression of
the transition rate, and no transitions are possible if the light propagates perpendicular
to the sample surface. The Kroenecker delta δk,k′ expresses the fact that the optical
transitions are vertical in k-space: in the parabolic band approximation, the transition
energy Eij = Ej−Ei and the transition rateWij do not depend on the in-plane wave vector.

It is useful to reexpress the absorption rate (1.19) by introducing the oscillator strength
of the transition:

fij =
2

m∗~ωij
|〈ψj |pz|ψi〉|2 =

2m∗ωij
~
|〈ψj |z|ψi〉|2



22 1.3. Light-matter interaction: intersubband absorption

fij is a dimensionless quantity that facilitates the comparison of transition strengths in
different physical systems. In the parabolic approximation, this quantity verifies the sum
rule ∑

j

fij = 1 (1.21)

valid for any initial state i, with the sum extending over all possible final states j. The
incorporation of nonparabolicity requires more sophistication [26].

If we include the intensity of the z-component of the incident radiation Iz = ε0cnE
2
0z/2,

the absorption rate of Eq. (1.19) takes the form

W−ij (ω) =
2πe2Iz
ε0cnm∗ω

fij δ(~ω − Eij)

and it is thus proportional to the oscillator strength fij .

In the limit case of an infinite quantum well, only parity-changing (odd → even or
even → odd) transitions are allowed due to the symmetry of the potential. The oscillator
strength of the allowed transitions can be shown to be [24]:

fij =
64

π2

i2j2

(j2 − i2)3
(1.22)

For the transition from ground state to first excited state, one has f12 = 0.96, which
almost fully saturates the sum rule (1.21). As further examples, f14 = 0.03, f23 = 1.87,
and so on. We see then that transitions between consecutive states (i.e. j = i + 1) are
the most relevant [24] .

If we consider electronic densities per surface unit Ni and Nj for the two subbands,
we have (Ni − Nj)S possible transitions, with S surface of the sample. Neglecting the
interaction between electrons, each of them contributes equally to absorption:

W−ij (ω) =
2(Ni −Nj)πe

2IzS

ε0cnm∗ω
fij δ(~ω − Eij) (1.23)

As it will be extensively discussed in the following, this approximation of non-interacting
electrons is valid just for low-density electron gases (smaller than ≈ 1011 cm−2 for optical
transitions in the mid-infrared).

In the case of two-dimensional systems, one usually defines the 2D absorption coeffi-
cient α2D(ω), representing the absorbed electromagnetic energy per unit surface. Let us
consider for simplicity a quantum well where just the first subband is occupied, thus just
the 1 → 2 transition is possible, and N1 − N2 = NS . Using Eq. (1.23) we obtain the
expression for the 2D absorption coefficient

α2D(ω) =
~ω12

SIz
W−12 =

2NSπ~e2

ε0cnm∗
f12

γ/π

(E12 − ~ω)2 + γ2

where we accounted for the finite width of the subbands by replacing the delta function
in (1.23) with a Lorentzian function of full-width at half maximum γ, centered on the
transition energy E12.
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1.4. Intersubband scattering processes

An electron moving in a perfect crystal lattice with no defects and with stationary atoms
would maintain its state indefinitely, and its path would never be perturbed. This does not
happen in real crystals, which implies that the electron will change its state at some stage:
this process is called scattering [31]. The latter is usually described in terms of Fermi’s
golden rule: if an electron in a state |i〉 experiences a time-dependent perturbation Hscatt

which could scatter it into any of the final states |f〉, then the lifetime τi of the carrier in
the state |i〉 is given by:

1

τi
=

Γi
~

=
2π

~
∑
f

|〈f |Hscatt|i〉|2 δ(Ei − Ef − δE)

where Ef and Ei are the energies of the final and initial states, δE is the energy exchanged
during the scattering process (equal to zero in elastic processes), and Γi is the associated
energy broadening.

Let us suppose an electron is in an excited subband of a quantum well. It may change
subband to a lower one through a variety of processes: spontaneous emission of photons,
emission of an optical phonon, elastic scattering through an impurity or interface defect
(roughness), or through electron-electron scattering [3].

In a quantum well, radiative emission is by far not the dominant intersubband
relaxation mechanism. In particular, if the energy separation between the subbands is
larger than the optical phonon energy, the emission of a phonon is always possible and
leads to lifetimes of the order of 1 ps, representing the dominant scattering process. If
the emission of the optical phonon is not possible, the lifetime of levels is given by a
combination of the other mechanisms, usually resulting in lifetimes of the order of a few ps.

In this section, we briefly review the basis of the calculation of scattering rates, intro-
duce the level broadening (dephasing), and conclude by comparing non-radiative processes
with spontaneous emission. Stimulated emission will be discussed in section §1.5.2.

1.4.1. Intersubband and intrasubband scattering rates

Fermi’s golden rule can be applied to determine in a semiclassical picture the intersubband
and intrasubband rates 1

τ inter and 1
τ intra [3, 32, 33].

1
τ inter
ij

is the transition rate due to intersubband scattering from state |ik〉 to all possible

states |jk′〉, with j 6= i, through an interaction Hscatt [Fig. 1.12(a) and (c)]:

1

τ inter
ij (k)

=
2π

~
∑
k′

∣∣〈jk′|Hscatt|ik〉
∣∣2 δ (Ei(k)− Ej(k′)− δE

)
(1.24)

Intrasubband scattering corresponds to processes where the electron remains in its
subband, but changes its wavevector. 1

τ intra
ij

gives thus the pure dephasing rate associated
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with a i→ j optical transition [Fig. 1.12(b) and (d)]. It can be expressed as [34]:

1

τ intra
ij (k)

=
2π

~
∑
k′

∣∣〈ik′|Hscatt|ik〉 − 〈jk′|Hscatt|jk〉
∣∣2 δ (Eij(k)− Eij(k′)− δE

)
(1.25)

Figure 1.12: Adapted from Ref. [35]: Illustration of Γinter and Γintra. k is the initial vector,
k′ the final vector, q the exchanged momentum. a) Intersubband and b) intrasubband elastic
scattering, c) Intersubband and b) intrasubband inelastic scattering, with emission of a photon
~ω0.

We can thus write the broadening of the optical transition γ introduced at the end
of §1.3.2 as

γ =
1

τ‖ij
=

1

2

(
Γintra
ij + Γinter

i + Γinter
j

)
(1.26)

where Γintra
ij is the energy broadening due to dephasing, and Γinter

i,j are the broadenings

that originate from the total transition rates out of subbands i and j, respectively3.
The total dephasing time associated with γ is usually denoted τ‖ij , and describes the loss
of coherence due to scattering.

In the following, we will always consider transitions from k = 0, i.e. the initial state is
the edge of the initial subband: this corresponds to the approximation

τrelax � τ (1.27)

3Using the terminology of nuclear magnetic resonance, the broadening parameter can also be written

as γ = ~
(

1
2T1

+ 1
T2

)
, with T1 upper-state lifetime, and T2 characteristic time of pure dephasing processes.

From comparison with Eq. 1.26, T2 = 2~
Γintra

[3, 35]
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with τrelax relaxation time from k 6= 0 to the center of the subband k = 0, and τ any
other relaxation time.

In this work, we consider three main scattering mechanisms in the study of electron
transport (see Chapter 4):

� interface roughness (elastic);

� alloy disorder (elastic);

� LO-phonon spontaneous emission (inelastic).

We neglect other scattering mechanisms, such as electron-electron scattering and acous-
tical phonon emission/absorption. We suppose the first to be included in the relaxation
mechanisms responsible for the assumption 1.27. It is expected to play a crucial role just
for very clean structures at low temperatures [3]. Acoustic phonon scattering, on the other
hand, is of significance only for extremely low densities and very clean systems at a high
temperatures [3].

We calculate the intersubband term for each of the above mechanisms; we consider
instead just the interface roughness intrasubband rate, which contributes to absorption
linewidth and to coherence dephasing [36, 37]. Details on the calculation of scattering
rates can be found in Appendix B.

1.4.2. Spontaneous emission

If the dipole matrix element between two states i and j is nonzero, spontaneous photon
emission between an initial state i and a final state j can occur with a rate [3]:

W sp
ij =

e2nz2
ijE

3
ij

3πc3ε0~4
=

e2

6πm0c3ε0~2
nfijE

2
ij

The spontaneous emission rate is fundamentally proportional to the square of the photon
energy. This leads to radiative lifetimes as long as microseconds in the THz range, therefore
really long compared to the lifetimes of the order of picoseconds associated with non-
radiative mechanisms. It is clear then that a very low radiative efficiency can be expected
in mid- and far-infrared spontaneous emission.

To visualize this, we plot in Fig. 1.13 the characteristic times τ sp
12 and τLO

12 for the
2 → 1 transition in a GaAs/AlGaAs quantum well, of variable width (thus variable
transition energy). It can be appreciated that there are roughly six orders of magnitude
between the two quantities.

From this observation, we understand that we cannot rely on this kind of spontaneous
emisson to obtain light from semiconductor heterostructures. We will see in the next
section how an ingenious design of band structures has been used in quantum cascade
lasers [3] to exploit stimulated emission instead.

In Chapters 2 and 3, we will explore a new kind of system which could be promis-
ing for obtaining spontaneous light emission from systems of quantum wells, based on
superradiant properties of collective electronic excitations [10, 14, 15].
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Figure 1.13: Calculated characteristic times of the 2→ 1 transition, for spontaneous emission
(black line) and LO-phonon scattering (red line) in a GaAs/Al0.45Ga0.55As well, for well widths
varying between 50 and 180 Å. Times are represented in logscale in function of the transition
energy E21.

1.5. Quantum Cascade Lasers

Quantum Cascade Lasers (QCLs) are unipolar semiconductor devices operating in the
mid- and far-infrared (or THz) frequency range. The active region of a QCL is composed
of several identical periods of a system of tunnel-coupled quantum wells. Its operation
relies on electron relaxation between the bound states of these quantum wells.
In the following, we will focus on the electronic transport in the active region, without
discussing the other aspects of the operation of a QCL (waveguide properties, fabrication
issues). A complete and recent review is Ref. [3].

The theoretical proposal that optical gain could be obtained by using transitions be-
tween two-dimensional states in a superlattice biased by an external electrical field dates
back to 1971, with the work of Kazarinov and Suris [38]. More than twenty years had to
pass before the first experimental QCL demonstration by Faist et al., in 1994 [2].
The first QCLs operated at cryogenic temperatures. After the demonstration of operation
at room temperature [39], nowadays QCLs operate at room temperature and continuous
wave-operation in the mid-infrared frequency range(≈ 3 µm - 50 µm) [40]. Laser operation
has also been demonstrated for far-infrared wavelengths (≈ 50 µm - 200 µm) [41], but it
is up to now still limited to low temperatures (< 200 K) [42, 43].



Chapter 1. Semiconductor QWs: single-particle properties 27

Quantum engineering

The high degree of complexity that can be achieved in a QCL is a powerful example of
the potential of quantum engineering. This is the possibility of controlling the material
properties by defining the size and spatial distribution of the constituents at the nano level,
independently of their chemical nature. As a consequence, the principles of operation
of the device are not based on the optical properties of the constituent material, but
arise from the layer sequence forming the superlattice heterostructure. QCLs have indeed
been realized in several material systems: GaAs/AlGaAs, GaInAs/AlInAs, InAs/AlSb,
GaInAs/GaAsSb.
Thanks to numerical simulation, it is possible to design the band structure of the system
in an ingenious way, in order to obtain the desired transport and emission properties.

Unipolarity and cascading

Two main features are unique to QCLs and distinguish them from conventional semicon-
ductor light emitters (see Fig. 1.14).

The first is unipolarity, i.e. the fact that the device operation relies only on electrons,
making transitions between the conduction band subbands arising from size quantization
in quantum wells. Their initial and final states have, in a parabolic approximation, the
same curvature in the reciprocal space, which makes the joint density of states very sharp,
similar to atomic transitions. Besides, the fact that transitions occur within subbands
is the reason why the emission wavelength is not directly dependent on the band gap of
constituent materials, but can be tuned by changing the layers thickness.

The other fundamental aspect of QCLs is the multistage ’cascaded’ geometry of their
structure, which gives them their name. Electrons are recycled from period to period, con-
tributing each time to gain and photon emission: every electron injected above threshold
generates Np laser photons, where Np is the number of periods in the structure.

Figure 1.14: Adapted from Ref. [44]: Schematic representation of two features that character-
ize a quantum cascade laser.
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Figure 1.15: Adapted from Ref. [3]: Schematic conduction band diagram of a quantum cas-
cade laser. Each stage of the structure consists of a radiative (active) region and a relax-
ation/injection region. Electrons can emit up to one photon per stage.

1.5.1. Fundamentals of QCLs active regions

The basis of operation of a QCL is schematically represented in Fig. 1.15. Electric current
passes through a biased semiconductor heterostructure, composed of a periodic arrange-
ment of unit cells (periods), each one consisting of a number of wells and barriers. Each
QCL period can be divided in two parts:

� An active (emission) region, where the radiative transition takes place. This is
the structure enabling a population inversion between the two levels of the laser
transition.

� An injection/extraction region, conceived to convey electrons from one active region
to the following. A portion of this region is doped, and acts as an electron reservoir,
which will feed the carriers to the next period.

Thanks to the design freedom provided by quantum wells, it is in principle possible to
tune the radiative transition in a wide portion of the mid-infrared (≈ 40-400 meV) and
far-infrared range (≈ 4-40 meV) of the electromagnetic spectrum by suitably choosing
the physical dimensions of the semiconductor layers. However, the design of a successful
active region has to comply with a certain number of requirements. In particular, it
must be possible to achieve population inversion, and the resulting gain must be able to
overcome the optical losses.

Historically, these conditions were first satified for lasers emitting in the mid-infrared
range (in Ref. [2], 4.2 µm = 295 meV). Achievement of lasing in the THz range needed
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additional efforts (Ref. [41], 4.4 THz = 18 meV). This has very fundamental reasons in
the active region design, related to the magnitude of the radiative transition energies. In
the THz range, these are close both to the very efficient LO-phonon emission energies
and to thermal energies (kBT ≈ 25 meV at room temperature). Population inversion is
then undermined both by shortened lifetimes of the excited state and backfilling of the
ground state from lower levels.

One of the most successful strategies in the active region design is the so-called phonon
extraction scheme. This is based on the idea of depopulating the ground state of the
radiative transition as efficiently as possible, by exploiting the very short LO-phonon
scattering times. The result can be achieved by a careful engineering of the active region,
such that levels at the optimal energy separation for LO-phonon emission are available (see
discussion at the end of §B.4). The first mid-IR laser operating at room temperature [39]
is indeed based on two-phonon extraction [i.e. two levels separated ~ωLO and 2~ωLO from
the ground state respectively, see Fig. 1.16(a)]. Three-phonon extraction has also been
demonstrated [45].

The photon extraction strategy can be equally applied to THz lasers, see for example
the design of Ref. [42], presented in Fig. 1.16(b).

(a) From Ref. [39]: InGaAs/AlInAs
mid-IR structure based on two-phonon
extraction, emitting at ≈ 140 meV.
Levels 3-2 and 2-1 are separated by an
energy close to the LO-phonon energy
~ωLO.

(b) From Ref. [42]: GaAs/Al0.15Ga0.85As THz
structure based on a diagonal design, emitting at
≈ 16 meV. Levels 3 and 1 are separated by an
energy close to ~ωLO.

Figure 1.16: Examples of QCL designs based on phonon extraction.

1.5.2. Rate equations for electronic transport

The key challenge in the conception of a laser based on intersubband transitions is to
obtain a population inversion, which can be achieved through a careful design of the
wavefunctions, and hence of the scattering times. In this section, we consider a rate
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equation analysis of the steady-state populations in a QCL, and in particular provide
the conditions for population inversion and gain. We schematize one period of the active
zone with a three-level system, as shown in Fig. 1.17.

Figure 1.17: Adapted from Ref. [44]: Schematic representation of one active region of a QCL.

We consider the laser action to happen between levels 3 and 2, and the injector is
assumed to consists of only one level. Electrons are injected in the n = 3 state from the
injector of the previous period at a rate equal to J/e, with J current density. They can
then scatter from this state to the lower states 2 and 1 with rates τ−1

32 and τ−1
31 respectively,

resulting in a total relaxation rate of level 3 τ−1
3 = τ−1

32 + τ−1
31 .

We indicate with n3 the population (in terms of electronic density per unit surface)
of the excited state, and with n2 that of the ground state of the radiative transition. If
a population inversion is achieved (n3 > n2), the structure presents a gain G, defined as
the ratio between the photon flux variation (stimulated emission - absorption) and the
photon flux (the number of photons of energy ~ω crossing the structure per unit time).
If G exceeds the optical losses α, photons are emitted by stimulated emission. We denote
their surface density with S.

The rate of change of the populations may be then written as

dn3

dt
=
J

e
− n3

τ3
− σSn3 + σSn2

dn2

dt
= −n2

τ2
+
n3

τ32
+ σSn3 − σSn2

dS

dt
= σS(n3 − n2)− c

n
αS = (G− α)

c

n
S

with G = σ(n3 − n2)
n

c
, where n is the mode effective index and σ is the cross section per

unit time for stimulated emission and absorption [44]:

σ =
4πe2

ε0n

|z32|2
i

1

Lp2γ32

c

n
(1.28)

Lp is the thickness of one period of the cascade and 2γ FWHM of the laser transition.
Note that we are not considering a spontaneous emission term because it would be
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neglegible with respect to the other mechanisms, as discussed in §1.4.2.

The expression for the current density at threshold Jth is found to be:

Jth

e
=
α

σ

c

n

[
τ3

(
1− τ2

τ32

)]−1

The photon density at the equilibrium is

S =
1

στ̃

(
J

Jth
− 1

)
where

τ̃ = τ2 + τ3

(
1− τ2

τ32

)
In this model, the emitted power is thus linear with the injected current after threshold.

Conclusions

The rate equation approach presented in the last section allows one to link electronic
properties (lifetimes) to macroscopic observables, like threshold current density or emitted
power. However, this simplified model does not take into account fundamental mechanisms
for the electronic transport in QCLs, like resonant tunneling. Furthermore, the optical
properties are included in a single-particle approach, even though intersubband transitions
are an intrinsically collective phenomenon.

These two latter issues are the main focus of this work. In particular, the collective
nature of intersubband transitions from an optical point of view will be studied in Chapters
2 and 3. In Chapter 4, we will introduce a transport model that includes resonant tunneling
in a coherent way, and apply it to the modeling of QCLs. Finally, we will present a study
of the influence of collective effects in electron transport.
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Many-body effects in the optical properties
of a bidimensional electron gas

We study the effect of electron density on the optical properties of an electron gas
confined in a semiconductor heterostructure, motivated by the intrinsically collective
nature of intersubband transitions due to Coulomb interaction [30].

We provide a quantum model describing the coupling between intersubband plasmons
in a single quantum well and in systems of tunnel-coupled wells, and its consequences on
the infrared absorption spectra [16]. The discussion is divided in two main parts: first, we
introduce the concept of collective excitations in intersubband absorption, and review some
theoretical and experimental results on single quantum wells on which we base our work. In
the second part, we present our quantum model, which generalizes these results to arbitrary
confining potentials. We define the relevant quantities for the calculation of the absorption
spectra. In particular, we define for each intersubband transition a microscopic current
density, which can be related to the oscillator strength of the transition. We demonstrate
that the overlap between these currents leads to the definition of a typical length for
Coulomb interaction, hence determining the coupling between intersubband plasmons.
The diagonalization of the electronic Hamiltonian allows us to define a microscopic current
for each collective mode and to calculate the absorption spectrum.

2.1. Intersubband absorption and collective effects

In a single-particle picture, intersubband absorption in low-dimensional structures directly
reflects dipole-allowed transitions between subbands. Nevertheless, this process involves
a huge number of electrons, with typical densities of the order of 1011 cm−2, up to 1013

cm−2. It has been shown that intersubband absorption is indeed an intrinsically collective
phenomenon [30], and its many-body nature has been the object of a vaste literature.

The study of collective effects in the optical response of a two-dimensional electron
gas (2DEG) has been initially applied to inversion layers [46, 47], where many-body con-
tributions are crucial in the interpretation of the experimental optical spectra. Collective
effects were then studied also in quantum wells [48–59]. These effects can be divided into

33
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the direct and exchange Coulomb interaction, excitonic correlations (vertex correction),
and depolarization field.

Contrary to the case of inversion layers, many-body effects are found to compen-
sate each other in most quantum wells with mid-infrared resonances, with standard
electronic density levels and a single occupied subband (typically smaller than 1012

cm−2) [57], and specific experiments have to be designed in order to observe their
consequences in absorption [58]. On the other hand, the energies involved in the THz
range are such that it is easier for collective effects to have a measurable impact [8, 53, 60].

The negligible role of many-body effects in quantum wells for standard doping regimes
justifies the widespread use of single-particle approaches in the device modeling, as it is
done in several electronic transport models used to simulate intersubband devices charac-
teristics [24, 61–63]. In these models, electron-electron interaction is treated as a scattering
process in the Born approximation.

However, it was demonstrated that higher doping levels correspond to an increasing
importance of collective effects; in particular, a many-body picture is crucial in the
interpretation of the absorption response of systems in which two or more subbands
are occupied [55]. It can be indeed shown that the relevance of the depolarization term
increases with the electronic density and the width of the well [54, 59].

In this section, we study the optical properties of high-density quantum well systems,
for which the depolarization field is the dominant collective effect. In the following, we
review some results of the study of depolarization effects in the case of a single squared
quantum well. We follow an increasing order of complexity: we start by presenting the
case of a single occupied subband in next section, to arrive finally to the case of several
occupied subbands in §2.1.3.

2.1.1. One occupied subband

Let us start this discussion by considering a single quantum well of width LQW presenting
two confined levels. In the limit of low electron densities, the intersubband absorption of
a photon is illustrated as a transition between the two electronic states, and manifests
itself in an absorption line centered on the energy difference between the two electronic
levels [24].

When the charge density of the bidimensional gas is important (in the mid-infrared, of
the order of 1012 cm−2 and higher), in the presence of an external electromagnetic radia-
tion, each electron feels an effective field induced by the excitation of the other electrons,
the depolarization field. Exposing the system to an external radiation not only excites
electrons into the higher level, but also modulates their charge density: the restoring
Coulomb force gives rise to a kind of plasma oscillation [24, 30]. For a single intersubband
transition, this results in a blue-shift of the absorption peak with respect to the transition
frequency, which is usually denoted as depolarization (or plasma) shift.
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The resonance frequency of transition 1→ 2 shifts from ω12 to

ω̃12 =
√
ω2

12 + ω2
P12 (2.1)

with ωP12 the plasma frequency associated with the transition, written as [24]

ω2
P12 =

e2f12∆N12

m∗ε0εsLeff
12

(2.2)

The collective entity corresponding to the resonance frequency ω̃12 is called intersubband
plasmon [51]. In Eq. (2.2), f12 is the oscillator strength of transition 1 → 2, ∆N12 =
N1−N2 is the difference in population densities between subbands 1 and 2 (equal to N1 if
we consider just the first subband to be occupied), m∗ is the effective mass, and εs is the
background relative dielectric constant. The quantity Leff represents an effective length
of the quantum well, and is defined as [30]:

Leff
12 =

~
2m∗ω12

f12

S12
=
z2

12

S12
(2.3)

where S12 has the units of length and is given by the expression

Sij =

∫ +∞

−∞

[∫ z

−∞
ψi(z

′)ψj(z
′) dz′

]2

dz (2.4)

Sij depends directly on the wavefunctions ψi and ψj : it is therefore a well-defined quantity
not only in the case of square quantum wells, but in any bidimensional structure (parabolic
wells, coupled wells...). It was in fact originally introduced in the study of inversion layers
of triangular shape [47], where a definition of length based on physical dimensions is
ambiguous.

2.1.2. Two occupied subbands

The dependence of the plasma frequency on the population difference as displayed by
Eq. (2.2) reflects the dependence of the depolarization shift on the electronic density:
the greater the population difference between the two subbands, the greater ω̃12 will be
with respect to ω12. Note, however, that this shift cannot be indeterminately increased,
but it has rather an intrinsic upper limit. If the electronic density is such that the
Fermi level is higher than the bottom of the second subband, Pauli blocking will cause
the difference ∆N12 to remain constant and independent from higher values of density.
On the other hand, an increasing electronic density is expected to be related to more
important Coulomb effects, as the number of electrons interacting with light is increasing.
It is then natural to wonder what is the effect of the depolarization field when more than
one subband is occupied.

Let us consider the case of a three-subband quantum well, two of which are populated.
It has been experimentally observed [55, 64] that Coulomb interaction deeply modifies
the optical response of the system. The depolarization field not only shifts the absorption
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energies, but also induces a strong renormalization of the resonance amplitudes towards the
high-energy peak. This phenomenon is due to the interplay between Coulomb interaction
and interaction with light [55], and it can be quantitatively explained in the case of a
single quantum well through a semiclassical description of the system with a dielectric
function [65], generalization of the Lorentz model presented in §1.3.1.

Semiclassical model: dielectric function description

The interaction between light and a bidimensional gas can be described through a dielec-
tric function. In the case of a quantum well with one occupied subband, like the one
schematized in Fig. 2.1, the intersubband contribution to the dielectric function can be
written as [24]

ε(ω) = εs

(
1− ω2

P12

ω2 − ω2
12 + iγω

)
(2.5)

In this expression, ωP12 is again defined by Eq. (2.2), and the parameter γ is the absorption
linewidth, depending on the electron lifetime on the excited subband. Usually in the mid-
infrared range γ/ω12 ≈ 5− 10%.

Figure 2.1: a) Schematized absorption spectrum of a quantum well with one occupied subband.
Black curve: Coulomb effects not included (low doping limit). Red curve: Coulomb effects
included, with the appearance of the depolarization shift. b) Schematic representation of a
single-particle excitation between two subbands. c) Schematic representation of a collective
excitation between two subbands.

In a single-particle picture, the absorption is directly related to the imaginary part of
the dielectric function [29]. In the one-transition case:

Abs sp(ω) ∝ Im [ε(ω)] = εsω
2
P12 Lγ(ω − ω12) (2.6)

where Lγ(ω−ω12) γ/2
(ωα−ω)2+(γ/2)2 is a Lorentzian function with full width at half maximum

γ and centered in ω12. This corresponds to the single-particle absorption spectrum plotted
in black in Fig. 2.1.
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On the contrary, the optical response accounting for the depolarization field can be
calculated as [24, 30]:

Abs(ω) ∝ −ω Im

[
1

ε(ω)

]
(2.7)

The difference between Eq. (2.6) and (2.7) lies in the conceptual distinction between a
single-particle spectrum (in which we consider the system to be probed without being
perturbed by light) and the absorption in the presence of light-matter interaction. The
interaction with light induces oscillating dipoles within the matter, and it is not possible
to neglect their contribution to the optical response. The necessity to use Eq. (2.7)
derives thus from the fact that the system responds to the total field given by the sum of
external radiation and internal polarization, rather than just to the external field [30].
Note that Eq. (2.7) is formally indentical to the response function used in Electron
Energy Loss Spectroscopy (EELS) [66]. In this case, the oscillating dipoles are induced
by a Coulomb field instead than by an optical radiation.

By inverting Eq. (2.5), we obtain

εs
ε(ω)

= 1 +
ω2
P12

ω2 − ω̃2
12 + iγω

(2.8)

where ω̃12 =
√
ω2

12 + ω2
P12 is the intersubband plasmon frequency defined above. We see

then that the shape of the absorption spectrum is given by

Abs(ω) ∝ εsω2
P12 Lγ(ω − ω̃12)

which corresponds to a Lorentzian of full width at half-maximum γ, centered at a
frequency ω̃12 (blue-shifted with respect to the bare intersubband transition ω12), and
with an amplitude proportional to ω2

P12. Eq. (2.8) provides thus a quantitative description
of the behaviour illustrated in section §2.1.1.

Let us consider the case of two occupied subbands schematized in Fig. 2.2, considering
the two possible transitions between consecutive levels [65] (the 1 → 3 transition being
optically forbidden). The two intersubband transitions 1 → 2 and 2 → 3 have energies
~ω12 and ~ω13, respectively. Each of them contribute to the optical response, and the
dielectric function can be written by considering two Lorentz oscillators as:

ε(ω) = εs

(
1− ω2

P12

ω2 − ω2
12 + iγω

− ω2
P23

ω2 − ω2
23 + iγω

)
It can be shown [65] that the inverse permittivity, directly related to the absorption spec-
trum, reads

εs
ε(ω)

= 1 +
Ω2
P+

ω2 −W 2
+ + iγω

+
Ω2
P−

ω2 −W 2
− + iγω

(2.9)

where the resonances W± are given by

W 2
± =

1

2

(
ω̃2

12 + ω̃2
23 ±

√(
ω̃2

12 − ω̃2
23

)2
+ 4ω2

P12ω
2
P23

)
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Figure 2.2: a) Absorption spectrum of a quantum well with two occupied subbands. Black
curve: Coulomb effects not included (low doping limit). Red curve: Coulomb effects included,
with the appearance of oscillator strength transfer. b) Schematic representation of a collective
excitation between the three subbands. Note that the number of electrons involved in the
excitation is N1 (population of the first subband).

and the amplitudes ΩP±

Ω2
P+ = K+

(
ω2
P12 + ω2

P23

)
Ω2
P− = K−

(
ω2
P12 + ω2

P23

) (2.10)

with

K± =
1

2
±

(
ω̃2

12 − ω̃2
23

) (
ω2
P12 − ω2

P23

)
+ 4ω2

P12ω
2
P23

2
(
ω2
P12 + ω2

P23

)√(
ω̃2

12 − ω̃2
23

)2
+ 4ω2

P12ω
2
P23

Equation (2.9) correponds to an absorption spectrum with two resonances of amplitude
proportional to Ω2

P+ and Ω2
P−, at energies ~W+ and ~W−. We can then identify ΩP+

and ΩP− with two effective plasma energies associated with the two absorption peaks.
These amplitudes depend on the electronic charge density through the plasma frequencies
ωP12 and ωP23 associated with the intersubband plasmons, as well as on the detuning
between the intersubband plasmons energies ω̃12 and ω̃23. This is an indication of a
coupling between the two transitions, which results in the redistribution of the oscillator
strength between the two peaks. This effect was experimentally observed in Refs. [55, 64]
in an InAs/AlSb and in a GaAs/AlGaAs quantum well with two occupied subbands. In
Ref. [64] the coupling strength was also varied by changing the electronic density through
the application of a gate voltage.

2.1.3. Several occupied subbands: cooperative regime

It has been recently demonstrated [14, 65] that Coulomb interaction leads to even
more spectacular consequences in highly doped quantum wells, where several sub-
bands are occupied [see Fig. 2.3(a)]. In this case, the measured absorption spectrum
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consists of a single resonance, whose energy is completely different from those of the
bare intersubband transitions, as illustrated in Fig. 2.3(b), taken from Ref. [14]. The
single resonance corresponds to the excitation of a collective mode of the system,
the multisubband plasmon, resulting from the phase-locking of all the optically active
intersubband transitions. Each one of these transitions transfers its oscillator strength
to the multisubband plasmon, hence concentrating all the oscillator strength of the system.

Figure 2.3: From [14]: a) Left: Band structure and energy levels of a 18.5 nm GaInAs/AlInAs
quantum well. Right: Electronic dispersion of the subbands. The red dashed line indicates
the Fermi energy at 0 K in the sample. The arrows indicate the main optical transitions that
can take place in the structure. b) Absorption spectra of the same quantum well measured
at 77 K (continuous line) and 300 K (dashed line). The inset presents the 77 K (continuous
line) and 300 K (dashed line) spectra measured on the same sample at Brewster angle. The
blue line in the main panel represents the simulated absorption spectrum, resulting from a
single-particle description and Lorentzian line broadening of the allowed transitions.

The origin of this coherence lies in the charge-induced coupling between intersubband
plasmons that was mentioned in the conclusion of the previous section. Indeed, the di-
electric function model presented for two transitions can be generalized to the case of a
single quantum well with several occupied subbands. It is possible to calculate a dielectric
function in the case of N transitions by using the following expression [14, 55]:

ε(ω) = εs

(
1−

nocc∑
i=1

ω2
P i,i+1

ω2 − ω2
i,i+1 + iγω

)
(2.11)

where nocc denotes the number of occupied subbands, which coincides with the number
N of transitions between consecutive levels.

Equation (2.11) is a direct generalization of Eq. (2.9): each intersubband transition
involved in the sum contributes to the permittivity through a Drude-Lorentz term, with a
weight given by the corresponding squared plasma frequency. It is an useful expression, as
it can be easily generalized to the case of non-parabolic subbands; the spectra calculated
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in this case is in excellent agreement with the experimental one [14, 67]. Indeed, follow-
ing a procedure analogous to that outlined in the previos section, numerical inversion of
Eq. (2.11) provides N new resonance energies Wj , along with their respective effective
plasma frequencies ΩPj , characterizing their amplitudes. In sufficiently high doping con-
ditions, like in the case of Ref. [14], one of these plasma frequencies will be much higher
than all the other N − 1, and correspond to the intensity of the bright multisubband
plasmon resonance.

It is important to underline, however, that the sum in Eq. (2.11) is restricted to
transitions between consecutive levels. An intuitive reason behind this is the fact that
these transitions are the most relevant from the optical point of view. However, there is
also a more subtle motivation not to include all the possible transitions, which is related to
the fact that in a single heavily doped quantum well all the transitions between consecutive
levels have an almost constant Leff [appearing in the plasma frequency (2.2)]. As it will
be explained in detail in the following of this work, this implies that the definition of
dielectric function (2.11) is not general and it does not apply to structures of higher
complexity than single quantum wells. In particular, it is not adequate in the case of
tunnel-coupled quantum wells, which are at the basis of the engineering of intersubband
devices like quantum cascade lasers.

Contributions to the energy of the multisubband plasmon

As observed before, the high-energy mode corresponding to the multisubband plasmon
has an effective plasma frequency ΩPn much greater than the other modes. We denote
ΩPMSP

and WMSP, respectively, the effective plasma frequency and the resonance frequency
of this collective mode. We also introduce an index α for the intersubband transitions:
α ≡ i→ i+ 1. The following sum rule holds [65]:

Ω2
PMSP

=
∑
α

ω2
Pα

meaning that the squared effective plasma frequency of the multisubband plasmon is equal
to the sum of the squared plasma frequencies of the transitions involved in the collective
excitations. In other words, the coupling between intersubband plasmons redistributes the
absorption amplitudes without changing the total absorption.

It can be shown [65] that the squared frequency of the multisubband plasmon can be
expressed as:

W 2
MSP =

∑
α

ω2
Pα∑

α

ω2
Pα

ω2
α

+ Ω2
PMSP

The first term is the harmonic mean of the different intersubband transition frequencies,
weighted by the corresponding plasma frequencies: it represents the intersubband contri-
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bution to the total energy of the multisubband plasmon, which we denote as ω2
ISB.

ω2
ISB =

∑
α

ω2
Pα∑

α

ω2
Pα

ω2
α

(2.12)

The second term is the squared effective plasma frequency of the mode, which expresses
the plasma contribution to the total frequency. Thus one can write:

WMSP =
√
ω2

ISB + Ω2
PMSP

(2.13)

which is the multisubband analogous of the plasma-shifted intersubband transition fre-

quency of Eq. (2.1): ω̃α =
√
ω2
α + ω2

P

From semiclassical to quantum model

We see from this introduction that Coulomb interaction has a deep influence on the cou-
pling between infrared light and the electronic excitations of a bidimensional electron gas,
and has macroscopic and measurable consequences on the optical response.
The following will be then devoted to a quantitative study of these effects through a fully
quantum model. In particular, we will be interested in calculating the optical response
of single quantum wells or systems of quantum wells. We will show that the proposed
quantum model can be applied to an arbitrary confining potential in the cases where the
depolarization effect is the dominant many-body contribution. This will allow the study
of the interplay between Coulomb interaction and quantum effects such as confinement
and tunneling.

2.1.4. Intersubband transitions as polarizations: coupled oscillators model

Before moving to the description of the model, let us look at the problem from a slightly
different angle and try to get a physical grasp of the subject.

Figure 2.4: Schematic representation of intersubband transitions seen as oscillators.

When light is shone on a bidimensional gas, interaction between light and electrons
creates an intersubband polarization in the growth direction z. The origin of this
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polarization are the oscillating dipoles associated with intersubband transitions, as
schematically represented in Fig. 2.4. In this picture, we can think of dipole-dipole
Coulomb interaction as a constraint that connects all the intersubband oscillators, both
within the same transition and between different transitions. The higher the electronic
density, the stronger the constraint, the more the system responds as a whole ’network’
of oscillators rather than as the incoherent sum of all the single oscillators.

In a single quantum well with N occupied subbands, the inverse of the dielectric func-
tion (2.11) has N poles Wj , corresponding to the N new eigenmodes of the system, as
already mentioned. This is equivalent to a system of N coupled mechanical oscillators,
which has N eigenmodes. In the case of two occupied subbands, these new eigenmodes
correspond to a 1 → 2-like mode where the two charge oscillations are predominantly
out of phase, and a 2 → 3-like mode where the oscillations are predominantly in phase.
The in-phase mode couples strongly to the oscillating external field, and takes oscillator
strength from the out-of-phase mode which couples weakly [55]. Analogously, the bright
multisubband plasmon peak is the result of a phase synchronization of intersubband tran-
sitions, and is strongly coupled with light. All the other eigenmodes of the system are
optically not active, or dark.

With this vision in mind, we decide to describe the intersubband light-matter interac-
tion problem in terms of polarizations.

2.2. Quantum model of multisubband plasmons

We develop in this section a quantum model to describe the optical properties of a dense
bidimensional electron gas when the depolarization field is the dominant many-body
contribution. Our model is based on the formalism of Refs. [68, 69], which takes
advantage of the fact that a treatment of the light-matter coupling in the dipole
representation naturally accounts for the depolarization effect introduced in §2.1.1.
As we will see in the following, this representation provides a general Hamiltonian
to describe the collective electronic excitations and their interaction with light. The
matter degrees of freedom are described by the polarization field P, interacting with
the electric field displacement D. The depolarization effect in the bidimensional elec-
tron gas is naturally contained in the self interaction term P2 of such Hamiltonian [68, 70].

This part is structured as follows: we start by presenting the Hamiltonian of the
light-matter system in the dipole representation in §2.2.1 and write the second quantized
form of the free light and matter parts in §2.2.2. As schematized in Fig. 2.5, we then
express the matter-matter interaction Hamiltonian in terms of intersubband excitation
operators b, b† , introduce the concept of microscopic current densities and show their
relation with the absorption spectrum (§2.2.3). We introduce the intersubband plasmon
operators p, p† in §2.2.4. Section 2.2.5 presents the diagonalization procedure to obtain the
new normal modes of the system, the multisubband plasmons, issued from the coupling
between intersubband plasmons. We obtain the collective microcurrent densities and the
absorption spectrum accounting for collective effects in §2.2.6. Section 2.2.7 outlines the
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Figure 2.5: Schematization of the diagonalization procedure followed in the model.
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generalization of the model to a piecewise constant effective mass m∗. Finally, the last
part of the chapter presents the full light-matter Hamiltonian in second quantization (§2.3)
and introduces an expression for the dielectric function of the system (§2.4).

2.2.1. Light-matter interaction Hamiltonian in dipole representation

In order to introduce the dipole representation of the light-matter interaction, we start by
considering the Hamiltonian of a system of free particles of mass mi and charge e in the
Coulomb gauge [70]

H =
∑
i

(pi − eA)2

2mi
+

∫
ε0εsE

2

2
d3r +

∫
µ0H

2

2
d3r + VCoulomb

=
∑
i

p2
i

2mi︸ ︷︷ ︸
particles

+

∫
ε0εsE

2

2
d3r +

∫
µ0H

2

2
d3r︸ ︷︷ ︸

photons

−
∑
i

epi ·A
mi

+
∑
i

e2A2

2mi
+ VCoulomb︸ ︷︷ ︸

interactions

(2.14)

where ε0 is the vacuum permittivity, εs the material permittivity, µ0 the vacuum magnetic
permeability, pi the momentum vector, E the electric field vector, H the magnetic field,
A the vector potential, and

VCoulomb =
∑
i 6=j

e2

4πε0|ri − rj |

The linear term in A of Eq. (2.14) is what is usually taken as light-matter interaction
term:

Hlight−matter = −
∑
i

pi ·A
mi

= −
∑
i

evi ·A

Instead of following this path, we adopt the Power-Zinau-Wooley (or dipole) represen-
tation [70, 71]. In this representation, neglecting magnetic interactions:

H =
∑
i

p2
i

2mi︸ ︷︷ ︸
particles

+

∫
D2

2ε0εs
d3r +

∫
µ0H

2

2
d3r︸ ︷︷ ︸

photons

−
∫

D ·P
ε0εs

d3r +

∫
P2

2ε0εs
d3r︸ ︷︷ ︸

interactions

(2.15)

where P is the polarization density operator and D is the displacement field operator.
The interaction Hamiltonian in the dipole representation is then:

Hint =

∫
1

ε0εs

(
−D ·P +

1

2
P2

)
d3r = Hl−pol +Hpol−pol (2.16)

with

Hl−pol = −
∫

D ·P
ε0εs

d3r (2.17)

Hpol−pol =

∫
P2

2ε0εs
d3r (2.18)
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The Hamiltonian (2.16) is composed of two terms: Hl−pol describes the interaction be-
tween the matter polarization and the electromagnetic field, while Hpol−pol describes the
polarization self-interaction.
We note that Coulomb interaction is contained in this Hamiltonian through the rela-
tion [70]

VCoulomb =

∫
d3r

P2
‖

2ε0εs

with P‖ the longitudinal part of P = P⊥ + P‖
1. The full Hamiltonian can then be

rewritten as

H =
∑
i

p2
i

2mi
+

∫
P2

2ε0εs
d3r︸ ︷︷ ︸

particles and particle-particle interactions

+

∫
D2

2ε0εs
d3r +

∫
µ0H

2

2
d3r︸ ︷︷ ︸

photons

−
∫

D ·P
ε0εs︸ ︷︷ ︸

light-matter interaction

2.2.2. Second quantization: bosonized Hamiltonian

The full Hamiltonian describing the interaction between light and an electron gas in a
quantum heterostructure is

H = He +Hp +Hint (2.19)

where He is the Hamiltonian of the electron gas, Hp is the photon Hamiltonian, and Hint

is interaction Hamiltonian. We can express these terms as in the Hamiltonian in the
dipole representation (2.15) by making use of the effective mass of the electron m∗, which
includes the effect of the crystal potential.

For a quantum description of the system, we want to write the full Hamiltonian (2.19)
in the second quantization formalism. We will then have for the free photon part [70]:

Hp =
∑
q

~ωq

(
a†qaq +

1

2

)
(2.20)

where ~ωq is the energy of the photonic mode and a†q, aq are the bosonic creation and
annihilation operators of the modes.

The single electron Hamiltonian is [62]

He =
∑
ik

~ωikc†ikcik (2.21)

where i runs over the electronic subbands, ~ωik = ~ωi + ~2k2

2m∗ is the total energy of an

electron in the subband i with in plane momentum k, and c†ik, cik are the fermionic
creation and destruction operators.

1In vector calculus, a regular vector field F can always be decomposed in longitudinal (curl-free,∇×F‖ =
0) and transverse (divergence-free, ∇ · F⊥ = 0) components (see for example [70]).
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Let us now label each electronic transition i → j (approximated as vertical in the
reciprocal space, neglecting the photon wavevector) with a greek index α, i.e. α ≡ i→ j.
In order to study the interaction between light and the electronic subbands, we replace
the fermionic Hamiltonian He with an effective bosonic Hamiltonian, which contains only
the polarization degrees of freedom [68, 72]:

He =
∑
αq

~ωαb†αqbαq (2.22)

with

b†αq =
1√

∆Nα

∑
k

c†jk+qcik

where ∆Nα = 〈Ni〉 − 〈Nj〉 is the difference in the subband populations2. b†αq is a bosonic
operator in the limit of weakly excited systems:

[bαq, bαq′† ] = δq,q′

Equations (2.20)-(2.22) represent the non-interacting state of the system. To write
the remaining interaction term, Hint, in second quantization, we have to define the mi-
croscopic polarization density of the electron gas P. The latter will be associated with
the excitation of an ensemble of intersubband oscillators along the growth direction, in
the spirit of the picture described in §2.1.4. The dipole-dipole interaction between inter-
subband oscillators, hence the depolarization field, will be described by the Hpol−pol term
introduced in Eq. (2.16).

2.2.3. Microscopic expression of the polarization and microscopic current den-
sities

In order to use the electrical dipole representation and the Hamiltonian (2.15), we need
an expression for the local polarization operator P̂(r)3. The classical definition of the
polarization P(r) is that of an average dipole moment of the charge distribution over
some microscopic volume [29]. The definition of this microscopic volume, though, presents
in general some subtilties [73], and this is particularly the case for heterostructures. For
example, in the case of a simple quantum well of width LQW , the volume could be defined
as the volume of the quantum well, but it is difficult to generalize this to an arbitrary
system of quantum wells, or to confinement potentials with an arbitrary shape. Since the
microscopic intersubband dipole zij is defined starting from the electronic wavefunctions

ψi(z), a good microscopic expression for P̂(r) should involve the wavefunctions [68].

We define a microscopic polarization P̂(r) as generating a microscopic current ĵ under
the action of the full Hamiltonian Ĥ:

dP̂(r)

dt
=

1

i~
[P̂(r), Ĥ(t)] = ĵ(r) (2.23)

2In the following, we will consider the dipole approximation (q� k) and omit the sum over the in-plane
wavevector q of Eq. (2.22).

3In this section, we will denote with a hat symbol ̂ some of the operators, to distinguish the operator
Â from the scalar quantity A.
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As the polarization operator commutes with D, the evolution of P is driven just by the
electronic Hamiltonian (2.22).
We write the microscopic current operator in the dipole representation as

ĵ(r) = i
e~

2m∗

[
Ψ†(r)

(
∇rΨ(r)

)
−
(
∇rΨ

†(r)
)
Ψ(r)

]
(2.24)

Here, we consider m∗ constant for notation simplicity; the model can be extended to a
piecewise constant effective mass, as further explained in §2.2.7.

The field operator is written on the one-particle wavefunction basis:

Ψ(z, r‖) =
∑
λk

cλkψλ(z)
eik·r‖√
S

(2.25)

with S surface of the sample. As we are interested in intersubband transitions, we shall
from now on restrict ourselves to the z-component of the microscopic current, because of
the intersubband absorption selection rule (see §1.3.2).
Inserting Eq. (2.25) in Eq. (2.24), the z-component of the current operator can be written
as:

ĵz = i
e~

2m∗
√
S

∑
α

ξα(z)
√

∆Nα

(
bα − b†α

)
= (2.26)

= i
∑
α

jα(z)
(
bα − b†α

)
where ξα(z) is given by

ξα(z) ≡ ξij(z) = ψi(z)
∂ψj(z)

∂z
− ψj(z)

∂ψi(z)

∂z
(2.27)

The quantity

jα(z) =
e~

2m∗
√
S
ξα(z)

√
∆Nα (2.28)

is a current per unit surface associated with each intersubband transition α. Its spatial
variation is determined by ξα(z), which can thus be considered as a current distribution4.

By using the expression of the current operator (2.26), we now define an intersubband
polarization operator P̂z through Eq. (2.23), which contains contributions from all the
intersubband transitions and can be written as:

P̂z =
e~

2m∗
√
S

∑
α

ξα(z)

ωα

√
∆Nα

(
b†α + bα

)
= (2.29)

=
∑
α

jα(z)

ωα

(
b†α + bα

)
4In the following, we shall refer to the objects ξα(z) as ’microcurrents’ for simplicity.
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Note that the spatial variation of the polarization operator is also described by the current
distribution ξα(z). Interestingly, this quantity can be easily related to the dipole matrix
element zα of the transition α. In fact, by making use of the relations pz = −i~ ∂

∂z and

pz = im∗

~ [H, z] one finds: ∫ +∞

−∞
ξα(z) dz =

2m∗ωα
~

zα (2.30)

Equation (2.30) is very relevant for the following part of the work, as it establishes a link
between the optical properties of the electron gas and the intersubband current densities
through the dipole matrix element zα.

Figure 2.6(a) shows the calculated microcurrent spatial distributions ξij(z) in a three-
subband quantum well. Panel (b) presents an alternative representation of the same spatial
distributions (in color scale), plotted between the electronic levels of the corresponding
transitions. For the purpose of illustration, each microcurrent is also multiplied by a
Gaussian function along the energy axis. The figure provides a visual interpretation of
Eq. (2.30). It can be indeed appreciated that optically allowed transitions, such as 1→ 2
and 2→ 3, correspond to distributions ξ12(z) and ξ23(z), even with respect to the center
of the well; on the contrary, the forbidden transition 1 → 3 is associated with an odd
ξ13(z). It is then apparent that the integral of ξ12(z) and ξ23(z) will lead to a finite dipole,
and the integral of ξ13(z) to a dipole equal to zero.

Oscillating charge distributions

We can also introduce a function ρα(z) describing the spatial distribution of the charge
oscillating at the frequency of the transition α:

ρα(z) =
∂ξα(z)

∂z
(2.31)

To see a justification of this, from the definition of the spatial variation of the current (2.27)
we can write

∂ξij
∂z

=
∂

∂z

(
ψi

∂

∂z
ψj

)
− ∂

∂z

(
ψj

∂

∂z
ψi

)
=

= ψi
∂2ψj
∂z2

− ψj
∂2ψi
∂z2

Then, recalling Schrödinger equation for the envelope functions

− ~2

2m∗
∂2ψi
∂z2

+ V (z)ψi = ~ωiψi

we can write:

∂ξij
∂z

(z) =
2m∗(ωi − ωj)

~
ψi(z)ψj(z) = ρij(z)
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(a) In black: Calculated square moduli of wavefunctions in a 100 Å GaAs/Al0.45Ga0.55As quantum
well. In color: calculated microcurrent spatial distributions ξij(z) for the possible intersubband
transitions, plotted mid-way between the electronic levels of the corresponding transition.

(b) Alternative representation of the microcurrents in (a), in color scale and normalized to their
maximum value, plotted between the electronic levels of the corresponding transition, and multi-
plied by a Gaussian function along the energy axis for visualization purposes. In the colorscale,
red corresponds to +1 and blue to -1.

Figure 2.6: Representation of microcurrent spatial distributions ξα(z).
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where we recognize a density-like term ψiψj . The definition of the charge distribution
suggests another physical interpretation of Eq. (2.30):

−
∫ +∞

−∞
zρα(z) dz =

2m∗ωα
~

zα (2.32)

The above relation suggests an interpretation for the optical dipole zα as the average
displacement of the charge oscillation, obtained as the first moment of the distribution
ρα(z).

Figure 2.7: In black: calculated square moduli of wavefunctions in a 100 Å
GaAs/Al0.45Ga0.55As quantum well. In color: calculated charge spatial distributions ρij(z)
for the possible intersubband transitions, plotted mid-way between the electronic levels of the
corresponding transition.

The calculated charge distributions ρα for a 100 Å GaAs/Al0.45Ga0.55As quantum well
are presented in Fig. 2.7. Note that their parity properties are opposite with respect to the
microcurrents ξα(z) (cf. Fig. 2.6): optically allowed transitions correspond to odd charge
distributions, and optically forbidden to even charge distributions.

Microscopic current densities and single-particle absorption spectrum

Combining Eqs. (2.28) and (2.30), the integral of the current density can be related to the
dipole matrix element through:

S

e2ωα

∣∣∣∣∫ +∞

−∞
jα(z) dz

∣∣∣∣2 = ωα|zα|2∆Nα (2.33)

As the dipole matrix element also determines the strength of the interaction with light,
Eq. (2.33) allows us to establish a relation between the current density integral and the
absorption spectrum.

In a single-particle picture, the absorption coefficient is calculated as [24]:

α2D(ω) =
e2~

2ε0cm∗
√
εs

∑
α

fα∆NαL~γ(~ω − ~ωα) =
e2

ε0c
√
εs

∑
α

ωα |zα|2 ∆NαL~γ(~ω − ~ωα)
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where fα = 2m∗ωα
~ z2

α is the oscillator strength of the transition, εs is the background

dielectric constant, c is the speed of light, and L~γ(~ω − ~ωα) = ~γ/2
(~ωα−~ω)2+(~γ/2)2 is

a Lorentzian function of full width at half maximum ~γ, centered at the intersubband
transition energy ~ωα. By using Eq. (2.33), the absorption coefficient can be related to
the current densities through:

α2D =
S

ε0c
√
εs
A(ω) (2.34)

A(ω) =
∑
α

1

ωα

∣∣∣∣∫ +∞

−∞
jα(z) dz

∣∣∣∣2 L~γ(~ω − ~ωα) (2.35)

The term 1
ωα

∣∣∣∫ +∞
−∞ jα(z)dz

∣∣∣2 can thus be considered as a measure of the absorption am-

plitude, being proportional to both the oscillator strength and to the density of electrons
involved in the transition.

Absorption in Fermi’s golden rule

Note that the above result for the absorption rate (2.35) can be obtained through
Fermi’s golden rule by calculating the matrix element of the light-plasmon Hamiltonian
Hl−pol (2.17) between an initial state a†q|F 〉 (the system is in the ground state, there is

one photon) and a final state b†αq|F 〉 (there is no photon and an intersubband excitation).
To this end, we write the polarization Pz and displacement field Dz as

Pz =
∑
α,q

jα(z)

ωα
eiq·r(bqα + b†−qα) (2.36)

Dz = i
∑
q

Aqfq(z)
|q|
ωcq

eiq·r(aq − a†−q) (2.37)

with

Aq =

√
~ωcq

2µ0SLq

∫
f2
q(z) dz = Lq

where fq(z) is an arbitrary guided mode with wavevector q, S is the area of the system
and Lq the light-matter interaction length.

Let us consider a perturbative regime where the external field is weak. The absorption
rate can then be evaluated as:

Aα(ω) =|〈F |a†qHl−polb
†
αq|F 〉|2δ(ω − ωα) =

=|Cq|2 sin2 θq
1

ωα

∣∣∣∣∫ +∞

−∞
jα(z) dz

∣∣∣∣2 δ(ω − ωα)

Here ω = ωcq is the frequency of the incident photon, and the factor sin2 θq expresses the
selection rule for intersubband transitions. Equation (2.35) can be recovered by summing
on all the possible transitions α, replacing the Dirac δ with broadened Lorentzians, and
discarding the q dependence.
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2.2.4. From intersubband transitions to intersubband plasmons

In order to consider the effect of the polarization self-interaction term, we diagonalize the
Hamiltonian

Hplasmon = He +Hpol−pol

which physically describes the ensemble of interacting intersubband dipolar oscillators.
We use the microscopic expression of the polarization (2.29) to write Hpol−pol [Eq. (2.18)]
in terms of the intersubband excitation operators as:

Hpol−pol =
e2

2ε0εs

∑
α,β

Sαβ
√

∆Nα∆Nβ

(
b†α + bα

)(
b†β + bβ

)
where Sαβ is given by:

Sαβ =
1

~ωα
1

~ωβ

(
~2

2m∗

)2 ∫ +∞

−∞
ξα(z)ξβ(z) dz (2.38)

Sαβ defines a characteristic length, depending on the overlap between microcurrents. Diag-
onal terms Sαα refer to the interaction between dipoles associated with the same transition,
while off-diagonal terms Sαβ refer to dipoles belonging to different transitions. Note that
this expression is equivalent to the Coulomb tensor [30, 47, 74]:

Sαβ ≡ Sij,kl =

∫ +∞

−∞

[∫ z

−∞
ψi(z

′)ψj(z
′) dz′

] [∫ z

−∞
ψk(z

′′)ψl(z
′′) dz′′

]
dz (2.39)

The diagonalization of Hplasmon is done in two steps. We first consider the interaction
between oscillators corresponding to the same intersubband transition (α = β), resulting in
the usual intersubband plasmons [8, 68]. We combine the α = β terms with the electronic
Hamiltonian (2.22) to obtain

He +Hpol−pol(α = β) =
∑
α

[
~ωαb†αbα +

e2

2ε0εs
Sα,α∆Nα

(
b†α + bα

)(
b†α + bα

)]
(2.40)

This quadratic Hamiltonian can be diagonalized by introducing new bosonic operators pα
satisfying

[pα, He +Hpol(α = β)] = ~ω̃αpα

where ω̃α denotes the new eigenvalues. This diagonalization procedure yields

pα =
ω̃α + ωα

2
√
ω̃α ωα

bα +
ω̃α − ωα
2
√
ω̃α ωα

b†α

with ω̃α =
√
ω2
α + ω2

Pα the plasma-shifted transition frequency of the intersubband plas-

mon, already introduced in §2.1.1.
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Coulomb lengths in an infinite quantum well

For illustrative purposes, let us calculate the values of Sij,kl in the case of an infinite
quantum well of width LQW. As mentioned in §1.1.2, the system eigenfunctions are given
by:

ψinfinite
n (z) =

√
2

LQW
sin

(
nπz

LQW

)
Equation 2.39 becomes

Sij,kl =

∫ LQW

0

[
2

LQW

∫ z

0
sin

(
iπz′

LQW

)
sin

(
jπz′

LQW

)
dz′
]
×

×
[

2

LQW

∫ z

0
sin

(
kπz′′

LQW

)
sin

(
lπz′′

LQW

)
dz′′
]

dz =

=
1

π2

∫ LQW

0

sin
(
πz(i−j)
LQW

)
i− j −

sin
(
πz(i+j)
LQW

)
i+ j

sin
(
πz(k−l)
LQW

)
k − l −

sin
(
πz(k+l)
LQW

)
k + l

 dz

(2.41)

The highest values for Sij,kl obtained through Eq. (2.41) are those that involve transitions
between consecutive levels:

Sn,n+1,n,n+1 =
2n2 + 2n+ 1

(2n+ 1)2

LQW

π2
diagonal terms

Sn,n+1,m,m+1 =
LQW

2π2
off-diagonal terms, n 6= m

Note that the succession of Sn,n+1,n,n+1 is

{
5

9
,
13

25
,
25

49
,
41

81
, . . .

}
LQW

π2
, and

lim
n→+∞

Sn,n+1,n,n+1 =
LQW

2π2
(2.42)

These considerations suggest that transitions between consecutive levels and their cou-
plings will play an important role in the optical response of a single quantum well. This is
reasonable, since they are the most optically active transitions. This information is thus
concisely included in Sij,kl.

It is also interesting to note that all of these transitions are characterized by a similar
value of S, as the succession rapidly converges to the value

LQW

2π2 .

Sij,kl and effective lengths in plasma definitions

The quantity Sij,kl is the four-index generalization of the quantity Sij appearing in the
definition of effective length of a quantum well with a single optically active intersubband
transition Leff

ij = z2
ij/Sij [see Eqs. (2.2)-(2.4)].

The diagonal elements of Sij,kl and the effective length Leff
ij of the transition i → j

are related, and indeed it is possible to write an alternative expression for the plasma
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frequency in terms of S:

ω2
Pij =

e2fij∆Nij

m∗ε0εsLeff
ij

=
2e2 ∆Nij ωij

~ε0εs
Sij,ij (2.43)

Note that in this expression the oscillator strength fij cancels in the expression of the
plasma frequency, meaning that it has no influence on the value of the depolarization
shift [24].

The effective length Leff
ij is the expression of the quantum-mechanical effects due to

confinement, as suggested from the fact that it is derived directly from the wavefunctions.
For confined states in a single quantum well of width LQW, it holds

Leff
ij < LQW

which implies that the plasma frequency (2.2) is determined by a length smaller than the
physical dimensions of the well. For an infinite quantum well, it is indeed possible to use
the relations presented above to calculate

S12 =
5

9

LQW

π2
= 0.0056LQW

Leff
12 = f12

3

5
LQW = 0.576LQW

If we consider a generic transition between consecutive levels n → n + 1 we have,
recalling Eq. (1.6) and Eq. (1.22):

En,n+1 =
(2n+ 1)π2~2

2m∗LQW
fn,n+1 =

64

π2

n2(n+ 1)2

(2n+ 1)3

which, combined with the above limit for Sn,n+1,n,n+1 (2.42), give us the following limit
for Leff :

lim
n→+∞

Leff
n,n+1 =

8

π2
LQW = 0.81LQW

As an example, Fig. 2.8(a) shows the calculated effective lengths Leff for transitions
between consecutive levels [see Fig. 2.8(b)] in a wide GaAs/Al0.45Ga0.55As quantum well
(1000 Å). It can be appreciated that the Leff ’s tend to a common value, indeed approx-
imately 0.8LQW. This is equivalent to the observation that the values of S between
consecutive transitions are almost constant.

Effective lengths and extension of microcurrents

Remarkably, the effective length Leff
α can also be expressed in terms of the microcur-

rent jα(z). Indeed, by using the microcurrent definition (2.28), along with Eqs. (2.33)
and (2.38), one can obtain:∣∣∣∣∫ +∞

−∞
jα(z) dz

∣∣∣∣2 =
e2

S
ω2
α|zα|2∆Nα∫ +∞

−∞
j2
α(z) dz =

1

S

(
e~

2m∗

)2

∆Nα

∫ +∞

−∞
ξ2
α(z) dz =

e2

S
ω2
α Sαα∆Nα



Chapter 2. Many-body effects in the optical properties of a 2DEG 55

(a) (b)

Figure 2.8: a) Calculated Leff for a 1000 Å GaAs/Al0.45Ga0.55As quantum well (shown in
inset). Transitions between consecutive levels are considered. b) Scheme of transition num-
bering.

The combination of the relations above makes it possible to write an alternative definition
for the effective length Leff

α :

Leff
α =

|zα|2
Sαα

=

∣∣∣∣∫ +∞

−∞
jα(z) dz

∣∣∣∣2∫ +∞

−∞
j2
α(z) dz

(2.44)

Equation (2.44) shows that the extension of the polarization associated with a transition
α can be derived directly from the microcurrent jα(z).

2.2.5. From intersubband to multisubband plasmons

In this section, we consider the coupling between intersubband plasmons, to finally obtain
the new eigenmodes of the system, the multisubband plasmons.

The Hamiltonian Hplasmon can be obtained by adding the terms α 6= β to (2.40), and
written in terms of intersubband plasmons and their coupling as:

Hplasmon = He +Hpol−pol(α = β) +Hpol−pol(α 6= β) =

=
∑
α

~ω̃αp†α pα︸ ︷︷ ︸
intersubband plasmons

+
~
2

∑
α 6=β

Ξαβ

(
pα + p†α

)(
pβ + p†β

)
︸ ︷︷ ︸

coupling between intersubband plasmons

(2.45)

The first term of Hplasmon is the diagonalized version of Hamiltonian (2.40), and the second
term expresses the dipole-dipole interaction between intersubband plasmons associated
with different transitions [64], characterized by a coupling strength which can be shown
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to be [68]:

Ξαβ =
ωPαωPβ

2
√
ω̃αω̃β

Cαβ

Cαβ =
Sαβ√
SααSββ

(2.46)

Expression (2.46) shows that the coupling strength depends not only on the characteristics
of the individual intersubband plasmons, but also on the quantity Cαβ, which is the
overlap (defined between -1 and 1) between the corresponding microcurrent distributions.

We now want to rewrite the Hamiltonian (2.45) in terms of new bosonic operators Pn
representing N independent normal modes (corresponding to N multisubband plasmons):

Hplasmon =
∑
n

~WnP
†
nPn

For simplicity, let us show the diagonalization procedure in the case of two coupled inter-
subband plasmons. The procedure will be then generalized to the N transition case.

Two intersubband plasmons

Let us refer as an example to transitions 1→ 2 and 2→ 3 in the quantum well represented
in Fig. (2.6). Let us call p†1 and p†2 the creation operators of the two corresponding
intersubband plasmons. The Hamiltonian (2.45) in this case reads:

H = ~ω̃1p
†
1 p1 + ~ω̃2p

†
2 p2 +

1

2
~Ξ12

(
p1 + p†1

)(
p2 + p†2

)
(2.47)

where 1 indicates the transition 1 → 2 and 2 the transition 2 → 3. In this simple case,
just one coupling frequency between intersubband plasmons is involved:

Ξ12 =
ωP1ωP2

2
√
ω̃1ω̃2

C12

(a) (b)

Figure 2.9: a) Representation of intersubband plasmons of two transitions 1 → 2 and 2 → 3
(in red) and the coupling between them Ξ12. b) Representation of the corresponding two
uncoupled multisubband plasmons of energy W1 and W2.

Figure 2.9(a) schematically represents the interaction between the two intersubband
plasmons. The coupling Ξ12 gives rise to the multisubband plasmons, represented in
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purple in Fig. 2.9(b).

The Hamiltonian (2.47) is diagonalized in the form:

H = ~W1P
†
1P1 + ~W2P

†
2P2

for which it holds
[Pn, H] = ~WnPn n = 1, 2 (2.48)

To this end, we calculate the commutators:[
p1, H

]
= ~ω̃1p1 + ~Ξ12

(
p†2 + p2

)
[
p2, H

]
= ~ω̃2p2 + ~Ξ12

(
p†1 + p1

)[
p†1, H

]
= −~ω̃1p

†
1 − ~Ξ12

(
p†2 + p2

)[
p†2, H

]
= −~ω̃2p

†
2 − ~Ξ12

(
p†1 + p1

) (2.49)

The new operators Pn are written as linear combinations of the intersubband plasmon
operators p1, p2:

P1 = a11p1 + b11p
†
1 + a12p2 + b12p

†
2

P2 = a21p1 + b21p
†
1 + a22p2 + b22p2

which we use to rewrite Eq. (2.48) for n = 1, 2:

[Pn, H] = ~Wn(an1p1 + bn1p
†
1 + an2p2 + bn2p2) (2.50)

Eq. (2.50) can also be written by using Eqs. (2.49):

[Pn, H] =an1[p1, H] + bn1[p†1, H] + an2[p2, H] + bn2[p†2, H] = (2.51)

=an1

[
~ω̃1p1 + ~Ξ(p†2 + p2)

]
+ bn1

[
−~ω̃1p

†
1 − ~Ξ(p†2 + p2)

]
+

+ an2

[
~ω̃2p2 + ~Ξ(p†1 + p1)

]
+ bn2

[
−~ω̃2p

†
2 − ~Ξ(p†1 + p1)

]
By comparing Eq. (2.50) and (2.51) we obtain the system of linear equations

Wnan1= ω̃1an1 + Ξan2 − Ξbn2

Wnbn1=−ω̃1bn1 + Ξan2 − Ξbn2

Wnan2= Ξan1 − Ξbn1 + ω̃2an2

Wnbn2= Ξan1 − Ξbn1 − ω̃2bn2

which translates into the eigenproblem

Wn


an1

bn1

an2

bn2

 =


ω̃1 0 Ξ −Ξ
0 −ω̃1 Ξ −Ξ
Ξ −Ξ ω̃2 0
Ξ −Ξ 0 −ω̃2



an1

bn1

an2

bn2


The eigenvalues W1 and W2 of this matrix give the energies renormalized by plasmon-
plasmon coupling.
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N intersubband plasmons

Having solved the problem for the two-transition case, we can easily generalize to N
transitions. The new operators Pn are linear combinations of the operators describing
intersubband plasmons:

Pn =
∑
α

(
anα pα + bnα p

†
α

)
(2.52)

As these are eigenmodes of Hplasmon with eigenfrequencies Wn, it holds:

[Pn, Hplasmon] = ~WnPn (2.53)

Relation (2.53), along with the symmetry property Ξαβ = Ξβα, and the commutator

[pα, Hplasmon] = ~ω̃αpα +
∑
α 6=β

~Ξαβ(p†β + pβ)

lead to the eigenvalue problem

MVn = WnVn

where

M =



ω̃1 0 Ξ12 −Ξ12 Ξ1N −Ξ1N

0 −ω̃1 Ξ12 −Ξ12 · · · Ξ1N −Ξ1N

Ξ12 −Ξ12 ω̃2 0 Ξ2N −Ξ2N

Ξ12 −Ξ12 0 −ω̃2 Ξ2N −Ξ2N
...

. . .

Ξ1N −Ξ1N Ξ2N −Ξ2N ω̃N 0
Ξ1N −Ξ1N Ξ2N −Ξ2N · · · 0 −ω̃N


2N×2N

(2.54)

In the following, we will refer to M as a Hopfield matrix, as it is issued from a Bogoliubov
diagonalization procedure similar to that used by Hopfield [75] to treat light-matter strong
interaction. The matrix M admits 2N eigenvalues, and if Wn is an eigenvalue, then −Wn

is as well. The N distinct frequencies Wn are the normal plasmon modes. The coefficients
anα and bnα appearing in Eq. (2.52) are the components of the eigenvectors Vn of the
matrix M, written in the form:

Vn =


an1

bn1
...

anN
bnN


2N×1

with the normalization condition
∑

i

(
|ani|2 − |bni|2

)
= 1, which ensures the bosonicity of

the operators.
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2.2.6. Multisubband plasmon current densities and absorption spectrum

In order to calculate the effect of the polarization self-interaction term on the absorption
spectrum, we use the same approach as in §2.2.3. We write the intersubband polarization
in terms of the multisubband plasmons. The corresponding current densities are then
calculated and related to the absorption spectrum of the electron gas in the presence of
dipole-dipole interaction.

Let us define the N ×N matrix inverse

Xαn = (anα + bnα)−1

By using Eq. (2.52), the intersubband polarization operator reads:

P̂z =
e~

2m∗
√
S

∑
n

∑
α

ξα(z)
√

∆Nα√
ωαω̃α

Xαn

(
Pn + P †n

)
The multisubband current density can now be calculated as the time evolution of the
polarization under the Hamiltonian Hplasmon:

Ĵz =
i

~

[
P̂z, Hplasmon

]
= i
∑
n

Jn(z)
(
Pn − P †n

)
with the spatial distribution of the multisubband plasmon current density given by

Jn(z) =
e~

2m∗
√
S
Wn

∑
α

ξα(z)
√

∆Nα√
ωαω̃α

Xαn (2.55)

As an example, Fig. 2.10 shows the three collective microcurrents calculated in a three-
subband structure, with two subbands occupied5.

Figure 2.10: Calculated spatial distributions Jn(z) for the collective microcurrents in a 100 Å
GaAs/Al0.45Ga0.55As quantum well, with two occupied subbands.

5As they are not associated with a particular electronic transition, they are plotted in Fig. 2.10 in the
same energy interval. Only their distribution along z is meaningful in this plot.
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In analogy to Eq. (2.31), we can also define the distribution of charge oscillating at
the frequency Wn of the multisubband plasmon n:

ρMSPn(z) =
∂Jn(z)

∂z
(2.56)

Note, however, that this relation is not exactly equivalent to (2.31), because there is no
direct counterpart of ξα(z) in the collective picture. Indeed, the spatial variation of Jn(z) is

given by the full term
∑

α
ξα(z)

√
∆Nα√

ωαω̃α
Xαn, which is clearly not dimensionally homogeneous

to ξα(z). It is thus not possible to write for ρMSPn an expression corresponding to Eq. (2.32).
On the other hand, we can define a multisubband effective length Leff

n as a function of
the collective microcurrents Jn(z), in analogy to Eq. (2.44):

Leff
n =

∣∣∣∣∫ +∞

−∞
Jn(z)dz

∣∣∣∣2∫ +∞

−∞
J2
n(z)dz

(2.57)

This normalized length quantifies the extension of the polarization associated with the
collective mode n.

The absorption coefficient is obtained by integrating the contributions of the different
multisubband plasmon current densities. Indeed, the absorption is related to the polariza-
tion of the medium, induced by the various intersubband transitions and in the presence
of the depolarization field. The absorption coefficient is hence written as:

α2D(ω) =
S

ε0c
√
εs
A(ω) (2.58)

A(ω) =
∑
n

1

Wn

∣∣∣∣∫ +∞

−∞
Jn(z) dz

∣∣∣∣2 L~γ(~ω − ~Wn) (2.59)

The above expression is the multisubband equivalent of Eq. (2.35). The quantity A(ω) can
also be expressed in terms of the eigenvalues and eigenvectors of the matrix M, together
with the characteristics of the individual intersubband transitions:

A(ω) =
e2

S

∑
n

WnFn L~γ(~ω − ~Wn) (2.60)

Fn =

∣∣∣∣∣∑
α

√
∆Nα

√
ωα
ω̃α
zαXαn

∣∣∣∣∣
2

(2.61)

The quantity WnFn can be considered as an effective oscillator strength of the mul-
tisubband plasmon modes (the multisubband equivalent of fα∆Nα). It is important to
underline that each effective oscillator strength results from the contribution of all the
optically active intersubband plasmons. They are weighted by the different quantities
associated with individual transitions (dipole matrix element, transition frequencies) but
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also depend on the coupling between intersubband plasmons, which enters through the
eigenvectors of the matrix M (aJα and bJα).

The total absorption satisfies the following sum rule:

∑
α

ωα |zα|2 ∆Nα =
∑
n

WnFn (2.62)

which expresses the conservation of the total transition probability, hence the total proba-
bility of light-matter interaction. We have found that this sum rule is numerically satisfied
in all the systems we have studied.

We see then that the coupling between intersubband plasmons results in a redistribu-
tion of the absorption amplitude from the intersubband transitions to the multisubband
plasmon modes.

2.2.7. Extension to piecewise constant mass

The definition of the microcurrents distribution ξ(z) can be extended to the case of a
piecewise constant effective mass. Indeed, one can define:

ξmij (z) = ψi(z)
∂

∂z

[
1

m∗(z)
ψj(z)

]
− ψj(z)

∂

∂z

[
1

m∗(z)
ψi(z)

]
=

=
1

m∗(z)

[
ψi(z)

∂

∂z
ψj(z)− ψj(z)

∂

∂z
ψi(z)

]
=

=
1

m∗(z)
ξij (2.63)

where m∗(z) = m∗(z)
m0

. Note that we can factor out the mass from the derivative term
because of our hypothesis of m∗ being piecewise constant. This expression of the mi-
crocurrent distribution is more appropriate for systems of tunnel-coupled quantum wells,
where it is important to properly treat the wavefunctions in the barriers. All the relevant
quantities that can be expressed in terms of ξα(z) can also be expressed in terms of ξmα (z).
In fact, we can rewrite the Coulomb length (2.38) as:

Smαβ =
~

2m0ωα

~
2m0ωβ

∫ +∞

−∞
ξmα (z)ξmβ (z) dz

Then Eqs. (2.43) and (2.46) become

[ωmPα]2 =
2e2 ∆Nα ωα

~ε0εs
Smαα

Cmαβ =
Smαβ√
SmααS

m
ββ

If m∗ is constant, all the definitions of the previous paragraphs are recovered.
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2.3. Coupling between multisubband plasmons and a cavity mode

Let us consider now the full Hamiltonian (2.19), which includes also light terms. We can

write it in terms of intersubband plasmon operators pα, p
†
α as [68]:

H =
∑
α

~ω̃αp†αpα︸ ︷︷ ︸
intersubband plasmons

+ ~ωc
(
a†a+

1

2

)
︸ ︷︷ ︸

photons

+

+
1

2

∑
α 6=β

~Ξαβ

(
pα + p†α

)(
pβ + p†β

)
︸ ︷︷ ︸

plasmon-plasmon interactions

+

+ i
∑
α

~Ωα

(
a† − a

)(
p†α + pα

)
︸ ︷︷ ︸

light-plasmon interactions

where the light-matter coupling constant is

Ωα =

√
e2

2~ε0εsLcav

√
ωcav

√
∆Nα

√
ωα
ω̃α

zα =

=
ωPα

2

√
ωcav

ω̃α

√
Leff
α

Lcav

with Lcav length of the cavity associated with the photonic mode of frequency ωcav. We
use the relation

(pα + p†α) =
∑
n

Xαn(Pn + P †n)

to rewrite the plasmon-light interaction term in the form

Hlight−plasmons =i
∑
α

~Ωα

(
a† − a

)(
p†α + pα

)
=

=i~

√
e2

2~ε0εsLcav

∑
α,n

√
ωcav

√
∆Nα

√
ωα
ω̃α

zαXαn

(
a† − a

)(
P †n + Pn

)
=i~

∑
n

Rn
2

√
ωcav

Wn

(
a† − a

)(
P †n + Pn

)
where we have defined Rn as

Rn =

√
2e2

~ε0εsLcav

∑
α

√
Wn

√
∆Nα

√
ωα
ω̃α

zαXαn =

=
∑
α

ωPαXαn

√
Wn

ω̃α

√
Leff
α

Lcav

(2.64)
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This quantity can be considered as an effective plasma frequency, as it is the coefficient
weighting the light-matter interaction in the Hamiltonian Hlight−plasmons. The full Hamil-
tonian is then expressed in terms of multisubband plasmons as

H =
∑
n

~WnP
†
nPn︸ ︷︷ ︸

multisubband plasmons

+ ~ωc
(
a†a+

1

2

)
︸ ︷︷ ︸

photons

+

+ i
∑
n

~
Rn
2

√
ωcav

Wn

(
a† − a

)(
P †n + Pn

)
︸ ︷︷ ︸

interaction between multisubband plasmons and cavity mode

(2.65)

If the broadening of the cavity mode is larger than the light-matter coupling strength,
the system is in a weak coupling regime. It is therefore possible to apply a perturbative
method (Fermi’s golden rule) equivalent to that described at the end of §2.2.3 to calculate
the absorption rate. By considering instead of Eq. (2.36) the expression of the polarization
field for multisubband plasmons

Pz =
∑
n,q

Jn(z)

Wn
eiq·r(Pqn + P †−qn)

we would obtain a result equivalent to Eq. (2.59).

On the contrary, if the cavity mode broadening is smaller or comparable to the light-
matter coupling, we need to solve the problem exactly, with a diagonalization procedure
similar to that followed to diagonalize the matter part. This procedure is described in the
next section.

2.3.1. One multisubband plasmon coupled with light

Let us solve the problem (2.65) in the simple case of just one multisubband plasmon
of frequency WMSP interacting with one cavity mode. This situation is particularly
interesting, as in a single quantum well with several occupied subbands only one
multisubband plasmon mode is bright, and hence can couple with a cavity mode. This
situation corresponds to that experimentally studied in Refs. [14, 67], where it has been
demonstrated that such a coupling gives rise to new eigenmodes, called intersubband
polaritons.

We consider the Hamiltonian

H = ~WMSPP
†P + ~ωcav

(
a†a+

1

2

)
+ i~ΩR(a† − a)(P † + P ) (2.66)

where we have defined the Rabi frequency, expressing the coupling between the cavity
mode and the matter excitation (in our case, the multisubband plasmon):

ΩR =
RMSP

2

√
ωcav

WMSP
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with RMSP the effective plasma frequency of the multisubband plasmon. We look for new
polariton operators Q1, Q2

Q1 = A11a+B11a
† +A12P1 +B12P

†

Q2 = A21a+B21a
† +A22P1 +B22P

†

such that the Hamiltonian can be diagonalized as

H = ~M1Q
†
1Q1 + ~M2Q

†
2Q2

Following a Bogoliubov diagonalization procedure similar to the one used in §2.2.5, it is
possible to write the system of equations

MKAK1= AK1ωcav − iAK2ΩR + iBK2ΩWMSP

MKBK1=−BK1ωcav − iBK2ΩR + iAK2ΩWMSP

MKAK2= iAK1ΩR + iBK1ΩR +AK2WMSP

MKBK2= iAK1ΩR + iBK1ΩR −BK2WMSP

equivalent to

MK


AK1

BK1

AK2

BK2

 =


ωcav 0 −iΩR iΩR

0 −ωcav iΩR −iΩR

iΩR iΩR WMSP 0
iΩR iΩR 0 −WMSP



AK1

BK1

AK2

BK2

 (2.67)

The solutions of this system of equations are the two polariton modes, issued from the
coupling between the multisubband plasmon and the cavity mode.

Let us remark that the Hamiltonian (2.66) has a general form, which includes
antiresonant terms. These terms are often neglected in the study of light-matter
interaction in the so-called strong coupling regime, where ΩR/ωmatter � 1. On the
contrary, the inclusion of the antiresonant contribution is necessary to the description of
the ultra-strong coupling regime, in which the coupling frequency is comparable to the
matter excitation frequency [72]. This situation is therefore automatically described by
our model, thanks to the use of the dipole representation of the Hamiltonian [68].

The characteristic polynomial of the eigenproblem (2.67) can be written as

(ω2 − ω2
cav)(ω2 −WMSP

2) = Ω2
Rω

2
cav

The solutions of the above equation represent the frequencies of the polaritonic modes,
the so-called upper (higher energy) and lower (lower energy) polariton branches:

ω2
UP,LP ≡M2

1,2 =
1

2

[
W 2

MSP + ω2
cav ±

√
(∆ω2)2 + 4Ω2

Rω
2
cav

]
where ∆ω2 = ω2

cav −W 2
MSP.

The Hopfield coefficients α and β represent the light and matter component of polariton
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modes, respectively [68]. In the present case, they can be found equal to

αUP = βLP =
∆ω2 +

√
(∆ω2)2 + 4Ω2

Rω
2
cav

2
√

(∆ω2)2 + 4Ω2
Rω

2
cav

=
∣∣|AK1|2 − |BK1|2

∣∣
αLP = βUP = 1− αUP

We plot the polariton dispersion in Fig. 2.11, normalized to the matter excitation
frequency WMSP, considering a Rabi coupling ΩR = 0.8WMSP. The size of the dots is
proportional to the photonic weight of the mode, given by the Hopfield coefficient α.

Figure 2.11: Frequency of the polariton branches as a function of the frequency of the cavity
mode, normalized to the multisubband plasmon frequency WMSP. We take ΩR/WMSP = 0.8.

The horizontal asymptote of the upper polariton branch is WMSP, while that of the

lower polariton branch is WMSP

√
1−

(
ΩR

WMSP

)2
. This implies the opening of a gap in the

dispersion, whose width is given by

ωgap =

1−
√

1−
(

ΩR

WMSP

)2
WMSP

and thus depends on the strength of the Rabi coupling ΩR. This gap is considered an ex-
perimental signature of the ultra-strong coupling regime [8]. The possibility of engineering
the polariton dispersion through ΩR has been experimentally studied in Ref. [67].
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2.4. Dielectric function and absorption spectrum

The result of the eigenproblem (2.67) can also be applied to derive an expression for the
dielectric function and for the absorption spectrum, as it could be measured for example
by means of multipass transmission in a waveguide.

Starting from the characteristic polynomial of the eigenproblem (2.67) and using the
dispersion relation

ε(ω)ω2 = εsω
2
cav

it is possible to express the effective dielectric function of the electron gas inserted in a
cavity as [69]:

εs
ε(ω)

= 1 +
∑
n

R2
n

ω2 −W 2
n + iγω

(2.68)

The knowledge of this dielectric function permits to calculate an absorption spectrum

through the expression −Im
[

1
ε(ω)

]
, which will have the same form as the spectrum

calculated using Eq. (2.60). However, we must note that the amplitudes of the absorp-
tion resonances calculated with this second procedure depend on the ratio Lcav/L

α
eff

[Eq. (2.64)]. This represents the necessity to account for the overlap between the cavity
mode and the lengths Leff

α over which collective effects occur.

It is worth checking whether the dielectric function defined by using the procedure
above obeys the sum rules [76] ∫ ∞

0
dω ω Im [ε(ω)] =

1

2
πω2

P,bulk

−
∫ ∞

0
dω ω Im

[
1

ε(ω)

]
=

1

2
πω2

P,bulk

where ω2
P,bulk is the bulk plasma frequency

ω2
P,bulk =

NV e
2

ε0εsm∗

These sum rules represent only a three dimensional upper limit for our dielectric
function (2.68), due to its dependence on Lcav. The reason for this is that the charge
density involved in the plasma oscillation is not the total NV : the dimension along the
growth direction z is indeed determined in a non-trivial way by the effective lengths of
the transitions Leff , thus by the quantum nature of the system.
We will show in the next chapter how the plasma frequency RMSP tends to ωP,bulk in the
limit of large quantum wells and high doping levels (see §3.1.3).

By comparing Eq. (2.61) and (2.64), we get

R2
n =

2e2

~ε0εsLcav
WnFn (2.69)



Chapter 2. Many-body effects in the optical properties of a 2DEG 67

We see then that the relation between the effective oscillator strengths WnFn and the effec-
tive plasma frequencies Rn is exactly equivalent to the definition of plasma frequency (2.2):

ω2
Pα =

e2

m∗ε0εsLeff
α

fα∆Nα =
2e2

~ε0εsLeff
α

ωαz
2
α∆Nα

As already mentioned in the first part of this chapter, the role of Leff
α in the plasma

frequency definition is that of accounting for the quantum effects due to confinement. In
the expression (2.69) this same role is included within the effective oscillator strengths
WnFn.

Conclusions

We have presented a quantum model, based on microscopic polarizations and microcur-
rents, which makes it possible to calculate the optical response of a bidimensional electron
gas confined in an arbitrary potential. We have shown that the optical response of a
highly doped system of quantum wells can be understood in terms of coupling between
the intersubband plasmons, collective entities due to Coulomb interactions corresponding
to the intersubband transitions and depending on the electron density involved in the
transitions.

In the following chapter, we will study the interplay between collective excitations
and tunnel coupling by applying the model to a set of relevant examples.

For convenience, we summarize here some results that will be referred to in the follow-
ing chapter:

� We associate with every intersubband transition α ≡ i → j a microscopic current
density, whose spatial dependence is given by:

ξα(z) ≡ ξij(z) = ψi(z)
∂ψj(z)

∂z
− ∂ψi(z)

∂z
ψj(z) (2.70)

� A central quantity for the intersubband plasmon coupling is the Coulomb tensor
Sαβ, which can defined in terms of microcurrents as:

Sαβ =
1

~ωα
1

~ωβ

(
~2

2m∗

)2 ∫ +∞

−∞
ξα(z)ξβ(z) dz (2.71)

� The diagonal Sαα is related to the plasma frequency ωPα through:

ω2
Pα =

e2fα∆Nα

m∗ε0εsLeff
α

=
2e2 ∆Nα ωα

~ε0εs
Sαα (2.72)

� It is possible to write the following relation between microcurrent spatial distribu-
tions ξα(z) and the optical dipole matrix element zα:∫ +∞

−∞
ξα(z) dz =

2m∗ωα
~

zα
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� The intersubband plasmon coupling frequency reads

Ξαβ =
ωPαωPβ

2
√
ω̃αω̃β

Sαβ√
SααSββ

(2.73)

� In a single quantum well, the S elements defined by Eq. (2.71) associated with
transitions between consecutive levels are the most important. Their values are
similar, and tend to

LQW

2π2 in the case of an infinite quantum well. This is not the
case for an arbitrary confining potential.

� The absorption spectrum can be expressed in terms of microcurrents as:

A(ω) =
∑
α

1

ωα

∣∣∣∣∫ +∞

−∞
jα(z) dz

∣∣∣∣2 L~γ(~ω − ~ωα) single-particle (2.74)

A(ω) =
∑
n

1

Wn

∣∣∣∣∫ +∞

−∞
Jn(z) dz

∣∣∣∣2 L~γ(~ω − ~Wn) collective (2.75)

� The absorption coefficient α2D can be written as:

α2D(ω) =
e2

ε0c
√
εs

∑
α

ωα |zα|2 ∆Nα L~γ(~ω − ~ωα) single-particle

α2D(ω) =
e2

ε0c
√
εs

∑
n

WnFn L~γ(~ω − ~Wn) collective

� The total absorption satisfies the sum rule:∑
α

ωα |zα|2 ∆Nα =
∑
n

WnFn

with Wn energies of the collective modes, and

Fn =

∣∣∣∣∣∑
α

√
∆Nα

√
ωα
ω̃α
zαXαn

∣∣∣∣∣
2
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Absorption spectra of single and
tunnel-coupled quantum wells

The quantum model presented in the previous chapter allows us to reproduce the
experimental absorption spectrum of a dense electron gas confined in a quantum well.
Furthermore, it makes it possible to investigate the possibility of engineering new
quantum structures based on collective excitations. In this chapter, we explore the
interplay between charge-induced coherence and tunnel coupling, in order to understand
how to control these two different coherences to give rise to new collective states.

In §3.1, the theory is applied to the case of a single quantum well with several occu-
pied subbands. We demonstrate that the semiclassical model describing the intersubband
absorption in terms of Drude-Lorentz oscillators is recovered as a special case of our for-
malism, when all the overlap integrals between intersubband currents are comparable. Sec-
tion 3.2 presents an analytical tight-binding analysis of the coupling between transitions,
introducing the interplay between Coulomb effects and tunnel coupling. Then, in §3.3,
the absorption spectrum of a dense electron gas in a system of asymmetric wells is inves-
tigated. In this case, we demonstrate that the coupling between a bright and an almost
dark transition results in an optical spectrum composed of two peaks of equal amplitude.
Here the coherence induced by Coulomb interaction gives rise to a phenomenon similar
to the Autler-Townes effect [77, 78]. We explore in §3.4 a system of two tunnel-coupled
quantum wells with several occupied subbands. The resulting absorption spectrum is in-
terpreted in terms of the collective currents of the multisubband plasmons of the system.
Section 3.5 proposes a structure to investigate the coexistence of different characteristic
lengths for plasmons in the same system, and §3.6 a design featuring the coupling between
a multisubband plasmons and a single-particle transition. Finally, we show how our model
can be used to describe the ultra-strong coupling regime between a bright multisubband
plasmon and a cavity mode in §3.7.

69
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3.1. Single quantum well with several occupied subbands

As a first application, we consider a single quantum well with several occupied subbands.
This is the same kind of system that has been experimentally studied in Ref. [14],
where it has been demonstrated that even though several intersubband transitions are
optically excited, the absorption spectrum displays a single peak, concentrating the whole
interaction with light, as discussed in §2.1.3. We will show that our model recovers this
result.

Let us consider a 15 nm GaAs/Al0.45Ga0.55As quantum well, n-doped with a density
1.05 × 1013 cm−2 (corresponding to NV = 7 × 1018 cm−3), such that three subbands are
occupied1. Fig. 3.1 presents the corresponding band structure, where the Fermi level is
indicated by a dashed line.

Figure 3.1: Calculated band structure and squared moduli of wavefunctions in a 150 Å
GaAs/Al0.45Ga0.55As quantum well, NS = 1.05 × 1013 cm−2 (NV = 7 × 1018 cm−3). The
dashed line indicates the Fermi energy at 0 K.

3.1.1. Single-particle properties

Table 3.1 presents some relevant parameters relative to all the possible intersubband tran-
sitions in the quantum well. The single-particle absorption spectrum of this quantum well
is shown in Fig. 3.2, calculated as

Abs(ω) ∝
∑
α

ωα |zα|2 ∆NαL~γ(~ω − ~ωα) (3.1)

where, as in the previous chapter, the sum runs over the transitions α ≡ i→ j, ωα is the
frequency of the intersubband transition α, zα is the optical dipole, ∆Nα is the difference
between electronic densities of subbands i and j, and L~γ(~ω − ~ωα) is a Lorenztian of
width ~γ centered on the transition energy ~ωα.

1We consider here a case with just three occupied subbands in order to present the main concepts while
keeping the discussion as clear as possible. Similar results are valid, and indeed even more remarkable, for
higher numbers of occupied subbands; for example the experimental results of Ref. [14] refer to a quantum
well with four occupied subbands.
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α (i,j) zα(Å) ∆Nα (cm−2) fα ~ωα (meV) ~ω̃α (meV) ~ωPα (meV) Sαα (Å) Leff
α (Å)

1 (1, 2) 32.2 1.5e+12 0.97 52.8 73.5 51.1 10.04 103.3
2 (2, 3) 35.1 2.4e+12 1.89 87.1 119.5 81.8 9.45 130.1
3 (3, 4) 36.6 1.4e+12 2.79 118.1 138.0 71.4 9.43 142.3
4 (1, 4) 2.6 5.3e+12 0.03 258.0 269.4 77.5 1.32 5.1
5 (1, 3) 0 3.9e+12 0 140.0 157.2 71.6 2.81 0
6 (2, 4) 0 3.8e+12 0 205.2 220.4 80.4 2.48 0

Table 3.1: Calculated characteristics for the different intersubband transitions in the structure
in Fig. 3.1.

The spectrum features three clearly visible peaks, corresponding to transitions between
consecutive levels 1→ 2, 2→ 3, and 3→ 4, in agreement with the higher dipole values re-
ported in Table 3.1. The fourth high-energy peak corresponds to the weak optically active
transition 1 → 4 (z14 is less than 10% of zi,i+1, i = 1, 2, 3). These four resonances rep-
resent the excitations of the system when Coulomb interactions are not taken into account.

Figure 3.2: Absorption in single-particle picture, 150 Å GaAs/Al0.45Ga0.55As quantum well
shown in inset. ~γ = 8 meV, NS = 1.05× 1013 cm−2.

An alternative visualization of these excitations is shown in Fig. 3.3, which presents the
spatial extension of the calculated single-particle microscopic current densities, as defined
by Eq. (2.28):

jα(z) =
e~

2m∗
√
S
ξα(z)

√
∆Nα

ξα(z) ≡ ξij(z) = ψi(z)
∂ψj(z)

∂z
− ψj(z)

∂ψi(z)

∂z
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Figure 3.3: Calculated spatial distributions of the microscopic current densities jij for optically
active (a) and dark (b) transitions in the 15 nm GaAs/Al0.45Ga0.55As quantum well of Fig. 3.1,
plotted between the level energies and multiplied by a Gaussian function along the energy axis
for visualization purposes. Coulomb lengths Sij,kl are also shown.

Each microcurrent, normalized to its maximum amplitude, is reported in color scale as
a function of z, plotted in the energy interval between the confined levels involved in the
corresponding transition, and multiplied by a Gaussian function along the energy axis for
visualization purposes. As already noted, microcurrents associated with dipole-allowed
transitions are symmetric with respect to the center of the quantum well, as shown in
panel (a), while microcurrents whose dipole is zero for parity are odd [panel (b)].

Table 3.2 reports the calculated values for the Coulomb lengths Sαβ, some of which are
also indicated in Fig. 3.3. As in the case of the infinite quantum well reported in §2.2.5,
the highest values (≈ 10 Å) appear on the diagonal Sαα, and correspond to the inter-
action between dipoles belonging to the same intersubband transition. These terms are
responsible for the depolarization shift, and indeed determine the plasma frequency of the
transition α [see Eq. (2.43)].

We calculate values of Sαβ comparable to the diagonal ones (≈ 9 Å) for pairs of
transitions between consecutive subbands, regardless of the quantum number of the
subbands involved [Fig. 3.3(a)]. All these values are exactly equal in the case of an
infinite quantum well, where Sn,n+1;m,m+1 = LQW/(2π

2) for all n,m, as previously shown.
Smaller values of Sαβ are instead obtained when the transition 1-4 is involved, indicating
the existence of different scales of Coulomb lengths in the same quantum well. As an
example, in Fig. 3.3 we report the value of S12,14, the highest one. Note that Sαβ is also
non negligible when the microcurrents involved present the same parity, even when they
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(i,j) (1,2) (2,3) (3,4) (1,3) (1,4) (2,4)
(1,2) 10.0 9.1 9.1 0.0 -1.0 0.0
(2,3) 9.1 9.5 9.2 0.0 0.3 0.0
(3,4) 9.1 9.2 9.4 0.0 0.0 0.0
(1,3) 0.0 0.0 0.0 2.8 0.0 2.2
(1,4) -1.0 0.3 0.0 0.0 1.3 0.0
(2,4) 0.0 0.0 0.0 2.2 0.0 2.5

Table 3.2: Calculated values of Sα,β in Angstrom.

(i,j) (1,2) (2,3) (3,4) (1,3) (1,4) (2,4)
(1,2) 1 0.93 0.93 0 -0.28 0
(2,3) 0.93 1 0.97 0 0.09 0
(3,4) 0.93 0.97 1 0 0 0
(1,3) 0 0 0 1 0 0.84
(1,4) -0.28 0.09 0 0 1 0
(2,4) 0 0 0 0.84 0 1

Table 3.3: Calculated values of the normalized overlap Cαβ between microscopic currents.

correspond to optically forbidden intersubband transitions, like 1-3 and 2-4 [Fig. 3.3(b)].

Table 3.3 presents the calculated values of the normalized overlap between inter-
subband currents Cαβ for all the possible pairs of transitions. Cαβ is very close to 1
whenever transitions between consecutive subbands are involved, and it is in general non
negligible for microcurrents presenting the same parity. This reflects the behavior already
mentioned for Sαβ.

3.1.2. Collective renormalization: bright multisubband plasmon and absorption
spectrum

The mutual coupling between the six possible intersubband transitions in this system
leads to six multisubband plasmons. Table 3.4 shows their energies Wn [calculated as
eigenvalues of the Hopfield-like matrix M, Eq. (2.54)] and factors Fn [Eq. (2.61)]. The
table also reports the values of the effective oscillator strengths WnFn, along with their
normalized valuesWnFn = WnFn/maxn{WnFn}, and the effective lengths Leff

n [Eq. (2.57)].

The current densities (2.55)

Jn(z) =
e~

2m∗
√
S
Wn

∑
α

ξα(z)
√

∆Nα√
ωαω̃α

Xαn (3.2)

corresponding to these six eigenmodes are plotted in Fig. 3.4. It is evident from Table 3.4
and Fig. 3.4 that two of the multisubband plasmons (n = 4, 5) are dark, and indeed
the corresponding current densities are odd with respect to the center of the quantum well.
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n ~Wn (meV) Fn (number) ~WnFn (meV) WnFn (number) Leff
n (Å)

1 61.63 0.0085 0.52 0.0099 39.0
2 103.73 0.026 2.70 0.052 90.6
3 155.38 0.34 52.83 1 136.2
4 154.17 0 0 0 0
5 222.54 0 0 0 0
6 269.45 0.0035 0.94 0.018 5.1

Table 3.4: Calculated parameters of collective modes after diagonalization. The line in bold
corresponds to the bright multisubband plasmon.

Figure 3.4: Calculated spatial distributions of the microscopic collective current densities Jn
[Eq. (2.55)] in the 150 Å GaAs/Al0.45Ga0.55As quantum well of Fig. 3.1, multiplied by a
Gaussian function along the energy axis for visualization purposes.
Values of effective oscillator strengths WnFn = WnFn/maxn{WnFn} are also shown, with
WnFn defined by Eq. (2.60).
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Figure 3.5: Calculated spatial distributions of the charge oscillation ρMSPn [Eq. (2.56)] corre-
sponding to the multisubband plasmons in the 150 Å GaAs/Al0.45Ga0.55As quantum well of
Fig. 3.1.

Figure 3.5 presents the corresponding distributions of charge oscillations ρMSPn , as
defined by Eq. (2.56). As expected from their definition, the parity properties of these
charge oscillations are opposite to those of the microcurrents distributions.

Even though there are four modes with a non-zero effective oscillator strength, we can
consider that just one is bright (n = 3), as its effective oscillator strength, WBFB, is at
least 20 times greater than the others. It is then possible to approximate Eq. (2.62) as∑

α

ωα|zα|2∆Nα = WBFB

Thanks to this observation, we can estimate an effective dipole of the bright multisubband
plasmon, ZB. For this, we first observe that, due to Pauli blocking, in a quantum well
with several occupied subbands not all the electrons in the system are involved in the
interaction with light, but only a fraction corresponding to the occupation of the first
subband: Neff = N1, as schematized in Fig. 3.6. As a consequence, WBFB = N1WB |ZB|2.
In the present example we obtain ZB = 25.3 Å, corresponding to an oscillator strength of
fMSP = 2m∗WB

~ Z2
B = 1.75.

Note that it may be tempting to use the calculated ρMSPn to obtain an expression
for the collective dipole, in analogy to expression (2.32). As already discussed in §2.2.6,
this is not possible, since ρMSPn(z) is not perfectly equivalent to the single-particle charge
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Figure 3.6: Illustration of the fraction of electrons involved in intersubband plasma oscillations.
Independently of the number of occupied subbands, the number of electrons involved in the
interaction with light is N1.

Figure 3.7: Inset: GaAs/Al0.45Ga0.55As structure, 150 Å, NV = 7×1018cm−3. Black line: Ab-
sorption in single-particle picture. Red: absorption accounting for collective effects calculated
with our model. We set a phenomenological broadening ~γ = 8 meV.
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oscillation distribution ρα(z). Nevertheless, the graphical representation of ρMSPn(z) in
Fig. 3.5 gives a qualitative idea of the extension of the charge oscillations, intended as the
distance between the two main amplitude peaks of the optically active plasmons. It can
be appreciated that for the bright multisubband plasmon (n = 3) this distance is almost
equal to the entire quantum well width.

A more quantitative description of the spatial extension of the collective oscillations
can be provided by the effective length Leff

n defined by Eq. (2.57):

Leff
n =

∣∣∣∣∫ +∞

−∞
Jn(z)dz

∣∣∣∣2∫ +∞

−∞
J2
n(z)dz

(3.3)

The last column of Table 3.4 presents the six calculated values of Leff
n , representing the

extension of the polarization associated with the collective modes. As expected, the
spatial extension associated with the bright multisubband plasmon (n = 3) is a significant
fraction of the quantum well width, more than 90%.

The absorption spectrum calculated with our model is shown in Fig. 3.7 (red line)
and compared with the single-particle one (black line). As anticipated, the optical re-
sponse of the electron gas is almost completely concentrated into a single peak, which
has an amplitude more than one order of magnitude greater than the other resonances,
in agreement with the experimental results obtained in Ref. [14]. However, a resonance is
visible for each of the four optically active multisubband plasmons of Table 3.4, with an
amplitude proportional to their effective oscillator strength WnFn [see also the logarithmic
representation of the spectrum reported in Fig. (3.12)].

3.1.3. Electronic density and well width dependence

In this section, we investigate the single quantum well problem in a more systematic
way. As already observed in Chapter 2, the multisubband plasmon has a plasma and an
intersubband contribution:

E2
MSP = E2

P + E2
ISB (3.4)

It is hence interesting to study its evolution with varying values of electronic density
NV = NS/LQW, affecting the plasma contribution, and of the quantum well width LQW,
affecting the intersubband contribution.

Variable NV

Figure 3.8 shows a logarithmic scale color plot of the calculated absorption spectra for
increasing doping NV , i.e. for increasing Fermi level; in this doping range, EF moves from
above the first subband to above the third (vertical dashed lines). The horizontal dashed
lines indicate the energy position of the single-particle excitations, which are independent
of the electronic density.
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Figure 3.8: Calculated spectra for a GaAs/Al0.45Ga0.55As 150 Å quantum well for variable
doping NV , plotted in logarithmic scale. Horizontal dashed lines: single-particle transition
energies. Vertical dashed lines: doping levels for which the Fermi energy corresponds to levels
2 and 3.

Some of the spectra composing Fig. 3.8 are reported in Fig. 3.9 for clarity (in red), along
with the corresponding single-particle spectra (in black). When just one subband is occu-
pied we observe a blue shift of the 1→ 2 resonance, the depolarization shift [Fig. 3.9(a)].
When the Fermi level is between the second and the third subband, an oscillator strength
transfer is visible, from the low energy mode to the high energy one [Fig. 3.9(b)]. If the
Fermi level is higher than the third subband [Fig. 3.9(c)-(d)], essentially just one peak is
observed, concentrating almost the whole absorption amplitude. Its energy is blueshifted
and its amplitude increases if the electronic density is further increased.
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Figure 3.9: Selected spectra from those composing Fig. 3.8 (red lines) for increasing doping.
The black curves represent the corresponding single-particle spectra. All the curves share the
same normalization for visualization purposes, and ~γ = 8 meV.
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Variable LQW

We set again the doping level to NV = 7×1018 cm−3, and consider the absorption response
of a single quantum well of varying width LQW.

Figure 3.10: Calculated spectra for a GaAs/Al0.45Ga0.55As Å quantum well, NV = 7 × 1018

cm−3, with variable LQW. All the absorption spectra have been normalized to 1.

The result is shown in Fig. 3.10: a single peak is observed for mostly all width values.
Remarkably, the position of this peak tends for wide quantum wells to the value of the
plasma energy Ebulk

P :

Ebulk
P = ~

√
e2NV

m∗ε0εs

This limit value can be understood by recalling that the multisubband plasmon has two
contributions, one related to the confinement, the other one to the collective excitation
of electrons. We recall that EISB in Eq. (3.4) represents the intersubband contribution
to the total energy of the multisubband plasmon, and is given by the harmonic mean
of the different intersubband transition energies [see Eq. (2.12)]. As it can be seen from
Fig. 3.11, for wider quantum wells the separation between subbands tends to zero; the
quantum confinement becomes less and less important, as it can be reasonably expected.
Consequently, the intersubband contribution to EMSP tends to zero as well: the total
energy is reduced to the sole plasma contribution, which we can write as

Ω2
PMSP

=
e2N1fMSP

m∗ε0εsLeff
MSP

From comparison of the above expression with the bulk plasma frequency, we deduce that
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the following limit holds:
N1fMSP

Leff
MSP

LQW→∞−−−−−−→ NV

In the case of a 800 Å quantum well, we calculate fMSP = 8.52, N1 = 5.62×1012 cm−2.
This corresponds thus to Leff

MSP = 684 Å, 85% of the quantum well width. A similar value
(Leff = 671 Å) is obtained by calculating the effective length with Eq. (3.3). Note that this
really wide quantum well is a limit situation for the electron confinement. Nevertheless,
the unique peak expected by our calculation at the plasma frequency is experimentally
observed [67] and recovers the Berreman mode that can be observed in highly doped thin
films [79].

Figure 3.11: Calculated band structure and squared moduli of wavefunctions for some of the
structures considered in Fig. 3.10, NV = 7× 1018 cm−3.

3.1.4. Relation to the semiclassical model

In the case of a single quantum well with several occupied subbands, the coupling with light
is mainly determined by intersubband transitions between consecutive levels, mutually
interacting on the same length scale, as determined by the value of Sαβ (see Table 3.2 and
Fig. 3.3). The normalized overlap Cαβ between the corresponding microcurrents is very
close to one, as it can be seen in Table 3.3. This means that the electron gas behaves as a
set of oscillators interacting with each other and with the light on the same length scale.
This is precisely the case in which it is possible to calculate the intersubband contribution
to the dielectric function by using the Drude-Lorentz expression presented in the previous
chapter (§2.1.3):

ε(ω) = εs

(
1−

nocc∑
n=1

ω2
Pn,n+1

ω2 − ω2
n,n+1 + iγω

)
(3.5)

Figure 3.12 presents in black in panel (a) the spectrum calculated with our model
in logarithmic scale, and in blue in panel (b) the absorption spectrum corresponding to
Eq. (3.5) for a 150 Å GaAs quantum well. It can be appreciated that the two are very
similar, except for the absence of the peak at ≈ 270 meV, very close to energy ~ω̃14, which
is not included in Eq. (3.5).

The red line in Fig. 3.12(b) presents the absorption spectrum obtained by extending
the sum in Eq. (3.5) to all the optically active transitions, in this case all those between
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Figure 3.12: a) Inset: Calculated band structure, energy levels and square moduli of the
wave functions of a GaAs/Al0.45Ga0.55As quantum well, 150 Å wide, doped NV = 7 × 1018

cm−3. The corresponding Fermi energy at 0K is indicated with a black dashed line. Black
line: Absorption spectrum in logarithmic scale calculated by using our quantum model. b)
Blue line: absorption spectrum calculated by using Eq. (3.5). Red line: absorption spectrum
calculated by extending the sum in Eq. (3.5) to all optically active transitions.
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consecutive subbands plus the 1→ 4 transition. In this curve, the amplitude of the peak
at 270 meV is almost equal to that of the peak at 155 meV. The different amplitude
assigned to the 270 meV peaks in the two models is due to the fact that in Eq. (3.5)
all the dipoles interact with the same Coulomb length, while our model does take into
account the different Coulomb lengths between dipoles.

The above observation implies that Eq. (3.5) does not provide a general expression of
the dielectric function. Indeed, it can only be used when all the Coulomb lengths involved
are equal.

The Cαβ coefficients

It is interesting to devote a brief discussion to the role in our quantum model of the
coefficients Cαβ, which have no equivalent in the semiclassical expression of the dielectric
function. As we have seen in Table 3.3, the C coefficients of the couplings between
consecutive transitions are almost equal to 1. Indeed, if we set Cαβ = 1 everywhere in our
model, and take into account just the transitions between consecutive levels, we obtain
the same absorption spectrum as in the semiclassical model of Eq. (3.5).

On the other hand, if we calculate the absorption with Cαβ = 1, but including all the
possible transitions, the result is plainly wrong. As it can be seen in Fig. 3.13, neglecting
the role of the microcurrents overlap brings to wrong absorption amplitudes for the six
multisubband plasmons resonances. In particular, all the multisubband plasmons are
bright. This proves the crucial role of the signed values of coefficients Cαβ in weighting
correctly the contribution of each transition.

Figure 3.13: Calculated absorption spectrum of the 150 Å quantum well, considering all
possible transitions and manually setting the normalized overlap Cαβ to 1, ~γ = 8 meV.

An equivalently incorrect result would be obtained by including all the transitions in
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the expression of the dielectric function (3.5), precisely because of the lack of the weighting
that we obtain with the coefficients Cαβ.

We see therefore that the perfect equivalence between the absorption spectrum
calculated by using the semiclassical expression of the dielectric funcion and the quantum
model is achieved only if just consecutive transitions are included and all C coefficients
are set to 1.

The applicability of Eq. (3.5) to the single quantum well case is somewhat fortunate,
as the transitions that are naturally included in the dielectric function, because they
are the most optically relevant, are also the ones that can be mixed with no need of a
correct weighting. In the case of more complicated structures, notably for tunnel-coupled
quantum wells, it can be more difficult (if not impossible) to identify transitions with these
properties and apply Eq. (3.5). We see then the strength of our model, which has no such
restrictions, as every contribution is correctly weighted by Cαβ. We conclude then that
our model can be used to calculate the dielectric response of electron gases confined in
arbitrary one-dimensional potentials, unlike Eq. (3.5).
Despite this, Eq. (3.5) is not without interest, as it allows an easy inclusion of non-
parabolicity of subbands in the cases in which it can be applied [67].
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3.2. Tunnel-coupled quantum wells: tight-binding analysis

In the remaining part of the chapter, we investigate systems of tunnel-coupled quantum
wells. Figure 3.14 summarizes the main point made at the end of the previous section.
In a single quantum well, the microcurrents overlap coefficients Cαβ between the rele-
vant transitions are almost equal to unity, which establishes the equivalence between the
generalized Drude-Lorentz model and the quantum model [panel (a)].

However, the overlap between microcurrents is normally not perfect in the general-
ized case of systems composed of tunnel-coupled quantum wells, as the one sketched in
panel (b), in which intersubband plasmons couplings Ξ are modulated by Cαβ 6= 1. As
already mentioned, our quantum model is suited for taking into account this aspect of the
intersubband plasmon coupling, and can thus be applied to these systems.

Figure 3.14: Coupling between intersubband plasmons in single (a) and coupled quantum
wells (b).

Before presenting the results that can be obtained by means of a numerical procedure,
we discuss the coupling through an analytical tight-binding study, in order to get some
insight on the role of tunneling in the coefficients Cαβ. We consider the same system pre-
sented in §1.2, two coupled quantum wells presenting two subbands each, as schematized
in Fig. 3.15.

Figure 3.15: Coupled quantum wells: schematization of extended and tight-binding basis.

For sufficiently thick barriers (at least greater than 15 Å), we can approximate the system
wavefunctions with

ψnm(z) = LnmϕnL(z) +RnmϕnR(z)
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where n = 1, 2 indicate the doublet associated with the ground (1) or the excited (2)
state, and m = 1, 2 indicate respectively the bonding and antibonding state of the doublet
(see Fig. 3.15).

We can define a tight-binding version of the microcurrents ξij , as schematized in
Fig. 3.16.

Figure 3.16: Scheme of tight-binding microcurrents in coupled quantum wells.

ξL and ξR are the microcurrents associated with the 1→ 2 transition in the left and right
well, respectively:

ξL(z) ≡ ξ1L,2L(z) = ϕ1L
∂ϕ2L

∂z
− ϕ2L

∂ϕ1L

∂z

ξR(z) ≡ ξ1R,2R(z) = ϕ1R
∂ϕ2R

∂z
− ϕ2R

∂ϕ1R

∂z

Besides these, we consider two other possible microcurrents, associated with diagonal
transitions ξ1L,2R and ξ1R,2L, represented in orange in Fig. 3.16. We neglect intra-doublet
microcurrents ξ1L1R and ξ2L2R, corresponding to very low energy transitions not expected
to contribute to absorption.

The wavefunctions and microcurrents written on the single well basis can be used to
express the microcurrents between levels:

ξnm,n′m′(z) =ψnm
∂ψn′m′

∂z
− ψn′m′

∂ψnm
∂z

=

=RnmRn′m′ξnR,n′R +RnmLn′m′ξnR,n′L +Rn′m′Lnmξn′R,nL + LnmLn′m′ξnL,n′L
(3.6)

Let us consider some examples of formula (3.6). We have for instance:

ξ13 ≡ ξ11,21 = R11R21ξR +R11L21ξ1R,2L + L11R21ξ2R,1L + L11R21ξL

ξ14 ≡ ξ11,22 = R11R22ξR +R11L22ξ1R,2L + L11R22ξ2R,1L + L11R22ξL

Before writing the expression of the plasmon-plasmon coupling in the tight-binding ap-
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Figure 3.17: a) Microcurrents corresponding to transitions 1→ 3 and 1→ 4, for a finite value
of the barrier b. b) Same microcurrents in the limit of very large barrier.

proximation, let us check its validity in the limit of large barriers (uncoupled quantum
wells). In this limit, the diagonal microcurrents ξ1L,2R and ξ1R,2L are zero:

ξ13 = R11R21ξR + L11R21ξL

ξ14 = R11R22ξR + L11R22ξL

Furthermore, we recall that for b→∞
R11 = 1 L11 = 0

R21 = 1 L21 = 0

R22 = 0 L22 = 1

as shown in Fig. 1.11. All considered, we have

ξ13 = ξR

ξ14 = 0

as it would be expected from physical considerations (see Fig. 3.17).
We see from this example that the tight-binding coefficients ensure the correct be-

haviour of the microcurrents in the limit of large barriers.

3.2.1. Tunnel contribution to plasmon-plasmon coupling

The formalism introduced above can be used to investigate the tunnel contribution to the
plasmon-plasmon coupling frequency Ξ, which was introduced in §2.2.5 as

Ξij,kl =
ωPij ωPkl

2
√
ω̃ijω̃kl︸ ︷︷ ︸

plasma effects

· Cij,kl︸ ︷︷ ︸
microcurrents overlap

(3.7)
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The coupling Ξij,kl is composed of two factors, reflecting its double origin, due the
interplay between Coulomb interaction and tunneling. Indeed, the term

ωPij ωPkl

2
√
ω̃ij ω̃kl

depends

on the electronic density through the plasma frequencies ωPij , ωPkl: it is thus mainly the
expression of Coulomb interaction. In this term, tunnel interaction enters just through
the energies of the levels, while it strongly affects the overlap factor between microcurrents
Cij,kl.

Recalling Eq. (2.38), the overlap factor can be easily expressed as

Cij,kl =

∫ +∞

−∞
ξij(z) ξkl(z) dz√∫ +∞

−∞
ξ2
ij(z) dz

∫ +∞

−∞
ξ2
kl(z) dz

=
Iij,kl√
Iij,ijIkl,kl

where we have defined the microcurrent-microcurrent overlap integral2 [68]:

Iij,kl =

∫ +∞

−∞
ξij(z) ξkl(z) dz (3.8)

By using Eq. (3.6), we obtain

Iij,kl =RiRjRkRl

∫ +∞

−∞
ξīR,j̄R ξk̄R,l̄R(z) dz+

+RiRjRkLl

∫ +∞

−∞
ξīR,j̄R ξk̄R,l̄L(z) dz+

...

+ LiLjLkLl

∫ +∞

−∞
ξīL,j̄L ξk̄L,l̄L(z) dz

(3.9)

where we denote with ī the index of the tunnel doublet to which ψi belongs to3. In other
words, any current-current overlap Iij,kl can be expressed as a linear combination of the
overlap integrals Iij,kl of the localized microcurrents∫ +∞

−∞
ξ2
L(z) dz,

∫ +∞

−∞
ξ2
R(z) dz,

∫ +∞

−∞
ξL(z) ξR(z) dz,

∫ +∞

−∞
ξ1R,2L(z) ξ1L,2R(z) dz . . .

(3.10)

We can study the importance of these components numerically. Let us consider a
slightly asymmetric system: two tunnel-coupled GaAs/Al0.45Ga0.55As quantum wells of
width 70 and 75 Å. We plot in Fig. 3.18 the values of the components (3.10) for varying
values of the coupling barrier.

2Note that Iij,kl is closely related to Sij,kl: Sij,kl = 1
~ωα

1
~ωβ

(
~2

2m∗

)2

Iij,kl
3We abandon the matricial notation for clarity reasons: to be fully consistent, we should write

ξnm,n′m′ , Rnm, ξnR, etc.
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Figure 3.18: Components of the current-current overlap integral on the localized basis for
variable barrier b in a 70/b/75 GaAs/Al0.45Ga0.55As structure.

From Fig. 3.18 we deduce that the most relevant terms in the decomposition of the
extended current-current overlap integral are the terms

∫
ξ2
L and

∫
ξ2
R, i.e. those corre-

sponding to the currents in each well (and thus independent of the barrier thickness). This
implies that Iij,kl involving transitions within the same doublet will be small, as their ex-
pansion (3.9) does not include these two terms. For transitions between levels of different
doublets [in a four-subband well [(14, 23) and (13, 24)] we can approximate∫ +∞

−∞
ξij(z) ξkl(z) dz ≈ RiRjRkRl

∫ +∞

−∞
ξ2
R(z) dz + LiLjLkLl

∫ +∞

−∞
ξ2
L(z) dz (3.11)

Therefore we can write a tight-binding version of the coefficient Cij,kl in terms of left
and right current integrals as

Cij,kl ≈ [Cij,kl]
TB =

∏
p

Rp

∫
ξ2
R dz +

∏
Lp

∫
ξ2
L dz√√√√(∏

p

Rp

∫
ξ2
R dz

)2

+

(∏
p

Lp

∫
ξ2
L dz

)2

+Bij,kl

∫
ξ2
R dz

∫
ξ2
L dz

(3.12)
where p = i, j, k, l and the term B is

Bij,kl = (RiRjLkLl)
2 + (LiLjRkRl)

2

Note that in Eq. (3.12) the barrier dependence is entirely expressed by the tight-binding
coefficients L and R, and the only microcurrents included are the ones localized in the
left and right well.
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Figure 3.19 shows the calculated C coefficients for the couple of transitions (14, 23)
and (13, 24) in a 70/b/75 Å GaAs/Al0.45Ga0.55As structure, both in the extended basis
(dashed lines) and with Eq. (3.12) (solid lines). We can appreciate that the tight-binding
expansion is a good approximation for barriers thicker than 30 Å. This condition is more
restrictive than the validity of tight-binding approximation for wavefunction calculation
(see §1.2), for which barriers thicker than ≈15 Å are sufficient. This is because each C
coefficient depends on four wavefunctions, and consequently deviations from the extended
basis are more important than in the single wavefunction case.

Figure 3.19: Comparison between C coefficients calculated with the tight-binding approxima-
tion of Eq. (3.12) (solid lines) and those calculated in the extended basis (dashed lines).

As an example, let us fix the barrier value to 30 Å and consider a 70/30/75 Å
GaAs/Al0.45Ga0.55As structure. We can use the tight-binding expression for C in
Eq. (3.12) to calculate the coupling Ξ between intersubband plasmons and consequently
obtain the absorption spectra. Figure 3.20 confirms that for this structure the result in
tight-binding approximation (orange line) is very close to the one obtained through the
full model (black line).

In the situation above, the tight-binding expansion makes it possible to describe tun-
neling through the coefficients Ri and Li appearing in Eq. (3.12). However, the conditions
for this approximation to be valid are the thickness of the barrier (see Fig. 3.19) and the
fact that just two subbands are occupied. We will see in the following that interesting phe-
nomena occur out of these restrictions, and especially for thin barriers. A full numerical
implementation of our quantum model will allow us to study these cases.
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Figure 3.20: Calculated absorption spectrum for a GaAs/Al0.45Ga0.55As 70/30/75 Å struc-
ture (shown in inset), NV = 3 × 1018 cm−3, full model (black line) and in tight-binding
approximation (orange line), ~γ = 8 meV.
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3.3. Two tunnel-coupled asymmetric quantum wells

We consider as a second application of our model the calculation of the absorption spec-
trum for a system of two tunnel-coupled GaAs/Al0.45Ga0.55As quantum wells (81/30/23
Å). Figure 3.21(a) presents the band diagram and the square moduli of the wavefunctions
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Figure 3.21: a) Calculated band structure for coupled GaAs/Al0.45Ga0.55As quantum wells,
with dimensions (in Å) 81/30/23. b) Calculated microscopic current densities ξi,j for the two
possible transitions 1→2 and 1→3.

in this system. The values of the dipole matrix elements are also reported: as the 1-3
transition is diagonal in the real space, its dipole is 70% lower than the one of the 1-2 ver-
tical transition. Panel (b) presents the microscopic current densities (normalized to their
maximum amplitude) of the 1-2 and 1-3 transitions. They are mostly localized in the
largest quantum well. As a consequence, their Coulomb length is non negligible, resulting
in an overlap factor close to one in modulus (C12,13 = −0.95).

3.3.1. Tight-binding analysis

Before presenting the numerical results obtained by using our model, let us apply to this
system the tight-binding approach presented in the previous section. In this framework,
we schematize the structure as shown in Fig. 3.22.

The extended wavefunctions can be written as

ψ1 = L1ϕ1L +R1ϕ1R = ϕ1L (L1 = 1, R1 = 0)

ψ2 = L2ϕ1L +R2ϕ1R

ψ3 = L3ϕ2L +R3ϕ2R
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Figure 3.22: Coupled asymmetric quantum wells: schematization of extended and tight-
binding basis.

Consequently microcurrents are:

ξ12 = L2ξ1L2L +R2ξ1L2R

ξ13 = L3ξ1L2L +R3ξ1L2R

Let us suppose that just the first subband is occupied. As before, we use the expressions
above to write the current-current overlap integrals for the two relevant transitions, 1 →
2, 1→ 3:

I12,13 = L2L3

∫
ξ2

1L2L(z) dz + (L2R3 +R2L3)

∫
ξ1L2L(z)ξ1L2R(z) dz+

+R2R3

∫
ξ2

1L2R(z) dz

I12,12 =

∫
ξ2

12(z) dz = L2
2

∫
ξ2

1L2L(z) dz+R2
2

∫
ξ2

1L2R(z) dz+2L2R2

∫
ξ1L2L(z)ξ1L2R(z) dz

I13,13 =

∫
ξ2

13(z) dz = L2
3

∫
ξ2

1L2L(z) dz+R2
3

∫
ξ2

1L2R(z) dz+2L3R3

∫
ξ1L2L(z)ξ1L2R(z) dz

Figure 3.23, analogous to Fig. 3.18, shows that in the validity range of the tight-binding
approximation (barriers thicker than 30 Å), the left current integral

∫
ξ2

1L2L is the most
relevant component of the expansion over the tight-binding current integrals. Then the
tight-binding expansion of the C12,13 coefficient C12,13 =

I12,13√
I12,12I13,13

reduces to

CTB
12,13 =

L2L3

∫
ξ2

1L2L(z)√[
L2

2

∫
ξ2

1L2L(z) dz] [L2
3

∫
ξ2

1L2L(z) dz

] =
L2L3

|L2L3|
= −1 (3.13)

Figure 3.24 presents the calculated C12,13 coefficient and Ξ12,13 coupling in the extended
basis, in the case of the structure presented in Fig. 3.21(a). It can be observed that for
wide barriers the coefficient C12,13 tends indeed to -1. Note, however, that the overall
coupling Ξ12,13 goes to zero for increasing values of the barrier, because of the plasma
term [see Eq. (3.7)]. As it could be expected, the two transitions interaction is negligible
when the spatial separation becomes too large.
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Figure 3.23: Current-current overlap integral components for variable barrier b in an asym-
metric coupled quantum wells structure.

Figure 3.24: Calculated C12,13 and Ξ12,13 in extended basis in a GaAs/Al0.45Ga0.55As structure
81/b/23 (Å), with doping NS = 2.4 ·1012 cm−2, for variable values of the barrier b. The tight-
binding result of Eq. 3.13 is represented with the black dashed line.
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The above tight-binding analysis, along with that of the previous section, allows un-
derstanding the emergence of tunnel coupling between plasmons starting from the wave-
functions of the individual quantum wells. However, it is not a good approximation for
thin barriers, and its generalization to quantum wells with several occupied subbands is
complicated. In the following, we will thus focus on the application of the exact quantum
model to describe the tunnel coupling between plasmons.

3.3.2. Numerical results

The single-particle absorption spectrum corresponding to the 81/30/23 Å structure with
only one occupied subband is presented in Fig. 3.25(a). It shows that, in this picture,
the interaction with light is almost completely concentrated in the 1-2 transition peak,
due to the difference in the dipole matrix elements between the vertical and the diagonal
transition.

Figure 3.25: a) Calculated absorption spectrum for the coupled well structure presented in
Fig. 3.21(a) in the single-particle picture, ~γ = 8 meV. b) Calculated absorption spectrum
with our model for different values of electronic densities on the first subband.

The absorption spectrum calculated by using our model is shown in Fig. 3.25(b), in
color scale, as a function of the electronic density in the first subband. The single-particle
transition energies are indicated by dashed lines. It is apparent that, with the increasing
electronic density, dipole-dipole Coulomb interaction redistributes the absorption ampli-
tude between two peaks, at different energies with respect to the single-particle ones. In
particular, for a density 2.4 × 1012 cm−2 the two peaks have the same amplitude. The
absorption spectrum calculated for this electronic density is presented in Fig. 3.26(a) (red
line) and compared to the single-particle one (black line).

The activation of the 1-3 transition, almost dark in single-particle picture, can be seen
as the result of its coupling with the higher dipole 1-2 transition.
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Band Structure

Figure 3.26: a) Absorption spectrum calculated by using our model with NS = 2.4 × 1012

cm−2 (red line), compared with the single-particle absorption spectrum (black line), ~γ =
8 meV. Inset: calculated band structure for coupled GaAs/Al0.45Ga0.55As quantum wells,
with dimensions (in AA) 81/30/23. b) Level energies schematization of the charge-induced
coherence between level 2 and 3, reminiscent of the Autler-Townes effect.

3.3.3. Laser-free Autler-Townes effect

The activation of the weak 1-3 transition is reminiscent of the Autler-Townes effect. The
latter is a general quantum-mechanical effect observed in three-level quantum systems
(cascade, lambda, or vee configurations) presenting an allowed 1-2 and a forbidden 1-3
transition [77, 78, 80].

Figure 3.27: Schematization of the Autler-Townes effect, a) absorption b) absorption when a
external driving field close to frequency ω23 is applied, and a doublet appears.

Figure 3.27 sketches the basics of the formation of the so-called Autler-Townes doublet
(also known as dynamic Stark splitting) in a vee three-level system. When an intense and
coherent coupling field at a frequency close to that of the 2-3 transition is shone on the
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Figure 3.28: Schematization of the dressed-states description of the Autler-Townes doublet.

system, the absorption of a second probe field (weak) presents a splitting, as schematized
in Fig. 3.27(b). This phenomenon was first observed in 1955 by Autler and Townes in
the particular case of a microwave transition of an OCS molecule [77]. However, features
of the Autler-Townes effect emerge in many different systems, among which quantum
wells [78, 81, 82].

The appearance of a doublet can be understood in a quantum treatment that deals
with the total coupled system ’atom + external field’, called dressed-atom approach [83].
In this picture, the external coupling field induces an interaction between levels 2 and 3.
The field coherence confers a bright component to the originally dark transition 1→ 3, so
that a doublet can be observed, due to the excitation to the states |a+〉 and |a−〉, dressed
by the coherent field (Fig. 3.28).

The splitting observed in the absorption spectrum in Fig. 3.26(a) can thus be seen as
the signature of a laser-free Autler-Townes effect, in which the external coupling field is
replaced by the charge-induced coherence [see Fig. 3.26(b)].

3.3.4. Variable external electric field

Another way to modify the coupling between intersubband plasmons in this system is to
apply a uniform electric field along the growth direction. Figure 3.29 presents in color
plot the calculated absorption spectra for an external field ranging from -40 kV/cm to 30
kV/cm. The electronic density is kept fixed at NS = 2.4× 1012 cm−2.

Some of these spectra are shown explicitly in Fig. 3.30. The application of an electric
field moves the two intersubband plasmons in and out of coupling: the two are resonant at
F = 0 kV/cm. We note that the tunnel coupling between the wavefunctions (correspond-
ing to a peak doublet in the single-particle absorption spectrum) occurs at a completely
different field value, F = −26 kV/cm. This is yet another proof that collective effects
create in the system new entities that are completely unrelated to the single-particle vision.

In Fig. 3.31, the values of C12,13 and Ξ12,13 are plotted for varying electric field. The
value that maximises the coupling frequency Ξ12,13 (≈ -20 kV/cm) does not coincide with
the value for which the plasmons are maximally coupled, 0 kV/cm. To study this point,
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Figure 3.29: Calculated absorption spectra for the 81/30/23 Å GaAs/Al0.45Ga0.55As struc-
ture, for variable applied electric field, NS = 2.4× 1012 cm−2.

we recall the tight-binding analysis, and express our problem through the Hopfield matrix

M =

(
ω̃12 [Ξ12,13]TB

[Ξ12,13]TB ω̃13

)
(3.14)

with [Ξ12,13]TB only depending on the plasma and transition energies, as the overlap factor
C is ≈ -1. From the form of (3.14), it is clear that another element contributing to the
final absorption response, apart from the coupling strength, is the detuning between the
energies of the intersubband plasmons ω̃12 and ω̃13. Finally, the amplitudes WnFn of the
absorption peaks depend not only on the eigenvectors of M (through Xαn) but also on
single-particle quantities (see §2.2.6):

WnFn = Wn

∣∣∣∣∣∑
α

√
∆Nα

√
ωα
ω̃α
zαXαn

∣∣∣∣∣
2

These observations suggests that, even in this simple system, the coupling between
plasmons is the result of the interplay of many components and it cannot be simply
accounted for by the quantity Ξ.
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Figure 3.30: Selected spectra from those composing Fig. 3.29 (red lines) for varying applied
electric field. The black curves represent the corresponding single-particle spectra.
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Figure 3.31: Calculated C12,13 and Ξ12,13 in a GaAs/Al0.45Ga0.55As structure 81/30/23 (Å),
with doping NS = 2.4 · 1012 cm−2, for variable applied external electric field.

3.3.5. Comparison with the absorption spectrum in time-dependent perturba-
tion theory

Only two transitions are involved in the asymmetric structure under consideration. This
allows the application of the approach derived by Allen et al. by using time-dependent
perturbation theory for the case of one occupied subband and two possible final states
in an inversion layer [47]. Therefore, we are able to compare the absorption spectrum
predicted by our model with the one calculated by using the expression [47]:

Abs(ω) =
Nse

2
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ω2×

×
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2
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where

Hi(ω) = ω2
1i + ω̄2

ii − ω2

ω̄2
ij =

2Nse
2

ε0ε~
ω1iS1i,1j
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With these definitions, ω̄22 = ωP12 and ω̄33 = ωP13. The mixed terms ω̄23 and ω̄32, instead,
couple transitions 1→ 2 and 1→ 3.
The normalized spectrum resulting from Eq. (3.15) is shown in blue in Fig. 3.32.
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Figure 3.32: Calculated absorption spectra for structure of Fig. 3.21, normalized. Black line:
single-particle picture. Red line: our model, ~γ = 8 meV. Blue line: Eq. (3.15), result from
time-dependent perturbation theory.

We observe an excellent agreement between the two independent approaches, and are
thus motivated to apply our method to more complicated systems, for which Eq. (3.15)
would be difficult to generalize.
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3.4. Tunnel coupling between multisubband plasmons

In order to further investigate the role of tunneling in the presence of Coulomb interac-
tion, we study the optical response of highly doped quantum wells with several occupied
subbands coupled through a barrier.

3.4.1. Two identical highly doped quantum wells

Let us consider two tunnel-coupled GaAs quantum wells, each of thickness L = 150 Å,
identical to that presented in §3.1, separated by a Al0.45Ga0.55As barrier, as shown in
Fig. 3.33. The quantum wells are uniformly doped with an electronic density NS =
2.1× 1013 cm−2 (NV = 7× 1018 cm−3).

Figure 3.33: Calculated band structure for two 150 Å GaAs/Al0.45Ga0.55As quantum wells
separated by a 15 Å barrier, NS = 2.1× 1013 cm−2 (NV = 7× 1018 cm−3).

Two different lengths determine the properties of the system: the wavefunction
extension in the barrier and the length of dipole-dipole interaction between intersubband
plasmons. Our model allows the calculation of the optical properties of the electron gas
by including these two characteristic lengths. Tunnel coupling is taken into account by
considering the single-particle eigenstates of the coupled well system, while charge-induced
coherence is included by calculating the coupling between all the intersubband plasmons
associated with the transitions between extended states.

The main panel of Fig. 3.34 presents the calculated absorption (in color scale) as a
function of the energy and of the barrier thickness, for a constant doping NV = 7 × 1018

cm−3. In the limit of a large barrier, the absorption spectrum of a single well of thickness
L (presented in the right panel) is recovered. This is characterized by a main bright
mode at energy EL, indicated by a dashed white line. In the opposite limit, for a barrier
thickness approaching zero, the spectrum shown in the left panel is obtained, which
presents a single resonance at energy E2L. Note that E2L < EL, as expected from the
study of §3.1.3, because the intersubband contribution to the total multisubband plasmon
energy is lower in the wider well.
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Figure 3.34: Calculated absorption spectra for a 300 Å [panel (a)] and 150 Å [panel
(c)] GaAs/Al0.45Ga0.55As quantum well, ~γ = 8 meV. Inset: Band diagram and square
moduli of the wavefunctions in the structure. b) Calculated absorption spectrum for a
GaAs/Al0.45Ga0.55As structure 15/b/15 (in nm) for different values of the coupling barrier.

In Fig. 3.34(b) one can notice that for barrier thicknesses between 10 Å and 20 Å
two absorption resonances with comparable amplitudes are observed. Interestingly, their
energies present only a slight variation with the barrier thickness and stay close to EL and
E2L.

In order to understand the microscopic origin of these resonances and the role of tun-
neling, let us fix the barrier thickness at 15 Å. The calculated band diagram and the square
moduli of the wavefunctions are presented in Fig. 3.35(d), showing the electronic doublets
resulting from tunnel coupling. The absorption spectrum is presented in Fig. 3.35(c),
reporting two bright multisubband modes of comparable absorption amplitude. Their
closeness to the energies EL and E2L (indicated by dashed lines) suggests that tunnel-
ing affects multisubband plasmons of adjacent quantum wells in an unconventional way.
Instead of giving rise to a doublet around the uncoupled energy (EL), it produces the
coexistence of two single-well multisubband plasmons, one due to a L = 150 Å well and
the other to a 2L = 300 Å well.

This observation is reinforced by the spatial distribution of the collective currents
Jn(z), shown in Fig. 3.36. The current associated with the peak at EL is composed of two
lobes, localized in the individual quantum well. The multisubband current relative to the
E2L peak still has two lobes, but in this case it is non zero also in the barrier.

The figure also indicates the effective lengths calculated for the two multisubband
plasmons, representing the extension of the corresponding polarization. For the lower
energy peak Leff

1 = 279.2 Å, ≈ 93% of the width 2L. For the higher energy peak we
find Leff

2 = 250.8 Å; if we consider the presence of a zero in the spatial extension of
the collective microcurrent, we can divide this number by two and find L̄eff

2 = 125.4 Å,
corresponding to ≈ 84% of the width L.
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Figure 3.35: a) Calculated absorption spectra of a 150 Å (blue line) and 300 Å (red line)
GaAs/Al0.45Ga0.55As quantum well, NV = 7 × 1018 cm−3, ~γ = 8 meV. b) Calculated band
structures and squared moduli of the wavefunctions for the two wells c) Calculated absorption
spectra of GaAs/Al0.45Ga0.55As quantum wells of structure 150/15/150 Å, NV = 7 × 1018

cm−3, ~γ = 8 meV. d) Calculated band structures and squared moduli of the wavefunctions.
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Figure 3.36: On the right, calculated absorption spectrum for coupled GaAs/Al0.45Ga0.55As
quantum wells of structure 150/15/150 Å , NV = 7 × 1018 cm−3, ~γ = 8 meV. The vertical
dashed lines indicate the resonances of quantum wells of width L (150 Å) and 2L (300 Å).
Inset: band diagram and squared moduli of the wavefunctions in the structure. On the left,
spatial distribution of microscopic collective currents corresponding to the two resonances
(arbitrary units for the color scale). Also shown are the resonance energies ~Wn, the effective
oscillator strengths ~WnFn, and the effective lengths Leff

n .

The coexistence of the two absorption peaks is limited to a very short range of barrier
thicknesses, between ≈ 10 and 20 Å. In fact, when the barrier is thin (below ≈ 5 Å) the
wavefunctions of the quantum well of thickness 2L are only perturbatively modified. In
the opposite limit, for barriers thicker than 20 Å, the influence of tunneling, still present
on the shape of the wavefunctions, cannot be seen in the absorption spectrum. This is the
result of two different contributions. Firstly, it is a manifestation of the oscillator strength
transfer in favour of the high energy mode EL, as already discussed in previous sections.
Secondly, the coupling between microscopic current densities involves four wavefunctions
[see the expression of Cαβ, Eq. (2.46)], while the tunnel coupling results from the overlap
between two wavefunctions, so it is reasonable to expect the coupling C to be more sensitive
to a change in the barrier width.

3.4.2. Coupling between active transitions

The results of the previous paragraphs are obtained by including all the possible transitions
in the diagonalization procedure. As a matter of fact, the dimension of the problem can be
reduced by restricting the calculation to the optically active transitions, i.e. those between
levels with different symmetry. Considering that each tunnel doublet contains a symmetric
and an antisymmetric component, in our structure there are six of these transitions, namely
(numbering levels from bottom to top) (1, 4), (2, 3), (3, 6), (4, 5), (5, 8) and (6, 7) (see also
the tight-binding discussion of §3.2).
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The red line in Fig. 3.37(a) is the result of a reduced calculation based on the six tran-
sitions, whose oscillator strengths and intersubband plasmon frequencies ω̃α are reported
in Table 3.5. It can be appreciated that this reduced problem gives a solution which
perfectly reproduces the main features of the full calculation [black line in Fig. 3.37(a)].

α (i,j) fα ~ω̃α (meV)
1 (1, 4) 0.6609 68.97
2 (2, 3) 1.275 58.85
3 (3, 6) 1.04 117.3
4 (4, 5) 2.752 94.85
5 (5, 8) 1.233 156.3
6 (6, 7) 4.372 109.5

Table 3.5: Calculated parameters for the six effective transitions of the tunnel-coupled sym-
metric structure.

The couplings ~Ξ between the six intersubband plasmons are all different from zero,
and comprised between 7 and 19 meV. Note that despite this uniformity of couplings, the
system does not have a unique collective resonance like in the case of a single quantum
well. The reason for this lies in the values of the intersubband plasmon energies ~ω̃α. As
it can be seen from Table 3.5, one of the active transitions (5 → 8) has a much higher
energy than the other five. Indeed, a calculation including just these five yields a spectrum
with a unique peak [orange line in Fig. 3.37(b)], close to the lower energy peak of the full
calculation (black line). The peak associated to 5→ 8 is instead closer to the high energy
peak. In this picture, the full spectrum can be seen as the result of the coupling between
an higher energy intersubband plasmon and a multisubband plasmon.

3.4.3. Increasing quantum well width

To conclude this study, let us consider two larger quantum wells, 500Å wide. It is visible
in Fig. 3.38 that for these values of well thickness the absorption spectrum of the coupled
wells (purple line) is not remarkably different from those of a 500 (blue line) and 1000 Å
(red line) quantum wells. Once again, the reason for this lies in the composition of the
energy of the multisubband plasmon (2.13):

EMSP =
√
E2

ISB + E2
P

For wide quantum wells, the energy separation between the electronic levels becomes
so small [see Fig. 3.38(b)] that the intersubband part EISB gives no contribution. With
no intersubband component, the effect of tunneling is also negligible.
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Figure 3.37: a) Left: Absorption spectra for coupled GaAs/Al0.45Ga0.55As quantum wells of
structure 150/15/150 Å , NV = 7 × 1018 cm−3, ~γ = 8 meV. Black line: full calculation,
as in Fig. 3.35(b). Red line: calculation considering just the six optically active transitions.
Right: Band structure and squared moduli of wavefunctions, with red arrows indicating the
transitions under consideration. b) Left: Same as above, with purple line: calculation consid-
ering transitions (1, 4), (2, 3), (3, 6), (4, 5) and (6, 7); orange line: calculation considering just
transition (5, 8).

Figure 3.38: a) Calculated absorption spectra of a 500 Å (blue line), 1000 Å (red line) and
500/15/500 Å (purple line) GaAs/Al0.45Ga0.55As structure, with ~γ = 8 meV b) Calculated
band structures and squared moduli of the wavefunctions for the three structures.
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3.4.4. Comparison with the experimental spectrum

In order to experimentally confirm the tunnel coupling between multisubband plasmons,
we designed a InGaAs/InAlAs structure, with thicknesses (in Å) 155/15/155, shown in
Fig. 3.39.

EF

Figure 3.39: Calculated band structure and squared moduli of wavefunctions of a In-
GaAs/InAlAs structure, 155/15/155 Å, NV = 3.3×1018cm−3 (NS = 1.0×1013cm−2).

The sample has been grown by Isabelle Sagnes et Grégoire Beaudoin at the Laboratoire
de Photonique et de Nanostructures (Marcoussis) by MOCVD. The absorption spectrum
has been measured by Baptiste Dailly in our team, through a transmission experiment at
the Brewster angle at room temperature.
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Figure 3.40: Experimental absorption spectrum obtained from a transmission experiment at
Brewster angle (red dots) for the coupled wells structure presented in Fig. 3.39. The calculated
spectrum (black line) is shown for comparison, in which a phenomenological broadening ~γ =
15 meV was considered. The experimental measurement was performed by Baptiste Dailly.

Figure 3.40 presents the experimental spectrum (red dots) along with the theoretical
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calculation (black line). A single broad peak instead of the two expected peaks is observed.
This is an indication of the fact that a disorder in the structure could have strongly affected
the tunnel and charge induced coherence.

Indeed, by studying the band diagram, we can notice that the lowest-energy doublet
presents an energy separation of ≈ 5 meV. This value is smaller than the typical linewidth
of intersubband transitions induced by disorder, which can originate from interface
roughness, non uniform distribution of charge, etc. The disorder in the structure can be
at the origin of the localization of wavefunctions.

An easy way to simulate this localization is to apply an electric field. We can then
calculate the absorption spectra under different values of applied external field, to try to
reproduce the experimentally observed spectrum. Figure 3.41 shows that a variation of
the electric field applied to the structure produces changes in the absorption shape. We
represent in Fig. 3.42 the result of averaging on absorption spectra calculated between 0
and 25 kV/cm, showing that the general shape of the measured spectrum is well repro-
duced. The electric field can be associated with a charge fluctuation in the system. By
using the expression of the electric field between two infinite parallel plates E = σ

2ε0εR
, we

estimate the electron density difference needed to obtain such an electric field to 3×1011

cm−2, corresponding to ≈ 3% of the charge in our system.
With this simple estimation of the role of disorder, we find a reasonable explanation

for the difference between expected and observed optical response.
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Figure 3.41: Calculated absorption spectra for the structure presented in Fig. 3.39 for different
values of applied electric field.
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Figure 3.42: Absorption spectra calculated by averaging on the responses at electric fields
ranging from 0 to 25 kV/cm (brown curve), compared to the experimental results (red dots).
The measurement was performed by Baptiste Dailly.
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3.5. Symmetric step well

The observation of two different bright plasmons in the structure of §3.4.4 was hindered
by the small energy separation between tunnel-coupled states. In order to overcome this
issue, we need a structure with a separation between levels that is greater than the typical
broadening (10-15 meV).

Figure 3.43: Calculated band structure and squared moduli of wavefunctions of a In-
GaAs/InAlAs structure. The three layers measure 100 Å, as indicated. The two side bar-
riers (steps) are composed of a compound with 43% of the Al composition of the barriers.
NV = 1× 1019 cm−3, just in the central well (NS = 1×1013cm−2).

To this end, we design the structure represented in Fig. 3.43. It is a symmetric step
well consisting of two Al0.48In0.52As barriers, two inner barriers of a quaternary compound
(Al0.48In0.52As)0.43(In0.53Ga0.47As)0.57 that sandwich the central GaInAs well.

The resulting system presents two characteristic lengths: the size of the central small
quantum well (100 Å) and the total size of well and side steps (300 Å).
The corresponding calculated absorption spectrum is displayed in Fig. 3.44, together with
the collective microcurrents associated with the two peaks. The two peaks in the absorp-
tion spectrum can be related to two multisubband plasmons. The higher energy resonance
corresponds to an oscillation of charge localized in the small part of the structure: indeed,
the corresponding microcurrent visible in Fig. 3.44 is clearly confined in the central sec-
tion, and has an associated effective length equal to Leff

2 = 87 Å. On the other hand, the
second peak is due to an oscillation that leaks also out of the central section (Leff

1 = 156.5
Å), and is thus less energetic. As a consequence, its absorption spectrum presents two
resonances associated with different length scales.
A single-particle description of the structure would predict substantially different reso-
nances, as it can be observed from the lower panel of Fig. 3.44.
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Figure 3.44: Upper panel: calculated absorption of the structure presented in Fig. 3.43, with
phenomenological broadening set to ~γ = 12 meV. Also shown are the collective microcurrents
corresponding to the two multisubband peaks, along with the values of the resonance energies
~Wn, effective oscillator strengths ~WnFn, and effective lengths Leff

n . Lower panel: absorption
spectrum in single-particle picture.
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3.5.1. Comparison with the experimental spectrum

A sample based on this structure has been grown by Isabelle Sagnes and Grégoire Beaudoin
(LPN). The absorption spectrum has been measured by Benjamin Askenazi and Baptiste
Dailly, through a transmission experiment at Brewster angle at room temperature. A
preliminary experimental result is presented in Fig. 3.45, showing a very good agreement
between experiment and calculation.
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Figure 3.45: Experimental absorption spectrum obtained from a transmission experiment at
Brewster angle (red dots) for the coupled wells structure presented in Fig. 3.43. The calculated
spectrum (black line) is shown for comparison, in which a phenomenological broadening ~γ =
18 meV was considered. The measurement was performed by Benjamin Askenazi and Baptiste
Dailly.
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3.6. Coupling between a multisubband plasmon and a single-
particle transition

An interesting problem for device application is the electrical excitation of the bright
multisubband plasmon. This has already been experimentally achieved by applying an
in-plane current, in order to thermally excite the collective mode [15].

It would also be appealing to excite the collective mode under vertical transport, in
a quantum-cascade-like device. For this, one can design a quantum cascade structure
in which a single-particle transition is excited thanks to an injection miniband. This
transition can then be coupled to a multisubband plasmon.

Figure 3.46: Calculated band structure and squared moduli of wavefunctions of a
GaAs/AlGaAs structure, 140/20/75 Å. The Al concentration in barriers is 45%, and in the
75 Å well is 17%. The Fermi level shown corresponds to NV = 4.4× 1018 cm−3.

Pursuing this idea, we consider the structure shown in Fig. 3.46, composed of two
coupled wells, one 140 Å wide and the other 75 Å wide. The smaller well is composed of
AlGaAs such that its potential V is 37% of the band offset. For suitable values of doping,
we expect a multisubband plasmon (originated from the left well) and a single-particle
transition (right well) to interact.

The optical absorption of this structure for variable values of the doping is presented
in the color plot of Fig. 3.47(a). The threshold density for the ground level of the right
well to be occupied is ≈ 4× 1018 cm−3.
In the doping range 4 − 5 × 1018 cm−3, two main resonances are present. As it
can be deduced from the collective microcurrents displayed in Fig 3.47(b), these de-
rive from the hybridization of a multisubband plasmon created by a polarization in
the left well, and a weakly renormalized single-particle transition localized in the right well.

In order to investigate the role of tunneling in this structure, we fix the doping at
NV = 4.6 × 1018 cm−3 and calculate the absorption spectra for variable width of the
barrier. The result is presented in Fig. 3.48. For thick barriers (> 45 Å), the two wells are
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Figure 3.47: a) Calculated absorption spectra of the structure in Fig. 3.46 for variable values
of doping NV b) Calculated collective microcurrents for the two most relevant resonances for
NV = 4.6× 1018 cm−3 [dashed line in panel (a)].

completely decoupled, and the absorption spectrum consists of the multisubband plasmon
resonance originating from the left well (EMSP) and the very weak transition Esp due to the
right well, almost single-particle (low electronic density). For thinner barriers, however,
tunneling does play a role, and two resonances are visible, as a result of the interplay
between tunnel and Coulomb coupling.
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Figure 3.48: a) Calculated absorption spectra of the structure in Fig. 3.46 for variable values
of the barrier, NV = 4.6× 1018 cm−3. b) Band structure and square moduli of wavefunctions
for barrier = 15 Å and 75 Å.
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3.7. Ultra-strong coupling between a multisubband plasmon and
a cavity mode

To conclude the chapter, let us suppose that the highly doped 150 Å quantum well
studied in §3.1 is inserted in a cavity: the whole system will be then described by the full
light-matter Hamiltonian (2.65) discussed in §2.3. Analogous systems have been experi-
mentally investigated in Refs. [14, 65, 67]. The photonic mode is supposed to be uniform
in the entire cavity thickness, as it can be achieved by using a metal-dielectric-metal cavity.

Similarly to the analysis of §2.3.1, let us start by considering only the coupling
ΩWMSP

between the bright multisubband plasmon and the cavity mode, and neglecting
the other collective modes. The polariton dispersion obtained for this case is presented in
Fig. 3.49(a).

(a) Only ΩWMSP
6= 0 (b) ΩWMSP

= 0

Figure 3.49: Polariton dispersion for a 150 Å GaAs/Al0.45Ga0.55As quantum well, NV =
7 × 1018 cm−3, inserted in a cavity of length Lcav = 160 Å, with selective activation of
light-matter couplings ΩWn

. Solid black lines represent bare energies, and red dots are the
renormalized modes, the dot size being proportional to the photonic Hopfield coefficient.
In a) just the coupling between the bright multisubband plasmon and the cavity ΩWMSP

is considered, while in b) all the couplings are considered with the exception of ΩWMSP .

We recognize the same form of the dispersion obtained in the general case of §2.3.1, in
particular the opening of a polariton gap. The size of the dots represents their photonic
Hopfield coefficient (see §2.3). The minimum separation between the branches is 109 meV;
this value corresponds to twice the Rabi energy.

However, we know that a quantum well with three occupied subbands features four
optically active multisubband plasmons, all of which are expected to interact with the
cavity mode. To investigate this interaction further, we take into account the couplings
ΩWn between the cavity and all the multisubband plasmons, with the exception of
the bright multisubband plasmon coupling (ΩWMSP

= 0). The result in this case is
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presented in Fig. 3.49(b). We can appreciate that also the other optically active plasmons
couple with the cavity mode, though more weakly, the intensity of the coupling being
proportional to the effective oscillator strength WnFn (or equivalently, to the effective
plasma frequencies Rn). Their photonic Hopfield coefficient is not negligible only for
energies close to that of the cavity mode, and the anticrossings reveal coupling energies
smaller than ≈ 15 meV

Finally, we consider the diagonalization of the full light-matter Hamiltonian, taking
into account all the possible light-multisubband plasmon couplings ΩWn . The resulting
dispersion4 is shown in Fig. 3.50.

Figure 3.50: Polariton dispersion for a 150 Å GaAs/Al0.45Ga0.55As quantum well, NV = 7×
1018 cm−3, inserted in a cavity of length Lcav = 160 Å. Solid black lines represent bare energies,
and red dots are the renormalized modes, the dot size being proportional to the photonic
Hopfield coefficient. The solid red lines indicate the polariton modes. Inset: calculated band
structure and squared moduli of wavefunctions for a 150 Å GaAs/Al0.45Ga0.55As quantum
well, Nv = 7× 1018 cm−3, represented within an ideal cavity.

The five dotted lines represent the eigenmodes of the coupled system, renormalization of
the four optically active multisubband plasmons and the cavity mode. The two polariton
modes issued from the coupling between the bright multisubband plasmon (~W3 = 155.4
meV) and the cavity mode are visible and marked by the red solid lines. Note that the
polaritonic dispersion issued from WMSP is slightly modified by the presence of the other
multisubband plasmon modes. This can also be seen by plotting the absorption spectrum.

4The dispersion obtained here only accounts for the interaction between the cavity mode and collective
intersubband excitations. In order to correctly reproduce experimental data, one would have to include
also the interaction with optical phonons, relevant for energies below ≈50 meV [67].
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To see this, we set the cavity mode energy at 100 meV and calculate the optical
response accounting for the interaction between the cavity mode and the plasmons. The
absorption spectrum of the quantum well is reported in the upper panel of Fig. 3.51 for
comparison. In the lower panel, we compare the optical response when just the bright
multisubband plasmon is considered (blue curve) and when all couplings are taken into
account (red curve). It can be appreciated that the shape of the spectrum changes due to
the additional couplings inserted in the system. In particular, the peak associated with
the lower polariton splits into a doublet, thus spreading the absorption strength over a
wider energy range.

Figure 3.51: Absorption spectra of a 150 Å GaAs/AlGaAs quantum well, NV = 7 × 1018

cm−3, γ = 8 meV. Upper panel: no cavity. Lower panel: absorption in the presence of
interaction with a cavity mode, ωcav = 100 meV. Blue curve: only the interaction between the
bright multisubband plasmon and the cavity mode taken into account. Red curve: inclusion
of couplings between the cavity mode and all the optically active multisubband plasmons. In
the simulation, the linewidth has been taken equal to 8 meV.

The addition of a cavity might be exploited as a mechanism to engineer the oscillator
strength transfer, in a similar way tunneling is exploited in the case of the asymmetrical
quantum wells discussed in §3.3. It might therefore represent a further degree of freedom
in the multisubband plasmon engineering, in addition to tunnel coupling.
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Conclusions

We have applied the model presented in the previous chapter to describe the optical prop-
erties of a dense electron gas in a single or in tunnel-coupled quantum wells. The examples
presented in this chapter may provide an interesting framework for an engineering of mul-
tisubband plasmons. We presented an extensive study of the origin of the multisubband
plasmon observed in a single heavily doped quantum well (§3.1), and investigated the role
of tunnel coupling in §3.2, §3.3 and §3.4. This latter example and the one presented in §3.5
suggest the possibility of designing structures in which different characteristic lengths co-
exist, where scattering mechanisms between multisubband plasmon resonances may be of
interest in device design. The coupling between a multisubband plasmon and an almost
single-particle transition presented §3.6 may prove promising in the study of electrical
resonant excitation of the collective states.

Finally, we showed that our model can describe the ultra-strong coupling regime be-
tween a multisubband plasmon and a cavity mode in §3.7. This phenomenon has been
already experimentally observed [14, 65, 67] and may provide an additional degree of
freedom in multisubband plasmon engineering.
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4

Electron transport in multiple quantum wells:
role of tunneling and Coulomb interaction

In the previous two chapters, we have studied the interplay between tunneling and
Coulomb interaction in the optical response of multiple quantum wells (MQWs). As
summarized in Fig. 4.1, tunnel coupling creates a coherence between electronic levels, and
dipole-dipole Coulomb interaction between intersubband transitions.

Figure 4.1: Schematization of tunnel coupling between levels and Coulomb coupling between
transitions.

In this chapter, we want to investigate the effect of these two coherences on the electron
transport, i.e. the study of the current flowing in a system of quantum wells given certain
external conditions. Our starting point will be the Hamiltonian

H = H0 +Htunnel +HC

where H0 contains the kinetic energy and the confinement potential, Htunnel the resonant
tunneling term and HC the Coulomb interaction. We have already considered these terms
in the study of the optical response in §2.2, with tunneling included in the heterostructure
potential (in the wavefunctions’ extended basis calculation), and Coulomb interaction
contained in the P2 term. However, we have to make some formal changes in order to
study transport, in particular we need to abandon the bosonization procedure described
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in §2.2.2, and consider a fermionic Hamiltonian.

In §4.1, we focus on the coherent tunneling termHtunnel. We present a model based on a
density matrix formalism, and apply it to a THz quantum cascade laser in §4.1.2. Another
application of this model in the case of a mid-infrared QCL is discussed in Appendix D.
Our theoretical work, combined with a detailed characterization by TEM, has allowed
reaching optimization of the growth process.

In §4.2, we consider Coulomb interaction HC , with the perspective of devices exploit-
ing the engineering of collective effects described in Chapters 2 and 3 through resonant
tunneling [84, 85]. This section represents a preliminary study, whose goal is to find a
suitable formalism for the electronic transport in the presence of the depolarization field.

4.1. Coherent resonant tunneling in multiple quantum wells

Let us start by considering electron transport in a system of tunnel-coupled quantum
wells. In a single-particle picture, transport has two origins: an incoherent part, arising
from scattering between subbands, and a coherent part, due to resonant tunneling through
barriers.
In order to understand the role of coherent tunnel transport, it is interesting to consider
a simple system as the one sketched in Fig. 4.2 [37, 86].

(a) Extended basis (b) Localized basis

Figure 4.2: Schematical representation of a superlattice with a period composed by two elec-
tronic levels, illustrating the difference between semiclassical and coherent picture of coupled
quantum wells. a) Semiclassical picture. The wavefunctions represent eigenstates of the
Hamiltonian and are delocalized at resonance. Transport through the barrier happens as soon
as electrons enter the delocalized levels. b) Coherent picture. The wavepacket is initially
localized in the left well. Electrons are transported through the barrier with Rabi oscillations
at frequency Ω due to the interaction between 1’ and 2 [37].

Figure 4.2(a) represents an extended basis description of MQWs (see §1.2). The en-
tire superlattice is treated as a unique quantum mechanical system, with a well-defined
Hamiltonian, and the subband levels are eigenstates of this Hamiltonian.
In this basis, transport can be described with the intersubband scattering between the
eigenstates, calculated using Fermi’s golden rule, as in the semiclassical rate-equation ap-
proach of §1.5.2. No coherent oscillation enters this model, as the eigenstates are stationary
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by definition.

Under resonant bias conditions, the ground state 1’ in one well is aligned with the
excited state 2 of the second one. These two states are then tunnel-coupled, and form
a spatially extended doublet composed of a lower-energy symmetric wavefunction |S〉
and a higher-energy antisymmetric wavefunction |A〉, separated by an energy 2~Ω1′2.
The fact that the two wavefunctions are spatially extended across the barrier has an
important consequence: in the extended basis picture, the transport through the barrier
is effectively instantaneous.

On the other hand, Fig. 4.2(b) presents a localized basis representation of the same
system, as in §1.2. In this picture, electron transport through the barrier occurs via a
coherent time evolution of the states. Electrons take a finite time to get from one well to
the next. The electron wave packet oscillates across the middle barrier at the oscillation
frequency Ω1′2, which will be damped with a characteristic dephasing time τ‖. This
approach is particularly interesting when the coupling frequency is a significant fraction
of the transition frequencies.

In order to properly describe both incoherent population relaxation and coherent
resonant tunneling, we adopt a density matrix formalism. Some details on this framework
are provided in Appendix C, and a more complete discussion may be found for example in
Ref. [87]. The density matrix ρ is the representation of the density operator ρ̂ = |ψ〉〈ψ|.
We will write it on the basis of the electronic wavefunctions ψi.

Some of the density matrix properties will be relevant for our work:

� The diagonal element ρii represents the population of level i.

� The off-diagonal element ρij represents the coherence (polarization) between levels
i and j.

� The expectation value of an operator A may be obtained through the density matrix
as:

〈A〉 = Tr [Aρ] (4.1)

� The time evolution of the density matrix is given by Liouville equation:

dρ

dt
=

1

i~
[H, ρ] (4.2)

4.1.1. One-dimensional transport in a weakly coupled superlattice

We review in this section a model of one-dimensional electron transport in a superlattice,
following the seminal paper [38]. Our aim is to calculate the current density passing
through the system as a function of the applied external field, expressed in terms of the
tunnel coupling frequency between the electronic states involved.
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We know that classically the current density is given by j = −nev, with n electron
density per unit volume. Let us introduce a velocity operator

v =
p

m

This operator is directly related to the Hamiltonian of the system

H0 =
p2
z

2m
+ V (z)

through the relation

vz =
pz
m

=
i

~
[H0, z]

from which, by making use of the property (4.1), we can rewrite the expression for the
average current density as

jz = −neTr [ρvz] = −ne i
~

Tr [ρ [H0, z]] (4.3)

As a first application of the general expression (4.3), let us consider the case schema-
tized in Fig. 4.2, in which each period of the superlattice consists only of a quantum well
with two confined levels, as in [38], and discussed also in [88, 89].

We call 1’ the ground state resonant with level 2 of the following period. We
choose as basis for our calculation the localized basis (see §1.2), in which each quantum
well is seen as isolated. The resulting levels are schematized in Fig. 4.2(b). In this
approximation, the quantum wells are weakly coupled: we consider the resonant tun-
neling to be the only interaction between periods and neglect other relaxation mechanisms.

The unperturbed single-particle Hamiltonian will then read

Hsp = H0 +Htunnel =

 E1′ ~Ω1′2 0
~Ω1′2 E2 0

0 0 E1


where the off-diagonal elements ~Ω1′2 represent the resonant tunnel coupling between
the two periods. After finding the expression of the matrix elements of the commutator
[Hsp, z], one can write:

Tr [[Hsp, z] ρ] = [~Ω1′2(z1′1′ − z22) + z21′(E2 − E1′)] (ρ1′2 − ρ21′)

As the overlap between functions 2 and 1’ is very small, we consider z21′ = 0 and we obtain
for the current, using Eq. (4.3)

jz = −neiΩ1′2(z1′1′ − z22)(ρ1′2 − ρ21′) = 2neΩ1′2(z1′1′ − z22) Im ρ1′2 (4.4)

from which we see that in this approximation the current depends on Im ρ1′2 [or
equivalently, on the difference between coherences (ρ1′2 − ρ21′) = 2i Im ρ1′2] and on the
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tunnel coupling frequency Ω1′2.

We now want to solve Liouville equation (4.2) for the steady state condition, in order
to get an explicit expression for the term Im ρ1′2.
The Hamiltonian of the system can be written in the form Htot = Hsp + Hdiff , where
Hdiff contains the pertubations due to incoherent scattering (with phonons, impurities,
interface roughness. . . ). We can express the Hdiff contribution to the dρ

dt derivative as [37]

1

i~
[Hdiff , ρ] =


ρ22

τ21
− ρ1′2

τ‖1′2

− ρ21′

τ‖1′2
−ρ22

τ21


In this expression, the diagonal part contains the population relaxation terms, where the
times τ are obtained with Fermi’s golden rule, as explained in §1.4. The off-diagonal part
expresses the dephasing terms, i.e. the loss of coherence due to τ‖1′2, the characteristic
dephasing time of tunneling 1’-2.

From the full expression of Liouville equation it is possible to obtain the following
system of equations, whose unknowns are the density matrix elements:

dρ22

dt
= 2Ω1′2 Im ρ1′2 −

ρ22

τ21

dρ1′2

dt
= −i∆1′2

~
ρ1′2 + iΩ1′2(ρ1′1′ − ρ22)− ρ1′2

τ‖1′2
dρ21′

dt
= i

∆1′2

~
ρ21′ − iΩ1′2(ρ1′1′ − ρ22)− ρ21′

τ‖1′2
dρ1′1′

dt
= −2Ω1′2 Im ρ1′2 +

ρ22

τ21

(4.5)

with ∆1′2 = E1′ − E2. From Eqs. (4.5) at the steady state condition, along with the
conservation law ρ1′1′ + ρ22 = 1, it is possible to obtain

Im ρ1′2 =
Ω1′2

τ‖1′2

(
1

τ2
‖1′2

+
∆2

1′2

~2

)
+ 4Ω2

1′2τ2

(4.6)

Expression (4.6) can be finally inserted into Eq. (4.4) to get [88]:

jz =
2neΩ2

1′2 τ‖1′2(z1′1′ − z22)

1 +
∆2

1′2

~2
τ2
‖1′2 + 4Ω2

1′2τ21τ‖1′2

(4.7)

Application to a GaAs/AlGaAs superlattice

Let us consider the example of a GaAs/Al0.3Ga0.7As structure, composed of 120 Å
quantum wells coupled through 40 Å barriers. The wavefunctions calculated in extended
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basis are presented in Fig. 4.3(a), and those calculated in the localized basis in Fig. 4.3(b).

(a) Extended basis (b) Localized basis

Figure 4.3: Band structure and square moduli of wavefunctions in a GaAs/Al0.3Ga0.7As su-
perlattice composed of 120 Å quantum wells coupled through 40 Å barriers. The applied field
is 45 kV/cm.

Figure 4.5 presents the current-voltage (I-V) curve for different values of the coherence
time τ‖1′2, calculated by using Eq. (4.7).
The scattering time τ21 accounts for interface roughness, alloy and LO-phonon emission
scattering times (see Appendix B). The tunnel coupling Ω1′2 is obtained by tracing the
energies of the levels in the extended and localized basis (Fig. 4.4) and identifying the
anticrossing energy, which is equal to 2~Ω1′2.
The I-V curves present the negative differential resistance typical of resonant tunneling
devices. The current density has a maximum for the electric field at which E1′ = E2.
This maximum has a Lorentzian shape, whose width is determined by the coherence time.
We see how tunnel coherences have macroscopic consequences, and profoundly affect the
current-voltage characteristics. In next section we will show how his property can be
verified in a quantum cascade laser.
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Figure 4.4: Energies of levels 1’ and 2 versus applied bias, in extended (solid lines) and localized
(dashed lines) basis. The anticrossing in correspondence of alignment is shown.
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Figure 4.5: Calculated VI for the two-level structure shown in Fig. 4.3, for various values of
the coherence time τ‖1′2. NV = 1016 cm−1.
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4.1.2. Application to a THz quantum cascade laser

The density matrix approach is applied here to a THz QCL [35, 37, 89–96].
In this case, anticrossing gaps of the order of few meV represent a significant fraction of
photon energies, ~ω ≈ 10-20 meV, and the inclusion of coherent tunneling is critical to
the transport description.

As an example, we consider the design presented in Ref. [42], whose band structure
is shown in Fig. 4.61. This active region was used to demonstrate the first THz
laser operating above 180 K. Four electronic levels per period contribute to electron
transport: injector (level 1), excited and ground state of the laser transition (2, 3)
and extractor (4). The radiative transition 2 → 3 (E23 ≈ 15 meV) is designed to
be diagonal in order to increase the excited level lifetime. The structure features
also a phonon extraction scheme, the energy difference between level 4 and 1’ being
close to the optical phonon energy ~ωLO, to the end of decreasing the ground level lifetime.

In the band diagram of Fig. 4.6(a) we highlight the emission region, where the
radiative transition takes place, and the extraction region, ensuring the population
inversion. The two regions are tunnel-coupled, and this coupling is crucial for the electron
transport. Therefore, a partially localized basis will be used, with the two modules
sketched in Fig. 4.6(b)-(c).

Figure 4.7 shows a schematization of the four levels involved in the calculation, along
with the relevant couplings and scattering times.

We solve for the steady state the evolution equation of the density matrix:

dρ

dt
=

1

i~
[Hsp, ρ] +

1

i~
[Hdiff , ρ]

In the four-level case, we have

[Hsp, ρ] =




E1 ~Ω12 ~Ω13 ~Ω14

~Ω12 E2 ~Ω23 ~Ω24

~Ω13 ~Ω23 E3 ~Ω34

~Ω14 ~Ω24 ~Ω34 E4

 ,


ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44




1

i~
[Hdiff , ρ] =

=



−ρ11

τ1
+
ρ44

τ4
− ρ12

τ‖12
− ρ13

τ‖13
− ρ14

τ‖14

− ρ21

τ‖12
−ρ22

τ2
+
ρ33

τ3
− ρ22 − ρ33

τst
− ρ23

τ‖23
− ρ24

τ‖24

− ρ31

τ‖13
− ρ32

τ‖23

ρ22

τ2
− ρ33

τ3
+
ρ22 − ρ33

τst
− ρ34

τ‖34

− ρ41

τ‖14
− ρ42

τ‖24
− ρ43

τ‖34
−ρ44

τ4
+
ρ11

τ1


1The same structure was mentioned in §1.5.1 as an example of THz active region.
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(a) Extended basis

(b) Localized basis: emission region (c) Localized basis: injec-
tion/extraction region

Figure 4.6: Band structure and square moduli of wavefunctions in the THz struc-
ture of Ref. [42]. Starting from the injector barrier, the layer thicknesses in Å are:
48/85/28/85/42/164. The external electric field is 12.5 kV/cm.
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Figure 4.7: Scheme of the levels included in the calculations, and their interactions.

where relaxation times τi indicate the total lifetime of level i, and τst is the time of
stimulated emission/absorption (τst →∞ in the cold cavity limit).

Like in the two-level case introduced in §4.1.1, we need to calculate the scattering
times τ among levels in the same module (Fermi’s golden rule), and the tunnel couplings
Ω among levels in different modules. The latter are directly obtained from the splitting
of electronic levels calculated in the extended basis2, as shown in Fig. 4.8. The main
couplings for the laser operation are Ω12, between the injector and the excited state of the
laser transition, and Ω34, ensuring extraction out of the ground laser state.

However, more couplings are visible in Fig. 4.8, which can be considered as associ-
ated with ’parasitic’ alignments, as it was observed in Ref. [42]. These couplings are
indeed responsible for a current flowing in the device out of the ideal operation condi-
tions. In particular, levels (1,3) and levels (2,4) anticross around an electric field value
of ≈ 6 kV/cm, and levels (1,4) for an electric field of ≈ 8.5 kV/cm, as illustrated in Fig. 4.9.

Figure 4.10 presents the populations of the different electronic states, calculated
following the procedure detailed in §C.2.2. The population inversion between excited
and ground state of the laser transition is correctly observed for an electric field of 7
kV/cm, when both injector and extractor are tunnel-coupled to excited and ground state,
respectively.

2The extraction of the coupling energy is done automatically in our program, thanks to an algorithm
that identifies the extended wavefunctions and follows them while the electric field varies. The identification
is based on the comparison with the energies and spatial distributions obtained in the localized basis.
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Figure 4.8: Energies of levels versus applied bias, in localized (upper panel) and extended
(lower panel) basis. The anticrossings in correspondence of level alignments are shown. We find
2~Ω12 = 2.5 meV, 2~Ω34 = 4.6 meV, 2~Ω24 = 3.4 meV, 2~Ω13 = 0.8 meV, and 2~Ω14 = 0.7
meV.

Figure 4.9: Parasitic bias for the structure. Left: ≈ 6 kV/cm, coupling between levels 1-3 and
2-4. Right: ≈ 8.5 kV/cm, coupling between levels 1-4.
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Figure 4.10: Calculated populations versus applied external field for the THz QCL introduced
in Ref. [42].



Chapter 4. Electron transport in MQWs: tunneling and Coulomb interaction 135

In order to observe the signature of tunneling coherences in the current-voltage char-
acteristics, we define the matrix

U =
1

~
[Hsp, z]

whose elements can be shown to be

Uij =
∆ij

~
zij + Ωij(zjj − zii) +

4∑
k 6=i,j

(Ωikzjk − Ωjkzik)

The current density is expressed in terms of matrices U and ρ as:

J = −nei
4∑
i<j

Uij(ρij − ρji)

To account for stimulated emission, we introduce the gain for each transition in the active
region:

Gij = ΓσijNV Lp(ρii − ρjj)
n

c

where σij is the cross section per unit time for stimulated emission [44]:

σij =
4πe2

ε0n

|zij |2
λ

c

n

1

Lp2γ

with NV the electronic density per unit volume, Lp the length of the period, n the mode
effective index and Γ the overlap between the active region and the cavity mode.
The total gain is then computed as the sum of all these contributions, multiplied by a
Lorentzian function centered on the energy of the radiative transition Erad:

G =
∑
i<j

Gij
γ2/4

(Eij − Erad)2 + γ2/4

If the total gain equals the losses α, there is stimulated emission in the structure. We
can thus calculate a τstim with a self-consistent procedure, imposing dS

dt = 0, as in the
discussion of §1.5.2.

The last parameter needed for the calculation of the I-V characteristics is the lifetime
of the coherences (see §1.4). Following Kumar [92], we set a phenomenological broadening
τ‖ = 0.8 ps for the injection (Ω12) and extraction (Ω34) couplings.
The parasitic coulings Ω13, Ω24 and Ω14 are also taken into account, with a shorter
coherence time with respect to injection and extraction (τ‖ = 0.1 ps).

The resulting LIV characteristic is displayed in Fig. 4.11(a). The figure shows the
calculated I-V curve taking into account all the possible couplings (black solid line) and
the ’idealized’ I-V curve with no parasitic coupling (black dashed line), as in the model in
Ref. [92]. The inclusion of parasitic couplings significantly changes the shape of the curve,
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Figure 4.11: a) Calculated L-V-I for the four-level structure of Fig. 4.6. The solid curve is
the calculation accounting for all the possible couplings and the dashed curve the calculation
with just the injection and extraction couplings. We considered α = 20 cm−1 for the loss
coefficient, NV = 6.6× 1015, Γ = 1, Np = 222. b) From [42]: measured L-I-V characteristic.

and determines a current leakage for voltages lower than the alignment (≈ 12 kV/cm).
This feature was indeed experimentally observed [see Fig. 4.11(b)].

A possible way to improve the agreement between simulation and experimental data
could be the inclusion in the heterostructure potential of the Hartree correction, due
to the static charges contribution. This could be implemented with a self-consistent
resolution of Poisson-Schrödinger equation [30]. Other effects to account for would be the
electronic subbands dispersion and the effects due to backfilling of the lower laser level [3].

The presented density matrix method for electron transport in QCL can be generalized
to N levels. Details of this procedure are discussed in §C.2.3, and an application to the
modeling of a mid-IR laser is presented in Appendix D.
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4.2. Transport in the presence of Coulomb interaction

We now turn to the inclusion of Coulomb interaction in the study of transport. This
interaction creates a coherence between two transitions involving several electrons,
i.e. four electronic levels, as opposed to tunneling, which couples two levels (see Fig. 4.1
in the chapter introduction).
In this section, we will adopt an equation of motion method, similar to the density matrix
model of the previous section. An alternative approach to include many-body effects
in transport in a theoretically rigourous way are Green’s functions methods [62, 63, 97, 98].

The passage from coupling between levels to coupling between transitions involving
large densities of electrons requires a change in the formalism. Therefore, we work in the
second quantization framework, which allows us to describe an electronic excitation from
level i to level j with the creation operator c†ij . Rather than the evolution of states, like
in the density matrix model of the previous section, we consider then the evolution of
quantum operators.

In the Heisenberg picture, the dynamics of an operator A is given by [63, 87]

d

dt
A =

1

i~
[A,H] (4.8)

where H is the Hamiltonian, which can be written in terms of single-particle and higher
order contributions (two-particle terms)

H = Hsingle-particle +Htwo particles (4.9)

In second quantization, the single-particle part reads

Hsingle-particle = H0 =
∑
j,k

εj,kc
†
j,kcj,k

where εj,k is the single-particle energy of an electron in the j-th subband and wave vector
k. Two-particle contributions arise from coupling terms with external fields, phonons, etc,
but most importantly for this work, from Coulomb interaction:

Htwo particles = HC =
1

2

∑
i,j,m,nkk′q

V imnj
q c†i,k+qc

†
m,k′−qcn,k′cj,k (4.10)

where

V imnj
q =

e2

2ε0εsq

∫ +∞

−∞
dz

∫ +∞

−∞
dz′ ψi(z)ψj(z)e

−q|z−z′|ψm(z′)ψn(z′) (4.11)

is the two-dimensional Coulomb matrix element [62, 99].
Equation (4.10) describes elementary processes where two electrons from subbands n

and j with wave vectors k and k′ are scattered into subbands i and m with wave vectors
k + q and k′ − q, respectively, as schematized in Fig. 4.12.
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Figure 4.12: Index convention of the matrix element V imnjq . Two electrons in subbands j and
n, with momenta k and k′, are scattered into subbands i and m, with momenta k + q and
k− q, respectively.

Coulomb matrix elements in a two-subband quantum well

Let us consider a two-subband quantum well, like the one depicted in Fig. 4.13. In the
density matrix model for coherent tunneling described in §4.1, we used a description based
on energy levels, as in panel (a). This approximation can be justified for low temperatures,
assuming that intrasubband relaxation is much faster than the intersubband one. However,
for the purpose of treating Coulomb interaction in the terms of Eq. (4.9), we need to
account also for k-space dispersion [panel (b)].

Figure 4.13: a) Energy level representation of a two-subband quantum well. b) Corresponding
parabolic dispersion in k-space.

The Hamiltonian (4.9) for this system reads:

H =
∑
k

(
~ω2kc

†
2kc2k + ~ω1kc

†
1kc1k

)
+

1

2

∑
i,j,m,n=1,2,kk′q

V imnj
q c†i,k+qc

†
m,k′−qcn,k′cj,k
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Figure 4.14 represents the different interaction coefficients in such a system.

Figure 4.14: Graphical representation of the four qualitatively different kinds of scattering
processes.

Some of the V imnj
q are zero for symmetry reasons [99]. This is the case for all the

matrix elements with an odd number of 1 or 2 indices:

V 1112
q = V 1121

q = V 1211
q = V 2111

q = 0

V 2111
q = V 2212

q = V 2122
q = V 1222

q = 0

The other elements are:

V 1122
q = V 1212

q = V 2121
q = V 2211

q = V dep
q =

=
e2

2ε0εsq

∫∫
dz dz′ ψ1(z)ψ2(z)e−q|z−z

′|ψ2(z′)ψ1(z′) depolarization term
(4.12)

V 1221
q = V 2112

q =
e2

2ε0εsq

∫∫
dz dz′ ψ2

1(z)e−q|z−z
′|ψ2

2(z′)

V 1111
q =

e2

2ε0εsq

∫∫
dz dz′ ψ2

1(z)e−q|z−z
′|ψ2

1(z′) direct and exchange terms

V 2222
q =

e2

2ε0εsq

∫∫
dz dz′ ψ2

2(z)e−q|z−z
′|ψ2

2(z′)

(4.13)

Equations (4.12)-(4.13) correspond to different scattering processes.
In particular, the Coulomb term (4.12) represents intersubband excitations, where each

electron is scattered from one subband to another. These processes are responsible for the
depolarization shift [54], and are the only ones relevant for superradiant collective pro-
cesses: for small values of q, a great number of electrons can undergo the same transition,
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approximately at the same energy. Indeed, the most relevant component of the depolar-
ization term is q → 0 [54]. In this limit, V dep

0 is linked to the Coulomb length Sijij we
already defined in the study of the optical response:

Sijkl =

∫ +∞

−∞
dz

[∫ z

−∞
dz′ ψi(z

′)ψj(z
′)

] [∫ z

−∞
dz′′ ψk(z

′′)ψl(z
′′)

]
In fact it holds [74]:

V 1212
0 =

e2

ε0εs
S1212

We recall the relation between the diagonal part of the matrix S and the plasma frequency
(2.43):

ω2
P12 =

2e2 ∆N12 ω12

~ε0εs
S1212

Finally we can express the depolarization term V 1212
0 as

V 1212
0 =

~
2∆N12

ω2
P12

ω12

The terms (4.13) describe instead intrasubband processes, which do not involve great
numbers of electrons, due to Pauli blocking and nonflat energy dispersion [99].

4.2.1. Observables and equations of motion

Physical observables (population distributions) are given by the ensemble average 〈〉 of

the operators c†j,k, ci,k. A common way to represent this is through the density matrix in
second quantization:

ρjik = 〈c†j,kci,k〉
As in the first-quantization formalism adopted in the first part of this chapter, this is a
concise way to represent two different quantities:

� Distribution functions ρiik, on the diagonal, represent the expected number of elec-
trons on subband i and wave vector k.

� The intersubband polarizations are the off-diagonal elements of ρ: ρjik = ρ∗ijk.

The evolution of the density matrices can be obtained with Eq. (4.8) for the single-particle

operator A = c†j,kci,k and then taking the ensemble average.

d

dt
A =

i

~
[H0 +HC , A] (4.14)

Equation (4.14) shows that the temporal change of the expectation values is composed of
two contributions, corresponding to the commutator with H0 and HC respectively.

The first term gives
dρjik

dt
=
i

~
(εj,k − εi,k)ρjik
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i.e., a rotation of the polarizations (j 6= i) in the complex plane, with a frequency
corresponding to the energy difference between subband j and i, at wave vector k. Note
that this term due to H0 can be observed also in the equations that we wrote for a
two-level system with tunnel coupling, Eqs. (4.5).

Contrary to tunnel coupling, Coulomb interaction HC leads to a coupling of the single-
particle density matrices to two-particle density matrices 〈c†

j′,k′2
c†
i′,k′1

ci,k1cj,k2〉. The evo-

lution of these two-particle density matrices can be obtained in the same way through
Eq. (4.8): this would lead though to equations of motion containing three-particle density
matrices, and so on. This is a manifestation of the Bogoliubov hierarchy [17]: the equation
of an n-particle distribution function contains the (n+1)- distribution function, generating
thus a coupled chain of equations.

In order to obtain a closed set of equations, this infinite hierarchy of many-particle
correlations must be truncated. One common approach is that of replacing the expecta-
tion value of a product of field operator pairs with the product of their expectation values,
i.e. by introducing a mean-field (Hartree-Fock) approximation at some stage [62].
We will thus start from this single-particle approach in §4.2.2, and postpone a more de-
tailed discussion of the hierarchy problem to section §4.2.3.

4.2.2. Single-particle density matrix

If we stick to the mean field (Hartree-Fock) approximation, we do not consider electron
correlations beyond exchange interaction, and the relevant quantities are the density ma-
trix elements 〈c†ikcjk〉:

n1k = ρ11k = 〈c†1kc1k〉 population subband 1

n2k = ρ22k = 〈c†2kc2k〉 population subband 2

ρ21k = 〈c†1kc2k〉 coherence 1-2

The equations of motion in the screened Hartree-Fock approximation can be written as
[54, 100]:

dn2k

dt
=− i

~
∑
q 6=0

V 2112
q (ρ21kρ

∗
21k+q − ρ∗21kρ21k+q)+

− i

~
V 2121

0

∑
k′ 6=k

(ρ21k′ρ
∗
21k − ρ∗21k′ρ21k)+

+
dn2k

dt

∣∣∣∣∣
incoherent

(4.15)
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dn1k

dt
= +

i

~
∑
q 6=0

V 1221
q (ρ21kρ

∗
21k+q − ρ∗21kρ21k+q)+

+
i

~
V 1212

0

∑
k′ 6=k

(ρ21k′ρ
∗
21k − ρ∗21k′ρ21k)+

+
dn1k

dt

∣∣∣∣∣
incoherent

(4.16)

dρ21k

dt
=− iω12ρ21k+

+
i

~
ρ21k

∑
q 6=0

(
V 2222
q n2k+q − V 1111

q n1k+q

)
+

+
i

~
(n1k − n2k)

∑
q 6=0

V 2112
q ρ21k+q+

− i

~
(n1k − n2k)V 2121

0

∑
k′ 6=k

ρ21k′+

+
dρ21k

dt

∣∣∣∣∣
incoherent

(4.17)

In these equations of motion, the last term of the form
dρijk

dt takes into account all the
incoherent mechanisms, i.e. the non radiative relaxation (Γik), and the polarization decay
rate (Γρ). Also tunneling is not considered here as a coherent mechanism, but we include
in our equations incoherent injection and extraction rates such that [101]:

dn1k

dt

∣∣∣∣∣
incoherent

= −Γ1k(n1k − n0
1k)− Γ1,out

k n1k + Γ1,in
k (1− n1k)

dn2k

dt

∣∣∣∣∣
incoherent

= −Γ2k(n2k − n0
2k) + Γ2,in

k (1− n2k)− Γ2,out
k n2k

dρ21k

dt

∣∣∣∣∣
incoherent

= −Γρ ρ21k

where n0
1k and n0

2k are the equilibrium occupation numbers. Figure 4.15 schematizes
these incoherent processes.
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Figure 4.15: Schematic representation of the incoherent mechanisms included in Eqs. (4.15)-
(4.17).

Following [99], let us consider negligible all Coulomb matrix elements except the de-
polarization terms at q = 0 (V 2121

0 = V 1212
0 = v), which at high electronic densities are

the only ones relevant for collective effects. With these assumptions, Eqs. (4.15)-(4.17)
are simplified to:

dn2k

dt
=− i

~
v
∑
k′ 6=k

(ρ21k′ρ
∗
21k − ρ∗21k′ρ21k) +

dn1k

dt

∣∣∣∣∣
incoherent

(4.18)

dn1k

dt
=
i

~
v
∑
k′ 6=k

(ρ21k′ρ
∗
21k − ρ∗21k′ρ21k) +

dn2k

dt

∣∣∣∣∣
incoherent

(4.19)

dρ21k

dt
=− iω12ρ21k −

i

~
v(n1k − n2k)

∑
k 6=k′

ρ21k′ − Γρ ρ21k (4.20)

In the present model, differently from the Kazarinov-Suris model of Eqs. (4.5), the
electron injection is an incoherent process. As a consequence, there is no source term for
the coherences in the last of the equations above. Therefore, the system of equations (4.18)-
(4.20) simply reduces to the incoherent rate equations described in §1.5.2. This means that
in these equations the Coulomb term v cannot have any effect on the electron transport.
For the terms ρ21k to be relevant at this level of approximation, it would be necessary
to introduce an additional coherence in the system, such as tunneling or an external
electromagnetic field [54].

Generalized intersubband semiconductor Bloch Equations

If an electromagnetic field couples subbands 1 and 2, a source term is added to the
equation describing the evolution of coherences. In this case, the modification of
the equations of motion (4.15)-(4.17) leads to the intersubband semiconductor Bloch
equations (ISBE). The latter are a generalization of the interband semiconductor Bloch
equations [62, 102], which describe the optical response of a semiconductor system in the
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presence of an applied coherent electromagnetic field.

Let us consider an applied field E(z, t) of amplitude E , with a detuning ∆ with respect
to the intersubband transition frequency ω12. We recall the definition of the Rabi frequency
Ω = z12E/~ (with z12 optical dipole), which expresses the coupling between the transition
and the external field. If we consider just the depolarization terms as above, Eqs. (4.18)-
(4.20) read [48, 49, 54, 59]:

dn2k

dt
= + 2 Im [Ω ρ21k] +

− i

~
v
∑
k′ 6=k

(ρ21k′ρ
∗
21k − ρ∗21k′ρ21k) +

dn2k

dt

∣∣∣∣∣
incoherent

dn1k

dt
=− 2 Im [Ω ρ21k] +

+
i

~
v
∑
k′ 6=k

(ρ21k′ρ
∗
21k − ρ∗21k′ρ21k) +

dn1k

dt

∣∣∣∣∣
incoherent

dρ21k

dt
= + i∆ρ21k + iΩ(n1k − n2k)+

− i

~
v(n1k − n2k)

∑
k′ 6=k

ρ21k′ − Γρ ρ21k

A common notation that simplifies the expression of the above equations is the defini-
tion of the generalized Rabi frequency modified by Coulomb interaction [62, 103], in this
case

Ω̃k =
1

~

z12E − v
∑
k′ 6=k

ρ21k′

 = Ω− 1

~
v
∑
k′ 6=k

ρ21k′

As expected, for a non vanishing external field E , Coulomb interaction has an impact on
the electron dynamics, as the polarizations ρ21k do not go to zero.

A further generalization of ISBE to include coherent tunneling can also be made [103,
104]. This approach thus seems to be promising in order to treat electronic transport in
the presence of tunnel coupling and light-matter interaction, including the effect of the
depolarization field. As an example, they are suitable to describe an intersubband system
under optical pumping [54].

4.2.3. Cluster-expansion approach

In this section, we analyze the form of the equations of motion for the populations and
the coherences beyond the Hartree-Fock approximation [17].

In general, we can write the expectation value of an observable as〈
Ô
〉

=
〈
a†1 · · · a†KaJ · · · a1c

†
1 · · · c†NF cNF · · · c1

〉



Chapter 4. Electron transport in MQWs: tunneling and Coulomb interaction 145

where Ô consists of NF fermionic operators and NB = J +K bosonic operators3. We can
then define an order N = NB + NF for each operator, corresponding to the number of
bosonic operators and couples of fermionic operators composing it. Operators with the
same order are considered formally equivalent.
It can be shown [17] that Coulomb interaction and coupling to photons lead to hierarchy
problems in the dynamical evolution of observables in the form

i~
d

dt
〈N〉 = T [〈N〉] +Hi[〈N + 1〉] (4.21)

Equation (4.21) shows that the evolution of an operator of order N can be split in two
contributions: a functional T of N -particle operators expectation values and a functional
Hi representing coupling to higher order operators.

Figure 4.16: Schematic representation of the cluster-expansion-based classification. The
full correlation is composed of singlets, doublets, triplets, and higher-order correlations, all
uniquely defined by the cluster-expansion approach. Each blue sphere corresponds to one
particle operator and yellow circles/ellipses to correlations. The number of spheres within a
correlation identifies the cluster number.

The hierarchy problem is then encountered when using the equation of motion method
to study the dynamics of a light-matter coupled system. A way to deal with this is the
so-called cluster expansion method, in which many-body quantities are systematically
grouped into clusters based on their importance for the overall quantum dynamics. These
clusters contain (in order of complexity):

1. independent single particles (singlets);

2. interacting pairs (doublets);

3. interacting groups of three particles (triplets);

3The number of fermionic creation and annihilation operators must be equal for the expectation value
to be different from zero.
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4. and so on with higher orders.

In order to truncate the hierarchy at a set level, 〈N〉 is approximated through a func-
tional containing clusters up to the desired order. In most cases, the method converges
quickly, and the first two orders suffice [17]. In this approximation, one has to study not
only the time evolution of the single-particle expectation values 〈1〉, as in Hartree-Fock
approximation, but also the evolution of two-particle correlations, usually indicated as
∆〈2〉.

Correlations up to second order

Following Ref. [101, 105], we write the equations of motion for a fermionic system in the
presence of Coulomb interaction, retaining correlations up to order 2. We consider just
vertical transitions (q = 0). We introduce the two-particle correlation

Ximnj(k,k
′) = ∆〈cjkcnk′c†mk′c

†
ik〉

with the symmetry property Ximnj = X∗jnmi. In the case of a two-subband system,

retaining as previously just depolarization terms, V 1122
0 = V 2211

0 = V 1212
0 = V 2121

0 = v, we
find4:

dn1k

dt
= − i

2~
v
∑
k′

[
X1212(k,k′)−X∗1212(k,k′) +X1122(k,k′)−X∗1122(k,k′)

]
+

dn1k

dt

∣∣∣∣∣
incoherent

(4.22)

dn2k

dt
=

i

2~
v
∑
k′

[
X1212(k,k′)−X∗1212(k,k′) +X1122(k,k′)−X∗1122(k,k′)

]
+

dn2k

dt

∣∣∣∣∣
incoherent
(4.23)

dX1212(k,k′)

dt
= − i

~
v
{

+
[
X1212(k,k′) +X∗1122(k,k′)

]
(n1k − n2k)+

−
[
X1212(k,k′) +X1122(k,k′)

]
(n1k′ − n2k′)+

+G1212(k,k′)
}

+
dX1212(k,k′)

dt

∣∣∣∣∣
incoherent

(4.24)

dX1122(k,k′)

dt
=− 2iE12X1122(k,k′)− i

~
v
{

+
[
X∗1212(k,k′) +X1122(k,k′)

]
(n1k − n2k)+

+
[
X1212(k,k′) +X1122(k,k′)

]
(n1k′ − n2k′)+

+G1122(k,k′)
}

+
dX1122(k,k′)

dt

∣∣∣∣∣
incoherent
(4.25)

where

Gimnj(k,k
′) = [(1− njk)(1− nnk′)nmk′nik − njknnk′(1− nmk′)(1− nik)]

4To obtain this system of equations, we neglect the polarizations corresponding to exchange (X1221,
X2112).
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is a collision term, as in Boltzmann transport equation [63, 97, 105]. Neglecting the
other corrections on the left-hand side of the equation, this term would lead to an
electron-electron scattering rate equivalent to what would be obtained applying Fermi’s
golden rule (see Eq. §B.5) [63].

We can appreciate the fact that while the polarization terms in Eqs. (4.15)-(4.17) are
expressed in the form

ρ∗21kρ21k′ = 〈c†2,kc1,k〉〈c†1,kc2,k〉

the presence of the correlations X(k,k′) in Eqs. (4.22)-(4.25) is the manifestation of a
higher-order approximation.

Differently from the single-particle picture, in this case the collision terms G1212 and
G1122 are source terms for the correlations X. Nevertheless, a numerical analysis of this
problem needs to be performed to evaluate the extent of the impact of these second-order
correlations on transport.

The numerical implementation of the system of equations (4.22)-(4.25), describing
transport in a two-subband system, is already quite complex. Its generalization to an
arbitrary number of occupied subbands would be even more challenging. For this reason,
it could be interesting to explore other possible theoretical tools to tackle this interesting
but difficult physical problem (see for example Refs. [98]).

Conclusions

In the first part of this chapter, we have presented a simplified density matrix model
accounting for coherent tunneling between quantum wells. As an application, we showed
in §4.1.2 that this formalism can be used to study electron transport in QCLs. Its
general matrix form allows for the inclusion of an arbitrary number of electronic levels,
making possible the application both to mid-IR and THz lasers. The low computational
complexity of the method makes it particularly suitable for establishing a quick and direct
link with experimental characterization and design, of which we show an application in a
systematic study of MOCVD-grown QCLs in Appendix D.

The second part of the chapter has presented a preliminary study on the effect of the
inclusion of Coulomb interaction in an electron transport model. We have shown how a
single-particle density matrix model with the sole inclusion of depolarization terms reduces
to a semiclassical rate equations approach, like the one presented in §1.5.2. On the other
hand, a formulation of the problem in the presence of an external electromagnetic field
is described by the intersubband semiconductor Bloch equations, and could be used to
characterize systems featuring an optical pump.

An analysis of the equations of motion with depolarization terms written includ-
ing second-order correlations (§4.2.3) shows instead a deviation from the rate equations,
thanks to the presence of a collision term. As a perspective, its influence on coherences
and thus on the electron transport may be numerically investigated.
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A final perspective of this subject is the possibility of including in the same description
coherent tunneling and second-order correlations.



Conclusions and perspectives

This work has focused on the investigation of the interplay bewteen two couplings in
systems of semiconductor quantum wells: resonant tunneling and dipole-dipole interac-
tion. The main impulse for this theoretical analysis has been the recent experimental
demonstration [14] of the possibility of creating collective bright states in highly doped
semiconductor quantum wells, the multisubband plasmons.

A relevant part of the work has been devoted to the development of a fully quantum
model for the optical response of highly doped semiconductor quantum well potentials,
where both tunneling and collective effects have a role. This formalism, based on the
diagonalization of a bosonized Hamiltonian, has been the object of Chapter 2. We have
shown how the macroscopic optical response can be understood in terms of microscopic
polarizations and their mutual couplings. The absorption spectra have been derived in
terms of microcurrents, describing the collective charge oscillations. A sum rule for the
conservation of oscillator strength in the system has been obtained, stating that the
collective modes concentrate the whole absorption strength of all individual intersubband
transitions. These results have been recently published in Phys. Rev. B (Ref. [16]).

We have presented in Chapter 3 an extensive investigation of significant cases of
application of our model. Firstly, we have shown that our method correctly recovers the
experimental results [14] in the case of a single heavily doped quantum well. Successively,
we have examined the role of tunneling in coupled wells. We have observed structures
featuring more than one characteristic length, suggesting the coexistence of multiple
multisubband plasmons associated with each of these lengths. This study can be
considered as a first step towards multisubband plasmon engineering.
In this perspective, we have also investigated the coupling between a multisubband
plasmon and a single-particle transition, as this system may prove promising for electrical
resonant excitation of collective states. Finally, in Chapter 3 we have also theoretically
demonstrated that multisubband plasmons can be ultra-strongly coupled with a cavity
mode (an experimental proof of this can be found in Refs. [14, 67]).

Chapter 4 has been dedicated to the investigation of a method to account for coherent

149
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tunneling and collective effects in the description of electron transport. In the absence of
depolarization effects, a density matrix model [93] is suitable to describe both the effect
of coherent tunneling and incoherent relaxation. This formalism has been applied to
the case of both THz and mid-IR quantum cascade lasers. A complete transport model
also including collective effects constitues a much more complex problem. A preliminary
study has been presented in the second part of the chapter, but needs to be completed by
further investigation. The definition and implementation of a complete transport model
fully accounting for coherent tunneling and collective effects would indeed represent a
relevant result for design and modeling of devices based on collective effects.

One major accomplishment of this thesis is the implementation of a model that allows
one to use collective effects as a new degree of freedom in the design of electronic devices.
The developed numerical tools may prove useful in this sense, in the same way as the
numerical calculation of wavefunctions is essential to the design of QCLs.
Furthermore, the bosonic character of multisubband plasmons suggests the possiblity of
investigating mechanisms of stimulated emission, for example in a system where two or
more multisubband plasmons are present. In this perspective, the scattering between
collective states, assisted for example by phonons or impurities, has to be investigated.

An experimental investigation of electrical excitation of the multisubband plasmon
mode has been recently carried out by our team [15, 65]. In the experiment, a structure
based on heavily doped quantum wells is inserted in a transistor-like device. When a
source-drain voltage is applied to the device, an electrical current flows in the quantum
well plane and the electron gas is thermally excited. The observed electroluminescence
signal features a peak at the same energy as the corresponding multisubband plasmon
absorption resonance, suggesting its origin to be the spontaneous emission from the
collective mode. The experimental results suggest that the associated lifetime is ≈ 100
fs [15], thus several orders of magnitude shorter than the typical intersubband spontaneous
emission lifetime (≈ 100 ns). Theoretical calculations based on non-local electrodynamics
also predict a similar result [106].
The formalism of the bosonized Hamiltonian discussed in Chapter 2 could be also used
to calculate this spontaneous emission rate within Fermi’s golden rule, and even beyond
in a non-perturbative approach.

Finally, a fascinating perspective is that of a spatial mapping of the plasmons through
Electron Energy Loss Spectroscopy (EELS). The feasibility of this kind of technique has
been recently demonstrated in the case of metallic nanoparticles [107]. It could in principle
be possible to map plasmons in quantum wells, and establish a direct link between the
microscopic collective charge densities discussed in Chapters 2 and 3 and the outcomes of
an EELS experiment. This would equally be an opportunity to study dark multisubband
modes, otherwise undetectable to standard absorption measurements. A direct experi-
mental study of the effects of tunneling on the spatial distribution of polarization would
represent an appealing complement to the theoretical investigations realized in the course
of this work. In this context, a collaboration between the Laboratoire de Physique des
Solides (Orsay) and our group has been recently established. The project will take advan-
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tage of the new generation of microscope that will be soon available at LPS, featuring an
energy resolution of 10 meV and a spatial resolution of 1 nm.
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A

Implementation details

We present here a scheme of the programs used for the numerical calculations needed in
this work, along with some implementation details specified here to simplify the main text.
Two C++ codes have been written for two different goals:

� The calculation of the absorption spectra in systems of highly doped quantum wells.
The corresponding model is detailed in Chapter 2, and examples of applications are
provided in Chapter 3.

� The calculation of current-voltage characteristics in multiple quantum wells, ac-
counting for coherent tunneling, presented in the first part of Chapter 4. A more
detailed description of the implemented algorithm can be found in §C.2.

These two programs share a common part for the band structure calculation, based on
the Kane model presented in §1.1.2.

A.1. Absorption spectrum calculation

Figure A.1 summarizes the procedure followed to obtain the absorption spectra of systems
of highly doped quantum wells, as those presented in Chapter 3.

The first step required is the band structure calculation. Given the doping of the
structure, the program determines next the population density Ni of each level through
the procedure detailed in §A.1.1.

Microscopic current distributions ξα(z) [Eq. (2.70)] for each transition α ≡ i → j
can then be obtained from wavefunctions ψi(z), along with the single particle absorption
spectrum [Eq. (2.74)]. Wavefunctions, along with level populations, are sufficient to cal-
culate for each transition the plasma frequency ωPα [Eq. (2.72)], and the couplings Ξαβ
[Eq. (2.73)] for each couple of transitions.

The core of the calculation is the diagonalization of the matrix M [Eq. (2.54)], from
which the new resonances Wn and their amplitudes WnFn are determined. The eigenvalues
and eigenvectors of M are also used in the determination of the collective currents J . The
graphical representation of these quantities, as the one shown also in Fig. A.1, is obtained
through a Python/Matplotlib script.
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The absorption spectrum is finally calculated by considering a Lorentzian shape with
phenomenological broadening γ for each of these collective resonances, using Eq. (2.75).

A.1.1. Electron population distribution

One of the first steps of the program schematized in Fig. A.1 is the calculation of the
electronic levels’ populations.
We call the confining energies Ei(0). The dispersion curves of the subbands are given by
the self-consistent formula [52]:

Ei(k) = Ei(0) +
~2k2

2m∗(k)
= Ei(0) +

~2k2

2m0

Ep
3

[
2

Ei(k) + Eg
+

1

Ei(k) + ESO + Eg

]
where Ep is the Kane energy, Eg the gap, and ESO the split-off band energy.
We fix the electronic density of the system, and numerically deduce the Fermi level from
the expression:

N =
∑
i

Ni =
∑
i

∫
dE ρi(E)fFD(E) (A.1)

with fFD(E) Fermi-Dirac distribution

fFD(E) =
1

e
E−EF (T )

kBT + 1

and ρi(E) density of states per unit of surface:

ρi(E) = ρi(k)
dk

dE
=

1

π
k

dk

dE
=

1

π~2

[
m∗(E) + E

dm∗

dE

]
(A.2)

The successive steps in the calculation of the subband populations are:

1. Definition of the Kane effective mass m(E) [Eq. (1.9)] (in parabolic approximation,
this is constant and equal to mw).

2. Numerical calculation of the derivative dm∗

dE (in parabolic approximation, equal to
0).

3. Construction of the density of states ρ(E) with Eq. (A.2), (in parabolic approxima-
tion, equal to mw

π~2 ).

4. Construction of the density ρ2D(E) =
∑

i ρ(E) (in parabolic approximation, step
density over the levels).

5. Calculation of the Fermi energy EF = EF (0) by filling the levels up to Ns: ns =
e
∑

i ∆Eρ2D(Ei) [corresponding to Eq. (A.1) at T = 0, with fFD = Θ(EF )].

6. Calculation of the Fermi level EF (T ) through the convergence of the expression

ns = e
∑
i

∆E ρ2D(Ei)
1

e
E−EF (T )

kBT + 1

with initial guess EF (T ) = EF .
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Figure A.1: Scheme of the code for the calculation of the optical response of highly doped
MQWs, based on the model discussed in Chapter 2.
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7. Calculation of the subband populations Nj with Eq. (A.1).
In parabolic approximation,

Nj = e

Emax∑
Ei=Ej

∆E
mw

π~2
fFD(Ei)

If nonparabolicity is accounted for, the infinitesimal population element is

dnj(k) = ρ(Ej(k))
dEi(k)

dk
fFD(E(k))dk

which we numerically implement as

Nj =
1

π~2

∑
k

(
mj,k + Ej,k

mj,k+1 −mj,k

Ej,k+1 − Ej,k

)
(Ej,k+1 − Ej,k)fFD(Ej,k)

A.2. Density matrix model for electron transport

Figure A.2 schematizes the code for the calculation of electron transport in MQWs with
the inclusion of coherent tunneling, as presented in §4.1.

The program consists of two independent parts:

� First, intersubband scattering times and coherences are calculated over a range of
applied electric field values.
The starting point for this step is the band structure calculation. The latter is per-
formed twice, considering two bases: extended and localized (see §1.2), as schema-
tized in the upper part of Fig. A.2. Intersubband scattering times τij due to interface
roughness, alloy scattering and LO-phonon emission (see Appendix B) are calculated
over a range of external applied electric fields. At the end of the loop on the exter-
nal applied fields, tunnel couplings Ωij are obtained from the comparison between
energies in extended and localized basis, as schematized in Fig. A.2 (see also Fig. 4.8
and related discussion).

� Once the quantities τij and Ωij have been calculated, it is possible to follow the
procedure based on density matrix formalism, detailed in §C.2, to obtain the level
populations ρii and the coherences differences (ρij − ρji) at the steady state. Given
the laser specifications (number of periods, ridge length, ridge width, doping), these
allow the calculation of I-V characteristics. It is possible to account also for stimu-
lated emission and obtain L-I curves, as described in §4.1.2.
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Figure A.2: Scheme of the code for the calculation of electron transport with a density matrix
formalism, discussed in §4.1 and §C.2.
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B

Intersubband and intrasubband scattering
times

We give here some details for the calculation of intersubband and intersubband scattering
times introduced in §1.4. Throughout the discussion, we follow Ref. [33] for the main
definitions, which is in turn based on Ando’s work [30, 32, 108].

B.1. Interface roughness

Interface roughness is caused by growth imperfections at the junction between two semi-
conductors. Fluctuations of interface concentration occur over one monolayer, creating
static scatterers that diffuse electrons. The distribution of these defects is not precisely
known, and can be assumed to be Gaussian [30, 33, 109].

Figure B.1: Electronic microscope image of two interfaces in an InAs/AlSb structure (Univer-
sité de Montpellier).

Let us consider a single interface, which we label m. We model the mean height of the
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roughness ∆(r) through the auto-correlation function

〈∆(r)∆(r′)〉 = ∆2 exp

(
−|r− r′|2

Λ2

)
where ∆ is the mean height of the roughness and Λ is the in-plane correlation length.
This relation means that the distance between similar composition fluctuations follows a
Gaussian law, the mean distance being given by Λ. The interaction Hamiltonian can be
written as

Hrough = V0 δ(z − zm) ∆(r)

with V0 band discontinuity between well and barrier semiconductors, and zm position of
the interface.
The scattering matrix element is given by

〈jk′|Hrough|ik〉 =

∫
Fmji ∆(r) eiq·rd2r

where q = k− k′ is the exchanged momentum and

Fmij = Fmji = −δV (zm)ψi(zm)ψj(zm) δV (zm) = V (z+
m)− V (z−m)

strength of the interaction, where V (z) is the conduction band-edge profile. Interface
roughness is equivalent to fluctuations of the well width, and it can be shown that in the
case of an infinte quantum well

F ∝ L−3

As the typical well width for structures operating in the mid-infrared is smaller than that
of far-infrared structures, we expect the interface roughness to play a more important
role in the mid-infrared frequency range [35].

Intersubband interface roughness scattering

For the intersubband scattering time due to interface roughness, Eq. (1.24) gives for a
transition i→ j [35, 110]:

1

τ inter,IR
ij

=
m∗

~3
Λ2∆2

∑
m,n

Fmij F
n
ij

∫ π

0
exp

(
−q

2(θ)Λ2

4

)
dθ

with q exchanged momentum and θ angle between k and k′. In the case k = 0, this
exchanged momentum is equal to

q̃ =

√
2m∗Eij

~2
Eij = Ei − Ej

and therefore
1

τ inter,IR
ij

=
πm∗

~3
Λ2∆2

∑
m,n

Fmij F
n
ij exp

(
− q̃

2Λ2

4

)
(B.1)

which is valid if Eij > 0, that is for transitions to lower energy subbands.
Equation (B.1) can be easily extended in order to take into account the vertical corre-

lation of the roughness between interfaces [111].
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Intrasubband interface roughness scattering

The calculations to obtain the contribution of interface roughness to intrasubband scat-
tering are similar to the ones for the intersubband term. The strength of the interaction
is given by

Fmjj = V0 ψ
2
j (zm) Fmii = V0 ψ

2
i (zm)

The intrasubband scattering rate of Eq. (1.25) in the case of interface roughness is

1

τ intra,IR
ij

=
πm∗

~3
Λ2∆2

∑
m,n

(
Fmjj − Fmii

) (
Fnjj − Fnii

)
(B.2)

B.2. Alloy disorder

In the presence of ternary semiconductor layers of the type AxB1−xC, electrons are scat-
tered by the alloy disorder [33, 112]. The scattering Hamiltonian is

Halloy = ∆EC δx(r)

where ∆EC is the difference in conduction band minima of crystals AC and BC (in the
case of AlxGa1−xAs, AlAs and GaAs) and ∆x(r) is the concentration fluctuation that we
model once again via the correlation function

〈∆x(r)∆x(r′)〉 =
a2

4
x(1− x)∆(r − r′)

where a is the lattice constant. The corresponding scattering matrix element for alloy
disorder is given by [33]

|〈jk′|Halloy|ik〉|2 =
a3(∆EC)2x(1− x)

4

∫
alloy

ψ2
i (z)ψ

2
j (z) dz

and the integral is performed over all the region containing an alloy. Note that there is no
energy dependence, so that two wavefunctions distant in energy but with an important
overlap may be characterized by a short alloy scattering time. The expression is also
independent of the scattering vector owing to the short-range nature of the scatterers.
Therefore, we have [35, 112]

1

τ inter,AD
ij

=
1

8

m∗i a
3(∆EC)2x(1− x)

π~3

∫
alloy

ψ2
i (z)ψ

2
j (z) dz

Following [113], the previous formula in case of quaternary compounds
AII

1−xBIII
x CV

1−yD
V
y holds if the factor x(1− x)(∆EC)2 is replaced by

x(1− x)(1− y)2|∆UABC |2 + x(1− x)y2|∆UABD|2+

y(1− y)x2|∆UBCD|2 + y(1− y)(1− x)2|∆UACD|2
(B.3)

where ∆UABC denotes the difference in conduction band minima in the ternary ABC. As
expected, Eq. (B.3) recovers the result for ternary alloys in the case y = 1.
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B.3. Electron-electron scattering

In intersubband electron-electron scattering, two electrons exchange energy and momen-
tum. Provided that the total energy and momentum are conserved, electrons may also
change subband, therefore the process is usually labeled with four indexes. We adopt the
convention of process imnj being an interaction with an electron scattering from subband
j to i and a second electron scattering from n to m (see also Figs. 4.12 and 4.14 in the
main text).

The calculation of the electron-electron scattering rate depends on the Coulomb matrix
element introduced in §4.2:

V imnj
q =

e2

2ε0εsq

∫ +∞

−∞
dz

∫ +∞

−∞
dz′ ψi(z)ψj(z)e

−q|z−z′|ψm(z′)ψn(z′) = (B.4)

where q is the wavevector exchanged during the process. The transition rate for electron-
electron scattering can be evaluated using Fermi’s golden rule. The total scattering out
an initial electron state (j,kj) reads [3, 114, 115]

Γimnj(kj) =
2π

~

∫
d2km

∫
d2kn

∫
d2ki

∣∣∣V imnj
q

∣∣∣2
εsc(q)

nn(kn)(1− ni(ki))(1− nm(km))×

×δ(Ei(ki) + Em(km)− En(kj)− Ej(km)) δ(ki + km − kn − kj)
(B.5)

with εsc correction to permittivity due to screening, and ni(ki) carrier distribution func-
tion. We note that the calculation of this rate requires a computationally expensive
three-dimensional integral.

B.4. Inelastic scattering: LO phonon

The emission of longitudinal optical phonons is the most efficient relaxation mechanism
for intersubband relaxation, and it is widely exploited in the band structure engineering
for quantum cascade lasers (see §1.5).

The interaction Hamiltonian corresponding to the relaxation from a subband i to a
subband j via emission of a LO phonon is given by the sum over the possible different
phonon modes defined by the vector q = (q‖, qz) [109, 116]:

He−phonon =
∑
q

α(q) e−iq·rb†q + α∗(q) eiq·rbq

where b†q is the creation operator for a phonon in the mode q and

|α(q)|2 = 2π~ωLO
e2

εpV q

is the strength of the electron-optical phonon interaction (Frölich term), with εp = 4πε0
ε−1
∞ −ε−1

s

(ε∞ high-frequency, εs static permittivity), V volume of the system and ~ωLO energy of
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one phonon.

We consider just the bulk phonon modes of the well material. We also approximate
the energy dispersion of the phonons to be flat and equal to the energy at q = 0. The
scattering rate due to LO phonon emission at T = 0 K is equal to [109]

1

τ inter,LO
ij |0K

=
m∗e2ωLO

2~2εp

∫ 2π

0

Iij(Q)

Q
dθ (B.6)

with

Q =
√
k2
i + k2

j − 2kikj cos θ

k2
j = k2

i +
2m∗

~
(Ei − Ej − ~ωLO)

(B.7)

The integral Iij(Q) is defined as

Iij(Q) =

∫
dz

∫
dz′ψi(z)ψj (z) e−Q|z−z

′|ψi(z
′)ψj(z

′)

At finite temperature, the emission time of a LO-phonon decreases and the rate is
written as

1

τ inter,LO
ij (T )

=
1

τ inter,LO
ij |0K

(1 + nLO) =
1

τ inter,LO
ij |0K

1 +
1

exp

(
~ωLO

kBT

)
− 1


where nLO is the Bose distribution.

Equations (B.6)-(B.7) suggest that the maximum scattering rate due to LO phonons
is found for Eij = ~ωLO. This is schematized in Fig. B.2: if the energy difference between
subbands 1 and 2 (E12) is larger than the phonon energy ~ωLO, it is possible for the system
to emit a phonon while conserving the total energy (left panel). The maximum efficiency
for the LO-phonon emission process is however found for E12 = ~ωLO (right panel), in
which case the transition can be vertical (see also Fig. 1.13).
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Figure B.2: Comparison of the LO-phonon emission process when E12 > ~ωLO (left panel)
and E12 = ~ωLO (right panel).

B.5. Material parameters

We summarize in Table B.1 the parameters used in this work in the calculation of the
band structure and the scattering times described above.

GaAs/Al0.33Ga0.67As GaInAs/AlInAs

mb 0.086 0.076
mw 0.067 0.0427

Egw (eV) 1.519 0.7518
Vb (eV) 0.295 0.520

∆sow (eV) 0.341 0.367
∆sob (eV) 0.334 0.337

~ωLO (meV) 36 32
∆ (Å) 1.5 1.2
Λ (Å) 60 90

V alloy
w (eV) 0.6

V alloy
b (eV) 0.8 1.4

Table B.1: Material parameters for the calculation of band structure and scattering times.
The subscripts w and b indicate respectively wells and barriers.



C

Density matrix formalism for systems of
multiple quantum wells

In principle, one could obtain the time evolution and phase coherence of the electrons
in a multiple quantum well structure from the knowledge of all the single electron wave-
functions. In practice, a more efficient approach is the density matrix formalism (see for
example Ref. [87]), which naturally accounts both for the quantum nature of the system
and the statistical distribution of the quantum states. This statistical flavour is relevant
in our case because of the very high number of particles involved.

The density matrix framework allows one to treat the properties of a large ensem-
ble of electrons in a statistical way, without having to worry about the single electrons’
wavefunctions.

C.1. Pure and mixed states

The standard description of a quantum state is the vector state representation:

|ψ〉 =
∑
i

ci|ui〉 (C.1)

where {|ui〉} is an orthonormal basis, and ci are the corresponding probability amplitudes,
ci = 〈ui|ψ〉. When one writes the expression (C.1), it is implied that the state of the system
is perfectly known: the probability of obtaining a particular result from a measurement
can be calculated exactly. In this sense we say that |ψ〉 contains the maximal information
about the quantum system [87]. States that can be described with a vector state are called
pure states: see for example those represented in Fig. C.1(a).

An alternative representation to (C.1) is possible: the density operator associated with
this pure state is defined as

ρ̂ = |ψ〉〈ψ|
The matrix representation of ρ̂ on the {ui} basis is the so-called density matrix, whose
elements are

ρij = 〈ui| ρ̂ |uj〉 = cic
∗
j
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(a) Pure states (b) Mixed state

Figure C.1: Graphical representation of the difference between pure and mixed states.

It can be shown that the operator ρ̂ completely characterizes the system, equivalently to
the vector state representation. Indeed, all the properties of the vector state |ψ〉 have a
counterpart in the density operator description [87]:

Tr [ρ̂] =

N∑
i

ρii = 1 normalization condition (C.2)

〈Â〉(t) = Tr
[
Â ρ̂(t)

]
expectation value of an operator A (C.3)

d

dt
ρ̂(t) =

1

i~

[
Ĥ(t), ρ̂(t)

]
time evolution equation (C.4)

Let us now consider a more general system than the pure state described by |ψ〉 (C.1),
like the one sketched in Fig. C.1(b). The state of this kind of system is known in a non-
perfect, incomplete way: it might be either the state |ψ1〉 with probability p1, or the state
|ψ2〉 with probability p2, etc.
Of course, we have:

p1 + p2 + . . . =
∑
k

pk = 1 (C.5)

The system under consideration is represented by a statistical mix of states {|ψ1〉, |ψ2〉, . . .}
with probabilities {p1, p2, . . .}. Note that probability enters at two levels: through quan-
tum uncertainty (intrinsic) and through statistics, thus resulting in an incomplete knowl-
edge of the system.

If the system was in the state |ψk〉, we could calculate the probability of obtaining a
particular result from a measurement. As the occurrence of the state |ψk〉 has a probability
pk, the probabilities of the measurements must be weighted by pk. The total probability
of a measurement will correspond to the sum over k, that is to say the sum over the states
of the statistical mix.
A mixed state has a straightforward representation in terms of density operator:

ρ̂ =
∑
k

pk ρ̂k (C.6)
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where the ρ̂k are the density operators corresponding to the pure states |ψk〉. Thanks to
linearity, the properties (C.2)-(C.4) still hold.

C.1.1. Populations and coherences

What is the physical meaning of the density matrix elements? Let us start by considering
the diagonal elements ρii in the general case of a mixed state:

ρii =
∑
k

pk [ρk]ii =
∑
k

pk |c(k)
i |2 (C.7)

where we introduced |ψk〉 components on the {|ui〉} basis c
(k)
i = 〈ui|ψk〉.

|c(k)
i |2 is a real positive number, whose physical meaning is the following: it is the

probability, if the system is in the state |ψk〉, of finding, after a measurement, the system
in the state |ui〉. So we can say that ρii represents the average probability of finding the
system in the state |un〉, considering the uncertainty of the state before the measurement.
For this reason, ρii is called population of the state |ui〉: if the measurement is repeated
a large number N of times, Nρii systems will be found in the state |ui〉. ρii is real and

positive, and equal to zero just in the case in which all the |c(k)
i |2 are zero [see Eq. (C.7)].

Similarly, we can obtain for off-diagonal elements

ρij =
∑
k

pk c
(k)
i c

(k)∗
j

The cross term c
(k)
i c

(k)∗
j translates the intereference effects between states |ui〉 and |uj〉

that can arise just if |ψk〉 is a linear and coherent superposition of these two states. ρij is
the weighted average of these cross terms on all the possible states of the statistical mix.

Differently from ρii, ρij can be zero even if none of the cross terms c
(k)
i c

(k)∗
j is.

If ρij = 0, it is because the average (C.1.1) cancels all the interference effects between |ui〉
and |uj〉; on the other hand, if ρij 6= 0, a certain amount of coherence still exists between
the two states. This is the reason why the off-diagonal elements in the density matrix are
called coherences.

We will describe the quantum cascade structure with a mixed state in the density
matrix representation, on the basis of the electronic wavefunctions. The diagonal part of
ρ will then contain the populations of the levels, and the off-diagonal part the coherences
between these levels, as schematized in Fig. C.2. The effect of dephasing can be seen as
the scrambling of phase of some electrons in one of the pure state ensembles that compose
the mixed state. In this picture, dephasing causes electrons to be removed from their
original pure state, and then added back with a new phase unrelated to the original one.
This has no direct effect on the popolations ρii, but just on the coherences [37].



168 C.2. Simplified density matrix model for mid- and far-infrared QCLs

Figure C.2: Density matrix representation of electronic levels.

C.2. Simplified density matrix model for mid- and far-infrared
QCLs

We present in this section a simplified model of electron transport in quantum cascade
structures based on the density matrix formalism.
The method is based on the observation that the active region of a QCL can be
divided in sub-models, corresponding to the light-emitting and injection/extraction
regions [37, 92, 94]. It will be assumed that the inter-module transport is dominated
by tunnelling through barriers, and the intra-region transport by incoherent relaxation.
This approach is justified by the fact that the barriers limiting the modules (injection
and extraction barriers) are the thickest in the structure. This results in the inter-module
tunnel couplings being considerably smaller than the intra-module tunnel couplings.
The intermodule interactions are then sensitive to dephasing, and are best treated by
including explicitely tunnel coupling and dephasing, while a semiclassical description is
adequate for the intra-module transport.

In this framework, we will make use of the localized basis approach introduced in §1.2.
The advantage of writing the density matrix in such a basis is that this allows the inclusion
of coherent tunnelling through the coupling frequencies Ω, as well as the inclusion of a de-
phasing time τ‖ by means of decay of the coherences associated with tunnel-coupled levels.

We want to be able to study systems involving an arbitrary number of levels: we
look for a general method to solve Liouville equation of motion and determine the matrix
elements of ρ, as in the two-level model proposed by Kazarinov and Suris [38] that we
reviewed in §4.1.1. The possibility of extending the method to N levels comes from a
matrix reformulation of this method.

C.2.1. Two-level system

Let us consider the of system discussed in §4.1.1, whose bandstructure is reported in
Fig. C.3, and express it in a matrix form, appropriate for an extension to an arbitrary
number of levels. We generalize the approach presented in [92, 94], based on analytical
calculations and numerical diagonalization, in contrast to the simulations based on Monte
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Carlo methods [37].

(a) Extended basis (b) Localized basis

Figure C.3: Band structure and square moduli of wavefunctions in a GaAs/Al0.3Ga0.7As
superlattice composed of 120 Å quantum wells coupled through 40 Å barriers. The applied
field is 45 kV/cm.

We have shown in §4.1.1 that the current density flowing through the system can be
expressed as:

jz = −neiΩ1′2(z1′1′ − z22)(ρ1′2 − ρ21′) (C.8)

The above expression depends on the difference between coherences (ρ21′ − ρ1′2). We
decompose the Liouville evolution equation with respect to sum and difference of coher-
ences, and obtain from the evolution of the density matrix:

dρ1′2

dt
+

dρ21′

dt
= −i∆1′2

~
(ρ1′2 − ρ21′)−

ρ1′2 + ρ21′

τ‖1′2
dρ1′2

dt
− dρ21′

dt
= −i∆1′2

~
(ρ1′2 + ρ21′)−

ρ1′2 − ρ21′

τ‖1′2
+ 2iΩ1′2(ρ1′1′ − ρ22)

(C.9)

and
dρ1′1′

dt
= iΩ1′2(ρ1′2 − ρ21′) +

ρ22

τ21

dρ22

dt
= −iΩ1′2(ρ1′2 − ρ21′)−

ρ22

τ21

(C.10)

We translate Eqs. (C.9)-(C.10) in steady state conditions in a matrix form:

[D]2×2 ·
(
ρ1′2 − ρ21′

ρ1′2 + ρ21′

)
= [C]2×2 ·

(
ρ1′1′

ρ22

)
(C.11)

[E]2×1 ·
(
ρ1′2 − ρ21′

)
= [F ]2×2 ·

(
ρ1′1′

ρ22

)
(C.12)

where

C =

 0 0

2iΩ1′2 −2iΩ1′2

 D =


i
∆1′2

~
1

τ‖1′2
1

τ‖1′2
i
∆1′2

~

 E =

−iΩ1′2

iΩ1′2

 F =

0
1

τ21

0 − 1

τ21





170 C.2. Simplified density matrix model for mid- and far-infrared QCLs

We can rewrite Eq. (C.11) as(
ρ1′2 + ρ21′

ρ1′2 − ρ21′

)
=
[
D−1 · C

]
2×2
·
(
ρ1′1′

ρ22

)
and consequently consider just the difference term

(
ρ1′2 − ρ21′

)
=
[
D−1 · C

]reduced

1×2
·
(
ρ1′1′

ρ22

)
= [Y ]1×2

(
ρ1′1′

ρ22

)
which allows us to express Eq. (C.12) as

[E]2×1 · [Y ]1×2

(
ρ1′1′

ρ22

)
= [F ]2×2 ·

(
ρ1′1′

ρ22

)
Using the normalization condition

∑
i ρii = 1, we can obtain(

ρ1′1′

ρ22

)
= [E · Y − F ]−1 ·

(
0
1

)
(C.13)

(
ρ1′2 − ρ21′

)
= [Y ] · [E · Y − F ]−1 ·

(
0
1

)
(C.14)

From Eq. (C.13) we can derive the populations ρ1′1′ and ρ22, and from Eq. (C.14)
the difference between coherences, and therefore the current density through Eq. (C.8).
This provides the same result as Eq. (4.7), and the two formulations of the problem are
completely equivalent.

C.2.2. Four-level system

We give here the details of the calculations performed in relation to the results discussed
in §4.1.2, as an application of the density matrix formalism to a THz quantum cascade
laser [42, 92]. We report in Fig. C.4 the active region bandstructure for convenience.

(a) Extended basis (b) Localized basis

Figure C.4: Band structure and square moduli of wavefunctions in the THz struc-
ture of Ref. [42]. Starting from the injector barrier, the layer thicknesses in Å are:
48/85/28/85/42/164. The external electric field is 12.5 kV/cm.
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In this sistem, Eqs (C.11) and (C.12) are extended to the form

[D]12×12 ·



ρ12 − ρ21

ρ13 − ρ31

ρ14 − ρ41

ρ23 − ρ32

ρ24 − ρ42

ρ34 − ρ43

ρ12 + ρ21

ρ13 + ρ31

ρ14 + ρ41

ρ23 + ρ32

ρ24 + ρ42

ρ34 + ρ43


︸ ︷︷ ︸[

∆ρ±ij

]
12×1

= [C]12×4 ·


ρ11

ρ22

ρ33

ρ44


︸ ︷︷ ︸[
ρii

]
4×1

[E]4×6 ·



ρ12 − ρ21

ρ13 − ρ31

ρ14 − ρ41

ρ23 − ρ32

ρ24 − ρ42

ρ34 − ρ43


︸ ︷︷ ︸[

∆ρ−ij

]
6×1

= [F ]4×4 ·


ρ11

ρ22

ρ33

ρ44


︸ ︷︷ ︸[
ρii

]
4×1

where

C = 2i



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
−Ω12 Ω12 0 0
−Ω13 0 Ω13 0
−Ω14 0 0 Ω14

0 −Ω23 Ω23 0
0 −Ω24 0 Ω24

0 0 −Ω34 Ω34


12×4
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D = i



∆12

~
−Ω23 −Ω24 −Ω13 −Ω14 0

1

τ‖12
0 0 0 0 0

−Ω23
∆13

~
−Ω34 Ω12 0 −Ω14 0

1

τ‖13
0 0 0 0

−Ω24 −Ω34
∆14

~
0 Ω12 Ω13 0 0

1

τ‖14
0 0 0

Ω13 Ω12 0
∆23

~
−Ω34 −Ω24 0 0 0

1

τ‖23
0 0

Ω14 0 Ω12 −Ω34
∆24

~
Ω23 0 0 0 0

1

τ‖24
0

0 Ω14 Ω13 Ω24 Ω23
∆34

~
0 0 0 0 0

1

τ‖34
1

τ‖12
0 0 0 0 0

∆12

~
−Ω23 −Ω24 Ω13 Ω14 0

0
1

τ‖13
0 0 0 0 −Ω23

∆13

~
−Ω34 Ω12 0 Ω14

0 0
1

τ‖14
0 0 0 −Ω24 −Ω34

∆14

~
0 Ω12 Ω13

0 0 0
1

τ‖23
0 0 −Ω13 Ω12 0

∆23

~
−Ω34 Ω24

0 0 0 0
1

τ‖24
0 −Ω14 0 Ω12 −Ω34

∆24

~
Ω23

0 0 0 0 0
1

τ‖34
0 −Ω14 Ω13 −Ω24 Ω23

∆34

~


12×12

E =


−Ω12 −Ω13 −Ω14 0 0 0
Ω12 0 0 −Ω23 −Ω24 0
0 Ω13 0 Ω23 0 −Ω34

0 0 Ω14 0 Ω24 Ω34


4×6

F =



− 1

τ1
0 0

1

τ4

0 − 1

τ2
− 1

τst

1

τ3
+

1

τst
0

0
1

τ2
+

1

τst
− 1

τ3
− 1

τst
0

1

τ1
0 0 − 1

τ4


4×4

Y =
[
D−1 · C

]reduced

6×12
(just the upper half matrix)

The above matrices allow the determination of populations
[
ρii

]
and the coherence differ-

ences
[
∆ρ−ij

]
:
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[
ρii

]
=


ρ11

ρ22

ρ33

ρ44

 = [E · Y − F ]−1 ·


0
0
0
1



[
∆ρ−ij

]
=



ρ12 − ρ21

ρ13 − ρ31

ρ14 − ρ41

ρ23 − ρ32

ρ24 − ρ42

ρ34 − ρ43

 = [Y ] · [E · Y − F ]−1 ·



0
0
0
0
0
1


We define the matrix

U =
1

~
[Hsp, z]

whose elements can be shown to be

Uij =
∆ij

~
zij + Ωij(zjj − zii) +

4∑
k 6=i,j

(Ωikzjk − Ωjkzik)

The current density is finally expressed in terms of matrices U and ρ as

J = −nei
4∑
i<j

Uij(ρij − ρji)

C.2.3. N-level system

The formulation of the current density calculation in matrix form is suitable for a
generalization of the procedure to an arbitrary number of levels. Consider for instance a
mid-IR QCL structure [39], with 13 electronic levels per period, as shown in Fig. C.5(a).
This real QCL structure is way more complex than the simple 2 and 4-level picture we
just introduced. However, we can again treat the system by identifying two modules, one
corresponding to the active region [Fig. C.5(b)] and one to the injection and extraction
region [Fig C.5(c)].

In addition to the N electronic levels constituting one period, we will have to consider
also some ’interface levels’, with the role of ensuring the transport of electrons from one
period to the following, in analogy to the role of the injector (level 1) in the four-level
calculation.

In the case of N levels

[D]2M×2M ·
[
∆ρ±ij

]
2M×1

= [C]2M×N ·
[
ρii

]
N×1

[E]N×M ·
[
∆ρ−ij

]
M×1

= [F ]N×N ·
[
ρii

]
N×1



174 C.2. Simplified density matrix model for mid- and far-infrared QCLs

(a) Extended basis

(b) Localized basis: active region

(c) Localized basis: injection/extraction region

Figure C.5: Band structure and square moduli of wavefunctions in the mid-IR struc-
ture of Ref. [39]. Starting from the injector barrier, the layer thicknesses in Å
are: 40/19/7/58/9/57/9/50/22/34/14/33/13/32/15/31/19/30/23/29/25/29. The external
electric field is 43 kV/cm.
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where M =
(
N
2

)
is the number of possible level pairings.

In order to generalize matrices C,D,E, F , we use a greek index to denote transitions,
i.e. α ≡ (αi, αj), 1 ≤ α ≤M , and keep on using latin indeces to indicate levels, 1 ≤ i, j ≤
N . With this notation, we write matrix C as:

C =


[0]M×N

[C]lower
M×N


and the elements of the lower matrix are given by

C lower
αj = 2i


−Ωαiαj if j = αi
Ωαiαj if j = αj
0 otherwise

For the D matrix we have:

D =


[D]

diag1
M×M [D]off−diag

M×M

[D]off−diag
M×M [D]

diag2
M×M



D
diag1
αβ = i



∆α

~
if α = β

−Ωαjβj if αi = βi, αj 6= βj

Ωαjβi if αi = βj , αj 6= βi

−Ωαiβj if αj = βi, αi 6= βj

Ωαiβi if αj = βj , αi 6= βi

0 otherwise

D
diag2
αβ = i



∆α

~
if α = β

−Ωαjβj if αi = βi, αj 6= βj

−Ωαjβi if αi = βj , αj 6= βi

Ωαiβj if αj = βi, αi 6= βj

Ωαiβi if αj = βj , αi 6= βi

0 otherwise

Doff−diag
αβ = i


1

τ‖α
if α = β

0 otherwise

Matrix E:

Eiβ =


−Ωβiβj if i = βi
Ωβiβj if i = βj
0 otherwise
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Matrix F contains relaxation times. We divide it in two parts, F = F 0 +F 1. F 0 contains
the relaxation times within localized regions:

F 0
ij =



− 1

τi
= −

∑
k 6=i

1

τik
if i = j

1

τji
if i 6= j, (i, j) ∈ same region

0 otherwise

F 1 contains the relaxation due to interface levels. Suppose these are listed in a set
{interface levels}. The only non-zero elements of F 1 are then

F 1
ij =



− 1

τi
= −

∑
k 6=i,k∈{i.levs.}

1

τik
if i = j

1

τji′
if i 6= j, i ∈ {interface levels}

1

τj′i
if i 6= j, j ∈ {interface levels}

where the primed indeces i′, j′ represent the levels i, j in the previous (injectors) or fol-
lowing (extractors) period.

As in the previous cases, we can use these matrices to determine populations
[
ρii

]
and

the coherence differences
[
∆ρ−ij

]
:

[
ρii

]
=


ρ11

ρ22
...

ρNN

 = [E · Y − F ]−1 ·


0
0
...
1


[
∆ρ−ij

]
=


ρ12 − ρ21

ρ13 − ρ31
...

ρN−1,N − ρN,N−1

 = [Y ] · [E · Y − F ]−1 ·


0
0
...
1


The elements of the generalized matrix U are

Uij =
∆ij

~
zij + Ωij(zjj − zii) +

N∑
k 6=i,j

(Ωikzjk − Ωjkzik)

and the current density can be finally calculated as

J = −nei
N∑
i<j

Uij(ρij − ρji)
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Mid-infrared quantum cascade lasers: from
TEM measurements to electron transport

modeling

The formulation of the current density calculation in matrix form is suitable for a
generalization of the procedure to an arbitrary number of levels, to apply in the case of
any quantum cascade laser structure, as detailed in Appendix C.
In this section, we apply our method to a post-growth study of a MOCVD- (MetalOrganic
Chemical Vapour Deposition) grown QCL, fabricated at the Laboratoire de Photonique
et de Nanostructures (LPN) by Isabelle Sagnes and Grégoire Beaudoin. This systematic
study has been done in close collaboration with Ariane Calvar and Maria Amanti, who
have performed the processing and experimental characterization of the device.

After their experimental demonstration in 1994 [2], all the first successful QCLs were
grown by Molecular Beam Epitaxy (MBE), a technique based on the sequential deposition
of thin layers of semiconductors of high crystalline quality.

MOCVD is a growth technique based on chemical reactions rather than physical
deposition. The first MOCVD-grown active region was reported in 2003 [117]. Compared
to MBE, MOCVD offers higher deposition rates (≈ 2 µm per hour) and the possibility to
grow on several substrates during the same run. In addition, MOCVD does not need a
ultra vacuum environment. These features make MOCVD more suitable for industrial
purposes of QCL-mass-production. However, the chemical nature of the process is more
prone to deviations from the ideal growth. While shutters on the effusion cells allow for a
good control of the MBE deposition, gas flows and mixtures in the MOCVD growth can
generate residual doping and less abrupt interfaces.

We consider here an MOCVD-grown AlInAs/GaInAs//InP QCL (sample InP969) based
a two-phonon extraction design [39], conceived for a 9-µm emission. Its nominal band
structure is shown in Fig. D.2(a). In the following, we present the post-growth TEM
measurements (performed by Gilles Patriarche at LPN) and experimental characterization
on this device, which we will then interpret with a theoretical analysis within the density-
matrix transport model.
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D.1. HAADF-STEM tomography measures

It is possible to analyze the composition and thickness of the semiconductors layers using
a Scanning Transmission Electron Microscope (STEM). In this microscopy technique, a
focussed electron beam scans the surface of a thin sample, interacting with it when passing
through. Thanks to this interaction, an image with electronic resolution is formed.

If used in the bright field mode, the contrast of a STEM image comes from the
absorbance of the electrons in the sample, and is observed in the transmission of the
main beam. On the contrary, in dark field imaging the main beam is avoided, and just
electrons scattered above a certain angle are collected. In this case the contrast comes
from electron scattering, mainly due to strong Coulomb interaction between the electrons
of the beam and the nuclei of the sample. A measure performed using an annular dark
field detector to collect the scattered beam at high angle (HAADF) is highly sensitive to
variations in the atomic number of atoms. One can thus obtain images where the contrast
is proportional to the atomic number Z.

The result of an HAADF-STEM measurement on the QCL structure under considera-
tion is presented in Fig. D.1. Panel (a) presents the image of one period of the active region.
The darker layers correspond to AlInAs barriers (ZAl = 13), and the lighter zones to In-
GaAs wells (ZGa = 39). The contrast profile deduced from this image is presented on panel
(b). Here, the solid black lines indicate the contrast limits expected for lattice-matched
ternaries In0.53Ga0.47As/In0.52Al0.48As, extrapolated from the values of the thicker layers.
Deviations in the peaks height or dips compared to these lines represent variations in the
layer compositions from the nominal ones. In addition to this, Fig. D.1(c) shows that the
interfaces between the different semiconductor epilayers are not monolayer abrupt.

The results of the HAADF contrast profile are summarized in Table D.1, which reports
the nominal values of the layer thicknesses along with their measured values. In the case
of InGaAs wells, the main deviation from the nominal design is the layer thicknesses, with
an average absolute deviation of 6%. In terms of material composition, all the wells result
to be really composed of a ternary InGaAs, except for one (labeled 15 in the table), which
contains 7.6% of Al.

The differences from the nominal design are more substantial for AlInAs barriers,
especially in the active region, where the thinnest barriers are found in the design. The
thickness difference between expected and measured values ranges from 5% to 56%. Only
the two thickest barriers contain the nominal 48% Al concentration: all the other barriers
are composed of quaternary materials, with a finite content of Ga.

D.2. Modeling

In order to model a structure closer to the STEM measurements characterization, we
consider the modified thicknesses and compositions of the layers, and change the confining
potential accordingly. The height of the barriers can be modified proportionally to the
measured percentage of Al content (see Ref. [118]).

The nominal (left panel) and modified (right panel) band structure are shown in
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Figure D.1: a) HAADF-STEM image of one period in the active region of the sample InP969,
obtained with a TEM/STEM JEOL 2200 FS with a spherical aberration correction and a
resolution of ≈2 nm. The contrast between the layers corresponds to the different chemical
composition of the InAlAs barriers and InGaAs wells. The yellow arrow indicates the thickest
InAlAs layer for which the nominal composition is supposed to be respected. b) HAADF
contrast profile obtained from the STEM image. The black lines correspond to the lattice
matched ternary alloys. c) Close up of the wells and barriers in the injection/relaxation region.
The interfaces between the two are not abrupt. (Courtesy of I. Sagnes and G. Beaudoin).
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Thickness (Å) InAlAs InGaAs
Layer Nominal (Å) TEM (Å) %In %Al %Ga %In %Ga %Al

Injection/Extraction region

× 36

1 InGaAs 34.0 33.3 53 47 -
2 InAlAs 14.0 17.2 52 45.5 2.5
3 InGaAs 33.0 31 53 47 -
4 InAlAs 13.0 14.3 52 41.7 6.3
5 InGaAs 32.0 31 53 47 -
6 InAlAs 15.0 16.6 52 43 5
7 InGaAs 31.0 28.7 53 47 -
8 InAlAs 19.0 20.1 52 43 5
9 InGaAs 30.0 31 53 47 -
10 InAlAs 23.0 24.1 52 45.5 2.5
11 InGaAs 29.0 28.1 53 47 -
12 InAlAs 25.0 26.4 52 48 -
13 InGaAs 29.0 29.9 53 47 -

Active region
14 InAlAs 40.0 41.9 52 48 -
15 InGaAs 19 17.2 53 39.4 7.6
16 InAlAs 7.0 10.9 52 22.8 25.2
17 InGaAs 58 49.9 53 47 -
18 InAlAs 9.0 11.4 52 29 19
19 InGaAs 57 50.5 53 47 -
20 InAlAs 9.0 13.8 52 31.6 16.4
21 InGaAs 50.0 47.6 53 47 -
22 InAlAs 22.0 24.7 52 44.3 3.7

Table D.1: Chemical composition and thickness of the different layers of one period of the sam-
ple InP969 based on the analysis of the HAADF contrast profile of Fig. D.1. The nominal and
lattice-matched composition is In0.53Ga0.47As/In0.52Al0.48As. The InAlAs layer highlighted
in orange (14) corresponds to the one on Fig. D.1(b) for which the nominal composition is
respected. The InGaAs layer highlighted in blue (15) corresponds to the only well for which
nominal composition is not attained.
The error on these values is related to the analysis of the contrast profile, and estimated to
be ±10% on the Al concentration, and ±3 Å on the thicknesses. (Courtesy of I. Sagnes and
G. Beaudoin).
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Nominal Grown

Transition energy (meV) 136 - 145 130 - 135
z23 (Å) 33.0 - 33.2 29.7 - 30.5
τexc (ps) 0.6 - 0.9 0.2 - 0.3

2~Ω12 (meV) 7 6.5
2~Ωextraction (meV) 3 - 10 5 - 11

Table D.2: Value range of some relevant parameters in InP969 structure, for electric fields
between 30 kV/cm and 55 kV/cm.

Fig. D.21. Some of the relevant parameters in the comparison of the two structures are
reported in Table D.2.

The changes in the potential and in the wavefunctions appear quite impressive, espe-
cially in the active region, where the height of the barriers is strongly reduced. This has
the immediate consequence of making the transition from excited (level 2) to ground state
(level 3) much less diagonal, as well as less energetic (from ≈ 140 meV to ≈ 130 meV).
Moreover, this verticality causes higher values of the dipole z32, and shorter lifetimes of
the excited state. Overall, the upper wavefunctions in the active region are badly confined
due to the lowered heights of the barriers.

As a result, the two structures present a different alignment field for the coupling
between the main injector (level 1) and the excited state (level 2): in the nominal design,
this happens around ≈ 45 kV/cm , while in the grown structure this value rises to ≈ 50
kV/cm.

Figure D.2: Band structure and squared moduli of wavefunctions for the nominal design (left
panel) and for the actual structure deduced from the TEM measurements summarized in
Table D.1. The most relevant changes affect the active region, resulting in a less diagonal and
less energetic radiative transition.

1In the following, we label as ’nominal’ the ideal design, and ’grown’ the structure calculated accounting
for STEM measurements.
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Finally, we apply to the nominal and grown structure the generalized density matrix
calculation presented in §C.2.3. We use for our calculation the value of the doping which
has been measured post-growth, and found to be equal to NV = 1.5× 1016cm−3 [119].

In the mid-IR frequency range, the pure dephasing time T2 (see Eq. (1.26) and cor-
responding footnote) is expected to be well approximated by the interface roughness in-
trasubband scattering time (see §B.1) [111]. The dashed lines in Fig. D.3 present the
calculated VI characteristics for the nominal (a) and grown (b) structure, where all the
dephasing times have been calculated considering as sources of pure dephasing the inter-
face roughness scattering. The appearance of the two curves is not smooth, especially
in the case of Fig. D.3(a). This effect can be attributed to the variation of the overlap
between wavefunctions with the electric field. We choose to smoothen the curves by set-
ting a common τ‖ which preserves the predicted value of maximum current. The result
of this approximation is represented by the solid lines in Fig. D.3. We use τ‖=0.15 ps
for the nominal structure, and τ‖=0.10 ps for the grown structure, both parameters being
included in the range of the τ‖ calculated from interface roughness.
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Figure D.3: Calculated VI (accounting for stimulated emission) for the InP969 structures of
Fig. D.2. Dashed lines: dephasing time τ‖ calculated from interface roughness. Solid lines:
dephasing time τ‖ set to an average value.

Comparison between the two curves in Fig. D.3 confirms that the alignment voltage
of the grown structure is higher. A slightly lower maximum current is calculated for
the latter. This can be understood in terms of a reduced injection coupling, due to the
increased thickness of the injection barrier, and of a lower extraction efficiency.

The calculated gain spectra are shown in Fig. D.4(b). The peak of the gain spectra of
the grown structure is much less variable in energy than what expected for the nominal
structure, as the main transition is much less diagonal in the grown rather than in the
nominal structure.

The calculated LVI curves [Fig. D.4(c)] show that even if deeply changed, the design
can still sustain current and operate as a laser. This is a proof of the robustness of this
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Figure D.4: a) Band structure and potential as in Fig. D.2, just most relevant levels plotted. b)
Calculated gain spectra for nominal and grown structure presented in Fig. D.2 and Table D.1.
c) Calculated LVI, αtot = 14 cm−1.



184 D.2. Modeling

QCL design. The emitted power of the grown structure is expected to be lower (due to
the reduced dynamic range), while the threshold remains comparable.

The experimental characterization of this structure is presented in Fig. D.5 [119]. The
device is composed of 36 repetitions of the active region, processed into a typical uncoated
Fabry-Perot device, 1.9 mm long and 12.7 µm wide.

The laser emission spectra of Fig. D.5(a) is centered between 132 and 137 meV. It
shows a small variation while sweeping the voltage, in agreement with the calculated
behaviour of the gain spectrum. Lastly, comparison between measured and calculated VI
[Fig. D.5(b)] shows a better agreement with the LVI characteristics of the grown structure.

Thanks to the present study and to a combined effort between the LPN and our team,
the growth of the 9-µm structure has been optimized in order to reproduce the nominal
design more accurately. The optimized structure has been eventually exploited in the
demonstration of high-frequency modulated QCLs [119].
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(a) Laser emission spectra of the sample as a
function of the operating voltage at 77K [cf.
Fig. D.4(b)].
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(b) Comparison between the calculated LVI for the
nominal (dashed line) and grown (solid line) structure
and the experimental data (red dots), CW operation,
77 K.

Figure D.5: Comparison with experimental data for InP969 [119].
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[116] H. Fröhlich. Electrons in lattice fields. Advances in Physics, 3:325–361, 1954.



Bibliography 195

[117] J. S. Roberts, R. P. Green, L. R. Wilson, E. A. Zibik, D. G. Revin, J. W. Cockburn,
and R. J. Airey. Quantum cascade lasers grown by metalorganic vapor phase epitaxy.
Appl. Phys. Lett., 82(24):4221–4223, 2003.

[118] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan. Band parameters for iii–v
compound semiconductors and their alloys. J. Appl. Phys., 89(11):5815–5875, 2001.

[119] A. Calvar. Design, engineering and processing of QC Lasers for high frequency
modulation. PhD thesis, Université Paris Diderot - Paris 7, 2013.
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