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Résumé de la thèse

Observations générales

Ma thèse a été réalisée à l’Institut Charles Sadron (ICS) de Strasbourg sous la direction

du Docteur Joachim Wittmer dans le cadre de l‘IRTG Soft Matter Science en collabo-

ration avec le Professeur Hong Xu (Metz), le Professeur Christian Friedrich (Freiburg)

et le Professeur Alexander Blumen (Freiburg). Une bonne étude pluridisciplinaire fourni

une large gamme de possibilités pour résoudre plusieurs problèmes difficilement solvables.

L‘IRTG Soft Matter Science dont je dépends, est conçu pour fournir des solutions dans

la compréhension des problèmes complexes entre plusieurs disciplines scientifiques. C‘est

dans ce but que l‘IRTG, une collaboration entre mon groupe de recherche et d‘autres

groupes, est née. Mon travail avec le professeur Xu était centré sur les propriétés thermo-

dynamiques et mécaniques des polymères denses et sur leurs liens avec les systèmes de la

matière molle que j‘expliquerai brièvement dans le paragraphe suivant. Ma collaboration

avec le Professeur Friedrich m‘a permis d‘étudier les propriétés de conformation et les

propriétés rhéologiques des polymères hyperbranchés qui sont les actuelles priorités de

mes recherches. La participation théorique de mon travail, principalement des travaux

de modélisation numérique, a été effectuée en collaboration avec le Professeur Blumen.

Cette partie du projet était particulièrement intéressante pour moi.

Contributions à la description des propriétés thermodynamique et mécanique

des polymères à l‘état fondu et des systèmes de matière molle.

Tant qu‘il sera difficile voire impossible d‘examiner certains cas particuliers avec des

instruments communs, la simulation numerique propose une méthode compréhensible ca-

pable d‘etudier ces cas particuliers. Aussi loin que notre imagination le permet, nous pou-

vons établir des correspondances grâce aux données obtenues pour examiner précisément

le matériau choisi. Lors de ma thèse, j‘ai pu me heurter à plusieurs problèmes intrigants.

Mon approche face à ceux-ci est partiellement décrite dans le manuscrit. Lors de mon stage
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de trois mois (2009) à l’ICS, j‘ai déjà participé à l‘etude numérique de la corrélation tem-

porell des déplacements dans des liquides de Lennard-Jones, denses, fortement suramortis

et qui dépendent d‘un thermostat de Langevin imposé. Un problème fortement lié con-

cerne la déviation de la dynamique du centre de masse des polymères par rapport au

modèle de Rouse pour des polymères denses mais non-enchevêtrés. Ceci a été étudié

dans mes trois premières publications que je reprendrai dans mon manuscript [1, 2, 3]. La

réponse linéaire élastique d‘un système sous l‘action de champs variables externes est l‘une

des méthodes d‘investigation les plus communes pour décrire un matériau. Certaines fluc-

tuations du système dépendent fortement des contraintes imposées au système [4, 5, 6].

De nombreux efforts ont été consacrés à valider la fiabilité du modèle et à l‘améliorer.

C‘est pour cette raison que nous avons décidé de clarifier la notion de distance critique

d‘un potentiel et de son décalage sur des quantités impliquant les dérivées secondes (et

de plus haut degrés) de ce potentiel [7].

Etude principale: Polymères hyperbranchés

Le champ de recherche des polymères étoiles, développés à la fin des années 1970, a

explosé durant la dernière décennie. Au tout début, ces molécules étaient étudiés unique-

ment en sciences des matériaux et des polymères mais ces nouveaux types de macro-

molécules ont rapidement trouvé leur place dans un champ pluridisciplinaire entre la

chimie organique, la médecine, la biologie et les biotechnologies. Dans le dernier projet

sur lequel nous nous concentrons ici, nous étudirons les corrélations entre la topologie des

polymères étoiles, car leur comportement n‘est pas bien compris. L‘étude de polymères

hyperbranchés montre qu‘ils sont substantiellement différents de leurs analogues linéaires.

En utilisant des méthodes de simulation, nous pouvons obtenir des informations inacces-

sibles par des méthodes expérimentales et heureusement obtenir de précieuses informa-

tions du point de vue industriel et scientifique. Notre point de départ était l‘étude de

l‘influence de la longueur d‘une branche et du nombre de générations sur la conformation

de la molécule. Ces deux paramètres influent visiblement sur la forme de la molécule. Ces

changements, visibles pour différentes propriétés comme le nombre de contact, le facteur

de forme ou le déplacement carré moyen, seront explicités dans la thèse. Actuellement,

il existe une controverse dans la littérature, à savoir si les molécules en étoile, peuvent

supporter une structure à centre de faible densité et si elles peuvent devenir collod̈ales

pour un grand nombre de générations. Cette étude traite le problème par des simulations

et comme expliqué dans le manuscrit, dans notre simulation, nous avons observé un cen-

tre de faible densité pour un grand nombre de générations et une enveloppe extérieure

plutôt compacte. Cette tendance se retrouve également pour les propriétés dynamiques.

Le manque d‘enchevétrement dans les polymères hyperbranchés fait d‘eux des matériaux

moins résistant que ceux composés de châınes linéraires. Un autre point est la diminution
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de la mobilité causée par un grand nombre de points de ramification. La viscosité perd

sa simple dépendance à la masse dans le cas d‘une châıne linéaire.

Au cours de ma thèse j‘ai organisé une conférence ”Experimental and theoretical meth-

ods for investigating polymer dynamics” in Schauinsland, Allemagne (5-6 Mars 2012).
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Chapter 1

Introduction

1.1 Context of my research

Generalities. Soft matter [8] is a subfield of condensed matter [9] comprising a variety

of physical states that are easily deformed by thermal stresses or thermal fluctuations.

They include liquids [10, 11], colloids, polymers [12, 13, 14, 15], foams, gels and various

glass forming materials [16]. They share an important common feature in that predom-

inant physical processes occur at an energy scale comparable with room temperature

thermal energy. (At these temperatures, quantum aspects are generally unimportant [8].)

Soft matter physics is an interdisciplinary field encompassing statistical physics [17, 18],

materials science [19], and (more recently) biophysics. The experimental and computa-

tional study of soft matter systems is generally difficult due to the extremely wide range of

length and time scales which govern their static and dynamical behavior [12]. This chal-

lenge can often only be met by studying by means of computer simulations [20, 21, 22]

extremely simplified coarse-grained models characterized by a small number of effective

parameters.

Polymeric systems. Such a simplified approach is indicated for the numerical study

of solutions and melts of (linear or branched, unattached or grafted, neutral or charged,

quenched or annealed, . . . ) macromolecular polymer chains [14] which is a central focus

of my current research group at the Institut Charles Sadron (ICS) in Strasbourg [23,

1, 24, 25]. Often required parameters are, e.g., the number of effective monomers N

per chain, the Wiener index W1 characterizing the first moment of the distribution of

the curvilinear distances of topologically connected monomer pairs [26] (cf. Sec. 3.3),

and the number density ρ of the particles [13, 14]. From the thermodynamic point of

view it is the temperature T (often set to unity in the current work), the pressure P , the

compression modulus K and (e.g., for solid-like glasses at low temperatures [25]) the shear

modulus G which characterize in addition the isotropic equilibrium phases we shall focus

12



CHAPTER 1. INTRODUCTION

Figure 1.1: Sketch of different topologies of branched polymer stars considered: (a)
Regular dendrimer of generation number G = 2 with M = 9 arms. (b) Hyperbranched
so-called “α-stars” with imposed spacer chain number Mg ∼ gα−1 for g ≤ G constructed
iteratively (g → g+1) by restricting randomly the branching of the arms. Some branches
may thus end at g < G. (c) Self-similar “β-stars” of fractal dimension df are generated
starting with regular G = 2 dendrimers and replacing iteratively the Mi−1 spacers of
length Si−1 by Mi = Mi−1nM spacers of length Si = Si−1/nS. The generator shown
corresponds to self-similar stars of constant density (df = 3). (d) Multifractal “γ-stars”
are obtained by applying randomly more than one generator. Mixing with equal weight
the generator B (nS = nM = 4) with the compact star generator A (nS = 4, nM = 8)
leads to a star with df = 2.5.

on [1].1 Experimental relevant observables of such polymeric systems are, e.g., the radius

of gyration Rg(N) or the intramolecular coherent form (structure) factor F (q) with q

being the wavevector of the light, X-ray (SAXS) or small-angle neutron (SANS) scattering

method used [12, 14, 15]. It is generally the aim of a theoretical or computational study

to understand and, possibly, to predict the scaling of such experimental observables with

respect to, say, the monomer number N , the chain topology or architecture imposed by

the chemical reaction.

Hyperbranched polymers and dendrimers. The use of simple coarse-grained mod-

els is especially relevant for the simulation and characterization of dilute and dense solu-

tions of (asymptotically) large hyperbranched polymer stars [14, 27]. I remind that regular

dendrimers are a subset of hyperbranched polymers without topological imperfections on

1Obviously, the static shear modulus G vanishes in the liquid state [8] as emphasized in Chapter 2.
The notation G(t) ≡ τ(t)/γ used in Sec.4.4 refers to the time-dependent shear stress relaxation modulus
with τ(t) being the shear stress remaining at time t after a shear strain γ was applied at t = 0 to an
unstressed reference system [14]. For historical reasons, the notation G is unfortunately also used to
specify the number of generations in hyperbranched polymer stars in Chapter 3 and 4.
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CHAPTER 1. INTRODUCTION

which much of the recent experimental [28], theoretical [29, 30, 31, 32, 33] and compu-

tational research [31, 34, 35, 36, 37, 38, 39, 40] has concentrated on. A sketch of such

regular dendrimers can be seen in panel (a) of Fig. 1.1 which is further discussed in more

detail in Chapter 3 and 4. Such “starburst” molecules are made either by divergent syn-

thesis, starting from the root monomer and sequentially filling out generations [28], or by

convergent synthesis, growing branched arms first and then attaching them to the core

[41]. There is a considerable research on dendrimer chemical synthesis, and there are

many reviews in the literature [42, 43, 44, 45]. Dendritic polymers have shown promise

in a host of applications including the photochemistry [46], biology- and biochemistry-

oriented contribution to gene transfection [47], acting as antibody dendrimers [48]. The

pharmaceutical industry could attach side-specific receptors and use them as delivery ve-

hicles for bioreactive molecules [49]. In order to better engineer the desired properties

into a starburst dendrimer, one must know how its internal (intra chain) density profile

ρ(r) is affected by the specific chemical characteristics such as the functionality f of the

branching monomers (filled spheres in Fig. 1.1), the length S of the spacer chains between

the branching points, and their relative flexibility or rigidity.

One central query. For a number of technologically important applications, it is cru-

cial to predict the range of parameters for which a dendrimer has a dense outer shell with

a solvent-filled, hollow (or at least monomer depleted) inner core.2 Interestingly, there is

a controversy in the literature as to whether the simplest case of an uncharged dendrimer

with flexible spacers and purely repulsive monomers has a dense or a hollow inner core.

In an early analytical self-consistent mean-field calculation (assuming implicitly strongly

stretched dendrimer arms), de Gennes et Hervet [29] found the density to be minimal

at the core increasing monotonically to the outer edge. At variance, a numerical kinetic

growth algorithm of regular dendrimers without equilibration of the monomer positions

by Lescanec and Muthukumar [34] showed a maximum density at the core decreasing

monotonously to the edge. This general “dense core picture” has essentially been con-

firmed by the (thermodynamically more rigorous) Monte Carlo simulations by Mansfield

and Klushin [50], the molecular dynamics simulations by Murat and Grest [36] and other

more recent numerical studies [38, 39, 51]. Interestingly, a slight local minimum at small

radial distances r for larger generation numbers G can be observed in some these numer-

ical studies [36]. Such a local minimum, if confirmed, would not be consistent with the

(present version of the) self-consistent mean-field model suggested by Boris and Rubin-

stein [52]. Note that most of the mentioned numerical studies focus on dilute dendrimers

[34, 36, 38, 39, 50, 51]. Using a variant of the bead-spring model studied by Murat and

Grest [36], much of my PhD work was dedicated to the equilibration and characterization

of dense melts of such regular dendrimers.

2In the extreme case such a hollow structure may mimic a cell membrane.
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1.2 Stepping stones of my PhD work

Contributing to various numerical issues of concern to my research group and my collabo-

rators in Metz (Prof. H. Xu) and Freiburg (Prof. A. Blumen, Prof. C. Friedrich, C. Gillig),

I had the opportunity to contribute to several publications [1, 2, 3, 4, 5, 6, 7, 53, 54]. Using

various molecular dynamics and Monte Carlo schemes [20, 21, 22, 55], I have thus worked

on a broad range of topics covering dense colloidal solutions and glasses [4, 5, 6, 7, 56],

linear polymer melts [1, 2, 3] and hyperbranched polymer stars [54, 57]. Following my

(yet unpublished) internship study on displacement correlations [56] at the ICS (2010),

I have briefly touched dynamical properties [1, 2, 3] related to the recently discovered

viscoelastic hydrodynamic interactions in polymer melts [24]. Most of my work in the

last three years has focused, however, on static issues:

(i) the numerical determination of elastic moduli and related static correlation functions

in different (generalized Gaussian) ensembles [4, 5, 6, 7, 53] and

(ii) conformational properties of hyperbranched polymer stars [54, 57].

Especially, my molecular simulations of dendrimer melts [57] have turned out to be com-

putationally very demanding requiring about two years of sampling time on our local

workstation cluster. For this reason we have still not managed to conclude this most

central issue of my PhD work. I note that this research issue has been triggered by my

collaboration with the groups of Prof. Friedrich and Prof. Blumen in Freiburg in the

frame of the IRTG (International Research and Training Group) “Soft Matter” where my

PhD grant was funded. Originally, the idea has been to investigate

(iii) the elastic and rheological properties of transient networks formed by systems of,

e.g., telechelic polymers in water-old emulsions [58, 59], living polymer micellar sys-

tems [60] or hyperbranched chains with sticky end groups, as have been synthesized

in the Friedrich group [61].

The simulation of solutions and melts of regular dendrimers with purely repulsive monomer

interactions (see Sec.4.2 for details) was thus initially thought to be just a first step for

the study of transient hyperbranched polymer networks. Unfortunately, mainly due to

the already mentioned huge sampling times needed, the switching on of attractive interac-

tions between the end groups of the hyperbranched chains has not been possible yet. One

reason for the study of the elastic and rheological properties in colloidal systems was that

we wanted to prepare the methods needed for the investigation of the transient network

systems3. Unfortunately, it has not been possible within this PhD to bring together (i)

and (ii) to study numerically (iii) which must be postponed to the future.

3For this reason we also got interested in the “reversed non-equilibrium molecular dynamics”
(RNEMD) method by Müller-Plathe for computing the shear viscosity [62] described in Sec.4.4.
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1.3 Scope and outline of my PhD thesis

The presented PhD manuscript mirrors the two main fields (i) and (ii) of my research.

(i) Chapter 2 presents the paper [7] on elastic-mechanical properties on which I have

contributed most. The truncation of a pair potential at a distance rc is well-known to

imply in general an impulsive correction to the pressure and other moments of the first

derivatives of the potential [21]. That, depending on rc, the truncation may also be

of relevance to higher derivatives of the potential is shown theoretically for the Born

contributions to the elastic moduli obtained using the stress-fluctuation formalism [4, 21]

in d dimensions. Focusing on isotropic liquids for which the shear modulus G must vanish

by construction, the predicted corrections are tested numerically for binary mixtures

[63] and polydisperse Lennard-Jones beads [64, 65] in, respectively, d = 3 and d = 2

dimensions. If the impulsive correction is properly taken into account, G(T ) is seen to

vanish for all temperatures T above the glass transition temperature Tg and to increase

strongly as G ≈ (1−T/Tg)1/2 on cooling below Tg, i.e. a thermodynamically well-defined

four-point correlation function is shown to become finite at the transition. More details

on the calculation of the shear modulus at and around the glass transition can be found

in Ref. [6] which is not reproduced here since I have only played a minor part in this

project.

(ii) Conformational properties of regular dendrimers and hyperbranched polymer stars

with Gaussian statistics [12, 13] for the spacer chains between branching points are re-

visited in Chapter 3 which is based on a recently submitted manuscript [54]. We inves-

tigate the scaling for asymptotically long chains especially for fractal dimensions df = 3

(marginally compact [15, 66]) and df = 2.5 (diffusion limited aggregation [67, 68, 69, 70]).

Power-law stars obtained by imposing the number of additional arms per generation are

compared to truly self-similar stars. We discuss effects of weak excluded volume inter-

actions (Sec. 3.6) and sketch the regime where the Gaussian approximation should hold

in dense solutions and melts for sufficiently large spacer chains (Sec. 3.7). Chapter 3 is

needed to introduce some notations and well-known concepts [12, 14] and to discuss the

Gaussian reference (all excluded volume interactions being switched off) which should be

relevant — assuming sufficiently large spacer chains as seen in Sec. 3.7 — for describing

the regular dendrimer melts discussed in the following Chapter.

We present in Chapter 4 our still on-going molecular dynamics simulation of den-

drimers of a broad range of the spacer chain length S at the standard “melt density”

ρ = 0.85 of the Kremer-Grest bead-spring model [36, 71]. Sec.4.2 presents our numerical

model and some technical issues related to the equilibration and characterization of the

samples. The static properties of the dendrimers are described in Sec.4.3. This section

contains the most surprising finding of this PhD work: The total density profile of the

dendrimers is found to have a strikingly strong depletion close to the root monomer of the
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star, i.e. at variance to various statements made in the literature [34, 36, 39, 51, 72, 73]

the density is strongly non-monotonous. Sec. 4.4 attempts to characterize the equilibrium

dynamics of our dendrimer melts. While for large generation numbers and short spacer

chains (where the dendrimers essentially become compact spheres) the diffusion constant

D is seen to decrease inversely with mass N (as expected for uncorrelated random forces

acting on all N particles [12, 13]), additional slowing-down of the diffusion is observed

with increasing spacer length. The latter effect may be traced back to the stronger inter-

penetration of the stars and the increasing influence of topological interactions (implying

possibly reptation-like dynamics of the star arms) [12]. Surprisingly and perhaps in con-

tradiction to the single chain (self) dynamics, we observe that for large generation numbers

the zero-shear viscosity η, obtained using Müller-Plathe’s out-of-equilibrium method [62],

gets essentially G-independent, i.e. the collective dynamical response of the melt becomes

N -independent.

The work of my PhD is summarized in Chapter 5.
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The Journal of Chemical Physics 135, 18 (2011)

4. Strictly two-dimensional self-avoiding walks: Thermodynamic properties revisited

N. Schulmann, H. Xu, H. Meyer, P. Polińska, J. Baschnagel, and J.P. Wittmer
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9. Hyperbranched polymer stars with Gaussian chain statistics revisited

P. Polińska, C. Gillig, J.P. Wittmer and J. Baschnagel

The European Physical Journal E 37, 12 (2014)
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Reference [2] is a review paper of my research group at the ICS. The presented PhD

manuscript focuses on the publications [5] and [9]. Currently, we are preparing a publi-

cation on our molecular dynamic simulation of starburst dendrimer melts [10] on which

Chapter 4 is based. Publication [11] refers to an yet unwritten paper summarizing some

of my results obtained in my internship at the ICS (2011).
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Chapter 2

Impulsive correction to the elastic

moduli obtained using the

stress-fluctuation formalism

2.1 Introduction

Background. It is common practice in computational condensed matter physics [20,

21, 22] to truncate a pair interaction potential U(r), with r being the distance between

two particles i and j, at a conveniently chosen cutoff rc. This allows to reduce the

number of interactions to be computed and energy or force calculations become O(n)-

processes where n denotes the particle number. However, the truncation also introduces

technical difficulties, e.g., instabilities in the numerical solution of differential equations

as well-studied especially for the molecular dynamics (MD) method [20]. Let us label the

interaction between two particles i < j by an index l. For simplicity of the presentation

and without restricting much in practice the generality of our results, we assume that

• the potential U(r) is short-ranged, i.e. that it decays within a few particle diameters,

• it scales as U(r) ≡ u(s) with the reduced dimensionless distance s = r/σl where σl

characterizes the length scale of the interaction l and

• the same reduced cutoff sc = rc/σl is set for all interactions l.

For instance, for monodisperse particles with constant diameter σ, as for the standard

Lennard-Jones (LJ) potential [20],

uLJ(s) = 4ε

(
1

s12
− 1

s6

)
, (2.1.1)
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the scaling variable becomes s = r/σ and the reduced cutoff sc = rc/σ. The effect of

introducing sc is to replace u(s) by the truncated potential

ut(s) = u(s)H(sc − s) (2.1.2)

with H(s) being the Heaviside function [74]. Even if Eq. (2.1.2) is taken by definition

as the new system Hamiltonian, it is well known that impulsive corrections at the cutoff

have to be taken into account in general for the pressure P and other moments of the

first derivatives of the potential [21]. These corrections can be avoided by considering a

properly shifted potential [21]

us(s) = (u(s)− u(sc))H(sc − s) (2.1.3)

as emphasized also below in Sec. 2.2.1.

Key points made. Reproducing essentially Ref. [7], I discuss in this Chapter the con-

sequences of Eq. (2.1.3) on quantities involving second (and higher) derivatives of the

potential. For these quantities the standard shifting of a truncated potential is shown to

be insufficient in general to avoid impulsive corrections. I shall demonstrate that this is

particulary the case for the Born contribution Cαβγδ
B (defined below) to the elastic mod-

uli computed using the stress-fluctuation formalism described in detail in the literature

[10, 25, 53, 65, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84]. This should be of importance for the

precise localization of the transition between different thermodynamic phases by means of

the elastic moduli, especially for liquid/sol (G = 0) to solid (G > 0) transitions in network

forming systems where the shear modulus G plays the role of an order parameter [85].

Examples of current experimental and computational interest include the glass transition

of colloidal or polymer liquids [16, 86, 87, 88, 89, 25], colloidal gels [90], hyperbranched

polymer chains with sticky end-groups [61] or bridged networks of telechelic polymers in

water-oil emulsions [58, 59].

Outline. After recapitulating in Sec. 2.2.1 the known corrections for the pressure and

similar first derivatives of the potential, the impulsive correction for the general Born

contribution Cαβγδ
B is given in Sec. 2.2.2. I describe then in Sec. 2.2.3 the corrections on

the compression modulus K and the shear modulus G in isotropic systems. I comment on

polydispersity effects and mixed potentials in Sec. 2.2.4. The results are reexpressed in

terms of the radial pair distribution function g(s) in Sec. 2.2.5 which allows to predict the

asymptotic behavior for large sc. Further algorithmic section gives some technical details

on the two numerical model systems [63, 64, 65] in d = 3 and d = 2 dimensions used to

test the predictions made. This test is described in Sec. 2.3. We focus there on the high-

temperature liquid regime of both models where the shear modulus G must vanish [10, 11],
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since this provides a clear reference point for verifying the predicted corrections. The main

results are summarized in Sec. 2.4.1 and an outlook on related issues is given in Sec. 2.4.2.

Since both numerical models considered are well-known glass-formers, I comment briefly

in Sec. 2.4.3 on the related Ref. [4] investigating the shear modulus G(T ) as a function of

temperature T around the glass transition temperature Tg. Such a characterization is of

considerable current interest due to the qualitative different theoretical suggestions put

forward by mode-coupling theory (MCT) predicting a discontinuous jump [16, 88] and by

replica theory [86] implying a continuous transition [87, 89].

2.2 Theoretical predictions

2.2.1 Reminder

Truncated potential. As usual for pairwise additive interactions the mean pressure

P = Pid + Pex may be obtained as the sum of the ideal kinetic contribution Pid = kBTρ

and the excess pressure contribution [20, 21]

Pex =
〈
P̂ex

〉
= − 1

dV

∑
l

〈slu′t(sl)〉 (2.2.1)

with ρ = n/V being the number density, n the particle number, V the d-dimensional

volume, P̂ex the instantaneous pressure and 〈. . .〉 indicating the thermal average over the

configuration ensemble. (A prime denotes a derivative of a function with respect to its

argument.) By taking the derivative of the truncated potential

u′t(s) = u′(s)H(sc − s)− u(s)δ(s− sc) (2.2.2)

the excess pressure may be written as the sum Pex = P̃ex + ∆Pex of an uncorrected (bare)

contribution P̃ex and an impulsive correction ∆Pex. The latter correction is obtained

numerically from [21]

∆Pex = lim
s→s−c

h1(s) with

h1(s) ≡
1

dV

∑
l

〈slu(sl) δ(sl − s)〉 (2.2.3)

being a weighted histogram. In practice, the proper limit s → s−c may be replaced by

setting s = sc in h1(s).

Shifted potential. The impulsive correction related to first derivatives of the truncated

potential can be avoided by considering the shifted potential us(s), Eq. (2.1.3), since

u′s(s) = u′(s)H(sc − s). With this choice no impulsive correction arises either for similar
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observables such as, e.g., moments of the instantaneous excess pressure tensor

P̂αβ
ex = − 1

V

∑
l

sαl
∂us(sl)

∂sβl

= − 1

V

∑
l

slu
′
s(sl) n

α
l n

β
l (2.2.4)

where sαl stands for the spatial component α of the reduced distance between the particles

and nαl = sαl /sl for the corresponding component of the normalized distance vector.

Greek letters are used for the spatial coordinates α, β, γ, δ = 1, . . . , d. (Note that P̂ex =

Trace[P̂αβ
ex ]/d.) Specifically, if the potential is shifted, all impulsive corrections are avoided

for the excess pressure fluctuations

Cαβγδ
F ≡ −βV

(〈
P̂αβ

ex P̂
γδ
ex

〉
−
〈
P̂αβ

ex

〉〈
P̂ γδ

ex

〉)
(2.2.5)

(β ≡ 1/kBT being the inverse temperature) which give important contributions — es-

pecially for polymer-type liquids [25] and amorphous solids [81] — to the elastic moduli

computed using the stress-fluctuation formalism [21, 80]. Please note that since the stress

is a two-point correlation function between the particles of the system, Cαβγδ
F contains

also in general three-point and four-point correlations.

2.2.2 Key point made

Correction to the Born term. Another important contribution to the elastic moduli

is given by the Born term Cαβγδ
B , already mentioned in the Introduction.1 Being a moment

of the first and the second derivatives of the potential it is defined as [75, 21, 80, 25, 64]

Cαβγδ
B =

1

V

∑
l

〈(
s2
l u
′′
s (sl)− slu′s(sl)

)
nαl n

β
l n

γ
l n

δ
l

〉
(2.2.6)

using the notations given above. For solids with well-defined reference positions and

displacement fields the Born contribution is known to describe the energy change due to an

affine response to an imposed homogeneous strain [80, 81, 64]. Assuming now a truncated

and shifted potential the impulsive correction ∆Cαβγδ
B to Cαβγδ

B = C̃αβγδ
B +∆Cαβγδ

B is simply

obtained using

u′′s (s) = u′′(s)H(sc − s)− u′(s)δ(s− sc) (2.2.7)

1Apart from the Born term CαβγδB and the stress-fluctuation term CαβγδF there is a kinetic contribution
CαβγδK and in pre-stressed systems (as in the systems considered numerically by us) an explicit contribution
from the applied stress to the experimentally relevant elastic moduli resulting from an infinitesimal strain
applied to the reference state [21, 75, 25].
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which yields

∆Cαβγδ
B = − lim

s→s−c
hαβγδ2 (s) with (2.2.8)

hαβγδ2 (s) ≡ 1

V

∑
l

〈
s2
l u
′(sl)n

α
l n

β
l n

γ
l n

δ
l δ(sl − s)

〉
.

General impulsive corrections. More generally, one might consider a property

A =
1

V

∑
l

〈
f(sl)u

(n)
s (sl)

〉
(2.2.9)

with f(s) being a specified function and (n) denoting the n-th derivative of the shifted

potential us(s). Let us further suppose that all potential derivatives up to the (n− 2)-th

one do vanish at the cutoff sc. It thus follows that A = Ã + ∆A takes an impulsive

correction

∆A = − lim
s→s−c

hn(s) with

hn(s) ≡ 1

V

∑
l

〈
f(sl)u

(n−1)(sl) δ(sl − s)
〉

(2.2.10)

being the relevant histogram.

Generalized shifting. Obviously, the original potential can not only be shifted by a

constant u(sc) but by a polynomial of s to make the first and arbitrarily high derivatives

of the potential vanish at s = sc. In this way, all impulsive corrections could be avoided in

principle. Since discontinuous forces at the cutoff may cause problems in MD simulations,

a number of studies use, e.g., a “shifted-force potential” where a linear term is added to

the potential [20, 91]. The difference between the original potential and the generalized

shifted potential removing the cutoff discontinuities means, of course, that the computed

properties deviate to some extent from the original model. Only if the generalized shifting

is weak, one may recover the correct thermodynamic properties using a first-order per-

turbation scheme [20]. Since the (simply) shifted potential us(s), Eq. (2.1.3), is anyway

the most common choice in simulations [25, 63, 64, 65, 76, 77, 81, 82, 83], let us restrict

the presentation on this case and demonstrate how the impulsive correction associated to

the non-vanishing u′s(s
−
c ) can be computed.

2.2.3 Isotropic systems

Lamé coefficients. In order to show that the above mentioned impulsive corrections

may be of relevance computationally I focus now on homogeneous and isotropic systems.

It is assumed that not only the material properties but also the external load is isotropic,
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i.e. the mean imposed pressure tensor is given by〈
P̂αβ

ex

〉
= P δαβ. (2.2.11)

The two elastic Lamé coefficients λ and µ [75] characterizing their elastic properties may

then be computed numerically using [25]

λ = λF + λB,

µ− Pid = µF + µB (2.2.12)

where the only contribution due to the kinetic energy of the particles is contained by the

ideal gas pressure Pid indicated for µ. Note that the trivial kinetic energy contributions

to the elastic moduli are removed as far as possible from the presentation since MC

results are also considered here. The first contributions indicated on the right hand-side

of Eq. (2.2.12) are the excess pressure fluctuation contributions λF and µF which may

be obtained from the general Cαβγδ
F by setting, e.g., α = β = 1 and γ = δ = 2 for λF

and α = γ = 1 and β = δ = 2 for µF characterizing the shear stress fluctuations. The

“Born-Lamé coefficients” [25]

λB ≡ µB ≡
1

d(d+ 2)V

∑
l

〈
s2
l u
′′(sl)− slu′(sl)

〉
(2.2.13)

may be obtained from the general Born terms Cαβγδ
B by setting, e.g., α = γ = 1 and

β = δ = 2. The d-dependent prefactor stems from the assumed isotropy of the system

and the mathematical formula [74]〈(
nαl n

β
l

)2
〉

=
1

d(d+ 2)
(1 + 2δαβ) (2.2.14)

(δαβ being the Kronecker symbol [74]) for the components of a unit vector in d dimensions

pointing into arbitrary directions. Equation (2.2.8) implies then an impulsive correction

∆λB = ∆µB = − lim
s→s−c

h2(s) with

h2(s) ≡
1

d(d+ 2)V

∑
l

〈
s2
l u
′(sl) δ(sl − s)

〉
. (2.2.15)

The histogram h2(s) is called below “weighted (radial) pair distribution function” since

it is related to the standard radial pair distribution function g(r) [11] as further discussed

in Sec. 2.2.5.
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Compression and shear modulus. Instead of using the Lamé coefficients it is from

the experimental point of view more natural to characterize isotropic bodies using the

compression modulus K and the shear modulus G. The latter moduli may be expressed

as [75]

K = (λ+ P ) +
2

d
G, (2.2.16)

G = µ− P = µB + µF − Pex (2.2.17)

with P = Pid + Pex being the total imposed mean pressure. I follow here the notation of

Ref. [25] to emphasize the explicit pressure dependence which is often (incorrectly) omitted

as clearly pointed out by Birch [92] and Wallace [75]. Using symmetry considerations

Eq. (2.2.16) can be refomulated to a numerically more straightforward expression first

stated by Rowlinson [10, 20]

K = P + ηB − ηF. (2.2.18)

Here, the second term ηB stands for the so-called “hypervirial” [20]

ηB ≡ λB +
2

d
(µB − Pex) (2.2.19)

=
1

d2V

∑
l

〈
s2
l u
′′
s (sl) + slu

′
s(sl)

〉
(2.2.20)

in agreement with Eq. (2.2.1) and Eq. (2.2.13). The last term

ηF ≡ (−λF) +
2

d
(−µF) (2.2.21)

= βV

(〈
P̂ 2

ex

〉
−
〈
P̂ex

〉2
)

(2.2.22)

characterizes the fluctuation of the excess pressure P̂ex. As one expects, kinetic elastic

contributions terms do not enter explicitly for the shear modulus G in Eq. (2.2.17). (An

ideal gas does not have a finite shear modulus.) Since only the Born contributions λB = µB

or ηB require a cutoff correction, this implies K = K̃ + ∆K and G = G̃ + ∆G with K̃

and G̃ being the uncorrected (bare) moduli and

∆K = ∆λB +
2

d
∆µB =

2 + d

d
∆µB, (2.2.23)

∆G = ∆µB (2.2.24)

being the impulsive corrections. We shall test these predictions numerically in Sec. 2.3.
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2.2.4 Polydispersity and mixed potentials

As stated in the Introduction, we assume throughout this Chapter the scaling U(r) ≡ u(s)

of the pair potential in terms of the reduced distance s = r/σl. This is done not only for

dimensional reasons but, more importantly, to describe a broad range of model systems for

mixtures and polydisperse systems where σl may differ for each interaction l. Moreover,

the type and/or the parameter set of the pair potential may vary for different interactions.

For such mixed potentials u(s), ut(s) and us(s) and their derivatives take in principal an

explicit index l, i.e. one should write ul(s), ut,l(s), us,l(s) and so on. This is not done here

to keep a concise notation. For example one might wish to consider

• a generic polymer bead-spring model where some interactions l describe the bonding

between monomers along the chain (which are normally not truncated and need

not to be corrected) and the truncated excluded volume interactions between the

monomers [53];

• the generalization of the monodisperse LJ potential, Eq. (2.1.1), to a mixture or

polydisperse system with

ul(s) = 4εl
(
s−12 − s−6

)
with s = r/σl (2.2.25)

where εl and σl are fixed for each interaction l. In practice, each particle i may be

characterized by an energy scale Ei and a “diameter” Di. The interaction parame-

ters εl(Ei, Ej) and σl(Di, Dj) are then given in terms of specified functions of these

properties [64];

• the extensively studied Kob-Andersen (KA) model for binary mixtures of beads of

type A and B [63], a particular case of Eq. (2.2.25) with fixed interaction ranges σAA,

σBB and σAB and energy parameters εAA, εBB and εAB characterizing, respectively,

AA-, BB- and AB-contacts;

• a network forming emulsion of oil droplets in water bridged by telechelic polymers

where the oil droplets are modeled as big LJ spheres, the telechelic polymers by a

bead-spring model with a soluble “spacer” in the middle of the chain and insoluble

end-groups (“stickers”) strongly attracted by the oil droplets [58, 59]. Assuming

sufficiently strong (in strength, number and life-time) sticker-oil interactions, such

a system behaves as a soft solid with a finite shear modulus G (at least for a fixed

finite sampling time) which may be probed, at least in principle, using Eq. (2.2.17).

The impulsive corrections given in Eq. (2.2.3) for the pressure P , in Eq. (2.2.8) for the

general Born term Cαβγδ
B and in Eq. (2.2.15) for the Born Lamé coefficients λB = µB

have been stated in terms of, respectively, the weighted histograms h1(s), h
αβγδ
2 (s) and
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h2(s). These expressions remain valid for explicitly l-dependent potentials and, from the

numerical point of view, this is all what is needed. The direct computation of these

histograms remains in all cases straightforward as illustrated in Sec. 2.3.1.

2.2.5 Radial pair distribution function g(r)

Notations. For isotropic systems it is common practice to reexpress correlations and

histograms in terms of the radial pair distribution function g(r) [10, 11]. This is also of

interest here since for large cutoff distances the pair distribution function must drop out,

g(rc)→ 1, allowing thus to predict the corrections in this limit. Let us remind first that,

that using the Gamma function Γ(x) [74], the (d − 1)-dimensional surface of a d-sphere

of radius r is given by

A(r) =
2πd/2

Γ(d/2)
rd−1 for d = 2, 3, . . . (2.2.26)

and similarly for the (dimensionless) surface A(s) using the reduced distance s.

Monodisperse interactions. For strictly monodisperse particles and similar interac-

tions of constant interaction range σ it is seen that Eq. (2.2.3) for the pressure correction

becomes

∆Pex =
1

2

1

d
ρ2σdA(sc)scu(sc)× g(sc) (2.2.27)

where the factor 1/2 assures that every interaction is only counted once. For the LJ

potential, Eq. (2.1.1), this leads to

∆Pex = − 4πd/2

Γ(d/2)d

(
ρσd
)2 ε

σd
sd−6
c (1− s−6

c )× g(sc). (2.2.28)

Please note that Eq. (3.2.7) given in Ref. [21] is recovered by setting d = 3 and assuming

g(sc) ≈ 1. Similarly, one obtains from Eq. (2.2.15) the correction

∆µB = −1

2

1

d(d+ 2)
ρ2σdA(sc)s

2
cu
′(sc)× g(sc) (2.2.29)

for the Born-Lamé coefficient. For a LJ potential this becomes

∆µB = − 24πd/2

d(d+ 2)Γ(d/2)

(
ρσd
)2 ε

σd
fLJ(sc)× g(sc) (2.2.30)

where I have defined

fLJ(s) ≡ (1− (s0/s)
6)/s6−d (2.2.31)
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with s0 = 21/6 being the minimum of the potential. Note that ∆µB vanishes for s → s0.

For sufficiently large cutoff distances where g(sc) ≈ 1 the correction decays as

∆µB ∼ −A(sc)s
2
cu
′(sc), (2.2.32)

e.g. ∆µB ∼ −1/s6−d
c for a LJ potential. (Only for d < 6 the cutoff correction vanishes

in the large-s limit.) This asymptotic behavior also holds for the more complicated cases

discussed below.

Mixtures. Many experimentally relevant systems have mixed potentials, such as the

KA model for binary mixtures sketched above. In general, the interaction potential

Uab(r) = uab(s) between beads of two species a and b takes different energy parame-

ters which causes different weights at the cutoff depending on which particles interact.

The impulsive corrections of such mixtures are readily obtained by linear superposition

of Eq. (2.2.29) for different contributions (a, b). Let ca = ρa/ρ denote the mole fraction

of species a, σab the interaction range between a bead of type a and a bead of type b and

gab(s) the respective radial pair distribution function. The impulsive correction to the

Born-Lamé coefficient thus becomes

∆µB = −1

2

1

d(d+ 2)
ρ2A(sc)s

2
c

×
∑
a

∑
b

cacbσ
d
abu
′
ab(sc) gab(sc) (2.2.33)

where I have used that for all types of interaction we have the same reduced cutoff sc.

Let us now assume a mixture described by the generalized LJ potential uab(s) =

4εab(1/s
12 − 1/s6) with s = r/σab. A reference energy εref and a reference interaction

range σref may arbitrarily be defined using, say, the interaction of two beads of type

a = b = 1, i.e. εref ≡ ε11 and σref ≡ σ11. Defining the dimensionless ratios wab ≡ εab/εref

and vab = (σab/σref)
d one may thus rewrite the general Eq. (2.2.33) as

∆µB = − 24πd/2

d(d+ 2)Γ(d/2)

(
ρσdref

)2 εref
σdref

fLJ(sc)

×
∑
a

∑
b

cacbvabwab gab(sc). (2.2.34)

Since gab(sc)→ 1 for large sc, the function fLJ(sc) determines the scaling as already stated

above, Eq. (2.2.32).

Continuous polydispersity. I turn now to systems with a continuous polydispersity

as in the second model investigated numerically below. Let us assume that each bead

is characterized by a bead diameter D which is distributed according to a well-defined
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sc/s0 eβ Pβ/ρ K̃β/ρ Kβ/ρ G̃β/ρ ∆µBβ/ρ Kβ/ρ
0.9 0.255 5.08 -20.4 17.7 -18.95 19.05 17.4
1.0 0.523 6.01 22.5 22.5 0.03 0.03 22.4
1.1 0.176 5.46 24.2 20.4 1.97 -1.92 20.6
1.5 -1.79 3.61 17.6 16.7 0.36 -0.43 16.8
2.0 -2.43 3.17 16.7 16.1 0.31 -0.32 16.0
2.5 -2.64 3.01 15.8 15.6 0.08 -0.10 15.7
3.0 -2.72 2.95 15.6 15.5 0.08 -0.06 15.5
3.5 -2.75 2.93 15.6 15.5 0.02 -0.03 15.3
4.0 -2.77 2.92 15.7 15.7 0.03 -0.02 15.5

Table 2.1: Some properties of pLJ beads at temperature T = 1 and density ρ ≈ 0.72
for several computed values of the reduced cutoff distance sc/s0 with s0 = 21/6 being the
minimum of the potential: energy per bead e, total pressure P = Pid + Pex, uncorrected
compression modulus K̃, corrected compression modulus K = K̃ + 2∆µB, bare shear
modulus G̃ and impulsive correction ∆µB obtained from the histogram h2(s) at s = sc.
The corrected shear modulus G = G̃+ ∆G vanishes as it should. The last column refers
to the compression modulus K obtained using Eq. (2.3.1) for isobaric ensembles kept at
the same pressure P (third column).

normalized distribution ct with t = D/σref being a reduced bead diameter with respect

to some reference length σref . To be specific let us assume a generalized LJ potential,

Eq. (2.2.25), where the interaction range σtt′ and the energy scale εtt′ between two beads

are uniquely specified by the two reduced diameters t and t′. Defining wtt′ = εtt′/εref ,

vtt′ = (σtt′/σref)
d and using the radial pair distribution function gtt′(s) for two beads

of reduced diameter t and t′, the double-sum in Eq. (2.2.34) can be rewritten as the

double-integral

∆µB = − 24πd/2

d(d+ 2)Γ(d/2)

(
ρσdref

)2 εref
σdref

fLJ(sc)

×
∫

dt

∫
dt′ ctct′vtt′wtt′ gtt′(sc). (2.2.35)

In order to determine ∆µB from Eq. (2.2.35) one needs to prescribe the laws for ct, σtt′

and εtt′ . In the large-sc limit the double-integral becomes in any case constant, i.e. we

have again ∆µB ∼ −fLJ(sc) ∼ −1/s6−d
c .

2.3 Computational results

2.3.1 Weighted pair distribution function h2(s)

The weighted radial pair distribution function h2(s), Eq. (2.2.15), is presented in Fig. 2.1.

Several cutoff distances sc are given for the pLJ model, but for clarity only for distances

s ≤ sc. For the KA model only one cutoff is given, but this also for s > sc. Note that
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Figure 2.1: Weighted radial pair distribution function h2(s)β/ρ with s = r/σl being the
reduced distance between two beads i and j. Main panel: KA mixtures in d = 3 (bold
line) and pLJ beads in d = 2 (open symbols) for large reduced distances s > s0 where the
potential is attractive. The filled triangle corresponds to the shear modulus G̃ computed
using Eq. (2.2.17) for the KA system not taken into account the impulsive correction.
Inset: pLJ model for s ≤ s0 where h2(s) becomes strongly negative.

albeit different sc for each model correspond strictly speaking to different state points —

as better seen from the energies per particle e or total pressures P indicated in Table 2.1

— the histograms vary only weakly with sc. Strong differences become only apparent

for very small sc as shown for sc = 0.9s0 in the inset. One can thus use the histogram

obtained for one sc to anticipate the impulsive correction for a different cutoff. Note that

for large distances corresponding to an attractive interaction we have h2(s) > 0 (main

panel). Obviously, h2(s) vanishes at the minimum of the potential s = s0 and for very

large distances s. Since g(s) ≈ 1 in the latter limit, the histogram h2(s) is given (up to a

known prefactor) by sd+1u′s(s). As one expects the decay is faster for the d = 2 data than

for the KA mixtures in d = 3, since the phase volume at the cutoff is larger for the latter

systems. Since all histograms are rather smooth, one may simply set s = sc for obtaining

∆µB from h2(s) instead of properly taking the limit s→ s−c .

2.3.2 Compression modulus K

The compression modulus K may be obtained from Eq. (2.2.16) or, equivalently, using

the Rowlinson formula Eq. (2.2.18). Note that if plotted as a function of the number

of configuration sampled, the compression modulus for both models is seen to decrease

first with sampling time t before leveling off at a finite value. Similar behavior has been

observed for polymeric systems [25, 53]. All our systems are highly incompressible, i.e.
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the compression modulus K is large as usual in condensed matter systems, and it is thus

difficult to demonstrate the small correction predicted by Eq. (2.2.23). For the KA model

we obtain, e.g. ∆Kβ/ρ ≈ −(5/4) × 0.69 ≈ −1.2 which compared to the uncorrected

estimate K̃β/ρ ≈ 21.9 is small.

More importantly, it is not easy to obtain an independent and precise K-value for

canonical ensembles of mixtures and polydisperse systems using, e.g., the total particle

structure factor [11, 53]. For the pLJ model we have thus computed K directly from the

volume fluctuations δV in the isobaric ensemble [20]

K = kBT
〈V 〉
〈δ2V 〉

(2.3.1)

where the same (mean) pressure P is imposed as for the corresponding canonical ensemble.

As described in Ref. [20] proposed volume fluctuations of the simulation box are accepted

or rejected according to a Metropolis MC scheme. As may be seen from the last column

indicated in Table 2.1, this yields within statistical accuracy the same values as the

stress-fluctuation formula, Eq. (2.2.16), if the impulsion correction is taken into account.

Unfortunately, for larger cutoffs our error bars (not shown) become too large to confirm

the correction. The most striking example, where Eq. (2.2.23) can be shown to work,

is the case of the small cutoff sc = 0.9s0: Using Eq. (2.2.16) an impossible negative

value K̃β/ρ ≈ −20.4 is obtained. As may be seen from the inset in Fig. 2.1, one gets

∆µBβ/ρ ≈ 19.1 from the weighted histogram h2(s). Taking the correction Eq. (2.2.23)

into account this yields Kβ/ρ ≈ 17.7 which is consistent with the value 17.4 obtained

using the strain fluctuation formula Eq. (2.3.1).

2.3.3 Shear modulus G

Asymptotic limit for large sampling times. Since all our systems are liquids, the

shear modulus G should of course vanish — at least in the thermodynamic limit for a

sufficiently long sampling time. We have thus a clear reference and for this reason G is

highly suitable to test the predictions. As can be seen from the solid triangle indicated

in Fig. 2.1 for the KA mixtures with sc = 2.5 we obtain G̃β/ρ ≈ 0.65 if the impulsive

correction for the Born term is not taken into account. As also shown by the figure (thin

line), this deviation equals h2(sc = 2.5)β/ρ ≈ 0.69 as predicted.

The same behavior is seen from Fig. 2.2 for pLJ beads for a broad range of cutoff

distances sc where the open squares refer to the uncorrected G̃ and the filled squares to

G obtained using Eq. (2.2.24). The solid lines indicated show Eq. (2.2.35). Focusing on

the scaling for large sc we have set gtt′(sc) = 1 in the double-integral which (under this

assumption) is close to unity. Note that the correction −∆µB (open spheres) is obtained

with much higher numerical precision than it was possible for G̃. The error bars (not
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Figure 2.2: Shear modulus G and impulsive correction −∆µB for the pLJ model vs. the
reduced cutoff distance sc/s0. The uncorrected shear modulus G̃ (open squares) has been
obtained using the stress-fluctuation formula, Eq. (2.2.17), the correction term (spheres)
from the histogram h2(s), Eq. (2.2.15). The solid lines indicate Eq. (2.2.35) where we have
set gtt′(sc) = 1. Main panel: Linear representation showing that G = G̃ + ∆µB (filled
squares) vanishes as predicted, Eq. (2.2.24). Inset: Double-logarithmic representation
emphasizing the asymptotic power-law decay for large sc, Eq. (2.2.32), as indicated by
the bold dashed line.

indicated) become larger than the signal below G̃β/ρ ≈ 0.05.

Sampling time dependence. Figure 2.3 gives additional information on the shear

modulus G(t) plotted as a function of the number t of MC steps (MCS) for pLJ beads.

Using time series where instantaneous properties relevant for the moments are written

down every 10 MCS for total trajectories of length 107 MCS, all reported properties have

been averaged using standard gliding averages [20], i.e. we compute mean values and

fluctuations for a given time interval [t0, t1 = t0 + t] and average over all possible intervals

of length t. For sc = 0.9s0, where ∆µBβ/ρ ≈ 17.1, the uncorrected data is negative and

cannot be represented. Note that G = G̃ for sc = 1.0s0 since ∆µB = 0 for sc = 1.0s0,

Eq. (2.2.15). Since ∆µB is very small for sc = 4.0s0, only the corrected values are

represented. The filled symbols refer to the uncorrected shear modulus G̃(t) for sc = 1.1s0,

sc = 1.5s0 and sc = 2.5s0 which are seen to approach for large times the predicted

correction −∆µB taken from the Table 2.1 (horizontal lines). If corrected, all data sets

vanish properly with time. (The noise becomes again too large below G(t)β/ρ ≈ 0.05.)

Interestingly, neither µB nor Pex do (essentially) depend on the sampling time t while

the fluctuation contribution −µF(t) approaches (the corrected) µB−Pex from below (not

shown). The corrected shear modulus G(t) thus decreases monotonously with time. As
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Figure 2.3: Shear modulus G for pLJ beads in d = 2 for different sc as a function of the
sampling time t given in units of MC Steps (MCS) of the local MC jumps used. The
vertical axis is made dimensionless by means of a factor β/ρ. Filled symbols refer to
the uncorrected G̃(t). The horizontal lines indicate −∆µB obtained from the histograms
h2(s) for three cutoffs as indicated in the Table 2.1. The dashed slope characterizes the
decay of (the corrected) G(t) with time.

can be seen from Fig. 2.3, G(t) decays roughly as the power-law slope −1 indicated by

the dashed line. Exactly the same behavior has been observed for the KA model in

d = 3 (not shown). Apparently, G(t) decays quite generally inversely as the mean-square

displacement h(t) of the beads in the free-diffusion limit, h(t) ∼ t. I remind that the same

scaling G(t) ∼ 1/h(t) has also been reported for a bead-spring polymer model without

impulsive corrections (sc = s0) [53].

2.4 Discussion

2.4.1 Summary

Impulsive correction. It has been demonstrated in this Chapter that an impulsive

correction to the Born contribution Cαβγδ
B of the elastic moduli must arise if the interaction

potential is truncated and shifted, Eq. (2.1.3), with a non-vanishing first derivative at the

cutoff. To test our theoretical predictions the elastic moduli of isotropic liquids in d = 3

and d = 2 dimensions has been computed. Since for these systems the shear modulus

G must vanish by construction, this allows a precise numerical verification for different

reduced cutoff distances sc (Fig. 2.2). It has been shown how the impulsive correction for

mixtures and polydisperse systems may be obtained from the weighted histogram h2(s)

which scales as h2(s) ∼ sd+1u′(s) for large s. As one expects, the cutoff effect vanishes if sc
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is large, Eq. (2.2.32), or set to the minimum of the potential. It becomes more important

with increasing spatial dimension.

General validity of the stress-fluctuation formalism. It should be reminded that

the stress-fluctuation formula G = µ−P = µB +µF−Pex and several other relations used

in this work for liquid systems were originally formulated for solids assuming well-defined

reference positions and displacement fields [76, 84]. By revisiting the derivation [10] for

the compression modulus K for simple liquids, Eq. (2.2.18), for general elastic moduli

(as in fact already done by Lutsko [80]), it can be seen that these assumptions can be

relaxed and especially Eq. (2.2.17) must hold quite generally for isotropic systems [4].

One additional goal of the presented paper [7] was to show numerically that the stress-

fluctuation formalism yields the right value (G = 0), once the impulsive correction has

been taken into account.

2.4.2 Further generalizations and related issues

The generalization of our results to

• other elastic moduli in anisotropic systems using the more general impulsive correc-

tion, Eq. (2.2.8);

• observables related to even higher derivatives of the potential, Eq. (2.2.10);

• local and inhomogeneous elastic moduli which have been argued to be of relevance

for the plastic failure under external load [82, 84, 65];

• more complicated interaction potentials, not necessarily scaling simply with s =

r/σl;

• general non-pair interactions using the generalization of the Born term derived by

Ray [78] and studied, e.g., numerically by Yoshimoto et al. [83]

is straightforward and should be considered in future work.2

2.4.3 Shear modulus near the glass transition

The presented approach has been used in Ref. [4] to characterize as a function of tem-

perature, imposed pressure and sampling time the elastic properties of the two models

discussed here. Some results of this work are given in Fig. 2.4. Following the procedure

described in Ref. [25], the data have been obtained for systems which are cooled through

2A similar, albeit very small, impulsive correction arises for the “configurational temperature” being
the ratio of the mean-squared forces acting on the particles and the mean divergence of these forces. See
Eq. (7.2.11) of Ref. [11].
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Figure 2.4: Shear modulus G as a function of temperature T for the KA model (P ≈
1, sc = 2.5, Tg ≈ 0.41) and the pLJ model (P ≈ 2, sc = 2.0s0, Tg ≈ 0.27). The
uncorrected values are represented by open symbols, the corrected values by small filled
symbols. Main panel: The dashed line represents the shear modulus obtained from the
shear strain fluctuations in simulation boxes with shape deformations, Eq. (2.4.1). Inset:
Half-logarithmic representation for G(T ) for the KA model focusing on the behavior
around Tg. The transition becomes rather sharp if the impulsive correction is taken into
account as emphasized by the solid line indicating Eq. (2.4.2). Note that −∆µB (spheres)
increases only weakly with decreasing T .

the glass transition at constant pressure P , i.e. allowing first the volume to fluctuate

as in Sec. 2.3.2.3 The glass transition temperature Tg of both systems is either known

[63] or may be determined, e.g., from the density ρ(T ) [25]. Imposing then a constant

(mean) temperature and a simulation box of fixed volume and shape, the shear modulus

is computed using the stress-fluctuation formula Eq. (2.2.17) for the canonical ensemble.

The bare moduli G̃ (open squares and triangles) are clearly seen to be finite for all T ,

while the corrected moduli G = G̃ + ∆µB vanish for all T > Tg. That this is indeed

the case is better seen from the half-logarithmic representation shown in the inset for

the KA model. Decreasing the temperature further below Tg the shear moduli are seen

to increase rapidly for both models.4 As above for the compressibility K in Sec. 2.3.2,

we have crosschecked the values obtained from the stress-fluctuations in the canonical

ensemble by directly measuring G from the shear strain γ (in the xy-plane) in deformable

3For systems with finite mean shear stress various stress-fluctuation formulae must be changed and
especially Eq. (2.2.17) for the shear modulus G must be modified.

4It is well known that two-point correlations, as measured by the pair correlation function g(r), do
barely change at the glass transition [16]. Please note that the shear modulus G computed according to
Eq. (2.2.17) is a properly defined thermodynamic correlation function characterizing not only two-point,
but also three-point and four-point correlations. Apparently, these higher static correlations change
qualitatively at the glass transition.

36



CHAPTER 2. IMPULSIVE CORRECTION TO THE ELASTIC MODULI

simulation boxes at constant volume. As discussed in the literature [20, 21, 84], we use a

non-Euklidean metric tensor constructed from the so-called h-matrix describing the box

shape, and change the shear strain γ according to a Metropolis MC scheme [20] similar

to the changes of the box volume V in Sec. 2.3.2. Imposing a zero mean shear-stress for

the shear strain fluctuations the modulus G can be obtained from the thermodynamic

formula

G =
kBT/V

〈γ2〉 − 〈γ〉2
(2.4.1)

which corresponds to Eq. (2.3.1) for volume fluctuations in the isobaric ensemble.5 As

shown for the pLJ model by the dashed line in the main panel of Fig. 2.4, this yields for

all T , even for deeply quenched glasses, within numerical accuracy the same values as the

stress-fluctuation formula if the impulsive corrections are taken into account. As shown

by the solid line in the inset, the KA model is well fitted by a cusp-singularity

G(T ) ≈ G0 (1− T/Tg)1/2 for T < Tg (2.4.2)

with an empirical constant G0 ≈ 23. This suggests that the transition is very sharp

albeit continuous in agreement with replica theory [87, 89]. Note that the number of

data points close to Tg is, however, not sufficient to rule out completely the additive

off-set suggested by MCT [16]. Thus, at present it is impossible to distinguish between

the different theoretical scenarios proposed [16, 87, 88, 89]. In any case, it should be

clear from Fig. 2.4 that a high-precision numerical characterization of the scaling of G(T )

around Tg necessitates the proper taking into account of the impulsive corrections.

5Since such a thermodynamic relation may be questioned for the strongly frozen systems, we have
also determined G using the mechanical definition by linear regression from the observed conjugated
instantaneous shear strain and stress. This yields the same values as Eq. (2.4.1).
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Chapter 3

Hyperbranched polymers with

Gaussian statistics

3.1 Introduction

Hyperbranched stars with Gaussian chain statistics. Regular exponentially grow-

ing starburst dendrimers, as sketched in Fig. 1.1, and more general starlike hyperbranched

chains1 with Gaussian chain statistics have been considered theoretically early in the lit-

erature [26, 27, 93, 94, 95, 96] and have continued to attract attention up to the very

recent past [95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106]. One reason for this is that

highly branched polymers [107] with sufficiently large spacer chains between the branching

points (indicated by the filled circles) are expected to be of direct experimental relevance

under melt or θ-solvent conditions [12, 13, 14, 108].

Assuming a tree-like structure and translational invariance along the chain contour,

the root-mean-square distance Rs between two arbitrary monomers n and m, as shown in

panel (a), is given by

R2
s ≡

〈
(rm − rn)2

〉
= b2s2ν (3.1.1)

where ν is the inverse fractal dimension of the spacer chains, s the curvilinear distance

along the tree between both monomers and b the statistical segment size of the spacer

chains [13]. As a consequence, the typical distance Re between the central monomer

and the end monomers is one possible observable measuring the molecule size,2 scales as

R2
e = b2SG with S being the length of the spacer chains (assumed to be monodisperse).

Other moments are obtained from the normalized distribution P (r, s) of the distance

1For simplicity, we call “stars” or ”branched stars” all tree-like branched architectures, “regular den-
drimers” the deterministic and exponentially growing stars shown in panel (a) of Fig. 1.1 and “power-law
stars” hyperbranched stars of finite fractal dimension df .

2The curvilinear length SG from the central monomer to the end monomers may, of course, in general
be irrelevant for a broad distribution of branch lengths. For all systems of interest here Re is seen,
however, to give a fair and simple estimate similar, e.g., to the radius of gyration Rg, as further discussed
in Sec. 3.4.
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r = |rm − rn| which, irrespective of the specific topology of the branched structure, is

given by

P (r, s) =

(
d

2πR2
s

)d/2
exp

(
−d

2

(
r

Rs

)2
)

(3.1.2)

with d = 3 being the spatial dimension.3 Due to their theoretical simplicity such Gaussian

chain stars (including systems with short-range interactions along the topological network)

allow to investigate several non-trivial conceptual and technical issues, both for static

[99, 102] and dynamical [70, 100, 101, 103, 109, 111] properties, related to the in general

intricate monomer connectivity imposed by the specific chemical reaction history.

Aim of current study. We assume here that (i) the chemical reaction is irreversible

(quenched), (ii) all molecules are monodisperse of length form the root to the end monomer

GS and (iii) flexible down to the monomer scale and (iv) that the branching at the ends

of the spacer ends is at most three-fold (f = 3) as in the examples given in Fig. 1.1.

The aim is (i) to revisit various experimentally relevant conformational properties in the

limit where the total monomer mass N and the total number M = (N − 1)/S of spacer

chains become sufficiently large to characterize the asymptotic universal behavior, (ii)

to sketch for different starburst architectures in the regimes where the Gaussian spacer

chain assumption becomes a reasonable approximation and (iii) to prepare some defini-

tions and concepts we shall need in the next Chapter where static properties of dendrimer

melts will be considered numerically. We will focus on the large-S limit since this allows

under θ-solvent4 or melt conditions to broaden the experimentally meaningful range of

the generation number G of spacer chains.

Fractal dimension. One dimensionless property characterizing the star classes consid-

ered below is their fractal dimension df which may be defined as [112, 69]

df ≡ lim
R→∞

log(N)

log(R/b)
(3.1.3)

with N being the mass and R the characteristic chain size. (Less formally, this definition is

often written N ∼ Rdf [69].) For the regular branched dendrimers shown in panel (a) the

number of spacers increases as Mg ≈ (f −1)g with the generation number g, i.e. the total

mass N(G) increases exponentially with the total generation number G, while the typical

3Although we focus on three-dimensional systems the general dimension d is often indicated since this
may help to clarify the structure of the relations. The reader is invited to replace d by d = 3. For similar
reasons we often make explicit the inverse fractal dimension ν of the spacer chains. It should be replaced
by its value ν = 1/2.

4Due to effective three-body monomer interactions strongly branched stars may yet swell in the θ-
regime. In the limit of large spacer chains this effect should become negligible, however, as for unbranched
stars for which it has been shown that the renormalized interaction vanishes in the limit of infinitely long
chains [108].
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chain size R(G) ∼
√
G only increases as a power-law. That the fractal dimension thus

must diverge, is denoted below by the shorthand “df =∞”. We shall in addition consider

star classes of finite fractal dimension df focusing especially on more fluffy, not too dense

systems which should be (at least conceptionally) of experimental relevance. Specifically,

let us consider (i) marginally compact chains [66] of fractal dimension df = d = 3 and (ii)

stars of fractal dimension df = 2.5 which might be thought to be assembled by diffusion

limited aggregation (DLA) [67, 68, 69, 70].

Power-law stars. As sketched in panel (b), such hyperbranched stars of finite fractal

dimension may be constructed most readily by imposing a number of spacer chains Mg

per generation g such that the power law Mg ∼ gα−1 holds. The “growth exponent” α of

these so-called “α-stars” is set by the fractal dimension

α = dfν (3.1.4)

as may be seen using N ∼ Rdf and R ≈ Re ∼ (SG)ν . While being a natural generalization

of the regular dendrimer case, restricting the branching of star arms does, unfortunately,

not lead to a self-similar fractal tree since the iteration g → g + 1 is not a proper self-

similar generator acting on all spacer chains [69, 112]. We therefore also consider truly

self-similar fractal and multifractal stars, called β- and γ-stars,5 generated iteratively as

shown in panel (c) and panel (d) of Fig. 1.1 by the iterative application of a well-defined

generator (or several generators) on all the spacer chains as in the recent theoretical work

on Vicsek fractals [97, 98]. For the latter architectures one thus expects to observe for

the intramolecular coherent form factor F (q) the power-law scaling [12, 15, 66]

F (q) ∼ 1/qdf for df ≤ d = 3 (3.1.5)

in the intermediate regime of the wavevector q. Note that Eq. (3.1.5) only holds for open

or marginally compact structures [66, 15]. Porod-like scattering is, of course, expected

for more compact star classes.

Outline. The presentation of this Chapter follows closely the recently submitted

manuscript Ref. [54]. We summarize first in Sec. 3.2 the numerical methods used and

specify then in Sec. 3.3 the different topologies studied. Some real space properties are

presented in Sec. 3.4 before we turn to the characterization of the intramolecular form

factor F (q) in Sec. 3.5. While most of this study is dedicated to strictly Gaussian hy-

perbranched stars, i.e. all excluded volume effects are switched off, we investigate more

briefly in Sec. 3.6 by means of Monte Carlo (MC) simulations [20] effects of a weak ex-

cluded volume interaction penalizing too large densities. Even an exponentially small

5With “multifractal” I merely mean that more than one generator is used.
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star type df G N/106 Ne/103 〈s〉
smax

r.f. Re Rg

Dendrimer ∞ 17 12.6 197 0.87 0.11 23 22
α-star 6 50 22.6 41.6 0.74 0.19 40 34
α-star 5 80 10.4 10.0 0.70 0.22 51 42
α-star 4 200 7.2 2.2 0.63 0.29 80 64
α-star 3 2000 16.2 0.4 0.47 0.45 253 138
α-star 2.5 2000 2.4 0.05 0.36 0.61 253 108
β-star 3 2048 8.4 1.2 0.49 0.51 256 179
β-star 2.5 4096 1.1 0.03 0.45 0.56 362 171
γ-star 2.5 8192 11.1 0.3 0.47 0.54 512 351

Table 3.1: Various properties for different hyperbranched star types of spacer length
S = 32: fractal dimension df , largest generation number G, total mass N , number of end
monomers Ne in the last generation shell g = G, rescaled Wiener index 〈s〉/smax with
smax = 2GS being the largest curvilinear distance between pairs of monomers, relative
root mean-square fluctuation

√
〈s2〉 − 〈s〉2/〈s〉 (r.f.) of the normalized histogram w(s),

root mean-square end distance Re between the root monomer and the end monomers of
the generation shell g = G and radius of gyration Rg.

excluded volume is seen to change qualitatively the behavior of large regular dendrimers.

Neglecting deliberately the long-range correlations expected as for linear chains [1, 23],

we sketch in Sec. 3.7 the regime where the Gaussian approximation for melts of hyper-

branched stars should remain reasonable for sufficiently large spacers.

3.2 Some computational details

Settings and parameter choice. Let us suppose that the monomers are connected by

ideal Gaussian springs. The spring constant is chosen such that the effective bond length

b, Eq. 3.1.1, becomes unity. Also, both the temperature T and Boltzmann’s constant kB

are set to unity. All Gaussian spacers are of equal length S (which comprises one end

monomer or branching monomer). With M being the total number of spacer chains, a

chain thus consists of N = 1 +SM monomers. If nothing else is said, S = 32 is assumed.

(This slightly arbitrary choice is motivated by simulations of dendrimer melts presented

elsewhere.) For S = 32 we sampled up to a generation number G = 17 for regular

dendrimers and up to G ≈ 2000 for power-law hyperbranched stars of fractal dimension

df = 3 and df = 2.5. (Even larger G obtained using smaller S are included below where

appropriate.) Some properties of the largest system computed for each investigated star

architecture are listed in Table 3.1.

Local and collective MC moves. Due to their Gaussian chain statistics many con-

formational properties can be readily obtained using Gaussian propagator techniques [12]

or equivalent linear algebra relations [99, 103, 104, 105, 106]. However, some interesting
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Figure 3.1: Sketch of pivot MC move (a) and data structure (b). A monomer i (filled
square) is selected randomly and all attached monomers k closer to the ends (within thin
circles) are rigidly turned by an angle θ. A suitable data structure consists in ordering
the spacer arms (their index indicated by the numbers) and the monomers such that all
monomers k become neighbors in the monomer lists (i < k ≤ j). The tabulated monomer
j = last(i) is the last monomer to be turned.

properties, such as the eigenvalues λi of the inertia tensor, can be more easily computed

by direct simulation which are in any case necessary if long-range interactions between

the monomers are switched on (see below). As shown in Fig. 3.1, we use pivot moves

with rigid rotations of the dangling chain end (as shown by the monomers within the thin

circles) below a randomly chosen pivot monomer i. The monomers are collectively turned

(using a quaternion rotation [20]) by a random angle θ around an also randomly chosen

rotation axis through the pivot monomer. As illustrated in panel (b) of Fig. 3.1, it is useful

to organize the data structure such that arms and monomers which are turned together

are also grouped together. This allows to rotate all monomer k with i < k ≤ j. The

tabulated monomer j = last(i), the last monomer to be turned, must be an end monomer.

A pivot move does leave unchanged the distances between connected monomers. (If the

connectivity of the monomers is the only interaction, a suggested move is thus always

accepted.) To relax the local bond length distribution simple local MC jumps are added

[20]. The root monomer at the origin never moves.

Excluded volume interactions. Due to excluded volume constraints the volume frac-

tion occupied by a realistic chain can, obviously, not exceed (much above) unity. One

simple way to penalize too large densities is to introduce an excluded volume energy

through the lattice Hamiltonian

E =
ε

2

∑
r

n(r) (n(r)− 1) (3.2.1)
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using the monomer occupation number n(r) of a simple cubic lattice. For all examples

presented below we set δx = δy = δz = 1, i.e. the grid volume δV = δx δy δz is unity and

n(r) = ρ(r)δV measures the instantaneous local density. The Hamiltonian is similar to the

finite excluded volume bond-fluctuation model for polymer melts on the lattice described

in [1]. However, the particle positions are now off-lattice and only the interactions are

described by the lattice. A local monomer or collective pivot move is accepted using

the standard Metropolis criterion for MC simulations [20]. Note that the collective pivot

moves are best implemented using a second lattice for the attempted moves.

3.3 Characterization of imposed intrachain connec-

tivity

Introduction. We assume that the hyperbranched star topology is not annealed, i.e.

not in thermal equilibrium, but irreversibly imposed by an unknown chemical reaction

process. The first step for the understanding of such quenched structures is the speci-

fication and characterization of the assumed imposed connectivity, often referred to as

“connectivity matrix” [99, 106]. A central property characterizing the monomer connec-

tivity is the normalized histogram of curvilinear distances

w(s) =
1

N2

N∑
n,m=1

δ(s− snm) (3.3.1)

with snm being the curvilinear distance between the monomers n and m. Trivially, w(s =

0) = 1/N and w(s) ≈ 2N/N2 = 2/N for 0 < s � S since the same monomer pair is

counted twice. Note that the histogram w(s), sampled over all pairs of monomers of the

chain, may differ in general from the similar distribution w0(s) of the curvilinear distances

between the root monomer to other monomers. We remind also that for a linear polymer

chain [1]

w(s) =
2

smax

(
1− s

smax

)
for 0 < s ≤ smax (3.3.2)

with smax = N − 1 ≈ N . For most of the star architectures considered the largest

curvilinear distance smax is given by smax = 2SG. The histogram w(s) will be used

below for the determination of experimentally relevant properties such as the radius of

gyration Rg and the intramolecular form factor F (q). The first and second moments of

w(s) are given in Table 3.1 for the different architectures studied. We remind that N〈s〉
is sometimes called “Wiener index” W1 [26, 106]. (For linear chains W1/N

2 = 1/3.)

Regular dendrimers. Let us first summarize several simple properties of the regular

dendrimers sketched in panel (a) of Fig. 1.1. As already mentioned above, the number
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Figure 3.2: Number of spacer chains Mg for regular dendrimers (bold solid line) and
hyperbranched power-law stars of fractal dimension df = 3 (α = 3/2). The open triangles
refer to an α-star, the small filled triangles to a self-similar fractal constructed using the
generator A shown in Fig. 1.1(c). The logarithmically averaged number of arms (thin
line) and the root-mean-square fluctuations (circles) are of same order.

Mg of spacer chains per generation shell g ≤ G increases exponentially as Mg = 3 2g−1

as shown by the bold line in Fig. 3.2. Since we assume monodisperse spacer chains of

length S, this trivially implies w0(s) ≈ 2s/S for S � s ≤ SG and that the total mass N

at total generation number G must also increase exponentially, as shown in Fig. 3.3. The

histogram w(s) of curvilinear distances s for dendrimers is given in panel (a) of Fig. 3.4

(bold solid lines). The main panel gives a linear representation of the dimensionless

rescaled histogram w(s)smax as function of s/smax, the inset on the left-hand side a similar

half-logarithmic representation. As one expects, the histogram increases exponentially for

curvilinear distances S � s � smax due to the exponential increase of alternative paths

of length s starting from an arbitrary monomer. Using simple combinatorics it can be

seen that the histogram must become

w(s) ≈ 2

N
2(s/S−1)/2 for 1 ≤ s� smax. (3.3.3)

The cutoff observed for large s ≈ smax is caused, ultimately, by the finite mass of the star

and the finite length of its branches, just as the finite length of a linear chain gives rise to

Eq. (3.3.2). As seen from Table 3.1, the reduced first moment 〈s〉/smax approaches unity

for regular dendrimers and the relative fluctuations are the smallest for all architectures

considered.
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Figure 3.3: Reduced number of monomers N/S vs. total generation number G for different
imposed topologies and fractal dimensions df . Regular dendrimers are indicated by df =∞
(circles), α-stars by the other open symbols. The filled triangles corresponds to self-similar
fractals of df = 3 (nS = 4, nM = 8) and df = 2.5 (nS = 16, nM = 32) dimensions, the
crosses to multifractals of df = 2.5.

Hyperbranched α-stars. As already noted in the Introduction, a simple way to gen-

erate stars of a finite fractal dimension df is to impose a power law Mg = cgα−1 for the

number of spacers per generation shell with c being a constant.6 This is done by randomly

attaching Mg spacer chains to the end monomers of generation g− 1 (with the constraint

that at most two spacers can be attached per end monomer). An example for such an

α-star with α = 3/2 is given in Fig. 3.2 (open triangles). The corresponding total mass

N ≈ SGα as a function of G is shown for α = 6/2, α = 5/2, α = 4/2, α = 3/2 and

α = 2.5/2 by open symbols in Fig. 3.3.7 The histogram w0(s) of curvilinear distances

from the root monomer increases as w0(s) ∼ sα−1 for S � s ≤ smax as implied by the

Mg-scaling (not shown). The curvilinear histograms w(s) over all pairs of monomers are

presented in the main panel of Fig. 3.4(a). The histograms are again non-monotonous

increasing first due to the branching and decreasing finally due to the finite length of

the star arms. The latter decay becomes the more marked the weaker the branching, i.e.

6The constant c is assumed here to be S-independent. Imposing instead Mg = c̃(Sg)α−1 with c̃ ∼ S0

leads to a total mass N ≈ (SG)α and, hence, to a typical density ρ ≈ N/Rd ≈ (SG)α−dν . The latter
choice may, e.g., be useful to compare marginally compact α-stars at constant density for different spacer
lengths.

7Hyperbranched stars or trees with fractal dimension df = 4 have been discussed in the context of
randomly branched polymers (often called “lattice animals”) [93], dilute rings in a gel of topological
obstacles [96] and as a possible model describing the topological interactions of unconcatenated melts
of rings [96, 66]. All these models have in common that on the local scale the branched structure is
described by Gaussian spacer chains. A fractal dimension df = 6 would arise if a marginally compact
star is constructed assuming rigid spacer chains which are then allowed to become flexible.

45



CHAPTER 3. HYPERBRANCHED POLYMERS WITH GAUSSIAN STATISTICS

Figure 3.4: Connectivity histogram w(s) measuring the number of monomer pairs at
curvilinear distance s along the branched chain: (a) Regular dendrimers for G = 20
(bold line) and α-stars for different fractal dimensions (open symbols). The dashed line
indicates the histogram for a linear chain of length N ≈ smax. Inset: Half-logarithmic
representation for regular dendrimers. (b) Double logarithmic representation for df = 2.5
(upper data) and df = 3 (lower data). As emphasized by the solid and dashed lines a
power law xα−1 is observed for self-similar (multi)fractals chains.

the smaller α, getting similar for the smallest exponent α = 2.5/2 studied to the linear

chain behavior, Eq. 3.3.2, indicated by the dashed line. As may be better seen from the

double-logarithmic representation chosen in panel (b) of Fig. 3.4, this class of stars cannot

be described by a simple power law or exponential behavior for w(s).8

Self-similar β-stars. This is different for self-similar fractals created starting from a

G = 2 dendrimer of spacer length S0 (as specified below) as initiator and iterating a

generator as the one shown in Fig. 1.1(c). At every iteration step i a spacer of length

Si−1 is replaced by nM spacers of length Si = Si−1/nS. Hence, Si = S0/n
i
S, Mi = 9niM ,

Ni − 1 = SiMi = 9S0(nM/nS)i and Gi = 2niS for, respectively, the spacer length, the

number of spacers, the total mass and the generation number of the star. Importantly, the

arms added laterally to the original spacer can always be distributed such that the root-

mean square end-to-end distance of the original spacer (filled circles) still characterizes

the typical size of the replaced spacer. Since SiGi = 2S0 for the curvilinear distance

between the root monomer and the end monomers in the largest generation shell g = Gi,

the typical chain size R, thus remains by construction constant as we shall explicitly verify

in Sec. 3.4. Note that the spacer length Si of the final iteration step is set by

S
!

= Si = S0/n
i
S, (3.3.4)

8Note that with decreasing α the first moment 〈s〉 of α-stars decreases while the relative fluctuations
increase (Table 3.1).
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which fixes the mass N0 ≈ S0 ≈ SniS of the initiator star. Using Ni ∼ Rdf ∼ N νdf
0 this

implies

nM = nβS with β = dfν (3.3.5)

relating thus both numerical constants nS and nM . As shown for df = 3 (nS = 22,

nM = 23) by the small filled triangles in Fig. 3.2, such a self-similar construction leads to

a strongly fluctuating number Mg of spacers. However, as shown by the thin solid line

the (logarithmically) averaged number of arms still increases as Mg ∼ gα−1 with α = β =

dfν in agreement with Eq. (3.1.4). Interestingly, the corresponding (also logarithmically

averaged) root-mean square fluctuations (as indicated by open circles) are of the same

order, i.e. the relative fluctuations of spacer number Mg per generation shell are of order

one. The important point is here that all monomers are statistically equivalent and that

the root monomer does not play any specific role which would break the self-similarity.

(As we have verified, this implies w(s) ≈ w0(s).) Averaging over all spacer chains, the

total mass N scales, as expected, again as N ≈ SGα with α = dfν as shown in Fig. 3.3 by

filled triangles for df = 3 and df = 2.5. The latter architecture, constructed using nS = 24

and nM = 25, is motivated by the fractal dimension df ≈ 2.5 which may characterize

self-similar stars generated by DLA in d = 3 dimensions [67, 68, 69]. In our view this

is one interesting universal limit of (at least conceptional) experimental relevance [70].

Being self-similar all monomers are equivalent and since the number of monomers at a

curvilinear distance s must increase on average as (s/S)α−1, one expects for S � s� smax

the power-law scaling

w(s) ≈ N × 1

N2
(s/S)α−1 ≈ 1

smax

(s/smax)α−1 (3.3.6)

with N ≈ S(smax/S)α ≈ SGα. This is confirmed by the histograms (filled symbols) shown

in Fig. 3.4(b).

Stochastic two-generator multifractals. Since the DLA limit is of some importance

we have sampled a second system class of fractal dimension df = 2.5 constructed by mixing

the generator A for marginally compact stars shown in panel (c) of Fig. 1.1 with the second

generator B shown in panel (d). Being constructed using more than one generator these

so-called “γ-stars” are in fact multifractals [69, 68]. (We remember that DLA clusters

are also multifractal [68]. No multifractal analysis [69] is required here, however.) For a

given spacer we apply the generator A with a probability fA and the generator B with a

probability fB = 1−fA. By choosing different values of fA any fractal dimension between

df = 2 and df = 3 can be sampled using both generators. By reworking the arguments

leading to Eq. (3.3.5) it can be readily seen that choosing fA = fB = 1/2 corresponds

to df = 2.5. While the fractal stars are deterministic, the multifractals have a stochastic

topology due to the random mixing of both generators and an ensemble average over

47



CHAPTER 3. HYPERBRANCHED POLYMERS WITH GAUSSIAN STATISTICS

Figure 3.5: Core-to-end distance Re for different imposed topologies: (a) Double-
logarithmic representation of the reduced mean-squared end distance R2

e/S vs. reduced
mass N/S. (b) Density ρ ≡ N/R3

e vs. total generation number G for a spacer length
S = 32.

several independent chains is thus taken. As may be seen from the crosses in Fig. 3.3 and

Fig. 3.4(b), the properties of β- and γ-stars are, however, rather similar.

3.4 Real space characterization

End distance Re. There are several ways to characterize the typical star size R all

being equivalent from the scaling point of view. A double-logarithmic representation of

the reduced mean-square end distance R2
e/S vs. the reduced mass N/S is presented in

panel (a) of Fig. 3.5. Note that the values of Re obtained by direct MC simulations are

within statistical accuracy identical to R2
e = b2SG. Both data sets are lumped together.

The regular dendrimer size increases, of course, logarithmically with the mass (circles

and bold solid line). The power-law slopes indicated for finite-df systems are consistent

with the definition N ∼ Rdf . As one measure of the overall density of a star one may

define ρ ≡ N/Rd
e . (Obviously, a suitable order-one geometrical factor, such as 4π/3,

might be included in this definition.) As can be seen from panel (b) of Fig. 3.5, the

density for regular dendrimers exceeds already at G = 10 an unrealistic order of 10

monomers per volume element. As indicated by the various power-law slopes, ρ ∼ Gα−dν

for hyperbranched power-law stars of finite fractal dimension, i.e. the overall density

increases for df > d and decreases for df < d as it should.

Radius of gyration Rg. The radius of gyration Rg presented in Fig. 3.6 has been

determined with identical results (lumped again together) either from the MC sampled
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Figure 3.6: Reduced radius of gyration y = (Rg/Re)
2 vs. generation number G. The

ratio y becomes constant only for self-similar fractals (filled symbols) and multifractals
(crosses).

configuration ensembles or by means the formula [13]

R2
g ≡

1

2N2

N∑
n,m=1

〈
(rn − rm)2

〉
=

1

2

smax∑
s

w(s)R2
s (3.4.1)

using the histogram of curvilinear distances w(s) discussed above and the Gaussian chain

property R2
s = b2s. Measuring thus the first moment of w(s), the radius of gyration is

equivalent for Gaussian chains to the Wiener index W1. The reduced radius of gyration

y = (Rg/Re)
2 is plotted as a function of G. Since the end monomers dominate the mass

distribution of regular dendrimers for large G, Rg becomes similar to Re. As expected, y

approaches unity from below (circles). Interestingly, the ratio y is constant for the self-

similar β- and γ-stars, i.e. Re and Rg are similarly rescaled by the iterative application

of the generators. This confirms the choice of generators discussed in Sec. 3.3. We note

finally that other observables characterizing the star size R, such as the hydrodynamic

radius [13], have been found to scale similarly as the end distance Re and the radius of

gyration Rg.

Density profiles. Figure 3.7 presents various normalized density profiles p(r) with

r being the radial distance from the focal molecule point. The rescaled distribution

y = p(r)Rd is plotted as a function of the reduced distance x = r/R with R = Re in panel

(a) and R = Rg in panel (b) and panel (c). The distribution of the end monomers for

regular dendrimers (G = 12, S = 32) shown in panel (a) is a reminder of Eq. (3.1.2), i.e.
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Figure 3.7: Spherically averaged density distributions y = p(r)Rd with r/R being the
reduced distance from the cebntral monomer: (a) End monomer distribution with R = Re

showing the expected Gaussianity (dashed line), (b) total monomer density distribution
rescaled with R = Rg using the same symbols as in Fig. 3.6, (c) double-logarithmic
representation for three architectures with df = 2.5. The power-law slope indicates the
expected exponent df − d = −0.5.

of the trivial fact that the distances of all pairs of monomers have a Gaussian distribution

(dashed line). The rescaled density ρ(r) = p(r)N of all monomers is shown in panel (b)

of Fig. 3.7 (using a half-logarithmic representation) for the largest star of each topology

class. Note that the distribution p(r) has been either obtained for masses up to N ≈ 106

from our MC simulations or for larger systems using

p(r) =
smax∑
s=0

w0(s)P (r, s) (3.4.2)

with w0(s) being the already mentioned normalized histogram of monomers of same curvi-

linear distance from the central monomer and P (r, s) the size distribution of a subchain

of arc-length s given by Eq. (3.1.2). Since the density distribution of large regular den-

drimers (circles) is dominated by the end monomers, p(r) becomes essentially Gaussian

(dashed line). We shall come back to this point at the end of Sec. 3.5. The histograms

get naturally broader with decreasing df . Panel (c) on the right-hand side gives a double-

logarithmic representation of the total monomer density distribution for three topologies

with df = 2.5. As explained in de Gennes’ book [12], the density should decrease as

n(r)/rd ∼ 1/rd−df with n(r) ∼ rdf being the mass distributed within the volume rd. The

same power-law exponent is obtained using w0(s) ∼ sα−1 and integrating Eq. (3.4.2) for

df < d and x � 1. Even the not self-similar α-star (open triangles) is seen to follow the
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Figure 3.8: Aspherical fluctuations: ratio (Rg/Rsp)2 (main panel) and rescaled largest
eigenvalue ∆ ≡ 〈λ1〉 /R2

g − 1/3 of the inertia tensor for regular dendrimers and α-stars
(inset).

predicted slope (solid lines). It is sufficient for this property that w0(s) has a power-law

asymptotics albeit w(s) has not.

Center of mass fluctuations. Albeit spherically averaged density profiles may rea-

sonably characterize some aspects of the conformational properties of our hyperbranched

polymer stars [73] it is important to emphasize that a given instantaneous configuration

may not be spherically symmetric and depending on the property probed experimentally

or in a computer experiment these aspherical fluctuations may crucially matter. This

issue is addressed in Fig. 3.8. The main panel compares the true radius of gyration

R2
g = 1

N

∑
n〈(rn − rcm)2〉 with a spherical approximation of the mass distribution defined

by R2
sp ≡ 1

N

∑
n〈r2

n〉 assuming the center of mass rcm of the star to be set by the the cen-

tral monomer at the origin for all configurations, i.e. rcm
!

= 0. The main panel of Fig. 3.8

presents (Rg/Rsp)2 as a function of the generation number G for different topologies. The

ratio is always smaller than unity. The ratio is seen to approach unity from below for

regular dendrimers and α-stars with df > d. While the spherical approximation rcm = 0

becomes thus better with increasing size, stars with an incredible huge molecular mass

are required to reach Rg ≈ Rsp. Interestingly, the ratio actually decreases for α-stars

with df = 3 and df = 2.5 (open triangles) while it is essentially constant for self-similar

(multi)fractals (filled triangles and crosses). For these experimentally most relevant star

classes the center-of-mass fluctuations remain thus relevant even in the asymptotic chain

size limit.
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Asphericity. The asphericity of the stars may be (also) characterized by computing the

three eigenvalues λ1 ≥ λ2 ≥ λ3 of the inertia tensor of each star and averaging over the

ensemble. Since R2
g = 〈λ1〉+〈λ2〉+〈λ3〉, the rescaled eigenvalue ∆ ≡ 〈λ1〉/R2

g−1/3 should

vanish for perfectly spherical chains with 〈λ1〉 = 〈λ2〉 = 〈λ3〉. We have plotted ∆ as a

function of the inverse mass for several topologies in the inset of Fig. 3.8. As expected from

the consideration of Rsp, ∆ is seen to vanish in the large-N limit for regular dendrimers

and α-stars with df > d. (As shown by the solid line, ∆ decays only logarithmically with

mass.) The opposite behavior is found for smaller fractal dimensions as shown by the

open triangles. Whether for these systems ∆ becomes constant for N →∞ (as for linear

chains) cannot be confirmed from our numerical data. The crossover to this likely plateau

seems to be sluggish.

3.5 Form factor

Introduction. Conformational properties of branched and hyperbranched star poly-

mers can be determined experimentally by means of light, small angle X-ray or neutron

scattering experiments [113, 114]. Using appropriate labeling techniques this allows to

extract the coherent intramolecular form factor F (q) defined as

NF (q) =
〈
ρ̂(q)ρ̂(−q)

〉
=

〈
||

N∑
n=1

exp
(
iq · rn

)
||2
〉

(3.5.1)

with ρ̂(q) being the Fourier transform of the instantaneous density and q the wavevector.

The average 〈. . .〉 is sampled over the ensemble of thermalized chains. The form factor

is of interest since it allows to compare real experiments with theoretical predictions and

numerical data [12]. For sufficiently large N and small q ≡ ||q|| the radius of gyration

Rg, as one possible measure of the star size, becomes the only relevant length scale. The

form factor thus scales as [12]

F (q) = Nf(Q) with Q = qRg (3.5.2)

being the reduced wavevector and f(Q) a universal scaling function with f(Q) = 1−Q2/d

in the “Guinier regime” for Q� 1. In the opposite large-q limit the density fluctuations

within the spacer chains are measured and the form factor becomes [13]

F (q) =
12

(bq)2
for

1

bS1/2
� q � 1

b
. (3.5.3)

For even larger wavevectors correlations on the monomer scale are probed. In the following

we shall focus on the intermediate wavevector range 1/Rg ≤ q � 1/bS1/2 between the

Guinier regime and the trivial large-q limit.
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Figure 3.9: Kratky representation of the form factor y = (F (q)/N)Q2 as a function of
the reduced wavevector Q = qRg for regular dendrimers: (a) G = 12 for different spacer
length S, (b) S = 128 for different generation number G.

Regular dendrimers. Focusing on regular dendrimers Fig. 3.9 presents a Kratky repre-

sentation [15] of the form factor y ≡ (F (q)/N)Q2 as a function of the reduced wavevector

Q = qRg. Panel (a) shows stars of different spacer length S for a generation number

G = 12, panel (b) different generation numbers G for a fixed spacer length S = 128.

The increase of the rescaled data for very large wavevectors q � 1/b observed in both

panels is trivially caused by the discrete monomeric units used in our simulations (see

below). The scaling observed for different S in panel (a) for the intermediate wavevector

regime, where the Gaussian spacer chains are probed, is due to the fact both the mass

N and the radius of gyration R2
g are linear in S. The corresponding failure of Eq. (3.5.2)

in panel (b) shows that there is more than one characteristic length scale. Note that

the strong decay after the Guinier regime above Q ≈ 3 becomes systematically sharper

with increasing generation number G. The bold solid lines in both panels indicate the

expected asymptotic limit for G → ∞ as discussed at the end of this section. Note that

the regular dendrimer with G = 20 (large circles) shown in panel (b) is rather close to

this limit. The form factor of this huge chain has not been obtained by MC simulations

but by computing numerically the equivalent discrete sum

F (q) =
smax∑
s=0

w(s)P (q, s) (3.5.4)

with w(s) being the curvilinear segment histogram discussed above and P (q, s) the Fourier

transform of the segment size distribution P (r, s). Since P (q, s) = exp(−(aq)2s) with a ≡
b/
√

2d for Gaussian chains, the form factor is readily computed yielding, as one expects,

the same results as obtained from the explicitly computed configuration ensembles. This

can be seen from the dashed line in panel (a) of Fig. 3.9 for a spacer length S = 32.

To compute numerically the form factor using w(s) has the advantage that the already
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Figure 3.10: Kratky representation for β-stars with df = 3. The reduced form factor
approaches with increasing G the power-law slope −1 (bold line). The total monomer
mass N is indicated for each iteration i. The dashed line has been obtained according to
Eq. (3.5.5) by Fourier transformation of the spherically averaged density ρ(r) for i = 6.

mentioned discretization effect at q � 1/b can be eliminated. To do this the discrete sum

Eq. (3.5.4) is replaced by a continuous integral for s > 0 and the s = 0-contribution to

the form factor is added. As shown by the thin solid line in panel (a), this allows to get

rid of the irrelevant discretization effect.

Marginally compact stars. Figure 3.10 presents the form factor obtained using the

continuous version of Eq. (3.5.4) for self-similar fractals of marginal compactness (df = 3).

As one expects according to Eq. (3.1.5), the data approach with increasing generation

number the power-law slope 2−df = −1 (bold line) expected for the intermediate wavevec-

tor regime. We remind that Eq. (3.1.5) can be derived from Eq. (3.5.4) and the scaling

w(s) ∼ sα−1 for self-similar fractals. Interestingly, Eq. (3.1.5) does not hold for the (not

self-similar) α-stars as may be seen from Fig. 3.11. Note also that the large-q plateau

of the rescaled form factor in Fig. 3.10 only decays as R2
g/N ∼ 1/N1/3 extremely slowly

with mass. This makes the numerical confirmation of the power-law slope demanding.

For real experiments this implies that the determination of a fractal dimension df ≈ 3

using the power-law scaling of the form factor for self-similar stars will also be challeng-

ing. We remind that a similar slow convergence of the intermediate wavevector regime is

well-known for other more-or-less compact polymers such as polymers confined to ultra

thin slits or melts of polymer rings [66, 115].
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Figure 3.11: Rescaled form factor y(Q) = (F (q)/N)Q2 for the largest stars available
obtained using Eq. (3.5.4). The self-similar β- and γ-stars decay with a power law Q2−df

in the intermediate wavevector regime as shown by the thin solid line for df = 3 (i = 6)
and by the dash-dotted line for df = 2.5. The dashed line indicates the preaverage
approximation using Eq. (3.5.5) for α-stars of df = 5, the bold solid line the expected
large-dendrimer limit.

Comparison of different architectures. The rescaled form factors for the largest

chains considered for each studied topology are compared in Fig. 3.11. As expected, all

data sets collapse in the Guinier regime below Q ≈ 2 and become again constant for

large wavevectors q � 1/bS1/2. (The discretization effect for large q is again avoided

using the continuous version of Eq. (3.5.4).) The decay of the reduced form factor in the

intermediate wavevector is seen to become systematically stronger with increasing fractal

dimension df . For the self-similar (multi)fractals this decay is described by Eq. (3.1.5) as

emphasized by the solid and the dash-dotted power-law slopes for, respectively, df = 3

and df = 2.5. All other architectures decay stronger than a power law. Note that it is

the shape of this decay which is the most central property to be tested experimentally to

characterize, at least approximatively, the structure of hyperbranched stars.

Spherical preaveraging. As reminded at the beginning of this section, the intramolec-

ular form factor is the ensemble average of the squared Fourier transform ρ̂(q) of the

fluctuating instantaneous monomer density. Following the recent work by Likos et al.

[51], this begs the question of whether in the limit of large and dense stars, where density

fluctuations should become sufficiently small, one may replace ρ̂(q) by the Fourier trans-

form ρ(q) of the averaged density profile ρ(r) discussed in Sec. 3.4. Due to the spherical
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symmetry of our stars this suggests using Eq. (6.54) of Ref. [15] the approximation

F (q) ≈ N

(∫
dr p(r)

sin(q · r)
q · r

)2

(3.5.5)

with p(r) = ρ(r)/N being known from Eq. (3.4.2). As seen in Fig. 3.10 for marginally

compact fractals, Eq. (3.5.5) is not useful for open (df < d) and marginally open (df ≈ d)

architectures for which the density fluctuations are yet too large. (The large-q density

fluctuations within the spacer chains and on the scale of the monomers are integrated out

by the preaveraging approximation and can thus in any case not be seen.) The approxima-

tion becomes systematically more successful, however, with increasing fractal dimension

as seen in Fig. 3.11 for α-stars of fractal dimension df = 5. Note that the striking decay

of the rescaled form factor above the Guinier regime is accurately described by the ap-

proximation. As we have seen in Fig. 3.7, the distribution p(r) becomes systematically

more Gaussian with increasing star size and fractal dimension since the end monomers of

the largest generation shell dominate the total density. Since the Fourier transform of a

Gaussian is again a Gaussian, this implies

F (q) ≈ N exp
(
−(qRg)2/d

)
for q � 1/bS1/2. (3.5.6)

As seen by comparing the solid bold lines in Fig. 3.9 and Fig. 3.11 with the form factors

computed using Eq. (3.5.4) for our largest dendrimers (circles), the asymptotic behavior

Eq. (3.5.6) gives an excellent fit to our numerical data.

3.6 Weak excluded volume effects

Introduction. Up to now we have only considered effects of the imposed monomer con-

nectivity (topology) assuming all other interactions (persistence length, excluded volume,

. . . ) to be switched off (ε = 0). Since essentially all properties (apart the eigenvalues

λi of the inertia tensor) can be obtained analytically or numerically using the Gaussian

chain statistics, the presented MC simulations were less crucial. Direct simulations are,

however, essential for testing the influence of (albeit weak) excluded volume interactions

computed using the lattice occupation number Hamiltonian, Eq. (3.2.1), described at the

end of Sec. 3.2.

Scaling of chain sizes. Figure 3.12 presents the excluded volume dependence of the

radius of gyration Rg for regular dendrimers of four different generation numbers G.

(Similar behavior is found for other characterizations of the typical chain size R.) As

revealed in the main panel, the excluded volume effects are the more marked the larger

the mass N(G): The radius of gyration increases already at ε = 10−4 for G = 12 while it
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Figure 3.12: Radius of gyration Rg for dendrimers of generation number G as indicated
vs. excluded volume energy ε. Main panel: Unscaled raw data for S = 32. Inset: Rescaled
radius of gyration (Rg/R?)

2 as a function of ε/ε? with R? ≈ (SG)ν and ε? ≈ kBTR
d
?/N

2.
The bold slope corresponds (approximately) to the compact limit N ∼ Rd

g.

has barely changed at ε = 0.1 for G = 5. A successful data collapse is seen in the inset

of Fig. 3.12 where the rescaled radius of gyration (Rg/R?)
2 is plotted as a function of the

reduced interaction energy ε/ε? with R? ≡ Rg(ε = 0) ≈ (SG)ν being the typical size of

the Gaussian dendrimer star and ε? ≈ kBT Rd
?/N

2 the characteristic energy scale below

which the star remains Gaussian.

Fixman’s criterion. This scaling is a direct consequence of Fixman’s general criterion

[13, 14]

1� vρ2Rd
? ≈ vN2/Rd

? (3.6.1)

for the Gaussian chain approximation with v ≈ βεδV being the excluded volume, β the

inverse temperature and ρ ≈ N/Rd
? the overall density for Gaussian stars. As stressed by

the horizontal asymptote indicated in the inset, this is confirmed by the data for small

ε/ε?. The power-law slope γ = 1/d (bold line) for large reduced interaction energies is

only an approximative guide to the eye not taking into account logarithmic corrections.

This can be seen (i) from the usual power-law scaling ansatz [12] R2
g ≈ R2

? (ε/ε?)
γ, (ii)

neglecting the weak logarithmic N -dependence of R? (Fig. 3.5) and (iii) assuming that the

dendrimers become essentially marginally compact, N ∼ Rd
g, for large ε. The latter point

has explicitly been checked. For stars with finite fractal dimension df a similar scaling

behavior has been found (not shown). In terms of the generation number G and the spacer
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length S, Fixman’s criterion may be rewritten remembering that N ≈ S 2G for regular

dendrimers and N ≈ S Gdfν for power-law stars. Hence, the Gaussian approximation

must hold for S � S? with an upper critical spacer length S? scaling as

S? ≈ 1/
(
βε 22G/Gdν

)1/(2−dν)
and

S? ≈ 1/
(
βε G2α−dν)1/(2−dν) , (3.6.2)

respectively, for dendrimers (df = ∞) and finite-df hyperbranched stars. In both cases

S? ∼ 1/(βε)2 in d = 3 dimensions (while four-dimensional stars are only marginally

swollen).

3.7 Conclusion

Summary. Following our recently submitted manuscript Ref. [54], we have revisited by

means of direct analytical calculation, using for instance Eq. (3.5.4), and straightforward

MC simulations (Sec. 3.2) several conformational properties of regular (exponentially

growing) dendrimers and power-law hyperbranched stars (Fig. 1.1) assuming Gaussian

chain statistics (ν = 1/2). As emphasized, a central imposed property is the normal-

ized weight w(s) of curvilinear distances s between monomer pairs (Fig. 3.4). Focusing

on experimentally measurable observables such as the radius of gyration Rg (Fig. 3.6)

and the intramolecular form factor F (q) (Figs. 3.9-3.11), we investigated the scaling for

asymptotically long stars with different fractal dimensions df . Due to their topological

simplicity regular dendrimers (df = ∞) have played a central role in our presentation

(Fig. 3.9) as in other recent computational studies [29, 34, 36, 51, 73]. Being in our view

experimentally and technically more relevant, we have also focused on stochastic architec-

tures with df = 3 (marginally compact) and df = 2.5 as expected for stars created by DLA

[69]. We compared “α-stars” constructed by imposing Mg ∼ gα−1 arms per generation

with truly self-similar so-called “β-stars” and “γ-stars” for which Mg becomes a strongly

fluctuating quantity (Fig. 3.2). As shown in Fig. 3.11, only the latter two topologies show

the power-law decay, Eq. (3.1.5), of the form factor in the intermediate wavevector regime

expected for open self-similar systems [12, 66]. While large compact (df > d) stars may

roughly be seen as dense colloidal spheres in agreement with Likos et al. [51], the instanta-

neous aspherical fluctuations can not be neglected for experimentally relevant properties

for the smaller fractal dimensions studied (Fig. 3.8, dashed line in Fig. 3.10). We have

commented briefly on the effects of gradually switching on an excluded volume potential.

Coupling the (off-lattice) monomers by means of a (lattice) MC scheme (Sec. 3.2), we have

sketched for different architectures the regimes (ε� ε?, S � S?) where the Gaussian star

approximation can be assumed to be reasonable (Fig. 3.12).
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Figure 3.13: Sketch of critical spacer length S? for melts for dendrimers (df = ∞) and
hyperbranched power-law stars with finite df as indicated. The Gaussian star assumption
holds above the bold lines. Note that the scaling argument does not allow to fix the
scale of the vertical axis. If the generation number G is increased at constant spacer
length S, as indicated by the dashed arrows, ideal chain behavior is expected for small
G � G?(S), while the star becomes colloid-like for larger G � G?(S). The number of
chains interacting with a reference star should have a maximum at ≈ G?(S).

Conjectures for melts of hyperbranched stars. As already pointed out, the Gaus-

sian star assumption should be relevant under melt conditions assuming a large spacer

length S � S?. That this holds can be seen by rewriting Fixman’s Gaussian chain

criterion, Eq. (3.6.1), for melts

1� v

N
ρ2Rd

? ≈ v N/Rd
? (3.7.1)

remembering that the bare excluded volume v ∼ ε has to be rescaled by the total chain

mass N [12].9 The hyperbranched stars should thus remain Gaussian below an inter-

action energy βε? ≈ Rd
?/N . Since βε is not a parameter which can be readily tuned

experimentally over several orders of magnitude, it is of some importance that Eq. (3.7.1)

sets equivalently a lower bound S? � S depending on the generation number G. Follow-

ing the discussion at the end of Sec. 3.6 for excluded volume effects for single stars this

9A similar criterion 1 � βwρ3Rd? should hold for θ-solvent conditions with w > 0 being the scale of
the three-body interactions. Gaussianity thus requires w � w? ≈ R2d

? /N
3. Note that the upper critical

dimension for θ-solvents being d = 3, this condition does not depend (up to logarithmic corrections) on
the spacer chain length S.
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implies

S? ≈
(
2G/Gdν

)1/(dν−1)
and

S? ≈
(
G(df−d)ν

)1/(dν−1)
, (3.7.2)

respectively, for regular dendrimers and for finite-df power-law stars in the melt. This

scaling prediction is sketched in Fig. 3.13 for several architectures. Hyperbranched stars

should remain thus Gaussian (albeit with a renormalized effective statistical segment

length [13, 1]) as long as S � S?, if the interaction parameter βε is switched on as in the

recent study of linear chain polymer melts [1]. Details may differ somewhat, of course,

since the spacer chains may not be rigorously Gaussian due to long-range correlations

related to the overall incompressibility of the melt [23, 1]. It is thus possible that even the

self-similar stars of imposed fractal dimension df = 2.5 for the Gaussian reference (ε = 0)

may swell somewhat. We do conjecture, however, that this “swelling” for interacting

large-S hyperbranched stars in the melt remains perturbative as long as df < d = 3.

Basically, each chain builds up a concentration ρ? ≈ N/Rd around its center of mass.

Monomers belonging to other chains are depleted from this region, since the total density

ρ � ρ? can be assumed to be constant. This constraint causes an effective repulsion

energy βU ≈ ρ?/ρ ∼ N1−d/df between chains and chain segments [12, 23, 1]. The ensueing

swelling becomes thus perturbative for 1 > df/d [1].

Considering the dynamical properties of strongly interpenetrating hyperbranched stars

for S � S? assuming local MC moves or standard Langevin thermostat molecular dy-

namics [20], it will be of some interest to characterize the mean-square displacement of

the star center of mass or, even better, the associated displacement correlation function

[1]. As for the center of mass motion of linear polymer melts [1], strong deviations from

the Rouse scaling are to be expected. Due to “viscoelastic hydrodynamic interactions”

this should happen even if reptational effects [13] can be neglected as is the case for a

finite ε ≈ 1.

I turn now to the description of static and dynamical properties of melts of regular

dendrimers computed by molecular dynamics simulation of a variant of the Kremer-Grest

bead spring model.
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Starburst dendrimer melt

4.1 Background

In this section the static and dynamical properties of starburst dendrimers will be dis-

cussed.

The field of hyperbranched star-like polymers, developed in the late 1970s [116], has ex-

ploded during the past decade [28, 117]. In the beginning considered only as a part of

the polymer and material science, quickly this new class of macromolecules has found

its place in the interdisciplinary field between organic chemistry, medicine, biology and

biotechnology.

An evaluation of their structure and behavior details advantages that dendrimers have

over other polymeric architectures in those fields. Just to name a few, their globular struc-

ture makes them perfect additives for lowering viscosity, multivalency could be a useful in

the case for biomedical applications, possible cavities present in dendrimers could hinder

other molecules or the active chemically terminal-groups to transport them to a target

place. Those particular molecules hold huge potential addressing lots of potential appli-

cations.

Currently there is a controversy in the literature [118] as to whether those molecules can

support hollow center structure and if they do become ’colloid-like’ for high generations.

This study is treating this problem by means of computer simulations.

The behavior of starburst dendrimers is related to their architecture that implies the

space filling geometry where increase of degree of ’backfolding’ comes along with growing

generation number. Molecules should, at least in principle, collapse and form compact

objects similar in their behavior to colloids. Encapsulation of the end groups leads to

the isolation of the active sites. Usage of such materials can be fruitful. But what will

happen if we will increase the branch length? That could promote molecules to form
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entanglements and result in a gel.

We will try to answer to this, and other related questions in the following chapters.

4.2 Technical side

In order to solve the given problem we must choose methods that will satisfy our needs.

There are a number of them, each of which has different functionality. To be successful

in achieving our goals we have to balance between [119]:

1. System details (length scales),

2. Time scales of the simulations compared to the relevant experimental time,

3. Available computer power,

4. Effort needed to implement a method.

4.2.1 Methods

A central issue in the studies of complex structures is to understand the topological struc-

ture and then study its effects on the dynamical properties. Structure and conformation

hold the static information and keep also the key to dynamic information that helps us

to understand functionality and mechanism of the investigated material. Access to the

dynamic information is limited due to the expensive calculation. Molecular simulations

often requires millions of time steps to reproduce such behavior. Additionally growing

complexity increases the difficulty of the calculations. For this reason one has to choose

optimal method for the simulations.

Complex materials despite their continuum appearance at macroscopic scales have very

fine structure at microscopic scale. It is tricky to efficiently build correlations between

those two scales by catching the characteristics of the micro-world and reveal the behavior

of the whole sample. Timescales at what laboratory experiment are performed are not

reachable by the full atomistic computer simulations. For this reason a coarse-graining

method is widely used [21, 84, 120]. It means that the chemical detail specific for each

polymer are neglected and only excluded volume and topology (chain connectivity) are the

properties that determine system behavior. In our simulations Kremer-Grest model [71]

was used. Pairwise interactions between beads are govern by the purely repulsive inter-

actions turned off for the nearest neighbors in a chain. A molecule swells and we end

with what is called an excluded volume polymer. We used the flexible bead-spring model.

The typical extension of a spring between connected beads l0 = 0.967σ prevents polymers

from crossing during simulations. Term for the unbounded interaction describes van der
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Waals repulsive interatomic forces in the form of shifted and truncated Lennard-Jones

potential, Eq.(2.1.1).

The time evolution of the system is under the influence of a reservoir system formulated

by the Langevin equation. Non-bonded interaction are treated by a Lennard-Jones shifted

potential. Intramolecular interactions inside a molecule that are responsible for the restor-

ing forces reactions are drawn by harmonic potential with strength k = 3kBT/l
2, where

kB is a Boltzmann constant, T is the temperature and l is the equilibrium bond length.

Direct comparison to experiment is possible only under certain boundary condition im-

posed on a system [121].

Firstly, we have to determine spatial boundary conditions. To avoid any surface effect

at the boundary of the simulated system, periodic boundary conditions are imposed. It

means that the particles are enclosed in a box that is surrounded by infinite array of

periodic copies of itself. When a bead leaves the box on one side it is replaced by the copy

entering the cell on the opposite side. Still each bead is subject to the potential from all

beads around.

To predict thermodynamical quantities from the simulations on has to provide thermo-

dynamical boundary conditions. They can be selected from the range of extensive and

intensive quantities like: total number of particles Nt, chemical potential µ, volume V ,

pressure P , energy E or related temperature T . Those quantities will specify the ther-

modynamical ensemble that is sampled during a simulations. One has to remember that

more important then have very precise calculation is the sampling of a proper phase

space. That will preserve fundamental dynamical properties such as energy, momentum,

time-reversibility, and symplecticness [122]. According to statistical physics, physical

quantities are described by large collection of systems, each representing the microscopic

states (configurations), distributed in accord with a certain statistical ensemble.

For our purposed we have used the microcanonical (NVE) ensemble. To add the effect of

the surrounding molecules on the motion, system was coupled with a thermal bath where

constant temperature is kept by applying a random force together with a related fixed

frictional drag force. That was done by introducing a Langevin dynamics obeying the

fluctuation-dissipation theorem. This is equivalent to keeping the thermal bath in a state

of thermodynamic equilibrium or close to it [123].

Another set of boundary conditions are purely geometrical constraints. An example would

be the bond-length which on average is kept stable.

MD simulation provides a configurations that evolve according to Newtonian dynamics.
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4.2.2 Technical information, calculation methods, data storage

and visualization methods

The need of dealing with a realistically large system create a question of choosing a method

and implementation. For our purposes of simulations of the large molecules in a melt we

have decided to use Molecular Dynamic (MD) simulations [20, 21] that solve equation

of motion for the trajectories of particles interacting through Lennard-Jones potential

defined already by Eq.(2.1.1). This method been extremely successful to model classical

many-body systems.

At each discrete time step positions and velocities of particles are written down and can

be used to calculate equilibrium and transport properties of the system. That translates

into the demand of large data space. The cost of such step is usually colossal. Fortu-

nately used algorithms seem to translate well into parallel codes. A split in the memory

usages into many processors made possible the simulations of larger and more compli-

cated molecules such as our branched polymers. MD simulations is as well one of this

areas where application of GPUs has grown significantly. Lack of the need of the message

passing speed up the calculations. On the other hand for the largest systems calculation

decomposition to spread the system among different processors and tasks is still more

efficient. We have combined those two methods.

To equilibrate the system we have mostly used HOOMD-Blue (Highly Optimized Object-

oriented Many-particle Dynamics – Blue Edition) [124] software designed to work on

NVIDIA graphical cards. Their architecture was prepared for resolving complex compu-

tational problems in a little of time compared to a working time on CPU. This was as

well a safety procedure since initial system, very unstable because of lots of overlapping

molecules and loose Gaussian-type bonds, could not work well with task division and

message passage between many processors. OpenMP (Open Multi-Processing) used by

HOOMED-blue supports shared memory that supports the calculation on one machine

what allows to increase the cutoff in case of the box division. Lack of the network com-

munication speeds up the simulation.

For actual simulations we have used LAMMPS (Large-scale Atomic/Molecular Massively

Parallel Simulator) [125] code written to work on single or multiple CPUs using MPI (Mes-

sage Passing Interface). Such architecture allows for the spatial decomposition dividing

the work into many processors. For large system it is a perfect solution that decreases

the time needed for the simulation drastically.

Smaller simulated systems (approx. 700,000 monomers) were treated by using 48 CPUs

while the large once (up to 1,600,000) by 64 CPUs. Already equilibrated systems being

stable allowed us to submit jobs with higher parallelization level.

This project needed an intermediate degree of parallelization (48-128 processors commu-

nicating efficiently), but it was still necessary to study many such systems to test a big
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parameter space (chain length, generation).

Both of the used codes performed NVE integration via Velocity-Verlet algorithm where

position are updated every time-step. Time-dependent position of a certain monomer is

given by ri(t). Velocities vi(t) are not generated directly but one can compute them from

the positions. Their knowledge is essential since velocities determine the kinetic energy

and temperature of the system.

From the point of view of statistical mechanics, MD is a method of conformational sam-

pling [126] where structural and thermodynamic properties are created by averaging.

Since the most stable configuration stand for global minimum by letting the program run

for sufficiently long time we can hope to overcome energy barriers and fall into it. Next

section will describe this procedure in details.

4.2.3 Equilibration of dendrimer melt

After energy minimization equilibration has been performed. It has allowed the system to

relax and reach desired equilibrium configuration. Positions and velocities were updated

each timestep with the use of NVE integrator. A limit dl = 0.05σ on the maximum

distance an atom can move was imposed since an initial configuration contain lots of

overlapping beads. To push them apart a soft sphere potential was used since, contrary

to ’hard’ potential like Lennard-Jones, the energy is not infinite when two molecules

overlap and varies continuously depending on the relative positions of the particles. It

computes pairwise interaction as below

E = A[1 + cos(
πr

rcut
)], r < rcut, (4.2.1)

where rcut is the cutoff radius. A coefficient A, that has energy units, was increased from

A = 1 to A = 100 to penalize the overlap. At this point beads were separated and

hard shifted Lennard-Jones potential was turn on. At the same time compression of the

system from a dilute one do the dense melt was performed. After reaching desired number

density ρ = 0.85 samples has undergone further equilibration under NVE integrator and

Langevin thermostat (without the limit for the beads movement).

Letting the system undergo a thermal equilibration that disorders the system and drive

a system into its global minimum. Nevertheless the real problem is that it is difficult

to make a clear statement saying that a sample is fully equilibrated. We have decided

that stable energy, pressure, and conformation (form factor and radius of gyration), as

shown on Fig. 4.1, are enough to say that the real simulation can start. The timeframe for

equilibration was dependent on the sample (different amount of particles, chain lengths,

number of branching points that made the samples relax in a different timeframe). Apart

of that we have checked if the orienational time correlation functions Fig. 4.2 for all bonds
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in an arm1 in the molecules given by the equation

P1(t) = 〈cos θ(t)〉 (4.2.2)

P2(t) =
1

2
〈3 cos2 θ(t)− 1〉 (4.2.3)

Fast decay to zero of the correlation function at longer times show that the bonds does

not favor any specific direction and the system is fully equilibrated.

Figure 4.1: Equilibration of dendrimer melt. System equilibrium is established when

pressure, total energy, radius of gyration and form factor are stable through time. Data

for a system with S = 4 spacers in a branch and generation G = 3.

1By ’arm’ we mean here a path between the core bead and the terminal group
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Figure 4.2: The time depencence of orientational correlation functions for the chains

defined as the path between the core and the terminal group for all such chains in the

system plotted as a function of simulated time t for starburst polymer with spacer S = 4

(D4,4).

4.2.4 Simulated samples

Dendritic molecules can be built by repetitive growth stages that are called generations

branched to a central core with, in our case, functionality f = 3. Let DG,S (G ≥ 0, S ≥ 1)

be a dendrimer with G generations2 and S a branch length (length of an attached chain

functioning as one of the branches). To form a dendrimer we start with one bead and

attach to it f = 3 linear chains of length S. A dendrimer D0,S is a star and has three

arms each of them terminated by an end group (terminal group). Any further grow step

is constructed by linking an end group with two chains of length S. Let N(G,S) denote

the number of beads in DG,S added at last iteration, then

N(G,S) = 3S · 2G (4.2.4)

as it was already stated in a previous chapter.

Despite of its self-similar architecture, dendrimers are not fractals since mass growth is

exponential and volume increase much slower so the number of iterative steps is limited.

That result in an infinite fractal dimension.

What interests us, is the limit of long branches. It would not be correct to make simply

bonds longer. For this reason, to make the branches longer, we place more beads between

branching points that are in a distance not allowing them for crossing.

Those open, covalently bonded assemblies when radially symmetrical are called starburst

dendrimers and simply dendrimers when there is one unit between branching points.

2We have to make a remark at this point that in this Chapter we start counting generations from ”0”,
while in the previous one, a star was treated as having generation ”1”.
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Figure 4.3: Step growth of the hyperbranched starburst polymers, with S = 4 and gen-
erations from G = 0 to G = 7 (green numbers). Under each molecule its mass is given
(orange numbers). Those snapshots shows only stretched molecules to increase the visi-
bility. For the same reason terminal groups are represented by orange beads contrary to
the rest that is grey.
From those snapshots it is visible how fast does the mass grow with each generation and
how dense a molecule itself become.
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Table 4.1: All simulated dendrimer systems. Parameters that we were changing were the

length of the arm from S = 2 to S = 64 and generation number from G = 0 to G = 7

(and G = 9 for S = 2). By construction mass of each molecule grows fast with generation.

For having good statistics it is better to have lots of molecules in on simulation box. This

number varies a lot because of the available computational time limitations.

S G N nr of molecues in

a box

nr of beads in a

box

2 0 7 1000 7000

2 1 9 1000 19000

2 2 43 1000 43000

2 3 91 1000 91000

2 4 187 1000 187000

2 5 379 1000 379000

2 6 763 512 390656

2 7 1531 343 525133

2 8 3067 125 383375

2 9 6139 125 767375

4 0 13 1728 22464

4 1 37 1728 63936

4 2 85 1728 146880

4 3 181 1728 213768

4 4 373 1728 644544

4 5 757 512 387584

4 6 1525 216 329400

4 7 3061 216 661176

8 0 25 1728 43200

8 1 73 1728 126144

8 2 169 1728 292032

8 3 361 1728 623808

8 4 745 512 381440

8 5 1513 216 326808

8 6 3049 216 658584

8 7 6121 216 1322136

16 0 49 1728 84672

16 1 145 1728 250560

16 2 337 1728 582336

16 3 721 512 369152
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16 4 1489 512 762368

16 5 3025 216 653400

16 6 6097 125 762125

16 7 12241 125 1530125

32 0 97 1000 97000

32 1 289 1000 289000

32 2 673 1000 673000

32 3 1441 216 311256

32 4 2977 216 643032

32 5 6049 125 756125

32 6 12193 125 1524125

32 7 24481 64 1566784

64 0 193 1728 333504

64 1 577 512 295424

64 2 1345 216 290520

64 3 2881 216 622296

64 4 5953 64 380992

64 5 12097 64 774208

64 6 24385 64 1560640

64 7 48961 27 1321947
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4.3 Static properties of hyperbranched star-like poly-

mers

4.3.1 Radius of gyration

Now we will bring our attention to the size changes of the molecules. The radius of gyra-

tion indicates the extension of a molecule giving information about the spatial distribution

of a mass within a molecule. Here it is useful to remind the concept of a fractal geometry

that, in short, provides a rational description of a complicated structures.

A molecule can be considered as a mass fractal if its growth leads to self-similar structures

over an extended scaling regime and is translationally invariant.

Polymer fractality is visible only on length scales of the mean square radius of gyration

(it is a finite construction) 〈R2
g〉 = 〈(ri− rCM)2〉, where ri and rCM are coordinates of the

beads and center of mass of the molecules, respectively. A square root of this quantity will

be further called simply Rg. It indicates the overall size of the macromolecule by reflecting

the distribution of the beads in a relation to each other. For linear chain polymers the

radius of gyration scales as[12]

Rg :=
√
R2
g ∼ N ν ∼ N1/df (4.3.1)

as defined before by Eq.(3.1.1). The fractal dimension df of the object quantifies the de-

gree to which it fill the space and can be used as a useful measure of the spatial complexity

of the whole system [127]. Albeit fractal dimension is often used to quantify the degree

to which an object fills its space, dendritic structures are not fractal objects in the strict

mathematical sense. As a consequence a simple relation between dendrimer properties

and its fractality cannot be stated. Still this value could be used to quantify space-filling

tendency.

Some of the experimental results [128, 129, 130], and computer simulations [36, 131] ex-

hibit df = 3 what means that starbust dendrimers are compact, and space-filling objects.

If one would consider a certain branched objects, as Zimm and Stockmayer [93] did,

df = 4. Even stronger tendency to occupy any available space were indicated for high

generations by Lescanec and Muthukumar [34] whose ν = 0.22 (df = 4.55) and Wal-

lace [132] with same results. All the results where df > 3 suggest that each newly added

monomer has to be located in the periphery of the molecule since the structure is compact

and homogeneous already. This is consistent with the model of de Gennes and Hervet [29]

where end groups always occupy an outer shell. On the other hand their density profiles

differ much from other results. They assumed that the Rg grows linearly with G, the outer

shell density grows progressively and this is why density decreases when approaching the

central bead.
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Let us remind that the total mass of the dendrimer is calculated as

N = 3S(2G+1 − 1) + 1 (4.3.2)

and the number of branching points (special case for a mass for a real dendrimer where

S = 1) is equal

NB = 3(2G+1 − 1) + 1. (4.3.3)

We can see that by construction mass N is proportional to the spacer number S and if

grows as a power of the functionality of the branching points b = 2 to the power G. In

principle the spacer number acts as a scaling factor for the mass. So, object with the

same generation and different S are self similar.

Figure 4.4: Double logarithmic plot of Rg against the mass N of the molecule. A power

law for Gaussian chain Rg ∼ N1/2 and dense packing limit sketch boundaries for the

molecule growth.
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Figure 4.5: Rg as a function of mass colored by generation. Transition from loose like

Gaussian limit to a compact structure through generation is visible

The scaling of the Rg with mass N does not work for all kind of simulated systems for the

reasons mentioned above. Plotting Rg against a mass N gives us a distribution of points

rather then a scaling law, see Fig. 4.4 and Fig. 4.5. Both plots are drawn in a double

logarithmic scale to emphasize the changes. Both of them represent the same points but

in the first one (Fig. 4.4) points are differ by the branch length S while in the second

one (Fig. 4.5) by the generation G. As the mass N grows, the range of Rg widens but

we can still sketch some limiting cases. Certainly the size cannot be more steep then the

slope Rg ∼ N1/2 which characterize molecular growth for Gaussian chains with rather

loose structure. Local fit to the molecules with the smallest growth follows the power-law

Rg ∼ N1/2 which suggests that those starburst polymers grow as more and more compact

globules.

Fig. 4.4 suggest as well that longer branches (bigger S) are closer to the Gaussian limit.

Molecules with S = 2 are getting compact quite fast while those with S = 64 and S = 128

are more loose.

On the other hand we study the evolution of the Rg as a function of G on Fig. 4.5 (different

coloring for the same points as on Fig.4.4). We can see that they to follow straight lines,

what means that the Rg(G) is related by power law with the mass. We find that the

fractal dimension df increases as the G grows.

All above suggest that it is both spacer length S and the generation number G that affect

the morphology of the studied systems. Actually its multiplication gives us the distance

between the core monomer and the terminal group so the total arm length. As it is seen
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on a Fig. 4.6 dependence of the radius of gyration Rg on the S ·G is with agreement with

a gaussian picture. The average conformation of the arm resemble that of a linear chain.

Figure 4.6: Rg as a function of the maximum path from the center to the terminal group.

Same limit (ν = 1/2) describes Gaussian stars.

Last plot Fig. 4.7 in this subsection depicts the changes in the molecules densities.

The smallest generation number G follows the power law 1/2 what is expected for the

Gaussian chain. Further on we can see nonmonotonous behavior. Firstly the density

decreases to become more and more dense and finally, probably, saturate. With further

measurements we will try to put more light on this behavior.
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Figure 4.7: Inverse of the average molecule density as a function of its mass.

4.3.2 Contact number

The question arises if the systems show any evidence of entanglements or not. Molecules

with long arms could penetrate neighboring ones easily. The longer the arm, the less con-

strained are its movements since branching points are further one from another. Finding

the maximum number of molecules that touch a given one would give us a hint. We call

it a contact number NC .

Each bead has an assigned cutoff distance (rcut = 1.122). Two approaching beads can form

a new contact if the distance between their centers is equal or smaller then dC = 2 · rcut.
Same-molecule contacts and already counted between molecules were rejected from the

calculations of the number of contacts.

NC provides an evidence for both intermolecular penetration and retraction of terminal

groups. Firstly, it grows with generation and arm length, Fig. 4.8. An arm growth

make the structure more open and allow for more intermolecular communication. The

maximum appears at generation three and it falls down starting with generation four. This

provides a picture of two competing effects: growing of the steric crowding importance

with increasing generation and flexibility that is stronger for long branches and allows to

interpenetrate molecules. Interestingly for all arm lengths the contact number drops down

(probably) to twelve. That is a contact number for non-overlapping spheres of the same

size [133, p. 21]. It is easy to arrange twelve spheres so that each touches a central sphere.

This leads us to the conclusion that starlike dendrimers are collapsing and resemble dense

objects. Such behavior is very different from the linear chain conformation that tend
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to entangle more when a molecular weight is increased. Still for such arrangements of

spheres there is a lot of space left over. In principle, for hard spheres there is enough of a

free space that two surrounding outer spheres can exchange places through a continuous

movement in such a way that non of those twelve spheres will not lose contact with a

central one. This is why we cannot say at this point if they are shaped as spheres or

rather their outer arms are still wandering around.

Two plots demonstrate the situation Fig. 4.8. First one is scaled with the generation

number. Systematic shift with spacer number is visible. Although mass could be identified

as one of the factors in volume changes, it is not. When scaling NC with it, the plots

collapse to one line (dendrimers with the same mass but different branch length S have the

same NC) until generation 3-4. From this point the interplay between G and S is evident.

NC collapses for each S with different power. This is with agreement with previously

calculated R3
g/N (Fig. 4.7) where density was nomnonotonous due to, firstly, spreading

arms around and penetrating neighboring molecules, and then getting more compact.
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Figure 4.8: Number of contacts Nc for a given molecule as a function of generation (first

panel) and molecular weight N (second panel). Each of the molecules approach a maxi-

mum around generation 3 and 4 to start decreasing for higher ones. At high generation

number these molecules form compact coil structures, with the interior protected from

penetration by neighboring ones.

4.3.3 Terminal groups

The situation common for many polymers is where their end-groups are chemically dis-

tinguishable from the backbone of the polymer. In a melt of linear chains the end groups
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have negligible influence since, especially for high molecular weights, their amount is little

in comparison with the whole mass. In this case reactive functional groups are only at

the end since rest is spend to produce the polymer backbone. Differently to that den-

dritic structures posses large amount of end-groups despite of the synthetic procedure.

These end groups can be used as easily accessible chemical modificators that can change

physical material property. This is why it is essential to localize them within the molecule.

Figure 4.9: Sketch of a dendrimer with the core-to-end vector used for calculating terminal

groups distribution.
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Figure 4.10: Terminal group distribution plotted as a function of the distance from the

focal molecule. Terminal groups are spread through the whole molecule.

Closer look on the end-group distribution will shed light on the situation. In Fig. 4.10

information about the center-to-end vectors is given calculated from 〈(rT − r0)〉, where

rT is the position of the terminal group, and r0 position of the core monomer.

End groups do not lie near the outer shell line but rather are dispersed throughout the

molecule. That would happen only if the structure were rigid or other interactions, e.g.

polar groups, were present.

Each end group has at its disposal more free volume then a backbone monomer. The

number of possible conformation and mobility grows with increasing free volume. For

this reason dendritic molecules tend to fold back or contract rather then stay stretched

as it was suggested by de Gennes and Hervet [29]. Large mobilities allow branches to

fold inwards in the direction of the center of the molecule. A significant retraction of the

peripheral groups release steric crowding at the outer part of the molecule provoked by

the architecture. This reduces its radius of gyration and a molecule shrinks.

4.3.4 Orientational correlations

To have a full characterization of a structure formed by branched arms, it is also neces-

sary to investigate the behavior of their orientational degrees of freedom. While the beads

are expected to rotate freely, geometrical constraints may push branches to form specific

conformations. As it was suggested already, they may fold back to the center or be rather
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retracted in the direction of the center. Both behaviors lead to a drastic condensation

inside the molecule and pushing out the neighboring chains.

In order to check further the orientational conformation predictions we will calculate the

first and the second order orientational correlation for average part of the branch (each of

the path from the center to the end group are taken into account and averaged for better

statistics). Since each branch is composed of consecutive vectors, first one is taken as a

reference. When calculating orientational distribution correlation, function is calculated

by taking the average of the projection of one bond onto another and plotted as a function

of a number of vectors. This value will tell us how does the direction of the chain change

with its length. These values are given by

P1 = 〈cos θ〉 (4.3.4)

P2 =
1

2
〈3 cos2 θ − 1〉 (4.3.5)

where θ is the angle between the orientation of the first bond and the orientation of the

consecutive bonds. In Fig. 4.11 below, the orientation distribution function of vector

composing the path ’core - terminal group’ is presented.

Values for P1 are enclosed in a range [−1, 1], where 1 indicates that no orientational

change was performed while −1 correspond to head-to-tail alignment. Plotting P2 - result

in a range [0.5, 1].

Figure 4.11: Orientational distribution function for the chains defined as the path from

the central bead to the terminal group. bond − vector stands for consecutive bonds in a

chain counting from the focal molecule’s bead. Data for the dendrimer of type D4,G.

Our results indicate that bonds belonging to one branch do stay correlated over a certain

distance, Fig. 4.11, what is stressed by representing the projection of the bond s in a

semi-logarithmic plot. It becomes more prominent with growing generation. That could

be an indication that the bonds have preferred directionality, i.e. they are stretched out.
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Figure 4.12: Average distance of the branching point for consecutive shells from the

central bead for a molecules D4,6 and D4,7. Drastic change in the area sketched by the

most inner circle suggest strong stretching of the central chains for molecules with high

generation number.
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A glance on Fig. 4.12 depicting positioning of the shells in a molecule for the case of

D4,6 and D4,7 confirm this prediction. Border of each circle represents average position

of branching point for consecutive generations. There is a drastic change in the radius

of the most inner circle denoting the average positioning of the branching points of the

G = 0. For the D4,7 the radius of this sphere is much larger then for the D4,6. This actually

means that the central chains are stretched when the molecules generation is high enough.

4.3.5 Pair distribution function

To characterize the structure of the system it is not necessary to know the exact position

of all monomers. Alternatively, one can use a quantity that will determine the probability

of finding pairs of monomers with given relative position. Interactions among particles

have no preferred direction in the homogenous fluid in equilibrium. For this reason, one

can simplify the distribution function to one dependent on distances only. It is the pair

radial distribution function g(r), that envisage the probability of finding a monomer at

certain distance from another one compared to the ideal gas distribution [11]. The g(r)

can be calculated by

g(r) =
V

8πr2N2
〈
N∑
i=1

∑
i 6=j

δ(r − rij)〉, (4.3.6)

where rij = |ri − rj|, N is the number of particles and V the volume of the system. For

liquids, systems between highly ordered crystals and completely chaotic gases, it has a

small number of peaks that are decaying to a constant value at larger distances.

Figure 4.13: Radial distribution function for all monomers for various generation (D4,G)

and for changing spacer length (DS,5). All plots collapse to one apart of the little shelf

that emerges on the further from the center slope of the first maximum.
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Figure 4.14: Intra- and inter-molecule contribution (left and right plots) to the pair radial

distribution function.

Total radial pair distribution function, meaning for all monomers in a system, of starburst

polymers are shown in Fig. 4.14. In all cases plots are almost identical with peaks corre-

sponding to different generation shells. First appears at position r = 1, just after rising

from zero due to the strong repulsive forces between neighboring monomers. Interesting

point is the broadening of the first peak by a small shelf. It means that there exist non

negligible amount of nearest neighbors for which the average distance separating them

is bigger then it is predicted by the bead-spring construction. Further maxima are of

the liquid type and they do follow a standard trend and drop out g(r) −→ 1 at large

distances.

Second plot in a panel shows the g(r) as well for all monomers but across different spacer

lengths to show that systems, if not account for the molecules structure individually, are

very similar.

Both inter- and intra-interactions contribute to the total radial distribution function

Eq.(4.3.6). Left plot in a panel 4.14 broaden our understanding of the molecules structure.

It depicts the intra-molecular radial distribution function gintra(r). Low generation num-

ber have a shape standard for a liquid where single peaks decay quite fast. The growth

of the first maximum and the appearance of the second one as a function of generation is

a consequence of higher molecule mass constrained to a certain volume and in a stronger

ordering inside the molecule. What is more interesting, as well the previously mentioned

’shelf’ attached to the first peak appears. It broadens in a very organize way the volume

where the first shell around the center of a mass appears. This means that some of the

nearest neighbors, that naturally would be placed in the closest possible distance taking

into account a repulsive forces, are actually pushed, or pulled, further from the center.

The amount of them is big enough to see a strong effect in a radial distribution function.

Last plot in a panel 4.14 shows the inter-molecule contribution ginter(r) to the radial dis-

tribution function. Position of the first peak brings contribution to the ’shelf’ in a g(r).

Contrary to intra-molecule part, it decays with generation. For higher generations G

molecules are more compact and penetration inter-penetration is weak. As a consequence
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all peaks are smearing out and plots are lowering values.

An analysis of the performed calculations shows that a short range order is establish in

the range of first coordination shell. Broadening of the first peak by incorporation a shelf

into it indicates that some of the beads are subject to additional forces beyond the short-

range repulsive one between monomers.

4.3.6 Form factor

Form factor F (q) reflects the intramolecular interferences in the range of chosen q, a

Fourier variable that is representing a scattering wave vector, and characterizes single

molecule size and shape [15]. It has been defined already before Eq.( 3.5.1).

Figure 4.15: Form factors as a function of q vector for molecules with S = 2. To underline

the influence of the generation on the molecular shape, those molecules were simulated up

to generationG = 9. As generation grows the curves changes from the smooth linear one in

the intermediate regime to one with bumps revealing more compact structure where light

scatters mostly from its ”surface”. For better visibility this regime was zoomed. A form

factor for a sphere with a radius R =
√

5/3Rg was fitted to underline the compactness of

the molecules with high generation G = 9 (dashed line).

In experiments, form factors can be measured only in the dilute regime where particles

are considered as independent, non-interacting scatterers [1]. When analyzing the data
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from the simulation, we consider a single molecule, forgetting about the neighboring ones,

so there will be no direct interactions contributing to the scattering function coming from

other molecules.

For the small q where q · rij ≤ 1 (rij refers to the displacement between two scattering

elements, beads in our case), the light scattered from both i-th and j-th scattering sources

is essentially in phase, resulting in the constructive interference [134]. The amplitudes of

the scattered q vectors sum up. As a consequence F (q) measures molecular mass. This is

visible in the limit q −→ 0 in Fig. 4.15. At higher q, where q > R−1
g , with Rg the radius of

gyration, measurement is sensitive to the internal structure of a polymer. What interests

us the most is actually the intermediate scattering regime. Those wave vectors enter the

regime where the internal molecular structure is probed. In this case q corresponds to the

probe length comparable with the dimension of the molecule.

For lowest generation G = 0 we observe smooth curve typical for a Gaussian chain that,

by increasing generation G, changes into a curvy one exploring emerging sphere-like shape

- another indication for strong arm retraction and molecule shrinking. Such oscillatory

structure appears for the first time for G = 5, in agreement with previous simulation

studies [35, 38, 40, 135].

Once the F (q) is calculated, on can try to interpret it by going through different equations

proposed for F (q). We have found a very good fit with a form factor F (q) for a sphere

F (q) = 9(sin(qR)− qR cos(qR))2/(qR)6 (4.3.7)

where R =
√

5/3Rq (that relation holds for a sphere [136]), and Rg was taken from pre-

vious calculations. Even the maxima pointing the overall molecules size are indicating

the same values for the F (q) calculated for a starburst dendrimer and a sphere. That

confirms the previous predictions that starburst dendrimer resamble a compact sphere for

high G-values. Such change in the slopes shape is with a good agreement with experi-

mental studies [137, 138, 139].

Actually similar results but for multi-arm polymer stars were provided by Pakula [140] for

the molecules with high functionality f . This is reasonable since dendrimers with large

number of branching points (high generations), that shape them into a colloidal structure,

act like large amounts of arms for a stars.

Finally we reach distances at which we probe scattering from individual monomers. Since

all beads are identical and the number density was kept same for all of the systems, plots

collapse at this point.

The Kratky plot provides valuable information on the overall shape of the molecules and

the size of segments. The interpretation comes from the Debye’s formulas characterizing

a Gaussian coil that was used by Kratky, Porod and coworkers. It has been used to inter-
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pret a scattering experiment data. The Kratky plot gives the scattering pattern as q2I(q)

versus q. On the other side Porod predicted a power law F (q)q→0 ∼ KP

q4
where KP is the

Porod constant. A tail of such a curve will drop to a plateau at distances where sharp in-

terfaces are visible (revealed as the coherent scattering). The intensity of light diminishes

proportionally to the reciprocal of the fourth power of q. Corresponding Kratky plot will

reveal bell shape for a well defined globular molecules. In a random coil the coherence is

destroyed by randomizing the directions of the scattered phonons. Therefore, this plot of

a Gaussian chain will exhibit a plateau in high q-region.

Morphology is well reflected in the form factors calculated for all samples. The Kratky

plot of the form factor, F (q)q2R2
g vc. qRg is plotted in Fig. 4.16 for S = 2 and different

generations. Such representation highlights the changes in the intermediate q-regime [33]

where we can see the evaluation of the shape due to the changing generation G. By

plotting a scattering data in this form we remove the length scale dependence and em-

phasize the differences rising from density distributions. The x-axis qRg is unit-less and

Rg was determined by direct calculations. It is seen that plots go through all kinds of

conformations from coil-like shape G = 0 to the compact one G = 7. Any deviations

from an asymptotic curve indicates a non-Gaussian behavior of investigated systems. At

low q-values, all curves tend to collapse to one revealing a universal behavior. Only for

high generation number, where topology alter the compact shape, first peak is clearly

resolved due to a high density of the branching points [33, 38, 113]. Location of the first

order-peak is shifted to the higher q-values for less compact molecules which is visible as

well in Fig. 4.17. The maximum lies in the range 1.64 � qRg � 1.93.

From this we can read that the overall shape does change drastically with generation and

slightly but still visibly with a spacer length S. The maximum become more pronounced

with increasing branching density [113] that is the generation number G which is visible

in Fig. 4.17. Besides the major peak at qRg ≈
√

3, a secondary peak appears for the

system with high density of branches and is placed around the value qRg = 4.8 what

is consistent with previous simulations [38] and positioning of the second maxima of a

solid sphere with the same Rg. Lower G and sparser branching causes dying out of the

secondary peak where chains are trying to recover the horizontal asymptote.
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Figure 4.16: Kratky plot for the studied systems of the type D2,G with changing genera-

tions.

Figure 4.17: Kratky plot of the structure factor for G = 7. Molecules takes a compact

form what is reflected by the bell-shaped Kratly plot. Maxima stayes at the same point,

and minor peak appears.
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4.3.7 Static structure factor

The interparticle static structure factor S(q) is defined as the autocorrelation function[11,

141]

S(q) = 〈ρqρ−q〉, (4.3.8)

where

ρq =
N∑
j=1

exp(−ik · rj) (4.3.9)

is the Fourier transform of the microscopic (total) density, N is the number of particles and

rj is the position of the j-th particle. The contribution from S(q) cannot be neglected for

a dense systems like a melt where molecules interact strongly. The structure factor S(q)

is dependent on the local degree of order in the measured sample (a spatial distribution of

the scattering sources) and an interaction potential between them. Static structure factor

for solids has a form of sharp peaks. In liquids, due to the thermal motion, the intensity

of Bragg peaks is reduced and leads to a significant suppression as an indication of loss

of structural correlation [142]. As we can see in Fig. 4.18 and Fig. 4.19, a large first peak

corresponds to the most probable distances between the monomers, and is followed by

a sequence of peaks with decreasing intensity, confirming the loss of spatial correlation.

In the simulation, we are restricted in measurement to certain distances and for this

reason we can see only part of the scattering spectrum. First one, at a distance q ≈ 6.9

corresponds the the diameter of a bead, which is the smallest distance that can divide

two of them.

Two plots, F (q) and S(q) merge to qualitatively similar values at distances correspond-

ing to short range repulsive interactions between beads. That situation changes with

decreasing a topology complexity. Substantial penetration of non-bonded beads into the

closest neighbor shell stimulate an overestimation of the first peak. As for systems with

rather loose construction, where chains are strongly interpenetrating, (G = 0), collective

interactions (S(q)) dominates over single-chain ones (F (q)) as shown on Fig. 4.18.

88



CHAPTER 4. STARBURST DENDRIMER MELT

Figure 4.18: Form factor F (q)and static structure factor S(q) corresponding to the radial

distribution functions of the samples D2,G both normalized by mass to make the plots

distinguishable at high q. At the distance corresponding to the interparticle distances in

a system, for low generation number intensity of the S(q) peak dominates over the one

coming from F (q) indicating high level of molecule penetration.
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Figure 4.19: Form factor F (q) and static structure factor S(q) normalized by mass for

high generation numbers corresponding to the radial distribution functions in Fig. 4.13

of the samples with high generation number G = 7.

4.3.8 Compression modulus

When changing q we can focus on different length scales in the system. By probing low

q-values we get information about the structure of the molecule. High q-values contains

information about the smallest elements of the molecule in a melt. Going down to really

small q values, no small-scale information can be obtained anymore. In this regime scat-

tered intensity depends only on the osmotic pressure fluctuation. In that (hydrodynamic)

limit one can describe a melt by a bulk compression modulus, which is a measure of a

fluid’s incompressibility. It is of fundamental importance since it helps to control the melt

flow properties. For this reason its measurements are of extreme value.

Previously, in Sec. 2.3.2 compressibility was calculated from the volume fluctuations

Eq. 2.3.1. When using this equation it is necessary to investigate system for many dif-

ferent densities which is a disadvantage. For this reason we will probe the data from the

previously calculated structure factor S(q)

κ = lim
q→0

S(q)

kBTρ
(4.3.10)

where low-wavevector limit of the structure factor S(q) was approximated at its plateau

to 0.

In general, since we are not changing the density, compressibility stays the same for all
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simulated samples, κ = 0.04. There are no deviation even for high generation number G.

4.3.9 Density profiles

Next attempt to characterize the conformation has been done by calculating dendrimer

internal density profile. For dendrimers it is given by the number density as a function of

the radial distance r from the core,

ρ(r) = N(r)/4πr2δr, (4.3.11)

where N(r) is the number of monomers in a given shell. The output is determined by the

amount of beads in every shell of the thickness δ = 1.0σ apart of the first one where only

one bead is closed (we end up with an onion-type shell structure).

The commonly accepted model assumes a box shaped density profile called sometimes a

dense core model. It predicts that the density is the highest in the center and it decays

monotonously (of course the highest density would be in the strict center where the cen-

tral bead is placed).

In the case of a star (G0), density decreases with a distance r from the central monomer

Fig. 4.20. In general, for coil like conformations, the monomer density ρ(r) is expected

to be high in the center and decay in the limit of σ � r � Rg. De Gennes [12] showed

using general arguments for self-similar objects, that the number density ρ(r) follows the

equation used already in a Sec. 3.4 ρ(r) = 1

r
d−df

, where d is the actual dimension of the

system and df a fractal dimension of investigated object. For coil-like conformations the

relation takes simply a from ρ(r) = 1/r which is the case of zero potential interactions.

It can be compared with the density distribution of the starburst objects (G0) with long

branches Fig. 4.20. Long-branched stars in a melt are similar with their behavior to self-

avoiding walk due to their simple topology. However, the higher the generation, the more

branching points are present what leads to complicated connectivity and an increase of

potential interactions that modify the density profile [143].
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Figure 4.20: Density profile for star polymers (G = 0). The decay similar to one of the

coil-like model conformation is visible.

From Fig. 4.21 (two top panels) startling information emerges. Deviations from commonly

accepted density profile occurs at higher generations where a hollow center appears. The

highest density is at the very center of the molecule that contains a central bead. For

clarity this point was taken out from all the plots in the Fig. 4.21. The functions show

significant differences for molecules with different generations.
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Figure 4.21: Density profiles for different starburst systems. Two panels on the left are

plotted for systems with S = 4 and different generations. Panels on the right are done

for the systems with S = 32 and changing generations. Top panels represent densities at

certain distance. Two bottom panels shows same type of data but plots are scaled with Rg

to highlight universal behavior. Dendrimers manifest a non-uniform radial density profile

with a depletion near the central bead. What is interesting, for the highest generation

G = 7 density around a center is even higher then the the number density of a system

ρ = 0.85. This makes it impossible for other molecules to penetrate into the central part

of the molecule.

A point at r = 0, effectively symbolizing the central bead, was taken out from the plot to

clarify the figures.

In order to investigate this case further we have plotted same densities but scaled them

with corresponding radius of gyration Fig. 4.21 (bottom panels). Density profile normal-

ized with the radius of gyration does demonstrate a systematic shift. Maximum is not

necessarily placed in the center or any specific point on the horizontal scale. In the case of

low generation it is obvious that dendrimers undergo backfolding since there is no dense

outer shell. This is due to the high flexibility of the scaffold.

Since the number of end groups is large in such systems, a free volume is increased, chains

have more space to move making it more mobile and flexible. A ’dense-core’ picture can

be applied for the molecules with a low generation number.

Increasing generation comes along with hollow part close to the center in the density
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profile. Typically for generations G > 5, 6 ρ(r) is going through a minimum around the

center to increase significantly and then decrease towards the exterior of the molecule.

Total density of the starburst polymers is constituent in a large amount of the last gen-

eration where 50% of the mass is enclosed. Since there are no significant changes in the

end-group distribution, they are spread through the molecules. This effect is due to the

inner generations that changes their distribution. This effect is stronger with increasing

G and this dip is broadening with increasing S.

Central chains shall carry the load of the excluded volume effect of whole branches [35].

Tension imposed on the bonds is unevenly distributed over different segments since beads

placed at higher generation suffer from crowding and are pooling central ones outside.

Tension is concentrated in the close neighbor of the focal branching point in the center.

Intriguing fact is that in the literature one can find examples of density profile with a

hollow center for systems without explicit excluded volume interactions. One possible

explanation is due to the entropy gain. Stretched central chains are unfavorable energeti-

cally but such construction increase a space and number of possible conformations for part

of the molecules places further from the center and as a consequence an entropy. Since

volume of shells grows as square of the distance from the center this gives a significant

gain in volume and place for exploring different conformations. For this reason effect of

hollow center should be more visible with growing the chain length because the gain in

entropy for the beads far from the center would be bigger. As it is visible at increasing

the length of the chain makes this effect more pronounced.

To conclude: conformational entropy rises due to the stretched central chains. Interaction

between monomers that did come back close to the configurational center causes steric

crowding. Because of those two effects only specific conformations, with hollow center,

are favored. The maximum density is between a core and the periphery because of the

backfolding of the end-chains.

Similar results were obtained earlier [35, 38, 39, 50, 144, 145, 146, 147].

All of this suggest that we are not dealing with fully collapsed molecules. Due to the chain

stretching close to the center the inner part has a low density that increases to reach a

maximum.
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Figure 4.22: Number density at hollow part close to the center and at a point with a
maximal density. This figure suggest that with growing generation difference in densities
between those two points grows. Increasing spacer length S makes this effect slightly less
pronounced.
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4.4 Dynamical properties of starburst polymer melt

This section addresses the questions relevant to the dynamical melt behavior in equi-

librium and under an external field condition. Because of a specific structure the flow

behavior of those fluids is expected to be quite unlike that of simple chain polymers. Even

for large spacer S (in the regime simulated by us), as it was pointed out before, there are

no entanglements that would slow down the dynamics drastically. On the other hand,

the intrinsic viscosity is expressed in volume per mass and relation between those two

quantities is not (as it was shown in a previous section) given by unequivocal relation.

The interplay of those effects could reveal an interesting behavior.

4.4.1 Self-diffusion

We will start with calculation of the mean square displacement (MSD) directly from the

simulated trajectories of the particles. It is defined as

MSD = 〈|ri(t)− ri(0)|2〉 (4.4.1)

where ri(t) is the position of particle i at a time t and the average is taken over ensemble

of particles. Alternatively, we can define center of mass mean square displacement (CM

MSD)

CMMSD = 〈|rCM,i(t)− rCM,i(0)|2〉 (4.4.2)

with rCM,i being the center of mass position of the i-th molecule.

In the limit of long times, particles follow Einstein’s relation describing a long time diffu-

sion. It can be obtained by monitoring in time the mean squared displacement of tracer

beads or of the center of mass of the molecules

DS = lim
t→∞

1

6t
〈|ri(t)− ri(0)|2〉. (4.4.3)

with DS being the self-diffusion coefficient.

The time-dependent diffusion coefficient at sufficiently long times reaches the plateau that

characterize the time-independent diffusion coefficient. Fig. 4.25 shows the computed

curve for the CM MSD. Self-diffusion coefficient DS, that is attributed to the thermal

motion is equivalent to the diffusion for low concentrations of solute that determines the

slope of the MSD and can be obtained from curve of MSD versus time. With increasing

mass its value drops down rapidly (Fig. 4.26) in a similar manner even if architectures of

the simulated molecules are different. Most of the points follow the −1 scaling with mass.

Only the points for D16,2 and D16,3 are dropping down more rapidly. That could be a
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consequence of strong interactions with neighboring molecules (we remind at this point

that for generation G = 3, 4 the contact number NC has its maximum).

Figure 4.23: CM MSD for samples with spacer length S = 2. αi refers to the coefficient

of the local slope of the CM MSD.

Figure 4.24: CM MSD for samples with spacer length S = 4
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Figure 4.25: CM MDS curves which are divided by time for all generations of S = 2. The

values from the plateau are used to calculate diffusion coefficient DS. Not all systems

were simulated long enough to reach a plateau, hence, for those ones the coefficient DS

cannot be determined.

Figure 4.26: Self-diffusion coefficient calculated for the center-of-mass of simulated

molecules and it drops down drastically with N .

The branched nature of the molecules results in a range of diffusion timescales that are
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dependent on the architecture. Just the presence of the branching points results in a

decrease of local mobility. Obviously, a molecule as a whole is always less mobile then

certain parts of it. But if we will compare all beads contained in a molecule and compare

its behavior to the branching points only we can see that the latter ones are less mobile

Fig. 4.27. Since for each branching bead there are three springs attached to it that are

pulling it into different directions so its movements are constrained in comparison to linear

part of chains.

Figure 4.27: Comparison of mean square displacements for different sets of particles for

one type of molecule (S4G4). The green line follows the movements of the individual

branching points, blue center of mass of them, orange indicates MSD of all molecules

separately and red center of mass of a molecule as a whole. For the most of the time

branching points move slower then other particles. Whole molecules move slower then

the individual beads or part of the molecule, but in the long time limit, the monomers

have of course to follow the center-of-mass behavior.

4.4.2 Shear relaxation function

Equilibrium approach to calculate viscosity. There is a connection established by

the statistical-mechanical theory between the microscopic time-correlation fluctuations

and macroscopic coefficients. Such deviation from the equilibrium state can by caused

bu the externally imposed perturbation or naturally occurring fluctuations [9, 11, 148].

The essence of that theorem is the fact that one can determine the transport properties

of an investigated system from the fluctuations around the equilibrium state. The shear
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relaxation function can be expressed as [20, 149]

G(t) =
1

kBTV
〈σxy(t)σxy(0)〉 (4.4.4)

and was already discussed in Sec. 2.3.3 with σαβ being an element of a stress tensor.

For better statistical accuracy we have average over additional components of the stress

tensor [150].

Since thermal motion of the beads provoke internal stresses that relax with time, with

G(t) defined in such a way we can probe the viscoelastic properties of the whole system.

A liquid’s shear relaxation function and viscosity are related by

η =

∫ t

0

G(t′)dt′ (4.4.5)

where η is the shear viscosity, t stays for the last calculated timestep. In many applications

of rheology, measuring shear modulus if essential for fundamental understanding of the

flow and the performance of the system and further controlling the flow properties like

drag reduction. Calculation of G(t) were performed for all simulated samples Fig.4.28

and integrated out to obtain a viscosity η. Stress components were written down every

10 timesteps as in the case of the Gaussian stars for trajectories of 106 timesteps in total.

As we can see η(t) does not reach an expected plateau and the data is not systematic, i.e.

the noises are still too high. Sampling was not frequent enough and the trajectory length

was too short. It is quite of a computational challenge to increase those two values. For

this reason in the next chapter we will try to calculate the viscosity by using a different

method.
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Figure 4.28: Shear relaxation modulus for the samples with S = 16 and growing gen-

eration. Not systematic shift of the G(t) plateau can suggest large noises in the system

disturbing the calculations.

Calculation of the viscosity from molecular dynamics simulations using equilibrium

methods suffers significant difficulties due to the small signal in comparison with the

background noise. Expression that are relating the fluctuations of off-diagonal elements

of the pressure tensor with the viscosity are exact only in the infinite time limit and

infinite box length [11], which means extrapolating to the zero frequency (ω → 0) and

zero wave vector (k → 0) [151] (thermodynamic limit). In simulations terms it means

that time needed for simulations is large and sampling frequency has to be very high.

4.4.3 Shear viscosity (out-of-equilibrium)

Non-equilibrium approach to computing viscosity. It is the non-equilibrium MD

(NEMD) approach that can avoid some of the computational costs by generating a signal

significantly larger then the background noise. The method used for further calculations

was introduced by Müller-Plathe [151, 152]. The idea of this method is to impose an

exactly known momentum flux and calculate rising shear rate or velocity profile which is

opposite to standard computational methods where momentum flux appears as an effect

of the imposed shear rate. For this reason this method is often called reversed non-

equilibrium (RNEMD) method. The RNEMD box is divided into slabs (in performed

simulations 20 of them) as seen on Fig. 4.29. The heat flux is created by exchanging

velocities of particles of opposing slabs by picking ones with closely matching the absolute
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value but opposing directions of momentum. As a result box is divided into ”hot” and

”cold” slabs and the gradient of velocity is created as seen on Fig. 4.30. Since all the

beads have the same mass, total linear momentum and kinetic energy are conserved and

no additional thermostat is needed. Such momentum exchange process leads eventually to

a steady-state velocity (temperature) gradient. It is the swap frequency that determines

the total imposed flux of the system that is given by

jxz(px) =
ptot

2tLxLy
(4.4.6)

where ptot =
∑

(px,nc − px,n1) is the total exchanged momentum between slabs, Lx and Ly

are the lengths of the simulation box, t states for time.

Viscosity acts as a proportionality coefficient between the momentum flux and the shear

rate

η =
ptot
γ̇
. (4.4.7)

Figure 4.29: RNEMD principles. The box is divided into layers. Unphysical momentum

transfer is provoked by a momentum exchange between particles in different layers. As

a result physical momentum transfer appears that works against the created velocity

gradient. Figures based on those from the article [151].

102



CHAPTER 4. STARBURST DENDRIMER MELT

Figure 4.30: Final velocity gradient in the z direction for the samples S = 8, G = 0, 1, 2, 3.

For sufficiently small shear rate γ̇ (average of the unsigned slopes of vx versus z) the

velocity gradient is linear.

Figure 4.31: Typical flow curve showing the shear viscosity η(γ̇) plotted as a function

of shear rate γ̇ for different systems with S = 2. One can see an increase of η with

generations G (mass grow). The shear viscosity exhibits constant value η that tends to

zero shear viscosity η0 for small γ̇.
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As the generation grows, the flow curves changes for higher values of viscosity η, as may

be seen on Fig. 4.31. This is a specific feature of dendritic-type molecules [153].

Figure 4.32: Zero shear viscosity η0 plotted for all simulated systems as a function of

mass. The mass dependence becomes surprisingly small.

For linear polymers zero-shear viscosity η0 is related to the molecular weight N, by the

Mark-Houwink Equation

η0 = KMα (4.4.8)

where η0 is a Staudinger index (intrinsic viscosity), K is a system dependent constant,

M states for molecular mass and α is an index which directly depend on the shape of the

dendrimer (0 ≤ α ≤ 2) [153, 154]. In the case of dendritic molecules this law is apparently

broken. To the very core of the matter, viscosity arises because of the inter-molecular

interactions within a fluid [155]. Owing to the lack of chain entanglement that play a role

of the physical bonds, starburst dendrimers, despite their high molecular weights, are not

tough materials. What we could observe in our simulation, is that at certain molecular

mass η0 reaches plateau despite of the molecule type (Fig. 4.32). Actually most of the

experimental [50, 156, 157] and simulation [34, 36, 50] results predicts a maximum in

the intrinsic viscosity with increasing molecular weight. Even though this is not what we

can see, one can expect such behavior for higher generation numbers and probably longer

simulation times, what would be consistent with our previous results. On the one hand

molecule weight grows with generation what leads to viscosity growth. Additionally the

amount of arms able to penetrate neighboring molecules increases which slows down the

motion as well. On the other hand molecules gets more compact, interaction with nearby
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chains are less intense and as a consequence viscosity decreases.

4.5 Conclusion

In this Chapter we have described a behavior of a melt of starburst dendrimers. This

time (contrary to the previous Chapter 3) our approach takes into account not only the

connectivity but also purely repulsive interactions imitating excluded volume effects.

Starburst dendrimers are monodisperse polymers that go through conformational meta-

morphosis with increasing generation number G and spacer length S. At high generation

number G they adopt a compact, well defined three-dimensional shape. What more, as

shown in Sec. 4.3, the total density profile of starburst dendrimers is found to have a

strong depletion close to the root monomer. One possible explanation for this effect is

that bonds close to the root monomer are strongly stretched due to the huge mass of the

dendrimer arms they must tether to the root.

As shown in Sec. 4.4, the diffusion coefficient decreases inversely with mass for most

of the investigated systems. Interestingly, a strong slowing down of the diffusion is ob-

served with increasing spacer length. The latter effect is expected due to the increasing

interpenetration of the dendrimers which makes topological constrains and the ensuing

reptation-like dynamics more relevant. Unfortunately, due to insufficient statistics it was

yet not possible to determine the zero-shear viscosity η0 by integrating the shear-stress

relaxation modulus G(t).

Further attempt to measure shear viscosity, this time using NEMD method, shows that

there is no simple relation between the zero shear viscosity η0 and mass N . Presented

data reach a plateau for all values of mass despite of the architectural differences. We

expect that nonmonotonous behavior could appear as it is visible in experiments [50, 157].
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Conclusion

5.1 Summary

Over the last three years (since october 2010) I had the opportunity to study mainly

numerically by means of computer simulations of strongly simplified coarse-grained models

various static and dynamical problems of dense colloidal and polymeric systems. While

attempting within the frame of the IRTG Soft Matter to bring together the interests of

the research groups in Freiburg (Prof. A. Blumen, Prof. C. Friedrich), in Metz (Prof. H.

Xu) and at the ICS in Strasbourg (Prof. J. Baschnagel), my studies have let already to

several publications [1, 2, 3, 4, 5, 6, 7, 53] and one submitted manuscript [54]. Several

of these papers [1, 3, 4, 5, 6, 7, 53] have been co-authored by Prof. Xu from Metz, one

paper [4] by the fellow IRTG PhD students C. Gillig and J. Helfferich from Freiburg. Two

papers [57, 56] are currently under preparation. In the presented PhD manuscript I have

focused on two research areas which have been of particular concern to me:

(i) the determination of linear elastic properties in dense soft matter systems including

colloidal glasses [4, 5, 6, 7]. As demonstrated in Chapter 2, impulsive corrections

to the standard Born terms of the stress fluctuation formalism are required for

systems sampled using truncated (and shifted) pair potentials [7]. As discussed

briefly in Sec. 2.4 and more in detail in Ref. [6], this finding should be of particular

importance for the precise determination of the shear modulus G at the solid/glass-

liquid transition which is important to distinguish between the different theoretical

scenarios proposed [16, 87, 88, 89, 158].

(ii) the characterization of hyperbranched polymer stars revisiting first some properties

of systems with Gaussian chain statistics [54] and presenting then my much more

extensive (yet unpublished) molecular dynamics simulations of melts of regular den-

drimers [57]. The latter study has revealed two unexpected and not completely

understood striking findings. As shown in Sec. 4.3, the total density profile of the

dendrimers is found to have a strong depletion close to the root monomer of the
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star, i.e. at variance to various statements made in the literature (mainly in context

of dilute dendrimers) the density profile is strongly non-monotonous. As shown in

Sec. 4.4, for large generation numbers the zero-shear viscosity η0, obtained using an

out-of-equilibrium method [62], becomes essentially independent of mass N . This

finding might be due to the fact the stars adopt increasingly compact configurations.

5.2 Perspectives

Looking beyond my presented studies into yet on-going and possible immediate future

work, I would like to take the opportunity to sketch several avenues which appear promis-

ing to me:

• In an attempt to understand the strong density depletion in dendrimer melts we

are currently computing dilute regular dendrimers increasing gradually the excluded

volume interaction ε of the lattice Hamiltonian, Eq. (3.2.1).1 As already noted in

Chapter 3.6, these dendrimers become increasingly compact (df → d) with increas-

ing generation number G and excluded volume ε. Confirming older work [36, 72], a

weak local density minimum at the core is clearly observed. The systematic scaling

of the effect still needs to be characterized and understood. Theoretical guidance is

clearly warranted here.

• Using the same Monte Carlo approach it should be rewarding to sample dendrimer

melts as a function of ε in analogy to the recent study of linear chain melts [1]. A

question is then of whether indeed the depletion effect becomes more pronounced

as for dilute chains albeit the overall pressure must increase. It will be also of some

interest to characterize the mean-square displacement of the star center-of-mass or,

even better, the associated displacement correlation function [1]. As for the center-

of-mass motion of linear polymer melts [1, 2, 24, 159], strong deviations from the

Rouse scaling are to be expected albeit reptational effects must be irrelevant at, say,

ε = 1.

• To understand better the local thermodynamic properties of dendrimer melts such as

the pressure tensor and its fluctuations or the Born (affine) contributions in spherical

coordinates around each root monomer, the lattice Monte Carlo approach is not

suitable, however, and one should use the off-lattice bead-spring model discussed in

Chapter 4 albeit it is much slower to compute.2 It is of some interest to see whether

it is possible to determine the (negative) surface tension as a function of r from

1One may simulate θ-solvent conditions imposing E = ε/6
∑
r n(r) (n(r)− 1) (n(r)− 2).

2From the density profiles of free monomers added to the melt on may obtain an estimate of the
chemical potential as a function of r.
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the stress-fluctuation formalism and whether the (negative) Laplace pressure [19] is

consistent with the gradient of the radial pressure component.

• The sampling times presented for the equilibrium dynamics in Sec. 4.4 were clearly

insufficient to determine for the larger dendrimers the diffusion coefficients D(N)

and the terminal relaxation time τ(N) of the samples. This appears to me a natural

and feasible task for the near future. Also the estimate of the viscosity using the

Green-Kubo equilibrium formula should be improved by writing down the stress-

tensors for every MD sweep and taking advantage of longer trajectories. This is

important to check the viscosity for all the samples possible, specially for high

generation values, where compactness could diminish measured viscosity values.
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K. L. Wooley. Unique behavior of dendritic macromolecules: intrinsic viscosity of

polyether dendrimers. Macromolecules, 25(9):2401–2406, 1992.

[157] Ch. Dufès, I. F. Uchegbu, and A. G. Schätzlein. Dendrimers in gene delivery.

Advanced Drug Delivery Reviews, 57(15):2177 – 2202, 2005.

[158] C. Klix, F. Ebert, F. Weysser, M. Fuchs, G. Maret, and P. Keim. Glass elasticity

from particle trajectories. Physical Review Letters, 109:178301, 2012.

[159] J. Farago, A. N. Semenov, H. Meyer, J. P. Wittmer, A. Johner, and J. Baschnagel.

Mode-coupling approach to polymer diffusion in an unentangled melt: I. the effect

of density fluctuations. Phys. Rev. E, 85:051806, 2012.

120


