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Abstract

In this dissertation we investigate the usefulness of feedback and propose new ways

of exploiting rate-limited feedback for the memoryless broadcast channels (BC).

In the first part of the dissertation, we consider K-reciever Gaussian BC with only

common message and feedback. We show that linear-feedback schemes with a message

point, in the spirit of the Schalkwijk-Kailath scheme, are strictly suboptimal for this

setup. To contrast this negative result, we describe a scheme for rate-limited feedback

that uses the feedback in an intermittent way, which achieves all rates R up to capacity

C with an L-th order exponential decay of the probability of error if the feedback rate

RFb ≥ (L− 1)R, for some positive integer L.

In the second part, we study the two-receiver DMBC with private messages and rate-

limited feedback. Two types of schemes based on block-Markov strategy and Marton’s

coding, have been proposed for this setup. In the first type of scheme, the transmitter

simply relays the feedback messages obtained over the feedback links by encoding them

into the Marton cloud center of the next-following block. With this type of scheme,

we show that any positive feedback rate can strictly improve over the non-feedback

capacity region for the class of strictly essentially less-noisy BCs, which we introduce in

this dissertation. In our second type of scheme, the transmitter decodes all the feedback

information and processes it with some local information before sending the result to the

receivers. When the feedback rates are sufficiently large, then our scheme can recover

all previously known capacity and degrees of freedom results for memoryless BCs with

feedback.
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Notations

Sets, Scalars, Vectors, Matrices

Let R denote the set of real numbers and Z+ the set of positive integers. For a

finite set A, we denote by |A| its cardinality and by Aj , for j ∈ Z+, its j-fold Cartesian

product, Aj := A1 × . . .×Aj . Given a set S ∈ R2, we denote by bd(S) and int(S) the

boundary and the interior of S.

Given a real number x, bxc is the integer part of x. We use the definitions ā := (1−a)

and a∗ b := āb+ab̄, for a, b ∈ [0, 1]. Also, | · | denotes the modulus operation for scalars.

Vectors are displayed in boldface, e.g., X and x for a random and deterministic

vector. Given a positive integer n, let 1[n] denote the all-one tuple of length n, e.g.,

1[3] = (1, 1, 1). Further, let ‖ · ‖ denote the norm operation for vectors.

For matrices we use the font A, and denote its Frobenius norm by ‖A‖F .

Random Variables and Probability

We use capital letters to denote random variables and small letters for their realiza-

tions, e.g. X and x. For j ∈ Z+, we use the short hand notations Xj and xj for the

tuples Xj := (X1, . . . , Xj) and xj := (x1, . . . , xj).

Z ∼ Bern(p) denotes that Z is a binary random variable taking values 0 and 1 with

probabilities 1− p and p. X ∼ N (µ, σ2) denotes that X is a Gaussian random variable

with mean µ and variance σ2. We denote by Q(·) the tail probability of the standard

normal distribution. The abbreviation i.i.d. stands for independent and identically

distributed.

ix



Given a random variable Y , the expectation of Y is denoted by E[Y ]. The proba-

bility of an event A is denoted by Pr[A] and the conditional probability of A given an

event B is denoted by Pr[A|B].

Common Functions

• H(X): Shannon Entropy of the random variable X and is defined as

H(X) :=
∑
x∈X
−PX(x) · log2(PX(x)).

Alternatively, we also write

H(PX(x1), PX(x2), · · · , PX(xm)),

to denote the Shannon entropy of a random variable X that takes values in X =

{x1, . . . , xm} according to the probability mass function PX(·).
• Hb(p): Binary Shannon Entropy of p ∈ [0, 1] and is defined as

Hb(p) := −p · log2(p)− (1− p) · log2(1− p).

• I(X;Y ): Mutual Information between the random variables X and Y and is

defined as

I(X;Y ) :=
∑

(x,y)∈(X ,Y)

PXY (x, y) · log2

(
PXY (x, y)

PX(x) · PY (y)

)
.

• log(·): denotes the natural logarithm.

• ◦: denotes function composition.

• o(1): is the Landau symbol that stands for an arbitrary function that tends to 0

as n→∞.

• δ(ε): denotes a general nonnegative function of ε that tends to zero (arbitrarily

slow) as ε→ 0.

x



Chapter 1

Introduction

The growing demands for reliable and high date rates have encouraged a huge amount

of research on wireless communication systems with feedback, which allow the receivers

to send signals back to the transmitter. Feedback channels, in fact, are present in many

current commercial systems. A notable example are mobile cellular telephony systems,

where the communication between the many mobiles and the only base station in a cell

takes place in both directions.

In 1956 Shannon first showed that for memoryless point-to-point (single-user) chan-

nel, feedback cannot increase the capacity [1], even when the feedback is perfect, i.e.

the feedback link is noise-free, delayless and of infinite rate. Nonetheless, feedback does

improve the communication in terms of reducing the coding complexity and decreasing

the probability of error [2]. Almost sixty years since the publication of Shannon’s sur-

prising result, a large number of works have been done, mainly to answer the following

fundamental questions:

• How can feedback improve the communication reliability?

• What’s the capacity region (i.e. the fundamental limits of reliable data rates) of

multiuser channels with feedback?

In this dissertation we briefly review the works that are most relevant to our results in

the following two sections.

1
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1.1 How Can Feedback Improve Communication Reliabil-

ity?

For Gaussian point-to-point channel without feedback, the probability of error decays

at most exponentially in the blocklength n at any rate below capacity [3] (i.e. the

probability of error is of the form P
(n)
e = exp(−Ω(n)), where Ω(n) denotes a function

that satisfies limn→∞
Ω(n)
n > 0). With the help of (perfect) feedback, a simple sequential

linear scheme, proposed by Schalkwijk and Kailath [2], achieves capacity with a doubly

exponential decay in the probability of error.

Notice that the Schalkwijk-Kailath scheme requires perfect feedback. When the

feedback link is noisy, the improvement on the communication reliability drops dramat-

ically [4, 5, 6]. In particular, when the feedback link is corrupted by additive white

Gaussian noise, the Schalkwijk-Kailath scheme fails to achieve any positive rate [4].

In the presence of perfect feedback, the doubly exponential decay in error probability

achieved by Schalkwijk-Kailath scheme is not the best one can obtain. In [7, 8] it is

shown that perfect feedback allows for arbitrarily large super-exponential decay in error

probability if the blocklength n is sufficiently large. Even if the feedback link is rate-

limited (but noise-free and delayless), a nonlinear scheme [9] can achieve the capacity

with L-th order exponential decay in the error probability when the feedback rate RFb >

(L − 1)R, where R is the forward rate and L is any positive integer. That means, it

achieves a probability of error of the form P
(n)
e = exp(− exp(exp(. . . exp(Ω(n))))), where

there are L exponential terms. The Schalkwijk-Kailath scheme was later extended to

many multiuser channels with (perfect) feedback [10, 11, 12, 13, 14, 15, 16, 17]. These

variations also exhibit doubly exponential decay in the probability of error.

For discrete memoryless channel (DMC), the improvement on communication reli-

ability afforded by feedback was studied in [18, 19, 20, 21, 22, 23, 24]. With perfect

feedback, Burnashev [19] established a closed form expression for the reliability function

which holds for all rates from zero to capacity. Subsequently, various two-phase coding

schemes that achieve the optimal reliability function were given in [20, 21]. In [22] it is

shown that for a binary symmetric channel (BSC) even if the encoder dose not know

the crossover probability, the two-phase scheme can still achieve Burnashevs reliabil-

ity function. Naghshvar, Javidi, and Wigger [23] proposed one-phase coding scheme
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that achieves the optimal reliability function. In [24] communication reliability in the

presence of Ack/Nack feedback was investigated.

1.2 What’s the Capacity Region of Multiuser Channels

with Feedback?

Contrary to the case of memoryless point-to-point channels with feedback, the capacity

region of most multiuser channels with feedback is still unknown. Many previous works

have been done aiming to find out whether or how feedback enlarges non-feedback

capacity region. In this section we briefly review some results on various memoryless

multiuser channels with feedback, including MAC, BC, interference channel (IC), and

relay channel (RC) with feedback.

1.2.1 Multiple Access Channels with Feedback

Gaarder and Wolf [25] showed that (perfect) feedback can increase the non-feedback

capacity region of certain discrete memoryless MAC. Subsequently, an achievable region

for the general memoryless MAC with perfect feedback was proposed by Cover and

Leung [26]. In [27] Willems has shown that the Cover-Leung region is tight for a

certain class of discrete memoryless MACs, in which one of the two channel inputs is

completely determined by the channel output and the other channel input. Bross and

Lapidoth [28] derived an achievable region that strictly contains the Cover-Leung region

for some channels. For the two-user memoryless Gaussian MAC, Ozarow [10] proposed

a linear coding scheme based on the Schalkwijk-Kailath scheme [2], and showed that

it is optimal, i.e. achieves the capacity region. For the K ≥ 3-user Gaussian MAC,

Kramer’s scheme is optimal among a large class of schemes [12].

But so far, even with perfect feedback, no computable single-letter expression for

the capacity region of general memoryless MACs with feedback is known. In [29, 30]

Kramer presented a multi-letter expression based on “direct information”. Permuter,

Weissman, and Chen [31] later extended Kramer’s results to finite-state MACs with

feedback that may be an arbitrary time-invariant function of the channel output samples.

Unfortunately, these multi-letter expressions are incomputable.
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Memoryless MACs with imperfect feedback were considered in [32, 33, 34]. Carleial

[32] derived an achievable region for the general MAC with generalized feedback sig-

nals and showed that the Cover-Leung region obtained for the perfect feedback setting,

remains achievable for the perfect one-sided feedback, i.e. only one of the two trans-

mitters knows perfect feedback signals whereas the other transmitter has no feedback

at all. Shaviv and Steinberg [33] studied the general MAC with rate-limited feedback

and derived an achievable region based on superposition coding, block-Markov coding,

and coding with various degrees of side information at the feedback link, as in [35]. It

is shown that this region coincides with the Cover-Leung region when feedback rate is

large. Lapidoth and Wigger [34] considered the Gaussian MAC with noisy feedback and

proposed achievable regions that exhibit the following two properties. 1) For all (finite)

noise variances in the feedback links, the regions include rate points that lie outside the

non-feedback capacity region, and 2) when the feedback-noise variances tend to zero,

the regions coincide with Ozarow’s region [10].

A different line of works has concentrated on the MACs with state [36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. In [37] and the references therein, the Gaussian

MAC with perfect channel state information (CSI) at the transmitters (CSIT) and at

the receiver (CSIR) was studied. In [36] the sum-rate capacity was given and later the

capacity region was obtained in [37]. A relatively practical consideration where each

transmitter knows its own CSI while the receiver has perfect CSI was investigated in

[38, 39, 40]. In [41] Cemal and Steinberg considered the discrete memoryless MAC with

partial CSIT, where the CSI is non-causally available at the transmitters in a compressed

form. A single-letter capacity region was obtained for the two-user MAC when the CSI

is available to the transmitter in a physically degraded version of that available to the

other. This result was later extended by Jafar [42] to the case of casual CSI. In a survey

paper [43], the fading MAC with perfect/partial/no CSIT was discussed. It is shown

that with perfect CSIT and CSIR, the optimal power allocation leads to a substantial

gain in capacity. In [44, 45] the fading MAC with distributed CSI, where the channel

gains are only available at respective transmitters and receiver, was investigated. The

multiple-input multiple-output (MIMO) fading MAC with CSI feedback was studied in

[46, 47, 48, 49, 50].

Outer bounds on the capacity region of the MAC with feedback were derived by
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Gastpar and Kramer [51] and Tandon and Ulukus [52] based on the idea of dependence-

balance [53], which was first introduced for single-output two-way channels.

1.2.2 Broadcast Channels with Feedback

For most BCs in general, it is not known whether feedback can increase the capacity

region. There are some exceptions. For example, for all physically degraded discrete

memoryless broadcast channels (DMBCs) the capacity regions with and without feed-

back coincide [54]. The first simple example DMBC where (even rate-limited) feedback

increases capacity was presented by Dueck [55]. His example and coding scheme were

generalized by Shayevitz and Wigger [56] who proposed a general scheme and achievable

region for DMBCs with generalized feedback. In the generalized feedback model, the

feedback to the transmitter is modeled as an additional output of the DMBC that can

depend on the input and the receivers’ outputs in an arbitrary manner. It has recently

been shown [57] that the Shayevitz-Wigger scheme for generalized feedback includes

as special cases the two-user schemes by Wang [58], by Georgiadis and Tassiulas [59],

and by Maddah-Ali and Tse [60], which achieve the capacity region and the degrees of

freedom (DoF) region of their respective channels.

Other achievable regions for general DMBCs with perfect or noisy feedback have

been proposed by Kramer [29] and by Venkataramanan and Pradhan [61]. Comparing

the general achievable regions in [29, 56, 61] to each other is hard because of their

complex form which involves several auxiliary random variables.

A different line of works has concentrated on the memoryless Gaussian BCs [13, 14,

16, 62, 63, 64, 65, 66]. In [14], a coding scheme was proposed which can achieve the

full-cooperation bound for all noise correlations −1 < ρz < in the high signal-to-noise

ratio (SNR) limit. When the feedback links are noisy, the gains afforded by feedback

are bounded, unless the feedback noise decays to zero sufficiently fast with SNR. The

asymptotic high SNR sum-capacity for the cases ρz ∈ {+1,−1} was also investigated in

[14]. The best achievable region when the noises at the two receivers are independent

was given in [16, 17] (see also [13, 64] for special cases) and is based on a MAC-BC

duality approach.

In [66] Li and Goldsmith investigated the K-receiver Gaussian fading BC assuming

perfect CSIT and CSIR, and proposed optimal resource allocation strategies for code
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division, time division, and frequency division. The MIMO Gaussian fading BC with

rate-limited feedback was studied in [67, 68, 69, 70, 71, 72, 73, 74, 75], where the receivers

are assumed to have perfect knowledge of the channel matrix, and use quantization or

analog scaling to send the it back to the transmitter via the rate-limited feedback

link. Jindal [67] proved that to achieve the full multiplexing gain, the feedback rate per

receiver must increase linearly with the SNR. In [68] Caire et al. analyzed and compared

the quantized and analog CSI feedback schemes under various assumptions. Kobayashi

[69] proposed a useful guideline to optimize the overall system throughput. Lapidoth,

Shamai, and Wigger [71] showed that the uncertainty of CSI at the transmitter greatly

reduces the SNR throughput even if the receivers know perfect CSI. Weingarten, Shamai,

and Kramer [73] proposed inner and outer bounds on the DoF for finite-state compound

BC with two receivers. Gou, Jafar, and Wang showed that for a few cases the inner

bound is tight. In [60, 76, 77, 78, 79, 80, 81, 82] the case of delayed (stale) CSI at the

transmitter was considered, i.e. there is a delay between the time measuring channel

state at the receiver and the time observing CSI at the transmitter. It is shown that

delayed CSI can still increase the capacity region.

An outer bound on the capacity region of the BC with feedback was given by Ozarow

and Leung [62], by assuming one of the two receivers observes the channel output of the

other receiver. This converts the BC to physically degraded BC and thus the capacity

region with feedback and without feedback coincide.

A more detailed introduction to memoryless BC with feedback is provided in Chap-

ter 4.

1.2.3 Interference Channels with Feedback

ICs with perfect feedback were investigated in [83, 84, 85, 86, 14]. Jiang et al. [83]

derived an achievable region for discrete memoryless IC with feedback, based on binning

and block-Markov coding. In [84, 85], Kramer proposed feedback strategies for the

Gaussian IC. Suh and Tse [86] considered the two-user Gaussian IC with feedback and

characterized the capacity region to within 2 bits/s/Hz and the symmetric capacity

to within 1 bit/s/Hz. They also showed that feedback can provide unbounded gain in

ICs at high SNR, i.e. the gap between the feedback and non-feedback capacity can

be arbitrarily large for certain channel parameters. Sahai et al. [87] proved that for
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deterministic IC, only one perfect feedback link from one receiver to either of the two

transmitters is sufficient to achieve the capacity region of the setting with both perfect

feedback links. Gastpar et al. [14] considered the two-user Gaussian IC with noiseless

one-sided feedback, where each of the two transmitter obtains feedback only from its

intended receiver. It is shown that feedback can provide unbounded gain for this setting,

approximately doubling the sum-rate capacity in the high SNR regime.

More realistic scenarios where feedback cost is taken into consideration were studied

in [88, 89, 90, 91]. Vahid, Suh and Avestimehr [88] studied the two-user IC with rate-

limited feedback under three different models: the El Gamal-Costa deterministic model

[92], the linear deterministic model [93] and the Gaussian model, and it is shown that

one bit of feedback can provide at most one bit of capacity increase. In [90] the K-user

Gaussian IC with feedback was studied and it is shown that feedback increases the DoF

for some classes of scalar ICs.

MIMO Gaussian IC with CSI feedback was considered in [94, 95, 96, 97, 98, 99,

100, 101, 102, 103, 104, 105, 106, 107]. In [94], Jafar and Fakhereddin showed that

zero-forcing scheme is sufficient to achieve the DoF region for the two-user MIMO IC.

In [97] Wang, Gou, and Jafar studied the three-user Gaussian IC and solved issue of

feasibility of linear interference alignment introduced by Yetis [98]. In [99, 100, 101], it

is shown that the DoF achieved with perfect CSIT remains achievable when the CSIT

is imperfect but increases at sufficiently fast rate with SNR. Recently, inspired by the

Maddah-Ali&Tse’s surprising result which shows that even delayed CSIT can increase

the DoF for MIMO Gaussian BC, the impact of delayed CSIT on MIMO Gaussian IC

was investigated in [102, 103, 104, 105, 106, 107].

Using the idea of dependence-balance, Tandon and Ulukus [52] derived an outer

bound for the general IC with feedback. Gastpar and Kramer [51] applied the same

idea to obtain an outer-bound on the usefulness of noisy feedback for the IC and showed

that feedback gain decreases roughly when the feedback-noise variance is larger than

the noise on the forward link. More outer bounds for various specific ICs with feedback

were established in [86, 88, 90, 91].



8

1.2.4 Relay Channels

The relay channel model was first introduced by Van der Meulen [108], which is in fact

a single-user communication channel where a relay helps the communication between

the transmitter and the receiver. In [109], Cover and El Gamal proposed two coding

strategies for the discrete memoryless relay channel: the decode-and-forward scheme

and the compress-and-forward scheme. A generalized compress-and-forward strategy

for

The relay channel with feedback has first been considered by Cover and Gamal

[109]. It is shown that for the setting with feedback from the receiver to the relay, the

channel is physically degraded and therefore decode-and-forward strategy achieves the

capacity. However, for the settings with partial feedback either from the receiver to

the transmitter, from the relay to the transmitter, or both (but without receiver-relay

feedback), the capacity is still not known except for the semi-deterministic case [110, 92]

and for the physically degraded case.

In [111] Gabbai and Bross considered the setting with partial feedback from the

receiver to the transmitter as well as partial feedback from the relay to the transmitter.

Achievable rates were derived for the general Gaussian and the Z relay channels and

were shown to be strictly larger than the best known achievable rates without feedback.

Bross and Wigger [112] investigated the discrete memoryless relay channel and the

Gaussian memoryless relay channel with partial feedback from the receiver to the trans-

mitter. For discrete memoryless relay channels, an achievable rate was calculated by

combining the ideas of restricted decoding used in [113], the nested binning used in

[111], and the generalized coding strategy for the relay channel in [109]. For the Gaus-

sian relay channel, another achievable rate was derived based on the Schalkwijk-Kailath

scheme [2]. It is shown that for some channels both achievable rates are strictly larger

than all best known achievable rates.

An upper bound for relay channels with partial feedback from the relay to the

transmitter was established in [110]. This outer bound includes the cut-set upper bound

[109] on the capacity of the one-way relay channel, and was shown to be tight for the

semi-deterministic relay channel with partial feedback from the relay to the transmitter.

The classic relay channel in [108, 109] can be extended to more general models by

introducing multiple nodes such as transmitters, relays and receivers [114, 115, 116,
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117]. When adding multiple transmitters, the model turns to multiple access relay

channel (MARC) [114, 118]. In [119] Hou, Koetter, and Kramer studied the MARC

with perfect feedback and derived inner bounds and outer bound for feedback from the

relay to the transmitters. The MARC with generalized feedback was studied in [120].

When adding multiple transmitters and relays, it results in broadcast relay channel

(BRC) [121, 122], the work on BRC with perfect/limited feedback can be found in

[123, 124, 125, 126, 127]. When adding multiple transmitters, relays and and receivers,

this model is called interference channel with relays (ICR) [116, 117]. The ICR with

feedback was investigated in [128, 129, 130] and the references therein.

1.3 Contributions and Outline

In this dissertation we focus on memoryless BCs with feedback, for which we investigate

the usefulness of feedback and propose new ways of exploiting feedback to help the

communication, i.e. to increase the capacity or to improve the communication reliability.

The dissertation is organized as follows.

In Chapter 2 we review the reliability results on memoryless Gaussian point-to-point

channel with feedback, where the Schalkwijk-Kailath scheme and a nonlinear feedback

scheme proposed by Mirghaderi, Goldsmith and Weissman are present.

In Chapter 3 we review the capacity results on some classes of memoryless BCs

without feedback. We also describe superposition coding and Marton’s coding, which

lead to two important inner bounds for general BCs. These two schemes are also used

as building stones in our schemes proposed in Chapter 6 for memoryless BCs with

feedback. In Chapter 3 we also present the best known outer bound proposed by Nair

and El Gamal.

In Chapter 4 we review several achievable regions for DMBC and introduce several

linear-feedback coding schemes for memoryless Gaussian BC. At the end of Chapter 4,

we present two well-known outer bounds: cut-set outer bound and the Ozarow-Leung

outer bound.

In Chapter 5 we consider the K ≥ 2-user memoryless Gaussian BCs with feedback

and common message only. We show that the type of Schalkwijk-Kailath coding scheme,

which performs well for point-to-point channels, Gaussian MACs and Gaussian BCs
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with private messages, is strictly suboptimal for this setup. Even with perfect feedback,

the largest rate achieved by this type of linear-feedback scheme is strictly smaller than

capacity, which is the same with and without feedback. As a consequence, for this setup,

linear-feedback schemes also fail to achieve double-exponential decay of the probability

of error for rates close to capacity. In contrast, we present a coding scheme with rate-

limited feedback which is inspired by the nonlinear scheme presented in Chapter 2.

When the feedback rate Rfb > (L − 1)R, where R is the forward rate and L is any

positive integer, our intermittent-feedback scheme can achieve the capacity with a L-th

order exponential decay in the probability of error.

In Chapter 6 we study the two-receiver memoryless BCs with private messages and

feedback. For this setup we propose two types of coding schemes with rate-limited

feedback from one or two receivers. Our first type of scheme strictly improves over the

non-feedback capacity region for the class of strictly essentially less-noisy BCs, for any

positive feedback rate and even when there is only feedback from the weaker receiver.

Examples of essentially strictly less-noisy BCs are the binary symmetric BCs or the

binary erasure BCs with unequal cross-over probabilities or unequal erasure probabilities

to the two receivers. Previous to our work, feedback was known to increase capacity

only for a few very specific memoryless BCs. Our second type of scheme can recover all

previously known capacity and DoF results for memoryless BCs with feedback when the

feedback rates are sufficiently large. This includes in particular the result by Wang [58]

and by Georgiadis and Tassiulas [59] for the binary erasure BC when all erasures are

known to both receivers, the results by Shayevitz and Wigger [56] and by Chia, Kim,

and El Gamal [57] on variations of the Blackwell DMBC, and the result by Maddah-Ali

and Tse [60] on memoryless fading BCs with completely stale state information. In

fact, as the feedback-rates tend to infinity our scheme improves over a special case of

the Shayevitz-Wigger scheme which is known to recover the mentioned results.

Finally in Chapter 7 we conclude this dissertation and discuss some possible future

directions.



Chapter 2

Reliability of the Gaussian

Point-to-point Channel with

Feedback

Consider a memoryless Gaussian channel with feedback, depicted in Fig. 2.1.

Transmitter M̂
Xi

Receiver
Yi

Fi

M

Zi

+

Figure 2.1: Gaussian point-to-point channel with feedback.

The transmitter wishes to communicate a message M ∈ {1, . . . , b2nRc} over the

discrete-time memoryless Gaussian noise channel.

The cannel output is

Yi = Xi + Zi, for i ∈ {1, . . . , n} (2.1)

where {Zi} is an i.i.d sequence with each sample Zi ∼ N (0, 1). The transmitter is

comprised of a sequence of encoding functions {f (n)
i }ni=1 that is used to produce the

11
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channel inputs as

Xi = f
(n)
i (M,F1, . . . , Fi−1), for i ∈ {1, . . . , n} (2.2)

where Fi takes values in feedback alphabet set Fi and denotes the signal sent back by

the receiver at the end of time slot i. The channel input Xi is restricted to an expected

average power constraint:

n∑
i=1

E
[
X2
i

]
≤ nP. (2.3)

The receiver is comprised of a decoding function g(n) used to produce a guess of message

M

M̂ = g(n)(Y n) (2.4)

where M̂ ∈ {1, . . . , b2nRc}.
A rate is called achievable if for every blocklength n, there exists an encoding function

and a decoding function such that

Pne := Pr
[
M̂ 6= M

]
tends to 0 as the blocklength n tends to infinity.

The capacity of this channel is the supremum over all achievable rate, which is same

as the non-feedback capacity: C = 1/2 log2(1 + P ).

Although feedback can not increase the capacity of point-to-point channel, it does

improve the reliability, i.e. reduce the smallest possible error probability in the commu-

nication at a given blocklengh n.

In this chapter, we briefly review the results on reliability of memoryless Gaus-

sian point-to-point channels with feedback. In Section 2.1, we describe the prominent

linear Schalkwijk-Kailath scheme [2], which can achieve the capacity with a doubly ex-

ponential decay in error probability as a function of blocklength n. In Section 2.2, a

nonlinear scheme [9] with rate-limited feedback is present, which uses the feedback in

an intermittent way: only in few time slots the receiver sends feedback signals. This
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nonlinear feedback scheme can also achieve the capacity with doubly exponential decay

in the probability of error, but under a milder constraint–only requiring that the average

feedback rate satisfies RFb > R.

2.1 Schalkwijk-Kailath Scheme

Assume that the feedback link is perfect (noise-free, delayless and of infinite capacity),

then we have Fi = Yi for i ∈ {1, . . . , n}. Here we review the Schalkwijk-Kailath scheme

[2], see also Section 17.1.1 in [131].

1) Codebook generation: Divide the interval [−
√
P ,
√
P ] into b2nRc small subinter-

vals with equal length ∆ = 2
√
P/b2nRc. Convert each message m into a real number

θ(m) that denotes the midpoint of the m-th subinterval.

2) Encoding : Given M = m, initially, the transmitter sends

X0 = θ(m),

and the receiver observes Y0 = X0 + Z0. With perfect feedback, the transmitter can

learn the noise Z0. Then at time i = 1, it sends X1 = α1Z0 with α1 =
√
P , which

satisfies the average power constraint. Subsequently, at time i ∈ {1, . . . , n}, the encoder

sends

Xi = αi(Z0 − Ẑ0(Y i−1))

where Ẑ0(Y i−1) is the minimum mean square error (MMSE) estimate of Z0 given Y i−1

and αi is chosen to satisfy E
[
X2
i

]
= P for i ∈ {1, . . . , n}.

3) Decoding : After observing Y n, the receiver estimates θ̂n of θ(m) by taking

θ̂n = Y0 − Ẑ0(Y n−1)

= θ(m) + Z0 − Ẑ0(Y n−1) (2.5)

and declares m̂ as the message sent if θ(m̂) is the nearest message point to θ̂n.

3) Analysis of the probability of error : By the orthogonality principle of MMSE

estimate and by the joint Gaussianity, we observe that Ẑ(Y i−1) is linear in Y i−1, and

(Xi, Zi, Yi) are independent of Y i−1. Furthermore, since the scaling factor αi, for i ∈
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{1, . . . , n}, is chosen so that E
[
X2
i

]
= P , the channel outputs Y n are i.i.d with Yi ∼

N (0, P + 1).

Now we look at the mutual information I(Z0;Y n) in two ways. On one hand,

I(Z0;Y n) = h(Y n)−H(Y n|Z0)

=
n∑
i=1

(
h(Yi|Y i−1)− h(Yi|Z0, Y

i−1)
)

=
n∑
i=1

(
h(Yi|Y i−1)− h(Xi + Zi|Z0, Y

i−1)
)

=

n∑
i=1

(
h(Yi|Y i−1)− h(Zi|Z0, Y

i−1)
)

=

n∑
i=1

(
h(Yi|Y i−1)− h(Zi)

)
=

n∑
i=1

(
h(Yi)− h(Zi)

)
=
n

2
log2(1 + P )

= nC. (2.6)

On the other hand,

I(Z0;Y n) = h(Z0)− h(Z0|Y n)

=
1

2
log2

1

var(Z0|Y n)
. (2.7)

From (2.6) and (2.7), we have

var(Z0|Y n) = 2−2nC .

Thus, given (2.5), we obtain that θ̂n ∼ N (θ(m), 2−2nC). Notice that the receiver per-

forms the nearest neighbor decoding, which implies that the decoder makes an error only

if θ̂n is closer to a different message point not equal to θ(m), i.e. |θ̂n − θ(m)| > ∆/2.

The probability of error is thus upper bounded by

P (n)
e ≤ 2Q(2n(C−R)

√
P ). (2.8)



15

Recall that for the stand Gaussian cumulative density function: Q(x) ≤ (1/
√

2π)e−x
2/2.

Therefore, and if R < C

P (n)
e ≤

√
2

π
exp(−2n(C−R)

√
P

2
),

the probability of error decays doubly exponentially to 0 in blocklength n.

2.2 A Nonlinear Feedback Scheme

Assume the feedback link is noise-free, delayless but is rate-limited by RFb. It is shown

in [9] that a super-exponential decay in the probability of error as a function of the

blocklengh n is achievable when RFb is sufficiently large. For completeness, in the

following we describe their scheme that achieves capacity C with doubly exponential

decay in the probability of error.

Fix a positive rate R < C and assume that

RFb ≥ R. (2.9)

Also, fix a large blocklength n and small numbers ε, δ > 0 such that

R < C(1− δ) (2.10)

and

(1− ε)−1 < 1 + δ. (2.11)

Define

n1 := (1− ε)n. (2.12)

Notice that by (2.11) and (2.12),

n

n1
< 1 + δ. (2.13)

The coding scheme takes place in two phases. After each phase l ∈ {1, 2}, the receiver
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makes a temporary guess M̂l of message M . Define the probability of error after phase

l ∈ {1, 2}:

P
(n)
e,l := Pr

[
M̂l 6= M

]
. (2.14)

1) Code Construction: Construct a codebook C1 that

• is of blocklength n1,

• is of rate Rphase,1 = n
n1
R,

• satisfies an expected average block-power constraint P , and

• when using a non-feedback coding rule, it achieves probability of error γ1 not

exceeding

γ1 ≤ e−n(ζ−o(1)) (2.15)

for some ζ > 0.

Notice that such a code exists because, by (2.10) and (2.13), the rate of the code
n
n1
R < C(1− δ2). Construct a codebook C2 that:

• is of blocklength εn− 1,

• is of rate Rphase,2 := R
ε−1/n ,

• satisfies an expected average block-power constraint P/γ1,

• when using a non-feedback coding rule, it achieves probability of error γ2 not

exceeding

γ2 ≤ exp(−exp(Ω(n))). (2.16)

The existence of codebook C2 is given in Appendix 2.A.

2) Transmission: Transmission takes place in two phases. In the first phase, which

occupies channel uses 1, . . . , n1, the transmitter sends the codeword in C1 corresponding

to message M .

After observing the channel outputs Y1, . . . , Yn1 , the receiver makes a temporary

decision M̂1 about M . It then sends this temporary decision M̂1 to the transmitter over

the feedback link. By RFb > R, message M̂1 can be perfectly known at the transmitter.
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If in phase 1 the decoding result is wrong, i.e.

(M̂1 6= M) (2.17)

then in channel use n1 + 1 the transmitter sends an error signal to indicate an error:

Xn1+1 =
√
P/γ1. (2.18)

During the remaining channel uses i = n1 +2, . . . , n, it then retransmits the message M

by sending the codeword from C2 that corresponds to M .

On the other hand, if the receiver’s temporary decisions was correct,

M̂1 = M, (2.19)

then the transmitter remains silent during the entire phase 2:

Xi = 0, i = n1 + 1, . . . , n. (2.20)

In this case, no power is consumed in phase 2.

The receiver first detects whether the transmitter sent an error signal in channel use

n1 + 1. Depending on the output of this detection, they either stick to their temporary

decision in phase 1 or make a new decision based on the transmissions in phase 2.

Specifically, if

Yn1+1 < T (2.21)

where

T :=

√
P/γ1

2
, (2.22)

then the receiver decides that its decision M̂1 in phase 1 was correct and keeps it as its

temporary guess of the message M :

M̂ = M̂1. (2.23)

If instead,

Yn1+1 ≥ T, (2.24)
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the receiver then decides that its temporary decision M̂1 was wrong and discards it.

It then produces a new guess M̂2 by decoding the code C2 based on the outputs

Yn1+2, . . . , Yn. In this case, the receiver produces the final guess as

M̂ = M̂2. (2.25)

3) Analysis:

An error occurs in the communication if

(M̂ 6= M). (2.26)

We next analyze the probability of error and we bound the consumed power. The

analysis relies on the following events. Define the events:

• ε1: The receiver’s decision in phase 1 is wrong:

M̂1 6= M. (2.27)

• εT : The receiver observes

Yn1+1 < T. (2.28)

• ε2: Decoding message M based on the outputs Yn1+2, . . . , Yn using codebook C2

results in an error:

M̂2 6= M. (2.29)

Define also the events:

E1: The receiver’s decision in phase 1 is correct, and the receiver obtains an error

signal in channel use n1 + 1 :

(
ε1
)c ∩ (εT )c. (2.30)

E2: The receiver’s decision in phase 1 is wrong, but the receiver obtains no error signal

in channel use n1 + 1:

ε1 ∩ εT . (2.31)
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E3: The receiver’s decision in phase 1 is incorrect, the receiver observes Yn1+1 ≥ T

and errs when decoding M based on the outputs Yn1+2, . . . , Yn

ε1 ∩
(
εT
)c ∩ ε2. (2.32)

The probability P
(n)
e is included in the union of the events (E1 ∪ E2 ∪ E3), and thus,

by the union bound,

P (n)
e ≤ Pr[E1] + Pr[E2] + Pr[E3] . (2.33)

We bound each summand in (2.33) individually, starting with Pr[E1]. By (2.30), we

have

Pr[E1] = Pr
[(
ε1
)c ∩ (εT )c]

≤ Pr
[(
εT
)c|(ε1)c]

= Q(T ) (2.34)

where the first inequality follows by Bayes’ rule and because a probability cannot ex-

ceed 1; and the last equality because in the event
(
ε1
)c

, we have Xn1+1 = 0 and thus

Yn1+1 ∼ N (0, 1).

Next, by (2.31) and similar arguments as before, we obtain,

Pr[E2] = Pr[ε1 ∩ εT ]

≤
K∑
k=1

Pr[εT |ε1]

= Q(T ). (2.35)

Finally, by (2.32) and similar arguments as before,

Pr[E3] = Pr
[
ε1 ∩

(
εT
)c ∩ ε2]

≤ Pr
[(
εT
)c ∩ ε2|ε1]

≤ Pr[ε2|ε1]

= γ2 (2.36)
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where the last inequality follows by the definition of γ2.

In view of (2.33)–(2.36),

P (n)
e ≤ Pr[E1] + Pr[E2] + Pr[E3]

≤ 2Q(T ) + γ2. (2.37)

Given the definitions of γ1, γ2 and T in (2.15), (2.16) and (2.22), respectively, and by

Q(x) ≤ (1/
√

2π)e−x
2/2, (2.37) implies that probability of error decays doubly exponen-

tially in the blocklength n.

Now consider the consumed expected average block-power. By the definition in (2.14),

we have

P
(n)
e,1 ≤ γ1. (2.38)

Furthermore, since in phase 2 we consume power P/γ1 in the event (2.17) and power 0

in the event (2.19),

1

n
E

[
n∑
i=1

X2
i

]
≤ 1

n

(
P (1−ε)n+P

(n)
e,1

P

γ1
εn
)
≤ P. (2.39)

Also note that the average feedback rate is R that meets the constraint on the feedback

link.

2.A Appendix: Proof of Existence of Codebook C2

By [3], for all rates

R̃ <
1

2
log2

2 +
√
P̃ 2/σ4 + 4

4
, (2.40)

and for sufficiently large n there exists a blocklength-ñ, rate-R̃ non-feedback coding

scheme for the memoryless Gaussian point-to-point channel with noise variance σ2,

with expected average block-power no larger than P̃ and with probability of error Pe
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satisfying

Pe ≤ e−ñ(E(R̃,P̃ /σ2)−ε′) (2.41)

for some fixed ε′ > 0 and

E(R̃, P̃ ) =
P̃

4σ2

(
1−

√
1− 2−2R̃

)
. (2.42)

Now apply this statement to R̃ = Rphase,2 = R
ε−1/n , σ2 = 1, P̃ = P/γ1 and ñ = εn−1.

Since for sufficiently large n and for all rates

Rphase,2 <
1

2
log2

2 +
√
P 2/γ2

1 + 4

4
, (2.43)

we conclude by (2.40–2.42) that there exists a code C2 of rate-Rphase,2, block-power

P/γ1, blocklength (εn− 1) and probability of error γ2 satisfying

γ2 ≤ e
−
(
εn−1
)(

P
4γ1

(
1−
√

1−2
−2 R
ε−1/n

)
−ε′
)

= exp(−exp(Ω(n))). (2.44)



Chapter 3

Broadcast Channel without

Feedback

In this chapter we review some previous results on the capacity region of memoryless

BC without feedback.

Consider a two-receiver memoryless BC with private and common messages de-

picted in Figure 3.1. The setup is characterized by the input alphabet X , the out-

put alphabets Y1 and Y2 and a probability transition function PY1Y2|X(y1, y2|x). If at

time i, for i ∈ {1, . . . , n}, the transmitter sends the channel input xi ∈ X , then Re-

ceiver k ∈ {1, 2} observes the output Yk,i ∈ Yk. The BC is said to be memoryless if

PY n1 Y n2 |Xn(yn1 , y
n
2 |xn) =

∏n
t=1 PY1Y2|X(y1,i, y2,i|xi).

TransmitterM0,M1,M2

M̂
(2)
0 , M̂2

X
Receiver 1

Receiver 2

Y1

Y2

PY1Y2|X

M̂
(1)
0 , M̂1

Figure 3.1: Two-receiver memoryless BC with private and common messages

The goal of the communication is that the transmitter conveys a common message

M0 ∈ {1, . . . , b2nR0c} to both receivers, and two private messages M1 ∈ {1, . . . , b2nR1c}
and M2 ∈ {1, . . . , b2nR2c}, to Receiver 1 and 2, respectively. Each Mk, k ∈ {0, 1, 2}, is

independently and uniformly distributed over the setMk := {1, . . . , b2nRkc}, where R0

22
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denotes the common rate of transmission and Rk, k ∈ {1, 2} denotes the private rate of

transmission of Receiver i.

The encoder maps the messages (M0,M1,M2) to a sequence xn ∈ X n:

Xn = f (n)(M0,M1,M2) (3.1)

where the encoding function f (n) is of formM0×M1×M2 → X n and the Receiver k ∈
{1, 2} uses channel outputs ynk to estimate (M̂

(k)
0 , M̂k) as a guess of messages (M0,Mk):

(M̂
(k)
0 , M̂k) = g

(n)
k (Y N

k ). (3.2)

where the decoding function g
(n)
k is of form Ynk →M0 ×Mk.

A rate region (R0, R1, R2) is called achievable if for every blocklength n, there exists

an encoding function f (n) and two decoding functions g
(n)
1 , g

(n)
2 such that the error

probability

P (n)
e := Pr

[
(M̂

(1)
0 , M̂

(2)
0 , M̂1, M̂2) 6= (M0,M0,M1,M2)

]
(3.3)

tends to zero as the blocklength n tends to infinity. The closure of the set of achievable

rate tuple (R0, R1, R2) is called the capacity region and is denoted by CNoFb.

3.1 Capacity for R1 = R2 = 0

For the case of R1 = R2 = 0, where the transmitter only conveys a common message to

the receivers, the capacity is

R0 = max
PX

min{I(X;Y1), I(X;Y2)
}
. (3.4)

In the following we recall the proof for the capacity for R1 = R2 = 0, see also [132].

Achievability

1) Codebook generation: Randomly and independently generate b2nR0c sequences xn(m0).

Each sequence is drawn according to the product distribution
∏n
i=1 PX(xi), where xi
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denotes the i-th entry of xn(m0). All codebooks are revealed to the transmitter and

receivers.

2) Encoding : Given that M0 = m0, the transmitter sends xn(m0).

3) Decoding at Receivers: We describe the operations performed at Receiver 1.

Receiver 2 estimates m̂
(2)
0 of messages M0 in an analogous way.

Given that Receiver 1 observes the sequence yn1 , it looks for an index m̂
(1)
0 such that

(
xn(m̂

(1)
0 ), yn1

)
∈ T nε (PXY1).

If there is exactly one index m̂
(1)
0 that satisfies the above condition, Receiver 1 chooses

this index. If there are multiple such indices, it chooses one of them uniformly at random.

Otherwise it chooses an index uniformly at random over the entire set {1, . . . , b2nR0c}.
4) Analysis: We analyze the average error probability over the random message,

codebooks, and channel realizations. To simplify exposition we therefore assume that

M0 = 1. Under this assumption, an error occurs if, and only if,

(M̂
(1)
0 , M̂

(2)
0 ) 6= (1, 1).

For k ∈ {1, 2}, define the following events.

• Let E0,k be the event that

(
Xn(1), Y n

k

)
/∈ T nε (PXYk).

Since the channel is memoryless, by the law of large numbers, Pr[E0,k] tends to 0

as n→∞.

• Let E1,k be the event that there is an index m̂
(k)
0 6= 1 such that

(
Xn(m̂

(k)
0 ), Y n

k

)
∈ T nε (PXYk).

By the Packing lemma [131], Pr[E1,k|E0,k] tends to 0 as n→∞ if

R0 ≤ I(X;Yk)− δ(ε) (3.5)

An error in the communication occurs only if one or more of the the above events
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happens. Thus we conclude that for a suitable δ(ε) which tends to 0 as ε→ 0, if

R0 ≤ I(X;Y1)− δ(ε) (3.6)

R0 ≤ I(X;Y2)− δ(ε) (3.7)

then the average error probability for this setup tends to 0 as n tends to infinity. Taking

ε → 0, we get the achievable region as shown in (3.4). Using standard arguments one

can then conclude that there must exist a deterministic code for which the probability

of error P
(n)
e tends to 0 as n→∞ when the mentioned conditions are satisfied.

Converse

Note that

nR0 = H(M0)

≤ I(M0; M̂
(1)
0 ) + nεn

≤ I(Xn;Y n
1 ) + nεn

=

n∑
i=1

(
H(Y1,i|Y i−1

1 )−H(Y n
1 |Xn)

)
+ nεn

=
n∑
i=1

(
H(Y1,i|Y i−1

1 )−H(Y1,i|Xi)
)

+ nεn

≤
n∑
i=1

(
H(Y1,i)−H(Y1,i|Xi)

)
+ nεn

≤ nI(X̄; Ȳ1) + nεn (3.8)

where the first inequality follows by Fano’s inequality and εn is a positive function that

tends to 0 as n → ∞; the second inequality follows by the data processing inequality;

the last inequality follows by the convexity of mutual information and by setting

PX̄Ȳ1Ȳ2(x, y1, y2) =
( 1

n

n∑
i=1

PXi(x)
)
PY1Y2|X(y1, y2|x) (3.9)
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for all appropriate x, y1, y2. Similarly, we have nR0 ≤ nI(X̄; Ȳ2). Thus, we have

R0 = max
PX

min{I(X;Y1), I(X;Y2)}.

3.2 Capacity Region for R0 = 0

The capacity region of DMBCs with R0 = 0 is in general unknown. There are some ex-

ceptions. For the following classes of broadcast channels, where one of the two receivers

is stronger than the other receiver in some sense, the capacity region is known and can

be achieved by superposition coding :

• stochastically or physically degraded DMBCs [133]

• less noisy DMBCs [134]

• more capable DMBCs [134].

• essentially less noisy DMBCs [135]

• essentially more capable DMBCs [135]

Definition 1 (From [133]). A DMBC is called physically degraded if

p(y1, y2|x) = p(y1|x)p(y2|y1).

More generally, a DMBC is called stochastically degraded if there exists a distribution

p′(y2|y1) such that

p(y2|x) =
∑
y1

p(y1|x)p′(y2|y1),

The capacity region of stochastically or physically degraded DMBCs is given by

[136, 137], which is the closure set of all nonnegative rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) (3.10)

for some probability mass function (pmf) PUX such that U − X − (Y1, Y2) forms a

Markov chain.

Definition 2 (From [134]). A DMBC is called less noisy if I(U ;Y2) ≥ I(U ;Y1) holds

for all PUX .
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The capacity region of a less noisy BC has the same expression as that of a degraded

BC [134], see (3.10).

Definition 3 (From [134]). A DMBC is called more capable if I(X;Y2) ≥ I(X;Y1)

holds for all PX .

The capacity region of a more capable BC is the closure set of all nonnegative rate

pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1) (3.11)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) (3.12)

R1 +R2 ≤ I(X;Y2) (3.13)

for some pmf PUX such that U −X − (Y1, Y2) forms a Markov chain [134].

Before defining essentially less noisy/more capable DMBCs, we need to first intro-

duce a new term sufficient class of pmfs.

Definition 4 (From [135]). A subset PX of all pmfs on the input alphabet X is said to

be a sufficient class of pmfs for a DMBC if the following holds: Given any joint pmf

PUV X there exists a joint pmf P ′UV X that satisfies

P ′X(x) ∈ PX
IP (U ;Y1) ≤ IP ′(U ;Y1)

IP (V ;Y2) ≤ IP ′(V ;Y2)

IP (U ;Y1) + IP (X;Y2|U) ≤ IP ′(U ;Y1) + IP ′(X;Y2|U)

IP (V ;Y2) + IP (X;Y1|V ) ≤ IP ′(V ;Y2) + IP ′(X;Y1|V ) (3.14)

where the notations IP and IP ′ indicate that the mutual informations are computed

assuming that (U, V,X) ∼ PUV X and (U, V,X) ∼ P ′UV X and P ′X(x) is the marginal

obtained from P ′UV X .

Now we are ready to define essentially less noisy/more capable DMBCs.

Definition 5 (From [135]). A DMBC is called essentially less noisy if there exists a

sufficient class of pmfs PX such that whenever PX ∈ PX , then for all random variables
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U that form the Markov chain U −X − (Y1, Y2),

I(U ;Y1) ≤ I(U ;Y2). (3.15)

The capacity region [135] of an essentially less-noisy BC is the closure set of all

nonnegative rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1) (3.16)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) (3.17)

for pmfs PUX such that U −X − (Y1, Y2) forms a Markov chain and PX ∈ P.

Definition 6 (From [135]). A DMBC is called essentially more capable if there exists a

sufficient class of pmfs PX such that whenever PX ∈ PX , then for all random variables

(U,X) that form the Markov chain U −X − (Y1, Y2),

I(X;Y1|U) ≤ I(X;Y2|U). (3.18)

The capacity region [135] of an essentially more capable BC is the closure set of all

nonnegative rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1) (3.19)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) (3.20)

R1 +R2 ≤ I(X;Y2) (3.21)

for some pmf PUX such that U −X − (Y1, Y2) forms a Markov chain and PX ∈ P.

Remark 3.1. The relationship among these various classes of BCs is established in

[135], [138]:

• degraded ( less-noisy ( more capable.

• less noisy ( essentially less noisy.

• essentially less-noisy * more capable.

• more capable * essentially less noisy.

• more capable ( essentially more capable.
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• essentially more capable * essentially less noisy.

• essentially less noisy * essentially more capable.

3.3 Achievable Regions for Broadcast Channels

3.3.1 Superposition Coding

Superposition coding is optimal for the classes of BCs mentioned in Section 3.2. In the

following we describe the superposition coding scheme (see also [139, 132]) that achieves

rate region R(1)
SuperPos, which is defined as the set of all nonnegative rate pairs (R1, R2)

satisfying

R1 ≤ I(U ;Y1) (3.22a)

R2 ≤ I(X;Y2|U) (3.22b)

R1 +R2 ≤ I(X;Y2) (3.22c)

for some pmf PUX . The superposition coding regionR(2)
SuperPos, which is defined similarly

to R(1)
SuperPos but where indices 1 and 2 need to be exchanged, is achieved if in the

following scheme message M1 and M2 are exchanged as well as Receiver 1 and 2.

1) Codebook generation: Fix a pmf PUX . Randomly and independently generate

b2nR1c cloud center codewords: un(m1), for m1 ∈ {1, . . . , b2nR1c}. Each codeword is

drawn according to the product distribution
∏n
i=1 PU (ui), where ui denotes the i-th

entry of un(m1).

For each codeword un(m1), randomly generate b2nR2c satellite codewords xn(m2|m1),

for m2 ∈ {1, . . . , b2nR2c}. Each codeword xn(m2|m1) is drawn according to the prod-

uct distribution
∏n
i=1 PX|U (xi|ui), where xi denotes the i-th entry of xn(m2|m1). All

codebooks are revealed to the transmitter and receivers.

2) Encoding : Given that M1 = m1, M2 = m2, the transmitter sends xn(m2|m1).

3) Decoding at Receivers: After observing the channel outputs yn1 , Receiver 1 looks

for an index m̂
(1)
1 such that

(
un(m̂

(1)
1 ), yn1

)
∈ T nε (PUY1).
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If there is exactly one index m̂
(1)
1 that satisfies the above condition, Receiver 1 chooses

this index. If there are multiple such indices, it chooses one of them uniformly at random.

Otherwise it chooses an index uniformly at random over the entire set {1, . . . , b2nR1c}.
Given observing channel outputs yn2 , Receiver 2 looks for the pair (m̂

(2)
1 , m̂2) such

that

(
un(m̂

(2)
1 ), xn(m̂2|m̂(2)

1 ), yn2
)
∈ T nε (PUXY2).

If there is exactly one pair (m̂
(2)
1 , m̂2) that satisfies the above condition, Receiver 2

chooses this pair. If there are multiple such pair, it chooses one of them uniformly

at random. Otherwise it chooses a pair uniformly at random over the entire set

{1, . . . , b2nR1c} × {1, . . . , b2nR2c}.
4) Analysis: We analyze the average error probability of the superposition coding

scheme over the random messages, codebooks, and channel realizations. To simplify

exposition we assume that M1 = M2 = 1. Under this assumption, an error occurs if,

and only if,

(M̂
(1)
1 , M̂

(2)
1 , M̂2) 6= (1, 1, 1).

Define the following events.

• Let E0 be the event that

(
Un(1), Xn(1|1), Y n

1 , Y
n

2

)
∈ T nε/16(PUXY1Y2).

Since the channel is memoryless, by the law of large numbers, Pr[E0] tends to 0

as n→∞.

• Let E1 be the event that there is an index m̂2 6= 1 such that

(
Un(1), Xn(m̂2|1), Y n

2

)
∈ T nε (PUXY2).

By the Packing Lemma, Pr[E1|Ec0] tends to 0 as n→∞ if

R2 ≤ I(X;Y2|U)− δ(ε), (3.23)



31

• Let E2 be the event that there is a pair (m̂
(2)
1 , m̂2) 6= (1, 1) such that

(
Un(m̂

(2)
1 ), Xn(m̂2|m̂(2)

1 ), Y n
2

)
∈ T nε (PUXY2).

By the Packing Lemma, Pr[E2|Ec0] tends to 0 as n→∞ if

R1 +R2 ≤ I(X;Y2)− δ(ε), (3.24)

• Let E3 be the event that there is an index m̂
(1)
1 6= 1 such that

(
Un(m̂

(2)
1 ), Y n

1

)
∈ T nε (PUY1).

By the Packing Lemma Pr[E3|Ec0] tends to 0 as n→∞ if

R1 ≤ I(U ;Y1)− δ(ε), (3.25)

An error in the communication occurs only if one or more of the the above events

happens. Thus we conclude that for a suitable δ(ε) which tends to 0 as ε→ 0, if

R1 ≤ I(U ;Y1)− δ(ε) (3.26)

R2 ≤ I(X;Y2|U)− δ(ε) (3.27)

R1 +R2 ≤ I(X;Y2)− δ(ε), (3.28)

then the average error probability for this setup tends to 0 as n tends to infinity. Taking

ε→ 0, we get the achievable region as shown in (3.22). Using standard arguments one

can then conclude that there must exist a deterministic code for which the probability

of error P
(n)
e tends to 0 as n→∞ when the mentioned conditions are satisfied.

3.3.2 Marton’s Coding

The best known inner bound on the capacity of DMBC without feedback is Marton’s

region [140], RMarton,general, which is defined as the set of all nonnegative rate tuples
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(R0, R1, R2) satisfying

R0 +R1 ≤ I(U0, U1;Y1) (3.29a)

R0 +R2 ≤ I(U0, U2;Y2) (3.29b)

R0 +R1 +R2 ≤ I(U0, U1;Y1) + I(U2;Y2|U0)− I(U1;U2|U0) (3.29c)

R0 +R1 +R2 ≤ I(U0, U2;Y2) + I(U1;Y1|U0)− I(U1;U2|U0) (3.29d)

2R0 +R1 +R2 ≤ I(U0, U1;Y1) + I(U0, U2;Y2)− I(U1;U2|U0) (3.29e)

for some pmf PU0U1U2 and a function f : U0×U1×U2 → X such that X = f(U0, U1, U2).

Remark 3.2. To evaluate the region RMarton,general, it suffices to consider distributions

PU0U1U2X for which one of the following conditions holds [141, 142]:

• I(U0;Y1) = I(U0;Y2);

• I(U0;Y1) < I(U0;Y2) and U1 = const;

• I(U0;Y1) > I(U0;Y2) and U2 = const.

Proof. The proof is given in [141, 142]. For convenience to the reader, we reprove the

statement in Appendix 3.A.

When R0 = 0, the general Marton’s region RMarton,general specializes to RMarton,

which is the set of all nonnegative rate pairs (R1, R2) satisfying

R1 ≤ I(U0, U1;Y1) (3.30a)

R2 ≤ I(U0, U2;Y2) (3.30b)

R1+R2 ≤ I(U0, U1;Y1)+I(U2;Y2|U0)−I(U1;U2|U0) (3.30c)

R1+R2 ≤ I(U0, U2;Y2)+I(U1;Y1|U0)−I(U1;U2|U0) (3.30d)

for some pmf PU0U1U2 and a function f : U0×U1×U2 → X such that X = f(U0, U1, U2).

Remark 3.3. The region RMarton specializes to the superposition coding region, R(1)
SuperPos

when choosing U1 = const. and X = U2 and is specialized to R(2)
SuperPos when choosing

U2 = const. and X = U1 in Marton’s constraints (3.30).

We describe the Marton scheme achivingRMarton,general for a DMBC (X ,Y1,Y2, PY1Y2|X).

Choose nonnegative rates R′1, R
′
2, auxiliary finite alphabets U0,U1,U2, a function f (n)
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of the form f (n): U0 × U1 × U2 → X , and a pmf PU0U1U2 . Define Tk := {1, . . . , b2nR′kc},
for k ∈ {0, 1, 2}. Split the private messages into “common” and “private” parts:

Mk = (Mc,k,Mp,k), for k ∈ {1, 2}. The submessages Mc,k and Mp,k are indepen-

dently and uniformly distributed over the sets Mc,k := {1, . . . , b2nRc,kc} and Mp,k :=

{1, . . . , b2nRp,kc}, respectively, where Rp,k, Rc,k > 0 and so that Rk = Rp,k + Rc,k
1 .

Let Mc :=Mc,1 ×Mc,2 and Rc := (R0 +Rc,1 +Rc,2).

1) Codebook generation: Randomly and independently generate b2nRcc sequences

un0 (m0,mc,1,mc,2). Each sequence is drawn according to the distribution
∏n
i=1 PU0(u0,i),

where u0,i denotes the i-th entry of un0 (m0,mc,1,mc,2).

For k ∈ {1, 2} and each tuple (m0,mc,1,mc,2) randomly generate b2n(Rp,k+R′k)c
sequences unk(mp,k, tk|m0,mc,1,mc,2), for mp,k ∈ Mp,k and tk ∈ Tk. Each codeword

unk(mp,k, tk|m0,mc,1,mc,2) is drawn according to the distribution
∏n
t=1 PUk|U0

(uk,i|u0,i),

where uk,i denotes the i-th entry of unk
(
mp,k, tk|m0,mc,1,mc,2

)
.

All codebooks are revealed to the transmitter and receivers.

2) Encoding : Assume that M0 = m0, Mc,k = mc,k and Mp,k = mp,k, for k ∈ {1, 2}.
Define mc := (m0,mc,1,mc,2). The transmitter looks for a pair (t1, t2) ∈ T1 × T2 that

satisfies

(
un0 (mc), u

n
1 (mp,1, t1|mc), u

n
2 (mp,2, t2|mc)

)
∈ T nε/16(PU0U1U2). (3.31)

If there is exactly one pair (t1, t2) that satisfies the above condition, the transmitter

chooses this pair. If there are multiple such pairs, it chooses one of them uniformly at

random. Otherwise it chooses a pair (t1, t2) uniformly at random over the entire set

T1 × T2. The transmitter then sends the inputs xn = (x1, . . . , xn), where

xi = f (n)(u0,i, u1,i, u2,i), i ∈ {1, . . . , n}, (3.32)

and u0,i, u1,i, u2,i denote the i-th symbols of the chosen Marton codewords un0 (mc),

un1 (mp,1, t1|mc) and un2 (mp,2, t2|mc), respectively.

3) Decoding at Receivers: We describe the operations performed at Receiver 1.

1 Due to the floor operations, R1 and R2 here do not exactly represent the transmission rates of
messages M1 and M2. In the limit n→∞, which is our case of interest, R1 and R2 however approach
these transmission rates. Therefore, we neglect this technicality in the following.
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Receiver 2 estimates (m̂
(2)
0 , m̂2) of messages (m0,m2) in an analogous way. Given that

Receiver 1 observes the sequence yn1 , it looks for all the tuples (m̂
(1)
c , m̂p.1, t̂1) such that

(
un0 (m̂(1)

c ), un1 (m̂p,1, t̂1|m̂(1)
c ), yn1

)
∈ T nε (PU0U1Y1).

4) Analysis of Marton’s Scheme: We analyze the average error probability of Mar-

ton’s scheme over the random messages, codebooks, and channel realizations, see also

[140, 141, 56]. To simplify exposition we assume that M0 = Mc,k = Mp,k = Tk = 1 for

all k ∈ {1, 2}. Under this assumption, an error occurs if, and only if,

(M̂(1)
c , M̂(2)

c , M̂p,1, M̂p,2) 6= (1[3],1[3], 1, 1).

Define the following events.

• Let E0 be the event that there is no pair (t1, t2) ∈ T1 × T2 that satisfies

(
Un0 (1[3]), U

n
1 (1, t1|1[3]), U

n
2 (1, t2|1[3])

)
∈ T nε/16(PU0U1U2).

By the Covering Lemma [131], Pr[E0] tends to 0 as n→∞ if

R′1 +R′2 ≥ I(U1;U2|U0) + δ(ε). (3.33)

• Let E1,k be the event that

(
Un0 (1[3]), U

n
k (1, 1|1[3]), Y

n
k

)
/∈ T nε (PU0UkYk).

Since the channel is memoryless, by the law of large numbers, Pr[E1,k|Ec0] tends

to 0 as n→∞.

• Let E2,k be the event that there exists m̂
(k)
c 6= 1[3] that satisfies

(
Un0 (m̂(k)

c ), Uk(1, 1|m̂(k)
c ), Y n

k

)
∈ T nε (PU0UkYk).

By the Packing Lemma, Pr
[
E2,k|Ec1,k

]
tends to 0 as n→∞, if

R0 +Rc,k +Rc,k ≤ I(U0, Uk;Yk)− δ(ε). (3.34)
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• Let E3,k be the event that there is a pair (m̂p,k, t̂k) 6= (1, 1) that satisfies

(
Un0 (1[3]), U

n
k (m̂p,k, t̂k|1[3]), Y

n
k

)
∈ T nε (PU0UkYk).

By the Packing Lemma, Pr
[
E3,k|Ec1,k

]
tends to 0 as n→∞, if

Rp,k +R′k ≤ I(Uk;Yk|U0)− δ(ε). (3.35)

• Let E4,k be the event that there is a tuple m̂
(k)
c 6= 1[3] and (m̂p,k, t̂k) 6= (1, 1) that

satisfies

(
Un0 (m̂(k)

c ), Unk (m̂p,k, t̂k|m̂(k)
c ), Y n

k

)
∈ T nε (PU0UkYk).

By the Packing Lemma, Pr
[
E4,k|Ec1,k

]
tends to 0 as n→∞, if

R0 +Rc,1 +Rc,2 +Rp,k +R′k ≤ I(U0, Uk;Yk)− δ(ε). (3.36)

An error in the communication occurs only if one or more of the above events happens.

Then we conclude that if for k ∈ {1, 2}

R′1 +R′2 ≥ I(U1;U2|U0) + δ(ε) (3.37)

Rp,k +R′k ≤ I(Uk;Yk|U0)− δ(ε) (3.38)

R0 +Rc,1 +Rc,2 +Rp,k +R′k ≤ I(U0, Uk;Yk)− δ(ε). (3.39)

then the average error probability of Marton’s scheme tends to 0 as n tends to infinity.

By Fourier-Motzkin elimination, we conclude that whenever

I(U1;Y1|U0) + I(U2;Y2|U0) ≥ I(U1;U2|U0) (3.40)
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then for every rate tuple (R0, R1, R2) satisfying

R0 +R1 ≤ I(U0, U1;Y1)− δ(ε) (3.41a)

R0 +R2 ≤ I(U0, U2;Y2)− δ(ε) (3.41b)

R0 +R1 +R2 ≤ I(U0, U1;Y1) + I(U2;Y2|U0)− I(U1;U2|U0)− δ(ε) (3.41c)

R0 +R1 +R2 ≤ I(U0, U2;Y2) + I(U1;Y1|U0)− I(U1;U2|U0)− δ(ε) (3.41d)

2R0 +R1 +R2 ≤ I(U0, U1;Y1) + I(U0, U2;Y2)− I(U1;U2|U0)− δ(ε) (3.41e)

for a suitable δ(ε) which tends to 0 as ε→ 0, there exists a choice of nonnegative rates

R1, R2, R0, R
′
1, R

′
2 such that Rk = Rp,k + Rc,k, for k ∈ 1, 2 and (3.33)–(3.39) hold. No-

tice that we can ignore the rate constraint (3.40) because the rate region achieved by

any random variables (U0, U1, U2) violating (3.40) can be strictly enlarged by choosing

U ′0 = (U0, U1, U2) and U ′1 = U ′2 = const.. The new choice (U ′0, U
′
1, U

′
2) satisfies (3.40).

Thus we conclude that the rate region in (3.29) is achievable also when (3.40) is not

satisfied. Using standard arguments one can then conclude that there must exist a de-

terministic code for which the probability of error P
(n)
e tends to 0 as n→∞ when the

mentioned conditions are satisfied.

3.4 Outer Bound on Broadcast Channel without Feedback

In [143], Liang, Kramer and Shamai proposed the New-Jersey outer bound based on

the ideas of [122, 141, 144]. This outer bound was later simplified by Nair [145], which

can be written as the closure set of all nonnegative rate tuples such that

R0 ≤ min{I(U0;Y1), I(U0;Y2)} (3.42a)

R0 +R1 ≤ I(U1;Y1|U0) + min{I(U0;Y1), I(U0;Y2)} (3.42b)

R0 +R2 ≤ I(U2;Y2|U0) + min{I(U0;Y1), I(U0;Y2)} (3.42c)

R0 +R1 +R2 ≤ I(U1;Y1|U0, U2)+I(U2;Y2|U0)+min{I(U0;Y1), I(U0;Y2)} (3.42d)

R0 +R1 +R2 ≤ I(U2;Y2|U0, U1)+I(U1;Y1|U0)+min{I(U0;Y1), I(U0;Y2)} (3.42e)

for some pmf PU1U1U2 and a function X = f(U0, U1, U2).
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For the BC with no common message, i.e. with R0 = 0, the New-Jersey outer bound

reduces to the following outer bound [144, 145] that is the closure set of all nonnegative

rate pairs such that

R1 ≤ I(U1;Y1) (3.43a)

R2 ≤ I(U2;Y2) (3.43b)

R1 +R2 ≤ I(U1;Y1) + I(X;Y2|U1) (3.43c)

R1 +R2 ≤ I(U2;Y2) + I(X;Y1|U2) (3.43d)

for some pmf PU1U2 and a function X = f(U1, U2). In [146] Geng, et al. presented an

example of a product BC which shows that this outer bound is not tight in general.

3.A Appendix: Proof of Remark 3.2

Fix a distribution PU0U1U2X . We prove that there exists a distribution PU ′0U ′1U ′2X′ that

satisfies one of the three conditions in Remark 3.2 and so that the rate region defined by

Marton’s constraints (3.29) and distribution PU ′0U ′1U ′2X′ contains the rate region defined

by Marton’s constraints (3.29) and distribution PU0U1U2X .

We assume without loss of generality that I(U0;Y1) ≤ I(U0;Y2), and we separately

treat the two cases

• I(U0, U1;Y1) ≤ I(U0, U1;Y2)

• I(U0, U1;Y1) > I(U0, U1;Y2).

For the first case, I(U0, U1;Y1) ≤ I(U0, U1;Y2), let U ′0 = (U0, U1), U ′1 = const.,

U ′2 = U2 and X ′ = X. Evaluating Marton’s constraints (3.29) for the auxiliaries

(U ′0, U
′
1, U

′
2, X

′) results in

R0 +R1 ≤ I(U0, U1;Y1) (3.44a)

R0 +R1 +R2 ≤ I(U0, U1;Y1) + I(U2;Y2|U0, U1) (3.44b)

R0 +R1 +R2 ≤ I(U0, U1, U2;Y2) (3.44c)

Note that the constraint (3.44c) is redundant in view of (3.44b) because I(U0, U1;Y1) ≤
I(U0, U1;Y2).
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We show that the first two constraints in (3.44) are no tighter than Marton’s con-

straints in (3.29), which proves the desired result for the first case. In fact, the constraint

(3.44a) coincides with Marton’s constraint (3.29a). The constraint in (3.44b) is looser

than Marton’s constraint (3.29c),

I(U0, U1;Y1) + I(U2;Y2|U0, U1)

= I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, U1, Y2)

≥ I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, Y2)

= I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, Y2)

+H(U2|U0)−H(U2|U0)

= I(U0, U1;Y1) + I(U2;Y2|U0)− I(U1;U2|U0).

We now treat the second case I(U0, U1;Y1) > I(U0, U1;Y2). Since I(U0;Y1) <

I(U0;Y2) by assumption and by the continuity of mutual information, there exists a

deterministic function f such that

I(U0, f(U1);Y1) = I(U0, f(U1);Y2) (3.45)

Let now U ′0 = (U0, f(U1)), U ′1 = U1, U ′2 = U2 and X ′ = X. For this choice of auxiliaries,

Marton’s constraints (3.29) result in:

R0 +R1 ≤ I(U0, f(U1), U1;Y1) (3.46a)

R0 +R2 ≤ I(U0, f(U1), U2;Y2) (3.46b)

R0 +R1 +R2 ≤ I(U0, f(U1), U1;Y1) + I(U2;Y2|U0, f(U1))

−I(U1;U2|U0, f(U1)) (3.46c)

R0 +R1 +R2 ≤ I(U1;Y1|U0, f(U1)) + I(U0, f(U1), U2;Y2)

−I(U1;U2|U0, f(U1)) (3.46d)

2R0 +R1 +R2 ≤ I(U0, f(U1), U1;Y1) + I(U0, f(U1), U2;Y2)

−I(U1;U2|U0, f(U1)) (3.46e)

Note that the constraints (3.46c) and (3.46d) coincide because I(U0, f(U1);Y1) = I(U0, f(U1);Y2).
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We again show that these constraints are no tighter than Marton’s constraints in

(3.29), which proves the desired result also for this second case and concludes the proof.

The constraint (3.46a) coincides with Marton’s constraint (3.29a):

I(U0, f(U1), U1;Y1) = I(U0, U1;Y1).

The constraint (3.46b) is looser than constraint (3.29b):

I(U0, f(U1), U2;Y2) ≥ I(U0, U2;Y2).

The constraints in (3.46c) is looser than Marton’s constraint (3.29c):

I(U0, f(U1), U1;Y1)− I(U1;U2|U0, f(U1)) + I(U2;Y2|U0, f(U1))

= I(U0, U1;Y1)−H(U2|U0, f(U1)) +H(U2|U0, U1)

+H(U2|U0, f(U1))−H(U2|U0, f(U1), Y2)

= I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, f(U1), Y2)

+H(U2|U0)−H(U2|U0)

≥ I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, Y2)

+H(U2|U0)−H(U2|U0)

= I(U0, U1;Y1) + I(U2;Y2|U0)− I(U1;U2|U0). (3.47)

The constraints in (3.46e) is looser than Marton’s constraint (3.29e):

I(U0, f(U1), U1;Y1) + I(U0, f(U1), U2;Y2)− I(U1;U2|U0, f(U1))

≥ I(U0, U1;Y1) + I(U2;Y2|U0)− I(U1;U2|U0) + I(U0, f(U1);Y2)

= I(U0, U1;Y1) + I(U0, U2;Y2)− I(U1;U2|U0) + I(U0, f(U1);Y2)− I(U0;Y2)

≥ I(U0, U1;Y1) + I(U0, U2;Y2)− I(U1;U2|U0)

where the first inequality follows from the inequality (3.47).



Chapter 4

Previous Results on Memoryless

Broadcast Channels with

Feedback

In this chapter, we review some previous works most relevant to ours on achievable

regions and outer bound for memoryless BC with feedback.

4.1 Achievable Regions for Memoryless Broadcast Chan-

nels with Feedback

4.1.1 Discrete Memoryless Broadcast Channels with Feedback

Consider Dueck’s channel depicted in Fig. 4.1. The channel outputs are

Y1 = (X0, X1 ⊕ Z), Y2 = (X0, X2 ⊕ Z) (4.1)

where X = (X0, X1, X2) is the channel input with X0, X1, X2 ∈ {0, 1} and Z is the noise

with Z ∼ Bern(1/2). It is easy to show that for this channel the maximum sum-rate is

R1 +R2 = 1. In the presence of perfect feedback, Dueck [55] showed that the rate pair

(R1, R2) = (1, 1) is achievable by a simple scheme. To prove the achievability, it suffices

to show that the transmitter can perfectly convey two i.i.d. Bern(1/2) sequences Xn
1 and

40
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Transmitter

X1

Receiver 1

Y1

Z

+

Receiver 2

X0

X2

+

Z

Y2

Figure 4.1: Dueck’s channel

Xn
2 to Receiver 1 an 2, respectively, in n+1 channel uses. The proof is as follows. In the

first channel use, the transmitter sends (0, X1,1, X2,1) over the channel. Upon obtaining

the outputs Y1,1 and Y2,1, the receivers send them back to the transmitter. Since the

feedback links are noiseless, the transmitter can recover the noise Z1 in the first channel

use. In the second channel use, the transmitter sends (Z1, X1,2, X2,2). In view of the

outputs Yk,1 = (0, Xk,1⊕Z1) and Yk,2 = (Z1, Xk,2⊕Z2), Receiver k ∈ {1, 2} can recover

Xk,1 perfectly. After n + 1 transmissions, Receiver k finally recovers Zn and therefore

can determine its intended sequence Xn
k perfectly. Thus, the rate (R1, R2) = (1, 1) is

achievable as n→∞. Dueck’s channel is the first example demonstrating that feedback

can increase the capacity region of BC.

In [11] Kramer applied the idea of directed information to establish a multi-letter

achievable region for the DMBC with feedback. It is shown that when evaluating this

achievable region for a BSBC with specific parameters, perfect feedback increases the

non-feedback capacity.

Recall that in Dueck’s example, the transmitter at each time broadcasts common

information about the channel of previous time (obtained through feedback). This

common information helps the receivers recover previous messages at a rate higher than

that without feedback. Inspired by this idea, Shayevitz and Wigger proposed a scheme

[56], based on block-Markov strategy, Marton’s coding and Gray-Wyner coding [147],

for the two-receiver DMBC with generalized feedback.

In the Shayevitz-Wigger scheme, the transmitter in each block uses Marton’s coding
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to send fresh messages together with refinement information. This refinement informa-

tion is about the messages sent in the previous block and is generated using a gener-

alization of Gray-Wyner coding. The receivers perform backward decoding where the

refinement information decoded in a block is used to decode the refinement information

and the messages sent in the previous block.

Given a two-receiver DMBC with generalized feedback that consists of an input

alphabet X , two output alphabets (Y1,Y2), a feedback alphabet F , and a conditional

pmf PY1Y2F |X , the Shayevitz-Wigger region is characterized by the set of all nonnegative

rate pairs (R1, R2) satisfying

R1 ≤ I(U0, U1;Y1, V1|Q)− I(U0, U1, U2, F ;V0, V1|Q,Y1) (4.2a)

R2 ≤ I(U0, U2;Y2, V2|Q)− I(U0, U1, U2, F ;V0, V2|Q,Y2) (4.2b)

R1 +R2 ≤ I(U1;Y1, V1|Q,U0) + I(U2;Y2, V2|Q,U0) + min
k∈{1,2}

I(U0;Yk, Vk|Q)

− max
k∈{1,2}

I(U0, U1, U2, F ;V0|Q,Yk)− I(U0, U1, U2, F ;V1|Q,V0, Y1)

−I(U0, U1, U2, F ;V2|Q,V0, Y2)− I(U1;U2|Q,U0) (4.2c)

R1 +R2 ≤ I(U0, U1;Y1, V1|Q) + I(U0, U2;Y2, V2|Q)− I(U1;U2|Q,U0)

−I(U0, U1, U2, F ;V0, V1|Q,Y1)− I(U0, U1, U2, F ;V0, V2|Q,Y2) (4.2d)

for some pmf PQPU0U1U2|QPV0V1V2|U0U1U2Y1Y2Q and some function f : Q×U0×U1×U2 →
X , where X = f(U0, U1, U2, Q).

This region is generally difficult to evaluate due to the presence of seven auxiliary

random variables in the rate constraints. Recently, Kim, Chia, and El Gamal [57]

studied the more general Shayevitz-Wigger region for generalized feedback [56], which

differs from the above region only in that in some places the outputs Y1 or Y2 have

to be replaced by the generalized feedback output F . In particular, they proposed

two choices for the auxiliary random variables for the Shayevitz-Wigger region with

generalized feedback and presented simplified expressions for the maximum sum-rates

that these choices achieve for symmetric state-dependent DMBCs with state known at

both receivers and where the generalized feedback equals the delayed state sequence.
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Their first choice is given by

Q =


0 w. p. 1− 2p

1 w. p. p

2 w. p. p

, (4.3a)

V0 = V1 = V2 =


∅ if Q = 0

Y1 if Q = 1

Y2 if Q = 2

, (4.3b)

and

X =


U0 if Q = 0

U1 if Q = 1

U2 if Q = 2

(4.3c)

for joint pmf PU0U1U2 = PU0PU1PU2 . This choice essentially results in a coded time-

sharing scheme. Their second choice is

Q =

1 w. p. 1/2

2 w. p. 1/2
, (4.4a)

V0 = V1 = V2 =

Y1 if Q = 1

Y2 if Q = 2
, (4.4b)

and

X =

U1 if Q = 1

U2 if Q = 2
(4.4c)

for some joint pmf PU0U1U2 = PU0PU1|U0
PU2|U0

. This choice results in a randomized

superposition coding scheme.

The deterministic model of the two-user i.i.d. fading BC with delayed CSI at the

transmitter considered by Maddah-Ali and Tse [60], and the two-user BEBCs where all

erasure events are known at all receivers considered by Wang [58] and by Georgiadis
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and Tassiulas [59]1 belong to this class of DMBCs. In fact, it is shown in [57] that

the capacity-achieving schemes in [60], [58], and [59] are special cases of a simplified

version—without block-Markov coding—of the Shayevitz-Wigger scheme for generalized

feedback specialized to the choice of parameters in (4.3).

On a more general note, also various results for two-user multi-input single-output

(MISO) Gaussian fading BCs with delayed CSI at the transmitter [60], [77], [80], [79],

[81] and [82] are related to the Shayevitz-Wigger scheme, if this latter is extended

to continuous-valued channels. Maddah-Ali and Tse [60] studied the K-user MISO

Gaussian fading BC where the transmitter learns the CSI with one unit delay. They

presented a coding scheme for general stationary and ergodic fading processes, and

proved that in some special cases it achieves the optimal DoF region. This is in particular

the case when the fadings are i.i.d. and independent across users. For i.i.d. fading

sequences (even when correlated across users), the setup studied by Maddah-Ali and

Tse can be modeled as a (continuous-valued) memoryless BC, and their scheme is a

special case of a simplified Shayevitz-Wigger scheme without block-Markov coding [56],

when this latter is naturally extended to continuous-valued channels.

Yang, Kobayashi, Gesbert, and Yi [79] studied the more general setup where the

transmitter also obtains imperfect (rate-limited) CSI. Specifically, they modified and

improved Maddah-Ali&Tse’s scheme to apply to this more general setup, and showed

that, under some mild assumptions, their improved scheme achieves the optimal DoF

region for arbitrary stationary and ergodic fading processes and all qualities of current

CSI at the transmitter. In this sense, they could bridge the gap between Maddah-

Ali&Tse’s no current-CSI result and the standard perfect current-CSI DoF result where

zero-forcing is DoF optimal. The new components in the Yang-Kobayashi-Gesbert-Yi

scheme are: a clever power allocation strategy; the fact that fresh information is sent

in all blocks; precoding of transmit signals; and transmission of quantized versions of

interferences as common message.

Chen and Elia [77] considered an even more general setup where the transmitter

accumulates CSI about each fading sample over time. In their model there is thus

current CSI as well as various levels of predicted and delayed CSI. Chen and Elia

1 Notice that the main contribution of [58, 59] is not the capacity-achieving schemes for the described
two-user BEBC, but its extension to arbitrary number of users K ≥ 2.
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proposed a coding scheme that exploits current and delayed CSI, and they showed

that with a careful choice of parameters, under some mild assumptions, their scheme

achieves the optimal DoF region. Interestingly this optimal DoF region depends only

on the current CSI and the asymptotic acquisition rate of delayed CSI. Given these

two quantities the DoF region is in particular independent of the predicted CSI. Their

results also illustrate the tradeoff between the required current and asymptotic delayed

CSI to achieve a certain performance. Compared to the Yang-Kobayashi-Gesbert-Yi

scheme, the Chen&Elia scheme shows as new components: block-Markov strategy and

a more sophisticated power- and rate-allocation policy.

In the special case without predicted or current CSI and when all delayed CSI is ac-

quired with only one unit delay, the setups considered by Yang, Kobayashi, Gesbert, and

Yi and by Chen and Elia can be modeled as (continuous-valued) memoryless BCs with

generalized feedback. Under these assumptions the Yang-Kobayashi-Gesbert-Yi scheme

and the Chen&Elia scheme specialize to simplified versions of the Shayevitz-Wigger

scheme for generalized feedback. In fact, the specialized Yang-Kobayashi-Gesbert-Yi

scheme [79] then corresponds to the Shayevitz-Wigger scheme without block-Markov

strategy, with successive decoding instead of the more performant joint decoding, and

with the following choice of auxiliaries Q = {1, 2}; X = U0 + U1 + U2; U0 − U1 − U2

form a Markov chain; U0 = const. when Q = 1 and U0 arbitrary when Q = 2;

V0 = V1 = V2 = (η̂1, η̂2) where (η̂1, η̂2) are defined in [79]. The specialized Chen&Elia

scheme [77] corresponds to the Shayevitz-Wigger scheme but with only successive de-

coding and with the following choice of auxiliaries: X = U0 + U1 + U2; U0 − U1 − U2

form a Markov chain; and V0 = V1 = V2 = (¯̌l(1), ¯̌l(2)) where (¯̌l(1), ¯̌l(2)) are defined in (54)

in [77] and need to be specialized to the assumption of no current CSI.

Recently, another achievable region was proposed independently by Venkataramanan

and Pradhan [61]. The scheme present is based on block-Markov strategy and Marton’s

coding. More specifically, in their scheme, the transmitter in each block uses Marton’s

coding to encode fresh messages into random variables U1 and U2 intended for Receiver

1 and 2, respectively. In next block, the transmitter sends refinement information using

new random variables (A,B,C), where (A,C) is intended for Receiver 1 and (B,C) is

for Receiver 2. This scheme is similar to Shayevitz-Wigger’s scheme but here it applies

joint source-channel coding and forward decoding.
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Comparing the three general regions–Kramer’s region, the Shayevitz-Wigger region

and the Venkataramanan-Pradhan region, with each other is difficult due to their com-

plex form which involves several auxiliary random variables.

For the two-receiver Gaussian BC with perfect feedback, Ozarow and Leung [62]

proposed a scheme based on the Schalkwijk-Kailath scheme. It is shown that the

Ozarow-Leung scheme can enlarge the non-feedback capacity region and improve the

communication reliability. Their scheme is summarized as follows. In the initialization

phase (occupying two channel uses), two private messages intended for Receiver 1 and

2, respectively, are mapped into real numbers and sent individually over the channel.

Upon obtaining the channel outputs, each receiver makes temporary guess of its desired

message. After the initialization phase, the transmitter iteratively sends the errors of

the MMSE of the transmitted messages given the previous channel outputs obtained

through feedback. When receiving a linear combination of these errors together with

a correlated noise term, the receivers estimate the noise occurred in the initialization

phase and update the guess of their desired messages. This scheme was later extended by

Kramer to more than two receivers case [11]. Note that the Ozarow-Leung scheme and

Kramer’s scheme both belong to linear-feedback scheme and exhibit doubly exponential

decay in the probability of error.

4.1.2 Memoryless Gaussian Broadcast Channels with Feedback

For the K ≥ 2-receiver Gaussian BC with perfect feedback, Ardestanizadeh, Minero,

and Franceschetti [13] proposed a coding scheme based on the theory of linear quadratic

Gaussian (LQG) optimal control. Similar to the Schalkwijk-Kailath scheme and Kramer’s

scheme, in this LQG scheme the transmitter iteratively sends refinement of the estimate

of the messages, but here the estimate is based on a stabilizing control instead of MMSE.

The performance of this LQG scheme depends on the noise correlation at the receivers.

When the noises at the receivers are independent, this scheme recovers the region pro-

posed by Elia [64] and strictly improves over the Ozarow-Leung scheme and Kramer’s

scheme. When the noises are correlated, the prelog of the sum capacity is determined by

the rank of noise correlation matrix and can be strictly larger than 1. Specifically, for

correlation matrix of rank L, the prelog is at most (K−L+1). Conversely, there exists

a noise correlation matrix of rank L ≤ K for which the LQG coding scheme achieves
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the prelog (K−L+1). This generalizes a result by Wigger and Gastpar [148], to the

case of more than two receivers.

More recently, Selma, Yossef, and Wigger [16, 17] investigated the duality between

multi-antenna Gaussian MAC and BC with perfect feedback. For these two channels, a

class of linear-feedback coding schemes was proposed that achieves the linear-feedback

capacity region, i.e. the set of all rate pairs achieved by linear-feedback schemes. This

scheme achieves the best known achievable region and includes as special cases the

schemes by Ardestanizadeh et al. [13] and by Elia [64].

Given a two-receiver single-antenna Gaussian BC that is characterized by input-

power constraint P , independent noises Z1 ∼ N (0, 1), Z2 ∼ N (0, 1), and channel coeffi-

cients h1, h2, from [16, 17], it is known that the linear-feedback capacity region is given

by

Rlinfb(h1, h2, P ) =
⋃

ρ∈[0,1]

R∗linfb(h1, h2, P, ρ) (4.5a)

where for each ρ ∈ [0, 1], R∗linfb(h1, h2, P, ρ) is the set of all nonnegative rate-pairs

(R1, R2) satisfying

R1 ≤
1

2
log2

(
1 + h2

1αP (1− ρ2)
)

(4.5b)

R2 ≤
1

2
log2

(
1 + h2

2(1− α)P (1− ρ2)
)

(4.5c)

R1 +R2 ≤
1

2
log2

(
1 + h2

1αP + h2
2(1− α)P + 2

√
α(1− α)h1h2Pρ

)
(4.5d)

for arbitrary α with 0 ≤ α ≤ 1.
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4.2 Outer Bound on Broadcast Channel with Feedback

Cut-set Outer Bound

Applying the Theorem 14.10.1 in [139], the cut-set outer bound Router,cut can be ob-

tained as the closure set of all nonnegative rate pairs such that

R1 ≤ I(X;Y1) (4.6a)

R2 ≤ I(X;Y2) (4.6b)

R1 +R2 ≤ I(X;Y1, Y2) (4.6c)

for some pmf PXPY1Y2|X .

Ozarow-Leung Outer Bound

A simple outer bound on the capacity with output feedback is given in [62]. It equals

the capacity region C(1)
Enh of an enhanced DMBC where the outputs Y n

1 are also revealed

to Receiver 2. Notice that this enhanced DMBC is physically degraded and thus, with

and without feedback, its capacity region is given by the set of all nonnegative rate pairs

(R1, R2) that satisfy

R1 ≤ I(U ;Y1) (4.7a)

R2 ≤ I(X;Y1, Y2|U) (4.7b)

for some pmf PUXPY1Y2|X .

Exchanging everywhere in the previous paragraph indices 1 and 2, we can define

a similar enhanced capacity region C(2)
Enh, which is also an outer bound to CFb. The

intersection C(1)
Enh ∩ C

(2)
Enh yields an even tighter outerbound [58, 59].



Chapter 5

Reliability of the Gaussian BC

with Common Message and

Feedback

5.1 Introduction

In this chapter we show that linear-feedback schemes with a message point, in the

spirit of Schalkwijk-Kailath’s scheme, are strictly suboptimal for the K-user memoryless

Gaussian BC with common message and fail to achieve capacity. As a consequence, for

this setup, linear-feedback schemes also fail to achieve double-exponential decay of the

probability of error for rates close to capacity. To our knowledge, this is the first example

of a memoryless Gaussian network with perfect feedback, where linear-feedback schemes

with message points are shown to be strictly suboptimal. In all previously studied

networks with perfect feedback, they attained the optimal performance or the best so

far performance. (In case of noisy feedback, they are known to perform badly even in

the memoryless Gaussian point-to-point channel [149].)

In the asymptotic scenario of infinitely many receivers K → ∞, the performance

of linear-feedback schemes with a message point completely collapses: the largest rate

that is achievable with these schemes tends to 0 as K → ∞. This latter result holds

under some mild assumptions regarding the variances of the noises experienced at the

49
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receivers, which are for example met when all the noise variances are equal. Notice

that, in contrast, the capacity of the K-user Gaussian BC with common message does

not tend to 0 as K → ∞ when e.g., all the noise variances are equal. In this case,

the capacity does not depend on K, because it is simply given by the point-to-point

capacity to the receiver with the largest noise variance.

That the performance of linear-feedback schemes with a common message point

degenerates with increasing number of users K is intuitively explained as follows. At

each time instant, the transmitter sends a linear combination of the message point

and past noise symbols. Resending the noise symbols previously experienced at some

Receiver k can be beneficial for this Receiver k because it allows it to mitigate the noise

corrupting previous outputs. However, resending these noise symbols is of no benefit

for all other Receivers k′ 6= k and only harms them. Therefore, the more receivers

there are, the more noise symbols the transmitter sends in each channel use that are

useless for a given Receiver k. Our result hinges upon the independence of the noises at

difference receivers. In the case of correlated noises a noise symbol can be beneficial to

multiple receivers. In the extreme case where all noises are identical, for instance, the

BC degenerates to a point-to-point channel and Schalkwijk-Kailath’s scheme is capacity

achieving.

For the memoryless Gaussian point-to-point channel [2] and MAC [10], the (sum-

)capacity achieving linear-feedback schemes with message points transmit in each chan-

nel use a scaled version of the linear minimum mean square estimation LMMSE errors

of the message points given the previous channel outputs. The same strategy is how-

ever strictly suboptimal—even among the class of linear-feedback schemes with message

points—when sending private messages over a Gaussian BC [13]. It is unknown whether

LMMSE estimates are optimal among linear-feedback schemes when sending a common

message over the Gaussian BC.

In our proof that any linear-feedback scheme with a message point cannot achieve

the capacity of the Gaussian BC with common message, the following proposition is

key: For any sequence of linear-feedback schemes with a common message point that

achieves rate R > 0, one can construct a sequence of linear-feedback schemes that

achieves the rate tuple R1 = . . . = RK = R when sending K private message points

with a linear-feedback scheme. This proposition shows that the class of linear-feedback
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schemes with message points cannot take advantage of the fact that all the K ≥ 2

receivers are interested in the same message.

To contrast the bad performance of linear-feedback schemes, we present a coding

scheme that exploits the feedback in a intermittent way (only in few time slots the re-

ceivers send feedback signals) and that achieves double-exponential decay of the proba-

bility of error for all rates up to capacity. In our scheme it suffices to have rate-limited

feedback with feedback rate RFb no smaller than the forward rate R. If the feedback

rate RFb < R then, even for the setup with only one receiver, the probability of error can

decay only exponentially in the blocklength [9]. This implies immediately that also for

the K ≥ 2 receivers BC with common message no double-exponential decay in the prob-

ability of error is achievable when RFb < R. When the feedback rate RFb > (L− 1)R,

for some positive integer L, then our intermittent-feedback scheme can achieve an L-th

order exponential decay in the probability of error. That means, it achieves a prob-

ability of error of the form P
(n)
e = exp(− exp(exp(. . . exp(Ω(n))))), where there are L

exponential terms and where Ω(n) denotes a function that satisfies limn→∞
Ω(n)
n > 0.

Our intermittent-feedback scheme is inspired by the scheme in [9] for the memoryless

Gaussian point-to-point channel with rate-limited feedback. Also the schemes in [150]

and [151] for the memoryless Gaussian point-to-point channel with perfect feedback are

related. In fact, in our scheme communication takes place in L phases. In the first phase,

the transmitter uses a Gaussian code of power P to send the common message to the

K Receivers. The transmission in phase l ∈ {2, . . . , L} depends on the feedback signals.

After each phases l ∈ {1, . . . , L−1} each Receiver k feeds back a temporary guess of the

message. Now, if one receiver’s temporary guesses after phase (l − 1) is wrong, then in

phase l the transmitter resends the common message using a new code. If all receivers’

temporary guesses after phase (l− 1) were correct, in phase l the transmitter sends the

all-zero sequence. In this latter case, no power is consumed in phase l. The receivers’

final guess is their temporary guess after phase L.

The fact that the described scheme can achieve an L-th order decay of the prob-

ability of error, roughly follows from the following inductive argument. Assume that

the probability of the event “one of the receivers’ guesses is wrong after phase l”, for

l ∈ {1, . . . , L− 1}, has an l-th order exponential decay in the blocklength. Then, when
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sending the common message in phase l + 1, the transmitter can use power that is l-

th order exponentially large in the blocklength without violating the expected average

blockpower constraint. With such a code, in turn, the probability that after phase l+ 1

one of the receivers has a wrong guess can have an (l + 1)-th order exponential decay

in the blocklength.

The rest of the chapter is organized as follows. Section 5.2 describes the Gaussian BC

with common message and defines the class of linear-feedback schemes with a message

point. Section 5.3 introduces the Gaussian BC with private messages and defines the

class of linear-feedback schemes with private message points. Section 5.4 presents our

main results. Finally, Sections 5.5 and 5.6 contain the proofs of our Theorems 5.1 and

5.2.

5.2 Setup

5.2.1 System Model and Capacity

Transmitter

M̂ (1)

Xi

Receiver 1

Y1,i

F1,i

M

Z1,i

+

Receiver K+

ZK,i

FK,i

YK,i

M̂ (K)

···

Figure 5.1: K-receiver Gaussian BC with feedback and common message only.

We consider the K ≥ 2-receiver Gaussian BC with common message and feedback

depicted in Figure 5.1. Specifically, if Xi denotes the transmitter’s channel input at
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time-i, the channel output at Receiver k ∈ K := {1, . . . ,K} is

Yk,i = Xi + Zk,i (5.1)

where {Zk,i}ni=1 models the additive noise at Receiver k. The sequence of noises

{(Z1,i, . . . , ZK,i)}ni=1 is a sequence of i.i.d. centered Gaussian vectors, each of diago-

nal covariance matrix

Kz =


σ2

1 · · · 0
...

. . .
...

0 · · · σ2
K

 . (5.2)

Without loss of generality, we assume that

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
K . (5.3)

The transmitter wishes to convey a common message M to all receivers, where M

is uniformly distributed over the message set M := {1, ..., b2nRc} independent of the

noise sequences {Z1,i}ni=1, . . . , {ZK,i}ni=1. Here, n denotes the blocklength and R > 0

the rate of transmission. It is assumed that the transmitter has either rate-limited or

perfect feedback from all receivers. That means, after each channel use i ∈ {1, . . . , n},
each Receiver k ∈ K feeds back a signal Fk,i ∈ Fk,i to the transmitter. The feedback

alphabet Fk,i is a design parameter of the scheme. In the case of rate-limited feedback,

the signals from Receiver k have to satisfy:

n∑
i=1

H(Fk,i) ≤ nRFb, k ∈ K (5.4)

where RFb denotes the symmetric feedback rate. In the case of perfect feedback, we

have no constraint on the feedback signals {Fk,i}ni=1, and it is thus optimal to choose

Fk,i = R and

Fk,i = Yk,i, (5.5)

because in this way any processing that can be done at the receivers can also be done

at the transmitter.

An encoding strategy is comprised of a sequence of encoding functions {f (n)
i }ni=1 of
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the form

f
(n)
i : M×F i−1

1 × . . .×F i−1
K → R (5.6)

that is used to produce the channel inputs as

Xi = f
(n)
i (M,F i−1

1 , . . . , F i−1
K ), i ∈ {1, . . . , n}. (5.7)

We impose an expected average block-power constraint P on the channel input sequence:

1

n
E

[
n∑
i=1

X2
i

]
≤ P. (5.8)

Each Receiver k ∈ K decodes the message M by means of a decoding function g
(n)
k

of the form

g
(n)
k : Rn →M. (5.9)

That means, Receiver k produces as its guess

M̂ (k) = g
(n)
k (Y n

k ). (5.10)

An error occurs in the communication if

(M̂ (k) 6= M), (5.11)

for some k ∈ K. Thus, the average probability of error is

P (n)
e := Pr

[⋃
k∈K

(
M̂ (k) 6= M

)]
. (5.12)

We say that a rate R > 0 is achievable for the described setup if for every ε > 0

there exists a sequence of encoding and decoding functions
{
{f (n)
i }ni=1, {g

(n)
k }Kk=1

}∞
n=1

as in (5.6) and (5.9) and satisfying the power constraint (5.8) such that for sufficiently

large blocklengths n the probability of error P
(n)
e < ε. The supremum of all achievable

rates is called the capacity. The capacity is the same in the case of perfect feedback,

of rate-limited feedback (irrespective of the feedback rate RFb), and without feedback.
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We denote it by C and by assumption (5.3) it is given by

C =
1

2
log2

(
1 +

P

σ2
1

)
. (5.13)

Our main interest in this chapter is in the speed of decay of the probability of error

at rates R < C.

Definition 7. Given a positive integer L, we say that the L-th order exponential decay

in the probability of error is achievable at a given rate R < C, if there exists a sequence

of schemes of rate R such that their probabilities of error {P (n)
e }∞n=1 satisfy

lim
n→∞

1

n
log log . . . log(− logP (n)

e ) > 0, (5.14)

where the number of logarithms in (5.14) is L.

5.2.2 Linear-Feedback Schemes with a Message Point

When considering perfect feedback, we will be interested in the class of coding schemes

where the feedback is only used in a linear fashion. Specifically, we say that a scheme

is a linear-feedback scheme with a message point, if the sequence of encoding functions

{f (n)
i }ni=1 is of the form

f
(n)
i = Φ(n) ◦ L(n)

i (5.15)

with

Φ(n) : M 7→ Θ(n) ∈ R (5.16a)

L
(n)
i : (Θ(n), Y i−1

1 , . . . , Y i−1
K ) 7→ Xi (5.16b)

where Φ(n) is an arbitrary function on the respective domains and L
(n)
i is a linear

mapping on the respective domains. There is no constraint on the decoding functions

g
(n)
1 , . . . , g

(n)
K .

By the definition of a linear-feedback coding scheme in (5.16), for each blocklength

n, if we define X = (X1, . . . , Xn)T, Yk = (Yk,1, . . . , Yk,n)T, and Zk = (Zk,1, . . . , Zk,n)T,
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for k ∈ K, the channel inputs can be written as:

X = Θ(n) · d(n) +

K∑
k=1

A
(n)
k Zk, (5.17)

for some n-dimensional vector d(n) and n-by-n strictly lower-triangular matrices A
(n)
1 ,

. . . ,A
(n)
K . (The lower-triangularity of A

(n)
1 , . . . ,A

(n)
K ensures that the feedback is used in

a strictly causal fashion.) Thus, for a given blocklength n, a linear-feedback scheme is

described by the tuple

Φ(n),d(n),A
(n)
1 , . . . ,A

(n)
K , g

(n)
1 , . . . , g

(n)
K . (5.18)

It satisfies the average block-power constraint (5.8) whenever

K∑
k=1

‖A(n)
k ‖2Fσ2

k + ‖d(n)‖2E
[
|Θ(n)|2

]
≤ nP. (5.19)

The supremum of all rates that are achievable with a sequence of linear-feedback

schemes with a message point is denoted by C(Lin).

5.3 For comparison: Setup with Private Messages and

Perfect Feedback

5.3.1 System Model and Capacity Region

For comparison, we also discuss the scenario where the transmitter wishes to communi-

cate a private message Mk to each Receiver k ∈ K over the Gaussian BC in Figure 5.1.

The messages M1, . . . ,MK are assumed independent of each other and of the noise

sequences {Z1,i}ni=1, . . . , {ZK,i}ni=1 and each Mk is uniformly distributed over the set

Mk := {1, . . . , b2nRkc}. For this setup we restrict attention to perfect feedback. Thus,

here the channel inputs are produced as

Xi = f
(n)
priv,i(M1, . . . ,MK , Y

i−1
1 , . . . , Y i−1

K ), i ∈ {1, . . . , n}. (5.20)
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Receiver k produces the guess

M̂k = g
(n)
priv,k(Y

n
k ) (5.21)

where the sequence of decoding function {g(n)
priv,k}Kk=1 is of the form

g
(n)
priv,k : Rn → {1, . . . , b2nRkc}, (5.22)

A rate tuple (R1, . . . , RK) is said to be achievable if for every blocklength n there

exists a set of n encoding functions as in (5.20) satisfying the power constraint (5.8) and

a set of K decoding functions as in (5.22) such that the probability of decoding error

tends to 0 as the blocklength n tends to infinity, i.e.,

lim
n→∞

Pr
[
(M1, . . . ,MK) 6= (M̂1, . . . , M̂K)

]
= 0.

The closure of the set of all achievable rate tuples (R1, . . . , RK) is called the capacity

region. We denote it Cprivate. This capacity region is unknown to date. (The sum-

capacity in the high-SNR asymptotic regime is derived in [14].) Achievable regions were

presented in [13, 14, 15]; the tightest known outer bound on capacity for K = 2 users

was presented in [10] based on the idea of revealing one of the output sequences to the

other receiver. This idea generalizes to K ≥ 2 users, and leads to the following outer

bound [11, 152]:

Lemma 5.1. If the rate tuple (R1, . . . , RK) lies in Cprivate, then there exist coefficients

α1, . . . , αK in the closed interval [0, 1] such that for each k ∈ K,

Rk ≤
1

2
log2

(
1 +

αkP

(1− α1 − . . .− αk)P +Nk

)
(5.23)

where

Nk =

(
k∑

k′=1

1

σ2
k′

)−1

, k ∈ K. (5.24)

Proof. Let a genie reveal each output sequence Y n
k to Receivers k + 1, . . . ,K. The

resulting BC is physically degraded, and thus its capacity is the same as without feed-

back [54] and known. Evaluating this capacity region readily gives the outer bound in
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the lemma.

5.3.2 Linear-Feedback Schemes with Message Points

A linear-feedback scheme with message points for this setup with independent messages

consists of a sequence of K decoding functions as in (5.22) and of a sequence of encoding

functions {f (n)
priv,i}ni=1 of the form

f
(n)
priv,i = Φ

(n)
priv ◦ L

(n)
priv,i (5.25)

with

Φ
(n)
priv :


M1

...

MK

 7→ Θ :=


Θ1

...

ΘK

 ∈ RK (5.26a)

L
(n)
priv,i : (Θ, Y i−1

1 , . . . , Y i−1
K ) 7→ Xi (5.26b)

where Φ
(n)
priv is an arbitrary function on the respective domains and L

(n)
priv,i is a linear

mapping on the respective domains.

We denote the closure of the set of rate tuples (R1, . . . , RK) that are achievable with

a linear-feedback scheme with message points by C(Lin)
private. This region is unknown to

date.

5.4 Main Results

The main question we wish to answer is whether for the Gaussian BC with common

message a super-exponential decay in the probability of error is achievable for all rates

R < C. We first show that the class of linear-feedback schemes with message point

fails in achieving this goal even with perfect feedback, because it does not achieve

capacity (Theorem 5.1 and Corollary 5.1). As the number of receivers K increases,

the largest rate that is achievable with linear-feedback schemes with a message point

vanishes (Proposition 5.2). However, as we show then, a super-exponential decay in the

probability of error is still possible by means of an intermittent feedback scheme similar

to [9] (Theorem 5.2).
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Proposition 5.1. If a sequence of linear-feedback schemes with a message point achieves

a common rate R > 0, then there exists a sequence of linear-feedback schemes with mes-

sage points that achieves the private rates (R, . . . , R) ∈ RK :

0 < R ≤ C(Lin) =⇒ (R, . . . , R) ∈ C(Lin)
private. (5.27)

Proof. See Section 5.5.

Proposition 5.1 and the upper bound in Lemma 5.1 yield the following result:

Theorem 5.1. We have:

C(Lin) ≤ 1

2
log2

(
1 +

α?1P

(1− α?1)P + σ2
1

)
(5.28)

where α?1 lies in the open interval (0, 1) and is such that there exist α?2, . . . , α
?
K ∈ (0, 1)

that satisfy

α?1 + α?2 + . . .+ α?K = 1 (5.29a)

and for k ∈ {2, . . . ,K}:

1

2
log2

(
1 +

α?kP

(1− α?1 − α?2 − . . .− α?k)P +Nk

)
=

1

2
log2

(
1 +

α?1P

(1− α?1)P + σ2
1

)
(5.29b)

where the noise variances {Nk}Kk=1 are defined in (5.24).

Since α?1 is strictly smaller than 1, irrespective ofK and the noise variances σ2
1, . . . , σ

2
K ,

we obtain the following corollary.

Corollary 5.1. Linear-feedback schemes with a message point cannot achieve the ca-

pacity of the Gaussian BC with common message:

C(Lin) < C (5.30)

where the inequality is strict.
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Figure 5.2: Upper bound (5.28) on the rates achievable with linear-feedback schemes
with a message point in function of the number of receivers K.

Proposition 5.2. If the noise variances {σ2
k}Kk=1 are such that

∞∑
k=1

Nk =∞, (5.31)

then

lim
K→∞

C(Lin) = 0. (5.32)

Proof. See Appendix 5.A.

In Figure 5.2 we plot the upper bond on C(Lin) shown in (5.28), Theorem 5.1,

as a function of the number of receivers K, which have all the same noise variance

σ2
1 = . . . = σ2

K = 1. As we observe, this upper bound, and thus also C(Lin), tends to 0

as K tends to infinity

Theorem 5.2. For any positive rate R < C, if the feedback rate

RFb ≥ (L− 1)R, (5.33)

for some positive integer L, then it is possible to achieve an L-th order exponential decay

of the probability of error in the blocklength.
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Proof. See Section 5.6.

5.5 Proof of Proposition 5.1

Let δ > 0 be a small real number. Fix a sequence of rate-R > 0, power-(P − δ)

linear-feedback schemes that sends a common message point over the Gaussian BC

with probability of error P
(n)
e tending to 0 as n→∞. For each n ∈ Z+, let

Φ(n),d(n),A
(n)
1 , . . . ,A

(n)
K , g

(n)
1 , . . . , g

(n)
K (5.34)

denote the parameters of the blocklength-n scheme, which satisfy the power constraint

E
[
|Θ(n)|2

]
· ‖d(n)‖2 +

K∑
k=1

∥∥A(n)
k

∥∥2

F
≤ n(P − δ) (5.35)

where Θ(n) = Φ(n)(M).

We have the following lemma.

Lemma 5.2. For each blocklength n, there exist n-dimensional row-vectors v
(n)
1 , . . . ,v

(n)
K

of unit norms,

‖v(n)
1 ‖2 = · · · = ‖v(n)

K ‖2 = 1, (5.36)

and K indices j
(n)
1 , . . . , j

(n)
K ∈ {1, . . . , n} such that for each k ∈ K the following three

limits holds:

1.

R ≤ lim
n→∞

− 1

2n
log2 c

(n)
k (5.37)

where

c
(n)
k := σ2

k

∥∥v(n)
k

(
I + A

(n)
k

)∥∥2
+
∑

k′∈K\{k}

σ2
k′
∥∥v(n)

k′ A
(n)
k′

∥∥2
; (5.38)
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2.

lim
n→∞

1

n
E

[(
X

(n)

j
(n)
k

)2
]

= 0 (5.39)

where for i ∈ {1, . . . , n}, X(n)
i denotes the i-th channel input of the blocklength-n

scheme; and

3.

lim
n→∞

1

2n
log2

(
|v(n)

k,j
(n)
k

|
)

= 0 (5.40)

where for i ∈ {1, . . . , n}, v(n)
k,i denotes the i-th component of the vector v

(n)
k .

Proof. See Appendix 5.B.

Remark 5.1. In the statement of the above lemma, the vector v
(n)
k is a scaled version of

the LMMSE filter of the the input given observations Yk,1, . . . , Yk,n, and c
(n)
k represents

the volume of uncertainty about the message point at receiver k (hence R is bounded

by its rate of decay). The last two claims of Lemma 5.2 hinge upon the fact that the

channel input is power limited and therefore there must exists channel inputs that use

less or equal than average power.

In the following, let for each n ∈ Z+, v
(n)
1 , . . . ,v

(n)
K be n-dimensional unit-norm row-

vectors and j
(n)
1 , . . . , j

(n)
K be positive integers satisfying the limits (5.37), (5.39), and

(5.40).

We now construct a sequence of linear-feedback schemes with message points that

can send K independent messages M1, . . . ,MK to Receivers 1, . . . ,K at rates

Rk ≥
(

lim
n→∞

− 1

2n
log2 c

(n)
k

)
− ε, k ∈ K, (5.41)

for an arbitrary small ε > 0 with: 1) a probability of error that tends to 0 as the

blocklength tends to infinity and 2) with an average blockpower that is no larger than

P when the blocklength is sufficiently large. By (5.37), since δ, ε > 0 can be chosen

arbitrary small, and since C(Lin) is continuous in the power P (Remark 5.2 ahead) and

is defined as a supremum, the result in Proposition 5.1 will follow.
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Figure 5.3: Labeling of the transmission slots for our blocklength-(n+ 2K) scheme.

We describe our scheme for blocklength-(n+2K), for some fixed n ∈ Z+. Our scheme

is based on the parameters A
(n)
1 , . . . ,A

(n)
K in (5.34), on the vectors v

(n)
1 , . . . ,v

(n)
K , and on

the indices j
(n)
1 , . . . , j

(n)
K where v

(n)
k and j

(n)
k , k ∈ K are defined in Lemma 5.2. For ease

of notation, when describing our scheme in the following, we drop the superscript (n),

i.e., we write

A1, . . . ,AK , v1, . . . ,vK , and j1, . . . , jK .

We also assume that

j1 ≤ j2 ≤ . . . ≤ jK . (5.42)

(If this is not the case, we simply relabel the receivers.) Also, to further simplify the

description of the linear-feedback coding and the decoding, we rename the n + 2K

transmission slots as depicted in Figure 5.3. Transmission starts at slot 1−K and ends

at slot n; also, after each slot jk, for k ∈ K, we introduce an additional slot j̃k. We call

the slots 1−K, . . . , 0 the initialization slots, the slots j̃1, . . . , j̃K the extra slots, and the

remaining slots 1, 2, 3, . . . , n the regular slots.

In our scheme, the message points {Θk}Kk=1 are constructed as in the Ozarow-Leung

scheme [62]:

Θk := 1/2− Mk − 1

b2(n+2K)Rkc , k ∈ K. (5.43)

These messages are sent during the initialization phase. Specifically, in the initialization

slots i = 1−K, . . . , 0, the transmitter sends the K message points Θ1, . . . ,ΘK :

X1−k =

√
P

Var(Θk)
Θk, k ∈ K. (5.44)

In the regular slots i = 1, . . . , n, the transmitter sends the same inputs as in the scheme

with common message described by the parameters in (5.34), but without the component

from the message point and where for each k ∈ K the noise sample Zk,jk is replaced by

Zk,j̃k . Thus, defining the n-length vector of regular inputs X , (X1, X2, X3, . . . , Xn)T,
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kj1 ,k: slots considered at Receiver k : slots dedicated exclusively to Receiver k

 0 1  1j 1
j1 K 2j 2j  nKjkj 

Kj
kj1 1j  2 1j  1Kj  1 k 1kj 

Figure 5.4: Transmissions considered at Receiver k and transmissions dedicated exclu-
sively to Receiver k.

we have

X =
K∑
k=1

AkZ̃k (5.45)

where for k ∈ K,

Z̃k := (Zk,1, Zk,2, . . . , Zk,jk−1, Zk,j̃k , Zk,jk+1, . . . , Zk,n)T (5.46)

denotes the n-length noise vector experienced at Receiver k during the regular slots

1, . . . , jk − 1, the extra slot j̃k, and the regular slots jk + 1, . . . , n.

Since for each k ∈ K, the extra slot j̃k preceds all regular slots jk + 1, . . . , n, the

strict lower-triangularity of the matrices A1, . . . ,AK ensures that in (5.45) the feedback

is used in a strictly causal way.

In each extra slot j̃k, for k ∈ K, the transmitter sends the regular input Xjk , but

now with the noise sample Zk,1−k,

Xj̃k
= Xjk + Zk,1−k. (5.47)

The noise sample Zk,1−k is of interest to Receiver k (and only to Receiver k) because from

this noise sample and Yk,1−k one can recover Θk, see (5.44). Therefore—as described

shortly—in the decoding, Receiver k considers the extra output Yk,j̃k which contains

Zk,1−k whereas all other receivers k′ 6= k instead consider the regular outputs Yk′,jk

which do not have the Zk,1−k-component.

The decoding is similar as in the Ozarow-Leung scheme. However, here, each

Receiver k ∈ K only considers the initialization output Yk,1−k, the regular outputs

Yk,1, . . . , Yk,jk−1, Yk,jk+1, . . . , Yk,K and the extra output Yk,j̃k , see also Figure 5.4. Specif-

ically, Receiver k forms the n-length vector

Ỹk :=
(
Yk,1, . . . , Yk,jk−1, Yk,j̃k , Yk,jk+1, . . . , Yk,n

)T
, (5.48)



65

and produces the LMMSE estimate Ẑk,1−k of the noise Zk,1−k based on the vector Ỹk.

It then forms

Θ̂k =

√
Var(Θk)

P

(
Yk,1−k − Ẑk,1−k

)
. (5.49)

and performs nearest neighbor decoding to decode its desired message Mk based on Θ̂k.

We now analyze the described scheme. The expected blockpower of our scheme is:

0∑
i=1−K

E
[
|Xi|2

]
+

n∑
i=1

E
[
|Xi|2

]
+

K∑
k=1

E
[∣∣Xj̃k

∣∣]
≤ KP + n(P − δ) +

K∑
k=1

E
[
|Xjk |2

]
+

K∑
k=1

σ2
k (5.50)

where the inequality follows from (5.44), (5.45), and (5.47), and from (5.35), which

assures that the regular inputs X1, . . . , Xn are block-power constrained to n(P − δ).

Further, since the indices j1, . . . , jK satisfy Assumption (5.39),

lim
n→∞

1

n

K∑
k=1

E
[
|Xjk |2

]
= 0, (5.51)

and thus for sufficiently large n the proposed scheme for independent messages is average

blockpower constrained to P .

We analyze the probability of error. Notice that

Θ̂k = Θk + Ek (5.52)

where

Ek :=

√
Var(Θk)

P

(
Zk,1−k − Ẑk,1−k

)
(5.53)

is zero-mean Gaussian of variance

Var(Ek) =
Var(Θk)

P
σ2
k2
−2I(Zk,1−k;Ỹk). (5.54)
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Equation (5.54) is justified by

I
(
Zk,1−k ; Ỹk

)
= h(Zk,1−k)− h

(
Zk,1−k

∣∣Ỹk

)
=

1

2
log2

 σ2
k

Var
(
Zk,1−k − Ẑk,1−k

)
 (5.55)

where the last equality follows because Zk,1−k and Ỹk are jointly Gaussian, and thus

the LMMSE estimation error Zk,1−k − Ẑk,1−k is independent of the observations Ỹk.

The nearest neighbor decoding rule is successful if |Ek| is smaller than half the

distance between any two message points. Since Ek is Gaussian and independent of the

message point, the probability of this happening is

Pr
[
M̂k 6= Mk

]
≤ Pr

[
|Ek| ≥

1

2 · b2(n+2K)Rkc

]
= 2Q

(
2I(Zk,1−k;Ỹk)

2 · b2(n+2K)Rkc ·
P

Var(Θk)σ
2
k

)
.

We conclude that the probability of error tends to 0, double-exponentially, whenever

Rk < lim
n→∞

1

n
I(Zk,1−k; Ỹk). (5.56)

Notice that the vector Ỹk as defined in (5.48), satisfies

Ỹk =
∑

k′∈K\{k}

Ak′Z̃k′ + (I + Ak)Z̃k + ejkZk,1−k (5.57)

where for each i ∈ {1, . . . , n} the vector ei is the n-length unit-norm vector with all

zero entries except at position i where the entry is 1. Thus, by the data processing
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inequality,

I(Zk,1−k; Ỹk)

≥ I(Zk,1−k; v
T
kỸk)

=
1

2
log2

1+
|vk,jk |2

σ2
k‖vk(I + Ak)‖2 +

∑
k′∈K\{k}

σ2
k′‖vk′Ak′‖2


=

1

2
log2

(
1 +
|vk,jk |2
ck

)
(5.58)

where the first equality follows by (5.57) and the joint Gaussianity of all involved random

variables and the second equality follows by the definition of ck in (5.38).

Combining (5.56) and (5.58), we obtain that the probability Pr
[
M̂k 6= Mk

]
tends

to 0 as n→∞ whenever

Rk < lim
n→∞

1

2n
log2

(
1 +
|vk,jk |2
ck

)
. (5.59)

(Recall that the quantities jk, ck, and vk,jk depend on n, but here we do not show this

dependence for readability.)

Further, by the converse in (5.37),

0 < R ≤ lim
n→∞

−1

2n
log2 ck

= lim
n→∞

1

2n
log2

|vk,jk |2
ck

(5.60)

= lim
n→∞

1

2n
log2

(
1 +
|vk,jk |2
ck

)
(5.61)

where the first equality holds by Condition (5.40) and the second equality holds be-

cause (5.60) implies that the ratio
|vk,jk |

2

ck
tends to infinity with n.

Combining (5.59) with (5.61) establishes that for arbitrary ε > 0 there exists a rate

tuple (R1, . . . , RK) satisfying (5.41) such that the described scheme with independent

messages achieves probability of error that tends to 0 as the blocklength tends to infinity.

Remark 5.2. In the spirit of the scheme for private messages described above, one

can construct a linear-feedback scheme with a common message point that has arbitrary
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small probability of error whenever

R < lim
n→∞

− 1

2n
log2 ck, k ∈ K.

Combined with the converse in (5.37), this gives a (multi-letter) characterization of

C(Lin). Based on this multi-letter characterization one can show the continuity of C(Lin)

in the transmit-power constraint P .

5.6 Proof of Theorem 5.2: Coding Scheme Achieving L-th

Order Exponential Decay

The scheme is based on the scheme in [9], see also [150], [151]. Fix a positive rate

R < C and a positive integer L. Assume that

RFb ≥ R(L− 1). (5.62)

Also, fix a large blocklength n and small numbers ε, δ > 0 such that

R < C(1− δ) (5.63)

and

(1− ε)−1 < 1 + δ. (5.64)

Define

n1 := (1− ε)n (5.65)

and for l ∈ {2, . . . , L}
nl := n1 +

εn

L− 1
(l − 1). (5.66)

Notice that by (5.64) and (5.65),

n

n1
< 1 + δ. (5.67)
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The coding scheme takes place in L phases. After each phase l ∈ {1, . . . , L}, each

Receiver k ∈ K makes a temporary guess M̂
(k)
l of message M . The final guess is the

guess after phase L:

M̂ (k) = M̂
(k)
L , (5.68)

Define the probability of error after phase l ∈ {1, . . . , L}:

P
(n)
e,l := Pr

[⋃
k∈K

M̂
(k)
l 6= M

]
(5.69)

and thus

P (n)
e = P

(n)
e,L . (5.70)

5.6.1 Code Construction

We construct a codebook C1 that

• is of blocklength n1,

• is of rate Rphase,1 = n
n1
R,

• satisfies an expected average block-power constraint P , and

• when used to send a common message over the Gaussian BC in (5.1) and combined

with an optimal decoding rule, it achieves probability of error ρ1 not exceeding

ρ1 ≤ e−n(ζ−o(1)) (5.71)

for some ζ > 0.

Notice that such a code exists because, by (5.63) and (5.67), the rate of the code
n
n1
R < C(1 − δ2), and because the error exponent of the BC with common message

without feedback is positive for all rates below capacity.1

Let

γ1 := ρ1. (5.72)

1 The positiveness of the error exponent for the Gaussian BC with common message and without
feedback follows from the fact that without feedback the probability of error for the Gaussian BC with
common messages is at most K times the probability of error to the weakest receiver.
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For l from 2 to L, do the following.

Construct a codebook Cl that:

• is of blocklength εn
L−1 − 1,

• is of rate Rphase,l := R(L−1)
ε−(L−1)/n ,

• satisfies an expected average block-power constraint P/γl−1,

• when used to send a common message over the Gaussian BC in (5.1) and combined

with an optimal decoding rule, it achieves probability of error ρl not exceeding

ρl ≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−1 times

(Ω(n))). (5.73)

Define

γl := ρl + 2
∑
k∈K
Q
(√

P/γl−1

2σk

)
. (5.74)

(As shown in Section 5.6.3 ahead, γl upper bounds P
(n)
e,l defined in (5.69).) By (5.73)

and (5.74), inductively one can show that

γl ≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−1 times

(Ω(n))). (5.75)

In Appendix 5.C, we prove that such codes C2, . . . , CL exist.

5.6.2 Transmission

Transmission takes place in L phases.

First phase with channel uses i = 1, . . . , n1

During the first n1 channel uses, the transmitter sends the codeword in C1 corresponding

to message M .

After observing the channel outputs Y n1
k , Receiver k ∈ Kmakes a temporary decision

M̂
(k)
1 about M . It then sends this temporary decision M̂

(k)
1 to the transmitter over the

feedback channel:

Fk,n1 = M̂
(k)
1 . (5.76)
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All previous feedback signals from Receiver k are deterministically 0.

Phase l ∈ {2, . . . , L} with channel uses i ∈ {nl−1+1, . . . , nl}

The communication in phase l depends on the receivers’ temporary decisions (M̂
(1)
l−1, . . .,

M̂
(K)
l−1 ) after the previous phase (l−1). These decisions have been communicated to the

transmitter over the respective feedback links.

If in phase (l − 1) at least one of the receivers made an incorrect decision,

(M̂
(k)
l−1 6= M), for some k ∈ K, (5.77)

then in channel use nl−1 + 1 the transmitter sends an error signal to indicate an error:

Xnl+1 =
√
P/γl−1. (5.78)

During the remaining channel uses i = nl−1+2, . . . , nl it then retransmits the message M

by sending the codeword from Cl that corresponds to M .

On the other hand, if all receivers’ temporary decisions to the phase (l − 1) were

correct,

M̂
(1)
l−1 = M̂

(2)
l−1 = . . . = M̂

(K)
l−1 = M, (5.79)

then the transmitter sends 0 during the entire phase l:

Xi = 0, i = nl−1 + 1, . . . , nl. (5.80)

In this case, no power is consumed in phase l.

The receivers first detect whether the transmitter sent an error signal in channel use

nl−1 +1. Depending on the output of this detection, they either stick to their temporary

decision in phase (l − 1) or make a new decision based on the transmissions in phase l.

Specifically, if

Yk,nl−1+1 < Tl−1 (5.81)

where

Tl−1 :=

√
P/γl−1

2
, (5.82)



72

then Receiver k ∈ K decides that its decision M̂
(k)
l−1 in phase (l − 1) was correct and

keeps it as its temporary guess of the message M :

M̂
(k)
l = M̂

(k)
l−1. (5.83)

If instead,

Yk,nl−1+1 ≥ Tl−1, (5.84)

Receiver k decides that its temporary decision M̂
(k)
l−1 was wrong and discards it. It then

produces a new guess M̂
(k)
l by decoding the code Cl based on the outputs Yk,nl−1+2, . . .,

Yk,nl .

After each phase l ∈ {2, . . . , L−1}, each Receiver k ∈ K feeds back to the transmitter

its temporary guess M̂
(k)
l :

Fk,nl = M̂
(k)
l . (5.85)

All other feedback signals Fk,nl−1+1, . . . ,Fk,nl−1 in phase l are deterministically 0.

After L transmission phases, Receiver k’s final guess is

M̂ (k) = M̂
(k)
L . (5.86)

Thus, an error occurs in the communication if

(M̂
(k)
L 6= M), for some k ∈ K. (5.87)

5.6.3 Analysis

In view of (5.62), by (5.76) and (5.85), and because all other feedback signals are

deterministically 0, our scheme satisfies the feedback rate constraint in (5.4).

We next analyze the probability of error and we bound the consumed power. These

analysis rely on the following events. For each k ∈ K and l ∈ {1, . . . , L} define the

events:

• ε
(k)
l : Receiver k’s decision in phase l is wrong:

M̂
(k)
l 6= M ; (5.88)
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• ε
(k)
T,l : Receiver k observes

Yk,nl+1 < Tl; (5.89)

• ε
(k)
ρ,l : Decoding messageM based on Receiver k’s phase-l outputs Yk,nl−1+2, . . . , Yk,nl

using codebook Cl results in an error.

Define also the events:

E1,l: All receivers’ decisions in phase (l−1) are correct, and at least one Receiver k ∈ K
obtains an error signal in channel use nl−1 + 1 :( ⋂

k∈K

(
ε
(k)
l−1

)c) ∩ ( ⋃
k∈K

(
ε
(k)
T,l−1

)c)
. (5.90)

E2,l: At least one Receiver k ∈ K makes an incorrect decision in phase (l − 1) but

obtains no error signal in channel use nl−1 + 1:

⋃
k∈K

(
ε
(k)
l−1 ∩ ε

(k)
T,l−1

)
. (5.91)

E3,l: At least one Receiver k ∈ K makes an incorrect temporary decision in phase

(l− 1), and at least one Receiver k′ ∈ K observes Yk′,nl−1+1 ≥ Tl−1 and errs when

decoding M based on its phase-l outputs Yk′,nl−1+2, . . . , Yk′,nl :( ⋃
k∈K

ε
(k)
l−1

)
∩
( ⋃
k′∈K

((
ε
(k′)
T,l

)c ∩ ε(k′)ρ,l

))
. (5.92)

For each l ∈ {1, . . . , L}, the probability P
(n)
e,l is included in the union of the events

(E1,l ∪ E2,l ∪ E3,l), and thus, by the union bound,

P
(n)
e,l ≤ Pr[E1,l] + Pr[E2,l] + Pr[E3,l] . (5.93)

In particular, by (5.70) and (5.93), the probability of error of our scheme

P (n)
e ≤ Pr[E1,L] + Pr[ε2,L] + Pr[ε3,L] . (5.94)

We bound each summand in (5.94) individually, starting with Pr[E1,L]. By (5.90),
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we have

Pr[E1,L] = Pr

[( ⋂
k∈K

(
ε
(k)
L−1

)c) ∩ ( ⋃
k∈K

(
ε
(k)
T,L−1

)c)]

≤ Pr

[⋃
k∈K

(
ε
(k)
T,L−1

)c∣∣∣ ⋂
k∈K

(
ε
(k)
L−1

)c]

≤
K∑
k=1

Pr

[(
ε
(k)
T,L−1

)c∣∣ ⋂
k∈K

(
ε
(k)
L−1

)c]

=

K∑
k=1

Q
(
TL−1

σk

)
(5.95)

where the first inequality follows by Bayes’ rule and because a probability cannot exceed

1; the second inequality by the union bound; and the last equality because in the event(⋂
k∈K(ε

(k)
L−1)c

)
, we have XnL−1+1 = 0 and thus Yk,nL−1+1 ∼ N (0, σ2

k).

Next, by (5.91) and similar arguments as before, we obtain,

Pr[E2,L] = Pr

[⋃
k∈K

(
ε
(k)
L−1 ∩ ε

(k)
T,L−1

)]

≤
K∑
k=1

Pr
[
ε
(k)
L−1 ∩ ε

(k)
T,L−1

]
≤

K∑
k=1

Pr
[
ε
(k)
T,L−1

∣∣ε(k)
L−1

]
=

K∑
k=1

Q
(
TL−1

σk

)
. (5.96)
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Finally, by (5.92) and similar arguments as before,

Pr[E3,L] = Pr

[( ⋃
k∈K

ε
(k)
L−1

)
∩
( ⋃
k′∈K

((
ε
(k′)
T,L

)c ∩ ε(k′)ρ,L

))]

≤ Pr

[ ⋃
k′∈K

((
ε
(k′)
T,L

)c ∩ ε(k′)ρ,L

)∣∣∣ ⋃
k∈K

ε
(k)
L−1

]

≤ Pr

[ ⋃
k′∈K

ε
(k′)
ρ,L

∣∣∣ ⋃
k∈K

ε
(k)
L−1

]
≤ ρL (5.97)

where the last inequality follows by the definition of ρL.

In view of (5.82) and (5.94)–(5.97),

P (n)
e ≤ Pr[E1,L] + Pr[E2,L] + Pr[E3,L]

≤ ρL + 2
∑
k∈K
Q
(√

P/γL−1

2σk

)
= γL (5.98)

where the equality follows by the definition of γL in (5.74). Combining this with the

L-th order exponential decay of γL, see (5.75), we obtain

lim
n→∞

− 1

n
log log . . . log︸ ︷︷ ︸

L−1 times

(− logP (n)
e ) > 0, (5.99)

Now consider the consumed expected average block-power. Similarly to (5.98), we

can show that for l ∈ {1, . . . , L− 1},

P
(n)
e,l ≤ γl. (5.100)

Since in each phase l ∈ {2, . . . , L} we consume power P/γl−1 in the event (5.77) and

power 0 in the event (5.79), by the definition in (5.69),

1

n
E

[
n∑
i=1

X2
i

]
≤ 1

n

(
P (1−ε)n+

L∑
l=2

P
(n)
e,l−1

P

γl−1

εn

L−1

)
≤ P (5.101)
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where the second inequality follows from (5.100).

This completes the proof of Theorem 5.2.

5.A Appendix: Proof of Proposition 5.2

We show that under assumption (5.31),

lim
K→∞

α?1 = 0, (5.102)

which implies (5.32).

Notice that (5.29b) implies for k ∈ {1, . . . ,K−1}:

α∗KP

NK
=

α∗kP

(1− α?1 − α∗2....− α∗k)P +Nk
. (5.103)

Since for each k, the term (1− α?1 − α∗2 − . . .− α∗k) is nonnegative,

α∗k ≥ Nk

NK
α∗K , k ∈ {1, . . . ,K − 1}. (5.104)

Thus, by (5.29a),

1 =
K∑
k=1

α∗k ≥
K∑
k=1

Nk

NK
α∗K

and

α∗K ≤
NK∑K
k=1Nk

.

We conclude that, for every finite positive integer K,

RK ≤ 1

2
log2

(
1 +

P∑K
k=1Nk

)
,

and under Assumption (5.31), in the limit as K →∞,

lim
K→∞

RK = 0.
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5.B Appendix: Proof of Lemma 5.2

We first prove the converse (5.37). Fix a blocklength n. By Fano’s inequality, for each

k ∈ K,

nR = H(M (n))

≤ I
(
M (n);Y

(n)
k,1 , . . . , Y

(n)
k,n

)
+ ε(n)

≤ I
(

Θ(n);Y
(n)
k,1 , . . . , Y

(n)
k,n

)
+ ε(n)

(a)

≤ I
(

Θ̄(n); Ȳ
(n)
k,1 , . . . , Ȳ

(n)
k,n

)
+ ε(n) (5.105)

where ε(n)
n → 0 as n → ∞ and where we defined the tuple (Θ̄(n), Ȳ

(n)
k,1 , . . . , Ȳ

(n)
k,n ) to be

jointly Gaussian with the same covariance matrix as the tuple (Θ(n);Y
(n)
k,1 , . . . , Y

(n)
k,n ).

Inequality (a) holds because the Gaussian distribution maximizes differential entropy

under a covariance constraint.

Now, since Θ̄(n), Ȳ
(n)
k,1 , . . . , Ȳ

(n)
k,n are jointly Gaussian, there exists a linear combination∑n

i=1 v
(n)
k,i Ȳ

(n)
k,i such that

I
(

Θ̄(n); Ȳ
(n)
k,1 , . . . , Ȳ

(n)
k,n

)
= I

(
Θ̄(n);

n∑
i=1

v
(n)
k,i Ȳ

(n)
k,i

)
. (5.106)

(In fact, the linear combination is simply the LMMSE-estimate of Θ̄(n) based on Ȳ
(n)
k,1 ,. . .,

Ȳ
(n)
k,n .) Defining the n-dimensional row-vector v

(n)
k =

(
v

(n)
k,1 , . . . , v

(n)
k,n

)
, in view of (5.106),

we have

I
(

Θ̄(n); Ȳ
(n)
k,1 , . . . , Ȳ

(n)
k,n

)
=

1

2
log2

(
1 +

(
v

(n)
k d(n)

)2
Var
(
Θ(n)

)
c

(n)
k

)
(5.107)

where c
(n)
k is as defined in (5.38).

Notice that the right-hand side of (5.107) does not depend on the norm of v
(n)
k (as

long as it is non-zero) but only on the direction. Therefore, without loss of generality,

we can assume that

‖v(n)
k ‖2 = 1. (5.108)
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By (5.105) and (5.107), we conclude that for each k ∈ K, there exists a unit-norm vector

v
(n)
k such that

R ≤ lim
n→∞

1

2n
log2

(
1+

(
v

(n)
k d(n)

)2
Var
(
Θ(n)

)
c

(n)
k

)
. (5.109)

Since by assumption R > 0, (5.109) implies that the ratio (v
(n)
k d(n))2Var

(
Θ(n)

)
/c

(n)
k

tends to infinity and thus

R ≤ lim
n→∞

1

2n
log2

((
v

(n)
k d(n)

)2
Var
(
Θ(n)

)
c

(n)
k

)
. (5.110)

Now, consider the average block-power constraint (5.35). Since the trace of a positive

semidefinite matrix is non-negative and Var
(
Θ(n)

)
≤ E

[
|Θ(n)|2

]
, by (5.35), for each

n ∈ Z+:

‖d(n)‖2E
[
|Θ(n)|2

]
≤ n(P − δ). (5.111)

Since ‖v(n)
k ‖ = 1, (5.108), by the Cauchy-Schwarz Inequality,

(
v

(n)
k d(n)

)2
Var
(

Θ(n)
)
≤ n(P − δ) (5.112)

and as a consequence

lim
n→∞

1

2n
log2

((
v

(n)
k d(n)

)2
Var
(

Θ(n)
))
≤ 0. (5.113)

Combining this with (5.110), proves the desired inequality (5.37).

The proof of Inequalities (5.39) and (5.40) relies on Lemmas 5.3 and 5.4 at the end of

this appendix. Notice that the monotonicity of the log-function and the nonnegativity

of the norm combined with (5.37) imply that for each k ∈ K,

R ≤ lim
n→∞

− 1

2n
log2

∥∥v(n)
k

(
I + A

(n)
k

)∥∥2
, (5.114)

where recall that we assumed R > 0.
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Define for each k ∈ K and positive integer n the set

S(n)
k :=

{
i ∈ {1, . . . , n} : v

(n)
k,i > n−2 log2 n

}
. (5.115)

By Lemma 5.3 and Inequality (5.114), the cardinality of each set S(n)
k is unbounded,

|S(n)
k | → ∞ as n→∞, k ∈ K. (5.116)

Applying now Lemma 5.4 to p = P − δ, to

π
(n)
i = E

[(
X

(n)
i

)2
]
, (5.117)

and to T (n) = S(n)
k implies that for each k ∈ K there exists a sequences of indices

{j(n)
k ∈ S(n)

k }∞n=1 that satisfies (5.39). Since every sequence of indices {i(n) ∈ S(n)
k }∞n=1

also satisfies (5.40), this concludes the proof of the lemma.

Lemma 5.3. For each n ∈ Z+, let A(n) be a strictly lower-triangular n-by-n matrix and

v(n) an n-dimensional row-vector. Let a
(n)
i,j denote the row-i, column-j entry of A(n) and

v
(n)
i denote the i-th entry of v(n). Assume that the elements a

(n)
i,j are bounded as

|a(n)
i,j |2 ≤ np (5.118)

for some real number p > 0, and that the inequality

lim
n→∞

− 1

2n
log2 ‖v(n)(I + A(n))‖2 ≥ Γ (5.119)

holds for some real number Γ > 0. Then, for each ε ∈ (0,Γ) and for all sufficiently large

n the following implication holds: If

|v(n)
j | > 2−n(Γ−ε) (5.120a)

for some index j ∈ {1, . . . , n}, then there must exist an index i ∈ {j + 1, . . . , n} such

that

|v(n)
i | ≥

|v(n)
j | − 2−n(Γ−ε)

n
3
2
√
p

. (5.120b)
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If moreover, the vectors {v(n)}∞n=1 are of unit norm, then the cardinality of the set

S(n) :=
{
j ∈ {1, . . . , n} : |v(n)

j | > n−2 log2(n)
}

(5.121)

is unbounded in n.

Proof. Fix ε ∈ (0,Γ) and let n be sufficiently large so that

− 1

2n
log2

∥∥v(n)(I + A(n))
∥∥2 ≥ Γ− ε. (5.122)

This is possible by (5.119).

Since A(n) is strictly lower-triangular,

‖v(n)(I + A(n))‖2 =
n∑
j=1

(v
(n)
j +

n∑
i=j+1

v
(n)
i a

(n)
i,j )2

≥
n∑
j=1

(
|v(n)
j | −

∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣)2
≥
(
|v(n)
j | −

∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣)2
and by (5.122) and the monotonicity of the log-function, for all j ∈ {1, . . . , n}:

− 1

2n
log2

(
|v(n)
j | −

∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣)2

≥ Γ− ε.

Thus,

|v(n)
j | ≤

∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣+ 2−n(Γ−ε)

and by (5.118):

|v(n)
j | − 2−n(Γ−ε) ≤

∣∣ n∑
i=j+1

v
(n)
i a

(n)
i,j

∣∣
≤

n∑
i=j+1

|v(n)
i |
√
np. (5.123)

If |v(n)
j | ≤ 2−n(Γ−ε), then the sum on the right-hand side of (5.123) can be empty, i.e.,
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j = n. However, if

|v(n)
j | > 2−n(Γ−ε), (5.124)

then the sum needs to have at least one term. Indeed, if (5.124) holds and i < n, there

must exist an index i ∈ {j + 1, ..., n} such that

1

n

(
|v(n)
j | − 2−n(Γ−ε)

)
≤ |v(n)

i |
√
np, (5.125)

which is equivalent to the desired bound (5.120b).

We now prove the second part of the lemma, i.e., the unboundedness of the cardi-

nalities of the sets S(n), where we assume that the vectors {v(n)} are of unit norm. In

the following, let n be sufficiently large so that the first part of the lemma, Implica-

tion (5.120), holds and so that

1√
n
>

1

n2 log2(n)
> 2−n(Γ−ε) (5.126)

and for every ` ∈ {1, . . . , log2(n)}

1

n(3`+1)/2p`/2
− 2−n(Γ−ε)n−3/2p−1/2 1− n−3`/2p−`/2

1− n−3/2p−1/2

>
1

n2 log2(n)
(5.127)

Since ‖v(n)‖2 = 1, for each n, there must exist an index i
(n)
0 ∈ {1, . . . , n} such that

|v(n)

i
(n)
0

| ≥ 1√
n
, (5.128)

and by (5.126)

|v(n)

i
(n)
0

| > n2 log2(n) > 2−n(Γ−ε). (5.129)
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We conclude by (5.120) that there exists an index i
(n)
1 ∈ {i(n)

0 + 1, . . . , n} satisfying

|v(n)

i
(n)
1

| ≥
|v(n)

i
(n)
0

| − 2−n(Γ−ε)

n
3
2
√
p

≥ 1

n2√p −
2−n(Γ−ε)

n
3
2
√
p

(5.130)

where the inequality follows from (5.128). By (5.126) and (5.127), (applied for ` = 1),

Inequality (5.130) implies that

|v(n)

i
(n)
1

| > 2−n(Γ−ε), (5.131)

and consequently, by (5.120), there exists an index i
(n)
2 ∈ {i(n)

1 + 1, . . . , n} satisfying

|v(n)

i
(n)
2

| ≥
|v(n)

i
(n)
1

| − 2−n(Γ−ε)

n
3
2
√
p

(5.132)

≥ 1

n7/2p
− 2−n(Γ−ε)

n3p
− 2−n(Γ−ε)

n
3
2
√
p

(5.133)

> 2−n(Γ−ε), (5.134)

where the last inequality follows by (5.126) and (5.127) (applied for ` = 2).

Repeating these arguments iteratively, we conclude that it is possible to find indices

1 ≤ i(n)
0 < i

(n)
1 < . . . < i

(n)
log2(n) < n such that for each ` ∈ {1, . . . , log2(n)}:

|v(n)

i
(n)
`

| ≥ 1

n3(`+1)/2p`/2
− 2−n(Γ−ε)

∑̀
j=1

(
n−3/2p−1/2

)j
=

1

n3(`+1)/2p`/2

−2−n(Γ−ε)n−3/2p−1/2 1− n−3`/2p−`/2

1− n−3/2p−1/2
(5.135)

>
1

n2 log2(n)
(5.136)

> 2−(Γ−ε) (5.137)
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where the last two inequalities follow from (5.126) and (5.127). This proves that for

sufficiently large n the cardinality of the set S(n) as defined in (5.121) is at least log2(n)

and thus unbounded in n.

Lemma 5.4. For each positive integer n, let (π
(n)
1 , . . . , π

(n)
n ) be a tuple of nonnegative

real numbers that satisfy

1

n

n∑
i=1

π
(n)
i ≤ p (5.138)

for some real number p > 0, and let T (n) be a subset of the indices from 1 to n,

T (n) ⊆ {1, . . . , n}, (5.139)

that satisfies

|T (n)| → ∞ as n→∞. (5.140)

Then, there exists a sequence of indices
{
i(n) ∈ T (n)

}∞
n=1

such that

lim
n→∞

1

n
π

(n)

i(n)
= 0. (5.141)

Proof. Since all numbers π
(n)
i are nonnegative, for every sequence of indices {i(n) ∈

T (n)}∞n=1,

lim
n→∞

1

n
π

(n)

i(n)
≥ 0. (5.142)

We thus have to prove that there exists at least one sequence of indices {i(n) ∈ T (n)}∞n=1

that satisfies

lim
n→∞

1

n
π

(n)

i(n)
≤ 0. (5.143)

We prove this by contradiction. Assume that for each sequence of indices {i(n) ∈
T (n)}∞n=1

lim
n→∞

1

n
π

(n)

i(n)
> 0. (5.144)

Define for each n ∈ Z+

π
(n)
min := min

i∈T (n)
π

(n)
i , (5.145)
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and define the limit

δmin := lim
n→∞

1

n
π

(n)
min, (5.146)

which by Assumption (5.144) is strictly positive,

δmin > 0. (5.147)

Now, since all the terms π
(n)
i are nonnegative:

1

n

n∑
i=1

π
(n)
i ≥ 1

n

∑
i∈T (n)

π
(n)
i ≥ 1

n
π

(n)
min|T (n)|, (5.148)

where the second inequality follows by the definition in (5.145). By (5.146) and (5.147)

and by the undboundedness of the cardinality of the sets T (n), we conclude that the sum

in (5.148) is unbounded in n, which contradicts Assumption (5.138) and thus concludes

our proof.

5.C Appendix: Existence of Code C2, . . . , CL with the De-

sired Properties

The proof is by induction: for each ` ∈ {2, . . . , L}, when proving the existence of the

desired C`, we assume that

γl−1 ≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−2 times

(Ω(n))). (5.149)

For l = 2, Inequality (5.149) follows from (5.71).

By [3], for all rates

R̃ <
1

2
log2

2 +
√
P̃ 2/σ4 + 4

4
,

and for sufficiently large n there exists a blocklength-ñ, rate-R̃ non-feedback coding

scheme for the memoryless Gaussian point-to-point channel with noise variance σ2,

with expected average block-power no larger than P̃ and with probability of error Pe
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satisfying

Pe ≤ e−ñ(E(R̃,P̃ /σ2)−ε′) (5.150)

for some fixed ε′ > 0 and

E(R̃, P̃ ) =
P̃

4σ2

(
1−

√
1− 2−2R̃

)
. (5.151)

Since the probability of error of a non-feedback code over the Gaussian BC with common

message is at most K times the probability of error to the weakest receiver, we conclude

that for all P̃ > 0 and

0 < R̃ <
1

2
log2

2 +
√
P̃ 2/σ4

1 + 4

4
, (5.152a)

there exists a rate-R̃ code with power P̃ and blocklength ñ that for the Gaussian BC

with common message achieves probability of error

P (BC)
e ≤ Ke

−ñ
(

P

4σ21

(
1−
√

1−2−2R̃
)
−ε′
)
. (5.152b)

Now apply this statement to R̃ = Rphase,l, P̃ = P/γl−1 and ñ = εn
L−1 − 1. Since for

sufficiently large n, by (5.149),

Rphase,l <
1

2
log2

2 +
√

P 2

γ2l−1σ
4
1

+ 4

4
, (5.153)

we conclude by (5.152) that there exists a code Cl of rate-Rphase,l, block-power P/γl−1,

blocklength εn
L−1 − 1 and probability of error ρl satisfying

ρl ≤ Ke
−
(
εn
L−1−1

) P

4γl−1σ
2
1

(
1−

√
1−2
−2

R(L−1)
ε−(L−1)/n

)
−ε′


≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−1 times

(Ω(n))) (5.154)

where the inequality follows again by (5.149).
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By the definition of γl in (5.74), Inequalities (5.154) and (5.149) also yield:

γl ≤ exp(− exp ◦ . . . ◦ exp︸ ︷︷ ︸
l−1 times

(Ω(n))). (5.155)



Chapter 6

Coding Schemes for DMBCs with

Private Messages and

Rate-limited Feedback

6.1 Introduction

In this chapter, we present two types of coding schemes for DMBCs with rate-limited

feedback. Our schemes use a block-Markov strategy where in each block they apply

Marton coding [140], which to date is the best known coding scheme without feedback.

The messages sent over the feedback links are simply compression information that

describe the channel outputs that the receivers observed during a block.

In our first type of scheme, (Schemes 1A–1C), the encoder transmits exactly these

compression informations as part of the cloud center of the Marton code employed in

the next block. Thus, here, the encoder only relays the feedback messages from one

receiver to the other. Each receiver can hence reconstruct a compressed version of the

other receiver’s outputs and apply a modified Marton decoding to these compressed

outputs and its own observed outputs. The Marton decoding is modified to account

for the fact that each receiver already knows a part of the message sent in the cloud

center—namely the compression information it had generated itself after the previous

block. As we will see, the decoding can be performed as well as if the part of the

87
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cloud-center message known at a receiver was not present. In this sense, in the cloud

center we are sending information that is useful to one of the two receivers without

disturbing the other receiver, or in other words, without occupying the other receiver’s

resources. For asymmetric setups where one of the two receivers is stronger than the

other, e.g., less noisy, this implies that we can send the compression message, and thus

the information about the other receiver’s outputs, to the stronger receiver without

harming the performance of the weaker receiver. This allows in particular to improve

over Marton’s original non-feedback scheme.

We discuss the described coding strategy when the two receivers apply backward

decoding (Scheme 1A), when they apply sliding-window decoding (Scheme 1B), and

when one receiver applies backward decoding and the other sliding-window decoding

(Scheme 1C).

Our coding strategy is reminiscent of the compress-and-forward relay strategy [109]

or the noisy network coding for general networks [153, 154] in the sense that the two

receivers compress their channel outputs and send these compression indices over the

feedback links. However, in our schemes, we use Marton coding since our transmitter

has to send two independent private messages to the two receivers (we could treat them

as a big common message, but this would perform poorly). Moreover, whereas in noisy

network coding the transmitter where to generate new compression indices that describe

its observed feedback outputs, in our schemes the transmitter decode-and-forward (or

relays) the compression messages that were sent over the feedback links. Thus, in our

schemes the transmitter sends compression indices that describe the outputs observed

at the two receivers.

Our schemes are particularly beneficial for the class of strictly essentially less-noisy

DMBCs, which we define in this chapter and which represents a subclass of Nair’s essen-

tially less-noisy DMBCs [135]. Our class includes the BSBC and the binary erasure BCs

(BEBC) with unequal cross-over probabilities or unequal erasure probabilities at the two

receivers, and the binary symmetric channel/binary erasure channel BC (BSC/BEC-

BC) for a large range of parameters. For strictly essentially less-noisy DMBCs Marton

coding is known to achieve capacity [135]. For this class of DMBCs, our schemes im-

prove strictly over the non-feedback capacity region no matter how small but positive

the feedback rates are and even when there is feedback only from the weaker receiver.
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In fact, for most of these channels our scheme can improve over all boundary points

(R1 > 0, R2 > 0) of the non-feedback capacity region. The described schemes also

improve over the non-feedback capacity region of the BSC/BEC-BC when the DMBC

is more capable [155], unless the BSC and BEC have same capacities.

Thus, unlike for previous schemes, with our new schemes we can easily show that

feedback increases the capacity region for a large set of DMBCs.

We present a fourth scheme, Scheme 2, where the encoder uses the feedback messages

to reconstruct compressed versions of the channel outputs, and then processes these

compressed signals together with the previously sent codewords to generate update

(compression) information intended to both receivers. This update information is sent

as part of the cloud center of the Marton code employed in the next-following block.

This scheme is reminiscent of the Shayevitz-Wigger scheme [56] but for rate-limited

feedback. Moreover, in our Scheme 2 here, the update information is sent only in the

cloud center and using a joint source-channel code, whereas in the Shayevitz-Wigger

scheme parts of it are also sent in the satellite codewords but using only a separate

source-channel code.

Since here the update information is sent using a joint source-channel code, in the

limit as the feedback rates increase, the region achieved with our Scheme 2 improves

over the region achieved by the Shayevitz-Wigger scheme when this latter is restricted

to send all the update information in the cloud center. Notice that this represents a

prominent special case of the Shayevitz-Wigger scheme which subsumes the schemes by

Wang [58], by Georgiadis and Tassiulas [59], by Maddah-Ali and Tse [60], and also the

schemes in [77], [79], [81] and [82] when these are specialized to memoryless BCs and to

delayed state-information only.

All our results hold also with noisy feedback when the receivers can code over the

feedback links.

6.2 Channel Model

Communication takes place over a DMBC with rate-limited feedback, see Figure 6.1.

The setup is characterized by the finite input alphabet X , the finite output alphabets Y1

and Y2, the channel law PY1Y2|X , and nonnegative feedback rates RFb,1 and RFb,2. If at
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Transmitter

M1

M2

X
Receiver 1

Receiver 2

Y1

Y2

M̂1

M̂2

PY1Y2|X

F1

F2

Figure 6.1: Broadcast channel with private messages and rate-limited feedback

discrete-time i the transmitter sends the channel input xi ∈ X , then Receiver k ∈ {1, 2}
observes the output Yk,i ∈ Yk, where the pair (Y1,i, Y2,i) ∼ PY1Y2|X(·, ·|xi). Also, after

observing Yk,i, Receiver k can send a feedback signal Fk,i ∈ Fk,i to the transmitter,

where Fk,i denotes the finite alphabet of Fk,i and is a design parameter of a scheme. The

feedback link between the transmitter and Receiver k is assumed to be instantaneous

and noise-free but rate-limited to RFb,k bits on average. Thus, if the transmission takes

place over a total blocklength N , then

|Fk,1| × · · · × |Fk,N | ≤ b2NRFb,kc, k ∈ {1, 2}. (6.1a)

The goal of the communication is that the transmitter conveys two independent

private messages M1 ∈ {1, . . . , b2NR1c} and M2 ∈ {1, . . . , b2NR2c}, to Receiver 1 and

2, respectively. Each Mk, for k ∈ {1, 2}, is uniformly distributed over the set Mk :=

{1, . . . , b2NRkc}, where Rk denotes the private rate of transmission of Receiver k.

The transmitter is comprised of a sequence of encoding functions
{
f

(N)
i

}N
i=1

of the

form f
(N)
i : M1 ×M2 × F1,1 × · · · × F1,i−1 × F2,1 × · · · × F2,i−1 → X that is used to

produce the channel inputs as

Xi = f
(N)
i

(
M1,M2, F

i−1
1 , F i−1

2

)
, i ∈ {1, . . . , N}. (6.2)

Receiver k ∈ {1, 2} is comprised of a sequence of feedback-encoding functions

{ψ(N)
k,i }Ni=1 of the form ψ

(N)
k,i : Y ik → Fk,i that is used to produce the symbols

Fk,i = ψ
(N)
k,i (Yk,1, . . . , Yk,i), i ∈ {1, . . . , N}, (6.3)

sent over the feedback link, and of a decoding function g
(N)
k : YNk →Mk used to produce
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a guess of Message Mk:

M̂k = g
(N)
k (Y N

k ). (6.4)

A rate region (R1, R2) with averaged feedback rates RFb,1, RFb,2 is called achiev-

able if for every blocklength N , there exists a set encoding functions
{
f

(N)
i

}N
i=1

and for

k = {1, 2} there exists a set of decoding functions g
(N)
k , feedback alphabets {Fk,i}Ni=1 sat-

isfying (6.1), and feedback-encoding functions
{
ψ

(N)
k,i

}N
i=1

such that the error probability

P (N)
e := Pr

[
M1 6= M̂1 or M2 6= M̂2

]
(6.5)

tends to zero as the blocklength N tends to infinity. The closure of the set of achievable

rate pairs (R1, R2) is called the feedback capacity region and is denoted by CFb.

In the special case RFb,1 = RFb,2 = 0 the feedback signals are constant and the

setup is equivalent to a setup without feedback. We denote the capacity region for this

setup CNoFb.

6.3 Motivation: A Simple Scheme

We sketch a simple scheme that motivates our schemes in Section 6.6. We assume there

is only feedback from Receiver 1, i.e., RFb,1 > 0 and RFb,2 = 0.

We apply block-Markov coding with B + 1 blocks of length n, where in each block

we use superposition coding (without feedback) to send fresh messages M1,b and M2,b.

Message M1,b is sent in the cloud center Unb and M2,b in the satellite codeword Xn
b .

Thus, the scheme is expected to perform well when the following gap is nonnegative:

Γ := I(U ;Y2)− I(U ;Y1) ≥ 0. (6.6)

(This is for example the case in a BSBC when the cross-over probability to Receiver 2

is no larger than the cross-over probability to Receiver 1.)

After each block, both Receivers 1 and 2 decode the cloud center codeword Unb by

means of joint typicality decoding. By the Packing Lemma, this is possible whenever

R1 ≤ I(U ;Y1) (6.7)

R1 ≤ I(U ;Y2), (6.8)



92

where here, by (6.6), the second constraint is not active. We notice that when

Γ > 0 (6.9)

Receiver 2 would be able to decode the cloud center even if—besides M1,b—it also

encoded an extra message of rate not exceeding Γ. Of course, we cannot just add an

arbitrary rate-Γ message to the cloud center, because this would make it impossible for

Receiver 1 to decode this larger cloud center. Instead, we shall add a rate-Γ message

that is known to Receiver 1. If in the typicality check Receiver 1 only considers the

candidate codewords for the cloud center that correspond to the correct value of this

extra message, then the decoding at Receiver 1 performs as well as if the additional

message was not present. Thus, if the additional message is known at Receiver 1, it

does not disturb its decoding.

With rate-limited feedback, we can identify a suitable additional message to send in

the cloud center of block b: the feedback message MFb,1,b−1 that Receiver 1 had fed back

after the previous block b− 1. In fact, as we describe shortly, in our scheme Receiver 1

only feeds back a message at the end of each block.

The transmitter thus simply relays the information it received over the feedback link

to the other receiver. In this sense, the feedback link and part of the cloud center can

be seen as an independent communication pipe from Receiver 1 to Receiver 2, where

the pipe is rate-limited to

min{Γ, RFb,1}. (6.10)

In our scheme, we use this pipe to send a compressed version of the channel outputs

observed at Receiver 1 to Receiver 2. Specifically, the feedback message MFb,1,b−1 sent

after block b − 1 is a Wyner-Ziv message that compresses outputs Y n
1,b−1 while taking

into account that the reconstructor has side-information Y n
2,b−1, U

n
b−1. The rate-required

for this Wyner-Ziv message is

R̃1 > I(Ỹ1;Y1|Y2, U). (6.11)
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and, in order to satisfy the feedback-rate constraint, it also has to satisfy

R̃1 < RFb,1. (6.12)

After decoding the additional message MFb,1,b−1, which is transmitted in the cloud

center of block b, Receiver 2 first reconstructs a compressed version of Receiver 1’s out-

puts Ỹ n
1,b−1. It then uses this reconstruction to decode its intended Message M2,b−1 based

on the tuple (Ỹ n
1,b−1, Y

n
2,b−1, U

n
b−1). This is possible, with arbitrary small probability of

error, if

R2 ≤ I(X; Ỹ1, Y2|U). (6.13)

Combining now constraints (6.7), (6.11), (6.12), and (6.13), we conclude that our

scheme achieves all rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1) (6.14a)

R2 ≤ I(X; Ỹ1, Y2|U) = I(X;Y2|U) + I(X; Ỹ1|U, Y2) (6.14b)

for some pmf PUXPỸ1|U,Y1 that satisfies

I(Ỹ1;Y1|Y2, U) ≤ min{Γ, RFb,1}. (6.15)

The left-hand side of (6.15) gives the minimum rate required for a Wyner-Ziv code that

compresses Y n
1,b−1 given that the reconstructor has side-information Y n

2,b−1 and Unb−1.

Comparing constraints (6.14) to the superposition coding constraints in (3.22), we

see that the constraints here are strictly looser whenever I(X; Ỹ1|U, Y2) > 0. Or in other

words, whenever observing a compressed version of Receiver 1’s outputs improves the

decoding at Receiver 2.

What is remarkable about this scheme is that when Γ > 0, there is no cost in

conveying the compressed version of Receiver 1’s outputs to Receiver 2. It is as if there

were free resources in the communication from the transmitter to Receiver 2, which the

feedback allows to exploit. Without feedback, the resources cannot be exploited because

the transmitter cannot identify a messages that is known at Receiver 1 and useful at

Receiver 2.
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6.4 New Achievable Regions and Usefulness of Feedback

6.4.1 Achievable Regions

The following achievable regions are based on the coding schemes in Section 6.6. These

coding schemes are motivated by the scheme sketched in the previous section, but use

the more general Marton coding instead of superposition coding and exploit the feedback

from both receivers.

In our first scheme 1A (Section 6.6.1), the receivers apply sliding-window decoding.

The scheme achieves the region in the following Theorem 6.1.

Theorem 6.1 (Sliding-Window Decoding). The capacity region CFb includes the set

Rrelay,sw
1 of all nonnegative rate pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;U0, Y2|Y1, Q) (6.16a)

R1 ≤ I(U0;Y2|Q)+I(U1;Y1, Ỹ2|U0, Q)−∆2−I(Ỹ1;Y1|U0, U2, Y2, Q) (6.16b)

R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;U0, Y1|Y2, Q) (6.16c)

R2 ≤ I(U0;Y1|Q)+I(U2;Y2, Ỹ1|U0, Q)−∆1−I(Ỹ2;Y2|U0, U1, Y1, Q) (6.16d)

R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;U0, Y2|Y1, Q)

+I(U2;Y2,Ỹ1|U0,Q)−∆1−I(U1;U2|U0,Q) (6.16e)

R1+R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;U0, Y1|Y2, Q)

+I(U1;Y1,Ỹ2|U0,Q)−∆2−I(U1;U2|U0,Q) (6.16f)

R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)+I(U0, U2;Y2, Ỹ1|Q)

−I(Ỹ2;U0, Y2|Y1, Q)−I(Ỹ1;U0, Y1|Y2, Q)− I(U1;U2|U0, Q) (6.16g)

where

∆1 := max{0, I(Ỹ1;Y1|U0, Y2, Q)−RFb,1}
∆2 := max{0, I(Ỹ2;Y2|U0, Y1, Q)−RFb,2}

for some pmf PQPU0U1U2|QPỸ1|Y1U0Q
PỸ2|Y2U0Q

and some function f : U0×U1×U2×Q →
1 The subscript “relay” indicates that the transmitter simply relays the feedback information and the

subscript “sw” indicates that sliding-window decoding is applied.
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X such that

I(U1;Y1, Ỹ2|U0, Q)−∆2 ≥ 0 (6.18a)

I(U2;Y2, Ỹ1|U0, Q)−∆1 ≥ 0. (6.18b)

I(Ỹ1;Y1|U0, U2, Y2, Q) ≤ min{I(U0;Y2|Q), RFb,1} (6.18c)

I(Ỹ2;Y2|U0, U1, Y1, Q) ≤ min{I(U0;Y1|Q), RFb,2} (6.18d)

where X = f(U0, U1, U2, Q).

Proof. See Section 6.6.1.

For sufficiently large feedback rates RFb,1 and RFb,2 (in particular for RFb,1 ≥ |Y1|
and RFb,2 ≥ |Y2|), the terms ∆1 and ∆2 as defined in (6.17) are 0.

In our second scheme 1B (Section 6.6.2), the receivers apply backward decoding.

This way, for each block, they can jointly decode the cloud center and their intended

satellite codewords. In this scheme, the Wyner-Ziv compression cannot be superposi-

tioned on the cloud center because the receivers have not yet decoded this latter when

compressing their channel outputs at the end of each block. The following Theorem 6.2

presents the achievable region for this second scheme.

Theorem 6.2 (Backward Decoding). The capacity region CFb includes the set Rrelay,bw
2

of all nonnegative rate pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q) (6.19a)

R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q) (6.19b)

R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q)

+I(U2;Y2, Ỹ1|U0,Q)−∆1−I(U1;U2|U0,Q) (6.19c)

R1+R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q)

+I(U1;Y1, Ỹ2|U0,Q)−∆2−I(U1;U2|U0,Q) (6.19d)

R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q)

+I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q)− I(U1;U2|U0, Q) (6.19e)

2 The subscript “bw” stands for backward decoding.
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for some pmf PQPU0U1U2|QPỸ1|Y1QPỸ2|Y2Q and some function f : U0 ×U1 ×U2 ×Q → X
such that

I(Ỹ1;Y1|U0, U2, Y2, Q) ≤ RFb,1 (6.20a)

I(Ỹ2;Y2|U0, U1, Y1, Q) ≤ RFb,2 (6.20b)

where X = f(U0, U1, U2, Q).

Proof. See Section 6.6.2.

Setting Ỹ1 = Ỹ2 = const., i.e., both receivers do not send any feedback, the region

Rrelay,bw specializes to RMarton.

Remark 6.1. Constraints (6.19) and (6.20) are looser than constraints (6.16) and

(6.18), respectively. But in Theorem 6.2 we have the conditional pmfs PỸ1|Y1 and PỸ2|Y2
whereas in Theorem 6.1 we allow for more general pmfs PỸ1|Y1,U0

and PỸ2|Y2,U0
. It is

thus not clear in general which of the achievable regions in Theorems 6.1 or 6.2 is

larger.

Remark 6.2. Consider the Shayevitz-Wigger region (4.2) restricted to the choice of

auxiliaries

V1 = V2 = V0 = (f1(Y1, Q), f2(Y2, Q)) (6.21)

for two deterministic functions f1 and f2. (Notice that Kim, Chia, and El Gamal’s

choice of auxiliaries (4.3) or (4.4) is of this form.) Our new achievable region Rrelay,bw

improves over this restricted Shayevitz-Wigger region whenever the feedback rates RFb,1,

RFb,2 are sufficiently large so that in our new region we can choose

Ỹ1 = f1(Y1, Q) and Ỹ2 = f2(Y2, Q) (6.22)

and so that ∆1 = ∆2 = 0.

In fact, for the choices (6.21) and (6.22) the rate constraints in (6.19a), (6.19b), and

(6.19e) characterizing our new region coincide with the rate constraints (4.2a)–(4.2b)

which characterize the Shayevitz-Wigger region. Moreover, the combination of the two

sum-rate constraints (6.19c) and (6.19d) is looser than the sum-rate constraint (4.2c),
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because the former involves a “mink={1,2}{ak−bk}-term” whereas the latter involves the

smaller “mink∈{1,2} ak −maxk∈{1,2} bk-term”, for ak, bk ≥ 0.

Our third scheme 1C (Section 6.6.3) is a mixture of the first two: Receiver 1 behaves

as in the first scheme and Receiver 2 as in the second scheme. This is particularly

interesting when there is no feedback from Receiver 2, RFb,2 = 0, and when Marton’s

scheme specializes to superposition coding with no satellite codeword for Receiver 1.

Theorem 6.3 presents the region achieved by this third scheme with Marton coding and

Corollary 6.1 with superposition coding.

Theorem 6.3 (Hybrid Sliding-Window and Backward Decoding). Even for

RFb,2 = 0, the capacity region CFb includes the set R(1)
relay,hb

3 of all nonnegative rate

pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1|Q) (6.23a)

R2 ≤ I(U0, U2; Ỹ1, Y2|Q)− I(Ỹ1;U0, U1, U2, Y1|Y2, Q) (6.23b)

R1+R2 ≤ I(U0, U1;Y1|Q) + I(U2;Y2, Ỹ1|U0, Q)

−∆1 − I(U1;U2|U0, Q) (6.23c)

R1+R2 ≤ I(U1;Y1|U0, Q) + I(U0, U2; Ỹ1, Y2|Q)

−I(Ỹ1;U0,U1,U2,Y1|Y2,Q)−I(U1;U2|U0,Q) (6.23d)

for some pmf PQPU0U1U2|QPỸ1|Y1U0Q
and some function f : U0 ×U1 ×U2 ×Q → X such

that

I(Ỹ1;U1,Y1|U0, U2, Y2, Q) ≤ RFb,1. (6.24)

The capacity region CFb also includes the region R(2)
relay,hb which is obtained by ex-

changing indices 1 and 2 in the above definition of R(1)
relay,hb.

Proof. See Section 6.6.3.

If superposition coding is used instead of Marton coding and only one of the two

receivers sends feedback, Theorem 6.3 reduces to the following corollary.

3 The subscript “hb” stands for hybrid decoding.
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Corollary 6.1. The capacity region CFb includes the set R(1)
relay,sp

4 of all nonnegative

rate pairs (R1, R2) that satisfy

R1 ≤ I(U ;Y1|Q) (6.25a)

R1+R2 ≤ I(U ;Y1|Q) + I(X;Y2, Ỹ1|U,Q) (6.25b)

R1+R2 ≤ I(X;Y2|Q)− I(Ỹ1;Y1|U, Y2, Q) (6.25c)

for some pmf PQPUX|QPỸ1|Y1UQ such that

I(Ỹ1;Y1|U, Y2, Q) ≤ RFb,1. (6.26)

The capacity region CFb also includes the region R(2)
relay,sp which is obtained by ex-

changing indices 1 and 2 in the above definition of R(1)
relay,sp.

Proof. Let Ỹ2 = U1 = const., U = U0 and X = U2. Constraint (6.23a) then specializes

to (6.25a) and constraint (6.23b) is redundant compared to constraint (6.23d). Observe

that constraints (6.23d) and (6.24) are looser than constraints (6.25c) and (6.26), re-

spectively. Also, by (6.26), constraint (6.23c) reduces to (6.25b). Thus the capacity

region CFb includes the region R(1)
relay,sp. Similar arguments hold for R(2)

relay,sp.

Remark 6.3. The region R(1)
relay,hb contains the regions in Theorems 6.1 and 6.2 when

these latter are specialized to U1 =const., U2 = X, and RFb,2 = 0.

In our first three schemes 1A–1C the transmitter simply relays the compression

information it received over each of the feedback links to the other receiver, as is the case

also for our motivating scheme in the previous section 6.3. Alternatively, the transmitter

can also use this feedback information to first reconstruct the compressed versions of

the channel outputs and then compress them jointly with the Marton codewords. The

indices resulting from this latter compression are then sent to the two receivers. The

following Theorem 6.4 presents the region achieved by this fourth scheme 2.

Theorem 6.4. The capacity region CFb includes the set Rproc.
5 of all nonnegative rate

4 The subscript “sp” stands for superposition coding.
5 The subscript “proc.” indicates that the transmitter processes the feedback information it receives.
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pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, Ỹ1, V |Q)− I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1, Q)

R2 ≤ I(U0, U2;Y2, Ỹ2, V |Q)− I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2, Q)

R1+R2 ≤ I(U0, U1;Y1, Ỹ1, V |Q)+I(U2;Y2, Ỹ2, V |U0, Q)

−I(V ;U0,U1,U2,Ỹ2|Ỹ1,Y1,Q)−I(U1;U2|U0,Q)

R1+R2 ≤ I(U0, U2;Y2, Ỹ2, V |Q)+I(U1;Y1, Ỹ1, V |U0, Q)

−I(V ;U0,U1,U2,Ỹ1|Ỹ2,Y2,Q)−I(U1;U2|U0,Q)

R1+R2 ≤ I(U0, U1;Y1, Ỹ1, V |Q) + I(U0, U2;Y2, Ỹ2, V |Q)

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1, Q)

−I(V ;U0,U1,U2,Ỹ1|Ỹ2,Y2,Q)−I(U1;U2|U0,Q)

for some pmf PQPU0U1U2|QPỸ1|Y1QPỸ2|Y2QPV |U0U1U2Ỹ1Ỹ2
and some function f : X → U0×

U1 × U2 ×Q where the feedback-rates have to satisfy

I(Y1; Ỹ1|U0, U1, U2, Ỹ2, Q) ≤ RFb,1 (6.28a)

I(Y2; Ỹ2|U0, U1, U2, Ỹ1, Q) ≤ RFb,2 (6.28b)

I(Y1, Y2; Ỹ1, Ỹ2|U0, U1, U2, Q) ≤ RFb,1 +RFb,2. (6.28c)

and where X = f(U0, U1, U2, Q).

Proof. See Section 6.6.4.

When the feedback rates RFb,1, RFb,2 are sufficiently large, we can choose Ỹk = Yk

for k ∈ {1, 2}.
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Corollary 6.2. In the limit RFb,1, RFb,2 → ∞, CFb includes the set R∞proc. of all non-

negative rate pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, V |Q)− I(V ;U0, U1, U2, Y2|Y1, Q) (6.29a)

R2 ≤ I(U0, U2;Y2, V |Q)− I(V ;U0, U1, U2, Y1|Y2, Q) (6.29b)

R1 +R2 ≤ I(U1;Y1, V |U0, Q) + I(U2;Y2, V |U0, Q) (6.29c)

−I(U1;U2|U0, Q) + min
k∈{1,2}

{I(U0;Yk, V |Q)

−I(V ;U0, U1, U2, Y1, Y2|Yk, Q)} (6.29d)

R1 +R2 ≤ I(U0, U1;Y1, V |Q)− I(V ;U0, U1, U2, Y2|Y1, Q)

+I(U0, U2;Y2, V |Q)− I(V ;U0, U1, U2, Y1|Y2, Q)

−I(U1;U2|U0, Q) (6.29e)

for some pmf PQPU0U1U2|QPV |U0U1U2Y1Y2 and some function f : X → U0 ×U1 ×U2 ×Q,

where X = f(U0, U1, U2, Q).

Remark 6.4. The region R∞proc. improves over the Shayevitz-Wigger region for output

feedback when this latter is specialized to the choice V1 = V2 = V0. Observe that except

for the sum-rate constraints (6.29d) and (4.2c), all other rate constraints defining Rproc.

and the Shayevitz-Wigger region coincide when the latter are specialized to V1 = V2 = V0.

Since mink={1,2}{ak − bk} ≥ mink∈{1,2} ak − maxk∈{1,2} bk holds for any nonnegative

{ak, bk}2k=1, we conclude that the rate region Rproc. contains the Shayevitz-Wigger region

specialized to the choice V1 = V2 = V0. As proved in [57], our region R∞proc. thus also

recovers the two-user capacity result in [58, 59] and the degrees of freedom achievability

result in [60].

6.4.2 Usefulness of Feedback

Our third scheme 1C (which leads to Theorem 6.3) can be used to prove the following

result on the usefulness of rate-limited feedback for DMBCs. (Similar results can be

shown based on our other proposed schemes.)

Theorem 6.5. Fix a DMBC. Consider random variables (U
(M)
0 , U

(M)
1 , U

(M)
2 , X(M)) such
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that

Γ(M) := I(U
(M)
0 ;Y

(M)
2 )− I(U

(M)
0 ;Y

(M)
1 ) > 0. (6.30)

Let the rate pair (R
(M)
1 , R

(M)
2 ) satisfy Marton’s constraints (3.30) when evaluated for

(U
(M)
0 , U

(M)
1 , U

(M)
2 , X(M)) where constraint (3.30b) has to hold with strict inequality.

Also, let (R
(Enh)
1 , R

(Enh)
2 ) be a rate pair in the capacity region C(1)

Enh of the enhanced

DMBC.

If the feedback-rate from Receiver 1 is positive, RFb,1 > 0, then for all sufficiently

small γ ∈ (0, 1), the rate pair (R1, R2),

R1 = (1− γ)R
(M)
1 + γR

(Enh)
1 (6.31a)

R2 = (1− γ)R
(M)
2 + γR

(Enh)
2 (6.31b)

lies in R(1)
relay,hb,

(R1, R2) ∈ R(1)
relay,hb, (6.32)

and is thus achievable.

An analogous statement holds when indices 1 and 2 are exchanged.

Proof. See Appendix 6.D.

The following remark elaborates on the condition of the theorem that a rate pair

satisfies constraint (3.30b) with strict inequality.

Remark 6.5. For given random variables U
(M)
0 , U

(M)
1 , U

(M)
2 , X(M) Marton’s region, i.e.,

the rate region defined by constraints (3.30), is either a pentagon (both single-rate con-

straints as well as at least one of the sum-rates are active), a quadrilateral (only the two

single-rate constraints are active), or a triangle (only one single-rate constraint and at

least one of the sum-rate constraints are active).

In the case of superposition coding with U
(M)
1 =const. and U

(M)
2 = X(M) and when

condition (6.30) holds, then the region is a quadrilateral and the only active constraints

are (3.30a) and (3.30c). Thus, in this case, constraint (3.30b) holds with strict inequal-

ity for all rate pairs in this region.

Whenever the region defined by Marton’s constraints (3.30) is a pentagon, then the
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only rate pair in this pentagon that satisfies constraint (3.30b) with equality is the dom-

inant corner point of maximum R2-rate.

Corollary 6.3. Assume RFb,1 > 0. If there exists a rate pair (R
(M)
1 , R

(M)
2 ) that satisfies

the conditions in Theorem 6.5 and that lies on the boundary of RMarton but strictly in

the interior of C(1)
Enh, then

RMarton ( CFb. (6.33)

If for the considered DMBC moreover RMarton = CNoFb,

CNoFb ( CFb. (6.34)

Proof. Inclusion (6.34) follows from (6.33). We show (6.33). Since (R
(M)
1 , R

(M)
2 ) is in

the interior of C(1)
Enh, there exists a rate pair (R

(Enh)
1 , R

(Enh)
2 ) ∈ C(1)

Enh with R
(Enh)
1 >

R
(M)
1 and R

(Enh)
2 > R

(M)
2 . Now, since (R

(M)
1 , R

(M)
2 ) lies on the boundary of RMarton,

the rate pair in (6.31) must lie outside RMarton for any γ ∈ (0, 1). By Theorem 6.5,

Equation (6.32), this rate pair is achievable with rate-limited feedback for all γ ∈ (0, 1)

that are sufficiently close to 0.

For many DMBCs such as the BSBC or the BEBC with unequal cross-over probabil-

ities or unequal erasure probabilities to the two receivers, or the BSC/BEC-BC where

the two channels have different capacities, the conditions of Corollary 6.3 can easily

be checked. Thus, our corollary immediately shows that for these DMBCs rate-limited

feedback strictly increases capacity. (See also Examples 6.1 and 6.2

For the BSBC and the BEBC, Theorem 6.5 can even be used to show that all the

boundary points (R1 > 0, R2 > 0) of CNoFb can be improved with rate-limited feedback,

see the following Corollary 6.4, the paragraph thereafter, and Example 6.1 in the next

Section.

More generally speaking, Corollary 6.3 is particularly interesting in view of the

following class of BCs. We introduce the new term strictly essentially less-noisy.

Definition 8 (Strictly Essentially Less-Noisy). The definition of a strictly essentially

less-noisy DMBC coincides with the definition of an essentially less-noisy DMBC except

that inequality (3.15) needs to be strict whenever I(U ;Y1) > 0.
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The BSBC and the BEBC with different cross-over probabilities or different erasure

probabilities at the two receivers are strictly essentially less-noisy.

Corollary 6.4. Consider a DMBC where Y2 is strictly essentially less-noisy than Y1.

Assume RFb,1 > 0. We have:

1. If a rate pair (R1, R2) lies on the boundary of CNoFb but in the interior of C(1)
Enh,

then (R1, R2) lies in the interior of CFb, i.e., with rate-limited feedback one can

improve over this rate pair.

2. If CNoFb does not coincide with C(1)
Enh, then CNoFb is also a strict subset of CFb,

i.e., feedback strictly improves capacity.

Analogous statements hold if indices 1 and 2 are exchanged.

As mentioned, all BSBCs and BEBCs with unequal cross-over probabilities or un-

equal erasure probabilities to the two receivers are strictly essentially less-noisy. Also,

for these BCs CNoFb has no common boundary points (R1 > 0, R2 > 0) with the sets

C(1)
Enh or C(2)

Enh unless the BC is physically degraded. Thus, for these BCs the corollary

implies that, unless the BC is physically degraded, rate-limited feedback improves all

boundary points (R1 > 0, R2 > 0) of CNoFb whenever RFb,1, RFb,2 > 0.

Notice that when a DMBC is physically degraded in the sense that output Y1 is a

degraded version of Y2, then CNoFb = C(1)
Enh. Of course (even infinite-rate) feedback does

not increase the capacity of physically degraded DMBCs [54].

Proof of Corollary 6.4. 2.) follows from 1.) We prove 1.) For strictly essentially less-

noisy DMBCs, CNoFb is achieved by superposition coding. Thus, RMarton = CNoFb

and in the evaluation of Marton’s region one can restrict attention to auxiliaries of

the form U1 =const. and U2 = X. By the definition of strictly essentially-less noisy,

when evaluating Marton’s region we can further restrict attention to auxiliary random

variables that satisfy (6.30). Thus, by Remark 6.5, any boundary point of RMarton

satisfies the conditions of Theorem 6.5. Repeating the proof steps for Corollary 6.3, we

can prove that these boundary points cannot be boundary points of CFb whenever they

lie in the interior of C(1)
Enh.
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6.5 Examples

Example 6.1. Consider the BSBC with input X and outputs Y1 and Y2 described by:

Y1 = X ⊕ Z1, Y2 = X ⊕ Z2, (6.35a)

for Z1 ∼ Bern(p1) and Z2 ∼ Bern(p2) independent noises. Let Q = const., U ∼
Bern(1/2), W1 ∼ Bern(β1) and W2 ∼ Bern(β2), for β1, β2 ∈ [0, 1/2], where U,W1,W2

are mutually independent. Also set X = U ⊕W1, and Ỹ1 = Y1 ⊕W2. Then

I(U ;Y1) = 1−Hb(β1 ∗ p1), I(X;Y2) = 1−Hb(p2),

and

I(X; Ỹ1, Y2|U) = H(α1,α2,α3,α4)−Hb(p2)−Hb(β2 ∗ p1)

I(Ỹ1;Y1|Y2, U) = H(α1,α2,α3,α4)−Hb(β1 ∗ p2)−Hb(β2)

where

α1 = (p1 ∗ β2)p2β1 + (1− p1 ∗ β2)p̄2β̄1

α2 = (p1 ∗ β2)p̄2β1 + (1− p1 ∗ β2)p2β̄1

α3 = (p1 ∗ β2)p̄2β̄1 + (1− p1 ∗ β2)p2β1

α4 = (p1 ∗ β2)p2β̄1 + (1− p1 ∗ β2)p̄2β1.

For this choice, the region defined by the constraints in Corollary 6.1 evaluates to:

R1 ≤ 1−Hb(β1 ∗ p1) (6.36a)

R1 +R2 ≤ 1−Hb(β1 ∗ p1) +H(α1, α2, α3, α4)

−Hb(p2)−Hb(β2 ∗ p1) (6.36b)

R1 +R2 ≤ 1−Hb(p2)−H(α1, α2, α3, α4)

+Hb(β1 ∗ p2) +Hb(β2) (6.36c)
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Figure 6.2: CNoFb and the achievable region in (6.36) are plotted for BSBCs with pa-
rameters p2 = 0.1 and p1 ∈ {0.2, 0.25, 0.3} and for feedback rate RFb,1 = 0.8.

for some β1, β2 ∈ [0, 1/2] satisfying

H(α1,α2, α3, α4)−Hb(β1 ∗ p2)−Hb(β2) ≤ RFb,1 (6.37)

and where H(α1, α2, α3, α4) denotes the entropy of a quaternary random variable with

probability masses (α1, α2, α3, α4).

The region is plotted in Figure 6.2 against the non-feedback capacity region CNoFb.

Example 6.2. Consider a DMBC where the channel from X to Y1 is a BSC with cross-

over probability p ∈ (0, 1/2), and the channel from X to Y2 is an independent BEC with

erasure probability e ∈ (0, 1). We show that our feedback regions R(1)
relay,sp and R(2)

relay,sp

improve over a large part of the boundary points of CNoFb for all values of e, p unless

Hb(p) = e, no matter how small RFb,1, RFb,2 > 0.

We distinguish different parameter ranges of our channel.

• 0 < e < Hb(p): In this case, the non-feedback capacity region CNoFb [135] is
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formed by the set of rate pairs (R1, R2) that for some s ∈ [0, 1/2] satisfy

R1 ≤ 1−Hb(s ∗ p), (6.38a)

R2 ≤ (1− e)Hb(s), (6.38b)

R1 +R2 ≤ 1− e. (6.38c)

We specialize the region R(1)
relay,sp to the following choices. Let Q = const., U ∼

Bern(1/2), X = U ⊕ V , where V ∼ Bern(s) independent of U , and Ỹ1 = Y1 with

probability γ ∈ (0, 1) and Ỹ1 = ? with probability 1− γ, where

γ ≤ RFb,1

(1− e)Hb(p) + eHb(s ∗ p)
. (6.39)

Condition (6.39) assures that the described choice satisfies (6.26). Then,

I(U ;Y1) = 1−Hb(s ∗ p), I(X;Y2) = 1− e,

and

I(X; Ỹ1, Y2|U) = γe(Hb(s ∗ p)−Hb(p))+(1−e)Hb(s)

I(Ỹ1;Y1|Y2, U) = γ(Hb(p)(1− e) + eHb(s ∗ p)).

When RFb,1 > 0, by Corollary 6.1, all rate pairs (R1, R2) satisfying

R1 ≤ 1−Hb(s ∗ p) (6.40a)

R1+R2 ≤ 1−Hb(s ∗ p) + (1− e)Hb(s)

+γe(Hb(s ∗ p)−Hb(p)) (6.40b)

R1+R2 ≤ 1−e−γ(Hb(p)(1−e)+eHb(s∗p)) (6.40c)

are achievable for any γ ∈ (0, 1) satisfying (6.39).

As shown in [135], the points (R1, R2) of the form

(1−Hb(s ∗ p), (1− e)Hb(s)), s ∈ (0, s0), (6.41)
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are all on the dominant boundary of CNoFb, where s0 ∈ (0, 1/2) is the unique

solution to

1−Hb(s0 ∗ p) + (1− e)Hb(s0) = 1− e. (6.42)

For these boundary points, only the single-rate constraints (6.38a) and (6.38b)

are active, but not (6.38c). Thus, comparing (6.41) to our feedback region (6.40),

we can conclude that by choosing γ sufficiently small, all boundary points (6.41)

lie strictly in the interior of our feedback region R(1)
relay,sp when RFb,1 > 0.

• 0 < Hb(p) < e < 1: The non-feedback capacity region CNoFb equals the time-

sharing region given by the union of all rate pairs (R1, R2) that for some α ∈ [0, 1]

satisfy

R1 ≤ α(1−Hb(p)) (6.43a)

R2 ≤ (1− α)(1− e). (6.43b)

We specialize the region R(2)
relay,sp to the following choices: Q ∼ Bern(α); if Q = 0

then U ∼ Bern(1/2), X = U , and Ỹ2 = const.; if Q = 1 then U =const.,

X ∼ Bern(1/2), and Ỹ2 = Y2 with probability γ ∈ (0, 1) and Ỹ2 = ? with probability

1− γ, where in order to satisfy the average feedback rate constraint,

γ ≤ RFb,2

α((1− e)Hb(p) +Hb(e))
. (6.44)

When RFb,2 > 0, by Theorem 6.3, all rate pairs (R1, R2) satisfying

R1 ≤ α(1−Hb(p)) + α(1− e)γHb(p) (6.45a)

R1 +R2 ≤ (1− α)(1− e) + α(1−Hb(p))

+ α(1− e)γHb(p) (6.45b)

R1 +R2 ≤ (1−Hb(p))− (1− α)γHb(e). (6.45c)

are achievable for any γ ∈ (0, 1) satisfying (6.44).

Since here 1 − Hb(p) > 1 − e, for small γ > 0 the feedback region in (6.45)

improves over CNoFb given in (6.43). In fact, (6.45) improves over all boundary

points (R1 > 0, R2 > 0) of CNoFb.
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Figure 6.3: CNoFb and the achievable regions in (6.40) and (6.45) are plotted for a
BSC/BEC-BC when the BSC has parameter p = 0.1 and the BEC has parameter
e ∈ {0.2, 0.7}. Notice that 0.2 < Hb(p) < 0.7. The feedback rates RFb,1 = RFb,2 = 0.8.

Remark 6.6. The BSC/BEC-BC in Example 6.2, is particularly interesting, because

depending on the values of the parameters e and p, the BC is either degraded, less noisy,

more capable, or essentially less-noisy [135]. We conclude that our feedback regions

R(1)
relay,sp and R(2)

relay,sp can improve over the non-feedback capacity regions for all these

classes of BCs even with only one feedback link that is of arbitrary small, but positive

rate.

We plotted our regions (6.40) and (6.45) versus the non-feedback capacity region in

Figure 6.3 for p = 0.1 and e = 0.2 or e = 0.7. In the first case the DMBC is more

capable and in the second case it is essentially less-noisy.

In the next example we consider the Gaussian BC with independent noises. We eval-

uate the region defined by the constraints of Corollary 6.1 for a set of jointly Gaussian

distributions on the input and the auxiliary random variables. A rigorous proof that

our achievability result in Corollary 6.1 holds also for the Gaussian BC and Gaussian

random variables is omitted for brevity.
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Example 6.3. Consider the Gaussian broadcast channel

Y1 = X + Z1 (6.46a)

Y2 = X + Z2 (6.46b)

where Z1 ∼ N (0, N1) and Z2 ∼ N (0, N2) are independent noises. Assume an average

transmission power P , and 0 < N2 < N1 < P .

Let Q = const., U ∼ N (0, ᾱP ), W1 ∼ N (0, αP ) and W2 ∼ N (0, β), for α ∈
[0, 1], β > 0, where U,W1,W2 are mutually independent. Set X = U+W1, Ỹ1 = Y1+W2,

then

I(U ;Y1) = C
( ᾱP

αP +N1

)
, I(X;Y2) = C

( P
N2

)
,

and

I(X;Y2, Ỹ1|U) = C
(αP
N2

)
+ C

( αPN2

(αP +N2)(N1 + β)

)
I(Ỹ1;Y1|Y2, U) = C

(αP (N1 +N2) +N1N2

β(N2 + αP )

)
.

For these choices, the region defined by the constraints in Corollary 6.1 evaluates to:

R1 ≤ C
( ᾱP

αP +N1

)
(6.47a)

R1 +R2 ≤ C
( ᾱP

αP +N1

)
+ C

(αP
N2

)
+C
( αPN2

(αP +N2)(N1 + β)

)
(6.47b)

R1 +R2 ≤ C
( P
N2

)
−C

(αP (N1+N2)+N1N2

β(N2 + αP )

)
(6.47c)

for some α ∈ [0, 1] and β > 0 satisfying

C
(αP (N1 +N2) +N1N2

β(N2 + αP )

)
≤ RFb,1. (6.48)

Here, we use C(x) := 1
2 log2(1 + x), for any x ≥ 0.

The region is plotted in Figure 6.4 against the non-feedback capacity region CNoFb
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Figure 6.4: CNoFb and the achievable region in (6.47) are plotted for Gaussian BCs with
parameters P = 10, N2 = 1, N1 = 4 and feedback rate RFb,1 = 0.8.

and the region achieved by Ozarow-Leung coding scheme [62], and the linear-feedback

capacity region [16, 17].

Example 6.4. (Blackwell Channel with State [57]) We consider the Blackwell DMBC

with random state. The state is described by a random variable S ∼ Bern(1/2), which is

also part of the outputs. That means Receiver 1’s output is Y1 = (Y ∗1 , S) and Receiver

2’s output is Y2 = (Y ∗2 , S). If S = 0 then the BC to Y ∗1 and Y ∗2 is a reversed Blackwell

channel:

Y ∗1 =

{
0 X = 0

1 X = 1, 2
Y ∗2 =

{
0 X = 0, 2

1 X = 1.
(6.49)

If S = 1, then the BC to Y ∗1 and Y ∗2 is a standard Blackwell channel:

Y ∗1 =

{
0 X = 0, 2

1 X = 1
Y ∗2 =

{
0 X = 0

1 X = 1, 2.
(6.50)
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For this BC, the non-feedback capacity region is achieved by time-sharing and the max-

imum sum-rate is 1. In [57] it was shown that the Shayevitz-Wigger scheme with

choices of auxiliary random variables as in (4.3) and (4.4) achieves the rate pairs

(0.5958, 0.5958) and (0.6103, 0.6103), respectively. By Remark 6.2, we obtain that the

proposed scheme pertaining to Theorem 6.2 can enlarge the non-feedback capacity of this

BC. Notice that for this setup, I(U ;Y2)− I(U ;Y1) = 0 holds for all PUX , which means

the statement above holds even when one of the receivers is not “stronger” than the

other.

6.6 Coding Schemes

6.6.1 Coding Scheme 1A: Sliding-Window Decoding (Theorem 6.1)

For simplicity, we only describe the scheme for Q =const. A general Q can be introduced

by coded time-sharing [131, Section 4.5.3]. That means all the codebooks need to be

superpositioned on a PQ-i.i.d. random vector Qn that is revealed to transmitter and

receivers, and this Qn sequence needs to be included in all the joint-typicality checks.

Choose nonnegative rates R′1, R
′
2, R̃1, R̃2, R̂1, R̂2, auxiliary finite alphabets U0, U1,

U2, Ỹ1, Ỹ2, a function f (n) of the form f (n): U0 × U1 × U2 → X , and pmfs PU0U1U2 ,

PỸ1|U0Y1
, PỸ2|U0Y2

. Transmission takes place over B + 1 consecutive blocks, with length

n for each block. We denote the n-length blocks of inputs and outputs in block b by xnb ,

yn1,b and yn2,b.

Define Jk := {1, . . . , b2nR̂kc}, Tk := {1, . . . , b2nR′kc}, and Lk := {1, . . . , b2nR̃kc}, for

k ∈ {1, 2}. The messages are in product form: Mk = (Mk,1, . . . ,Mk,B), k ∈ {1, 2}, with

Mk,b = (Mc,k,b,Mp,k,b) for b ∈ {1, . . . , B}. The submessages Mc,k,b, and Mp,k,b are uni-

formly distributed over the setsMc,k := {1, . . . , b2nRc,kc} andMp,k := {1, . . . , b2nRp,kc},
respectively, where Rp,k, Rc,k > 0 and so that Rk = Rp,k + Rc,k

6 . Let Rc :=

(Rc,1 +Rc,2 + R̃1 + R̃2).

6 Due to the floor operations and since transmission takes place over B + 1 blocks whereas the
messages M1 and M2 are split into only B submessages, R1 and R2 here do not exactly represent the
transmission rates of messages M1 and M2. In the limit n → ∞ and B → ∞, which is our case of
interest, R1 and R2 however approach these transmission rates. Therefore, we neglect this technicality
in the following.
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1) Codebook generation: For each block b ∈ {1, . . . , B + 1}, randomly and indepen-

dently generate b2nRcc sequences un0,b(mc,b, l1,b−1, l2,b−1), for mc,b ∈Mc :=Mc,1×Mc,2

and lk,b−1 ∈ Lk, for k ∈ {1, 2}. (We use vector notation for mc,b to emphasize that

it represents a pair of indices.) Each sequence un0,b(mc,b, l1,b−1, l2,b−1) is drawn accord-

ing to the product distribution
∏n
i=1 PU0(u0,b,i), where u0,b,i denotes the i-th entry of

un0,b(mc,b, l1,b−1, l2,b−1).

For k ∈ {1, 2} and each un0,b(mc,b, l1,b−1, l2,b−1) randomly and conditionally indepen-

dently generate b2n(Rp,k+R′k)c sequences unk,b(mp,k,b, tk,b|mc,b, l1,b−1, l2,b−1), for mp,k,b ∈
Mp,k and tk,b ∈ Tk, where each unk,b(mp,k,b, tk,b|mc,b, l1,b−1, l2,b−1) is drawn according to

the product distribution
∏n
i=1 PUk|U0

(uk,b,i|u0,b,i), where uk,b,i denotes the i-th entry of

unk,b
(
mp,k,b, tk,b|mc,b, l1,b−1, l2,b−1

)
.

Similarly, for k ∈ {1, 2} and each tuple (mc,b, l1,b−1, l2,b−1) ∈ Mc × L1 × L2 ran-

domly generate b2n(R̃k+R̂k)c sequences ỹnk,b(lk,b, jk,b|mc,b, l1,b−1, l2,b−1

)
, for lk,b ∈ Lk and

jk,b ∈ Jk, by drawing each ỹnk,b(lk,b, jk,b|mc,b, l1,b−1, l2,b−1

)
according to the product

distribution
∏n
i=1PỸk|U0Yk

(ỹk,b,i|u0,b,i) where ỹk,b,i denotes the i-th entry of ỹnk,b.

All codebooks are revealed to transmitter and receivers.

2) Encoding : We describe the encoding for a fixed block b ∈ {1, . . . , B+ 1}. Assume

that Mc,k,b = mc,k,b, Mp,k,b = mp,k,b, for k ∈ {1, 2} and that the feedback messages sent

after block b−1 are L1,b−1 = l1,b−1 and L2,b−1 = l2,b−1. Define mc,b := (mc,1,b,mc,2,b). To

simplify notation, let lk,0 = mc,k,B+1 = mp,k,B+1 = 1, for k ∈ {1, 2} and mc,B+1 = (1, 1).

The transmitter looks for a pair (t1,b, t2,b) ∈ T1 × T2 that satisfies

(
un0,b(mc,b,l1,b−1, l2,b−1), un1,b(mp,1,b, t1,b|mc,b, l1,b−1, l2,b−1),

un2,b(mp,2,b, t2,b|mc,b, l1,b−1, l2,b−1)
)
∈ T nε/16(PU0U1U2). (6.51)

If there is exactly one pair (t1,b, t2,b) that satisfies the above condition, the transmitter

chooses this pair. If there are multiple such pairs, it chooses one of them uniformly at

random. Otherwise it chooses a pair (t1,b, t2,b) uniformly at random over the entire set

T1 × T2. In block b the transmitter then sends the inputs xnb = (xb,1, . . . , xb,n), where

xb,i = f(u0,b,i, u1,b,i, u2,b,i), i ∈ {1, . . . , n}, (6.52)
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and u0,b,i and uk,b,i, for k = {1, 2}, denote the i-th symbols of the chosen Marton

codewords un0,b(mc,b, l1,b−1, l2,b−1) and unk,b(mp,k,b, tk,b|mc,b, l1,b−1, l2,b−1), respectively.

3) Decoding and Generation of Feedback Messages at Receivers: We describe the

operations performed at Receiver 1. Receiver 2 behaves in an analogous way.

After each block b ∈ {1, . . . , B+ 1}, and after observing the outputs yn1,b, Receiver 1

looks for a pair of indices (m̂
(1)
c,b , l̂2,b−1) ∈Mc × L2 that satisfies

(
un0,b(m̂

(1)
c,b , l1,b−1, l̂2,b−1), yn1,b

)
∈ T nε/8(PU0Y1).

Notice that Receiver 1 already knows l1,b−1 because it has created it itself after the

previous block b− 1. If there are multiple such pairs, the receiver chooses one of them

at random. If there is no such pair, then it chooses (m̂
(1)
c,b , l̂2,b−1) randomly over the set

Mc × L2.

After decoding the cloud center in block b, Receiver 1 then looks for a tuple

(ĵ2,b−1, m̂p,1,b−1, t̂1,b−1) ∈ J2 ×Mp,1 × T1 that satisfies

(
un0,b−1(m̂

(1)
c,b−1,l1,b−2,l̂2,b−2), un1,b−1(m̂p,1,b−1, t̂1,b−1|m̂(1)

c,b−1, l1,b−2, l̂2,b−2),

ỹn2,b−1(l̂2,b−1, ĵ2,b−1|m̂(1)
c,b−1, l1,b−2, l̂2,b−2), yn1,b−1

)
∈ T nε (PU0U1Y1Ỹ2

).

It further looks for a pair (l1,b, j1,b) ∈ L1 × J1 that satisfies

(ỹn1,b(l1,b, j1,b|m̂
(1)
c,b , l1,b−1, l̂2,b−1),

un0,b(m̂
(1)
c,b , l1,b−1, l̂2,b−1), yn1,b) ∈ T nε/4(PY1U0Ỹ1

)

and sends the index l1,b over the feedback link. If there is more than one such pair

(l1,b, j1,b) the encoder chooses one of them at random. If there is none, it chooses the

index l1,b that it sends over the feedback link uniformly at random over L1. The receivers

thus only send a feedback message at the end of each block 1, . . . , B.

After decoding Block B + 1, Receiver 1 produces the estimation m̂1 of m1 by m̂1 =

(m̂1,1, . . . , m̂1,B) as its guess, where m̂1,b = (m̂
(1)
c,1,b, m̂p,1,b), for b ∈ {1, . . . , B}, and m̂

(1)
c,1,b

denotes the first component of m̂
(1)
c,b .

5) Analysis: See Appendix 6.A.
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6.6.2 Coding Scheme 1B: Backward Decoding (Theorem 6.2)

For simplicity, we describe the scheme without the coded time-sharing random variable

Q, i.e., for Q =const.

Choose nonnegative rates R′1, R
′
2, R̃1, R̃2, R̂1, R̂2, auxiliary finite alphabets U0, U1,

U2, Ỹ1, Ỹ2, a function f (n) of the form f (n): U0 × U1 × U2 → X , and pmfs PU0U1U2 ,

PỸ1|Y1 , PỸ2|Y2 . Transmission takes place over B + 1 consecutive blocks, with length n

for each block. We denote the n-length blocks of inputs and outputs in block b by xnb ,

yn1,b and yn2,b.

Define Jk := {1, . . . , b2nR̂kc}, Tk := {1, . . . , b2nR′kc}, and Lk := {1, . . . , b2nR̃kc}
, for k ∈ {1, 2}. The messages are in product form: Mk = (Mk,1, . . . ,Mk,B), k ∈
{1, 2}, with Mk,b = (Mc,k,b,Mp,k,b) for b ∈ {1, . . . , B}. The submessages Mc,k,b, and

Mp,k,b are uniformly distributed over the sets Mc,k := {1, . . . , b2nRc,kc} and Mp,k :=

{1, . . . , b2nRp,kc}, respectively, where Rp,k, Rc,k > 0 and so that Rk = Rp,k + Rc,k. Let

Rc := (Rc,1 +Rc,2 + R̃1 + R̃2).

1) Codebook generation: For each block b ∈ {1, . . . , B + 1}, randomly and indepen-

dently generate b2nRcc sequences un0,b(mc,b, l1,b−1, l2,b−1), for mc,b ∈Mc :=Mc,1×Mc,2

and lk,b−1 ∈ Lk, for k ∈ {1, 2}. Each sequence un0,b(mc,b, l1,b−1, l2,b−1) is drawn accord-

ing to the product distribution
∏n
i=1 PU0(u0,b,i), where u0,b,i denotes the i-th entry of

un0,b(mc,b, l1,b−1, l2,b−1).

For k ∈ {1, 2} and each tuple (mc,b, l1,b−1, l2,b−1) randomly generate b2n(Rp,k+R′k)c
sequences unk,b(mp,k,b, tk,b|mc,b, l1,b−1, l2,b−1), for mp,k,b ∈ Mp,k and tk,b ∈ Tk by ran-

domly drawing each codeword unk,b(mp,k,b, tk,b|mc,b, l1,b−1, l2,b−1) according to the prod-

uct distribution
∏n
i=1 PUk|U0

(uk,b,i|u0,b,i), where uk,b,i denotes the i-th entry of unk,b.

Also, for k ∈ {1, 2}, generate b2n(R̃k+R̂k)c sequences ỹnk,b(lk,b, jk,b
)
, for lk,b ∈ Lk and

jk,b ∈ Jk, by drawing all the entries independently according to the same distribution

PỸk .

All codebooks are revealed to transmitter and receivers.

2) Encoding : We describe the encoding for a fixed block b ∈ {1, . . . , B+ 1}. Assume

that Mc,k,b = mc,k,b, Mp,k,b = mp,k,b, for k ∈ {1, 2}, and that the feedback messages sent

after block b−1 are L1,b−1 = l1,b−1 and L2,b−1 = l2,b−1. Define mc,b := (mc,1,b,mc,2,b). To

simplify notation, let lk,0 = mc,k,B+1 = mp,k,B+1 = 1, for k ∈ {1, 2} and mc,B+1 = (1, 1).
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The transmitter looks for a pair (t1,b, t2,b) ∈ T1 × T2 that satisfies

(
un0,b(mc,b, l1,b−1, l2,b−1), un1,b(mp,1,b, t1,b|mc,b, l1,b−1, l2,b−1),

un2,b(mp,2,b, t2,b|mc,b, l1,b−1, l2,b−1)
)
∈ T nε/16(PU0U1U2). (6.53)

If there is exactly one pair (t1,b, t2,b) that satisfies the above condition, the transmitter

chooses this pair. If there are multiple such pairs, it chooses one of them uniformly at

random. Otherwise it chooses a pair (t1,b, t2,b) uniformly at random over the entire set

T1 × T2. In block b the transmitter then sends the inputs xnb = (xb,1, . . . , xb,n), where

xb,i = f (n)(u0,b,i, u1,b,i, u2,b,i), i ∈ {1, . . . , n}, (6.54)

and u0,b,i, u1,b,i, u2,b,i denote the i-th symbols of the chosen Marton codewords un0,b, u
n
1,b,

and un2,b.

3) Generation of Feedback Messages at Receivers: We describe the operations per-

formed at Receiver 1. Receiver 2 behaves in an analogous way.

After each block b ∈ {1, . . . , B}, and after observing the outputs yn1,b, Receiver 1

looks for a pair (l1,b, j1,b) ∈ L1 × J1 that satisfies

(ỹn1,b(l1,b, j1,b), y
n
1,b) ∈ T nε/4(PY1Ỹ1) (6.55)

and sends the index l1,b over the feedback link. If there is more than one such pair

(l1,b, j1,b) the encoder chooses one of them at random. If there is none, it chooses the

index l1,b that it sends over the feedback link uniformly at random over L1.

In our scheme the receivers thus only send a feedback message at the end of each

block 1, . . . , B.

4) Decoding at Receivers: We describe the operations performed at Receiver 1.

Receiver 2 behaves in an analogous way.

The receivers apply backward decoding and thus start decoding only after the trans-

mission terminates. Then, for each block b ∈ {1, . . . , B+1}, starting with the last block

B + 1, Receiver 1 performs the following operations. From the previous decoding step

in block b + 1, it already knows the feedback message l2,b. Moreover, it also knows its

own feedback messages l1,b−1 and l1,b because it has created them itself, see point 3).
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Now, when observing yn1,b, Receiver 1 looks for a tuple (ĵ2,b, m̂
(1)
c,b , l̂2,b−1, m̂p,1,b, t̂1,b) ∈

J2 ×Mc × L2 ×Mp,1 × T1 that satisfies

(
un0,b(m̂

(1)
c,b ,l1,b−1,l̂2,b−1), un1,b(m̂p,1,b, t̂1,b|m̂(1)

c,b , l1,b−1, l̂2,b−1),

ỹn2,b(l2,b, ĵ2,b), y
n
1,b

)
∈ T nε (PU0U1Y1Ỹ2

).

After decoding Block 1, Receiver 1 produces the product message m̂1 = (m̂1,1, . . . , m̂1,B)

as its guess, where m̂1,b = (m̂
(1)
c,1,b, m̂p,1,b), for b ∈ {1, . . . , B}, and m̂

(1)
c,1,b denotes the first

component of m̂
(1)
c,b .

5) Analysis: See Appendix 6.B.

6.6.3 Coding Scheme 1C: Hybrid Sliding-Window Decoding and Back-

ward Decoding (Theorem 6.3)

For simplicity, we only describe the scheme achieving region R(1)
relay,hb for Q =const. A

scheme achieving region R(2)
relay,hb is obtained if in the following description indices 1 and

2 are exchanged.

1) Codebook generation: The codebooks are generated as in Scheme 1A, described

in point 1) in Section 6.6.1, but where R̃2 = R̂2 = 0.

2) Encoding : The transmitter performs the same encoding procedure as in Section

6.6.1, but where l2,b−1 = 1 is constant for each block b ∈ {1, . . . , B + 1}.
3) Receiver 1 : In each block b ∈ {1, . . . , B + 1}, Receiver 1 first simultaneously

decodes the cloud center and its satellite. Specifically, Receiver 1 looks for a tuple

(m̂c,b−1, m̂p,1,b−1, t̂1,b−1) ∈Mc ×Mp,1 × T1 that satisfies

(
un0,b−1(m̂c,b−1, l1,b−2, 1), yn1,b−1,

un1,b−1(m̂p,1,b−1, t̂1,b−1|m̂c,b−1, l1,b−2, 1)
)
∈ T nε (PU0U1Y1).

It further compresses the outputs yn1,b and sends the feedback message l1,b over the

feedback link as in Scheme 1A, see point 3) in Section 6.6.1.

4) Receiver 2 : Receiver 2 performs backward decoding as in Scheme 1B, see point

4) in Section 6.6.2.

5) Analysis: Similar to the analysis of the schemes 1A and 1B in presented in
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appendices 6.A and 6.B. Details are omitted.

6.6.4 Coding Scheme 2: Encoder Processes Feedback-Info

The scheme described in this subsection differs from the previous scheme in that in

each block b, after receiving the feedback messages MFb,1,b,MFb,2,b, the encoder first

reconstructs the compressed versions of the channel outputs, Ỹ n
1,b and Ỹ n

2,b, and then

newly compresses the quintuple consisting of Ỹ n
1,b and Ỹ n

2,b and the Marton codewords

Un0,b, U
n
1,b, U

n
2,b that it had sent during block b. This new compression information is

then sent to the two receivers in the next-following block b + 1 as part of the cloud

center of Marton’s code.

Decoding at the receivers is based on backward decoding. For each block b, each

receiver k ∈ {1, 2} uses its observed outputs Y n
k,b to simultaneously reconstruct the

encoder’s compressed signal and decode its intended messages sent in block b.

For simplicity, we only describe the scheme for Q =const.

Choose nonnegative rates R′1, R
′
2, R̃1, R̃2, R̂1, R̂2, R̃v, auxiliary finite alphabets U0,

U1, U2, Ỹ1, Ỹ2, V, a function f (n) of the form f (n): U0×U1×U2 → X , and pmfs PU0U1U2 ,

PỸ1|Y1 , PỸ2|Y2 , and PV |U0U1U2Ỹ1Ỹ2
. Transmission takes place over B + 1 consecutive

blocks, with length n for each block. We denote the n-length blocks of channel inputs

and outputs in block b by xnb , yn1,b and yn2,b.

Define Jk := {1, . . . , b2nR̂kc}, Tk := {1, . . . , b2nR′kc}, and Lk := {1, . . . , b2nR̃kc},
for k ∈ {1, 2}, and N := {1, . . . , b2nR̃vc} The messages are in product form: Mk =

(Mk,1, . . . ,Mk,B), k ∈ {1, 2}, with Mk,b = (Mc,k,b,Mp,k,b) for b ∈ {1, . . . , B}. The sub-

messagesMc,k,b, andMp,k,b are uniformly distributed over the setsMc,k :={1, . . . ,b2nRc,kc}
and Mp,k := {1, . . . , b2nRp,kc}, respectively, where Rp,k, Rc,k > 0 and so that Rk =

Rp,k +Rc,k. Let Rc := (Rc,1 +Rc,2 + R̃v).

1) Codebook generation: For each block b ∈ {1, . . . , B + 1}, randomly and indepen-

dently generate b2nRcc sequences un0,b(mc,b, nb−1), for mc,b ∈ Mc := Mc,1 ×Mc,2 and

nb−1 ∈ N . Each sequence un0,b(mc,b, nb−1) is drawn according to the product distribution∏n
i=1 PU0(u0,b,i), where u0,b,i denotes the i-th entry of un0,b(mc,b, nb−1).

For k ∈ {1, 2} and each pair (mc,b, nb−1) randomly generate b2n(Rp,k+R′k)c sequences

unk,b(mp,k,b, tk,b|mc,b, nb−1), for mp,k,b ∈ Mp,k and tk,b ∈ Tk, by drawing each codeword

unk,b(mp,k,b, tk,b|mc,b, nb−1) according to the product distribution
∏n
i=1 PUk|U0

(uk,b,i|u0,b,i),
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where uk,b,i denotes the i-th entry of unk,b
(
mp,k,b, tk,b|mc,b, nb−1

)
.

Also, for k ∈ {1, 2}, generate b2n(R̃k+R̂k)c sequences ỹnk,b(lk,b, jk,b
)
, for lk,b ∈ Lk and

jk,b ∈ Jk by drawing all the entries independently according to the same distribution

PỸk ;

Finally, for each nb−1 ∈ N , generate b2nRvc sequences vnb (nb|nb−1), for nb ∈ N by

drawing all entries independently according to the same distribution PV .

All codebooks are revealed to transmitter and receivers.

2) Encoding : We describe the encoding for a fixed block b ∈ {1, . . . , B+ 1}. Assume

that in this block we wish to send messages Mc,k,b = mc,k,b, Mp,k,b = mp,k,b, for k ∈
{1, 2}, and define mc,b := (mc,1,b,mc,2,b). To simplify notation, let lk,0 = mc,k,B+1 =

mp,k,B+1 = 1, for k ∈ {1, 2}, and also n−1 = n0 = 1.

The first step in the encoding is to reconstruct the compressed outputs pertaining

to the previous block Ỹ n
1,b−1 and Ỹ n

2,b−1. Assume that after block b− 1 the transmitter

received the feedback messages L1,b−1 = l1,b−1 and L2,b−1 = l2,b−1, and that in this

previous block it had produced the Marton codewords un0,b−1 := un0,b−1(mc,b−1, nb−2),

un1,b−1 :=un1,b−1(mp,1,b−1,t1,b−1|mc,b−1, nb−2), and un2,b−1 :=un2,b−1(mp,2,b−1,t2,b−1|mc,b−1,nb−2).

The transmitter then looks for a pair (ĵ1,b−1, ĵ2,b−1) ∈ J1 × J2 that satisfies

(
un0,b−1, u

n
1,b−1, u

n
2,b−1, ỹ

n
1,b−1(l1,b−1, ĵ1,b−1),

ỹn2,b−1(l2,b−1, ĵ2,b−1)
)
∈ Tε/4(PU0U1U2Ỹ1,Ỹ2

).

In a second step the encoder produces the new compression information pertaining to

block b− 1, which it then sends to the receivers during block b. To this end, it looks for

an index n̂b−1 ∈ N that satisfies

(
un0,b−1, u

n
1,b−1, u

n
2,b−1, ỹ

n
1,b−1(l1,b−1, ĵ1,b−1),

ỹn2,b−1(l2,b−1, ĵ2,b−1), vnb−1(n̂b−1|nb−2)
)
∈ Tε/2(PU0U1U2Ỹ1,Ỹ2V

).

The transmitter now sends the fresh data and the compression message n̂b−1 over the
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channel: It thus looks for a pair (t1,b, t2,b) ∈ T1 × T2 that satisfies

(
un0,b(mc,b, n̂b−1),un1,b(mp,1,b, t1,b|mc,b, n̂b−1),

un2,b(mp,2,b, t2,b|mc,b, n̂b−1)
)
∈ T nε/64(PU0U1U2).

If there is exactly one pair (t1,b, t2,b) that satisfies the above condition, the transmitter

chooses this pair. If there are multiple such pairs, it chooses one of them uniformly at

random. Otherwise it chooses a pair (t1,b, t2,b) uniformly at random over the entire set

T1 × T2. In block b the transmitter then sends the inputs xnb = (xb,1, . . . , xb,n), where

xb,i = f (n)(u0,b,i, u1,b,i, u2,b,i), i ∈ {1, . . . , n}. (6.56)

and u0,b,i, u1,b,i, u2,b,i denote the i-th symbols of the chosen Marton codewords un0,b(mc,b,

n̂b−1), un1,b(mp,1,b, t1,b|mc,b, n̂b−1), and un2,b(mp,2,b, t2,b|mc,b, n̂b−1).

3) Generation of Feedback Messages at Receivers: We describe the operations per-

formed at Receiver 1. Receiver 2 behaves in an analogous way.

After each block b ∈ {1, . . . , B}, and after observing the outputs yn1,b, Receiver 1

looks for a pair of indices (l1,b, j1,b) ∈ L1 × J1 that satisfies

(ỹn1,b(l1,b, j1,b), y
n
1,b) ∈ T nε/16(PY1Ỹ1) (6.57)

and sends the index l1,b over the feedback link. If there is more than one such pair

(l1,b, j1,b) the encoder chooses one of them at random. If there is none, it chooses the

index l1,b sent over the feedback link uniformly at random over L1.

In our scheme the receivers thus only send a feedback message at the end of each

block.

4) Decoding at Receivers: We describe the operations performed at Receiver 1.

Receiver 2 behaves in an analogous way.

The receivers apply backward decoding, so they wait until the end of the trans-

mission. Then, for each block b ∈ {1, . . . , B + 1}, starting with the last block B + 1,

Receiver 1 performs the following operations. From the previous decoding step in block

b+ 1, it already knows the compression index nb. Now, when observing yn1,b, Receiver 1
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looks for a tuple (m̂
(1)
c,b , m̂p,1,b, t̂1,b, n̂b−1) ∈Mc ×Mp,1 × T1 ×N that satisfies

(
un0,b(m̂

(1)
c,b , n̂b−1), un1,b(m̂p,1,b, t̂1,b|m̂(1)

c,b , n̂b−1),

vnb (nb|n̂b−1), yn1,b, ỹ
n
1,b(l1,b, j1,b)

)
∈ T nε (PU0U1V Y1Ỹ1

),

where recall that Receiver 1 knows the indices l1,b and j1,b because it has constructed

them itself under 3).

After the decoding Block 1, Receiver 1 produces the product message m̂1 =(m̂1,1, . . .,

m̂1,B) as its guess, where m̂1,b = (m̂
(1)
c,1,b, m̂p,1,b), for b ∈ {1, . . . , B}, and m̂

(1)
c,1,b denotes

the first component of m̂
(1)
c,1,b.

5) Analysis: See Appendix 6.C.

6.7 Extension: Noisy Feedback

Our results also apply to the related setup where the two feedback links are noisy chan-

nels of capacities RFb,1 and RFb,2 and where the decoders can code over their feedback

links. The following three modifications to our coding schemes suffice to ensure that

our achievable regions remain valid:

• We time-share two instances of our coding schemes: one scheme operates during

the odd blocks of the BC and occupies the even blocks on the feedback links; the

other scheme operates during the even blocks of the BC and occupies the odd

blocks on the feedback links.

• Instead of sending after each block an uncoded feedback message over the feedback

links, the receivers encode them using a capacity-achieving code for their feedback

links and send these codewords during the next block.

• After each block, the transmitter first decodes the messages sent over the feedback

links during this block, and then uses the decoded feedback-messages in the same

way as it used them in the original scheme.

Let EFb,k,b, for k = 1, 2, denote the event that during Block b there is an error in

the feedback communication from Receiver k to the transmitter, and let E denote the
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event that M̂1 6= M1 or M̂2 6= M2. Then,

Pr[M̂1 6= M1 or M̂2 6= M2]

≤ Pr

[
E ∪

(
B⋃
b=1

EFb,1,b

)
∪
(

B⋃
b=1

EFb,2,b

)]

≤ Pr

[
E
∣∣∣( B⋃

b=1

EFb,1,b

)c
∩
(

B⋃
b=1

EFb,2,b

)c]

+ Pr

[
B⋃
b=1

EFb,1,b

]
+ Pr

[
B⋃
b=1

EFb,2,b

]

≤ Pr

[
E
∣∣∣( B⋃

b=1

EFb,1,b

)c
∩
(

B⋃
b=1

EFb,2,b

)c]

+
B∑
b=1

Pr[EFb,1,b] + Pr[EFb,2,b] . (6.58)

Since we use capacity-achieving codes on the feedback links, the probabilities Pr[EFb,1,b]

and Pr[EFb,2,b] vanish as the blocklength increases. When the feedback communications

in all the blocks are error-free, then the probability of error in the setup with noisy feed-

back is no larger than that in the setup with noise-free feedback. Thus, under the corre-

sponding rate constraints, also the probability Pr
[
E
∣∣∣ (⋃B

b=1 EFb,1,b

)c
∩
(⋃B

b=1 EFb,2,b

)c]
vanishes as the blocklength increases. Combining all these observations proves that the

rate regions in Theorems 6.1–6.4 are achievable also in a setup with noisy feedback if

the receivers can code over the feedback links.

6.A Appendix: Analysis of Scheme 1A (Theorem 6.1)

By the symmetry of our code construction, the probability of error does not depend on

the realizations of Mc,k,b, Mp,k,b, Tk,b, Jk,b, Lk,b, for k ∈ {1, 2} and b ∈ {1, . . . , B}. To

simplify exposition we therefore assume that Mc,k,b = Mp,k,b = Tk,b = Jk,b = Lk,b = 1

for all k ∈ {1, 2} and b ∈ {1, . . . , B}. Under this assumption, an error occurs if, and

only if, for some b ∈ {1, . . . , B},

(M̂p,1,b, M̂p,2,b, M̂
(1)
c,1,b, M̂

(2)
c,2,b) 6= (1, 1, 1, 1).
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For each b ∈ {1, . . . , B}, let Eb denote the event that in our coding scheme at least

one of the following holds for k ∈ {1, 2}:
• Ĵk,b−1 6= 1;

• T̂k,b−1 6= 1;

• L̂k,b−1 6= 1;

• M̂p,k,b−1 6= 1;

• M̂
(k)
c,b 6= (1, 1);

• There is no pair (t1,b, t2,b) ∈ T1 × T2 that satisfies

(
Un0,b(1[4]), U

n
1,b(1, t1,b|1[4]), U

n
2,b(1, t2,b|1[4])

)
∈ T nε/16(PU0U1U2)

•
(
Un0,b−1(1[4]), U

n
1,b−1(1, 1|1[4]), U

n
2,b−1(1, 1, |1[4]), Y

n
1,b−1, Y

n
2,b−1

)
/∈ T nε/12(PU0U1U2Y1Y2)

• There is no pair (lk,b, jk,b) ∈ Lk × Jk that satisfies

(
Ỹ n
k,b(lk,b, jk,b|1[4]), U

n
0,b(1[4]), Y

n
k,b

)
∈ T nε/4(PỸkU0Yk

).

Then,

P (N)
e ≤ Pr

[
B+1⋃
b=1

Eb
]
≤

B+1∑
b=2

Pr
[
Eb|Ecb−1

]
+ Pr[E1]. (6.59)

In the following we analyze the probabilities of these events averaged over the random

code construction. In particular, we shall identify conditions such that for each b ∈
{2, . . . , B + 1}, the probability Pr

[
Eb|Ecb−1

]
tends to 0 as n → ∞. Similar arguments

can be used to show that under the same conditions also Pr[E1]→ 0 as n→∞. Using

standard arguments one can then conclude that there must exist a deterministic code

for which the probability of error P
(N)
e tends to 0 as N → ∞ when the mentioned

conditions are satisfied.

Fix b ∈ {2, . . . , B + 1} and ε > 0, and define the following events.

• Let E0,b be the event that there is no pair (t1,b, t2,b) ∈ T1 × T2 that satisfies

(
Un0,b(1[4]), U

n
1,b(1, t1,b|1[4]), U

n
2,b(1, t2,b|1[4])

)
∈ T nε/16(PU0U1U2).
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By the Covering Lemma, Pr[E0,b] tends to 0 as n→∞ if

R′1 +R′2 ≥ I(U1;U2|U0) + δ(ε), (6.60)

where throughout this section δ(ε) stands for some function that tends to 0 as

ε→ 0.

• Let E1,b be the event that

(
Un0,b(1[4]), U

n
1,b(1, 1|1[4]), U

n
2,b(1, 1, |1[4]), Y

n
1,b, Y

n
2,b

)
/∈ T nε/12(PU0U1U2Y1Y2).

Since the channel is memoryless, by the law of large numbers, Pr
[
E1,b|Ec0,b

]
tends

to 0 as n→∞.

• Let E2,1,b be the event that there is no tuple (m̂
(1)
c,b , l̂2,b−1) ∈ Mc × L2 that is not

equal to (1[2], 1) and that satisfies

(
Un0,b(m̂

(1)
c,b , 1, l̂2,b−1), Y n

1,b

)
∈ T nε/8(PU0Y1).

By the Packing Lemma, Pr
[
E2,1,b|Ec1,b

]
tends to 0 as n→∞, if

R̃2 +Rc,1 +Rc,2 ≤ I(U0;Y1) + δ(ε). (6.61)

• Let E2,2,b be the event that there is no tuple (m̂
(2)
c,b , l̂1,b−1) ∈ Mc × L1 with

(m̂
(2)
c,b , l̂1,b−1) not equal to (1[2], 1) that satisfies

(
Un0,b(m̂

(2)
c,b , l̂1,b−1, 1), Y n

2,b

)
∈ T nε/8(PU0Y2).

By the Packing Lemma, Pr
[
E2,2,b|Ec1,b

]
tends to 0 as n→∞, if

R̃1 +Rc,1 +Rc,2 ≤ I(U0;Y2) + δ(ε). (6.62)

• Let E3,1,b be the event that

(
Un0,b−1(1[4]), U

n
1,b−1(1, 1|1[4]), Ỹ

n
2,b−1(1, 1), Y n

1,b−1

)
/∈ T nε/2(PU0U1Ỹ2Y1

).

By the Markov Lemma, Pr
[
E3,1,b|Ecb−1

]
tends to 0 as n→∞.



124

• Let E3,2,b be the event that

(
Un0,b−1(1[4]), U

n
2,b−1(1, 1|1[4]), Ỹ

n
1,b−1(1, 1), Y n

2,b−1

)
/∈ T nε/2(PU0U2Ỹ1Y2

).

By the Markov Lemma, Pr
[
E3,2,b|Ecb−1

]
tends to 0 as n→∞.

• Let E4,1,b be the event that there exists a tuple (m̂p,1,b−1, t̂1,b−1, ĵ2,b−1) ∈ Mp,1 ×
T1 × J2 not equal to the all-one tuple and that satisfies

(
Un0,b−1(1[4]), U

n
1,b−1(m̂p,1,b−1, t̂1,b−1|1[4]),

Ỹ n
2,b−1(1, ĵ2,b−1|1[4]), Y

n
1,b−1

)
∈ T nε (PU0U1Ỹ2Y1

).

By the Packing Lemma, Pr
[
E4,1,b|Ec3,1,b

]
tends to zero as n→∞, if

R̂2 ≤ I(Ỹ2;U1, Y1|U0)− δ(ε) (6.63)

Rp,1 +R′1 ≤ I(U1;Y1, Ỹ2|U0)− δ(ε) (6.64)

Rp,1 +R′1 + R̂2 ≤ I(U1;Y1, Ỹ2|U0) + I(Ỹ2;Y1|U0)− δ(ε). (6.65)

• Let E4,2,b be the event that there exists a tuple (m̂p,2,b−1, t̂2,b−1, ĵ1,b−1) ∈ Mp,2 ×
T2 × J1 not equal to the all-one tuple and that satisfies

(
Un0,b−1(1[4]), U

n
2,b−1(m̂p,2,b−1, t̂2,b−1|1[4]),

Ỹ n
1,b−1(1, ĵ1,b−1|1[4]), Y

n
2,b−1

)
∈ T nε (PU0U2Ỹ1Y2

).

By the Packing Lemma, Pr
[
E4,2,b|Ec3,2,b

]
tends to zero as n→∞, if

R̂1 ≤ I(Ỹ1;U2, Y2|U0)− δ(ε) (6.66)

Rp,2 +R′2 ≤ I(U2;Y2, Ỹ1|U0)− δ(ε) (6.67)

Rp,2 +R′2 + R̂1 ≤ I(U2;Y2, Ỹ1|U0) + I(Ỹ1;Y2|U0)− δ(ε). (6.68)

• For k ∈ {1, 2}, let E5,k,b be the event that there is no pair (lk,b, jk,b) ∈ Lk × Jk
that satisfies

(
Ỹ n
k,b(lk,b, jk,b|1[4]), U

n
0,b(1[4]), Y

n
k,b

)
∈ T nε/4(PỸkU0Yk

).
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By the Covering Lemma, Pr
[
E5,k,b|Ec1,b

]
tends to 0 as n→∞, if

R̃k + R̂k ≥ I(Ỹk;Yk|U0) + δ(ε). (6.69)

Whenever the event Ecb−1 occurs but none of the events {E0,b, E1,b, E2,1,b, E2,2,b, E3,1,b, E3,2,b,

E4,1,b, E4,2,b, E5,1,b, E5,2,b} above, then Ecb . Therefore,

Pr
[
Eb|Ecb−1

]
≤ Pr

[
E0,b ∪ E1,b ∪

2⋃
k=1

(
E2,k,b ∪ E3,k,b ∪ E4,k,b ∪ E5,k,b

)∣∣∣Ecb−1

]
≤ Pr

[
E0,b|Ecb−1

]
+ Pr

[
E1,b|Ec0,b, Ecb−1

]
+

2∑
k=1

(
Pr
[
E2,k,b|Ec1,b, Ecb−1

]
+ Pr

[
E3,k,b|Ecb−1

]
+ Pr

[
E4,k,b|Ec3,k,b, Ecb−1

]
+ Pr

[
E5,k,b|Ec1,b, Ecb−1

] )
= Pr[E0,b] + Pr

[
E1,b|Ec0,b

]
+

2∑
k=1

(
Pr
[
E2,k,b|Ec1,b

]
+ Pr

[
E3,k,b|Ecb−1

]
+ Pr

[
E4,k,b|Ec3,k,b

]
+ Pr

[
E5,k,b|Ec1,b

] )
.

The last equality holds because the channel is memoryless and the codebooks employed

in blocks b−1 and b are drawn independently. As explained in the previous paragraphs,

the remaining terms in the last three lines tend to 0 as n → ∞, if constraints (6.60)–

(6.69) are satisfied. Thus, by (6.59) and (6.70) we conclude that the probability of error

P
(N)
e (averaged over all code constructions) vanishes as n → ∞ if constraints (6.60)–

(6.69) hold. Letting ε→ 0, we obtain that the probability of error can be made to tend
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to 0 as n→∞ whenever

R′1 +R′2 > I(U1;U2|U0) (6.70a)

R̃2+Rc,1+Rc,2 < I(U0;Y1) (6.70b)

R̃1+Rc,1+Rc,2 < I(U0;Y2) (6.70c)

R̂1 < I(Ỹ1;U2, Y2|U0) (6.70d)

R̂2 < I(Ỹ2;U1, Y1|U0) (6.70e)

Rp,1 +R′1 < I(U1;Y1, Ỹ2|U0) (6.70f)

Rp,2 +R′2 > I(U2;Y2, Ỹ1|U0) (6.70g)

Rp,1+R′1+R̂2 < I(U1;Y1, Ỹ2|U0)+I(Ỹ2;Y1|U0) (6.70h)

Rp,2+R′2+R̂1 < I(U2;Y2, Ỹ1|U0)+I(Ỹ1;Y2|U0) (6.70i)

R̂1 + R̃1 > I(Ỹ1;Y1|U0) (6.70j)

R̂2 + R̃2 > I(Ỹ2;Y2|U0). (6.70k)

Moreover, the feedback-rate constraints (6.1) impose that:

R̃1 ≤ RFb,1 (6.70l)

R̃2 ≤ RFb,2. (6.70m)

Applying the Fourier-Motzkin elimination algorithm to these constraints, we obtain the

desired result in Theorem 6.1 with the additional constraint that

I(U1;Y1, Ỹ2|U0) + I(U2;Y2, Ỹ1|U0)

−∆1 −∆2 − I(U1;U2|U0) ≥ 0 (6.71)

Notice that we can ignore constraint (6.71) because for any tuple (U0, U1, U2, X, Y1, Y2, Ỹ1,

Ỹ2) that violates (6.71), the region defined by the constraints in Theorem 6.1 is contained

in the time-sharing region.
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6.B Appendix: Analysis of the Scheme 1B (Theorem 6.2)

An error occurs whenever

M̂1,b 6= M1,b or M̂2,b 6= M2,b, for some b ∈ {1, . . . , B}.

For each b ∈ {1, . . . , B + 1}, let Eb denote the event that in our coding scheme at least

one of the following holds for k ∈ {1, 2}:

Ĵk,b 6= Jk,b (6.72)

T̂k,b 6= Tk,b (6.73)

L̂k,b−1 6= Lk,b−1 (6.74)

M̂p,k,b 6= Mp,k,b (6.75)

M̂
(k)
c,b 6= M

(k)
c,b (6.76)

Then,

P (N)
e ≤ Pr

[
B+1⋃
b=1

Eb
]
≤

B∑
b=1

Pr
[
Eb|Ecb+1

]
+ Pr[EB+1] . (6.77)

In the following we analyze the probabilities of these events averaged over the random

code construction. In particular, we shall identify conditions such that for each b ∈
{1, . . . , B}, the probability Pr

[
Eb|Ecb+1

]
tends to 0 as n → ∞. Similar arguments can

be used to show that under the same conditions also Pr[EB+1] → 0 as n → ∞. Using

standard arguments one can then conclude that there must exist a deterministic code

for which the probability of error P
(N)
e tends to 0 as N → ∞ when the mentioned

conditions are satisfied.

Fix b ∈ {1, . . . , B} and ε > 0. By the symmetry of our code construction, the

probability Pr
[
Eb|Ecb+1

]
does not depend on the realization of Mc,k,b, Mp,k,b, Tk,b, Jk,b,

Lk,b, Lk,b−1, for k ∈ {1, 2}. To simplify exposition we therefore assume that Mc,k,b =

Mp,k,b = Tk,b = Jk,b = Lk,b = Lk,b−1 = 1.

Define the following events.
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• Let E0,b be the event that there is no pair (t1,b, t2,b) ∈ T1 × T2 that satisfies

(
U0,b(1[4]), U

n
1,b(1, t1,b|1[4]), U

n
2,b(1, t2,b|1[4])

)
∈ T nε/16(PU0U1U2).

By the Covering Lemma, Pr[E0,b] tends to 0 as n→∞, if

R′1 +R′2 ≥ I(U1;U2|U0) + δ(ε), (6.78)

where throughout this section δ(ε) stands for some function that tends to 0 as

ε→ 0.

• Let ε1,b be the event that

(
Un0,b(1[4]), U

n
1,b(1, 1|1[4], U

n
2,b(1, 1, |1[4]), Y

n
1,b, Y

n
2,b

)
/∈ T nε/8(PU0U1Y2Y1Y2).

Since the channel is memoryless, according to the law of large numbers, Pr
[
E1,b|Ec0,b

]
tends to 0 as n→∞.

• For k ∈ {1, 2}, let E2,k,b be the event that there is no pair (lk,b, jk,b) ∈ Lk × Jk
that satisfies

(
Ỹ n
k,b(lk,b, jk,b), Y

n
k,b

)
∈ T nε/4(PỸkYk).

By the Covering Lemma, Pr
[
E2,k,b|Ec1,b

]
tends to 0 as n→∞ if

R̃k + R̂k ≥ I(Ỹk;Yk) + δ(ε). (6.79)

• Let E3,1,b be the event that

(
Un0,b(1[4]),U

n
1,b(1, 1|1[4]), Ỹ

n
2,b(1, 1), Y n

1,b

)
/∈ T n3ε/4(PU0U1Ỹ2Y1

).

By the Markov Lemma, Pr
[
E3,1,b|Ec2,2,b, Ec1,b

]
tends to 0 as n→∞.

• Let E3,2,b be the event that

(
Un0,b(1[4]),U

n
2,b(1, 1|1[4]), Ỹ

n
1,b(1, 1), Y n

2,b

)
/∈ T n3ε/4(PU0U2Ỹ1Y2

).
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By the Markov Lemma, Pr
[
E3,2,b|Ec2,1,b, Ec1,b

]
tends to 0 as n→∞.

• Let E4,1,b be the event that there exists a tuple (ĵ2,b, m̂
(1)
c,b , l̂2,b−1, m̂p,1,b, t̂1,b) ∈

J2 ×Mc ×L2 ×Mp,1 × T1 not equal to the all-one tuple (1,1[2], 1, 1, 1) and that

satisfies (
Un0,b(m̂

(1)
c,b , 1, l̂2,b−1),Un1,b(m̂p,1,b, t̂1,b|m̂(1)

c,b , 1, l̂2,b−1),

Ỹ n
2,b(1, ĵ2,b), Y

n
1,b

)
∈ T nε (PU0U1Ỹ2Y1

).

By the Packing Lemma, we conclude that Pr
[
E4,1,b|Ec3,1,b

]
tends to zero as n→∞

if

R̂2 ≤ I(U0, U1, Y1; Ỹ2|U0)−δ(ε)
Rp,1 +R′1 ≤ I(U1;Y1, Ỹ2|U0)− δ(ε)

R1 +Rc,2 + R̃2 +R′1 ≤ I(U0, U1;Y1, Ỹ2)− δ(ε)
R1+Rc,2+R̃2+R′1+R̂2 ≤ I(U0, U1;Y1, Ỹ2) + I(Y1; Ỹ2)− δ(ε)

Rp,1 +R′1 + R̂2 ≤ I(U1;Y1, Ỹ2|U0) + I(Ỹ2;Y1, U0)−δ(ε). (6.80)

• Let E4,2,b be the event that there exists a tuple (ĵ1,b, m̂
(2)
c,b , l̂1,b−1, m̂p,2,b, t̂2,b) ∈

J1 ×Mc × L1 ×Mp,2 × T2 not equal to the all-one tuple and that satisfies

(
Un0,b(m̂

(2)
c,b ,l̂1,b−1, 1), Un1,b(m̂p,2,b, t̂2,b|m̂(2)

c,b , l̂1,b−1, 1),

Ỹ n
1,b(1, ĵ1,b), Y

n
2,b

)
∈ T nε (PU0U2Ỹ1Y2

).

By the Packing Lemma, we conclude that Pr
[
E4,2,b|Ec3,2,b

]
tends to zero as n→∞

if

R̂1 ≤ I(U0, U2, Y2; Ỹ1|U0)−δ(ε)
Rp,2 +R′2 ≤ I(U2;Y2, Ỹ1|U0)− δ(ε)

R2 +Rc,1 + R̃1 +R′2 ≤ I(U0, U2;Y2, Ỹ1)− δ(ε)
R2+Rc,1+R̃1+R′2+R̂1 ≤ I(U0, U2;Y2, Ỹ1) + I(Y2; Ỹ1)− δ(ε)

Rp,2 +R′2 + R̂1 ≤ I(U2;Y2, Ỹ1|U0) + I(Ỹ1;Y2, U0)−δ(ε). (6.81)
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Whenever the event Ecb+1 occurs but none of the events above, then Ecb . Therefore,

Pr
[
Eb|Ecb+1

]
≤ Pr

[
E0,b ∪ E1,b ∪

2⋃
k=1

(
E2,k,b ∪ E3,k,b ∪ E4,k,b

)∣∣∣Ecb+1

]
≤ Pr

[
E0,b|Ecb+1

]
+ Pr

[
E1,b|Ec0,b, Ecb+1

]
+ Pr

[
E3,1,b|Ec1,b,Ec2,2,b,Ecb+1

]
+ Pr

[
E3,2,b|Ec1,b,Ec2,1,b,Ecb+1

]
+

2∑
k=1

(
Pr
[
E2,k,b|Ec1,b, Ecb+1

]
+ Pr

[
E4,k,b|Ec3,k,b, Ecb+1

] )
= Pr[E0,b] + Pr

[
E1,b|Ec0,b

]
+ Pr

[
E3,1,b|Ec1,b, Ec2,2,b

]
+ Pr

[
E3,2,b|Ec1,b, Ec2,1,b

]
+

2∑
k=1

(
Pr
[
E2,k,b|Ec1,b

]
+ Pr

[
E4,k,b|Ec3,k,b

] )
, (6.82)

where the last equality follows because the channel is memoryless and the codebooks

for blocks b and b + 1 have been generated independently. As explained in the pre-

vious paragraphs, each of the terms in the last three lines tends to 0 as n → ∞, if

constraints (6.78)–(6.81) are satisfied. Thus, by (6.77) and (6.82) we conclude that the

probability of error P
(N)
e (averaged over all code constructions) vanishes as n → ∞ if

constraints (6.78)–(6.81) hold. Letting ε → 0, we obtain that the probability of error
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can be made to tend to 0 as n→∞ whenever

R′1 +R′2 > I(U1;U2|U0) (6.83a)

R̂1 + R̃1 > I(Ỹ1;Y1) (6.83b)

R̂2 + R̃2 > I(Ỹ2;Y2) (6.83c)

R̂1 < I(U0, U2, Y2; Ỹ1|U0) (6.83d)

R̂2 < I(U0, U1, Y1; Ỹ2|U0) (6.83e)

Rp,1 +R′1 < I(U1;Y1, Ỹ2|U0) (6.83f)

Rp,2 +R′2 < I(U2;Y2, Ỹ1|U0) (6.83g)

R1 +Rc,2 + R̃2 +R′1 < I(U0, U1;Y1, Ỹ2) (6.83h)

R2 +Rc,1 + R̃1 +R′2 < I(U0, U2;Y2, Ỹ1) (6.83i)

R1+Rc,2+R̃2+R′1+R̂2 < I(U0, U1;Y1, Ỹ2) + I(Y1; Ỹ2) (6.83j)

R2+Rc,1+R̃1+R′2+R̂1 < I(U0, U2;Y2, Ỹ1) + I(Y2; Ỹ1) (6.83k)

Rp,1 +R′1 + R̂2 < I(U1;Y1, Ỹ2|U0) + I(Ỹ2;Y1, U0) (6.83l)

Rp,2 +R′2 + R̂1 < I(U2;Y2, Ỹ1|U0) + I(Ỹ1;Y2, U0). (6.83m)

Moreover, the feedback-rate constraints (6.1) impose that:

R̃1 ≤ RFb,1 (6.83n)

R̃2 ≤ RFb,2. (6.83o)

Applying the Fourier-Motzkin elimination algorithm to these constraints, we obtain the

desired result in Theorem 6.2 with the additional constraint that

I(U1;Y1, Ỹ2|U0) + I(U2;Y2, Ỹ1|U0)

−∆1 −∆2 − I(U1;U2|U0) ≥ 0 (6.84a)

I(U1;Y1, Ỹ2|U0)−∆2 ≥ 0 (6.84b)

I(U2;Y2, Ỹ1|U0)−∆1 ≥ 0. (6.84c)

We can ignore constraint (6.84a) because for any tuple (U0, U1, U2, X, Y1, Y2, Ỹ1, Ỹ2) that
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violates (6.84a), the region defined by the constraints in Theorem 6.2 is contained in

the time-sharing region. Constraint (6.84b) can also be ignored because for any tuple

(U0, U1, U2, X, Y1, Y2, Ỹ1, Ỹ2) that violates (6.84b), the region defined by the constraints

in Theorem 6.2 is contained in the region in Theorem 6.2 for the choice Ỹ2 = const.,

for which (6.84b) is always satisfied. Constraint (6.84c) can be ignored by analogous

arguments.

6.C Appendix: Analysis of Scheme 2 (Theorem 6.4)

An error occurs whenever

M̂1,b 6= M1,b or M̂2,b 6= M2,b, for some b ∈ {1, . . . , B}.

For each b ∈ {1, . . . , B + 1}, let Eb denote the event that in our coding scheme at least

one of the following holds for k ∈ {1, 2}:

Ĵk,b 6= Jk,b (6.85)

T̂k,b 6= Tk,b (6.86)

L̂k,b 6= Lk,b (6.87)

M̂p,k,b 6= Mp,k,b (6.88)

M̂
(k)
c,b 6= M

(k)
c,b (6.89)

or when

N̂b−1 6= Nb−1. (6.90)

Then,

P (n)
e ≤ Pr

[
B+1⋃
b=1

Eb
]
≤

B∑
b=1

Pr
[
Eb|Ecb+1

]
+ Pr[EB+1] . (6.91)

In the following we analyze the probabilities of these events averaged over the random

code construction. In particular, we shall identify conditions such that for each b ∈
{1, . . . , B}, the probability Pr

[
Eb|Ecb+1

]
tends to 0 as n → ∞. Similar arguments can

be used to show that under the same conditions also Pr[EB+1] → 0 as n → ∞. Using

standard arguments one can then conclude that there must exist a deterministic code
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for which the probability of error P
(N)
e tends to 0 as N → ∞ when the mentioned

conditions are satisfied.

Fix b ∈ {1, . . . , B} and ε > 0. By the symmetry of our code construction, the

probability Pr
[
Eb|Ecb+1

]
does not depend on the realizations of Nb−1, Nb, or Mc,k,b,

Mp,k,b, Tk,b, Jk,b, Lk,b, for k ∈ {1, 2}. To simplify exposition we therefore assume that

for k ∈ {1, 2}, Mc,k,b = Mp,k,b = Tk,b = Jk,b = Lk,b = 1, and Nb = Nb−1 = 1.

Define the following events.

• Let E0,b be the event that there is no pair (t1,b, t2,b) ∈ T1 × T2 that satisfies

(
U0,b(1[3]), U

n
1,b(1, t1,b|1[2), Un2,b(1, t2,b|1[3])

)
∈ T nε/64(PU0U1U2).

By the Covering Lemma, Pr[E0,b] tends to 0 as n→∞ if

R′1 +R′2 ≥ I(U1;U2|U0) + δ(ε), (6.92)

where throughout this section δ(ε) stands for some function that tends to 0 as

ε→ 0.

• Let E1,b be the event that

(
Un0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1, |1[3]), Y

n
1,b, Y

n
2,b

)
/∈ T nε/32(PU0U1U2Y1Y2).

Since the channel is memoryless, according to the law of large numbers, Pr
[
E1,b|Ec0,b

]
tends to 0 as n→∞.

• For k ∈ {1, 2}, let E2,k,b be the event that there is no pair (lk,b, jk,b) ∈ Lk × Jk
that satisfies

(
Ỹ n
k,b(lk,b, jk,b), Y

n
k,b

)
∈ T nε/16(PỸkYk).

By the Covering Lemma, Pr
[
E2,k,b|Ec1,b

]
tends to 0 as n→∞ if

R̃k + R̂k ≥ I(Ỹk;Yk) + δ(ε). (6.93)
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• Let E3,b be the event that

(
Un0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1|1[3]),

Ỹ n
1,b(1, 1), Ỹ n

2,b(1, 1), Y n
1,b, Y

n
2,b

)
/∈ T nε/6(PU0U1U2Ỹ1Ỹ2Y1Y2

).

By the Markov Lemma, Pr
[
E3,b|Ec2,1,b, Ec2,2,b, Ec1,b

]
tends to 0 as n→∞.

• Let E4,b be the event that there is a pair of indices ĵ1,b ∈ J1 and ĵ2,b ∈ J2 not

equal to the all-one pair (1, 1) and that satisfies

(
Un0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1|1[3]),

Ỹ n
1,b(1, ĵ1,b), Ỹ

n
2,b(1, ĵ2,b)

)
∈T nε/4(PU0U1U2Ỹ1Ỹ2

).

By the Packing Lemma, Pr
[
E4,b|Ec3,b

]
tends to 0 as n→∞, if

R̂1 ≤ I(U0, U1, U2, Ỹ2; Ỹ1)− δ(ε) (6.94)

R̂2 ≤ I(U0, U1, U2, Ỹ1; Ỹ2)− δ(ε) (6.95)

R̂1 + R̂2 ≤ I(U0, U1, U2; Ỹ1, Ỹ2) + I(Ỹ1; Ỹ2)− δ(ε). (6.96)

• Let E5,b be the event that there is no index nb ∈ N that satisfies

(
Un0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1|1[3]),

Ỹ n
1,b(1, 1), Ỹ n

2,b(1, 1), V n
b (nb|1)

)
∈ T nε/2(PU0U1U2Ỹ1Ỹ2V

).

By the Covering Lemma, Pr
[
E5,b|Ec3,b

]
tends to 0 as n→∞, if

R̃v ≥ I(U0, U1, U2, Ỹ1, Ỹ2;V ) + δ(ε). (6.97)

• Let E6,1,b be the event that(
Un0,b(1[3], 1), Un1,b(1, 1|1[3], 1), V n

b (1|1), Y n
1,b, Ỹ

n
1,b(1, 1)

)
∈ T nε (PU0U1V Y1Ỹ1

).

By the Markov Lemma Pr
[
E6,1,b|Ec3,b, Ec5,b

]
tends to zero as n→∞.
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• Let E6,2,b be the event that(
Un0,b(1[3], 1), Un2,b(1, 1|1[3], 1), V n

b (1|1), Y n
2,b, Ỹ

n
2,b(1, 1)

)
∈ T nε (PU0U2V Y2Ỹ2

).

By the Markov Lemma Pr
[
E6,2,b|Ec3,b, Ec5,b

]
tends to zero as n→∞.

• Let E7,1,b be the event that there is a tuple (m̂
(1)
c,b , n̂b−1, m̂p,1,b, t̂1,b) ∈ Mc ×N ×

Mp,1 × T1 that is not equal to the all-one tuple (1[3], 1, 1, 1) and that satisfies(
Un0,b(m̂

(1)
c,b , n̂b−1), Un1,b(m̂p,1,b, t̂1,b|m̂(1)

c,b , n̂b−1),

V n
b (1|n̂b−1), Y n

1,b, Ỹ
n

1,b(1, 1)
)
∈ T nε (PU0U1V Y1Ỹ1

).

By the Packing Lemma, we conclude that Pr
[
E7,1,b|Ec6,1,b

]
tends to zero as n→∞

if

R1 +Rc,2 +R′1 ≤ I(U0, U1;Y1, Ỹ1, V )− δ(ε) (6.98)

R1+Rc,2+R̃v+R′1 ≤ I(U0, U1;Y1, Ỹ1, V ) + I(V ; Ỹ1, Y1)− δ(ε) (6.99)

Rp,1 +R′1 ≤ I(U1;Y1, Ỹ1, V |U0)− δ(ε). (6.100)

• Let E7,2,b be the event that there is a tuple (m̂
(2)
c,b , n̂b−1, m̂p,2,b, t̂2,b) ∈ Mc ×N ×

Mp,2 × T2 that is not equal to the all-one tuple (1[3], 1, 1, 1) and that satisfies(
Un0,b(m̂

(2)
c,b , n̂b−1), Un2,b(m̂p,2,b, t̂2,b|m̂(2)

c,b , n̂b−1),

V n
b (1|n̂b−1), Y n

2,b, Ỹ
n

2,b(1, 1)
)
∈ T nε (PU0U2V Y2Ỹ2

).

By the Markov Lemma and the Packing Lemma, we conclude that Pr
[
E7,2,b|Ec6,2,b

]
tends to zero as n→∞, if

R2 +Rc,1 +R′2 ≤ I(U0, U2;Y2, Ỹ2, V )− δ(ε) (6.101)

R2+Rc,1+R̃v+R′2 ≤ I(U0, U2;Y2, Ỹ2, V ) + I(V ; Ỹ2, Y2)− δ(ε) (6.102)

Rp,2 +R′2 ≤ I(U2;Y2, Ỹ2, V |U0)− δ(ε). (6.103)
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Whenever the event Ecb+1 occurs but none of the events above, then Ecb . Therefore,

Pr
[
Eb|Ecb+1

]
≤ Pr

[
E0,b ∪ E1,b ∪ E2,1,b ∪ E2,2,b ∪ E3,b

∪E4,b ∪ E5,b ∪ E6,1,b ∪ E6,2,b

∣∣Ecb+1

]
≤ Pr

[
E0,b

∣∣Ecb+1

]
+ Pr

[
E1,b|Ec0,b, Ecb+1

]
+

2∑
k=1

Pr
[
E2,k,b|Ec1,b, Ecb+1

]
+ Pr

[
E3,b|Ec1,b, Ec2,1,b, Ec2,2,b, Ecb+1

]
+ Pr

[
E4,b|Ec3,b, Ecb+1

]
+ Pr

[
E5,b|Ec3,b, Ecb+1

]
+

2∑
k=1

Pr
[
E6,k,b|Ec3,b, Ecb+1

]
= Pr[E0,b] + Pr

[
E1,b|Ec0,b

]
+

2∑
k=1

Pr
[
E2,k,b|Ec1,b

]
+ Pr

[
E3,b|Ec1,b, Ec2,1,b, Ec2,2,b

]
+ Pr

[
E4,b|Ec3,b

]
+ Pr

[
E5,b|Ec3,b

]
+

2∑
k=1

Pr
[
E6,k,b|Ec3,b

]
, (6.104)

where the last equality follows because the channel is memoryless and the codebooks

in blocks b and b + 1 have been chosen independently. As explained in the previous

paragraphs, each of the terms in the last five lines tends to 0 as n → ∞, if con-

straints (6.92)–(6.103) are satisfied. Thus, by (6.91) and (6.104) we conclude that the

probability of error P
(N)
e (averaged over all code constructions) vanishes as n → ∞ if

constraints (6.92)–(6.103) hold. Letting ε → 0, we obtain that the probability of error
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can be made to tend to 0 as n→∞ whenever

R′1 +R′2 > I(U1;U2|U0) (6.105a)

R̂1 + R̃1 > I(Ỹ1;Y1) (6.105b)

R̂2 + R̃2 > I(Ỹ2;Y2) (6.105c)

R̂1 < I(U0, U1, U2, Ỹ2; Ỹ1) (6.105d)

R̂2 < I(U0, U1, U2, Ỹ1; Ỹ2) (6.105e)

R̂1 + R̂2 < I(U0, U1, U2; Ỹ1, Ỹ2) + I(Ỹ1; Ỹ2) (6.105f)

R̃v > I(U0, U1, U2, Ỹ1,Ỹ2;V) (6.105g)

R1 +Rc,2 + R̃v +R′1 < I(U0, U1;Y1, Ỹ1, V ) + I(V ; Ỹ1, Y1) (6.105h)

R1 +Rc,2 +R′1 < I(U0, U1;Y1, Ỹ1, V ) (6.105i)

Rc,1 +R2 +R′2 < I(U0, U2;Y2, Ỹ2, V ) (6.105j)

Rc,1 +R2 + R̃v +R′2 < I(U0, U2;Y2, Ỹ2, V ) + I(V ; Ỹ2, Y2) (6.105k)

Rp,1 +R′1 < I(U1;Y1, Ỹ1, V |U0) (6.105l)

Rp,2 +R′2 < I(U2;Y2, Ỹ2, V |U0). (6.105m)

Moreover, the feedback-rate constraints (6.1) impose that:

R̃1 ≤ RFb,1 (6.105n)

R̃2 ≤ RFb,2. (6.105o)

Eliminating the auxiliaries R̃1, R̃2, R̂1, R̂2, R̃v from the above (using the Fourier-Motzkin
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algorithm), we obtain:

R′1 +R′2 > I(U1;U2|U0) (6.106a)

R1 +Rc,2 +R′1 < I(U0, U1;Y1, Ỹ1, V )

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1) (6.106b)

Rc,1 +R2 +R′2 < I(U0, U2;Y2, Ỹ2, V )

−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2) (6.106c)

Rp,1 +R′1 < I(U1;Y1, Ỹ1, V |U0) (6.106d)

Rp,2 +R′2 < (U2;Y2, Ỹ2, V |U0) (6.106e)

where the feedback-rate constraints have to satisfy

I(Y1; Ỹ1|U0, U1, U2, Ỹ2) ≤ RFb,1 (6.107a)

I(Y2; Ỹ2|U0, U1, U2, Ỹ1) ≤ RFb,2 (6.107b)

I(Y1, Y2; Ỹ1, Ỹ2|U0, U1, U2) ≤ RFb,1 +RFb,2. (6.107c)

Applying again the Fourier-Motzkin elimination algorithm to constraints (6.106) and

keeping constraints (6.107), we obtain the desired result in Theorem 6.4 with the addi-

tional constraint that

I(U1;U2|U0) ≤ I(U1;Y1,Ỹ1,V |U0)+(U2;Y2,Ỹ2,V |U0). (6.108)

Finally, this last constraint can be ignored because for any tuple (U0, U1, U2, X, Y1, Y2, Ỹ1, Ỹ2)

that violates (6.108), the region defined by the constraints in Theorem 6.4 is contained

in the time-sharing region.

6.D Appendix: Proof of Theorem 6.5

Let RFb,1 > 0. Fix a tuple (U
(M)
0 , U

(M)
1 , U

(M)
2 , X(M)) and rate pairs (R

(M)
1 , R

(M)
2 ) and

(R
(Enh)
1 , R

(Enh)
2 ) ∈ C(1)

Enh as stated in the theorem. Then, by the assumptions in the
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theorem,

R
(M)
1 ≤ I(U

(M)
0 , U

(M)
1 ;Y

(M)
1 ) (6.109a)

R
(M)
2 < I(U

(M)
0 , U

(M)
2 ;Y

(M)
2 ) (6.109b)

R
(M)
1 +R

(M)
2 ≤ I(U

(M)
0 , U

(M)
1 ;Y

(M)
1 )+I(U

(M)
2 ;Y

(M)
2 |U (M)

0 )

−I(U
(M)
1 ;U

(M)
2 |U (M)

0 ), (6.109c)

where Y
(M)

1 and Y
(M)

2 denote the outputs of the considered DMBC corresponding to

input X(M). (Notice the strict inequality of the second constraint.)

By the definition of C(1)
Enh we can identify random variables U

(Enh)
0 and X(Enh) such

that

R
(Enh)
1 ≤ I(U

(Enh)
0 ;Y

(Enh)
1 ) (6.110a)

R
(Enh)
2 ≤ I(X(Enh);Y

(Enh)
1 , Y

(Enh)
2 |U (Enh)

0 ), (6.110b)

where Y
(Enh)

1 and Y
(Enh)

2 denote the outputs of the considered DMBC corresponding to

input X(Enh).

Define further U
(Enh)
1 =const., U

(Enh)
2 = X(Enh), Ỹ

(Enh)
1 = Y

(Enh)
1 , ỸM

1 =const, and

a binary random variable Q independent of all previously defined random variables and

of pmf

PQ(q) =

{
γ, q = Enh

1− γ, q = M.
(6.111)

We show that when γ is sufficiently small, then the random variables

U0 := U
(Q)
0 , U1 := U

(Q)
1 , U2 := U

(Q)
2

X := X(Q), and Ỹ1 := Ỹ
(Q)

1 (6.112)

satisfy the feedback rate constraints (6.24) and the rate pair (R′1, R
′
2),

R′1 := (1− γ)R
(M)
1 + γR

(Enh)
1 (6.113a)

R′2 := (1− γ)R
(M)
2 + γR

(Enh)
2 , (6.113b)
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satisfies the constraints in (6.23) for the choice in (6.112). The two imply that the rate

pair (R′1, R
′
2) lies in R(1)

relay,hb and concludes our proof.

Notice that the pmf of the tuple U0, U1, U2, X, Y1, Y2, Ỹ1 has the desired form

PQPU0U1U2|QPX|U0U1U2QPY1Y2|XPỸ1|Y1Q. (6.114)

where PY1Y2|X denotes the channel law.

For the described choice of random variables (6.112), the feedback-rate constraint (6.24)

specializes to

γH(Y
(Enh)

1 |Y (Enh)
2 , X(Enh)) ≤ RFb,1, (6.115)

which is satisfied for all sufficiently small γ ∈ (0, 1). Moreover, for this choice the

constraints in (6.23) specialize to

R1 ≤ (1− γ)I(U
(M)
0 , U

(M)
1 ;Y

(M)
1 )

+γI(U
(Enh)
0 ;Y

(Enh)
1 ) (6.116a)

R2 ≤ (1− γ)I(U
(M)
0 , U

(M)
2 ;Y

(M)
2 )

+γ
(
I(X(Enh);Y

(Enh)
1 , Y

(Enh)
2 )−H(Y

(Enh)
1 |Y (Enh)

2 )
)

(6.116b)

R1 +R2 ≤ (1− γ)
(
I(U

(M)
0 , U

(M)
1 ;Y

(M)
1 ) + I(U

(M)
2 ;Y

(M)
2 |U (M)

0 )

−I(U
(M)
1 ;U

(M)
2 |U (M)

0 )
)

+γ
(
I(U

(Enh)
0 ;Y

(Enh)
1 ) + I(X(Enh);Y

(Enh)
1 , Y

(Enh)
2 |U (Enh)

0 )
)

(6.116c)

R1 +R2 ≤ (1− γ)
(
I(U

(M)
1 ;Y

(M)
1 |U (M)

0 ) + I(U
(M)
0 , U

(M)
2 ;Y

(M)
2 )

−I(U
(M)
1 ;U

(M)
2 |U (M)

0 )
)

+γ
(
I(X(Enh);Y

(Enh)
1 , Y

(Enh)
2 )−H(Y

(Enh)
1 |Y (Enh)

2 )
)
. (6.116d)

We argue in the following that the rate pair (R1 = R′1, R2 = R′2) defined in (6.113)

satisfies these constraints for all sufficiently small γ > 0. Comparing (6.109a), (6.110a),

and (6.113a), we see that the first constraint (6.116a) is satisfied for any choice of

γ ∈ [0, 1]. Similarly, comparing (6.109c), (6.110a), (6.110b), and (6.113a) and (6.113b),

we note that also the third constraint (6.116c) is satisfied for any γ ∈ [0, 1]. The

second constraint (6.116b) is satisfied when γ is sufficiently small. This can be seen by

comparing (6.109b), (6.110b), and (6.113b), and because constraint (6.109b) holds with
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strict inequality. The last constraint (6.116d) is not active in view of constraint (6.116c)

whenever

γH(Y
(Enh)

1 |Y (Enh)
2 ) ≤ (1− γ)Γ(M), (6.117)

where Γ(M) is defined in (6.30). Thus, also this last constraint is satisfied when γ is

sufficiently small. This concludes our proof.



Chapter 7

Conclusion and Outlook

In this dissertation we studied the usefulness of feedback in memoryless BCs and pro-

posed new ways of exploiting feedback to improve communication reliability or increase

the non-feedback capacity region.

We investigated the linear-feedback schemes with a message point (in the spirit of

Schalkwijk-Kailath coding scheme) for the K ≥ 2-receiver memoryless Gaussian BCs

with only common message. We showed that this type of linear-feedback schemes,

even in the presence of perfect feedback, is strictly suboptimal, i.e. it fail to achieve

the capacity. Furthermore, as the number of receivers K increases, the largest rate

that is achievable this type scheme vanishes. In contrast, we presented an intermittent

coding scheme with rate-limited feedback which can achieve the capacity with a L-

th order exponential decay in the probability of error when the feedback rate satisfies

RFb > (L− 1)R.

we also studied the achievable regions for the two-receiver memoryless BCs with rate-

limited/noisy feedback. We proposed two types of coding schemes based on Marton’s

coding and block-Markov strategy. Our first type of scheme was shown to strictly

improve over the non-feedback capacity region for the class of strictly essentially less-

noisy BCs, for any positive feedback rate and even when there is only one-sided feedback

from the weaker receiver. This result even holds for some more capable BC, e.g. for

BSC/BEC-BC. Our second type of scheme can recover all previously known capacity and

DoF results for memoryless BCs with feedback when the feedback rates are sufficiently

large. When the feedback rates tend to infinity, our scheme improves over a special case

142
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of the Shayevitz-Wigger scheme.

In the following we discuss some related problems that are interesting to be investi-

gate in the future.

• Reliability on DMBC with general messages and feedback: In Chap-

ter 5, we investigated the communication reliability on Gaussian BCs with feed-

back and common message only. We are also interested in how feedback improves

communication reliability for DMBC with general messages, including both pri-

vate messages and common messages.

• Outer bound on the capacity region of BC with feedback:

Previously, for general DMBC with feedback, only simple (and certainly weak)

outer bounds by Cover [139] and by Ozarow&Leung [62] were known, see also

in Section 4.2. In the future, we would like to compare these two outer bounds

and derive a new better one. This will provide more insights on how far the

performances of our coding schemes or other coding schemes lie from the optimal

performance that can be achieved with feedback for BCs.

• Coding scheme for more general network: In Chapter 6, we have dealt

only two-receiver BCs with rate-limited (or noisy) feedback. Considering the case

of more than two receivers would be of interest. We also wish to extend our coding

schemes to more general network: discrete memoryless multi-message broadcast

network, in which there are multiple source nodes and each wishes to send more

than one message to multiple destination nodes. Such filed is interesting and

almost new at the moment.
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