N

N

TELECOM ParisTech Spécialité “ Electronique et

” présentée et soutenue publiquement

Communications
par New Ways of Exploiting Feedback in Memoryless
Broadcast Channels

Youlong Wu

» To cite this version:

Youlong Wu. TELECOM ParisTech Spécialité “ Electronique et Communications ” présentée et
soutenue publiquement par New Ways of Exploiting Feedback in Memoryless Broadcast Channels.
Networking and Internet Architecture [cs.NI]. Telecom ParisTech, 2014. English. NNT: . tel-
01132746

HAL Id: tel-01132746
https://theses.hal.science/tel-01132746
Submitted on 17 Mar 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01132746
https://hal.archives-ouvertes.fr

Parislech

INSTITUT DES SCIENCES ET TECHNOLOGIES TELECO M

PARIS INSTITUTE OF TECHNOLOGY P('ll‘l\'TeCh
\

A

2014-ENST-00xx

/

EDITE - ED 130

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par
TELECOM ParisTech
Spécialité « Electronique et Communications »

présentée et soutenue publiquement par

Youlong WU
le 31 Octobre 2014

New Ways of Exploiting Feedback

in Memoryless Broadcast Channels

Directeur de thése : Michele A. WIGGER

Jury

Gerhard KRAMER, Professeur a I'Université Technique de Munich Rapporteur
Yossef STEINBERG, Professeur a I'Institut Israélien de Technologie Rapporteur
Petros ELIA, Maitre de Conférences a Eurecom Examinateur
Mari KOBAYASHI, Maitre de Conférences a SUPELEC Examinateur
Ghaya REKAYA-BEN OTHMAN, Professeur a Télécom ParisTech Examinateur
Micheéle A. WIGGER, Maitre de Conférences a Télécom ParisTech Examinateur

TELECOM ParisTech
école de I'Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr




Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Michele
Wigger. Three years ago, when I left my home country for the first time and started
the PhD studies in France, I almost had to study everything from the beginning. The
different languages, lives and research fields have posed immense difficulties that I had
never thought to face. It was her endless patience and support that made me feel warm,
confident and get engrossed in research. She always made time to discuss with me, no
matter how busy her schedule and even when she was 9 months pregnant. She was a
constant source of good ideas and has never hesitated to offer guidance and insightful
comments. This dissertation would have never been possible without her invaluable aid.
I am also wholeheartedly thankful for the many opportunities she has given me, such
as attending special conferences, studying in the 2012 European School of Information
Theory, and visiting Israel Institute of Technology as an exchange student in winter
2013. T feel privileged to have had the opportunity to have her as my “research mom”.

My warmest thanks also goes to Professors Gerhard Kramer, Yossef Steinberg,
Ghaya Rekaya, Mari Kobayashi and Petros Elia for being on my Ph.D. examination
committees, and providing thoughtful feedback for me. I would like to thank Professor
Yossef Steinberg with whom I had collaborated during my visit in Israel Institute of
Technology. I really enjoyed the intriguing discussions with him and have always been
inspired by his broad knowledge, profound expertise and unparalleled insight. T am also
grateful to Professor Paolo Minero for the worthwhile collaborations. He initiated our
first project and parts of this dissertation are joint works with him.

Also, I would like to thank my friends and colleagues: Selma Belhadj Amor, Tian
Ban, Mohamed Essghair Chaibi, Arwa Ben Dhia, Asma Mejri , Seyed Hamed Mirghasemi

and Julia Vinogradova, for all the pleasant discussions and fun we have had in the last



three years. I sincerely thank all the faculty and staff at the Telecom Paritech. Special
thanks to Yvonne Bansimba, Florence Besnard, Chantal Cadiat and Bernard Cahen for
helping me feel at home here.

I am grateful to Chinese Council Scholarship and the city of Paris for providing
funding for the work done in this dissertation.

Last, but not the least, I would like to thank my wife and parents for their love
and supporting me spiritually throughout my life. My wife, Yan Wang, gave up her
job in Shanghai and moved to France with me. She is always behind me and gives
her unconditional support. She has kept me healthy and energetic in these five years.
Thanks to my parents for their countless sacrifices to raise me and give me the best
education they can offer. For these three persons, I know that I can never fully repay

them, but I will spend the rest of my life trying.

i



Dedication

To my family.

i



Abstract

In this dissertation we investigate the usefulness of feedback and propose new ways
of exploiting rate-limited feedback for the memoryless broadcast channels (BC).

In the first part of the dissertation, we consider K-reciever Gaussian BC with only
common message and feedback. We show that linear-feedback schemes with a message
point, in the spirit of the Schalkwijk-Kailath scheme, are strictly suboptimal for this
setup. To contrast this negative result, we describe a scheme for rate-limited feedback
that uses the feedback in an intermittent way, which achieves all rates R up to capacity
C with an L-th order exponential decay of the probability of error if the feedback rate
Rpy, > (L — 1)R, for some positive integer L.

In the second part, we study the two-receiver DMBC with private messages and rate-
limited feedback. T'wo types of schemes based on block-Markov strategy and Marton’s
coding, have been proposed for this setup. In the first type of scheme, the transmitter
simply relays the feedback messages obtained over the feedback links by encoding them
into the Marton cloud center of the next-following block. With this type of scheme,
we show that any positive feedback rate can strictly improve over the non-feedback
capacity region for the class of strictly essentially less-noisy BCs, which we introduce in
this dissertation. In our second type of scheme, the transmitter decodes all the feedback
information and processes it with some local information before sending the result to the
receivers. When the feedback rates are sufficiently large, then our scheme can recover

all previously known capacity and degrees of freedom results for memoryless BCs with
feedback.
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Notations

Sets, Scalars, Vectors, Matrices

Let R denote the set of real numbers and Z* the set of positive integers. For a
finite set A, we denote by |.A| its cardinality and by A/, for j € Z7, its j-fold Cartesian
product, A7 := A; x ... x Aj. Given a set S € R?, we denote by bd(S) and int(S) the
boundary and the interior of S.

Given a real number z, |x] is the integer part of z. We use the definitions a := (1—a)
and a*b := ab+ ab, for a,b € [0,1]. Also, |-| denotes the modulus operation for scalars.

Vectors are displayed in boldface, e.g., X and x for a random and deterministic
vector. Given a positive integer n, let 1, denote the all-one tuple of length n, e.g.,
13 = (1,1,1). Further, let || - || denote the norm operation for vectors.

For matrices we use the font A, and denote its Frobenius norm by ||A||f.
Random Variables and Probability

We use capital letters to denote random variables and small letters for their realiza-
tions, e.g. X and x. For j € Z*, we use the short hand notations X7 and 27 for the
tuples X7 := (Xy,...,X;) and 27 := (21,..., ;).

Z ~ Bern(p) denotes that Z is a binary random variable taking values 0 and 1 with
probabilities 1 — p and p. X ~ N (u,0?) denotes that X is a Gaussian random variable
with mean p and variance o2. We denote by Q(-) the tail probability of the standard
normal distribution. The abbreviation i.i.d. stands for independent and identically

distributed.

ix



Given a random variable Y, the expectation of Y is denoted by E[Y]. The proba-
bility of an event A is denoted by Pr[A] and the conditional probability of A given an
event B is denoted by Pr[A|B].

Common Functions

e H(X): Shannon Entropy of the random variable X and is defined as

H(X):= Y —Px(z)-logy(Px(x)).
zeX

Alternatively, we also write

H(Px(x1), Px(x2), -, Px(zm)),

to denote the Shannon entropy of a random variable X that takes values in X =
{z1,..., 2} according to the probability mass function Px(-).

e Hy(p): Binary Shannon Entropy of p € [0, 1] and is defined as

Hy(p) := —p - logy(p) — (1 — p) - logy(1 — p).

e /(X;Y): Mutual Information between the random variables X and Y and is
defined as

o ) log, (DX @)
I(X;Y) = (Wezw) Pxy(@,y) - log, (pX@ : Py<y>> ‘

e log(-): denotes the natural logarithm.

e o: denotes function composition.

e 0(1): is the Landau symbol that stands for an arbitrary function that tends to 0
as n — o0o.

e j(g): denotes a general nonnegative function of e that tends to zero (arbitrarily

slow) as € — 0.



Chapter 1

Introduction

The growing demands for reliable and high date rates have encouraged a huge amount
of research on wireless communication systems with feedback, which allow the receivers
to send signals back to the transmitter. Feedback channels, in fact, are present in many
current commercial systems. A notable example are mobile cellular telephony systems,
where the communication between the many mobiles and the only base station in a cell
takes place in both directions.

In 1956 Shannon first showed that for memoryless point-to-point (single-user) chan-
nel, feedback cannot increase the capacity [1], even when the feedback is perfect, i.e.
the feedback link is noise-free, delayless and of infinite rate. Nonetheless, feedback does
improve the communication in terms of reducing the coding complexity and decreasing
the probability of error [2]. Almost sixty years since the publication of Shannon’s sur-
prising result, a large number of works have been done, mainly to answer the following
fundamental questions:

e How can feedback improve the communication reliability?

e What’s the capacity region (i.e. the fundamental limits of reliable data rates) of

multiuser channels with feedback?
In this dissertation we briefly review the works that are most relevant to our results in

the following two sections.
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1.1 How Can Feedback Improve Communication Reliabil-

ity?

For Gaussian point-to-point channel without feedback, the probability of error decays
at most exponentially in the blocklength n at any rate below capacity [3] (i.e. the
probability of error is of the form P = exp(—(n)), where 2(n) denotes a function
that satisfies lim,,_, % > 0). With the help of (perfect) feedback, a simple sequential
linear scheme, proposed by Schalkwijk and Kailath [2], achieves capacity with a doubly
exponential decay in the probability of error.

Notice that the Schalkwijk-Kailath scheme requires perfect feedback. When the
feedback link is noisy, the improvement on the communication reliability drops dramat-
ically [4, Bl [6]. In particular, when the feedback link is corrupted by additive white
Gaussian noise, the Schalkwijk-Kailath scheme fails to achieve any positive rate [4].

In the presence of perfect feedback, the doubly exponential decay in error probability
achieved by Schalkwijk-Kailath scheme is not the best one can obtain. In [7, 8] it is
shown that perfect feedback allows for arbitrarily large super-exponential decay in error
probability if the blocklength n is sufficiently large. Even if the feedback link is rate-
limited (but noise-free and delayless), a nonlinear scheme [9] can achieve the capacity
with L-th order exponential decay in the error probability when the feedback rate Rpp, >
(L — 1)R, where R is the forward rate and L is any positive integer. That means, it

)

achieves a probability of error of the form P = exp(— exp(exp(...exp(2(n))))), where
there are L exponential terms. The Schalkwijk-Kailath scheme was later extended to
many multiuser channels with (perfect) feedback [10} [1T), 12, 13}, 14} 15, 16}, 17]. These
variations also exhibit doubly exponential decay in the probability of error.

For discrete memoryless channel (DMC), the improvement on communication reli-
ability afforded by feedback was studied in [I8, 19, 20} 211 22| 23, 24]. With perfect
feedback, Burnashev [19] established a closed form expression for the reliability function
which holds for all rates from zero to capacity. Subsequently, various two-phase coding
schemes that achieve the optimal reliability function were given in [20 21]. In [22] it is
shown that for a binary symmetric channel (BSC) even if the encoder dose not know

the crossover probability, the two-phase scheme can still achieve Burnashevs reliabil-

ity function. Naghshvar, Javidi, and Wigger [23] proposed one-phase coding scheme
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that achieves the optimal reliability function. In [24] communication reliability in the

presence of Ack/Nack feedback was investigated.

1.2 What’s the Capacity Region of Multiuser Channels
with Feedback?

Contrary to the case of memoryless point-to-point channels with feedback, the capacity
region of most multiuser channels with feedback is still unknown. Many previous works
have been done aiming to find out whether or how feedback enlarges non-feedback
capacity region. In this section we briefly review some results on various memoryless
multiuser channels with feedback, including MAC, BC, interference channel (IC), and
relay channel (RC) with feedback.

1.2.1 Multiple Access Channels with Feedback

Gaarder and Wolf [25] showed that (perfect) feedback can increase the non-feedback
capacity region of certain discrete memoryless MAC. Subsequently, an achievable region
for the general memoryless MAC with perfect feedback was proposed by Cover and
Leung [26]. In [27] Willems has shown that the Cover-Leung region is tight for a
certain class of discrete memoryless MACs, in which one of the two channel inputs is
completely determined by the channel output and the other channel input. Bross and
Lapidoth [28] derived an achievable region that strictly contains the Cover-Leung region
for some channels. For the two-user memoryless Gaussian MAC, Ozarow [10] proposed
a linear coding scheme based on the Schalkwijk-Kailath scheme [2], and showed that
it is optimal, i.e. achieves the capacity region. For the K > 3-user Gaussian MAC,
Kramer’s scheme is optimal among a large class of schemes [12].

But so far, even with perfect feedback, no computable single-letter expression for
the capacity region of general memoryless MACs with feedback is known. In [29] [30]
Kramer presented a multi-letter expression based on “direct information”. Permuter,
Weissman, and Chen [3I] later extended Kramer’s results to finite-state MACs with
feedback that may be an arbitrary time-invariant function of the channel output samples.

Unfortunately, these multi-letter expressions are incomputable.
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Memoryless MACs with imperfect feedback were considered in [32] [33] [34]. Carleial
[32] derived an achievable region for the general MAC with generalized feedback sig-
nals and showed that the Cover-Leung region obtained for the perfect feedback setting,
remains achievable for the perfect one-sided feedback, i.e. only one of the two trans-
mitters knows perfect feedback signals whereas the other transmitter has no feedback
at all. Shaviv and Steinberg [33] studied the general MAC with rate-limited feedback
and derived an achievable region based on superposition coding, block-Markov coding,
and coding with various degrees of side information at the feedback link, as in [35]. It
is shown that this region coincides with the Cover-Leung region when feedback rate is
large. Lapidoth and Wigger [34] considered the Gaussian MAC with noisy feedback and
proposed achievable regions that exhibit the following two properties. 1) For all (finite)
noise variances in the feedback links, the regions include rate points that lie outside the
non-feedback capacity region, and 2) when the feedback-noise variances tend to zero,
the regions coincide with Ozarow’s region [10].

A different line of works has concentrated on the MACs with state [36] 37, 38, [39]
40, 411, [42], 143], [44), [45], [46], 147, 48, 49, [50]. In [37] and the references therein, the Gaussian
MAC with perfect channel state information (CSI) at the transmitters (CSIT) and at
the receiver (CSIR) was studied. In [36] the sum-rate capacity was given and later the
capacity region was obtained in [37]. A relatively practical consideration where each
transmitter knows its own CSI while the receiver has perfect CSI was investigated in
[38, 139, 40]. In [4I] Cemal and Steinberg considered the discrete memoryless MAC with
partial CSIT, where the CSI is non-causally available at the transmitters in a compressed
form. A single-letter capacity region was obtained for the two-user MAC when the CSI
is available to the transmitter in a physically degraded version of that available to the
other. This result was later extended by Jafar [42] to the case of casual CSI. In a survey
paper [43], the fading MAC with perfect/partial/no CSIT was discussed. It is shown
that with perfect CSIT and CSIR, the optimal power allocation leads to a substantial
gain in capacity. In [44) [45] the fading MAC with distributed CSI, where the channel
gains are only available at respective transmitters and receiver, was investigated. The
multiple-input multiple-output (MIMO) fading MAC with CSI feedback was studied in
146, [47, 48, 49, 50].

Outer bounds on the capacity region of the MAC with feedback were derived by



)
Gastpar and Kramer [5I] and Tandon and Ulukus [52] based on the idea of dependence-

balance [53], which was first introduced for single-output two-way channels.

1.2.2 Broadcast Channels with Feedback

For most BCs in general, it is not known whether feedback can increase the capacity
region. There are some exceptions. For example, for all physically degraded discrete
memoryless broadcast channels (DMBCs) the capacity regions with and without feed-
back coincide [54]. The first simple example DMBC where (even rate-limited) feedback
increases capacity was presented by Dueck [55]. His example and coding scheme were
generalized by Shayevitz and Wigger [56] who proposed a general scheme and achievable
region for DMBCs with generalized feedback. In the generalized feedback model, the
feedback to the transmitter is modeled as an additional output of the DMBC that can
depend on the input and the receivers’ outputs in an arbitrary manner. It has recently
been shown [57] that the Shayevitz-Wigger scheme for generalized feedback includes
as special cases the two-user schemes by Wang [58], by Georgiadis and Tassiulas [59],
and by Maddah-Ali and Tse [60], which achieve the capacity region and the degrees of
freedom (DoF) region of their respective channels.

Other achievable regions for general DMBCs with perfect or noisy feedback have
been proposed by Kramer [29] and by Venkataramanan and Pradhan [61]. Comparing
the general achievable regions in [29 56l 61] to each other is hard because of their
complex form which involves several auxiliary random variables.

A different line of works has concentrated on the memoryless Gaussian BCs [13], 14,
16], 62, 63, 64, 65, 66]. In [14], a coding scheme was proposed which can achieve the
full-cooperation bound for all noise correlations —1 < p, < in the high signal-to-noise
ratio (SNR) limit. When the feedback links are noisy, the gains afforded by feedback
are bounded, unless the feedback noise decays to zero sufficiently fast with SNR. The
asymptotic high SNR sum-capacity for the cases p, € {+1,—1} was also investigated in
[14]. The best achievable region when the noises at the two receivers are independent
was given in [16] [I7] (see also [13] [64] for special cases) and is based on a MAC-BC
duality approach.

In [66] Li and Goldsmith investigated the K-receiver Gaussian fading BC assuming

perfect CSIT and CSIR, and proposed optimal resource allocation strategies for code
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division, time division, and frequency division. The MIMO Gaussian fading BC with
rate-limited feedback was studied in [67, 68, 69, [70] (71, [72], (73] [74, [75], where the receivers
are assumed to have perfect knowledge of the channel matrix, and use quantization or
analog scaling to send the it back to the transmitter via the rate-limited feedback
link. Jindal [67] proved that to achieve the full multiplexing gain, the feedback rate per
receiver must increase linearly with the SNR. In [68] Caire et al. analyzed and compared
the quantized and analog CSI feedback schemes under various assumptions. Kobayashi
[69] proposed a useful guideline to optimize the overall system throughput. Lapidoth,
Shamai, and Wigger [71] showed that the uncertainty of CSI at the transmitter greatly
reduces the SNR throughput even if the receivers know perfect CSI. Weingarten, Shamai,
and Kramer [73] proposed inner and outer bounds on the DoF for finite-state compound
BC with two receivers. Gou, Jafar, and Wang showed that for a few cases the inner
bound is tight. In [60} 76} [77, [78, [79, [80, 81, [82] the case of delayed (stale) CSI at the
transmitter was considered, i.e. there is a delay between the time measuring channel
state at the receiver and the time observing CSI at the transmitter. It is shown that
delayed CSI can still increase the capacity region.

An outer bound on the capacity region of the BC with feedback was given by Ozarow
and Leung [62], by assuming one of the two receivers observes the channel output of the
other receiver. This converts the BC to physically degraded BC and thus the capacity
region with feedback and without feedback coincide.

A more detailed introduction to memoryless BC with feedback is provided in Chap-

ter [

1.2.3 Interference Channels with Feedback

ICs with perfect feedback were investigated in [83, 84, 85| 86l [14]. Jiang et al. [83]
derived an achievable region for discrete memoryless IC with feedback, based on binning
and block-Markov coding. In [84] 85], Kramer proposed feedback strategies for the
Gaussian IC. Suh and Tse [86] considered the two-user Gaussian IC with feedback and
characterized the capacity region to within 2 bits/s/Hz and the symmetric capacity
to within 1 bit/s/Hz. They also showed that feedback can provide unbounded gain in
ICs at high SNR, i.e. the gap between the feedback and non-feedback capacity can

be arbitrarily large for certain channel parameters. Sahai et al. [87] proved that for
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deterministic IC, only one perfect feedback link from one receiver to either of the two
transmitters is sufficient to achieve the capacity region of the setting with both perfect
feedback links. Gastpar et al. [14] considered the two-user Gaussian IC with noiseless
one-sided feedback, where each of the two transmitter obtains feedback only from its
intended receiver. It is shown that feedback can provide unbounded gain for this setting,
approximately doubling the sum-rate capacity in the high SNR regime.

More realistic scenarios where feedback cost is taken into consideration were studied
in [88, [89) @90, 9T]. Vahid, Suh and Avestimehr [88] studied the two-user IC with rate-
limited feedback under three different models: the El Gamal-Costa deterministic model
[92], the linear deterministic model [93] and the Gaussian model, and it is shown that
one bit of feedback can provide at most one bit of capacity increase. In [90] the K-user
Gaussian IC with feedback was studied and it is shown that feedback increases the DoF
for some classes of scalar ICs.

MIMO Gaussian IC with CSI feedback was considered in [94) 95, [96], 97, 98, 99|
100}, 101l 102l 103, 104, 105, 106, 107]. In [94], Jafar and Fakhereddin showed that
zero-forcing scheme is sufficient to achieve the DoF region for the two-user MIMO IC.
In [97] Wang, Gou, and Jafar studied the three-user Gaussian IC and solved issue of
feasibility of linear interference alignment introduced by Yetis [98]. In [99, 100} 101], it
is shown that the DoF achieved with perfect CSIT remains achievable when the CSIT
is imperfect but increases at sufficiently fast rate with SNR. Recently, inspired by the
Maddah-Ali&Tse’s surprising result which shows that even delayed CSIT can increase
the DoF for MIMO Gaussian BC, the impact of delayed CSIT on MIMO Gaussian 1C
was investigated in [102, [103], 104}, 105 [106, 107].

Using the idea of dependence-balance, Tandon and Ulukus [52] derived an outer
bound for the general IC with feedback. Gastpar and Kramer [51] applied the same
idea to obtain an outer-bound on the usefulness of noisy feedback for the IC and showed
that feedback gain decreases roughly when the feedback-noise variance is larger than
the noise on the forward link. More outer bounds for various specific ICs with feedback
were established in [86)], [88], [90) 9T].



1.2.4 Relay Channels

The relay channel model was first introduced by Van der Meulen [108], which is in fact
a single-user communication channel where a relay helps the communication between
the transmitter and the receiver. In [109], Cover and El Gamal proposed two coding
strategies for the discrete memoryless relay channel: the decode-and-forward scheme
and the compress-and-forward scheme. A generalized compress-and-forward strategy
for

The relay channel with feedback has first been considered by Cover and Gamal
[109]. It is shown that for the setting with feedback from the receiver to the relay, the
channel is physically degraded and therefore decode-and-forward strategy achieves the
capacity. However, for the settings with partial feedback either from the receiver to
the transmitter, from the relay to the transmitter, or both (but without receiver-relay
feedback), the capacity is still not known except for the semi-deterministic case [110] [92]
and for the physically degraded case.

In [I11] Gabbai and Bross considered the setting with partial feedback from the
receiver to the transmitter as well as partial feedback from the relay to the transmitter.
Achievable rates were derived for the general Gaussian and the Z relay channels and
were shown to be strictly larger than the best known achievable rates without feedback.

Bross and Wigger [112] investigated the discrete memoryless relay channel and the
Gaussian memoryless relay channel with partial feedback from the receiver to the trans-
mitter. For discrete memoryless relay channels, an achievable rate was calculated by
combining the ideas of restricted decoding used in [I13], the nested binning used in
[111], and the generalized coding strategy for the relay channel in [I09]. For the Gaus-
sian relay channel, another achievable rate was derived based on the Schalkwijk-Kailath
scheme [2]. It is shown that for some channels both achievable rates are strictly larger
than all best known achievable rates.

An upper bound for relay channels with partial feedback from the relay to the
transmitter was established in [IT0]. This outer bound includes the cut-set upper bound
[109] on the capacity of the one-way relay channel, and was shown to be tight for the
semi-deterministic relay channel with partial feedback from the relay to the transmitter.

The classic relay channel in [108), [109] can be extended to more general models by

introducing multiple nodes such as transmitters, relays and receivers [114], 115 116
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117]. When adding multiple transmitters, the model turns to multiple access relay
channel (MARC) [114], 118]. In [119] Hou, Koetter, and Kramer studied the MARC
with perfect feedback and derived inner bounds and outer bound for feedback from the
relay to the transmitters. The MARC with generalized feedback was studied in [120].
When adding multiple transmitters and relays, it results in broadcast relay channel
(BRC) [121), 122], the work on BRC with perfect/limited feedback can be found in
[123], 124 [125] 126, 127). When adding multiple transmitters, relays and and receivers,
this model is called interference channel with relays (ICR) [116, 117]. The ICR with
feedback was investigated in [128] [129] [130] and the references therein.

1.3 Contributions and Outline

In this dissertation we focus on memoryless BCs with feedback, for which we investigate
the usefulness of feedback and propose new ways of exploiting feedback to help the
communication, i.e. to increase the capacity or to improve the communication reliability.

The dissertation is organized as follows.

In Chapter [2| we review the reliability results on memoryless Gaussian point-to-point
channel with feedback, where the Schalkwijk-Kailath scheme and a nonlinear feedback
scheme proposed by Mirghaderi, Goldsmith and Weissman are present.

In Chapter [3] we review the capacity results on some classes of memoryless BCs
without feedback. We also describe superposition coding and Marton’s coding, which
lead to two important inner bounds for general BCs. These two schemes are also used
as building stones in our schemes proposed in Chapter [ for memoryless BCs with
feedback. In Chapter |3| we also present the best known outer bound proposed by Nair
and El Gamal.

In Chapter [4] we review several achievable regions for DMBC and introduce several
linear-feedback coding schemes for memoryless Gaussian BC. At the end of Chapter
we present two well-known outer bounds: cut-set outer bound and the Ozarow-Leung
outer bound.

In Chapter [5| we consider the K > 2-user memoryless Gaussian BCs with feedback
and common message only. We show that the type of Schalkwijk-Kailath coding scheme,

which performs well for point-to-point channels, Gaussian MACs and Gaussian BCs
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with private messages, is strictly suboptimal for this setup. Even with perfect feedback,
the largest rate achieved by this type of linear-feedback scheme is strictly smaller than
capacity, which is the same with and without feedback. As a consequence, for this setup,
linear-feedback schemes also fail to achieve double-exponential decay of the probability
of error for rates close to capacity. In contrast, we present a coding scheme with rate-
limited feedback which is inspired by the nonlinear scheme presented in Chapter
When the feedback rate Rg, > (L — 1)R, where R is the forward rate and L is any
positive integer, our intermittent-feedback scheme can achieve the capacity with a L-th
order exponential decay in the probability of error.

In Chapter [6] we study the two-receiver memoryless BCs with private messages and
feedback. For this setup we propose two types of coding schemes with rate-limited
feedback from one or two receivers. Our first type of scheme strictly improves over the
non-feedback capacity region for the class of strictly essentially less-noisy BCs, for any
positive feedback rate and even when there is only feedback from the weaker receiver.
Examples of essentially strictly less-noisy BCs are the binary symmetric BCs or the
binary erasure BCs with unequal cross-over probabilities or unequal erasure probabilities
to the two receivers. Previous to our work, feedback was known to increase capacity
only for a few very specific memoryless BCs. Our second type of scheme can recover all
previously known capacity and DoF results for memoryless BCs with feedback when the
feedback rates are sufficiently large. This includes in particular the result by Wang [5§]
and by Georgiadis and Tassiulas [59] for the binary erasure BC when all erasures are
known to both receivers, the results by Shayevitz and Wigger [56] and by Chia, Kim,
and El Gamal [57] on variations of the Blackwell DMBC, and the result by Maddah-Ali
and Tse [60] on memoryless fading BCs with completely stale state information. In
fact, as the feedback-rates tend to infinity our scheme improves over a special case of
the Shayevitz-Wigger scheme which is known to recover the mentioned results.

Finally in Chapter [7] we conclude this dissertation and discuss some possible future

directions.



Chapter 2

Reliability of the Gaussian
Point-to-point Channel with
Feedback

Consider a memoryless Gaussian channel with feedback, depicted in Fig.

Z;
X Y; N
M | Transmitter ————» Receiver | M

Figure 2.1: Gaussian point-to-point channel with feedback.

The transmitter wishes to communicate a message M € {1,...,[2"%|} over the
discrete-time memoryless Gaussian noise channel.

The cannel output is
Yi=X;+7Z;, forie {l,...,n} (2.1)
where {Z;} is an i.i.d sequence with each sample Z; ~ N(0,1). The transmitter is

comprised of a sequence of encoding functions { fi(n) * . that is used to produce the

11
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channel inputs as
X;=f"(M,Fy,... Fi_y), forie{l,...,n} (2.2)

where F; takes values in feedback alphabet set F; and denotes the signal sent back by
the receiver at the end of time slot 7. The channel input X; is restricted to an expected

average power constraint:
n
> E[X]] <nP. (2.3)
=1

The receiver is comprised of a decoding function ¢(™ used to produce a guess of message
M

N = g (v) (2.4)

where M € {1,...,|2"%|}.
A rate is called achievable if for every blocklength n, there exists an encoding function

and a decoding function such that
P .= Pr [M ” M}

tends to 0 as the blocklength n tends to infinity.

The capacity of this channel is the supremum over all achievable rate, which is same
as the non-feedback capacity: C' = 1/2logy(1 + P).

Although feedback can not increase the capacity of point-to-point channel, it does
improve the reliability, i.e. reduce the smallest possible error probability in the commu-
nication at a given blocklengh n.

In this chapter, we briefly review the results on reliability of memoryless Gaus-
sian point-to-point channels with feedback. In Section [2.1] we describe the prominent
linear Schalkwijk-Kailath scheme [2], which can achieve the capacity with a doubly ex-
ponential decay in error probability as a function of blocklength n. In Section a
nonlinear scheme [9] with rate-limited feedback is present, which uses the feedback in

an intermittent way: only in few time slots the receiver sends feedback signals. This



13
nonlinear feedback scheme can also achieve the capacity with doubly exponential decay
in the probability of error, but under a milder constraint—only requiring that the average

feedback rate satisfies Rpp, > R.

2.1 Schalkwijk-Kailath Scheme

Assume that the feedback link is perfect (noise-free, delayless and of infinite capacity),
then we have F; =Y, for i € {1,...,n}. Here we review the Schalkwijk-Kailath scheme
[2], see also Section 17.1.1 in [I31].

1) Codebook generation: Divide the interval [—v/P,+/P] into |2"f| small subinter-
vals with equal length A = 2v/P/|2"%|. Convert each message m into a real number
6(m) that denotes the midpoint of the m-th subinterval.

2) Encoding: Given M = m, initially, the transmitter sends
X() = Q(m),

and the receiver observes Yy = Xg + Zy. With perfect feedback, the transmitter can
learn the noise Z3. Then at time ¢ = 1, it sends X7 = a1Zy with a1 = \/]3, which
satisfies the average power constraint. Subsequently, at time ¢ € {1,...,n}, the encoder
sends

Xi = ai(Zo — Zo(Y'™1))
where Zo(Y*~!) is the minimum mean square error (MMSE) estimate of Zy given Y1

and «; is chosen to satisfy E[X?] = P for i € {1,...,n}.
3) Decoding: After observing Y, the receiver estimates 6, of 6(m) by taking

0, =Yy — Zo(Y™ )
=0(m) + Zo — Zo(Y™ 1) (2.5)

and declares 7 as the message sent if #(m) is the nearest message point to O,
3) Analysis of the probability of error: By the orthogonality principle of MMSE
estimate and by the joint Gaussianity, we observe that Z (Y1) is linear in Y*~!, and

(X:,Z;,Y;) are independent of Y*~1. Furthermore, since the scaling factor oy, for i €
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{1,...,n}, is chosen so that E[Xf] = P, the channel outputs Y are i.i.d with ¥; ~
N(0,P +1).

Now we look at the mutual information I(Zp; Y"™) in two ways. On one hand,

1(Z0;Y") = h(Y™) — H(Y"|Z))

n

=3 (hYiY'Y) = (Vi Zo, YY)
i=1

= >~ (VY™ — (X + 21|20, YY)

=1
n

= > (YY) = h(Zi| Z0, YY)

= (hYi[Y'™Y) = h(Zy)

On the other hand,

I(Zo;Y") = h(Zo) — h(Zo|Y")
1

var(Zp|Y™) 27)

1
= 3 logs
From (2.6 and (2.7), we have
var(Zo|Y™) = 272,

Thus, given (2.F]), we obtain that 0,, ~ N(6(m),272"C). Notice that the receiver per-
forms the nearest neighbor decoding, which implies that the decoder makes an error only
if 0, is closer to a different message point not equal to 8(m), i.e. |0, — 0(m)| > A/2.
The probability of error is thus upper bounded by

P < 20(2MC-R)\/p). (2.8)
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Recall that for the stand Gaussian cumulative density function: Q(z) < (1/v/2m)e **/2.
Therefore, and if R < C

n(C—R)
7T

the probability of error decays doubly exponentially to 0 in blocklength n.

2.2 A Nonlinear Feedback Scheme

Assume the feedback link is noise-free, delayless but is rate-limited by Rgp. It is shown
in [9] that a super-exponential decay in the probability of error as a function of the
blocklengh n is achievable when Rpy is sufficiently large. For completeness, in the
following we describe their scheme that achieves capacity C' with doubly exponential
decay in the probability of error.

Fix a positive rate R < C' and assume that
Ry, > R. (2.9)

Also, fix a large blocklength n and small numbers €, > 0 such that

R < C(1-9) (2.10)
and
(1—e)t<1434. (2.11)
Define
ni = (1 —e€)n. (2.12)
Notice that by (2.11)) and (2.12)),
LA (2.13)
ni

The coding scheme takes place in two phases. After each phase | € {1,2}, the receiver
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makes a temporary guess M; of message M. Define the probability of error after phase
le{l1,2}:

P .= Pr [Ml ”] M} . (2.14)

1) Code Construction: Construct a codebook C; that

e is of blocklength nq,

e is of rate Rphase,1 = %R,

e satisfies an expected average block-power constraint P, and

e when using a non-feedback coding rule, it achieves probability of error ~; not

exceeding
m < emméme@) (2.15)

for some ¢ > 0.

Notice that such a code exists because, by (2.10) and (2.13), the rate of the code
SsR<C1- 62). Construct a codebook Cy that:

e is of blocklength en — 1,
e is of rate Rphase,2 := ﬁ,

e satisfies an expected average block-power constraint P/~

e when using a non-feedback coding rule, it achieves probability of error ~» not

exceeding

2 < exp(—exp(2(n))). (2.16)

The existence of codebook Cs is given in Appendix

2) Transmission: Transmission takes place in two phases. In the first phase, which
occupies channel uses 1,...,n, the transmitter sends the codeword in C; corresponding
to message M.

After observing the channel outputs Yi,...,Y,,, the receiver makes a temporary
decision Mj about M. It then sends this temporary decision M to the transmitter over

the feedback link. By Rpp > R, message M, can be perfectly known at the transmitter.
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If in phase 1 the decoding result is wrong, i.e.
(N # M) (2.17)
then in channel use nj 4+ 1 the transmitter sends an error signal to indicate an error:

Xny+1 =V P/m. (2.18)

During the remaining channel uses ¢ = nj +2,...,n, it then retransmits the message M
by sending the codeword from Cy that corresponds to M.

On the other hand, if the receiver’s temporary decisions was correct,

My = M, (2.19)
then the transmitter remains silent during the entire phase 2:
X; =0, t=n1+1,...,n. (2.20)

In this case, no power is consumed in phase 2.

The receiver first detects whether the transmitter sent an error signal in channel use
n1 + 1. Depending on the output of this detection, they either stick to their temporary
decision in phase 1 or make a new decision based on the transmissions in phase 2.
Specifically, if

Y41 <T (2.21)

where

7. YP/m (2.22)

2 9
then the receiver decides that its decision M in phase 1 was correct and keeps it as its

temporary guess of the message M:
M = M. (2.23)

If instead,
Yn1+1 2 Tv (224)
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the receiver then decides that its temporary decision M, was wrong and discards it.

It then produces a new guess M, by decoding the code Co based on the outputs

Yo, +2,..., Y. In this case, the receiver produces the final guess as
M = Mo. (2.25)

3) Analysis:

An error occurs in the communication if
(M # M). (2.26)

We next analyze the probability of error and we bound the consumed power. The

analysis relies on the following events. Define the events:

e ¢1: The receiver’s decision in phase 1 is wrong;:

M, # M. (2.27)
e c7: The receiver observes
Yo +1 <T. (2.28)
o ¢3: Decoding message M based on the outputs Yy, 12, ...,Y, using codebook Ca
results in an error:
Moy # M. (2.29)

Define also the events:

&1: The receiver’s decision in phase 1 is correct, and the receiver obtains an error

signal in channel use ny + 1 :
(e1)N (er)”. (2.30)

&y: The receiver’s decision in phase 1 is wrong, but the receiver obtains no error signal
in channel use ny + 1:
€1 MNer. (2.31)
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&3: The receiver’s decision in phase 1 is incorrect, the receiver observes Y, ,+1 > T

and errs when decoding M based on the outputs Y, 42,...,Y,
€N (GT)C M eo. (2.32)

The probability Pe(n) is included in the union of the events (&3 U & U E3), and thus,
by the union bound,

P™ < Pr[&)] + Prl&)] + Pr[&)]. (2.33)

We bound each summand in (2.33)) individually, starting with Pr[&;]. By (2.30)), we

have

Pr[&]

IN
v T
~ —

I
©
3

(2.34)

where the first inequality follows by Bayes’ rule and because a probability cannot ex-
ceed 1; and the last equality because in the event (el)c, we have X, 11 = 0 and thus
Yo, 41 ~ N(0,1).

Next, by and similar arguments as before, we obtain,

Pr[&] = Prle; Ner]
K
< Z Prler|e1]
k=1

- Q(T). (2.35)

Finally, by (2.32)) and similar arguments as before,

Pr[&s] = Pr [61 N (eT)c N 62]
Pr[(eT)c N 62\61]
Prlealeq]

V2 (2.36)

IN A
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where the last inequality follows by the definition of ~s.

In view of (22.33)—(2.36),

P < Pr&] + Pr[&)] + Pr[&s)
<29(T) + 2. (2.37)

Given the definitions of 7y, 79 and T in , and , respectively, and by
Qz) < (1/ \/ﬂ)e_ﬁ/ 2, implies that probability of error decays doubly exponen-
tially in the blocklength n.

Now consider the consumed expected average block-power. By the definition in ,

we have
P <. (2.38)

Furthermore, since in phase 2 we consume power P/~; in the event (2.17)) and power 0
in the event (2.19)),

1| 1 P
ZEIS X2 < 2(Ppa1- PM ) <P 2.39
- [g Z]_n( (1=n+ B} -en) < (2.39)

Also note that the average feedback rate is R that meets the constraint on the feedback
link.

2.A Appendix: Proof of Existence of Codebook C

By [3], for all rates

1 24+ 4/P2/o* 44
(2.40)

R< §lOg2 4 ’

and for sufficiently large n there exists a blocklength-ii, rate-R non-feedback coding

scheme for the memoryless Gaussian point-to-point channel with noise variance o2,

with expected average block-power no larger than P and with probability of error P,
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satisfying
P, < e—ﬁ(E(R,P/U2)—EI) (241)

for some fixed € > 0 and

E(R,P) = 4]; (1 —\/1- 2—2R> : (2.42)

Now apply this statement to R = Rphase,2 = R_ 2=1,P=P/y andi=en—1.

e1/n?

Since for sufficiently large n and for all rates

2+ /P2/y3+4 (2.43)

4 Y

1
Rphase,Q < 5 10g2

we conclude by (2.40({2.42) that there exists a code Cy of rate-Rphase 2, block-power
P/~1, blocklength (en — 1) and probability of error v, satisfying

(o (2 (Vs ) )

Y2 <e
= exp(—exp(2(n))). (2.44)



Chapter 3

Broadcast Channel without
Feedback

In this chapter we review some previous results on the capacity region of memoryless
BC without feedback.

Consider a two-receiver memoryless BC with private and common messages de-
picted in Figure [3.11 The setup is characterized by the input alphabet X', the out-
put alphabets Vi and ), and a probability transition function Py,y,|x (y1,y2|7). If at
time 4, for ¢ € {1,...,n}, the transmitter sends the channel input z; € X, then Re-

ceiver k € {1,2} observes the output Y; € V. The BC is said to be memoryless if

Pypypixn (W1, v312") = [Tzt Pyivaix (Y,0s y2,il @)

. ~ (1) a0
. £|_> Receiver 1 My~ My

My, M+, My | Transmitter > PY1Y2|X
TQI—V Receiver 2 M(§2),M2

Figure 3.1: Two-receiver memoryless BC with private and common messages

The goal of the communication is that the transmitter conveys a common message
My € {1,...,[2"%0 |} to both receivers, and two private messages M; € {1,...,|2"F1]|}
and My € {1,...,|2"%2]} to Receiver 1 and 2, respectively. Each My, k € {0,1,2}, is
independently and uniformly distributed over the set My := {1,..., [2"% |}, where R

22
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denotes the common rate of transmission and Ry, k € {1,2} denotes the private rate of
transmission of Receiver 1.

The encoder maps the messages (Mg, M, M2) to a sequence a" € X™:
Xn:f(n)(MOaMlaMQ) (31)

where the encoding function f(™ is of form Mg x M; x My — X" and the Receiver k €

{1, 2} uses channel outputs y;' to estimate (Mék), M) as a guess of messages (Mo, Mj,):
~ k ~

(Mg 81 = g (V). (3:2)

where the decoding function g,gn) is of form V! — Mg x M.

A rate region (R, R1, R2) is called achievable if for every blocklength n, there exists

an encoding function f and two decoding functions g%n),gén) such that the error

probability

pm) . Pr[( 1D NP NI, V) £ (MO,MO,Ml,Mg)] (3.3)

e

tends to zero as the blocklength n tends to infinity. The closure of the set of achievable

rate tuple (Rp, R1, R2) is called the capacity region and is denoted by Cnopb.-

3.1 Capacity for R = Ry =0

For the case of Ry = Ry = 0, where the transmitter only conveys a common message to

the receivers, the capacity is
Ry = r%axmin{I(X;Yl),J(X; Ya)}. (3.4)
X
In the following we recall the proof for the capacity for Ry = Ry = 0, see also [132].

Achievability

1) Codebook generation: Randomly and independently generate |27 | sequences ™ (my).

Each sequence is drawn according to the product distribution [, Px(x;), where z;
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denotes the i-th entry of z"(mg). All codebooks are revealed to the transmitter and
receivers.

2) Encoding: Given that My = mg, the transmitter sends z™(my).
3) Decoding at Receivers: We describe the operations performed at Receiver 1.
Receiver 2 estimates m((f) of messages My in an analogous way.

Given that Receiver 1 observes the sequence y7, it looks for an index m((]l) such that

(@"(m), y7) € T2 (Pxwy)-

If there is exactly one index m(()l) that satisfies the above condition, Receiver 1 chooses
this index. If there are multiple such indices, it chooses one of them uniformly at random.
Otherwise it chooses an index uniformly at random over the entire set {1, ..., |2"%0 |}

4) Analysis: We analyze the average error probability over the random message,
codebooks, and channel realizations. To simplify exposition we therefore assume that

My = 1. Under this assumption, an error occurs if, and only if,
(NI, NEg) # (1,1).

For k € {1,2}, define the following events.
o Let & be the event that

(Xn(l)a Ykn) ¢ ER(PXYIC)'

Since the channel is memoryless, by the law of large numbers, Pr[& ;] tends to 0
as n — oo.

o Let & 1 be the event that there is an index mg’“) # 1 such that
(X)), V') € T (Pxyy).
By the Packing lemma [I31], Pr[&; ;|& k] tends to 0 as n — oo if
Ro < I(X:Y}) — 8(2) (3.5)

An error in the communication occurs only if one or more of the the above events
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happens. Thus we conclude that for a suitable d(e) which tends to 0 as € — 0, if

Ry < I(X,Yl) —(5(8) (36)
Ro < I(X:Y5) — 6(e) (3.7)

then the average error probability for this setup tends to 0 as n tends to infinity. Taking
e — 0, we get the achievable region as shown in (3.4)). Using standard arguments one

can then conclude that there must exist a deterministic code for which the probability

)

of error Pe(n tends to 0 as n — oo when the mentioned conditions are satisfied.

Converse

Note that

nRo = H(Mo)
< I(My; Mél)) + ney,

> (HY YT — HYPIX™) + ney
1

.
I

I
.Mz

(H(Y1,|Yy™Y) — H(Y1,4X;)) + nen

=1

-

(H(Y1,) — H(Y1,4|X3)) + nen

1
I(X; Y1) + nep (3.8)

IN
3 ~

where the first inequality follows by Fano’s inequality and ¢, is a positive function that
tends to 0 as n — oo; the second inequality follows by the data processing inequality;

the last inequality follows by the convexity of mutual information and by setting

1
PXYIYg(x7y17y2) = (ﬁ ZPXi(x)>PY1Y2|X(y1a yglfL') (39)
=1
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for all appropriate x, %1, y2. Similarly, we have nRg < nI(X;Y3). Thus, we have

Ry = H}lgaxmin{I(X; Y1), I(X;Ya)}.
X

3.2 Capacity Region for Ry =0

The capacity region of DMBCs with Ry = 0 is in general unknown. There are some ex-
ceptions. For the following classes of broadcast channels, where one of the two receivers
is stronger than the other receiver in some sense, the capacity region is known and can
be achieved by superposition coding:

stochastically or physically degraded DMBCs [133]

o less noisy DMBCs [13])]

e more capable DMBCs [157)].

o essentially less noisy DMBC's [135]

o essentially more capable DMBCs [135]

Definition 1 (From [133]). A DMBC is called physically degraded if

p(y1, y2lr) = p(y1lz)p(y2ly).

More generally, a DMBC is called stochastically degraded if there exists a distribution
P'(y2|y1) such that

ply2l) = plyr|2)p (valyn),

The capacity region of stochastically or physically degraded DMBCs is given by
[136], 137], which is the closure set of all nonnegative rate pairs (R1, Rg) satisfying

Ry <I(U; Y1)
Ry + Ry < I(U; Y1) + I(X;Y3|U) (3.10)

for some probability mass function (pmf) Pyx such that U — X — (Y1,Y2) forms a

Markov chain.

Definition 2 (From [I34]). A DMBC is called less noisy if I(U;Y2) > I(U;Y1) holds
fOT‘ all PU)(.
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The capacity region of a less noisy BC has the same expression as that of a degraded

BC [134], see (3.10]).

Definition 3 (From [134]). A DMBC is called more capable if I(X;Y2) > I(X;Y))
holds for all Px.

The capacity region of a more capable BC is the closure set of all nonnegative rate

pairs (R, R2) satisfying

Ry < I(U;Y1) (3.11)
Ri+ Ry < I(U; Y1)+ I(X;Y3|U) (3.12)
Ri+ Ry < I(X;Y3) (3.13)

for some pmf Pyx such that U — X — (Y7, Y3) forms a Markov chain [134].
Before defining essentially less noisy/more capable DMBCs, we need to first intro-

duce a new term sufficient class of pmfs.

Definition 4 (From [I35]). A subset Px of all pmfs on the input alphabet X is said to
be a sufficient class of pmfs for a DMBC' if the following holds: Given any joint pmf

Pyvx there exists a joint pmf P,y that satisfies

P (x

) €
Ip(U;Y1) < Ip/(U; Y1)
Ip(V;Ys) < Ipi(V;Y2)
Ip(U;Y1) + Ip(X; Y2|U) (U;Y1) + Ip/ (X;Y3|U)
) ( )

IP(V7}/2)—|-IP(X,Y1‘V V;YQ +IPI(X;Y1’V) (314)

< Ip

< Ip

where the motations Ip and Ip/ indicate that the mutual informations are computed
assuming that (U,V,X) ~ Pyyx and (U, V,X) ~ P/, and Py (x) is the marginal

obtained from Py, .
Now we are ready to define essentially less noisy/more capable DMBCs.

Definition 5 (From [I35]). A DMBC is called essentially less noisy if there exists a

sufficient class of pmfs Py such that whenever Px € Py, then for all random variables
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U that form the Markov chain U — X — (Y1, Ya),

(U Y1) < I(U; Ys). (3.15)

The capacity region [I35] of an essentially less-noisy BC is the closure set of all

nonnegative rate pairs (R, Rg) satisfying

Ry < I(U;Y1) (3.16)
Ri+ Ry < I(U; Y1)+ I(X;Y3|U) (3.17)
for pmfs Pyx such that U — X — (Y7, Ys) forms a Markov chain and Px € P.

Definition 6 (From [I35]). A DMBC'is called essentially more capable if there exists a
sufficient class of pmfs Py such that whenever Px € Py, then for all random variables
(U, X) that form the Markov chain U — X — (Y1, Ya),

I(X;va|U) < I(X;Y2|U). (3.18)

The capacity region [I135] of an essentially more capable BC is the closure set of all

nonnegative rate pairs (Ry, Rg) satisfying

R1 S I(U; Yl) (3.19)
Ry + Ry < I(U3 Y1) + I(X; Ya|U) (3.20)
Ry + Ry < I(X;Y3) (3.21)

for some pmf Pyx such that U — X — (Y71, Y2) forms a Markov chain and Px € P.

Remark 3.1. The relationship among these various classes of BCs is established in
[135], [13§]:

e degraded C less-noisy C more capable.

o less noisy C essentially less noisy.

o essentially less-noisy ¢ more capable.

e more capable ¢ essentially less noisy.

e more capable C essentially more capable.
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e essentially more capable ¢ essentially less noisy.

o essentially less noisy ¢ essentially more capable.

3.3 Achievable Regions for Broadcast Channels

3.3.1 Superposition Coding

Superposition coding is optimal for the classes of BCs mentioned in Section In the

following we describe the superposition coding scheme (see also [139, 132]) that achieves

(1)

rate region R which is defined as the set of all nonnegative rate pairs (Rj, Rg)

SuperPos’
satisfying
Ry < I(U; Y1) (3.22a)
Ry < I(X; Ya|U) (3.22b)
Ri+ Ry < I(X;Y3) (3.22¢)

(2)

SuperPos’
to Rélu)perpos but where indices 1 and 2 need to be exchanged, is achieved if in the

for some pmf Py x. The superposition coding region R which is defined similarly
following scheme message M; and M, are exchanged as well as Receiver 1 and 2.

1) Codebook generation: Fix a pmf Pyx. Randomly and independently generate
|27F1] cloud center codewords: u™(my), for my € {1,...,[2"%|}. Each codeword is
drawn according to the product distribution [[;", Py(u;), where u; denotes the i-th
entry of u™(myq).

For each codeword u™(my1), randomly generate |2"#2 | satellite codewords =™ (ma|m1),
for mo € {1,..., 2"}, Each codeword x"(mz|m;) is drawn according to the prod-
uct distribution i, Pxy(zilu;), where z; denotes the i-th entry of z™(malmy). All
codebooks are revealed to the transmitter and receivers.

2) Encoding: Given that M; = mj, Ms = mg, the transmitter sends z"(mg|m1).

3) Decoding at Receivers: After observing the channel outputs yf, Receiver 1 looks

for an index mg” such that

(w (M), 47) € T (Poys).-
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If there is exactly one index mgl) that satisfies the above condition, Receiver 1 chooses

this index. If there are multiple such indices, it chooses one of them uniformly at random.

Otherwise it chooses an index uniformly at random over the entire set {1,..., 2" |}
(2)

Given observing channel outputs y4, Receiver 2 looks for the pair (7™, 72) such

that

(™ (), 2" (o), 43} € T (Puxy,).

(2)

If there is exactly one pair (1™, 7h2) that satisfies the above condition, Receiver 2
chooses this pair. If there are multiple such pair, it chooses one of them uniformly
at random. Otherwise it chooses a pair uniformly at random over the entire set
{1,... (2" |} x {1,...,|2"F=]}.

4) Analysis: We analyze the average error probability of the superposition coding
scheme over the random messages, codebooks, and channel realizations. To simplify
exposition we assume that M; = Ms = 1. Under this assumption, an error occurs if,
and only if,

(WY, NP Nhy) # (1,1,1).

Define the following events.

e Let & be the event that
(Un(1)>Xn(1|1)a}/1na)/2n) € 7;7;16(PUXY1Y2)~

Since the channel is memoryless, by the law of large numbers, Pr[&] tends to 0
as n — oo.

e Let & be the event that there is an index 9 # 1 such that
(U™(1), X" (12]1),Y5") € T2 (Puxys)-
By the Packing Lemma, Pr[&;|&§] tends to 0 as n — oo if

Ry < I(X;Y2|U) — 6(¢), (3.23)
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e Let & be the event that there is a pair (m§2),m2) # (1,1) such that

(U D), X" (sl ), Y5) € T (Puxvs)-
By the Packing Lemma, Pr[&|&f] tends to 0 as n — oo if
Ry + Ry < I(X;Y2) —d(e), (3.24)
e Let & be the event that there is an index mﬁ” # 1 such that
(U (1)) € T (Pow).
By the Packing Lemma Pr[&€3]|£§] tends to 0 as n — oo if
Ry <I(U; Y1) — d(e), (3.25)

An error in the communication occurs only if one or more of the the above events

happens. Thus we conclude that for a suitable §(e) which tends to 0 as e — 0, if

Ry < I(U: Y1) — 8(e) (3.26)
Ry < I(X;Y2|U) —d(e) (3.27)
Ry + Ry < I(X;Y2) —d(e), (3.28)

then the average error probability for this setup tends to 0 as n tends to infinity. Taking
e — 0, we get the achievable region as shown in (3.22)). Using standard arguments one
can then conclude that there must exist a deterministic code for which the probability

of error Pe(") tends to 0 as n — oo when the mentioned conditions are satisfied.

3.3.2 Marton’s Coding

The best known inner bound on the capacity of DMBC without feedback is Marton’s

region [140], Rmarton,general, Which is defined as the set of all nonnegative rate tuples
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(Ro, R1, Ry) satisfying

Ro+ Ry < I(Uy, U1 Y7) (3.292)

Ro + Ry < I(Up, Us; Ya) (3.29b)

Ro+ Ry + Ry < I(Up, Uy, Y1) + I(Us; Ya|Up) — I(Uy; Ua|Up) (3.29¢)
Ro+ Ry + Ry < I(Up, Uy; Ya) + I(Uy; Ya|Uo) — I(Ur; Us|Up) (3.29d)
2Ry + Ry + Ry < I(Up, Uv; Y1) + 1(Us, Us; Ya) — I(Uy; Us|Up) (3.29¢)

for some pmf Py,y, v, and a function f: Uy x Uy x Us — X such that X = f(Uy, U1, Us).

Remark 3.2. To evaluate the region Rnarton,generals it suffices to consider distributions
Py,u,v,x for which one of the following conditions holds [141], [142)]:

o I(Uo; Y1) = I(Uo; Y2);

o I[(Up;Y1) < I(Up;Y2) and Uy = const;

o [(Up; Y1) > I(Uy;Ya) and Uy = const.

Proof. The proof is given in [141], [142]. For convenience to the reader, we reprove the

statement in Appendix [3:A] O

When Ry = 0, the general Marton’s region Rifarton,general SPecializes to Ryarton,

which is the set of all nonnegative rate pairs (R, R2) satisfying

Ry < I(Uy, Uy V1) (3.30a)
Ry < I(Uo, Us; Y2) (3.30b)
Ri+ Ry < I(Up, Uy;Y1)+1(Us;Yo|Uy) —I(Uy;Uz|Up) (3.30c)
Ri+ Ry < I(Uo, Up;Y2) +1(U;Y1|Uo) —I1(Uy;U2|Uo) (3.30d)

for some pmf Py, v, and a function f: Uy x Uy x Uy — X such that X = f(Up, Uy, Us).
(1)

Remark 3.3. The region Ruarton Specializes to the superposition coding region, Rsuperpos

(2)

SuperPos when choosing

when choosing Uy = const. and X = Uy and is specialized to R

Us = const. and X = Uy in Marton’s constraints (3.30)).

We describe the Marton scheme achiving Rfarton,general for a DMBC (X, V1, Va, Py, v x)-

Choose nonnegative rates R}, Rj, auxiliary finite alphabets Uy, U;,Us, a function f
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of the form f(™: Uy x Uy x Us — X, and a pmf Py,v,v,- Define T, :={1,..., L2”R2J},
for k € {0,1,2}. Split the private messages into “common” and “private” parts:
My = (Mgg,M,y), for k € {1,2}. The submessages M. and M, are indepen-
dently and uniformly distributed over the sets M, = {1,..., [2"%* |} and My =
{1,...,[2"%* |}, respectively, where Ry, Rcr > 0 and so that Ry, = R, + Rc,
Let M. := M1 x Mo and R, := (Ro + Re1 + Re2).

1) Codebook generation: Randomly and independently generate |27 | sequences
ug (mo, Me,1, Me,2). Each sequence is drawn according to the distribution [ ;" ; Py, (uo,),
where ug; denotes the i-th entry of u((mo, me1,mc2).

For k € {1,2} and each tuple (mg,me1,mc2) randomly generate |2"(FwrtFy) |
sequences up (myp i, tk|mo, Me,1, Me2), for myp € M, and t;, € 7. Each codeword
ul (My g, tig|mo, me,1, me2) is drawn according to the distribution [T ; Py, v, (uk i uo,i),
where uy,; denotes the i-th entry of uj (mpJg, tilmo, me1, mc,g).

All codebooks are revealed to the transmitter and receivers.

2) Encoding: Assume that Mo = mg, M = mey and M, = my, g, for k € {1,2}.
Define m, := (mg, m¢1,Me2). The transmitter looks for a pair (¢1,t2) € 71 x T2 that

satisfies

(ug (me), uy (mp,1, tr[me), uy (mp,2, talme)) € T216(Puousvs)- (3.31)

If there is exactly one pair (¢1,t2) that satisfies the above condition, the transmitter
chooses this pair. If there are multiple such pairs, it chooses one of them uniformly at
random. Otherwise it chooses a pair (t1,?2) uniformly at random over the entire set

T1 x Ta. The transmitter then sends the inputs =" = (x1,...,z,), where
v = [ (woi,wri,u0), i€ {L,...,n}, (3.32)

and wuo, U1, ug; denote the i-th symbols of the chosen Marton codewords ug(m.),
uf(mpa,ti|lme) and uf(my 2, ta|m.), respectively.

3) Decoding at Receivers: We describe the operations performed at Receiver 1.

1 Due to the floor operations, R; and Ry here do not exactly represent the transmission rates of

messages My and Ms. In the limit n — oo, which is our case of interest, Ry and R however approach
these transmission rates. Therefore, we neglect this technicality in the following.
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Receiver 2 estimates (mff), m2) of messages (mg, m2) in an analogous way. Given that

Receiver 1 observes the sequence y7', it looks for all the tuples (rht(gl),'fnp.l, fl) such that
n (1 (1) n(s i 1)y ,n TP
(Uo(mc )aul (mp,lv 1‘mc )ayl) €/ ( U0U1Y1)'

4) Analysis of Marton’s Scheme: We analyze the average error probability of Mar-
ton’s scheme over the random messages, codebooks, and channel realizations, see also
[140], 141, [56]. To simplify exposition we assume that My = M. = M, = T}, = 1 for

all £ € {1,2}. Under this assumption, an error occurs if, and only if,
(Mgl)a M£2)7 Mpﬂ; Mp,Z) 7é (1[3}7 1[3]7 1, 1)

Define the following events.

e Let & be the event that there is no pair (¢1,t2) € 71 x T that satisfies
(U5 (1), UT (1, t1]1(3)), U (1, 82| 1(3))) € T216(Protnws)-
By the Covering Lemma [I31], Pr[&] tends to 0 as n — oo if
|+ Ry > I(Uy; Us|Up) + d(e). (3.33)
o Let & 1 be the event that
(U5 (1), UR (1,1[13), Y{) ¢ T2 (Poyuvi,)-

Since the channel is memoryless, by the law of large numbers, Pr[&; |£S] tends
to 0 as n — oo.

o Let & be the event that there exists rhﬁk) # 1j3) that satisfies
(U5 (), Ui (1, 11m), V') € T (Puovvi)-
By the Packing Lemma, Pr {52,k|510 k} tends to 0 as n — oo, if

Ro+ Rep + Rep < I(Up, Uk; Yy,) — 0(e). (3.34)
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e Let & be the event that there is a pair (1, k, tx) # (1,1) that satisfies

(U8 (X)), Uy (i i, Bl 11), Y1) € T2 (Proueva,)-
By the Packing Lemma, Pr [53,k|516,k} tends to 0 as n — oo, if
Ry + Ry, < I(Uk; Y |Uo) — 6(e). (3.35)

e Let & 1 be the event that there is a tuple " # 1i3) and (1 4, tx) # (1,1) that

satisfies
(U ("), UE (1 g, 1 2?), i) € T2 (Puioviens.)-
By the Packing Lemma, Pr {54,k|5f’k} tends to 0 as n — oo, if
Ro+ Req + Rea+ Ry + Ry, < I(Uo, Ug; Vi) — d(e). (3.36)

An error in the communication occurs only if one or more of the above events happens.
Then we conclude that if for k € {1,2}

|+ Ry > I(Uy; Us|Up) + 6(e) (3.37)
Ry + Ry, < I(U; Yi|Uo) — 6(e) (3.38)
Ro+ Req + Rea + Ry + R), < I(Uo, Ug; Vi) — 6(e). (3.39)

then the average error probability of Marton’s scheme tends to 0 as n tends to infinity.

By Fourier-Motzkin elimination, we conclude that whenever

I(U1; Y1|Uo) 4+ I(Ua; Ya|Up) > 1(Uy; Uz|Up) (3.40)
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then for every rate tuple (Ry, R1, R2) satisfying

Ro+ Ry < I(Up, Up; Y1) — 6(e) (3.41a)

Ro + Ry < I(Up, Us; Ya) — 6(c) (3.41D)

Ro+ Ry + Ry < I(Up, Up; Y1) + I(Us; Ya|Up) — I(Ur; Ua|Up) — 6(e) (3.41c)
Ro+ Ry + Ry < I(Up, Uy, Ya) + I(Uy; Ya|Uo) — I(Ur; Ua|Uy) — 6(e) (3.41d)
2Ry + Ry + Ry < I(Up, U1; Y1) + 1(Us, Us; Ya) — I(Uy; Us|Up) — 8(¢) (3.41e)

for a suitable ¢(¢) which tends to 0 as ¢ — 0, there exists a choice of nonnegative rates
Ri, Ry, Ry, R}, R}, such that Ry, = Ry + Ry, for k € 1,2 and (3.33)-(3.39) hold. No-
tice that we can ignore the rate constraint because the rate region achieved by
any random variables (Up, Uy, Usy) violating can be strictly enlarged by choosing
Uj = (Up, U1, Us) and U = U} = const.. The new choice (U, Uy, Us) satisfies (3.40).
Thus we conclude that the rate region in is achievable also when is not
satisfied. Using standard arguments one can then conclude that there must exist a de-

(n

terministic code for which the probability of error P ) tends to 0 as n — 0o when the

mentioned conditions are satisfied.

3.4 Outer Bound on Broadcast Channel without Feedback

In [I43], Liang, Kramer and Shamai proposed the New-Jersey outer bound based on
the ideas of [122| [I41), 144]. This outer bound was later simplified by Nair [145], which

can be written as the closure set of all nonnegative rate tuples such that

Ry < min{I(Up; Y1), 1(Uo; Y2)} (3.42a)

Ro + Ry < I(Uy; Y1|Up) + min{I(Up; Y1), I(Up; Y2)} (3.42b)

Ry + Ry < I(Ug; Ya|Upy) 4+ min{I(Up; Y1), I(Uy; Y2)} (3.42¢)

Ry + Ry + Ry < I(Uy; Y1|Uy, Us) +I(Us; Ya|Up)+min{I(Up; Y1), I(Up; Ya)} (3.42d)
Ro + Ry + Ry < I(Uy; Ya|Us, Ur) +I(Un; Yi |Uo)+min{I(Ug; Y1), I(Ug; Ya)} (3.42¢)

for some pmf Py,y,u, and a function X = f(Uy, Uy, Us).
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For the BC with no common message, i.e. with Ry = 0, the New-Jersey outer bound
reduces to the following outer bound [144] [145] that is the closure set of all nonnegative

rate pairs such that

Ri < I(U:Y7) (3.43a)
Ry < I(Us; Y2) (3.43b)
Ri + Ry < I(U; Y1) + I(X: Ya|U?) (3.43¢)
Ri+ Ry < I(Us; Ya) + I(X: i |Us) (3.43d)

for some pmf Py, and a function X = f(Uy,Uz). In [146] Geng, et al. presented an

example of a product BC which shows that this outer bound is not tight in general.

3.A Appendix: Proof of Remark

Fix a distribution Py i,v,x. We prove that there exists a distribution Porurug xo that
satisfies one of the three conditions in Remark and so that the rate region defined by
Marton’s constraints and distribution Py, yry; x/ contains the rate region defined
by Marton’s constraints and distribution Py,u,v,x-

We assume without loss of generality that I(Up; Y1) < I(Up; Y2), and we separately
treat the two cases

o I(Uo, Ur; Y1) < I(Uo, Uy; Y2)

o I(Uo,Ur; Y1) > I(Uo, Us; Ya).

For the first case, I(Uy,U;Y1) < I(Uy,Uy;Ys), let U) = (Up,Uy), Uj = const.,
U, = Uy and X’ = X. Evaluating Marton’s constraints for the auxiliaries
(UL, U1, U5, X") results in

Ry + Ry < I(Uy,Uy; Y1) (3.44a)
Ro+ R+ R < I(Uo,Ul;Yl)+I(U2;Yé|U0,U1) (3.44b)
Ro+ R+ Ry < I(Uo, Uy, Us; YQ) (3.44C)

Note that the constraint (3.44c) is redundant in view of (3.44b)) because I(Uy,U;; Y1) <
I(Uo, Uy; Y2).
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We show that the first two constraints in (3.44]) are no tighter than Marton’s con-
straints in (3.29)), which proves the desired result for the first case. In fact, the constraint

(3.44a) coincides with Marton’s constraint (3.29a)). The constraint in (3.44b)) is looser
than Marton’s constraint (3.29¢)),

I(Uo, Uy; Y1) + 1(Uy; Y2|Uo, Un)
= [(Up,Uy; Y1) + H(U2|Uy, Ur) — H(Uz|Up, Uy, Y2)
> 1(Up,Uy; Y1) + H(U2|Ug, Ur) — H(Usz|Uyp, Y2)
= I(Uy,Uy; Y1) + H(Us|Uy, Uy) — H(Us|Uy, Y2)
+H (Uz|Uy) — H(U2|Uo)
— I(Uy, Ups Vi) + I(Us; Ya|Up) — I(Us; Ua|Up).

We now treat the second case I(Up,Ui;Y1) > I(Uo,Ur;Y2). Since I(Up; Y1) <
I(Up; Y2) by assumption and by the continuity of mutual information, there exists a

deterministic function f such that
I(Uo, f(U1); Y1) = I(Uo, f(Ur); Y2) (3.45)

Let now Uy = (Up, f(U1)), U] = Uy, Uy = Uy and X' = X. For this choice of auxiliaries,
Marton’s constraints (3.29)) result in:

Ry + Ry < I(Uo, f(Uh), Ur; Y1) (3.46a)
Ry + Ry < I(Uo, f(Un), Uz; Y2) (3.46b)

Ry + Ri + Ry < I(Uo, f(U1),Ur; Y1) + 1(Ua; Ya|Uy, f(Ur))
—1(Uy; U|Uo, f(Ur)) (3.46¢)

Ry + Ry + Ry < I(U1; Y1|Uy, f(Ur)) + I(Uy, f(Ur), Uz; Y2)
—I(Uy; Us|U, f(Uh)) (3.464)

2Ry + R + R < I(Uo, f(U1),Ur; Y1) + I(Uy, f(Ur), Uz; Y2)
—I(U; Ua|Uy, f(Uh)) (3.46¢)

Note that the constraints (3.46¢) and (3.46d)) coincide because I(Up, f(U1); Y1) = I(Uo, f(Ur); Y2).
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We again show that these constraints are no tighter than Marton’s constraints in

(3.29)), which proves the desired result also for this second case and concludes the proof.
The constraint (3.46a]) coincides with Marton’s constraint (3.29al):

I(Uy, f(Ur),Ur; Y1) = I(Up, Uy; Y1).

The constraint (3.46b|) is looser than constraint (3.29b)):

I(Uo, f(Un),Uz;Y2) > I(Up, Us; Ya).
The constraints in (3.46¢|) is looser than Marton’s constraint (3.29¢)):

I(Uo, f(Uh), Ur; Y1) — I(Ur; Ua|Uo, f(Ur)) + 1(Us; Ya|Uo, f(Ur))
= I(Uo, Ur; Y1) — H(U2|Uo, f(Uh)) + H(U2|Up, Uh)
+H(Us|Uo, f(U1)) — H(U2|Uy, f(U1),Y2)
= I(Uo, U1; Y1) + H(Uz2|Uy, Ur) — H(Us|U, f(U1), Ya)
+H (Us|Uy) — H(Us|Up)
> [(Uy, Ui Y1) + H(Us|Uo, Ur) — H(Us|Us, Y2)
+H (U2|Uo) — H(U2|Uo)
— I(Up, Up; Y1) + I(Us; Ya|Up) — I(Uy; Us|Us). (3.47)

The constraints in (3.46€]) is looser than Marton’s constraint (3.29¢)):

I(Uo, f(Ur),Ur; Y1) + I(Uo, f(Ur), Ua; Ya) — I(Un; U2|Us, f(U1))
= I(Uo, Ur; Y1) + 1(U2; Y2|Uo) — 1(Uy; U2|Uo) + I(Uo, f(U1); Y2)
= I(Uo,U1; Y1) + 1(Uy, Us; Ya) — I(Uy; Uz|Up) + 1(Uo, f(Ur); Yo) — I(Up; Ya)
> I(Uoy,Ur; Y1) + 1(Ug, Ua; Ya) — I(Uy; Uz |Up)

where the first inequality follows from the inequality (3.47]).



Chapter 4

Previous Results on Memoryless

Broadcast Channels with
Feedback

In this chapter, we review some previous works most relevant to ours on achievable

regions and outer bound for memoryless BC with feedback.

4.1 Achievable Regions for Memoryless Broadcast Chan-
nels with Feedback

4.1.1 Discrete Memoryless Broadcast Channels with Feedback

Consider Dueck’s channel depicted in Fig. The channel outputs are
Y = (Xo,Xl@Z), Yy = (X(),XQEBZ) (4.1)

where X = (Xo, X1, X2) is the channel input with Xo, X7, X5 € {0,1} and Z is the noise
with Z ~ Bern(1/2). It is easy to show that for this channel the maximum sum-rate is
R1 + Ry = 1. In the presence of perfect feedback, Dueck [55] showed that the rate pair
(R1, R2) = (1,1) is achievable by a simple scheme. To prove the achievability, it suffices

to show that the transmitter can perfectly convey two i.i.d. Bern(1/2) sequences X{* and

40
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Figure 4.1: Dueck’s channel

X3 to Receiver 1 an 2, respectively, in n+41 channel uses. The proof is as follows. In the
first channel use, the transmitter sends (0, X 1, X2,1) over the channel. Upon obtaining
the outputs Y71 and Y51, the receivers send them back to the transmitter. Since the
feedback links are noiseless, the transmitter can recover the noise Z7 in the first channel
use. In the second channel use, the transmitter sends (Z1, X1,2, X22). In view of the
outputs Y1 = (0, Xx1 @ Z1) and Yy 2 = (Z1, Xk 2 @ Z2), Receiver k € {1,2} can recover
X1 perfectly. After n + 1 transmissions, Receiver k finally recovers Z" and therefore
can determine its intended sequence X' perfectly. Thus, the rate (Ri, Rz) = (1,1) is
achievable as n — 0o. Dueck’s channel is the first example demonstrating that feedback
can increase the capacity region of BC.

In [IT] Kramer applied the idea of directed information to establish a multi-letter
achievable region for the DMBC with feedback. It is shown that when evaluating this
achievable region for a BSBC with specific parameters, perfect feedback increases the
non-feedback capacity.

Recall that in Dueck’s example, the transmitter at each time broadcasts common
information about the channel of previous time (obtained through feedback). This
common information helps the receivers recover previous messages at a rate higher than
that without feedback. Inspired by this idea, Shayevitz and Wigger proposed a scheme
[56], based on block-Markov strategy, Marton’s coding and Gray-Wyner coding [147],
for the two-receiver DMBC with generalized feedback.

In the Shayevitz-Wigger scheme, the transmitter in each block uses Marton’s coding
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to send fresh messages together with refinement information. This refinement informa-
tion is about the messages sent in the previous block and is generated using a gener-
alization of Gray-Wyner coding. The receivers perform backward decoding where the
refinement information decoded in a block is used to decode the refinement information
and the messages sent in the previous block.

Given a two-receiver DMBC with generalized feedback that consists of an input
alphabet X', two output alphabets ())1,)5), a feedback alphabet F, and a conditional
pmf Py, y,p|x, the Shayevitz-Wigger region is characterized by the set of all nonnegative

rate pairs (Rp, Ry) satisfying

Rl S [(UO, UI;Y17 ‘/1’@) - I(U07 U17 U27F;‘/07 V1|Q7}/1) (423‘)
Ry < I(Uy, Uy; Yo, V2|Q) — I(Uy, Uy, Us, F; Vi, V2|Q, Y2) (4.2b)
Ry + Ry < I(Uy; Y1, V1|Q, Ug) 4 I(Ua; Ya, Va2|Q, Up) + kg{lilg}f(Uo;Yk, VilQ)

_kg?lné} I(U()a Ula UQaF; ‘/0|Q7Yk) - I(U()v Ula U27F;VY1|Q7VY07YI)

—I(Uo, U1, Uz, F';V3|Q, Vo, Ys) — I(Uy; U2|Q, Up) (4.2c)
R1 + Ry < I(Up, Ur; Y1, V1|Q) + I(Ug, Uz; Y2, V2|Q) — I(Uy; Us|Q, Up)
_I(U07U17U27F;%7‘/1|Q7Y1) _I(U07U17U2)F;‘/07‘/2‘Q7Y2) (42d)

for some pmf Pg Pryv, 1,10 Pvovi ve | Ut UsY: Yo @ @nd some function f: Q x Uy X Uy x Uz —
X, where X = f(Uy, Uy, Us, Q).

This region is generally difficult to evaluate due to the presence of seven auxiliary
random variables in the rate constraints. Recently, Kim, Chia, and El Gamal [57]
studied the more general Shayevitz-Wigger region for generalized feedback [56], which
differs from the above region only in that in some places the outputs Y7 or Y5 have
to be replaced by the generalized feedback output F. In particular, they proposed
two choices for the auxiliary random variables for the Shayevitz-Wigger region with
generalized feedback and presented simplified expressions for the maximum sum-rates
that these choices achieve for symmetric state-dependent DMBCs with state known at

both receivers and where the generalized feedback equals the delayed state sequence.
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Their first choice is given by

0 w.p.1-2p

Q=<1 w. p p 7 (4.3a)
2 w.p.p
P ifQ=0
Vo=Vi=Va=<(Y, ifQ=1, (4.3b)
Yy, ifQ=2
and
Uy ifQ=0
X=SU Q=1 (4.3¢)
Uy if Q=2

for joint pmf Py,,v, = Pu,Pu,Pu,- This choice essentially results in a coded time-

sharing scheme. Their second choice is

1 w. p. 1/2
Q- b1/ (4.4a)
2 w. p.1/2
Vi Q=1
Vo=Vi=Vy=4 " @ , (4.4b)
Y, ifQ=2
and
U Q=1
yo U e (4.4c)
Uy ifQ=2

for some joint pmf Py v v, = PuyPy,juyPu,iu,- This choice results in a randomized
superposition coding scheme.

The deterministic model of the two-user i.i.d. fading BC with delayed CSI at the
transmitter considered by Maddah-Ali and Tse [60], and the two-user BEBCs where all

erasure events are known at all receivers considered by Wang [58] and by Georgiadis
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and Tassiulas [59]|I| belong to this class of DMBCs. In fact, it is shown in [57] that
the capacity-achieving schemes in [60], [58], and [59] are special cases of a simplified
version—without block-Markov coding—of the Shayevitz-Wigger scheme for generalized
feedback specialized to the choice of parameters in .

On a more general note, also various results for two-user multi-input single-output
(MISO) Gaussian fading BCs with delayed CSI at the transmitter [60], [77], [80], [79],
[81] and [82] are related to the Shayevitz-Wigger scheme, if this latter is extended
to continuous-valued channels. Maddah-Ali and Tse [60] studied the K-user MISO
Gaussian fading BC where the transmitter learns the CSI with one unit delay. They
presented a coding scheme for general stationary and ergodic fading processes, and
proved that in some special cases it achieves the optimal DoF region. This is in particular
the case when the fadings are i.i.d. and independent across users. For i.i.d. fading
sequences (even when correlated across users), the setup studied by Maddah-Ali and
Tse can be modeled as a (continuous-valued) memoryless BC, and their scheme is a
special case of a simplified Shayevitz-Wigger scheme without block-Markov coding [56],
when this latter is naturally extended to continuous-valued channels.

Yang, Kobayashi, Gesbert, and Yi [79] studied the more general setup where the
transmitter also obtains imperfect (rate-limited) CSI. Specifically, they modified and
improved Maddah-Ali&Tse’s scheme to apply to this more general setup, and showed
that, under some mild assumptions, their improved scheme achieves the optimal DoF
region for arbitrary stationary and ergodic fading processes and all qualities of current
CSI at the transmitter. In this sense, they could bridge the gap between Maddah-
Ali&T'se’s no current-CSI result and the standard perfect current-CSI DoF result where
zero-forcing is DoF optimal. The new components in the Yang-Kobayashi-Gesbert-Yi
scheme are: a clever power allocation strategy; the fact that fresh information is sent
in all blocks; precoding of transmit signals; and transmission of quantized versions of
interferences as common message.

Chen and Elia [77] considered an even more general setup where the transmitter
accumulates CSI about each fading sample over time. In their model there is thus

current CSI as well as various levels of predicted and delayed CSI. Chen and Elia

! Notice that the main contribution of [58, 59] is not the capacity-achieving schemes for the described
two-user BEBC, but its extension to arbitrary number of users K > 2.
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proposed a coding scheme that exploits current and delayed CSI, and they showed
that with a careful choice of parameters, under some mild assumptions, their scheme
achieves the optimal DoF region. Interestingly this optimal DoF region depends only
on the current CSI and the asymptotic acquisition rate of delayed CSI. Given these
two quantities the DoF region is in particular independent of the predicted CSI. Their
results also illustrate the tradeoff between the required current and asymptotic delayed
CSI to achieve a certain performance. Compared to the Yang-Kobayashi-Gesbert-Yi
scheme, the Chen&Elia scheme shows as new components: block-Markov strategy and
a more sophisticated power- and rate-allocation policy.

In the special case without predicted or current CSI and when all delayed CSI is ac-
quired with only one unit delay, the setups considered by Yang, Kobayashi, Gesbert, and
Yi and by Chen and Elia can be modeled as (continuous-valued) memoryless BCs with
generalized feedback. Under these assumptions the Yang-Kobayashi-Gesbert-Yi scheme
and the Chen&Elia scheme specialize to simplified versions of the Shayevitz-Wigger
scheme for generalized feedback. In fact, the specialized Yang-Kobayashi-Gesbert-Yi
scheme [79] then corresponds to the Shayevitz-Wigger scheme without block-Markov
strategy, with successive decoding instead of the more performant joint decoding, and
with the following choice of auxiliaries @ = {1,2}; X = Uy + Uy + Uz; Uy — Uy — Uy
form a Markov chain; Uy = const. when Q = 1 and Uy arbitrary when @ = 2;
Vo = Vi = Vo = (71, 72) where (71,7)2) are defined in [79]. The specialized Chen&Elia
scheme [77] corresponds to the Shayevitz-Wigger scheme but with only successive de-

coding and with the following choice of auxiliaries: X = Uy + Uy + Us; Uy — Uy — Us

form a Markov chain; and Vo = V; = Vo = (I, Z:(Q)) where (IM),1(?)) are defined in (54)
in [77] and need to be specialized to the assumption of no current CSI.

Recently, another achievable region was proposed independently by Venkataramanan
and Pradhan [61]. The scheme present is based on block-Markov strategy and Marton’s
coding. More specifically, in their scheme, the transmitter in each block uses Marton’s
coding to encode fresh messages into random variables U; and Us intended for Receiver
1 and 2, respectively. In next block, the transmitter sends refinement information using
new random variables (A, B, C'), where (A, C) is intended for Receiver 1 and (B, C) is
for Receiver 2. This scheme is similar to Shayevitz-Wigger’s scheme but here it applies

joint source-channel coding and forward decoding.
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Comparing the three general regions—Kramer’s region, the Shayevitz-Wigger region
and the Venkataramanan-Pradhan region, with each other is difficult due to their com-
plex form which involves several auxiliary random variables.

For the two-receiver Gaussian BC with perfect feedback, Ozarow and Leung [62]
proposed a scheme based on the Schalkwijk-Kailath scheme. It is shown that the
Ozarow-Leung scheme can enlarge the non-feedback capacity region and improve the
communication reliability. Their scheme is summarized as follows. In the initialization
phase (occupying two channel uses), two private messages intended for Receiver 1 and
2, respectively, are mapped into real numbers and sent individually over the channel.
Upon obtaining the channel outputs, each receiver makes temporary guess of its desired
message. After the initialization phase, the transmitter iteratively sends the errors of
the MMSE of the transmitted messages given the previous channel outputs obtained
through feedback. When receiving a linear combination of these errors together with
a correlated noise term, the receivers estimate the noise occurred in the initialization
phase and update the guess of their desired messages. This scheme was later extended by
Kramer to more than two receivers case [L1]. Note that the Ozarow-Leung scheme and
Kramer’s scheme both belong to linear-feedback scheme and exhibit doubly exponential

decay in the probability of error.

4.1.2 Memoryless Gaussian Broadcast Channels with Feedback

For the K > 2-receiver Gaussian BC with perfect feedback, Ardestanizadeh, Minero,
and Franceschetti [I3] proposed a coding scheme based on the theory of linear quadratic
Gaussian (LQG) optimal control. Similar to the Schalkwijk-Kailath scheme and Kramer’s
scheme, in this LQG scheme the transmitter iteratively sends refinement of the estimate
of the messages, but here the estimate is based on a stabilizing control instead of MMSE.
The performance of this LQG scheme depends on the noise correlation at the receivers.
When the noises at the receivers are independent, this scheme recovers the region pro-
posed by Elia [64] and strictly improves over the Ozarow-Leung scheme and Kramer’s
scheme. When the noises are correlated, the prelog of the sum capacity is determined by
the rank of noise correlation matrix and can be strictly larger than 1. Specifically, for
correlation matrix of rank L, the prelog is at most (K —L+1). Conversely, there exists

a noise correlation matrix of rank L < K for which the LQG coding scheme achieves
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the prelog (K —L+1). This generalizes a result by Wigger and Gastpar [148], to the
case of more than two receivers.

More recently, Selma, Yossef, and Wigger [16, 17] investigated the duality between
multi-antenna Gaussian MAC and BC with perfect feedback. For these two channels, a
class of linear-feedback coding schemes was proposed that achieves the linear-feedback
capacity region, i.e. the set of all rate pairs achieved by linear-feedback schemes. This
scheme achieves the best known achievable region and includes as special cases the
schemes by Ardestanizadeh et al. [I3] and by Elia [64].

Given a two-receiver single-antenna Gaussian BC that is characterized by input-
power constraint P, independent noises Z; ~ N(0,1), Zs ~ N(0,1), and channel coeffi-
cients hi, he, from [I6], I7], it is known that the linear-feedback capacity region is given

by

Rinto(h1, ha, P) = | Rium (b1, b2, P, p) (4.5a)
p€l0,1]

where for each p € [0,1], R} g (h1,ho, P,p) is the set of all nonnegative rate-pairs

(R, R) satisfying

Ry < - logy (1+ hiaP(1 - p?)) (4.5b)

Ry < —logy (1 +h3(1 — a)P(1 - p?)) (4.5¢)

Ri+ Ry < - log, (1 Y h2aP + h2(1 — )P +2/a(l — oz)hlthp> (4.5d)

RN RN

\)

for arbitrary a with 0 < a < 1.
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4.2 Outer Bound on Broadcast Channel with Feedback

Cut-set Outer Bound

Applying the Theorem 14.10.1 in [139], the cut-set outer bound Router,cut can be ob-

tained as the closure set of all nonnegative rate pairs such that

Ry <I(X; Y1) (4.6a)
Ry < I(X;Y2) (4.6b)
Ri+ Ry < I(X;Y1,Y2) (4.6¢)

for some pmf Px Py,y,|x-

Ozarow-Leung Outer Bound

A simple outer bound on the capacity with output feedback is given in [62]. It equals
the capacity region Céln)h of an enhanced DMBC where the outputs Y{* are also revealed
to Receiver 2. Notice that this enhanced DMBC is physically degraded and thus, with
and without feedback, its capacity region is given by the set of all nonnegative rate pairs

(R1, R2) that satisfy

Ry < I(U;Y1) (4.7a)
Ry < I(X: Y1, V3 |U) (47b)

for some pmf Pyx Py v, x-
Exchanging everywhere in the previous paragraph indices 1 and 2, we can define

a similar enhanced capacity region C}(;l)h, which is also an outer bound to Cgy. The

intersection C](alrzh N C](E?h yields an even tighter outerbound [58], 59].



Chapter 5

Reliability of the Gaussian BC
with Common Message and
Feedback

5.1 Introduction

In this chapter we show that linear-feedback schemes with a message point, in the
spirit of Schalkwijk-Kailath’s scheme, are strictly suboptimal for the K-user memoryless
Gaussian BC with common message and fail to achieve capacity. As a consequence, for
this setup, linear-feedback schemes also fail to achieve double-exponential decay of the
probability of error for rates close to capacity. To our knowledge, this is the first example
of a memoryless Gaussian network with perfect feedback, where linear-feedback schemes
with message points are shown to be strictly suboptimal. In all previously studied
networks with perfect feedback, they attained the optimal performance or the best so
far performance. (In case of noisy feedback, they are known to perform badly even in
the memoryless Gaussian point-to-point channel [149].)

In the asymptotic scenario of infinitely many receivers K — oo, the performance
of linear-feedback schemes with a message point completely collapses: the largest rate
that is achievable with these schemes tends to 0 as K — oo. This latter result holds

under some mild assumptions regarding the variances of the noises experienced at the

49
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receivers, which are for example met when all the noise variances are equal. Notice
that, in contrast, the capacity of the K-user Gaussian BC with common message does
not tend to 0 as K — oo when e.g., all the noise variances are equal. In this case,
the capacity does not depend on K, because it is simply given by the point-to-point
capacity to the receiver with the largest noise variance.

That the performance of linear-feedback schemes with a common message point
degenerates with increasing number of users K is intuitively explained as follows. At
each time instant, the transmitter sends a linear combination of the message point
and past noise symbols. Resending the noise symbols previously experienced at some
Receiver k can be beneficial for this Receiver k because it allows it to mitigate the noise
corrupting previous outputs. However, resending these noise symbols is of no benefit
for all other Receivers kK’ # k and only harms them. Therefore, the more receivers
there are, the more noise symbols the transmitter sends in each channel use that are
useless for a given Receiver k. Our result hinges upon the independence of the noises at
difference receivers. In the case of correlated noises a noise symbol can be beneficial to
multiple receivers. In the extreme case where all noises are identical, for instance, the
BC degenerates to a point-to-point channel and Schalkwijk-Kailath’s scheme is capacity
achieving.

For the memoryless Gaussian point-to-point channel [2] and MAC [10], the (sum-
)Jcapacity achieving linear-feedback schemes with message points transmit in each chan-
nel use a scaled version of the linear minimum mean square estimation LMMSE errors
of the message points given the previous channel outputs. The same strategy is how-
ever strictly suboptimal—even among the class of linear-feedback schemes with message
points—when sending private messages over a Gaussian BC [13]. It is unknown whether
LMMSE estimates are optimal among linear-feedback schemes when sending a common
message over the Gaussian BC.

In our proof that any linear-feedback scheme with a message point cannot achieve
the capacity of the Gaussian BC with common message, the following proposition is
key: For any sequence of linear-feedback schemes with a common message point that
achieves rate R > 0, one can construct a sequence of linear-feedback schemes that
achieves the rate tuple Ry = ... = Rg = R when sending K private message points

with a linear-feedback scheme. This proposition shows that the class of linear-feedback
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schemes with message points cannot take advantage of the fact that all the K > 2
receivers are interested in the same message.

To contrast the bad performance of linear-feedback schemes, we present a coding
scheme that exploits the feedback in a intermittent way (only in few time slots the re-
ceivers send feedback signals) and that achieves double-exponential decay of the proba-
bility of error for all rates up to capacity. In our scheme it suffices to have rate-limited
feedback with feedback rate Rpy, no smaller than the forward rate R. If the feedback
rate Rpp, < R then, even for the setup with only one receiver, the probability of error can
decay only exponentially in the blocklength [9]. This implies immediately that also for
the K > 2 receivers BC with common message no double-exponential decay in the prob-
ability of error is achievable when Rpy, < R. When the feedback rate Rpy, > (L — 1)R,
for some positive integer L, then our intermittent-feedback scheme can achieve an L-th
order exponential decay in the probability of error. That means, it achieves a prob-
ability of error of the form P = exp(— exp(exp(...exp(2(n))))), where there are L
exponential terms and where 2(n) denotes a function that satisfies lim,,_, % > 0.

Our intermittent-feedback scheme is inspired by the scheme in [9] for the memoryless
Gaussian point-to-point channel with rate-limited feedback. Also the schemes in [150]
and [I51] for the memoryless Gaussian point-to-point channel with perfect feedback are
related. In fact, in our scheme communication takes place in L phases. In the first phase,
the transmitter uses a Gaussian code of power P to send the common message to the
K Receivers. The transmission in phase [ € {2,..., L} depends on the feedback signals.
After each phases [ € {1,..., L—1} each Receiver k feeds back a temporary guess of the
message. Now, if one receiver’s temporary guesses after phase (I — 1) is wrong, then in
phase [ the transmitter resends the common message using a new code. If all receivers’
temporary guesses after phase (I — 1) were correct, in phase [ the transmitter sends the
all-zero sequence. In this latter case, no power is consumed in phase [. The receivers’
final guess is their temporary guess after phase L.

The fact that the described scheme can achieve an L-th order decay of the prob-
ability of error, roughly follows from the following inductive argument. Assume that
the probability of the event “one of the receivers’ guesses is wrong after phase [”, for

l€{l,...,L — 1}, has an [-th order exponential decay in the blocklength. Then, when
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sending the common message in phase [ 4+ 1, the transmitter can use power that is [-
th order exponentially large in the blocklength without violating the expected average
blockpower constraint. With such a code, in turn, the probability that after phase [ + 1
one of the receivers has a wrong guess can have an (I 4+ 1)-th order exponential decay
in the blocklength.

The rest of the chapter is organized as follows. Section[5.2]describes the Gaussian BC
with common message and defines the class of linear-feedback schemes with a message
point. Section [5.3] introduces the Gaussian BC with private messages and defines the
class of linear-feedback schemes with private message points. Section [5.4] presents our
main results. Finally, Sections [5.5| and contain the proofs of our Theorems and

5.2 Setup

5.2.1 System Model and Capacity

Fy
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| Zl,il |
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Figure 5.1: K-receiver Gaussian BC with feedback and common message only.

We consider the K > 2-receiver Gaussian BC with common message and feedback

depicted in Figure Specifically, if X; denotes the transmitter’s channel input at
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time-7, the channel output at Receiver k € K := {1,..., K} is

Yii=Xi+ Zy; (5.1)

where {Z;;}; models the additive noise at Receiver k. The sequence of noises

{(Z14,...,ZK,;)}", is a sequence of i.i.d. centered Gaussian vectors, each of diago-
nal covariance matrix
o? 0
Ko=|: - :|. (5.2)
0 O'%(

Without loss of generality, we assume that

o} >03>...>0%. (5.3)

The transmitter wishes to convey a common message M to all receivers, where M
is uniformly distributed over the message set M := {1,...,[2"]} independent of the
noise sequences {Z1;}7" q,...,{Zk,i}l~,. Here, n denotes the blocklength and R > 0
the rate of transmission. It is assumed that the transmitter has either rate-limited or
perfect feedback from all receivers. That means, after each channel use i € {1,...,n},
each Receiver k£ € K feeds back a signal Fj; € Fj; to the transmitter. The feedback
alphabet F} ; is a design parameter of the scheme. In the case of rate-limited feedback,

the signals from Receiver k have to satisfy:

n
> H(Fyi) <nRpp, kek (5.4)
i=1

where Rpp denotes the symmetric feedback rate. In the case of perfect feedback, we

have no constraint on the feedback signals {Fj;}7 ,, and it is thus optimal to choose

Fri =R and

Fri =Yg, (5.5)

because in this way any processing that can be done at the receivers can also be done
at the transmitter.

An encoding strategy is comprised of a sequence of encoding functions { fi(n)}?:1 of
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the form
F M F s x FiEL SR (5.6)
that is used to produce the channel inputs as
X, = f"(M,F7Y, O FEY, ie{l,...,n}. (5.7)

(2

We impose an expected average block-power constraint P on the channel input sequence:

<P (5.8)

1 n
- E [z; X?
(n)

Each Receiver k € K decodes the message M by means of a decoding function g,
of the form
g R - M. (5.9)

That means, Receiver k produces as its guess
M) = gt . (5.10)
An error occurs in the communication if
(M®) £ M), (5.11)

for some k € IC. Thus, the average probability of error is

PM™ .— pr

U (M(k) ” M)] . (5.12)
kel

We say that a rate R > 0 is achievable for the described setup if for every ¢ > 0
there exists a sequence of encoding and decoding functions { { fi(") A {g,gn)}szl}le
as in and (5.9) and satisfying the power constraint such that for sufficiently
large blocklengths n the probability of error Pe(n) < €. The supremum of all achievable
rates is called the capacity. The capacity is the same in the case of perfect feedback,

of rate-limited feedback (irrespective of the feedback rate Rpy), and without feedback.
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We denote it by C' and by assumption ([5.3) it is given by

C= 1log2 (1 + P2> . (5.13)
2 oy

Our main interest in this chapter is in the speed of decay of the probability of error

at rates R < C.

Definition 7. Given a positive integer L, we say that the L-th order exponential decay
in the probability of error is achievable at a given rate R < C, if there exists a sequence

of schemes of rate R such that their probabilities of error {Pe(n)}?f:l satisfy

1
lim —loglog...log(—log P{™) > 0, (5.14)

n—oo

where the number of logarithms in (5.14)) is L.

5.2.2 Linear-Feedback Schemes with a Message Point

When considering perfect feedback, we will be interested in the class of coding schemes
where the feedback is only used in a linear fashion. Specifically, we say that a scheme
is a linear-feedback scheme with a message point, if the sequence of encoding functions
{ fi(n)}?:1 is of the form

£ = g o (5.15)

with
3. M~ 0 eR (5.16a)
LM @Myt Ly e X (5.16b)

(n)

where ®(™ is an arbitrary function on the respective domains and L;” is a linear

mapping on the respective domains. There is no constraint on the decoding functions

o g,

By the definition of a linear-feedback coding scheme in (5.16), for each blocklength
n, if we define X = (Xl, e ,Xn>T, Yk = (Yk,l') oo ,Ykm)T, and Zk = (ZkJ, ey Zk’n)T,
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for k € IC, the channel inputs can be written as:

K
X=0M.d" + Y Az, (5.17)

k=1
for some n-dimensional vector d(™ and n-by-n strictly lower-triangular matrices Agn),
e ,Ag?). (The lower-triangularity of Ag"), . ,Ag?) ensures that the feedback is used in
a strictly causal fashion.) Thus, for a given blocklength n, a linear-feedback scheme is

described by the tuple
o™ dm AW AW g ) (5.18)

It satisfies the average block-power constraint (5.8)) whenever
K
SOIA Fo? + [d™2E ([0 2] < nP. (5.19)
k=1

The supremum of all rates that are achievable with a sequence of linear-feedback

schemes with a message point is denoted by '),

5.3 For comparison: Setup with Private Messages and
Perfect Feedback

5.3.1 System Model and Capacity Region

For comparison, we also discuss the scenario where the transmitter wishes to communi-

cate a private message My, to each Receiver k € K over the Gaussian BC in Figure [5.1

The messages Mj,..., Mk are assumed independent of each other and of the noise
sequences {Z1 ;1" 4,...,{ZKki}~,; and each M} is uniformly distributed over the set
My = {1,...,|2"*|}. For this setup we restrict attention to perfect feedback. Thus,

here the channel inputs are produced as

Xo=f" (M, Mg, YP YY), i e {1, n}. (5.20)

priv,i
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Receiver k produces the guess
My = g (V) (5.21)
. . (n) K
where the sequence of decoding function {gpriV w ey is of the form
g R {1, [20Re, (5.22)

A rate tuple (Ry,..., Rk) is said to be achievable if for every blocklength n there
exists a set of n encoding functions as in satisfying the power constraint and
a set of K decoding functions as in such that the probability of decoding error
tends to 0 as the blocklength n tends to infinity, i.e.,

lim Pr [(Ml,...,MK)yé(Ml,...,MK) = 0.

n—oo

The closure of the set of all achievable rate tuples (Ry,..., Rg) is called the capacity
region. We denote it Cprivate- This capacity region is unknown to date. (The sum-
capacity in the high-SNR asymptotic regime is derived in [I4].) Achievable regions were
presented in [I3], 14} 15]; the tightest known outer bound on capacity for K = 2 users
was presented in [10] based on the idea of revealing one of the output sequences to the
other receiver. This idea generalizes to K > 2 users, and leads to the following outer
bound [IT], 152]:

Lemma 5.1. If the rate tuple (Ry1,. .., Ri) lies in Cprivate, then there exist coefficients
a1, ..., in the closed interval [0,1] such that for each k € K,

1 oy P
< Zlog, (1 5.2
Rk—2°g2< +(1—a1—...—ak)P+Nk> (5:23)

where

k —1
Ny = (Z ;3) ., kek. (5.24)

Proof. Let a genie reveal each output sequence Y to Receivers k + 1,..., K. The
resulting BC is physically degraded, and thus its capacity is the same as without feed-

back [54] and known. Evaluating this capacity region readily gives the outer bound in
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the lemma. O

5.3.2 Linear-Feedback Schemes with Message Points

A linear-feedback scheme with message points for this setup with independent messages
consists of a sequence of K decoding functions as in ([5.22)) and of a sequence of encoding

functions { féz)w}?’:l of the form

with
M, G}
(n) - : K
R = Q= : eR (5.26a)
Mg Ok
Lo (@YY e X, (5.26D)
where @é?i)v is an arbitrary function on the respective domains and Lgr?w is a linear

mapping on the respective domains.

We denote the closure of the set of rate tuples (R, ..., Rx) that are achievable with
(Lin)

a linear-feedback scheme with message points by Cprivate.

date.

This region is unknown to

5.4 Main Results

The main question we wish to answer is whether for the Gaussian BC with common
message a super-exponential decay in the probability of error is achievable for all rates
R < C. We first show that the class of linear-feedback schemes with message point
fails in achieving this goal even with perfect feedback, because it does not achieve
capacity (Theorem and Corollary . As the number of receivers K increases,
the largest rate that is achievable with linear-feedback schemes with a message point
vanishes (Proposition . However, as we show then, a super-exponential decay in the
probability of error is still possible by means of an intermittent feedback scheme similar
to [9] (Theorem [5.2)).
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Proposition 5.1. If a sequence of linear-feedback schemes with a message point achieves
a common rate R > 0, then there exists a sequence of linear-feedback schemes with mes-

sage points that achieves the private rates (R,..., R) € RX:

0<R<COU™ — (R,... R eclm (5.27)

private”
Proof. See Section [5.5 O
Proposition [5.1] and the upper bound in Lemma [5.1] yield the following result:

Theorem 5.1. We have:

. 1 orP
cdin) <~ 1 1 5.28
=5 082 +(1—o¢’{)P+0% (5.28)

where of lies in the open interval (0,1) and is such that there exist o3, ..., a5 € (0,1)

that satisfy

aftas+...+ax=1 (5.29a)
and for k € {2,...,K}:
i P
~1 1 k
2 0g2< +(1—a’{—a§ —OZZ)P—FNk)
1 or P
=1 1 L 5.29b
2 OgQ( +(1—a;)P+af> (5:29b)

where the noise variances { Ny}, are defined in (5.24).

Since a* is strictly smaller than 1, irrespective of K and the noise variances o2, . . ., 02
1 ) 1 K

we obtain the following corollary.

Corollary 5.1. Linear-feedback schemes with a message point cannot achieve the ca-

pacity of the Gaussian BC with common message:
ctin) < ¢ (5.30)

where the inequality is strict.
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Figure 5.2: Upper bound 1} on the rates achievable with linear-feedback schemes
with a message point in function of the number of receivers K.

Proposition 5.2. If the noise variances {aﬁ}szl are such that

> Ny = o0, (5.31)
k=1
then
lim ¢ = 0. (5.32)
K—o0
Proof. See Appendix O

In Figure we plot the upper bond on CM") shown in 1 , Theorem

as a function of the number of receivers K, which have all the same noise variance

0?2 =...= O'%( = 1. As we observe, this upper bound, and thus also C™  tends to 0

as K tends to infinity

Theorem 5.2. For any positive rate R < C, if the feedback rate
Rpy, > (L — 1)R, (5.33)

for some positive integer L, then it is possible to achieve an L-th order exponential decay

of the probability of error in the blocklength.
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Proof. See Section [5.6] O

5.5 Proof of Proposition 5.1

Let § > 0 be a small real number. Fix a sequence of rate-R > 0, power-(P — §)
linear-feedback schemes that sends a common message point over the Gaussian BC

with probability of error Pe(n) tending to 0 as n — oco. For each n € Z™, let
oM dm A A gt (5.34)

denote the parameters of the blocklength-n scheme, which satisfy the power constraint

K
E [ye“ﬂﬂ @™+ 37 A2 < (P - ) (5.35)
k=1
where O = &™) ().

We have the following lemma.

(n) (n)

Lemma 5.2. For each blocklength n, there exist n-dimensional row-vectors vy, ..., Ve
of unit norms,
V1P = = v 1P = 1, (5.36)

and K indices jYL), e ,jg) € {1,...,n} such that for each k € K the following three

limits holds:

1.
R< lim —— log, ™ (5.37)
oo 20 0k
where
A" = v (A 1P+ S o v Al (5.38)

k' eK\{k}
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2.
1 2
lim —E [(X%) ] =0 (5.39)
n—oo n Ik
where fori € {1,...,n}, X,L-(n) denotes the i-th channel input of the blocklength-n
scheme; and
3.
lim — log, (Jo™,.,[) = 0 (5.40)
n—oo 2n 2 k,j;ﬂn)
where fori € {1,...,n}, v,gfbi) denotes the i-th component of the vector V](cn).
Proof. See Appendix O

Remark 5.1. In the statement of the above lemma, the vector v,(cn) 1s a scaled version of

the LMMSE filter of the the input given observations Yy 1,..., Yy, and c,(cn) represents
the volume of uncertainty about the message point at receiver k (hence R is bounded
by its rate of decay). The last two claims of Lemma hinge upon the fact that the
channel input is power limited and therefore there must exists channel inputs that use

less or equal than average power.

In the following, let for each n € ZT, VE") e ,v%) be n-dimensional unit-norm row-

vectors and le), el j}? be positive integers satisfying the limits (5.37), (5.39), and
(5.40]).
We now construct a sequence of linear-feedback schemes with message points that

can send K independent messages M, ..., Mg to Receivers 1,..., K at rates

Ry > ( lim —— log, c,(j)) —e, kek, (5.41)
nooo 2N
for an arbitrary small € > 0 with: 1) a probability of error that tends to 0 as the
blocklength tends to infinity and 2) with an average blockpower that is no larger than
P when the blocklength is sufficiently large. By , since d,¢ > 0 can be chosen
arbitrary small, and since C(“™ is continuous in the power P (Remark ahead) and

is defined as a supremum, the result in Proposition will follow.
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— /

Initialization slots [ : regular slots Ji, 0, I @ extra slots

Figure 5.3: Labeling of the transmission slots for our blocklength-(n + 2K') scheme.

We describe our scheme for blocklength-(n+2K), for some fixed n € Z*. Our scheme
is based on the parameters Ag"), . ,Agg) in , on the vectors vgn), ... ,V&?), and on
the indices j%n), e jé?) where v,(cn) and j,(gn), k € K are defined in Lemma M For ease
of notation, when describing our scheme in the following, we drop the superscript (n),
i.e., we write

Al,...,AK, Vi,..., VK, and jl,...,jK.

We also assume that

1< o < ... < jk. (5.42)

(If this is not the case, we simply relabel the receivers.) Also, to further simplify the
description of the linear-feedback coding and the decoding, we rename the n + 2K
transmission slots as depicted in Figure |5.3] Transmission starts at slot 1 — K and ends
at slot n; also, after each slot ji, for k € KC, we introduce an additional slot j;. We call
the slots 1 — K, ..., 0 the initialization slots, the slots ji, ..., jx the extra slots, and the
remaining slots 1,2,3,...,n the regular slots.

In our scheme, the message points {@k’}kK:1 are constructed as in the Ozarow-Leung
scheme [62]:

M —1

These messages are sent during the initialization phase. Specifically, in the initialization

slots i =1— K,...,0, the transmitter sends the K message points O1,...,0k:

P
X1 p=4/—06y, ke K. 5.44
1 =\ Var(en) O (5.44)
In the regular slots ¢ = 1, ..., n, the transmitter sends the same inputs as in the scheme

with common message described by the parameters in (5.34]), but without the component
from the message point and where for each k € K the noise sample Z, ;, is replaced by

Zy, 5. . Thus, defining the n-length vector of regular inputs X 2 (X1, X2, X3,...,X,)",
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XEIEN

jk+1‘

jK ]K
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j2+1‘

‘l—K‘ ‘1—k‘ \ 0 \ 1 \ i, J'1+1‘ \ L, ii

I

[ : slots considered at Receiver k 1-k, j, : slots dedicated exclusively to Receiver k

Figure 5.4: Transmissions considered at Receiver k and transmissions dedicated exclu-
sively to Receiver k.

we have
K ~
X => AZ (5.45)
k=1
where for k € K,
Zk = (Zk:,h Zk:,27 ey Zk,jkfl, ijk’ ZkJ'kJrl, ey Zk’n)T (546)

denotes the n-length noise vector experienced at Receiver k during the regular slots
1,..., 7% — 1, the extra slot ji, and the regular slots j, +1,...,n.

Since for each k € K, the extra slot ji preceds all regular slots ji + 1,...,n, the
strict lower-triangularity of the matrices A1, ..., Ax ensures that in the feedback
is used in a strictly causal way.

In each extra slot jk, for k € K, the transmitter sends the regular input Xj;, , but

now with the noise sample Zj 1_p,

X5k = Xjk + Zk’lfk. (547)

The noise sample Zj, 1, is of interest to Receiver k (and only to Receiver k) because from
this noise sample and Y 1—; one can recover O, see . Therefore—as described
shortly—in the decoding, Receiver k considers the extra output Yk,jk which contains
Z1—k whereas all other receivers k" # k instead consider the regular outputs Y i
which do not have the Zj, 1_j-component.

The decoding is similar as in the Ozarow-Leung scheme. However, here, each
Receiver k € K only considers the initialization output Yj i_j, the regular outputs
Yits- oo Ye -1, Yeju+1,- - -, Yk ik and the extra output Yk,fkv see also Figure Specif-

ically, Receiver k forms the n-length vector

?k’ = (Yk,la e 7Yk’,jk—17 Yka, Yk,jk-‘rla e ,Yk,n)T, (548)
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and produces the LMMSE estimate Zm_k of the noise Zj, 1—, based on the vector ?k

It then forms

Var(Oy)

O = iz

<Yk,1—k - Zk,l—k) : (5.49)

and performs nearest neighbor decoding to decode its desired message M} based on Oy.

We now analyze the described scheme. The expected blockpower of our scheme is:

0 n K
SB[+ DE[XP] + Y E[IX, ]
i=1-K i=1 k=1
K K
<KP+n(P-6)+Y E[X;[]l+> of (5.50)
k=1 k=1

where the inequality follows from ((5.44), (5.45)), and (5.47), and from (5.35)), which

assures that the regular inputs X7,..., X, are block-power constrained to n(P — ¢).
Further, since the indices j1,. .., jx satisfy Assumption ({5.39)),

K
1
Jim ; E[|X;, ] =0, (5.51)

and thus for sufficiently large n the proposed scheme for independent messages is average
blockpower constrained to P.

We analyze the probability of error. Notice that

é)k =0+ Ep, (5.52)

Var(© .
By = \/](D’“) <Zk71_k - Zm_k) (5.53)

is zero-mean Gaussian of variance

where

Var(Ej,) = Var;@k)agzﬂ(zmm?k). (5.54)
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Equation ([5.54) is justified by

I(Zka—k 3 Yi)
=W Zy1-1) — h (Zk,lfk|?k>

1 2
= 5 logy % -
2 Var<Zk,1—k - Zk,l—k)

(5.55)

where the last equality follows because Zj 1_j and ?k are jointly Gaussian, and thus
the LMMSE estimation error Zj, 1_j — ZAkJ_k is independent of the observations ?k

The nearest neighbor decoding rule is successful if |Ej| is smaller than half the
distance between any two message points. Since Fj is Gaussian and independent of the
message point, the probability of this happening is

) 1
Pr [Mk # Mk} < Pr[lEk\ = W%)R”}

QI(Zk,l—M?k) P
:2 . .
O\ 2 2R Var(@y) o2

We conclude that the probability of error tends to 0, double-exponentially, whenever

1 3
Ry, < lim —I(Zg1-4; Yi)- (5.56)

n—o0

Notice that the vector Y}, as defined in (5.48), satisfies

?k = Z Aklzk/ + (l + Ak)Zk + eijk,l,k (557)
K eR\{k}
where for each i € {1,...,n} the vector e; is the n-length unit-norm vector with all

zero entries except at position ¢ where the entry is 1. Thus, by the data processing
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inequality,

I(Zga—1;Yr)
> I(Zg—k; viYk)

1 Uk i |2
= 710g 1+ sJk
2 72T v+ AP+ X ol v A2
k' €K\{k}
1 2
— Zlog, (1 ; [kl > (5.58)
2 Ck

where the first equality follows by (5.57]) and the joint Gaussianity of all involved random
variables and the second equality follows by the definition of ¢ in ([5.38]).
Combining (5.56)) and (5.58)), we obtain that the probability Pr [Mk #+ Mk} tends

to 0 as n — oo whenever

n—00 Ck

o1 [0k
Ry < lim %log2 14+ —=— . (5.59)

(Recall that the quantities ji, cx, and vy j, depend on n, but here we do not show this
dependence for readability.)
Further, by the converse in ([5.37)),

-1
0 < R< lim —logy ek
2n

n—oo

1 . vk 5 )

= lim — lo (5.60)
n—oo 410 CL
.1 [0k, |2

= lim —1 14 Bkl .61
i o (13 oo

where the first equality holds by Condition (5.40) and the second equality holds be-

2
cause ([5.60)) implies that the ratio % tends to infinity with n.

Combining (5.59) with (5.61)) establishes that for arbitrary e > 0 there exists a rate
tuple (R, ..., Rk) satisfying (5.41) such that the described scheme with independent

messages achieves probability of error that tends to 0 as the blocklength tends to infinity.

Remark 5.2. In the spirit of the scheme for private messages described above, one

can construct a linear-feedback scheme with a common message point that has arbitrary
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small probability of error whenever

— 1
R < lim ~5. log, ck, kelk.

n—00 n

Combined with the converse in (5.37), this gives a (multi-letter) characterization of
C ™) Based on this multi-letter characterization one can show the continuity of C' (1)

in the transmit-power constraint P.

5.6 Proof of Theorem [5.2: Coding Scheme Achieving L-th
Order Exponential Decay

The scheme is based on the scheme in [9], see also [I50], [I5I]. Fix a positive rate

R < C and a positive integer L. Assume that
Rpp, > R(L —1). (5.62)

Also, fix a large blocklength n and small numbers €,d > 0 such that

R<C(1-29) (5.63)
and
(1—e) ' <1450, (5.64)
Define
ny:=(1—¢€)n (5.65)
and for [ € {2,...,L}
en
n;:=ni+ 7 _ 1(l — 1). (5.66)
Notice that by (5.64) and (5.65)),
<14 (5.67)

ni
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The coding scheme takes place in L phases. After each phase [ € {1,...,L}, each
Receiver k € K makes a temporary guess Ml(k) of message M. The final guess is the

guess after phase L:
M = P, (5.68)

Define the probability of error after phase [ € {1,..., L}:

P = Pr[U b M] (5.69)
ke
and thus
P =p. (5.70)

5.6.1 Code Construction

We construct a codebook Cy that

e is of blocklength ni,

e is of rate Rphase,1 = T%R,

e satisfies an expected average block-power constraint P, and

e when used to send a common message over the Gaussian BC in and combined

with an optimal decoding rule, it achieves probability of error p; not exceeding
pr < e MCo(D) (5.71)

for some ¢ > 0.
Notice that such a code exists because, by and , the rate of the code
TR <C1 - 62), and because the error exponent of the BC with common message
without feedback is positive for all rates below Capacityﬂ
Let
" = p1- (5.72)

1 The positiveness of the error exponent for the Gaussian BC with common message and without
feedback follows from the fact that without feedback the probability of error for the Gaussian BC with
common messages is at most K times the probability of error to the weakest receiver.
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For [ from 2 to L, do the following.
Construct a codebook C; that:

e is of blocklength ;5 — 1,

. R(L—1
e is of rate Rppase, = ﬁ’

e satisfies an expected average block-power constraint P/~;_1,
e when used to send a common message over the Gaussian BC in (5.1)) and combined

with an optimal decoding rule, it achieves probability of error p; not exceeding

o1 < exp(—expo...oexp(Q(n))). (5.73)

[—1 times

Define

We=p+2Y Q <VP/7H> . (5.74)

20
kek k

(As shown in Section |5.6.3| ahead, 7; upper bounds Pe(fll) defined in (5.69).) By (5.73)
and ((5.74)), inductively one can show that

v < exp(—expo...oexp(Q(n))). (5.75)

[—1 times

In Appendix we prove that such codes Ca, . ..,Cr, exist.

5.6.2 Transmission

Transmission takes place in L phases.

First phase with channel uses i=1,...,n

During the first n; channel uses, the transmitter sends the codeword in C; corresponding
to message M.

After observing the channel outputs Y;'*, Receiver k € K makes a temporary decision
Ml(k) about M. It then sends this temporary decision Ml(k) to the transmitter over the
feedback channel:

Fion, = M™®. (5.76)
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All previous feedback signals from Receiver k are deterministically 0.

Phase | € {2,..., L} with channel uses i € {n;_1+1,...,n;}

The communication in phase [ depends on the receivers’ temporary decisions (M l(_l)l, R
Ml(_Kl)) after the previous phase (I —1). These decisions have been communicated to the
transmitter over the respective feedback links.

If in phase (I — 1) at least one of the receivers made an incorrect decision,
(Ml(f)l # M), for some k € IC, (5.77)

then in channel use n;_1 + 1 the transmitter sends an error signal to indicate an error:

Xo+1 =V P/v-1. (5.78)

During the remaining channel uses i = n;_1+2, ..., n; it then retransmits the message M
by sending the codeword from C; that corresponds to M.
On the other hand, if all receivers’ temporary decisions to the phase (I — 1) were

correct,

W0 = 0 == i) = (5.79)

then the transmitter sends 0 during the entire phase (:
X; =0, t=ni_1+1,...,1. (580)

In this case, no power is consumed in phase .

The receivers first detect whether the transmitter sent an error signal in channel use
n;_1+1. Depending on the output of this detection, they either stick to their temporary
decision in phase (I — 1) or make a new decision based on the transmissions in phase .
Specifically, if

Y141 <Ti—1 (5.81)

where

T Vv P/yi-1
1=

5 (5.82)
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then Receiver k € K decides that its decision Ml@[ in phase (I — 1) was correct and

keeps it as its temporary guess of the message M:

v = nr®), (5.83)
If instead,
Yk,nl_l-i-l > Tl—17 (584)

Receiver k decides that its temporary decision Ml(f)l was wrong and discards it. It then
produces a new guess Ml(k) by decoding the code C; based on the outputs Yy ,, ,42,...,
Yin,-
After each phase [ € {2,..., L—1}, each Receiver k € K feeds back to the transmitter
its temporary guess Ml(k):
Fip = M. (5.85)

All other feedback signals Fj, ,, 41, ... % n-1 in phase [ are deterministically 0.

After L transmission phases, Receiver k’s final guess is
’ o (k
M = k), (5.86)
Thus, an error occurs in the communication if
(MP £ M), for some k € K. (5.87)

5.6.3 Analysis

In view of (5.62)), by (5.76) and (5.85)), and because all other feedback signals are
deterministically 0, our scheme satisfies the feedback rate constraint in ([5.4]).

We next analyze the probability of error and we bound the consumed power. These
analysis rely on the following events. For each k € K and | € {1,...,L} define the
events:

(k)

e ¢, 't Receiver k’s decision in phase [ is wrong:

AR Ve (5.88)
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) egpk 2: Receiver k observes
Yim+1 <1 (5.89)
) egfl): Decoding message M based on Receiver k’s phase-l outputs Y, ,,, 42, ., Yin,

using codebook C; results in an error.
Define also the events:

&1 All receivers’ decisions in phase (I —1) are correct, and at least one Receiver k € K

obtains an error signal in channel use n;_1 + 1 :
(k) \e (k) \e
( ﬂ (6171) > N < U (éT,lfl) > (5.90)
kel kek

Es1: At least one Receiver k& € K makes an incorrect decision in phase (I — 1) but

)

obtains no error signal in channel use n;_1 + 1:

U (45l (5.91)

kel

&31: At least one Receiver £ € K makes an incorrect temporary decision in phase
(I—1), and at least one Receiver k' € K observes Yi' n,_y+1 = Tj—1 and errs when

decoding M based on its phase-l outputs Yzs p, 4o,..., Y o

(U)o (U (rnd)) 592

kek

For each | € {1,..., L}, the probability Pe(?) is included in the union of the events
(&1, U &2, UEs;), and thus, by the union bound,

P < Pri€] + Pri€a] + Pri€s). (5.93)
In particular, by (5.70) and (5.93)), the probability of error of our scheme
P™ < Prl& 1] + Prleas] + Prles ). (5.94)

We bound each summand in (5.94) individually, starting with Pr[&; 1]. By (5.90),
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we have

el = | () 620 (U )|
pr[U (0 N (e‘fll)c]

kel kel

N <e<f>1>C]

kek

Q(TL1> (5.95)

IN

IN

Pr

K
k=1
K
>.9(~
=1 k

where the first inequality follows by Bayes’ rule and because a probability cannot exceed
1; the second inequality by the union bound; and the last equality because in the event
(ﬂkeK(e(Lkzl)c), we have X,,, ,+1 =0 and thus Yy, ,4+1 ~N(0,0%).

Next, by and similar arguments as before, we obtain,

Pr(n ] = pr[U (@ <>)]
ke

Pr [egﬂzl N egﬁ)L_l}

K
)
k=1
= k) (k)
< Z Pr [G;,Lfl ‘%4}
k;(1
>

Q(TL‘1>. (5.96)
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Finally, by (5.92) and similar arguments as before,

R (VES IV )]

< Pr U(( ﬂpr)‘UfL 1]
:k’EIC
< Pr U eL_ ]
Lk’ eC kel
<L (5.97)

where the last inequality follows by the definition of py,.
In view of (5.82)) and (5.94)—(5.97),

P™ < Pr[€ 1) + Pr[&ar] + Pr(&s ]

SpLJrQZQ(\/W)

20y,
ke
=L (5.98)

where the equality follows by the definition of vz in (5.74]). Combining this with the
L-th order exponential decay of 7z, see (5.75)), we obtain

1
lim ——loglog...log(—log P\™) > 0, (5.99)
n—00 Tl \——

L—1times

Now consider the consumed expected average block-power. Similarly to (5.98)), we

can show that for [ € {1,...,L — 1},

P™ <, (5.100)

el —

Since in each phase | € {2,..., L} we consume power P/~;_; in the event (5.77) and

power 0 in the event ([5.79), by the definition in (5.69)),

—E [ZXE] < —( 1—e n—i—ZPe?)l% - 1) <P (5.101)
i=1




where the second inequality follows from (5.100)).
This completes the proof of Theorem

5.A Appendix: Proof of Proposition

We show that under assumption ([5.31]),

. x
lim aj =0,

K—oo
which implies (5.32)).
Notice that ([5.29b)) implies for k € {1,... K—1}:
agP a; P
NK - (1 — O[f — Oz; — OéZ)P-i- Nk.
Since for each k, the term (1 —af — o3 — ... — aj) is nonnegative,

N,
af > N—I’Za*K, ke{l,...,K—1}.

Thus, by (5.29a)),

k=1 k=1
and
o N
K = K
Zk:l N,

We conclude that, for every finite positive integer K,

Ry < L log <1 + P >
K = 5 2 —kK -
2 25:1 Ny,

and under Assumption (5.31)), in the limit as K — oo,

lim Rg =0.

K—oo

76

(5.102)

(5.103)

(5.104)
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5.B Appendix: Proof of Lemma

We first prove the converse (5.37)). Fix a blocklength n. By Fano’s inequality, for each
kek,

<7 (M(”);Yk(ﬁ), o ,Yk(j,?) +e(n)
1

< 1(em; Yk(ﬁ), . ,Yé:g) + €(n)

(@ /. _

< 1(0M57 Y, Y + en) (5.105)
where @ — 0 as n — oo and where we defined the tuple (6™, Yk(q)’ e ,Yk(:?) to be
jointly Gaussian with the same covariance matrix as the tuple (@(”); Yk(’nl)7 ey Yk(z)).

Inequality (a) holds because the Gaussian distribution maximizes differential entropy

under a covariance constraint.

Now, since O, Y,fq), e Y,{SZ) are jointly Gaussian, there exists a linear combination
S v,(ﬁ)yk(?) such that
I ((:)(">; VAR ,?,jj;}) = I(@(”); Zv,gf?Y,j”;)). (5.106)
i=1

(In fact, the linear combination is simply the LMMSE-estimate of O™ based on Yk(ﬁ) ye e e
Yk(n) ) Defining the n-dimensional row-vector v,(gn) = (v,(fl) sy ’()](:71), in view of (5.106)),

7n.

we have

(1) 4(n))? (n)
_ _ _ 1 d Var(©
I <@<">;Y,§’;), o ,Y,jj;}) = 5 logs (1 o )(n)ar( )> (5.107)
Ck
where c,(fn) is as defined in (5.38]).
Notice that the right-hand side of (5.107) does not depend on the norm of v,(cn) (as
long as it is non-zero) but only on the direction. Therefore, without loss of generality,

we can assume that

V)2 = 1. (5.108)
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By (5.105) and ([5.107]), we conclude that for each k € K, there exists a unit-norm vector

v,in) such that

1
R < lim 2—log2 (1—1— (5.109)

n—oo

(viMd™)?var(6™)
e ‘
Since by assumption R > 0, (5.109)) implies that the ratio (V](Cn) d("))QVar(@(")) /Cén)
tends to infinity and thus

(n) 4 2\/ar (@)
R< lim — log, (v, d™) Var(0™) ) (5.110)
n—oo 2N c;fn)

Now, consider the average block-power constraint . Since the trace of a positive
semidefinite matrix is non-negative and Var(@(”)) < E[|@(")|2], by , for each
neZzZr:

1™ 12E [|@<”>|2} < n(P - 9). (5.111)

Since Hv,im | =1, (5.108]), by the Cauchy-Schwarz Inequality,

(v,g")dW)QVar(@(")) < n(P—4) (5.112)
and as a consequence
. 1 n n)\ 2 n
nl;fn;o—nlogQ ((V,(€ Jd( )) Var<®( ))) <0. (5.113)

Combining this with (5.110)), proves the desired inequality ([5.37)).
The proof of Inequalities (5.39) and (5.40) relies on Lemmas [5.3|and [5.4] at the end of

this appendix. Notice that the monotonicity of the log-function and the nonnegativity
of the norm combined with (5.37)) imply that for each k € K,

R< lim —2i10g2 v 1+ A |17, (5.114)

n—00 n

where recall that we assumed R > 0.
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Define for each k € K and positive integer n the set

s = {z € {1,...,n}: 0l > n*zlogzn}. (5.115)
By Lemma and Inequality , the cardinality of each set Slin) is unbounded,

|S,§n)| — 00 as n — oo, kelK. (5.116)
Applying now Lemma [5.4]to p = P — ¢, to

"= E [(Xi(”))q , (5.117)

and to 7 = S,gn) implies that for each k € K there exists a sequences of indices
{ j,in) € S}gn)}zo:l that satisfies (5.39). Since every sequence of indices {i(" € S,in)}ff:l
also satisfies ([5.40]), this concludes the proof of the lemma.

Lemma 5.3. For eachn € ZF, let A" be a strictly lower-triangular n-by-n matriz and

v(™ an n-dimensional row-vector. Let az(.? denote the row-i, column-j entry of AU and

(n)

vgn) denote the i-th entry of v("). Assume that the elements a;" are bounded as

(Y]
jai 2 < np (5.118)
for some real number p > 0, and that the inequality
L (1 4 A2
lim ——log, [V (I+A")|* >T (5.119)
nooo 2N

holds for some real number I' > 0. Then, for each ¢ € (0,T") and for all sufficiently large
n the following implication holds: If

[o{V] > 27709 (5.120a)

for some index j € {1,...,n}, then there must exist an index i € {j + 1,...,n} such

that

”U(n)’ —9—n(l—e¢)
J

0| > (5.120D)
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If moreover, the vectors {v(")};’f’zl are of unit norm, then the cardinality of the set

S .= {j e{l,...,n}: ’v](.n)’ > n*210g2(n)}

1s unbounded in n.

Proof. Fix € € (0,T") and let n be sufficiently large so that

1
~5n log, HV(")(I + A("))H2 >I' —e

This is possible by (5.119)).
Since A is strictly lower-triangular,

VO 1+ A2 = S 3 o))
j=1 =+l
> 5 (ol - > oMalM])?
J=1 j
> (o= | 3 v”aﬁ?l)?
—]+

and by (5.122]) and the monotonicity of the log-function, for all j € {1,...

1 n = n n 2
—%logz <|U]( )| - Z vl( )az("j)o >T' —e

i=j+1
Thus,
v(")] < ‘ Z vl(")az(z-)\ 4+ 9-n(l=¢)
i=j+1
and by (5.118)):
|U](n)‘ _g-nll=¢) < ‘ Z UZ(n)al(Z)‘
i=j+1
< 3 i ynp.
i=j+1

(5.121)

(5.122)

(5.123)

If |v](.")| < 27"("=9) then the sum on the right-hand side of (5.123) can be empty, i.e.,
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7 = n. However, if

[o{V] > 2779, (5.124)

then the sum needs to have at least one term. Indeed, if (5.124) holds and i < n, there
must exist an index i € {j + 1,...,n} such that

1 n —n(l'—e n
E('”J(‘ )| = gn( >) < |0\ |/np, (5.125)

which is equivalent to the desired bound (5.120b)).
We now prove the second part of the lemma, i.e., the unboundedness of the cardi-
nalities of the sets S, where we assume that the vectors {v(®} are of unit norm. In

the following, let n be sufficiently large so that the first part of the lemma, Implica-

tion (5.120)), holds and so that

1 1

—n(I'—e
%>W>2 ('=e) (5.126)

and for every £ € {1,...,logy(n)}

1 _ g—n(l—€),,~3/2,~1/2 1— = 382p=t/2
G 2072 p 1—n-3/2p-172
1
Since ||[v(™||? = 1, for each n, there must exist an index i(()n) € {1,...,n} such that
> L 5.128
‘Uiém = \/ﬁ? (5. )

and by (5.126))

)| > n2log() 5 gn(T=0) (5.129)
%0
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We conclude by ([5.120) that there exists an index ign) € {i(()n) +1,...,n} satisfying

|U(n) —9—n(T—e¢)
()|~ _io"
‘Ul.(m‘ = 3
1 nz./p
1 9—n(l'—e)

> _ 5.130

where the inequality follows from (5.128]). By (5.126]) and (5.127)), (applied for ¢ = 1),
Inequality (5.130)) implies that

)| > 27—, (5.131)
3

and consequently, by ([5.120)), there exists an index ign) € {ign) +1,...,n} satisfying

‘U((Z))‘ _ 2—n(F—e)

) > gy (5.132)
5} n2 \/Z)
1 27n(1"fe) 2711(1"76)
“ni2p ndp %\f (5.133)
nz./p
> g ~n(l=e), (5.134)

where the last inequality follows by ([5.126]) and (5.127)) (applied for ¢ = 2).

Repeating these arguments iteratively, we conclude that it is possible to find indices

1< z'(()n) < ign) <...< il(:;(n) < n such that for each ¢ € {1,...,logy(n)}:

Y, .
|vi<n)2n?’(€+17)/2p€/2_2 ( )Z(n /p /)
7j=1

1
- 3D /202
1 — n=3t/2,)~/2
_o9—n('—¢),,—3/2, —1/2 p
2 n=>“p [=Trp=vs (5.135)
1

> 9~ (=€) (5.137)
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where the last two inequalities follow from ([5.126) and (5.127]). This proves that for
sufficiently large n the cardinality of the set S as defined in (5.121)) is at least log,(n)

and thus unbounded in n. ]
Lemma 5.4. For each positive integer n, let (W%n), e ,m@) be a tuple of nonnegative

real numbers that satisfy

1<~
gzﬂf V< p (5.138)
=1

for some real number p > 0, and let T™ be a subset of the indices from 1 to n,

TM C {1,...,n}, (5.139)
that satisfies
TM] 500 as  n— oo (5.140)
o)
Then, there exists a sequence of indices {i(”) € 7'(”)} » such that
=— 1 ()
lim —m 5 = 0. (5.141)

n—oon "

(n)

Proof. Since all numbers 7, are nonnegative, for every sequence of indices {i(") €

TR

Tim_ %wﬁ) > 0. (5.142)
We thus have to prove that there exists at least one sequence of indices {i(™ € T(M}22
that satisfies

m 27 <, (5.143)

n-soo p 1M =

We prove this by contradiction. Assume that for each sequence of indices {i" &

T(n) ol

1
im —7") > 0. (5.144)
n—oo N i(m)
Define for each n € Z+
WI(TZ)H ‘= min WZ(”)7 (5.145)

ieT(n)
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and define the limit
1w
Snin = Im —7" (5.146)

in’
n—oo qp R

which by Assumption (5.144) is strictly positive,

Omin > 0. (5.147)

(n)

Now, since all the terms 7; "’ are nonnegative:

I~ ) 1 ) < 1_(n) |n)
. Zﬂ-i > - Z T 2 77Tmin|Tn |’ (5148)
n =1 n T (n) "

where the second inequality follows by the definition in (5.145). By (5.146) and (5.147])
and by the undboundedness of the cardinality of the sets 7™, we conclude that the sum
in (5.148) is unbounded in n, which contradicts Assumption ([5.138]) and thus concludes

our proof. 0

5.C Appendix: Existence of Code C,,...,C; with the De-

sired Properties

The proof is by induction: for each ¢ € {2,..., L}, when proving the existence of the

desired Cy, we assume that

-1 < exp(—expo...oexp(2(n))). (5.149)

[—2 times

For [ = 2, Inequality ([5.149)) follows from ([5.71]).

By [3], for all rates
1 2+4/P2/o4+4
R < —logs

2 4 ’

and for sufficiently large n there exists a blocklength-ii, rate-R non-feedback coding

scheme for the memoryless Gaussian point-to-point channel with noise variance o2,

with expected average block-power no larger than P and with probability of error P,
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satisfying
P, < ¢ MERP/o?)~¢) (5.150)

for some fixed € > 0 and

E(R,P) = 41; (1 —\/1- 2—2R> : (5.151)

Since the probability of error of a non-feedback code over the Gaussian BC with common

message is at most K times the probability of error to the weakest receiver, we conclude

that for all P > 0 and
244/ P2/ot +4
(5.152a)

4 )

-1
O<R<§log2

there exists a rate-R code with power P and blocklength 7 that for the Gaussian BC

with common message achieves probability of error

(i),

PO < fo \i? (5.152b)

en

Now apply this statement to R = Rphase,s P = P/y_1 and 7 = 5 — 1. Since for

sufficiently large n, by (5.149)),

2+ ./ +4

)
Y191

1
1 , (5.153)

Rphase,l < 5 10g2

we conclude by (5.152) that there exists a code C; of rate-Rphase,, block-power P/v,_1,
blocklength ;% — 1 and probability of error p; satisfying

_, R(L-1)_
_(ffrl) L 2<1— 1-2 &(Lﬁl)/n)_gf

o < Ke et
< exp(—expo...oexp(2(n))) (5.154)
—_——

[—1 times

where the inequality follows again by (5.149)).



By the definition of v; in (5.74), Inequalities (5.154) and ([5.149) also yield:

v < exp(—expo...oexp(Q2(n))).

[—1 times
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(5.155)



Chapter 6

Coding Schemes for DMBCs with
Private Messages and
Rate-limited Feedback

6.1 Introduction

In this chapter, we present two types of coding schemes for DMBCs with rate-limited
feedback. Our schemes use a block-Markov strategy where in each block they apply
Marton coding [140], which to date is the best known coding scheme without feedback.
The messages sent over the feedback links are simply compression information that
describe the channel outputs that the receivers observed during a block.

In our first type of scheme, (Schemes 1A-1C), the encoder transmits exactly these
compression informations as part of the cloud center of the Marton code employed in
the next block. Thus, here, the encoder only relays the feedback messages from one
receiver to the other. Each receiver can hence reconstruct a compressed version of the
other receiver’s outputs and apply a modified Marton decoding to these compressed
outputs and its own observed outputs. The Marton decoding is modified to account
for the fact that each receiver already knows a part of the message sent in the cloud
center—namely the compression information it had generated itself after the previous

block. As we will see, the decoding can be performed as well as if the part of the

87
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cloud-center message known at a receiver was not present. In this sense, in the cloud
center we are sending information that is useful to one of the two receivers without
disturbing the other receiver, or in other words, without occupying the other receiver’s
resources. For asymmetric setups where one of the two receivers is stronger than the
other, e.g., less noisy, this implies that we can send the compression message, and thus
the information about the other receiver’s outputs, to the stronger receiver without
harming the performance of the weaker receiver. This allows in particular to improve
over Marton’s original non-feedback scheme.

We discuss the described coding strategy when the two receivers apply backward
decoding (Scheme 1A), when they apply sliding-window decoding (Scheme 1B), and
when one receiver applies backward decoding and the other sliding-window decoding
(Scheme 1C).

Our coding strategy is reminiscent of the compress-and-forward relay strategy [109]
or the noisy network coding for general networks [153] [I54] in the sense that the two
receivers compress their channel outputs and send these compression indices over the
feedback links. However, in our schemes, we use Marton coding since our transmitter
has to send two independent private messages to the two receivers (we could treat them
as a big common message, but this would perform poorly). Moreover, whereas in noisy
network coding the transmitter where to generate new compression indices that describe
its observed feedback outputs, in our schemes the transmitter decode-and-forward (or
relays) the compression messages that were sent over the feedback links. Thus, in our
schemes the transmitter sends compression indices that describe the outputs observed
at the two receivers.

Our schemes are particularly beneficial for the class of strictly essentially less-noisy
DMBCs, which we define in this chapter and which represents a subclass of Nair’s essen-
tially less-noisy DMBCs [135]. Our class includes the BSBC and the binary erasure BC's
(BEBC) with unequal cross-over probabilities or unequal erasure probabilities at the two
receivers, and the binary symmetric channel/binary erasure channel BC (BSC/BEC-
BC) for a large range of parameters. For strictly essentially less-noisy DMBCs Marton
coding is known to achieve capacity [I35]. For this class of DMBCs, our schemes im-
prove strictly over the non-feedback capacity region no matter how small but positive

the feedback rates are and even when there is feedback only from the weaker receiver.
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In fact, for most of these channels our scheme can improve over all boundary points
(R1 > 0,Ry > 0) of the non-feedback capacity region. The described schemes also
improve over the non-feedback capacity region of the BSC/BEC-BC when the DMBC
is more capable [155], unless the BSC and BEC have same capacities.

Thus, unlike for previous schemes, with our new schemes we can easily show that
feedback increases the capacity region for a large set of DMBCs.

We present a fourth scheme, Scheme 2, where the encoder uses the feedback messages
to reconstruct compressed versions of the channel outputs, and then processes these
compressed signals together with the previously sent codewords to generate update
(compression) information intended to both receivers. This update information is sent
as part of the cloud center of the Marton code employed in the next-following block.
This scheme is reminiscent of the Shayevitz-Wigger scheme [56] but for rate-limited
feedback. Moreover, in our Scheme 2 here, the update information is sent only in the
cloud center and using a joint source-channel code, whereas in the Shayevitz-Wigger
scheme parts of it are also sent in the satellite codewords but using only a separate
source-channel code.

Since here the update information is sent using a joint source-channel code, in the
limit as the feedback rates increase, the region achieved with our Scheme 2 improves
over the region achieved by the Shayevitz-Wigger scheme when this latter is restricted
to send all the update information in the cloud center. Notice that this represents a
prominent special case of the Shayevitz-Wigger scheme which subsumes the schemes by
Wang [58], by Georgiadis and Tassiulas [59], by Maddah-Ali and Tse [60], and also the
schemes in [77], [79], [81] and [82] when these are specialized to memoryless BCs and to
delayed state-information only.

All our results hold also with noisy feedback when the receivers can code over the
feedback links.

6.2 Channel Model

Communication takes place over a DMBC with rate-limited feedback, see Figure [6.1
The setup is characterized by the finite input alphabet X, the finite output alphabets )

and ), the channel law Py,y,|x, and nonnegative feedback rates Rpp 1 and Rpp 2. If at
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Figure 6.1: Broadcast channel with private messages and rate-limited feedback

discrete-time 7 the transmitter sends the channel input x; € X, then Receiver k € {1, 2}
observes the output Y ; € Vi, where the pair (Y1, Y2:) ~ Py vy x (-, -[2i). Also, after
observing Y} ;, Receiver k can send a feedback signal Fj; € Fj; to the transmitter,
where F}, ; denotes the finite alphabet of F}, ; and is a design parameter of a scheme. The
feedback link between the transmitter and Receiver k is assumed to be instantaneous
and noise-free but rate-limited to Ry, bits on average. Thus, if the transmission takes

place over a total blocklength N, then
| Froal x oo x [Fen| < [2V0k | ke {1,2}). (6.1a)

The goal of the communication is that the transmitter conveys two independent
private messages My € {1,...,[2VF1|} and My € {1,..., |2V}, to Receiver 1 and
2, respectively. Each My, for k € {1,2}, is uniformly distributed over the set My :=
{1,...,[2VB |}, where Ry denotes the private rate of transmission of Receiver k.

The transmitter is comprised of a sequence of encoding functions { fi(N)}jil of the
form £ 0 My x My x Fiq X o+ x Frio1 x Faq X -+ x Fay_1 — X that is used to

produce the channel inputs as
Xy = fN My, My, FIPY ETY), e {1, N} (6.2)

Receiver k € {1,2} is comprised of a sequence of feedback-encoding functions

{T/J;(gjp}fi1 of the form w,g]p : Vi — Fy,i that is used to produce the symbols
Fri=vV(, Y e {l,....N 6.3
ki wk’z’ ( kads---> ]C,Z)v ZG{ ] }7 ( . )

sent over the feedback link, and of a decoding function g,gN) : y,gV — My, used to produce
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a guess of Message My:
- N
My = gV (). (6.4)

A rate region (Ri, R2) with averaged feedback rates Ry, 1, Rpp 2 is called achiev-
able if for every blocklength NV, there exists a set encoding functions { fi(N) }fil and for
k = {1, 2} there exists a set of decoding functions gliN), feedback alphabets {F ; } Y, sat-

isfying (6.1)), and feedback-encoding functions { 1/},53];7) }jil such that the error probability

P(N) = Pr [Ml 75 Ml or MQ 7& M2:| (65)

e

tends to zero as the blocklength N tends to infinity. The closure of the set of achievable
rate pairs (R1, R2) is called the feedback capacity region and is denoted by Cpy,.

In the special case Rpp1 = Rpp2 = 0 the feedback signals are constant and the
setup is equivalent to a setup without feedback. We denote the capacity region for this

setup CNoFb-

6.3 Motivation: A Simple Scheme

We sketch a simple scheme that motivates our schemes in Section [6.6] We assume there
is only feedback from Receiver 1, i.e., Rpp1 > 0 and Rpp2 = 0.

We apply block-Markov coding with B + 1 blocks of length n, where in each block
we use superposition coding (without feedback) to send fresh messages M; ;, and My .
Message My is sent in the cloud center U;' and M) in the satellite codeword Xj'.

Thus, the scheme is expected to perform well when the following gap is nonnegative:
':=I1(U;Y) - I(U;Y1) > 0. (6.6)

(This is for example the case in a BSBC when the cross-over probability to Receiver 2
is no larger than the cross-over probability to Receiver 1.)
After each block, both Receivers 1 and 2 decode the cloud center codeword U;' by

means of joint typicality decoding. By the Packing Lemma, this is possible whenever

R1 S I(U; Yl) (67)
Ry <I(U;Y3), (6.8)
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where here, by , the second constraint is not active. We notice that when

>0 (6.9)

Receiver 2 would be able to decode the cloud center even if—besides M ;—it also
encoded an extra message of rate not exceeding I'. Of course, we cannot just add an
arbitrary rate-I" message to the cloud center, because this would make it impossible for
Receiver 1 to decode this larger cloud center. Instead, we shall add a rate-I" message
that is known to Receiver 1. If in the typicality check Receiver 1 only considers the
candidate codewords for the cloud center that correspond to the correct value of this
extra message, then the decoding at Receiver 1 performs as well as if the additional
message was not present. Thus, if the additional message is known at Receiver 1, it
does not disturb its decoding.

With rate-limited feedback, we can identify a suitable additional message to send in
the cloud center of block b: the feedback message Mgy, 1 ,—1 that Receiver 1 had fed back
after the previous block b — 1. In fact, as we describe shortly, in our scheme Receiver 1
only feeds back a message at the end of each block.

The transmitter thus simply relays the information it received over the feedback link
to the other receiver. In this sense, the feedback link and part of the cloud center can
be seen as an independent communication pipe from Receiver 1 to Receiver 2, where
the pipe is rate-limited to

min{T', Rpp 1 }. (6.10)

In our scheme, we use this pipe to send a compressed version of the channel outputs
observed at Receiver 1 to Receiver 2. Specifically, the feedback message My, 1—1 sent
after block b — 1 is a Wyner-Ziv message that compresses outputs Yl”?b*l while taking
into account that the reconstructor has side-information be_l, U ;. The rate-required

for this Wyner-Ziv message is

Ry > I(Y1; Y1|Ya, U). (6.11)
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and, in order to satisfy the feedback-rate constraint, it also has to satisfy
Rl < RFb,l- (6.12)

After decoding the additional message Mgy, 11, which is transmitted in the cloud
center of block b, Receiver 2 first reconstructs a compressed version of Receiver 1’s out-
puts 171%71. It then uses this reconstruction to decode its intended Message M ;1 based
on the tuple (f/fb_l, Yo 1, Ut ). This is possible, with arbitrary small probability of
error, if

Ry < I(X; Y1, Ya|U). (6.13)

Combining now constraints (6.7)), (6.11)), (6.12), and (6.13]), we conclude that our

scheme achieves all rate pairs (Ry, Rg) satisfying

Ry < I(U; Y1) (6.14a)
Ry < I(X;Y1,Ya|U) = I(X; Ys|U) 4+ I(X; Y1|U, Y2) (6.14b)

for some pmf Py XPY1|UY1 that satisfies
I1(Y1;Y1|Y,U) < min{T, Rpy,1}. (6.15)

The left-hand side of gives the minimum rate required for a Wyner-Ziv code that
compresses be_l given that the reconstructor has side-information Y27,lb—1 and U ;.

Comparing constraints to the superposition coding constraints in , we
see that the constraints here are strictly looser whenever I(X;Y;|U,Y>) > 0. Or in other
words, whenever observing a compressed version of Receiver 1’s outputs improves the
decoding at Receiver 2.

What is remarkable about this scheme is that when I' > 0, there is no cost in
conveying the compressed version of Receiver 1’s outputs to Receiver 2. It is as if there
were free resources in the communication from the transmitter to Receiver 2, which the
feedback allows to exploit. Without feedback, the resources cannot be exploited because
the transmitter cannot identify a messages that is known at Receiver 1 and useful at

Receiver 2.
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6.4 New Achievable Regions and Usefulness of Feedback

6.4.1 Achievable Regions

The following achievable regions are based on the coding schemes in Section These
coding schemes are motivated by the scheme sketched in the previous section, but use
the more general Marton coding instead of superposition coding and exploit the feedback
from both receivers.

In our first scheme 1A (Section [6.6.1]), the receivers apply sliding-window decoding.
The scheme achieves the region in the following Theorem

Theorem 6.1 (Sliding-Window Decoding). The capacity region Cgy, includes the set
Rrelay,swEI of all nonnegative rate pairs (R, Re) that satisfy

Ry < UO,U1§Y17}~/2|Q)_I(%;UOaYQ’YlaQ) (
Uo; Y2|Q)+I(Uy; Y1, Ya|Uy, Q) — Ao —I1(Y1; Y1|Up, Uz, Y2, Q)  (6.16b

I( )

Ry < I( )

Ry < I(Ug, Ua; Yo, Y1|Q) — I(Y1; U, Y1|Y2, Q) (6.16¢)
I( )
I(

Ry < I(Un; Y1|Q)+1(Us; Yo, Y1|U, Q) — A1 —I(Ya; Ya|Up, U, Y1,Q)  (6.16d
Ri+Ry < I(Up, U311, Y2|Q) — I(Ya; Uy, Y211, Q)
+1(Us; Y2,Y1|U0,Q) — Ay — I (Uy; Uz |Up, Q) (6.16e)
Ri+Ry < I(Uy, Us; Yo, Y1|Q) = I(Y1; U, Yi1[Y2, Q)
+I(U1;Y1,Ya|Uo, Q) — Ao —I(Uy; Ua|Up,Q) (6.16f)

Ri+Ry < I(Uy, Uy; Y1, Y2|Q) +1(Up, Ua; Yz, V1|Q)
—1(Y2;Up, Y2|Y1, Q) —I(Y1; Uy, Y1|Y2, Q) — I(Uy; Ua|Up, Q) (6.16g)

where

Ay = max{0,1(Y1;Y1|Up, Y2, Q) — Rrv1}
Ay = max{0, 1(Y; Y2|Up, Y1, Q) — Rrp o}

for some pmf PQPU0U1U2\QPY/1|Y1U0QPY/2\Y2UOQ and some function f: Uy x Uy XUz x Q —

L The subscript “relay” indicates that the transmitter simply relays the feedback information and the
subscript “sw” indicates that sliding-window decoding is applied.
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X such that
I(Uy; Y1, Ya|Up, Q) — Ag > 0 (6.18)
[(Uy; Ya, Y1|Up, Q)— A1 > 0. (6.18b)
I(}’}lv Y1|U07 U27 }/27 Q) < mln{I(UO7 YVZ|Q)> RFb,l} (618(3)
1(Ya; Yo|Up, Uy, Y1, Q) < min{I(Up; Y1|Q), Rrp 2} (6.18d)
where X = f(Uo, U1, Uz, Q).
Proof. See Section [6.6.1 O

For sufficiently large feedback rates Rpy, 1 and Rpp 2 (in particular for Rpy 1 > | V1]
and Rpp 2 > [)a]), the terms Ay and Ay as defined in are 0.

In our second scheme 1B (Section , the receivers apply backward decoding.
This way, for each block, they can jointly decode the cloud center and their intended
satellite codewords. In this scheme, the Wyner-Ziv compression cannot be superposi-
tioned on the cloud center because the receivers have not yet decoded this latter when
compressing their channel outputs at the end of each block. The following Theorem

presents the achievable region for this second scheme.

Theorem 6.2 (Backward Decoding). The capacity region Cgy, includes the set Rrelay’bwﬂ
of all nonnegative rate pairs (R1, Re) that satisfy

Ry < I(Up, U3 Y1, Y2|Q) — I(Ya; Yo Y1, Q) (6.19a)
Ry < I(Up, Us; Yo, Y1|Q) — I(Y1; Y1|Y2, Q) (6.19b)
Ri+Ry < I(Up, Up; Y1, Y2|Q) — I(Yy; V2|1, Q)
+1(Us; Yo, Y1|Up,Q) — A1 — I (Uy; Uz|Up,Q) (6.19¢)
Ri+Ry < I(Uy, Us; Y2, Y11Q) — I(Y1; Y1|Y2, Q)
+I(U; Y1, Ya|Uo,Q) — Mg —I(Us; Ua| U, Q) (6.19d)

Ri+Ry < I(Up, U3 Y1, Y2|Q) — I1(Ya; Yo| Y1, Q)
+I(Up, Us; Y2, Y1|Q) — I(Y1; Y1[Y2,Q) — I(Uy; Ua|Up, Q) (6.19e)

2 The subscript “bw” stands for backward decoding.
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for some pmf PQPU0U1U2|QP§71|Y1QPY2|Y2Q and some function f: Uy x Uy XUy x Q = X
such that

I(Y1; Y1|Uo, Us, Y2, Q) < Ry (6.20a)
1(Ya; Ya|Up, U, Y1, Q) < Rpv o (6.20b)
where X = f(Uy, U1, U, Q).
Proof. See Section [6.6.2 O

Setting Y7 = Y» = const., i.c., both receivers do not send any feedback, the region

Rirelay,bw specializes to Rnarton -

Remark 6.1. Constraints and are looser than constraints and
, respectively. But in Theorem we have the conditional pmfs P?1\Y1 and Pf/2|Y2
whereas in Theorem we allow for more general pmfs PfﬁthUo and P%\YQ,UO' It is
thus not clear in general which of the achievable regions in Theorems or 18

larger.

Remark 6.2. Consider the Shayevitz- Wigger region (4.2) restricted to the choice of

auxiliaries

Vi=Va=Vy = (f1i(Y1,Q), fo(Y2,Q)) (6.21)

for two deterministic functions f1 and fa. (Notice that Kim, Chia, and El Gamal’s
choice of auziliaries (4.3)) or (4.4) is of this form.) Our new achievable region Ryelay,bw
improves over this restricted Shayevitz- Wigger region whenever the feedback rates Ryy, 1,

Ryy, 2 are sufficiently large so that in our new region we can choose

}71 = fl(Yl, Q) and }72 = fg(YQ, Q) (6.22)

and so that A1 = Ay = 0.

In fact, for the choices (6.21) and (6.22)) the rate constraints in (6.19al), (6.19b)), and
(6.19¢)) characterizing our new region coincide with the rate constraints (4.2a])—(4.2b))

which characterize the Shayevitz- Wigger region. Moreover, the combination of the two

sum-rate constraints (6.19¢|) and (6.19d)) is looser than the sum-rate constraint (4.2c),
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because the former involves a “ming_g 9y{ax — by }-term” whereas the latter involves the

smaller “minge(y 2y ax — Maxyey 2y bi-term”, for ay, by > 0.

Our third scheme 1C (Section is a mixture of the first two: Receiver 1 behaves
as in the first scheme and Receiver 2 as in the second scheme. This is particularly
interesting when there is no feedback from Receiver 2, Rpp 2 = 0, and when Marton’s
scheme specializes to superposition coding with no satellite codeword for Receiver 1.
Theorem presents the region achieved by this third scheme with Marton coding and
Corollary [6.1] with superposition coding.

Theorem 6.3 (Hybrid Sliding-Window and Backward Decoding). Fven for
Rpyp 2 = 0, the capacity region Cpy, includes the set RI("il)ay h of all nonnegative rate
pairs (R1, Ra) that satisfy

Ry < I(Uo, Ur; Y1|Q) (6.23a)
Ry < I(Up, Up; 1, Ya|Q) — I(Y1; U, Uy, Us, Y1 Y2, Q) (6.23b)
Ri+Ry < I(Uo, Ur; Y1[Q) + 1(Us; Y2, Y1| U, Q)
—A1 — I(U1; Us|Up, Q) (6.23c)
Ri+Ry < I(U; Y1|Uo, Q) + I(Up, Uz; Y1,Y2|Q)
—I(Y1; Uo,U1,Us,Y1|Y2,Q) — I(Uy; Us|Up,Q) (6.23d)

for some pmf PQPU0U1U2|QP{/1|Y1UOQ and some function f: Uy x Uy X Uy X Q@ — X such
that

I(Y1;U1,Y1|Up, U, Yo, Q) < Rpp 1. (6.24)

(2)

relay b Which is obtained by ea-

The capacity region Crp also includes the region R

changing indices 1 and 2 in the above definition of Rgl)ay b
Proof. See Section [6.6.3 O

If superposition coding is used instead of Marton coding and only one of the two

receivers sends feedback, Theorem reduces to the following corollary.

3 The subscript “hb” stands for hybrid decoding.
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Corollary 6.1. The capacity region Cry, includes the set Rgl)ays of all nonnegative
rate pairs (R1, Ro) that satisfy

R, < I(U;11|Q) (6.25a)
Ri+Ry < I(U:Y1|Q) + I(X: Y2, V1|UQ) (6.25b)
Ri+Ry < I(X;Y»|Q) — I(Y1; Y1|U, Y2, Q) (6.25¢)

for some pmf PQPUX\QP?ﬂYlUQ such that

I(Y1;Y1|U, Y2, Q) < Rpp1. (6.26)

(2)

relay,sp which is obtained by ex-

The capacity region Cgy, also includes the region R

(1)

changing indices 1 and 2 in the above definition of Rrelay sp°

Proof. Let Y3 = U} = const., U = Uy and X = U,. Constraint (6.23a]) then specializes

to (6.25al) and constraint (6.23b)) is redundant compared to constraint (6.23d]). Observe

that constraints (6.23d)) and (6.24]) are looser than constraints (6.25c|) and (6.26]), re-
spectively. Also, by (6.26]), constraint (6.23c) reduces to (6.25b)). Thus the capacity

() Similar arguments hold for R O

region Cp includes the region Rrelay,sp. relay.sp”

Remark 6.3. The region Rgl)ay W, contains the regions in Theorems cmd when

these latter are specialized to Uy =const., Uz = X, and Rpy, 2 = 0.

In our first three schemes 1A-1C the transmitter simply relays the compression
information it received over each of the feedback links to the other receiver, as is the case
also for our motivating scheme in the previous section[6.3] Alternatively, the transmitter
can also use this feedback information to first reconstruct the compressed versions of
the channel outputs and then compress them jointly with the Marton codewords. The
indices resulting from this latter compression are then sent to the two receivers. The

following Theorem presents the region achieved by this fourth scheme 2.

Theorem 6.4. The capacity region Cry, includes the set Rprocﬂ of all nonnegative rate

4 The subscript “sp” stands for superposition coding.

5 The subscript “proc.” indicates that the transmitter processes the feedback information it receives.
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pairs (Ry, Ra) that satisfy

Ry < I(Uo,Uy; Y1, Y1,V|Q) = I(V;Up, U, Uz, Y2|V1,Y1, Q)
Ry < I(U, Uz; Y2, Y2, V|Q) — I(V; Uy, U, Uz, Y1[Y2, Y2, Q)
Ry+Ry < I1(Up, Up; Y1, Y1, VIQ)+1(Us; Ya, Yo, V|Up, Q)
—I(V;Uo,U1,U2,Y2|Y1,Y1,Q) — I(U1; U2 |Up,Q)

Ri+Ry < I(Uo, Uz; Y2, V2, VIQ)+1(U; Y1, Y1, V|Uo, Q)

—I(V;Uo,U1,Uz,Y1|Y2,Y2,Q) —I(Ur; Uz |Up,Q)
Ri+Ry < I(Up, Up; Y1,Y1,V|Q) + I(Up, Ua; Y2, Y2, V|Q)

—I(V; Uy, U1, Us, Y2|Y1, Y1, Q)

—I(V;Uo, U1, Uz, Y1|Y2,Y2,Q) —I(U1; Ua|Up,Q)

for some pmf PQPU0U1U2\QPY1|Y1QPY/2\Y2QPV\U0U1U2}71Y2 and some function f: X — Uy X
U1 X Us x Q where the feedback-rates have to satisfy

I(Y1; Y1|Uo, Uy, Ua, Y2, Q) < Rpn 1 (6.28a)
I(Yy; Ya|Up, Uy, Us, Y1, Q) < Rpn e (6.28b)
I(Ha YQ; }717 %‘UO) Ul) U2) Q) S RFb,l + RFb’Q- (628C)

and where X = f(Uy, U1, Uz, Q).
Proof. See Section [6.6.4 O

When the feedback rates Ry, 1, Rrp,2 are sufficiently large, we can choose Vi = Vi
for k € {1,2}.
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Corollary 6.2. In the limit Rpy, 1, Rpp2 — 00, Crp includes the set jo’oc. of all non-

negative rate pairs (Ry, Ra) that satisfy

Ry < I(Uo, U1; Y1,V|Q) — I(V;Ug, Uy, Uz, Ya| Y1, Q) (6.29a)

Ry < I(Uo, Up; Y2, V|Q) — I(V; Uy, Uy, Uz, Y1|Y2, Q) (6.29b)

R+ Ry < I(Ul; Yi, V|U0, Q) + I(UQ; Y5, V’U(), Q) (6.29C)
ke{1,2}

—I(V; Uy, U1, Uz, Y1, Yol Yy, Q) } (6.29d)

Ri + Ry < I(Up, Ur; Y1,V |Q) — I(V;Up, U1, Us, Ya|Y1, Q)
+I(Uo, U; Y2, V|Q) — I(V;Up, Ur, Uz, Y1|Y2, Q)
—1(Uy; Us|Up, Q) (6.29e)

for some pmf PqPy,u,v,10PvustUsvive and some function f: X — Uy x Uy x U X Q,
where X = f(U(]v Ula U27Q)'

Remark 6.4. The region R3S, tmproves over the Shayevitz- Wigger region for output

proc.

feedback when this latter is specialized to the choice Vi = Vo = V. Observe that except

for the sum-rate constraints (6.29d)) and (4.2d)), all other rate constraints defining Rproc.

and the Shayevitz- Wigger region coincide when the latter are specialized to Vi = Vo = Vj.
Since mink:{m}{ak — b} > Minge(1 9} Ak — MaXpe(1,2) bk holds for any nonnegative

{ag, bk}izl, we conclude that the rate region Rproc. contains the Shayevitz- Wigger region

o0

proc. thus also

specialized to the choice Vi = Vo = V. As proved in [57)], our region R
recovers the two-user capacity result in [58, [59] and the degrees of freedom achievability

result in [60].

6.4.2 Usefulness of Feedback

Our third scheme 1C (which leads to Theorem can be used to prove the following
result on the usefulness of rate-limited feedback for DMBCs. (Similar results can be

shown based on our other proposed schemes.)

Theorem 6.5. Fiz a DMBC. Consider random variables (UéM), UI(M), UQ(M), X(M)) such
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that
r™ .= 7™, y™) - o™, vy™) > 0. (6.30)

Let the rate pair (RgM),RéM)) satisfy Marton’s constraints (3.30) when evaluated for

(UéM), UI(M), UQ(M),X(M)) where constraint has to hold with strict inequality.
Also, let (R%Enh), RgEnh)) be a rate pair in the capacity region ngh of the enhanced
DMBC.
If the feedback-rate from Receiver 1 is positive, Rpy1 > 0, then for all sufficiently
small v € (0,1), the rate pair (Ry, R2),

Ry = (1— )R + R (6.31a)
Ry = (1 —~)RM 4 yRr{E™ (6.31b)
lies in Rgl)a%hbf
1)
(R1, Rg) € REelay,hb’ (6.32)
and is thus achievable.
An analogous statement holds when indices 1 and 2 are exchanged.
Proof. See Appendix O

The following remark elaborates on the condition of the theorem that a rate pair
satisfies constraint (3.30b|) with strict inequality.

USM), 1(M), Z(M),X(M) Marton’s region, i.e.,

Remark 6.5. For given random variables
the rate region defined by constraints , is either a pentagon (both single-rate con-
straints as well as at least one of the sum-rates are active), a quadrilateral (only the two
single-rate constraints are active), or a triangle (only one single-rate constraint and at
least one of the sum-rate constraints are active).

In the case of superposition coding with UI(M) =const. and UQ(M) = XM and when
condition holds, then the region is a quadrilateral and the only active constraints
are and . Thus, in this case, constraint holds with strict inequal-

ity for all rate pairs in this region.

Whenever the region defined by Marton’s constraints (3.30) is a pentagon, then the
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only rate pair in this pentagon that satisfies constraint (3.30b|) with equality is the dom-

inant corner point of maximum Rs-rate.

Corollary 6.3. Assume Rpy, 1 > 0. If there exists a rate pair (REM), RgM)) that satisfies

the conditions in Theorem and that lies on the boundary of Ruarton but strictly in
the interior of C(Ellfh, then
RMarton Q CFb- (633)

If for the considered DMBC moreover Rytarton = CNoFb,
CNoFb & Crb. (6.34)

Proof. Inclusion (6.34) follows from (6.33). We show (|6.33)). Since R(M),R(M) is in
f. 1 2

the interior of C(Eln)h, there exists a rate pair (RgEnh),RéEnh)) € C](Elrzh with RgEnh) >

REM) and RéEnh) > RéM). Now, since (RgM),RgM)) lies on the boundary of Ruarton,
the rate pair in (6.31)) must lie outside Ryfarton for any v € (0,1). By Theorem
Equation (6.32)), this rate pair is achievable with rate-limited feedback for all v € (0,1)

that are sufficiently close to 0. O

For many DMBCs such as the BSBC or the BEBC with unequal cross-over probabil-
ities or unequal erasure probabilities to the two receivers, or the BSC/BEC-BC where
the two channels have different capacities, the conditions of Corollary can easily
be checked. Thus, our corollary immediately shows that for these DMBCs rate-limited
feedback strictly increases capacity. (See also Examples and

For the BSBC and the BEBC, Theorem can even be used to show that all the
boundary points (R; > 0, R2 > 0) of Cnorp can be improved with rate-limited feedback,
see the following Corollary the paragraph thereafter, and Example in the next
Section.

More generally speaking, Corollary is particularly interesting in view of the

following class of BCs. We introduce the new term strictly essentially less-noisy.

Definition 8 (Strictly Essentially Less-Noisy). The definition of a strictly essentially
less-noisy DMBC' coincides with the definition of an essentially less-noisy DMBC except
that inequality (3.15) needs to be strict whenever I1(U;Y7) > 0.
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The BSBC and the BEBC with different cross-over probabilities or different erasure

probabilities at the two receivers are strictly essentially less-noisy.

Corollary 6.4. Consider a DMBC where Yy is strictly essentially less-noisy than Y.
Assume Ry, 1 > 0. We have:

1. If a rate pair (Ry, R2) lies on the boundary of Cxopp but in the interior of C](Eln)h,
then (R1, R2) lies in the interior of Cgy, i.e., with rate-limited feedback one can
improve over this rate pair.

2. If Cnorp does not coincide with C’Sr?h, then Cnorb 1S also a strict subset of Cpy,

i.e., feedback strictly improves capacity.

Analogous statements hold if indices 1 and 2 are exchanged.

As mentioned, all BSBCs and BEBCs with unequal cross-over probabilities or un-
equal erasure probabilities to the two receivers are strictly essentially less-noisy. Also,
for these BCs Cnopp has no common boundary points (R; > 0, Re > 0) with the sets
ngh or ngh unless the BC is physically degraded. Thus, for these BCs the corollary
implies that, unless the BC is physically degraded, rate-limited feedback improves all
boundary points (R; > 0, Ry > 0) of Cnorp Whenever Ryy, 1, Ry 2 > 0.

Notice that when a DMBC is physically degraded in the sense that output Yi is a
degraded version of Y5, then Cnorp = C](Eln)h' Of course (even infinite-rate) feedback does

not increase the capacity of physically degraded DMBCs [54].

Proof of Corollary[6.4 2.) follows from 1.) We prove 1.) For strictly essentially less-
noisy DMBCs, Cnorp is achieved by superposition coding. Thus, Rumarton = CNoFb
and in the evaluation of Marton’s region one can restrict attention to auxiliaries of
the form U; =const. and Uy = X. By the definition of strictly essentially-less noisy,
when evaluating Marton’s region we can further restrict attention to auxiliary random
variables that satisfy . Thus, by Remark any boundary point of Ruarton
satisfies the conditions of Theorem Repeating the proof steps for Corollary we
can prove that these boundary points cannot be boundary points of Cgy, whenever they

lie in the interior of C}(Eln)h. OJ
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6.5 Examples

Example 6.1. Consider the BSBC with input X and outputs Y1 and Yo described by:
Y1/ =XZ, Yo=X& 2, (635&)

for Zy ~ Bern(p1) and Zy ~ Bern(p2) independent noises. Let Q = const., U ~
Bern(1/2), Wi ~ Bern(f1) and Wy ~ Bern(32), for Bi, 2 € [0,1/2], where U, Wy, W5
are mutually independent. Also set X = U ® W1, and 171 =Y, & Wsy. Then

I(U;Y1) =1 = Hy(B1*p1), 1(X;Y2)=1— Hy(p2),
and

I[(X; Y1, Y2|U) = H(ou,a,03,04) — Hy(p2) — Hy(B2 * p1)
I(Y1;Y1|Ya,U) = H(ou,a,a3,04)— Hy(B1 * p2) — Hy(B2)

where

p1* B2)p2B + (1 — p1 = B2)pah
p1* B2)papr + (1 — p1 * B2)p2f
p1* B2)p2fi + (1 —pr1 * 52)1?251
p1* B2)p2Bi + (1 — p1* B2)p2

~~ o~

For this choice, the region defined by the constraints in Corollary[6.1] evaluates to:

Ry <1— Hy(By xp1) (6.36a)
Ri+ Ry <1 — Hyp(B1 *p1) + H(ou, a2, a3, aq)
—Hy(p2) — Hy(B2 * p1) (6.36h)
Ri+ Ry <1 — Hy(p2) — H(a, g, a3, )
+Hp(B1 * p2) + Hp(B2) (6.36¢)
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Figure 6.2: Cnorp and the achievable region in (6.36]) are plotted for BSBCs with pa-
rameters ps = 0.1 and p; € {0.2,0.25,0.3} and for feedback rate Rpy,; = 0.8.

for some (1, B2 € [0,1/2] satisfying
H (om0, a3, a4) — Hyp(B1 % p2) — Hp(B2) < Rpp 1 (6.37)

and where H (o, g, as, ay) denotes the entropy of a quaternary random variable with
probability masses (a1, oo, as, ay).

The region s plotted in Figure against the non-feedback capacity region CNoFb-

Example 6.2. Consider a DMBC where the channel from X to Y1 is a BSC with cross-
over probability p € (0,1/2), and the channel from X to Ys is an independent BEC with
erasure probability e € (0,1). We show that our feedback regions Rfil)ayﬁp and Rggl)ay,sp
improve over a large part of the boundary points of Cnorp for all values of e, p unless
Hy(p) = e, no matter how small Ry, 1, Rpp 2 > 0.

We distinguish different parameter ranges of our channel.

e 0 < e < Hy(p): In this case, the non-feedback capacity region Cnorn [135] is
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formed by the set of rate pairs (R, Rg) that for some s € [0,1/2] satisfy

Ry <1— Hy(s*p), (6.38a)
Ry < (1 — e) Hy(s), (6.38D)
Ri+Ry<1—e. (6.38C)

(1)

relay,sp
Bern(1/2), X =U @V, where V ~ Bern(s) independent of U, and Yy =Yy with

probability v € (0,1) and Y) = ? with probability 1 — ~, where

We specialize the region R to the following choices. Let Q = const., U ~

Ry, 1
1 —e)Hy(p) + eHy(s *p)’

1< (6.39)
Condition (6.39) assures that the described choice satisfies (6.26)). Then,
IUYi) =1 Hys+p), I(X;Ya)=1-¢,

and

I(X;Y1,Y2|U) = ve(Hy(s * p)— Hy(p))+ (1—e) Hy(s)
I(YV1;Y1[Ya,U) = v(Hy(p)(1 — €) + eHy(s = p)).

When Rpyp1 >0, by Corollary all rate pairs (Ry, Ra) satisfying

Ry <1— Hy(s *p) (6.40a)
Ri+Ry <1— Hy(s*p)+ (1 —e)Hy(s)

+ye(Hy(s * p) — Hy(p)) (6.40b)
Ri+ Ry < 1—e—~(Hy(p)(1—e)+eHp(s*p)) (6.40c)

are achievable for any v € (0,1) satisfying (6.39).
As shown in [135], the points (R1, R2) of the form

(1= Hp(sxp), (1 —e)Hp(s)), s € (0, s0), (6.41)
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are all on the dominant boundary of Cnorn, where so € (0,1/2) is the unique

solution to
1— Hp(so*p)+ (1 —e)Hp(sp) =1—e. (6.42)

For these boundary points, only the single-rate constraints (6.38al) and ((6.38b))
are active, but not (6.38c). Thus, comparing (6.41)) to our feedback region (6.40)),

we can conclude that by choosing v sufficiently small, all boundary points (6.41))
1)

lie strictly in the interior of our feedback region Rrelay s

when Rpy, 1 > 0.
0 < Hy(p) < e < 1: The non-feedback capacity region Cnxorp equals the time-
sharing region given by the union of all rate pairs (Ry, Re) that for some o € [0, 1]

satisfy

Ry < a(l — Hy(p)) (6.43a)
Ry < (1—a)(1—ce). (6.43b)
We specialize the region Rgl)aysp to the following choices: @ ~ Bern(a); if @ =0
then U ~ Bern(1/2), X = U, and Yo = const.; if Q = 1 then U =const.,
X ~ Bern(1/2), and Yo = Ya with probability y € (0,1) and Yo = ? with probability

1 — v, where in order to satisfy the average feedback rate constraint,

Rpy 2

TS ST = Hylp) + Ho@)) (044
When Rpp2 > 0, by Theorem all rate pairs (R1, R2) satisfying
Ry < a(l — Hy(p)) + a(l — e)yHy(p) (6.45a)
Ri+ Ry < (1-a)(1—e)+a(l - Hp))
+ a1l — e)yHy(p) (6.45b)
R1+ Ry < (1 — Hy(p)) — (1 — a)yHy(e). (6.45¢)

are achievable for any v € (0,1) satisfying .

Since here 1 — Hy(p) > 1 — e, for small v > 0 the feedback region in
improves over CnoFb givEN in . In fact, improves over all boundary
points (R1 > 0, Ry > 0) of CNoFb-
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Figure 6.3: Cnorb and the achievable regions in (6.40) and (6.45) are plotted for a
BSC/BEC-BC when the BSC has parameter p = 0.1 and the BEC has parameter
e € {0.2,0.7}. Notice that 0.2 < Hy(p) < 0.7. The feedback rates Rpy 1 = Rpp 2 = 0.8.

Remark 6.6. The BSC/BEC-BC in Example is particularly interesting, because
depending on the values of the parameters e and p, the BC is either degraded, less noisy,
more capable, or essentially less-noisy [135]. We conclude that our feedback regions
Rgil)ay,sp and Rl(rzl)ay,sp can improve over the non-feedback capacity regions for all these
classes of BCs even with only one feedback link that is of arbitrary small, but positive
rate.

We plotted our regions and versus the non-feedback capacity region in
Figure forp=0.1 and e = 0.2 or e = 0.7. In the first case the DMBC is more

capable and in the second case it is essentially less-noisy.

In the next example we consider the Gaussian BC with independent noises. We eval-
uate the region defined by the constraints of Corollary for a set of jointly Gaussian
distributions on the input and the auxiliary random variables. A rigorous proof that
our achievability result in Corollary holds also for the Gaussian BC and Gaussian

random variables is omitted for brevity.
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Example 6.3. Consider the Gaussian broadcast channel

Yi=X+ 7 (6.462)

where Zy ~ N(0,N1) and Zy ~ N (0, N3) are independent noises. Assume an average
transmission power P, and 0 < Ny < N7 < P.

Let Q@ = const., U ~ N(0,aP), Wi ~ N(0,aP) and Wy ~ N(0,0), for a €
[0,1], B > 0, where U, W1, Wa are mutually independent. Set X = U+W7, Yy = Yi+Ws,
then

1) = (i) 16 =),

and

. B _ aP OéPNQ
I(X;Y9,1|U) = C(j) T C((aP—I—Nz)(N1 +B))
P(Ny + Na) + NlN?)

B(N2 + aP)

~ o
I(V1;Yh|Ya, U) = C(

For these choices, the region defined by the constraints in Corollary [6.1] evaluates to:

Ry < C(%) (6.472)
Ry + Ry < C(OPO:LPM) + C(O]‘\g)
+C< (aP +?\f]:)]2f;v1 + 5)> (6.47b)
Ri+ Ry < C(]]\;) —C(‘)‘PU’;[(KI;AE)O;];ENQ) (6.47¢)
for some a € [0,1] and > 0 satisfying
() < s 649

Here, we use C(x) := $logy(1+ ), for any z > 0.
The region is plotted in Figure against the non-feedback capacity region Cnorb
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Figure 6.4: Cnopp and the achievable region in (6.47)) are plotted for Gaussian BCs with
parameters P = 10, No = 1, N1 = 4 and feedback rate Rpy, 1 = 0.8.

and the region achieved by Ozarow-Leung coding scheme [62], and the linear-feedback

capacity region [16, [17)].

Example 6.4. (Blackwell Channel with State [57]) We consider the Blackwell DMBC
with random state. The state is described by a random variable S ~ Bern(1/2), which is
also part of the outputs. That means Receiver 1’s output is Y1 = (Y}*,S) and Receiver
2’s output is Yo = (Y5, S). If S = 0 then the BC to Y{* and Yy is a reversed Blackwell

channel:

. 0 X=0 . 0 X=0,2
1 X=1,2 1 X=1.

If S =1, then the BC to Y{* and Y5 is a standard Blackwell channel:

. 0 X=0,2 . 0 X=0
Yy = Yy = (6.50)
1 X=1 1 X=1,2
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For this BC, the non-feedback capacity region is achieved by time-sharing and the max-
imum sum-rate is 1.  In [57] it was shown that the Shayevitz-Wigger scheme with
choices of auxiliary random variables as in and achieves the rate pairs
(0.5958,0.5958) and (0.6103,0.6103), respectively. By Remark we obtain that the
proposed scheme pertaining to Theorem[6.3 can enlarge the non-feedback capacity of this
BC. Notice that for this setup, I(U;Y2) — I(U;Y1) = 0 holds for all Pyx, which means
the statement above holds even when one of the receivers is mot “stronger” than the

other.

6.6 Coding Schemes

6.6.1 Coding Scheme 1A: Sliding-Window Decoding (Theorem [6.1))

For simplicity, we only describe the scheme for () =const. A general ) can be introduced
by coded time-sharing [I31l Section 4.5.3]. That means all the codebooks need to be
superpositioned on a Pg-i.i.d. random vector Q" that is revealed to transmitter and
receivers, and this Q" sequence needs to be included in all the joint-typicality checks.

Choose nonnegative rates Ri,Ré,Rl,RQ,Rl,RQ, auxiliary finite alphabets Uy, U1,
Us, Y1, Vo, a function @) of the form f™: Uy x Uy x Uy — X, and pmfs Pyou,v,,
Pf/lIUoYl’ PY2|U0Y2' Transmission takes place over B + 1 consecutive blocks, with length
n for each block. We denote the n-length blocks of inputs and outputs in block b by z7,
Yy, and y’i b ) )

Define J; == {1,...,[2"%% ]}, Tr := {1,...,[2"F% |}, and L} := {1,..., |27 |}, for
k € {1,2}. The messages are in product form: My, = (My1,..., My ), k € {1,2}, with
My = (Mg, My rp) for b€ {1,..., B}. The submessages M, p, and M, . are uni-
formly distributed over the sets M.y := {1,..., [2"Fek |} and M, := {1,..., [2"Fer |},
respectively, where R, , R.r > 0 and so that Ry = R, + Rc,kﬂ . Let R. :=
(Rei 4 Reo + Ry + Ry).

6

Due to the floor operations and since transmission takes place over B + 1 blocks whereas the
messages M1 and M are split into only B submessages, R1 and Rz here do not exactly represent the
transmission rates of messages M; and M. In the limit n — oo and B — oo, which is our case of
interest, R; and R2 however approach these transmission rates. Therefore, we neglect this technicality
in the following.
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1) Codebook generation: For each block b € {1,..., B + 1}, randomly and indepen-
dently generate |2 | sequences u6‘7b(m07b, Lip—1,l2p—1), formep € Mg := M1 x Mco
and lpp—1 € Ly, for k € {1,2}. (We use vector notation for m.; to emphasize that
it represents a pair of indices.) Each sequence Uab(mc,m l1p—1,l2p—1) is drawn accord-
ing to the product distribution ]} ; Py,(uop,i), where ugp; denotes the i-th entry of
ug p(Mep, b1 p—1,12p-1)-
For k € {1,2} and each u&b(mc,b, lip-1,l2p—1) randomly and conditionally indepen-
dently generate LQ"(RkaJrR;c)J sequences ugb(mp,k,b;tk,b’mc,ball,bflyl2,b71)7 for mpp €

M, and tp, € Ti, where each u’,g7b(mp7k7b, trp/Mep, lip—1,l2p—1) is drawn according to

the product distribution [[;", Py, vo (ke piltop,i), where ugp; denotes the i-th entry of
Ugb(mp,k,bv teplmep, lp—1,lop—1).
Similarly, for & € {1,2} and each tuple (mcp,l1p—1,l25-1) € Mc X L1 X Lo ran-

domly generate L2"<Rk+Rk)j sequences 7, (Ikb, Jk,bp|Mep, 11 p—1, lg’b,l), for I, € Ly, and

Jkb € Tk, by drawing each 47, (Ik.p, jrb mc,le,b—l,lQ,b—l) according to the product
distribution HLle”MUon (Uk,pi

All codebooks are revealed to transmitter and receivers.

uO,b,i) where 9,5, denotes the i-th entry of ij,b-

2) Encoding: We describe the encoding for a fixed block b € {1,..., B+1}. Assume
that Me gy = me b, Mprp = mpip, for k € {1,2} and that the feedback messages sent
after block b—1 are Ly 1 =11 p—1 and Ly p—1 = lap—1. Definem.p, := (mc1,p, mc2p). To
simplify notation, let [y o = mc k. B+1 = Mp 1 = 1, for k € {1,2} and m. g1 = (1,1).

The transmitter looks for a pair (t;5,t2p) € 71 x T2 that satisfies

(g (e pyl1 b1, l2,p-1), uf  (Mp 16, t1p My, L p—1, 12 p—1),

u y (Mp2b to bl Mep, 1 b1, lop-1)) € Tj16(Puotnus)- (6.51)

If there is exactly one pair (¢;p,t2;) that satisfies the above condition, the transmitter
chooses this pair. If there are multiple such pairs, it chooses one of them uniformly at
random. Otherwise it chooses a pair (1 p,%2;) uniformly at random over the entire set

T1 x T2. In block b the transmitter then sends the inputs x}' = (1, .., %p,), Where

i = f(U0pbis Ut pis U2bi)s ie{l,...,n}, (6.52)
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and ugp; and wugyp;, for k& = {1,2}, denote the i-th symbols of the chosen Marton
codewords ug ,(Mep, l1p-1,12,6-1) and ug , (my by L/ Mep, 1151, l25-1), respectively.

3) Decoding and Generation of Feedback Messages at Receivers: We describe the
operations performed at Receiver 1. Receiver 2 behaves in an analogous way.
After each block b € {1,..., B+ 1}, and after observing the outputs Y1y, Receiver 1

looks for a pair of indices (rh(lb), lAg’b,l) € M, x Lo that satisfies

C,
(uS‘,b(rth), l1,p-1, ZZ,b—l)y Z/?,b) € 7;78(PU0Y1)-

Notice that Receiver 1 already knows l; ;1 because it has created it itself after the
previous block b — 1. If there are multiple such pairs, the receiver chooses one of them

1)

at random. If there is no such pair, then it chooses (1h_;, lAg,b_l) randomly over the set
MC X £2.
After decoding the cloud center in block b, Receiver 1 then looks for a tuple

(jg’b_l, mnl’b_l,fl,b_l) € Jo X ./\/lp,l x 71 that satisfies

- (1) ; ) C ) -
(ug b1 (g, pshp2.0202) Ul o1 (Mp1p-1, tp-1(m g, lpas lop2),

~ > ~ ~ (1 >
yg,b_1(l2,m1732,1k1\m£,g_1, Lp2l2p2),9151) € T (Pyyu,viv,)-

It further looks for a pair (I1p,71) € £1 x J1 that satisfies

- . ~ (1 7
GRS J1,b|m£,g, Lip—1,l2p-1),

(1 5
uab(méb), -1, l2,0-1)s 91s) € T4 (Pyyyvn)

and sends the index [;; over the feedback link. If there is more than one such pair
(l1,6,71,6) the encoder chooses one of them at random. If there is none, it chooses the
index [y 5 that it sends over the feedback link uniformly at random over £;. The receivers
thus only send a feedback message at the end of each block 1,..., B.

After decoding Block B + 1, Receiver 1 produces the estimation 1y of my by my =
(Mm1,1,...,Mm1 B) as its guess, where 1, = (mé’l}yb, mp1p), forbe {1,...,B}, and mﬁ}f’b

(1)

denotes the first component of m_ ;.

5) Analysis: See Appendix
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6.6.2 Coding Scheme 1B: Backward Decoding (Theorem [6.2)

For simplicity, we describe the scheme without the coded time-sharing random variable
Q, i.e., for () =const.

Choose nonnegative rates R’l,R’Q,Rl,Rg,ﬁl,Rg, auxiliary finite alphabets Uy, U,
U, 5/1, )72, a function f(") of the form f(”): Up x Uy x Uy — X, and pmfs Py,,v,,
PY/1|Y1> P}72|Y2'
for each block. We denote the n-length blocks of inputs and outputs in block b by 7',

Transmission takes place over B + 1 consecutive blocks, with length n

Yi'p and Y3 p-

Define Jj, := {1,...,[2"% |}, Tp := {1,...,|2"Bk|}, and L), := {1,...,|2"Fk]|}
, for & € {1,2}. The messages are in product form: My = (My1,...,Myp), k €
{1,2}, with Myp = (Mcgp, Mprp) for b € {1,...,B}. The submessages M.y, and
M, i, » are uniformly distributed over the sets M. = {1,..., |27Fer |} and My =
{1,...,[2"* |}, respectively, where Ry i, Re > 0 and so that Ry = R, + R. . Let
Re:= (Rey + Rea + Ri + Ry).

1) Codebook generation: For each block b € {1,..., B + 1}, randomly and indepen-
dently generate LZ”RCJ sequences uab(mqb, Lip—1,lop—1), form.p, € Mg := M1 X Mo
and ljp—1 € Ly, for k € {1,2}. Each sequence u&b(mgb, lip—1,l2p—1) is drawn accord-
ing to the product distribution H?:1 Py, (ugp,i), where ugp; denotes the i-th entry of
ug (Mep, 11 p—1,l2p-1)-

For k € {1,2} and each tuple (mcp, {1 p—1,l25—1) randomly generate Lgn(Rp,HR;)J
sequences uzjb(mp,k,batk,dmc,b,ll,b—17l2,b—1)u for mypp € Mpy and tyy, € Tp by ran-
domly drawing each codeword ugb(mp,k,b, thp/Mep, L p—1,l2p—1) according to the prod-
uct distribution [}, Py v Uk piluop,i), where uyp; denotes the i-th entry of U -

Also, for k € {1,2}, generate L2"(Rk+ék)J sequences ﬂﬁ,b(lk,b,jk,b), for I, € L}, and
Jkp € Jk, by drawing all the entries independently according to the same distribution
Py, .

All codebooks are revealed to transmitter and receivers.

2) Encoding: We describe the encoding for a fixed block b € {1,..., B+1}. Assume
that M,y = me kb, Mpgp = mypkp, for k € {1,2}, and that the feedback messages sent
after block b—1are Ly 1 =l p—1 and Ly p—1 = lpp—1. Definem.p := (me1p, meop). To

simplify notation, let Iy o = mek B+1 = Mp k.51 = 1, for k € {1,2} and m. g1 = (1,1).
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The transmitter looks for a pair (¢14,t2p) € 71 X T2 that satisfies

(ug (e, 1y o1, Lo p—1), uf (M1, 1 p M, 11 p—1, l2p—1),

uyy(Mp2,b t2, My 115 l2p-1)) € T (Puotnus,)- (6.53)

If there is exactly one pair (t;4,t25) that satisfies the above condition, the transmitter
chooses this pair. If there are multiple such pairs, it chooses one of them uniformly at
random. Otherwise it chooses a pair (t1p,t2) uniformly at random over the entire set

T1 x T2. In block b the transmitter then sends the inputs x}' = (zp,1,...,%p,), Where

Ty = f(n) (UO,b,ia U1.b,iy u2,b7z‘), 1€ {1, A ,’I’L}, (6.54)

and ugp i, U1,pi, U2p,; denote the i-th symbols of the chosen Marton codewords ug ,, uy,,

n
and ugy -

3) Generation of Feedback Messages at Receivers: We describe the operations per-
formed at Receiver 1. Receiver 2 behaves in an analogous way.

After each block b € {1,..., B}, and after observing the outputs Y1y, Receiver 1
looks for a pair ({14, 71,) € £1 x J1 that satisfies

(@161, J1,6), yTe) € T4 (Pyyyy) (6.55)

and sends the index [y over the feedback link. If there is more than one such pair
(11,6, 71,5) the encoder chooses one of them at random. If there is none, it chooses the
index [, that it sends over the feedback link uniformly at random over L;.

In our scheme the receivers thus only send a feedback message at the end of each
block 1,...,B.

4) Decoding at Receivers: We describe the operations performed at Receiver 1.
Receiver 2 behaves in an analogous way.

The receivers apply backward decoding and thus start decoding only after the trans-
mission terminates. Then, for each block b € {1,..., B+ 1}, starting with the last block
B + 1, Receiver 1 performs the following operations. From the previous decoding step
in block b+ 1, it already knows the feedback message l;. Moreover, it also knows its

own feedback messages [; 1 and [;; because it has created them itself, see point 3).
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Now, when observing y}',, Receiver 1 looks for a tuple (3271),rhglg,ig,b_l,mp,l,b,il,b) €
J2 X Mg x La x Mp1 x Ti that satisfies

~ (1 3 N ; ~ (1 &
(“8,b(m£,b) p-1:l2,6-1), ul (17,1 b t1,b|m§7g, L, o b)),

gg,b(ZQ,b,jQ,b)ayib) € En(PUoU1Y13~/2)'

After decoding Block 1, Receiver 1 produces the product message m; = (m11,...,M1.B)
as its guess, where m; j = (mf} pMp1p), forbe {1,..., B}, and mf} , denotes the first

)

component of ;.

5) Analysis: See Appendix

6.6.3 Coding Scheme 1C: Hybrid Sliding-Window Decoding and Back-
ward Decoding (Theorem [6.3)

For simplicity, we only describe the scheme achieving region Rgl)ay Wy for @ =const. A
2

scheme achieving region Rrelay,h

,, is obtained if in the following description indices 1 and
2 are exchanged.

1) Codebook generation: The codebooks are generated as in Scheme 1A, described
in point 1) in Section but where RQ = Rg =0.

2) Encoding: The transmitter performs the same encoding procedure as in Section
but where ly;_; =1 is constant for each block b € {1,...,B + 1}.

3) Receiver 1: In each block b € {1,...,B + 1}, Receiver 1 first simultaneously
decodes the cloud center and its satellite. Specifically, Receiver 1 looks for a tuple

(rhc,b,l,mp,Lb,l,tAl’b,l) € M. x Mp1 x Tq that satisfies

(u&bfl(ﬁlc,bfla ll,b727 1)7 yib—la

uf g (Mp1p—1s t1p—1 e p—1, 1152, 1)) € T2 (Puouvy)-

It further compresses the outputs y}', and sends the feedback message [;; over the
feedback link as in Scheme 1A, see point 3) in Section [6.6.1]

4) Receiver 2: Receiver 2 performs backward decoding as in Scheme 1B, see point

4) in Section [6.6.2]

5) Analysis: Similar to the analysis of the schemes 1A and 1B in presented in
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appendices [6.A] and [6.B] Details are omitted.

6.6.4 Coding Scheme 2: Encoder Processes Feedback-Info

The scheme described in this subsection differs from the previous scheme in that in
each block b, after receiving the feedback messages My, 15, My, 25, the encoder first
reconstructs the compressed versions of the channel outputs, 171% and 172%, and then
newly compresses the quintuple consisting of }717?,) and Y{}b and the Marton codewords

&b, ﬁb’ U2"’b that it had sent during block b. This new compression information is
then sent to the two receivers in the next-following block b + 1 as part of the cloud
center of Marton’s code.

Decoding at the receivers is based on backward decoding. For each block b, each
receiver k € {1,2} uses its observed outputs Yy, to simultaneously reconstruct the
encoder’s compressed signal and decode its intended messages sent in block b.

For simplicity, we only describe the scheme for ) =const.

Choose nonnegative rates R}, Ry, Ry, Ry, R1, Ry, R,, auxiliary finite alphabets Uy,
Uy, Us, Vi, Yo, V, a function @) of the form f: Uy x Uy xUs — X, and pmfs Py,v,v,,
PYGIYN PY/Q\YQ’ and PV|UOU1U2171Y/2' Transmission takes place over B + 1 consecutive
blocks, with length n for each block. We denote the n-length blocks of channel inputs
and outputs in block b by 7y, yﬁb and yg,b.

Define J; := {1,...,[2"% |}, T := {1,...,[2"%]}, and L} := {1,...,|2"%]},
for k € {1,2}, and N := {1,...,{2”1%@} The messages are in product form: M, =
(My1,...,Myp), k € {1,2}, with My = (Mo gy, Mprp) for b € {1,..., B}. The sub-
messages M, ., and M, i, , are uniformly distributed over the sets M. :={1, ... ,[27 ek}
and My = {1,..., |27Fpk |1 respectively, where Rk, Rer > 0 and so that Ry, =
Ryk+ Reg. Let Re:= (Req + Rea + Ry).

1) Codebook generation: For each block b € {1,..., B + 1}, randomly and indepen-
dently generate |2"%¢| sequences ugvb(mc,b,nb,l), for m.;, € M¢:= M1 x Mo and
ny_1 € N. Each sequence ugyb(m,;?b, np—1) is drawn according to the product distribution
[T Puy(uop,i), where ugp; denotes the i-th entry of ug’b(mqb, Np—1)-

For k € {1,2} and each pair (m,,n;_) randomly generate |2"(Frs+5%) | sequences
uz’b(mp,k,batk,b|mc,banb—1)7 for my .y € My and tyy € T, by drawing each codeword

uz’b(mp,k,b, tr,p/mep, np—1) according to the product distribution [}, P o (ke pilwo,pi)s



118
where uy,p; denotes the i-th entry of u};b (mp,k,b, b M p, nb_l).
Also, for k € {1,2}, generate L2”(R’@'+R’@)J sequences gjg7b(lk7b,jk7b), for Iy, € L}, and
Jkp € Ji by drawing all the entries independently according to the same distribution
Pf/k;

Finally, for each n,_; € N, generate |2"%

| sequences v}'(np|np—1), for n, € N by
drawing all entries independently according to the same distribution Py .

All codebooks are revealed to transmitter and receivers.

2) Encoding: We describe the encoding for a fixed block b € {1,..., B+1}. Assume
that in this block we wish to send messages M., = Mmeip, Mprp = Mpip, for k €
{1,2}, and define m.p := (M1, Mc2p). To simplify notation, let Iy o = mer 1 =
mpkB+1 = 1, for k € {1,2}, and also n_; =ng = 1.

The first step in the encoding is to reconstruct the compressed outputs pertaining
to the previous block 171%_1 and 172%_1. Assume that after block b — 1 the transmitter
received the feedback messages Lqp—1 = l1p—1 and Loy = lop—1, and that in this
previous block it had produced the Marton codewords “g,b—l = “g,bfl(mc,b—la Np—2),
u?,b_1 32“?,17_1(mp,1,ly17t1,1y1 !mc,lH, np—2), and Ug,b_1 3:U§,b_1(mp,2,lﬂ,t2,zk1 ‘mc,lkhnbe)'
The transmitter then looks for a pair (ji -1, J2,5-1) € J1 X J2 that satisfies

n n n ~n s
(uo,b—lv Ul -1, Us 15 U1 p—1 (l1,—1, J1,6-1),

Top-1(l2p-1,J25-1)) € Tora(Pry, v, 72)-

In a second step the encoder produces the new compression information pertaining to
block b— 1, which it then sends to the receivers during block b. To this end, it looks for
an index 7,1 € N that satisfies

n n n ~n o
(ub o1,y 1, U 1, U1 1 (=1, J1p-1),

Fop1(lop—1,J2,0-1), Vi1 (Ae—1|mp—2)) € Te/2(Pyov,v,77 7o)

The transmitter now sends the fresh data and the compression message 7,1 over the
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channel: It thus looks for a pair (t14,%25) € 71 % T2 that satisfies

(ug (e, 1) uf (M, 1,5, E1p My, Rp—1),

gy (Mp2,5s t2,p| M, 1p-1)) € T s (Puotnvs)-

If there is exactly one pair (t;4,t25) that satisfies the above condition, the transmitter
chooses this pair. If there are multiple such pairs, it chooses one of them uniformly at
random. Otherwise it chooses a pair (t1p,t2) uniformly at random over the entire set

T1 x T2. In block b the transmitter then sends the inputs x}' = (zp,1,...,2p,), Where

Ty = f(n) (UO,b,ia U1.b,iy u2,b7z‘), 1€ {1, A ,’I’L}. (6.56)

and ug 4, U1,p,i, U2,p; denote the i-th symbols of the chosen Marton codewords u{ib(mc’b,
Mp—1), Y (Mp,1bs t1,pMe b, Ap—1), and ug (1M 2,p, Lo p|Mep, Np—1)-

3) Generation of Feedback Messages at Receivers: We describe the operations per-
formed at Receiver 1. Receiver 2 behaves in an analogous way.

After each block b € {1,..., B}, and after observing the outputs Y1'p» Receiver 1
looks for a pair of indices (l1p,714) € £1 x Ji that satisfies

(@161, 71,6), UTe) € Tlr6(Pyyv,) (6.57)

and sends the index [y over the feedback link. If there is more than one such pair
(l1p,J1,p) the encoder chooses one of them at random. If there is none, it chooses the
index [y, sent over the feedback link uniformly at random over L;.

In our scheme the receivers thus only send a feedback message at the end of each
block.

4) Decoding at Receivers: We describe the operations performed at Receiver 1.
Receiver 2 behaves in an analogous way.

The receivers apply backward decoding, so they wait until the end of the trans-
mission. Then, for each block b € {1,...,B + 1}, starting with the last block B + 1,
Receiver 1 performs the following operations. From the previous decoding step in block

b+ 1, it already knows the compression index n;,. Now, when observing y',, Receiver 1
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looks for a tuple (rh((:lb),mp’l’b,fl’b,ﬁb_l) € M. x Mp1 x T1 x N that satisfies

(1)

~ ~ ~ h ~ (1) 4
(ufty (8, fip1), (1 0, ) 1),

g (nplfo—1), Y54y 075 (1 510)) € T2 (Pyur vy 1)

where recall that Receiver 1 knows the indices [1, and ji;, because it has constructed
them itself under 3).
After the decoding Block 1, Receiver 1 produces the product message mj = (m 1, . . .,

. . . (1) . L (1
m1,B) as its guess, where M j = (mg’l)’b,mnl,b), for b € {1,..., B}, and m((:’l)’b denotes

the first component of mfl) b

5) Analysis: See Appendix

6.7 Extension: Noisy Feedback

Our results also apply to the related setup where the two feedback links are noisy chan-
nels of capacities Rpp, 1 and Ry, 2 and where the decoders can code over their feedback
links. The following three modifications to our coding schemes suffice to ensure that

our achievable regions remain valid:

e We time-share two instances of our coding schemes: one scheme operates during
the odd blocks of the BC and occupies the even blocks on the feedback links; the
other scheme operates during the even blocks of the BC and occupies the odd
blocks on the feedback links.

e Instead of sending after each block an uncoded feedback message over the feedback
links, the receivers encode them using a capacity-achieving code for their feedback
links and send these codewords during the next block.

e After each block, the transmitter first decodes the messages sent over the feedback
links during this block, and then uses the decoded feedback-messages in the same

way as it used them in the original scheme.

Let &pppp, for k = 1,2, denote the event that during Block b there is an error in

the feedback communication from Receiver k to the transmitter, and let £ denote the
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event that M # My or Mo # M. Then,

PI‘[Ml% M1 or MQ 75 Mg]

B B
< Pr|EU (U 5Fb,1,b> @]

b=1

B Cc
_5‘ (1)!1 5Fb,17b> N

[ B

N
(w

&
Il
-

5Fb,2,b> ]
5Fb,2,b> ]
1
+ Pr U 5Fb,1,b , ]
Lb—1

r B C B C:
< Pr 5‘ (Hng,l,b> N (H 5Fb,2,b> ]

B

—|—Z Pr[é’pbyl’b] + Pr[gpr,b] . (658)
b=1
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Since we use capacity-achieving codes on the feedback links, the probabilities Pr[Epy, 1]
and Pr[€py, 2] vanish as the blocklength increases. When the feedback communications
in all the blocks are error-free, then the probability of error in the setup with noisy feed-
back is no larger than that in the setup with noise-free feedback. Thus, under the corre-
sponding rate constraints, also the probability Pr [5‘ <U5:1 EFbJ,b)C N (Uf’;l pr,gb) C]
vanishes as the blocklength increases. Combining all these observations proves that the
rate regions in Theorems [6.1H6.4] are achievable also in a setup with noisy feedback if

the receivers can code over the feedback links.

6.A Appendix: Analysis of Scheme 1A (Theorem [6.1))

By the symmetry of our code construction, the probability of error does not depend on
the realizations of M,y p, Mp kb, Tk Jkp, Lip, for k€ {1,2} and b € {1,...,B}. To
simplify exposition we therefore assume that M., = Mppy = Thp = Jpp = Lpp = 1
for all k € {1,2} and b € {1,...,B}. Under this assumption, an error occurs if, and
only if, for some b € {1,..., B},

~ ~

~(1 ~(2
(Mip,1,60 My 2, ML) M) ) # (1,1,1,1).
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For each b € {1,..., B}, let & denote the event that in our coding scheme at least
one of the following holds for k € {1,2}:
o Jppo1#1;
o Ty 1#1;
o Lpy 1 #1;
o Myyp1#1;
o M) #(1,1);
e There is no pair (t1p,%25) € 71 x T that satisfies

(U&b(l[ﬁl])v Uln,b(lﬂ tl,b’1[4})ﬂ U;,b(L t2,b|1[4])) S 7-5716(PU0U1U2)

i (U&b_1(1[4])7 Uﬁb_l(L 1’1[4])7 Ug,b—l(L L, ’1[4])1 Yl?b—l’ Yg?b_l) ¢ 7:;712(PU0U1U2Y1Y2)
e There is no pair (Ixp, jip) € Lr X Ji that satisfies

(V% (ks G| L), UG (L), Yi) € 74Py goys,)-

Then,

PN < pPrll &| <D Prl&les ] + Pri&). (6.59)

b=1 b=2

B+1 ] B+1

In the following we analyze the probabilities of these events averaged over the random
code construction. In particular, we shall identify conditions such that for each b €
{2,..., B + 1}, the probability Pr [5b|5§71} tends to 0 as n — oo. Similar arguments
can be used to show that under the same conditions also Pr[€;] — 0 as n — oco. Using
standard arguments one can then conclude that there must exist a deterministic code
for which the probability of error Pe(N) tends to 0 as N — oo when the mentioned
conditions are satisfied.

Fix be{2,...,B+ 1} and € > 0, and define the following events.
o Let & be the event that there is no pair (t1p,t25) € 71 x T2 that satisfies

(U(?,b(]'[4])7 Uln,b(lv tl,b‘ 1[4])7 U2n,b(17 t2,b

1[4})) € 7?;16(PU0U1U2)-
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By the Covering Lemma, Pr[& ;] tends to 0 as n — oo if
R} + R, > I(Uy; Us|Up) + 6(e), (6.60)

where throughout this section §(¢) stands for some function that tends to 0 as
e — 0.
Let &1 be the event that

(Ug)l,b(l[4])v Uln,b(lv 1‘1[4])7 UQn,b(lv 1, ‘1[4])7 1/lr,va YQT,Lb) ¢ 7;712(PU0U1U2Y1Y2)‘

Since the channel is memoryless, by the law of large numbers, Pr [51717\83’17} tends
to 0 as n — oo.

Let &1 be the event that there is no tuple (rhgylb),lAg,b_l) € M, x Lo that is not
equal to (1jg, 1) and that satisfies

n (.o (1 7 n
(UO,b(mg,b)’ 1, lQ,b—l)a Yl,b) € US(PUOYI)'
By the Packing Lemma, Pr {52,171,\51071)} tends to 0 as n — oo, if
RQ + Rc,l -+ RC,Q < I(U(]; Yl) + 5(6) (6.61)

Let &2y be the event that there is no tuple (Iflin),lALb_l) € M. x L1 with

(rhgg, I1.5-1) not equal to (197, 1) that satisfies
(Uéfb(fﬁfb)a lip-1,1), Y3h) € 728 (Puoys)-
By the Packing Lemma, Pr {52,2@\5107()} tends to 0 as n — oo, if
Ry + Rey 4 Reo < I(Up; Ya) +6(e). (6.62)
Let &51 be the event that
(U1 (L), UTyor (1, 110), Y (1, 1), Y% 0) & To(Pyour, tvs)-

By the Markov Lemma, Pr [83,175\5,;3_1] tends to 0 as n — oo.
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o Let £394 be the event that

(Ugp1(Apg), US4 (1, 1’1[4})7371%—1(17 1),Yy ) ¢ 1o (Pyyryay,)-

By the Markov Lemma, Pr [6’3,27b|€§_1] tends to 0 as n — oo.
o Let &£ 1 be the event that there exists a tuple (mnl,b,l,ﬁ,b,l,jg,b,l) € Mp1 X

T1 X Jo not equal to the all-one tuple and that satisfies

(U 1(X1), Uy (a1 51, E1,p—1 | 1),
}727}b—1(17 52,b71’1[4})7 Yf?b—l) € 721(PU0U1}72Y1)'

By the Packing Lemma, Pr [54,171,\5??’174 tends to zero as n — oo, if

Ry < I(Yy; Uy, Y1|Up) — 4(e) (6.63)
Ry1 + Ry < I(Uy; Y1, Ya|Up) — 6(e) (6.64)
Rp1 + Ry 4 Ry < I(Uy; Ya, Ya|Up) 4 I(Ya; Y1 |Up) — 6(e). (6.65)

o Let &9 be the event that there exists a tuple (mp&b,l,fg,b,l,jl’b,l) € Mpa x

T2 x J1 not equal to the all-one tuple and that satisfies

(USy-1(11), Ughy 1 (hap 251, Eap—1|1p)),
Vi (L dis-1 1), Yaho1) € T2 (Pyyunyy,)-

By the Packing Lemma, Pr [54,271,\552’4 tends to zero as n — oo, if

Ry < I(Y1;Us, Y2 |Up) — d(e) (6.66)
Ryo + Rhy < I(Us; Yo, Y1|Up) — 6() (6.67)
Ry2+ Ry + Ry < I(Uy; Yo, Y1|Up) + I(Y1; Ya|Up) — 8(e). (6.68)

e For k € {1,2}, let & 1 be the event that there is no pair (lxp, jrp) € Lk X Tk
that satisfies

(?k%(lk,bajk,b‘l[ﬂ)v Ugy (L), Yi) € T2 14(Py, tov2,)-
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By the Covering Lemma, Pr [55&1)]810’[)] tends to 0 as n — oo, if
Ry + Ry, > I(Yy; Yi|Up) + 6(e). (6.69)

Whenever the event £ _; occurs but none of the events {£op, £1,5, £2.1.5 £2,2,65 £3.1,6, £3,2,6,

54,171,, 5472,1), 55717[,, 85,2717} above, then gbc Therefore,

2

<Pr [50717 U&ip U U (E2ep U E31ep U Ea b U Es pep) ‘55_1}
k=1

S PI' [5071)‘5571] + Pr [gl,b’g(ilw 8571]

2
+ Z (Pr [E2,kp|ET 1 €5 1]+ Pr[Es k€54 ]
k=1

+ Pr[E41ep|E5 iy E5—1] + Pr[E5 bl ET 4, E51] )
= Pr€oy) + Pr[1p|E,)

2
+> (Pf [E2.0|ET3] + Pr[Es k,0l€5-1]
k=1

+Pr [54,k,b‘53c’k’b] + Pr [55,k,b’510,b} ) .

The last equality holds because the channel is memoryless and the codebooks employed
in blocks b—1 and b are drawn independently. As explained in the previous paragraphs,
the remaining terms in the last three lines tend to 0 as n — oo, if constraints ((6.60|)—
are satisfied. Thus, by (6.59) and ([6.70]) we conclude that the probability of error
pN) (averaged over all code constructions) vanishes as n — oo if constraints (6.60])—

hold. Letting ¢ — 0, we obtain that the probability of error can be made to tend




to 0 as n — oo whenever
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Ry + R, > I(U1; U |Up) (6.70a)
Ry+Re1+Reo < I(Up; Yr) (6.70b)
Ri+R.1+Res < I(Up; Ya) (6.70¢)

Ry < I(Y3; U, Y2|Up) (6.70d)

Ry < I(Ya; Uy, Y1|Up) (6.70e)

R,1 + Ry < I(Uy; Y1, Ya|Up) (6.70f)

Ry + Ry > 1(Uz; Ya, Y1|Up) (6.70g)

Ry1+R,+Ry < I(Uy; Y1, Ya|Up) +1(Ya; Y1 |Up) (6.70h)

Rypo+Ry+ Ry < I(Us; Yo, Y1 |Up) +1(Y1; Y2|Us) (6.70i)

Ry + Ry > I(Y1; Y1|Uy) (6.705)

Ry + Ry > I(Ya; Ya|Up). (6.70k)
Moreover, the feedback-rate constraints impose that:

Ry < Rppa (6.701)

Ry < Rppa. (6.70m)

Applying the Fourier-Motzkin elimination algorithm to these constraints, we obtain the

desired result in Theorem [6.1] with the additional constraint that

LU Y1, Ya|Up) + I(Us; Ya, Y3 |Up)
—Al — AQ — I(Ul; UQ‘UO) Z 0 (6.71)

Notice that we can ignore constraint ((6.71]) because for any tuple (Uy, Uy, U, X, Y1, Y2, Y1,
Y>) that violates (6.71)), the region defined by the constraints in Theorem is contained

in the time-sharing region.
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6.B Appendix: Analysis of the Scheme 1B (Theorem [6.2)

An error occurs whenever
Ml,b # M, or M27b # My, for some b e {1,...,B}.

For each b € {1,..., B + 1}, let &, denote the event that in our coding scheme at least
one of the following holds for k € {1,2}:

T # T (6.72)
Tip # Tip (6.73)
Lip-1 # Ly (6.74)
Mp o # My ip (6.75)
MY % M) (6.76)
Then,
B+1 B
Pe(N) < Pr U gb] Z gb|5b+1 + Pr[€p41] . (6.77)
b=1 b=1

In the following we analyze the probabilities of these events averaged over the random
code construction. In particular, we shall identify conditions such that for each b €
{1,..., B}, the probability Pr[&|&f, ] tends to 0 as n — co. Similar arguments can
be used to show that under the same conditions also Pr[€p41] — 0 as n — oo. Using
standard arguments one can then conclude that there must exist a deterministic code
for which the probability of error Pe(N) tends to 0 as N — oo when the mentioned
conditions are satisfied.

Fix b € {1,...,B} and ¢ > 0. By the symmetry of our code construction, the
probability Pr [5b|8§+1] does not depend on the realization of M. .5, My b, T, Jip,
Lip, Lip—1, for k € {1,2}. To simplify exposition we therefore assume that M., =
My ko =Tkp = Jkp = Lrpy=Lpp1 =1

Define the following events.
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e Let & be the event that there is no pair (¢1p,t25) € 71 x T2 that satisfies

(Uop (L), UTp (1, t1p]117), Uy (1, t2p

1[4})) € 7;716(PU0U1U2)-
By the Covering Lemma, Pr[&] tends to 0 as n — oo, if
1+ Ry > I(Uy; Ua|Uo) + 6(e), (6.78)

where throughout this section §(¢) stands for some function that tends to 0 as
e — 0.
e Let €1 be the event that

(U&b(1[4])a Uﬁb(la 1’1[4}7 U;b(la 17 |1[4])> bev Yg}b) ¢ US(PU()UlYngYg)'

Since the channel is memoryless, according to the law of large numbers, Pr [51’1,\584
tends to 0 as n — oo.

e For k € {1,2}, let &1 be the event that there is no pair (lxp, jrxp) € Lk X Tk
that satisfies

(Y (s Grs), Vi) € T4(Py v, )-
By the Covering Lemma, Pr [527;3,1,]510,[,] tends to 0 as n — oo if
Ry + Ry, > I(Yi; Yi) + 6(e). (6.79)
o Let &1 be the event that
(U (L) Ul (1, 111a), Y351, 1), Y1) & T2 14 (P vy )-

By the Markov Lemma, Pr [53,1,b|5262 p EF b} tends to 0 as n — oo.
o Let &) be the event that

(U8 (L) U35 (1, 11 1), Y5 (1,1), Y35) € T3 a (P nys)-
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By the Markov Lemma, Pr [8372,1)]55,1’17, Sib tends to 0 as n — oo.
e Let &1 be the event that there exists a tuple (5'275,mgg,izb_l,mnl,b,fl,b) IS
J2 x Me X L2 X Mp1 x Ti not equal to the all-one tuple (1,1(y,1,1,1) and that

satisfies

(U()b( ib’, Lo 1), U1b(mp1b,t1b|m0137 Llop 1),

Y27?b(17j2,b)aY17}b> €T U0U1Y2Y1)

By the Packing Lemma, we conclude that Pr [5471’;,\5571713} tends to zero as n — oo
if

Ry < I(Up, Uy, Y1; Ya|Up) —

Ry1+ Rll <I

Ri+Rea+ Ry + R, <1

Ri+Reo+Ry+Ri+Ry < 1

I

+
Ry1 + Ry + Ry < I(U1; Y1, Ya|Up) 4 I(Ya; Y1, Up)—d(e).  (6.80)

o Let &£ 25 be the event that there exists a tuple (jlvb,rhfb),llb_l,mng?b,fg,b) €
J1 X Mg x L1 x Mpa x Tz not equal to the all-one tuple and that satisfies

~(2) 7 N ~ ~(2) 7
(U&b(mﬁ,ﬁ,lm_l,l) Ul (Mp,2p, t2, b|m£b),l1 b—1,1),

Y1(1,514),Y3h) € T2 Pvaviv,)-

By the Packing Lemma, we conclude that Pr [5472’17\55 9 b} tends to zero as n — oo
if

Ry < I(Uy, Uy, Ya; Y1 |Up) —d(e)

Rya + Ry < I(Us; Ya, Yi|Uo) — 6(e)
Ry+Re1+Ri+Ry<T (
Ro+Re1+Ri+Ry+ Ry < I(Up, Ug; Yo, Y1) + I(Ya; Y1) — 6(e)

(
(
(Uo, Uz; Yo, Y1) — d(e)
(
(

Ry2 + Ry + Ry < I(Uy; Yo, Y1|Up) 4 I(Y3; Yo, Up)—d(g).  (6.81)
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Whenever the event &, | occurs but none of the events above, then &. Therefore,
Pr[&/E5,4]

2
< Pr [&),b Ué&ipU U (52,k,b U&pp U 54,k,b) ‘5§+1]
k=1

< Prléanléto] + PrlEulet o]
+Pr(E310|€7 €5 04, E541] + Pr[€3.2|€7 1,65 14,E041]

2
+) (Pr [E2,1blEF 1 E 1]+ Pr[EaplE5 kb Ebir] )
=1

= Pr[6op] + Pr[€1,/E5,]
_|_Pr [53717b|5f7b,52c727b] + Pr [53,2,b|6f,b75§,1,b:|

2
+ Z (PI‘ [527]67[,’81:7(,] + Pr [54,k,b’8§,k,b] >, (6.82)
k=1
where the last equality follows because the channel is memoryless and the codebooks
for blocks b and b 4+ 1 have been generated independently. As explained in the pre-

vious paragraphs, each of the terms in the last three lines tends to 0 as n — oo, if

constraints ((6.78))—(6.81)) are satisfied. Thus, by (6.77)) and (6.82) we conclude that the
. (N) : . .
probability of error P;’ (averaged over all code constructions) vanishes as n — oo if

constraints (6.78)—(6.81)) hold. Letting ¢ — 0, we obtain that the probability of error
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can be made to tend to 0 as n — oo whenever

R' 4+ R}, > I(Uy; Us|Up) (6.83a)

Ri+ Ry > I(Y1; 1)) (6.83b)

Ro + Ry > I(Ya;Ys) (6.83¢)

Ry < I(Up, Us, Yo; Y1|Up) (6.83d)

Ry < I(Uy, Uy, Y1; Ya|Up) (6.83¢)

R, + Ry < I(Uy; Y1, Ya|Uy) (6.83f)

Ry2 + RYy < I(Us; Ya, Y1 |Up) (6.83g)

Ri+ Res+ Ry + Ry < I(Up, Uy; Y1, Ys) (6.83h)
Ry + Ry + Ry + Ry < I(Up, Ua; Ya, V1) (6.83i)
Ri+Reo+Ro+ R+ Ry < I(Up, Uy; Y3, Ya) + I(Yy; Ya) (6.83j)
Ro+Re1+Ri+Ry+Ry < I(Up, U; Yo, Y1) + I(Ya; Y1) (6.83Kk)
Ry + Ry + Ry < I(U1; Y3, Ya|Up) + 1(Ya; Y1, Up) (6.831)

Ry2+ Ry + Ry < I(Uy; Yo, V1|Up) + I(Y1; Ya, Up). (6.83m)

Moreover, the feedback-rate constraints (6.1]) impose that:

Ry < Rpv (6.83n)
Ry < Rppo. (6.830)

Applying the Fourier-Motzkin elimination algorithm to these constraints, we obtain the

desired result in Theorem [6.2] with the additional constraint that

I(Uy; Y1, Ya|Up) + I(Us; Ya, Y1|Up)

—Al — AQ — I(Ul; UQ‘UO) > 0 (6.84&)
I(Uy; Y1, Ya|Ug) — Ag > 0 (6.84b)
I(Ug; Yo, Y1|Up) — Ay > 0. (6.84c)

We can ignore constraint (6.84a)) because for any tuple (Up, Uy, Ua, X, Y1, Ya, Y1, Ys) that
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violates , the region defined by the constraints in Theorem is contained in
the time-sharing region. Constraint can also be ignored because for any tuple
(Uo, U1, Us, X, Y1,Ys,Y1,Ys) that violates , the region defined by the constraints
in Theorem is contained in the region in Theorem for the choice Y5 = const.,
for which is always satisfied. Constraint can be ignored by analogous

arguments.

6.C Appendix: Analysis of Scheme 2 (Theorem [6.4))

An error occurs whenever
Ml,b 7é Ml,b or Mzb 7§ Mg}b, for some b € {1, - ,B}

For each b € {1,..., B + 1}, let &, denote the event that in our coding scheme at least
one of the following holds for k € {1, 2}:

Jew # Jib (6.85)
Tk # Tep (6.86)
Liy # Lip (6.87)
Mp,k,b # My s (6.88)
4w 6
or when
Nyt % Ny, (6.90)
Then,
B+1 B
P™ < Pr U 5b] < Z Pr[&|&5,1] + PrlEpya] . (6.91)
b=1 b=1

In the following we analyze the probabilities of these events averaged over the random
code construction. In particular, we shall identify conditions such that for each b €
{1,..., B}, the probability Pr [5b|5§+1] tends to 0 as n — oo. Similar arguments can
be used to show that under the same conditions also Pr[€p4+1] — 0 as n — oco. Using

standard arguments one can then conclude that there must exist a deterministic code
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for which the probability of error Pe(N) tends to 0 as N — oo when the mentioned
conditions are satisfied.

Fix b € {1,...,B} and ¢ > 0. By the symmetry of our code construction, the
probability Pr [€b|5§+1] does not depend on the realizations of Ny_1, Ny, or M.y,
M,
for k € {1,2}, Mepp = Mppp =Trp = Jrpp = Lrp =1, and Ny = Np—q = 1.

Define the following events.

ks Thvs Jip, Lip, for k € {1,2}. To simplify exposition we therefore assume that

o Let &y be the event that there is no pair (t14,%25) € T1 % T2 that satisfies
(Uop(1)), Uy (1 t1,p]112), Usy (Lo topl 1)) € Tjga(Poovvs)-
By the Covering Lemma, Pr[&] tends to 0 as n — oo if
1+ Ry > I(Uy; Ua|Up) + 4(e), (6.92)

where throughout this section (¢) stands for some function that tends to 0 as
e — 0.
o Let & be the event that

(U&b(l[?)])v Uln,b(la 1‘1[3])7 U2n,b(17 17 ‘1[3])7 YIT,Lbﬂ }/27}17) ¢ 7;732(PU0U1U2Y1Y2)-

Since the channel is memoryless, according to the law of large numbers, Pr [517b|5&b}
tends to 0 as n — oo.

e For k € {1,2}, let & be the event that there is no pair (Ixp,jkp) € Li X Tk
that satisfies

(Y (kb i)y Vi) € T 16(Pyy;,)-
By the Covering Lemma, Pr [527/{,1)]510’1)] tends to 0 as n — oo if

Ry + Ry, > I(V3,; Yy) + 0(e). (6.93)
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o Let &34 be the event that

(Ug (L)), UT (1,11 3)), Uz (1, 1] 1)),
5}17})(1’ 1)7 5}27}1)(17 1)7 }/17?1)’ Y'Q’r,bb) ¢ 7;76(PU()U1U2{/1}72Y1Y2)'

By the Markov Lemma, Pr [537b|8§1 0 €590, ET b} tends to 0 as n — oo.
o Let &4y be the event that there is a pair of indices 51717 € J1 and 52,1) € J9 not
equal to the all-one pair (1,1) and that satisfies

(Ugs (L), UT (1,11 3)), Uz (1, 1] 1),
?17?17(]‘751717)7 1}27?13(17 52ab)) 67;74(PU0U1U21~/1Y/2)'

By the Packing Lemma, Pr [54,1,]8:;4 tends to 0 as n — oo, if

Ry < I(Uy, Uy, Us, Yo; Y1) — 6(¢) (6.94)
RQ < I(Uo,Ul,UQ,Y/l;i/Q) —5(6) (6.95)
Ry + Ry < I(Uy, Uy, Us; Y1, Ya) 4 I(Y1; Ya) — 6(). (6.96)

o Let & be the event that there is no index ny € N that satisfies

(Ug (L)), UT (1,11 3)), Uz (1, 1] 1)),
Y (1,1), Y3y (1, 1), Vit (m| 1)) € T2 (P v, v )-

By the Covering Lemma, Pr [8571,]5??7,)] tends to 0 as n — oo, if
Ry, > I(Uy, Uy, U, Y1, Y23 V) + 6(e). (6.97)
o Let &1 be the event that
(U8 (L 1) UF (1,12, 1, (L), ¥ (L 1)) € T Py -

By the Markov Lemma Pr [56,1,b‘€§b7 &S, | tends to zero as n — oo.
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Let & 2 be the event that

(U811 1), UF (1,124, 1, P (L11), ¥, Y341 1)) € T (Prrriss,)-

By the Markov Lemma Pr [56,2,b|5§b= &S, | tends to zero as n — oo.
Let & 15 be the event that there is a tuple (m( b), Mp—1,Mp 1 b,tl,b) € M. x N x
M1 x Ty that is not equal to the all-one tuple (1j3,1,1,1) and that satisfies

(U0b< ﬁg,nb 1) Ulb(mp,1,b7t1b\mcb),nb 1)

V' (Ui 1), Y% V(1,1 ) € T (P vvass)

By the Packing Lemma, we conclude that Pr [577111,\55 1 b} tends to zero as n — oo
if

Ri+ Reo + Ry < I(Uy,Uy; Y1, Y1, V) — 6(e) (6.98)
R1+Rc72+Rv+R/1 S I(U07 Ul; le)i/lv V) + I(Va }717 Yl) - 6(5) (699)
Ry1 + Ry < I(Uy; Y1, Y1, V|Up) — d(e). (6.100)

Let 795 be the event that there is a tuple (m( g, Mp—1,Mp 2, b7t2,b) € M. x N x

M2 x T that is not equal to the all-one tuple (1j3,1,1,1) and that satisfies

(U0b< ggﬂlb 1); Ugb(mp,z,bJQb\mcb),nb 1)

Ve (Ui 1), Y8, V35(1,1)) € T (Pryuyvv,ss)

By the Markov Lemma and the Packing Lemma, we conclude that Pr {57,2,b|5g 9 b]

tends to zero as n — oo, if

RQ—FRCJ—FRQ I(U(],U2,Y2,}/2,V) —5(6) (6.101)
Ry+Re1+Ro+ Ry < I(Up, Uy; Yo, Y2, V) + I(V; Yo, Ya) — (e) (6.102)
Ry + Ry < I(Us; Ya, Yo, V|Up) — 6(e). (6.103)
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Whenever the event & | occurs but none of the events above, then &;. Therefore,

<Pr [50,b U&pUE1pU&ErapUEsy
UELp U Esp U &6 1 U 56,2,1)‘81?4.1}
< Pr [507b‘55+1] + Pr[é’l’b\E&b,SgH]

2
+ Z Pr [gg’k,b

c c
gl,b? gb+1]
k=1

+ Pr [53,b|5lc,bv gg,l,b’ 528,2,b’ glf—i—l} + Pr [54,b|g§,b7 glf—i—l}

2
+Pr [55,b|5§,b7 gngl] + Z Pr [567k7b|g§7b’ 5§+1]
k=1
2

= Pr(€ou] + Pr[€14/E6,] + > Priarsléfy)
k=1
+ Pr [537b|(€167b,52671’17,52672713] + Pr [547b|5§,b] + Pr [85,b‘g§7b]
2

+ Z Pr [56,k:,b

k=1

E5u] 5 (6.104)

where the last equality follows because the channel is memoryless and the codebooks
in blocks b and b + 1 have been chosen independently. As explained in the previous

paragraphs, each of the terms in the last five lines tends to 0 as n — oo, if con-

straints (6.92)—(6.103)) are satisfied. Thus, by (6.91)) and (6.104]) we conclude that the

probability of error Pe(N) (averaged over all code constructions) vanishes as n — oo if

constraints ((6.92)—(6.103|) hold. Letting & — 0, we obtain that the probability of error



can be made to tend to 0 as n — oo whenever

R + R, >
1%1 + Rl
RQ + 1:32
Ry <
Ry <
Ri+ Ry < 1(Uy, Uy, Up; Y1, Ya) + I(Y1; Y2)

I(Uy; Us2|Uo)
I(
I(
I(
I(
I(
R, > I(Uy, Ul,UQ,Yl,YQ,V)
I(
I(
(
(
(
(

Uo, U, Ua, Ya; Y1)
Uy, U, Ua, Y1; )

Ri+ Reo + Ry + Ry < I(Uy, Uy; Y1, Y1, V) + I(V; Y1, Y1)
R1+RC2+R, U Ulaylv}/la

Rei + Ry + Ry < I(Up, Us; Ya, Ya,

Rp1 + Ry < I(Uy; Y1, Y1, VU

V)

V)

Req+ Ro+ Ry + Ry < I(Up, Uz Y2, Y2, V) + 1(V; Y2, Ya)

)
Rya+ Ry <1 Us; Yo, Ya, V|Up).

Moreover, the feedback-rate constraints impose that:

R1 < Rpyp 1

Ry < Rpp 2.
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(6.1051)
(6.1050)

Eliminating the auxiliaries R1, R, Rl, Rz, R, from the above (using the Fourier-Motzkin
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algorithm), we obtain:

R} + R, > 1(Uy; Us|Uyp) (6.106a)

Ri+ Reo+ R} < I(Up, Uy; Y1, Y1, V)
—I(V;Uy, Uy, Us, Y2 |V, Y1) (6.106b)

Rei 4 Ry + Ry < I(Up, Ua; Ya, Yo, V)
—I(V;Up, U, Uz, Y1|Y2,Y2) (6.106c)
Ry1 + Ry < I(Uy; Y1, Y1, V|Uy) (6.106d)
Rya + Rhy < (Uy; Yo, Ya, V|Up) (6.106¢)

where the feedback-rate constraints have to satisfy

I(Y1;Y1|Uy, U, Uz, Y2) < Ry (6.107a)
1(Yy; Y3|Up, Uy, Ua, Y1) < Rpn 2 (6.107b)
I(Y1,Ya; Y1, Y3|Up, Uy, Us) < Rpp,1 + Rena- (6.107c)

Applying again the Fourier-Motzkin elimination algorithm to constraints (6.106]) and
keeping constraints (6.107]), we obtain the desired result in Theorem with the addi-

tional constraint that
I(Uy; Us|Up) < I(Uy; Y1,Y1,V|Up) + (Uz; Y2,Y2,V|Up). (6.108)

Finally, this last constraint can be ignored because for any tuple (Uy, Uy, U, X, Y1, Y2, Y1, }72)
that violates (6.108]), the region defined by the constraints in Theorem is contained

in the time-sharing region.

6.D Appendix: Proof of Theorem (6.5

Let Rpp; > 0. Fix a tuple (UO(M),Ul(M)7 Q(M),X(M)) and rate pairs (REM),RgM)) and

(RgEnh),RgEnh)) € ngh as stated in the theorem. Then, by the assumptions in the
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theorem,
R < 1, o v™) (6.1092)
M < o™, UQ(M) ™) (6.109b)
™ 4+ M < 1™, U™, v ™) 4 1™y Moy
— 1™ yUO >), (6.109¢)

where Yl(M) and YQ(M) denote the outputs of the considered DMBC corresponding to
input XM, (Notice the strict inequality of the second constraint.)
By the definition of C(Eln)h we can identify random variables UéEnh) and X (Enh) guch

that

R(Enh) < I(U(Enh), 1(Enh)) (6.110a)
RgEnh) < I( X(Enh);Yl(Enh) (Enh) |U0Enh))7 (6.110b)

where Yl(Enh)

(Enh) )

and YQ(Enh) denote the outputs of the considered DMBC corresponding to
input X
Define further U, (Enh) =const., U, (Enh) _ ¥ (Enh) 171(Enh) = Yl(

a binary random variable ) independent of all previously defined random variables and

Enh)
" ), Y M =const, and

of pmf

— Enh
Polg) =4 " ¢="50 (6.111)
1—~, ¢g=M.

We show that when ~ is sufficiently small, then the random variables

Up:=U9, Uy =09, Uy := U@
X :=X@ and ¥; := V@ (6.112)

satisfy the feedback rate constraints (6.24) and the rate pair (R}, R}),

Ry = (1—~)RM 4 yRp{ED (6.113a)
Ry = (1—~7)RM 4+ R, (6.113b)
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satisfies the constraints in ((6.23) for the choice in (6.112f). The two imply that the rate
pair (R}, Rj) lies in Rgl)ay wp, and concludes our proof.

Notice that the pmf of the tuple Uy, Uy, Us, X, Y1, Ya, Y has the desired form

PQ Puy 010 Px 000102 Prava X Py v - (6.114)

where Py, y, x denotes the channel law.
For the described choice of random variables , the feedback-rate constraint
specializes to
yH (Y| B x By < Ry (6.115)

which is satisfied for all sufficiently small v € (0,1). Moreover, for this choice the
constraints in ([6.23)) specialize to

Ry < (1 =IO, M v™)
(U3 v By (6.116a)
Ry < (1= NI, U v™)
oy (£ (Bt y(F) (B gy (B ey (6.116b)
Ry + Ry < (1 =) (10, UM v™) + 10 v g™

—1s o))
_}_/y(I(UéEnh);Yi(Enh))+I(X(Enh);yl(Enh)7YQ(Enh)’UéEnh))) (6.116¢)
Ry + Ry < (1= ) (10 v o) + 1og™, ug™; vy
—1u™; g Ut

oy (1(X by () y (B (b (Enb)yy (6.116d)

We argue in the following that the rate pair (R; = R}, Rs = R)) defined in (6.113))
satisfies these constraints for all sufficiently small v > 0. Comparing (6.109al), (6.110aj),
and (6.113al), we see that the first constraint (6.116a)) is satisfied for any choice of

v € [0, 1]. Similarly, comparing (6.109¢|), (6.110al), (6.110b)), and (6.113al) and (6.113b)),
we note that also the third constraint (6.116¢) is satisfied for any v € [0,1]. The

second constraint (6.116b)) is satisfied when ~ is sufficiently small. This can be seen by
comparing (6.109b)), (6.110b)), and (6.113b|), and because constraint (6.109bf) holds with
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strict inequality. The last constraint (6.116d]) is not active in view of constraint ((6.116c))

whenever

yH (VPP < (10— ), (6.117)

where '™ is defined in (6.30). Thus, also this last constraint is satisfied when v is

sufficiently small. This concludes our proof.



Chapter 7

Conclusion and Outlook

In this dissertation we studied the usefulness of feedback in memoryless BCs and pro-
posed new ways of exploiting feedback to improve communication reliability or increase
the non-feedback capacity region.

We investigated the linear-feedback schemes with a message point (in the spirit of
Schalkwijk-Kailath coding scheme) for the K > 2-receiver memoryless Gaussian BCs
with only common message. We showed that this type of linear-feedback schemes,
even in the presence of perfect feedback, is strictly suboptimal, i.e. it fail to achieve
the capacity. Furthermore, as the number of receivers K increases, the largest rate
that is achievable this type scheme vanishes. In contrast, we presented an intermittent
coding scheme with rate-limited feedback which can achieve the capacity with a L-
th order exponential decay in the probability of error when the feedback rate satisfies
Rpy, > (L — 1)R.

we also studied the achievable regions for the two-receiver memoryless BCs with rate-
limited /noisy feedback. We proposed two types of coding schemes based on Marton’s
coding and block-Markov strategy. Our first type of scheme was shown to strictly
improve over the non-feedback capacity region for the class of strictly essentially less-
noisy BCs, for any positive feedback rate and even when there is only one-sided feedback
from the weaker receiver. This result even holds for some more capable BC, e.g. for
BSC/BEC-BC. Our second type of scheme can recover all previously known capacity and
DoF results for memoryless BCs with feedback when the feedback rates are sufficiently

large. When the feedback rates tend to infinity, our scheme improves over a special case
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of the Shayevitz-Wigger scheme.
In the following we discuss some related problems that are interesting to be investi-

gate in the future.

e Reliability on DMBC with general messages and feedback: In Chap-
ter ] we investigated the communication reliability on Gaussian BCs with feed-
back and common message only. We are also interested in how feedback improves
communication reliability for DMBC with general messages, including both pri-
vate messages and common messages.

e Outer bound on the capacity region of BC with feedback:
Previously, for general DMBC with feedback, only simple (and certainly weak)
outer bounds by Cover [139] and by Ozarow&Leung [62] were known, see also
in Section In the future, we would like to compare these two outer bounds
and derive a new better one. This will provide more insights on how far the
performances of our coding schemes or other coding schemes lie from the optimal
performance that can be achieved with feedback for BCs.

e Coding scheme for more general network: In Chapter [6] we have dealt
only two-receiver BCs with rate-limited (or noisy) feedback. Considering the case
of more than two receivers would be of interest. We also wish to extend our coding
schemes to more general network: discrete memoryless multi-message broadcast
network, in which there are multiple source nodes and each wishes to send more
than one message to multiple destination nodes. Such filed is interesting and

almost new at the moment.
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