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Modern systems are getting more complex due to the integration of several inter-

acting components with different technologies in order to offer more functionality

to the final user. The increasing complexity in these multi-disciplinary systems,

called mechatronic systems, requires new appropriate processes, tools and method-

ologies for their design, analysis and validation whilst remaining competitive with

regards to cost and time-to-market constraints.

The main objective of this thesis is to contribute to the integration of safety anal-

ysis in a SysML-based systems engineering approach in order to make it more

efficient and faster. To achieve this purpose, we tackled the following axes: for-

malizing a SysML-based design methodology that will be the support for safety

analyses; providing an extension of SysML in order to enable the integration of

specific needs for mechatronic systems modeling as well as safety concepts in the

system model; allowing the automated exploration of the SysML models in or-

der to extract necessary information to elaborate safety artifacts (such as FMEA

and FTA) and the semi-automated generation of the latters. We have also in-

tegrated formal verification to verify if the system behaviors satisfy some safety

requirements. The proposed methodology named SafeSysE was applied to case

studies from the aeronautics domain: EMA (Electro Mechanical Actuator) and

WBS (Wheel Brake System).
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Introduction

In nowadays world, we are surrounded by systems of different kinds and used for

different purposes. We use systems for household, transportation, communication,

work, machining, etc. They became a necessity for modern living. Ambitious and

always looking for more and better as we are, we require more and more services to

the systems around us. When using our cars, we need driving assistance to make

less effort, listening to radio or music for distraction, GPS guidance to reach our

destination, traffic information to avoid jam, and some projects are working on

autonomous driving to allow drivers to do anything they want during their journey,

except driving. Achieving a big number of functions by the same system requires

the integration of several components of different technologies that communicate

in a synergistic way in order to achieve the system missions. This results in an

increasing complexity in manufactured systems.

In addition to the increasing complexity, the current industrial context is charac-

terized with sharp competitiveness constraints. This leads to the integration of

new functionality and enhancing the performances of the designed systems and

consequently increasing the complexity even more. The competitive context also

imposes shortening time-to-market and reducing costs while delivering reliable and

efficient products.

With systems and technology also comes the exposure to mishaps as systems

can fail or perform improperly resulting in damage, injury, and deaths. Using

systems is not risk-less and implies to accept a certain exposure to risks. For

safety critical domains, rigorous standards and regulations specify the acceptable

risk level and impose precise constraints on the system design and verification

methods to validate the designed system. The non-respect of such standards leads

inevitably to unqualified systems that are not allowed to be used.
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Safety critical systems then require a rigorous validation of their behavior and

performances. The potential risks of such systems must be thoroughly identified

and guarded against during the development cycle to bring them to an accepted

level. The development of these systems is then challenging and requires adequate

systems engineering approaches as well as rigorous safety analysis techniques in

order to manage the complexity and satisfy performance and safety requirements.

Usually, safety analyses are very long to carry out and take an important part

of the whole development process. They also require a deep knowledge of the

technical and safety domains. Traditionally performed with separate tools, it’s

hard to maintain them consistent with the system model that continues to evolve

during these analyses. For a successful use, safety analysis techniques should be

integrated efficiently in the design process. This can only be done with the use

of adequate tools and methods to facilitate ensuring consistency between the two

domains.

Model-Based Systems Engineering (MBSE) approach seems a good candidate for

the design of safety critical complex systems. So, in this work, we first focused on

establishing an MBSE approach that will be the basis for the next steps. Our aim

is then to efficiently integrate safety analyses within the MBSE design approach in

order to bridge the gap between the two approaches by enhancing communication

and consistency.

A review of MBSE approaches reveals that, SysML, the OMG systems model-

ing language is being widely used to support these approaches. Indeed, SysML

allows to express the main concepts inherent to the different aspects of system

development. The language is used to build a system model used as a common

reference for all the domains. This model captures all the relevant information

and harmonizes the whole process.

In this work, we have analyzed the capability of SysML to express specific concepts

related to safety, and the way SysML models can be explored to provide relevant

information for safety analysis. We noticed that some concepts very useful for

complex systems modeling and for safety analysis are not explicitly supported in

SysML. We have also noticed the lack of well established MBSE approach based

on SysML. However, we believe that only a well established MBSE methodology

can successfully support other analyses like safety assessment.

To tackle these issues, this thesis is organized as follows.
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Chapter 1 introduces this work by presenting the state of the art about the main

concepts that are useful for this thesis. First, it defines the complexity and identi-

fies its causes to demonstrate the challenging aspect of designing complex systems

and thus highlight the need for systems engineering approach. Then, the chapter

presents the key concepts of systems engineering. The second part of the chapter

is dedicated to safety analysis. In this part, the main safety analysis techniques

are presented. Finally, the chapter gives a state of the art about the integration

of safety analyses within the systems engineering approaches.

Chapter 2 first presents the OMG languages UML and SysML respectively and

discusses their ability to model the concepts needed for this work. The extensibil-

ity mechanisms of these languages allow their extension to integrate new domain

specific concepts. In this work, we added some extensions to SysML to better

support safety analysis and also to add some concepts relevant to complex mecha-

tronic (multi-disciplinary) systems. A SysML safety profile and a mechatronic

extended modeling profile are then developed for this purpose. To better define

the way of integrating safety analysis in the whole MBSE process, we felt the need

to first establish a well defined design methodology. This feeling is even enforced

by the lack of SysML-based methodologies in the literature except some very soft-

ware oriented ones. A SysML-based methodology that constitutes the support

for the whole process is then presented in this chapter. Finally, the integrated

SafeSysE methodology is detailed. In this methodology, developments are done

to facilitate the extraction of relevant information and the automated generation

of some safety analysis artifacts. The next chapters give more detail about our

contribution for each artifact.

Chapter 3 deals with the Failure Mode and Effects Analysis (FMEA). It first

introduces the main concepts about FMEA. Then, it deals with the automated

generation of FMEA from SysML models. Two different types of FMEAs are

generated, the functional FMEA and the component FMEA. In the proposed pro-

cess, a preliminary FMEA is automatically generated by exploring the SysML

model and extracting the relevant information form it. The developed safety pro-

file allows the system engineer to annotate the system model with safety relevant

information like failure modes and their effects, probability of occurrence etc. The

generated FMEA is filled with all relevant information automatically extracted

from SysML model. Then, it is completed by the safety expert. The generation
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of the preliminary FMEA and the extraction of data from the system model auto-

mated in our approach is a long and error prone task if done manually. Once the

safety expert has completed the FMEA, the same process allows to feedback the

system model with the FMEA results and store them in the system model. This

allows to re-generate new FMEA when needed (when design changes occurred)

without losing the safety expert’s work. Consistency is also maintained between

these two artifacts since the generated component FMEA includes a reminder of

the functional FMEA results. The chapter then illustrates the approach with a

case study.

Chapter 4 deals with the Fault Tree Analysis (FTA) technique. First, it introduces

the main concepts about FTA. Then, our approach to automatically generate

fault trees from SysML models is presented. In this work, we present a pattern-

based approach, in which the tool explores the system internal structure given

in a SysML IDB and identifies relevant patterns. The patterns are identified

with respect to their interfaces (input and output ports) or via the attribution of

specific stereotypes from the developed safety profile to components. A partial

fault tree is generated for each pattern, and then all the generated sub-fault trees

are assembled to form the resultant fault tree. In this approach, two levels of

fault trees are generated. The first one is a generic fault tree that is based on

the system topology. This fault tree describes fault propagation throughout the

system. The second one is a specific fault tree dealing with a particular undesired

event. The specific fault tree explores the component FMEA to only include the

specific component failure modes leading to the undesired to event of the fault

tree. The consistency is again maintained with previous analysis results. Fault

trees cans be generated in two different formats. The fist one is graphic and is

used to help understanding fault propagation in qualitative analysis. The second

one is the Open-PSA format that allows performing further quantitative analyses.

Again, with the automated generation based on the system models, we contribute

to reducing error proneness and development time of safety analysis and thus of the

whole process. The chapter also presents a case study to illustrate the approach.

Chapter 5 introduces the use of formal methods for behavioral safety assessment. It

first gives on overview of the formal methods for safety analysis focusing on model

checking. Then, it presents an approach for automatically generating NuSMV pro-

grams from SysML models. This approach details the mapping between SysML

Fäıda MHENNI Safety Integration in a Systems Engineering Approach for Mechatronic System Design



Introduction 5

models and the NuSMV program and shows how to extract the relevant informa-

tion from the SysML model to automatically generate the different modules of the

NuSMV file. Model checking is then used to automatically verify safety require-

ments that are captured in temporal logic format. The use of formal methods

is very useful since it gives an automated verification of the specified properties

and also provides counter-examples when the properties do not hold. Integrating

behavioral safety analysis allows to have a comprehensive safety assessment deal-

ing with both compositional and dynamic aspects. The proposed approach is also

illustrated with a case-study.
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Chapter 1

State of the Art

1.1 Introduction

The complexity of systems is considerably growing; systems are getting larger,

more integrated, and involving a huge variety of components and technologies

[7]. Software components are more and more embedded for control purposes in

systems that already contain a diversity of other components of different domains

such as electronic devices, sensors, actuators and mechanical structure [7, 8]. Well

specified and adapted methods and tools are needed to manage the development

but also the validation of the design of such systems.

Several systems are considered safety critical, i.e., their malfunctioning and/or fail-

ure could lead to serious safety issues. The development of safety critical systems

requires to check that the system behaves safely not only in nominal situations,

but also under certain degraded situations [9]. Several safety analysis techniques

and methods are developed for this purpose and widely used in industry. Safety

analysis aims at enhancing the design and making the manufactured systems safer.

The integration of safety analyses during the design is then crucial [7].

The objective of this thesis is to contribute to the integration of safety analysis with

the systems engineering design process by introducing an integrated methodology.

This chapter introduces the basic concepts about the two main topics of this thesis:

systems engineering and safety analysis. Its aim is to provide the basic knowledge

necessary to understand the remaining parts of this work. It is organized as

follows. First, an overview of systems engineering with its common definitions and

7
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standards is given in section 1.2. Then, a summary about safety analysis is given

in section 1.3 including an overview of the most used safety analysis techniques

in section 1.3.1, and an introduction to safety standards in section 1.3.2. Related

work about the integration of Model-Based Systems Engineering (MBSE) and

Model-Based Safety Analysis (MBSA) is then given in section 1.4. Finally, the

chapter is concluded in section 1.5.

1.2 Systems Engineering

Systems engineering is a subject that attracts a lot of attention in the last years

and it is often seen as an emerging discipline [4]. Indeed, it is a trendy sub-

ject nowadays in terms of formalizing educational programs as well as industrial

projects. However, it’s not that recent in practice since without systems engineer-

ing we wouldn’t have had several systems like the pyramids or more recently, space

shuttles and aircraft that became part of our daily life. These systems have cer-

tainly been thoroughly planned and developed with a global view. In other terms,

they have been systems engineered, and the example of the pyramids shows that it

already existed long time ago. More recently, the technological progress in the end

of the 19th and the beginning of the 20th centuries lead to an industrial growth.

Consequently, manufactured systems are becoming progressively complex offering

more and more functionality. With this increasing complexity of engineered sys-

tems and the trend to have more and more large scale systems, deep thinking

about systems design and development led to concepts like systems engineering

and systems theory. Complexity overwhelms traditional approaches and new ap-

propriate approaches are needed to manage this complexity and keep designing

successful systems.

Since the key concept behind the application of systems engineering is complexity,

let’s first have a look at what is complexity, what are the causes behind increasing

complexity, how it affects design tasks and how to deal with it.

1.2.1 Complexity

There are several attempts to define complexity in several fields. A definition was

given to complexity by Nancy Leveson [10] highlighting the fact that complexity
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prevents the behavior of complex systems to be “ thoroughly planned, understood,

anticipated, and guarded against ” because of the presence of some unknowns in

predicting system behavior. Even though this definition was given from safety per-

spective, it is well suited for the other aspects of engineering. The critical factor

that differentiates complex systems from other systems is intellectual manageabil-

ity. Models are then needed to help in managing the complexity.

Complexity is also defined by the SAE-ARP-4754A [11] as “an attribute of func-

tions, systems or items, which makes their operation, failure modes, or failure

effects difficult to comprehend without the aid of analytic methods”.

Several factors can increase complexity of systems and thus make their operation

more difficult to comprehend like, for instance, the increasing number of compo-

nents and relationships, the interactions among system elements, particularly the

feedback loops but also the use of new and/or sophisticated technologies [10, 12].

When the interacting components are from different domains and exchange differ-

ent kinds of flows (discrete vs continuous, data vs object etc.), complexity is even

more increased.

The traditional approach to remedy the intellectual manageability due to com-

plexity is based on the “divide and conquer” principle. This approach consists

in breaking down the complex system into distinct sub-systems or parts of lower

complexity. The decomposition can be performed either on the structural aspect

or on the behavioral one [10]. In this approach, each sub-system or component is

designed and developed separately by domain specific engineers and all the com-

ponents are then assembled to form the system under study. This approach is

usually able to provide a solution to the problem. However, its main drawback

is that only local optimization can be achieved at the component level, but no

global optimization is performed at the system level. Unfortunately, the sum of

these local components does not lead necessarily to a global optimum at the up-

per (system) level. This approach is consequently unable to guarantee an optimal

solution.

Another drawback is that the decomposition, if not thoroughly performed, could

increase the complexity or lead to erroneous results. On the other hand, if done

adequately, the decomposition could help in finding a solution. However, the

decomposition is only possible under some conditions. Indeed, not all the systems

can be decomposed. Before proceeding to a decomposition, it is necessary to make
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sure that the results of the analyses performed on the components, independently

of the system, are not distorted by the extraction of the components from the

system context. This is true if the following assumptions are achieved [1]:

• The system does not contain feedback loops or non-linear interaction between

components;

• The components have the same behavior whether considered inside the sys-

tem or separately;

• The components assembly principles are simple enough so that the interac-

tions between the components can be considered separately from the behav-

ior of the latter.

As an attempt to determine when the decomposition is feasible, systems theory

has classified systems into several classes according to their degree of complexity.

There are three classes of systems: systems of organized simplicity, systems of

organized complexity and systems of non-organized complexity. Each of these

systems has a specific way to be dealt with [1].

Systems that can be decomposed easily, i.e., where the analytic reduction can be

applied are called of organized simplicity. This class contains systems whose

components can be isolated for analysis purposes without inducing errors in the

analysis results. This class is well suited for mechanical systems for instance.

Other systems are complex and cannot be decomposed to allow the analysis of

the components independently, but their behavior is regular and random enough

to allow studying them statistically. This class of complexity is called by systems

theoreticians non-organized complexity. Even though the systems of this class

are considered complex systems, their study remains simple since it can be dealt

with by statistic laws. In physics, this class is embodied in statistical mechanics.

The third class contains the systems of organized complexity. These systems

are too complex for being analyzed completely and too organized (do not have

random behavior) to be dealt with using statistics. This is the case for biological

and social systems for instance. It is also the case for a major part of the systems

conceived after second world war, mainly those with complex embedded software

[1].

Fäıda MHENNI Safety Integration in a Systems Engineering Approach for Mechatronic System Design



Chapter 1. State of the Art 11

Figure 1.1: Three Categories of Systems [1]

The introduction of several disciplines interacting with each other inside the same

system, and mainly the introduction of software and computer science lead to new

types of dependency and non-linear interactions between components. Conse-

quently, these systems cannot be decomposed and a systemic approach, consider-

ing the system as a whole, is compulsory. In the frame of this thesis we are mainly

interested in this class of systems, that are multidisciplinary non-decomposable

systems. We mainly focus on mechatronic systems that are within this class of

systems. The complexity of modeling the behavior of mechatronic systems is due

to the following two intertwined aspects [13]:

• The first aspect is the hybrid behavior modeling. As a consequence of their

multidisciplinary and synergistic aspect, mechatronic systems often exhibit

discrete behavior, time-continuous behavior, and hybrid behavior;

• The second aspect is the multiple domain integration: the various domains

involved are interconnected with their proper specific characteristics.

Moreover, the two aspects of complexity are not independent. The association of

hybrid behavior in various domains increases the complexity of behavioral mod-

eling. Therefore, a system level design which considers the multi-disciplinary (in-

cluding but not limited to mechanical, electrical/electronic and software) compo-

nents simultaneously is needed at the early stages of the development of complex
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mechatronic systems, hence the need for systems engineering approach.

1.2.2 Systems Engineering Definitions

This section aims at defining systems engineering to better identify its goals and

processes. Several definitions are given in the literature, and each definition high-

lights a particular aspect. Some of the most relevant definitions are given hereafter.

In the American military standard Mil-Std-499A, 1974 [14], systems engineering

is defined as:

“ The application of scientific and engineering efforts to (a) transform an oper-

ational need into a description of system performance parameters and a system

configuration through the use of an iterative process of definition, synthesis, anal-

ysis, design, test and evaluation; (b) integrate related technical parameters and

assure compatibility of all physical, functional and program interfaces in a man-

ner that optimizes the total system definition and design; (c) integrate reliability,

maintainability, safety, survivability (including Electronic Warfare considerations),

human and other such factors into the total technical engineering effort to meet

cost, schedule and technical performance objectives.”

In this definition, several key concepts appear such as iterative process, com-

patibility and the global aspect by the integration of a variety of factors like

reliability, safety, human, etc.

This definition has been updated in the next version of the standard, Mil-Std-499B,

1993, to include broader concepts and focus on the interdisciplinary aspect.

The definition of systems engineering becomes: “An interdisciplinary approach

encompassing the entire technical effort to evolve and verify an integrated and life-

cycle balanced set of system product and process solution that satisfy customer

needs. Systems engineering encompasses: (a) the development, manufacturing,

verification, development operations, support, disposal of, and user training for,

system products and processes; (b) the management of the system configuration;

(c) the translation of system definition into work breakdown structures; and (d)

development of information for management decision making.”
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Another definition of systems engineering given in [15] is “an iterative process

of top-down synthesis, development and operation of a real-world system that

satisfies, in a near optimal manner, the full range of requirements for the system”.

In this definition, the concept of requirements appears. Indeed, requirements

management is a major point in systems engineering since the objective of this

latter is the design and development of systems that satisfy a set of requirements.

A good definition and analysis of requirements is of paramount importance for

a successful system design. Requirements can be split into two major categories:

functional requirements and non functional requirements. Functional requirements

specify the different functions that the system must achieve. Non-functional re-

quirements include different classes like performance, regulation, safety require-

ments to only cite a few. Requirements evolve during the whole process. They are

progressively refined at different abstraction levels as system level requirements are

declined into component level requirements and so on. Requirements engineering

is a part of systems engineering that focuses on requirements management and

deals with requirements derivation, consistency, and traceability [16].

Systems engineering also considers the triad cost, schedule and technical perfor-

mance since the objective of all engineering projects is to provide a solution that

achieves the set of requirements cheaper, faster and better.

The main characteristic of systems engineering is that it tackles the whole life-cycle

of the system from the stakeholders need expression to the retirement or disposal

of the system.

For a successful design of complex systems, systems engineering approach is re-

quired [17]. Systems engineering approach relies on a set of processes, methods

and tools. A process is a logical sequence of tasks performed to achieve a partic-

ular objective. A process defines WHAT is to be done, without specifying HOW

each task is performed. A method consists of techniques for performing a task,

i.e. it defines the HOW of each task. A tool is an instrument that, when applied

to a particular method, can enhance the efficiency of the task. It gives an answer

to the question WITH WHAT. For an optimal result, it is necessary to formalize

the approach by the definition of appropriate processes, methods and tools.

To formalize the processes, different systems engineering standards have been de-

veloped. The next section gives an overview of the most widely used standards.
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1.2.3 Systems Engineering Processes - Standards

1.2.3.1 IEEE 1220

IEEE 1220 [18] focuses on the technical processes of systems engineering from

the requirements analysis to the definition of the physical system. The standard

describes in detail three main processes on which the systems engineering activities

rely:

• Requirements analysis;

• Functional analysis;

• Allocation and synthesis.

Each one of these processes is validated before going to the next process. The

standard also specifies the inputs and outputs of each process 1.2.

Figure 1.2: The IEEE 1220 Processes
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1.2.3.2 EIA 632

EIA 632 [19] covers a larger scope than the IEEE 1220 by supplementing the

system design processes with the contract (acquisition and supply) processes, the

technical management processes, the product implementation processes as well as

the technical evaluation processes. An overview of these processes and the way

they are related to each other is given in Figure 1.3.

Figure 1.3: The EIA 632 Processes

1.2.3.3 ISO/IEC 15288

The ISO/IEC 15288 standard covers a larger scope than the two previous ones

and tackles the whole system life-cycle processes [20]. It was inspired from the

ISO/CEI 12207–AFNOR Z 67-150 (Typology of software life-cycle processes). It

extends the technical processes to the whole system life-cycle, covering operations,

operational maintenance and disposal at the end-of-life processes. It also covers
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project processes, enterprise processes and agreement (acquisition and supply)

processes (Figure 1.4).

Figure 1.4: The ISO/IEC 15288 Processes

The three standards have the technical processes describing the system definition

in common but only the ISO/IEC 15388 covers the whole life-cycle of the system

(Figure 1.5).

A comparison between the different SE standards can be found in [21] and [20].

Figure 1.5: IEEE 1220, EIA 632 and ISO 15288 Standards
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1.3 Safety Analysis

1.3.1 Safety Analysis Techniques and Methods

Safety analysis techniques and methods have the objective to assess the system

safety during the design phase and ensure that the designed systems have satisfac-

tory safety level. Several techniques and methods exist and they can be classified

according to different criteria. For instance, they can be classified according to

the type of models they are constructed upon, to the type of elements they are

interested in (functions, components, etc.).

Safety analysis artifacts can be constructed from structural models as well as

from the dynamic behavioral models of the system. In the first case, the safety

analysis is qualified as compositional while in the second case they are qualified

as behavioral [22]. Compositional safety analyses are based on the composition

models of the system. They can be performed at the functional or component

level. They only consider the static aspect of the system. On the other hand,

behavioral safety analyses focus on the dynamic behavior of the system. For a

comprehensive safety analysis however, the behavioral (dynamic) aspect should

also be considered.

Safety analysis techniques can also be classified according to the life-cycle phase

they are performed in. Some techniques can be performed since the preliminary

design stages while others can only be performed in advanced stages when a de-

tailed design has already been defined.

Different safety analysis methods exist and are used for different purposes and at

different design stages. Among these methods we can cite Preliminary Hazard

Analysis (PHA), System Hazard Analysis, Fault Tree Analysis (FTA), Event Tree

Analysis, Failure Mode and Effects Analysis (FMEA), Functional Hazard Analysis

(FHA), Petri Net Analysis or Markov Analysis. Each hazard analysis technique is

a unique analysis methodology using specific guidelines and rules with an overall

objective of identifying hazards, mitigating them, and assessing system residual

risk. More detail about these hazard analysis techniques and methodologies can

be found in a book written by Ericson [23].
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To perform safety analyses, a number of interrelated analysis techniques and

methodologies are usually used in a complementary way. The two most tra-

ditionally used techniques are Failure Mode and Effects Analysis (FMEA) and

Fault Tree Analysis (FTA). FMEA aims to evaluate the effects of potential failure

modes of components or functions, and eliminate these potential risks in the sys-

tem design. FMEA is an inductive bottom-up safety analysis tool that identifies

the failure modes of system functions or components and then determines their

effects on the system level [23, 24]. Meanwhile, FTA, when used in a qualitative

approach, is a top-down deductive analytic method in which the analysis starts

from an undesired event called the top level event and then, the initiating primary

events such as component failures, human errors, and external events are traced

through Boolean logic gates to this top level event [23, 24]. FTA can also be used

in a quantitative analysis and in this case, the probability of the top level event

is evaluated based on the different probabilities of the leaf events of the fault tree

[24]. Both of these techniques are compositional analyses based on the topology

of the system and do not consider its dynamic behavior.

More detail about some of the techniques mentioned above is given in the next

sections. As our study is mainly based on FMEA, FTA and Model checking for

behavioral safety analysis, these techniques will be described in more detail in

chapters 3, 4 and 5 respectively.

1.3.1.1 Failure Mode and Effects Analysis (FMEA)

Failure Mode and Effects Analysis (FMEA) is one of the first systematic techniques

for failure analysis. It was elaborated in the 1950s by reliability engineers to study

the problems that could arise from the occurrence of malfunctions in military

systems. FMEA is considered as an inductive bottom-up tool for safety analysis

[23, 25]. It aims at evaluating the effects of potential failure modes of components

or functions on the system level, and then eliminating the identified potential

risks in the system design. To perform an FMEA, each element of the system

(function or component) is reviewed separately in order to identify its potential

failure modes. The causes and effects of each failure mode are then determined.

The FMEA is then presented as a table in which, for each function or component,

the different failure modes, their causes and effects on both local and system levels

are recorded. In an FMEA table, each line corresponds to an element and the
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columns represent a set of properties of the failure mode like the causes, effects,

etc. An example of FMEA table is given in Figure 1.6.

Figure 1.6: Example of FMEA

The list of columns is not unique and can be adapted by each enterprise to better

respond to its needs.

A more detailed version of the FMEA is the Failure Modes, Effects and Criticality

Analysis (FMECA). This version develops three factors: severity, showing how

serious the consequences of failures may be; occurrence, showing how frequently

failures occur; and detection, showing how easily failures can be detected. Then

the Risk Priority Number (RPN) is calculated by multiplying these three factors.

FMECA is then performed by addressing problems from the biggest RPN to the

smallest one [25].

1.3.1.2 Fault Tree Analysis (FTA)

Fault Tree Analysis (FTA) is a top-down deductive approach that aims to identify

the root causes of an undesired event. As a deductive approach, FTA starts with

a top-level undesired event, such as failure of a main engine, and then determines

(deduces) its causes using a systematic, backward-stepping process [26].

In determining the causes, a fault tree (FT) is constructed as a logical illustration

of how lower level events combine together to result in the upper level undesired

event. The events contributing to the undesired event include component failures

but may also include normal events if normal event combined with some failures

may lead to the top level undesired event. They constitute the leaves of the tree

and are linked together using logical operators. Different symbols are used to
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indicate the different type of events and the type of relationships involved. Events

are divided into several types: basic events, intermediate events, etc. Relationships

are represented by logical gates, mainly AND and OR gates but other operators

like Priority AND and Exclusive OR can also be used.

FTA allows both qualitative and quantitative analyses. Qualitative analysis is

performed in order to identify the necessary and sufficient combination(s) of basic

events that result in the occurrence of the undesired top event. These necessary

and sufficient combinations are called minimal cut sets. The identification of

minimal cut sets in a fault tree helps the designer to focus on the design weak

points.

Quantitative analysis is performed to calculate the probability of the top event.

The fault tree can also be quantified to provide useful information on the proba-

bility of the top event occurring and the importance of all the causes and events

modeled in the fault tree [26]. The probabilistic computation for the quantitative

analysis of fault trees can be performed by dedicated tools such as XFTA [27].

A fault tree can also be transformed into a success tree, the logical complement of

a fault tree. A success tree shows how the undesired event can be prevented from

occurring. The conditions provided in the success tree, if assured, guarantee that

the undesired event will not occur. The success tree is then a valuable tool that

provides equivalent information to the fault tree, but from a success viewpoint

[26].

1.3.1.3 HAZard and OPerability Analysis (HAZOP)

HAZOP is an inductive, structured and systematic qualitative risk assessment

tool [23]. It aims at identifying and analyzing potential hazards in a system as

well as the operability problems that are likely to happen. It is applicable either

for an existing or planned system or process and tackles the entire life-cycle of

the system, i.e. from concept phase to decommissioning. It assumes that risk

events are caused by deviations from design or operating intentions. The hazard

identification process consists in identifying the deviations by comparing system

parameters to a list of key guide words such as more, less, no, reverse, late and

so forth, that are combined with process/system conditions or parameters such

as speed, flow, pressure. Then, HAZOP analysis looks for hazards resulting from
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identified potential deviations in design operational intent and the team decides

whether the designed safeguards are satisfactory or additional actions are necessary

to reach an acceptable level of risk. A HAZOP analysis is performed by a team

of multidisciplinary experts in a brainstorming session under the leadership of a

HAZOP team leader.

This technique can be used for both preliminary and detailed design. Although

initially developed for the chemical process industry, the HAZOP analysis can

be applied to any type of system and equipment, with analysis coverage given

to subsystems, assemblies, components, software, procedures, environment, and

human errors.

The main drawback of this approach is that its success heavily relies on the ability

of the team in predicting deviations based on past experiences and general subject

matter expertise.

1.3.1.4 Reliability Block Diagrams (RBD)

A Reliability Block Diagram (RBD) [28, 29] is a diagrammatic success-oriented

method for describing a system with a focus on how the reliability of its compo-

nents contributes to the success or failure of the global system. RBD model has

been widely used due to its simplicity and is one of the most practical reliability

modeling tools. An RBD model consists of an input point, an output point, and

a set of blocks connected in parallel or in series between these two points. Each

block represents a physical component that functions normally. When a compo-

nent fails, the corresponding block is removed from the diagram. The whole system

is operational if there is at least one path between the input and output points.

When too many components are removed leading to interrupting the connection

between input and output points, then the system is no longer operational. An

example of RBD is given in Figure 1.7.

The main advantage of the RBD approach is its simplicity. Indeed, it can be easily

used and understood by engineers from different disciplines as well as by project

managers or any non-technical stakeholders. However, the main disadvantage of

RBD is that it is unable to “capture the dependent and dynamic behaviors of large

and complex system” [28].
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Figure 1.7: Example of RBD

1.3.1.5 Dynamic Reliability Block Diagrams (DRBD)

The rapid advances in computer-based technology allowed to embed more com-

plex, dependent, and dynamic behaviors in mission critical systems to achieve

more advanced functionality. As a consequence, reliability tools able to model

dynamic behavior are needed. As RBDs were widely used, but did not allow re-

liability modeling of dynamic systems behavior, there were attempts to extend

them. For this reason, a new reliability modeling tool called Dynamic Reliability

Block Diagrams (DRBD), derived from RBDs is introduced to model dynamic

relationships between system components [28, 30]. DRBDs are obtained by ex-

tending RBD with new constructs that allow the modeling of dynamic behavior

and dependency between the components behaviors. As an example, the State

Dependency (SDEP) bloc allows to model the dependency between spare compo-

nents (Activation, Deactivation and Failed). A new DRBD controller component

called SPARE (spare part) block is also defined to model the cold stand-by sparing

[28].

1.3.2 Safety Standards

1.3.2.1 ARP4754

The ARP 4754 standard [11] entitled “ Guidelines for Development of Civil Air-

craft and Systems” is a standard of the Society of Automotive Engineers (SAE). It

gives guidelines for the development of civil aircraft and systems with an emphasis

on safety aspects. It is intended to be used in conjunction with the ARP 4761 [12]

and is supported by other aviation standards like the DO-178.
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1.3.2.2 ARP4761

The ARP 4761 standard [12] entitled “Guidelines and Methods for Conducting

the Safety Assessment Process on Civil Airborne Systems and Equipment” is a

standard of the SAE.

It is intended to be used conjointly with the ARP 4754 standard and is suitable

only for airborne systems. This recommended practice defines a process using

common modeling techniques to assess the safety of a system. It gives an overview

on some safety analysis methods, then gives an example of application with a

fictitious aircraft braking system. The methods covered in this standard are:

• Functional Hazard Assessment (FHA)

• Preliminary System Safety Assessment (PSSA)

• System Safety Assessment (SSA)

• Fault Tree Analysis (FTA)

• Failure Mode and Effects Analysis (FMEA)

• Failure Modes and Effects Summary (FMES)

• Common Cause Analysis (CCA), consisting of:

– Zonal Safety Analysis (ZSA)

– Particular Risks Analysis (PRA)

– Common Mode Analysis (CMA)

1.3.2.3 IEC 61508 and derivatives

The IEC 61508 [31] entitled “Functional safety of electrical/electronic/programmable

electronic safety-related systems”. The introduction of software for control pur-

poses by the 1980s, introduced new sources of errors in the systems that the current

safety analysis techniques were unable to treat. Indeed, it is almost impossible to

prove that software is correct, and even if it faithfully responds to its specification,

the difficulty of getting the specification correct is also well known [32].

The IEC 61508 was developed to remedy to this situation. The standard is made

up of seven parts [32]:
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• Part 1 (General Requirements) defines the activities to be carried out at each

stage of the overall safety life-cycle, as well as the requirements for documen-

tation, conformance to the standard, management and safety assessment;

• Part 2 (Requirements for Electrical/ Electronic/ Programmable Electronic

(E/E/PE) Safety-Related Systems) and Part 3 (Software Requirements) in-

terpret the general requirements of Part 1 in the context of hardware and

software respectively. They are specific to phase 9 (E/E/PE safety related

systems realization) of the overall safety life-cycle.

• Part 4 (Definitions and Abbreviations) gives definitions of the terms used in

the standard;

• Part 5 (Examples of Methods for the Determination of Safety Integrity Lev-

els) gives risk-analysis examples and demonstrates the allocation of safety

integrity levels (SILs);

• Part 6 (Guidelines on the Application of Parts 2 and 3) offers guidance on

the application of Parts 2 and 3 as mentioned the title;

• Part 7 (Overview of Techniques and Measures) provides brief descriptions of

techniques used in safety and software engineering, as well as references to

sources of more detailed information about them.

1.4 Integration of Safety Analysis within Sys-

tems Engineering

1.4.1 Model-Based Systems Engineering (MBSE)

The first aim of systems engineering is to offer a help for the design and man-

agement of complex systems. As seen in section 1.2.1, the main characteristic

of complex systems is that their behavior cannot be “thoroughly planned, un-

derstood, anticipated, and guarded against” [10]. This makes the use of models

necessary during the design. Indeed, the traditional engineering processes used to

rely heavily on documents. The main drawback of document-based approaches

is that a major part of the effort is given to documents management rather than

engineering [33]. It is laborious and time-consuming to classify, update and find
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the needed documents. It’s also a challenge to manage the different versions of

a document and to make sure that everyone is working on the latest version. In

addition, text based approaches are inefficient at finding errors and stress points in

the design. They are not adequate for testing performance and comparing compet-

ing solutions [34]. Models are more easily explored and updated than documents.

They are more expressive to describe systems and more likely to be understood in

an unambiguous way than text-based descriptions. Simulating models also offers

an easier way to perform trade-offs and comparison between alternative designs.

Another major advantage of using models is that traceability between the different

views and between models of different levels of abstraction is easily established.

This emphasis pushed the systems engineers to prefer the use of models and led

to what we call Model-Based Systems Engineering or MBSE for short.

In MBSE approaches, different models are used to model the system (and its dif-

ferent parts). A model is an abstraction of the real system and only represents a

part of the system characteristics. This is well-expressed by the saying “All models

are wrong but some are useful” by George Box. However, the abstraction allows to

build lighter models that are easier to understand and less time-consuming during

simulation. According to the intended use of the model, only some characteristics

of the system such as timing, process behavior, or various performance measures

are of interest. The appropriate type of model that focuses on the subset of the

total system characteristics should then be selected [33]. This also helps manag-

ing the knowledge sharing and the management of intellectual property between

different companies that work together on the same product and/or project.

Generally, a system can be viewed through different perspectives: an external per-

spective showing the system context and its relationships with its environment, a

behavioral perspective showing the dynamic behavior of the system and the way

it responds to events, or a structural perspective showing the system architecture.

These perspectives were given by Sommerville in his book about software engi-

neering [35] but they also apply for any other kind of system. In a more recent

edition of his book [36], he also added the interaction perspective where the focus

is placed on the interactions between the system and its environment or between

the system components. Through these different perspectives, various models can

be developed during the design phase - for example: a data-flow model which

shows how data is transferred and processed at different stages; an architectural

model which shows the composing sub-systems and their interrelationships; or a
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stimulus/response model (also known as a state/transition model) which shows

how the system reacts to internal and external events [22]. Using models helps to

better manage complexity by separating different view points and different levels

of abstraction allowing to provide the exact amount of information to the appropri-

ate persons at the appropriate stage of the design. In addition, the use of models

instead of text drifts the effort from documents management to engineering tasks.

There are two general categories of models : representation models and simulation

models [33]. Simulation models have the advantage that they can be executed to

verify system properties.

In such Model-Based Systems Engineering (MBSE) approach, different modeling

tools and languages can be used according to the different domains involved in

the system, the level of detail, the system aspects to be modeled, etc. For in-

stance, we can use IBM Doors for requirements modeling; CATIA, ProEngineer,

etc. for Computer Aided Design (CAD); Modelica for complex physical systems;

VHDL-AMS for mixed signal systems and integrated circuits; Matlab Simulink for

dynamic systems, etc.

This thesis focuses primarily on conceptual models. In particular, we focus on

early design where initial requirements are defined and progressively refined and

where abstract functional models of the system are being produced - and traced

to the corresponding requirements - to describe functions, their dependencies and

abstract behavior. For these reasons, SysML, the systems modeling language is

chosen as a supports for system models.

SysML is a semi-formal modeling language adapted to systems engineering from

UML 2.0 that enhances the traditional top-down approach [34]. It is as considered

the most accomplished attempt to implementing MBSE to replace the text-based

approach. More detail about SysML semantics is given in Chapter 2.

1.4.2 Model-Based Safety Analysis (MBSA)

Several model-based safety analysis methods are developed to formalize the work

and automate some steps of safety analysis [37]. Most of these works are based on

formal methods and mainly model checking. The application of model checking
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in safety analysis has been studied in many researches [22, 38–41] for safety re-

quirements verification and/or automatic fault trees generation. Two different well

known tools can be used for model checking: FSAP/NuSMV-SA and AltaRica.

FSAP/NuSMV-SA [39] is an automated analysis tool that consists of two compo-

nents: FSAP (Formal Safety Analysis Platform), which provides a graphical user

interface, and NuSMV-SA, which is based on the NuSMV model checker as safety

analysis engine. The tool provides some predefined failure modes that can be in-

jected by safety engineers in the initial model of the system to create a so-called

extended system model. The safety requirements are expressed in temporal logic

and can be subsequently verified using the NuSMV model checking verification

engine. The model checker is used as a validation tool, or a powerful fault tree

analysis tool.

AltaRica [38, 42, 43] is a formal specification language that was designed to specify

the behavior of complex systems. The process takes system AltaRica models

(composed of nodes that are characterized by their reachable states, in and out

flows, events, transitions and assertions) as input and generates fault trees and

model checker verification results as output.

The recent work of Sharvia [22] dealt with the integration of the Compositional

Safety Analysis (CSA) and the Behavioral Safety Analysis (BSA). The first part is

carried out with HiP-HOPS (Hierarchically Performed Hazards Origin and Propa-

gation Studies), a safety analysis technique presented in [44]. In this part, system

failure models such as Fault Tree Analysis and Failure Mode and Effects Anal-

ysis are constructed by establishing how the local effects of component failures

combine as they propagate through the hierarchical structure of the system. CSA

gives preliminary information about state-automata that represent the transition

between normal and failure states of the system. Next, in the BSA, model check-

ing can be carried out on these behavioral models in order to verify automatically

the satisfaction of safety properties. So the CSA and BSA could be effectively

combined to benefit from the advantages of both approaches.

Joshi et al. in their report [40] presented a Model-Based Safety Analysis approach

in which the nominal (non-failure) system behavior captured in model-based de-

velopment using Simulink is augmented with the fault behavior of the system. In

their work, temporal logic is used to formalize informal safety requirements, and

the model checker NuSMV is used to validate these requirements.
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More detail about these works can be found in the related work of Chapter 5.

1.4.3 MBSE and MBSA Integration: Related Work

In this section a review of the related work about the integration of MBSE and

MBSA is given.

Laleau et al. in [45] tried to combine SysML requirement diagrams and the B for-

mal specification language. Since requirements in SysML are textual, the SysML

requirement models are firstly extended to represent some concepts in the goal-

oriented requirement engineering approach, such as expectation, elementary or

abstract goal for requirement classes and milestone, and/or refinement for rela-

tionship between requirements. Then, derivation rules are proposed to translate

the SysML goal models into B specifications. By doing so, a more precise seman-

tics of SysML goal models is given, narrowing the gap between the requirement

phase and the formal specification.

Also regarding requirements, Dubois [46] proposed to directly include system re-

quirements in the design process but the separation with the proposed solutions as

required by safety standards is achieved by isolating the following triplet: require-

ment models, solution models and validation and verification models. A SysML

profile respecting safety standards called RPM (Requirement Profile for MeM-

VaTEX) has been developed. The requirement stereotype of SysML is replaced

by the MeMVaTEX requirement, by adding various properties such as verifiable,

verification type, derived from, satisfied by, refined by, traced to, etc. So, the

traceability is assured between requirement models, between requirement and so-

lution models, and between requirement and Verification and Validation models

by using these properties. These V&V models have also been exploited in the

thesis of Guillerm [16].

Another approach to integrate SysML and safety analysis is the use of the common

modeling Eclipse framework. Thomas and Belmonte in [47] give an example with

the independent tool called “Obeo Designer” that provides several viewpoints to

model the different aspects of the system. A Safety Viewpoint is also provided

to implement classical risk analyses. The interoperability of this modeling tool

and the SysML model is achieved through the Eclipse Modeling Framework. To

make the integration possible, the authors used the open source SysML Topcased
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editor. Safety elements can reference SysML model elements since they are both

expressed in the same framework. Furthermore, the Topcased GenDoc plugin

can also be used to generate safety documentation from the two models. In this

approach, SysML is not extended with a safety profile. In a more recent work

[48], a translation from Obeo Designer’s Domain Specific Language for FMEA

(Failure Mode and Effects Analysis) and PHA (Preliminary Hazard Analysis) into

AltaRica is added to enable formal verification. However, no real system has been

studied yet in order to prove the scalability of the method.

David et al. [49, 50] worked on the generation of an FMEA report from system

functional behaviors written in SysML models, and on the construction of dys-

functional models by using the AltaRica language in order to compute reliability

indicators. In their methodology called MéDISIS, they start with the automatic

computation of a preliminary FMEA. The structural diagrams, namely Block Def-

inition Diagram (BDD) and Internal Block Diagram (IBD), and the behavioral

diagrams such as Sequence Diagram (SD) and Activity Diagram (AD) are ana-

lyzed in detail to give an exhaustive list of failure modes for each component and

each function, with their possible causes and effects. Then the final FMEA report

is created with help from experts in the safety domain. To facilitate a deductive

and iterative method like MéDISIS, a database of dysfunctional behaviors is kept

updated in order to rapidly identify failure modes in different analysis phases. The

next step of their work is the mapping between SysML models and AltaRica data

flow language, so that existing tools to quantify reliability indicators such as the

global failure rate, the mean time to failure, etc. can be used directly on the failure

modes identified in the previous step.

Philipp Helle in [37] presents an integration process of MBSA in a SysML-based

MBSE. In this work, an extension os SysML allows to include safety related in-

formation into the system model allowing the systems engineer to take some light

decisions without the help of safety expert. A Java program, called Safety An-

alyzer, is also implemented that retrieves the system model to extract relevant

information. The Safety Analyzer can then provide, as outputs, the minimal cut-

set for each failure case and system alternative as well as RBD representing this

cut-set.

Garro et al. [51] developed RAMSAS, a model-based method for system reliability

analysis that combines SysML and the Simulink tool allowing the verification of
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reliability performance of the system through simulation. A formal verification

method was not used in this research for safety assessment.

Among these works, only some of them are interested in the integration of safety

analyses within a SysML-based process which is the objective of this work. Among

works dealing with SysML, few of them addressed the whole process. Laleau [45],

Dubois [46], and Guillerm [16] mainly focused on requirements.

David [50] presented a more complete approach integrating the automated gener-

ation of safety artifacts. This work requires accessing to an external data base to

import dysfunctional behavior. The generation of fault trees also requires the use

of an external language: AltaRica.

In our work, the safety artifacts are extracted directly from SysML system models.

In this way, we reduce the model-to-model transformations and thus the possibility

of data losses during successive transformations. In addition, we update the system

model with the results of safety analyses. In this work we also address behavioral

safety analysis with model checking.

1.5 Conclusion

This chapter is an introductory chapter to this thesis. It quickly introduced the

main concepts that will be tackled in this work. First, it highlighted how chal-

lenging is the design of nowadays multidisciplinary complex systems. Then, it

showed the need of well established and adequate processes, methods and tools

for the design and validation of complex systems. Systems engineering, and more

precisely MBSE is considered as the new paradigm for complex systems design.

The chapter also reviewed the main definitions and standards relevant to systems

engineering and MBSE that will be the basis of our work.

From another viewpoint, the complexity of these systems makes the assessment of

their safety also challenging. Several techniques, methods and standards exist for

safety assessment and analysis and the most important ones are discussed in this

chapter. These analyses however, are usually performed with independent tools

and models separately from systems engineering processes. This results in errors

and delays in the whole design process since it is hard to maintain safety analyses

consistent with system design.
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To ensure consistency and shorten time allocated to system development and safety

analyses, there is a need to integrate MBSE and MBSA. Several works have already

tackled this issue and are discussed in this chapter.
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Chapter 2

SafeSysE: A Safety Analysis

Integration In Systems

Engineering Approach

2.1 Introduction

As highlighted in the previous chapter, nowadays man-made systems are getting

more complex, and involving an increasing number of components from different

disciplines (mechanical, hydraulic, electronic, electrical, software, etc.) that are

interacting together in a synergistic way and exchanging different types of flows.

The high dependence between the components makes the traditional approach of

splitting the design into different domains inadequate. Instead, there is a need for

the designers from different domains to collaborate together around a system model

in order to make sure that the specific constraints of all the domains are accounted

for. For this purpose, an MBSE approach is required in order to manage the

complexity, enhance consistency and allow modeling and simulation of the whole

system. As the different collaborators will work on the same model, a unified

language is needed. Building a system-level model, in a unified and unambiguous

language, is a key point for a successful mechatronic design. System-level model

is the reference each contributor should refer to during the system design, at

anytime, to have unique, up-to-date data that is shared by everyone. However, it

is necessary that everybody can easily find the information needed. Then, a multi-

view model with different representations of the main system is necessary. These
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different views shall be linked together with traceability links and be consistent

with each other. SysML, the semi-formal systems modeling language, aims at

providing a unified standard for “specifying, analyzing, designing, and verifying

complex systems that may include hardware, software, information, personnel,

procedures, and facilities” [3]. It also allows a multi-view model and building

traceability links. This relatively recent language is already widely used in both

industrial and academic worlds like in [7, 37, 52–54] to cite only few works. For

all these reasons, SysML is chosen as a support for system modeling in the early

design stages in this work.

Number of systems are safety critical. Safety critical systems are subject to very

precise requirements on their performance, as well as their dependability, safety,

correctness, etc. [7]. Several safety analysis techniques are established in order to

assess and manage the potential risks arising from failures or malfunctions. These

analyses however, are based on independent tools and performed separately by

safety engineers. The extraction of information from the system model is usu-

ally done manually. As a consequence, these analyses are error-prone and time-

consuming. During safety analysis, the design usually continues to evolve and

thus, safety studies are done for obsolete versions of the design model. Ensuring

consistency between safety analyses and system design is thus a very hard task. To

be efficient and correctly exploited by the system designers, safety analyses must

be performed since the early design stages to influence the design choices without

having recourse to late and costly changes. They should also be done rapidly

enough to keep consistent with design, and, of course, should be error-less. To re-

spond to these requirements, safety analyses should be integrated into the design

process. To reduce error-proneness and development time, an automated gener-

ation of safety artifacts via model-to-model transformation approach is needed.

The system model should then be extended to include relevant information about

safety. For this purpose, new profiles are developed to extend SysML semantics.

In this chapter, we propose a methodology of Safety integration in Systems

Engineering approach named SafeSysE. This methodology, we believe, contributes

to solving the problems mentioned above. Based on a SysML system model, the

methodology provides a common reference system model to all the contributors

that takes into account the constraints of all the domains. It is noteworthy how-

ever, that this is a high level model useful at the early design stages and it shall

be complemented by domain specific models at lower detail levels. The use of a
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common abstract level is useful to provide preliminary design parameters of the

different components while taking into account the whole system properties. Based

on this model, the methodology developed in this work automates some steps of the

safety artifacts generation via automated model exploration and model-to-model

transformation. This helps to reduce both development time and error-proneness.

This chapter is organized as follows. Before detailing the methodology, the chapter

first presents the semantics of UML and SysML and demonstrates the adequacy

of SysML as a modeling language for systems engineering projects in section 2.2.

Then, the developed safety and mechatronic extended modeling profiles are pre-

sented respectively in sections 2.3 and 2.4. Next, the SysML-based systems en-

gineering methodology that will be the support for the integrated process is pre-

sented 2.5. Our integrated approach, SafeSysE is presented in section 2.6. Finally,

the chapter is concluded in section 2.7.

2.2 SysML, a UML Profile

As software programs became larger and more complex, there was a need to design

them in a way that enables scalability, security, and robust execution under stress-

ful conditions. There was also a need to structure them in a way that facilitates

their maintenance and reuse. UML was developed by the Object Management

Group (OMG) to help specifying, visualizing, and documenting models of soft-

ware systems, including their structure and design, in a way that meets all of

these requirements [55]. Since its creation, UML was rapidly adopted in software

engineering and became the de facto standard software modeling language. It was

recognized to contribute to the success of several projects. Even though it was ini-

tially set up for software engineering, UML was flexible for modeling multifaceted

systems and was also used for systems engineering [7]. Despite its successful use

for some systems engineering projects, UML is still weakly accepted by systems

engineers due to its overly software-oriented semantics [7]. It also lacks some im-

portant concepts for systems modeling, namely the representation of continuous

flows to model physical flows (material, energy or information) exchanged within

the components. It also provides no real management of requirements during the

design process. This led the OMG to create a new language, more adapted for

systems engineering while keeping the benefits of UML. This language is the OMG

Systems Modeling Language named SysML.
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The first SysML specification was voted and adopted by the OMG in July 2006.

Since that time, several tools implemented the new language and the use of SysML

is growing.

Like UML, SysML shows the ability to model large systems. It also offers a

common language for systems engineers to replace the wide range of modeling

languages and techniques currently used to model complex systems [7] like EFFBD,

Composable Objects (COB), APTE, etc.

The following subsections will deal with the semantics of UML and SysML and

discuss the adequacy and limitations of each language for systems modeling.

2.2.1 The Unified Modeling Language (UML)

The Unified Modeling Language (UML) [5] is a general-purpose graphical modeling

language used to specify, visualize, construct, and document the artifacts of a

software system. Although initially set up for software engineering, UML can be

used for several application domains. It is used to understand, design, browse,

configure, maintain, and control information about systems during their design

and captures decisions and understanding about such systems [56]. It is intended

to support all development methods and life-cycle stages. The main objective of

UML is to unify past experience about modeling techniques and to incorporate the

best practices of software engineering into a standard approach [56]. UML includes

semantic concepts, notation, and guidelines. “It offers rich modeling capabilities

with static, dynamic, environmental, and organizational parts. It is intended to

be supported by interactive visual modeling tools that have code generators and

report writers. The UML specification does not define a standard process but

is intended to be useful with an iterative development process. It is intended to

support most existing object-oriented development processes”.[56].

UML is an object-oriented language, i.e. it is based on the concepts of object,

class, inheritance and extensibility [34]. It supports multiple views with varying

levels of abstraction. The ability to support multiple levels of abstraction is crucial

for systems and software engineering since it enables top-down development with

progressive refinement from the need expression to the solution definition.
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An object is a basic building block able to receive and send messages as well as

processing data. It can be either a component or an actor. A class, in object-

oriented terminology, stands for a grouping of related variables or functions. It

is one of the key concepts for supporting multiple levels of abstraction. Different

instances of the same class can be created, each instance having specific values

of class parameters. This process known as inheritance (and also generalization)

promotes reuse.

The vocabulary of the UML encompasses three kinds of building blocks [57]:

things, relationships and diagrams.

2.2.1.1 Things in UML

“Things are the abstractions that are first-class citizens in a model; relationships

tie these things together; diagrams group interesting collections of things” [57].

There are four kinds of Things in UML :

• Structural things are the mostly static parts of a model, representing ele-

ments that are either conceptual or physical. The basic structural things are

class, interface, collaboration, use case, active classes, components, node;

• Behavioral things are the dynamic parts of UML models. The basic behav-

ioral things are interactions and state machines;

• Grouping things are the organizational parts of UML models. Packages are

the basic grouping things;

• Annotational things are the explanatory parts of UML models.

2.2.1.2 Relationships in UML

Relationships are the basic relational building blocks of UML. They are used to

specify relationships between things in models.

There are four relationships : Dependency, Association, Generalization, Realiza-

tion.
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• Dependency: a dependency is a semantic relationship between two things

which means that a change to one thing (the independent thing) may affect

the semantics of the other thing (the dependent thing). Graphically, a de-

pendency is represented by a dashed line that can be directed and may also

include a label.

• Association: an association is a structural relationship that describes a set of

links i.e., connections among objects. Aggregation is a special kind of asso-

ciation, representing a structural relationship between a whole and its parts.

Graphically, an association is rendered as a solid line, possibly directed. It

occasionally includes adornments such as label, multiplicity, and role names.

• Generalization: a generalization expresses a specialization/generalization re-

lationship in which objects of the specialized element (the child) are substi-

tutable for objects of the generalized element (the parent). Graphically, a

generalization relationship is rendered as a solid line with a hollow arrow

head pointing to the parent.

• Realization: a realization is a semantic relationship between classifiers. Graph-

ically, a realization relationship is rendered as a cross between a generaliza-

tion and a dependency relationship.

There are also variations on these relationships, such as refinement, trace, include,

and extend.

2.2.1.3 Diagrams in UML

A diagram is the graphical presentation of a set of the model elements, rendered

as a connected graph of vertices (things) and arcs (relationships). Diagrams are

drawn to visualize a system from different perspectives. A diagram is a repre-

sentation of a particular view of the elements that make up a system and their

relationships. The same element may appear in all diagrams, only in a few dia-

grams (the most common case), or in no diagrams at all. In theory, a diagram

may contain any combination of things and relationships. In practice, however, a

small number of common combinations arise, which are consistent with the five

most useful views that comprise the architecture of a software intensive system

[57]. UML specification defines two major kinds of diagrams : structure diagrams

and behavior diagrams. UML diagrams are represented in Figure 2.1.
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Figure 2.1: UML Diagrams [2]

2.2.2 UML Extension Mechanisms

As seen in the previous section, UML has core concepts that cover common case

applications but may be not very accurate for some specific domains. There are

two reasons for this. The first one is that trying to be exhaustive will lead to a

very complicated language and it will be very hard to master all the concepts.

The second reason is that there is such a variety of domains that it is practically

impossible to build a comprehensive language covering all the existing domains.

To cope with this limitation, extension mechanisms are used to add new concepts

and notations. Extensions are intended for particular application domains or pro-

gramming environments. They can be obtained by adding new constraints, tagged

values, and stereotypes to build new profiles. As a generic UML extension mecha-

nism, a profile is a collection of stereotypes, stereotype attributes and constraints

applied to specific UML modeling elements (classes, activities, attributes, etc.) in

order to customize UML for specific domains and platforms. For this purpose,
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UML vocabulary is extended by adding stereotypes to create new domain-specific

modeling elements derived from generic UML ones. Several profiles are derived

by the OMG from UML like SysML (Systems Modeling Language) [3], MARTE

(Modeling and Analysis of Real-time and Embedded systems) [58], and UPDM

(Unified profile for DoDAF/MODAF) adapted for systems modeling, real time

modeling and supporting DoDAF/MODAF architecture frameworks respectively.

Another profile adapted for mechatronic systems modeling was also created and

labeled Mechatronic UML. These profiles are created to respond to specific mod-

eling needs not achievable in UML.

MARTE is the UML 2.0 OMG standard for Real-Time Embedded systems mod-

eling and Analysis (RTEA). It replaces the former UML SPTP profile for Schedu-

lability, Performance and Time Specification. It deals with both software and

hardware aspects and provides non-functional property modeling such as perfor-

mance and scheduling. It also adds time features, defines concepts for software

and hardware platform modeling, and provides quantitative analysis [59].

MARTE was efficiently used in several industrial projects from different domains.

Three examples of industrial use of MARTE in Real Time Embedded Systems

(RTES) design are described in [60]. The first one deals with architectural mod-

eling and configuration, applied to integrated control systems (ICSs) which are

heterogeneous systems-of-systems. In these systems, software and hardware com-

ponents are integrated to control and monitor physical devices and processes, such

as process plants or oil and gas production platforms. The use of MARTE was

mainly for capturing software and hardware components interactions, enhancing

consistency between software and hardware modeling and, finally, enabling auto-

mated configuration and configuration reuse.

The second experience deals with model-based robustness testing, using also stereo-

types from Robustprofile from Simula Research Laboratory [61]. The project

aimed at supporting automated, model-based robustness testing of a video con-

ferencing system from CISCO Systems Inc.

The last experience deals with Testing RTES using MARTE environment models

on a large and complex seismic acquisition system with tens of thousands of sen-

sors and actuators in its marine environment. Models were used to generate an

environment simulator, test cases, and obtain test oracles.
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MARTE is also a UML profile for AADL (Architecture Analysis and Design Lan-

guage), a Domain-Specific Language (DSL) that deals with the hardware platform

and the physical environment of intensive embedded software systems. It can be

used to model application tasks and communication architectures, thus allowing

modeling and analysis of coupled software and hardware RTES aspects.

Mechatronic UML is a specific profile for mechatronic systems. It is derived from

the safety-critical software development domain with the main objective of bring-

ing model-based design, domain testing and simulation, and formal analysis to the

mechatronics area [62]. The aim behind this is to guarantee highly safety-critical

system properties. The profile restricts the usage of UML to certain types of di-

agrams and extends these diagrams to be able to model hybrid and self-adaptive

systems. The use of formal semantics to model the components allows formal

analysis. This profile aims at being more efficient than approaches such as SysML

that does not adequately support modeling of time, and MARTE that does not

provide the needed architectural abstraction for hardware [62].

The fourth profile is UPDM (Unified Profile for DoDAF/MODAF) [63]. DoDAF

(Department of Defense Architecture Framework, US), MODAF (Ministry of De-

fense Architecture Framework, UK) and NAF (NATO Architecture Framework)

use this profile to define architecture frameworks that are domain specific and

define practices for creating, interpreting, analyzing and using architecture de-

scriptions, as described in ISO/IEC/IEEE 42010 [64].

2.2.2.1 Limitation of UML for Systems Modeling

UML was firstly used for software development and consequently it has overly

software-oriented semantics. This results in a week acceptance by systems engi-

neers unfamiliar (and even having some fair/hostility) with object oriented terms

and concepts like class, inheritance, etc. However, this is not the only obstacle

for using UML in systems engineering. Since, in software engineering, behav-

ior is mainly discrete, UML lacks of constructs for continuous behavior. It does

not explicitly support modeling continuous functions and flows and does not offer

any clear expression of physical flows of energy, material and information passing

between the system components. Consequently, it is not fully appropriate for com-

plex multi-disciplinary systems design. It’s more appropriate for software intensive

systems. This was a major obstacle for persons who tried to use UML for systems
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modeling as reported in [7]. Managing some system aspects like continuous flows

needed proper stereotypes to be developed which is opposite to one of the most

important reasons for UML: unification and standardization of modeling. There

will be as many different ways to model continuous flows and functions as the

number of persons trying to build such models. This also prevents the reuse of

such models with commercial tools.

These lacks led the OMG (Object Management Group) to derive a new profile

specified for systems engineering, the SysML language. It was constructed as a

subset of UML, completed by additional modeling possibilities specific for systems

engineering.

Some of these diagrams are integrated in SysML without any change (package,

state machine, use case, and sequence diagrams), some others are modified (class

diagram, activity diagram and composite structure diagram) and the remaining

diagrams were suppressed because considered irrelevant for systems modeling.

2.2.3 SysML, the Systems Modeling Language

SysML is a profile of UML dedicated to systems engineering [3, 65]. It has been

built to bring together the successful tools and methods used in engineering into

a unique and standardized language. It is based on the experience and lessons

gathered from the use of UML 2.0 and includes successful engineering graphical

representations such as Enhanced Functional Flow Block Diagram (EFFBD) [66].

Like UML, SysML is a semi-formal modeling language. Semi-formal languages are

usually based on graphical modeling with a more or less accurate semantics, i.e.

they can have elements of ambiguity [67]. At the opposite to formal languages,

semi-formal languages are polysemic which means that an element can have more

than one meaning. This makes them subject to fierce criticizes from mathemati-

cians and formal modeling lovers. This property however, makes semi-formal

languages more flexible and easier to use, especially at a high level of abstraction.

Indeed, “starting the study of a complex system using formal models appears to

be hardly achievable in practice” [68]. The use of semi-formal language, mainly

if they are based on graphical formalism, makes the models easier to explain and

understandable by all the persons involved may they be domain engineers or com-

mercial and management decision makers. This justifies the use of languages such
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as SysML to cover the first phases of specification using a graphical modeling that

promotes the knowledge sharing between the involved engineers.

SysML is designed to provide simple but powerful constructs to model a wide

range of systems engineering problems [3]. For a better acceptance by systems

engineers, object-oriented vocabulary was hidden in SysML and replaced by gen-

eral vocabulary. Still in the same perspective, some concepts entirely dedicated

to software engineering were removed. Consequently, only some UML diagrams

are part of SysML. On the other hand, and to cope with the limitations of UML,

new concepts that are crucial for systems engineering were added. SysML is then

constructed as a subset of UML 2.0 complemented by additional concepts offer-

ing more modeling possibilities [7]. As a result, SysML is particularly effective in

specifying requirements, structure, behavior, allocations, and constraints on sys-

tem properties to support engineering analysis [3]. It has inherited UML abilities,

notably the advantages of object-oriented methods for complex system design and

of its standardized aspect. This new profile, SysML, helps performing several

design tasks such as reliability study [7], complex and embedded systems model-

ing [69] etc. It is also more and more adopted by industrialists such as Valeo, a

supplier of automobile systems [54, 70] and Airbus, a designer and integrator of

aeronautic systems [71] to cite only a few examples of SysML deployment.

In this section, SysML semantics are detailed. SysML contains nine diagrams

instead of thirteen diagrams in UML. The nine diagrams are partitioned into 3

categories : Requirement Diagram, Behavior Diagrams and Structure Diagrams.

Figure 2.2 shows the different diagrams in SysML.

Figure 2.2: SysML Diagrams [3]
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The next sections deal with the three categories of diagrams respectively.

2.2.3.1 Requirements Modeling with SysML

Requirement managing includes requirements capture, requirements analysis (defin-

ing critical requirements, making trade-offs between conflicting requirements, etc.)

and finally allocation (allocating requirements to use cases, components, test cases,

etc.).

In UML, requirements are mainly modeled with use cases. However, even if use

cases are adequate to model functional requirements, they are not able to model

non-functional requirements [72]. In systems engineering, there are several non-

functional requirements such as reliability, performance, regulation and so on.

SysML integrated new constructs to model requirements. A requirement stereo-

type, which is a class stereotype including an open list of properties (that are

attributes of the stereotype), is created. The elementary properties of a require-

ment are the text definition and the id which are both strings. The text definition

describes the requirement that has to be met by the system in natural language.

In some cases, it may also include a reference to external source like a regula-

tory standard. Other properties like source, priority, verification, etc. can be

added to the requirement via the extension mechanism. In the same way, require-

ments categories such as functional requirements, interface requirements or safety

requirements, etc. can be introduced [68, 72].

Several relationships are also defined to trace the requirements together or with

other model elements 2.3.

• Namespace Containment

The namespace containment (it can also be referred to as composition)

describes the fact that a requirement is contained in another requirement

[72]. It helps structuring the requirements and means that the composed (or

master) requirement is realized if and only if all the component requirements

(or sub-requirements) are realized.

• Derive Requirement Relationship

A derive requirement relationship describes that a requirement is derived

from another requirement [72]. Requirements derivation usually results from
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Figure 2.3: Partial Meta-Model of the Requirements Diagram [4]

an analysis of the source requirement. For example, a business requirement

can result in one or more technical requirements. The derive relationship is

only allowed between requirements.

• Satisfy Relationship

The satisfy relationship describes that a design element satisfies (or realizes)

a requirement. This helps evaluating the impact of the design changes on the

requirements and vice-versa. A requirement can be satisfied by several design

elements. In this case, the satisfy relationship does not specify if the design

element fully or partially satisfies the requirement [72]. This information can

be added by a comment or note in the model.

• Copy Relationship

The copy relationship connects a requirement with another requirement and

describes the fact that a requirement is a copy of another. This enables the

reuse of the same requirement in different contexts. In this case, the copy

is maintained consistent with the original requirement, i.e. the id and the

name may be different but the text description is write-protected in the copy

and automatically updated to be identical to the original requirement if it

is modified [72].

• Verify Relationship
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The verify relationship connects a requirement with the test case that is

used to verify it [72]. Together with the test case stereotype, the verify

relationship allows specifying how the requirements have to be verified early

in the design. This avoids misunderstanding or bad interpretation of the

requirements by the persons who, later, will verify the requirements. As for

the satisfy relationship, the verify does not specify the completeness of the

test case with regard to the requirement and a comment can be used to add

this information [72].

• Refine Relationship

The refine relationship specifies that a model element describes the proper-

ties of a requirement in more detail [72]. Sometimes, the text of the require-

ment is not sufficient for describing the requirement in detail. In this case,

the requirement can be refined by other model elements (eg. a use case to

refine a requirement).

• Trace Relationship

The trace relationship describes a general relation of traceability between

a requirement and another model element [72]. The aim of this relationship

is to specify a traceability between the two elements without specifying the

reason of it.

Requirements and their relationships can be presented in a graphical form within

Requirement diagrams. This is meaningful when the purpose is to focus on a

particular set of requirements and their relationships. When viewing a large num-

ber of requirements on a requirement diagram however, it is very hard to depict

and relate requirements. It is not practical to visualize the several hundreds or

thousands of requirements that a project can have in graphical form. SysML also

offers a table notation to represent the requirements in a more visible way. The

requirement tables are adaptable and offer the possibility to focus on particular

aspect by choosing the requirement properties to visualize (id, text, relationships

like satisfaction, derivation etc) as well as the analyzed packages of the model.
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2.2.3.2 Structure modeling with SysML

SysML provides four structural diagrams: the Block Definition Diagram (BDD),

the Internal Block Diagram (IBD), the Parametric diagram (Par) and the Package

diagram (Pkg).

Block Definition Diagram (BDD)

A Block is the basic structural element in SysML, and corresponds to a class in

UML.

Blocks describe a system as a collection of parts, each of which plays a specific

role in a particular context. They describe parts of the structure of a system [72].

A block can be either a logical or a physical unit. Blocks can also reference other

blocks they are bound with (association). The attributes of a block provide infor-

mation about the block itself. Quantifiable properties of a block are described by

the block value properties. This is very useful to define the parameters (perfor-

mance, reliability, etc) of the system and the components.

As a result, a block has three main properties that are respectively part property,

reference property and value property.

Figure 2.4: Meta-model of the Block Definition Diagram (BDD) [4]
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In addition to the purely static structure, a block can also describe the behavior it

executes with operations [72]. Figure 2.4 represents the meta-model of the Block

Definition Diagram.

Internal Block Diagram (IBD)

An internal block diagram is a modification of the UML composite structure dia-

gram. It describes the internal structure of a block by representing the interfaces

and connections between parts of a block. It shows how the block properties (parts

and references) are interconnected. In addition to the internal exchanges among

components, it also represents the exchanges of the block with its environment

(contributing systems and/or users). Ports allow to model the interfaces. There

are two kinds of ports : standard ports and flow ports. An optional item flow can

also be added on the connector to specify the flow.

• Standard ports

A standard port specifies the services that either are required or provided

by the part.

• Flow ports

Flow ports are the interaction point of a block through which objects can

flow into and out of the block. Usually, objects flow in a particular direction.

For this reason flow ports are directed. Input flow ports, denoted with

the keyword “in”, allow objects to flow into the block. Output flow ports,

denoted with the keyword “out”, allow objects to flow out of the block.

There are also bidirectional flow ports, denoted with the keyword “inout”

and they allow objects to flow in both directions. The communication path

between two blocks is represented by a connector connecting the flow ports

of these blocks.

• Item flows

An item flow is an optional element that can be added on the connector

to describe the specific objects that are transported. Figure 2.5 shows the

different elements that can be found in an Internal Block Diagram.
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Figure 2.5: Meta-model of the Internal Block Diagram (IBD) [4]

Parametric Diagram

The parametric diagram is a new diagram in SysML that is not in UML. The

parametric diagram aims at identifying the main system parameters (block value

properties) as well as their relationships seen as constraints. Integrating paramet-

ric relationships in the design allows taking into account performance or reliability

aspects. It is also useful for instance to compare alternative solutions with regard

to particular criteria like response time, global mass, reliability, etc. [72]. The rela-

tionships can be physical laws like the Ohm law relating the voltage to the current

and resistance or Newton’s law relating the force to the mass and acceleration.

• Constraint blocks

These relationships are captured in constraint blocks that describe con-

straints on system structures and the parameters required. A constraint

block contains a set of constraints (the mathematical relationships) and

the parameters of these constraints. A constraint block is built context-

independent and can be used in different contexts by binding the constraint

parameters to the model parameters.

Even if it allows the use of parametric diagram to capture the relationships, SysML

is not intended to solve these equations and does not offer any solver for this pur-

pose. On the other hand, it recommends the implementation of exchange formats

allowing the communication to external solvers for the resolution of the equations.

In this case, the equations shall be written using the syntax of the solver. Figure

2.6 represents the different elements that can be found in a parametric diagram.
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Figure 2.6: Meta-model of the Parametric Diagram [4]

Package Diagram

The last diagram used in the structure modeling is the package diagram. This

diagram represents the organization of a model in terms of packages that contain

modeling elements (Figure 2.7).

Figure 2.7: Meta-model of the Package Diagram [4]

2.2.3.3 Behavior Modeling with SysML

In addition to the static aspects, SysML also offers the possibility to model dy-

namic aspects with behavior diagrams. SysML provides several diagrams to model

different behavior kinds and thus offers a comprehensive description of behavior
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that helps to reach a complete specification of system [73]. It covers flow-based

behavior, where behavior is detailed in terms of the flow of inputs, outputs and

control with activity diagrams. State machine diagrams support event-based

behavior expressed in terms of response of blocks to internal and external events.

Functionality of system, in terms of the services it provides to potential users, is

represented by use cases. Message-based behavior used to model service-oriented

concepts is also supported in SysML by sequence diagrams.

Activity Diagram (ACT)

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for

coordinating other behaviors [65]. Activity diagrams include semantics for pre-

cisely specifying the system behavior in terms of the flow of control, inputs and

outputs. An activity diagram represents a controlled sequence of actions that

transforms inputs into outputs [73]. Activity diagrams in SysML, are extended

with flow-based behavior modeling and can be used in a similar way to the Func-

tional Flow Block Diagram (FFBD) that has been widely used for modeling sys-

tems. They describe the functional breakdown in a hierarchical way with different

detail levels and thus, can provide the functional architecture of the system. Ac-

tivity diagrams are made up of three basic elements : activity nodes, activity edges

and regions [4] (Figure 2.8). There are three main types of activity nodes: activity

invocation, object and control node. Control nodes offer rich semantics to model

the sequencing of behavior in activity diagram. They are presented in terms of

sets of two complementary nodes that are:

• The Initial node and the Final node. The initial node shows the starting

point of an activity diagram. There are two types of final nodes: the Activity

final node that shows where the activity diagram ends and the Flow final

node that shows where a particular flow ends.

• The Join node and the Fork node. The Fork node allows a flow to be split

into several parallel routes while the Join node allows the flows to join again

in a later point in the diagram. By default, all the flows are necessary in the

join flow but logical relationships can also be specified.
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• Decision node and Merge node. Decision node allows a flow to branch off

into a particular route according to a condition. The Merge node allows

flows to merge back into a single flow.

Activity edges are the paths that connect activity nodes to each other. There are

two main activity edge types: control flow and object flow. The first one specifies

when, and in which order, the actions within an activity will execute. The second

one specifies the objects (physical items or information) that flow between activity

nodes.

Figure 2.8: Meta-model of the Activity Diagram [4]

State Machine Diagram (STM)

The state machine package defines a set of concepts that can be used for modeling

discrete behavior through finite state transition systems. The state machine rep-

resents behavior of a system in terms of its states and transitions. The activities

that are invoked during the transition, entry, and exit of the states are specified

along with the associated event and guard conditions. Activities that are invoked

while in the state are specified as “do Activities”, and can be either continuous or

discrete. States can be either atomic or composite. A composite state has nested

states that can be sequential or concurrent [65].

State machine diagrams are used to identify different states (or operating modes)

of a system. Establishing such diagrams helps to define the transition from one
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state to another. Each mode (state) is then treated separately and a comprehensive

description of the behavior of system is established. Figure 2.9 gives a meta-model

of state machine diagram.

Figure 2.9: Meta-model of the State Machine Diagram [4]

Use Case Diagram (UC)

The use case diagram is directly integrated from UML. Use case diagrams represent

system functionality in terms of how a system (or a subject) is used by external

entities (such as actors) to achieve a set of goals. In other words, it represents the

set of services provided by the subject to the selected actors [65].

A use case can also be viewed as functionality and/or capabilities that are ac-

complished through the interaction between the subject and its actors. Use case

diagrams include the use case and actors and the associated communications be-

tween them. Actors are external to the system and they may represent users,

systems, and or other environmental entities. They may interact either directly or

indirectly with the system [65].

The association between the actors and the use case represent the communications

that occur between the actors and the subject to accomplish the functionality

associated with the use case. The subject of the use case can be represented
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via a system boundary. The use cases that are enclosed in the system boundary

represent functionality that is realized by behaviors such as activity diagrams,

sequence diagrams, and state machine diagrams [65].

The use case relationships are “communication,” “include,” “extend,” and “gen-

eralization.” Actors are connected to use cases via communication paths, that are

represented by an association relationship. The “include” relationship provides a

mechanism for factoring out common functionality that is shared among multiple

use cases, and is required for the goals of the actor of the base use case to be

met. The “extend” relationship provides optional functionality (optional in the

sense of not being required to meet the goals), which extends the base use case

at defined extension points under specified conditions. The “generalization” re-

lationship provides a mechanism to specify variants of the base use case. Figure

2.10 gives a meta-model of the use case diagram.

Figure 2.10: Meta-model of the Use Case Diagram [4]

Sequence Diagram (SD)

Sequence diagrams are typically used to model scenarios [4]. In a sequence dia-

gram, only the pertinent aspects of the particular situation described by the sce-

nario are highlighted. Each of these aspects is represented as an element known as

a ‘Life line’. A ‘Life line’ in SysML represents a participant in an interaction and
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refers to an element of the model, such as a block, a part or an actor. Sequence

diagrams model interactions between life lines, showing the messages passed be-

tween them with an emphasis on logical time or the sequence of messages (hence

the name). The interactions (or sequences) occur in the order of their appear-

ance in the diagram, i.e. from the top to the bottom. Sequence diagrams can be

used at different levels of systems hierarchy. At the system level they represent

interactions between system and its environment. At a lower level of detail, they

represent interactions between different components of system. Sequence diagrams

have a very rich syntax [4]. They describe the flow of control between actors and

systems (blocks) or between parts of a system [65]. Combined fragments can be

added to offer the possibility to model some particular aspects like loops or paral-

lel sequences. A combined fragment is defined by an interaction operator (alt for

alternatives, par for parallel, loop for a loop, etc.) and corresponding interaction

operands. For more detail please refer to the SysML specification [65].

The meta-model of a sequence diagram is given in Figure 2.11. It shows the

diagram elements and their relationships.

Figure 2.11: Meta-model of the Sequence Diagram [4]

2.2.3.4 Transverse Constructs in SysML

To ensure the consistency between the previous aspects of a system, SysML con-

tains a set of traceability links. Some of these relationships can be traced between
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requirements as they can link requirements to other model elements as shown in

section 2.2.3.1. Other relationships can link model elements to each other. Al-

location can be defined between the system functions (in the behavior part of

the model) and the components (in the structure part of the model) that will

achieve these functions. These relationships summarized in Figure 2.12 enhance

the consistency of the model and facilitate the evaluation of the impact of design

changes.

Figure 2.12: Consistency in SysML [5]

We have stated that SysML offers a wide range of constructs that respond to the

main needs of modeling in systems engineering. The additions made to SysML

compared to UML brought key concepts for systems engineering. Requirements

added a better way to model needs and specifications in a textual form, which is

the usual way for systems engineers to express the requirements. It also allowed

to model non-functional requirements like performance and safety requirements.

The introduction of continuous functions filled a large gap in UML since it enables

modeling the physical flows. Value types allow adding a dimension and a unit to

data types in UML which is very useful in checking the consistency of dimensions

in the models.

Fäıda MHENNI Safety Integration in a Systems Engineering Approach for Mechatronic System Design



Chapter 2. SafeSysE: A Safety Analysis Integration In Systems Engineering
Approach 57

If these extensions are sufficient to model a large variety of systems, some domains

require specific concepts that are not integrated in SysML. For this reason, SysML,

as a profile of UML, kept the same extension capability and mechanisms than

UML. This offers the possibility to SysML users to enlarge their use of the language

by extending its semantics with domain specific concepts. We have considered this

opportunity to enrich SysML semantics with some constructs relative to safety

and to machatronic systems modeling. In the following, the Safety Profile and the

Mechatronics Extended Modeling Profile developed in this thesis are presented.

2.3 SysML Safety Profile

During the design phase, the designers (systems or domain engineers) may have

relevant information concerning safety, especially if they are integrating new con-

cepts or innovating technology. In this case, they are recommended to transmit

these data to safety experts. In the same way, it is important for a safety expert

to feed back safety analysis results to systems engineers to take into account these

results in the system design. In order to integrate safety information directly into

SysML models, we have used the extension mechanism of UML to create a so called

Safety Profile. A profile allows adaptation or customization of UML meta-models

to a specific platform, domain or method through stereotype and tag definition

concepts [55]. The stereotype is the primary extension construct that extends

an existing meta-class. A stereotype may have properties that are referred to as

tag definitions. The safety profile is intended to allow capturing safety aspects in

the system model. In our case, the Safety Profile is built from stereotypes and

tag definitions that represent artifacts useful for the safety analysis techniques we

selected for our integrated process, i.e. FMEA, FTA and behavioral safety anal-

ysis. The constructs added to enable FMEA building are failure modes, causal

factors, system effects, probability, severity, etc. The relationships between this

information are modeled by a class diagram given in Figure 2.13. For instance,

this diagram specifies that:

• One or more functions are allocated to one component;

• Each function or component can have one or more Failure Modes;

• A failure mode is caused by one or more causal factors;
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• A failure mode generates effects both at local and system level (Immediate

Effect and System Effect respectively);

• etc.

Figure 2.13: Class Diagram for FMEA Artifacts

Since in our methodology, a system function is represented by an activity, it is

straightforward to consider Function as a stereotype extending the Activity meta-

class. A system component is a SysML block, so the Component stereotype will

extend the Class meta-class of UML. Because each activity may have several pa-

rameters and each class may have several attributes, we propose to use Parameter

and Attribute as extended meta-classes for FailureMode stereotype. By doing so,

we can represent the fact that each function and each component may have dif-

ferent failure modes. The other information about a failure mode such as rate,

severity, causal factors, detection methods, etc. can be simply considered as the

tag definitions of the Failure Mode stereotype. Figure 2.14 gives the profile di-

agram of our Safety Profile. This profile diagram models a simple redundancy

mechanism as well as dysfunctional behavior information. It is also noted that

there is no unique solution for the safety profile. We prefer to use a simple and

efficient solution that allows us to represent all needed information while not over-

loading the XML Metadata Interchange file generated from the SysML model.
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Figure 2.14: Safety Profile Diagram

2.4 Mechatronic Extended Modeling Profile

2.4.1 Need for Extended Modeling for Mechatronic Sys-

tems

The synergistic aspect of mechatronic systems leads to numerous linking paths

and different types of flows exchanged between the system components. Con-

nection components such as wires and tubes are used to transfer the exchanged

flows among components. These interaction components, in addition to increas-

ing system cost and weight, add a supplementary cause of failure in the system

since their own failures may lead to system level malfunctions or failures. The

choice of connection components can for instance affect the probability of failure

occurrences [74]. Thus, if they are not accounted for in the right way, a system

could be considered as safe (i.e. satisfying safety requirements) while it is not

or vice versa. However, in traditional system architecture modeling, connection

components, despite their importance, are not modeled, and thus they are not

systematically taken into account in safety analysis since this latter is based on

the structural model of the system.

Another issue that strongly affects mechatronic systems design is the multi-physical

coupling. Indeed, vibration, heat or electromagnetic fields emitted by some com-

ponents or by the environment could affect the other components in their neigh-

borhood leading to malfunctioning or even failures. This could have considerable

effects on system safety. However, the impact of the multi-physical couplings
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on safety analysis is taken into account only by the safety expert during safety

analysis. But, system designers usually have a better knowledge on the system

components, their properties and the technologies in use. Consequently, integrat-

ing the multi-physical properties within the system model by system designers

may reduce errors and omissions during safety analysis.

These two aspects, i.e. connection components and multi-physical flows, must be

accounted for as early as possible in the design process. They should be integrated

at the system-level modeling to avoid, as far as possible, late design changes that

are time consuming and very costly.

In the following, we propose an extended modeling including the connection com-

ponents as well as the multi-physical flows that highly impact the functioning

of mechatronic systems. This modeling, we believe, will contribute to a more

comprehensive safety analysis.

2.4.2 Extended Modeling for Multi-disciplinary Systems

Usually, during the design phase, the system structural models only contain the

main components (those achieving a specific system function) but do not consider

connection components (such as wires) that connect these main components and

transfer the exchanged flows among them. However, as we have pointed up above

(see section 2.4.1), connection components are critical in mechatronic / multi-

disciplinary systems mainly for safety reasons. For this reason, we are convinced

that connection components must figure in the system architectural model in the

same way as the other components.

In SysML, physical components with different hierarchical levels (system, compo-

nent, element, etc. ) are represented by Block stereotype. In the Internal Block

Diagram (IBD), the connection component between two components, represented

as blocks, is represented by the connector stereotype, which is a path between

these two blocks. Paths in SysML cannot have the same attributes as blocks

(for instance, “value types” representing physical properties and/or performance

parameters). To better emphasize the fact that connection components are as

important as the other components, we suggest to add new blocks to model con-

nection components instead of using the only connectors of SysML. These blocks

may have a different stereotype to distinguish them from the other components.
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Indeed, both types of components are different since, unlike the other components,

connection components do not need to be allocated to functions.

The second aspect that we think it is very important to add in the system model

is the multi-physical flows that can disturb the functioning of the systems and

thus have an impact on the system safety. As a first step to model the potential

multi-physical flows, we use the already existing flow ports in SysML to which we

added a new stereotype to distinguish them from the remaining ports. A different

graphical appearance is also used. Multi-physical ports have a larger size and have

different colors; the red is used for thermal flow, the blue for electromagnetic flow

and the grey for vibration. As components may be either aggressors or victims of

multi-physical flows, a distinction is made between emitted and received (multi-

physical) flows. An input port means that the component is sensitive to this kind

of multi-physical aggression and must be protected from potential emissions. An

output flow means that the component emits the flow in question and may be

aggressive to its surroundings. Aggression from the environment is also modeled

with ports on the boundary of the system. If there is no source of one particular

multi-physical flow, then there should be no input port of this type.

The profile diagram of the Mechatronic Extended Modeling Profile is given in Fig-

ure 2.15. It shows the added stereotypes. Two stereotypes, the “Component” and

the “ConnectionBlock” are added to extend the UML metaclass “Class”, and they

represent respectively the component and the connection component. A compo-

nent can have different stereotypes specifying the domain i.e. mechanical, software

etc. To each kind of component specific failure modes can be added automatically

and integrated in the safety analyses. The stereotype “Multi-PhysicalPort” is also

added as an extension to the UML metaclass “Interface” to model multi-physical

ports.

The additional data integrated in the system model using the Safety Profile and/or

the Mechatronic Extended Modeling Profile will be added to the FMEA generated

automatically and used by the safety expert during his assessment.

The two profiles developed in this work help integrating relevant information in

the system model to be used in the safety analysis. In the next sections, first a

SysML-based design methodology will be presented. This methodology will be the

support for an integrated approach including safety analyses within the design.
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Figure 2.15: Profile Diagram of the Mechatronic Extended Modeling Profile

2.5 SysML-Based Systems Engineering Method-

ology

In Chapter 1, the main systems engineering standards and their respective pro-

cesses were introduced. The benefits of a model-based approach was also presented

and the adequacy of SysML as a support language for MBSE in early design stages

was demonstrated. However, the availability of standards and tools is not suffi-

cient for the successful development of complex systems. Only an appropriate

methodology can lead to an optimal use of the available tools by providing a set

of practices, procedures and rules to follow during the design phase. As long as we

know, few methodologies were developed to describe how to achieve the appropri-

ate processes of the available standards with SysML and most of them focus on

embedded software systems design.
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Other domains, like mechanical engineering, had their own approaches with pow-

erful methodologies like APTE 1, FAST 2, SADT 3, etc. These methodologies,

although relevant and very useful, are not implemented by tools allowing to build

a consistent (multi-view, multi-level) model for complex systems. They were not

integrated neither in the proposed SysML-based methodologies found in literature.

On the other hand, some SysML diagrams can support close modeling mainly to

APTE and SADT. This led us to developing our own methodology with SysML

trying to take benefit of this language and the model based approach and to be

compliant with the standards processes while not loosing the key concepts we have

been using for several years.

The proposed SysML-based methodology is a top-down approach that, starting

from a need expression progressively defines a solution to satisfy this need. It aims

at assisting the designer in the system design phase to have a consistent modeling.

It also attempts to guide the designer facing the variety of diagrams in SysML

(given without any methodology) by giving a sequence of use of these diagrams

in different design stages. The methodology is a two-phase modeling process. It

begins with a black-box phase where the system of interest is considered as a black

box, meaning that its internal structure is still not defined. This modeling phase,

only gives an external point of view of the system aiming at defining a consistent

set of requirements the system must satisfy, and that will be the baseline for the

next phase. The second phase, called white-box phase is an internal point of view

of the system where the internal architecture is progressively determined. Each

analysis phase is made up of several steps. In each step, one or more SysML

diagrams are used to describe a specific point of view of the system. The sequence

of these diagrams contributes progressively in the emergence of a consistent set of

requirements for the first phase and system architectures for the second one.

More detail about the two phases and how SysML contributes in performing each

phase will be given below in sections 2.5.1 and 2.5.2 respectively. Even though

these steps are given in a sequential way, in each step we can go back to previ-

ous steps either because a requirement is modified (which is current in industrial

1APTE is a French method for functional analysis and value analysis created by Gilbert
Barbey in the 60s. It is based on graphs to define the need to which the system answers and
identify the functions in a systematic way. More detail can be found in the URL: http://methode-
apte.com

2FAST is the acronym of Function Analysis System Technique.
3SADT is the acronym for Structured Analysis and Design Technique. IT is a systems engi-

neering and software engineering methodology for describing systems as a hierarchy of functions
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projects), or due to the occurrence of changes in the market such as the appear-

ance of new technologies or regulations or simply because the designer reminds

aspects that have not been accounted for.

2.5.1 Black-Box Phase: Requirements Definition and Anal-

ysis

Bad requirements specification could lead to significant cost and schedule overruns,

failures to deliver all of the functionality specified, and systems that do not have

adequate quality [75]. The aim of the black-box analysis is to build a comprehensive

and consistent set of requirements to minimize expansive design changes due to bad

specification. This is made through a sequence of steps with potential iterations

between them. First, the system mission and objectives are determined. Then,

the whole life-cycle is identified in order to take into account the constraints of

each phase of the life-cycle. The system boundary specifying what exactly is to be

developed shall also be thoroughly identified since the early stages in the design

process. For each phase of the system life-cycle, the system context including the

interactions the system has with its surrounding shall be considered. Based on

this, the external interfaces supporting these interactions shall be defined. Then,

the external behavior (with regard to the user) of the system is modeled through

the user operating modes, the services (or use cases) provided by the system and

the functional scenarios.

Requirements emerge from a series of the modeling activities of black-box phase

and are traced to the model elements that helped in their identification and spec-

ification. Each of these modeling activities deals with a specific aspect of the

system, i.e. the mission, context, services etc. These modeling activities are de-

scribed hereafter.

Initial Requirements and Global Mission

Here, the global mission (or function) of the system is identified. It is usually

issued from textual, oral or partial definitions of the user needs. The main mission

may be given in a hierarchical decomposition into sub-functions.
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It is captured in SysML as one or more requirements with possible sub-requirements.

A Requirement diagram (Req) represents these initial requirement(s) and their re-

lationships to each other. Containment links are used to link the main requirement

to its sub-requirements. Afterwards, other requirements will be identified and will

progressively be captured in the system model.

Identifying the System Life-Cycle

In order to have a comprehensive set of requirements, all the system life-cycle

phases as well as the stakeholders and enabling systems in each phase shall be

identified, and the corresponding requirements captured. Indeed, government reg-

ulations are imposing more restrictions on different life-cycle phases of systems

to take into account environmental aspects (by ensuring a recycling ratio or im-

posing a reduced amount of emissions for instance), safety measures (by imposing

safety levels) etc. Systems built without respecting regulatory constraints may be

refused the marketing authorization. Modeling the life-cycle also allows available

manufacturing, assembly, testing, transportation and all other means needed dur-

ing the whole system life to be considered in the design to avoid getting aware too

late of problems like unavailability of transportation means for very large systems

etc.

In SysML, a State Machine Diagram (STM) is used in order to define the different

stages of the whole life-cycle of the system and the transition conditions from one

stage to another. Each stage of the life-cycle is represented by a “state” element

in SysML. Each phase of this life-cycle may then be detailed in further diagrams,

all along the different steps of this modeling process.

System Context Modeling

It is very important to define the boundary of the system at the beginning of

the study to identify what is within the boundary and what is outside it, in

other words, what exactly has to be developed. Boundary definition prevents

from doing extra work by developing things outside the boundary, or delivering

partially what is actually needed by excluding some parts. Then, for each phase of

the life-cycle, an exhaustive list of the external interfacing elements (stakeholders,
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external systems and actors) and their interactions with the studied system are

specified.

A SysML Block Definition Diagram (BDD) represents the system and its inter-

actions with external elements. This use of the SysML BDD is partially similar

to the interaction graph in APTE method. These interactions shall be considered

during the design phase and specified within the requirements. Let’s note that,

in SysML, an actor (represented by the stick-man icon) specifies a role played

by an external entity that interacts with the subject. This external entity is not

necessarily a human.

The External Interfaces Modeling

In order to define more precisely the interfaces between the system of interest and

the actors that interact with it, an internal block diagram (IBD) is created to

complete the context BDD.

The context diagram helps in identifying, for each actor, whether external inter-

faces are needed or not.

In SysML, ports are used to model interfaces. Identifying the interface ports

at this early stage prevents from forgetting some of them later when identifying

the internal structure. The ports created here are included in the model and

automatically populated later on in the design process. Consistency is thus ensured

both with previous steps in the black-box phase as well as with the next white-box

phase. Future changes of these ports will also be automatically propagated back

to the black-box models.

The User Operating Modes

For each phase of the life-cycle (most importantly for the main operating phase

corresponding to the system use), the user operating modes have to be determined

and interconnected to each other using a State Machine Diagram (STM). Each

operating mode is represented as a state of the system and transitions specify

the conditions to go from one operating mode to another. The system operating

modes detail the usage of the system during its operating stage of its life-cycle.
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The “operating modes” state diagram is then linked to the corresponding state of

the life-cycle.

The Services Provided by the System

For each user operating mode, each services provided by the system to the end-

user is modeled by a Use Case. The dependency relationships among use cases as

well as the actors that are involved in each use cas are represented in a Use Case

Diagram (UCD). To ensure consistency with the system operating modes, each

use case is linked with the relevant operating mode (i.e. state).

The Functional Scenarios

For each service (or use case), a sequential description of functional scenarios may

be defined with one or more sequence diagrams (SEQ). Sequence diagrams are

strongly coupled to the UC they detail. In a sequence diagram, the interactions

between the system and its context (external actors and/or systems) are detailed.

The same actors that are linked to the use case shall be on the corresponding

sequence diagram. Internal operations may also emerge from this diagram and

will be used in the functional model during the white-box analysis.

Requirements specification

All the information captured within the previous diagrams shall be elicited in the

model database as requirements. The set of requirements has to be structured

with the appropriate links among: derive, refine and contain relationships. These

relationships can be displayed in a requirement diagram that summarizes the initial

requirements (representing the global mission) as well as the requirements derived

from the other diagrams of the black-box analysis like the UCD for the system

services or the interactions of the BDD context.
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Requirements Traceability

In order to be able to trace all requirements, and ensure consistency of the black-

box phase, some relationships are specified in some additional requirements dia-

grams. The following traceability links can be used:

• “refine” between Requirements and UC;

• “allocate” between Requirements and roles in BDD context;

• “satisfy” between Requirements and external ports (IBD).

2.5.2 White-Box Phase: Architectures Definition

In the previous phase, an external point of view analysis was established in order

to identify a comprehensive set of requirements and specifications of the system.

A baseline is now available to go further and identify different candidate solutions.

This modeling phase is conducted with an internal point of view on the studied

system, in order to model its internal structure and behavior, with respect to the

set of requirements (REQ) specified during the black-box analysis.

In the white-box analysis, the system architecture is progressively identified. First

a hierarchical model of the system functions breakdown is established. Then, based

on the functional model, components are allocated to functions to synthesize candi-

date logical architectures. By logical architecture, we mean an architecture based

on general classes of components and not specific fully defined components. Based

on trade-offs and further simulations with external tools, physical architecture is

defined by allocating the optimal physical (existing COTS or designed) compo-

nents to the logical ones. During this phase, new requirements may emerge and

shall be traced to the black-box requirements and to the related model elements.

Functional Architecture Definition

In this step, the functional requirements identified in the black-box analysis (from

use cases and operations identified on sequence diagrams)are translated into a

coherent description giving the functional architecture of the system. Systems
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functions are represented by means of activities, and shall be linked to the cor-

responding requirements. The functional architecture is defined with activity di-

agrams (ACT), with a top-down breakdown of the main function of the system

into sub-functions. Activity diagrams show the progressive transformations of in-

put flows into output flows. Both object flows and control flows are supported.

External PINs must be consistent with the external ports of the previous external

interfaces IBD.

The Logical Architecture Definition

• Logical breakdown and allocation to functions

In this step, system functions are allocated to logical components. By logical

component we mean a general class of components, mainly a kind of technol-

ogy: motors, gears... etc. Thus, a set of logical components is chosen in order

to achieve all functions specified in the functional breakdown. Allocations

between activities and components can be displayed in a Block Definition

Diagram (BDD). In this diagram, one or more functions (activities) are al-

located to one logical component. At this step, several candidate logical

structures can be proposed and then compared. Moreover, and to ensure

consistency with black-box analysis, the operations identified in sequence

diagrams can be allocated to relevant components.

• Requirements to Logical Components Traceability

Once the logical components are identified and allocated to activities, com-

ponent level requirements are derived from system-level requirements and

traced to the corresponding components. The logical components shall sat-

isfy these derived requirements. Satisfy relationships are used to show this

dependency and are displayed in a new requirements diagram (REQ). New

requirements can also emerge from the choice of the logical components and

shall then be added to the requirements database and linked to the corre-

sponding components.

• Logical Architecture

The logical components are now identified, but the way they interact is still

not specified. In this step, the internal interactions between the components
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are given. An internal block diagram (IBD) displays the system architec-

ture with the interactions among components and the different flows they

interchange with each other.

The physical Architecture Definition

After having checked with simulation (Modelica, Simulink, HIL. . . ) that the log-

ical architecture is relevant to fulfill the set of requirements, it is time to choose

physical components (components off-the-shelf (COTS), machined or molded parts,

e.g. instances with suppliers references) and allocate them to logical components.

An internal block diagram (IBD) allows specifying the interactions (flows) between

the physical components. In this case, consistency shall be maintained by allo-

cating the physical components and ports to the corresponding logical ones and

justify if new components or ports are added.

2.5.3 Methodology Discussion

The proposed methodology gives a way to translate progressively user needs (or

an initial set of requirements) into a feasible, well defined solution that takes into

account the different aspects and constraints concerning the whole life-cycle of

the system. A black-box analysis firstly aims at identifying a comprehensive set

of requirements. A white-box analysis is then performed on order to define the

system behavior and structure. It should be bared in mind that it is question of an

iterative process. Some diagrams may reveal information that wasn’t considered

in previous steps. The designer shall then go back to add the missing information

and check all the impacts of this change on the model. The sequential aspect pre-

sented here aims at making the understanding easier for the reader. The proposed

methodology addresses the following problems. First, it gives a kind of road-map

to help persons intending to use SysML choosing the right diagrams (among the

variety of available diagrams) for the right purpose. It also highlights how to

build a consistent model and maintain consistency between the different views of

the system during all the design phase. Finally, the solution is defined progres-

sively based on a comprehensive set of requirements thoroughly determined and a

hierarchical functional modeling.
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The presented methodology however, is not comprehensive and shall be extended

with additional support processes. It is kind of the basic skeleton on which other

engineering processes can be added. For instance, it does not yet offer processes

for ranking and prioritizing requirements, establishing trade-offs and performing

safety analyses.

Other works on metrics are also developed by our team to help the designer to

take decisions and trace his choices [76] and will be integrated within this design

methodology.

For a seamless process, some tools, like Model Center for instance, are developing

bridges between SysML and other modeling and simulation tools. This is a good

point that the authors are exploiting to further extend the current methodology.

In this thesis, we are mainly interested in the integration of safety analysis and

a proposal of integrated process has been developed and is presented in the next

section.

2.6 SafeSysE: The Integrated Process

In this section, the integrated process of systems engineering and safety analysis

is presented through a set of steps. In Figure 2.16, an activity diagram describes

this integrated process and the sequencing as well as the exchanges between the

different steps. Swim-lanes are used to make a distinction between systems engi-

neering and safety analysis activities (or processes). The integrated process starts

with a requirements definition and analysis process with, as a starting point a set

of initial requirements describing the need. Then, the different steps including

design activities and safety analyses are performed successively. Data stores are

used to model the storage of the different artifacts issued from each activity.

2.6.1 Step 1: Requirements Definition and Analysis

This step is the initial step of the design methodology presented in section 2.5

where system functionalities as well as its external interfaces are described by a

set of requirements. Several SysML diagrams such as use case diagrams and block

definition diagrams for the system context can be used to help in the identification
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Figure 2.16: SafeSysE Integrated Process

of these requirements. Since, the requirement definition and analysis is not in the

main scope of this thesis, please refer to section 2.5 ot to our paper about SysML-

based systems engineering methodology in [77] for more detail. Furthermore, we

will illustrate this step through the Electromechanical Actuator (EMA) case study

found in Appendix A.

2.6.2 Step 2: Functional Architecture Definition

Based on the functional requirements identified in step 1, one or more functional

architectures are identified during this step. The final result is a hierarchical

model of the breakdown of the system main function(s) into sub-functions. In

SysML, functions are represented by activities and the functional breakdown is

modeled through a set of activity diagrams, each activity diagram representing

the breakdown of a given function (activity) into sub-functions. Activity diagrams

also show the progressive transformation of input flows into output flows.
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2.6.3 Step 3: Functional Risk Assessment

In this step, a functional Failure Mode and Effects Analysis (FMEA) is used to

identify potential hazards caused by failures and their effects. In this work, a pro-

totyping tool has been developed to automatically generate partial FMEA based

on the XML Metadata Interchange XMI [78] file generated from the SysML model.

The generated FMEA data-sheet contains the list of functions and a generic list

of failure modes. The safety expert then performs the analysis and completes the

FMEA with the relevant data. All these new safety information are then updated

into the SysML model via the safety profile extension explained in section 2.3

and the developed tool. The gap between safety analysis and design modifica-

tion is shorten, thanks to this integrated model. At the end of this step, safety

requirements are derived and added to the set of requirements. The rule is that

for each failure mode with hazardous effects, at least one safety requirement is

added. Design changes can be done from this early design stage at the functional

level to eliminate or reduce identified risks. Risk effects mitigation can be ob-

tained by eliminating or modifying high risk functions, adding new fault tolerance

mechanisms like diagnosis and reconfiguration functions, etc. Each time that the

functional architecture is modified, the FMEA shall be updated to take into ac-

count the new changes. The previous steps iterate until a satisfactory solution is

identified and the final results are stored in the system model.

More detail about the functional FMEA generation will be given in chapter 3.

2.6.4 Step 4: Logical Architecture Definition

Once the functional architecture is defined taking into account the results of the

safety analysis in step 3, one or more logical architectures are defined by allo-

cating components to functions. A Block Definition Diagram (BDD) describes

the components of the system and an Internal Block Diagram (IBD) describes

the interactions between the components. The logical architecture defined at this

step already takes into account safety aspects since it integrates the results of the

functional safety assessment performed in step 3.
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2.6.5 Step 5: Component-level Risk Assessment

When the structure of the system is defined, the safety analysis results are updated

and a component level risk assessment is performed. For this purpose, a component

FMEA is generated from the XMI file like in step 3 for the functional FMEA. To

ensure consistency with previous safety analysis, the generated FMEA, in addition

to the components, contains in front of each component the functions allocated to

the component as well as the failure modes identified at the functional level as a

reminder. The safety expert then identifies the failure modes at the component

level and performs FMEA analysis. If there are identified risks with unacceptable

level, then these risks shall be eliminated or reduced to an acceptable level by

performing changes to the design. Once again, these safety data are saved back

in the same SysML model using the safety profile developed in this work. If

design changes are performed (by going back to previous steps), a new FMEA is

generated to assess the new architecture. In this case, the previous results are

also automatically generated as they are stored in the model and the safety expert

updates the FMEA without loosing his previous work.

More detail about the component FMEA generation will be given in chapter 3.

2.6.6 Step 6: Fault Tree Analysis

The final step is the fault tree analysis. Fault trees are used for both qualitative

and quantitative analyses. In our approach, fault trees are automatically gener-

ated from SysML IBDs describing the system architecture. Information from the

previous FMEA analysis is taken into account to create fault tree with specific

failure modes. Fault trees can be generated in a graphical form for qualitative

analysis purposes like fault propagation studies and critical paths identifications.

They can also be generated in an appropriate format for existing fault tree analysis

tools. For more details about fault tree generation please refer to Chapter 4.

2.7 Conclusion

In this chapter, the ability of SysML to support MBSE for early design stages is

demonstrated. Indeed, in addition to its rich semantics to model the most common
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aspects of systems, SysML offers extension mechanisms to add new semantics to

enlarge its use to specific domains. In our case, an extended modeling enabling to

take into account the particular features that characterize multidisciplinary sys-

tems was needed. Including multi-physical interactions (i.e. thermal and EMC)

among the system or with its environment as well as the interconnection compo-

nents is very useful for safety analysis. An extended modeling for mechatronic

systems was proposed in this chapter. Moreover, a safety profile is proposed to

integrate safety-relevant properties in the system model to facilitate the automatic

generation of safety artifacts discussed in the next chapters.

Finally, an integrated process including system engineering and safety analysis is

proposed. The integrated process provides the safety experts with FMEA and

FTA consistent with the system behavior and architecture, thus allowing them

to deal with an up-to-date and consistent modeling of the system and its safety

aspects.
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Chapter 3

FMEA Generation from SysML

Models

3.1 Introduction

Failure Mode and Effects Analysis (FMEA) is a reliability tool widely used in safety

analysis. In addition to being mandatory in several safety critical domains, FMEA

is very useful since it allows an early identification of risks. It focuses particularly

on risks resulting from potential failure modes. Early identification of risks avoids

the embarrassment of discovering problems very late, which requires complicated

and costly correction processes. Consequently, it allows reducing the cost and time

for design changes and thus for the whole development process. To take full benefit

of the FMEA, it is critical to conduct it at early design stages. However, as the

design continues to evolve, the reliability analysis should be continued concurrently

with the design process. FMEA should then be updated to take into account

design changes. Different FMEAs can be performed during the whole development

process beginning with a functional FMEA and then performing one or more

component FMEAs with different levels of detail as long as the design process

progresses.

Despite its advantages, an FMEA can be a source of delay in the project. Indeed, it

can be laborious and very long to perform mainly when done manually for complex

systems. In addition to being resource and time consuming, when done manually,

it is also error-prone since it requires the extraction of the whole list of the items
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to be analyzed as well as a detailed understanding of the system functions and

design.

To cope with these problems, the system models should be expressive enough to

ensure a good understanding of the system functioning and facilitate the extrac-

tion of the information required for the establishment of the FMEA. As stated

previously, SysML is a good candidate for system modeling. It supports systems

modeling semantics and can easily be extended to support the integration of reli-

ability (FMEA) semantics. For instance, the safety profile developed in this work

enables modeling safety relevant concepts.

An optimal reduction of time and errors during the FMEA elaboration would be

an automatic generation of the FMEA from system models. However, unless the

system model is charged with all the information required for the FMEA, it can

unfortunately not be fully automated. Integrating all the information relative to

safety in the system model requires the safety expert to collaborate closely with

the design team.

Automating some steps of the FMEA generation is then a good balance allowing to

reduce development time and error proneness while maintaining the role of safety

expert in completing and reviewing the generated FMEA. The automated steps in

this work are mainly the extraction of the list of items to be analyzed (functions or

components) and any important information available in the system model such

as the input/output flows of each item or any safety relevant information added

via the use of the Safety Profile.

Another problem when performing FMEA is that it is a hard task to maintain

consistency with the system model. In our work, as the preliminary FMEA is

automatically generated from the system model, the consistency is then ensured.

Information added by safety experts to complete the generated FMEA will then be

sent back to update the SysML model via the Safety Profile. Consistency is also

ensured between functional and component FMEAs since the component FMEA

integrates the functions of each components and, for each function it includes the

functional failure modes. The safety engineer has to translate the failure modes

identified at the functional level into the component level.

This chapter deals with the integration of FMEA within the design process. First

it gives an overview on the FMEA technique, its purposes, the different steps

of performing an FMEA as well as the different kinds of FMEA in section 3.2.
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The related work about the automatic generation of FMEA is given in section

3.3. Then, the automatic generation of functional FMEA and component FMEA

proposed in this work are presented respectively in sections 3.4 and 3.5. Both

sections are illustrated with the EMA case study. The chapter is finally concluded

in section 3.6.

3.2 Failure Mode and Effects Analysis (FMEA)

Failure Mode and Effects Analysis (FMEA) is a popular tool for reliability and

failure mode analysis [79]. It was one of the first systematic techniques for fail-

ure analysis. It was created in the 1950s by reliability engineers to better study

and prevent the consequences of malfunctions and failure in military systems and

evaluate the impact of these failures on system reliability. It was then utilized in

several other domains and is now a common practice for most, if not all, safety

critical projects. It can also be required by regulations or customers.

The FMEA method is a disciplined bottom-up evaluation technique that can be

applied at any level of detail in the design. It is applicable to functions, compo-

nents, assemblies or sub-systems. FMEA is frequently used in analyzing hardware

and processes but it can also be used in software to evaluate the effects of software

functions failures.

The aim of the analysis is to identify potential unacceptable reliability, safety or

operation conditions resulting from the identified failure modes. This requires a

deep understanding of system functions and design. Consequently, for a success-

ful failure modes analysis, the FMEA report should be performed by a mixed

multi-disciplinary team including at least safety experts and system designers. If

unacceptable risks are identified, then a list of prioritized corrective actions to

eliminate or reduce these risks is provided.

Risks cannot be completely eliminated and then it should be brought to a level

ALARP (As Low As Reasonably Practicable). Practicable means what is possible

to do, for instance reducing frequency of occurrence and/or the consequence of

the event. Reasonable means to have a balance between the cost, time, trouble,

etc. resulting from reducing the risk and the benefit from eliminating or reducing

that risk. This means that risk is tolerable if it is demonstrated that there’s a

big disproportion between the cost of further risk reduction on one hand and the
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resulting risk reduction benefit on the other. If the quantified risk of injury is

insignificant compared to the measures needed to mitigate the risk, then no action

needs to be taken. “However, the greater the risk, the more likely it is to be

reasonably practicable to go to substantial expense to do something about it”

[80].

These actions imply new iterations in the design process to change the design in

order to eliminate the risk or bring it to acceptable levels. Performing FMEA

requires time and manpower resources. To be efficient, these efforts should be

performed as early as possible during the design process so that they influence

design choices and decisions in real time, thus avoiding complicated and costly

late changes. If the problems are not discovered and solved early enough, they

could be discovered at very late stages like the production stage or even the product

warranty phase. The later the corrective actions occur, the more complicated and

costly they are.

In addition, the FMEA provides a good support document capturing recommended

design changes and their reasons. “Time and resources for a comprehensive FMEA

must be allotted during design and process development, when design and process

changes can most easily and inexpensively be implemented” [23].

3.2.1 FMEA Process

FMEA is performed in three main steps. First, the process identifies the potential

failure modes of a system function or component during its life-cycle. Then, it

determines the effects of each failure mode. Finally, the criticality of the effects is

evaluated [79].

The MILSTD-1629A standard gives a detailed description of the steps of perform-

ing an FMEA within the other design activities as follows [81]:

• First, define the system to be analyzed giving its internal and interface func-

tions, expected performance, etc.;

• Construct models or diagrams that illustrate the operations, interrelation-

ships and dependencies of system functional entities;
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• Identify all potential failure modes for each item and the effect of each failure

mode on the function or item itself, on the system in study and on the system

mission;

• Evaluate the worst potential consequence of each failure mode and assign a

severity class category. There are four severity categories consistent with the

MIL-STD-882D standard [82]: catastrophic, critical, marginal and minor;

• Identify failure detection methods;

• Identify corrective actions to eliminate the failure or control the correspond-

ing risk;

• Evaluate the effects of corrective actions on the system.

As a result, the FMEA is delivered as a table. Standards like the Military standard

MIL-1629A specify the table contents, but other forms adapted from the standard

can be found in the literature. The rows of the worksheet contain the analyzed

entities, their failure modes and the corresponding information relevant to the

FMEA. A list of columns contains the items properties to be integrated in the

analysis.

In the following, some semantics about functional FMEA and component FMEA

are given respectively in sections 3.2.2 and 3.2.3.

3.2.2 Functional FMEA Semantics

In a functional FMEA, the analysis focuses on the different functions the system

performs to achieve its mission. The starting point for a functional FMEA is

the functional architecture of the system defined by the designers (in our work

this architecture is defined in the Functional Architecture(s) Definition step of the

integrated methodology in section 2.6). The functional architecture describes the

list of the different functions the system must perform to achieve its mission as

well as the input and output flows of each function. Consequently, it describes how

the system inputs (flows received by the system from its surrounding, i.e. users

and contributing systems) are progressively transformed into outputs (the flows

or services delivered by the system to its surrounding).
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The FMEA then analyzes the potential failure modes of each function in order to

identify the causes and effects of each failure mode. The list of functions is then

inserted in the FMEA. For each function, the potential failure modes are identified.

Then, for each failure mode, the causes and effects are determined and then the

criticity of the failure mode is evaluated. If the failure mode has negative effects at

the system level, then the safety expert tries to identify a list of corrective actions.

This list is prioritized according to the criticity of the failure modes.

The FMEA table contains several columns, each of them describing a particular

aspect relative to the function potential failures. Definitions of the different terms

found in an FMEA are given below.

A functional FMEA table is given in Figure 3.1.

Id Function Failure
Mode

Causes Local
Effects

System
Effects

S
ev
er
it
y

O
cc
u
rr
en
ce

D
et
ec
ta
b
il
it
y

C
ri
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ci
ty

Detection
Method

Corrective
Action

Figure 3.1: Example of Functional FMEA Table

• Failure mode

A failure mode is defined in [23] as “the manner by which an item fails; the

mode or state the item is in after it fails. The way in which the failure of an

item occurs”.

The first step of conducting an FMEA is the identification of the different

failure modes of each item. The failure modes can be determined in different

ways. They can for instance be determined based on existing data provided

from past experience on similar products. Some standards can also collect

such data from the experience of several industrialists and provide a list of

classified functions with their respective failure modes. When such data is

available, it can be of a big help since it allows taking benefit from past

experience and preventing some mistakes. However, this is not always the

case, mainly for totally new products. In this case, the knowledge of the

safety expert with the FMEA team is the only source of information to
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rely on. A systematic approach can be also used as a complement based

on generic guidelines usually provided by the standards. Indeed, at the

functional level, failure modes are quite generic and can be resumed in the

following list [50], [81]:

– The function fails to execute;

– The function executes but not with the required performance (either

with superior or inferior performance);

– The function is not executed at the required time (too late or too soon);

– The function is stopped during its execution;

– The function should stop but it still runs;

– The function runs in an intermittent way;

– Other failure modes proper to the function.

• Failure Cause

A failure cause is a process or mechanism responsible for initiating the failure

mode. The possible processes that can cause function failure include physical

failure, design defects, manufacturing defects, environmental forces, and so

forth [23].

• Failure Effects

The failure effects are the consequence(s) a failure mode has on the operation,

function, or status of an item and on the system. The failure effects can be

noticed at the local level and at the system level [23].

The “Local Effects” column identifies the most immediate and direct effect

of the indicated failure mode. This is the low-level effect that occurs on the

next item in the design.

The “System Effects” column identifies the consequences of the failure mode

at the system level.

• Detection Method

This column identifies how the specific failure mode might be detected after

it has occurred and before resulting in any serious consequence. If a method

of detection is possible, it may be used in the mitigating design.
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Figure 3.2: Example of Component FMEA Table

• Recommended Actions

This column identifies methods for eliminating or mitigating the effects of

the potential failure mode.

3.2.3 Component FMEA Semantics

The component FMEA focuses on the system components rather than the system

functions. It is performed when the design process is more advanced and when the

system components are already defined. It is linked to, and should be consistent

with the functional FMEA. Indeed, since the components are allocated to the

system functions they achieve, their failure modes correspond to the functional

failure modes but expressed in more detail taking into account the physical aspects.

The semantics of component FMEA are quite similar to those of functional FMEA

with the difference that component FMEA is focused on components rather than

functions and thus is closer to the technical aspects. All term, i.e. failure modes,

causes, effects etc., are more specific and linked to the chosen technology. In the

Component FMEA the columns are then slightly different from the functional

FMEA, and for instance, the column “Component” is added.

An example of component FMEA is given in Figure 3.2.

3.2.4 Failure Mode Effects and Criticality Analysis

A more detailed version of the FMEA is the Failure Modes, Effects and Criticality

Analysis (FMECA). FMECA is quite similar to FMEA except that it adds a criti-

cality evaluation for each failure mode. FMECA is based on three factors: severity,
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showing how serious the consequences of failures may be, occurrence, showing how

frequently failures occur and detection, showing how easily failures can be detected.

Then the Risk Priority Number (RPN) is calculated by multiplying these three

factors.

RPN = (probability of occurrence) . (severity ranking) . (detection ranking)

The RPN is an index for reliability that helps in prioritizing the corrective actions;

problems are addressed from the biggest RPN to the smallest one. Failure modes

with catastrophic effects but very low occurrences may have a low RPN. However,

these failure modes should be at the top of the list of failures to deal with despite

their low RPN.

3.2.5 Advantages and Limitations of the FMEA

FMEA is a valuable reliability tool for analyzing potential individual failure modes

and providing basic information to reliability prediction. This information includ-

ing potential failure modes can be used in fault tree analysis (FTA) for instance.

However, for safety purposes, FMEA technique is limited since it considers only

single item failure and is unable to deal with combination of failures of different

items. In real life however, accidents generally result from a combination of fail-

ures. FMEA does not neither consider hazards arising from events other than

failures (e.g. timing errors, high voltage, etc.) [23].

Consequently, FMEA should not be the only hazard identification technique. It

should be used in conjunction with other complementary tools like FTA.

3.3 Related Work about Automated FMEAGen-

eration

FMEA is a valuable technique for predicting system reliability and evaluating the

impact of potential failure. However, it is time and resource-consuming and error

prone. To manage these drawbacks, several works attempted to automate some

steps of generating FMEA. This section discusses some of these works.
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David et al. in [83] carried out a study on the automated generation of FMEA from

UML functional models. At that time, SysML was too recent and not yet widely

implemented and used. As UML is firstly dedicated to software modeling, they

faced some problems to model systems, mainly the problem of flow representation

that is not supported in UML. This constituted a limitation because the study

of the physical flows is crucial for fault propagation studies (to determine system

level effects of a particular failure mode) and for deducing common failure modes.

They had to create their own stereotypes to manage this lack of representation in

UML.

When SysML was more widely used, David et al. [49, 50] worked again on the

generation of an FMEA report from system functional behaviors written in SysML

models. With the use of SysML, the problem with modeling flows was solved. They

also worked on the construction of dysfunctional models by using the AltaRica

language in order to compute reliability indicators. In their methodology called

MéDISIS, they start with the automatic computation of a preliminary FMEA.

The structural diagrams, namely Block Definition Diagram (BDD) and Internal

Block Diagram (IBD), and the behavioral diagrams such as Sequence Diagram

(SD) and Activity Diagram (AD) are analyzed in detail to give an exhaustive list

of failure modes for each component and each function, with their possible causes

and effects. Then the final FMEA report is created with help from experts in the

safety domain. To facilitate a deductive and iterative method like MéDISIS, a

database of dysfunctional behaviors is kept updated in order to rapidly identify

failure modes in different analysis phases. The next step of their work is the

mapping between SysML models and AltaRica data flow language, so that existing

tools to quantify reliability indicators such as the global failure rate, the mean time

to failure, etc., can be used directly on the failure modes identified in the previous

step.

The European COMPASS (Comprehensive Modelling for Advanced Systems of

Systems) project 1 tackled the safety analysis of Systems of Systems (SoS). In this

project [84], a safety profile was developed to annotate the SysML model of the

SoS by safety relevant information. The annotated SysML model is then processed

by the external HiP-HOPS tool to automatically generate FMEA tables.

1http://www.compass-research.eu/
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3.4 Automated Functional FMEA Generation in

SafeSysE

3.4.1 Functional FMEA Generation : Implementation

Functional FMEA aims at identifying potential failure modes and their potential

causes and local and system level effects since the functional stage in the design

process. It can be performed once the functional architecture of the system is

established. In this work, we propose an automatic generation of a preliminary

functional FMEA from the functional model in SysML. As seen in section 2.5, we

made the choice to model the functional breakdown by SysML activity diagrams.

A progressive breakdown of the system functions with several levels of detail is

performed. The decomposition is stopped once the designer is able to allocate

components to the functions in an appropriate manner (respecting the rules men-

tioned in section 2.5). This results in a tree like hierarchical representation of the

functions. In our study, we consider all the leaf functions in the FMEA generation

because we consider that the failure modes of the higher level functions are the

result of the failure modes of the lower level ones.

The starting point of the FMEA is the list of entities to be analyzed. In the case

of a functional FMEA, this corresponds to the list of the system functions.

As stated in the design methodology, the functional breakdown of the system mis-

sion into sub-functions is modeled with the activity diagram, used as an EFFBD.

In this way, in addition to the functions list, we have the input/output flows of

each function and we can see the way the system progressively transforms inputs

into outputs. This kind of information is very important to understand the system

functioning but it is also very important for safety analysis as it helps in predicting

failure propagation.

For the automatic generation, first the SysML model is exported into an XMI 2

file [78]. Since the most common usage of XMI is to exchange metadata for UML

models, it is straightforward for us to work with XMI files generated from a SysML

2

The XML Metadata Interchange (XMI) is an Object Management Group (OMG) standard for
exchanging metadata information via Extensible Markup Language (XML). The last one is a
markup language that defines a set of rules for encoding documents in a format that is widely used
for the interchange of data over the Internet, thanks to its simplicity, generality and usability.
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modeling tool such as Artisan Studio. A program, that we called SafeSysE Tool is

developed in this work to help in performing safety analyses. This tool interacts

with the SysML through the generated XMI file. In this way, our program works

directly on the XMI file and is thus tool-independent.

In an XMI document, after the header section containing information about the

versions of the standards and the tool that created it, we have the UML and

SysML sections that describe the model itself. Figure 3.3 shows an excerpt from

an XMI file where we can see how data is organized in a tree structure. Each node

of the tree is an XML element and is written with an opening and closing tag. An

element can have one or more XML attributes such as xmi:type, xmi:id and name.

Each attribute has a value and the id of an element is unique.

Figure 3.3: Excerpt from an XMI File

SafeSysE Tool parses the XMI file by using Beautiful Soup 3, a Python library

that provides methods to navigate, search and modify a parsed tree. For each

3http://www.crummy.com/software/BeautifulSoup/
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Figure 3.4: SafeSysE Tool

functionality, the program builds a graph with nodes and edges containing all

information needed for the generation of safety artifacts. Figure 3.4 shows the

program’s main functionalities with the corresponding input and output data. The

FMEA generation functionality is detailed hereafter. The other functionalites will

be explained in detail in the corresponding chapters.
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Functional FMEA Generation

The first step using SafeSysE Tool is to select the XMI file corresponding to

the model to analyze. SafeSysE Tool analyzes the given model and displays the

different packages of the model. The user can choose to generate a functional

FMEA for a particular package that represents a specific functional architecture

solution. If the selected package does not include a functional breakdown, then

an error message is generated and the user is asked to choose a new package. The

algorithm realizes the following two main steps:

1. Activity Diagram Extraction:

From the node corresponding to the chosen package in the parsed tree, the

program extracts all the information related to activity diagrams and stores

them in a graph. A node in the graph can be an activity, an action, etc

which is made up of its identity (id), name, type and the activity it belongs

to. If the node is an action node, input and output pins are also collected as

nodes in the graph. The edges of the constructed graph represent all possible

relationships between nodes.

2. XLS File Generation:

This step generates an .xls file corresponding to the FMEA worksheet by

creating columns and adding information, when available, for each function

in the given columns. For the functional FMEA, the column headers are :

“Function”, “Function failure mode”, “Causal factors”, “Immediate effects”,

“System effects”, “Recommended actions” and “Severity” but this list can

be modified if we want to add other information. The pre-filled columns are

described hereafter:

• Function: Functions (represented by activities) are extracted from the

graph built in the previous step “Activity Diagram Extraction”. Through

the edges connecting different nodes, information about input and out-

put pins as well as predecessor and successor activities is used to fill

the other columns.

• Function failure mode : The list of generic functional failure modes is

saved in a configuration file. By default, the configuration file contains

the following failure modes: “Fails to perform”, “Performs incorrectly
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(degraded performance)”, “Operates inadvertently”, “Operates at in-

correct time (early, late)”, “Unable to stop operation”, “Receives erro-

neous data”, and “Sends erroneous data”. This list can be customized

by editing the configuration file. These generic failure modes are au-

tomatically inserted into the failure mode cells of each function in the

automatically generated functional FMEA. If any other specific failure

modes of the system functions are noticed, they can be added later by

safety experts directly in the FMEA worksheet.

• Causal Factors : In the “Causal Factors” column, the input and output

parameters of the current activity/function are inserted. This does not

correspond to the final information required in the functional FMEA

but they are added to help the safety expert to be exhaustive in finding

all possible causes of failures.

• Immediate effects : As the causal factors, we pre-fill the immediate

effect cells by the upstream and downstream activities which are direct

predecessors and successors of the current function, respectively. It

means that a failure mode of a function can cause immediate effects for

the functions that are related with the current function by flow controls.

Once the preliminary worksheet is generated, the safety expert then completes

the FMEA by adding the relevant information. The FMEA team first checks the

list of the automatically generated failure modes and removes irrelevant failure

modes and/or adds new failure modes that have not been considered if any. Then,

they add the causal factors of each failure mode. As failure can propagate with

the system flows, the failure in one function can be caused by a failure of the

upstream functions. For instance, because of failure, the upstream function could

send a wrong flow causing an overload and consequently leading to a failure of the

function in question. In some cases, a function can also fail because of the failure

or degraded operating of the downstream functions.

The next step is analyzing each failure mode and determining the failure effects

at the local and system levels and the possible corrective actions to eliminate or

reduce the risks caused by each failure mode.

Finally, the severity of each failure mode is assessed in order to identify critical

functions and prioritize the list of corrective actions.
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3.4.2 Functional FMEA Generation: Case Study

In this section, the approach is illustrated with the Electro-mechanical Actuator

(EMA) presented in Appendix A. After the requirements definition and analysis

process, the functional analysis of the EMA is performed. A functional breakdown

is obtained with (nested) activity diagrams in SysML. This resulting functional

architecture of the EMA is given in Figure 3.5.

Figure 3.5: Functional Architecture of the EMA

Once the functional architecture is determined, the next step according to our

methodology is the functional safety analysis using the functional FMEA tech-

nique. In order to perform this step, the SysML system model is exported into

XMI format and then automatically explored to extract the list of system func-

tions and automatically generate the partially filled preliminary FMEA. For the

EMA, the preliminary FMEA automatically generated based on the functional

architecture of Figure 3.5 is given in Figure 3.16.

Based on this preliminary FMEA and on a good understanding of the system func-

tioning, the safety expert or the FMEA team completes the analysis to generate

the final FMEA. The completed functional FMEA of the EMA is given in Figure

3.17.
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As seen in this FMEA, several functions are critical because their failure could

have catastrophic effects. Corrective measures are then required to reduce the

risk. This can be obtained by allocating components with very high reliability

to achieve these functions but also by performing some changes at the functional

level by modifying or removing the critical functions if they are not essential

to the system functioning or adding fault tolerance mechanisms. In this case,

we decided to perform modifications at the functional level by adding an new

function of “Internal Diagnosis” to the system. This function collects measures of

some critical parameters of the different other functions and aims at identifying

potential functional degradation in the system that could be caused by a failure

and could lead to other failures. In case of abnormal behavior, this function will

inform the “Control and Command” function that will inform the pilot and adjust

the outputs it provides accordingly if needed.

Again, it is reminded that this example is chosen to illustrate the methodology

but we were unable to obtain any industrial information about it because of confi-

dentiality. As we don’t have a wide knowledge of the real system, and we have no

return of experience, the analyses provided here express our point of view and may

be criticized for lack of accuracy. However, they allowed us to test our approach.

Figure 3.6: Updated Functional Decomposition
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The updated activity diagram of the top-level function “Control Aileron Incidence”

is given in Figure 3.6.

The new added function implies modification of the other functions since they have

to provide this function with monitoring data. The updated activity diagrams of

the “Control and Command Updated” and “Actuate Aileron Updated” functions

are given in Figures 3.7 and 3.8 respectively.

Figure 3.7: Updated Functional Decomposition of Control Command

The resulting functional hierarchy after this design iteration is given in Figure 3.9.

As the functional architecture of the system has been modified, a new iteration

should be done in the functional FMEA to integrate the new function, analyze the

impact of its failure modes and also assess that this new function does not impact

the already established safety level.

When no more change needs to be done at the functional level, it’s time to move

to the next step of the methodology : the Logical Architecture Definition. The

logical architecture is obtained in two steps. The first one is the identification of

the components and allocating them to the functions. The next step then consists

in identifying the communication among components. Once logical architecture is

defined, the next task is to analyze it according to safety aspects. This leads to

the component FMEA generation that is the subject of the next section.
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Figure 3.8: Updated Functional Decomposition of Actuate Aileron

Figure 3.9: Updated Functional Hierarchy
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3.5 Automated Component FMEA Generation

in SafeSysE

3.5.1 Component FMEA Generation : Implementation

Component FMEA aims at identifying potential dysfunctional behavior of each

system component and evaluating its impact on the system global behavior. The

first step when performing a component FMEA is to delimit the boundary of the

study, i.e. the desired level of detail. A component FMEA can only be performed

when the system structure is known, i.e. components are identified and allocated

to functions.

The elaboration of a component FMEA is quite similar to the functional FMEA

since it is based on the same steps. The main difference is that component FMEA

focuses on the components while functional FMEA focuses on the system functions.

The component FMEA generation is based on the structural models of the system.

In our case, it is generated from SysML BDD and IBD. The first diagram provides

the list of system components while the second one provides the interactions among

components. Knowing the way in which the components interact and the different

flows exchanged among them is very useful for the safety analysis. Indeed, they

describe the way in which the flows propagate among the system. When errors

occur, they also propagate in the same way. As a result, the interactions among

components help in identifying potential causes and effects of failures.

For the automated generation, a new XMI file is generated from the SysML model.

This XMI file contains the latest version of the system including the list of func-

tions, the list of components and the allocation links between them. It also contains

the information about the input and output flows of each component and the con-

nections among the ports that give the communication paths among components.

The XMI file also contains the results of the safety analysis performed at the

functional level, i.e. the list of functional failure modes of each function. As the

developed safety profile allows to include some information about safety, mainly

component failure modes as well as their causes and/or effects, this information

is also available in the XMI file. The generated XMI file is then automatically

explored by SafeSysE Tool to identify the list of components as well as all the rel-

evant information relative to each component that is useful for the generation of
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the component FMEA. We have implemented a function that, giving the id of the

activity, returns the classes (or more specifically the blocks) that implement the

activity via the “allocated to” relationship in the SysML model. This information

is useful for the link between the functional and the component FMEA.

3.5.2 Component FMEA Generation: Case Study

3.5.2.1 Traditional Modeling

In this section, the component FMEA generation is illustrated with the EMA ex-

ample. The component FMEA generation is based on the structural models of the

system. In our case, it is generated based on the SysML structural diagrams, i.e.

BDD and IBD. Prior to the FMEA generation, we shall first build the structural

model for the case study. The logical structure of the EMA is obtained by the

allocation of components to the functions identified in the functional architecture

definition. The final functional breakdown is obtained as a result of iterations

between the design modifications and the safety analysis until no more modifica-

tions are possible to reduce the identified risks or that the modifications are not

considered reasonable in terms of the balance between the risk reduction and the

investment needed. The final functional hierarchy is given in Figure 3.9.

Three components are allocated to these functions as shown in the BDD represent-

ing the system structure given in Figure 3.10. As this diagram is performed after

safety analysis, it is different from the one presented in Appendix A. The main

difference is that the Internal Diagnosis function added as a result of the safety

analysis is allocated to the Embedded MCU with Power Bridge component. In

addition, we can notice that the inputs and outputs of the functions are modified

to include the flow exchanges with the added function. The interactions among

the components are detailed in the IBD given in Figure 3.11.

A preliminary FMEA is automatically generated from the IBD an extract of which

is given in Figure 3.12 containing the list of components. To ensure the consistency

of the component FMEA with respect to the functional FMEA, the functions allo-

cated to each component and their failure modes are also added in the preliminary

component FMEA. The safety expert then associates the functional failure modes

into the corresponding component failure to obtain the final FMEA.
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Figure 3.10: EMA Logical Structure with Functional Allocation

Figure 3.11: EMA Internal Architecture
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Figure 3.12: Extract of Preliminary Component FMEA

3.5.2.2 Mechatronic Extended Modeling

As mentioned in section 2.4, connection components as well as multi-physical

flows must be taken into account in order to have a complete safety analysis for

mechatronic systems. The Mechatronic Extended Modeling Profile allows to model

both aspects.

The resulting Internal Block Diagram of the EMA with the mechatronic extended

modeling including connection components is given in Figure 3.13. In this case

study, several components are added : a DataBus, a FeedbackBus, a Power-

Bus, a PowerSupplyHarness, and three mechanical couplings named respec-

tively MC Wing Mot: MechCoupling, MC Mot Trans: MechCoupling

and MC Trans Aileron: MechCoupling. When the connection components

are modeled by blocks, the flow ports on each component will represent the inter-

face allowing it to interact with other components by exchanging different kinds

of flows. The connectors (i.e. connection paths in SysML) will indicate that the

components are linked.

This modeling is closer to the real world systems where connection components are

materialized like the other components. However, as we said previously, integrated
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components can exist by combining several components into a unique component

and getting rid of the connection components consequently. This would lead to

new and more complex components achieving more functions with less connections

at the system level.

Figure 3.13: EMA Architecture Extended with Connection Components

The mechatronic extended model of the EMA including both connection compo-

nents and multi-physical flows is given in Figure 3.14

An extract of the FMEA automatically generated based on this extended model-

ing is given in Figure 3.15. In this table, all the components, including connection

components are automatically added. For each component, the multi-physical

flows that are likely to affect its behavior are automatically added in “Causal Fac-

tors”. To help the safety expert during the assessment of the immediate effects of

a failure, the components directly linked to each component are also automatically

added in the FMEA.

The final component FMEA is joined as Appendix at the end of this dissertation.
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Figure 3.14: EMA Architecture Extended with Multi-physical Flows

Figure 3.15: FMEA Generated with the Mechatronic Extended Modeling
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3.6 Conclusion

This chapter dealt with the Failure Mode and Effects Analysis (FMEA). It pro-

posed a method for automating some steps of the generation of both functional

and component FMEAs from the SysML system model. The automated steps

consist mainly in the extraction of the list of system elements to be analyzed and

their relationships to find out all possible failure causes and consequences. The

consistency between the latest design modifications and the FMEA information is

ensured by the Safety Profile integrated in SysML.

Using the developed safety profile allows to include safety properties in the system

model and they will be integrated in the generated FMEA. The safety profile also

allows to update the system model with the results of the final FMEA completed

by the safety expert. By doing so, the consistency is maintained between safety

analyses and the system design process.

The extended modeling using the developed Mechatronic Extended Modeling Pro-

file allows to integrate both the interconnection components and the multi-physical

couplings in the system model. This allows their automated integration in the gen-

erated FMEA and thus helps a more exhaustive safety analysis.

The automatic generation reduces both errors and duration of the FMEA process

and consequently reduces errors and time of the total development process. This

leads to a reduction in the development cost and thus increases the competitiveness

of the enterprise without loosing in the efficiency of the safety analyses.
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Figure 3.16: Automatically Generated Functional FMEA
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Figure 3.17: Functional FMEA Completed by the Safety Expert
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Chapter 4

Automatic Fault Tree Generation

from SysML Models

4.1 Introduction

Fault Tree Analysis (FTA) is a popular deductive safety analysis technique that,

starting from an undesired state (usually a failure state), aims at identifying all

the possible paths leading to this state. The paths are constituted of one or more

basic faults contributing to the undesired event [23, 85]. The result of the analysis

is a tree-like graphical representation where the basic faults (constituting the leafs

of the tree) are linked together by logical relationships. FTA allows to model the

fault propagation through the system. It is then very useful for the identification

of combinations of faults leading to hazardous undesired system states. It can

be also used in a quantitative way for reliability computation to ensure that the

system meets regulatory safety requirements.

However, for large systems, the manual construction of fault trees is laborious and

error-prone [85]. This led to a growing interest for the automated generation of

fault trees.

In this chapter we propose a method for the automated fault tree generation

that is performed in two steps. The first step provides a generic fault tree based

on the system structural model. It consists in an automated exploration of the

system model to identify specific patterns, then for each pattern, an algorithm

is built to generate the corresponding partial fault tree. The resulting generic
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fault tree is then obtained by assembling all partial fault trees. The second step

builds a specific fault tree for a special undesired event. This step is based on the

generic fault tree as well as the component FMEA already built in previous steps.

Fault tree is generated in two formats: an image for a better understanding of

fault propagation and an Open-PSA format for further exploration with existing

dedicated tools. The methodology is described in more detail in this chapter after

a reminder of the FTA basic concepts as well as a review of the related work about

the automated generation of fault trees.

This chapter is organized as follows. First the basic theoretical concepts about

fault trees are given in section 4.2. Then it gives an overview of related work in

section 4.3. Our pattern-based approach for automated generation of fault trees

from SysML models is presented in section 4.4 and illustrated with a case study

in section 4.5. Finally, the chapter is concluded in section 4.6.

4.2 Fault Tree Analysis (FTA)

In this section, the concepts and uses of Fault Tree Analysis (FTA) are presented.

Fault trees are widely used for safety assessment and reliability of systems for

over 40 years [86]. FTA is a popular deductive top-down technique for reliability

and safety analysis. Starting from an undesired state (usually a failure state of

the system), FTA aims at identifying all the possible causes of this failure state

by a top-down traversal of the fault tree until reaching the root causes. The

causes are usually given as paths constituted of one or more basic events (usually

faulty events but can also include normal events) contributing to the undesired

event [23, 26, 85]. The analysis output is a graphical tree diagram, called fault

tree. A fault tree describes the different paths within a system that lead to a

potential undesired loss event (or a failure). The pathways interconnect events and

conditions that contribute to the undesired system event or state using standard

logical operators or gates. The two most commonly used gates are the AND and

OR gates. The AND gate is used when both events need to occur to cause the

top event occurrence. If the occurrence of either event results in occurrence of the

top event, then the OR gate is used to connect the events.

A fault tree can be translated into a mathematical model to compute failure prob-

abilities. This model expresses the relationship between the probability of the
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top level event and the probabilities of the cause events. For each logical gate, a

mathematical formula gives the relationship between the probability of the output

event and the respective probabilities of the input events of the gate. The top

level event probability can then be deduced from this model.

FTA is also used in a qualitative way to identify weak points in the design. This is

obtained by identifying the necessary and sufficient combinations of basic events

that cause the top level events. These necessary and sufficient combinations are

called the minimal cut sets.

4.2.1 Fault Tree Event Types

In a fault tree, three kinds of events can be found: the top event, the intermediary

events and the primary events. Different kinds of primary events can be used in

a fault tree. The definition and symbol of each of these primary events are given

hereafter [26]. A specific geometrical shape is given to each kind of event. Two

different ways can be found in the literature to note the name of event: either in a

rectangle stuck just above the geometric form or directly inside it. Both symbols

are given for each event below.

• Basic event

A basic event is a basic initiating fault requiring no further development.

The basic event symbol is given in Figure 4.1.

Figure 4.1: Basic Event Symbol

• Conditioning event

A conditioning event is a specific condition or restriction that applies to any

logic gate (used primarily with PRIORITY AND and INHIBIT gates). The

conditioning event symbol is given in Figure 4.2.
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Figure 4.2: Conditioning Event Symbol

• Undeveloped event

An undeveloped event is an event which is not further developed either

because it is of insufficient consequence or because information is unavailable.

The undeveloped event symbol is given in Figure 4.3.

Figure 4.3: Undeveloped Event Symbol

• House event

A house event is an event which is normally expected to occur as part of the

nominal system operating. The house event symbol is given in Figure 4.4.

Figure 4.4: House Event Symbol

4.2.2 Fault Tree Logical Gates

Different logical gates can be used in a fault tree to link the events (gate inputs)

leading to the upper level event (gate output). The gates describe the logical

combination of input events that lead to the output event. The main gates are

described hereafter by using the definitions given in [26]. The gates symbols are

given in Figure 4.5.

• AND gate: “Output fault occurs if all of the input faults occur”;
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(a) AND (b) OR (c) COMBINATION

(d) EXCLUSIVE OR (e) PRIORITY AND (f) INHIBIT

Figure 4.5: Logical Gates Symbols

• OR gate: “Output fault occurs if a least one of the input faults occurs”;

• COMBINATION: “Output fault occurs if n of the input faults occur”;

• EXCLUSIVE OR: “Output fault occurs if exactly one of the input faults

occurs”.

• PRIORITY AND: “Output fault occurs if all of the input faults occur

in a specific sequence (the sequence is represented by a CONDITIONING

EVENT drawn to the right of the gate)”;

• INHIBIT: “Output fault occurs if the (single) input fault occurs in the

presence of an enabling condition (the enabling condition is represented by

a CONDITIONING EVENT drawn to the right of the gate)”.

4.3 Automated Generation of Fault Trees: Re-

lated Work

Manual construction of fault trees is time consuming and error prone, especially

for complex systems. To cope with this complexity, automatic generation of fault

tree has been subject of many research works. Several approaches are used for the

automatic generation of fault trees. The main difference concerns the type of the

starting model based on which the generation is performed. In the following, a

brief overview of some recent works is given.
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Yakymets et.al in [87] combine the analytic approach with formal verification

methods for the automatic generation of fault trees from SysML models. In this

approach several steps are needed. First, the system to be analyzed is designed

and its structural models are built using the SysML BDD and IBD diagrams.

These models are then annotated with failure behavior. Then the entire model is

converted into AltaRica language [38, 42, 43]. An algorithm already existing in the

ARC tool analyzes the AltaRica model and derives the different minimal cut-sets

from the model. These cut-sets are assembled to form the final FT. The resulting

FT can be represented either with Open-PSA or a SysML dedicated profile.

Tajarrod and Latif-Shabgahi in [86], describe fault trees construction from MAT-

LAB Simulink models. In this work, the nominal model is built in Simulink

and then is manually extended with failure behavioral information of the system.

Based on this extended model and the classification of components, fault tree for

a specific top event is automatically constructed.

An automatic generation of fault trees from AADL (Architecture Analysis and

Design Language) models is proposed in [88]. In this work, the system architectural

model is built with the AADL language and then is annotated with fault and

failure information using the Error Annex, a sub-language of AADL. Based on the

annotated model, fault trees are automatically generated in a commercial tool:

CAFTA.

The Formal Safety Analysis Platform FSAP toghether with the NuSMV-SA (the

NuSMV model checker for safety analysis) engine presented in [39, 89] provide a

uniform platform for modeling both nominal and degraded behavior of complex

system with the objective to formally verify this behavior. In addition to the

formal verification, the tool can be also used as a powerful fault tree analysis

tool. However, one limitation of this tool is that the fault trees automatically

generated with minimal cut sets have a flat structure with only two levels deep.

This representation does not reflect the structure of the system and consequently,

exploring the fault tree to understand the fault propagation through the system

components is not very intuitive for systems engineers.

However, as far as we know, there is no related work concerning the fault tree

generation from SysML models as in our study.
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4.4 Automated Fault Tree Generation from SysML

IBD

In this section, we will describe our method to generate fault trees automatically

from structural diagrams, i.e SysML Internal Block Diagrams (IBD). The IBD

gives the internal structure of the system and the interactions among components.

The interfaces through which the components interact are represented via stan-

dard and flow ports and the interactions are represented via paths between the

corresponding ports called “connectors”. If a failure occurs in one component, it

will be propagated throughout the system via these paths. The idea of this work

is to automatically generate fault trees based on the system IBD, using two con-

cepts: directed graph traversal and block design patterns. Each concept is detailed

hereafter.

4.4.1 Directed Graph Traversal

An IBD can be represented as a directed graph G = (V,E) where V is the set

of vertices and E is the set of directed edges. The set of vertices is composed of

system components and external interfaces respectively represented by the parts

of an IBD and ports that are situated on the border of the system. The external

interfaces can be either input ports through which the system receives flows from

its environment (users or contributing systems) or output ports through which

the system provides required output flows to its environment. The internal ports

through which the components interact do not need to be represented since they

can be abstracted by edges directly connecting parts. It is also noted that the graph

G accepts multi-edges between two parts that symbolize different kinds of items

flowing between these two parts. So, to build a fault tree for a given undesired top

event, a graph traversal algorithm can be used to find out components relating

to each other by using the directed edges. This algorithm follows the principle

of backtracking from the hazard to the leaf events. The traversal starts at an

external output port, traces back to nodes that are his predecessors and continues

to visit the other nodes. Since a node can have several predecessors, a branch is

finished when we reach an external input port, or when we arrive back to a node

that has already been visited.
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4.4.2 Block Design Pattern

To facilitate the fault tree generation, we also use the “divide and conquer” princi-

ple by partitioning the IBD and treating each partition separately. Indeed, during

the graph traversal, the algorithm also identifies some interesting patterns in an

IBD. Each pattern gives rise to a sub-fault tree and the whole fault tree will be

assembled automatically by using the mentioned graph traversal algorithm. The

fault tree generated in this way is a generic one transcribing the system topol-

ogy, i.e. the different paths within a system through which faults can propagate

to reach the mentioned output port. If the system has several outputs, then a

generic fault tree is built for each output port to describe all the paths that could

lead to an error on this output.

In this work we have identified different patterns each of which has a specific role

in the system. These patterns are Entry, Exit, and Feedback. Another kind of

pattern, named Redundant pattern, related to safety design criteria where a block

part can have input ports coming from components assuring redundancy for higher

reliability is also studied.

The following subsections describe the recognized patterns as well as their gener-

ated partial fault trees. All these patterns are grouped into an illustrating IBD in

Figure 4.6. Each pattern is surrounded with a dashed rectangle annotated with

the corresponding name in an attached note.

4.4.2.1 Entry Pattern

An “Entry pattern” is composed of an entry part and its ports. An entry part

in an IBD is a block part that has at least one input port receiving item flow

from outside the actual system/subsystem (block B1 in Figure 4.6 is an entry

part). In the generated sub-fault tree (Figure 4.7), this special input port will be

transformed into a basic event representing a failure or error of a system component

that is outside the actual block. We will have an OR logic gate whose operands

are: the internal failure of the part and the basic events representing the external

failures (from input ports on the boundary) and failure of all eventual input ports

of the part coming from other components.
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Figure 4.6: IBD Block Design Patterns

Figure 4.7: Fault Tree for Entry Pattern in Figure 4.6
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4.4.2.2 Exit Pattern

An “Exit pattern” is composed of an exit part and its ports. An exit part in an

IBD is a block part that has at least one output port sending item flow out of

the actual system/subsystem (bloc B5 in Figure 4.6). In the corresponding fault

tree (Figure 4.8), this special output port gives rise to a top event undesired state

of the actual system modeled by the IBD. The corresponding partial fault tree is

given by an OR gate whose operands are: the internal failure of the exit part and

all other eventual intermediate events that characterize failures coming from other

input ports of the part.

Figure 4.8: Fault Tree for Exit Pattern in Figure 4.6

4.4.2.3 Feedback Pattern

By traversing the directed graph representing an IBD, if we encounter a node that

has already been visited, then we have a loop or a “Feedback pattern” in the

current graph. In Figure 4.6, when generating the logic diagram for the output

port o4-2 of the part B4, we need to take into account the input port i4 which

comes from the output port o3 of the part B3. In its turn, the logic diagram of o3

must consider errors that may come from i3-2, propagated from B4. A cut can be

realized here in order not to take into consideration the input ports such as i4 as

an operand of the OR gate. The corresponding fault tree of the feedback pattern

of Figure 4.6 is illustrated in Figure 4.9.

4.4.2.4 Redundant Pattern

When a part in an IBD receives item flows coming from redundant blocks that

carry out the same system function, then we have a “Redundant pattern” (B2,
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Figure 4.9: Fault Tree for Feedback Pattern in Figure 4.6

B11 and B12 in Figure 4.6). By using the safety profile described in section 2.3,

the blocks B11 and B12 are stereotyped “redundant” and, in order to ensure

consistency, the two blocks must be allocated to the same system function. In

this case, an AND gate is used for different faults coming from different inputs

to model the fact that if there is no internal failure in the component B2, the

component will not work only if all the redundant item flows fail. The fault tree

for our example of redundant pattern is given in Figure 4.10.

Figure 4.10: Fault Tree for Redundant Pattern in Figure 4.6

When the whole fault tree is generated automatically from an IBD by using the

identified patterns and a graph traversal algorithm, we will have a generic fault tree

for the corresponding system. In order to have a specific fault tree for an undesired

top event failure, information from previous safety analysis results, i.e. component

FMEA can be used to refine this generic fault tree. Knowledge of safety experts is

also very important in order to detail some branches with different failure modes
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or to cut out some unreachable branches, regarding the undesired top event failure.

This proposal will be explained via the case study given in Section 4.5.

4.4.3 Implementation

As in the FMEA generation, the user can choose to generate a fault tree from an

Internal Block Diagram found in a given package. There are two possible output

formats: a .svg image file or a .psa file following the Open PSA Model Exchange

Format (http://www.open-psa.org/joomla1.5/index.php). The FTA generation

has three steps: internal block diagram extraction, fault tree generation and fault

tree prettyprint. The first two steps are common for the different formats, and

only the back-end step is specific.

1) Internal Block Diagram Extraction:

The graph for internal block diagram data is built of vertices representing blocks

and ports while maintaining only id, type and name information. The edges of the

graph showing blocks and ports that are connected to each other in the original

internal block diagram via connectors.

2) Fault Tree Generation:

This step follows the algorithm described in Section 4.4.1. The result of the step

is a tree whose root is a port with no successor (output port) and at least one

ancestor. We have different Python classes for different kinds of node in a fault

tree : LogicalGate (AND and OR ports for the moment), Leaf (Internal and

External Failure) and FTANode for internal nodes. A simple depth-first search

on the graph built from the previous step is implemented, by keeping the list of

visited vertices to avoid cycles.

3) Fault Tree Prettyprint

• SVG File

Tree layout is an NP-complete problem, so we have tried to implement dif-

ferent techniques (http://billmill.org/pymag-trees/) to make an acceptable

representation. First, the graphical layout of the tree computed from the

previous step is stored in the Python TreeLayout class, and then its size

(vertical and horizontal dimensions) is defined. The Python svgwrite library
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is used to implement Scalable Vector Graphics drawing objects. The choice

of SVG, an XML-based vector image format for interactivity and animation,

is justified by modern web browsers support.

• Open PSA Model Exchange Format

The algorithm to transform a fault tree into Open PSA format performs

a breadth-first search on the tree generated from the previous step. It is

straightforward to carry out the transformation by adding necessary tags to

define or to reference an element in the output file.

4.5 Case Study

The case study considered in this chapter is the Electro-Mechanical Actuator

(EMA) presented in Chapter 3. In this step, we consider that all the previous

steps, i.e. the functional architecture as well as the functional FMEA and the

logical architecture with the component FMEA of the EMA are already estab-

lished. As a reminder, the obtained logical architecture for the EMA is given in

Figure 3.11. The three parts constituting the EMA are named respectively Geared

Motor with Encoder for the electric motor, Mechanical Transmission for the me-

chanical transmission and Embedded MCU with Power Bridge for the electronic

components and the code that control the system.

In the previous step, the component FMEA containing the list of components was

automatically generated from the IBD in Figure 3.11 and then completed. To

ensure the consistency of the component FMEA with respect to the functional

FMEA, the functions allocated to each component and their failure modes are

also automatically added. The safety expert then associates the functional failure

modes into the corresponding component failures and also checks and completes

the other columns in consistency with the functional FMEA. For more detail about

this step, please refer to the Section 3.5 of the Chapter 3.

Figure ?? shows an extract of the final component FMEA for the EMA containing

the failure modes leading to the “Aileron locked” undesired event, which will be

used for the fault tree generation. The pre-filled data is written in italic font and

red color, and the information added by safety expert is written in normal text.
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Figure 4.11: EMA Generic Fault Tree

Based on the system model given in Figure 3.11, a generic fault tree for a top

event at a specific output of the system is automatically generated. This fault tree

is built from partial fault trees generated according to the patterns and the graph

traversal algorithm given in section 4.4. The generic fault tree for the “Mechanical

Power” output is given in Figure 4.12.

Several undesired events can occur at each output. For each specific undesired

top event, we can extract from the FMEA results the corresponding failure modes

of each component that lead to the top event in question. The specific fault tree

for the “Aileron locked” top event is given in Figure 4.13. In this fault tree, a

branch is eliminated because no failure mode of the Geared Motor with Encoder

leads to the “Aileron locked” event. Internal failure of some components such as

Geared Motor with Encoder and Embedded MCU with Power Bridge is completed

by their specific failure modes.

The FMEA and FTA generation has already been implemented by using programs

written in Python language. The FMEA program parses an XMI file representing

the SysML models and generates an Excel file corresponding to the functional

or the component FMEA worksheet. This Excel file can be then completed by

safety analysts, and parsed again by another Python script in order to insert new
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Figure 4.12: Extract of component FMEA

information into the safety stereotypes integrated in the XMI file, via the safety

profile extension. The FTA program analyzes the same XMI file and can generate

fault trees in different formats. Actually, two formats are proposed: an image

format useful for visualizing the fault tree and an Open-PSA (Probabilistic Safety

Assessment) format to make the results exploitable by the XFTA engine [27]. In

case of need, implementation can be performed to include other formats to make

the generated fault trees exploitable by other existing fault tree analysis tools.

4.6 Conclusion

In this chapter, the automated fault tree generation is presented. This is a step

of our methodology to integrate safety analysis within a SysML-based systems

engineering approach. The automatic generation of safety analysis artifacts (for

instance fault trees) will help reducing time and errors. Consistency between
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Figure 4.13: EMA Specific Fault Tree for “ Aileron locked” Top Event
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safety analyses and design is maintained throughout this integrated process since

FMEAs and fault trees are directly generated from the latest system model ver-

sions. Consistency between different safety analyses is also maintained since each

step is based on the previous analysis results. Indeed, the fault tree generation

also relies on the component FMEA results.

In this work, only basic gates (i.e. AND and OR) are considered. In future work,

we will try to deal with more advanced feature by detailing the different kinds of

redundancy and including more gates in the generated fault trees.
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Chapter 5

Behavioral Safety Analysis

5.1 Introduction

The previous chapters dealt with compositional safety analysis, i.e. safety analyses

based on system composition (or hierarchical models) [22] and particularly focused

on FMEA and FTA. These artifacts analyze the relationships between failures and

their effects and causes based on the system topology. They are valuable as they

can be started early in the design process and early identify weak design points such

as single points of failures. Consequently, they influence design decisions and help

designers to improve their work by choosing appropriate components and adding

redundancies when needed, and help also in deriving and refining requirements

[22].

The key limitation of these techniques however, is the fact that they are mainly

static analyses and they do not take into account the dynamic behavior of the

system. A comprehensive safety analysis must take into account both compo-

sitional and behavioral aspects. Behavioral Safety Analysis (BSA) [22] aims at

assessing that the system really performs the specified behavior. In this approach,

system-level effects of failures are established by the injection of faults into the

system formal specification and observing the effects of these faults on the system

behavior. The analysis is usually carried out by using mathematical tools such as

guarded state graphs, Petri Nets, theorem proving or model checking. The use of

formal methods to assess system behavior is recommended by some standards for

safety critical systems thanks to the rigor of these methods [90].
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This chapter deals with the behavioral safety analysis by giving an overview of

its purposes and techniques. It also represents our approach using model check-

ing for safety requirements assessment. The SysML state machines of different

components representing the nominal and error states as well as the IBD of the

system modeling error propagation are exploited to generate a NuSMV [39] pro-

gram. This program, which is an abstraction model of the system, will be used to

verify if some safety requirements (written in temporal logic formulas) are satis-

fied. A simplified case study, the Wheel Brake System (WBS) is used to illustrate

the approach.

The chapter is organized as follows. First, the principle of model checking and

some related work concerning the application of model checking in safety analy-

sis are given in section 5.2. Our proposal to use SysML state-machines for state

transitions and IBD for error propagation in order to generate automatically a

NuSMV program to verify safety requirements is presented in section 5.3. Section

5.4 describes in detail the Wheel Brake System case study, from preliminary anal-

ysis to safety requirements formal verification. Conclusions are given in section

5.5.

5.2 Formal Methods for Safety Analysis

5.2.1 Model Checking Principle

Model checking is a formal verification method used to verify a set of desired

behavioral properties (usually related to safety requirements) of a system through

exhaustive enumeration of all the states reachable by the system and the behavior

that goes through them. This automated process receives a model of the system

and one or more temporal logic formulas [91] representing the properties to be

verified, and then determines whether the system satisfies these properties or not.

If the properties are not satisfied, the model checker provides a counter example

(a path or a sequence of steps leading to undesired state) to help the designer

perform corrective design changes. This process is described in Figure 5.1.

Because of automation and counter-example generation facility, model checkers

have become popular debugging tools and have been used in reactive systems
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Figure 5.1: Model Checking Principle

such as hardware and circuit designs, communication protocols, telecommunica-

tion switches and even user interfaces. The application domain of model checking

is usually finite-state concurrent system. As described by Clarke et al. in [92], the

process of model checking consists of the following tasks.

5.2.1.1 Modeling

In this phase, the formal model of the system is built by converting a system into a

formal model accepted by the model checking tool that will be used. Abstraction

may be used to eliminate irrelevant or unimportant details of the system with

respect to the specified properties that we check for the correctness.

5.2.1.2 Specification

The properties that the system must satisfy are stated by e specification process.

The specification often uses a temporal logic formalism, which can assert how the

behavior of the system evolves over time. This formalism is used for describing

sequences of transitions among states in a reactive system. A temporal logic

formula might specify that eventually some selected state is reached, or that an

error state is never entered, by using special temporal operators. However, a

problem in property specification is the completeness. It is impossible to determine

whether a given specification covers all the properties that the system should

satisfy or not.
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5.2.1.3 Verification

Given a model with a set of states that represents a finite-state concurrent system

and a temporal formula describing the specification, the model checking problem

is to find the set of all states that satisfy this formula. The verification is done

automatically by a model checker but the analysis of the verification results often

involves human assistance. In case of negative results, a counter example of the

checked property is used to help the designer to find out where the error occurred.

However, an error trace can also result from incorrect modeling of the system or

from an incorrect specification. Another possibility is that the verification fails to

terminate normally, due to the size of the model, which is too large with respect

to the memory capacity. In either case, the modeling or the specification or the

verification phase must be adjusted and then the process be repeated.

The major problem with model checking is the state explosion problem. The size

of the systems under analysis grows exponentially with the number of variables

in the system. This makes model checking impractical for all but small systems.

Some existing advanced techniques can deal with the state explosion problem

using symbolic representations based on ordered binary decision diagrams, partial

order reduction, modular structure with the assume-guarantee reasoning strategy,

abstraction, symmetry, induction.

Another disadvantage of model checking is the restriction to finite state systems.

One possible solution is the integration with the theorem proving method, which

has so far been the only viable alternative.

5.2.2 Related Work

The application of model checking in safety analysis has been studied in many

researches [22, 38–41] for safety requirements verification and/or automatic fault

trees generation.

FSAP/NuSMV-SA [39, 89] is an automated safety analysis tool that aims at pro-

viding a uniform environment for design and safety assessment of complex systems.

It provides a library of predefined failure modes that can be injected to the initial

system model to augment it with failure behavior and thus create a so-called ex-

tended system model. By having both nominal and extended modeling, the tool
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allows to assess the system safety both in nominal conditions and in user-specified

degraded situations, that is, in the presence of faults. This platform is made up

of two components: FSAP (Formal Safety Analysis Platform), which provides a

graphical user interface, and NuSMV-SA, which is a safety analysis engine based

on the NuSMV model checker. The FSAP/NuSMV-SA takes as input a system

model in NuSMV format and automatically produces the analysis results. As a

result, the tool produces property verification results as well as counter examples

if the verified properties do not hold, minimal cut-sets and fault trees. The safety

requirements (i.e., the properties to verify) are expressed in temporal logic and

can be subsequently verified using the NuSMV model checking verification engine.

The model checker is used as a validation tool.

AltaRica is another formal specification language that was designed to specify the

behavior of complex systems [38, 42, 43]. An AltaRica model is composed of nodes

that are characterized by their reachable states, in and out flows, events, transi-

tions and assertions. The main phases of safety assessment with AltaRica include

system modeling, formal safety requirements, graphical interactive simulation and

safety assessment [38]. Once a system model is specified in the AltaRica language,

it can be compiled into a lower level formalism such as finite-state machines, fault

trees and stochastic Petri Nets. The safety requirements are formalized with the

use of linear temporal logic operators and the formal verification technique can

be performed by the AltaRica’s MEC 5 model checker. To perform safety analy-

sis with AltaRica, a new model of the system shall be built in AltaRica language

which does not guarantee consistency between the two models. The model checker

is also limited by the size of systems it can handle.

Joshi et al described in their report [40] the so called Model-Based Safety Anal-

ysis in which the nominal (non-failure) system behavior captured in model-based

development is augmented with the fault behavior of the system. Like in [22],

temporal logic is used to formalize informal safety requirements, and the model

checker NuSMV is used to validate these requirements. To illustrate the process,

a case study about the wheel brake system is well detailed in the report, with a

fault model consisting of different component failures, i.e. digital and mechani-

cal failure modes. Fault tolerance verification is carried out by using additional

variables and real-time temporal logic operators to investigate if the system can

handle some fixed number of faults. Nonetheless, the model-based development

studied in this paper addresses principally Simulink. In this thesis however, we
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are interested in integrating safety analysis into a more general framework, namely

systems engineering via SysML.

In her thesis [22], Sharvia dealt with the integration of the Compositional Safety

Analysis (CSA) and the Behavioral Safety Analysis (BSA). In her work, BSA is

based on the CSA results, i.e., system failure models and preliminary information

about state-automata that represent the transition between normal and failure

states of the system. Next, in the BSA, model checking can be carried out on

these behavioral models in order to verify automatically the satisfaction of safety

properties. So the CSA and BSA could be effectively combined to benefit from the

advantages of both approaches. Even so, behavioral information captured from

CSA is rather limited because its main purpose is the failure propagation and

hierarchy, not the dynamic behavior.

Yakymets et al. in [87] present a Safety Modeling Framework for Fault Tree gen-

eration SMF-FTA. This framework includes meta-models, profiles, model trans-

formation, verification and FTA tools. It enables the use of formal verification

and FTA algorithms during MBSE process. The model transformations tools in

this framework allow the transformation of SysML models into several formats like

AltaRica.

5.3 Our Proposal: Model Checking with SysML

5.3.1 Principle

There are many works about model-based safety analysis but few researches have

addressed the direct connection between SysML and model checking. As our

integrated methodology SafeSysE is based on the use of SysML to model the

system, we will also integrate formal verification with model checking directly

with SysML models in our approach. In this process, the dysfunctional behavior

of the system and its components is captured in SysML via state machine diagrams

describing the system/component states (nominal, degraded and failed) and the

transitions between them. Combining the information provided by these state

machine diagrams with the information provided by internal block diagrams, we

can generate automatically the NuSMV model that will serve for verifying the

given properties we want to assess the system for. The mapping between SysML
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models and the NuSMV model is shown in Figures 5.2 and 5.3 for the component

modules and main module respectively.

Figure 5.2: NuSMV Component Modules Mapping with SysML diagrams

Once the NuSMV program is generated, manual modifications can be added to

precise the relationships between parameters and to define the requirement speci-

fications.

5.3.2 Implementation

We have implemented a prototype for the NuSMV program generation in our

SafeSysE tool. For this purpose, the parsed tree corresponding to the initial XMI

file is used to build a graph containing information about the state machine of
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Figure 5.3: Main NuSMV Module Structure

the system and of the components: the nodes of this graph are the states and

the edges are the transitions. Connections between blocks in the Internal Block

Diagram are also taken into account to model failure propagation. By using the

integrated safety profile, we are able to identify a nominal, a degraded or a failed

state of the component or the system.

A NuSMV module is generated for each component. The list of formal arguments

of the module contains all input ports of the corresponding block in the IBD. The

module variable declarations are added by taking all output ports of the block

as well as transitions in the state machine of the component. The initial state is

easily identified by using the state machine information. Equations establishing

the relationships between input and output values, as well as nominal and failure

states are also given. The main module corresponding to the system is then built

from its internal states and variables representing different components. State

transitions will take into account the relationships between input and output ports

of different components. Once a NuSMV code is generated for the whole system,

a safety requirement written in temporal logic syntax can be tested with a model

checker to verify if the system satisfies this requirement.

The main problem encountered while developing this prototype, is the difficulty
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to translate the properties to verify from natural language to the correct formula

in temporal logic format. Indeed, translating safety requirements into temporal

logic formula requires a knowledge in this domain and a systems engineer may be

not very familiar with it. An idea to tackle this problem would be to propose a

set of templates for expressing the properties in the natural language and provide

an automatic translation for these well-known patterns.

5.4 Case study

The case study in this chapter is the Wheel Brake System (WBS) of an aircraft

described in the Appendix L of the SAE-ARP-4761 standard [12], and also studied

several works such as [16, 22, 40]. This WBS with other aircraft sub-systems

contribute to achieving the system function: “Decelerate Aircraft on Ground”.

This function is safety critical since its failure could lead to catastrophic effects.

As the behavioral safety analysis is performed once the system structure and be-

havior are established, we will first give an overview of the previous steps includ-

ing compositional safety analysis and system structure definition according to this

analysis. Next, we will run the BSA in a very simplified way to illustrate the

different steps of performing it.

5.4.1 Preliminary Analysis

In this section, the steps assumed to be already performed before the behavioral

safety analysis are presented for the case study. These steps are those described

in Figure 2.16. This top-down design process usually begins with requirements

definition and analysis. Then a breakdown of system functions is established based

on the defined system functional requirements. A functional decomposition of the

aircraft functions is given in the SAE-ARP-4761 standard [12] but is outside the

scope of our interest. In this work, we will focus on the sub-function “Decelerate

Aircraft on Ground” of the higher level function “Control Aircraft on Ground”.

A preliminary safety analysis of the “Decelerate Aircraft on Ground” shows that

the considered function is critical to the functioning of the system since its failure

could lead to catastrophic consequences like the aircraft leaving the runway or

Fäıda MHENNI Safety Integration in a Systems Engineering Approach for Mechatronic System Design



Chapter 5. Behavioral Safety Analysis 134

Figure 5.4: Breakdown of the ”Decelerate Aircraft on Ground”

crashing the buildings or equipment in the airport. A safety requirement is derived

from this analysis: “Loss of wheel braking during landing or rejected take-off shall

have a frequency less than 5 E-7 per flight” [40]. This requirement is noted as

SR-WBS.

A further breakdown of the “Decelerate Aircraft on Ground” shows that it has four

sub-functions that are: “Decelerate Wheels on Ground”, “Prevent Aircraft from

Moving when Parked”, “Control Thrust Reverser” and “Control Ground Spoiler”

(Figure 5.4). Since the wheels deceleration has a stronger effect than other braking

systems, our safety analysis will be hold on the function “Decelerate Wheels on

Ground”. The wheel braking system is allocated from this function. It is made of

a physical part that actually brakes the wheels and a control part to monitor the

functioning.

Based on safety analyses results, and given that the WBS performs a safety critical

function, it must be fault tolerant. This property is obtained by using redundant

components for both the control and the physical parts. The physical part con-

tains two redundant hydraulic lines, a Normal line that is first activated and an

Alternate one that is activated when the normal chain is inoperative. Each of

the two systems has an independent power source the NormalHydraulicResource

and the AlternateHydraulicResource respectively. A supplementary power source,

called emergency power source, is also mandatory for the wheel-brake system in

aircraft [6]. In our case, an Accumulator is added and provides the braking sys-

tem with hydraulic power when all the other power sources are inoperative. The
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Figure 5.5: Wheel Brake System Structure

SysML Internal Block Diagram in Figure 5.5 describes the wheel brake system and

the interactions between components. The interactions help analyzing the fault

propagation through the system.

Once the system structure is defined, we can model the dysfunctional behavior

and verify safety properties using formal methods. This will be the subject of the

next section.

5.4.2 Safety Requirements Formal Verification

In this section, the behavioral safety analysis of the case study is described. The

three steps of the model checking process are detailed respectively.

5.4.2.1 Modeling

The first step in performing model checking is building the formal model of the

system. In our case, this model is obtained by converting the relevant parts of the

SysML model of the system. To model the dysfunctional behavior of the WBS,

we consider four modes or states. These states are:
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• normal: when the Normal line is operated;

• alternate: activated when the Normal line fails and this failure is noted as

failNormal;

• emergency: activated when Alternate mode also fails (failAlternate). The

accumulator provides power source in this mode;

• fail: when all components are in failure state. The failure of the accumulator

is noted as failEmergency.

These modes and the corresponding transitions are modeled in an automata de-

scribing the dynamic behavior of the system including fault effects given by a

SysML State Machine Diagram (see Figure 5.6).

Figure 5.6: Dynamic Behavior Including Faults Automata

The NuSMV model is then generated from the SysML IBD (Figure 5.5) and this

state machine diagram. The mapping principle between the two models is de-

scribed in section 5.3.2 and is illustrated in Figure 5.7.

Once the formal model is built, the next step is the safety requirements specifica-

tion.

5.4.2.2 Specification

The specification describes the properties that the system shall satisfy, in our

case safety requirements. For the case study, a further refinement of the safety

requirement SR-WBS results in the safety requirements SR1-WBS and SR2-WBS.
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(a) Example of NuSMV Component Modules

(b) NuSMV Main Module Structure

Figure 5.7: Mapping Between SysML Model and NuSMV Model

These requirements specify the fault tolerance specifications required from the

wheel brake system behavior. The WBS shall be able to brake the aircraft even

in presence of a certain number of failures detailed in SR1-WBS and SR2-WBS.

• SR1-WBS: When output is not supplied by Normal Line, and there is no

failure accounted in Alternate line, pressure shall be supplied from Alternate

line.
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Figure 5.8: Safety Requirements in SysML

• SR2-WBS: When both Normal line and Alternate line are not producing

output, as long as there is no failure accounted along the emergency line,

the system shall not fail.

These requirements are captured in the SysML model and linked to corresponding

test cases as shown in the SysML Requirements Diagram given in Figure 5.8.

In addition to the automata and IBD, the NuSMV program shall also contain the

specification, i.e., the requirements to be verified (Figure 5.7 b).

The safety requirements SR1-WBS and SR2-WBS are respectively specified by

temporal formulas F1-WBS and F2-WBS:

• F1-WBS: SPEC AG ((normalLine.output = False AND alternateLine.failAlternate=

False) → alternateLine.output=True).

• F2-WBS: SPEC AG ((normalLine.output = False) AND (alternateLine.output

= False) AND (emergencyLine.failEmergency = False) → !(systemMode =

fail))
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Figure 5.9: The NuSMV Verification Result

In these formulas, the following operators are used:

• Logical operators:

– !: logical NOT

– AND: logical AND

• Temporal operators:

– A that means All: A p means that the property p has to hold on all

paths starting from the current state;

– G that means Globally: G p means that p has to hold on the entire

subsequent path.

More detail about temporal logic can be found in [91].

5.4.2.3 Verification

Once the whole model and the specifications are entered in the NuSMV model,

the next step is the automated verification. Running the NuSMV program, these

two properties are shown to hold. The solver returns true for both properties (see

Figure 5.9).

5.5 Conclusion

In the previous chapters, we have shown how some safety analysis results such

as FMEA and FTA can be generated from SysML structural and behavioral dia-

grams. In this chapter, we extend the work by integrating in this unique frame-

work the automated verification of SysML models with regard to safety properties.

However, there are still some limitations with our approach. The abstract model
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of the example system is rather simple and can be refined to model more exactly

the behavior of the system in case of various failure modes and different redun-

dancy mechanism. In addition, the translation of informal safety requirements

into temporal logic formulas is not always straightforward. A counter-example of

the checked property can in fact result from incorrect modeling of the system or

from an incorrect specification.

Our future work is to investigate in more detail the structure of the system to

propose a more precise behavioral formal model with different failure modes prop-

agation. Complex system properties for verifying system fault tolerance by using

special temporal logic operators must be supported. At the same time, the scal-

ability of the model checker must be tested in accordance to the size and the

complexity of the models.
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The increasing complexity that characterizes new manufactured systems is a real

challenge for designers, mainly for systems engineers and safety experts that deal

with the whole systems. The first ones, as system architects, have to manage this

complexity generated by the interesting perspectives given by merging several en-

gineering domains (mechanics, electronics, software, hardware, etc.,) while being

constrained by the physical behavior and the interference of several physics imply-

ing taking into account constraints like Electro-Magnetic Compatibility (EMC),

dynamics and vibrations, thermal couplings, etc.

SysML, the relatively new but widely used systems modeling language provides

systems engineers with the ability to generate a consistent multi-view modeling

of the system. This language supports model-based systems engineering approach

and facilitates harmonizing the overall design process by paving the way for simu-

lation and dimensioning of alternative solutions in order to manage trade-offs and

choose the more relevant design for a given set of requirements.

The design of safety critical systems implies a particular focus on safety require-

ments to comply with the constraints imposed by regulations and safety standards.

But nowadays, it seems obvious that system engineers are not fully equipped and

trained to tackle such essential requirements. Safety experts, from their stand-

point, have to deal with safety relevant aspects in order to verify, a posteriori,

that all the relevant safety requirements are satisfied by the system. In the case

of complex systems, their task becomes challenging. Traditional safety assessment

methods and models such as FMEA and FTA, are of very great help for this pur-

pose as they provide system architects with reports and recommendations that are

of great interest in order to adjust or redesign the system. However, they are usu-

ally very long to perform and error-prone. If they occur late in the design process,

designers will miss the opportunity of taking full advantage of their results and
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directives to improve the system design. Here relies one main issue with regards

to complex systems design: how to perform safety analyses efficiently (mainly by

reducing development time and error proneness) to have full benefit of their results

and thus avoid costly and time consuming redesign iterations.

The main contribution of this work is to deal with this issue by efficiently merging

systems engineering process and safety assessment methods in a unique framework

that we named Safety Integration in Systems Engineering approach: SafeSysE.

This work is based on a SysML-based MBSE approach.

Our first goal is to establish a thorough SysML-based system engineering pro-

cess for complex systems, such as mechatronic systems. Starting with a rigorous

requirements engineering phase that delivers a consistent and traceable set of re-

quirements, this process provides consistent functional, logical and physical views

of the system, all of them being traceable up to the requirements. To be more

adapted to mechatronic systems and taking the advantage of the extension mech-

anisms provided by SysML, we have developed a mechatronic extended modeling

profile.

Our second goal is to efficiently integrate safety analysis into a SysML-based sys-

tems engineering process. For this, we proposed our integrated process SafeSysE

in which we automated the generation of some well known safety assessment arti-

facts such as FMEA and FTA as well as the generation of NuSMV formal program

for model checking. Again, we have added some extensions to SysML to integrate

some safety relevant concepts in order to better support safety analyses. A SysML

safety profile has been developed for this purpose.

The first safety analysis artifact considered in this work is the FMEA. Both

functional and components FMEAs are generated by the automatic exploration

of SysML model and extracting the relevant information to be added into the

FMEAs. This facilitates the task of safety expert and reduces error-proneness and

shortens the time dedicated to safety analyses. FMEAs identify the system failure

modes and their effects on the system behavior. They provide system designers

with recommended actions to improve their design. System architecture is then

defined taking into account the results of these safety analyses.

Once a detailed system architecture is defined, as well as the undesired system

states (provided by the system level effects of potential failure modes in the

FMEA), the next step is to analyze the fault propagation along the system. This
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is obtained by the generation of fault trees. By means of a thorough analysis of

the system architecture defined in SysML IBDs, we have proposed an automated

generation of fault trees. The generation of safety artifacts directly from the sys-

tem models makes them fully consistent with the design models. A generic fault

tree describing the fault propagation among the system is automatically generated

and then detailed into a specific fault tree based on the component FMEA results.

During this integrated design process, some behavioral analysis may be conducted

in order to make sure that a new system architecture is relevant for a new set

of safety requirements revealed by the combination of systems engineering and

safety assessment. Thus, we have proposed the integration of model-checking

with SysML by providing a model-to-model transformation tool to automatically

generate formal models from SysML models. A case study is treated during this

work to illustrate how SafeSysE deals with complex system design.

This work, we believe, contributes to tackling the current issues of designing com-

plex safety critical systems. The automated generation of safety artifacts reduces

the time spent in performing safety analyses and thus reduces the whole devel-

opment time and increases the competitiveness. It also reduces error proneness

since it automatically extracts the relevant information from system models. The

consistency between the different safety analysis artifacts is also enhanced since,

in each step of safety analysis, we use the results of previous analyses.

The work carried out during this thesis made the subject of a journal paper [77]

and several conference papers [93–97].

Previously mainly working on systems engineering, this work constituted our first

step towards the very interesting domain of safety analysis. As a continuity to

this thesis, we would like to carry out more in-depth work in this domain. We are

particularly interested in dealing with the following points.

First, we will try to improve our work by applying SafeSysE to other examples

of systems to identify potential lacks and bugs. This will lead to improve both

the process and the developed prototyping tool. We will also try to resolve some

encountered technical problems, most of them being inherent to the tools imple-

menting SysML used during this work.

In addition, we will try to improve the consistency between the system model

and the safety analysis artifacts by linking the safety properties of the system
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to modeling elements like requirements, etc. We will also examine the different

possible ways to model dysfunctional behavior in SysML in order to improve the

verification and validation of the system. Finally, scalability will be addressed in

order to prove the adequacy of SafeSysE for larger and more complex systems.
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Appendix A

Case study: The

Electro-Mechanical Actuator

(EMA)

A.1 Introduction

In this thesis an example of electro-mechanical actuator (EMA) is considered as a

case study. Since we were unable to obtain any industrial information about the

EMA because of confidentiality, we tried to study it with our limited knowledge of

the real system, and without any return of experience. The models and analyses

provided here express our point of view and may be criticized for lack of accuracy.

The EMA aims at actuating the ailerons in an aircraft. The use of EMAs in flight

control is increasing since they have many advantages [98]:

• Better environmental respect with suppression of hydraulic power and oil

leak risks;

• Weight saving on aircraft;

• Maintenance cost reduction;

• Performance increase and speed accuracy due to electric actuators.
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Their competitiveness in performance is due to the use of rare earth magnetic

materials in electric motors, high-power solid-state switching devices, and micro-

processors for lightweight control of the actuator motor [6].

If the feasibility and interest of electro-mechanical architecture are demonstrated

in terms of performance and functionalities, there is still a difficulty to prove

the safety adequacy of their use for safety critical purposes such as actuating

flight control surfaces (Fig. A.1). The EMA is mainly made of three parts: an

electric part constituted by an electric motor, a mechanical part formed by the

transmission and an electronic and software part composed of a calculator that

controls the system. Failure modes and their causes are very different for each of

these component types.

Figure A.1: Example of Flight Control Surfaces of a Commercial Airliner
(A320) [6]

A.2 EMA Modeling with SysML

In this section, SysML models of the EMA are built using a top-down approach.

This model only presents the parts that are not in the text of this manuscript

and that are necessary to understand the case study. The different diagrams are

presented within the corresponding design steps mentioned in Chapter 2.
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A.2.1 Requirement Definition and Analysis

The first step in the EMA modeling is identifying the boundary of the system,

its context of use, the external elements interacting with it and the missions it

must fulfill. A SysML Block Definition Diagram, labelled Context diagram is used

to describe the context of the system and its interactions with external elements

(other systems or humans). Fig. A.2 details the context of the EMA, it indicates

for instance that the EMA should be attached to the airplane wing and actuate

the aileron. It should also deal with the airplane control unit and must be supplied

with the electric power source available on the plane. It should finally stand the

environmental conditions of the atmosphere during flight.

Figure A.2: Operating Context of the EMA

Modeling the context helps a better identification of the constraints that the sys-

tem will face during its operation and also provides a set of requirements on the

system like the interface requirements for instance.

The next step is modeling the operating modes in the nominal behavior of the

system. These operating modes are modeled with a SysML state machine diagram

given in Figure A.3. We consider that the initial state of the EMA is Not powered.
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This corresponds to the case where the aircraft is on ground and the EMA is not

powered. When the EMA is powered, the first step is an on-ground CheckList. If

the check list is not ok (CheckListKO), then the EMA is in a maintenance phase.

If the check list is successfully performed, then the EMA is idle powered-idle and

waiting for the pilot instructions. When it receives the pilot instructions, the EMA

alternates between moving and stopped states according to the pilot instructions

and in conformance with the transitions in the state diagram.

Figure A.3: Operating Modes of the EMA (state machine diagram)

An extract of the requirements issued from the Requirements Definition and Anal-

ysis process is given in Figure A.4. In this diagram, a focus is given on the de-

composition of the main function while the constraints resulting from the context

of the system are only mentioned.

A requirement table can also be extracted from SysML model. Requirement ta-

bles offer the possibility to display the requirements in a tabular form that is more

usual and may be easier to explore in the case of a big number of requirements.

The designer can chose the packages to analyze (i.e. t include in the table only

the requirements in the selected packages) as well as the properties and/or rela-

tionships that are of interest. A requirement table containing only the textual

description of the initial requirements is given in Figure A.5.

The use cases of the EMA are represented in Figure A.6. It shows that to control

the aileron incidence, the EMAmust Deal with On Board Control Unit and Actuate
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Figure A.4: Extract of the EMA Initial Requirements

Figure A.5: Extract of the EMA Initial Requirements Table

Aileron with regard to provided instructions. In this use case, the system interacts

with the Aileron, the aircraft Wing, the Power-Bus and with the control unit

through the On-Board-Fly-By-Wire-Bus.
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Figure A.6: EMA Use Cases

Figure A.7: EMA Sequence Diagram

A.3 Functional Architecture Definition

The same decomposition is represented by the high level activity diagram in Figure

A.8. Then a further decomposition is realized; the sub-functions c and Actuate

Aileron are detailed in their own activity diagrams in Figure A.9 and Figure A.10

respectively.
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Figure A.8: Activity Diagram

Figure A.9: Functional Decomposition of the ’Control and command’ function

This leads to an updated list of requirements including functional requirements

corresponding to the identified functions (represented by activities). The new

requirement diagram is given in Figure A.11
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Figure A.10: Functional Decomposition of the ’Actuate Aileron’ Function

Figure A.11: Functional Requirements
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A.4 Logical Architecture Definition

In this section, the logical architecture of the system is defined. Based on the

functional architecture, components will be chosen to accomplish the different

functions identified in the functional architecture. Each component will be allo-

cated to the functions to achieve. The rule for the allocation is that a function

can be allocated to only one component at once while a components may have

more than one function to perform. The reason behind this is that if one function

is allocated to several components it is hard to define the responsibility of each

component towards the function (i.e. which parts of the function the component

shall achieve) and thus it is hard to check if the function is fully satisfied. This

rule does not apply in the case of redundant components that achieve the same

function. When a function is performed by more than one component, then it

should be decomposed further until its sub-functions are allocated unambiguously

to components respecting the rule above. Note here that in all cases, only the leaf

functions (the lowest level of the functional breakdown) of the functional hierarchy

are allocated to components.

Several ways to allocate functions to components are possible and consequently,

several logical architecture can be identified and compared. However, for seek of

simplicity, we selected only one logical architecture for the EMA. To achieve the

functions identified in the functional architecture definition (presented in section

A.3), three components are chosen. The EMA is then composed of an “Embed-

ded MCU with Power Bridge”, a “Geared Motor with Encoder” and a “Mech

Transmission”. The Block Definition Diagram (BDD) in Figure A.12 shows the

composition if the system as well as the functions allocated to each component. We

can see that all the sub-functions of the Control and Command function are allo-

cated to the component Embedded MCU with PowerBridge and it could be argued

that the decomposition of this function is not useful, but, as mentioned above,

several allocations are possible and several logical architectures can be determined

and compared. In this work, the choice was to minimize the number of compo-

nents for a seek of simplicity and because we already had in mind the extended

modeling with interconnection components and multi-physical ports presented in

Chapter 2.

The BDD (Figure A.12) shows the components of the system but does not show

how these components communicate and interact together. This is detailed in the
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Figure A.12: EMA Logical Structure

next step of the methodology and given by an Internal Block Diagram (IBD). The

internal structure of the EMA is given in Figure A.13.

Next to the safety analyses presented in this work, some redundant architectures

of the EMA are presented in Figures A.14 and A.15.

These solution proposal can be compared.

A.5 Conclusion

This Appendix introduces one of the two case studies of this work. It illustrates

the design methodology with SysML language without considering safety aspects.

The Appendix details the different steps of the methodology on the example of

EMA showing the ability of SysML to model different aspects of the system (re-

quirements, structure and behavior) and also to maintain consistency between

these different views of the system model.
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Figure A.13: EMA Logical Architecture

Figure A.14: EMA Logical Architecture with Redundancy - Proposal 1
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Figure A.15: EMA Logical Architecture with Redundancy - Proposal 2

Fäıda MHENNI Safety Integration in a Systems Engineering Approach for Mechatronic System Design



160



Bibliography

[1] Nancy G. Leveson. Engineering a Safer World, Systems Thinking Applied to

Safety. MIT PRESS, 2011.

[2] OMG UML Diagrams. URL http://www.uml-diagrams.org.

[3] Object Management Group (OMG) - Systems Modeling Language (SysML),

. URL www.omgsysml.org.

[4] John Holt and Simon Perry. SysML for Systems Engineering. The Institution

of Engineering and Technology, London, United Kingdom, 2008.

[5] Object Management Group (OMG), . URL http://www.omg.org/.

[6] Ian Moir and Allan Seabridge. Aircraft Systems - Mechanical Electrical and

Avionics Subsystems Integration. Professionnal Engineering Publishing, sec-

ond edition, 2001.

[7] Pierre David, Vincent Idasiak, and Frederic Kratz. Reliability study of

complex physical systems using SysML. Reliability Engineering and System

Safety, 95(4):431 – 450, 2010. ISSN 0951-8320.

[8] Verein Deutscher Ingenieure. Design methodology for mechatronic systems,

June 2004. VDI 2206.

[9] Marco Bozzano and Adolfo Villafiorita. Integrating fault tree analysis with

event ordering information. In Safety and Reliability: Proceedings of the ES-

REL 2003 Conference, Maastricht, the Netherlands, 15-18 June 2003.

[10] Nancy G. Leveson. Complexity and safety. In Daniel Krob Omar Hammami

and Jean-Luc Voirin Editors, editors, Complex Systems Design and Manage-

ment, Proceeding of the Second International Conferance on Complex Systems

Design and Management CSDM 2011, pages 27–39, 2011.

161

http://www.uml-diagrams.org
www.omgsysml.org
http://www.omg.org/


Bibliography 162

[11] Society of Automotive Engineers SAE International. Guidelines for develop-

ment of civil aircraft and systems, 2010. SAE-ARP-4754A.

[12] Society of Automotive Engineers SAE International. Guidelines and methods

for conducting the safety assessment process on civil airborne systems and

equipment, 1996. SAE-ARP-4761.

[13] Yue Cao, Yusheng Liua, Hongri Fana, and Fanb. SysML-based uniform be-

havior modeling and automated mapping of design and simulation model for

complex mechatronics. Computer Aided Design, 45(3):764–776, March 2013.

[14] US Department of Defense (DoD). Engineering management, May 1974. Mil-

Std-499A.

[15] Howard Eisner. Essentials of Project and Systems Engineering Management.

Wiley Publisher, 2002.
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approche IDM. In Journées Neptune N 5, Paris, France, 08 avril 2008.

[47] Frédéric Thomas and Fabien Belmonte. Performing safety analyses and

SysML designs conjointly : a viewpoint matter. In Complex Systems De-

sign & Management, 2011.

[48] Fabien Belmonte and Elie Soubiran. A model based approach for safety anal-

ysis. In Frank Ortmeier and Peter Daniel, editors, Computer Safety, Re-

liability, and Security, volume 7613 of Lecture Notes in Computer Science,

pages 50–63. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-33674-4. doi:

10.1007/978-3-642-33675-1 5.

[49] Robin Cressent, Vincent Idasiak, and Frederic Kratz. Prise en compte des
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In 21èmes Journées Francophones d’Ingénierie des Connaissances, Nı̂mes,

France, 2010.

[68] Jean-François Pétin, Dominique Evrot, Gérard Morel, and Pascal Lamy.

Combining SysML and formal models for safety requirements verification.

In 22nd International Conference on Software & Systems Engineering and

their Applications, Paris, France, 2010.

[69] Nicolas Belloir, Jean-Michel Bruel, Natacha Hoang, and Cong-Duc Pham.

Utilisation de SysML pour la modélisation des réseaux de capteurs. In Actes

de la conférence Langages et Modèles à Objets (LMO 08) Montreal, Canada,

2008.

[70] Jean-Denis Piques and Eric Adrianarison. SysML for embedded automotive

systems: lessons learned. In Embedded real time Software and Systems ERTS,

2012.

[71] Damien Chapon and Guillaume Bouchez. On the link between architectural

description models and Modelica analyses models. In Proceedings 7th Modelica

Conference, Como, Italy, Sep. 20-22, 2009, 2009.

[72] Tim Weilkiens. Systems Engineering with SysML/UML Modeling, Analysis,

Design. Morgan Kaufmann Publishers, 2008.

[73] Stanford Friedenthal, Alan Moore, and Rick Steiner. A practical Guide to

SysML, The Systems Modeling Langage. Morgan Kaufmann Publishers, 2009.

[74] Claudia Priesterjahn, Dominik Steenken, and Matthias Tichy. Component-

based timed hazard analysis of self-healing systems. In Proceedings of the 8th

workshop on Assurances for self-adaptive systems, ASAS ’11, pages 34–43,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0853-3. doi: 10.1145/

2024436.2024444.
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Vers une Approche Intégrée d’Analyse de Sûreté de Fonctionnement des Systèmes 
Mécatroniques 
 
Résumé : 
Les systèmes modernes sont caractérisés par l’intégration de plusieurs composants de technologies diverses 
interagissant dans le but d’offrir de plus en plus de fonctionnalités aux utilisateurs. La complexité croissante dans 
ces systèmes pluridisciplinaires dits mécatroniques nécessite la mise en place de nouveaux processus, outils et 
méthodes pour la conception, l’analyse et la validation de ces derniers en respectant les contraintes de coût et de 
délais imposés par la concurrence. Ces systèmes doivent également satisfaire des contraintes de fiabilité et 
surtout de sûreté de fonctionnement. Seule une intégration du processus d’analyse de sûreté de fonctionnement 
tout au long du processus de développement peut assurer la satisfaction de ces contraintes de manière optimale. 
 
Les travaux de cette thèse ont pour objectif de contribuer à l’intégration des analyses de sûreté de 
fonctionnement dans le processus d’ingénierie système basée sur SysML afin de rendre ces analyses plus 
rapides et plus efficaces. Pour ce faire, nous avons traité les axes suivants : la formalisation d’une méthodologie 
de conception basée sur SysML et qui sera le support des analyses de sûreté de fonctionnement ; l’extension du 
langage SysML afin de pouvoir intégrer des spécificités des systèmes mécatroniques ainsi que des aspects de 
sûreté de fonctionnement dans le modèle système; l’exploration automatique des modèles SysML afin d’en 
extraire les données nécessaires pour l’élaboration des artefacts de la SdF et la génération (semi)/automatique 
de ces derniers (FMEA et FTA). Nous avons également intégré la vérification formelle d’exigences de sûreté de 
fonctionnement. 
Cette méthodologie nommée SafeSysE a été appliquée sur des cas d’étude du domaine de l’aéronautique : EMA 
(Electro-Mechenical Actuator) et WBS (Wheel Brake System). 
 

Mots clés: Ingénierie système, Sûreté de fonctionnement, Systèmes mécatroniques, MBSE, MBSA,  SysML, FMEA, FTA 

 
 
Safety Analysis Integration in a Systems Engineering Approach for Mechatronic Systems 
Design 
 

Abstract: 
Modern systems are getting more complex due to the integration of several interacting components with different 
technologies in order to offer more functionality to the final user. The increasing complexity in these multi-
disciplinary systems, called mechatronic systems, requires new appropriate processes, tools and methodologies 
for their design, analysis and validation whilst remaining competitive with regards to cost and time-to-market 
constraints. 
 
The main objective of this thesis is to contribute to the integration of safety analysis in a SysML-based systems 
engineering approach in order to make it more efficient and faster. To achieve this purpose, we tackled the 
following axes: formalizing a SysML-based design methodology that will be the support for safety analyses; 
providing an extension of SysML in order to enable the integration of specific needs for mechatronic systems 
modeling as well as safety concepts in the system model; allowing the automated exploration of the SysML 
models in order to extract necessary information to elaborate safety artefacts (such as FMEA and FTA) and the 

semi-automated generation of the latters. We have also integrated formal verification to verify if the system 
behaviors satisfy some safety requirements. 
The proposed methodology named SafeSysE was applied to case studies from the aeronautics domain: EMA 
(Electro Mechanical Actuator) and WBS (Wheel Brake System). 
  

Keywords: Systems Engineering, Safety analysis, Mechatronic systems, MBSE, MBSA, SysML, FMEA, FTA 
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