
HAL Id: tel-01133165
https://theses.hal.science/tel-01133165

Submitted on 18 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical shape analysis of the anatomical variability of
the human hippocampus in large populations.

Claire Cury

To cite this version:
Claire Cury. Statistical shape analysis of the anatomical variability of the human hippocampus in
large populations.. Neurons and Cognition [q-bio.NC]. Université Pierre et Marie Curie - Paris VI,
2015. English. �NNT : 2015PA066021�. �tel-01133165�

https://theses.hal.science/tel-01133165
https://hal.archives-ouvertes.fr
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École Doctorale Cerveau, Cognition, Comportement (ED3C)

Présentée par

Claire CURY

Analyse statistique de la variabilité anatomique de
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Résumé français

introduction L’analyse statistique de la forme des structures anatomiques est

un enjeu essentiel pour de nombreuses applications : modélisation de la variabilité

normale et pathologique, prédiction de paramètres cliniques et biologiques à partir

de données anatomiques. Ces dernières années ont vu l’émergence de grandes bases

de données en neuroimagerie, offrant une puissance statistique considérablement

accrue.

Cette thèse a pour thème l’étude statistique de la variabilité anatomique de l’hip-

pocampe à partir de grandes bases de données. Après un état de l’art, la première

partie de la thèse porte sur l’étude d’une variante anatomique appelée inversion in-

complète de l’hippocampe (IHI). Pour ce faire, nous avons mis au point une échelle

de cotation des inversions incomplètes de l’hippocampe (IHI). Elle a été ensuite ap-

pliquée à 2000 sujets sains jeunes de la base données multicentrique IMAGEN. C’est

la première fois que ces variants anatomiques sont étudiés sur une grande population

de sujets sains.

1
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La seconde partie de la thèse porte sur la mise au point d’une méthode d’analyse

statistique de formes utilisant les grandes déformations difféomorphiques et les cou-

rants mathématiques, qui soit utilisable pour l’analyse de grandes bases de données.

Nous avons en particulier introduit une nouvelle approche rapide pour construire des

prototypes anatomiques. Cette approche a été validée sur 1000 sujets sains jeunes

de la base de données IMAGEN et environ 300 sujets (sujets sains âgés et patients

atteints de maladie d’Alzheimer) de la base de données ADNI.

Chapitre 2 : présentation de l’hippocampe L’hippocampe est une structure

du cerveau bilatérale située dans le lobe temporal, dont la forme a d’abord évoqué

une virgule avant d’être comparée à un hippocampe en 1587 par un anatomiste

italien (G C Aranzio). La tête (la partie renflée) est suivie d’un corps allongé (le

corps) et d’une extrémité dentée (la queue). Il est composé de 2 lames de cortex

enroulées l’une sur l’autre, la Corne d’Ammon et le Gyrus Denté, séparés par le sillon

hippocampique. L’hippocampe appartient au système limbique, véritable interface

entre le tronc cérébral et le neocortex. Les informations neuronales circulent entre le

cortex entorhinal et le neocortex et vice versa (circuit de Papez) et sont impliquées

dans les processus de mémorisation.

Lors du développement embryonnaire, l’hippocampe commence à être différencié

aux alentours de la 10ème semaine d’aménorrhée (SA) pour certains. A 30 SA l’hip-

pocampe est pratiquement comme chez l’adulte. Pendant la gestation, l’hippocampe

va s’inverser c’est à dire que la corne d’Ammon et le gyrus denté vont s’enrouler l’un

autour de l’autre, pour former comme deux "U" emboîtés. Cette inversion n’est en

réalité pas toujours complète, ce qui amène à un variant anatomique appelé inversion
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incomplète de l’hippocampe. Ce variant anatomique à été fréquemment observé chez

des patients épileptiques mais aussi chez des sujets non épileptiques. Cette inversion

incomplète est retrouvée plus généralement chez les hippocampes gauches.

Les techniques d’imagerie par résonnance magnétique (IRM) permettent de consti-

tuer de grandes bases de données et d’observer l’hippocampe in vivo grâce notam-

ment à des séquences 3D pondérées en T1.

La fonction de l’hippocampe est essentielle dans les mécanismes de la mémoire

et pour la localisation spatiale. Des études sur des patients ayant subit une ablation

des hippocampes ont montré que l’hippocampe serait alors impliqué dans la création

de nouveaux souvenirs et dans la mémoire épisodique.

On retrouve l’hippocampe impliqué dans des pathologies comme la maladie

d’Alzheimer dont il est l’une des premières structures à être atteinte par atrophie ;

l’épilepsie dont il peut être le foyer des crises dans le cas des épilepsies du lobe

temporal ; et la dépression pour laquelle son volume serait un facteur de risque tout

comme pour les patients atteints de schizophrénie.

Chapitre 3 : l’anatomie numérique Une fois la forme globale de l’hippocampe

décrite, nous allons nous intéresser a la variabilité de sa forme, afin de pouvoir dif-

férencier les formes correspondant à un sujet normal de celles correspondant à une

pathologie ou de pouvoir étudier les variations anatomiques de la structure étudiée.

Il faut avant tout définir ce qu’est une forme. En effet ce terme est assez mal défini et

pour analyser la forme nous avons besoin d’un descripteur de forme et d’une mesure

de dissimilarité qui dans certains cas découle du descripteur ; il faut trouver un équi-

libre entre la capacité du descripteur à garder l’information de la forme et une mesure
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de dissimilarité proche d’une vraie distance invariante par transformations rigides.

Ici une forme est le contour d’un objet 2D ou 3D représenté par un masque binaire

ou par des points 2D ou 3D. Pour obtenir notre forme, il faut isoler la structure de

l’hippocampe du reste du cerveau, par segmentation pour ainsi obtenir un masque

binaire 3D que l’on convertit en maillage 3D. Il faut ensuite choisir un descripteur

permettant de décrire la forme. Plusieurs choix de modèle sont possibles, et nous

avons choisi de travailler dans le cadre des grandes deformations diffeomorphiques

(LDDMM), deja utilisées dans de nombreux travaux de recherche pour l’étude de la

variabilité des structures cérébrales car les déformations sont des difféomorphismes

qui permettent de prendre en compte des formes assez différentes tout en respec-

tant l’organisation de la structure et en captant des variations locales non linéaires.

L’inconvénient d’utiliser de telles déformations est que la phase d’optimisation est

très coûteuse en terme de temps de calcul. Pour représenter nos formes d’hippo-

campe nous avons choisi d’utiliser les « courants », objet mathématique qui sert à

modéliser des objets géométriques sans correspondance point à point. Les formes

ainsi décrites ont l’avantage de se trouver dans un espace vectoriel, qui permet alors

d’additioner ou soustraire des formes entre elles. Glaunès et al. ont introduit cet

objet mathématique pour l’analyse anatomique numérique en 2005.

La combinaison des LDDMM et des "courants" nous permet alors de construire

un modèle de la population. Généralement les formes sont analysées par leurs défor-

mations depuis le modèle de la population. Pour l’analyse statistique de ces formes

nous utilisons une ACP sur les vecteurs moments initiaux venant du modèle et allant

vers les formes. Ces vecteurs moments initiaux on l’avantage de déterminer entiè-
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rement la déformation de la forme, tel un vecteur vitesse initial lors d’un lancer de

projectile.

Pour ce qui est du calcul du modèle de la population (la partie la plus imposante

du processus d’analyse de la forme basée sur un modèle en terme de temps de calcul),

il y a plusieurs méthodes proposées dans la littérature qui sont toutes coûteuses en

temps de calcul, ce qui est un frein à l’analyse de grandes bases de données. Nous

allons nous intéresser à une méthode qui n’admet aucun a priori sur la forme du

modèle. De cette méthode va découler la méthode que nous allons présenter au

chapitre 5 puis utiliser dans les analyses de cette thèse.

Chapitre 4 : Étude des inversions incomplètes de l’hippocampe Dans ce

chapitre nous présentons les critères utilisés pour l’évaluation des Inversions Hip-

pocampique Incomplètes (IHI). La fréquence des IHI dans la population saine est

mal connue. On sait seulement que ce variant anatomique de l’hippocampe semble

plus présent chez les sujets épileptiques et qu’il est présent chez les sujets sains,

mais cette fréquence varie beaucoup suivant les critères utilisés pour déterminer si

l’hippocampe présente une IHI et suivant la population utilisée. Nous allons donc

étudier les IHI sur une grande base de données (pour une bonne puissance statis-

tique) composée de 2008 sujets, et nous allons faire en sorte d’avoir des critères

simples et reproductibles. Dans la littérature beaucoup de critères ont été utilisés,

souvent de manière très subjective, pour décrire les IHI. Nous avons choisis d’uti-

liser les critères les plus récurrents qui semblent aussi les plus faciles à caractériser

afin d’en faire des critères reproductibles pour l’évaluation d’une grande base de

données. Les critères retenus sont : le critère C1, qui porte sur la rondeur et la ver-
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ticalisation de l’hippocampe dans les coupes coronales du corps, le critère C2 qui

porte sur la profondeur du sillon collatéral et son orientation, le critère C3 qui porte

sur la position plus ou moins médiale de l’hippocampe, le critère C4 qui porte sur

un potentiel épaississement anormal du subiculum, et finalement le critère C5 qui

porte sur les deux sillons du gyrus fusiforme et qui indique si l’un de ces sillons

dépassent latéralement l’hippocampe au niveau du subiculum. Un critère global C0

a aussi été utilisé ; il note l’aspect général de l’hippocampe et indique si il présente

une IHI ou non. Ces critères ont été notés sur 2008 sujets de la base européenne

IMAGEN composée de jeunes (entre 13 et 15 ans) sujets sains. Les notes ont été

données par 2 observateurs CC et FC, ainsi que la qualité des segmentations des

hippocampes faites par le logiciel de segmentation automatique SACHA. 42 sujets

ont été utilisés pour tester la reproductibilité inter et intra observateurs des critères

de IHI. Un kappa test nous permet de dire que ces critères, comme détaillé dans ce

chapitre, sont reproductibles (kappa > 0.64 pour tous les critères). Dans ce chapitre

on remarque aussi que les segmentations sont corrélées aux IHI : plus l’hippocampe

présente une IHI, moins sa segmentation est fiable. Cependant certains hippocampes

présentant des IHI ont tout de même eu une segmentation correcte. Le critère global

C0 donne une prévalence de 17% de IHI à gauche et de 6.5% à droite avec de chaque

coté des intervalles de confiance assez petits. On a aussi observé qu’il n’y avait pas

de différences entre hommes et femmes, ni entre droitiers et gauchers. L’analyse des

critères individuels nous indique que les répartitions des notes de chacun de ces cri-

tères sont différentes entre le côté droit et le côté gauche ; les notes sont généralement

plus élevées à gauche qu’à droite. La somme des 5 critères individuels (IHI score),
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montre qu’il y a une sorte de continuum entre les notes ; il n’y a pas de de coupure

évidente. Cette somme de critères peut être utilisés comme un indicateur du degrés

de l’IHI. Cependant en catégorisant par le critère global, on a remarqué que les

hippocampes sans IHI se séparent plutôt correctement bien des hippocampes avec

IHI. Un seuil à donc été calculé pour déterminer à partir de quel score l’hippocampe

semble avoir probablement une IHI, afin de pouvoir faire des études de groupes en

utilisant uniquement les critères individuels présentés ici.

Chapitre 5 : Barycentre difféomorphique itéré Dans ce chapitre nous pré-

sentons la méthode des barycentres itérés basée sur la théorie des déformations

difféomorphiques. Comme énoncé dans les chapitre 3, le modèle de forme utilise

une représentation en tant que courants mathématiques. L’idée de la méthode est

d’améliorer l’initialisation de la méthode présentée par Glaunès et al. (2006) en four-

nissant à la méthode une meilleure initialisation, plus proche du résultat final. L’idée

de cette méthode est de calculer un barycentre itératif dans l’espace des déforma-

tions. Le barycentre est initialement choisi comme l’un des sujets de la population,

puis on effectue un recalage de ce sujet vers un autre sujet et on stoppe la défor-

mation au milieu de la trajectoire pour ainsi obtenir le barycentre de 2 sujets. On

ajoute d’autres sujets au barycentre en itérant le processus : on recale le barycentre

actuel vers un troisième sujet et on stoppe la déformation à 1/3 de la trajectoire

de déformation pour obtenir le barycentre de 3 sujets. Le barycentre ainsi calculé

dans un espace euclidien, est le centre exact de la population, et son calcul ne dé-

pend pas de l’ordre des sujets. Mais ici nous utilisons des recalages inexacts (du fait

des maillages différents, et de la différence trop importante entre certaines formes)
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dans des espaces courbes, ce qui ne permet pas d’atteindre le centre exact et rend le

calcul du barycentre dépendant de l’ordre des sujets. Nous proposons 3 algorithmes

différents pour la mise à jour du barycentre. Pour connaître l’impact de l’ordre des

sujets sur le centrage du barycentre nous avons fait des expériences sur trois bases de

données. Data1 est composé de 500 maillages simples (135 sommets) d’hippocampes

formés à partir d’un maillage d’hippocampe et de déformations principalement dif-

féomorphiques, Data2 est composé de 95 hippocampes avec les mêmes maillages

(1001 sommets), et RealData est composé des mêmes 95 hippocampes que Data2,

avec des maillages différents pour chaque hippocampe. 10 ordres différents ont été

utilisés pour générer 10 barycentres différents pour chaque dataset. Les distances

entre les différents barycentres sont petites comparées aux distances de la popula-

tion. Visuellement ces différences sont à peine visibles. On a évalué le centrage des

barycentres en utilisant le ratio entre la norme des vecteurs moments initiaux et la

moyenne des normes des vecteurs moments initiaux. Le centrage est meilleur pour

le dataset Data1 que pour les deux autres datasets car il comporte des maillages

plus simples. Le centrage pour Data2 est similaire au centrage pour RealData, ce

qui nous permet de dire que la différence de maillages utilisés à très peu d’influence

sur le résultat final. On a aussi observé que ces barycentres utilisés comme initialisa-

tion d’une méthode variationnelle d’estimation de template permettent un meilleur

résultat final. Cependant le temps de calcul de la méthode du barycentre itéré est

beaucoup plus petit que celui de la méthode variationnelle d’estimation de template ;

de plus la méthode des barycentres fournit déjà un assez bon résultat de centrage, ce

qui permet d’envisager d’utiliser un barycentre directement comme un template de
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la population, pour par la suite analyser cette population par rapport à ce template.

Chapitre 6 : analyse de formes statistique basée sur le barycentre itéré

Dans ce chapitre nous utilisons le barycentre itéré d’une population comme template

pour l’analyse de la variabilité anatomique par analyse en composantes principales

(ACP) sur les vecteurs moments initiaux ou les matrice de distances approximées.

On utilise ici 3 datasets, le premier est un dataset synthétique (SD50) calculé à

partir d’un maillage d’hippocampe. Les 50 formes de ce dataset sont construites

en utilisant des déformations difféomorphiques, de sorte que le maillage d’hippo-

campe initial se trouve exactement au centre de la population, et que le centre de

cette population est connu. Le dataset RD50 est un sous ensemble de 50 maillages

d’hippocampes de la base IMAGEN, et le dataset RD1000 est un sous ensemble de

1000 maillages d’hippocampes de la base IMAGEN. Des expériences ont été faites

sur les datasets SD50 et RD50. Nous avons testé le centrage des barycentres de

ces populations à l’aide du ratio décrit dans le paragraphe précédent. Pour SD les

barycentres, ainsi que les templates variationnels calculés à partir de la méthode de

Glaunès et al. sont très proches du vrai centre de cette population, mais aucun n’est

à sa position exacte. Pour RD50, les ratios de centrage des templates (barycentre

et template variationnels) sont évidemment moins bons, mais sont tous du même

ordre et semblent proche les uns des autres par rapport au reste de la population.

Ils sont tous plus proches du centre que n’importe quel sujet du dataset. Pour le

dataset SD50, les résultats de l’ACP sur les vecteurs moments initiaux depuis les

barycentres sont très similaires au résultat de l’ACP obtenu à partir du vrai centre

du dataset. Pour RD50, les courbes de variance expliquée cumulative sont très si-
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milaires entre celles calculées à partir des barycentres et celles calculées à partir des

templates variationnels. De même pour les matrices de distances approximées, elle

sont également différentes de la matrice de distances directes (calculée en déformant

les sujets 2 à 2). l’analyse de formes en utilisant les barycentres donne des résultats

similaires, de plus le calcul du barycentre est beaucoup plus rapide que le template

variationnel. Pour appliquer ce pipeline, on applique ce calcul de barycentre sur le

dataset RD1000 issu de IMAGEN, dont les sujets ont tous reçu un IHI score (voir

chapitre 4). On a pu remarquer que le barycentre était plutôt bien centré dans la po-

pulation, et que l’ACP pouvait expliquer plus de 97% de la variabilité anatomique

de cette population à l’aide de 50 dimensions. Il est intéressant de noter que ce

nombre de dimensions est stable quand on inclut un nombre de sujets suffisamment

élevé. Nous avons par la suite utilisé quarante dimensions de l’ACP pour essayer de

prédire les scores IHI à l’aide d’une régression linéaire multiple. On a réussi en uti-

lisant entre 20 et 40 dimensions à prédire les score IHI avec une corrélation de 69%.

Les modales de régression linéaire ont été validées par une méthode de validation

croisée k-fold avec k=100.

Chapitre 7 : analyse de formes appliquée à des patients Alzheimer Dans

ce chapitre nous appliquons la méthode rapide d’analyse de forme utilisant un ba-

rycentre à des hippocampes de la base ADNI composée de sujets âgés sains (groupe

CN) et de sujet atteints de la maladie d’Alzheimer (groupe AD). La population

est composée de 160 CN et de 134 AD. Tous ces sujets ont un score MMSE (Mini

Mental State Examination) indicateur global de démence et un score ADNI-MEM

qui est un score composite reflétant les performances des sujets à des tests de mé-



CONTENTS 11

moire. Dans un premier temps nous comparons le barycentre du groupe CN à celui

du groupe AD, et nous constatons que le premier axe de variation est très différent

entre ces deux groupes. De plus le groupe AD a besoin de moins de dimensions

pour expliquer sa variance anatomique (environ 60 contre 80 pour le groupe CN). A

l’aide du barycentre de la population totale, nous projetons ensuite le premier axe

de chaque groupe sur les 2 premiers axes des groupes, ce qui nous permet de voir

que ces 2 groupes se différencient déjà sur les 2 premières dimensions de l’espace

ACP de la population totale. Nous nous sommes ensuite intéressés à la prédiction

des notes MMSE et ADNI-MEM dans la sous population des sujets âges sains en

utilisant les 50 premières dimensions de l’espace ACP. Nous observons alors que

comme prévu la prédiction du résultat du test MMSE est mauvaise et la prédiction

de ADNI-MEM score est assez bonne ; une trentaine de dimensions suffisent à pré-

dire le score ADNI-MEM. Le resultat est logique, car le ADNI-MEM score reflète les

performances de mémoire pour lesquelles l’hippocampe joue un rôle central, alors

que le score MMSE est un indicateur global de la démence. Il serait donc bien éton-

nant que l’hippocampe seul arrive à prédire un tel indicateur. On en conclut donc

que notre méthode d’analyse de forme produit des résultats cohérents.

conclusion Pour ce travail de thèse qui consistait à analyser la variabilité anato-

mique de l’hippocampe sur de grandes bases de données, nous avons d’une part mis

au point une méthode d’analyse de forme de l’hippocampe applicable à de grandes

populations. D’autre part, nous avons étudié une forme anatomique particulière de

l’hippocampe, l’IHI qui pourrait être d’origine développementale et qui a été sur-

tout étudiée dans des populations épileptiques. Nous avons mis au point des critères
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robustes d’évaluation des IHI, qui permettront par la suite de comparer les études.

On a pu remarquer dans ce travail que les IHI ne sont pas rare puisque présentent

dans environ 20% de la population. L’analyse de forme utilisant un template de la

population que nous avons mise au point est capable de capturer la variabilité ana-

tomique des hippocampes avec peu de variables et est capable de prédire certains

paramètres biologiques comme la présence ou non d’IHI ou certain paramètres cli-

niques comme le score ADNI-MEM chez les sujets âgés sains. Il reste des questions

auxquelles il serait intéressant de trouver une réponse. Premièrement, est ce que les

IHI sont des variants anatomique qui affectent uniquement l’hippocampe ou non.

Il serait intéressant de s’intéresser aux relations entre IHI et les sillons adjacents.

D’autres parts, les facteurs génétiques et/ou environnementaux du développement

de ces IHI sont encore inconnus. D’un point de vue méthodologique, il y a aussi

plusieurs perspectives. Il serait intéressant de comparer la méthode des barycentres

à d’autres méthodes de création de template. Il serait aussi intéressant de regarder

l’impact du calcul de barycentre sur une population constituée de structures plus

complexes comme les sillons par exemples.



Chapter 1

Introduction

The hippocampus is a brain structure involved in important cognitive functions

as memory processes, long term memorisation and in spatial navigation. Another

fascinating feature of the hippocampus is that it preserves its ability to generate

neurons throughout life (Eriksson et al., 1998) by dividing progenitor cells in the

dentatus gyrus, one of the two cortical lamina composing the hippocampus. Studies

found that hippocampi are involved in many pathologies and psychiatric disorders

such as Alzheimer’s disease, epilepsy, depression and schizophrenia.

13
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The anatomy of the human brain is highly variable. The genetic and envi-

ronmental bases of this variability remain largely unclear. So does the influence of

anatomical variability on the development of pathologies or cognitive functions. The

anatomy of the hippocampus is also variable. A particularly remarkable anatomical

variant of the hippocampus is the Incomplete Hippocampal Inversion (IHI). Indeed

an inversion of the hippocampus occurs around the 25 gestational week. When

the inversion is not completed, this results in the anatomical variant named IHI.

This Incomplete Hippocampal Inversion is characterized by shape changes visible

on Magnetic Resonance Images. IHI have been mostly described in patients with

epilepsy, in which they are highly frequent (Baulac et al., 1998). However, they are

also present in healthy subjects although their prevalence and characteristics have

not been rigorously studied.

Magnetic Resonance Images (MRI) allows exploring brain anatomy in vivo. The

generalization of MRI has made it possible to study anatomical variability in large

populations. This allows studying statistically normal and abnormal developmental

patterns and their correlation with cognitive, behavioural, genetic or environmental

variables.

The objective of Computational Anatomy (CA) is to mathematically model and

analyse the anatomical variability of biological structures. The study of biological

shape variability has been first introduced by the famous biologist but also mathe-

matician D’Arcy Thompson (D’Arcy Thompson, 1917). Since that time significant

efforts have been made to develop a theory for statistical shape analysis. In the past

years, a large number of statistical shape analysis methods have been proposed to
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quantitatively analyse the variability of biological shapes. Among these, an interest-

ing framework for anatomical shape analysis is the Large Diffeomorphic Deformation

Metric Mapping (LDDMM) framework that quantifies differences between shapes

via smooth deformations which capture the global and local non-linear variations

while preserving the anatomical structure organisation. Another attracting feature

of the LDDMM framework is that deformations are entirely parametrised by vectors

lying in vector space, providing a natural setting for statistical analysis. Moreover,

the framework of currents can be used to represent the shapes without assuming

point-to-point correspondence accross subjects. A now classical method is to com-

pare shapes to a template of the population, this is named template-based shape

analysis. These last years we have seen the emergence in neuro-imaging of large

databases. However, the application of LDDMM approaches to large datasets is

difficult because of their high computational load. Faster approaches for LDDMM-

based template estimation are then needed for the analysis of large databases.

∗ ∗

∗

The goal of this thesis is to develop and evaluate methods to study the anatom-

ical variability of the hippocampus using large databases. Our developments were

made in the framework of LDDMM for modeling deformations, and of currents for

modeling anatomical surfaces. Within these frameworks, we aimed to develop fast

approaches for template-based shape analysis. Our goal was then to apply these

approaches to predict the presence of specific anatomical variants as well as the

variation of cognitive or clinical variables. In particular, we were interested in the
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prediction of the presence of Incomplete Hippocampal Inversions (IHI). To that

aim, we also needed to visually characterize the presence of this variant in a given

population.

We first focused on the evaluation of the Incomplete Hippocampal Inversions

(IHI). To this aim, we proposed a new set of criteria to evaluate IHI, by adapting

criteria from the litterature. This new set of criteria is adapted to the evaluation

of large datasets. These criteria were applied to study the prevalence and charac-

teristics of IHI in a database of over 2000 MRI of young healthy subjects from the

multi-centric European database IMAGEN. We also explored the impact of IHI on

automatic hippocampal segmentation, the differences between males and females,

and between right and left sides. This is the first time that this anatomical variant

has been studied on a large dataset of healthy subjects.

Than, we developed and evaluated a new statistical shape analysis method

adapted to the study of large databases. Its principle is that of template-based

shape analysis, in which every indivual shape is characterized through its deforma-

tion from a template of the population. In particular, we proposed new approaches

for fast estimation of population templates. They are based on the estimation of

population centroid using iterative diffeomorphic matchings. The centroid can then

be directly used as a template, or as an initialization for another template esti-

mation method. We performed various experiments to evaluate the properties of

the centroid, its robustness and its impact on statistical results. We then applied

this method to a template-based statistical shape analysis on 1000 young healthy

subjects of the IMAGEN database, in which we aimed to predict the IHI score pre-
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viously evaluated. We also applied this method to a dataset composed of around

300 subjects of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(Alzheimer’s disease patient and elderly controls), in which we aimed to predict the

memory score in Alzheimer’s disease patients population.

∗ ∗

∗

The rest of this manuscript contains the following chapters.

Chapter 2 In this chapter, we briefly review the anatomy, development and roles

of the hippocampus. We also quickly present Incomplete Hippocampal Inversions.

Chapter 3 This chapter first presents different ways to describe a shape and

different methods to analyse these shapes. We then present with more details the

LDDMM framework and the use of currents for shape representation.

Chapter 4 This chapter presents a study of Incomplete Hippocampal Inversion

on a lare dataset of healthy subjects using visual criteria. We first present the

criteria used in the literature to describe Incomplete Hippocampal Inversions, before

introducing a new set of criteria. These are used for the evaluation of more than

2000 subjects of the database IMAGEN. We finally present results on the prevalence

of IHI in the healthy population, the influence of the IHI on the quality control of

segmentations, and results on the IHI score.
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Chapter 5 In this chapter, we present the diffeomorphic iterative centroid method

used to compute a centroid of the population. In this chapter the centroid is used

to improve the initialization of a variational template estimation method.

Chapter 6 In this chapter, we use the diffeomorphic iterative centroid method

directly as a template of the population. We show that using the centroid as a

template is sufficient for a template-based shape analysis of the hippocampus. We

then use the result of the analysis to predict the IHI score.

Chapitre 7 In this chapter, we apply the pipeline described in the previous chap-

ter to 298 subjects of the ADNI database (Alzheimer’s disease(AD) patients and

elderly controls). We study anatomical differences between the two groups, and

predict clinical parameters in the AD population.
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Chapter 2

The human hippocampus

The hippocampus is a bilateral brain structure of the temporal lobe which is

implicated in memory processes, spatial navigation and in some pathologies as

Alzheimer’s disease, epilepsy depression or schizophrenia.

This chapter is organized as follows. In section 2.1 the description of the anatomi-

cal structure of the hippocampal formation, his development, and a certain anatom-

ical variation of the hippocampus are presented. In section 2.2 we describe how

hippocampal anatomy can be studied in vivo using Magnetic Resonance Images.
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We finally present the roles played by the hippocampus in memory processes, spa-

tial navigation, and its implication in different neurological and psychiatric diseases

in section 2.3.

2.1 Anatomy, development and variability

2.1.1 Terminology

Let’s start with a brief history of the origins of the term "hippocampus": this

anatomical structure forms an arc with the anterior part larger than the posterior

part, as a "comma". This identification as a comma did not become the reference,

since in 1587 the anatomist Guilio Cesare Aranzio compared this structure to a "sea

horse" (hippocampus in latin) or a "silkworm": the larger part corresponding to

the head of the hippocampus and the narrower to the tail. Georges Duvernoy, in

1729, also compared this structure to a hippocampus or a silkworm. The physician

J.B. Winslow in 1732 suggested the term "ram's horn". Then the surgeon R-J C de

Garengeot used the term cornu Ammonis in reference to the egyptian god Ammon

Kneph represented with ram's horn and lion's tail. Today it is the term "hippocam-

pus" which refers to this cerebral structure located on the temporal lobe protruding

in the lateral ventricles. The term cornu Ammonis is still used to describe one of

the two cortical U-shaped lamina rolled up one inside the other which compose the

hippocampus with the gyrus dentatus. In general the term "hippocampus proper"

refers to the cornu Ammonis, the term "hippocampus" refers to the hippocampus

proper plus the gyrus dentatus and the alveus (see section 2.1), and the term "hip-
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(a) 1 - hippocampus, 2 - parahippocampal
gyrus (T5), 2́- enthorinal cortex, 3 - fusiform
gyrus (T4), 4 - infero temporal gyrus (T3), 5 -
calcarine sulcus, 6 - occipital lobe, 7 - medial
part of the parietal lobe, 8 - cingulate gyrus,
9 - medial part of the frontal lobe, 10 - corpus
callosum, 11 - fornix, 12 - third ventricle

(b) 1 - hippocampus, 2 - parahippocam-
pal gyrus (T5), 3 - fusiform gyrus (T4), 4
- infero temporal gyrus (T3), 5 - middle
temporal gyrus (T2), 6 - superior tem-
poral gyrus, 7 - lateral fissure, 12 - cin-
gulate gyrus, 13 - corpus callosum, 14 -
lateral ventricle, 15 - thalamus, 18 - red
nucleus, 20 - pons, 22 - ambient cistern

Figure 2.1: Dissection of the inferomedial part of the right hemisphere (a), and coronal
section of a brain (b). From Duvernoy (2005).

pocampal formation" includes the hippocampus and the subiculum.

2.1.2 Spatial localisation

The brain is composed of two hemispheres and each hemisphere is composed by

different lobes:

– the frontal lobe located just behind the forehead is implicated in planning,

voluntary movements and language

– the parietal lobe located to the rear is a sort of associative cortex of the sensory

system and integrates information coming from vision, touch or hearing.
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Figure 2.2: The limbic system

– the occipital lobe situated at the occipital bone is the center of the vision.

– the temporal lobe situated behind each ear is related to multiple cognitive

processes such as language recognition and visual memory. It is divided in five

convolutions.

The human hippocampus is a bilateral cerebral structure located in these temporal

lobes, in the fifth convolution (T5) which has an internal positioning. Figure 2.1(b)

shows the medial positioning of the hippocampus. The hippocampi form the medial

and the bottom borders of the lateral ventricles. Figure 2.1(a) shows that they have

a longitudinal shape in a sagittal view. The anterior part of T5 is composed of the

entorhinal cortex, directly connected to the anterior part of the hippocampus.

The hippocampus is also part of the limbic system, a "brain into the brain" (see

Figure 2.2) described and discussed by Broca in 1877, Papez in 1937, Mac Lean in

1952 and Nauta in 1972. The limbic system corresponds to the deep and internal
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Figure 2.3: Anatomy of the hippocampus. Left: general shape of the gyrus dentatus in an
axial point of view. Right: the two cortical U-shaped lamina of the gyrus den-
tatus (GD on the figure) and the cornu Ammonis (CA). A: head, B: body, C:
tail, and right: the general shape of the hippocampus. Drawings are from Du-
vernoy (2005)

regions of each hemisphere, such as T5 and the cingulate gyrus. It is composed of

many structures (nuclei and primitive cortical areas) implicated in the memorisation

process and emotions. The limbic system is the interface between the very "old"

(from an evolutionary point of view) brain, the brainstem, and the very recent brain,

the neocortex.

2.1.3 Anatomy

The hippocampus has an elongated shape in the rostro-codal direction as shown

in Figure 2.3 with a length of 4 to 4.5 cm and a width of 1 to 2 cm. The hippocampus

can be divided in three parts: the head, which is the anterior and largest part of the

structure, presenting digitations, the body which is the middle part with a sagittal

orientation, and the tail which is the posterior and narrowest part of the structure



28 CHAPTER 2. THE HUMAN HIPPOCAMPUS

and differs from the body with its transversal orientation.

The hippocampus is composed of two cortical lamina rolled up one inside the

other the cornu Ammonis (CA) and the Gyrus Dentatus (GD) as shown in Fig-

ure 2.3.

The Cornu Ammonis is composed of three layers of grey matter (stratum oriens,

stratum pyramidal and the stratum moleculare) of pyramidal cells which can be

divided into four Ammonian fields, as introduced by Lorente de Nó (1934), which

are: CA1, the largest one, is composed of pyramidal cells and triangular soma, CA2,

very dense, is composed by large and ovoid soma, CA3, is less dense and is composed

of mossy fibres which connect the gyrus dentatus to the cornu Ammonis, and CA4,

even less dense in soma cells because of large number by mossy fibres, is directly in

contact with the gyrus dentatus from which mossy fibres receive inputs. All these

areas are recovered by a structure named alveus containing the output channels of

the hippocampus, that is the axons of the pyramidal cells. The pyramidal cells are

effectors and their axons in the alveus are perpendicular to the long axis of the

hippocampus, and then are changing of direction and going parallel to the long axis

of the hippocampus, to the fimbria. They send informations from CA1 and CA3

through the fimbria or from CA3 through the subiculum. The subiculum is the

transitory region between the archicortex and the neocortex as shown in Figure 2.4.

It is also an output channel of the hippocampus.

The gyrus dentatus is separated from the CA by the vestigial hippocampal

sulcus, and is a prolongation of the induseum griseum (yellow area in Figure 2.2).
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Figure 2.4: Anatomy of the hippocampus. Schema of the internal organisation of the
hippocampus

The DG owes its name to its toothed aspect in its external part, as we can see

in Figure 2.3(a). It is composed by a stratum of granular cells and a stratum of

granular neurons, small and round. Contrarily to the pyramidal neurons of the cornu

Ammonis, the granular neurons are afferent and receive the information directly

from the entorhinal cortex (Figure 2.1 and Figure 2.4) via the perforant path which

perforates the subiculum to reach the granular cells of the gyrus dentatus. The DG

then sends the information to cornu Ammonis via the mossy fibres before leaving

the hippocampus through the subiculum and through the alveus and fimbria. The

gyrus dentatus is also responsible of neurogenesis in adulthood. For a long time, we

believed that the neurogenesis was occuring only during the embryological state and

the childhood. Eriksson et al. (1998) demonstrated that new neurons, are generated

in the dentate gyrus of adult humans and that the human hippocampus retains its

ability to generate neurons throughout life. An other study Parent et al. (1997)

suggests that in case of epilepsy, prolonged seizure discharges stimulate dentate

granule cell neurogenesis.

This polysynaptic intrahippocampal pathway is part of a more global system of
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Figure 2.5: Schematic diagram of the temporal lobe in the coronal plane during the devel-
opment of the hippocampus. D: gyrus dentatus, C: cornu Ammonis, S: subicu-
lum, P: parahippocampal gyrus. Drawing from Baker & Barkovich (1992).

information processing named the Papez circuit, in the limbic system. The Papez

circuit is composed of the entorhinal cortex, the gyrus dentatus, the cornu Ammonis,

then the mammillary body is reached via the fimbria, and next the information goes

to the thalamus which communicates with the neocortex, before going back to the

enthorinal cortex.

2.1.4 Development

Various studies have described the development of the hippocampus, among

others we can note Humphrey (1967) Kier et al. (1995) Righini et al. (2006) Radoš

et al. (2006) Baker & Barkovich (1992). The hippocampal formation is the first

cortical area to differentiate (Humphrey, 1967), and at 30 gestational weeks (GW),

the hippocampus formation has acquired most of the features observed in the adult

population. Figure 2.5 gives a schematic overview of the development of the hip-

pocampus.

The beginning of hippocampal development is not very well known for now, but
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seems to start before 10 gestational weeks. Baker & Barkovich (1992) observed

primordial hippocampi on 7 GW foetuses. At 10 GW the gyrus dentatus and the

cornu Ammonis are rudimentary structures situated in the postero-medial wall of

the lateral ventricles as shown in Humphrey (1967).

At 13 GW, the hippocampus goes from the frontal lobe to the temporal lobe

on the postero-medial wall of the lateral ventricles, and surrounds a widely open

hippocampal sulcus as observed in the studies of Humphrey (1967) and Kier et al.

(1997). At this stage of brain development, the corpus callosum is not yet formed.

Figure 2.6 shows a sagittal photography of a brain from a 13 GW foetus where

the hippocampus is clearly visible. In a coronal view, as seen on the MRI on Fig-

ure 2.6(b), we can see that the hippocampus, indicated by the white arrows, is still

unfolded. Although, it is between 12 to 14 GW that the gyrus dentatus is starting

to fold toward the cornu Ammonis.

The studies of Kier et al. (1997) and Humphrey (1967) show that, three weeks

later so at 16 GW, the hippocampus reduces in size (relatively to the size of the

brain which increases), pushed by the growth of the corpus callosum and therefore

has to leave the frontal lobe to only occupy the temporal lobe. In Kier et al. (1997)

they also showed that this is at this period that the gyrus dentatus and the cornu

Ammonis start their in-folding, and the sub-fields, CA1 CA2 and CA3 are arranged

linearly as shown on Figure 2.7(c), the alveus is also visible.

From 20 GW, the relationship between the hippocampus and the surrounding

structures is becoming similar to the adult population. This is the time for the

hippocampi to terminate their in-folding. Righini et al. (2006) study the in-folding
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(a) (b)

Figure 2.6: 13 GW. (a) Photography from Kier et al. (1995) in sagittal plane of the medial
brain surface of a 13 GW foetus. The frontal lobe is on the left side of the
photography and the temporal lobe on the bottom part and the hippocampus
is highlighted in green. The corpus callosum is not yet formed. Large ar-
rowheads, hippocampal sulcus; small arrowheads, the inner limbic arch of the
hippocampal formation; OT, olfactory tract. The distance between two grad-
uations is 1 mm. (b) Coronal T1-weighted spoiled gradient-echo MR image
(45/8/2; 45° flip angle) of an intact 13 GW foetus from Kier et al. (1997). The
neocortical parahippocampal gyrus region (P) is small, (T) is the temporal
horn. The white vertical line measures 10 mm.

of the hippocampus on 62 foetal Magnetic Resonance Images from 20 to 37 GW

with normal neuro-developmental examination at postnatal age. They found a cor-

relation between the in-folding angle of the hippocampus and the gestational week.

This angle is measured between the line connecting the lateral border of the cornu

Ammonis with the medial superior border of the subiculum and the line passing

through the midline structures. This angle takes values inferior to 70 degrees for

foetuses of less than 25 GW, and superior to 70 degrees for foetuses of more that

30 GW. Okada et al. (2003) investigated the morphological development of the

hippocampal formation in children. They showed that this angle increases by ap-
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(a) (b)

(c)

Figure 2.7: 16 GW. (a) Photography from Kier et al. (1995) in sagittal plane of the medial
brain surface of a 16 GW foetus. Large arrowheads, hippocampal sulcus; small
arrowheads, the inner limbic arch of the hippocampal formation; CC, corpus
callosum; F, fornix; OT, olfactory tract. The distance between two graduations
is 1 mm. (b) Coronal T1-weighted spoiled gradient-echo MR image (45/8/2;
45° flip angle) of intact 13 GW old foetus from Kier et al. (1997). The neo-
cortical parahippocampal gyrus region (P) is small. The white vertical line
measures 10 mm. (c) coronal histological section (Nissl, original magnification
×24 from Kier et al. (1997)), the CA1 (1), CA2 (2), and CA3 (3) fields of the
cornu Ammonis are arranged linearly. The dentate gyrus (small arrowheads)
has a tight U-shaped configuration around the CA4 (4) field of the cornu Am-
monis. The very thin molecular stratum (M) of the dentate gyrus is separated
from the larger molecular stratum of the cornu Ammonis by the very wide
hippocampal sulcus (large arrowheads).
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Figure 2.8: (A) acetylcholinesterase histochemistry of a 25 GW. (B) a T1-weighted MRI
from a 25 GW, and (C), T1-weighted MRI from a full term new born. TH:
Thalamus. Images are from Radoš et al. (2006).

proximately 5° during the 2 first decades after birth, against around 15° during the

17 weeks of gestation observed in Righini et al. (2006). In Okada et al. (2003) they

also found that the mean angle was significantly larger for right hippocampus than

for left hippocampus, but this result was not replicated in the study of Righini et al.

(2006) on foetuses. Figure 2.8(A) and (B) shows a 25 GW, where we can see that

the hippocampus has not achieved its inversion, and in (C) a full term new born in

which we can see that the hippocampus has almost terminated its inversion.

Bajic et al. (2010) studied, using an ultra sound modality, the development of

the hippocampus in pre-term neonates aged between 23 and 35 GW. They found,

in a coronal view, a rounded shape of the hippocampus in 50% of the neonates aged

between 23 to 24 GW, in 24% of the neonates aged between 25 to 28 GW and in

14% on the neonates aged between 29 and 36 GW. This rounded shape was mainly
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left sided. Therefore, there are already developmental differences between the left

hippocampus and the right hippocampus.

2.1.5 Incomplete hippocampal inversion

As we have seen, Baker & Barkovich (1992) observed that during the rotational

growth of the telencephalic vesicle, the major portion of the hippocampus is carried

dorso-laterally and then ventrally to lie in the medial aspect of the temporal lobe.

As the neocortex expands and evolves, the allocortex is displaced inferiorly, medially

and internally into the temporal horn. This is why we can observe an inversion of

the hippocampus during the development.

There exists a remarkable anatomical variant of the hippocampus which has

received various names including "malrotation" and "Incomplete Hippocampal In-

version". As proposed in Raininko & Bajic (2010), we use the term "Incomplete

Hippocampal Inversion" (IHI) which better describes the incomplete inversion of the

hippocampus than the term malrotation. These Incomplete Hippocampal Inversions

have been initially observed in healthy subjects by Bronen & Cheung (1991), who

showed that the anatomical variant of the hippocampus which presents a rounded

shape in a coronal view on MRI ( a criterion to describe these Incomplete Hippocam-

pal Inversion) is a normal anatomical variation of the hippocampus. This particular

anatomical variation has been mostly observed in patients with epilepsy ((Lehéricy

et al., 1995; Baulac et al., 1998)). In these studies they describe hippocampi with a

rounded shape in a coronal view in MRI, a protruding collateral sulcus and a medial

position of the hippocampus as shown in Figure 2.9. Barsi et al. (2000) wondered
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Figure 2.9: Coronal point of view of hippocampi, the 3 images are from the same subject,
the top image shows the heads of the hippocampi, the middle image shows
the bodies of hippocampi and the bottom one, the tails. The left hippocam-
pus framed in red presents a rounded shape, a medial positioning and a deep
colateral sulcus which are typical criteria for an IHI.

if this particular hippocampal shape has a developmental origin since they observe

these IHI in subjects with corpus callosum agenesis. Finally, some studies demon-

strate that this anatomical variant of the hippocampus, which mainly presents a

rounded or vertical shape, a medial positioning and a deep collateral sulcus, has in

fact a developmental origin (Righini et al., 2006; Bajic et al., 2010).

IHI have been mostly observed and studied in pathological cases such as epilepsy

(Lehéricy et al. (1995), Barsi et al. (2000), Baulac et al. (1998), Bernasconi et al.

(2005), Peltier et al. (2005), Stiers et al. (2010), Bajic et al. (2009), Friedman &

Tandon (2013)) or congenital brain malformations (Donmez et al. (2009), Sato et al.

(2001), Baker & Barkovich (1992)). These studies found very different frequencies
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of IHI. In Barsi et al. (2000), they found 6% of IHI in a population composed of

597 patients with suspicion of epilepsy 69% of the IHI were left-sided, 19% right-

sided and 12% bilateral. In Peltier et al. (2005), 14% of 97 epileptic patients had

IHI. In Bernasconi et al. (2005), 43% of the 30 temporal lobe epileptic patients had

IHI, and 49% of 76 patients with malformations of cortical development had IHI.

In Bajic et al. (2009), 30% of the 201 patients with epilepsy had IHI, 67% of the

IHI were left-sided, 7% right-sided and 27% bilateral. For the developmental brain

malformations, Baker & Barkovich (1992) found IHI in 36% of 36 patients, Sato et al.

(2001) found IHI in 64% of 44 patients and Donmez et al. (2009) 56% of IHI for 62

patients. These frequencies of IHI are different because of the chosen populations,

but also because the criteria used to identify IHI are not identical, therefore do not

allow reproducible or comparable results.

Some studies tried to determinate the frequency in the normal population. In Bernasconi

et al. (2005) they found 10% of IHI in 50 healthy controls. In Peltier et al. (2005),

IH were found in 6% of the control population composed of 50 subjects including

11 patients without epilepsy but including other pathologies. In Bajic et al. (2009)

authors used 150 subjects including 116 patients, and found 18% of IHI, mostly

left-sided. In one study (Bronen & Cheung, 1991) authors found that 21% of the

29 volunteers had a shape different than the usual flat appearance as the right

hippocampus on Figure 2.9.

The limitations of these studies are that they not only include healthy controls

but also patients without epilepsy nor developmental brain malformations but with

various conditions; the size of the populations used which makes difficult a good



38 CHAPTER 2. THE HUMAN HIPPOCAMPUS

estimation of the frequency of IHI; the criteria used are not the same.

2.2 Visualisation in MRI

In vivo, the first choice of imaging techniques to observe brain structures as the

hippocampus is Magnetic Resonance Images (MRI) with 3D T1-weighted sequences,

with roughly 1mm isotropic resolution (Figure 2.10(a)). T1-weighted MRI measures

the time of longitudinal relaxation (T1) i.e. the time needed by the hydrogen atoms

(present in large quantities in molecules of biological tissues) to recover their initial

balance after excitation by a magnetic field (1.5 or 3 Tesla in general), this time

is different depending on the tissue property. Hypo-signal indicates liquids such

as cerebro-spinal fluid and blood, the gray matter is in dark gray and the white

matter in light gray. This sequence allows a good overview in 3 dimensions of the

anatomical structures of the brain. Figure 2.10(a) shows three views (from left to

right) axial, coronal and sagittal of the hippocampus on a 3D T1-weighted MRI.

These three views allow to show the medial positioning of the hippocampus and

its global elongated shape. They also allow a visualisation in 3 dimensions of the

neighbouring structures, and a good overview of the whole brain. But this MRI

sequence do not allow the identification of finer details of the hippocampus, as the

cornu Ammonis or the gyrus dentatus; only the fimbria can be seen (in white in T1

MRI) but not clearly in every image.

It is also possible to use other MRI sequences such as the T2-weighted spin echo

sequences to observe a particular structure or to detect variations of contrast in

a tissue. This sequence measures the time of transversal relaxation (T2) which is
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(a) T1-weighted with resolution 1mm× 1mm× 1mm

(b) T2-weighted with resolution 0.3mm× 0.3mm× 4mm

Figure 2.10: Two visualizations of hippocampus of a same subject from the IRMA7
database. (a) Magnetic Resonance Images with a T1-weighted acquisition
and (b) T2-weighted acquisition. Views are (from left to right) axial, coronal
and sagittal.
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the time required for the spins (of the hydrogen atoms) to return to their phase

coherence due to the spin-spin interactions. Hypo-signal indicates blood and air,

the cerebro-spinal fluid is in hyper-signal, the white matter is in dark gray and the

gray matter in light gray. This MRI sequence provides a better contrast of the inner

structures of the hippocampus, but does not allow an isotropic resolution because

of the acquisition time. In Figure 2.10(b), the sequence was acquired to have a

good resolution in the coronal plane around the hippocampus. We can see a coronal

view (in the middle) of the hippocampus: the cornu Ammonis, the gyrus dentatus,

the hippocampus sulcus and even the alveus are clearly identifiable. Due to the

anisotropic resolution, the axial and sagittal views are very difficult to interpret and

do not permit a representation in three dimensions of any structure.

It is also possible to have an ultra-high resolution of the hippocampus in coronal

view, with a good resolution in axial and sagittal, by using several T2-weighted

sequences at 7 Tesla. Then a registration method is applied to these MRIs to co-

register all sequences in order to obtain a good resolution in axial and sagittal. In

Figure 2.11, we can observe the registration of different T2-weighted MR images

at 7T (Marrakchi et al., submitted paper), on the same subject as in Figure 2.10.

Figure 2.11 allows a good 3D visualization of the hippocampus subfields; the sagittal

view shows the fimbria which is the dark line over the hippocampus, and as in

the axial view one can observe the hippocampal sulcus which separates the cornu

Ammonis from the gyrus dentatus. But the acquisition of such MRI is not always

available since this is a reserche sequence and there is in France only two centre

equipped by 7T systems adapted for humans.
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Figure 2.11: Visualization of the hippocampi of a same subject of the IRMA7 database
in Figure 2.10. The volumetric image have been computed by Marrakchi et
al. (submitted paper) from different T2-weighted sequence in 7T MRI, by
registering the different acquisition using the 3T MRI.

We can see in all these images (figures 2.10 and 2.11) that the left hippocampus

of the subject presents an incomplete hippocampal inversion.

The 3D T1 weighted MRI sequence allows a good visualization of the external

boundaries of the hippocampus and to form large databases, which is exactly what

we need to analysis the shape of the hippocampus.

2.3 Role

The medial part of the temporal lobe receives input from different regions. The

perirhinal cortex and the parahippocampal cortex receive the information from the

neocortical areas. These cortex are inter-connected and connected to the entorhi-
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nal cortex which is itself the principal source of afferents of the hippocampus. The

perirhinal and the parahippocampal cortex receive the efferents from the hippocam-

pus and the entorhinal cortex and then project on the associative cortex. These

structures are more than a simple interface for the communication between the hip-

pocampal formation and the neocortical areas, these structures play a key role in

the memorisation processes.

2.3.1 Memory

The term "memory" groups together different concepts and processes. The infor-

mation processing is different according to the quantity of information to integrate

and to the type of information. Alvarez & Squire (1994) developed a theory of the

consolidation of the mnesic marks which supposes that the consolidation process

starts when the informations coming from different sensory modalities are linked

between each other under the form of a mnesic mark by the hippocampus and oth-

ers structures of the temporal lobe. Nadel & Moscovitch (2001) and Nadel et al.

(2000) proposed a different theory which is based on multiple mnesic marks. The

hippocampus is a need for the recovery of episodic memories requiring a spatial

context.

The different types of memories are listed below. A review of all memory types

can be found in Tulving (1995).

Short term memory This mnesic system contains the working memory, and

is a limited mnesic system in terms of capacity. This system keeps in memory
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informations needed for a short term processing.

Long term memory This a mnesic system not limited in capacities, which allows

the processing of informations from anterior learnings kept in memory. Long term

memory can be divided in two types of memories: declarative (or explicit) memory

and implicit memory.

Implicit memory This is a non-conscious process which permits the acquisition

of motor abilities as riding a bike.

Declarative memory This memory requires the use of the temporal lobe, and

is a conscious process. This mnesic system is based on informations that can be

declared and are accessible to the conscience. Declarative memory can be divided

into semantic memory and episodic memory.

Semantic memory This is the memory of general informations. This is the

memory of the words, ideas and knowledge on the world regardless of the temporo-

spatial information, without reference to the learning context.

Episodic memory According to Wheeler et al. (1997), episodic memory allows

to mentally travel in time, and to consciously have a representation of past events

to integrate them into a future project. This mnesic system allows the storage and

the recovery of personal events situated in their temporal and spatial context.
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The study of patients who have suffered brain lesions has made a significant

contribution to the understanding of memory processes. First of all, this is the

study of the famous amnesic patient known as H.M. which allowed a better under-

standing of the implication of temporal lobes in memories. H.M. was epileptic since

childhood and to reduce its seizures, in adulthood he finally underwent a bilateral

resection (in 1953) of its hippocampi, amygdala and a part of the neighbouring cor-

tex (Scoville & Milner, 1957). After his surgery, H.M. lost his capability to form

new long term memories. He was able to remind a sequence of words, but he forgot

this sequence after stopping saying it. Furthermore, he lost the memory of events

that happened during the three years before the resection. On the other hand, his

procedural and implicit memories were intact. The many studies on this patient

(Corkin, 2002; Squire, 2009) allow to conclude that short term memory, long term

memory, procedural memory and declarative memory processes are different. These

studies also showed the role of the temporal lobes in the consolidation of new infor-

mations in declarative memory, that is a long process since memory of years before

the resection were lost. The declarative memory seems to be blocked by the ab-

sence of hippocampi. An other patient named K.C. and presented in the study of

Tulving (2002), suffered a cranial trauma in 1981 at the age of 30. The MRI of

his brain showed bilateral hippocampal lesions, but the sub-hippocampal structures

were spared during the resection. K.C. cannot recollect any personal events whereas

his semantic knowledge is intact: he knows many facts about himself and can learn

new factual informations without any episodic memories. He can not imagine his

future any more than he can remember the past. Unlike H.M., his semantic mem-
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ory is preserved as his sub-hippocampal structures, and like H.M. he suffered very

severe damage to his episodic memory. As suggested in Rosenbaum et al. (2005)

and Tulving (2002), a distinction can be made between the hippocampi which play

a critical role in episodic memory and the sub-hippocampal structures which appear

to be more involved in semantic memory. This theory has been exposed in other

works as in Vargha-Khadem et al. (1997) and Warrington (1975) with other patients

with brain lesions.

2.3.2 Spatial navigation

Hippocampi also plays a role in spatial memory and navigation. In animal stud-

ies as in rats or mice (O’Keefe & Dostrovsky, 1971), they found that hippocampi

present a type of neurons that becomes active when the rat enters in a particu-

lar place in the environment. These neurons are named place cells and have been

identified in humans by Ekstrom et al. (2003). Furthermore the study of Maguire

et al. (2000) on the taxi drivers of London, before the appearance of Global Po-

sitioning System (GPS), showed that the gray matter of the posterior part of the

hippocampus was larger in taxi drivers than in control subjects, but in the anterior

part of the hippocampus the gray matter was larger in control subjects than in taxi

drivers. Authors also found a correlation between the amount of time an individual

worked as a taxi driver and the volume of gray matter of the posterior and ante-

rior part of the hippocampus. An other study on the role of hippocampi (Burgess

et al., 2002), showed that the visualization of spatial scenes in virtual reality in-

volves the parahippocampal gyrus. The right hippocampus seems to be involved in
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memory for locations within an environment whereas the left hippocampus seems to

be involved in context-dependant episodic memory or in autobiographical memory

(Burgess et al., 2002; Maguire, 2001).

2.3.3 Pathologies

We will make a short description of the main pathologies in which the hippocam-

pus is involved.

Figure 2.12: Hippocrates

Temporal Lobe Epilepsy The first document

about epilepsy dates from 2000 BC: epilepsy is de-

scribed as a supernatural characteristic, since the sick

persons were thought to be under the influence of a

god. Even if Hippocrates suggests in a treatise, in 400

BC, that this sacred disease is not spiritual but a dis-

ease caused by a brain impairment (and named it the

grand mal (great disease)), it is only from the 17-18th

century that epilepsy was considered as a neurological

disease.

Now epilepsy is considered as a brain disorder characterized by generalized or

focal epileptic seizures. Among the different forms of focal epilepsies, the most

frequent is temporal lobe epilepsy (TLE), which is present is around 40% of cases

(Engel Jr, 1996). Seizures generally start in the hippocampus (Spencer et al., 1990)

and continue during one or two minutes with or without alteration of conscious-
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ness. The association between hippocampal abnormalities and TLE is well-known,

hippocampal sclerosis (atrophy of the hippocampus with altered signal intensity in

MRI) is a frequent finding in patients with TLE (Eriksson et al., 2008). Even if it is

not yet clear whether epilepsy is caused by hippocampal abnormalities, or whether

the hippocampus is damaged by cumulative effects of seizures, TLE is resistant to

medications in 89% of cases when patients present hippocampal sclerosis, in 75%

of cases when patients present a malformation of cortical development and in 97%

of cases of malformation of cortical development and hippocampal sclerosis (Semah

et al., 1998). In carefully selected patients, epilepsy surgery can effectively con-

trol seizures as shown in Wiebe et al. (2001). MRI plays an important role in the

pre-surgical evaluation to determine the presence or not of atrophy, since in case of

atrophy, more than 70% of surgically treated TLE patients achieve to be seizures

free after surgery (Wiebe et al., 2001; Wiebe, 2003). On the other hand, one case

of resection of an hippocampal malformation has been reported in Dericioglu et al.

(2009).

Alzheimer’s Disease In the antiquity, Greeks and Romans associated old age

with mental decline (Berchtold & Cotman, 1998), but it is in 1901 that the psy-

chiatrist Alois Alzheimer described the first case in a fifty-year-old woman of what

became known as Alzheimer’s disease. He publicly reported this case after the death

of the patient on 1906.

Alzheimer’s disease (AD) is a neuro-degenerative disorder (progressive loss of

neurons) which mainly causes impairment of memory, and disorientation followed

by other cognitive symptoms. AD patients present two types of lesions caused by
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an accumulation of proteins leading to a cellular dysfunction, the amyloid plaques

at an extra-cellular level and the neurofibrillary tangles (NFT) at an intra-cellular

level. The medial temporal lobe and the hippocampus are affected by NFT and

neuronal loss at the earliest stages of the disease. Braak & Braak (1991) divided

the progression of NFT in the brain into six stages. Lesions are first located in the

trans-entorhinal cortex area (stage I), then spread into the entorhinal cortex (stage

II), extend to the hippocampus and the limbic lobe(stage III and IV ), involve the

associative neocortex (stage V) and finally the primary cortex (stage VI). These

stages are related to cognitive impairments reflecting the degeneration of the brain

related with these functions.

At present, the only way to obtain a definite diagnosis for AD is to perform an

autopsy of the brain of probable AD sufferers, revealing the density and distribution

of amyloid plaques and NFT. The diagnosis of probable AD relies on neuropsy-

chological examination. It is thus important to make progress towards earlier and

more accurate diagnosis of AD, by discovering markers of early AD. Volumetric

MRI studies (Laakso et al., 1995; Convit et al., 1997; Devanand et al., 2007) high-

lighted the increased atrophy of the hippocampus. Shape studies allow to show a

relation between hippocampal shape and AD in the earliest stages of the disease as

in Csernansky et al. (2005); Gerardin et al. (2009).

Depression Depression is a mental disorder characterized by a decline of mood

(as sadness), with a weak self-esteem and a loss of interest in normally pleasant

activities. On MRI, differences between healthy subjects and depressed patients

exist. Depressed patients present larger lateral ventricles, and smaller thalami, basal
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ganglia, frontal lobes and hippocampi. According to Minkel (2007) in a study with

rats, there could exist a link between depression and neurogenesis. Furthermore,

studies show a loss of hippocampal volume in major depression (Bremner et al.,

2000; Sheline et al., 1996). The loss of hippocampal neurons found in some depressed

patients is related to a memory dysfunction and mood disorders. Medications may

increase serotonin levels in the brain, stimulating neurogenesis and thus increasing

the total mass of the hippocampus (Duman et al., 1997). This increase may help

patients to improve mood and memory (Sheline et al., 2003).

Schizophrenia The term of schizophrenia was introduced by the psychiatrist

Eugen Bleuler in 1911 to denote what was previously called "dementia praecox".

Schizophrenia is a mental disorder usually developing in the beginning of the adult-

hood, and is often characterized by difficulties to recognize the real, which leads

to abnormal social behaviours. Its origins can be genetics, social, and / or psy-

chological. A post-mortem study (Shenton et al., 1992) showed that patients with

schizophrenia had significant reductions in the volume of gray matter in the left an-

terior part of the hippocampus, the left parahippocampal gyrus and the left superior

temporal gyrus. This result on hippocampi has been also observed by Nelson et al.

(1998) who showed an association between schizophrenia and a bilateral volumetric

reduction of the hippocampi and probably of the amygdalae as well.
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2.4 Conclusion

We described the anatomy of the hippocampus and its embryological develop-

ment. We also briefly reviewed its role in memory and cognition, and in some

pathologies. We saw that there exists an anatomical variant of the hippocampus

named Incomplete Hippocampal Inversion (IHI) which seems to be of developmen-

tal origin. This anatomical variant is present in healthy population and frequent in

epilepsy patients. It is thought to be a normal and non-pathological variation of the

hippocampus. We saw that IHI are not very well characterised since criteria used

are not always the same, and the prevalence of IHI is not well known in the healthy

population.



Chapter 3

Computational anatomy

In 1917 with his book "On growth and form" (D’Arcy Thompson, 1917), the

biologist and mathematician Sir D'Arcy Thompson became the pioneer of computa-

tional anatomy by using mathematics to explain biological patterns and variability.

In this book he describes morphological changes between species of the same genus

by simple geometric transformations. Therefore he introduced the problem of study-

ing biological shapes variability.

Computational Anatomy is the study of the anatomy via the numerical analysis

51
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of medical images. It aims at developing tools for the analysis of features of interest

like volume in biological shapes, and the study of their variability within a popu-

lation, to learn about shape differences between healthy and diseased populations

or for the detection and the classification of pathologies using shapes of particular

anatomical structures. Today, with the advances in medical imaging technology

and the wider availability of neuroimaging facilities to acquire 3D images of the

human brain like the non-invasive Magnetic Resonance Imaging (MRI). Thanks to

the wider availability of neuroimaging facilities and the development of computing

infrastructures there is more and more imaging datasets and larger ones, therefore

Computational Anatomy is more and more used.

Many studies focus on the statistical analysis of volume measurements as for

example Hogan et al. (2014) for the study of epilepsy, or Hänggi et al. (2011) for the

study of Alzheimer’s disease. But such studies do not capture the shape complexity

of the structures observed in MRI. Analysing shapes of structures can provide a

better understanding of the anatomical variability of the brain, which is a very chal-

lenging problem since healthy brains have a high variability, and it is important to

understand the mechanisms, the morphological changes and the impacts of diseases,

malformations or atypical variants of anatomical structures such as the Incomplete

Hippocampal Inversion.

But before analysing the variability of an anatomical structure shape set, we

have to define what we call a shape, how to represent the biological variability, and

we need to know how to characterise them to define differences between shapes.

Then we have to choose a way to analyse this shape set.
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In this chapter I will first present the concept of shape and an overview of dif-

ferent ways to describe a shape, then I will present the shape descriptor we chose,

before introducing the statistical shape analysis methods and the template estima-

tion methods needed for the shape analysis.

3.1 Shapes and their numerical representation in

medical imaging

The concept of shape is not well defined in the scientific community. Here we

will define the shape of an object as the 2D or 3D outside contour which delimits

the object from the background or from other objects.

3.1.1 Data acquisition

To study the anatomical variability of biological structures, we first need to

acquire images. There are many ways to acquire images of structures (microscopes,

ultra sound, X rays, magnetic resonance,...), but all of them are not appropriate or

feasible, depending on the structure we are interested in. For the study of anatomical

brain structures, the most common way to acquire images are volumetric MRI and

CT-scan. In this work we only work with the non invasive T1 weighted MRI. Each

subject recruited for the study has to be scanned by the MRI machine, in order to

obtain a volumetric image of the brain.
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3.1.2 Segmentation

After the acquisition it is now possible to identify the structure of interest. To

extract the shape of the desired anatomical structure, we have different options:

manual segmentation which is very time consuming and can lead to different results

when made by another person, semi automatic segmentation which is more robust

but still time consuming, and automated segmentation. In this work, we used an

automated segmentation method to extract the hippocampus shapes from the MR

images of our subjects. There are many methods for the segmentation of the hip-

pocampus, some of them are based on anatomical landmark detection as Chupin

et al. (2009) and Fischl et al. (2002) from the FreeSurfer software. Others are based

on non linear alignment of an image to a probabilistic atlas as Akhondi-Asl et al.

(2011) or Pardoe et al. (2009), or based on multi atlas approaches as Collins &

Pruessner (2010). For our study we chose to use the SACHA software (Chupin

et al. (2009)) which provides good segmentations in healthy populations as shown

in the Kim et al. (2012) study. The segmentation methods provide a binary mask

that will allow to represent the shape of the anatomical structure of interest.

A shape can be represented by a binary mask which represent the contour of

the object, or by points in R2 or R3 eventually connected to each others to form

piecewise smooth curves or piecewise smooth surfaces to form triangular meshes

(tessellation of the shape surface by regular triangles), or by varifolds or currents, a

concept I will present later in section 3.3.1. The representation of the shape depends

on the choice of the shape descriptor required for the study.
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Figure 3.1: Three similar shapes.

3.2 Shape descriptors and dissimilarity

Shape descriptors as numerical quantities (scalars, vectors or matrices) extracted

from the important features / information of the anatomical structures studied. A

shape descriptor may be invariant to translation, scale and rotation. In Figure 3.1,

the three objects have similar shapes: by applying a translation, a rotation and

a scaling to two of these animals we can perfectly superimpose them on the third

one. However in medical imaging, the scale of a shape should be part of the shape

description, since anatomical structures vary in volume and shape, and abnormal

variation of these features often characterises disease or malformation.

The choice of the descriptor has to be adapted to the data and the purpose.

A shape descriptor is usually associated with a measure of dissimilarity. This dis-

similarity function corresponds intuitively to a distance between shapes, and should

indeed satisfy some of the mathematical properties of a distance function dist. As

a reminder these properties are:

1. Symmetry, dist(x, y) = dist(y, x) for any objects x and y

2. Positivity, dist(x, y) ≥ 0 for any objects x and y.

3. Triangular inequality, for any objects x, y, z, dist(x, y) ≤ dist(x, z)+dist(z, y)
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4. dist(x, x) = 0 for any object x.

5. dist(x, y) = 0⇒ x = y for any objects x and y.

The symmetry property and the triangular inequality may not be always satisfied

in a dissimilarity function d. The symmetry property is not always necessary or

wanted as explained in Tangelder & Veltkamp (2008). In fact, one has to chose

between the quantity of shape information captured by the shape descriptor, and a

dissimilarity function being closer to a distance function. Moreover, one may choose

to incorporate invariance with respect to rigid transformations: d(T (x), x) = 0 for

any described shape x and rigid transformation T , in which case the last property

of a distance will not be satisfied. However in general, a rigid transformation is

applied to all shapes before computing dissimilarities ; hence this last property is

less crucial.

In the next two sections I will briefly present different shape descriptors, to give

a short overview of the possible descriptors used in medical imaging.

3.2.1 Common shape descriptors

Basic descriptors Among the most basic shape descriptors, we can find mea-

surements such as volume, length, perimeter, which are scalars values, and thus

simply use the absolute value of the difference as dissimilarity. Another basic shape

descriptor, which directly uses the segmentation, is the Voxel Based Morphometry

(VBM) Ashburner & Friston (2000), which compares voxel by voxel the smoothed

segmentation of the gray matter from brains of the subjects normalized in the same

stereotactic space. In this method, the voxel-wise comparison is local and there is
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no global dissimilarity.

Point Distribution Model This descriptor has been used in studies as Becker

et al. (2010) to segment the cerebellum of foetuses. In the Point Distribution Model

framework, the descriptors are specific 2D or 3D points which are points of corre-

spondences named landmarks as in Cootes et al. (1995). These landmarks can be

anatomical points specified by an expert corresponding to biological interest points,

they can be located according to some geometrical properties such as curvature, or

voxel intensity for example, as described in Dryden & Mardia (1998). Point Dis-

tribution Model (PDM) gives a local description of the shape which does not take

into account some geometric informations such as tangents or normals to the shape.

The main problem of such a descriptor is the use of landmarks which sometimes are

very difficult to identify due to the complexity and variablility of shapes such as for

exemple human brain sulci.

Medial representation This descriptor has been used in studies such as Styner

et al. (2004) in which they combine medial representation and spherical harmonics

(section 3.2.1) for the study of the hippocampus in a pathological case, or as Pouch

et al. (2012) to model mitral valve. Medial representation has been introduced

by Pizer et al. (1999). It uses as descriptor the medial axis or skeleton of the shape,

which captures the geometry in a compact manner. It allows to build low dimension

statistical models of curves and surfaces. The principle is to link a set of primitives

called medial atoms to form a graph. Medial atoms model a region of an object

via its position, width and local orientation; a medial atom m = (x, r, n0, n1) is a
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4-tuple in R3×R+×R3×R3, with x a medial primitive which is the central position

of the atom, r the radius of the maximal inscribed ball, n1 and n0 are two unit

vectors tangents to the object boundary. This descriptor is not robust to changes

of connectivity of the surfaces is and sensitive to the variations in the segmentation

method used.

Spherical harmonic decomposition This descriptor is currently used in med-

ical imaging to describe rounded or closed structures, as used in Gerardin et al.

(2009) to classify Alzheimer disease patients from ageing subjects using hippocam-

pal shape, or in Ong et al. (2012) for the analysis of the caudate nucleus. The

spherical harmonic decomposition, is a global multi scale descriptor that can only

represent objects of spherical topology. Spherical harmonics are the angular portions

of the solution to Laplace equation in spherical coordinates and form an orthonor-

mal set of basis function on the sphere. Truncating the spherical harmonic series at

different degrees results in object representations at different levels of details. But

this descriptor is not invariant to translations, rotations and scaling.

Intrinsic shape context This is a geometric descriptor introduced by Shi et al.

(2007) used to capture global characteristics of shapes to guide the mapping be-

tween hippocampal surfaces by automatically detecting landmarks for the analysis

of the hippocampal shape in Alzheimer Disease. The Intrinsic shape context (ISC)

attributes to each point on the surface a measure reflecting its relative position to

the other points by partitioning the surface in small areas. The ISC defines for each

point p a histogram of the area around p, so it is invariant to rigid transformations.
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A global partition of the shape can also be computed.

Moments representation Moments representation have been used in Mangin

et al. (2004) to study the morphometry of cortical sulci. In 2D or 3D images, they

indicate the shape distribution of each axis. First moments describe global and local

geometric information of the shape, as the volume and the coordinates of the centre

of mass. Moments are invariant to rigid transformations when using normalized

central moments. It can be enough to consider the three first order moments to

describe a shape, as they embed simple shape information like bending, tapering

and pinching. The advantage of using moments of order up to three, is that a shape

can be described by a small set of values. But the interpretation of such descriptors

is not an easy task.

3.2.2 Deformation-based descriptors

In this section is presented another sort of descriptors: the deformation-based

descriptors describe a shape by studying its non-rigid matching onto another one,

or onto a template of the population. Indeed, in deformation-based analysis, we

generally compute the deformations between the shapes to a template of the popu-

lation. I will present in section 3.5 some methods used in the literature to estimate

a template. With such a descriptor we build a metric on shapes via a metric on

the space of deformations, so the dissimilarity is related to the deformation needed

to match a surface to another. This sort of descriptor follows the idea of D'Arcy

Thompson and was taken over by Grenander & Miller (1998). Here the distance
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between shapes is determined using the quantity of deformation from a shape to

another. Deformation-based descriptors can deal with any representation of shapes

: images, surfaces, points and curves.

Here I quickly give an overview of the deformations models that have been widely

used in medical images.

Free Form Deformation Free Form Deformations (FFD) have been introduced

by Sederberg & Parry (1986) and applied to recover the motions and deformations of

the breast in MRI in Rueckert et al. (1999). FFD deforms a shape by manipulating

an underlying mesh of control points. Deformations are based on B-splines. A

physical analogy is to consider a parallelepiped in flexible plastic (the control points)

in which is embedded the object of interest which is also flexible; the object is then

deformed along with the plastic.

Large Deformation Diffeomorphic Metric Mapping The Large Deformation

Diffeomorphic Metric Mapping (LDDMM) framework has been used in many studies

as in Durrleman et al. (2008b) for the study of the brain variability, or in Auzias et al.

(2009) for the brain registration under sulcal constraints and used in Vaillant et al.

(2004) to define tangent-space statistics using geodesics. The LDDMM framework

introduced by Trouvé (1998), is based on flows of diffeomorphisms which are the

non-linear extension of linear isomorphisms, and allow the registration of different

shapes. The main issue with using such a framework is the computation time which

is very high, but the advantages make this framework very interesting (details in

section 3.3.2).
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Large Deformation High Dimensional Brain Mapping Wang et al. (2007b)

characterized the basal ganglia and the thalamus in patient with Tourette syndrome

and Tepest et al. (2003) the hippocampal anatomy in schizophrenia using Large De-

formation High Dimensional Brain Mapping (HDBM-LD) to quantify anatomical

changes. Csernansky et al. (1998) introduced this method to study hippocampal

abnormalities in schizophrenia using MRI. HDBM-LD consists in analysing trans-

formations fields between landmarks of individual MRI and a template. Template

is transformed with a diffeomorphic registration guided by the landmarks towards

the MRIs of the subjects, then shapes are described by the vectors of displacements

located on the template.

3.3 Chosen mathematical model

For our analysis we have decided to use a deformation-based descriptor, which

is the most natural choice to use in computational anatomy, where the comparison

of two shapes can be performed by the analysis of the deformation bringing one

shape to another (Grenander & Miller, 1998). Morphological changes of anatomical

brain structures are under physical properties constraints, such as rules of elastic

deformations of fluid dynamics. The LDDMM framework (presented in section 3.3.2)

appears to be the easiest to interpret, and the model has nice properties as we will

see in section 3.3.2. To represent our shapes we have chosen to use the framework

of currents Vaillant & Glaunès (2005) presented in section 3.3.1, which can be used

with binary masks or meshes, does not require point to point correspondences or

landmarks, and is robust to different samplings and topologies. The main advantage
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of this framework is that shapes are embedded into a vector space.

3.3.1 Currents

The idea of the mathematical object named “currents” is related to the theory

of distributions as presented by Schwartz in 1952 Schwartz (1952), in which dis-

tributions are characterized by their action on any smooth functions with compact

support. In 1955, De Rham De Rham (1955) generalized distributions to differen-

tial forms to represent submanifolds, and called this representation currents. This

mathematical object serves to model geometrical objects using a non parametric

representation.

The use of currents in computational anatomy was introduced by Vaillant &

Glaunès (2005) (see also Glaunès (2005)) and subsequently developed by Durrle-

man (Durrleman, 2010) in order to provide a dissimilarity measure between meshes

which does not assume point-to-point correspondence between anatomical struc-

tures,. A very good presentation of the concept of currents in mathematics can be

found in Durrleman (2010). The approach proposed by Vaillant and Glaunès is to

represent meshes as objects in a linear space and supply it with a computable norm.

Using currents to represent surfaces has some benefits. Firstly it avoids the point

correspondence issue : one does not need to define pairs of corresponding points

between two surfaces to evaluate their spatial proximity. Moreover, metrics on cur-

rents are robust to different samplings and topologies and take into account not only

the global shapes but also their local orientations. Another important benefit is that

the space of currents is a vector space, which allows to consider linear combinations
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such as means of shapes in the space of currents. This property will be used in the

centroid and template methods that we introduce in the following.

We limit the framework to surfaces embedded in R3. Let S be an oriented

compact surface, possibly with boundary. Any smooth and compactly supported

differential 2-form ω of R3 - i.e. a mapping x 7→ ω(x) such that for any x ∈ R3, ω(x)

is a 2-form, an alternated bilinear mapping from R3 × R3 to R - can be integrated

over S ∫
S

ω =

∫
S

ω(x)(u1(x), u2(x))dσ(x). (3.1)

where (u1(x), u2(x)) is an orthonormal basis of the tangent plane at point x, and dσ

the Lebesgue measure on the surface S. Hence one can define a linear form [S] over

the space of 2-forms via the rule [S](ω) :=
∫
S
ω. If one defines a Hilbert metric on

the space of 2-forms such that the corresponding space is continuously embedded in

the space of continuous bounded 2-forms, this mapping will be continuous Vaillant

& Glaunès (2005), which will make [S] an element of the space of 2-currents, the

dual space to the space of 2-forms.

Note that since we are working with 2-forms on R3, we can use a vectorial

representation via the cross product: for every 2-form ω and x ∈ R3 there exists a

vector ω(x) ∈ R3 such that for every α, β ∈ R3,

ω(x)(α, β) = 〈ω(x) , α× β〉 = det(α, β, ω(x)), (3.2)

Therefore we can work with vector fields ω instead of 2-forms ω. In the following,

with a slight abuse of notation, we will use ω(x) to represent both the bilinear

alternated form and its vectorial representative. Hence the current of a surface S
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can be re-written from equation 3.1 as follows:

[S](ω) =

∫
S

〈ω(x) , n(x)〉 dσ(x) (3.3)

with n(x) the unit normal vector to the surface: n(x) := u1(x)× u2(x).

Then we define a Hilbert metric 〈· , ·〉W on the space of vector fields of R3,

and require the space W to be continuously embedded in C1
0(R3,R3). The space

of currents we consider is the space of continuous linear forms on W , i.e. the dual

space W ∗, and the required embedding property ensures that for a large class of

oriented surfaces S in R3, comprising smooth surfaces and also triangulated meshes,

the associated linear mapping [S] is indeed a current, i.e. it belongs to W ∗.

The central object from the computational point of view is the reproducing kernel

of space W , which we introduce here. For any point x ∈ R3 and vector α ∈ R3 one

can consider the Dirac functional δαx : ω 7→ 〈ω(x) , α〉 which is an element of W ∗.

The Riesz representation theorem then states that there exists a unique u ∈ W such

that for all ω ∈ W , 〈u , ω〉W = δαx (ω) = 〈ω(x) , α〉. u is thus a vector field which

depends on x and linearly on α, and we write it u = K
W

(·, x)α. Thus we have the

rule

〈K
W

(·, x)α, ω〉
W

= 〈ω(x) , α〉 . (3.4)

Moreover, applying this formula to ω = K
W

(·, y)β for any other point y ∈ R3 and

vector β ∈ R3, we get

〈K
W

(·, x)α,K
W

(·, y)β〉
W

= 〈K
W

(x, y)β , α〉 (3.5)

= αTK
W

(x, y)β =
〈
δαx , δ

β
y

〉
W ∗

.
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K
W

(x, y) is a 3 × 3 matrix, and the mapping K
W

: R3 × R3 → R3×3 is called the

reproducing kernel of the space W . Now, note that we can rewrite equation 3.3 as

[S](ω) =

∫
S

δn(x)x (ω) dσ(x) (3.6)

Thus using equation 3.5, one can prove that for two surfaces S and T ,

〈[S] , [T ]〉2W ∗ =

∫
S

∫
T

〈nS(x) , K
W

(x, y)nT (y)〉 ds(x)ds(y) (3.7)

This formula defines the metric we use for evaluating spatial proximity between

shapes. It is clear that the type of kernel one uses fully determines the metric and

therefore will have a direct impact on the behaviour of the algorithms. We use

scalar invariant kernels of the form K
W

(x, y) = h(‖x− y‖2/σ2
W )I3, where h is a real

function such as h(r) = e−r (gaussian kernel) or h(r) = 1/(1 + r) (Cauchy kernel),

and σW a scale factor. In practice this scale parameter has a strong influence on the

results; we will go back to this point later.

We can now define the optimal match between two currents [S] and [T ], which

is the diffeomorphism minimizing the functional

JS,T (v) = γE(v) + ‖[ϕv(S)]− [T ]‖2W ∗ (3.8)

This functional is non convex and in practice we use a gradient descent algorithm to

perform the optimization, which cannot guarantee to reach a global minimum. We

have observed empirically that local minima can be avoided by using a multi-scale

approach in which several optimization steps are performed with decreasing values

of the width σ
W

of the kernel K
W

(each step provides an initial guess for the next

one).
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In practice, surfaces are given as triangulated meshes, which we discretize in

the space of currents W ∗ by combinations of Dirac functionals : [S] '
∑

f∈S δ
nf
cf ,

where the sum is taken over all triangles f = (f 1, f 2, f 3) of the mesh S, and cf =

1
2
(f 1 + f 2 + f 3), nf = 1

2
(f 2 − f 1) × (f 3 − f 1) denotes respectively the center and

normal vector of the triangle. Given a deformation map ϕ and a triangulated surface

S, we also approximate its image ϕ(S) by the triangulated mesh obtained by letting

φ act only on the vertices of S. This leads us to the following discrete formulation

of the matching problem:

JdS,T (α) = γ

∫ 1

0

n∑
i=1

αi(t)
TK

V
(xi(t), xj(t))αj(t) dt

+
∑
f,f ′∈S

nTϕ(f)KW
(cϕ(f), cϕ(f ′))nϕ(f ′)

+
∑
g,g′∈T

ngKW
(cg, cg′)ng′ − 2

∑
f∈S,g∈T

nTϕ(f)KW
(cϕ(f), cg)ng (3.9)

where ϕ denotes the diffeomorphism associated to momentum vectors αi(t) and

trajectories xi(t), xi = xi(0) being the vertices of mesh S, and where we have noted

for any face f , ϕ(f) = (ϕ(f 1), ϕ(f 2), ϕ(f 3)). We note 3 important parameters, γ

which controls the regularity of the map, σ
V
which controls the scale in the space

of deformations and σ
W

which controls the scale in the space of currents.

There exist other frameworks similar to currents, such as varifolds which have

been studied for Computational Anatomy by Charon & Trouvé (2013), and which

present a similar spirit to currents but without taking into account the shape orien-

tation. Indeed, currents need to define orientations of curves or surfaces, which may

be an issue when studying for example white matter fibers (in which orientation

is ambiguous), or surfaces with spikes (because spikes in the currents have a ten-
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dency to vanish in the currents framework). Indeed, in some cases, as for the study

of fibres or surfaces with acute pikes, currents need to define orientations which is

not required in the first case, cancelled in the second case and lead to registration

problems. For hippocampal shapes, orientation of shapes is not a problem, since

hippocampi do not present acute pikes.

3.3.2 LDDMM framework

3.3.2.1 Large Diffeomorphic Deformations.

The Large Diffeomorphic Deformation Metric Mapping framework allows to

quantify the difference between shapes and provides a shape space representation:

shapes of the population are seen as points in an infinite dimensional smooth mani-

fold, providing a continuum between shapes of the population. In this framework a

diffeomorphism deforms the whole space, not only a shape. We briefly recall that a

diffeomorphism between two smooth manifolds, is a bijective map that has a smooth

inverse, and a smooth manifold is a space that locally looks like to an euclidian space

in which one can do calculus.

Diffeomorphisms as flows of vector fields. In the LDDMM framework, defor-

mation maps ϕ : R3 → R3 are generated by integration of time-dependent vector

fields v(x, .) in an Hilbert space V , with x ∈ R3 and t ∈ [0, 1]. If v(x, t) is regular

enough, i.e. if we consider the vector fields (v(·, t))t∈[0,1] in L2([0, 1], V ), where V is a

Reproducing Kernel Hilbert Space (R.K.H.S.) embedded in the space of C1(R3,R3)
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vector fields vanishing at infinity, then the transport equation:
dφv
dt

(x, t) = v(φv(x, t), t) ∀t ∈ [0, 1]

φv(x, 0) = x ∀x ∈ R3

(3.10)

has a unique solution, and one sets ϕv = φv(·, 1) the diffeomorphism induced by

v(x, t). The induced set of diffeomorphisms AV is a subgroup of the group of C1

diffeomorphisms. To enforce velocity fields to stay in this space, one must control

the energy

E(v) :=

∫ 1

0

‖v(·, t)‖2V dt. (3.11)

Metric structure on the diffeomorphisms group The induced subgroup of

diffeomorphisms A
V
is equipped with a right-invariant metric defined by the rules:

∀ϕ, ψ ∈ AV ,
D(ϕ, ψ) = D(Id, ϕ−1 ◦ ψ)

D(Id, ϕ) = inf
{∫ 1

0
‖v(·, t)‖V dt ; v ∈ L2([0, 1], V ), ϕv = ϕ

} (3.12)

D(ϕ, ψ) represents the shortest length of paths connecting ϕ to ψ in the diffeo-

morphisms group. Moreover, as in the classical Riemannian theory, minimizing the

length of paths is equivalent to minimizing their energy, and one has also:

D(Id, ϕ)) = inf
{
E(v) ; v ∈ L2([0, 1], V ), ϕv = ϕ

}
(3.13)

Discrete matching. Considering two surfaces S and T , the optimal matching

between them is defined in an ideal setting, as the map ϕv minimizing E(v) under

the constraint ϕv(S) = T . In practice such an exact matching is often not feasible



3.3. CHOSEN MATHEMATICAL MODEL 69

and one writes inexact unconstrained matching functionals which minimize both

E(v) and a matching criterion which evaluates the spatial proximity between ϕv(S)

and T , as we will see in the next section.

In a discrete setting, when the matching criterion depends only on ϕv via the

images ϕv(xi) of a finite number of points xi (such as the vertices of the mesh S) one

can show that the vector fields v(x, t) which induce the optimal deformation map

can be written via a convolution formula over the surface involving the reproducing

kernel KV of the R.K.H.S. V . This is due to the reproducing property of V ; indeed

V is the closed span of vectors fields of the form KV (x, .)α, and therefore v(x, t)

writes

v(x, t) =
n∑
i=1

KV (x, xi(t))αi(t), (3.14)

where xi(t) = φv(xi, t) are the trajectories of points xi, and αi(t) ∈ R3 are time-

dependent vectors called momentum vectors, which parametrize completely the de-

formation. Trajectories xi(t) depend only on these vectors as solutions of the fol-

lowing system of ordinary differential equations:

dxj(t)

dt
=

n∑
i=1

KV (xj(t), xi(t))αi(t), (3.15)

for 1 ≤ j ≤ n. This is obtained by plugging formula 3.14 for the optimal velocity

fields into the flow equation 3.10 taken at x = xj. Moreover, the energy E(v) takes

an explicit form as expressed in terms of trajectories and momentum vectors:

E(v) =

∫ 1

0

n∑
i,j=1

αi(t)
TK

V
(xi(t), xj(t))αj(t) dt. (3.16)

These equations reformulate the problems in a finite dimensional Riemannian set-

ting. Indeed E(v) appears as the energy of the path t 7→ (xi(t))1≤i≤n in the space
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of landmarks Ln = {x = (xi)1≤i≤n, xi 6= xj ∀i, j} equipped with local metric

g(x) = K(x)−1, where K
V

(x) is the 3n × 3n matrix with block entries K
V

(xi, xj),

1 ≤ i, j ≤ n.

3.3.2.2 Geodesic equations and local encoding.

As introduced previously, the minimization of the energy E(v) in matching prob-

lems can be interpreted as the estimation of a length-minimizing path in the group

of diffeomorphisms A
V
, and also additionally as a length-minimizing path in the

space of landmarks when considering discrete problems. Such length-minimizing

paths obey some geodesic equations Vaillant et al. (2004) (distances are defined as

in 3.12), which we write as follows in the case of landmarks (using matrix notations):
dx(t)
dt

= KV (x(t))α(t)

dα(t)
dt

= −1
2
∇x(t)

[
α(t)TKV (x(t))α(t)

]
,

(3.17)

Note that the first equation is nothing more than equation 3.15 which allows to

compute trajectories xi(t) from any time-dependant momentum vectors αi(t), while

the second equation gives the evolution of the momentum vectors themselves. This

new set of ODEs can be solved from any initial conditions xi(0), αi(0), which means

that the initial momentum αi(0) fully determines the subsequent time evolution

of the system (since the xi(0) are fixed points). As a consequence, these initial

momentum vectors encode all information of the optimal diffeomorphism. This is a

very important point for applications, specifically for group studies, since it allows

to analyse the set of deformation maps from a given template to the observed shapes

by performing statistics on the initial momentum vectors located on the template
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shape. We also can use geodesic shooting from initial conditions xi(0)αi(0) in order

to generate any arbitrary deformation of a shape in the shape space.

3.4 Statistical shape analysis

Statistical models are needed to compare shapes. As in Grenander (1995) in

this work, we consider the quantity of deformation from a shape to another, to be

the distance between these two shapes, whereas the leftover of the deformation is

considered as noise due to the absence of point to point correspondences.

A first strategy (presented in section 3.4.1) based on the manifold geometry

consists in analysing the set of pairwise distances between subjects. Then, the dis-

tance matrix can be entered into analysis methods such as Isomap Tenenbaum et al.

(2000), Locally Linear Embedding Roweis & Saul (2000), Yang et al. (2011a) or

spectral clustering algorithms Von Luxburg (2007). A second strategy (presented

in section 3.4.2) consists in analysing the deformations between the template of

the population and the individual subjects. This is done by analysing the initial

momentum vectors αi(0) = (αip(0))p=1...n ∈ R3×n which encode the optimal diffeo-

morphisms computed from the matching between a centroid and the subjects Si.

Initial momentum vectors all belong to the same vector space and are located on

the vertices of the centroid.
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3.4.1 Geometry based methods

3.4.1.1 Distance matrix approximation

In the LDDMM setting, distances can be computed by using diffeomorphic dis-

tances: ρ(Si, Sj) = D(id, ϕij). However, for large datasets, computing all pair-

wise deformation distances is computationally very expensive, as it involves O(N2)

matchings. An alternative is to approximate the pairwise distance between two sub-

jects through their matching from a template shape (see next section 3.5). This

approach has been introduced in Yang et al Yang et al. (2011b). One can use a first

order approximation to estimate the diffeomorphic distance between two subjects:

ρ̃(Si, Sj) =
√
〈αj(0)−αi(0) , KV (x(0))(αj(0)−αi(0)〉, (3.18)

with x(0) the vertices of the estimated centroid or template and αi(0) is the vector

of initial momentum vectors computed by matching the template to Si. Using such

approximation allows to compute only N matchings instead of N2.

Note that ρ(Si, Sj) is in fact the distance between Si and ϕij(Si), and not between

Si and Sj due to the non exactness of matchings. ρ(Si, Sj) is a dissimilarity between

Si and Sj.

ISOMAP This method was introduced by Tenenbaum et al. (2000) and tries

to encode the global geometry of the manifold in a lower dimensional space. The

ISOMAP method uses a distance matrix, which in the LDDMM setting is composed

by the approximated geodesic distances described above. The matrix is then thresh-

olded using a threshold or by using the k nearest neighbours to form a graph. The

Multidimensional Scaling (MDS) method ( a linear embedding method aiming at
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conserving pairwise distances of a given distance matrix Cox & Cox (2010) ) is then

applied to the resulting graph in order to compute the low-dimensional embedding.

ISOMAP is sensitive to populations with low density or with density differences as

some of the next methods.

Locally linear embedding This local method (LLE) was introduced by Roweis

& Saul (2000) and also builds a graph from a distance matrix by using the k nearest

neighbours of each subject. Then the linear reconstruction in the high dimensional

space is built using the graph by minimizing the sum of the reconstruction errors of

the local neighbourhood. The low dimensional embedding is built by using the local

information of each point, so the global aspect of the manifold is not necessarily

respected.

Hessian eigenmaps This method is inspired by the previous LLE. It is also a local

method based on a graph built using the k nearest neighbours, presented by Donoho

& Grimes (2003). Then a tangent space is computed via a Principal Component

Analysis (PCA) to each point of the manifold. The low dimensional embedding is

computed using the Hessian operator.

Local tangent space alignment Another local method based on a graph com-

puted using the k-NN from the approximated distances matrix, this method was

presented by Zhang & Zha (2004). Tangent spaces are computed on each point of

the manifold via a PCA, then the method tries to optimize the alignment of the

local tangent spaces to compute the low dimensional embedding.
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3.4.2 Principal component analysis on initial momentum

vectors

The Principal Component Analysis (PCA) on initial momentum vectors from a

template (see next section 3.5) to the subjects of the population, is an adaptation of

Principal Component Analysis (PCA) in which Euclidean scalar products between

observations are replaced by scalar products using the kernel KV of the deformation

space V , associated to the R.K.H.S. V . This adaptation can be seen as a Kernel

PCA method (Schölkopf et al., 1997) on initial momentum vectors. PCA on initial

momentum vectors has previously been used in morphometric studies in the LD-

DMM setting Vaillant et al. (2004); Wang et al. (2007a); Durrleman et al. (2009),

and it is sometimes referred to tangent PCA.

We briefly recall that, in PCA, the principal components of a dataset of N

observations ai ∈ RP with i ∈ {1, . . . , N} are defined by the eigenvectors of the

covariance matrix C with entries:

C(i, j) =
1

N − 1
(ai − ā)t(aj − ā) (3.19)

with ai given as a column vector, ā = 1
N

∑N
i=1 a

i, and xt denotes the transposition

of a vector x.

In our case, our observations are initial momentum vectorsαi ∈ R3×n and instead

of computing the Euclidean scalar product in R3×n, we compute the scalar product

with matrix KV , which is a natural choice because it corresponds to the inner

product of the corresponding initial vector fields in the space V . The covariance
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matrix then writes:

CV (i, j) =
1

N − 1
(αi − ᾱ)tKV (x)(αj − ᾱ) (3.20)

with ᾱ the vector of the mean of momentum vectors, and x the vector of vertices of

the template surface. We denote λ1, λ2, . . . , λN the eigenvalues of C in decreasing

order, and ν1,ν2, . . . ,νN the corresponding eigenvectors. The k-th principal mode

is computed from the k-th eigenvector νk of CV , as follows:

mk = ᾱ+
N∑
j=1

νkj (αj − ᾱ). (3.21)

The cumulative explained variance CEVk for the k first principal modes is given by

the equation:

CEVk =

∑k
h=1 λh∑N
h=1 λh

(3.22)

We can use geodesic shooting along with any principal mode mk to visualise the

corresponding deformations.

We chose to use this statistical approach since Kernel-PCA is widely used in

shape analysis as in Vaillant et al. (2004), Pennec (2006), Durrleman et al. (2009),

Shen et al. (2012) or Mansi et al. (2011), and provides a low dimensional genera-

tive space which allows visualizing the effect of each principal component by using

geodesic shootings.

3.5 Template estimation

A central notion in computational anatomy is the generation of registration maps,

mapping a large set of anatomical data to a common coordinate system to study
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intra-population variability and inter-population differences.

Several methods have been proposed to estimate templates in the LDDMM

framework Vaillant et al. (2004); Glaunès & Joshi (2006); Durrleman et al. (2008a,

2012); Ma et al. (2008). Vaillant et al. (2004) proposed a method based on geodesic

shooting which iteratively updates a shape by shooting towards the mean of direc-

tions of deformations from this shape to all shapes of the population. A different

approach was proposed by Durrleman et al. (2008a, 2012). The method initializes

the template with a standard shape, in practice it is often an ellipsoid. The method

uses a forward scheme: deformations are defined from the template to the subjects.

Again, it optimizes at the same time the deformations and the template. The tem-

plate is composed by one surface which presents the same configuration as the initial

ellipsoid. The method proposed by Beg et al. (2005) initializes the template with

one subject of the population. The method computes the momentum vectors from

the template to the subjects of the population, the template is updated by shoot-

ing in the direction of the mean of the momentum vectors until convergence. The

method presented by Ma et al. (2008) introduces an hyper template which is an

extra fixed shape (which can be a subject of the population). The method aims at

optimizing at the same time deformations from the hyper template to the template

and deformations from the template to subjects of the population. The template is

optimized via the deformation of the hyper template, not directly.

In the following studies, we used the method introduced by Glaunès & Joshi

(2006) which estimates a variational template given a collection of unlabelled points

sets or surfaces in the framework of scalar measures and currents. In our case we use
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the framework of currents. This method is posed as a minimum mean squared error

estimation problem and uses the metric on the space of diffeomorphisms. Let Si be

N surfaces in R3 (i.e. the whole surface population). Let [Si] be the corresponding

current of Si, or its approximation by a finite sum of vectorial Diracs. The problem

is formulated as follows:

{
v̂i, T̂

}
= arg min

vi,T

N∑
i=1

{
‖T − [ϕvi(Si)] ‖2W ∗ + γE(vi)

}
, (3.23)

where the minimization is performed over the spaces L2([0, 1], V ) for the velocity

fields vi and over the space of currents W ∗ for T . The method uses an alternated

optimization i.e. surfaces are successively matched to the template, then the tem-

plate is updated and this sequence is iterated until convergence. One can observe

that when ϕi is fixed, the functional is minimized when T is the average of [ϕi(Si)]

in space W ∗:

T =
1

N

N∑
i=1

[ϕvi(Si)] , (3.24)

which makes the optimization with respect to T straightforward. This optimal

current is not a surface itself; in practice it is constituted by the union of all sur-

faces ϕvi(Si), and the 1
N

factor acts as if all normal vectors to these surfaces were

weighted by 1
N
. At the end of the optimization process however, all surfaces being

co-registered, the ϕ̂vi(Si) are close to each other, which makes the optimal template

T̂ close to being a true surface.

In practice, we stop the template estimation method after P loops, and with the

datasets we use, P = 7 seems to be sufficient to obtain an adequate template: the
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algorithm has converged, and adding more loops does not increase significantly the

quality of the template.

As detailed in section 3.4, obtaining a template allows to perform statistical

analysis of the deformation maps via the initial momentum representation from

template to subjects to characterize the population.

In the present case, the optimal template for the population is not a true surface

but is defined, in the space of currents, by the mean T̂ = 1
N

∑N
j=1 ϕ̂vj [Sj]. However

this makes no difference from the point of view of statistical analysis, because this

template can be used in the LDDMM framework exactly as if it was a true surface.

One may speed up the estimation process and avoid local minima issues by defin-

ing a good initialization of the optimization process. Standard initialization consists

in setting T = 1
N

∑N
i=1[Si], which means that the initial template is defined as the

combination of all unregistered shapes in the population. Alternatively, if one gives

a good initial guess T , the convergence speed of the method can be improved. This

was the primary motivation for the introduction of the iterative centroid method

which we present in chapter 5.

3.6 Conclusion

Various methods for shape analysis have been proposed in computational anatomy

for the analysis of anatomical variability of brain structures. There is currently no

consensus on the shape representation neither on the shape descriptor; this choice

depends on the structure considered. In our case we chose to use the framework

of currents to represent our hippocampal shapes, and the LDDMM framework to
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describe them. In the following, we will see that template estimations methods in

the LDDMM framework are computationally expensive, which makes difficult the

analysis of large databases. We will present in Chapter 5 a method which computes

a centroid shape and allows to save computation time. This centroid computation

will be used further as a starting point for our statistical analyses.
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Chapter 4

Evaluation of Incomplete

Hippocampal Inversions

In this chapter, we will study Incomplete Hippocampal Inversion (IHI) in young

and healthy subjects. To that purpose, we will propose a new set of criteria for the

visual evaluation of IHI, adapted from existing criteria from the literature. Using

these criteria, we will then study the prevalence and characteristics of IHI in healthy

subjects using over 2000 subjects from the IMAGEN database.

This chapter is organised as follow: I first present and discuss in section 4.1 the

criteria used in the literature and in section 4.2 the population who served for the

83
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study, before presenting in section 4.3 the simplified criteria used to evaluate the 2042

subjects of the IMAGEN database. A short section in 4.4, expose how hippocampi

have been segmented and the quality control. Experimentations are exposed in

section 4.5 and results are finally presented in the section 4.6 and discussed in

section 4.7.

4.1 Introduction

Incomplete hippocampal inversion (IHI) is an atypical anatomical pattern of the

hippocampus which prominent features are a round, verticalized, medially positioned

hippocampus and a deep collateral sulcus. Different terms have been used to refer

to this atypical pattern including “incomplete hippocampal inversion” (Bajic et al.,

2008; Raininko & Bajic, 2010), “hippocampal malrotation” (Barsi et al., 2000; Peltier

et al., 2005; Gamss et al., 2009), “abnormal hippocampal formation” (Bernasconi

et al., 2005), “developmental changes of the hippocampal formation” Baulac et al.

(1998). IHI are thought to be of developmental origin, as shown by studies in

neonates (Righini et al., 2006; Raininko & Bajic, 2010). IHI were mostly described in

patients with epilepsy, in particular with malformations of cortical development but

also in temporal lobe epilepsy Baulac et al. (1998); Lehéricy et al. (1995); Bernasconi

et al. (2005); Bajic et al. (2009), with a prevalence of 30%-50%. However, IHI are not

specific of patients with epilepsy and are also found in healthy subjects, although

with an apparently lower frequency (Bronen & Cheung, 1991; Bajic et al., 2008;

Bernasconi et al., 2005). Several studies have investigated the prevalence of IHI in

subjects without seizures (Peltier et al., 2005; Bernasconi et al., 2005; Bajic et al.,
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2009; Gamss et al., 2009; Bajic et al., 2008). However, these studies included a small

number of healthy subjects (Bajic et al., 2008; Bernasconi et al., 2005), leading

to an imprecise estimation of the prevalence of IHI, or included patients without

epileptic seizures but referred for other neurological conditions (Gamss et al., 2009;

Bajic et al., 2008). Therefore, the prevalence of IHI in healthy subjects remains

unclear. The purpose of our study was to investigate the prevalence of IHI in a

large population of healthy subjects. We used the European database IMAGEN

(Schumann et al., 2010) composed of young healthy subjects. An advantage of

using such database is the number of subjects (over 2000 subjects), the small age

range, and the youth of the subjects which avoids the occurrence of age-related

morphological changes that can make more difficult the visual assessment of IHI.

The presence of IHI can be assessed visually on magnetic resonance imaging (MRI)

data, usually using T1-weighted sequences. However, different criteria have been

used in the literature to assess IHI, making it difficult to compare results across

studies (Gamss et al., 2009; Raininko & Bajic, 2010). Moreover, these visual scales

differ in terms of number of features to assess; those with many features are not

practical for application to larger series of over 1,000 subjects. In this chapter, we

adapted existing criteria from the literature in order to propose a new visual scale

of IHI that includes the most representative published criteria of IHI (Bernasconi

et al., 2005; Baulac et al., 1998), includes a reasonable number of items and leads

to a robust assessment.
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Figure 4.1: Figure from the third edition of The Human Hippocampus book of Duver-
noy Duvernoy (2005). Figure A: Development of the gyrus dentatus (dotted
area) and the Cornus Ammonis (hatched area). Figure B: Their definitive dis-
position. Arrows indicate the hippocampal sulcus (superficial part). 1, Cornus
Ammonis; 2, gyrus dentatis; 3, hippocampal sulcus (deep or vestigial part); 4,
fimbria; 5, prosubiculum; 6, subiculum proper; 7, presubiculum; 8, parasubicu-
lum; 9, entorhinal oarea; 10, parahippocampal gyrus; 11, collateral sulcus; 12,
collateral eminence; 13, temporal (inferior) horn of the lateral ventricle; 14,
tail of caudate nucleus; 15, stria terminalis; 16, choroid fissure and choroid
plexuses; 17, lateral geniculate body; 18, lateral part of the transverse fissure;
19, ambient cistern; 20, mesencephalon; 21, pons; 22, tentorium cerebelli.

4.1.1 Review of the Incomplete Hippocampal Inversion

As presented previously on the section 2.1 of Chapter 2, the Incomplete Hip-

pocampal Inversion (IHI) is a normal anatomical variation of the standard hip-

pocampus shape, which is not pathological. Some studies (Humphrey (1967), Kier

et al. (1995), Kier et al. (1997), Righini et al. (2006), Bajic et al. (2010), Radoš

et al. (2006), Baker & Barkovich (1992)) show an interest in the development of

the hippocampus (see Figure 4.1) which starts before 10 gestational weeks. When
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the corpus callosum grows at 16 GW, the gyrus dentatus and the cornu Ammonis

start to infold, the hippocampus fissure remains open, and the hippocampus re-

duces in size to only occupy the medial part of the temporal lobe and then begins

its inversion which will be ended around the 30th GW. 14% of neonates present an

incomplete inversion of the hippocampus (characterized by a rounded shape) after

29 GW against 50% around 23-24 GW (Bajic et al. (2010)); the aspect of the hip-

pocampus and the frequency of IHI seem to be similar to the adult hippocampi from

25 GW. Furthermore, the angle between the line connecting the lateral border of the

cornu Ammonis with the medial superior border of the subiculum and the midline

of the brain, is inferior to 70 degrees for foetuses before 25 GW, and superior to 70

degrees around 30 GW and more (Righini et al. (2006)). All these studies tell us

that incomplete inversions of the hippocampus found in adult population of devel-

opmental origin, and that rounded shape and vertical orientation are characteristics

of foetal hippocampi which inversion is still not completed.

In studies on patients with epilepsy or brain malformations the prevalences of

IHI found in the literature are very different.

– In Barsi et al. (2000), they found 6% of IHI in the population composed by

597 patients with suspicion of epilepsy, 69% of the IHI were left-sided, 19%

right-sided and 12% bilateral.

– In Peltier et al. (2005), 14% of 97 epileptic patients present IHI. In Bernasconi

et al. (2005), 43% of the 30 temporal lobe epilepsy patients had IHI, and 49%

of 76 patients with malformations of cortical development had IHI.

– In Bajic et al. (2009), 30% of the 201 patients with epilepsy had IHI, 67% of
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the IHI were left-sided, 7% right-sided and 27% bilateral.

– For the developmental brain malformations Baker & Barkovich (1992) found

IHI on 36% of 36 patients.

– Sato et al. (2001) found IHI on 64% of 44 patients with congenital brain

malformations.

– Donmez et al. (2009) found IHI on 56% of 62 patients with congenital brain

malformations.

In studies with control population (or patients without seizures nor brain mal-

formations) we also find very different IHI prevalences.

– In Bernasconi et al. (2005) they found 10% of IHI in the control population

composed by 50 healthy controls.

– In Peltier et al. (2005), 6% of the control population composed by 50 subjects

including 11 patients without epilepsy nor brain malformations.

– In Bajic et al. (2009) authors used 150 subjects including 116 patients without

brain malformation nor epilepsy, and found 18% of IHI, mostly left-side and

no right-side.

– In Gamss et al. (2009), the population is composed by 497 patients without

epilepsy seizures, only 6 patients present IHI.

– In Bajic et al. (2008), the population is composed by 20 volunteers and 80

patients without brain malformations, 19% had IHI.

– In one study (Bronen & Cheung, 1991) authors used 29 volunteers for the study

of the normal variations of the hippocampal shape in the healthy population,

authors found that 21% of the population do not have the usual flat appearance
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Figure 4.2: coronal view of a T1-weighted MRI in the MNI space from a subject of the
database IMAGEN. On the right (left hippocampus) an IHI, and on the left a
standard hippocampus

as in Figure 4.2.

We can note that the estimated frequencies, both for patient populations and

control populations, are substantially different even if we can sometimes observe

a higher frequency on epileptic population and developmental brain malformation

population. But as previously said, these frequencies are not comparable since they

are not using the same criteria to define IHI, and generally, populations are too

small.

4.1.2 Criteria used in the literature

Baker & Barkovich (1992) were the first to mention abnormal shape, vertical

orientation and incomplete inversion in the case of populations of patients with

developmental brain anomalies, but this study was an observation, therefore they

do not define criteria to evaluate IHI.



90
CHAPTER 4. EVALUATION OF INCOMPLETE HIPPOCAMPAL

INVERSIONS

Presently the criteria used in the literature to define IHI are mainly inspired

by those listed by Baulac et al. (1998) to describe, at the level of the hippocampus

body in a coronal view, isolated (with normal temporal lobe) hippocampal formation

development changes:

1. A medial position of the hippocampus close to the midline, leaving empty

the choroid fissure, which was not enlarged and displayed the form of a thin

crescent.

2. Round or pyramidal shape and vertical orientation by opposition to the ovoid

shape and transversal orientation of the normal hippocampus.

3. Deep collateral sulcus inducing a very marked protrusion, or collateral emi-

nence into the temporal horn.

4. The hippocampal fissure could not be identified or was abnormally deep.

5. The fimbria was less well delineated or misplaced on the dorsolateral edge of

cornu Ammonis.

6. A thickened subicular cortical ribbon.

The study of Barsi et al. (2000) used similar criteria to the 2nd and the 3rd criterion

presented by Baulac et al.. Other criteria are: blurred internal structure (which

reminds the first part of the 4th criterion of Baulac et al. (1998):"hippocampal fissure

could not be identified"), normal signal intensity on T2-weighted images, abnormal

position and size of the fornix. The main problem of all these criteria is that none

of them is proposed with a threshold, each estimation is entirely subjective, and

authors do not say why they chose these specific criteria as the size of the fornix for

example. In the study of Bernasconi et al. (2005), authors based their criteria on the
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Baulac et al. (1998) study, and aimed at better defining some criteria, such as the

medial positioning and the vertical orientation of the hippocampus. But authors are

still not precise, indeed for the medial positioning they expect a distance they defined

to be shortened, without a threshold. For the vertical orientation they measure an

angle, and for this criterion this angle has to be acute without more precision, this

angle seems to be difficult to estimate in case of rounded shape (see figure 3C of the

study, the description of the angle is at figure 3E). This study evaluated IHI on the

head, the body and the tail of the hippocampus, they illustrated some of the criteria

in the head and the tail, but criteria were exposed for hippocampal body. In Peltier

et al. (2005), they used similar criteria to those presented in Baulac et al. to evaluate

their hippocampi: the rounded shape, abnormal orientation, the visibility of internal

structures (on T2-weighted MRI), a deep and verticalised collateral sulcus and a

medial positioning. Authors do not give more informations. The study Bajic et al.

(2008) used the following criteria: round or pyramidal shape, hippocampus on the

medial part of the choroidal fissure (which corresponds to the medial position), the

tip of the temporal horn, the orientation of the collateral sulcus, the long axis of

the choroidal fissure (impossible to evaluate on T1-weighted MRI), and the medial

position of the fimbria which is used to evaluate the criterion of medial positioning

in Baulac et al. (1998) and Bernasconi et al. (2005).

There are different ways to evaluate the positioning of the hippocampi for exam-

ple, or to determine its verticality. But we can note that in those studies there are

recurring criteria, as 1; the roundness, 2; the verticality of the collateral sulcus, 3;

the medial positioning and 4; the thickened subiculum, and these criteria also have
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Table 4.1: Characteristics of the studied population

Imaging Number Gender Age (years) Handedness
centres of subjects mean ±SD (range) (Right/Left/Both)
Total 2008 1029 F (51%) 14.5± 0.4(12.9− 17.2) 1740/218/14

the advantage to be evaluable on a large database because they are always visible.

That is why we decided to base our description on these 4 criteria. We added a 5th

criterion on the depth of sulci of the fusiform gyrus (T4), since we observed that it

is not always the collateral sulcus which is deep and close to the hippocampus.

4.2 Participants and MRI data

We studied young healthy subjects from the multi-centric European database

IMAGEN 1 (Schumann et al., 2010) The database comprises 2462 subjects with

high-resolution T1-weighted anatomical MRI. For all subjects, T1-weighted MRI

were acquired on 3 Tesla scanners (Siemens Verio and TimTrio, Philips Achieva,

General Electric Signa Excite and Signa HDx) using a 3D Magnetization Prepared

Rapid Acquisition Gradient Echo (MPRAGE) sequence (TR = 2,300 msec; TE =

2.8 msec, flip angle = 9°; resolution: 1x1x1 mm3). We performed quality control

of the MRI data, checking for general quality as well as specific visibility of the

hippocampal formations. The MRI was judged of sufficient quality for assessment

of IHI for 2008 subjects, which were entered into the study (characteristics of the

subjects are given in Table 4.1). T1-weighted MRIs were registered towards the

MNI152 atlas using the FSL software (Jenkinson & Smith, 2001; Smith et al., 2004)

1. http://www.imagen-europe.com/
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in order to perform IHI assessment with a standardized orientation.

4.3 Simplified individual criteria and global

criterion for IHI assesment

An IHI is globally characterized by a round and vertical shape of the hippocam-

pus, a deep collateral sulcus and a medial positioning. For rating IHI, five individual

criteria and a global criterion named C0 were defined.

4.3.1 Criterion C1: verticality and roundness of the

hippocampus body

4.3.1.1 Description

Criterion C1 assesses both the roundness of the hippocampal body and its ver-

ticality. Some studies have considered roundness and verticality simultaneously

(Bernasconi et al., 2005; Lehéricy et al., 1995), while others have considered them

separately (Baulac et al., 1998) or have considered only the roundness (sometimes

referred to as pyramidal shape) (Bajic et al., 2008; Barsi et al., 2000; Gamss et al.,

2009; Stiers et al., 2010). In our case, we considered roundness and verticality as a

single criterion, in order to limit the number of criteria.

Criterion C1 was evaluated on the hippocampal body, on coronal slices. The

principles used to evaluate this criterion are illustrated on Figure 4.3 Two segments

C1a and C1b are determined. Segment C1a represents the width of the hippocampus
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Figure 4.3: Criterion C1: roundness and verticality of the hippocampus. For roundness,
the hippocampus is considered flat when C1a >> C1b, round when C1a '
C1b, and ovoid when C1a << C1b. The verticality of the hippocampus is
determined by the verticality of the segment C1a

in a coronal view; it is parallel to the ventral part of CA1/subiculum and goes

from the medial part of the gyrus dentatus to the lateral part of CA1. Segment

C1b measures the height of the hippocampal body in a coronal view; C1b must be

perpendicular to segment C1a and goes from the dorsal part of the hippocampus to

the ventral part of CA1.

The roundness is evaluated on three levels, flat (C1a > C1b) round (C1a = C1b)

or oval (C1a < C1b). For the verticality three levels were used: horizontal if the

segment C1a is horizontal (with a tolerance of around 10 degrees), oblique if C1a

is neither horizontal nor vertical (around 45 degrees) and vertical if segment C1a is

vertical with also a tolerance of around 10 degrees. Segments C1a and C1b are here

to illustrate and help the new observer to understand the criterion. The evaluation

of the MRI is made without tracing such segments. When roundness and verticality

have been determined, they are reported to determine the grade for the C1 criterion

following the rules defined in Table 4.2.
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Table 4.2: Evaluation of the criterion C1, based on the verticality and roundness of the
hippocampus.

Verticality of segment a
horizontal oblique vertical

Fo
rm

flat 0 0.5 NA
round 0.5 1 2
oval 1 1.5 2

4.3.1.2 Examples

(a) h1 (b) h2 (c) h3 (d) h4

(e) h5 (f) h6 (g) h7

Figure 4.4: Examples for the evaluation of the C1 criterion. Which grades for these 7
hippocampi from (a) to (g)? Results are detailed in Table 4.3 and in Figure
4.5.

The learning phase consists in accustom the new observer to recognize when an

hippocampus is flat and horizontal, round and oblique or round and vertical at first

sight, and the duration of this learning phase varies if the reader is already used to
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(a) h1: C1 = 0 (b) h2: C1 = 0 (c) h3: C1 = 0 (d) h4: C1 = 0.5

(e) h5: C1 = 2 (f) h6: C1 = 1 (g) h7: C1 = 2

Figure 4.5: Results of the Figure 4.4 Segments are here only for helping the reader, they
are not displayed on the MRI.

observe hippocampi on MRI.

Once the new observer is accustomed with this C1 criterion, he can easily say

that the 3 first hippocampi on the Figure 4.4 , h1 to h3 have a null grade, likewise

for the hippocampus h6 which is round and oblique it obtains a grade 1, and the

hippocampi h5 and h7 which are vertical obtain a grade of 2. For the hippocampus

h4, the large (compared to the hippocampus) gray area is in fact the fimbria, so we

do not have to take it into account. The hippocampus h4 is oblique and flat, the

grade is 0.5.
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Table 4.3: Results of the C1 evaluation for hippocampus on Figure 4.4. "Hor" is for
horizontal, "Obl" for oblique and "Ver" for vertical.

C1 evaluation h1 h2 h3 h4 h5 h6 h7
roundness a > b a > b a > b a > b a = b a = b a = b
verticality Hor Hor Hor Obl Ver Obl Ver
grade 0 0 0 0.5 2 1 2

4.3.2 Criterion C2: collateral sulcus

4.3.2.1 Description

This criterion measures the verticality and depth of the collateral sulcus (CS)

relatively to the size of the hippocampus. The CS is the sulcus which separates the

fourth temporal (T4) from the fifth (T5) of the temporal lobe, and supports the

collateral eminence (see Figure 4.1). Different definitions have been proposed for

the start of the CS, some studies consider the rhinal sulcus binding laterally the

uncus (Ono et al. (1990), Hanke (1997), Novak et al. (2002), Kim et al. (2008)) and

others suppose that the rhinal sulcus is the most anterior part of the uncus (Insausti

et al. (1995), Duvernoy (1999)). The problem of the collateral sulcus ending is even

more complicated, but they all almost agree with the fact that the ending of the

CS is at the level of the posterior part of the hippocampus tail. Some interesting

studies which have been led by Novak et al. (2002) in mesial temporal lobe epilepsy

(TLE) patients, by Kim et al. (2008) in controls and patients with TLE and by

Huntgeburth & Petrides (2012) in healthy subjects, provide a quantification of the

localization and variability for the collateral sulcus. In these studies, the collateral

sulcus is mainly at the level of the hippocampus body, and sometimes at the levels of
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Figure 4.6: Figure from Kim et al. (2008). The red sulcus is the collateral sulcus (CS),
the blue one is the rihnal sulcus (RS) and the green one, the occipitotemporal
sulcus (OTC). Upper panel: basal view of the 3D MRI rendering. Middle
panel: basal view of extracted sulci. Lower panel: three coronal slices of T1-
weighted MRI at the level of hippocampal head, body and tail. The columns
represent the four different patterns.

the hippocampus head and tail. The study of Kim et al. (2008) (Figure 4.6) shows

the different patterns of the collateral sulcus, and we can observe that it is only at

the level of the hippocampus body that we are sure to find the collateral sulcus.

This criterion has to be observed at the hippocampus body level, in a coronal view,

to avoid mistakes.

This criterion is evaluated at the level of the hippocampal body, in order to

have an easy identification of the CS. In Figure 4.7, the vertical orange line C2b

indicates the lateral limit of the hippocampus, and the blue segment C2a indicates

the collateral sulcus. The evaluation of this criterion has been defined as follows:
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if the blue segment C2a does not cross the orange line C2b, the grade for C2 will

be from 0 to 1, i.e. 0, 0.5 or 1. If the line C2a crosses the segment C2b the grade

will be from 1 to 2 (i.e. 1, 1.5 or 2). In an extreme case, when segment C2a starts

laterally to the segment C2b (it can happen when the hippocampus has a very medial

positioning), the grade is 2. Then the final grade is determined by the verticality,

evaluated on 3 levels, of the blue segment C2a, as presented in Table 4.4.

Figure 4.7: criterion C2: verticality and depth of the collateral sulcus. The segment a
indicates the collateral sulcus, and b the lateral part of the hippocampus. If
a do not cross b and stays medial to b, the grade will be between 0 and 1
otherwise between 1 and 2.

Table 4.4: Evaluation of the criterion C2. Segments C2a and C2b are defined on reference
to the figure 4.7 page 99.

C2a do not cross C2b C2a cross C2b
Verticality of a Hor Obl Ver Hor Obl Ver

grade 0 0.5 1 1 1.5 2
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4.3.2.2 Examples

Some examples of the C2 criterion are given in Figure 4.8, (a) has a grade of 0

since C2a is horizontal and does not cross C2b. (b) has a grade of 0.5 since C2a is

oblique, even if the occipito-temporal sulcus seems closer to the temporal horn. (c)

has a grade of 1, C2a crosses horizontally C2b. (d) has a grade of 1.5 since C2a is

oblique and cross C2b. (e) and (f) have a grade of 2, they are vertical, and cross or

exceed C2b.

(a) C2 = 0 (b) C2 = 0.5 (c) C2 = 1 (d) C2 = 1.5

(e) C2 = 2 (f) C2 = 2

Figure 4.8: Examples for the criterion C2. The segments are displayed to help the reader,
but during the evaluation no segments appear on the MRI. (a) has a grade
of 0 since C2a is horizontal and does not cross C2b. (b) has a grade of 0.5
since C2a is oblique, even if the occipito-temporal sulcus seems closer to the
temporal horn. (c) has a grade of 1, C2a crosses horizontally C2b. (d) has a
grade of 1.5 since C2a is oblique and cross C2b. (e) and (f) have a grade of 2,
they are vertical, and cross or exceed C2b.
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Figure 4.9: Criterion C3. Medial positioning of the hippocampus is estimated using the
length of the part of the subiculum which is not covered by the gyrus dentatus
(segment C3a) relatively to the length of the ventral part of the hippocampus
which is covered by the gyrus dentatus (segment C3b).

4.3.3 Criterion C3: medial positioning

4.3.3.1 Description

This criterion assesses the medial positioning of the hippocampus. To evaluate

this criterion, we consider the length of the part of the subiculum which is not

covered by the gyrus dentatus, (segment C3a on Figure 4.9) relatively to the ventral

part of CA1/subiculum which is covered by the gyrus dentatus (segment C3b on

Figure 4.9). Even if the hippocampus is vertical or oblique, segments C3b and C3a

are defined orthogonally to the brain midline. The junction between C3b and C3a is

on the same plane as the fimbria. In addition, we considered whether the temporal

horn (TH) of the lateral ventricle was empty or filled by the cerebrospinal fluid

(CSF).

The evaluation is made on five levels: from 0 for a very lateral positioning to 2

for a very medial one. Evaluations are given in Table 4.5. The two extreme grades

are only given using the segment C3a; if the C3a part is not visible because the
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Table 4.5: Evaluation of the Criterion 3. Segments C3a and C3b are defined on Figure 4.9.

C3a is ∅ C3a < C3b C3a = C3b C3a > C3b C3a � C3b
TH emptied 2 1 0.5 0 0

TH filled by CSF 2 1.5 1 0.5 0

hippocampus is too close to the ambient cistern, the grade is 2, regardless of the

temporal horn. Similarly, if the subiculum is very long compared to the C3b part,

the grade is 0, regardless of the temporal horn. In other situations, the grade is

modulated by the configuration of the temporal horn, as presented in Table 4.5.

4.3.3.2 Examples

Examples are given in Figure 4.10. The image 4.10(b) corresponds to the case

where C3a = C3b and the temporal horn is filled by the CSF, (a) corresponds to the

case where C3a > C3b and (c) the case where c3a is not visible, the hippocampus is

too close to the ambient cistern.

(a) C3 = 0 (b) C3 = 1 (c) C3 = 2

Figure 4.10: Examples for the criterion C3. (a) corresponds to the case where C3a > C3b,
(b) corresponds to the case where C3a = C3b and the temporal horn is filled
by the CSF, (c) the case where c3a is not visible
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4.3.4 Criterion C4: subiculum

(a) C4 = 0 (b) C4 = 2

(c) Image from Bernasconi et al.
(2005). The hippocampus pointed by
the arrow have a grade 2, the other a
grade 0.

Figure 4.11: Examples for the criterion C4.

4.3.4.1 Description

This criterion assesses the thickness of the subiculum, as in Bernasconi et al.

(2005). The subiculum is considered as abnormal if it is bulging upward, there-

fore looking thickened, which corresponds to a grade equal to 2. Otherwise, the

subiculum is considered normal and the grade is 0.
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4.3.4.2 Examples

Here (Figure 4.11) are some examples of this criterion, two are from the database

IMAGEN and the other one from the study of Bernasconi et al. (2005) which cor-

responds to a grade 2 for our evaluation.

4.3.5 Criterion C5: sulci of the fusiform gyrus (T4)

4.3.5.1 Description

This is a new criterion, which complements criterion C2. Indeed, we observed

that IHI are not only associated with atypical patterns of the collateral sulcus but

also of the occipito-temporal sulcus (OTS) which separates the fourth temporal (T4)

and the third temporal (T3) convolution. In that case, the OTS is deep and comes

laterally to the hippocampus. Criterion C5 takes into account both the CS and

the OTS. We evaluate if one of these sulci is deep enough to cross the level of the

subiculum. In Figure 4.12, we can see that none of the two sulci, which superior

parts are indicated by dotted green lines, goes over the subiculum indicated by the

red area.

The evaluation is made on three levels. If none of the sulci exceed the level of

the subiculum, the grade is 0. If one of the sulci crosses sidewise the red area (with

an oblique orientation), the grade is 1, and if a sulcus exceeds vertically, the grade

is 2. If the two sulci cross the red area the grade is 2.
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Figure 4.12: Criterion C5. If neither the CS nor the OTS superior parts (green dotted
lines) exceed the level of the subiculum (red area), the grade is 0. Otherwise,
the grade is either 1 (if the exceeding sulcus has an oblique orientation) or 2
(if the exceeding sulcus has a vertical orientation).

4.3.5.2 Examples

Examples are given in Figure 4.13. The green line represents the top of the

deeper sulcus between CS and OTS, and the red area the subiculum as described

above. In the subfigure 4.13(c), we can note that the deeper sulcus is the OTS one.

For this hippocampus, the criterion C2 is graded 0, the deeper sulcus is not the

collateral sulcus which is very small.

4.3.6 Global criterion C0

In addition to these five individual criteria, we also defined a global criterion

indicating the presence of an IHI. This was done in order to provide a global assess-

ment of the presence of an IHI. Criterion C0 is evaluated on three levels, a grade

of 0 is given if the hippocampus has a common aspect, a grade of 2 is given if the
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(a) C5 = 0 (b) C5 = 1 (c) C5 = 2

Figure 4.13: Examples for the criterion C5.

hippocampus has a pronounced incomplete inversion which corresponds to the total

IHI in the literature (Baulac et al., 1998; Bajic et al., 2008), and a 1 is given if the

hippocampus does not have a common aspect (flat and horizontal) neither a clear

incomplete inversion, which corresponds to a partial IHI (Bajic et al. (2008)).

4.4 Hippocampus segmentation

We segmented the hippocampi using the SACHA software (Chupin et al., 2009).

The method has the advantage to include realistic anatomical constraints. We per-

formed quality control of the segmentation results for each hippocampus. Notations

of the quality control were grades between 0 and 4, with the following scale:

– 0 when there is no segmentation;

– 1 when the method did not find the hippocampus (bounding box misplaced);

– 1.5 when the segmentation clearly failed;

– 2 when the segmentation is globally acceptable (would result in a reasonable

volumetric estimation), but when the shape of the hippocampus is modified;

– 2.5 when the shape of the hippocampus is slightly deformed, mainly because
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a part of the head is missing;

– 3 when the segmentation is good, some small parts of the hippocampus are

over segmented or under segmented but without modifying the hippocampal

shape;

– 3.5 when some local voxels are missing;

– 4 for a perfect segmentation.

4.5 Experiments

4.5.1 Java application

For the evaluation of the database, we needed a software capable to quickly load

MRI, in which we could grade each criterion for each subject, save these notations

and reload them. Since we also segmented the hippocampus with the SACHA

software Chupin et al. (2009) (see chapter 6), we also wanted to be able to control

the quality of the segmentation at the same time.

For this we developed, based on a first version of an application developed by

Roberto Toro, an application in Java able to change MRI by using the keyboard

arrows and keeping the same view as the previous subject. The application loads

2000 MRI in nifti format at the beginning in about 3-4 minutes.

The window is separated in three panels, the left one contains a table with

in columns the subjects IDs, comments, grades of criteria and segmentations QC

grades. The middle panel and the right one are the same: these panels propose

different small images to choose, by clicking on the small image, the point of view
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Figure 4.14: Java application for evaluation of IHI, quality control of MRI and quality
control of MRI segmentations.

(coronal, sagital, axial) to visualize the MRI, in its native space or in the MNI space,

it is also possible to view bounding boxes of the hippocampus for the segmentation

control, with or without the binary mask. There are two panels to display 2 different

views at the same time, the Figure 4.14 displays for the same subject its coronal

view and on the right panel the corresponding bounding box with the segmentation.

It is possible to zoom in or out the image by using the scroll wheel. The user can

change subjects by clicking in the table on the left panel on the desired subject,

or by using the keyboard arrows. In any cases, the next subject will be directly

(waiting time: 1 second) opened at the same slice of the same point of view, to

facilitate the notation of the whole database.

At any moment grades can be saved in a text file, so it is easy to import them

in a excel document for example. At the beginning of a session it is also possible to
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load grades from a previous session.

4.5.2 IHI assesment

IHI were assessed by two observers (Claire Cury (CC) and Fanny Cohen (FC)).

42 subjects were randomly selected to evaluate the intra- and inter-observer repro-

ducibility of the evaluations. Half of the remaining 1966 subjects were evaluated by

CC, the other half was evaluated by FC. Additionally CC checked the evaluations

given by FC, and FC checked the evaluations given by CC in order to homogenize

evaluations.

4.5.3 Intra- and inter-observer reproducibility

To evaluate the reproducibility, each observer had to evaluate twice the same

series of 42 subjects. This evaluation was done independently by the two observers

and the grades were not subsequently homogenized. The first time is after the

evaluation of at least 200 subjects, and the second time after assessing 900 MRI, with

at least 3 weeks between reproducibility tests. The intra and inter reproducibility

was computed using a kappa test for the criteria C0 and C5 (which are categorical

variables) and a weighted kappa test for criteria C1, C2 and C3. Reproducibility of

criterion C4 could not be evaluated because all 42 subjects used for reproducibility

assessment had a C4 grade equal to zero
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4.5.4 Statistical analysis

Based on the global criterion, we computed the proportions of IHI along with

confidence intervals at 95%. We compared the proportion of IHI between left and

right hemispheres using chi-square test. . We also compared the proportions of IHI

between males and females and between left-handed and right-handed subjects using

chi-square tests. For all individual criteria C1 to C5, we computed the frequencies

of the different possible grades (from 0 to 2), as well as the average grades. Results

between left and right hippocampi were compared using chi-square tests. Finally, we

studied the relationship between the sum of individual criteria (SC) and the global

criterion C0 and estimated an optimal threshold on SC to classify IHI, using C0 as

a reference.

4.6 Results

4.6.1 Intra- and inter-observer reproducibility

Results of kappa test, for the intra- and inter- observer reproducibility are given

in Table 4.6. A kappa value over 0.6 indicates a substantial agreement, and over 0.8

a very strong agreement (Cunningham, 2009). In all cases, intra- and inter-observer

agreements were beyond substantial (0.6). Very strong agreements (over 0.8) were

observed in the majority of cases.
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Table 4.6: Results of Kappa test for the intra- and inter-observers reproducibility of the
different criteria. The confident interval is at 95%

C0 C1 C2 C3 C5
CC1 vs 0.80 0.74 0.78 0.81 0.73
CC2 CI : [0.66; 0.95] CI : [0.63; 0.86] CI : [0.68; 0.89] CI : [0.71; 0.90] CI : [0.58; 0.88]

FC1 vs 0.89 0.71 0.82 0.87 0.87
FC2 CI : [0.78; 0.99] CI : [0.59; 0.83] CI : [0.70; 0.93] CI : [0.76; 0.92] CI : [0.76; 0.98]

CC1 vs 0.79 0.64 0.81 0.86 0.86
FC1 CI : [0.63; 0.94] CI : [0.52; 0.76] CI : [0.72; 0.91] CI : [0.78; 0.94] CI : [0.75; 0.97]

CC2 vs 0.87 0.82 0.88 0.87 0.80
FC2 CI : [0.75; 0.99] CI : [0.72; 0.92] CI : [0.81; 0.96] CI : [0.80; 0.95] CI : [0.66; 0.94]

Table 4.7: Percentage of IHI for left and right hippocampi with a confidence interval of
95%

C0 No IHI Partial IHI IHI

Left 70.9% 11.9% 17.1%
CI : [68.9%; 72.9%] CI : [10.5%; 13.3%] CI : [15.5%; 18.7%]

Right 84.6% 9.0% 6.5%
CI : [83.0%; 86.2%] CI : [7.7%; 10.3%] CI : [5.4%; 7.6%]

4.6.2 Global criterion C0

Table 4.7 presents the prevalence of IHI according to the global criterion C0.

Total IHI was found in 17% of healthy subjects for the left hippocampus and 6% for

the right. IHI were significantly more frequent for the left hippocampus compared

to the right (chi2 = 129.2 DF = 2 p = 8.5e-29).

Table 4.8 displays the co-occurrences of left and right IHI. One can note that

the majority of right IHI are in fact bilateral IHI, unilateral right IHI having low

frequency. On the other hand, unilateral left IHI are common. Further, left and

right C0 grades are not independent (χ2 = 384.1 DF = 4 p = 7.5e-82).

The frequencies of IHI in males and females are displayed on Table 4.9. The
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Table 4.8: Co-occurences of IHI for the left and right hippocampi, according to the global
criterion C0. Confidence intervals (CI) are at 95%.

PPPPPPPPPLeft
Right No IHI Partial IHI IHI

No IHI 65.9% 3.1% 1.9%
CI : [63.8%; 68.0%] CI : [2.3%; 3.9%] CI : [1.3%; 2.5%]

Partial IHI 7.9% 3.5% 0.5%
CI : [6.7%; 9.1%] CI : [2.7%; 4.3%] CI : [0.2%; 0.8%]

IHI 10.8% 2.3% 4.0%
CI : [9.4%; 12.2%] CI : [1.6%; 3.0%] CI : [3.1%; 4.9%]

frequencies did not differ between males and females (χ2 = 4.41 DF = 2 p = 0.11 for

left hippocampi and χ2 = 1.29 DF = 2 p = 0.52 for right hippocampi). Therefore

the differences between male and female seem to be due to the sample fluctuation.

Table 4.9: Frequency of IHI, according to the global criterion C0, for female and male
populations, with a confidence interval at 95%

C0 Left No IHI Partial IHI IHI
Female 70.1% 13.4% 16.5%

(n=1029) CI : [67.3%; 72.9%] CI : [11.3%; 15.5%] CI : [14.2%; 18.8%]
Male 71.8% 10.4% 17.8%

(n=978) CI : [69.0%; 74.6%] CI : [8.5%; 12.3%] CI : [15.4%; 20.2%]

C0 right No IHI Partial IHI IHI
Female 84.4% 9.5% 6.1%

(n=1029) CI : [82.2%; 86.6%] CI : [7.7%; 11.3%] CI : [4.6%; 7.6%]
Male 84.9% 8.3% 6.9%

(n=978) CI : [82.7%; 87.1%] CI : [6.6%; 10.0%] CI : [5.3%; 8.5%]

The frequencies also did not differ depending on handedness (χ2 = 2.29 with

p = 0.89 for left; χ2 = 5.07 with p = 0.54 for right). We cannot refute that the

proportions between handedness right left and both-handed are identical according

to the criterion C0.
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Table 4.10: Repartition of grades for each individual criterion. We tested whether the
repartition differs between left and right for each criterion (chi-square test).

Left hippocampi Right hippocampi
0 0.5 1 1.5 2 0 0.5 1 1.5 2

C1 23% 44% 23% 8% 1% 20% 58% 18% 3% 0%
C2 18% 42% 28% 11% 1% 9% 57% 29% 4% 0%
C3 27% 40% 21% 10% 2% 38% 39% 17% 5% 1%
C4 97% NA NA NA 3% 98% NA NA NA 2%
C5 59% NA 20% NA 20% 85% NA 6% NA 9%

Table 4.11: For each individual criterion, its mean value on left and right and its frequency
when ≥ 1

Left hippocampi Right hippocampi

Mean value Frequency of Mean value Frequency of
abnormal criterion (≥ 1) abnormal criterion (≥ 1)

C1 0.61 33% 0.52 21%
CI : [0.59; 0.63] CI : 31%− 35% CI : [0.51; 0.54] CI : 19%− 23%

C2 0.68 40% 0.64 33%
CI : [0.66; 0.70] CI : 38%− 42% CI : [0.62; 0.66] CI : 31%− 35%

C3 0.60 33% 0.45 23%
CI : [0.58; 0.62] CI : 31%− 35% CI : [0.43; 0.47] CI : 21%− 25%

C4 0.07 3% 0.03 2%
CI : [0.05; 0.09] CI : 2%− 4% CI : [0.02; 0.04] CI : 1%− 3%

C5 0.61 41% 0.24 15%
CI : [0.57; 0.65] CI : 39%− 43% CI : [0.21; 0.26] CI : 13%− 17%

4.6.3 Individual criteria

The repartition of grades of each individual criterion (C1 to C5) is given in

Table 4.10. For all criteria, the repartition was statistically different between left

and right.

To complete in the Table4.10, we present the average grade for each criterion as

well as the proportion of subjects having a grade superior or equal to 1.
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(a) (b) (c)

Figure 4.15: Histograms of the sums of individual criteria Ci for left hippocampi (a), right
hippocampi (b) and the superposed histograms (c).

The sum of grades for all individual criteria (C1 to C5) may provide an overall

degree of IHI. We denote this sum as IHI score. Figure 4.15 shows the histograms of

the sum of grades for individual criteria for left and right hippocampi. Figure 4.16

shows the repartition of IHI score with respect to the grade of the global criterion

C0. We can note that the populations with (IHI) and without IHI (NoIHI) are well

separated. On the other hand, the intermediate class of “Partial IHI” overlaps with

the two others. This highlights the consistency between the global criterion C0 and

the individual criteria C1 to C5.

Furthermore, we computed the optimal threshold grade on IHI score to classify

a given hippocampus into IHI or not, using the global criterion C0 as a reference.

To compute this threshold, we used only hippocampi with a C0 grade of 0 (absence

of IHI) or 2 (presence of IHI). We then computed the threshold on IHI score which

maximizes the accuracy of the classification between cases with and without IHI.

The optimal threshold is 3.75, i.e. hippocampi without IHI correspond to IHI score

< 4, and hippocampi with IHI correspond to IHI score≥ 4. Table 4.12 reports
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(a) Left (b) Right

Figure 4.16: Histogram of the sum of grades of all individual criteria (C1 to C5) for left
hippocampi (a), right hippocampi (b) and the superposed histograms (c).

Table 4.12: Frequency of IHI using the threshold IHI score<4

Left hippocampi Right hippocampi
Classifying Classifying Classifying Classifying

IHI and No IHI all hippocampi IHI and No IHI all hippocampi
IHI 17% 22% 6% 8%

No IHI 71% 78% 85% 92%

the frequencies of IHI using this threshold. The Table indicates both frequencies

obtained without taking into account the hippocampi with C0 = 1(which are thus

very close to those reported in Table 6) and frequencies obtained when classifying

all hippocampi.

4.6.4 Impact of IHI on the automatic segmentation

We observed that results of segmentation were better for normal hippocampi

than for IHI. On the left, the average quality control of segmentations was 2.06 for
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hippocampi with IHI (C0 = 2), 2.46 for hippocampi with C0 = 1 and 2.74 for normal

hippocampi (C0 = 0). On the right, the average quality control of segmentations

was 2.38 for hippocampi with IHI (C0 = 2), 2.65 for hippocampi with C0 = 1 and

2.69 for normal hippocampi (C0 = 0). Thus, the segmentation quality decreased

with the level of IHI. For the left side (which contains more IHI), we observed

a correlation between the IHI score and the quality control of the segmentations

(r = −0.39). These results clearly indicate that IHI have a bad influence on the

segmentation method.

Since QC results were lower in subjects with IHI, it is not possible to use the

whole population for subsequent volumetric or shape analysis. In the following, we

consider as good segmentations the segmentations with a quality control ≥ 3. This

amount to 1114 segmentations for the left side, and 1085 segmentations for the right

side. Using the C0 criterion, left hippocampal volumes (of segmentations whose

quality control were ≥ 3) for C0 = 0 are on average 2.95 cm3 for 891 subjects (and

2.99 cm3 for the right side of 930 subjects). For hippocampus with IHI, so with C0 =

2, left hippocampal volumes are on average 2.75 cm3 for 113 subjects (and 2.78 cm3

for the right side of 58 subjects). The difference in volume between hippocampi with

IHI and hippocampi with a normal development was statistically significant (t-stat

= 5.93, df=1009, p =4.11e-9). The correlation between the criterion C0 and the

volume of segmentations with a quality control ≥ 3 are −0.24 for left hippocampi

and −0.21 for right hippocampi. Thus, when considering only segmentation with

good quality, the volume of the hippocampus is lower in subjects with IHI.
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4.7 Discussion and conclusion

In this chapter, we characterized incomplete hippocampal inversions and studied

their prevalence in a large population of young healthy subjects. We demonstrated

that IHI are a common anatomical pattern in healthy subjects and that they are

much more frequent in the left hemisphere. Our results clearly demonstrate that

IHI are a common phenomenon in the healthy population, with a frequency of about

17% in the left hemisphere and about 6% in the right hemisphere. The existence of

IHI in normal subjects was already known (Bajic et al., 2009; Gamss et al., 2009;

Bernasconi et al., 2005) but their prevalence was a matter of debate, some authors

arguing that IHI are a rare finding in patients without epilepsy (Gamss et al., 2009)

and others reporting that IHI are a common anomaly (Bajic et al., 2009; Raininko

& Bajic, 2010). The discrepancies between previous studies can be due to: 1) rel-

atively small number of subjects resulting in imprecise estimates of the frequency;

2) populations that mixed normal controls and patients without epilepsy but with

other conditions; 3) different sets of criteria for assessing IHI. Our study relied on

a large population of normal subjects, providing reliable estimates with small confi-

dence intervals. Furthermore, we included only young healthy subjects thus avoiding

the occurrence of medical conditions that could bias the estimates or of age-related

morphological changes that could make the visual evaluation difficult. Incomplete

inversions were clearly more frequent in the left than in the right hemisphere. Fur-

thermore, unilateral right IHI were rare while bilateral IHI were more common. This

finding is consistent with previous studies (Bajic et al., 2009). The origin of this

asymmetry is unknown. One can speculate that left and right hippocampi may not
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develop exactly at the same pace and thus that when the inversion is stopped it may

be incomplete only in the left hemisphere.

In our study, IHI were equally common in males and females. This is consistent

with the findings of Bajic et al. (2008). Furthermore, IHI were not related to hand-

edness of the subjects. For this study, we adapted criteria of IHI which are most

commonly found in the literature to define a set of criteria which includes a rea-

sonable number of criteria that can be applied on large datasets. As demonstrated

by the reproducibility study, our criteria are highly reproducible across observers

and rating sessions. We also defined a global criterion assessing the overall pres-

ence of an IHI. Although this criterion could theoretically be more subjective, we

showed that its reproducibility is as good as for the other criteria. Furthermore, the

global criterion was highly consistent with the individual scores. The distribution

of the sum of individual criteria indicates there is a continuum between a normal

hippocampus and IHI, with various intermediate degrees of hippocampal inversions.

We nevertheless proposed a threshold on the sum of criteria that allows classifying

an individual as presenting an IHI or not, that is consistent with the visual global

assessment. Nevertheless, one should note that we do not claim that the global

criterion is a gold standard, using the detailed criteria presented above could lead to

more comparable results across studies. Compared to the other criteria, there were

much less subjects with an abnormal score for criterion C4 (about 3% of subjects),

corresponding to a thicker subiculum. Interestingly, in Bernasconi et al. (2005), none

of the 50 healthy subjects had an abnormally thick subiculum. This suggests that

this criterion might be specific to malformations of cortical development or tempo-
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ral lobe epilepsy. Nevertheless, this hypothesis would need to be tested in further

work. Automatic segmentation performed less well in subjects with IHI than in

subjects without, as demonstrated by the QC grades of segmentations which were

significantly lower in subjects with IHI. This is consistent with the findings reported

in Kim et al. (2012) which reported lower segmentation quality in subjects with IHI

for various segmentation methods. This precludes the possibility to compare hip-

pocampal segmentations (either with volumetry or shape analysis) between subjects

with and without IHI on the whole population. Nevertheless, we still have over 1000

subjects (including over 100 subjects with IHI) with a QC score superior or equal to

3. Volumetry and shape analysis can thus be performed within this subpopulation.

In this subpopulation, we found that subjects with IHI had a significantly smaller

hippocampus than subjects with a normal hippocampus.

We studied the prevalence and characteristics of IHI in a large population of

healthy subjects. We were able to conclude that IHI are a frequent phenomenon

in healthy subjects and are more common in the left hemisphere than in the right.

Using a large dataset, we were able to obtain narrow confidence intervals reflecting

precise estimates of the prevalence. We also demonstrated that IHI do not depend

on sex nor on handedness. We further showed there is a continuum of changes from

a normal hippocampus to a complete IHI. For this study, we designed a new set of

criteria for IHI, by adapting existing criteria proposed in the literature. Our criteria

are applicable to large datasets and would allow further comparison between studies.

We also showed that IHI have an impact on the quality of automatic hippocampal

segmentation. This precludes a comparisons of hippocampal segmentations on the
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whole population. However, a substantial portion of the population (over 1000

subjects) had very good segmentation quality; This subpopulation will be used

subsequently for statistical shape analysis.



Chapter 5

Diffeomorphic iterative centroid

method for template estimation

on large datasets

This part is directly taken from the chapter of the same name, published in 2014

in the book Geometric Theory of Information (Cury et al., 2014b). It introduces

the Diffeomorphic Iterative Centroid method, which intended to be used primarily

in our experiments as a fast and robust initialization algorithm for the template

estimation method presented in section 3.5.

We will see in chapter 6 that this centroid algorithm can in fact be used itself as

an alternative for template estimation for the statistical analysis of large datasets.

121
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5.1 Introduction

Large imaging datasets are being increasingly used in neuroscience, thanks to

the wider availability of neuroimaging facilities, the development of computing in-

frastructures and the emergence of large-scale multi-center studies. Such large-scale

datasets offer increased statistical power which is crucial for addressing questions

such as the relationship between anatomy and genetics or the discovery of new

biomarkers using machine learning techniques for instance.

Computational anatomy aims at developing tools for the quantitative analysis

of variability of anatomical structures, its variation in healthy and pathological

cases and relations between functions and structures (Grenander & Miller, 1998).

A common approach in computational anatomy is template-based analysis, where

the idea is to compare anatomical objects by analyzing their variations relatively

to a common template. These variations are analyzed using the ambient space

deformations that match each individual structure to the template.

As exposed in the chapter 3, a common requirement is that transformations

must be diffeomorphic in order to preserve the topology and to consistently trans-

form coordinates. The Large Deformation Diffeomorphic Metric Mapping framework

(Christensen et al., 1996; Beg et al., 2005) has been widely used for the study of

the geometric variation of human anatomy, of intra-population variability and inter-

population differences. A presentation of the LDDMM are presented in section 3.3.2

page 67. It focuses the study on the spatial transformations which can match sub-

ject’s anatomies one to another, or one to a template structure which needs to be

estimated. These transformations not only provide a diffeomorphic correspondence
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between shapes, but also define a metric distance in shape space.

In Chapter 3 we saw that several methods have been proposed to estimate tem-

plates in the LDDMM framework Vaillant et al. (2004); Glaunès & Joshi (2006);

Durrleman et al. (2008a, 2012); Ma et al. (2008). Vaillant et al. (2004) proposed

a method based on geodesic shooting which iteratively updates a shape by shoot-

ing towards the mean of directions of deformations from this shape to all shapes

of the population. The method proposed by Glaunès and Joshi Glaunès & Joshi

(2006) starts from the whole population and estimates a template by co-registering

all subjects. The method uses a backward scheme: deformations are defined from

the subjects to the template. The method optimizes at the same time the defor-

mations between subjects and the template, and the template itself. The template

is composed, in the space of currents (more details on section 3.3.1 page 62), by

all surfaces of the population. A different approach was proposed by Durrleman

et al. (2008a, 2012). The method initializes the template with a standard shape, in

practice it is often an ellipsoid. The method uses a forward scheme: deformations

are defined from the template to the subjects. Again, it optimizes at the same time

the deformations and the template. The template is composed by one surface which

presents the same configuration as the initial ellipsoid. The method presented by

Ma et al. (2008) introduces an hyper template which is an extra fixed shape (which

can be a subject of the population). The method aims at optimizing at the same

time deformations from the hyper template to the template and deformations from

the template to subjects of the population. The template is optimized via the de-

formation of the hyper template, not directly. A common point of all these methods
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is that they need a surface matching algorithm, which is very expensive in terms

of computation time in the LDDMM framework. When no specific optimization is

used, computing only one matching between two surfaces, each composed of 3000

vertices, takes approximately 30 to 40 minutes. Then, computing a template com-

posed of one hundred such surfaces until convergence can take a few days or some

weeks. This is a limitation for the study of large databases. Different strategies can

be used to reduce computation time. GPU implementation can substantially speed

up the computation of convolutions that are heavily used in LDDMM deformations.

Matching pursuit on current can also be used to reduce the computation time Dur-

rleman et al. (2009). Sparse representations of deformations allow to reduce the

number of optimized parameters of the deformations Durrleman et al. (2012).

Here, we propose a new approach to reduce the computation time, called diffeo-

morphic iterative centroid using currents. The method provides in N -1 steps (with

N the number of shapes of the population) a centroid already correctly centered

within the population of shapes. It increases the convergence speed of the template

estimation by providing an initialization that is closer to the target.

Our method has some close connections with more general iterative methods to

compute means on Riemannian manifolds (i.e. a differential manifold equipped in

each tangent space with an inner product that varies smoothly from point to point).

For example Arnaudon et al. (2012) defined a stochastic iterative method which

converges to the Fréchet mean of the set of points. Ando, Li and Mathias Ando

et al. (2004) gave a recursive definition of the mean of positive definite matrices

which verifies important properties of geometric means. However these methods
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require a large number of iterations (much larger than the number of points of the

dataset), while in our case, due to the high computational cost of matchings, we

aim at limiting as much as possible the number of iterations.

5.2 An Iterative Centroid method

As presented in the introduction, computing a template in the LDDMM frame-

work can be highly time consuming, taking a few days or some weeks for large

real-world databases. To increase the speed of the method, one of the key points

may be to start with a good initial template, already correctly centred among shapes

in the population. Of course the computation time of such an initialization method

must be substantially lower than the template estimation itself. The Iterative Cen-

troid method presented here performs such an initialization with N − 1 pairwise

matchings only.

The LDDMM framework, in an ideal setting (exact matching between shapes),

sets the template estimation problem as the computation of a centroid on a Rie-

mannian manifold, which is of finite dimension in the discrete case (we limit our

analysis to this finite dimensional setting in what follows). The Fréchet mean is the

standard way for defining such a centroid and provides the basic inspiration of all

LDDMM template estimation methods. Since our Iterated Centroid method is also

inspired by considerations about computation of centroids in Euclidean space and

their analogues on Riemannian manifolds, we will briefly discuss these ideas in the

following.
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5.2.1 Mathematical justification

If xi, 1 ≤ i ≤ N are points in Rd, then their centroid is defined as

bN =
1

N

N∑
i=1

xi. (5.1)

It satisfies also the following:

bN = arg min
y∈Rd

∑
1≤i≤N

‖y − xi‖2. (5.2)

Now, when considering points xi living on a Riemannian manifoldM (we assumeM

is path-connected and geodesically complete), the definition of bN cannot be used

because M is not a vector space. However the variational characterization of bN has

an analogue, which leads to the definition of the Fréchet mean, also called 2-mean,

which is uniquely defined under some constraints (see Arnaudon et al. (2012)) on

the relative locations of points xi in the manifold:

bN = arg min
y∈M

∑
1≤i≤N

dM(y, xi)
2. (5.3)

Many mathematical studies (as for example Kendall (1990), Karcher (1977), Le

(2004), Afsari (2011); Afsari et al. (2013)), have focused on proving the existence

and uniqueness of the mean, as well as proposing algorithms to compute it. The

more general notion of p-mean of a probability measure µ on a Riemannian manifold

M is defined by:

b = arg min
x∈M

Fp(x), Fp(x) =

∫
M

dM(x, y)pµ(dy). (5.4)

Arnaudon et al. (2012) published in 2012 for p ≥ 1 a stochastic algorithm which

converges almost surely to the p-mean of the probability measure µ. This algorithm



5.2. AN ITERATIVE CENTROID METHOD 127

does not require to compute the gradient of the functional Fp to minimize. The

authors construct a time inhomogeneous Markov chain by choosing at each step

a random point P with distribution µ and moving the current point X to a new

position along the geodesic connecting X to P . As it will be obvious in the following,

our method shares similarities with this method for the case p = 2, in that it also uses

an iterative process which at each step moves the current position to a new position

along a geodesic. However our method is not stochastic and does not compute the

2-mean of the points. Moreover, our approach stops after N − 1 iterations, while on

the contrary the stochastic method does not ensure to have considered all subjects

of the population after N iterations.

Other definitions of centroids in the Riemannian setting can be proposed. The

following ideas are more directly connected to our method. Going back to the

Euclidean case, one can observe that bN satisfies the following iterative relation:
b1 = x1

bk+1 = k
k+1

bk + 1
k+1

xk+1, 1 ≤ k ≤ N − 1,

(5.5)

which has the side benefit that at each step bk is the centroid of the xi, 1 ≤ i ≤

k. This iterative process has an analogue in the Riemannian case, because one

can interpret the convex combination k
k+1

bk + 1
k+1

xk+1 as the point located along

the geodesic linking bk to xk+1, at a distance equal to 1
k+1

of the total length of

the geodesic, which we can write geod(bk, xk+1,
1

k+1
). This leads to the following

definition in the Riemannian case:
b̃1 = x1

b̃k+1 = geod(b̃k, xk+1,
1

k+1
), 1 ≤ k ≤ N − 1,

(5.6)
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Of course this new definition of centroid does not coincide with the Fréchet mean

when the metric is not Euclidean, and furthermore it has the drawback to depend on

the ordering of points xi. Moreover one may consider other iterative procedures such

as computing midpoints between arbitrary pairs of points xi, and then midpoints of

the midpoints, etc. In other words, all procedures that are based on decomposing the

Euclidean equality bN = 1
N

∑N
i=1 xi as a sequence of pairwise convex combinations

lead to possible alternative definitions of centroid in a Riemannian setting. Based

on these remarks, Emery and Mokobodzki Emery & Mokobodzki (1991) proposed

to define the centroid not as a unique point but as the set BN of points x ∈ M

satisfying

f(x) ≤ 1

N

N∑
i=1

f(xi), (5.7)

for any convex function f on M (a convex function f on M being defined by the

property that its restriction to all geodesics is convex). This set BN takes into

account all centroids obtained by bringing together points xi by all possible means,

i.e. recursively by pairs, or by iteratively adding a new point, as explained above

(see Fig.5.2).

5.2.2 Diffeomorphic Centroid methods

Outline of the method The Iterated Centroid method consists roughly in ap-

plying the following procedure: given a collection of N shapes Si, we successively

update the centroid by matching it to the next shape and moving along the geodesic

flow. Figure 5.1 illustrates the general idea. We propose two alternative ways for
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Figure 5.1: Illustration of the method. Left image: red stars are subjects of the population,
the yellow star is the final Centroid, and orange stars are iterations of the
Centroid. Right image: Final Centroid with the hippocampus population from
Data1 (red). See section 5.3.1 for more details about datasets.

the update step (algorithms 1 and 2 below).

5.2.2.1 Direct iterative centroid

The first version of the method computes a centroid between two objects O1 and

O2 by transporting a first object O1 along the geodesic going from this object to

O2. The transport is stopped depending of the weights of the objects. If the weight

of O1 is w1, and the weight of O2 is w2 with w1 + w2 = 1, we stop the deformation

of O1 at time t = w2. Since the method is iterative, the first two objects are two

subjects of the population, for the next step we have as a first object the previous

centroid and as a second object a new subject of the population. The algorithm

proceeds as presented in the Algorithm 1.



130 CHAPTER 5. DIFFEOMORPHIC ITERATIVE CENTROID METHOD

Data: N surfaces Si

Result: 1 surface BN representing the centroid of the population
B1 = S1;
for i from 1 to N − 1 do

Bi is matched using the equation (3.8) to Si+1 which results in a
deformation map φvi(x, t);
Set Bi+1 = φvi(Bi,

1
i+1

) which means we transport Bi along the geodesic
and stop at time t = 1

i+1
;

end
Algorithm 1: Iterative Centroid 1 (IC1)

Figure 5.2: Diagrams of the iterative processes which lead to the centroid computation.
The tops of the diagrams represent the final centroid. The diagram on the left
corresponds to the Iterative Centroid algorithms (IC1 and IC2). The diagram
on the right corresponds to the pairwise algorithm (PW).

5.2.2.2 Centroid with averaging in the space of current

Because matchings are inaccurate, the centroid computed with the method pre-

sented above accumulates small errors which can have an impact on the final cen-

troid. Furthermore, the centroid computed with algorithm 1 is in fact a deformation

of the first shape S1, which makes the procedure even more dependent on the order-

ing of subjects than it would be in an ideal exact matching setting. In this second

algorithm, we modify the updating step by computing a mean in the space of cur-

rents between the deformation of the current centroid and the backward flow of the

curent shape being matched. Hence the computed centroid is not a true surface but



5.2. AN ITERATIVE CENTROID METHOD 131

a current, i.e. combination of surfaces, as in the template estimation method. The

weights chosen in the averaging reflects the relative importance of the new shape, so

that at the end of the procedure, all shapes forming the centroid have equal weight

1
N
. The algorithm proceeds as presented in Algorithm 2.

Data: N surfaces Si
Result: 1 current BN representing the centroid of the population
B1 = [S1];
for i from 1 to N − 1 do
Bi is matched using the equation (3.8) to Si+1 which results in a
deformation map φvi(x, t);
Set Bi+1 = i

i+1
∗ φvi(Bi, 1

i+1
) + 1

i+1
[φui(Si+1,

i
i+1

)] which means we
transport Bi along the geodesic and stop at time t = 1

i+1
;

where ui(x, t) = −vi(x, 1− t), i.e. φui is the reverse flow map.
end

Algorithm 2: Iterative Centroid 2 (IC2)

Note that we have used the notation φvi(Bi, 1
i+1

) to denote the transport (push-

forward) of the current Bi by the diffeomorphism. Here Bi is a linear combination of

currents associated to surfaces, and the transported current is the linear combina-

tion (keeping the weights unchanged) of the currents associated to the transported

surfaces.

5.2.2.3 A pairwise centroid

Another possibility is to group objects by pairs, compute centroids (middle

points) for each pair, and then recursively apply the same procedure to the set

of centroids, until having only one centroid (see Fig. 5.2). This pairwise method

also depends on the ordering of subjects, and also provides a centroid which satisfies
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the definition of Emery and Mokobodzki (disregarding the inaccuracy of matchings).

When the population is composed of more than 3 subjects, we split the population

in two parts and recursively apply the same splitting until having two or three ob-

jects in each group. We then apply algorithm 1 to obtain the corresponding centroid

before going back up along the dyadic tree, and keeping attention to the weight of

each object. This recursive algorithm is described in algorithm 3.

Data: N surfaces Si
Result: 1 surface B representing the centroid of the population
if N ≥ 2 then

Bleft = Pairwise Centroid (S1, ..., S[N/2]);
Bright = Pairwise Centroid (S[N/2]+1, ..., SN);
Bleft is matched to Bright which results in a deformation map φv(x, t);
Set B = φv(Bleft,

[N/2]+1
N

) which means we transport Bleft along the
geodesic and stop at time t = [N/2]+1

N
;

end
else

B = S1

end
Algorithm 3: Pairwise Centroid

5.2.3 Implementation

The methods presented just before need some parameters. Indeed, in each al-

gorithm we have to compute the matching from one surface to another. For each

matching we minimize the corresponding functional (see equation 3.9 at the end of

section 3.3.1) which estimates the new momentum vectors α, which then are used

to update the positions of points xi of the surface. A gradient descent with adaptive

step size is used for the minimization of the functional J . Evaluation of the func-
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tional and its gradient require numerical integrations of high-dimensional ordinary

differential equations, which is done using Euler trapezoidal rule.

The main parameters for computing J are maxiter which is the maximum number

of iterations for the adaptive step size gradient descent algorithm, γ for the regular-

ity of the matching, and σ
W

and σ
V
the sizes of the kernels which control the metric

of the spaces W and V .

We selected parameters in order to have relatively good matchings in a short

time. We chose γ close enough to zero to enforce the matching to bring the first

object to the second one. Nevertheless, we must be prudent: choosing a γ too small

could be hazardous because the regularity of the deformation could not be preserved.

For each pairwise matching, we use the multi-scale approach described in section

3.3.1 page 62, performing four consecutive optimization processes with decreasing

values by a constant factor of the σW parameter which is the size of the R.K.H.S.W ,

to increase the precision of the matching. At the beginning, we fix this σW parameter

with a sufficient large value in order to capture the possible important variations or

differences between shapes. This is for this reason that for the two first minimizations

of the functional, we used a smallmaxiter parameter. For the results presented after,

we used very small values for the parameter maxiter = [50, 50, 100, 300], to increase

the velocity of the method. Results can be less accurate than in our previous study

Cury et al. (2013) which used different values for maxiter: [40, 40, 100, 1000], but

which took twice as much time to compute. For the kernel size σ
V
of the deformation

space, we fix this parameter at the beginning and have to adapt it to the size of the

data.
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Figure 5.3: On the left, an Iterative Centroid of the dataset Data2 (see section 5.3.1 for
more details about datasets) computed using the IC1 algorithm, and on the
right the IC2 algorithm.

The first method starts from N surfaces, and gives a centroid composed by only

one surface, which is a deformation of the surface used at the initialization step. An

example is shown in Fig. 5.3. This method is rather fast, because at each step we

have to match only one mesh composed by n1 vertices to another, where n1 is the

number of vertices of the first mesh of the iterative procedure.

The second method starts from N surfaces and gives a centroid composed of

deformations of all surfaces of the population. At each step it forms a combination

in the space of currents between the current centroid and a backward flow of the

new surface being matched. In practice this implies that the centroid grows in

complexity; at step i its number of vertices is
∑i

j=1 j ∗ nj. Hence this algorithm

is slower than the first one, but the mesh structure of the final centroid does not

depend on the mesh of only one subject of the population, and the combination

compensates the bias introduced by the inaccuracy of matchings.
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The results of the Iterative Centroid algorithms depend on the ordering of sub-

jects. We will study this dependence in the experimental part, and also study the

effect of stopping the I.C. before it completes all iterations.

5.3 Results

We are using as comparison the variational template estimation method pro-

posed by Glaunès & Joshi (2006) and presented is section 3.5. As the diffeomorphic

iterative centroid method, this method does not need a priori on the template or

external initialization.

5.3.1 Data

To evaluate our approach, we used hippocampi from 95 young (14-16 years old)

subjects from the European database IMAGEN. Left hippocampi were segmented

from T1-weighted Magnetic Resonance Images (MRI) of this database with the

SACHA software Chupin et al. (2009), before computing meshes from the binary

masks using BrainVISA software 1.

We denote as RealData the dataset composed of all 95 hippocampi meshes. We

rigidly aligned all hippocampi to one subject of the population. For this rigid reg-

istration, we used a similarity term based on measures (as in Glaunès et al. (2004))

rather than currents since the orientation information given by the representation

with currents can be an issue when surfaces are far and would need a large transla-

tion, or entirely included one into the other and would need a large scaling.

1. http://www.brainvisa.info
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We also built two synthetic populations of hippocampi meshes, denoted as Data1

and Data2. Data1 is composed of a large number of subjects, in order to test our

algorithms on a large dataset. In order to study separately the effect of the popula-

tion size, meshes of this population are simple. Data2 is a synthetic population close

to the real one, with the difference that all subjects have the same mesh structure.

This allows to test our algorithms in a population with a single mesh structure, thus

disregarding the effects of different mesh structures. These two datasets are defined

as follows (examples of subjects from these datasets are shown on Fig. 5.4):

– Data1. We chose one subject S0 that we decimated (down to 135 vertices) and

deformed using geodesic shooting in 500 random directions with a sufficiently

large kernel and a reasonable momentum vector norm in order to preserve the

overall hippocampal shape, resulting in 500 deformed objects. Each deformed

object was then further transformed by a translation and a rotation of small

magnitude. This resulted in the 500 different shapes of Data1. All shapes

in Data1 have the same mesh structure. Data1 thus provides a large dataset

with simple meshes and mainly global deformations.

– Data2. We chose the same initial subject S0 that we decimated to 1001 ver-

tices. We matched this mesh to each subject of the dataset RealData (n = 95),

using diffeomorphic deformation, resulting in 95 meshes with 1001 vertices.

Data2 has more local variability than Data1, and is closer to the anatomical

truth.
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Figure 5.4: Top to bottom: meshes from Data1 (n=500), Data2 (n=95) and RealData
(n=95)

5.3.2 Effect of subject ordering

Each of the 3 proposed algorithms theoretically depends on the ordering of sub-

jects. Here, we aim to assess the influence of the ordering of subjects on the final

centroid for each algorithm.

For that purpose, we compared several centroids computed with different or-

derings. For each dataset and each algorithm, we computed 10 different centroids.

We computed the mean m1 and maximal distance between all pairs of centroids.

The three datasets have different variabilities. In order to relate the previous mean

distance to the variability, we also computed the mean distance m2 between each

centroid and all subjects of a given dataset. We finally computed the ratio between

these two mean distances m1/m2. Distances between surfaces were computed in
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the space of currents, i.e. to compare two surfaces S and T , we computed the

squared norm ‖ [S] − [T ] ‖2W ∗ . Results are presented in Table 5.1. Additionnaly,

we computed the mean of distances between centroids computed using the different

methods. Results are presented in Table 5.2.

Table 5.1: Distances between centroids computed with different subjects orderings, for
each dataset and each of the 3 algorithms. The three first columns present
the mean, standard deviation and the maximum of distances between all pairs
of centroids computed with different orderings. The fourth column displays
the mean of distances between each centroid algorithm and all subjects of the
datasets. Distances are computed in the space of currents.

From different order: To the dataset:
mean (m1) max std mean (m2) m1/m2

Data1 IC1 0.8682 1.3241 0.0526 91.25 0.0095
IC2 0.5989 0.9696 0.0527 82.66 0.0072
PW 3.5861 7.1663 0.1480 82.89 0.0433

Data2 IC1 2.4951 3.9516 0.2205 16.29 0.1531
IC2 0.2875 0.4529 0.0164 15.95 0.0181
PW 3.8447 5.3172 0.1919 17.61 0.2184

RealData IC1 4.7120 6.1181 0.0944 18.54 0.2540
IC2 0.5583 0.7867 0.0159 17.11 0.0326
PW 5.3443 6.1334 0.1253 19.73 0.2708

Table 5.2: In columns, average distances between centroids computed using the different
algorithms.

IC1 vs IC2 IC1 vs PW IC2 vs PW
Data1 1.57 5.72 6.31
Data2 1.89 3.60 3.42

RealData 3.51 5.31 4.96

For each dataset and for each type of centroid, the mean of distances between
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all 10 centroids is small compared to the mean of distances between the centroid

and the subjects. However, the three algorithms IC1, IC2 and PW were not equally

influenced by the ordering. IC2 seems to be the most stable: the different centroids

are very close one to each other, this being true for all datasets. This was expected

since we reduce the matching error by combining in the space of currents the actual

centroid with the deformation of the new subject along the reverse flow. For IC1, the

distance was larger for Data2 and RealData, which have anatomically more realistic

deformations, than for Data1, which has rather simplistic shapes. This suggests

that, for real datasets, IC1 is more dependent on the ordering than IC2. This is

due to the fact that IC1 provides a less precise estimate of the centroid between

two shapes since it does not incorporate the reverse flow. For all datasets, distances

for PW were larger than those for IC1 and IC2, suggesting that the PW algorithm

is the most dependent on the subjects ordering. Furthermore, centroids computed

with PW are also farther from those computed using IC1 or IC2. Furthermore, we

speculate that the increased sensitivity of PW over IC1 may be due to the fact that,

in IC1, n− 1 levels of averaging are performed (and only log2 n for PW) leading to

a reduction of matching errors.

Finally, in order to provide a visualization of the differences, we present match-

ings between 3 centroids computed with the IC1 algorithm, in the case of RealData.

Figure 5.5 shows that shape differences are local and residual. Visually, the 3 cen-

troids are almost similar, and the amplitudes of momentum vectors, which bring

one centroid to another, are small and local.
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Figure 5.5: A. First row: 3 initial subjects used for 3 different centroid computations with
IC1 (mean distance between such centroids, in the space of currents, is 4.71)
on RealData. Second row: the 3 centroids computed using the 3 subjects from
the first row as initialization. B: Maps of the amplitude of the momentum
vectors that map each centroid to another. Top and bottom views of the maps
are displayed. One can note that the differences are small and local.
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5.3.3 Position of the centroids within the population

We also assessed whether the centroids are close to the center of the population.

To that purpose, we calculated the ratio

R =
‖ 1
N

∑N
i=1 v0(Si)‖V

1
N

∑N
i=1 ‖v0(Si)‖V

, (5.8)

with v0(Si) the vector field corresponding to the initial momentum vector of the

deformation from the variational template or the centroid to the subject i. This

ratio gives some indication about the centering of the centroid, because in a pure

Riemannian setting (i.e. disregarding the inaccuracies of matchings), a zero ratio

would mean that we are at a critical point of the Fréchet functional, and under some

reasonable assumptions on the curvature of the shape space in the neighbourhood

of the dataset (which we cannot check however), it would mean that we are at the

Fréchet mean. To compute R, we need to match the centroid to all subjects of

the population. We computed this ratio on the best (i.e. the centroid which is the

closest to all other centroids) centroid for each algorithm and for each dataset.

Results are presented in Table 5.3. We can observe that the centroids obtained

with the three different algorithms are reasonably centered for all datasets. Centroids

for Data1 are particularly well centered, which was expected given the nature of

this population. Centroids for Data2 and RealData are slightly less well centered

but they are still close to the Fréchet mean. It is likely that using more accurate

matchings (and thus increasing the computation time of the algorithms) we could

reduce this ratio for RealData and Data2. Besides, one can note that ratios for Data2

and RealData are very similar; this indicates that the centering of the centroid is

not altered by the variability of mesh structures in the population.
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Table 5.3: Ratio values for assessing the position of the representative centroid within
the population, computed using Equation 5.8 (for each algorithm and for each
dataset).

R IC1 IC2 PW
Data1 0.046 0.038 0.085
Data2 0.106 0.102 0.107

RealData 0.106 0.107 0.108

5.3.4 Effects of initialization on estimated variational

template

The initial idea was to have a method which provides a good initialization for

variational template estimation methods for large databases. We just saw that IC1

and IC2 centroids are both reasonably centred and do not depend on the subjects

ordering. Despite the fact that IC2 has the smallest sensitivity to the subjects

ordering, the method is slower and provides a centroid composed of N meshes.

Because we want to decrease the computation time for the variational template of a

large database, it is natural to choose as initialization a centroid composed by only

one mesh (time saved in kernel convolution) in a short time. We advocate to choose

IC1 over PW because we can stop the IC1 algorithm at any step to get a centroid

of the sub-population used so far. Furthermore, PW seems to be more sensitive to

subjects ordering.

Now, we study the impact of the use of a centroid, computed with the IC1

algorithm, as initialization for the variational template estimation method presented

in section 3.5 page 75. To that purpose, we compared the variational template

obtained using a standard initialization, denoted as T (StdInit), to the variational
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Table 5.4: Distances between variational templates initialized via differents IC1 (T (IC1))
for each datasets, and the distance between the variational template initialized
via the standard initialization (T (StdInit)) and variational templates initialized
via IC1.

T (IC1) vs T (IC1) T (IC1) vs T (StdInit)
Data1 0.9833 40.9333
Data2 0.6800 20.4666

RealData 4.0433 26.8667

Table 5.5: Ratios R for variational templates (T (IC1)) and for the variational template
with its usual initialization T (StdInit), for each datasets.

R T (IC1) T (StdInit)
Data1 0.0057 0.0062
Data2 0.0073 0.0077

RealData 0.0073 0.0074

template initialized with IC1 centroid, denoted as T (IC1). We chose to stop the

variational template estimation method after 7 iterations of the optimization process.

We arbitrarily chose this number of iterations, it is large enough to have a good

convergence for T (IC1) and to have an acceptable convergence for T (StdInit).

We did not use a stopping criterion based on the W ∗ metric because it is highly

dependent on the data and is difficult to establish when using a multiscale approach.

In addition to comparing T (IC1) to T (StdInit), we also compared the variational

templates corresponding to two different IC1 initialization based on two different

orderings. We compared the different variational templates in the space of currents.

Results are presented in Table 5.4. We also computed the same ratios R as in

equation 5.8. Results are presented in Table 5.5.
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Figure 5.6: Estimated variational template from RealData. On the left, initialized via the
standard initialization which is the whole population. On the right, estimated
variational template initialized via a IC1 centroid

One can note that the differences between T (IC1) for different orderings are

small for Data1 and Data2 and larger for RealData, suggesting that these are due

to the mesh used for the initialization step. We can also observe that variational

templates initialized via IC1 are far, in terms of distances in the space of currents,

from the variational template initialized by the standard initialization. These results

could be alarming, but the results of ratios (see Table 5.5) prove that variational

templates are all very close to the Fréchet mean, and that the differences are not

due to a bad variational template estimation. Moreover, both variational templates

are visually similar as seen in Figure 5.6.
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5.3.5 Effect of the number of iterations for Iterative

Centroids

Since it is possible to stop the Iterative Centroid methods IC1 and IC2 at any

step, we wanted to assess the influence of computing only a fraction of the N itera-

tions on the estimated variational template. Indeed one may wonder if computing an

I.C. at e.g. 40% (then saving 60% of computation time for the IC method) could be

enough to initialize a variational template estimation. Moreover, for large datasets,

the last subject will have a very small influence: for a database composed of 1000

subjects, the weight of the last subject is 1/1000. We performed this experiment

in the case of IC1. In the following, we call "IC1 at x%" an IC1 computed using

x×N/100 subjects of the population.

We computed the distance in the space of currents between "IC1 at x%" and

IC1. Results are presented in Figure 5.7. These distances are averaged over the 10

centroids computed for each datasets. We can note that after processing 40% of the

population, the IC1 covers more than 75% of the distance to the final centroid for

all datasets.

We also compared T(IC1 at 40%) to T(IC1) and to T(StdInit), using distances

in the space of currents, as well as the R ratio defined in Equation 5.8. Results

are shown in Table 5.6). They show that using 40% of subjects lowers substantially

the quality of the resulting variational template. Indeed the estimated variational

template seems trapped in the local minimum found by the IC1 at 40%. We certainly

have to take into account the size of the dataset. Nevertheless, we believe that if

the dataset is very large and sufficiently homogeneous we could stop the Iterative
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Table 5.6: Results of initialization of variational template estimation method by a IC1 at
40%

Data1 Data2 RealData
T(IC1 at 40%) vs T (StdInit) 41.41 24.41 24.82

T(IC1 at 40%) vs T(IC1 at 100%) 9.36 9.56 6.18
R value for T(IC1 at 40%) 0.040 0.106 0.105

Figure 5.7: first row: Graphs of averageW ∗-distances between the IC1 at x% and the final
one. The second row present the same results with IC2.

Centroid method before the end.

5.3.6 Computation time

To speed up the matchings, we use a GPU implementation for the computation

of kernel convolutions, which constitutes the most time-consuming part of LDDMM

methods. Computations were performed on a Nvidia Tesla C1060 card. Computa-

tion times are displayed in Table 5.7.

We can note that the computation time of IC1 is equal to the one of PW and that

these algorithms are faster than the IC2 algorithm, as expected. The computation

time for any IC method (even for IC2) is much lower (by a factor from 10 to 80) than
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Table 5.7: Computation time (in hours) for Iterative Centroids and for variational template
estimation initialised by IC1 (T (IC1)), the standard initialization (T (StdInit))
and by IC1 at 40% (T(IC1 at 40%)). For T (IC1), we give the complete time
for the whole process i.e. the time for the IC1 computation plus the time for
T (IC1) computation itself.

Computation time (hrs) Data1 Data2 RealData
IC1 1.7 0.7 1.2
IC2 5.2 2.4 7.5
PW 1.4 0.7 1.2

T (IC1) 21.1(= 1.7 + 19.4) 13.3(= 0.7 + 12.6) 27.9(= 1.2 + 26.7)
T (StdInit) 96.1 20.6 99

T(IC1 at 40%) 24.4(= 0.7 + 23.7) 10.4(= 0.3 + 10.1) 40.7(= 0.5 + 40.2)

the computation time of the variational template estimation method. Morevoer,

initializing the variational template estimation with IC1 can save up to 70% of

computation time over the standard initialization. On the other hand, using T(IC1

at 40%) does not reduce computation time compared to using T(IC1).

It could be interesting to evaluate the parameters which would lead to a more

precise centroid estimate in a time that would still be inferior to that needed for the

variational template estimation. We should also mention that one could speed up

computations by adding a Matching Pursuit on currents as described in Durrleman

et al. (2009).

5.4 Discussion

We have proposed a new approach for the initialization of the variational tem-

plate estimation method presented by Glaunès & Joshi (2006). The aim was to
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reduce computation time by providing a rough initial estimation, making more fea-

sible the application of variational template estimation on large databases.

To that purpose, we proposed to iteratively compute a centroid which is correctly

centered within the population. We proposed three different algorithms to compute

this centroid: the first two algorithms are iterative (IC1 and IC2) and the third

one is recursive (PW). We evaluated the different approaches on one real and two

synthetic datasets of brain anatomical structures. Overall, the centroids computed

with all three approaches are close to the Fréchet mean of the population, thus

providing a reasonable centroid or initialization for variational template estimation

method. Furthermore, for all methods, centroids computed using different orderings

are similar. It can be noted that IC2 seems to be more robust to the ordering

than IC1 which in turns seems more robust than PW. Nevertheless, in general, all

methods appear relatively robust with respect to the ordering.

The advantage of iterative methods, like IC1 and IC2, is that we can stop the

deformation at any step, resulting in a centroid built with part of the population.

Thus, for large databases (composed for instance of 1000 subjects), it may not be

necessary to include all subjects in the computation since the weight of these subjects

will be very small. The iterative nature of IC1 and IC2 provides another interesting

advantage which is the possible online refinement of the centroid estimation as new

subjects are entered in the dataset. This leads to an increased possibility of interac-

tion with the image analysis process. On the other hand, the recursive PW method

has the advantage that it can be parallelized (still using GPU implementation),

although we did not implement this specific feature in the present work.
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Using the centroid as initialization of the variational template estimation can

substantially speed up the convergence. For instance, using IC1 (which is the fastest

one) as initialization saved up 70% of computation time. Moreover, this method

could certainly be used to initialize other template estimation methods, such as the

method proposed by Durrleman et al. (2008a).

As we observed, the centroids, obtained with rough parameters, are close to the

Fréchet mean of the population, thus we believe that by computing IC with more

precise parameters (but still reasonable in terms of computation time), we could

obtain centroids closer to the center. This accurate centroid could be seen as a cheap

alternative to true template estimation methods, particularly if computing a precise

mean of the population of shapes is not required. Indeed, in the LDDMM framework,

template-based shape analysis gives only a first-order, linearized approximation of

the geometry in shape space. In a future work, we will study the impact of using IC

as a cheap template on results of population analysis based for instance on kernel

principal component analysis. Finally, the present work deals with surfaces for which

the metric based on currents seems to be well-adapted. Nevertheless, the proposed

algorithms for centroid computation are general and could be applied to images,

provided that an adapted metric is used.





Chapter 6

Statistical shape analysis using

diffeomorphic iterative

centroids

In this chapter, we apply the diffeomorphic iterative centroid method to template-

based statistical shape analysis. Here, the Centroid is directly used as a template,

instead of being used as an initialization for a more refined template estimation. The

main part of this chapter has been submitted to the IEEE Journal of Biomedical

and Health Informatics.

151
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6.1 Introduction

Statistical shape analysis methods are increasingly used in neuroscience and clini-

cal research. Their applications include the study of correlations between anatomical

structures and genetic or cognitive parameters, as well as the detection of alterations

associated with neurological disorders. A current challenge for methodological re-

search is to perform statistical analysis on large databases, which are needed to

improve the statistical power of neuroscience studies.

In this chapter, we propose a fast approach for template-based statistical analysis

of large datasets in the LDDMM setting presented in Chapter 3. The template

estimation is based on the diffeomorphic centroid algorithm, which we introduced

in Chapter 5. The main idea of this method is to iteratively update a centroid

shape by successive matchings to the different subjects. This procedure involves a

limited number of matchings and thus quickly provides a template of the population.

We previously showed that these centroids can be used to initialize a variational

template estimation procedure (Chapter 5). Here, we propose to use them directly

for template-based statistical shape analysis. The analysis is done on the tangent

space of the template shape, either directly through Principal Component Analysis

or by approximating distances between subjects. We perform a thorough evaluation

of the approach using three datasets (one synthetic dataset and two real datasets

composed of 50 and 1000 subjects respectively). In particular, we study extensively

the impact of different centroids on statistical analysis, and compare the results to

those obtained using a standard variational template method. Finally we use this

template-based approach and a large database composed of 1000 subjects to try to



6.2. EVALUATION OF ITERATIVE CENTROIDS 153

predict incomplete hippocampal inversions (IHI) scores presented in Chapter 4.

6.2 Evaluation of iterative centroids

6.2.1 Statistical Analysis

The proposed iterative centroid approaches can be used for subsequent statistical

shape analysis of the population, using various strategies. As presented in chapter 3,

section 3.4.1, a first strategy consists in analysing the initial momentum vectors

which encode the optimal diffeomorphisms computed from the matching between a

centroid and the subjects Si. A second strategy consists in computing the set of

pairwise distances between subjects and use methods such as Isomap Tenenbaum

et al. (2000), Locally Linear Embedding Roweis & Saul (2000), Yang et al. (2011a) or

spectral clustering algorithms Von Luxburg (2007). Here, we tested two approaches:

i) the analysis of initial momentum vectors using PCA for the first strategy; ii) the

approximation of pairwise distance matrices for the second strategy. These tests

allow us both to validate the different iterative centroid methods and to show the

feasibility of such analysis on large databases.

6.2.1.1 Principal Component Analysis on initial momentum vectors

The PCA in the tangent space of the template shape, i.e. on the initial momen-

tum vectors from the template to the subjects, corresponds to the usual Principal

Component Analysis using the LDDMMmetric on momentum vectors, as previously

exposed in section 3.4.2 page 74. For this metric scalar products between observa-
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tions are expressed using the kernel KV associated to the space V of velocity fields.

We refer to section 3.4.2 for details of this method.

Remark To analyse the population, we need to know the initial momentum vec-

tors αi which correspond to the matchings from the centroid to the subjects. For

the IC1 and PW centroids, these initial momentum vectors were obtained by match-

ing the centroid to each subject. For the IC2 centroid, since the mesh structure is

composed of all vertices of the population, it is too expensive to match the centroid

toward each subject. Instead, we matched each subject toward the centroid and

we used the opposite vector of final momentum vectors for the analysis. Indeed, if

we have two surfaces S and T and need to compute the initial momentum vectors

from T to S, we can estimate the initial momentum vectors αTS(0) from T to S

by computing the deformation from S to T and using the initial momentum vectors

α̃TS(0) = −αST (1), which are located at vertices φST (xS).

6.2.1.2 Distance matrix approximation

As explained in section 3.4.1 computing all pairwise deformation distances ρ(Si, Sj) =

D(id, ϕij) is computationally very expensive for large datasets as it involves O(N2)

matchings, which led us to use a first order approximation evaluated from the N

matchings from the centroid shape (see equation 3.18).
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Figure 6.1: Left panel: coronal view of the MRI with the binary masks of hippocampi
segmented by the SACHA software Chupin et al. (2009), the right hippocampus
is in green and the left one in pink. Right panel: 3D view of the hippocampus
meshes.

6.2.2 Data

The two real datasets are from the European database IMAGEN Schumann

et al. (2010) 1 composed of young healthy subjects. We segmented the hippocampi

from T1-weighted Magnetic Resonance Images (MRI) of subjects using the SACHA

software Chupin et al. (2009) (see Fig. 6.1). The synthetic dataset was built using

deformations of a single hippocampal shape of the IMAGEN database.

The synthetic dataset SD it is composed of synthetic deformations of a single

shape S0 and was designed in order that this single shape is the exact center of

the population. We will thus be able to compare the computed centroids to this

exact center. We generated 50 subjects for this synthetic dataset by shootings, from

this single shape S0, along geodesics in different directions. We randomly chose two

orthogonal momentum vectors β1 and β2 in R3×n. We then computed momentum

vectors αi , i ∈ {1, . . . , 25} of the form ki
1β1 + ki

2β2 + ki
3β3 with (ki

1, k
i
2, k

i
3) ∈

1. http://www.imagen-europe.com/
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R3,∀i ∈ {1, . . . , 25}, kij ∼ N (0, σj) with σ1 > σ2 � σ3 and β3 a randomly selected

momentum vector. We then computed momentum vectors αj , j ∈ {26, . . . , 50} such

as αj = −αj−25. We then generated the 50 subjects of the population by shootings

of S0 using the initial momentum vectors αi , i ∈ {1, . . . , 50}. The population is

symmetrical since
∑50

i α
i = 0. It should be noted that all shapes of the dataset

have the same mesh structure composed of n = 549 vertices.

The real dataset RD50 is composed by 50 left hippocampi well segmented from

the IMAGEN database. We applied the following preprocessing steps to each indi-

vidual MRI. First, the MRI was linearly registered toward the MNI152 atlas, using

the FLIRT procedure Jenkinson et al. (2002) of the FSL software 2. The computed

linear transformation was then applied to the binary masks of the hippocampal seg-

mentations. Meshes of these segmentations were computed from the binary masks

using the BrainVISA software 3. All meshes were then aligned using rigid trans-

formations to one subject of the population. For this rigid registration, we used a

similarity term based on measures (as in Glaunès et al. (2004)) as in Chapter 5.

All meshes were decimated in order to keep a reasonable number of vertices and

to avoid falling below the resolution of the MRI used for the segmentation: meshes

have on average 500 vertices.

The real database RD1000 is composed by 1000 left hippocampi well segmented

from the IMAGEN database. We applied the same preprocessing steps to the MRI

data as for the dataset RD50.

2. http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslOverview
3. http://www.brainvisa.info
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6.2.3 Experiments

For the datasets SD and RD50 (which both contain 50 subjects), we compared

the results of the three different iterative centroid algorithms (IC1, IC2 and PW).

We also investigated the possibility of computing variational templates, initialized

by the centroids, based on the approach proposed by Glaunès & Joshi (2006) and

summarized in section 3.5 page 75. We could thus compare the results obtained

when using the centroid directly to those obtained when using the more expensive

variational template estimation method. We thus computed 6 different templates:

IC1, IC2, PW and the corresponding variational templates T(IC1), T(IC2), T(PW).

For the synthetic dataset SD, we could also compare those 6 templates to the exact

center of the population. For the real dataset RD1000 (with 1000 subjects), we only

computed the iterative centroid IC1.

For all computed templates and all datasets, we investigated: 1) the computation

time; 2) whether the templates are well-centred within the population; 3) the impact

of the center on the results of PCA on tangent space; 4) the impact on approximated

distance matrices.

To assess the centring of the different centroids and variational templates, we

performed two experiments, one using the momentum vectors from templates to

subjects, and one projecting templates into a 2D space to visualize the position

of templates with respect to the population. These two experiments are detailed

below, along with the results obtained for dataset SD.

We then compared the results of PCA in the tangent spaces computed from

these different templates by comparing the principal modes, the position of subjects
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Table 6.1: Synthetic dataset SD. Computation times in minutes for the different tem-
plates of the synthetic dataset.

Centroid T (Centroid) Total
IC1 31 81 112
IC2 85 87 172
PW 32 81 113

within the space spanned by the first modes, and the cumulative explained variance

for different number of dimensions.

Finally, we compared the approximated distance matrices to the direct distance

matrix.

6.2.4 Synthetic dataset SD

6.2.4.1 Computation time

The three centroids have been computed with the next arbitrary parameters

(see section 5.2.3 page 132) chosen to be adapted to the data: σV = 15, σW =

[10, 6.6, 5, 4, 3.3, 2.8], γ =1e-7 and maxiter = [100, 300, 300, 600, 800, 800]. For the

variational template we used σV = 15, σWi = 20 × 0.7i−1 with i ∈ {1; · · · ; 6} the

i − th optimization process, γ =1e-4 and maxiter = 5000. Computation times for

the different centroids and variational templates are presented in Table 6.1. As a ref-

erence, we also computed a variational template with the standard initialisation (see

section 3.5) whose computation took 194 min. Computing a centroid saved between

56% and 84% of computation time over the template with standard initialization

and between 50% and 72% over the template initialized by the centroid.
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Table 6.2: Synthetic dataset SD. Ratio R (equation 6.1) computed for the 3 centroids,
and the 3 variational templates initialized via these centroids.

Ratio Centroid T (Centroid)
IC1 0.04 0.04
IC2 0.03 0.04
PW 0.06 0.05

6.2.4.2 Centring of the centres

We first calculated the following ratio R which takes values between 0 and 1:

R =
‖ 1
N

∑N
i=1 v

i(·, 0)‖V
1
N

∑N
i=1 ‖vi(·, 0)‖V

, (6.1)

with vi(,̇0) the vector field of the deformation from the template to the subject Si,

corresponding to the vector of initial momentum vectors αi(0).

Table 6.2 presents the values of the ratio R for each centroid and variational

template.

In a pure Riemannian setting (i.e. disregarding the fact that matchings are

not exact), a zero ratio would mean that we are at a critical point of the Fréchet

functional, and under some reasonable assumptions on the curvature of the shape

space in the neighbourhood of the dataset (which we cannot check however), it would

mean that we are at the Fréchet mean. By construction, the ratio computed from

the exact center using the initial momentum vectors αi used for the construction of

subjects Si (as presented in section 6.2.2) is zero.

Ratios R are close to zero for all centroids and variational templates, indicating

that they are close to the exact center. Furthermore, the residual value of R may

be partly due to the non-exactitude of the matchings between the templates and
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Figure 6.2: Synthetic dataset SD. Projection of the 6 templates (3 centroids and 3
variational templates) on the 2D space of the synthetic data. “ X ” represent
centroids, “ + ” represent templates. IC1 is in blue, IC2 in yellow and PW in
magenta. The exact centre is represented by the red asterisk.

the subjects. To become aware of this non-exactitude, we matched the exact center

toward all subjects of the dataset. The resulting ratio is R = 0.0466. This is of

the same order of magnitude as the ratios obtained in Table 6.2, indicating that the

computed templates are indeed very close to the exact center.

To further assess the centring of the different templates, we visualized their

position by projecting them on the 2D space of the population, with the exact

center at position (0, 0). Indeed, since the exact center and the two first axes β1

and β2 (see section 6.2.2) were used to build the population are known, we can

project any shape on the 2D space of the population spanned by (β1,β2). This

is done by matching the exact center to the shape and projecting the momentum

vectors of this matching on β1 and β2. The result is presented in Figure 6.2.
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Overall, on the synthetic dataset, all computed centroids and variational tem-

plates are very well centred within the population and close to the exact center.

6.2.4.3 PCA

We performed PCA using initial momentum vectors (see section 3.4.2 for de-

tails) from our different templates (3 centroids, 3 variational templates and the

exact centre). For this synthetic dataset, we can project principal components on

the 2D space spanned by β1 and β2 as described in the previous paragraph. This

projection allows displaying in the same 2D space subjects in their native space, and

principal axes computed from the different PCAs. To visualize the first component

(respectively the second one), we shot from the associated template in the direction

km1 (resp. m2) with k ∈ [−2
√
λ1; +2

√
λ1] (resp.

√
λ2). Results are presented in

Figure 6.3. The principal axes are extremely similar for all templates.

We then computed the cumulative explained variance for different number of di-

mensions of the PCA. Results are presented in Table 6.3. The cumulative explained

variances are very similar for the different templates for any number of dimensions.

Overall, for this synthetic dataset, the choice of a given template (i.e. a centroid,

a variational template or an exact centre) has almost no impact on the results of

the PCA computed on the tangent space of the template shape.

6.2.4.4 Distance matrices

We then studied the impact of different templates on the approximated distance

matrices. We computed the seven approximated distance matrices corresponding to
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Figure 6.3: Synthetic dataset SD. Synthetic population in green, the exact center is in
red. The two first components are marked in orange for the exact center, in
blue for IC1, in yellow for IC2 and in magenta for PW.

Table 6.3: Synthetic dataset SD. Proportion of cumulative explained variance of PCA
computed from different templates.

1st mode 2nd mode 3rd mode
Centre 0.829 0.989 0.994
IC1 0.829 0.990 0.995
IC2 0.833 0.994 0.996
PW 0.829 0.990 0.995

T(IC1) 0.829 0.995 0.999
T(IC2) 0.829 0.995 0.999
T(PW) 0.829 0.995 0.999
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Figure 6.4: Synthetic dataset SD. Scatter plots between the direct distance matrix and
the 7 approximated distance matrices, computed from the exact center, IC1,
IC2, PW and the corresponding variational templates of the synthetic dataset.
The red line corresponds to the identity

the seven templates, and the direct pairwise distance matrix computed by matching

all subjects to each other. Computation of the direct distance matrix took 1000

minutes (17 hours) for this synthetic dataset of 50 subjects. In the following, we

denote as aM(C) the approximated distance matrix computed from the template

C, and dM the direct distance matrix. Figure 6.4 shows that the approximated

distance matrices for the different templates are very similar to the direct matrix. A

very similar result was obtained when comparing the matrices approximated from

the centroids and variational templates to the matrix approximated from the exact

center (see Supplementary material). We can observe a subtle curvature of the

scatter-plot, which is due to the curvature of the shape space.
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Table 6.4: Synthetic dataset SD. Error e (equation 6.2) between the six different ap-
proximated distance matrices and the approximated distance matrix from the
exact center (left column), and the direct distance matrix (right column).

e(., aM(realCentre)) e(., dM)
C T(C) C T(C)

IC1 0.01 0.02 0.03 0.03
IC2 0.02 0.02 0.02 0.03
PW 0.02 0.02 0.03 0.03

To quantify the difference between these matrices, we introduced the following

error e:

e(M1,M2) =
1

N2

N∑
i,j=1

|M1(i, j)−M2(i, j)|
max(M1(i, j),M2(i, j))

(6.2)

with M1 and M2 two distance matrices. Results are reported in Table 6.4. We also

computed the error between the direct distance matrix and the aM(realCentre)

and the value is 0.03, which value is of the same order of magnitude than for others

matrices.

In conclusion on this synthetic dataset, the different computed templates have

very little impact on the approximation of the distance matrices.

6.2.5 The real dataset RD50

We now present experiments on the real dataset RD50. For this dataset, the

exact center of the population is not known, neither is the distribution of the pop-

ulation, and meshes have different numbers of vertices and different connectivity

structures.
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6.2.5.1 Computation time

The three centroids have been computed with the next arbitrary parameters

chosen to be adapted to the dataset: σV = 15, σW = [15, 8, 5, 2], γ =1e-7 and

maxiter = [200, 300, 800, 1000]. For the variational template we used σV = 15,

σWi = 16× 0.7i−1 with i ∈ {1; · · · ; 8} the i− th optimization process, γ = 0.01 and

maxiter = 5000. Parameters are determined after matching tests between some

surfaces of the dataset. We computed our 3 centroids IC1 IC2 and PW, and the

corresponding variational templates. Computation times are reported in Table 6.5.

Table 6.5: Real dataset RD50. Computation times, in minutes.

Centroid T (Centroid) Total
IC1 75 188 263
IC2 174 252 426
PW 88 183 271

For comparison of computation time, we also computed a variational template

using the standard initialization (by using the whole population as initialisation)

which took 1220 minutes (20.3 hours). Computing a centroid saved between 85% and

93% of computation time over the variational template with standard initialization

and between 59% and 71% over the variational template initialized by the centroid.

6.2.5.2 Centring of the centres

As for the synthetic dataset, we assessed the centring of these six different tem-

plates. To that purpose, we first computed the ratio R of equation 6.1 in sec-
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tion 6.2.4. Results are presented in Table 6.6.

Table 6.6: Real dataset RD50. Ratio R (equation 6.1) computed for 3 centroids and 3
variational templates initialized via these centroids.

Ratio Centroid T (Centroid)
IC1 0.25 0.21
IC2 0.33 0.31
PW 0.32 0.26

The ratios are higher than ratios computed from the synthetic dataset, indicating

that templates are less centred. This was predictable since the population is not

built from one surface via geodesic shootings as the synthetic dataset. In order

to better understand these values, we computed the ratio for each subject of the

population (after matching each subject toward the population), as if each subject

was considered as a potential template of the population. For the whole population,

the average ratio was 0.6745, with a minimum of 0.5543, and a maximum of 0.7626.

These ratios are clearly larger than those of Table 6.6, thus the 6 templates are much

better centred than any subject of the population.

The real dataset is not intrinsically two-dimensional, unlike the synthetic dataset,

thus we can not project templates onto the corresponding 2D space. However, we

illustrated the position of the templates by projecting them onto the space spanned

by the two first modes of variation resulting from the PCA of a given template

(here the centroid IC1 which is in coordinates (0, 0)). The results are presented in

Figure 6.5.
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Figure 6.5: Real dataset RD50. Projection of the 5 other templates (2 centroids and
3 variational templates) in the 2D space spanned by the two first modes of
the PCA computed from the centroid IC1. “ x ” represent centroids, “ + ”
represent templates. IC1 is in blue, IC2 in yellow and PW in magenta.

6.2.5.3 PCA

As for the synthetic dataset, we performed six PCAs from these templates. For

the first two components of the PCAs, we displayed the coordinates of the subjects

for the 6 different templates in Figure 6.6, templates are at coordinates (0, 0). Over-

all, the coordinates of the subjects are highly similar for the different templates.

Besides, we can observe that PCAs from variational templates are more similar to

each other than PCAs from centroids (as seen also for the positions of the tem-

plates themselves in Figure 6.5). This was expected since the variational template

estimation converges from the centroid given as initialization.
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Figure 6.6: Real dataset RD50. Coordinates of the subjects in the 2D space spanned
by the first two components of the PCAs computed from different templates.
Panels A and B are superimpositions of the PCA from the 3 centroids (A) and
from the 3 variational templates (B). There is one color per subject.
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Table 6.7: Real dataset RD50. Proportion of cumulative explained variance for PCAs
computed from the 6 different centres, for different number of dimensions

1st mode 2nd mode 15th mode 20th mode
IC1 0.118 0.214 0.793 0.879
IC2 0.121 0.209 0.780 0.865
PW 0.117 0.209 0.788 0.875

T(IC1) 0.117 0.222 0.815 0.899
T(IC2) 0.115 0.220 0.814 0.898
T(PW) 0.116 0.221 0.814 0.898

Figure 6.7: Real dataset RD50. Proportion of cumulative explained variance for PCAs
computed from the 6 different templates, with respect to the number of di-
mensions. Curves are almost identical.

Figure 6.7 and Table 6.7 show the proportion of cumulative explained variance

for different number of modes. We can note that for any given number of modes,

all PCAs result in the same proportion of explained variance.

Additionally, we illustrated the 2D space generated by the two first modes of

variation of a PCA corresponding to a given template (here the centroid IC1). To

that purpose, we performed geodesic shootings from the template using the momen-

tum vectors k1m
1 + k2m

2 with ki from −2
√
λi to +2

√
λi. Results are presented

in Figure 6.8. We can observe that the first mode of variation of this dataset is
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Table 6.8: Real dataset RD50. Errors e (equation 6.2) between the approximated dis-
tance matrices of each center and: i) the approximated matrix computed with
IC1 (left columns); ii) the direct distance matrix (right columns).

e(., aM(IC1)) e(., dM)
C T(C) C T(C)

IC1 0 0.04 0.10 0.08
IC2 0.06 0.04 0.06 0.08
PW 0.03 0.04 0.08 0.07

influenced by the curvature of the tail and the width of the hippocampus, while the

second mode seems to be linked with the length of the hippocampus, and on the

shape of the head.

6.2.5.4 Distance matrices

As for the synthetic dataset, we then studied the impact of these different tem-

plates on the approximated distance matrices. A direct distance matrix was also

computed and took around 90 hours of computation time, against 7 hours (426 min,

see Table 6.5) for the approximated distance matrix computed from the slowest

of the 6 templates, the variational template T(IC2). We compared the approxi-

mated distance matrices of the different templates to: i) the approximated matrix

computed with IC1; ii) the direct distance matrix.

We computed the errors e(M1,M2) defined in equation 6.2. Results are presented

in Table 6.8. Errors are small and with the same order of magnitude.

Figure 6.9 shows scatter plots between the direct distance matrix and the six

approximated distance matrices. Interestingly, we can note that the results are

similar to those obtained by Yang et al. ( Yang et al. (2011b), Figure 2). Figure 6.10
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Figure 6.8: Real dataset RD50. Grid generated by the two first modes of variation of
the PCA computed on the tangent space of IC1.
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Figure 6.9: Real dataset RD50. Scatter plots between direct distance matrix and ap-
proximated distance matrices from the six templates. The red line corresponds
to the identity.

Figure 6.10: Real dataset RD50. Scatter plot between the aM(IC1) matrix and the
5 others approximated distance matrices. The red line corresponds to the
identity.

shows scatter plots between the approximated distance matrix from IC1 and the five

others approximated distance matrices. The approximated matrices thus seem to

be independent of the chosen template.
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6.3 Variability analysis and prediction of IHI

6.3.1 Centroid estimation

Results on the real dataset RD50 and the synthetic SD showed that results were

highly similar for the 6 different templates. In light of these results and because

of the large size of the real dataset RD1000, we only computed the template IC1

for this last dataset. Parameters for the IC1 computation were the same as for

the RD50 dataset. The computation time was about 832 min (13.8 hours) for the

computation of the centroid using the algorithm IC1, and 12.6 hours for matching

the centroid to the population.

The ratio R of equation 6.1 computed from the IC1 centroid was 0.1011, indi-

cating that the centroid is well centred within the population.

We then performed PCA. Table 6.9 shows the proportion of cumulative explained

variance for some selected number of dimensions. In addition, we explored the

evolution of the cumulative explained variance when considering varying numbers

of subjects in the analysis. Results are displayed in Figure 6.11. We can first note

that about 50 dimensions are sufficient to describe the variability of our population

of hippocampal shapes from healthy young subjects. When considering increasing

number of subjects in the analysis, the dimension increases and converges around

50. Moreover, for large number of subjects, this dimensionality seems to be stable.

As for RD50, we computed a grid of the 2D space spanned by the two first modes

of variation of the PCA. We then performed geodesic shootings using momentum

vectors k1m1 + k2m
2 with ki from −2

√
λi to +2

√
λi, and m1 and m2 the two first
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Table 6.9: Real dataset RD1000. Proportion of cumulative explained variance, for
PCA, computed from IC1 for the whole dataset.

1st m 2nd m 10th m 20th m 30th m 40th m 50th m 100th m
IC1 0.07 0.15 0.48 0.71 0.85 0.93 0.97 1.00

Figure 6.11: Real dataset RD1000. Proportion of cumulative explained variance of K-
PCA as a function of the number of dimensions (in abscissa) and considering
varying number of subjects. The dark blue curve was made using 100 subjects,
the blue 200, the light blue 300, the green curve 500 subjects, the yellow one
800, very close to the dotted orange one which was made using 1000 subjects.

modes of variation. The result is shown in Figure 6.12. Compared to the smaller

dataset RD50 (Figure 6.8), we can observe that the centroid (in the middle) is

smoother as well as the shootings. For the first mode, we observe an enlargement of

the hippocampus and a curvature of the tail. The second mode seems to correspond

to an increase of the length and a slight modification of the shape of the hippocampal

head.

Finally, we computed the approximated distance matrix. Its histogram is shown

in Figure 6.13. Interestingly, as for RD50, all subjects have a relatively large mini-
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Figure 6.12: Real dataset RD1000. Grid of the 2D space generated by the 2 first
components of the PCA computed from IC1 for the 1000 subjects of the
database.
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Figure 6.13: Real dataset RD1000. Histogram of the approximated distances of the
large database from the computed centroid.

mum pairwise distance (about 6 for a maximum value around 20). This corresponds

to the intuition that, in a space of high dimension, all subjects are relatively far

from each other.

6.3.2 Prediction of IHI using shape analysis

We now apply our approach to predict incomplete hippocampal inversions (IHI)

from hippocampal shape parameters. Specifically, we predict the visual IHI score,

which corresponds to the sum of the individual criteria as defined in section 4.3

page 93. We studied whether it is possible to predict the IHI score using statisti-

cal shape analysis on the RD1000 dataset composed of 1000 healthy subjects (left

hippocampus). We chose only 1000 subjects in order to include only subjects with

good segmentation quality (i.e. a quality control ≥ 3) as previously explained in
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section 4.4 page 106. For this study, we did not use the segmentations with a quality

control = 2.5 because the main difference between quality control 2.5 and 3 is that

the 2.5 group has a missing part on the hippocampus head which could bias the

shape analysis.

The eigenvectors, computed in section 6.3.1, from the centroid IC1, are the

independent variables we will use to predict the IHI scores. As we saw in the

previous section (section 6.3.1 Table 6.9), 40 eigenvectors are enough to explain

93% of the total anatomical variability of the population. We use the centred and

normalized principal eigenvectorsX1,i, ..., X40,i computed from the RD1000 database

with i ∈ {1, . . . , 1000} to predict the IHI score Y . We simply used a multiple linear

regression model (Hastie et al., 2009) which is written as f(X) = β0 +
∑40

i=1Xiβi

where β0, β1, ...β40 are the regression coefficients to estimate. The standard method

to estimate the regression coefficients is the least squares estimation method in

which the coefficients βi minimize the residual sum of squares RSS(β) =
∑N

j=1(yj−

β0 −
∑p

i=1 xjiβi)
2, which leads to the estimated β̂ (with matrix notations) β̂ =

(XTX)−1XTY . For each number of dimensions p ∈ {1, . . . , 40} we validated the

quality of the computed model with the adjusted coefficient of determination R2
adj,

which expresses the part of explained variance of the model with respect to the total

variance:

R2
adj = 1− SSE/(N − p)

SST/(N − 1)
(6.3)

with SSE =
∑N

i (yi−(XT
1...p,iβ̂))2 the residual variance due to the model and SST =∑N

i=1(yi− Ȳ )2 the total variance of the model. The R2
adj coefficient, unlike R2, takes

into account the number of variables and therefore does not increase with the number
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of variables. One can note that R is the coefficient of correlation of Pearson. We

then tested the significance of each model by computing the F statistic

F =
R2/p

(1−R2)/(N − p− 1)
(6.4)

which follows a F-distribution with (p, n − p − 1) degrees of freedom. So for each

number of variables (i.e. dimensions of the PCA space) we computed the adjusted

coefficient of determination to evaluate the model and the p-value to evaluate the

significance of the model.

Then we used the k-fold cross validation method which consists in using 1000−k

subjects to predict the k remaining ones. To quantify the prediction of the model, we

used the traditional mean square error MSE = SSE/N which corresponds to the

unexplained residual variance. For each model, we computed 10,000 k-fold cross val-

idation and displayed the mean and the standard deviation of MSE corresponding

to the model.

Results are given at Figure 6.14, and display the coefficient of determination of

each model. The cross validation is only computed on models with a coefficient of

correlation higher than 0.5, so models using at least 20 dimensions. For the k-fold

cross validation, we chose k = 100 which represents 10% of the total population.

Figure 6.14D presents results of cross validation; for each model computed from 20

to 40 dimensions we computed the mean of the 10,000 MSE of the 100-fold and

its standard deviation. To have a point of comparison, we also computed the MSE

between the IHI scores and random values which follow a normal distribution with

the same mean and standard deviation as the IHI scores (red cross on the Figure).

The MSE of the cross validation are similar to the MSE of the training set. This
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Figure 6.14: Results for prediction of IHI scores. A: Values of the adjusted coefficient of
determination using from 1 to 40 eigenvectors resulting from the PCA. B: the
coefficient correlation corresponding to the coefficient of determination of A.
C: The p-values in −log10 of the corresponding coefficient of determination.
D: Cross validation of the models using 20 to 40 dimensions by 100-fold. The
red cross indicates the MSE of the model predicted using random values,
and the errorbar corresponds to the standard deviation of MSE computed
from 10,000 cross validations for each model, the triangle corresponds to the
average MSE.

results show that using the first 30 to 40 principal components of initial momentum

vectors computed from a centroid of the population, it is possible to predict the IHI

score with a correlation of 69%.
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6.4 Discussion and conclusion

In this chapter, we proposed a method for template-based shape analysis using

diffeomorphic centroids. This approach leads to a reasonable computation time

making it applicable to large datasets. It was thoroughly evaluated on different

datasets including a large population of 1000 subjects.

The results demonstrate that the method adequately captures the variability

of the population of hippocampal shapes with a reasonable number of dimensions.

In particular, PCA showed that the large population of left hippocampi of young

healthy subjects can be explained, for the metric we used, by a relatively small

number of variables (around 50-60). Moreover, when a large enough number of

subjects was considered, the number of dimensions was independent of the number

of subjects.

The comparisons performed on the two small datasets show that the different

centroids or variational templates lead to very similar results. This can be explained

by the fact that in all cases the analysis was performed on the tangent space of the

template, which correctly approximates the population in the shape space. More-

over, we showed that the different centres are equally well centred in the population.

While all templates (centroids or variational templates) yield comparable results,

they have different computation times. IC1 and PW centroids are the fastest ap-

proaches and can save between 70 and 90% of computation time over the variational

template. Thus, for the study of hippocampal shape, IC1 or PW algorithms seem to

be more adapted than IC2 or the variational template estimation. However, it is not

clear whether the same conclusion would hold for more complex sets of anatomical
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structures, such as an exhaustive description of cortical sulci (Auzias et al., 2011).

Besides, one should note that, unlike with the variational template estimation, cen-

troid computations do not directly provide transformations between the centroid

and the population which must be computed afterwards to obtain momentum vec-

tors. This requires N more matchings, which doubles the computation time. Even

with this additional step, centroid-based shape analysis stills leads to a competitive

computation time (about 26 hours for the complete procedure on the large dataset

of 1000 subjects).

In this study, we also applied this centroid computation to a template based

shape analysis, and used the resulting shape parameters (best eigenvectors) for the

prediction of IHI scores. We showed that using the first 30 to 40 eigenvectors of

the PCA is enough to predict with a correlation coefficient of 69% of the variation

of the IHI score. This is an interesting result which means that the template-based

shape analysis we used provides consistent results: by using hippocampal shapes we

are able to predict a part of a particular anatomical variation of the hippocampus.

In future work, this approach could be compared to other template estimation

methods such as for example Durrleman et al. (2008a) Ma et al. (2008)Vaillant

et al. (2004). We could also study the impact of the choice of parameters on the

number of dimensions needed to describe the variability population (in this study

the parameters were selected to optimize the matchings). Finally we can note that

this template-based shape analysis could be easily extended to other data types such

as images or curves.





Chapter 7

Shape analysis applied to the

Alzheimer’s disease

This chapter is an excerpt from an article which has been submitted to Computer

Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization

journal, and a first version of this study has been presented at the Medical Image

Understanding and Analysis 2014 conference in London and published as a short

conference paper (Cury et al., 2014a). It follows chapters 5 and 6 as it makes use

of the methodology for centroid computation and shape analysis presented in these

chapters. Here this set of techniques is applied to the analysis of a dataset from the

183
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, which is composed

of two groups (control group and Alzheimer’s disease group) and provides clinical

information together with the anatomy. Consequently, the statistical analysis part

is focused here on group variability comparison and prediction of clinical variables,

unlike what was done in chapter 6 with the IMAGEN database.

7.1 Dataset and experiments

The method was applied to the analysis of hippocampal shapes of 134 patients

with Alzheimer’s Disease (AD, with age = 75.8± 7.3 years, 50% male, Mini Mental

State Examination (MMSE) = 23 in average) and 160 controls (CN, with age =

76.0 ± 5.4 years, 47% male, MMSE=29 in average) (N = 294 in total) from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 1. Left hippocampi

were segmented with the SACHA software (Chupin et al., 2009) from 3D T1 weighted

MRI. Then the meshes were computed using the BrainVisa 2 software. They are

composed of 800 vertices on average.

For this dataset, we first analysed the variability of both patients and control

groups using Principal Component Analysis. Then, for the AD group, we assessed

the aptitude of our approach to predict clinical parameters. Specifically, we studied

1. (adni.loni.usc.edu). The Principal Investigator of this initiative is Michael W. Weiner, MD,
VAMedical Center and University of California - San Francisco. The investigators within the ADNI
contributed to the design and implementation of ADNI and/or provided data but did not partici-
pate in analysis or writing of this report A complete listing of ADNI investigators can be found at:
adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. Data
collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initia-
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Figure 7.1: Distances between IC(CN) and the deformation of IC(CN) onto IC(AD).
On the left, the hippocampus is viewed from below.

the Mini Mental State Examination (MMSE) which is a global indicator of the

severity of cognitive impairment, and the ADNI-MEM score (Crane et al., 2012)

which is a composite score reflecting the performance of the subjects on memory

tasks.

We hypothesise that hippocampal shape predicts the ADNI-MEM score, reflect-

ing the central role of the hippocampus in memory performance. On the other hand,

we hypothesise that it will not predict the MMSE which is a global indicator.

7.2 Results: analysis of variability

We computed a centroid for each of the two populations (AD and CN) using

Algorithm 1 page 130. The two centroids are denoted IC(AD) and IC(CN). Com-

putation times were 2.4 hours for IC(AD) and 3.6 hours for IC(CN). To assess

whether the centroids are close to the center of the respective populations, we com-

puted the ratio R =
‖ 1
N

∑N
i=1 v0(Si)‖V

1
N

∑N
i=1 ‖v0(Si)‖V

between the mean of the norms of initial vector

fields from the centroid to the population and the norm of the mean of initial vector

fields. Both ratios are 0.25, which means that both centroids are correctly centred
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Figure 7.2: First mode of deformation of the AD group (top) and of the CN group (bot-
tom). For each row, the centroid is in the center (in blue), on the right its
deformation at +2σ1m

1, and at −2σ1m
1 on the left. The colormap indicates

the displacement of each vertex between the corresponding centroid and its
deformation.

even though they are not exactly at the Fréchet mean (which would correspond to

R = 0). To visualise differences between IC(CN) and IC(AD), we computed dis-

tances between vertices of IC(CN) and the deformation of IC(CN) onto IC(AD)

(figure 7.1).

We then analysed the variability of the AD and the CN populations using PCA.

Figure 7.2 shows, for each group, the principal mode of variation. This figure is

obtained by geodesic shooting from each centroid in the first principal direction

with a magnitude of ±2σ1, with σ1 the standard deviation of the first mode of

variation. One can note that, while the templates of the two groups are different,

the variabilities of both groups share similarities. Nevertheless, there seems to be

less variability in the medial part of the body for the CN group.

In order to visualize the localization of IC(CN) and IC(AD) and the corre-
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Figure 7.3: Two principal axes of the whole population (in green), the length of each axis
is proportional to its standard deviation. In blue, the projections of IC(CN)
and projections of its deformations at ±2σ in the direction of its first mode of
variation. In red, for the AD group.

sponding first modes within the whole population, we computed a centroid of the

whole population and performed a PCA. We then projected IC(CN) and IC(AD)

and their corresponding ±2σ1m
1 onto the 2D space spanned by the first two prin-

cipal components of the whole dataset. We can observe (figure 7.3) that IC(CN)

is on the right of the global centroid, and IC(AD) is on the other side, and the 3

principal modes of variation have different directions. One can observe that for the

AD and the CN group, the two shapes corresponding to the +2σ1m
1 deformation

(on the right of the figure 7.3) are close i.e. similar to each others. This observation

can also be note on the figure 7.2, which shows that the deformation in the direc-

tion −2σ1 for the AD group is very different than the one of the CN group and the

deformation in the direction +2σ1 for the AD group is similar to the one of the CN

group.

We then studied the variance associated to the different dimensions. In to-

tal, the AD group have more variance than the CN group:
∑NAD

i=1 λAD
i = 233 and

∑NCN

i=1 λCN
i = 171. The first two components of the AD group have a variance of

respectively 51.4 and 21.2, while the two first components of the CN group have a
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Figure 7.4: In red, the proportion of cumulative variance of the AD group, in blue of the
CN group and in green, of the whole population.

smaller variance of respectively 19.0 and 8.3. We also studied the proportion of cu-

mulative variance CEVk explained for each number of dimensions k. In Figure 7.4,

we can see that the AD group needs less dimensions (or principal components),

around 40 dimensions, to explain 90% of its total variance than the CN group (re-

quiring around 60 dimensions). To make sure that this difference is not due to the

larger number of subjects in the CN group, we also performed the same experiment

with the same number of subjects (134) in each group, and obtained similar results.

Figure 7.5 shows these two first modes of variations in blue for the CN group

and in red for the AD group computed by geodesic shooting in the directions (k1 ×

m1; k2 ×m2) with k1 ∈ [−2σ1; +2σ1] and k2 ∈ [−2σ2; +2σ2],with m1 and m2 the

two first modes of variations of the population, and σi the standard deviation of

the corresponding mode mi. We can see that for the two groups, the first mode



7.3. RESULTS: PREDICTION OF CLINICAL VARIABLES 189

mainly captures the volume effectn which effect is clearly (and expected to be) more

important for the AD group, and also captures the curvature of the hippocampus

tail. The second axis of the AD group captures the atrophy of the hippocampus

body and head.

7.3 Results: prediction of clinical variables

For the AD group we tested the ability of different models computed using dif-

ferent number of variables to predict clinical variables (MMSE and ADNI-MEM).

Multiple linear regression From the space computed via the PCA, by using the

z-scored p principal eigenvectors X1,i, ..., Xp,i with i ∈ {1, . . . , N} of the N subjects,

we can use multiple linear regression to predict a biological or clinical factor Y .

The multiple linear regression model is written as f(X) = β0 +
∑p

i=1Xiβi where

β0, β1, ...βp are the regression coefficients. The standard method to estimate the

regression coefficients is the least squares estimation method in which the coefficients

βi minimize the residual sum of squares RSS(β) =
∑N

j=1(yj − β0 −
∑p

i=1 xjiβi)
2,

which leads to the estimated β̂ (with matrix notations) β̂ = (XTX)−1XTY (Hastie

et al., 2009). For each dimension p we validated the quality of the computed model

with the adjusted coefficient of determination R2
adj, which expresses the part of

explained variance of the model with respect to the total variance:

R2
adj = 1− SSE/(N − p)

SST/(N − 1)
(7.1)

with SSE =
∑N

i (yi − (XT
1...p,iβ̂))2 and SST =

∑N
i=1(yi − Ȳ )2. The R2

adj coefficient,

unlike the R2, takes into account the number of variables and therefore does not
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Figure 7.5: Geodesic shootings in the directions of (k1 × m1; k2 × m2) with k1 ∈
[−2σ1; +2σ1] and k2 ∈ [−2σ2; +2σ2] with m1 and m2 the two first modes
of variations for the AD group (in red) and the CN group (in blues). Principal
axis (k1 ×m1; 0) and (0; k2 ×m2) are in yellow for the AD group and in light
blue for the CN group.
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increase with the number of variables. We then tested the significance of each

model by computing the F statistic

F =
R2/p

(1−R2)/(N − p− 1)
(7.2)

which follows a F-distribution with (p, n − p − 1) degrees of freedom. So for each

number of variables (i.e. dimensions) we computed the coefficient of determination

to evaluate the model and the p-value to evaluate the significance of the model. Then

we used a leave-one-out cross validation which consists in computing N models with

N − 1 observations to predict the remaining one. To quantify the prediction of the

model, we computed the mean square error MSE = SSE/N which corresponds to

the unexplained residual variance.

The variables of the models are the principal modes of variation i.e. principal

components of the PCA computed from the PCA. The response Y is the response

to the ADNI-MEM test or to the MMSE test. We saw in the previous section that

the AD group can express 90% of its total variability by using only 40 dimensions,

thus we studied models with maximum 50 principal modes of variation.

Figure 7.6 shows, for the hippocampi of the AD group, the values of R2
adj coeffi-

cient computed from the models computed with the k first modes of variations, then

the corresponding p-values are displayed. We cross validated the models with the

best R2
adj coefficients and the best p-values with the lower number of dimensions.

Thus, for the cross validation step we assessed models from 29 dimensions to 40

dimensions which seems to be the more interesting. For these model, R2
adj = 0.25

on average, and the p-values are 1.2e−3 on average. Results of cross validation

using leave-one-out (LOOCV) are assessed using the MSE score (right panel of
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Figure 7.6: Multiple linear regression on principal components for the Y response ADNI
MEM, and variables are the principal modes of variations. On left panels,
R2

adj coefficients regarding to the number of dimensions (i.e. viariables) of
the model. On middle panels, the corresponding p-values of the models with
dotted red lines representing the thresholds 0.05 and 0.01. On right panels, the
different MSE computed from some model previously selected using the two
previous panels in which the corresponding models are highlighted in green.

the Figure 7.6). MSE scores of the predicted values from the cross validation step

are compared to the MSE of the model, and to a random prediction distributed

normally with mean Ȳ and variance σ2
Y .

None of the models (even those computed using more than 50 variables) was

able to predict the response to the MMSE test, the maximum value for the R2
adj

coefficient was 0.11, and the p-values were all higher than 0.1.

7.4 Conclusion

In this chapter, we proposed a template-based shape analysis approach for group

comparison and the prediction of clinical variables, in the LDDMM framework, and

applied it to the study of a database of Alzheimer and controls from the ADNI

database. We computed a centroid of the whole population using the diffeomorphic
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iterative centroid method, as well as centroids for the AD and CN groups. Analysis

of variability was then based on a PCA on the initial momentum vectors from

the centroid to the subjects. The comparison of the resulting geodesic shooting

surfaces in the direction of the principal modes of variation of the AD group and

of the CN group shows that for each group the volume is mainly captured in this

principal mode, and these two groups produce really different shapes. Furthermore,

the projection of the templates of the CN group and the AD group onto the two

principal modes of variation of the whole population show that they are located on

the main axis of variability. The analysis of the number of dimensions given by the

PCA shows that, even if the AD group is more variable than the CN group, the AD

group is explained by fewer dimensions than the CN group. Our experiments also

showed that the approach can be used to predict clinical variables from hippocampal

shape. Specifically, we were able to predict memory performances in AD patients,

which is consistent with the central role played by the hippocampus in memory

processes.





Chapter 8

Conclusion and discussion

The topic of this thesis was the analysis of the anatomical variability of the

hippocampus on large databases. The objectives were two-fold. First, we aimed

to design methods for statistical shape analysis of the hippocampus, applicable to

large number of subjects. Moreover, we aimed to study a remarkable anatomical

variant of the hippocampus. This anatomical variant is the Incomplete Hippocampal

Inversion (IHI) and could be of developmental origin. Until now, this variant has

been mostly studied in patients with epilepsy. It was also known to be present in

195
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healthy subjects but its prevalence and characteristics were unclear.

We designed robust visual criteria to characterize and study IHI, that are appli-

cable to large series of subjects. On the other hand, we developed fast approaches

for template-based shape analysis based on the mathematical frameworks of cur-

rents and of Large Diffeomorphic Deformations Metric Mapping. In particular, we

introduced diffeomorphic iterative centroid methods to compute a template of the

population. This approach were then introduced in statistical analyses. In partic-

ular, we combined it with principal component analysis on the initial momentum

vectors of the deformations from the template to the subjects. We showed that it

allowed to summarize the variability of the population with a reasonable number

of dimensions. Further, we used multiple linear regression to predict IHI scores in

normal subjects. We also showed that this approach can be used to predict clinical

variables, such as memory scores, in patients with Alzheimer’s disease.

∗ ∗

∗

For evaluation of IHI, we proposed and applied 5 criteria which are reproducible.

We demonstrated that IHI are not a rare anatomical variant and they are much more

frequent in the left hemisphere. Specifically, they are present in around 17% of left-

side hippocampus and in around 6.5% of right-side hippocampus in the healthy

and young population. We also introduced an IHI score ranging from 0 to 10 to

give a degree of IHI for each hippocampus. Indeed, we showed that there is an

anatomical continuum between hippocampi with incomplete inversion and normal

hippocampi. Using this IHI score and the hippocampi with and without obvious IHI,
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we determined a threshold to be able to classify the hippocampi into two groups

(IHI and non-IHI). Therefore an IHI score < 4 indicates that the hippocampus is

normal otherwise it very probably present an IHI.

We proposed a pipeline for template-based shape analysis of large databases. The

diffeomorphic iterative centroid method we proposed allows computing a centroid

of the population. We showed that this centroid is always close to the centre of

the population, even though it depends on the subject ordering. We also saw that

using an iterative centroid rather than a more complex template estimation has

no impact on the subsequent template-based analysis, in the case of hippocampi.

We firstly computed the template of the population by using the diffeomorphic

iterative centroid method proposed in Chapter 5, then we computed the initial

momentum vectors from the template to the population and then we used a PCA in

the tangent space at the level of the template. This template-based shape analysis

was applied to the study of 1000 left hippocampi (with good segmentation quality)

from the IMAGEN database. We showed that the anatomical variability of these

1000 hippocampi can be captured by a space of reasonable dimension (around 50

dimensions). We showed that using the first 30-40 dimensions we were able to predict

the IHI score, with a correlation coefficient of 0.69. We also used this template-

based shape analysis on 298 subjects of the ADNI database. Results showed that

the method is able to predict a memory score with the first 30-40 dimensions of the

anatomical variability of the AD population.

To conclude, we developed criteria to evaluate IHI and applied them to study

their prevalence in healthy subjects. The statistical template-based shape analysis
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we proposed using the diffeomorphic iterative centroid method is able capture the

anatomical variability of hippocampi with few variables and predict some biological

or clinical parameters.

∗ ∗

∗

Various questions regarding IHI remain to be answered. First, it is not clear

whether this atypical anatomical pattern is confined to the hippocampus. It is

already clear that IHI are associated with other atypical features in the temporal

lobe: characteristics of the collateral sulcus and the occipito temporal sulcus are

part the criterion and co-occur with hippocampus-specific features. Nevertheless,

the extent of these atypical patterns in other parts of and outside of the temporal

lobe remain to be studied. An interesting possibility is to analyse the IHI score

together with sulcal measurements. Such a study is currently undergoing.

Also, the factors (genetic, environmental) that influence the development of IHI

are currently unknown. It would be also particularly interesting to analyse the

relationship of IHI with genetics variables. Indeed, some genes are known to be

linked with hippocampal volume as the gene APOE4 (O’Dwyer et al., 2012) and

variants at positions 12q14 and 12q24 (Bis et al., 2012). Besides, various genes

are involved in diseases affecting the hippocampus, including CLU, BIN1, APOE4

(Braae et al., 2014; Michaelson, 2014). More specifically, a study showed frequent

IHI in subjects with micro-deletions at 22q11.2 (Bassett et al., 2014). Since we

characterized IHI on all subjects of the IMAGEN database, the study of correlations
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between IHI and Single Nucleotide Polymorphisms appears as a natural perspective

of our work.

There are also several methodological perspectives. First, it could be interesting

to compare the diffeomorphic iterative centroid method to other template estimation

methods such as those of Vaillant et al. (2004); Glaunès & Joshi (2006); Durrleman

et al. (2008a, 2012); Ma et al. (2008). Furthermore, while the use of centroids

in place of variational template estimation had no impact in our case that dealt

with hippocampal shape, it would be interesting to study if this is also true with

more complex structures or set of structures such as cortical sulci (Auzias et al.,

2011; Durrleman et al., 2008b) or white matter tracks (Gori et al., 2013). Finally,

the diffeomorphic iterative centroid could also be used to initialize other template

estimation methods.
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Resume

Statistical shape analysis of anatomical structures is a key challenge for many
applications: modelling of the normal and pathological variability, prediction of
clinical or biological parameters from anatomical data... Recent years have seen the
emergence of large databases in neuro-imaging, potentially increasing the statistical
power of new studies.

This thesis is about the statistical analysis of the anatomical variability of hip-
pocampi in large populations. After a state of the art, the first part of the thesis
focuses on the study of an anatomical variant named Incomplete Hippocampal In-
version (IHI). We developed a new robust scale for IHI assessments. We then applied
the evaluation to 2000 young healthy subjects from the European database IMA-
GEN. Results show that IHI are frequent on healthy population, with a left side
predominance. This is the first time that IHI are studied on a large database com-
posed of healthy subjects.

The second part of this thesis develops a method for the statistical analysis of
shapes based on Large Diffeomorphic Deformations Metric Mapping and mathe-
matical currents, applicable for the analysis of large datasets. In particular we have
introduced a new fast approach for the estimation of anatomical templates. This ap-
proach has been validated on 1000 young healthy subjects of the IMAGEN database
and on 294 subjects from the ADNI database (healthy ageing subjects and patients
with Alzheimer disease). Results show that the method allows the modelling of the
anatomical variability of hippocampi with a reasonable number of dimensions.
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