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Introduction

Overall context

Throughout the world, the wealth of any country depends on energy, and consequently on the discovery and extraction of oil and other natural resources. As of today, more than 90% of the energy comes from fossil fuel (Figure 1). As no drastic change of this ratio is expected [1,2,3], the oil demand regularly increases with energy demand (Figure 2). Figure 2: Oil supply profiles, 1996-2030 (NGLs: Natural Gas Liquids). [4] In order to be able to supply this demand, research focuses in the oil industry on finding new deposits and organise their development strategies. This last point is of tremendous importance, as it affects directly the choice of surface installations and the global economy of the project [START_REF] Chraïbi | Modélisation de l'expansion de gaz dissous dans les huiles lourdes en milieu poreux[END_REF]. Trying and understanding to the best the geological structure of the subsurface, alongside the different mechanisms governing the evolution of the reservoir, is thus a crucial step in a project of oil exploration and production. One can then obtain a better evaluation of the oil volume buried in the reservoir and of the expected production profiles. This extensive knowledge of the reservoir characteristics is required in order to optimise the exploitation of the oil field.

Figure 3: Associated oil-gas reservoir. [START_REF] Amyx | Petroleum reservoir engineering: physical properties[END_REF] A reservoir is a subsurface pool of hydrocarbons contained in porous or fractured rock formations. The naturally occurring hydrocarbons are generally trapped by overlying rock formations with lower permeability (e.g. clays). It is also common for the hydrocarbons to be trapped by an aquifer barrier. The vertical disposition of the fluids is a direct consequence of gravity. Indeed, when present the gas will appear in the higher parts of the reservoir, while the aquifer will generally be found at the base of the reservoir (Figure 3). The fluids fill the porous medium and will move even in pores of very small size (∼ 1 µm).

Conventional and unconventional oil

The difference between conventional and unconventional oil is defined by the International Energy Agency (IEA) as follows:

"Conventional oil is a category that includes crude oil and natural gas liquids and condensate liquids, which are extracted from natural gas production. Crude oil production in 2011 stood at approximately 70 million barrels per day. Unconventional oil consists of a wider variety of liquid sources including oil sands, extra heavy oil, gas to liquids and other liquids. In general conventional oil is easier and cheaper to produce than unconventional oil. However, the categories conventional and unconventional do not remain fixed, and over time, as economic and technological conditions evolve, resources hitherto considered unconventional can migrate into the conventional category." [7] Table 1: Heavy oil classification. [START_REF] Chraïbi | Modélisation de l'expansion de gaz dissous dans les huiles lourdes en milieu poreux[END_REF] at 249.67 Gbbl 2 (39.694 × 10 9 m 3 ) globally, of which 176.8 Gbbl (28.11 × 10 9 m 3 ), or 70.8%, are in Canada [START_REF] Attanasi | Survey of energy resources, chapter Natural Bitumen and Extra-Heavy Oil[END_REF].

Heavy crude oil or extra heavy crude oil is oil that is highly viscous, and cannot easily flow to production wells under normal reservoir conditions [START_REF] Mai | Insights Into Non-Thermal Recovery of Heavy Oil[END_REF]. It is referred to as "heavy" because its density or specific gravity is higher than that of light crude oil. Heavy crude oil has been defined as any liquid petroleum with an API gravity 3 lower than 20° [START_REF] Mb Dusseault | Comparing Venezuelan and Canadian heavy oil and tar sands[END_REF]. Physical properties that differ between heavy crude oils and lighter grades include higher viscosity and specific gravity, as well as heavier molecular composition. In 2010, the World Energy Council (WEC) defined extra heavy oil as crude oil having a gravity of less than 10°and a reservoir viscosity of no more than 10 000 centipoises 4 . When reservoir viscosity measurements are not available, extraheavy oil is considered by the WEC to have a lower limit of 4°API [START_REF]Survey of Energy Resources 2007: Natural Bitumen -Definitions[END_REF].

A classification of heavy oils is presented above in Table 1. 2 1 Gbbl equals 10 9 barrels. 3 The American Petroleum Institute gravity, or API gravity, is a measure of how heavy or light a petroleum liquid is compared to water. If its API gravity is greater than 10, it is lighter and floats on water; if less than 10, it is heavier and sinks. API gravity is thus an inverse measure of the relative density of a petroleum liquid and the density of water, but it is used to compare the relative densities of petroleum liquids. For example, if one petroleum liquid floats on another and is therefore less dense, it has a greater API gravity. Although mathematically, API gravity has no units (see the formula below), it is nevertheless referred to as being in "degrees". API gravity is gradated in degrees on a hydrometer instrument. The API scale was designed so that most values would fall between 10 and 70 API gravity degrees. The formula to obtain API gravity of petroleum liquids, from relative density (RD), is API gravity = 141.5 RD -131.5 with RD = ρ oil /ρ water . 4 1 cP = 10 -3 kg.m -1 .s -1 Figure 5: Naturally burning oil shale. [START_REF]Oil shale -Wikipedia, The Free Encyclopedia[END_REF] Oil shale is an organic-rich fine-grained sedimentary rock containing significant amounts of kerogen (a solid mixture of organic chemical compounds) from which technology can extract liquid hydrocarbons (shale oil) and combustible oil shale gas.

The kerogen in oil shale can be converted to shale oil through the chemical processes of pyrolysis, hydrogenation, or thermal dissolution [START_REF] Koel | Estonian oil shale[END_REF]. The temperature when perceptible decomposition of oil shale occurs depends on the time-scale of the pyrolysis; in the above ground retorting process the perceptible decomposition occurs at 300 °C, but proceeds more rapidly and completely at higher temperatures. The rate of decomposition is the highest at a temperature of 480 °C to 520 °C [START_REF] Koel | Estonian oil shale[END_REF]. The ratio of shale gas to shale oil depends on the retorting temperature and as a rule increases with the rise of temperature. For the modern in-situ process, which might take several months of heating, decomposition may be conducted as low as 250 °C.

Depending on the exact properties of oil shale and the exact processing technology, the retorting process may be water and energy demanding. Oil shale has also been burnt directly as a low-grade fuel (Figure 5) [START_REF] Moody | Oil & Gas Shales, Definitions & Distribution In Time & Space. The History of On-Shore Hydrocarbon Use in the UK[END_REF].

Gas to liquids (GTL) is a refinery process to convert natural gas or other gaseous hydrocarbons into longer-chain hydrocarbons such as gasoline or diesel fuel. Methanerich gases are converted into liquid synthetic fuels either via direct conversion-using non-catalytic processes that convert methane to methanol in one step-or via syngas as an intermediate, such as in the Fischer Tropsch, Mobil and syngas to gasoline plus 5 processes.

Coal liquefaction also known as coal to liquids is a general term referring to a family of processes for producing liquid fuels from coal. Specific liquefaction technologies generally fall into two categories: direct (DCL) and indirect liquefaction (ICL) processes. Indirect liquefaction processes generally involve gasification of coal to a mixture of carbon monoxide and hydrogen (syngas 6 ) and then using a process such as Fischer-Tropsch process to convert the syngas mixture into liquid hydrocarbons. By contrast, direct liquefaction processes convert coal into liquids directly, without the intermediate step of gasification, by breaking down its organic structure with application of solvents or catalysts in a high pressure and temperature environment. Since liquid hydrocarbons generally have a higher hydrogen-carbon molar ratio than coals, either hydrogenation or carbon-rejection processes must be employed in both ICL and DCL technologies.

As coal liquefaction generally is a high-temperature/high-pressure process, it requires a significant energy consumption and, at industrial scales (thousands of barrels a day), multi-billion dollar capital investments. Thus, coal liquefaction is only economically viable at historically high oil prices, and therefore presents a high investment risk.

Economics

Sources of unconventional oil will be increasingly relied upon when conventional oil becomes more expensive due to depletion. Nonetheless, conventional oil sources are currently still preferred because they are less expensive than unconventional sources (Figure 6). 5 Syngas to gasoline plus (STG+) is a thermochemical process to convert natural gas, other gaseous hydrocarbons or gasified biomass into drop-in fuels, such as gasoline, diesel fuel or jet fuel, and organic solvents. 6 Syngas, or synthesis gas, is a fuel gas mixture consisting primarily of hydrogen, carbon monoxide, and very often some carbon dioxide. 

Oil recovery

Extraction and recovery of crude oil from a reservoir is a two-to-three-step process.

During primary recovery, some 5% to 15% of the original oil in place is produced by depletion of the overburden pressure through the oil wells drilled into the reservoir. Another 15% to 30% of oil can be produced by waterflooding, i.e. forced water injection, known as secondary recovery (one can note that many projects use waterflooding first, although it is still called secondary waterflooding) [START_REF] Huang | Colloid and interface science in the oil industry[END_REF][START_REF] Tzimas | Enhanced oil recovery using carbon dioxide in the european energy system[END_REF]. A variety of additional techniques, generally referred to as Enhanced Oil Recovery (EOR) or tertiary recovery, can be employed to extract another 5% to 15%, yielding an overall recovery ratio of 30% to 60% depending on the properties of the oil initially in place (Figure 7) [START_REF] Tzimas | Enhanced oil recovery using carbon dioxide in the european energy system[END_REF][START_REF] Needham | Polymer flooding review[END_REF][START_REF] Littmann | Polymer flooding[END_REF][START_REF] Putz | Commercial Polymer Injection in the Courtenay Field[END_REF][START_REF] Hui | Effects of Wettability on Three-Phase Flow in Porous Media[END_REF][START_REF] Dong | Review of practical experience & management by polymer flooding at Daqing[END_REF]. Such techniques aim to recover the oil retained by capillary forces or immobilised due to high viscosity.

Enhanced Oil Recovery

Most EOR methods are presented extensively in reference [START_REF] Thomas | Enhanced Oil Recovery -An Overview[END_REF].

Many EOR methods have been used in the past with varying degrees of success.

Thermal methods are primarily intended for heavy oils and tar sands, although they Figure 7: Expected sequence of oil recovery methods in a typical oil field in the case of immiscible CO 2 injection. [START_REF] Tzimas | Enhanced oil recovery using carbon dioxide in the european energy system[END_REF] are applicable to light oils in special cases. Non-thermal methods are normally used for light oils. Some of these methods have been tested for heavy oils. Above all, reservoir geology and fluid properties determine the suitability of a process for a given reservoir.

Thermal methods

Thermal methods have been tested since the 1950s and are for now the most advanced among EOR methods, as far as field experience and technology are concerned. They supply heat to the reservoir, and vaporize some of the oil. The major mechanisms include a large reduction in viscosity, and hence mobility ratio. The main thermal methods are Cyclic Steam Stimulation [START_REF] Owens | Steam Stimulation-Newest Form of Secondary Petroleum Recovery[END_REF], Steamflooding [START_REF] Ali | Current steamflood technology[END_REF][START_REF] Stokes | Shell makes a success of steam flood at Yorba Linda[END_REF], Steam Assisted Gravity Drainage (Figure 8) [START_REF] Butler | A new approach to the modelling of steam-assisted gravity drainage[END_REF][START_REF] Shako | Temperature Variation Across The Wellbore in SAGD Producer[END_REF] and In Situ Combustion [START_REF] Cheih | A Study of Fireflood Field Projects[END_REF][START_REF] Cheih | State-of-the-Art Review of Fireflood Field Projects[END_REF].

Non-thermal methods

The two principal objectives in non-thermal methods are

• lowering the interfacial tension,

• improving the mobility ratio. Most non-thermal methods require considerable laboratory studies for process selection and optimisation. The three main classes under non-thermal methods are: miscible, chemical and immiscible gas injection methods (Figure 9). 

Miscible flooding

Miscible flooding implies that the displacing fluid is miscible with the reservoir oil either at first contact or after multiple contacts. A narrow transition zone (mixing zone) develops between the displacing fluid and the reservoir oil, inducing a piston-like displacement. The mixing zone and the solvent profile spread as the flood advances.

Interfacial tension is reduced to zero in miscible flooding, therefore Ca → +∞. The various miscible flooding methods include miscible slug process, enriched gas drive, vaporizing gas drive and high pressure gas (CO 2 or N 2 ) injection [START_REF] Holm | Carbon dioxide solvent flooding for increased oil recovery[END_REF][START_REF] Sánchez | Nitrogen Injection in the Cantarell Complex: Results After Four Years of Operation[END_REF].

Chemical flooding

Chemical methods [START_REF] Thomas | Field Experience with Chemical Oil Recovery Methods[END_REF][START_REF] Thomas | Status and assessment of chemical oil recovery methods[END_REF] use a chemical formulation as the displacing fluid, which promotes either a decrease in mobility ratio or an increase in the capillary number, or both. Economics is the major deterrent in the commercialisation of chemical floods.

It must also be noted that the technology does not exist currently for reservoirs of certain characteristics. The major chemical flood processes are polymer flooding [START_REF] Harry | Polymer Flooding Technology Yesterday Today and Tomorrow[END_REF][START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF], surfactant flooding [START_REF] Somasundaran | Adsorption of sulfonates on reservoir rocks[END_REF][START_REF] Krumrine | Surfactant Polymer and Alkali Interactions in Chemical Flooding Processes[END_REF], alkaline flooding [START_REF] Johnson | Status of caustic and emulsion methods[END_REF][START_REF] Mayer | Alkaline injection for enhanced oil recovery -A status report[END_REF], micellar flooding [START_REF] Gogarty | Miscible-type waterflooding: oil recovery with micellar solutions[END_REF][START_REF] Ali | Tertiary oil recovery of two Alberta oils by micellar flooding[END_REF] and alkali-surfactant-polymer flooding [START_REF] Shutang | Alkaline/Surfactant/Polymer Pilot Performance of the West Central Saertu Daqing Oil Field[END_REF][START_REF] Kon | Mature waterfloods renew oil production by alkaline-surfactant-polymer flooding[END_REF].

Wettability in the oil industry

Precise knowledge of reservoir wettability is essential in order to accurately determine several factors, such as residual oil saturation or relative permeability, which in turn are major factors for economic evaluations during both waterflooding and EOR [START_REF] Morrow | Effect of crude-oil-induced wettability changes on oil recovery[END_REF][START_REF] Dixit | Pore-Scale Modeling of Wettability Effects and Their Influence on Oil Recovery[END_REF], especially when one considers that waterflooding has been a common practice in oil recovery for many years (see Figure 10) [START_REF] Torrey | Modern Practice in Water-flooding of Oil Sands in the Bradford and Allegany Fields[END_REF][START_REF] Lawry | Flowing vs. Pumping Operations In Water Flooding. Drilling and Production Practice[END_REF].

In the case of a water-wet reservoir, the water advances through the porous medium in a fairly flat front during waterflooding [START_REF] Anderson | Wettability literature survey part 5: the effects of wettability on relative permeability[END_REF]. Despite this seemingly uniform front on a macroscale, a considerable oil fraction remains inside the rock due to entrapment mechanisms on the microscale (Figure 11(a)) [START_REF] Raza | Wettability of reservoir rocks and its evaluation[END_REF][START_REF] Mohanty | Physics of oil entrapment in water-wet rock[END_REF]. For large aspect ratios7 (wide pores connected through very small throats), water films in the throats frequently coalesce and cut off ganglia of oil from the continuous oil phase [START_REF] Payatakes | Dynamics of oil ganglia during immiscible displacement in water-wet porous media[END_REF]. Due to capillary pressure, these ganglia are then trapped in the large pores [START_REF] Anderson | Wettability literature survey part 5: the effects of wettability on relative permeability[END_REF][START_REF] Anderson | Wettability literature survey-part 4: Effects of wettability on capillary pressure[END_REF]. After the water Figure 10: Secondary oil recovery by waterflooding: the displacing fluid (water) is injected into the reservoir through the injector well (right) and displaced oil is recovered at the production well (left). [START_REF] Schneider | Wettability Patterning in Microfluidic Systems and Applications in the Petroleum Industry[END_REF] front passes, the remaining oil stays mostly immobile. Oil recovery rate thus decreases drastically shortly after water breakthrough (Figure 12).

In the case of an oil-wet reservoir, on the other hand, the rock preferentially remains in contact with the oil during the waterflooding process (Figure 11(b)). This process is therefore much less efficient [START_REF] Anderson | Wettability literature survey-part 6: the effects of wettability on waterflooding[END_REF].

Outline of the manuscript

Understanding multiphase flow in porous media is of great importance for many industrial and environmental applications at various spatial and temporal scales [START_REF] Bhusan | Upscaling Multiphase Flow in Porous Media: From Pore to Core and Beyond[END_REF][START_REF] Sahimi | Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing[END_REF][START_REF] Ferer | Two-Phase Flow in Porous Media: Predicting Its Dependence on Capillary Number and Viscosity Ratio[END_REF][START_REF] Ulas | Experimental and visual analysis of co-and counter-current spontaneous imbibition for different viscosity ratios, interfacial tensions, and wettabilities[END_REF][START_REF] Bazylak | Numerical and microfluidic pore networks: Towards designs for directed water transport in GDLs[END_REF][START_REF] Litster | Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers[END_REF][START_REF] Berejnov | Lab-on-chip methodologies for the study of transport in porous media: energy applications[END_REF]. Indeed, this PhD work is part of an R&D project dedicated to the study of "Heavy Oils" at TOTAL SA. This project aims at understanding and modelling the invasion of heavy-oil-filled porous media (reservoirs) by brine and/or by polymer (EOR). At the scale of the reservoir, the ultimate goal is to increase the extracted oil ratio at reduced costs thanks to a better understanding of the overall physical laws governing the different flows inside the porous medium. a strongly oil-wet rock. [START_REF] Raza | Wettability of reservoir rocks and its evaluation[END_REF] The present study focuses on modelling two-phase flows by Volume-of-Fluid method in porous media. Chapter 1 recalls some elements of both fluid and porous medium theories. After precisely defining what a fluid is (by opposition to a solid), the different equations governing a fluid flow are recalled. Wettability issues are also discussed.

Porous media are then considered in order to define both porosity and tortuosity and to derive the macroscopic Darcy's law. This chapter finally considers the phenomenology of flows in porous media in the case of both drainage and imbibition, before presenting what occurs in deformable media.

Chapter 2 is dedicated to presenting Gerris Flow Solver, the open-source software that was used to study two-phase flows in porous media. As this software is based on Figure 12: Typical waterflood performance in water-wet and oil-wet sandstone cores at moderate oil/water viscosity ratios. [START_REF] Raza | Wettability of reservoir rocks and its evaluation[END_REF] Volume-of-Fluid method, some aspects of this method are recalled, before realising some tests of pore-scale flow in porous medium, in order to validate the code for these uses. The results of 3D flow simulations in real rock are finally presented.

In Chapter 3, an extensive study of 2D viscous fingering in Hele-Shaw cells with central injection is presented. Some characteristics of both isotropic and non-isotropic viscous fingering in Hele-Shaw cells are first recalled, before presenting some results concerning fractal dimension of the resulting clusters. Special interest will be dedicated to exploring the relation between the perimeter of the resulting bubbles and their area.

Finally, Chapter 4 will focus on studying Saffman-Taylor instability in Hele-Shaw cells induced by lateral injection. This study aims at explaining some results that were obtained in experiments realised at Centre of Integrated Petroleum Research (CIPR, Bergen, Norway) and funded by TOTAL SA. These experiments of lateral injection of brine and/or polymer in quasi-2D square slab geometries of Bentheimer sandstone are reproduced numerically (to some extent).

CHAPTER 1

Elements of fluid and porous medium theory A fluid is a continuous medium that cannot be kept at rest under shear stress. In most cases, this property is enough to establish a clear distinction between fluids and solids. It should however be noted that some materials (e.g. polymers) react as solids under several stresses and as fluids for different stress intensity.

Another way to distinguish fluids from solids is to consider the so-called Deborah number [START_REF] Reiner | The Deborah Number[END_REF] De = τ r τ o (1.1) where τ r is the time of relaxation of the material and τ o the time of observation. The magnitude of this Deborah number then defines the difference between solids and fluids. For very large times of observation, or, conversely, if the time of relaxation of the material under observation is very small, one can see the material flowing,

i.e. it acts as a fluid. On the other hand, if the time of relaxation of the material is larger than the time of observation, the material, for all practical purposes, is a solid. Heraclitus's famous terse catchphrase "τ α παντ α ρει" ("everything flows") [START_REF]Πλάτ ων[END_REF] is thus valid either for infinite time of observation, or for infinitely small time of relaxation. One should also consider Prophetess Deborah's song after the victory over the Philistines: "The mountains flowed before the Lord" [START_REF]The Bible, Book of Judges[END_REF]. Indeed, in her statement, God can see that mountains flow; the same cannot however be stated for any living man, for only the time of observation of the Lord is infinite. For any member of mankind and a fortiori in this study, the greater the Deborah number, the more solid the material; the lower the Deborah number, the more fluid it is.

A fluid can be either a liquid or a gas. From a mechanical point of view, a gas is mostly distinguished from a liquid by its higher compressibility: the variations of its specific mass due to a given variation of pressure are greater. However, in some classes of liquid or gaseous flows, the fluid can be considered as incompressible.

Finally, liquids and gases obey the same laws of fluid mechanics.

Continuum approach to fluid materials

The concept of the fluid requires some further elaboration. Actually, fluids are composed of a large number of molecules (overlooking the existing submolecular structure [START_REF] Rougé | Introduction à la physique subatomique[END_REF]) that move about, colliding with each other and with the solid walls of the container in which they are placed. With the help of various theories of classical mechanics, it would be possible to obtain a complete description of a given system of molecules. However, despite the apparent simplicity of this approach, it is exceedingly difficult to solve even the three-body problem 1 . With the help of powerful computers, the many-body problem can be confronted, in the principle, numerically. It is still impossible, however, to determine the motion of 10 23 molecules in one mole of gas or liquid. In addition, due to the (very) large number of molecules, their initial positions and momenta cannot actually be determined, for example, by observation.

This embarassingly large number of equations ultimately provides a way out, at least under certain conditions. Instead of treating the problems, say of fluid motion, at the molecular level, a statistical approach is adopted to derive information regarding the motion of a system composed of many molecules. In such an approach the results of an analysis or an experiment are obtained only in statistical form. Indeed it is possible to determine the average value of successive measurements, but one cannot predict with certainty the outcome of a single measurement in the future [START_REF] Anderson | More is different[END_REF]. In this context, an "experiment" means, for example, the position of a certain molecule at a

1 assuming that we know all the forces, which is quite doubtful certain time, or its moment, etc. Statistical mechanics is an analytical science that allows to infer statistical properties of the motion of a very large number of molecules (or of particles in general) from laws governing the motion of individual molecules [70].

When abandoning the molecular level of treatment aims at describing phenomena as a fluid continuum, the statistical approach is usually referred to as the macroscopic approach.

In order to be able to treat fluids as continua, one has to define the essential concept of a fluid particle. It is a set of many molecules contained in a small volume. Its size has to be much larger than the mean free path of a single molecule. It should however be sufficiently small as compared to the overall fluid domain so that by averaging fluid and flow properties over the molecules included in it, meaningful values will be obtained. These values are then related to some centroid of the particle. Then, at every point in the domain occupied by a fluid, we have a particle with definite dynamic and kinematic properties.

Let us consider the flow of a fluid around an obstacle of characteristic size L. We focus on an elementary volume δΩ(x, ε) of size ε, centered on an arbitrary point M at position x and containing a set of molecules. Provided δm(x, t, ε) is the mass of the fluid in δΩ(x, ε), the fluid's average density (or specific mass) at M is

ρ m (x, t, ε) = δm(x, t, ε) δΩ(x, ε) (1.2)
If one supposes the presence of a spatial resolution (ε) sensor at point M to determine the fluid density at this point, the measured value is the average density ρ m (x, t, ε) and varies with the resolution ε (see Figure 1.1). When ε is of order L, the measured value is not constant: it obviously depends on the variations of density on the macroscopic lengthscale L.

On the contrary, for ε of order l (microscopic lengthscale defined by the mean free path of the molecules), δΩ(x, ε) only contains a few molecules: the measuring device registers random fluctuations and one cannot define any average value. The fluid can be considered as a continuous material if one finds an amplitude of spatial resolution As in some cases one may require a still higher, or coarser, level of treatment, reached by averaging phenomena in the fluid continuum filling the void space, the fluid continuum level will be referred to as the microscopic approach from now on. gases and most simple liquids).

l � ε � L (1.3)
Among the non-Newtonian fluids one may mention:

• Bingham plastic fluids, which exhibit a yield stress at zero shear rate, followed by a straight-line relationship between shear stress and shear rate. A certain shear stress has thus to be exceeded for flow to begin;

• pseudoplastic fluids are characterised by a progressively decreasing slope of shear stress versus shear rate (i.e. µ decreases with increasing rate of shear);

• in dilatants fluid the apparent viscosity increases with increasing shear rate.

These three examples (Figure 1.2) address only time-independent non-Newtonian fluids. Some fluids are more complex in that their apparent viscosity depends not only on the shear rate but also on the time the shear rate has been applied. There are two general classes of such fluids (Figure 1.3):

• thixotropic fluids, whose apparent viscosity depends both on time of shearing and on the shear rate; as the fluid is sheared from a state of rest, it breaks down on a molecular scale, but then the structural reformation will increase with time.

If allowed to rest, the fluid builds up slowly, and eventually regains its original consistency. • in rheopectic fluids the molecular structure is formed by shear and the behaviour is opposite to that of thixotropy.

From now on, we will only consider Newtonian fluids.

Conservation laws

Conservation of mass The differential form of the principle of conservation of mass is written for a fluid as

∂ρ ∂t + ∇ • (ρu) = 0 (1.7)
which is called the continuity equation. Rewriting the divergence term in equa-

tion (1.7) as ∂ ∂x i (ρu i ) = ρ ∂u i ∂x i + u i ∂ρ ∂x i ,
the equation of continuity becomes

1 ρ Dρ Dt + ∇ • u = 0. (1.8)
The derivative Dρ/Dt is the rate of change of density following a fluid particle. A fluid is usually called incompressible when its density is independent of pressure. Liquids are almost incompressible. Although gases are compressible, for speeds inferior to 

ρ Du i Dt = ρg i + ∂τ ij ∂x j , (1.10) 
where g is the body force per unit mass and τ = (τ ij ) the symmetric stress tensor

(τ ij = τ ji ).
The constitutive equation for a Newtonian fluid is [START_REF] Pijush | Fluid Mechanics[END_REF] 

τ ij = - � p + 2 3 µ∇ • u � δ ij + 2µe ij (1.11)
where δ = (δ ij ) is the Kronecker delta, p is the thermodynamic pressure and e = (e ij )

is the strain rate tensor

e ij ≡ 1 2 
� ∂u i ∂x j + ∂u j ∂x i � .
The equation of motion for a Newtonian fluid is obtained by sustituting the constitutive equation (1.11) into Cauchy's equation (1.10). It leads to a general form of the Navier-Stokes equation In the case of incompressible and viscosity-dominated flows in a permanent regime, the fluid obeys the so-called Stokes equation:

ρ Du i Dt = - ∂p ∂x i + ρg i + ∂ ∂x j � 2µe ij - 2 3 µ(∇ • u)δ ij � . ( 1 
µ∇ 2 u = ∇p -ρg (1.15)

Surface tension

Whenever two immiscible fluids are in contact, the interface behaves as if it were under tension. The presence of such a tension at an interface results from the intermolecular attractive forces [START_REF] Schowalter | Mechanics of secondary hydrocarbon migration and entrapment[END_REF][START_REF] Marchand | Why is surface tension a force parallel to the interface[END_REF]. Let us imagine a liquid drop surrounded by a gas. Near the interface, all the liquid molecules are trying to pull the molecules on the interface inwards (see Figure 1.4). The net effect of these attractive forces is for the interface to contract. The magnitude of the tensile force per unit length of a line on the interface is called surface tension σ. The value of σ depends on the pair of fluids in contact, the temperature and the pressure [START_REF] Jho | Effect of pressure on the surface tension of water: Adsorption of hydrocarbon gases and carbon dioxide on water at temperatures between 0 and 50°C[END_REF].

As a result of surface tension one can observe the existence of a pressure jump across the interface whenever it is curved. If p i (concave side) and p o are the pressures on the two sides of the interface, the pressure jump across the interface is given by The surface tension is given by [START_REF] Afkhami | A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations[END_REF] 

p i -p o = σ � 1 R 1 + 1 R 2 � = 2σ R = σκ, (1.16) 
f σ = σκδ S n (1.18)
where κ is the curvature and δ S (x, t) = |∇c(x, t)| at the interface S in the distribution sense. By considering that n points towards the fluid with an excess of pressure (concave side of the interface, supposed to be fluid 2), one can write n = ∇c/|∇c| and κ = -∇ • n = 2/R(x, t) with R the mean radius of curvature of the interface.

The Navier-Stokes equation with surface tension is thus written for incompressible fluids as

ρ Du Dt = -∇p + ρg + µ∇ 2 u + 2σ R(x, t) ∇c. (1.19)
This method can easily be extended to more-than-two-phase flows by using as many marker functions as the number of different kind of interfaces.

Dimensionless parameters

The Navier-Stokes equation (1.19) can easily be nondimensionalized by defining a characteristic length scale l and a characteristic velocity scale U . Accordingly, we introduce the following dimensionless variables, denoted by primes 2

x � i = x i l t � = tU l u � i = u i U p � = pl µU (1.20)
A two-phase flow where there is no volume force (g = 0) is considered. A dimensionless radius of curvature is defined as 

R � = R/l.
Du � Dt � = -∇p � + σ µU 2∇c R � + ∇ 2 u � . (1.21)
It is apparent that two flows having different values of U , l, µ or σ will obey the same nondimensional differential equation if the values of both dimensionless groups ρlU/µ and σ/µU are identical in te two different flows.

These dimensionless parameters are known as:

2 Here the pressure is nondimensionalized by the viscous stress µU/l, but depending on the nature of the flow, this could also be realised with a dynamic pressure ρU 2 or a hydrostatic pressure ρgl.

• the Reynolds number Re ≡ ρlU µ ,

• the capillary number Ca ≡ µU σ .

The dimensionless Navier-Stokes equation (1.21) can thus be written as

(Re) Du � Dt � = -∇p � + (Ca) -1 2∇c R � + ∇ 2 u � .

Significance of the dimensionless parameters

• The Reynolds number is the ratio of inertia force to viscous force

Re ≡ Inertia force Viscous force ∝ ρu∂u/∂x µ∂ 2 u/∂x 2 ∝ ρU 2 /l µU/l 2 = ρU l µ .
Equality of Re is a requirement for the dynamic similarity of flows in which viscous forces are important.

• The capillary number is the ratio of viscous force to surface tension

Ca = Viscous force Surface tension ∝ µ∂ 2 u/∂x 2 σ∇c/R ∝ µU/l 2 σ/l 2 = µU σ
Equality of Ca is a requirement for the dynamic similarity of flows in which surface tension is important.

Wettability

Wettability describes the ability of a fluid to remain in contact with a solid surface with respect to a second immiscible fluid [START_REF] Schneider | Wettability Patterning in Microfluidic Systems and Applications in the Petroleum Industry[END_REF]. Wettability is a result of the competition between adhesive forces between a liquid and a solid, which cause a liquid to spread across the solid surface, and cohesive forces within the liquid, which tend to minimise its surface area and maintain it in a compact form (e.g. a sphere) [START_REF] De | Wetting: statics and dynamics[END_REF][START_REF] Bonn | Wetting and spreading[END_REF].

Wettability is quantified by the contact angle θ, which represents the angle at which the fluid/fluid interface meets the solid surface. For a drop of liquid deposited on a surface (Figure 1.6), the contact angle obeys the Young equation [START_REF] Young | An essay on the cohesion of fluids[END_REF] σ wettability. The contact angle θ is precised in degrees ( • ). [START_REF] Schneider | Wettability Patterning in Microfluidic Systems and Applications in the Petroleum Industry[END_REF] where σ SG , σ SL and σ LG are the interfacial tensions between solid/gas, solid/liquid and liquid/gas respectively. Equation (1.22) describes the force balance of tangential forces [START_REF] Lunati | Young's law and the effects of interfacial energy on the pressure at the solid-fluid interface[END_REF] which requires to be satisfied in order to obtain static conditions at the triple line (between gas, liquid and solid, see Hysteresis of the contact angle An outside sollicitation (e.g. gravity) on a drop will tend to move the contact line. In an ideal case, this movement occurs at constant contact angle. Sometimes, however, such a sollicitation happens and no visible movement of the contact line appears at the macroscopic scale: the contact line is then anchored (see Figure 1.8).

SG -σ SL -σ LG cos θ = 0 (1.22) (a) (b) (c) (d)
For inhomogeneous solid surfaces, the anchoring effect can occur everywhere. The contact angle can thus vary everywhere on the surface. Its highest possible value is shows the contact angle does not change. Indeed, the drop shape adapts its curvature to take the edge into account. [START_REF] Wikipédia | Mouillage (physique) -Wikipédia, l'encyclopédie libre[END_REF] called the advancing contact angle θ a and the lowest one is referred to as the receding contact angle θ r .

The contact line begins to move on whenever the contact angle exceeds θ a . Similarly, it begins to recede only when becoming inferior to θ r [START_REF] De Gennes | Gouttes, bulles, perles et ondes[END_REF].

One should note that both the advancing contact angle θ a and the receding one θ r can depend on the position of the contact line on the solid surface (due to asperities).

It can also be noted that for liquid moving quickly over a surface, the contact angle can be altered from its value at rest. The advancing contact angle will increase with speed and the receding contact angle will decrease [START_REF] Elliott | Dynamic contact angles: I. The effect of impressed motion[END_REF].

Porous medium 1.2.1 Definition of a porous medium

A porous medium (see Figure 1.9) is defined by three different properties [START_REF] Bear | Physical principles of water percolation and seepage[END_REF][START_REF] Bear | Dynamics of fluids in porous media[END_REF]. 1. It is a portion of space occupied by heterogeneous or multiphase matter comprising at least both one solid and one fluid phase. The fluid phase(s) may be gaseous and/or liquid. The solid phase is referred to as the solid matrix. The space within the porous medium domain that is not part of the solid matrix is called the void space (or pore space).

2. The solid phase should be distributed throughout the porous medium within the domain occupied by the porous medium. An essential characteristic of a porous medium is that the specific surface4 of the solid matrix is relatively high. Another basic feature of a porous medium is that the various openings comprising the void phaseare relatively narrow.

3. At least some of the pores comprising the void space should be interconnected.

The interconnected pore space is sometimes termed the effective pore space.

As far as flow through porous media is concerned, unconnected pores may be considered as part of the solid matrix. Several portions of the interconnected pore space may, in fact, also be ineffective as far as flow through the medium is concerned. For example, pores may be dead-end pores (or blind pores), i.e.

pores or channels with only a narrow single connection to the interconnected pore space, so that almost no flow can occur through them. Another way to define this porous medium characteristic is by requiring that any two points within the effective pore space may be connected by a curve that lies completely within it. Furthermore, except for special cases, any two such points may be connected by many curves with an arbitrary maximal distance between any two of them. For a finite porous medium domain, this maximal distance is obviously dictated by the domain's dimension.

Continuum approach to porous media

In section 1.1.2 it was precised that the concept of a continuum requires to define a (fluid) particle, or physical point, or representative volume over which an average is performed. This is also true when going from the microscopic to the macroscopic level.

One should therefore try and determine the size of the representative porous medium volume around a point M within it. From the discussion in the referred section one can state that this volume should be much smaller than the size of the entire flow domain. On the other hand, it has to be larger than the size of a single pore in order to include a sufficient number of pores to permit the meaningful statistical average required in the continuum concept.

When the medium is inhomogeneous, the upper limit of the length dimension of the representative volume should be a characteristic length that indicates the rate at which changes occur. The lower limit is related to the size of pores or grains.

It is now possible to define the volumetric porosity and the representative elementary volume (REV) associated with it. Porosity is, in a sense, the equivalent of density discussed in section 1.1.2. This might be more easily visualised if we defined the REV through the concept of the solid's bulk density (unit weight of solids).

Let M be a mathematical point inside the domain occupied by the porous medium.

Consider the volume δΩ(x, �) of characteristic length scale � much larger than a single pore or grain, for which M is the centroid. For this volume one can determine the ratio

φ x,� ≡ φ x,� (δΩ(x, �)) = δΩ v (x, �) δΩ(x, �) (1.23)
where δΩ v (x, �) is the volume of the void space within δΩ(x, �).

For large values of �, the ratio φ x,� may undergo gradual changes as � is reduced, especially for inhomogeneous porous media. Below a certain value of � depending on the distance of M from boundaries of inhomogeneity, these changes or fluctuations tend to decay, leaving only negligible amplitude fluctuations that are due to the random distribution of pore sizes in the neighbourhood of M . However, below a certain value ε one suddenly observes large fluctuations in the ratio φ x,� . This happens as � approaches the size of a single pore. Finally, as � → 0, converging on the mathematical point M , φ x,� will become either one or zero, depending on whether M is inside a pore or inside the solid matrix of the medium (see Figure 1.1 for an equivalent curve for density).

The medium's volumetric porosity φ(x) at point M is defined as the limit of the ratio φ x,� as

� → ε + φ(x) = lim �→ε + φ x,� (δΩ(x, �)) = lim �→ε + δΩ v (x, �) δΩ(x, �) (1.24)
The volume δΩ(x, ε) is then the representative elementary volume (REV) or the physical point of the porous medium at the mathematical point M .

By introducing both the concept of porosity and the definition of REV, the actual medium has been replaced by a fictitious continuum in which it is possible to assign values of any property (whether of the overall medium or of the fluids filling the pore space) to any mathematical point in it.

Porosity and effective porosity

Similar to section 1.2.2, the porosity of a macroscopic porous medium sample is defined as the ratio of volume of the void space (V pores ) to the bulk volume (V bulk )

φ ≡ V pores V bulk = V pores V pores + V matrix (1.25)
where V matrix is the volume of the solid matrix within V bulk . Usually, the porosity is expressed in percentage. Various investigators report that in fine-textured porous media (e.g. clays) there are indications of an immobile or highly viscous water layer (resulting from electrostatic forces [START_REF] Delville | Structure and properties of confined liquids: a molecular model of the clay-water interface[END_REF]) on the particle surfaces that makes the effective porosity (with respect to the flow through the porous medium) much smaller than the measured one.

On the basis of experimental evidence, they also conclude that the viscosity of the water increases as the particle surface approaches [START_REF] Philip | Physical chemistry of clay-water interaction[END_REF]. This phenomenon may lead to yet another definition of effective porosity. 

Q = kA µ Δp L (1.27)
where A and L are the specific area and the length of the porous medium respectively and µ the viscosity of the fluid. k is the permeability of the porous material.

This parameter describes the capacity for a porous material to let a fluid pass, without modifying its internal structure. This intrinsic property of the material does not depend on the nature of the flowing fluid but only on the geometry of the porous medium. k is usually called the absolute permeability of the material. There is no obvious link between porosity and permeability: most models highlight the importance of the pore size [START_REF] Marshall | A relation between permeability and size distribution of pores[END_REF][START_REF] Garcia-Bengochea | Pore distribution and permeability of silty clays[END_REF].

This macroscopic law (equation 1.27), valid for low-Reynolds-number flows, is commonly referred to as Darcy's law and concerns homogeneous and isotropic porous media, saturated in fluid.

When the medium deformation can be neglected and the flow in the pores obeys Stokes equation (1.15), Darcy's law can be written for single-phase flow of an incompressible Newtonian fluid with viscosity µ

u = - k µ ∇p (1.28)
where u is the Darcy velocity of the flow in the porous medium 5 . A mathematical derivation from the Navier-Stokes equation can be found in [START_REF] Whitaker | Advances in theory of fluid motion in porous media[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF].

Multiphase flows

In this section only two-phase flows are considered. The different equations may however easily be extended to more-than-two-phase flows. For all measurements, the water saturation was increasing, as it does in waterflooding. [START_REF] Owens | The effect of rock wettability on oil-water relative permeability relationships[END_REF] penetrates with a lower permeability than the absolute one. The relative permeabilities are functions of the volume fractions (also called saturations) occupied by each of the fluids in the porous material. Usually, they are determined from experimental data, with different values in the case of drainage when compared to those in the case of imbibition (see Figure 1.11). There exist several models which describe the evolution of the relative permeabilities with the saturation: Corey model in which the permeability varies as a power law of the saturation [START_REF] Corey | The interrelation between gas and oil relative permeabilities[END_REF], Buckley-Leverett model which tries to determine the relative permeabilities from experimental data [START_REF] Buckley | Mechanism of fluid displacement in sands[END_REF]. The relative permeabilities are also strongly dependent on wettability (see Figure 1.12).

u i = kk r,i µ i ∇p i , i ∈ {1, 2}. ( 1 
A derivation of Darcy's law in two-phase flow can be found in [START_REF] Whitaker | Flow in porous media II: The governing equations for immiscible, two-phase flow[END_REF].

The capacity of a fluid to move inside the porous medium is described by the mobility parameter Mob ≡ kk r µ . The mobility ratio is the ratio of the mobility of the displaced fluid divided by that of the invading fluid

M ≡ Mob displaced Mob invading = k r,displaced k r,invading µ invading µ displaced . (1.30)
This parameter is of usual use in the oil industry to evaluate the capacity of the invading solution to move the oil from the reservoir: the larger this ratio, the more favourable the injection. If one neglects the effect of relative permeabilities in equation (1.30), the mobility ratio reduces to M = µ invading µ displaced (1.31) i.e. the viscosity ratio. From now on, the mobility ratio and viscosity ratio will be considered as equal.

Hele-Shaw cell and two-phase flow in porous media

By analogy with Darcy's law, it is possible to study the flows in porous media in a Hele-Shaw cell [START_REF] Hele-Shaw | Flow of water[END_REF]. This cell is constituted with a linear canal between two glass plates separated by a short distance b when compared with the width w (Figure 1.13).

Although the 2D Hele-Shaw equations are well known [START_REF] Pijush | Fluid Mechanics[END_REF], the reader may find the key ideas in the context of a two-fluid flow in Section 1.2.6 (paragraph Proof of equation 1.48). In such a system, the average velocity u of the flow of some fluid of

viscosity µ is u = - b 2 12µ ∇p.
(1.32) effect of a finger which gets ahead of its neighbour. [START_REF] Saffman | The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid[END_REF] This equation is similar to Darcy's law for a permeability b 2 /12. This system is thus adequate to model a 2D flow in a porous medium. As the stability analysis of two-phase saturated flow in porous media is of much interest in petroleum engineering [START_REF] Rachford | Instability in water flooding oil from water-wet porous media containing connate water[END_REF][START_REF] Perkins | A study of immiscible fingering in linear models[END_REF][START_REF] Wooding | Multiphase fluid flow through porous media[END_REF], Saffman and Taylor studied the displacement in a Hele-Shaw cell of a more viscous fluid by a less viscous fluid [START_REF] Saffman | The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid[END_REF]. Indeed, in this case, the interface between both fluids becomes unstable and starts to generate the so-called Saffman-Taylor fingering (Figure 1.14). For two specific fluids and a specific geometry, the width of these fingerings depends on the velocity. This width is the result of the competition between the viscous forces (which tend to thin down the fingering) and the capillary forces (the reverse): for increasing velocities, i.e. when the effect of the viscous forces is the most important one, the width of the fingering diminishes. At high velocity, the resulting fingers will tend to fill half of the cell's width [START_REF] Davis | Perspectives in fluid dynamics: a collective introduction to current research[END_REF].

Other approaches to describe flow in porous media

So far, there exists no analytical solution, based on fluid mechanics equations, that can describe flows in porous media thoroughly at the pore scale [START_REF] Sochi | Non-Newtonian flow in porous media[END_REF]. Four different kinds of approach are used to study these flows [START_REF] Duboin | Écoulements de fluides complexes en présence d'interfaces dans des systèmes microfluidiques[END_REF]:

• a continuous approach in which the porous medium is caracterised by macroscopic parameters (e.g. the permeability) [START_REF] Todd | The development, testing, and application of a numerical simulator for predicting miscible flood performance[END_REF][START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF][START_REF] Riaz | Linear stability analysis of immiscible twophase flow in porous media with capillary dispersion and density variation[END_REF][START_REF] Riaz | Numerical simulation of immiscible twophase flow in porous media[END_REF][START_REF] Riaz | Stability of two-phase vertical flow in homogeneous porous media[END_REF][START_REF] Assouline | Evaporation from a shallow water table: Diurnal dynamics of water and heat at the surface of drying sand[END_REF][START_REF] Ciocca | Effects of the water retention curve on evaporation from arid soils[END_REF].

These parameters are strongly dependent on the microscopic structure of the medium and reflect its average properties. Darcy's law is an example [START_REF] Klinkenberg | The permeability of porous media to liquids and gases. Drilling and production practice[END_REF][START_REF] Gray | On the general equations for flow in porous media and their reduction to Darcy's Law[END_REF]. • the capillary bundle model where the volume that can be reached by the flow is assimilated to a set of capillaries (Figure 1.15) [START_REF] Dahle | Bundle-oftubes model for calculating dynamic effects in the capillary-pressure-saturation relationship[END_REF][START_REF] Watanabe | Capillary bundle model of hydraulic conductivity for frozen soil[END_REF]. It is then possible to determine the permeability of the medium by both applying Darcy's law and considering that the flow in the capillaries is of the Poiseuille type.

• an approach based on numerical methods (e.g. finite elements) to describe the porous medium at the pore scale and consider the physical phenomena at this scale, in order to solve the flow equations [START_REF] Hilpert | Pore-morphology-based simulation of drainage in totally wetting porous media[END_REF]129,[START_REF] Koroteev | Direct Hydrodynamic Simulation of Multiphase Flow in Porous Rock[END_REF]. Lattice-Boltzmann (LB, see Figure 1.16(a)) [START_REF] Daniel | Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics[END_REF][START_REF] Sergeevnq Torskaya | Pore-Level Analysis of the Relationship Between Porosity Irreducible Water Saturation and Permeability of Clastic Rocks[END_REF][START_REF] Ramstad | Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method[END_REF][START_REF] Ahrenholz | Pore-scale determination of parameters for macroscale modeling of evaporation processes in porous media[END_REF], Smoothed Particle Hydrodynamics (SPH, see Figure 1.16(b)) [START_REF] Uditha | Porescale study of capillary trapping mechanism during CO 2 injection in geological formations[END_REF], Modified Moving Particle Semi-implicit [START_REF] Ovaysi | Direct pore-level modeling of incompressible fluid flow in porous media[END_REF][START_REF] Ovaysi | Multi-GPU acceleration of direct pore-scale modeling of fluid flow in natural porous media[END_REF][START_REF] Ovaysi | Pore-space alteration induced by brine acidification in subsurface geologic formations[END_REF] and Level-Set (LS, see Figure 1.16(c)) [START_REF] Prodanović | A level set method for determining critical curvatures for drainage and imbibition[END_REF] methods are several examples.

• an approach by Pore-scale Network Modelling (PNM) [START_REF] Man | Pore Network Modelling of Electrical Resistivity and Capillary Pressure Characteristics[END_REF][START_REF] Blunt | Flow in porous media -pore-network models and multiphase flow[END_REF][START_REF] Man | Network modelling of strong and intermediate wettability on electrical resistivity and capillary pressure[END_REF][START_REF] Prat | Recent advances in pore-scale models for drying of porous media[END_REF][START_REF] Nordhaug | A pore network model for calculation of interfacial velocities[END_REF][START_REF] Bekri | Pore network models to calculate transport and electrical properties of single or dual-porosity rocks[END_REF][START_REF] Per | Predictive pore-scale modeling of single and multiphase flow[END_REF][START_REF] Marc | On the influence of pore shape, contact angle and film flows on drying of capillary porous media[END_REF][START_REF] Sochi | Pore-scale network modeling of Ellis and Herschel-Bulkley fluids[END_REF][START_REF] Veran-Tissoires | Discrete Salt Crystallization at the Surface of a Porous Medium[END_REF]. The pore volume is described with a network of pores and throats with ideal geometry and specific chosen laws for the flow (Fig- ure 1.17). The next step to describe the flow is to solve the system of coupled equations for the set of all the throats. This approach is a compromise between the continuous and numerical approaches: as it combines the appropriate pore-scale physical phenomena and a simple description of the pore volume, this approach enables the development of models that can predict the average flow at the macroscopic scale [START_REF] Blunt | Detailed physics, predictive capabilities and macroscopic consequences for porenetwork models of multiphase flow[END_REF][START_REF] Lopez | Predictive network modeling of single-phase non-Newtonian flow in porous media[END_REF]. The first step is to model the flow in a single capillary, then by considering a network of nodes connected by one or more Figure 1.17: A network of pores connected by throats. This network is topologically equivalent to the void space of a Berea sandstone [START_REF] Øren | Extending predictive capabilities to network models[END_REF][START_REF] Øren | Process based reconstruction of sandstones and prediction of transport properties[END_REF]. The pores and throats are assigned volumes, conductances, inscribed radii and shapes that mimic essential features of the reconstructed pore space. [START_REF] Piri | Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. i. model description[END_REF] throats, one can establish a system of equations that model the flow in the set of throats. Finally, after having added an equation of mass conservation, this set of coupled equations is solved to determine the pressure field of the network [START_REF] Perrin | Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels[END_REF].

Tortuosity

In porous materials, tortuosity characterises the sinuosity and interconnectedness of pore space. This concept common to many models aims at relating macroscopic transport properties of porous materials to their microstructure [START_REF] Pierre | Porous media: geometry and transports[END_REF]. It is used for phenomena as diverse as molecular diffusion, fluid permeation, electrical or thermal conduction, and sound propagation [START_REF] Clennell | Tortuosity: a guide through the maze[END_REF]. In practice, tortuosity is often an empirical factor that is used to match a posteriori experimental data to a specific model. When used for making predictions, crude approximations are generally used. For instance, in the context of molecular diffusion the tortuosity is often equated to the inverse of the porosity [START_REF] Satterfield | Mass Transfer in Heterogeneous Catalysis[END_REF]. Therefore, although the qualitative meaning of tortuosity is clear, Carman's definition of hydraulic tortuosity differs from geometrical tortuosity in that it is the effective path length taken by the fluid (l eh ), rather than the shortest possible path (l eg )which is considered. Fluid passes along a smoothed route through porous media so that τ h is always greater than τ g . [START_REF] Clennell | Tortuosity: a guide through the maze[END_REF] it is a loosely defined quantity. The exact geometrical meaning of tortuosity in the context of various transport phenomena may be differently dependent, say, on pore size or the presence of bottlenecks [START_REF] Gommes | Practical methods for measuring the tortuosity of porous materials from binary or gray-tone tomographic reconstructions[END_REF].

Geometrical tortuosity

Geometrical tortuosity can be defined as the ratio of the shortest path of connected points entirely embedded in the fluid medium (i.e., continuously through the pores, see Figure 1.18(a)) that joins any two points defined by the vectors r 1 and r 2 (l min ), with the straight line distance between them. Geometrical tortuosity, τ g , can thus be expressed mathematically as [START_REF] Pierre | Porous media: geometry and transports[END_REF] τ

g (r 1 , r 2 ) = l min (r 1 , r 2 ) |r 1 -r 2 | , r 2 ∈ f (r 1 ), (1.33) 
where the pore region, occupied by the fluid, is denoted by f .

A more general definition of geometrical tortuosity can be found in the work of Russian engineers [START_REF] Golin | Pore tortuosity estimates in porous media[END_REF]. The tortuosity coefficient is defined as the "averaged ratio of pore length to the projection of the pores in the direction of flow". This at once accepts that geometrical tortuosity is an averaged parameter, and that it is a structural characteristic of the medium, independent of any particular transport process.

The concept of a purely geometrical tortuosity factor has not found broad favour in the consideration of permeability, conductivity or diffusivity. However, some workers [START_REF] Pil | Calculation of the tortuosity factor in single-phase transport through a structured medium[END_REF] have used a random-walk model to estimate tortuosity, and this can be considered to be a purely geometrical measure (Figure 1.19). where Q is the volumetric flow rate and Δp is the macroscopic pressure difference between the two ends of the tube of length l. As the tube dimension decreases, the cross-sectional area decreases as the square of the radius, and the relative effect of viscous drag at the channel walls also increases in the same proportion. Thus overall fluid flow rate scales as the channel radius raised to the fourth power. In a porous medium consisting of an aggregate of equal sized grains, one could reason that the flow channels would be represented by a cluster of identical capillaries with a particular effective radius r eff . The effect of reducing the grain size by a factor of two would be to reduce the flow velocity through each channel by a factor of 16. However, the number of flow channels would be increased by a factor of four, so the overall rate of flow, and so permeability, would scale with the square of the effective radius:

Q ∝ r 2 eff and k ∝ r 2 eff (1.35)
Though this reasoning led to many empirical models of permeability prediction for granular materials based on identification of the characteristic pore dimension, it was soon realised that knowledge of the grain size alone is not sufficient to predict the characteristic radius, and so permeability of the material. Indeed the nature of the packing, which dictates the size and shape of the pores, also exerts a strong control.

Kozeny's equation In granular materials (such as sands), the pore surface area can be calculated from the size and shape of the constituent grains. On this basis, Kozeny introduced a semi-empirical equation to estimate the permeability of granular aggregates [START_REF] Kozeny | Ueber kapillare leitung des wassers im boden[END_REF] 

k = φr 2 h C k . (1.36)
C k is the so-called "Kozeny constant" and r h is the hydraulic radius, defined as r h = cross-sectional area normal to flow "wet perimeter" of the flow channels .

(1.37)

It corresponds to the radius of the ideal circular capillary that would have the same hydraulic conductance as the granular material [START_REF] Van Brakel | Pore space models for transport phenomena in porous media review and evaluation with special emphasis on capillary liquid transport[END_REF].

Kozeny assumed the pore space was equivalent to a bundle of parallel capillaries with a common hydraulic radius and cross-sectional shape described by r h /C k , then introduced the concept that the real flow path could be tortuous, with an effective hydraulic path length l eh (see Figure 1.18(b)). The permeability is then reduced by a factor of the sinuous length l eh divided by the straight-line length in the direction of flow l min . The hydraulic tortuosity of Kozeny is thus [START_REF] Kozeny | Ueber kapillare leitung des wassers im boden[END_REF] τ hK = l eh l min .

(1.38)

His equation for permeability then becomes .39) In this way, the Kozeny constant is subdivided into a shape factor β with a conservative value for a particular type of granular material, and a tortuosity factor τ hK which represents the sinuous nature of the pore space. The shape factors for spheres and other regular particles can be calculated from estimates of their coefficients of hydrodynamic drag in Stokes flow [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF]. This intrinsic phase average velocity is the average velocity at which a fluid particle is transported through the medium by steady laminar Newtonian viscous flow and, like u, is a vector defined with reference to the macroscopic flow direction. Equation (1.40) is called Dupuit's relation [START_REF] Carman | Flow of gases through porous media[END_REF].

k = φr 2 h βτ hK . ( 1 
Carman pointed out that when introducing the tortuosity factor, Dupuit's relation had to be modified [START_REF] Carman | Fluid flow through granular beds[END_REF]. At constant porosity, the interstitial velocity must indeed increase in order to ensure the external Darcy velocity remains unchanged while the fluid traverses a longer path through the medium (see through each tortuous capillary. Therefore, the flow rate is retarded in a bent capillary by an overall factor which is proportional to the tortuosity squared [START_REF] Epstein | On tortuosity and the tortuosity factor in flow and diffusion through porous media[END_REF].

The Kozeny-Carman equation Carman modified Kozeny's equation to include a tortuosity factor that is the square of the ratio of the effective hydraulic path length l eh for fluid flow through the "equivalent hydraulic channels" in a medium, to the straight-line distance through the medium in the direction of macroscopic flow [START_REF] Carman | Fluid flow through granular beds[END_REF].

This measure has become known as the "channel equivalent" hydraulic tortuosity factor [START_REF] Francis | Porous media: fluid transport and pore structure[END_REF], here denoted T hC

T hC = � l l eh � 2 = τ 2 hK . (1.43) 
A more mundane explanation of the length squared relationship is given by Dullien [START_REF] Francis | Porous media: fluid transport and pore structure[END_REF], who explains that if a bundle of capillaries are increased in length while the volume they occupy remains constant (porosity is conserved) obviously the number of flow channels must be reduced. This reduces to an argument of whether or not the flow paths fill space. Carman himself admitted that this exponent of two was not rigorously derived but that experimental results suggested a value close to two for granular media and well sorted porous rocks.

Providing that a granular aggregate is not crushed or cemented, and that the grains do not interpenetrate or deform, the surface area is independent of the porosity, or tightness of packing of the material. However, the surface area per unit volume (known as the "specific surface", see above) increases as the packing density increases. Thus, with knowledge of specific surface area S 0 and porosity, the size of the "equivalent hydraulic channels" can be estimated

r h = φ S 0 . (1.44)
Kozeny's equation for permeability becomes

k = φ 3 βτ 2 hK (1 -φ) 2 S 2 0 (1.45)
which is known as the Kozeny-Carman equation. Though this equation is only semiempirical, it has been found to be nearly exact for random packs of monodisperse spheres when comparing results of experiments with numerical simulations [START_REF] Cancelliere | The permeability of a random medium: Comparison of simulation with theory[END_REF]. The Kozeny constant is about 4.8 in this case, while for reasonably well sorted and rounded sands, a value of about 5 is generally accepted. Estimated shape factors range in value from about 2 to 3 for typical granular materials [START_REF] Van Brakel | Pore space models for transport phenomena in porous media review and evaluation with special emphasis on capillary liquid transport[END_REF][START_REF] Carman | Flow of gases through porous media[END_REF]. The value of Kozeny hydraulic tortuosity τ hK therefore ranges from about √ 2 to 2 in unconsolidated granular aggregates. In consolidated rocks and soils the value of τ hK ranges up to about five [START_REF] Francis | Porous media: fluid transport and pore structure[END_REF]. An upper limit on tortuosity in uncemented granular media of about 10 was suggested by Witt and Brauns [START_REF] Witt | Permeability-Anisotropy Due to Particle Shape[END_REF], even when the grains are platy rather than rounded.

How is hydraulic tortuosity related to geometrical tortuosity?

In general, hydraulic tortuosity and geometrical tortuosity are different. This is due to the fact that the paths taken by fluid as it flows through the porous medium are not straight lines, or close tangents to the rock grains, but rather are smooth curves tending to follow the axes of the flow channels (Figure 1.18). Also, as a result of viscous drag, fluid flow is more retarded at the channel walls than along channel axes, so all paths are not equally favoured. This matter is discussed in a mathematical context by Coussy [START_REF] Coussy | Mechanics of porous continua[END_REF].

Despite these obvious differences, some workers have attempted to estimate permeability using geometrical tortuosities [START_REF] Arch | Anisotropic permeability and tortuosity in deformed wet sediments[END_REF][START_REF] Shepard | Using a fractal model to compute the hydraulic conductivity function[END_REF]. Both of these studies employed a "ray-tracing" technique which tracks the shortest path, skirting obstacles, from one face of the material to the other. The advantage of such methods is their simplicity, but the results obtained cannot be used interchangeably in a formulation such as the Kozeny-Carman equation.

What about surface tension?

Case of Hele-Shaw cells In the case of simultaneous flow of two phases in Hele-Shaw cells, boundary conditions must be given at the interface which hold for the depth-averaged fields. It is common to write these as

[[n • u]] = 0 (1.46a) [[p]] = 2σ b cos θ + σ R (1.46b)
Here [[ ]] denotes a jump, σ is the surface tension, θ the apparent contact angle and R the principal radius of curvature of the projection onto the plane, of the tip of the meniscus separating the two phases. Park and Homsy [START_REF] Park | Two-phase displacement in Hele Shaw cells: theory[END_REF] recall that though equation (1.46a) is obvious, the same cannot be stated for equation (1.46b) except at equilibrium under conditions of no flow. It seems that equation (1.46b) was at first adopted with reservation [START_REF] Saffman | The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid[END_REF][START_REF] Chuoke | The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media[END_REF], as a "simplest assumption". Later works have cast serious doubt on the validity of this boundary condition [START_REF] Mclean | The effect of surface tension on the shape of fingers in a Hele Shaw cell[END_REF][START_REF] Saffman | Fingering in porous media[END_REF] and other formulations have been suggested [START_REF] Park | Two-phase displacement in Hele Shaw cells: theory[END_REF] bΔp

2σ = 1 + 3.80 Ca 2/3 - 1 16 πf �� � 2 + O(Ca, � 2 Ca 2/3 ) (1.47)
where f describes the interface (x = f (y) see Figure 1.13), � is the ratio of gap width to transverse characteristic length (� = b/λ f with λ f fingering wavelength) and Ca the capillary number associated with the receding fluid.

From now on, the following approximations are considered: Ca ∼ 0 and � ∼ 0.

Therefore the surface tension term is added (whenever needed) in equation (1.32) as thus u = b 2 12µ (-∇p + σκ∇c).

(1.48)

Proof of equation 1.48

This paragraph is extracted from [START_REF] Afkhami | A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations[END_REF] with slight modifications.

Let us consider a Hele

-Shaw cell Ω of size l × h × b (Ω = {(x, y, z) ∈ R 3 : 0 � x � l, |y| � w 2 , 0 � z � b}).
The governing equations prior to a Hele-Shaw approximation are the 3D Stokes equations and incompressibility -∇p(x, y, z, t) + µ∇ 2 u(x, y, z, t) + f σ = 0, (1.49)

∇ • u(x, y, z, t) = 0, (1.50) 
where f σ denotes the body force with the continuum surface tension formulation [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF]. The fluid viscosity of fluid

i is µ = µ i , i = 1, 2. Fluid 1 occupies Ω 1 = {(x, y, z) ∈ R 3 : 0 < h(y, t) � x � l, |y| � w 2 , 0 � z � b}. Fluid 2 occupies Ω 2 = {(x, y, z) ∈ R 3 : 0 � x � h(y, t) < l, |y| � w 2 , 0 � z � b}.
1. Similar to section 1.1.3.3, we introduce a marker function6 c(x, y, z, t) equal to 0 in fluid 1 and 1 in fluid 2. We suppose that the pressure in fluid 2 is higher than in fluid 2. In the momentum equation for the x-y plane, ρ Du Dt is assumed to be negligible compared with ∇p and ∇ 2 u. The assumption is that b is small, so that

∇ 2 ∼ ∂ 2 ∂z 2 = O( 1 b 2 ). This means p = O( 1 b 2 )
. Thus ρ Du Dt in the x-y plane is assumed to be smaller order than O( 1 b 2 ).

3. The vertical depth between the walls, b, is assumed small compared with the length l of the walls in the x-direction and the width w in the y-direction: b w � 1, b l � 1. The components of the velocity have magnitudes u = O(1), v = O(1), w = O(b). We define an in-place depth-averaged velocity field U = (U (x, y, t), V (x, y, t))

U(x, y, t) = 1 b � b 0 (u(x, y, z, t), v(x, y, z, t)) dz. (1.53)
4. The out-of-plane interface shape is assumed to be semi-circular, with contact angle 180°at the walls, and radius b/2. Thus, the out-of-plane curvature is 2/b and contributes -σ 2 b ∇c to the surface tension force. From here, we replace κ in equation (1.51) by 2 b + κ(x, y, t) The first integral becomes b ∂ ∂t c(x, y, t). The last integral vanishes because c is bounded and w(x, y, 0, t) = w(x, y, b, t) = 0 due to zero penetration at the walls. The interface occupies approximately a volume O(b 2 ). The projection in the x-y plane has area O(b), which shrinks to 0 as b → 0. We replace � b 0 [uc(x, y, z, t)] dz with c(x, y, t)

f σ = σ � 2 b + κ(x,
� � b 0 u dz � ,
and we define an error E(x, y, t) in L ∞ by

E(x, y, t) = 1 b � � � � b 0 u (c(x, y, z, t) -c(x, y, t)) dz � � �. (1.57) 
We see in equation (1.56) that cc is bounded in the interfacial region, and vanishes away from it. The L 1 norm of this error is � Ω E(x, y, t) dx dy ∼ b, which goes to 0 as b → 0. Therefore, we can approximate equation (1.55) by ∂ ∂t c(x, y, t) + and w = 0. The depth-averaged velocities are

1 b ∂ ∂x � c(x, y, t) � b 0 u dz � + 1 b ∂ ∂y � c(x, y, t) � b 0 v dz � = 0 in the L 1 norm.
U (x, y, t) = - b 2 12µ � ∂p * (x, y, t) ∂x + σκ(x, y, t) ∂c ∂x � , (1.61a) 
V (x, y, t) = - b 2 12µ � ∂p * (x, y, t) ∂y + σκ(x, y, t) ∂c ∂y � . (1.61b) 
In vector form, the Hele-Shaw equations are .62) 7. In the interface region, the flow does not satisfy the assumption that ∇ plane p * + σκ∇ plane c is constant with respect to z. However, even though equation (1.62) does not hold pointwise near the interface, the Hele-Shaw limit is correctly obtained in the sense of distributions. This implicitly enforces the normal stress balance at the interface, which is the continuity of

U = b 2 12µ (-∇p * + f σ ). ( 1 
p * + σκc.
If this is violated, then the velocity normal to the interface contains a Delta function, which contradicts incompressibility.

Case of porous media In the case of Darcy modelling of simultaneous flow of two phases in a porous medium, boundary conditions at the interface cannot be written as for flow in a Hele-Shaw cell. Indeed, though equation (1.46a) is obviously still true, the same cannot be said of equation (1.47) and a fortiori for equation (1.46b). The interface between two fluids flowing in a porous space is defined by the geometry of the porous medium. Consequently, the excess of pressure of one fluid over the other is imposed by the geometry at the pore size and not by the overall macroscopic radius of curvature

[[p]] = 2σ R p � = 2σ R c (1.63)
where R p is the pore radius and R c the macroscopic radius of curvature (R p � R c ).

To consider surface tension, equation (1.32) should be written as

u = - k µ (∇p + 2σ/R p ∇c(x, y, z, t)) (1.64)
Defining p * = p+2σ/R p c(x, y, z, t) in equation (1.64) allows to use only equation (1.32) with no reference to surface tension [START_REF] Afkhami | A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations[END_REF].

Phenomenology of flows in porous media

Using basic theory of flows in porous media, Roland Lenormand studied Newtonian two-phase flows in networks with both an organic and an aqueous phase [START_REF] Lenormand | Liquids in porous media[END_REF]. Considering a system previously filled with one of the phases, he injected the second (non-miscible) phase in the system either at constant flow rate or at constant pressure gradient between the entry and the exit faces. He then observed the displacement of both phases during the experiment and precisely described the behaviour of the oil/water interface at pore scale in order to link it to the aspect of the interface at the network scale [START_REF] Lenormand | Mechanisms of the displacement of one fluid by another in a network of capillary ducts[END_REF]. Besides, he hightlighted the influence of several parameters such as the injection velocity of the fluids, or their viscosities, upon the behaviour of both phases [START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF]. Finally, two different cases of displacement were analysed:

1. drainage, i.e. the injection of a non-wetting fluid to displace a wetting fluid previously filling the system [START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF].

2. imbibition, i.e. the injection of a wetting fluid to displace a non-wetting fluid previously filling the system [START_REF] Lenormand | Role of roughness and edges during imbibition in square capillaries[END_REF].

In order to realise this study, he used a 2D network of pores of width L connected by throats with 6 possible different widths, randomly distributed. The distance between two pores was constant while the size of the pores was randomly varying. The system had a uniform depth of z = 1 mm and a tranverse area Σ = Lz. Two parameters are identified to establish the phase diagrams: the capillary number of the injected fluid Ca = In the case of drainage, in a simple straight throat of width x and height y, the meniscus can only move in a piston-like mode (left part of Figure 1.20(a)): to penetrate a wetting-fluid-filled throat, the pressure inside the non-wetting fluid has to be higher than a threshold pressure P t defined as

P t = 2σ � 1 x + 1 y � . (1.65) 
Then, when the non-wetting fluid reaches a pore, i.e. the intersection of at least three different throats, it fills it right away and invades the adjacent throats if the pressure is high enough.

In the case of imbibition, the meniscus can also move piston-like in straight throats geometries. [START_REF] Duboin | Écoulements de fluides complexes en présence d'interfaces dans des systèmes microfluidiques[END_REF] the radius of curvature of the meniscus decreases and the pressure difference asociated with the interface increases, resulting in the flow of the wetting fluid and the movement of the meniscus inside the intersection. Position 2 is reached when the pressure in the non-wetting fluid exceeds the threshold pressure P I 1 (case of four throats with the same width x)

P I 1 = σ � √ 2 x + 2 y � . (1.66)
In mode I 2 , the wetting fluid arrives at the intersection by two adjacent throats and tends to fill the last two throats. It occurs when the meniscus reaches point A (see Figure 1.20(e)), when the pressure in the non-wetting fluid exceeds the threshold pressure P I 2 (case of four throats with the same width x)

P I 2 = 2σ � 0.15 x + 1 y � . (1.67) 
Finally, the meniscus can also move in a snap-off mode 7 . In Figure 1.20(c), the meniscus has not yet moved into the throat, but the presence of wetting fluid in the corners implies that the interface moves alongside the walls of the throat. The pressure difference between the two fluids is then a function of the radius of curvature in the corners. This configuration is stable as long as the pressure in the wetting fluid induces a radius of curvature in the corners lower than L/2 with L = min(x, y). Then the non-wetting fluid no longer touches the walls: the configuration becomes unstable and the wetting fluid fills the throat when the pressure is higher than a threshold pressure

P S = 2 σ L . (1.68)
The expressions of the different threshold pressures are presented assuming a spreading condition i.e. a zero contact angle.

7 Experiments under quasistatic conditions show that the aspect ratio (pore-to-throat effective diameter ratio) necessary for snap-off is r p /r t � 1.5 when advancing contact angles (θ A ) are equal to zero and increases only slightly, to r p /r t � 1.75, when θ A is equal to 55°. Above 70°(approximately), snap-off in throats does not occur in systems with pressure equilibrium between pores and throats [START_REF] Yu | The influence of wettability and critical pore-throat size ratio on snap-off[END_REF]. 

Phase diagram in the case of drainage

In the case of drainage, as the injected fluid is non-wetting, it can move only in the bulk of the throats. The meniscus only moves piston-like. Capillary forces prevent the spontaneous entry of the injected fluid in the network: the only way to force its way inside a throat is to impose a pressure difference between the injected and the displaced fluids higher than the threshold pressure P P of this throat.

By varying both the injection flow rate of the non-wetting fluid and the viscosity ratio, it was possible to identify three different regimes, based on the shape of the front at the network scale [START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF], and to establish the phase diagram presented in According to Peters & Flock [START_REF] Ekwere | The onset of instability during twophase immiscible displacement in porous media[END_REF], when considering a porous medium where the endpoint permeabilities8 are approximately equal to the absolute permeability, the dimensionless numbers

I sc = (µ oil -µ water )U D 2 C � σk
for cylindrical geometry (D is the core diameter, U the velocity of the interface and C � is a wettability constant such that C = 2π √ 3C � is Chuoke's constant [START_REF] Chuoke | The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media[END_REF]) and

I sr = (µ oil -µ water )U L 2 x L 2 y C � σk(L 2
x + L 2 y ) for rectangular geometry (L x and L y are the thickness and width of the domain respectively) characterise the onset of instability. For I sc < 13.56 (or I sr < π 2 ) the displacement is stable, whereas it is unstable for higher values of the dimensionless numbers.

A critical velocity of the interface has also been derived in references [START_REF] Hill | Channeling in packed columns[END_REF][START_REF] Dietz | A Theoretical Approach to the Problem of Encroaching and By-Passing Edge Water[END_REF][START_REF] Van Der Poel | Attic Oil[END_REF].

• viscous fingering [START_REF] Engelberts | Laboratory Experiments on the Displacement of Oil by Water from Packs of Granular Material[END_REF]: the boundary is characterised by the presence of several fingers that gain ground in the network. Then one specific finger grows faster than the others and inhibit their development. These fingers are all oriented towards the exit of the network without the formation of any loop (Fig- Besides, it is possible to represent those three regimes by the statistical models indicated in the phase diagrams, which allow to obtain by numerical simulation similar fronts to those obtained by experiments [START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF][START_REF] Lenormand | Pattern growth and fluid displacements through porous media[END_REF].

The capillary fingering regime corresponds to the invasion-percolation model [START_REF] Wilkinson | Invasion percolation: a new form of percolation theory[END_REF][START_REF] Lenormand | Invasion percolation in an etched network: Measurement of a fractal dimension[END_REF]. For a given pressure in the non-wetting fluid, the fluid can only penetrate the so-called active throats, whose size is higher than a critical value r 0 . Given the pore size distribution, it is then possible to determine the proportion of active throats: the fluid invades all active throats connected to the entry face. It is realised in simulations by attributing a fixed probability to each throat depending on its size: at each step, the fluid will enter the throat with maximum probability and so on till it reaches the exit of the network. For more on invasion-percolation model, see Appendix A.

In the case of displacements dominated by viscosity (stable or unstable), the pressure gradient between the entry and the exit of the network governs the flow. Thus, a local model based on the displacement of the meniscus at the microscopic scale (i.e. similar to the invasion-percolation model, to some extent) cannot be realistic. It is usual to use a continuous model to calculate the pressure field, and to couple it to a discrete displacement of the meniscus allowing to take into account the granular structure of the porous medium. Two specific models are of special interest: the Diffusion-Limited Aggregation model (DLA) [START_REF] Witten | Diffusion-limited aggregation[END_REF][START_REF] Knut | Viscous Fingering Fractals in Porous Media[END_REF] for the case M → 0 to describe the unstable viscous regime, and the anti-DLA model [START_REF] Paterson | Diffusion-Limited Aggregation and Two-Fluid Displacements in Porous Media[END_REF][START_REF] Meakin | The formation of surfaces by diffusion limited annihilation[END_REF] for the case M → +∞ to describe the stable viscous regime.

• The DLA model can be illustrated by the following principle: one begins with a particle or a line in a network and launches another particle from a distant point of the network. This particle can move randomly and stops when it meets the first particle/line. Several particles are launched as presented above: the diffusion processes that govern the path followed by the particles produce a [START_REF] Sharon | Coarsening of Fractal Viscous Fingering Patterns[END_REF] inviscid fluid plays the role of the DLA cluster in section B.2, φ is the pressure 9 , and the Laplace equation is the direct result of incompressibility and Darcy's law [START_REF] Paterson | Diffusion-Limited Aggregation and Two-Fluid Displacements in Porous Media[END_REF].

This resemblance is more than a mere coincidence. Indeed, the measured fractal dimension (see Appendix C) of patterns like the one in Figure 1.23 is close to 1.71, as for DLA. On this basis there are several claims in the literature that the large-scale structure of the patterns is identical [START_REF] Paterson | Diffusion-Limited Aggregation and Two-Fluid Displacements in Porous Media[END_REF][START_REF] Sander | Diffusion-limited aggregation as a deterministic growth process[END_REF][START_REF] Sander | Fractal growth processes[END_REF]. Many authors have disagreed and given ingenious arguments about how to verify this.

For example, some have claimed that viscous patterns become two-dimensional at large scales [START_REF] Barra | Laplacian Growth and Diffusion Limited Aggregation: Different Universality Classes[END_REF] or that viscous fingering patterns are most like Dielectric Breakdown Model (DBM, see Appendix B) patterns with η ≈ 1.2 [START_REF] Ball | Theory of Diffusion Controlled Growth[END_REF]. Most recently a measurement of the growth probability of a large viscous fingering pattern was found to agree with that of DLA [START_REF] Mathiesen | The universality class of diffusion-limited aggregation and viscous fingering[END_REF]. On this basis, the authors claim that DLA and viscous fingering are in the same universality class.

• The anti-DLA model can be thus illustrated: a particle (representing the injected fluid) is launched in the vicinity of a compact aggregate (displaced fluid). This particle moves randomly and eventually reaches a site occupied by the aggregate.

One then removes both the particle and the site and launches the next particle, and so on. 9 Obviously, simulating DLA does not require the calculation of the pressure field. pores which promote the filling of the pores and consequently of the adjacent throats.

[181]

Phase diagram in the imbibition case

In the case of imbibition, the injected fluid is a wetting one and can move in three different modes: in the bulk of the throats, at the walls of the throats through corner films, or in the case of really low capillary numbers (i.e. log 10 Ca � -7) along the roughness of the walls of the system. Furthermore, the meniscus can move in four different ways (see section 1.3.1): the selection of a specific mode depends on the geometry of the network (in particular the aspect ratio of pore size versus throat size)

and the possibility of creating films alongside the walls [START_REF] Lenormand | Role of roughness and edges during imbibition in square capillaries[END_REF][START_REF] Wardlaw | Fluid topology, pore size and aspect ratio during imbibition[END_REF].

The porous medium is modelised as a network of throats with several different and randomly distributed sizes. For each size, it is possible to determine the threshold pressure associated to the four different displacement modes of the meniscus: P P , P I 1 , P I 2 and P S [START_REF] Lenormand | Mechanisms of the displacement of one fluid by another in a network of capillary ducts[END_REF][START_REF] Lenormand | Role of roughness and edges during imbibition in square capillaries[END_REF]. During imbibition, as the pressure difference between wetting and non-wetting fluids decreases, the dominating process in a throat is the one with the highest threshold pressure. However, due to the diverse throat sizes, the four development modes can co-exist in the network. The front shape at network scale will depend on the order followed by these modes.

Two extreme cases can receive further attention:

• P S > P I 1 , P I 2 for each throat size: this is the large-pore configuration presented in Figure 1.24(a). The invasion of the network is realised by filling the throats and trapping non-wetting fluid in the pores.

• P S < P I 1 , P I 2 for each throat size: this is the small-pore configuration presented in Figure 1.24(b). The network is invaded by filling the pores.

For these two cases, two phase diagrams are realised with similar structure but different regimes (Figure 1.25) [START_REF] Lenormand | Liquids in porous media[END_REF][START_REF] Lenormand | Role of roughness and edges during imbibition in square capillaries[END_REF]. In both cases, the diagram is divided in • a high-capillary-number domain (log 10 Ca > -4) i.e. with viscous-force-dominated flow: the fluid flows in the bulk of the throats and one can distinguish the same stable and unstable domains as in the case of drainage.

• a continuous capillary domain, with moderate capillary numbers (-6 � log 10 Ca � -4) associated with a flow of the wetting fluid via corner films.

• a discontinuous capillary domain, with really low capillary numbers (log 10 Ca � -7), associated with a flow of the wetting fluid alongside the wall roughness. When the wetting fluid flows in corner films in the large-pore configuration, the pressure decreases in the pores and the throats while the corners are being filled. When the threshold pressure P S is reached, the smallest throat connected to the entry face of the network will be filled resulting in a sudden pressure increase. The fluid will thus progress in the network by jumps, filling the smallest throats first and trapping of pore geometries and the three types of flow circulation. [START_REF] Lenormand | Role of roughness and edges during imbibition in square capillaries[END_REF] non-wetting fluid in the pores (left of Figure 1.26(a)). In the small-pore configuration, the meniscus mainly moves with modes I 1 and I 2 , filling at first the pores, and then the adjacent throats. The network is filled line by line as a uniform front (right of When the wetting fluid flows alongside the surface roughness, the filling mode is identical to above, but can be initiated in throats that are not connected to the entry face of the network. In the case of large pores, the first filled throat can be any throat of the network, and the number of filled throats increases with time. Links of the network that was previously entirely filled with non-wetting fluid are thus erased, until the network seems discontinuous (left of The different shapes at network scale, for the three types of pore geometries and the three types of flow circulation are summarised in Table 1.1. 

Deformable media

In a deformable medium such as a granular bed, fluid flow can displace the particles and thus affect the pore geometry, which in turn can affect the flow.

Indeed, in Liu and Nagel's generalised description of jamming (Figure 1.27), an arrested assembly of grains can be fluidised either through dilation or by increasing the applied stress [START_REF] Liu | Nonlinear dynamics: Jamming is not just cool any more[END_REF][START_REF] Trappe | Jamming phase diagram for attractive particles[END_REF][START_REF] Van Hecke | Jamming of soft particles: geometry, mechanics, scaling and isostaticity[END_REF]. The origin of jamming is closely linked to the presence of force chains within the packing [START_REF] Liu | Force fluctuations in bead packs[END_REF][START_REF] Trushant | Contact force measurements and stress-induced anisotropy in granular materials[END_REF], and the unjamming, or yielding, occurs when grain-grain contacts become mobilised, leading to destabilisation and buckling of the load carrying force chains [START_REF] Tordesillas | Force chain buckling, unjamming transitions and shear banding in dense granular assemblies[END_REF].

Due to the interplay between the displacements of the fluids and the particles, a wide variety of patterns may be observed in deformable media, including desiccation cracks [START_REF] Meakin | Models for Material Failure and Deformation[END_REF], granular fingers [START_REF] Cheng | Towards the zero-surface-tension limit in granular fingering instability[END_REF], labyrinth structures [START_REF] Sandnes | Labyrinth patterns in confined granular-fluid systems[END_REF], stick-slip bubbles [START_REF] Sandnes | Patterns and flow in frictional fluid dynamics[END_REF],

open channels [START_REF] Kong | Morphodynamics during air injection into water-saturated movable spherical granulates[END_REF][START_REF] Varas | Morphology of air invasion in an immersed granular layer[END_REF] and fractures [START_REF] Sandnes | Patterns and flow in frictional fluid dynamics[END_REF][START_REF] Chevalier | Morphodynamics during air injection into a confined granular suspension[END_REF][START_REF] Bernard | Bubble growth and rise in soft sediments[END_REF][START_REF] Xu | Dynamics of Drying in 3D Porous Media[END_REF][START_REF] Shin | Fluid-driven fractures in uncemented sediments: Underlying particle-level processes[END_REF][START_REF] Choi | X-ray computed-tomography imaging of gas migration in water-saturated sediments: From capillary invasion to conduit opening[END_REF].

Labyrinthine structures

A pattern formation process was demonstrated and characterised by Sandnes et al. [START_REF] Sandnes | Labyrinth patterns in confined granular-fluid systems[END_REF], where labyrinthine structures emerge during slow drainage of a fluid-grain mixture confined in a Hele-Shaw cell (Figure 1.28). The final cluster of compacted granular material is simply-connected, random, with a characteristic wavelength. Both The final labyrinth pattern is characterised by a uniform wavelength throughout the area occupied by the structure. The pattern forming process results from local mass transport in a direction normal to the advancing interface. The shape of the initially circular interface is continuously modified, but as the interface is both stabilised and kept separate from other fingers thanks to frictional jamming, no pinch-off of the interface can occur during the experiment, and the interface remains a deformed circle.

Consequently both the fingers and grain cluster are topologically simply connected.

The apparent randomness seen in the final pattern comes from the symmetrybreaking associated with fingers going either left or right. Disorder is always present in the experiments in form of, e.g., small inhomogeneities in mass distribution, governing the dynamics of the pattern formation, in addition to the history of the moving interface.

Changing the initial volume fraction of grains 10 ϕ in the experiment influences the process, with notable effects. Indeed the characteristic wavelength λ in the pattern decreases significantly as the volume fraction of grains increases. Sandnes et al.

demonstrated that λ = 2L ϕ (1.69)
where L is the width of the compact layer of grains along the straight interface segments [START_REF] Sandnes | Labyrinth patterns in confined granular-fluid systems[END_REF].

Stick-slip bubbles

Similar experiments were later realised by Sandnes et al. [START_REF] Sandnes | Patterns and flow in frictional fluid dynamics[END_REF] in linear Hele-Shaw cells rather than circular ones. Though labyrinthine patterns were indeed observed for low volume fraction of grains, they obtained significantly different results for increasing volume fractions. termittent. The front stays stationary for an extended period, followed by a sudden displacement of the granular-fluid mixture generated by a burst of air in the shape of a bubble. The displacement thus progresses bubble by bubble in a stick-slip manner.

During the static periods, the gas pressure increases linearly due to the compression of the air by the constant, slow driving of the piston. The gas pressure is balanced by the frictional stress from the jammed granular front. As the pressure increases, the weakest point along the front eventually yields, and the pressurised air invades rapidly through a narrow neck before expanding radially. The air decompresses, thus stopping the expansion. The granular material accumulated by the interface settles and gradually compacts into a jammed front where once again the weakest point determines the location and yield pressure for the next bubble (and therefore its size).

Fracturing of deformable media

A model was developed by Holtzman and Juanes [START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF], that predicts the transitions among capillary fingering, viscous fingering and fracturing in gas invasion of liquidfilled deformable granular media. The authors used pore-scale simulations and scaling analysis to demonstrate that fracturing caused by elastic deformation of particles is the dominant mode of invasion for fine, soft particles under low confining stress. In the Vertical confinement is supplied by a weight, w, placed on a disk ("lid") that rests on top of the beads. The disk is slightly smaller than the cell to allow fluids (but not particles) to leave the cell. Air is injected into the center of the cell at a fixed flow rate q. [START_REF] Holtzman | Capillary Fracturing in Granular Media[END_REF] case of rigid particles, Holtzman, Szulczewski and Juanes [START_REF] Holtzman | Capillary Fracturing in Granular Media[END_REF] showed that the key mechanism controlling fracturing is frictional sliding, rather than elastic deformation. They identified the regimes based on the qualitative characteristics of the invasion pattern [START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF][START_REF] Paterson | Diffusion-Limited Aggregation and Two-Fluid Displacements in Porous Media[END_REF][START_REF] Chevalier | Morphodynamics during air injection into a confined granular suspension[END_REF][START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF][START_REF] Chen | Pore-Scale Viscous Fingering in Porous Media[END_REF]:

• in viscous fingering, the interface growth is continuous and occurs simultaneously at several locations (see section 1.3.2). The resulting pattern is radial and exhibits thin fingers and few trapped higher-viscosity clusters.

• in capillary fingering, the interface propagates intermittently (see section 1.3.2).

Since the air invasion is controlled by the spatial distribution of capillary entry pressures, which in turn is controlled by the distribution of pore throat sizes, the patterns are typically not radially symmetric [START_REF] Lenormand | Pattern growth and fluid displacements through porous media[END_REF][START_REF] Vidar Frette | Fast, immiscible fluid-fluid displacement in three-dimensional porous media at finite viscosity contrast[END_REF].

• in capillary fracturing, the interface advances continuously in thin fingers with long, straight segments. The resulting pattern is asymmetric and occupies a much smaller portion of the domain compared with capillary fingering and viscous fingering.

The three regimes display transition zones, in which the invasion patterns exhibit mixed characteristics of the end-member patterns.

Their classification of the displacement pattern is based on visual appearance as well as the fractal dimension D F (using box-counting [START_REF] Niemeyer | Fractal dimension of dielectric breakdown[END_REF]). As the estimation of the fractal dimension from the mass vs distance curves is subject to large fluctuations for finite-size systems [START_REF] Knut | Viscous Fingering Fractals in Porous Media[END_REF][START_REF] Blunt | Macroscopic parameters from simulations of pore scale flow[END_REF][START_REF] Løvoll | Growth activity during fingering in a porous hele-shaw cell[END_REF][START_REF] Praud | Fractal dimension and unscreened angles measured for radial viscous fingering[END_REF], visual appearance is an essential consideration in the classification.

The mode of displacement depends on the competition between forces. The transition between capillary fingering and viscous fingering depends on the competition between viscous forces and capillary forces (section 1.3.2 and Figure 1.33) [START_REF] Fernández | Crossover length from invasion percolation to diffusion-limited aggregation in porous media[END_REF][START_REF] Ferer | Crossover from capillary fingering to viscous fingering for immiscible unstable flow:Experiment and modeling[END_REF],

whereas the transition between fingering and fracturing depends on the competition between hydrodynamic forces that promote pore opening, and mechanical forces that resist it. As these forces depend on a combination of the control parameters, the same transition between the regimes can be achieved by changing different parameters: the displacement can transition from capillary fingering to viscous fingering either by increasing the injection rate q or reducing the bead size d; and from fingering to fracturing either by reducing the confining weight w, or the bead size d (see Figure 1.34). The wide transition zone between capillary and viscous fingering has been observed by Lenormand et al. (see above) [START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF], and results from gradual changes in the governing forces with the experimental conditions. The capillary fracturing patterns transition from few, small fractures to many, large fractures as the confinement is reduced [START_REF] Holtzman | Capillary Fracturing in Granular Media[END_REF].

From the analysis of their results, Holtzman, Szulczewski and Juanes defined two different parameters:

• a modified capillary number

Ca * ≡ Ca L d χ -1 (λ) = µqL σbd 2 χ -1 (λ), (1.70) 
where χ(λ) describes the distribution of capillary entry pressures 11 , a function of the degree of pore-scale disorder λ ∈ [0, 1] [START_REF] Chen | Pore-Scale Viscous Fingering in Porous Media[END_REF]. According to this scaling and assuming similar disorder across experiments, the phase boundary between viscous fingering and capillary fingering is q/b ∼ d 2 , in agreement with their experimental data.

• a fracturing number

N f ≡ σL 2 µwd (1 + Ca). (1.71)
For this scaling one can suppose that, for a given fluid pair, particle material, and system size, the transition from fingering to fracturing occurs at w ∼ d -1 .

11 For instance, for a uniform aperture distribution, r ∈ The scaling analyses allowed them to collapse their data from a three-parameter dimensional phase space (q, w, d) into a two-parameter dimensionless space (Ca * , N f ).

[(1 -λ)r, (1 + λ)r], one gets χ(λ) = λ/(1 -λ 2 ) [224].
For N f � 1, the dominant mode of invasion is fracturing. For N f � 1, the medium is essentially rigid (negligible particle rearrangements), and the transition from capillary to viscous fingering occurs at Ca * ≈ 1 (see Figure 1.35) [START_REF] Holtzman | Capillary Fracturing in Granular Media[END_REF].

It should be noted that another fracturing number was defined by Holtzman and Juanes in a previous paper, with similar results [START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF],

N � f ≡ 2σ λdE� 1/2 0 , (1.72) 
where � 0 is the strain generated by the compression, and E the Young modulus of the particle material. The fracturing pattern is distinguished from viscous fingering by fingers with straight segments and a lower fractal dimension (see Figure 1.36). 

Phase diagramm

To elucidate the relationship between the frictional fluid morphologies and displacement patterns observed in porous media, Sandnes et al. [START_REF] Sandnes | Patterns and flow in frictional fluid dynamics[END_REF] combined their findings with recent results from other authors [START_REF] Chevalier | Morphodynamics during air injection into a confined granular suspension[END_REF][START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF][START_REF] Løvoll | Growth activity during fingering in a porous hele-shaw cell[END_REF] and drew a tentative ϕ -1q phase diagram (q is the injection rate), including fracturing, and capillary and viscous fingering in porous media where ϕ ≈ 1 (Figure 1.37). The demarcation lines are for illustration purposes, and the location of the phase boundaries may depend [START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF] on numerous system specific factors. The rate-dependent transition between capillary and viscous fingering is well documented [START_REF] Lenormand | Pattern growth and fluid displacements through porous media[END_REF][START_REF] Løvoll | Growth activity during fingering in a porous hele-shaw cell[END_REF][START_REF] Méheust | Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects[END_REF], and following Holtzman and Juanes [START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF] they depicted the fracturing phase as rate independent. Their results suggested that the transition between frictional dynamics and fluidized front [START_REF] Sandnes | Patterns and flow in frictional fluid dynamics[END_REF] is largely ϕ independent, whereas the boundary between fluidized front and viscous fingers is drawn slanted as the re-suspension process depends on the shear rate of the flow across the layer of settled material, and this shear rate increases with increasing ϕ as the free gap narrows.

N � F = 1.65 (D F ≈ 1.28) N � F = 1.25 (D F ≈ 1.52) N � F = 1.04 (D F ≈ 1.51) N � F = 0.63 (D F ≈ 1.58) N � F = 0.31 (D F ≈ 1.64) N � F = 0.031 (D F ≈ 1.65) N � F = 0.003 (D F ≈ 1.60)

Conclusion

A porous medium can be considered in two different ways. Either each phase is considered separately (pore-scale modelling), or one considers the fluid displacements by averaging them on volumes whose size is bigger than the pore one, but small compared to that of the overall domain (Darcy-scale modelling).

Four main approaches are then used to study flows in porous media: a continuous approach in which the porous medium is caracterised by macroscopic parameters (e.g. Darcy's law), the capillary bundle model, an approach based on numerical methods to describe the porous medium at the pore scale and solve the flow equations at this scale, and an approach by Pore-scale Network Modelling.

It is also possible to consider these flows in a simpler geometry, the Hele-Shaw cell, where the equation govering the flow is analogous to Darcy's law. One can then easily consider the surface tension either by slightly modifying the Darcy equation (Hele-Shaw cells) or by considering a modified pressure field (porous media).

Roland Lenormand studied Newtonian two-phase flows in networks with both an organic and an aqueous phase, and established phase diagrams in the case of both drainage and imbibition.

In both cases, three different domains were identified in the (M, Ca) plan: a domain where the flow is dominated by viscous fingering (M < 1 and high Ca), a domain of stable viscous displacement (M > 1 and high Ca) and a domain dominated by capillary fingering (low Ca). Figure 1.37: Tentative phase diagram of morphologies in the ϕ -1 -q plane extended to the ϕ = 1 limit corresponding to a close-packed porous medium. Various displacement morphologies in the frictional fluid give way to fracturing at ϕ > 0.9, followed by a transition to capillary/viscous fingering in porous media (ϕ ≈ 1). [START_REF] Sandnes | Patterns and flow in frictional fluid dynamics[END_REF] In the case of imbibition, the domain dominated by capillary fingering can be subdivided in two subdomains: a continuous one with corner-film flows, and a discontinuous one where the wetting fluid flows alongside the wall roughness. Several schemes can be highlighted:

• the Front-Tracking method (Figure 2.1) uses a set of so-called marker particles situated along the interface. The reconstruction of the interface is realised by connecting the different marker particles by a curve (2D) or a surface (3D) [START_REF] Daly | A technique for including surface tension effects in hydrodynamic calculations[END_REF][START_REF] Miyata | Finite-difference simulation of breaking waves[END_REF][START_REF] Shyy | Computational fluid dynamics with moving boundaries[END_REF][START_REF] Glimm | Front tracking in two and three dimensions[END_REF].

• the Level-Set method uses a regular level function with value zero on the interface (Figure 1.16(c)) [START_REF] Prodanović | A level set method for determining critical curvatures for drainage and imbibition[END_REF][START_REF] Tryggvason | Direct numerical simulations of gas-liquid multiphase flows[END_REF][START_REF] Osher | Fronts propagating with curvaturedependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Osher | Level Set Methods: An Overview and Some Recent Results[END_REF][START_REF] Sethian | Level set methods for fluid interfaces[END_REF]. A generalisation of the method can be found in [START_REF] Benoit Granier | An implicit centered scheme for steady and unsteady incompressible one and two-phase flows[END_REF].

• the Boundary-Integral method calculates a Stokes flow solely by reference to what happens at the flow boundaries [START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF][START_REF] Pozrikidis | Interfacial Dynamics for Stokes Flow[END_REF][START_REF] Thomas | Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials[END_REF]. Since reference is only made to boundary values, the dimension of the problem is effectively reduced by one.

• the Volume-of-Fluid (VOF) method tracks the interface using the volume fraction of one of the fluids in each cell of the mesh, and builds the interface as a piecewise affine function [START_REF] Raeini | Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method[END_REF][START_REF] Qaseminejad | Modelling multiphase flow through micro-CT images of the pore space[END_REF][START_REF] Clemens | Pore-Scale Evaluation of Polymers Displacing Viscous Oil-Computational-Fluid-Dynamics Simulation of Micromodel Experiments[END_REF][START_REF] Rauschenberger | Comparative assessment of Volume-of-Fluid and Level-Set methods by relevance to dendritic ice growth in supercooled water[END_REF][START_REF] Tomin | Hybrid Multiscale Finite Volume method for two-phase flow in porous media[END_REF][START_REF] Raeini | Numerical Modelling of Sub-pore Scale Events in Two-Phase Flow Through Porous Media[END_REF].

In this chapter, the different methods implemented in the multiphase flow solver Gerris will be presented: they will be used in the following chapters. This is an opensource software (The Gerris Flow Solver: http://gfs.sf.net) using both finite-volume numerical methods for solving the Navier-Stokes equation for single-or multiphase incompressible flows (see equation 1.13 in section 1.1.3.2) on an adaptive mesh and the VOF method for interface tracking. This code was developed by Stéphane Popinet 

Numerical scheme of the Gerris Flow Solver

The numerical scheme of the Gerris Flow Solver was presented in [START_REF] Popinet | Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[END_REF][START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF]. We recall the main aspects of this scheme in the case of two-phase flows with no claim of comprehensiveness.

Temporal discretisation

Two-phase Navier-Stokes equations for an incompressible flow with surface tension are (equation (1.19))

ρ(∂ t u + u • ∇u) = -∇p + ∇ • (2µe) + σκδ s n + f ext , (2.1) 
∂ t ρ + ∇ • (ρu) = 0, (2.2) 
∇ • u = 0. (2.3)
As a reminder (chapter 1), e is the strain rate tensor, ρ ≡ ρ(x, t) the density and µ ≡ µ(x, t) the viscosity. For the surface tension term, see section 1.1.3.3. The force term f ext represents all exterior forces acting on the system.

For two-phase flow, we introduce the volume fraction c(x, t) (equation (1.17)) of the second fluid, and define the density and the viscosity of the system by

ρ(c) = (1 -c)ρ 1 + cρ 2 , µ(c) = (1 -c)µ 1 + cµ 2 ,
with ρ 1 , ρ 2 , µ 1 and µ 2 the densities and viscosities of the first and second fluid respectively.

A time-delayed discretisation of the volume fraction, the density and the pressure, using a timestep Δt, gives a second-order time discretisation of equations (2.1-2.3) for the timestep n

ρ n+ 1 2 � u n+1 -u n Δt + u n+ 1 2 • ∇u n+ 1 2 � = -∇p n+ 1 2 + ∇ • � µ n+ 1 2 (e n + e n+1 ) � +(σκδ s n) n+ 1 2 + f ext , (2.4) 
∇ • u n = 0. (2.5)
This system can be simplified by using Helmholtz-Hodge decomposition [START_REF] Hermann Von | Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen (On integrals of the hydrodynamic equations which correspond to vortex motions)[END_REF] for the velocity

u � = u n+1 + Δt ρ n+ 1 2 ∇p n+ 1 2 , (2.6) 
with

∇ • u n+1 = 0.
(2.7) Thus the equation system (2.4-2.5) becomes [START_REF] Joel | Numerical solution of the Navier-Stokes equations[END_REF][START_REF] Lagrée | The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a µ (I)-rheology[END_REF] 

ρ n+ 1 2 � u � -u n Δt + u n+ 1 2 • ∇u n+ 1 2 � = ∇ • � µ n+ 1 2 (e n + e � ) � +(σκδ s n) n+ 1 2 + f ext , (2.8 
)

u n+1 = u � - Δt ρ n+ 1 2 ∇p n+ 1 2 , (2.9) 
∇ • u n+1 = 0, (2.10) 
inducing the Poisson equation

∇ • � Δt ρ n+ 1 2 ∇p n+ 1 2 � = ∇ • u � . (2.11)
The discretised equation of motion (2.8) can be reorganised as

ρ n+ 1 2 Δt u � -∇ • � µ n+ 1 2 e � � = ∇ • � µ n+ 1 2 e n � + ρ n+ 1 2 � u n Δt -u n+ 1 2 • ∇u n+ 1 2 � +(σκδ s n) n+ 1 2 + f ext (2.12)
where the right-hand side member only depends on values at time n and n + 1 2 . The advection term u n+ 1 2

• ∇u n+ 1 2 is estimated using the Bell-Colella-Glaz secondorder unsplit upwind scheme [START_REF] Bell | A second-order projection method for the incompressible navier-stokes equations[END_REF]. This scheme is stable for CFL numbers 3 [259] smaller than one. This Helmholtz-type equation can be solved efficiently by using a multiscale Poisson solver with a quad-/octree meshing. The Crank-Nicholson resulting discretisation of the viscous term [START_REF] Crank | A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type[END_REF] is formally second-order and unconditionnally stable. However, it is only applicable to scalar fields and cannot be used directly to solve equation (2.12) to obtain the vector field u � . A work-around is to decouple the equations for each of the components of u � and then use the scalar multilevel algorithm to solve for each component independently. The equations for each component are coupled through the cross-terms (∇u

� ) T appearing in ∇ • � µ n+ 1 2 e � �
in equation (2.12).

To obtain scalar Helmholtz-like problems for each component we discretize the crossterms explicitly such that the Laplacian operator in equation (2.12) is approximated as [START_REF] Lagrée | The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a µ (I)-rheology[END_REF] 2∇ The explicit cross-terms can be further rearranged as we have the tensorial general identity

• (µ n+ 1 2 e � ) ≈ ∇ • (µ n+ 1 2 ∇u � ) + ∇ • (µ n+ 1 2 (∇u n ) T ) (2.
∇ • (µ(∇u) T ) = (∇u) T ∇µ + µ∇ • (∇u) T = (∇u) T ∇µ + µ∇(∇ • u) = (∇u) T ∇µ,
where we have used the incompressibility condition ∇ • u = 0. The final decoupled scalar equations for each velocity component can then be written in vector form

ρ n+ 1 2 Δt u � - 1 2 ∇ • � µ n+ 1 2 ∇u � � = ∇ • � µ n+ 1 2 e n � + ρ n+ 1 2 � u n Δt -u n+ 1 2 • ∇u n+ 1 2 � + f ext +(σκδ s n) n+ 1 2 + 1 2 (∇u n ) T ∇µ n+ 1 2 . (2.14)
Note that the explicit viscous term on the right-hand-side vanishes for a constant viscosity. For variable viscosities, it is only dependent on the viscosity gradient. The robustness of the implicit scheme is preserved for large values of viscosities provided the spatial viscosity variations are small enough. This scheme has been validated

for numerous problems with variable viscosity such as two-phase flows of Newtonian fluids with different properties [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF][START_REF] Fuster | Simulation of primary atomization with an octree adaptive mesh refinement and {VOF} method[END_REF][START_REF] Bagué | Instability growth rate of two-phase mixing layers from a linear eigenvalue problem and an initial-value problem[END_REF], as well as generalised Newtonian fluids [START_REF] Popinet | Creeping Couette flow of Generalised Newtonian fluids[END_REF] including yield-stress rheologies [START_REF] Josserand | The spreading of a granular column from a Bingham point of view[END_REF].

Spatial discretisation

The domain is spatially discretised using square (cubic in 3D) finite volumes organised hierarchically as a quadtree (octree in 3D), a tree-like structure [START_REF] Samet | Applications of Spatial Data Structures[END_REF]. In the following each finite volume will be referred to as a cell. Each cell can be parent of up to four children (eight in 3D).The level of a cell is defined by starting from zero for the root cell and by adding one every time a group of four descendant children is added. An example of spatial discretisation and the corresponding tree representation is given in [253]

1. the levels of direct neighbouring cells cannot differ by more than one, 2. the levels of diagonally neighbouring cells cannot differ by more than one, 3. all the cells directly neighbouring a mixed cell must be at the same level.

These constraints greatly simplify the gradient and flux calculations.

All variables (components of the momentum, pressure and passive tracers) are located at the centre of each cell. Thus the conservation of the momentum is easier to describe when using an adaptive mesh. What is more, this choice of localisation of all the variables is required to use the Godunov scheme for the momentum advection developed by Bell, Colella & Glaz [START_REF] Bell | A second-order projection method for the incompressible navier-stokes equations[END_REF] and simplifies the implementation of the Crank-Nicholson discretisation of the viscous term [START_REF] Crank | A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type[END_REF].

A projection method [START_REF] Almgren | A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection[END_REF][START_REF] Almgren | A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries[END_REF][START_REF] Almgren | A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations[END_REF][START_REF] Almgren | Approximate Projection Methods: Part I. Inviscid Analysis[END_REF] is used for the spatial discretisation of both the modified pressure equation (2.9) and its associated divergence in the Poisson equation (2.11). First, the auxiliary velocity field at the centre of the cells u c � is computed using equation (2.14). Then a face-centred auxiliary velocity field u f � is computed on all the faces of the cartesian-discretisation cells by using the average of the cell-centred values. When the face concerns the boundary between two different refinement levels of the octree/quadtree meshing, weights are added in order to ensure the consistence of the corresponding flux volumes.

The divergence of the auxiliary velocity field, appearing in the right-hand side of equation (2.11), is computed in each cell as a finite-volume approximation

∇ • u � = 1 h � f u f � • n f , (2.15) 
where n f is the face normal unit vector and h the lengthscale of the control volume (i.e. the cell).

After having solved equation (2.11) with the finite-volume approximation (2.15), the pressure correction is added at the face-centred auxiliary field

u f n+1 = u f � - Δt ρ f n+ 1 2 ∇ f p n+ 1 2 , (2.16) 
where ρ f , and ∇ f is the gradient with respect to the centre of a cell face. The resulting face-centred velocity field is divergence-free by construction.

The cell-centred velocity field at time n + 1 is obtained by adding the pressure correction at the centre of the cell

u c n+1 = u c � - � � � � � � Δt ρ f n+ 1 2 ∇ f p n+ 1 2 � � � � � � c , (2.17) 
where the | • | c operator denotes averaging over all the faces delimiting the control volume. The resulting cell-centred velocity field u c n+1 is approximately divergencefree.

Adaptive mesh refinement

A particular aspect of the Gerris Flow Solver is its hierarchical adaptive mesh refinement. This adaptation occurs in two steps. In a first step, all the leaf cells which satisfy a given criterion are refined (as well as their neighbours when necessary, in order to respect the constraints described in section 2.1.2), generating smaller cells (see Figure 2.3). Several refinement criteria can be used simultaneously. For example, it is possible to refine the mesh depending on the gradient of some variable. The that no neighbouring cells differ by more than one refinement level. [START_REF] Popinet | Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[END_REF] criterion then states that when this gradient exceeds some value in a second-order discretisation the refinement has to be finer.

In a second step, we consider the parent cells of all the leaf cells (i.e., the immediately coarser discretisation). All of these cells which do not satisfy the refinement criterion are coarsened (i.e., become leaf cells). The values of the cell-centred variables for newly created or coarsened cells must be initialised. For newly coarsened cells, it is consistent to compute these values as the volume-weighted average of the values of their (defunct) children, so that quantities such as momentum and vorticity are preserved exactly. For newly created cells, those values are computed by a linear interpolation procedure using the parent cell value and its gradients, which ensures a local conservation of momentum but tends to introduce numerical noise in the vorticity field.

On the new discretisation, there is no guarantee that the velocity field is divergencefree anymore. A projection step is then needed. To avoid the cost of an extra projection step when adapting the grid, the grid refinement is performed at the fractional timestep, using the provisional velocity field u � , just before the approximate projection is applied.

Volume-of-Fluid advection scheme

For two-phase flows, the approximation of infinitely-thin interface is used and the position of some point x of the first fluid with respect to the second one is realised with the Heaviside function c(x, t) defined as

c(x, t) =    1 if x is in fluid 1, 0 if x is in fluid 2.
(2.18)

Note that the definition differs from that of section 1.1.3.3.

The volume fraction c γ of a square cell γ of volume V is defined as the average value of the Heaviside function in this cell [START_REF] Elbridge | A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows[END_REF] 

c γ = 1 V � V c(x, t) dx. (2.19)
The advection equation (2.2) of density can be replaced by an equivalent advection equation for the volume fraction with its piecewise linear reconstruction (right). [START_REF] Gilou | Dynamique et instabilité des nappes liquides[END_REF] can be computed relatively easily by taking into account the different ways a square (resp. cubic) cell can be cut by a line (resp. plane) which leads to matched linear and quadratic (resp. cubic) functions of α [START_REF] Gueyffier | Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF][START_REF] Scardovelli | Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids[END_REF]. Then an approximate of the interface normal n is computed by considering the volume fractions in the neighbouring cells of the considered finite volume. Mixed-Youngs-Centred (MYC) implementation [START_REF] Aulisa | Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry[END_REF] is used on a 3 × 3 (resp. 3 × 3 × 3) regular Cartesian stencil.

∂ t c γ + ∇ • (c γ u) = 0. ( 2 
Once the interface reconstruction is done, the direction-split geometrical fluxes have to be computed on Cartesian grids [START_REF] Debar | Fundamentals of the KRAKEN code[END_REF][START_REF] Noh | SLIC (simple line interface calculation)[END_REF] (Figure 2.5). This advection is realised in Gerris with the so-called Piecewise Linear Interface Calculation (PLIC) scheme 5 [START_REF] Li | Calcul d'interface affine par morceaux[END_REF] (see Appendix D), also called the Explicit Lagrangian advection scheme [START_REF] Scardovelli | Interface reconstruction with leastsquare fit and split Eulerian-Lagrangian advection[END_REF]. It is possible to generalise this advection scheme to a quadtree/octree discretisation by slightly modifying the scheme where fluxes occur between cells with different refinement levels (Figure 2.6).

This advection scheme ensures the validity of condition 0 � c γ � 1 at each timestep. It has been proved to give results close to the solution when an analytical one exists [START_REF] Aulisa | Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry[END_REF]. Though this scheme is, strictly-speaking, not conservative [START_REF] Rider | Reconstructing Volume Tracking[END_REF],

the total error for computationally-demanding problems usually is inferior to 0.01%. 

Balanced-force surface-tension calculation

The accurate estimation of the surface-tension term (σκδ s n) n+ 1 2 in the discretised momentum equation (2.8) has proven to be one of the most difficult aspects of the application of VOF methods to surface-tension-driven flows. The continuum-surfaceforce (CSF) approach [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] proposes the following approximations

σκδ S n ≈ σκ∇ h c, (2.22) κ ≈ ∇ h • ñ (2.23)
where ñ ≡ ∇ h c |∇ h c| , ∇ h is a finite-difference operator and c a spatially-filtered volume fraction field. This approach is known to suffer from problematic parasitic currents 6 (known as spurious currents) when applied to the case of a stationary droplet in theoretical equilibrium [START_REF] Lafaurie | Modelling merging and fragmentation in multiphase flows with {SURFER}[END_REF][START_REF] Popinet | A front-tracking algorithm for accurate representation of surface tension[END_REF][START_REF] Harvie | An analysis of parasitic current generation in Volume of Fluid simulations[END_REF]. More recently it was noted [START_REF] Renardy | PROST: A Parabolic Reconstruction of Surface Tension for the Volume-of-Fluid Method[END_REF][START_REF] Francois | A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework[END_REF] that in this case, since the discretised momentum equation reduces to

-∇ h p n+ 1 2 + σκ(δ s n) n+ 1 2 = 0, (2.24) 
or equivalently using the CSF approximation

-∇ h p n+ 1 2 + σκ(∇ h c) n+ 1 2 = 0, (2.25)
it is possible to recover exact discrete equilibrium between surface tension and pressure gradient provided:

1. the discrete approximations of both gradient operators in equation (2.25) are compatible, 2. the estimated curvature κ is constant.

In the present collocated scheme, the cell-centred pressure gradient is computed by averaging the face-centred pressure gradients as indicated in equation (2.17). Thus, in order to verify condition 1, the surface tension is determined by first applying the stencils can be needed for highly-curved and/or less aligned interfaces. [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF] surface-tension force to the auxiliary face-centred velocity field ũf � and generating a new velocity field

u f � = ũf � + Δtσκ f n+ 1 2 ρ � c f n+ 1 2 � ∇ f c n+ 1 2 . (2.26) 
Then the surface-tension force is applied at the centre of the cell corresponding to

u c � u c � = ũc � + � � � � � � Δtσκ f n+ 1 2 ρ � c f n+ 1 2 � ∇ f c n+ 1 2 � � � � � � c . (2.27)
This implementation is applied immediately before the projection steps.

To achieve a robust and easy-to-implement estimation of the curvature, the calculation uses a height function. Indeed, such a calculation can be summarised in three steps for 2D Cartesian grids [START_REF] Cummins | Estimating curvature from volume fractions[END_REF]. First, one has to determine a 3 × 7 (resp. 7 × 3) stencil centred on the cell where the curvature is to be evaluated (Figure 2.7); an estimate of the interface orientation is used to choose the stencil best aligned with the normal direction to the interface. Then the second step builds a discrete approximation of the interface height y = f (x) (resp. x = f (y)) by summing the volume fractions in each column (resp. line). Finally, it is possible to use finite-difference approximations of the derivatives of the discretised height-function to compute the curvature

κ = h �� (1 + (h � ) 2 ) 3/2 � � � � � x=0 (or y=0)
.

(2.28) An important drawback of the standard height-function method is that even moderately curved interfaces can lead to configurations where consistent interface heights cannot be formed (Figure 2.8).

While neither the horizontal nor the vertical stencils on their own can be used to construct a twice-differentiable discrete approximation of the interface height in this case, it is clear that a combination of all the stencils can allow such an approximation.

Fitting a curve (e.g. a parabola in 2D, paraboloid in 3D) through the points that can be estimated and differentiating the resulting analytical function will give an estimate of the curvature via Thus the mean curvature is obtained through equation (2.28)

h(x) ≡    a 0 x 2 + a 1 x + a 2 in 2D a 0 x 2 + a 1 y 2 + a 2 xy + a 3 x + a 4 y + a 5 in 3D . ( 2 
κ =        2a 0 (1 + a 2 1 ) 3/2 in 2D 2 a 0 (1 + a 2 4 ) + a 1 (1 + a 2 3 ) -a 2 a 3 a 4 (1 + a 2 1 + a 2 4 ) 3/2 in 3D
.

(2.30)

Gerris in parallel

In order to reduce the computational time, the Gerris Flow Solver can also be used in parallel. As the code uses squares in 2D (or cubes in 3D), parallelization can be realised with root cells at non-zero level. Thus each cell or cell set is awarded a processor, and is distinguished by a number N p ∈ N * (Figure 2.9).

Implementation of solid boundaries

In order to handle embedded solid boundaries during spatial discretisation, the cells which are cut by a solid boundary are also considered as mixed cells. What is more, all cells that happen to be totally embedded in the solid phase are removed from the computation.

In mixed cells, the solid boundary is defined through a volume-of-fluid type approach. Specifically, the code uses:

• the volume fraction a as the ratio of the volume occupied by the fluid to the total volume of the cell; This solid boundary description assumes that the represented geometries do not possess features with spatial scales smaller than the mesh size. In particular, sharp angles or thin bodies cannot be represented correctly. This can be an issue for some applications, but more importantly it will restrict the efficiency of the multigrid solver

[288].
The boundary condition for the velocity at solid wall boundaries is the no-flow condition

u • n = 0, (2.31) 
where n is the outward unit vector at the solid boundary ∂Ω s .

In presence of solid boundaries, the method used to solve the Poisson equation is first-order accurate near the solid boundaries and second-order accurate elsewhere [START_REF] Popinet | Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[END_REF].

Another way to deal with solid boundaries. As the purpose of this study is to address multiphase flows in porous media, i.e. solve really complex flows in really complex geometries over large physical times, the efficiency of the multigrid solver can rapidly become an issue of the utmost importance. Consequently, the efficiency restriction presented above for sharp angles or thin bodies had to be dealt with.

It is possible to get round the problem by using another way to consider solid boundaries and entirely-solid cells. In this new method usually referred to as the "virtual solids" method, the solid domain Ω s = Ω s is not removed from the computation. Consequently, one considers that the entire domain Ω = Ω is filled with fluid, and not only the domain Ω f = Ω\ Ωs situated outside of the solid phase. Incidently, as a reminder, this method is formally true for extremely large observation times (or low Deborah number, see section 1.1.1), but is only an approximation for lower observation times (the so-called "physical" time of a simulation). Then, in order to simulate the behaviour of a solid matrix, the solid domain is imposed a no-velocity condition

∀x ∈ Ω s , u(x) = 0. (2.32)
This condition is imposed at each timestep. The fluid properties (viscosity, density) also have to remain constant inside any arcwise connected subset of the solid matrix:

∀x, y ∈ Ω s ,   ∃ζ ∈ C 0 ([0, 1], Ω s ) :    ζ(0) = x ζ(1) = y   ⇒    µ(x) = µ(y) ρ(x) = ρ(y) . (2.33) 
As the calculation is realised inside the solid phase, a non-physical velocity could be generated between two timesteps, due to the computed pressure gradient. In order to reduce this unwanted velocity, a drag force is added to the Navier-Stokes equation inside the solid matrix7 

f drag = -M u (2.34)
with M � 1. This drag force uses a robust implicit discretisation. Thus, according to equation (2.14), at each grid point of the solid phase and each timestep the Gerris Flow Solver solves the following equation

ρ n+ 1 2 u n+1 Δt = -∇p n+ 1 2 + ∇ • � µ n+ 1 2 e � � -ρ n+ 1 2 � u n+ 1 2 • ∇u n+ 1 2 � -M u n+1 . (2.35)
The computed velocity inside the solid matrix is written as (first order in u)

u n+1 ≈ - � M + ρ n+ 1 2 Δt � -1 � ∇p n+ 1 2 + ∇ • � µ n+ 1 2 e � �� . (2.36) 
Thus, at each timestep, the unwanted velocity generated inside the solid phase between two timestep verifies u n+1 ≈ 0 for M � 1.

In order to ensure an even smaller velocity inside the solid matrix, it was tried to increase the density inside the solid matrix (equation (2.36)), independently from the one inside the "real" fluids. Though the result was indeed more accurate, the consequent increase of CPU 8 time incites not to use this approach.

Gerris Flow Solver for porous geometry

In order to compare both modelisations of the solid phase, several test cases were realised focusing on both computational speed and accuracy.

Scalability at low porosity 2.2.1.1 Definitions

In computer science, the scalability is defined as the ability of a system to accommodate an increasing number of elements or objects, to process growing volumes of work gracefully, and/or to be susceptible to enlargement [START_REF] André | Characteristics of Scalability and Their Impact on Performance[END_REF]. A system whose performance improves after adding hardware, proportionally to the capacity added, is said to be a scalable system.

In the context of high performance computing there are two common notions of scalability:

• The first is strong scaling, which is defined as how the solution time varies with the number of processors for a fixed total problem size.

• The second is weak scaling, which is defined as how the solution time varies with the number of processors for a fixed problem size per processor.

In order to study the scalability of the Gerris Flow Solver, we introduce the number of cell updates per second 

Z ≡ N x × N y × N z × N dt T CP U ,
Z /np ≡ Z N p = N x × N y × N z × N dt T CP U/np × N p , (2.37) 
with N p the number of cores. It can be noted that some Lattice-Boltzmann and Volume-of-Fluid codes apparently reach Z /np ∼ 10 7 [START_REF] Asinari | Link-wise artificial compressibility method[END_REF].

In order to neglect the increased time of timestep 0 (due to the initialisation of the code), we consider the five timesteps from the fifth to the tenth timestep. Thus N dt = 5 and T CP U/np = T CP U/np (10 timesteps) -T CP U/np (5 timesteps).

Characteristics of the tests

We realise single-phase scalability tests in an ideal porous structure. The solid matrix is a face-centred cubic (FCC) lattice of spheres. The nodes (i.e. sphere centres) of such a lattice are the eight vertices of a cube, and the centre of each face of this cube.

The cubic cell of the network is presented in Figure 2.11. We remind that this cubic cell is not the primitive unit cell of the network 9 . The atomic packing factor is 0.74 or, equivalently, the porosity of such a structure is φ = 26%.

Due to the octree structure of the meshing in the Gerris Flow Solver, we consider several lattices at different levels. We define a level-1 lattice as the basic FCC cell 9 The primitive unit cell of the FCC lattice is a rhombohedron. tests on 1 to 4096 cores.

Results on cluster babbage

Three kinds of domain modelling are used:

1. case 1: the default modelling of the solids by the Gerris Flow Solver (i.e. removing all the cells full of solid phase from the computation, see Figure 2.13(a)), 2. case 2: the method described in the second part of section 2.1.7 (Figure 2.13(b)), • the default one of Gerris Flow Solver,

• the parallel High Performance Preconditioners10 (Hypre).

The results of weak scalability are presented in Figure 2.14 and those of strong scalability in Figure 2.15. The missing data for Hypre solver in both figures highlight the fact that in some cases, the computation crashes before reaching the end of timestep 10.

It seems obvious that both weak and strong scalability results are worse when using Hypre solver. These bad results are apparently due, either to a bug inside Hypre, or more probably to a problem in the initialisation of Hypre by the Gerris Flow Solver. Indeed, we realised that the required memory to compute a simulation was a linear function of the number of cores when using Hypre. Apparently, each core stores the entire computation in its own allocated memory (instead of storing only part of it).

Nonetheless, the results obtained with the default solver of Gerris are much more promising. Indeed, it seems that Z /np is in the worst cases only divided by a factor 3 when increasing the number of cores from 1 to 64. In some cases, the overall scalability is close to perfection (nearly constant value for Z /np with increasing number of cores).

Furthermore, it appears that the simulations realised with the default modelling of the solids are slower than those realised with a fluid spanning the entire domain: indeed the number of cell updates per second and per core is multiplied by a factor 2 to 5 when moving from case 1 to case 2.

Moreover, this factor is underestimated due to the blatant overestimation of Z /np when using the default modelling of solids. Indeed, as the cells totally embedded in the solid are removed from the computation, the actual number of cells in the domain is much lower 11 than N x × N y × N z . This difference is the cause of the overestimation of the computational speed in this case.

The CPU time for the first ten timesteps (including initialisation) is presented for case 2 with both Poisson solvers in Table 2.1.

Results on cluster Rostand

As a consequence of the results obtained previously on cluster babbage2, only two kinds of domain modelling are used: cases 2 and 3 presented above. The standard modelling of solids in the Gerris Flow Solver is neglected due to its poorer computational speed.

Lattices from level 2 to level 6 are considered for weak scalability tests, and level-5 lattices for strong scalability tests. Each cubic cell of the FCC lattice is meshed with 16 3 cells (i.e. a total number of cells going from 32 3 These results look very promising. Indeed, it seems that Z /np is in the worst cases only divided by a factor 10 when increasing the number of cores from 1 to 4096. A drastic decrease of computing performance is also to be noted when going from one to multiple cores in the case of weak scalability (Figure 2.16). However, this decrease is curiously not present in the case of strong scalability (at least the amplitude is not as important, see Figure 2.17). Sadly, no satisfactory explanation has been found.

The CPU time for the first ten timesteps (including initialisation) is presented for case 2 with the standard Poisson solver in Table 2.2.

CPU time and CFL number for two-phase flow invasion of porous geometries

In this section, the CFL number will be referred to as χ.

Using the same notations as in section 1.1.3.4, we define the Ohnesorge number Oh [START_REF] Ohnesorge | Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen[END_REF][START_REF] Ohnesorge | Anwendung eines kinematographischen Hochfrequenzapparates mit mechanischer Regelung der Belichtung zur Aufnahme der Tropfenbildung und des Zerfalls flüssiger Strahlen[END_REF] as the ratio between viscous forces for one part and surface tension and 

× Surface tension) 1/2 ∝ µ∂ 2 u/∂x 2 (σ∇c/R × ρu∂u/∂x) 1/2 ∝ µU/l 2 (σ/l 2 × ρU 2 /l) 1/2 = µ (σρl) 1/2 .
(2.38)

We also define the Laplace number La as

La ≡ Oh -2 = σρl µ 2 = Re Ca . ( 2 

.39)

It should be noted that the Laplace number is not necessarily negligible in porous media, contrary to what one could expect. Indeed for the invasion of water in an oil-filled porous medium with a characteristic pore size equal to 10 µm, La ∼ 100, i.e.

Oh ∼ 0.1.

Wall-clock CPU time in a porous geometry

We consider a simulation of two-phase flow in porous media till breakthrough. By definition of Z (see section 2.2.1.1)), the wall-clock CPU time varies for a Gerris simulation as

T CP U/np = N 3 N dt Z , (2.40) 
where N dt = ΔT δt where ΔT is the physical time of the simulation, and δt the average length of a timestep. It is thus possible to write

N = N x = N y = N z
T CP U/np = � L R p � 3 � R p h � 3 ΔT δt (Z /np × n p ) -1 (2.41)
with n p the number of cores.

As the simulation ends at breakthrough, ΔT = L/U tip where U tip is the velocity of the tip of the resulting fingering (Figure 2.18). By definition of the CFL number, one can write V tip = χ × h/δt. Thus ΔT δt = L χh , and it follows

T CP U/np = � L R p � 3 � R p h � 3 L h (χZ /np × n p ) -1 . (2.42)
Finally, the wall-clock CPU time to breakthrough is given, in the case of the invasion of a 3D porous medium, by 

T CP U/np = N 4 P/L n 4 ce/p (χZ /np × n p ) -1 (2.43) with                    N P/L =

CFL number in a porous geometry

We call L f the length of the longest finger and L w a characteristic lengthscale of the injection surface (Figure 2.19). In the simulation of an invasion of the porous medium, the number of pores n pores filled by the invading fluid varies as If we suppose L f = L w (cubic domain at breakthrough) we obtain

n pores ∼ � L f Rp � D F ∼ Injected volume R 3 p ∝ L 2 w U D t φ 1 R 3 
t ∝ L D F -2 f R 3-D F p φ U D . (2.44)
Using the definition of U tip , one gets

U tip = L f t ∝ � L f Rp � 3-D F U D φ = β U D φ with β = � L f Rp � 3-D F .
As the fluid cannot go further than one cell size at each timestep, we have χ < 1.

Furthermore, δt has to be lower than the characteristic time of capillary wave propa-

gation 12 δt cap = � ρh 3 σ � 1/2 . As a consequence χ = min � 1, U tip δtcap h � = min(1, χ cap ).
From δt cap , one gets

χ cap = U tip h � ρh 3 σ � 1/2 χ cap = σ 1/2 h 1/2 σ 1/2 U D φ β χ cap = µU D σ � σρR p µ 2 � 1/2 � h R p � 1/2 β φ χ cap = Ca D La 1/2 n -1/2 ce/p β φ
By considering that χ = χ cap , one gets Moreover, according to [START_REF] Wilkinson | Percolation model of immiscible displacement in the presence of buoyancy forces[END_REF][START_REF] Wilkinson | Percolation effects in immiscible displacement[END_REF][START_REF] Meakin | Invasion percolation in a destabilizing gradient[END_REF][START_REF] Ioannis | The critical gas saturation in a porous medium in the presence of gravity[END_REF], the correlation length L w in invasion percolation with a gradient varies as L w ∝ R p Λ -ν ν+1 . Thus, as

χ = Ca D La 1/2 n -1/2 ce/p β φ (2.45) with              n ce/p =
L f = L w β = � L w R p � 3-D F ∝ Λ -ν ν+1 (3-D F )
To conclude, the CFL number for the simulation of the invasion of a 3D porous medium varies as From equation (2.46), one can state that

χ ∝ Ca γ La 1/2 n -1/2 ce/p /φ (2.46) with                                Ca = µV D /σ = capillary
• the CFL number decreases with decreasing capillary number. This is bad news for reservoir engineering applications if one considers that flows in porous media occur at really low capillary number (of order 10 -8 -10 -6 ).

• the CFL number depends on the Laplace number, which could be bad news due to the great variety of possible fluid viscosities (especially for low-viscosity fluids).

The influence of these drawbacks could be reduced by implementing an improved computation of surface tension (implicit in time).

Single-phase and two-phase Poiseuille flows

For any a = (a i ) i∈[ [1,n]] ∈ R n with n ∈ N * , we define the three following norms:

• L ∞ norm: L ∞ (a) = max i (|a i |), • L 1 norm: L 1 (a) = 1 n n � i=1 |a i |, • L 2 norm: L 2 (a) = � 1 n n � i=1 |a i | 2 � 1/2 .
As R n is of finite dimension, all three norms are equivalent, i.e.

∀(N, n) ∈ {L ∞ , L 1 , L 2 } 2 , ∃0 < a � b : ∀u, a • n(u) � N (u) � b • n(u).
These three norms are extended to the set of all solutions returned by the Gerris Flow Solver as follows. For a solution field ξ on a domain of size N 3 we define

• L ∞ (ξ) = max c∈Cells L ∞ (ξ(c)), • L 1 (ξ) = 1 N 3 � c∈Cells L 1 (ξ(c)), • L 2 (ξ) = � 1 N 3 � c∈Cells (L 2 (ξ(c))) 2 � 1/2 .
For all of these norms, the error e j is measured as

e j = L j (a Gerris -a theory ), j ∈ {∞, 1, 2}. (2.47)
To check the accuracy of the Gerris Flow Solver, we realise tests of Poiseuille flow [START_REF] Poiseuille | Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres[END_REF] in both single-and two-phase cases.

Single-phase Poiseuille flow

Horizontal geometry Let us consider a Poiseuille flow in a horizontal geometry (i.e. the direction of the flow is aligned with the principal directions of the mesh).

The geometry of the test is presented in Figure 2.20. One can easily define a characteristic velocity

L ρ, µ

U = ρgL 2 8µ . (2.48)
The corresponding Reynolds number is

Re = ρU L µ = ρ 2 gL 3 8µ 2 .
(2.49)

In the following tests, Re = 1.

The analytical solution centred on y = 0 is (Appendix E)

u(y) = ρgL 2 8µ � 1 - � 2y L � 2 � = U � 1 - � 2y L � 2 � (2.50)
The simulation begins with u = 0 everywhere. The simulation is ended when the permanent regime is reached. It is considered that this permanent regime is reached when the variation of the velocity is inferior to 10 -7 in each cell of the domain between two timesteps. The convergence of the error norms as functions of the resolution is presented in Figure 2.21. The simulation begins with u = 0 everywhere. The simulation is ended when the permanent regime is reached. The convergence of the error norms as functions of the resolution is presented in Figure 2.23.

The convergence is limited to an error of order 10 -4 , whatever the norm and whatever the way the solids are generated. The convergence is however slightly better for the standard modelling of the solids.

The floor value is nonetheless sufficiently small to consider that the convergence of the result returned by Gerris is good. 

Two-phase Poiseuille flow

As the convergence results obtained for single-phase flow are satisfactory, two-phase flows are considered in order to check the convergence of the Gerris Flow Solver in the case of multiphase flow.

Horizontal geometry A Poiseuille flow is considered in a horizontal geometry. The geometry of the test is presented in Figure 2.24. The more viscous fluid is supposed to be at the centre. At the interface between both fluids, the viscosity is derived as an arithmetic average of both values. One can easily define three characteristic velocities

L l ρ 1 , µ 1 ρ 1 , µ 1 ρ 2 , µ 2
U 1 = ρ 1 gL 2 8µ 1 , ΔU = (ρ 2 -ρ 1 )glL 8µ 1 , U 2 = ρ 2 gl 2 8µ 2 .
(2.51)

The analytical solution centred on y = 0 is

∀y ∈ [-L, -l] ∪ [l, L], u(y) = U 1 � 1 - � 2y L � 2 � + 2ΔU � 1 - � � � � 2y L � � � � � ∀y ∈ [-l, l], u(y) =            U 2 � 1 - � 2y l � 2 � + U 1 � 1 - � l L � 2 � + 2ΔU � 1 - l L � (2.52)
A derivation of equation (2.52) can be found in Appendix E.

The simulation begins with u = 0 everywhere. The simulation is ended when the permanent regime is reached. The convergence of the error norms as functions of the resolution is presented in Figure 2.25. For all three norms, the convergence is worse The corresponding error is presented in Figure 2.27.

As could be expected, the results obtained by Gerris underestimate the theoretical velocity, and the maximum error is obtained at the centre of the domain. Indeed as the initial velocity field is equal to zero everywhere, the maximum change has to occur for y close to 0 and the simulation will stop when ∀(i, j),

|u n (x i , y j ) -u n-1 (x i , y j )| � 10 -7
i.e.

∀(i, j), |u n (x i , y j ) -u n-1 (x i , y j )| max y u theory (y) � 2.5 × 10 -5 ,
where (x i , y j ) are the computational points, the exponents n-1 and n are the numbers of the timesteps and |u n (x i , y j )u n-1 (x i , y j )| is maximal for y j close to 0.

As the error is always lower than 2% the Gerris-obtained result is more than satisfactory for two-phase Poiseuille flow in horizontal geometry. Slanted geometry The same test is then realised in a slanted geometry. Once again the angle between the flow direction and the x axis is chosen equal to θ = arctan 1/2 (mod 2π). The geometry of the test is presented in Figure 2.28. The convergence is limited to an error of order 10 -4 , whatever the norm and whatever the way the solids are generated. The convergence is however slightly better for the standard modelling of the solids. One can also note that the convergence is slightly worse than in the single-phase case.

θ ρ 1 , µ 1 ρ 1 , µ 1 ρ 2 , µ 2
The floor value is nonetheless sufficiently small to consider that the convergence of the result returned by Gerris is good.

A comparison between the results returned by the Gerris Flow Solver and the theoretical curve is presented in Figure 2.30 in the case µ 2 /µ 1 = 2. The corresponding For the same reason as above, when using the standard modelling of solids by the Gerris Flow Solver, the results underestimate the theoretical velocity, and the maximum error is obtained at the centre of the domain.

On the contrary, when using the modelling of the solid phase presented in the second part of Section 2.1.7, the results overestimate the theoretical velocity and this overestimation can be of order 10% of the maximum theoretical velocity. This higher difference between the theoretical and computed results is mainly due to the fact that the zero velocity condition is not imposed at the boundary between fluid and solid phases, but at the nearest computational point. This problem is illustrated in when using a fluid modelling of solid phase the highest error occurs at the interface between fluid and solid phases (see Figure 2.32).

It can also be noted in Figure 2.31 that proportionally to the theoretical value, the error is higher close to the boundary in both modellings of the solid phase. The origin of such a high error is a result of the really low expected value, i.e. (u theory ) -1 � 1.

When removing the values close from the boundaries, one gets curves looking very much like those of Figure 2.27, but with higher error values for abscissae far from the centre of the flow.

Permeability of a randomly-generated porous medium

In order to address accuracy issues in 3D simulations of invasion in a porous medium, we measured the numerical permeability of a 3D random porous medium at different porosities.

Cancelliere et al. [START_REF] Cancelliere | The permeability of a random medium: Comparison of simulation with theory[END_REF] compared numerical calculations of the permeability obtained from lattice-Boltzmann equation in three-dimensional porous geometries constructed by the random positioning of penetrable spheres of equal radii with previously established rigorous variational upper bounds (see Figure 2.34). Their results are however to be criticised [START_REF] Martys | Universal scaling of fluid permeability for sphere packings[END_REF] for while they present permeability results for porosities going down to 0.022, it has been shown that for the overlapping sphere models percolation cannot occur when φ � 0.03. We will nonetheless compare our results to theirs. (2.53)

Similarly to [START_REF] Cancelliere | The permeability of a random medium: Comparison of simulation with theory[END_REF], the results are confronted to an established rigorous variational upper bound and several estimates of the permeability.

Weissberg and Prager [START_REF] Weissberg | Viscous Flow through Porous Media. III. Upper Bounds on the Permeability for a Simple Random Geometry[END_REF] were indeed able to calculate an upper limit of the permeability for a specific solid fraction (when considering every possible geometry)

in the penetrable-sphere model

k * ≡ -2φR 2 9 lnφ = φ 6πRn , (2.54) 
where φ is the porosity, R the radius of the spheres and n the number of sphere centres per volume unit.

Brinkman presented an estimate of the permeability [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF], which is applicable to a dilute collection of nonoverlapping spheres, i.e. at high porosity. This approximation can be written as

k = 1 6πRn � 1 + 3 4 η(1 - � 8/η -3) � (2.55) 
with η = 1φ the solid fraction.

The second theoretical curve is the semiempirical Kozeny-Carman equation (mediumand low-porosity model) [START_REF] Kozeny | Ueber kapillare leitung des wassers im boden[END_REF][START_REF] Carman | Flow of gases through porous media[END_REF][START_REF] Carman | Fluid flow through granular beds[END_REF]]

k = φ 3 6s 2 , (2.56) 
where the specific surface area s is given analytically for the penetrable-sphere model by s = 4πR 2 nφ [START_REF] Weissberg | Viscous Flow through Porous Media. III. Upper Bounds on the Permeability for a Simple Random Geometry[END_REF]. This particular form of the Kozeny-Carman equation results from a model of a porous medium constructed from a collection of capillary tubes placed with equal probability in each of the three orthogonal directions.

One should note that, unlike the small η agreement with the Brinkman estimate, agreement with the Kozeny-Carman equation is not expected, in general: some porous media conform to it while others do not [START_REF] Cancelliere | The permeability of a random medium: Comparison of simulation with theory[END_REF].

The solid phase is modelled by fluid with zero-velocity condition in both Gerris Flow Solver and ParisSimulator simulations. In the case of Gerris, two cases are considered: with and without the addition of the drag force introduced in section 2.1.7.

As there was no notable difference between the results obtained with or without drag force for high porosity, those obtained with the addition of a drag force in the solid i.e. whether it is due to an overestimation of the velocity as a result of the imposition of the zero-velocity at the computational nodes rather than at the interface between fluid and solid phases. As this effect is corrected in ParisSimulator, it was easy to conclude that its influence in the higher permeability was negligible (at least for these porosities). Finally, it seems that this higher permeability is a result of the geometry and maybe of the way it was obtained (based on different lattices, see above).

At low porosity, the effect of the presence or the absence of a drag force to oppose the development of a velocity between two timesteps becomes noticeable. While in absence of such a drag force the permeability of the system decreases as ln k ∼ -mη + p, (m, p) ∈ (R + ) 2 (as a reminder, η = 1φ), resulting in much too high permeabilities at low porosity and a fortiori when percolation cannot occur (φ � 3%, see above) due to numerical error, the calculated permeabilities follow the same curve whether obtained with Gerris or with ParisSimulator when adding this force. With decreasing porosities these permeabilities tend to come closer to the Kozeny-Carman estimate.

For really low porosities (φ � 10%), the results obtained with ParisSimulator are even closer to the Kozeny-Carman curve than those of Cancelliere et al. Due to a lack of precision there is no data with the Gerris Flow Solver at such porosities.

A convergence study was realised by considering the variation of the measured permeability for different timesteps at a specific porosity, with unconcluding results.

It was indeed impossible to observe any convergence of the measured permeability with decreasing timesteps (see Figure 2.37).

One can however conclude that for a huge range of porosities the permeability obtained with the Gerris Flow Solver seems satisfactory, from a qualitative point of view. One should nonetheless not forget to add the drag force in the solid phase for low porosity i.e. those of interest when considering flow in porous media. Provided one adds it, the model is validated by these results. 

3D simulations of invasion in oil-filled real porous media

Simulations of invasion of brine in 3D real porous media are realised. The considered rock is a sandstone whose geometry was obtained by X-ray microtomography.

X-ray microtomography

X-ray (micro)tomography ((µ)CT) is a means to view porous medium interior without destroying it. It was first developed for radiological imaging purposes in 1972 [START_REF] Hounsfield | A Method of and Apparatus for Examination of a Body by Radiation Such as X or Gamma Radiation[END_REF].

CT scanners measure the attenuation of a beam of X-rays as it is rotated around the object at angular increments within a single plane and then generate cross-sectional images of the objet [START_REF] Akin | Computed tomography in petroleum engineering research[END_REF]. Fourier transforms are then used to reconstruct a crosssectional image. Three-dimensional images can finally be generated by interpolating among cross-sectional images. Considering three X-ray-based techniques for measuring fluid saturations (i.e. single-beam attenuation, xeroradiography 17 and CT), all these methods give similar results. However CT has a finer resolution at the millimeter scale (micrometer scale for µCT) [START_REF] Sedgwick | Application Of X-Ray Imaging Techniques To Oil Sands Experiments[END_REF]. 17 Xeroradiography is a type of X-ray in which a picture of the body is recorded on paper rather than on film. In this technique, a plate of selenium, which rests on a thin layer of aluminium oxide, is charged uniformly by passing it in front of a scorotron. [START_REF] Wikipedia | Xeroradiography -Wikipedia, The Free Encyclopedia[END_REF] During a CT scanner, X-rays penetrate a small volume of porous medium at different angles as the X-ray source rotates around the medium. The transmitted X-ray intensity is then recorded by a series of detectors. The measure focuses in each volume element (or voxel) on the linear attenuation coefficient defined in Beer-Lambert law [START_REF] Bouguer | Essai d'optique sur la gradation de la lumière[END_REF][START_REF] Heinrich | Photometria sive de mensura et gradibus luminis colorum et umbrae[END_REF]310]

I I 0 = exp(-ξh) (2.57)
with I 0 the incident X-ray intensity, I the remaining intensity after the X-ray penetrates a slice of homogeneous sample of thickness h, and ξ the linear attenuation coefficient. This equation is easily modified for a heterogeneous medium and gives the energy transmitted along a particular ray path ln

� I I 0 � = � L 0 ξ(h(x, y)) dh (2.58)
with h(x, y) the 2D variation attenuation coefficient and L the path length from source to detector.

Though Beer-Lambert law considers only a narrow monochromatic X-ray beam, usual beams are polychromatic, resulting in possible imaging artefacts. Moreover the efficiency of the detectors is energy-dependent. Thus

I = � e h e l dI 0 dE ε(E) exp � - � h 0 ξ(h(x, y)) dL � dE (2.59)
where dI 0 /dE is the spectral distribution of the incident radiation, ε(E) the detector efficiency at energy E and e l and e h the boundaries of the relevant spectrum of energy.

The attenuation coefficient now depends on the position and the energy.

In practice, one assumes that attenuation is uniform for all energies and equation (2.58) is used. As the images are consequently blurred, it is usual to add a convolution or filtering process in order to enhance the precision.

One should also note that the attenuation coefficient depends on both the electron density ρ and an effective atomic number Z [START_REF] Vinegar | Tomographic imaging of three-phase flow experiments[END_REF] ξ = ρ(a

+ bZ 3.8 /E 3.2 ) (2.60)
where a is called the Klein-Nishina coefficient [START_REF] Klein | Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac[END_REF] and b is a constant. 

Invasion of porous media in both water-wetting and oil-wetting cases

The invasion of an oil-filled porous medium by water is simulated both in waterwetting and in oil-wetting case.

Contact angle in Gerris

In default mode (i.e. with the default modelling of the solid phases) and with the present implementation, Gerris only considers 90°contact angles ( When modelling the solid phase as a fluid phase with no velocity (section 2.1.7), it is no longer possible to obtain 90°contact angle. Due to the modelling of the solid phase as a fluid, the software considers the solid phase to be either a part of the aqueous phase or a part of the organic one (Figure 2.39). Due to surface tension, the only possible cases are either totally wetting (the solid phase is then aqueous phase with no velocity) or totally non-wetting (the solid phase is then organic phase with no velocity). Note also that any connected subregion of the solid phase only has one wettability by construction 18 . Disconnected subregions can however present diverse wettabilities.

Simulation of a single pore

The geometry was obtained through the successive steps of X-ray microtomography, image analysis and segmentation all operated by TOTAL researchers. The 3D rock is Bentheimer sandstone with a permeability k ∼ 2 Darcy. Only part of the overall geometry file is considered, i.e. The simulation is realised with 64 3 computational cells.

The injection is realised at constant massflow from one side of the cubic domain.

The opposite face is imposed an outflow boundary condition p = 0, (2.61a) Logically, the time to breakthrough is shorter in the oil-wetting case than in the water-wetting case (Figure 2.41). As the fluid fills a bigger part of the pore in the water-wetting case (Figure 2.42), both the average position of the interface and the position of the tip of the finger will move less rapidly in the pore and be closer to the entry face at a given time than in the oil-wetting case.

∂ x u = 0. ( 2 
Moreover, due to wettability effects, the shape of the injected finger will be closer to that of the pore in the water-wetting case (Figure 2.43). Indeed, in the oil-wetting case, surface tension will tend to smooth the shape of the finger.

In a second time, the viscosity ratio was varied (from M = 1/2.5 to M = 1/2500) in order to study its effect on the modification of the breakthrough time. The results

showed that the physical time to breakthrough in a single pore does not change much when changing the viscosity ratio, especially in the oil-wetting case (Figure 2.44).

- Finally, it should be noted that the CPU time required to reach breakthrough is increasing for decreasing viscosity ratios (Table 2.3). It should also be noted that though this increase is small for high viscosity ratios (M > 1/250), it takes twice as much time to reach breakthrough when M = 1/2500 as for M = 1/250 (more iterations required to converge, which is bad for the overall scalability).

Invasion of a 3D porous medium with several pores

A 3D porous medium with several pores is then considered. Case with 256 3 voxels A geometry file with 256 3 voxels is considered. The physical size of the simulation is thus 737.28 3 µm 3 , meshed with 256 3 computational cells.

The injection is realised at constant massflow from one side of the cubic domain.

The opposite face is imposed an outflow boundary condition. Periodic boundary conditions are imposed to the other faces of the domain. The viscosity ratio is M = µwater µ oil = 1/10, the capillary number of the invading fluid is Ca ∼ 3 • 10 -2 , and the Reynolds number 19 Re ∼ 100. The simulation is realised with both 8 cores and 64 cores on the cluster babbage2, to compare CFL numbers and Z/np.

One can observe that the number of cell updates per second and per core Z/np is multiplied by a factor 2 when using 64 cores compared to simulations realised with 8 cores (Figure 2.45). This increase is quite astounding if we also consider that moving from 8 to 64 cores implies using several nodes instead of only one, with all the subsequent increase of connection times. An explanation would be that the low value of Z/np for 8 cores results from a saturation of the cache memory, due to a geometry overload. 19 As the CFL number varies as CFL ∝ Ca γ-1/2 Re 1/2 (equation 2.46), it was chosen to consider arbitrarily high Reynolds number in order not to reduce the CFL number too much and to allow to reduce the capillary number in a second step with reasonable additional CPU time. Finally, obvisously the CFL number depends on the characteristics of the simulations, even for slight modifications. For example, the simulations whose CFL numbers are represented in Figure 2.49 differ only by how the meshing is adapted (everything else is unchanged). The change of cluster can be overlooked when considering that the simulation leading to the results obtained on cluster Rostand was also realised on cluster Jade with minor modifications.

Case with 400 3 voxels We consider a geometry file with 400 Reynolds number Re ∼ 250 (based on a lengthscale equal to a quarter of the domain size, as the exact typical pore size is unknown.). The simulation is realised on cluster Rostand on 400 cores. Breakthrough is reached after one day of wall-clock CPU time.

The development of the fingering process is presented in Figure 2.51.

On these pictures, the interface between injected and receding fluids is represented.

The color of the interface depends on the velocity of the fluid (closer to blue is slower while closer to red is faster). The geometry-induced fingering process is obvious, as one could expect.

The same simulation is finally realised for varying capillary numbers at constant Reynolds number. The different capillary numbers range from 3•10 -2 down to 3•10 -5 .

The position of the tip of the most-advanced finger (can vary during the simulation) is presented in Figure 2.52.

For decreasing capillary number, the velocity of the tip of the most-advanced finger decreases substantially. Due to this drastic decrease of the invasion velocity, one can wonder whether, though the unwanted numerical velocity that is created between two timesteps inside the solid matrix is small (see section 2.1.7), its amplitude is high enough to allow the invading fluid to penetrate the fluid-modelled solid matrix. The pictures presented in Figure 2.53 contradict this hypothesis. It can however be observed in those pictures that the invading fluid creates thicker fingers for lower capillary number. This seems logical because as the effect of surface tension is more important in those cases it will tend to reduce the curvature of the fingers. Thus the invading fluid fills the pores more extensively, i.e. expels a higher part of the receding fluid from the pores it invades. This effect will create the well-known Bretherton films whose thickness t varies as20 Ca 2/3 [START_REF] Bretherton | The motion of long bubbles in tubes[END_REF][START_REF] Aussillous | Quick deposition of a fluid on the wall of a tube[END_REF].

Conclusion

The Gerris Flow Solver, written in C, was used to solve two-phase Navier-Stokes equations for an incompressible flow in a quad/octree adaptive mesh. In this code, method and surface tension is obtained with a CSF approach. Gerris can be used in parallel and allows adaptive mesh refinement.

Two different modellings of the solid phase are considered: the default one and the "virtual solids" method. As the use of the second approach results in a better computational speed, with reasonable accuracy, the default modelling of solids is not used in the remainder of the study.

In 3D invasion of porous media, the wall-clock CPU time to breakthrough (obviously) varies as the inverse of the CFL number. However, it was shown that the CFL number varies as CFL ∝ Ca γ La 1/2 = Ca γ-1/2 Re 1/2 with γ > 1/2 depending on the fractal aspect of the fingering process. This is bad news, when one considers that flows in porous media occur at low Reynolds and capillary numbers.

Simulations of real rocks were realised in three dimensions with very promising results. It was however not possible to attain realistic Reynolds and capillary numbers, due to the dependency of the CFL number to both dimensionless numbers. It was nonetheless possible to simulate flows in domains of physical size up to 1 mm3 in reasonable CPU time.

From such simulations, it would be possible to obtain absolute and/or relative permeabilities of rocks, to be used in Darcy-scale studies of viscous fingering.

CHAPTER 3 2D viscous fingering

A variety of pattern forming phenomena, ranging from the growth of bacterial colonies to snowflake formation, share similar underlying physical mechanisms and mathematical structure. Viscous fingering, considered here, is a paradigm for such phenomena.

Dense-branching or dendritic morphologies are amongst the most common forms of microstructural patterning in systems driven out of equilibrium [START_REF] Langer | Dendrites, Viscous Fingers, and the Theory of Pattern Formation[END_REF][START_REF] Ben | The formation of patterns in non-equilibrium growth[END_REF][START_REF] Langer | Instabilities and pattern formation in crystal growth[END_REF]. By understanding the formation kinetics and the interplay of system parameters one could provide understanding of growth and form in nature as well as to achieve improved control and efficiency in a variety of physical, biological, and engineering systems.

Prediction and control of the shape of emergent patterns are both difficult due to the nonlocality and nonlinearity of the system.

In a Hele-Shaw cell [START_REF] Hele-Shaw | Flow of water[END_REF], Saffman and Taylor [START_REF] Saffman | The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid[END_REF] demonstrated, using linear stability theory, that when a fluid of lower viscosity is injected into a fluid of higher one at a constant pressure or injection rate, the interface becomes unstable and develops a fingered pattern. Though surface tension suppresses the growth of perturbations, linear theory predicts that successively higher wave number perturbations become unstable as the air bubble grows (Figure 3.1). Nonlinear interactions amongst different modes then become important and the nonlinear evolution leads to the usual densebranching morphologies [START_REF] Saffman | The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid[END_REF][START_REF] Chuoke | The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media[END_REF][START_REF] Mclean | The effect of surface tension on the shape of fingers in a Hele Shaw cell[END_REF][START_REF] Park | Two-phase displacement in Hele-Shaw cells: experiments on viscously driven instabilities[END_REF][START_REF] Maher | Development of Viscous Fingering Patterns[END_REF][START_REF] Ben-Jacob | Formation of a Dense Branching Morphology in Interfacial Growth[END_REF][START_REF] Cummins | Successive bifurcations in directional viscous fingering[END_REF][START_REF] Praud | Fractal dimension and unscreened angles measured for radial viscous fingering[END_REF][START_REF] Li | A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell[END_REF]. In a theoretical study of viscous fingers in 90°sector geometry, Brener et al. [START_REF] Brener | Selection of the Viscous Finger in the 90°Geometry[END_REF] suggested that if the injection rate instead scales with time like t 1/3 it may be possible to obtain self-similar growing single fingers for finite surface tension, thus avoiding the dense-branching morphology regime. Indeed, this is the unique scaling for which non-linear self-similar evolution can be obtained [START_REF] Brener | Selection of the Viscous Finger in the 90°Geometry[END_REF][START_REF] Combescot | Selection of Saffman-Taylor fingers in the sector geometry[END_REF][START_REF] Li | Nonlinear theory of self-similar crystal growth and melting[END_REF].

When one considers the limit in which the viscosity of one fluid and the surface tension tend to zero, the equations governing the flow are quite simple. Whilst the pressure field p satisfies the Laplace equation [START_REF] Tang | Diffusion-limited aggregation and the Saffman-Taylor problem[END_REF], the interface will move according to Darcy's law (a precise derivation can be found in Section 1. While the cell initially used by Saffman and Taylor was a long narrow Hele-Shaw channel with parallel walls, more recent works have considered radial [START_REF] Bataille | Stabilité d'un écoulement radial non miscible[END_REF][START_REF] Paterson | Radial fingering in a Hele Shaw cell[END_REF][START_REF] Fast | Moore's law and the Saffman-Taylor instability[END_REF][START_REF] Li | Control of Viscous Fingering Patterns in a Radial Hele-Shaw Cell[END_REF] and wedge [START_REF] Combescot | Selection of Saffman-Taylor fingers in the sector geometry[END_REF][START_REF] Thomé | The Saffman-Taylor instability: From the linear to the circular geometry[END_REF][START_REF] Arneodo | Statistical analysis of offlattice diffusion-limited aggregates in channel and sector geometries[END_REF] geometries, alongside the historical linear one [START_REF] Park | Two-phase displacement in Hele Shaw cells: theory[END_REF][START_REF] Mclean | The effect of surface tension on the shape of fingers in a Hele Shaw cell[END_REF][START_REF] Bensimon | Viscous flows in two dimensions[END_REF][START_REF] Bensimon | Stability of viscous fingering[END_REF][START_REF] Tanveer | Surprises in viscous fingering[END_REF], in both experimental and numerical ways. Because of the typical fingering that can be observed in DLA simulations [START_REF] Witten | Diffusion-limited aggregation[END_REF][START_REF] Sander | Fractal growth processes[END_REF], flow in porous media experiments [START_REF] Knut | Viscous Fingering Fractals in Porous Media[END_REF][START_REF] Chen | Pore-Scale Viscous Fingering in Porous Media[END_REF][START_REF] Van Meurs | A Theoretical Description of Water-Drive Processes Involving Viscous Fingering[END_REF][START_REF] Van Meurs | The Use of Transparent Three-Dimensional Models for Studying the Mechanism of Flow Processes in Oil Reservoirs[END_REF][START_REF] Homsy | Viscous fingering in porous media[END_REF] and flow in a Hele-Shaw cell [START_REF] Park | The instability of long fingers in Hele-Shaw flows[END_REF], interest was historically focused on the fractal aspect of these fingers [START_REF] Thomas | Diffusion-limited aggregation: A model for pattern formation[END_REF][START_REF] Sander | Fractal Growth Processes[END_REF].

Sharon et al. [START_REF] Sharon | Coarsening of Fractal Viscous Fingering Patterns[END_REF] showed, while studying the coarsening of viscous fingering, that in the case of central injection of a less viscous fluid in a Hele-Shaw cell filled with a more viscous fluid, the fractal dimension of the resulting fingering was close to the one of circular DLA (both measured [START_REF] Conti | Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters[END_REF] and theoretical [START_REF] Davidovitch | Convergent calculation of the asymptotic dimension of diffusion limited aggregates: Scaling and renormalization of small clusters[END_REF]). 

Viscous fingering in a Hele-Shaw cell

This section is mainly extracted from reference [START_REF] Davis | Perspectives in fluid dynamics: a collective introduction to current research[END_REF] with minor modifications.

Growth in a Laplacian field

An interface separates two regions of a plane. Let us consider the case where the pressure is constant in one region (labelled 1, viscosity µ 1 ) and satisfies the Laplacian in the other one (labelled 2, viscosity µ 2 > µ 1 )

∇ 2 p = 0. (3.1)
Interest is focused on situations in which the interface between the two fluids of distinct viscosities moves towards region 2 in a local gradient of p with a normal velocity

v n ∝ n • ∇p, (3.2) 
with n the normal unit vector to the interface directed towards the fluid of higher viscosity. The displacement of the interface modifies the field p with an effect on the interface velocity. This process leads to the so-called Saffman-Taylor instability.

If one considers a situation where the two fluids are initially separated by a flat interface with a small perturbation of lengthscale L, it is easy to determine that the curves of constant values of p will be parallel lines, only distorted in front of the bump (Figure 3.2). Due to a property of Laplacian fields, this distortion will only affect these curves on a lengthscale of order L. The gradient of p is consequently locally larger in front of the protrusion. The same occurs to the velocity and the amplitude of the protusion will grow: the interface is unstable. One should however note that if the fluids were flowing in the opposite direction, the protusion would tend to disappear.

Ideally, the more pointed the protrusion the larger the gradient and the velocity.

Several works consequently have suggested that the instability will then lead to the formation of cusp-like singularities in finite time [START_REF] Shraiman | Singularities in nonlocal interface dynamics[END_REF][START_REF] Howison | Fingering in Hele-Shaw cells[END_REF][START_REF] Bensimon | Tip-splitting solutions to a Stefan problem[END_REF]. However in real experiments, the interface is stabilised at small scales due to surface tension.

Linear stability analysis of the front between two fluids of different viscosity

Linear stability analysis is a common tool allowing to predict whether a flow is stable. As this analysis has to be performed with regard to perturbations of all spatial periodicities, a straight interface with a periodic disturbance of arbitrary wave-vector k is considered [START_REF] Chuoke | The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media[END_REF].

The basic flow

A Hele-Shaw cell is modeled by an infinite plane in which the two fluids occupy two half-planes separated by a linear interface (dashed line on Figure 3.3). In the basic state the two fluids move along the x-axis with velocity

u 0 i = U, (3.3) 
where i = 1 or 2 respectively for the two fluids.

By integrating Darcy's law, one can find the pressure distribution

p 0 i = U K i (x -U t), (3.4) 
where p = 0 on the interface located at x = ζ = U t and K i = -b 2 /(12µ i ).

The disturbance of the interface

A sinusoidal disturbance of wave-vector k is imposed on the interface, in order to determine whether the amplitude of the disturbance will grow (unstable) or decrease in time (stable). A small disturbance amplitude � exp(σt) is chosen. The front is stable if σ � 0 for all k. On the contrary, the flow will be unstable for all values of k such that σ > 0. At time t the interface is

ζ = U t + �e ωt sin ky. (3.5) 
The velocity and pressure fields can be written as the addition of the basic values and the disturbance

p T i = p 0 i + p i and u T i = u 0 i + u i . (3.6)
Darcy's law and incompressibility equation (equation (3.1)) are valid for both undisturbed and total disturbed fields. They are thus still holding for the disturbance (u i and p i ). Solutions of the form

p i = p � i (x, t) sin ky, (3.7) 
i.e. having the same spatial periodicity, are looked for. The amplitude p � i will either grow or decrease in time with the interface disturbance itself. Its dependence on x ensures that on moving away from the interface the disturbance of the pressure field tends to zero. Due to its Laplacian-dependence, the pressure field has to decrease exponentially with a length scale fixed by k p 1 = A 1 e ωt+kx sin ky and p 2 = A 2 e ωt-kx sin ky.

(3.8)

Continuity of the normal velocities at the interfaces

At the interface, the continuity of the normal component of the velocity can be approximated in the limit of small deformations by

u x 1 = u x 2 = ∂ζ ∂t -U, (3.9) 
resulting in

K i � ∂p i ∂x � x=ζ = �ωe ωt sin ky. (3.10)
It is thus possible to determine A 1 and A 2 by keeping the first-order terms and considering ζ = U t. One gets the following pressure fields

p 1 = �ω K 1 k e ωt+k(
x-U t) sin ky and p 2 = -�ω K 2 k e ωt-k(x-U t) sin ky.

(3.11)

The pressure jump at the interface due to surface tension

Surface tension induces a pressure jump Δp given by Laplace's law. The curvature κ 2 in the z-direction can be considered to be of order κ 2 ≈ 2/b and constant along the interface, so that its dynamical effect can be neglected (section 1.2.6). Only κ 1 (xy plane) is taken into account. This bold assumption neglects the wetting films left on the solid surface when the viscous fluid is pushed out of the cell. These wetting films have a thickness which is a function of the normal velocity of the interface [START_REF] Bretherton | The motion of long bubbles in tubes[END_REF][START_REF] Landau | Dragging of a liquid by a moving plate[END_REF].

Both experimental [START_REF] Tabeling | An experimental study of the Saffman-Taylor instability[END_REF] and theoretical [START_REF] Reinelt | The effect of thin film variations and transverse curvature on the shape of fingers in a Hele-Shaw cell[END_REF] results have shown this assumption is not always valid. Tanveer [START_REF] Tanveer | Analytic theory for the selection of Saffman-Taylor fingers in the presence of thin film effects[END_REF] addressed the complete three-dimensional system and showed within which limits the two-dimensional assumption is valid.

When neglecting the higher-order terms in the expression of the curvature, one can write in 2D 

p T 2 (ζ) -p T 1 (ζ) = σ ∂ 2 ζ ∂y 2 , (3.12) with p T 2 (ζ) -p T 1 (ζ) = p 0 2 (ζ) -p 0 1 (ζ) + p 2 (ζ) -p 1 (ζ). ( 3 
ω = � K 1 -K 2 K 1 + K 2 � U k + σ � K 1 K 2 K 1 + K 2 � k 3 , (3.14) 
i.e.

ω = � µ 2 -µ 1 µ 1 + µ 2 � U k -σ b 2 12 � 1 µ 1 + µ 2 � k 3 . (3.15)
In the case where

µ = µ 2 � µ 1 ω ≈ U k -σ b 2 12µ k 3 . (3.16)
The disturbance with maximum growth rate ω has a wave-vector

k c = 2 b √ Ca, (3.17) 
with Ca = µU/σ, which corresponds to the most unstable wavelength

l c = πb Ca -1/2 . (3.18)
The interface is however unstable for all wave-vectors verifying k < k max = √ 3k c .

The existence of stable curved fronts

The instability of the plane fronts does not preclude the possibility of existence of stable steady solutions (e.g. Saffman-Taylor finger and parabolic needle crystal).

Isotropic case 3.2.1.1 Linear channel

This configuration is characterised by its translational invariance along the cell. In this geometry, the nature of the pattern is controled by a parameter proportional to the square of the ratio of the small to the large scale (the width W of the channel)

B = σ 12µU � b W � 2 = 8.45 × 10 -3 � l c W � 2 . (3.19)
For a wide range of values of B a lone finger is observed, moving steadily with a well-defined width and shape (see Figure 3.4). The ratio λ of the finger width to the By conformal mapping [START_REF] Saffman | The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid[END_REF], it can be shown that in the absence of surface tension the shape of the interface in the Hele-

Shaw cell R × [-W/2, W/2] follows x = W (1 -λ) 2π ln 1 2 � 1 + cos � 2πy λW �� (3.20)
where λ, their relative width, can take any value from 0 to 1 (Figure 3.5).

It however took some time to explain why a particular solution was selected.

Such an explanation required to investigate the role of surface tension. The selection was first obtained in numerical investigations [START_REF] Mclean | The effect of surface tension on the shape of fingers in a Hele Shaw cell[END_REF][START_REF] Schwartz | Simulation of Hele-Shaw fingering with finite-capillary-number effects included[END_REF][START_REF] Vanden-Broeck | Fingers in a Hele-Shaw Cell with surface tension[END_REF] and later understood in analytic works [START_REF] Combescot | Shape selection of saffman-taylor fingers[END_REF][START_REF] Combescot | Analytic theory of the Saffman-Taylor fingers[END_REF][START_REF] Hong | Analytic Theory of the Selection Mechanism in the Saffman-Taylor Problem[END_REF][START_REF] Shraiman | Velocity Selection and the Saffman-Taylor Problem[END_REF]. Surface tension introduces higher-order terms in the integro-differential equation defining the interface, but cannot be treated as a perturbation. When considering the small terms due to surface tension in the limited expansion, a solvability condition is introduced by the required smoothness at the tip of the finger. For each value of B, there is only one discrete set of solutions of width λ n satisfying this condition: all these solutions tend to have a width 0.5 for vanishing

B. For very low values of B they vary as

� λ n - 1 2 � = 1 8 a n (16π 2 B) 2/3 (3.21)
with a n = 2(n + 4/7) 2 . This dependence can also be found numerically (Figure 3.6).

Amongst the various branches, only the lower one is stable: the others are unstable through tip splitting [START_REF] Bensimon | Dynamics of curved fronts and pattern selection[END_REF][START_REF] Tanveer | Analytic theory for the linear stability of the Saffman-Taylor finger[END_REF][START_REF] Kessler | Pattern selection in fingered growth phenomena[END_REF].

One can finally note that an equivalent to surface tension can be introduced in DLA growth. It is then possible to recover the stable isotropic Saffman-Taylor finger in a linear channel [START_REF] Kadanoff | Simulating hydrodynamics: A pedestrian model[END_REF][START_REF] Liang | Random-walk simulations of flow in Hele-Shaw cells[END_REF].

Sector-shaped cells

In a wedge-shaped cell the viscous finger moves between two lateral walls forming an angle θ w . This angle is usually considered positive when the finger moves in the divergent direction. One can consider the parameter B = 8.45 × 10 -3 (l c /θ w r)

2
where rθ w is the curvilinear local width W (r). A single finger occupies a finite fraction is kept constant, i.e. U decreases as r -2 , the finger grows as a self-similar structure.

In other cases, the finger becomes spontaneously unstable (Figure 3.7(a)).

Neglecting surface tension, a theoretical set of self-similar functions was first disovered for θ w = 90 • [START_REF] Thomé | The Saffman-Taylor instability: From the linear to the circular geometry[END_REF]. Then families of solutions parameterized by their width λ θw were found for any value of θ w [START_REF] Ben | Exact self-similar shapes in viscous fingering[END_REF]. The selection due to isotropic surface tension was then investigated both numerically [START_REF] Ben Amar | Selfdilating viscous fingers in wedge-shaped Hele-Shaw cells[END_REF][START_REF] Ben | Viscous fingering in a wedge[END_REF] and analytically [START_REF] Combescot | Selection of Saffman-Taylor fingers in the sector geometry[END_REF]. Similar to the parallel channel geometry, for each value of B there is a discrete set of solutions (Figure 3.8). A comparison with the channel geometry highlights that the selected widths λ θw are shifted to higher values. Moreover levels n = 1 and n = 2 coalesce at a value B 1 and thus form a loop: those levels consequently do not exist for B < B 1 . Indeed experimental results show that at constant velocity the finger becomes unstable when reaching the limit value B 1 .

Figure 3.9: The growth of a parabolic dendritic monocrystal.
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Circular geometry

In the axisymmetric geometry the front destabilizes spontaneously after some time at the scale l c and radially growing fingers are formed. These fingers look like those obtained in wedges [START_REF] Thomé | The Saffman-Taylor instability: From the linear to the circular geometry[END_REF]. Each finger grows as if enclosed in a cell with virtual walls formed by the bisectors of the region separating this finger from its neighbours.

Non-isotropic case 3.2.2.1 The dendrite

The structures formed during crystallisation of a solution or a melt are dendrites (Figure 3.9). Each dendrite is a monocrystal with parabolic tip growing in a welldefined direction (one of the main axes of the crystal lattice). The curved front becomes unstable at some distance from the tip and lateral branches grow along other main crystallographic directions.

The anomalous Saffman-Taylor finger

One can wonder whether it is possible to obtain viscous fingers looking like dendrites.

It is indeed possible when preferential directions of growth are imposed on viscous fingering [START_REF] Chen | Pore-Scale Viscous Fingering in Porous Media[END_REF][START_REF] Ben-Jacob | Experimental demonstration of the role of anisotropy in interfacial pattern formation[END_REF][START_REF] Buka | Transitions of viscous fingering patterns in nematic liquid crystals[END_REF]. Actually, selection is a singular effect occurring at the tip, so a single disturbance localised there is sufficient to modify the growth [START_REF] Couder | Dendritic Growth in the Saffman-Taylor Experiment[END_REF][START_REF] Couder | Narrow fingers in the Saffman-Taylor instability[END_REF].

The effect of such a disturbance is as thus. In radial configuration, the fingers will grow faster than normal, have stable tips and exhibit dendritic-like side branches. In Fingers grown in channels of different width have very different λ (even at same velocity) but a similar tip. From equation (3.20) the radius of curvature at the tip is

r σ = λ 2 W π(1 -λ) . (3.22)
r σ is constant for anomalous fingers grown in various cells at the same velocity with the same disturbance. However, for varying velocities, it is proportional to the capillary 

r σ = αl c . (3.23)
The coefficient α depends on the strength of the applied disturbance. As the radius of curvature varies for a dendrite as r d = 0.5� -7/5 l sc c with � the anisotropy and l sc c the instability length scale [START_REF] Dougherty | Steady-state dendritic growth of NH 4 Br from solution[END_REF][START_REF] Maurer | Three-Dimensional Structure of NH 4 Br Dendrites Growing within a Gel[END_REF] anomalous fingers and dendrites obey the same rules. This was thoroughly investigated experimentally [START_REF] Rabaud | Dynamics and stability of anomalous Saffman-Taylor fingers[END_REF][START_REF] Kopf-Sill | Narrow fingers in a Hele-Shaw cell[END_REF][START_REF] Zocchi | Finger narrowing under local perturbations in the Saffman-Taylor problem[END_REF], numerically [START_REF] Dorsey | Saffman-Taylor fingers with anisotropic surface tension[END_REF][START_REF] Subir | Viscous fingering in an anisotropic Hele-Shaw cell[END_REF] as well as theoretically [START_REF] Hong | Analytic Theory of the Selection Mechanism in the Saffman-Taylor Problem[END_REF][START_REF] Hong | Pattern selection and tip perturbations in the Saffman-Taylor problem[END_REF][START_REF] Combescot | Selection in the anomalous Saffman-Taylor fingers induced by a bubble[END_REF].

In the presence of anisotropy parallel to the channel, the lower level of the discrete set tends towards λ = 0 instead of λ = 0.5 (Figure 3.11). It should be noted that for very fast growing fingers saturation is observed when the tip radius becomes of the order of the cell thickness (r σ ≈ 2.5b, Figure 3.10(b)). The two-dimensional-behaviour hypothesis is no longer valid.

Stability of the curved fronts

Isotropic case

Isotropic curved fronts have a scale of the same order as the channel width. When decreasing B the finger tip will become increasingly similar to a straight front, i.e.

will tend to be unstable at the capillary length l c corresponding to the local normal component of the velocity. Indeed in wedge geometry the finger is destabilized more and more easily through tip splitting for increasing angles [START_REF] Thomé | The Saffman-Taylor instability: From the linear to the circular geometry[END_REF] (when the local value of B at the tip reaches the value B 1 ). By contrast, in the linear channel the lower branch n = 0 (Figure 3.6) is linearly stable while the other branches are unstable [START_REF] Bensimon | Dynamics of curved fronts and pattern selection[END_REF][START_REF] Tanveer | Analytic theory for the linear stability of the Saffman-Taylor finger[END_REF]. However experiments highlight an instability of the finger for B values smaller than 1.4 × 10 -4 (Figure 3.12(a)). As B tends to zero the branches become more closely spaced; the natural noise is then enough to induce a subcritical transition to one of the neighbouring unstable states.

Anisotropic case

For non-isotropic fronts, whether dendrites or anomalous fingers, the tip is defined by the small scale. The tip radius of curvature remains in the same ratio to the capillary length scale for all values of B: for large anisotropy the tip is thus stable. On the contrary, lateral sides are always unstable in dendrites. In the case of anomalous fingers, as the scale of r σ moves away from that of W , λ decreases and the finger shape becomes parabolic in an ever larger region behind the tip. A lateral instability then grows, identical in nature to that of crystalline dendrites (Figure 3.12(b)).

The specificity of the growth of such an instability (advected along a curved front) was first pointed out for flame fronts [START_REF] Zel'dovich | Flame propagation in tubes: hydrodynamics and stability[END_REF]. The growing wave is stretched by a kinematic effect resulting from the growing tangential velocity [START_REF] Pelcé | The Stability of Curved Fronts[END_REF][START_REF] Kessler | Determining the Wavelength of Dendritic Sidebranches[END_REF]. Furthermore each region of the front is unstable. Indeed the normal velocity decreases continuously away from the tip along the curved front. Consequently the maximum amplification rate shifts continuously towards larger wavelengths (equation (3.18)) [START_REF] Caroli | On the linear stability of needle crystals : evolution of a Zel'dovich localized front deformation[END_REF]. The side branching is thus a convective instability [START_REF] Rabaud | Dynamics and stability of anomalous Saffman-Taylor fingers[END_REF][START_REF] Qian | Dendritic sidebranching initiation by a localized heat pulse[END_REF]: the medium behaves as a selective amplifier of the noise [START_REF] Dougherty | Steady-state dendritic growth of NH 4 Br from solution[END_REF]382]. However, if one replaces noise by a periodic forcing of larger amplitude, the instability becomes strictly periodic at the imposed frequency. It is consequently possible to generate a strictly periodic side branching by either modulating the input pressure (acts as a forcing frequency)

or adding a small bubble at the finger tip (forms a small local oscillator, see Fig- 

Implementing Darcy flows in the Gerris Flow Solver

According to Chapter 2, the Euler equations for two-phase flow are written in the Gerris Flow solver as

ρ (∂ t u + u • ∇u) = -∇p + ρf (3.24a) ∂ t c + ∇ • (cu) = 0 (3.24b) ρ = ρ(c) = cρ 1 + (1 -c)ρ 2 (3.24c) 
The Gerris Flow Solver can simulate Darcy flow [START_REF] Afkhami | A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations[END_REF][START_REF] Geordie | Simple example of groundwater flow following Darcy's law. Test case on the Gerris website[END_REF]. Here we also describe how to obtain the time-dependent problem which was not considered in [START_REF] Afkhami | A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations[END_REF]. We cancel the advection term of equation (3.24a) and add a drag force f = -βu (β > 0)

∂ t u = - 1 ρ ∇p -βu. (3.25) 
We decompose the numerical solution into an exact and an error term

u(t) = u 0 + e(t)
with 0 = -∇pρβu 0 for the exact term. The error obeys ∂ t e = -βe (consequence of equation (3.25)) for a steady exact solution and is e = -C exp(-βt). The error will be small after one timestep Δt if βΔt � 1. For a time-dependent exact solution u 0 , the same decomposition shows that the error scales as u 0 /(βT c ) where T c is the characteristic time of the exact solution and it thus requires that βT c � 1. The latter condition is achieved by the choice of length and time units.

Thus the solver produces either a false-transient iteration towards the steady state or adiabatically follows the time-dependent solution of

u = - 1 βρ ∇p. (3.26) 
This equation can simulate Darcy flows if βρ = µ/k.

Saffman-Taylor fingering in a Hele-Shaw cell with central injection

We use the thickness b of the Hele-Shaw cell, the initial average radius R 0 , the viscosity of the outer fluid µ o , and the surface tension σ for non-dimensionalization. This defines the following velocity and pressure gauges:

U = σb 2 12µ o R 2 0 and P = σ R 0 (3.27) 
From now on, all variables are dimensionless.

Equations governing the flow

Similar to references [START_REF] Li | A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell[END_REF][START_REF] Fast | Moore's law and the Saffman-Taylor instability[END_REF], the present study addresses the development of Saffman-Taylor fingering in a Hele-Shaw cell with central injection in the presence of surface tension.

For this purpose, interest is focused on 2D square domains Ω of size L d centred on (0, 0)

Ω = [-L d /2, L d /2] 2 .
The two components of the velocity are (u, v), i.e. u = u(x, y)e x + v(x, y)e y . This domain is initially filled with a high-viscosity fluid (µ = 1). A less viscous fluid (µ = M > 0) is injected from the centre of the domain with a constant massflux

∇ • u = C > 0 inside a circle of radius 0.8 � L d . The side boundaries (x = ±L d /2
and y = ±L d /2) impose a quasi-circular "free" outflow condition for the fluids with Neumann boundary conditions for the velocity:

∂ x u(±L d /2, y) = 0 (3.28a) ∂ y v(x, ±L d /2) = 0 (3.28b)
The fluids are considered incompressible (∇ • u = 0) and move inside the domain ((x, y) ∈

• Ω\Γ with Γ the interface) according to Darcy's law [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Whitaker | Flow in porous media II: The governing equations for immiscible, two-phase flow[END_REF]: 

u = - 1 µ ∇p (3.28c) 
∇ 2 p = 0. (3.29) 
Boundary conditions are given at the interface which hold for the depth-averaged fields:

[[n • u]] = 0 [[p]] = A + λ σ R
Here [[ ]] denotes a jump, R is the principal radius of curvature of the projection, onto the plane, of the tip of the meniscus separating the two phases and λ σ a characteristic lengthscale of the influence of surface tension, multiplied by some coefficient of order 1 [START_REF] Park | Two-phase displacement in Hele Shaw cells: theory[END_REF].

The simulations address two-phase Darcy flows for fluids with viscosity ratios ranging from M = µ 2 µ 1 = 10 -4 up to 10 -2 . Using the pressure field p * presented alongside equation (1.64) and adapted here as p * = p + Ac, we only consider the planar contribution to the radius of curvature

[[p * ]] = λ σ R . (3.31) 
In the following we rename p * as p for simplicity.

The initial data is a slightly perturbed circular interface r(θ) = 1 + 1/10(cos(3θ) + sin(2θ)) [START_REF] Thomas | Removing the stiffness from interfacial flows with surface tension[END_REF]. We only report on the early times r max /L � 1 to avoid finite size effects and mesh-induced anisotropy. We fix λ σ = 1/3 so that the capillary lengthscale is somewhat smaller than the initial radius r and the grid size is h = 1/60. The results are presented in Figure 3.13.

Effects of mesh-induced noise and viscosity ratio

In related simulations (invasion from the side of a rectangular domain) it was found that if care is taken to ensure very low noise levels fingering disappears and plain, nonbranching fingers advance linearly. Thus the simulations incorporate two different kind of noise: numerical or "mesh-induced" noise (resulting from the imperfect convergence The early-time instability amplifies the initial perturbation, then later-time fingers develop due to either mesh-induced noise (pictures 3.13(a) to 3.13(c)), or added noise (pictures 3.13(d) to 3.13(f), strong enough to cover the still-present mesh-induced noise). In this last case, the noise is also axis-dependent, due to the non-isotropic distribution of computational grid points. The viscosity added noise has standard deviation Δ(1/µ) < 1/µ > = 5%. Strictly speaking, this added noise is equivalent to a permeability noise both in the case of porous media and Hele-Shaw cells (Δ(b 2 )/ < b 2 >= 5%). It was added to try to account for the sensitivity of the fingering process to noise [START_REF] Thomé | Controlling singularities in the complex plane: Experiments in real space[END_REF].

The error is due to several contributions: numerical uncertainty as stated above,meshsize effects, finite-size effects (special care was taken to verify they are negligible: a specific flow was considered for several domain sizes L, resulting in convergence with an error lower than 2%), data range used to compute power-law fits, and quality of the fitting process for a specific data range.

At higher viscosity ratios, patches are seen to detach from the main bubble.

Moreover, some fingers tend to reconnect at later times, trapping some high viscosity droplets inside the less viscous main bubble (see pictures 3.13(a) and 3.13(d)).

On the contrary, for lower viscosity ratio, the different early-time fingerings develop separately without uniting one with the other (no detaching droplets; pictures 3.13(c) and 3.13(f)). These two different cases result in different fractal-dimension regimes, presented in Table 3.1 (fitting uncertainty always lower than 2%): at higher viscosity ratio, the inner (lower radii) fractal dimension is higher than the outer (higher radii) one (around 1.8 vs. around 1.6); on the contrary at lower viscosity ratio, there exists only one fractal dimension for the whole bubble (around 1.7). It can be noted that the fractal dimensions obtained at low viscosity ratio are coherent with those presented in Figure 1.33.

It can also be noted that the transition from the two-fractal-dimension regime (high viscosity ratio, see above and Table 3.1) to the one-fractal-dimension one (low visosity ratio) occurs at higher viscosity ratio when the noise amplitude is higher.

Logically, the higher the noise amplitude, the more pronounced the resulting fingering (see Figure 3.13).

Comparison with experimental results

The detaching patches that were numerically highlighted above at higher viscosity ratios can also be seen experimentally (Figure 3.14). Such bubbles can also be observed in experiments of lateral injection in porous media (see Figure 3.15). 

Zero-pressure approximation in the less viscous fluid

When numerically simulating Saffman-Taylor fingering [START_REF] Fast | Moore's law and the Saffman-Taylor instability[END_REF][START_REF] Fast | A moving overset grid method for interface dynamics applied to non-Newtonian Hele-Shaw flow[END_REF], it is common to consider a constant pressure field p 0 inside the less viscous fluid (usually considered equal to zero). This hypothesis is formally equivalent to the assumption of a zeroviscosity invading fluid, due to Darcy's law.

The presence of detaching droplets in pictures 3. The results however do not oppose the zero-pressure approximation in the case of lower viscosity ratios (below 10 -4 ).

Interface length and area of the resulting cluster

In reference [START_REF] Fast | Moore's law and the Saffman-Taylor instability[END_REF], Fast & Shelley explained that long time simulations of Saffman-Taylor fingering revealed an asymptotic scaling regime, where the interface length of the resulting bubble was related to the bubble area by a power-law relation:

Area ∼ (Length) α (in their case, α = 1.45). The variation of this coefficient α is obviously disconnected from that of the fractal dimension D F ; indeed, as an example, one can consider a lone planar dendrite whose length and width vary as t and t γ respectively (with 0 < γ < 1), then D F = 2 whatever the value of γ whereas α = 1 + γ. Approximating fingers by their osculating parabolas [START_REF] Ivantsov | Temperature around a spheroidal, cylindrical and acicular crystal growing in a supercooled melt[END_REF], one gets γ = 1/2 and α = 3/2. In the case of DLA clusters, α = 1 whatever the fractal dimension.

Fast & Shelley also found that at shorter times, a second regime could be defined with another coefficient: α = 0.61. This regime is characterised by numerous tipsplitting events that dramatically increase the number of fingers. On the contrary, at long times the growth rate of the arclength decreases and suggests fewer tip-splitting events occur in this region [START_REF] Li | A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell[END_REF].

From now on, α 1 will be the short time coefficient and α ∞ the asymptotic one.

According to Li et al. [START_REF] Li | A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell[END_REF], though α 1 depends on the initial shape, at later times the scaling α ∞ is initial-data independent.

In the results presented in Figure 3.16, one can observe that the interface is indeed related to the bubble area by a power-law relation with two different regimes. However, the coefficients that we obtain are different: α 1 ≈ 0.38, and α ∞ ≈ 1, depending on the viscosity ratio and noise origin. The error, mostly due to mesh-size effects, on all values of both α 1 and α ∞ is of order 10%. However oscillations in the scaling exponent are inherent to the self-similar character of the fingering [START_REF] Smith | Lacunarity and intermittency in fluid turbulence[END_REF] and could also account for part of the error.

It should also be noted that the coefficient α ∞ increases when the viscosity ratio decreases, although we have not enough numerical data to further comment on the significance of this increase. As the experiment presented in [START_REF] Fast | Moore's law and the Saffman-Taylor instability[END_REF] was realised with the zero-pressure approximation, their value of α ∞ (1.45) is consistent with this remark and could be seen as a zero-viscosity limit.

Third scaling coefficient? Li et al. We however think that, based on reference [START_REF] Smith | Lacunarity and intermittency in fluid turbulence[END_REF], α 2 should be considered as an oscillation of α ∞ . Indeed, oscillations are inherent to lacunar fractals. Bessis et al. [START_REF] Bessis | Complex spectral dimensionality on fractal structures[END_REF] proved their existence for certain fractal Julia sets (asymptotically, near the boundary of the support of the measure). Badii and Politi [START_REF] Badii | Intrinsic oscillations in measuring the fractal dimension[END_REF] found them in their analysis of the Zaslavsky attractor [START_REF] Zaslavsky | The simplest case of a strange attractor[END_REF] using a method based on the nearestneighbour distances. Smith et al. [START_REF] Smith | Lacunarity and intermittency in fluid turbulence[END_REF] observed them in many sets including Koch islands [START_REF] Benoît | The Fractal Geometry of Nature[END_REF], the Hénon attractor [START_REF] Hénon | A two-dimensional mapping with a strange attractor[END_REF], the Zaslavsky attractor [START_REF] Zaslavsky | The simplest case of a strange attractor[END_REF] and Cantor dusts [START_REF] Benoît | The Fractal Geometry of Nature[END_REF] in two and three dimensions. Apart from their intrinsic interest, the oscillations can produce fluctuations in the measurement of the dimension [START_REF] Guckenheimer | Dimension estimates for attractors[END_REF].

Consequently, as an oscillation of α ∞ , α 2 should be overlooked and there exist only two scaling coefficients.

Accuracy of the asymptotic coefficient

Due to the high discrepancy of coefficient values between the previous results and those of reference [START_REF] Fast | Moore's law and the Saffman-Taylor instability[END_REF], both Fast & Shelley's results and ours were compared to the experimental results presented by Praud & Swinney in reference [START_REF] Praud | Fractal dimension and unscreened angles measured for radial viscous fingering[END_REF]. This 

Fractal dimension

In order to completely validate the model, the experiment presented in Figure 3.17 was simulated. The simulation was realised with a maximum number of authorised computational cells of 2 13 in each direction with the same viscosity ratio as in Figure 3.17. As there was no blatant difference between the results of simulations obtained by applying a constant pressure (as in the experiment of Praud & Swinney) and those with a constant massflux, the results realised with a constant massflux, for which a length λ σ was defined above, are presented in Figure 3.18.

Though Figures 3.17 and 3.18 look very much alike, it is obvious that these fingers begin to align themselves with the principal directions of the mesh: the x-axis, the y-axis and both bissectors of the axes.

The fractal dimension D F = 1.67 of the resulting cluster was nonetheless determined, to be compared with D F = 1.69 in Figure 3.17. For all we know, the fractal dimension of a Direct Numerical Simulation (DNS) of Saffman-Taylor fingering was never measured before.

Polar modelisation of viscous fingering

It is possible to define an orthogonal curvilinear coordinate system (r x , r y ) distinct from the usual cartesian one (x, y), and its associated metric in the Gerris Flow Solver. It is however up to the user to specify transformations which guarantee the orthogonality of the coordinate system (for example using conformal mapping 3 ). u r = (u r , v r ) will refer to the velocity vector in the (r x , r y ) coordinate system. One should note that in the following u r is not the velocity in polar coordinate!

In order to remove the alignment of the principal directions of the flow with the axes and bisectors, one can choose to use polar coordinates:

(r, θ) ∈ [a, b] × [-π, π[ and 0 � a < b.
Due to the singular point at r = 0, it is chosen to consider an annular domain Ω defined as

Ω = {(r, θ) ∈ [0.8, L + 0.8] × [-π, π]} . (3.32) 
As by default Gerris only consider square domains of size 1 and centred on (0, 0) when used in 2D, the domain

� (r x , r y ) ∈ � - 1 2 , 1 2 
�� (3.33)
is considered. The metric is thus defined as

x = � 0.8 + L 2 (1 + 2r x ) � cos(2πr y ), (3.34a) y = 
� 0.8 + L 2 (1 + 2r x ) � sin(2πr y ). (3.34b) 
i.e. r = 0.8 + L 2 (1 + 2r x ) and θ = 2πr y . The inverse metric is Note that this condition is coherent with the value of the flux presented above.

r x = 1 L ( � x 2 + y 2 -0.8) - 1 2 , (3.35a) 
r y =            1 2π arccos � x � x 2 + y 2 � if y � 0, - 1 2π arccos � x � x 2 + y 2 � if y < 0. ( 3 
The initial interface is unchanged: r(θ) = 1 + 1/10(cos(3θ) + sin(2θ)). The domain is presented at initial time in Figure 3.19.

To make sure the meshing remains fine enough to consider the precise development of viscous fingering at high radii, the mesh size h r on the computational grid (r x , r y ) has to vary as

h r ∝ 1 r = 1 0.8 + L 2 (1 + 2r x ) . (3.37) 
in the radial direction. The mesh size will thus diminish with increasing r in the radial direction, but will remain as constant as possible in the tangential direction. Indeed, in this last direction, the mesh size varies as

h θ ∼ rh r ∝ 1.
The module of Gerris which allows to use a different metric from the usual one is seldom used. Its implementation has consequently not been optimised for parallel many-core computation. It was thus only possible to simulate these injections on one core. The result of a 40-day simulation is presented in Figure 3.20. One should note the effect of the refinement level on the width of the interface. It is also obvious that the result of this computation does not depend on the principal axes of the domain.

It would indeed be possible to improve the Gerris module allowing to use a different metric from the usual one in order for it to be used for parallel computations. 

Conclusion

As flows in Hele-Shaw cells obey the same laws as flows in porous media (Darcy's law), interest was focused on the injection of a lower-viscosity fluid inside a Hele-Shaw cell filled with a higher-viscosity one (Saffman-Taylor instability). The injection was realised from the centre of the cell.

Though Gerris normally solves the Navier-Stokes equation, it can be tricked into solving Darcy's law, by deactivating the advection term and adding a drag force.

The obtained clusters have a characteristic non-isotropic aspect. It is nonetheless interesting to notice that they obey the same scaling coefficients as isotropic injections.

The existence of two different fractal-dimension regimes in Saffman-Taylor fingering due to central injection was also observed: one at lower viscosity contrast with the coexistence of two different fractal dimensions in the resulting cluster, and one at higher viscosity contrast with only one dimension. In the case of low viscosity contrast, it can be noted that droplets tend to detach themselves from the main bubble (can be observed experimentally).

Finally, at late times, the area of the resulting pattern varies as the length of the interface to some power α ∞ , with different values for finite or infinite viscosity contrasts.

CHAPTER 4

Lateral injection in a quasi-2D geometry

In heavy oil reservoirs, waterflooding and polymer assisted waterflood are an alternative in cases where thermal methods are either impractical or uneconomic.

Experiments have been realised in quasi-2D square slabs of Bentheimer sandstone in order to study waterflooding and tertiary polymer injection in extra heavy oils [START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF]. 

Description of the experiments

A quasi-2D square slab of size 30 × 30 × 2.5 cm 3 of Bentheimer sanstone of porosity 25% was dried at 80°C. The measured pore volume was 564 cm 3 and the vaccum was saturated with 7 g.L -1 NaCl brine. This porous domain was then vertically drained with oil diluted with 18% of iododecane at rate 6 mL.h -1 till breakthrough. After breakthrough the invasion rate was increased up to 12 mL.h -1 . The porous domain was aged during 3 weeks at 50°C, with occasional injection in both directions (up to down and reverse).

The first experiment consisted of an injection of water from the bottom at ambiant temperature and rate 3 mL.h -1 [START_REF] Bondino | Tertiary polymer flooding in extra-heavy oil: an investigation using 1D and 2D experiments, core scale simulation and pore-scale network models[END_REF]. The total injected volume was equal to 2.3 pore volumes (PV). In a second time, an industrial polymer (SNF Flopaam 3630S) diluted in NaCl/NaHCO 3 solution was injected at rate 3 mL.h -1 . A total of 1.3 pore volume of polymer solution was injected [START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF].

Measuring system

A narrow beam of electromagnetic radiation is emited either by an X-ray or a low energy Gamma-ray source and attenuated by the rock sample (Figure 4.1). The intensity of the attenuated beam is then measured by both a scintillation photon counting detector and an X-ray camera.

As the amount of attenuation depends on the composition of the porous medium and the fluids it is saturated with, this measurement provides an accurate assessment of the actual composition of the flow [START_REF] Skauge | Experimental and Numerical Modeling Studies of Viscous Unstable Displacement[END_REF]. The image is finally filtered by convolution in order to reduce the influence of image artifacts [START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF][START_REF] Proakis | Digital Signal Processing: Principles[END_REF][START_REF] Gonzales | Digital image processing[END_REF].

Water and polymer injection

Two different cases were considered. In one case (experiment E2000), the viscosity of the initially filling oil was µ 2000 = 2.0 kg.m -1 .s -1 = 2000 cP. In the other case (experiment E7000), the viscosity was µ 7000 = 7.0 kg.m -1 .s -1 = 7000 cP.

Injection of brine

In both cases, by injecting brine inside the porous medium, it is possible to recover part of the oil. This recovery is however inferior to 30%, even when considering that the recovery is somewhat higher in case E2000 than in case E7000 (Figure 4.2 and Table 4.1).

At early times of the injection, many fingers develop with a rapid growth. Some prominent fingers will tend to propagate faster than others and consequently inhibit the growth of smaller fingers. At later times, the fingers will tend to coalesce and expand to a thick water channel, with a much less fractal aspect than that of earlytime fingers (Figures 4. [38] [START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF] This coalescence of fingers occurs earlier and to a larger extent in case E2000 than in case E7000. The fingers are also less distinct in experiment E2000.

Injection
The waterflood is thus dominated by viscous fingering and later by channeling 1 .

Injection of polymer

When polymer is injected as a second step, the oil recovery is doubled in both cases (Figure 4.5). The response to a change of invading fluid is fast, and the oil fractional flow increases quickly at those high oil viscosities. Nonetheless the test with the less viscous oil results in faster production and higher total oil recovery. red color highlights an increase in oil saturation S o . One can easily notice that the mobilised oil follows the water channels that were established during the waterflood.

Influence of waterflooding rate

It is possible to modify the relative significance of viscous and capillary forces by varying the water injection rate. Experimentally it is easy to show that oil production rates are higher and waterfloods more efficient at lower injection rate. This is indeed blatantly noticeable in Figure 4.8 (injection of water to recover an oil of viscosity 11.5 kg.m -1 .s -1 ).

The decrease in water injection rate can also occur late in the life of a waterflood with comparable results. Two oils are shown in Figure 4.9: HO2 is the same as that used in Figure 4.8, while HO1 is a less viscous one (4.65 kg.m -1 .s -1 ). Capillary forces thus appear to be largely responsible for oil production after waterflooding. Indeed, in the case of low rate water injection, water imbibes into the original oil region perpendicularly to the water channel [START_REF] Mei | Experimental Study of the Mechanisms in Heavy Oil Waterflooding Using Etched Glass Micromodel[END_REF]. Experiments were realised in a 2D etched glass micromodel, though at lower viscosity ratio (M = 95.3, see Figure 4.10).

Water film thickening, snap-off and oil-refilling are the main mechanisms leading to water imbibition, alongside emulsion [START_REF] Mei | Experimental Study of the Mechanisms in Heavy Oil Waterflooding Using Etched Glass Micromodel[END_REF]. • Ω\Γ with Γ the interface) according to Darcy's law [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Whitaker | Flow in porous media II: The governing equations for immiscible, two-phase flow[END_REF]:

u = - k µ ∇p. (4.1) 
As discussed in section 1.2.6, one can use only equation (4.1), with no reference to surface tension.

The simulation of waterflooding was realised during 120 hours of wall-clock CPU time on 64 cores 3 with only numerical or "mesh-induced" noise to initiate the fingering process. Two different refinements were used with adaptive mesh refinement, defining two different cases 4 (see Table 4.2). The results are presented in Figure 4.11.

As expected, the interface between both fluids is unstable and one can observe the creation of fingers with both refinements. It is also obvious that with time some fingers tend to dominate and inhibit the growth of smaller fingers.

It is also possible to ensure that the fingering process occurs earlier by adding random perturbations of the local viscosity (see chapter 3 and Figure 4.12). 

Reduced geometry

The results presented above are indeed of interest. One can however regret that the result obtained after 120 hours of CPU time on 64 cores is not more developed: only the beginning of the fingering process is obtained. The simulation does not reach breakthrough time; the most advanced finger does not even reach the middle of the domain.

As the simulation authorises adaptive mesh refinement, one can expect that the required number of computational cells will tend to increase with the development of the fingers. Consequently, it will take (much) more CPU time for the tip of the fingering to go from abscissa l tip -L/2 to abscissa 2l tip -L/2 than it took to reach abscissa l tip -L/2 from the entrance.

In order to obtain less-demanding simulations and thus reach larger times, one faces two different possibilities to reduce the number of computational cells:

• either to reduce the size of the domain;

• or to consider coarser simulations. As the fingers obtained reference [START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF] are mostly aligned in a direction going from the entrance to the exit side, the considered domain is reduced to 2D rectangles Ω � of size L × L/4 centred on (0, 0)

Ω � = [-L/2, L/2] × [-L/8, L/8].
The less viscous fluid is injected from the side x = -L/2 of the domain with a constant massflux u(-L/2, y) = U in e x . The side boundaries y = ±L/8 impose a slip condition, while the remaining side allows a "free" outflow condition for the fluids.

In the Gerris Flow Solver, this is realised by considering four different boxes of size (L/4) 2 , linked one another in the x direction (Figure 4.15). Each box can be subdivided in 2 10 computational cells in each direction (one thus obtains a simulation with the same precision as case 2 presented above). Those water channels are still present when simulating waterflooding till breakthrough. This can indeed be seen in Figure 4.17. One should however note that in order to reach breakthrough at a lower CPU time the maximum authorised refinement was reduced: each box (Figure 4.15) can be subdivided in 2 9 computational cells in each direction (one thus obtains a simulation with the same precision as case 1 presented above).

From the simulations presented in Figure 4.17 presented in section 4.1, breakthrough occurs when only 0.03 PV of water has been injected, i.e. the oil recovery at breakthrough is 3% [START_REF] Hamon | Point d'avancement sur le troisième essai de balayage d'huile extra lourde par l'eau et eau polymérisée[END_REF]. This huge difference has two main causes. For some part it is a result of the 3D aspect of the fingering in the Bergen experiment which is neglected in these simulations. Indeed though the domain is quasi-2D the thickness of the porous medium slab is non-zero. Fingering thus also occurs in the third direction, reducing the necessary volume of injected fluid required to reach breakthrough... For another part, this overestimation is inherent to the numerical simulation of fractal clusters. Indeed, for a chosen mesh size h, the area of the resulting cluster varies as

A ∝ h d � L f h � D F
where L f is a characteristic lengthscale of the fingers, d is the embedding dimension and D F the fractal dimension [START_REF] Conti | Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters[END_REF].

The computed area thus increases for increasing grid spacing (even if they are not consistent with the results themselves, see above): indeed, for higher viscosity contrast the tip of the fingering process moves more rapidly, ensuring breakthrough at shorter time. The expected recovery ratio is thus smaller for the case M = 1/7000, as was observed in the Bergen experiments.

Injection of polymer after waterflooding

The injection of polymer and brine is now considered in an initially oil-filled square porous medium in a two-step process. For this purpose, attention is focused on 2D Finally, the asymptotic coefficient α ∞ defined above is constant for the three cases above (for example the one presenting the best computational speed), with no lack of precision.

Conclusion

It was possible to replicate the Bergen experiments to some extent. Indeed, as observed in the experiments, breakthrough occurs at earlier times for higher viscosity contrast. However, breakthrough occurs much later in the simulations than in the experiments: this is due both to the fact that the 3D aspect of the fingering was neglected (fingering occurs also in the third direction) and to the variation of the area of a fractal cluster with its lower lengthscale (here the mesh size). 

Conclusion and perspectives

Conclusion

This work was focused on studying numerically and theoretically multiphase flow in porous media. To reach this goal, the Gerris Flow Solver was used to model and simulate such flows.

The solid phase was modelled in a new way by considering that the whole domain is filled with fluid. This fluid cannot move inside the solid phase. With such a modelling, the Gerris software efficiently simulates multiphase flows in porous media.

Indeed, both strong and weak scalabilities up to 4096 cores are quite good even at reduced porosity and the computational speed is reasonably high. The results are also quite accurate, both in a simple Poiseuille flow test and in randomly generated porous media.

In theory, Gerris is optimised for High-Performance-Computer (HPC) simulation:

it uses adaptive mesh refinement and is highly parallelised. Restart of simulations is of course possible. In practice, its use in HPC simulations is not necessarily that easy.

The software has also two main drawbacks when dealing with flows in porous media:

the absence of relative permeabilities as input when realising Darcy-scale simulations and some problems with the solver Hypre as presented in chapter 2. Concerning lateral injection simulation, it was possible to replicate the experiments recalled above to some extent. Indeed, as observed in the experiments, breakthrough occurs at earlier times for higher viscosity contrast. However, breakthrough occurs much later in the simulations than in the experiments: this is due both to the fact that the 3D aspect of the fingering was neglected (fingering occurs also in the third direction) and to the variation of the area of a fractal cluster with its lower lengthscale (here the mesh size). When injecting polymer in a second step, the oil is mobilised even behind the fingering front, as was expected after close examination of the experiments.

Perspectives

Future developments could be made in the code in order to reach bigger simulations.

Indeed, though the CFL number cannot be improved for theoretical reasons, the computational speed would need increasing. This could be realised by several means.

The best way to increase substantially the computational speed would be to implement an implicit version of surface tension inside Gerris instead of the present explicit implementation. The computation would allow much higher timesteps for reasonable additional CPU time, and it would be much easier to reduce the capillary number without too much computational cost.

The computational speed could be increased also both by using better Poisson solvers (for example by understanding why Hypre does not currently perform well and correcting it) and by improving the compilation of the code on the different clusters.

The accuracy of the code could also be improved. An easy way to do so would be to implement an even better version of the solids where the velocity is completely removed inside the solid phase. Indeed, for now, some velocity can be generated between two timesteps... This improvement would also improve the computational speed as a side-effect. It would indeed no longer be necessary to use a computationallydemanding drag force to reduce this parasite velocity.

These improvements would allow to consider bigger simulations in domains of physical size of the order of 1 cm. These simulations could allow to measure the permeability of such domains. The results could then be used in Darcy-scale simulations in order to better understand what occurs inside the reservoir.

Finally, another improvement could be realised by implementing contact angle inside Gerris [START_REF] Horgue | A penalization technique applied to the "Volume-Of-Fluid" method: Wettability condition on immersed boundaries[END_REF]. As of now, it is indeed only possible to consider either totally non-wetting rocks or totally-wetting ones with the modelling of the solid phase that was used in this study. On the contrary with the default modelling of the solids, only 90°contact angles are considered. Such an improvement would allow to consider a much broader range of rocks, including solid matrices with varying contact angles due to diverse mineral inclusions. pore level. In the limit of vanishing capillary numbers one may neglect any pressure drops both in the invading and the receding fluids.

One often finds that water is the "wetting" fluid, i.e. the water will spontaneously invade the oil-filled porous medium unless the pressure in the water is kept below that of the receding fluid.

Wilkinson and Willemsen proposed to simulate this process in an idealised medium where the network of pores may be viewed as a regular lattice in which the sites and bonds of the lattice represent the pores and the throats respectively. Randomness of the medium is incorporated by assigning random numbers to the sites and bonds to represent the sizes of these pores and throats. Simulation of the process in a given realisation of the lattice thus consists of following the motion of the water-oil interface as it advances through the smallest available pore, marking the pores filled with the invading fluid.

This model also applies in the case where a non-wetting fluid displaces a wetting fluid. In this case the pressure in the invading fluid is above that of the receding fluid and the interface advances quickly through the large pores and gets stuck in the narrow throats connecting the pores.

During percolation, the invading fluid traps regions of the receding fluid. As the invader advances, it is possible for it to completely surround regions of the defending fluid from the exit side of the sample. This is one origin of the phenomenon of "residual oil". Since oil is incompressible, Wilkinson and Willemsen introduced the new rule that water cannot invade trapped regions of oil.

A.2 Algorithm

The algorithms describing invasion percolation are now simple to describe:

• Assign random numbers r in the range [0, 1] to each site of an L × L lattice.

• Select sites of injection for the invading fluid and sites of extraction for the receding fluid.

• Identify the growth sites as the sites which belong to the receding fluid and are neighbours to the invading fluid.

• Advance the invading fluid to the growth site that has the lowest random number r.

• Trapping: growth sites in regions completely surrounded by the invading fluid are not active and are eliminated from the list of growth sites.

• End the invasion process when the invading fluid reaches an exit site.

This model advances the invading fluid to new sites one by one, always selecting the possible growth site with the lowest random number associated with it. This is an algorithm that lets the invading cluster grow in a manner subject to local properties.

The rule that a trapped region cannnot be invaded introduces a nonlocal aspect into the model. The question whether or not a region is trapped cannot be answered locally, and involves a global search of the system.

A.3 Comparison with ordinary percolation

It is interesting to compare the invasion percolation process without trapping to the ordinary percolation process [START_REF] Broadbent | Percolation processes[END_REF]. In the ordinary percolation process one may grow percolation clusters as follows. The sites on an L × L lattice are assigned random numbers r inthe range [0, 1] and one places a seed on the lattice. Then for a given choice of the occupation probability p (0 � p � 1) the cluster grows by occupying all available sites with random numbers r � p. The growth of the percolation cluster stops when no more such numbers are found on the boundary of the cluster. Of course, most of the sites chosen will generate clusters of a finite size. Only if the seed site happens to lie on the incipient percolating cluster at p c 1 , or on the percolating 1 The critical probability p c of ordinary percolation process is defined as the largest value of p for which the percolation probability P ∞ (probability that a fluid injected at a site, chosen at random, will wet infinitely many pores) verifies P ∞ = 0. For a quadratic lattice, p c = 0.59275 ± 0.00003 [START_REF] Ziff | Test of scaling exponents for percolation-cluster perimeters[END_REF].

For a triangular lattice, p c = 1/2 [405].

cluster for p > p c , will the percolation cluster grow to a size that spans the lattice.

By contrast, in invasion percolation the cluster grows by always selecting the smallest random number, no matter how large. However, once a large number r 0 has been chosen, it is not necessarily true that subsequently every number r � r 0 will be chosen -smaller numbers will in general become available at the interface and will thus be chosen.

A.4 Fractal dimension

Naturally in the finite geometry, the invader will gradually fill the entire lattice if the invasion process is continued. Wilkinson and Willemsen found that the number of sites M (L) in the central L × L portion of the lattice at breakthrough increases with the size of the lattice as follows

M (L) = AL D inv , (A.1)
with D inv ≈ 1.89. An analogous equation can be found for ordinary percolation processes and the fractal dimension of invasion percolation without trapping, D inv is found to equal the fractal dimension of the incipient percolation cluster at p c . There is now considerable evidence that invasion percolation in fact is in the same universality class as ordinary percolation [START_REF] Dias | Percolation with trapping[END_REF].

Trapping changes the invasion percolation quite drastically in two dimensions.

The number of sites varies as

M (L) = AL Dtrap , (A.2)
with D trap ≈ 1.82 [START_REF] Wilkinson | Invasion percolation: a new form of percolation theory[END_REF]. Lenormand and Zarcone [START_REF] Lenormand | Invasion percolation in an etched network: Measurement of a fractal dimension[END_REF] This appendix is mainly extracted from [START_REF] Sander | Fractal Growth Processes[END_REF] with slight modifications.

B.1 The basic concept

The original DLA algorithm [START_REF] Witten | Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon[END_REF][START_REF] Witten | Diffusion-limited aggregation[END_REF] was quite simple: on a lattice, declare that the point at the origin is the first member of the cluster. Then launch a random walker from a distant point and allow it to wander until it arrives at a neighbouring site to the origin, and attach it to the cluster, i.e. freeze its position. Then launch another walker from a new distant point and let it attach to one of the two previous points, and so on. The name, diffusion-limited aggregation, refers to the fact that random Clearly the random walker probability declines precipitously as one progresses down a fjord, leading to very small growth probabilities at the bottom compared with the growing tips of the cluster [START_REF] Benoît | The potential distribution around fractal clusters[END_REF].

walkers, i.e. diffusing particles, control the growth. DLA is a simplified view of a common physical process: growth limited by diffusion.

It became evident that for large clusters the overall shape is dependent on the lattice type [START_REF] Ball | Large scale lattice effect in diffusion-limited aggregation[END_REF][START_REF] Ball | Anisotropy and cluster growth by diffusion-limited aggregation[END_REF], that is, DLA clusters are deformed by lattice anisotropy. This is an interesting subject [START_REF] Ball | Large scale lattice effect in diffusion-limited aggregation[END_REF][START_REF] Meakin | Structure of large two-dimensional square-lattice diffusion-limited aggregates: Approach to asymptotic behavior[END_REF][START_REF] Eckmann | Asymptotic shape of diffusion-limited aggregates with anisotropy[END_REF][START_REF] Stepanov | Laplacian growth with separately controlled noise and anisotropy[END_REF][START_REF] Nicholas | Anisotropic diffusion limited aggregation in three dimensions: Universality and nonuniversality[END_REF] but most modern work is on DLA clusters without anisotropy, i.e. off-lattice clusters. The off-lattice algorithm is similar to the original one: instead of a random walk on a lattice, the particle is considered to have a radius a. For each step of the walk the particle moves its center from the current position to a random point on its perimeter. If it overlaps a particle of the current cluster, it is backed up until it just touches the cluster, and frozen at that point. Then another walker is launched. Most of the work on DLA has been realised in two dimensions, but dimensions up to 8 have been considered [START_REF] Tolman | Off-lattice and hypercubic-lattice models for diffusion-limited aggregation in dimensionalities 2¡i¿-¡/i¿8[END_REF]. [START_REF] Tolman | Off-lattice and hypercubic-lattice models for diffusion-limited aggregation in dimensionalities 2¡i¿-¡/i¿8[END_REF][START_REF] Ossadnik | Multiscaling analysis of large-scale off-lattice {DLA}[END_REF][START_REF] Somfai | Diffusion-limited aggregation in channel geometry[END_REF]. There is some disagreement about the next digit. There have been suggestions that DLA is a mass multifractal [START_REF] Vicsek | Multifractal Geometry of Diffusion-Limited Aggregates[END_REF] but most authors now agree that all of the D q are the same for the mass distribution. For three dimensions D F ≈ 2.5 [START_REF] Nicholas | Anisotropic diffusion limited aggregation in three dimensions: Universality and nonuniversality[END_REF][START_REF] Tolman | Off-lattice and hypercubic-lattice models for diffusion-limited aggregation in dimensionalities 2¡i¿-¡/i¿8[END_REF] and for four dimensions D F ≈ 3.4 [START_REF] Tolman | Off-lattice and hypercubic-lattice models for diffusion-limited aggregation in dimensionalities 2¡i¿-¡/i¿8[END_REF].

However, some authors [START_REF] Mandelbrot | Deviations from Self-Similarity in Plane DLA and the "Infinite Drift[END_REF][START_REF] Mandelbrot | Crosscut Analysis of Large Radial DLA: Departures from Self-Similarity and Lacunarity Effects[END_REF] have claimed that plane DLA is not a self-similar fractal at all, and that the fractal dimension will drift towards 2 as the number of particles increases. More recent works based on conformal maps [START_REF] Somfai | Scaling and crossovers in diffusion limited aggregation[END_REF] have cast doubt on this.

Plane DLA can be grown in restricted geometries (Figure B.2). The shape of such clusters is an interesting problem in pattern formation [START_REF] Arneodo | Statistical analysis of offlattice diffusion-limited aggregates in channel and sector geometries[END_REF][START_REF] Kessler | Diffusion-limited aggregation and viscous fingering in a wedge: Evidence for a critical angle[END_REF][START_REF] Tu | Mean-field theory of the morphology transition in stochastic diffusion-limited growth[END_REF][START_REF] Sander | Random walks, diffusion limited aggregation in a wedge, and average conformal maps[END_REF]. It was long thought that DLA grown in a channel had a different fractal dimension than in radial geometry [START_REF] Meakin | Diverging length scales in diffusion-limited aggregation[END_REF][START_REF] Argoul | Self-similarity of diffusion-limited aggregates and electrodeposition clusters[END_REF][START_REF] Kol | Diffusion-limited aggregation as a markovian process: Site-sticking conditions[END_REF]. However, more careful work has shown that the dimensions are the same in the two cases [START_REF] Somfai | Diffusion-limited aggregation in channel geometry[END_REF]. ). The channels do not fill in and the shape might be preserved. But the real question is to explain why a smooth line, e.g. a disk, does not continue to grow smoothly. in fact, it is easy to test that any initial condition is soon forgotten in the growth [START_REF] Witten | Diffusion-limited aggregation[END_REF]. If the growth starts with a smooth shape it roughens immediately because of a growth instability intrinsic to diffusion-limited growth. This instability was discovered by Mullins and Sekerka [START_REF] Mullins | Morphological Stability of a Particle Growing by Diffusion or Heat Flow[END_REF] who used a statement of diffusion-limited growth in continuum terms: this is known as the Stefan problem [START_REF] Langer | Instabilities and pattern formation in crystal growth[END_REF][START_REF] Pelcé | New visions on form and growth: fingered growth, dendrites, and flames[END_REF] and is the standard way to idealize crystallisation in the diffusionlimited case.

The Stefan problem goes as follows: suppose that we have a density φ(r, t) of particles that diffuse until they reach the growing cluster where they deposit. Then we have

∂φ ∂t = ν∇ 2 φ, (B.1) ∂φ ∂n ∝ u n . (B.2)
φ should thus obey the diffusion equation, with µ the diffusion constant. The normal growth velocity u n of the interfacce is proportional to the flux onto the surface ∂φ/∂n.

However the term ∂φ/∂t is of order ν∂φ/∂x where ν is a typical growth velocity. Now Since the cluster absorbs the particles, we should think of it as having φ = 0 on the surface. We are to solve an electrostatics problem: the cluster is a grounded conductor with fixed electric flux far away. We grow by an amount proportional to the electric field at each point on the surface. This is called the quasi-static or Laplacian growth regime for deterministic growth. A linear stability analysis of these equations gives the Mullins-Sekerka instability [START_REF] Mullins | Morphological Stability of a Particle Growing by Diffusion or Heat Flow[END_REF]. The qualitative reason for the instability is that near the tips of the cluster the contours of φ are compressed so that the growth rate ∂φ/∂n is large. Thus tips grow unstably. We expect DLA to have a growth instability.

However, we can turn the argument and use these observations to give a restatement of the DLA algorithm in continuum terms: we calculate the electric field on the surface of the aggregate, and interpret equation (B.2) as giving the distribution of growth probability p at a point on the surface. We add a particle with this probability distribution, recalculate the potential using equation (B.3) and continue. This is called Laplacian growth. Simulations of Laplacian growth yield the same sort of clusters as the original discrete algorithm.

DLA is thus closely related to one of the classical problems of mathematical physics, dendritic crystal growth in the quasistatic regime (Figure B.3). However it is not quite the same for several reasons: DLA is dominated by noise whereas the Stefan problem is deterministic. Also, the boundary conditions are different [START_REF] Pelcé | New visions on form and growth: fingered growth, dendrites, and flames[END_REF]: for a crystal, if we interpret u as T -T m where T is the temperature and T m the melting temperature, we have φ = 0 only on a flat surface. On a curved surface, we need φ ∝ γκ with γ the surface stiffness and κ its curvature. The surface tension acts as a regularisation which prevents the Mullins-Sekerka instability from producing sharp cusps [START_REF] Shraiman | Singularities in nonlocal interface dynamics[END_REF]. In DLA the regularisation is provided by the finite particle size. And, of course, crystals have anisotropy in the surface tension.

These considerations led Niemeyer, Pietronero and Weismann [START_REF] Niemeyer | Fractal dimension of dielectric breakdown[END_REF] to a clever generalisation of Laplacian growth. They were interested in dielectric breakdown with φ representing a real electrostatic potential. This is known to be a threshold process so that we expect that the breakdown probability is non-linear in ∂φ/∂n. To generalise they chose

p ∝ � ∂φ ∂n � η , (B.4)
where η ∈ R + .

There are some interesting special cases for this model (Figure B.4). For η = 0 each growth site is equally likely to be used. This is the Eden model [START_REF] Eden | A two-dimensional growth model[END_REF]. For η = 1 we have the Laplacian growth version of DLA, and for larger η, we get a higher probability to grow at the tips so that the aggregates are more spread out. There is a remarkable fact which was suggested numerically in [START_REF] Sánchez | Growth and forms of Laplacian aggregates[END_REF] and confirmed more recently [START_REF] Hastings | Fractal to nonfractal phase transition in the dielectric breakdown model[END_REF][START_REF] Hastings | Growth exponents with 3.99 walkers[END_REF]: for η > 4 the aggregate prefers growth at tips so much that it besomes essentially linear and non-fractal. 

B.3 Conformal mapping

For pattern formation in two dimensions the use of analytic function theory and conformal mapping methods allows a new look at growth processes. The idea is to think of a pattern in the z plane as the image of a simple reference shape, e.g. the unit circle in the w plane, under a time-dependent analytic function z = F t (w). More precisely, the region outside of the pattern is considered as the image of the region outside of the reference shape. By the Riemann mapping theorem [START_REF] Riemann | Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse[END_REF] the map exists and is unique if one sets a boundary condition such as F (w) → r 0 w as |w| → +∞.

We will also use the inverse map w = G(z) = F -1 (z).

For Laplacian growth processes this idea is particularly interesting since the growth Note that the constant r 0 is the radius of the disk that gives the same potential as the cluster far away [START_REF] Sander | Fractal Growth Processes[END_REF].

The growth probability is uniform around the unit circle in the w plane. This means that equal intervals on the unit circle in w space map into equal regions of growth probability in the z plane. The map thus contains information about the growth probability

|∇Φ| = |G � | = 1 |F � | . (B.6)
The problem remains to construct the maps G or F for a given cluster.

B.3.1 Loewner evolution and the Hastings-Levitov scheme

A useful approach to finding F is to impose a dynamics on the map which gives rise to the growth of the cluster. This is closely related to Loewner evolution where a with the map at stage N gives the map at stage N + 1. [START_REF] Sander | Fractal Growth Processes[END_REF] curve in the z plane is generated by a map that obeys an equation of motion

dG t (z) dt = 2 G t (z) -ξ(t) . (B.7)
The map is to the upper half plane from the upper half plane minus the set of singularities G = ξ [START_REF] Ilya | The Loewner Equation: Maps and Shapes[END_REF]. If ξ(t) is a stochastic process then many interesting statistical objects such as percolation clusters can be generated.

For DLA a similar approach was presented by Hastings and Levitov [START_REF] Stepanov | Laplacian growth with separately controlled noise and anisotropy[END_REF][START_REF] Hastings | Laplacian growth as one-dimensional turbulence[END_REF].

In this case, the evolution is discrete, and is designed to represent the addition of particles to a cluster. The process is iterative: suppose we know the map F N for N particles. Then we want to add a bump corresponding to a new particle. This is accomplished by adding a bump of area λ in the w-plane on the surface of unit circle at angle θ. There are various explicit functions that generate bumps [START_REF] Hastings | Laplacian growth as one-dimensional turbulence[END_REF]. Such functions depend on a parameter which gives the aspect ratio of the bump.

Let us call the resulting transformation f λ,θ . If we use F N to transform the unit circle with a bump we get a cluster with an extra bump in the z-plane, i.e. we have added a particle to the cluster and

F N +1 = F N • f (Figure B.5).
There are two matters that need to be dealt with. First, we need to pick θ. Since the probability to grow is uniform on the circle in the w-plane, we take θ to be a random variable uniformly distributed between 0 and 2π. Also we need the bump 

λ N +1 = λ 0 |F � N (e iθ N +1 )| 2 . (B.8)
However this is just a first guess. The stretching of lengths varies over the cluster and there can be some regions where the approximation of equation (B.8) is not adequate.

In this case an iterative procedure is necessary to get the area right [START_REF] Stepanov | Laplacian growth with separately controlled noise and anisotropy[END_REF][START_REF] Somfai | Diffusion-limited aggregation in channel geometry[END_REF]. The transformation itself is given by

F N = f λ 1 ,θ 1 • f λ 2 ,θ 2 • • • • • f λ N ,θ N . (B.9)
All of the information needed to specify the mapping is contained in the list λ j , θ j ,

1 � j � N (Figure B.6).
If we choose θ uniformly in w-space, we have chosen points with the harmonic measure |F � | -1 and we make DLA clusters. To simulate DBM clusters with η � = 1 one must choose the angles non-uniformly [START_REF] Hastings | Fractal to nonfractal phase transition in the dielectric breakdown model[END_REF].

When realised in wedge-like geometries, the fractal dimension depends significantly on the opening angle β of the sector (see This definition requires a definition of the terms set, Hausdorff-Besicovitch dimension (D F ) and topological dimension 1 D, which is always an integer. In fact, Mandelbrot [START_REF] Benoît | Self-affine fractal sets[END_REF] retracted this tentative definition and proposed instead the following one:

"A fractal is a shape made of parts similar to the whole in some way."

Following the seminal article by Mandelbrot [START_REF] Benoît | How long is the coast of Britain[END_REF], great interest has surrounded many fractal processes in fields as diverse as computer science [START_REF] Rosenfeld | Picture Processing by Computer[END_REF], hydrology [START_REF] Blöschl | Scale issues in hydrological modelling: A review[END_REF] or finance [START_REF] Benoit | Fractals and scaling in finance: Discontinuity and concentration[END_REF].

C.2 Fractal dimension

The kind of objects we deal with is highly irregular (see Figure C.1). We think of the object as being made up of a large number N of units and to be of overall linear dimension R. In growth processes the objects are formed by adding the units according to some dynamics. We will call the units "particles" and take their size to be a.

Such patterns need not be merely random, but can have well defined scaling properties in the regime a � R (e.g. Koch snowflake).

In order to characterise the geometry of such complex objects, we first cover the points in question with a set of n(l) boxes of fixed size, with a

� l � R (Figure C.2).
Clearly, for a smooth curve, the product ln(l) approaches a limit (the length of the 1 The Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way.

An open cover of a topological space X is a family of open sets whose union is X. The ply of a cover is the smallest number n (if it exists) such that each point of the space belongs to at most n sets in the cover. A refinement of a cover C is another cover, each of whose sets is a subset of a set in C; its ply may be smaller than, or possibly larger than, the ply of C. The covering dimension of a topological space X is defined to be the minimum value of n, such that every finite open cover C of X has a refinement with ply at most n + 1. If no such minimal n exists, the space is said to be of curve) as l → 0. This is a number of order R. For a planar region with smooth boundaries, l 2 n(l) approaches the area, of order R 2 . The objects of ordinary geometry geometry in d dimensions have measures given by the limit of l d n(l). For an object with many scales (a fractal), in general none of these relations hold. Rather, the product l D F n(l) approaches a limit with D F not necessarily an integer: D F is called the (similarity) fractal dimension or Hausdorff-Besicovitch dimension [START_REF] Hausdorff | Dimension und äußeres Maß[END_REF][START_REF] Besicovitch | On linear sets of points of fractional dimension[END_REF][START_REF] Besicovitch | Sets of Fractional Dimensions (V): on Dimensional Numbers of Some Continuous Curves[END_REF].

infinite covering dimension. (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)
Said another way, we define the fractal dimension by

n(l) ∝ (R/l) D F . (C.1)
For an infinite fractal there are no characteristic lengths. For a finite size object there is a characteristic length, the overall scale, R.

It is useful to generalise this definition in two ways. First we consider not only a geometric object, but also a measure, that is a non-negative function µ defined on the points of the object such that � dµ = 1. For the geometry, we take the measure scales of the pattern. For a pattern with many scales there is a non-trivial scaling between the box size l and the number of boxes. [START_REF] Sander | Fractal Growth Processes[END_REF] to be uniform on the points. However, for growing fractals we could also consider the growth probability at a point. Second, we define a sequence of generalised dimensions.

If we are interested in geometry, we denote the mass of the object covered by box i by p i . For an arbitrary measure, we define

p i = � dµ, (C.2)
where the integral is over the box labeled i. Then, following [START_REF] Hentschel | The infinite number of generalized dimensions of fractals and strange attractors[END_REF][START_REF] Thomas | Fractal measures and their singularities: The characterization of strange sets[END_REF] we define a partition function for the p i

χ(q) = n � i=1 p q i , (C.3)
where q ∈ R. For an object with well-defined scaling properties we often find that χ scales with l in the following way as l/R → 0 χ(q) ∝ (R/l) -τ (q) ≡ (R/l) -(q-1)Dq , τ (q) = (q -1)D q .

(C.4)

Objects with this property are called fractals if all the D q are the same. Otherwise they are multifractals [START_REF] Thomas | Diffusion-limited aggregation: A model for pattern formation[END_REF].

Some of the D q have special significance. The similarity dimension mentioned above is D 0 since in this case χ = n. If we take the limit q → 1 we have the information dimension of dynamical systems theory

D 1 = dτ dq � � � q=1 = � i p i ln p i ln l . (C.5)
D 2 is called the correlation dimension since p 2 i measures the probability that two points are close together, i.e. the number of pairs within distance l. This interpretation gives rise to a popular way to measure D 2 . If we suppose that the structure is homogeneous, then the number of pairs of points can be found by focusing on any point, and drawing a d-dimensional disk of radius r around it. The number of other points in the disk will scale as r D 2 .

For a simple fractal all of the D q are the same and we use the symbol D F . If the generalised dimensions differ, then we have a multifractal. Multifractals were introduced by Mandelbrot [START_REF] Benoît | Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier[END_REF] in the context of turbulence.

C.3 How to calculate the fractal dimension?

Special attention was devoted to ways to determine the Hausdorff-Besicovitch dimension D F of fractal sets [START_REF] Russell | Dimension of strange attractors[END_REF][START_REF] Harold Froehling | On determining the dimension of chaotic flows[END_REF][START_REF] Grassberger | On the Hausdorff dimension of fractal attractors[END_REF][START_REF] Greenside | Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors[END_REF]. It turns out to be very difficult to determine D F by the box-counting method, especially when D F > 2 [START_REF] Greenside | Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors[END_REF]. Consequently, Grassberger and Procaccia [START_REF] Grassberger | Measuring the strangeness of strange attractors[END_REF] suggested to deduce the properties of clusters from the density-density correlation function C

(r) = �[ρ(r � )][ρ(r � + r)]�.
Indeed, it seems the correlation function varies as C(r) ∼ r -δ for small values of r in both viscous fingering and DLA in circular geometry [START_REF] Conti | Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters[END_REF]. It is easy to demonstrate the exponent is closely related to the dimension of the considered fractal cluster (D F = D 2 = dδ with d the embedding dimension). This method has another important advantage: it is much easier to use than the box-counting method when computing trajectories of a dynamical system.

C.4 Fatou and Julia sets

In the context of complex dynamics, a topic of mathematics, the Julia set and the Fa- set is "regular", while on the Julia set its behavior is "chaotic". These sets are named after the French mathematicians Gaston Julia [START_REF] Julia | Mémoire sur l'itération des fonctions rationnelles[END_REF] and Pierre Fatou [462] whose work began the study of complex dynamics during the early 20th century.

Let f (z) be a complex rational function from the plane into itself, that is, f (z) = p(z)/q(z), where p(z) and q(z) are complex polynomials. Then there is a finite number of open sets F 1 , • • • , F r , that are left invariant by f (z) and are such that:

• the union of the F i 's is dense in the plane;

• f (z) behaves in a regular and equal way on each of the sets F i .

The last statement means that the termini of the sequences of iterations generated by the points of F i are either precisely the same set, which is then a finite cycle, or they are finite cycles of circular or annular shaped sets that are lying concentrically.

In the first case the cycle is attracting, in the second it is neutral. These sets F i are the Fatou domains of f (z), and their union is the Fatou set F (f ) of f (z). Each of the Fatou domains contains at least one critical point of f (z), that is, a (finite) point z satisfying f (z) = 0, or z = ∞, if the degree of the numerator p(z) is at least two larger than the degree of the denominator q(z), or if f (z) = 1/g(z) + c for some c and a rational function g(z) satisfying this condition.

The complement of F (f ) is the Julia set J(f ) of f (z). J(f ) is a nowhere dense set (it is without interior points) and an uncountable set (of the same cardinality as the real numbers). Like F (f ), J(f ) is left invariant by f (z), and on this set the iteration is repelling, meaning that |f (z)f (w)| > |z -w| for all w in a neighbourhood of z (within J(f )). This means that f (z) behaves chaotically on the Julia set. Although there are points in the Julia set whose sequence of iterations is finite, there are only a countable number of such points (and they make up an infinitely small part of the Julia set). The sequences generated by points outside this set behave chaotically, a phenomenon called deterministic chaos.

There has been extensive research on the Fatou set and Julia set of iterated rational functions, known as rational maps. For example, it is known that the Fatou set of a rational map has either 0,1,2 or infinitely many components. Each component of the Fatou set of a rational map can be classified into one of four different classes.

APPENDIX D Simple Line Interface Calculation method

This appendix is extracted from [START_REF] Ubbink | Numerical prediction of two fluid systems with sharp interfaces[END_REF] with slight modifications.

The Simple Line Interface Calculation method (SLIC) [START_REF] Noh | SLIC (simple line interface calculation)[END_REF] is a line technique that was proposed to maintain a well defined interface within a volume fraction framework.

It was specifically developed to deal with multiphase flow. The fluid distribution in an interface-containing cell is computed by using the volume fraction distribution in the neighbouring cells. Several methods can be found in the literature.

In the original SLIC method the interface is approximated in each mesh cell by a line parallel to one of the coordinate axes. We consider different fluid configurations in that cell when dealing with the horizontal and vertical movements respectively. The next refinement of the SLIC method consisted of using oblique lines to approximate the interface in a cell (Piecewise-Linear Interface Calculation) [START_REF] Youngs | Time-dependent multi-material flow with large fluid distortion[END_REF][START_REF] Lötstedt | A front tracking method applied to Burgers' equation and twophase porous flow[END_REF]. Thus, one has

0 = 1 µ i � - ∂p ∂x + ρ i f sin θ � + ∂ 2 u ∂y 2 . (E.3) If we name A i = -∂p ∂x + ρ i f sin θ (A i is a constant), we can obtain u(y) = - 1 2 A i µ i y 2 + b i y + c i , (b i , c i ) ∈ R 2 . (E.4)
Note that (b 1 , c 1 ) can have two different values depending on whether one considers the positive-ordinate domain filled with Fluid 1, or the negative-ordinate domain. These different values will be written as (b + 1 , c + 1 ) and (b - 1 , c - 1 ) respectively. In the following, we will only consider the half-domain y � 0 (the solution in the other half-domain will be derived by symmetry) and consequently we neglect the + notation for b 1 and c 1 .

The boundary conditions on the free surface are as follows: Equation (E.10) gives

µ 1 ∂u ∂y � � � � 1 = µ 2 ∂u ∂y � � � �
c 1 = 1 2 A 1 µ 1 L 2 4 + A 2 -A 1 µ 1 lL 4 . (E.12)
Finally, from equation (E.9) it is possible to write

c 2 = A 2 � - l 2 4µ 1 + lL 4µ 1 + l 2 8µ 2 � + A 1 � l 2 4µ 1 + L 2 8µ 1 - lL 4µ 1 - l 2 8µ 1 � . (E.13)
To conclude, in Fluid 1 (y � 0) the velocity is

u(y) = - 1 2 A 1 µ 1 y 2 - A 2 -A 1 µ 1 l 2 y + A 1 µ 1 L 2 4 + A 2 -A 1 µ 1 lL 4 . (E.14)
The velocity in Fluid 2 is

u(y) = - 1 2 A 2 µ 2 y 2 + A 2 µ 2 �� - l 2 4 + lL 4 � µ 2 µ 1 + 1 2 l 2 4 � + A 1 µ 1 � 1 2 l 2 4 - lL 4 + 1 2 L 2 4 
� .

(E.15)

When θ = 0 (mod π), it is possible to write the velocity as On considérera dans la présente étude uniquement des fluides newtoniens, c'est-à-dire pour lesquels µ est une constante [START_REF] Wikipedia | Non-Newtonian fluid -Wikipedia, The Free Encyclopedia[END_REF]. Comme les vitesses attendues sont faibles, les fluides sont considérés comme incompressibles [START_REF] Pijush | Fluid Mechanics[END_REF][START_REF] Boussinesq | Sur un mode simple d'écoulement des nappes d'eau d'infiltration à lit horizontal, avec rebord vertical tout autour lorsqu'une partie de ce rebord est enlevée depuis la surface jusqu'au fond[END_REF][START_REF] Spiegel | On the Boussinesq approximation for a compressible fluid[END_REF].

∀y ∈ [-L, -l] ∪ [l, L], u(y) =          ρ 1 gL 2 8µ 1 � 1 - � 2y L � 2 � +2 (ρ 2 -ρ 1 )glL 8µ 1 � 1 - � � � � 2y L � � � � � ∀y ∈ [-l, l], u(y) =                    ρ 2 gl 2 8µ 2 � 1 - � 2y l � 2 � + ρ 1 gL 2 8µ 1 � 1 - � l L � 2 � +2 (ρ 2 -ρ 1 )glL 8µ 1 � 1 - l L � (E.
Les fluides obéissent par conséquent aux équations suivantes : Cette méthode peut aisément être étendue à plus de deux fluides par le biais de plusieurs traceurs.

Il est possible d'adimensionner les équations de Navier-Stokes. On fait alors apparaître deux nombres sans dimension :

• le nombre de Reynolds Re ≡ ρlU µ présentant le rapport entre inertie et forces visqueuses,

• le nombre capillaire Ca ≡ µU σ présentant le rapport entre forces visqueuses et tension de surface.

Enfin, on définit la mouillabilité comme la capacité d'un fluide à garder contact avec une surface solide en présence d'un deuxième fluide précisé [START_REF] Schneider | Wettability Patterning in Microfluidic Systems and Applications in the Petroleum Industry[END_REF]. La mouillabilité Le domaine de calcul est discrétisé à l'aide de carrés (des cubes en trois dimensions) de volumes finis organisés hiérarchiquement suivant une structure de type arbre, appelée quadtree (ou octree en 3D). Toutes les variables (composantes de la quantité de mouvement, pression et traceurs passifs) sont localisées au centre de chaque volume de discrétisation carré (cube en 3D). Une méthode de projection [START_REF] Almgren | A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection[END_REF][START_REF] Almgren | A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries[END_REF][START_REF] Almgren | A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations[END_REF][START_REF] Almgren | Approximate Projection Methods: Part I. Inviscid Analysis[END_REF] est utilisée pour la discrétisation spatiale de l'équation de pression corrigée (voir ci-dessus) et la divergence associée dans l'équation de Poisson.

La divergence du champ de vitesse auxiliaire est calculée sur chaque volume de contrôle comme une approximation de volume fini

∇ • u � = 1 h � f u f � • n f ,
où n f représente le vecteur unitaire normal à la face et h l'échelle de longueur de la cellule.

Le champ de vitesse au centre de la cellule au temps n+1 est obtenu en appliquant la correction de pression au centre de la cellule Afin de valider l'utilisation de Gerris dans le cadre de simulations d'écoulements multiphasiques en milieu poreux, plusieurs tests ont été effectués.

u c n+1 = u c � - � � � � � � Δt ρ f n+ 1 2 ∇ f p n+ 1 2 � � � � � � c , où ρ f
Des tests de scalabilité à faible porosité ont été réalisés. On rappelle qu'il existe deux notions de scalabilité :

• la scalabilité forte, définie comme la façon avec laquelle le temps pour atteindre une solution varie lorsqu'on fait varier le nombre de processeurs dans un problème total de taille fixe ;

• la scalabilité faible, définie comme la façon avec laquelle le temps pour atteindre une solution varie lorsqu'on fait varier le nombre de processeurs dans un problème de taille par processeur fixe. De cette équation, on peut déduire que :

• le nombre CFL diminue avec le nombre capillaire. Ceci a tendance à augmenter de manière conséquente les temps de calcul en milieu poreux, lesquels sont réalisés à très faible nombre capillaire (de l'ordre de 10 -8 -10 -6 ).

• le nombre CFL varie avec le nombre de Laplace, ce qui peut s'avérer dangereux en raison de la grande variété des viscosités possibles.

L'influence de ces inconvénients pourrait être fortement minorée en implémentant une gestion totalement implicite de la tension de surface dans Gerris.

Divers tests ont également été réalisés afin de s'assurer de la précision des résultats fournis par Gerris. A ces fins, les normes L 1 , L 2 et L ∞ usuelles ont été étendues aux solutions ξ définies sur un domaine de taille N 3 par

• L ∞ (ξ) = max c∈Cellules L ∞ (ξ(c)),
• L 1 (ξ) = 1 

Mk 15, 34 dixitque
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 1 Figure 1: Energy Consumption Fuel Shares, 2011 and 2040. [1, 2, 3]
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 4 Figure 4: Tar sandstone from the Monterey Formation of Miocene age (10 to 12 million years old), of southern California, USA. [8]
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 6 Figure 6: Costs of production by resource in 2008 (source: IEA).
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 8 Figure 8: Steam Assisted Gravity Drainage. [25]
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 9 Figure 9: A schematic of the immiscible displacement technique in the case of immiscible CO 2 injection. [19]
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 11 Figure 11: Water displacing oil from a pore in (a) a strongly water-wet rock, and (b)
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 11 Figure 1.1: Measured value as a function of resolution. [71]

1. 1 . 3

 13 Fluid properties 1.1.3.1 Fluid viscosity Unlike solids, fluids continue to deform as long as a shear stress is applied [73]. This continuous deformation constitutes the flow and the property by virtue of which a fluid resists any such deformation is known as the viscosity. Viscosity is thus a measure of the reluctance of the fluid to yield to shear whenever the fluid is in motion. Let τ yx denote the shear stress exerted in the direction +x on a fluid surface whose outer normal is in the direction +y (i.e. when the material of greater y exerts a shear in the +x direction on the material at lesser y). Then for a point M τ yx = µ ∂u ∂y (1.5) where u is the velocity. The constant of proportionality µ is called the dynamic viscosity of the fluid. The kinematic viscosity is also defined as ν = µ/ρ with ρ the fluid density. Equation (1.5) states that the shear force per unit area is proportional to the local velocity gradient. When τ yx is defined as the shear stress exerted in the +x direction on a fluid surface of constant y by the fluid in the region of lesser y, equation (1.5) becomes τ yx = -µ ∂u ∂y (1.6) Fluids whose behaviours obey equation (1.6) are called Newtonian fluids (e.g. all
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 12 Figure 1.2: Behaviour of time-independent non-Newtonian fluids. [74]
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 13 Figure 1.3: The two classes of time-dependent fluids compared to the time-independent presented in a generic graph of stress against time.[START_REF] Sochi | Non-Newtonian flow in porous media[END_REF] 

. 12 )

 12 For incompressible fluids with constant viscosity, the Navier-Stokes equation reduces to ρ Du Dt = -∇p + ρg + µ∇ 2 u. (1.13) If viscous effects are negligible, which is generally found to be true far from boundaries of the flow field, one obtains the Euler equation ρ Du Dt = -∇p + ρg. (1.14)
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 1415 Figure 1.4: Diagram of the forces on molecules of a fluid. [81]
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 16 Figure 1.6: Idealised examples of contact angle and spreading of a liquid (blue) on a flat, smooth solid (grey). Different wetting states are shown: (a) complete wetting or spreading, (b) low wettability, (c) complete non-wetting (repulsion) and (d) high
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 1 Figure 1.7: Capillary rise in a cylindrical tube of radius r. The tube (grey) shownin cross-section is dipped in water (blue). Water is wetting the tube material and a spherical meniscus of radius R is formed.[START_REF] Schneider | Wettability Patterning in Microfluidic Systems and Applications in the Petroleum Industry[END_REF] 
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 18 Figure 1.8: Anchoring of a drop on a strong edge. The zoom on the contact point
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 19 Figure1.9: Structure of a porous material: the matrix (rock grains) determines cavities also known as pores (brine and oil) more or less connected one with the other by canals.[START_REF] Abdallah | Fundamentals of wettability[END_REF] 
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 110 Figure 1.10: Idealised types of dead-end pore volume. [95]
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 241241 Single-phase flowsDuring a seminal experiment concerning flow in porous media, Henry Darcy highlighted in 1856 the linear law existing between the flow rate Q of a fluid in a porous material and the pressure gradient imposed between the entrance and exit faces of this material[START_REF] Darcy | principes à suivre et des formules à employer dans les questions de distribution d'eau : ouvrage terminé par un appendice relatif aux fournitures d'eau de plusieurs villes au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tole et de bitume[END_REF] 
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 111 Figure 1.11: Relative permeability hysteresis for a mixed-wet sample from the Kingfish field. [104]
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 29112 Figure 1.12: Oil/water relative permeabilities for Torpedo sandstone with varying wettability. Contact angles measured through the water phase are shown in degrees.
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 1 Figure 1.13: Two-phase flow in a Hele-Shaw cell. [110]
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 114 Figure 1.14: Interface between air and glycerine in a Hele-Shaw cell with inhibiting
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 115 Figure 1.15: Bundle of tubes model.[START_REF] Dahle | Bundle-oftubes model for calculating dynamic effects in the capillary-pressure-saturation relationship[END_REF] 
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 1 Figure 1.16: (a) Snapshot of a fully resolved transient Lattice Boltzmann simulation of drainage in a porous medium where the wetting phase (invisible) is replaced by a gaseous phase [134]. (b) A single pore solved by Smoothed Particle Hydrodynamics simulation [135]. (c) Simulation by Level-Set method of a cycle of drainage followed by imbibition in a 2D model granular porous medium [139].
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 1 Figure 1.18: (a) The most basic definition of tortuosity is the path length tortuosityτ . This is the ratio of the length of the tortuous flow path l e to the straight line length l in the direction of flow. This is most easily visualised in a pore space consisting of single capillaries of constant width with no branching. (b) Geometrical tortuosity is defined as the shortest length between inflow and outflow points that avoids the solid obstacles, and this is realised as a zigzag path passing grains with close tangents.

Figure 1 . 19 : 1 . 2 . 5 . 2

 1191252 Figure 1.19: Tortuosity calculation from an X-ray tomography reconstruction of a porous sandstone (the pores are shown): the color represents the shortest distance within the pore space from the left limit of the image to any point in the pores.Comparing this distance to the straight-line distance shows that the tortusosity is about 1.5 for this sample.[START_REF] Gommes | Practical methods for measuring the tortuosity of porous materials from binary or gray-tone tomographic reconstructions[END_REF] 

Dupuit's relation

  When considering the movement of fluid through a porous rock, it is common to consider the flux in terms of Darcy velocity u which is equal to the product of the intrinsic phase average velocity v, and the porosity φ [165] u = φv.(1.40)

Figure 1 .

 1 18(a)). Thus, the time taken for a fluid element to complete the path l eh along the bent or twisted capillary at the faster interstitial velocity (u/φ)(l eh /l) equals the measured time for the fluid to traverse the bulk sample length l at Darcy velocity u. Equation (1.40) then becomes u = φv l l eh . (1.41) If Darcy's law is applied for one dimensional flow Darcy velocity is

= µ injected µ displaced . 1 . 3 . 1

 131 the flow rate of the injected fluid) and the viscosity ratio M Displacement of the meniscus at the pore scale Lenormand et al.'s work [182] highlighted that during the displacement of one fluid by the other in a network of capillaries, both fluids were present simultaneously in the throats. The non-wetting fluid is present in the bulk of the throat while the wetting one stays stuck in the corners of the throat (Figure 1.20(a)). The accessible displacement types for the meniscus depend on the injection configuration: drainage or imbibition.

(see Figure 1 .

 1 20(b)). When the wetting fluid reaches an intersection, two other displacement modes are observed, depending on the fluid present in the adjacent throats. One can distinguish modes I 1 and I 2 illustrated by Figures 1.20(d) and 1.20(e) respectively.In mode I 1 , the wetting fluid arrives at the intersection by three adjacent throats and tends to fill the last throat: successive positions and shapes adopted by the meniscus are displayed in the figures alongsideFigure 1.20(d). When position 2 is reached, the meniscus no longer touches the walls and an instability occurs. Then

( a ) 2 Figure 1 . 20 :

 a2120 Figure 1.20: Circulation of the fluids in the system and displacement of the meniscus at pore scale [182]. (a) Disposition of the fluids in a throat, prespective view (left) and sectional view (right): the non-wetting fluid flows in the center of the throat while the wetting one stays stuck in the corners. (b)-(e) Displacement mechanisms at the pore scale. (b) A common mode to both drainage and imbibition: piston-like mode. The other modes only happen in the case of imbibition: (c) snap-off, (d) I 1 , (e) I 2 . Each mechanism has an associated threshold pressure depending only on pore and throat

Figure 1 . 21 :

 121 Figure 1.21: Shape of the front in the case of drainage [183]. (a) Solution of glucose displacing oil (log 10 M = 2) at decreasing capillary numbers from left to right (log 10 Ca varies from -1.0 to -5.2). (b) Air displacing a highly viscous oil (log 10 M = -4.7) at decreasing capillary numbers from left to right (log 10 Ca varies from -6.3 to -9.1).

Figure 1 . 22 :

 122 Figure 1.22:

Figure 1 . 22 :

 122 Figure 1.22: Phase diagram in the case of drainage [181]. Three domains are identified in the (Ca, M ) plane corresponding to the different shapes of the front at network scale. These shapes are associated to statistical models that can represent them. At high capillary number, viscous forces are dominant and govern the flow: the front is unstable for M < 1 and can be represented by a Diffusion-Limited Aggregation (DLA) model, but is stable for M > 1 (anti-DLA model). When the capillary number is decreased, viscous forces become negligible and it becomes possible to identify a capillary-fingering regime, corresponding well to the Invasion-Percolation model.

ure 1 .

 1 21(b)). This regime occurs for high capillary numbers and low viscosity ratios (M < 1): the flow is therefore still governed by the viscous forces, but the pressure gradient is negligible in the injected fluid, generating an instable displacement (Saffman-Taylor instability). • capillary fingering: the boundary is characterised by the development of one or more fingerings, that can form loops and be oriented in the tranverse direction of the flow (right part of Figures 1.21(a) and 1.21(b)). This situation occurs at low capillary number: the viscous forces are negligible in both fluids. The shape of the front is a result of the random distribution of throat sizes, as the fluid flows from pore to pore through the least resisting pathway. As the non-wetting fluid can move only in the bulk of the throats, it can flow only if there exists a connected path of pores from one end to the other of the network. After percolation, at the exit of the network, the injected fluid thus defines a preferential pathway and cannot explore other parts of the network. It also traps clusters of wetting fluid.

  ramified cluster. For more on DLA model, see Appendix B. Viscous fingering in Hele-Shaw flow is also very similar to both DLA and viscosity-dominated displacements in porous media (section 1.2.4.3 and Figure 1.23): the "bubble" of

Figure 1 . 23 :

 123 Figure 1.23: Fingering pattern realised in a Hele-Shaw cell (cluster diameter 200 mm).

Figure 1 . 24 :

 124 Figure 1.24: Identification of two types of pores: (a) large pores which promote the filling of the throats and the trapping of non-wetting fluid in the pores, (b) small

Figure 1 . 25 :

 125 Figure 1.25: Phase diagrams in the case of imbibition [181]. The different regimes depend on the pore geometry, but the diagram structure is similar in both cases. The diagrams are divided in three domains corresponding to three different ranges of capillary number associated to the circulation areas of the wetting fluid in the system: bulk of the throats (viscous domains identical to the case of drainage, see Figure 1.22), corner films (continuous capillary domains), surface roughness (discontinuous capillary domains).

( a )Figure 1 . 26 :

 a126 Figure 1.26: Description of the patterns obtained by statistical models [184], for different pore geometries: small, medium-sized and large. (a) Result of simulations of a wetting fluid flowing along the corners. (b) Result of simulations of a wetting fluid flowing along the surface roughness.

Figure 1 .

 1 Figure 1.26(a)).

Figure 1 .

 1 26(b)). In the case of small pores, the filling of the network begins in snap-off mode, but when two adjacent throats are filled, displacement I 2 occurs to fill the two remaining adjacent throats, and thus cluster grows in the network. As the initial filling can occur in several places of the network, on can identify the formation of several disconnected clusters (right of Figure1.26(b)).

Figure 1 . 27 :

 127 Figure 1.27: The jamming phase diagram proposed by Liu and Nagel. [205]

Figure 1 . 28 :Figure 1 . 29 :

 128129 Figure 1.28: Branching structure of close-packed grains obtained by injecting air in an initially circular granular-fluid system. The Hele-Shaw cell plate spacing was 0.4mm and the volume fraction of grains 20%.[START_REF] Sandnes | Labyrinth patterns in confined granular-fluid systems[END_REF] 

Figure 1 . 30 :

 130 Figure 1.30: Stick-slip bubbles. [214]

Figure 1 . 31 :

 131 Figure 1.31: Experimental setup: a thin bed (thickness b) of water-saturated glass beads (mean diameter d) is confined in a cylindrical acrylic cell (internal diameter L).

  They provided experimental evidence (quasi-2D experiments with several layers of beads, see Figure 1.31)) for three displacement regimes -capillary fingering, viscous fingering, and capillary fracturing (see Figure 1.32) -and derived two dimensionless groups that govern the transitions among these regimes.

Figure 1 . 32 :

 132 Figure 1.32: Experimental patterns of viscous fingering, capillary fingering and frac-turing.[START_REF] Holtzman | Capillary Fracturing in Granular Media[END_REF] 

Ca = 1 . 70 × 10 - 3 (Figure 1 . 33 :

 170103133 Figure 1.33: Fractal dimension and displacement pattern for rigid medium (pore-scale disorder λ = 0.1) showing a transition from viscous fingering to capillary fingering asthe capillary number is reduced.[START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF] 

Figure 1 . 34 :

 134 Figure 1.34: Phase diagrams of fluid-fluid displacement patterns in the experiments. The diagrams demonstrate how changing the control parameters affects the patterns. Diagram (a) (abscissa: d (µm); ordinate: q/b (cm 2 /min)) shows that the transition from viscous fingering (VF) to capillary fingering (CF) occurs at q/b ∼ d 2 (fixing w = 181 N). Intermediate patterns are marked as VF/CF. Diagram (b) (abscissa: d (µm); ordinate: w (N))shows that the transition from capillary fingering to fracturing (FR) occurs at w ∼ d -1 (q = 0.1 mL/min). Diagram (c) (abscissa: q/b (cm 2 /min); ordinate: w (N)) shows that the transition from fingering to fracturing is independent of q/b (d = 360 µm).[START_REF] Holtzman | Capillary Fracturing in Granular Media[END_REF] 

Figure 1 . 35 :

 135 Figure 1.35: Phase diagram of drainage in granular media, showing three invasion regimes: viscous fingering (VF), capillary fingering (CF), and fracturing (FR). The tendency to fracture is characterized by the "fracturing number" N f : drainage is dominated by fracturing in systems with N f � 1. At lower N f values, the type of fingering depends on the modified capillary number, Ca * . [225]

Figure 1 . 36 :

 136 Figure 1.36: Fractal dimension and displacement pattern for deformable medium, with a value of Ca * ≈ 10, showing a transition from fracturing to fingering as the fracturing number is reduced.[START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF] 

Finally

  , in deformable media, such as granular media, the flow of a fluid can move the solid particles and thus modify the pore geometry, which in turn can affect the flow. Due to this interaction between fluid and particles, a great variety of patterns can be observed, including desiccation cracks, granular fingers, labyrinth structures, stick-slip bubbles, open channels and fractures. All these patterns were summarised by Sandnes et al. in a tentative phase diagram. As flows in porous media often result in fingering patterns, due either to viscous or to capillary effects, the use of a software allowing mesh adaptive refinement is in order to efficiently study such flows from a numerical point of view, hence the use the multiphase flow solver Gerris in the following chapters. CHAPTER 2 Gerris, a Direct Numerical Simulation code Numerical fluid mechanics consists of studying the motion of a fluid, or its effects, by solving numerically the equations governing the flow (Chapter 1). It has become an essential tool in many branches of fluid dynamics and allows the access to all the instantaneous characteristics of the fluid (velocity, pressure, concentration) for each computational point, for a usually reasonable cost compared to the corresponding experiments. More particularly the multiphase (respectively two-phase) flow simulation allows to numerically study what happens when several (respectively two) fluids flow together: it can be a single fluid in two different phases, several different fluids in the same phase or several different fluids in different phases. The numerical schemes that allow two-phase flow simulation are still challenging due to the necessity to track in space the interface between the two fluids. Several efficient methods have been proposed recently, but it is still an open field of research.

Figure 2 . 1 :

 21 Figure 2.1: When using a Front-Tracking method, the fluid interface is represented by connected marker particles that are advected by the fluid velocity, interpolated from the fixed grid. [235]

13 ) 3

 133 As a reminder the Courant-Friedrichs-Lewy (CFL) number is CFL = U Δt h with h the length interval.

Figure 2 . 2 .Figure 2 . 2 :

 2222 Figure 2.2. Each cell has a direct neighbour at the same level in each direction (four in 2D, six in 3D). Each of these neighbours is accessed through a face of the cell. In two-phase flow, we also define mixed cells which are cut by the interface between the two fluids.In order to simplify the computation, several rules are edicted concerning neighbouring cells:

n+ 1 2

 1 is obtained as the average of the cell-centred values ρ c n+ 1 2

Figure 2 . 3 :

 23 Figure 2.3: Optimised hierarchical adaptation used by Gerris. The adaptation ensures

. 20 )

 20 To solve the advection equation(2.20) of the volume fraction, a piecewise-linear geometrical Volume-Of-Fluid (VOF) scheme[START_REF] Tryggvason | Direct numerical simulations of gas-liquid multiphase flows[END_REF][START_REF] Li | Calcul d'interface affine par morceaux[END_REF][START_REF] Scardovelli | Direct numerical simulation of freesurface and interfacial flow[END_REF][START_REF] Huang | Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method[END_REF] generalised for the quad/octree spatial discretisation is used. Geometrical VOF schemes classically proceed in two steps: 1. interface reconstruction, 2. geometrical flux computation and interface advection. In a piecewise-linear VOF scheme the interface is represented in each cell (Figure 2.4) by a line (resp. plane in three dimensions) described by equation n • x = α (2.21) where n is the local normal to the interface 4 and x is the position vector. Given n and the local volume fraction c γ ; α is uniquely determined by ensuring that the Volume-Of-Fluid contained in the cell and lying below the plane is equal to c γ . This volume 4 obtained from the gradients of the local volume fraction

Figure 2 . 4 :

 24 Figure 2.4: Interface cut by a mesh and its associated volume fraction field (left),

5

  or, in French, Construction d'Interface Affine par Morceaux (CIAM ).

Figure 2 . 5 :

 25 Figure 2.5: Geometrical flux estimation. The total volume of cell C which needs tomove to the right at velocity u i+1/2,j (at face situated between cell i and i + 1 of row j) is delimited by the dashed line. In the dark grey triangle: the volume fraction of the first phase which will accordingly move to the right.[START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF] 

Figure 2 . 6 :

 26 Figure 2.6: Geometrical flux estimation for quadtree discretisation. The coarser cell C is divided in two cells, C t on top and C b at the bottom. Thus the displaced volume C t a of the top sub-cell is computed independently from that of the bottom sub-cell C b a . [254]

  Figure 2.7: Examples of the grids used to calculate the curvature, indicated by solid lines: (a) a 3 × 3 symmetric stencil is sufficient to obtain a consistent estimate of the interface height for weakly-curved interfaces aligned with the grid, but (b) bigger

Figure 2 . 8 :

 28 Figure 2.8: In this case only two of the three interface heights are consistent for either the vertical or the horizontal stencils. Neither the horizontal nor the vertical stencilson their own can be used to construct a twice-differentiable discrete approximation of the interface height.[START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF] 

Figure 2 . 9 :

 29 Figure 2.9: Example of sixteen square cells (2D) with their attributed number N p .

Figure 2 . 10 :

 210 Figure 2.10: Additional constraints on the quadtree discretisation due to solid bound-aries. The refinement necessary to conform to the given constraint is indicated by the dotted lines.[START_REF] Popinet | Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[END_REF] 

Figure 2 . 11 :

 211 Figure 2.11: Cubic cell of a Face-Centred Cubic lattice.

Figure 2 . 12 : 2 � 3 .

 21223 Figure 2.12: Face-Centred Cubic lattices at different levels: (a) a level-1 lattice, (b) a level-2 lattice, (c) a level-3 lattice.

Figure 2 . 13 :

 213 Figure 2.13: Velocity field after ten timesteps: (a) in the case of the default modelling of the solids, (b) with a fluid spanning the entire domain. Closer to red: higher velocity; closer to blue: lower velocity.

Figure 2 . 14 :

 214 Figure 2.14: Weak scalability on cluster babbage2. In green (+ + +): results obtained for case 1 with the default solver, in light blue (× × ×): case 2 with default solver, in dark blue (× × × + + +): case 3 with default solver, in magenta (� � �): case 1 with Hypre, in red (� � �): case 2 with Hypre, in orange (� � �): case 3 with Hypre.

  x+1)**(-0.0309) 19923*(x+1)**(-0.1428) 26947*(x+1)**(-0.1945) 4616*(x+1)**(-0.4886) 26722*(x+1)**(-1.2926)

Figure 2 . 15 :

 215 Figure 2.15: Strong scalability on cluster babbage2. In green (+ + +): results obtained for case 1 with the default solver, in light blue (× × ×): case 2 with default solver, in dark blue (× × × + + +): case 3 with default solver, in magenta (� � �): case 1 with Hypre, in red (� � �): case 2 with Hypre, in orange (� � �): case 3 with Hypre.

Figure 2 . 16 :

 216 Figure 2.16: Weak scalability on cluster Rostand. In light blue (+ + +): results obtained for case 2 with the default solver (y ∝ x -0.1 ), in dark blue (× × ×): case 3 with default solver (y ∝ x -0.2 ).

Figure 2 . 17 :

 217 Figure2.17: Strong scalability on cluster Rostand. In light blue (+ + +): results obtained for case 2 with the default solver (y ∝ x -0.1 ), in dark blue (× × ×): case 3 with default solver (y ∝ x -0.2 ).

Figure 2 . 18 :

 218 Figure 2.18: Velocity of the tip of the fingering (Utip) vs Darcy velocity (Ud).[START_REF] Van Meurs | A Theoretical Description of Water-Drive Processes Involving Viscous Fingering[END_REF] 

  number of "pores" in each direction n ce/p = number of cells per pore χ = CFL number Z /np = Computational speed per core n p = number of cores

Figure 2 . 19 :

 219 Figure 2.19: Length of the longest finger (Lf) vs characteristic lengthscale of the injection surface (Lw).[START_REF] Van Meurs | A Theoretical Description of Water-Drive Processes Involving Viscous Fingering[END_REF] 

p

  with U D the Darcy velocity of the flow, φ the porosity of the domain and D F the fractal dimension of the fingering.

  number of cells per pore Ca D = capillary number associated with the Darcy velocity La = Laplace number based on the pore size φ = porosity One should not forget that Ca D � = Ca tip (usually Ca D � Ca tip , see Figure 2.18). We finally consider the following term Λ = |∇p| σ k. Using Darcy's law, Λ = µU D σ = Ca D .

  p = number of cells per pore γ = 1 -ν ν+1 (3 -D F ) = exponent due to the fractal structure of the fingering D F = fractal dimension ν = exponent of the correlation lengthIn 3D, ν/(ν + 1) ≈ 0.5[START_REF] Ioannis | The critical gas saturation in a porous medium in the presence of gravity[END_REF]. Thus for D F ≈ 2.5 one gets γ ≈ 3/4.
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 220 Figure 2.20: Single-phase Poiseuille flow in a horizontal geometry.

Figure 2 . 21 :Figure 2 . 22 : 2 ( 2 (

 22122222 Figure 2.21: Convergence of the error norms as functions of the resolution in the case of single-phase horizontal Poiseuille flow.

Figure 2 . 23 :

 223 Figure 2.23: Convergence of the error norms as functions of the resolution in the case of single-phase slanted Poiseuille flow (a) with the default solids of the Gerris Flow Solver, (b) with fluid everywhere.

Figure 2 .

 2 Figure 2.24: Two-phase Poiseuille flow in a horizontal geometry.

Figure 2 . 25 :

 225 Figure 2.25: Convergence of the error norms as functions of the resolution in the case of two-phase horizontal Poiseuille flow.

Figure 2 . 26 :Figure 2 . 27 :

 226227 Figure 2.26: Comparison of Gerris Flow Solver results with analytical curve in horizontal geometry in the case of two-phase Poiseuille flow with µ 2 /µ 1 = 2.

Figure 2 . 28 : 2 (

 2282 Figure 2.28: Two-phase Poiseuille flow in a slanted geometry (θ = arctan 1/2 (mod 2π)). In white: the fluid phases, in grey: the solid phase

Figure 2 . 29 :Figure 2 . 30 :Figure 2 .

 2292302 Figure 2.29: Convergence of the error norms as functions of the resolution in the case of two-phase slanted Poiseuille flow (a) with the default solids of Gerris Flow Solver, (b) with fluid everywhere.
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 233231232233 Figure 2.33.Indeed in this Figure the zero-velocity condition should be imposed at the interface between fluid and solid phase, i.e. close to computational point (x i , y j ). Due to the modelling of the solid phase, this condition is imposed at the computational point (x i , y j-1 ), resulting in the overestimation of the velocity Δu.As a consequence of the solid modelling, though the highest error (in absolute) is found close to the centre of the flow when using the standard modelling of solids,

Figure 2 . 34 :Figure 2 . 35 :

 234235 Figure 2.34: Results from Cancelliere et al., 1990. (a) 2D projection of 3D flow in a porous medium composed of penetrable spheres on a 64 3 lattice, (b) Dimensionless permeability k/R 2 as a function of solid fraction [170]; curve 1: Weissberg-Prager bound [301]; curve 2: Berryman-Milton bound 14 [302]; curve 3: Brinkman estimate [303]; curve 4: Kozeny-Carman estimate [93].

Figure 2 . 37 :

 237 Figure 2.37: Dimensionless permeability k/R 2 as a function of maximum timestep.

Figure 2 . 38 :

 238 Figure 2.38: (a) A 90°contact angle in a computational cell. In grey the solid phase, in blue the aqueous phase and in yellow the organic phase. (b) Contact angle with waterwetting condition imposed at the left boundary of a computational cell (boundary of the overall computational domain).

Figure 2 .

 2 38(a)) at the interface between solid and fluid phases. It is however possible to consider different contact angles as boundary conditions (Figure 2.38(b)). It could be possible to adapt this possibility of the boundary conditions to any solid/fluid interface, but it would require some modification in the source code. One should only take care to reconstruct first the solid/fluid interface inside the cell and second the fluid/fluid interface.

Figure 2 . 39 :

 239 Figure 2.39: Totally wetting contact angle due to surface tension when modelling the solid phase with a zero-velocity fluid phase. In light blue the aqueous phase, in darker blue the solid phase and in yellow the organic phase.

  32 3 voxels corresponding to a single pore (see Figure 2.40). As the typical size of a voxel is 2.88 µm, the simulation size is 92.16 3 µm 3 .

  .61b) Periodic boundary conditions are imposed to the other faces of the domain. The viscosity ratio is M = µwater µ oil = 1/2500, the capillary numbers are Ca oil ∼ 10 and Ca water ∼ 4 × 10 -3 , and the Reynolds numbers Re oil ∼ 8 × 10 -5 and Re water ∼ 2.5.

Figure 2 .

 2 Figure 2.40: A single pore of size 92.16 3 µm 3 obtained through X-ray µCT as considered by the Gerris flow solver. The white face of the interface is directed towards the void space of the porous medium. Note that periodic boundary conditions are used.

Figure 2 . 41 :

 241 Figure 2.41: Position of the interface during injection in a single pore in both oilwetting and water-wetting cases for M = 1/2500. In red: position of the tip; in purple: average position calculated with L 2 norm; in blue: average position calculated with L 1 norm.

Figure 2 . 42 :

 242 Figure 2.42: The pore space is more filled at breakthrough in the water-wetting case. Sections at abscissa x = 23.04 × 10 -6 m. The interface between the solid matrix and the void space is represented by the green curve. The color of the solid matrix should be ignored (based on a computational trick...). (a) In blue the aqueous phase and in red the organic one (oil-wetting case). (b) The reverse (water-wetting case).

Figure 2 . 43 :

 243 Figure 2.43: The shape of the injected finger will be closer to that of the pore in the water-wetting case. Sections at abscissa x = -23.04 × 10 -6 m. Same colors and wettabilities as those in Figure 2.42.

Figure 2 . 44 :

 244 Figure 2.44: Position of the tip of the interface during injection in a single pore for different viscosity ratios. In green M = 1/2.5, blue M = 1/25, magenta M = 1/250, red M = 1/2500. (a) Oil-wetting case, (b) water-wetting case.
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 245246 Figure 2.45: Comparison of Z/np when using 8 or 64 cores on cluster babbage2. The data are the average over the last ten timesteps. In green 8 cores, in red 64 cores.

3 Figure 2 . 47 :

 3247 Figure 2.47: Number of cell updates per second and per core when using 64 cores. In green results with cluster babbage2, in red Rostand and in blue Jade.

Figure 2 .Figure 2 . 49 :

 2249 Figure 2.48: (a) CFL number for different number of cores. In blue 8 cores, in red 64 cores. (b) CFL number when using 64 cores on cluster babbage2.

Figure 2 . 50 :

 250 Figure 2.50: Cross section of the overall geometry obtained by X-ray µCT. (a) Modelled by ParisSimulator, (b) modelled by Gerris.

Figure 2 . 51 :Figure 2 . 52 :

 251252 Figure 2.51: Time series of invasion of a real rock for M = 1/10, Ca ∼ 3 • 10 -3 and Re ∼ 250: (a) observed from afar, (b) observed from the top. The dimensionless time (t = 1 at breakthrough) is precised below the pictures.

Figure 2 . 53 :

 253 Figure 2.53: Invasion of a real rock at dimensionless time t = 2.25 for M = 1/10 and Re ∼ 250 observed from afar: (a) Ca ∼ 3 • 10 -3 , (b) Ca ∼ 3 • 10 -5 .

Figure 3 . 1 :

 31 Figure 3.1: Numerical simulation of a highly ramified bubble in the nonlinear regime expanding under a constant flux. A time sequence of bubble shapes is shown that tends towards a dense-branching morphology. For all we know this is the largest and most ramified viscous fingering simulation to date and uses the algorithm developed by Li et al.[START_REF] Li | A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell[END_REF] 

  2.6, paragraph Proof of equation 1.48). With adequate boundary conditions, these equations precisely describe the interface between the two fluids.This problem is formally close both to Diffusion-Limited Aggregation (DLA) and viscous flows in porous media. Indeed, Witten and Sander got the same set of equations when they tried to derive a mean-field equation for their DLA[START_REF] Witten | Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon[END_REF]. It is also possible to derive Darcy's law from the Navier-Stokes equations in a porous medium in both single-and two-phase cases[START_REF] Whitaker | Advances in theory of fluid motion in porous media[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Whitaker | Flow in porous media II: The governing equations for immiscible, two-phase flow[END_REF] (a Hele-Shaw cell is then partially 1 equivalent to a porous medium of permeability b 2 /12 where b is the thickness of the cell).
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 3233 Figure 3.2: Sketch of the lines of constant values of the scalar field p in front of a localdisturbance of a plane front (in the absence of surface tension).[START_REF] Davis | Perspectives in fluid dynamics: a collective introduction to current research[END_REF] 

. 13 )

 13 The pressure distribution and the different pressure fields are considered. By taking ζ = U t in the last two terms p 2 (ζ)p 1 (ζ) to retain only first-order terms one can obtain

Figure 3 . 4 :

 34 Figure 3.4: Saffman-Taylor finger of width λ = 0.5 obtained in a linear channel at B ≈ 2 × 10 -4 . [115] channel width tends towards λ = 0.5 with decreasing values of B. This finger is stable down to B ≈ 1.4 × 10 -4 (i.e. W ≈ 8 l c ). For lower values of B the finger becomes unstable.
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 35363 Figure 3.5: Three finger profiles of the continuous family of solutions given by equation (3.20).[START_REF] Saffman | The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid[END_REF] 

Figure 3 . 8 :

 38 Figure 3.8: The B-dependence of the widths of the discrete set of solutions in a wedge of angle θ w = 20 • (thick lines). The thin lines show for comparison the discrete set in the linear cell. The crosses are experimental results.[START_REF] Davis | Perspectives in fluid dynamics: a collective introduction to current research[END_REF] 

Figure 3 .

 3 Figure 3.10: (a) A photograph of an anomalous finger of width λ = 0.22 obtained in a linear channel when one of the glass plates has a single groove etched along its axis. (b) A graph of the radius of curvature of the tip r σ /b versus l c /b [369]. The saturation occurs when r σ ≈ 2.5b where the two-dimensionality breaks down. [115] linear channels, the fingers are much narrower than usual (Figure 3.10(a))but their shapes are still very well fitted by the Saffman-Taylor analytical solutions of the same width λ (equation (3.20)).

Figure 3 . 11 :

 311 Figure 3.11: The B-dependence of the width of the discrete set of solutions in the presence of anisotropy (thick lines). Black symbols: measured witdh of fingers obtained with a given disturbance of the tip. The thin lines show the discrete set in the linear cell. [115]

Figure 3 .

 3 Figure 3.12: (a) A very unstable finger in a linear cell. (b) The natural instability of an anomalous Saffman-Taylor finger in a wide channel[START_REF] Rabaud | Dynamics and stability of anomalous Saffman-Taylor fingers[END_REF] to be compared with the dendrite (Figure3.9) (c) An anomalous Saffman-Taylor finger subjected to a periodic forcing.[START_REF] Davis | Perspectives in fluid dynamics: a collective introduction to current research[END_REF] 
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 3 12(c)).
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 5 Saffman-Taylor fingering in a Hele-Shaw cell with central injection179Due to fluid incompressibility and equation (3.28c), the pressure field p obeys the Laplace equation[START_REF] Tang | Diffusion-limited aggregation and the Saffman-Taylor problem[END_REF] 

Figure 3 . 13 :

 313 Figure 3.13: Development of Saffman-Taylor fingering for three different viscosity ratios: 10 -2 (pictures (a) and (d)), 10 -3 (pictures (b) and (e)), 10 -4 (pictures (c) and(f)). The instability is generated by mesh-induced noise in the first row, while an isotropic noise is added to the simulations presented in the second row. In white, the initial position of the interface.
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 531 Saffman-Taylor fingering in a Hele-Shaw cell with central injection181 Fractal dimensions of the clusters presented in Figure3.13. When two different values are presented, the first one corresponds to the lower radii and the second one to the higher ones.

Figure 3 . 14 :

 314 Figure 3.14: Detaching droplets in experimental miscible viscous fingering.[START_REF] Chui | The Impact of Miscible Viscous Fingering on Fluid Mixing[END_REF][START_REF] Chui | Interface Evolution during Miscible Viscous Fingering[END_REF] 

  Figure 3.15: Detaching droplet in experimental viscous fingering in porous media.[START_REF] Hamon | Point d'avancement sur le troisième essai de balayage d'huile extra lourde par l'eau et eau polymérisée[END_REF] 

Figure 3 . 16 :

 316 Figure 3.16: The dimensionless area A of the growing bubble vs. the dimensionless length L of the interface. The different viscosity ratios and noise origins are presented similarly to Figure 3.13.

  [START_REF] Li | A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell[END_REF] distinguished three different parts in the area vs. interface length curve, corresponding to three different scalings. The first one was observed by Hou et al. [384] (α 1 = 0.61) and the second was the one captured by Fast & Shelley 2 [330] (α 2 = 1.45, see above). They identified a third regime where tip-splitting seemingly accelerates again (α ∞ = 1.39, a new asymptotic coefficient).

Figure 3 . 17 :

 317 Figure 3.17: Time evolution of the fractal growth patterns for viscous fingering (ΔP = 1.25 atm). The colors indicate the ages of the patterns; the oldest (first created) region is blue and the youngest is red. From [231].
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 5318 Figure 3.18: Simulation of the experiment presented in [231] (r max /λ σ = 25).

Figure 3 . 19 :

 319 Figure 3.19: Polar metric for viscous fingering simulation. (a) Radius, (b) angle and (c) initial interface.

Figure 3 . 20 :

 320 Figure 3.20: Polar simulation of central injection similar to the experiment of Praud and Swinney [231]: result after 40 days of computation on a single core.
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Figure 4 . 1 :

 41 Figure 4.1: Schematic setup of the slab in the 2-D scanner. The same alignment wasused for gammameasurements, X-ray, and X-ray camera.[START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF] 
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  and 4.4).

Figure 4 . 2 :

 42 Figure 4.2: Oil recovery and water cut during water injection: (a) E2000, (b) E7000.

Figure 4 .

 4 Figure 4.6 and 4.7 show polymer injection. A reference image is substracted to the actual image in order to highlight the saturation changes during polymer injection process. Blue parts indicate an increase in injected fluid saturation S i , whereas 1 expansion of a thick water channel in the middle of the domain

Figure 4 . 3 :

 43 Figure 4.3: 2D imaging of waterflood in Bentheimer sandstone with 2.0 kg.m -1 .s -1 crude oil. Water is injected from the bottom, white color is the injected water. (a) 0.01 PV, (b) 0.02 PV, (c) 0.04 PV, (d) 0.14 PV, (e) 0.53 PV, (f) 2.3 PV.[START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF] 

Figure 4 . 4 :

 44 Figure 4.4: 2D imaging of waterflood in Bentheimer sandstone with 7.0 kg.m -1 .s -1 crude oil. Water is injected from the bottom, white color is the injected water. (a) 0.01 PV, (b) 0.02 PV, (c) 0.04 PV, (d) 0.24 PV, (e) 0.72 PV, (f) 1.2 PV.[START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF] 

Figure 4 . 5 :

 45 Figure 4.5: Oil recovery by water flood and polymer flood.[START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF] 

Figure 4 . 6 :

 46 Figure 4.6: Polymer injection E2000, change in saturation. In blue: increase in S w ; in red: increase in S o . (a) 0.02 PV, (b) 0.11 PV, (c) 0.25 PV.[START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF] 
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 4748 Figure 4.7: Polymer injection E7000, change in saturation. In blue: increase in S w ; in red: increase in S o . (a) 0.02 PV, (b) 0.04 PV, (c) 0.15 PV, (d) 0.49 PV.[START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF] 
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 494101211212422 Figure 4.9: Effect of reducing injection rate for two heavy oils. [402]

Figure 4 . 11 :

 411 Figure 4.11: Waterflooding simulated during 120 hours of wall-clock CPU time with M = 10 -3 (injection from the bottom side): (a) case 1, (b) case 2.

Figure 4 . 12 :

 412 Figure 4.12: Effect of the noise on the initiation of the fingering process: the stable front (in green) is smaller when adding perturbations of the local viscosity (picture (b)) than without (picture (a)). The computational setup allows up to 2 10 cells in the horizontal direction.

Figure 4 . 13 :

 413 Figure 4.13: Variation of the dimensionless covering area of the fingering process with respect to the dimensionless time (i.e. the actual area of the cluster, as the injection is realised at constant massflux: (a) case 1 (δ = -0.27), (b) case 2 (δ = -0.31). The slope δ of the curve is related to the fractal dimension as D F = 2 + δ.

Figure 4 . 14 :

 414 Figure 4.14: Variation of the area of the fingering process with respect to the length of its interface: (a) case 1, (b) case 2.

Figure 4 . 15 :

 415 Figure 4.15: Injection in a domain constituted of four boxes of size (L/4) 2 , linked one another in the x direction, with adaptive mesh refinement.
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 2 Simulation of Darcy flows in rectangular slabs with lateral injection 203

Figure 4 . 16 :

 416 Figure 4.16: Waterflood in a rectangular domain with M = 10 -3 (injection from the left-hand side): (a) the tracer, (b) the velocity field (closer to black: low velocity; closer to white: higher velocity).

  , it is possible to obtain the variation of the area filled with injected fluid during the injection. This variation is presented in Figure4.18. The dimensionless values are derived by dividing the area by that of the whole domain, and the time by that of breakthrough. One should realise that the dimensionless area is equal to the oil recovery. From this simulation, breakthrough should occur when 30% of the oil has been recovered. However, from the experiments

Figure 4 . 17 : 3 (

 4173 Figure 4.17: Waterflood in a rectangular domain till breakthrough with M = 10 -3 (injection from the left-hand side): (a) the tracer, (b) the velocity field (closer to black: low velocity; closer to white: higher velocity).

Figure 4 . 18 :

 418 Figure 4.18: Dimensionless area filled with injected fluid as a function of dimensionless time (t = 1 at breakthrough).

Figure 4 . 21 :

 421 Figure 4.21: Waterflooding simulation. Inside the green rectangle, the oil is not mobilised by any polymer solution.

Figure 4 . 22 :

 422 Figure 4.22: Injection of polymer as a second step in a rectangular domain (injection from the left-hand side) with diffusion of the polymer phase in the aqueous one: (a) in blue the phase containing both water and polymer, in red the organic one, (b) in red the polymer phase. Inside the green rectangle, the oil is mobilised by the polymer solution, compared to Figure 4.21 and thus the oil ratio decreases compared to waterflooding cases.

4. 2 Figure 4 . 23 :

 2423 Figure 4.23: Proportion of aqueous phase for several abscissae at a fixed injected volume. The data are average values over thin slices of porous medium two specific abscissae.

Figure 4 . 24 :

 424 Figure 4.24: Dimensionless area as a function of dimensionless length: (a) case 1 (α ∞ = 0.64 ± 0.01), (b) case 2 (α ∞ = 0.63 ± 0.01) and (c) case 3 (α ∞ = 0.63 ± 0.01).

  When injecting an intermediate-viscosity fluid in a second step, the high-viscosity one is mobilised even behind the fingering front, as was expected after close examination of the experiments. The asymptotic coefficient α ∞ was however constant for the three different cases. As a result, to study scaling properties of the two-step invasion of a porous medium by first water (i.e. a low-viscosity fluid) and then a solution of polymers (i.e. an intermediate-viscosity one), it is possible to choose any of the three different modellings (for example the fastest computing one) without any lack of precision.

  Simulations of real rocks were realised in three dimensions on both clusters bab-bage2 (Institut d'Alembert -UPMC) and Rostand (CST Jean Féger -TOTAL SA) with very promising results. Though it was not possible to attain realistic Reynolds and capillary numbers yet, we could simulate flows in domains of physical size up to 1.152 3 mm 3 in reasonable CPU time.As flows in Hele-Shaw cells obey the same laws as flows in porous media (Darcy's law), interest was focused on the injection of a lower-viscosity fluid inside a Hele-Shaw cell filled with a higher-viscosity one. Such an injection was studied in two cases: either the fluid was injected from the centre of a square cell or from the side of the domain (in order to replicate experiments of invasion of Bentheimer sandstone). Though the obtained clusters had a characteristic non-isotropic aspect, it was interesting to note that they obeyed the same scaling coefficients as isotropic injections. Indeed, the fractal dimensions in the simulations were quite close to the ones of experimental injections. The existence of two different fractal-dimension regimes in Saffman-Taylor fingering due to central injection was also observed: one at higher viscosity ratio with the coexistence of two different fractal dimensions in the resulting cluster, and one at lower viscosity ratio with only one dimension. What is more, at late times, the area of the resulting bubble varies as the length of the interface to some power α ∞ , with different values for finite or infinite viscosity contrasts.

  investigated experimentally the invasion of air at a very slow rate into a 2D square-grid network filled with glycerol (see Figure A.1). They found that the number of ducts filled by the invading fluid counted inside boxes of side L followed equation (A.2) with 1.80 < D trap < 1.83 consistent with the numerical simulations.
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 112232226322931 Figure A.1: Experiments of drainage in a 2D network. (a) Displacement of the wetting fluid (black) by the non-wetting fluid (white) injected on the left-hand side of the network. On the right-hand side, a semipermeable membrane prevents the nonwetting fluid from flowing outside. (b) Close-up of the situation of the wetting fluid(black) and nonwetting fluid (white) in the ducts of the etched network. The distance between two nodes is about 0.8 mm.[START_REF] Lenormand | Invasion percolation in an etched network: Measurement of a fractal dimension[END_REF] 

( a )

 a Figure B.1: Diffusion-Limited Aggregation clusters in two dimension. (a) The red particles have attached most recently to the cluster and are concentrated at the tips of the growing branches. By contrast, relatively few particles penetrate deeply into the "fjords" [231]. (b) The lines represent the successive equipotentials of random walker probability densities for a two-dimensional DLA cluster growing from a single line. Clearly the random walker probability declines precipitously as one progresses

Figure B. 2 :

 2 Figure B.2: DLA grown in (a) a channel [340] and (b) wedges for α = 30 • and 144°[ 425]. The DLA cluster is grown using quadtree adaptive mesh refinement in the channel case (see Chapter 2).

B. 2

 2 Laplacian growth and Dielectric Breakdown Model Let us wonder how the cluster of Figure B.1(a) gets to be rough. If the cluster already has a rough shape, it is quite difficult for a random walker to penetrate a narrow channel (Figure B.1(b)

|∇ 2

 2 Figure B.3: A DLA-like cluster obtained by diffusive growth from a copper sulfate solution in an electrodeposition cell. [433]

Figure B. 4 :

 4 Figure B.4: DBM patterns for 1000 particles on a triangular lattice. (a) η = 0.5, (b) η = 1 i.e. this is a small DLA cluster, (c) η = 2 and (d) η = 3. [340]

  rules depend on solving the Laplace equation outside the cluster. As the Laplace equation is conformally invariant, one can solve in the w plane and transform the solution: if ∇ 2 φ(w) = 0, φ = 0 on the unit circle and φ is the real part of a complex potential Φ in the w plane, then Re Φ(G(z)) solves the Laplace equation in the z plane with Re Φ = 0 on the cluster boundary. Thus as Φ = ln(w) in w-space, the solution outside the cluster is Φ(z) = ln G(z).(B.5)

Figure B. 5 :

 5 Figure B.5: The Hastings-Levitov scheme for fractal growth. At each stage, a bump of the proper size is added to the unit circle. The composition of the bump map f

Figure B. 6 :

 6 Figure B.6: A DLA cluster made by iterated conformal maps. [340]

  Figure B.7). It however tends towards the usual DLA value for β → 2π [441]."A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension."

Figure C. 1 :

 1 Figure C.1: Mandelbrot set. (a) -(o) Zoom on point z = -0.743643887037151 + 0.13182590420533i, revealing the self-similarity of the set. The magnification of picture (o)with respect to the initial image is 59, 979, 000, 000.[START_REF] Wikipédia | Ensemble de Mandelbrot -Wikipédia, l'encyclopédie libre[END_REF] 

Figure C. 2 :

 2 Figure C.2: A partial covering of a pattern with boxes. Smaller boxes reveal smaller

  Figure C.3: Examples of Julia sets.[START_REF] Wikipedia | Julia set -Wikipedia, The Free Encyclopedia[END_REF] 

For

  the x-sweep, one uses only the volume fraction values on the left and right of a cell, while for the y-sweep one focuses on the values found above and underneath the cell. Only four different types of interface cells can be found with the original SLIC method [279]. They are: 1. each neighbour is filled with a different fluid (Figure D.1(a));

Figure D. 1 :

 1 Figure D.1: Interface approximations for the centre cell with the SLIC method (dashed lines).

Further improvement was obtainedFigure D. 2 :

 2 Figure D.2: Comparison of different line techniques for the prediction of the fluid distribution in a cell.

2 , (E. 5 ) u 1 = u 2 . (E. 6 )

 25126 The boundary condition on the domain boundary (y = L/2) is u = 0 (E.7) From boundary condition (E.5) one obtains b 2 µ 2b 1 µ 1 = -(A 1 -A 2 ) the domain gives b 2 = 0 (but b 1 is not necessarily equal to zero, see above). Thus from equation (E.8)
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•

  conservation de la masse ∇ • u = 0 ; • conservation de la quantité de mouvement (équations de Navier-Stokes) ρ Du Dt = -∇p + ρg + µ∇ 2 u. D'autre part, lorsque deux fluides immiscibles sont en contact, l'interface entre ces deux fluides est soumise à une tension de surface résultant des forces d'attraction intermoléculaires [79]. Cette tension de surface est à l'origine d'un saut de pression à la traversée de l'interface lorsque celle-ci est courbée, tel que p ip o = σ R , où p i (côté concave) et p o sont les pressions de part et d'autre de l'interface, et R le rayon de courbure moyen de l'interface. Ce saut de pression est dénommé pression capillaire ou pression de Laplace [88]. La tension de surface est intégrée dans les équations de Navier-Stokes par le biais d'un traceur c(x, t) valant 0 dans l'un des fluides et 1 dans l'autre fluide : ρ Du Dt = -∇p + ρg + µ∇ 2 u + 2σ R(x, t) ∇c.

n+ 1 2 2 ,

 12 est obtenu par moyenne des valeurs au centre de la cellule ρ c n+ 1 ∇ f est l'opérateur gradient par rapport au centre d'une face d'une cellule et l'opérateur | • | c représente la moyenne sur toutes les faces délimitant la cellule. Le champ de vitesse obtenu u c n+1 est approximativement sans divergence. Une des particularités de Gerris est son raffinement adaptatif du maillage. Plusieurs critères de raffinement peuvent être utilisés simultanément. Pour les écoulements diphasiques, l'approximation d'une interface infiniment mince est utilisée, et l'on définit une fonction de Heaviside c(x, t) =    1 si x est dans le fluide 1, 0 si x est dans le fluide 2. On définit également la fraction volumique c γ d'une cellule carrée γ de volume V c γ = 1 V � V c(x, t) dx. Malheureusement, lorsque l'échelle caractéristique des écoulements fluides et/ou des solides est inférieure à la taille du maillage, l'efficacité du solveur multigrille est bridée [288]. Afin de contourner ce problème, cette étude a majoritairement utilisé une autre modélisation des éléments solides. Dans cette méthode, dite des � solides virtuels � , le domaine solide Ω s = Ω s n'est pas retiré du calcul. Par conséquent, le code considère que l'intégralité du domaine Ω = Ω est remplie de fluide. Afin de modéliser le comportement d'une matrice solide, on impose une condition de vitesse nulle dans la phase solide ∀x ∈ Ω s , u(x) = 0. Cette condition est imposée à chaque pas de temps. Les propriétés (densité, viscosité) du fluide doivent également être constantes au sein de tout sous-ensemble connexe par arc du domaine solide. Afin d'éviter la génération au sein de la matrice solide d'une vitesse numérique non physique entre deux pas de temps due au gradient de pression, une force de traînée strictement numérique est ajoutée dans la phase solide aux équations de Navier-Stokes f drag = -M u.

= σρl µ 2 =

 2 la percée, à l'aide de la formule suivanteT CP U/np = N 4 P/L n 4 ce/p (χZ /np × n p ) -1 où                    N P/L =nombre de � pores � dans chaque direction n ce/p = nombre de cellules par pore χ = nombre CFL Z /np = vitesse de calcul par coeur n p = nombre de coeurs Pour rappel, le nombre CFL 3 est défini par CFL = U Δt h avec U une vitesse caractéristique, Δt le pas de temps et h la taille caractéristique du maillage. D'autre part, dans le cadre de la simulation de l'invasion d'un milieu poreux 3D, le nombre CFL varie commeχ ∝ Ca γ La 1/2 n                            Ca = µV D /σ = nombrecapillaire calculé à partir de la vitesse de Darcy La nombre de Laplace φ = porosité n ce/p = nombre de cellules par pore γ = 1 -ν ν+1 (3 -D F ) = exposant dû à la structure fractale des digitations D F = dimension fractale ν = exposant de la longueur de corrélation En 3D, ν/(ν + 1) ≈ 0, 5 [299]. Ainsi, pour D F ≈ 2, 5, γ ≈ 3/4.

2 � 1 / 2 . 2 . 2 .µ 2 µ 1 = 10 -4 à 10 - 2 .

 21222110102 La simulation d'écoulements de Poiseuille[START_REF] Poiseuille | Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres[END_REF] a été effectuée dans les cas mono-et diphasique. Deux géométries distinctes ont été considérées : dans un cas, l'écoulement de Poiseuille est aligné avec l'une des directions principales du maillage (dans les faits avec la direction x) ; dans l'autre, la direction de l'écoulement est en biais par rapport aux directions principales du maillage.Dans le cas d'un écoulement monophasique dans la direction x, la convergence de l'erreur entre champs de vitesse théorique et simulé est quasi-quadratique lorsqu'on fait varier la résolution, quelle que soit la norme utilisée. En revanche, dans le cadre d'un écoulement monophasique en biais, cette convergence atteint un plancher de l'ordrede 10 -4 , quelle que soit la modélisation choisie pour la phase solide.Dans le cas d'un écoulement diphasique (cas µ 1 /µ 2 = 2 avec le fluide le plus visqueux au centre) dans la direction x, la convergence de l'erreur entre champs de vitesse théorique et simulé est moins rapide que linéaire lorsqu'on fait varier la résolution, quelle que soit la norme utilisée. D'autre part, les résultats obtenus par Gerris sous-estiment la valeur du champ de vitesse. Comme cette sous-estimation est inférieure à 2 % (l'erreur est maximale au centre du domaine), les résultats obtenus sont satisfaisants. où n est le vecteur normal unitaire dirigé vers le fluide 2. On considère que la pression est constante dans le fluide 1 et vérifie ∇ 2 p = 0 dans le fluide 2. Une telle situation est instable : toute irrégularité de l'interface va avoir tendance à se développer indéfiniment. Il est aisé de montrer que la déstabilisation de l'interface aura un taux de croissance maximal pour le vecteur d'onde k c = 2 b √ Ca, où b est l'épaisseur de la cellule de Hele-Shaw, ce qui correspond à une longueur d'onde d'instabilité maximalel c = πb Ca -1/2. L'interface est cependant instable pour tout vecteur d'onde tel que k < k max = √ 3k c . Cette instabilité de l'interface n'empêche cependant pas l'existence de solutions stables. Dans le cas d'une cellule de Hele-Shaw linéaire de largeur W , le motif obtenu est contrôlé par le paramètre Une unique digitation est observée pour une grande gamme de valeurs de B. Le rapport λ entre la largeur de la digitation et celle de la cellule tend vers λ = 0, 5 quand B diminue. Cette digitation unique est stable jusqu'à une valeur B ≈ 1, 4 × 10 -4 (soit W ≈ 8 l c ). En dessous de cette valeur, le motif est instable. On rappelle également que, en l'absence de tension de surface, la forme de lλ ∈ [0 , 1] (Figure 3.5). Dans le cadre d'une cellule de Hele-Shaw angulaire d'angle θ w (positif si l'écoulement se fait dans la direction divergente), on peut considérer le paramètre B = 8, 45 × 10 -3 (l c /θ w r) 2 où rθ w est l'épaisseur curviligne locale W (r). Une unique digitation occupe une fraction finie λ θw > 0.5 de l'épaisseur angulaire pour des valeurs modérées de B. Cette fraction varie approximativement de manière linéaire par rapport à l'angle du domaine. Pour B constant, soit U variant comme r -2 , la digitation croît selon une structure autosimilaire. Dans les autres cas, la digitation devient spontanément instable. Il est possible de simuler des écoulements de Darcy avec Gerris. Pour cela, il est nécessaire de supprimer le terme d'advection dans les équations de Navier-Stokes, et considérer une force de traînée f = -βu∂ t u = -1 ρ ∇pβu.On décompose alors la solution numérique en un terme exact et une erreuru(t) = u 0 + e(t)avec 0 = -∇pβρu 0 pour le terme exact. L'erreur est solution de ∂ t e = -βe pour une solution exacte stable, soit e = -C exp(-βt). L'erreur est ainsi petite après un pas de temps Δt si βΔt � 1. Pour une solution exacte dépendant du temps u 0 , la même décomposition permet de montrer que l'erreur varie comme u 0 /(βT c ) où T c est le temps caractéristique de la solution exacte et requiert donc βT c � 1. On obtient cette condition par le choix des unités de temps et de longueur. Le solveur permet donc soit d'obtenir une itération faussement variable vers la solution d'équilibre, soit de suivre de manière adiabatique une solution dépendant du temps de u = -1 βρ ∇p.On s'intéresse au développement des digitations de Saffman-Taylor dans une cellule de Hele-Shaw avec injection centrale en présence de tension de surface[START_REF] Li | A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell[END_REF][START_REF] Fast | Moore's law and the Saffman-Taylor instability[END_REF]. On considère ainsi des domaines 2D carrés de taille adimensionnée L d centrés en (0, 0)Ω = [-L d /2, L d /2]Les deux composantes de la vitesse sont (u, v). Le domaine est initialement rempli avec un fluide de forte viscosité (µ = 1). Un fluide moins visqueux (µ = M > 0)est injecté au centre du domaine avec un débit massique constant. Les limites du domaine sont soumis à une condition quasi-circulaire de sortie libre du fluide.Les fluides sont considérés incompressibles et se déplacent suivant la loi de Darcy[START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Whitaker | Flow in porous media II: The governing equations for immiscible, two-phase flow[END_REF]. Le champ de pression obéit ainsi à une équation de Laplace[START_REF] Tang | Diffusion-limited aggregation and the Saffman-Taylor problem[END_REF].Les simulations s'intéressent à des écoulements diphasiques pour des rapports de viscosités allant de M = Comme présenté ci-dessus, il est possible de ne considérer que la contribution dans le plan du rayon de courbure[[p]] = λ σ R . (E.18)où [[ ]] dénote un saut, R est le rayon de courbure principal de la projection dans le plan de l'extrémité du ménisque séparant les deux phases et λ σ une longueur caractéristique de l'influence de la tension de surface.On part d'une interface circulaire légèrement perturbée r(θ) = 1 + 1/10(cos(3θ) + sin(2θ))[START_REF] Thomas | Removing the stiffness from interfacial flows with surface tension[END_REF]. Ne sont considérés que les temps courts. On impose d'autre part λ σ = 1/3 et la taille du maillage est h = 1/60. À faible contraste de viscosité, des bulles secondaires se détachent de la bulle principale. Certains digitations ont également tendance à se reconnecter au bout d'un certain temps, emprisonnant ainsi des gouttes à forte viscosité à l'intérieur de la bulle à faible viscosité. Au contraire, à fort contraste de viscosité, les différentes digitations se développent de manière indépendante, sans réunion ultérieure. À ces deux cas sont associés deux régimes de dimension fractale distincts. La transition s'effectue à un plus faible contraste de viscosité lorsque l'amplitude du bruit générant l'instabilité est plus important. Fast & Shelley ont d'autre part expliqué [330] que, à temps long, la longueur de l'interface d'une simulation de digitations de Saffman-Taylor est reliée à l'aire de la bulle correspondante par une loi de puissance Aire ∼ (Longueur) α (dans leur cas, α = 1, 45). On peut noter que la variation de ce coefficient α est déconnectée de celle de la dimension fractale. Un second régime peut être défini aux temps courts avec un autre coefficient (α = 0, 61 dans le cas de Fast & Shelley). Par la suite, α 1 sera le coefficient aux temps courts, et α ∞ le coefficient asymptotique. Dans les simulations exposées ci-dessus, les coefficients obtenus sont distincts de ceux trouvés par Fast & Shelley : on trouve α 1 ∈ [0.37, 0.38], et α ∞ ∈ [0.91, 1.08], avec des variations en fonction du rapport de viscosités et de l'origine du bruit générant la déstabilisation de l'interface. Il semblerait également que le coefficient α ∞ augmente avec le contraste de viscosités, même si l'amplitude du changement observé est trop faible pour pouvoir être péremptoire. Les valeurs obtenues numériquement ont été comparées avec une mesure expérimentale. À partir des résultats d'une expérience réalisée par Praud & Swinney [231] pour laquelle M ∼ 5 • 10 -5 , il a été possible de déterminer α ∞ = 1, 14. Enfin, une simulation de cette expérience a été réalisée à l'aide de Gerris, permettant d'obtenir un motif de digitations de dimension fractale D F = 1, 67, soit très proche de celle calculée à partir des résultats de Praud & Swinney (D F = 1, 69). Des simulations en coordonnées polaires ont également été réalisées. Cependant, cette fonctionnalité de Gerris étant très rarement utilisée, l'implémentation du parallélisme est pour l'heure déficiente dans ce module. Seules des simulations sur un coeur ont ainsi pu être réalisées.Injection latérale dans une géométrie quasi-2DDans les réservoirs, l'injection d'eau et/ou de solutions de polymères est une alternative pour récupérer les huiles lourdes lorsque les méthodes thermiques sont soit impraticables, soit non rentables. Des expériences d'invasion d'eau et/ou de solutions de polymères ont ainsi été réalisées dans des échantillons carrés quasi-bidimensionnels de grès de Bentheimer[START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF].Ces expériences ont été effectuées avec deux huiles de viscosités distinctes :µ 2000 = 2, 0 kg.m -1 .s -1 = 2000 cP (expérience E2000) et µ 7000 = 7, 0 kg.m -1 .s -1 =7000 cP (expérience E7000). Lors d'un balayage avec de la saumure, le taux de récupération est inférieur à 30 %. Ce taux est cependant légèrement plus élevé dans le cas E2000 que dans le cas E7000. Aux temps courts, un grand nombre de digitations est généré. Certaines d'entre elles vont se propager plus rapidement que d'autres et ainsi inhiber le développement des digitations plus petites. Aux temps longs, ces digitations vont avoir tendance à s'unir pour former d'épais canaux aqueux, dont l'aspect fractal est beaucoup moins marqué. La coalescence des digitations est cependant plus précoce et plus marquée dans le cas E2000 que dans le cas E7000. Le balayage avec de la saumure est ainsi dominé d'abord pas la digitation visqueuse, puis par la formation de canaux aqueux. L'injection dans un second temps d'une solution de polymères entraîne un doublement du taux de récupération dans les deux cas. Néanmoins, comme précédemment, dans le cas de l'expérience réalisée avec l'huile la moins visqueuse, la production d'huile est plus rapide et résulte en un taux de récupération plus important. L'huile mobilisée au cours de ce deuxième balayage suit les canaux aqueux établis précédemment lors du balayage de saumure. Enfin, dans le cas d'un balayage d'eau, la vitesse de production (par rapport à la quantité d'eau injectée) est plus important pour des vitesses d'injection plus faibles. Alors que lors des balayages à forte vitesse d'injection l'huile est récupérée uniquement près des canaux aqueux cités précédemment, la phase aqueuse s'en éloigne lors des balayages à faible vitesse et visite une aire beaucoup plus importante du milieu poreux [402]. Cela est probablement dû à un processus d'imprégnation (le nombre capillaire est alors plus faible) [403]. Afin de mieux comprendre les processus en action dans les expériences présentées ci-dessus, des simulations d'écoulements darcéens dans des milieux rectangulaires avec injection latérale ont été réalisées (M = µ eau µ huile = 10 -3 ). Comme attendu, l'interface est instable et des digitations se développent. De plus, les digitations les plus avancées inhibent le développement des digitations plus petites. D'autre part, d'après les simulations, la percée devrait advenir lorsque 30 % de l'huile a été récupérée. Les expériences cependant permettent de déterminer que le taux de récupération à la percée est 3 % [388]. Cette surestimation flagrante a deux origines principales. D'une part, les simulations effectuées négligent l'aspect tridimensionnel des écoulements, alors qu'un processus de digitations est également en cours dans la troisième dimension. D'autre part, en raison du caractère fractal des digitations observées, l'aire simulée dépend de la taille caractéristique minimale (ici la taille du maillage h) selon une loi de puissance Aire ∝ h d-D F : comme la taille du maillage est plus importante que la taille des pores, on surestime donc l'aire réelle. Résumé La compréhension des écoulements multiphasiques en milieu poreux revêt une importance capitale dans de nombreuses applications industrielles et environnementales, à des échelles spatiales et temporelles variées. Par conséquent, la présente étude propose une modélisation des écoulements multiphasiques en milieu poreux par le biais de la méthode Volume de Fluide, et présente des simulations de digitations de Saffman-Taylor, motivées par l'analyse d'expériences de balayage dans des blocs de grès de Bentheimer quasi bidimensionnels initialement saturés en huile extra-lourde par de l'eau. Le code Gerris, permettant des calculs parallèles efficaces à l'aide d'un maillage de type octree, est utilisé. Des tests de précision et de rapidité de calcul sont réalisés à l'aide de divers niveaux de raffinement, ainsi qu'une comparaison avec des simulations de référence dans la littérature. Des simulations 3D dans des milieux réels numérisés sont réalisés avec des résultats encourageants. Même s'il n'est pas encore possible d'atteindre des nombres capillaires réalistes, des écoulements dans des domaines cubiques de 1 mm de côté sont simulés, avec un temps de calcul raisonnable.Des simulations 2D de digitations visqueuses avec injection centrale ou latérale sont également présentées, basées sur la loi de Darcy. L'aspect fractal des digitations est étudié aussi bien à l'aide de la dimension fractale que de la variation de l'aire des motifs obtenus par rapport à leur périmètre. Enfin, des balayages à l'aide de polymères suivant des balayages à l'eau dans un processus en deux temps sont simulés à partir d'une modélisation darcéenne.Mots-clés: milieu poreux, Volume de Fluide, récupération assistée du pétrole, digitation visqueuse, écoulement multiphasique, motifs fractals
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Table 1 .

 1 Large pores Medium size pores Small pores

		Bond	Bond	Nucleation
	Roughness	percolation	percolation	cluster
			+ correlations	growth
		Invasion	Invasion	Frontal
	Corners	percolation	percolation	drive
		dual network	+ correlations	
	Bulk of	Frontal	Frontal	Frontal
	the ducts	drive	drive	drive

1: Table summarising the different shapes at network scale, for the three types

  Horizontal geometry . . . . . . . . . . . . . . . . . . 127 Slanted geometry . . . . . . . . . . . . . . . . . . . . 128 2.2.3.2 Two-phase Poiseuille flow . . . . . . . . . . . . . . 131 Horizontal geometry . . . . . . . . . . . . . . . . . . 131 Slanted geometry . . . . . . . . . . . . . . . . . . . . 134 2.2.4 Permeability of a randomly-generated porous medium . . . 139 2.3 3D simulations of invasion in oil-filled real porous media 144 2.3.1 X-ray microtomography . . . . . . . . . . . . . . . . . . . . 144 2.3.2 Invasion of porous media in both water-wetting and oilwetting cases . . . . . . . . . . . . . . . . . . . . . . . . . . 146 2.3.2.1 Contact angle in Gerris . . . . . . . . . . . . . . . 146 2.3.2.2 Simulation of a single pore . . . . . . . . . . . . . 147 2.3.2.3 Invasion of a 3D porous medium with several pores 150 Case with 256 3 voxels . . . . . . . . . . . . . . . . . 151 Case with 400 3 voxels . . . . . . . . . . . . . . . . . 153 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Table 2 .

 2 up to 512 3 ). The tests are realised Lattice level Number of cores Standard solver Hypre solver 1: CPU time (in s) required to compute ten timesteps for case 2 for both the standard solver of the Gerris Flow Solver and Hypre solver.

	1	1	1.14	2.03
	2	8	2.37	9.50
	3	1	142.24	813.04
	3	8	27.72	161.75
	3	64	4.06	718.82

with the default solver of Gerris. Hypre solver is not considered, due to the problem presented above.

The results of weak scalability are presented in Figure

2

.16 and those of strong scalability in Figure

2

.17.

Table 2 .

 2 2: CPU time required to compute ten timesteps for case 2 for the standard solver of Gerris Flow Solver.

	Number of cores	Lattice level	CPU time (s)	Lattice level	CPU time (s)
	1		2	6.34	5	7048.43
	8		3	14.34	5	1710.78
	64		4	21.45	5	248.68
	512		5	43.20	5	43.20
	4096		6	108.50	5	22.97
	inertia for the other part		
	Oh ≡	Viscous force (Inertia force	

Table 2 .

 2 

	1/2.5	27790 s	12510
	1/25	30540 s	10040
	1/250	34316 s	12030
	1/2500	68744 s	25870

3: CPU time to breakthrough in oil-wetting case.
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Table 4 .

 4 1: Oil recovery data.

		E2000		E7000	
		Injected PV Oil Recovery Injected PV Oil Recovery
	Waterflood	2.3	28.5%	5.1	26.4%
	Polymer flood 1650ppm 3630S	1.5	66.8%	3.18	63.1%

Pore-to-throat effective diameter ratio

In the case of porous media, the Brooks-Corey correlation for capillary pressure states thatp c = cS -aw where c is the entry capillary pressure, 1/a is called the pore-size distribution index and S w is the normalized water saturation[START_REF] Brooks | Hydraulic properties of porous media[END_REF].

The specific surface (s) of a porous material is defined as the total insterstitial area or the pores (A s ) per unit bulk volume (U b ) of the porous medium: s = A s /U b .

u = φv with v the average velocity of the flow.

Note the use of the ˜sign to distinguish the 3D marker function from the 2D one.

permeability to oil at connate water saturation, and permeability to water at residual oil saturation

This method is basically a Brinkman penalisation[START_REF] Angot | A penalization method to take into account obstacles in incompressible viscous flows[END_REF][START_REF] Liu | A Brinkman penalization method for compressible flows in complex geometries[END_REF].

http://computation.llnl.gov/casc/hypre/software.html

As a matter of fact, it is of order φ × N x × N y × N z .

http://www3.nd.edu/∼sdabiri/

http://www3.nd.edu/∼gtryggva/

The fluid properties (viscosity, density, marker function) are constant inside any arcwise connected subset of the solid phase (see section 2.1.7).

To be precise, in Hele-Shaw cells, t = 1.337 Ca2/3 [1 + � 2 ( π 4 f �� + (f � ) 2 )] + O(� 2 Ca, Ca 4/3 ) [110],where f describes the interface (x = f (y) on Figure1.13), � is the ratio of gap width to transverse characteristic length (� = b/λ f with λ f fingering wavelength).

One should note that in this case α 2 is not the asymptotic scaling.

A map f : U → V with U, V ∈ R n is called conformal (or angle-preserving) at a point u 0 if it preserves oriented angles between curves through u 0 with respect to their orientation (i.e., not just the magnitude of the angle). Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature.

In this case, as the ultimate goal is to simulate the experiments realised at Bergen[START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF], L =

cm.3 The use of Hypre solver allows to use a much higher timestep than when using the default solver of Gerris and converges much faster. However, there is a bug in the linking process between Gerris and Hypre inducing a drastic decrease of solving performance when using more than 64 cores.4 In these simulations, it corresponds to h 1 = 150 µm and h 2 = 75 µm. h 2 is thus of the order of the pore size (though slightly higher).

In the case presented in Figure4.17, the area is multiplied by more than 2 when multiplying the grid spacing by 10.

Courant-Friedrichs-Lewy 
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In a first step, the injection of brine is simulated in the domain similarly to what was presented previously. In their experiments, Skauge et al. [START_REF] Skauge | 2-D Visualisation of Unstable Waterflood and Polymer Flood for Displacement of Heavy Oil[END_REF] waited till long after breakthrough before beginning the injection of a polymer solution. In the following simulations, it was however decided to begin this injection before breakthrough, in order to reduce the required CPU time.

The injection of polymer is realised from the same side as the one that was used to inject brine. The different viscosity ratios are as follows 1. the polymer and the water are not miscible;

2. case 2: the polymer and the water are miscible but the low diffusion is only the result of the advection scheme;

3. case 3: the polymer and the water are miscible and diffuse one inside the other.

In this case, it was checked that τ Diffusion ∼ τ Viscosity � τ CFL .

There is no change in the injection rate (constant massflux u(-L/2, y) = U in e x ) when switching from waterflooding to polymer injection occurs. The side boundaries y = ±L/2 impose a slip condition, while the last side allows a "free" outflow condition for the fluids.

In all cases, the results reproduce that of the Bergen experiments. Indeed, the oil that remained after waterflooding is mobilised behind the fingering front by the invading polymer as can be seen in Figure 4.22. The result for waterflooding only is recalled in Figure 4.21 to allow comparison. This appendix is mainly extracted from [405] with slight modifications.

APPENDIX A Invasion percolation

A.1 Basic process

Invasion pecolation is a dynamic percolation process introduced by Wilkinson and Willemsen [START_REF] Wilkinson | Invasion percolation: a new form of percolation theory[END_REF], motivated by the study of the flow of two immiscible fluids in porous media [START_REF] De Gennes | Lois générales pour l'injection d'un fluide dans un milieu poreux aléatoire[END_REF][START_REF] Chandler | Capillary displacement and percolation in porous media[END_REF]. Consider the case in which oil is displaced by water in a porous medium. When the water is injected very slowly then the process takes place at very low capillary numbers Ca. This implies that the capillary forces completely dominate the viscous forces, and therefore the dynamics of the process is determined on the 

C.1 Definition

In the 1970s, Benoît Mandelbrot [395,[START_REF] Benoît | How long is the coast of Britain[END_REF][START_REF] Benoît | Les Objets Fractals[END_REF] developed the idea of fractal geometry to unify a number of earlier studies of irregular shapes and natural processes [405].

Mandelbrot focused on a particular set of such objects and shapes, those that are self similar, i.e. where a part of the object is identical (either in shape, or for a set of We suppose that u = u(y)e x . The external fluid (|y| � l/2) is referred to as Fluid 1 (ρ 1 , µ 1 ) while the internal one (|y| � l/2) is Fluid 2 (ρ 2 , µ 2 ). In the following, i can be either 1 or 2, depending on the ordinate of the considered point. Extended summary in French -Résumé détaillé L'étude détaillée des écoulements multiphasiques en milieu poreux revêt une importance cruciale pour de multiples applications industrielles et écologiques [START_REF] Bhusan | Upscaling Multiphase Flow in Porous Media: From Pore to Core and Beyond[END_REF]. En effet, comme, à l'heure actuelle, 90 % de l'énergie consommée de par le monde est d'origine fossile [1,2,3], la demande mondiale de pétrole augmente en permanence.
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Pour répondre à cette demande, le pétrole est extrait selon un processus en deux voire trois temps :

• lors de la récupération primaire, entre 5 % et 15 % du pétrole initialement piégé dans le réservoir est produit par déplétion des hydrocarbures ;

• dans un second temps, il est possible d'extraire entre 15 % et 30 % du pétrole par injection forcée de saumure [START_REF] Huang | Colloid and interface science in the oil industry[END_REF][START_REF] Tzimas | Enhanced oil recovery using carbon dioxide in the european energy system[END_REF] ;

• un ensemble de techniques connues sous le nom générique de récupération assistée de pétrole est alors mis en oeuvre pour extraire un surplus compris entre 

La capacité d'un fluide à se déplacer dans un milieu poreux est ainsi décrite par le paramètre de mobilité Mob ≡ kk r µ .

On définit le rapport de mobilité comme le rapport de la mobilité du fluide déplacé divisée par celle du fluide invasif. En négligeant les perméabilités relatives (ce qui sera considéré par la suite), ce rapport est réduit au rapport de viscosités

Comme les équations gouvernant les écoulements sont identiques [START_REF] Pijush | Fluid Mechanics[END_REF][START_REF] Afkhami | A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations[END_REF], il est possible d'étudier les écoulements en milieu poreux dans des cellules de Hele-Shaw [START_REF] Hele-Shaw | Flow of water[END_REF]. La perméabilité du milieu est alors b 2 /12 avec b l'épaisseur de la couche fluide dans la cellule.

Quatre types de méthodes sont utilisés couramment pour étudier les écoulements en milieu poreux :

• une approche continue dans laquelle le milieu poreux est caractérisé par des paramètres macroscopiques (par exemple, sa perméabilité). La loi de Darcy est un de ces modèles [START_REF] Klinkenberg | The permeability of porous media to liquids and gases. Drilling and production practice[END_REF][START_REF] Gray | On the general equations for flow in porous media and their reduction to Darcy's Law[END_REF].

• le modèle dit à faisceau de capillaires (capillary bundle model ) où le volume atteignable par l'écoulement est assimilé à un ensemble de capillaires [START_REF] Dahle | Bundle-oftubes model for calculating dynamic effects in the capillary-pressure-saturation relationship[END_REF][START_REF] Watanabe | Capillary bundle model of hydraulic conductivity for frozen soil[END_REF].

• une approche visant à décrire le milieu poreux à l'échelle des pores par des méthodes numériques et résoudre les équations à cette échelle [START_REF] Hilpert | Pore-morphology-based simulation of drainage in totally wetting porous media[END_REF]129,[START_REF] Koroteev | Direct Hydrodynamic Simulation of Multiphase Flow in Porous Rock[END_REF].

On peut citer les méthodes Lattice-Boltzmann [START_REF] Daniel | Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics[END_REF][START_REF] Ahrenholz | Pore-scale determination of parameters for macroscale modeling of evaporation processes in porous media[END_REF], Smoothed Particle Hydrodynamics [START_REF] Uditha | Porescale study of capillary trapping mechanism during CO 2 injection in geological formations[END_REF], Modified Moving Particle Semi-implicit [START_REF] Ovaysi | Direct pore-level modeling of incompressible fluid flow in porous media[END_REF][START_REF] Ovaysi | Multi-GPU acceleration of direct pore-scale modeling of fluid flow in natural porous media[END_REF][START_REF] Ovaysi | Pore-space alteration induced by brine acidification in subsurface geologic formations[END_REF] et Level-Set [START_REF] Prodanović | A level set method for determining critical curvatures for drainage and imbibition[END_REF].

• la modélisation dite Pore-scale Network Modelling dans laquelle le milieu poreux est approximé par une réseau de capillaires reliant des pores ayant des géométries idéalisées [START_REF] Man | Pore Network Modelling of Electrical Resistivity and Capillary Pressure Characteristics[END_REF][START_REF] Blunt | Flow in porous media -pore-network models and multiphase flow[END_REF][START_REF] Man | Network modelling of strong and intermediate wettability on electrical resistivity and capillary pressure[END_REF][START_REF] Nordhaug | A pore network model for calculation of interfacial velocities[END_REF][START_REF] Bekri | Pore network models to calculate transport and electrical properties of single or dual-porosity rocks[END_REF][START_REF] Sochi | Pore-scale network modeling of Ellis and Herschel-Bulkley fluids[END_REF].

Dans une cellule de Hele-Shaw, il est assez aisé de prendre en compte l'effet de la tension de surface entre les différents fluides mis en jeu. Il suffit pour cela de réécrire l'équation de Darcy [START_REF] Afkhami | A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations[END_REF] u = b 2 12µ (-∇p + σκ∇c).

Dans le cas d'un milieu poreux considéré avec une modélisation de Darcy, l'influence de la tension de surface peut être intégrée dans le champ de pression. Il n'est par conséquent pas nécessaire d'ajouter de terme à l'équation de Darcy, contrairement au cas ci-dessus [START_REF] Afkhami | A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations[END_REF].

Roland Lenormand a étudié les écoulements diphasiques newtoniens dans des réseaux contenant des phases aqueuse et organique [START_REF] Lenormand | Liquids in porous media[END_REF]. Deux types de déplacement différents ont été analysés : 

où e est le tenseur des déformations linéarisé. À l'aide d'une décomposition de la vitesse de Hodge [START_REF] Hermann Von | Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen (On integrals of the hydrodynamic equations which correspond to vortex motions)[END_REF] et en estimant le terme d'advection u n+ 1 2

• ∇u n+ 1 2 à l'aide du schéma de Godunov du second ordre décalé de Bell-Colella-Glaz [START_REF] Bell | A second-order projection method for the incompressible navier-stokes equations[END_REF], on obtient les équations scalaires découplées suivantes

L'équation d'advection pour la densité peut alors être remplacée par

Cette équation est ensuite résolue à l'aide d'un schéma géométrique affine par morceaux VOF (Volume of Fluid ) [START_REF] Tryggvason | Direct numerical simulations of gas-liquid multiphase flows[END_REF][START_REF] Li | Calcul d'interface affine par morceaux[END_REF][START_REF] Scardovelli | Direct numerical simulation of freesurface and interfacial flow[END_REF][START_REF] Huang | Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method[END_REF] généralisé pour la géométrie quadtree/octree utilisée.

Afin d'obtenir une estimation précise du terme de tension de surface (σκδ s n) n+ 1 2 , une approche de Force de Surface Continue (CSF) [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] est mise en oeuvre

un opérateur de différences finies et c le champ de fraction volumique filtrée spatialement.

Afin que l'estimation de la courbure soit robuste et simple à implémenter, son calcul se fait par le biais d'une fonction de hauteur [START_REF] Cummins | Estimating curvature from volume fractions[END_REF]. Si l'interface varie comme y = f (x), la courbure peut ainsi être calculée de la manière suivante

à l'aide d'approximations de différences finies.

Comme Gerris utilise des carrés en 2D (cubes en 3D), il est possible de l'utiliser en parallèle, en définissant des cellules racines à un niveau non nul (Figure 2.9).

Afin de prendre en compte les frontières solides au cours de la discrétisation spatiale, les cellules traversées par une telle frontière sont considérées comme des cellules mixtes, et donc gérées de la même manière que celles contenant une interface entre deux fluides. La frontière solide est ainsi définie par une approche de type VOF. Une condition de glissement est ensuite imposée à la frontière

où n est le vecteur unitaire dirigé vers l'extérieur situé au niveau de la frontière solide ∂Ω s . D'autre part, les cellules intégralement situées dans la phase solide sont retirées du calcul.

Pour effectuer ces études de scalabilité, on définit le nombre de mise à jour de cellules par seconde et par coeur Les digitations observées sont également plus épaisses pour de plus faibles nombres capillaires. L'effet de la tension de surface étant plus importante dans ces cas, celle-ci va avoir tendance à réduire la courbure des digitations. Ainsi, le fluide invasif remplit de manière plus complète les pores, créant des films de Bretherton le long des parois des pores [START_REF] Bretherton | The motion of long bubbles in tubes[END_REF][START_REF] Aussillous | Quick deposition of a fluid on the wall of a tube[END_REF].

Digitation visqueuse en 2D

On considère une cellule de Hele-Shaw, assimilée à un plan. Une interface sépare ce plan en deux régions. On s'intéresse au cas où l'interface se déplace en direction du fluide le plus visqueux (noté 2 pour une viscosité égale à µ 2 ; la viscosité de l'autre fluide, noté 1, est µ 1 ) avec une vitesse normale The fractal aspect of this fingering is studied by considering both its fractal dimension and the variation of the area of the resulting pattern with respect to its arclength.

Finally, polymer flooding following waterflooding in a two-step process is simulated with Darcy modelling.