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Pour un esprit scientifique, toute connaissance est une réponse à
une question.

Gaston Bachelard (1884-1962)

Introduction

With the discoveries of the proton in 1911 by Rutherford [1] and the neutron in 1932
by Chadwick [2], the physicists could understand better and better the constituents

of matter. These two particles are the two building blocks of the atomic nucleus which
corresponds to essentially all the visible mass in the universe.
Protons and neutrons (the nucleons) are the bound states at lowest energy of baryons
composed of quarks and gluons. Through the strong interaction, the nucleons can interact
and sometimes they can form together bound states of nuclei. In nuclear physics we
consider the nucleon as structureless elementary particle. This is justified because in
the low-energy region the nucleons hardly get excited. Then we can understand the
properties of the nuclear many-body system thanks to the nucleon-nucleon interaction.
To understand the low-energy properties, a lot of nuclei are at our disposal to study.
Indeed we count 288 stable nuclei on earth in the valley of stability [3] but thousands
of them (≈6000) that are unstable exist in the universe situated between the drip-lines,
which define the limit of existence. This instability is due to an excess of protons or
neutrons. We can today produce a lot of radioactive nuclei in our laboratories. In figure
1 the nuclear chart is presented, which is the playground of the nuclear physicist. We
are very interested to access nuclei with an abnormal ratio of neutrons over protons
N/Z to understand the evolution of the nuclear interaction. We call these nuclei exotic
nuclei. These exotic nuclei can show unexpected behavior by comparison to the stable
ones: for instance the evolution of shells with the appearance of new magic numbers as
it was experimentally shown recently in the neutron-rich calcium isotopes [4] with the
new magic numbers N = 32, these phenomena of shell evolutions are also well studied
theoretically where theoreticians point out the appearance of new magic numbers [5]; the
halo nuclei are also a well known example of unexpected behavior with their neutron
skins and their huge spatial distribution [6]. This is why there is nowadays a huge effort
both experimentally and theoretically to understand these behaviors and to constrain the
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evolution of the nuclear structure.
Different experimental techniques are at our disposal to study the accessible nuclei and
pin down the nuclear forces at stakes: among them the β-decay study to measure the
level scheme and branching ratio as the β-decay time of flight for instance, or in general
manner the collision between nuclei that can lead to different processes such as the elastic
scattering, the inelastic reaction, the transfer reaction where one or few nucleons are
exchanged between the beam and the target or the fusion to form a compound nucleus.
Direct reaction such as the pick-up reaction are an important tool in nuclear physics
because this kind of reaction probes the single-particle character of the states in a nucleus.
That’s why, when it is possible, direct reactions are a very interesting tool to probe the
shell evolution at the extreme of isospin.
In this thesis, we are particularly interested in the proton-shell evolution in neutron-rich
Copper isotopes between N = 40 to N = 50 toward the doubly-magic 78Ni nucleus.
In this manuscript, we shall focus on the proton-hole states along the isotopic chain of
Copper, in particular in 69Cu and 71Cu. Indeed, proton-hole states in Copper isotopes
are very interesting to probe the Z = 28 gap and that will be studied through the (d,3He)
proton pick-up reaction. In a first part we explain the motivations and the experimental
procedure to study these two nuclei, during the second part we describe the experimental
setup and the data analysis for 69Cu while the third part is devoted to the 71Cu nucleus
and finally in the last part we present the interpretation of the results.
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decay modes
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Nuclear models
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1.1 Bulk properties and nuclear forces . . . . . . . . . . . . . . . . 15
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1.1.2 The nucleon-nucleon interaction . . . . . . . . . . . . . . . . . . 16

1.2 The Nuclear Shell-Model . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Independent-particle model . . . . . . . . . . . . . . . . . . . . 18

1.2.2 The nuclear shell-model potential . . . . . . . . . . . . . . . . . 19

1.2.3 The residual interaction . . . . . . . . . . . . . . . . . . . . . . 21

1.2.4 Structure of the effective interaction . . . . . . . . . . . . . . . 23

In the following we stress the basic properties of nuclei and we explain in the framework
of the shell model the theory of the many-body problem.
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1.1. Bulk properties and nuclear forces

1.1 Bulk properties and nuclear forces

1.1.1 The liquid-drop model

Before the discovery of the neutron, the first nuclear model was proposed by G. Gamow
in 1930 [7], the so-called liquid-drop model. In this model, the nucleus is described as an
incompressible charged liquid-drop with a volume proportional to the number of particles
A. In this context, the binding energy of the nucleus is:

B(A,Z) = aVA− aSA2/3 − aC
Z2

A1/3
− asym

(N − Z)2

A
± δ

A1/2
, (1.1)

with the typical values aV = 16 MeV for volume, aS = 17 MeV for surface, aC = 0.7

MeV for Coulonb, asym = 23 MeV for the asymmetry term and δ = 12 MeV the pairing
constant. The plus sign is for even-even nuclei, the minus sign for odd-odd nuclei and for
odd-even nuclei we have δ = 0. The typical binding-energy is about 8 MeV per nucleon.
Then the empirical relation for masses is:

M(A,Z) = (A− Z)mn + ZmP −B(A,Z) (1.2)

This equation is known as the Bethe-Weizsäcker semi-empirical mass formula. For a given
number of nucleons A in a nucleus, its radius follows the empirical law:

R(A) = r0A
1/3, (1.3)

where r0 ≈ 1.2 fm. Thus the nuclear volume is proportional to the number of nucleons in
the nucleus.
The least bound nucleon has a binding energy about 8 MeV and a kinetic energy about
40 MeV while the nucleon mass is mc2 ≈ 938 MeV. One can see then that the kinetic
energy is negligible compared to the mass, leading to the assumption of non-relativistic
theory to be able to describe the nucleus. Most recently, the development of relativistic
theories have become important despite of the simple view we are giving. Indeed, we can
estimate that the velocity of this least bound nucleon with a kinetic energy of T = 40

MeV:

v =

√
2T

m
= c

√
2T

mc2
≈ 0.3c, (1.4)
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Chapter 1. Nuclear models

this velocity that corresponds to one third of the speed of light is associated with the de
Broglie wavelength:

λ =
2π~
mv

=
2π~c
βmc2

≈ 4.5 fm. (1.5)

We can see that λ is not small compared to nuclear radius whose range is from 1.2 fm up
to 8 fm, leading to the fact that quantum effect must not be negligible in nuclei.

1.1.2 The nucleon-nucleon interaction

H. Yukawa proposed in 1935 his theory of the strong interaction, in which the interac-
tion between two nucleons is seen as an exchange of a boson particle. As the interaction
between two charged particles is an exchange of a photon, the interaction between two
nucleons is affected by the exchange of one boson. Contrary to the electromagnetic inter-
action, the nucleon interaction appears to be short-range, this implies that the exchanged
boson must have a finite mass. This mass is given by:

m =
~c
r
, (1.6)

with r ≈ 1 fm the range of the interaction, we get m ≈ 197 MeV. This particle was
discovered in 1947 by César Lattes et al. [8] and was identified as the π meson with a
mass about 140 MeV that corresponds to a more precise range of 0.7 fm. The associated
Yukawa potential has the following form:

VY ukawa(r) = −g2 e
−mr

r
, (1.7)

where g is equal to the coupling constant between the meson field and the fermion field
(proton or neutron). When we have m = 0, the interaction is Coulomb-like and is long-
range.
Let us now define the main properties of the nucleon-nucleon interaction:

• it is invariant by parity,

• it is attractive,

• it is short range of the order of 0.7 fm,
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1.2. The Nuclear Shell-Model

• it has a hard core component so that the nuclear matter does not collapse. It is
understood from the Pauli principle for identical nucleons and also for quarks of the
same type within nucleons when the nucleons are different,

• it is spin-dependent,

• if we ignore the Coulomb interaction and the mass difference between the up and
down quark, the total isospin is conserved and then it commutes with the Hamilto-
nian: [H,T ] = 0. This is the charge independence property. The triplet T = 1 will
be degenerate and the energy of the singlet T = 0 can be different from the triplet,

• it has a non central (tensor) component which has the following form:

S12 = 2
(

3
(~S.~r)2

r2
− S2

)
(1.8)

• it contains a spin-orbit component: VLS~L.~S,

• only the deuteron which is composed of one proton and one neutron forms a bound
state with S = 1, L = 0, (2) and T = 0 and respect the rule L+ S + T odd for two
nucleons. None of the T = 1 triplet states are observed experimentally suggesting
that the T = 0 channel is the strongest.

1.2 The Nuclear Shell-Model

It was observed experimentally, that nuclei with a certain number of protons and
neutrons are particularly stable in comparison to their neighbours. This extra-stability
is characterized by a high first 2+ excited energy. The evolution of the first excited 2+

states in even-even nuclei, as we can see in figure 1.1 shows us these numbers that provide
extra-stability to the nucleus. These are the so-called magic numbers: 8, 20, 28, 50, 82,
126. This remarkable property was successfully described in the middle of the last century
by Goeppert-Mayer, Haxel, Jensen and Suess [9, 10, 11] thanks to the introduction of the
spin-orbit interaction. We shall stress here the main features of this shell model.
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Chapter 1. Nuclear models

Figure 1.1: Energy of the first 2+ state in even-even nuclei [12], which highlights the
presence of magic numbers in nuclei

1.2.1 Independent-particle model

The first assumption of the nuclear shell model is based on the fact that each nucleon
that compose the nucleus moves independently in a potential U(r) that represents the
average mean field due to the interaction with the other nucleons.
In order to access the nuclear properties of a nucleus composed of A nucleons, one has to
solve the following Schrödinger equation:

HΨ(1, 2, ..., A) = EΨ(1, 2, ..., A) (1.9)

where H is the Hamiltonian of the system. It contains the kinetic energy and the many-
body interaction W . We shall limit ourselves to the two-body term of the interaction:

H = −
A∑
i=1

~2

2m
∆i +

A∑
i<j=1

W (i, j). (1.10)
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1.2. The Nuclear Shell-Model

We can replace equation 1.10 by adding the mean potential felt by each individual nucleon:

H =
A∑
i=1

(
− ~2

2m
∆i + U(i)

)
+

A∑
i<j=1

W (i, j)−
A∑
i=1

U(i) = H(0) + V, (1.11)

where H(0) =
∑A

i=1

(
− ~2

2m
∆i + U(i)

)
=
∑A

i=1 h(i) is the sum of the single-particle
Hamiltonian and V is the so-called residual interaction.
In the nuclear shell model framework, the solutions of the single-particle problem are used
to construct a basis that will be used for the diagonalization of the residual interaction
V .
To construct our basis that will serve for the diagonalization of the residual interaction,
one may solve the Schrödinger equation for a spherically symmetric potential U(r)

hφ =
(
− ~2

2m
∆ + U(r)

)
φ = εφ. (1.12)

We can separate the radial part from the angular part of the wave function:

φ =
u(r)

r
F (θ, ϕ). (1.13)

It turns out that the angular part corresponds to a spherical harmonic: F (θ, ϕ) = Y m
l (θ, ϕ)

and one has to solve the following radial equation:

− ~2

2m

d2u

dr2
+
( ~2

2m

l(l + 1)

2
+ U(r)

)
u(r) = εu(r). (1.14)

1.2.2 The nuclear shell-model potential

The form of the radial part of the wave function will depend on the potential used in
the Hamiltonian. The classical nuclear Hamiltonian is composed of a harmonic oscillator,
plus a centrifugal term and a spin-orbit term. The harmonic oscillator alone does not
reproduce all the experimental magic numbers but only, 2, 8, and 20. The next one is
40 while the experimental one is 28. The addition of the spin-orbit term reproduces well
all the experimental magic numbers and the single-particle Hamiltonian has the following
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Chapter 1. Nuclear models

form:
h = − ~2

2m
∆ +

1

2
mω2r2 + fll~l.~l + fls~l.~s. (1.15)

A schematic representation of the shell model is shown in figure 1.2. We can see that
by adding the different terms, we reproduce the observed magic numbers that give extra
stability for certain nuclei. In addition, we see that the magic numbers 28 and 50 appear
due to the spin-orbit interaction.
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Figure 1.2: Single-particle spectrum of the Hamiltonian 1.15
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1.2.3 The residual interaction

So far we did not treat the residual interaction:

V =
A∑

i<j=1

W (i, j)−
A∑
i=1

U(i). (1.16)

We want to solve the entire Schrödinger equation, i.e. for the total Hamiltonian H =

H(0)+V . We assume to have a basis of many-body states by coupling single-particle states
to good quantum numbers (J, T ) where J corresponds to the good angular momentum
coupling between j1 and j2, it is the same for the good total isospin T . These many-body
states are eigenfunctions of H(0).

H(0)ΦJT,k = E
(0)
JT,kΦJT,k, (1.17)

where k corresponds to other quantum numbers and the energy of a (J, T ) state is the
sum of single-particle energies

E
(0)
JT,k =

A∑
i=1

εi. (1.18)

Let us assume d is the number of basis states |Φk〉. Then we need to solve the eigenvalue
problem:

H |Ψp〉 = Ep |Ψp〉 , (1.19)

where the wave function |Ψp〉 is a linear combination of the basis states

|Ψp〉 =
d∑

k=1

akp |Φk〉 , (1.20)

with the orthonormalization condition
∑d

k=1 akpakp′ = δpp′ . So one has to solve

(H(0) + V )
d∑

k=1

akp |Φkp〉 = Ep

d∑
k=1

akp |Φkp〉 . (1.21)
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Chapter 1. Nuclear models

By multiplying equation (1.21) by 〈Φl| we get

d∑
k=1

akp 〈Φl|(H(0) + V )|Φk〉 =
d∑

k=1

Epakp 〈Φl|Φk〉

d∑
k=1

akp 〈Φl|(H(0) + V )|Φk〉 =
d∑

k=1

Epakpδlk.

We get a system of d equations

d∑
k=1

Hlkakp = Epalp (1.22)

with
Hlk = 〈Φl|H(0) + V |Φk〉 = 〈Φl|H(0)|Φk〉+ 〈Φl|V |Φk〉

or
Hlk = E

(0)
k δlk + Vlk.

One has to diagonalize the matrix Hlk in order to solve this eigenproblem and get the
eigenvalues Ep associated to the coefficients akp.
In shell-model calculations, to solve this many-body problem, we divide the space in three
subspaces:

• the core, which corresponds to the orbits which are always full,

• the valence space, which are all the available orbitals for the valence nucleons,

• and the external space, which are the orbitals above the valence space that remain
always empty.

The valence space depends on the region we are interested in the Segré chart. Because
we are in a truncated Hilbert space in shell-model calculation, the residual interaction
corresponds to an effective interaction that should reproduce the properties of the region
of interest.
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1.2. The Nuclear Shell-Model

1.2.4 Structure of the effective interaction

The goal of the modern shell model is to describe the nuclear structure properties
using microscopic effective interaction. To derive the effective interaction, the starting
point is the bare NN two-body force using a realistic NN potential and then we get the
microscopic effective interaction via a given renormalization procedure based on G-matrix
or using a low-momentum interaction Vlow−k [13] with further addition of in-medium
many-body effects using perturbation theory. However such effective interactions have a
problem since they do not give rise to the correct saturation and shell gaps observed in
nuclei, especially the spin-orbit magic numbers.
As it was shown by Dufour and Zuker [14], it can be useful to decompose the effective
Hamiltonian as follows:

H = Hm +HM , (1.23)

where Hm is the monopole term of the Hamiltonian that represents a spherical mean
field and is responsible for the global saturation properties and spherical single-particle
energies while HM is the multipole term that contains all the correlations such as the
pairing, the quadrupole or the octupole terms. We can write the following property for a
closed-shell nucleus (CS):

〈CS ± 1|H|CS ± 1〉 = 〈CS ± 1|Hm|CS ± 1〉 , (1.24)

which means that for closed shell nuclei ± 1 particle, only the monopole part of the
Hamiltonian is non-zero.
In the isospin representation, we have:

Hm =
∑
i,τ

ni,τ εi,τ +
∑
i,j,τ,τ ′

V ττ ′

ij

niτ (njτ ′ − δijδττ ′)
1 + δijδττ ′

(1.25)

with the monopole interaction:

V ττ ′

ij =

∑
J V

J,ττ ′

ijij (2J + 1)
(

1 + (−1)Jδijδττ ′
)

(2ji + 1)
(

2jl + 1− δijδττ ′
) , (1.26)
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where i, j denote the valence orbitals and τ stands for proton or neutron.
The effective-single-particle energies (ESPE) of one orbit is defined as the one-
proton(neutron) separation energy of this orbit, where the energy is calculated with the
monopole interaction as given in equation 1.25 [15].
To overcome the problem of the effective interaction mentioned earlier, an adjustment of
the monopole term is imposed to be in agreement with the spectroscopic data. Those
phenomenological monopole corrections are due to take into account the three-body
force in the effective interaction (in a truncated space). Nevertheless promising work is
currently done [16] to take into account the three-body force in the realistic interaction.

24



2
Physics of neutron-rich nuclei in the

region of Z = 28

Contents
2.1 The neutron-rich Copper region . . . . . . . . . . . . . . . . . . 26

2.1.1 Experimental E(2+
1 ) in Nickel isotopes . . . . . . . . . . . . . . 26

2.1.2 Binding energies . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.3 Experimental status in neutron-rich Copper isotopes . . . . . . 31

2.1.4 Overview of theoretical calculations . . . . . . . . . . . . . . . . 36

In the last two decades, experiments with exotic beams made possible the study of the
evolution of the shell gaps far from stability. The measurements showed some surpris-

ingly changes in nuclear shell structure. These evolutions are driven by the monopole part
of the effective interaction whose interplay with the correlations (pairing, quadrupole...)
can lead to rapid structure changes. As we said, the monopole part is responsible for the
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Chapter 2. Physics of neutron-rich nuclei in the region of Z = 28

change of the ESPE and it was shown that its tensor term could play a significant role
[17].
An example of proton-shell evolution in exotic nuclei is the breakdown of the Z = 8 shell
closure in the unbound 12O measured by D. Suzuki et al. [18]. In this work they mea-
sured through the 14O(p,t)12O transfer reaction a low 0+(2+) excited state at 1.8 MeV
pointing out the quenching of the gap. This quenching is particularly interesting since in
the 12Be mirror nucleus, a breakdown of the N = 8 shell closure has been measured by
measuring single-particle states in 11Be through knock-out reaction by N. Alahari et al.
[19]. The mirror symmetry of shell quenching is then demonstrated. The low-mass region
is indeed particularly interesting to test the mirror symmetry since it is not possible for
medium-mass to access the mirror nuclei of the neutron-rich region.
The region of 78Ni (N/Z ≈ 1.8) is of great interest nowadays in nuclear physics and the
question of its doubly magic character remains open. From 68Ni to 78Ni the neutron orbit
νg9/2 is filling up. This addition of neutrons could polarize the proton core because of the
proton-neutron interaction and then modify the Z = 28 shell gap between the πf7/2 and
πp3/2 (or πf5/2) orbitals. Moreover the tensor interaction between neutron and proton
could play an important role in this region and modify the shell gaps toward 78Ni [20].
We can notice that it is very similar as the case of shell evolution in silicon isotopes where
it was observed evidences of the disappearance of the Z = 14 and N = 28 shell closures
in 42Si [21]. Indeed, the evolution of the spin-orbit splitting πd5/2 − πd3/2 is probed with
the neutron filling of the νf7/2 orbital. These shell quenching are ascribed to the action
of the proton-neutron tensor forces. Since 42Si is the analogous nucleus of 78Ni, one can
wonder about the doubly magic character of 78Ni. Finally, the spectroscopic data is very
important to constrain the shell model effective interaction in this region.
We shall focus on the Z = 28 shell gap toward this key nucleus. The aim of this work is to
investigate the change of proton shell structure of neutron-rich Copper isotopes via trans-
fer reaction and to understand the mechanism at stake behind the change of structure
using shell model calculation.

2.1 The neutron-rich Copper region

2.1.1 Experimental E(2+
1 ) in Nickel isotopes

The evolution of the energy of the first 2+
1 in an isotopic chain is a valuable clue to
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2.1. The neutron-rich Copper region

see the appearance of a shell gap. In figure 2.1 we can see the evolution of the first 2+
1

state between 54Ni and 72Ni. The values are taken from reference [22] for 54−68Ni and
from [23, 24] for 70−72Ni. One can clearly see the doubly-magic character of 56Ni and 68Ni.
By measuring the first 2+

1 in 78Ni we should see the persistence or not of the N = 50 and
Z = 28 gaps and test the robustness of these gaps. However, no value is currently known
for E(2+

1 ).
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Figure 2.1: Experimental E(2+
1 ) values in Ni isotopic chain [22, 23, 24, 25]

2.1.2 Binding energies

The evolution of the proton-separation energy in an isotopic chain can give us a hint
about the evolution of the gap with the neutron number. In figure 2.2 one can see the
evolution of the proton-separation energy Sp for Copper isotopes (Z = 29) in blue and for
Nickel isotopes (Z = 28) in red. The values are taken from the new atomic mass evolution
[26]. In figure 2.3, we can see the difference of the Sp between Nickel and Copper isotopes,
which corresponds to the correlated gap. We have to note that the masses are known up
to N = 44, the last three points in both figures are not measured but are estimated. From
this figure we clearly see the higher binding energy (equation 1.1) for N = 28 and N = 40

that tells us about the magic character of 56Ni and 68Ni. Above N = 40 the binding
energy starts decreasing until N = 44 that might suggest a possible reduction of the gap.
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This trend can also be caused by correlations present in the mid-shell nucleus 72Ni and is
not necessarily an indicator of changes in the shell structure.
To investigate the Z = 28 gap evolution, Copper isotopes are very good candidates as they
are composed of one proton outside a Nickel core. They have been studied extensively
both experimentally and theoretically. Neutron-rich Copper isotopes have been studied
already in the 70’s through transfer reactions in direct kinematics and since the 90’s more
neutron-rich nuclei have been investigated thanks to the development of radioactive ion
beam facilities. A review on the topic and on the magic number evolution has been given
by Sorlin and Porquet [27]. We shall detail here the more neutron-rich Copper isotopes.

Figure 2.2: Proton separation energy as a
function of neutron number in red for the
Nickel isotopes and in blue for the Copper
isotopes [26]

Δ

Figure 2.3: Difference of proton-
separation energies between Copper and
Nickel giving a hint of the Z = 28 gap
evolution toward the 78Ni

The graphical method

We already saw in the motivation the evolution of the Z = 28 gap in figure 2.3 through
the proton separation energy Sp difference (Koopman’s theorem) between Zinc (Z) and
Copper (Z + 1):

ΔSp = Sp(Z)− Sp(Z + 1) ≈ εp3/2(Z,N)− εf7/2(Z,N). (2.1)
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2.1. The neutron-rich Copper region

The single-particle energies in Copper (Z + 1) are slightly shifted from their position in
Nickel (Z) by an amount ∆ε as it is shown in figure 2.4:

εp3/2(Z + 1, N) = εp3/2(Z,N) + ∆ε. (2.2)

One way to determine this shift is the so-called graphical method. This prescription is
explained by Heyde et al. in reference [28]. ∆Sp has to be corrected by applying the
graphical method as it is represented in figure 2.5 by ∆Sextp :

∆Sextp = Sp(
ANi)− Sextp (Z = 28) (2.3)

Sextp (Z = 28) is the extrapolated linear function at Z = 28 which fit the proton separation
energy of (A + 1, Z + 1), (A + 3, Z + 3), (A + 3, Z + 5) nuclei where (A,Z) refers to
the Nickel isotope. ∆Sextp is the quantity which estimates better the gap. By applying
this graphical method, one can see in figure 2.6 the evolution of ∆Sextp in red. We
see that the difference between ∆Sp and ∆Sextp is minimum at N = 28 because of the
character doubly magic of this nucleus, while the difference is the highest for N = 32 and
N = 44 where the collectivity is enhanced and because it corresponds to open shell nuclei.
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(Z, N) (Z + 1, N)

p3/2
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�✏
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Figure 2.4: Representation of the changes
induced in the proton single-particle en-
ergy
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Figure 2.5: Graphical method in order to
obtain the particle-hole energy in Copper
isotope
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Δ
Δ

Figure 2.6: Evolution in Copper isotopes of the ΔSp in blue and ΔSext
p in red

In addition, another quantity which is interesting to look at the evolution is the nucleon
pairing energy defined as:

ΔEpairing = 2Sp(Z + 1, N)− S2p(Z + 2, N) (2.4)

where (Z + 1) corresponds to a Copper isotope and (Z + 2) to a Zinc isotope. In table
2.1 are listed the pairing energy ΔEpairing for the different isotopes and the estimated
gap through the graphical method. We can note that for N < 40 ΔEpairing ≈ 1.5 MeV
while beyond N = 40 the pairing energy gain about 0.5 MeV to reach 2 MeV, which is
the sign that an orbital of higher l becomes closer. This might correspond to the drop in
energy of the πf5/2 orbital which is known in Copper isotopes.
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2.1. The neutron-rich Copper region

N ∆Epairing (MeV) ∆Sextp (MeV) ∆ε (MeV)
28 -1.588 5.625 0.851
30 -1.686 3.976 0.777
32 -1.672 3.405 1.327
34 -1.591 4.136 0.878
36 -1.471 4.131 0.951
38 -1.376 4.512 0.996
40 -1.556 4.808 1.061
42 -1.937 4.576 0.971
44 -2.008 4.088 1.006

Table 2.1: Details about the pairing corrections and the extrapolated separation energy
difference

2.1.3 Experimental status in neutron-rich Copper isotopes

At the end of the 90’s, the main characteristic observed in neutron-rich Copper isotopes
above N = 40 was the strong decrease in energy of the first 5/2− state in 71,73Cu. This
work was performed by Franchoo et al. by β-decay of 71,73Ni [29, 30]. Moreover odd-A
67−73Cu were investigated by Coulomb excitation with radioactive beams at ISOLDE by
Stefanescu et al. [31]. In this work the transition probabilities B(E2 : 5/2− → 3/2−gs)

were measured and a reduction of the B(E2) was observed for N ≥ 40 pointing to a
single-particle character for the 5/2− state beyond N ≥ 40 (B(E2) < 5 W.u.) while it
is somewhat more collective for N < 40 (B(E2) > 10 W.u.) (see figure 2.7). This is
consistent with the small spectroscopic factors in 63,65,67Cu for the 5/2− state (0.5, 0.55
and 0.3 respectively [32]).
Flanagan et al. by means of collinear laser spectroscopy performed at ISOLDE [33] have
shown a spin inversion for the ground state: the ground state becomes 5/2− in 75Cu while
it is a 3/2− ground state for lighter odd-Copper isotopes. Then if we assume that beyond
N = 40 the 5/2− state corresponds to a pure proton particle configuration (figure 2.8),
we can say that from N = 40 to 46 there is a decrease in energy between πf5/2 and
πp3/2. This behavior appears as soon as we start filling the νg9/2 orbital. This suggests
a possible reduction of the proton gap towards 78Ni. It is well established that there is a
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strong monopole shift of the πf5/2 orbital beyond N = 40 [29, 30] while the situation for
its spin-orbit partner (πf7/2 orbital) is not so clear.

Figure 2.7: Systematics of the energies of the lowest 1/2−, 5/2− and 7/2− states in
63−73Cu along with the 2+ levels in the even-even 62−72Ni, and the associated experimental
B(E2) values [31]

The position of the πf7/2 orbital in Copper isotopes is linked to the size of the Z = 28

shell gap. Because its strength can be fragmented, it is interesting to perform transfer
reactions in order to extract the spectroscopic factors of each 7/2− state and then calculate
the centroid of the strength. For this purpose pick-up reactions were done up to 69Cu
in direct kinematics. Zeidman and Nolen performed (d,3He) pick-up reaction [32] while
Ajzenberg-Selove et al. performed (~t, α) pick-up reaction using a polarized triton beam
[34]. The advantage of polarized beam is that we can distinguish the spin of a state with
the shape of the analysing power Ay that is different between 5/2− and 7/2− for instance
while we know only the angular momentum L for an unpolarized beam.

At N = 40 for 69Cu, two 7/2− states are assigned at 1712 and 1872 keV respectively. From
Zeidman’s experiment [32] we know that the first state has a quite high spectroscopic
factor (C2S = 2.7) while the second state has a small one (C2S = 0.45). Then the state
at 1712 keV is interpreted to be mainly proton-hole state πf−1

7/2 while the one at 1872 keV
is interpreted as the coupling between the single proton in the πp3/2 orbital with the 2+
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Figure 2.8: Evolution of the first 3/2− and 5/2− states in Copper isotopes

of the Nickel core: |7/2−〉 = |2+ ⊗ p3/2〉 as it is explained by Ishii et al. [35]. Only these
two states were measured in Zeidman’s work that correspond to only 40% of the strength,
meaning that most of the proton-hole strength lies at higher energy. Moreover in those
transfer experiments the 5/2− state at 1214 keV has a very large spectroscopic factor
(C2S = 1.5 for Zeidman and C2S = 1.2 for Ajzenberg-Selove) while we do not expect to
have so much proton in the πf5/2 orbital in 70Zn. The peak of interest is broader than
the others and the authors assume that there are two levels in this peak that correspond
to a 5/2− and 7/2− doublet. Then the spacing of these two unresolved states is less than
15 keV. Nevertheless no other state has been observed around this energy in β decay
while this decay should populate such a state because of the ground state of 69Ni which
is Iπ = 9/2+. The conclusion about the 5/2− state thus remains unclear in 69Cu.
For 71Cu, no spectroscopic factors were known, but two 7/2− states are assigned at 981 keV
and 1190 keV. In deep inelastic collisions Ishii et al. [36] populated a 19/2− microsecond
isomer that feed the 7/2− state at 1190 keV in a E2 cascade. From that a 7/2− assignment
was made for the state at 1190 keV. This isomer was also populated by Grzywacz et al.
[37] by producing Copper isotopes through the reaction of 86Kr on a natNi target. In this
experiment only the 1190 keV was seen through the decay of the isomer. Concerning the
state at 981 keV, based on the value of the log ft (>5.9) in β decay of 71Ni which has a 9/2+

configuration, and based on the similar pattern between 69Cu and 71Cu, a spin and parity
of 7/2− was suggested. Moreover, Stefanescu et al. [31] in Coulomb excitation populated
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only the state at 1190 keV. Based on particle-core coupling model [38] this state was
interpreted to be |7/2−〉 = |2+ ⊗ p3/2〉 coupling while the state at 981 keV was interpreted
to have a single-particle character. The only experimental data for the state at 981 keV is
reported by Franchoo et al. from β-decay [29, 30] and more recently by Doncel et al. [39].
In the latter case, in-beam γ-ray spectroscopy was performed using the multi-nucleon
transfer reaction 76Ge + 238U at Legnaro with the AGATA demonstrator in combination
with the PRISMA magnetic spectrometer. From the measurement through the recoil
distance Doppler-shift method, the value was obtained for the half-life of 7/2− → 3/2−gs
transition at 981 keV that is t1/2 = 13.9± 11.1 ps giving a value of B(E2) = 3± 2 W.u.
From that value, they conclude a single-particle character of the state. However the errors
are very large and no spectroscopic factors are known in 71Cu. It seems very important
to perform a transfer reaction to extract spectroscopic factors for the populated states in
this nucleus, to establish the characteristics of the state at 981 keV and to estimate the
centroid of the πf7/2 strength.
To conclude, one can see in figure 2.9 the systematic of the first 3/2− and 5/2− and
7/2− states in Copper isotopes where the spectroscopic factors are given up to 69Cu from
reference [32]. In this same figure the systematic of the 2+

1 in Ni isotopes is also reported.
The dashed line corresponds to the 7/2− in Cu isotopes with a large value of B(E2).
These states correspond to the coupling between the 2+ of the Nickel core with the single
proton in the πp3/2 orbital: |2+ ⊗ p1

3/2〉. It is now important to quantify the spectroscopic
value of each 7/2− states in 71Cu to determine the centroid of the πf7/2 strength.

Experimental similarities in gallium isotopes

The gallium isotopes with three protons in the 2p3/2 orbital contain two more protons
with respect to Copper isotopes. The 70,72,74,76Ge(d,3He)69,71,73,75Ga pick-up reaction was
performed by Rotbard et al. [40]. In this work they extracted 25% to 38% of the πf7/2

strength and we can see the evolution of the measured centroid in figure 2.10 in red. In
this figure we also see the evolution of the 5/2− experimental centroid for 69,71,73,75Ga [40],
from what they have measured, while for 77,79,81Ga only the energy of the first 5/2− state
is plotted [41, 42]. We see a drop in energy as soon as we start filling the neutron g9/2

orbital, and the inversion between 5/2− and 3/2− was proposed at N = 50 for 81Ga by
Verney et al. [41]. Even though the drop in energy of the 5/2− is less drastic than in the
Copper isotopes the trend is the same and the inversion seems also to occur. However,
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Figure 2.9: Systematic of the first 3/2− and 5/2− and 7/2− states in Copper isotopes and
systematic of the 2+

1 in Ni isotopes

from the data the trend of the 7/2− when filling the νg9/2 orbital is not so clear especially
because we miss most of the strength. However, it seems that the behavior of the 5/2−

shift looks similar between Copper and Gallium isotopes beyond N = 40 suggesting that
the same phenomena could be at stake in these nuclei. However one has to be careful
about the conclusion because the three protons in p3/2 (f5/2) orbits can couple to 3/2−,
5/2− or 7/2− states, which are different from single-particle orbitals. Then the evolution
of the πf7/2 orbital in the neutron-rich gallium isotopes could bring us new information
about the evolution of the Z = 28 gap. However a lot of strength is missing because the
force is more fragmented. In addition the Copper isotopes are closer to a closed shell,
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Chapter 2. Physics of neutron-rich nuclei in the region of Z = 28

where we can assume a more single-particle character of the levels. It should thus be
easier to infer the shell evolution from the Copper isotopes.

Neutron number
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E
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Figure 2.10: Evolution of the first 3/2− state, the 5/2− experimental centroid is plotted for
69,71,73,75Ga while it is only the first 5/2− state for 77,79,81Ga, and the 7/2− experimental
centroid is plotted for 69,71,73,75Ga [40, 41, 42]

2.1.4 Overview of theoretical calculations

The theoretical work on the Copper isotopes has been very rich as well. I shall sum-
marize here some results within the shell-model framework.
First shell-model calculations were performed by Smirnova et al. [43] using a valence space
composed of 2p3/2, 1f5/2, 2p1/2 and 1g9/2 orbitals. They reproduce the first states 3/2−,
5/2− and 1/2− but the valence space used cannot reproduce the 7/2− hole-state coming
from a hole in the πf7/2 orbital. In this work the 5/2− state is systematically about 600
keV higher compared to experiment, however the slope of the decrease in energy is the
same. The calculations predict an inversion between πf5/2 and πp3/2 for N = 50 while
it occurs at mid-shell for N = 46, i.e 75Cu. In the paper of Sieja and Nowacki [44], the
theoretical calculations correctly reproduce this inversion and shell evolution from 68Ni
to 78Ni is discussed in detail where the systematics of the low-lying states and magnetic
moments are obtained in good agreement with the experimental data. This is due to the
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2.1. The neutron-rich Copper region

inclusion of more proton degrees of freedom, indeed the πf7/2 is included in the valence
space while previous shell-model calculations used a 56Ni core. In this work the Z = 28

shell gap is reduced by about 0.7 MeV when the g9/2 neutron orbital is filled from 68Ni to
78Ni.
Since experimentally there is a strong downward monopole shift of the πf5/2 orbital, it
is clear that the interaction V pn

f5/2g9/2
is attractive. A simple explanation of this effect has

been provided in terms of tensor force by Otsuka [17, 20]. The effect of the tensor force
was also investigated by and Smirnova et al. [45, 46]. The structure of the tensor force is:

S12 =
3

r2
( ~σ1.~r)( ~σ2.~r)− ~σ1. ~σ2 ∝

[
S(2).Y (2)

](0)

(2.5)

where S(2) = [σ
(1)
1 ⊗ σ

(1)
2 ](2). Because the spin operators are coupled to rank 2, the total

spin S of the two interacting nucleons must be S = 1 otherwise the tensor force is null.
This tensor force is analogous to the interaction between a magnetic field ~B1 produced
by a dipole ~µ1 with another dipole ~µ2. The effect of this tensor force on the evolution of
nuclear shells is well discussed in [17]: Let us denote by jν> = lν> + 1/2 the orbital that
is filled by the neutrons (in our case it corresponds to the νg9/2 orbital), jπ> = lπ> + 1/2

corresponds to πf7/2 and jπ< = lπ< − 1/2 corresponds to πf5/2. We have the following
relation:

(2jπ> + 1)V πν
jπ>,j

ν
>

+ (2jπ< + 1)V πν
jπ<,j

ν
>

= 0. (2.6)

This equation means that the interaction is stronger in the case jν> and jπ< than in the
case jν> and jπ> (figure 2.12). In our case we have:

V πν
5
2
, 9
2

= −4

3
V πν

7
2
, 9
2
. (2.7)

The interaction is attractive between jν> and jπ< while it is repulsive between jν> and jπ>.
We can see a schematic view of this effect in figure 2.11. One can see that this tensor force
can have an important impact on the Z = 28 gap between N = 40 and N = 50 while the
νg9/2 neutron orbital is filling up. Especially at N = 50, the gap is precisely the spin-orbit
gap while at N = 40 the gap corresponds to the energy distance between πf7/2 and πp3/2

orbitals. In [17] the distance in energy between the effective single particle energy 1f5/2

and 1f7/2 is reduced about 2.3 MeV between N = 40 and N = 50 (from 3.8 MeV to 1.5
MeV).
One other important effect that is intensively discussed nowadays is the three-body force.
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Chapter 2. Physics of neutron-rich nuclei in the region of Z = 28

Smirnova et al. [46] performed spin-tensor decomposition of an effective two-body shell-
model interaction in order to quantify the role of different terms of this interaction in
the evolution of the shell gaps in the T = 1 channel (neutron-neutron or proton-proton
interaction). A spin-tensor decomposition is the expansion of an interaction V as a sum
of scalar, vector and rank-2 spherical tensor. Moreover a comparison is done between
microscopic effective interaction and phenomenological effective interaction in different
valence spaces. The microscopic effective interaction does not reproduce the right shell-
gap while the adjusted realistic interaction reproduce them. By comparing the different
terms of the spin-tensor decomposition for the two different interactions it can provide
a quantitative insight into the role of 3N components giving rise to the spin-orbit shell
closure. The conclusion of these works is that the central and the vector parts of the
interaction are the most sensitive to the effect of the three-nucleon forces while the tensor
part is not affected much.
In this work, we are interested in the Z = 28 gap evolution with the neutron filling,
between N = 40 and N = 50. Thus we will probe the proton-neutron interaction and in
this case it is expected that the shell evolution is mainly driven by the tensor force and
not by the 3N forces. From the spin-tensor decomposition we know that the tensor force
acts mainly on the monopole part of the interaction and not on the multipole part.
The extraction of spectroscopic factors of 7/2−, 3/2− and 5/2− states giving the centroid
of the strength along the isotopic Copper chain towards N = 50 can provide a strong
constraint on the interaction that is at stake in this region of the nuclear chart and
especially it will probe the strength of the tensor force.
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2.1. The neutron-rich Copper region

Figure 2.11: Schematic picture of the
monopole interaction produced by the ten-
sor force between νg9/2 and πf orbitals

Figure 2.12: Schematic picture of the ten-
sor force acting between two nucleons on
orbit j and j′ [17]
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3.1. Spectroscopic factor

3.2.6 The DWBA code . . . . . . . . . . . . . . . . . . . . . . . . . . 51

To study the proton-hole strength in the Copper isotopes we have performed (d,3He)
transfer reaction where one proton is exchanged between the beam and the target.

One proton is removed from Zinc that enables us to probe the proton-hole states in
Copper.
A transfer reaction is a direct process where one or several nucleons are exchanged
between the beam and the target. These reactions are studied between a few MeV to
tens of MeV per nucleon. It is a very powerful tool for nuclear spectroscopy: it can give
the energy within limit of resolution, the spin and parity when the beam is polarized and
in general the angular momentum and we can also determine the spectroscopic factor
of a given state. In our case of the (d,3He) reaction, a proton is exchanged between
the beam and the target as we can see in figure 3.1. We want to measure the f7/2

proton-hole strength through this pick-up reaction by extracting for each populated state
its spectroscopic factor.

3.1 Spectroscopic factor

3.1.1 Definition

The spectroscopic factor was introduced to relate transfer reaction and nuclear structure.
From a theoretical point of view we define it as the overlap between a nucleus of A nucleons
in an initial state |φA0 〉 and a nucleus with A± 1 nucleons in the final state k |φA±1

k 〉:

S± =

∫
| 〈φA±1

0 |a(†)|φA0 〉 |2dr, (3.1)

where a(†) is the creation or annihilation operator. This spectroscopic factor S± tells us
how the nucleus A ± 1 can be modeled as a core φA0 plus a hole or a particle. In other
words, it measures the degree to which a state populated in a transfer reaction is a single-
particle state. Although this quantity is a usual extraction for the experimentalist, it is
not an observable since it is not conserved through a unitary transformation [47, 48]. The
observable is the cross section, from what we extract a spectroscopic factor using a given
reaction model. Even if we are aware of this problem that Hshellmodel 6= Hreaction and that
we are model dependent when we extract spectroscopic factors, we shall do it here for
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Chapter 3. Experimental method: the (d,3He) pick-up reaction

both nuclei in a consistent way in order to be able to compare the results in the same
model framework.

Figure 3.1: Pick-up reaction scheme where a proton is exchanged between the beam and
the target

3.1.2 Extraction of the experimental spectroscopic factor

In the case of a direct reaction, to extract the experimental spectroscopic factor, one has
to compare the theoretical cross section to the experimental one. In the case where only
one orbital contributes to the final state, we have:

C2Sexp =
σexp
σspth

(3.2)

where C2 corresponds to the isospin Clebsch-Gordan and σspth is the theoretical cross
section for a single transfer particle. We see clearly that C2Sexp depends on the model of
reaction used. It is then very important to understand and describe the reaction model
used. To do so we shall use the Distorted-Wave Born Approximation (DWBA) that is
explained in the next section.
Once we have extracted the experimental C2Sexp we can compare it with the theoretical
one C2Sth calculated in the shell-model formalism.
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3.2. Distorted-Wave Born Approximation

3.2 Distorted-Wave Born Approximation

Before explaining the different approximations leading to the DWBA model, it seems
important to remind some aspects and general results about scattering theory. Of course
this reaction model is well explained in several books and lectures for example by Norman
K Glendenning [49] and Eric Bauge [50].

3.2.1 Scattering theory and general results

General results

First, I would like to remind the differential cross section of an elastic scattering process.
Let’s start with the following process :

α→ β. (3.3)

The ingoing wave function is a plane wave χα = ei
~kα.~r being the solution of the Schrödinger

equation:

− ~
2mα

∆χα = Eαχα. (3.4)

The outgoing wave function tends asymptotically to a spherical wave χβ = f(θ) e
ikβr

r
where

f(θ) is called the scattering amplitude and depends on the scattered angle. In order to
determine the cross section for the reaction we start to calculate the incident flux ~jinc and
the outgoing flux ~jΩ in the solid angle dΩ. We can see a schematic view of the process in
figure 3.2.

By definition of the flux, we have (cf Messiah [51], Chap 4):

~j =
1

m
Re
(
χ∗(

~
i
∇χ)

)
=

~
2im

(χ∗∇χ− χ∇χ∗) (3.5)

Thus the incident flux can be written as:

~jinc =
~
mα

~kα (3.6)

43



Chapter 3. Experimental method: the (d,3He) pick-up reaction

~jinc

V (r)

~jΩ

θ

dΩ

Figure 3.2: Diffusion by a potential V (r) into the solid angle dΩ

and the outgoing flux:
~jΩ =

~
mβr2

~kβ|f(θ)|2 (3.7)

Then, we can deduce the cross section dσ in a surface of area A = r2dΩ as the ratio of
the fluxes:

dσ =
~jΩ

~jinc
r2dΩ (3.8)

Finally we have ( dσ
dΩ

)
αβ

=
mα

mβ

kβ
kα
|f(θ)|2 (3.9)

All the information about the differential cross section is in the function f(θ). Now we
need to know how to calculate it.

Scattering theory

Let us consider the following reaction:

A+ a→ B + b. (3.10)

The Hamiltonian for the A and a nuclei are HA and Ha respectively and the corresponding
Schrödinger equations are:  (Ha − εa)Φa = 0

(HA − εA)ΦA = 0.
(3.11)
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3.2. Distorted-Wave Born Approximation

The wave function ΦA is the intrinsic wave function of A and depends on the coordinate
of this nucleus and εA is the eigenvalue. Idem for Φa.
We can introduce the relative coordinate rα for the entrance channel and the corresponding
kinetic energy operator by:

Tα = − ~
2mα

∇2
α, (3.12)

where mα = mamA
ma+mA

is the reduced mass.
The two nuclei A and a interact with each other during the reaction through the two-body
interaction Vij. Thus we can write the entrance potential as follows:

Vα =
∑

i∈a,j∈A

Vij. (3.13)

The total Hamiltonian for the entrance and exit channels is:

H = Hα + Tα + Vα = Hβ + Tβ + Vβ, (3.14)

where Hα = HA + Ha and Hβ = HB + Hb refers only to the intrinsic structure of the
nucleus and we note: Φα = ΦAΦa

Φβ = ΦBΦb

(3.15)

Φα and Φβ satisfy
(Hα − εα)Φα = 0 (3.16)

where εα = εA + εa.
Now, for the entire system A+ a described by the total wave function Ψα we have: (Hα + Tα + Vα)Ψα = EΨα

(Hβ + Tβ + Vβ)Ψβ = EΨβ

(3.17)

Now if we consider that there is no interaction between the two nuclei A − a and B − b
these equations become:  (E −Hα − Tα)φα = 0

(E −Hβ − Tβ)φβ = 0
(3.18)
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where φα = ei
~kα. ~rαΦα and φβ = ei

~kβ . ~rβΦβ. Finally ~2k2α
2mα

= Eα = E−εα is the kinetic energy
of the relative motion in the α channel and Eβ = E − εβ is the relative kinetic energy in
the β channel. Indeed if there is no interaction, we have just a plane wave for the relative
motion. φα is the solution when there is no interaction between the A and a nuclei.
We multiply equation 3.17 by Φβ which corresponds to the wave function for the B + b

system in the output channel and we integrate over the internal coordinate dξ we have:

(Eβ − Tβ)(Φβ,Ψα) = (Φβ, VβΨα), (3.19)

where (Φβ,Ψα) corresponds to the integration on the internal coordinates and we note :

ψβ(rβ) = (Φβ,Ψα) =

∫
Φ∗βΨαdξ. (3.20)

we can then rewrite the previous equation as

(Eβ − Tβ)ψβ = (Φβ, VβΨα). (3.21)

We can resolve this kind of equation through Green’s function method and extract the
scattering amplitude of such a process:

fβα(θ) = − mβ

2π~2

∫
e−i

~kβ .~r(Φβ, VβΨ(+)
α )d~r (3.22)

where the angle θ corresponds to the angle between ~kβ and ~kα. The (+) sign that appears
is used to denote the outgoing wave condition at r →∞ while a (−) sign would be used to
denote an incoming wave. More frequently we use the T -matrix instead of the scattering
amplitude which is written as:

Tβα = 〈φβ|Vβ|Ψ(+)
α 〉 , (3.23)

where, I remind here φβ = ei
~kβ . ~rβΦβ. The relation between the scattering amplitude and

the T -matrix is:
fβα = − mβ

2π~2
Tβα. (3.24)
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3.2. Distorted-Wave Born Approximation

Now, in order to get the cross section of the reaction we need to calculate this transition
matrix between the ingoing channel α and the outgoing channel β :( dσ

dΩ

)
βα

=
mαmβ

(2π~2)2

kβ
kα
|Tβα|2. (3.25)

3.2.2 Optical potential

Equation 3.23 gives the transition matrix where Ψα is the exact solution and contains
the description of everything in the incoming channel. In this part we shall see how to
calculate this transition matrix by doing some physical approximations.
We introduce a potential Uα(rα) that only depends on the relative coordinate between the
two nuclei. We choose Uα in order to describe as well as possible the elastic scattering and
then the transfer reaction is interpreted as a small perturbation compared to the elastic
scattering. If Uα were the whole interaction between the nuclei a and A the Schrödinger
equation would become:

(Hα + Tα + Uα − E)Ψα = 0, (3.26)

We can separate this equation in an intrinsic nuclear part contained in Hα with the wave
function Φα and in a part containing the relative motion where the solution is the wave
function χα:

(Tα + Uα − Eα)χα = 0. (3.27)

Then the total wave function is the product of the nuclear wave function with the relative
one as: Ψα = Φαχα.
Since Uα depends only on the relative coordinates it cannot cause any modification in
the nuclei and can only describe the elastic scattering. In order to describe the transfer
reaction that corresponds to a missing flux in the elastic channel, Uα must be complex
and contain an imaginary part. This potential Uα is called the optical potential and is
written as:

Uα(r) = Vc−V f(x0)+
( h

mπc

)2

Vso(σ.l)
1

r

d

dr
f(xso)−i

[
Wf(xW )−4WD

d

dxD
f(xD)

]
, (3.28)
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where Vc = ZZ ′e2/r if r > Rc and Vc = (ZZ ′e2/2Rc)(3− r2/R2
c) if r < Rc, and f(xi) is a

Wood-Saxon function:
f(xi) =

1

1 + exp( r−riA
1/3

ai
)
. (3.29)

The imaginary part in the potential is negative to describe the missing flux in the elastic
channel. It corresponds to the flux in the other channel of reaction (inelastic).
Then by introducing this global potential we can write the T -matrix as follows:

Tβα = 〈eik′α.rα|Uα|χ(+)
α 〉 δαβ + 〈χ(−)

β Φβ|Vβ − Uβ|Ψ(+)
α 〉 , (3.30)

where the first term of equation 3.30 corresponds to the elastic-scattering transition and
the second one to the transfer solution.

3.2.3 Born approximation

In order to calculate the second term of equation 3.30 we shall perform the DWBA
approximation that is to replace the total wave function Ψα by the product of the internal
wave function Φα with the distorted wave function χα that describes the elastic scattering:

Ψ(+)
α = Φαχ

(+)
α . (3.31)

Then we can write for the transfer part of the transition matrix:

TDWBA
βα = 〈χ(−)

β Φβ|Vβ − Uβ|Φαχ
(+)
α 〉 , (3.32)

or
Tβα =

∫
χ

(−)∗
β (kβ, rβ)(ΦBΦb|Vβ − Uβ|ΦAΦa)χ

(+)
α (kα, rα)drαdrβ. (3.33)

3.2.4 Selection rules

For the transfer reaction, the selection rules are:

~JB = ~JA +~j = ~JA + ~L+ ~1/2, (3.34)
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3.2. Distorted-Wave Born Approximation

with ~L the transferred angular momentum. Concerning the parity conservation, we have
the following rule:

πB = πA(−1)L. (3.35)

Example : (d,3He) transfer reaction

Let us consider the following reaction where we have proton pick-up:

A(= B + p) + d→ B +3 He(= d+ p).

We can write the Hamiltonian of the entrance channel α as:

Hα = HA +Ha +KaA + VaA

here a = d, so :
Hα = HA +Hd +KdA + VdA.

VdA is the interaction between the deuteron and the nucleus A :

VdA =
∑

i∈d,j∈A

Vij.

We can decompose the potential into two parts :

• the elastic scattering part UdA

• the inelastic process part WdA:

VdA = UdA +WdA.

The distorted waves are solutions of the potential describing the elastic scattering:

(KdA + UdA) |χ(+)
dA 〉 = εdA |χ(+)

dA 〉 .

In the same way we define the distorted wave of the outgoing channel β =3HeB: |χ(−)
3HeB >,

such as:
(K3HeB + U3HeB) |χ(−)

3HeB〉 = ε3HeB |χ(−)
3HeB〉 .
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The matrix transition for the inelastic process α→ β is:

Tαβ = 〈χ(−)
3HeBΦBΦ3He|WdA|χ(+)

dA ΦAΦd〉 (3.36)

and we can write:

WAd = VAd − UAd = Vpd + (VdB − UAd) ≈ Vpd (3.37)

where we assume that VdB and UdA have the same order of magnitude. Then

Tαβ = 〈χ(−)
3HeBΦBΦ3He|Vpd|χ(+)

dA ΦAΦd〉 . (3.38)

Moreover, we assume that Vpd only depends on the relative distance d− p and the we can
write:

Tαβ =

∫
drαdrβχ

(−)∗
β (rβ,kβ) 〈ΦB|ΦA〉 〈Φ3He|Vpd|Φd〉χ(+)

α (rα,kα). (3.39)

We can consider separately the integral

〈ΦB|ΦA〉 =

∫
ΦMB∗
JB

(ξ)ΦMA
JA

(ξ, rp)dξ.

In our case A = B + b, so in the shell model framework, we can write:

ΦMA
JA

=
∑

jlmMB

βjl 〈JBjMBm|JAMA〉ΦMB
JB
φmnlj (3.40)

where φmnlj corresponds to the wave function of the individual proton. One has not to
forget the isospin between the ingoing and outgoing channel

〈ΦB|ΦA〉 =
∑

jlmMB

βjl 〈TAtNAn|TBNB〉 〈JBjMBm|JAMA〉φmnlj(rp) (3.41)

where n = NB −NA and the spectroscopic factor is defined as

Slj = β2
jl. (3.42)
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3.2. Distorted-Wave Born Approximation

The isospin is often included in the spectroscopic factor and correspond to C2S

C2S = Slj 〈TAtNAn|TBNB〉2 (3.43)

where t = 1
2
and n = NB −NA.

3.2.5 Zero range approximation

Even though a finite-range calculation will be performed for the analysis in this work,
we used the zero-range approximation in a first step. We have done it especially because
previous work employed this approximation to calculate cross sections. In order to com-
pare our results with them we want to do the calculations like them in a coherent way.
The zero-range approximation assumes that the transferred particle (here the proton) and
the particle a (here the deuteron) are at the same position. In this way the form factor
has the following form

〈Φ3He|Vpd|Φd〉 = D0δ(~r3He − ~rd), (3.44)

reducing the number of integrations to be performed.

3.2.6 The DWBA code

In this work we have used two different programs for the calculation of the single-
particle transfer cross section. First of all we have used the DWUCK4 code that enables
us to perform zero-range calculation. We have used this code in a first step especially for
the 69Cu nucleus to be consistent with previous work where spectroscopic factors were
extracted using a zero-range calculation. We performed also finite-range calculation using
the DWUCK5 code in a second step for both Copper isotopes. Because we use the same
potentials and the same calculation for both isotopes, we are able to compare the evolution
of the strength in a consistent way.
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The NSI47 experiment was performed in March 2013 at the Orsay tandem using
the split-pole spectrometer. The goal was to study the 69Cu nucleus through the

70Zn(d,3He)69Cu one-proton transfer reaction. The tandem facility provides a good qual-
ity deuteron beam of 27 MeV (13.5 MeV/A) in order to perform the reaction of interest
in direct kinematics. The beam was then sent onto a 95% purified 70Zn target. In this
chapter we describe the experimental setup: first we briefly describe the beam production,
then the Split-pole and finally the focal place detection system is described.
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4.1 Beam production

Tandem accelerator is an electrostatic engine used to accelerate different ions. The
charged particles gain energy under a high static field. The high voltage is created by
charges in the center of the machine. In this part there is a positive high voltage up to
15 MV (maximum voltage). The acceleration of the desired ions is done in two steps:
first the atoms we want to accelerate are transformed into negative ions and injected at
one extremity of the tandem where they feel the electrostatic field. In the center of the
machine these ions are stripped through a thin layer of carbon becoming positive ions and
one more time accelerated because they are repulsed in the second part of their trajectory.
In this experiment, a deuteron beam was produced at 27 MeV using a duoplasmatron ion
source at an average intensity of 200 nA. The beam was then transported toward a 70Zn
target located at the the focal point of an Enge split-pole magnetic spectrometer.

Figure 4.1: Experimental areas at the ALTO facility, the Split-pole is in the room 210

54



4.2. Split-pole spectrometer and detection system

4.2 Split-pole spectrometer and detection system

4.2.1 The spectrometer

The recoil light particles of interest are detected with an Enge Split-pole magnetic
spectrometer [52]. This spectrometer (figure 4.4) has two separated pole pieces enveloped
by a single coil in order to focus the particles over a broad range of energies. Thanks to the
split-pole, the particles are momentum analysed once they are focused on the focal plane
detection system. One specificity of the spectrometer and this focal plane detection system
is the Doppler shift characteristic for the reaction. It has to be taken into account for the
final resolution. Indeed, for one energy of a particle corresponds one unique position into
the focal plane: this is a dispersive spectrometer. For a two-body reaction the energy of
the emitted particle depends on the angle. Because of the acceptance of the split-pole for
a given populated state in the residual nucleus, the position of the particles in the focal
plane will be broader as it is illustrated in figure 4.3. To understand the displacement δ
(figure 4.2) of the focal plane due to this effect, let us define some characteristics of the
spectrometer. One of them is the dispersion D defined as follows:

D =
∆y

∆ρ
. (4.1)

For the split-pole we have D = 1.8 [52].
The other main characteristic of the spectrometer is the magnification MH defined as
follows:

MH =
∆θ

∆θe
, (4.2)

where ∆θ is the angle between the central ray and the divergent ray from the same reaction
at the entrance and ∆θe is the same but at the exit. For the split-pole we haveMH = 0.34

throughout the range of the spectrometer. As we can see in figure 4.2, the displacement
δ for the detector is defined as:

δ ≈ ∆y

∆θe
. (4.3)

By replacing ∆y and ∆θe by the previous equations and considering infinitesimal angles,
we have:

δ = DMH
∆ρ

∆θ
= DMH

dρ
dθ

=
DMH

B

d(Bρ)

dθ
, (4.4)
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where B is the constant magnetic field inside the spectrometer. The displacement δ
in equation 4.4 is given in meter. The focal plane is situated at 295 mm behind the
last magnet. Then, after correction for the displacement, the focal plane detection
system is placed at 295 + 1000δ mm behind the last magnet to have the best reso-
lution in excitation energy. The displacement depends of course on the angle, thus
a new displacement was set up in order to have the resolution as good as possible
for each angle. In other words, the detection system was moved at each angle to
optimize de resolution. In table 4.1 we can see the different displacement δ set for
the different angles. One can note that the displacement increase with the angle, be-
cause the slot of the kinematic line is also bigger with the angle as we can see in figure 4.5.

θlab (deg) 4 6 9 12 15 18 21 24

δ (mm) -1.4 -2.1 -2.9 -4.1 -5.1 6.1 -7.0 -8.0

Table 4.1: List of the different displacement δ for our reaction of interest for each angle
in the laboratory frame

Figure 4.2: Illustration of the kinematic
displacement δ

Figure 4.3: Illustration of the dispersion
due to the acceptance of the spectrometer

For Split-pole, the focal plane detection system is characterized by the minimum rigid-
ity ρmin = 63 mm and the maximum one. Because the detection system is at 45 degrees
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4.2. Split-pole spectrometer and detection system

to the focal plane the maximum rigidity is given by ρmax = ρmin +L cos π
4
where L is the

active area of the detector. Knowing that the active area of the detection system is 30
cm, we find ρmax = 84.1 cm. These two values define the maximum range of excitation
energy achievable in one setting of the magnetic field.
One other important characteristic of the spectrometer is its acceptance ∆Ω. For the
split-pole, the nominal acceptance is 1.7 msr but it depends on the opening of the vertical
and horizontal slits. For our experiment the opening of the vertical slits was Lv = 8 mm
and the opening of the horizontal ones was Lh = 10 mm, and because the target is at
R = 262.2 mm from the opening of the spectrometer we have the acceptance:

∆Ω =
LvLh
R2

= 1.16 msr (4.5)

This has to be taken into account for the normalisation procedure.
Finally, it is important to set the appropirate magnetic field B in order to select the
region of excitation energy we are interested in. As we can see in figure 4.5, the Bρ
line as a function of the angle is slightly flat between 0 and 25 degrees, then with one
setting of the magnetic field we will be able to measure the range from 0 to 7 MeV of
excitation energy for 69Cu. To do so we have set the magnetic field at Btransfer = 1.45

T. Nevertheless, for the elastic scattering, the magnetic rigidity of the scattered deuteron
is quite different. Indeed it corresponds to the maximum of kinetic energy, so a bigger
magnetic rigidity. In order to detect the elastic deuterons in the focal plane we set the
magnetic field at Belastic = 0.7 T.

4.2.2 The detection system

The focal plane detection system consists of three detectors. The first one is a 50 cm
long high-resolution position-sensitive proportional counter [53]. Nevertheless the active
zone is L = 30 cm long. This detector (figure 4.6) is composed of an anode made of five
wires at a 2 mm spaced apart. The applied electric field is normal to the anode wire plane.
Below this plane at 5 mm, there is the cathode plane composed of metallic strips at a 2.54
mm spaced and at 45 degrees to the normal of the anode plane. The signal in the cathode
wires is induced by the anode signal when a particle passes through the detector. Finally
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Focal su
rface (p,ΔE)

B0

B0

pmin

pmax

Plate motion for kinematic correction

70Zn deuteron 
beam at 27 

MeV

Faraday cup

Figure 4.4: Schematic view of the split-
pole spectrometer.

θ

ρ

Figure 4.5: Bρ line as a function of
the angle for different excitation energies:
red line for the ground state and blue line
for 7 MeV excitation energy. The hori-
zontal dotted lines correspond to the ac-
ceptance of the spectrometer

the induced cathode charge is converted into a position signal by connecting each cathode
strip to a delay line. The time range of the delay line is 1 μs. That means that we have
to be careful with the counting rate of detected particles in the focal plane. The position
is given by the time difference between the time corresponding to small Bρ (Tsmall) and
the time corresponding to high Bρ (Thigh). Indeed the time difference of the centroid of
the pulse at each extremity of the delay line is proportional to the position of the particle.
But in order to have always the same start and stop as it is illustrated in figure 4.7, the
Tsmall is delayed with Δt =1 μs as the TAC range is 2 μs. In this way the signal from
Tsmall arrives always after Thigh and the position is given by:

Position = Tsmall +Δt− Thigh ∝ ρ, (4.6)

where the position is proportional to the magnetic rigidity Bρ. The largest position
channel corresponds to the maximum range of the TAC that is 2 μs and corresponds
to the channel number 32768. The observed resolution in channels for our experiment
corresponds to a time resolution of σ = 2 ns that corresponds to a spatial resolution in
the focal plane of σ = 0.21 mm or σFMHM = 0.49 mm.
The second detector is a proportional counter that provides a ΔE signal that corresponds
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to the energy loss in the gas. The gas used in the detector is iso-butane at a pressure of 300
mbar. With these two signals combined one can discriminate the different particles in a
Bρ versus ∆E spectrum. Finally, behind the position detector, there is plastic scintillator
measuring the residual energy. The active area of this plastic is smaller than the position
detector reducing the achievable range of excitation energy for the residual nucleus. That
is why, no condition on the plastic will be applied in order to have a zone as broad as
possible.

Figure 4.6: Schematic view of the position-sensitive counter.

The Faraday cup

The last essential device needed for the normalisation is the Faraday cup place after the
reaction chamber. This Faraday cup with 10−10 Coulomb per pulse is crucial for counting
the number of incident ions. Then if we measure NF pulses, we can determine the total
number of incident particles in the following way:

Nbeam =
NF

Q

10−10

e
(4.7)

where Q, is the charge of the ion beam and e is the elementary charge. In our case we
have a deuteron beam, so Q = Z = 1. The number of particles Nbeam will be used for the
normalisation procedure to get the differential cross section at each angle.
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Figure 4.7: Principle of the delay line to get the position of interaction into the focal plane
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We shall discuss here the different steps of the analysis in order to obtain the informa-
tion about the populated states in 69Cu. We will first discuss the calibration of the

focal plane detector as well as the particle identification. We then discuss the observables
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of interest, which are the excitation energy and the angular distributions that contain the
nuclear structure information.

5.1 The 70Zn target: contamination and thickness

The target used for the experiment was a 95% 70Zn enriched target (see Appendix A for
composition details) deposited on a backing of carbon. Since Zinc oxidizes rapidly a lot of
precautions to prevent the target to see oxygen. Nevertheless we clearly see contaminant
peaks due to reactions with oxygen. One way to clearly see the different contaminants
is to look at the elastic scattering at an angle not too small. In fact by measuring the
magnetic rigidity at different angles for the elastic scattering, we can see the kinematic
line for each reaction that corresponds to to the elastic channel for each element present in
the target. The different kinematic lines are plotted in figure 5.1. The dots correspond to
the measured points while the lines correspond to kinematics calculation. We clearly see
four different kinematic lines that correspond to Zinc, Carbon, Oxygen and also Silicon.
The presence of the three first elements is explained above. But, although we see the
presence of silicon in the target, its origin is not very clear.

θ

ρ

Figure 5.1: The different kinematic lines
corresponding to the different contami-
nants of the target. Points correspond to
the measured Bρ while lines correspond
to relativistic kinematic calculation

Figure 5.2: Energy (a.u) of backscattered
α particle used to determine the different
elements and quantify the number of 70Zn
nuclei in the target

62



5.1. The 70Zn target: contamination and thickness

5.1.1 Rutherford backscattering

The quantity of 70Zn is very important to know for the normalisation in order to get the
spectroscopic factors. To quantify it, a Rutherford backscattering has been performed
at the CSNSM with the help of E. Oliviero and C. Bachelet. Rutherford backscattering
(RBS) is a very useful method to see the different elements that compose a material and
quantify each element inside the material. For our target, this RBS method was performed
using an 4He beam of E0 = 1.4 MeV and the backscattered α particles were detected with
a silicon detector placed at 165 degrees in the laboratory frame. The solid angle of the
detector is ∆Ω = 3.9 msr. The relation between backscattered particles of energy E1 and
the incident energy E0 is:

E1 =
M2

1

(M1 +M2)2

[
cos θ +

((M2

M1

)2

− sin2 θ
)1/2]2

E0, (5.1)

where M2 is the mass of the target nucleus at rest and M1 the mass of an α particle.
So at a given angle θ the backscattered energy E1 is well defined for each element. By
measuring E1 we can determine the composition of the target. An example of spectrum for
our target is given in figure 5.2. The first peak on the right corresponds to the Zinc part,
which is mainly at the surface of the target. But we can also distinguish the presence of
silicon and oxygen that correspond to the different bumps in the spectrum and the final
bump corresponds to the backing of carbon. In order to well quantify the quantity of
Zinc it is necessary to reproduce the profile of the spectrum with the help of the program
SIMNRA. After doing so the determined thickness of Zinc is e = 18.7±0.9 µg/cm2. Since
we have a 95% enriched target of 70Zn with a main contaminant of 68Zn for the other 5%,
the total atoms of 70Zn is Ntarget

1 = 1.535 ± 0.077 1017 cm−2. We will use this value for
the normalisation procedure. The typical error for this kind of measurement is about 5
%. The expected value was e = 70.0 µg/cm2, one can see that we had 3.7 times less of
Zinc than expected.

1Ntarget = 0.954 NAe
0.954×70+0.046×68
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5.2 Calibration

The main information given by the spectrometer is the particle identification and the
position of the detected particle. But in order to know the magnetic rigidity of the particle
and thus its energy and finally reconstruct the excitation-energy spectrum of the residual
nucleus, we need to calibrate the detector and convert the position into magnetic rigidity
Bρ.
The calibration is performed using a first-order fit in the following way:

Bρ = (aPos + b)B, (5.2)

where Pos is the position in channel at the focal plane detection system. For this
calibration, we have used different peaks corresponding essentially to the elastic channel.
Because of the target contamination, we were able to use four peaks of the elastic
scattering using the Zinc and the different contaminants at 40 degrees (Si, O and C). We
have also used a fifth point that corresponds to the reaction 12C(d,3He)11Be producing
11Be in its ground state at 21 degrees. The different values of the measured positions and
the calculated Bρ are listed in table 5.1.

Reaction Position (u.a) Bρ (T.m)
70Zn(d,d) 16507.7±3.2 1.05807
28Si(d,d) 15477.8±3.3 1.04750
16O(d,d) 14179.2±4.6 1.03443
12C(d,d) 13198.8±6.1 1.02443

12C(d,3He)11Be 9980.3±5.2 0.49899

Table 5.1: Measured positions (Pos) and corresponding magnetic rigidity

We can see the result of the fit in the figure 5.3. Then event by event, in order to get the
final magnetic rigidity Bρ, we multiply the calibration by the magnetic field B, which was
monitored during the experiment. Thus, we can gain in resolution because of the possible
fluctuations of the magnetic field that degrade the resolution. Knowing at each time the
value of the field enables us to correct for this effect.
After calibration, the resolution in excitation energy is σ = 18 keV in average for the
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ρ

Figure 5.3: Result of the first order calibration of the curvature ρ as a function of the
measured position

Copper’s peaks or σFWHM = 42.3 keV. Or in an equivalent way, for a kinetic energy of
20.6 MeV we have E/ΔE = 461. This is a typical value of the split-pole spectrometer
and this resolution is enough for us to well resolve each populated peak.

5.3 Particle identification

In order to identify the different particles detected in the split-pole spectrometer we
use a Bρ − ΔE spectrum. We can see such a spectrum in figure 5.4. First I would like
to explain the difference between this Bρ−ΔE spectrum with a more classical E −ΔE

one. With the Bethe-Block formula, we have the following relation:

ΔE ≈ AZ2 ln(E)

E
(5.3)

with E = 1
2
Av2 is the classical kinetic energy of the detected particle. Moreover, we have:

A
v2

ρ
= ZvB (5.4)
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Then v = Z
A
(Bρ) and E = Z2

2A
(Bρ)2. By replacing it in the equation 5.3, we have :

ΔE ≈ 2A2

(Bρ)2
ln
(Z2(Bρ)2

2A

)
=

2A2

(Bρ)2

(
2 ln(Z) + 2 ln(Bρ)− ln(2A)

)
(5.5)

One can see that ΔE versus Bρ correlation does not depend on Z2 but on ln(Z). That
is why the separation in Z for a given mass A is not so good compare to a E −ΔE plot.
Neverthless the separation in mass A is much better. That is why the contour used in
figure 5.4 includes the tritons. Nevertheless, because of very different kinematics between
the (d,t) and (d,3He) transfer reactions the resolutions are different. Indeed the kinematic
shifts δ are not the same between those two reactions and then we can see that the tritons
are not at all horizontal and rather large because the focal plane was set for the (d,3He)
reaction. Then it will be easy to separate their contributions in the final spectrum.

Δ

ρ

α

Figure 5.4: Particle identification in the spectrum Bρ versus the energy loss ΔE
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5.3.1 Reaction with contaminant

As one can see in figure 5.4, it is not possible to clearly separate the triton form the 3He.
In addition of the (d,3He) transfert reaction, we select also the (d,t) reaction channel. In
figure 5.5, one can see the position in the focal plane detection system of the expected
states in the different reaction channels. One can notice that all channels give discrete
states except for the 70Zn(d,t)69Zn where we are situated in the continuum for this reac-
tion. It is then most probable that the possible background in our final spectrum comes
from this continuum.

    B = 0.730 T°E = 27.000 MeV    Angle = 9.0 

70Zn(2H,3He)69Cu

0.0001.0961.7112.2852.9393.700

291.9

12C(2H,3He)11B

0.0002.125

276.0

16O(2H,3He)15N

0.0005.2706.324

281.0

28Si(2H,3He)27Al

0.0000.8442.2122.9823.6804.4105.1565.6676.1586.6517.174

287.2

12C(2H,3H)11C

8.1048.4208.6549.200

244.0

70Zn(2H,3H)69Zn 288.6

63.0 cm 73.5 cm 84.1 cm

Figure 5.5: Expected position in the focal plane detection system for the different channel of
reaction. The numbers on the right correspond to the position of the focal plane detection
system (in mm) for a given reaction to achieve the best resolution

5.4 Observables of interest

Direct reactions are a great tool for the nuclear structure and in particular here the
transfer reaction. Thanks to the two-body kinematics, by detecting the light fragment,
we can have access to the information about the residual nucleus by the missing mass
method. Considering this two-body reaction:

A+ a→ B + b, (5.6)
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where A is the beam and a the target (a is at rest in the laboratory frame). By detecting
the particle b, meaning measuring its energy and its angle θlab in the laboratory frame,
one can reconstruct the angular distribution and the excitation energy of B.

5.4.1 Magnetic rigidity and excitation energy

We can define the energy-momentum four-vector for each nucleus (here we use c = 1):

PA =

(
TA +mA

~pA

)
, Pa =

(
ma

0

)
, Pb =

(
Eb

~pb

)
et PB =

(
EB

~pB

)

We want to construct the excitation energy of B knowing that we measure the kinetic
energy Tb = Eb −mb and its angle θb. We know that:

pA =
√
T 2
A + 2mATA

pa = 0

pb =
√
T 2
b + 2mbTb

(5.7)

because E2 = p2 +m2 and E = T +m.
The conservation of the impulsion gives ( ~pA + ~pa)

2 = (~pb + ~pB)2, so:

pB =
√
p2
A + p2

b − 2pApb cos θb. (5.8)

Moreover with the energy conservation we have:

EB = TA +mA +ma − (Tb +mb). (5.9)

Then we can define the excitation energy EBex of nucleus B as follows:

EBex = mB −mBgs, (5.10)

wheremBgs is the mass of B in its ground state andmB is the mass formed in the reaction:
mB =

√
E2
B − p2

B.
Therefore, knowing the beam energy, and measuring the kinetic energy Tb of particle b
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together with its angle θb, one can calculate the excitation energy EBex of the nucleus B.
Nevertheless here with the split-pole we measure the magnetic rigidity BρB. So in order
to get the kinetic energy EB to calculate the excitation energy spectrum we have to use
the following relation:

Bρ =

√
T 2 + 2mT

cZe
(106e) (5.11)

where c is the speed of light and Z the nucleus charge. (106e) term is used to get the
magnetic rigidity in T.m when the kinetic energy of the nucleus and its mass are expressed
in MeV. By inverting this equation we can get the kinetic energy knowing the magnetic
rigidity.

5.4.2 Angular distribution

At a given angle for a populated state in the residual nucleus, we have to normalise
the integral of the peak Npeak with respect to the beam intensity integrated over the run
duration Nbeam, the number of target nuclei Ntarget in cm−2, and the acceptance of the
split-pole ∆Ω. Thus the normalized cross section is obtained in the following way:

dσ
dΩ

= J(θCM)
Npeak

NbeamNtarget∆Ω
, (5.12)

where J(θCM) is the Jacobian of the reaction defined as J(θCM) = | dΩ

dΩCM
| and corre-

sponds to the dilatation between the center-of-mass frame and the laboratory frame.
Because we are here in direct kinematics, the Jacobian is close to one. Its typical value
is 0.924 at 15 degrees in the laboratory frame for a state at 1.71 MeV.
At each angle, for each populated state in 69Cu we normalise the cross-section in order to
obtain the angular distribution, the transferred angular momentum L and its associated
spectroscopic factor C2S. The main error is given by the statistical error on the number
of counts Npeak in the populated peak and is equal to 1/

√
Npeak. On top of that an error

on the determination of Npeak is possible because of the subtraction of the background
and it is taken into account for the total error.
To obtain large enough angular distributions in order to discriminate between the shape
of different transferred angular momenta, we have measured at 4, 6, 9, 12, 15, 18, 21 and
24 degrees for the transfer reaction plus at 30 and 40 degrees for the elastic channel.
The main difficulty we have encountered is the background subtraction in order to well

69



Chapter 5. Data analysis

establish the number of counts in the populated peak. The procedure was to fit over a
range in excitation energy large enough to well fit the background, our peak of interest
plus if necessary other peaks if they are situated in the range of the fit. Each peak was
fitted with a Gaussian shape and the background with a polynomial of order one. We
can see in figure 5.6 a typical fit performed for the state at 1.71 MeV at 9 degrees in
the laboratory frame. This fit consists in four gaussians plus a linear background. In
figure 5.7 all the background plus the contaminant peaks were subtracted in order to
get only the peak of interest and obtain its integral. This method is very efficient for
the subtraction and enables us to well establish the number of counts in the peak. This
method was applied for all the peaks of interest.

 (MeV)Cu69E
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Figure 5.6: Fit at 9 degrees in the labo-
ratory with multiple Gaussian peaks plus
a linear background for the state at 1.71
MeV
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Figure 5.7: Subtraction of the background
plus the contaminant peaks leaving the
peak of interest to determine its integral

70



6
Results

Contents
6.1 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 The transfer reaction . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Magnetic rigidity and excitation energy . . . . . . . . . . . . . 73

6.2.2 Angular distributions . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Detection limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

This chapter will present the results for the 70Zn(d,d) elastic reaction and for the
70Zn(d,3He)69Cu one-proton transfer reaction. In order to extract the transferred

angular momentum and the spectroscopic factor, one need to to use a reaction model.
For that purpose we will use the standard Distorted Wave Born Approximation (DWBA)
model as already explained.
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6.1 Elastic scattering

In order to constrain the deuteron entrance channel optical potential used in the
DWBA calculations, we have measured the elastic scattering 70Zn(d,d)70Zn. To get the
normalized cross section, we have determined for each angle the integral of the elastic
peak as we can see in figure 6.1. The peaks we can see at higher energy correspond to
the elastic channel on the contaminants present in the target. The result of the angular
distribution is shown in figure 6.2. We can see a good agreement between the calculation
and the measured cross section giving confidence in the normalisation procedure and in
the optical potential used in the entrance channel. No minimization was done to calculate
the cross section, only the parametrization was applied in our case. The optical potential
used in the entrance channel is the relativistic Daenick potential [54] covering (d,d)
reactions from 12 to 90 MeV. This potential was obtained from data on 27 ≤ A ≤ 238.
The parameters used both for the in-going and out-going channels are listed in the table
6.1. For the out-going channel as we will see in the next section, the Perey and Perey
parametrization [55] was used. This is the best available potential for (3He,3He) in our
case and it was obtained for A > 40 and E < 40 MeV.

Figure 6.1: Excitation energy spectrum of
70Zn at θlab = 40o, the peaks at higher ex-
citation energy correspond to elastic scat-
tering on the contaminants in the target

θ

Ω
σ

Figure 6.2: The 70Zn(d,d) elastic cross-
section after normalisation (red dot),
compared to calculation using relativistic
Daenick optical potential
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6.2. The transfer reaction

V W WD rc r0 a0 ri ai Vso λ

d 86.76 0.90 12.12 1.30 1.17 0.75 1.32 0.81 6.34
3He 156.5 42.2 0 1.30 1.20 0.72 1.40 0.88 2.50
p adj 1.25 1.25 0.65 25

Table 6.1: Optical potential for 69Cu

6.2 The transfer reaction

6.2.1 Magnetic rigidity and excitation energy

Once we have measured at a given angle the magnetic rigidity of the particles into the
focal plane, we can select the 3He as we saw the figure 5.4 and reconstruct the excitation
energy spectrum for the reaction of interest. We can see in figure 6.3 the correspon-
dance between the measured magnetic rigidity and the excitation energy spectrum for
the 70Zn(d,3He)69Cu at 21 degrees in the laboratory frame. Of course in these spectra
there are some peaks which correspond to reactions on the different contaminants of the
target. I remind here that it is not possible to clearly separate the 3He from the triton.
But in the sets of magnetic field for our experiment, only the tritons from 12C(d,t)11B
were detected into the focal plane and correspond to the broader peaks due to the very
different kinematics between this reaction and our reaction of interest as explained above.
Because of this we can easily identify the contribution of the (d,t) reaction in our spectra.
However there is still 3He coming from other reactions in this region of interest as we saw
in figure 5.5. Indeed, if the 3He has the correct kinematics, for each angle its position
on the excitation-energy spectrum should not change. If we see a shift in position with
the angle, it means that this 3He comes from another reaction and thus does not match
with a state in 69Cu. This fact is illustrated in figure 6.4. Two dotted lines of the same
color correspond to the same state of a contaminant nucleus. We see clearly that the shift
depends on the nucleus and thus on the reaction. The more the kinematics are different
the bigger is the energy shift between two angles for a contaminant peak. In this way it
is easy to detect the states we have populated in 69Cu during the experiment. Thereby,
we have seen eight populated states in 69Cu between the all range accessible within our
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settings. In order to get the information about nuclear structure we shall compute an-
gular distributions for all these peaks. In this way, we will get the transferred angular
momentum thanks to the shape of the angular distribution.

ρ

Figure 6.3: Measured magnetic rigidity Bρ and the associated excitation energy spectrum
for the 70Zn(d,3He)69Cu at θlab = 21 degrees

6.2.2 Angular distributions

We can now do the same work for the populated states in 69Cu as we have performed
for the elastic channel. We construct the angular distribution for each state with the same
normalisation procedure and then extract the spectroscopic factor C2S by comparing the
result with the one-proton pick-up cross-section calculated with a DWBA code. In a first
step, in order to compare our results with the ones of Zeidman [32], we have performed
a zero-range (ZR) calculation using the DWUCK4 code. We used the same parameters
of the Wood-Saxon potential for the transferred proton as Zeidman: r0 = 1.20 fm and
a0 = 0.70 fm. We have also performed calculation using r0 = 1.25 fm and a0 = 0.65 fm as
they are listed in the table 6.1 in order to be consistent with most of the literature. The
other parameters are not the same as Zeidman’s due to the beam energy dependance of
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Figure 6.4: Excitation energy spectrum of 69Cu at θlab = 12 and 24 degrees illustrating the
energy shift for the contaminant peaks. Two dotted lines of the same color correspond to
the same state of a contaminant nucleus

the parameters. In a second step we have performed a finite-range (FR) calculation using
the DWUCK5 code. In the case of the finite-range calculation, we have used the Brida et
al. potential [56] for the form factor to describe the overlap between the deuteron and 3He.
It consists of a parametrization using a Wood-Saxon plus a Gaussian potential. Finally we
have to take into account for the normalisation procedure that the spectroscopic overlap
between the deuteron and the 3He is <2 H|3He >= 1.33.
We can see in figures 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 the angular distributions of
the different populated states in the 69Cu. Our results are compared in table 6.2 with the
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ones of Zeidman [32]. Our final results using r0 = 1.25 fm and a0 = 0.65 fm and finite-
range calculations are listed in table 6.3. The error associated with the spectroscopic
factor is about 0.1 to 0.2. Moreover the difference between the two values of radius and
diffuseness for the transferred proton used in the calculation gives a difference for the
spectroscopic factor of 10 to 15%. Finally, the error associated with the position of the
peaks is 0.01 MeV.
First of all, we see that we are in agreement with the populated states in common for the
assigned spin and parity Jπ. It was not possible in this experiment to assign the state at
1.10 MeV due to the presence of contaminant peaks in this energy range at low angles.
We are also in agreement for the spectroscopic factors except for the 5/2− state at 1.23
MeV. Indeed we have measured a spectroscopic factor twice smaller than Zeidman et al..
Moreover, we see that we were able to determine the angular distributions of three more
states with their spectroscopic factors. Particularly we have measured a new L = 3 state
at 3.35 MeV that corresponds to 30 % of the strength for a f−1

7/2 proton-hole state. The
two other states at 3.70 MeV and 3.94 MeV correspond to a L = 2 and L = 0 state
respectively. These two states must correspond to a part of the inner sd shell of the
nucleus.
In order to quantify the measured strength, it is interesting to look at the sum of the
spectroscopic factors of the 7/2− populated state. For the zero-range calculation the sum
is
∑
C2S7/2− = 4 or 50% of the strength and for the finite-range calculation we have∑

C2S7/2− = 5.4 or 67% of the f7/2 proton-hole state. First we see that there is quite a
difference between a zero-range and a finite-range calculation for the determination of the
spectroscopic factors, we have a difference of 17%. In both cases, one can wonder where
is the missing strength. A part of the answer might be in the energy of the beam that is
not enough to populate L = 3 states at higher excitation energy. It can be pointed out
that the energy of the beam was 27 MeV or 13.5 AMeV. Indeed, as we can see in figure
6.15, the cross section decreases with the excitation energy. Thereby, we want to give a
limit of measurable spectroscopic factor as a function of the excitation energy.
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[32] This work

E (MeV) Jπ C2S E (MeV) L (Jπ) C2S (ZR)

0 3/2− 1.3 0 1 (3/2−) 1.60(11)
1.11 1/2− 0.46 1.10 - -
1.23 5/2− 1.5 1.23 3 (5/2−) 0.90(13)
1.74 7/2− 2.7 1.71 3 (7/2−) 2.70(10)
1.87 7/2− 0.45 1.87 3 (7/2−) 0.55(12)
3.30 - - 3.35 3 (7/2−) 2.00(8)
3.70 - - 3.70 2 (3/2+) 2.60(21)
3.95 - - 3.94 0 (1/2+) 0.80(6)

Table 6.2: Summary of transferred angular momentum L, spin-parity (Jπ) and the as-
sociated spectroscopic factor C2S for the populated states in 69Cu using the zero-range
calculation DWUCK4 and as reference [32] r0 = 1.20 fm and a0 = 0.70 fm

E (MeV) L (Jπ) C2S (ZR) C2S (FR) χ2/NDF

0 1 (3/2−) 1.40(15) 1.50(17) 0.69/6
1.10 - - - -
1.23 3 (5/2−) 0.80(11) 0.70(10) 1.53/2
1.71 3 (7/2−) 2.00(11) 2.50(14) 14.27/5
1.87 3 (7/2−) 0.40(10) 0.50(10) 8.76/3
3.35 3 (7/2−) 1.60(10) 2.40(15) 2.23/4
3.70 2 (3/2+) 1.90(25) 1.50(20) 2.39/5
3.94 0 (1/2+) 0.70(06) 0.70(10) 9.37/4

Table 6.3: Summary of transferred angular momentum L, spin-parity Jπ and the asso-
ciated spectroscopic factor C2S for the populated states in 69Cu. We compare zero-range
and finite-range calculation using r0 = 1.25 fm and a0 = 0.65 fm
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Figure 6.5: Differential cross-section
compared to the DWBA calculation for
the ground state
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Figure 6.6: Differential cross-section
compared to the DWBA calculation for
the state at 1.11 MeV

θ

Ω
σ

Figure 6.7: Differential cross-section
compared to the DWBA calculation for
the state at 1.23 MeV
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Figure 6.8: Differential cross-section
compared to the DWBA calculation for
the state at 1.71 MeV
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Figure 6.9: Differential cross-section
compared to the DWBA calculation for
the state at 1.87 MeV
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Figure 6.10: Differential cross-section
compared to the DWBA calculation for
the state at 3.35 MeV
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Figure 6.11: Differential cross-section
compared to the DWBA calculation for
the state at 3.70 MeV
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Figure 6.12: Differential cross-section
compared to the DWBA calculation for
the state at 3.94 MeV

6.3 Detection limit

As we can see in figure 6.15 the cross section drops with the excitation energy. We
can wonder about the detection limit of our experimental setup. First of all we need
to know the number of counts in a peak to detect it. To do so, we have simulated a
realistic flat background with an additional peak corresponding to a Gaussian peak with
a resolution that corresponds to the experimental one (σ = 18 keV). To determine the
number of counts needed to detect a peak, we have simulated different numbers of events
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in the Gaussian peak and with the goodness-of-fit test we have determined that we
need 130 counts in this peak to detect it with a confidence level of 95%. To do this, we
have simulated 10000 times a flat background plus a x counts Gaussian peak. At each
iteration it was fitted by a linear fit and then the χ2 distribution of the fit was plotted.
Indeed as we can see in figure 6.14, the centroid of the χ2 distribution divided by the
number of degree of freedom (NDF = 198 here) is μ = 1.14. If a peak would have been
populated with 130 counts or more, it would have been identified with a probability
larger than 95% in our experiment.

Figure 6.13: Simulated flat background
plus a 130 counts gaussian peak at 5 MeV
with a σ = 18 keV

χ

χ

Figure 6.14: χ2 distribution obtained
from a linear fit of 10000 simulated
flat background plus a 130 counts gaus-
sian peak as we can see in figure 6.13
(NDF=198)

Now we have fixed the detection limit at 130 counts, let us start to give the minimum
spectroscopic factor accessible in the experiment for a given energy. We know that
the spectroscopic factor for the L = 3 state at 3.35 MeV is 2.4 using the finite-range
calculation. The integral for this state at 21 degrees in the laboratory frame (where
the cross-section is the highest) is about 700 counts. Then by fixing the detection limit
at 130 counts we can establish the minimum spectroscopic factor we can access at this
energy: C2Slim(3.35) =

130×2.4
700

= 0.44. Now by comparing the different calculated cross
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section in figure 6.15, we can determine a minimum spectroscopic factor as a function of
the excitation energy. Thus we can see in figure 6.16 the different established C2Slim for
different excitation energies giving the detectable area in our experimental setup with a
confidence level of 95%.

θ

Ω
σ

Figure 6.15: Evolution of the cross sec-
tion for L = 3 as a function of the excita-
tion energy in 69Cu using the finite-range
DWUCK5 code

Figure 6.16: Limit of detection as a func-
tion of the excitation energy. The limit
depends on the limit number of counts to
detect a peak with our detection system

Actually, the behavior of C2Slim curve is exponential as a function of the excitation energy
and follows this function:

C2Slim(E) = α + β exp(γE). (6.1)

The result of the fit as we can see on figure 6.16 gives:

⎧⎪⎪⎨
⎪⎪⎩

α = 0.104± 0.036

β = 0.053± 0.010

γ = 0.562± 0.027

(6.2)

As we will see in section 10.3, we can use this constrain on the missing strength to estimate
the πf7/2 centroid.
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6.4 Conclusion

In this work we have brought out spectroscopic information about the structure of
69Cu by means of the 70Zn(d,3He) one-proton transfer reaction performed at Orsay using
a deuteron beam at 27 MeV. We have used the missing-mass method with the split-pole
spectrometer that could provide us a good resolution.
The results show clearly eight populated states. The five first states are in agreement
with previous works [32, 34] except for the spectroscopic factor of the 5/2− state at 1.23
MeV where they measured C2S=1.5. One explanation could be the large error bars they
obtained at low angle in the center of mass frame. In addition, we could determine three
new angular distributions and learn more about the nuclear structure of 69Cu at higher
excitation energy up to 3.94 MeV. Especially, a new L = 3 state has been observed giving
a total measured πf−1

7/2 proton-hole strength of 66%. Finally a limit on the spectroscopic
factor was given as a function of the excitation energy in order to constrain the missing
strength.
Because we are interested in the evolution of this proton-hole strength evolution with
the filling of the g9/2 neutron orbital, toward 78Ni, we shall now study the case of 71Cu
(N = 42) in the next part. This nucleus is the first Copper isotope with an even number
of neutrons in the νg9/2 orbital.
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Single-particle states in 71Cu
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7.1. General presentation

We describe in this chapter the experimental protocol used for the study of dif-
ferent reactions: the elastic scattering 72Zn(d,d)72Zn and two transfer reactions,

72Zn(d,t)71Zn and 72Zn(d,3He)71Cu. The experimental contraints leading to the choice
of the experimental setup will be explained. The data analysis as the simulations have
been done using the NPTool1 program developed at IPN Orsay [57, 58]. This program
is based on Geant4 [59] for the simulations and on Root [60] for the analysis.

7.1 General presentation

In order to study the πf−1
7/2 proton-hole states in a more neutron-rich Copper isotope

such as the 71Cu, one has to perform the transfer reaction in inverse kinematics: the
deuteron is used as a target while the heavy ions, which is radioactive, here the 72Zn, is
the beam. Such a reaction has become achievable with the development of radioactive
ions facilities that can provide accelerated exotic nuclear beams. Through the develop-
ment of such facilities, study of single-particle energies far away from stability becomes
possible. A review of the different technic for the production of radioactive ion beams
and the different available facilities over the world are discussed by Y. Blumenfeld et al.
in reference [61]. In direct kinematics the center of mass frame matches almost with the
laboratory frame when the target nucleus is heavy enough, while in the case of inverse
kinematics it is not the case anymore. This leads to very different kinematic lines by
comparison to the direct kinematics case as we can see in figure 7.1 where we have plotted
the kinetic energy of light particles as a function of the angle in the laboratory frame
for three channels of reaction. In this experiment, we have performed the reaction with
a secondary beam of 72Zn at 38 MeV/nucleon that was transported toward a deuteron
target.
Our goal is to perform angular distributions of the emitted light particles from the reac-
tion. For that purpose it is important to know the kinematics of this two-body reaction in
order to optimize the experimental setup for the detection of these light particles. More-
over, we need to couple this kinetic information with the probability of reaction. We know
from DWBA calculations that the probability of reaction is higher at small angle in the

1Nuclear Physics Tool
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θ

Figure 7.1: Kinematics line of the different reactions. The elastic scattering in red, the
(d,t) transfer reaction in green and the (d,3He) in blue. Dots are plotted on the kinematic
lines every 10o in the center-of-mass frame

center of mass frame, for θCM < 25o that corresponds to θlab < 50o. For θCM > 25o, we
lose at least one order of magnitude for the cross section. All these elements tell us to use
a detection system placed at forward angles in the laboratory frame in order to determine
the energy and the angle of the light particles (t and 3He). To do so, we have used the
charged particle detectors MUST22 to detect the 3He emitted from the reaction. Four of
them where placed at forward angles for the transfer reactions (d,3He) and (d,t) while for
the elastic scattering measurement we have used two MUST2 at ninety degrees. During
this experiment two other MUST2 telescopes where also placed at backward angles for
the (d,p) reaction channel.
Moreover, the energy of the emitted 3He is smaller than 21 MeV for θlab < 47.5o that
corresponds to the energy for an 3He to cross 300 μm of silicon, which is the first stage of
the MUST2 array. This means that the 3He are stopped in this first layer. So in order to
discriminate the 3He from the other light particles we need to add a 20 μm silicon detector
in front of each MUST2 at forward angles to select our particles in a E −ΔE spectrum.
The thickness of 20 μm is quite thin but if we have used thicker detector, the 3He of
very low kinetic energy would not have been detected because the residual energy in the

2MUr à STrips
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7.2. Beam production

MUST2 array would have been too low and under the threshold. Indeed you already need
an 3He of 4.1 MeV to cross 20 µm of silicon, and the 3He of interest coming from the
transfer reaction arise with a kinetic energy between 5.6 and 21 MeV.
Because the beam was produced by fragmentation, two beam tracking detectors were used
in order to reconstruct the angle of the beam as the position of interaction on the target.
These detectors were placed upstream the CD2 target and enable us to determine the
angle of the emitted 3He particle.
Finally, in order to detect the heavy fragment from the reaction, we have used a plas-
tic detector and an ionization chamber. The idea is to separate the heavy fragment by
E −∆E or E − TimeOfF light method.
In this way, it was possible to measure different reaction channels such as the (d,d), (d,t)
and (d,3He) reactions, in a large angle range in the same time. We can see a scheme of
the experiment and a real picture in figures 7.2 and 7.3 respectively. It is quite different
compare to the 69Cu case where the setup was fixed for the only reaction of interest and
the measurements were done angle by angle.

T1-4

T2-3

T6-7

T5-8

CATS2CATS1 Plastic Chio

20 µmCD2

72Zn

815 mm 145.6 mm

Figure 7.2: Scheme of the experimental setup

7.2 Beam production

The E552 experiment was performed in April 2011 at GANIL3. A general plan of the
GANIL facility is shown in figure 7.4. One can see the three cyclotrons C01, CSS1 and

3Grand Accélérateur National d’Ions Lourds
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Figure 7.3: Experimental setup on the Lise beam line at GANIL

CSS2 that produce the required energy of the primary beam.
For our experiment, the secondary beam of 72Zn was produced by fragmentation. The
primary beam of 76Ge was produced by an ECR4 source that transforms into plasma
the germanium. Then the primary beam was accelerated through C0, CSS1 and CSS2
cyclotrons up to 61 MeV/u at a frequency of 11.07 MHz and at an average intensity of 20
enA. It was sent toward the LISE5 spectrometer [62] in order to produce the secondary
beam by fragmentation with a 9Be target of 732.8 µm thickness. After fragmentation the
beam was purified through the LISE spectrometer.
We can see a schematic view of the LISE spectrometer in figure 7.5. It is mainly composed
of two magnetic dipoles where the magnetic rigidity was Bρ1 = 2.3043 T.m and Bρ2 =

4Electron Cyclotron Resonance
5Ligne d’Ion Super Épluché
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2.1466 T.m respectively. A wedge thickness of 223.5 µm is placed between the two dipoles
in order two purify and slow down the beam to 38 MeV/u in our case. Once the thickness
of the wedge fixed with the ratio Bρ1/Bρ2, each ion with the same value of S = A3/Z2

will be focused in the same place at the end of the spectrometer [63]. We can play also
with the slits to perform more drastic selections of the beam. There is also a third dipole
at the end of the line that is used to transport the beam in the experimental area. After
the third dipole, there is a Wien filter [64] that is a velocity filter. In our experiment,
it was no intended to use it, however it was used for few runs during the experiment to
deviate a little bit the beam in order to avoid burning central wire of the beam tracking
detector (CATS).
In addition a 300 µm silicon detector is placed in D6 in order to identify the different
ions present in the beam. It consists of an energy loss ∆E in the silicon versus the time
of flight between the silicon detector and the radio-frequency of the CSS2. We can see a
typical spectrum in figure 8.2. In only few runs this information was encoded in order to
see the different contaminants but not during the entire experiment.

Figure 7.4: Accelerator and experimental areas at GANIL
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Figure 7.5: Scheme of LISE spectrometer

7.3 Targets

In our target holder we had four different targets. Three of them were a deuterated
polypropylene (CD2) target with a thickness of 0.26(2) mg/cm2 for two of them and 0.68
mg/cm2 for the last one. During all the experiment we ran with a thickness target of 0.26
mg/cm2. This choice of thickness is a compromise to take between the statistics and the
energy resolution. Indeed because our 3He of interest have very low kinetic energy, the
energy loss in the target is important, thus in order to keep a resolution in energy good
enough we have to use a thin target.
The other main difficulty with this kind of target is that it is composed of 12C, producing a
background in the spectra due to the reaction between the beam and the carbon. That is
why a last target was used, composed only of carbon, to evaluate the carbon background
in our spectra. The thickness of this carbon target was 0.38(2) mg/cm2.
In addition, for the CD2 target, the quantity of proton is not zero. And we need to
quantify it to well determine the number of deuteron in the target for the normalisation
procedure. Thus the number of deuteron is:

Ntarget =
2fNAeCD2

MC + 2(fMd + (1− f)Mp)
(7.1)

where f is the deuteron fraction in the target, MC , Md and Mp the mass of the carbon,
deuteron and proton respectively, and eCD2 = 0.26 mg/cm2 is the target thickness. The
quantity of protons was determined thanks to the elastic scattering of the 72Zn with the
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protons of the target and the quantity f = 0.98 was established (see section 9.1.1), giving
Ntarget = 1.923± 0.096 1019 at/cm2.

7.4 Beam tracking detector : CATS

Beams produced by fragmentation have a large emittance. In order to know the
position of interaction on the target and the beam angle event by event with a precision
good enough we have used two beam tracking detectors. In addition, these detectors are
also used to count the incident beam and provide us a good time information.
In the experiment, we have used two CATS6 detectors [65]. This detector is a low pressure
multi-wire proportional chamber (figure 7.6) used with an isobutane gas (C4H10). The
gas pressure depends on the ion beam and the pressure used in our experiment was 10
mbar. The active area of this detector is 70× 70 mm2. There are two Mylar foils 1.5 µm
thick that contain the gas inside. Each detector is made of an anode that is a plane of 71
anode wires in tungsten which have a diameter of 10 µm and there is 1 mm between each
wire. In this anode plane we put a high voltage between 600 and 800 V. Either side of
the anode there are two cathode planes at a distance of 3.2 mm which are perpendicular
between them. The fact that the cathode is segmented provides us with the position
information. Each cathode contains 28 gold strips spaced by 0.2 mm and 2.34 mm thick.
Then we are able to reconstruct the beam position on the target event by event with a
precision less than 1 mm.
The maximum count rate for this detector is about 105 particles per second if the beam
is not too focused on one part of the detector.

7.5 Detection devices

7.5.1 MUST2 detector

The MUST2 detector [66], was designed to detect the light charged particles emitted
from direct reaction of exotic nuclei in inverse kinematic. This detector was already often

6Chambre À Trajectoire de Saclay
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Figure 7.6: Characteristics of a CATS detector

used as we can see in the PhD thesis of D. Daisuke [67], S. Giron [68], A. Matta [58] and
F. Flavigny [69] for instance. Each telescope is made of three stages (figure 7.7):

• 300 µm silicon : The first layer is a double sided stripped silicon detector (DSSSD)
of 300 µm thickness and the area of this detector is 98× 98 mm2. On both side of
the silicon there is an evaporated layer of aluminum of 0.4 µm thickness and each
aluminum layer is divided into 128 strips vertically or horizontally. The strip pitch
is 0.75 mm, so the angular resolution is 0.15 degree at a distance of 15 cm and the
typical energy resolution for a strip is 40 keV. Thus, this DSSSD provides us the
energy loss as the time information and also the position of the particle.

• SiLi : The second stage of the telescope is a lithium-drifted silicon detector with
a thickness of 4.5 mm and an active area of 92 × 48 mm2. It is composed of two
detectors themselves segmented into 8 pads. For this experiment, the SiLi detector
were mounted only on the two MUST2 detectors place at backward angles.

• CsI : Finally the last stage of the telescope is made of 16 CsI calorimeter. Each
crystal with a thickness of 40 mm is read by a photo-diodes with the same electronics
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of the first stage. The area of each crystal is 30×30 mm2. This last stage measures
the residual energy of the light particles which have crossed the other layer(s) of the
telescope.

Figure 7.7: MUST2 detector

Electronics

The electronics of MUST2 detector is based on ASIC7 modules which are called MATE8.
Behind each telescope there is a cooling system designed for the two MUFEE9. With the
MUVI10 these three cards constitute the elements of the MUST2 electronics.

• One MATE is able to treat 16 strips, which means 16 analog signals. It provides
the pre-amplification of the signal and divides the signal in a time and energy signal.
If the time signal is higher than the the threshold, two signals are emitted. One of
them is a start that will trigger the TAC (Time to Amplitude Converter) used to
measure the particle time of flight (the stop signal is external and corresponds to
one CATS detector). The second one is a reading request sent to the MATE output.

7Application-Specific Integrated Circuit
8Must2 Asic Time and Energy
9MUst2 Front End Electronic

10MUst in VxI
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Regarding the energy signal, it is filtered and stocked in a capacitance waiting for
the reading order. In this case the signal is encoded in 14 bits. The channels 8192
to 16384 correspond to the X strips while the channels from 8192 to 0 corresponds
to the Y ones.

• The MUFFE card contains nine MATE. Eight of them are dedicated for the 128
strips of one side of the DSSD and the ninth treats the signals from the SiLi for the
MUFEE of the X side and the signals from the CsI for the Y side. Two cards are
needed to entirely treat a MUST2 telescope which correspond to 576 parameters.
These two cards allow the multiplexing and the transmission of the data to the ADC
(Analog to Digital Converter). Moreover this card provides the power supply (bias
and high voltage) for the detectors and there is inside a pulse generator to test and
calibrate the electronics and finally a temperature probe is able to start an alarm
signal if it exceeds a threshold fixed by the user.

• The MUVI card deals with all the electronics. It is placed outside the chamber in
a VXI crate. When an event is accepted by the trigger, the MUVI card starts the
reading of the MUFEE cards, the encoding of the data and the transmission to the
acquisition. In other case it orders the reset of the MUFEE which has triggered. In
addition it transmits the extern stop signal to the TAC of the MATE. This card is
also able to perform low level filtering such as the pedestal subtraction.

Efficiency

As we said before, the light particles such as the triton and the 3He are emitted at forward
angles in the laboratory frame. Because the setup was designed to detect the 3He, we
want a maximum efficiency of detection for the forward angles between 8 and 50 degrees
in the laboratory frame. As we can see in the figure 7.8 for telescope 1 to 4, the simulated
efficiency of our reaction of interest producing 71Cu in its ground state is higher than 50%
between the angles 13 and 42 degrees in the laboratory frame and it reaches a maximum of
90 % around 35 degrees. Finally the efficiency of the two MUST2 telescopes (6 and 7) at
ninety degrees for the elastic scattering reach 20% between 68o and 87o in the laboratory
frame (figure 7.9).
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θ

Figure 7.8: Efficiency of the detection
setup in the laboratory frame for T1-4
for the (d,3He) transfer reaction produc-
ing the 71Cu nucleus in its ground state

θ

Figure 7.9: Efficiency of the detection
setup in the laboratory frame for T6-7 for
the (d,d) elastic scattering

7.5.2 20 μm silicon detector

Because of the kinematics, the 3He emitted from the reaction have a kinetic energy
below 22 MeV. Therefore they are stopped in the first stage of MUST2. In order to
separate them from the other light particles such as 3H and α particles the only way is
by the time of flight method. Because time of flight separates only in mass we cannot
distinguish between 3H and 3He. In order to perform a E−ΔE identification, we added a
20 μm silicon detector in front of each MUST2 telescope (T1-4) at forward angles. These
detectors are Single Sided Stripped Silicon Detector (SSSSD) with 16 strips in the front
side. The active area of the detector is 50×50 mm2 and the typical energy resolution is
100 keV FWHM.
In order not to block the detection surface of MUST2, the SSSSD were mounted on an
aluminum frame 67 mm from the DSSSD as we can see in figure 7.10. In this way no
active area is lost for the detection.

7.5.3 Plastic

The plastic detector is a NE104 scintillator block with a thickness of 2 cm and an
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Figure 7.10: SSSSD detectors in front of the MUST2 telescope.

active area of 6×6 cm2 connected to a light-guide and a photo-multiplier. This detector
measures the residual energy of the heavy fragment. Its good time resolution can be used
to determine the time of flight between one of the CATS detector and the plastic.

7.5.4 Ionization chamber

For this experiment, we have used an ionization chamber of which the signal was
digitized. This digitized ionization chamber was used for the first time for the PhD thesis
of G. Burgunder [70]. The aim of using an ionization chamber and a plastic is to identify
the heavy fragment from the reaction at zero degree. Moreover, because the beam is
produced by fragmentation there are also contaminants. That is why this detector is
particularly useful.
The ionization chamber has an area of 60×60 mm2 and is 12 cm long. The two entrance
windows are composed of 7 µm thick Mylar foil. The gas used inside is CF4 at a pressure
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of 100 mbar. The cathode situated on top of the detector is connected to a potential at
-600 V while the anode at the bottom is at +600 V. The Frisch grid situated 2 cm on
top of the anode is fixed on ground potential. Thus the electric field in the drift region
between the Frisch grid and the cathode is 2 V.cm−1.Torr−1 while the one between the
Frisch grid and the anode is 6 V.cm−1.Torr−1. In order to have a good gradient in the
drift region, the walls of the chamber have several conductive bands perpendicular to the
electric field which are equipotentials.
If we want a count rate about 105 pps, the duration of the signal has to be less than 10 µs.
The pre-amplifier gain chosen was 360 mV/MeV and the sampling frequency was fs = 40

MHz or one sample every 25 ns. For our sampling we have stocked 350 points per event
which means a time of 8.75 µs.

7.5.5 Electronics and data acquisition

The different signals emitted from the different detection systems for the experiment
require a logical acquisition. It is defined to avoid a useless trigger that does not corre-
spond to the physics. During the read-out the system is blocked and cannot be used, this
is what we call the dead time.
The trigger logic of experiments performed with the MUST2 arrays relies on the GMT11,
which is placed in a VXI crate. It can accept until 16 logic signals authorized to trigger.
For the E552 experiment, the events were recorded when one of the following conditions
was fulfilled:

1. one of the MUST2 telescope is triggering,

2. one of the CATS divided is triggering,

3. one of the SSSD divided is triggering,

4. plastic divided is triggering,

5. or CHIO divided is triggering.

The first trigger corresponds to the selection of good events while the second one allows
us to count the number of incident ions. When one of the logic signals is present at the

11Ganil Master Trigger

97



Chapter 7. Experimental Setup

GMT, it generates a logic signal called FAG12. For an event to be treated, the time signal
associated to the triggered detector has to be in coincidence with the FAG. The stop
signal which is in common for all the detectors is the delayed logic signal from CATS2
and validated by the FAG while the start signal comes from the detectors which has
triggered (it comes from MUVI for example in the case of MUST2). Once the signal is
accepted, it is encoded by the electronics allowing to stock the energy and the associated
time of the event.

12Fenêtre d’Acquisition du Ganil
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In this chapter we present into details the analysis methods used in order to extract the
variables of interest. We detail how we reconstruct the beam trajectory and the beam

position on the the target thanks to the CATS detectors, as how we treat the thickness
inhomogeneity of the SSSSD detectors in order to identify the light charged particles in
a ∆E − E spectrum with the DSSSD.

8.1 Beam selection

The secondary beam of 72Zn produced by fragmentation at an average intensity of 1.5
105 particles per second was not pure. In order to identify all the contaminants of the
beam, we have used some LISE runs thanks to ∆E−TimeOfF light spectrum in D6. We
can see in figure 8.2 the contaminants present during the experiment. However during
the experiment, LISE was not in the trigger. So in order to select only the 72Zn beam we
used a cut in the time-of-flight spectrum between the HF and the beam tracking detector
CATS1. As we can see in figure 8.1 the purity of the beam is P (72Zn) ≈ 55% and one can
see that the main contaminant is 74Ga together with the 76Ge primary beam. For all the
analysis, the following condition 10000 < TAC-CATS1-HF < 11200 is applied in order
to only select our secondary beam of interest. By applying this condition the relative
purity of 72Zn is 90.6% and the one of 74Ga is 9.4%. Then contamination coming from
the 74Ga(d,3He)73Zn should be fairly low.
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Figure 8.1: Time CATS1-HF used to se-
lect the 72Zn beam Figure 8.2: Identification spectrum in D6

8.2 CATS

The beam-tracking detector CATS was already used in different experiments done at
GANIL. We shall treat here how we extract the beam position on the target through
different analysis methods.

8.2.1 Calibration

In order to calibrate each strip of the detector we used a pulse generator sent into the
anode of the detector. There is then an induced charge on the two cathodic strips plane.
By varying the amplitude of the signal delivered by the generator we obtain different
peaks that we can determine the position and the resolution (σ) of the signal thanks to
a Gaussian fit. We also measure the pedestal, its position Pi and its sigma σi for each
strip i. After subtraction of the pedestal, a second-order fit is performed. We have the
following relation for each strip i for the calibration of the charge Qcal

i :

Qcal
i = A0

i + A1
i (Q

raw
i − Pi) + A2

i (Q
raw
i − Pi)2, (8.1)

where the Aji are the fit parameters of the second-order fit for strip i. We can see the result
of the calibration in figure 8.4 for the strips Y of CATS2 detector. It is also important to
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note that the position of the pedestal Pi and its sigma σi are used to define the threshold
of the detector Si. We consider that a strip is touched if the signal is higher than the
threshold defined as follows:

Si = Pi +mσi (8.2)

with m = 3 for this analysis.
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Figure 8.4: Pseudo charge versus strip
number of CATS2 Y after calibration

8.2.2 Reconstruction methods

In order to have the best possible precision, it is important to determine the centroid
of the deposited charges on the X and Y planes. Different methods are available to
reconstruct the beam position, we are going to discuss them one by one.

The hyperbolic secant method

In the case where three contiguous strips are touched by a crossing ion, the common
way to treat it is to use the hyperbolic secant method. The advantage is the analytical
formula of this method. Let us consider a strip Nm that has the largest charge Qm and the
contiguous strips Nm−1 and Nm+1 with the respective charge Qm−1 and Qm+1. I remind
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that the width of a strip is L = 2.54 mm. Then the centroid position of the charge is
given by [68, 65]:

Sh =
a3

π
tanh−1

(√Qm/Qm+1 −
√
Qm/Qm−1

2sinh(πL
a3

)

)
(8.3)

where
a3 =

πL

cosh−1
(

1
2
(
√
Qm/Qm+1 +

√
Qm/Qm−1)

) . (8.4)

The disadvantage of this method is that we cannot use it when a strip is missing. For
example when a strip is burnt. It was the case for the last third of the experiment for
CATS2 detector because the beam was too much focused on this detector, which was
positioned too close to the target. When such a case appears we can use the Gaussian
method to determine the centroid of the position.

The Gaussian method

As we said, the Gaussian method is used when a strip is not available to determine the
centroid. With this method the centroid is given by [68, 65]:

G =
1

2

ln
(

Qm
Qm−1

)
(X2

m+1 −X2
m)− ln

(
Qm
Qm+1

)
(X2

m−1 −X2
m)

ln
(

Qm
Qm−1

)
(Xm+1 −Xm)− ln

(
Qm
Qm+1

)
(Xm−1 −Xm)

. (8.5)

Here, the strips are not necessarily contiguous. Qm is the largest charge on the strip Nm,
but if the strip next to the right for instance is not available, we use the next strip with its
charge. This method is available when a maximum of two contiguous strips are missing.
During our experiment one of the central strip was deteriorated due to beam intensity
(strip X 16 of CATS2), this had led us to use this method.
I have explained the possible methods to reconstruct the centroid on CATS detector. For
the analysis the hyperbolic secant method was always used for the CATS1 detector while
for the CATS2 detector it was used until the strip X16 had burnt. From this point the
Gaussian method was chosen1.

1From run 329
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Reconstruction with mask

In order to check the reconstruction of the beam spot on target, we have used two masks.
One in front of the CATS 1 detector and the other one placed on the target holder.
In order to see the beam reconstruction on CATS, we have to trigger with the ionization
chamber or the plastic. We can see the reconstruction of mask 1 in figure 8.5. For this
reconstruction the slits were set too narrowly closed, that is why we only see a vertical
line and one spot. The reconstruction is good for CATS 1 and no wire was missing during
the experiment. For the CATS 2 detector, we used a second mask placed on the frame of
the target. Because this was done later in the experiment, strip X 16 of CATS2 was not
available because already burnt. Different methods have been used in order to improve
the reconstruction. We can see in figure 8.6 that the image on target using the Gaussian
method remains deformed because of the missing strip. However the resolution of the
excitation-energy spectrum of the elastic scattering and also transfer reaction was the
same before and after this strip had burnt.

Figure 8.5: Image of mask 1 using the hy-
perbolic secant method for the reconstruc-
tion

Figure 8.6: Image of mask 2 placed on the
target holder. This run occurred after the
strip X16 of CATS2 had burnt
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8.2.3 Reconstruction of the beam on the target

When we have the good reconstruction on the CATS detectors, we have to reconstruct
the beam on the target in order to have the position of interaction. If we consider the beam
axis as the Z-axis and if the target is perpendicular to the beam, then the (Xtarget, Ytarget)
position is: {

Xtarget = X1 + (X2 −X1)t

Ytarget = Y1 + (Y2 − Y1)t
(8.6)

where t = l+L
l

and L is the distance between CATS 2 and the target and l the distance
between the two CATS.
During the experiment there was an angle α = 28 degrees between the beam axis and the
target plane. It is necessary to take it into account for a good reconstruction. We now
explain how we determine the new coordinates. As we can see in figure 8.7 the equation
of the target is:

Ztarget = Xtargettanα. (8.7)

The equation of the beam in blue is:

zbeam = axbeam + b, (8.8)

where a and b are the two constants we have to determine. The coordinates of CATS
correspond the the equation of the beam such as:{

Z1 = aX1 + b

Z2 = aX2 + b.
(8.9)

Thus we are able to determine a and b:

a =
Z2 − Z1

X2 −X1

(8.10)

and
b = Z1 −

Z2 − Z1

X2 −X1

X1. (8.11)
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Finally in order to know the position of interaction, we have to resolve Ztarget = zbeam:

aXtarget + b = Xtarget tanα, (8.12)

which gives:

Xtarget =
b

tanα− a
. (8.13)

Now we know Xtarget, we have to determine Ytarget. Actually for Ytarget it is the same
equation as 8.6 when one has to replace L by L+ Ztarget = L+Xtarget tanα.

Z

X

α(X1, Y1) (X2, Y2)

b

CATS 2CATS 1

(Xtarget, Ytarget)

l L

Figure 8.7: Scheme of beam reconstruction on target

We can see in figure 8.8 the profile of the beam on CATS1 and CATS2, and the recon-
struction of the beam on the target. We have typically on the target ∆X ≈ 20 mm and
∆Y ≈ 8 mm.

8.3 MUST2 telescope

8.3.1 Energy calibration

The DSSSDs consist of 128 strips on each side of the detector, the X and the Y signals.
These signals are read-out by two MUFFEE cards and are of different polarities. That’s
why the X signals which are of positive polarity are coded from the channel number 8192
to 16384, while the Y signal of negative polarity are coded from 8192 to 0. Thus, the
channel that corresponds to the zero energy is the channel 8192. That is why the pedestal
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Figure 8.8: Beam profile on CATS1 on the right, CATS2 on the middle and on the target
on the left

of the different channels is measured before the experiment and realigned between them
in the DAS2 to be the channel 8192.
The three-α source (239Pu, 241Am, 244Cm) was used to calibrate all the strips at the
beginning and at the end of the experiment. The three nuclei from the source that are
unstable, decay by emitting α particles with well defined energy listed in table 8.2. Each
main peak and their satellites were fitted by a sum of Gaussian function for each strip of
the DSSSD in order to find a relation between the channel and the energy.
One of the main problem for the calibration of silicon detector is the determination of what
we call the dead layer. This dead layer, of which the thickness is not accurately known,
is made of aluminum in order to collect the charges, but also of a layer of inert silicon.
The α particle loses some energy crossing this material and may induce a systematic error
if we do not take it into account. The calibration procedure has determined the dead-
layer thickness performing a zero-extrapolation method. In this procedure, we minimize
the difference between the position of the calculated pedestal from the fit to the aligned
pedestal at the channel 8192. We can see the thickness of the dead layer for the different
telescopes in table 8.1.

2Data Acquisition System
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Detector Al thickness (µm)
1 0.48
2 0.57
3 0.59
4 0.59
5 0.56
6 0.52
7 0.53
8 0.56

Table 8.1: Effective aluminum dead layer thickness for MUST2 telescopes

Source Eα (MeV) Relative Intensity T1/2 (year)

5.15659(14) 70.77(14) 2.411 104

239Pu 5.1443(8) 17.11(14)
5.1055(8) 11.94(14)

5.48556(12) 84.8(5) 432.2
241Am 5.44280(13) 13.1(3)

5.38823(13) 1.66(2)
244Cm 5.80477(5) 76.40(12) 18.1

5.76264 (3) 23.60(12)

Table 8.2: Three-α source energies

It is possible to sum up each strip for a same detector and fit the result with a sum of
Gaussian functions with a fixed relative height corresponding to the decay rate. Then we
determine the resolution for each peak. We can see the result of such a fit in figure 8.9.
The asymmetric shape of the signal is due to the lower energies of the satellite peaks.
The result of the resolution for all the telescopes are summarized in table 8.3. The typical
resolution is 40 keV FWHM.
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α

Figure 8.9: α source energy spectra ob-
tain after summation of all the X strips
of telescope 2.

α

Figure 8.10: α particle energy in telescope
2 versus the number of strip X. All the
strips are well aligned between them.

Detector σPu (keV) σAm (keV) σCm (keV)

1 24 25 23
2 18 22 19
3 19 22 21
4 24 25 23
6 21 23 22
7 19 21 24

Table 8.3: Average resolution of the MUST2 telescopes for each peak of the three-α source

8.3.2 Time calibration

The time calibration was performed thanks to a time calibrator module generating a
start and stop signal for each strip. The stop signal is delayed compare to the start signal
by a fixed number of period varying to cover the whole range. Here the range was 640
ns with a period of 10 ns. The calibration is done at second order taking the first peak
as reference. We can see in figure 8.11 a typical spectrum of the time calibrator for the
sum of all strips Y of telescope 4. The width is σ = 0.12 ns giving 282 ps resolution
FWHM. Because there is no absolute time, the different telescopes are not necessarily
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aligned between them after the calibration. That is why we have to make a selection
telescope by telescope.
Actually the correct total time resolution is evaluated at 1 ns because this resolution has
to be correlated with the time resolution of the stop signal given by CATS detector.

Time (ns)
40 60 80 100 120 1400

10000

20000

30000

40000

50000

60000

Figure 8.11: Time calibrator peak for telescope 4. The period between two peaks is 10 ns
and the resolution is σ = 120 ps.

8.4 20 µm Simple Sided Stripped Silicon Detector

(SSSSD)

8.4.1 Energy calibration

The 20 µm silicon detectors (SSSSD) were already used in the PhD experiment of A.
Matta [58] where he highlighted the problem concerning the energy calibration and the
thickness inhomogeneity of these detectors. I will explain here the main issues to calibrate
these detectors and to perform a thickness map.
We have used the three-α source in order to perform a calibration of the SSSSD. The
range of α particles exceeds the thickness of the detectors, so it was necessary to get
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down this 3-α source by 16 cm in order to increase the effective thickness to stop the
particle in the active part of the detector, which means increase the incident angle of the
α particles. The procedure of calibration is the same as the one used for MUST2. The
energy resolution deduced from the calibration for each detector is summarized in table
8.4. And we can see in figure 8.12 a Gaussian fit of the three-α source for all strips of
detector 1.

α

Figure 8.12: α source energy spectrum obtained after summation of all the strips of de-
tector 1.

Detector σPu (keV) σAm (keV) σCm (keV)

1 54 53 42
2 52 49 43
3 55 60 57
4 59 55 56

Table 8.4: Average resolution of the SSSSD detectors for each peak of the three-α source.
The average width is σ = 52 keV giving 122 keV FWHM.
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8.4.2 Thickness

The aim of the SSSSD is to perform a E − ∆E matrix between these 20 µm silicon
detectors and the first stage of MUST2 in order to identify 3He from α particles. We can
see in figure 8.13 the E−∆E spectrum for the 3-α source. We see three lines corresponding
to the three different energies proving the thickness inhomogeneity of the SSSSD detectors.
Indeed in this same figure the red circles correspond to the same spectrum by selecting
one pixel in MUST2. If the SSSSD thickness were homogeneous, the three blue lines
should have been as large as the red area. This inhomogeneity makes impossible the
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Figure 8.13: E-∆E spectrum for all strips of telescope 1 in color. The red circle correspond
to the same data for one pixel in MUST2, here X = 56 and Y = 64.

identification between 3He and α particles in a E − ∆E spectrum. It is necessary to
perform a thickness map of the SSSSD to correct of this effect.
To determine the thickness we have used the alpha peak with the highest energy at
5.80477 MeV and the energy loss table of such a particle in silicon material. A scheme
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of the procedure is visible in figure 8.14. I list here the different steps used to determine
locally the thickness:

• We know the position of the α-source (X0, Y0) and its energy,

• We know the position of interaction in MUST2 (XM , ZM), so the angle θn,

• We know the energy measured by MUST2, so we know the energy loss in the SSSSD.

• We can then determine the effective silicon thickness thanks to the energy-loss table
of α particles in silicon material.

Because the SSSD is situated at l = 67 mm from MUST2, we can reconstruct the position
of interaction in space in the SSSSD (XS, YS).{

XS = X0 + (R−r)(XM−X0)
R

YS = Y0 + (R−r)(YM−Y0)
R

(8.14)

where R is the distance between the target and MUST2 and r = l
cos θn

.
Knowing this position in a square of 1 mm2 we can determine the thickness thanks to
energy loss table. Now we are able to reconstruct the (X, Y ) thickness map as we can see
in figure 8.15 where the z-axis is in micrometer. In this figure we can see large differences
between the nominal thickness of 20±1.5 µm and the effective silicon thickness measured.
The difference is about 25% from the nominal thickness, it varies between 15 to 25 µm.
That is why without any specific treatment it is not possible to identify light particles.

Correction of the thickness

In order to take into account our map, we use the Bethe-Block formula connecting the
energy loss ∆E and the total energy E of a particle:

∆E ≈ a1esssdAZ
2 ln(a2E)

E
(8.15)

This formula is more accurate when the thickness is small enough, or when ∆E << E.
We can correct the ∆E from the crossed thickness and normalized every event with a
thickness of enorm = 20 µm as follows:

∆Ecorr =
enorm
esssd

∆Esssd (8.16)
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Z

X

l=67 mm

(X0,Z0)

(XS ,ZS)

(XM ,ZM )
XM

XS
r = l

cosθn

Figure 8.14: Scheme of the thickness determination

In the next section we will see how this correction enables us to identify correctly the
particles in a E −∆E identification and especially the 3He from the α particles.
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8.4. 20 μm Simple Sided Stripped Silicon Detector (SSSSD)

Figure 8.15: Thickness of the SSSSD in the XY plan, the Z axis is in μm.
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8.5 Particle identification

The aim of this section is to present how we separate 3He particles of energy below
22 MeV with respect to the other light particles such as 3H and α particles. In order to
select our 3He of interest we present the method used in three steps:

• time of flight versus the energy deposited in the SSSSD: TOF-∆E,

• time of flight versus the total energy: TOF-E (Etot = ESSSSD + EDSSSD),

• and the ∆E-E identification.

8.5.1 TOF-∆E identification

The spectrum of the energy deposited in the SSSSD versus the time of flight in MUST2
enables us to well separate the particles in Z, and especially when the energy in the 20 µm
is high, as we can see in figure 8.16. The big spot around ∆Ecorr ≈ 0.5 MeV corresponds
to particles that cross the first stage of MUST2. But in this plot, we cannot separate
between 3He and α particle. This is the first identification step allowing us to select
Z = 2 particles.

8.5.2 TOF-E identification

The time-of-flight identification allows us to separate particle by mass. Indeed the
time of flight t for a distance d is:

t =
d

v
=

d

βc
(8.17)

and we can write β = pc
E

where pc =
√
E2 −m2c4 is the impulsion of the particle and E

its total energy. It leads us to:

t =
d

c
√

1− m2c4

E2

. (8.18)

For a same total energy E, an 3He and a 3H have the same time of flight. However in our
case, we have the SSSSD in front of the MUST2 detectors in such a way that the particles
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Δ

Figure 8.16: Selecting Z = 2 particle within the red line in TOF − ΔE spectrum for
detector 1.

lose some energy before reaching the DSSSD array. Because of its charge, an 3He loses
more energy than a triton. As a matter of fact we need an 3He with a kinetic energy of
at least 4.1 MeV in order to cross the 20 μm silicon detector otherwise it will never reach
the MUST2 detectors, while a triton needs only around 1 MeV to cross 20 μm of silicon.
That is why if we plot the time of flight versus the total energy spectrum, we can separate
an 3He from a triton as we can see in figure 8.17. We note also that we observe two main
lines corresponding to Z = 2 particles. But given the statistic of these lines, the first line
cannot correspond to the 3He line. In fact, we do not have a resolution good enough to
separate 3He from α particles and these two main lines correspond both to α particles with
a different time of flight. In figure 8.18 we actually see three lines corresponding to Z = 2

particles with strange position correlation in the MUST2 detectors (figure 8.19). Only
the blue one gives a homogeneous repartition in the MUST2 array, which is expected. It
turns out that the other two lines (the red and the green one) come from reaction between
the beam and the CATS detectors producing α particles. The time of flight is larger for
CATS 1 which is farther away than CATS 2 from the target.
To confirm this hypothesis, we have simulated an α source at the position of the target,
CATS1 and CATS2 respectively. We have analyzed all the simulations as if everything
came from the target. In the TOF-E simulated spectrum (figure 8.20) we can see that the
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time of flight is well reproduced. Moreover by selecting the different α lines and looking
at the position in the MUST2 array we can see that we also well reproduce the impact
position.
Therefore, it confirms that the other α lines correspond to the reaction between the beam
and the CATS detectors. Since we can separate them in the TOF-E spectrum, it will not
be an issue for the next. But it is interesting to note that the CATS detectors have to be
not too close from the target for two reasons: fist of all, if the beam is too focused on a
CATS detector, it may burn some central wires and secondly the reaction with the beam
may produce α particles, which can be mixed with the particles produced from reaction
with the target.
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Figure 8.17: Time of flight versus total energy
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8.5. Particle identification

Figure 8.18: Cut in time of flight spec-
trum for Z = 2 particle.

Figure 8.19: Position in MUST2 tele-
scope for the selected particles.

Figure 8.20: Simulated time of flight spec-
trum for Z = 1 and Z = 2 particle.

Figure 8.21: Position in MUST2 tele-
scope for the selected particles.

8.5.3 E-∆E identification

The E−∆E is a powerful method to identify the particles. Indeed we have seen that:

∆E ≈ a1esssdAZ
2 ln(a2E)

E
, (8.19)
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where a1 and a2 are constant and A and Z are the mass and the charge of the particle
respectively. We can see that it is possible to separate all the particles with this method
because we can separate in mass A and in charge Z. But because of the square, the
separation is of course better for particle with different Z. Moreover, as we mentioned
earlier the strong thickness inhomogeneities of the SSSD limits the separation power of
this method. Indeed, as we can see in figure 8.22, we can only see the separation between
Z = 1 and Z = 2 particles, we cannot separate 3He from α particle. That is why the
determination of the thickness map was so important. Indeed by replacing ΔE = Esssd by
ΔEcorr =

enorm

esssd
Esssd the separation in mass becomes possible and we can finally separate

3He from α particles as we can see in figure 8.23.

Δ

Figure 8.22: E−ΔE spectrum before cor-
rection for detector 1

Δ

Figure 8.23: E −ΔE spectrum after cor-
rection for detector 1

8.6 Ionization chamber

In this experiment, the signal for the ionization chamber was digitized at a sampling
rate of 40 MHz. The sample of each signal comprises 350 points. We can see a typical
digitized signal in figure 8.24 when only one ion is detected during the digitization.
Unfortunately, as we can see in figure 8.25, several ions can be detected during the range
of the digitization, this is what we call pile-up. In most cases we have pile-up in our
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8.6. Ionization chamber

signal. Then it is important to know which peak corresponds to our good event that has
triggered. Actually when we look for all the events, the peak that corresponds to the
good event arises always at the same position between the digitized point 180 and 200 as
we can see in figure 8.26.
We want to get the amplitude of the peak we are interested in. Indeed the amplitude is
mainly proportional to the atomic number Z of the nucleus. Thus we should be able to
discriminate between different elements and mainly between Ga, Zn and Cu. To do so,
the important thing is to well know the base line from which the peaks start to arise and
also the position of the maximum. Finally the amplitude is just the difference between
these two points.
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Figure 8.24: Typical signal of the digitized
ionisation chamber
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Figure 8.25: Typical signal with pile-up
indicating the passage of different ions
during the time of digitization

Concerning the resolution, if we look at figure 8.27, we see that we separate the different
elements with difficulty concerning the amplitude in the ionization chamber. If we project
element by element on the Y -axis to get the centroid of the distribution in the ionization
chamber we can calibrate as a function of the atomic number Z:

Amplitude = αZ + β (8.20)
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Figure 8.26: Superposition of several signals. All the good peaks are situated between the
point 180 and 200

We can see the result of the fit in figure 8.28. We get the following parameters:α = 73.0± 3.5

β = −887± 109
(8.21)

Knowing the errors on the parameters of the fit, we can estimate the amplitude in the
ionization chamber for Z = 29. Then, by doing the following selection:

1030 < Amplitude(Z = 29) < 1400 (8.22)

we should get the Z = 29 elements. Nevertheless the resolution is not good enough to
get rid of all the contaminants. But this selection and the one in the time-of-flight to
select the beam, enable us to get a clear excitation energy spectrum as we will see in
the next section. In addition, we lose in efficiency when we do this selection. Then in
order to clear the spectrum and well identify the populated states in 71Cu we will use the
chamber, however due to the lack of efficiency, no condition on the ionization chamber
will be applied for the angular distribution.
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Figure 8.27: Amplitude in the ionization
chamber versus the TAC between CATS1
and the HF
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Figure 8.28: Linear fit of the amplitude
in the ionization chamber as a function
of the atomic number Z

8.7 Plastic

The plastic scintillator is normally used to measure the residual energy of the fragment
of the reaction. However, as we can see in figure 8.29 most of the event are wrong and the
plastic energy is not encoded. Only 11.4% of the events have a good plastic energy. So
unfortunately, the plastic information was useless for the selection of the heavy fragment
in this experiment.

8.8 Observables of interest

8.8.1 Excitation energy

We are here in inverse kinematics, but of course, the information we have access to is
the same as in direct kinematics. Through the two-body kinematics we can reconstruct
the excitation energy of the heavy fragment by measuring the kinetic energy and the
angle of the light one. Concerning the excitation-energy spectrum it is similar as we have
discussed in section 5.4. But one has to be careful when calculating the kinetic energy
Elab of the particle b. One has to properly calculate the energy loss in the dead layers of
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Figure 8.29: Energy measured in the plastic. Most of the event are not encoded

the detectors and in the target using energy loss tables. As it is shown in figure 8.30 the
total kinetic energy is:

Elab = Emeasured
DSSD + Efront

DSSD(E, θn)

+ Eback
SSSD(E, θn) + Emeasured

SSSD + Efront
SSSD(E, θn)

+ Etarget(E, θn).

(8.23)

8.8.2 Angular distribution

Concerning the angular distribution the procedure is a little bit different since we have
measured all the angles at the same time.
We want to calculate the angle in the center-of-mass frame. We know the beam energy
EA = TA + mA and we measured the kinetic energy Tb of particule b (Eb = Tb + mb).
From this, we can calculate the angle θCM in the center of mass frame.
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Figure 8.30: Definition of parameter needed for the reconstruction of the excitation energy.
~t and ~n are respectively the normal to the target and the normal to the detector surface

We remind that: 
E∗b =

s+m2
b −m2

B

2
√
s

E∗a =
s+m2

a −m2
A

2
√
s

(8.24)

where s = (PA + Pa)
2 = (PB + Pb)

2 is the first Mandelstam variable that is a Lorentz
invariant. The energy in the center-of-mass frame E∗i of the particle i is constant.
And we have also p∗i =

√
E∗2i −m2

i .
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We construct the second Mandelstam variable u = (P3 − P2)2

u = (Pb − Pa)2 = m2
a +m2

b − 2maEb

u = (P ∗b − P ∗a )2 = m2
a +m2

b − 2(E∗aE
∗
b − p∗ap∗b cos θCM)

(8.25)

Thus :
2p∗ap

∗
b cos θCM = u− (m2

a +m2
b − 2E∗aE

∗
b ) (8.26)

2p∗ap
∗
b cos θCM = u− (m2

a +m2
b − 2(E∗aE

∗
b + p∗ap

∗
b))− 2p∗ap

∗
b (8.27)

And thus:
cos θCM =

u− u0

2p∗ap
∗
b

− 1, (8.28)

with u0 = m2
a +m2

b − 2(E∗aE
∗
b + p∗ap

∗
b), or:

θCM = cos−1
(u− u0

2p∗ap
∗
b

− 1
)
. (8.29)

For each event, the angle in the center-of-mass frame θCM is calculated. Then we gate on
a populated state in the excitation-energy spectrum EBex in order to obtain the angular
distribution for this observed state in nucleus B. N(θCM) is used to build the differential
cross section that we want to compare with a reaction model in order to extract the
transferred angular momentum thanks to the shape of the distribution. The experimental
differential cross section is obtained as follows:

dσ

dΩCM

=
N(θCM)

εgeoNbeamNtargetdΩCM

. (8.30)

• Ntarget is the deuteron number in the target as defined in equation 7.1.

• Nbeam is the number of incident ion beam determined by the triggers CATS1 divided
(or CATS2 divided). The difference given by the two CATS is less than 3%.

• N(θCM) is the number of counts in the angular range dΩCM , it contains the CATS
efficiency.

• εgeo is the MUST2 geometrical efficiency. εgeodΩCM is evaluated thanks to a simula-
tion using a flat differential cross section in the center-of-mass frame for the reaction
of interest.
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This chapter presents the experimental results for the studied reactions: the elastic
scattering 72Zn(d,d)72Zn and the two pick-up transfer reactions (d,3He) and (d,t).

We shall see the excitation-energy spectrum together with the experimental differential
cross sections. In order to extract the information about the nuclear structure of our
nuclei of interest we will use the same reaction model as the one explained in the first
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part and the same parametrization for the optical potentials, which means that both
nuclei are studied in the same coherent way. Thus comparison of the centroid of the
strength distribution will be possible.

9.1 Elastic scattering

Two MUST2 detectors were placed at ninety degrees that enabled us to detect the
deuterons coming from the elastic scattering. This reaction is an important benchmark
for the validity of the optical potential and also to check the normalization procedure.
Moreover we were able to quantify the amount of protons present in the target thanks to
the elastic scattering between the beam and the protons. The total quantity of deuterons
is determined as we saw in equation 7.1.

9.1.1 Target contamination

It is important for the normalization procedure to quantify the amounts of protons in
the target. To determine this amount, we used elastic scattering. Indeed by gating on
the protons in the time-of-flight spectrum we can see in figure 9.1 an excess of statistics
corresponding to the kinematics of the elastic scattering between the beam and protons
present in the target. In figure 9.2 we can see the associated excitation-energy spectrum.
By looking at the angular distribution of the scattered protons and compare it to the
calculation, as we can see in figure 9.3, we have determined the fraction of protons to be
fp ≈ 2%. For the calculation we have used the parametrization given by Menet et al. [71],
this optical potential covers the range from 12C to 208Pb for 30-60-MeV protons. Even
though this contamination is very low we take it into account for the analysis.

9.1.2 Excitation-energy spectrum for (d,d’)

By selecting the beam as we saw in figure 8.1 and by selecting the deuterons in the
time-of-flight versus the energy spectrum as visible in figure 9.4, we can reconstruct the
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θ

Figure 9.1: Kinematic line for 72Zn(p,p)
reaction with in red the theoretical kine-
matic line

Figure 9.2: Excitation energy spectrum
of 72Zn reconstructed with the 72Zn(p,p)
kinematics with a resolution σ = 165(9)
keV

θ

Ω
σ

Figure 9.3: Differential cross-section of the protons elastic scattering

excitation-energy spectrum of the 72Zn nucleus. Moreover, the kinematic line in figure
9.5 is clearly visible for this reaction. Indeed the excess of statistics is well reproduced
by the theoretical kinematic line corresponding to the 72Zn(d,d)72Zn elastic scattering.
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Figure 9.4: Time-of-flight versus the en-
ergy of light particles in T5-6. The red
cut corresponds to the selected deuterons

θ

Figure 9.5: Kinematic line for 72Zn(d,d)
reaction with in red the theoretical kine-
matic line

Figure 9.6 shows the excitation-energy spectrum corresponding to the 72Zn nucleus. The
elastic peak was fitted using a Gaussian function. The position of the centroid and the
experimental width are μ = −12.3 ± 8.3 keV and σ = 203 keV respectively, that is the
expected resolution from the simulation. One can clearly realize the importance of the
beam reconstruction using the CATS detectors in figure 9.7. Indeed, in this plot the
excitation-energy spectrum is calculated assuming no beam reconstruction. That means
that event by event we suppose that the beam hits the target at the position (0, 0, 0). By
doing this approximation, the angle in the laboratory frame is wrong and it deteriorates
badly the energy resolution that is σ = 389 keV.

9.1.3 The angular distribution

The angular distribution is obtained by gating on the elastic peak using the following
condition: −0.8 ≤ E72Zn ≤ 0.8 MeV on top of the selection of the beam and the gate
on the deuterons. The efficiency of the detection setup is determined thanks to the
simulation of the elastic scatering using a flat distribution in the center-of-mass frame.
After normalization, the final cross section is obtained in figure 9.8. For the calculation we
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Figure 9.6: Excitation-energy spectrum of
72Zn. σ = 203(3) keV
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Figure 9.7: Excitation-energy spectrum of
72Zn without any beam reconstruction on
the target. σ = 389(6) keV

used the Daenick relativistic optical potential [54]. We have a good agreement between
the experimental cross section and the calculated one, giving us confidence about this
potential for the entrance channel to calculate the transfer cross section. The values used
for the optical potential are listed in table 9.2.

9.2 Transfer reactions

The (d,3He) and (d,t) transfer reactions are studied using the four MUST2 telescopes
placed at forward angles plus the four SSSSD detectors used for the identification of the
light charged particles. As explained in the next section the spectra are obtained using
the different following selections:

1. Gate on the incident beam 72Zn,

2. Gate ∆E − TOF on Z = 2 or Z = 1 particles,

3. Gate E − TOF,

4. Gate E −∆E on the 3He or the triton,

5. Gate on the ionization chamber on the Z = 29 as specified in equation 8.22.
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θ

Ω
σ

Figure 9.8: Differential cross section of the elastic scattering after correction for the effi-
ciency and normalization (red points), compared with a calculation using the relativistic
Daehnick optical potential (blue line)

9.2.1 The one-proton transfer reaction (d,3He)

Excitation energy spectrum

After applying the gates 1-4 and except 5, we can see the kinematic plot for the
72Zn(d,3He)71Cu reaction in figure 9.9 and the associated excitation-energy spectrum of
the 71Cu nucleus in figure 9.10. In order to clean the spectrum and to be sure we select
only our reaction of interest we apply the gate 5. By doing this selection we have the
excitation energy visible in figure 9.11. By applying this condition, we clearly lose in
efficiency especially at high excitation energy. Then in order to define the peaks and
determine their position in energy we keep the condition on the ionization chamber.
But due to the lack of efficiency we remove this condition 5 to construct the angular
distributions. This choice is legitimate because the carbon background is very low as we
can see in blue in figure 9.11.
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θ

Figure 9.9: Kinematic plot for the
72Zn(d,3He)71Cu transfer reaction

Figure 9.10: Excitation-energy spectrum
of 71Cu without any condition on the ion-
ization chamber

Figure 9.11: Excitation-energy spectrum
of 71Cu with a condition 5 (in red). In
blue is the corresponding normalized car-
bon spectrum

Figure 9.12: Multiple Gaussian fit of the
excitation-energy spectrum

In 71Cu, we know that there are the 3/2− ground state and also a 5/2− excited state at 534
keV. We will populate both states even though we do not expect to populate substantialy
the 5/2− state with this pick-up reaction. Moreover, we also know from the simulation
that we do not have the energy resolution good enough to separate these two peaks. In
addition we see in figure 9.12 that the first peak is broader than the others. For the fit
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we assume two states in the first peak separated by 534 keV. The position of the peaks
in blue are listed in table 9.1 as the resolution. Thus, we see that we have populated
six different states in this reaction within our detection limit. The average resolution is
about 306 keV and worst than for the elastic scattering because here we have the SSSSD
that degrade the final resolution. In order to get the spectroscopic information for these
different states we will look at the angular distributions.

States Energy (MeV) σ (keV) L(Jπ) C2S χ2/NDF

1 0.29(19) 390(51) 1 (3/2−) 0.80(15) 2.23/3
2 3 (5/2−) 1.40(63) 2.23/3
3 2.04(15) 324(68) 3 (7/2−) 1.38(18) 0.613/4
4 3.42(20) 333(61) 3 (7/2−) 1.49(34) 4.13/5
5 4.54(17) 280(36) 3 (7/2−) 3.69(62) 2.94/3
6 6.10(18) 290(45) 0 (1/2+)+2 (3/2+) 0.4(1) and 3.0(5) 6.2/3

Table 9.1: Position in energy of the different populated states in 71Cu, the resolution σ,
the associated angular momentum L, the proposed spin-parity Jπ and the spectroscopic
factor C2S

Angular distributions

The angular distributions for the different populated peaks are obtained by applying the
same gates 1-4 plus a gate on the excitation energy-spectrum corresponding to the peak
we want to look at its differential cross section. Figures from 9.14 to 9.19 correspond to
the differential cross section for the populated peaks in 71Cu. In table 9.1 are listed the
different states and the determined transferred angular momenta with their associated
spectroscopic factors. The latter is determined through a χ2 minimization between the
experimental points and the calculated finite-range cross section with DWUCK5. The
results shown in the figures correspond to the distributions that minimize the χ2. For
the calculation, we have used the Perey and Peray optical potential for the out-going
channel [55]. The value of all the parameters are listed in table 9.2. Finally, as in the
69Cu case, we have used the Brida et al. potential [56] to describe the overlap between
the deuteron and the 3He.
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V W WD rc r0 a0 ri ai Vso λ

d 72.8 6.30 8.17 1.3 1.17 0.81 1.29 0.88 2.5
3He 150.1 28.47 0 1.3 1.2 0.72 1.4 0.88 2.5
p adj 1.25 1.25 0.65 25

Table 9.2: Global optical potential for 71Cu

First of all, for the first peak that is wider as mentioned earlier, if we look at the angular
distribution we clearly see that we need an L = 1 plus L = 3 contribution to reproduce
correctly the data. This confirms that we have populated the 3/2− ground state as the
5/2− excited state at 534 keV. Even though we do not have the energy resolution good
enough to separate them we can identify clearly their different contributions through the
angular distribution.
Moreover, we note that in the range 1.3 < E71Cu < 5.3 MeV the three populated peaks
are compatible with an L = 3 angular momentum. In order to increase the statistics to
get the differential cross-section, we can see in figure 9.18 the angular distribution for the
three peaks. If we assume that these three peaks at 2.04 MeV, 3.42 MeV and 4.54 MeV
respectively have an angular momentum L = 3 and assuming that they correspond to the
proton-hole state f−1

7/2 (the assignment 5/2− can be excluded because we do not expect
to populate 5/2− state in pick-up reaction and especially at high excitation energy) then
the centroid of the measured strength is:

E(f−1
7/2) =

∑
C2S(7/2−)E(7/2−)∑

C2S(7/2−)
. (9.1)

In our case we get E(f−1
7/2) = 3.76 MeV with

∑
C2S(7/2−) = 6.56± 1.14 = 82%.

Now in figure 9.18 we see the angular distribution for these three states fitted with an L =

3 angular distribution simulating a single state a 3.76 MeV. The associated spectroscopic
factor after the minimization is C2S = 6.9 ± 0.8 = 86% that is compatible with the
previous result.
Finally, the angular distribution of the peak at 6.10 MeV (figure 9.19) is more compatible
with a doublet between an L = 0 and L = 2 distribution even though the data are not
well fitted with such a distribution (χ2/NDF = 6.2/4). This peak might correspond to
the inner sd states of the nucleus.
As the extraction of the spectroscopic factor is model-dependent it is interesting to discuss
the effect on its value by changing some of the ill-defined parameters in the DWBA
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calculation. Of course we will not change all the parameters especially there is no need to
change the parameters in the entrance channel as we saw earlier that the global potential
reproduced very well the elastic scattering. The interesting parameters to vary are the
radius r0 and the diffuseness a0 of the proton in the transfer channel that are two of the
Woods-Saxon parameters of the potential between the proton and the 71Cu nucleus. The
depth of the potential is automatically adjusted during the calculation to reproduce the
binding energy. The typical values of these two parameters are r0 = 1.25 fm and a0 = 0.65

fm but it is worth to change those values to see the effect on the extracted spectroscopic
factor. We have changed the radius r0 from 1.20 fm to 1.30 fm and the diffuseness a0 from
0.60 fm to 0.70 fm and for each couple (r0, a0) we have extracted the measured C2S(f−1

7/2)

by looking at the angular distribution of the three states at the same time. We can see
the result of this work in figure 9.13. We can note that we get a variation of 38% between
the central values (r0 = 1.25 fm, a0 = 0.65 fm) and the two extremities (r0 = 1.20 fm,
a0 = 0.60 fm) and (r0 = 1.30 fm, a0 = 0.70 fm). So depending on the choice of the
couple we could have measured 50% of the proton-hole strength or all of the strength.
Although we are aware of this effect we stay with the values (r0 = 1.25 fm, a0 = 0.65

fm) for both isotopes. Indeed the effect of such a variation is the same for 69Cu and 71Cu
and because we want to study them in a coherent way and also to be consistent with
majority of literatures, the most important thing is to use the same global parameters in
both analyses.
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Figure 9.13: Evolution of the spectroscopic factor C2S in the z-axis as a function of the
radius r0 and the diffuseness a0 of the proton potential in the transfer channel
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Figure 9.14: Differential cross-section for
−0.5 < E71Cu < 1.3 MeV (peak 1+2)
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Figure 9.15: Differential cross-section for
1.3 < E71Cu < 2.5 MeV (peak 3)

Effect on the C2S using different potentials in the out-going channel

In order to see the effect on the spectroscopic factors we have used two different optical
potential in the out-going channel. The first one, as we saw just before is the parametriza-
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Figure 9.16: Differential cross-section for
2.5 < E71Cu < 3.7 MeV (peak 4)
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Figure 9.17: Differential cross-section for
3.7 < E71Cu < 5.3 MeV (peak 5)
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Figure 9.18: Differential cross-section for
1.3 < E71Cu < 5.3 MeV (peak 3+4+5)
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Figure 9.19: Differential cross-section for
5.1 < E71Cu < 6.8 MeV (peak 6)

tion of Perey and Perey [55], and the second one is the global optical potential of Pang
et al. [72]. We can see in figure 9.20 the result for both parametrization and in table
9.3 the result for the spectroscopic factor C2S with the associated χ2. One can see that
the values for the spectroscopic factor differ by only 10% and are completely compatible
within the errors. Finally, because the χ2 is better in the case of Perey and Perey, this
potential was chosen for the analysis of both isotopes.

Parametrization C2S χ2/NDF

Perey and Perey [55] 6.9(8) 6.8/5
Pang [72] 6.1(7) 4.3/5

Table 9.3: Value of spectroscopic factor obtained using two different parametrizations
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θ

Ω
σ

Figure 9.20: Minimization of the L = 3 angular distribution using the Perey and Perey
parametrization (blue line) and the Pang one (dashed line)

9.2.2 The one-neutron transfer reaction (d,t)

Excitation-energy spectrum

In order to study the neutron-removal (d,t) reaction we have applied the same gates 1-4
as before but we have selected the tritons instead of the 3He.
By doing so, we can see in figure 9.21 the kinematic line for the reaction where the red
line corresponds to the transfer reaction when the 71Zn nucleus is populated in its ground
state. In figure 9.22 we have reconstructed the excitation-energy spectrum of 71Zn and
we see that we have populated two states. The energy of these two states are listed in
table 9.4 as the energy resolution for each peak. The energy resolution of peak 1 suggests
that two or several levels are present in this peak.
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θ

Figure 9.21: Kinematic plot for the
72Zn(d,t)71Zn transfer reaction

Figure 9.22: Excitation-energy spectrum
of 71Zn

States Energy(MeV) σ (keV) L(Jπ) C2S χ2/NDF

1 −0.03(07) 444(69) 1 (1/2−) 0.84(15) 2.53/4
2 (5/2+) 0.70(13)

2 1.27(09) 299(57) 2 (5/2+) 0.51(10) 1.94/4

Table 9.4: Position in energy of the different populated states in 71Zn with the associated
angular momentum L, proposed spin-parity (Jπ) and spectroscopic factor C2S

Angular distributions

Once more, the angular distributions are given by applying the same gates 1-4 as before
and by doing a selection on the excitation-energy spectrum. The results for the two
populated peaks are plotted in figures 9.23 and 9.24. In these two figures, the experimental
angular distribution is fitted to determine the angular momentum and the spectroscopic
factor. The parameters of the global optical potential used for the finite-range calculation
using the DWUCK5 code are listed in table 9.5. We show here the calculated distributions
for a minimized χ2 and the final results are given in table 9.4.
The low-lying states in 71Zn have been well established in the work of D. Von Ehrenstein
and J. P. Schiffer [73] from the 70Zn(d,p)71Zn reaction. From this work, it is known that
the ground state is a 1/2− state, a 9/2+ state lies at 157 keV and a 5/2+ state lies at
285 keV. If we assume in our work that only the 1/2− state is populated in the first
peak then the result of the χ2 minimization for a p1/2 distribution gives a spectroscopic
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factor C2S(p1/2) = 2.77 ± 0.36. This value is too large to be consistent with a p1/2

state. Moreover D. Von Ehrenstein and J. P. Schiffer [73] measured for the ground state
C2S(p1/2) = 0.95. In order to satisfy the sum rule we should have a spectroscopic factor
around 1 but not higher. With this argument we clearly have another populated state in
this peak, which we do not resolve in energy. To determine the different populated states
thanks to the shape of the angular distribution we have summed two or three different
distributions to fit the data. The results are listed in table 9.6. We see in this table that
we obtain the best result for a doublet of states L = 1 plus L = 2. It seems that we do not
populate any g9/2 particle state in the 71Zn nucleus. Concerning the state at 1.27 MeV,
the angular distribution clearly shows an L = 2 state with C2S = 0.51. From D. Von
Ehrenstein et al., a L = 2 state at 1.26 MeV was observed with a measured spectroscopic
factor of C2S = 0.06, which is in fair agreement with our measurement since we did the
complementary reaction.

V W WD rc r0 a0 ri ai Vso

d 72.8 6.30 8.17 1.3 1.17 0.81 1.29 0.88 2.5
t 153.07 37.96 0 1.3 1.2 0.72 1.4 0.84 2.5

Table 9.5: Global optical potential for 71Zn

L χ2/NDF C2S

1 3.05/4 C2S(p1/2) = 2.77

1+2 2.53/3 C2S(p1/2) = 0.84

C2S(d5/2) = 0.70

1+4 4.22/3 C2S(p1/2) = 1.21

C2S(g9/2) = 0.90

1+2+4 3.18/2 C2S(p1/2) = 0.50

C2S(g9/2) = 0.43

C2S(d5/2) = 0.54

Table 9.6: Minimization with different angular distributions for the first populated peak in
71Zn
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Figure 9.23: Differential cross-section for
−1.0 < E71Zn < 0.7 MeV (peak 1 from
Fig. 9.22)
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Figure 9.24: Differential cross-section for
0.7 < E71Zn < 1.7 MeV (peak 2 from Fig.
9.22)
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This chapter will present the theoretical calculations compared with the experimental
results. We will explain the details of the calculations performed and we will discuss

the results about the 69Cu and 71Cu nuclei.
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10.1. Details of present shell-model calculations

10.1 Details of present shell-model calculations

10.1.1 Valence space and interaction

The shell-model calculation was done by the Strasbourg group and in particular by
Kamila Sieja using the Antoine code [74, 75]. In our case, the valence space used, named
hereafter fpgd, contains 1f7/2, 2p3/2, 1f5/2 and 2p1/2 orbits for protons and 2p3/2, 1f5/2,
2p1/2, 1g9/2 and 2d5/2 orbits for neutrons. This corresponds to a 48Ca core. This valence
space is huge and allows proton excitations from the 1f7/2 orbital. The calculations are
very time consuming. For example in the case of 71Cu which has 9 protons and 12 neutrons
in the valence space, the total dimension of the configuration space is given by:

D =

(
20

9

)(
28

12

)
≈ 5.11 1012, (10.1)

which is beyond current computing possibilities. Therefore, the calculations have been
truncated to 8p−8h excitation across Z = 28 and N = 40 gaps. Lanczos strength function
method with 60 iterations has been used to obtain spectroscopic factor distribution.
The interaction used for the calculation is the LNPS interaction from previous work
[76] with minor revisions that includes modifications of the pairing interaction and of
the relative position of the single-particle energies to reproduce well the evolution of the
Z = 28 shell gap between N = 40 and N = 50 as we can see in figure 10.1. One can see the
good agreement between experimental ∆Sp and the calculated gap between N = 40− 44.
For N > 44, the experimental data are estimated because the measurement are not yet
available. From the calculation, one can see that there is a maximum of correlations at
N = 46.

10.1.2 Results for 69Cu

We have populated eight states in 69Cu. Our results are in agreement for the five first
states with previous work [32, 34]. The main difference is the L = 3 state at 1.23 MeV. In
the previous work, the obtained spectroscopic factor was high leading to the conclusion
that two states populated in this peak were separated by less than 15 keV. However, from
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Δ

Figure 10.1: Comparison between calculated gap in blue and experimental ΔSp in black
as a function of neutron number. It is an estimated ΔSp for N = 46− 50 since the mass
are not measured yet

our work there is no evidence of such a doublet. Indeed, the obtained resolution for this
state was not higher than for the other populated states. The obtained spectroscopic
factor (C2S = 0.7) is twice smaller than the one measured by Zeidman et al.. Finally,
there was no evidence of another state at 1.23 from β-decay [29, 30] where the resolution
of the gamma detectors was good enough to distinguish two peaks.
In addition new spectroscopic data have been obtained for the states at 3.35, 3.70 and
3.94 MeV. The states at 3.70 and 3.94 MeV correspond to L = 2 and L = 0 respectively
and most probably come from a part of the inner 1d3/2 and 2s1/2 orbitals. However it is
not possible to confirm it in shell-model calculation because these states are not included
in the valence space used here. Finally, the state at 3.35 MeV is an L = 3 state and
corresponds to 30% of the πf7/2 proton-hole strength. As it was explained earlier we
still miss 33% of the strength, most probably because the beam energy was not high
enough to populate states at higher excitation energy. In this case it is hard to well define
experimentally the centroid for the proton-hole strength. From what we have measured,
we have E(πf7/2) = 2.45 MeV. The missing strength corresponds to C2S = 2.6. By
assuming that this value is concentrated in only one state, we can say that this state has
necessary an energy superior at 6.9 MeV thanks to the exponential constrain 6.16 we have
established earlier. By taking a state at 6.9 MeV with C2S = 2.6, the centroid is situated
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10.1. Details of present shell-model calculations

at E(πf7/2) = 3.9 MeV. Of course the missing strength could also be fragmented, then in
order to estimate the centroid using our experimental constrain, we were able to perform
a Monte Carlo as follows:

• we generate a randomly uniform energy Esim between 0 and 10 MeV,

• for this energy we generate a randomly uniform spectroscopic factor C2Ssim between
0 and C2Slim = α + β exp γE that corresponds to equation 6.1.

For each iteration, we do so until we reach the missing strength that corresponds to
C2Smissed = 2.6. Once we have reached this condition we can extract the estimated
centroid that is represented in figure 10.2 as follows:

E(πf7/2) =
1

8

( 3∑
i=1

C2SexpEexp +
∑

C2SsimEsim

)
, (10.2)

with the condition that C2Ssim < C2Slim and
∑
C2Ssim = 2.6. The mean value of the

distribution is E(πf7/2) = 3.81 ± 0.05 MeV and the full width at half maximum of this
distribution is σFWHM = 0.92 MeV.

 (MeV)Cu69E
0 1 2 3 4 5 6 7 8 9 100

2000

4000

6000

8000

10000

Figure 10.2: Estimated f7/2 centroid in 69Cu

In figure 10.3 we can see the populated states with their spectroscopic factors (bottom)
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and they are compared with shell-model calculations. One can see that we are in
good agreement with the 3/2− ground state which corresponds to one proton in the
πp3/2 orbital and the 5/2− state which corresponds to one proton in the πf5/2 orbital.
The calculation reproduce well the energy and the associated spectroscopic factors.
Concerning the 7/2− strength, the calculation reproduce the levels satisfactory as we can
see in figure 10.4. However the calculations fail to reproduce the spectroscopic factor for
the first 7/2− state at 1.71 MeV. In table 10.1 are listed the proton occupancies in the
valence space for the 3/2− ground state and the first 5/2− and 7/2− excited states. As
we can see in table 10.2, it was possible to determine the percentage of the wave function
for the first states in 69Cu. We see indeed that the wave function of the first two 7/2−

state arises mainly from the proton-core coupling.

Energy (MeV) Jπ πf7/2 πp3/2 πf5/2 πp1/2 C2Sth

0 3/2− 7.77 1.07 0.14 0.03 0.935
1.25 5/2− 7.30 0.68 0.95 0.07 0.343
1.86 7/2− 7.27 1.32 0.32 0.09 0.021
2.18 7/2− 7.10 0.73 1.10 0.07 0.358

Table 10.1: Dominant components of the wave functions for the lowest states in 69Cu

Energy (MeV) Jπ Composition

0 3/2− 93% |0+
ν ⊗ πp1

3/2〉
1.25 5/2− 37% |0+

ν ⊗ πf 1
5/2〉

20% |2+
ν ⊗ πp1

3/2〉
16% |2+

ν ⊗ πf 1
5/2〉

1.86 7/2− 40% |2+
ν ⊗ πp1

3/2〉
22% |4+

ν ⊗ πp1
3/2〉

12% |J+
ν ⊗ πf−1

7/2〉
2.18 7/2− 52% |2+

ν ⊗ πf 1
5/2〉

14% |4+
ν ⊗ πf 1

5/2〉
16% |J+

ν ⊗ πf−1
7/2〉

Table 10.2: Composition of the wave function for the first states in 69Cu
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Instead of examining the result peak by peak it could be also interesting to look at the
cumulated strength by range of 2 MeV as we can see in figure 10.5. On the one hand we
clearly see that we experimentally miss the strength above 4.5 MeV and on the other hand
the calculation does not reproduce the experimental strength below 2 MeV. One should
note, that due to the complexity of present shell-model calculations, the strength function
distributions were obtained at 8p−8h truncation, using Lanczos strength function method
with 60 iterations. We have however checked that the wave function of the starting pivot
used in this calculation, i.e. the ground state of 70Zn, change conspicuously between
8p− 8h and 10p− 10h. In particular, the proton occupancy of the f7/2 orbit drops from
7.50 particles at 8p − 8h to only 7.34 particles at 10p − 10h. One can thus expect that
more f7/2 strength would be located at lower energy if the calculations of strength function
distributions would be feasible in a larger configuration space.
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Figure 10.3: Comparison between the experimental results (bottom) and the theoretical
calculation (top) for 69Cu where the position in energy of the states are plotted with the
associated spectroscopic factor
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Figure 10.5: Comparison of the cumu-
lated spectroscopic factor in step of 2
MeV between theoretical calculation in
red and experimental measurement in
blue
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10.1.3 Results for 71Cu

We have populated several states in 71Cu as it is listed in table 9.1. We have measured
86% of the πf−1

7/2 strength leading to an experimental centroid at 3.76 MeV. An important
part of the strength (45%) was measured at 4.54 MeV. The other main result is that no
states have been populated around 1 MeV. The first conclusion we can stress is that the
state at 981 keV in 71Cu does not correspond to a proton-hole state.
In figure 10.8 we compare theoretical calculations with the 7/2− states measured in our
experiment and the two others at 981 keV and 1190 keV. First of all, in the calculation the
two first 7/2− states lies at 1.09 MeV and 1.41 MeV with a spectroscopic factor C2Sth =

0.431 and C2Sth = 0.007 respectively. This is a quite small spectroscopic factor and we
were not sensitive to such low spectroscopic factor in this experiment. No other 7/2−

states appears around 1 MeV with a high spectroscopic factor leading to the conclusion
that no hole-state lies at 981 keV. The 7/2− yrast state at 981 keV must correspond to
another coupling. We can see in table 10.3 the proton occupation in the valence space
for the 3/2− ground state and the first 5/2− and 7/2− excited states. The ground state
corresponds to a single proton in the p3/2 orbital as the 5/2− state corresponds to a single
proton in the f5/2 orbital, while for the two 7/2− states neither of both correspond to a
proton-hole in the f7/2 orbital leading to very small spectroscopic factor for these states.
In addition, in table 10.4 one can see the percentage of the wave function for the first
states in 71Cu. In the same manner as 69Cu the first two 7/2− state situated at 1.09 and
1.41 MeV respectively arise mainly from the proton-core coupling and do not correspond
to a proton-hole state.
Experimentally the two first 7/2− states belong to two different γ bands. The first one
shows an E2 sequence built on the 3/2− ground state, the 7/2− state at 1190 keV makes
part of this band. The 7/2− state at 981 keV makes part of the second band that forms
an ∆L = 1 sequence [77] as we can see figure 10.6. If we assume an M1 sequence for this
band that could explain why the 981 keV level was not seen in Coulomb excitation [31].
Finally, as we can see in figure 10.7 the 7/2− populated states in our experiment are
globally well reproduced by the calculations and the theoretical centroid of the πf7/2

orbital lies at Eth(f7/2) = 3.52 MeV, which is in good agreement with the experimental
one. In a similar way as in the case of 69Cu, we can look at the cumulated strength by
range of 2 MeV as we can see in figure 10.9. The shape between experiment and theory
are very similar even though the absolute value in the experimental case is systematically
lower.
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Energy (MeV) Jπ πf7/2 πp3/2 πf5/2 πp1/2 C2S

0 3/2− 7.57 1.50 0.31 0.08 0.487
0.31 5/2− 7.40 0.54 0.94 0.12 0.989
1.09 7/2− 7.44 1.12 0.38 0.06 0.431
1.41 7/2− 7.44 1.02 0.43 0.11 0.007
1.14 5/2− 7.21 0.7 4 0.95 0.09 0.004

Table 10.3: Dominant components of the wave functions for the lowest states in 71Cu

Energy (MeV) Jπ Composition

0 3/2− 60% |0+
ν ⊗ πp1

3/2〉
0.31 5/2− 36% |0+

ν ⊗ πf 1
5/2〉

22% |4+
ν ⊗ πf 1

5/2〉
1.09 7/2− 47% |2+

ν ⊗ πp1
3/2〉

11% |4+
ν ⊗ πp1

3/2〉
10% |J+

ν ⊗ πf−1
7/2〉

1.41 7/2− 42% |2+
ν ⊗ πf 1

5/2〉
12% |4+

ν ⊗ πf 1
5/2〉

13% |J+
ν ⊗ πf−1

7/2〉

Table 10.4: Composition of the wave function for the first states in 71Cu
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Figure 10.6: Level scheme for 71Cu showing the two bands E2 and M1 [78]
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Figure 10.7: Comparison between the experimental results (bottom) and the theoretical
calculation (top) for 71Cu where the position in energy of the states are plotted with the
associate spectroscopic factor

10.2 Monopole migration in Copper isotopes

10.2.1 Evolution of effective-single-particle energies

In figure 10.10 we can see the evolution of the proton ESPE (defined in section 1.2.4)
from the interaction used in this work. As we see, the interaction predicts the inversion
between πp3/2 and πf5/2 orbitals at the end of the neutron filling. One can see that the
energy difference between πf7/2 and πp3/2 is stable between N = 40 and N = 50. The
monopole term of the interaction seems to act in a similar manner between those two
orbitals with the addition of neutrons in the νg9/2 orbitals. However there is a diminution
of the spin-orbit gap between πf7/2 and πf5/2. We see that for N = 40 and N = 42 the
Z = 28 gap that corresponds to the energy separation between πp3/2 and πf7/2 orbitals
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Figure 10.9: Comparison of the cumu-
lated spectroscopic factor by range of 2
MeV between theoretical calculation in
red and experimental measurement in
blue

does not change (about 5.8 MeV) while the spin-orbit partner πf5/2 is strongly affected
for N > 40: 8.6 MeV at N = 40 and 5.4 MeV at N = 50 that corresponds to the Z = 28

gap.
Even though the tensor force has a strong effect on the evolution of the πf5/2 ESPE, it
appears that the πf7/2 ESPE is less affected with the neutron filling. Indeed we know
from equation 2.7 that the interaction is stronger between νg9/2−πf5/2 than νg9/2−πf7/2.
Finally, because the inversion between πp3/2 and πf5/2 happens at the end of the neutron
filling, the Z = 28 shell gap is not affected at N = 50 and 78Ni should exhibit a magic
character.

10.2.2 Discussion

We have measured the proton-hole states in neutron rich 69,71Cu isotopes by means of
(d,3He) transfer reactions in two different experiments in order to extract the centroid of
the πf7/2 proton-hole strength in a coherent way.
In order to extend the existing data for 69Cu and to study both 69Cu and 71Cu in a
coherent way we performed a new experiment in direct kinematics using the split-pole
spectrometer at Orsay. In this experiment, another part of the strength was measured.
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Figure 10.10: Evolution of the effective-single-particle energies (ESPE) as a function of
the neutron number

Nevertheless 33% of the strength is still missing but we were able to constrain the missing
strength and estimate the centroid of the proton f7/2 strength distribution.
In addition for the first time spectroscopic factors were measured in 71Cu through transfer
reaction in inverse kinematics. In this experiment, 86% of the πf7/2 strength was mea-
sured. Contrary to expectation [38] no strength lies around 1 MeV.
Because those two nuclei were studied using the same global optical potential in a coher-
ent way, the comparison of the evolution of πf7/2 orbital between N = 40 and N = 42

Copper isotopes is possible. We estimated that the f7/2 experimental centroid in 69Cu
at 3.81 MeV and in 71Cu at 3.76 MeV from the measured strength. Moreover the first
measured 7/2− state in 71Cu lies at 2.04 MeV. We can conclude that the effect of neutron
νg9/2 on πf7/2 orbital is the same as on the πp3/2 orbital, as the f7/2 centroid remains the
same between N = 40 and N = 42. Or at least, within our experimental resolution the
effect is not visible contrary to its spin-orbit partner πf5/2 that exhibit a sudden drop in
energy of 680 keV with respect to the 3/2− ground state already at N = 42.
In figures 10.11 and 10.12 we compare the evolution of the ESPE for two different interac-
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tions. The first one is the interaction from Ref. [44] where the valence space contains the
f and p orbitals for the protons and the f5/2, p3/2, p1/2 and g9/2 orbitals for the neutrons.
The second one corresponds to the interaction used in this work where the d5/2 orbital is
added in the valence space for the neutrons. In addition the experimental centroids are
plotted in this figure. To do so, we have considered that the ground state corresponds
to the πp3/2 ESPE and we have added or subtracted the experimental centroid for the
πf5/2 and πf7/2 orbitals. The arrows mean the range for the πf7/2 centroid due to missing
strength. Of course the experimental centroid does not match with the ESPE because of
the correlations and the difference between the ESPE and the centroid gives the amount
of correlations in the nucleus. The main differences between these two interactions are
the inversion between πp3/2 and πf5/2 that occurs at a different neutron number. This
indicates that the amount of correlations in fpgd interaction are more important than
in fpg. It is clearly visible when we look at the differences between the ESPE’s and the
experimental centroid. In the first interaction [44], the spin-orbit splitting evolves from
8.7 MeV to 4.1 MeV while in the latter case with the fpgd interaction it evolves from 8.6
to 5.4 MeV. At N = 40, the spin-orbit splitting is almost identical in both interactions,
while at N = 50, the difference is smaller in the first interaction. This is so, because of
the tensor force between νg9/2 − πf5/2, which is stronger in the fpg case. In order to
correctly determine the strength of the tensor force, it would be important to measure it
in the 79Cu nucleus. In both cases, the prediction of the proton gap is between 4.1 MeV
to 5.4 MeV at N = 50, which indicates that there is no considerable quenching of the
proton gap toward the 78Ni nucleus.

157



Chapter 10. Results and discussion

N

40 42 44 46 48 50

E
S

P
E

 (M
eV

)

-22

-20

-18

-16

-14

-12

-10

-8

-6

Figure 10.11: Evolution of the ESPE for
the interaction used in reference [44] with
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One never notices what has been done, one can only see what
remains to be done

Marie Curie (1867-1934)

Conclusion and perspectives

In this manuscript we have studied the proton-hole states in two neutron-rich Copper
isotopes: 69Cu and 71Cu by means of the (d,3He) transfer reaction. We were inter-

ested in Z = 28 proton-gap evolution with the filling of the neutron orbital νg9/2. The
experiment in direct kinematics to study the 69Cu nucleus was performed to extend the
existing data and to make sure that both isotopes are studied in a coherent way using the
same parametrization for the optical potential. In this experiment, another part of the
strength was measured but 33% of the strength is still missing giving a lower limit on the
πf7/2 centroid at E(f7/2) > 2.45 MeV. In addition, for the first time we have measured the
proton f7/2 strength distribution in 71Cu through the same (d,3He) pick-up reaction but in
inverse kinematics. In this case 86% of the strength was measured giving an experimental
centroid at E(f7/2) = 3.76 MeV. From this work, there is no indication of shell-quenching
between the proton πp3/2 and πf7/2 orbitals at N = 42.
It should be also interesting to perform the complementary reaction ANi(α,t)A+1Cu in
order to get all the sum rule. Both (α,t) and (d,3He) data are only available for 65Cu
[79, 32]. It could be then interesting to perform the 68Ni(α,t)69Cu transfer reaction in
inverse kinematics using active target like Actar [80] for instance to get the complemen-
tary strength and verify the sum rule.
It should be also interesting to perform (d,3He) pick-up reaction for more neutron-rich
nuclei since the study of exotic nuclei through direct reaction is a very efficient way to
probe the proton gap, especially with the reaction 80Zn(d,3He)79Cu that probe the proton
gap at N = 50. However such an exotic beam of 80Zn to perform transfer reaction is not
yet available. However, very recently the Seastar campaign at Riken has taken mea-
surements in this very neutron-rich region and the energy of the 2+ state in 78Ni should be
known soon. In addition with this campaign the proton gap at N = 50 should be known
as well through the 80Zn(p,2p) proton knockout reaction. This information will tell us
about the robustness of the proton and neutron gaps in 78Ni. Already, very recently, Xu
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et al. [81] have shown experimental indication of a doubly magic 78Ni through β-decay
half-lives of cobalt and nickel around N = 50, but the Seastar results should give more
direct indication about its magicity.
In the future 80Zn beam should be available at Hie-Isolde [82], but the beam energy
has to be high enough to perform (d,3He) pick-up reaction because of the very negative
Q-value and in order to have a good matching to populate L = 3 states. The other main
problem of such reaction is the very low energy of the 3He particles emitted from the
reaction. Because of that thin target has to be used if we do not want to degrade too
much the resolution. In an alternative way, we could use the future Gaspard 4π silicon
detector for charged particle coupled with gamma detectors such as Agata [83] or Paris
and use a thicker target knowing that the excitation energy spectrum would be degraded.
Another solution is to use future active target such as Actar, in this case we could have
an important effective target thickness without degrading too much the resolution.
The position of proton-hole states in the copper isotopes is related to the structure of
the nickel isotopes. The structure of 68Ni is of great interest also nowadays. In recent
calculation, Tsunoda at al. [84] showed that the three 0+ states in 68Ni correspond to a
spherical shape for the ground state, an oblate shape for the state at 1604 keV and an
prolate shape for the one at 2511 keV. It could be interesting to know the evolution of
these 0+ states for more exotic nickel isotopes and in particular for the 70Ni, the structure
of which is related to 71Cu. The investigation of 0+ exited state could be done through
(p,p’) inelastic reaction for example using MUST2 detectors to detect the emitted pro-
tons. Another interesting channel of reaction could be the 68Ni(t,p)70Ni reaction using
the tritium source of Isolde for example. For the latter reaction, a beam of very high
intensity (≈ 106 pps) is required.
Direct reaction will be an important tool for more of exotic beams, but it is also important
to get all the data as we can and cross the information from other study such as β-decay
or Coulomb excitation for example to constrain the nuclear force at stake in this mass
region.

161



A
Target composition

162





B
E552 electronics

We list here the different entries in the GMT and the electronic layout is presented. We
use the following notation:

• AR: Fast amplifier.

• GMT: Ganil Master Trigger.

• FCC8 or DFC: Constant Fraction Discriminator.

• DSCT: Coincidences module.

• DS: Output generator (distributeurs de sorties)

• ECL/NIM: Module that convert ECL signal into NIM signal.

• FAG: Fast Analysis Gate. Temporary windows generate by the GMT. The signals
from the detectors have to arrive in this gate in order to be correlated with the
event.
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• FIFO: Fan-In Fan-Out, the Fan-Out fonction generates severals output from an
analog or logical signal.

• QDC: Charge to Digital Converter.

• U2M: Scaler.

• %: divider that transmits the signal every N events.

Channel Entry Trigger

1 MM1 X

2 MM2 X

3 MM3 X

4 MM4 X

5 MM5 X

6 MM6 X

7 MM7 X

8 MM8 X

9 CATS1div X

10 CATS2div X

11 CHIOdiv x
12 PLASTdiv X

13 PLASTIC x
14 SSSDdiv X

15 GMT 15 x
16 LISE x

Table B.1: List of GMT’s entries
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Figure B.1: Electronic chain of MUST2
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