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Grégoire, et Aurélie... Il y a aussi Mathieu et Arnaud, membres de mon équipe rapprochée, que
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Au cours de ma thèse j’ai eu la chance, en plus de l’équipe du CEA, de côtoyer et travailler
avec des personnes formidables. Je me souviendrai toujours des soirées passées avec Antoine Bret,
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Anne Stockem, Frederico Fiuza, Ramesh Narayan et Lúis Silva ont aussi contribué à ce travail et
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Abstract

Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts,
supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal
particle acceleration and radiation. Numerical simulations have shown that, in the absence of an
external magnetic field, these self-organizing structures originate from electromagnetic instabilities
triggered by high-velocity colliding flows. These Weibel-like instabilities (Bret et al. 2010b) are
indeed capable of producing the magnetic turbulence required for both efficient scattering and
Fermi-type acceleration (Kato & Takabe 2008; Spitkovsky 2008b). Along with rapid advances in
their theoretical understanding, intense effort is now underway to generate collisionless shocks in
the laboratory using energetic lasers (Fox et al. 2013).

Relativistic electron-positron collisionless shocks In a first part we study the (ω,k)-resolved
electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we ob-
tain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic
modes in counterstreaming plasmas (Ruyer et al. 2013). Distinguishing between subluminal and
supraluminal thermal fluctuations, we derived analytical formulae of their respective spectral con-
tributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement
in the subluminal regime along with some discrepancy in the supraluminal regime.

Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic
pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a
three-decade range in flow energy (Bret et al. 2013).

Ion-electron Weibel-induced collisionless shocks: analytical model for formation and
propagation We then develop a predictive kinetic model of the nonlinear phase of the Weibel
instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self-
consistent, fully analytical model allows us to follow the evolution of the beams’properties up to a
stage close to complete isotropization and thus to shock formation. Its predictions are supported by
2D and 3D particle-in-cell (PIC) simulations of the ion Weibel instability in uniform geometries, as
well as shock-relevant non-uniform configurations. Moreover, they are found in correct agreement
with a recent laser-driven plasma collision experiment (Fox et al. 2013). Along with this comparison,
we pinpoint the important role of electron screening on the ion-Weibel dynamics, which may affect
the results of simulations with artificially high electron mass.

We subsequently address the shock propagation resulting from the magnetic Weibel turbulence
generated in the upstream region. Generalizing the previous symmetric-beam model to the upstream
region of the shock, the profile of the magnetic turbulence in the shock-front has been analytically
and self-consistently characterized. Comparison with simulations validates the model.

Weibel induced collisionless shocks by high-intensity lasers The interaction of high-energy,
ultra-high intensity lasers with dense plasmas is known to produce copious amounts of suprathermal
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particles. Their acceleration and subsequent transport trigger a variety of Weibel-like electromag-
netic instabilities, acting as additional sources of slowing down and scattering. Their understanding
is important for the many applications based upon the energy deposition and/or field generation
of laser-driven particles (Bret et al. 2010b). We investigate the ability of relativistic-intensity laser
pulses to induce Weibel instability-mediated shocks in overdense plasma targets, as first proposed
in Ref. (Fiuza et al. 2012). By means of both linear theory and 2D PIC simulations, we demon-
strated that in contrast to the standard astrophysical scenario previously addressed, the early-time
magnetic fluctuations (Weibel instability) generated by the suprathermal electrons (and not ions)
are strong enough to isotropize the target ions and, therefore, induce a collisionless electromagnetic
shock (Ruyer et al. 2014).
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1.2.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.2 Branch cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3 The susceptibility tensor of a 2D bi-Maxwellian distribution . . . . . . . . . . . . . . 34
1.3.1 The susceptibility tensor components . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.2 Particular cases of longitudinal and transverse modes . . . . . . . . . . . . . 35

1.4 The susceptibility tensor for 2D relativistic multi-waterbag distribution . . . . . . . 36
1.4.1 Analytical expression of the dielectric tensor (Bret et al. 2010b) . . . . . . . . 36
1.4.2 Branch cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.3 Multi-waterbag decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Electromagnetic fluctuations and normal modes of a drifting relativistic plasma 43
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Electromagnetic fluctuation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 General formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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Nomenclature

• Mathematical quantities: vectors and tensors are in bold symbols.

x, y, z Axes of the three-dimensional frame
θ Angle counted from the x-axis
(x̂, ŷ, ẑ) Unity vectors in the x, y and z direction
∂xf , dxf Partial, straight derivative of the function f with respect to the

variable x (scalar or vector)
1 Unity tensor
i Imaginary unity: i2 = −1
<(x) Real part of the complex x
=(x) Imaginary part of the complex x
H(x) Step function: H(x < 0) = 0 and H(x > 0) = 1
In(z) Modified Bessel function of the first kind
Kn(z) Modified Bessel function of the second kind
Z Plasma dispersion function

erfi(x) =
∫ x

0 e
t2dt complex error function:

δ(x) Dirac function
A, B, C, D Quadratures used in the susceptibility tensor of a

Maxwell-Jüttner-distributed beam (see Sec. 2)
G1, G2 Functions used in the resolution of the general

electromagnetic dispersion relation (see Sec. 1)
|M| Norm of the complex vector M
M† Hermitian conjugate of the M tensor
Res(f)a Functional residue of f(x) at x = a
⊗ Tensorial product between two vectors,

a⊗ b is a tensor.
maxx(f) Maximum of f over x
minx(f) Minimum of f over x
TF [f(r)] = f(k) Fourier transform

The Fourier transform is defined as follows:

gk,ω =

∫∫∫∫
R4

d3rdt g(r, t) exp [i(ωt− k · r)] , (1)

g(r, t) =

∫∫∫∫
R4

d3kdω

(2π)4
gk,ω exp [i(k · r− ωt)] . (2)

• Physical quantities
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CONTENTS

kB = 1, 3807× 10−23 J ·K−1 Boltzmann constant
c = 2, 9979× 108 m · s−1 Light speed in vacuum
ε0 = 8, 8542× 10−12 ·m−3 · kg−1 · s4 ·A2 Permittivity of vacuum
µ0 = 4π × 10−7 · kg ·m ·A−2 · s−2 Magnetic permittivity of vacuum
me = 9.1× 10−31kg Electron mass
mp = 1836.15me Proton mass
qe = 1.602× 10−19C Electron charge
qs Charge of the sth particle species
Zs Atomic number of the sth particle species
Γad Adiabatic index

cs =
√
ZiTe/mi Speed of sound

β Normalized velocity, β = v/c

γ Lorentz factor, γ = (1− β2)−1/2

p Relativistic momentum, p = mγβ
ns Density of the sth species
ρ Charge density ρ =

∑
s qsns

J Current density
fs Distribution function of the sth species
E Electric field vector
Φ Scalar potential, E = −∇Φ
B Magnetic field vector
A Vector potential, B = ∇×A
Ts Temperature of the sth species
Kxs, Kys, Kzs, Kinetic energy of the sth species on the x, y, z

axis
Ec Total kinetic energy, Ec = Kxs +Kys +Kzs

Kθi = Kxs + θiKys Typical energy used in Sec. 3 and 4
WE = ε0E

2/2 Electric energy
WB = B2/2µ0 Magnetic energy
Sp = q2

e

∑
ky
|Aky | Transverse energy of the vector potential

(Secs. 3 and 4)
as Anisotropy ratio of the sth population:

as = Kxs
Kys
− 1

θi = ∂tKxs/∂tTys Dimensionless quantity used in Secs. 3 and 4
ε Dielectric tensor
χs Susceptibility tensor of the sth species,

ε = 1 +
∑

sχs
Xs Modified susceptibility tensor of the sth species,

χ =
∑

s ω
2
sξs/ω

2

µs Normalized inverse temperature (Secs. 1 and 2)
µs Normalized inverse temperature (Secs. 1 and 2)

µa = cos θ sin θ
(
ms
Txs
− ms

Tys

)
Parameter used in a bi-Maxwellian susceptibility

tensor (Sec. 1)

µ‖ = ms
cos2 θ
Txs

+ms
sin2 θ
Tys

Parameter used in a bi-Maxwellian susceptibility

tensor (Sec. 1)

µ⊥ = ms
sin2 θ
Txs

+ms
cos2 θ
Tys

Parameter used in a bi-Maxwellian susceptibility

tensor (Sec. 1)
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CONTENTS

ξs = (ω/k − vd cos θ)
√
µ‖/2 Argument of the plasma dispersion function for a

bi-Maxwellian plasma
αi = [1 + ξsatZ(ξsat)] ' 0.5 Dimensionless quantity used in Secs. 3 and 4
t Time
t∗ Time of the saturation of the ion-Weibel instability
τsh Shock formation time
∆tform Time to achieve an ion anisotropy ratio of ai = 2,

assimilated to “quasi-shock formation” time(Secs. 3 and 4)
tfront(x) Time at which the shock front has reached abscissa x
τ0 Collective coalescence time of the symmetric ion Weibel

instability (Sec. 3)
τ1 Collective coalescence time of the ion Weibel instability in

the upstream of a propagating collisionless shock (Secs. 4)
τ2 Collective coalescence time of the ion Weibel instability in

the upstream of a propagating collisionless shock (Secs. 4)
τs Electron Weibel saturation time (Sec. 2)
LB Length of the non-linear Weibel region, in the front shock

(Sec. 4)

λDs Debye length of a plasma, λD =
√
ε0Te/neq2

e

λmfp Collisionnal mean free path
λsat Dominant magnetic wavelength at saturation of the

Weibel instability (Secs. 3 and 4)

λc = 21/2πc/ωpiηi Critical magnetic wavelength of the
Weibel instability (Secs. 3 and 4)

λfront Dominant magnetic wavelength of the
Weibel instability at the shock front (Sec. 4)

λ∗ = λsat(t = t∗) Dominant magnetic wavelenth at saturation of the
ion-Weibel
instability (Secs. 3 and 4)

ksat Dominant magnetic wavevector at saturation of the
Weibel instability (Secs. 3 and 4)

kmax Maximum magnetic wavevector of the Weibel-unstable
domain (Γky > 0 for ky < ksat) (Secs. 3 and 4)

ηi ' 0.5 Approximate value of the ratio between ksat and kmax

(Secs. 3 and 4)
k∗ = ksat(t = t∗) Dominant magnetic wavevector at saturation of

the ion-Weibel instability (Secs. 3 and 4)
ξsat = ξi(ω = 0, ky = ksat) Argument of the plasma dispersion function for a

bi-Maxwellian ion beam, applied to the saturation
of the Weibel instability (Secs. 3 and 4)

ωps Plasma frequency, ωps =
√
nsq2

s/msε0

Γ Growth rate
ω0 Laser frequency
nc = meε0ω

2
0/q

2
e Laser critical density at the laser frequency ω0

A0 = qeE0/meω0c Normalized amplitude of the laser wave
RL Laser reflectivity

• Simulation parameters
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(Xi, Zj , Yk) Position of the mesh point (i, j, k).
Ng Total number of mesh points
Np Total number of macroparticules
∆x, ∆y, ∆z et ∆t, Spatial and temporal step size
Lx, Ly, Lz, Length of the simulation box in the

x, y and z direction.
((Ex)n

i+ 1
2
,j,k
, (Ey)

n
i,j+ 1

2
,k
, (Ez)

n
i,j,k+ 1

2

) Electric field at the mesh point (i, j, k)
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The discrete Fourier Transform (DFT) calculation is defined as:

gk = DFTx(g) =
1

N − 1

N∑
n=0

gn exp (−ikxxn) , (3)

gnDFT
−1
kx

(g) =

N−1∑
j=0

gk exp (ikjxn) , (4)

with xn = n∆x and kj = j2π/Lx.
The continuity limit links the continuous and the discrete Fourier transform: for L→∞,

FFTx(g) ≡ 1

∆x

∫
R
dx g(x) exp [−ikxx] , (5)

iFFTkx(g) ≡ Lx
2π

∫
R
dkx g(kx) exp [ikxx] . (6)
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Studying high energy density physics

This theoretical work is incorporated within the vast and general framework of high-energy density
physics. “High-energy density” is commonly defined as an energy density exceeding 1011J.m−3,
which corresponds to a pressure above 1Mbar. Such conditions are reached, for example, in systems
of densities close to that of liquid water (1g.cm−3) and temperatures in excess of 10eV (105K).
The study of high-energy density physics has a very wide range of applications, encompassing the
production and characterization of matter under extreme conditions, laser plasma interactions, ther-
monuclear fusion and the generation of intense particle and radiation sources. Such a knowledge is
also crucial for understanding the process of star formation, the structure of massive and planetary
stellar objects, or the dynamics of energetic astrophysical events such as the origin of gamma-ray
bursts or highly-energetic cosmic rays. A possible mechanism of generation of the latter could be
the acceleration of particles by the self-amplified fields in collisionless shocks.

The main goal of physicists is to understand and predict the processes at stake. For this purpose,
four cornerstones are able to lead the researcher on the path to progress: theory, simulation, exper-
iments and observations. Therefore, models and theories can be built in order to provide insights
on the studied phenomena. They are used to predict values/ranges of some quantities, to relate
some parameters or qualitatively explain a process. In all these cases, they have to be compared to
measurements, observations or numerical simulations in order to be validated.

A powerful tool commonly used by physicists is numerical simulations, or “numerical experi-
ments”. A “simulation code” refers to a software which can predict the evolution of matter, particles
or radiation under well-defined conditions. The recent development of high-performance computers
(as, for example, the ccrt and cines facilities in France) has opened the possibility of large-scale
numerical experiments aiming at reproducing an extensive part of the physical processes involved
in high-energy phenomena. These supercomputers enable to run simulations over thousands of
processors running at the same time (in parallel) on a regular basis. The world’s record in this
respect is a laser-plasma interaction simulation using the particle-in-cell code osiris, performed
at the Lawrence Livermore National Laboratory over 1.6 million processors (Fonseca et al. 2013).
These large-scale simulations require a high level of optimization of the simulation code. Note that
even the most complete (i.e., first principles) simulation codes use approximate models, reduced
geometries and discretization. Hence their results are tarnished by errors and uncertainties. This is
why, as for an experiment, the simulation results must be interpreted with a careful critical mind.

Since theories and simulation results have to be verified, an experimental approach must be
adopted. In the case of high-energy astrophysical phenomena, one of the major issues is linked
to the difficulty of observing and characterizing matter under extreme conditions. Experiments
are thus built in order to reproduce the physical conditions of the studied phenomena and can
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give precious constraints on the processes at stake. Nonetheless, the design and the measurements
in an experiment can be very complex, involving a wide range of expertise, the control of initial
conditions and their reproducibility cannot be taken for granted. Many of the experiments in high-
energy-density physics make use of high-intensity lasers to heat, compress and/or accelerate samples
of matter as well as to probe them. These systems generate concentrated sources of light through
spatial and temporal compression of energetic pulses. They represent powerful tools which open
the possibility to probe matter under unprecedented physical conditions.

The observations of energetic astrophysical events can be at the origin of all the research process
by pointing, for example, to an unexplained event. However, measuring or characterizing these
phenomena making use of satellites or telescopes gives access to a limited set of data, although
crucial for the study. Cosmic-rays are representative of the scientific problematic we have just
addressed. Extremely energetic particles have been observed on Earth, leading to the questions:
which astrophysical event is able to produce such energetic particles, and what are the mechanisms at
play? As we will detail later, these observations could be explained in the framework of collisionless
shocks. Yet, no direct observations are able to capture unequivocally the physical processes predicted
by the theory. Assessing the underlying physics of cosmic-rays in a truly reliable way would require
to produce some in controlled experiments and effectively observe them. For this purpose, we need
a deep understanding of the processes at stake, the ability of predicting the required collisionless
shock formation conditions, of reproducing them in an experiment, and of accurately measuring
the produced “cosmic-rays”. Each one of these four steps are very challenging. However, large-
scale simulations have provided insights and made possible many of the recent developments in this
domain. They suggest that, under specific conditions, such energetic particles can be generated
during the propagation of an instability-mediated collisionless shock. To clarify this point, we will
first briefly recall the basis of plasma kinetic theory and collisionless micro-instabilities, with a focus
on the Weibel-filamentation instability. We will then introduce the physics of shocks in plasmas
and finally show how the Weibel instability can give rise to turbulent shocks of properties similar
to those of hydrodynamic shocks.

Kinetic description of a plasma and instabilities

Plasma is the fourth state of matter where a large amount of the particles are charged. Hence, it is
generally made of free electrons and ions and possibly neutral species as atoms. In this manuscript,
only fully ionized plasmas will be considered.

The Debye length, λD =
√
ε0T/nq2, characterizes the screening spatial scale of a charge in a

plasma. We introduced the permitivity of vacuum, ε0, the temperature, T , particle density, n and
charge q (see nomenclature). As a simple illustration, a positive charge in a plasma (such as an
ion) tends to be surrounded by an electron shell of typical radius λD, called the “Debye sphere”.
The interaction of two particles on a scale smaller than the Debye length is called a “collision”.
The mean-free-path, λmfp, represents the typical distance over which, owing to cumulative small-
angle collision, a particle is deflected. In the so called collisional plasmas, short-range interactions
dominate the evolution of the particle populations. They tend to establish locally a Maxwellian
velocity distribution of particles, which reads for the sth species in a non-relativistic system

f (0)
s (v) =

(
ms

2πTs

) 3
2

exp

(
−msv

2

2Ts

)
, (7)

where ms is the mass of the particles and v is the velocity vector. The above equation represents
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the statistical velocity distribution of particles (normalized to unity,
∫
dvf (0)(v) = 1) of a system

at equilibrium if its parameter, the temperature Ts, is the same for all the species of the system for
a neutral plasma (here

∑
s qsns = 0).

When the mean free path becomes larger than the density or temperature gradient scale-lengths
of the system, it is more likely to deviate from the Maxwellian equilibrium. A kinetic effect is an
effect which tends to deviate the system from this equilibrium, either when the temperature of the
species are not equal or when the velocity distributions differ from the Maxwellian. This is possible
when the particle interaction is dominated by interactions of range much larger than the Debye
length. These “long-range collisions” are called “collective effects” since their typical range involves
many Debye spheres. In such systems, short-range collisions are rare hence, the mean free path is
long and the collision frequency is short compared with the typical spatial and temporal scales of
variation of the distribution functions. This characterizes the collisionless plasmas, as explained in
Sagdeev (1966) that will be studied in this manuscript, namely a plasma dominated by long-range
interactions. The relaxation processes in a highly non-equilibrium collisionless plasma frequently
involve kinetic instabilities. Such processes generate long-range plasma oscillations through grow-
ing electric and magnetic fluctuations. Hence, the system tends to return to equilibrium via the
feedback of the self-generated fields on particles.

Collisionless plasmas are described by the Vlasov equation, which predicts the evolution of the
distribution function:

δtfs +
p

msγ
· δrfs + F · δpfs = 0 , (8)

where F is the Lorentz force which reads F = qs (E + v ×B). The electric and magnetic fields, E
and B, are described by the Maxwell set of equations

∇ ·E =
ρ

ε0
, (9)

∇×E = −∂tB , (10)

∇ ·B = 0 , (11)

∇×B = µ0j + c−2∂tE . (12)

In Eqs. (9), (10), (11) and (12), respectively the Maxwell-Gauss, Maxwell-Thomson, Maxwell-
Faraday and Maxwell-Ampère equations, we introduced the light speed in vacuum, permitivity of
vacuum and magnetic permitivity c, ε0 and µ0 respectively. They can be combined with Eq. (8),
using the definition of the charge and current density ρ and j:

ρ =
∑
s

nsqs

∫
fs(v)dv , (13)

j =
∑
s

nsqs

∫
vfs(v)dv . (14)

The trivial solution of the above set of equations corresponds to a neutral and homogeneous plasma
(ρ = 0 and j = 0), with vanishing fields (E = 0 and B = 0). Note that, while ρ = 0 and j = 0 in
a homogeneous system, any initial distribution function can verify, at least initially, this field-free
solution of the Vlasov-Maxwell equations. Yet, as a function of the initial particle distribution func-
tions, this solution may prove unstable with respect to infinitesimal perturbations in the momentum
distributions or the fields. In the most general case, non-equilibrium plasma states result in the
growth of coupled electromagnetic and kinetic fluctuations. Various kinetic instabilities can be iden-
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tified according to their spectral properties and the nature and number of the particle species at play.

Most of the instabilities can be decomposed in tree steps. The first one is the seed of the insta-
bility and corresponds to the initial state of the plasma which deviates from the equilibrium. An
homogeneous free-field system with a anisotropic distribution, as two counter-propagating beams,
represents an unstable equilibrium. More specifically, some components of the fields are unstable.
External seeds can originate from the action of a laser or a particle beam, while thermal fluctua-
tions inherent to finite-temperature plasmas exemplify spontaneous seeds. The second stage is the
unstable loop during which the field grows and creates a wave usually described (making use of
the Fourier transform) by its dominant wavevector k and complex frequency ω = ωr + iΓ. The
unstable mode then propagates along k at the phase speed vφ = ωr/|k|, following an exponential
growth ∝ exp(2Γt) (where Γ is the growth rate) of the electromagnetic energy. Since the energy is
bounded in any physical system, this growth cannot last indefinitely. It stops when the fields are
strong enough to significantly affect the particle velocities and trajectories, which will mitigate the
unstable loop between the fields and the particles. This final step is called the nonlinear saturation
stage of the instability and is usually the most complex part to describe theoretically.

Then, the system may subsequently relax to an equilibrium state or into another unstable one.
In this last case, another instability occurs following the same three steps, and this cycle repeats
until the system finally reach equilibrium. According to whether the growing electric field is parallel
or perpendicular to the wavevector, we speak of an electrostatic or an electromagnetic instability
respectively. Well-known examples are the electron two-stream electrostatic instability (Bohm &
Gross 1949) and the Weibel electromagnetic instability (Weibel 1959), studied in this manuscript.
The general case, however, is that of “mixed” electrostatic and electromagnetic instabilities (Bret
et al. 2008, 2010b).

Most of this study concerns the common configuration of two counter-propagating electron-ion
beams. The associated instabilities can be sorted according to two criteria: the orientation of their
wavevector compared to the flow direction, and their complex frequency. At the very beginning
of the interaction, the first particles to react are the electrons which have the largest plasma fre-
quency ωps =

√
nsq2

s/msε0. They will trigger the first instabilities, on a time-scale larger than ω−1
pe .

During this electronic phase, the ion motion is usually neglected as a first approximation. Figure
1 presents three electron-driven instabilities: the fully electrostatic longitudinal electron-electron
two-stream, the mostly electrostatic oblique two stream and the electron transverse electromagnetic
Weibel instabilities Note that the system can successively go through these three instabilities before
it evolves into an ionic stage (Bret et al. 2008, 2010b). After their growth and saturation, the
ion-driven modes will occur on time-scales larger than ω−1

pi . During this ionic phase, both the ions
and electrons react to the waves. Three types of ion instabilities are indicated in Fig. 1 in the
case of isotropic (stable) electrons. We summarized not exhaustively the different kind of instabil-
ities along with there possible order of apparition in Fig. 1. We highlight that this sketch does
not mention all the possible plasma instabilities and omits the potentially important families of
electron-ion driven instabilities, such as the Buneman or electron-ion acoustic modes (Gary et al.
1985). Secondly, there exists many shades between a pure electronic and purely ionic instabilities.
While important, this wavevector-based classifiaction may also hide the connections between the
instability classes. The ion longitudinal and oblique modes may then be viewed as a unique instabil-
ity class, their orientation depending upon their subsonic or supersonic character (Gary et al. 1985).
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Figure 1. Not exhaustive list of plasma instabilities driven by counter-steaming electron-ion beams, sorted
according to their propagation direction (wavevector orientation) and the plasma species driving them. The
wavy arrows highlight which population drives and reacts to the instability

Shocks in plasmas

In the case of inhomogeneous systems characterized, for instance, by the overlapping of two counter-
streaming, bounded plasma beams, the non-linear stage of the triggered instability may generate
shock waves. Shock waves are usually characterized by a discontinuity in the spatial profile of phys-
ical quantities (particle density, temperature,...). It can be driven by any supersonic disturbance
as, for example, two flows colliding with a velocity faster than the speed of waves in the medium.
In such a case, the matter is being compressed (and heated) so fast that no relaxation of the com-
pressed region can occur in the un-compressed medium through wave propagation. If a wave was
able to propagate faster than the shock discontinuity, the system would be able to relax through
its propagation and the shock would vanish. Colliding plasma flows are expected to be common
sources of shocks in high-energy astrophysical environments such as pulsars, active galactic nuclei,
supernovae. Shocks can also be generated when a large-amplitude wave propagates with a phase
speed faster in its anti-nodes than in its nodes. These non-linear effects, although not addressed in
this manuscript, result in a steepening of the wave and thus to a shock or shock-like structures.

Turbulent shocks and Rankine-Hugoniot conditions

In a collisional system, the typical thickness of the shock discontinuity is of the order of the mean
free-path λmfp of the heaviest particles. In the collisionless systems addressed in this manuscript,
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Figure 2. Sketch of a shock as derived in the Rankine-Hugoniot conditions.

the discontinuity develops over scales comparable to the Debye length or the electron/ion skin
depth. For both cases, general relations can be derived between the incoming and the compressed
flows, within a simple framework. Derived in Axford et al. (1977); Blandford & Ostriker (1978),
they are called the Rankine-Hugoniot conditions. In the frame where the shock discontinuity is
stationary, we will study the two flows lying on each sides of the shock front (subscript s ≡ 1 or
2). As will be shown, this calculation does not imply the knowledge of the interaction physics in
the discontinuity region. This region is therefore considered as a “black box”, outside of which the
flows can be considered at equilibrium and characterized by their mass densities, flow velocities,
pressures, adiabatic index and internal energy ρs vs, Ps, Γad,s and ψs respectively [Fig. 2]. The
Rankine-Hugoniot conditions relate ρ1 and ρ2, v1 and v2, P1 and P2, making use of the density,
momentum, kinetic and internal energy conservation across the “black-box” region. Note that in
this section and in this section only, ρ stands for the mass density. Everywhere else, it is a charge
density as precised in the nomenclature. For a stationary system (∂t ≡ 0 in the shock frame), we
obtain

∂x(ρv) = 0 , (15)

ρv∂xv = −∂xP , (16)

∂x(ρψv) = −P∂xv , (17)

∂x

(
ρv2

2
v

)
= −v∂xP . (18)

From Eq. (15) it follows that the flux ρv is constant across the shock front. Combined with Eq.
(16), we can show that ρv2 + P is also conserved. Finally, adding Eq. (17) to (18) gives that
ρv2/2 + ρψ + P is also a constant. Assuming equilibrium for the two flows, obeying a polytropic
equation of state, ψs = Ps/ρs(Γad,s − 1), one obtains the shock jump conditions

ρ2

ρ1
=
v1

v2
=

(Γad + 1)M2
1

(Γad − 1)M2
1 + 2

, (19)

P2

P1
' ρ2T2

ρ1T1
=

2ΓadM
2
1 − Γad + 1

Γad + 1
, (20)
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for Γad,1 = Γad,1 = Γad. We have introduced the upstream Mach number M1 which is the ratio of
the shock speed (v1 in frame of the downstream) to the upstream sound speed (cs,1)

M1 =
v1

cs,1
. (21)

Plugging M1 = 1 into Eqs. (19) and (20) gives the trivial solution ρ1 = ρ2 and v1 = v2. Shock
formation therefore requires M1 > 1, that is supersonic upstream flows. Consequently, following
Eqs. (19) and (20), the slowed down downstream flow (v2 < v1) is compressed (n2 > n1, P2 > P1).

Taking the limit M1 →∞ leads to the so-called strong-shock conditions:

ρ2

ρ1
' v1

v2
=

Γad + 1

Γad − 1
, (22)

P2 '
2

Γad + 1
ρ1v

2
1 . (23)

In this regime, the density jump is independent of the Mach number, and thus of the upstream
flow. It verifies n2/n1 = 4 for a non-relativistic 3D (mono-atomic) gaz (Γad = 5/3), n2/n1 = 3 for
a non-relativistic 2D gaz (Γad = 2). Overall, the above jump conditions are valid independently
of the physical processes occurring in the black box, provided the system is stationary in the
shock frame and the downstream and upstream regions fulfill polytropic equations of state. Such
shocks are called “turbulent”, and may originate from the dissipation induced via either Coulomb
or wave-particle scattering. The latter dissipation can be provided by Weibel-type instabilities,
which can trigger a strong magnetic turbulence in front of the shock able to scatter off the incoming
particles. In this manuscript, we will study the ability of the Weibel-filamentation instability to
generate and propagate these strong shocks. Note that generalized Rankine-Hugoniot conditions
can also be derived in a more general framework: for oblique shocks propagating in a magnetized
medium (Drury 1983). Equation (23) evidences that most of the incoming upstream kinetic energy
is dissipated into thermal energy in the downstream. This is possible only if a strong dissipation
process takes place in the “black box” of Fig. 2. Such dissipation can be provided by Weibel-type
instabilities, which can trigger a strong magnetic turbulence in front of the shock able to scatter
off the incoming particles. In this manuscript, we will study the ability of the Weibel-filamentation
instability to generate and propagate these strong shocks.

Laminar shocks

Collisionless plasmas may sustain another kind of shocks called laminar, associated with electro-
static boundary layers and usually, to weak Mach numbers (M . 3). In the collisionless limit
these weak shocks can be induced by electrostatic instabilities and described in a purely 1D model
(depending only on x) by the electrostatic potential (Moiseev & Sagdeev 1963) as sketched in Fig.
3 (black plain line). Let first consider the downstream where matter is characterized by a higher
pressure than in the upstream. Therefore, the lighter particles at the shock front (the electrons)
tend to escape in the upstream. They are attracted back by the downstream ions through an elec-
trostatic field (Ex) which lies at the shock front, and points to the upstream. Hence, the electric
field potential rises from the upstream value Φ1, to a value Φmax in the downstream [Fig. 3]. The
larger the pressure jump (P2/P1 in Eq. (20)) s, the larger Φmax is. This electric field represent a
perturbation which can initiate an electrostatic wave and thus a plasma oscillation. Its phase speed
is smaller than the shock velocity, otherwise the shock would not exist. This is illustrated in Fig. 3
where Φ oscillates between Φmax and Φ2 in the downstream. Far from the shock front, collisions, or
any other dissipating process, will eventually damp this wave. Note that if the wave is not damped,
the Rankine Hugoniot conditions cannot be applied since a polytropic equilibrium is not fulfilled.
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Figure 3. Sketch of an electrostatic shock

The particles with a kinetic energy lager than qeΦmax are free. When the downstream particle’s
kinetic energy is smaller than qeΦ2, they are trapped and cannot reach the upstream. The value
of Φ2 characterizes the dissipation of the directed kinetic energy of the upstream flow into thermal
(pressure) energy in the downstream.

Qualitative evidence of different regimes of electrostatic shocks can be distinguished, as a func-
tion of the velocity of the upstream flow. For small upstream velocities (Mach number close to
unity) the pressure jump of the shock is weak [Eq. (20)] which implies that Φmax is small. Since the
ion kinetic is much larger than the electrons’ (by a factor mi/me ≥ 1836), most of the ions cross
the potential barrier, being thus slowed down and compressed. In this case, because dissipation
is weak, Φ2 is close to Φ1 (Moiseev & Sagdeev 1963; Montgomery & Joyce 1969). Increasing the
Mach number, increases P2/P1 and thus Φmax (as mentioned above) and some of the upstream ions
can be reflected back in the upstream by the potential jump at the shock front. In this case, a
more important part of the electrons are trapped in the downstream (larger dissipation) and the
electric oscillations in the downstream can affect significantly the ions. Between qeΦ2 and qeΦmax,
the downstream particles are trapped by the electrostatic wave. This can creates characteristic den-
sity and velocity oscillations of all the plasma (electrons and ions) in the downstream (Sagdeev 1966).

At higher velocities, the amount of reflected ions at the shock front can be significant, which
creates a region in the upstream where two counter-propagating ion populations overlap. This can
trigger kinetic instabilities in the upstream such as the oblique ion-ion instability (Forslund & Shonk
1970) which may disrupt the propagation of the shock (Kato & Takabe 2010b; Dieckmann et al.
2013). In this regime, the electric fields are not limited to their sole longitudinal component Ex. A
proper description of these effects requires multi-dimensional systems.

Collisionless shocks induced by the Weibel-filamentation instability

We will now focus on the shocks mediated by the Weibel instability. For this purpose, we will
outline the properties of the latter and present the processes at stake.
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The Weibel-filamentation instability

This manuscript addresses the particular case of the Weibel-filamentation (or current-filamentation)
kinetic instability. Two kinds of Weibel instabilities can be defined: the Weibel-thermal instabil-
ity (Weibel 1959) and the Weibel-filamentation (or current-filamentation) instability (Fried 1959)
further studied in this manuscript. The first one occurs when a system has a strong temperature
anisotropy (Tx 6= Ty). The second requires two counter-propagating beams (or one beam in a
plasma at rest). Let us summarize the amplifying mechanism of the instability in the case of two
counter-propagating high speed (v & 0.1c) flows.

The development of the Weibel-filamentation instability can be decomposed into the three phases
mentioned earlier: the seed, the unstable loop and the saturation. As mentioned previously, the
initial perturbation seed of the instability can originate from an external source (laser, particle
beam) or the field fluctuations inherent to finite temperature plasmas. We will now explain within
a very simplified framework, the physical mechanism which can generate a small initial magnetic
modulation. The overlap region of the two beams is characterized by two particle populations with
opposite mean velocities. Since the charged particles are drifting at high velocities, each one gen-
erates a strong loop-like magnetic field. Thus, the interaction between all of the particles of same
charge signs, drifting in the same direction is attractive through their induced magnetic field as
illustrated in Fig. 4(a). This is true if the attractive magnetic interaction overcomes the electric
(Coulomb) repulsion which is possible if the drift velocity is high enough. Consequently, if particles
drift in the x direction, their magnetic interaction tends to segregate them in the y direction accord-
ing to their current sign through the Lorentz force qv ×B. This creates a magnetic modulation in
the y direction, thus transverse to the flow direction which is standing (i.e. non propagating, van-
ishing phase speed) and electromagnetic since the magnetic field is perpendicular to the wavevector.

Then, the unstable loop occurs, and the transverse magnetic modulations grow. The magnetic
modulation segregates the drifting particles as illustrated on Fig. 4(b) which results in an increase
of the current modulation. This current modulation thus amplifies the B-field which segregates even
more the particles, amplifying the current again. The red curves of 4(b) stands for the trajectories
of positively charged particles initially in the anti-nodes which tend to be segregated according
to their current signs. This amplification can be driven by the electrons (electron-Weibel) or by
the ions (ion-Weibel), or by both. During this phase, the system is usually modeled assuming the
fields small enough to neglect their influence on the distribution function: the Vlasov-Maxwell set
of equation can be linearized with respect to the fields. The obtained y-averaged magnetic energy
grows exponentially with time, following < B2 >y∝ exp(2Γt), where Γ is the growth rate. Details
for the calculation of Γ will be given in the fist chapter of this manuscript, however, we will give
here its basic scalings. The simplest way to derive the Weibel dispersion relation, is to consider
two counter-propagating infinitely cold electron beams with no ion motion (mi =∞) and of plasma
frequency ωpe. In this case all the electrons have the exact same velocity, vd and Lorentz factor
γd = (1− v2

d)
−1/2. Making use of a Fourier transform, we can relate the growth rate Γ, with a given

wavevector of the magnetic modulation, Γ(ky). As crudely sketched in Fig. 5, Γ(ky) is proportional
to ky for ky < ωpe/c

√
γd: Γ ' vdky/

√
γd. It then remains constant for ky > ωpe/c

√
γd. This gives

an infinitely large spectrum, and the maximum wavevector of the unstable domain, kmax, tends to
infinity, kmax →∞. However, simulations (Bret et al. 2013) evidence that most of the magnetic en-
ergy is located at ky ∼ ωpe/c

√
γd which corresponds to a growth rate of Γ ∼ ωpevd/c

√
γd. This may

be explained by a small heating of the electron distribution, at the beginning of the field growth.
Solving the dispersion relation for two electron beams with non-vanishing initial temperature (i.e.
all the electrons of a beam do not have the exact same velocity) results in a growth rate which
eventually decreases and vanishes for large wavevectors, kmax < ∞ [red dashed lines in Fig. 5].
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(a) Seed (b) Unstable loop

Figure 4. (a) Attraction and repulsion of charged drifting particles (positively in red, negatively in blue)
through their magnetic interaction, if it overcomes the electric interaction. (b) Mechanism of current and
magnetic amplification by the Weibel-filamentation instability

Weibel-filamentation growth rate

Figure 5. Typical dependence of the Weibel-filamentation growth rate upon the transverse wavevector:
comparison of the cold (plain line) and warm case (dashed line) for two counter-propagating beams.
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Figure 6. Sketch of shock formation. The white wavy lines represent the Weibel transverse modulations
(B-field and current density).

Consequently, while the fields grow, a small heating of the electrons results in a narrowing of the
unstable spectrum which may explain why the numerical simulations usually evidence a dominant
magnetic wavevector of ky > ωpe/c

√
γd.

The saturation occurs when the magnetic field is strong enough to affect significantly the dis-
tribution function. This implies that the Vlasov-Maxwell set of equations cannot be linearized
anymore. Various approximate nonlinear models have been proposed, yet with limited range of
validity and usually only capable of qualitative predictions (Davidson et al. 1972; Califano et al.
1998; Lyubarsky & Eichler 2006; Achterberg et al. 2007). In the weakly non-linear regime, the sat-
uration stage can be treated through quasi-linear kinetic theory (Davidson et al. 1972; Pokhotelov
& Amariutei 2011). The strongly non-linear regime has been addressed assuming that the filaments
dynamics is governed by merging events (Medvedev et al. 2005; Achterberg et al. 2007) or secondary
kink-like instabilities (Milosavljević & Nakar 2006). All these non-linear dynamics and their effects
on the evolution of the plasma require further understanding.

Plasma subjects to the Weibel or Weibel-filamentation instability may be called self-magnetized
since the magnetic fluctuations spontaneously develop in the absence of external magnetic field. This
contrasts with most of the astrophysical plasmas which are immersed in an external magnetic field.
First-principles numerical simulations have shown that the Weibel filamentation instability in its
saturation stage is able to heat the system, transferring the bulk kinetic energy into thermal energy
(Spitkovsky 2005; Kato & Takabe 2008). Qualitatively, the particles scatter off the self-amplified
magnetic field, which eventually leads to the isotropization of the system. Once it is achieved, the
instability is no longer sustained and the matter is no longer flowing.

If the initial beam velocities are large enough (v & 0.01c), the ion-Weibel instability will always
eventually be triggered. Moreover, for v & 0.4c, the electron Weibel-filamentation is the fastest
instability (Bret 2009; Bret et al. 2010a). In these cases, simulations show that this instability is
able to isotropize the system and cause the formation of a collisionless shock (Spitkovsky 2008b;
Keshet et al. 2009).

Weibel-mediated collisionless shocks

Let us now consider two counter-propagating high-velocity plasma beams of infinite spatial exten-
sion. The beams overlap, trigger the Weibel-filamentation instability which leads to local isotropiza-
tion of the particles. This generates a rapidly growing magnetic turbulence. The resulting scattering
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and slowing down (by the induced electric field) of the particles lead to a local density increase [Fig.
6]. The strong isotropization of the particles in the accumulation region (downsteam) tends to
supress the Weibel instability. Particles will therefore accumulate until Rankine-Hugoniot jump
conditions are reached. The resulting shock is strong as the Weibel-filamentation instability ensure
nearly complete dissipation of the bulk kinetic energy into thermal energy is ensured by the Weibel-
filamentation instability. Hence, Eqs. (19) and (20) can be applied and the matter is compressed
by a factor three or four in 2D or 3D respectively. Moreover, in the downstream frame, the shock
propagates at a velocity of v1/2 (2D) and v1/3 (3D), where v1 is the unperturbed upstream flow
velocity. Large scale first-principles simulations have validated these predictions (Kato & Takabe
2008; Spitkovsky 2008b).

In order to understand the processes responsible for shock propagation and the role of the
Weibel-filamentation instability, we will lift the veil on the “black box” of Fig. 2. Figure 7(a) rep-
resents the qualitative evolution of the transverse averaged electric potential and magnetic energy
in the shock front region. Since the shock is strong, no electrostatic oscillations are sustained in
the downstream and Φ rises monotonically from the upstream to the downstream. An electrostatic
field Ex lies at the shock front which contributes to the reflection of a part of the incoming ions
back into the upstream, as illustrated in Fig. 7(a). Part of the downstream protons can leak from
the downstream into the upstream with identical result. This creates a region close to the shock
front where two counter-propagating ion populations overlap, thus triggering a Weibel-filamentation
instability. Unlike in purely electrostatic shocks [Fig. 3], self-amplified magnetic fields are thus sus-
tained close to the shock front [green line in Fig. 7(a)]. In the downstream where the particle
populations are assumed to be essentially isotropic, the magnetic energy decays away far from the
shock front (dashed green lines). Once again, the upstream incoming particles scatter or reflect off
these magnetic fluctuations and the populations eventually get isotropized across the shock front.
Hence, the incoming particles accumulate in the downstream and the shock front propagates.

Figure 7(b) sketches the spatial repartition of the electric and magnetic fields during the shock
propagation. As shown above, an electrostatic potential jump lies at the shock front (red to blue
region) while transverse magnetic modulations (orange and purple island) is sustained in the shock
front region. In addition, the nonlinear feature of the magnetic filaments can sustain electric fluc-
tuations (Ey and/or Ex) which makes the shock front region difficult to model. In such systems,
numerical simulations (Spitkovsky 2008a) have demonstrated that an efficient Fermi-type acceler-
ation can take place. This can be explained, considering a particle of the downstream streaming
on the direction of the shock front. When the particle arrives at the shock front, it is accelerated
by the local electric fields and its energy increases. Once in the upstream, although very close to
the shock front, it may be deflected back into the downstream by the magnetic field surrounding
Weibel filaments. During this step, it appears that no significant increase of the kinetic energy
results, as shown by the particle trajectory of Fig. 7(c). This might be due to the interplay of the
longitudinal electric field at the shock front with the electromagnetic fluctuations (magnetic and
electric) of the Weibel-filaments. Now the particle can be scattered off the downstream magnetic
fluctuations, close to the shock front (dashed green line of Fig. 7(b)). Hence the particle can be
accelerated a second time across the shock front in the direction of the upstream. Each time the
particle crosses the shock front from the downstream to the upstream, it gains a significant amount
of energy [Fig. 7(c)]. When the Lorentz factor of the particle becomes too large, the fields become
too weak to deflect the particle and the Fermi process stops. Once the Fermi-accelerated particles
drift out of the shock front with relativistic energies, they can be slowed down in the upstream
or the downstream of the shock, by the electromagnetic fields or any dissipation process (Lemoine
2013). This creates a synchrotron-type radiation. But the more energetic particles can also leave
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(a) (b)

(c) Particle trajectories at the shock front in PIC simulation

Figure 7. (a) Sketch of the fields in a Weibel-mediated ion-electron collisionless shock. (b) Fermi acceleration
of positively charged particle (black arrow) at the shock front. (c) Left panel: particle trajectory close to the
shock front (located at x− xshock = 0) in colorlines. Right panel: evolution of the particle’s Lorentz factor,
γ, in the abscissa (Spitkovsky 2008b)
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the shock and drift on astronomical distances. If these particles could cross the Earth on their path,
they would constitute ideal candidates for the cosmic rays explanation.

Many questions on Weibel-mediated collisionless shocks remain unanswered. From a plasma-
physics point of view, even before studying the shock propagation, the formation of the shock
requires a deeper understanding. How the magnetic or electric turbulence triggered by the particle
distribution degenerates into a shock is still an open question, even in a very simplified framework
(Lyubarsky & Eichler 2006). As an example, there was no model predicting an accurate self-
magnetized shock formation time until recently (Bret et al. 2014). The underlying instability, the
different processes of field growth, the saturation stage and evolution of the distribution functions,
the heating processes and how all these effects lead to a shock need further understanding. Another
issue concerns the propagation of the shock on long time-scales, which is poorly understood. A
few large-scale simulations have already started to tackle this issue (Keshet et al. 2009). However,
even for the longest simulations performed so far, less than one thousandth of the typical time
of astrophysical interest is captured. Moreover, these shocks usually take place within external
magnetic fields imposed by a massive stellar object, such as a white dwarf or an accretion disk.
Hence, the effect of the external magnetic field on the formation and evolution of the shock should
be addressed. Finally, collisionless shock are generally studied in a simplified framework where the
interaction is driven by two symmetric plasma slabs, a quite unlikely configuration in the Universe.

We will now give more details on the experiments on kinetic instabilities and the simulations of
collisionless shocks which will be used in this manuscript.

Tools for studying collisionless shocks

Laser experiments

The laser intensities and energies accessible nowadays open the possibility to create high-energy-
density states of matter comparable to various astrophysical objects (Drake & Gregori 2012). Two
regimes of laser-plasma interaction can be identified according to the energy and duration of the
laser driver: the nanosecond (ns) and picosecond types (ps), which duration are respectively larger
than 1ns and of the order of 1ps or smaller.

All the high energy (E & 1kJ) nanosecond facilities use roughly the same general scheme to
reach intensities of I0 . 1016W.cm−2. A first long-duration laser pulse of a few nanoseconds is
amplified until an energy of the order of 1-10kJ is reached. During the amplification stage, the
pulse transverse section is enlarged up to a range [1-40]cm so that the intensity stays low and does
not damage the optics. High-energy nanosecond laser pulses have given way to the development
and study of inertial confinement fusion and recently to high-velocity collision experiments (Drake
& Gregori 2012; Park et al. 2012; Kugland et al. 2012b). The study of the different instabilities
which can arise in such system is of clear interest regarding our work. The usual experimental
set-up consists of two solid foils irradiated by two symmetric high-intensity lasers. Two expanding
plasmas are generated, which collide between the foils. The instabilities triggered in such systems
depend on the laser-plasma parameters and thus on the laser parameters. Recent experiments have
evidenced the formation of filamentary field structures in the overlap region. However, an accurate
characterization of these filaments (wavelength, field amplitude) is still missing, which complicates
the clear understanding of these results (Kugland et al. 2012b; Yuan et al. 2013; Fox et al. 2013;
Huntington et al. 2013).

When a ns-pulse has been amplified, and after cleaning the phase front and its shape, it may be
compressed temporally and spatially, to reach the picosecond regime. The temporal compression of
a kilo-joule-class laser pulse use the “chirped pulse amplification” (CPA) proposed in (Strickland &
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Mourou 1985). This drastically shortens the pulse duration from a few nanoseconds down to one
picosecond or smaller, and increases the laser intensity. At this point, the laser pulse can be tightly
focused onto 10−100µm, reaching on-target intensities of I0 > 1018W.cm−2 for E . 1kJ (and often
E � 1kJ). Such high-intensity pulses can generate energetic ion beams (Fuchs et al. 2003; Macchi
et al. 2005) of critical importance for probing strong electromagnetic field with unprecedented
space-time resolution (Mackinnon et al. 2004; Kugland et al. 2012a). Such a diagnostic has already
been used in some of the plasma collision experiments previously mentioned (Kugland et al. 2012b;
Fox et al. 2013). The generation of electrostatic shocks has also been observed for moderately-
relativistic laser intensities I ∼ 1018−19W.cm−2 (Silva et al. 2004; Macchi et al. 2012) by means of
simulations. These shocks can become self-magnetized for higher intensities and comparable to the
Weibel-induced collisionless shocks of astrophysical interest (IL ≥ 1021 W.cm−2) (Fiuza et al. 2012)
as we will study in Chapter 5.

Simulation of collisionless plasmas: particle-in-cell codes

Simulation codes have become crucial tools in modern research fields. For our study, we used
the “particle-in-cell” (PIC) code calder (except in Sec. 2.6 where we have interpreted osiris
simulations). The PIC simulation scheme (Birdsall & Langdon 1985), detailed in Sec. 6.1, aims
to describe the evolution of charged macroparticles (which represent a great number of real par-
ticles) which undergo self-generated or external fields. It then solves at each time-step Maxwell’s
set of equations combined with the equations of motion for each macroparticle in a discretized space.

The simulation of the kinetic instabilities involved in collisionless shocks usually considers neutral
plasmas composed of electrons and positrons (pair plasmas) or electrons and fully ionized ions. In
contrast to the pair plasma case, the dynamics of electron-ions shocks involves two different scales:
given, respectively, by the electron and ion plasma frequencies ωpe and ωpi and inertial lengths
c/ωpe and c/ωpi. Since ωpe/ωpi ∝

√
mi/me, the smallest realistic value of this ratio is given by

the proton mass,
√
mi/me ' 42. Hence, an accurate simulation must resolve the electron scales,

in a simulation box several times larger than the ion skin-depth. Since this involves very large
and expensive simulations. This is why most of the collisionless shock simulations use a reduced
ion mass (an ion mass smaller than the proton mass) in order to reduce the computational cost.
The simulation is still expected to qualitatively capture the main physical processes if the ion
dynamics remains sufficiently slower than the electron dynamics (ω−1

pi � ω−1
pe ). Conversely, one

can also increase artificially the electron mass (for fixed ion mass) to achieve the same goal of
reducing the computation time (Fox et al. 2013). In this case, the temporal and spatial resolution
of the simulation can be cruder. As will be seen in chapter 3, the Weibel instability dominates for
relativistic counter-propagating plasma beams. However, in the non-relativistic regime (vi . 0.5c),
the analysis is complicated by other instabilities, such as the ion oblique (Forslund & Shonk 1970) or
the electron oblique instability (Watson et al. 1960a,c). Moreover, the dominant instability depends
on the ion mass ratio as evidenced in Bret (2009). This obviously increases the complexity of the
analysis.

Outline

This manuscript is organized to ensure a progressive transition from the theoretical and academic
questions addressed in the first chapters to more applied considerations such as the feasibility of
collisionless shocks experiments considered in the last chapter. Care has also been taken to make
each chapter understandable as an isolated entity. For this purpose, the nomenclature gathers the
main mathematical, physical and numerical quantities as well as the mathematical conventions used
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in the following. Moreover, the parts of this Manuscript which does not originate from our work,
are pointed out by adding the corresponding reference in the titles of the section or subsection.

The dispersion relation of an unmagnetized, neutral and homogeneous relativistic plasma will be
addressed in Chapter 1. We will evidence that it rules the propagation and growth of electromagnetic
waves in collisionless plasmas. A very general resolution scheme will be introduced and applied to
various distribution functions such as the relativistic Maxwell-Jüttner and waterbag distributions,
and the non-relativistic bi-Maxwellian distribution. We will also introduce a simple fitting scheme
able to decompose a given distribution function in a sum of waterbags (multi-waterbag). This
technique will allow us to solve the dispersion relation associated with arbitrary distributions, such
as the distributions given by a PIC simulation. This theoretical chapter represents the corner-
stone of the following developments. The introduced tensorial elements and resolution schemes
will be extensively used in the next chapters. However, it is not essential, in a first read, to the
understanding of the physical processes addressed in this manuscript.

Chapter 2 addresses the equilibrium electromagnetic fluctuation spectrum of a relativistic drift-
ing equilibrium plasma. The field fluctuations are crucial to the understanding of the deviation
from equilibrium of a system. Moreover, the first comparison between the theoretical field fluc-
tuations and their numerical counterparts in the relativistic regime will be made for various field
polarizations. Finally an application of the obtained analytical formulae to the study of the growth
of the electron-positron Weibel instability in a simple geometry will be addressed at the end of
the chapter. This final part has been published in a collaboration with A. Bret, A. Stockem and
collaborators (Bret et al. 2013).

Chapter 3 focuses on the kinetic instabilities triggered by two symmetric, non-relativistic and
counter-propagating electron-ion plasma beams in a simple geometry. We will show that two differ-
ent electrostatic instabilities can precede the Weibel stage, making use of the dispersion relations
developed in the first chapter. Then, the saturation stage of the ion Weibel instability will be
addressed and a predictive and analytic model of the evolution of the plasma parameters will be
developed. A good agreement with PIC simulations will be evidenced for various plasma parameters.

In Chapter 4, our Weibel saturation model will be applied to the central overlap region of two
colliding symmetric electron-ion plasma beams. Fair agreement until quasi-isotropization of the
particle population will be evidenced. Qualitative and quantitative comparison with experiments
(Kugland et al. 2012b; Fox et al. 2013) will also be made. in a second part we will address the phase
of shock propagation. A kinetic model of the particle populations in the upstream and downstream
region of the shock will be made. The upstream magnetic turbulence will then be addressed. An
analytical formulation of the magnetic turbulence taking place upstream of the shock will be worked
out. The profiles of the particle populations will also modeled by a set of differential equations.
This predictive model of the upstream turbulence will be successfully compared with various shock
simulations.

Chapter 5 will study the feasibility of driving collisionless shock experiments using the interaction
of high intensity lasers with overdense plasmas. For intensities of I0 > 1020W.cm−2, the laser can
induce a magnetic turbulence inside the target, possibly leading to a Weibel-mediated collisionless
shock (Fiuza et al. 2012). Under these specific laser-plasma conditions, we will demonstrate that
shock formation may result from the sole electron-induced turbulence, in contrast to the standard
scenario ruled by ion Weibel instability.

Finally, the last part of this manuscript will gather our conclusions and prospective remarks.

21



Introduction

22



Part I

Kinetic theory of a relativistic
collisionless plasma
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Chapter 1

Linear dispersion relation of a
collisionless relativistic plasma

Figure 1.1. Weibel-filamentation growth rate in two counter-propagating Maxwellian electron plasma
(βd = ±0.2, T = mec

2/100 with fixed ions, red solid line) and comparison to a multi-waterbag calculation
(blue lines).
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Chapter 1. Linear dispersion relation of a collisionless relativistic plasma

1.1 The susceptibility tensor

1.1.1 The linearized Maxwell-Vlasov formula (Rostoker & Rosenbluth 1960;
Ichimaru 1973)

The susceptibility tensor is the key ingredient ruling the stability properties of a plasma. It can
be calculated exactly for various distribution functions in the linear approximation (Rostoker &
Rosenbluth 1960; Ichimaru 1973). We start with a free-field (i.e. no external magnetic or electric
field in a neutral plasma), homogeneous and infinite system of particles. Each plasma species obeys

an initial momentum distribution f
(0)
s (p) normalized to unity in the momentum space. In the linear

approximation, we will assimilate the E and B-fields to first-order quantities. The Vlasov equation

on the sth total distribution function fs = f
(0)
s + f

(1)
s is

δtfs + v · δrfs +
qs
ms

(E + v ×B) · δpfs = 0 . (1.1)

We will know linearize this equation, and hence neglect the second-order quantities as Ef (1). Con-

sequently, we neglect the feedback of the fields upon the initial distribution function f
(0)
s . This

approximation breaks as soon as the distribution has varied significantly from its initial value.

Since the initial distribution f
(0)
s verifies Vlasov equation and Eq. (1.1) becomes:

δtf
(1)
s + v · δrf (1)

s +
qs
ms

(E + v ×B) δpf
(0)
s = 0 . (1.2)

After a Fourrier transform using the convention presented in Nomenclature, we obtain

f (1)
s =

i qsms
k · v − ω

(E + v ×B) · δpf (0)
s , (1.3)

There results the density current j :

j(1) =
∑
s

nsqs

∫
dpvf (1)

s . (1.4)

Plugging j(1) into the Fourrier-transformed Maxwell-Ampère and Maxwell-Faraday equations, one
gets:

j(1) = iω

[
E +

k

ω
×
(

k

ω
×E

)]
, (1.5)

Using Eq. (1.3):

i
∑
s

q2
sns
ms

∫
dp

p

γ

δpf
(0)
s

k · v − ω
·
(

1 + v × k

ω
×
)
·E + iω

(
1 +

k

ω
× k

ω
×
)
·E = 0 . (1.6)

We know introduce the tensorial product ⊗. Given the relations

v × k

ω
×E =

(
k

ω
⊗ v − v · k

ω

)
·E (1.7)

k

ω
× k

ω
×E =

(
k

ω
⊗ k

ω
− k2

ω2

)
·E , (1.8)
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Figure 1.2. Frame adopted in this manuscript. The wavevector is taken in the xy plane while the plasma
mean drift velocity β lies on the x axis.

we can recast Eq. (1.6) as{
ω2

[
1 +

∑
s

q2
sns
ms

∫
dp

p

γ

δpf
(0)
s

ω − k · v
·
(

1 +
k⊗ v − k · v

ω

)]
+ k⊗ k− k2

}
·E = 0 . (1.9)

This equation has non-zero solutions for E if and only if the determinant of the tensor in braces
vanishes. We will now suppose that the distribution functions are gyrotropic, that is, of the form
(f(px, p

2
y + p2

z)). The y axis is chosen in the plane made by the x axis and the wavevector so that
the wavevector lies in the xy plane. We introduce the angle θ between the wavevector k and the
x axis. The frame is illustrated in Fig. 1.2. The z axis is taken out of the (x̂, k) plane. The
symmetry of Eq. (1.9) shows us that the xz and yz components of the bracketed expression are
equal to zero. The dispersion relation, relating the wavevector k to the frequency ω, is deduced
from the determinant of the resulting non-linear system:

ω2εzz − k2c2 = 0 , (1.10)

(ω2εxx − k2
yc

2)(ω2εyy − k2
xc

2)− (ω2εxy + kykxc
2)2 = 0 . (1.11)

We have introduced the dielectric tensor

ε = 1 +
∑
s

χs , (1.12)

where the susceptibility tensor χs for the sth species is

χs =
ω2
ps

ω2

∫∫∫
d3p

p

γ
⊗ ∂pf (0)

s +
∑
s

ω2
ps

ω2

∫∫∫
d3p

[
v ⊗ p

γ

]
k · ∂pf (0)

s

ω − k · v
, (1.13)

and ωps =
√
nsq2

s/ms is the plasma frequency of the sth species.

1.1.2 Mode solving using the generalized Fried and Gould method

In the following, we will look for the temporal instabilities of a given plasma system. These instabil-
ities are characterized by real wavevectors and complex frequencies, solutions D(ω(k),k) = 0 where
D(ω,k) denotes the left-hand side of either (2.6) of (1.11). To compute ω(k), a numerical scheme
originally proposed by Fried and Gould (Fried & Gould 1961) in the non-relativistic electrostatic
regime has been generalized to the relativistic regime. This method is based on the formulation
of the real wavevector as a function of the complex phase speed. For a given set of (gyrotropic)
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distribution functions f
(0)
s and their associated plasma frequencies ωps, we introduce a modified

susceptibility tensor

Xs =
ω2

ω2
ps

χs =

∫∫∫
d3p

p

γ
⊗ ∂pf (0)

s +
∑
s

ω2
ps

ω2

∫∫∫
d3p

[
v ⊗ p

γ

]
cosα∂pxf

(0)
s + sinα∂pyf

(0)
s

vφ − vx cosα− vy sinα
.

(1.14)
We emphasize that Xs does not depend on the wavevector modulus k, but only on the phase speed
βφ and the orientation of the wavevector through the last term of Eq. (1.14). The dispersion
relation Eq. (1.11) can be recast as a polynomial equation in k2 = |k|2 using the angle θ defined as
ky = k sin θ and kx = k cos θ (Fig. 1.2):

ak4 + bk2 + c = 0 , (1.15)

with

a = (β2
φ − sin2 θ)(β2

φ − cos2 θ)− cos2 θ sin2 θ , (1.16)

b = (sin2 θ − β2
φ)
∑
s

ω2
psXyy(cos2 θ − β2

φ)
∑
s

ω2
psXxx + 2 cos θ sin θ

∑
s

ω2
psXyx , (1.17)

c =

(∑
s

ω2
psXyy

)(∑
s

ω2
psXxx

)
−

(∑
s

ω2
psXyx

)2

, (1.18)

∆ =
√
b2 − 4ac . (1.19)

In Eqs. (1.16), (1.17) and (1.18), the subscript s has been omitted on the tensor elements Xαβ for
the sake of clarity. The wavevector modulus is then given by:

k2 =
−b(βφ) +

√
∆(βφ)

2a(βφ)
≡ G1(βφ) , (1.20)

k2 =
−b(βφ)−

√
∆(βφ)

2a(βφ)
≡ G2(βφ) . (1.21)

This formulation, in which k2(> 0) is a function of βφ only, lends itself to the efficient numerical
scheme introduced by Fried and Gould (Fried & Gould 1961) in a non-relativistic framework. This
technique consists, first, in determining the locus of the zeroes of =G1,2(βφ). This can be readily
performed by means of a contour plot in a finely discretized portion of the complex βφ plane. Then,
we retain those zeroes fulfilling <G1,2(βφ) > 0 and identify k =

√
<G1,2(βφ). Depending on the

βφ domain considered, this method allows us to simultaneously solve for a set of discrete solutions
ωn(k, θ). We highlight that no hypothesis has been made on the form of the gyrotropic distribution
function and on the particles’ properties. This scheme is then valid for any gyrotropic distribution
function (relativistic or not) for which Xs is tractable. It has been presented and exploited in (Ruyer
et al. 2013) for a Maxwell-Jüttner type distribution function. We will now derive the susceptibility
tensors for three different distribution functions used in this manuscript.
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Figure 1.3. First step of Sec. 1.2 changing the xyz-frame to the x′y′z′-frame.

1.2 The susceptibility tensor for a 3D Maxwell-Jüttner distribu-
tion (Bret et al. 2010a)

1.2.1 Derivation

The particle species are assumed to obey drifting Maxwell-Jüttner distribution functions (Wright
& Hadley 1975; Bret et al. 2010a):

f (0)
s (p) = Fs exp [−µs(γ − βdspx)] , (1.22)

where γ =
√

1 + p2/(msc)2 is the relativistic factor, µs = msc
2/Ts the normalized inverse temper-

ature and βds = 〈vz/c〉 the z-aligned mean velocity. Moreover, in all Sec. 1.2, the momenta are
normalized to mc. We have introduced the normalization factor Fs = µs/4π(msc)

3γ2
dsK2(µs/γds),

with γds = (1− β2
ds)
−1/2 and K2 the modified Bessel function of the second kind. The distribution

functions are normalized to unity:
∫
f

(0)
s (p)d3p = 1.

This distribution can be obtained by maximizing the specific entropy of a relativistic system
for fixed values of the particle number, total momentum and total energy. Hence it represents the
correct generalization to the relativistic framework of the usual Maxwellian distribution and thus
characterizes the equilibrium distribution of a relativistic plasma. Note that this theoretical result
has been recently confirmed by mean of molecular dynamics simulations (Cubero et al. 2007).

The related susceptibility tensors have been published in Refs. (Bret et al. 2010a; Ruyer et al.
2013). We will detail here the three main calculation steps, (omitting the s subscript) and assuming
a wavevector lying in the xy plane (with kx = k cos θ and ky = k sin θ):

Xαβ = −µsFs
∫∫∫

d3p

[
pα
γ

(
pβ
γ
− βdδβ,z

)
+ vα

pβ
γ

cos θ(px/γ − βd) + sin θ
py
γ

βφ − vx cos θ − vy sin θ

]
exp [−µs(γ − βdspx)] .

(1.23)
Since the calculations are similar for all the tensor components, we will only present the calculation
for the Xyy component. All the results will be gathered at the end of the section.

First step: alignment of the x-axis with k. Taking the yy component of Eq. (1.23) and
changing the xyz-frame to the x′y′z′-frame where the x′-axis is aligned with the wavevector k, as
illustrated by Fig. 1.3:

Xyy = −µsFs(βφ − βd cos θ)

∫∫∫
d3p′

(
p′y
γ cos θ + p′z

γ sin θ)2

γβφ − p′z
exp [−µs(γ − βdsp′z cos θ − βdsp′y sin θ)] .

(1.24)
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Only p′z appears in the Landau pole of Eq. (1.24), simplifying the complex analysis of Sec. 1.2.2.

Second step: from the momentum space to velocity space. The second variable substitu-
tion consists in shifting from Cartesian momentum space to a cylindrical velocity space:

p′x = γv‖ , (1.25)

p′y = γv⊥ sinα , (1.26)

p′z = γv⊥ cosα . (1.27)

The determinant of the Jacobian is here |J | = γ5v⊥, giving:

Xyy =− µsFs(βφ − βd cos θ)

∫ 1

−1
dv‖

∫ √
1−v2‖

0
dv⊥

∫ 2π

0
dα

(v⊥ cos θ sinα+ v‖ sin θ)2

βφ − v‖
γ5v⊥ exp [−µs(γ − βdsγv‖ cos θ − βdsγv⊥ sinα sin θ)] . (1.28)

We now introduce the phase speed functions A, B and C, yielding

Xyy = −2πµsFs(βφ − βd cos θ)
[
cos θ2A+ sin θ2B + 2 cos θ sin θC

]
, (1.29)

with

A =
1

2π

∫ 1

−1
dv‖

1

βφ − v‖

∫ √
1−v2‖

0
dv⊥γ

5v3
⊥e
−µsγ(1−βd cos θv‖)

∫ 2π

0
dα sinα2e−µsγβdv⊥ sin θ sinα , (1.30)

B =
1

2π

∫ 1

−1
dv‖

v2
‖

βφ − v‖

∫ √
1−v2‖

0
dv⊥γ

5v⊥e
−µsγ(1−βd cos θv‖)

∫ 2π

0
dαe−µsγβdv⊥ sin θ sinα , (1.31)

C =
1

2π

∫ 1

−1
dv‖

v‖

βφ − v‖

∫ √
1−v2‖

0
dv⊥γ

5v2
⊥e
−µsγ(1−βd cos θv‖)

∫ 2π

0
dα sinαe−µsγβdv⊥ sin θ sinα . (1.32)

The integrals over α are now tractable using the formula (Ref. (Abramowitz & Stegun 1964)):∫
dα exp (−µsγβdv⊥ sin θ sinα) = 2πI0(µγβdv⊥ sin θ) . (1.33)

In the above equation, In stands for the modified Bessel function of the first kind. Taking the
derivative of Eq. (1.33) with respect to γ gives:∫

dα sinα exp (−µsγβdv⊥ sin θ sinα) = −2πI1(µγβdv⊥ sin θ) , (1.34)∫
dα sinα2 exp (−µsγβdv⊥ sin θ sinα) = π (I0(µγβdv⊥ sin θ) + I2(µγβdv⊥ sin θ)) . (1.35)
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Plugging Eqs. (1.33), (1.34) and (1.35) into (1.30), (1.31) and (1.31) yields:

A =
1

2

∫ 1

−1
dv‖

1

βφ − v‖

∫ √
1−v2‖

0
dv⊥γ

5v3
⊥e
−µsγ(1−βd cos θv‖) (I0(µγβdv⊥ sin θ) + I2(µγβdv⊥ sin θ)) ,

(1.36)

B =

∫ 1

−1
dv‖

v2
‖

βφ − v‖

∫ √
1−v2‖

0
dv⊥γ

5v⊥e
−µsγ(1−βd cos θv‖)I0(µγβdv⊥ sin θ) , (1.37)

C =−
∫ 1

−1
dv‖

v‖

βφ − v‖

∫ √
1−v2‖

0
dv⊥γ

5v2
⊥e
−µsγ(1−βd cos θv‖)I0(µγβdv⊥ sin θ) . (1.38)

Third step The final step consists in changing the variable v⊥ of the quadratures Eqs. (1.39),

(1.40) and (1.41) to t = γ(1 − v2
‖)

1
2 . Given v⊥dv⊥ = dt(1 − v2

‖)/t
3 and v2

⊥ = (1 − t−2)(1 − v2
‖), we

get

A =
1

2

∫ 1

−1
dv‖

fA(βφ)

βφ − v‖
, (1.39)

B =

∫ 1

−1
dv‖

fB(βφ)

βφ − v‖
, (1.40)

C =−
∫ 1

−1
dv‖

fC(βφ)

βφ − v‖
, (1.41)

with

fA(βφ) =
γ‖

2

∫ +∞

1
dt(t2 − 1)

[
I0(ν(t2 − 1)1/2) + I2(νs(t

2 − 1)1/2)
]
e−ρst , (1.42)

fB(βφ) =v2
‖γ

3
‖

∫ +∞

1
dtI0(νs(t

2 − 1)
1
2 )t2e−ρst , (1.43)

fC(βφ) =− v‖γ2
‖

∫ +∞

1
dt

√
t− 1

t+ 1
(t+ 1)tI1(νs(t

2 − 1)1/2)e−ρst . (1.44)

We have defined:

νs = µsβds sin θ (1.45)

ρs = µsγ‖(1− βdsv‖ cos θ) (1.46)

γ‖ = (1− v2
‖)
−1
2 . (1.47)

The quadratures of Eqs. (1.42), (1.43) and (1.44) can be performed exactly using the formula
(Abramowitz & Stegun 1964):

∫ +∞

1
dt

(
t− 1

t+ 1

)N
2

IN

(
ν
√
t2 − 1

)
e−ρt =

(
ν

ρ+
√
ρ2 − ν2

)N
e−
√
ρ2−ν2√

ρ2 − ν2
= gN (ρ) , (1.48)
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where N is a natural number. The functions fA, fB and fC of Eqs. (1.42), (1.43) and (1.44) can
be related to the derivatives of gN (ρ) (defined above). We obtain:

fA(βφ) =
γ‖

2

(
∂2
ρ − 1

)
g0(ρ) +

γ‖

2

(
∂2
ρ − 2∂ρ + 1

)
g1(ρ) , (1.49)

fB(βφ) =v2
‖γ

3
‖∂

2
ρg0(ρ) , (1.50)

fC(βφ) =− v‖γ2
‖
(
∂2
ρ − ∂ρ

)
g1(ρ) . (1.51)

Plugging Eq. (1.48) into Eqs. (1.49), (1.50) and (1.51) gives the tensor Xyy. Proceeding along
the same lines, the tensor elements Xxy and Xxx can be expressed as functions of the quadratures
A, B and C, while the calculation of Xzz involves another quadrature D. The final results, (given
εα,β = δα,β +

∑
s ω

2
psXα,β/ω

2) yields

Xzz = −2πFsµs (βφ − βds cos θ)Ds , (1.52)

Xyy = −2πFsµs (βφ − βds cos θ)
(
As cos2 θ + 2Cs cos θ sin θ +Bs sin2 θ

)
, (1.53)

Xxx = −2πFsµs (βφ − βds cos θ)
(
As sin2 θ − 2Cs cos θ sin θ +Bs cos2 θ

)
+ µsβ

2
ds , (1.54)

Xyx = −2πFsµs (βφ − βds cos θ)
[
(Bs −As) cos θ sin θ + Cs(cos2 θ − sin2 θ)

]
. (1.55)

Each function X ∈ {As, Bs, Cs, Ds} is defined as

X(βφ) =

∫ 1

−1
dβ

fX(γ, ρs, νs)

βφ − β
(=βφ > 0) , (1.56)

with

fAs =
γe−hs

h5
s

[
(hs + 1)(ρ2

s + 2ν2
s ) + ν2

sh
2
s

]
,

fBs =
β2γ3e−hs

h5
s

[
(hs + 1)(2ρ2

s + ν2
s ) + ρ2

sh
2
s

]
,

fCs = −νs
βγ2ρse

−hs

h5
s

[
3(hs + 1) + h2

s

]
, (1.57)

fDs =
γe−hs

h3
s

(hs + 1) ,

where

ρs = µsγ(1− βdsβ cos θ) , (1.58)

νs = µsβds sin θ , (1.59)

hs = (ρ2
s − ν2

s )1/2 . (1.60)

1.2.2 Branch cuts

In order to compute Eqs. (1.52)-(1.55) for (ω, k) ∈ C × R, the function Z ∈ {A,B,C,D} (the
index s is omitted for the sake of clarity) must be analytically continued to the =βφ ≤ 0 complex
half-plane. To this goal, it is convenient to use the following expression

Z(βφ) =−
∫ 1

−1
dβ

fZ(β)− fZ(βφ)

β − βφ
− fZ(βφ) ln

(
βφ − 1

βφ + 1

)
, (1.61)
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(a) (b)

Figure 1.4. (a) Branch cuts (colored solid lines) of the function Z ∈ {A,B,C,D} in the complex βφ plane
for θ = 0 and θ = π/2. (b) Map of <B in the complex βφ plane for µ = 1, βd = 0.9 and θ = 0 which evidence
the branch cut ] + 1,+1− i∞[.

where ln denotes a particular branch of the complex logarithm to be defined. The integrand of
Eq. (1.61) has no singularity, and therefore lends itself to a standard numerical integration scheme.
Because Z has to be computed on the real βφ axis, the logarithm’s branch cuts are chosen to be
]−1−i∞,−1[∪]+1,+1−i∞[. They are illustrated as blue plain lines in Fig. 1.4(a). The calculation
of <B Eq. (1.40) in the complex βφ-plane, displayed in Fig 1.4(b), evidences the discontinuity
caused by these branch cuts. This implies that the phase angles θβ±1 = arg(β ± 1) lie within the
interval −π/2 < θβ±1 < 3π/2. This specification leads to the same branch cuts for the multivalued
relativistic factor

γ = i(|β − 1||β + 1|)−1/2 exp [−i(θβ+1 + θβ−1)] . (1.62)

Similarly, the analytical continuation of the function h(β) (1.60) follows from its factorized form

h(β) = µγ
√

(βdβ − ζ+)(βdβ − ζ−) , (1.63)

ζ± = cosα± isin θ
γd

. (1.64)

The phase angles θβdβ−ζ± = arg(βdβ−ζ±) are now restricted to the intervals−π/2 < θβdβ−ζ− < 3π/2
and −3π/2 < θβdβ−ζ+ < π/2, which leads to the branch cuts ]− 1− i∞,−1[∪] + 1,+1− i∞[∪]ζ−−
i∞, ζ−[∪]ζ+ + i∞, ζ+[. They are plotted as red and green lines in Fig. 1.4(a). Equation (1.56)
shows that the function Z inherits the branch cuts ]−1− i∞,−1[∪]ζ−− i∞, ζ−[ in the lower half βφ
plane. By contrast, it is of the Cauchy type in the upper half βφ plane, and therefore everywhere
holomorphic.

As an example, we now make use of the generalized Fried and Gould solver for two symmetric
Maxwell-Jüttner electron distribution functions of parameters µ = 10 (T = 51keV) and βd = ±0.9.
We only discretize the upper part of the complex phase-speed plane (=(βφ) > 0). Hence, we only
solve the unstable eigenmodes of the system. We thus obtain a map displaying the growth rate
[Figs. 1.5(a)] and real frequency [Figs. 1.5(b)] in the (kx, ky) plane. Due to our finite resolution of
the complex βφ-plane, we solve neither the small nor the negative values of =(βφ) . These unresolved
parts of the complex βφ-plane result in the white areas of Figs. 1.5(a,b).

Figure 1.5(a) evidences that a significant part of the (kyωp/c, kxωp/c)-plane is unstable (pos-
itive value =(ω)). The fastest-growing mode (Γ/ωpe ∼ 0.35) is found at kyc/ωpe = 0.8, and thus
corresponds to a transverse instability (k ⊥ βd). This mode is non-propagating since <(ω) = 0
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(a) Imaginary frequency (b) Real frequency

Figure 1.5. (a) Growth rate =(ω) and (b) real frequency <(ω) normalized to the plasma frequency in
the (kyωp/c, kxωp/c)-plane for two Maxwell-Jüttner distributed electron beams of parameters µ = 10 and
βd = ±0.9. The dispersion relation solved is Eq. (1.21).

[Fig. 1.5(b)] and solution of Eq. (1.21) which corresponds to the propagation of the Ex-component
of the electric field. A wavevector along the y-axis, thus transverse to Ex, corresponds to an elec-
tromagnetic wave (E ⊥ k). Hence the most unstable part of the (kyωp/c, kxωp/c)-plane [Fig.
1.5(a)] corresponds to a non-propagating and transverse electromagnetic instability, namely the
Weibel-filamentation instability (Weibel 1959).

1.3 The susceptibility tensor of a 2D bi-Maxwellian distribution

1.3.1 The susceptibility tensor components

The particle distribution is now taken to be a 2D non-relativistic bi-Maxwellian distribution function
defined as:

f (0)
s =

1

2π
√
TxTy

exp

(
−ms(vx − vd)2

2Tx
−
msv

2
y

2Ty

)
. (1.65)

The parameters are the x-aligned drift velocity vd and the axial and transverse temperature Tx and
Ty. The X tensor of Eq. (1.23) can be linked to the plasma dispersion function Z (Fried et al.
1960). These calculations being simpler than in Sec. 1.2, we will only present the main stages of the
calculation. At first, we will make a variable substitution which consists in aligning the x axis with
the wavevector as in Sec. 1.2.1. The integration on the variable perpendicular to the wavevector is
now tractable and involve Gaussian integrals. The last integral will then be linked to the derivatives
of Z using: ∫ +∞

−∞
dt
e−t

2

t− x
=
√
πZ(x) , (1.66)∫ +∞

−∞
dt
te−t

2

t− x
=
√
π (1 + xZ(x)) = −

√
π

2
∂xZ(x) , (1.67)∫ +∞

−∞
dt
t2e−t

2

t− x
= −
√
π

2
x∂xZ(x) , (1.68)∫ +∞

−∞
dt
t3e−t

2

t− x
=

√
π

2

(
1− x2∂xZ(x)

)
. (1.69)
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We thus obtain:

Xxx =− 1 +

[
cos2(θ) + sin2(θ)

µ2
a

µ2
⊥
− sin(2θ)

µa
µ⊥

] [
1− ξ2Z ′(ξ)

]
+ 2

√
µ‖

2
sin(θ)

µa
µ⊥

βdZ(ξ)

−
[
β2
dµ‖ +

µ‖

µ⊥
sin2(θ)− 2 sin2(θ)

µ2
a

µ2
⊥

+ 2 sin(2θ)
µa
µ⊥

]
Z ′(ξ)

2

− 2

√
µ‖

2
βd

[
cos(θ)− sin(θ)

µa
µ⊥

]
ξZ ′(ξ) , (1.70)

Xyy =− 1−
[
µ‖

µ⊥
cos2(θ)− 2 cos2(θ)

µ2
a

µ2
⊥
− 2 sin(2θ)

µa
µ⊥

]
Z ′(ξ)

2

+

[
sin2(θ) + cos2(θ)

µ2
a

µ2
⊥

+ sin(2θ)
µa
µ⊥

] [
1− ξ2Z ′(ξ)

]
, (1.71)

Xxy =−
[
cos(θ) sin(θ)(1− µ2

a

µ2
⊥

) + cos(2θ)
µa
µ⊥

]
ξ
[
Z(ξ) + ξZ ′(ξ)

]
− µa
µ⊥

√
µ‖

2
βd cos(θ)Z(ξ)

− cos(θ) sin(θ)

[
µ‖

µ⊥
− 1− µ2

a

µ2
⊥

]
Z ′(ξ)

2
−
[
sin(θ) + cos(θ)

µa
µ⊥

]
βd

√
µ‖

2
ξZ ′(ξ) . (1.72)

We have introduced µa, µ‖, µ⊥ and ξ:

µa = cos(θ) sin(θ)

(
m

Tx
− m

Ty

)
(1.73)

µ‖ =
m cos2(θ)

Tx
+
m sin2(θ)

Ty
(1.74)

µ⊥ =
m sin2(θ)

Tx
+
m cos2(θ)

Ty
(1.75)

ξ =

√
µ‖

2

(ω
k
− vd cos(θ)

)
(1.76)

Equations (1.70), (1.71) and (1.72) make use of the plasma dispersion function Z and its argument ξ
[Eq. (1.76)]. We emphasize that the above tensor elements depend only on the plasma parameters,
complex phase velocity and propagation angle and are therefore adapted to the resolution scheme
introduced previously.

Note that the plasma dispersion function can be accurately approximated using a rational ex-
pansions (Weideman 1995), thus allowing fast computations of the dielectric tensor elements.

1.3.2 Particular cases of longitudinal and transverse modes

Longitudinal modes We will now derive the dispersion relation of a two counter-streaming
bi-Maxwellian plasmas (for s = 1 or 2: Tx1 = Tx2, Ty1 = Ty2, ωp1 = ωp2 and vd1 = −vd2). The
tensor component associated with the mode k ‖ E along the x axis, is obtained by plugging θ = 0
into Eq. (1.70)

Xxx(θ = 0) = −
∑
s

ω2
ps

k2
xc

2

ms

2Txs
∂ξsZ(ξs) , (1.77)

where ξs = (ω/kx − vds)
√
ms/2Txs. Moreover, under these conditions, one can show that the Xxy

component vanishes, which results in εxy = 0. Hence, the longitudinal dispersion relation [Eq.
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(1.11)] writes εxx = 0, that is,

1−
∑
s

ω2
ps

k2
xc

2

ms

2Txs
∂ξsZ(ξs) = 0 , (1.78)

as derived a long time ago in Fried & Gould (1961) and (Bohm & Gross 1949).

Transverse modes For the same two-stream bi-Maxwellian system, we now consider the elctro-
magnetic dispersion relation of transverse modes (with k ⊥ βd). For an anisotropic enough system,
these modes correspond to the non-relativistic Weibel instability. Plugging α = π/2 into Eq. (1.71)
yields the susceptibility tensor component Xxx

Xxx(θ = π/2) = +
∑
s

ω2
ps

ωkyc

[
1 +

msv
2
ds + Tsx
Tsy

(1 +XsZ(Xs))

]
, (1.79)

where ξs =
√
ms/2Txsω/ky. In the symmetric system we consider, Xxy vanishes [Eq. 1.72] and the

electromagnetic dispersion relation simplifies to ω2εxx − k2
yc

2 = 0. It now reads

ω2 − k2
yc

2 −
∑
s

ω2
ps

[
1 +

msv
2
ds + Tsx
Tsy

(1 + ξsZ(ξs))

]
= 0 , (1.80)

consistently with Davidson et al. (1972).

1.4 The susceptibility tensor for 2D relativistic multi-waterbag
distribution

1.4.1 Analytical expression of the dielectric tensor (Bret et al. 2010b)

The 2D relativistic waterbag distribution function is (Gremillet et al. 2007; Bret et al. 2010b):

f (0) =
1

4p⊥p‖
H(p‖ − |px − pd|)H(p⊥ − |py|) , (1.81)

where H is the Heaviside function. This distribution is characterized by two momentum spreads,
p‖ and p⊥, respectively in the directions x and y and a mean momentum pd aligned with the x axis.
The derivatives of the distribution function in Eq. (1.14) are equal to zero except at the borders of
the distribution:

∂pxf
(0) = − 1

4p⊥p‖
H(p⊥ − |py|)δ

(p‖
2
− |px − pd|

)
sgn(px − pd) , (1.82)

∂pxf
(0) = − 1

4p⊥p‖
H(p‖ − |px − pd|)δ (p⊥ − |py|) sgn(py) . (1.83)

Plugging Eqs. (1.82) and (1.83) into (1.23) yields the susceptibility tensors published in (Bret et al.
2010b):

Xαβ = Aαβ + cos(θ)Bαβ + sin(θ)Cαβ . (1.84)
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The tensorial elements Aαβ and Bαβ write

Axx =− 1

2p⊥
ln

pd + p‖ +
√

1 + (pd + p‖)2 + p2
⊥

pd − p‖ +
√

1 + (pd − p‖)2 + p2
⊥

 , (1.85)

Ayy =
pd − p‖
4pdp⊥

ln

 p⊥ +
√

1 + (pd − p‖)2 + p2
⊥

−p⊥ +
√

1 + (pd − p‖)2 + p2
⊥

− pd + p‖

4pdp⊥
ln

 p⊥ +
√

1 + (pd + p‖)2 + p2
⊥

−p⊥ +
√

1 + (pd + p‖)2 + p2
⊥

 ,
(1.86)

Axy =0 . (1.87)

Bxx =
p⊥

4p‖

√
1 + p2

⊥

F0

x, sin(θ)p⊥√
1 + p2

⊥

, vφ,− cos(θ)

−F0

x,− sin(θ)p⊥√
1 + p2

⊥

, vφ,− cos(θ)

sinh−1

(
pd+p‖√
1+p⊥2

)

sinh−1

(
pd−p‖√
1+p⊥2

) ,
(1.88)

Byy =

√
1 + p2

⊥

4p‖p⊥

F2

x, sin(θ)p⊥√
1 + p2

⊥

, vφ,− cos(θ)

−F2

x,− sin(θ)p⊥√
1 + p2

⊥

, vφ,− cos(θ)

sinh−1

(
pd+p‖√
1+p⊥2

)

sinh−1

(
pd−p‖√
1+p⊥2

) ,
(1.89)

Bxy = − 1

4p‖

F1

x, sin(θ)p⊥√
1 + p2

⊥

, vφ,− cos(θ)

−F1

x,− sin(θ)p⊥√
1 + p2

⊥

, vφ,− cos(θ)

sinh−1

(
pd+p‖√
1+p⊥2

)

sinh−1

(
pd−p‖√
1+p⊥2

) .
(1.90)

The tensorial elements of Cαβ verify:

Cxx =

√
1 + (pd − p‖)2

4p‖p⊥

F2

x,− cos(θ)
pd − p‖√

1 + (pd − p‖)2
, vφ,− sin(θ)

sinh−1

(
p⊥√

1+(pd−p‖)
2

)

− sinh−1

(
p⊥√

1+(pd−p‖)
2

)

−

√
1 + (pd + p‖)2

4p‖p⊥

F2

x,− cos(θ)
pd + p‖√

1 + (pd + p‖)2
, vφ,− sin(θ)

sinh−1

(
p⊥√

1+(pd+p‖)
2

)

− sinh−1

(
p⊥√

1+(pd+p‖)
2

) ,

(1.91)
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Cyy =
(pd − p‖)2

4p‖p⊥

√
1 + (pd − p‖)2

F0

x,− cos(θ)
pd − p‖√

1 + (pd − p‖)2
, vφ,− sin(θ)

sinh−1

(
p⊥√

1+(pd−p‖)
2

)

− sinh−1

(
p⊥√

1+(pd−p‖)
2

)

−
(pd + p‖)

2

4p‖p⊥

√
1 + (pd + p‖)2

F0

x,− cos(θ)
pd + p‖√

1 + (pd + p‖)2
, vφ,− sin(θ)

sinh−1

(
p⊥√

1+(pd+p‖)
2

)

− sinh−1

(
p⊥√

1+(pd+p‖)
2

) ,

(1.92)

Cxy =
p− p‖
4p‖p⊥

F1

x,− cos(θ)
pd − p‖√

1 + (p− p‖)2
, vφ,− sin(θ)

sinh−1

(
p⊥√

1+(p−p‖)
2

)

− sinh−1

(
p⊥√

1+(p−p‖)
2

)

−
p+ p‖

4p‖p⊥

F1

x,− cos(θ)
p+ p‖√

1 + (pd + p‖)2
, vφ,− sin(θ)

sinh−1

(
p⊥√

1+(pd+p‖)
2

)

− sinh−1

(
p⊥√

1+(pd+p‖)
2

) . (1.93)

The function Fn are defined as

Fn(·, a, b, c) =

∫
sinhn

a+ b coshn +c sinhn
(1.94)

For n = (0, 1, 2), we get

F0(x, a, b, c) =
2√

b2 − a2 − c2
tan−1

[
(b− a) tanh x

2 + c
√
b2 − a2 − c2

]
, (1.95)

F1(x, a, b, c) =
2ac

(c2 − b2)
√
b2 − a2 − c2

tan−1

[
(a− b) tanh x

2 − c√
b2 − a2 − c2

]
+

cx

c2 − b2
− b

c2 − b2
ln (a+ b cosh(x) + c sinh(x)) , (1.96)

F2(x, a, b, c) =− 2
a2(b2 + c2)− b2(b2 − c2)

(c2 − b2)2
√
b2 − a2 − c2

tan−1

[
(a− b) tanh x

2 − c√
b2 − a2 − c2

]
− a(b2 + c2)x

(c2 − b2)2
+
b sinh(x)− c cosh(x)

c2 − b2
+

2abc

(c2 − b2)2
ln (a+ b cosh(x) + c sinh(x)) .

(1.97)

These formulae being fully analytical, the numerical computations of the corresponding suscepti-
bility tensors can be very fast. Hence, this allows the use of a large number of waterbags for an
accurate fit of any distribution functions. This is the basis of the multi-waterbag model presented
in Sec. 1.4.3.
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1.4.2 Branch cuts

The functions F0(x, a, b, c), F1(x, a, b, c) and F2(x, a, b, c) of Eqs. (1.95), (1.96) and (1.97) are
multivaluated for the complex phase speed vφ = b. The logarithmic term can be recast as

ln(a+ vφ cosh(x)± c sinh(x)) = ln(|a+ vφ cosh(x)± c sinh(x)|) + iθa+vφ cosh(x)±c sinh(x) . (1.98)

We will set the complex phase of vφ±
√
a2 + c2 and a+vφ cosh(x)±c sinh(x) in the interval [−π, π].

1.4.3 Multi-waterbag decomposition

Principle

The computation of Eqs. (1.16), (1.17) and (1.18) can be performed with over 10000 waterbags
(Eqs. (1.84)-(1.93)) in only a few seconds by means of a standard mathematical software (Matlab).
This enables to solve the dispersion relation of any relativistic distribution function approximated
to a good accuracy as a sum of waterbags.

We have employed a very simple fitting technique which proceeds along two steps. The first step
consists in determining the locus of the distribution function in the momentum space of interest.
We introduce the maximum value of the distribution function, fmax, and the number of decades,
Nd, of the given distribution function f (0) we want to capture. Hence, we will only consider the
part of f (0) verifying f (0) ∈ [10−Ndfmax, fmax]. We will decompose this interval in Nf mesh-points,
resulting in Nf loci of f (0). These loci thus verify f (0)(px, py) = fmax10−kNd/Nf for a natural number
1 ≤ k ≤ Nf . They are easily determined via a contour plot in a finely discretized portion of the
momentum plane as illustrated in Fig. 1.6(a,b).

In a second step, we discretize these loci in Nx different waterbags. For that purpose we in-
troduced ∆px,k, the x-momentum width of the kth locus on the x-axis and l, a natural number
verifying 0 ≤ l < Nx. For each locus py,k(px), we obtain Nx different waterbags with mean momen-
tum pd,k,l = (l + 0.5)∆px,k/Nx, momentum spreads p‖,k,l = ∆px,k/2Nx and p⊥ = 2py,k(pd,k,l), and

statistical weight fk = fmax10−kNd/Nf (1− 10−Nd/Nf ). This step is depicted in Fig. 1.6(c) where the
waterbags have been colored for the sake of clarity. This scheme finally results in the superposition
of NxNf different waterbags characterized by their mean momentum, momentum spreads and sta-
tistical weight as illustrated by Fig. 1.6(d). The final normalized and approximated distribution
function, fMW, is given by:

fMW =

Nx∑
l=1

Nf∑
k=1

fk − fk−1

p⊥,k,lp‖,k,l
H(p‖,k,l − |px − pd,k,l|)H(p⊥,k,l − |py|) , (1.99)

with fk=0 = 0.
The distribution fMW depends on three natural numbers Nx, Nf and Nd. The two first param-

eters determine the resolution of, respectively, the px-axis and the distribution function level. The
third one is the number of distribution decades we want to approximate.

Applicability of the scheme

Because of its simplicity, our fitting scheme is robust and can be applied to a large variety of
distributions, provided they are even function of py as imposed by the model-Waterbag function
[Eq. (1.81)]. Moreover, this algorithm is based on the assumption that the loci of the distribution
function are close to ellipses centered on the x-axis. Yet the distribution functions taken from PIC
simulations usually show elliptic loci only over the finely resolved part of the momentum space.
The resolution of the thermal tail of the particle distribution function is usually noisy and highly

39



Chapter 1. Linear dispersion relation of a collisionless relativistic plasma

(a) Initial distribution function f (0) (b) First step
for Nf = 10, Nd = 3

(c) Second step (d) Final result

for f (0) = 10−3, Nx = 10

Figure 1.6. (a) Logarithmic-scale colormap of a 3D Maxwell-Jüttner distribution function of Eq. (1.22)
with µ = 10 and βd = 0.9 at pz = 0 . (b) Result of the first step of the multi-waterbag decomposition
of f (0) with Nf = 10, Nd = 3. (c) Taking the locus f (0)(p) = 10−3 of (b), the second step of the multi-
waterbag decomposition for Nx = 10 gives the colored waterbags. (d) Logarithmic-scale colormap of the
multi-waterbag decomposition of (a) with Nx = 10, Nf = 10 and Nd = 3.

sensitive to the number of macroparticles in the simulation. This observation has motivated us to
introduce the number of decades Nd, over which the fitting scheme is applied. One has to make sure
that the Nd first decades of the distribution are well resolved by the macroparticles. In this thesis,
we have typically used Nd = 2− 3 for a distribution function calculated over ∼ 105 macroparticles.

Multi-waterbag decomposition applied to the filamentation instability

We will now apply the multi-waterbag decomposition to the numerical resolution of the growth rate
of the Weibel-filamentation instability. The dispersion relation of the latter is given by Eq. (1.21)
with θ = π/2.

Let us first consider the case of two symmetric electron beams described by 2D bi-Maxwellians
[Eq. (1.65)] with βd = ±0.2 and Tx = Ty = 5.11 keV. The solid red curve of Fig. 1.7(a) plots the
exact growth rate obtained by the generalized Fried & Gould method (Sec. 1.1.2). This growth rate
is compared with that obtained from the decomposition of the bi-Maxwellian distribution into 100,
400, 900 and 2500 waterbags (in blue lines). The 100-waterbag curve captures the low-k part of
the curve but not its peak value nor its decreasing high-k side. As expected, the exact growth rate
is reproduced to within an accuracy increasing with the waterbag resolution. Figure 1.7(a) shows
that a resolution of ∼ 1000 waterbags is enough to reproduce satisfactorily both the maximum and
the high-k tail of the growth rate. This evidences the validity of the multi-waterbag decomposition
scheme.

As a second example, let us address the case of two 3D Maxwell-Jüttner distributed electron
beams with βd = ±0.9 and T = mec

2/100. The exact growth rate is displayed in Fig. 1.7(b)
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(a) βd = 0.2, T = mec
2/100 (b)βd = 0.9, T = mec

2/100

Figure 1.7. Filamentation growth rate solved using the scheme of Sec. 1.1.2. (a) Non-relativistic 2D
counter-streaming bi-Maxwellian filamentation plasma with βd = ±0.2 and T = mec

2/100 (red line) compared
to 2D (normalized) multi-waterbag decomposition. (b) Comparison between 3D Maxwell-Jüttner for βd = 0.9,
T = mec

2/10 and 2D (normalized) multi-waterbag decomposition.

as a solid red line. The blue lines plot the growth rates computed from multi-Waterbag fit of
f (0)(px, py, pz = 0) with varying accuracy. While these curves show convergence for Nf > 1000, a
15% discrepancy with the exact curve remains, owing to the reduced dimensionality of the fitting
waterbags.

1.5 Summary

The resolution scheme of a non-relativistic electrostatic Maxwellian dispersion relation introduced
by Fried and Gould in 1961 has been generalized. It can be applied to the fully electromagnetic
dispersion relation in the entire k-space. Moreover, it can be applied to any gyrotropic distribution
function, provided the system has a symmetry axis. We have gathered in this chapter, the di-
electric tensors associated with the Maxwell-Jüttner, the bi-Maxwellian and Waterbag distribution
functions. Also, we have proposed a multi-waterbag fitting technique for handling arbitrary-shaped
distributions. These schemes represent powerful tools for solving the linear dispersion relation of
any field free equilibrium system as will be shown in the next chapters.
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Chapter 2

Electromagnetic fluctuations and
normal modes of a drifting relativistic
plasma

(a) Theoretical spectrum (b) Simulated spectrum

Figure 2.1. (a) Theoretical and (b) simulated (ky, ω) thermal magnetic fluctuation spectrum in log10 scale
for a Maxwell-Jüttner- distributed electron beam (T = 51.1keV and βd = 0.9) with k ⊥ βd.

This chapter addresses the relativistic equilibrium of a plasma. A neutral plasma slab of infinite
size (or a lot bigger than its skin-depth) has a field-free equilibrium. This means that the locally
averaged values of E et B are equal to zero. However, the locally averaged electromagnetic energy
(E2 and B2) is not equal to zero due to the field fluctuations induced by the finite number of
particles. In this chapter, we will study the spectrum of this energy for a relativistic equilibrium
plasma and will then focus on its influence on the development of the Weibel instability.
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2.1 Introduction

An equilibrium, or near-equilibrium, plasma sustains a finite level of electromagnetic energy due
to the random motion of particles combined with the collective behavior of the plasma. These
spontaneous electromagnetic fluctuations play a major role in plasma physics since they act as seeds
for the instabilities driven by an input of free energy. Since Rostoker and Rosenbluth’s pioneering
dressed-particle theory (Rostoker & Rosenbluth 1960), the fluctuation spectrum of a thermal plasma
has been analyzed within several frameworks in many papers and textbooks (Akhiezer et al. 1975;
Sitenko 1982; Klimontovich 1982; Ichimaru 1992; Tajima & Cable 1992; Lund et al. 1995; Opher
& Opher 1996; Yoon 2007; Tautz & Schlickeiser 2007). However, except for a few works restricted
to isotropic particle distributions or electrostatic modes (Lerche 1968a; Stewart 1973; Klimontovich
1982), all these studies were carried out in the nonrelativistic regime, and thus did not address the
spectrum induced by a plasma beam of relativistic temperature and mean drift velocity. Such a
configuration is of particular interest for the modeling of relativistic beam-plasma instabilities (Bret
et al. 2010b; Cottrill et al. 2008) and the related generation of collisionless shocks (Lyubarsky &
Eichler 2006; Spitkovsky 2008a; Lemoine & Pelletier 2011; Bret et al. 2013). Schlikeiser, Lazar,
Yoon and Felten (Schlickeiser & Yoon 2012; Lazar et al. 2012; Felten et al. 2013) recently worked
out a general fluctuation theory valid for unstable relativistic plasmas; yet they performed applied
calculations in the nonrelativistic limit only.

The objective of this chapter is to present exact analytical and numerical calculations of the
fluctuation spectra associated to drifting relativistic plasmas described by a Maxwell-Jüttner dis-
tribution function (Wright & Hadley 1975; Bret et al. 2010a). We will consider electromagnetic
fluctuations propagating along or normal to the mean plasma velocity with different polarizations.
In each case, we will compute both the (ω, k)- and k-resolved spectra. To this goal, we will dis-
tinguish between the contributions of the damped subluminal and undamped supraluminal normal
modes. The latter will be computed from the electromagnetic dispersion relation by generalizing
the numerical scheme originally proposed by Fried and Gould (Fried & Gould 1961) in the nonrel-
ativistic electrostatic regime (Sec. 1.1.2). With a view on the Weibel-like filamentation instability
of a relativistic plasma (Yoon 2005; Achterberg & Wiersma 2007), we will evaluate the spectrum of
magnetic modes with wave vectors normal to the plasma drift velocity. The obtained formulae will
be used to estimate the saturation time of the relativistic Weibel-filamentation instability triggered
by two symmetric overlapping electron-positron beams.

This chapter is organized as follows. In Sec. 2.2, we recall the formalism of the standard
fluctuation theory and adapt it to Maxwell-Jüttner distributions. The spectrum of longitudinal
and transverse electric fluctuations propagating along the plasma drift velocity is treated in Sec.
2.3, whereas the spectrum of magnetic fluctuations propagating normal to the plasma drift veloc-
ity is computed in Sec. 2.4. Section 2.5 confronts our theoretical results to particle-in-cell (PIC
calder) simulations. We will then use our analytical formulae to evaluate the saturation time of
the Weibel filamentation instability in counter-streaming pair plasmas. Good agreement will be
obtained between our estimates and PIC simulation results (Bret et al. 2013). Finally, our results
are summarized in Sec. 2.7.

2.2 Electromagnetic fluctuation theory

2.2.1 General formalism

Let us consider a uniform relativistic plasma composed of a number of charged particle species of
mass ms, charge qs and density ns. According to Refs. (Sitenko 1982; Ichimaru 1992), assuming an
adiabatic switch-on of the electromagnetic interactions, the spectral density tensor of the plasma
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electric fluctuations writes
〈EE†〉k,ω = Zk,ω · 〈jj†〉k,ω · Z†k,ω , (2.1)

where the fluctuation source 〈jj†〉k,ω is the spectral density tensor of the ballistic plasma current
density

〈jαj∗β〉k,ω = 2πε0
∑
s

msω
2
ps

∫
R3

d3p vαvβf
(0)
s (p)δ(ω − k · v) , (2.2)

with f
(0)
s (p) the equilibrium distribution function and ω2

ps = nsq
2
s/msε0 the plasma frequency of

the sth species. The tensor Zk,ω is defined from the linear relation

Ek,ω = Zk,ω · jk,ω . (2.3)

The derivation of the above formulae is detailed in Appendix 6.2.

For a plasma described by gyrotropic equilibrium distribution functions, f
(0)
s (p2

⊥, px), the wave
vector of the fluctuations can be chosen in the (kx, ky) plane without loss of generality. The tensor
Zk,ω then reads

Zk,ω = −i ω
ε0



1

ω2εzz − k2c2
0 0

ω2εxx − k2
yc

2

D
−ω

2εxy + kykxc
2

D
0

−ω
2εxy + kykxc

2

D

ω2εyy − k2
xc

2

D
0

0 0
1

ω2εzz − k2c2


. (2.4)

We have introduced D and the dielectric tensor elements (Ichimaru 1973) detailed in Sec. 1.1.1:

εαβ(k, ω) = δαβ +
∑
s

ω2
ps

ω2

∫∫∫
d3p

pα
γ

∂f
(0)
s

∂pβ
+
∑
s

ω2
ps

ω2

∫∫∫
d3p vα

pβ
γ

k · ∂f (0)
s /∂p

ω − k · v
. (2.5)

The equation |Zk,ω| = 0 defines the dispersion relation of the discrete normal modes of the system
ωl(k):

ω2εzz − k2c2 = 0 , (2.6)

D = (ω2εxx − k2
yc

2)(ω2εyy − k2
xc

2)− (ω2εxy + kykxc
2)2 = 0 . (2.7)

2.2.2 Maxwell-Jüttner distribution functions

From now on, the particle species are assumed to obey drifting Maxwell-Jüttner distribution func-
tions (Wright & Hadley 1975) (1.22):

f (0)
s (p) = Fs exp [−µs(γ − βdspx)] , (2.8)

where γ =
√

1 + p2/(msc)2 is the relativistic factor, µs = msc
2/Ts the normalized inverse temper-

ature and βds = 〈vx/c〉 the x-aligned mean velocity. We have introduced the normalization factor
Fs = µs/4π(msc)

3γ2
dsK2(µs/γds), with γds = (1 − β2

ds)
−1/2 and K2 the modified Bessel function of

the second kind. The distribution functions are normalized to unity:
∫
f

(0)
s (p)d3p = 1. Charge and

current neutralization is assumed so as to ensure a field-free equilibrium.
Let us introduce θ, the angle between the wave vector k and the x-axis, and βφ = ω/kc, the

normalized wave phase velocity. By changing to velocity variables in cylindrical coordinates along
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k, the triple integrals involved in the dielectric tensor gathered in the Chapter 1 can be reduced to
the following one-dimensional quadratures (Bret et al. 2010b)

Making use of the above definitions, the source tensor (2.2) simplifies to

〈jj†zz〉k,ω = (2π)2ε0H(1− |βφ|)
∑
s

Fsmsω
2
ps

k
[fDs ]β=βφ

, (2.9)

〈jj†yy〉k,ω = (2π)2ε0H(1− |βφ|)
∑
s

Fsmsω
2
ps

k

[
fAs cos2 θ + fBs sin2 θ + 2fCs cos θ sin θ

]
β=βφ

, (2.10)

〈jj†xx〉k,ω = (2π)2ε0H(1− |βφ|)
∑
s

msFsω
2
ps

k

[
fAs sin2 θ + fBs cos2 θ − 2fCs cos θ sin θ

]
β=βφ

, (2.11)

〈jj†yx〉k,ω = (2π)2ε0H(1− |βφ|)
∑
s

msFsω
2
ps

k

[
(fBs − fAs) cos θ sin θ + fCs(cos2 θ − sin2 θ)

]
β=βφ

,

(2.12)

where H(x) denotes the step function. The derivation of Eqs. (2.9), (2.10), (2.11) and (2.12) uses
the three calculation steps detailed in Chapter 1.

In the following, we will compute the (ω, k)-resolved spectra of the longitudinal and transverse
fluctuations propagating along the beam direction (θ = 0), and of the magnetic fluctuations propa-
gating normal to the beam direction (θ = π/2).

2.3 Fluctuations with wave vectors parallel to the plasma drift
velocity

2.3.1 Longitudinal fluctuations

Basic formulae

Here, we consider electrostatic fluctuations with E ‖ k and k ‖ x. Combining Eqs. (2.1) and (2.4)
yields

〈ExE∗x〉kx,ω =
〈jxj∗x〉kx,ω
ε20ω

2|εxx|2
, (2.13)

For θ = 0, the xx component of Eq. (2.5) can then be recast as

εxx = 1 +
∑
s

ω2
ps

ω2
vφ

∫∫∫
d3p

βx − βφ
βφ − βx

∂pτ f
(0)
s

+
∑
s

ω2
ps

ω2
β2
φ

∫∫∫
d3p

1

βφ − βx
∂xf

(0)
s . (2.14)

The first integral in Eq. (2.14) being odd and of the Cauchy type, its contribution vanishes.
Moreover, Eq. (1.22) leads to

∂pτ f
(0)
s = −µs(βτ − βdsτ )f (0)

s . (2.15)

Combining the above equations yields

εxx = 1 +
∑
s

ω2
psµs

k2
xc

2
−
∑
s

ω2
psµs

k2
xc

2
(βφ − βds)

∫∫∫
d3p

f
(0)
s

βφ − βx
. (2.16)
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This triple integral can be reduced to a much more tractable one-dimensional quadrature by chang-
ing to velocity variables in cylindrical coordinates along the wave vector v = (v⊥ cos(θ), v⊥ sin(θ), v‖):

εxx = 1−
∑
s

ω2
psµs

k2
xc

2
(βφ − βds)B̃(βφ) , (2.17)

with

B̃(βφ) =

∫
dβ

fB̃
vφ − vx

, (2.18)

fB̃ =
γ3e−hs

h5
s

[
(hs + 1)(2ρ2

s + ν2
s ) + ρ2

sh
2
s

]
, (2.19)

hs(θ = 0) = µsγ(1− βdsβ) . (2.20)

Upon defining the susceptibilities χs from the standard relation εxx = 1 +
∑

s χs, and noting that
〈jzj∗z 〉s is proportional to the singularity of the quadrature Bs, the electric fluctuation spectrum can
be further simplified as

〈ExE∗x〉kx,ω =
1

ε0|εxx|2
∑
s

Ts=(χs)

ω − kxvds
, (2.21)

This expression generalizes the fluctuation-dissipation theorem (Akhiezer et al. 1975) to the case of
multiple Maxwell-Jüttner-distributed particle species of various drift velocities and temperatures.
Note that it is formally identical to the formula derived for nonrelativistic drifting Maxwellians by
Lund et al. (1995).

Dispersion relation

The fluctuation spectrum [Eq. (2.21)] is strongly peaked around the weakly-damped and undamped
solutions of εxx(ω, kx) = 0. Because it implicitly assumes unbounded particle velocities, the standard
nonrelativistic kinetic description of a stable plasma wrongly predicts that all of its eigenmodes
are Landau-damped, whatever their phase velocity. Now, it can be proved from a more rigorous
relativistic description that only the subluminal modes (with ω/kx < c) are damped (Lerche 1969;
Schlickeiser 2004). For the sake of numerical convenience, we recast the dispersion relation in the
form

k2
xc

2 =
∑
s

2πFsµsω
2
ps(βφ − βds)B̃s(βφ)−

∑
s

µsω
2
ps = G(βφ) . (2.22)

This formulation, in which k2
x(> 0) is a function of βφ only, lends itself to the efficient numerical

scheme introduced by Fried and Gould (Fried & Gould 1961) in a nonrelativistic framework. This
scheme is detailed in Chapter 1 and consists, first, in determining the locus of the zeroes of =G(βφ).
This can be readily performed by means of a contour plot in a finely discretized portion of the
complex βφ plane. Then, we retain these zeroes fulfilling <G(βφ) > 0 and identify kx =

√
<G(βφ).

Depending on the βφ domain considered, this method allows us to simultaneously solve for a set of
discrete electrostatic solutions ωL(kx).

As shown in Refs. (Lerche 1969; Laing & Diver 2006) for an isotropic plasma (βds = 0), the
supraluminal electrostatic modes exist only over a finite interval 0 ≤ kx ≤ kc± (for a positive
wavenumber), where the critical value kc± depends on the sign of the phase velocity. In the general
case, kc± can be obtained by setting βφ = ±1 in Eq. (2.22), yielding (McKee 1971; Laing & Diver
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2006)

k2
c± =

∑
s

(1± βds)2γdsω
2
ps

K1( µsγds ) + 2γdsµs K0( µsγds )

K2( µsγds )
. (2.23)

Consequently, for a fixed sign of the phase velocity, there is a maximum of one supraluminal longi-
tudinal eigenmode (ωLS+ or ωLS−).

(ω, k)-resolved spectrum

Figures 2.2(a-f) display the longitudinal fluctuation spectra of a pair plasma (or, equivalently, of
an electron plasma with a neutralizing background) of various drift velocities and temperatures
(assumed equal for all species). The main difference between these results and previously published
nonrelativistic calculations Lund et al. (1995); Tautz & Schlickeiser (2007); Yoon (2007); Schlickeiser
& Yoon (2012) is the cutoff occurring for supraluminal modes. Since the quadratures defined by
Eq. (1.56) have no pole for |βφ| > 1, the dielectric tensor is purely real; hence, supraluminal
modes cannot be excited by an inverse-Landau (Cerenkov) type mechanism. For a pair plasma,
Eq. (2.21) is proportional to =(εxx)/|εxx|2. As shown in Ref. (Klimontovich 1982) this implies that
〈ExE∗x〉kx,ω ∝ δ(εxx) in the supraluminal region (|βφ| > 1). Consequently, the supraluminal part
of the fluctuation spectra only results from the delta-like singularities (in the absence of collisions)
associated to supraluminal eigenmodes, solution of Eq. (2.22).

As expected, the subluminal fluctuation spectra exhibit strong maxima along the weakly-damped
part of the eigenmode curves. The latter (plotted as black dashed curves) intersect the βφ = ±1
lines at kx = kc±. The fluctuation maxima are all the sharper when the plasma temperature drops,
being increasingly hard to capture numerically. In the isotropic, low-temperature case (µ = 100) of
Fig. 2.2(e), the well-known nonrelativistic Bohm-Gross mode ω = ωp(1 + 3k2

xc
2/2ω2

pµ) is found to
closely match the exact eigenmode. In the isotropic, relativistically-hot case (µ = 1), the fluctuation
spectrum broadens away from the eigenmode curves, attaining comparable values over most of the
subluminal cone for kxc/ωp < 1.6.

The influence of a relativistic drift velocity (βd = 0.9) is illustrated in Figs. 2.2(b,d,f). Both
the spectra and the dominant eigenmodes turn asymmetric with respect to ω = 0. The fluctuations
peak close to the eigenmode, although only the slowest is visible on Figs. 2.2(b,d,f). In the low-
temperature case (µ = 100), one can approximate the real frequency of the exact eigenmodes by
Lorentz transformation of the Bohm-Gross modes [Fig. 2.2(f)]. Consistently with Eq. (2.23), the
supraluminal eigenmodes are found only for a limited range of wave vectors kx ∈ [−kc−, kc+] with
kc− 6= kc+.

k-resolved spectrum

The spatial fluctuation spectrum is of interest both experimentally and theoretically. The integra-
tion of Eq. (2.21) over ω gives

〈ExE∗x〉kx = −T
ε0

∫ +∞

−∞

dω

2π

1

(ω − kxvd)
=
(

1

εxx

)
(2.24)

This integration can be carried out by the method introduced in Ref. (Langdon 1979) in the
non-relativistic case. To this effect, let us rewrite Eq. (2.24) as

〈ExE∗x〉kx = − 1

ε0

∫ +∞

−∞

dω

2π
=
[

T

(ω − kxvd)

(
1

εxx
− 1

)]
= =

∫ +∞

−∞

dω

2π
I(ω, kx) , (2.25)
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Figure 2.2. Power spectrum 〈ExE∗x〉kx,ω (normalized to m2
ec

3/e2) in log10 scale for an e−e+ pair plasma
and various µ and βd values. The two black solid lines delimit the subluminal region (|βφ| ≤ 1). The black
dashed curves plot the exact eigenmodes computed from Eq. (2.22). In the low-temperature case (µ = 100),
the green solid line plots the Bohm-Gross mode in panel (e) and the Lorentz-transformed Bohm-Gross mode
in panel (f).
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Figure 2.3. Closed contour G = ∪7
i=1Gi in the complex ω-plane used in Eq. (2.27). The arrows indicate

the ballistic singularity kβd and the supraluminal eigenmodes ωLS±(k).

where we have defined

I(ω, kx) = − T

ε0(ω − kxvd)

(
1

εxx
− 1

)
. (2.26)

This function is analytic in the upper half ω-plane but has several singularities on the real ω-
axis. The first one is due to the ballistic term (ω− kxvd)−1 and is located in the subluminal region
|ω/kxc| < 1. The others correspond to the supraluminal (undamped) eigenmodes ωLS±(kx). There
follows

7∑
i=1

=
∫
Gi

dωI(ω, kx) = 0 , (2.27)

where the closed integration contour G = ∪7
i=1Gi is drawn in Fig. 2.3. Since lim|ω|→+∞

(
ε−1
xx − 1

)
=

0 and I ∈ R for |ω/kxc| > 1, the integrals over the G1, G2 and G6 contours vanish, yielding

〈ExE∗x〉
|βφ|<1
kx

− π
∑

ω=ωLS±

Res(I)ω = −πRes(I)kxvd . (2.28)

To obtain Eq. (2.28), the G4 term has been identified with the subluminal part of fluctuation

spectrum, 〈ExE∗x〉
|βφ|<1
kx

, and the integrals over the semi-circle contours G3, G5 and G7 have been
evaluated using the residue theorem. The second term on the left hand side corresponds to the
supraluminal fluctuation spectrum:

〈ExE∗x〉
|βφ|>1
kx

= −π
∑

ω=ωLS±

Res(I)ω =
∑

ω=ωLS±

T

2ε0(ω − kxvd)
1

∂εxx/∂ω|ω
. (2.29)

The total (subluminal and supraluminal) spatial fluctuation spectrum is therefore given by the
ballistic singularities

〈ExE∗x〉kx =
T

2ε0

ω2
pµ

ω2
pµ+ k2

xc
2
, (2.30)

which generalizes the nonrelativistic result of Ref. (Langdon 1979).
As a test, we have numerically integrated Eq. (2.24) over the subluminal region ω ∈ [−kc−c, kc+c]

and compared the results to the formula

〈ExE∗x〉
|βφ|<1
kx

=
T

2ε0

ω2
pµ

ω2
pµ+ k2

xc
2
−

∑
ω=ωLS±

T

2ε0(ω − kxvd)
1

∂εxx/∂ω|ω
. (2.31)

where the supraluminal eigenmodes ωLS are obtained from solving Eq. (2.22). Figure 2.4 shows
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(a) µ = 1, βd = 0 (b) µ = 1, βd = 0.9

(c) µ = 10, βd = 0 (d) µ = 10, βd = 0.9

(e) µ = 100, βd = 0 (f) µ = 100, βd = 0.9

Figure 2.4. Spatial fluctuation spectra 〈ExE∗x〉kx (normalized to
m2
ec

3

e2 (
∑
s ω

2
ps)

1/2) for an electron/pair
plasma and various µ and βd values (identical for all species). The blue and red lines correspond to the
total and subluminal spectra computed from Eqs. (2.30) and (2.31), respectively. The black-dotted lines
correspond to the numerical integration of Eq. (2.21) over the subluminal domain.
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Figure 2.5. Frame of the system studied in Sec. 2.3.2.

excellent agreement between the numerical and theoretical spectra for µ = (1, 10, 100) and βd =
(0, 0.9). The discontinuities seen in the subluminal spectra correspond to the supraluminal eigen-
mode cutoffs at kx = kc± . Both negative and positive-phase velocity supraluminal eigenmodes exist
for kx < kc− < kc+, whereas only the positive-phase velocity supraluminal eigenmode exists for
kc− < kx < kc+ and all eigenmodes are subluminal for kx > kc+. As a result, the total and sub-
luminal spectra exactly coincide for kx > kc+. Note that these discontinuities are hard to capture
numerically in the low-temperature regime (µ = 100) due to the delta-like trace of the subluminal
eigenmode for |βφ| ∼ 1 [see Figs. 2.2(e,f)].

2.3.2 Transverse fluctuations

Basic formulae

Let us now consider the electromagnetic fluctuations propagating parallel to the plasma drift veloc-
ity, as illustrated in Fig. 2.5. Plugging θ = 0 into Eq. (1.52) and (1.53) first yields

εyy = εzz = 1−
∑
s

2πFsµsω
2
ps

ω2
(βφ − βds)As(βφ). (2.32)

The electromagnetic spectra then write

〈EzE∗z 〉kx,ω =
〈jzj∗z 〉kx,ω

ω2ε20|εzz −
k2xc

2

ω2 |2
(2.33)

=
1

ε0|εxx − k2xc
2

ω2 |2
∑
s

Ts=(χ
(s)
zz )

ω − kxvds
, (2.34)

〈ByB∗y〉kx,ω =
k2
x

ω2
〈EzE∗z 〉kx,ω . (2.35)

This is the generalized fluctuation-dissipation theorem for a multispecies plasma with arbitrary drift
velocities and temperatures. For equal temperatures and drift velocities, it reduces to

〈EzE∗z 〉kx,ω =
−T

2ε0(ω − kxvd)
=

(
1

εzz − k2xc
2

ω2

)
, (2.36)

〈ByB∗y〉kx,ω =
−T/v2

φ

2ε0(ω − kxvd)
=

(
1

εzz − k2xc
2

ω2

)
. (2.37)
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Dispersion relation

Combining Eqs. (1.11) and (2.32), the dispersion relation of the transverse fluctuations can be
recast as

k2
xc

2 =
1

β2
φ − 1

∑
s

2πFsµsω
2
ps(βφ − βds)As(βφ) = H(βφ) . (2.38)

The transverse normal modes ωT (kx) can then be numerically computed using the method detailed
in Sec. 2.3.1. An analytical expression of the supraluminal transverse modes ωTS can be obtained
in the kx → 0 limit, which reads

ω2
TS(0) =

∑
s

ω2
psµs〈β2

x〉s , (2.39)

where 〈β2
x〉s denotes the average of β2

x for species s. This limiting value is independent of the phase
velocity (see the eigenmode curves in Figs. 2.6(a-f)).

Taking limβφ→±1 in Eq. (2.38), and given limβφ→±1A(βφ) is finite and non-zero, yields limβφ→±1 k
2
x =

∞ so that there are only exactly two transverse supraluminal modes (one per sign of βφ) as shown
in Figs. 2.6(a-f).

(ω, k)-resolved spectrum

Figures 2.6(a-f) and 2.7(a-f) represent the spectra of the transverse electric and magnetic fluctua-
tions, respectively, for various values of µ and βd. As for the longitudinal spectra, the supraluminal
fluctuations are proportional to the delta function of the dispersion relation. Consequently, Eqs.
(2.36) and (2.37) vanish for |βφ| > 1 except along the supraluminal solutions of the dispersion rela-
tion Eq. (2.38). In the βd = 0 case, the subluminal spectra are symmetric with respect to ω = 0
and do no exhibit localized maxima due to the absence of weakly-damped subluminal eigenmodes.
By contrast, the subluminal spectra associated to βd = 0.9 are peaked close to a weakly-damped
acoustic-like branch ωT ∼ kxvd. The damping rate of this so-called beam mode can be estimated
by inserting ωT = kxvd + iΓ(k) into Eq. (2.6) with |Γ| � kxvd. A first-order Taylor expansion of
εzz(kxvd + iΓ, kx) then yields

εzz(kxβd, kx) + iΓ
∂εzz
∂ω

(kxβd, kx)− k2
xc

2

(kxvd + iΓ)2
= 0. (2.40)

Taking the imaginary part of the above equation gives the damping rate

Γ(kx) = −β2
d

k3
xc

3∑
s(2π)2Fsω2

psµsfA(βd)
. (2.41)

Figure 2.8(b) shows that, for µ = 100 and βd = 0.9, this expression closely matches the numerical
solution up to kxc/ωp ∼ 0.4.
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Figure 2.6. Power spectrum 〈EzE∗z 〉kx,ω (normalized to m2
ec

3/e2) in log10 scale for an electron/pair plasma
and various µ and βd values. The two black solid lines correspond to βφ = ±1. The dashed curves plot the
exact eigenmodes computed from Eq. (2.38). In the low-temperature case (µ = 100), the solid line plots the
nonrelativistic transverse mode in panel (e) and its Lorentz transformation in panel (f). The subpanels in
(d) and (f) show the exact eigenmode (grey dashed line) and the approximate beam mode ω = kβd (white
solid line).
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Figure 2.7. Power spectrum 〈ByB∗y〉kx,ω (normalized to m2
ec/e

2) in log10 scale for an electron/pair plasma
and various µ and βd values. The two black solid lines correspond to βφ = ±1. The dashed curves plot the
exact eigenmodes computed from Eq. (2.38). In the low-temperature case (µ = 100), the solid line plots the
nonrelativistic transverse mode in panel (e) and its Lorentz transformation in panel (f). The subpanels in
(d) and (f) show the exact eigenmode (grey dashed) and the approximate beam mode ω = kβd (white).
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(a) (b)

Figure 2.8. (a) Map of the complex function H(βφ) defined by Eq. (2.38) for µ = 100 and βd = 0.9: the
dashed line plots the isocontour =H = 0 and the solid line plots the <H > 0 part of this isocontour, which
corresponds to the acoustic-like eigenmode shown in Fig. 2.6(f). (b) Damping rate of this eigenmode vs kz:
comparison between the numerical solution (solid line) and the approximate solution (2.41) (dashed curve).

k-resolved spectrum

The ω-integration of the transverse fluctuation spectra proceeds as in the electrostatic case. Let us
therefore introduce the functions

IE(kx, ω) =
−T

ε0(ω − kxvd)

(
1

εzz − k2xc
2

ω2

− 1

)
, (2.42)

IB(kx, ω) =
−T

ε0(ω − kxvd)
1

v2
φ(εzz − k2xc

2

ω2 )
, (2.43)

such that

〈EzE∗z 〉kx = =
∫ +∞

−∞

dω

2π
IE(ω, kx) , (2.44)

〈ByB∗y〉kx = =
∫ +∞

−∞

dω

2π
IB(ω, kx) . (2.45)

Making use of the closed contour G (Fig. 2.3) and of the following limits

lim
|ω|→0

1

εzz − k2xc
2

ω2

− 1 = 0 , (2.46)

lim
|ω|→0

1

εzz − k2xc
2

ω2

1

v2
φ

= 0 , (2.47)

we find that the supraluminal part of the transverse fluctuation spectrum is again given by the
imaginary singularities related to the transverse supraluminal eigenmodes ωTS(kx):

〈EzE∗z 〉
|βφ|>1
kx

= −
∑

ω=ωTS

T

2ε0(ω − kxvd)
1

∂εzz
∂ω + 2k

2
xc

2

ω3

, (2.48)

〈ByB∗y〉
|βφ|>1
kx

= −k
2
x

ω2

∑
ω=ωTS

T

2ε0(ω − kxvd)
1

∂εzz
∂ω + 2k

2
xc

2

ω3

. (2.49)
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(a) µ = 1, βd = 0 (b) µ = 1, βd = 0.9

(c) µ = 10, βd = 0 (d) µ = 10, βd = 0.9

(e) µ = 100, βd = 0 (f) µ = 100, βd = 0.9

Figure 2.9. Spatial power spectra of the electromagnetic fluctuations in an electron/pair plasma for θ = 0

and various values of µ and βd. The electric and magnetic spectra are normalized to
m2
ec

3

e2 (
∑
s ω

2
ps)

1/2 and
m3
ec

3ε0
ne4 (

∑
s ω

2
ps)

1/2, respectively. Comparison of the total fluctuation spectra (blue solid line), subluminal

〈EzE∗z 〉
|βφ|<1
kx

spectra (red solid line), the subluminal 〈ByB∗y〉
|βφ|<1
kx

spectra (green solid line). Also plotted
are the numerical integration of Eq. (2.44) (dashed line) and of Eq. (2.45) (dashed-dotted line).
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Figure 2.10. Frame of the system studied in Sec. 2.4.

Similarly, the total spatial fluctuations are determined by the ballistic singularities, and turn out
to be independent of the wavenumber:

ε0〈EzE∗z 〉kx =
1

µ0
〈ByB∗y〉kx = γ2

d

T

2
. (2.50)

In the case of a vanishing drift velocity, this formula is identical to the nonrelativistic expression
(Sitenko 1982), as pointed out in Ref. (Klimontovich 1982). The subluminal electric and magnetic

spectra, 〈EzE∗z 〉
|βφ|<1
kx

and 〈ByB∗y〉
|βφ|<1
kx

, readily follow from subtracting Eq. (2.48) and (2.49) to
Eq. (2.50). Simple analytical expressions can be obtained at kx = 0:

〈EzE∗z 〉
|βφ|<1
kx=0 =

γ2
dβ

2
d

ε0

T

2
, (2.51)

〈ByB∗y〉
|βφ|<1
kx=0 = µ0γ

2
d

T

2
. (2.52)

Whereas the kx = 0 magnetic spectra is always purely subluminal, its electric counterpart generally
involves both supraluminal and subluminal contributions. The latter vanishes for βd = 0 and prevails
in the ultra-relativistic limit γd � 1. The full kx-dependence of the subluminal, supramuminal and
total spectra of the transverse fluctuations is shown in Figs. 2.9(a-f) for various values of µ and βd.

2.4 Magnetic fluctuations with wave vectors normal to the plasma
drift velocity

2.4.1 Basic formulae

We now consider the spectrum of magnetic fluctuations propagating normally to the mean plasma
velocity (θ = π/2) as illustrated by Fig. 2.10. . Without loss of generality, the wave vector is
taken along the y-axis. Since we are interested in estimating the seed of growing filamentation
modes in counterpropagating plasma flows (Bret et al. 2013), the magnetic field is chosen along the
z-axis, so that the electric field lies in the xy-plane. In contrast to the previous cases, the tensorial
quantities ε, Z, 〈jj†〉 and 〈BB†〉 are now no longer diagonal. For an electron or pair plasma with
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equal temperatures and velocities, one gets

〈jzj∗z 〉ky ,ω =
Tω=(εzz)

ε0
, (2.53)

〈jyj∗y〉ky ,ω =
Tω=(εyy)

ε0
, (2.54)

〈jxj∗x〉ky ,ω =
Tω=(εxx)

ε0
=
T=(ω2εzz − k2

yc
2)

ε0ω
, (2.55)

〈jyj∗x〉ky ,ω = −Tω=(εyx)

ε0
. (2.56)

Substituting 〈ExE∗x〉ky ,ω = (ω/kyc)
2〈BzB∗z 〉ky ,ω into Eq. (2.1) leads to

〈BzB∗z 〉ky ,ω = k2
y

|εyy|2〈jxj∗x〉ky ,ω + |εyx|2〈jyj∗y〉ky ,ω + 2<(εyyε
∗
yx)〈jyj∗x〉ky ,ω

|(ω2εxx − k2
y)εyy − ω2ε2yx|2

. (2.57)

The susceptibility tensor is given by Eqs. (1.52)-(1.55) with θ = π/2:

εzz = 1−
∑
s

2πFsµsω
2
ps

ωky
Ds (2.58)

εyy = 1−
∑
s

2πFsµsω
2
ps

ωky
Bs (2.59)

εxx = 1−
∑
s

2πFsµsω
2
ps

ωky
As +

∑
s

µsω
2
ps

ω2
β2
ds (2.60)

εyx =
∑
s

2πFsµsω
2
ps

ωky
Cs. (2.61)

The corresponding sources are

〈jzj∗z 〉ky ,ω = H(1− |βφ|)
∑
s

(2π)2Fsµsnsq
2
s

ωky
fD , (2.62)

〈jyj∗y〉ky ,ω = H(1− |βφ|)
∑
s

(2π)2Fsµsnsq
2
s

ωky
fB , (2.63)

〈jxj∗x〉ky ,ω = H(1− |βφ|)
∑
s

(2π)2Fsµsnsq
2
s

ωky
fA , (2.64)

〈jyj∗x〉ky ,ω = H(1− |βφ|)
∑
s

(2π)2Fsµsnsq
2
s

ωky
fC . (2.65)

Inserting Eq. (2.54)-(2.56) into Eq. (2.57) gives the magnetic spectrum

〈BzB∗z 〉ky ,ω = −
k2
yT

ε0ω
=
[

εyy
(ω2εxx − k2

yc
2)εyy − ω2ε2yx

]
. (2.66)

2.4.2 Dispersion relation

The denominator of Eq. (2.66) corresponds to the electromagnetic dispersion (2.6) with kx = 0.
Its explicit form is obtained by plugging Eqs. (2.58) and (2.61). There follows a second-order
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polynomial equation in k2
y:

k4
yc

4(β2
φ − 1)− k2

yc
2

[
(β2
φ − 1)

∑
s

2πFsµsω
2
ps

Bs(βφ)

vφ
−
∑
s

µsω
2
psβ

2
ds +

∑
s

2πFsµsω
2
psvφAs(βφ)

]

+
∑
s

2πFsµsω
2
ps

Bs(βφ)

vφ

[∑
s

2πFsµsω
2
psvφAs(βφ)−

∑
s

µsω
2
psβ

2
ds

]
−

[∑
s

2πFsµsω
2
psCs(βφ)

]2

= 0 .

(2.67)

The solutions of the above equation then pertain to two distinct branches, βφ,1 = ω1/kyc and
βφ,2 = ω2/kyc, defined, respectively, by

k2
yc

2 =
−a1(βφ,1) +

√
∆(βφ,1)

2(β2
φ,1 − 1)

, (2.68)

k2
yc

2 =
−a1(βφ,2)−

√
∆(βφ,2)

2(β2
φ,2 − 1)

. (2.69)

We have introduced ∆ = a2
1 − 4(v2

φ − 1)a0, where an is the nth order coefficient of the polynomial

in k2
y defined by Eq. (2.67). Again, we employ the Fried and Gould scheme to compute the entire

set of eigenmodes associated to each branch.
We find that there exist a maximum number of four undamped, or weakly-damped, eigenmodes

(two symmetric modes of opposite phase velocities per branch). As displayed by the coloured
dashed curves in Figs. 2.11(a-c), these solutions correspond to the Lorentz-transformed dominant
electromagnetic (branch 1) and electrostatic (branch 2) modes in the plasma rest frame. This is
demonstrated in the low-temperature regime (µ = 100) by the precise coincidence between the
exact curves and the Lorentz transforms of the modes ω = ωp(1 + k2c2/ω2

p)
1/2 and ω = ωp(1 +

3k2c2/ω2
pµ)1/2. Note that the eigenmodes associated to branch 1 are purely supraluminal for all

ky’s.
Owing to the non-vanishing εyx term in Eq. (2.6), the electric field associated to eigenmodes

with wave vectors normal to the plasma drift velocity has both longitudinal (Ey) and transverse
(Ex) components. This property has been analyzed in detail in Refs. (Tzoufras et al. 2006; Bret
et al. 2007) in the context of the filamentation instability. The orientation of the electric field is
determined by the following formula (Bret et al. 2004):

Ey
Ex

= −
ω2εzz − k2

yc
2

ω2εyx
= −ω

2εyx
ω2εyy

. (2.70)

Making use of Eqs. (2.58)-(2.61), this can be recast as

Ey
Ex

= −
∑

s πFsω
2
psµsβφC(βφ)

ω2 −
∑

s 2πFsω2
psµsβφB(βφ)

=
k2
yc

2 − ω2 +
∑

s ω
2
psµs[2πFsβφA(βφ)− β2

d ]∑
s 2πFsω2

psµsβφC(βφ)
(2.71)

The above equation can be analytically evaluated in the ky → 0 and ky → ∞ limits. It is easy to
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demonstrate that

lim
ky→∞

ω2
1± = lim

ky→∞
ω2

2± = k2
yc

2 , (2.72)

lim
ky→0

ω2
1± =

∑
s

2πFsω
2
psµs

∫ +1

−1
fB dβ , (2.73)

lim
ky→0

ω2
2± =

∑
s

2πFsω
2
psµs

∫ +1

−1
fA dβ −

∑
s

ω2
psµsβ

2
ds . (2.74)

where use has been made of limβφ→∞ βφB(βφ) =
∫ +1
−1 dβfB. It follows that the eigenmode ω1,± is

purely longitudinal for ky = 0 (E = Ey) and becomes purely transverse for ky →∞ (E = Ex). By
contrast, the eigenmode ω2,± is purely longitudinal for ky → ∞ and purely transverse for ky = 0.
The ky-dependence of the angle φ = arctan(Ey/Ex) is plotted for both branches in Fig. 2.12(d) in
a relativistically hot case (µ = 1, βd = 0.9).

2.4.3 (ω, k)-resolved spectrum

Figures 2.11(a,b,c) display Eq. (2.66) for βd = 0.9 and µ = (1, 10, 100). Only half the spectrum is
shown due to its parity in ω. As expected, the trace of the eigenmode ω2,+ increasingly stands out
in the subluminal region as the plasma temperature drops.

Similarly to Figs. 2.7(a,c,e), these spectra exhibit a peaked structure around ω = 0. As pointed
out in Refs. (Yoon 2007; Tautz & Schlickeiser 2007; Bret et al. 2013), these zero-frequency fluc-
tuations are associated to the unstable magnetic filamentation (Weibel) mode. Combining Eqs.
(2.58)-(2.57) gives the closed-form expression

〈BzB∗z 〉ky ,ω=0 =
γ3
d

k3
y

J(
k2
y +

ω2
pµ

γ2d

)2

ω2
pe
− µ
γd

2µ2K2( µγd )
, (2.75)

with

J =(k2
y + ω2

pµ)2

[(
µ

γd
+ 1

)(
1 + 2β2

d

)
+ β2

d

µ2

γ2
d

]
+ ω4

pµ
2β2
d

[(
µ

γd
+ 1

)(
2 + β2

d

)
+
µ2

γ2
d

]
− 2

(
k2
y + ω2

pµ
)
ω2
pµβ

2
d

(
3
µ

γd
+ 3 +

µ2

γ2
d

)
. (2.76)

We have thus generalized to arbitrary temperatures and drift velocities the formula obtained by
Yoon (2007) for a nondrifting, nonrelativistic Maxwellian plasma. As in the nonrelativistic limit,
we find that 〈BzB∗z 〉ky ,ω=0 scales as k−3

y for k2
y � ω2

pµ/γ
2
d .

2.4.4 k-resolved spectrum

In order to carry out the integration of 〈BzB∗z 〉ky ,ω over ω ∈ R, we define the function

LB = − T

ε0ω

k2
yεyy

(ω2εxx − k2
yc

2)εyy − ω2ε2yx
, (2.77)

so that

〈BzB∗z 〉ky = =
∫ +∞

−∞

dω

2π
LB . (2.78)
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(a) µ = 1, βd = 0.9

(b) µ = 10, βd = 0.9

(c) µ = 100, βd = 0.9

Figure 2.11. Power spectrum 〈BzB∗z 〉ky,ω (normalized to m2
ec/e

2 and in log10 scale) of an electron or
pair plasma for α = π/2, βd = 0.9 and various values of µ. The white solid lines delimit the subluminal
region |βφ| ≤ 1. The exact eigenmodes are plotted in green solid lines (branch 1) and dashed curves (branch
2). In panel (c) are also plotted the Lorentz transforms of the classical transverse eigenmode (black blue
dotted-dashed line) and of the longitudinal eigenmode (dotted black line).
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Proceeding as in Secs. 2.3.1 and 2.3.2, we find that the total k-resolved magnetic spectrum is
determined by the ω−1 term of Eq. (2.77). The calculation of the corresponding residue requires to
evaluate the ω → 0 limits of εyy, ωεyx and ω2εxx. Equation (2.5) with α = π/2 yields

εyy = 1−
∑
s

ω2
psµs

ω

∫
R
d3p

vyvy
ω − kyvy

f (0)
s , (2.79)

ωεyx = −
∑
s

ω2
psµs

∫
R
d3p

vyvx
ω − kyvy

f (0)
s , (2.80)

ω2εxx = ω2 −
∑
s

ω2
psµsω

∫
R
d3p

vxvx
ω − kyvy

f (0)
s .

+
∑
s

ω2
psµsβ

2
ds (2.81)

Taking ω → 0 in Eqs. (2.79)-(2.81) and using

lim
vφ→0

1

vφ

∫
d3p

v2
yf

(0)
s

vφ − vy
=

∫
d3pf (0)

s = 1 , (2.82)

gives

lim
ω→0

εyy = 1 +
∑
s

ω2
psµs

k2
y

, (2.83)

lim
ω→0

ωεyz = −
∑
s

ω2
psµs

ky
βds , (2.84)

lim
ω→0

ω2εzz =
∑
s

ω2
psµsβ

2
ds . (2.85)

Using Eqs. (2.83)-(2.85), the total spectrum reads

〈BzB∗z 〉ky =
µ0T

2

k2
yc

2 + ω2
pµ

k2
yc

2 + ω2
pµ/γ

2
d

. (2.86)

As usual, the supraluminal spectrum results from the supraluminal singularities ω1,2S of Eq. (2.77).

〈BzB∗z 〉
|βφ|>1
ky

=
∑

ω=ω1,2S

µ0T

2

k2
yεyy

ω∂D/∂ω|ω
, (2.87)

with D = (ω2εxx − k2
yc

2)εyy − ω2ε2yx. For k2
yc

2 > k2
2S (Eq. (2.88)), only the pair of solutions ω1S±

contribute to the above equation, yielding 〈BzB∗z 〉
|βφ|>1
ky

∼ µ0T/2. For the sake of completeness, the

〈EE†〉ky and 〈BxB∗x〉ky spectra are summarized in Sec. 2.4.5.
Figures 2.12(a,b,c) plot the ky-dependence of the total, supraluminal and subluminal magnetic

spectra for βd = 0.9 and various values of µ. Note that the magnetic fluctuations are purely
subluminal at ky = 0, with 〈BzB∗z 〉ky=0 = µ0γ

2
dT/2. As expected in the infinite-wavelength limit,

we retrieve the value (2.52) obtained for α = 0. Again, the numerical integration of Eq. (2.66) over
the subluminal ω-domain accurately reproduces the analytical formula deduced from subtracting
Eq. (2.87) to Eq. (2.86). The jumps seen in the supraluminal and subluminal spectra stem from
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(a) µ = 1, βd = 0.9 (b) µ = 10, βd = 0.9

(c) µ = 100, βd = 0.9 (d) µ = 1, βd = 0.9

Figure 2.12. (a,b,c) < BzB
∗
z >ky spectra [in

m2
ec

3

e2 (
∑
s ω

2
ps)

1/2 units] of a single-temperature electron/pair
plasma for βd = 0.9 and various values of µ. Comparison of the total (blue), supraluminal (red) and
subluminal (green) spectra. The dashed black curve plots the numerical integration of Eq. (2.66) over the
subluminal domain |ω| < kyc. (d) Variation of the angle φ(ky) = arctan(Ey/Ex) for the eigenmodes belonging
to branch 1 (solid red) and branch 2 (dashed blue).

the pair of solutions ω2S± turning subluminal above a critical wave vector

k2
2S =

∑
s

ω2
ps

γ3
d

K1( µsγds ) + 2γdsµs K0( µsγds )

K2( µsγds )
, (2.88)

obtained from a Lorentz transform of Eq. (2.23) taken at βd = 0. As in Sec. 2.3.1, this discontinuity
is difficult to resolve in the cold case µ = 100.

2.4.5 Calculation of the 〈EE†〉ky and 〈BzB
∗
x〉ky spectra for θ = π/2

In the case of an electron or pair plasma with equal temperatures and velocities, Eq. (2.1) yields

〈ExE∗x〉ky ,ω = − T

ε0ω
=
(

ω2εyy
(ω2εxx − k2

yc
2)εyy − ω2ε2yx

)
. (2.89)

〈EzE∗z 〉ky ,ω = − T

2πε0(ω − kyvd)
=

 1

εzz −
k2yc

2

ω2

. (2.90)
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Proceeding as in Sec.2.3.1, we obtain the total and supraluminal spatial 〈ExE∗x〉ky spectra:

〈ExE∗x〉ky =
T

2ε0
, (2.91)

〈ExE∗x〉
|βφ|>1
ky

=
T

2ε0

∑
ω=ω1,2S

ωεyy
∂D/∂ω

. (2.92)

Likewise, one can readily derive the total and supraluminal spatial 〈EzE∗z 〉ky and 〈BxB∗x〉ky spectra

ε0〈EzE∗z 〉ky =
1

µ0
〈BxB∗x〉ky =

T

2
, (2.93)

〈EzE∗z 〉
|βφ|>1
ky

= −
∑

ω=ωXS

T

2ε0(ω − kyvd)
1

∂G/∂ω
, (2.94)

〈BxB∗x〉
|βφ|>1
ky

= −
∑

ω=ωXS

T

2ε0(ω − kyvd)
1

v2
φ∂G/∂ω

. (2.95)

Here ωXS(ky) denotes the supraluminal solution of the dispersion relation Eq. (2.6). The latter is
recast in the form

k2
yc

2 =
1

β2
φ − 1

∑
s

2πFsµsω
2
ps(βφ − βds)Ds(βφ) . (2.96)

Finally, combining Eqs. (2.1) and (2.58)-(2.65) yields

〈EyE∗y〉ky ,ω =
ω2

|D|2
[
|εyx|2〈jxj∗x〉ky ,ω

+ |ω2εxx − k2
y|2〈jyj∗y〉ky ,ω

+ 2<
(
(ω2εxx − k2

yc
2)ε∗yx

)
〈jyj∗x〉ky ,ω

]
. (2.97)

For an electron or pair plasma with equal temperatures and velocities, this equation reduces to

〈EyE∗y〉ky ,ω = − T

ε0ω
=

(
ω2εxx − k2

yc
2

(ω2εxx − k2
yc

2)εyy − ω2ε2yx

)
. (2.98)

There follow the spatial spectra

〈EyE∗y〉ky =
T

2ε0

ω2
p

k2
yc

2 + ω2
pµ/γ

2
d

, (2.99)

〈EyE∗y〉
|βφ|>1
ky

=
T

2ε0

∑
ω=ω1,2S

ω2εxx − k2
yc

2

ω∂D/∂ω
. (2.100)

2.5 Comparison with PIC simulations

We now confront our analytical formulae to the electromagnetic fluctuations induced in a numerical
PIC-modeled plasma. The purpose is to analyze the numerical noise seeding amplified modes in PIC
simulations of relativistic plasma instabilities (see Sec. 2.6). Note that the ability of PIC simulations
to correctly render electrostatic fluctuations has already been checked (Dieckmann et al. 2004). Our
code calder (Lefebvre et al. 2003; Drouin 2009) employs the standard Yee solver for the Maxwell
equations (Yee 1966) and a charge-conserving current deposition scheme (Esirkepov 2001) with a
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third-order weight factor for the macro-particles. The simulation geometry is one-dimensional in
space (along or normal to the plasma velocity) and three-dimensional in momentum. The spatial
and temporal step sizes are ∆z = 0.1c/ωp and ∆t = 0.095/ωp, respectively. The plasma length is
560c/ωp with periodic boundary conditions for both the fields and macro-particles. The fields are
initially zero. We consider an e+e− pair plasma initialized according to Eq. (1.22), with µ = 10 and
βd = 0.9. The macro-particles have a charge and a mass equal, respectively, to Qp = ±Wpqe and
Mp = Wpme, where Wp is the statistical weight. For the numerical plasma to behave collectively as
its physical counterpart, the plasma frequencies of the two systems must be equal, which implies

Wp = ne
∆z

Np
, (2.101)

where Np is the number of macro-particles per mesh and species (Np = 2000 here). In the 1-
D geometry under consideration, Wp thus corresponds to an areal density. Since the normalized
inverse temperature µ is an invariant, the susceptibility tensor is unchanged in the simulation. By
contrast, the source term is modified according to

〈jj†〉PIC
k,ω = Wp〈jj†〉k,ω . (2.102)

Note that in the above equation, the left and right hand-side involves respectively a 1D and 3D
Fourier transform. Its homogeneity is ensured by Wp, which is a surface density n 1D. The effect
of the finite spatial width of the macro-particles is here neglected (Birdsall & Langdon 1985). The
relevant simulated quantity to be compared to the theoretical spectrum is therefore Wp〈EE†〉PIC

k,ω .
In practice, the fluctuation power spectrum is computed from the absolute square of the fast Fourier
transform in space and time |FFTx,t(Eα)|2. Care is taken to select a temporal domain over which
the system has reached a quasi-stationary state. The total simulation time is a few 1000ω−1

pe . Taking

into account the relation between a continuous and a discrete Fourier transform, 〈EE†〉k,ω has to
be compared with

〈EE†〉k,ω ≡Wp|DFTx,t(Eα)|2
(
Lx
2π

)2

(2.103)

Figures 2.13(a,b,c) display the (k, ω)-resolved power spectra of the simulated electric and mag-
netic fluctuations for θ = 0 (a,b) and θ = π/2 (c). In the latter case, the simulation resolves the
beam-normal y-axis. These results satisfactorily agree (over ∼ 4 decades) with the theoretical pre-
dictions depicted in Figs. 2.2(d), 2.7(d) and 2.11(b). A noticeable difference, however, is that the
supraluminal eigenmodes appear as finite-width structures in the simulations instead of delta-like
singularities. This can be attributed to a number of reasons: the finite temporal window, the nu-
merical collisions between the finite-width macro-particles and the non-adiabatic switch-on of the
fields. Regarding the latter, the level of the supraluminal fluctuations was theoretically shown to be
highly sensitive to the details of the plasma initialization in Refs. (Lerche 1968b, 1969a,b). A PIC
study of the impact of the plasma initialization upon the asymptotic field fluctuations is outside
the scope of this work.

Let us now consider the spatial fluctuation spectra. From the same reasoning as above, one has to
compare the theoretical formulae (obtained in Secs. 2.3.1, 2.3.2 and 2.4.4) to the simulated quantity
2πWp〈|FFTx(Eα)|2〉t(Lx/2π)2, where 〈〉t denotes a temporal average. The PIC spatial spectra
shown in Figs. 2.14(a,b,c) turn out to better match the subluminal spectra than the total spectra.
This behavior, which is particularly pronounced for the transverse fluctuations with θ = 0 [Fig.
2.14(b)], confirms the observed discrepancy between the simulated and theoretical supraluminal
spectra. We have checked that the energy stored in the supraluminal structures of Figs. 2.13(a,b,c)
significantly underestimates the theoretical expectations.
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Figure 2.13. Simulated (k, ω) spectra in log10 scale for µ = 10 and βd = 0.9 (see text for details). Panels
(a) and (b) correspond to wave vectors parallel to the beam (θ = 0), whereas panel (c) corresponds to wave
vectors normal to the beam (θ = π/2). The dashed and dotted-dashed curves plot the eigenmodes solving
Eq. (2.22) (a), Eq. (2.38) (b) and Eq. (2.67) (c). The system size is L = 560c/ωp in all cases.
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(a) θ = 0 (b) θ = 0

(c) θ = π/2

Figure 2.14. Simulated spatial spectra (dashed lines) for θ = 0 (a,b) and π/2 (c) compared to the theoretical

subluminal (red solid lines) and total (blue solid lines) spectra (in
m2
ec

3

e2 (
∑
s ω

2
ps)

1/2 units).
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Figure 2.15. Phases of the shock formation. Two identical pair plasmas interpenetrate. The overlap region
turns unstable, and two shocks form near the border of each shell. The simulation box contains half of the
system.

2.6 Application of the saturation time of the Weibel instability in
pair plasma (Bret et al. 2013)

Colliding plasma shells are present in a variety of physical settings. Astrophysical jets produced
by black holes are expected to generate a shock when interacting with the interstellar medium
(Begelman et al. 1984; Harris & Krawczynski 2006). Still in astrophysics, the Fireball scenario for
Gamma-Rays-Bursts (Piran 2004; Nakar 2007) relies on shock particle acceleration (Bell 1978a,b),
where the shock arises from the encounter of two ultra-relativistic plasma blobs ejected from a
central engine. Non-relativistic supernova remnant Shocks are also instrumental in accelerating
high energy cosmic rays (Koyama et al. 1995; Dieckmann et al. 2000).

For the collisionless environments considered, PIC simulations are an efficient tool to study
these processes. The formation of a shock following the Weibel-unstable collision of two plasmas
was first explored in Ref. (Silva et al. 2003). Subsequent particle acceleration has been observed
in numerous simulations (Hededal et al. 2004; Nishikawa et al. 2005; Chang et al. 2008; Spitkovsky
2008a,b; Martins et al. 2009).

Although the full shock formation process has thus been now repeatedly observed in simulations,
a first principle understanding of the very birth of the shock is still lacking. Such a theoretical
understanding could provide an accurate timing of the shock formation time, and constraints the
conditions required to form a shock in the first place. Whether they are in the lab, in a computer
simulation or in the vicinity of a supernova, it should be possible to separate the scenario leading
to the shock into two phases represented schematically in Fig. 2.15. In the first phase, plasma
shells make contact and overlap, triggering an electromagnetic Weibel-filamentation instability An
instability grows and saturates. At this junction, the total density in the overlapping region is
roughly the sum of each plasma density. A second phase is therefore needed during which nonlinear
processes pick-up the system from the end of the linear phase, and build-up the expected Rankine-
Hugoniot density jump near the borders of the inter-penetrating shells.

The present section is concerned with the first of these two phases. The collision of two identical
cold relativistic pair plasmas has been simulated in 2D with the PIC code osiris (Fonseca et al.
2002, 2008) in a collaboration with A. Stockem, F. Fiuza , with L. Narayan and L. O. Silva on
an original idea of A. Bret. The details of the simulations are given in Section 2.6.4. This setup
has been chosen for its simplicity, allowing for a direct comparison with theory as the only free
parameter is the initial Lorentz factor of the shells γd. In the simulation, a neutral e−/e+ plasma
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Figure 2.16. Integrated density in the direction normal to the flow at three different times during a typical
shock formation simulation. The lower right plot shows the growth of the magnetic energy integrated over
the transverse direction, and x ∈ [0, 7

√
γdc/ωp]. The dashed line is the theoretical growth rate. The initial

Lorentz factor is γd = 25. All the field growth plots look qualitatively the same until γd = 104. The times
associated to the density plots are indicated: t1 corresponds to the start of the linear phase; t2 to the end of
the linear phase (i.e. the saturation phase); t3 to the strongly non-linear phase, just after shock formation.
8 macroparticles per cell are used.

Figure 2.17. Same as Fig. 2.16, but using 800 particles per cell.
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is made to bounce back against a wall and to interact with itself (Fig. 2.15), which enables to
describe only half of the symmetric physical system. Periodic boundary conditions are applied in
the transverse direction. A series of snapshots from a simulation with γd = 25 is displayed in Fig.
2.16. Only the right part of the system pictured on Fig. 2.15 is showed. These successive plots
of the integrated density along the direction normal to the flow show the instability development
in the overlap region at twice the upstream density, before the shock density jump builds up. The
three snapshots illustrate three distinct phases of the instability: t1 corresponds to the start of
the linear phase; t2 to the end of the linear phase (i.e. the saturation phase); t3 to the strongly
non-linear phase, just after shock formation. The peak density in the overlap region has increased
from a ballistic value of two to expected value of ∼ 3 in a 2D relativistic shock. We observe in
the simulations that in phase 1 the fields grow in a well defined spatial region that extends up to
∼ 7
√
γdc/ωp from the wall. The saturation time τs (t2 in Figure 2.16) is defined as the end of the

exponential growth of the field energy integrated over the region x ∈ [0, 7
√
γdc/ωp].

As discussed in Sec. 2.6.4, simulations have been run with 8 particles per cell. Figure 2.17
displays the same data as Fig. 2.16, but running the simulations with 800 particles per cell. Except
for a somewhat smoother density profile in the shocked (downstream) region, no significant difference
can be found between the two simulations.

As will be checked, the instability at play can be interpreted within a purely temporal formalism,
although the geometry is not periodic. As it amplifies a seed field from its initial fluctuation value
to saturation, the instability governs this first phase of the shock formation process for a time τs
that we labeled “saturation time”. A theoretical determination of this time, in good agreement with
the simulations, is the main result of this section. Not only does τs give a lower bound for the shock
formation time, it also sheds light on the amplitude of the amplified initial thermal fluctuations.

2.6.1 Instability analysis

Here we deal with the first phase of the shock formation, namely the instability in the overlap
region, where we focus on relativistic shocks. Let us start ignoring the finite geometry at stake
here, and analyze the system as if it were homogeneous. The full unstable k spectrum has been
analyzed long ago in the cold regime, where a shell is much denser than the other (Făınberg et al.
1970; Watson et al. 1960b; Bludman et al. 1960). These early results were recently generalized to
the hot symmetric case (Bret & Deutsch 2005; Bret et al. 2010b). For wave-vectors aligned with
the flow, we find two-stream unstable modes. For wave-vectors normal to the flow, we find the
current filamentation, or Weibel, instability. Finally, modes propagating at arbitrary angle with the
flow are also unstable. As the two plasmas penetrate each other, all the modes are excited. But
the fastest growing one quickly overcomes the others, and shapes the linear phase. For the case we
consider, a calculation of the growth rate for every possible wave number is pictured in Fig. 2.18
for two Lorentz factors, γd = 1.1 and 10, in terms of the reduced wave-vector,

Z =
kvd
ωp

, (2.104)

where vd is the initial velocity of the plasmas, and ωp the electronic plasma frequency of one of them.
The calculation, like the simulation, is conducted in the center of mass reference frame, where the
two plasmas come from opposite directions at the same speed. For γd = 1.1, the dominant mode is
oblique while for γd = 10, current filamentation dominates. An in-depth study of the problem found
indeed that only these two types of modes can dominate (Bret & Deutsch 2005; Bret et al. 2010b).
The transition from oblique to filamentation occurs for γd =

√
3/2, as explained in Appendix 6.3.

Note that although the analysis of Refs. (Bret & Deutsch 2005; Bret et al. 2010b) was conducted
for counter-streaming electron beams, counter-streaming pair beams are linearly equivalent because
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Figure 2.18. (Color Online) Growth-rate in ωp units, in terms of Z = kvd/ωp for γd = 1.1 (left) and γd = 10
(right).

the linear regime scales like the square of the charge.
We thus find that, for γd <

√
3/2, current filamentation should govern the interaction with a

growth rate,
Γ

ωp
=
vd
c

√
2

γd
∼
√

2

γd
. (2.105)

Comparing this value to the growth of the field observed in the overlap region results in a very
satisfactory agreement, as evidenced in Fig. 2.16. We have also checked that the Weibel/oblique
transition does occur around γd '

√
3/2. Note that a shock also forms for γd <

√
3/2 (not shown).

This oblique/filamentation transition may seem at odds with previous works on instability hier-
archy (Bret & Deutsch 2005; Bret 2009; Bret et al. 2010b), suggesting filamentation always governs
the spectrum for symmetric systems. Electrostatic instabilities with parallel wave vectors have
equally been found slower than filamentation for relativistic flows (Michno & Schlickeiser 2010;
Shaisultanov et al. 2012). However, the relevant hierarchy maps, like Fig. 5 of Ref. (Bret 2009)
for example, already showed filamentation does not govern symmetric systems all the way down to
γd = 1. Instead, a very narrow γ-region was found in which oblique electrostatic modes to domi-
nate, between γd = 1 and a unspecified value of γd > 1. Until now, this little gap has not attracted
much interest, and it is still overall fair to say that in the relativistic regime, filamentation is the
important instability for symmetric systems.

How can a theory developed for an homogeneous system, apply to the present inhomogeneous
system? The instability time scale varies like Γ−1 ∝ √γd/ωp. Now, by a time ∼ √γd/ωp after
contact, the overlap region is already d ∼ √γdc/ωp wide. But the parallel scale length relative
to instabilities is precisely λ =

√
γdc/ωp [Fig 2.18 (right)]. Even if at the very beginning of the

instability process, d� λ is not fulfilled, the strong inequality is quickly realized with time passing,
so that most of the instability process develops in a setting fulfilling the homogeneous approxi-
mation. A rigorous demonstration of this growth behavior would require a space-time (instead of
purely temporal) perturbative analysis over the overlap region, which has not been carried in this
Manuscript.

The knowledge of the growth-rate (2.105) allows for an approximate timing of the linear phase.
Assuming the instability amplifies a seed field of amplitude Bi up to a saturation level Bs, we can
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write for the saturation time τs,

Bf = Bie
δτs ⇒ τs =

1

2δ
ln

(
B2
f

B2
i

)
, (2.106)

where, for convenience, we consider the field energy B2 ratio, instead of the field itself. Determining
the saturation time amounts then to determine the initial and final fields. We will first discuss the
saturation field.

2.6.2 Field at saturation

One way to derive the value of the saturation field Bf = B(τs), consists in stating that the field
grows exponentially as long as it is small enough for the system to fit the linear approximation.
Since a field Bf affects particles on a time scale given by the cyclotron frequency, this implies
(Achterberg et al. 2007)

qBf1

γdmec
= δ ⇒ Bf1 =

γdme

qe
Γc. (2.107)

Another way of evaluating the field at saturation is to write that as it grows, particles start oscillating
transversely in the field of the fastest growing km at the bounce frequency (Davidson et al. 1972;
Achterberg & Wiersma 2007),

ω2
B =

qevdkB

γdmec
∼ qekmB

γdme
. (2.108)

Here again, linear theory yielding to an exponential growth breaks down when ωB ∼ Γ, which gives
a second value for the field at saturation,

Bf2 =
γdme

qe

γ2

km
. (2.109)

Finally, one can write the linear approximation breaks down when the Larmor radius of the particles
in the growing field equates k−1

m Califano et al. (1998). This third criterion thus gives,

Bf3 =
γdme

qe
c2km, (2.110)

where vd ∼ c has been used. The dominant wavevector at saturation km has been numerically
measured with

km ∼
ωp
c
√
γd
. (2.111)

Making use of the growth rate expression (2.105) gives

B2
f1 = 2γdb

2, (2.112)

B2
f2 = 4γdb

2, (2.113)

B2
f3 = γdb

2, (2.114)

where
b =

mecωp
qe

, (2.115)

is the magnetic field unit of the simulations.
The magnetic field for the filamentation instability grows like sin(ky)eΓt. As a result, particles in

the vicinity of y = 0 [π] are the ones involved in the second saturation mechanism, described by Eq.
(2.109). Particles near y = π [π] experience the kind of trapping involved with Eqs. (2.107,2.110).
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Figure 2.19. Field at saturation from the simulations (circles), compared with Eqs. (2.112-2.114).

The linear hypothesis is first broken when the field reaches min(Bf1, Bf2, Bf3) = Bf3. Figure 2.19
compares the field observed in the simulation at the end of the linear phase with Eqs. (2.112-
2.114). The agreement with Eq. (2.114) is good and the correct scaling is recovered. At any rate,
a numerical pre-factor cannot play a major role once inserted into the logarithm of Eq. (2.106) for
the saturation time.

A consequence of the observed γd scaling is that the field energy relative to the beam one reads,

B2
f/2µ0

γdnmec2
∼ 1, (2.116)

displaying the near-equipartition already noted by various authors (Medvedev & Loeb 1999; Silva
et al. 2003).

2.6.3 The initial field amplitude

We now turn to the evaluation of the initial field amplitude. The idea is that the instability
mechanism picks up a seed field from the spontaneous fluctuations of the system, and amplifies
it. A first question to ask could be the following: should we consider the instability starts from
the fluctuations of one single plasma, or from the fluctuations of the system formed by the two
overlapping plasmas? In other words, should we consider the fluctuations of the system before it
turns unstable, or after? We will now argue that we consider the fluctuations of the stable, isolated
plasma shells, before they inter-penetrate. Before they overlap, each plasma shell comes with its
own fluctuations. As they start to overlap, the fluctuation fields for each plasma will adapt to
each other. But on the very same time scale, the instability process begins. We thus consider that
the seeds for the instability are those present in the system before the plasmas started to overlap.
Filamentation for example, needs unbalanced counter-streaming currents to start growing. As they
approach each other, both plasma shells already display spontaneous fluctuations normal to the
drift. When they start to inter-penetrate, these fluctuations instantaneously provide the needed
unbalanced currents to destabilize the whole system. Hence, their amplitude will be the amplitude
they had before they go unstable.
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Fluctuation power spectrum

We are interested in the magnetic fluctuation spectra of a relativistically drifting, equilibrium
plasma. One could assume the instability process is indeed a initial condition problem, so that
it can discriminate the unstable k’s, but not their frequency. In such case, the ω-integrated spectra
Eqs. (2.75) and (2.86) should be used to derive the initial field amplitude. We here argue instead
that the instability process can discriminate the fluctuation frequency, but up to a precision ±δ. In
other words, ω = 0 is selected for growth, but this selection should be inaccurate to an order ±δ
because during the first growth period, the plasma cannot discriminate waves varying at ω = 0± δ
from the ones at ω = 0. The two approaches will be later compared, and the “ω = 0 selection” will
be found in slightly better agreement with the simulations.

The k-integration domain

Whether we use Eqs. (2.75) and (2.86) for the available energy for growth, we thus need to integrate
over a k domain. As indicated in Fig. 2.18, wave-vectors selected for growth form a narrow band
around the normal axis, extending to infinity and of width

Z‖ ∼
√

2

γd
=⇒ k‖,max ∼

√
2

γd

ωp
c
, (2.117)

in the parallel direction (we set here vd ∼ c).
Regarding the integration domain in the normal direction, it has already been mentioned that

the fastest growing mode has been numerically found for k⊥ ∼ ωp/c
√
γd. We shall thus integrate

Eqs. (2.75) and (2.86) from k⊥,min to k⊥,max with,

k⊥,min =
1

2

ωp
c
√
γd
,

k⊥,max = 2
ωp
c
√
γd
, (2.118)

where the factors 1/2 and 2 have been arbitrarily chosen to bracket km = ωp/c
√
γd. Note that

the end result is almost independent of these constants because of the logarithm function in Eq.
(2.106).

Saturation time from ω-integrated fluctuations

The ω-integrated energy density, Eq. (2.86) is now integrated in the following way. Clearly, it is an
averaged initial amplitude over the modes likely to grow the most. The result reads,

B2
i

2µ0
= π

√
2

γd

(
15

4γd
+ µ ln

[
1 + 4γd/µ

1 + γd/4µ

])(ωp
c

)3
T. (2.119)

Inserting this result in Eq. (2.106) for the saturation time, we find

τsωp =

√
γdd

2
√

2
ln

n(c/ωp)
3

√
2π

µγ
3/2
d

15
4γd

+ µ ln
[

1+4γd/µ
1+γd/4µ

]
 (2.120)

∼
√
γd

2
√

2
ln

[
2
√

2

15π
n

(
c

ωp

)3√
γdµ

]
, for γd � µ,

where n is the plasma density.
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Saturation time from fluctuations near ω = 0

While the k-integration domain remains unchanged, an ω-integration domain is now needed. As
stated earlier, physical reasoning would suggest an integration over [−δ, δ], because the instability
mechanism cannot discriminate fluctuations with ω = 0 from the ones with −δ < ω < δ during the
first growth period or so. Once a given fluctuations has been significantly amplified, i.e, has grown
during ∼ δ−1, it will keep on growing.

But the integration domain is eventually much smaller than [−δ, δ] because the spectral density
Bk⊥,ω is extremely peaked around ω = 0 with,

Bk⊥,ω = Bk⊥,0

(
1− ω2

δω2
+ o(ω2)

)
. (2.121)

At k⊥ = ωp/c
√
γd, the spectral width δω is given by a Taylor expantion of Eq. (2.75) around ω = 0

δω ∼ ωp
γd
√

6µ
, (2.122)

which turns out thinner than the growth rate δ = ωp
√

2/γd, especially for µ � 1. The energy
density Eq. (2.75) is therefore integrated over [−δω, δω], yielding the magnetic seed energy

B2
i

2µ0
=

∫ k⊥,max

k⊥,min

2πk⊥dk⊥

∫ k‖,max

−k‖,max
dk‖

∫ δω

−δω
dω
B2
k⊥,0

2µ0
. (2.123)

Given the narrowness of the (k, ω) integration domain, we set Bk,ω ∼ Bk⊥,0 as given by Eq. (2.75)
in the integrand. A little algebra gives

B2
i

2µ0
=

15
√
π/6

4

√
γd

µ

(ωp
c

)3
mc2, (2.124)

and the saturation time can be cast in the form

τsωp =

√
γd

2
√

2
ln

[
4

15

√
6

π
n

(
c

ωp

)3√
γdµ

]
. (2.125)

Finally, it is to be reminded that our theory has been implemented for a 3D geometry, whereas
simulations are 2D. The corresponding 2D saturation time is derived in Appendix 6.4 and reads

τsωp =

√
γd

2
√

2
ln

[
4× 102

√
π

3

µ

γd
Np

]
, (2.126)

where Np is the number of macro-particles per cell.

2.6.4 Comparison with simulations

In order to test the theory in the early stage of shock formation, ab-initio particle-in-cell simulations
have been performed using the code osiris (Fonseca et al. 2002, 2008). The shock is launched with
the piston-wall method, where two counter-propagating symmetric plasma beams are produced by
injecting one beam by a cathode from one side of the simulation box, and being reflected at the
opposite wall. Here we simulate a low temperature pair plasmas µ = mc2/T = 106γd, and Lorentz
factor γd ∈ [25, 104], so that 1 � γd � µ is fulfilled. The particles are injected along the x axis
with a temporal resolution ∆t = 0.025

√
γd/ωp and the size of a cell being ∆x = 0.05

√
γdc/ωp, using

quadratic interpolation and 8 particles per cell. The two-dimensional box with Lx = 125
√
γdc/ωp
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Figure 2.20. Magnetic field energy evolution for different simulation setups and γd = 25. Black : piston-wall
method, Red : full shock picture, Blue: periodic system of counter-streaming beams, Black dashed : theoretical
growth rate. A detailed description of the models is given in the text.

and Ly = 5
√
γdc/ωp has absorbing boundaries for the particles on the right x side and is periodic

along y. For the fields, conducting boundaries are used at the perfectly reflecting left wall and
open boundary conditions on the right side. Note that this results in a grid size much larger
than the Debye length, which could trigger the grid instability. However, for the combination
of grid sizes and number of particles per cell we have used, this instability has a much longer
time scale than the typical times analyzed in our simulations. Moreover, in our simulations we
use higher order particle shapes and current smoothing (a 5 pass binomial smooth is used). This
improves significantly the energy conservation properties of the algorithm and slows down even
further numerical heating Fonseca et al. (2008). Simulations performed with smaller cell sizes and
larger number of macroparticles (up to 800) were performed. No significant deviations was found
(see Fig. 2.17).

Since we are interested in the early stage of shock formation, the question arises as to whether
the piston-wall method is appropriate. We first simulate the periodic system of counter-streaming
beams, corresponding to the model of unstable fluctuations that is the basis of our theoretical
approach. In this case, no shock is formed and we are able to identify the growth rate and saturation
time of the magnetic field energy. We compare the periodic system with the piston-wall setup and,
furthermore, with the full shock formation process, where in x direction absorbing boundaries are
used for the particles and conducting boundaries for the fields. In the latter case, two symmetric
shocks are propagating outwards and this allows us to identify non-physical fields at the reflecting
wall in the piston-wall setup.

Figure 2.20 shows the evolution of the magnetic field energy WB normalized to the kinetic energy
in the box at time zero K0 for the three different setups for γd = 25. The comparison shows that the
growth rate and saturation level of the field is independent of the setup. The theory of the periodic
system applies to the non-periodic system as well, where the overlapping beams go unstable, and
the fields at the reflecting wall do not seem to affect this process. There is only a small deviation
in the initial fluctuation level, which for γd = 25 leads to a shift of the saturation time ∼ ω−1

p

between the different setups. On the relevant time scales for the saturation time (see Fig. 2.21) this
deviation is negligible, so that we conduct the simulations with the piston-wall setup in order to
save simulation time.
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Figure 2.21. Saturation time τsωp from the PIC simulations, circles, from the fluctuations near ω = 0 Eq.
(2.125), bold line, from the ω-integrated fluctuations Eq. (2.120), thin line, and from the 2D ω = 0 formula
(2.126), thin dashed line. The 3D ω-integrated and the 2D ω = 0 theories give almost the same result.

Theoretical results are now bridged setting

n

(
c

ωp

)3

=
8

0.053 γ
3/2
d

. (2.127)

Figure 2.21 compares the saturation time measured in the simulations with the ω-integrated or
ω = 0 (2D or 3D) formulae. As expected, considering only the fluctuations around ω = 0 yields a
larger saturation time, arising from a lower initial noise amplitude. The slight underestimation of the
simulation results can be attributed to at least two factors. On the one hand, Eq. (2.120) necessarily
remains a lower limit, as the integration domain only brackets the mode selected for growth. On
the other hand, it is difficult to model the level of fluctuations in the simulations realistically, since
it is dependent and sensitive on the choice of numerical parameters of the simulations.

2.7 Summary and conclusions

The power spectra of the electric and magnetic fluctuations spontaneously induced in unmagnetized,
collisionless plasmas described by relativistic Maxwell-Jüttner distribution functions have been ex-
plicitly evaluated for wave vectors parallel or normal to the plasma mean velocity. Closed-form
analytical formulae of the ω-integrated spectra have been worked out in all cases, distinguishing
between the contributions of the subluminal and supraluminal electromagnetic fluctuations. We
have found that the well-known nonrelativistic results (Akhiezer et al. 1975) still hold for nondrift-
ing relativistic plasmas. Use has been made of the generalized Fried and Gould method (Fried &
Gould 1961) to solve for the full set of eigenmodes of the system. This scheme, evidently, could also
handle unstable systems and oblique wave vectors.

The particular case of magnetic fluctuations with wave vectors normal to the beam velocity has
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been treated in details. We have found that the long-wavelength (ky � ωp
√
µ/c) spatial magnetic

fluctuations exceed the short-wavelength fluctuations by a factor γ2
d . An explicit expression of the

ω = 0 magnetic fluctuations is also provided. We have confronted our theoretical results to 1-D PIC
simulations of drifting thermal plasmas. Overall, the theoretical spectra are well reproduced in the
subluminal region. The eigenmode dispersion relations are accurately captured, yet with somewhat
underestimated energy in the supraluminal domain.

Finally, our formula has served to estimate the seed and saturation time of the relativistic
filamentation instability of counterpropagating plasmas. Fair agreement with PIC simulations has
been found provided both plasmas are in thermal equilibrium before overlapping (Bret et al. 2013).

79



Part II

Saturation of the ion Weibel instablity
and collisionless shocks
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Chapter 3

Non-relativistic ion Weibel instability
and saturation regime

This chapter aims to study the ion-Weibel instability triggered by two symmetric and counter-
propagating ion-electron beams in a simple academic framework. The plasma drift velocities con-
sidered corresponds to a high velocity, although non-relativistic: 0.01c . v . 0.5c. We will address
a fully predictive model of the plasma parameter evolution in its saturation regime.

Figure 3.1. Coalescence of two ion current filaments (red current isosurface) in a three dimensional periodic
simulation. The system consists of two counter-propagating, neutral plasmas drifting at v = 0.2c with
a reduced ion mass of mi = 100me. Slices of the magnetic field (normalized to meωpe/e) amplitude are
superposed.
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Chapter 3. Non-relativistic ion Weibel instability and saturation regime

3.1 Introduction

Section 2.6 has dealt with the unstable interaction of two relativistic electron/positron beams.
In this case, the Weibel instability prevails over the other kinetic instabilities as shown in Refs.
(Bret & Deutsch 2005; Bret et al. 2010b). The instabilities triggered by the superposition of two
beams are more numerous when we consider collisionless ions/electrons plasmas (mi > me) in the
non-relativistic regime (βd . 0.5). Determining which instability prevails over the others is then
trickier. In this chapter, we will focus on non-relativistic electron-ion colliding plasmas whose late-
time dynamics is ruled by the ion Weibel instability which, in turns, may trigger a collisionless shock.
Although Stockem et al. (2014) recently performed a parametric location of the collisionless shocks
driven by electrostatic or Weibel-filamentation instability, the growth, the saturation of the fields
and the evolution of the plasma parameters remain poorly understood. In the following, our goal will
be to shed light on the various microscopic kinetic processes likely to occur in colliding-beam systems
up to a stage of strong isotropisation, and therefore close to shock formation. Special emphasis will
be put on modelling the nonlinear phase of the ion Weibel instability. For that purpose, a set of
hydrodynamic equations will be derived from quasilinear kinetic theory and combined to a model
of magnetic filament coalescence. We will consider a simplified configuration where the beams are
assumed homogeneous and infinite.

This chapter is organized as follows. The two first sections mainly present the results of a refer-
ence simulation, describing the unstable interaction of two symmetric counter-propagating electron-
ion beams. In Sec. 3.2.1, we study the first instability appearing in this system shown to be mainly
electronic and longitudinal. We will then show that for a vast part of the parametric space βd < 0.5,
Tex < 10mec

2, the longitudinal instability called the electron acoustic instability (Bohm & Gross
1949) rules the early times of the field growth. We will then demonstrate that the electron Weibel
instability rapidly dominate the system and eventually lead to an ion-Weibel instability. The sat-
uration regime of the ion-ion Weibel instability will then be studied in Sec. 3.3. A quasilinear
model (Davidson et al. 1972) will be presented and approximate relations between the magnetic
field spectrum and the plasma parameters will be obtained. The comparison with various PIC sim-
ulations in Sec. 3.3.4 will evidence the robustness of these simple relations. In order to work out a
self-consistent nonlinear model, we will introduce a simple description of the filaments’ coalescence.
The resulting set of equations, of which we will derive an approximate analytical solution, will be
shown in fair agreement with PIC predictions of the evolution of the ion beam’s parameters.

3.2 Main instabilities triggered by counter-streaming, non-relativistic
electron-ion beams

The PIC simulations presented in this chapter are 3D in the momentum space. The temporal
and spatial steps are respectively ∆t = 0.069ω−1

pe and ∆x = ∆y = 0.1c/ωpe. The simulation
box has periodic boundary conditions and its size is Lx = 102.4c/ωp and Ly = 96c/ωp. The
Esirkepov current deposition scheme is used with a third interpolation order weight factor (see
6). We employ 50 macroparticles per mesh. The ions (of mass mi subsequently defined) and
electrons are initialized as counter-propagating Maxwell-Jüttner distributed beams (Eq. (1.22)) of
temperature Te,i = mec

2/100 and drift velocity vde = vdi = ±vd. The density of each beam is
normalized to the total electron density (ni,e = 0.5).
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(a) Growth rate (b) Imaginary part of Eq. (1.21)

Figure 3.2. Eigenmodes in a system made of two symmetric electron-ion beams (mi = 100me) with drift
velocity vd = 0.2c. (a) Growth rate Γ(kx, ky)/ωpe in the (kxc/ωpe, kyc/ωpe) plane, as computed from Eq.
(1.21). The eigenmode’s real frequency equal to zero for all the resolved growth rate. (b) =[G2(βφ)] [Eq.
(1.21)] as a colored map in the complex phase speed plane for θ = 0. All the locus verifying =(G2) = 0 are
superposed as thin black dashed lines and the eigenmode ( =(G2) = 0 and <(G2) > 0) is in plain black line.

3.2.1 The two-stream instability triggered by overlapping symmetric ions/electrons
plasma beams

We will now focus on the system of drift velocity vd = ±0.2c with an ion mass of mi = 100me.
Making use of the dispersion relation solver of Sec. 1.1.2, we can compute the growth rate map
Γ(kx, ky). Figure 3.2(a) shows a broad continuum of unstable modes and, in particular, a continuous
transition from the longitudinal electron electrostatic instability (i.e. the well-known electron two-
stream instability with ky = 0) to the transverse electron Weibel-filamentation (with kx = 0). The
Weibel-filamentation instability has a maximum growth rate of Γ ' 0.1ωpe/c around ky ' 1.ωpe/c,
kx = 0 close to the non-relativistic cold fluid limit, ΓW /ωpe ' βd = 0.2 and kyc/ωpe ' 1 (Achterberg
& Wiersma 2007). Using an infinite ion mass (fixed ions) yields no significant difference on the
Weibel growth rate. Because the electron mainly contribute to this instability, it will be termed
electron Weibel-filamentation. The dominant longitudinal model (ky = 0) is located at kx ' 3ωpe/c
and has a growth rate Γ ' 0.2ωpe. With fixed ions, it is shifted to kx ' 3.8ωpe/c and Γ ' 0.14ωpe.
It thus corresponds to an electron two-stream instability (Bohm & Gross 1949), resulting in the
growth of the Ex field component, shown in Fig. 3.3(a) for tωpe < 40. We can compute the effective
growth rate in the simulation of Γ/ωpe ' 0.14, which is consistent with the theoretical value. Note
that, as the Weibel-filamentation instability, the electron two-stream does not propagate (ωr = 0)
due to the symmetry of the ion and electron beams in our system (Bret 2009).

Consequently, the electron two-stream instability is expected to dominate the Weibel-filamentation
instability at early times as supported by the simulation results of Fig. 3.3(a-d). The electrostatic
instability heats the electrons in the x direction. Figure 3.3(b) shows that the axial electron tem-
perature (Tex) rises by a factor ∼ 2 over ' 30ω−1

pe while the transverse temperature (Tey) stays
unchanged. In order to understand the influence of the longitudinal electron heating on the system
evolution, we will compare the Weibel-filamentation and the two-stream growth rates for a rising ax-
ial temperature. We need to increase Tex while keeping Tey fixed, which requires a two-temperature
model distribution. Thus, a bi-Maxwellian (1.65) distribution will be used instead of the input 3D
Maxwell-Jüttner distribution (1.22). The neglect of the z-momentum is valid in the non-relativistic
regime (vd � c and Tx,y � mec

2). Figure 3.3(c) shows that the electron energy (black dashed
line in Fig. 3.3(a)) decreases by only 20% for tωpe . 50. Neglecting this variation, we can relate
approximately the evolution of the electron average speed ve to the axial temperature variation
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(a) Electromagnetic and kinetic energies (b) Longitudinal and transverse temperatures

(c) Average velocities

Figure 3.3. (a) Temporal evolution of the total Ex (black), Ey (red) and Bz (blue) electromagnetic energies.
The electron longitudinal kinetic energy, Kex, is superposed as a black dashed line. The time is normalized
to ω−1

pe . (b) Temporal evolution of the average Tx/mec
2 (dashed line) and Ty/mec

2 (plain line) for ions (red)
and electrons (blue). The inset zooms in on the early-time phase. (c) Temporal evolution of the electron
(blue) and ion (red) average speed vde,i = 〈vx〉

∆Tex(t) = T
(1)
ex (t)− T (0)

ex (t):

v
(1)
de (t) =

√
v

(0)2
d − ∆Tex

me
, (3.1)

for unchanged Tey. We then calculate the maximum growth rate of Weibel-filamentation and of
the longitudinal two-stream instability for various Tex, and vde fulfilling Eq. (3.1), keeping fixed

Tey = T
(0)
ey = 10−2mec

2. As is well known, the maximum two-steam growth rate decreases when Tex
increases. By contrast, the Weibel growth rate hardly varies due to its weak dependence on Tex and
to the weak evolution of the averaged electron speed [inset of Fig. 3.3(c)]. Figure 3.4 evidences that
the Weibel-filamentation takes over the two-stream instability for Tex ≥ 1.35× 10−2mec

2, so that a
small axial heating is enough to ease significantly the initial two-stream instability. These results can
be generalized so as to obtain the (Tex, vde) parameter region governed by the two-stream instability
for fixed Tey in the symmetric regime only. Following the isocontour of Kex = mev

2
de+Tex [black thin

lines in Fig. 3.4(b)] starting from a given initial condition, gives the approximate evolution of Tex
and vde over the course of the electron two-stream instability. Along this trajectory, vde decreases
and Tex increases, hence weakening the two-stream growth rate. The Weibel-filamentation becomes
equal to the two-stream growth rate, on the plain red curve in Fig. 3.4(b). Consequently, the electron
two-stream domain of preponderance is located under the red curve of Fig. 3.4(a). As discussed
in the next section, above the red curve the system can experience not only Weibel-filamentation
but also an oblique instability. The electron two-steam saturates at tωpe ' 40 as evidenced by the
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(a) maxk(Γ/ωpe) (b) Two-stream parametric space

Figure 3.4. (a) Maximum growth rate Γmax/ωpe for the two-stream instability (blue) and the Weibel-
filamentation (red). Symmetric bi-Maxwellian electrons are considered with Tex(t) and vde(t) related through

Eq. (3.1) and T
(0)
ey = T

(0)
ex = mec

2/100 and v
(0)
de = 0.2c (fixed ions). (b) Locus of equal Weibel-filamentation

and two-stream growth rate in the (Tex,vde). The isocontours of Tex +mev
2
de are added as thin black lines.

maximum of the Ex-energy [Fig. 3.4(b)]. At this time, the longitudinal temperature has increased
to Tex ' 0.017, in fair agreement with the above estimate.

3.2.2 Transition to the ion-ion Weibel-filamentation instability

Just after saturation of the electron two-stream instability, the electromagnetic spectra of Figs.
3.5(a,b,c) at tωpe = 52, show that a significant part of the electromagnetic fields are oblique (kx 6= 0
and ky 6= 0). The spectrum of the growing Ey fluctuations shows a maximum located around
(kxωpe/c, kyωpe/c) = (±1, 1). The spectrum of Ex [Fig. 3.5(a)] is not purely longitudinal anymore
and the Ex energy decreases at tωpe = 52 while the Ey energy increases. Moreover the spectrum of
Ey is mainly oblique which may be due to a transition from an electron two-stream to an oblique
ion instability. Between tωpe = 40 and 50, the inset of Fig. 3.3(b) evidences both a longitudinal
and a transverse electron heating. This could correspond to an ion oblique instability (Forslund &
Shonk 1970), although a clear identification is made difficult by its short duration.

Simultaneously, the magnetic energy overtakes the electric one for tωpe > 50 and the correspond-
ing spectrum is mainly transverse [Fig. 3.3(c)]. It exponentially increases over 10 < tωpe < 70 with
an effective growth rate of Γ/ωpe ' 0.06, close the theoretical value of the electron-Weibel instability,
ΓW /ωpe = 0.08 [Fig. 3.4(a)]. Hence, while the system is experiencing a two-stream electron insta-
bility and associated saturation, a transverse magnetic modulation is growing at comparable rate
and finely overcomes the electrostatic instabilities (electron two-stream or oblique). A first magnetic
saturation occurs at around tωpe = 75. At this time, the magnetic field energy dominates the other
field components and its spectrum is even more transverse than at tωpe = 50 [Fig. 3.3(c,d)]. More-
over, the electron drift velocity has then dropped by a factor ∼ 2, which indicates that they start to
be isotropized by the longitudinal and electromagnetic instabilities. Measuring the plasma param-
eters at tωpe = 75 from Fig. 3.3(a,b,c) (Tix = Tiy = 0.01mec

2, Tex = 0.02mec
2, Tey = 0.025mec

2,
vdi = ±0.2c, and vde = ±0.125c), the theoretical maximum growth rate of the Weibel instability
is ΓW /ωpe ' 0.03 around kyc/ωpe ' 0.7. For fixed ions, it drops down to ΓW /ωpe ' 0.018 around
kyc/ωpe ' 0.5, which indicates that the ions start to play a role in destabilizing the system. This is
also consistent with the transverse ion heating evidenced in the inset of Fig. 3.3(b) for tωpe & 75.
The magnetic growth observed in Fig. 3.3(a), for tωpe & 75, is therefore mainly due to the ion Weibel
instability, although the electrons do play a role, at least at the beginning. The exponential increase
of WBz for 200 < tωpe < 400, is characterized by an effective growth rate of ΓW /ωpe ' 8 × 10−3
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(a)log10(|DFT (eEx/mecωpe)|) (b) log10(|DFT (eEy/mecωpe)|)

(c) log10(|DFT (eBz/meωpe)|) (d) log10(|DFT (eBz/meωpe)|)

Figure 3.5. Fourier transform of Ex (a) and Ey (b) and Bz at tωpe = 52 (c) and at tωpe = 70.

close to the theoretical value of 1.2×10−2 (for Tix = 0.011mec
2, Tiy = 0.023mec

2, Tex = 0.028mec
2,

Tey = 0.035mec
2, vdi = ±0.2c, and vde = ±0.08c). Note that the magnetic saturation happening at

tωpe ' 75 seems to invalidate the linear approximation made in deriving the dispersion relations of
Chapter 1. However, the second magnetic growth [Fig. 3.3(a)] is exponential and is consistent with
the linear dispersion relations.

An increase of the Ey energy is visible around tωpe ' 300 [Fig. 3.3(a)], with an effective growth
rate Γ/ωpe ' 8 × 10−3 equal to the ion-Weibel value. Measuring the plasma parameters in the
simulation at tωpe = 210, 360 and 570, the growth rates are solved in the (kx, ky) plane and displayed
in Figs. 3.6(a,b,c). At tωpe = 210, an oblique unstable mode dominates the Weibel mode but rapidly
declines until tωpe = 570 at which the Weibel filamentation takes over. The most unstable oblique
modes are essentially electrostatic (E ‖ k) with an angle very close to π/2. It can thus contribute to
the growth of the Ey energy over 180 < tωpe < 380. While in our case they are largely dominated by
the ion Weibel modes (by ∼ 2 orders of magnitudes), these electrostatic ion oblique modes (Forslund
& Shonk 1970) can be critical in low velocity (vde . 5 × 10−3) configurations. In such cases, they
have been shown to disrupt the propagation of laminar electrostatic shocks (Kato & Takabe 2010a;
Dieckmann et al. 2013).

3.3 Ion-ion Weibel-filamentation instability

In the cold relativistic electron-positron systems considered in Sec. 2.6, the filamentation instability
was found to prevail from early on. This contrasts with the present non-relativistic warm electron-
ion system, which experiences a progressive transition from dominant electrostatic electron-driven
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(a) Γ/ωpe at tωpe = 210 (b) Γ/ωpe at tωpe = 360

(c) Γ/ωpe at tωpe = 570 (d)log10(|DFT (eBz/meωpe)|)

Figure 3.6. Growth rate Γ/ωpe in the (kxωpe/c, kyωpe/c ) plane for the plasma parameters extracted from
the simulation at times tωpe = 210 (a), tωpe = 360 (b) and tωpe = 570 (c). (d) log10(|DFTx,y(eBz/meωpe)|)
at tωpe = 360 (d) Fourier transform of Bz at tωpe = 360 (d).

modes to a regime ruled by the ion Weibel instability. The exponential phase of the latter takes
place over the time interval 200 < tωpe < 400. The magnetic growth ends at tωpe = 400, when the
spectrum is mainly transverse as illustrated in Fig. 3.6(c).

From this time on, the nonlinear saturation phase of the Weibel instability takes place. Figure
3.7(a) shows that the ion current modulations are stronger than the electron current modulations.
The magnetic field modulations are thus mainly induced by the ions so that the observed transverse
instability is the ion-ion Weibel-filamentation instability. As a result of the instabilities developing
at early times (electron two-stream, electron Weibel and ion-ion acoustic), the electron distribution
function shown in Fig. 3.7(a) turns out to be nearly isotropized. The averaged speed of each
electron beam has dropped down to ve = 0.06c at the beginning of the ion-Weibel saturation
phase (tωpe > 400). Figure 3.3(a) shows that Ex-energy does not evolve much during the Weibel-
filamentation development. However, the Ey and Bz energies increase in a correlated fashion (Bret
et al. 2010b). Moreover, the green plain line of Fig. 3.7(a) shows that the spatial period of Ey
(∼ 5/ωpe) is twice smaller than the spatial period of Bz (∼ 10c/ωpe). The ion density inside a
filament is roughly 1.4 time larger than its initial value [Fig. 3.7(b)]. The factor of 2 between
the Bz and Ey wavelengths suggests that, in the Weibel nonlinear phase, an approximate balance
between the electric and magnetic forces is established on the electron fluid: Ey ∝ ∂y(B2)/2qeµ0ne.
From this estimate, we predict a typical amplitude qeEy/mecωpe ∼ 10−2 (with qeBz/meωpe ∼ 0.2
and kyc/ωpe ∼ 0.63) in fair agreement with Fig. 3.7(a) (Dieckmann et al. 2009).

The density map of Fig. 3.7(b) illustrates that the ion filaments are not purely transverse.
At this stage, the filaments present both kink-like (Milosavljević & Nakar 2006) and coalescence
(Medvedev et al. 2005; Achterberg et al. 2007) features. In Sec. 3.4.2, the latter secondary instability
will be shown to govern the nonlinear evolution of the magnetic turbulence.
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(a) tωpe = 690 (b) ni(x, y)/n
(0)
i

(c) fe(px, py) (d) fi(px, py)

Figure 3.7. (a) Transverse lineouts of the particles’mean x-velocity and of Ey and Bz profiles. (b) Total

ion density (normalized to the total initial density n
(0)
i ). (c) Electron and (d) ion (px, py) distributions. For

all the figures is ωpet = 690 and the simulation parameters are: ve = vi = ±0.2c and Te = Ti = mec
2/100.

3.3.1 Temporal evolution of the magnetic spectrum

Ion Weibel-filamentation dispersion relation in a non-relativistic and symmetric colliding-
beam system

The temporal evolution of the magnetic spectrum can be related to the plasma parameters in the
linear approximation. For a system made of two symmetric bi-Maxwellian beams, the dispersion
relation of Eq. (1.21) for transverse wavevectors (k = ky, θ = π/2) can be simplified to ω2εxx−k2

y =
0, where the dielectric tensor component εxx reads

εxx = 1−
∑
e,i

ω2
ps

ω2
[1 + (1 + as)(1 + ξsZ(ξs))] , (3.2)

as =
msv

2
ds + Tsx
Tsy

− 1 , (3.3)

as demonstrated in Sec. 1.3.2. We have introduced the anisotropy factor of the sth specie as. The
Weibel-filamentation instability being non-propagating (<(ω) = 0) and transverse (k ⊥ vd) (Weibel
1959), the argument of the plasma dispersion function is ξs = i

√
ms/2TysΓ/ky. The resulting
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dispersion relation follows from ω = 0 + iΓky into the real part of Eq. (3.2) (Davidson et al. 1972):

k2
yc

2 + Γ2
ky +

∑
s

ω2
ps −

∑
s

ω2
ps(as + 1)<

[
1 + i

√
ms

2Tsy

Γ

ky
Z
(
i

√
ms

2Tsy

Γ

ky

)]
= 0 (3.4)

We will now neglect the influence of the electrons. This approximation is valid when the electron

population is initially isotropic. In the case of initially anisotropic electrons, the simulation v
(0)
i =

v
(0)
e = 0.2c, mi = 100me shows that the electron instabilities (two-stream, Weibel...) which have

grown and saturated first leaves the electrons hot and mostly isotropized. This will be subsequently
verified for other initial plasma parameters, in 1D or 2D simulations. Taking an electron temperature
of Tey ' 0.04mec

2 (Fig. 3.3(b) tωpe = 300) yields |ξe| ' 0.1 and |<(ξeZ(ξe))| ' 0.15. We will thus
neglect this term in front of unity [bracketed term of Eq. (3.4)]. Consequently, even for initially
anisotropic electrons, when the ion Weibel-filamentation saturates, the electrons are mostly isotropic
and the corresponding dispersion function can be neglected within 15% error.

As for the ions, we will assume (and subsequently justify) that |ξi| is smaller than unity at the
beginning of the saturation stage of the ion Weibel-filamentation instability. We can therefore make
use of the Taylor expansion of ξiZ(ξi) for |ξ| � 1, giving

Z(ξ) = −2ξ +
4

3
ξ3 + i

√
π
k

|k|
exp−ξ2 +O(ξ4) . (3.5)

To leading order, we obtain ξiZ(ξi) ' i
√
πξi. Equation (3.4) can thus be recast using Eq. (3.5) and

neglecting ξeZ(ξe):

ω2
pi(ai + 1)

√
πmi

2Tiy
Γky + k2

y

(
k2
y −

ω2
peae

c2
−
ω2
piai

c2

)
= 0 . (3.6)

Equation (3.6) gives

Γky '
√

2Tiy
πmi
|ky|

k2
maxc

2 − k2
yc

2

ω2
pi(ai + 1)

, (3.7)

where we have introduced the upper bound of the Weibel-unstable domain kmax

k2
maxc

2 = ω2
peae + ω2

piai . (3.8)

This approximated growth rate was first derived in the electron-electron filamentation in Davidson
et al. (1972). The only difference lies here in kmax, which involves both the ion and the electron
anisotropies.

The accuracy of the estimate, Eq. (3.7), is illustrated in Fig. 3.8(a) for the plasma parameters
vdi = ±0.2c, vde = 0, Tix = 0.05mec

2, Tiy = 0.05mec
2, Tex = 0.05mec

2 and Tey = 0.05mec
2. Correct

agreement is found between the exact and approximated growth rate curves, with respect to both
their general shapes and the location/amplitude of the dominant mode.

Simplified wavevector and growth rate

In order to capture the dominant wavevector of the Weibel instability as a function of the plasma
parameters, we will assume that most of the magnetic energy is contained in the spectral region
surrounding the growth rate maximum. Making use of Eq. (3.7), we obtain

∂kyΓky = 0⇒ ksat =
ω2
peae + ω2

piai

c2
√

3
' 0.5kmax . (3.9)
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Weibel growth rate

Figure 3.8. Exact calculation as plain lines through the generalized Fried and Gould scheme (dispersion
Eq. (3.4)) of the growth rate, normalized to ωpe. The approximations using Eq. (3.7) are superposed as
dashed lines. The plasma parameters are vd = 0.2c and mi = 25me.

To further simplify our analysis, we will take the large-ion-anisotropy limit (ai � 1) in our
equations. This approximation is justified in all our simulations. For instance, we have ai = 400
in our reference simulation (vd = 0.2c, mi = 100me and Ti = 5keV). By contrast, the electrons
will be assumed sufficiently isotropized for their anisotropy ratio to be neglected. There follow the
simplified formulae:

ksat

kmax
= ηi ' 0.5 , (3.10)

with
kmax '

ωpi
c

√
ai , (3.11)

and

Γky '
√

2Tiy
πmi

(
1−

k2
y

k2
max

)
ky . (3.12)

For ky = ksat, it reads:

Γsat = Γksat ' 0.3ωpi

√
Tix
mic2

+ β2
i . (3.13)

This equation confirms the well-known scaling of the Weibel-filamentation growth rate in the cold
limit (Tix � mic

2) which reads Γ ∝ ωpivi/c (Achterberg & Wiersma 2007).
Furthermore, the argument of the plasma dispersion function involved in the ion term of Eq.

(3.4) simplifies to

ξi ' i
1√
π

(
1−

k2
y

k2
max

)
. (3.14)

This expression shows that, for ai � 1, ξi depends only on the ratio k2
y/k

2
max and takes its maximum

value |ξi| = 1/
√
π for ky = 0. At k = ksat, we have |ξsat

i | ' 0.4. The small-argument expansion of
Z in Eq. (3.4) is then marginally justified.

3.3.2 Temporal evolution of the plasma parameters

Quasilinear equations of the plasma parameters

The main assumption made in Sec. 3.3.1 consists in using the linear dispersion relation computed on
the spatially averaged distribution functions to relate the ion anisotropy ratio to the main wavevector
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ksat.
This approach is equivalent to the quasilinear kinetic theory of the Weibel instability as first

exploited by Davidson et al. (1972), or more recently Sadovskĭi & Galeev (2001); Pokhotelov &
Amariutei (2011); Hellinger et al. (2013). The quasilinear kinetic theory for the Weibel-filamentation
instability is valid provided |ξi,e| � 1, a regime also assumed in Sec. 3.3.1. Within these two
approximations, Davidson et al. (1972) derived the Weibel-filamentation quasilinear theory for a
bi-Maxwellian (1.65) distribution function. This yields a relation between the temporal derivatives
of the distribution function moments and the time derivatives of |Bky |2. It reads

∂tf
(0) =

∑
ky

−iω2
pi|Bky |2

µ0nimic2k2
y

[
−kyvx∂vy + (iΓ−k + kyvy)∂vx

]
×
[
kyvx∂vy + (iΓk − kyvy)∂vx

iΓk − kyvy

]
f (0) .

(3.15)
The quasilinear theory usually assumes:

∂t|Bky|2 ≡ 2Γky |Bky|2 . (3.16)

If the distribution functions stay bi-Maxwellian and making use of Eq. (3.16), the three first
moments of Eq. (3.15) give a set of differential equations on the temperatures and drift velocities
of the distribution functions.

The s subscript refers now either to one of the ion beams or to the whole electron population
(assumed isotropized):

ns∂tvds = −
∑
ky

ω2
ps

k2
yc

2

vds
Tsy
< [1 + ξsZ(ξs)]

∂t|Bky |2

µ0
, (3.17)

ns∂tTsy = +
∑
ky

ω2
ps

k2
yc

2
(as + 1)< [1 + ξsZ(ξs)]

∂t|Bky |2

µ0
, (3.18)

ns∂tKsx = −
∑
ky

ω2
ps

k2
yc

2
< [2(as + 1)(1 + ξsZ(ξs))− 1]

∂t|Bky |2

µ0
, (3.19)

where |Bky |2 has the dimension of an energy density unit and Ksx = Tsx +msv
2
ds. Proceeding as in

Sec. 3.3.1 for the electrons, we neglect ξeZ(ξe) (valid for |ξe| . 0.01) and obtain

ne∂tvde = −
ω2
pe

µ0c2

vde
Tey

∂tSp , (3.20)

ne∂tTey = +
ω2
pe

µ0c2
(ae + 1)∂tSp , (3.21)

ne∂tKex = −
ω2
pe

µ0c2
(2ae + 1) ∂tSp , (3.22)

where we have introduced

Sp = q2
e

∑
ky

|Bky |2

k2
y

= q2
e

∑
ky

|Aky |2 , (3.23)

homogeneous to the square of a momentum. Note that Eq. (3.20) implies that if vde = 0 initially,
it remains so at t > 0.
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(a) (b)

Figure 3.9. (a) ξiZ(ξi) vs. the ratio ky/kmax from Eq. (3.14) (independent from any plasma parameter).
(b) ξ5

iZ(ξi) vs. the ratio ky/kmax from Eq. (3.14) (solid line) and with ξ4
i ξ

sat
i Z(ξsat

i ) = −0.5ξ4
i (dashed line).

In order to make analytical progress, we will make use of the approximation∑
ky

<
(
1 + ξkyZ(ξky)

)
∂t|Bky |2/k2

y ' < (1 + ξsatZ(ξsat))Sp (3.24)

From Eq. (3.14), and using the small-argument expansion of Z, ξsatZ(ξsat) ' −0.5, independent,
to first approximation, of the plasma parameters under the physical conditions considered.

The error made in replacing ξiZ(ξi) by a constant factor of −0.5 can be estimated at the
saturation stage of the Weibel-filamentation instability. The amplitude of the magnetic field at
saturation can be inferred by a magnetic trapping argument (Davidson et al. 1972). In a current
filament, ions oscillate transversely at the so-called bouncing frequency:

ωB =
√
ZikyB/mivd . (3.25)

Since the linear theory assumes a ballistic motion of particles during a field growth time, Γ−1, the
saturated field amplitude (i.e. at the beginning of the non-linear stage) may be estimated from
equating Γ and ωB, yielding (Davidson et al. 1972)

Bsat
ky '

miΓ
2
ky

vdZiky
. (3.26)

This estimate can also be viewed as the limit above which the spectral component Bky can modify the
ion motion. Hence, making use of the above expression, and assuming that the unstable modes satu-
rates independently from each other, one can obtain that the magnetic spectrum and thus |Bky |2/k2

y

scales as ξ4
i . Consequently, the ξiZ(ξi)|Bky |2/k2

y term in Eqs. (3.17), (3.18) and (3.19) should vary
as ξ4

i ξiZ(ξi) at saturation. Figure 3.9(b) compares the exact value of ξ5
iZ(ξi) ∝ ξiZ(ξi)|Bky|2/k2

y to
the approximated formula −0.5ξ4

i ∝ ξsat
i Z(ξsat

i )|Bky|2/k2
y. The relative error is found to be smaller

than 20% in the ky → 0 limit and vanishes for ky = ksat. We insist on the fact that ξ(ksat) = ξsat
i

tends to be a constant in the large-ion-anisotropy limit. Hence the approximation of Eq. (3.24)
does not depend on the ion parameters and can be made whenever the ions are non-relativistic in
the Weibel quasilinear theory. Moreover, the trapping criterion of Davidson’s formula (Eq. (3.26))
has not been injected in the quasilinear equations but has only served to support the |ξi| � 1 and
Eq. (3.24) approximations.
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Figure 3.10. Temporal evolution of the ratio θi of [Eq. (3.31)] in the reference simulation (vd = 0.2c and

mi = 100me) by −(Kix −K(0)
ix )/(Tiy − T (0)

iy ).

Since ξsatZ(ξsat) may be considered as a constant, we define

αi = 1 + ξsat
i Z(ξsat

i ) ' 0.5 . (3.27)

Equations (3.17), (3.18) and (3.19) can now be recast as

ni∂tvi = −
ω2
pi

µ0c2
αi

vi
Tiy

∂tSp , (3.28)

ni∂tTiy = +
ω2
pi

µ0c2
αi(ai + 1)∂tSp , (3.29)

ni∂tKix = −
ω2
pi

µ0c2
(2αiai + 2αi − 1) ∂tSp . (3.30)

Resolution of the quasilinear evolution

An additional simplification can be made upon realizing that the ratio of Eqs. (3.29) and (3.30) is
essentially constant in the ai � 1 limit:

∂tKix

∂tTiy
≡ −θi = −2αiai + 2αi − 1

αi(ai + 1)
, (3.31)

' −2

[
1 +

1

ai

(
1− 1

αi

)]
. (3.32)

The validity of this approximation is supported by Fig. 3.10 which plots the time history of the
quantity θi in the reference simulation. As predicted, θi saturates at a value ∼ 2 once the ion Weibel
instability reaches saturation (ωpet > 450). At later times, θi slowly decreases (reaching ' 1.8 at
ωpet = 2700) as a result of decreasing ion anisotropy [see Fig. 3.11(e)]. We will then make the
assumption that θi is a quasi-constant and neglect all its time derivatives. Equation (3.31) can then
readily integrated, giving

Kix = K
(0)
ix − θi(Tiy − T

(0)
iy ) , (3.33)

where X(0) stands for X(t = 0). Plugging Eq. (3.33) into (3.29) gives

niTiy

K
(0)
ix − θi(Tiy − T

(0)
iy )

∂tTiy =
ω2
pi

µ0c2
αi∂tSp . (3.34)
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For practical reasons, we will introduce the parameter

Kθi = θiT
(0)
iy + T

(0)
ix +miv

(0)2
i , (3.35)

which has the dimension of an energy. For θi = 2, we have K2 = 2T
(0)
iy + T

(0)
ix + miv

(0)2
i , which is

larger than the initial ion energy. The integration of Eq. (3.34) is straightforward and yields

Tiy − T (0)
iy +

K2

θi
ln

(
K2 − θiTiy
K2 − θiT (0)

iy

)
= −θi

Z2
i

mi
αi(Sp − S(0)

p ) . (3.36)

The Taylor expansion of the logarithmic term for Tiy/K2 � 1 (high anisotropy limit) gives

Tiy =

√
T

(0)2
iy + 2

Z2
i

mi
αiK2(Sp − S(0)

p ) (3.37)

Inserting Eq. (3.37) into (3.28) yields

∂tvdi = −Z
2
i

mi
αi

vdi∂tSp√
T

(0)2
iy + 2

ω2
pi

nic2
αiK2(Sp − S(0)

p )

, (3.38)

which may be readily integrated:

vi = v
(0)
i exp

(
−2

Tiy − T (0)
iy

K2

)
= v

(0)
i exp

− 2

K2

√T (0)2
iy + 2

Z2
i

mi
αiK2(Sp − S(0)

p )− T (0)
iy

 .
(3.39)

Combining Eqs. (3.33) and (3.37) allows us to solve for Kix:

Kix = K2 − θi

√
T

(0)2
iy + 2

Z2
i

mi
αiK2(Sp − S(0)

p ) . (3.40)

There follows the anisotropy ratio

ai =
K2√

T
(0)2
iy + 2

Z2
i

mi
αiK2(Sp − S(0)

p )
− 2 , (3.41)

and the effective spectrum

Sp − S(0)
p =

mi

2Z2
i αiK2

[(
K2

2 + ai

)2

− T (0)2
iy

]
. (3.42)

The non-resonant quasilinear theory relates the instantaneous temperatures and drift velocities to
the effective magnetic energy Sp, independently of the time history of the system (Sadovskĭi &
Galeev 2001; Pokhotelov & Amariutei 2011). Of course, this property holds insofar as the Weibel
instability rules the evolution of the system. We also remind that the obtained equations are valid
within the assumption of ai � 1. The limiting values of the above quantities may be assessed by
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inserting ai = 2 > 1 in their corresponding expressions:

Sfp =
mi

2Z2
i αiK2

[
K2

2

16
− T (0)2

iy

]
, (3.43)

T fiy =
K2

4
, (3.44)

vfi = v
(0)
i exp

(
−2

K2/4− T (0)
iy

K2

)
, (3.45)

Kf
ix =

K2

2
. (3.46)

3.3.3 Summary of the model’s assumptions

Before confronting our formulae to PIC simulation results, let us gather the assumptions underlying
our quasilinear model. Firstly, we consider that the spatially averaged distribution functions will
remain bi-Maxwellian. We then obtain simple relations between the moments of the distributions.
Note that a quasilinear model taking into account the distribution deformation is presented in
Pokhotelov & Amariutei (2011).

Secondly, constant ion and electron densities are assumed. This assumption is valid in the
periodic simulations of Sec. 3.3.4. However, in a system with open boundaries, the nonlinear late-
time evolution of the Weibel-instability will result in a significant decrease in the ion drift velocity
which, in turn, may entail a density increase. We will assess this assumption in the next chapter,
where our quasilinear model will be applied to shock formation.

Thirdly, the electrons are assumed sufficiently hot (|ξe| � 1) and isotropic (ae � ai/mi). The
validity of this approximation will be checked in 1D, 2D and 3D simulations for various plasma
parameters. In all cases, it will prove valid by the time the ion-Weibel instability has saturated.
Moreover, the hot ion approximation |ξi| < 1 is also assessed at ion-Weibel saturation for various
plasma parameters. This assumption, being the validity condition of the ion-quasilinear equations,
is also used to simplify the growth rate and estimate the dominant wavevector ksat. However, in a
few nearly-relativistic cases (vi ≥ 0.4c), ξi ∼ 1 at Weibel saturation time even though the quasilinear
relations works well.

Finally, the ion anisotropy ratio ai is assumed large in order to derive a simple expression of the
dominant wavevector ksat. In this limit, ξi only depends on ky/kmax and is independent of the plasma
parameters. This also enables to simplify the quasilinear equations, leading us to ξsatZ(ξsat) ' −0.5
and to ∂tKix/∂tTiy ' −2 (Figs. 3.9 and 3.10). We will assess the validity of this approximation in
the simulation of Sec. 3.3.4 and by estimating the plasma parameters until the marginal limit of
ai = 2 on Eqs. (3.43)-(3.46).

3.3.4 Comparison with PIC simulation results

This section gathers the simulation results obtained using a variety of periodic geometries and
plasma parameters, and confronts them to the above analytical expressions. The unknown effective
magnetic spectrum, Sp, will be measured as a function of time in the simulations. The evolution of
Sp and ksat computed from Eqs. (3.23) and (3.10), respectively, will also be compared to the values
obtained making use of the plasma parameters measured in the simulations.

1D periodic simulations

Since our model considers a 1D magnetic spectrum, we will first present 1D simulations where the
drift velocities are taken perpendicular to the resolved spatial axis. The size of the simulation domain
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is Lx = 102.4c/ωpe and periodic boundary conditions are applied for the fields and particles. The
temporal and spatial steps are ∆t = 0.095ω−1

pe and ∆x = 0.1c/ωpe respectively. The ions (of mass
mi to be defined) and electrons are initialized in the forms of two counter-propagating Maxwell-
Jüttner-type beams (1.22). The only unstable modes able to arise in this configuration are the
electron or ion-driven Weibel modes. A total number of 50000 macroparticles per mesh and per
species is used. The spectral quantity Sp is calculated as

S1D
p = q2

e

∑
ky

|DFTy(Bz)|2

k2
y

, (3.47)

where the sum runs over the negative and positive discrete wavevectors.
The case of vde = vdi = 0.2c, Te,i = 0.01mec

2 and mi = 100me is first considered in Fig. 3.11.
During the first 100ω−1

pe , the electron drift velocity of the initially vd > 0 beam drops by a factor ∼ 2
and the transverse temperature Tey rises from 0.01mec

2 to 0.035mec
2 [Fig. 3.11(d,f)]. Consequently,

the electrons anisotropy ratio drops from ' 5 to ' 0.3 showing that they are rapidly isotropized, in
fair agreement with our hot and isotropic electron approximation. The analytical estimate of the
dominant wavevector, Eq. (3.10), underestimates the PIC wavevector by 40% [Fig. 3.11(b)].

At saturation (tωpe ' 400), the plasma parameters are Te,ix ' 0.01mec
2, Tex ' 0.04me2

c ,
Tey ' 0.05mec

2, vi ' ±0.2c, ve ' ±0.04. The exact Weibel dispersion relation, Eq. (3.4), is then
solved exactly so as to yield an estimate of ξsat = iΓky/ky

√
2Ti,ey/mi,e where ky maximizes the

growth rate. For the electrons, |ξe| ' 0.07 � 1, which approximately fulfills the assumption of
hot isotropic electrons. For the ions, |ξi| ' 0.6 < 1 matches the theoretical prediction |ξsat| ' 0.5.
Consequently, the assumptions underlying the quasilinear equations may be considered valid. The
PIC curves of vdi, ai and Tiy are satisfactorily reproduced (to within a 20% error) by Eqs. (3.39),
(3.41) and (3.37) making use of the PIC Sp curve.

A second periodic 1D simulation illustrated in Figs. 3.12, has been run, with isotropic electrons

(ve = 0) and ion parameters vi = ±0.5c, mi = 100me. All temperatures are initialized at T
(0)
i,e =

0.01mec
2. Since the electrons are initially isotropic, the only instability developing is the ion Weibel-

filamentation instability. The validity of the hot electrons approximation [leading to the neglect of
ξeZ(ξe) in Eq. (3.4)] can also be assessed in this case. Solving the exact dispersion relation Eq. (3.4)
for the system at saturation (tωpe = 300, Te,ix = 0.01mec

2, Tey = 0.04me2
c , Tex = 0.12mec

2, vi =
0.5c, ve = 0 ) and maximizing the growth rate gives an estimate of |ξe| ' 0.056� 1. Consequently,
even though the electrons do not trigger any instability before the ion-Weibel filamentation, the
hot electron approximation is valid. Moreover, we have |ξi| ' 0.36 < 1 at saturation, close to the
theoretical value of |ξsat| = 0.45 whereas |ξi| ' 1.6 at t = 0. Hence, the Weibel-induced ion heating
is sufficient to validate the assumption |ξi| < 1. We notice that the quasilinear relations seem to
give fairly good results as early as t = 0, even though the condition |ξi| < 1 is not initially fulfilled.

In addition, Sp and ksat correctly reproduce the PIC results. As in the previous 1D simulation,
the system reaches a quasi-stationary state shortly after the saturation of the Weibel instability,
the plasma and turbulence properties remaining essentially frozen after ωpet ' 500.

2D periodic simulations

For the 2D PIC simulations, Sp can be calculated using a Fourier transform in the transverse y
direction, averaged over the x direction:

S2D
p = q2

e

∑
ky

〈|DFTy(Bz)|2〉x
k2
y

. (3.48)

in all cases, the simulation boxes have dimensions of Lx = 102.4c/ωpe and Ly = 102.4c/ωpe
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Periodic 1D simulation with initial conditions:

vdi = ±0.2c , vde = ±0.2c ,mi = 100me andT
(0)
i,e = 0.01mec

2 .

(a) Sp normalized to m2
ec

2 (b) Dominant wavevector

(c) Electromagnetic energies (d) Mean x-velocity

(e) anisotropy ratio (f) Transverse temperatures

Figure 3.11. (a) Temporal evolution of Sp, defined by Eq. (3.23) (normalized to m2
ec

2) from the simulation
(plain line). (b) Temporal evolution of ksat, maximizing the Bz-spectrum, (normalized to ωpe/c) from the
simulation (dots) and from Eq. (3.10) (dashed line). (c) Temporal evolution of the mean electromagnetic
energies (normalized to mec

2ω2
pe/c

2). Temporal evolutions of vi/c (d), ai (e) and Ti,ey/mec
2 (f) from the

simulation (plain lines) and from Eqs. (3.39), (3.41) and (3.37) (dashed lines), measuring Sp in the simulation
(black line of (a)). Time is normalized to ω−1

pe .
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Periodic 1D simulation with initial conditions:

vdi = ±0.5c , vde = ±0 ,mi = 100me andT
(0)
i,e = 0.01mec

2 .

(a) Sp normalized to m2
ec

2 (b) Dominant wavevector

(c) Electromagnetic energies (d) Mean x-velocity

(e) Anisotropy ratio (f) Transverse temperatures

Figure 3.12. (a) Temporal evolution of Sp, defined by Eq. (3.23) (normalized to m2
ec

2) from the simulation
(plain line). (b) Temporal evolution of ksat maximizing the Bz-spectrum (normalized to ωpe/c) from the
simulation (plain line) and from Eq. (3.10) (dashed line). (c) Temporal evolution of the mean electromagnetic
energies normalized to mec

2ω2
pe/c

2. Temporal evolutions of vi/c (d), ai (e) and Ti,ey/mec
2 (f) from the

simulation (plain lines) and from Eqs. (3.39), (3.41) and (3.37) in dashed lines, taking Sp in the simulation
(black solid line of (a)). Time is normalized to ω−1

pe .
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with periodic boundary conditions. The temporal and spatial steps are respectively ∆t = 0.069ω−1
pe

and ∆x = 0.1c/ωpe. All the simulations consider Maxwell-Jüttner-distributed plasma species with

T
(0)
i,e = 0.01mec

2. Each cell initially contains 50 macroparticles per species.
Since we neglect the electron anisotropy in our quasilinear model, we will first consider the

case of isotropic electrons (vde = 0). The results of a simulation with vdi = ±0.2c, vde = 0 and
mi = 100me are gathered in Fig. 3.13. From the beginning of the simulation onwards, the growth
of transverse magnetic fluctuations rules the system. They increase essentially during the interval
200 ≤ ωpe ≤ 600 at an effective rate Γ/ωpe ∼ 10−2 close to the maximum theoretical growth
rate of Γsat/ωpe ' 1.3× 10−2. Moreover, the resolution of the dispersion relation shows no unstable
longitudinal mode (k = kx). This confirms that the system is dominated by the Weibel filamentation
instability from the beginning. The saturation of the instability starts at tωpe = 600 as evidenced
by Fig. 3.13(c). From this time, our quasilinear model, Eqs. (3.39), (3.41) and (3.37), correctly
captures (to within a factor ∼ 2) the variations of the Sp curve. It should be emphasized that, in
contrast to the previous simulations, the plasma parameters keep on evolving during the instability
saturation stage. Within our quasilinear model, these variations stem from the steady increase in
Sp, which should be contrasted to the essentially constant magnetic energy for ωpet & 600. These
distinct behaviors point to a time-changing magnetic spectrum, as confirmed by the decreasing ksat

curve of Fig. 3.13(b). At saturation, the Bz-energy is about 40 times larger than the Ey-energy.
The ξi factor at the beginning of the simulation (using the initial conditions) can be estimated

by maximizing the growth rate, computed from the exact dispersion relation. At tωpe = 0, |ξi| '
Γmax/ksat

√
2T

(0)
iy /mi ' 1.2 > 1: this violates the |ξi| < 1 quasilinear validity condition. However,

taking the plasma parameters after saturation gives at tωpe = 600, |ξi| ' Γmax/ksat

√
2T

(0)
iy /mi '

0.5 < 1 and in good agreement with the approximated value of 0.5. Figure 3.13(d) show that
the evolution of the ion drift velocity is well reproduced by the quasilinear equation over all the
simulated time range. The evolution of Tiy [Fig. 3.13(e)] and ai [Fig. 3.13(f)] are well reproduced
by the quasilinear theory until tωpe = 1400. Later on, our model underestimates by a factor ∼ 2
the increase in the ion transverse temperature, and consequently, overestimates by the same factor
the ion anisotropy ratio.

The case vde = vdi = 0.2c is considered in Fig. 3.14, the other parameters being identical to the
previous simulation. The two-stream and oblique instabilities triggered during the first 500ω−1

pe of
this simulation have already been discussed in Sec. 3.2. By the time the Weibel instability saturates,
the electron drift velocity has decreased by more than a factor two and the electron anisotropy
ratio has dropped to ae ' −0.2 � ai. Moreover, using the plasma parameters at tωpe = 500
(Ti,ex ' 0.01mec

2, Ti,ey ' 0.03mec
2, vdi ' ±0.2c and vde ' ±0.08c) yields |ξe| ' 0.04 � 1 and

|ξi| ' 0.41 < 1. Since the assumptions of hot and isotropic electrons and strongly anisotropic ions
are well verified, the analytical estimate of |ξsat| ' 0.45 matches the numerical value. Plugging the
simulated value of Sp [Eq. (3.48)] in Eqs. (3.39), (3.41), (3.37) (3.10) and (3.23) gives an estimate
of the quasilinear evolution of the plasma and spectrum parameters. As in previous cases, the ksat

estimate, Eq. (3.10), underestimates the simulation value by 40% for tωpe > 500 [Fig. 3.14(b)].
Although the ion drift velocity evolution vi is very well reproduced by the quasilinear theory [Fig.
3.14(d)], the transverse temperature Tiy is underestimated by a factor ∼ 2 (Fig. 3.14(d)). This
implies that the theory overestimates by a factor ∼ 2 the simulated value of the ion anisotropy ratio
[Fig. 3.14(c)].

The periodic simulation of 3.15 has been run with a realistic proton mass (mi = 1836me) with
vdi = ±0.4c and vde = 0. The fully periodic simulation domain has dimensions Lx = 102.4c/ωpe,
Ly = 102.4c/ωpe, and the numerical discretization is ∆t = 0.14ω−1

pe and ∆x = 0.2c/ωpe. The
theoretical growth rate map shown in Fig. 3.16(a) predicts that the system is initially dominated
by a longitudinal instability. This instability propagates at ∼ 0.4c with dominant growth rate of
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Periodic 2D simulation with initial conditions:

T
(0)
i,e = 0.01mec

2 ,mi = 100me , vi = ±0.2c and ve = 0 .

(a) Sp normalized to m2
ec

2 (b) Dominant wavevector

(c) Electromagnetic energies (d) Mean x-velocity

(e) Anisotropy ratio (f) Transverse temperatures

Figure 3.13. (a) Temporal evolution of Sp, defined by Eq. (3.23), (normalized to m2
ec

2) from the simulation
(plain line). (b) Temporal evolution of ksat, maximizing the Bz-spectrum, (normalized to ωpe/c) from the
simulation (plain line) and from Eq. (3.10) (dashed line). (c) Temporal evolution of the mean electromagnetic
energies (normalized to mec

2ω2
pe/c

2). Temporal evolutions of vi/c (d), ai (e) and Ti,ey/mec
2 (f) from the

simulation (red solid lines) and from Eqs. (3.39), (3.41) and (3.37) (red dashed lines), taking Sp from the
simulation (solid line of (a)). The analytical predictions, Eqs. (3.80)-(3.85), are superposed as dashed red
lines (details in Sec. 3.4.5). Time is normalized to ω−1

pe .
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Periodic 2D simulation with initial conditions:

vi = ±0.2c , ve = ±0.2c ,mi = 100me andT
(0)
i,e = 0.01mec

2 .

(a) Sp normalized to m2
ec

2 (b) Dominant wavevector

(c) Electromagnetic energies (d) Mean x-velocity

(e) Anisotropy ratio (f) Transverse temperatures

Figure 3.14. (a) Temporal evolution of Sp, defined by Eq. (3.23), (normalized to m2
ec

2) from the simulation
(plain line). (b) Temporal evolution of ksat, maximizing the Bz-spectrum, (normalized to ωpe/c) in the
simulation (plain line) and using estimate of Eq. (3.10) (dashed line). (c) Temporal evolution of the mean
electromagnetic energies (normalized to mec

2ω2
pe/c

2). Temporal evolutions of vi,e/c (d), ai (e) and Ti,ey/mec
2

(f) from the simulation (plain lines) and from Eqs. (3.39), (3.41) and (3.37) in dashed lines, taking Sp from
the simulation (solid line of (a)). The analytical predictions of Eqs. (3.80)-(3.85) are superposed as dashed
red lines (details in Sec. 3.4.5). Time is normalized to ω−1

pe .
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Periodic 2D simulation with initial conditions:

vi = ±0.4c , ve = ±0 ,mi = 1836me andT
(0)
i,e = 0.01mec

2 .

(a) Sp normalized to m2
ec

2 (b) Dominant wavevector

(c) Electromagnetic energies (d) Mean x-velocity

(e) Anisotropy ratio (f) Transverse temperatures

Figure 3.15. (a) Temporal evolution of Sp, defined by Eq. (3.23), (normalized to m2
ec

2) from the simulation
(plain line). (b) Temporal evolution of ksat, maximizing the Bz-spectrum, (normalized to ωpe/c)from the
simulation (plain line) and from Eq. (3.10) (dashed line). (c) Temporal evolution of the mean electromagnetic
energies (normalized to mec

2ω2
pe/c

2). Temporal evolutions of vi,e/c (d), ai (e) and Ti,ey/mec
2 (f) from the

simulation (plain lines) and from Eqs. (3.39), (3.41) and (3.37) (dashed lines), taking Sp in the simulation
(solid line of (a)). The analytical predictions of Eqs. (3.80)-(3.85) are superposed as dashed red lines (details
in Sec. 3.4.5). Time is normalized to ω−1

pe ..

103



Chapter 3. Non-relativistic ion Weibel instability and saturation regime

Growth rate

Figure 3.16. Growth rate Γ(kx, ky) normalized to ωpe in the (kx, ky) plane. The associated real frequency
vanishes for the transverse wavevectors (left panel), while the dominant longitudinal eigenmodes (right panel
at kxc/ωpe ' 0.3) propagates at real phase speed of 0.4c. The system is made of two symmetric beams with

drift velocities vdi = ±0.4c, isotropic electrons, vde = 0, and temperature T
(0)
x,yi,e = 0.01mec

2. The ion mass
is mi = 1836me.

Γ/ωpe ' 0.04 comparable to the effective Ex-growth giving Γ/ωpe ' 0.03 in the simulation. This
corresponds to the Buneman instability, driven by the ion drift velocities which exceed the electron
thermal velocity (Buneman 1959). This explains the exponential growth of the electric field energy,
WEx [Fig. 3.15(c)], which saturates around tωpe ' 200. Figure 3.15(c) further shows that the
magnetic field energy overcomes the electric field for tωpe > 400, as a result of a then dominant
ion Weibel instability, and saturates at tωpe ' 1000. As in the previous cases, the magnetic energy
remains approximately constant after saturation. The evolution of ksat is well reproduced by Eq.
(3.10) for tωpe > 1000 [Fig. 3.15(b)] while the theoretical evolution of Sp [Fig. 3.15(a)] overestimates
the PIC curve by a factor ∼ 4. The temporal evolutions of vi, Tiy and ai in the simulation are very
well reproduced by the quasilinear theory (even at large time for tωpe > 5000) [Figs. 3.15(d,e,f)].
This confirms that the accuracy of the model increases with the ion anisotropy. Note that the
agreement is very good, at the beginning of the Weibel-saturation stage, when |ξi| ' 1.2 > 1 (with
Tiy = 0.2mec

2, Tey = 0.3mec
2, Ti,ex = 0.2mec

2, vi = ±0.4c, ve = 0 ). Later on, however, |ξi|
decreases progressively down to |ξi| ' 0.78 < 1 at tωpe = 4000.

3D periodic simulations

All the quasilinear equations developed here can easily be generalized to the 3D geometry using sym-
metry of rotation around the x axis. It is not surprising since many numerical studies (Fonseca et al.
2003; Romanov et al. 2004; ?; Bret et al. 2008) evidence very similar plasma evolution between 3D
simulations and 2D simulations, when the latter resolve the drift direction. In the simulations, S3D

p

can be calculated using a Fourier transform in the yz plane of the transverse (By and Bz) magnetic
field components. Moreover the dispersion relation (3.4) and the non-relativistic bi-Maxwellian di-
electric tensors remain unchanged from 2D to 3D distribution functions. The quasilinear equations,
as presented previously, can be generalized to the 3D case, given the following definition of Sp

S3D
p = q2

e

∑
ky ,kz

〈|DFTy,z(By)|2 + |DFTy,z(Bz)|2〉x
k2
y + k2

z

. (3.49)

In the following, the periodic simulation domain has dimensions Lx = 102.4c/ωpe, Ly = Lz =
96c/ωpe, with space and time steps ∆x = 0.2c/ωpe and ∆t = 0.114ω−1

pe . The ions, of mass
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mi = 100me, and electrons are initialized by counter-propagating Maxwell-Jüttner type (1.22)
distribution functions of temperature Te,i = mec

2/100 and drift velocity ve,i = ±0.2c. We use
Np = 30 macroparticles per mesh and per species. The 2D and 3D simulations [Figs. 3.14 and 3.17]
show very similar results, although the Sp evolution is slightly faster in the 2D case. The predictions
from quasilinear theory matches fairly well the simulation results during the Weibel-saturation stage
(tωpe > 300).

3.4 Spectral dynamics: from the growth rate evolution to the col-
lective filament dynamics

The above model leads to simple analytical formulae relating the ion temperatures and drift velocity
to the evolution of the spectral quantity Sp = q2

e

∑
k |Ak|. These equations have been shown to match

the PIC simulation results for various plasma parameters, provided the ion anisotropy remains large
enough in the nonlinear stage. However, an additional relation must be provided in order to have a
fully predictive model of the ion-Weibel saturation. Two strategies have been tried for that purpose,
which we will now present.

3.4.1 Growth rate evolution

A simple approach to predict the evolution of the spectrum uses the exponential growth of the
unstable electromagnetic modes. During the linear phase of the Weibel instability, before saturation,
the magnetic field can be linked to the growth rate through Bky(t)

2 = B2
i,ky

exp(2Γky t), use being

made of the initial seed-field B2
i as in Sec. 2.6. However, during the magnetic field growth, Γky

varies with time so that a more rigorous quasilinear formulation is

B2
ky(t) = B2

i exp

[
2

∫ t′

0
dt′Γky(t

′)

]
. (3.50)

In the nonlinear stage, a significant part of the spectrum obeys (at least qualitatively) the saturation
scaling of Eq. (3.26) (Davidson et al. 1972). Drawing upon the model of Gedalin et al. (2010, 2012),
we will assume that, at a gven time, only the modes of wavevector k > kc(t) (where kc is the time-
dependent critical wavevector) have saturated and obey Eq. (3.26), while the modes with k < kc(t)
keep on growing according to Eq. (3.50). Gedalin et al. (2010, 2012) identify the critical wavevector
kc(t) to the wavevector maximizing the magnetic spectrum, ksat(t). Hence, for k = kc(t) = ksat(t),
the Davidson criterion is applied for each exponentially-growing mode of magnetic spectrum:

miΓ
2
sat

Zivik2
sat

= B2
i exp

(
2

∫ t

0
dt′Γksat(t

′)

)
. (3.51)

Taking the time derivative of the logarithm of the above equation yields:

2Γksat = ∂t ln

[(
m2
iΓ

4
ksat

Z2
i v

2
i k

2
sat

)
1

B2
i

]
. (3.52)

For a system in initially thermal equilibrium as described in Chapter 2, B2
i is given by Eq. (2.75),

so that B2
i ∝ k−3. However, the simulations of this chapter have been run without ensuring that the

field spectra have converged to their thermal equilibrium shape before turning unstable. Therefore,
we will take B2

i ∝ k−nk where nk > 0 is an undetermined spectral coefficient. There follows

2Γksat = 4∂t ln(Γksat)− (2− nk)∂t ln(ksat)− 2∂t ln(vi) , (3.53)

105



Chapter 3. Non-relativistic ion Weibel instability and saturation regime

Periodic 3D simulation with initial conditions:

vi = ±0.2c , ve = ±0 ,mi = 100me andT
(0)
i,e = 0.01mec

2 .

(a) Sp normalized to m2
ec

2 (b) Dominant wavevector

(c) Electromagnetic energies (d) Mean x-velocity

(e) Anisotropy ratio (f) Transverse temperatures

Figure 3.17. (a) Temporal evolution of Sp, defined by Eq. (3.23), (normalized to m2
ec

2) from the 3D
simulation (circles). (b) Temporal evolution of ksat (maximizing the Bz-spectrum) normalized to ωpe/c
from the simulation (circles) and from Eq. (3.10) (red dashed line). (c) Temporal evolution of the mean
electromagnetic energies (normalized to mec

2ω2
pe/c

2). Care has been taken to verify that By and Bz has
the exact same energy evolution. The corresponding 2D plots is superposed dotted-dashed line. Temporal
evolutions of vi/c (d), ai (e) and Ti,ey/mec

2 (f) from the simulation in plain lines and of Eqs. (3.39), (3.41)
and (3.37) in dashed lines, measuring Sp from the simulation (circles of (a)). All the 2D PIC simulation results
from (same plasma parameters) of The corresponding results from a 2D simulation using the same parameters
[Fig. 3.14] are superposed as black dotted-dashed lines. The analytical predictions of Eqs. (3.80)-(3.85) are
superposed as dashed red lines (details in Sec. 3.4.5). Time is normalized to ω−1

pe .
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where in the limit ai � 1, Eqs. (3.7) (3.10) leads to Γk ' 0.3ωpi
√
Kix/mi and ksatc/ωpi ' ηi

√
ai.

Hence, ∂t ln(Γksat) ' ∂t ln(Kix)/2. Making use of ∂tKix ' −2∂tTiy and Eq. (3.29) gives

∂t ln(Γksat) ' −
∂tTiy
Kix

' −αi
ω2
pi

nic2

∂tSp
Tiy

. (3.54)

Plugging (3.10), (3.41) and (3.42) into ∂tSp = ∂aiSp · ∂ksatai · ∂tksat gives

∂t ln(Γksat) '
2K2

Tiy

1

(2 + ai)3

ksatc
2

ω2
pix

2
. (3.55)

Moreover, ∂t ln(vi) can be related to ∂tTiy:

∂t ln(vi) =
−2

K2
∂tTiy '

4K2

Tiy

ksatc
2

ω2
pix

2
∂tksat . (3.56)

We then obtain

Γksatksat =

4K2

Tiy

k2
satc

2

ω2
pix

2

(
2 +

k2
satc

2

ω2
pix

2

)−3

− 2
4K2

Tiy

k2
satc

2

ω2
pix

2
− 1 +

nk
2

 ∂tksat , (3.57)

with Tiy given by (3.37) and (3.42). This first order differential equation is expected to be valid as
soon as the instability enters its saturation regime. While it can be solved numerically, analytical
progress can be made by taking advantage of ai ' ksatc/ωpix � 1. To leading order, the above
equation can be recast as

dt ' − 1

Γksat

8K2

Tiy

ksatc
2

ω2
pix

2
dksat , (3.58)

which does not depend anymore on the spectral coefficient nk. The filamentation wavelength λsat =
2π/ksat then verifies

1

c
∂tλsat '

0.28x2π

4

√
Kix

mic2

(
me

mi

)2 Tiy
E2

a
− 3

2
i . (3.59)

Hence, at the beginning of the saturation phase, making use of K2/Tiy ∼ ai, ∂tλsat is expected to

scale as a
−5/2
i /m2

i . In the 1D simulations associated to mi = 100me and vi = 0.2c (respectively
vi = 0.5c) [Figs. 3.11 and 3.12], we measure ai ' 100 at tωpe = 500 (respectively ai ' 200 at
tωpe = 500) and thus obtain ∂tλsat ∼ 10−10c (respectively ai ' 4 × 10−11c) from Eq. (3.59). Con-
sequently, these two systems would need at least 1010ω−1

pe to undergo an increase of only 0.1c/ωpe
of the Weibel wavelength. This is confirmed by the 1D simulations of Figs. 3.11 and 3.12, which
show weakly varying spectral and plasma parameters during the saturation stage. This stationary
state contrasts with the continuously evolving system predicted by 2D and 3D simulations. Even
though the magnetic turbulence remains essentially transverse (ky,z � kx), the existence of longi-
tudinal gradients has a dramatic influence on the long-time evolution of the system in enabling the
coalescence of ion-current filaments. This process, forbidden in 1D simulations, will be shown to
quantitatively explain the long-time evolution of the multidimensional Weibel-unstable systems.

3.4.2 The coalescence of two filaments

The 2D and 3D simulations presented in Sec. 3.3.4 show similar spectral evolutions. After Weibel
saturation, the Bz-energy [blue lines in Figs. 3.11-3.17(c)] remains constant while Sp goes on
increasing [black lines in Fig. 3.11-3.17(c)]. This suggests that the instability is ruled by the
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evolution of the dominant wavevector ksat. As the ions are heated, ksat decreases accordingly to Eq.
(3.10). Since 〈B2

z 〉 remains constant, there follows a steady increase in Sp ∼ 〈B2
z 〉/k2

sat. Hence, if
〈B2

z 〉y stays constant and ksat is decreasing, Sp ∼ 〈B2
z 〉y/k2

sat is increasing.
Previous studies have found that the filament dynamics is subject to secondary instabilities,

such as filament coalescence (or merging) which, in terms of magnetic turbulence generates increas-
ingly low-ky modes (Honda et al. 2000; Gremillet 2001; Medvedev et al. 2005) or kink instabilities
(Milosavljević & Nakar 2006), which generates kx 6= 0 modes. In our reference simulation, the
magnetic spectrum stays mainly localized on the axis kx = 0, although it shows a small spread
in the kx direction [Fig. 3.3(c)]. This suggests that the nonlinear Weibel evolution is dominated
by filament coalescence in our simulations. Some simple models of filament merging already exist
(Medvedev et al. 2005; Achterberg et al. 2007). Its underlying mechanism is as follows. In the non-
linear stage, strong ion current filaments are formed, which are partially screened by the essentially
isotropized electrons. Typical profiles of the ion and electron current densities are plotted in Fig.
3.7(a). Each filament creates a magnetic loop, which attracts the neighboring filaments of same
current sign. The merging of two filaments generates a larger filament, of roughly twice the size
of the primary filaments. As analyzed in Polomarov et al. (2008), this process goes along with a
decrease or increase of the magnetic energy if the initial filaments are respectively super-Alvfénic
or under-Alfvénic.

Figure 3.18 is a focus on two merging filaments in a 3D periodic simulation with parameters
vdi = vde = 0.2c, mi = 100me (Sec. 3.3.4). The ion current isosurface (red) shows two separated
filaments at tωpe = 400 as confirmed by the slice of the magnetic field modulus at xωpe/c = 60.
After a delay of 170ω−1

pe , the two filaments have merged in the region 30 < xωpe/c < 60. Moreover,
we notice that the filament dynamics also includes kink modes since at tωpe = 400, the filaments are
slightly winding. The coalescence process in 1D and 2D geometry will be discussed in Sec. 3.4.5.

A critical parameter ruling the coalescence time is the total current carried by a filament. This
current includes an ion contribution, ji, which can be estimated assuming spatial separation of
the (initially superposed) counter-streaming ion beams: ji ' 0.5qeZinivi, where ni is the total
density of the ion population (including the two beams). This estimate fairly agrees with the value
ji = 0.1qenec measured in the 2D simulation with vi = 0.2c, mi = 100me [red line in Fig. 3.7(a)].
The electrons tend to screen the ion current and their response depends on the size of the filament.
This can be understood qualitatively for an isotropic electron distribution: its screening contribution
will be more efficient if the size of the filament exceed the electron skin depth (λsat/2 � c/ωpe).
On the contrary, if the size of the filament verifies λsat/2 ∼ c/ωpe, the electron screening will be
less efficient. Assuming a linear response of the electrons, the general form of the screening factor,
κ = j/ji, has been derived by Achterberg et al. (2007) in a 3D geometry. It reads

κ =
j

ji
= 2I1

(
πωpe
2cksat

)
K1

(
πωpe
2cksat

)
, (3.60)

where I1 and K1 are the modified Bessel functions of respectively the first and second kind. Making
use of a large-argument expansion, the above equation can be approximated by j ' ji2cksat/πωpe.
Equation (3.60) is plotted in Fig. 3.19(b) as a solid line. Applying the above expression to the
simulation vdi,e = 0.2c, mi = 100me, we measure a wavelength of λsatωpe/c ' 10 and thus predict a
screening electron current of |je| ' 0.5ji, matching the blue solid curve [Fig. 3.7(a)]. The estimate
j/ji ' 2cksat/πωpe, superposed in 3.19(b) as a dashed black line, matches fairly well the exact
expression of ksatc/ωpe & 0.8. Moreover, it can be shown that j/ji = 2cksat/πωpe is the exact 2D
screening factor. Consequently, we deduce an approximated total current

j ' qeZinivicksat/πωpe . (3.61)
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(a) tωpe = 400

(b) tωpe = 570

Figure 3.18. Merging of two ion filaments in a 3D a simulation with initial parameters vdi = 0.2c, vde = 0.2c,

mi = 100me and T
(0)
i,e = 0.01mec

2. Ion current isosurface (in red) at ji = 0.085qenic at tωpe = 400 (a) and
tωpe = 570 (b).The ions in the filaments are streaming from right to left. Three slices of the magnitude of B
(|B| normalized to meωpe/c) are superposed. Space is normalized to c/ωpe.
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(a) (b)

Figure 3.19. (a) Schematic representation of the initial state taken from Ref. Medvedev et al. (2005) for
two attracting filaments. Here the distance D0 can be linked to the magnetic field period: D0 = λsat/2. (b)
Screening factor Eq. (3.60) as a function of ksatc/ωpe in black solid line. The estimate j/ji = 2cksat/πωpe is
superposed as black dashed line.

As a result, in the limit ksatc/ωpe � π/2, the total current carried by a filament verifies I0 '
nivicksatλ

2
sat/16ωpe.

We will now present a simple model of the influence of collective filaments coalescence on the
evolution of ksat.

3.4.3 Collective coalescence dynamics

Following the general idea of Medvedev et al. (2005); Achterberg et al. (2007), we start by the
equation of motion applied to the distance between two filaments, λsat, as illustrated in Fig. 3.19.
We also assume that the filaments’ diameter is λsat/2. Their mass per length unit is ρl ' miniS
where S ∝ (λsat/2)2 (respectively S ∝ λsat/2) is the section of the filament in 3D (respectively 2D):

ρld
2
tt(λsat) = SBj . (3.62)

Here j and B are the magnetic field and current, averaged on a filament. As the filament get closer,
we assume that ρL and j stay essentially constant. Making use of Eq. (3.61), the above equation
can be recast as

mid
2
ttλsat =

j

ni
B , (3.63)

where κ is the screening electron factor. We emphasize that no assumption is made on the exact
value of the filament section S. Equation (3.63) stays approximately valid as long as two attracting
filaments have the same typical width ∼ λsat/2. Moreover, the above equation is valid in both
2D and 3D geometries. The average effective force Bj/ni applied to the filament derives from a
potential energy Aj/ni where A and j are also averaged over a filament’s width. Hence, the sum of
the potential energy with the effective kinetic energy 0.5mi[dt(λsat)]

2 is conserved, which yields

mid
[
(dtλsat)

2
]

= − j

ni
dA . (3.64)

Our goal is not to solve the exact dynamics of merging filaments but, rather, to estimate the
temporal evolution of the average separation length of a large number of filaments during their
collective dynamics. Consequently, we will average Eq. (3.64) on the y direction, over a large
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number of filaments. We thus obtain

d
[
mi(dtλsat)

2
]

=
j

ni
d〈A〉y . (3.65)

We now introduce the total current estimate of Eq. (3.61). Because A and j are always of the
same sign for two attracting filaments, the variations of 〈A〉y can be related to the variations of√
Sp. Since 〈A〉y is averaged over a filament width, the estimate 〈|A|〉y ' q−1

e

√
Sp neglects the

long-wavelength component of the spectrum (λ & 2λsat). There follows

d
[
mi(dtλsat)

2
]
' Ziκvid

√
Sp , (3.66)

which can be readily integrated:

mi(dtλsat)
2 −mi(dtλsat)

2
t0 = Zi

∫ Sp(t)

Sp(t0)

κvi

2
√
Sp
dSp . (3.67)

Since this equation only involves quantities spatially averaged over a large number of filaments,
it can be combined to the quasilinear equations of Sec. 3.3.2. We notice that, in principle, the
quasilinear theory assumes that the coherence time of the particles though the magnetic fluctuations
(∼ ω/kvth) is negligible compared to the growth time (Γ−1) of the fluctuations in contrast with a
field evolution ruled by magnetic trapping. However, as previously observed by Davidson et al.
(1972), the simulations presented in Sec. 3.3.4 support the validity of the quasilinear model up to
the nonlinear, magnetic-trapping regime.

The initial state of the collective coalescence dynamics of Eq. (3.66) is taken at the end of the
linear phase (t = t∗), where the plasma has been proven to verify |ξi| ≤ 1. At the beginning of the
saturation phase, a quasi-equilibrium filamented state sets in (Suzuki 2008; Suzuki & Shigeyama
2009; Gedalin et al. 2010; Abraham-Shrauner 2010). Assuming ∂tλsat = 0 at the beginning of the
saturation phase (t = t∗).

Taking the temporal derivative of Eq. (3.67) and making use of Eqs. (3.42) and (3.10), one
obtains

d2
ttλsat =

κv2
0

(2αi)1/2λsat

ai
(ai + 2)2

. (3.68)

The above equation can be solved numerically with vdi, Sp, ai and κ verifying Eqs. (3.39), (3.42),
(3.10) and (3.60). This exact resolution is plotted in Figs. 3.20(a,b) as black solid lines. The dashed
red lines correspond to the numerical resolution of Eq. (3.68), neglecting the initial temperature

(T
(0)
ix = T

(0)
iy = 0), the drift velocity variations (vdi = v0) and using the simplified screening factor

κ ' 2cksat/πωpe. No significant difference is found between the approximate and exact curves.
Consequently, we will now simplify further Eqs. (3.28), (3.37), (3.41), (3.42) and (3.60). With
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(a) mi = 100me, vdi = 0.2c (b) mi = 1836me, vdi = 0.4c

Figure 3.20. Temporal evolution of the dominant wavevector, ksat, from the exact numerical resolution
of Eq. (3.68) (black solid line) for mi = 100me, vid = 0.2c (a) and mi = 1836me, vdi = 0.4c (b). The ion

temperature is taken to be T
(0)
ix,y = 0.01mec

2 in both cases. The wavevector at the beginning of the saturation
phase are k∗c/ωpe = 0.7 (a) and k∗c/ωpe = 0.45 (b) (see Figs. 3.15(b) and 3.13(b)). The numerical solutions of

(3.68), with T
(0)
ix,y = 0, with constant drift velocity vi = v0, and a implified screening factor κ ' 2cksat/πωpe

are superposed in red dashed lines. The analytical approximations in the large-ion anisotropy limit, Eq.
(3.80), are superposed as dashed blue lines.

K2 = miv
2
0 + 3T0 ' miv

2
0, ηi = ksat/kmax ' 0.5 and αi = 0.5:

Sp '
1

2αiZ2
i

(
miv0

2 + ai

)2

, (3.69)

ksat '
ηiωpi
c

√√√√ miv0√
2αiZ2

i Sp

− 2 , (3.70)

ai '
miv0√

2αiZ2
i Sp

− 2 , (3.71)

Tiy '
√

2αiZ2
i v

2
0Sp , (3.72)

vi ' v(0)
i exp

2
T0

K2
−

2
√

2αiZ2
i Sp

miv0

 , (3.73)

κ ' 2cksat

πωpe
. (3.74)

Plugging Eqs. (3.69)-(3.74) into Eq. (3.66) with vi = v0 yields

(dtλsat)
2 ' 2ωpiv0ηi

miπωpe

∫ Sp

S0

dSp

2
√
Sp

√√√√ miv0√
2αiZ2

i Sp

− 2 . (3.75)
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By making the change of variable Sp = (p0/2)2 sin(t)4 where p0 = miv0/
√

2αiZ2
i , one obtains

(dtλsat)
2 =

2ωpiv0ηi
miπωpe

p0√
2
×[

arcsin

(√
2

p0
S

1
4
p

)
− arcsin

(√
2

p0
S

1
4
0

)
+

√
2

p0
S

1
4
p

√
1− 2

p0
S

1
2
p −

√
2

p0
S

1
4
0

√
1− 2

p0
S

1
2
0

]
.

(3.76)

Using Eqs. (3.69) and (3.70), the argument of the arcsin function can be recast as√
2

p0
S

1
4
p =

λsat√
λ2

sat + λ2
c

, (3.77)

where the critical wavelength λc =
√

2π2/η2
i c/ωpi is of the order of an ion skin-depth. We have

shown that in the high-anisotropy limit (ai � 2), the wavelength at saturation is smaller than the ion
skin-depth, λsat � 2πc/ωpi. The regime λsat ∼ λc ∼ 2πc/ωpi is found only close to ion isotropization
(ai < 2). Consequently, in the high ion anisotropy limit and until quasi-isotropization of the ions
(ai ∼ 2), the following condition is fulfilled√

2

p0
S

1
4
p '

λsat

λc
� 1 . (3.78)

Hence, Eq. (3.76) can be solved in the high anisotropy limit, yielding

λsat ' λ∗
(

1 +
(t− t∗)2

τ2
0

)
, (3.79)

ksat '
k∗

1 + (t−t∗)2
τ20

, (3.80)

where t∗ is the start time of the nonlinear Weibel phase, λ∗ = λsat(t∗) and

τ0 =

√
λ∗c

ωpi

π(2αi)
1
4

v0ηi

√
2ωpe
ωpi

, (3.81)

is the typical coalescence time, that is, the time over which ksat decreases by a factor two. It can also
be viewed as the lifetime of the slowly-evolving filamentary state established at magnetic saturation.
As expected, it increases with the typical distance between filaments after saturation λ∗ Note that
the dependence of τ0 upon the unknown parameters λ∗ cancels out in the long-time limit of λsat(t).
Also, the influence of the electron screening transpires through the ωpe term in Eq. (3.81). Figures
3.20(a,b) show good agreement between the approximated formula, Eq. (3.79) , and the numerical
resolution of Eq. (3.68). The initial wavevectors are measured in the PIC simulations summarized
in Figs. 3.13(b) and 3.15(b).

The last step consists in plugging Eq. (3.80) into (3.69)-(3.73) to obtain a fully predictive
analytical formulation of the plasma parameters as a function of ∆t = t − t∗, the plasma initial
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conditions (at t = 0) and the wavevector at the end of the linear phase k∗ at (t = t∗):

ai '
k2
∗c

2

ω2
piη

2
i

1

(1 + ∆t2/τ2
0 )2

, (3.82)

Sp '
m2
i v

2
0

2αiZ2
i

(1 + ∆t2/τ2
0 )4(

k2
∗c

2/ω2
piη

2
i + 2(1 + ∆t2/τ2

0 )2
)2 , (3.83)

Tiy ' miv
2
0

(1 + ∆t2/τ2
0 )2

k2
∗c

2/ω2
piη

2
i + 2(1 + ∆t2/τ2

0 )2
, (3.84)

vi ' v0 exp

[
2T0

K2
− 2(1 + ∆t2/τ2

0 )2

k2
∗c

2/ω2
piη

2
i + 2(1 + ∆t2/τ2

0 )2

]
, (3.85)

Kix '
k2
∗c

2

ω2
piη

2
i

miv
2
0

k2
∗c

2/ω2
piη

2
i

k2
∗c

2/ω2
piη

2
i + 2(1 + ∆t2/τ2

0 )2
. (3.86)

Taking ∆t = 0 gives the plasma parameters at the beginning of the Weibel saturation phase for a
given k∗:

ai(t∗) '
k2
∗c

2

ω2
piη

2
i

, (3.87)

Sp(t∗) '
m2
i v

2
0

2αiZ2
i

1(
k2
∗c

2/ω2
piη

2
i + 2

)2 , (3.88)

Tiy(t∗) ' miv
2
0

1

k2
∗c

2/ω2
piη

2
i + 2

, (3.89)

vi(t∗) ' v0 exp

[
2T0

K2
− 2

k2
∗c

2/ω2
piη

2
i + 2

]
, (3.90)

Kix(t∗) '
k2
∗c

2

ω2
piη

2
i

miv
2
0

k2
∗c

2/ω2
piη

2
i

k2
∗c

2/ω2
piη

2
i + 2

. (3.91)

The cold-limit approximation made in deriving Eqs. (3.69)-(3.74) (i.e. assuming T
(0)
i,e = 0) is

assumed valid provided the initial temperature (at t = 0), verifies,

T
(0)
i,x/y � Tiy(t∗) ' miv

2
0

1

k2
∗c

2/ω2
piη

2
i + 2

. (3.92)

According to the simulations presented in Sec. 3.3.4, one has k∗ scales as k∗ ∼ [0.5− 0.7]ωpe/c, so

that T
(0)
i,x/y . 4mev

2
0. For instance, the case of vdi = 0.2c, mi = 100me leads to T

(0)
i,x/y = 0.01mec

2 �
[2− 4]mev

2
0 = [0.08− 0.16]mec

2.

3.4.4 Influence of the initial filament size

Our model requires the knowledge of the typical filament wavelength at the beginning of the ion-
Weibel saturation phase, λ∗. While its precise evaluation is very challenging, we can approximate
it by making use of Davidson’s magnetic trapping model. Equation (3.26) can be recast in order to
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estimate the amplitude of the potential vector, Asat
ky

, at the end of the ion-Weibel linear phase:

Asat
ky (t∗) '

miΓ
2
ky

vdqeZik2
y

. (3.93)

Making use of ξi = Γ/ky

√
2T

(0)
iy /mi and Asat

ky
∼
√
Sp, we obtain

Sp(t∗) ∼
T 2

0

v2
0Z

2
i

ξ4
i . (3.94)

In the above equation, ξi can be calculated at t = 0, by numerically solving the dispersion relation
of Eq. (3.4). We can resort to the quasilinear relations of Eqs. (3.41) and (3.10) to obtain an
estimate of λ∗ and k∗:

λ∗ ∼
c

ηiωpi

2π√
K2

T
(0)
iy

√
1+

2αK2
miv

2
0
ξ4i

− 2
, (3.95)

k∗ ∼ ηi
ωpi
c

√√√√ K2

T
(0)
iy

√
1 + 2ηiK2

miv20
ξ4
i

− 2 , (3.96)

where K2 = miv
2
0 + 2T

(0)
iy + T

(0)
ix , ηi ' 0.5 and α ' 0.5. If the plasma is initially cold: (T

(0)
iy =

T
(0)
ix � miv

2
0), we obtain:

k∗ ∼ ηi
ωpi
c

√
ai(t = 0)

(1 + ξ4
i )

1
4

. (3.97)

The ξi factor can be estimated by maximizing the growth rate obtained from the exact resolution
of the initial dispersion relation. For initially cold plasmas, the initial ion anisotropy ratio verifies
ai(t = 0) ∝ mi, and the initial wavelength λ∗ therefore scales as the electron skin-depth. The above
formulation, based on the Davidson scaling, depends on ξ4

i calculated at t = 0 and is thus imprecise.
Making use of Eq. (3.95), the case of Fig. 3.21(a) gives λ∗ωpe/c ' 9.3 for ξi ' 1.8 and τ0 ' 1500ωpe.
The case of Fig. 3.21(b) gives λ∗ωpe/c ' 17 λ∗ωpe/c ' 14) for ξi ' 3.8 and τ0 ' 4300ωpe. In these
two cases, the estimated λ∗ differs from the value used in the PIC comparison. However the growth
estimate of Eq. (3.95) does not affect the long term evolution.

As already reminded, the long-time evolution of λsat(t) is independent of λ∗. For ∆t & 3τ0, we
can neglect unity with respect to ∆t2/τ2

0 [see Eq. (3.79)], and thus obtain

λsat '
η2
i

3π2(2αi)
1
2

(v0

c

)2 c

ωpe
(ωpi∆t)

2 . (3.98)

λsat is found to depend on the electron mass in contrast to its early time evolution. From Eq. (3.10),
we derive the long time evolution of the ion anisotropy ratio:

ai '
4π2c2

η2
i ω

2
pi

(
π2(2Z2

i αi)
1
2

η2
i Zi

2ωpe
ωpi

c

ωpiv2
0

)2

(∆t)−4 , (3.99)

' 32π6αi
η6
i

mi

Zime

(
c

v0

)4

(ωpi∆t)
−4 . (3.100)
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(a) mi = 1836me, vi = ±0.4c (b) mi = 100me, vi = ±0.2c

Figure 3.21. Temporal evolution of λsatωpe/c from the numerical (red solid line) and analytical approximate
(blue solid line) resolution of Eq. (3.68) for two systems. (a) mi = 1836me, vi = ±0.4c with the initial
conditions 6 < λ∗ωpe/c < 25 at t∗ωpe = 1500. (b) mi = 100me, vi = ±0.2c with the initial conditions
9 < λ∗ωpe/c < 30 at t∗ωpe = 600. The subpanels plot the temporal evolution of the ion anisotropy ratio, the
typical time τ0 is superposed as a black arrow. The long-time approximations of Eqs. (3.98) and (3.100) are
superposed as green dashed lines.

The time required to reach a given ai = 2 can therefore be estimated (assuming the initial condition

a
(0)
i � 1) as

∆tform ' 32
c

v0ωpi

√
ωpe
ωpi

, (3.101)

This time can be viewed as a lower limit of the shock formation time τsh, since it does not take into
account the time required to achieve saturation of the ion-Weibel instability, or to achieve complete
ion isotropization (ai = 0). The corresponding limit of the shock formation length is

Figures 3.21(a,b) illustrate for two parameter sets the theoretical evolution of λ∗ and ai. In each
case, we have considered a finite range of values for λ∗. As expected, the curves converge to the
same limiting curve after a few τ0’s. This behavior holds as long as the ion anisotropy stays large.

3.4.5 Comparison with periodic PIC simulations

The theoretical predictions of the plasma and spectral parameters are displayed in Figs. [3.13, 3.14,
3.15]. In the cases of Fig. 3.13 (mi = 100me, vi = 0.2c, ve = 0), Fig. 3.14 (mi = 100me, vi = 0.2c,
ve = 0.2c) and Fig. 3.15 (mi = 1836me, vi = 0.4c, ve = 0), the dominant wavevectors at the
end of the linear phase are measured to be k∗c/ωpe = 0.5 (at t∗ωpe = 700), k∗c/ωpe = 0.45 (at
t∗ωpe = 450) and k∗c/ωpe = 0.45 (at t∗ωpe = 1000) respectively. For the sake of completeness, we
gave an estimate of k∗. Applying Eq. (3.97) for the three case gives 0.3 < k∗c/ωpe < 0.6 which is
consistent with the simulations.

In the three cases considered, after the ion Weibel saturation is reached, the spectral and plasma
parameters present a flat profile reproduced by the coalescence analytical expressions. This cor-
respond to the quasi-equilibrium filamented state discussed previously. A few τ0’s later, a strong
increase (respectively decrease) of the transverse temperature (respectively ion anisotropy ratio and
drift velocity) is found in agreement with our predictions. The observed weak variations of the
ion drift velocities [Figs. 3.13, 3.14, 3.15(a,b,d,e,f)], support the assumption of constant ion drift
velocities (vdi = v0) made in deriving our analytical estimates.

In a 3D geometry, the coalescence of two filaments does not necessarily involve a third repulsed
filament as in 2D. Moreover, the quasi-equilibrium taking place at the beginning of the Weibel-
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filamentation seems less pronounced [Fig. 3.17(b)]. Apart from these differences, the 3D plasma
parameters match (solid red lines) very well the 2D simulation (dotted-dashed black line).

3.5 Conclusion

The slow dynamics of the saturated Weibel-filamentation instability has been described using a set of
quasilinear relations developed in Sec. 3.3.2. Good agreement between the theoretical expectations
and simulations has been found for various plasma parameters in the case of highly anisotropic ion
beams and homogeneous profiles. The successful comparison in the non-linear regime has motivated
us to model the spectrum dynamics. Unlike in 1D geometry, we have found that the process of
filament merging mostly drives the plasma and spectrum evolution in 2D and 3D geometries. This
process represents the long-time evolution of the magnetic spectrum up to ion isotropisation. A
simple model of collective coalescence has been developed and solved in the high-ion anisotropy
limit. The typical time required to “quasi-isotropize” the ion population scales as ω−1

pi (mi/me)
1/4.

Hence, due to the electron screening contribution, this time scale as ω
−3/4
pi /m

1/4
e instead of ω−1

pi .
Another way to evidence its importance consist in neglecting the variations of the electron screening
factor. Starting from Eq. (3.67) and assuming κ constant, one can show that the analytical estimate

of the dominant wavelength verifies λsat ' λ∗cosh(∆t/τ ′0) (where τ ′0 ∝ λ
1/2
∗ is a typical time). Hence,

the short time evolution of the system is similar with or without constant electron screening (since
cosh(∆t/τ0) ' 1 + ∆t2/τ2

0 for small values of ∆t/τ ′0 � 1). However, the long-time dynamics for
constant screening shows an exponential growth of λsat which greatly contrasts with the result Eq.
(3.79) (λsat ∝ ∆t2).

The relevance of our model to a more shock-relevant configuration will be addressed in the next
chapter. The electron screening effect will be shown to be critical for understanding recent colliding
plasma experiments.
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Chapter 4

Weibel-mediated collisionless shock
formation and propagation

This chapter addresses the formation and propagation of the ion-electron non-relativistic collision-
less shocks in the non-relativistic regime. We demonstrate the validity of the coalescence model
previously developed in a shock-relevant configuration until quasi-isotropization of the ions. Suc-
cessful comparisons with recent experiments will be shown. Finally, the shock propagation will be
studied and a model of the shock profile will be worked out.

Figure 4.1. Three-dimensional phase space of two colliding bi-Maxwellian plasma slabs. The grey surface
is an isosurface of the distribution function of each beams. A cut of the distribution function of one beam at
the center x = 4200c/ωpe is superposed as a colormap.
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(a) Sketch of shock formation (b) Initial PIC configuration

Figure 4.2. (a) Sketch of shock formation. The white wavy lines represent the Weibel transverse modula-
tions (B-field and current density). (b) Initial PIC configuration of the simulations in this chapter

4.1 Introduction

Ab initio kinetic simulations of electron-ion collisionless shocks are now made possible using mas-
sively parallel particle-in-cell (PIC) codes, hence paving the way to a better understanding of the
high-energy physics of a number of astrophysical scenarios (Kato & Takabe 2008; Spitkovsky 2008b).
These numerical advances go along with experimental progress towards the laser-driven generation
of collisionless shocks in laboratory (Kuramitsu et al. 2011). The most promising route relies upon
the interaction of two counterpropagating plasma flows generated from the ablation of foil targets by
nanosecond, high-energy kJ-class laser pulses (Drake & Gregori 2012). Such flows are of relatively
low density (n � nc, where nc ∼ 1021 cm−3 is the critical density of the laser) and low velocity
(vi ∼ 100−1000 km s−1). According to an increasing body of experimental and theoretical research,
the kinetic ion-ion instabilities thus excited could lead to the formation of a collisionless shock. A
few experiments have already been done (Kugland et al. 2013; Fox et al. 2013; Yuan et al. 2013;
Huntington et al. 2013).

Electron-driven instabilities (Bret et al. 2010b) grow and saturate first, leaving the electrons
mostly isotropized over the overlap ion beam-plasma region as shown in Chapter 3 in a simplified
configuration. Note that electrostatic ion-driven instabilities, as in Dieckmann et al. (2007, 2008),
can drive shock structures (Kato & Takabe 2010a; Dieckmann et al. 2013). However, for fast
flow velocities (vi & 0.01c), the ion Weibel-filamentation instability subsequently develops, causing
ion scattering off magnetic fluctuations [Fig. 4.2(a)]. Isotropized particles then accumulate in
the center of the system until the Rankine-Hugoniot (Drury 1983) conditions are satisfied. The
Rankine-Hugoniot conditions, based on energy, momentum and particle conservation across the
shock front region give explicit formulation of the density jump ratio of a propagating collisionless
shock: ndown/nup = (Γad + 1)/(Γad − 1) if vi �

√
Te/mi. We introduced the adiabatic index

Γad which is equal to 2 in a 2D gaz and to 5/3 in a 3D gaz. Thus a 2D system should verify
ndown/nup = 3 and a 3D system yields ndown/nup = 4. Hence each beam undergoes a compression
ratio across the discontinuity of the shock front of 50% in 2D and 100% in 3D. Moreover, particle
conservation yields a shock-front-velocity of v0/2 in 2D and v0/3 in 3D where v0 is the velocity of
the incoming flows.

Since the ion isotropization responsible of the shock formation results from the Weibel magnetic
turbulence (Kato & Takabe 2008; Spitkovsky 2008b), we will use the nonlinear model of the ion-
Weibel-filamentation instability developed in the previous chapter to predict the shock formation
time. The good agreement between our theory and PIC simulation results will motivate us to apply
our theoretic predictions to the interpretation of recent experimental measurements.
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Then, the propagation of collisionless shocks will be studied by means of simulations results and
quantitative estimate of the particle populations in front of the shock. The predictive coalescence
model from chapter 3 will be adapted and successfully compared to two different simulations. This
will lead us to an analytic formulation of the magnetic turbulence taking place in the upstream
region.

4.2 Shock formation

4.2.1 Quasilinear model of shock formation

The quasilinear model of section 3.3 predicts the evolution of the ion parameters (drift velocities
and temperatures), as a function of the effective magnetic energy Sp. Let us now consider two
symmetric counter-propagating ions beams with open boundaries on the beam axis. While the
plasma slabs overlap, the region experiencing a symmetric interaction is in the center of the system.
The phase space (x, px) of the two symmetric ion-electron beams (mi = 100me, vi = ve = ±0.2c)
on Fig. 4.3 illustrates that the only region with symmetric particle distributions is located at the
center of the simulation box (xωpe/c = 4200). The symmetric region has a thickness of a few
ion skin depths c/ωpi. This implies that we can neglect the influence of the axial gradient on
the system if the overlapping region is a lot larger than c/ωpi. Hence, the system verifies this
assumption after a time of ∼ 10ω−1

pi which is smaller than the time needed to achieve Weibel
saturation in all the simulations of Sec. 5.2. Consequently, at the center of the overlapping region,
the drift velocities and temperatures being symmetric, their temporal evolution should be correctly
predicted by the quasilinear model developed in the previous chapter. Close to each beam front,
however, the interaction is no longer symmetric: the reflected/transmitted heated beam interacts
with unperturbed Maxwellian distribution of the upstream particles.

4.2.2 Comparison with PIC simulations

Four 2D simulations of shock formation have been performed. We will collide two symmetric ion-
electron bi-Maxwellian beams in a simulation box with transverse boundary conditions. In Chapter
2, half the system was simulated, colliding the plasma on refleted boundary conditions. However,
we want to follow precisely the spectral and plasma parameters in the center of the overlap region,
we will thus simulate the entire system made of the two plasma beams. The temporal and spatial
steps are respectively ∆t = 0.2ω−1

pe and ∆x = ∆y = 0.3c/ωpe. The simulation box has periodic
boundary conditions and its size is Lx = 8400c/ωpe and Ly = 537.6c/ωpe in the case mi = 25me and
Lx = 12600c/ωpe and Ly = 537.6c/ωp in the case mi = 100me. The Esirkepov scheme and a third
interpolation order are used (see 6). We also employ 50 macroparticles per mesh. The ions (of mass
mi subsequently defined) and electrons are initialized by counter-propagating Maxwell-Jüttner type
(1.22) distribution functions of temperature Te,i = mec

2/100 and drift velocity vde = vdi = ±vd,
as illustrated in Fig. 4.2(b). The density of the beams is normalized to the total density of the
particle population in the overlap region. Hence, the density of each beam is ni,e = 1/2. The
results, gathered in Figs. 4.4, evidence a fairly good agreement with the theoretical predictions at
the center of the overlap region. This is verified down to very small values of the anisotropy ratio.
In the case of Fig. 4.4(a,b) (vd = 0.2c, mi = 100me), ai decreases from ∼ 20 at tωpe = 1000 to
∼ 2 at tωpe ' 5000. This matches the value of Eq. (3.101) which gives ∆tform ' 3τ0 ' 4000ω−1

pe .
For (vd = 0.4c, mi = 100me) and (vd = 0.4c, mi = 25me), the theoretic quasi-shock formation
time reads ∆tformωpe ' 2500 and 900 respectively, in agreement with the PIC values of ∼ 2800 and
∼ 800 respectively.

The values of λ∗ωpe/c = [6π, 8π] used in the model scale fairly well with Eq. (3.96). However, the
values are smaller than for the periodic simulations of Chapter 3. These different physical conditions
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Figure 4.3. Ion phase space xωpe/c, px/mic, py/mic isosurface (grey) before shock formation for two
symmetric counter-propagating ions-electron plasma beams for ve = vi = ±0.4c, mi = 100me. The colormap
corresponds to the ion distribution in logarithmic scale of the beam vi = +0.4c at the center (xωpe/c = 4200).

can be qualitatively understood as follows. During the collision, there is a constant influx of energy
in contrast to the periodic systems of the previous chapter. Hence, the instabilities preceding the
ion-Weibel saturation could result, at t = t∗, in a significant increase of the ion temperature, and
thus to a larger wavelength. Moreover, the simulated evolutions of the spectral and ion parameters
do not show any quasi-equilibrium at the saturation as for the periodic simulations of Chapter 3.
This seems to contradict the initial conditions used in our model (∂tλsat(t∗) = 0). At the time
of magnetic saturation (t = t∗) in the periodic simulation, the newly formed filaments undergo a
quasi-equilibrium, as mentioned in Chapter 3. In the present configuration, the constant influx of
energy could destabilize the filaments at saturation and thus explain the difference of initial slope
between our model and the simulation results.

The sub-panels of Figs. 4.4(b,d,f) evidence an increase in the ion density at the center of the
domain. When the density increase reaches a factor of three, the shock is formed and the central
region becomes the downstream region of the shock. From this moment, the model ceases to be
valid. Note that when the downstream is formed, the ion anisotropy ratio becomes very small and
corresponds to a quasi-isotropic ion distribution function.

4.2.3 Comparison with colliding-plasma experiments

Observation of Weibel-type filamented structures Until recently, no experimental observa-
tion of the Weibel-filamentation instability in its fully saturated regime has been done. The first
observation of Weibel-filamentation instability has been published in Allen et al. (2012). However
it is an electron instability and a small number of filaments are observed. Between 2012 and 2013,
three experiments have reported detailed measurements of transverse field modulations triggered
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Figure 4.4. Evolution of ani [red, left axis of (a,c,e)], λsatωpe/c [black, right axis of (a,c,e)], Tiy/mec
2

(b,d,f) and ni/n0 [inset of (b,d,f)] as a function of time normalized to ω−1
pe . The circles correspond to the 2D

PIC simulation values. Equations (3.79), (3.82) and (3.84) are plotted respectively in plain and dashed lines
for λ∗ωpe/c = 6π and λ∗ωpe/c = 10π respectively with (a,b) vi = ±0.2c, mi = 100me, t∗ωpe = 1200, (c,d)
vi = ±0.4c, mi = 100me, t∗ωpe = 600 and (e,f) vi = ±0.4c, mi = 25me, t∗ωpe = 100. The values of t∗ are
extracted from the simulations.
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(a) Fox et al. (2013) (b) Kugland et al. (2012b)

Figure 4.5. Schematic representation of the experimental setup of Fox et al. (2013) (a) and Kugland et al.
(2012b) (b). The two plastic foils are separated by 2L = 4.5mm in (a).

by the superposition of two plasma beams (Kugland et al. 2012b; Yuan et al. 2013; Fox et al. 2013).
Two plastic foils (CH) separated from 2L = 4.5mm (in the case of Fox et al. (2013)) are heated by
two long laser pulses. Two plasma plums are then formed, expending in vacuum. The experimental
setup is illustrated in Fig. 4.5. It is said that radiation-hydrodynamics simulations show that the
plasma velocity and density obey the well-known self-similar solution of an isothermal expanding
plasma (Manheimer et al. 1982)

v ' Cs +
L

t
, (4.1)

n ' nab exp

(
− L

Cst

)
, (4.2)

where the sound speed Cs and the ablation density nab are estimated to be Cs ' 2 105m.s−1 and
nab ' 7 1020cm−3 respectively (Fox et al. 2013). Note that in (Fox et al. 2013) the time starts at
the beginning of the laser drive whereas in Kugland et al. (2012b), it starts when the two plasma
collides. The time required for the expending plasmas to collide is of L/vd ' 2.8ns and 4ns for
Fox et al. (2013) and Kugland et al. (2012b, 2013) respectively. Hence, the use of Eqs. (4.1) and
(4.2) requires time shift (for Kugland et al. (2012b, 2013) only) given by t ≡ txp + 4ns, where
0.5ns≤ txp ≤ 7ns is the time as defined in the Reference. We then estimate Cs ' 2.3 × 105m.s−1

and nab ' 9.5 1017m−3 for Kugland et al. (2012b, 2013).
The interaction of the plasma plumes has been diagnosed via proton radiography (Mackin-

non et al. 2004; Kugland et al. 2012a). The protons are generated by a secondary, ultra-intense,
short-pulse laser shot onto a copper foil. The deflections undergone by the protons though the
electromagnetic turbulence induced by the colliding beams are detected by a stack of radiochromic
films (RCF). Depending on its depth, a given RCF is mostly sensitive to a specific energy range in
the proton spectrum. The radiographs of Fig. 4.6 corresponding to protons of energy ∼ 5−10MeV,
illustrate the evolution of the unstable overlap region over the time interval 3.8ns≤ t ≤ 5.8ns.

Transverse lines, underlined in red in Fig. 4.6, are visible in (Kugland et al. 2012b; Fox et al.
2013). They correspond the Biermann battery fields advected by the expanding plasmas and located
at the edge of the central interaction region, as explained in Kugland et al. (2013). Since this fields
revolve around the plasma plumes, the central overlap region should not be affected.

Filamentary structures are also visible on the three radiographs of Fox et al. (2013) and also in
(Kugland et al. 2012b; Yuan et al. 2013) (not shown). They demonstrate the existence of electric or
magnetic transverse modulations (by the deflection of the protons). We highlight that an electric
field pattern could be responsible of such radiographs. Hence, they do not constitute a clear proof
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Proton radiographs

Figure 4.6. Proton radiography diagnostics at t = 3.8, 4.8 and 5.8 ns after laser plasma interaction in Fox
et al. (2013). The probing protons have typical energies of 5− 10MeV. The red lines underline the Biermann
battery fields advected by the expanding plasmas as explained in Kugland et al. (2013). The symmetric
Weibel-unstable interaction region is located between these two red lines. Taken from Fox et al. (2013). The
typical magnetic field seen by the diagnostic protons is of order 60T.

of a Weibel-filamentation instability taking place in the overlap region. However, Fox et al. (2013)
compare the radiographs with a large-scale 2D PIC simulation with comparable plasma parameters
(with ablative velocity and density profiles given by Eqs. (4.1) and (4.2)) but artificially large
electron mass (of ' 37me). The simulation evidences transverse magnetic modulations (due to the
Weibel-instability) at the center of the overlap region. Although only qualitative comparison is
made in the publication, we will proceed to a quantitative comparison between the radiographs, the
simulation of Fox et al. (2013), and our model.

The case of Kugland et al. (2012b) will also be considered, although no comparison with simu-
lations is made. The only differences with Fox et al. (2013) are the larger separation of the plastic
foils, and the longer laser pulse duration, resulting in a longer interaction time.

Validity of our model assumptions We will now verify the validity of the main assumptions of
our model for the experimental parameters Fox et al. (2013). the comparison with the quasilinear
equations developed in Chapter 3. The model supposes constant plasma density, and velocity and a
high ion anisotropy ratio. A CH “mean ion” (10% of C6+, 90% of H+) drifting at v > 2×105m.s−1,
initially at Ti ∼ 150eV (Fox et al. 2013) gives an initial anisotropy ratio aCH & 100 � 1 which
verifies the large ion anisotropy ratio assumption. However, the density and velocity of the plasma
flow in the central region evolve as Eqs. (4.1) and (4.2). This is not handled by the model. We will
first assess the influence of the velocity variation of Eq. (4.1) on the quasilinear equations.

In the experiment of Fox et al. (2013), the ions are drifting at v & 3 × 105m.s−1 The velocity
variation predicted by our quasilinear relations (Eq. (3.28)) reads ∂tvdi ' α(Z2

i /mi)vdi∂tSp/Tiy.
This can be compared to the ablative velocity variation: |∂tvab| ' x/t2 where x ' L = 2.25mm
in the central region. Making use of Sp ∼ q2

eB
2λ2

sat/4π
2, yields Sp/m

2
ec

2 ∼ 0.45 for B ' 60T,
λsat ' 120µm and for a mean ion of 10% C6+ and 90% H+ (given in Fox et al. (2013)). We then
estimate ∂tSp in the experiment by Sp/τxp where we introduced the typical time of the experiment
τxp ∼ 1ns. Finally, we have |∂tvdi| > |∂tvab| for t &

√
L/|∂tvdi| ' 2ns. Used has been made of

the plasma parameters given in Fox et al. (2013): Ti ' 150eV, ni ' 1.4 × 1019cm−3 (Eq. (4.2) at
t = 2.8ns with nab = 7× 1020cm−3), and vi ' 8× 105m.s−1. This evidences that the drift velocity
variations due to the ion Weibel-instability dominates the ablative flow velocity variations in the
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(a) Predictive model vs. Fox et al. (2013) (b) Predictive model vs. Kugland et al. (2012b)

Figure 4.7. Time evolution of the filamentation wavelength as inferred from the experiments of Kugland
et al. (2012b, 2013) (a) and Fox et al. (2013) (b) (green diamonds). The analytical model is illustrated
by blue solid lines for the parameters of the experiments. Error bars due to uncertain value of λ∗ are
provided by the widths of the theoretical curves. (a) Making use of Ti = 100eV, vd(0.5ns) ' 106m.s−1 and
ne(0.5ns) ' 8 × 1018cm−3 (blue line) and vd(2.5ns) = 8.5 × 105m.s−1 and ne(2.5ns) = 1.3 × 1019cm−3 (red
line) as initial plasma parameters with 70µm< λ∗ = 110µm at t∗ = 0.5ns. A mean ion made of 33% of C6+

and 66% of H+ has been used (CH2 target). (b): Ti = 150eV with vi = 8 × 105m.s−1, ne = 3 × 1018cm−3

(blue line) and vi = 3 × 105m.s−1, ne = 8 × 1018cm−3 (red line) for 100µm< λ∗ = 120µm at t∗ = 2.8ns. A
mean ion made of 10% of C6+ and 90% of H+ has been used (as in the article). The analytical model taking
into account the simulated (Fox et al. 2013) electron mass of 37me in the screening factor κ Eq. (3.74) is
illustrated as a yellow line.

(Fox et al. 2013) experiment for the three diagnostics of Fig. 4.6(b). As for the density variations,
their influence on our model will be subsequently estimated, taking as initial plasma condition,
the density and velocity at t = 2.8ns and t = 5.8ns. In the similar experiment of Kugland et al.
(2012b), velocity variations are dominated by the magnetic turbulence for t & 3ns for Ti ' 100eV,
vd ' 1000m.s−1 and assuming B ' 60T (not measured in the experiment). In this case also, the
velocity variations are dominated by the magnetic turbulence at long times.

Note that the distance between filaments in Fox et al. (2013), is measured in the insets of Fig.
4.6 outside of the central interaction region. It thus corresponds to an asymmetric two-stream
configuration which is not supported by our model. We will thus apply our model to the center of
the interaction region, located between the Biermann-Battery trace (explained above) for a mean
ion of 10% C6+ and 90% H+. The typical length at the center of Fig. 4.6 are λ = 120, 125 and
140µm at respectively t = 3.8, 4.8 and 5.8ns (green diamonds of Fig. 4.7(b)). We also superposed
the typical length of the simulation results in purple rings. The case of Kugland et al. (2012b) in
Fig. 4.7(a) gives λ = 70, 90, 140 and 250µm at, respectively, t = 2.4, 3.8, 4 and 7ns.

The predictive model of Sec. 3.4.3 requires that the plasma evolution is dominated by filament

coalescence. Moreover, Eqs. (3.80)-(3.86) require T
(0)
i � Tiy(t∗) which is approximately verified

since T
(0)
i ∼ 2.9 10−4mec

2 and Tiy(t ≥ t∗) > 4 10−4mec
2. Hence the analytic formulations are

approximately valid in the context of the experiments of Kugland et al. (2012b); Fox et al. (2013).

Comparison with the experiments The initial condition λ∗ can be estimated for the two
experiments making use of Eq. (3.95). For the Fox et al. (2013) experiment, we consider a mean
ion of 10%C6+-90%H+ with the plasma parameters at 2.8ns given in the reference (Ti ' 150eV,
vi ' 8× 105m.s−1 and ni ' 1.4× 1019cm−3), and obtain λ∗ ' 100µm for |ξi| ' 0.7. The theoretical
predictions for 100µm< λ∗ < 120µm at t = 2.8ns is illustrated by the blue solid line. The width of
the colored region provides error for our theoretical estimates as illustrated in Figs. 4.7(a). The weak
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influence of the ablative density and velocity variations is assessed using vi(5.8ns) ' 6× 105m.s−1

and ni(5.8ns) ' 2 × 1020cm−3 as initial conditions. Overall, correct agreement is found between
the predictions and experimental results.

In order to save computational time, the simulation of Fox et al. (2013) makes use of an arti-
ficially increase electron mass mPIC

e ' 37me. This enables to relax the space-time resolution and
speed up the early-time electron-driven instability phase. Although realistic ion parameters are
used, the overestimated electron mass affects the ion filamentation dynamics due to the weaker
electron screening. Hence the PIC simulation overestimate the net current inside a filament and the
associated magnetic field, which tends to accelerate the coalescence dynamics. This may explain
why, PIC-simulated wavelength increases more rapidly than in the measurements. This discrepancy
is well reproduced by our model using the same artificially increased electron mass. As shown by

Eq. (3.98), the typical coalescence time is proportional to m
−1/4
e , so that the filament dynamics is

accelerated by a factor 371/4 ' 3 compared to the experiment.
The same analysis can be made for Kugland et al. (2012b) experiment (although no PIC sim-

ulation results are shown) which gives 70µm< λ∗ < 110µm for 1.2 < |ξi| < 2 (estimated from
solving the full H+-C6+-e− dispersion relation with T0 = 100eV, vi = 106m.s−1). These values
of λ∗ are taken as initial conditions in our model for Ti ' 100eV, vd(0.5ns) ' 106m.s−1 and
ne(0.5ns) ' 8× 1018cm−3 [Eqs. (4.1) (4.2), blue line of Fig. 4.7(a)] which grossly agrees well with
the experimental points. The ablative density and flow velocity at t = 2.5ns (Eqs. (4.1) and (4.2))
(vd(2.5ns) = 8.5× 105m.s−1 and ne(2.5ns) = 1.3× 1019cm−3) are used as initial plasma conditions
in our model (red solid line) and evidences a discrepancy on the evolution of the wavelength. The
density variations due to the ablative regime seems to play a significant role in this case, at least
for t & 4ns, which is not taken into account in our model. Note that system is followed on a longer
time scale in Kugland et al. (2012b), ∼ 106ω−1

pe , than in Fox et al. (2013), ∼ 4× 105ω−1
pe .

4.3 Shock propagation

4.3.1 Formation of the downstream

Once the ions are isotropized, particles start to accumulate at the center of the overlap region.
This results in a local density increase as illustrated by the enclosed plots of Figs. 4.4(a,b) and
s4.4(a,b). The density increases until the Rankine-Hugoniot (Drury 1983) conditions are satisfied.
Hence, the shock is formed when the density jump ratio is equal to three in 2D (simulation) and
to four in 3D. When the density in the center of the overlapping region has reached its maximum
value, the compressed (downstream) region starts expanding outwards behind a front called the
shock front. Hence, the downstream of the shock is getting formed. This is illustrated in Fig. 4.8(a)
which evidences a density jump ratio of 1.5/0.5 = 3 and a downstream centered in x = 4200c/ωpe
of thickness ∼ 1000c/ωpe. The anisotropy ratio profile of Fig. 4.8(d) indeed evidences an isotropic
ion population in the downstream. Note that close to the shock front, the ion populations are not
exactly isotropic and two distinct beams start to be visible. This is confirmed by the phase space
of Fig. 4.9(a,b) detailed later on.

Assuming that the downstream particles are fully isotropized (at least at the center), an estimate
of the ion temperature T ds

i can be made from energy conservation. The total energy of downstream
population is 3T ds

i /2 in 3D 2T ds
i /2 in 2D. This can be related to the initial energy of the ion beam
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(neglecting the initial temperature): miv
2
0/2. Hence, we obtain

T ds
i '

miv
2
0

2
(2D) , (4.3)

T ds
i '

miv
2
0

3
(3D) . (4.4)

The transverse temperature profiles of the two ion beams are illustrated on Fig. 4.8(c) and evidence
a downstream ion temperature close to T ds

i ' 2mec
2 as predicted by Eq. (4.3).

The anisotropy ratio, the transverse temperature and the averaged drift velocity profiles of Figs.
4.8(c,d,f) evidence a region composed of two beams for xωpe/c > 5000 and xωpe/c < 3000. This
region is located close to the shock front and is called the upstream. In this region, the initial
drifting plasma (vi = 0.4c) encounters a hot (Tiy ∼ mec

2, −0.5c < vi < −0.4c) ion population
generated at the shock front. This induces an asymmetric Weibel instability characterized by
strong density modulations in the regions 2500 < xωpe/c < 3000 and 5500 < xωpe/c < 6000
[Fig. 4.8(a)]. These ion filaments are induced by magnetic fluctuations illustrated in Fig. 4.8(b).
The profile of Sp =

∑
ky
|Aky |2 is [Fig. 4.8(e)] and shows a clear (linear) dependence upon the

transverse temperature of the upstream ions. Moreover, a strong magnetic turbulence is found
in the downstream, which may be attributed to a finite, albeit weak, ion anisotropy. A thicker
downstream may present a region with smaller magnetic energy. This penetration of magnetic
energy into the downstream is observed in many numerical studies (Kato & Takabe 2008; Keshet
et al. 2009), studied in (Stockem et al. 2014) and could explain the long time radiative signature of
gamma-ray-bursts (Lemoine 2013).

The Rankine-Hugoniot conditions, detailed in the introduction, shows that for a strong shock,
the shock front velocity verifies vshock = vd/2 in 2D (and vd/3 in 3D). These simple relations comes
from particle conservation across the shock front. They evidence that when an upstream flow, of
density and velocity ni and vd, accumulates behind the shock front with vanishing drift velocity
and density 3ni (4ni), the size of the resulting downstream increases. This results in a displacement
of the shock front at the velocity vshock = vd/2 (vshock = vd/3). The temporal evolution of the
ion density [Fig. 4.8(g)] for an upstream flow velocity of vd = 0.4c evidences a shock velocity of
vshock = 0.2c which confirms the above relations.

4.3.2 Reflected beam at the shock front

Figures 4.9(a,b) display the ion and electron phase spaces (x, px) of the shock at tωpe = 4830. Two
ion beams are clearly visible at 2000 < xωpe/c < 3000. A hot ion population is generated at the
shock front (xωpe/c = 3500) and drifts at vi ∼ ±0.5c away from the shock front. The ion velocity
profile [Fig. 4.8(f)] shows that, unlike the electrons, part of the incoming ions are transmitted
though downstream and leak into the upstream at the opposite side. These counterstreaming ions
are usually called “reflected ions” and could be named, in our case “transmitted ions” Hence, this
hot and diluted ion populations create a double layer standing close to the shock front. Its density
varies from 10% to 25% of the incoming ion density as shown by Fig. 4.8(h). We now introduce
Rh, the ratio between the density of the reflected and the incoming ions. Although its local value
depends on the distance to the shock front in our simulation, we will use a typical value of Rh ' 0.2
in the following. The mean velocity of the “transmitted ion population” is close, yet not equal to
the opposite of the incoming ion velocity so that the total ion current does not vanish exactly in
the upstream. This ion current, however, is efficiently neutralized (on averaged on the y-direction)
by the electrons, yielding an essentially null total current [black plain line in Fig. 4.8(f)]. The
upstream region then consists of two asymmetric (with respect to the ion density and temperature)
ion beams current-neutralized by a hot electron population. This creates a region where two counter-
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(a) Ion density ni/n0 (b) Magnetic field eBz/meωpe

(c) Transverse temperatures (d) Anisotropy ratio

(e) Sp/m
2
ec

2 (f) Mean x-velocity

(g) Ion density (h) Ion and electron density

Figure 4.8. Weibel-mediated collisionless shock formed by the collision of two plasma slabs of parameters

mi = 25me, ve,i = ±0.4c, T
(0)
e,i = 0.01mec

2 and ne,i = 0.5 at tωpe = 4830. (a) Ion density. (b) Magnetic field

eBz/meωpe. (c) Transverse ion (red) and electron (blue) temperature profiles (Ti,ey/mec
2) averaged in the

y direction. The value of T ds
i and T

(0)
i are superposed in green. (d) Ion (red) and electron (blue) profiles of

ai+ 1 = Kix/Tiy. (e) Profile of Sp = q2
e

∑
ky
|Aky |2 normalized to m2

ec
2. (f) Ion dirt velocity vi/c averaged in

the y-direction. The total current averaged over the y-direction 〈j〉y normalized to n0c has been superposed.
(g) Total ion density averaged over the transverse direction as a function of xωpe/c and tωpe. The position of
the shock front from Eq. (4.31) is superposed as black solid lines for tformωpe = 900. (h) Normalized density
of each beam.
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(a) Ion phase space (b) Electron phase space

(c)〈nvx〉 at xωpe/c = 2760 (d) 〈nvx〉 at xωpe/c = 3000 (e) 〈nvx〉 at xωpe/c = 3240

Figure 4.9. Ion (a) and electron (b) x-px phase spaces (in logscale). (c,d,e) Ion (solid red line) and electron
(dashed blue line) local averaged velocity 〈nv〉 normalized to n0c at xωpe/c = 2760 (c), xωpe/c = 3000 (d)
and xωpe/c = 3240 (e) at tωpe = 4830. The plasma parameters and time are those of Fig 4.8.

propagation plasma beams overlap (2000 < xωpe/c < 3000 and 5000 < xωpe/c < 6000) which thus
trigger the Weibel-filamentation instability. This explains the density and magnetic modulations
visible in Fig. 4.8(a,b).

The main difference with the systems studied previously (in Chapter 3 and Sec. 4.2) concerns
the asymmetry of the colliding beams in the upstream. In the shock front frame, the incoming
flow, initially of low temperature, is increasingly heated as it moves closer to the shock front. On
the contrary, the hot counter-streaming ions are hot (Th ∼ mec

2) cool down when escaping from
the turbulent region as illustrated by Fig. 4.8(c). This can drastically affect the dynamics of
the instability compared to the symmetric configuration previously studied. The electron and ion
contributions to the current modulations can be assessed at different times in Figs. 4.9(c,d,e). The
ion current reaches slightly higher amplitudes than the electron current close to the shock front
(xωpe/c = 3240). However, the electron current prevails deeper in the upstream (xωpe/c = 2760
). Therefore, there is no clear evidence for dominant electron or ion contributions in this spatial
region.

These observations can be confronted to the predictions of the linear theory. The ion and
electron distribution functions at xωpe/c = 2760, 3000 and 3240 at tωpe = 4830 [Figs. 4.10(c-h)],
can be decomposed as a sum of waterbags using the method exposed in Sec. 1.4.3. We have
used the discretization parameters Nx = 34, Nf = 68 and Nd = 2.3, which amounts to a total of
∼ 2000 waterbags. The growth rates of the Weibel instability computed with these fitted plasma
distributions are plotted in Figs. 4.10(i,j,k). As one moves closer to the shock front, the peak
growth rate decreases (from ∼ 4× 10−3ωpe to 9× 10−4ωpe) and shifts to lower wave numbers (from
∼ 0.19ωpe/c to ∼ 0.1ωpe/c). This stabilization clearly results from the increasingly hot and isotropic
particle distributions. We have checked that the counter-streaming hot ion population is critical in
destabilizing the system. Neglecting its contribution in the Weibel dispersion relation suppresses
the instability. The space-dependent peak growth rate (black circles) matches the spatial profile
of the magnetic spectrum Bz(x, ky) [Fig. 4.10(a)]. In the following, we will develop an analytic
formulation of the Weibel growth rate, which will highlight the respective ion contributions.
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(a) log(|FFTy(Bz (meωpe/e)|) (b) Sp

(c) log(fi) at xωpe/c = 2760 (d) log(fi) at xωpe/c = 3000 (e) log(fi) at xωpe/c = 3240

(f) log(fe) at xωpe/c = 2760 (g) log(fe) at xωpe/c = 3000 (h) log(fe) at xωpe/c = 3240

(i) Γ/ωpe at xωpe/c = 2760 (j) Γ/ωpe at xωpe/c = 3000 (k) Γ/ωpe at xωpe/c = 3240

Figure 4.10. Transverse Fourier transform of the magnetic field Bze/meωpe (a) and effective magnetic
energy Sp (b) in log scale as a function of xωpe/c (for a shock formed by two plasma beams with mi = 25me,

T
(0)
i,e = 0.01mec

2 and vi,e = ±0.4c) at tωpe = 4830. The profile of ksat (Sp) of Eq. (4.13) is superposed in
(a) (in (b)), measuring Sp (ksat) in the simulation in black (red) plain line. (c,d,e,f,g,h) Ion and electron
Multiwaterbag distribution function at xωpe/c = 2760, 3000 and 3240 in log scale colormap. (i,j,k) Weibel
growth rate calculated at xωpe/c = 2760 (c), 3000 (d) and 3240 (e) using the multiwaterbag decomposition
scheme of Sec. 1.4.3 with Nx = 34, Nf = 68 and Nd = 2.3. The wavevector maximizing the growth rates are
superposed in (a) as black circles.
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4.3.3 Collective filament dynamics in the upstream region

The Weibel instability taking place upstream of the shock has been shown to be triggered by the
superposition of a cold (incoming) and a hot (reflected) ion population, in a hot electron background.
Apart from the asymmetric feature of the interaction, the assumptions of the coalescence model
extensively used previously appear to be valid. From the growth rate of Fig. 4.10(e), the value of |ξ|
reads |ξc| ' 0.46 < 1 and |ξh| ' 0.13 < 1 for the cold and hot ion populations, respectively. For the
electrons, we have |ξe| ' 2.6×10−3 � 1. Moreover, the ion anisotropy ratio is larger than ∼ 2 up to
the shock front at xωpe/c = 3500 [Fig. 4.8(d)]. Hence, the turbulent heating of the cold incoming
ions could be explained by the model worked out in Chapter 3, provided a few modifications are
made to adapt to the present asymmetric configuration.

The quasilinear model of Davidson et al. (1972) remains valid in an asymmetric system. Each
tensorial formula used in the Davidson calculations concerns a specific ion population. Hence, Eqs.
(3.17)-(3.19) should be applied to each particular bi-Maxwellian population (ions or electrons).
For two asymmetric ion populations, we have a total of six quasilinear equations, three per ion
component. Consequently, the starting equations of the model [Eqs. (3.17)-(3.19)] are valid for an
asymmetric system.

The wavevector estimate of Eq. (3.10) is based on a simplified linear growth rate formula.
For two (hot and a cold) asymmetric ion populations immersed within a hot isotropic electron
background (neutralizing the net ion current), the linear dispersion relation is no longer as simple
as Eq. (3.4). One has to solve, in principle, the full electromagnetic dispersion relation (1.11),
which is complicated by the non-vanishing εxy term. For bi-Maxwellians distributions and θ = π/2
one has

εxy =
∑
s

ω2
ps

ω2

2vds
vth,s

[
ξs + ξ2

sZ (ξs)
]
, (4.5)

where vs and vth,s =
√

2Tsy/ms are the mean and thermal velocities of the sth species. We will
now consider the case of a cold incoming ion plasma interacting with a more tenuous hot ion
beam, originating from either the shock downstream or the shock front, in a neutralizing electron
background. From the above equation, we find εxy ∝

∑
s ω

2
psvsαs/v

2
th,s to leading order in ξs. It

is therefore convenient to solve the non-relativistic transverse dispersion relation in the frame R′
drifting at

vf =

ncvc
v2th,c
− nhvh

v2th,h
− neve

v2th,e
nc
v2th,c

+ nh
v2th,h

+ mi
Zime

nc+nh
v2th,e

, (4.6)

where the subscripts c, h and e refer to the cold ions, hot ions and electrons respectively. In R′,
εxy ' 0 and, to leading order in ξs, the Weibel growth rate verifies an equation similar to that
derived in the symmetric case [Eq. (3.7)]. The general formula reads, for s ≡ [c, h, e],

Γky '
k√
π

∑
s ω

2
psa
′
s − k2∑

s ω
2
ps
a′s+1
vth,s

, (4.7)

where a′s is the sth species’ anisotropy ratio defined in the R′ frame:

a′s =
ms(vs − vf )2 + Tsx

Tsy
− 1 . (4.8)

Figures 4.11(a,b,c) compare the exact resolution of the Weibel-filamentation dispersion relation
(plain line) to the approximation of Eq. (4.7) (dashed line) for three sets of parameters, made of a
hot and a cold ion populations in a neutralizing electron background. Overall, fairly good agreement
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(a) (b) s(c)

Figure 4.11. Comparison of the exact Weibel growth rate (solid lines) with the approximation of Eq. (4.7)
(dashed lines). (a) mi = 25me, vc = −vh = 0.4c, ve = 0.36c, Tih = 2mec

2. (b) mi = 25me, vc = −vh = 0.2c,
ve = 0.18c, Tih = 0.5mec

2. (c) mi = 100me, vc = −vh = 0.4c, ve = 0.36c, Tih = 8mec
2. For the three cases,

the population densities verify nh = 0.05, nc = 0.5, ne = 0.55, Te = 0.5mec
2 and Tic = 0.05mec

2. The mean
electron velocity is chosen to ensure global current neutralization.

is obtained and we thus validates Eq. (4.7). Hence, the wavevector maximizing the growth rate
also verifies ksat ' 0.5k′max [Eq. (3.10)] with the only difference that k′max now involves all the
populations

k′max =

√
ω2
pc

c2
a′c +

ω2
ph

c2
a′h +

ω2
pe

c2
a′e . (4.9)

In the upstream region, ksat can be related to a few plasma parameters. Since the incoming ions are
dense (nc ' 10nh) and cold (vc/v

2
th,c � vh/v

2
th,h), the frame velocity can be approximated to vf ' vc.

Hence, if the three populations have comparable (longitudinal and transverse) temperatures, we have
|a′c| � 1. The hot ion temperature being close to the downstream temperature T ds

i [Eq. (4.3)], we
obtain a′h ' 8. For the sake of completeness, we will keep a′h in the following formulae but use
a′h ' 8 for the numerical applications. The electron anisotropy ratio follows from the constraint of
current neutrality: a′e ' (2 − Rh)2mev

2
c/Te, where Rh = nh/(nc + nh) ' 0.2 is the relative density

of the hot ion beam. Consequently, ksat verifies

ksatc

ωpe
' ηi

√
Zimenh
mine

a′h + (2−Rh)2
mev2

c

ZiTe
' ηi

√
Zime

mi

√
a′hRh + (2−Rh)2

miv2
c

ZiTe
. (4.10)

Two unknown plasma parameters involved in the above equation are the electron temperature Te
and the incoming ion velocity vc.

The simplified quasilinear equations (3.17)-(3.19) relate the plasma parameters to the evolution
of the magnetic spectrum. In Chapter 3, one of the main simplifications allowed by the symmetric
character of the interaction was to get rid of the Z function. The symmetry of the system gave us
a simple formulation of ξi, independent of the plasma parameters. By contrast, Eq. (4.7) leads to
ξi being strongly sensitive to the plasma parameters. The integration of the quasilinear equations
therefore appears very complicated for the ions. The electron temperature, however, can be readily
linked to the spectrum making use of Eq. (3.21) as in Chapter 3:

∂tTey '
ae + 1

me
∂tSp . (4.11)

We remind the reader that this equation is valid for isotropic and very hot electrons (ae = 0 and
|ξe| � 1). In the case of Fig. 4.11(a), |ξe| ≤ 0.04 � 1. In the assumption of isotropic electrons in
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(a) Sp for mi = 25me, vi = ±0.2c (b) Sp for mi = 100me, vi = ±0.4c

Figure 4.12. Profile of Sp/m
2
ec

2 in a propagating shock simulation of parameters mi = 25me, vi = ±0.2c

at tωpe = 8820 (a) and mi = 100me, vi = ±0.4c at tωpe = 4200 (b) with T
(0)
i,ex,y = 0.01mec

2. The total

transverse electron temperature Tey/mec
2 is superposed as dashed blue lines.

the upstream region [verified in Fig. 4.8(d)], we obtain a very simple formulation:

me∆Tey = ∆Sp . (4.12)

This relation is well satisfied in the upstream region (xωpe/c < 3300 or xωpe/c > 5000), as illustrated
in Fig. 4.8(e). Moreover, Fig. 4.12(a,b) shows a good agreement between the variations of Sp and
meTey. This relation stays valid as long as the magnetic spectrum remains transverse, which is
not the case in the isotropic downstream region. Plugging Eq. (4.12) into Eq. (4.10) allows us to
express the dominant wavevector as a function of Sp:

ksatc

ωpi
' 0.45

√
a′hRh + (2−Rh)2

memiv2
c

Zi∆Sp
⇔ Zi∆Sp ' (2−Rh)2 mimev

2
cλ

2
sat

2λ2
c − a′hRhλ2

sat

, (4.13)

where use is made of λc =
√

2πc/ωpiηi. Figures 4.10(a,b) display the transverse magnetic spectrum
and the Sp profile in the collisionless shock simulation at tωpe = 4830 for mi = 25me, vi = ±0.4c.
The PIC results are compared with the values deduced by plugging the simulated Sp (respectively
ksat) in the expression of ksat (respectively Sp) as black solid line of Fig. 4.10(a) (respectively red
solid line of Fig. 4.10(b)). Good agreement is obtained, which validates Eq. (4.13).

Since the incoming ion population creates filaments in the upstream, their coalescence dynamics
can be modeled as in Sec. 3.4.2. Note, however, in the present configuration, the current involved
in the equation of dynamics is associated to the cold incoming ion population. Equation (3.66) then
writes, in the frame of the incoming ions

d

[
3mi

2
(∂tλsat)

2

]
= Zcκvcd

√
Sp . (4.14)

Making use of Eq. (4.13) and of κ ' 4c/λsatωpe of Eq. (3.61), one gets

[
(∂tλsat)

2
]t
t∗

= (2−Rh)
8cZc

3miωpe
a′h

√
mime

Zi

∫ λsat

λ∗

vc
λ
∂λ

(
vcλ√

2λ2
c − a′hRhλ2

)
dλ . (4.15)

A precise calculation would requires the knowledge of vc as a function of λsat. Yet, the profile of
vc plotted in Fig. 4.8(f) does not present any significant variation except very close to the shock
front. We will then assume vc constant, which will allow us to obtain an approximate solution of
Eq. (4.15) To this goal, we recast the above equation as

[
(∂tλsat)

2
]t
t∗

= (2−Rh)
8cZi

3miωpe

√
mime

Zi
v2
c

∫ λsat

λ∗

dλ

λ
∂λ

(
λ√

2λ2
c − a′hRhλ2

)
. (4.16)
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As in Sec. 3.4.3, we will suppose that, at the end of the linear phase at t = t∗, λsat(t∗) = λ∗ and
∂tλsat(t∗) = 0. Integrating by parts and making use of∫

dx

x
√

1− ax2
= ln(x)− ln(1 +

√
1− ax2) , (4.17)

we obtain (to leading order in λ/λc < λsat/λc):

∂tλsat ' vc
(
Zime

mi

) 1
4

√
4
√

2c

3ωpeλc
(2−Rh)

[
ln

(
λsat

λ∗

)
+

5

4
a′hRh

λ2
sat − λ2

∗
2λ2

c

] 1
2

. (4.18)

There results

vc

(
Zime

mi

) 1
4

√
4
√

2c

3ωpeλc

5

4
a′hRh(2−Rh)∆t =

λc
λ∗

∫ λsat

λ∗

dλ√
4

5a′hRh

2λ2c
λ2∗

ln
(
λ
λ∗

)
+ λ2

λ2∗
− 1

(4.19)

Assuming the ln term negligible, we obtain

vc

(
meZi
mi

) 1
4

√
8c

3ωpeλc

5

4
a′hRh(2−Rh)∆t = λc

[
arccosh

(
λsat

λ∗

)]
, (4.20)

and therefore

λsat = λ∗ cosh

(
∆t

τ1

)
, (4.21)

with

τ1 =
λc
vc

(
mi

Zime

) 1
4

√
2ωpeλc

10ca′hRh(2−Rh)
, (4.22)

and λcωpi/c = 2π/0.5. We see that the typical coalescence time τ1 does not depend on the initial
condition λ∗, in contrast to the symmetric interaction regime. This stems from the neglect of the
ln term in Eq. (4.18). However, λ∗ is usually much lower than λc since λ2

c/λ
2
∗ & mi/Zime � 1.

Hence, neglecting λ2/λ2
∗ − 1 in front of λ2

c ln(λ/λ∗)/λ
2
∗ yields

vc

(
Zime

mi

) 1
4

√
4
√

2c

3ωpeλc
(2−Rh)∆t =

∫ λsat

λ∗

dλ√
ln
(
λ
λ∗

) = −
√
π

[
erfi

(√
ln

(
λsat

λ∗

))]
, (4.23)

where erfi is the complex error function (see Nomenclature). This equation can be recast as

λsat = λ∗ exp

[
erfi−1

(
∆t

τ2

)2
]
, (4.24)

τ2 =
λ∗
vc

(
mi

Zime

) 1
2

√
4π2

8ηi(2−Rh)
. (4.25)

We have introduced erfi−1, the inverse complex error function. We plotted in Fig. 4.13 the math-
ematical function exp[(erfi−1)2]. Note that the above formulae are valid provided λ∗ � λc, which
is usually verified for realistic ions. Moreover, for λ∗ ∝ c/ωpe, τ2 does not depend on the electron
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Figure 4.13. Function x→ exp[(erfi−1(x))2]

mass. For ∆t� τ2, we obtain

λsat ' λ∗
(

1 +
π∆t2

4τ2
2

)
. (4.26)

For ∆t� τ2, λsat is implicitly given by

∆t

τ2
' λsat

λ∗

√
πln

(
λsat
λ∗

) . (4.27)

Although Eq. (4.24) differs from its symmetric counterpart, Eq. (3.79), it predicts a qualitatively
similar evolution of λsat: a plateau of typical duration τ1 appears at the beginning of the saturation
stage, followed by a strong increase of the wavelength while λ < λc. Combining Eqs. (4.13) and
(4.24), the spectrum variable Sp evolves according to

Sp =
(2−Rh)2

Zi

mimev
2
cλ

2
∗ exp

[
2erfi−1

(
∆t
τ2

)2
]

2λ2
c − a′hRhλ2

∗ exp

[
2erfi−1

(
∆t
τ2

)2
] . (4.28)

4.3.4 Shock profile

Equations (4.24) and (4.28) give the explicit temporal evolution of the spectral parameters at a given
position in the upstream region, assuming that the Weibel instability has entered its nonlinear phase
at time t∗. In order to obtain the spatial profile of the spectral parameters in front of the shock,
we will make use of a simple argument. In the downstream framework, the shock is formed at the
center of the system xcenter at time tform. The velocity of the shock front vshock is given by the
Rankine-Hugoniot conditions (Drury 1983)

v2D
shock =

vc
2
, (4.29)

v3D
shock =

vc
3
. (4.30)

For the parameters mi = 25me and vi = 0.4c, a shock velocity vshock = 0.2c is then predicted,
in agreement with the simulation results [Fig. 4.8(g)]. The shock front therefore reaches a given
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position x in the upstream plasma at the approximate time

tfront(x) = tform +
|x− xcenter|
vshock

. (4.31)

Therefore, we need to estimate the values of Sp or λsat at the shock front (or close to it) in order
to obtain the spectrum spatial profile. At the shock front, the value of λsat will be defined as λfront

and verifies

λfront ≡ λsat(tfront) = λ∗ exp

[
erfi−1

(
tfront(x)− t∗(x)

τ2

)2
]
, (4.32)

The above formulation can be greatly simplified if we assume that the time needed to achieve
isotropization at a given position is very long: tfront(x)− t∗(x)� τ2. Making use of Eq. (4.27), we
obtain:

λ∗
tfront − t∗

τ2
=

λfront√
πln

(
λfront
λ∗

) . (4.33)

Assuming λfront is known, the profile of λsat, independently of t∗:

λsat = λ∗ exp

erfi−1

(
t− tform

τ2
− |x− xcenter|

τ2vshock
− erfi

(√
ln

(
λfront

λ∗

)))2
 , (4.34)

where t− tform > 0 and λ∗ ≤ λsat ≤ λfront.
The dominant wavevector λsat at the shock front can be qualitatively related to a fraction of the

largest wavelength in the equations: λc. The relation between the dominant magnetic wavevector
and the plasma parameters (Eq. (4.10)) reads

ksat ' ηi
ωpe
c

√
Zime

mi

√
a′hRh + (2−Rh)2

miv2
c

ZiTe
. (4.35)

A way to estimate λfront, is to assume that the anisotropy ratio of the incoming ions has dropped
down to the large-ion-anisotropy validity limit (ai = 2 > 1) at the shock front. We remind that this
argument has been used to estimate shock formation time in Sec. 4.2. In the present case, the ion-
anisotropy ratio is not predicted analytically by our model which make this criterion hard to apply.
Another criterion which estimates λfront can be worked out, assuming equipartition of electron and
ion energies in Eq. (4.35), Te(tfront) ∼ mivc(tfront)

2+Tix(tfront). At the shock front, the ions are close
to isotropisation, hence we estimate mivc(tfront)

2 ∼ Tix(tfront) which yields, mivc(tfront)
2/Te(tfront) ∼

0.5. We then obtain

λfront = λsat(tfront) '
c

ωpi

2π

ηi
√

(2−Ri)2/2Zi + a′hRh
' 0.8λc . (4.36)

There follows the spectral profile Sp

Sp =
(2−Rh)2

Zi

mimev
2
cλ

2
∗ exp

[
erfi−1

(
t−tform
τ2
− |x−xcenter|τ2vshock

− erfi

(√
ln
(
λfront
λ∗

)))2
]2

2λ2
c − a′hRhλ2

∗ exp

[
erfi−1

(
t−tform
τ2
− |x−xcenter|τ2vshock

− erfi

(√
ln
(
λfront
λ∗

)))2
]2 . (4.37)

Our model assumes that the shock profile, defined by Sp and λsat, is stationary in a frame mov-
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ing at vshock. In Eqs. (4.34) and (4.37), the sharpness of the profile increases with the factor

erfi

(√
ln
(
λfront
λ∗

))
. The thickness of the Weibel magnetic saturation zone can be easily deduced:

it is the length needed for λsat to increase from λ∗ to λfront ' 0.8λc. For large ion masses (so that
λ∗ � λc), we can multiply Eq. (4.33) by vshock to obtain the length of the magnetic turbulence LB
in the upstream flow:

LB = vshock(tshock − t∗) = 5
c

ωpi

(
mi

Zime

) 1
2

√√√√ 2π

2(2−Rh)ln
(
λfront
λ∗

) , (4.38)

where use has been made of λc =
√

2πc/ηiωpi. We emphasize that it represents the length of
the upstream plasma over which the magnetic saturation takes place, not necessarily the length of
variation of the hydrodynamic plasma parameters (ni, Ti). Consequently, the size of the upstream
magnetic turbulence does not depend on the initial velocity of the plasma slabs, which confirms
the result, obtained by Kato & Takabe (2008). Moreover, this length is weakly sensitive to the

initial filament size λ∗, and is proportional to the ion mass (and not to m
1/2
i as the ion skin depth).

Moreover, since the typical time τ2 depends on the electron mass me (for fixed λ∗), the length of
the turbulent spatial scale LB does depend on me.

We now compare our analytical predictions with the results of various shock simulations. In
Figs. 4.15(a-d) are plotted the λsat (top) and Sp (bottom) profiles measured in simulations run with
the parameters vi = ±0.2c (left) and vi = ±0.4c (right) for an ion mass of mi = 25me. Overall,
the theoretical predictions correctly match the simulated spectra. Moreover, the simulated spectra
evidence a slight evolution of the spectrum far from the shock front for both λsat and Sp. However,
close to the shock front, the profiles are very similar up to the noise level. This is also consistent
with the analytical model which predicts a dependence on the parameter λ∗ of the spectra far from
the shock front. Its value can be estimated the same way than in Chapter 3, making use of Eq.
(3.95). We thus show that k∗ should be a fraction of ωpe/c which has been used in Figs. 4.14. The
qualitative influence described earlier of λ∗ on the profiles is thus confirmed.

Qualitatively, the larger is the overlapping region between the cold incoming and hot reflected
ion populations, the longer is the interaction region which should strengthen the heating effects
of the various instabilities developing prior to the Weibel growth. The later an element of the
upstream region turns Weibel-unstable, the hotter are its electron and ion components, yielding a
larger saturated wavelength, λ∗ an thus a smoother shock profile.

Close to the shock front, the analytical spectrum depends mainly on the value of the wavelength
at the shock front, λsat(tshock) ' 0.6λc ' 0.84c/ωpi [Eq. (4.32)]. The corresponding value of Sp
reads

Sp(x = xshock(t)) = (2−Rh)2memiv
2
c

Zi

0.82

2−Rha′h0.82
' 2.1

memiv
2
c

Zi
. (4.39)

We remind the reader that we have neglected the variations of the mean incoming ion velocity
vc, an invalid assumption close to the shock front. The decrease in vc close to the shock front will
be estimated numerically from the ion-quasilinear equations in next section.

4.3.5 Evolution of the ion parameters

In the symmetric interaction regime, the Weibel wavevector is linked to the ion anisotropy ratio,
hence solving the problem required to know the ion population parameters. In the present asym-
metric case, by contrast, the wavevector only involves (to first order) the incoming ion velocity,
which is assumed constant. This approximation could be relaxed in a refined version of our model
The quasilinear equations (Eqs. (3.28)-(3.30)) can be applied to the cold incoming ion population
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vi = 0.2c vi = 0.4c
(a)λsatωpe/c (b) λsatωpe/c

(c) Sp/m
2
ec

2 (d) Sp/m
2
ec

2

Figure 4.14. Spatial profile of the Weibel wavelength λsatωpe/c (a,b) and Sp/m
2
ec

2 (c,d) for two shock
propagation simulations: mi = 25me, vi = 0.2c (a,c) and mi = 25me, vi = 0.4c (b,d). The abscissa is
measured from the shock front position (x − xshock)ωpe/c given by Eq. (4.31). The shock formation time
of Eq. (4.31) is tformωpe = 1800 for the cases (a,c) and tformωpe = 800 for the cases (b,d). The analytic
formula Eqs. (4.34), (4.36) and (4.37) have been superposed as black dashed and plain lines for respectively
λ∗ = 6πc/ωpe and λ∗ = 8πc/ωpe. The exact numerical resolution from Eqs. (4.46), (4.41)-(4.45) are
superposed as circled black dashed and plain lines for respectively λ∗ = 8πc/ωpe and λ∗ = 6πc/ωpe.

and solved numerically. Therefore, assuming that the temporal evolution of Sp is known, the ξi
parameter can be estimated from Eq. (4.7). We have simplified the spectrum function as detailed
in Sec. 3.3.2. The only difference being that the parameter αi = 1 + ξsat

i Z(ξsat
i ) now depends

strongly on the plasma properties. We thus obtain the following set of equations for fixed position
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x:

tfront(x) = tform +
|x− xcenter|
vshock

, (4.40)

∂tvc ' −
Z2
i

mi

[
1 + ξsat

c Z(ξsat
c )
] vc
Tcy

∂tSp , (4.41)

∂tTcy ' +
Z2
i

mi

[
1 + ξsat

c Z(ξsat
c )
] Kcy

Tcy
∂tSp , (4.42)

∂tKcx ' −
Z2
i
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{2
[
1 + ξsat

c Z(ξsat
c )
] Kcy

Tcy
− 1}∂tSp , (4.43)

ξsat
c ' i(1− η2

i )

√
mi

2πTcy

Rha
′
h + (2−Rh)2mimev
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) me√
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, (4.44)

∂tSp = Sp∂tλsat

[
2

λsat
+

2Rha
′
hλsat

2λ2
c −Rha′hλ2

sat

]
, (4.45)

where Rh ' 0.2, a′h ' 8, ηi = 0.5, and λc =
√

2πc/ηiωpi. In order to be solved, the above set of
equations need to be coupled to the coalescence model. For this purpose, we take the time derivative
of Eq. (4.15)

3ωpe
4c

√
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Zime

λsat

vc
d2
ttλsat =

(2−Rh)vc√
λ2
c − a′hRhλ2

sat

[
1 +

a′hRhλ
2
sat

2λ2
c − a′hRhλ2

sat

+
λsat

vc

dtvc
dtλsat

]
. (4.46)

The above second order differential equations closes the set of Eqs. (4.41)-(4.45) and can be solved
with the initial conditions λ(t∗) = λ∗ and ∂tλsat(t∗) = 0. We also use the plasma conditions

Tx,yc(t∗) = T
(0)
x,yc and vc(t∗) = v

(0)
c . We obtain the position of the shock front, as in previous

analytical developments, making use of λsat(tfront) = λfront ' 0.8λc. Hence the shock propagation
magnetic spectral and plasma parameters can be reduced to a set of differential equations given by,
Eqs. (4.46), (4.41)-(4.45) which open the way to an accurate numerical resolution.

On Figs. 4.14(a,b,c,d), Sp and λsat from the numerical resolution of the above set of equa-
tions (circled plain and dashed lines) agree well with the analytical formulae of Eqs. (4.34) and
(4.37) (plain and dashed lines). This validates the analytical developments derived for the spec-
tral parameters Sp and λsat. We will now compare the ion temperature, anisotropy and velocity
profiles extracted from the two different simulations of shock propagation [Fig. 4.15]. Overall the
tendencies of the numerical resolution are fairly well reproduced by simulations results. The ion
parameter profile evolve slightly with time. Both simulations show that once the shock is formed
the temperature profiles smoothen with time. This can be explained qualitatively. The size of the
overlap region between the incoming ions and reflected ions increases with time. Thus, the incom-
ing plasma flow can have experienced many instabilities and undergone a strong heating before the
Weibel instability saturates. Consequently, at fixed location in the moving shock frame, the Weibel
wavelength should increase with time. This parameter λ∗ could be estimated from Eq. (4.35) if
the electron temperature, and reflected ion density ratio Rh were known at the beginning of the
non-linear Weibel instability. An accurate description of the various instabilities taking place in the
upstream region and of their impact upon the plasma’s species is a formidable task, well outside
the scope of this thesis.
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vi = ±0.2c vi = ±0.4c
(a) Tiy/mec

2 (b) Tiy/mec
2

(c) vi/c (d) vi/c

(e) ai (f) ai

Figure 4.15. Spatial profiles of the ion plasma parameters at different times for two 2D simulations
of shock-propagation: mi = 25me, vi = ±0.2c (a,c,e) and mi = 25me, vi = ±0.4c (b,d,f). The position
(abscissa) is measured in respect to the position of the shock front. The shock formation time of Eq. (4.31)
is tformωpe = 1800 for (a,c) and tformωpe = 800 for the case (b,d). (a,b) Transverse ion temperature profiles.
(c,d) Mean longitudinal velocity and ion density (inset). (e,f) Ion anisotropy ratio. The theoretical predictions
from Eqs. (4.41)-(4.45), (4.46) (numerical resolution) using λ∗ = 8πc/ωpe and λ∗ = 6πc/ωpe are superposed
in (a-f).
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4.3.6 Assumptions of the model

(a) ∂tλsat/vi (b) |ξe|

Figure 4.16. (a) Ratio ∂tλsat/vi as a function of the distance to the shock front normalized to LB from
numerical resolution. (b) Temporal evolution (normalized to ω−1

pe ) of |ξe| [Eq. (4.47)] with Sp and vc from
the numerical resolution of Eqs. (4.41)-(4.45), (4.46). The green, red and blue sold lines correspond to the
case mi = 25me, vi = ±0.4c, vi = ±0.2c and mi = 100me, vi = ±0.4c respectively.

At a given position of the upstream, the variation of Sp should be given by the above relations. The
quasilinear equations of Davidson et al. (1972) are valid in a homogeneous system which is not the
case in upstream of the shock. The insets of Figs. 4.17(d,e,f) evidence an ion density profile which
increase from its far upstream value, ni/n0 = 1, to a compressed value of ni/n0 ' 2. Note that in the
core the downstream, density jump ratio verifies the Rankine-Hugoniot conditions ni/n0 ' 3. Our
model may remain valid if the variation of λsat is faster than that of the ion velocity. Consequently,
for a small ratio ∂tλsat/vc, the spatial gradients should be negligible and the local equations used
in the model should be valid. The spatial profile of ∂tλsat/vc is illustrated in Fig. 4.16(a) for three
cases. For a broad range of parameters the Weibel wavelength is found to evolve much faster than
the ion plasma parameters. Consequently, the spatial profiles can be neglected in the upstream up
to the shock front.

Another critical assumption underlying our model is the hot electron approximation, |ξe| � 1,
which allows us to neglect ξeZ(ξe) in the quasilinear equations. Its validity can be easily checked
by comparing the value of |ξe| computed from Eqs. (4.7) and of Sp ' meTe [Eq. (4.12)]. We obtain
the temporal evolution of |ξe|,

|ξe|(t) ' (1− η2
i )

√
m2
e

2πSp(t)

Rh
mi
a′h + (2−Rh)2mev

2
c (t)

Sp(t)

1−Rh
mi

+ Rh
mi

(1 + a′h) + (2−Rh)2mev
2
c (t)

Sp(t) + 1
, (4.47)

where Sp is given by Eq. (4.28) with a′h ' 8, Rh ' 0.2, αi = 0.5, ηi = 0.5. This equation is plotted
in 4.16(b) for three sets of parameters. In all cases |ξe| � 1 over the non-linear Weibel region.

We will now focus on the plasma properties at t = t∗ (or x − xshock ' LB). We remind the
reader that, in the case of symmetric ion beams (Sec. 3.4.3), the plasma properties at t = t∗ could
be easily related to the initial plasma parameters at t = 0 by the choice of λ∗ combined with the
dominant wavevector, ksat = ηiωpi/c

√
ai, [Eq. (3.10)]. We thus obtained Eqs. (3.87)-(3.90) which

give the plasma properties at t = t∗, given the parameters at t = 0 and λ∗. This contrasts with the
present asymmetric case, where no simple relations have been given between the plasma properties
at t = 0 (unperturbed) and at t = t∗. Therefore, use has been made of the unperturbed plasma

properties for the plasma conditions at t = t∗ (Tiy(t∗) ' T (0)
iy , vi(t∗) ' v(0)

i and ai(t∗) ' a(0)
i ) during
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the numerical resolution of Eqs. (4.41)-(4.45), (4.46) [Fig. 4.15]. This results in the discrepancy
between the theoretic and simulation results at x − xshock ' 250c/ωpe, of a factor ∼ 2 − 4 for
Tiy. We will now estimate the influence of the plasma properties at t = t∗ for a fixed value of λ∗,

in the case a 2D simulations of shock-propagation: mi = 100me, vi = ±0.4c, T
(0)
i,ex,y = 0.01mec

2.
The simulated plasma and spectral profiles (blue and red lines) are compared to the numerical
resolution of Eqs. (4.41)-(4.45), (4.46) [Fig. 4.17] for two set of plasma properties at t = t∗, a cold
(Tiy(t = t∗) = 0.01mec

2 and vi = ±0.4c, plain black line) and a hot one (Tiy(t = t∗) = 0.5mec
2 and

vi = ±0.39c , dashed black line). We evidence no significant difference in the spectral profiles Sp
and λsat, for initially hot or cold plasma properties, moreover, both curves agree very well with the
analytical predictions [Fig. 4.17(a,b)]. As for the plasma profiles, a discrepancy of about a factor
∼ 20 of magnitude on Tiy(x ' 900c/ωpe), or a position shift of ∆x ' 200c/ωpe [Fig. 4.17(d)] are
shown between the simulated curves and the initially cold plasma conditions. This discrepancy is
mitigated, for the hot initial conditions. We highlight that no significant difference between the
initially hot and cold curves are evidenced close to the shock front, for the three plasma profiles vi,
Tiy and ai.

4.4 Conclusions

The formation of Weibel-mediated shocks results from the long-time non-linear evolution of the
Weibel-filamentation instability. The model of collective filament dynamics worked out in previous
chapter is based on equations of filament merging coupled with quasilinear relations of the ion pop-
ulations. It can be applied to Weibel-unstable system during the non-linear stage of the instability
when the two overlapping ion populations are symmetric. It has been shown to be valid during the
collision of two non-relativistic plasma slabs. Comparison with various simulations has confirmed
its ability to predict the non-linear evolution of the system until quasi-shock formation. Moreover,
its predictions have been shown to be consistent with the evolution of filamented structures mea-
sured in recent experiments of plasma collision of Kugland et al. (2012b); Fox et al. (2013). This
has highlighted the importance of the electron screening effect and therefore of the electron mass
in the ion-Weibel dynamic. The proton radiographs of Fox et al. (2013)’s are analyzed in light of
a 2D simulation where the ion mass has a physical value but where the electron mass is artificially
increased. Only qualitative agreement is found between the experimental and simulation values.
However, we showed that the nonphysical electron mass can explains the discrepancy between the
experiment and the large scale simulation illustrated in Fig. 4.7(b). The shock formation time
of our model scales as ∆tform ∝ ω−1

pi /(me/mi)
1/4. Consequently, increasing the simulated electron

mass by a factor 37, as in Fox et al. (2013), artificially speeds up the filament dynamics by a factor
∼ 3. Our theoretical predictions are also consistent with the experimental data of Kugland et al.
(2012b), under the assumption that the observed structures stem from the the Weibel-filamentaton
instability.

In a second part, we have addressed the propagation of a fully formed collisionless shock. Its
propagation is due to the non-linear Weibel filamentation instability taking place in the upstream, in
front of the shock discontinuity. The instability is triggered by the overlapping of the cold incoming
ions, propagating in the direction of the shock, and the hot out-coming ions, generated at the shock
front and propagating in the opposite direction. The stability properties of the upstream plasma
have been analyzed by means of the numerical techniques presented in Chapter 1 and via analytical
approximations of the dominant modes. A simple relation has been obtained between the potential
vector energy and the dominant wavevector in the upstream. This relation has been combined with
the coalescence model of Chapter 3 in order to obtain an analytical formulation of the magnetic
spectrum profile. The predicted profiles have been successfully compared with PIC simulations. We
also obtained estimate of the amplitude and periods of the magnetic modulations at the shock front.
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(a) λsatωpe/c (b) Sp/m
2
ec

2

(c) vi/c (d) Tiy/mec
2

(e) ai

Figure 4.17. Spatial profiles of the ion plasma parameters at different times for a 2D simulations of shock-
propagation: mi = 100me, vi = ±0.4c for the two times tωpe = 4200 (blue) and tωpe = 7140 (red). The
position (abscissa) is measured in respect to the shock front position given by Eq. (4.31) for tformωpe = 2000.
The theoretical predictions from Eqs. (4.41)-(4.45), (4.46) (numerical resolution) using λ∗ = 8πc/ωpe are

superposed for two set of plasma parameters at t = t∗ (or x−xshock ' 900c/ωpe): Tix(t∗) = Tiy(t∗) = T
(0)
iy =

0.01mec
2 and vi(t∗) = v

(0)
i = 0.4c (plain black line) and Tix(t∗) = Tiy(t∗) = 0.5mec

2 and vi(t∗) = 0.39c
(dashed black line). The analytical profiles of λsat [Eq. (4.34)] and Sp [Eq. (4.37)] are superposed as yellow
plain lines on (a) and (b) respectively.
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Moreover, we derived set of differential equations predicting both the spectral and ion profiles in the
shock front, in fair agreement with PIC results. The wavelength λ∗ at the end of the Weibel linear
phase is found to affect the sharpness of the magnetic profile. In the case of shock propagation, this
parameter have an impact on the sharpness of the magnetic profile. Its value could depend on all
the instabilities preceding the Weibel saturation.

The analytical equations of λsat and Sp depends on some approximated parameters. The reflected
ion density ratio Rh has been assumed equal to 0.2, whereas our simulations show a possible range
of 0.05 . Rh . 0.3. The temperature and drift velocity of the reflected ions have been also grossly
estimated. Care has been taken to keep these parameters explicit in all the equations to open the
way to future refinements. Finally, our model predicts that the length of the magnetic turbulence
is independent of the plasma velocity and nearly independent of λ∗.
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Chapter 5

Laser-induced Weibel-mediated
collisionless shocks: theory and PIC
simulations

Figure 5.1. Weibel-mediated collisionless shock induced during the irradiation of an hydrogen plasma by
a laser of intensity I0 ' 1.8 1021W.cm−2, focused on a 16µm spot size.
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5.1 Introduction

Theoretical and numerical modeling of electron-ion collisionless shocks is important for understand-
ing various high-energy astrophysical environments, where they are held responsible for the gen-
eration of nonthermal particles and radiation Drury (1983); Malkov & O’C Drury (2001); Bykov
& Treumann (2011). The formation and evolution of these structures can now be simulated nu-
merically from first principles as shown previously, over significant spatio-temporal scales using
state-of-the-art particle-in-cell (PIC) codes Kato & Takabe (2008); Spitkovsky (2008b); Keshet et al.
(2009); Martins et al. (2009); Nishikawa et al. (2009); Haugbølle (2011); Sironi & Spitkovsky (2011);
Stockem et al. (2014). These numerical studies have demonstrated that, for initially unmagnetized
flows of high enough velocities, the well-known Weibel/filamentation instability Medvedev & Loeb
(1999); Achterberg & Wiersma (2007); Achterberg et al. (2007) provides the small-scale magnetic
turbulence needed for efficient dissipation of the bulk flow energy and Fermi-type acceleration of
suprathermal particles Sagdeev (1966); Lemoine et al. (2006).

According to simulations (see chapter 3 and 4), shock formation occurs along the following
‘standard’ scenario: electron-driven Weibel/filamentation instabilities Bret et al. (2010b); Lemoine
& Pelletier (2011) grow and saturate first, leaving the electrons mostly thermalized over the overlap
region; for fast enough flows, an ion-driven Weibel/filamentation instability subsequently develops at
larger scales, causing enhanced ion scattering off amplified magnetic fluctuations; the deflected ions
then accumulate in the turbulent region, until satisfying the shock hydrodynamic jump conditions
Blandford & McKee (1976).

These numerical advances go along with rapid experimental progress towards the generation of
collisionless, self-magnetized shocks by intense lasers Takabe et al. (2008); Kuramitsu et al. (2011);
Ross et al. (2013); Fox et al. (2013). Two main configurations are currently investigated to this
goal. The first one relies upon the interaction of two counter-propagating plasma flows generated
from the ablation of foil targets by high-energy (∼ 0.1 − 1 MJ), nanosecond-duration laser pulses
Drake & Gregori (2012). Such flows are of relatively low density (n � nc, where nc ∼ 1021 cm−3

is the critical density of a 1µm-wavelength laser), temperature (Te ∼ 1 keV) and drift velocity
(vi ∼ 1000 km s−1).

An alternate approach, proposed by Fiuza et al. (2012) and further studied in this chapter, hinges
upon the irradiation of an overdense plasma (n� nc) by a relativistic-intensity (I0 > 1020 Wcm−2),
picosecond-duration laser pulse (Fig. 5.2). During this interaction, copious amounts of electrons are
heated to relativistic energies and injected into the target. The ensuing strong charge separation
and pressure gradients accelerate the surface ions to a velocity vi ∼ 2vp, where vp is the laser-driven
piston (‘hole boring’) velocity (Wilks & Kruer 1992). According to Fiuza et al. (2012), the various
filamentation instabilities triggered in the ion beam-plasma region may lead to the formation of a
collisionless shock for intense enough lasers and/or dilute enough targets.

An electrostatic to Weibel-mediated shock transition will be evidenced by mean of two-dimensional
(2-D) PIC simulations. Since the ion isotropization results from the instability-generated magnetic
turbulence, we will present a quantitative analysis of the filamentation instability, assuming either
relativistic Maxwell-Jüttner or relativistic multi-waterbags distribution functions. In particular, we
will assess the influence of the hot electron population upon the instability’s properties and the
resulting saturated magnetic field.

As in Fiuza et al. (2012), the capability of ultra-intense laser pulses to drive self-magnetized
shocks into overdense plasmas has been investigated by means of 2-D PIC (calder) simulations.
The process of shock formation is studied (rather than the propagation of the shock), which is
inaccessible in astrophysical contexts.

146



Laser-induced Weibel-mediated collisionless shocks: theory and PIC simulations

Figure 5.2. Sketch of the relativistic laser-driven shock formation (in the laser piston frame): electro-
magnetic instabilities are triggered in the upstream by counter-streaming electron-ion flows. The magnetic
fluctuations isotropize the incoming ions over a time scale ∆tiso, at which point the shock Rankine-Hugoniot
jump conditions are fulfilled across the turbulent region.

5.2 PIC simulations: results and analysis

5.2.1 Numerical setup

The simulations have been performed using the calder code, run in 2-D geometry. The laser
pulse is modeled as an electromagnetic plane wave linearly polarized along the y-axis, with a 1µm
wavelength and an intensity of I0 = 3.6 × 1021 Wcm−2. This corresponds to a normalized field
amplitude A0 = eE0/mecω0 (where ω0 is the laser frequency) of A0 = 60. The laser intensity is held
constant after a linear ramp of 30ω−1

0 duration. The wave propagates along the x > 0 direction and
interacts with a fully-ionized, overdense plasma slab located at x = 40c/ω0 and of maximum electron

density n
(0)
e . The plasma is made of protons (mi/me = 1836, Zi = 1, n

(0)
e = 50 − 100nc, where

nc ' 1021 cm−3 is the critical density). The initial electron and ion temperatures are T
(0)
e,i = 5 keV. A

63c/ω0 (10µm) scale-length density ramp is added on the front surface to mimic the effect of the laser
pedestal. The simulation grid comprises 8600 × 1536 cells with mesh sizes ∆x = ∆y = 0.25c/ωpe.
The time step is taken to be ∆t = 0.95∆x/c

√
2. Each cell contains 50 macro-particles per species,

yielding a total of 6.6×108 macro-particles. To reduce the numerical noise, 3rd-order weight factors
are used. The boundary conditions are absorbing in x and periodic in y for both particles and
fields. We have checked in the hydrogen case that increasing the number of macroparticles to 100
macro-particles per species per cell or shortening the plasma ramp does not alter significantly the
results.

5.2.2 Shock formation in a hydrogen plasma

General description

Let us first analyse the generation of a collisionless shock in a H+ plasma for the parameters

A0 = 60 and n
(0)
e = 50nc. These parameters are identical to those considered in Fiuza et al.

(2012). Figure 5.3(a) shows that, by ω0t = 480, the Weibel/filamentation instability induced by
the laser-accelerated particles flowing through the bulk plasma has given rise to strong magnetic
channels parallel to the x-axis. From Fig. 5.3(b), we see that these channels are associated to
pronounced modulations in the ion density (δni/ni ∼ 1). As a result of successive coalescences
and decreasing anisotropy of the particle momentum distributions (see below), the field amplitude
and filament size grow from eBz/meω0 ' 1 and λ ' 3c/ω0 (' 21c/ωp) to eBz/meω0 ' 10 and
λ ' 12c/ω0 (' 85c/ωp) when moving from ω0x/c ' 300 to ω0x/c ' 200. Closer to the target front
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(a) eBz/meω0 (b) nH/nc

(c) 〈nH/nc〉y (d) 〈nH/nc〉y

Figure 5.3. Shock formation in a H+ plasma with A0 = 60 and n
(0)
e = 50nc. (a) Magnetic field Bz at

tω0 = 480. (b) Proton density nH at ω0t = 480. (c) y-averaged proton density vs x at successive times. (d)
y-averaged proton density vs (x, t).

(150 . ω0x/c . 200), the filaments exhibit kink-like oscillations, while further growing in amplitude
and size (up to eBz/meω0 ' 25 and λω0/c ' 20) (Milosavljević & Nakar 2006). They eventually
decay into a compressed turbulent layer (further referred to as the downstream) in the interval
140 . ω0x/c . 150. The spatio-temporal evolution of this shock-like structure is displayed in Figs.
5.3(c,d). The compression ratio relative to the unperturbed (upstream) plasma stabilizes to a value
nd/nu ' 3 (where u and d stand for upstream and downstream, respectively) by ω0t ' 240, and
remains constant at later times. The right side of the compressed layer propagates at a velocity
vsh ' 0.175c, while its left (irradiated) side is pushed by the laser radiation pressure at a velocity
vp ' 0.125c [Fig. 5.2]. These values are consistent with a strong hydrodynamic shock induced by
the laser-driven motion of the target surface at a piston (or ‘hole boring’) velocity Wilks & Kruer
(1992)

vp = c

√
(1 +RL)ZiA2

0

4n
(0)
e mi

, (5.1)

where RL denotes the laser reflectivity. This expression directly follows from equating the photon
and ion momentum fluxes across the laser-plasma interface (in the non-relativistic limit vp � 1).
In the present simulation, we have RL ' 0.4, so that vp ' 0.12c, which closely agrees with the
measured value. The theoretical compression ratio, nd/nu, and velocity, vsh, of a non-relativistic
strong hydrodynamic shock are

nd
nu

=
Γad + 1

Γad − 1
, (5.2)

vsh = vp
Γad + 1

2
, (5.3)

with Γad the adiabatic index Blandford & McKee (1976). In the present 2-D case, we have Γad = 2,
and hence nd/nu = 3 and vsh = 0.18, which match the simulated values. As first discussed in Fiuza
et al. (2012), these features bear much resemblance to those observed in simulations of Weibel-
mediated electron-ion shocks (Kato & Takabe 2008).
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(a) ω0t = 200 (b) ω0t = 240
Electrostatic shock phase Electrostatic/magnetic transition

(c) ω0t = 400
Magnetic shock phase

Figure 5.4. Shock formation in a hydrogen plasma with A0 = 60 and n
(0)
e = 50nc. Upper panels: y-

averaged electromagnetic energies normalized to mec
2nc. Middle and lower panels: respectively proton and

electron x− px phase spaces at (a) tω0 = 200, (b) tω0 = 240 and (c) tω0 = 400.

Instability development and shock formation

The ion and electron x − px phase spaces around the shock front are displayed in the middle and
lower panels respectively at successive times in Figs. 5.4(a-c). The electrons accelerated in the
x > 0 direction have a large momentum dispersion (∆px ∼ 100mec), with 2ω0-modulations typical
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(a) log[DFT (|qeBz/meω0|)]) (b) log[DFT (|qeEy/mecω0|)])

(c) (d)
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Figure 5.5. Spatial Fourier transforms of Bz (a) and Ey (b) at tω0 = 240 and xω0/c = 120 (in log10

scale). (c) y-profile of the normalized current density 〈nvx〉/ncc of the electrons (blue) and protons (red).
(d) Normalized filamentation growth rate Γ/ω0 solution of Eq. (1.21). The blue line corresponds to a multi-
waterbag model of the electron and proton distributions [Figs. 5.6(c,d)]; the red line corresponds to isotropic
Maxwellian protons with TH = 5 keV; the black line corresponds to immobile protons.

of ponderomotive laser acceleration. Later on, the electron distribution broadens with time, with
maximum px increasing from ∼ 400mec at ω0t = 200 to ∼ 800mec at ω0t = 480.

At ω0t = 200, partial ion reflection (ni,r/n
(0)
i ∼ 0.1) occurs off a shock front located at ω0x/c '

105. This gives birth to a diluted beam of velocity range 2vsh . vx . 0.4c, and extending up to
ω0x/c ' 112. In the downstream region, the ions are, on average, accelerated to the piston velocity
vp, while exhibiting velocity oscillations. The upper panel of Fig. 5.4(a) further shows that the
y-averaged electrostatic energy due to Ex then slightly dominates the magnetic energy. All of these
features suggest a transient electrostatic, rather than magnetic, collisionless shock driven by the laser
radiation pressure Denavit (1992); Silva et al. (2004); Zhang et al. (2007). At ω0t = 240, the reflected
and upstream ion populations overlap over the space interval 112 . ω0x/c . 128. The peak Ex
energy, however, has decreased by 50% in the vicinity of the shock front. Meanwhile, the magnetic
energy has increased so that it prevails in both the shock foot and downstream regions. Figures
5.5(a,b) plot the 2-D spatial Fourier transforms |Bz(kx, ky)| and |Ey(kx, ky)| in the overlap region
(xω0/c = 120) at tω0 = 240. Both spectra are mostly peaked around kxc/ω0 ∼ 0 and kyc/ω0 ∼ 1−2,
consistently with dominant Weibel/filamentation modes in the shock foot region.The transition into
a magnetic shock is complete by ω0t = 400, at which time the magnetic energy exceeds the electric
energy by more than one order of magnitude. The shock front has then moved to ω0x/c ' 140.
Note that the Ex and Ey energies exhibit similar profiles in the shock foot region, except at the
shock front (ω0x/c ∼ 140), where the Ex energy becomes larger by a factor of ∼ 2.5.

Figure 5.5(c) plots transverse lineouts of the electron and ion current density, 〈nvx〉, at ω0t = 240
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(a) Simulated fe(p) (b) Simulated fH(p)

(c) Multi-waterbag fe(p) (d) Multi-waterbag fH(p)

Figure 5.6. px − py phase space (in log10 scale) of the electrons (a) and protons (b) at ω0x/c = 240 and
ω0t = 120. Panels (c,d) show the corresponding multi-waterbag fits used for the stability analysis (see text).

in the shock foot region (ω0x/c = 120). The electron current fluctuations are seen to largely prevail
over the ion current fluctuations. This feature, which holds on both sides of the shock front for
the time scales considered, implies that the magnetic filaments, and the resulting shock, are mostly
driven by the electrons.

This important observation is corroborated by a linear stability analysis of the particle momen-
tum distributions in the shock foot, displayed in Figs. 5.6(a,b). As expected Ren et al. (2006), the
electron distribution is comprised of a diluted, high-energy tail (extending up to |p| > 100mec) and
of a denser part carrying moderately-relativistic laser-accelerated electrons as well as non-relativistic
return current electrons. The ion phase space exhibits two clearly-separated structures associated
to the upstream target ions (around v = 0) and the reflected ions (around vx/c ' 0.35). The
latter present a weakly-varying, anisotropic (∆py ' 0.2mHc ' 3∆px) distribution, much broader
than that of the upstream ions (of temperature close to the initial value of 5 keV). In order to
solve the dispersion relation of the Weibel/filamentation instability, it is convenient to approximate
the measured distributions using the multi-waterbag decomposition scheme introduced in chapter
1 (Gremillet et al. 2007; Bret et al. 2010b). The resulting multiwaterbag distribution reads [Eq.
(1.99)]

fMW (p) =
N∑
j=1

αjf
(0)
j (p) . (5.4)

where αj is the weight of the jth waterbag component and f
(0)
j (p) is the jth waterbag distribution

given by Eq. (1.81), which reads

f
(0)
j (p) =

1

4PjxPjy
H(Pjx − |px − Pjd|)H(Pjy − |py|)δ(pz) . (5.5)
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(a) ω0x/c = 110 (b) ω0x/c = 115

(c) ω0x/c = 120 (d) ω0x/c = 125

Figure 5.7. Proton px − py phase space at tω0 = 240 and various locations: xω0/c = 110 (a), 115 (b), 120
(c) and 125 (d) (in log10 scale).

We remind the reader that H is the Heaviside function and Pjd, Pjx, Pjy are adjustable parame-
ters. Figures 5.6(c,d) display the best-fitted multi-waterbag approximations (with N = 104) of the
electron (c) and ion (d) momentum distributions. The multi-waterbag distributions reproduce the
momentum fluxes of the original distributions (a,b) to within an error < 10%. The susceptibility
tensor associated to these waterbag distributions is detailed in Sec. 1.4 of Ref. Bret et al. (2010b).
Using the resolution scheme of Sec. 1.1.2 procedure, the filamentation growth rate Γ = =ω is plotted
as a function of the transverse wave number ky (for kx = 0) in Fig. 5.5(d). The maximum value
Γmax/ω0 ' 0.035 is obtained at the wave number kmaxc/ω0 ' 1.3. To assess the contribution of
the ions to the instability, we have replaced their multi-waterbag distribution by an isotropic non-
drifting Maxwellian of temperature TH = 5 keV. The resulting growth rate curve almost coincides
with that obtained with the full ion distribution, which proves that the reflected ions are not respon-
sible for the observed filamentation instability. As will be analyzed later on, because the electrons’
mean energy is here comparable to the ions’ (as measured in the piston frame), the electrons can
induce magnetic fluctuations strong enough to scatter the ions and entail shock formation. This
contrasts with the standard scenario of Weibel-mediated astrophysical shocks Lyubarsky & Eichler
(2006), where the unstable two-stream ion distribution is considered as the key player in generating
magnetic turbulence. Although, in our case, the ion anisotropy is not the driving force behind the
magnetic buildup, the thermal bulk ions, while stable, may significantly enhance the electron-driven
instability by mitigating space-charge effects. This destabilizing mechanism, previously discussed in
Refs. Tzoufas et al. (2006); Ren et al. (2006), is demonstrated by computing the growth rate upon
assuming infinite-mass ions. As seen in Fig. 5.5(d), this yields a maximum growth rate lowered by
a factor ∼ 6, and a dominant wave number down-shifted to kmaxc/ω0 ∼ 0.7.

Figures 5.7(a-d) plot the proton px− py phase space at various locations in the upstream region
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(a) |Bz(x, ky)| (b) 〈2B2
z 〉1/2(x)

Figure 5.8. (a) Magnetic spectrum |Bz(x, ky)| (in log10 scale) in the upstream region at tω0 = 240. The
triangles plot the fastest-growing wave numbers, kmax, predicted from linear theory at the locations of Fig.
5.7(a-d). (b) Spatial profile of the transversely averaged magnetic field 〈2B2

z 〉1/2 at tω0 = 240 (blue solid
line). The black circles plot Eq. (5.9), where ksat and γe,eff are measured from the simulation.

at time tω0 = 240. Both the bulk and reflected proton distributions broaden as one moves closer
to the shock front as a result of growing magnetic scattering. At the shock front (xω0/c = 110),
they have merged into a relatively isotropized population [Fig. 5.7(a)]. In Fig. 5.8(a) the magnetic
spectrum |Bz(x, ky)| in the upstream region is displayed and compared to the fastest-growing wave
number predicted from linear theory using the particle distributions of Figs. 5.7(a-d). Overall, a
correct agreement is obtained between linear theory and the simulated spectrum.

The spatial profile of the transversely-averaged magnetic field amplitude, 〈2B2
z 〉1/2, at ω0t = 240

(i.e., the approximate formation time of the magnetic shock) is plotted in Fig. 5.8(b). The amplitude
varies by aboyt two orders of magnitude over the upstream region 110 . ω0x/c . 140. Note that at
this time, the reflected ions extend to xω0/c ' 128 [Fig. 5.4(b)]. At the shock front (xω0/c ' 112),
the magnetic field reaches a value 〈B2

z 〉1/2 ' 25meω0/e, comparable to the laser field strength.
In order to analyze this magnetic profile, we have assessed the effectiveness of the various parts

of the electron distribution in driving the Weibel instability. A similar evaluation was made in Ref.
Ren et al. (2006), yet within the simplifying assumption of a purely transverse instability. Here, we
adopt an alternative approach based on our multi-waterbag model. The condition for instability of
a multi-waterbag system reads ∆ = AB − C2 > 0, where the factors A,B,C, given in Appendix B
of Ref. Bret et al. (2010b), take the form of a sum over the waterbag components. For instance, we
have

C =
∑
j

ω2
pjPjd/P

2
jy . (5.6)

Let us now define
Ci =

∑
j 6=i

ω2
pjPjd/P

2
jy , (5.7)

where the index i labels a given waterbag component. Likewise, we introduce Ai, Bi, ∆i = AiBi−Ci
and Si = 1 −∆i/∆. The latter expression then quantifies the stabilizing (Si < 0) or destabilizing

(Si > 0) influence of the ith waterbag component. Figure 5.9 displays
∑

j Sjf
(0)
j (p)(p) using the

electron distribution measured at ω0t = 240 and ω0x/c = 120 It appears that the electrons mostly
responsible for the late-stage instability have moderate energies (γ ' 3) and, on average, negative
x-momenta (px < 0). These particles are therefore associated to the background return current
induced by the higher-energy, laser-driven electrons propagating in the x > 0 direction. This
feature was first pointed out in Ref. Ren et al. (2006) under similar laser-plasma conditions. The
relativistic energies attained by the return current electrons stem from the various (electromagnetic
Weibel/filamentation, electrostatic longitudinal/oblique) beam-plasma instabilities induced in the
upstream region.
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Figure 5.9. Map of
∑
SiWi(p), which measures the local contribution to the Weibel instability in the

electron px − py phase space. The subpanel zooms in on the most destabilizing electrons.

Let us now confront the simulated magnetic profile of Fig. 5.8(b) to simple models of the sat-
urated field accounting for the Weibel-effective part of the electron distribution. According to
the widely-used transverse-trapping model Davidson et al. (1972); Yang et al. (1994); Silva et al.
(2002); Kaang et al. (2009), saturation occurs when the electron bounce frequency inside a magnetic
filament is equal to the maximum growth rate . This yields the magnetic field amplitude

eBsat

meω0
'
〈
γ

βx

〉
eff

(
Γmax

ω0

)2 ω0

kmaxc
, (5.8)

where 〈γ/βx〉eff denotes the average of γ/βx over the Weibel-effective electrons. We have typically
〈γ/βx〉eff ' 5 − 10. As a result, formula (5.8) predicts relatively weak amplitudes (eBsat/meω0 '
0.01), which match the simulation results only in the far upstream region. This suggests that the
magnetic profile of Fig. 5.8(b) corresponds to a more strongly nonlinear regime than is assumed
in the transverse-trapping model. A second estimate of Bsat may therefore be derived supposing
that the Weibel-effective electrons are magnetized Moiseev & Sagdeev (1963); Lyubarsky & Eichler
(2006). Equating the typical filament size, 2π/ksat to the Larmor radius of the effective electrons,
〈γ〉eff/eB, gives the lower limit

eBsat

meω0
' 〈γ〉eff

ksatc

πω0
. (5.9)

For a numerical application, the saturated wave number ksat is extracted from the spectrum of Fig.
(5.8)(a), while the Weibel-effective electrons are defined as that part of the electron phase space
satisfying

∑
j SjWj(p) > 1

2 maxp(
∑

j SjWj). The resulting Bsat values are plotted at different
locations as black circles in Fig. 5.8(b), where they are found to capture to a good accuracy the
simulated magnetic profile.

In summary, a perturbative analysis of the local plasma distribution functions shows that the
magnetic turbulence in the upstream region mostly results from the interplay between the laser-
accelerated and background electrons. More precisely, the dominant destabilizing effect comes from
the moderate-energy return current electrons. While the reflected ions have a negligible influence,
the background ions strengthen the instability by weakening its inhibiting, electrostatic component
Tzoufas et al. (2006); Ren et al. (2006). Although the typical wave numbers compare satisfactorily
with linear theory, the magnetic field profile in the shock-foot region is indicative of the magnetiza-
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(a) (b)

Figure 5.10. Typical proton trajectories for various initial x-locations: (a) px(t) and (b) x(t). The color of
each curve is indexed by py(t)/mHc. In (b) are also plotted the trajectories of the laser-driven piston (black
solid line), of the shock front (black dashed line) and of the reflected proton front (black dotted-dashed line).

tion of the Weibel-effective part of the electron distribution.

Proton trajectories

To gain insight into the dynamics of the upstream protons, we plot in Figs. 5.10(a,b) seven typical
proton trajectories (x(t), px(t)), originating from increasing target depths. The color of each tra-
jectory (labeled by the particle number) is indexed by the instantaneous value of the normalized
y-momentum, py(t)/mHc. In Fig. 5.10(b), the trajectories of the laser-driven piston, of the shock
front and of the reflected ion front are also plotted.

Particles 1 and 2 are rapidly (over the time interval 190 . tω0 . 220) accelerated forward by
the electrostatic field set up by the electron pressure gradient at the (then mainly electrostatic)
shock front. After reaching the downstream (piston) velocity (vx/c ' 0.12), they remain confined
in the downstream region where they experience an increasing level of electromagnetic turbulence.
The latter makes them oscillate in both vx and vy, with similar amplitudes ∆vx ∼ ∆vy/c ∼ 0.02.
Particle 3 is more strongly accelerated by the electrostatic shock potential: it attains a velocity
vx/c ' 0.3, which corresponds to reflection in the shock frame. During its main acceleration phase
(220 . ω0t . 300), its y-velocity hardly varies due to a weak magnetic turbulence in the shock foot
region. Later on, however, the magnetic fluctuations get strong enough to induce velocity variations
∆vy/c ∼ 0.02.

Particles 4-6 exemplify the ion dynamics in the magnetic shock regime. Because the upstream
electromagnetic turbulence has grown in amplitude and spatial extent, they undergo an increasing
number of oscillations in vx and vy while being, on average, accelerated along x by the electrostatic
field. The effective range of the turbulence can be assessed by noting that particle 7, initially located
at xω0/c ' 165, does not exhibit any significant acceleration up to tω0 = 500, at which time the
shock front has moved to xω0/c ' 145− 150.

Late-time evolution: magnetic vortices

Figure 5.3(a) shows the formation of depleted ion ‘bubbles’ in the shock foot region. As displayed
in Fig. 5.3(b) and in the zoom of Fig. 5.11, these structures are associated with magnetic dipole
vortices.

The long term evolution of the shock shows the development of ‘bubbles’ in which is maintained a
static magnetic loop. Those bubbles significantly develops in both hydrogen (nH = 50nc, A0 = 60)
and carbon (nC = 50nc, A0 = 60) simulations after the Weibel-induced shock is being formed.

155



Laser-induced Weibel-mediated collisionless shocks: theory and PIC simulations

(a) Electron current (b) Electron pressure

(c) Magnetic field

Figure 5.11. Magnetic vortex: (a) electron current density 〈nvx〉/ncc, (b) y-component of electron pressure
tensor 〈nvypy/ncmec

2〉 and (c) magnetic field qeBz/meω0.

Figures 5.3(a,b) evidence those magnetic vortexes in the shock-foot region. The electron current
in the bubble at tω0 = 480 situated around xω0/c = 170 and yω0/c = −30 of Fig. 5.3(a) is
illustrated on Figs. 5.11(a) showing that a strong electron current of −je ∼ 6ncc. This current is
maintained on the size of the shell ly ∼ 7c/ω0 which corresponds to a magnetic field variation of
B ∼ ∆B/2 ∼ lyje/2 ∼ 21meω0/e in a good agreement with Fig. 5.11(c) giving B ∼ 20meω0/e.
This magnetic field induced by the hot electron filaments (< vx >e> 0 on Fig. 5.11(a)) coming
from the downstream is able to pinch the cold electron filaments [< vx >e< 0 on Fig. 5.11(a)]. The
filaments transverse sizes l±y are then asymmetric: l−y ω0/c ∼ 0.5 for the cold electrons < vx >e< 0
and l+y ω0/c ∼ 7 for the hot electrons < vx >e> 0. This mechanism is able to trigger the formation
of a strong magnetic loop. References Kutznetov et al. (2001); Bulanov et al. (2005) evidence the
formation of magnetic vortex and Nakamura et al. (2010) studies the influence of plasma density-
gradient on the magnetic laser-induced loops. It is shown that their sizes increase while they undergo
a decreasing density. In our case, the loops are not laser-generated but induced by the electronic
filaments in their highly nonlinear stage dominated by the electron pressure in the shock-front region
as illustrated by Fig. 5.8(a,b). But the effect of the plasma density-gradient on the magnetic loop
is the same: the vortex size increases while it undergoes a decreasing density from the downstream
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to the upstream.
The electron pressure in the vortex illustrated on Fig. 5.11(b) gives Pe = 500ncmec

2 which is of
the same order of the magnetic pressure PB = 0.5B2/µ0 ∼ 200ncmec

2. Figure 5.3(a) shows an ion
under-density in the bubbles which indicates that the protons are repulsed from the bubble creating
an ion shell. The expansion velocity of the magnetic vortex in the shock foot region can be obtained
from the equation of ion motion and yield a velocity close to the Alfvén velocity estimated here at
va ∼ B/

√
nimi ∼ 0.1c. The circled region of the ion phase space Fig. 5.4(c) presents a local velocity

jump of ∆v ∼ 0.1c ∼ va close to the Alfven speed and corresponds to the location of the magnetic
bubble at tω0 = 400. Those magnetic vortex develops significantly after ions get isotropised and
start to accumulate in the downstream so that the shock formation should not be affected. A few
magnetic vortices at early stage of their development are also visible in Fiuza et al. (2012).

5.2.3 Influence of a finite laser spot-size

We have run a 2D simulation with a 16µm (FWHM) Gaussian laser profile (propagating on the
y = 0 axis), with the same intensity and temporal profile as before (Sec. 5.2.1). The simulation
grid has been enlarged up to 16800×9216 cells with unchanged mesh sizes of ∆x = ∆y = 0.25c/ωpe
and plasma parameters. The number of macroparticles per mesh has been reduced to 20, so that
their total number in the simulation is 3.1× 109.

The simulated ion density and magnetic field at tω0 = 480 are displayed in Fig. 5.12(a,b)
and compared to the plane-wave results. Because of the Gaussian shape of the laser beam, the
piston velocity peaks on the y = 0-axis and decreases away from it, resulting in a curved laser-
plasma interface. However, the proton density of Fig. 5.12(a) shows a relatively flat transverse
profile (independent of y), close to the laser propagation axis (y = 0): the plasma is roughly three
times more dense close to the laser piston (downstream) than far from it. The Rankine-Hugoniot
conditions are verified in the region −20 < yω0/c < 20 and the Weibel-mediated collisionless shock
is formed. Its shock front is located at xω0/c ' 150 as in Fig. 5.3(b), which yields similar piston
velocity for both cases. The magnetic field profile of Fig. 5.12 evidences only 4 or 5 magnetic
periods in the region xω0/c ∼ 150 and |yω0/c| < 20. This relatively small extension of effective
magnetic turbulence seams to be large enough to form the shock.

The y-averaged ion density profiles at tω0 = 240, tω0 = 480 and tω0 = 620 are illustrated in
Fig. 5.3(c) for the two cases considered, a 16µm-spot size (plain red line) and a plane-wave laser
(black dashed line). At tω0 = 240 and tω0 = 480, the location of the laser-piston is identical in
the two laser configurations. Although the black and red curves are very close to each other at
tω0 = 240, at later times (tω0 = 480) the downstream is of thickness ∼ 50% smaller for a finite focal
spot than for a plane wave. This can be explained by the curvature of the laser-plasma interface
[Fig. 5.3(a)], which allows the ions and electrons of the downstream to “leak” off the y = 0 axis.
To ensure a stable front shock over a duration ∆t, the laser spot size should be larger than βp∆t.
Otherwise, the downstream will be significantly distorted by the Gaussian piston which may hamper
the shock propagation. In the case of a λf = 16µm-focal spot, the shock should be stable up to
∆t . λf/vp ' 800ω−1

0 . The decreasing trend exhibited by the ion density profile extracted at
tω0 = 620 (corresponding to an effective interaction time of 520ω−1

0 ) supports qualitatively this
estimate.

5.3 Conclusions

In contrast to the currently explored experimental setup (Kugland et al. 2013; Fox et al. 2013; Yuan
et al. 2013; Huntington et al. 2013) which requires 10kJ-class laser facilities, we found that only
1−2kJ of intense-enough laser pulses should be able to drive Weibel-mediated shocks which confirms
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the results of Fiuza et al. (2012). Their mechanism of formation is as follow. Rapidly after laser
plasma interaction, an electrostatic shock forms and propagates. The high intensity laser creates
a fast electron population of energy comparable to the ion kinetic energy, which is able to trigger
a strong Weibel-mediated magnetic turbulence in the shock front region. The critical role of the
return-current electrons in driving the Weibel-filamentation instability has been shown, making use
of the multiwaterbag decomposition scheme introduced in chapter 1. Unlike the usual framework
(Moiseev & Sagdeev 1963; Sagdeev 1966; Lyubarsky & Eichler 2006) studied in chapter 4, the ion
heating and isotropization results from an electron-Weibel and not an ion-Weibel instability. Care
has been taken to verify that a large enough laser spot-size does not affect the formation of the
collisionless shock for time scales smaller than ∼ λf/vp.

Many points have yet to be clarified to ensure the feasibility of an experiment of Weibel-mediated
laser-induced collisionless shock. The influence of collisions, ionization, radiative losses as well as
3D effects could be important. One of the most critical issue is linked to the diagnostics of such
experiments. A major drawback of such shocks is that they develop in dense plasmas over very
short space and time scales, a few µm and 100fs, which greatly complicates their experimental
characterization unless one disposes of an intense, short-duration x-ray probe as provided by a
free-electron-laser.
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(a) nH/nc (b) qeBz/meω0

(c) 〈nH/nc〉y

Figure 5.12. (a) Hydrogen density, (b) magnetic field at tω0 = 480 and (c) ion density profiles averaged
over the transverse direction in the region |yω0/c| < 10 (red solid line) for a Weibel-mediated collisionless
shock induced during the irradiation of an hydrogen plasma by a laser of intensity I0 ' 1.8 1021W.cm−2,
focused on a 16µm spot size. (c) The y-averaged density profiles of a plane-wave laser pulse is superposed in
dashed black lines.
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Conclusions and synthesis

This thesis work has begun with an apparently simple question. What is the spectral equilibrium
of a relativistic plasma? How can we evaluate its field-energy? Most of the instability analyses are
based on the linear dispersion relations, and thus on deformation of an equilibrium. However, this
equilibrium is poorly known in the relativistic regime. We studied the relativistic field fluctuations
in the beginning of this thesis. For this purpose, we generalized the Fried and Gould scheme to the
Maxwell-Jüttner electrostatic dispersion relations and then to the transverse dispersion relations.
We then evidenced the role of supraluminal normal modes on the fluctuation spectra in the adiabatic
regime. In this assumption, the plasma had been existing at the equilibrium for a very long time.
We thus get rid of any initial conditions in the plasma, especially on the supraluminal part of the
spectrum. Any sharp initial condition would have an impact on the undamped supraluminal part of
the spectrum and leaves a physically meaningless imprint on the evolution of the spectrum. A careful
comparison between theory and PIC simulations have validated the theoretical electromagnetic
spectra in the subluminal region. The eigenmode dispersion relations are accurately captured, yet
with somewhat underestimated energy in the supraluminal domain. Only the non-relativistic regime
had been studied up to recently (Dieckmann et al. 2004; Drouin 2009). This work represents the
first comparison (and validation), to our knowledge, of the thermal fluctuations of a PIC code in
the relativistic regime.

Analytical formulations of the fluctuation spectra resolved in frequency and wavevector (ω, k)
have been proposed for various field polarizations. An exact resolution of the spatial fluctuations
(integration over ω) has been demonstrated and applied to the longitudinal and transverse config-
urations. We thus extended the longitudinal non-relativistic fluctuation formulation of Akhiezer
et al. (1975) to the relativistic regime. Care have been taken to study the Weibel-like configuration,
i.e., when the drift velocity is perpendicular to the wavevector. In the context of an international
collaboration, we made use of these calculations to estimate analytically the saturation time of the
electron-positron Weibel instability. The theoretical predictions were supported by PIC simulations
over three decades of initial flow energy (Bret et al. 2013).

The Maxwell-Jüttner distribution function considered thus far is too restrictive to study various
kinetic instabilities, for which a temperature anisotropy Tx 6= Ty is critical. As an example, the
electron two-stream instability and the transition to the electron-Weibel and ion-Weibel instabilities
studied in Chapter 2 requires a two-temperature distribution in order to be accurately analyzed.
In this respect, we solved the non-relativistic bi-Maxwellian dispersion relation and generalized the
Fried and Gould scheme to any combination of distribution functions with a common symmetric
axis and for any wavevector orientation. This allowed us to solve the growth rate map in the
(kx, ky)-plane and to follow the evolution of the oblique instability. Moreover, care has been taken
to locate the electron two-stream instability in its parametric space.

Up to this point, only the equilibrium or the linear regime of instabilities had been addressed.
Various saturation criteria of the Weibel instability had been studied in Sec. 2.6 (Bret et al. 2013),
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but only in order to estimate the duration of the linear phase. Regarding the non-linear regime, there
exists an extensive literature on the current filament dynamics (Gremillet 2001; Polomarov et al.
2008), or within a quasi-equilibrium framework (Suzuki 2008; Suzuki & Shigeyama 2009; Gedalin
et al. 2010; Abraham-Shrauner 2010), the kink-like instability (Milosavljević & Nakar 2006) and
filament coalescence (Medvedev et al. 2005). However, none of these studies led to a predictive
model of the particle population evolution in the non-linear stage of the instability. This illustrates
the complexity of the Weibel non-linear stage. We simplified the quasilinear theory of Davidson in
the large ion anisotropy limit, assuming hot and isotropic electrons. We obtained simple analytical
relations between the ion and spectral parameters. The robustness of this simplified quasilinear
theory was evidenced by a comparison with 1D, 2D and 3D PIC simulations in various ion-electron
plasma configurations. We extended the validity of our relations to the non-linear regime.

We then worked out a model of collective ion filament coalescence based on Medvedev et al.
(2005) and taking into account the refinement of Achterberg et al. (2007). The physical processes
leading to the coalescence of two filaments can be easily understood. Two filaments with a net
current of same sign and verifying charge neutrality attract each other and merge when they are
sufficiently close. Each coalescence is a non-linear event which results in internal energy modifi-
cations. Achterberg et al. (2007) took into account the critical effect of electron current screening
on the long-term evolution of the collective filament dynamics. The larger the filaments are, the
stronger the electron screening effect is, and the weaker the magnetic interactions between fila-
ments. This is why accounting carefully for the electrons screening is essential. In addition, many
coalescence events result in a significant ion heating and slowing down, which brings the system
closer to the equilibrium. This further slows down the filament dynamics. Hence, combining the
quasilinear relations with the filament dynamics yields a predictive model of the non-linear stage
of the Weibel instability. Note that this predictive model involves a scalar initial condition (the
magnetic wavelength λ∗) at the end of the linear phase, which could be difficult to predict precisely.
An estimate of λ∗ have been given for sake of completeness. However, we demonstrated that this
initial condition does not impact the late-evolution of the system. This model has been successfully
compared with PIC simulations in various geometries and configurations. Moreover, it can be com-
pared to very recent experiments of colliding flows (Kugland et al. 2012b; Fox et al. 2013). It also
provides an explanation for the discrepancy between the experimental data and some simulation
results using non-physical mass ratios.

Our predictive model takes the form of a second order differential equation on the transverse
magnetic period for which an approximate solution can be obtained. The comparison with colli-
sionless shock formation demonstrated the validity of the model until quasi-isotropization of the
ion population. This leads us to an analytical formulations of the shock formation time in the non-
relativistic regime. Moreover, generalizing the model to the asymmetric case open the possibility
to model the magnetic turbulence taking place in the shock front. Theoretical formulations of the
magnetic spectrum and ion temperature profiles have been given and compared with PIC simulation
results, giving a fairly good agreement. As for the shock formation, the initial magnetic period λ∗
at saturation of the Weibel instability has no significant impact on the spectrum value at the shock
front. However it can affect the ion parameter profiles. The prediction of this parameter requires to
take into account all of the instabilities preceding the Weibel-filamentation along with their impact
on the plasma parameters.

An alternative approach (Fiuza et al. 2012) to produce a Weibel-mediated collisionless shocks,
studied in Chapter 5, hinges upon the irradiation of a dense plasma (n � nc) by a relativistic-
intensity (> 1020 W.cm−2), picosecond-duration laser pulse (Fig. 5.1). During this interaction, part
of the electrons are heated to relativistic energies and pushed into the target. The electron popula-
tions in the target have been estimated and proven to induce the magnetic turbulence responsible
of the collisionless shock formation. More specifically, the electrons from the returning are crucial
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in driving the Weibel-filamentation instability. This contrasts with the usual astrophysical scenario
where ions usually drive the instability. We highlight that such experiments are already seriously
considered at the lcls facility in Stanford (USA).

Prospective remarks

Although the dispersion relations can be solved exactly for any distribution function, the different
instabilities preceding the ion Weibel saturation remain poorly known. Predicting these instabilities
and their effects on the particle populations up to the phase ruled by the Weibel instability would
be a critical achievement. Even if the parametric location of the electrostatic and electromagnetic
collisionless shocks have been recently studied in Stockem et al. (2014) many questions remain
unanswered. The growth and saturation of the oblique instability require further understanding
and parametric location. The instabilities preceding the ion-Weibel instability has been shown
to have a marginal effect on the collisionless shock formation if the Weibel saturation lasts long
enough (according to the model of Chapter 4). The distance between filaments at the beginning of
the nonlinear Weibel instability does not impact the late-time Weibel evolution, in contrast with
the propagation of the collisionless shock. The study of the upstream magnetic turbulence has
evidenced an impact of the state of the plasma at the beginning of the non-linear Weibel stage (far
from the shock discontinuity) on the sharpness of the magnetic turbulence.

As for the relativistic regime, can we build a model of non-linear Weibel instability in the
relativistic regime? Is it ruled by the dynamics of filament coalescence as the symmetric non-
relativistic regime? Highly relativistic pair shocks (Spitkovsky 2008b) seem to show weak coalescence
effects in the upstream region. In this case, what are the non-linear effects ruling the propagation
of the shock?

We note that the astrophysicists are not so much interested in the collisionless shock formation
as they are on their long-term propagation, their radiative signature and their ability to accelerate
particles to ultra-relativistic energies. The long-time evolution of the shock propagation is very
challenging to study by numerical simulations. However our theoretical shock-front profiles may
open the way to more astrophysically relevant systems and time evolutions. Is there a steady-
state of Weibel-mediated collisionless shocks? If it is the case, how long does it take to reach
such conditions? Is it possible to run a simulation of a “steady-state Weibel-mediated collisionless
shock”?

On the experimental point of view, diagnostics are among the main problems. The magnetic field
is one of the main ingredient of the Weibel-mediated collisionless shocks. However, no diagnostics
are able, for the moment, to probe magnetic turbulence of hundreds or thousands of Tesla. This
also poses the question of the experimental demonstration of the Weibel instability. How can we
demonstrate in an experiment that the growing turbulent fields observed in a system are non-
propagating and mainly magnetic, therefore potentially due to the Weibel instability?
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Figure 6.1. Scheme of a PIC code

6.1 Scheme of a PIC code

6.1.1 Numerical scheme

The PIC simulation scheme (Birdsall & Langdon 1985) aims to describe the evolution of charged
macroparticles (which represent pieces of the distribution function) which undergoes self-generated
or external fields. We then solve Maxwell’s set of equations

∂B

∂t
= −∇×E , (6.1)

1

c2

∂E

∂t
= ∇×B− µ0J , (6.2)

∇ ·E =
ρ

ε0
, (6.3)

∇ ·B = 0 , (6.4)

combined with the equations of motion

dpα
dt

= qα [E(rα, t) + vα ×B(rα, t)] , (6.5)

drα
dt

= vα , (6.6)

where α is the macroparticle-subscript. The PIC scheme is repeated at each time-steps and is
illustrated on Fig. 6.1.

The finite difference scheme of Yee (1966) is used to discretize the Maxwell equations and to
compute the electromagnetic fields. It is based on a leapfrog scheme and descretizes the fields and
current densities on Cartesian meshes (see Fig. 6.2):

(Ex)ni+1/2,j,k = x̂.E((i+ 1/2)∆x, j∆y, k∆z, n∆t)

(Ey)
n
i,j+1/2,k = ŷ.E(i∆x, (j + 1/2)∆y, k∆z, n∆t) (6.7)

(Ez)
n
i,j,k+1/2 = ẑ.E(i∆x, j∆y, (k + 1/2)∆z, n∆t)
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Figure 6.2. Field mesh for the Yee scheme used in calder.

and

(Bx)
n+1/2
i,j+1/2,k+1/2 = x̂.B(i∆x, (j + 1/2)∆y, (k + 1/2)∆z, (n+ 1/2)∆t)

(By)
n+1/2
i+1/2,j,k+1/2 = ŷ.B((i+ 1/2)∆x, j∆y, (k + 1/2)∆z, (n+ 1/2)∆t) (6.8)

(Bz)
n+1/2
i+1/2,j+1/2,k = ẑ.B((i+ 1/2)∆x, (j + 1/2)∆y, k∆z, (n+ 1/2)∆t)

The current density elements J are centered as the field E. We then update the E-field, making
use of Maxwell-Ampère equation and the B-field with Maxwell-Faraday (written in Eqs. (6.9) for
the parallel components (‖ x̂) only).

(Ex)n+1
i+ 1

2
,j,k
− (Ex)n

i+ 1
2
,j,k

∆t
= c2

(Bz)
n+ 1

2

i+ 1
2
,j+ 1

2
,k
− (Bz)

n+ 1
2

i+ 1
2
,j− 1

2
,k

∆y


− c2

(By)
n+ 1

2

i+ 1
2
,j+ 1

2
,k
− (By)

n+ 1
2

i+ 1
2
,j− 1

2
,k

∆z

− 1

ε0
(Jx)

n+ 1
2

i+ 1
2
,j,k

, (6.9)

(Bx)
n+ 1

2

i,j+ 1
2
,k+ 1

2

− (Bx)
n− 1

2

i,j+ 1
2
,k+ 1

2

∆t
= −

(Ez)
n
i,j+1,k+ 1

2

− (Ez)
n
i,j,k+ 1

2

∆y
+

(Ey)
n
i,j+ 1

2
,k+1
− (Ey)

n
i,j+ 1

2
,k

∆z
(6.10)

The formulae of the other components can be deduced from a circular permutation (see Sec. 6.1.3).
Hence, all the derivatives are centered which implies a precision to the second order in ∆x of the Yee
Scheme. Moreover the discretized ∇-operator verifies exactly the relations ∇·∇× = 0 et ∇×∇ = 0.

When the fields are updated at all mesh-points Xi,j,k = (i∆x, j∆y, k∆z), the equations of
motion for each macroparticle have to be resolved in order to update the positions and momenta at
the next time-step (Fig. 6.1). Therefor, the force undergone by a macroparticle has to be estimated
with the fields defined at the neighboring mesh-points. We thus introduce the interpolation-function
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(or form-factor) S which gives:

E(rα) =

Ng∑
j=1

E(Xj)S(Xj − rα) , (6.11)

B(rα) =

Ng∑
j=1

B(Xj)S(Xj − rα) , (6.12)

where Ng is the number of mesh-points in the system. Any form-factor would be valid if it is used
for both field and current interpolation and if its sum over the mesh is equal to unity. The simplest
form-factor of the n-th order is defined as the n-th convolution of the rectangular function with
itself (Birdsall & Langdon 1985):

S0(x) =

{
1 , si |x| < ∆x/2
0 , sinon

, (6.13)

Hence, the form-factor S is a polynomial function of the n-th order by part. The multidimensional
form-factor is the tensorial product of its mono-dimensional counterpart. For a d dimensional
geometry, the form-factor extends on (n + 1)d meshpoints. Hence, a high-order form-factor tends
to filter the high frequencies (Birdsall & Langdon 1985). This spatial averaging can reduce the
numerical heating inherent with the PIC scheme (Drouin 2009).

The current density update is done so as to verify charge conservation. Charge density at time
n∆t is computed making use of

ρn(Xj) =

Np∑
α=1

qαS(Xj − rnα) , (6.14)

where Np is the number of macroparticles. The numerical counterpart of charge conservation
equation reads:

(Jx)
n+1/2
i+1/2,j,k − (Jx)

n+1/2
i−1/2,j,k

∆x
+

(Jy)
n+1/2
i,j+1/2,k − (Jy)

n+1/2
i,j−1/2,k

∆y
+

(Jx)
n+1/2
i,j,k+1/2 − (Jz)

n+1/2
i,j,k−1/2

∆z

= −
(ρ)n+1

i,j,k − (ρ)ni,j,k
∆t

. (6.15)

The simulation code calder makes use of the Esirkepov (2001) scheme to compute the current
Jn+1/2 from the above equation. More details are given in Drouin (2009).

6.1.2 Electromagnetic dispersion relations in vacuum

The understanding of the PIC-scheme stability can be easily understood with the numerical dis-
persion relation of electromagnetic wave in an empty simulation box (no macroparticles). For a
wave following (E,B) ∝ exp(ik · X − ωt) in a one-dimensional simulation box, Maxwell-Faraday
and Maxwell-Ampère (Eqs.(6.9) and (6.10)) gives:

(Ey)
n
i,j+ 1

2
,k

e−iω∆t/2 − eiω∆t/2

∆t
e−iω∆t/2 = c2(Bz)

n+ 1
2

i,j+ 1
2
,k

eikx∆x/2 − e−ikx∆x/2

∆x
(6.16)
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and

(Bz)
n+ 1

2

i+ 1
2
,j+ 1

2
,k

e−iω∆t/2 − eiω∆t/2

∆t
= −(Ey)

n
i+ 1

2
,j+ 1

2
,k

eikx∆x/2 − e−ikx∆x/2

∆x
e−iω∆t/2 . (6.17)

Combining those two equations gives:[
sin(ω∆t/2)

c∆t

]2

=

[
sin(kx∆x/2)

∆x

]2

. (6.18)

In the general case of a three-dimensional simulation box, the above equation reads:[
sin(ω∆t/2)

c∆t

]2

=

[
sin(kx∆x/2)

∆x

]2

+

[
sin(ky∆y/2)

∆y

]2

+

[
sin(kz∆z/2)

∆z

]2

, (6.19)

and will be compared to the physical dispersion relation in vacuum:(ω
c

)2
= |k|2 . (6.20)

The scheme stability requires ω to be real hence sin2(ω∆t/2) < 1. Consequently, the general
stability condition of Courant-Friedrich-Levy (CFL) reads:

∆t ≤ ∆tmax =
(
c
√

∆x−2 + ∆y−2 + ∆z−2
)−1

. (6.21)

6.1.3 Discretized Maxwell-Ampère and Maxwell-Faraday set of equations: the
general case

In the general case with three spatial dimensions (x,y,z), the discretized equations of Maxwell-
Ampère and Maxwell-Faraday at mesh-point (i,j,k) and time-step n reads:

(Ex)n+1
i+ 1

2
,j,k
− (Ex)n

i+ 1
2
,j,k

∆t
= c2

[
(Bz)

n+ 1
2

i+ 1
2
,j+ 1

2
,k
− (Bz)

n+ 1
2

i+ 1
2
,j− 1

2
,k

∆y
−

(By)
n+ 1

2

i+ 1
2
,j+ 1

2
,k
− (By)

n+ 1
2

i+ 1
2
,j− 1

2
,k

∆z

]
− 1

ε0
(Jx)

n+ 1
2

i+ 1
2
,j,k

(6.22)

(Ey)
n+1
i,j+ 1

2
,k
− (Ey)

n
i,j+ 1

2
,k

∆t
= c2

[
(Bx)

n+ 1
2

i,j+ 1
2
,k+ 1

2

− (Bx)
n+ 1

2

i,j+ 1
2
,k− 1

2

∆z
−

(Bz)
n+ 1

2

i+ 1
2
,j+ 1

2
,k
− (Bz)

n+ 1
2

i− 1
2
,j+ 1

2
,k

∆x

]
− 1

ε0
(Jy)

n+ 1
2

i,j+ 1
2
,k

(6.23)
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(Ez)
n+1
i,j,k+ 1

2

− (Ez)
n
i,j,k+ 1

2

∆t
= c2

[
(By)

n+ 1
2

i+ 1
2
,j,k+ 1

2

− (By)
n+ 1

2

i− 1
2
,j,k+ 1

2

∆x
−

(Bx)
n+ 1

2

i,j+ 1
2
,k+ 1

2

− (Bx)
n+ 1

2

i,j− 1
2
,k+ 1

2

∆y

]
− 1

ε0
(Jz)

n+ 1
2

i,j,k+ 1
2

(6.24)

(Bx)
n+ 1

2

i,j+ 1
2
,k+ 1

2

− (Bx)
n− 1

2

i,j+ 1
2
,k+ 1

2

∆t
= −

(Ez)
n
i,j+1,k+ 1

2

− (Ez)
n
i,j,k+ 1

2

∆y
+

(Ey)
n
i,j+ 1

2
,k+1
− (Ey)

n
i,j+ 1

2
,k

∆z
(6.25)

(By)
n+ 1

2

i+ 1
2
,j,k+ 1

2

− (By)
n− 1

2

i+ 1
2
,j,k+ 1

2

∆t
= −

(Ex)n
i+ 1

2
,j,k+1

− (Ex)n
i+ 1

2
,j,k

∆z
+

(Ez)
n
i+1,j,k+ 1

2

− (Ez)
n
i,j,k+ 1

2

∆x
(6.26)

(Bz)
n+ 1

2

i+ 1
2
,j+ 1

2
,k
− (Bz)

n− 1
2

i+ 1
2
,j+ 1

2
,k

∆t
= −

(Ey)
n
i+1,j+ 1

2
,k
− (Ey)

n
i,j+ 1

2
,k

∆x
+

(Ex)n
i+ 1

2
,j+1,k

− (Ex)n
i+ 1

2
,j,k

∆y
(6.27)
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6.2 Field and plasma fluctuations in the adiabatic assumption

We start from the density correlation tensor of a non-interacting (ballistic) assembly of particles
〈Ns(v, r, t)Ns′(v

′, r′, t′)〉 (Sitenko 1982; Ichimaru 1992). This quantity gives the correlation between
the sth spicies particles with a velocity v at position r and time t with the s′th spicy particles
with a velocity v′ at position r′ and time t′ for non-interacting particles. If the system is stable,
〈Ns(v, r, t)Ns′(v

′, r′, t′)〉 is a function of s, s′, t − t′ and r − r′ and can be linked to the velocity
statistical distribution function f0

s (v) by

〈Ns(v, r, t)Ns′(v
′, r′, t′)〉 = δs,s′f

0
s (v)δ(v − v′)δ[(r− r′)− v(t− t′)] . (6.28)

We then use a spatial and temporal Fourier transform on the variables T = t− t′ and R = r− r′ to
obtain 〈Ns(v)N∗s′(v

′)〉k,ω.

〈Ns(v)N∗s′(v
′)〉k,ω =

∫∫∫
R3

dR

∫ +∞

−∞
dTe−ik·R+iωT 〈Ns(v, r, t)Ns′(v

′, r′, t′)〉 . (6.29)

Note that this step assumes that the system exists for all time and for all positions. We obtain:

〈Ns(v)N∗s′(v
′)〉k,ω = δs,s′f

0
s (v)δ(v − v′)δ(ω − k · v) . (6.30)

This represents the ballistic source tensor in the Fourier space.
Given the definition of the density, the current density or the sth spicies:

ρs =

∫∫∫
R3

dvNs(v) , (6.31)

js = qs

∫∫∫
R3

dvvNs(v) , (6.32)

and following the steps of Eqs. (6.28), (6.29) and (6.30), we obtain the current density and density
fluctuation source tensor. They read:

〈jαj∗β〉k,ω = 2πε0
∑
s

msω
2
ps

∫
R3

d3p vαvβf
(0)
s (p)δ(ω − k · v) , (6.33)

〈ρρ∗〉k,ω = 2πε0
∑
s

msω
2
ps

∫
R3

d3p f (0)
s (p)δ(ω − k · v) . (6.34)

Making use of Eq. (1.5) and (1.6) we obtain jk,ω = Z−1
k,ω ·Ek,ω where the tensor Z−1

k,ω reads

Z−1
k,ω = −i

∑
s

q2
sns
ms

∫
dp

p

γ
⊗ δpf

(1)
s

k · v − ω
· (1 + v × k

ω
×) . (6.35)

Making use of the definition of ε of Eq. (2.5) and proceeding to an inversion of the tensor, we obtain
the equation (2.4) which gives the formulation of Zk,ω. It also verifies:

〈EE†〉k,ω = Zk,ω · 〈jj†〉k,ω · Z†k,ω . (6.36)
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6.3 Oblique to filamentation transition

It can be seen from Fig. 2.18 that the growth rate at large Z⊥ reaches a limit δZ⊥,∞ which is
function of Z‖. For γ0 = 1.1, δZ⊥,∞(Z‖) reaches an extremum for Z‖ 6= 0, which corresponds to
a spectrum governed by oblique modes. Then, for γ0 = 10, the extremum is reached at Z‖ = 0,
and filamentation dominates. The first derivative ∂δZ⊥,∞/∂Z‖ always vanishes for Z‖ = 0. The
transition from one regime to the other occurs then when the second derivative vanishes at Z‖ = 0.

The asymptotic dispersion equation for Z⊥ =∞ can be determined and reads,

4(1− γ2
0)− 2(x2 + Z2

‖ )γ0 + (x2 − Z2
‖ )

2γ4
0 = 0. (6.37)

This equation can be solved, and the growth rate for Z⊥ =∞ is,

δ2
Z⊥,∞ = Z2

‖ +
1−

√
1 + 4γ3

0(Z2
‖ + β2γ0)

γ3
0

. (6.38)

Deriving twice the expression above with respect to Z‖ gives the Lorentz factor for the transition
from the oblique to the filamentation regime,

γ0 =

√
3

2
∼ 1.22,

β0 =
1√
3
∼ 0.57 .

6.4 Application to a 2D PIC plasma

Care must be taken when using the formula (2.101) for a 2D PIC-modeled plasma. The plasma
is then composed of macro-particles with charge and mass equal, respectively, to Qp = Wpq and
Mp = Wpm, where q and m denote the real particles’ charge and mass, and Wp is the statistical
weight. In a 3D plasma, Wp is a dimensionless quantity, whereas it is a lineic density in 2D. For
the numerical plasma to behave collectively as its physical counterpart, the plasma frequencies of
the two systems must be equal, which implies

Wp = ne
∆x∆y

Np
, (6.39)

where Np is the number of macro-particles per cell and ∆x = ∆y is the cell size.
In a 2D geometry, the fluctuation field is then given by

B2
i ∼

∫ k⊥,max

k⊥,min
dk⊥

∫ k‖,max

−k‖,max
dk‖

∫ δω

−δω
B2
k,ω=0

∼ 12√
3

γ0

µ

(ωp
c

)2
Wpmc

2 . (6.40)

Note that the normalized inverse temperature µ is also an invariant. Substitution of Eq. (6.39) and
∆x = 0.05

√
γ0c/ωp into (6.40) readily yields

B2
i =

2.5× 10−3

N

√
3

π

γ2
0

µ

(
mcωp
q

)2

. (6.41)
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There follows the ratio
B2
f

B2
i

= 4× 102

√
π

3

µ

γ0
N (6.42)

and the saturation time given by Eq. (2.126).
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