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A B S T R A C T

In this thesis, we report the theoretical study of an atom interferome-
ter using thermal (i.e. non condensed) atoms trapped on a chip, with
reduced mean-field effects. To keep an adequate level of coherence, a
high level of symmetry between the arms of such an interferometer is
required. To achieve this goal, we describe an experimental protocol
based on microwave near-fields created by two coplanar waveguides
carrying currents oscillating at different frequencies. This method en-
ables the creation of two symmetrical microwave potentials that de-
pend on the atomic internal state, and allows a state-selective sym-
metrical splitting of the atoms. We mainly consider two symmetrical
configurations to separate the atoms either along the longitudinal axis
or along the transverse axis of the static magnetic trap.

In the case of a transverse splitting of the atoms, we discuss the
advantages of using a custom microtrap that has the same field struc-
ture as a standard macroscopic Ioffe Pritchard trap, and we propose
a practical design for such a microtrap.

In the case of an axial splitting of the atoms, we study some phys-
ical factors limiting the ultimate performances of this interferometer
such as: the dissymmetry of the microwave potentials, the effect of
the fluctuations of static and microwave fields and the stability of
the interferometer gravitational signal. We derive a simplified one-
dimensional harmonic model to describe the interferometer contrast
decay. Finally, we consider the possibility of non-adiabatic atomic
splitting and recombination without vibrational heating by design-
ing appropriate trajectories of the trapping-potentials based on the
theory of dynamical invariants.

Keywords: Ultracold atoms, Atom chip, Microtrap design, Atom
interferometry, Microwave potentials, Shortcuts to adiabaticity
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1
I N T R O D U C T I O N

Quantum mechanics is one of the pillars of contemporary science.
Yet, it is also probably the strangest theory ever proposed. More than
a century since the formulation of the earliest versions of quantum
mechanics, there is still no agreement on the deeper meaning of its
foundations [1]. One of the most distinguished contributors to quan-
tum theory, Richard Feynman, stated that problem clearly in 1965 [2] :

It is safe to say that nobody understands quantum mechanics

Today more than ever, quantum mechanics continues to be a source
of mystery and astonishment.

Over the few decades, experimental access to quantum phenom-
ena have been boosted by the tremendous development of the laser
technologies [3, 4, 5, 6]. Hence, several fundamental problems have
been investigated experimentally such as the measurement mecha-
nism [7], decoherence and the interpretations of quantum mechanics
[8, 9]. The most famous example is the experimental realization of
the Bose-Einstein condensate (BEC) for the first time in 1995 [10, 11],
which has opened up a new field lying between atomic physics and
condensed-matter physics. In addition to the study of these funda-
mental questions, an impressive progress toward potential applica-
tions of coherent matter-waves has been made, including the devel-
opment of atomic clocks [12, 13, 14], magnetometers [15, 16, 17], and
to a lesser extent quantum information [18, 19]. Moreover, atom inter-
ferometry experiments have demonstrated promising capabilities for
inertial sensing applications [20].

Atom interferometry

Since the early experiments of Young and Michelson [21, 22], in-
terferometry has considerably transformed the field of precise mea-
surements. In particular, we note the development in the 1960s of
corner-cube gravimeters using a Michelson interferometer where one
of the mirrors in freefall, and which offer an acceleration sensitivity of
about 10−8 g/

√
Hz [23, 24]. For rotation measurements, gyroscopes

based-on Sagnac effect reach a rotation sensitivity on the order of

1



introduction 2

10−4 deg/
√

hr with commercial Fiber-Optic Gyroscopes (FOG) and
Ring-Laser Gyroscopes (RLG) [25, 26, 27, 28].

For the purpose of increasing the scale factor of a gyroscope (which
increases its sensitivity), atoms present a promising alternative to op-
tical devices [29, 30]. Moreover, the low velocity-speed of cold atoms
helps to increase the interrogation time for free-falling gravimeters.
In 1991, Mark Kasevich and Steven Chu group has made the first
matter-waves gravimeter [31, 32]. In the same year, the first observa-
tion of the Sagnac effect in an atomic interferometer was made [33].
About twenty years later, many groups around the world use atom in-
terferometers to achieve high-precision inertial measurements includ-
ing gravimeters [34, 35, 36, 37] (which recently have reached perfor-
mances comparable to corner-cube gravimeters [38, 39]), gyroscopes
[38, 39] and gradiometer [40].

In the field of metrology, several applications are under investiga-
tion : the Watt balance experiment to redefine international unit of
mass [41, 42], the measurement of the fine structure constant α to
test the quantum electrodynamics [43], and the measurement of the
Newtonian constant of gravity G [44, 45].

Moreover, several proposals to test the theory of General Relativity
have been made such as : the weak equivalence principle [46], the
gravitational redshift [47, 48], the Lense-Thirring effect [49], and for
long-term perspective, the detection of gravitational waves [50, 51].

Inertial sensing applications

The measurement of the gravity acceleration and its gradients pro-
vides information about the Earth’s mass distribution and potentially
allows the detection of mass anomalies. This interests the geophysi-
cists for several potential applications including the monitoring of
seismic activity [52], tsunami detection [24] and oil exploration [53].

Furthermore, providing an inertial measurement of the accelera-
tions and rotations along three different axes, the equations of motion
can be integrated in order to deduce the accurate position of a mov-
ing vehicle such as an airplane or a submarine. This technique, called
inertial navigation, has the advantage to be completely independent
of external positioning system such as the Global Positioning System
(GPS) and makes the navigation system of a vehicle autonomous. The
applications mentioned above in geophysics and navigation raise the
issues of portability of cold-atom instruments.

Atom chips

In the last decade, tremendous efforts have been made towards the re-
alization of compact cold-atom systems. The group of Mark Kasevitch
has developed a portable cold-atom gravimeter, gradiometer and gy-
roscope [54, 55]. Since then several groups in Europe have developed
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compact atom interferometers for future space missions [56, 57, 58]
and transportable cold-atom gravimeters [59, 60].

On the other hand, other thriving research activities aim to re-
duce the size and the cost of cold atom experiments. The atom chip

[61, 62, 63, 64] is a crucial element in the miniaturization of cold-
atom systems. Magnetic traps can be created by currents on wires
which are microfabricated on a chip surface, often called atom chip.
The progress on microfabrication techniques allows the design of ver-
satile traps and lattice geometries. Furthermore, atom chips provide a
strong atom confinement (compared to macroscopic coils using equiv-
alent currents) which simplifies considerably the evaporative cooling.
The first realization of BEC on a chip paved the way towards the re-
alization of micro-scale fully integrated inertial matter-wave devices.
The collaboration QUANTUS has developed a compact and mobile
atom-chip experiment, which has been used in a droptower to create
BEC in microgravity [65].

Yet, to achieve such results, the way to go is still long and difficult,
but the interest for miniaturization is real [66]. Several key compo-
nents are commercially available today1, even though on the micro-
chip scale, many integrated optoelectronic elements are still missing
including optical shutter, acousto-optic modulator, and ultra-stable
laser.

A major objective of the current experiments using atom chips is
the realization of an integrated atom interferometer. One of the main
difficulties in achieving such an interferometer is to obtain a coher-
ent beam-splitter. The first coherent splitting of trapped atoms on an
atom chip was achieved in 2005 [67]. Using adiabatic radiofrequency
potentials, a single trapped BEC was split into two separate clouds
in double well. This method overcomes the disadvantages of the full
magnetostatic interferometers on chip [63, 68, 69] : high sensitivity to
magnetic field fluctuations and low confinement during the splitting.
Recently, a full Mach-Zehnder sequence including the development
of beam splitter, phase shifter and recombiner [70], has been demon-
strated.

On the other hand, for the first time in 2009, a trapped-atom in-
terferometer using internal-state labeling in a BEC was demonstrated
[71]. Microwave state-selective potentials were used to allow the inter-
nal states to entangle with the motional states. This method simplifies
considerably the interferometer readout and improves its accuracy. In
fact, the readout can be performed in this case by measuring the num-
ber of atoms in each state without the need for high spatial resolution
of the interference fringes. Moreover, in contrast to state-insensitive
beam splitters, the splitting and recombination can be controlled pre-
cisely, and the many-body effects can be (relatively) reduced, by using
internal-state labeling [71].

1 http://coldquanta.com/ and http://www.vescent.com/
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Nevertheless, interferometers based-on trapped BECs are not yet
able to compete with thermal free falling ones in term of precision
measurements [72]. In particular, the interactions are harmful for
interferometry, as they cause phase diffusion and collisional shifts
which eventually lead to decoherence and a loss of sensitivity [73, 74,
75].

This thesis

Current atomic instruments, using atoms in free fall, are already on
the verge of surpassing the performances of conventional optical in-
struments. However, their sensitivity is proportional to the height of
the instrument, and current performances are obtained for falls in
the range meter. To reduce the size of the device, we chose to use
an atomic cloud trapped in the vicinity of a chip. The project Chips
for Atomic Sensors (CATS), initiated by Thales in partnership with
the Charles-Fabry Laboratory (Institut d’Optique), the Kastler-Brossel
Laboratory (Ecole Normale Supérieure), the SYRTE (Observatoire de
Paris) and the III-V Lab, aims to combine atom chip technology [76]
and the atomic gravimeters to improve the compactness of the device.
The objective is to design a gravimeter prototype, using a trapped
atom interferometer, with metrological performances as good as pos-
sible and with a reduced size compared to the free-fall gravimeters.

For a gravitational measurement, the phase difference accumulated
in a trapped interferometer is : ∆φ = mg∆zTR/h̄ with m is the atomic
mass, h̄ is the reduced Plank constant, ∆z is the height difference be-
tween the two traps, and TR is the effective time during which the two
traps are separated. Assuming that we can reach the shot noise limit,
the sensitivity of the gravimeter would be : δg = h̄/(m∆zTRN) ≈
10−6 × g/

√
Hz for an interrogation time TR = 50 ms, a separation

distance ∆z = 50 µm, and with N = 1000 atoms of Rubidium 87.

Moreover, in order to reduce the effect of atomic interactions, we
propose in this thesis to use a thermal (i.e. non-condensed) ensemble
of cold atoms trapped on chip. This can be seen as the equivalent of
using white light in optics to reduce nonlinear effects. Yet, in this case,
the coherence time will particularly depend on the symmetry of the
interferometer arms.

We propose an experimental design for a symmetrical beam split-
ter using microwave potentials. This scheme is similar to the exper-
imental demonstration in [71], using internal-state labeling and mi-
crowave potentials. Yet, we propose to preform a bilateral splitting of
the atoms using two CPWs carrying different microwave frequencies
(instead of a unilateral splitting using a single CPW in [71]) in order
to improve the symmetry of the interferometer arms.



introduction 5

The thesis is organized as follows :

• The second chapter : we give an introduction to atom chips. We
present the clock states and discuss magnetic trapping poten-
tials on chip.

• The third chapter : we introduce the microwave atom chip with
an integrated coplanar waveguide. We describe the state-selective
microwave potentials. Then, we discuss the constraints on the
design of waveguides and the simulation of their magnetic field
distribution.

• The fourth chapter : we propose an experimental scheme to real-
ize a thermal trapped-atom interferometer on chip. In particular,
we discuss the symmetry constraints of the trapping-potentials
that should be satisfied in this case.

• The fifth chapter : we focus on the interferometer analysis in the
case of an axial beam-splitter.

• The sixth chapter : we discuss the possibility of a transverse
beam splitter, and we propose an adequate design of the static
trap on chip.

• The seventh chapter : we study the interferometer contrast in
the case of an adiabatic (axial) splitting, and then we investigate
the possibility of a fast (i.e. non-adiabatic) beam-splitter.

• The eight chapter : we discuss the design and fabrication of the
atom chip.



2
AT O M C H I P T H E O RY

Magnetic traps have been proposed first for cold neutrons [77], and
have been realized experimentally in 1978 [78]. The advance of laser
cooling techniques in the eighties has allowed the trapping of neu-
tral atoms [79]. Since then, magnetic trapping became the standard
tool to manipulate ultra-cold atoms and to reach the Bose-Einstein
condensation.

The magnetic field of these trapping potentials has been produced
first using several type of macroscopic coils carrying static currents
such as : QUIC1 trap [80], Cloverleaf trap [81], Baseball trap [82] and
Standard Ioffe Pritchard trap [83]. Although the created magnetic po-
tentials using this method have large trapping volumes, the tailorabil-
ity of their field structure is limited. Moreover, the gradient length-
scale is comparable to the distance of the atoms from the macroscopic
coils. In particular, creating steep traps with high angular frequencies
(few kHz) demands the use of high currents (about 100 A) and cum-
bersome heat-dissipation devices.

On the other hand, magnetic trapping potentials can be produced
by a micro-fabricated structure, called atom chip. On such a structure,
the distance range r between the current-carrying structure and the
trap can be reduced from centimeters to microns. As the steepness
of a trap is related to the magnetic gradient (which scales as 1/r2),
it is beneficial to reduce as much as possible to the distance r. This
allows the production of stronger gradients with lower currents and
lower heating [84]. Moreover, the wires arrangement on chip allow a
considerable flexibility, such that non-trivial geometries can be imple-
mented [85]. For example, by using micro-fabricated multilayer wire
structures [71], custom potential configurations can be produced.

In the following, the basics of trapping neutral 87Rb atoms on chip
are presented. An overview of the trapping techniques can be found
in these review articles [62, 64]. Moreover, the theoretical constraints
on the topology of the magnetic traps are presented, and then the de-
sign prospects of tailorable magnetic traps on chip are discussed. The
properties of the so-called "clock states" are presented, in particular
the possibility to reduce their sensitivity to the magnetic field fluctua-
tions. Finally, the effect of atom-atom collisions is briefly introduced.

1 Quadrupole-Ioffe configuration

6



2.1 magnetic trapping of neutral atoms 7

2.1 magnetic trapping of neutral atoms

The magnetic trapping of neutral atoms is based on the interaction
of the magnetic moment µ of a particle with an external magnetic
field B. In a classical description, the potential energy of the particle
is given by :

E(r) = −µ.B(r) (1)

and the magnetic moment µ is precessing at the Larmor frequency
ωL(r) = E(r)/h̄. In a classical approach, µ can have any orientation
relative to B [86].

In quantum mechanics, the projection of µ onto B has discrete val-
ues given by the quantum number mF of the z-component of the total
angular momentum operator F = I + J , where I is the nuclear-spin
operator and J is the electron momentum operator. Therefore, in the
limit of low magnetic field value (µBB ≪ Ehfs), atoms in a magnetic
field B(r) have a potential energy :

EF,mF
= µBgFmFB(r) (2)

with µB the Bohr magneton, Ehfs the energy of the transition at B = 0
and gF the Landé g-factor. The expression of gF is given by [87] :

gF =gJ
F(F + 1)− I(I + 1) + J(J + 1)

2F(F + 1)

+gI
F(F + 1) + I(I + 1)− J(J + 1)

2F(F + 1)
(3)

The latter term related to the nuclear moment I can be neglected
because it has a contribution in the order of 10−3.

Since the Maxwell equations do not allow the existence of a local
maximum of the magnetic field in empty space [88], only the states
with mFgF > 0 can be trapped by a static magnetic field. Such states
are called "low-field seekers".

Majorana spin flips

An atom in a magnetic trap is subject to change in the field direction
and magnitude over an oscillation period. The atom remains trapped
only if its spin follows adiabatically the magnetic field direction. In
other terms, the change of the magnetic field direction relative to the
magnetic moment, given by the angle θ, has to be slow compared to
the Larmor precession frequency ωL(B) :

dθ

dt
≪ ωL(B) =

µB|gF|B
h̄

(4)

If this adiabaticity condition is fulfilled, mF is a constant of the
atom motion. For gFmF < 0 the potential becomes repulsive, and for
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Figure 1: The structure of the hyperfine ground-state 5S1/2 of 87Rb in a static
magnetic field B. The magnetic sublevels |F, mF〉 are shifted by a
multiple of µBB/2 due to the Zeeman effect. States that can be mag-
netically trapped are marked with a circle. Figure adapted From
[69].

gFmF = 0 the atoms see no trapping potential (to the lowest order).
Designing a magnetic trap with a region of vanishing field should be
avoided. In these regions, transitions between mF levels occur, taking
the atom to states that cannot be trapped. The associated trap losses
are known as Majorana spin flips [89].

Breit-Rabi formula

The potential energy, described above by the equation (2), indicates
a linear variation of EF,mF

as function of the magnetic field B. This
is only an approximated model for weak fields. The analysis of the
internal-state superposition in chapter 5 requires a higher precision
on the description of the hyperfine energy levels by taking into ac-
count the coupling of the nuclear momentum I. In this case, the en-
ergy levels are given by the Breit-Rabi formula [87] :

EF,mF
= − Ehfs

2(2I + 1)
+ µBgImFB ± Ehfs

2

(

1 +
4mFξ

2I + 1
+ ξ2

)1/2

(5)

where ξ = µB(gJ − gI)B/Ehfs, the +(−) sign is for the F = 2 (F = 1),
respectively.

The energies of these states in weak magnetic fields are plotted in
Figure 1. The states |1,−1〉, |2, 1〉 and |2, 2〉 are magnetically trappable.
The states with a magnetic moments |mF| = 1 are particularly inter-
esting, as they observe a similar energy shift in the magnetic field B.
In Figure 2b, the energy difference ∆E = E2,1 − E1,−1 − Ehfs is shown
as a function the magnetic field B. One can notice that the energy
difference ∆E(B) have only a second-order dependence on the mag-
netic field around the spot Bm ≃ 3.229 G. Hence, the sensitivity of the
transition frequency can be reduced by operating the magnetic field
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Figure 2: (a) Energy levels of the hyperfine states |F, mF〉 of the 87Rb com-
puted using the Breit-Rabi formula. The clock states |1,−1〉 and
|2, 1〉 are colored in red and blue respectively. (b) Energy differ-
ence between the clock states as function of B (The offset energy
Ehfs is subtracted). The magic point at B = 3.229 G is indicated.

around the latter spot Bm, usually called the "magic field" [90, 91].
The Zeeman frequency shift in the vicinity of the magic field Bm, can
be written as :

∆E(B)/h = ∆E(Bm)/h + β(B − Bm)
2 (6)

where β = 431.35957 Hz/G2 [92] and the frequency offset is given
by ∆E(Bm)/h = −4.4974 kHz with the energy reference defined at
B = 0.

2.2 quadrupole and ioffe-pritchard traps

The magnetic traps usually used in cold-atom experiments can be
classified into two types : Quadrupole traps, which have a zero mag-
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netic field in the trap minimum, and Ioffe-Pritchard traps, which have
a nonzero magnetic field at the trap center.

2.2.1 Quadrupole traps

In a quadrupole trap, the magnetic field vanishes at the trap mini-
mum. The magnetic field around the minimum can be approximated
by the following :

B =









B′
XX

B′
YY

B′
ZZ









(7)

The following condition on the field gradients ∑i B′
i = 0 should

be fulfilled as required by the Maxwell’s equations. The resulting
trapping-potential is proportional to B modulus :

B =

√

(B′
XX)2 +

(

B′
YY
)2

+ (B′
ZZ)2 (8)

Quadrupole traps suffer from trap loss due to Majorana spin flips
near the trap center.

2.2.2 Standard Ioffe Pritchard trap

In order to avoid the Majorana losses2, the trapping of cold atoms
requires a field configuration with nonzero magnetic field at the trap
center. Such a trap is called an Ioffe Pritchard trap (IP trap). The
widely used Standard3 Ioffe-Pritchard (SIP) trap [94], shown in Figure
3, fulfills this requirement by combining a 2D quadrupole field in the
XY-plane with B′

Y = −B′
Z = B′, with a magnetic bottle field along

the X-axis :

B = B0









1

0

0









+ B′









0

−Y

Z









+
B′′

2









X2 − (Y2 + Z2)/2

−XY

−XZ









(9)

The Taylor-expansion of the magnetic field modulus B, up to the
second order, from the trap center is given by :

B(r) = B0 +
B′′

2
X2 +

1
2

(

B′2

B0
− B′′

2

)

(Y2 + Z2) (10)

2 In this case, the Majorana loss can be estimated [93], for F = 1 and ω‖ ≪ ω⊥, by :
γM = 4πω⊥ exp(−2ωL/ω⊥).

3 The word Standard is added here to avoid the ambiguity with the general Ioffe
Pritchard case that will be discussed in section 2.2.4.
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Figure 3: A Standard Ioffe-Pritchard (SIP) trap consists of a linear
quadrupole created by four wires, and a ’bottle-field’ along the
X-axis (hexapole) created by two coils.

Therefore, one can deduce the trap angular frequencies :

ωX =

√

µBgFmF

m
B′′ and ω⊥ =

√

µBgFmF

m
(

B′2

B0
− B′′

2
) (11)

along the longitudinal (ωX) and transverse (ω⊥) direction, respec-
tively.

As the gradient B′ and the curvature B′′ terms can be tuned in-
dependently (by controlling the currents in the wires and the coils,
respectively), one can notice that the trap aspect ratio ωX/ω⊥ can be
changed from prolate shape (ωX ≪ ω⊥) to oblate shape (ωX ≫ ω⊥).
Moreover, the SIP trap has a distinguishable axial symmetry, which
is not the case of (typical) chip-based traps.

2.2.3 Magnetic chip traps

The macroscopic traps such as Quadrupole and Standard Ioffe Pritchard
traps described previously, are still commonly used in many cold-
atom experiments [80, 95, 83]. On the other hand, the achievement of
trapping potential using microwires on chip, proposed first in 1995

[96], has led to an active research field related to atom chips [76]. Sev-
eral possibilities can be used to generate magnetic potentials on chip
such as : current conducting wires [64], permanent magnets [97] and
superconducting circuits [98]. Wire-based traps are widely used in
the experiments due to the trap topological versatility, and the sim-
plicity of fabrication process based-on lithography. In this section, we
focus only on the wire-based traps. We describe the trapping princi-
ples using conducting wire structures on chip and we discuss some
typical wire structures commonly used to create microtraps.
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Figure 4: Wire guide trapping-potential. The trapping potential is a 2D
quadrupole trap in the YZ-plane created by the superposition of
the magnetic field from a single wire carrying a current I and an
external homogeneous magnetic field Bb oriented perpendicular
to the wire. In this case, atoms are trapped in YZ -plane, but are
not trapped along the X-axis. The figure is adapted from [62].

Principle of wire traps

We consider a linear infinite wire, infinitely thin, carrying a current
I. The latter creates a radial field as shown in Figure 4. This simple
case can be used to derive few scaling laws of the magnetic field gen-
erated at a distance z0 from the wire. For example, the field modulus,
gradient and curvature are given respectively by :

Bw =
µ0 I0

2πz0
, B′

w = − µ0 I0

2πz2
0

and B′′
w =

µ0 I0

πz3
0

(12)

where µ0 is the vacuum permeability. By adding external homoge-
nous bias field Bb perpendicular to the current flow, the fields vanish
at a distance z0 = µ0 I0/(2πBb,Y) from the wire with a gradient B′. As
shown in Figure 4, this wire structure allows a two dimensional con-
finement that can be used as an atom waveguide. From the scaling of
B′, one can notice that the trap becomes tighter as z0 is decreased, for
a given current I. The homogenous bias field is usually generated us-
ing external Helmholtz coils, but it can be created also with a suitable
configuration of larger wires on the same chip [85]. Finally, 3D trap-
ping fields can be generated by either bending the wire ends to form
a Z-trap, or adding a second perpendicular wire to form a Dimple
trap, as discussed in the following.

Dimple trap

By adding a second perpendicular wire, one can provide the required
3D Ioffe-Pritchard trap by closing the quadrupole guide in the longi-
tudinal direction (see Figure 5(a-b)). In particular, the current I1 along
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the Y-axis together with a bias field Bb,X along the X-axis allow longi-
tudinal confinement and removes the field zero. For sufficiently small
values of |I1/I0|, the transverse confinement is nearly unchanged and
the dimple trap minimum is located at a distance z0 = µ0 I0/(2πBb,Y)

from the chip surface. The magnetic field in the trap minimum is
given by :

B0 ≃ |Bb,X + µ0 I1/2πz0| (13)

The current I1 provides also the curvature term :

B′′
d =

∂2Bx

∂x2

)

x=0,z=z0

= µ0 I1/πz3
0 (14)

Hence, the trap angular frequencies can be approximated by :

ωX ≃
√

µBgFmF

m
B′′

d and ω⊥ ≃
√

µBgFmF

m

B′
w

2

B0
(15)

where the gradient term B′
w is given by equation (12).

As the wire-currents can be controlled independently, this configu-
ration gives a versatile and simplified on chip Ioffe-Pritchard trap. In
particular the trap position, frequencies and aspect ratio can be easily
tuned [86].

One can show that the axial direction of the trap always lies in the
XY-plane4. The azimuthal angle ψIP between the axial direction (U )
is given :

tan ψIP =
I1

I0
(16)

Further information about this configuration in the general case can
be found in [86].

Ioffe Pritchard Z-trap

By bending the wire in the chip plane by 90◦, the single wire 2D
quadrupole trap can be transformed into a 3D trapping potential (see
Figure 5c). In this case, the magnetic fields generated by the bent
wires allow the axial confinement, while the central part of the wire
enables the transverse confinement.

In atom chip experiments, this trapping technique is often used to
create elongated IP traps (i.e. with a high aspect ratio). In this case,
the length of the central wire is chosen such as : L ≫ 2z0 and the
axial and transverse frequencies are approximately given by :

ωX ≃
√

6t2

√

µBgFmF

m
B′′

w and ω⊥ ≃
√

µBgFmF

m

B′2
w

B0
(17)

with t = z0/2L

4 For this purpose, one can use the gradient tensor (32) to determine the axial direction,
as explained in section 2.2.4.
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Figure 5: (a-b) Dimple trap formed by two perpendicular wires crossing
and homogenous bias fields. The current I0 together with the bias
field Bb,Y create a 2D quadrupole trap. The superposition of the
magnetic field related to the current I1 and the bias field Bb,X
provides the confinement along the X-axis. The Figure is adapted
from [61]. (c) Sketches of the current and bias field configuration
for Z and H shaped traps.

The gradient and curvature terms are given by equations (12) and
B0 ≈ Bb,X.

The axial direction of the trap lies in the XY-plane. One can show
that the azimuthal angle ψIP between the axial direction (U ) and the
X-axis (i.e. the central wire direction) is given by [99] :

tan ψIP = − cos 2θ

cos θ(2 + cot2 θ)
with tan θ = t = z0/2L (18)

In particular, the axial direction is perfectly aligned with the central
(ψIP = 0) if t = 1 (i.e. θ = π/4).
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Ioffe Pritchard H-trap

A similar confinement to the Z-trap can be created, by using in total
three conductors to form an H-trap, instead of bending the wires
(see Figure 5c). In this case, two independent wires ensure the axial
confinement. This configuration is more flexible than the Z-trap since
two currents can be used to adjust the trap parameters.

Similarly to the Z-wire configuration, an IP trap with a high aspect
ratio can be created if the condition t ≪ 1 is verified. In this case,
one can show that the axial and radial frequencies are approximately
given by :

ωX ≃ 2
√

3t2

√

∣

∣

∣

I1

I0

∣

∣

∣

√

µBgFmF

m
B′′

H and ω⊥ ≃
√

µBgFmF

m

B′
H

2

B0

(19)

with B0 ≈ Bb,X, B′
H = − µ0 I0

2πz2
0

and B′′
H =

µ0 I1

πz3
0

Moreover, the trap axis lies on the XY-plane, and the azimuthal
angle is given by :

tan ψIP = −2
I1

I0
cos 2θ sin2 θ with tan θ = t = z0/2L (20)

In particular, ψIP = 0 if t = 1.

2.2.4 Topological constraints on Ioffe Pritchard traps

The ability to conceive non-trivial magnetic trapping potentials has
been improved considerably by the development of atom chips [63].
Using the micro-fabrication techniques, a precise tailoring of the field
sources is possible on a planar substrate, taking the form of either
current-carrying wires or patterns in a permanent magnetic film [97,
100].

R. Gerritsma and R. J. C. Spreeuw [99] have investigated theoreti-
cally the properties of static magnetic traps controlled by externally
applied homogenous fields. They have derived the required topo-
logical constraints that should be satisfied to design a custom Ioffe
Pritchard trap. In this section, we summarize the principal results
shown in this work.

The effective trapping potential, in equation (2), is proportional to
the magnetic field modulus : B(r). In the following, we are interested
in the stationary points and the trapping frequencies of a trapping
potential EF,mF

. For this purpose, we can use B2(r) instead of EF,mF

since a minimum or saddle point of B is also a minimum or saddle
point of B2. Stationary points of B2 are defined by :

∂B2/∂Xi = 0 for i ∈ {1, 2, 3} (21)
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In order to determine the nature of a stationary point (i.e. a local
minimum or a saddle point), at least the second derivatives of B2 are
required. Therefore, we expand B(r) up to the second order :

Bi = ∑
j,k

(

B0ui + vijXj + wijkXjXk

)

+ (higher-order terms) (22)

where B0 and ui are the vector field value and direction at Xi = 0
(noted U ), vij = ∂Bi/∂Xj is a tensor describing the field gradient
(noted V), and wijk = ∂2Bi/∂2XjXk is a curvature tensor (noted W).

Moreover, we should consider the restriction imposed by Maxwell’s
equations for stationary fields in vacuum. From the conditions div B =

0 and curl B = 0 for stationary fields in free space, one can deduce
that the gradient tensor V should be traceless and symmetric :

3

∑
i=1

vii = 0 (23a)

vij = vji with i 6= j (23b)

This leaves 5 independent parameters for V . Furthermore, the differ-
ent partial tensors of the curvature tensor W must be also symmetric
and traceless :

3

∑
i=1

wjii = 0 for all j ∈ {1, 2, 3} (24a)

wijk = wikj = wkji (24b)

which leaves 7 independent parameters for W .
In order to determine the stationary points, one can write the second-

order Taylor-expansion of B2 :

B2 = ∑
i,j,k

[

B2
0uiui + 2uivijXj + (uiwijk + vijvik)XjXk

]

+ (higher-order terms)

(25)

Therefore, to have a stationary point in Xi = 0, the following con-
dition should be verified :

3

∑
i=1

2uivip = 0 for all p ∈ {1, 2, 3} (26)

An Ioffe Pritchard (IP) trap has a nonzero field value in the minimum.
In consequence, we must require that V has a (nonzero) eigenvector
parallel to U and its corresponding eigenvalue must be zero. In this
thesis, we call this direction U the IP trap axis. The latter conditions
can be written :

detV = 0 (27a)

V .U = 0 (27b)
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If the previous condition is fulfilled, equation (25) can be simplified
to :

B2 = ∑
i,j,k

(

B2
0uiui + gjkXjXk

)

(28)

where

gjk = ∂2B2/∂Xi∂Xk =
3

∑
i=1

(

B0uiwijk + vijvik

)

(29)

defines the frequency tensor (noted G) since the trapping eigenfre-
quencies in this potential are given by : ωi =

√

µBgFmFGi/mB0 with
Gi are the eigenvalues of G. Hence, to verify the stationary point is a
minimum, the eigenvalues Gi must be strictly positive.

It is worth noting that the sum of the squares of the trap eigenfre-
quencies is independent of the curvature W and depends only on the
gradient V and the homogenous field B0, because it can be shown,
using equations (24) and (29), that :

∑
i

ω2
i =

µBgFmF

mB0
∑
i,k

vikvik (30)

In conclusion, the gradient tensor V has only 4 independent param-
eters, while the curvature tensor has at most 7 independent parame-
ters, including 3 that can be used to tune the IP trap eigenfrequencies.
Finally, for a given gradient tensor V , only the modulus B0 of the vec-
tor field in the trap minimum can be tuned, since its direction U is
determined by an eigenvector of the gradient tensor V . Controlling
B0 is possible through the external bias fields that are given in this
context by :

Bb = B0U − BW(r0) (31)

where BW is the magnetic field created by the wires on chip.

2.2.5 Custom design of an Ioffe Pritchard trap : Manhattan trap

Magnetic microtraps offer a flexible platform to investigate diverse
applications such as quantum simulation [101], quantum information
processing [102] and atom interferometry [70, 71].

Schmied et al. developed a general procedure [85] for designing
microtraps (and lattices) to achieve some desired properties and pa-
rameters, on the basis of patterned permanently magnetized films5.
The algorithm for finding the optimal magnetization pattern satisfies

5 R. Schmied has developed a Mathematica package : SurfacePattern, for surface atom
and ion traps. This package has been extensively used in this work to compute
analytical expressions of magnetic fields.
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the linear conditions (24) and (23) together with some additional lin-
ear conditions on the gradient or/and the curvature elements.

Here, we consider an alternative framework to design custom IP
traps using an appropriate arrangement of current-carrying wires.
In contrast to the algorithm of Schmied et al. that uses optimization
methods, an exact resolution of any set of linear conditions in addi-
tion to Maxwell’s equations is proposed.

In the following, we present some basic tools that can be used to
design custom IP traps.

Star pattern

To create an IP trap centered at point r0 = {x = 0, y = 0, z = h0}, it
is possible to use N wires intersecting at the chip origin O = {x =

0, y = 0, z = 0}, and we refer to it as the star pattern. The i-th wire
(FLi) has an orientation αi relative to the x-axis, and carries a current
Ii (see Figure 6a). The tensors V , and W that characterize the trap
are, respectively, a linear superposition of elementary tensors Vi, Wi

corresponding to the wire (FLi). The latter elementary tensors are
given by :

Vi =
Ĩi

h2
0









0 0 sin αi

0 0 − cos αi

sin αi − cos αi 0









(32)

Wi =
Ĩi

h3
0









W1

W2

W3









(33a)

W1 = 2









sin3 αi − cos αi sin2 αi 0

− cos αi sin2 αi cos2 αi sin αi 0

0 0 − sin αi









(33b)

W2 = 2









− cos αi sin2 αi cos2 αi sin αi 0

cos2 αi sin αi − cos3 αi 0

0 0 cos αi









(33c)

W3 = 2









0 0 − sin αi

0 0 cos αi

− sin αi cos αi 0









(33d)

where Ĩi = (µ0/2π)× Ii. In the following, we will use the symbol (˜)
to denote a multiplication of a current I by the constant : µ0/2π.

In this configuration, we can verify that the condition (27a), related
to the existence of a stationary point at r0, is here verified systemat-
ically. This property is related to central symmetry (relative to O) of
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Figure 6: Custom design of Ioffe Pritchard traps. (a) Star pattern (b) Manhat-
tan pattern, are a flexible wires architecture that allow the design
of tailorable magnetic traps.

the wires (FLj) and it remains valid using any elementary structure
that has a central symmetry such a Z-shape wire for example.

One can use this method to engineer a custom IP trap by control-
ling the independent elements of the gradient and the curvature ten-
sor. In principle, such a problem can be written as linear system of
the currents Ĩi. The resolution of this system can be simplified if the
number of wires N is chosen equal to the trap elements (vij and wijk)
that we wish to control. Then, the IP trap frequencies (at least their
positivity) should be controlled using the different angles αi.

One can notice that the IP trap axis : U ∝ ∑
N
i=1 Ĩi{cos αi, sin αi, 0}

lies on the xy-plane, as it is the case for the typical microtraps dis-
cussed previously.

Despite its simplicity, this configuration can be used in practice
only to control few elements as one can verify that the number of
non-redundant elements6 is only 4. Moreover, a particular care has to
be taken to manage the high current density and the local heating at
the origin O, especially if the number of wires N ≥ 3.

Manhattan pattern

To create an IP trap at r0, it is also possible to use wires that do not
pass through the origin O. However, in this case, the condition (27a)
is not always verified contrary to the case of the star pattern. Here
we introduce an alternative pattern, that we call Manhattan, using a
set of perpendicular or parallel wires. In other words, N1 wires are
parallel to the x-axis and N2 wires parallel to the y-axis (see Figure
6b). Each of the tensors V , W , that characterize the IP trap, is a linear
superposition of elementary tensors V1,i,V2,i and W1,i,W2,i, shown in
Appendix B.

6 The non-redundant elements are : v13, v23, w111, w112.
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One can impose additional conditions on the elements of the tensor
V and W to design a custom IP trap. In this case, one can note that the
tensor elements vij and wijk depend either on the currents I1,i or I2,i

but never on both of them. Hence, controlling the trap parameters can
be reduced to a simplified resolution of linear system of the currents,
as explained previously. For example, one can control 4 elements7 vij

of the gradient tensor V . Yet, in this case, one should pay attention to
the resolution of the condition (27a), as it is not usually verified and
may imply the resolution of a nonlinear equation.

Thereafter, one must ensure that the eigenvalues of the frequency
tensor G are positive. This can be done using the reduced distances
t1i = h0/L1i and t2i = h0/L2i of the wires or by controlling any cur-
rents that are not involved in the resolution of the previous linear
system. Two practical resolutions (designs), will be discussed in sec-
tion 6.2.4. In particular, we show that the number of required current-
sources can be reduced to two, as it is often used to create a typical
microtrap such as the Dimple trap. In the last step, one shall ensure
that the designed IP trap has sufficient depth to capture laser-cooled
atoms. This is the most difficult step as it is a non-local condition, and
can only be verified retrospectively. In practice, in order to avoid the
design of shallow traps, it is important to choose the elements of the
tensor V such that the trap axis U is almost parallel to the chip plane.
Otherwise, the confinement would be weak or nonexistent [85].

Furthermore, one can analyze the evolution of the magnetic field
zeros, with a simplified theory introduced by T.J. Davis [103] using
complex numbers in order to investigate the 2D magnetic traps. In
our case, the wires used to create the 2D quadrupole (i.e. transverse
confinement) can be isolated, and the trap depth can be optimized
using the remaining free parameters (h0 and t1j or t2j) in order to
eliminate or hold off the unwanted zeros from the local minimum.

Finally, it is important to note that the fabrication the Manhattan
pattern requires8 the use of a multilayer chip using an insulating layer
[104]. If the reduced distances t1i (or t2i) are critical for the trap design,
the corresponding wires FL1,i (or FL2,i) should be placed in the lower
layer, in order to avoid the uncertainty related to the planarity and
the relative position of the upper layer. Yet, in some cases9, the values
of the reduced distances t1i and t2i are both critical for the IP trap.
Thus, one should evaluate precisely the thickness dT of the insulating
layer (see Figure 17), and take it into account to set the wires FL2,i po-
sition on the second layer such as : Bi = {0, (h0 − dT)/t2i, 0}. Further-
more, before starting the chip fabrication process, one may consider
performing a full-simulation that takes account for the width of the

7 v11,v13,v22 and v23
8 If N1 > 1 and N2 > 1
9 Such as the configuration S1 in section 6.2.4
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Figure 7: Coherent internal-state manipulation and generation of state-
dependent microwave potentials. Hyperfine structure of the 87Rb
ground state in the static magnetic field of the microtrap. The clock
states |a〉 and |b〉 are coherently coupled using a combination of
microwave (MW) and radio-frequency (RF) fields ( π

2 -pulse).

wires in order to verify the stability of the conceived IP trap and its
properties.

2.3 two-photon transition

Coherent coupling between the clock states |a〉 and |b〉, shown in Fig-
ure 7, requires a two photon drive due to the selection rules of the an-
gular momenta. This can be done using microwave at frequency ωmw,
blue detuned by ∆ with respect to the transition |1,−1〉 ↔ |2, 0〉 and
a radio-frequency ωr f red detuned relative to the transition |2, 0〉 ↔
|2, 1〉 such as : h̄(ωmw +ωr f ) ≈ E2,1 − E1,−1. If both single photon Rabi
frequencies verify : Ωr f , Ωmw ≪ |∆|, the population of the intermedi-
ate state |2, 0〉 remains negligible and the three-level system behaves
as a two-level system with an effective two photon Rabi frequency of
[105] :

Ω2P =
ΩmwΩr f

2∆
(34)

2.4 collisional shift

Atomic collision has an essential role in explaining the properties
of ultracold gases [106]. Interactions between trapped atoms ensure
reaching the thermal equilibrium, which is necessary for the success
of the evaporative cooling [107, 108]. However, once the atoms are
cooled and trapped, the atomic density increase as the atoms are con-
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fined in small volumes which leads to a change of the atomic energy
and arises a particular difficulty for precision measurements.

A rigorous derivation of this effect can be done using the micro-
scopic transport equation for the density matrix mapped onto a prob-
lem of precession of two coupled classical spins [109, 110, 111]. In
this section, we introduce a simplified approach of the interaction ef-
fect as discussed in [90]. In a cloud of N atoms, the energy shift of
one atom arises from the collisions with the other N − 1 atoms. By
neglecting collisions of more than two atoms, one atom immersed
into a non-degenerate cloud of atoms experiences an energy shift of :
4πh̄2an/m, with n the atomic density and a the scattering length. For
a two component gas, such as atoms in coherent superposition of the
clock states |a〉 and |b〉, the energy shift is given by :

Ei
C =

4πh̄2

m
(niaii + njaij) (35)

with {i, j} = {a, b}, and i 6= j. Therefore, the collisional frequency
shift related to the transition between the clock states is given by :

∆EC = Eb
C −Ea

C =
2h̄2

m
n

[

(abb − aaa) +
na − nb

n
(2aab − aaa − abb)

]

(36)

The 87Rb atoms offers the great advantage of nearly equal scattering
length with :

aaa = 100.44a0 (37a)

abb = 95.45a0 (37b)

aab = 98.09a0 (37c)

where a0 = 52.9 × 10−12 m is the Bohr radius. The scattering lengths
differ only by about 5%. Therefore, equation (36) leads to :

∆EC = −2h̄2

m
na0(4.97 + 0.27 f ) (38)

with f = (nb − na)/n denotes the population imbalance between the
clock states. It is important to note, that this shift is not uniform, be-
cause the atomic density is spatially inhomogeneous. Furthermore,
using a pair of clock states trapped with a magnetic field set at the
magic value (B0 = 3.23 G), one can tune the magnetic field in order to
balance, up to the second order, the spatial inhomogeneity due to the
collisional shift. The compensation method is discussed in [112]. On
the other hand, if the components of the gas are spatially separated
(as it is the case, using a state-labelling beam splitter [71]), the interac-
tion between different components are not possible. In this case, the
collisional energy shift becomes :

∆EC =
2h̄2

m
n

[

(abb − aaa) +
nb − na

n
(aaa + abb)

]

(39)

=
2h̄2

m
na0(−4.97 + 195.91 f )
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In particular, the collisional energy shift can be reduced if the pop-
ulation unbalance f is about : fm ≃ 2.53%. Finally, the lifetime in the
trap is limited by the inelastic and two body collisions which have
been neglected in the previous model. A phenomenological analysis
of these effects is given in [86].



3
M I C R O WAV E AT O M C H I P

Microwave radiation leads to an AC Zeeman shift of hyperfine states,
which can be used to trap neutral atoms [113, 114]. In this case, the
spontaneous emission is negligible which is a considerable advantage
compared to optical potentials. However, in these pioneer references,
an extremely high microwave power (on the order of megawatt) cir-
culating inside a cavity were required and the field gradients were
limited since the centimetric wavelength restricts the field focusing.

Furthermore, to make advantage of the clock states robustness dis-
cussed in section 2.1, the microwave is a suitable choice, for internal
state-manipulation1, because these states belong to different hyper-
fine levels (with Ehfs/h ≃ 6.8 GHz).

Recently, a new technique to generate microwave potentials on
chip using microwave near-fields has been demonstrated [71]. The
microwave field is generated using a micrometer-sized transmission
line, and so the near-field gradient has a weak dependence on the
wavelength, and depends mainly on the transverse dimension of the
transmission line. Hence, much higher gradients can be produced us-
ing only low microwave power (100 − 500 mW). Furthermore, this
technique allows a flexible design and an accurate control of the po-
tentials on the micrometer scale.

In a similar manner, radiofrequency potentials have been used to
trap, cool and manipulate atoms on chip [67, 115]. For instance, sev-
eral trapping topologies were proposed using radiofrequency dress-
ing such as rings [116, 117] and lattices [118]. By comparison, mi-
crowave potentials are more selective since the different possible tran-
sitions can be isolated by tuning the microwave frequency [86]. State-
dependent microwave potentials can be generated on chip [71], which
paves the way to the study of various interesting effects including
atom interferometry [119], spin squeezing [120], atom-surface interac-
tions [121], collisions and entanglement [104, 122].

In this chapter, we introduce the theory of microwave dressed po-
tentials. Then, we discuss the design constraints of the microwave
guiding structures, in particular the coplanar waveguide (CPW).

1 By deriving the two-photon transition, cf. section 2.3

24
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3.1 microwave dressed potentials

In this section, we introduce the dressed potentials using microwave
fields, and we derive the dressed energies and states in the rotating
wave approximation. A thorough theoretical derivation can be found
in P. Treutlein’s dissertation [104].

We consider the electronic ground state 5S1/2 of 87Rb. The interac-
tion of an atom with a static field B is described by the Breit-Rabi
Hamiltonian [87] :

HBR = (Ehfs/2)I. J + µB(gJJ + gII). B (40)

The eigenenergies EF,mF
and eigenstates |F, mF〉 of this system are

given in section 2.1.
We are also interested in the description of an atom in presence of

both static field B and magnetic field Bmw :

Bmw(t) = Bmw(ǫe−iωmwt + ǫ
⋆eiωmwt) (41)

ǫ is a unit polarization vector and ωmw is the microwave frequency.
The first term of equation (40) describes the hyperfine coupling be-
tween the total electron spin J and the nuclear spin I. The second
term depicts the coupling of the static field to I and J. The Hamilto-
nian that describes the coupled atom-field system is :

H = HBR + Hmw (42a)

Hmw = µB(gJJ + gII). B̂mw + h̄ωmw(a†a + 1/2) (42b)

with B̂mw = 2
√

h̄ωmwµ0/2V(ǫa + ǫ⋆a†) is the quantized microwave
field operator, and a† (a) is the creation (annihilation) operator in a
quantization volume V. Due to the high number of photons, the mi-
crowave field can be described by a classical field. Yet, the quantized
field gives a deeper understanding of the dressed state picture [123].

Hmw describes the interaction with the microwave field. The first
term of equation (40) indicates the coupling of the atom to the mi-
crowave field and the second term describes the quantized microwave
field. Moreover, one can write H in the rotating frame that moves
around the quantization axis Z with the angular frequency ωmw us-
ing the rotation operator : exp(iωmwtFZ ), where the Z-axis is given
by the local direction of B and FZ is the projection of the total mag-
netic moment F along the Z-axis [84]. Furthermore, if the conditions :
µBB, µBBmw, h̄∆hfs ≪ h̄ωmw with ∆hfs = ωmw − ωhfs are fulfilled, we
can make the rotating wave approximation (RWA).

In the classical picture2, the RWA consists in neglecting the oscil-
lating terms in the rotating frame, and considering only the constant
terms [84].

2 An interpretation of the RWA in the dressed-state picture can be found in [86].
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With these approximations, we can write H in the bare basis |F, mF〉
such as :

H =∑
m2

(

−1
2

h̄∆hfs + E2,m2 − Ehfs

)

|2, m2〉〈2, m2|

+ ∑
m1

(

1
2

h̄∆hfs − E1,m1

)

|1, m1〉〈1, m1| (43)

+ ∑
m1,m2

[

1
2

h̄Ωm2
m1
|2, m2〉〈1, m1|+ c.c.

]

where EF,mF
is the Breit-Rabi energy given by equation (5) and Ω

m2
m1

is the Rabi frequency that couples between the transition |1, m1〉 ↔
|2, m2〉 such that :

Ωm2
m1

=
µB

h̄
Bmw〈2, m2|ǫ. (gJJ + gII)|1, m1〉 (44)

Approximations

Furthermore, we can neglect the coupling of I to the magnetic fields
because |gI/gJ | ≪ 1 and consider the static Zeeman effect in a pertur-
bative manner (as we have supposed that µBB ≪ h̄ωhfs). Hence, the
bare energy EF,mF

to the first order in B is given by :

EF,mF
= δF,2Ehfs + mFgFµBB (45)

where δi,j is the Kronecker delta and gF ≃ 1/2. In addition, the ex-
pression of the coupling Rabi-frequency Ω

m2
m1 can be written :

Ωm2
m1

≃ gJµB

h̄
Bmw〈2, m2|ǫ. J|1, m1〉 (46)

with gJ ≃ 2.
The first two terms of equation (43) describe the bare states which

are identical to the eigenstates |F, mF〉 (with an additional energy
shift). The last term depicts the coupling of the atom to the field.
The angular momentum matrix elements 〈2, m2|ǫ. J|1, m1〉, where ǫ

is a the unit polarization vector of Bmw, can be calculated using the
Clebsch-Gordan coefficients (see Appendix C).

Dressed states

The full Hamiltonian H can be diagonalized numerically, in order to
obtain the eigenstates |K〉, often called the dressed states. Figure 8

shows the energies E(K) of the dressed states as a function of the
microwave detuning ∆hfs for a microwave field with equally strong
polarization components. The dressed states |K〉 can be written as a
linear superposition of the bare states |F, mF〉. For a given detuning
∆hfs, the color depicts the dominant bare state |F, mF〉 in each dressed
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Figure 8: Energy levels of the dressed states |K〉 as function of the detuning
∆hfs, for B = 8 G, Bmw = 1 G, and ǫ = 1√

3
{1, 1, 1}. Colors indicate

the dominant bare state |F, mF〉 in the dressed state |K〉. This Fig-
ure shows an agreement with the simulation results discussed in
[86].

state |K〉. The bare states |F, mF〉 and the dressed state |K〉 are approx-
imately identical for high and large detuning ∆hfs values.

Furthermore, one can define the detuning :

∆m2
m1

= ∆hfs − (m2 + m1)µBB/2h̄ (47)

An anticrossing between the bare states emerges if the detuning ∆
m2
m1

vanishes but the corresponding Ω
m2
m1 is non-vanishing. In the vicinity

of an anticrossing, the dressed eigenstates are mainly a superposi-
tion of the anticrossing states. Therefore, near an anti-crossing, the
energy difference between the dressed eigenstates can be given ap-
proximately by a two-level system [124, 125], and so it can be written
as [86] :

E|+〉 − E|−〉 =
h̄

2

√

|Ωm2
m1 |2 + |∆m2

m1 |2 (48)

where |+〉(|−〉) denotes to the upper (lower) state.
In the case of two-level transition and supposing that an atom is

initially prepared in the ground state |g〉 ≡ |1, m1〉 with a far detuned
microwave such that ∆

m2
m1(t = 0) = ∆0 > 0, one can completely trans-

fer the system to the excited state |e〉 ≡ |2, m2〉, by tuning slowly the
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microwave frequency over the resonance. This technique is called adi-

abatic passage and the adiabaticity criteria is given by [67, 123, 126] :

1
2
|Ω̇m2

m1
∆m2

m1
− Ωm2

m1
∆̇m2

m1
| ≪

[

|Ωm2
m1
|2 + |∆m2

m1
|2
]3/2

(49)

where the dot indicates the derivative with respect to time.
If the previous condition is verified, atoms initially prepared in the

state |g〉 are transformed adiabatically into the dressed state |+〉, and
observe the following dressed potential [124, 127] :

E|+〉 =
E|g〉 + E|e〉

2
+

h̄

2

√

|Ωm2
m1 |2 + |∆m2

m1 |2 (50)

where E|g〉(E|e〉) is the energy of the uncoupled level |g〉 (|e〉). The
energy shift due to the microwave contribution can be defined as :

V
|+〉
mw = E|+〉 − E|g〉

=
h̄

2

[

√

|Ωm2
m1 |2 + |∆m2

m1 |2 − ∆m2
m1

]

+
h̄ωmw

2
(51)

because : ∆
m2
m1 = ωmw − (E|e〉 − E|g〉)/h̄.

In a similar manner, if the atoms are initially prepared in the state
|g〉 and with ∆0 = ∆

m2
m1(t = 0) < 0, they are transformed adiabati-

cally into the dressed state |−〉. In this case, one can deduce that the
microwave shift is given by :

V
|−〉
mw = E|−〉 − E|g〉

=
h̄

2

[

−
√

|Ωm2
m1 |2 + |∆m2

m1 |2 − ∆m2
m1

]

+
h̄ωmw

2
(52)

In the previous equations of the microwave shifts Vmw, the term
h̄ωmw/2 is a constant energy shift. This term will be omitted in the
following.

The transformation into the upper (|+〉) or lower (|−〉) dressed
state depends on the sign of the initial detuning ∆0 = ∆

m2
m1(t = 0),

and so the microwave energy shift for an atom initially in |g〉 can be
written as :

V
|g〉
mw =

h̄

2

[

sign(∆0)
√

|Ωm2
m1 |2 + |∆m2

m1 |2 − ∆m2
m1

]

(53)

The same approach can be used to derive the microwave energy shift
for an atom initially in |e〉 :

V
|e〉
mw = − h̄

2

[

sign(∆0)
√

|Ωm2
m1 |2 + |∆m2

m1 |2 − ∆m2
m1

]

(54)

In the case of two-level transition, the system Hamiltonian can be
simplified to [124, 127] :

Heg =
h̄

2

(

∆
m2
m1 Ω

m2
m1

Ω
m2
m1 −∆

m2
m1

)

+
E|g〉 + E|e〉

2
(55)
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Thus, the dressed states (i.e. eigenstates of the system : {atom +

photons}) can be written :

|+〉 = cos(θ)|g〉+ sin(θ)|e〉 (56a)

|−〉 = sin(θ)|g〉 − cos(θ)|e〉 (56b)

where θ is defined by :

cos(2θ) =
∆

m2
m1

√

|∆m2
m1 |2 + |Ωm2

m1 |2
, sin(2θ) =

Ω
m2
m1

√

|∆m2
m1 |2 + |Ωm2

m1 |2
(57)

Atoms initially prepared in the state |g〉 with ∆0 > 0 are trans-
formed adiabatically into the dressed state |+〉, which depends also
on the state |e〉. The weight of the bare states, |e〉 relative to |g〉, in the
dressed state is : Re/g = tan θ. In similar manner, atoms initially pre-
pared in the state |g〉 with ∆0 < 0 are transformed into the dressed
state |−〉, and the weight of the bare states, |e〉 relative to |g〉, in this
dressed state is : Re/g = − cot θ. In both cases, assuming that the de-
tuning ∆

m2
m1 does not change its sign (i.e. ∆

m2
m1 /∆0 > 0), one can show

that :

|Re/g| =
(

−1 +
√

1 + (Ωm2
m1 /∆

m2
m1)

2

)

/(|Ωm2
m1
|/|∆m2

m1
|) (58)

Similar expression of the weight |Rg/e| can be derived for atoms ini-
tially prepared in the state |e〉.

Finally, we show in Figures 9 the energy levels |K〉 as a function of
Bmw for the simulation parameters that will be used in the chapters 5

and 6, respectively. In particular, one can notice that the energy shift
related to the state |1,−1〉 is much larger than the shift of the state
|2, 1〉 for low values of Bmw, because the latter state is off-resonance
with the chosen parameters.

Far detuned microwave

In the case of a far-detuned microwave, the dressed energies E(K)

can be treated in a perturbative manner if the following condition is
fulfilled :

|Ωm2
m1
|2 ≪ |∆m2

m1
|2 (59)

The dressed states |K〉 are approximately identical to the bare states
|F, mF〉, and the admixture of the remaining states is on the order of
|Ωm2

m1 /2∆
m2
m1 |. In this regime, the energy of an atom in the dressed state

|K〉 ≈ |F, mF〉 is given by :

For the sublevels of F = 1 : V
|1,m1〉
mw =

h̄

4 ∑
m1

|Ωm2
m1 |2

∆
m2
m1

(60a)

For the sublevels of F = 2 : V
|2,m2〉
mw = − h̄

4 ∑
m2

|Ωm2
m1 |2

∆
m2
m1

(60b)
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Figure 9: The energy levels E(K) as function of Bmw for B = 3.23 G. (a) The
frequency and the direction of the microwave field are chosen in
order to couple the states |1,−1〉 and |2,−1〉 (π-transition) with
ǫ = {0, 0, 1} and ∆1

−1 = 0.05 × ωL(B). (b) The frequency and the
direction of the microwave field are chosen in order to couple the
states |1,−1〉 and |2, 0〉 (σ+-transition) with ǫ = 1√

2
{1, 1, 0} and

∆0
−1 = 0.05 × ωL(B).

In the limit of large detuning, the microwave energy shift of |F, mF〉
can be derived by considering all the possible transitions two-by-two.
We will discuss, in section 5.2, how this approach can be extended
to the general case (even if the condition (59) is not valid) by using
equations (53) and (54).
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3.2 microwave chip design

Microwave transmission lines are today increasingly widespread and
used in several microwave devices including hybrid circuits, inte-
grated circuits and antennas. They are partly responsible for the ex-
pansion of the microwave systems oriented to the mass market, such
as GSM, GPS, and satellite television, in particular because of their
compactness and their low fabrication cost. In modern microwave
integrated circuits, the coplanar waveguide (CPW) is used as an el-
ement of transmission lines. The CPW was introduced first by C.P
Wen [128] in 1969. However, the coplanar lines attracted high atten-
tion only in the 1990’s with the push to high frequencies and mono-
lithic technology and have experienced a growing demand since then
due to their appealing properties [129, 130]. The microwave magnetic
fields created in the near-field by the microwave currents have a sim-
ilar length-scale dependence as the magnetic fields created by static
currents [131]. This allows the realization of higher microwave gradi-
ents compared to the far-field gradients where the length scale is on
the order of the wavelength (λmw ≈ 4.4 cm in the vacuum).

The integration of a coplanar waveguide to an atom chip was pro-
posed in [104] and experimentally demonstrated in [71]. In contrast
to the historical interest to CPWs as transmission lines (in particular
to their (low) propagation losses), we are more interested in the field
distributions in the vicinity of the waveguide wires. The knowledge
of their characteristic impedance is also important to avoid undesir-
able reflections.

In this section, we introduce some theoretical aspects of the CPWs
including propagation, characteristic impedance and near-field distri-
butions.

3.2.1 Coplanar waveguide theory

The coplanar waveguide consists ideally of a central conductor and
two ground planes deposited on the same dielectric substrate, as
shown in Figure 10a [128]. In practice, the CPW grounds usually have
a finite width and the substrate has a finite thickness h, as shown in
Figure 11(b-c).

The CPW can be seen as a multi-line guide with three wires : it has
then two propagation modes [129] :

• the coplanar waveguide mode, a quasi-TEM mode often called
the even mode, where the fields in the two slots are 180◦ out of
phase as shown in Figure 10b.

• the slotline mode, a non-TEM mode often called the odd mode,
where the fields are in phase as shown in Figure 10b.
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Figure 10: A schematic view of a coplanar waveguide (b) The field configu-
rations of the coplanar mode (left) and the slotline mode (right).
Figure adapted from [129].

In microwave circuits, the CPW mode is preferred due to its propaga-
tion and radiation properties [131]. The CPW mode can be excited by
pulling both grounds to the same potential. However, parasitic effects
and discontinuities in the CPW geometry can couple power from the
CPW mode to the slotline mode, leading to unbalanced distribution
of the microwave currents [17].

Full-wave analysis

The electric and magnetic field distributions E and B around the CPW
can be computed using full-wave analysis, which also provides in-
formation regarding the frequency dependence of the phase velocity
and the characteristic impedance. Several techniques has been devel-
oped including the spectral domain method [132, 133, 134, 135, 136],
mode-matching technique [137], the integral equation approach [138],
the method of moments [139], and the finite difference time domain
technique [140]. These techniques are particularly important at higher
frequencies (ωmw > 10 GHz).

Quasi-TEM fields

For the microwave field, only quasi-TEM mode can propagate since
the transverse size of the CPW, (S + 2W) in Figure 10a,is very small
compared to the microwave length scale λmw [141]. In contrast to
the (pure) transverse electromagnetic (TEM) wave, quasi-TEM waves
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Figure 11: Different types of coplanar waveguides : (a) ideal CPW, (b) CPW
with finite substrate thickness, and (c) CPW with finite ground
planes and finite substrate thickness. Figure adapted from [129].

have small longitudinal components because the waves propagate
within two different mediums (air and dielectric). Hence, the electro-
magnetic fields propagating on the transmission line are of the form :

E(x, y, z, t) = Re [E(x, z) exp(iωmwt − γy)] (61a)

B(x, y, z, t) = Re [B(x, z) exp(iωmwt − γy)] (61b)

where γ is the complex propagation constant.
If the quasi-TEM approximation is verified (S + 2W ≪ λmw), the

electromagnetic fields can be computed using a 2D quasi-static sim-
ulation that takes into account the effect of eddy currents and con-
ductor loss, as discussed in [142, 143, 86]. This method considers also
the skin effect3 which changes the current-density distribution in the
CPWs wires. This simulation can be performed using a finite element
method with one of the following software programs : Maxwell SV4

or FEMM5.

Equivalent circuit model

The equivalent circuit shown in Figure 12 can be used to describe
an infinitesimal piece of the transmission line. The circuit model in-
cludes the capacitance between the conductors C, the inductance L,
the series resistance R of the conductors and the shunt resistance of
the dielectric G. These parameters can be deduced using the fields
E(x, z) and B(x, z) computed using a quasi-static simulation [86, 141].
Form this model, the propagation of the line can be deduced :

γ =
√

(R + iωmwL)(G + iωmwC), Re[γ] > 0 (62a)

Z0 = α + iβ =

√

R + iωmwL

G + iωmwC
, α > 0 (62b)

where Z0 = Vmw/Imw is the characteristic impedance and its argu-
ment indicates the phase shift between the electric and magnetic

3 Using a gold wires with the conductivity σAu ≃ 4 × 107 S/m and a microwave
frequency ωmw = 2π × 6.8 GHz the skin depth δs =

√

2/(ωmwµ0σAu) ≃ 0.9 µm, is
similar to the wire dimensions and so its effect has to be taken into account.

4 Now: Ansys Maxwell
5 http://www.femm.info/wiki/HomePage
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Figure 12: The equivalent circuit of a coplanar waveguide [142].

field6. An abrupt variation of Z0 along the transmission line leads
to undesirable reflection and should be avoided in the design stage.
The estimation of the propagation constant γ is valid only for an in-
finitely long line, in contrast to the characteristic impedance Z0 that
gives a consistent local information related the line cross-section as it
is approximately independent of the length of the line.

Conformal mapping

The basic approach in the conformal mapping method is to assume
that the fields are quasi-TEM and all the dielectric interfaces in the
structure can be modeled as magnetic walls7. Although the latter as-
sumption is not always fully verified (especially for large slots), con-
formal mapping has proven to give good results for the most common
transmission lines [144]. This gives rise to analytical expressions of
the effective dielectric constant ǫeff and the characteristic impedance
Z0. The derivation of these expressions are beyond the scope of this
discussion, but a complete overview can be found in [129]. In the fol-
lowing, we give the expression of Z0 for the CPW structures shown
in Figure 11 :

CPW (a) CPW (b) CPW (c)

Z0
30π√

ǫeff

K′(k1)
K(k1)

30π√
ǫeff

K′(k1)
K(k1)

30π√
ǫeff

K′(k1)
K(k1)

ǫeff
ǫr+1

2 1 + ǫr−1
2

K(k2)
K′(k2)

K′(k1)
K(k1)

1 + ǫr−1
2

K(k2)
K′(k2)

K′(k1)
K(k1)

k1
a
b

a
b

a
b

√

1−b2/c2

1−a2/c2

k2 − sinh(πa/2h)
sinh(πb/2h)

sinh(πa/2h)
sinh(πb/2h)

√

1−sinh2(πb/2h)/ sinh2(πc/2h)

1−sinh2(πa/2h)/ sinh2(πc/2h)

Table 1: Analytical expressions of Z0 and ǫeff derived using conformal map-
ping [129], the CPW structures shown in Figure 11.

where ǫr is the dielectric constant of the substrate, and the func-
tions K and K′ are the complete elliptic integrals of the first kind and

6 The characteristic impedance Z0 allows also the calibration of the electrostatic and
magnetostatic simulations which are performed independently

7 By definition, there is no tangential magnetic field in the substrate interfaces, as
shown in Figure 10b.
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its complement, respectively8. The consistency between the 3 expres-
sions of Z0 related to the CPWs (a), (b) and (c) can be verified for
h → ∞ and c → ∞.

For an ideal CPW, one can note that the characteristic impedance
Z0 is a function of the unique parameter : k1 = a/b = S/(S + 2W).
Therefore, the design of tapered ideal CPWs can be done without
changing Z0 by scaling the parameters S and W by the same factor.
This rule remains approximately verified for the more realistic struc-
tures such as the CPWs shown in Figure 11(b-c) (as can be seen from
the expressions of Z0 shown in Table 1). In addition to modeling Z0

and ǫeff, conformal mapping has also been used to examine the field
distributions of CPWs [145, 146, 147].

Coupling between two adjacent coplanar waveguides

In the following chapters, we will be interested in estimating the cou-
pling between two parallel CPWs spaced by a distance D, as shown in
Figure 13. A rough estimation of this coupling can be derived using
conformal mapping [144]. In this section, the effects due to the finite
size of the substrate and transverse dimension of the CPW are ne-
glected. The maximum possible coupling coefficient is given by [148] :

C = 20 log10

(

Ze − Zo

Ze + Zo

)

(63)

where Ze and Zo are the even and odd-mode impedances respectively.
If the coupling is expected to be low, the latter expression can be
simplified to :

C = 20 log10 (1 − Zo/Z∞) (64)

where Z∞ is the CPW impedance when the distance D becomes infi-
nite, and Zo/Z∞ is given by :

Zo

Z∞
=

K′(k3)

K(k3)

K(k4)

K′(k4)
(65a)

k4 =
2
√

ab

a + b
(65b)

k3 =
k4

√

1 − (b − a)2/D2
(65c)

In our chip design, the two closest CPWs have the following scaling
form :

a = u (66a)

b = 2u (66b)

D = 9u (66c)

8 They are simply related to each other with the equation : K′(k1) = K(k′1) with
k′1 = (1 − k2

1)
1/2. Simple and accurate analytical approximation of the ratio K/K′

can be found in the literature [129].
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Figure 13: Two coupled parallel coplanar waveguides spaced by a distance
D. Figure taken from [144].

with u = 3 µm (cf. Figure 52, Config. I I). Hence, the coupling is
about : C ≈ −30 dB, which will be neglected in the following.

3.2.2 Microwave field simulation

An accurate simulation of the magnetic microwave field is essential
to compute the microwave potentials, as discussed in section 3.1. We
suppose that only the quasi-TEM mode of the CPW is excited by con-
necting the two outer wires to the ground. In this case, the microwave
distribution of the currents is : {−Imw/2, Imw,−Imw/2}, as shown in
Figure 10a. The quasi-static simulation takes into account the effect
of the eddy currents, and can be performed using 2D Finite Element
Method (FEM).

In Figure 14, we compare the results of 2D quasi-static simulation
and static simulation with infinitely thin wires. One can notice that
the spatial distribution of the magnetic field is similar in both cases.
In fact, the eddy currents reduce the effective power injected into the
CPW (by about 14%, in the case of Figure 14) but do not change the
shape of the field spatial distribution. The latter observation holds
if the field is computed at a distance h0 from the CPW that satisfy :
h0 ≫ W, S. In the following chapters, we will use a simplified 2D
static simulation (using Biot-Savart law) to model the microwave field
distribution such that :

Bx,CPW
mw =

µ0 Ieff
mw

2πh0

[

z

x2 + z2 − z

2 ((−dw + x)2 + z2)
− z

2 ((dw + x)2 + z2)

]

B
y,CPW
mw = 0 (67)

Bz,CPW
mw =

µ0 Ieff
mw

2πh0

[ −x

x2 + z2 +
−dw + x

2 ((−dw + x)2 + z2)
+

dw + x

2 ((dw + x)2 + z2)

]

where dw is the distance between two adjacent wires of the CPW
and Ieff

mw is the effective current injected in the CPW. The current Ieff
mw

is related to the injected microwave power by : Pmw = |Z0||Ieff
mw|2/2

and we assume that |Z0| ≈ 50 Ohm. In practice, an experimental
calibration of Pmw (Ieff

mw) is required to determine an accurate rela-
tionship between Ieff

mw and Pmw. This can be done by measuring the
Rabi-frequency of an ultracold atomic cloud [71, 17]. In the following
simulations, the microwave power Pmw will be always scaled relative
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Figure 14: The microwave field components {Bx
mw, Bz

mw} computed along
the x-axis at a distance h0 = 44 µm from the CPW, using 2D
quasi-static simulation that takes into account the eddy currents
(solid lines) and 2D static simulation with infinitely thin wires.
The CPW parameters are : a = u, b = 2u, c = 4u with u = 3 µm
and ǫr = 11.9 (cf. Figure 11c). The input microwave currents are
given in Figure 10a with Imw = 76 mA.

to P0 = |Z0||I0
mw|2/2 with I0

mw = 86 mA. Of course, to make the ex-
perimental and numerical results match, an additional calibration of
P0 will be necessary.



4
T H E R M A L T R A P P E D - AT O M I N T E R F E R O M E T RY
O N - C H I P

4.1 introduction

Bose-Einstein Condensate (BEC) has been widely studied as a promis-
ing coherent source for trapped interferometers, both in magnetic
trap and in optical dipole trap. For example, atom chips have been
used to split and recombine BECs by transforming an harmonic po-
tential well into a double-well [67, 69]. Despite the BEC coherence
properties, the interferometers based on trapped condensed atoms
are not yet able to compete with the thermal free falling ones in term
of precision measurements. It has been shown that interactions in a
BEC are harmful for interferometry, causing phase diffusion and colli-
sional shifts that eventually induce decoherence and a loss of sensitiv-
ity [73, 74, 75, 149]. One possible method to address these problems
aims to reduce interactions by using Feshbach resonances [74]. Hence,
several seconds of coherence time have been demonstrated in Bloch
oscillation experiments with BECs [150, 151].

Recently, state-selective potentials have been used to allow the in-
ternal states to entangle with the motional states in BEC. However,
residual interactions within each interferometer arm are still the lim-
iting factor in attaining better sensitivity.

One possibility to reduce the effect of interactions, that we will
study in this thesis, is to use a thermal (i.e. non-condensed) ensemble
of ultracold atoms trapped on an atom chip. This can be seen as the
equivalent of using white light in optics to reduce nonlinear effects
[152]. In such a scheme, the coherence time will strongly depend on
the symmetry of the interferometer arms.

38
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4.2 role of symmetry

We are interested in estimating the coherence time (related to the in-
terferometer contrast) for thermal ensemble of atoms which are split
and then evolve in two slightly different wells.

On the one hand, considering a semiclassical model, an atom can be
assimilated by a point mass. Assuming that two point masses begin
with the same position and velocity, they are separated after a certain
time by a distance δx. One can estimate the coherence time τc as the
time at which δx = λdB with λdB = h̄

√
2π/mkBT is the thermal de

Broglie wavelength, T is the temperature of the atomic ensemble, and
h̄ and kB are the reduced Plank and Boltzmann constants. Moreover,
we assume that the potentials are harmonic such that : Va = mω2

a x2/2
and Vb = mω2

b x2/2, with ∆ω = |ωb −ωa| ≪ ωa, ωb. Thus, the motion
of the atoms in the two wells can be easily determined, and so, one
can deduce that : δx ≈ xm∆ωτc, where xm is the amplitude of the
oscillation in the wells, which can be approximated by the character-
istic size σ of the thermal cloud : xm ≈ σ =

√

kBT/mω2
a . By combing

the previous expressions, one can deduce that the coherence time is
approximately given by :

τc ≈
√

2πh̄/(ηkBT) (68)

where η = ∆ω/ωa is the relative frequency difference.
On the other hand, considering a simplified quantum model where

the atoms are trapped in harmonic potentials, it will be shown in
section 7.2.2 by neglecting the splitting dynamics, that the coherence
time is approximately given by equation (68).

For example, in order to limit the dissymmetry effect on the co-
herence time to 100 ms with T = 100 nK, the relative difference in
frequency must not exceed 2 × 10−2, which requires a careful design
of the atomic splitter.

In the next section, we discuss an interferometer design1 on chip
intended to achieve a good level of symmetry and we investigate the
principle of several possible configurations for a symmetrical beam
splitter for thermal atoms trapped on an atom chip using near-field
microwave dressing [71].

1 An alternative interferometer design using thermal trapped atoms is discussed in
[153].
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4.3 symmetrical interferometer in the quasi-resonant

regime

The physical implementation of a symmetrical atomic beam split-
ter on chip poses tremendous challenges. Nevertheless, microwave
internal-state labeling of the interferometer paths, as demonstrated in
[71], offers an accurate control of the splitting and recombination pro-
cess because it allows an almost a selective control of the desired hy-
perfine state by controlling the microwave frequency. Compared with
optical potentials, microwave near-field potentials have the advan-
tage of negligible spontaneous emission, modest power requirement,
and potentially compactness. Moreover, the potential customization
of this method is promising to design symmetrical state-selective po-
tentials [85, 104].

4.3.1 Description of the interferometric sequence

In this section we describe the elementary principles of a trapped-
atom interferometer on chip using the state-selective labeling method.
The aim of this interferometer is to measure the phase shift induced
by external perturbations (such as gravity) that affect the motional
states of the atoms. The interferometer sequence that will be consid-
ered here is described by the following steps :

• Cooling and trapping of ultracold atoms to prepare a set of
atoms in the first internal state |a〉, with an initial spatial posi-
tion r0 close to the chip surface (Cooling and Trapping).

• Transfer of the atoms in a superposition with equal weight of
the internal states |a〉 and |b〉, using a combination of the mi-
crowave and radio-frequency fields ( π

2 -Pulse). This derives each
atom to an intermediate state : (|a〉+ |b〉)/

√
2 (Internal-State Ma-

nipulation)

• Spatial separation of the atoms in two wavepackets using a mi-
crowave potential that depends on atom internal state (Split-

ting).

• Accumulation of the phase difference Φ related to the evolution
of the atoms internal and external states. The atoms are then in
the state : (|a〉+ exp(−iΦ)|b〉)/

√
2 (Holding).

• Spatial recombination of the states |a〉 and |b〉, in a similar but
reversed manner than the Splitting step (Spatial Recombination).

• Internal-states recombination by applying a second π
2 -pulse (In-

ternal Recombination).

• Measurement of the interferometer phase Φ. The measurement
can be performed by counting the atoms in each state. If the
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internal states evolution is well-controlled, one can have access
to the external perturbation (Phase Measurement).

Figure 15: Trapped-atom interferometer on chip using the state-selective la-
beling method (concept) : Atoms are held in a magnetic microtrap
and manipulated using a suitable combination of a microwave
and a radio-frequency fields. The interferometer sequence is
based on a Ramsey scheme [154]. The Figure is modified from
[155].

4.3.2 Coherent internal-state manipulation

Atom-chip experiments are subject to ambient magnetic noise and to
thermal magnetic near-field noise [156], which can ultimately limit
their performance. This effect can be limited by choosing a pair of
states whose energy difference is insensitive, at least in the first order,
to magnetic-field fluctuations. This is the case for the so-called "clock"
states : |a〉 ≡ |F = 1, mF = −1〉 and |b〉 ≡ |F = 2, mF = 1〉 hyperfine
levels of the 5S1/2 ground state of 87Rb atoms, under the appropriate
static field. These states are known to be robust against decoherence
[90]. Recently, a high-performance chip-based atomic clock with a
long interrogation time has been shown experimentally [14].

The microwave state-dependent potentials discussed here can be
performed by a combination of static magnetic field B(r) and mi-
crowave field Bmw(r, t) created by the atom chip, as shown in [71].
Thanks to the advance in microfabrication techniques [86, 157], one
can use a multilayer chip to create the static and microwave magnetic
near-fields, and precisely control their relative positions, amplitudes
and directions. However, unlike the static and radiofrequency cur-
rents, the microwave currents cannot be carried by simple wires on
chip. Since the microwave wavelength is comparable to the atom chip
dimensions, its transmission demands a careful design of the guiding
structures [135, 142, 144, 158], in order to avoid undesirable couplings,
losses and reflections.

For internal-state manipulation of the atoms, one can couple co-
herently both clock states by a two photon transition ( π

2 -pulse). The
coupling can be accomplished using a suitable combination of a blue
detuned microwave and red detuned radio-frequency fields (as can
be seen in Figure 7) [71, 155].
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4.3.3 Adiabatic Microwave potentials

The magnetic component of the microwave field couples the sublevels
|F = 1, m1〉 to the sublevels |F = 2, m2〉 and leads to energy shifts that
depend on m1 and m2. In a spatially varying microwave field, this
results in a state-dependent potential landscape [71].

Microwave potentials in the regime of large detuning

The microwave coupling between two bare states |1, m1〉 and |2, m2〉
can be captured by a simple dressed-atom approach, that has been
already applied to describe the atomic motion in laser light in the
regime of large detuning [125].

In this regime, the microwave gives rise to the AC Zeeman shift
Vmw, that can be approximated by the following dressed states model :

For the sublevels of F = 1 : Vmw =h̄|Ωm2
m1
|2/4∆m2

m1
(69a)

For the sublevels of F = 2 : Vmw =− h̄|Ωm2
m1
|2/4∆m2

m1
(69b)

where :

Ω
m2
m1 = Cm2

m1 µBBeff
mw/h̄ the Rabi frequency due to the coupling

of the states |1, m1〉 and |2, m2〉
Cm2

m1 a coupling coefficient that depends only

on the latter states (cf. Appendix C)

µB the Bohr magneton

h̄ the reduced Planck constant

Beff
mw the microwave field component along

the parallel (normal) local direction of B

in case of π-transition (σ-transition)

∆
m2
m1 = ∆hfs − (m1 + m2)ωL the microwave detuning between the

coupled states

∆hfs = ωmw − Ehfs/h̄ the detuning from the transition

at B = 0

ωmw the microwave frequency

ωL = µBB/2h̄ the Larmor frequency

This simple model, discussed in section 3.1, holds only if the mi-
crowave is far detuned from all transitions : |Ωm2

m1 | ≪ ωL, |∆m2
m1 | and

so, the bare states |1, m1〉 and |2, m2〉 are only weakly coupled.
The two-state description would be perfectly verified if only σ or π-

transitions were involved, so that the state |1, m1〉 would couple only
to the state |2, m2〉 due to selection rules as illustrated on Figure 16.
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However, in practice both the static field and the microwave field
polarizations are spatially varying, and transition mixing occurs.

Nevertheless, the two-state model is approximately valid in case of
quasi-resonant coupling regime such as : |∆m2

m1 | ≪ ωL(B0), because
the other transitions are far off-resonance in this case, and where :

B0 the static filed strength at r = r0

r0 the static trap center

The value of B0 is usually set to the magic field value B0 = B0
m, so one

can define henceforth the reference frequency :

ω0
L = µBB0

m/2h̄ the Larmor reference frequency in r0

ω0
L ≃ 2π × 6.26 MHz with B0

m ≃ 3.23 G.

Regarding the clock states, both are magnetically trappable and
have nearly identical magnetic moments. Therefore, they can be trapped
by nearly the same static potential : Vdc = µBB/2 and the potential of
the clock dressed states ¯|a〉 and ¯|b〉 is given by the following :

{

V
¯|a〉 = Vdc + V

|a〉
mw

V
¯|b〉 = Vdc + V

|b〉
mw

(70)

where V
|a〉
mw and V

|b〉
mw are the microwave energy-shifts of the bare states

|a〉 and |b〉 which are given by the equations (69a) and (69b), respec-
tively.

A notable difference compared to the optical cases is that a quasi-
resonant coupling (i.e. small detuning) is possible because the ground-
state hyperfine levels have a negligible spontaneous emission.

Adiabatic microwave potentials in the quasi-resonant regime

We will consider here the spatial dependence of the magnetic fields :
B = B(r) and Bmw(t) = Bmw(r, t). These fields can be used to create
a space-dependent microwave potential. If the motion of the atom in
the resulting potential is sufficiently slow, its internal state follows
adiabatically the potential spatial variation and the atom stays in the
initial dressed state. The adiabaticity condition is on the form [84] :

|Ω̇m2
m1

∆m2
m1
| ≪

(

|∆m2
m1
|2 + |Ωm2

m1
|2
)3/2

(71)

Once this condition is satisfied, one can write the microwave poten-
tial shift for the bare clocks states, as discussed in section 3.1, in the
following form :















V
|a〉
mw = h̄

2

[

S∆a

√

|Ωa|2 + |∆a|2 − ∆a

]

V
|b〉
mw = − h̄

2

[

S∆b

√

|Ωb|2 + |∆b|2 − ∆b

]

(72)
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where S∆a
(S∆b

) gives the sign of ∆a(r0) (∆b(r0)).
One can show that these expressions are identical to equations (69)

for large detunings. Moreover, these expressions are valid even in the
vicinity of resonance (∆m2

m1 → 0).
In the dressed-state picture, if the term S∆a

has a positive (nega-
tive) sign, the state |a〉 follows initially (at t = 0+) the upper (lower)
dressed state |+〉(|−〉) which has the following energy :

E± = ± h̄

2

√

|Ωa|2 + |∆a|2 (73)

where +(−) refers to the latter states. In the same reference, the en-
ergy of the bare state |a〉 is given by h̄∆a/2. Hence, the microwave en-
ergy shift given by equation (72) can be deduced, once S∆a

is known.
A similar demonstration can be performed for the state |b〉. Yet, this
analysis assumes that the atoms are at motional equilibrium in the
static trap center r0 before the beginning of the interferometer se-
quence (for t < 0) and that the dressed energies variations are per-
formed adiabatically.

In the next section, we will propose a design of a symmetrical
beam-splitter based on the latter microwave shifts expressions since
the static potential Vdc is (approximately) identical for the both clock
states.

4.3.4 Principle of a symmetrical microwave potentials

To achieve the highest possible level of symmetry, we propose to
use two microwaves frequencies on two independent coplanar waveg-
uides (CPW). We place the two CPWs at the same distance δ from the
static trap center (i.e. δ1 = δ2 in Figure 17) and we choose microwave
frequencies to be in the quasi-resonant coupling regime. Hence, each
waveguide interacts preferentially with only one of the two clock
states since its microwave frequency is off resonance for the remain-
ing states. This allows in principle a quasi-independent experimental
control of the potentials in the two arms of the interferometer and
makes this scheme a good candidate for implementing a symmetric
configuration.

Figure 16 illustrates two possible ways to design a symmetrical
beam splitter by either using the π or σ-transition. In the case of
π-transition, the microwave frequencies are chosen such that the de-
tunings ∆π

a = ∆−1
−1 and ∆π

b = ∆1
1 in the static trap minimum r0 have

the same absolute value but opposite signs : ∆a(r0) = −∆b(r0) = ∆0.
In the same way, the Rabi frequencies Ωπ

a = Ω−1
−1 and Ωπ

b = Ω1
1

are equal at r = r0 : |Ωa(r0)| = |Ωb(r0)|, if we inject the same mi-
crowave power Pmw in the waveguides since the coupling coefficients
C−1
−1 and C1

1 are equal (i.e. P1 = P2 in Figure 17). Under these con-
ditions, and considering a simple one-dimensional model, one can
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Figure 16: Energy levels of the 87Rb ground states in combined static and
microwave fields. To generate symmetrical state-dependent po-
tentials, two microwave near-fields are used to couple the clock
states |a〉 and |b〉 to two auxiliary states. Two combinations are
possible by an adequate choice of the microwave frequencies us-
ing either π (solid line) or σ-transitions (dashed line). Ideally, in
each case, the Rabi-frequency Ω and detuning ∆ are the same (in
absolute value) for both states. In this simple model, the resulting
dressed states |ā〉 and |b̄〉 are shifted in energy by nearly the same
quantity Vmw.

show that both the detunings and the Rabi frequencies are symmet-
rical : ∆a(−x) = −∆b(x) and |Ωa(−x)| = |Ωb(x)|, which implies to-
gether with equations (72) and (70), the required symmetry of the po-

tentials : V
|a〉
mw(−x) = V

|b〉
mw(x) and V |ā〉(−x) = V |b̄〉(x). Similar demon-

stration can be performed to show the symmetry of the potentials
using σ-transitions, if the injected microwave powers satisfy the fol-

lowing condition : P2/P1 =
(

C0
−1/C1

0

)2
= 1/3.

In practice, this symmetry is not perfect in particular because of
the effect of non-resonant transitions. Sections 5.2 and 6.3 discuss this
imperfect symmetry of the potentials in detail.

4.3.5 Potential-well and potential-barrier beam-splitter

Using the state-depend microwave potentials, one can create either a
microwave potential-barrier or a microwave potential-well by choos-
ing the detuning ∆0. Figure 17 shows an example of two symmetrical
potentials barriers : the detuning ∆0 is positive and corresponds to
blue (red) detuning of π-transition related the state |a〉 (|b〉). In this
case, the dressed atoms in state |a〉 (|b〉) are trapped in the vicinity of
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low Rabi frequency, and therefore, the microwave AC Zeeman shifts
seen by the atoms can be approximated locally by equations (69). In
the case of large detunings, it can be seen on the latter expressions
that the attractive or repulsive nature of the microwave energy shift
depends only on the sign of the detuning.

In general, using equations (72), one can show that the sign of the

microwave energy shift initially at r = r0 is given by S∆a
(S∆b

) for V
|a〉
mw

(V |b〉
mw) respectively. The microwave beam-splitter can be performed by

increasing adiabatically the Rabi frequencies |Ωa| and |Ωb| in a simi-
lar manner, by increasing the microwave power P1 and P2, while keep-
ing the detunings constant. In such a case, each microwave energy
shift increases during the splitting stage |Vmw(t)| > |Vmw(t = 0+)|
and its sign remains unchanged. On the other hand, one has to pay
attention to the adiabaticity condition especially in the beginning of
the splitting : t = 0+ since Ω

m2
m1(t = 0+) ≈ 0 and so the right-hand

term of equation (71) is minimum.
Using the same chip configuration, experimental implementation

of both kinds of beam-splitter is possible by tuning the microwave
frequencies. Nevertheless, their physical characteristics are different
especially in term of the interferometer symmetry and the splitting
distance. These aspects will be discussed and the pros and cons of
each splitting method will be given in the following sections.

4.3.6 Axial and transverse beam-splitter

The orientation of the microwave field with respect to the static mag-
netic field is crucial for the topography of the effective microwave
potentials (cf. equations (70) and (72)). In this section, we investigate
the possibility of performing axial and transverse splitting with this
technique. For the sake of simplicity, we assume that the static mag-
netic trap is performed by the combined fields of an infinite wire and
a external homogeneous bias fields (cf. section 2.2.3). The field direc-
tion in the minimum of the trap is called the trap axis. It is given in
this case by the trapping wire direction. Considering this simple one-
wire trap model, one can examine two extreme cases : the trap axis
is either parallel (y-axis) or perpendicular (x-axis) to the waveguides
direction.

In the first case (I0 > 0, I1 = 0 in Figure 17), the trap and the waveg-
uides are invariant under translation along y, reducing the system to
the two-dimensional (2D) transverse plane. Therefore, the splitting
occurs along the transverse (radial) directions : x and z, as can be
seen in Figure 18a, which is similar to the case of splitting in a radio-
frequency based double well [67]. We point out that the microwave
field is perpendicular to the trap axis, which tends to select the σ-
transitions in the vicinity of the trap minimum. Hence, the coupling
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scheme in Figure 16 using σ-transitions2 is more suited in this config-
uration.

In the second case (I0 = 0, I1 > 0 in Figure 17), the problem is not
invariant under translation anymore, and the splitting is performed
along the weak direction, as can be seen in Figure 18b, which is simi-
lar to the experimental demonstration in [71] using π-transition. For
high aspect ratio of the static trap : ωy,z/ωx ≫ 1, the splitting is well
approximated by an axial one-dimensional problem.

This single infinite-wire trap model, despite its simplicity, shows
that both transverse and axial splitting are conceptually possible us-
ing microwave potentials in the quasi-resonant regime, and their phys-
ical implementation can be made on the same chip.

Nevertheless, in the case of transverse splitting, numerical simula-
tion using a more realistic trap model on chip, based on a Z-trap or
Dimple trap, shows that axial splitting cannot be neglected. In this
case, the splitting direction depends on the microwave power which
could be a drawback for precision measurements. This drawback can
be solved by a careful design of the static trap, which will be dis-
cussed in section 6.2.4.

2 Using the σ-transitions, it is worth noting that the state |a〉 can be coupled to two
different sublevels : |2, 0〉 and |2,−2〉, where the state |b〉 can be coupled to only one
sublevel : |1, 0〉. Yet, a coupling between |a〉 and |2,−2〉 cannot be used to design a
symmetrical beam-splitter, since the dependence of the detunings on B are different,
and so the symmetry condition ∆a(−x) = −∆b(x) can not be fulfilled.



4.3 symmetrical interferometer in the quasi-resonant regime 48

Figure 17: Schematic close-up of the experiment region on the atom chip.
(a) Top view of wire layout. (b) Cut through substrate. The cen-
tral wires (in yellow) that carry the static currents : I0 and I1
are used to create a static microtrap at a distance h0 from the
substrate surface (r = 0 corresponds to these wires crossing).
Two identical sets of three wires, separated by the same dis-
tance dw, in the upper layer (in orange) form two microwave
coplanar waveguides CPW1 and CPW2. An ideal CPW in even-
mode has the following microwave-current amplitude distribu-
tion : {−Imw/2, Imw,−Imw/2} as indicated which corresponds to
an injected microwave power : P = |Z0||Imw|2/2. The CPWs are
placed at the same distance |δ1| = |δ2| = δ from the center. An
insulating layer separates the CPWs from the substrate surface
by a distance dT . The static potential (solid line, blue) is initially
used to trap the atoms, then shifted by the (repulsive) microwave
energies (dashed lines, cyan and magenta). The resulting poten-
tials are state-dependent (solid lines, green and red) that can be
used to split the clock states |a〉 and |b〉 in a symmetrical manner.
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Figure 18: Schematic of the atoms splitting along (a) the longitudinal (ax-
ial) direction (b) the transverse directions of the static trap. 3D-
equipotentials representation of the clock states : |a〉 (orange)
and |b〉 (green), for the potential kBT with T = 100 nK (about
h × 2 kHz).



5
A X I A L B E A M - S P L I T T E R : I N T E R F E R O M E T E R
A N A LY S I S

5.1 introduction

Coherent manipulation of internal [14, 91] and motional [67, 75, 159,
160, 161] states on atom chips has been demonstrated first in separate
experiments. The combined coherent manipulation of internal and
motional states with a state-dependent potential on a chip was shown
for the first time in the experiment reported in [71]. A state-dependent
microwave potential has been used to implement a trapped-atom in-
terferometer with internal-state labeling of the interferometer paths.
The state-selective potential was generated by the on-chip microwave
near-fields, to separate coherently the atoms along the axial direction
of the static trap.

We study here the axial beam-splitter discussed in the previous
chapter : a similar beam-splitter than [71] using ultracold non-condensed
atoms, with an additional constraint on the symmetry of the mi-
crowave potentials.

In this chapter, we focus on the study of such an axial beam-splitter
using π-transitions1 (cf. Figure 16 and section 4.3.6). In particular, we
discuss the effect of transition mixing, and we compare the possible
splitting methods using either an attractive or a repulsive microwave
potential.

Moreover, we discuss some physical factors limiting the ultimate
performances of this interferometer such as : the microwave shift of
the non-resonant transitions, and the effect of the fluctuations of both
static and microwave fields on the interferometer coherence. Several
solutions and practical designs will be discussed. Finally, we discuss
the stability of the gravitational signal of the interferometer for the
perspective of the development of a high performance gravimeter on
a chip.

1 Using the σ-transitions, splitting often occurs along both axial and transverse direc-
tions, as will be discussed in section 6.2.
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5.2 effect of transition mixing

In this section, we shall discuss the validity of the two dressed states
model used previously to design the symmetrical beam splitter. For
this, one has to take into account the non-resonant transitions that can
break the symmetry. Hence, in case of quasi-resonant π-transition, we
include also the σ-transitions resulting from the same microwave field
and all the transitions due to the second microwave signal.

This transition mixing is expected to disturb the symmetry of the
potentials since the perturbations due to the non-resonant σ-transitions
are not symmetrical. While the first clock state |a〉 is coupled (pertur-
batively) to two states : |2,−2〉 and |2, 0〉, the second clock state |b〉 is
coupled to only one state : |1, 0〉. Here, we propose to quantify this
dissymmetry effect.

A complete description of microwave potentials should consider
the different coupling between the eight states : |F, mF〉 which define
a basis of the 87Rb ground level. Using only one microwave frequency
ωmw, the Hamiltonian H is given by the following [86] :

Ĥ0 = ∑
m2

(

−1
2

h̄∆hfs + h̄ωLm2

)

|2, m2〉|n〉〈n|〈2, m2|

+ ∑
m1

(

1
2

h̄∆hfs − h̄ωLm1

)

|1, m1〉|n + 1〉〈n + 1|〈1, m1| (74a)

ĤF(ωmw) = h̄ωmw(a†a + 1/2) (74b)

ĤAF(ωmw) = ∑
m1,m2

[

1
2

h̄Ωm2
m1
|2, m2〉|n〉〈n + 1|〈1, m1|+ c.c.

]

(74c)

H = Ĥ0 + ĤF(ωmw) + ĤAF(ωmw) (74d)

where a† (a) is the creation (annihilation) operator, Ĥ0 is the Hamilto-
nian of the system in presence of the static field only, ĤF is the Hamil-
tonian of the microwave field and ĤAF describes the atom-microwave
interaction. The eigenstates of ĤF are the photon number states : |n〉
with a†a|n〉 = n|n〉 and the eigenvalues of ĤF are : (n + 1/2)h̄ωmw.

If the conditions : µBB, µBBmw, h̄∆hfs ≪ h̄ωmw with ∆hfs = ωmw −
ωhfs are satisfied, the rotating wave approximation can be made (cf.
section 3.1). Thus, we consider only the set of 8 states :

S(n) = {|F = 1, mF = −1...1〉|n+ 1〉, |F = 2, mF = −2...2〉|n〉} (75)

and we neglect the coupling between different sets S(n). In the fol-
lowing, we suppress the reference to the field state, as H does not
depend on the set of levels (i.e. the value of n). We also drop the con-
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stant term (n + 1/2)h̄ωmw, which is a common energy offset for the
states in S(n). Hence, the Hamiltonian H can be simplified to :

H0 = ∑
m2

(

−1
2

h̄∆hfs + h̄ωLm2

)

|2, m2〉〈2, m2|

+ ∑
m1

(

1
2

h̄∆hfs − h̄ωLm1

)

|1, m1〉〈1, m1| (76a)

HAF(ωmw) = ∑
m1,m2

[

1
2

h̄Ωm2
m1
|2, m2〉〈1, m1|+ c.c.

]

(76b)

H = H0 + HAF(ωmw) (76c)

In our case, one has to consider the effect of both microwave fre-
quencies. As discussed in sections 3.2.1 and 8, the coupling between
the CPWs is very low, and will be neglected here.

Moreover, based on a second harmonic approximation [162], the
role of the microwave frequencies interplay : ωmw,2 − ωmw,1 can be
neglected if :

µB(Bmw,1 + Bmw,2) ≪ h̄(ωmw,2 − ωmw,1) (77)

which is well satisfied in experiments.
The total Hamiltonian HT is then given by the superposition of each

CPW (i.e. microwave frequency) contribution with the Hamiltonian
H0 such as :

HT = H0 + HAF(ωmw,1) + HAF(ωmw,2) (78)

The dressed states and corresponding energy levels can be obtained
by the numerical diagonalization of the 8 × 8 matrix HT. To calculate
the potentials at r, one needs to define carefully the microwave polar-
ization with respect to the static field in order to calculate the matrix
elements Ω

m2
m1 . The remaining terms are scalars and do not depend

on the orientation of the quantization axis. This procedure has to be
repeated in each point r.

Figure 19 illustrates a numerical calculation of the potentials of
the dressed clock states along the splitting axis x and the trap trans-
verse axes y and z. The microwave energy shifts Vmw are calculated
for the clock states : |a〉 (in cyan) and |b〉 (in magenta) using two
different methods : (with plus-sign) a numerical diagonalization of
the full Hamiltonian (cf. equation (78)) and (with dashed line) ap-
proximated analytical model (cf. equation (79)). A good agreement is
observed between the two models since |Ωmax/ω0

L| ≪ 1. (e.g. here,
|Ωmax/ω0

L| = {0.097, 0.071} in (a) and (b) respectively.)
Once the three-dimensional potentials are generated, one can search

numerically for the new minimum positions then estimate the eigen-
frequencies, which gives a first estimate of the overall dissymmetry.
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In this case, as shown in Table 2, the highest frequency difference be-
tween the two wells is along x-axis and it is on the order of (7%, 2%)
for a potential-well and a potential-barrier, respectively.

To make the potential dissymmetry smaller, one can make profit
from the tunable experimental parameters (power and frequency in
each waveguides) to balance out the frequencies of the two traps. This
procedure can be done either experimentally or numerically.

For a time-efficient numerical optimization and to avoid iterative
diagonalization of HT, it is possible to generalize the quasi-resonant
model of microwave potentials (cf. equation (72)) by considering all
possible transitions two-by-two, if the condition : |Ωm2

m1 | ≪ |ω0
L| is

fulfilled, so that the anti-crossings [86] are well separated. Thus the
microwave energy shifts, using only one microwave frequency ωmw,
can be written in the form :

Va/b
mw (ωmw) = ± ∑

m1,m2

h̄

2

[

S
∆

m2
m1

√

|Ωm2
m1 |2 + |∆m2

m1 |2 − ∆m2
m1

]

(79)

where +(−) refers to the state |a〉(|b〉) and S
∆

m2
m1

gives the sign of

∆
m2
m1(r0). As described earlier, the contribution of both frequencies is

given by :

Va/b
mw,T = Va/b

mw (ωmw,1) + Va/b
mw (ωmw,2) (80)

This model simplifies considerably the calculation of the potentials
eigen-energies, and will be used in the chapter 7.2. The microwave
beam-splitter design presented earlier rests upon the symmetry of
the dressed states in the frame of the quasi-resonant coupling regime
(i.e. |∆0| ≪ ω0

L). Since the spontaneous emission is negligible for
microwave dressing, the detuning can be set arbitrarily low. How-
ever, this regime imposes supplementary constraints, related to the
trap depth and the sensitivity to the static magnetic field fluctuations,
which are discussed in the following sections.

Potential-well Potential-barrier

x̃ ỹ z̃ x̃ ỹ z̃

ωa/2π (Hz) 186.6 1655.9 1636.1 127.9 1933.1 1907.5

ωb/2π (Hz) 173.5 1654.4 1635.5 130.0 1937.3 1908.9

|∆ω|/2π (Hz) 13.1 1.47 0.685 2.12 4.19 1.46

|∆ω
ω | × 102 7.03 0.089 0.041 1.66 0.216 0.076

Table 2: The eigenfrequencies {ωa, ωb} and the dissymmetry ∆ω = ωb −ωa

of the microwave potentials {V|ā〉, V|b̄〉} related to the simulations
in Figure 19. The eigen-directions : {x̃, ỹ, z̃} are slightly rotated from
the chip reference : {x, y, z}.
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Figure 19: Simulated three-dimensional potentials of the dressed clock states : |ā〉 (in green) and |b̄〉 (in red) shown along the axial direction x and the
transverse directions y and z, for state-selective splitting using a potential-well (a) and a potential-barrier (b). The microwave energy shifts
Vmw are calculated for the clock states : |a〉 (in cyan) and |b〉 (in magenta) using two different methods (cf. text). The static potential (in blue)
is nearly identical for both states. The static currents on chip (shown in Figure 17) and the bias fields are chosen such that the static trap
(in blue) is located at the distance h0 from the chip surface (h0 = 60 µm in (a) and h0 = 100 µm in (b)), and has nearly the following axial
and radial frequencies : ω⊥/2π = 2000 Hz and ωx/2π = 100 Hz. The microwave frequencies are chosen such as : ∆a(r0) = −∆b(r0) = ∆0
(∆0/ω0

L = −0.1 in (a) and ∆0/ω0
L = 0.05 in (b)). The injected microwave powers in the CPWs are equal : P1 = P2 = Pmw (Pmw = 3P0/10 in (a)

and Pmw = 4P0 in (b), P0 ≈ 185 mW) and the CPWs are placed at the same distance δ1 = δ2 = δ = 27 µm with a distance between each CPW
wires dw = 18 µm. The insulating layer thickness is dT = 6.8 µm. With a good approximation, both static and microwave magnetic fields
are computed using one-dimensional Biot-Savart law, and the induced current has been neglected. The energy reference of the potentials
corresponds to the energy in the center of the static trap (µ0B0/2).
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5.3 trap depth of a potential-well beam-splitter

For a beam-splitter based on attractive microwave potentials, the de-
tuning of the lower (upper) clock states must be negative (positive) at
the static trap minimum r0 (i.e. ∆0 < 0). As illustrated in Figure 19a,
an opening of the resulting adiabatic potential occurs in this case at
two symmetrical positions from the trap center, corresponding to an-
ticrossings of the energy levels under microwave coupling [86]. This
occurs at the points where the detuning ∆

m2
m1 changes sign, defined

at r = rd with the resonance condition h̄ω = µBB(rd)/2. As a conse-
quence, the trap depth is reduced considerably to the order of h̄|∆0|
in the case of low microwave coupling : |Ωm2

m1 | ≪ |∆0|. In the general
case, an energy splitting between the coupled states occurs at reso-
nance, which reduce further the static trap-depth (TD) by approxi-
mately : h̄|Ωm2

m1(rd)|/2. As shown in Figure 19a, the trap depth along
the transverse directions is about : h × 72 kHz (kB × 3.4 µK), which is
still sufficient to trap an atomic ensemble with a temperature of few
hundred nano-Kelvin.

Such trap opening does not occur in the case of a splitting by re-
pulsive microwave potentials (potential-barrier splitter), since the de-
tuning does not vanish in this case. This effect is used in opportune
manner for evaporative cooling using radio-frequency coupling [162].
The same idea has been used to perform a radio-frequency beam-
splitter [84], where the second resonant potential is used to trap the
atoms in the two local minimums around the resonances, by ramping
up adiabatically the detuning from negatives to positives values.

−1 0 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Position (a.u)

E
n
er
gy

(a
.u
)

−1 0 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Position (a.u)

E
n
er
gy

(a
.u
)

−1 0 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Position (a.u)

E
n
er
gy

(a
.u
)

cba

Figure 20: Schematic diagram of adiabatic dressed potentials. (a) Unper-
turbed bare states in a harmonic trap are coupled by the mi-
crowave field at resonance (arrows). (b) In the dressed basis, these
levels are degenerated at resonance (r = rd) for a vanishing mi-
crowave coupling. (c) For a finite coupling, the levels are split by
nearly Ω

m2
m1(rd) (cf. equation 69). Hence, at resonance, the lower

potential opens which reduces the trap depth (solid line) and new
potential minima are formed for the upper potential (dashed line)
[84].
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5.4 axial beam-splitter analysis

In this section, we study the characteristics of an axial beam-splitter,
in particular the power efficiency and the splitting distance. Then, we
discuss the dependence of the trap frequencies with the microwave
power. and the role of the static field structure. Since the two interfer-
ometer arms are similar, we focus on the study of the splitting process
of atoms initially in the state |a〉 due to the microwave field created
by the waveguide : CPW1 in Figure 17.

5.4.1 Splitting distance and power requirement

In the following, we propose to verify the one-dimensional approxi-
mation numerically and then to establish a simple one-dimensional
model that predict the splitting distance for both splitting methods.

Using a full simulation of the resulting potentials V |ā〉(x, y, z), the
coordinates of the potential minimum rm = {xm, ym, zm} along the
3 axis : {x, y, z} can be estimated as explained previously. Figure 21

shows the variation of {xm, ym, zm} as a function of the microwave
power Pmw. In order to compare the two splitting methods, we use
the same static potential created using a Dimple trap and located
at the distance h0 = 60 µm from the chip surface. The remaining
parameters are set as in Figure 19. In particular, the initial detunings
|∆0| have different values : |∆0/ω0

L| = 0.1 and |∆0/ω0
L| = 0.05 for

a potential-well and a potential-barrier beam-splitter, respectively. In
the case of a potential-well, the detuning |∆0| cannot be set to a lower
value2 which reduces relatively, for a given Rabi frequency |Ωm2

m1 |, the
strength of the corresponding microwave shift (cf. equations (69)).

For low microwave power, the splitting using an attractive or repul-
sive potentials are similar. In a pinch, the repulsive potential has a
slightly better power-efficiency since the initial detuning |∆0| can be
set very low without compromising the trap depth (cf. equation (72)).

For a higher microwave power, despite the unfavorable choice of
the detuning |∆0|, the splitting is more efficient (in term of microwave
power) in case of an attractive beam-splitter, because the static po-

tential relax eventually around x
f
m and the atoms becomes mainly

trapped due to the microwave energy shift Vmw (shown in cyan in
Figure 19a), and so the position of the trap minimum xm converges
to the CPW position δ. The minima of the potentials along the trans-
verse directions (y and z) are weak (about |xm|/100), which confirms
the one-dimensional model assumed in section 4.3.4.

2 Otherwise the trap-depth would be very low as discussed in section 5.3
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Figure 21: The coordinates rm = {xm, ym, zm} along the axis : {x, y, z} of
the resulting potential V|ā〉 as function of the microwave power
P, for a potential-well (in blue) and a potential-barrier (in green)
and the values of the detunings are respectively set to : ∆0/ω0

L =
{−0.1, 0.05}. The static trap is located at a distance h0 = 60 µm
from the chip surface and has the angular frequencies : ωx/2π =
100 Hz and ω⊥/2π = 2000 Hz. The remaining parameters of the
simulation are given Figure 19.

5.4.2 The eigen-frequencies of the microwave trapping potential

For the sake of completeness, we show the angular-frequencies evo-
lution of the resulting potential in Figure 22 as function of the mi-
crowave power Pmw. Although the latter potential is not harmonic, the
harmonic approximation is justified at very low temperatures, and
can be used to describe the anisotropy of the atomic cloud. The ef-
fect of the potential anharmonicities and the variation of the angular
frequency along the splitting direction x will be treated in chapter 7.

For a potential-well beam-splitter, we have discussed the curve in-
flections in Figure 21 (in blue). Similar inflection points can be seen
on the profiles of the transverse eigenfrequencies {ωỹ, ωz̃} shown in
Figure 22.

In both case, the atomic cloud is compressed along the axial di-
rection by a factor of (2, 3) for a potential-barrier and a potential-
well respectively, which increases the atomic density. This variation
of the trap aspect-ratio after splitting is an important feature of the
axial splitting (by contrast to the transverse splitting where it remains
nearly constant, as will be shown in section 7.2).

5.4.3 The role of the static field structure

Beyond the simplified one-wire trap model discussed in section 4.3.6,
the structure of the static field components Bi, plays a crucial role
on the design of symmetrical microwave potentials. Using a typical
microtrap, such as Dimple trap or Z-trap, and considering only the
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Figure 22: Eigen-frequencies of the resulting potential V|ā〉(x, y, z) as func-
tion of the microwave power Pmw, for a potential-well (in blue)
and a potential-barrier (in green). The interferometer parameters
are similar to Figure 21.

π-transitions, one can show that the microwave energy shifts have the
following central symmetry :

V
|a〉
mw(−x,−y, z) = V

|b〉
mw(x, y, z) (81)

For this purpose, one can note the following properties of the static
and microwave fields : Bx(−x,−y, z) = Bx(x, y, z), By(−x,−y, z) =

By(x, y, z) and Bz(−x,−y, z) = −Bz(x, y, z) for a typical microtrap
and Bx

mw(−x, z) = Bx
mw(x, z), and Bz

mw(−x, z) = −Bz
mw(x, z) for a

CPW field. As B
y
mw = 0, the effective microwave field Beff

mw is here
given by :

Beff
mw = (BxBx

mw + BzBz
mw)/B (82)

considering only the π-transitions. Similar derivation will be given
in detail in section 6.2.1 using the σ-transitions. As a consequence of
equation (81), the minima of the potentials have also a central sym-
metry such as : {xa

m = −xb
m, ya

m = −yb
m, za

m = zb
m} and the eigen-

frequencies of both potentials are equal, which is conceptually very
important. Indeed, even if the one dimensional condition is not fully
verified, the required symmetry of the eigen-frequencies remains valid
if the effect of the non-resonant transitions can be neglected. The
residual displacement zm − h0 along the z-axis is similar for both
states and affects eigen-frequencies of both potentials in an identi-
cal manner. Moreover, the residual displacement ym along the y-axis
makes the splitting direction tilted from the x-axis with the small an-
gle : θab ≃ ym/xm.

For a Standard Ioffe-Pritchard (SIP)3, the coils can be placed rel-
atively to the chip such that the trap-axis coincides with the x-axis,
perpendicularly to the CPWs direction4, in order to select the π-

3 Discussed in section 2.2.2.
4 Always given by the y-axis in this thesis, as shown in Figure 19.
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transitions5. In this case, the symmetry properties of the static field B
gives rise to a different beam-splitter behavior.

First, the microwave shift Vmw does not depend on6 y, and so the
splitting of both states occurs in the xz-plane. Hence, there is no resid-
ual displacement along the y-axis (i.e. ya

m = yb
m = 0). This symmetry

property can be shown using equation (82) together with the mag-
netic field equations (9) and (67).

Second, the microwave shifts are not strictly symmetrical and, in
particular, the variation along the z-axis is different for both states
which affects the transverse frequencies symmetry7. In this case, the
dissymmetry of the potentials can be reduced by increasing the trans-
verse frequency ω⊥ of the static trap, in order to minimize the resid-
ual displacement along z.

Combing the advantages of the two previous beam-splitters would
be possible, if the microwave shifts would had an axial symmetry :

V
|a〉
mw(−x, y, z) = V

|b〉
mw(x, y, z) (83)

In this case, the splitting would be only along the x-axis (i.e. θab = 0),
strictly symmetrical such that : {xa

m = −xb
m, ya

m = yb
m, za

m = zb
m}, and

so the eigen-frequencies of the microwave potentials would be equal.
Using the π-transitions and the general form of an Ioffe Pritchard
trap 2.2.4, we show in Appendix D that the previous condition can
not be satisfied.

5 The π-transitions can be also selected if the SIP trap-axis is placed along the z-axis.
Yet, this is not relevant for a comparison with typical microtraps, which always have
a trap-axis on the xy-plane. Designing a microtrap with a trap-axis that has a large
inclination from the chip surface is in theory possible, but the resulting trap would
have a shallow depth [85].

6 As it is the case with the conceptual one-wire trap model discussed in section 4.3.6.
7 As the gradient seen by an atom is strongly dependent on its distance from the chip.
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5.5 sensitivity to the static field fluctuations

The coherence properties of the clock states, described earlier, are
critical for the interferometer design. Indeed, the differential Zeeman
shift is quadratic in magnetic field around a magic value B0

m = 3.229 G
[90], which makes the state pair insensitive, at the first order, to mag-
netic field fluctuations. The coherence properties of the clock states
mentioned previously (in section 4.3) only hold for : B0 = B0

m.
In our case, the presence of the microwave dressing might affect

this property, as will be discussed in the following. For this, let us
consider the case of quasi-resonant π-transitions (neglecting all tran-
sition mixing effects described in section 5.2). Hence, the dressed mi-
crowave potentials are assumed to be perfectly symmetric. In this
section, we consider the effect of both dressed potentials : V

¯|a〉 and
V

¯|b〉, but for the sake of clarity, we refer to a clock state : |a〉 or |b〉 by
|S〉.

A microwave adiabatic coupling with Rabi frequency Ω between
two states |S〉 and |P〉 results in a dressed state |S̄〉 which is a lin-
ear superposition of |S〉 and |P〉. Such mixture can spoil the good
coherence properties of the clock states since |S〉 and |P〉 have an op-
posite magnetic moment. Far from resonance (i.e. |∆| ≫ |Ω|), the
coupling effect can be treated in a perturbative manner such as :
|S̄〉 ≈ |S〉 ± |Ω/2∆||P〉, where +(−) refers to the case of potential-
barrier (potential-well) respectively. Using the latter expression, one
can define a contamination rate : κ = |Ω/∆|. When κ ≪ 1, the con-
tamination of |S̄〉 by |P〉 can be neglected. This low contamination
hypothesis is reasonable especially in the case of a potential-barrier
since the atoms are permanently repelled in the vicinity of |Ω| mini-
mum, but would limit, in all the cases, the coherent splitting to small
distances (few microns) [71].

In general, for a high contamination rate (κ ≥ 1), the dressed states
are given by equation (56). In particular, the weight of the bare states
|P〉 relatively to |S〉 in the dressed state |S̄〉 increases, and it is given
by (equation (58)) :

|RP/S| = (−1 +
√

1 + κ2)/κ (84)

which is always lower than 1. One can also verify that |RP/S| ≃ κ/2,
if κ ≪ 1, as described previously.

Here, we present a quantitative study of the contamination effect
in general case : low (κ ≪ 1) and high contamination rate (κ ≥ 1).
First, in the case of a perfectly-symmetrical interferometer configura-
tion, we discuss the critical contamination level allowed to preserve
the magic field. Then, we introduce a new interferometer configura-
tion in order to preserve the magic field even in the case of a high
contamination rate.
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5.5.1 Perfectly-symmetrical interferometer configuration

For this purpose, we use a rigorous description of the static Zeeman
shift EF,mF

given by the Breit-Rabi formula (5) of each hyperfine level
|F, mF〉 [87]. Therefore, an accurate estimation of detunings that take
into account the nonlinear dependence of the static field B is given
by :

∆a(B) = ωmw,1 − [E2,−1(B)− E1,−1(B)] /h̄ (85a)

∆b(B) = ωmw,2 − [E2,1(B)− E1,1(B)] /h̄ (85b)

The spatial dependence of the static field B can be neglected if the
condition : kBT ≪ h̄ωL(B0) is verified. For instance, the spatial varia-
tions seen by a thermal cloud is : δB/B0 ≈ kBT/h̄ωL(B0) ≈ 10−3 with
the following numerical values : T = 100 nK and B0 ≈ Bm

0 ≃ 3.23 G.
Furthermore, we suppose that Ω is constant, and its value is calcu-

lated using the contamination rate κ that we wish to study. Indeed,
we do not consider the spatial variations (i.e. gradient), and assume
that Ω is also constant across the atomic cloud. In practice, one should
only know Ω in the center of mass of the atoms in order to estimate
the contamination rate κ.

The energy difference ∆Ē(B) between the dressed clock states can
be deduced using the following :

∆Ē(B) = Ēb(B)− Ēa(B) (86a)

Ēa(B) = E1,−1(B) + V
|a〉
mw(B) (86b)

Ēb(B) = E2,1(B) + V
|b〉
mw(B) (86c)

where V
|a〉
mw and V

|b〉
mw are the adiabatic microwave shifts (cf. equa-

tion 72), which assumes a slow variation of the static field B seen
by the atoms. The microwave frequencies (ωmw,1, ωmw,2) in equations
(85), are chosen as in Figure 19. The detuning ∆0, which has been
introduced in section 4.3.4, is here used to calculate the microwave
frequencies with the following expressions :

ωmw,1 = ωhfs − 2ω0
L + ∆0

a (87a)

ωmw,2 = ωhfs + 2ω0
L + ∆0

b (87b)

∆0
a = −∆0

b = ∆0 (87c)

where ω0
L = ωL(B0

m) and B0
m is the static magic field in the absence

of the microwave field (B0
m is set to 3.23 G in the following numerical

simulations).

For low contamination (κ ≪ 1) in the case of a splitting by a
potential-well, Figure 23a shows that ∆Ē has a minimum correspond-
ing to a magic field Bm. As expected earlier, Bm is very close to the
static value B0

m. Yet, Bm exists only for contamination rates κ that are
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lower compared to some critical value κc. Hence, κ has to be kept very
low (typically less than a few percent) as shown in figure 23a.3. The
shown results are relative to the case of a potential-well beam-splitter
(∆0 < 0), and similar results can be found for a potential-barrier beam-
splitter (∆0 > 0).

On the other hand, for a high contamination value (κ ≥ 1), the
magic point does not exist for both beam-splitter cases as shown in
Figure 23b. This is due to the resonance behavior that occurs at B = Bs

(i.e. ∆(Bs) = 0) where the local variation of ∆Ē is very important. The
proximity of Bs and B0 = B0

m is due to the low initial value of the
detuning ∆0 since :

ωL(Bs) = ωL(B0)− ∆0/2 (88)

The resonance behavior, shown in Figure 23b, occurs at B = Bs which
does not depend on the applied microwave power (i.e. Ω). This prop-
erty can be used to perform a precise calibration of the static field
minimum B0, since the energy variation ∆Ē(B) around Bs in this case,
depends only on the setting of the microwave frequencies8,9.

Increasing |∆0| would allow a larger separation between Bs and B0
m,

and so a larger contamination κ could be used as shown in Figure
23a.3. In practice, |∆0/ω0

L| has to be kept low in order to preserve the
symmetry of the potentials (cf. section 5.2).

One can also notice in Figure 23b.2 that ∆Ē(B) has a new class
of minima around 3 G. Yet, these points cannot be reached because
the atoms would be lost around the resonance (cf. section 5.3). Un-
fortunately, by applying these results to the realistic beam-splitters
proposed in Figure 19, one can show that the magic field Bm does not
exist, since the contamination value seen by the atoms are estimated
to {1.21, 0.45} in (a) and (b) respectively.

In the following, we propose a solution to overcome the previous
difficulty by modifying the perfectly-symmetrical interferometer con-
figuration.

5.5.2 Perturbed-symmetrical interferometer configuration

The properties of the singular point Bs are closely related to the inter-
ferometer symmetrical design, proposed in section 4.3.4. In particular,
the amplitude of the energy variation and the sign of its slope around

8 Which can be performed with a good accuracy.
9 This property can be also used to reach experimentally the ideal symmetrical config-

uration with : ∆0
a = −∆0

b and P1 = P2 proposed in section 4.3.4. If the interferometer
is not perfectly symmetrical, the latter property is no longer valid.
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Figure 23: Contamination effect of the clock states for a perfectly-
symmetrical interferometer configuration. (a) For low contami-
nation (a.1) Energy difference ∆Ē as a function of B in case of a
potential-well for the detuning |∆0/ω0

L| = 0.1. From top (circle-
marked line) to bottom (solid line), colors correspond to the con-
tamination : κ = {0.1, 1, 1.5, 2, 2.25} × 10−2. (a.2) Arrows indicate
∆Ē(B) minima that correspond to the "magic" fields Bm. (a.3) Bm

exists only if κ < κc : a critical contamination rate that depends
on |∆0|. (b) For high contamination, ∆Ē as a function of B in
the cases of a potential-well (b.1) and potential-barrier (b.2) for
the detuning : ∆0/ω0

L = {−0.1, 0.05} respectively. From circle-
marked line to solid line, colors correspond to the contamination :
κ = {0.1, 0.25, 0.5, 0.75, 1}.

Bs can be changed by introducing a small perturbation to the interfer-
ometer parameters10 such as :

∆0
a = (1 + ǫ)∆0; ∆0

b = −(1 − ǫ)∆0 (89a)

Ωa = (1 +
ǫ

2
)Ω; Ωb = (1 − ǫ

2
)Ω (89b)

where ǫ is a perturbation parameter such that : |ǫ| ≪ 1, and which
has the same sign than ∆0 (i.e. ǫ∆0 > 0).

The effect of this perturbation on the symmetry of the potentials
is weak, especially for low contamination values (κ ≪ 1) where the
microwave shifts can be approximated by equations (69). In the lat-
ter case, using equations (72), the resulting relative dissymmetry is
approximately given by :

∆Vmw/Vmw = (κ2/2)ǫ +O(ǫ3) (90)

10 which can be done experimentally by changing the parameters of the microwave
fields.
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More generally, for high values of contamination the microwave
shifts can be approximated by equations (72), and so the relative dis-
symmetry as function of κ is about :

∆Vmw/Vmw =
(

1 − 1/
√

1 + κ2
)

ǫ +O(ǫ3) (91)

where (1 − 1/
√

1 + κ2) is a bounded function of κ. The previous esti-
mations are valid only in the limit of a small perturbation : |ǫ| ≪ 1.

The variation of the energy ∆Ē(B) in the case of a potential-well
are shown in Figure 25a where ǫ = −10−2. In this case, the magic
points Bm reappears and remains even in the case of high contamina-
tion (κ ≥ 1). Here, the slope sign of ∆Ē(B) around the resonance (i.e.
B ≈ Bs) has changed compared to Figure 23b.1. Hence, this pertur-
bation does not remove the static magic point B0

m but only shifts its
value, as shown in 25b.

Similar results can be found for a potential-barrier by simply invert-
ing the perturbation sign : ǫ = 10−2. Yet, in the latter case, the magic
field Bm would be shifted to the lower values (Bm < B0

m), since it is
related to the resonance position Bs < B0

m (cf. Figure 23b).
The initial detuning value has been chosen relatively high (|∆0| =

0.31 × ω0
L), which plays an important role to preserve the existence

of the magic point Bm up to high contamination values (cf. equation
(88)). Moreover, by choosing a lower initial detuning |∆0|, the per-
turbation would not play any significant role and the system would
behave exactly like in the perfectly-symmetrical configuration.

As can be seen in Figure 26, the maximal allowed contamination
κc remains very low11, if |∆0| is chosen lower than some threshold-
value : |∆T1

0 | ≃ 0.255×ω0
L, for a potential-well (∆0 < 0) and |ǫ| = 10−2.

Whereas, for |∆0| > |∆T1
0 |, κc increases in exponential manner.

This threshold-value |∆T1
0 | indicates the existence of a second min-

imum12 B
(2)
m close to the singular point Bs in addition to the first

minimum B
(1)
m which is close to the original minimum B0

m, as can
been seen in Figure 24. For a potential-well beam-splitter, as shown

in Figure 26, the second minimum B
(2)
m remains even for very high

contamination value (κ → ∞).
Both minima eventually collapse forming a single minimum if |∆0| >

|∆T2
0 |, where |∆T2

0 | ≃ 0.283 × ω0
L, for a potential-well, is a second

threshold-value. In the latter case, the variation of Bm as a function of
κ is continuous, as can be seen in Figure 25b. Therefore, it is possible
to follow adiabatically the evolution of the magic field Bm, in con-
trast to the intermediate case : |∆T1

0 | < |∆0| < |∆T2
0 | where an abrupt

variation (i.e. discontinuity) of Bm occurs, as shown in Figure 24.

11 In order of few percent as shown in Figure 23a.3.

12 The detuning ∆(B
(2)
m ) is very low in this case, so we have verified that its sign does

not change by increasing κ. It is worth noticing that B
(2)
m do not exist if the microwave

power is off (κ = 0).



5.5 sensitivity to the static field fluctuations 65

3.2 3.3 3.4 3.5 3.6

−4560

−4550

−4540

−4530

−4520

−4510

−4500

−4490

−4480

B (G)

(∆
Ē
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Figure 24: Energy difference ∆Ē as a function of B, in case of a potential-well,
with the initial detuning |∆0/ω0

L| = 0.27 and the perturbation
parameter ǫ = −10−2. From top to bottom, color lines correspond
to the ratio : κ = |Ω/∆0| = {0.075, 0.100, 0.125}. In this case, for

κ = 0.1, there exists two magic fields B
(1)
m and B

(2)
m .

As expected, the threshold-value |∆T2
0 | depends on the perturba-

tion value |ǫ|; in particular, it can be made lower by choosing a lager
perturbation value |ǫ| as shown in Figure 27.

In Figure 25, the initial value of |∆0| is relatively high. Nevertheless,
this does not compromise the validity of the two-level model used in
this section because the static field B0, initially seen by the atoms, al-
lows the selection of only π-transitions (i.e. B0.z = 0). In addition, the
interferometer symmetry is also not affected since |∆(Bm)| decreases
during the splitting to reach eventually 0.1 × ωL, as shown in Figure
25c, where the quasi-resonant coupling regime is valid.

Experimentally, the internal state superposition of the clock states
can be prepared initially in the magic static field B0

m, then the evolu-
tion of the magic field Bm can be followed adiabatically while splitting
by increasing the value of magnetic field in the trap center r0. This can
be done by changing the bias field values and without affecting the
position and angular frequencies of the static trap [85, 99]. Neverthe-
less, as Bm is now varying, one should pay attention to the variation
of the detuning value |∆| (cf. equation (85)) to estimate the contam-
ination such as : κa = |Ω/∆(Bm)| where |∆| is here defined as the
mean value of |∆a| and |∆b|; and κa is called adiabatic contamination
in the following.

The second derivative of the energy ∆Ē(B) at B = Bm is computed
in Figure 25d. Even though this variation shows an increase by a
factor of 10 compared to the initial variation, it is still important to
follow the magic point Bm variation in order to reduce the effect of
the static field fluctuations [112].
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Figure 25: Contamination effect of the clock states for a perturbed symmetri-
cal interferometer, in case of potential-well, with the initial detun-
ing |∆0/ω0

L| = 0.31 and the perturbation parameter ǫ = −10−2.
(a) Energy difference ∆Ē as a function of B. From top (circle-
marked line) to bottom (solid line), colors correspond to the ratio :
|Ω/∆0| = {0.093, 0.168, 0.235, 0.301, 0.365}. (b) The magic field
Bm as function of the contamination κ = |Ω/∆0|. (c) Assuming
that the system follows adiabatically the evolution of the magic
Bm, the detuning evolution is given by : |∆(Bm)|. The star mark-
ers correspond to the minima of the energy curves shown up
here and with the adiabatic contamination κa = |Ω/∆(Bm)| =
{0.1, 0.25, 0.5, 0.75, 1}. (d) The sensitivity to the magnetic field
fluctuations around the magic field Bm is given by the quadratic
term : ∂2∆Ē/∂B2)B=Bm .

Finally, it is worth noting that the spatial variations of the trapping
static field B seen by the atoms during the splitting, are in the order of
few percents13, and should be also taken into account. This is another
advantage of the (perturbed-) symmetrical beam-splitter design since
the static magnetic field can be set at the magic value Bm for both
clock states at the same time, which is not possible using a unilateral
beam-splitter with only one CPW [71].

13 On the order of {3%, 1%} in Figure 19a and 19b, respectively.



Figure 26: The maximum allowed contamination rate κc = |Ω/∆0| as a func-
tion of the initial detuning |∆0|, for a potential-barrier (in blue)
and a potential-well (in red), and with the perturbation parame-
ter |ǫ| = 10−2. For κ > κc the magic point Bm does not exist. The
parameters ∆

T1
0 and ∆

T2
0 indicate the region where two minima

of ∆Ē(B) exists. It is colored in blue (red) for a potential-barrier
(well).
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0 |.
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5.6 sensitivity to the microwave field fluctuations

A variation of the Rabi frequency due to power fluctuations of mi-
crowave (or radio-frequency) field will degrade the interferometer
signal by two mechanisms :

• A noisy preparation of the population of the internal states af-
ter the first π/2 pulse will directly propagate onto the measured
transition probability after the second π/2 pulse, which is simi-
lar to a detection noise. This effect is fully treated and measured
in the atomic clock on chip experiment (TACC) [111].

• A change of the microwave energy-shifts due to the dressing
field seen by the clock states |a〉 and |b〉. Hence, the energy dif-
ference between the dressed states |ā〉 and |b̄〉 is sensitive to
the microwave power fluctuations. In case of this interferometer
design, this effect is expected to be the main source of techni-
cal noise. The state-of-art microwave-power stabilization is rela-
tively about : ∆Pmw/Pmw = 10−4 − 10−5 [163] and so the preci-
sion of the phase measurement would be limited by the same
amount.

In the following, by making profit of the interferometer symmet-
rical design, we propose several solutions to overcome the previous
limitation.

5.6.1 Design of the microwave frequency chain

The interferometer design described in section 4.3 requires the use of
two microwave frequencies : ωmw,1 and ωmw,2 with the average value :
ω̄mw ≃ Ehfs/h̄ ≈ 6.834 GHz and difference : ∆ωmw = |ωmw,2 − ωmw,1|
≈ 4ω0

L ≈ 2π × 9 MHz.
A technical solution to reduce the effect of the microwave power

fluctuation can be performed by using the same microwave source in
order to generate both microwave signals, and make the power fluc-
tuations of the source common mode for the two microwave dressing
potentials. This frequency conversion, shown in Figure 28a, is usu-
ally performed using a double balanced mixer (based on amplitude
modulation). In this case, the local-oscillator (LO) frequency and the
radio-frequency (RF) have to be set as the following : ωa = ω̄mw and
ωb = ∆ωmw/2, respectively. The mixer is able to generate two side
bands with the required frequencies. Nevertheless, this solution is
not suitable for two main reasons :

• The mixer will generate the frequencies ωmw,1 and ωmw,2 but
both come out of the intermediate frequency (IF) port. There
will be also leakage of the LO frequency and some harmonic
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intermodulation products. In order to be left with only ωa in
one channel and ωb in the other, very sharp filter are needed
with a quality factor in the order of 4ωL/ωhfs ≈ 7.5 × 105. Such
a filter does not exist in the market and it is challenging to build
one.

• Even if filters with the required rejection can be build, they need
also to be extremely-well amplitude-matched, which is very dif-
ficult to realize in practice.

Here, we propose a design of a microwave-frequency chain that
does not require the use of rejection filters. Instead, single-sideband
modulation (SSBM) can be used in order to avoid the bandwidth
doubling (RF signal), and the power wasted on a carrier (LO signal).
Single-sideband has the mathematical form of quadrature amplitude
modulation (QAM, IQ modulation) in the special case where one of
the baseband waveforms is derived from the other, instead of being
independent signals:

sssbm(t) = s(t) cos(ωat)− ŝ(t) sin(ωat) (92)

where s(t) is the RF signal, ŝ(t) is its Hilbert transform. Figure 28b
shows a schematic of the microwave frequency chain and its power
stabilization circuits. The SSMB component requires both I and Q sig-
nals which are two RF signals in quadrature. These signals have an
identical frequency and are generated using the same function gener-
ator (FG), so they are expected to have a common-mode power fluctu-
ation. The quality of the undesired sideband rejection rests upon the
precision of the quadrature phase between the RF I and Q signals (es-
timated about 25 dB) [164]. The output signals are expected to share
the same amplitude fluctuations caused by the RF and MW gener-
ators. However, a small difference of the power fluctuations might
occur, due to the difference between the two modulator components
(which should be limited since these components are passive). More-
over, amplification of the output signal is usually required because
the LO generator and SSBM components have a limited output power
(about 15 mW) [163]. Therefore, a microwave stabilization circuit is
recommended in order to reduce power fluctuations caused by the
amplifier. A relative power-precision of about : 10−4 has been shown
in [163].

Proposal to transfer to a stable double-well after splitting

After splitting the clock states, one can transfer them to a stable dou-
ble well. Here, we discuss two proposals to transfer the clock states
to :

• a static double-well after splitting using a potential-well

• a microwave double-well after splitting using a potential-barrier
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Figure 28: (a) Frequency conversion scheme (b) The microwave frequency
chain.

LO : Microwave Generator R&S SMF100A-B22-B32

GF : Generator Function TEKTRONIX AFG3102

SSBM : Modulator MITEQ SSM0208 C2MDQ | SDM0208LC1CDQ

Amplifier MC ZVA-183-S+

Coupler 20 dB PULSAR CS20-10-435/1

Coupler 3 dB AAM CS-PWD-2W-4G-8G-10W-Sf

Isolator AEROTEK H14-1LFF

Attenuator AAT-24-479/2S

Microwave Detector AGILENT NRP-Z11
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5.6.2 Static double-well

After splitting using an attractive potential, the atoms become eventu-
ally trapped (mainly) by the microwave energy Vmw, in the vicinity of
the CPWs positions (|xm| ≃ δ, cf. section 5.4.1). In this case, the wires
of each CPW can be used to create a static potential similar to Vmw, by
injecting static currents in the same proportion than its correspond-
ing microwave currents : {−Idc/2, Idc,−Idc/2}. Hence, the sensitivity
of the clock states potentials to the microwave field fluctuations is
suppressed during the holding time [165].

Moreover, it is possible to transfer adiabatically the atoms from the
microwave potential to the static potential. This can be done by rump-
ing up the static currents while switching off the microwave power in
each waveguide, which is technically possible using on-chip bias-tee
[163]. The created potentials are similar for both states, and so called
double-well (DC-DW) [69]. However, one has to verify that dressed
potentials of the clock states have a large trap-depth compared to the
atomic-cloud temperature, in order to reduce the mixing of the clock
states between the wells (due to the thermal motion of the atoms and
the tunnelling effect).

On the other hand, this proposal can be seen as a solution to
reduce the effect of the transition mixing during the holding time,
treated in section 5.2, since the potentials are conceptually perfectly-
symmetrical. In practice, small dissymmetry of the potentials is ex-
pected due to the experimental uncertainties about the static trap
positon r0 (due to the fabrication uncertainties or the width of the
wires). This type of dissymmetry is potentially low and can be mini-
mized experimentally by adjusting slightly the bias field values.

Further discussion about this proposal is given in section 5.7, where
the effect of fluctuations of the currents will be treated.

5.6.3 Microwave double-well

In this section, we discuss the possibility of creating perfectly sym-
metrical potentials using only microwave dressing, in order to avoid
the additional technical complexity required by the previous method
(additional static-currents sources, bias-tee on chip).

In general, to design perfectly-symmetrical potentials, one should
take into account, for each clock state, the potential spatial-dependencies
related to :

• The type of transition {π, σ} which depends respectively on

Beff
mw = {B

‖
mw, B⊥

mw}, (cf. equation (69)).

• The coplanar waveguides positions.
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The symmetry conditions, using a one-dimensional model, can be
written :

Direct − Potentials : V
|a〉, CPW1
mw, π (−x) = V

|b〉, CPW2
mw, π (x) (93a)

V
|a〉, CPW1
mw, σ (−x) = V

|b〉, CPW2
mw, σ (x) (93b)

Crossed − Potentials : V
|a〉, CPW2
mw, π (−x) = V

|b〉, CPW1
mw, π (x) (93c)

V
|a〉, CPW2
mw, σ (−x) = V

|b〉, CPW1
mw, σ (x) (93d)

For the sake of simplicity, we assume that the large detuning con-
dition is fulfilled, therefore, the microwave energy shift Vmw is given
by equations (69) and the spatial variation of the detunings ∆

m2
m1 can

be neglected (i.e. ∆
m2
m1(r) ≈ ∆

m2
m1(r0)). Using a symmetrical disposition

of the CPWs as shown in Figure 17, the latter equations can be sim-
plified to the following :

P1

∆π
a

= − P2

∆π
b

(94a)

P1

ω0
L + ∆π

a

+
1
6

P1

−ω0
L + ∆π

a

= −1
2

P2

ω0
L + ∆π

b

(94b)

P1

−4ω0
L + ∆π

a

= − P2

4ω0
L + ∆π

b

(94c)

P1

−3ω0
L + ∆π

a

= − P2

5ω0
L + ∆π

b

− 1
6

P2

3ω0
L + ∆π

b

(94d)

One can show that this system of equations has a unique solution14 :
∆π

a = −∆π
b = 2ω0

L and P1 = P2. This corresponds to the case where
only one microwave signal, with the frequency ωmw = Ehfs/h̄, in-
jected in both coplanar waveguides.

This proposal can be done experimentally using the microwave
frequency chain introduced in section 5.6.1, where the local oscilla-
tor (LO) frequency is set equal to ωhfs and the radio-frequency (i.e.
frequency-generator (FG)) power is progressively set to zero after the
splitting stage. This proposal simplifies considerably the microwave
frequency chain, at least during the holding stage, by using only one
microwave generator. As a consequence, the fluctuations of the mi-
crowave powers seen by each clock state are expected to be highly
correlated and the common-mode noise rejection would be better us-
ing this interrogation method.

On the other hand, one can notice that the detuning sign ∆π
a (∆π

b )
is positive (negative). Hence, the splitting should be done using a

14 Combining these equations implies the resolution of the following polynomial equa-
tion : (Ra − 2)(9 − 21Ra + 24R2

a − 14R3
a + 4R4

a) = 0, where Ra = ∆π
a /ω0

L. This equa-
tion has a unique real solution : Ra = 2.
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potential-barrier beam-splitter15, because these detunings should not
change signs while splitting (adiabatically), as discussed in section 5.3.

Figure 29a shows an example of the dressed potentials simulated
using a full-simulation (equation (79)). It turns out that the potentials
are not only symmetrical V |ā〉(−x) = V |b̄〉(x) but are also identical
V |ā〉(x) = V |b̄〉(x). Hence, each potential is self-symmetrical which
makes this proposal similar to the static double-well proposal and
justifies its naming as : microwave double-well (MW-DW).

The spatial variation of the direct and crossed potentials, described
by equations (93), are shown in Figure 29b. These potentials have been
generated using equation (72) and the spatial variation of the detun-
ings has been taken into account. In particular, one can notice that the
symmetry conditions of these potentials are satisfied. Since all the de-
tunings |∆m2

m1 | are larger than ω0
L, the approximation of a large detun-

ing regime is verified (Ωmax ≈ 0.4ω0
L with ω0

L = ωL(B0) and B0 = Bm
0 ).

Moreover, the spatial variation of the detunings, neglected earlier, has
no-significant effect on the symmetry of the clock state potentials. In-
deed, the relative dissymmetry of the eigen-frequencies, correspond-
ing to the trapping potentials, is : {3.9 × 10−4, 2.2 × 10−6, 2.2 × 10−6}
along the eigen-directions {x̃, ỹ, z̃}, which is a considerable improve-
ment compared to the potentials shown in Figure 19 (cf. Table 2).

Nevertheless, this proposal has a major drawback : due to the high
detuning values |∆m2

m1 |, a high microwave coupling Ω
m2
m1 is required

to produce a significant energy-shift (|Vmw| ≈ |Ωm2
m1 |2/4|∆m2

m1 |) in the
trap center, in order to reduce the mixing of the clock states between
the wells, as can be seen in Figure 29a. This can be done using two
different methods :

• Increasing the injected microwave power Pmw in the CPWs. In
practice, this is limited by the size of the CPW wires which has
been chosen intentionally small to create high field gradient. In
our chip design, the maximum allowed power is about : Pmax =

4P0 ≈ 740 mW.

• Decreasing the static trap distance from the chip surface h0 in
order to increase the Rabi frequency Ω

m2
m1 . This is the case of Fig-

ure 29 (h0/δ = 2.59, where h0/δ = 3.70 in Figure 19b). Yet, the
transfer after splitting to this configuration remains challenging,
since the chosen ratio h0/δ does not allow a state-selective split-
ting16 using a microwave potential-barrier beam-splitter17.

A possible solution would be to reduce further the CPWs dis-
tance from the center δ, either by reducing the size of the CPW

15 The initial detunings should be chosen such that : ∆π
a = −∆π

b > 0.
16 As a proof of principle, this method can be used to split only one state in a double-

well, by ramping up a barrier, in the static-trap center, in similar way to the well-
established RF-splitting method [67].

17 In this case, with h0/δ = 2.59, the microwave gradient in trap center would be weak
since it corresponds to the side lobe of the component Bx

mw, shown in Figure 14
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wires or by using two adjacent striplines18 instead of CPWs, as
described in section 8 and Figures 52 & 54b [Config. IV].

An alternative solution that does not require to change the chip
design, would be to reduce the ratio : h0/δ form 4 to 2.5 by
reducing h0 while splitting, which would demand a careful cal-
ibration of all the experimental parameters (DC and MW cur-
rents, bias fields).

• Decreasing the Larmor frequency ωL(B0), by reducing the static
field value B0 < B0

m = 3.23 G, in order to reduce the detunings :
|∆m2

m1 | ≈ 2ωL(B0). B0 is usually set equal to the magic field value
Bm that can be reduced, in case of a potential-barrier, up to
about 20% from the common value B0

m as discussed in section
5.5.2 (cf. Figure 25). Higher reduction of B0 value is possible,
at least in principle, by setting B0 < Bm. Yet, the magic field
condition is not fulfilled in this case.

This (MW-DW) proposal can be seen as an efficient tool to re-
duce the dissymmetry of the potentials and their sensitivity to the
microwave field fluctuations. However, with the current chip design
(cf. section 8), the transfer of clock states to the configuration shown
in Figure 29 requires a supplementary experimental and modelling
efforts.

Hereafter, we present a transfer-solution to the microwave double-
well configuration shown in Figure 29a, by setting the static field in
the trap center B0 lower than the magic value B0

m during the splitting
stage (B0 = B0

m/10).
As shown in Table 3, initially the ratio h0/δ is set to 4.4 to allow

a state-selective splitting using a potential-barrier, and the detunings
are set to : |∆a

π| = |∆b
π| = 0.05×ω0

L to allow a quasi-symmetrical split-
ting using π-transitions. The static trap is created using a Z-trap19.
The length of the central wire is L = 600 µm. The static-trap angular
frequencies can be adjusted by changing the static current flowing
through the Z-wire and the trap distance from the chip surface h0

by changing the bias-fields values. As shown in Figure 30 and Table
3, the splitting is performed by increasing the microwave power P

injected in the CPWs [step (a-b)], then the detunings are increased
progressively to reach eventually the required value ∆a

π = −∆b
π =

2ωL(B0) [Step (c-e)]. Once the splitting is performed, the distance h0

can be reduced to allow a high microwave shift |Vmw| without exceed-
ing the maximal allowed microwave power Pmax [step (d-f)]. Finally,
the static field value B0 is increased, by changing the bias fields, to
reach the magic value B0

m [step (f)]. This transfer solution is experi-
mentally realistic using the current chip design, yet the effect of the

18 A stripline (CPS) [166, 167] has only two wires, so the distance between the mi-
crowave signals 2δ can be reduced in principle to (almost) zero, but in practice, one
has to take into account the coupling effect.

19 Which has a better trap-depth than a Dimple trap in the case of low axial frequency.
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Figure 29: The microwave double-well proposal (MW-DW). (a) The clock-
state potentials shown along the axial direction x. The static field
parameters are chosen such the static trap Vdc has the follow-
ing characteristics : ω⊥/2π = 1800 Hz, ωx/2π = 38 Hz and
h0 = 35 µm and created using a Z-wire pattern on-chip where
the length of its central wire is : L = 600 µm. The microwave
field parameters are : ωmw,1 = ωmw,2 = Ehfs/h̄, P1 = P2 = 2P0
and the CPWs positions are : δ1 = δ2 = 13.5 µm (cf. Figure 52

[Config. I I I]). (b) The microwave energy shifts Vmw, classified as
direct (b.1, b.2) and crossed (b.3, b.4) potentials, are shown as a
function of x.

static field B fluctuations during this stage has to be analyzed experi-
mentally since B0 < Bm

0 .
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Figure 30: The potentials of the clock states during the splitting and trans-
fer to the microwave double-well configuration (MW-DW). The
parameters of the static and microwave fields, for each step (a-f),
are described in Table 3.

Step h0 B0 ωx/2π ω⊥/2π ∆π
a /ωL(B0) ∆π

b /ωL(B0) Pmw/P0

[µ m] [G] [Hz] [Hz]

a 60 0.323 30 650 0.05 −0.05 0.1

b
↓

60 0.323 30 650 0.05 −0.05 0.5

c
↓ ↓ ↓

60 0.323 30 650 0.5 −0.5 2

d
↓ ↓ ↓

60 0.323 30 650 1.5 −1.5 4

e
↓ ↓ ↓ ↓ ↓
50 0.323 30 930 2 −2 2

f
↓ ↓ ↓ ↓ ↓
35 3.23 38 1800 2 −2 2

Table 3: Sequence of the static and microwave fields parameters for splitting
and transferring the clock states to the microwave double well pro-
posal (MW-DW) shown in Figure 29 using the Config. I I I on our
chip (cf. Figure 52). The microwave powers injected in the CPWs
are set such that : P1 = P2 = Pmw. The static trap is created using a
Z-trap where the length of the central wire is : L = 600 µm.
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5.6.4 Proposal of symmetrical beam-splitter with one coplanar waveguide

The sensitivity of the clock states to the microwave field fluctuation
is expected to be high due to the complexity of interferometer design
where the generation of two microwave frequencies is required. Using
the proposed frequency chain in section 5.6.1, the microwave fluctu-
ations seen by the clock states can be put in common, but a careful
calibration of the microwave components in Figure 28b is necessary.
In the previous proposal (MW-DW), a unique microwave frequency
(i.e microwave source) is required to create a microwave double-well,
which is interesting during the holding stage, but the generation of
two microwave frequencies remains necessary during the splitting
stage.

Here, we present a proposal of a new beam-splitter using only one
microwave frequency injected in a unique coplanar waveguide (CPW)
during the whole interferometer sequence, as demonstrated in [71]
but with an additional constraint on the symmetry of the potentials.

First, we suppose that the CPW and the Dimple wires are both
located at r = 0, as shown in Figure 31a. Then, let’s suppose that
the microwave shift is proportional to the microwave field such as :
Vmw ∝ Bmw. In the case of one-dimensional problem, one can imagine
a symmetrical beam-splitter using the z-component of the microwave
field Bz

mw, shown in Figure 31b, since the microwave shifts Vmw of the
clock states have an opposite sign and Bz

mw is anti-symmetrical along
the x-axis, such as :

V
|a〉
mw(−x) ∝ Bz

mw(−x) = −Bz
mw(x) ∝ V

|b〉
mw(x) (95)

In practice, the microwave shift Vmw is proportional to the square of
the effective microwave field : Vmw ∝ |Beff

mw|2 (cf. equation (69)). Yet,
the previous assumption can be approximately verified if one can
add, to the CPW field Bz

mw, an additional homogenous microwave field
along the z-axis : Bz

b,mw created by the same microwave source. If the
role of the terms : |Bz

b,mw|2 and |Bz
mw|2 can be neglected, one can write

the microwave shift as :Vmw(x) ∝ (Bz
b,mw)Bz

mw(x).
Furthermore, the effective field Beff

mw can be assimilated to Bz
mw if the

σ-transitions are dominant and only in the vicinity of the static trap
center, where the trap axis is along the x-axis. Therefore, equation (95)

can be satisfied : V
|a〉
mw,σ(−x) = V

|b〉
mw,σ(x) by adjusting the microwave

frequency ωmw (i.e. the detuning ∆π
a ) in order to compensate the dis-

symmetry induced by the coupling coefficients Cm2
m1 (cf. Appendix C).

Using equation (94b) with P1 = P2 = P and ∆π
a = ∆π

b + 4ω0
L, one can

show that two solutions of ωmw are possible : ∆π
a ≃ 5.71 × ω0

L and
∆π

a ≃ 0.78 × ω0
L. For the first solution, the microwave frequency ωmw

is far detuned from all transitions as shown in Figure 32. The second
solution is not interesting since the π-transitions would break the
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Figure 31: (a) Schematic of the chip wires configuration. The static currents
I0 and I1 are used to create a Dimple trap. Here, the reference
r = 0 corresponds to the wires crossing and to the CPW posi-
tion. (b) The spatial variation along the x-axis of the microwave
field components Bx

mw, and Bz
mw along the x-axis and z-axis re-

spectively. Bx
mw(x) and Bz

mw(x) have respectively a symmetrical
and anti-symmetrical spatial profiles.

symmetry of the resulting potentials. Hence, only the first solution
will be considered in the following.

Figure 33a(1-2) shows the microwave shifts Vmw related to the σ and
π-transitions along the x-axis, using the first solution ∆π

a ≃ 5.71 ×
ω0

L, and where Bz
b,mw = 0. As expected, the clock states splitting is

not possible in this case, since the gradient of Vmw,σ around x = 0
vanishes due to the second-order dependence of Bz

mw(x).
By applying an additional microwave bias-field along the z-axis :

Bz
b,mw = 1 G, we show in Figure 33b.3 that a symmetrical splitting

of 14.7 µm using only one microwave frequency is possible in prin-
ciple. This is due to the linear dependence of Vmw to Bz

mw as ex-
plained previously. The remaining terms that have been neglected
in the previous discussion, have either a second-order dependence
on Bz

mw (σ-transitions) or on Bx
mw (π-transitions), do not affect the

symmetry of the potentials, but imply an additional energy shift20 of
about h × 20 kHz, of each clock state, as can be seen in Figure 33b.3.

Nevertheless, the symmetry of the potentials are altered compared
to the ideal case due to the static field dependence of the detun-
ings ∆

m2
m1(B). In particular, the detunings ∆b related to the clock state

|b〉, are positive in the trap center : ∆b(r0) > 0 and their signs can
be changed spatially due to the spatial variations of the static field
B across the trap, as explained in section 5.3. This effect does not
concern the detunings ∆a related to the state |a〉, which affects the
symmetry of the potentials especially along the transverse directions.
This problem can be solved, as shown in Figure 33b, by increasing
further the detuning value such as : ∆π

a (r0) = 9ω0
L. In addition, the

choice of Bz
b,mw should be moderate (here 1 G) in order to minimize

20 This energy shift can be calibrated experimentally.
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Figure 32: Energy levels of the 87Rb ground states in combined static and
microwave fields. A unique microwave frequency is used to cou-
ple the clock states with the auxiliary states. The microwave fre-
quency is far detuned from all transitions : |∆m2

m1 | ≫ |Ωm2
m1 |.

the trap opening of the state |b〉 along the z-axis (cf. section 5.3).
Hence, the overall relative dissymmetry of the resulting potentials
in Figure 33b.3 along the eigen-directions : {x̃, ỹ, z̃} are respectively :
{0.45, 0.91, 0.088} × 10−2.

Furthermore, it should be pointed out that the static field structure,
in this proposal, is of great importance. Indeed, using a Dimple trap
as shown in Figure 33a.(1-2), the microwave shifts Vmw,π are symmet-
rical along the x-axis : Vmw,π(−x) = Vmw,π(x). This property is not
verified, for example, if a Z-trap had been used instead, which would
affect further the symmetry of the potentials.

Finally, this beam-splitter proposal allows a considerable simplifica-
tion of the symmetrical interferometer design by using only one CPW
and one microwave source, which makes the fluctuations of the mi-
crowave field in common, during the different interferometer stages.
Nevertheless, the generation of a homogenous microwave field along
the z-axis might be difficult to realize experimentally. One can use a
microwave horn for this purpose but controlling the polarization and
creating a magnitude in the order of 1 G in the far-field are experimen-
tally challenging. An alternative solution that can be implemented in
the future versions of our atom-chip, would be to use a on-chip cir-
cular resonator or a combination of several parallel CPWs to create a
homogenous field up to the second order (or higher order) along the
z-axis.
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Figure 33: Proposal of symmetrical beam-splitter with one coplanar waveg-
uide (CPW). (a) In the absence of a homogeneous microwave
field : Bz

b,mw = 0, no splitting of the clock states occurs. (b) In
the presence of an additional microwave bias-field : Bz

b,mw = 1 G,
the clock states are spilt by : 14.7 µm. The microwave energy
shifts Vmw are classified with respect to the π-transitions (a.1, b.1)
and σ-transitions (a.2, b.2), respectively. The microwave frequency
ωmw is chosen such as : (a) ∆π

a = 5.71ω0
L and (b) ∆π

a = 9ω0
L

(cf. text). The injected microwave power is here : Pmw/P0 = 0.1.
The static trap is created using on-chip Dimple structure in or-
der to have the following trap parameters : h0 = 40 µm and
{ωx/2π, ω⊥/2π} = {100, 2350} Hz. The CPW parameters cor-
respond to the Config. I I I (CPW1) on our chip (cf. Figure 52).
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5.7 stability of the interferometer gravitational sig-
nal

The stability of the interferometer signal : the phase difference be-
tween the separated states, is a major concern for precision measure-
ment based on atom interferometry.

The phase difference due to the gravitational acceleration g is given
by21 is given by :

Φ =
mgs

h̄
TR (96)

where s is the splitting distance and TR is the holding time (i.e. the
interrogation time). In this case, the stability of the interferometer
signal, is mainly22 related to the stability of the splitting distance s,
which relies, in the case of an atom-chip interferometer, in particular
on the stability of the current sources.

In our case, the fluctuations of these currents impact directly the in-
ternal clock-states evolution, and so reduce the coherence time [104].
These effects have been discussed previously, and several solutions
have been proposed to minimize the effects of both static (section 5.5)
and microwave (section 5.6) field fluctuations. Moreover, these fluctu-
ations affect also the external states via the splitting distance s fluctu-
ations, which eventually reduces the precision of the interferometry
measurement.

The stability of the distance s can be improved experimentally by
using an ultra-stable bipolar current sources, for the critical chip wires
used to create the static trap. These current sources have a maximum
output current Imax = 5 A and exhibit a root-mean-square (RMS)
current noise on the order of |∆I/Imax| = 10−5 [163]. As discussed
previously in section 5.6.1, the microwave current sources can reach a
similar level of stability (on the order of 10−4 [163]) provided a careful
design of the microwave frequency chain.

Hence, the precision of the phase measurement would be limited23

by the stability of the current sources, and so the uncertainty of the
gravity measurement is expected to be about : ∆g/g ≈ 10−5.

Here, we propose a solution that improves the stability of the in-
terferometer gravitational signal by reducing the dependence of the
distance s, during the holding stage, to the current fluctuations.

21 The contribution of the energy difference : E2,1 − E1,−1 is omitted here.
22 Since the holding time TR can be controlled very precisely.
23 In case of an optimistic estimation that neglects the decoherence effect.
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Transfer to a stable static double-well after splitting

Form the proposals discussed earlier to reduce the effects of current
fluctuations on the internal states during the holding stage, the static
double-well (DC-DW, section 5.6.2) is an excellent candidate mainly
because of its simplicity. In this case, the fluctuations of the inter-
nal energy difference is reduced by setting the magnetic field to the
standard magic field B0

m, and so there is no need for a further cali-
bration of the new magic field Bm in the presence of the microwave
field (cf. section 5.5). Furthermore, the static-current sources are eas-
ier to control than the microwave currents, and ultra-stable sources
are commercially available24.

To create a static double-well, at least 4 different current-sources
are needed :

IZ associated to initial static field BZ created using a Z-wire

ICPW injected in the two CPWs to create a static field BCPW

similar to the microwave field Bmw

Ib,x used to create the bias-field Bb,x along the x-axis

Ib,y used to create the bias-field Bb,y along the y-axis

Here, we use a Z-trap to create the initial static trap which requires
only one current flowing on-chip to create the initial static trap25. We
also assume that the currents flowing in the 6 wires associated to
the two CPWs are created using only one current source. Finally, we
suppose that the currents Ib,x and Ib,x are proportional to the bias-
fields : Bb,x and Bb,y.

In the following, we analyze the fluctuation of the distance s un-
der the variation of a static current Ik by computing numerically
the nondimensional quantity : Ik

s
∂s
∂Ik

. For a precise example, we con-
sider the following numerical parameters : L = 1000 µm and 2δ =

2 × 22.5 µm, which corresponds respectively to the length of the cen-
tral Z-wire and the distance between the CPWs along the splitting
axis x. The remaining parameters (that do not depend on the chip
design) are here considered as tunable, but the static field B0 in the
trap center r0 has to be fixed to magic value B0

m. In practice, only the
following parameters : P = {IZ, ICPW , h0} are tunable.

These parameters P can be used to minimize the RMS of the dis-
tance s variation, defined as: S2(P) = ∑k | Ik

s
∂s
∂Ik

|2/n, with n is the
number of the static currents Ik. For a set of parameters P , we com-
pute numerically s and the 4 derivatives ∂s

∂Ik
then deduce an estimation

of S2(P). The optimization of minP (S2) is done here numerically26.

24 http://www.kepcopower.com/ and http://www.highfinesse.com/
25 Compared to a Dimple trap which requires two currents.
26 A simple analytical model of the distance s as a function of the parameters : P ,

and {h0, δ} can be derived : the coordinates of (right) minimum of the double-well
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Figure 34: The (nondimensional) derivatives | Ik
s

∂s
∂Ik

| as function of h0/δ.

The variation of the distance s derivatives as function of the pa-
rameter h0 are shown in Figure 34. One can notice the existence
of an optimal parameter hk

0 where the derivative ∂s
∂Ik

)h=hk
0

vanishes.
Moreover, the bias-field Bb,y causes the highest fluctuation (of about
10−1 − 100). This strong dependence arises because fluctuations in
Bb,y change the position of the trapped atoms h0 in the inhomoge-
neous fields created by the CPWs. Such a high sensitivity has been
also observed experimentally [163]. Hence, the overall optimization
of S2 depends mainly on the minimization of the term : | ∂s

∂Ib,y
|. Fig-

ure 35 corresponds to the optimal tunable parameters Pm = {IZ =

0.2 A, ICPW = −73.1 mA, h0 = 1.87 × δ ≃ 42 µm} that minimize the
RMS fluctuation of s : Sm = 1.11 × 10−3 and reduce the fluctuation of
s by 3 order of magnitude, compared to the mean of the fluctuations
of s caused by the Bb,y, which can be seen in Figure 34. As the RMS
current noise is about 10−5, the (relative) precision of the measured
gravitational signal can reach the accuracy range of 10−8. The value
of Sm can be reduced further by increasing the length of the Z-wire :
Sm = 3.37 × 10−4 for L = 1700 µm27.

Nevertheless, the transfer to the static double-well in Figure 35

arises a supplementary difficulty since the ratio h0/δ < 2. Yet, this ra-
tio can be tuned during the splitting, by adjusting the position of the

potential V are approximately given by : rm = {δ, 0, h0}. An analytical first order
correction ǫi, (i ∈ {x1, x2, x3} = {x, y, z}) can be found by inversing the following
3 × 3 matrix : {

(

∂Bi(r)/∂xj

)

r=rm
}, which allows an analytical estimation of s and

its derivatives as : s2/4 = (δ + ǫ1)
2 + (ǫ2)

2. This model can be simplified further
by assuming that ǫ2 = 0. Nevertheless, a direct numerical estimation of s (and its
derivatives) is more accurate but requires a larger computation time.

27 The axial trap frequency would be in this case very low : ωx/2π ≈ 4 Hz for P = Pm,
which requires a large splitting time.
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trapped atoms h0, as proposed previously in section 5.6.3. Here, we
propose an alternative solution. To perform the state-selective split-
ting of the clock states, we design two intermediate coplanar waveg-
uides : CPW0

1 and CPW0
2 located at δ0 = ±13.5 µm along the x-axis,

as shown in Figure 36. Hence, the splitting can be performed using
a potential-well beam-splitter since h0/δ0 > 3 (cf. Figure 19b). Then,
to ensure the transfer to the static double-well, the current Idc can
be injected in the coplanar waveguides : CPW1 and CPW2 while the
microwave currents Imw in CPW0

1 and CPW0
2 are switched-off progres-

sively.
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Figure 35: The double-well potential VDW (in red) as function of x, for the
optimal parameters Pm which minimize the RMS variation of s
under the current fluctuations. The static trap Vdc (in blue) has the
following angular frequncies :{ωx/2π, ω⊥/2π} = {14, 1140} Hz.

Figure 36: Chip design to split and transfer the atoms into the static double-
well (DC-DW). The initial static trap is created using on-chip Z-
wire (L = 1000 µm). Two coplanar waveguides : CPW1 and CPW2
located along the x-axis (δ = 22.5 µm and dw = 9 µm) are used
to create the static double-well, by injecting a static current Idc.
Two additional intermediate waveguides : CPW0

1 and CPW0
2 (δ0 =

13.5 µm) are required to perform a state-selective splitting of the
atoms (cf. text). This configuration corresponds to the Config. I I I
on our chip (cf. Figure 52)
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5.8 conclusion : what is the best configuration ?

To summarize, we have proposed an experimental design for a sym-
metrical splitting of trapped thermal atoms, along the axial direction
of the magnetic trap, using micro-wave dressing for the 87Rb clock
states on an atom chip. In particular, we have compared two split-
ting schemes : potential-well and potential-barrier, that can be imple-
mented using the same chip design, but have different features. We
have simulated the microwave splitting potentials and analyzed the
inherent sources of dissymmetry. We have developed an analytical
model of the microwave potential that can be of great interest to opti-
mize the symmetry of the potentials.

The potential-well beam-splitter allows a power-efficient splitting :
higher splitting distance are possible with less microwave power. How-
ever, it suffers from a reduced trap-depth in the limit of the quasi-
resonant coupling regime. Therefore, a compromise has to be taken
between the trap-depth and the interferometer symmetry (cf. Figure
19 and Table 2).

In the case of a perfectly symmetrical interferometer, the magic
fields are available only for low contamination values which is not
suitable for splitting with a potential-well since the atoms are always
attracted in the vicinity of the highest (in space) microwave coupling
values. In contrast, the potential-barrier beam-splitter repels atoms
into the vicinity of the lowest (in space) microwave coupling values.
However in practice, the existence of the magic field is limited to
small splitting distances (few microns).

The perturbed symmetrical interferometer is a promising solution
to reach high contamination values, for both splitting methods, but
it would be more difficult to implement experimentally since two
parameters (the microwave power and the bias fields) have to be
changed simultaneously during the splitting.

In order to reduce the fluctuation effect of the magnetic fields,
the atoms can be transferred after splitting into a stable double well
where the technical noise in the interferometer arms can be common-
mode. The potential-well method can be used to transfer the atoms to
a stable static double well (DC-DW, cf. section 5.6.2) since the static
and microwave potentials can be intrinsically matched in this case.
On the other hand, the potential-barrier method can be used to trans-
fer the atoms to a stable microwave double-well (MW-DW, cf. section
5.6.3). Yet, the static double-well has several advantages. In addition
to the uniqueness of its magic field value (Bm = B0

m ≈ 3.23 G), this
configuration can be used to stabilize the interferometer gravitational
signal (cf. section 5.7), in particular the fluctuations of s (the distance
between the separated wavepackets) due to the noise of the required
current sources.
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During the splitting stage, where the microwave fields are neces-
sary for internal state labelling, we propose a microwave chain design
in section 5.6.1 that attempts to put in common, as much as possible,
the fluctuations of the field amplitudes even using two different mi-
crowave frequencies.

In the next chapter, we discuss the possibility of a transverse split-
ting using the σ-transitions as proposed in section 4.3.6.



6
T R A N S V E R S E B E A M - S P L I T T E R : S P E C I F I C C H I P
D E S I G N

6.1 introduction

In the case of an adiabatic separation of the atoms, the required split-
ting time depends mainly on the trap angular frequency along the
splitting axis (here 2π/ωx, (cf. chapter 7)), so it can be reduced signif-
icantly in the case of transverse splitting, compared to axial splitting,
discussed in the previous chapter.

As discussed in section 4.3.6, σ-transitions are more suited for trans-
verse splitting. Hence, in this section, we focus on the study of a
beam-splitter using σ-transitions (dashed lines in Figure 16).

Furthermore, the choice of the static trap and its orientation rela-
tive to the coplanar waveguides (CPWs) has a great importance. We
present here the characteristics of a transverse beam-splitter in some
typical static traps, well-known in the literature and described previ-
ously in section 2.2.3. We show the necessity to design a specific mi-
crotrap. Thereafter, we describe the required symmetry of the static
field and we provide several custom microtrap designs, for this pur-
pose.

In this study, we suppose that the condition of the quasi-resonant
regime is fulfilled, so we can neglect the effects of non-resonant tran-
sitions (i.e. we neglect the effect of the transitions σ(−) and π). More-
over, in this section, we choose a potential-barrier beam-splitter in
order to avoid the trap-opening constraint (cf. section 5.3).

We assume also that the CPWs are placed parallel to the y-axis, as
shown in Figure 17. In order to power the σ-transitions, we choose the
orientation of the static trap along y-axis in order to favor the atoms
splitting along the x-axis.

88
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6.2 transverse splitting with a typical static trap

In the following, we study the behavior of the transverse beam-splitter
in some typical static traps such : Standard Ioffe-Pritchard (macro-
scopic trap) and Z-trap (microtrap).

6.2.1 Standard Ioffe-Pritchard

For a Standard Ioffe-Pritchard (SIP) (cf. section 2.2.2), the coils can be
placed relatively to the chip such that the trap-axis coincides with the
y-axis. We will show in the following that the symmetry properties of
the static field B are favorable in this case1. The numerical simulation
shows that the splitting is perfectly symmetrical relative to the x-axis,
since the coordinates of resulting potentials minima verify : {xa

m =

−xb
m, ya

m = yb
m, za

m = zb
m}. Thus, the splitting direction is parallel to the

transverse axis x, as shown in Figure 37a. The displacements of atoms
along the directions y and z, shown in Figure 37b, are identical for
both clock states, and so, they do not change the splitting direction.

These results are a consequence of the axial-symmetry of the mi-
crowave shifts Vmw. In this case, using a second order expansion of
the static field B components (equation (9)) and if the microwave fre-
quencies and powers are chosen as explained in section 4.3.6, one can
show2 that :

V
|a〉
mw(−x, y, z) = V

|b〉
mw(x, y, z) (97)

Moreover, one can also show that the eigenfrequencies of the trap-
ping potentials are equal, as expected previously. As can be seen in
Figure 37c, the relative variation of the trapping-potential eigenfre-
quencies, as function of the microwave power during the splitting, is
low. In particular, the potential aspect ratio remains nearly constant
which is an important characteristics and advantage of the transverse
splitting (unlike the axial splitting, cf. Figure 22).

6.2.2 Typical microtraps : example of a Z-trap

For a typical microtrap such as Z-trap or Dimple trap , we place the
principle wire, that ensures the transverse confinement, along the y-
axis, so the trap-axis is close to it. Usually, this axis is on the chip
plane (x,y) but it is not necessarily parallel to the y-axis3.

The numerical simulations show that the potentials minima have a
central symmetry such as : {xa

m = −xb
m, ya

m = −yb
m, za

m = zb
m}. This

1 Especially because the non-diagonal terms of the gradient tensor V are zero.
2 Similar derivation will be given in 6.2.4.
3 The inclination angle from the y-axis is given by : ψIP = arctan(−v13/v23), where

vij are the elements of the gradient tensor V .
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Figure 37: Standard Ioffe-Pritchard (SIP) : (a) 3D-equipotentials represen-
tation of the clock states : |a〉 (orange) and |b〉 (green), for the
potential kBT with T = 100 nK (about h × 2 kHz). (b-c) The
variations of the minimum coordinates rm = {xm, ym, zm} and
the eigenfrequencies {ωx̃, ωỹ, ωz̃}/2π of the resulting potential
V|ā〉(r), shown respectively in straight, dashed, and dot-dashed
lines, as function of the microwave power Pmw. (cf. section 6.2.5
for the simulation parameters.)

result is a consequence of the microwave shifts symmetry, as one can
show that :

V
|a〉
mw(−x,−y, z) = V

|b〉
mw(x, y, z) (98)

Nevertheless, the atoms splitting along the longitudinal direction y
can not be neglected, as shown in Figure 38.a, using a Z-Trap. Since
the displacement along the z-axis is similar for both states, the split-
ting direction is on the xy-plane and forms an angle θab with the
x-axis defined as :

θab = arctan
(

yb
m − ya

m

xb
m − xa

m

)

(99)

The control of the splitting direction and its stability due to the cur-
rents fluctuations is important, in the perspective of precision mea-
surements application (such as gravimetry). Figure 38.b shows the
evolution of θab during the splitting stage. Here, the splitting along y
is larger than along x, as θb ≈ 75◦; yet the splitting is still considered
as transverse since the potential aspect ratio remains nearly constant.

The splitting direction can be calibrated, but its stability will de-
pend on the current sources. This problem can be avoided by using
a specific microtrap, where the evolution θab is minimized (ideally
zero).

6.2.3 Specific H⋆-trap

A first intuitive approach to solve the problem would be to align per-
fectly the trap-axis along the y-axis. The H-trap allows such alignment
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Figure 38: Z-Trap : (a) 3D-equipotentials representation of the clock
states : |a〉 (orange) and |b〉 (green), for the potential kBT with
T = 100 nK. (b) The variation of the splitting direction θab as
function of the microwave power Pmw. (cf. section 6.2.5 for the
simulation parameters.)

Figure 39: H⋆-Trap : same legend than Figure 38.

by an appropriate choice of the distance L between the lateral wires4 :
L = 2h0 (i.e. t21 = t22 = 1). We refer to this configuration as : H⋆-Trap.
Such an alignment is also possible using a Z-trap [99], however the
H⋆-trap has the advantages of a symmetrical wires structure with re-
spect to the x-axis, which reduces considerably the splitting along the
axial direction y, as can be seen in Figure 39. Nevertheless, the trap-
depth of this trap is considerably reduced as the two lateral wires are
very close, as we will discuss in section 6.2.4. In this case, a tradeoff
has to be made between the trap-depth and the axial frequency.

In the next section, we describe in detail the approach we have
followed to design a custom microtrap, with significant trap depth,
to control the splitting direction.

6.2.4 Custom microtrap design

In the following, we use the method described in section 2.2.5, to de-
sign a custom microtrap that allows a symmetrical splitting along the

4 As v13 = 0 and so ψIP = 0.
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transverse direction (x-axis) with a minimal separation along the ax-
ial direction (y-axis). As discussed previously, such a beam-splitter is
possible using a Standard Ioffe-Pritchard trap, because the microwave
shifts have an axial-symmetry (equation (97)).

Using a typical microtrap, the microwave shifts Vmw have a cen-
tral symmetry (equation (98)) even in the case of the H⋆-Trap. In the
following, we derive the necessary constraints on the Ioffe-Pritchard
microtrap to create a microwave shifts that satisfy the axial-symmetry
condition (equation (97)).

Ioffe-Pritchard trap and constraints on the symmetry of the potentials

The condition (97) is sufficient (but not necessary) to realize the re-
quired separation along the x-axis. Using only the σ-transitions, the
microwave shifts Vmw are given by the equations (72) in the limit of
the quasi-resonant regime. The previous condition is verified if the
Rabi frequencies and the detunings verify the following :

|Ωσ
a (−x, y, z)| = |Ωσ

b (x, y, z)| (100a)

|∆σ
a (−x, y, z)| = |∆σ

b (x, y, z)| (100b)

Equation (100b) is verified if |∆σ
a (r0)| = |∆σ

b (r0)| (as required5 in sec-
tion 4.3.4) and B is an even function of x (i.e. B(−x, y, z) = B(x, y, z)).
Hence, each component Bi of the static field has to verify :

B2
i (−x, y, z) = B2

i (x, y, z), i ∈ {x, y, z} (101)

Moreover, assuming that the field created by the waveguide CPW1

(CPW2) interacts only with the state |a〉 (|b〉), equations (100a) and
(101) give the following condition :

∣

∣B⊥,CPW1
mw (−x, y, z)

∣

∣

2
=
∣

∣B⊥,CPW2
mw (x, y, z)

∣

∣

2
(102)

where B⊥,CPWk
mw is the microwave field component along the normal

local direction of B, created by the waveguide CPWk (k ∈ {1, 2}) and
its expression is given by the following :

∣

∣B⊥,CPWk
mw (x, y, z)

∣

∣

2
= (103)

B2
y(x, y, z)

B2(x, y, z)

[

∣

∣Bx,CPWk
mw (x − δk, z)

∣

∣

2
+
∣

∣Bz,CPWk
mw (x − δk, z)

∣

∣

2
]

+

[

Bx(x, y, z)

B(x, y, z)
Bz,CPWk

mw (x − δk, z)− Bz(x, y, z)

B(x, y, z)
Bx,CPWk

mw (x − δk, z)

]2

with δk = (−1)k+1δ is the position of the CPWk along the x-axis, and
{Bx,CPWk

mw , Bz,CPWk
mw } are the components of microwave field Bmw created

by the CPWk, and given by equations (67).

5 Which can be satisfied by a convenient choice of the microwave frequencies.
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As {Bx,CPWk
mw , Bz,CPWk

mw } are {even, odd}-functions of x respectively
and by applying the same microwave power Pmw in the CPWs, equa-
tions (101) and (102) are verified only if :

{Bx, Bz} are {even, odd}-functions of x respectively

or {Bx, Bz} are {odd, even}-functions of x respectively (104a)

B2
y is an even-function of x (104b)

In addition, to allow the selection of the σ-transitions, at least the
following condition should be satisfied at the trap center :

By(r0) 6= 0 (105)

As a consequence, By can not be an odd-function and, in order to
verify equation (104b), we should have :

By is an even-function of x (106)

On the other hand, as discussed in section 2.2.4, the gradient ten-

sor V of B at r0, is defined as : (V)i,j = vij = ∂Bi
∂xj

)

r=r0

and has the

following form :

V =









v11 v12 v13

v12 v22 v23

v13 v23 −v11 − v22









(107)

and B has a nonzero minimum at r0 only if :

Det(V) = 0 (108a)

V .U = 0 (108b)

with U defined as : U = B0/B0.
Furthermore, using a first order Taylor expansion of By, equation

(106) gives : v12 = 0. Hence, using equation (108a), one can derive the
following equation :

v2
11v22 + v2

13v22 + v11v2
22 + v11v2

23 = 0 (109)

Now assuming from equation (104a) that {Bx, Bz} are {even, odd}-
functions respectively, one can show6 using equations (104) and (109),

6 In this case, v11 = 0 (as Bx is an even-function). Equation (109a) requires that :
v22 = 0 or v13 = 0. Yet, as By(r0) 6= 0 and using (108b), we deduce that v13 6= 0.
Then, we have v22 = 0 and, as Bx is an even-function, we can show using equation
(108b) that : v23 = 0. Therefore, one can deduce that all elements of the gradient
tensor V expect v13 have to be zero. In the same manner, using the assumed Bi

symmetry, one can show that all elements of the curvature tensor W expect w111 are
zero. Finally, one can deduce that Det(G) = 0, where G is a tensor that gives the trap
angular frequencies, and defined in section 2.2.4.
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that B has a saddle point (not a minimum) at r0. Hence, {Bx, Bz} have
to be {odd, even}-functions respectively, and so the conditions (104)
can be simplified to the following conditions :

Bx is an odd-function of x (110a)

By is an even-function of x (110b)

Bz is an even-function of x (110c)

Moreover, using equation (109) together with the previous condi-
tions (110) and equation (105), one can derive7 the following equa-
tions :

v12 = 0 (111a)

v13 = 0 (111b)

v11 6= 0 (111c)

v2
22 + v11v22 + v2

23 = 0 (111d)

The stationary point conditions (111(c-d)) have two different solu-
tions :

Solution (SI) : v22 = 0, v23 = 0, and v11 6= 0 (112a)

Solution (SI I) : v11 = −(v2
22 + v2

23)/v22, and v22 6= 0 (112b)

Therefore, using equation (108b), one can show that the trap-axis U

is given in each case by :

Solution (SI) : U = {0, 1, 0} (113a)

Solution (SI I) : U = {0,
−v23

√

v2
22 + v2

23

,
v22

√

v2
22 + v2

23

} (113b)

For the solution (SI), one can recognize that the gradient tensor
V and the trap-axis U are similar to those of the Standard Ioffe-
Pritchard (cf. section 2.2.2).

Moreover, for the solution (SI I), one can notice that the trap-axis U
is in the yz-plane, and has an inclination angle φIP from the chip sur-
face, defined as : φIP = arctan(−v22/v23). As discussed in [85], |φIP|
should be minimized in order to avoid the conception of a shallow
trap. In this case, the following condition has to be verified :

|v23| ≫ |v22| (114)

7 Equations (111(a-b)) are derived using conditions (110(b-c)) respectively. For equa-
tion (111c), assuming that v11 = 0, one can deduce from equations (108) and (111(a-
b)) that U = {1, 0, 0}, so equation (105) can not be verified. Finally, equation (111d)
is derived using equation (109) and equations (111(b-c)).
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The curvature tensor W of the field B at r0, is given by :

W =









W1

W2

W3









(115)

where the tensors Wi are defined in section 2.2.4 as (Wi)j,k = wijk =

∂Bi
∂xjxk

)

r=r0

, and have the following form :

W1 =









w111 w112 w113

w112 w122 w123

w113 w123 −w111 − w122









(116a)

W2 =









w112 w122 w123

w122 w222 w223

w123 w223 −w112 − w222









(116b)

W3 =









w113 w123 −w111 − w122

w123 w223 −w112 − w222

−w111 − w122 −w112 − w222 −w113 − w223









(116c)

By applying the conditions (110) to the second order expansion of
Bi, one can deduce the following equations :

w111 = 0 (117a)

w122 = 0 (117b)

w123 = 0 (117c)

In particular, the curvature tensor W becomes identical to a Standard
Ioffe-Pritchard, if the following additional conditions are verified :

w113 = 0 (118a)

w223 = 0 (118b)

Finally, one should verify that B has a minimum (and not a saddle
point) at r0, which can be done by deriving the eigenvalues of the
tensor G = V .V + (B0U ).W

Let’s assume that the transverse confinement is much larger than
the axial one :

∣

∣ (V .V)i,j

∣

∣ ≫
∣

∣ ((B0U ).G)i,j

∣

∣. In this case, the eigen-
values of the tensor G, for both solutions (SI) and (SI I), are approxi-
mately given by :

G̃ = {v2
11, B0w222, v2

11} (119)

corresponding to the eigenvectors {x̃, ỹ, z̃} respectively. Hence, the
three-dimensional confinement is possible in this case, if the sign of
w222 can be controlled such as : w222 > 0.
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In conclusion, we have found two possible trap structures : (SI) and
(SI I) that verify both the symmetry of the potentials constraints and
the Ioffe-Pritchard (IP) topological constraints.

Custom microtrap : Manhattan trap

To design a custom IP trap on chip that satisfies the previous condi-
tions (111) and (117), the Manhattan architecture, discussed in section
2.2.5, is a good candidate as the elements8 : v12, w122, w123, and w112

are zero by construction.
Moreover, in this architecture the elements v11, v13 and w111 are

tunable and depend only on the parameters { Ĩ1,j, t1j} related to the
wires (FL1,j) (parallels to y-axis). Hence, these wires can be used to
verify the conditions : (111(b-c)) and (117a).

Since the elements v13 and w111 are a linear combinations of the
currents Ĩ1,j, solving the remaining symmetry conditions : (111b) and
(117a) can be written as a linear problem. By choosing the number of
wires (FL1,j) : N1 = 3, these equations are verified if the currents Ĩ1,j

satisfy the following matrix equation :









t2
11(−1+t2

11)

(1+t2
11)

2

t2
12(−1+t2

12)

(1+t2
12)

2

t4
11(−3+t2

11)

(1+t2
11)

3

t4
12(−3+t2

12)

(1+t2
12)

3









(

Ĩ1,1

Ĩ1,2

)

=

(

− Ĩ1,0

− Ĩ1,0

)

(120)

which gives the following solutions :

(

Ĩs
1,1

Ĩs
1,2

)

=









(1+t2
11)

3
(−1+3t2

12)
t2
11(t

2
11−t2

12)(3−t2
11−t2

12+3t2
11t2

12)
Ĩ1,0

(1+t2
12)

3
(−1+3t2

11)
t2
12(t

2
12−t2

11)(3−t2
12−t2

11+3t2
12t2

11)
Ĩ1,0









(121)

One can reduce the required number of current sources by impos-
ing additional conditions. For example, one can impose here the cur-
rents equality (in absolute value) in the wires (FL1,j) : | Ĩs

1,1| = | Ĩs
1,2| =

| Ĩ1,0|, by adjusting the wire positions t1j. The numerical resolution
gives the following solutions :

{|ts
11|, |ts

12|} ≃ {0.7427, 5.2463} (122)

which corresponds to the currents setting : Ĩ1,1 = − Ĩ1,2 = Ĩ1,0. We
choose the solution that places the wires (F1,1) and (F1,2) on two dif-
ferent sides of the y-axis (i.e. (t11t12) < 0), in order to optimize the
value of the gradient |v11|.

In addition, the elements v22, v23 and w222 depend only on the pa-
rameters of the wires (FL2,j) : { Ĩ2,j, t2j}. Hence, these wires can be

8 Here, the condition w112 = 0 is not required.
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used to satisfy the conditions (111d) and verify that the angular fre-
quencies of B are well-defined by adjusting the sign of w222 (cf. equa-
tions (119)). In the following, we choose the number of wires (FL2,j) :
N2 = 3 and we distinguish between the two possible solutions (SI)
and (SI I).

• Case I : (SI)-Manhattan trap :

The condition (112a) can be written as a linear problem of the cur-
rents Ĩ2,j, that can be solved, as shown in equations (120). Hence, one
can derive the following solutions :

(

Ĩs
2,1

Ĩs
2,2

)

=







t21(1+t2
22)

2

t2
22(t21−t22)(1+t21t22)

Ĩ2,0

− t22(1+t2
21)

2

t2
21(t21−t22)(1+t21t22)

Ĩ2,0






(123)

Then, we choose the positions of these wires such as :

| Ĩs
2,1| = | Ĩs

2,2| = | Ĩ2,0| (124)

Two sets of solutions are possible9. We choose the symmetrical so-
lution10 :

t21 = −t22 = t (125a)

t =

√√
5 + 2 ≃ 2.0581 (125b)

which corresponds to the currents setting : Ĩs
2,1 = Ĩs

2,2 = − Ĩ2,0. In this
case, one has w223 = 0 (equation (118b)), so the trap frequency tensor
is given by :

G =









v2
11 0 0

0 B0w222 0

0 0 v2
11 − B0w222









(126)

where w222 = (5 −
√

5) Ĩ2,0/2h3
0 ≃ 1.3819 × Ĩ2,0/h3

0 and v11 ≃ 0.6953 ×
Ĩ1,0/h2

0. Therefore, we confirme that only two current sources are re-
quired for this trap (as it is usually the case for a Dimple trap). The
longitudinal and transverse angular frequencies can be controlled in-
dependently by tuning the currents Ĩ2,0 and Ĩ1,0 respectively.

The eigenvectors of the frequency tensor G are identical to the
eigenvectors11 of the gradient tensor V , which is a particular property
of a Standard Ioffe-Pritchard. Moreover, the curvature w222 and the
gradient v11 elements are completely uncoupled, as they can be tuned

9 The second solution is :{t21, t22} ≃ {−0.7554, 5.3411}.
10 That minimize the splitting force (which is identical here for both states) along the

axial direction y.
11 In this case the eigenvectors are given by the axes : {x, y, z}.
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using two independent currents : I2,0 and I1,0 respectively, which is an-
other distinguished property of a Standard Ioffe-Pritchard. Hence, by
controlling the value of w222 compared to v2

11/B0, the trap aspect ratio
ω‖/ω⊥ can be tuned from prolate (cigar-shaped, ω‖ ≪ ω⊥) to oblate
(pancake-shaped, ω‖ ≫ ω⊥) [86], as demonstrated in [83].

For the sake of completeness, we mention that the curvature tensors
W of both IP traps do not have exactly the same form. One can note
the following differences :

w113 6= 0 and w112 = 0 for (SI)-Manhattan trap

w113 = 0 and w112 = −w222/2 for Standard Ioffe-Pritchard

The value of w113 can be set to zero if desired12.

• Case I I : (SI I)-Manhattan trap :

The condition (112b) can be satisfied by an appropriate choice of
the current Ĩ1,0, since the elements v22 and v23 do not depend on the
currents Ĩ1j and v11 ∝ Ĩ1,0.

In this case, there is no constraint on the choice of the parameters of
wires (FL2,j) {t2j, Ĩ2,j}, only that v22 6= 0. In the following, we choose
a symmetrical arrangement of these wires : t21 = −t22 = t and, to
reduce the number of the current sources, we set : Ĩ2,1 = − Ĩ2,2 = Ĩ2,0

so that v22 = −4 Ĩ2,0t3/h2
0(1 + t2)2 6= 0. Therefore, the value of Ĩ1,0 is

given by :

Ĩs
1,0 = 0.3595 × Ĩ2,0

(1 + t2)2

t3 (1 +
16t6

(1 + t2)4 ) (128)

Moreover, the inclination angle φIP of the trap axis U is given by :

φIP = arctan(−v22/v23) = arctan
(

4t3/
(

1 + t2)2
)

(129)

As |φIP| should be minimized, one should place the wires (FL2,j) such
as : |t| ≪ 1.

In this case, the eigenvectors of the frequency tensor G are slightly
tilted from the chip axes, as it is usually the case for a microtrap. They
are approximately given by equation (119) with : v11 ≈ Ĩ2,0/(4h2

0t3)

and w222 = 2 Ĩ2,0/h3
0. Then, once the parameter t is fixed, only the

current value Ĩ2,0 can be tuned to adjust both the axial and transverse
frequencies.

12 The element w113 depends only on the wires (FL1,j). Once the symmetry condi-
tions are satisfied (equation 121), its expression is given by : w113 = −2 Ĩ1,0(−1 +
3t2

11)(−1 + 3t2
12)/(h

3
0(t11 − t12)(−3 + t2

11 + t2
12 − 3t2

11t2
12)). If desired, its value can be

set to zero by choosing : t11 = 1/
√

3, and the currents { Ĩs
1,1, Ĩs

1,2} = {8 Ĩ1,0, 0}. In this
case, we obtain the simplest possible IP trap where only two elements of the gradient
V and curvature W tensors (equations (107) and (115)) are not zero : v11 =

√
3 Ĩ1,0/h2

0
and w222 = (5−

√
5) Ĩ2,0/2h3

0 (the trap structure here is even simpler than a Standard
Ioffe-Pritchard). Yet, in this case an additional current source is required (3 sources in
total). Another solution can be found, by choosing N1 = 4 and adding the condition
w113 = 0 to the linear system (120).
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Beyond the second order approximation

A second order expansion of the static field components Bi is suffi-
cient if the typical length ξ = B0/B′ is very large compared to both
the transverse splitting s and the size χ of the atomic cloud along
the transversal axis (i.e. ξ ≪ s, χ). With the following parameters :
T = 100 nK, ω⊥/2π = 1 kHz and B0 = 3.23 G, we have ξ ≈ 16 µm
and χ ≈ 1 µm, and to separate the atomic clouds completely13, the
numerical simulation shows that the second-order expansion of the
static field is not sufficient.

In the following, we propose to take into account higher order
terms to design a custom trap. Up to the fourth order, this can be
performed by deriving the following tensors :

(W (3))ijkl =
∂3Bi

∂xj∂xk∂xl

)

r=r0

(130a)

(W (4))ijklm =
∂4Bi

∂xj∂xk∂xl∂xm

)

r=r0

(130b)

In order to satisfy the symmetry conditions (110) up to the fourth

order, we found that only two additional conditions : w
(3)
1113 = 0 and

w
(4)
11111 = 0, are required if we use the Manhattan architecture, as most

of the required conditions are redundant or fulfilled by construction.
Moreover, these conditions depend only on the wires (FL1,j)

Thus, we choose N1 = 5 in order to satisfy the four conditions of

symmetry : v13 = 0, w111 = 0, w
(3)
1113 = 0 and w

(4)
11111 = 0, which can be

written as a linear system (similar to equation (120)) :

M













Ĩ1,1

Ĩ1,2

Ĩ1,3

Ĩ1,4













=













− Ĩ1,0

− Ĩ1,0

− Ĩ1,0

− Ĩ1,0













with (131)

M =
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Once the currents Ĩs
1j (i.e. the solutions) are computed, we can re-

duce the number of required currents by imposing that : | Ĩ1,j| = | Ĩ1,0|
and adjusting the wire positions : t1j.

The numerical resolution gives the following solutions :

{|t11|, |t12|, |t13|, |t14|} ≃ {1.0173, 12.0972, 0.4455, 1.1868} (132)

13 In this case, the clock states should be separated by a distance s ≈ 3 µm.
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However, this solution may be difficult to realize in practice. For
example, if we set the trap center at a distance h0 = 25 µm from
the chip surface, the smallest separation (distance) between the wires
(F1,0) and (F1,2) would be : L12 = h0/|t12| ≈ 2 µm, which may be
difficult to reach in practice because of the non-negligible width of
the wires (about 1 µm at least).

Yet, the previous technical difficulty can be avoided if we use an
additional source of current. For this purpose, we solve the following
equations :

| Ĩ1,1| = | Ĩ1,2| = 5| Ĩ1,0|/4 (133a)

| Ĩ1,3| = | Ĩ1,4| = | Ĩ1,0| (133b)

A similar set of solution than equations (132) can be found, but with
a lower value of |t12|. In order to maximize the gradient |v11|, we
choose the following solution :

{t11, t12, t13, t14} ≃ {1.0196, 5.9525,−0.6561,−1.5298} (134)

which corresponds to the currents setting :

Ĩ1,0 = −4 Ĩ1,1/5 = −4 Ĩ1,2/5 = Ĩ1,3 = Ĩ1,4 (135)

and the gradient value : v11 = −1.9521× Ĩ1,0/h2
0. The stationary point

conditions (111(c-d)) can be satisfied using the wires (FL2,j) as ex-
plained previously. Thus, this higher order improvement can be ap-
plied to both Manhattan solutions (SI) and (SI I). We refer to them by :
(S⋆

I ) and (S⋆
I I), respectively.

Two practical wire-settings for the Manhattan solutions are given
for h0 = 25 µm, in Figure 40. In the following, we discuss the perfor-
mance of these custom traps and compare it to the typical traps.
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Figure 40: Wire layout of the custom Manhattan traps for h0 = 25 µm. (a)
(S⋆

I )-Manhattan trap (b) (S⋆
I I)-Manhattan trap for |t21| = |t22| =

0.14 (the x-axis scale and the y-axis scale are different). The cross-
section of the wires is here : 1µm × 1.5µm. So, the wires in
the lower (upper) layer can carry a current up to about 82 mA
(42 mA), respectively [163].
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6.2.5 Summary : comparison between different static traps

In Table 4, we summarize the results of a transverse microwave split-
ting using different static traps. The simulations have been done with
the same microwave field parameters and, as much as possible, the
same static field parameters.

For the static fields, the currents and bias fields, shown in Table 4,
are chosen such as :

• The trap distance from the chip surface is h0 = 25 µm14.

• The transverse and axial angular frequencies are {ωx, ωy}/2π =

{1000, 120} Hz15.

• The field value in the trap center is B0 = 3.23 G.

The microwave field parameters are chosen such as :

• The detunings verify : ∆σ
a (r0) = −∆σ

b (r0) = 0.05 × ω0
L, which

corresponds to a potential-barrier beam-splitter.

• The microwave power is Pmw = P1 = 3P2 = 4P0.

• The coplanar waveguides (symmetrical) position along the x-
axis is δ = 54 µm16.

In particular, one can note that the Manhattan traps require a nonzero
bias field along the z-axis (normal to the chip surface), compared
to the typical microtraps where the z-component of the bias field is
equal to zero.

The Manhattan traps are designed to allow the creation of a mi-
crowave shift Vmw that has an axial symmetry, as is possible with a
Standard Ioffe-Pritchard (SIP). In this case, the splitting direction θab

is independent of the values of the currents and coincides with the
transverse axis, as can be seen in Figure 41b and Table 4.

Nevertheless, the trap-depth (TD) of the (S⋆
I )-Manhattan trap is

very low because of the proximity of the wires (FL2,j) to the x-axis.
This is also the case of the H⋆-trap. In both case, the trap-depth is
approximately given by : TD ≃ 1

2 mω2
y(h0/t)2 where t = |t21| = |t22|.

As the parameter t is constant for both traps, only the remaining
parameters can be modified to improve the trap-depth. For the (S⋆

I )-
Manhattan trap , this problem can be avoided by setting the value of t

14 h0 is relatively low here, since the splitting along the transverse axe requires much
higher splitting force than the axial splitting. Reducing the distance of the atoms
from the CPWs allows a significant increase of the microwave shift Vmw value.

15 The axial frequency value can be chosen lower, but some traps (H⋆ and S⋆
I ) will not

have a sufficient trap-depth in this case.
16 Here, δ ≈ 2h0. Thus, the displacement along x is more important than along z as

the microwave gradient is similar along both directions. Reducing δ would increase
the microwave shift Vmw and the splitting distance s at the cost of a higher residual
displacement along z.
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Figure 41: (S⋆
I I)-Manhattan trap : (a) 3D-equipotentials representation of the

clock states : |a〉 (orange) and |b〉 (green), for the potential kBT
with T = 100 nK. (b) The variation of the splitting direction θab

as function of the microwave power Pmw. (cf. section 6.2.5 for the
simulation parameters.)

in equation (125a) to a lower value17, but an additional current-source
will be required since the equation (124) will be no longer verified.

Finally, one can notice that the splitting distance |xm| along x and
the residual variation |zm − h0| along z are similar for all the static
traps. However, the residual variation |ym| along y is particularly low
for the SIP, H⋆ and (S⋆

I )-Manhattan traps, which is mainly related to
the field gradient structure : since the element v22 is zero, the splitting
force along y is nearly zero at r0.

17 Which corresponds to a larger distance of the wires (FL2,j) from the center r =
0. For example, the trap-depth can be increased by a factor of 4 (from h × 5.4 to
h × 86.4 kHz) by decreasing the parameter t by a factor of 2.



Static Potential Microwave Potential

Trap Trap-depth I10 I20 Bb,x Bb,y Bb,z |xm| |ym| |zm − h0| |θab| ωx̃/2π ωỹ/2π ωz̃/2π

[kHz] [mA] [G] [µm] [Hz]

SIP - - - - - - 1.28 0.03 0.52 0◦ 867.45 99.40 822.42

Z 1680 62.58 - −4.70 2.94 0.00 1.59 6.08 0.37 75.27◦ 862.63 90.13 804.57

Dimple 38.4 62.73 0.69 −4.98 3.29 0.00 1.26 0.94 0.52 36.65◦ 853.91 96.24 748.73

H⋆ 16.5 −62.30 −1.40 4.98 3.12 0.00 1.25 0.04 0.55 1.94◦ 852.19 96.62 734.51

(S⋆
I )-Manhattan 5.4 31.90 1.00 −0.38 3.18 4.45 1.32 0.02 0.58 10−6◦ 852.91 93.09 786.97

(S⋆
I I)-Manhattan 33.1 32.05 −0.69 −0.38 −3.28 4.43 1.31 0.44 0.57 10−5◦ 852.82 95.71 793.70

Table 4: Simulation of the Transverse beam-splitters. A comparison between the (resulting) microwave potentials generated using several static traps :
SIP, Z-trap (with t = 0.248), Dimple trap, H⋆-trap and the custom Manhattan traps (cf. text). In each case, the trap-depth and the following
experimental parameters are given (for the microtraps) : the currents {I10, I20} along the axes {x, y} respectively, and the homogenous bias
field along the axes {x, y, z} (cf. text). For the microwave trapping-potentials, the coordinates of the minimum rm = {xm, ym, zm}, the splitting
direction θab, and the eigenfrequencies {ωx̃, ωỹ, ωz̃} are computed.
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6.3 full-simulation results

In this section, we present the results of a complete simulation taking
into account the effect of the non-resonant transitions. We focus on
the study of the transverse beams-splitter, using the H⋆-trap18, with
the field parameters used previously in section 6.2.5. This configura-
tion corresponds to the Config. I on our chip (cf. Figure 52).

Figure 42 shows the resulting potentials, computed using the full
numerical model (equation (78)) and the approximated analytical model
(equation (79)). Form the last simulation, the dissymmetry of the po-
tentials can be estimated, as shown in Table 5. The highest frequency
difference between the two wells is along the axial direction x : about
2%. These dissymmetries can be reduced to the order of 0.1% by fine-
tuning the microwave powers {P1, P2} and the microwave frequencies
{ωmw,1, ωmw,2}.

Moreover, one can notice a discrepancy between the numerical
(78) and analytical (79) models, unlike the case of an axial beam-
splitter where an excellent agreement has been shown (cf. Figure
19). This is due to the fact that, the condition of well-separated anti-
crossing : |Ωm2

m1 | ≪ |ω0
L| is not fully satisfied here. In particular, the

Rabi frequencies Ω
m2
m1 should be relatively important in order to com-

pensate the high transverse confinement (ω⊥/2π = 1 kHz). For in-
stance in Figure 42, the Rabi frequencies related to the σ-transitions
are estimated in the trap center r0 by :

∣

∣Ωσ(−)

a

∣

∣ = 0.32 × ω0
L and

∣

∣Ωσ(+)

a

∣

∣ =
∣

∣Ωσ(−)

b

∣

∣ = 0.19 × ω0
L. Yet, the approximated model still can

be used for a quick screening of the tunable microwave parameters,
as the accuracy of the frequencies estimation is about 1%.

Finally, we point out that similar results can be found using a
potential-well beam-splitter. As expected, the dissymmetry of the po-
tentials are higher due to the reduction of the trap-depth discussed in
section 5.3. Moreover, as the splitting distances in both cases are sim-
ilar (≈ 2 µm), there is no advantage in using an attractive microwave
potential for a transverse splitting.

x̃ ỹ z̃

|∆ω|/2π (Hz) 15.82 1.21 11.16

|∆ω
ω | × 10−2 1.81 1.29 1.55

Table 5: The dissymmetry of the potentials ∆ω = ωb − ωa, related to the
simulations shown in Figure 42, along the eigendirections : {x̃, ỹ, z̃}.
The latter are slightly rotated from the chip reference : {x, y, z}.

18 As the Manhattan-trap configurations are not implemented in the current chip ver-
sion.
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Figure 42: The H⋆-trap configuration. Numerical simulation of the dressed
clock states |ā〉 (in green) and |b̄〉 (in red) potentials and the static
potential (in blue), shown here along the transverse direction x,
using two different models (cf. text). This configuration corre-
sponds to the Config. I on our chip (cf. Figure 52).
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6.4 magic field

The effect of the microwave dressing on the magic field using π-
transitions has been studied in section 5.5. In a similar manner, we
propose to analyze the effect of the microwave dressing using σ-
transitions.

For this purpose, we use the same formalism than section 5.5 where
the detunings and the microwave frequencies are given by :

∆a(B) = ωmw,1 − [E2,0(B)− E1,−1(B)] /h̄ (136a)

∆b(B) = ωmw,2 − [E2,1(B)− E1,0(B)] /h̄ (136b)

ωmw,1 = ωhfs − ω0
L + ∆0

a (136c)

ωmw,2 = ωhfs + ω0
L + ∆0

b (136d)

∆0
a = −∆0

b = ∆0 (136e)

Figure 43 shows the maximal allowed contamination κc as function
of the initial detuning |∆0| in the case of a potential-barrier (∆0 > 0).
One can notice a significant improvement of the κc values compared
to the case of microwave dressing using π-transitions. For instance,
κc is higher by a factor of 5.3 if |∆0| = 0.05 × ω0

L.
This can be explained simply by the weak dependance to the mag-

netic field B of the energies {E2,0, E1,0} corresponding to the states
{|2, 0〉, |1, 0〉}, which are coupled to the clock states {|a〉, |b〉}, respec-
tively. In case of the σ-transitions, the variation of the coupling-energies
{E2,0, E1,0} as function of B is (nearly) of a second order as mF = 0, un-
like the case of the π-transitions, where the variation of the coupling-
energies {E2,−1, E1,1} have (approximately) a linear dependence of B

as |mF| = 1.
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Figure 43: The maximum allowed contamination rate κc = |Ω/∆0| as a func-
tion of the initial detuning |∆0|, using π-transition (in blue) and
σ-transitions (in green), in the case of a potential-barrier.
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Nevertheless, the values obtained of κc are not sufficient to per-
form a transverse splitting, with the parameters discussed earlier.
For example, in section 6.3, the contamination value at r0 is about :
κ = |Ω/∆0| ≈ 4. Hence, the perturbed-symmetrical configuration dis-
cussed in section 5.5.2 can be also a useful solution here to increase
the value of κc. As shown in Figure 26, in the case of π-transitions
and a potential-barrier, the maximal contamination value is no longer
limited (κc → ∞) if |∆0| > |∆T1

0 |, where ∆
T1
0 is the first-threshold

value. Similar results can be found here with σ-transition. Moreover,
by choosing |∆0| > |∆T2

0 | where ∆
T2
0 is the second-threshold value and

|∆T1
0 | < |∆T2

0 |, it is possible to follow adiabatically the evolution of the
magic field Bm(κ). Figure 44 shows the second-threshold value ∆

T2
0 as

a function of the perturbation parameter ǫ. For instance, in order to
set the initial detuning19 to |∆0| = 0.05 × ω0

L, and to avoid the limi-
tation on the contamination value κ, the perturbation parameter |ǫ|
has to be set (at least) to : {4× 10−2, 0.6× 10−2} using π, σ-transitions
respectively. Here also, using σ-transitions is more advantageous as
the perturbative parameter can be set to a lower value, so the dissym-
metry of the potentials given by equation (91) can be reduced further.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

|ε|

|∆
T
2

0
/ω

0 L
|

 

 

π-transitions
σ-transitions

Figure 44: The variation of |∆T2
0 | as a function the perturbative parameter

|ǫ| using π-transitions (in blue) and σ-transitions (green), for
a potential-barrier. Following adiabatically the variation of the
magic field Bm is possible if : |∆0| > |∆T2

0 |. The contamination
value κ is not limited in this case.

19 As it is the case in Figures 42 and 19b.
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6.5 conclusion

The transverse splitting has two principle advantages compared to
the axial one : it allows a short splitting time and keeps the trap-aspect
ratio (nearly) unchanged after splitting. Nevertheless, it requires a
larger Rabi frequency (with a larger microwave power or/and shorter
distance from the chip surface) and allows only a relatively small
splitting distance (few microns). Moreover, using a typical microtrap,
the splitting direction would be dependent on the experimental split-
ting parameters (e.g. static and microwave currents) which may be a
drawback for precision measurements. In order to overcome this dis-
advantage, we have designed specific static traps on chip such as the
H⋆-trap and the Manhattan trap, but these solutions further compli-
cate the experimental realization.

However, this framework allowed the design of a custom micro-
trap, the (SI)-Manhattan trap, that has a field structure similar than a
Standard Ioffe-Pritchard, and so, can be used to tune widely the trap
aspect-ratio on chip (which can not be done with typical microtraps).

In the next section, we will focus on the study of the dynamical
behavior of our interferometer. For the sake of clarity, only the axial
beam-splitter is analyzed.



7
B E A M - S P L I T T E R D Y N A M I C S A N D C O N T R A S T
A N A LY S I S

7.1 introduction

For a trapped (thermal) interferometer, studying the beam-splitter dy-
namics is of great importance. Uncontrolled fast splitting would in-
duce motional excitation, giving rise to heating, atom losses and a
reduction of the interferometer coherence time. In the case of a state-
selective beam-splitter considered in this work, the interferometer dy-
namics is considerably simplified compared to a double-well scheme
[168], since the evolutions in the two interferometer arms are not cou-
pled for the most part and can be treated independently. Hence, this
subject can be treated as an atomic transition-less transport, which
has been extensively studied in the literature [169], and is still a major
goal for many applications such as quantum information processing
in trap arrays [170], loading atoms in optical lattices [171], or placing
atoms in a high-Q optical cavity [172, 173, 174]. Recently, interest to
perform fast atomic transport has led to a surge of theoretical [175]
and experimental activity [176, 177].

An obvious solution at least in principle, to avoid vibrational excita-
tions, is to perform a sufficiently slow transport such that the atoms
follow adiabatically the changes in the trapping potential. This re-
quires that the duration of the transport is long with respect to the
typical oscillation period of the trapped atoms along the splitting di-
rection [178].

In this chapter, we focus on the axial beam splitter and we study the
interferometer contrast in the case of an adiabatic transport (splitting),
and then we investigate the possibility of fast transitionless transport
(i.e. faster than adiabatic transport).

110
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7.2 adiabatic splitting and recombination

The adiabaticity condition required here is related to external states
of the atoms. This condition is more restrictive for the external states,
than for the internal states discussed earlier in section 4.3.3. Indeed,
the internal time scale is governed by the Larmor frequency (about
6 MHz) while the external time scale is related to the microtrap fre-
quencies (about 0.1 − 2 kHz). In the case of a compression of an har-
monic potential, this condition can be written [178]: |ω̇x|/ω2

x ≪ 1,
where ωx is the angular frequency of the harmonic oscillator.

A typical trapped interferometer scheme is formed from three stages :
Splitting-Holding-Recombination as shown in Figure 7. In the inter-
ferometer envisioned here, by switching off the microwave signal, we
can recombine the two interferometer arms in the static trap center.
In principle, splitting and recombination can be implemented in an
identical manner, which we call "temporal-symmetry" of the interfer-
ometer, in contrast with spatial symmetry discussed previously (cf.
Figure 49a). Since splitting and recombination occur at the same spa-
tial location, this interferometer fulfills the so called "cyclic" transport
condition [179].

7.2.1 Cyclic and adiabatic transport

In a seminal paper, Berry has provided a general solution for such a
cyclic and adiabatic transport problem [179], for a system that evolves
under an Hamiltonian H that can be changed by varying the param-
eters R on which it depends.

For instance, in our case, R can be associated to the experimental
parameters {ωmw,1, P1, ωmw,2, P2} : the microwave parameters of the
signals injected into the CPWs. The evolution of the system between
t = 0 and t = t f can be seen as transport around a closed path
(called here C) of R(t) in parameter space if R(t0) = R(tf). Moreover,
if the system is prepared initially in an eigenstate |n0〉 ≡ |n(t0)〉 of
H(t0) and the parameters R(t) are slowly changed, it follows from
the adiabatic theorem [178] that the system will be at any instant in
an eigenstate |n(t)〉 of H(t). After this slow and cyclic transport, the
wavefunction |n(R(t))〉 can be written :

|n (R(t)))〉 = exp[iθn(t)]× exp[iβn(t)]|n0〉 (137)

where θn is the classical dynamical phase and βn is the geometrical
Berry phase.

The dynamical term (θn) is given by :

θn(tr.o) =
∫ tr.o

0
dt(En(t)/h̄) (138)

where En(t) are the eigenvalues of H.
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The geometrical term (βn) satisfy the following relation :

β̇n(t) = i〈n(R(t))
d

dt
|n(R(t))〉 (139a)

= i〈n(R)∇R|n(R)〉 × Ṙ (139b)

since n (R(t)) evolves under the Schrödinger equation [179].
The total phase βn(tr.o) after a transport along the closed path C

can be transformed to a circuit integral βn(C) as :

βn(C) = i
∮

C
dR〈n(R)∇R|n(R)〉 (140)

which is a time independent expression.
The latter phase is a purely geometrical (topological) phase. It can

be seen, from classical-mechanics viewpoint, as a parallel (tangential)
transport of a vector along a loop [180, 181]. After completing the
closed path, the vector goes back to the original point but rotated
by an angle with respect to the initial direction. For example, after a
parallel transport of a vector along the closed path shown in Figure
45, the rotation angle is π/2. Such rotation angle is of a geometrical
origin, and known for quantum systems as the Berry phase. This term
(βn(C)) vanishes in case of a time-symmetrical interferometer (assum-
ing that the parameters R(t) are reversed in time, cf. Figure 49a), since
the surface in the interferometer parameters space encloses no area
[179].

Moreover, it is also null if the space parameter R forms a flat sur-
face such as a plane [181]. In our case, each interferometer arm is con-
trolled mostly by two experimental parameters (e.g. R1 = {ωmw,1, P1}
for the for right-hand arm) as described in chapter 4. This is an addi-
tional argument to ensure that the geometrical phase vanishes even
if the interferometer is not perfectly symmetrical on time.

Finally, the remaining dynamical phases (θn) can be seen as the
system internal clocks that record the passage of time [179].

7.2.2 Interferometer contrast decay

For a statistical thermal ensemble prepared at a temperature T, the
interferometer evolution should be described using the density opera-
tor for each clock state [182]. Let’s suppose that the system is initially
prepared in the internal state |a〉. Hence, it can be described by the
density matrix :

̺(t < t0) = ∑
n

pn|n, a〉〈n, a| (141)

where pn is the occupation probability of nth level in the static po-
tential and is given by the Boltzmann factors : e−E0

n/kBT/Z with E0
n is

the nth eigenenergy of the static potential and Z = ∑n e−E0
n/kBT is the

partition function.
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Figure 45: Schematic of the geometrical Berry phase. In classical mechan-
ics, parallel transport of a vector along a closed path (C) : a loop
on a sphere induces a rotation compared to the original orien-
tation. Here, the loop surrounds one eighth of the sphere and
the rotation angle amounts to π/2. Such a rotation angle is of a
topological origin and is known as the Berry phase in quantum
mechanics.

For a Ramsey-type interferometer, the sequence starts with a π/2
pulse in order to put the atoms in a coherent superposition of the
clock states. After splitting and recombination, the phase read-out is
performed by applying a second π/2 pulse to close the interferometer.
At the read out time t = tr.o, the total population of the internal state
|a〉 reads pa = Tr(̺|a〉〈a|) = 1/2[1 − Re(A)], where A is given by:

A = ∑
n

pn exp
[

i
∫ tr.o

0
dt
(

Ea
n(t)− Eb

n(t)
)

/h̄

]

(142)

in the case of an adiabatic transformation and Ea
n(t) (Eb

n(t)) is the
nth eigenenergy of the microwave trapping-potential associated to
the state |a〉 (|b〉), respectively. The occupation probability pn remains
unchanged since the transitions between the different levels vanish
exponentially in this case [178].

The modulus of A describes the interferometer contrast decay which
can be written :

C =

∣

∣

∣

∣

∣

∑
n

pn exp
[

i
∫ tr.o

0
dt
(

Ea
n(t)− Eb

n(t)
)

/h̄

]

∣

∣

∣

∣

∣

(143)

In case of a quasi-symmetrical beam splitter, the energy difference
∆En(t) = Eb

n(t) − Ea
n(t) is small compared to the average energy

(Eb
n(t) + Ea

n(t))/2. Furthermore, ∆En(t0) ≃ 0 since both states share
the same static potential initially.

To simplify the problem, we assume that ∆En(t) increases linearly
with time during the splitting stage, from zero to the constant value
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∆E1
n = ∆En(τ), where τ is the splitting time1. This leads to the fol-

lowing contrast expression :

C ≃
∣

∣

∣

∣

∑
n

pn exp
(

iT′
R∆E1

n/h̄
)

∣

∣

∣

∣

(144)

where T′
R = TR + τ, the parameter TR being the holding time (also

called Ramsey time).
In the case where the splitting time τ is very small compared to the

holding time TR (i.e. τ ≪ TR and T′
R ≈ TR), the system can be seen

as a conservative system (i.e. H does not depend explicitly on time)
and its dynamics can be captured by the stationary evolution of the
energy levels during the holding stage.

In probability theory, the contrast expression can be written in term
of the first moment (expectation) related to the Boltzmann distribu-
tion as :

C =
∣

∣

∣
E
[

eiΘ
] ∣

∣

∣
(145)

where Θ is a discrete random variable defined as the ensemble of the
dynamical phases ∆θn =

∫ tr.o

0 dt(∆En(t)/h̄) ≃ T′
R∆E1

n/h̄, associated
with the probability distribution pn. From equation 145, the contrast
can be rewritten as a function of the second moment (variance) of the
centered variable Θ̄ = Θ − E [Θ] such as :

1 − C2 = Var [cos (Θ̄)] + Var [sin (Θ̄)] (146)

Case of 1D harmonic potentials

In this section, we suppose that the resulting potential of each clock
state can be described by an harmonic trap. In addition, if the 1D
harmonic approximation holds (i.e. h̄ωx, kBT ≪ h̄ω⊥), the contrast
(144) leads to :

CH.O =
1

√

1 +
(

sin(∆ω1T′
R/2)

sinh(h̄ω0/2kBT)

)2
(147)

where ∆ω1 = 2∆E1
0/h̄ is the difference between the traps frequencies

during the holding period, ω0 = ωx(t0) is the trap frequency at equi-
librium (t < t0). Equation (147) has the same form as the transfer
function of a Fabry-Perot cavity in optics. One can define a coherence
time as the shortest possible time to reduce the initial contrast by half
(i.e. C(τc) = 1/2).

For high temperature (kBT ≫ h̄ω0), the coherence time is given by :

τc =
2

∆ω1
arcsin

(√
3 sinh(h̄ω0/2kBT)

)

≈
√

3h̄/(ηkBT) (148)

1 τ is also recombination time in case of time-symmetrical interferometer, cf. Figure
49a.
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with η = ∆ω1/ω0, which gives a similar estimation of the coherence
time than expression (68). Moreover, one can notice that the contrast
expression (147) is periodic. This periodicity of the contrast is a signa-
ture of the harmonicity of the potentials, and results from the follow-
ing rephasing condition :

There is an integer k such as : ∆E1
n/∆E1

0 = k (149)

In the case of 1D harmonic potential, it can be shown that : k = 2n+ 1.

Case of 1D anharmonic potentials

We can improve the latter 1D harmonic model by considering the an-
harmonicity effects. However, the Schrödinger equation obtained can
no longer be solved analytically. We must then resort to solving it nu-
merically. There exists, however, an approximated method to obtain
analytically approximate solution, known as "stationary perturbation
theory" in case of conservative quantum system [183].

Perturbation theory is applicable when the Hamiltonian of the sys-
tem being studied can be put in the from :

H = H0 + W (150)

where the eigenstates and eigenvalues of H0 are known and where
W is much "smaller" than H0 (i.e. the matrix elements of W are much
smaller than H0). To make this more explicit, we assume that W is
proportional to a real parameter Λ which is dimensionless :

W = ΛŴ (151)

and where Ŵ is an operator whose matrix elements are comparable
to those of H0 and |Λ| ≪ 1. Perturbation theory consists of expanding
the eigenvalues and eigenstates of H in power of Λ, keeping only a
finite number of terms of these expansions.

In our case, H0 is the Hamiltonian of an harmonic oscillator (H.O)
with an angular frequency ω1, and its corresponding eigenstates and
eigenvalues (eigenenergies) are respectively given by the following :

φn(x) =
1√
2nn!

(mω1

πh̄

)1/4
e−

mω1x2

2h̄ Hn(

√

mω1

h̄
x) (152)

EH.O
n = h̄ω1(n + 1/2) (153)

where Hn are the Hermite polynomials. The eigenvalues form a dis-
crete and non-degenerate spectrum of energy (i.e. n is an integer).
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The second-order energy correction for the state |φn〉 can be calcu-
lated using the perturbation theory [183] :

En(Λ) = E
(0)
n + E

(1)
n + E

(2)
n + O(Λ3) (154a)

E
(0)
n = 〈φn|H0|φn〉 (154b)

E
(1)
n = 〈φn|W|φn〉 (154c)

E
(2)
n = ∑

k 6=n

|〈φk|W|φn〉|2

E
(0)
n − E

(0)
k

(154d)

The correction of the state |φn〉 can be also calculated but is not nec-
essary here since only the energy level En is required for the contrast
estimation (cf. equation (144)). In practice, the second order correction
is enough (at least in our case, as will be shown in the next section).

In the case of a one dimensional model, the anharmonicity is a
superposition of perturbative terms in the form of : Wk = h̄ω1σkXk

where X = x/aH.O with aH.O =
√

h̄/mω1 and k is an integer. The
particular cases where k = {0, 1, 2} correspond to a perturbation of
the potential minimum value, position and frequency, which are not
relevant here.

On the other hand, one can show that the first correction term of
the energy : 〈φn|W|φn〉 vanishes for k > 3, which minimizes the effect
of the anharmonic perturbations. Moreover, the non-dimensional co-
efficients of the perturbative terms σk relative to each clock state have
(approximately) similar absolute values along the x-axis2. Generally,
this property can be verified for higher order terms, if the symmetry
condition V |ā〉(−x) = V |b̄〉(x) is nearly verified.

These correction terms can be calculated analytically [24, 183], by
writing the operator : X = 1√

2
(a + a†) where a and a† are annihilation

and the creation operators respectively. Using the properties of the
quantum harmonic oscillator, we can deduce that the matrix elements
of Wk.

For W3 (k = 3), using a second-order perturbation theory, the cal-
culation yields to the energy shift :

En − E
(0)
n = −σ2

3

[

15
4

(

n + 1/2
)2

+
7
16

]

h̄ω1 (155)

The difference between two adjacent levels is no longer independent
of n as it is the case for the quantum harmonic oscillator.

Applying this anharmonicity consideration to the previous contrast
formula (144), makes in principle the rephasing condition (149) no
more valid. In practice, the harmonic approximation holds if the tem-
perature T is chosen such as :

∣

∣

∣

(

(

σb
3

)2 −
(

σa
3

)2
)

E
[15

4

(

n + 1/2
)2

+
7
16

]∣

∣

∣≪ 1 (156)

2 As shown in Table 6 (the term X3), which corresponds to σ3 in this case.
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where E is the first moment in term of the Boltzmann distribution3,
and σa

3 and σb
3 are given in Table 6.

Case of simulated full 3D potentials

We present here a study of the contrast decay using a full 3D numeri-
cal simulation. The microwave potentials correspond to the potential-
barrier and potential-well beam-splitter, shown in Figure 19, and are
calculated using equation (79). As explained in the previous section,
the energy level must be computed numerically.

In this section, we investigate the solutions given by the stationary
perturbation theory, described in previously (cf. equation (154)), but
applied here to the full 3D potentials with a numerical approach to
evaluate the correction terms.

First, for each trapping-potential, we estimate numerically the co-
ordinates of the minimum rm = {xm, ym, zm}, and we define the chip
reference as :

{X, Y, Z} = {x − xm, y − ym, z − zm} (157)

Then, we evaluate the eigenvectors {X̃, Ỹ, Z̃} (as function of {X, Y, Z})
and the eigenfrequencies {ωX̃, ωỸ, ωZ̃} in the minimum, during the
holding stage. The quantum harmonic oscillator (H.O) gives a first
estimation of the energy levels (Ea/b

n ). The latter evaluation is then
improved using the stationary perturbation theory [183] to take into
account the effect of anharmonicity. For each clock state, we define
the perturbation potential W as :















W = V ′ − Ṽ

V ′ = V(X, Y, Z)− V(0, 0, 0)

Ṽ = 1
2 m(ω2

X̃
X̃2 + ω2

Ỹ
Ỹ2 + ω2

Z̃
Z̃2)

(158)

where V and Ṽ are the full 3D potential and the approximated 3D
harmonic potential respectively. Both potentials are centered around
zero.

Expression of W is deduced using equation (79) to generate the
microwave potential V. Then, it is used together with the expression
(153) of the eigenstate φn(x) to compute the diagonal 〈φn|W|φn〉 and
off-diagonal 〈φk|W|φn〉 matrix elements in equation (154). The latter
elements are related to the first order and second-order energy cor-
rections, respectively. The diagonal elements 〈φn|W|φn〉 are no longer
zero due to the anharmonic terms. For instance, the contribution of
anharmonic potential of the form XiY jZk is not zero, where i, j, k are
nonzero integers.

The numerical computation is performed using Mathematica, that
allows a precise and time-efficient numerical evaluation of integrals4.

3 Further derivation of this moment is given in [24].
4 It allows also parallel computation using up to 16 cores, which reduces the compu-

tation time of the energy levels to only few hours.
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∣

∣

Figure 46: Energy-levels computation using the stationary perturbation the-
ory, for the potential V|ā〉 shown in Figure 19b. (a) The zero-

order energy-levels E
(0)
n given by the perturbative calculation :

〈φn|V|φn〉, are compared to the energy-levels of an harmonic
oscillator EH.O

n (related to the trapping-potential eigenfrequen-
cies). This allows an estimation of the (integrals) numerical-

computation accuracy. (b) The first-order energy corrections E
(1)
n

are in the order of 10−2E
(0)
n . (c) The second-order energy correc-

tions E
(2)
n are in the order of 10−4E

(0)
n

The accuracy of the numerical computation is verified, as shown in
Figure 46a, by comparing the energy level EH.O

n (related to an har-

monic oscillator) and the integral E
(0)
n = 〈φn|V ′|φn〉 (zero-order of per-

turbative calculation, cf. equations (154)). The first 500 energy levels
(about h × 12 kHz) are calculated with a relative numerical accuracy5

better than 10−5, using a second order correction as shown in Figure
46c. Moreover, Figure 46(b-c) shows that the first and second order

corrections are on the order of {10−2E
(0)
n , 10−4E

(0)
n }, respectively.

Figure 47 illustrates the contrast decay for different values of the
parameter N = kBT/h̄ω0,x, which gives an estimation of the number
of populated energy levels, for kBT ≫ h̄ω0,x.

For short time scale, there is no significant difference for both har-
monic and anharmonic models, for low N values. This shows that
harmonicity is not a necessary condition to maintain coherence in
our case. As a matter of fact, in the ideal 1D case where the symme-
try condition : V

¯|a〉(−x) = V
¯|b〉(x) is fulfilled6, the latter potentials

have the same eigenenergies (even though they are not harmonic),
which preserves the contrast (i.e. ∆E1

n = 0 in equation (144)). In prac-

5 Due to the analytical expressions of the potentials V and W, the numerical computa-
tion of the integrals can be performed with high precision and accuracy goals (here,
with a relative precision goal of 10−5).

6 cf. section 4.3.4



7.2 adiabatic splitting and recombination 119

tice, the dissymmetry of the potentials is not negligible, but its effect
can be described by the 3D harmonic model.

Nevertheless, in the case of a potential-barrier beam-splitter, a no-
table difference between the 3D harmonic and 3D anharmonic mod-
els can be seen for high N ≈ ω⊥/ωx (e.g. N = 10) in Figure 47a.2,
where ωx and ω⊥ are the axial and transverse angular frequencies
of the static trap, respectively. In the latter case, the harmonic ap-
proximation is no longer valid. The anharmonicity effect accelerates
the contrast decay and so must be considered to estimate the coher-
ence time τc, at short time scale. On the other hand, in the case of
a potential-well, the 3D harmonic approximation remains valid even
for high N values, since the anharmonicity is relatively low especially
along the transverse directions, as can be seen in Table 6.

For large time scale, the revivals expected from the 1D harmonic
model (cf. equation (144)) are observed for : N . ω⊥/ωx. For larger
N ≫ ω⊥/ωx, many transverse levels are populated, and the rephas-
ing condition (equation (149)) is no longer verified. The first revival
occurs nearly at T′

R ∼ 2π/∆ω1,x, a time related to the axial dissym-
metry ∆ω1,x which is more important than the transverse ones (cf.
Table 2). The amplitude of this revival is always optimum (equal to
1) for the 1D harmonic model contrary to the full 3D model where
the length of the revival peak decreases as function of the number N

(i.e. the temperature T). This loss of contrast can be understood using
the 3D harmonic model. Indeed, if N ≈ ω⊥/ωx the system becomes
sensitive also to transverse energy levels, which usually do not fulfill
the rephasing condition (149). Thus, the amplitude of the first revival
can be used to evaluate the overall dissymmetry of the potentials.

This is consistent with the fact that the 1D harmonic approximation
is valid only if : N ≪ ω⊥/ωx, and can also explain the disagreement
between the 1D and 3D harmonic models at short time scale. This
disagreement is in particular notable in Figure 47a.2, as the poten-
tial aspect-ratio is : ω⊥/ωx ≈ {5.75, 14.6} for the potential-well and
potential-barrier analyzed here, respectively.

7.2.3 Summary

This three dimensional study confirms the existence of the contrast
revivals expected from the one dimensional model (equation 147)
and their robustness against the potentials anharmonicity, at least
in our interferometer design. An experimental observation of these
revivals would open up the possibility of large interrogation time us-
ing trapped thermal atoms. However, this is expected to happen only
in the one dimensional regime, which sets an upper bound on the
temperature :

Tmax ≈ h̄ω⊥/kB (159)
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On the other hand, the temperature has also a lower bound given
by the condensation temperature Tc, if we want to stay in the thermal
regime. For a uniform three-dimensional gas with non-interacting N
particles, Tc is given by [184, 185] :

Tmin = Tc ≈ 0.94 ×N 1/3(ω⊥/ωx)
−1/3(h̄ω⊥/kB) (160)

Then one can deduce, approximately, a maximum allowed number
of atoms in order to respect the constraints above :

Nmax ≈ ω⊥/ωx (161)

Numerical estimation, in the case studied above, shows that the
atoms number N is relatively small and should be limited to the
range : 10 − 100 atoms. The number of atoms can be increased by
1 − 2 order of magnitude in case of transverse splitting since the trap
axial frequency ωx can be set very low (about few Hz), yet only small
splitting distance (about few microns) are allowed.
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Potential-barrier Potential-well

V |ā〉/h̄ωa
x V |b̄〉/h̄ωb

x V |ā〉/h̄ωa
x V |b̄〉/h̄ωb

x

H
ar

m
on

ic
Te

rm
s

(α
i,

j,k
)

X2 0.50 0.50 0.50 0.50

XY 1.18 1.18 0.74 0.71

Y2 7.17 7.06 4.27 4.61

XZ −0.020 0.012 0.18 −0.20

YZ −0.006 0.005 0.080 −0.082

Z2 7.08 6.96 4.24 4.58

A
n

h
ar

m
on

ic
Te

rm
s

(β
i,

j,k
)

X3 −0.0019 0.0017 0.0070 −0.0079

X2Y −0.014 0.013 0.0086 −0.0087

XY2 −0.11 0.11 −0.052 0.063

Y3 −0.094 0.093 −0.033 0.037

X2Z −0.0064 −0.0064 −0.015 −0.015

XYZ −0.017 −0.017 −0.022 −0.020

Y2Z −0.038 −0.038 0.036 0.039

XZ2 −0.10 0.099 −0.059 0.070

YZ2 −0.096 0.095 −0.036 0.040

Z3 −0.033 −0.033 0.037 0.040

Table 6: The three-dimensional Harmonic and Anharmonic Taylor expan-
sion of the microwave potentials shown in Figure 19. The potential
Ṽ expansion is here given by : Ṽ/h̄ωx = ∑(i+j+k=2) αi,j,kXiY jZk +

∑(i+j+k=3) βi,j,kXiY jZk where (αi,j,k)) and (βi,j,k) are respec-
tively the second-order and third-order terms respectively,
{X, Y, Z} = {x/ax

H.O, y/a
y
H.O, z/az

H.O} and {ax
H.O, a

y
H.O, az

H.O} =

{
√

h̄/mω1,x,
√

h̄/mω1,y,
√

h̄/mω1,z}.
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Figure 47: Interferometer contrast as a function of the (reduced) dissymme-
try of the potentials : ∆ω1T′

R/2π, in case of the potential-well (a)
and the potential-barrier (b) shown in Figure 19, and calculated
using three different methods : simple 1D harmonic model along
the axial direction (dotted line), 3D harmonic model (dashed line)
and 3D anharmonic model that takes into account the potentials
anharmonicity (solid line). From top to bottom, colors correspond
to : N = {2, 5, 10}. A zoom of the contrast evolution at short time
scale is inserted in each case.
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7.3 shortcut to adiabaticity for harmonic potentials

The adiabatic condition discussed previously is very restrictive, es-
pecially in the case where splitting is performed along the weak di-
rection. Here we propose a non-adiabatic splitting scheme that takes
profit from the development of an emergent field : "Shortcuts To Adi-
abaticity" (STA) for cold atoms [175, 186] by keeping the same pop-
ulations of energy levels in the initial and final traps, but in a much
shorter time. In this literature, some methods use optimal control the-
ory to optimize the transition to a target state [187], whereas others
use Invariant-based inverse engineering method that yields the same
state that would have been reached after an adiabatic transformation.
However, this usually comes at the cost of imposing simple and tai-
lorabale trap such as : box trap [188] or harmonic trap [189]. For
instance, the harmonic oscillator is particularly interesting because
an arbitrary trapping-potential can be approximated by an harmonic
potential at the vicinity of the minimum. Following the conclusions
of section 7.2, we neglect the effect of anharmonicity and we consider
a 1D time-dependent forced harmonic oscillator to describe the dy-
namics during the splitting stage. We also neglect the effect of the
dissymmetry of potentials, and we do not distinguish between the
clock states |a〉 and |b〉 because their motions are decoupled due the
internal states labeling.

We will provide the main concepts and formulas related to the
transport problem in a time dependent harmonic oscillator and de-
scribe the invariant-based inverse engineering method that we will
use to design a beam-splitter sequence [182, 190].

7.3.1 Properties of dynamical invariants

The concept of the invariant of motion, generalized to the case of ex-
plicitly time-dependent Hamiltonians by Lewis and Riesenfeld [191],
can be used to derive the general solution of the Schrödinger equa-
tion :

ih̄
∂|ψ(t)〉

∂t
= H(t)|ψ(t)〉 (162)

A time-dependent Hermitian operator I(t) is a dynamical invariant
of the system described by H(t) if :

dI

dt
≡ ∂I

∂t
+

1
ih̄
[I, H] = 0 (163)

As discussed in [189], one can show that the following properties are
satisfied [191] :

• I|ψ(t)〉 is a solution of (162), if |ψ(t)〉 is a solution of equation
(162).
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• Assuming that the eigenvalues λn(t) and the corresponding
eigenstates |ψn(t)〉 of I(t) form a complete set, the eigenval-
ues are real (because I is Hermitian) and time-independent :
λn(t) = λn.

• |ψ(t)〉 can be expanded in terms of constant coefficients cn and
eigenvectors |ψn(t)〉 of I :

|ψ(t)〉 = ∑
n

cneiαn(t)|ψn(t)〉 (164)

If the invariant I does not include the operator (∂/∂t), and the
phases αn(t) are chosen to solve the equation :

h̄
dαn

dt
=
〈

ψn





ih̄
∂

∂t
− H





ψn

〉

(165)

7.3.2 Forced harmonic oscillator with time-dependent frequency

We consider the following time-dependent harmonic potential, de-
scribed by the one-particle Hamiltonian :

H(t) =
p2

2m
+

1
2m

ω(t)2 [q − q0(t)]
2 (166)

where ω(t) is the time-dependent angular trap frequency, q0(t) is
the position of its minimum, and p and q are the usual quantum
operators corresponding to position and momentum respectively.

For an harmonic oscillator, the classical formalism [192] has been
used first to derive the invariant I [191, 193], which is also an invariant
of the corresponding quantum system :

I =
1

2m
[ρ (p − mq̇c)− mρ̇ (q − qc)]

2 +
1
2

mω2
0

(

q − qc

ρ

)2

(167)

where the dot denotes the derivation with respect to time t, ω0 is
an arbitrary constant that we set here to : ω0 = ω(t0), ρ and qc, are
functions of time that satisfy the equations :

ρ̈ + ω2(t)ρ =
ω2

0

ρ3 (168)

q̈c + ω2(t) [qc − q0(t)] = 0 (169)

Their physical interpretation in the context of transport is detailed in
Appendix E.

Once an invariant has been found, the general solution |ψ(t)〉 of
the Schrödinger equation is a superposition of eigenvectors |ψn〉 of
I, as written in equation (164), where the cn are time-independent
amplitudes and αn is the phase term that satisfies equation (165) and
is given by [193] :

αn(t) = −1
h̄

∫ t

0
dt′
(

(n + 1/2)ω0

ρ2 +
m(q̇cρ − qcρ̇)

2ρ2

)

(170)
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The wavefunction ψn, associated to the state |ψn〉, can be written as
[193] :

ψn(q, t) = e
im
h̄ [ρ̇q2/2ρ+(q̇cρ−qc ρ̇)q/ρ] 1

ρ1/2
φn(

q − qc

ρ
) (171)

in terms of the well-known eigenfunctions φn of a quantum harmonic
oscillator with the angular frequency ω0 (cf. equation (152)).

The average position and the standard deviation of ψ0 are respec-
tively : qc and ρaH.O where aH.O =

√
h̄/mω0 is the harmonic oscillator

length at t = t0. From these expressions, the physical interpretation
of qc and ρ are clarified as the center of mass and the (scaled) width
of the atomic cloud, respectively [194].

We point out that the dynamical phase θn(t) for an harmonic os-
cillator that controls the contrast decay, as discussed previously in
case of an adiabatic splitting, is given here by the n-dependent part
of αn(t) in equation (170) such as :

∣

∣θn(tr.o)
∣

∣ =
(n + 1/2)ω0

h̄

∫ tr.o

t0

dt′

ρ(t′)2 (172)

The Taylor expansion of ρ(t) from equation (168), in case of adiabatic
transformation [169] with ω/ω̇ ≫ ω−1

0 , is given at the zero-order, by :
ρ(t) ≈

√

ω0/ω(t). Hence, the expression (172) is in agreement with
equation (138) applied to an harmonic oscillator.

We notice that only the angular frequency ω(t) is involved in the
contrast decay (i.e. in the phase θn(t)) for an adiabatic transport. As
will be discussed next, both ω(t) and q0(t) play an important role in
case of fast transport.

7.3.3 Inverse engineering method

The invariant I has been used in a direct way by setting the trans-
port function q0(t) and analyzing the final heating in quasi-adiabatic
regime [169]. Here, we will use an inverse engineering approach. This
method has been first introduced to realize fast atomic expansion in
harmonic trap

(

ω(t f ) < ω(t0)
)

[194]. Indeed, the invariant I(t) can
be engineered to commute with the Hamiltonian H(t) at initial and
final times :

[I(t), H(t)] = 0 at t = t0 and t = t f (173)

In general, these boundary conditions (BC) are sufficient to perform
a shortcut to adiabaticity (STA). In case of atomic expansion, this can
be achieved by setting the following conditions :

ρ(t0) = 1; ρ̇(t0) = 0; ρ̈(t0) = 0 (174a)

ρ(t f ) =
√

ω(t0)/ω(t f ); ρ̇(t f ) = 0; ρ̈(t f ) = 0 (174b)
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Hence, the eigenvectors of the invariant I(t) (called "expanding"
modes in this case) coincide with the eigenvectors of the Hamilto-
nian H(t) at initial and final times. In practice, this can be achieved
by setting an appropriate function ω(t) such as the scaling factor ρ(t)

satisfies both : the Ermakov equation (168) and the boundary condi-
tions (174).

In addition, the inverse engineering method has been applied for
fast atomic transport in a "rigid" harmonic trap (i.e. ω(t) = ω0) [190],
to ensure that the transport modes (eigenvectors of I(t)) coincide with
the eigenvectors of H(t) at initial and final times. This can be done
by first designing the classical trajectory qc(t) to satisfy the following
conditions :

qc(t0) = q0(t0) = 0; q̇c(t0) = 0; q̈c(t0) = 0 (175a)

qc(t f ) = q0(t f ) = s; q̇c(t f ) = 0; q̈c(t f ) = 0 (175b)

Then, the trap-center trajectory q0(t) has to be set by inversing the
classical equation of motion (169).

Application to atom interferometry on-chip

The interferometer sequence using thermal atoms (cf. Figure 49a) can
be seen as a cyclic transport problem. Yet, we cannot apply directly
the STA methods studied in the literature in the case of a rigid trans-
port [176, 190], because ω(t) is intrinsically coupled to q0(t) for an
atom chip as shown in Figure 48a.

Indeed, keeping ω(t) constant to perform a rigid transport (i.e.
ω(t) = ω0) [190], might be possible on chip at least in principle by up-
dating the static trap frequency while splitting. In practice, this would
demand to vary almost all the controllable parameters at the same
time (microwave and static currents, and bias fields) which would
be an additional source of noise and complexity. Otherwise, the in-
terferometer beam-splitter can be seen as a combination of the two
previous problems : compression (ω(t0 + τ) > ω(t0)) (or expansion),
and transport (q0(t0 + τ) 6= q0(t0)).

In this section, we shall describe a solution to perform a STA in this
interferometer taking into account the additional constraint ω/ω1 =

f (q0/s), where f is a function that can be computed numerically for
a given situation. Indeed, our main concern is to avoid vibrational
transitions, especially at the read-out time tr.o. This can be done if the
boundary condition (173) is verified at least for t f = tr.o. This would
allow a fast and transitionless cyclic transport compared to the adiabatic

cyclic transport discussed earlier.
Furthermore, the STA problem can be considerably simplified by

taking advantage of the temporal symmetry of our interferometer, in
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particular the trap trajectory q0(t) and the angular frequency ω(t) can
be set such as :

q0(t − t0) = q0 (−(t − tr.o)) (176a)

ω(t − t0) = ω(−(t − tr.o)) (176b)

One can also define a new time reference : t′ = t − t′0, centered at
t′0 = (tr.o − t0)/2 = τ + TR/2. Then, the latter time-symmetry equa-
tions can be written : ω(−t′) = ω(t′) and q0(−t′) = q0 (t′), and so :
H(−t′) = H(t′).

The desired fast and transitionless cyclic transport, can be seen also
as an atomic transport where transitions between energy levels are
allowed after splitting, but the interferometer parameters can be de-
signed such as the probability transition between the energy levels
Pn,m are time-symmetrical : Pn,m(−t′) = Pm,n(t′). A general discus-
sion about the transition probability and its symmetry can be found
in Appendix F.

The classical equations (168) and (169) are also time-symmetrical
and their corresponding solutions ρ(t) and qc(t) can be reversed in
time : t′ ↔ −t′ (i.e. (t − t0) ↔ −(t − tr.o)) if the following (initial)
conditions are fulfilled :

ρ(t0 + τ + TR) = ρ(t0 + τ); qc(t0 + τ + TR) = qc(t0 + τ) (177a)

ρ̇(t0 + τ + TR) = −ρ̇(t0 + τ) (177b)

q̇c(t0 + τ + TR) = −q̇c(t0 + τ) (177c)

During the holding stage, analytical solutions of equations (168) and
(169) are known. Indeed, qc(t) and ρ(t) are both oscillating at the
following frequencies respectively : ω1 = ω(t0 + τ) and 2ω1 (cf. Ap-
pendix E). Therefore, equations (177) can be simplified to the corre-
sponding constraints :

TR = 2πk/ω1 (178a)

ρ̇(t0 + τ) = 0 (178b)

q̇c(t0 + τ) = 0 (178c)

where k is an integer.
The first condition (178a) can be satisfied by a convenient choice of

the holding time TR. Then, to satisfy equation (178c), one can design
q0(t) by imposing the boundary conditions (175) with t f = t0 + τ. In
this case, the center of mass of the atomic cloud does not oscillate
during the holding stage, which is expected to reduce the sensitivity
to the potential anharmonicity [153] and to the interferometer spatial-
dissymmetry.

For this purpose, we choose the simplest polynomial ansatz P as a
solution to the 6 boundary conditions (175), such as :

qc(t − t0)/s = P ((t − t0)/τ) (179)
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for t0 6 t 6 t0 + τ. So, P is here chosen as [190] :

P(X) = 10X3 − 15X4 + 6X5 (180)

Then, we deduce q0 by numerically solving equation (169), that can
be written here as :

f 2(q0/s) [q0/s − P(X)] =
1

ω2
1τ2

d2P(X)

dX2 (181)

and 0 6 X 6 1.
Finally, the last condition (178b) remains to be satisfied in order to

perform an STA at the read-out time tr.o (i.e. to perform a transtion-
less transport at t = tr.o). Obviously, once q0(t) is fixed, the angular
frequency ω(t) can not be designed freely to fulfill the last condi-
tion (178b). However, since ω(t) is known, we shall analyze the corre-
sponding profile of ρ(t).

In Figure 48b, ρ1 = ρτ(t0 + τ) is computed by solving numerically
equation (168) (to determine ρτ(t)) in iterative manner for different
splitting time τ with ω = ω1 f (q0/s) and q0 is the function designed
previously (and that satisfies equation (181)), for a potential-barrier
beam-splitter. The atoms are assumed to be at (motional) equilibrium
initially, so the initial conditions used are : ρ(t0) = 1 and ρ̇(t0) = 0.
Figure 48b shows that ρ̇τ(t0 + τ) has several zeros τe where the condi-
tion (178b) can be verified. Figure 48c shows q0 and qc that correspond
to the τe times. For short splitting time τ, the corresponding trajecto-
ries could exceed the interval [0, s] and require very fast variation of
the splitting parameter (i.e. Pmw here) which may be difficult to im-
plement experimentally [189]. Similar results were found in case of
rigid transport in [190].

In Figure 49, the parameters ρ(t) and qc(t) are computed numeri-
cally for the second ρ̇τ(t0 + τ)-zero time τe. As expected, ρ(t) oscil-
lates while qc(t) remains constant during the holding time. Moreover,
q0(t) and ω(t) are designed so that ρ(t) and qc(t) at final time (t = tr.o)
return to their initial values, which is well verified.

Nevertheless, the STA boundary conditions are not fully satisfied
after the splitting because the condition ρ(t0 + τ) =

√
ω0/ω1 (cf.

equations (174b) with t f = t0 + τ) is not necessarily satisfied. Hence,
we expect vibrational excitations to occur during the holding stage,
which can potentially reduce the coherence time (cf. Figure 47). This
can be quantified in terms of the average adiabatic energy-transfer
∆E

(ad)
n (t) (i.e. energy difference between the fast and adiabatic trans-

formations) which is given in general by :

∆E
(ad)
n (t) = h̄ω1(ΥF(t) + Υn

ω(t)) (182)

where ΥF(t) and Υω(t) describe the energy-transfer, in unit of h̄ω1,
due to perturbation with the driving force F(t) = mω(t)2q0(t) and
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the harmonic perturbation ω(t) respectively (cf. Appendix F, equa-
tion (234a)). These energy expressions, derived in Appendix F (equa-
tions (223) and (233)), are given by :

ΥF(t) = W(t)/h̄ω1

=
1

2mh̄ω1

∣

∣

∣

∣

∫ t

t0

F(t′)ξ(t′)dt′
∣

∣

∣

∣

2

(183)

Υn
ω(t) = ∆E

(ad)
ω (t)/h̄ω1

=
(2n + 1)
4ω0ω1

[

ρ̇2 + ω(t)2ρ2 + ω2
0/ρ2 − 2ω0ω1

]

(184)

where ξ(t) is a solution of the classical equation :

ξ̈(t) + ω2(t)ξ(t) = 0 (185)

discussed in Appendix E. For instance, in case of rigid transport
(ω(t) = ω0), and ΥF(t → ∞) can be seen as a Fourier transform
of the driving force F(t) [176]. In our case, q0(t) is designed in order
to respect the boundary conditions (175) during the splitting stage
(t f = t0 + τ), so we make sure that ΥF(t) vanishes during the holding
time (t > t0 + τ).

In addition, the time-average energy Ῡn
ω during the holding time

can be calculated as follows : the solution of the Ermakov equa-
tion (168) for t > t0 + τ assuming a constant intermediate angu-
lar frequency ω1 with the boundary conditions ρ(t0 + τ) = ρ1 and
ρ̇(t0 + τ) = 0 is :

ρ(t) =
√

[(ω2
0 − ω2

1ρ4
1)/ω2

0ρ2
1] sin2 (ω1(t − t0 − τ)) + ρ2

1 (186)

Then, the time-average of the quantities : ρ̇(t)2, ρ(t)2, and 1/ρ(t)2 can
be easily calculated. If condition (178a) holds, the derivation of Ῡn

ω

can be simplified to :

Ῡn
ω = −(2n + 1)

(ρ2
1 − γ)(ρ4

1 + γρ2
1 − 2)

4γ
(187)

where γ = ω0/ω1. For the numerical values of ρ̇τ(t0 + τ)-zeros shown
in Figure 48b, ρ1 = {1.16, 0.11, 0.75} and Ῡ0

ω = {−0.20,−0.48, 0.01}
respectively. In this case, the transition effect is weak in average, es-
pecially for the third ρ̇τ(t0 + τ)-zero. For the first and second zeros,
this effect can be seen (an average) as a reduction of the number N of
populated energy-levels7. Moreover, such effect can be neglected if N

is chosen such as : (2N + 1)|Υ0
ω| < 1, because the perturbation of the

higher populated energy level would be lower than an energy quanta
h̄ω1.

7 In contrast to the case of an adiabatic transformation where the number of populated
energy-levels remains constant.
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Furthermore, one can adjust slightly ω0 and ω1 values, starting
from the first ρ̇τ(t0 + τ)-zero time τe, such as :

ρ1 =

√

(

√

8 + γ2 − γ

)

/

2 (188)

in order to minimize the time-average energy-transfer8 |Ῡ0
ω|, dur-

ing the holding time TR. Even better, one can fulfill the last remain-
ing boundary condition (174) : ρ1 =

√
γ, starting from the third

ρ̇τ(t0 + τ)-zero time, so all transitions during holding time would
be completely canceled.

We point out that the coherence of our interferometer is robust
to perturbations thanks to its symmetrical design. In fact, imperfect
experimental control usually allows small transition effect at the read-
out time; however this is not harmful for the phase contrast as long
as these imperfections are similar for both interferometer arms. This
is possible, if the two microwave signals are created using the same
frequency chain in order to suppress common-mode perturbations.

8 In different context, satisfying the equations (188) and (178b) might be used to per-
form a frictionless cooling as in [194, 186], with a cooling times shorter than those
obtained using optimal-control bang-bang methods and without using a negative
angular frequency as proposed in [194]. In this case, the energy levels of < H(t) >
are on average identical to the initial energy levels even though the system is not at
equilibrium.
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Figure 48: Shortcut to adiabaticity applied to the potential-barrier beam-
splitter. (a) The trap angular-frequency ω/ω1 as function of
the trap position q0/s during the splitting stage (i.e. ω/ω1 =
f (q0/s)). The times functions q0(t) and ω(t) are estimated here
for a potential-barrier using the same parameters in Figure 19b
and by varying the microwave power Pmw. (b) ρ̇τ(t0 + τ) as a func-
tion of the splitting time τ with t0 = 0. The second "cyclic" condi-
tion (178b) is verified in 3 points : τe = {0.72, 1.08, 1.40} × 2π/ω1
which corresponds to ρ̇τ(t0 + τ)-zeros. (c) Engineered q0(t)/s
as function of time t/τ. Color lines correspond to the latter
ρ̇τ(t0 + τ)-zero points τe, plotted in dashed, dotted and dot-
dashed lines respectively. In solid line, the resulting cloud center
of mass qc(t − t0)/s is given by the polynomial P ((t − t0)/τ) (cf.
text), which is the same of all three cases.
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Figure 49: (a) Schematic of the interferometer sequence formed from three
stages : Splitting-Holding-Recombination, that last {τ, TR, τ} re-
spectively. t0 and tr.0 indicate the interferometer initial and final
times. (b, c) The interferometer parameters as a function of time
t where the STA conditions at t f = tr.o are fulfilled (cf. equation
178) by making profit of the interferometer temporal-symmetry.
Here TR = 3 × 2π/ω1 and τ = 1.08 × 2π/ω1 which corresponds
to the second ρ̇τ(t0 + τ)-zero in Figure 48b. (b) qcm and q0 are
designed to respect the STA conditions (175) at t f = t0 + τ. (c) ρ
does not respect the STA condition (174) at t = t0 + τ, and so, ρ is
oscillating at the angular frequency 2ω1 during the holding time.
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7.4 conclusion

We have discussed the effects of the beam-splitter dynamics on the
interferometer contrast. We have shown, in case of adiabatic splitting,
that the potentials anharmonicity in our case, have a negligible role
on the contrast decay if the 1D condition is fulfilled. In most cases, the
3D harmonic model is sufficient to predict the interferometer contrast
evolution.

We believe that the limited coherence time due to the potential dis-
symmetry may be overcome by a careful choice of the microwave po-
tential parameters and setting the interferometer read-out time equal
to the first revival time of the interferometer contrast.

Then, we have shown that fast splitting time : τ ≃ 1
2 (2π/ω0) is

possible with low vibrational heating, using the invariant-based tech-
niques. The transfer is achieved by engineering specific trajectories
of the external trapping positions. Theoretically, the design of the
transfer process turned out to be possible thanks to the harmonic
shape of the external potentials. Yet, the effects of the anharmonic
terms (shown in Table 6) remain to be characterized experimentally.
This scheme is flexible enough to be adapted to both beam-splitter
methods : potential-well and potential-barrier. In particular, we have
shown that the potential-barrier method allows the design of straight
ramps that has been demonstrated experimentally [189].

Finally, the shortcut-to-adiabaticity (STA) schemes are not restricted
to the field of ultracold atoms and could be applied in many different
physical problems. For instance, a similar method was proposed for
the fast cooling of a mechanical resonator to its ground state [195].
Recently, several optimization methods such as Optimal Control The-
ory (OCT) has been used for a better control of the quantum systems
[196, 197, 198, 199, 200]. These techniques, which could be combined
to the STA exact solutions, will play a important role in the future
in particular to overcome the decoherence that represents a challenge
for the practical realization of quantum devices.



8
D E S I G N A N D FA B R I C AT I O N O F T H E AT O M C H I P

The design and fabrication of our atom chip is greatly inspired by
the work of P. Treutlein and P. Böhi [86, 163]. In particular, they have
succeeded to overcome the following technical challenges :

• Implementing two layers of wires separated by a thin insulating
layer (few microns). This would allow the implementation of
complex trap design with several crossing wires, such as the
Manhattan Trap discussed in section 2.2.5.

• Integrating a coplanar waveguide on an atom chip. This allows
the state-selective manipulation of atoms using near-field mi-
crowave gradients.

• Implementing a bias-tee on an atom chip so that static and
microwave currents can be superimposed in the CPW ground-
wires [163]. External bias-tee can be used to superimpose mi-
crowave and static currents in the CPW signal-wire.

In addition to the previous challenges, we have implemented in our
atom chip for the first time, the following features :

• Silicon carbide (SiC) atom chip. An SiC substrate is an optically
transparent dielectric which has an outstanding thermal con-
ductivity1. In particular, we demonstrated a magneto-optical
trap with several beams passing through the chip [201].

• Adjacent waveguides with low coupling, in order to create multi-
frequency potentials (which lead to better symmetry of the in-
terferometer).

• Up to eight waveguides are implemented and connected on the
same (27 × 26 mm2) chip. This paves the way for the implemen-
tation of multiple sensors on the same chip.

Photograph and wire layout of the chip assembly are shown in
Figure 50. The atom chip is an assembly of three elementary chips
shown in Figure 51 :

1 Over 390 m−1K−1 for SiC dielectric compared to 148 m−1K−1 for Si dielectric.

134
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Figure 50: (a) Photograph of the atom chip assembly connected to the mi-
crowave cables. Photo courtesy of Jean-François Dars. (b) Wire
layout of the atom chip.

• Connection board : it is a standard Printed Circuit Board (PCB)
that provides connection to the static sources. Seven standard
sockets are soldered onto the PCB back.

• Base chip : SiC chip that ensures the mechanical stability of the
assembly, is glued on the top of the vacuum cell. The CPWs are
connected to the microwave2 sources through miniature custom-
made connectors3. These connectors are designed to be surface-
mounted on the SiC base chip, in order to avoid the necessity of
a second series of bonding wires form the waveguide wires on
the base chip to the connection board. Moreover, a large CPW
is designed to create an homogenous magnetic microwave field
in order to perform a controlled two-photons transition, as dis-
cussed in [155]. This CPW has also a Z-shape, so the central
wire might be used4 to create a static field that can be used to
lift up the atoms to the vicinity of the chip surface, instead of
using an external Z-wire [203].

• Science chip : SiC chip glued to the base chip and acting as a
spacer chip that allows easy access of the imaging laser of the
atoms. This chip holds two metallization layers which are sepa-
rated by a BCB5 insulating layer of about 7 µm thick. The BCB
ensures also the planarization of the upper gold layer, which
has a thickness of 1 µm. The lower gold layer has a thickness
of 3 µm and designed to carry static currents. The large central
wire can carry current pulses of up to 4 A and the other wires

2 The static connectors (pins) cannot be soldered to the base chip because drilling
holes into an SiC substrate is extremely difficult [202].

3 G4PO engineered at Corning Gilbert : www.corning.com [SK-4782-FD & SK-4768-
FD].

4 Using an external bias-tee
5 Benzocyclobutene C8H8
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can carry currents of up to 1 A. The upper layer is designed to
propagate microwave currents, but can also carry static currents
of up to 150 mA.

The atom chip was designed to be glued to a glass cell provided by
ColdQuanta, as can be seen in Figure 53, which will be later related to
a single chamber vacuum system [204]. The three elementary chips
are connected to each other’s through gold (edge) bonded wires. The
fabrication of the SiC chips has been done by Olivier Patard form III-

V Lab6. An overview of the fabrication recipe of microwave atom chip
can be found in [86]. The connection board has been made by Cibel7

and the bond wires by Systrel8.
The science chip is designed to allow an experimental investigation

of 4 configurations, shown in Figure 52, that are discussed in detail
in the following chapters :

• Config. I : Transverse beam-splitter using the H⋆-trap [section
6.3, Figure 42, Table 4]

• Config. I I : Axial beam-splitter [section 5.2, Figure 19]

• Config. I I I : Static double-well (DC-DW) [section 5.7, Figure
36]. Microwave double-well (MW-DW) [section 5.6.3, Figure 30,
Table 3]

• Config. IV : Microwave double-well (MW-DW) [section 5.6.3]

The configurations I, I I and I I I are formed by two adjacent CPWs,
while the configuration IV is composed by two adjacent coplanar
striplines (CPS) [144, 166]. The configuration IV would allow a higher
splitting distance9 but coupling between the striplines is very likely
in this case since the signal wires are very close10. In the following
section, we analyze the transmission parameters of these structures.

S-parameters: simulation and measurement

To design the waveguide structures, as discussed previously, we have
used the simplified quasi-static simulations and its related conformal
mapping method. Yet, we have verified the characteristics of these
tapered waveguides before associating the chip to the glass cell. For
this purpose, we have considered two different approaches.

On the one hand, we have estimated the scattering matrix (Sij) [141]
using a 3D planar simulation with Ansoft Designer. The reflection (S11),
the transmission (S12), and the coupling parameters (S13) and (S14) of

6 www.3-5lab.fr
7 www.cibel.com
8 www.hcm-systrel.com
9 A larger gradient of the microwave field can be created in the vicinity of the static

trap center, cf. section 5.6.3
10 This configuration can be used to design directional couplers [205].
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Figure 51: Atom chip layout. Wire layout on : (a) the connection board [in
green, size : 36.2 × 36.2 mm2] (b) the base chip [in orange, size :
27 × 26 mm2] (c) the science chip : [size : 17.4 × 17.4 mm2] lower
layer (in red) for the static wires and the upper layer (in blue) for
the microwave waveguides. There are several waveguide struc-
tures on the science chip. Each pair of CPWs corresponds to a
configuration discussed earlier in this thesis.

the adjacent waveguide structures, in each configuration of Figure 52,
have been computed. In contrast to 3D full-wave simulation11, the
thickness of each layer, is assumed to be constant with this method.
A cross section of the simulated structure is shown in Figure 54c. The
setting of the 4 ports in the configurations I I and IV are shown in Fig-
ure 54(a-b). We take into account the presence of the DC wires on the
lower layer (which affects the characteristic impedance of the struc-
ture). These simulations have been done with the help of Stéphane
Piotrowicz from III-V Lab.

On the other hand, we have measured the S-parameters of the
microwave structures on the science chip using a network analyzer
connected to a microwave probe station. The reflection (S11) and the
transmission (S12) parameters have been measured for the configura-
tions I, I I and I I I. These measurements have been done with the help
of Didier Lancereau from III-V Lab.

The results of both methods are compared in Figure 55 for the con-
figuration I, I I and I I I. The transmission coefficient S12 is flat over a
large range of frequency. However, for high microwave frequencies,
the simulations underestimate the transmission loss. For example,
around 6.8 GHz, the transmission loss are estimated approximately
by −3 dB, while the measurements give a transmission loss of about
−6 to −8 dB.

Moreover, the measurements of the reflection coefficient S11 show
a resonance behavior around 6 − 7 GHz, and to lesser extent a sec-
ond resonance around 4 GHz for the configurations I and I I. These
resonances can be seen in the simulation results but their amplitudes

11 Which can be done using the software ANSYS HFSS
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Figure 52: Wire layout on the science chip. A zoom of the waveguide struc-
tures on the experiment regions.

are not accurate. This is mostly due to the simplified structures of the
MW and DC layers used in the simulation, as can be seen in Figure
54a. The meshing grid might also affect the accuracy of the simulation
around the resonance points. For the configuration I I I, the resonance
occurs near 5.8 GHz which is in agreement with the simulation.

Furthermore, Figure 56 shows the simulation of the coupling pa-
rameters (S13) and (S14). As expected from the rough estimation in sec-
tion 3.2.1, the coupling between two adjacent CPWs is about −30 dB
around 6.8 GHz.

Finally, the S-parameters of the configuration IV, are shown in
Figure 57. The transmission and reflection parameters are similar to
the CPWs discussed previously but the resonance behavior of S12 is
shifted to around 8 GHz. This is probably due to the large wires in the
lower layer (DC Layer), as shown in Figure 54b. In fact, these struc-
tures can be considered as a conductor-backed waveguides [147, 206].
Nevertheless, the coupling is approximately about −11 dB around
7 GHz, which is relatively high12. This coupling effect can be min-
imized, in the future, by adjusting the distance between the signal
wires in order to shift the resonance of the coupling coefficients from
7.5 GHz to 6.8 GHz.

12 This result is also consistent with an estimation using the quasi-static simulation.
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Figure 53: The atom chip is glued to a glass cell (provided by ColdQuanta).
The base chip creates a wall of the vacuum system. The con-
nection board provides electrical power (DC and MW currents)
through to the vacuum for the science chip. Photo courtesy of
Jean-François Dars.

Figure 54: 3D planar simulations using Ansoft Designer. Layout of the ta-
pered CPWs(a) CPSs(b) (MW Layer) corresponding to the Config.
I I (a) and IV (b) in Figure 52. The signal wires are indicated in
blue. The effect of the static wires in the lower layer (DC Layer
in cyan) is taken into account. (c) Schematic of the science chip
cross-section used in the simulation.
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Figure 55: Microwave transmission (S12) and refection (S11) parameters of
the microwave structures of the configurations I, I I and I I I us-
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These data are related to the (CPW2) in each configuration shown
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9
C O N C L U S I O N

In this thesis, we have proposed an experimental design for a sym-
metrical beam splitter with thermal atoms trapped on chip using mi-
crowave induced potentials.

First, we have considered an axial beam-splitter, similar to the ex-
perimental demonstration in [71] but using two CPWs carrying dif-
ferent microwave frequencies, and we have compared two splitting
schemes : potential-well and potential-barrier. These methods have
different features in term of microwave power requirements, splitting
distances and resulting trap-depths, but they can be both tested ex-
perimentally on the same configuration by tuning the microwave fre-
quencies. We have simulated the microwave splitting potentials and
analyzed the inherent sources of dissymmetry. Moreover, we have de-
veloped an analytical model of the microwave potentials that can be
used to minimize the asymmetry of the potentials. We have investi-
gated the fluctuation effects of the static trapping field on the clock
states in the presence of a dressing microwave field, and we have
shown the existence of a new class of magic fields.

Second, we have considered a transverse beam-splitter, with a split-
ting of the trapped atoms similar to the experimental demonstration
in [67]. This method allows a short splitting time and keeps the trap-
aspect ratio approximately unchanged during splitting. Yet, we have
shown in this case that the axial separation is not negligeable com-
pared to the transverse separation. To overcome the latter disadvan-
tage, we have developed a new scheme to design a tailorable trap
on chip, and we have proposed a custom microtrap : The Manhattan
Trap.

Third, we have discussed the dynamics of an axial beam-splitter.
We have shown, in the case of adiabatic splitting, that the potential
anharmonicities have a negligible role in the decay of the interferom-
eter contrast, and their effects can be understood using a simplified
1D harmonic model. Then, by using the invariant-based techniques,
we have shown that fast splitting time, in the order of one oscillat-
ing period along the longitudinal direction, can be reached without
vibrational heating.

Finally, we believe that the limited coherence time due to the dis-
symmetry of the potentials may be overcome by a careful choice of the
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microwave parameters and setting the interferometer read-out time to
the first revival time of contrast.

This thesis suggests that building an interferometer on chip with
thermal trapped atoms is a promising alternative to BEC interferome-
ters, mainly because it allows a considerable reduction of the interac-
tion effects. This could eventually lead to a new class of compact and
integrated inertial sensors. In that sense, we have discussed the main
physical factors that would limit the ultimate performances of these
sensors such as : the fluctuation effects of both static and microwave
fields. Several solutions have been proposed and practical designs
have been made on the same chip. It is our hope that these configura-
tions will be soon tested experimentally. The clock state transition has
been also used to demonstrate a chip-based atomic clock with long
interrogation times [112, 111]. I hope that this work contributes, even
in a modest way, to create a high-performance Inertial Measurement
Unit (IMU) integrated on chip.
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F U N D A M E N TA L C O N S TA N T S A N D R U B I D I U M - 8 7

D ATA

Planck’s constant h 6.62606896(33)× 10−34 J s

Bohr magneton µB 9.27400915(23)× 10−24 J/T

Permeability of vacuum µ0 4π × 10−7 N/A2

Permittivity of vacuum ǫ0 8.854187817 × 10−12 F/m

Bohr radius a0 0.52917720859(36)× 10−10 m

Table 7: Fundamental constants [87].

Atomic mass m 1.443160648(72)× 10−25 kg

Nuclear spin I 3/2

Table 8: Rubidium-87 data [87].

Zero-field hyperfine splitting Ehfs h × 6.834682610904290(90) GHz

Electron spin g-factor gJ 2.00233113(20)

Nuclear spin g-factor gI −0.0009951414(10)

Table 9: 5 2S1/2 ground state properties [87].
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B
T E N S O R S O F T H E M A N H AT TA N T R A P

For the Manhattan trap, introduced in section 2.2.5, the gradient ten-
sor V is a linear superposition of the following elementary tensors :

V1,i =
Ĩ1,i
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The curvature tensor W is a linear superposition of the following
elementary tensors :
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The parameters used in this Appendix were introduced in section
2.2.5.

The tensors V1,i,W1,i correspond to the i-th wire (FL1,i), in Figure
6b, perpendicular to the x-axis at the point Ai = (L1i = h0/t1i, 0, 0),
while the tensors V2,i,W2,i correspond to the i-th wire (FL2,i) perpen-
dicular to the y-axis in the point Bi = (0, L2i = h0/t2i, 0). The first
points A0 and B0 point coincide with the origin O.



C
A N G U L A R M O M E N T U M M AT R I X E L E M E N T S

To diagonalize the Hamiltonian describing the coupling of the atom
to a microwave field (section 3.1), one should compute the following
matrix elements : 〈2, m2|ǫ. J|1, m1〉, where ǫ = {ǫx, ǫy, ǫz} is a unit
polarization (complex) vector. One can write ǫ. J using Jx = (J+ +

J−)/2 and Jy = −i(J+ − J−)/2 such as :

ǫ. J = ǫx Jx + ǫy Jy + ǫz Jz (193)

=
1
2
(ǫx − iǫy)J+ +

1
2
(ǫx + iǫy)J− + ǫz Jz

Here, we give the matrix elements 〈2, m2|Jq|1, m1〉, with q = {+,−, z}
(only the non-zero elements are listed). The reader is referred to [86]
for more details.

〈2, 2|J+|1, 1〉 =
√

3/4 (194a)

〈2, 1|J+|1, 0〉 =
√

3/8 (194b)

〈2, 0|J+|1,−1〉 =
√

1/8 (194c)

〈2, 0|J−|1, 1〉 = −
√

1/8 (195a)

〈2,−1|J−|1, 0〉 = −
√

3/8 (195b)

〈2,−2|J−|1,−1〉 = −
√

3/4 (195c)

〈2, 1|Jz|1, 1〉 = −
√

3/16 (196a)

〈2, 0|Jz|1, 0〉 = −
√

1/4 (196b)

〈2,−1|Jz|1,−1〉 = −
√

3/16 (196c)

In section 4, we have described the Rabi frequency, in the case of a
linearly polarized microwave field Bmw, by the following expression :

Ωm2
m1

= Cm2
m1

µBBeff
mw/h̄ (197)
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Figure 58: The coupling coefficients |Cm2
m1 |.

where Beff
mw is the microwave effective filed1 and Cm2

m1 is the coupling
coefficient between the states |1, m1〉 and |2, m2〉. The absolute value
of the nonzero coefficients Cm2

m1 are summarized in Figure 58.

1 The microwave field component a long the parallel (normal) local direction of B in
case of π-transition (σ-transition)



D
A X I A L - S Y M M E T RY O F T H E M I C R O WAV E
B E A M - S P L I T T E R U S I N G π - T R A N S I T I O N S

In this appendix, we discuss the possibility to design a custom mi-
crotrap, which combined with two CPWs placed along the x -axis as
shown in Figure 17, allows the creation of a microwave energy-shifts
using the π -transitions that have the following axial symmetry:

V
| a 〉
m w (− x , y , z ) = V

| b 〉
m w ( x , y , z ) (198)

The microwave shifts are given by equation (72), and the effective
microwave field Beff

m w , in the case of the π -transitions, are given by :

Beff
m w = ( B x B x

m w + B z B z
m w ) / B (199)

As the microwave field is on the x z-plane, the trap-axis U should
have its larger component also in the xz-plane (i.e. u2

y ≪ u2
x + u2

z), in
order to select only the π-transitions. Here, we exclude the particular
case where ν = {0, 0, 1} as it gives rise usually to a microtrap with a
low trap-depth [85]. Thus, the following condition should be verified :

Bx(r0) 6= 0 (200)

Using the previous condition and the symmetry properties of the
components of the microwave field, one can easily show1 that the
following conditions :

Bx is an even-function of x (201a)

B2
y is an even-function of x (201b)

Bz is an odd-function of x (201c)

should be verified to satisfy equation (198). Using a first order ex-
pansion, equations (201a) and (201c) give respectively the following
conditions on the elements of the gradient tensor V :

v11 = 0 (202a)

v22 = 0, v23 = 0 (202b)

1 Similar derivation is given in section 6.2.4 for the σ-transitions.
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Hence, as the trap-axis should verify : V .U = 0, one can deduce
that :

U = {0,
−v13

v2
13 + v2

12

,
v12

v2
13 + v2

12

} (203)

which is in contradiction with the condition (200). Therefore, using
the π-transitions and on-chip Ioffe Pritchard trap, we conclude that
the axial-symmetry condition (198) can not be satisfied.



E
C L A S S I C A L T R A N S P O RT D Y N A M I C S

The time-dependent invariants approach described earlier has been
successful in the quantization of time dependent harmonic oscillators.
Here, we establish the general classical solution following Ermakov
approach [192, 169] and show the classical nature of equation (168).
In this section, we summarize the results shown in [169].

The motion of the atoms in a trapping-potential, if we neglect the
anharmonic terms, follows the classical equation (169). We can find
the homogeneous solution by setting q0(t) = 0 in equation (169) and
solve the remaining equation :

ξ̈ + ω2(t)ξ = 0 (204)

Then we set ξ = ρ(t)eiµ(t) where ρ(t) and µ(t) are the modulus and
the phase respectively, and are both real. By considering real and
imaginary parts in equation (204b), we get the two equations :

ρ̈ − ρµ̇2 + ω2(t)ρ = 0 (205)

2ρ̇µ̇ + ρµ̈ = 0 (206)

The second equation can be integrated, and so can simplified to :

ρ(t)2µ̇(t) = k0 (207)

where k0 is an integrating function. By inserting this to equation (205),
we obtain the Ermakov equation (168) where we set k0 = ω(t0). Thus
we establish the classical nature of equation (168). Obviously, the sec-
ond equation (169) that governs the quantum solution (152), is also
classical.

For periods of constant frequency ω = ω1, such as the holding
period in our interferometer, analytical solution can be found :

ρ(t) =
√

cosh(a) + sinh(a) sin(2ω1t + b) (208)

where a and b are time-independent constants that depend on the
system evolution in the past.

Once ρ(t) is known, µ(t) can be easily deduced, thus the general
homogeneous solution :

qh(t) = a0Re[ξ(t)] = a0ρ(t) cos(µ(t) + ϕ0) (209)
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with the amplitude a0 and initial phase ϕ0 are fixed by the initial
conditions.

The particular solution can be determined in the framework of the
green function G(t, t′) such as :

qp(t) =
∫ t

t0

dt′G(t, t′)F(t′)/m (210)

where F(t) = mω(t)2q0(t) is the driving force, and G(t, t′) is related
to the homogeneous solution ξ(t) by the following :

G(t, t′) = ΘE(t − t′)ρ(t)ρ(t′) sin
(

µ(t)− µ(t′)
)

/ω0 (211)

where ΘE is the step function.
Thus, we obtain the general solution of equation (169) as sum of

the general homogeneous solution and a particular solution :

qc(t) = qh(t) + qp(t)

=
1
2

[

a0ρ(t)ei(µ(t)+ϕ0) + ξ⋆(t)ζ(t)
]

+ c.c (212)

where

ζ(t) = i
∫ t

t0

dt′eiµ(t′)ρ(t′)F(t′)/mω0 (213)

If the atoms are initially at equilibrium (i.e. a0 = 0), the classical
solution depends only on the particular solution qp :

qc(t) ≡ qp(t) = ξ⋆(t)ζ(t)/2 + c.c (214)

Then, we define the quantity Ξ(t) = q̇p(t) + iω(t)qp(t) that can be
used to derive the energy transferred to the oscillator giving by [207,
208] :

W(t) = m
∣

∣Ξ(t)
∣

∣

2
/2 (215)

=
1

2m

∣

∣

∣

∣

∫ t

t0

F(t′)ξ(t′)dt′
∣

∣

∣

∣

2

(216)

at instant t where F(t) = 0 (e.g. during the holding period in our
case).



F
T R A N S I T I O N P R O B A B I L I T Y

An alternative formulation of the quantum mechanics (i.e. Schrödinger
description), can be given by the unitary operator U(t) :

ψ(q, t) = U(t)ψ(x, 0) (217)

where the operator U(t) is given by :

U(t) = e−iH(t)t/h̄ (218)

where H(t) is the system Hamiltonian. Let consider U(t)n,k the ma-
trix elements of U with respect to a set of orthogonal functions Φn

that evolve under H. The transition probability from Φk to Φn can be
introduced as :

Pn,k(t) =
∣

∣U(t)n,k
∣

∣

2
(219)

In the case of the Hamiltonian (166), the functions Φn can be set
using the eigenstates ψn of the invariant I (equation (167)) such as :
Φn(q, t) = eiαn(t)ψn(q, t), so one can derive an explicit expression of
the probability transition :

Pn,k(t) =
∣

∣

∣

∫ ∞

−∞
dq ei(αn(t)−αk(0))ψn(q, t)ψ⋆

k (q, 0)
∣

∣

∣

2
(220)

=
∣

∣

∣

∫ ∞

−∞
dq ψn(q, t)φ⋆

k (q)
∣

∣

∣

2

where φk is given by equation (152).
In a landmark paper, Husimi [209] has considered the forced quan-

tum mechanical oscillator and derived exact expressions for their
propagators and transition probabilities in the limiting cases : for
a constant angular frequency (ω(t) = ω0), for a zero driving force
(F(t) = 0), and more generally for ω(t) 6= ω0 and F(t) 6= 0. Later,
similar results has been derived differently by Popov & Perelomov
[207, 208] and Meyer [210]. In the following, we summarize the prin-
cipal results of these papers.

f.1 case of ω ( t) = ω0

This case leads to ρ( t) = 1 and equation (220) simplifies to :

Pn ,k ( t) =
∣

∣

∣

∫ ∞

−∞
dq e imq̇ c ( t)/ h̄ φn (q − q c ( t))φ⋆

k (q)
∣

∣

∣

2
(221)
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The computation of the latter expression can be performed using
the generating function of the Hermite polynomials [207, 209, 211] :

Pn ,k =
µ !
ν !

ǫν−µ e−ǫ
(

L
ν−µ
µ (ǫ)

)2
(222)

where

ǫ(t) = W(t)/h̄ω0 =
1

2mh̄ω0

∣

∣

∣

∣

∫ t

t0

F(t′)ξ(t′)dt′
∣

∣

∣

∣

2

(223)

is the classical energy transfer in unit of the quantum energy h̄ω0 (cf.
Appendix E) and {ν, µ} are respectively the greater and the lesser of
{n, k}; L

ν−µ
µ denotes the associated Laguerre polynomial [212].

Starting from the ground state (k = 0), the excitation spectrum
becomes simply a Poisson distribution :

Pn,0 = ǫne−ǫ/n! (224)

which is a signature of a coherent state [210].
In some cases, one may be more interested in the moments of the

energy transfer (i.e. mean and variance). For the case studied here,
the average energy transfer and the variance are respectively given
by [169, 210] :

∆EF = h̄ω0ǫ (225)

∆2
F = (2n + 1)(h̄ω0)

2ǫ (226)

Thus, the classical and quantum energy transfer are identical.

f.2 case of F( t) = 0

This case leads to q c ( t) = 0 and only ρ( t) depends on time. The
calculation of the excitation spectrum yields to [208, 210] :

Pn ,k =
( l − p) !
( l + p) !

√
1 − B

∣

∣

∣P p
l

(√
1 − B

) ∣

∣

∣

2
(227)

where l = (k + n)/2 and p = |k − n |/2 and P denotes the as-

sociated Legendre polynomial [212]. The non-dimensional parameter
B measures the strength of the quadratic perturbation [210], and its
derivation as a function of ρ will be discussed later. The latter expres-
sion of Pn ,k holds only if |n − k | is an even number. Indeed, transi-
tion between energy levels of different parity is not allowed because :
Pn ,k = 0 if |n − k | is an odd number. This is related to the parity of
the harmonic potential.

If the oscillator is initially in the ground state, the formula can be
simplified to :

P2n ,0 =

√

1 − B
π

Γ(n + 1/2)
Γ(n + 1)

B n (228)

P2n+1,0 = 0 (229)
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where Γ is the Gamma function. Moreover, the average energy trans-
fer and the variance can be deduced [210] :

∆Eω = (2n + 1) h̄ω0
B

1 − B (230)

∆2
ω = 2(n2 + n + 1)( h̄ω0 )

2 B
(1 − B )2 (231)

On the one hand, the time-dependent energy transfer [194], can be
derived differently as :

∆Eω(t) = 〈ψn(t)|H(t)|ψn(t)〉 − 〈ψn(0)|H(0)|ψn(0)〉 (232)

= (2n + 1)h̄ω0
[

ρ̇2 + ω(t)2ρ2 + ω2
0/ρ2] /4ω0 − (n + 1/2)h̄ω0

= (2n + 1)h̄ω0
[

ρ̇2 + ω(t)2ρ2 + ω2
0/ρ2 − 2ω2

0

]

/4ω2
0

On the other hand, one can define the adiabatic energy-transfer, as
the energy difference between the fast and adiabatic transformations :

∆E
(ad)
ω (t) = 〈ψn(t)|H(t)|ψn(t)〉 − 〈ψn(∞)|H(∞)|ψn(∞)〉 (233)

= (2n + 1)h̄ω0
[

ρ̇2 + ω(t)2ρ2 + ω2
0/ρ2] /4ω0 − (n + 1/2)h̄ω1

= (2n + 1)h̄ω0
[

ρ̇2 + ω(t)2ρ2 + ω2
0/ρ2 − 2ω0ω1

]

/4ω2
0

Assuming that the system becomes stationary after a certain time τ

(i.e. ω(t > τ) = ω1), ρ(t) is then given by the periodic solution (208).
Hence, the time average values of ρ2, 1/ρ2 and ρ̇2 can be computed
by performing a time-integration of these quantities over one period :
2π/2ω1 for t > τ. So, the average value of ∆Eω(t) noted ∆Eω in
equation (230) (or ∆Eω(t → ∞)), can be derived in a different manner,
then the parameter B can be deduced explicitly.

The parameter B was first introduced by Popov and Perelomov
[208] as a function of the classical solution ξ(t) of equation (204). In-
deed, if ω(t) → ω1 as t → ∞, ξ(t) has the following asymptotic
form : ξ(t) = C1eiω1t − C2e−iω1t. B is defined as : B = |C2/C1|2,
and interpreted as a reflection coefficient from a potential barrier. Yet,
equation (232) gives an alternative (straightforward) way to compute
the energy-transfer ∆Eω (i.e. the parameter B) that requires only the
knowledge of ρ(t) by solving (numerically) equation (168).

f.3 case of F( t) 6= 0 and ω ( t) 6= ω0

In the general case, the derivation of the excitation spectrum has been
done in the literature [209, 210] but turns out to be lengthy and shall
be omitted here. Nevertheless, the derivation of the energy transfer
moments gives an overview about the spectrum and can be simply
expressed, using the previous notations, as [207, 210] :

∆E = ∆EF + ∆Eω (234a)

∆2 = D (B , ϕ∆ )∆2
F + ∆2

ω (234b)
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where

D (B , ϕ∆ ) =
1 − 2

√
B cos(ϕ∆ ) + B
1 − B (235)

with ϕ∆ is defined by :

ϕ∆ = ϕω − ϕF (236)

ϕω = arg (C2/C⋆
1 ) (237)

ϕF = arg(ζ2(t → ∞)) (238)

One can note that for the energy-transfer of the first moment ∆E,
the roles of the perturbations F(t) and ω(t) are independent and
their contributions can be separated. Whereas, for the second mo-
ment ∆2 the phase term ϕ∆ that relates both perturbation plays an
important role : the spectrum is largest for cos(ϕ∆) = −1 and small-
est for cos(ϕ∆) = 1.

f.4 symmetry of the transition probability Pn ,k

For the first two cases discussed previously : F( t) = 0 and ω ( t) =

ω0, we point out the symmetry of the transition probabilities with
respect to the initial and final states : Pn ,k = Pk ,n . The latter equa-
tion holds only in the case of a time-reversal Hamiltonian : H (− t) =

H ( t) (cf. equation (218)), which is obviously the case only if : ω (− t) =

ω ( t) and F(− t) = F( t). The symmetry of Pn ,k is valid, more gen-
erally if ǫ = 0 or B = 0 [207, 209], that is the effect of the driving
force or the harmonic perturbation vanishes (which is possible even
if F( t) 6= 0 and ω ( t) 6= ω0). This symmetry is a specific property
of an harmonic oscillator and does not arise from the principles of
quantum mechanics.

In the general case, when ǫ 6= 0 and B 6= 0, the fortuitous symme-
try of Pk ,n disappears expect in a unique case where the condition :
B = cos2 (ϕ∆ ) is fulfilled. The asymmetry of Pn ,k can be easily seen
from the following particular case [207] :

P1,0 = ǫ(1 − B )P0,0 (239)

P0,1 = ǫ(1 − 2
√
B cos(2 ϕ∆ ) + B )P0,0 (240)

P0,0 =
√

1 − B exp (−ǫ(1 − √
ρ cos ϕ∆ )) (241)

The transition probabilities and the consideration of symmetry dis-
cussed here are particularly important to design a successful beam-
splitter. This design is studied in section 7.3.3, using the inverse engi-
neering method based-on Lewis invariant I .
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We investigate some properties of an atom chip made of a gold microcircuit deposited on a

transparent silicon carbide substrate. A favorable thermal behavior is observed in the presence of

electrical current, twice as good as a silicon counterpart. We obtain one hundred million rubidium

atoms in a magneto-optical trap with several of the beams passing through the chip. We point

out the importance of coating of the chip against reflection to avoid a temperature-dependent

Fabry-Perot effect. We finally discuss detection through the chip, potentially granting large

numerical apertures, as well as some other potential applications. VC 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.3689777]

Atom chips1,2 are a versatile tool for the manipulation of

ultracold atoms.3,4 They have been used to create atomic wave-

guides, beam splitters or conveyor belts, and to achieve and

handle Bose-Einstein condensates. They opened possibilities

for the study of fundamental issues such as low-dimensional

quantum systems, cavity quantum electrodynamics, and nano-

mechanical resonators. Recent results regarding on-chip

radiofrequency and microwave manipulation of atoms5–7 also

hold prospects for future applications such as quantum informa-

tion processing,8,9 timekeeping,10 or inertial sensing.11

One key feature of atom chips is to allow tight atomic

confinement thanks to strong magnetic field gradients. To do

so, electrical currents up to several amperes are typically

required, and thermal management can become an issue.12,13

Moreover, atom chips take advantage of the fact that atoms are

trapped very close to the chip surface,4 typically on the order

of tens or hundreds of microns. Because the chip size is usually

centimetric, this comes at the price of reducing the optical

access to the atoms by almost half the full 4p solid angle.

In this paper, we propose to address these issues by using

a transparent atom chip made of a gold microcircuit deposited

on a single crystal silicon carbide (SiC) substrate. Single crys-

tal SiC appears as a particularly relevant candidate substrate

for atom chip applications. Its specified electrical resistivity

(over 105 X cm for our high purity semi-insulating 4H SiC

sample)14 and thermal conductivity (over 390Wm�1K�1 for

our sample)14 make it well suited for supporting wires with

large currents, without the need of an additional electrical

insulation layer. To illustrate the latter point, we have moni-

tored the temperature rise of our 414 lm� 15mm� 15mm

SiC chip in the presence of electrical current and compared it

to a 600lm thick silicon chip with a 200 nm insulating silica

layer, all other parameters being equal. Current was run

through the central 14mm� 100lm� 3lm wire of each

chip. Each chip was resting along two opposite sides on cop-

per blocks, acting as heat sinks, as shown on the inset of

Fig. 1. Temperature was measured after thermalization at am-

bient pressure. We have used a gold wire pattern similar to the

one of Ref. 15, which already has proven to achieve Bose-

Einstein condensation of rubidium atoms. As can be seen on

the main curve of Fig. 1, the thermal behavior of the SiC chip

is more than twice as good, despite the greater thickness of

the silicon chip, which is expected to favor thermal conductiv-

ity between the central wire and the heat sinks.

With a bandgap value of about 3.2 eV at room tempera-

ture,14 another potential interest of single crystal SiC is optical

transparency at all visible wavelengths. Our chip is coated, af-

ter the deposition of the wires, with a single anti-reflection

(AR) layer of aluminum oxide on each side, resulting in about

2% reflection on each air/SiC interface for a 780 nm beam at a

60� incidence, as used in our magneto-optical trap (MOT)

setup shown in Fig. 2. The overall substrate transmittance is

about 93% when measured with a small beam propagating

between wires. The difference of 3% between the overall

losses and the reflection losses can mainly be attributed to

absorption by the substrate, corresponding to an absorption

FIG. 1. (Color online) Main curve: comparison of the thermal properties of

the SiC chip with that of a silicon counterpart. Inset: picture of the test

setup.

a)Present address: LNE-SYRTE, Observatoire de Paris, 61 av. de l’Observa-

toire, 75014 Paris, France.
b)Electronic mail: sylvain.schwartz@thalesgroup.com.
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coefficient of about 0.7 cm�1 at 780 nm. The overall transmit-

tance of the chip drops to about 80% in the MOT setup

because the beams are partially blocked by the wires.

Although reflections at air/SiC interfaces are not the main

source of losses, the quality of the AR coating turns out to be

very important to avoid intensity and polarization fluctuations

with temperature linked to a residual Fabry-Perot effect within

the chip. The latter is illustrated on Fig. 3(a), where the chip

transmittance is plotted against temperature. The measured pe-

riod is about 11 �C, corresponding to @n=@T ’ 8� 10�5=�C
for 4H SiC at 780 nm where n is the average refractive index,

which is consistent with published measurements for other

SiC crystals.16 One straightforward solution to suppress this

effect would be the use of a better AR coating, for instance,

based on multiple layers of dielectric materials. For example

one can expect intensity fluctuations smaller than 1% if reflec-

tivity is reduced to less than 0.25%.

In order to exploit transparency of single crystal SiC, the

question of birefringence must be addressed. The substrate we

use has a 4H hexagonal crystalline structure. This is one of

many polytypes of SiC, of which 4H and 6H structures are

increasingly used in microelectronics.17 4H SiC has uniaxial

anisotropy with ordinary optical index no ¼ 2:617 and extra-

ordinary optical index ne ¼ 2:666 at 780 nm.18 Hence, special

care is required, for example, to keep the correct circular

polarizations of MOT beams on the atom cloud. Assuming no

polarization-dependent losses (which can be made negligible

by an appropriate AR coating), the effect of the atom chip on

the beam polarization can be described by a Jones matrix of

the form Uchip ¼ RaGcR�a; where Ra is a rotation matrix with

angle a and Gc ¼
eic=2 0

0 e�ic=2

�

:

�

Using computations simi-

lar to those described in Ref. 19, it can be proven that circular

polarizations can be preserved in the retroreflection configura-

tion sketched on Fig. 2 with only one single quarter-wave

plate for each retro-reflected beam, provided the latter is ori-

ented such that

h ¼ a� p=4; (1)

where h is the angle between the quarter-wave plate eigenba-

sis and the reference polarization basis. As can be seen in

Eq. (1), the optimal value of h depends only on the chip

polarization eigenbasis and not on the phase shift c: One can,
therefore, expect robustness to variations in the refractive

indices and thickness of the chip, induced for instance by

temperature changes.

For the proof-of-concept experimental demonstration of

a MOT with several of the beams passing through the atom

chip, we have used the setup sketched on Fig. 2. The glass

vacuum cell was manufactured by the company ColdQuanta,

with a differential vacuum system. A 87Rb MOT is formed

in the ultra-high vacuum part of the cell and is loaded from a

two-dimensional MOT with a push beam. The chip rests on a

1mm-thick support on top of the glass cell. Quarter-wave

plates are placed between the chip and the retro-reflection

mirrors and are oriented according to Eq. (1) to ensure the

same circular polarization in both beam directions inside the

vacuum cell.

The possibility of imaging through the transparent chip,

possibly between wires, is illustrated on Fig. 3(b). In many

experiments detection occurs typically just after current has

been run into the chip wires. It is therefore important that

imaging is not distorted by refractive index inhomogeneities

induced by a possibly time-varying temperature gradient

within the chip. We have performed thermal infrared camera

measurements in order to monitor the spatial dependence of

temperature on the chip surface. The central wire of the chip

was heated up by 50 �C, corresponding to a worst case sce-

nario. We have observed a temperature difference on the

order of 2 �C between the center and the side of the SiC chip

surface (distant by 7.5mm). Let us now consider the overall

phase shift / for a ray of light going through the chip. We

know from our Fabry-Perot measurements that / will

increase by p over a temperature change of about 11 �C. Con-

sequently, we estimate that /=ð2pÞ will change by less than

1% over an area of radius 0.8mm on the chip surface, which

may be deemed acceptable to avoid large distortions, depend-

ing on the application. For a future experiment where the chip

would be part of the vacuum chamber itself, with atoms

located 1mm away from its surface, this 0.8 mm value would

correspond, taking into account the �400 lm chip thickness,

to a maximum numerical aperture of about 0.25. With proper

thermal management, we expect that even higher numerical

aperture values may be possible.

The number of atoms in a MOT can be estimated from flu-

orescence measurements using a photodiode. Following the

analysis described in Ref. 20, we evaluate the atom number to

1� 108 for our MOT. This is comparable to the 5� 107 atoms

FIG. 2. (Color online) Sketch of the upper chamber part of the experimental

setup. An opaque mask surrounding the chip ensures that only the fraction

of the beams going through the chip (dashed lines) contributes to the MOT.

An additional pair of beams perpendicular to the plane of the figure is used

to complete the 6-beam MOT configuration. Atomic fluorescence is

recorded through the chip.

FIG. 3. (Color online) (a) Light transmittance of the SiC chip measured as a

function of its surface temperature, showing a Fabry-Perot effect due to insuf-

ficient anti-reflection coating of the chip. The wavelength, angle of incidence

and polarization state are the same as in the MOT setup. (b) Fluorescence

imaging from the MOT atoms (in the red box) as seen through the chip.
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that were detected in our previous setup, which was similar to

the configuration presented here but without a chip, and prob-

ably not as carefully optimized, explaining the difference in the

number of atoms. Our setup also stands the comparison to the

performances of other techniques of near-chip magneto-optical

trapping, for example Ref. 1, while allowing unrestricted opti-

cal access to the atom cloud.

The atom number estimated above corresponds to a

MOT center located 1.5mm below the vacuum cell ceiling.

By translating the quadrupole coils and realigning the opto-

mechanical apparatus, we have measured the number of

atoms as a function of the latter distance. We found that the

number of atoms is reduced by 50% at about 1mm and

quickly drops to zero thereafter, which is consistent with pre-

vious observations1 and is probably due to a reduction of the

capture volume. The impossibility in our particular setup to

translate the optomechanical apparatus in order to realign it

optimally with the magnetic quadrupole center, together

with the mask used to ensure the relevance of our proof-of-

principle setup, placed drastic geometrical constraints on the

trapping beams which prevented the formation of a MOT

much further than 2.5mm. Any higher distance could how-

ever be achieved in principle thanks to the transparent chip,

provided the optomechanical apparatus is set up accordingly.

This could in particular allow a larger capture volume than

in the case of a mirror-MOT, while being much closer to the

chip surface than in the case of a standard 6-beam MOT.

The possibility of trapping atoms near transparent chips

could open the way to applications combining for example the

simplicity of chip evaporative cooling with more complex

architectures requiring full optical access such as Ramsey-

Bordé interferometers21 or Bloch oscillators.22 It coud also be

a way of combining optical trapping techniques with atom

chip technology. Detection through the chip could moreover

be a powerful tool to improve numerical aperture for atom

optical manipulation or in-situ detection with possible applica-

tions to on-chip atomic clocks or quantum information proc-

essing. In this respect, lenses etched directly on the SiC chip23

could combine a large numerical aperture with a particularly

compact and scalable setup.

This work has been carried out within the CATS project

ANR-09-NANO-039 funded by the French National Research

Agency (ANR) in the frame of its 2009 program in Nano-

science, Nanotechnologies, and Nanosystems (P3N2009).
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9P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T.

Calarco, Phys. Rev. A 74, 022312 (2006).
10P. Rosenbusch, Appl. Phys. B: Lasers Opt. 95, 227 (2009).
11A. Zatezalo, V. Vuletić, P. Baker, and T. Poling, in Position, Location and

Navigation Symposium, 2008 IEEE/ION, 5-8 May 2008 (IEEE, New York,

NY, 2008), pp. 940–950.
12J. Armijo, C. L. Garrido Alzar, and I. Bouchoule, Eur. Phys. J. D 56, 33

(2010).
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