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Abstract

This thesis aims at providing a solution to the problem of motion generation for humanoid
robots. The proposed framework generates whole-body motion using the complete robot dy-
namics in the task space satisfying contact constraints. This approach is known as operational-
space inverse-dynamics control. The specification of the movements is done through objectives
in the task space, and the high redundancy of the system is handled with a prioritized stack of
tasks where lower priority tasks are only achieved if they do not interfere with higher priority
ones. To this end, a hierarchical quadratic program is used, with the advantage of being able
to specify tasks as equalities or inequalities at any level of the hierarchy. Motions where the
robot sits down in an armchair and climbs a ladder show the capability to handle multiple
non-coplanar contacts.

The generic motion generation framework is then applied to some case studies using HRP-2
and Romeo. Complex and human-like movements are achieved using human motion imita-
tion where the acquired motion passes through a kinematic and then dynamic retargeting
processes. To deal with the instantaneous nature of inverse dynamics, a walking pattern gen-
erator is used as an input for the stack of tasks which makes a local correction of the feet
position based on the contact points allowing to walk on non-planar surfaces. Visual feedback
is also introduced to aid in the walking process. Alternatively, for a fast balance recovery, the
capture point is introduced in the framework as a task and it is controlled within a desired
region of space. Also, motion generation is presented for CHIMP which is a robot that needs
a particular treatment.



Résumé

Cette thèse propose une solution au problème de la génération de mouvements pour les robots
humanoïdes. Le cadre qui est proposé dans cette thèse génère des mouvements corps-complet
en utilisant la dynamique inverse avec l’espace des tâches et en satisfaisant toutes les con-
traintes de contact. La spécification des mouvements se fait à travers objectifs dans l’espace
des tâches et la grande redondance du système est gérée avec une pile de tâches où les tâches
moins prioritaires sont atteintes seulement si elles n’interfèrent pas avec celles de plus haute
priorité. À cette fin, un QP hiérarchique est utilisé, avec l’avantage d’être en mesure de pré-
ciser tâches d’égalité ou d’inégalité à tous les niveaux de la hiérarchie. La capacité de traiter
plusieurs contacts non-coplanaires est montrée par des mouvements où le robot s’assoit sur
une chaise et monte une échelle.

Le cadre générique de génération de mouvements est ensuite appliqué à des études de cas
à l’aide de HRP-2 et Romeo. Les mouvements complexes et similaires à l’humain sont obtenus
en utilisant l’imitation du mouvement humain où le mouvement acquis passe par un processus
cinématique et dynamique. Pour faire face à la nature instantanée de la dynamique inverse,
un générateur de cycle de marche est utilisé comme entrée pour la pile de tâches qui effectue
une correction locale de la position des pieds sur la base des points de contact permettant de
marcher sur un terrain accidenté. La vision stéréo est également introduite pour aider dans
le processus de marche. Pour une récupération rapide d’équilibre, le capture point est utilisé
comme une tâche contrôlée dans une région désirée de l’espace. En outre, la génération de
mouvements est présentée pour CHIMP, qui a besoin d’un traitement particulier.
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Chapter 1

Introduction

The human body is the most astonishing natural machine known by humanity, and for many
years human beings have been trying to artificially re-create the complex mechanisms that
constitute it. The task is extremely complicated and it has, in a certain way, led to the creation
of human-like machines that should be able to behave like humans and work in environments
adapted to humans. However, the current performance of these robots, usually referred to as
humanoids, is not yet satisfactory and they are far away to be as autonomous and independent
as presented in science fiction. Although humanoid robotics has lately emerged as a research
area with potentially huge applications (a humanoid robot can in theory do everything that
a human being can do), these robots present challenging problems in control that need to
be solved using methods that differ from classical control methods since coordination and
balance are always required. This thesis presents a framework based on inverse dynamics to
control and generate whole-body complex motions for humanoid robots.

1.1 Problem Statement

The design and development of human-like robots has been one of the main topics in ad-
vanced robotics research during the last years. There is a tendency to change from industrial
automation systems to human friendly robotic systems. These anthropomorphic robots called
humanoids are expected to be able to assist in human daily environments like houses or offices.
Humanoid robots are expected to behave like humans because of their friendly design, legged
locomotion and anthropomorphism that helps for proper interaction within human environ-
ments. It is unquestionable that one of the main advantages of legged robots is the ability
of accessing places where wheeled robots are unsuitable, like, for instance, going up stairs.
Besides that, humanoid robots would not be limited to specific operations, but they would
be able to satisfy a wide variety of tasks in a sophisticated way moving in the environment
designed by humans for humans.

Nevertheless, there are many challenges to overcome and right now there is no humanoid
robot and control system that can operate as effective as a human in its diversity of poten-
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tialities. Humanoid Robotics is full of unresolved challenges and the research addresses the
study of stability and mobility of the robot under different environmental conditions, complex
control systems to coordinate the whole body motion, as well as the development of fast in-
telligent sensors and light energy-saving actuators. Artificial intelligence and computer vision
are also necessary for autonomy, locomotion and human-robot interaction. Even though the
benefits of nowadays fundamental research in humanoids might not seem to be profitable, it
constitutes the basis to solve these enormous challenges and, in the future, it will let Humanoid
Robots exist in some of the ways that currently science fiction presents them.

The objective of this thesis is to address the problem of humanoid robots control con-
sidering not only the arms or the legs separately but as a whole that constitutes the robot.
Although different methods for whole-body generation exist, they are mainly based on inverse
kinematics, and need additional steps to ensure the motion feasibility and are not able to re-
produce fast motions that can be more natural. Whole-body motion generation is tackled in
this thesis using an inverse-dynamics approach so that the motion generated can be directly
reproduced in a humanoid platform. The task-function approach is used to specify the motion
objectives since it allows a more compact and reasonable representation of the targets to be
achieved. The methodology is independent of the robot, but it has been mainly applied to
the HRP-2 robot.

1.2 Chapter Organization

The chapters of this thesis are organized as follows. Chapter 2 introduces the generalities
of humanoid robotics, as well as their broad applications, and presents the state of the art
in the control of this type of robots. The main classes of approaches (motion planning, in-
verse kinematics, inverse dynamics and optimal control) are discussed. Chapter 3 presents
the foundations of the operational-space inverse-dynamics control methodology that is pro-
posed for whole-body motion generation of anthropomorphic robots. First the task-function
approach needed for motion generation is discussed, followed by the introduction of the rigid
contact constraints as well as the dynamic model of the humanoid robot. Then, the control
methodology for the robot is presented followed by the different tasks that are used. Several
case studies are presented in Chapter 4 both in the real HRP-2 robot as well as the simulated
robot. These case studies include the robot sitting in an armchair, walking on a rough terrain,
and dancing. Chapter 5 points out the conclusions of this work and some possible future work.

1.3 Publications

The different work realized during the development of the present thesis led to the following
publications:

Journals

• L. Saab, O. Ramos, F. Keith, N. Mansard, P. Souères, J-Y. Fourquet: Dynamic Whole-
Body Motion Generation under Rigid Contacts and other Unilateral Constraints, IEEE
Transactions on Robotics (T-RO), Vol.29 N.2, pag. 346 - 362, April 2013.
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• O. Ramos, N. Mansard, O. Stasse, P. Souères: An Advanced Robotics Motion Generation
Framework for Inferring the Organization of Human Movements, Computer Methods in
Biomechanics and Biomedical Engineering (CMBEE), Vol.16 N.1, September 2013.

• O. Ramos, M. Garcia, N. Mansard, O. Stasse, J-B Hayet, P. Souères: Towards Reac-
tive Vision-guided Walking on Rough Terrain: An Inverse-Dynamics Based Approach,
International Journal on Humanoid Robotics (IJHR), Vol.11 N.2, July 2014.

• T. Stentz, H. Herman, A. Kelly, E. Meyhofer, G.C. Haynes, D. Stager, B. Zajac, J.A.
Bagnell, J. Brindza, C. Dellin, M. George, J. Gonzalez-Mora, S. Hyde, M. Jones, M.
Laverne, M. Likhachev, L. Lister, M. Powers, O. Ramos, J. Ray, D. Rice, J. Scheifflee, R.
Sidki, S. Srinivasa, K. Strabala, J-P Tardif, J-S Valois, J.M. Vande-Weghe, M. Wagner,
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Chapter 2

State of the Art

Human interest in building and controlling complex human-like machines is not recent; it
started very early in humanity. Ancient Chinese legends mention a craftsman called Yanshi
who presented a robot-like creation that looked and moved like a human [Tzu 11], and the
Jewish folklore talks about Golem, an artificial being endowed with life [Idel 90]. Also in
ancient Greece, Hephaestus, a part of Greek mythology, was believed to be a highly talented
artisan who built not only remarkable tools, but also wheelchairs that moved autonomously
and even gold servants that helped people [Laumond 12]. His creations are commonly associ-
ated with nowadays robots [Paipetis 10]. However, the term robot was introduced much later,
in 1921, by Karel Capek in his play “Rossum’s Universal Robots” [Capek 20] as a reference to
human-like machines that served human beings. Since then, science fiction has associated the
word with machines resembling humans and able to effortlessly develop in human environ-
ments. But despite the desire of having human-like machines, some time had to pass until the
progress in computation power and manufacturing technology allowed for the introduction
of the first industrial robot, the Unimate, to the assembly line at a General Motors plant in
1961. Five years later, the first mobile robot called Shakey [Nilsson 84] was introduced as
a research platform for artificial intelligence algorithms. In fact, the first developments in
robotics considered only industrial manipulators and wheeled platforms in very well struc-
tured environments. But nowadays, advances in robotics research and technology are making
possible that some one-time science fiction human-like machines, usually referred to as hu-
manoid robots or simply humanoids, become reality, although not yet as powerful as desired.
This chapter presents a brief introduction to this type of robots, and most importantly, the
different strategies used for their control.

2.1 Introduction

Since the development of Unimate and Shakey, robotics has experienced a fast and sustained
increase and diversification, both in industry and research. Not only have robotic arms and
mobile robots improved, but also more complex bio-inspired machines have emerged. While
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50 years ago robots could only be found in industries and specialized research laboratories,
in recent years they have managed to enter the life of many people, specially through service
robotics. And humanoid robots are envisioned as the ideal, but probably most complex,
service robot due to their characteristics that can make them suitable for human environments.

2.1.1 Service Robotics

According to the International Federation of Robotics (IFR), a service robot is defined as a
“robot that performs useful tasks for humans or equipment excluding industrial automation
applications”1. These robots are mainly dedicated to serve as companions for people with
reduced capabilities and to assist humans in jobs that are dirty, dull, distant, dangerous or
repetitive. Moreover, the IFR divides service robots in two classes:

1. Personal service robots. They are used for a non-commercial task and are usually op-
erated by a non-trained person. Examples are servant robots, automated wheelchairs
[Coleman 00], personal mobility assist robots (e.g. PAMM [Spenko 06]), home clean-
ing robots (e.g. iRobot’s Roomba [Jones 06]), domestic entertainment robots (e.g. the
robotic dog AIBO [Hornby 00]), social interaction robots (e.g. Paro [Shibata 01], Pep-
per), and pet caring robots [Kim 09].

2. Professional service robots. They are used for a commercial task and are usually op-
erated by a well-trained operator. Examples are delivery robots in offices or hospitals
[Niechwiadowicz 08], fire-fighting robots [AlAzemi 13], guidance robots (e.g. REEM
[Marchionni 13]), exoskeletons (e.g. BLEEX [Zoss 06]), assisted therapy and rehabilita-
tion robots [Dellon 07], and high precision surgery robots [Hockstein 07].

Most of the previously mentioned service robots are application dependent: they have been
designed to satisfy specific needs. Some of them are shown in Fig. 2.1.

One of the main goals of service robotics is to make robots able to work and coexist
side by side with humans in order to assist them. However, typical human environments are
not robot-friendly; that is, they are structured for people and not for robots. For instance,
human environments present doors with a great heterogeneity, various forms of windows or
glasses, obstacles and furniture almost everywhere, floors made of multiple materials and
not necessarily homogeneous, stairs and elevators to move from one floor to another, etc.
[Soroka 12]. Hence, for robots to naturally interact with people, they must overcome all these
difficulties with some degree of autonomy. Therefore, one of the biggest challenges of service
robotics is to build general purpose robots that can succeed in all the areas where human
beings can. Equivalently, the challenge is to build robots that act and behave as humans.

2.1.2 Why Humanoid Robots?

Perhaps the most natural response to the generic needs of service robotics is the development
of robots with a human-like structure. This structure would allow them to perform well in
human environments: they would be able to navigate anywhere inside a house, to go up and
down by the stairs, to walk on the street, to use human tools and machines, or to assist people
in their daily life. But not only does anthropomorphism provide advantages for locomotion,

1ISO 8373:2012 Robots and robotic devices - Vocabulary
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(a) Roomba 880 (b) Sony’s AIBO (c) Paro (d) PAAM

(e) Bleex exoskeleton (f) Surgery robot (g) Panasonic’s Hospi (h) Pepper

Figure 2.1 – Examples of service robots

but it also helps in human robot interaction. An anthropomorphic design with human social
characteristics is believed to increase the acceptance of robots for people [Fink 12], and its
role is to take advantage of the mechanism to facilitate social interaction since people tend to
attribute human characteristics to objects, perceiving them even as creatures [Oberman 07],
although the uncanny valley2 effect needs to be taken into account for some designs. This
interaction could benefit the aging population as well as people with some type of disabilities,
and it could also trigger the interest of students in science. In a professional use, operators
can more intuitively learn the humanoid robot way of working since they possess an structure
resembling the human structure.

In some aspects, humanoid robots can even overperform human capabilities since they
do not feel fatigue, sleepiness, boredom, or emotional distractions, and as machines, they
can be doted with astonishing precision for different tasks. This could be an advantage in
safety, where humanoids could work with policemen specially in risky situations. Moreover,
disastrous scenarios need robots with the capability of acting in dangerous places without
risking human life. For instance, the Fukushima nuclear power plant crisis in 2011 showed
the need for robots in hazardous environments (namely, radioactive places) that are robust
enough to overcome the terrain difficulties and to manipulate machinery designed for human
manipulation. A humanoid is one of the most suitable robots for these situations. Even in
the search for survivors after accidents like building collapses or fires where the conditions are
dangerous or unsuitable, humanoids can be of vital help.

2The “uncanny valley” describes the revulsion that some people experience towards things that look and
move almost, but not exactly, like natural creatures.
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In general, humanoid robots emerge like a panacea for service robotics. But although
the potential advantages greatly surpass the current capabilities, they provide a rationale to
increase the research in humanoid robotics and their applications.

2.1.3 History of Humanoid Robots

The first humanoid robot was built in 1973 by Waseda University in Japan and was called
WABOT-1, which stands for WAseda RoBOT 1 [Kato 73]. Although not embedded, it could
walk, recognize and manipulate some visualized objects as well as understand spoken language
and use an artificial voice. Its next version, WABOT-2, was introduced twelve years later with
the remarkable capability of playing the piano [Sugano 87]. In 1986 Honda secretly started
a project on this field and 10 years later, they presented P2 which is the first embedded
humanoid robot able to stably walk [Hirai 98], followed by P3. The world famous ASIMO
(Advanced Step in Innovative MObility), which is a white child-size astronaut-like humanoid
robot, was presented by Honda in 2000 with an astonishingly friendly design [Hirose 01]. It
is sometimes believed that the impressive design and capabilities of ASIMO triggered the
research on humanoid robots worldwide [Kaneko 09]. Some of these robots are shown in
Fig. 2.2.

(a) WABOT-1 (b) ASIMO (c) HRP-4C (d) KOBIAN-R (e) Kenshiro

Figure 2.2 – Examples of humanoid robots (part 1)

After the outstanding work done by Honda, Japan was the country that led the devel-
opment of humanoid robots. A remarkable step was the Humanoid Robotics Project (HRP),
which was launched in 1998 by the Ministry of Economy, Trade and Industry of Japan (METI)
and was developed by the Japanese National Institute of Advanced Industrial Science and
Technology (AIST) together with Kawada Industries [Kaneko 02]. Within this project, dif-
ferent adult-size humanoids with very powerful capabilities were developed: HRP-2P in 2002,
HRP-2 in 2004 [Kaneko 04], HRP-3 in 2007 [Kaneko 08], HRP-4C (Cybernetic Human),
which has the head and figure of a Japanese girl, in 2009 [Kaneko 09], and HRP-4 in 2010
[Kaneko 11]. Fujitsu Automation introduced the small humanoid robots HOAP-1, HOAP-2,
and HOAP-3 in 2001, 2004 [Shan 02] and 2005, respectively. Sony also developed a small hu-
manoid robot initially called SDR-3X (Sony Dream Robot) but then renamed QRIO (Quest
for cuRIOsity), which was presented in 2003 [Geppert 04]. In 2005 Toyota released Partner,
a robot that could play the trumpet, and in 2007 they presented a version that was able
to play the violin [Kusuda 08]. Waseda University continued the development of humanoids
and they introduced WABIAN (WAseda BIpedal humANoid) in 1996, WABIAN-2R in 2006
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[Ogura 06], and the emotion expression robot KOBIAN-R in 2008 [Endo 08], which is able
to show different facial expressions. The University of Tokyo also developed a series of hu-
manoid robots: H5, H6 in 2000, and H7 in 2006 [Nishiwaki 07], as well as musculo-skeletal
robots as Kenta, a tendon-driven robot, in 2003 [Inaba 03], Kotaro in 2006 [Mizuuchi 06], its
new version Kojiro in 2007 [Mizuuchi 07], and more recently, in 2012, the impressive Ken-
shiro [Nakanishi 12]. In 2013 the former Japanese Schaft Inc presented their last version of
the Schaft robot, based on the HRP-2 series, which is currently one of the most powerful
humanoid robots.

Another country that early entered the development of humanoid robots was South Korea.
The Korea Advanced Institute of Science and Technology (KAIST) developed several series
of powerful humanoid robots: KHR-1 (KAIST Humanoid Robot 1) in 2002 [Kim 02], KHR-2
in 2004 [Park 05a], KHR-3 (better known as HUBO) in 2005 [Park 05b], Albert HUBO, a
robot with the android “face” of Albert Einstein, in 2006 [Oh 06], and HUBO 2 plus in 2011
[Grey 13]. Also, the Korean Institute of Science and Technology (KIST) together with Sam-
sung Electronics participated in a Network-Based Humanoid Project of the Korean Ministry
of Information and Communication (MIC) and developed the first network-based humanoids
in the world called MAHRU-II and AHRA in 2005 [You 05]. Then, they introduced MAHRU-
III in 2007 [Kwon 07], MAHRU-R in 2008 [Chang 08], MAHRU-Z in 2010 [Kim 11]. More
recently, Samsung introduced the torque controlled robot Roboray in 2012 [Kim 12]. Some of
these robots can be seen in Fig. 2.3.

(a) Albert Hubo (b) Roboray (c) TORO (d) COMAN (e) REEM-C (f) Romeo

Figure 2.3 – Examples of humanoid robots (part 2)

Some European countries have also developed humanoid robots. In Germany, the Tech-
nical University of Munich (TUM) has developed LOLA in 2009 as a result of the JOHNNIE
Project [Lohmeier 09], and the German Aerospace Center (DLR: Deutsches Zentrum für Luft-
und Raumfahrt) has developed TORO (TOrque Controlled Humanoid RObot) in 2013, which
has been build on the basis of their previous two legs DLR biped [Ott 10]. The Italian In-
stitute of Technology (IIT), in cooperation with other universities and research laboratories
along Europe, has developed the torque controlled iCub (Cognitive Universal Body) as part of
the RobotCub project [Metta 10], and COMAN (COMpliant HuMANoid Platform) in 2012
[Tsagarakis 13]. In Spain, the University Carlos III has build a humanoid called Rh-1 in 2007
[Arbulu 07], and based on it they introduced TEO (Task Environment Operator) [Monje 11]
in 2011. Also, the Barcelona based company Pal Robotics built the humanoid REEM-B in
2008 as a research platform in the field of service robotics [Tellez 08], and more recently, in
2014, they presented REEM-C, with a more human-friendly design. The French company
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(a) Sarcos (b) Chimp (c) Schaft (d) Valkyrie (e) Atlas

Figure 2.4 – Examples of humanoid robots (part 3)

Aldebaran Robotics has developed Nao in 2007 [Gouaillier 09], which is probably the most
widely spread small humanoid robot in the world and is used for research in different domains.
In 2014 they presented Romeo, a child-size torque-controlled humanoid developed as a project
between the company and several French research laboratories.

In the United States, the first humanoid robots were built by the SARCOS Research
Corporation in cooperation with ATR (Advanced Telecommunications Research Institute In-
ternational) in Japan. They developed the hydraulic robots Erato DB (Dynamic Brain) in
2000 [Atkeson 00], and CBi (Computational Brain interface) in 2006 [Cheng 07], but both
of them are sometimes simply called the SARCOS robots. In recent years the development
of American humanoid robots has considerably increased, in part due to the DARPA (De-
fense Advanced Research Projects Agency) Robotics Challenge (DRC). Virginia Tech, in
collaboration with other universities, has developed CHARLI (Cognitive Humanoid Robot
with Learning Intelligence) in 2010 [Knabe 13], and THOR (Tactical Hazardous Operations
Robot), which is expected to be finished by 2014. The National Robotics Engineering Center
(NREC), a part of Carnegie Mellon University’s Robotics Institute, has built the CHIMP
(CMU Highly Intelligent Mobile Platform) robot in 2013 for the DRC [Stentz 15]. This robot
presents the peculiarity that although it has legs, it uses tracks for its locomotion, which pro-
vide it a robust static balance. NASA John Space Center (JSC) has developed the humanoid
Valkyrie, also for the DRC, and has introduced it in 2013. Boston Dynamics built PETMAN
in 2012 [Nelson 12], and in 2013 they released the hydraulic Atlas, one of the currently most
powerful humanoid robots, which was specially built for the DRC. Some of these robots are
shown in Fig. 2.4.

2.1.4 Challenges

The research and interest in humanoid robotics has greatly increased over the last few years,
but in spite of the current plethora of humanoid robots, their usefulness is still very limited.
For example, the recent DRC trials in December 2013 showed the lack of capabilities and
robustness when performing different tasks. Each task of this challenge had to be concluded
in 30 minutes, while a man can easily finish the same task in less than a minute; and indeed,
most robots could not successfully accomplish the tasks3 even though remote human operators

3Videos of the trials are available via DARPA’s youtube channel. Due to robot slowness, on the 7th April
2014 DARPA tweeted: “Can’t sleep? Try watching 9 hrs of #DARPADRC robots attempting to open doors”.

https://twitter.com/DARPA/status/453412065345286144
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could control them. Moreover, all the walking humanoids fell down at least once while trying
to perform the task. This clearly shows that humanoid robotics is not a mature technology
yet, and there are still many control problems to overcome.

One of the biggest challenges involves the coordination and development of whole body
motion, since humanoids are highly redundant typically with 30 to 40 degrees of freedom.
During their motion, they usually have to interact with some objects; thus, manipulation
becomes an important part of the challenge. Also, humanoid robots are underactuated systems
whose position and orientation in the environment cannot be directly controlled but are the
result of the interaction with the environment and the proper joints motion [Wieber 06a].
Moreover, this non-fixed interaction leads to a major concern: the robot must not fall down
while performing a task. Thus, balance is of vital importance for humanoid robots, and
the control of the Zero Moment Point (ZMP) [Vukobratovic 69], or the Capture Point (CP)
[Pratt 06b] have been proposed, although their integration within complex control frameworks
is not straight forward.

The reduction of the computational cost to process the sensors information and to generate
useful movements for the robot is also currently a challenge. New, and more powerful artificial
intelligence, computer vision, data fusion and navigation algorithms typically take time to
compute on very powerful machines. Furthermore, their usage within control frameworks
that use some model of the robot subject to physical and operational constraints to generate
motion trajectories presents the need for highly performant machines. In fact the achievement
of real-time usually comprises a trade-off between accuracy and efficiency. And not only
is the software level a challenge but also the hardware level: perception sensors such as
powerful vision systems, tactile mechanisms, as well as powerful actuators constantly need to
be improved [Durán 12]. All these problems are still to be overcome for humanoid robots to
behave as useful service robots able to help people in their daily life.

2.1.5 Applications of Humanoid Robots

Humanoid robots are virtually suitable for any environment where humans can work. They
can become the universal worker for any manufacturing process since they can do repetitive
and even “intelligent” tasks without needing a special design. The generic design can even
make the mass production of humanoids possible drastically reducing their cost. Works in-
volving maintenance tasks of industrial plants, security services of homes and offices, human
care, and cooperative works can be possible. Teleoperation is also an important application
provided that the human structure makes their operation more natural for operators. Also,
telepresence [Lee 12] can be carried out by humanoids.

Not only can humanoid robots work where humans can, but they can also work where
humans cannot. In fact it is promising to use humanoids in tasks where human lives can
be at risk due to the environment or the task itself. Particularly a humanoid fire-fighter or
rescuer is appealing for cases of natural disasters, fires, buildings collapse, general security or
hazardous environments (like radioactive places). Space missions are another important area
due to the inherent dangerousness that space poses to astronauts or the complete current
inability to send a human to remote places. There is a need for a human complement or
replace and projects like NASA Robonaut [Ambrose 04] or DLR Justin [Wimbock 07] are
already addressing this problem. Military suits can also be tested without risking the life of
people [Nelson 12].
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Another potentially big domain is household. Humanoids can one day become the most
used servant at home. Some projects explicitly address this problem like the Armar robot
[Asfour 06], Twendy-One, or HERB [Asfour 06]. Humanoids can also be used for entertain-
ment in robot competitions like FIRA (Federation of International Robot-soccer Association)
and the RoboCup, whose initiative is that by 2050 a team of humanoid soccer players shall
win the soccer game, complying with the official FIFA rules, against the winner of the most
recent World Cup [Kitano 98]. Also they can be used in biomechanics to have a deeper under-
standing of how humans work and even think. In fact, humanoids can be used as platforms
to test and develop cognition and artificial intelligence methods and some projects are also
devoted to this field [Metta 10].

2.2 Approaches in the Control of Humanoid Robots

The control of a robot consists in defining a law that allows the generation of feasible motion
within the limits of the mechanism such that a desired objective is achieved. As stated in
Section 2.1.4, the control of humanoid robots poses particular challenges due to the redun-
dancy, underactuation, the necessity to keep balance at every instant of time, and additional
constraints to make motion human-like. Different methods can be used to make a robot move
depending on the application, the complexity of the task, and even the specific nature of
the robot. The main control methods currently used for humanoid robots are the following:
motion planning, inverse kinematics control, inverse dynamics control, and optimal control.
This section discusses the state of the art in these approaches.

2.2.1 Motion Planning

Motion planning consists in automatically finding a feasible path from an initial configuration
to a given goal satisfying certain constraints. In robotics, for instance, it can compute a
path that moves the hand from its current pose to a desired one avoiding collision with some
obstacles in the environment. For many purposes, it can be of great interest to determine the
path minimizing a convenient criterion. Currently, there are many applications in vehicles,
robots, digital characters, molecules, design verification, amongst others.

Basic Concepts

Although the research in motion planning can be traced back to the late 60’s, most of the
problems formalization started in the 80’s thanks to the combined and growing research in
artificial intelligence, computer science and mathematics. Currently, the main approaches
can be found in books such as [Latombe 91, Choset 05, LaValle 06]. An important concept in
motion planning is the Configuration Space (CS), which is the set of all the possible config-
urations that a mechanism can attain. This fundamental concept, borrowed from mechanics
and introduced by [LozanoPerez 83], can be used with several tools from geometry, topology
and algebra, and has provided the theoretical basis for motion planning.

For a robot with n independent degrees of freedom (DoF), the CS is an n-dimensional
manifold M that contains all the configurations q ∈ M of the robot. The importance of the
CS is that it changes the problem of moving a body in SE(3) to moving a point in CS. Two
particular subspaces of CS are of interest:
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• Obstacle Configuration Space (CSobst). It is formed by the robot configurations that
generate self-collisions or collisions with some object in the environment. The space is
represented as CSobst ⊂ CS.

• Free Configuration Space (CSfree). It is the space where the robot can freely move and
is the complement of the obstacle space: CSfree = CS − CSobst.

Using these spaces, the problem of motion planning can be stated as finding the continuous
path p(t) from a start configuration p(0) = q0 to a goal configuration p(1) = qf avoiding
collisions; that is, p : [0, 1] → CSfree, where t defines some parameterization.

Generic methods

The solution to the motion planning problem can be obtained using some classical methods
which can be classified as: deterministic algorithms, sampling-based algorithms, and path
optimization.

a) Deterministic algorithms. These algorithms, developed since the past 30 years, always
compute the same valid path p(t). Methods such as cellular decomposition, Voronoi dia-
grams, visibility graphs and Canny’s algorithm rely on the construction of an explicit and
exact representation of CSobst to build a graph, or roadmap, that represents the connectivity
of CSfree [Goodman 04, Canny 88, Indyk 04]. Although these methods are complete, they
become very computationally expensive in high-dimensional configuration spaces, even when
the dimension of CS rises above 4. Other deterministic approaches use artificial attractive
potentials on the goals and repulsive potentials on the obstacles and the start configurations
to guide the search towards the goal avoiding the obstacles [Khatib 86]. However, the locality
of this type of planners can lead to a solution that does not achieve the goal, for instance, in
a maze environment.

b) Sampling-based algorithms. These methods, developed over the last 20 years, approx-
imate the connectivity of CSfree by randomly sampling configurations from CS and reject-
ing the configurations that produce collisions through Boolean collision detection techniques
[Hudson 97, Gottschalk 96, Hsu 97]. The main examples are Probabilistic Roadmaps (PRM )
[Kavraki 96], and Rapidly-exploring Random Trees (RRT ) [Kuffner 00]. In particular, the
RRT algorithm uses the Voronoi bias to explore CSfree and grow a random tree. Each it-
eration attempts to extend the tree by adding new vertices in the direction of a randomly
selected configuration. Trees can be grown from the initial and goal configurations, which is
sometimes referred to as Bi-directional RRT (BiRRT), making the algorithm more efficient
[Kuffner 00]. Variations that asymptotically converge towards the global minimum solution
path have been proposed as PRM* and RTT* [Karaman 11], for generic cases, and Kino-
dynamic RRT* for systems with controllable linear dynamics [Webb 13]. RRT’s have also
been extended in the state space to LQR-Trees [Tedrake 10], which use a dynamic cost-to-go
distance metric, and LQR-RRT* [Perez 12], which uses a linearization of the system to derive
a coherent extension method. Stochastic-optimization for determining a new potential state
based on transition tests has been called the T-RRT (Transition-based RRT) [Jaillet 08]. In
general, the advantages of these methods are their probabilistic completeness and their ability
to deal with very high-dimensional configuration spaces.

c) Path optimization. The goal of these methods is to optimize the trajectory starting
with a valid collision free path and trying to shorten it while ensuring that the path is still
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valid. For example, greedy optimization tries to directly connect the start configuration to
the closest goal configuration node that generates a collision free path; then, it continues with
the next nodes in the path until reaching the goal. Another example is random optimization
which tries to ignore some random nodes keeping the rest.

Motion Planning in Humanoid Robotics

Classical motion planning methods determine collision-free trajectories involving only geo-
metrical considerations. However, the control of polyarticulated systems needs the synthesis
of models that describe the effects of joint variations on the whole robot configuration. For
instance, moving an arm with only RRT’s considering environmental and self-collisions can
effectively achieve the goal configuration, but the arm risks to make very unnecessary, unnat-
ural and inefficient movements. Underactuated robots present the additional problem that
the planning algorithm might generate paths that do not preserve the balance of the robot
or the motion might not be physically plausible. To overcome these problems within these
frameworks, trajectories are generated using methods of inverse kinematics, inverse dynamics
or optimal control and additional constraints are added to satisfy conditions like multiple
contacts or the dynamic balance of the system. For instance, motion primitives that have
been predefined by a human expert based on prior knowledge can be used to guide the planner
[Zhang 14].

For humanoid walking, footsteps planning can be achieved using deterministic approaches
with dynamic adjustment of the footstep transition model [Chestnutt 05] considering the
smoothness of the trajectories for posture transitions [Ayaz 07]. But these approaches do
not guarantee the completeness of the solutions and probabilistically complete methods have
been proposed to solve this problem. For instance, RRT’s can be adapted to explore the
discrete footstep space [Xia 09, Perrin 12], and anytime search-based planners can be used
to generate paths that are goal-directed guaranteeing to stay within bounded limits from the
optimal solution [Hornung 13]. Also, features of the environment can be used to guide towards
the solution; for instance, multi-contact planning can be achieved using a multiple-contact-
point stance planner that looks for authorized contact surfaces to help the robot reach its
goal [Bouyarmane 12a, Escande 13]. Other approaches divide the high-dimensional problem
into smaller problems and solve them successively [Zhang 09]. An example is presented in
[Yoshida 08], where a 36 degree of freedom robot is reduced to a 3 degree of freedom bounding
box and a PRM is applied for the path planning problem of the box.

During the last few years, planning on constraint submanifolds of CS has been the focus
of many researches. For example, manifolds can be defined by contact limb positions and
static balance constraints, and the plan can be done on a union of submanifolds. In this way,
statically balanced locomotion for hexapods and humanoid robots on uneven terrain can be
obtained [Bretl 06, Hauser 10]. Another method proposed the planning algorithm CBiRRT
(Constrained Bidirectional RRT) together with some Jacobian-based methods to consider end-
effector pose constraints in the plan and generate humanoid motion [Berenson 11]. Also, RRT
can be adapted within a random diffusion framework to work according to some constraint
and generate statically stable configurations [Dalibard 13]. More recent methods combine
path planning with optimal control to generate motion for humanoid robots in a cluttered
environment [ElKhoury 13].
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2.2.2 Inverse Kinematics (IK)

Kinematics, in general, is the study of the position, velocity and acceleration of a mechanical
system without considering either the forces (or torques) that generate the motion or the
dynamic properties, such as mass or inertia, of the bodies composing the system.

Basic Concepts

The joint space, also called the configuration space, of a robot with n DoF is the n-dimensional
manifold Q containing all the possible values that the joint variables q can take. For robotic
manipulators, the pose of a single element called the end-effector is typically of interest.
However, for more generic robots such as humanoids, this is generalized to the operational
points [Khatib 87], which can represent any part of the robot whose pose is of interest. The
velocity of an operational point x can be represented by the twist [Murray 94] or spatial velocity
[Featherstone 08] ξ that comprises both the linear and angular velocities; alternatively, it can
be given by the variation of its representation ẋ. In robotics there exist four sub-domains
related to kinematics.

• Forward kinematics (also called forward geometry4). It consists in finding the pose
x ∈ SE(3) of an operational point given a certain joint angle configuration q ∈ Q, and
is described by the map f : Q → SE(3) such that x = f(q).

• Inverse kinematics (also called inverse geometry4). It aims at finding the joint config-
uration q ∈ Q that achieves a given pose x ∈ SE(3) for a certain operational point. In
some specific cases, this can be represented by the inverse map f−1 : SE(3) → Q such
that q = f−1(x), but in general f−1(x) is not unique and can even be undefined.

• Forward differential kinematics (also called forward instantaneous kinematics or simply
forward kinematics4). It consists in finding the operational-point twist ξ ∈ se(3) that
is produced due to joint variations q̇ ∈ Tq(Q), which is expressed as ξ = Jo(q)q̇, where
Jo : Tq(Q) → se(3) is the tangent application called the basic [Khatib 87] or geometric
Jacobian [Spong 06], and Tq(Q) is the tangent space to Q at q. Alternatively, it can
be formulated as finding the first order variations ẋ that are produced by q̇, expressed
as ẋ = ∂x

∂q
q̇. In this case, J(q) = ∂x

∂q
is a differential map called the analytic or task

Jacobian [Spong 06] or simply the Jacobian [Khatib 87].

• Inverse differential kinematics (also called inverse instantaneous kinematics or simply
inverse kinematics4). It is the problem of finding the joint variations that produce a
given variation of the end effector (Section 3.2.2). It can be used to iteratively solve the
inverse kinematics problem.

In general, the control objective is defined by a reference point or a reference trajectory in
SE(3), and the control problem consists in determining the appropriate evolution of the joint
configuration q(t) that achieves the objective. Consider the task i with mi DoF. An n-DoF
robot is said to be kinematically redundant with respect to task i if n > mi, and n − mi

4The Greek root “kinesis” refers to movement or motion; therefore the term geometry is more accurate
than kinematics when the map is between static spaces. Similarly, when velocities are implied, kinematics is
more accurate than differential kinematics.
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is known as the degree of redundancy with respect to task i [Nakamura 90]. If there are k
simultaneous tasks, each of them with mi DoF, the system is still kinematically redundant if
n >

∑k
i=1mi.

Classical Kinematic Methods

Forward kinematics is traditionally represented using the classical Denavit-Hartenberg (DH)
parameters [Denavit 55], or the modified DH parameters introduced in [Craig 89], but al-
though very popular for serial manipulators, they might lead to ambiguities for closed or tree
chains [Khalil 04] and can even be not suitable for robot calibration [Everett 87]. Alternative
methods have been proposed: the Khalil-Kleinfinger notations that are suitable for closed-
loop robots [Khalil 86], the Hayati-Roberts coordinates that avoid coordinate singularities for
parallel systems [Hayati 85, Roberts 88], the products of exponentials (PoE) [Park 94], screw
theory-based kinematic modeling [Tsai 99], or even ad-hoc methods for specific cases such as
for humanoid robots [Kajita 05].

For simple kinematic chains, the IK problem can be analytically solved and closed equa-
tions can be obtained through two classical types of approaches: (i) algebraic approaches, such
as inverse transforms [Paul 81] or dialytic eliminations to derive polynomials [Raghavan 93];
and (ii) geometric approaches like joint decoupling when the last three joint axes inter-
sect [Peiper 68] or the so-called Paden-Kahan sub-problems which are based on the PoE
[Paden 86, Kahan 83]. However, as the complexity of the chain increases, the complexity of
the analytical solution also increases due to the strong non-linear terms. For more compli-
cated chains, analytical solutions become tedious or even ill-posed due to the redundancy of
the system.

Kinematic Control of Redundant Robots

Even though kinematic redundancy offers more dexterity and versatility to the robot, like
joint range availability, singularity avoidance, obstacle avoidance, compliant motion or energy
consumption minimization, it increases the complexity of inverse kinematics [Siciliano 91].
For a given task, there is more than one solution in the joint space, and closed form solutions
are in general not possible. Moreover, solutions that satisfy both the main task and other
complementary tasks as closely as possible are usually desired. For instance, a redundant
manipulator has typically to achieve the goal pose avoiding collisions with objects in the
environment. In these cases, numerical methods are preferred and have shown to offer good
results.

Numerical methods treat the IK problem as an optimization problem with, in some cases,
additional constraints. There are two main approaches for solving IK through optimization:
(i) Global methods, which find an optimal path for the entire trajectory but have a high
computational cost [Baillieul 90]; and (ii) Local methods, which are used in real time and
only compute an optimal change ∆q for a small change ∆x, integrating ∆q to generate the
joint space trajectory q(t). A well-known local method is the Resolved Motion Rate Control
[Whitney 69] which finds the change of q as a solution to the problem ẋ = J(q)q̇ using the
inverse J−1, if J is invertible, or a suitable pseudo-inverse J+. In order to avoid problems
with singular configurations, the damped pseudo-inverse can be used instead [Nakamura 86,
Wampler 86]. A more generic solution arbitrarily adds a projection onto the nullspace of
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J since doing so does not modify the desired ẋ but supplies some freedom for other tasks
[Liegeois 77]. When there are two or more tasks to be satisfied at the same time, some
compromises have to be taken into account. To this end, there are two main methods:

• Task space augmentation. It is a weighting approach that extends the dimension of
the original task space by imposing constraints to the joint variables [Sciavicco 87].
Problems occur when tasks conflict with each other because they implicitly have the
same priority. In these cases, weights are assigned to each task and a compromise
among them is found, although no task is completely satisfied. To choose a constraint
task that avoids conflicts with other tasks, an approach called the Extended Jacobian
method (EJM) zeroes the projection of the cost function gradient in the null space of
the Jacobian [Baillieul 85].

• Task prioritization. It consists in generating a set of prioritized tasks where the lower
priority task produces a self-motion that does not interfere with the higher priority task
leading to a multiple priority-order resolution method [Nakamura 87]. The approach
finds a joint velocity q̇ such that every task xi is satisfied unless it conflicts with a
higher-priority task xj , (j < i), in which case its error is minimized. An algorithmic
solution was proposed in [Siciliano 91] and improvements in the algorithmic computation
of the null-space projector were introduced in [Baerlocher 98].

Kinematic Control of Humanoid Robots

From a kinematic point of view, humanoid robots present a tree-like structure that includes
multiple connected chains, and a high number of DoF. As a consequence, the kinematic
structure is often redundant with respect to most tasks, in which case the robot is said to be
under-constrained. Therefore, methods developed for generic redundant robots are usually
applied in humanoid robotics with some adaptations or additions. Due to the complexity
of the kinematic configuration, closed-form solutions for the IK problem are usually very
complex, but recently some classical methods have been used and modified, to obtain closed
equations for specific humanoid robots which are treated as a composition of several kinematic
chains [Ali 10, Nunez 12]. However, methods based on instantaneous IK, which compute an
increment in q, are usually preferred. This linearization of the problem offers an infinite
number of feasible solutions for humanoid robots: there exist different joint updates that
achieve the same task. This leads to the possibility of performing different tasks at the same
time, and the IK control must be capable of properly handling them.

Some works have proposed the usage of a weighting approach, such as [Tevatia 00] that uses
a simplified EJM augmenting the task space, or [Salini 09] where a continuous variation of the
weight values is associated to each task relatively to its importance. Due to the nature of these
schemes, problems arise when there are conflicting tasks since in those cases none of the tasks
can be fully satisfied. Methods based on task-prioritization solve these problems and have
become the preferred techniques in IK control. They can even be considered as the current
“state of the art” in humanoid robotics control due to their relatively low computational
cost, their straightforward implementation, and the maturity of the approach. Several works
with different humanoid platforms use this methodology to solve the redundant IK problem
at the velocity level using only equality constraints [Gienger 05, Yoshida 06, Mansard 07,
Neo 07, Galdeano 14]. For imposing inequality constraints to the control framework at any
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hierarchical level, a sequence of optimal resolutions for each priority level has been proposed in
[Kanoun 09], a more efficient computation based on orthogonal decompositions can be found
in [Escande 14] and a smooth interchange between priority of consecutive prioritized tasks is
introduced in [Jarquin 13].

2.2.3 Inverse Dynamics

Dynamics is the study of the relation between the robot motion and the generalized forces
that act on the robot generating that motion. This relation considers parameters such as
lengths, masses and inertia of the elements composing the robot.

Basic Concepts and Computation

In the dynamic model, the motion is represented through joint variables acceleration q̈, or
operational points acceleration ẍ. For rotational joints, the generalized forces are equivalent
to the joint torques, and for prismatic joints they are the joint forces. There are two main
problems in dynamics:

• Forward Dynamics. It expresses the motion of the robot as a function of the generalized
forces applied to it.

• Inverse Dynamics. It expresses the generalized forces acting on a robot as a function of
the robot motion.

There exist two main formulations to compute the robot dynamic model: the Lagrange ap-
proach, and the Newton-Euler approach. The Lagrange approach was the first one used in
the robotics community [Uicker 67, Kahn 71, Bejczy 74]. Its main advantage is the clear
separation of each component of the model; but in general, it is computationally expensive,
although an efficient formulation was presented in [Hollerbach 80]. The Newton-Euler ap-
proach, proposed in [Orin 79], does not provide a clear separation of the terms but due to its
recursivity a lower computation time can be obtained. Thus, it is the preferred implementa-
tion for computer calculations. The most used algorithms for this approach can be found in
[Featherstone 00, Featherstone 08], for instance, the composite-rigid-body algorithm (CRBA),
the articulated-body algorithm (ABA), the recursive Newton-Euler Algorithm (RNEA), and
some global analysis techniques. Although currently less used in robotics, the Hamiltonian
approach has also been applied to the analysis of robot dynamics [Spong 92] and numerical
methods for integrating Hamilton’s equations are becoming more efficient [Selig 07].

The term centroidal momentum has been recently proposed as the sum of the individual
link momenta expressed at the robot Center of Mass (CoM) [Orin 08], and the dynamics
expressed at the CoM has been introduced as centroidal dynamics [Orin 13]. This is a partic-
ularly important concept since the motion of humanoid robots typically involves large angular
momenta. The dynamic model of a robot can be expressed in two ways depending on the
spaces that are used to describe the motion and the control input. The two approaches are:
the joint space formulation, and the operational space (or task space) formulation. The joint
space formulation is the classical approach and uses the joint space acceleration to specify the
motion, and the generalized forces acting on the actuated joints to describe the control. The
operational space formulation [Khatib 87] represents the motion directly using the task space
acceleration, which needs a reformulation of the forces as task space generalized forces.
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Dynamic Control of Robotic Manipulators

The dynamic control of a robot consists in finding the proper generalized forces that have
to be applied to the joints in order to generate the desired trajectory for an operational
point. Classical methods for robotic manipulators include two main types of control: (i)
Joint Space Control, which is based on the joint space formulation and includes methods such
as PD and PID controllers [Arimoto 83], inverse dynamics control (in this context usually
called computed torque [Markiewicz 73]), robust control in presence of parameter uncertainty
[Lozano 92], Lyapunov-based control [Slotine 87], adaptive control [Dubowsky 79], adaptive
compensation of gravity [Tomei 91], amongst others; and (ii) Operational Space Control,
based on the operational space formulation with methods such as inverse dynamics control
[Caccavale 98] or PD control, amongst others [Nakanishi 08].

For redundant manipulators, one of the first approaches was the Extended Operational
Space formulation that proposes the dynamic control of joint-space postures and adds nullspace
vectors to the rows of the Jacobian [Park 01]. A similar approach of augmenting the Jaco-
bian is used in [Harmeyer 04], and a projection of the dynamics onto a constrained consistent
manifold using the decomposition of the constraint Jacobian is proposed in [Aghili 05]. Based
on the resolved motion rate control in kinematics, the resolved acceleration control, which
relates the task acceleration to the joint acceleration [Luh 80], was proposed for the fixed
upper body of a humanoid robot but with the limitation that only kinematic constraints like
collision avoidance and joint limits can be used in the framework [Dariush 10].

Dynamic Control of Humanoid Robots

For a humanoid robot, classical dynamic control techniques are not sufficient since coordina-
tion of the motion is required, environmental forces need to be considered, and balance has
to be kept at all moments. For the robot balance, a stability criterion such as keeping the
CoM or the ZMP (Section 3.1.2) inside the support polygon must be enforced [Wieber 02].
For planar surfaces the constraint on the ZMP implies a control of the contact forces. Thus,
the interaction with the environment is always present since the feet are in contact with the
ground and additional contacts of other parts of the robot body might also be necessary.
These contacts generate an effect on the joints generalized forces, which cannot be controlled
using only kinematic methods but with dynamic approaches. The dynamic control ensures
the physical feasibility of the motion and allows for faster movements without losing balance.

The operational-space inverse-dynamics (OSID) is a more specific framework for control-
ling the whole-body of humanoid robots considering contacts and a set of different constraints.
The first approach, proposed in [Khatib 04b, Sentis 05], is based on a two stage mapping to
obtain consistent contact forces and is equivalent to successive projections onto the nullspaces
of the previous tasks. Therefore, new tasks can be added without dynamically interfering
with higher priority tasks. An approach based on orthogonal decompositions and projections
to resolve over-actuation in double support, avoiding the inversion of the inertia matrix and
gaining robustness against model uncertainty, was presented in [Mistry 10]. Although both
approaches differ in their formulation, it has been shown that they are equivalent with respect
to the minimization of different cost functions [Righetti 11b]. An improvement to this ap-
proach consists in creating an optimal distribution of contact constraints by pushing ground
reaction forces inside the frictional boundaries [Righetti 11a]. However, these methods only
deal with equality dynamic constraints. Generic tasks or constraints specified as inequalities,



2.2 Approaches in the Control of Humanoid Robots 19

which are important to specify joint limits, collision avoidance, visual field tasks, amongst
others, cannot be taken into account in a straightforward way.

Other methods use the OSID within frameworks that involve some type of optimization
to find the local solution. The most popular approaches use Quadratic Programming (QP),
which allows for the specification of both equality and inequality constraints. The latter
type of constraints is fundamental in humanoid robotics to directly model unilateral contacts,
and it is also important to properly specify some particular tasks. A weighting scheme is
used within a QP in [Collette 08] to control different objectives, but the approach is mainly
oriented towards robust balance. Another similar weighting approach is oriented towards
the sequencing of dynamic tasks, computing the torque controls to satisfy the constraints
[Salini 11]. The decoupling of the humanoid dynamics into holonomic and non-holonomic part
based on the Gauss principle [Wieber 06a] has been also exploited within a QP to produce
feasible whole body motion in [Bouyarmane 12b]. An implementation for the lower part of a
torque-controlled humanoid robot has been shown in [Herzog 13] using active set QP solvers.
Also, OSID has been used within a prioritized scheme that allows the usage of for both
equalities and inequalities at any level of the hierarchy [Saab 13].

Although the previous approaches exploit the full robot dynamics, the angular momentum
is not explicitly controlled within these frameworks. Nevertheless, it has been shown that
the angular momentum is a natural and important part of human motion, specially when
performing complex and fast movements [Popovic 04]. One of the first attempts to control
this physical quantity for whole-body motion used a pseudo-inverse of the inertia matrix
[Kajita 03b]. Other control schemes propose to control the angular momentum through the
control of the system’s centroidal momentum, such as [Hofmann 09] where the focus is on gate
movement, or [Moro 13] where the centroidal momentum is defined as an attractor within
the framework. Also, a prioritization scheme based on a conic optimization to control the
centroidal angular momentum generating movements like kick and jump has been introduced
in [Wensing 13].

Dynamic Control in Computer Graphics

In computer graphics, there has also been the need of using the dynamics of human-like
characters to generate motion that satisfies dynamic constraints [Popovic 00]. For instance,
retargeting motion to characters with different physics adds more realism to the animation
[Gleicher 98]. B-splines are also used to retarget characters [Lee 99] but some physical limits
are not explicitly checked. Another approach adapts a given motion to a character keeping the
contact between the limbs and external objects [Shin 01]. More recent works have introduced
QPs to generate physically consistent motion guiding humanoid avatars to achieve various
tasks through weights that establish the relative importance of each task [Abe 07]. Other
examples of weighting schemes in this field include [Macchietto 09], where the focus is on
balance, and [DaSilva 08] where a Model Predictive Control (MPC) is used to track motions.
An approach based on a novel prioritization algorithm, which uses a nested sequence of ob-
jectives re-parameterized at each level of the hierarchy, has been proposed in [deLasa 10] with
the name of feature-based control. Motions like balancing, jumping or walking for a humanoid
robot-like character have been achieved using different tasks with this control method. This
approach has been later extended within an optimal control framework [Brown 13]. However,
there exists a gap between physically plausible animations and real motion on the robot, and
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the motion generated in computer animation does not guarantee a feasible direct reproduc-
tion on a real humanoid. In reality, physical interactions between the feet and the ground
significantly affect the whole body motion and errors in considering them can cause the robot
to fall down making the generated motion completely unfeasible.

2.2.4 Optimal Control

Optimal control, also known in robotics as trajectory optimization or trajectory filtering, con-
sists in finding a trajectory and its associated control law (policy) that satisfies some pre-
defined optimality criterion. In general mathematical terms, it concerns the properties of
control functions which, when inserted into a differential equation, give solutions that min-
imize a cost or measure of performance. But it also concerns optimization problems with
dynamic constraints which might be functional differential equations, difference equations,
partial differential equations or equations with another form.

Introduction

It is often said that optimal control started more than 300 years ago [Sussmann 97], with
the solution to the brachystochrone problem by J. Bernoulli. But most formalization on this
field began about 60 years ago with the introduction of the linear quadratic control problem
[Wiener 49] as a minimization of a mean-square-error criterion with the form J = E{e2(t)},
where e(t) is the error and E{x} represents the expected value of the random variable x. An-
other major step was the introduction of Dynamic Programming (DP) [Bellman 56], which
reduces the search to a partial differential equation called the Hamilton-Jacobi equation, intro-
duced to solve discrete-time optimal control problems. However, it is sometimes considered
that optimal control was not completely formalized until the formulation of the maximum
principle in [Pontryagin 62], which is strongly based on the Calculus of Variations. In fact,
calculus of variations is considered as the roots for optimal control and presents the notable
feature of taking account of pathwise constraints on values of the control functions. Another
remarkable formulation was the linear quadratic regulator (LQR) and the linear quadratic
Gaussian (LQG) in [Kalman 60] to design optimal feedback control laws.

In industry, a control methodology based on the solution of an optimal control problem
at each controller update time over a time interval, known as the prediction horizon, evolved
with the name of Model-based Predictive Control or simply Model Predictive Control (MPC)
[Richalet 78]. It is sometimes also called receding horizon control, or preview control. Cur-
rently, MPC constitutes one of the most powerful optimality methods for automatic control.
It offers the possibility of specifying high-level task goals through simple cost functions, and it
automatically synthesizes all the details of the behavior and control law. Another advantage
is that MPC avoids the need for extensive exploration by postponing the design of the policy
until the last minute, finding controls only for the states that are currently visited. That
is, it foresees the future states of the system to choose the best current state according to
some pre-established criteria. Other important method is Differential Dynamic Programming
(DDP) [Jacobson 68] which is a local trajectory-based numerical scheme that provides an ef-
ficient solver for direct implicit optimal control problems. A local-global hybrid method with
constant local controllers was introduced in [Atkeson 94], and it was complemented by the
usage of second order local DDP models to make locally-linear controllers in [Atkeson 03].
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Optimal Control of Humanoid Robots

In robotics, optimal control can be used to find the trajectories from an initial posture to a
final desired posture, specified as a whole or as a set of sub-objectives, satisfying certain con-
straints. Very fast and powerful movements can be generated with optimal control, which can
comprehend the problems of inverse kinematics or inverse dynamics and can therefore pro-
duce better movements. The problem with IK and OSID alone is their inability to properly
handle the CoM accelerations, thus overrestricting the motion. A solution typically relies on
a dedicated submodel, like a linearized inverted pendulum [Kajita 03a] to capture the future
of the system, but this ad-hoc resolution increases the control architecture complexity. Thus,
using these schemes the future states of the system can be somehow predicted, but dedicated
submodels would need to be developed for each case. However, optimal control is the most
suitable approach that allows to take into account all the constraints at the same time. In
fact, optimal control can automatically generate the proper trajectory for the CoM in order
to achieve fast movements: it acts as a classical pattern generator used for walking schemes,
but additionally incorporating whole-body motion. A serious challenge to optimization-based
approaches in robotics is that the timescales of the dynamics are faster than in other appli-
cations and need a faster response. Currently, the main problem is the computational time,
due to the high number of DoF, that forbids its use in real-time applications.

An optimal control method of particular interest in humanoid robotics is MPC. One
of the first uses of MPC in robotics was the so-called walking pattern generator (WPG)
[Kajita 03a, Herdt 10] which previews the future states of the robot to generate a trajectory
for the CoM which enables dynamic stability. In case of multi-task scenarios, a weighted sum of
the task objectives can be applied choosing the weights proportionally to the task priority level
[Dimitrov 11], but too low weights may lead to interferences between tasks and large weights
can introduce numerical conditioning problems. An alternative to weighting task errors is
the prioritized optimal control proposed in [DelPrete 14b], which ensures that the specified
priorities among the tasks are respected avoiding numerical conditioning issues. To speed up
the computation of dynamic derivatives, a physics simulator called MuJoCo was introduced
[Todorov 12], and using MPC, it has allowed to synthesize humanoid behaviors such as getting
up from the ground and recovering from large disturbances [Tassa 12]. Other complex dynamic
motions examples obtained using optimal control are ball-kicking [Miossec 06], weight-lifting
[Arisumi 08], and parkour movements [Dellin 12].

Optimal control methods have also proved to be very powerful tools to generate multi-
ple non-coplanar contact motion, which increases the accessible space of humanoid robots
using the environment to help them achieve the goal [Lengagne 13]. For robots in clut-
tered environment, with many obstacles, some methods combine motion planning algorithms
with optimization. For instance, CHOMP (Covariant Hamiltonian Optimization for Motion
Planning) [Zucker 13], STOMP (Stochastic Trajectory Optimization for Motion Planning)
[Kalakrishnan 11], and ITOMP (Incremental Trajectory Optimization for Real-Time Replan-
ning in Dynamic Environments) have been recently introduced for robotic manipulators but
can be extended to humanoid robots considering additional constraints [Park 14]. CHOMP
uses penalty terms to obtain an efficient optimal control solver which relies on a covariant
gradient descent technique, and STOMP is a similar solver but relies on trajectory stochastic
perturbations so that collision-free optimal trajectories can be found without computing func-
tion Jacobians. Based on CHOMP, ITOMP provides a suboptimal solution if the optimization
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task has not been solved within time constraints and updates the trajectory online.
To include inequality constraints without sacrificing convergence or computational effort,

a generalization of DDP, called control-limited DDP, has been proposed and applied in simu-
lation to a humanoid robot [Tassa 14]. Another variant of the DDP has been proposed with
the name of square-root DDP [Geoffroy 14] showing that IK can be seen as a particular case
of optimal control when there is no preview horizon. Similarly, OSID is a particular case when
no preview horizon is used. A guided policy search algorithm that uses trajectory optimiza-
tion to direct policy learning and avoid poor local optima has been proposed in [Levine 13],
where DDP generates guiding samples. This method has learned neural network controllers
for planar swimming, hopping, and walking, as well as simulated 3D humanoid running. Using
DP, walking behaviors robust to external disturbances and modeling errors have been gener-
ated in [Whitman 13], where multiple-model variants and learning-based variants of DP are
proposed. Another method uses the so called Body Retention Load Vector index to represent
the physical constraints and achieve steep climbing [Noda 14]. For the animation of physics-
based human-like characters, some impressive results have been shown in [AlBorno 13] whose
approach optimizes a small set of simple goals applied to short space-time windows composed
to express goals over an entire animation. The method synthesized motion with consider-
able rotation components such as rolling motion [Brown 13], or more recently, walking, hand
walking, breakdancing, flips, and crawling [AlBorno 14], which have never been previously
synthesized by physics-based methods.

Optimal control has also been used to model human-like running as an offline control prob-
lem solved by a direct multiple shooting method optimizing energy-related criteria [Schultz 10].
There is also research on optimization-based motion generation for walking motions with-
out the use of a WPG but with different objective functions such as the minimization of
torques, joint velocities or more complex combinations, and constraints such as the ZMP
[Koch 12, ElKhoury 13]. Another area is inverse optimal control, which has been proposed as
a means to determine, for a given dynamic process and an observed solution, the optimization
criterion that has produced the solution. In particular, motion capture data of people has
been used to determine the principles of human locomotion and the path generation to given
target positions and orientations [Mombaur 10]. It has also been used to learn the function
for human running on flat ground, rough terrain and under lateral perturbation [Park 13].

The main drawback of optimal control is the curse of dimensionality, which is particularly
important for humanoid robots whose state space is so large that no control scheme can
explore all of it in advance and prepare suitable responses for every situation. It would be
desirable to obtain optimal control in real time; however, currently there is no approach that
can achieve this: the solutions are very time consuming and generic solvers tend to get stuck
into local minima or they even return trivial solutions. The problem of finding the proper
formulation and resolution of optimal control is still an open issue in robotics.

2.3 Conclusion

Throughout recent years there has been a vast development of human-like robots, which are
potentially the best candidates for service robotics since they can move in human environments
and perform tasks that humans do in their daily life. This development has led to mature
technologies at the hardware level: very robust and powerful platforms can be found nowadays
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in research centers. However, there currently exists a gap between what a humanoid platform
is able to do and what it can really do. The main reason is the lack of suitable control systems
that exploit all the potential and the advantages that such platforms offer. These systems
have to deal with aspects such as balance, redundancy, underactuation, motion coordination,
environmental interaction amongst others, which make humanoid robot control a difficult
problem.

This chapter has presented the state of the art in control approaches for humanoid robots.
Motion planning was among the first frameworks used to determine paths in the configuration
space and several improvements, some of which have been specially designed for humanoid
robots, have recently appeared. Methods based on inverse kinematics have been recalled
first for redundant robots and then specifically for humanoid robots. In many ways, inverse
kinematics can be considered as the ’de facto’ state of the art in robot control since it is
a well understood and used approach due to its simplicity and real-time capabilities. Then,
inverse dynamics control, which is a step forward in control with respect to inverse kinematics,
was recalled for robotic manipulators, humanoid robots and computer animations. Finally,
optimal control approaches, which constitute the most promising automatic motion generation
methodologies, were briefly discussed.



Chapter 3

Inverse-Dynamics Whole Body Motion

Whole-body control of a humanoid robot is a challenging task due to the kinematic and
dynamic complexity of the system. Humanoids are highly kinematically redundant robots
with a non-trivial tree-like structure as well as an unstable nature due to the vertical po-
sition. At every moment, the robot must not only reproduce some task, but it should not
fall while performing the task, keeping its dynamic balance. As described in the previous
section, several methods aiming at solving these problems have been recently proposed and
the research area is very active. The generic method proposed in this thesis is based on the
inverse-dynamics model of the robot considering contact constraints and a set of tasks spec-
ified with a given priority. The resolution for each task is posed as a minimization problem,
subject to several constraints that ensure dynamic feasibility, and uses a hierarchical scheme
based on hierarchized QPs. Since the motion is generated using several prioritized tasks, and
the dynamic model of the robot is taken into account, the term Dynamic Stack of Tasks (SoT)
is sometimes used to refer to the framework. With respect to other operational-space inverse-
dynamics (OSID) approaches, the advantages of the proposed method are the capability to
handle both equality and inequality constraints at any level of the hierarchy, the fast compu-
tation time that allows it execution in real-time, and the direct feasibility of the generated
motion, which does not need any further processing or validation before being executed on
the robot.

This chapter presents the foundations of the proposed methodology and is divided as
follows. First, the task-function formalism, which is the basic form in which the motion
objectives are specified, is recalled. Then, the dynamic model of the robot is presented
considering the underactuation of the system as well as the rigid contact constraints. The
control scheme based on hierarchical quadratic programming is then treated in its initial
formulation and also in the reduced form to speed up the computational time and achieve
real-time performance. Finally, different types of tasks used throughout the thesis to generate
different kinds of motion are presented.
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3.1 Dynamic Considerations for a Humanoid Robot

The dynamic model of the robot states the relation between the generalized control torques
τ and the generalized joint accelerations q̈. Unlike robotic manipulators, a humanoid robot
is not attached to some part of the environment but presents a continuous interaction: the
feet of the robot are continuously touching the ground, and other parts of the robot such
as the hands, can also be in contact with the environment. Hence, the constraints imposed
by the considered contact model must be satisfied for the motion to be feasible. Moreover,
a humanoid robot is also an underactuated system, whose motion is possible due to the
interaction with the environment, and balance must be kept throughout all the motion. Thus,
the representation of the robot must explicit this underactuation and some balance constraints
must also be satisfied. The full dynamic model includes both the contact constraints and the
underactuation and is presented at the end of this section.

3.1.1 Rigid Contact Constraints

The rigid contact constraints are used to model contacts between rigid bodies. Let a rigid
body B be in contact with the rigid environment E at nc contact points, and let the reference
frame attached to each contact point have its z axis pointing in the normal direction from
the environment to the body, and its x, y axes forming a plane tangent to the contact. Let
the position of the ith contact point be represented by xci = (xcix, yciy, zciz) ∈ R

3, and the
contact force by fci = (fcix, fciy, fciz) ∈ R

3. The analysis of the contact constraints can be
divided in two parts: the normal components, and the tangential components.

Normal Constraints

These constraints establish the conditions that the normal acceleration and the normal force
must satisfy to maintain the rigid bodies in contact. For notational convenience, let the
perpendicular elements to the body B and the environment E be represented as x⊥ci = xciz
and f⊥ci = fciz. There exist two types of normal constraints: kinematic constrains and dynamic
constraints; and they are summarized in the so-called complementarity conditions

a) Normal Kinematic Constraints Without considering impacts, and assuming finite
forces that generate finite accelerations, a constraint for a contact to hold is that the normal
velocity of the contact point must be equal to zero: ẋ⊥ci = 0 at all times [Trinkle 97]. This
holds true by the definition of a contact. The reason is that a negative perpendicular velocity,
ẋ⊥ci < 0, would indicate that the body will penetrate the environment in the near future, and
a positive velocity, ẋ⊥ci > 0, would indicate that the body comes from having penetrated the
environment, both of which are not possible. At the acceleration level, to avoid penetration of
the rigid body into the environment, ẍ⊥ci must be non-negative which leads to two possibilities:

(i) The contact is maintained if the normal acceleration is null: ẍ⊥ci = 0.

(ii) The contact breaks if the normal acceleration is positive: ẍ⊥ci > 0.
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b) Normal Dynamic Constraints With the same assumptions as for the kinematic con-
straints, the dynamic constraint imposes that the normal contact force to avoid interpene-
tration be non-negative f⊥ci ≥ 0. The reason for this unilateral force is that the body B can
only push on the environment, but it cannot attract it, hence the force is possible only in one
direction. The two possibilities for the compressive contact force are [Trinkle 97]:

(i) The contact is maintained if the normal contact force is non-negative: f⊥ci > 0.

(ii) The contact breaks if the normal contact force is zero: f⊥ci = 0.

c) Signorini Conditions The dynamic and the kinematic constraints that avoid interpen-
etration can be combined to incorporate at the same time the normal force and acceleration.
The contact persists if the normal acceleration is null and the normal force is non-negative,
that is: ẍ⊥ci = 0 and f⊥ci ≥ 0. On the other hand, both rigid bodies separate from each
other if the normal force is null, in which case the normal acceleration is non-negative; that
is: ẍ⊥ci ≥ 0 and f⊥ci = 0. Both constraints to avoid interpenetration are usually written as
complementarity conditions usually known in mechanics as the Signorini conditions or the
non-penetration conditions which state the following [Klarbring 97]:

ẍ⊥ci ≥ 0, f⊥ci ≥ 0 and ẍ⊥cif
⊥
ci

= 0. (3.1)

As stated before, the only case that ensures persistence of a contact in (3.1) is ẍ⊥ci = 0 and
f⊥ci ≥ 0. For a robot, the velocity of the contact point can be related to the robot kinematics
through the Jacobian of the contact point, called the contact Jacobian, as

ẋci = Jci q̇ where Jci =
∂xci
∂q

(3.2)

Consequently, the acceleration of the contact point is ẍci = Jci q̈ + J̇ci q̇. Using the Jacobian,
the non-holonomic condition to keep a rigid contact [Yamane 03] can be written as

Jci q̈ +
˙Jci q̇ = 0 (3.3)

and the condition on the normal force is

f⊥ci ≥ 0. (3.4)

Friction Constraints

These constraints establish the conditions for the tangential forces according to the friction
model to be used. Two main friction models are used in robotics: the point contact model,
and the friction cone model. However, instead of using the whole friction cone, the linearized
version of it is typically utilized due to its computational advantages.

a) Point Contact Model In this model, the contact force is assumed to be completely
directed in the normal direction from the environment to the body so that the tangential
components are neglected; that is, fci = (0, 0, f⊥ci ). This model is typically used when the
friction between the bodies (for instance, the foot and the ground) is considered high enough
as to neglect its effects. Since only the normal components are used [Featherstone 08], the
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model constraints are given by (3.3) and (3.4). In robotics, the contact force fci acting at a
rigid contact point generates an effect on the joint torques τci, and the virtual work principle
states that τTciδq = fTciδxci , where δq is the virtual motion of the joint, and δxci is the virtual
displacement at the contact point. Using the contact Jacobian (3.2) for infinitesimal motion,
the equality δxci = Jciδq holds leading to

τci = JTcifci (3.5)

which is the linear relation between the contact force and its effect on the generalized joint
torques.

b) Friction Cone Model When friction effects cannot be neglected, a friction cone model
based on Coulomb’s friction law has to be considered for the tangential components of the
contact force fci . This model constrains the magnitude and the direction of the contact force
to lie inside a cone, referred to as the friction cone Ki, and defined as

Ki = {(fx, fy, fz) ∈ R
3 / ‖(fx, fy)‖2 ≤ µfz} so that fci ∈ Ki (3.6)

where µ > 0 is the friction coefficient at the contact point. From a geometric point of view,
the forces fc lie in the α-plane of the Klein quadric corresponding to the point of contact;
equivalently, the interior of the friction cone corresponds to the interior of a circle in the
α-plane [Selig 07]. Since forces must be non tensile, the non-negativeness of f⊥ci must also be
hold. In fact, both normal conditions (3.3) and (3.4) must be satisfied in addition to (3.6),
and the effect of the force on the robot joints is (3.5).
It should be noted from (3.6) that when there is a high friction coefficient µ, the tangential
components of the contact force become very small with respect to the normal components.
In these cases, the rigid contact point can be used as an approximation to the friction cone
model.

c) Linearized friction cone For computational facility, the friction cone can be linearized
using a polygonal approximation with nf facets . For the ith contact point, the linearization
of Ki in (3.6) uses some linear basis Vi = [v1, · · · , vnf

] ∈ R
3×nf , where vj ∈ R

3 are the edges of
the approximated polygon, and Vi is sometimes referred to as the generator of the linearized
cone. The contact force can thus be represented as the conic combination of the generators
vj as

fci =

nf
∑

j=1

ljvj = Viλi (3.7)

where lj ∈ R, lj ≥ 0,∀j = 1, · · · , nf , and λi = (l1, · · · , lnf
) ∈ R

nf . Thus, the constraint for
the contact force fci to belong to the linearized cone is

λi ≥ 0 (3.8)

which can be seen as a generalization of (3.4) when friction is taken into account. The
kinematic condition on the contact acceleration (3.3) remains valid. In this model, the effect
of the contact force on the joint torques can be obtained from (3.5) replacing the force by its
expression as a function of the linearized cone (3.7), and is given by

τci = JTciViλi. (3.9)
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3.1.2 The Zero-Moment Point (ZMP)

The ZMP, first introduced in [Vukobratovic 69], is the point rz = (xz, yz, zz) ∈ R
3 on the

support polygon where the influence of all forces acting on the mechanism can be replaced by
one single force [Vukobratović 04]. The wrist φzmp = (τzmp, fzmp) ∈ se∗(3) at rzmp generated
by the reaction force and the reaction torque satisfies

τzmpx = 0 and τzmpy = 0 (3.10)

A biped robot is dynamically balanced as long as the ZMP exists, and for a dynamically
balanced gait on a horizontal surface, the ZMP always coincides with the Center of Pressure
(CoP) [Sardain 04]. It is sometimes said that the ZMP must lie inside the support polygon for
the robot to be dynamically stable; however, the ZMP is only defined inside the support poly-
gon and when the conditions (3.10) are satisfied outside, the point should be called the FZMP
(fictitious ZMP) [Vukobratović 04] or the FRI (Foot Rotation Indicator) [Goswami 99].

Computation based on the dynamics Let the robot be modeled as a multi-body system
composed of nb rigid bodies, each with a mass mi. The ZMP can be obtained using the basic
laws of mechanics for this robot model as [Wieber 02]:

rz =
n̂× fr + rcg

∑nb

i=1mi

n · τr + g
∑nb

i=1mi
(3.11)

where fr, τr are the linear and rotational components of the robot dynamic wrench, n is a
vector orthogonal to the plane where the contact lies (n̂ is its skew symmetric matrix), rc is
the robot CoM, and g is the gravitational constant. The robot dynamic wrench φr ∈ se∗(3)
in (3.11) is

φr =

[

τr
fr

]

=

[∑nb

i=1mir̂ir̈i +RiIiω̇i +Riω̂iIiωi
∑nb

i=1mir̈i

]

where ri is the CoM position of the ith body, Ri its rotation matrix, Ii its inertia matrix,
and ωi its angular speed. The hat denotes the corresponding skew symmetric matrix related
to the cross product. However, the usage of the full model in practice is not frequent due
the high computational requirements. Simplified models are typically used [Kajita 05], and
a particularly common one for dynamic walking is based on the Linear Inverted Pendulum
[Kajita 01] (see Appendix B).

Computation based on the contact forces The ZMP can also be computed using the
punctual contact forces fci ∈ R

3 at the interface between the supporting foot and the ground,
since it is equivalent to the Center of Pressure [Goswami 99]. Moreover, only the forces at the
vertices of the contact convex hull are needed, and only the component perpendicular to the
ground f⊥ci (which is typically the z component) is used. Assuming nc contact points acting
at ri = (xi, yi, zi), the ZMP is computed as

rz =

(

∑nc

i xif
⊥
ci

∑nc

i f⊥ci
,

∑nc

i yif
⊥
ci

∑nc

i f⊥ci
, 0

)

(3.12)

which is the average of the contact points pi weighted by the normal component of the contact
forces at each point.



3.1 Dynamic Considerations for a Humanoid Robot 29

ZMP Measurement Although the ZMP can be obtained using the previous methods,
humanoid robots typically do not possess the sensors to directly measure the variables in
(3.11) or all the forces in (3.12), but wrenches can be measured at certain predefined positions.
Let the ns wrenches at some point ri = (xi, yi, zi) ∈ R

3 in the foot be φci = (τci , fci) ∈ se∗(3).
The relation between these wrenches at the ZMP wrench is given by

φzmp =

ns
∑

i=1

AdTsiφi (3.13)

where the adjoint matrix is

AdTsi =

[

Rsi r̂izRsi
0 Rsi

]

,

the matrix Rsi represents the rotation from each wrench φci frame to the reference frame, and
r̂iz is the skew-symmetric matrix corresponding to ri− rz. Without loss of generality, Rsi will
be assumed to be the identity, since the transformation between the wrench frame and the
reference frame can be known a-priori, and thus the wrench can be already expressed in the
reference frame. Using Rsi = I, the torque component of (3.13) can be explicitly written as:





τzmpx
τzmpy
τzmpz



 =

ns
∑

i=1











0 zz − zi yi − yz
zi − zz 0 xz − xi
yz − yi xi − xz 0









fcix
fciy
fciz



+





τcix
τciy
τciz











(3.14)

and assuming the conditions (3.10) for the torques, the ZMP becomes

xz =

∑ns

i=1 xifciz − (zi − zz)fcix − τciy
∑ns

i=1 fciz

yz =

∑ns

i=1 yifciz − (zi − zz)fciy − τcix
∑ns

i=1 fciz

(3.15)

which can be used to measure the ZMP. For example, the HRP-2 robot has one 6-D axis
force/torque sensor close to its ankle, and the ZMP can be directly measured using it with
ns = 1 in (3.15).

3.1.3 Dynamic Model of a Robot

The dynamic model of a generic fully actuated robot can be found using the Lagrange for-
malism, the Newton-Euler equations or the Hamiltonian approach. For a compact analytical
representation, the Lagrange formalism is usually preferred and is presented here.

Moment of Inertia Operator Let ξi = (ωi, vi) ∈ se(3) be the twist of the ith body
composing the robot, where se(3) is the Lie algebra of SE(3), and let the µi = (hi, li) ∈ se∗(3)
be its momentum, where hi and li are the angular and linear momenta, respectively, and se∗(3)
is the dual of se(3). The dynamics of this ith rigid body is [Selig 07]:

hi = Iiωi +mi(rci × vi)

li = mivi +mi(ωi × rci)
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where rci ∈ R
3 is the CoM, mi its mass, and Ii ∈ R

3×3 its inertia tensor. Letting r̂ci represent
the skew-symmetric matrix of rci , these motion equations can be compactly written as

µi = Niξi

where

Ni =

[

Ii mir̂ci
mir̂

T
ci

miI3

]

∈ R
6×6

is a symmetric matrix called the moment of inertia operator (or tensor) and provides a linear
isomorphism Ni : se(3) → se∗(3). Equivalently, Ni is an operator that converts velocities to
momenta [Arnol’d 89]. To simplify this matrix, it is common practice to choose the origin of
the body to coincide with its center of mass, which makes Ni a block diagonal matrix.

Kinetic Energy For the ith rigid body, the moment of inertia operator Ni determines a
bilinear symmetric form on se(3), called the kinetic energy and given by [Arnol’d 89]:

Ki =
1

2
ξTi Niξi

which is always positive definite. The kinetic energy for the robot is the sum of the kinetic
energies for the nb rigid bodies constituting it, and is given by

K(q, q̇) =
1

2

nb
∑

i=1

ξTi Nξi =
1

2

nb
∑

i=1

q̇TJToiNJoi q̇ (3.16)

since ξi = Joi(q)q̇. The robot generalized mass matrix, also called the generalized inertia
matrix or the kinetic energy matrix, is defined as

M(q) =

nb
∑

i=1

JToiNJoi

which can be shown to be symmetric (M(q) = M(q)T ) and positive definite (M(q) ≻ 01)
[Murray 94]. Replacing this matrix in (3.16), the kinetic energy of the robot is

K(q, q̇) =
1

2
q̇TM(q)q̇ (3.17)

Potential Energy The gravitational potential energy of a rigid body is the energy accu-
mulated when it gains height, which depends on a frame of reference. For a single body of
the robot it is given by Ui = migihi(q), where g is the acceleration of gravity and hi(q) is the
height of the body with respect to a given reference frame. The potential energy of the robot
is the sum of the potential energies of the constituting bodies and is

U(q) = g

nb
∑

i=1

mihi(q) = gmTh(q) (3.18)

where m = (m1, · · · ,mn) and h(q) = (h1(q), · · · , hn(q)).
1For a square matrix A ∈ R

s×s, the notation A ≻ 0 states that ∀z ∈ R
s, zTAz > 0.
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Lagrange formulation The natural Lagrangian function is the difference between kinetic
and potential energies: L(q, q̇) = K(q, q̇) − U(q). The dynamic model of a robot can be
obtained using the Euler-Lagrange (sometimes only called Lagrange) equation:

d

dt

(

∂L

∂q̇

)T

−
(

∂L

∂q

)T

= Γ (3.19)

where Γ is the vector of the generalized forces acting on the joints. Replacing (3.17) and
(3.18) in the Lagrangian L(q, q̇), the derivatives in (3.19) become

d

dt

(

∂L

∂q̇

)T

=
d

dt

(

q̇TM(q)
)T

=M(q)q̈ + Ṁ(q)q̇

(

∂L

∂q

)T

=
1

2

(

q̇T
∂M(q)

∂q
q̇

)T

−
(

∂U(q)

∂q

)T

and substituting these elements in (3.19), the dynamic model of the robot is

M(q)q̈ + b(q, q̇) = Γ (3.20)

where

b(q, q̇) =

(

Ṁ(q)− 1

2
q̇T
(

∂M(q)

∂q

)T
)

q̇ +

(

∂U(q)

∂q

)T

is a vector comprising the Coreolis and centrifugal forces as well as the gravity effects. This
expression for b(q, q̇) can be further decomposed to explicitly show each of the components
[Siciliano 09].

3.1.4 Representation of a Humanoid Robot

One of the main differences between a humanoid robot and a robotic manipulator is that
the former can freely move in its environment while the latter presents a fixed attachment
to the environment. But the ability to freely move also generates a big control challenge
known as underactuation: the motion within the environment cannot be directly controlled
but is indirectly commanded through the proper motion of the actuated joints [Wieber 06a].
Thus the representation of the robot should consider this underactuation besides the joint
coordinates.

Actuated Joints The actuated joints of a robot are typically composed of two types:
revolute and prismatic joints. A revolute joint takes values in S

1, where S
1 is the 1-sphere

manifold corresponding to the unit circle. A set of r revolute joints takes values in an r-torus
T
r defined as T

r = S
1 × · · · × S

1. Prismatic joints take values in R along a certain motion
axis, and a set of p prismatic joints generate the R

p space. Thus, for a robot with n = r + p
degrees of freedom, with r revolute joints and p prismatic joints, the configuration space is
the r + p dimensional manifold Q that results from the Cartesian product of all these joint
spaces; that is, Q = T

r ×R
p. A particular configuration of the actuated joints is represented

as qa ∈ Q.
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Free-Floating Base The pose of the robot in the environment is associated with the pose
of some body composing the robot, which is called the free-floating base, the root base, or
the free-flyer. For a humanoid robot, this body is typically the torso or the waist. The
free-floating pose is represented by

xf =

[

xfp
xfr

]

∈ SE(3) (3.21)

where xfp is the position of the base, usually given by Cartesian coordinates (xfp ∈ R
3), and

xfr is its orientation given by some parametrization of the SO(3) group. Typical orientation
parameterizations are quaternions (also called Euler parameters), direction cosines, Euler
angles, and the axis-angle representation. In general, xf is a parametrization of the SE(3)
group and presents 6 DoF in the space, but it can contain more than 6 coordinates depending
on the representation that is used. The twist of the base will be denoted by ξf = (ωf , vf ) ∈
se(3), where ωf , vf are the angular and linear velocities respectively.

Generalized Coordinates The generalized coordinates q represent the full robot state and
contain the underactuated base as well as the actuated joints. These coordinates q as well as
the vector used to represent their velocity q̇ are

q =

[

xf
qa

]

and q̇ =

[

ξf
q̇a

]

.

It is common practice to use the twist instead of the derivatives of the pose representation
since the twist is independent of the parameterization of SE(3). The relation between the
derivative of the base pose ẋf and its twist is a linear relation ẋf = Eo(xf ) ξf , where Eo(xf )
changes according to the parameterization used for xf [Khatib 80, Khatib 04a].

Selection Matrix The actuated joint configuration qa can be recovered from the generalized
coordinates q using the so-called selection matrix S that selects only the actuated part. For a
robot with a b-dimensional representation of its free-floating base and with n actuated DoF,
the matrix S ∈ R

n×(b+n) is

S =
[

0̄ I
]

such that qa = Sq

where 0̄ ∈ R
n×b is a zero matrix and I ∈ R

n×n is an identity matrix. The selection matrix
is also important for mapping the generalized torques τ acting on the actuated joints to the
generalized coordinates as ST τ = [0̄ τ ]T , where 0 corresponds to the underactuation of the
system, and arises from the fact that the base xf cannot be controlled.

3.1.5 Dynamic Model of a Humanoid Robot

The dynamic model of a robotic manipulator is given by (3.20), where a full actuation by the
torques τ acting on the system is assumed. However, a humanoid robot presents two main
differences with respect to a manipulator: it is an underactuated system, and its motion in the
environment is done through contacts with the environment (usually both feet are in contact
with the ground). The underactuation can be modeled using the generalized coordinates
and the selection matrix presented in Section 3.1.4; and the environment interaction can be
modeled with the virtual principle for the contact forces, as described in Section 3.1.1.
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Multiple contact forces When there is more than a single contact point, all the contact
forces corresponding to the contact points must be included in the model. Let the robot
present nc contact points xci (i = 1, · · · , nc) with the environment, let Jci(q) =

∂xci
∂q

be the

contact Jacobian associated with the ith contact point, and let fci be the force exerted at
xci . Then, the full contact force and the corresponding full Jacobian can be represented by
stacking each component as

fc =







fc1
...

fcnc






and Jc(q) =







Jc1(q)
...

Jcnc
(q)






.

Using (3.5), or alternatively (3.7), for each contact force, the effect of all the punctual contact
forces on the joint torques can be compactly described as

τc =

nc
∑

i=1

JTci (q)fci = JTc (q)fc (3.22)

which has to be included in the dynamic model as an external generalized force. A similar
expression can be obtained if the contact wrenches are used instead of the punctual contact
forces.

Dynamic Model A humanoid robot can be modeled as an underactuated kinematic-tree
chain composed of rigid bodies with a free floating base and subject to contact forces. The
Euler-Lagrange formalism allows the dynamic representation of the robot as (3.20), which is
generic in the sense that Γ contains all the generalized forces acting on the joints. For an
underactuated robot in rigid contact with the environment, the effect of the contact forces τc
(3.22) as well as the actuated joints ST τ has to be included so that Γ = ST τ − τc. The choice
of the contact forces effect sign is arbitrary and depends on the chosen frame. With these
considerations, the dynamic model of a humanoid robot is given by:

M(q)q̈ + b(q, q̇) + Jc(q)
T fc = ST τ (3.23)

As in (3.20), M(q) is the generalized inertia matrix, and b is the term comprising the Coriolis
and centrifugal forces as well as the gravity force vector. It is also possible to decouple the
underactuated and actuated parts of the dynamics obtaining

Mu(q)q̈ + bu(q, q̇) + Jcu(q)
T fc = 0 (3.24)

Ma(q)q̈ + ba(q, q̇) + Jca(q)
T fc = τ (3.25)

where the matrices M(q), b(q, q̇) and Jc(q) have been properly decomposed to show the
decoupling. It can be shown that (3.25), the underactuated part, corresponds to the Newton-
Euler equations of the whole system and expresses the change of momentum of the robot as
a function of only the external forces [Wieber 06a].

The dynamic model (3.23) defines a surjective map from the space of joint torques and
contact forces to the joint acceleration space. It is nonlinear but it is generally linearized
around the current state (q, q̇), assuming small variations, thus M(q), b(q, q̇), and Jc(q) are
assumed to be known. One fact is worth remarking: in the model, τ and fc are sufficient to
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describe the system dynamics; however, the robot motion is represented as a function of q̈,
which has thus to be included in the computations. This fact allows for the decoupling of
motion and actuation, described in Section 3.3.4. To handle the complementarity conditions
at every contact point, (3.3) and (3.4) have to be additionally considered as constraints for a
rigid contact point model, or (3.3) and (3.8) for a friction cone model.

3.2 Task Function Approach

The task function approach [Samson 91] is a framework that describes tasks in terms of specific
output functions chosen to ease the observation and control of the task to be performed. In
the field of robotics it is also referred to as the operational space approach [Khatib 87] and
consists in generating motion based on the definition of different tasks whose control laws are
expressed in a subspace of smaller dimension than the full robot state space. Then, these laws
are back-projected onto the original space. For instance, if currently the robot arm is down
and the task consists in raising the arm, the control law can be defined in terms of the spatial
initial and final pose (position and orientation) of some part of the arm, like the hand, instead
of the whole joint space. The effect of this approach is to reduce the control complexity, to
make the control more intuitive, and to decouple the different parts of the motion making a
clear separation of the objectives to be achieved.

3.2.1 Generic Formulation

Let n be the total number of DoF of the system, C be an n-dimensional manifold representing
the configuration space, M be an m-dimensional manifold representing the task space, and
U be a p-dimensional manifold representing the control space. To fully specify a task, the
following three components must be defined2:

1. The task function e : C → M, which describes the task itself.

2. The reference behavior r∗ ∈ R, which is defined as an arbitrary desired behavior to
properly achieve the task. In general, R is an m-dimensional manifold related to M.

3. The map G : U → R, which relates the task, in a given vector field r ∈ R, to the control
input u ∈ U as

r + δ = Gu (3.26)

where δ represents a generic, and sometimes unavoidable, drift of the task and belongs
to the same space as r.

An example of a task function is given in Fig. 3.1. Using (3.26), the generic control law u∗

that achieves a desired reference behavior r∗ can be expressed as the solution to the following
unconstrained minimization problem:

min
u

‖r∗ + δ −Gu‖22 (3.27)

2The generic formulation and cases for kinematics and dynamics appear in: L. Saab, O. Ramos, F. Keith,
N. Mansard, P. Souères, J-Y. Fourquet, Dynamic Whole-Body Motion Generation under Rigid Contacts and
other Unilateral Constraints, IEEE Transactions on Robotics (T-RO), Vol.29 N.2, pag. 346 - 362, April 2013
[Saab 13].
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(a) Initial configuration (b) Final configuration

Figure 3.1 – Example of a task function. T represents the initial pose of the right hand, and T ∗ its desired
pose. The task function in this case is e = T ⊖ T ∗, where ⊖ is a difference operator in SE(3).

where ‖.‖2 represents the L2 norm. The solution to the minimization, and thus the desired
control law, is obtained as [Saab 13]:

u∗ = G#(r∗ + δ) + P
G
u2 (3.28)

where {.}# represents any reflexive generalized inverse, P
G
= I −G#G is the projector onto

the nullspace of G corresponding to G#, and u2 ∈ U is a secondary control input that can be
used to exploit the redundancy of the system with respect to the task. The minimum norm
solution is achieved if besides the minimization of (3.27), the norm of u is also minimized, and
is given by u∗ = G#(r∗+δ) which, as (3.28) shows, represents the special case when u2 is null.
Although the minimum norm solution might be efficient with respect to the control law, it
can only be used to perform a single task, wasting the redundancy of the system for achieving
more tasks. Amongst the possible reflexive generalized inverses, the Moore-Penrose pseudo-
inverse is generally chosen, but other inverses, like a weighted inverse whose weights depend
on some other criteria, can also be used (Appendix A presents more details on generalized
inverses).

Without loss of generality, it is usual and fairly natural to define the control objective as
a regulation to zero of the task function. This regulation approach is widely used in control
theory. More concretely, given any observable s ∈ M willing to reach a desired s∗ ∈ M, the
task function can be specified as

e = s− s∗ (3.29)

which must be regulated to zero. The desired s∗ can be a fixed reference or a desired trajectory,
in which case the task becomes a tracking problem. The regulation problem in (3.29) is
controlled through the specification of the proper reference behavior r∗.

3.2.2 Inverse Kinematics Case

The previously described generic formulation for the task function approach (Section 3.2.1)
can be directly used for inverse kinematics control. Let Q be the n-dimensional manifold that
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represents the generalized joint space and let q ∈ Q be a particular joint configuration. As
recalled in Section 2.2.2, differential kinematics linearly relates the rate of change of the task
space to the rate of change of the joint space as

ė(q, q̇) = J(q) q̇ (3.30)

where ė(q, q̇) is the time derivative of some task e ∈ M, and the differential map J(q) =
∂e
∂q

∈ R
m×n is the task Jacobian. It is straightforward to see that (3.30) directly matches the

pattern given by (3.26) when δ = 0. Thus, the elements of the task function approach can
be identified in the following straightforward way: (i) the task function is directly the task e;
(ii) the reference behavior is the desired velocity for the task: r∗ = ė∗; (iii) the map is given
by the task Jacobian: G = J(q).

For inverse kinematics, the control is directly given by the joint velocity so that U = Tp(Q),
or equivalently, u = q̇. Then, for a given task, the control law based on joint velocities can be
expressed according to (3.28) as:

q̇∗ = J(q)#ė∗ + P
J
q̇

where P
J

is a projector onto the nullspace of J(q), and q̇ ∈ R
n is an arbitrary vector that can

be used to realize other tasks without interfering with the highest priority task e. When a
regulation task is used, the reference behavior is usually chosen as ė∗ = −λe, where λ > 0 is
a constant gain, to achieve asymptotic stability, in particular, an exponential convergence to
zero. If the gain λ is increased, the task will be achieved faster; but the mechanical constraints
of the robot forbid the usage of very high gains, which can generate undesired saturations.

3.2.3 Inverse Dynamics Case

The task function approach can also be extended to inverse dynamics control [Khatib 87],
but the formulation is not as straightforward as for inverse kinematics. Consider the generic
dynamic model of a robot without contact constraints given by (3.20). In inverse dynamics the
control is done through the generalized torques τ , and the joint configuration is described by
the second order joint acceleration q̈. Thus, to use the task function approach, the relationship
between the task acceleration ë and the joint acceleration q̈ has to be considered. This relation
can be found by taking the derivative of (3.30) and is equal to

ë(q, q̇, q̈) = J̇(q, q̇)q̇ + J(q)q̈. (3.31)

For notation simplicity, the dependences on q and its derivatives will be dropped whenever it
is clear. Replacing J(q)q̈ from (3.31) in (3.20), the expression for inverse dynamics directly
relating the task space to the control can be found as:

JM−1Mq̈ + JM−1b = JM−1τ

ë+ (JM−1b− J̇ q̇) = JM−1τ (3.32)

It can be observed that (3.32) matches the generic task function pattern (3.26) if the dynamic
drift is δ = JM−1b − J̇ q̇, and the control input is the generalized actuation vector: u = τ .
Thus, for the task function approach formalism, the following terms can be identified: (i) the
task function is the task itself: e; (ii) the reference behavior is the desired task acceleration
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r∗ = ë∗; (iii) the map is G = JM−1, which is a function of the kinematic differential map
(the Jacobian).

The inverse dynamics control is then reduced to finding the desired torque control input
τ∗ that will generate the reference behavior ë∗ using any necessary joint accelerations q̈. Thus,
for inverse dynamics, the control law in (3.28) becomes

τ∗ = (JM−1)#(ë∗ + JM−1b− J̇ q̇) + P
JM−1

τ

where P
JM−1

is a projector onto the nullspace of JM−1 and τ is an arbitrary vector that can
be used to control more tasks with lower priority. The model (3.20) can also be extended to
the case of dynamics with rigid contact constraints and the application of the task-function
approach leads to similar results [Saab 13].

3.3 Inverse Dynamics Control

The control of reactive humanoid robots in the real world has to deal with constraints imposed
by the robot mechanical properties and by the environment. Traditional control based on
inverse kinematics only considers kinematical constraints but it does not take into account
any of the other constraints; therefore it is not sufficient and inverse dynamics has to be
considered. Inverse dynamics control is able to consider the full dynamics of the robot as
well as the environmental constraints and at the same time it can generate different types of
motion3.

3.3.1 Inverse Dynamics Problem

The inverse dynamics problem consists in finding a control law that will lead to the fulfill-
ment of a desired task satisfying the inverse dynamics model of the robot and some addi-
tional constraints to ensure the feasibility of the motion. Given a certain task represented by
h(q, q̇, q̈) = ë∗ − ë(q, q̇, q̈), the inverse dynamics problem can be written in generic form as

min
ν

‖h(q, q̇, q̈)‖2N
s.t. Aν + β = 0

Dν + γ ≥ 0

(3.33)

where ν is the control variable, A, β are matrices defining suitable equality constraints typi-
cally given by the dynamic model (3.23) and the kinematic non-holonomic contact constraints
(3.3), and D, γ are matrices defining suitable inequality constraints that might represent, for
instance, the unidirectionality of the contact forces (3.4) or (3.8). The minimization is done
using an N -norm, which can be chosen to control the efforts over the joints [Peters 08]. In
inverse dynamics, the control variable ν must contain the generalized torques τ , but since mo-
tion is specified by terms depending on joints acceleration, q̈ can also be included, although
both terms are naturally coupled. When the unidirectionality of the forces is considered, fc

3The control framework in this section first appeared in: L. Saab, O. Ramos, N. Mansard, P. Souères, J-
Y. Fourquet: Generic Dynamic Motion Generation with Multiple Unilateral Constraints, IEEE International
Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, September 2011 [Saab 11].
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can be included in the control variable ν, but also friction models can be used. Thus, this
generic problem for a single task ë∗ can be written as

min
q̈,τ,fc

‖ë∗ − ë(q, q̇, q̈)‖2N

s.t. M(q)q̈ + b(q, q̇) + Jc(q)
T fc = ST τ

Jcq̈ + J̇cq̇ = 0

f⊥c ≥ 0

(3.34)

There exist two main approaches to solve this problem. The first one aims at determining
an analytical solution through successive projections onto the constraints nullspaces to achieve
dynamic feasibility. The other one consists in finding the solution treating the problem as a
purely optimization problem which allows for the consideration of more generic constraints.

Solutions based on nullspace projections One way to solve the inverse dynamics prob-
lem in (3.34) is to consider the constraints analytically and to use the so called projected
inverse-dynamics to eliminate the contact forces. These approaches only consider the equality
constraints, and inequality constraints cannot be arbitrarily handled. The usage of operational
space controllers for whole-body control was proposed in [Sentis 05] where the solution is ob-
tained using the so-called dynamically consistent Jacobian, which is a particular norm N for
the analytical solution of (3.34). For multiple tasks, this approach uses a prioritization scheme
based on projections onto the nullspace of higher priority tasks and constraints. Another ap-
proach is based on the orthogonal projections for inverse dynamics introduced in [Aghili 05]
and was proposed for legged robots with switching contact constraints in [Mistry 10]. It finds
an analytical solution for the torques projecting the robot dynamics onto a reduced dimen-
sional space independent of contact forces using the aforementioned orthogonal decomposition
and only kinematic projections. Moreover, both approaches have been shown to be equivalent
with respect of different minimization costs [Righetti 11b].

The limitations of these methods are the lack of possibility to include inequality constraints
such as joint limits, friction cones, amongst others. This leads to obtaining unbounded contact
forces which in reality can produce balance problems for a robot, or unfeasible contacts. Also,
tasks expressed as inequalities cannot be formulated.

Solutions based on optimization The other approach to solve the inverse dynamics
problem is to use optimization techniques to find the solution to (3.34). A typical method
is through the usage of Quadratic Programs (QP). The advantage over solutions based on
nullspace projections is the ability to handle inequalities such as friction cones, force unidi-
rectionality, joint limits or other constraints/tasks. There exist two main approaches in this
category when there are more than two tasks to be satisfied at the same time: weighting
based schemes and prioritized schemes.

Weighting-based schemes combine the tasks by assigning a weight αi to each of them. For
nt tasks, the minimization objective of (3.34) becomes

∑nt

i=0 αi‖ë∗i − ëi‖2. An approach that
is oriented towards robust balance and uses this scheme was proposed in [Collette 08]. For
whole-body control, the QP formulation based on weighted sums subject to constraints was
proposed in [Bouyarmane 11] and [Salini 11]. The problem with this formulation is the effort
needed to properly tune the weights, and when tasks or constraints conflict with each other,
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there can be problems in the solutions: none task is fully satisfied but a compromise amongst
them is obtained.

To solve this problem, prioritized schemes treat the problem as a hierarchy which is an
ordered list of tasks where lower priority tasks should not interfere with higher priority ones.
In these cases, the inverse dynamics problem is recursively solved starting with the highest
priority task and setting the solution of this as a constraint for the next levels. The approach in
[deLasa 10] uses a nested sequence of objectives re-parameterized at each level of the hierarchy.
An application on a real humanoid robot was implemented in [Herzog 13] using slacks in the
QP to account for priority feasibility and reducing the computational cost by decomposing
the equations of motion in the actuated and underactuated parts. Based on this reduction,
a framework for this usage in an optimal control scheme outer loop was recently proposed in
[Kuindersma 14]. An analytical sparse solution that converts the problem into two smaller
independent unconstrained problems reducing the computational time has been proposed in
[DelPrete 14a]. The approach used in this thesis is based on prioritization and for this sake,
a cascade of QPs, referred to as hierarchical quadratic program, is used at each level of the
hierarchy to handle inequalities at any priority level, which cannot be obtained with other
approaches.

3.3.2 Hierarchical Quadratic Program (HQP)

The Hierarchical Quadratic Program solver [Escande 14] is an extension of the traditional
Quadratic Program (QP) approach that consists in using a cascade of QPs so that equalities or
inequalities, representing constraints, can be handled at any level of the cascade. The cascade
enforces a hierarchy since the constraints corresponding to the first QPs in the cascade will
have a higher priority than the constraints in the next QPs. A constraint with higher priority
is interpreted as a constraint that is satisfied as closely as possible without considering any
other existing (lower-priority) constraints.

Consider a generic prioritized linear system containing N linear equalities or inequalities
of the following form

di ≤ Aix ≤ di (3.35)

where x is the optimization variable, Ai is a coefficients matrix, di is the lower bound, di is
the upper bound, and i = 1, · · · , N represents the priority in the hierarchy (the lower the
value of i, the higher the priority). Equalities are a special case of (3.35) when di = di, and
single-sided inequalities are special cases when di = −∞ (leading to Aix ≤ di) or bi = +∞
(leading to Aix ≥ di). An HQP works in the following way. The QP for the first priority
component (i = 1) is written as the optimization problem

min
w1,x

‖w1‖22
s.t. d1 ≤ A1x+ w1 ≤ d1

where w1 is a slack variable that allows the system to have some freedom in the resolution
in case the exact constraint is not satisfied. The solution to the first priority QP is noted as
w∗
1, which indirectly represents the best fulfillment of the first constraint. Due to the nature

of the optimization, no other solution lower than w∗
1 can be found. However, if the system

is redundant, there is a set of x that achieves the same optimal solution, and it is used to
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allow for the resolution of the other lower priority constraints. The second constraint defines
a second QP as the problem

min
w2,x

‖w2‖22
s.t. d2 ≤ A2x+ w2 ≤ d2

d1 ≤ A1x+ w∗
1 ≤ d1

where w2 is a slack variable. However, in this case, the minimization is only effectuated for
the second constraint using w2; the variable w∗

1 corresponding to the first constraint is fixed
and is the optimized value computed in the previous step. This ensures that the solution
for the second constraint will not modify the optimal value computed for the first constraint,
ensuring a hierarchy. Generalizing the same idea, the QP corresponding to the k-th level of
the hierarchy can be written as

min
wk,x

‖wk‖22
s.t. dk ≤ Akx+ wk ≤ dk

d+k−1 ≤ A+
k−1x+ w+∗

k−1 ≤ d
+
k−1

where d+k−1, d
+
k−1, A

+
k−1, and w+∗

k−1 are augmented matrices given by

d+k−1 =







dk−1
...
d1






d
+
k−1 =







dk−1
...
d1






A+
k−1 =







Ak−1
...
A1






w+∗
k−1 =







w∗
k−1
...
w∗
1







which represent the higher priority constraints, and optimal slack variables (solved in the
previous steps), ranging from i = 1 to i = k − 1.

The previous generic scheme shows that the solution to a system with equalities and
inequalities is found using an HQP in such a way that the fact that level k − 1 has higher
priority over level k implies that level k should be fulfilled as close as possible but without
interfering with the other higher priority levels: k−1, k−2, · · · , 2, 1. To make the computation
faster, the HQP is solved with a dedicated solver in two steps. First, a classical primal active
set algorithm finds the active inequality constraints and turns them into equalities since the
solution does not change after this reduction. Then, a hierarchized complete orthogonal
decomposition is applied to the set of equalities [Escande 14].

For a system with N linear equalities or inequalities, the HQP hierarchy is usually repre-
sented using a lexicographic order as:

(i) ≺ (ii) ≺ (iii) ≺ · · · ≺ (N − 1) ≺ (N) (3.36)

where (i) has the highest priority, and (N) has the lowest priority.

3.3.3 Inverse Dynamics Stack of Tasks (SoT)

For a humanoid robot, different types of motion can be generated using the task function
approach and satisfying some additional constraints. These constraints arise from the contin-
uous contact of the robot with the environment and the fact that balance should be kept at
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all instants of time. A robot that achieves a desired task but falls down is useless; thus, the
dynamics of the robot must play a highly important role when generating feasible motion.

As stated in Section 3.2, a task can be expressed without loss of generality as the regulation
task (3.29): e = s(q) − s∗. As stated in Section 3.2.3, the dynamic model of the robot uses
joint accelerations, and thus, to use the task function approach, a relation at the acceleration
level is needed for the control. For a generic task i, the second order differential relation
between the task space and the joint space is given in a similar way to (3.31) by:

ëi = J̇i(q, q̇)q̇ + Ji(q)q̈ (3.37)

where Ji(q) = ∂ei
∂q

is the Jacobian of the ith task. Motion for the robot is generated using
several instances of (3.37), each specifying an objective, with different priorities depending
on the importance of the task. In fact, the several tasks make the system act like a Stack of
Tasks (SoT), and therefore the name. Moreover, tasks can be added or removed at will at any
instant of time. To enforce feasibility of the motion, the constraints regarding the dynamic
model (3.23) and the contacts, which using the rigid point contact model are given by (3.3)
and (3.4), have to be also considered.

Considering the tasks and the dynamic feasibility constraints, the operational-space inverse-
dynamics (OSID) problem can be reduced to finding the optimization vector, sometimes called
the dynamic variable, as

ν = (q̈, τ, fc)

which needs to be consistent with the dynamic equations and should minimize the distance
to the task reference. The approach computes at the same time the joint accelerations q̈,
the control torques τ , and the contact forces fc that the robot should apply to the ground.
The explicit computation of these variables in the optimization solver has the advantage that
forces are obtained in a straightforward way and no consistency verification or projection is
necessary to guarantee their feasibility. Another advantage is that explicit constraints on each
of the variables can be formulated, as “tasks”, and either a torque-controlled or a position-
controlled robot can be used (by integrating q̈ twice). With the lexicographic order introduced
in Section 3.3.2, and considering nt tasks of the form (3.37), the dynamic SoT based on the
HQP4 is given by

(3.23) ≺ (3.3) ≺ (3.4) ≺ (3.37)-1 ≺ · · · ≺ (3.37)-nt.

where (3.37)-i represents the i-th task of the form (3.37), which is fully specified by the
reference behavior ë∗i and the Jacobian Ji. To ensure system balance it is generally better to
add sufficient tasks to fill up the SoT, in which case there is no more redundancy to minimize
the torques. But if the SoT is not full, a last task related to ‘joints friction’ or posture (also
referred to as damping task) is generally added to complete it [Khatib 04c]. Fig. 3.2 represents
graphically the inverse dynamics Stack of Tasks.

In cases where all the contact points are on a same horizontal plane, the inequality con-
dition (3.4), due to its non-negativeness, implies the existence of the ZMP inside the support
polygon ensuring the dynamic balance of the robot [Saab 13]. Thus, the inverse dynamics con-
trol ensures motion generation with dynamic feasibility and respecting the ZMP constraint.

4The approach appears in: L. Saab, O. Ramos, F. Keith, N. Mansard, P. Souères, J-Y. Fourquet, Dynamic
Whole-Body Motion Generation under Rigid Contacts and other Unilateral Constraints, IEEE Transactions
on Robotics (T-RO), Vol.29 N.2, pag. 346 - 362, April 2013 [Saab 13].
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Figure 3.2 – Scheme of the Inverse Dynamics Stack of Tasks. The highest priority is at the bottom of the
stack. The dynamic consistency and the contact constraints are always satisfied. It should be noted that
contacts can be pushed or removed from the stack at will. The hierarchy exists at the level of the tasks, which
can be added or removed as needed. The outputs of the stack are the joint torques, accelerations and the
contact forces, which constitute the optimization variables.

The model used assumes that large friction coefficients are present and, thus, only normal
forces are considered instead of more general friction cones. The generalization to friction
cones is straightforward and (3.8) would have to be added to the solver. However, a good
typical cone approximation uses 12 generators which introduce 12 new variables per contact
point. This increases the complexity of the HQP solver and thus this approach is not currently
used due to its computational cost.

3.3.4 Decoupling Motion and Actuation

The variables (q̈, τ , f) can be decoupled to achieve a faster computation. In fact, the space
given by (q̈, f, τ) in the previous HQP can be divided in three subspaces. The first one is
the motion space, where joint accelerations (q̈) can be freely chosen, and the corresponding
forces (f) and torques (τ) are accordingly set. The second is the actuation space, where the
acceleration is fixed and only forces can be freely chosen forasmuch as forces and torques are
related. The third space is useless since motion variables can be theoretically chosen, but
resulting forces are impractical. To explicitly distinguish the actuation space from the motion
space, two decoupled spaces can be introduced. To this end, an automatic formulation has
been proposed in [Mansard 12]. This formulation states that instead of using the original
optimization variables, the bases of the two decoupled spaces can be used and the dynamic
model as well as the tasks can be reformulated in terms of these decoupled variables. This
allows a faster computation of the SoT since the decoupled spaces are of lower dimension than
the original coupled variables.
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Decoupled Dynamics

The description presented in this section is a summary of [Mansard 12], which aims at de-
coupling the dynamics contained in the dynamic model given by (3.23) as well as the contact
constraints. Using the Cholesky decomposition, the inverse of the inertia matrix M can be
expressed as M−1 = BBT , and thus M = B−TB−1, with B an invertible triangular matrix.
Multiplying the dynamic model (3.23) by BT the following expression is obtained

BTST τ = B−1q̈ +BT b+GT fc (3.38)

where G is defined as G = JcB. The result of multiplying (3.38) by G on the left, using (3.3)
to guarantee no kinematic motion at the rigid contact point, is

GBTST τ = GBT b+GGT fc − J̇cq̇

where the fact that GB−1q̈ = JcBB
−1q̈ = −J̇cq̇, so that ẍc = 0, has been used. Solving this

expression for BTST τ , it gives:

BTST τ = BT b+GT fc −G#J̇cq̇ + V u

where V is a basis of the kernel of G, so that V V T = I − G#G, and u is a vector in this
kernel representing the motion of the system, as (3.42) shows. The term δc = −G# + J̇cq̇
can be associated to the contact drift, and thus, a more compact expression describing the
constrained dynamics can be written as:

BTST τ = BT b+GT fc + δc + V u. (3.39)

An actuation free relation can be obtained if the torque τ is eliminated in (3.39). To
this end, the matrix S̄ is defined as S̄ = [I 0] in such a way that it cancels out ST , that
is S̄ST = 0, and thus it also eliminates the effect of the torque. Multiplying both terms of
(3.39) by S̄B−T , a torque-free relation between the contact forces fc and the motion term u
is obtained:

S̄B−TV u+ S̄JTc fc = −S̄b− S̄B−T δc. (3.40)

This expression is composed of both (3.23) and (3.3) but explicitly using the motion (u)
and contact force (fc) variables. The other complementarity contact condition related to the
unidirectionality of the forces can be directly included in the decoupled model as (3.4) shows,
since the contact force is a variable in the model.

Reduction of the Force

It is possible to reduce the force variable as [Mansard 12] proposes. In this case, the contact
force fc can be solved for the system (3.40) giving

fc = −(S̄JTc )
#S̄(b+B−T δc +B−TV u) +Kψ

where K is a basis of the kernel of S̄JTc such that KKT = I − (S̄JTc )
#(S̄JTc ), and ψ is a

vector in this kernel. Since B is triangular, the reduction can further be written as

fc = −(S̄GT )#S̄(BT b+ δc + V u) +Kψ. (3.41)

This reduction contains at the same time the inverse dynamics and the kinematic contact con-
straint and gives a compact expression that at the same time contains the motion constraints
and the force constraints.
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Tasks Representation

A generic task can be typically represented as (3.37), which relates the task acceleration to
the generalized joint space acceleration. The equivalence between (3.38) and (3.39) allows to
eliminate the torque component and the contact force component and leads to the relation
between the acceleration q̈ and u as:

q̈ = Bδc +BV u (3.42)

Therefore, the reduced variable u can be directly associated with the motion q̈ and is usually
referred to as the motion variable in the reduced dynamics formulation. Using (3.42), the
generic task representation (3.37) can be equivalently expressed in terms of the decoupled
variable u as

ë∗i = J̇iq̇ + JiBδc + JiBV u (3.43)

which is the task formulation in the reduced dynamics framework.

Decoupled Stack of Tasks

The fully decoupled dynamics can be formulated as the following minimization problem.
Considering a task i, and using (3.43) and (3.41), the optimization problem is:

min
u,ψ

‖ JiBV u+ J̇iq̇ + JiBδc − ë∗i ‖

s.t. − (S̄GT )#S̄V u+Kψ ≥ f0 (3.44)

where the constraint is directly obtained from (3.41), and thus, f0 is typically computed as
f0 = −(S̄GT )#(BT b+ δc). This is the most general decoupled equation and its simplicity can
be observed from the fact that only a single constraint is needed, which already comprises
the inverse dynamics model as well as the rigid contact conditions. For this system, and
considering nt tasks, the inverse dynamics SoT can be formulated as

(3.44) ≺ (3.43)-1 ≺ · · · ≺ (3.43)-nt.

An alternative way to solve the system, making explicit the computation of the contact
forces is

min
u,fc

‖ JiBV u+ J̇iq̇ + JiBδc − ë∗i ‖

s.t. (S̄B−TV )u+ (S̄JTc )fc = −S̄(b+B−T δc)

f⊥c ≤ 0.

using the lexicographic notation, this system can be written as a hierarchy of nt tasks as

(3.40) ≺ (3.4) ≺ (3.43)-1 ≺ · · · ≺ (3.43)-nt.

The torques can be recovered from (3.39). To this end, the fact that SST = I can be
profitted. Then, multiplying (3.39) by SB−T on the left, the torques are given by

τ = Sb+ SJTc fc + SB−T (δc + V u) (3.45)

and thus, the decoupled dynamics can be used in the computation and the necessary torques
can be then easily computed.
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Spatial-force Reduction

Consider a single rigid body i in contact with the environment. The twist associated with a
certain reference frame located on the body (for instance, its center of mass) will be denoted
by ξ = (v, ω) ∈ se(3), where v represents the linear velocity, and ω the angular velocity. The
relation between this twist and the twist (vk, ωk) ∈ se(3) of a generic point pk on the body
(which can be a contact point) is given by:

[

vk
ωk

]

=

[

I −p̂k
0 I

] [

v
ω

]

(3.46)

where {̂.} represents the skew-symmetric matrix of pre-cross product. Let the set of nc contact
points, where the forces are directly applied, be denoted by xc = (p1, p2, · · · , pnc) ∈ R

3nc , their
velocity by ẋc, and their acceleration by ẍc. Since these points are attached to the rigid body,
they do not present angular velocity with respect to it, and further analysis will only consider
linear velocity. Using a direct extension of (3.46), the linear velocity relation is:

ẋc = X ξ (3.47)

where

ẋc =











v1
v2
...
vnc











and X =











I3 −p̂1
I3 −p̂2
...
I3 −p̂nc











. (3.48)

Let the geometric Jacobian of the generic frame attached to the body be denoted by Jo
so that ξ = Jo q̇. Using this Jacobian, the contact Jacobian (ẋc = Jcq̇), and (3.47), it can
be easily verified that the link between the contact Jacobian and the geometric Jacobian is
given by X, so that

Jc = XJo. (3.49)

When there are 3 or more contact points on the same body, X is full-column rank and the
null spaces of Jc and Jo are equal. In this case, Jo can be used to compute the V basis
as V = ker(JoB) instead of V = ker(JcB), and the contact drift as δc = −(JoB)#J̇oq̇.
However, when there are only 1 or 2 contact points the null spaces are no longer equal. In
this situation, X in (3.48) is not full-column rank, and the previous reductions where Jo could
be used instead of Jc do not necessarily hold since both matrices do not have the same null
space. In this case, the equivalence Jc = XJo is used and the computation of V is explicitly
ker(XJoB). The relation between the derivative of both Jacobians is J̇c = XJ̇o + ẊJo, but
the second term is null (Ẋ is null provided that the contact points do not move) leading to
J̇c = XJ̇o. Then, for the contact drift in the generic case, δc = −(XJoB)#XJ̇oq̇.

3.4 Tasks for Motion Generation

Motion generation within the dynamic SoT is based upon the definition and usage of different
tasks at the acceleration level. These tasks5 are completely specified through the task reference

5Some of these tasks appear in: L. Saab, O. Ramos, F. Keith, N. Mansard, P. Souères, J-Y. Fourquet,
Dynamic Whole-Body Motion Generation under Rigid Contacts and other Unilateral Constraints, IEEE Trans-
actions on Robotics (T-RO), Vol.29 N.2, pag. 346 - 362, April 2013 [Saab 13].
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behavior ë∗, which can be defined using either equalities or inequalities, and the corresponding
task Jacobian J . The tasks presented in this section are tasks that have been used within the
framework to generate the motion of Chapter 4.

3.4.1 Proportional Derivative (PD) Tasks

A proportional derivative task is defined by setting a proportional derivative (PD) control law
for the reference behavior ë∗ as:

ë∗ = −kpe− kv ė (3.50)

where kp > 0 and kv > 0 are gains used to set the convergence velocity and typically kv =
2
√

kp. This control law imposes an exponential decay of the task, assumed to be a regulation
task, tending to zero. A fixed gain can be used for kp, for instance when tracking a moving
target, but an adaptive gain to reach a fixed target can also be defined as

kp = (kmin − kmax)e
−β‖e‖ + kmax

where ‖e‖ is the norm of the task error, kmax is the maximum gain (when the target is far),
kmin is the minimum gain when the error approaches zero, and β is a variable that regulates
the velocity of the transition.
Typical tasks that use the PD reference behavior, which only differ among them in the spec-
ification of the task error e, are the following.

Placement (6D) Task A generic placement task is a regulation task for the position and
orientation of one body of the robot; for instance, the head or a hand. The frame attached
to the rigid body to be controlled is usually called an operational point. This task is usually
defined as

[

ep
eo

]

=

[

x− x∗

rθ ⊖ rθ∗

]

. (3.51)

where x and x∗ are the current and desired position of the operational point, respectively,
rθ represents the axis-angle representation of the orientation, and ⊖ is a suitable difference
group operator of SO(3). The first part of the task (ep) defines the position error as the
difference between the current and the desired position, whereas the second part (eo) defines
the attitude error.

The attitude error needs a special consideration, and an example is provided here. Let
R ∈ SO(3) be the current orientation and R∗ ∈ SO(3) be the desired orientation. The
correction matrix describing the attitude error can be expressed with respect to the current
frame as Re = R−1R∗, or with respect to the desired frame as Re = (R∗)−1R. In either case,
the tangent space of Re is given by the skew symmetric matrix ω̂e ∈ so(3) so that Re = eω̂e

or, equivalently, ω̂e = log(Re) [Murray 94]. The vector containing the components of the
skew-symmetric matrix ωe = (ω̂e)

∨ is the axis-angle representation of Re, where ‖ωe‖ is the
angle and ωe

‖ωe‖
is the axis. Thus, the vector ωe = {log(Re)}∨ can be used to represent the

attitude error: eo = ωe.

Center of Mass (CoM) Task Let a robot be composed of nb rigid bodies, and let the
mass of the ith body be mi ∈ R and its CoM position rci ∈ R

3. The CoM of the robot rc ∈ R
3
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is computed using the CoM of the nb bodies as

rc =

∑nb

i=1mirci
∑nb

i=1mi
.

A task for the CoM (ecom) is defined as the error between the current position of the CoM
and its desired position r∗c ∈ R

3:
ecom = rc − r∗c . (3.52)

According to the situation, the specification of the task for the CoM can involve the three
position components or only some subset of them.

Posture Task This task is used to directly control the joint space of the robot, either as
a final desired posture or as a trajectory to follow as closely as possible. For a robot with n
DoF, let qjk = (qj, . . . , qk) ∈ R

k−j+1 with k, j = {1, · · · , n}, j ≥ 1, n ≥ k and j ≤ k represent
the vector containing the joint angular values to be controlled (the active joints), and q∗jk the
desired joint configuration. The posture task (epos) is expressed as

epos = qjk − q∗jk (3.53)

which is the error between the current active joint positions and the desired ones. The
Jacobian of this task only selects the active joints and is given by

Jjk =
[

0̄f 0̄j Ijk 0̄k
]

(3.54)

where 0̄f ∈ R
(k−j+1)×nb is the zero matrix corresponding to the free-flyer (whose pose rep-

resentation has nb elements), 0̄j ∈ R
(k−j+1)×(j−1) and 0̄k ∈ R

(k−j+1)×(n−k) are zero matrices
corresponding to the non-active joints, and Ijk ∈ R

(k−j+1)×(k−j+1) is the identity matrix
corresponding to the active joints. These tasks can be used to optimize some performance
criteria such as the actuation torques and to reproduce human-like movements.

Visual Task This task’s objective is to move the head so that a certain point in the 3D
space is projected to a certain position in the image seen by the robot camera. Thus, the task
aims at focusing the gaze (the camera) at a certain image point so that

egaze = pi − p∗i (3.55)

where pi ∈ R
2 is the 2D projection on the camera of some 3D point Pi ∈ R

3, and p∗i ∈ R
2

is the desired position on the image plane. The visual task Jacobian in this case is given by
Jvis = L cJ , where L is the interaction matrix proposed in [Chaumette 06], which describes
the relation between the velocity of the camera and the velocity of a 2D image point, and cJ
is the Jacobian in the camera frame.

3.4.2 Joint Limits Tasks

Robot joints typically present some physical constraints with respect to their angular position
and velocity: there exists a set of admissible angular positions, as well as admissible angular
velocities, which define the joint limits for each joint of the robot. A motion intended to be
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executed on a real robot must always consider these limits for its feasibility. Joint limits can
be taken into account in control frameworks using methods like potential fields [Khatib 86],
or clamping [Baerlocher 04, Raunhardt 07], but they can also be integrated as inequality
constraints in the SoT using the task function approach.

Within the framework of the dynamic SoT, it is necessary to find the relation between
joint positions and joint accelerations. Suppose that the system is currently at time t. Joint
values at time t + ∆t, which is the next instant of time, can be expressed using a Taylor
expansion as:

q(t+∆t) = q(t) + ∆t q̇(t) +
∆t2

2
q̈(t) +O(|∆t|3)

where O(|∆t|3) is the remainder term of the second order approximation, which is very small
compared to |∆|3. To simplify the expression, let q̂ = q(t +∆t), q = q(t), q̇ = q̇(t), and q̈ =
q̈(t). Then, since the effects of higher order terms are negligible, an accurate approximation
of the joint configuration after ∆t is

q̂ ≈ q +∆t q̇ +
∆t2

2
q̈ (3.56)

which gives a relation between the estimation of the next joint configuration and the current
acceleration of the robot joints.

Let the maximum limits for the joint angular positions be represented by q and the mini-
mum by q, so that the constraint can be expressed using a double-side bounded inequality as
q < q̂ < q. This inequality specifies the limits for the next joint configuration and prevents the
joints from going beyond their angular limits. Considering the second order approximation
of q̂ given by (3.56), the joint angular limits inequality can be written as

q ≤ q + q̇∆t+ q̈
∆t2

2
≤ q (3.57)

which is a function of the acceleration. The value of ∆t is the length of the preview window.
In theory, the control sampling time Ts = 1 ms should be used for ∆t, but in practice a
smoother behavior can be obtained by adjusting the value as ∆t = Ts

λs
, where λs can be set as

the gain of the task. Using (3.57), and assuming that the task reference behavior is the joint
acceleration itself (ë∗jp = q̈), the task can be specified in terms of the acceleration as:

ep ≤ ë∗jp ≤ ep (3.58)

where

ep =
2

∆t2
(

q − q − q̇∆t
)

and ep =
2

∆t2
(q − q − q̇∆t)

In this case, the task Jacobian is given by J = [0 I] since the elements corresponding to the
free-floating base of the robot have to be excluded.

Joint angular velocity limits can also be taken into account as tasks. Let q̇ represent
the upper bound velocities and q̇ the lower bound velocities, which define the joint velocity

inequality: q̇ ≤ ˙̂q ≤ q̇. As for the angular position q, the velocity can also be approximated
in terms of the acceleration and, with the first order approximation, the limits become:

q̇ ≤ q̇ + q̈∆t ≤ q̇. (3.59)
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Using (3.59), the joint angular velocity limits task can be defined as

ev ≤ ë∗jv ≤ ev (3.60)

where ë∗jv = q̈ and

ev =
1

∆t

(

q̇ − q̇
)

and ev =
1

∆t

(

q̇ − q̇
)

The task Jacobian is defined in a similar way as for the joint angular limits, since only the
actuated joints are considered.

The torque magnitude can also be bounded in the framework since the torque variable
is included in the optimization process. In this case, this cannot be defined as a single task
but can be defined as constraint in the hierarchized optimization process. The constraint can
simply be defined as

τ ≤ τ ≤ τ (3.61)

where τ , τ are the torque limits.

3.4.3 Interpolation Task

Let x(t) describe the evolution of a generic feature, such as the pose of an operational point,
and let x0 = x(t0) and ẋ0 = ẋ(t0) denote its position and velocity at the initial time t0. After
a certain time T , the final time becomes tf = t0 + T , and the desired position and velocity
become xf = x(tf ) and ẋf = ẋ(tf ). An interpolation task is a task that is defined to reach a
desired final position and velocity (xf , ẋf ) in a specific period of time T , assuming that the
current position and velocity (x0, ẋ0) are known. The basic difference from tasks that follow
a PD control law is the fixed and hard time constraint.

Since the acceleration is needed for the task specification, a cubic polynomial for the
position interpolation, which is the polynomial with minimum degree that allows the control
of the acceleration, is chosen. To this end, the desired acceleration ẍ(t) is set to a linear
function as in [deLasa 10]:

ẍ(t) = ẍ0 +
ẍf − ẍ0
T

(t− t0) (3.62)

where ẍ0 and ẍf are, respectively, the unknown initial and final accelerations that define the
acceleration trajectory. The solution of the differential equation (3.62) leads to a quadratic
velocity and a cubic position trajectories given by:

ẋ(t) =
ẍf − ẍ0

2T
(t− t0)

2 + ẍ0(t− t0) + ẋ0 (3.63)

x(t) =
ẍf − ẍ0

6T
(t− t0)

3 +
ẍ0
2
(t− t0)

2 + ẋ0(t− t0) + x0. (3.64)

Provided that the system is time dependent, as time passes by, the initial (current) position
and velocity change but the final (desired) position and velocity remain constant. Thus, a
task computed considering a “preview future horizon”, from the current time to the final time
tf , can be used at every intermediate step. However, only the current reference acceleration
is used, so that the task is permanently updated based on the current conditions. That is,
the control law given by (3.62) is continuously updated but only ẍ0 is used at every instant
of time. This behavior resembles the Model Predictive Control since only the present state
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is used although the whole time horizon has been computed. The dynamic task can thus be
simply defined as ë∗ = ẍ0, and can be obtained by solving the system (3.63) and (3.64) at
time t = tf leading to the following desired reference behavior:

ë∗ =
6

T 2
(xf − x0)−

2

T
(ẋf + 2ẋ0). (3.65)

It should be noted that T becomes smaller after each iteration and is close to zero when the
initial time reaches the final time. This situation can be handled by keeping the previous
value of ẍ0 when T < th, where th is a threshold. In practice, keeping the previous value of
the acceleration gives good results.

3.4.4 Capture Point (CP) Task

The Capture Point (CP), introduced in [Pratt 06b] and also referred to as the Extrapolated
Center of Mass [Hof 05], is the point ξ = [ξx ξy 0]T on the ground where the robot should
step on to be able to come to a complete rest. It is based on modeling the robot as a linear
inverted pendulum (LIP) [Pratt 06a]. Let the position of the robot CoM be represented by
rc = (xc, yc, zc), so that the horizontal component of the CoM is r̃c = n̂ × rc × n̂, with
n̂ = (0, 0, 1), or equivalently, r̃c = (xc, yc, 0). It can be shown (see Appendix C for more
details) that the instantaneous Capture Point is given by

ξ = r̃c +
˙̃rc
ω

(3.66)

where ω =
√

g
zc

is the eigenfrequency of the pendulum that models the robot dynamics.

The CP task6 is proposed as an inequality task that aims at keeping the CP inside certain
limits at all times. These limits can be the robot support polygon, in which case the robot
motion can come to a stop without needing a step, or an exterior polygon. In the latter case
the robot needs to perform a step, but the motion can be constrained so that the CP stays
within some reachable region for the leg. In both cases, the task is bounded by a generic
polygon. Let the limits of the generic polygon be given by rp and rp. The CP must lie within
the limits of this polygon as:

rp ≤ ξ ≤ rp

rp ≤ r̃c +
˙̃rc
ω

≤ rp. (3.67)

From (3.67), it is evident that the CP can be bounded by indirectly controlling the CoM
position and velocity. Then, the task to effectively control the CP can be defined in terms of
the CoM. Since tasks are integrated in a dynamic control scheme, the CP task needs to be
formulated using the acceleration; hence, r̃c and ˙̃rc in (3.67) need to be related to the CoM
acceleration. As for the case of the joint limits, presented in Section 3.4.2, the position of the
CoM can be expressed, using a Taylor series development around point r̃ci , as:

r̃c = r̃ci +
˙̃rci∆t+

¨̃rci
∆t2

2
6The CP task was introduced in: O. Ramos, N. Mansard, P. Souères, Whole-body Motion Integrating the

Capture Point in the Operational Space Inverse Dynamics Control, IEEE-RAS International Conference on
Humanoid Robots (Humanoids), Madrid, Spain, November 2014 [Ramos 14b].
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and the velocity as
˙̃rc = ˙̃rci +

¨̃rci∆t.

Replacing the Taylor expansion of the position and the velocity of the CoM in (3.67), and
letting the task reference behavior be ë∗cp = ¨̃rci , the Capture Point task respecting the limits
within the polygon is expressed as a function of the CoM as:

ka ec ≤ ë∗cp ≤ ka ec (3.68)

where ka is a constant given by

ka =
2ω

∆t(ω∆t+ 2)

and the acceleration limits are

ec = rsp − r̃ci − ˙̃rci

(

∆t+
1

ω

)

ec = rsp − r̃ci − ˙̃rci

(

∆t+
1

ω

)

.

3.5 Conclusion

Based on the task function approach, this chapter has presented the operational-space inverse-
dynamics control framework that is used throughout this thesis. A hierarchical QP was
proposed to solve the inverse dynamics problem and give a solution to the tasks generating
whole-body motion that satisfies the dynamic constraints. Finally, several tasks defined as
equalities or inequalities, which can be used at any level of the hierarchy to achieve the desired
effect, were proposed as the basis for motion generation.



Chapter 4

Case Studies

The whole-body motion generation described in Chapter 3 can be applied to different experi-
ments with the robot. This chapter presents different case studies where the motion generation
using the operational-space inverse-dynamics (OSID) stack of tasks (SoT) has been success-
fully applied to show and explore some of the possibilities that it can offer. The case studies
show results obtained both in simulation, using the dynamic model of HRP-2, and in reality
using the robot.

4.1 Motion with Multiple Non-coplanar Contacts

The first case study illustrates the possibility of multiple non-coplanar contacts during a
complex sequence of motions. It consists on two specific motions: the first one presents the
real HRP-2 sitting down in an armchair, and the second one presents the simulated Romeo
robot climbing a ladder. The ability to handle multiple non-coplanar contacts is an advantage
of the proposed methodology over other existing inverse dynamics approaches and is exploited
in this section.

4.1.1 Sitting in an Armchair

In this sequence of movements, HRP-2 moves its whole-body to sit in an armchair as Fig. 4.1
shows1. The robot does not only have both feet in contact with the ground but gradually the
contacts of the hands and the armrests are added and taken into account in the solver. The
high-level description of the motion is the following:

• First, the robot looks left and moves its left arm towards the left armrest so that contacts
between the left gripper and the left chair armrest are found (Fig. 4.1b).

1This experiment appears in: L. Saab, O. Ramos, F. Keith, N. Mansard, P. Souères, J-Y. Fourquet, Dy-
namic Whole-Body Motion Generation under Rigid Contacts and other Unilateral Constraints, IEEE Trans-
actions on Robotics (T-RO), Vol.29 N.2, pag. 346 - 362, April 2013 [Saab 13].
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(a) t = 0s (b) t = 7s (c) t = 15s (d) t = 19s

Figure 4.1 – Snapshots of HRP-2 sitting in an armchair with the corresponding timing. The sequence is: (a)
the robot stands on both feet, (b) it looks left and grasps the left armrest, (c) it looks right and grasps the
right armrest, (d) it finally sits down.

• Then, the robot looks right moving its right arm towards the right armrest and contacts
between the right gripper and the right chair armrest are found (Fig. 4.1c).

• Finally, the waist is brought down to touch the seat, adding an additional contact with
the seat (Fig. 4.1d).

The whole motion is divided in several sub-parts, and each sub-part is generated using a
specific sequence of tasks within the OSID SoT.

Inverse Dynamics SoT As described in Section 3.3.3, this framework uses the robot
dynamic model and allows for the generation of feasible motion satisfying the imposed contact
constraints and achieving the objectives through the usage of operational-space tasks. The
SoT is solved using an HQP where the highest priority is given to the dynamic model of the
robot followed by the contact constraints. Then, the tasks defining additional constraints or
specific motions are added. In the sequel, the term “priority” strictly refers to the priority
inside these tasks without considering the dynamic model or the contact constraints, which
are always present at the highest level of the hierarchy for the global feasibility of the motion.

Contact Constraints They are added to the SoT according to which parts of the robot
are in contact with the environment (in this case, the floor and the armrests). In this motion,
the contact for both feet is always considered provided that the robot starts with a standing
posture and both feet remain on the ground. For the hands, the contacts were added according
to whether they touched the respective armrest or not.

Description of the Tasks At the highest priority level of the SoT, joint limits in angular
position (3.57) and angular velocity (3.59), defined as inequalities, are added to ensure that
the joints stay within the pre-defined safe limits satisfying mechanical constraints. These
limits are always specified at the highest priority level. Then, the motion tasks are added.
A task for the right hand erh and the left hand elh are defined as placement tasks given
by (3.51). They are set on each robot gripper to control the position and orientation towards
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Figure 4.2 – Sequence of tasks and contacts. The gaze task focuses sequentially on the left and right armrests
and on a virtual point in front of the robot. The pre-grasp tasks are set at the vertical 10cm above the grasp
position.

the corresponding armrest. To prevent collisions when grasping, an intermediate point is
first reached above the final grasping position and the gripper is opened before reaching the
intermediate point. The contact of each gripper with the armrest is realized by the rear part
of the open gripper using a support polygon given by a 5cm-wide square. To improve the
naturalness of the motion, a task called egaze, defined by (3.55), is set to constrain the gaze
towards the armrest to be grasped. This gives the effect of the robot looking at the armrest
as it is grasping it, since a simple motion of the head joints is not enough to achieve this
effect. After each grasp, the gaze is brought back in front of the robot. Finally, the waist is
controlled by a task called ewaist also defined by (3.51) where only the vertical position and
sagital rotation are active: the waist is constrained to remain vertical and to move down to
the seat.

Temporal Sequence The temporal sequence of tasks used for the motion generation is
given in Fig. 4.2. The robot first looks left and bends to first pre-grasp and then grasp the
left handle of the armchair. Once the handle is grasped, it is added as a contact constraint
in the SoT. Then, the robot looks to the right (but with an intermediate center look), and
bends to pre-grasp and then grasp the right handle. As it grasps the handle, the head gaze
moves from the right to the center, and once the grasp finishes, the right handle is also added
to the SoT as a contact constraint. Finally, using both handle supports, the robot moves the
waist down to sit.
Using the lexicographic notation (3.36) to represent the hierarchy between the constraints
and the tasks, the complete inverse dynamics stack of tasks, for the motion described above,
is formalized as:

(3.23) ≺ (3.3) ≺ (3.4) ≺ (3.57) ≺ (3.59) ≺ eh ≺ egaze ≺ ewaist

where eh can be the right or left hand task, when active. A final posture task was added at
the last stage of the stack to constrain all the DoF.

Results

The previously described procedure was first applied in simulation and then with the real
HRP-2. The inverse-dynamics SoT obtains the torques and accelerations needed for the
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Figure 4.3 – Normalized joint angular positions of the right and left hip and ankle, chest and neck joints.
Joint limits are properly avoided. When a limit is reached, one or several joints move in reaction to overcome
the saturation.

control. However, since HRP-2 is a position-controlled robot, the accelerations were integrated
twice to obtain the desired input positions to the robot. The snapshots of the experiment
are shown in Fig. 4.1, which depicts the key frames of the motion executed by the robot
described above: standing posture, grasping the left armrest, grasping the right armrest, and
sitting down. It should be noted that the armrest is a common armrest used by people; it was
not specifically designed for the robot, but it is suitable due to the robot anthropomorphic
characteristics.

Joint Trajectories During the motion, the joint range is extensively used and joint limits
are always considered within the SoT as inequalities. The most representative joint trajecto-
ries are plotted in Fig. 4.3 where the chronological sequence corresponding to the addition and
removal of tasks and contacts shown in Fig. 4.2 are recalled by vertical stems at the transition
instants. For homogeneity between the different joints, normalized joint positions are shown:
0 represents the lower limits and 1 the upper limits. When a limit is reached, one or several
joints move in reaction to overcome the joint saturation. For instance, the neck joint reaches
its limit while looking left; in reaction, all the other aligned joints move to overcome the neck
limitation (chest joint, but also hip and ankle joints). The right hip then reaches its limit; as
a consequence, the motion of both legs is stopped due to the lack of DoF to compensate this
limit. The chest joint absorbs all the subsequent motion to fulfill the task. Later, when the
robot looks right, the neck again reaches its limit. This time, the velocity of the joint when it
reaches its limit is higher, which leads to a strong acceleration of the chest, and consequently
brings the neck out of its limit. This behavior could be damped if necessary by tuning λs
in (3.57). The chest joint finally reaches its limit at the end of the right-grasp task, which
produces a limited overcome on the other joints. All the joints are properly stopped at the
limit, and can leave the neighborhood of the limit without being stuck as it may appear with
some avoidance techniques.
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Figure 4.4 – Vertical forces distribution on the grippers and feet

Contact Considerations The definition of the contact with the two armrests is very useful
to control the descent of the waist. In fact, if only the feet were considered as contacts, the
motion would not be possible since the CoM would theoretically be outside the support
polygon. The vertical forces on each support (grippers and feet) are plotted in Fig. 4.4, and
the spatial evolution of the CoM is shown in Fig. 4.5. In the beginning of the motion, the
robot is in a standing position and the weight is fully supported by the two feet, as shown in
Fig. 4.5 and in the first temporal sequence of Fig. 4.4. After t = 8s, the left arm is used to
also sustain the robot. However, the robot is still very much on the front, and this contact
is not fully used yet. When going for the second armrest, the robot has to move its weight
backwards, as Fig. 4.5 shows, and it uses the left-arm contact to ensure its balance: nearly
half of the weight is then supported by the arm. Finally, the right armrest is grasped and the
weight of the robot is properly distributed on the four contacts.

Computational Time The computation times are plotted in Fig. 4.6. It should be noted
that throughout the whole motion the SoT is nearly full (the stack is said to be full when all
the DoF are constrained). In that case, the computation cost is around 20ms per iteration,
which is equivalent to five times the real time if controlling the robot at 200Hz (which is the
typical control loop frequency for HRP-2). The number of tasks and, even more, the number
of contacts modify the computational cost, as shown by the notorious computation increase
at t = 8s and t = 18s. The computational cost can be enhanced using the reduced approach,
described in Section 3.3.4, which decouples motion and actuation. With this approach, the
SoT is able to generate the control law without surpassing around 4.5ms per control cycle
using a 2.9 GHz desktop computer (iCore 5 mono thread), achieving real time at 200 Hz. A
similar computer is available on-board the real HRP-2 N.14.

4.1.2 Climbing up a Ladder

This approach of motion programming based on tasks is very versatile and can be applied
to generate many types of movements. For example, this second motion presents the robot
Romeo climbing up a ladder. This is also a type of motion where multiple non-coplanar
contacts are used, and thus, it is similar in methodology to the previous motion showing the
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Figure 4.7 – Starting posture for Romeo

capability of the approach to handle multiple contacts. In this case, there are several additions
and removals of contacts both for the hands and for the feet of the robot. The motion has been
created based on a sequence of tasks assuming that the environment is completely known. If
this is not the case, different sensors (typically cameras and LIDARS) can be added to get a
map of the environment and to help the definition of the positions and orientations specified
by the tasks. The robot starts with a standing posture where both feet are in contact with
the ground as Fig. 4.7 shows. Then, the key postures of the rest of the motion are shown in
Fig. 4.8.

The whole motion can be summarized as follows:

• First the robot approaches the right hand towards the ladder and grasps it, and then it
does a similar motion with the left hand (Fig. 4.8a and Fig. 4.8b).

• Then, the robot raises its right foot and puts it on the first rung. The same motion is
done for the left foot (Fig. 4.8c and Fig. 4.8d).

• After that, the hands are again moved towards an upper part of the ladder (Fig. 4.8e
and Fig. 4.8f).

• Finally, the feet are taken to step on the second rung (Fig. 4.8g and Fig. 4.8h).

The motion was only generated for the first two rungs but it can be repeated for as many
rungs as needed as long as the characteristics of the ladder remain homogeneous.

The inverse dynamics SoT described in Section 3.3.3 was also used to generate this motion.
First the dynamic model of the robot and the contacts are specified as the highest level of
the stack, and then the tasks are added. In this case, the contacts are added and removed
more often than in the previously presented case. Once a contact is removed, a task is added
to move that limb towards the desired target. The tasks are all specified as placement tasks
given by (3.51) and will be called elh, erh, elf , erf where l refers to left, r to right, h to hand,
and f to foot. The targets are specified in the operational space and an intermediate pose (a
pre-grasping pose) is defined to avoid collisions and to have a better initial disposition for the
final grasp (in case of the hand) or step (in case of the foot).



4.2 Motion Imitation 59

(a) t = 3s (b) t = 6s (c) t = 10s (d) t = 14s

(e) t = 19s (f) t = 24s (g) t = 29s (h) t = 34s

Figure 4.8 – Snapshots of Romeo in simulation climbing up a ladder. The timing is also provided.

4.2 Motion Imitation

This case study describes the integration of OSID SoT with a motion capture system to quickly
produce some complex and dynamic movements that imitate the motion shown by a human
performer. After the human motion has been acquired, a purely geometrical retargeting is
applied and the obtained motion can be directly replayed on an anthropomorphic character,
for example in the field of computer graphics if only visual resemblance is needed. This is due
to the kinematic structure similarities between the humanoid robot and the human. However,
this motion cannot be directly used for a robotic system since the human and the robot possess
very different dynamics: the joint constraints and the mass distributions are not the same.
Due to these differences, a motion that keeps the human balance can easily make the robot
fall down. Thus, the inverse dynamics SoT is applied to introduce the dynamic constraints to
the system while tracking the desired joint positions. Moreover, the task function approach
is used to correct, enhance or edit some parts of the motion, or even to introduce some
non-demonstrated features2. This section covers this proposed methodology in more detail.

4.2.1 Geometric Retargeting

Geometric retargeting consists in obtaining the desired trajectory q∗(t) for the joints of the
robot applying only geometric methods to the captured motion. Human motion can be
acquired with a motion capture system and, although the methodology varies according to the

2This framework was introduced in: O. Ramos, L. Saab, S. Hak, N. Mansard, Dynamic Motion Capture
and Edition using a Stack of Tasks, IEEE-RAS International Conference on Humanoid Robots (Humanoids),
Bled, Slovenia, October 2011 [Ramos 11].
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particular system, a typical and reliable way is using infrared cameras to track a set of markers
located on the body as Section 4.2.3 discusses. Using a calibration process to solve the problem
of shape and size differences between the robot and the human, the spatial trajectories defining
the poses for the robot bodies can be obtained from the demonstrated motion. However, joint
trajectories cannot be intuitively obtained due to the kinematic constraints imposed by the
robot structure, such as joint limits, and thus geometric retargeting is used.

Geometric problem After a calibration process, the motion capture system provides the
temporal evolution of the pose associated with each rigid body constituting the robot. The
frame for each body is located at its associated joint, and the pose of each robot joint qi is
represented as the transformation matrix WT ∗

qi
(t) ∈ SE(3), where W refers to the robot world

reference frame (an example of this matrix is given in Section 4.2.3). To find the trajectories
for the robot joints in the configuration space, the forward kinematic model, also known as the
forward geometric model, will be used. For a specific joint configuration q, this model provides
the pose of the frame associated with each joint qi as the transformation WTqi(q) ∈ SE(3).
Then, the geometric retargeting problem consists in finding the configuration q that minimizes
the difference between WTqi(q) and the desired transformation matrix WT ∗

qi
(t) at time t. For

an n DoF robot, this problem can be written as:

q∗(t) = argmin
q

n
∑

i=1

WT ∗
qi
(t)⊖ WTqi(q) (4.1)

s.t. q ≤ q ≤ q

where q, q are the lower and upper angular joint limits respectively, and ⊖ is a distance
operator in the SE(3) group which should penalize the differences in position and orientation
between the two transformation matrices.

Distance Operator The operator used in this work weights the norms of the errors as
follows. Let the position and orientation components of the transformation matrix WT ∗

qi
(t)

be p∗qi(t), R
∗
qi
(t), and of WTqi(q) be pqi(q), Rqi(q), respectively. The position error is given

by the L2 norm of the difference between the position components: ‖ p∗qi(t) − pqi(q) ‖2. For
the orientation error, the difference is measured by θi, which is the angle corresponding to
the axis-angle representation of the product Rdi = Rqi(q)R

∗
qi
(t)−1 ∈ SO(3). Let Rdi be

represented by

Rdi =





nx ox ax
ny oy ay
nz oz az





then, the angle θi ∈ [0, π] will be given by

θi = atan2

(

√

(ny − ox)2 + (nz − ax)2 + (oz − ay)2

2
,
nx + oy + az − 1

2

)

.

When the orientations are similar, the rotation matrices are close enough, Rdi is close to the
identity, and the angle θi of Rdi about the arbitrary axis is small. Using the errors for the
position and orientation, the operator ⊖ in (4.1) is given by:

WT ∗
qi
(t)⊖ WTqi(q) = wpi ‖ p∗qi(t)− pqi(q) ‖2 +woiθi (4.2)
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where wpi is the weight corresponding to the position error for joint i and woi = 1 − wpi is
the weight for the orientation error. The weights provide more flexibility and their value can
be experimentally determined for each part of the robot.

Limitations Experimentally, the optimization in (4.1) has been robust enough to handle
the approximations done from the human motion acquisition to the robot modeling. In the
field of computer graphics, this motion can be used for an anthropomorphic character when
the only objective is to obtain a motion similar to the demonstrated one. But, since only
geometric methods have been used to generate q∗(t), the reconstructed joint trajectories do
not consider any dynamic properties of the robot and their direct usage might present problems
such as balance loss or auto-collisions. These problems are solved using the inverse dynamics
SoT as the following step to track the desired joint configurations while ensuring a sufficient
recovery of the noise and inaccuracy as well as a generation of feasible dynamic motion for
the humanoid robot.

4.2.2 Dynamic Retargeting

The joint trajectories obtained by pure geometric retargeting are not dynamically consistent.
In particular, there is no guarantee that the robot is stably balanced, or that auto-collisions
do not appear. Moreover, some important aspects of the original motion can be damaged by
the previous retargeting, which was obtained as a trade-off between the positions of all the
bodies. If a given body is more relevant than the others, this importance is not reflected in the
obtained motion because of the differences between the two kinematic chains. For example, if
both hands are clamping in the demonstration, their resulting positions after a pure geometric
processing are not likely to satisfy the clamp. Dynamic retargeting is a way to solve these
problems through the usage of the inverse dynamics SoT which enforces dynamic consistency
while following some joint trajectories, and enables an easy edition of the resulting motion.

General Framework

The general scheme used for the dynamical retargeting is depicted in Fig. 4.9 which shows
the inverse dynamics SoT as the main component for motion generation. As described in
Section 3.3.3 and Section 3.3.4 (for the decoupled system) the highest priority components of
the SoT are the enforcement of the dynamic consistency and the corresponding contact model.
This also guarantees the local balance of the robot: all the contact points remain stable since
their associated force remains unidirectional. From the demonstration, the contact points are
extracted by detecting clusters of static points in the feet trajectories. After the dynamic
constraints, the joint limits of the robot (Section 3.4.2) are enforced in the stack, and then,
other robot constraints are added to generate the desired motion. The parts that are used as
input to the stack in Fig. 4.9 are the following.

• The Posture Task. The basic element for motion imitation is shown at the top of Fig. 4.9
as a posture task (Section 3.4.1), whose function is to track at best the reference joint
configuration q∗(t), coming from the motion capture after the geometric retargeting
step. The posture task can be applied to some parts of the robot or to the whole body.
For more freedom in the control it is usually applied to each component of the chain
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Figure 4.9 – Dynamical retargeting scheme. Motion capture information passes to the SoT through some
tasks. Tasks for some operational points can be manually activated according to the choreography. The
motion is finally executed in a dynamic simulator or the real robot.

(arms, legs, etc.) separately. The gain of the task (3.50) can also be different for each
component.

• The Operational Point Task. Some characteristics of the demonstrated motion can be
lost in the geometrical retargeting and in the posture task. To recover these character-
istics, placement tasks (Section 3.4.1) can be added on arbitrary operational points to
enforce the robot to more precisely track some part of the demonstration by following
the exact operational-space trajectory of the human performer. These tasks are shown
as “Operational Point” tasks in Fig. 4.9 and are the basis for the motion edition ca-
pabilities of the framework. They can be manually specified to add some key aspects
to the choreography, a process referred to as “manual choreography”. The important
aspects of the choreography can also be automatically extracted using a frequency anal-
ysis [Calinon 07], studying the motion model of the human [Hak 12], or simply using
the operational space of the acquired motion.

• The Walking Pattern Generator (WPG). When the motion is composed of some steps,
these can be detected by the analysis of feet trajectory motion. Then, these footsteps can
be used as input to a WPG which outputs the trajectory for the CoM, the legs and the
waist. These trajectories can then be added to the SoT for walking while performing
some other motion with the rest of the body. The walking part of the motion will
typically need tasks to track each of the outputs generated by the WPG.

The inverse-dynamics SoT can then handle the different priorities of the previous tasks, if
specified, and it generates an output that can be directly used as a control signal for the
humanoid robot.

Edition of the Imitated Motion

The posture task in Fig. 4.9 reproduces the desired motion at the joint level satisfying the
dynamic constraints. However, the PD used for this task (Section 3.4.1) acts as a low-pass
filter generating undesired movements at some points or erasing some delicate or very dynamic
movements, typically due to fast oscillatory motions. Nevertheless, the structure of the SoT
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can be used to overcome these problems by adding operational point tasks, as explained
above, which can enhance or even modify the original motion. For a given operational point
xi, a selection matrix Sx can be defined to enable and disable the control of some degrees of
freedom of SE(3) to give more freedom to the task. For example, if the position is represented
by Cartesian coordinates and the orientation by roll, pitch and yaw angles, then xi ∈ R

6 and
the selection matrix is given by

Sx =

















s1 0 0 0 0 0
0 s2 0 0 0 0
0 0 s3 0 0 0
0 0 0 s4 0 0
0 0 0 0 s5 0
0 0 0 0 0 s6

















(4.3)

where sj is a binary element whose value can be either 1 or 0. If it is 1, that particular element
of the pose will be controlled, and if it is 0, the corresponding element will be unconstrained
and its motion will be a result of the whole body dynamics. In general, the motion obtained
with the posture task can be edited with the operational point task in two ways.

• Specification of target points. A new desired target for a chosen operational point can
be specified without defining the desired trajectory to reach it. This point can be
determined using forward kinematics on an operational point to compute its position
from the geometric retargeting, or it can be arbitrarily set.

• Specification of a trajectory. Let the trajectory for the operational point x be called
xo(t). The new trajectory that will be set as the desired trajectory for the operational
point will be xn(t) = xo(t)+xm(t), where xm(t) is the trajectory modification that can
be done on any of the six degrees of freedom of x. This trajectory modification xm(t)
can be time varying or constant, according to the requirements.

It is important to point out that the operational task must have higher priority than the
posture task it would interfere with. For instance, if an operational task is added to the hand,
the priority of the arm posture task must be reduced. Alternatively, the task can be removed,
but it is preferred to be kept, as it will serve as a “guide” for the new trajectory. If these
priority considerations are not taken into account, the desired motion would be blinded by
the solutions satisfying the posture task with higher priority, and the desired effect would not
be achieved. Additional tasks, such as a task for the gaze, can also be added to modify the
original motion.

4.2.3 Experimental Setup

A motion capture system, which provides the spatial trajectory for each of the markers that
are distributed on the human body, is used to acquire the motion performed by a human
demonstrator. The markers are located in characteristic parts of the body, as Fig. 4.10 shows
[H. 11], in order to minimize the motion of the skin with respect to the bones, and to facilitate
their temporal tracking. For example, they must be placed as close as possible to the center
of the articulations to avoid undesired translations when joints rotate, and the configuration
should not be symmetric so that the temporal tracking of the markers is not perturbed. If
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Figure 4.10 – Position of the markers in the human body and calibration position

Figure 4.11 – Skeleton showing the rigid bodies and the markers associated to them

there is symmetry, some ambiguity might appear leading to problems in markers identification.
Due to this reason, in Fig. 4.10 a small plank is used at each wrist so that the three markers
located at the hand do not form an equilateral triangle and are easier to track. In this work,
35 markers were used.

Skeleton The markers are then manually associated to form a skeleton which is composed
of a hierarchy of rigid bodies in the form of a tree. These rigid bodies are sometimes referred
to as links or bones of the skeleton and each of them has a frame that is defined by three
markers. The skeleton used in this work, shown in Figure 4.11, consists of 15 rigid bodies and
is the one proposed in [H. 11]. It should be noted that only after the skeleton is generated,
the position and orientation of the rigid bodies composing it can be obtained.
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Figure 4.12 – Calibration position and markers in the body of the human dancer

Nodes The starting point of each unconstrained rigid body composing the skeleton is called
a node and, if properly located, is equivalent to a joint. The node associated with the ith

bone will be represented as mi. The acquisition system provides the pose of each node mi in
the frame of the motion capture system {M}, which will be represented by the homogeneous
transformation matrix MTmi

(t) ∈ SE(3). It should be noted that MTmi
(t) purely corresponds

to the human and contains no information about the robot geometry.

Calibration The link between the human and the robot configurations can be obtained
through calibration since the kinematic structures of both the humanoid and the human are
similar (wrists, elbows, shoulders, etc.). To this end, the person starts with a position that is
well known for the robot, as Fig. 4.12 shows. Using this configuration, the transformations
between each node mi in the human skeleton and the corresponding joint qi in the humanoid
robot are obtained from a classical “calibration” step. They are represented by miTqi ∈ SE(3),
which includes the differences in orientation between the frames of the nodes and the frames
of the joints (defined in the robot kinematic model), as well as the differences in the segment
lengths of the robot and the human. These transformations remains constant as long as the
markers do not have relative motion with respect to the body they are attached to. Another
constant matrix is the one relating the origin of the motion capture system {M} to the robot
reference frame {W} represented by WTM ∈ SE(3).

Demonstrated Motion Using these transformations and the data obtained from the mo-
tion capture system, the time-varying matrix WT ∗

qi
(t) that defines the position and orientation

of the ith robot joint in the space is

WT ∗
qi
(t) = WTM

MTmi
(t) miTqi (4.4)

which constitutes the demonstrated motion in terms of the poses of the robot links. The
matrix in (4.4) is the desired robot posture and is used as the objective of the geometric
retargeting step.
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Motion Capture System For this particular experience, the human motion was acquired
using the Motion Analysis (http://www.motionanalysis.com/) motion capture system con-
sisting of ten infrared cameras distributed around the experimentation zone and calibrated
by the Motion Analysis software. The acquisition frequency was 200 Hz with a precision of 2
mm of nearly pure white noise and negligible bias. More than thirty minutes of motions were
captured. The captured data for the most important movements used in this work is freely
available3 along with the corresponding geometric retargeting and the results of the dynamic
retargeting that uses the inverse-dynamics approach, explained in Sections 4.2.1 and 4.2.2.

4.2.4 Robot Dancing Simulation

The motion of a person performing a pop dance was acquired using the motion capture system,
as Fig. 4.13a shows. During this motion the dancer keeps the feet almost at the same position
and most of the movement is done by the upper body and the legs. The acquired motion was
retargeted to a modified HRP-2 model, and it was edited to correct the retargeting error and
to introduce new undemonstrated features. The model of HRP-2 was modified by adding one
extra degree of freedom both at the chest and the neck joints with the purpose of obtaining a
model closer to the human body and more suitable for the dance imitation. The kinematical
structure thus obtained contains 32 DoF and resembles more the structure of HRP-4 than
that of HRP-2. For this reason, these results have only been implemented in simulation.

The initial trajectory for the joints is obtained from the captured motion using the ge-
ometric retargeting, but it is neither stable nor dynamically consistent as Fig. 4.13b shows.
Then, the dynamic retargeting is applied keeping both feet in contact with the ground at all
moments but only the posture task is added to the SoT to track the joint trajectories; the
results are shown in Fig. 4.13c. The obtained motion is stable but some problems appear
like an auto-collision between the right hand and the head shown in the fourth thumbnail.
Also, the geometric and dynamic retargetting have lost some data and produced some errors
compared to the initial demonstrated trajectory. For this particular motion, three editions
were applied:

• The right hand motion was corrected to avoid auto-collisions.

• The knee oscillations (smoothed by the PD in (3.50)) were enhanced.

• An additional motion of the left foot (sliding), not present in the initial demonstration,
was introduced.

The sequence of tasks showing the instants of time when these modifications were added is
presented in Fig. 4.14 and the final motion is shown in Fig. 4.13d. More details about these
three editions are provided below.

Right hand motion

The fast up and down motion of the dancer’s right arm was smoothed as a consequence of the
PD used in the task that tracks the joints. This was especially noted when the arm could not
reach the upper positions that the dancer performed. To correct this effect, an operational
task to raise more the arm was introduced. The result is shown in Fig. 4.15.

3http://projects.laas.fr/gepetto/novela/noveladb
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(a) Motion performed by the dancer

(b) Motion obtained with the geometric model

(c) Motion after the posture task

(d) Final motion

Figure 4.13 – Results for the robot imitating the dance performed by a human.
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Figure 4.14 – Task sequence for the dance simulation
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Figure 4.15 – Right hand evolution in the operational space (Z axis).

The trajectory of the right arm in the Z axis using only the posture task to track the joints
is shown in blue, whereas the trajectory with the operational space correction is shown in
red. The corrected trajectory improved the upper positions of the right hand. This can be
achieved thanks to the hierarchical approach of the framework: the operational task was set
with higher priority than the posture task for the right hand, but the posture task is still
naturally able to guide the motion. Another task in the right hand was also used to avoid the
auto collision of the hand with the head, shown in the fourth thumbnail of Fig. 4.13.

Knee Oscillation

The knees constitute a particular case as the dancer permanently moved them but at the
dynamic level this motion was strongly weakened. The reason is the same as for the hand
motion, but in this case the effect is even more pronounced: there was an oscillatory and
relatively fast motion of the knees that the PD posture task smooths and is not able to
follow. To correct this problem, the motion of the knee joint was analyzed and Fig. 4.16a
shows the joint evolution obtained after the geometric retargeting for the right knee. It can
be seen that between iterations 2000 and 2800, and between 6200 and 7300, the motion of
the joint is oscillatory, which corresponds to the observed motion at the dancer’s right knee.
A scalogram using the Gaussian wavelet was constructed to determine the frequency of the
oscillation and it is shown in Fig. 4.16b, where the red circle points out the salient frequencies
corresponding to the oscillatory motion identified in Fig. 4.16a. From the scalogram, the scale
a corresponding to the maximum values at the desired positions was determined to be 36. The
relation between the frequency and the scales is f = fsfw

a
, where fs is the sampling frequency

and fw is the center frequency of the wavelet [Abry 97]. For the Gaussian derivative of order
4, fw = 0.5, and considering that the sampling frequency used during the acquisition is 200
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(a) Temporal evolution of the right knee joint in radians.

(b) Scalogram of the right knee joint

Figure 4.16 – Analysis of the right knee joint motion

Hz, the resulting frequency of the oscillation is 2.7 Hz. Then, a task on the knee was added
at that frequency to correct the low-pass filter effect obtained before.

The evolution of the right knee joint in the joint space is shown in Fig. 4.17a, and the
evolution in the operational space corresponding to the x axis of the knee (pointing forwards)
is shown in Fig. 4.17b. The green curve shows the evolution of the joint when only the posture
task for the leg is used, and the blue curve shows the evolution when the operational task is
added to the knee. Even though the joint angular value is not directly controlled, Fig. 4.17a
shows that the joint presents an oscillation with higher amplitude as a consequence of the
addition of the operational task. The task space in the forward direction shows a consistent
oscillation, which was the desired effect.

Foot Sliding introduction

This constitutes an undemonstrated feature that was arbitrarily introduced to improve the
appearance of the choreography by the end of the motion. To this end, the kinematic con-
straint for the contact was relaxed so that the motion of the foot is restricted to lay anywhere
in the horizontal plane but avoiding to leave the ground or to penetrate it. Letting the veloc-
ity components of the contact point be ẋc = (vcx , vcy , vcz , ωcx, ωcy , ωcz), where vc is the linear
velocity, and ωc the angular velocity, the constraint can be expressed as vcz = 0, ωcx = 0 and
ωcy = 0 to avoid leaving the ground and rotating the foot in undesired directions (assuming
that the z axis is oriented upwards and the x, y axes are horizontal). This constraint can be
expressed as a placement task (3.51) where only some position and orientation components
are controlled using a selection matrix (4.3). Thus, the desired pose of the contact point x∗
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Figure 4.17 – Temporal evolution of the right knee

and the selection matrix Sx can be specified as

x∗ =

















kx
ky
Hz

0
0
krz

















Sx =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

















(4.5)

where kx, ky , krz are arbitrary values (which are not controlled), and Hz is the known height
of the foot with respect to the ground. However, the task for foot sliding does not exactly
correspond to a sliding motion in a broad sense, since sliding can accept forces orthogonal
to the motion. The proposed solution is thus more restrictive than necessary. However,
although forces are not considered, the visual effect is similar, and the motion is feasible and
dynamically consistent.

In the experiment, an undemonstrated sliding movement of the left foot was arbitrarily
introduced to prove that extra features can be added as desired. To introduce this feature,
the ZMP of the motion when the dynamic retargeting was applied without this particular
feature was analyzed. Fig. 4.18 shows in blue the trajectory of the ZMP in the Y axis. The
red lines show the boundaries of the feet (the maximum and minimum limits constitute the
support polygon in the Y axis). Between times 46.8 and 48.3, the ZMP completely lies in the
area corresponding to the right foot. Then, the contact was removed and the sliding task was
introduced for the left foot at that time, guaranteeing the robot stability, as the sliding foot
cannot be considered part of the support polygon anymore.
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Figure 4.18 – Evolution of the ZMP with only the posture task

4.2.5 The Yoga Figure

The standing lotus yoga motion was the first movement achieved in the real HRP-2 using
the presented framework for motion imitation4. The motion starts in a double-support rest
position. A sweeping motion of both arms is then executed while reaching a stable single-
support posture with the free foot close to the support knee and both hands joined in front
of the chest. This demonstrated movement is summarized in Fig. 4.19a. The execution of
the geometrically-retargeted motion in a kinematic simulator (ignoring the dynamics of the
system) is shown in Fig. 4.19b. The motion globally resembles the demonstrated pattern but
some problems appear such as the collision of the hands with the chest of the robot. The
reason is the different kinematic structure between the human and the robot. Moreover, the
application of this motion with a realistic (dynamic) simulator, shows that the robot does not
reach a stable single-support posture but falls down (Fig. 4.19c) due to the different dynamic
structures of the robot and the human: the mass distribution is very different, for instance,
the legs of the robot are much heavier. Thus, posture alone does not ensure robot balance.
Also, the hands are colliding with each other and with the chest, and the flying foot is badly
positioned.

To guarantee the balance of the robot, the dynamics has to be considered and therefore,
the dynamic retargeting is applied to track the demonstrated posture and to ensure balance
while keeping key features. The important features of the demonstrated movement are: the
balance i.e. the position of the CoM at the balanced position; the relative position of the
hands and the chest; and the position of the free foot. To keep these features, the following
tasks were used in addition to the posture task that follows the joint trajectories.

• Three operational space tasks were added to control both hands and the free foot,
respectively. They follow the demonstrated trajectories of the corresponding human-
body points. The tasks for the hands are also added to avoid auto-collision with the
chest.

• Another task was added for the CoM. The CoM is more difficult to observe on the
human, but it can be estimated by the waist position or using an inertial model with

4The experiments with the real robot appear in: O. Ramos, N. Mansard, O. Stasse, S. Hak, L. Saab, and
C. Benazeth: Dynamic Whole Body Motion Generation for the Dance of a Humanoid Robot, IEEE Robotics
and Automation Magazine (RAM), 2015 (in press) [Ramos 15].
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(a) Original demonstrated motion

(b) Geometric retargeting of the motion (using a kinematic integrator)

(c) Geometric retargeting of the motion (using a dynamic simulator): balance is not kept

(d) Dynamic retargeting motion executed by the robot: the robot can keep its balance.

Figure 4.19 – Yoga motion: from the demonstration to the real HRP-2
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(a) (b) (c) (d)

Figure 4.20 – Motion acquisition of a human dancer

the correct mass distribution. However, even if the human CoM is recovered, it cannot
be guaranteed that it generates stable motions in the robot due to the mass difference.
Thus, an artificial pattern for the CoM was imposed to enforce balance since CoM
accelerations might destabilize the robot and the approach cannot predict those states.
The pattern specifies that the CoM lies inside the support polygon and is obtained by
experimentally determining the timings for the change in the supports of the human
performer.

The SoT is finally composed of the dynamics and contact constraints, a task tracking the
CoM artificial pattern, a task tracking the demonstrated right hand, left hand and right foot,
and a task tracking the geometrically-retargeted configuration. The task tracking the free
foot is added only when the foot leaves the ground. The motion executed by the robot is
shown in Fig. 4.19d.

4.2.6 Long-sequence Motion Generation

The same generic task sequence described above and used for the yoga movement can be ap-
plied to treat several motion sequences automatically. In particular, the motion corresponding
to a long choreography performed by a hip-hop dancer was acquired. Fig. 4.20 shows some
typical patterns of the movements demonstrated by the human dancer (with the markers on
his body) in the motion capture acquisition room: motion in double support (Fig 4.20a and
Fig. 4.20b), motion in single support (Fig. 4.20c), and motion of the upper body while walking
(Fig. 4.20d). In this acquisition, the small plank for the hand (Section 4.2.3) was not used
since the demonstrator’s hands were big enough to properly locate the markers avoiding the
undesired acquisition symmetries.
From the choreography performed by the human, a choreography was designed for HRP-2.
This choreography was presented in October 2012 in a live demonstration in front of more
than 1000 people in the city of Toulouse. The demonstration consisted in both the robot and
the human performing the movements side by side as Fig 4.21 shows.
Three of the typical execution patterns performed in the demonstration, consisting in double
support motion, single support motion, and motion while walking, are detailed below.
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Figure 4.21 – HRP-2 and the human dancer in the live demonstration.

Double Support Motion

The first case consists in moving the whole body fast while keeping both feet in contact
with the ground. Even though some parts of the body move fast and might generate some
undesired angular moments, the proposed method keeps the robot balance by automatically
compensating with the appropriate control. When specifically asked by the choreographer, a
task was added for the hand, but no task is added for the CoM. Two examples of this type
of motion are shown in Fig. 4.22. The upper case (Fig. 4.22a) shows the robot moving the
arms fast while keeping its balance, and the lower case (Fig. 4.22b) shows the robot lowering
its body down while also moving the arms fast. The latter motion resembles some movement
performed in martial arts.

Single Support Motion

A second type of motion is a single support one, where the robot moves the whole body while
keeping a single leg in contact with the ground. Since the uncontrolled motion of the CoM
can generate high accelerations of the CoM near the edge of the support polygon, and the
methodology cannot foresee future states to avoid these cases, a task is used to guide the CoM
within appropriate limits. Like for the case of the yoga, an artificial pattern for both reaching
a stable single-support position and going back to a double-support stance is used as guide
for the CoM. Two examples of this motion are shown in Fig. 4.23. The first example shows
the robot raising its left leg while moving the arms (Fig. 4.23a), and the second example
shows the robot raising the right leg and doing a ‘circumference’ over the ground with it while
keeping the arms still (Fig 4.23b).

Dynamic Walk

In the third case, the movement consists in walking while moving the upper body at the same
time. This presents a particular problem when retargeting the motion to the robot since the
acquired motion kept dynamic balance for the human, but it does not keep either dynamic or
static balance for the robot due to the differences in mass distribution. A single posture task
to track the acquired joint trajectories is not sufficient and would make the robot fall down.
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(a) Example 1: fast arms motion

(b) Example 2: lowering down the upper body

Figure 4.22 – Motion of the robot in double support

(a) Example 1: raising the left leg upwards

(b) Example 2: raising the right leg and moving it

Figure 4.23 – Motion of the robot in single support
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(b) Timing for the footsteps

Figure 4.24 – Determination of the footsteps that will be used for the WPG

In order to generate dynamic walking for the robot a WPG, whose steps were specified based
on the footprints coming from the demonstrated motion, was used. Then, the lower body
followed the trajectories given by the WPG while the upper body tracked the demonstrated
motion.

The positions of the footprints and their timings are extracted from the demonstration by
grouping clusters of points on the foot trajectories. Let r

l
= (x

l
, y

l
, z

l
) and rr = (xr, yr, zr)

represent the trajectories of the left and right foot, respectively, coming from the acquired
motion. To automatically obtain the footprints, a ‘heuristic’ function fp(t) was defined to
specify the amount of motion in each foot at every instant of time as:

fp(t) = αx
‖ẋi‖

max{‖ẋi‖}
+ αy

‖ẏi‖
max{‖ẏi‖}

+ αz
‖żi‖

max{‖żi‖}
+ αh

zsi
max{zsi}

(4.6)

where αx, αy, αz, αh are weights, zsi is the height zi smoothed by a mean filter, and i can
be l or r depending on whether the measure is for the left or right foot. The derivatives
of the position determine the horizontal and vertical motion of the feet, whereas the value
of z determines the height over the ground. The motion components were added for more
robustness, since noise in the measurements did not allow to reliably discriminate between
steps when only using the height z. The values of the weights are experimentally determined,
and for these tests the values used were αx = αy = αz = 1 and αh = 0.5. The function fp(t)
was then smoothed with a mean filter to remove the remaining noise, leading to the function
fsp(t) which is shown in Fig. 4.24a for the instants of time corresponding to a dynamic walking.
After fsp(t) is found, an empirically determined threshold is applied to remove the part that
does not correspond to a step. In this case, the threshold was at 0.1, as Fig. 4.24a shows
with a green line. The parts above the threshold correspond to demonstrated steps, and their
detection is shown in Fig. 4.24b where 0 implies that the foot is on the ground and 1 implies
that a step is taking part.
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(a) Frontal view

(b) Lateral view

Figure 4.25 – Walking while arbitrarily moving the upper part of the body

The footprints are then used as input to a WPG [Kajita 03a] to compute a walking
trajectory for both the feet and the CoM. The CoM task is added as the top-priority task,
while a task is added to drive the position of the flying foot during each step. The posture task
is added for the upper body and additional tasks are eventually added to improve the hand
or the head placements depending on the choreography. The hands produce an important
momentum, especially when the choreography imposes some movements that are contrary to
the natural walking motion. The momentum is however corrected by the whole-body inverse-
dynamics scheme and does not disturb the balance. Fig. 4.25 shows an example of this type
of motion. It can be observed that the robot walks dynamically while moving its arms with
arbitrary motion that follows the demonstrated movements.

The captured and experimental joint trajectories for two typical joints (at the shoulders) is
shown in Fig. 4.26. It can be noticed that the trajectories obtained with the dynamic control
follow closely the desired ones, but the control also acts as a ‘low pass filter’. This attenuation
can be controlled by changing the gain of the task. If the gain is larger, the joints move faster
and the trajectory is closer to the desired one. However, the gain cannot be arbitrarily big
since it is eventually limited by the mechanical constraints of the robot such as the maximum
velocity of the joints.

4.2.7 Conclusion

The methodology presented for imitation allows to quickly and efficiently generate long se-
quence of dynamic movements for a humanoid robot. The motion generation is based on a
combination of two very efficient tools: the motion capture, and the hierarchized operational-
space inverse-dynamics, which enables the retargeted dynamics to fit with the constraints of
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Figure 4.26 – Desired and obtained joint trajectories for the right and left shoulders

the real robot. The method produces reliable movements on the robot. In particular, these
movements were executed without any security crane in public performances with a human
dancer in the city of Toulouse.
From this experience, it can be considered that the operational-space inverse-dynamics is a
mature tool that is able to replace the inverse kinematics approach for all robots where dy-
namics matters. Particularly, in humanoid robotics, inverse dynamics can be directly applied
by sending the reference acceleration output, obtained with the inverse-dynamics solver, to
the robot. A second conclusion is that motion capture is a very efficient tool also for robotics:
it has been used for a long time in computer graphics, but it can also give the same expressive
capabilities to robots, even if the retargeting is more tricky to apply. In particular, the SoT,
while enforcing the dynamics of the retargeted motion, provides the robot programmer with
some easy edition capabilities to correct the defects of the retargeted motion or to augment
the original movement with some artificial features.

4.3 Analysis of the Organization of Human Motion

A large part of research works aiming at identifying functional principles of human movements,
such as cost function minimization, co-activations or synergies, are based on the analysis of
stereotyped movements involving one limb only, for instance reaching hand movements to-
wards a target [Guigon 07]. Understanding the principles that underlie the organization of
whole-body movements is a more complex task, which is more rarely considered. The dy-
namic motion-generation framework described in Section 3.3 can also be used to describe
the organization of whole-body human motions. In fact, the same mathematical tools and
inverse-dynamics resolution software, based on the stack of tasks formalism, provide a unified
framework for both synthesizing complex movements in anthropomorphic systems and mod-
eling human movements, through the definition of a hierarchy of objectives and constraints.
This section presents a brief application to the analysis of the organization of human motion5.

5This analysis was introduced in: O. Ramos, N. Mansard, O. Stasse, P. Souères, An Advanced Robotics
Motion Generation Framework for Inferring the Organization of Human Movements, Computer Methods in
Biomechanics and Biomedical Engineering (CMBEE), Vol.16 N.1, September 2013 [Ramos 13].
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4.3.1 Methodology

This case study aims at emphasizing that the described motion generation framework, which
was used to make humanoid robots execute complex tasks, provides a powerful tool for in-
ferring the organization of human movements. Indeed, complex whole-body movements in
humans rely on a set of motor objectives and constraints, which are not easy to identify. In
particular, a difficult question is to determine how the motor control is distributed to guar-
antee, at the same time, the postural balance and the limb displacements required for the
task. The proposed motion generation framework (Section 3.3) provides a standard way to
synthesize such complex movements as an ordered set of objectives and constraints. Using a
dynamical model of the human body, it is then possible to test some structural hypotheses
about the organization of the motor control associated to a given task. By comparing the
variation of key parameters given by the motion generation software with the ones measured
on human subjects executing the same task, it is possible to evaluate the proposed hypothe-
ses, and going back and forth from observation to simulation, one can then infer key elements
about the dynamic structure of human movements.

4.3.2 Results

A simple application is described here: the motion generation framework is used to make
the robot execute the same whole-body movement as a human. The human makes some
movements with the hands and raises one foot to make a circle over the ground surface. After
that, he moves his foot back to the ground. The motion to be imitated was acquired using
a motion capture system, as described in Section 4.2. The captured poses were retargeted
to the model of HRP-2 obtaining the joint trajectories, and the inverse-dynamics solver was
applied using two tasks to make the robot move. One task was the posture trajectory for the
whole body. Since there are differences in size and mass distribution between the human and
the robot, following only the posture has the risk that the robot falls down when raising the
foot. To ensure stability, a task to keep the center of mass inside the support polygon was
added. Fig. 4.27 shows the spatial evolution of the robot and human waists as well as the
robot center of mass. It can be observed that even though the robot waist was not explicitly
constrained to follow the human waist when generating the motion, it implicitly inherited the
human trajectory. Both curves are similar, but with different scales since both models have
different dynamics. These results show that the waist trajectory is invariant after retargeting
the motion to the robot. We can then deduce that the tasks used to describe the motion
reflect the human motor control organization for the task.

4.3.3 Conclusions

This experiment shows how the motion generation framework can be used as a simulation
tool to infer the dynamic organization of human motion. Although the robot dynamics is far
simpler than the human one, including many less degrees of freedom, the presented example
illustrates that synthesizing the movement as a stack of tasks is a way to preserve key features
of the human motor control organization.
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Figure 4.27 – Comparison of the waist trajectories of the human and the robot. The robot waist is not
directly constrained but the obtained trajectory is similar to the one of the human.

4.4 Dynamic Walking on Non-Planar Surfaces

There exist two types of walking schemes for bipedal systems: static walking, and dynamic
walking. Static walking always keeps the CoM inside the support polygon [Wieber 02] gener-
ating a slow walking pattern, whereas dynamic walking keeps the Zero Moment Point (ZMP),
which is equivalent to the Center-of-Pressure (CoP) for planar surfaces [Sardain 04], inside
the support polygon [Vukobratović 04] allowing the CoM to possibly leave the polygon and
generating faster and more natural walking patterns. Since static walking leads to slow and
unnatural motion of the biped, dynamic walking is mostly the preferred method of choice for
humanoid robots.

Classical methods for dynamic walking use a Model Predictive Control (MPC) based
walking pattern generator (WPG) that previews the future states of the robot to obtain
the trajectory of the CoM and the positions of the footprints so that the robot is able to
walk. The first schemes allowed mainly to walk on planar homogeneous surfaces [Kajita 03a],
but using such schemes, several works have recently allowed real humanoid robots to walk on
uneven terrain [Kaneko 04, Morisawa 11, Nishiwaki 12]. These are, typically, adaptations to a
horizontally composed plane, or systems where preview control considers information from the
current inclination of the upper body. Methods such as the one proposed in [Nishiwaki 12] use
predictive attitude compensation control adjusting the ZMP reference to repetitive walking
and updating the desired landing position based on gains of impedance. Other methods like
the ones proposed in [Morisawa 11], [Kaneko 04], [Ott 11] compensate for the roughness of
the terrain applying some efficient formulations of the ZMP preview window, and rejecting
the error modeling using the robot attitude estimated by an accelerometer and a gyrometer.
Coupling both aspects with the information provided by a portable laser, namely Hokuyo, the
current best system implemented on a real humanoid robot was proposed in [Nishiwaki 12],
where a 38 DoF HRP-2 is able to cope with gravels, unknown slopes of 10 degrees, as well as
other irregularities. This approach is still based upon a kinematic control scheme driven to
regulate global dynamical parameters such as the total angular momentum derivative about
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the robot CoM. However, this method does not directly handle the dynamics of the robot,
and it uses an inverse kinematics scheme where inequalities cannot be formulated. The work
presented in [Morisawa 11] suffers from the same limitation.

The work of [Nishiwaki 12] also pointed out the necessity of handling noise which occurs
even with a laser sensor. One problem with current laser sensor technology is time to fly
and the weight. A humanoid robot needs a relatively dense reconstruction to elect potential
contact points while walking, and fast enough lasers are currently too heavy to be embedded
inside a humanoid robot. To reconstruct a surface, 3D information provided either by a Kinect
or a stereoscopic system would need to be implemented, but it represents a difficult task both
in computer vision and robotics. The problem is that depth or range sensors provide a huge
amount of data that has to be processed to get high level information, which makes real time
reconstruction difficult. Yet, as mentioned above, a precise dense reconstruction is critical
for pattern generation in rough terrains. Precision below a few centimeters may cause strong
impacts on the robot feet with the floor or, on the contrary, may cause the robot feet to never
reach the floor. In either case, the robot may lose balance and fall down. One solution, which
is used here, is parallel processing using GPUs that allows to get very efficient 3-D dense
reconstruction systems [Newcombe 11, Rusu 11].

The approach presented in this section addresses the problem of walking on non-planar
surfaces using an MPC based WPG together with the inverse-dynamics SoT framework. As
the foot goes down, possible collisions are detected thanks to the reconstructed map of the
terrain which was obtained by a stereo vision system. In this way, collision points are found
and handled by the solver, and if necessary, some extremes of the swinging foot are properly
taken towards the ground to maximize the support area without losing dynamic balance.
An important assumption is that the ground is supposed to remain static. In this way,
the system can autonomously adapt the swinging foot according to the terrain providing a
“software-based” compliance to the walking scheme6.

4.4.1 Task-based Foot-landing Compliance

Dynamic walking typically uses a (WPG) that assumes co-planar foot-steps and a CoM tra-
jectory that is restricted to a plane [Kajita 03a]. Appendix B gives a review of the MPC based
WPG that has been used here. Given a certain CoM reference velocity, the WPG produces
feet trajectories, ZMP trajectories and a CoM trajectory which, all together, generate a bal-
anced motion for an inverted pendulum. To generate whole-body trajectories, one approach
[Kajita 03b] is to use tasks for the CoM, and for the feet to follow the given trajectories in a
perfect way and in open loop (possibly using a stabilizing method [Ott 11]). If some irregu-
larity on the horizontal surface is found, the control system is likely to fail, the robot will not
be able to keep its balance and it will fall down. One of the main objectives of the control
scheme in this section is to allow the foot to be compliant with respect to irregularities or
roughness in the terrain. That is, if an irregularity is found, the foot should not try to push
on it due to the WPG specification, but it should be able to comply, and adapt itself to this
irregularity by properly rotating about some axis. This compliance will allow the robot to use
the WPG to walk on rough surfaces without losing balance. More specifically the compliance

6This approach appears in: O. Ramos, N. Mansard, O. Stasse, P. Souères, Walking on Non-planar Sur-
faces using an Inverse Dynamic Stack of Tasks, IEEE-RAS International Conference on Humanoid Robots
(Humanoids), Osaka, Japan, November 2012 [Ramos 12].
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Figure 4.28 – Contact surfaces with different contact point numbers (from 5 to 2)

is at the task level and not at the mechanical level to avoid additional control for the passive
material.

The approach assumes that collision detection is available and that the robot can know the
exact position of the points in contact with the ground, as well as the forces at those points
at every instant of time. With the information of the encoders and the Inertial Measurement
Unit (IMU) this allows to reconstruct the component xf (3.21) of the generalized coordinates.
The number of points is specified in terms of the vertices of the convex hull formed by all the
points belonging to the contact area, as Fig. 4.28 shows. The foot follows the steps defined
by the WPG, which assumed a horizontal surface. However, when it is moving down to
the ground and finds some contact point (generated by the irregular ground or by a small
obstacle whose size is assumed to be smaller than the step height) it will instantaneously stop
its downwards motion to comply with the irregularity that was found. The following cases
might happen:

• There are three or more contact points (6D planar contact)

• There are two contact points (5D edge contact)

• There is only one contact point (3D point contact)

If there are more than three contact points, the foot is assumed to be able to safely step on
those points, which will generate the support polygon, and it simply stops its motion. When
there are less than 3 contact points, the foot does not continue moving down to the ground
but it still needs to move to find at least one more contact to have a consistent support
polygon. In this case, if the foot is left uncontrolled after the first contact(s), the dynamics
of the whole-body might take the foot to an unstable position. To avoid these instabilities,
the foot extremes have to be controlled so that the maximum support polygon is obtained.

For a single contact point, the foot is in the situation shown by Fig. 4.29a where the single
contact point is pc1 and the foot extremes are denoted by pe1, p

e
2, p

e
3 and pe4. In this case,

four triangles with areas Ai, i = 1, 2, 3, 4, are formed by joining the contact point to two
consecutive foot extremes. The area of the triangle formed by the consecutive foot extremes
pei and pei+1 is given by

Ai = 0.5 ‖ (pc1 − pei )× (pc1 − pei+1) ‖ (4.7)

The triangle with the greatest area will contain the extremes of the foot that are farther from
the contact point, and thus, it is desirable to take those extremes to the ground so that the
largest support polygon is obtained. To that end, a task is assigned to each of these extremes
controlling only the vertical z position so that they go to the ground. While these points are
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(a) 1 contact point (b) 2 contact points (case 1) (c) 2 contact points (case 2)

Figure 4.29 – One or two contact points on the sole of the robot

moving, if a contact point is detected, it is added as a contact to the solver and its position
is checked against the points that were going to the ground. The task for the closest extreme
is removed. The foot continues its rotation until another contact point is detected, in which
case, the remaining extreme task is removed.

If there are only two contact points, there are two possibilities shown in Fig. 4.29b and
Fig. 4.29c. To obtain the case, a line L is passed through both contact points and the extremes
of the foot are determined to lie in one side or on the other side of the line. Let the contact
points be pc1 and pc2, the vector joining these points be v = (vx, vy) = pc1 − pc2, and the vector
joining one point with one extreme of the foot be vi = (vix, viy) = pei − pc2. The idea is to
rotate the points so that the line L is aligned with the vertical line. Then, the sign of the
arc-tangent can be used to determine the side of the line in which a point lies. The angle
that line L must rotate to be aligned with the vertical is θ = atan2(vy, vx). Then, each vi is
rotated by the angle θ as:

vfix = vixcos(−θ)− viysin(−θ) (4.8)

vfiy = vixsin(−θ) + viycos(−θ) (4.9)

After this rotation, the angle to the line is determined as φ = atan2(vfiy, v
f
ix), the sign of φ

indicating whether the point is on one side or the other of line L. If only one point is on one
side and three are on the other side (Fig. 4.29b), the three points are taken to the ground.
If two points are on each side (Fig. 4.29c), then, the area of the quadrilateral formed by the
contact points and the extremes on each side is computed and the largest area indicates that
those extremes are farther and must be taken to the ground. As in the case of a single contact,
as soon as a new contact appears, it is added as a contact to the solver, and the task for the
closest extreme is removed.

4.4.2 Compliant Walking Scheme

The heuristics presented in the previous section are used to determine if the foot completely
stops its motion or which part of it should be moved towards the ground if there are less than
3 contact points. However, the latter case poses an additional problem for the computation
of the Jacobians. The contact forces fc can be expressed in terms of a 6D spatial force Φ
at some frame of the foot, and it is common to have a direct measurement of the Jacobian
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Figure 4.30 – Compliant walking scheme. The upper level specifies a direction of motion. Then the WPG
finds foot-steps, foot trajectories, a CoM trajectory and a waist trajectory. The Dynamic Stack of Tasks ensures
that the resulting whole-body motion is dynamically consistent with the robot model and its constraints.

relative to this frame, Jo, which is a geometric Jacobian. Then, the contact Jacobian for the
contact point is computed as in (3.49); that is, Jc = XJo, where X is a matrix involving the
cross product with the contact points (3.48). The problem arises from the fact that if there
are only 2 or 1 contact point, X is not full-column rank and the expression for δc in (3.40)
has to be modified to δc = −(XJoB)#XJ̇oq̇. After this modification, the SoT described in
section 3.3.4, which explicitly controls the contact force fc, can be directly used.

The compliant walking scheme is obtained by using the output of the WPG as input
to the inverse dynamics solver as shown in Fig. 4.30. The WPG outputs three elements:
the trajectory for the CoM, the trajectory for the waist of the robot, and the footprints for
each foot. The usage of these elements within the SoT is done with tracking and interpolation
tasks. Tracking tasks are 6D operational tasks described with a PD law and aim to control the
position and/or orientation of a certain characteristic of the robot (the CoM, or an operational
point). The interpolation task is a task that takes an operational point from an initial to a
final pose satisfying some fixed (and hard) time constraints, and it has been described in 3.4.3.
The dynamic SoT that is used considers the following tasks:

• Tracking task for the horizontal (x, y) components of the CoM trajectory given by the
WPG, which assumes a constant height.

• Partial tracking task of the waist trajectory. This task controls the height (position in
z) of the waist at a certain constant value, as well as the horizontal orientation in x, y.
As observed, not all the six degrees of freedom are controlled, and therefore the name
of partial tracking task.

• Interpolation task on the swinging foot. The WPG gives the footprints on the ground.
This task takes the swinging foot from its initial position to its desired final position.
There are two interpolation steps: the first task takes the foot from the initial position
on the ground to an intermediate position that lies halfway between the initial and final
positions with a predetermined height. The second interpolation takes the foot from
the intermediate to the final position, if possible. The foot reacts in a compliant way if
a contact is detected before arriving to the final position on the ground, as explained in
section 4.4.1.

Unlike schemes that only follow the output of the WPG using kinematic tasks, the dynamic
SoT makes it possible to handle rough surfaces by adding compliance at the task level to the
foot at the moment of detection of a contact with the environment.
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Figure 4.31 – From a pair of images of the scene in front of the robot (left) a dense disparity map is estimated
(middle) and from this disparity map a dense surface integrating the previous frames into the volumetric grid
is estimated (right). These images were taken from the HRP-2 stereo vision system with the cameras tilted
towards the ground to allow ground reconstruction tasks. It is assumed that a mechanism is implemented to
make the robot search for traversable areas [Maier 13].

4.4.3 Stereo-Reconstruction of Dense Surfaces

To perform the dense reconstruction of the floor surface in front of the robot, we rely on
a real-time approach similar to the KinectFusion algorithm [Newcombe 11]. This approach,
originally developed for a RGB-D sensor, models 3-D surfaces as zero-valued level sets of
functions defined over the workspace volume. These functions are referred to as Truncated
Signed Distance Functions (TSDFs) and they are incrementally built by integrating the depth
measurements the sensor provides, frame after frame. TSDFs are defined in the 3D space and
their value is the signed distance to the closest obstacle. Here, we extend this approach,
initially proposed for RGB-D depth data, to disparity data generated from a stereo head.
Although the stereo data is noisier than the one from RGB-D sensors, it is a passive sensor
and can be used outdoors in sunlight conditions.

Consider, as in the previous sections, that k is a discretized time index. The idea is
to update a mathematical representation of the surface through a volumetric TSDF model
(defined over a 3D grid), referred to as Fk. The basic steps for integrating one new set
of disparity measurements at time k, to update Fk and the corresponding surface, are the
following:

(I) Filter the raw depth measurements generated from the stereo head (Dk). For that
purpose, here the bilateral filtering was used.

(II) From these filtered measurements and the prediction of the estimated surface at the
previous step, estimate the transformation between the measured surface and the pre-
dicted one using the iterative closest point algorithm (ICP) and update the camera
pose.

(III) Compute a volumetric grid formed from “local” TSDF values FDk
, to which confi-

dence weights WDk
are associated, and integrate them into the global volumetric grid

{Fk,Wk}.

(IV) Predict a new surface for the next iteration by using ray-casting over the zero-crossings
of the fused global volumetric grid {Fk,Wk}.

The core of this algorithm is the computation and fusion of volumetric grids (i.e., the third
step mentioned above). For a 3D point p, expressed in the global frame g, its value in the
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current local volumetric grid {FDk
,WDk

} is computed as

FDk
(p) = Ψ(λ−1 ‖tg,k − p‖ −Dk(x)),

WDk
(p) ∝ cos(θ)/Dk(x),

with λ =
∥

∥K−1[x⊤ 1]⊤
∥

∥ and

Ψ(η) =

{

min(1, η
µ
) sgn(η) iff η ≥ −µ

null otherwise

where µ is a truncation distance (a parameter of the algorithm), and x = π([K,1]T−1
g,k p) ∈ R

2

is the image projection of p. K is the 3× 3 matrix of intrinsic parameters of the camera, π is

the projection operator, Tg,k =

[

Rg,k tg,k
0 1

]

is the pose of the camera at time k in the global

frame g, and θ is the angle between the associated pixel ray direction and the surface normal.
The global volumetric grid at time k is formed by the weighted average of all individual

volumetric grids up to k − 1. It can be shown that the optimal grid can be incrementally
obtained using a simple point-wise on-line weighted average

Fk(p) =
Wk−1(p)Fk−1(p) +WDk

(p)FDk
(p)

Wk−1(p) +WDk
(p)

,

Wk(p) = Wk−1(p) +WDk
(p).

To use this algorithm with stereo data and generate local data Dk, a disparity map from a
pair of rectified images is estimated, from which the depth map Dk is derived assuming that
the stereo rig is completely calibrated. The literature of algorithms that estimate disparity
maps is huge, but since a real time one is needed for this application, the one proposed in
[Geiger 10] has been used. This algorithm estimates a piece-wise disparity map using an
initial sparse disparity map of high textured points as vertices that define a triangulation of
the image. Then, the dense disparity map of each sub-region is estimated using the initial
sparse disparity map as a prior in a probabilistic scheme. The steps of the reconstruction
process are illustrated and further described in Fig. 4.31.

4.4.4 Planning on Dense Surface with Visual Reconstruction

The visual information obtained from the 3-D vision reconstruction can help the robot pose
its feet on the ground as an approximation to the real ground7. Due to problems in light
conditions (the rough terrain and the obstacles do not always behave as Lambertian surfaces
in reality), noise, lack of good features for reconstruction, calibration errors among other
problems related to the computer vision system, the reconstruction is not perfect. However,
its usage enables the robot to foresee the ground on which it will step and to take the step in
a smoother way when close to the irregularities.

Consider the scheme in Fig. 4.32 that shows the real ground in gray, the 3D visual re-
construction as an approximation to the ground-truth in green, and the foot represented by

7The extension that uses visual reconstruction was introduced in: O. Ramos, M. Garcia, N. Mansard,
O. Stasse, J-B Hayet, P. Souères, Towards Reactive Vision-guided Walking on Rough Terrain: An Inverse-
Dynamics Based Approach, International Journal on Humanoid Robotics (IJHR), Vol.11 N.2, July 2014
[Ramos 14a].
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Figure 4.32 – Example of a situation handled by the approach. The gray part represents the real environment,
and the green line the stereoscopic reconstruction. The foot is in its final position after the adaptation by the
proposed method.

a rectangle. Without foot compliance, the foot would always try to arrive to the position of
the horizontal ground, and in the case shown in the picture, it will evidently fail and make
the robot fall down since it would try to continue going downwards even though there is an
obstacle that stops it. Adding the foot compliance described in section 4.4.1, the foot will
react to the irregularities and its position will be accordingly modified. However, since the
foot initially tries to move until reaching the flat ground, in case of an irregularity, it might
find the first contact with a considerable velocity which might make the impact very harsh.
To avoid these strong impacts, the visual reconstruction is used.

The final position of the foot, set to the ground by the output of the WPG, is modified
according to the information given by the 3D reconstruction, which is an approximation to
the reality. Then, in the interpolation task of the compliant walking scheme (section 4.4.2)
the final position in the ground is modified to be the one ‘predicted’ by the 3D reconstruction.
The advantage of this modification is that the foot will arrive to the real irregularity with a
lower velocity and the contact impact will be smoother. According to this prediction, the foot
is moved but the real contacts from the real environment are taken into account to rotate the
foot according to the heuristics for the foot compliance. The visual information only serves
as a means to foresee the environment but it is the environment itself which will determine
the real contact with the foot.

4.4.5 Results

The results will first present the application without using the visual reconstruction, relying
on artificial obstacles. Then, the results using the visual reconstruction in the framework will
be shown.

Walking Without Visual Reconstruction

These results are validated in a simulation of HRP-2 considering its full dynamics. The
environment consists of a ground where random objects were present. The height of the
obstacles was always smaller than the step height. As previously described, only the CoM
and the waist are tracked by the solver. The foot positions are specified using two interpolation
tasks. The robot first walks in a straight line and then slightly turns left. Some snapshots of
the robot are shown in Fig. 4.33. The snapshots show the right and left foot stepping over
different obstacles in different conditions. Since there is no control on the arms, they move
freely to help keep the CoM position.

Fig. 4.34a shows the trajectory of the right foot. The dashed line shows the trajectory
that is obtained from the WPG, which assumes a constant ground height. As stated before,
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(a) (b) (c) (d)

Figure 4.33 – HRP-2 walking on a non-planar surface.

the right foot does not follow this trajectory but only uses the final position of the foot.
In this experience, the first two steps of the right foot find an obstacle on the ground. It
can be observed in the curves with solid line that even though the foot is not tracked, the
interpolation task generates a trajectory similar to the one given by the WPG. The difference
in the height z for the two first steps is due to the obstacle encountered by the foot, which
is properly handled by the system without losing the dynamic balance. Fig. 4.34b shows the
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Figure 4.34 – Trajectory of the right and left foot. The dashed line shows the trajectory of the WPG and
the solid line shows the trajectory generated by the inverse dynamics controller.

same information for the left foot. In this case, the second, third and fourth steps encounter
an obstacle on the ground and that is the reason why there is an observable difference in the
z axis between the output of the WPG and the trajectory generated by the dynamic solver.

Walking using the Visual Reconstruction

This part of the results shows the proposed scheme together with the visual reconstruction.
A simulation using the full dynamic model of HRP-2 has been performed on a ground with
some irregularities and obstacles. This ground was obtained using the cameras of the robot.
Since structured light RGB-D sensors are not present on the robot, the stereo vision system
located in the head has been used to reconstruct the ground. As mentioned above, the robot
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Figure 4.35 – Robot and rough ground model from visual reconstruction

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.36 – HRP-2 walking on a rough surface. The second raw is a zoom of the foot and directly
corresponds to the first raw. The view is focused on the right foot for (e), (f), and on the left foot for (g), (h).

design is such that these cameras are tilted towards the ground. Fig. 4.35 shows the robot
and a rough ground model obtained by visual reconstruction.

The case where the robot walks on a rough surface is shown in Fig. 4.36, where the second
row depicts a closer view of the corresponding robot foot of the first row. The robot starts
from an initial position where both feet are on a flat horizontal surface. Then, the robot
performs a step with the right foot. However, before arriving to the theoretical flat ground, a
contact is detected and the foot stops its motion down (a),(e). Since only two contact points
were detected, the right foot rotates ‘backwards’ as shown in part (b),(f). Then, the left foot
performs a step. As with the right foot, the left foot is stopped before arriving to the flat
ground since a contact is detected (c),(g). In this case, it rotates to the ‘front’ until it reaches
the real ground and more than 2 contact points (d),(h). A similar behavior is obtained for
more steps on this type of surface and the feet rotation is achieved according to the heuristics
determined in section 4.4.1.
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In Fig. 4.37, obstacles are added to the surface. The initial position is shown in (a).
Then, the robot raises its right foot and moves it to the next theoretical footprint assuming
horizontal flat ground (from the WPG). However, the foot finds an obstacle before arriving
to the ground. The foot compliance is shown in (b) since the obstacle was detected, and (c)
shows the foot rotating to reach a proper support polygon that will make it stable. After this,
the robot continues walking. It should be noted that in this case there is only an obstacle
for the right foot and the left foot steps on a theoretically flat and horizontal ground. After
the step of the left foot, (d) shows again the right foot stepping on the ground. In this case,
there is no need to rotate the foot since the supporting surface is enough (the foot steps are
almost completely on the obstacle and, thus, a proper support polygon is obtained). Part (e)
shows the left foot in the swinging phase and (f) in double support phase. It can be observed
that the right foot was properly kept on the obstacle while the right foot was swinging, and
the robot balance was not lost.

(a) (b) (c)

(d) (e) (f)

Figure 4.37 – HRP-2 walking on an obstacle.

4.4.6 Conclusions

The control scheme presented in the case study of this section makes the humanoid robot
able to walk on rough terrain by detecting collision points with its stereo vision cameras and
moving the foot properly to reach a larger support polygon. This behavior is equivalent to
having compliance at the foot. The approach has been tested in a simulation environment.
Even though surfaces might be rough, the method is limited to horizontal cases and would fail
if the ground has a large slope, in which case, a modification in the WPG would be needed.
However, the presented method provides a very powerful reactive navigation system able to
cope with a large set of uneven grounds thanks to a very efficient inverse dynamics setup and
an automatic way of finding footsteps. The user, or a high decision planner, only needs to
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provide a direction of motion. Future work will apply this methodology in a real robot, and
the identification of the position of contact points would be necessary through, for instance,
an artificial skin at the sole of the robot.

4.5 Integration and Control of the Capture Point

This section presents the integration of the Capture Point within the inverse-dynamics SoT
to allow for a better control of the CoM acceleration, acting in a certain way as a preview
that can prevent dangerous CoM motion, and can automatically launch a step in case the
robot is about to fall8.

4.5.1 Introduction

The Capture Point (CP), also referred to as the Extrapolated Center of Mass [Hof 05], is the
point on the ground where the robot should step on to be able to come to a complete rest
[Pratt 06b], and is described in more detail in Appendix C. There exist two main applications
for the CP. One is bipedal push recovery by directly stepping onto the region defined by the
CP [Pratt 06a], or onto a region obtained by learning offsets to the predicted CP, which
can improve the robustness of the system [Rebula 07]. The other application is the design
of bipedal walking control, first proposed in [Hof 05] from a theoretical point of view, and
applied in a biped robot using a pattern generator for the CP in [Englsberger 11]. The work
presented in this section aims at moving the whole-body while controlling the CP at the same
time. To this end, the CP task (Section 3.4.4) given by (3.68) is included in the dynamic SoT
to achieve the control of the CP.

For a standing phase where both feet are on the ground and the rest of the body is moving
with arbitrary motion, there are typically two ways to control the CoM. The first one is to fix
it to a certain horizontal position, for instance the center of the support polygon, imposing
an equality constraint. Although this approach ensures balance, it greatly affects the whole
motion since it overconstrains the robot body and can make feasible tasks not achievable. The
other way is to let the CoM lie anywhere inside the support polygon imposing an inequality
constraint. This control is less restrictive and allows for a larger variety of motion, but it
presents the potential inconvenience that if the CoM reaches the border of the polygon with
any positive velocity, balance will be lost as the CoM will inevitably leave the polygon. Thus,
the CoM velocity is important and if not properly considered, the border of the support
polygon can become a dangerous zone that can easily lead to a loss of balance. A naive way
to overcome this difficulty is by restricting the CoM inside a polygon that is strictly inside
the real support polygon, giving some “security margins”. However, the problem is again the
imposition of unnecessary constraints to the motion, and the proper choice of those margins
is not evident.

The problem with the CoM arises from the fact that inverse dynamics control considers
only a linearization of the current system dynamics, and thus there is very little it can do
by itself to avoid overshoots due to large CoM velocities and accelerations. The control law
cannot predict future states. To overcome these limitations, optimal control can be used, but

8This framework appears in: O. Ramos, N. Mansard, P. Souères, Whole-body Motion Integrating the Capture
Point in the Operational Space Inverse Dynamics Control, IEEE-RAS International Conference on Humanoid
Robots (Humanoids), Madrid, Spain, November 2014 [Ramos 14b].
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it is currently computationally very expensive. The approach in this section rather proposes
to preview the CoM future through the CP, and therefore to constrain the CoM velocity at the
limit using the CP as a measurement of its future, since both quantities are related, as (3.66)
shows. While the CP remains inside the support polygon, the robot is able to freely move its
whole-body with the consideration that there will always exist the possibility to come to rest.
That is, the robot keeps and will keep its balance. If the CP leaves the support polygon while
performing some fast motion, it will not be possible for the robot to come to rest in double
support and, unless a step is taken, balance will be lost. Then, a task to impose a constraint
on the CP can be a good solution.

The approach presented in this section aims at directly bounding the CoM velocity by
controlling the CP, since both quantities are related, as (3.66) shows. If the CP remains inside
the support polygon, the robot will be able to freely move with the consideration that there
will always exist the possibility to come to rest. That is, the robot will be stable. If the CP
is out of the support polygon, it will not be possible for the robot to come to rest in double
support and, unless a step is taken, it will lose its balance. Thus, the CP task is proposed
inside the OSID control as an inequality task to keep the CP inside the support polygon.
Moreover, this task can further be used with a “larger” support polygon, in which case, a step
will be required, but the CP will not move without bounds, making the step feasible. The
fact of controlling the CP as a task implies that it will not escape the pre-defined polygon by
implicitly constraining the whole motion of the robot. The implicit constraints might appear
as motion of the parts of the robot for which no task is specified (for instance, an arm or the
chest) in an attempt to compensate the otherwise fast falling motion.

4.5.2 Scheme for the Capture Point Control

The first use of the CP task introduced in Section 3.4.4 is to directly keep the CP inside the
real support polygon. This is done by defining the limits of the task (rp and rp) in terms
of the real support polygon as in (3.68). The CP task is then added to the dynamic SoT,
described in section 3.3.3, as an inequality task with a priority higher than the rest of the
tasks, so that it is satisfied in all the cases. This leads to a more restrictive control than
simply constraining the CoM within the support polygon, but it has the advantage that the
CoM velocity is also controlled. This implies that the CoM at the borders of the polygon will
not present high velocities that make it irreversibly exit the polygon. The reason is that by
definition, if the CP is always kept inside the polygon, the CoM will be able to come to a rest
within it in finite time. In other terms, the robot will be able to move without falling.

However, there are situations where the fulfillment of a task might require to move the
CoM away from the support polygon (for example, if the robot has to reach an object that
is farther than roughly the length of its arm), which would cause a loss of balance. For these
cases, the strict balance condition can be relaxed by defining a polygon outside the limits
of the real support polygon, but within an area that is reachable by a step, as Fig. 4.38
shows. Then, this ‘extended’ polygon is used as limit for the position of the CP. Provided
that double support balance is lost, a step towards the CP will have to be taken to recover
balance; otherwise the robot will fall. This scheme is summarized as follows:

• Definition of the Capture Point task. An ‘extended’ polygon covering the area that is
reachable by the robot foot is defined as limit for the CP task. This will constrain
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Figure 4.38 – The red polygon defines the real support polygon in the double support phase. The green
polygon defines an ‘extended’ polygon used to limit the position of the capture point. This polygon is defined
so that the farthest feasible step lies within it

the CP to always lie within the polygon and will avoid the problem of its exponential
increase, which would prevent the foot from stepping over it. Then, other tasks are
added to the inverse dynamics SoT to generate whole-body motion.

• Loss of Balance. If at some point of the robot motion the CP exits the real support
polygon, the robot will not be able to recover its balance if it keeps its current support
polygon. It will inevitably fall unless the real support polygon is extended to cover the
CP position. To this end, a step must be executed.

• Beginning the step. To perform a step, the foot that is closer to the current CP position
is selected. As soon as the CP leaves the real support polygon, the foot leaves the
ground towards an intermediate position. This position is horizontally located at the
current position of the CP, and the step height is pre-defined (assuming a flat horizontal
ground). The horizontal position is chosen to be the current position of the CP since
the final position of the CP is unknown and the motion needs to be fast (defining a
position in the midway between the current foot position and the CP position reduces
the capability of reaching the CP at the final stage). The desired intermediate position
will change continuously as the CP moves farther. Because of this change, only the step
height is considered as criteria to finish this stage. As soon as the desired step height is
achieved, the foot will move towards its final position.

• Ending the step. After the foot completed the intermediate position, its final position
is defined as the current CP position. Since the CP is still moving, the task objective
will also be time-varying. However, the CP task defined at the beginning of the scheme
is controlling the CP to remain inside a greater polygon preventing it from moving to
an unreachable position. If no control was performed on the CP, it would exponentially
move away and the foot would never be able to meet it, causing the robot to fall down
in the attempt to step over the CP; thereof the importance of the CP task. When the
foot reaches the CP on the ground, the robot again enters a double support phase which
will now contain the current CP. Then, the CoM is ensured to be able to come to a full
stop.
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(a) View of the whole robot

(b) Lateral view of the feet

Figure 4.39 – Snapshots of the robot trying to reach an object (ball) which is far from the arm reachable
space unless a step is performed. The robot starts in double support, then as the right arm moves towards
the ball the right foot automatically starts a step to follow the CP. After the step finishes, the robot continues
its motion to reach the target with the right hand.

4.5.3 Results

The described framework was implemented and tested using the dynamic model of HRP-2.
The desired objective was for the right hand to reach the position specified by the ball in
front of the robot (Fig. 4.39). It can be foreseen that if the robot tries to reach that position
with the right hand, there are two possibilities for the CoM: (i) if the CoM is controlled to
lie inside the support polygon, the robot will not achieve the goal keeping double support
since the target is far away from the reachable limits; (ii) if the CoM is not controlled, the
robot will fall down while trying to reach that point, unless it performs a step. The latter case
without an additional step is shown in Fig. 4.40, where the right hand task drives the CoM far
away from the limits of the support polygon making the robot fall. This scenario describes a
typical application of the proposed approach. To overcome the problem, an extended support
polygon was defined as in Fig. 4.38 covering the space that is reachable by the foot. Then,
the CP task was added to the SoT having this polygon as limit.

Following the control scheme of section 4.5.2 it is observed in Fig. 4.39 that the robot
starts moving the arm towards the ball. However, since the target is far, this implies an
initial relatively fast motion of the arm, which generates a ‘dangerous’ velocity for the CoM.
This is detected by the CP leaving the real support polygon as Fig. 4.41 shows (at t = 0.27s),
which acts as a preview control for the CoM. It is at this moment that the right foot leaves
the ground and moves towards the CP, which is constrained not to exponentially increase but
to lie within some bounded region, as verified by Fig. 4.41 (at t = 1s the CP is bounded).
When the foot finally reaches the CP, the robot enters a new double support phase, which now
contains the CoM. After the foot reaches the ground (at t = 1.10s), the CoM still presents a
forward motion, and therefore continues moving forwards, but eventually it is able to come to
rest since the CP is now contained inside the new support polygon. At the end of the motion,
the right hand reaches the far target (the ball, in this case), and both the CoM and the CP
converge to the same position provided that the CoM velocity is null. Fig. 4.41 also shows



4.5 Integration and Control of the Capture Point 95

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time (s)

x 
(m

)

 

 

Robot CoM

Right hand

Support polygon limit

Figure 4.40 – Temporal evolution in the forward direction (‘x’) when there is no control of the CoM or the
CP

that it is the usage of the CP that acts as a predictor for the CoM motion and allows the foot
to start the step as a reaction to the velocity of the CoM, before it has escaped the support
polygon and before a recovery is too late.

It should be noted that the right hand continues its motion towards the ball at all times.
By the end of the motion, Fig. 4.39 shows a natural movement of the left hand backwards to
compensate for the motion of the right hand, even though there is no specific task controlling
the left arm. This is a consequence of the inverse dynamics SoT control and resembles the
way humans move (the effect of the SoT resembling human motion was previously noted in
Section 4.3). It is also important to point out that the step parameters (when to start the step
and where to step to) have not been previously precomputed but have resulted as a natural
consequence of the control framework in response to the loss of balance.

4.5.4 Conclusions

The proposed method proposed has shown the feasibility of incorporating the capture point
inside the OSID SoT in order to perform tasks that would otherwise make the robot fall
down. Stepping on the CP is a good solution but presents the inconvenience that the CP
can exponentially escape the reachable zone for the foot. The control of the CP guarantees
that it remains inside the specified extended polygon by implicitly constraining the whole
body motion within limits that will allow the robot to attain balance after a step. One of the
advantages of integrating the CP in the control scheme is the ability to determine the moment
when the robot will lose its balance, and thus, when a step has to be started and where to
step on. Moreover, besides balance control, the whole-body is moved with an arbitrary task
generating some useful motion. The limit of the work is that currently only one step can
be performed. The extension to more steps follows the same approach; however, in this case
making the robot walk towards the goal might be more efficient.
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Figure 4.41 – Temporal evolution in the forward direction (‘x’) when the proposed control approach is used.
The black line shows the frontal extreme of the right foot which determines the frontal limit of the support
polygon when the foot is on the ground (as at the beginning and end of the motion)

4.6 Motion for the CHIMP Robot

This section describes some work that was done with the Tartan Rescue team for the DARPA
Robotics Challenge (DRC) Trials, which took place on the 20th and 21st December 2013 in
Miami, Florida, USA. The main objective of the DRC is the development of robot technology
that can assist humans in case of disasters. Following this objective, the trials were oriented
towards the achievement of several tasks that can be found in natural and man-made disasters,
through the cooperation between humans and robots rather than robot autonomy. Thus, the
participating robots were semi-autonomous: human operators remotely controlled the most
critical decisions based on the environmental information acquired with the robot sensors. The
Tartan Rescue team developed the robot called CHIMP at the National Robotics Engineering
Center (NREC), which is part of the Robotics Institute at Carnegie Mellon University (CMU)
in Pittsburgh, USA. The work described here was achieved during a short stay at NREC from
August to December 2013. Due to the pragmatic nature of the trials, the tight schedule, and
the fact that the robot was built in a very short period of time, the work of the team was in
some sense more experimentally oriented with the main purpose of scoring as many points as
possible profiting the robot design. At the end, the team placed 3rd out of 16 and continued
to the DRC Finals, which will take place in June 2015.

4.6.1 Overview of CHIMP

CHIMP, which stands for CMU Highly Intelligent Mobile Platform9, is a robot developed at
Carnegie Mellon University in 2013 as a platform for executing complex tasks in dangerous

9T. Stentz, H. Herman, A. Kelly, E. Meyhofer, G.C. Haynes, D. Stager, B. Zajac, J.A. Bagnell, J. Brindza,
C. Dellin, M. George, J. Gonzalez-Mora, S. Hyde, M. Jones, M. Laverne, M. Likhachev, L. Lister, M. Powers,
O. Ramos, J. Ray, D. Rice, J. Scheifflee, R. Sidki, S. Srinivasa, K. Strabala, J-P Tardif, J-S Valois, J.M.
Vande-Weghe, M. Wagner, C. Wellington: CHIMP, the CMU Highly Intelligent Mobile Platform, Journal of
Field Robotics, 2015 (in press) [Stentz 15].
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Figure 4.42 – Overview of the system that composes CHIMP [Stentz 15]

and degraded human engineered environments [Stentz 15]. The robot was designed with the
peculiarity of having a track at the end of each limb in order to avoid the need for complex
control by almost naturally maintaining static balance. An overview of the system composing
the robot is shown in Fig. 4.42. The robot has in total 39 DoF: 7 DoF for each arm, 6 DoF
for each leg, 1 DoF to control each of the 4 tracks, 4 DoF for each hand, and 1 DoF for the
spinning LIDAR units at its head, which are located with an offset of 90 degrees with respect
to each other. The latter DoF is always in motion to scan the environment and is typically
not directly controlled. If any hazard is identified, the robot can be disabled using the system
called the Mobility-Stop (M-Stop) controller, which prevents the joint motors from actuating
by de-energizing them. Due to the motor brakes, the robot keeps its posture after an M-Stop.

CHIMP has various sensors embedded in its head to generate 3D representations of its
environment. These sensors are: 2 LIDAR scanners that can capture 360 degrees of geometric
data surrounding the robot, 2 cameras with panomorphic fisheye lenses that provide video
texture data for the geometric data, a pair of stereo HDR cameras with a wide field of view
used for visual odometry and obstacle detection, and a second stereo pair with a narrow
field of view to obtain detailed range information for manipulation tasks. The robot also
has an inertial measurement unit (IMU) system to estimate its pose. The 3D reconstruction
obtained with the sensors is currently used to help human operators understand the robot
environment and take decisions rather than to autonomously process the information. While
the latter choice would arguably be more efficient, it implies more development and systems
integration.

CHIMP possesses 3 CPUs and several FPGAs that allow it to be semi-autonomous: the
operator sends high level commands and the robot executes and monitors them locally while
still processing different sensor data. At the software level, the robot has an Operator Control
Unit (OCU) designed to visualize the robot within its environment, to simulate its behavior
and to send control commands in task and joint space. In fact, the OCU encapsulates all the
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Figure 4.43 – Four-limb posture for CHIMP

methods used for motion generation, manipulation and data fusion, and it only shows the
necessary information to control the robot in a “friendly” way. More details about the whole
hardware and software system can be found in [Stentz 15]. It is interesting to point out that
the robot was designed, built, and tested in 15 months, and it was completely assembled only
6 weeks before the trials, leaving little time for real experimentations.

4.6.2 Posture Change from Four to Two Limbs

CHIMP was designed to be a statically balanced robot and two types of postures were pre-
viewed by the design: a configuration with all four limbs on the ground, called a four-limb
posture (Fig. 4.43), and a configuration with only the two legs on the ground, called a two-limb
posture (Fig. 4.52). The four-limb configuration is used to drive over rough terrain using an
Ackermann steering geometry, and it provides a very stable posture allowing the robot to run
over obstacles controlling the tracks traction but without major modifications to the overall
configuration. The two-limb configuration, although less stable, imposes no constraints on
the arms, and is used for manipulation operations as well as for two-limb locomotion. The
change between both postures, starting with a four-limb posture, is done in two steps: (i) the
motion of the frontal tracks backwards without leaving the ground, and (ii) the motion of the
robot body upwards to a two-limb posture. Before explaining the details of these two parts,
the degrees of mobility of the robot in a four-limb posture will be analyzed.

Analysis of CHIMP in a Four-limb Posture

Consider a mechanism composed of Nl links and Nj joints, where joint i has fi DoF, in a
space with λ DoF. The degree of mobility M (also called degree of freedom) of this mechanism
is given by:

M = λ(Nl − 1−Nj) +

Nj
∑

i=1

fi (4.10)

which is usually known as the Chebychev-Grübler-Kutzbach’s equation [Gogu 05], or sometimes
simply as the Grübler’s equation [Hunt 67]. This equation will be applied to determine the
degree of mobility of the robot torso when it is in a four-limb posture as shown in Fig 4.43.
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Figure 4.44 – Scheme showing the shoulders, knees and the frame used in the algorithm to move the frontal
tracks backwards

Although each arm of CHIMP possesses 7 DoF (without considering the hand) and each
leg 6 DoF, the kinematic chains from the torso to the tracks contain only 5 DoF for both
cases. The 2 lost DoF in each arm correspond to the joints that change the orientation of
the hand (hand roll and pitch in Fig 4.43), and the lost DoF in each leg corresponds to the
paddles. In this configuration, the number of joints that can move the robot is 5 per limb
and then Nj = 20. Since all joints are rotational, fi = 1 for every joint i, where i = 1, ..., Nj .
Kinematically, each limb contains 4 links from the torso to the track; additionally, the torso
is a link that attaches the shoulders and the hips, and the ground is a link attaching the 4
tracks. Thus, the total number of links becomes Nl = 18. With these values, and using λ = 6
for the 3D space, Grübler’s equation for CHIMP gives

M = 6(18 − 1− 20) +

20
∑

i=1

1 = 2

which indicates that the robot body has M = 2 degrees of mobility when it is in a four-limb
posture. The interpretation is the following: when the four tracks are fixed on the ground,
the torso of the robot can only move in a constrained 2D manifold.

Part 1: Moving the Frontal Tracks Backwards

The motion generation method described here is a heuristic approach based on the geometry
of CHIMP and consists in fixing the tracks and determining the pose for the torso that allows
for the configuration to be achievable. Let the knees and the elbows be represented by ki,
and the shoulders and hips by si, where i = {1, 2, 3, 4}, as Fig. 4.44 shows. The length of
each thigh and arm will similarly be called li. For a given position of the tracks, the positions
of ki are fixed since from each track to each knee/elbow ki there are only 2 DoF and both
intersect at the same point. Similarly, the positions of the shoulders and elbows si are fixed
with respect to the robot torso.

Let the initial reference frame for the torso be located somewhere in the middle of it,
oriented with the x axis pointing from the back to the front of the torso, the z axis from the hips
to the shoulders, and the y axis set to complete a right-handed frame, as Fig. 4.44 shows. Let
the pose of the torso with respect to this frame be Xt = (xt, yt, zt, θ

x
t , θ

y
t , θ

z
t ), where (θxt , θ

y
t , θ

z
t )
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(a) CHIMP moving the frontal tracks backwards

(b) CHIMP rotating the frontal tracks

Figure 4.45 – CHIMP moving its frontal tracks (beginning of posture change from four limbs to two limbs)

is a parameterization of SO(3). Given some desired ki (obtained from the desired tracks
poses), and a desired position for the torso in the horizontal plane (yt and zt), the problem
consists in finding the good pose for the torso Xred

t = (xt, θ
x
t , θ

y
t , θ

z
t ) that does not violate

physical constraints imposed by the links (thighs and arms). In other terms, the torso has to be
located in such a way that it is possible for si to be jointed to the respective ki through the links
li. For a given torso pose Xt, the distance between si(Xt) and the respective ki is di(Xt) =
‖si(Xt) − ki‖2. Letting S(Xt) = (s1(Xt), s2(Xt), s3(Xt), s4(Xt)), K = (k1, k2, k3, k4), and
L = (l1, l2, l3, l4), the measure of the feasibility C(Xt) = (c1(Xt), c2(Xt), c3(Xt), c4(Xt)) will
be

C(Xt) = (‖S(Xt)−K‖2 − L)2. (4.11)

When C(Xt) is null, a feasible torso configuration has been achieved. Although different
optimization methods can be applied, a straightforward gradient descent was used to minimize
C(Xt), which in practice gave good results. Let α > 0 ∈ R be the step size, and let Xred

tk
be

Xred
t at iteration k. The update rule using gradient descent is given by

Xred
tk+1

= Xred
tk

− αJt(Xtk )C(Xtk) (4.12)

where the Jacobian is

Jt(Xtk ) =
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Figure 4.46 – CHIMP moving to its final 2 limb posture (second part of posture change from four limbs to
two limbs)

After determining a suitable torso pose Xt, inverse kinematics is used to get the joint
configurations for each limb. Using this method, the results shown in Fig. 4.45 were obtained.
In Fig. 4.45a, the pose for the frontal tracks is continuously changed backwards and the pose
of the torso is accordingly found. Once the projection of the CoM on the ground lies inside
the polygon formed by the leg tracks, the frontal tracks can leave the ground to a two-limb
posture. However, to facilitate the transition and to move the CoM to a safer position, the
frontal tracks are further rotated following the same method, as Fig. 4.45b shows.

Part 2: Moving the Frontal Tracks Upwards

After the CoM projection lies inside the polygon formed by the leg tracks, the frontal tracks
can leave the ground without affecting the robot balance. Once the frontal tracks leave the
ground, the torso gains DoF and its pose is no longer constrained to a 2D manifold. To achieve
a final pre-defined posture, the motion was decoupled in two parts: the first concerns the legs
and the second the arms. The three joints at hips of CHIMP intersect at a single point and
present a particular configuration similar to a Z-Y-Z mechanism. Consequently, to achieve
a rotation of the hips about an arbitrary axis, the transformation between the axis-angle
representation and the Z-Y-Z Euler angles can be directly used, and the rotation angles in Z,
Y and Z correspond directly to each joint at the hip. Profiting this fact, the increment ∆θh
about the world y axis (oriented laterally) was successively given to the hips and the same
increment but in an opposite direction ∆θk = −∆θh was given to the knee joints. For the
arms, a cubic interpolation that accepts intermediate waypoints was used. The results are
shown in Fig. 4.46 where the robot starts where Fig. 4.45 stopped and ends up in a two-limb
posture which, in this case, is used for two-limb locomotion.

4.6.3 Speed and Acceleration Limits for Locomotion

Since one of the design criteria for the robot was to be statically balanced, special care had to
be taken when making the robot move using the tracks. A very fast initial acceleration or a
sudden stop when the robot has a high velocity can make it lose balance unless some control
is applied to compensate for the destabilization. However, when the M-stop (Section 4.6.1) is
applied, all the motors are de-energized and there is no possibility to apply a compensating
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Figure 4.47 – Lateral representation of the punctual model of the robot. The robot is assumed to have
stopped after having a motion to the right. The circle represents the punctual mass and the lower horizontal
line represents the ground.

control. This section presents the criteria used to limit the speed and the acceleration when
the M-stop is applied so that balance is not lost.

Linear Speed

The track actuators of CHIMP can provide high torques and, although the robot linear speed
using the tracks can be very fast, it must be bounded in case it suddenly stops; that is, an
M-stop at the robot maximum linear speed vmax must not make the robot tip over. Since the
robot always keeps its posture while it moves using its tracks, the whole-body can be modeled
as a punctual mass m located at the CoM. The analysis will be based on the transformation
from kinetic to potential energy when the robot stops.

Treating CHIMP as a punctual mass, let the robot energy be E0 =
1
2mv

2 while it is moving
with linear speed v. When the robot suddenly stops (M-stop), its velocity decreases but the
body still tends to move due to its inertia. The energy the robot had while in motion changes
to potential energy up to a moment where all the energy is Ef = mg∆zc, where ∆zc is the
variation in height from the initial to the final CoM position, as Fig 4.47 shows. Assuming
the idealization that all kinetic energy has been converted to potential energy, Ef = E0 and
the variation in height for the CoM can be expressed in terms of the initial linear speed as

∆zc =
v2

2g
. (4.14)

Let the initial position of the robot (when it suddenly stops) be (x0, z0) and its final position
(when it lost all its kinetic energy) be (xf , zf ), where zf = z0 +∆zc. Since after the sudden
stop the robot keeps its posture, if it is moving forwards, it will tend to tip over forwards
about the frontal part of the tracks. Then, the CoM will follow the geometry of a circle shown
in Fig 4.47, and its distance r from the frontal part of the tracks will be constant and given
by r2 = x20 + z20 = x2f + z2f . Let the initial angle formed by the horizontal and the line from
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Figure 4.48 – Lateral representation of the tracks motion when robot suddenly stops.

the frontal part of the track to the CoM be θ0, and the angle at the final CoM position be
θf . The tangent of the latter angle is given by

tan(θf ) =
∆zc + z0
√

r2 − z2f

(4.15)

where the equivalence xf =
√

r2 − z2f has been used. Replacing (4.14) and the equivalence of

r in terms of the CoM initial position in (4.15), and after some straightforward algebra, the
final angle is

θf = arctan

(

v2 + 2gz0
√

4g2x20 − 4gz0v2 − v4

)

(4.16)

which, assuming a known and predefined initial CoM position (x0, z0), is a function of only
the initial linear speed of the robot v.

The robot will not tip over unless θf > 90◦; then, the critical angle is θf = 90◦. As
θf → 90◦, tan(θf ) → ∞ and the denominator of the right-hand side of (4.16) must tend to
zero. Thus, the critical linear speed vcrit is found when 4g2x20 − 4gz0v

2
crit − v4crit = 0 which

leads to

vcrit =

√

2g

(

√

x20 + z20 − z0

)

. (4.17)

The critical linear speed vcrit in (4.17) is the maximum linear speed the robot can have to
avoid tipping over when it suddenly comes to a stop. A safe velocity will be v < vcrit.

When the whole-body rotates about the frontal part of the tracks, the tracks themselves
also rotate about that line. Let the tracks have a length xtr as Fig 4.48 shows, and let the
variation in height of the rear part of the tracks be ∆ztr. Since the tracks rotate with the rest
of the body, the variation of the angle is ∆θ = θf − θ0, or equivalently

∆θ = θf − arctan

(

z0
x0

)

(4.18)

where θf is given by (4.16). Then the geometry of Fig. 4.48 easily shows that the variation
in height of the rear part of the tracks will be

∆ztr = xtr sin(∆θ). (4.19)

This analysis was applied to evaluate different two-limb postures for CHIMP. For a typical
two-limb posture used for two-limb locomotion, the critical linear velocity is vcrit ≈ 0.75 m/s,
but a safe velocity was heuristically determined to be vmax = 1

3vcrit and, with these values,
the elevation of the rear part of the tracks was less than 1 cm, which is almost unnoticeable
for practical purposes.
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Figure 4.49 – Top representation of the robot as a punctual mass when it rotates. The rectangles at the
sides represent the leg tracks

Angular Speed

When the robot is rotating using the motion of its tracks and comes to a sudden stop (M-
Stop), it can eventually tip over due to its angular velocity. In other terms, the robot CoM
will tend to move in the direction tangent to the (circular) trajectory it was describing before
suddenly stopping. Then, it will tend to tip over as in the case of the linear speed. The robot
motion due to its tracks is, for simplicity, modeled as a differential-drive, which in practice has
given good results. Let the horizontal center of the robot, based on the tracks positions, be
ro = (ox, oy) and let the CoM projection on the ground be rc = (xc, yc), as Fig. 4.49 depicts
from a top view representation. The tangential speed at any given time will be v and it is
related to the angular speed ω as v = rω, where r = ‖rc − ro‖2.

When the robot suddenly stops its angular motion, it will tend to tip over following the
tangential velocity it had when it stopped, due to its inertia. First, the edge about which it
would tend to tip over is found as the edge that intersects the velocity v. After the edge is
identified, the previous analysis for the linear speed can be applied to bound the module of v
and the relation between linear and angular speeds allows to also bound the angular speed.
For typical two-limb drive postures for CHIMP, the CoM lies almost at the center of the
support polygon, and the results showed that very big angular accelerations can be applied
without making the robot tip over. Then, the angular acceleration was not bounded.

Initial Acceleration

When the robot starts to move forwards from rest, if its initial acceleration is too high, it can
eventually tip backwards about the rear part of the tracks. Then, the initial acceleration in
the forward direction a = ẍ must be carefully bounded since the track actuators can give the
robot very high initial accelerations that can risk its balance. Let the robot CoM position
be (x0, z0) as Fig. 4.50 shows. With these values, the angle between the horizontal plane

(the ground) and the robot initial CoM is θ0 = arctan
(

z0
x0

)

. When the robot applies a

forward acceleration, there are two forces acting on the CoM: its weight mg, and the inertial
reaction to the acceleration mẍ. These forces can be decomposed into the radial and tangential
components. The radial components do not exert an important effect in this analysis since
they are directed towards the origin. The tangential components can create a force able to
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Figure 4.50 – Lateral representation of the robot when it starts accelerating.

push the robot backwards. The resultant force in the tangential direction is:

Ftan = mẍ sin(θ0)−mg cos(θ0). (4.20)

For the robot to tip backwards, Ftan > 0, and if Ftan < 0 the robot can be safe. Then,
using (4.20) the critical acceleration where the robot would start tipping over is given by the
condition ẍ sin(θ0) = g cos(θ0). This implies that the maximum initial acceleration ẍmax is

ẍmax =
g

tan(θ0)
(4.21)

As for the previous cases, several two-limb configurations were evaluated following this crite-
rion. For a typical two-limb drive configuration, ẍmax = 2.6 m/s2.

4.6.4 Static Balance Criterion

The criterion for static balance consists in having the projection of the CoM on the ground
inside the support polygon. However, as the CoM projection reaches the border of the support
polygon, it is relatively easier for it to compromise the balance than when it is somewhere far
from all the edges. Then, possibly the most desirable position for the CoM is the barycenter
of the vertices of the polygon, for rectangular polygons. When CHIMP has only the two lower
tracks on the ground, the support polygon is a rectangle, but when the four tracks are on the
ground, it can have different polygonal shapes. In these cases, if there are more points in one
side of the polygon, they can unnecessarily bias the center, and therefore a different criterion
for the most desirable CoM ground projection was proposed.

The point that achieves the “highest” static stability was proposed to be the point that
maximizes the minimum distance to any edge of the polygon. Let the support polygon be
composed of nv vertices, each of which is represented as vi ∈ R

2 (i = 1, · · · , nv), and let the
edge between vertex vi and vi+1 be ei (equivalently, there are ne = nv edges). The distance
from an arbitrary point p ∈ R

2 inside the support polygon to edge ei will be represented by
di(p), and it is the component in the normal direction n̂i to the edge. In case the projection
of point p onto the edge normal n̂i lies outside the polygon, the distance to the closest vertex
vi or vi+1 will be considered instead. Then, the cost function for point p is determined as

C(p) = min
i
{di(p)} (4.22)
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and the point that maximizes this distance, and constitutes the best desirable point, is

p∗ = max
p

{C(p)} (4.23)

which can be obtained by any optimization method. For any value of the CoM, a criterion to
measure its static balance can be obtained by the value given by (4.22); that is, the minimum
distance to any edge.

A simple method to obtain the solution to (4.23) is using gradient descent. To this end,
an initial guess p0 consisting of the mean of the vertices is used. Then, letting α > 0 ∈ R

represent the step size, and pk be position p at discrete time k, the update rule is

pk+1 = pk + α

(

∇C(pk) + η

ne
∑

i=1

1

di(pk)
n̂i

)

(4.24)

where ∇C(pk) is the gradient of C(pk) and η > 0 ∈ R is a weighting factor typically very
small. The term in the sum has been added only to avoid getting stuck in a local minimum by
pushing in a direction composed of the normals to the edges, and the weights for the normals
is inversely proportional to the distance to push the new point towards edges with smaller
distance and then maximize this distance. Although this is a heuristic choice, it has given
good results for CHIMP.

Two-limb Postures for CHIMP

For manipulation, due to time constraints and project management, only the arms were used
and the rest of the robot body was kept fixed. Thus, good two-limb postures needed to
be found. One characteristic of CHIMP is that its arms are particularly heavy due to the
harmonic drive motors. This generates the problem that when manipulating objects, if the
CoM is close to the edges of the support polygon, it can tip over. Based on the analysis of
the velocity constraints, the stability criterion, as well as some empirical workarounds with
different arm configurations, the postures shown in Fig. 4.51 were generated. The two-limb
drive posture in Fig. 4.51a satisfies the speed and acceleration constraints specified in the
Section 4.6.3. The manipulation postures ensure that for the worst cases, the CoM will be
far away from the edge of the support polygon. Two manipulation postures were used, one
to grasp objects that are high and the other to grasp objects that are close to the floor.

The two-limb drive posture is shown in the real robot in Fig. 4.52a, and the robot in some
tasks of the trials such as the hose task and the wall task are shown in Fig. 4.52. These tasks
use the previously determined manipulation tasks and only the arms move to grasp the tools
keeping the rest of the body fixed.

4.7 Conclusion

This chapter has shown the effectiveness of the operational-space inverse dynamics framework
for motion generation. Multi-contact handling was experimentally verified with a motion
that included the real HRP-2 sitting in an armchair, and the simulated Romeo and HRP-2
climbing a ladder. Human motion imitation was also presented using an acquisition system,
an initial motion retargeting based on kinematics and a final retargeting based on the inverse
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(a) Two-limb drive (b) Manipulation high (c) Manipulation low

Figure 4.51 – Two-limb postures for CHIMP in simulation: (a) is used for two-limb drive, (b) is used to
manipulate objects that are relatively high, and (c) is used to manipulate objects that are relatively low

(a) Two-limb drive (b) Manipulating hose (c) Cutting the wall

Figure 4.52 – Examples of two-limb postures in the real robot
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dynamics framework, which even allowed for easy edition of the motion. These results were
first presented in simulation and then in the real HRP-2. The inverse dynamics stack of tasks
was also used for analyzing the organization of human motion, which is a promising whole-
body approach that contrasts with simple analysis currently performed in biomechanics.

Another application presented in this chapter includes the incorporation of a walking
pattern generator as an input to the inverse dynamics control. After using some heuristics
for the feet, the simulated robot was able to walk on rough terrains. Moreover, 3D visual
reconstruction was used to guide the foot towards the ground and avoid harsh impacts. To
keep balance, the usage of the capture point was introduced as a safe compromise when moving
the whole body without over constraining the motion. Finally, several heuristics were used to
verify some locomotion constraints associated with CHIMP. Moreover, the inverse dynamics
approach can also be applied to it.



Chapter 5

Conclusion

The complete operational-space inverse-dynamics control scheme based on the task-function
approach has been used in this thesis to generate dynamically feasible whole-body motion for
humanoid robots achieving complex behaviors. Several applications showing the effectiveness
of the approach have been presented and discussed.

5.1 Contributions

This thesis extended the usage of the operational-space inverse-dynamics control by adding
several tasks to control the whole robot body. These tasks were formulated in terms of
equalities and inequalities taking advantage of the capability of the control to use them at
any level of the hierarchy. Equality tasks were used when a specific point in a certain space
needed to be achieved, such as the pose of an operational point (or some components of it)
within strict time constraints, or the position of a point in the visual space of the camera.
Inequality tasks were used when some quantity needed to be bounded for the motion to be
feasible, for instance, joint position and velocity within certain mechanically imposed limits
or the center-of-mass velocity, through the control of the capture point.

The effectiveness of the task-function approach has been demonstrated by generating
different types of motions. The multi-contact capabilities of the control scheme were profited
to make HRP-2 sit in an armchair using a set of tasks knowing the model of the armchair and
the robot, and extensions to other robot or chair models is straightforward. The model of
Romeo was also used to make the robot climb up a ladder by adding and removing tasks and
contacts at the hands and feet sequentially. This thesis also achieved human motion imitation
based on two very efficient tools: motion capture, and the inverse dynamics control. Motion
capture has shown to be a very efficient tool for motion generation when combined with the
stack of tasks giving more expressiveness to the motion. The SoT control scheme enforced
the dynamics of the retargeted motion enabling it to fit with the constraints of the real robot,
which are different to those of the human demonstrator. This retargeting approach allowed
for the quick and efficient generation of a long sequence of movements for HRP-2 including
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motion in single support such as the yoga figure, fast motion in double support, and arbitrary
motion of the arms while walking. Moreover, the SoT provides some easy edition capabilities
to correct the defects of the targeted motion or to augment the original movement with some
artificial features. Using this framework, the work done in this thesis also found that the
SoT can be used as a tool to infer the dynamic organization of human motion preserving key
features of the human motor control organization.

This thesis also achieved walking steps on rough terrain by detecting collision points with
stereo vision reconstruction and moving the foot properly to reach a large support polygon,
which is equivalent to foot-land compliance. The approach provides a powerful reactive nav-
igation system able to deal with a large set of uneven grounds thanks to the efficient inverse
dynamics setup and the automatic way of finding footsteps. In fact, the only input to the
system is the direction of motion and the rest is automatically handled by the framework. The
method was limited to horizontal rough surfaces due to the assumptions of the underlying
walking pattern generator, but if a different pattern generator is used, the same approach
would be valid for surfaces with different slopes. This thesis also presented the incorporation
of the capture point inside the inverse dynamics control through the generation of a dedicated
task which can bound the velocity of the center of mass. In case a task, or a set of tasks,
leads the robot to positions that risk its balance, the capture point task can in principle help
the balance to be kept and then a step can be automatically launched to avoid falling down.
However, this step needs to be very fast, but it is the way a human would react when suddenly
losing balance.

Some movements to generate posture changes for CHIMP were also introduced in this
thesis. The heuristic posture change from having four limbs on the ground to only having two
limbs on the ground was experimentally verified in the robot. Since the robot can move using
its tracks, but keeping its whole body in a pre-determined posture, bounds to the linear and
angular velocity as well as linear acceleration were determined and applied to avoid falling
down when suddenly de-energizing the motors (which was a design requirement). A stability
criterion for more generic support polygons, such as the ones found when CHIMP has all
tracks on the ground was established as the minimum distance to the edges. It was stated
that the best possible position for the center of mass would be the point that maximizes the
minimum distance to the edge of the support polygon. Finally, the inverse dynamics SoT was
applied to CHIMP allowing the robot to climb the first rung of a ladder.

5.2 Perspectives

On a short term basis, some practical adjustments can be considered. The inverse dynamics
control is currently used to generate the desired acceleration and torque to be applied to the
system, but the control applied to HRP-2 is the position obtained by double integration of
the acceleration without sensor feedback. The first short term perspective is to apply the
inverse dynamics control in closed loop to the robot, modeling the motors of HRP-2 and
applying a torque-like control, or acceleration-like control with sensor feedback. Previously
this was not achievable due to the computation times but currently the computation time
is real-time at 200Hz and the implementation is only constrained by the technological limits
currently imposed by the robot. A second perspective in short term is to use a different
walking pattern generator scheme to allow for applying the software compliant-foot motion
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in not only horizontal terrains but with a different slope. A third perspective is to further
investigate the capture point integration in the control scheme, mainly by determining if it
would be efficient to apply it for more than one step or a walking scheme would be more
adequate in that case.

On a middle term basis, an artificial skin can be added to the sole of HRP-2 to effectively
measure the position of the contact points and the corresponding contact force. Then, the
approach developed in this thesis in simulation can be directly applied to the real robot. A
second perspective is to integrate the kinect to the environment sensing. Alternatively, a lidar
can be to scan the 3D environment since it does not depend on lighting conditions as the robot
stereo-pair does, and can thus be used for a wide range of environments. The measurements
can be fused with the information obtained from the stereo-pair to have a more robust and
meaningful environmental reconstruction.

Finally, a long term objective would be to find a way to automatically generate the stack
of tasks from high level objectives or from the direct observation of human movements. This
very challenging objective, that would allow to remove the roboticist form the loop, requires to
be able to automatically structure the observed motion into tasks and constraints, introducing
a semantic of the anthropomorphic movement. In this quest, the understanding of the human
movement will certainly provide engineers with key elements that are still to be discovered.
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Appendix A

Generalized Inverses

A.1 Generalized Inverse

Let A be a matrix in R
m×n. A generalized inverse of A is a matrix A#

g ∈ R
n×m that satisfies

the following condition:
AA#

g A = A

which is also called the first Moore-Penrose condition [BenIsrael 03]. A reflexive generalized

inverse of A is a matrix A#
r ∈ R

n×m that satisfies

AA#
r A = A and A#

r AA
#
r = A#

r ,

which are also known as the two first conditions of Moore-Penrose. In this document, as
stated in Section 3.2.1, A# denotes any reflexive generalized inverse of A.

Properties

1. ∀A ∈ R
m×n ∃A#

g ∈ R
n×m, and ρ(A#

g ) ≥ ρ(A), where ρ(A) denotes the rank of A.

2. A#
g = A#

r ⇔ ρ(A#
g ) = ρ(A).

3. AA#
g = (AA#

g )2 and A#
g A = (A#

g A)2.

4. If A is square and non-singular, then, A#
g and A#

r are unique and A#
g = A#

r = A−1.

5. Let the sets of A#
g , and A#

r be S#
g and S#

r , respectively, then, S#
r ⊂ S#

g . Equivalently,
any reflexive generalized inverse is a generalized inverse.
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A.2 Pseudo-Inverse

The pseudo-inverse, also called the Moore-Penrose inverse of a matrix A ∈ R
m×n is a matrix

A+ ∈ R
n×m satisfying the four Moore-Penrose conditions [Penrose 55]:

AA+A = A (AA+)T = AA+

A+AA+ = A+ (A+A)T = A+A

For particular cases, the pseudo-inverse A+ of A ∈ R
m×n is given by:

• if m < n and ρ(A) = m, then AAT is nonsingular and A+ = AT (AAT )−1,

• if n < m and ρ(A) = n, then ATA is nonsingular and A+ = (ATA)−1AT ,

• if m = n = ρ(A), then A+ = A−1,

• if ATA = I (the columns are orthonormal), or AAT = I (the rows are orthonormal),
then A+ = AT .

Properties

1. ∀A ∈ R
m×n, A+ is unique.

2. (AT )+ = (A+)T .

3. A = (A+)+ = (AA+)TA = A(A+A)T .

4. A+ = (ATA)+AT = AT (AAT )+ = A+(AA+)T = (A+A)TA+.

5. The matrices A+A, AA+, I −A+A, and I −AA+ are symmetric and idempotent.

6. If A = AT ∈ R
n×n and A2 = A, then ∀B ∈ R

m×n, A(BA)+ = (BA)+.

7. Given A ∈ R
m×n and B ∈ R

n×p, if (i) ATA = I, or (ii) BBT = I, or (iii) A is full
column rank and B is full row rank, then (AB)+ = B+A+.

Relation with Linear Systems

Let A ∈ R
m×n, x ∈ R

n and b ∈ R
m. The problem of finding the general solution to the linear

system Ax = b, which can be expressed as the minimization problem

min
x

‖Ax− b‖22

is given by x∗ = A+b+(I −A+A)z, where z ∈ R
n is an arbitrary vector and ‖.‖2 denotes the

L2 norm of a vector. If additionally, the norm of x has to be minimized; that is,

min
x

{‖x‖22 such that x = argmin ‖Ax− b‖22},

the result is given by x∗ = A+b, which is also known as the minimum norm solution.
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Computation

An efficient way to compute the pseudo-inverse is using the singular value decomposition
(SVD). The SVD decomposition of A ∈ R

m×n, with rank ρ(A) = r, is:

A = UΣV T

where U ∈ R
m×m, V ∈ R

n×n are orthogonal matrices (UT = U−1, V T = V −1), and Σ ∈ R
m×n

is a diagonal matrix containing the singular values σi ∈ R of A and zeroes in the diagonal.
The form of this matrix is

Σ =

[

Σ̄ 0̄a
0̄b 0̄c

]

where Σ̄ =











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr











∈ R
r×r,

0̄i, with i = {a, b, c}, are zero-matrices such that 0̄a ∈ R
r×(n−r), 0̄b ∈ R

(m−r)×r and 0̄c ∈
R
(m−r)×(n−r), and σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0. Let ui ∈ R

m and vi ∈ R
n represent the ith

columns of U and V , respectively, so that

U =
[

u1 · · · ur ur+1 · · · um
]

V =
[

v1 · · · vr vr+1 · · · vn
]

.

The vectors ui, vi are the ith left and right singular vectors of A, respectively, satisfying
Avi = σiui and ATui = σivi, for i = 1, · · · , r. An orthonormal basis for the image of A is
the set {u1, · · · , ur}, and an orthonormal basis for the kernel of A is the set {vr+1, · · · , vn}.
Considering only the first r vectors, A can be reduced to:

A =

r
∑

i=1

σiuiv
T
i

Since the matrix Σ̄ is diagonal, its inverse Σ̄−1 can be obtained replacing σi by σ−1
i . Then,

the computation of A+ is directly:

A+ = V Σ−1UT = V

[

Σ̄−1 0̄a
0̄b 0̄c

]

UT =
r
∑

i=1

1

σi
viu

T
i

In cases where σi → 0, the denominator might be ill-defined. In these cases, the damped
pseudo-inverse A† can be used, and is computed as

A† =
r
∑

i=1

σi
σ2i + α2

viu
T
i

where α is the damping factor. The damped pseudo-inverse is the solution x∗ = A†b to the
problem

min
x

‖Ax− b‖22 + α2‖x‖22
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A.3 Weighted Generalized-Inverse

Given a matrix A ∈ R
m×n and the positive definite matrices R and L, the weighted generalized

inverse of A for the weights L and R (also called the L,R-constrained Moore-Penrose inverse
of A [Yanai 11]) is a matrix AL#R ∈ R

n×m satisfying the following conditions [Doty 93]:

AAL#RA = A (LAAL#R)T = LAAL#R

AL#RAAL#R = AL#R (RAL#RA)T = RAL#RA

The weighted generalized inverse AL#R is obtained as

AL#R = RAT (ATLARAT )+ATL =
√
R(

√
LA

√
R)+

√
L

where
√
R and

√
L are decompositions such that

√
R
T√

R = R and
√
L
T√

L = L, respectively.
A usual choice is the Cholesky decomposition.

Particular Cases

The generalized inverse of matrix A weighted on the right by R is:

A#R =
√
R(A

√
R)+ = RAT (ARAT )+,

and the generalized inverse of A weighted on the left by L is:

AL# = (
√
LA)+

√
L = (ATLA)+ATL.

Additionally, depending on the rank of A, the following two cases are found:

• if A is full row-rank, then A#R = RAT (ARAT )−1,

• if A is full column-rank, then AL# = (ATLA)−1ATL.

Relation with linear systems

Let A ∈ R
m×n, x ∈ R

n, b ∈ R
m, and let the M -weighted norm of vector x be ‖x‖M =

(xTMx)
1

2 , where M is a positive definite matrix. The solution to the following optimization
problem

min
x

{ ‖x‖2R such that x = argmin ‖Ax− b‖2L} (A.1)

is given by x∗ = AL#Rb. From this generic problem, two particular cases can be identified.
The first case is the minimization

min
x

‖Ax− b‖2L

whose solution is given by x∗ = AL#b. The second case is the minimization

min
x

{ ‖x‖2R such that x = argmin ‖Ax− b‖22} (A.2)

whose solution is given by x∗ = A#Rb.



Appendix B

Model Predictive Control for Dynamic

Walking

B.1 Discrete Dynamic System

Let the robot CoM position be represented by rc = (xc, yc, zc). The linear inverted pendulum
(LIP) model [Kajita 01] assumes that the robot CoM is maintained at a constant height zc,
so that its position can be fully represented by the two horizontal components (xc, yc). Since
the motion in the horizontal directions (x, y) can be decoupled, only the x components will
be explicitly described, but the y components are obtained in a similar way. Using a sampling
period T , the discrete variable for the position is noted as xck = xc(kT ) = xc(tk), where k
is the k-th sample, and the state variable comprising the position, velocity and acceleration
of the center of mass is noted as x̂k = (xck, ẋ

c
k, ẍ

c
k). The Zero Moment Point (ZMP) on the

ground is represented by (xz, yz). Using this notation, the discrete dynamic system relating
the ZMP and the CoM is [Kajita 03a]:





xck+1

ẋck+1

ẍck+1



 =





1 T T 2

2
0 1 T
0 0 1









xck
ẋck
ẍck



+







T 3

6
T 2

2
T







...
x ck

xz =
[

1 0 − zc

g

]





xck
ẋck
ẍck



 .

B.2 Recursive Model

Model predictive control (MPC) generates a control based on the predicted future states using
a prediction horizon. Using the previous dynamics recursively, and considering a prediction



B.3 MPC based Pattern Generator 118

horizon of N samples, the velocity of the CoM from time tk+1 to tk+N can be expressed as
[Wieber 06b]:

Ẋc
k+1 =







ẋck+1
...

ẋck+N






= Pvs x̂k + Pvu

...
X
c
k

where
...
X
c
k = (

...
x c
k, · · · ,

...
x c
k+N−1) is the jerk of the CoM from time tk to tk+N−1, and the

matrices Pvs and Pvu are given by

Pvs =







0 1 T
...

...
...

0 1 NT






Pvu =







T 2

2 0 0
...

. . . 0

(1 + 2N)T
2

2 · · · T 2

2






.

In the same time horizon, the ZMP from tk+1 to tk+N is expressed as:

Xz
k+1 =







xzk+1
...

xzk+N






= Pzs x̂k + Pzu

...
X
c
k

where the matrices Pzs and Pzu are

Pzs =









1 T T 2

2 − zc

g
...

...
...

1 NT N2T 2

2 − zc

g









Pzu =









T 3

6 − Tzc

g
0 0

...
. . .

...
[1 + 3(N − 1) + 3(N − 1)2]T

3

6 − Tzc

g
· · · T 3

6 − Tzc

g









.

B.3 MPC based Pattern Generator

The first approach that used optimal control to compute the desired trajectory for the CoM
based on the system dynamics was proposed by [Kajita 03a] and uses the jerk of the CoM as
control signal: uk = (

...
X
c
k,

...
Y
c
k). Using both horizontal components (x, y) at the same time,

and considering the preview horizon from k+1 to k+N , this approach can be written as the
following MPC problem [Wieber 06b]:

min
uk

1

2
q
(

‖Xz
k+1 −Xzr

k+1‖2 + ‖Y z
k+1 − Y zr

k+1‖2
)

+
1

2
r
(

‖...
X
c
k‖2 + ‖ ...

Y
c
k‖2
)

where Xzr
k+1, Y

zr
k+1 are the desired references for the ZMP, and q, r ∈ R

+ are positive constants
used to balance the minimization of the jerks with the tracking of the reference ZMP. The
solution to this problem provides the optimal pattern for the motion of the robot modeled as
an inverse pendulum and is, thus, usually referred to as a pattern generator.

To automatically decide the foot placement for the steps, the scheme can be modified
by regulating the speed of the CoM. The optimization variable in this case is expanded to
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uk = (
...
X
c
k,

...
Y
c
k,X

f
k , Y

f
k ), and (Xf

k , Y
f
k ) represent the positions on the ground of the following

m foot steps such that Xf
k , Y

f
k ∈ R

m. The resulting optimization problem [Herdt 10], which
is used for Section 4.4 in this thesis, is stated as:

min
uk

1

2
p
(

‖Ẋc
k+1 − Ẋcr

k+1‖2 + ‖Ẏ c
k+1 − Ẏ cr

k+1‖2
)

+
1

2
q
(

‖Xz
k+1 −Xzr

k+1‖2 + ‖Y z
k+1 − Y zr

k+1‖2
)

+
1

2
r
(

‖...
X
c
k‖2 + ‖ ...

Y
c
k‖2
)

where Ẋcr
k+1 and Ẏ cr

k+1 are the desired mean values for the speed of the CoM, and p ∈ R
+ is a

constant value. In this work, the value of the following 2 steps are computed so that m = 2.
For this system, the ZMP references are not fixed in advance but are permanently recomputed
from the feet position decided by the algorithm so that the ZMP lies in the middle of the foot
(or of the feet, when there is double support). Let (Xfc

k , Y
fc
k ) be the current position of the

foot on the ground. Then, the ZMP references are given by:

Xzr
k+1 = U ck+1X

fc
k + Uk+1X

f
k

Y zr
k+1 = U ck+1Y

fc
k + Uk+1Y

f
k

where U ck+1 and Uk+1 are binary matrices describing the time at which the feet are in contact
along the preview window. The components of these matrices are equal to 1 if the correspond-
ing foot is in contact with the ground (it is a support foot), and are equal to 0 otherwise. U ck+1

is always equal to 1 at the beginning of the preview window because it is the current robot
support foot. More concretely, if nr is the remaining number of iterations for the current
robot support foot, and ns is the necessary number of iterations to realize a step, then

U ck+1 =

[

1nr

0N−nr

]

, Uk+1 =





0nr 0nr

1ns 0ns

0N−ns−nr 1N−ns−nr





where 1n ∈ R
n and 0n ∈ R

n are column vectors containing only 1’s or 0’s, respectively. It
should be noted that Uk+1 contains only two columns since only the following 2 steps are
considered.

The constraints that ensure that the ZMP remains inside the support polygon, when the
robot is in single support phase, can be expressed as:











nx1(θ) ny1(θ)
nx2(θ) ny2(θ)

...
...

nxE(θ) nyE(θ)











[

xz − xf

yz − yf

]

≤











δ1(θ)
δ2(θ)

...
δE(θ)











where (xf , yf ) is the foot position, θ is its orientation, (nxi(θ), nyi(θ)) is the normal vector to
the i-th foot edge, bi(θ) is a security margin, and it is assumed that there are E edges for the
foot. Similar constraints can be formulated for the double support phase [Herdt 10].



Appendix C

Capture Point

This Appendix gives a brief review of the derivation of the Capture Point, which is used for
the Capture Point task throughout this document.

C.1 Linear Inverted Pendulum (LIP)

The linear inverted pendulum (LIP), described in [Kajita 01], can be used as a model for the
analysis of a humanoid robot in the space. It consists in approximating the dynamics of the
robot by an inverted pendulum according to some assumptions, which are the following.

1. The robot is represented by a punctual mass m located at its center of mass (CoM).

2. The legs of the robot are massless and the extreme in contact with the ground can be
freely moved (it is not externally actuated).

3. The height of the CoM is kept constant throughout the motion.

Consider the LIP model shown in Fig. C.1. Let the position of the CoM be represented by
rc = (xc, yc, zc), the point of the pendulum in contact with the ground by rz = (xz, yz, 0), and
the force that acts along the pendulum by F = (fx, fy, fz). For a robot with feet, the point
rz is equivalent to the Center-of-Pressure (CoP), which is equivalent to the ZMP of the robot
[Sardain 04]. With this notation, the equations of motion for the system are:

mr̈c = F +mG (C.1)

(rc − rz)×F = 0 (C.2)

where G = (0, 0,−g) is the gravity vector.
Since the third assumptions of the model implies a continuous constant height for the

CoM (żc = 0), then, both the velocity and the acceleration of the CoM will have a null third
component: żc = z̈c = 0. With this consideration, the components of (C.1) can be written as

fx = mẍc, fy = mÿc, fz = mg. (C.3)
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Figure C.1 – 3D Linear Inverted Pendulum (LIP)

Using the equivalence for fz in (C.3), the first two components of (C.2) can be written as

fx =
mg

zc
(xc − xz), fy =

mg

zc
(yc − yz)

which, using (C.3) for the forces, leads to the equation for the CoM dynamics modeled as a
LIP:

¨̃rc = ω2(r̃c − r̃z) (C.4)

where ω =
√

g
zc

is the eigenfrequency of the pendulum, r̃c = (xc, yc) is the vector contain-

ing the horizontal components of the CoM position, and r̃z = (xz, yz) is the ZMP without
considering the third null component.

The solution to the differential equation representing the LIP dynamics (C.4) leads to the
temporal evolutions of the position of the CoM horizontal components as:

r̃c(t) =
1

2

(

r̃c(0)− r̃z +
˙̃rc(0)

ω

)

eωt +
1

2

(

r̃c(0) − r̃z −
˙̃rc(0)

ω

)

e−ωt + r̃z (C.5)

where r̃c(0) and ˙̃rc(0) are the initial conditions. It can be seen that in general the trajectory
for the center of mass diverges due to the exponential term.

C.2 Capture Point Dynamics

The Capture Point (CP), introduced in [Pratt 06b] and also referred to as the Extrapolated
Center of Mass [Hof 05], is the point ξ = (ξx, ξy) on the ground where the robot should step
on to be able to come to a complete rest.

Modeling the robot as a LIP, the contact of the robot with the ground r̃z is not fixed but
can move. Moreover, with a robot that has feet, the point r̃z corresponding to the CoP can
move inside the polygon defined by the supporting foot. If the CoM is moving, the only way
for it to stop is by achieving a constant value for r̃c(t) as time approaches infinity. In (C.5), as
t→ ∞, there is a divergence of r̃c(t) since eωt → ∞. Then, the condition to avoid divergence
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is that the coefficient of the exponential be null, that is:

r̃c(0) +
˙̃rc(0)

ω
= r̃z. (C.6)

Using the condition (C.6), the limit for the CoM position (C.5) and for its velocity, which can
be easily shown, as time approaches infinity is

lim
t→∞

{r̃c(t)} = r̃z = ξ

lim
t→∞

{ ˙̃rc(t)} = 0

where ξ is called the Capture Point since it is the only point where the CoM can come to a
rest. Considering this equivalence for ξ, the condition (C.6) for a general position of the CoM
gives the expression for the instantaneous capture point as:

ξ = r̃c +
˙̃rc
ω

(C.7)

It is also possible to find the expression of the instantaneous capture point by analyzing the
orbital energy of the pendulum [Pratt 06a].

The velocity of the capture point can be obtained by differentiating (C.7) and replacing
both (C.4) and the expression for the velocity of the CoM from (C.7), and is given by:

ξ̇ = ω(ξ − rz) (C.8)

This expression represents the first order dynamics of the CP. Solving the differential equation
(C.8), the explicit formulation of the instantaneous capture point trajectory as a function of
time is

ξ(t) = (ξ0 − rz)e
ωt + rz (C.9)

where ξ0 is ξ at the initial time t0. The computation of (C.9) allows a prediction of the future
position of the capture point.
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Abstract

This thesis aims at providing a solution to the problem of motion generation for humanoid robots.

The proposed framework generates whole-body motion using the complete robot dynamics in the task

space satisfying contact constraints. This approach is known as operational-space inverse-dynamics

control. The specification of the movements is done through objectives in the task space, and the high

redundancy of the system is handled with a prioritized stack of tasks where lower priority tasks are

only achieved if they do not interfere with higher priority ones. To this end, a hierarchical quadratic

program is used, with the advantage of being able to specify tasks as equalities or inequalities at any

level of the hierarchy. Motions where the robot sits down in an armchair and climbs a ladder show

the capability to handle multiple non-coplanar contacts.

The generic motion generation framework is then applied to some case studies using HRP-2 and

Romeo. Complex and human-like movements are achieved using human motion imitation where the

acquired motion passes through a kinematic and then dynamic retargeting processes. To deal with

the instantaneous nature of inverse dynamics, a walking pattern generator is used as an input for the

stack of tasks which makes a local correction of the feet position based on the contact points allowing

to walk on non-planar surfaces. Visual feedback is also introduced to aid in the walking process.

Alternatively, for a fast balance recovery, the capture point is introduced in the framework as a task

and it is controlled within a desired region of space. Also, motion generation is presented for CHIMP

which is a robot that needs a particular treatment.

Keywords: Humanoid robotics, whole-body motion, inverse dynamics, task space, motion imitation,

dynamic walking

Résumé

Cette thèse propose une solution au problème de la génération de mouvements pour les robots
humanoïdes. Le cadre qui est proposé dans cette thèse génère des mouvements corps-complet
en utilisant la dynamique inverse avec l’espace des tâches et en satisfaisant toutes les con-
traintes de contact. La spécification des mouvements se fait à travers objectifs dans l’espace
des tâches et la grande redondance du système est gérée avec une pile de tâches où les tâches
moins prioritaires sont atteintes seulement si elles n’interfèrent pas avec celles de plus haute
priorité. À cette fin, un QP hiérarchique est utilisé, avec l’avantage d’être en mesure de pré-
ciser tâches d’égalité ou d’inégalité à tous les niveaux de la hiérarchie. La capacité de traiter
plusieurs contacts non-coplanaires est montrée par des mouvements où le robot s’assoit sur
une chaise et monte une échelle.

Le cadre générique de génération de mouvements est ensuite appliqué à des études de cas
à l’aide de HRP-2 et Romeo. Les mouvements complexes et similaires à l’humain sont obtenus
en utilisant l’imitation du mouvement humain où le mouvement acquis passe par un processus
cinématique et dynamique. Pour faire face à la nature instantanée de la dynamique inverse,
un générateur de cycle de marche est utilisé comme entrée pour la pile de tâches qui effectue
une correction locale de la position des pieds sur la base des points de contact permettant de
marcher sur un terrain accidenté. La vision stéréo est également introduite pour aider dans
le processus de marche. Pour une récupération rapide d’équilibre, le capture point est utilisé
comme une tâche contrôlée dans une région désirée de l’espace. En outre, la génération de
mouvements est présentée pour CHIMP, qui a besoin d’un traitement particulier.

Mots-clefs : Robotique humanoïde, mouvement corps-complet, dynamique inverse, espace
des tâches, imitation du mouvement, marche dynamique
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