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RÉSUMÉ

Modélisation implicite par squelette et Applications

Modéliser avec des squelettes est une alternative très séduisante aux "points de contrôle"
souvent placés à l’extérieur des formes : cette approche, analogue à un fil de fer dans une forme
modelée, permet de créer des modèles de toutes géométries et topologies. Pour cela, il faut que
les formes définies par chacun des squelettes soient capable de se mélanger de manière lisse.

Introduites en informatique graphique dans les années 90, les surfaces implicites sont la
principale solution à ce problème. Elles constituent un modèle puissant à la fois pour la mo-
délisation d’objets tridimensionnels et pour leur animation : leur construction par squelette et
leurs capacités de mélange par sommation des champs potentiels qui les définissent permettent
en effet la conception progressive et le stockage compact d’objets volumiques, ainsi que l’ani-
mation de déformations pouvant comprendre des changements de topologie.

Les surfaces implicites, et plus particulièrement les surfaces de convolution, forment donc
un modèle particulièrement adapté à la modélisation par squelette. Toutefois, elles présentent
un certain nombre de défaut qui les ont rendu inutilisables en pratique.

Cette thèse propose de nouveaux modèles implicites à squelettes, s’inspirant de la convo-
lution mais basés aussi sur des déformations de l’espace. Ils permettent :

– une génération plus aisée de forme le long de squelettes formés de courbes (des arc
d’hélices),

– un meilleur contrôle des formes tant au niveau de leur épaisseur que de leur mélange,
notamment nos modèles sont invariant par homothétie ce qui les rend plus intuitif,

– la génération de surfaces ayant une topologie plus proche de celle des squelettes,
– la génération de détails fins engendrés par un bruit procédural, les détails se comportant

de manière cohérente avec la surface (et les squelettes) sous-jacente.





ABSTRACT

Implicit modeling with skeleton and Applications

Modeling with skeleton is an attractive alternative to "control points" usually placed outside
a shape in order to model it : this paradigm, similar to a wire inside the modeled shape, enables
model of arbitrary geometry and topology. In order to do so, shapes defined by skeletons should
be able to smoothly blend together.

Introduced in computer graphics in the 70’s, implicit surfaces are one of the main solution
to this problem. They are powerful both for the modeling of 3D models and their animations :
their construction from a skeleton and their blending capacity by simply summing their scalar
field provide an easy way to incrementally create shapes and store them in a compact way, it
also facilitates animation containing changes in topology.

Implicit surfaces, and more specifically Convolution surfaces, are therefore particularly
well adapted to skeleton-based modeling. However, they present a number of drawback that
make them difficult to use in practice.

This thesis propose new skeleton-based implicit models, inspired not only by convolution
but also from space deformations. They enable :

– an easier generation of shape along curve skeletons (arcs of helix),
– a better control of generated shape both in term of thickness and blending, in particular

our model are scale-invariant that make them more intuitive,
– the generation of shape which topology better reflects the topology of its skeleton,
– the generation of small details from a procedural texture, the details behave in a coherent

way with the underlying surface (and its skeleton).
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INTRODUCTION

IT is important to understand the inner structure of a shape. For instance, skeletons can
represent the underlying structure of vertebrate animals and trees. Therefore, modeling
with skeletons is an attractive alternative to "control points" usually placed outside a shape

in order to model it : this paradigm, similar to a wire inside the modeled shape, enables the
creation of models of arbitrary geometry and topology while remaining intuitive to manipulate
(in order to do so, shapes defined by skeletons should be able to smoothly blend together). This
is the reason why skeleton-based modeling should provide a way to make modeling within the
reach of children.

Implicit surfaces are a powerful tool for creating shapes surrounding skeletons and anima-
ting them. This is mainly due to their nice smooth blending properties enabling to easily create
shape of arbitrary topological genus and animation containing change in topology. Among
them, convolution surfaces, introduced in computer graphics in the 90’s, provide an easy way
to incrementally create shapes from a skeleton which is close to a medial axis, thanks to their
capacity to blend in a natural way by simply summing their scalar field when new skeleton
parts are added. This model has proved instrumental in sketch-based modeling applications
where shapes are created by extracting a skeleton from a 2D picture.

Although implicit surfaces and more specifically convolution surfaces were introduced in
the 80’s or early 90’s, skeleton-based modeling did not spread in standard modeling systems so
far. This is due to a number of limitations, detailed next. The general goal of this work was to
make skeleton-based implicit modeling usable, and therefore to propose new models solving
these long lasting issues.

OPEN PROBLEMS IN SKELETON-BASED MODELING

Despite their interesting properties, convolution surfaces suffer from several drawbacks
(most of them common to all implicit surfaces) that have limited their development.

Firstly, implicit surfaces are said to create only blobby shapes : this is due to two main
difficulties. Shapes that contains both smooth parts and sharp edges are difficult to create. Fur-
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thermore, partly due the lack of parametrization, creating repetitive surface details that nicely
follow the parent shape is difficult. In addition, blending usually smoothes out details.

Secondly, in addition to smoothing out details, blending often leads to no respect of the to-

pology of the skeleton and is therefore not much predictable. This can become particularly non
intuitive for the user, since the intended shape features can be lost during blending (for instance
the hand of an animated character can be blended with the rest of the body during animation
if they come close to each other). Recent solutions to the blending problem were developed
for general implicit surfaces. However, they are based on binary composition operator, so they
are not well adapted to convolution surfaces (usually blended with a sum). Indeed, they would
break their nice properties, such as independence to skeleton subdivision.

Lastly, a problem specific to convolution surfaces is the difficulty to find a close-form
expression of the scalar field for all types of geometric skeletons. Not having such an expression
raises efficiency issues. For this reason, convolution surfaces do not provide a lot of choice in
primitive shapes : only planar skeletons (segments and arcs of circle) are available so far, and
more complex shapes have to be split into many of these primitives.

CONTRIBUTIONS

The aim of this work is to make skeleton-based modeling usable, and therefore to solve the
open issues we just listed. We will mainly focus on the ones that lead to a lack of intuitiveness
during modeling, but also on the ones that limit the range of shapes that can be represented.
The contributions of this work are as follows :

First, we present a new kind of implicit primitive : the goal is to create a convolution-like
primitive along an helical skeleton. In order to do so, we use a space warping technique that
creates the primitive by deforming a simpler one based on a segment or a circle. We focus on
reducing the unwanted deformation of the cross-section of the simpler shape. The new primitive
should help the creation of implicit shapes along free-form curves.

Secondly, we present new skeleton-based implicit primitives that address all the issues we
identified in the blending behavior of convolution surfaces while retaining their advantages
(independence from skeleton subdivision). This is the main contribution of this work. This is
done in two step : we first introduce scale-invariant integral surfaces, an alternative way of
representing surfaces of varying thickness along a skeleton : by giving scale-invariance to the
model, we obtain a more intuitive behavior, ease the setting of desired radius along the skeleton
and avoid blurring of small details. Furthermore, these integral surfaces make compact support
kernels really usable in practice which was not the case so far. This is a prerequisite for working
with large skeletons. Based on the intuitive behavior of this new model, we introduce two new
blending methods in order to improve blending behavior with respect to topology. The first
one is a blending-graph based method that selects the most interesting part of the skeleton
depending on the query point. The second one is a gradient-based method that post-corrects a
classic blending by summation when unwanted blending is detected.

Lastly, we present a method to generate small scale surface details on skeleton-based impli-
cit surfaces that behave in a coherent way with the underlying shape. The method is based on
the use of a procedural surface noise which does not require parametrization but still behaves
in a coherent way with the surface if a frame field is provided. We define the latter thanks to
the skeleton used as a compact shape descriptor.
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The work carried out in this thesis has been developed within a new C++ library devoted to
implicit surfaces, with a focus on convolution surfaces (and more generally integral surfaces).
The associated applications include both a skeleton-based modeling framework and a sketch-
based modeling tool.

STRUCTURE OF THE DOCUMENT

This document is divided into 5 main parts. First, we present in chapter 1, a state-of-the-art
of implicit modeling. We mainly focus on skeleton-based implicit modeling and blending me-
thods but we will also review some work on generation of details, implicit surface visualization,
as well as different applications of implicit surfaces. In chapter 2, we present our new helical
implicit primitive, created from space warping. In chapter 3, we detail the main drawbacks of
convolution surfaces and our new Scale-invariant Integral Surfaces. In chapter 4, we study two
way to further improve blending behavior of our new model so that its topology better reflects
the topology of its skeleton. Lastly, in chapter 5, we present our new method to generate small
scale details over an skeleton-based implicit surfaces. Several appendices are included at the
end of the document to give additional details on the different models we introduced.
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CHAPTER

1

IMPLICIT MODELING :
STATE OF THE ART

Teaser Figure : Two blobs merging.
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18 CHAPTER 1. IMPLICIT MODELING : STATE OF THE ART

IMPLICIT surfaces S are defined as the set of points where a scalar field f : R
3 → R is

equal to a given iso-value c ∈ R :

S =
{

P ∈ R
3/f(P ) = c

}

.

In the same way implicit volumes V can be defined by :

V =
{

P ∈ R
3/f(P ) ≥ c

}

.

Implicit surfaces have been studied from a long time in mathematics, mainly through the study
of algebraic surfaces for which f is a polynomial function of Cartesian coordinates (some
examples are shown in Figure 1.1).

Note that we use at least C1 scalar fields, leading to continuously varying normal vectors :

N(P ) = − ∇f(P )

‖∇f(P )‖ .

More generally, the degree of continuity of an iso-surface is the one of the scalar field that
defines it outside singular points (∇f(P ) = 0).

FIGURE 1.1 – Some algebraic surfaces of degree lower or equal to 6.

In order to use implicit surfaces as a modeling tool, they should be intuitive to manipulate,
which is not the case for algebraic surfaces. A lot of different implicit surfaces (with different
terminologies) have been used for the purpose of modeling. Among them we can find Function
Representations (FRep), level-sets, grid-based representations (voxel) and skeleton-based im-
plicit surfaces. In this thesis, we focus on the last one, which is one of the most common kind
of implicit surfaces used in Computer Graphics.

In the remainder of this chapter, we will first review the main models used in skeleton-
based implicit modeling. In a second part we will present the main methods for combining and
deforming implicit surfaces : hence we will talk about blending and warping. The third part will
talk about visualization of implicit surfaces (meshing and ray-tracing). Then we will present
several methods to add details on both implicit surfaces and other kinds of surfaces. Lastly we
will present a serie of applications of implicit modeling.
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1.1 SKELETON-BASED IMPLICIT SURFACES

Constructive implicit modeling makes use of skeletons (such as points, segments or tri-
angles) for generating the field function that defines an implicit primitive. This representation
has two advantages : its compactness and its intuitiveness.

We first present some notations that are re-used all along this document.

1.1.1 Definitions & Notations

Weighted skeletons : general formulation

The most general way to define a skeleton is to define it through a set of points. A skeleton

Sk can therefore be defined as :
Sk = (iSk ,SSk , τSk ). (1.1)

The set SSk is the set of points in R
3 that belong to the skeleton (thus 1SSk

is equal to 1 over the
skeleton and 0 outside) while iSk ∈ [0; 3] is the dimension of the skeleton (i.e. the dimension
of the manifold associated with the skeleton : 0 for points, 1 for curves, 2 for surfaces and 3 for
volumes). The function τSk : SSk → R

+ defines a weight for each point of the skeleton. It is
possible to define additional properties such as color on each skeleton point.

Union of skeletons :

This formulation is well adapted to express operations on the skeletons such as union. For
instance, the union of two skeletons with the same dimension i is :

Sk 1 ∪ Sk 2 =
(

i,SSk 1
∪ SSk 2

,max(τSk 1
, τSk 2

)
)

.

It is also possible to define the union of skeletons of different dimensions, but in this case iSk

becomes a function from R
3 to N.

Weighted skeleton : parametric formulation

It is also possible to define a skeleton in a parametrical way. This formulation that depends
on the skeleton dimension is less general but usually more useful in practice. In the case of
curves, the skeleton Sk is defined as :

Sk = (Ω,Γ, τ).

where Ω ⊂ R is a domain and Γ : Ω → R
3 is a parametric curve. We assume that Γ is a

regular curve, hence it is continuously differentiable and Γ′ never vanishes. We use s as curve
parameter when using arclength parametrization and t when using another parametrization.
In the first case the infinitesimal arc-length is ds and in the second case it is |Γ′(t) |dt. The
function τ : Ω ⊂ R → R

+ defines the weight on the skeleton. The link between the two
formulations is :

SSk = Γ(Ω)

and
τ(t) = τSk (Γ(t))
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For surface skeletons, Γ is a parametric surface of parameters (u, v) ∈ Ω ⊂ R
2, and the

infinitesimal area is given by |Γu × Γv|dudv.

Kernel

Most of skeleton-based implicit surfaces are defined thanks to scalar field functions that we
will denote K (also called kernel when talking about convolution surfaces). In our framework,
those functions, from R

+ to R
+, are decreasing functions of the distance to points on the

skeleton :
K : R

+ → R
+

d 7→ K(d)
(1.2)

We will call K‖.‖ the isotropic extension of K to R
3 :

K‖.‖ : R
3 → R

+

−→u 7→ K(‖−→u ‖) (1.3)

1.1.2 Point skeletons : "Blobby Molecules"

The first skeleton-based implicit surfaces to be used in Computer Graphics were point-
based surfaces : the Blobby Molecules introduced by Blinn in [Bli82] in order to display
molecular models (see Figure 1.2(a)). The method was inspired by electron density maps of
hydrogen atoms which are represented thanks to a Gaussian Kernel (1.4). Density maps for a
set of atoms are defined by summing the density map of each atom. In the same way Blinn
defines surfaces through a density function, the Gaussian Kernel which is parametrized by a
scale parameter and an amplitude. For multiple points the densities are summed. The surface
is defined as an iso-value of the density/scalar field. Blinn advises to use a more intuitive pa-
rametrization of the kernel used, the parameter being the radius in isolation (when the point
primitive is isolated) and the blobiness (i.e. the kind of blending). The effect of these two para-
meters can be seen in figure 1.2(b).

The main attractive feature of this shape representation, compared to parametric surfaces
or meshes, is their nice blending property. Implicit primitives can be used in a constructive

(a) (b)

FIGURE 1.2 – (a) First blobby objects : molecules and DNA. (b) Blend between two blobs for

varying blobiness and radius in isolation. Figures from [Bli82]
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modeling framework where smooth shapes of arbitrary topological genus are progressively
blended into more complex ones by simply summing their field functions. The blended surface
is then defined as :

S =

{

P ∈ R
3/
∑

i

fi(P ) = c

}

.

This property made blobby molecules well suited to design both organic-looking shapes and
animated objects that change of topology over time such as liquids and modeling clay. Howe-
ver, they also suffers from various drawbacks such as the difficulty to precisely control blen-
ding and the high computational time needed to display them. These drawbacks are reviewed
in more details in sections 1.2 and 1.5.

Several alternatives to the Gaussian Kernel were proposed to create implicit primitives with
local influence, which is more convenient when performing modeling tasks. This was done by
using compact kernel functions such as those of Metaballs [NHK∗85], Soft Objects [WMW86]
and Wyvill function [Blo97] which are all piece-wise polynomial functions with finite support.
In addition to easing user control, using such scalar field with local support increases computa-
tional efficiency when a large number of primitives are used thanks to their local influence (the
generated field is null above a given threshold).

Here are the formula of this main kernels (with σ a resizing constant) :
– Blobby Molecules (Gaussian kernel) :

K(d) = exp

(

−
(

d

σ

)2
)

(1.4)

– Metaballs :

K(d) =











1 − 3
(

d
σ

)2
if 0 ≤ d ≤ σ

3 ,
3
2

(

1 − d
σ

)2
if σ

3 < d < σ ,
0 otherwise.

(1.5)

– Soft Objects :

K(d) =

{

1 − 4
9

(

d
σ

)6
+ 17

9

(

d
σ

)4 − 22
9

(

d
σ

)2
if d < σ ,

0 otherwise.
(1.6)

– Wyvill function :

K(d) =

{
(

1 −
(

d
σ

)2
)3

if d < σ ,

0 otherwise.
(1.7)

1.1.3 Distance surfaces

In order to generate more complex shapes, point-based surfaces can be generalized to more
complex skeletons. Distance surfaces use scalar fields defined as decreasing functionsK of the
distance to some geometric skeleton, typically points, line-segments or triangles :

fSk (P ) = K
(

d(SSk , P )
)

= K

(

min
G∈SSk

‖−−→GP‖
)

(1.8)

where Sk is a geometric skeleton and d(SSk , P ) is the minimal Euclidian distance between the
skeleton and the query point P . One of the advantages of these surfaces is the ease to prescribe
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FIGURE 1.3 – Some basic distance surfaces (also called offset surfaces) generated from a

large variety of geometric skeletons. Figure from [BGA05]

radii around isolated skeletons. However, such surfaces suffer from two main drawbacks that
we present later.

In order to generate more complex surfaces, a lot of kinds of primitives have been used in
addition to points, line-segments and triangles. Among them we can find portions of cylinders,
cones, torus, cubes... Some distance surfaces are depicted on Figure 1.3. In order to generate a
larger varieties of shapes [Bli82, TCW99] use an anisotropic metric around the skeletons (for
instance using a quadric to compute the distance to a point) and also distance metrics that are
different from the Euclidian one (typically Lp metrics).

Lack of regularity

Depending on the kind of skeleton, the regularity of distance-based implicit primitives
heavily depend on the nature of their skeletons : Whereas point-based scalar field are usually
C∞ inside their support (except on the skeleton itself), this is not the case anymore for more
complex skeleton. For instance segment-based surfaces are defined in two main parts : the
region between the end point is a cylindrical scalar field whereas at both end points the scalar
field is spherical. The gradient is thus continuous but not differentiable hence the surface is
C1 but not C2 which creates a not so aesthetics shape (see figure 1.4(a)). A second problem
occurs when the kernel support is larger than the skeleton’s radius of curvature : in this case
gradient discontinuities can arise. This becomes problematic in two cases : the discontinuity of

(a) (b)

FIGURE 1.4 – (a) Aesthetic of lighting impaired by a C1 only scalar field. (b) Gradient dis-

continuity can break the smoothness of a blend : here a small blue segment has been blended

into the concave part of a bigger green skeleton with a V shape.
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(a) (b)

FIGURE 1.5 – Blending by summation of two primitives : distance primitives (a) create a

bulge while convolution surfaces (b) seamlessly blend.

the scalar field is located on the surface (the generated shape is not smooth) ; or it is located in
a blending area. In the latter case the blend smoothness is impacted (see figure 1.4(b)).

Bulging effet

Distance surfaces present a major drawback : the bulging effect. It was formally defined by
Bloomenthal as :

"A ‘surface bulge’ has a cross-section that exhibits negative, then positive, then negative

curvature with respect to an underlying skeleton." [Blo95a]

Such bulge occurs whenever two skeletons are set in continuity and blended with a simple
sum (see Figure 1.5(a)). This is due to the fact that :

K

(

min
G∈S1∪S2

‖−−→GP‖
)

6= K

(

min
G∈S1

‖−−→GP‖
)

+K

(

min
G∈S2

‖−−→GP‖
)

This behavior is really problematic when one wants to create a complex object by using several
primitives (which is usually needed since distance to complex primitives is not always known
and complex primitives can introduce discontinuities of gradient). For example, modeling the
tail of an animal would require several segments so that the tail can be animated from straight
to curved, and therefore would be subject to bulges.

A first attempt was made to avoid this drawback, not for the sum but for an algebraic blend :
the super-elliptic blend [RO85]. This blend is defined as

f(P ) = B(f1(P ), f2(P )) = 1 −
[

1 − f1(P )

r1

]t

+

−
[

1 − f2(P )

r2

]t

+

,

for t = 2 the graph of B is elliptical. In order to prevent bulges, this blend has been enhan-
ced with a parametrization based on the angle θ between gradients of the scalar field to be
blended [Roc89] :

f(P ) = B(f1(P ), f2(P )) = 1 −
[

1 − f1(P )

r1(1 − cos(θ))

]t

+

−
[

1 − f2(P )

r2(1 − cos(θ))

]t

+

.

However, this blend is not cumbersome in practice. First, on contrary to the super-elliptic blend,
it cannot be extended to a N-ary operator, this prevent independence from subdivision of the
skeleton. Furthermore, it is only a C0 operator.
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1.1.4 Convolution Surfaces

Distance surfaces are not the only way to generalize blobs to skeletons of higher dimension.
Convolution surfaces [BS91, Blo95b] were developed to avoid unwanted bulges when implicit
primitives generated by neighboring skeletons blend. They define f as the integral of field
contributions from all the individual points Q belonging to the skeleton (the integral being an
infinite sum, this is actually the natural extension of blobs to skeleton of higher dimensions) :

fSk (P ) = (gSk ∗K‖.‖)(P ) =

∫

R3

gSk (Q) K
(

‖−−→PQ‖
)

dQ (1.9)

where gSk is a distribution describing the geometry of the skeleton and K‖.‖ is the kernel
function that gives the contribution of a skeleton point. The definition of gSk depends on the
dimension iSk of the skeleton Sk . For volumetric skeleton, gSk is defined by :

gSk (P ) = 1S(P ) =

{

1 if P ∈ SSk

0 otherwise

For skeleton of lower dimension, the function gSk is defined by Dirac delta functions. In dimen-
sion 0 (for point skeletons), convolution surfaces are equivalent to blobs. Note that convolution
surfaces are usually presented in a simpler (but less accurate) way :

fSk (P ) =

∫

Q∈Sk

K
(

‖−−→PQ‖
)

dQ.

The bulge avoidance property comes from the additivity of the integration on intervals
(which is a generalization of Chasles’ relationship) : the integral over a support is equal to
the sum of the integrals over the different parts of the support under the condition that the
intersections between these parts is null. This gives to the model an additivity property in
respect to the skeleton :

fSk 1∪Sk 2
(P ) = fSk 1

(P ) + fSk 2
(P ),

under the condition that Sk 1 ∩ Sk 2 is a measure-zero set. The generated shape is thus inde-
pendent of the subdivision of the skeleton into components, and is therefore bulge-free. We can
note that this property also derives from the linearity of the convolution operator :

gSk 1
∗K‖.‖ + gSk 2

∗K‖.‖ = (gSk 1
+ gSk 2

) ∗K‖.‖,

(a) (b)

FIGURE 1.6 – (a) a skeleton with its scalar field and an associated iso-surface. (b) field

generated by integration give to the model additivity with respect to the skeleton : summing the

contribution of two skeletons or seeing the two skeletons as one give the same scalar field.
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which is a more general property (the linearity of the convolution operator implies the additi-
vity on intervals but not the contrary).

Independence from subdivision enables us to use complex networks of curves and surfaces
as skeleton, the latter being split into adequate sets of line-segment and triangle skeletons for
evaluation.

For practical purposes, a formulation that depends on the skeleton parametrization is use-
ful :

fSk (P ) =

∫

s∈Ω
K
(

‖
−−−→
PΓ(s)‖

)

ds, (1.10)

whereK is a smoothing kernel, and Sk a geometric skeleton of with arclength parameterization
Γ. If the parametrization is not an arclength one, by substitution, the formula becomes :

fSk (P ) =

∫

t∈Ω̃
K(‖−−−→PΓ(t)‖) |Γ′(t)| dt.

While the first convolution surfaces used Gaussian kernels, subsequent work provided ker-
nels with closed-form expressions [MS98, She99d] for both convolution along line segment
and triangle skeletons. Kernels were organized into families in [HC12], they can be expres-
sed as :

– Cauchy of order i :

K(d) =
1

(

1 +
(

d
σ

)2
) i

2

(1.11)

– Inverse of order i :

K(d) =
1
(

d
σ

)i
(1.12)

– Compact Polynomial of order i :

K(d) =







(

1 −
(

d
σ

)2
) i

2
if d < σ ,

0 otherwise.
(1.13)

where σ is a given resizing constant (note that in [MS98, She99d], formulas were only provided
for Cauchy of degree 4, Inverse of degree 1 and 2 and Compact Polynomial of degree 4). Note
that Compact Polynomial generalizes Wyvill’s function of equation 1.7. Each kernel has its as-
sets : Cauchy and Inverse are C∞ but with a global support. Inverse also guarantees that the

(a) (b)

FIGURE 1.7 – (a) A triangle skeleton, the associated convolution field and the step function

resulting from the application of the Green theorem (Figure from [Hub12]), (b) example (Figure

from [ZJLZ12]).
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(a) (b)

FIGURE 1.8 – Fast convolution on volume. (a) use of cube skeletons and infinite norm, (b)

modeled terrain. Picture from [PGMG09].

skeleton is totally included inside the generated surface (thanks to infinite field values over the
skeleton). This comes with a drawback : this kernel is less convenient when digging operators
such as Barthe’s difference [BWdG04] are used, since these operations will have little effect
near the skeleton. Compact Polynomial is "only" C⌊ i−1

2
⌋, but it has the advantage of having a

local support. This eases local shape control and enables efficient field queries.

One of the main difficulties to compute convolution on triangle with Compact Polyno-

mial kernel is the clipping of the triangle. Indeed the kernel being defined by parts, the do-
main of integration should be subdivided [JTZ09]. In order to provide better efficiency, recent
work [ZJLZ12, Hub12] use the Green theorem in order to transform the integral on the triangle
into an integral on its boundary, hence line integrals, for which clipping is much simpler (see
Figure 1.7).

One of the only use of convolution surfaces on volume skeletons (cubes) was performed
in [PGMG09], in order to model terrains of arbitrary topology. In order to obtain more efficient
computation they used compact constant kernels, the convolution thus being the computation
of the volume of skeleton inside the kernel support. To further increase computational effi-
ciency they used an infinite norm for which the unit sphere is a cube (see figure 1.8(a)). Due to
these simplifications the resulting scalar field is only C0. This is not that problematic for their
application since it is used to model stone (see Figure 1.8(b)).

1.1.5 Extension to non-constant radius

Being able to vary the radius of a primitive along its skeletons is important in order to ob-
tain more freedom in the created shape. In order to achieve radius variation, Shertsyuk [She99c]
uses profiling functions to scale the value of output convolution field based on the projection
of the computation point on the skeleton. While this provides increased freedom for modeling,
this method breaks the additivity in function of the skeleton (and independence to subdivision).

Bloomenthal, in [BS91], made two important remarks about radius control :
– radius variations can be obtained by setting weights along the skeleton,
– the width (σ parameter) of the kernel should be set to lower values when creating thin

features in order to limit their blurring.
Two different models were developed, based on these remarks, both using a weighting function
τ along the skeleton.
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(a) (b)

FIGURE 1.9 – Weighted convolution on all primitives generated from 1D skeleton with

known closed-form solution. (a) segments and arcs of circle, (b) segments and quadrics. Fi-

gure from [JT02b].

Weighted convolution surfaces : Standard formulation

FIGURE 1.10 – Weighted

convolution on segment skeleton

from [JT02a].

The standard formulation for weighted convolution de-
fines the field function as :

fSk (P ) =

∫

s∈Ω
τSk (s)K

(

‖
−−−→
PΓ(s)‖

)

ds (1.14)

It was first studied by Jin [JTFP01, JT02b, JT02a] for
polynomial weight up to degree 3 (for Cauchy 4 ker-
nel, Inverse of degree 2 and all the odd degree 2k + 1
and Compact Polynomial of degree 4) and later re-used
in [AC02, lTZkF04, BPCB08]. Extensions to other kernels
were later developed [HC12] for segment skeletons by pro-
viding recurrence formula. In the latter paper, behavior of
convolution surfaces was extensively studied (proof of direction of minimal and maximal thi-
ckness around a segment skeleton in function of it length and weight, as well as the relationship
between them). Closed-form expressions for convolution on segments with arbitrary polyno-
mial weights were derived for classical kernels of arbitrary degree. Circles where also studied
for Compact Polynomial kernels. The more complex curves studied up-to-date [JT02b] were
Bezier curves of degree 4 for Compact Polynomial kernels. However, we noted a problem in
the formula given in the paper, due to wrong formulation of the integrals caused by a parame-
trization problem.

Efficiency comparison were performed both by comparing the numbers of required ope-
rations and timings for the different kernels. However comparisons were not performed on
complex skeletons where compact polynomial kernels would have really benefited from their
compact support.

Hornus integral surfaces

FIGURE 1.11 – Hornus inte-

gral surfaces used with subdivi-

sion curves as skeleton.

In contrast to the standard formulation, Hornus [HAC03]
introduced the following formulation, by taking into ac-
count the second advice of Bloomenthal :

fSk (P ) =

∫

s∈Ω
K

(

‖−−−→PΓ(s)‖
τSk (s)

)

ds. (1.15)

This is equivalent to having the kernel width vary along the
skeleton according to the local weight, and thus to the local
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radius. A closed-form solution on segment-skeletons was only provided for the Inverse kernel
of degree 2. One should note that Equation (1.15) isn’t a convolution anymore, mathematically
speaking, because of the division by the weight within the kernel function. For this reason
we will use the term Integral surfaces instead of Convolution surfaces when speaking of both
Hornus integral surfaces and Convolution surfaces (either weighted or not).
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FIGURE 1.12 – Weighted models : kernel variations when the user decreases τ to get a thinner

shape along a segment-skeleton.

Remarks

• Figure 1.12 compares the different strategies used by these two models to generate radius
variations : while Equation (1.14) scales the height of the kernel, keeping the width of the
support unchanged, Equation (1.15) generates a kernel of constant height, but of varying
support-size.

• Generally speaking, Integral surfaces, defined thanks to a skeleton along which we can
assign a fluctuating weight, provide an intuitive control of a shape of varying thickness.

• Thanks to the additivity of the integral operator, different partitions of the skeleton leave
the field unchanged. Integral surfaces are thus an excellent model for defining levels
of details (LOD) on implicit surfaces, through the recursive subdivision of their skele-
ton [AC02, HAC03].

As all implicit surfaces, Convolution surfaces and Hornus integral surfaces suffer from
some blending artifacts which will be presented in next section. Specific problems of Weighted
convolution and Hornus surfaces are studied in more detail in chapter 3.
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1.2 COMBINING IMPLICIT SURFACES

One of the main interests of implicit surfaces is the way they can be combined in order to
create complex shapes. Their greatest strength is their smooth blending ability but it is not the
only way to combine them, as detailed next.

1.2.1 Constructive Solid Geometry

The first modeling systems used boolean operations in order to combine shapes toge-
ther [Blo97] : this approach is called Constructive Solid Geometry or CSG. The basic boolean
operations are the union, the intersection and the difference. These operations can be performed
hierarchically thanks to a Construction Tree. They have been introduced to implicit modeling
by Ricci in [Ric73] where simple operations are performed on the scalar field, for instance the
union of two scalar field is :

(f1 ∪ f2)(P ) = max(f1(P ), f2(P ))

The main drawback of this approach is that it creates a C0 only scalar field, which can lead to
the creation of artifacts in the case of subsequent blendings.

In order to overcome this problem, several clean union operators have been introduced
both for global support [PASS95] and compact support primitives [BWdG04, BBCW10] : such
union has a discontinuity of gradient only where f1 = f2. The shape is therefore the same as
for union, but the resulting surface can be more easily reused in subsequent combinations.

1.2.2 Blending

We already introduced the most classical way of smoothly combining implicit surfaces : na-
mely the summation blend. Summing fields provides an easy way to create shapes of arbitrary
topology. However, this blending is both the greatest strength and the major drawback of impli-
cit surfaces, due to a number of blending artifacts classified in four sub-problem in [GBC∗13].

Blending drawbacks :

1. Bulging problem,

2. Absorption problem (or blurring of details),

3. Locality problem (or blending at distance),

4. Topology problem

to which we can of course add their consequences : the lack of controllability. Visual depictions
of these problems is given in Figure 1.14.

The bulging problem as already been discussed in previous sections. While reduced by
convolution surfaces, it still arises when more than two skeletons join, for instance in a T-
junction.



30 CHAPTER 1. IMPLICIT MODELING : STATE OF THE ART

FIGURE 1.13 – Unwanted inflation of

the volume of the thin primitive during

blending by summation and sharpening

of the blending for large difference of

radius (left) compared to a corrected

behavior from [WW00] (right). Figure

from [WW00].

The first thing to note about the absorption
problem is that it depends on the kind of scalar
field. For classic scalar field with compact support
(created thanks to polynomial based kernel), this
problem is well described in [WW00] : when there
is a large difference of radius (and of kernel sup-
port) between two objects to be blended, the thin-
ner one will see its volume inflated and the shape
of the blend will be sharper than one would ex-
pect (see Figure 1.13, note that the volume infla-
tion is bounded by the kernel support). This pro-
blem increases as the difference of radius increase.
In the case of global support, the only problem is
usually the one of the volume inflation. In both
cases, the volume inflation problem comes from
the fact that the field of the larger shape varies
very slowly in the region where the thiner shape
is.

The two remaining problems, which are related, are probably the two most annoying when
it comes to modeling, partly due to the fact that they can become really unpredictable. The
blending at distance problem is the fact that proximity is the only factor that make implicit
surfaces blend. This makes progressive modeling difficult since users do not know at which
distance the different elements should be placed to reach their modeling goals.

This can become even more problematic in some cases, for instance if the hand of a charac-
ter comes close to its head during an animation, they will blend, which is more than probably
unwanted. This unwanted change of topology is the last problem : the shape does not neces-

FIGURE 1.14 – In [GBC∗13], the unwanted behavior of the blending are classified into four

sub-problems : (a) Bulging problem, (b) Absorption problem, (c) Locality problem, (d) Topo-

logy problem. The first row correspond to the unwanted behavior while the second corres-

pond to the desired behavior (obtained through the gradient blending method presented in

section 1.2.2). Figure from the paper.
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sarily preserve the topology expected from its skeleton. There is another example depicted in
Figure 1.14(d) : if a shape with a hole is created, the hole can be filled if the shape is blended
with other one that has some influence in this region of space. To overcome these, blending
should be able to preserve the topology of the union of the objects to be blended.

Remarks :

It is important to recall that the blending behavior depends a lot on the scalar field proper-
ties. Furthermore, the same blending function cannot always be applied to both Real-function

[PASS95] which use 0 iso-value and that have global support, and to blob-like scalar field
which are positive. We will mainly focus on the second kind.

There are two main ways of combining implicit surfaces, either N-ary blending (as the
summation that can combine any number of primitives) or binary blending that will combine
only two primitives (as the clean union) and usually provide more freedom.

The remainder of this section studies the existing solutions to the four problems developed
in terms of N-ary and then binary operators. We will see that while all blending problems have
now been solved for binary operators, most of them are still open for N-ary operators such as
the sum. Note that the sum is up to now the only combination operation that preserves inde-
pendence from subdivision of convolution surfaces.

N-ary operators

Ricci’s blending : In order to provide more control on blending, Ricci introduced the
following operator [Ric73] :

f(P) = n

√

∑

i

fi(P)n.

It describes a family of blending that spans from the blending by sum (n = 1) to the union by
maxima (n = +∞), see Figure 1.15. However, when n increases the gradient direction of the
resulting field quickly changes in the region where there is at least two values fi that are equal
and greater than the other field values to be blended. This will lead to poor quality for future
blending in this region.

FIGURE 1.15 – Two blobs blended thanks to Ricci’s blending operator [Ric73], from left to

right, the parameter n is equal to 1, 2, 4 and 8. Note that when n = 1 we have a blending by

summation, while when n increases, we tend toward an union by maxima.
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Locally restricted blending : This blending method, introduced in [dGWvdW09], is
based on the analysis of the blurring of details problem presented in [WW00] and a proposed
solution : the reduction of the blending range of the larger primitive in function of the smaller
one.

FIGURE 1.16 – Comparison between

blending by summation (left) and lo-

cally restricted blending (right). Figure

from [dGWvdW09].

While this is done by using a modified defini-
tion of the base field function in [WW00], this is
performed in [dGWvdW09], for more generality,
by using a mapping on the base field. The mapping
is parametrized by a single parameter that gives
the new blending range. The control of the blen-
ding range is obtained through the introduction of a
complex controller which is parametrized from the
one to one wanted blending. This gives the pos-
sibility to finely tune the blend (it does not only
allow the improvement of blending between pri-
mitives with large difference of radii, it also allow
users to reduce blending between primitives of the
same radius if wanted, and it enables the creation
of asymmetric blending), but in return this gives
a lot of parameters to be set (ie - the square of the
number of primitives to be blended). Results of this
blending are shown in Figure 1.16. Colors are usually blended through a barycentric blending
whose coefficients are the field contribution of each primitives. This, combined to the mapping
of field values used in this method, naturally limits the bleeding of colors.

The main drawback of this method is that it may become difficult to set blending when mul-
tiple primitives require different blendings in the same area. Furthermore, the use of primitives
with varying radius would make the choice of blending range even more complex.

Graph-based blending for convolution : To our knowledge, the two works presented
in this paragraph are the only blending methods that are designed especially for convolution
surfaces. Both are based on the skeleton seen as a graph, an idea already explored for distance
surfaces in [GW95].

In [AC02], the idea is to only use the element of the skeleton which has the highest influence
at the computation point and its direct neighbors in the graph in order to compute the field
function generated by the full skeleton. The kernel of the neighbor skeleton is multiplied by a
weighting function which depends on the distance along the skeleton. This prevents elements

(a) (b) (c) (d)

FIGURE 1.17 – Graph-based blending method of [AC02] : (a,b) blending by summation versus

graph-based method, (c,d) artefact creating by small segment insertion. Figure from the paper.
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(a) (b)

FIGURE 1.18 – Graph-based blending method of [HAC03] : (a) absence of blending between

different part of the snake body, (b) if the folding is too fast the unwanted blending is not

avoided. Figure from the paper.

of the skeleton that are far from one another in the skeleton graph to have mutual influence
onto each other (see Figure 1.17(a,b)). However, this comes with a drawbacks : whenever a
small skeleton is inserted between two larger ones then a crease appears : the independence to
skeleton subdivision is lost (see Figure 1.17(c,d)). Furthermore, the choice of skeleton of main
influence can introduce discontinuities.

The approach used in [HAC03] has the same spirit as the previous one, but instead of just
using direct neighbors, fields are added until their contributions become negligible. Thus, if the
skeleton is a loop, when it comes back close to itself again, it will not blend. However, if the
shape folds back directly on itself the desired shape is lost such as in Figure 1.18(b).

Binary operators

Extension to CSG and highly parametrizable blending : In addition to introducing
clean union, [PASS95] also introduced a blending function :

g(f1, f2) = f1 + f2 −
√

f2
1 + f2

2 +
a0

1 +
(

f1
a1

)2
+
(

f2
a2

)2 ,

the latter has three parameters, the first one is the global strength of the blending while the two
others enable asymmetric blending. If the first parameter is null, we fall back on a clean union.
This blending function is only designed for Real-functions (global support, 0 iso-value).

In [BDS∗03, BWdG04], an alternative method is proposed that gives more control on the
shape of the blend, first for global support functions and then for compactly supported scalar
fields. In order to explain this blending, the representation of binary blending operator intro-
duced in [HH85] is used : blending operators are represented in 2D, the abscissa being one of
the two field value and the ordinate the other, iso-line of the resulting blend are drawn in this
plane. One of the main characteristic of the blending function introduced by Barthe is to limit
the region where blending occurs in this space : outside of the blending region, the behavior is
a classic maximum while inside the region the blend is defined through its iso-line. The sim-
plest solution is to use iso-lines defined by arc of an ellipses but more complex iso-lines can
be defined using polynomial functions (through a polygon of control) in order to obtain local
shape control in the blending region. The region is defined through an opening angle defined
by two boundary lines going through (0, 0). It is equivalent to saying that if the ratio between
f1 and f2 is greater than a given threshold, then no blending occurs (it works the same way for
the ratio f2 over f1).
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Lately, most of the blending problems were overcome in the case of binary blending ope-
rators based on two distinct ideas : bounded blending and gradient-based blending.

Bounded blending : Bounded blending, first introduced in [PPIK02, PPK05], enables
the localization of the blend, either by using two control points on the surfaces or by setting
an arbitrary bounding volume defined by an implicit surface. This method enables a variety of
blending styles and users can tune it in order to control the smoothing of small details. While
providing great control, this blending also requires a lot of user input in order to obtain good
results.

By introducing a complex binary operator based on extra primitive generated at the inter-

section of the input surfaces, [BBCW10] was able to overcome the blurring details problem
automatically. These properties come from the fact that the size of the bounding primitives
is chosen accordingly to local surfaces properties such as gradients and curvatures. More im-
portantly, this method also solves the locality problem since blending will only occur near
intersection of surfaces and partly solves the loss of topology problem. A possibly remaining
problem would be if a small torus is blended into a large object. Then there is no guarantee
that the hole would be kept. Result can be seen in Figure 1.19. However, this operator can
become quite costly due to the need of finding surface intersection curves which can become
quite expensive when there is multiple intersections. The method of [BBCW10] was used in
a sketch-based modeling framework, where the created shape is directly blended into an exis-
ting object. Therefore, it uses the meshes of the new and old objects in order to compute the
intersection curves in an efficient way. The meshes in a local neighborhood (the blending being
localized) are deleted and re-generated according to the new local scalar field.

(a) (b)

FIGURE 1.19 – Blend restricted to contact between surfaces : (a) extraction of the intersection

curve and creation of a bounding volume according to surface features, (b) comparison to the

summation blending, we can note the absence of blend at distance. Figures from [BBCW10].

Gradient-based blending : By building on [Roc89] and [BWdG04], Gourmel et al [GBC∗13]
recently proposed a method that overcomes most of the blending problem : from the first me-
thod, it re-uses the angle between gradients (of the scalar fields to be composed) to parametrize
the blend, while from the second, it re-uses the idea of an opening function to define where the
blending should occur.

The authors introduce a continuous family of quasi-C∞ blending operators ranging from
clean-union like blend to a super-elliptic like blend (see Figure 1.20). The blend to be used
in one point in space is chosen thanks to a controller function whose parameter is the angle
between gradients of the two fields to be combined.
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FIGURE 1.20 – Three blends of the family intro-

duced in [GBC∗13] depicted in the representation

of [HH85] : (a) is the maximal blending, (b) the

mid-range blending and (c) is the clean union or

minimal blending. Figure from [GBC∗13].

The main controller which solves the
main blending problems uses the fact that
if the gradients are collinear then any blen-
ding that will occur will create bulging,
so the controlleris set to ask for clean-
union like blending. On the other hand if
the gradients are opposite then any blen-
ding have chance to cause loss of topo-
logy, so the controller once again asks for
clean-union like blending. On the contrary
orthogonal gradients means that blending
is desired. Blending with this controller
are depicted in the second row of Fi-
gure 1.14.

In addition to solving the four long lasting blending problems, this method also provides a
high freedom on the kind of blending that can be obtained due to the possible parametrization
of the controller.

In order to obtain an efficient implementation, the authors rely on some pre-computation.
The main drawback of the method is the fact that the controller should be adjusted with respect
to the field variation of the input field function. Since most of the time a unique kernel is used
for all the primitives this limits the required work.

When this blending is used with convolution surfaces, it is important to note that the maxi-
mal obtainable amount of blending is somewhere between a Ricci 2 and Ricci 4 blending,
which is much less than a summation.

1.2.3 Other combinations of scalar field

Blending primitives is not the only way to combine them. In addition to blending, which
can be seen as a smooth extension of the boolean union, it is also possible to introduce digging
operators which are a smooth extension of the boolean difference. A more original combination
is the squashing combination of implicit surfaces.

Subtractive blending :

In [Bli82], negative implicit volume are introduced in order to dig into existing shapes.
This is done by using negative coefficients for blobs and then performing classic blending by
summation. For this reason, the basic way of digging can be seen as the subtraction. However
this operation presents a major drawback : it can create negative "field wells" which will make
subsequent blending completely unpredictable.

The work of [BWdG04] can also be used to produce smooth boolean difference difference
with a high control on the level of smoothing. In order to do so it uses an inversion of the field
proposed by [Ric73] : inv(f) = 2c − f (which is not well adapted for scalar fields whose
values are not bounded between 0 and 2c).

Squashing :

Such an effect, known as Precise Contact Modeling (PCM), has been introduced in [Can93,
CGD97, OC97] : the idea is to detect collision and modify each scalar fields both in the inter-
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(a) (b)

FIGURE 1.21 – Deformation in the case of contact : (a) scalar field are deformed in a local

neighborhood of the overlapping area, (b) result of the method. Figures from [OC97].

penetration zone and in a local neighborhood of the interpenetration zone (see Figure 1.21(a)).
In the intersection region the field f1 is replaced by f1 + (c − f2) while in the neighborhood
it is replaced by f1 + b1(f2) with b1 a function guaranteeing the continuous junction with the
remainder of the shape. The second scalar field is modified in the same way, the definition in
the intersection area guaranties that the iso-surface is going through points where f1 = f2 in
this region.

FIGURE 1.22 – Precise contact

modeling can be parametrized

in order to take into account

velocities of the objects. Figure

from [OC97].

In the case of animation, it also enables some parametri-
zation in order to take into account velocities of the objects
(see Figure 1.22 for results).

In [AJC02], some additional work has been done in
order to apply PCM to convolution surfaces, both on the
use of skeletons to improve collision detection and on the
choice of the function bi which determines the shape of the
deformation around the collision area (one of the proposed
function enables the creation of ripples).

Gradient-based blending [GBC∗13] provides a way to create this kind of effect by using
alternative completion curves (and a different controller) in the area where the blending should
occur.

1.2.4 Adequate inner bound for implicit surfaces

FIGURE 1.23 – Modification of the gra-

dient blending in order to preserve inner

bound. Figure from [CGB13].

When composition operators such as boolean
difference (whether it is smooth or not) are used,
some artifacts can be created. They are mainly
due to the fact that the term (1 − f) used to per-
form the required inversion of the field function
(in the case of 0.5 iso-value) can become nega-
tive. In [CGB13], a solution to this problem is
proposed : note only the initial scalar field should
be bounded in amplitude, but the bending ope-
rator should be defined in order to preserve this
property. In the case of 0.5 iso-value, all field va-
lues should stay in the range [0; 1] which means
that the inverse (1 − f) will also verify this property. The authors proposed a modified ver-
sion of the gradient-based blending that meets this new constraint : this is done by introducing
a new family of boundary curves in the 2D representation of blending operator : these new
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(a) (b)

FIGURE 1.24 – Result of blending with inner bound : (a) it prevents negative field values in

boolean difference, (b) it improves the inner scalar field in adapted gradient-based blending

(which could have an impact on subsequent compositions). Figures from [CGB13].

curves go through the point (1, 1) which guarantee to have g(1, f2) = 1 and g(f1, 1) = 1 (see
Figure 1.23). It does not only improve the result of difference but also the one of blending (see
Figure 1.24).

FIGURE 1.25 – Undesired ghost

shape of details remain in the

field with standard boolean ope-

rations (up), the method propo-

sed in [CGB13] removes this ar-

tifact (bottom). Figures from the

paper.

In addition to these new constraints, the authors also
propose a modified blending that improves the field qua-
lity when boolean operations (smooth or not) are applied
in order to add small details on a larger shape. The aim is
to remove the ghost shape of the details that remains after
the operation (see Figure 1.25). Not doing so would im-
pair subsequent blending. This is done by modifying the
gradient-based operator by progressively ignoring the field
of the details when it becomes larger than the iso-value.

In conclusion, the methods presented in [CGB13]
highly improve the intuitiveness of the composition beha-
vior in the case of the multiple successive compositions that
are required for modeling complex objects.

1.2.5 The Blobtree

In order to give more freedom to the user, a hierarchical modeling framework was introdu-
ced in [WGG97, WGG99]. The combination of blending and warping (which is presented in
Section 1.3) are organized as a tree where each node represents either a composition operator
or a warping. The leaves of the tree are the implicit primitives.

In addition to the previously described techniques, optimization methods were also introdu-
ced in the Blobtree to accelerate field queries : One of the first acceleration method is the Blob-
tree reduction and pruning introduced by [FGW01] in order to limit the cost of a field query.
Reduction is the simplification of the affine transformation nodes by pushing them down in the
tree, while the pruning is the construction of simplified trees depending on regions of space
(indeed, in large Blobtree, only a small subset of the primitives are used in a given region
of space). Later, a caching scheme was introduced by [SWG05] in order to avoid expensive
computational costs for objects that aren’t modified by the user .

Main limitations : While all the existing blending and composition operations give a
lot of freedom to the user, most of them are binary operations. This implies an explosion of
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the height of the Blobtree when creating complex objects : this can have an impact on the
computational time. Furthermore, the main drawback is probably that it makes the handling of
this structure more cumbersome, making it less practical for interactive manipulations.

1.3 DEFORMATION

Combination of implicit surfaces through blending, digging and squashing operators are
not the only tools to create complex shapes with implicit surfaces : deformation of space -
warping - has been used to greatly increase the kind of shapes that can be created.

1.3.1 Warping : basic principle

Deformation of space (or space warps) such as Barr’s bending, twisting and tapering [Bar84]
have been used for a long time for defining complex objects from simpler ones.

The idea was extended to the skeleton based implicit modeling framework in [WO97],
where Barr’s deformations were used to easily define complex primitives. The idea was to
define the scalar field f̃ of the new primitive from a warping w−1 : R

3 → R
3 and a simple

primitive of field f , in the following way :

f̃(p) = f(w−1(p))

In other words, query points are transported through w−1 to another space, where the new
primitive warps into a simpler one (see figure 1.26).
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FIGURE 1.26 – Principle of warp-based implicit primitives.

It is important to note that w−1 is an inverse warp, since it is the function that maps the
scalar field embedding a complex object after the deformation to a simpler scalar field seen
as an input. This is due to the implicit nature of the surface. Indeed, if we want to perform
blending after the deformation, then we should have access to all the scalar field values in
space. We cannot just apply the deformation w to the surface itself as it would have been done
for explicit surface representation such as parametric one.

While basic warps are defined on all the space, it is possible to restrict their use to a bounded
domain by defining a deformation field of compact support.
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(a) (b)

FIGURE 1.27 – (a) Classic warps applied to implicit surfaces, Figure from [WO97]. (b) Twis-

ting used inside the Blobtree in order to create a complex shape , Figure from [WGG99].

A problem that should be noted when using classical warps to create complex primitives
from simpler ones is that the surface usually undergoes larger deformation than the skeleton :
for instance, circular cross-sections are usually not transformed into circles, which can be seen
as a drawback in some cases.

1.3.2 Intuitive deformation :

Classic warping are transformations that affect the whole space, and do not provide much
control on the shape deformation. Sugihara introduced two different methods to make deforma-
tions more intuitive for the user. Both methods use curves drawn on the surface as a deformer
manipulated by the user.

The first method [SdGWS08] is based on free-form deformations (FFD), a method used to
deform an object embedded inside a grid. Because manipulating the grid itself is cumbersome,
the authors compute the deformation of the grid thanks to a curve drawn on the surface and
deformed by the user. However, FFD does not provide an inverse mapping, which is required
to apply a warping to implicit surfaces. In order to do so, the authors compute a deformation
field through variational warping (a method that guarantees to interpolate a set of constraints
through a C2 deformation). Yet, such a method is expensive due to the inversion of a large
matrix, for this reason an approximation scheme is developed in order to provide interactive
feed-back.

FIGURE 1.28 – An ear created from

a single flat primitive and three Warp

Curves. Figure from [SWS10].

In [SWS10], Warp Curve, a deformation me-
thod also based on a deformation curve is pre-
sented. In contrast with the previous method, the
goal is to obtain a local deformation that precisely
meets the curve constraints. In order to do so, it
combines a variational warp with a bounding vo-
lume. The variational warp is computed from the
curve constraint (each vertex of the curve sets a
displacement corresponding to the difference bet-
ween old and new position) and additional off-
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curve constraints with null displacement in order
to guarantee that the displacement is decreasing as we go away from the curve. Because the
variational warp has a global influence, it is necessary to cancel it outside of a local neigh-
borhood, which can be done by multiplying it by a cancelation factor since it is defined as a
displacement. This cancelation field is computed through a convolution field generated by the
constraint curve. The authors also present a method to take into account successive deforma-
tions while still meeting all the constraints. This is a powerful tool since it enables the creation
of complex shapes that cannot be easily created with other implicit modeling methods (see the
ear in Figure 1.28). The main drawback of the method is probably the fact that it deforms the
field at distance, and not in a geodesic way.

1.3.3 Conclusion

This thesis heavily relies on space warping, not only to create convolution-like primitives
along 3D curves, but also to improve blending property of convolution surfaces.

1.4 GENERATING DETAILS

There are several way to enhance surfaces with details. The two main kinds of details
are textures (that represent the material of an object : its color, shininess,...) and the actual
geometric details. The first one can be used to represent the second one in trompe-l’oeil using
the bump-mapping technique which consists in modifying normals of an object using a gradient
texture. Note that if the surface is represented by a mesh, geometric details can be obtained by
using displacement-mapping which consists in moving the vertices along the normal of the
surface.

Although many methods are available to add details to mesh-based surfaces (e.g., displa-
cement mapping [Coo84, ADBA09] or shell mapping [PBFJ]), methods to add details (or tex-
tures) to implicit surfaces are scarce due to the difficulty to add coherent surface details when no
parameterization is available. We only present the methods that can be applied without loosing
the implicit representation of the shape.

1.4.1 Solid texture & Hypertexture

FIGURE 1.29 – Small scale detail

obtained by modulating a scalar field

with a volume noise function. Figure

from [PH89].

Solid textures, introduced simultaneously by
Perlin and Peachey [Per85, Pea85] are procedural
method to define noise in 3D : they were introdu-
ced in order to texture arbitrary surfaces. In order
to texture a surface, the noise value just have to
be computed for points belonging to the surface.
This does not require any parametrization since the
noise is defined in the global coordinate system.

However, the noise function is anchored in the
3D space which is problematic for animated impli-
cit surfaces : the texture would slide onto the sur-
face as the latter moves. In [WWM87], the problem is overcame by using local coordinates in
order to compute the noise value. These coordinates are defined as the weighted sum of local
space coordinates associated to each individual primitives.
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Hypertextures were introduced in [PH89] in order to modify volume model (including im-
plicit surfaces). The scalar field is directly modified by the noise function. While this method
enables the creation surfaces with a lot of details (see Figure 1.29), it cannot generate surface

details : it can generate small disconnected elements around the main shape as well as holes in-
side the object, furthermore the noise appearance is not preserved (which is mainly problematic
for anisotropic noise).

1.4.2 Cellular Texture Generation

Cellular systems, introduced in [FLCB95], can be used to add details over a surface (either
implicit or not). In order to do so, a particle system is set to spread on the surface. Each particle
can then generates a small scale detail. One of the main advantages of this method is that details
can have complex shape. However the cost of the simulation to obtain the repartition of details
can be high.

Other methods use particles in order to define details, for instance [SAC∗99] use particles
inside an implicit surface (point skeletons are used as particles) to locally define a Perlin noise
that follow the surface during animation : this method is used to simulate lava flow.

1.4.3 Geometric Texture Synthesis by Example :

The only method that requires no parametrization in order to create coherent surface detail
is presented by [BIT04], which extends example-based texture synthesis to volumetric objects
defined by iso-surfaces of a discrete scalar field, stored in a voxel grid. One of the advantage
of this method is that it can create details that are not mere height map, including details that
completely change the topology of the shape. Unfortunately, this method is compute-intensive,
the complexity of details is limited by the resolution of the grid, and the method does not
provide any mechanism enabling geometric texture to be smoothly interpolated when two tex-
tured surfaces blend. Furthermore, when small details with large distance between them are to
be created, the method also creates small noise over the surfaces even if it is perfectly smooth
(see Figure 1.30).

(a) (b)

FIGURE 1.30 – Geometric texture synthesis by exampes : (a) created shape can change of

topology if wanted, (b) base example, we can note that despite the detail example is smooth

between the spike, it is not the case anymore for the generated sphere. Figure from [BIT04].
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1.4.4 Mapping 2D textures on implicit surfaces

Particle system mapping

FIGURE 1.31 – Texture map-

ping between an implicit surface

and a textured surface (a cylin-

der) driven by a particle system.

Figure from [ZGVdF98].

A solution presented in [ZGVdF97, ZGV∗98] for map-
ping a 2D texture onto an implicit surface is to introduce
a physical particle system driven by the gradient field to
match points of the implicit surface with those of a textured
support surface. This method provides a global mapping
of an implicit surface, as in Figure 1.31 where a cylinder
is used as support surface. However, it can easily produce
texture distortion in curved areas of the surface.

Some extensions of this work have been presented : ani-
mated articulated shapes are handled in [ZGVdF98] and
texture mapping without discontinuity in presence of CSG
operations are provided in [TW98]. Lastly, Tigges [TW99]
uses the fact that skeletons (associated to their 0 iso-value)
are surfaces that are easily parametrizable in order to re-
move the need to define a support surface. In area unaffec-
ted by blending, the mapping is directly obtained without
needing the expensive migration process, while a special
migration scheme is introduced in blending area, each ske-
leton obtains its own texture which is blended to the other
using a weighted sum.

The main drawbacks of this family of methods are probably its high computational cost
and lack in user controllability (either distortion of texture or ghosting effect are present).

(a) (b) (c)

FIGURE 1.32 – (a) support surface parametrization for a segment skeleton, (b) migration

taking into account blending area, (c) result for a blending between two skeletons. Figure

from [TW99].

Decals

Decals to texture implicit surfaces were introduced by [Ped95]. In this method, patches
should be designed by the user on the implicit surface which is a time consumming task.

In order to overcome this problem, [SGW06] introduce a decal method based on exponen-
tial map. This method is designed for any type of sampled surfaces including implicit surfaces.
It uses a modified Dijkstra’s graph-distance algorithm to compute an approximation of the
exponential map which is a local parametrization ; the user just have to provide a center, orien-
tation and radius in order to apply a texture patch onto the implicit surface. The texture behaves
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(a) (b) (c)

FIGURE 1.33 – (a) Behavior of decals in blending area, (b) texture are preserved during shape

modifications, (c) parametrization can be deformed to provide more control to the user.. Figure

from [SGW06].

nicely in blending regions, thus the user does not have to bother about topology changes (see
Figure 1.33(a,b)). Furthermore, the texture parametrization can be deformed to provide more
control to the user (see Figure 1.33(c)). This method provides dynamic texture placement and
can be applied to animated implicit surfaces (provided that the decals are attached to the skele-
tons).

1.5 VISUALIZATION OF IMPLICIT SURFACES

In this section, we provide a short review of methods used to visualize implicit surfaces.
Indeed, if not the topic of this document, it is still a point to be discussed since their display
is one of their main drawbacks due to its high computational cost. There are two main ways
of visualizing objects in Computer Graphics, projective rendering of meshes (for which the
hardware is optimized) and ray-tracing. Therefore, there are two main ways of visualizing
implicit surfaces, either by meshing them or ray-tracing them, an additional solution being
point-based rendering.

1.5.1 Meshing

Methods for meshing implicit surfaces can be classified in four categories : grid-based
methods such as marching cubes, propagation methods such as marching triangles, cage-based
methods and particle systems.

Grid-based methods

Grid-based methods are probably the most common methods to be used (this type of tes-
sellation method is implemented in common software such as Maya, 3DS Max and Blender for
the display of metaballs).

Exhaustive enumeration : marching cubes

Marching cubes [WMW86, LC87] is the most common method to mesh an implicit surface.
It works by subdividing space into a regular grid, each cell of the space being treated indepen-
dently in order to create triangles representing the surface. In order to do so, field values are
computed at each corner of a cell. Then, a precomputed table is used to create the required
triangles (there are 15 base cases that could arise, corresponding to 256 effective cases, see
Figure 1.34(a)). Each edge that crosses the iso-value creates a vertex for the triangulation (the
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(a) (b)

FIGURE 1.34 – (a) The 15 base cases of marching cubes, Figure from [NY06]. (b) Propagation

process to reduce computational time, Figure from [Blo94].

exact position being computed either through linear interpolation or some optimization me-
thods).

This method is simple but it suffers from a high computational cost and it results in triangles
of poor quality (see left torus in Figure 1.35(a)). Furthermore, it may lead to inconsistency for
the resulting mesh in some cases.

In [WMW86], and later [Blo94], in order to avoid a lot of processing (and so save a lot
of computational time), the algorithm can be used to only process cells that are near the iso-
surface by using a propagation method. In order to do so, a first point on the surface should be
known. The other cells to be processed are then the one adjacent to a face of the initial cell that
cross the iso-surface (see Figure 1.34(b)). This propagation method drastically decreases the
computational cost. However a point on the surface must be known for each connected part of
the surface (which is not really a problem when using skeleton-based implicit surfaces).

Improvements :

A lot of improvements over marching cubes have been proposed over the initial method to
tackle four problems :

– manifold and topology,
– triangle quality,
– multi-resolution,
– sharp edges.

Let us quickly describe some of the main improvements over marching cubes.
Refinement of the grid, leading to an octree subdivision of space, can be used to adaptively

refine the surface [Blo88] (criteria such as divergence of normal at vertices or distance between
the center of polygon and the surface are used). Improved criteria of subdivision, such as inter-
val arithmetics [Sny92] or Lipschitz constant [KB89], can be used to obtain better topological
guarantee. Adjacent cells with different depth in the octree can lead to cracks in the resulting
mesh if no correction step is performed.

There is a range of dual methods, [JLSW02, Nie04, SW04], that create vertices inside cells
instead of on the edges, and create quads for the edges of the grid : these methods provide
meshes of higher quality. In one of the paper on the topic, [JLSW02], it is shown that this kind
of method can naturally be extended to octree instead of regular grid (removing the problem of
cracks). Furthermore, special placement of vertex inside a cell can be used to reconstruct sharp
edges.
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(a) (b)

FIGURE 1.35 – Marching triangles : (a) comparison with marching cubes shows triangles

with better quality, (b) multiresolution triangulation. Figure from [dAJ05].

Grid-free propagation methods

One of the main problem of grid-based method is the poor quality of triangles they pro-
duce. In order to provide mesh with near equilateral triangle, marching-triangle algorithm were
introduced [HIIT97], see Figure 1.35(a). A first triangle should be created, then each edge of
this triangle will create a new point which is projected onto the iso-surface. Then, Delaunay
constraints are checked, if they are met, a new triangle is created. Such a method can create
seams where another method should be used to obtain a final watertight mesh. This algorithm
has a lot of variants, mainly to obtain multi-resolution [AG01, dAJ05, CS07].

Such a method tends to be slower than grid-based method when the field function is expen-
sive to evaluate due to the required projection step ; but it results in a higher mesh quality.

Cage-based methods

Such methods are based on the fact that the skeleton used to generate implicit primitives
are generally a good descriptor of the shape. Cages are created around each skeletons, then
points are projected onto the iso-surface. Among them, the territory method [DTpG95] creates
an independent mesh for each skeleton polylines, this is particularly adapted to the meshing
of tubular shapes due to initial cage created form quads aligned with the base skeletons. Note
that vertices are restricted to stay in a given neighborhood of the associated skeleton in order
to reduce the overlapping area between meshes. Furthermore, it is particularly well adapted to
animation due to small update of vertices position between two frames.

FIGURE 1.36 – Comparison between

marching cube (left) and B-Mesh (right).

Figure from [JLW10].

On the other hand, B-Mesh [JLW10] try to
create a high quality quad-mesh. In order to do
so, the initial cages have only square sections.
They are connected around the skeleton connec-
tions thanks to a convex hull. From this initial
rough surface, a quad mesh of arbitrary resolu-
tion is obtained through Catmull-Clarck subdivi-
sion and projection of vertices on the iso-value.
The main problem of this kind of method is the
total absence of topological guarantee, if the ini-
tial "guess" is wrong then whatever the number of
subdivision the result will be of poor quality.
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Dynamic particles system and tracking

Dynamic system of particles can be used to track an evolving implicit surface, of course
such methods need an initial sampling of the surface. In [BN07], a method based on finite
element is used to provide a "mechanical" mesh with near equilateral triangles that tracks the
implicit surface. This mechanical mesh is subdivided at each frame in function of the curvature
to obtain more details in the zones of high curvature. In [YT13], a new definition of the velocity
of an implicit surface is introduced that helps surface tracking.

In [SH97], Morse theory is used to detect changes in topology by tracking critical points
of the field function for time evolving implicit surfaces. This is used to provide guarantee on
topology during both initial meshing of an implicit surface and update of the mesh over time.

1.5.2 Ray-Tracing

Ray-tracing that consist in casting ray from each pixel of the camera provide better quality
pictures than meshing with rasterization, usually at the cost of higher computational time. The
brute force method that consists of marching in the direction of the ray with a fixed step size and
then performing dichotomy as soon as a surface is crossed is particularly slow. Several methods
have been used in order to provide more efficient algorithms either limited to polynomial scalar
field or to scalar field with known properties (such as bounds on the derivatives).

Polynomial functions

Analytical root finding : Some point-based surfaces are described by part thanks to
polynomial of low degree. In this case, provided that a ray is subdivided according to the
different part of the definition, it is possible to analytically find the root of the polynomial
(hence the iso-surface) on a sub-interval provided that the degree of the polynomial is lower or
equal to five. This method was introduced by [NHK∗85] to ray-trace metaballs.

In [GPP∗10], an acceleration structure is introduced in order to render larger number of
metaballs in real time (see Figure 1.37).

Numerical methods : Several numerical methods exist to find all the roots of a polyno-
mial of arbitrary degree. For instance, [WT90] used Laguerre’s method in order to ray-trace
Soft Objects. In [NN94], properties of polygon of control in Bernstein basis (Bezier curves are
inside the convex envelop of its control polygon) provide fast way to discard non crossing in-
terval and fast rate of convergence to the iso-surfaces in the other cases (by using DeCasteljau
algorithm). This method is known as Bézier clipping.

FIGURE 1.37 – Combination of analytical polynomial root-finding, optimization structure and

GPU can provide real-time rendering for large set of metaballs. Figure from [GPP∗10].
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Restricted scalar field behavior

For more general functions, some efficient algorithms can be used to provide efficient iso-
surface detection along a ray. This is for instance the case of both LG-surfaces [KB89] and
interval analysis [Mit90] which aim at isolating the first crossing of the iso-value along a ray.
When it is found, more simple optimization technic can be used to find the root (such as a
combination of Newton method and regula-falsi). LG-surfaces uses bound on variation of the
field and its gradient while interval analysis performs computations on intervals instead of reals.

FIGURE 1.38 – Sphere tracing with a Lip-

schitz bound of 1. Numerous steps are requi-

red when the ray follow the surface at a small

distance. Figure from [Har94].

Instead of trying to isolate the first root
along the ray, sphere tracing [Har94] find the
size of a step that guaranties to not cross the
iso-surface. Similarly to LG-surfaces, this me-
thod requires the knowledge of a bound on the
Lipschitz constant of the field function, ho-
wever it does not need knowledge on the va-
riation of the gradient (nor does it require its
computation). The main drawback of this me-
thod is that it performs poorly when a ray is
tangent to the iso-surface and passes close to
it (see Figure 1.38).

Optimization for convolution

Since convolution surfaces are quite expensive to compute, Sherstyuk [She99b] proposed
the idea of using low degree polynomial approximation in order to approximate them in the
direction of the rays. The idea is to sample the support of a primitive in the ray direction and
use cubic interpolation by part of the scalar field values and derivatives. This provides two main
benefits : it reduces the number of convolution evaluation needed and it provides analytical root
finding (provided that a blending by summation is used).

1.6 APPLICATIONS

Implicit surfaces have been used in a lot of different kind of applications from fluid simu-
lation to sculpting method, we present some of them in this part.

1.6.1 Soft & Fluid-like material

Implicit surfaces are particularly adapted to model object with topology that can vary freely
along time. In fluid simulations various kinds of blobs (isotropic and anisotropic one to improve
appearance) have been used in order to render water from simulated particles. Blobs can also
be used to simulate lava flow. Other kinds of soft substance can be simulated using particle
system and blobs such as in [DG95] where precise contact modeling and volume preservation
are performed. Some examples are visible in Figure 1.39.
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(a) (b) (c)

FIGURE 1.39 – Examples of soft & fluid like material generated from particle system and

blob-like surface. (a) In [SS11] anisotropic kernel are used to improve the quality of water

simulation, (b) in [YT13] a new method to compute speed of implicit surfaces is introduced,

it is used to improve quality of motion blur such as in lava simulation, (c) in [DG95] a soft

substance undergoes changes in topology with complex behavior. Figures from the papers.

1.6.2 Skeleton-based modeling

FIGURE 1.40 – A crab modeled thanks

to point, circle, line and triangle skele-

tons. Figure from [She99a].

Skeletons provide a simple way to manipu-
late surfaces. A lot of the modeling framework
using implicit surfaces directly manipulate a ske-
leton. This is for instance the case of the work
of Bloomenthal [Blo95b] (which used skeleton-
based implicit surfaces to model organic form such
as a hand) and Sherstuyk [She99a] (which mode-
led seafood, see Figure 1.40). Blobtree structure
was initially used in skeleton-modeling framework,
recent work introducing improved blending and
new method of texturing were presented in [dG08].

1.6.3 Sketch-based modeling

FIGURE 1.41 – A complex shape

is created from simpler one in the

sketch-based modeling application

Matiss. Figure from [BBCW10].

Various kinds of sketch-based modeling frame-
work have been used in order to provide intui-
tive modeling techniques. Among them we can find
ConvMo [lTZkF04], ShapeShop [SWSJ07] and Ma-
tiss [BPCB08]. Both ConvMo and Matiss use convo-
lution surfaces in order to generate shape from an ex-
tracted medial-axis. On the contrary, ShapeShop in-
troduces a new kind of primitive based on variational
interpolation in order to ease the approximation of the
sketch. These primitives are used inside the Blobtree
structure to enable the application of various CSG ope-
rations and blendings.

Two main sketching paradigms are used : either
the user only draws lines corresponding to the sil-
houettes of the object which makes the analysis of the
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drawing difficult, or the user draws a plain object which ease the analysis of the shape.

In [PCP10], a painting metaphor is also used but with additional annotation used to improve
the reconstruction of non-planar branching shapes with possible occlusion (the aim being the
representation of vascular system). This work also uses convolution surfaces for the effective
reconstruction of the geometry.

1.6.4 Animation

FIGURE 1.42 – Wrinkling are gene-

rated on a coarse simulation in order

to enhance its appearance without im-

pacting to much the computational time.

The geometry of wrinkling is genera-

ted thanks to convolution surfaces Figure

from [RPC∗10].

There have been several interesting applica-
tions of implicit surfaces to animation.

Wrinkling in cloth simulation :

Cloth simulation can become really expensive
if fine details are to be obtained. In order to over-
come this drawback, in [RPC∗10], a coarse cloth
simulation is augmented with wrinkling, the latter
are generated when compression is detected in the
coarse simulation. In order to generate the actual
geometry, convolution surfaces are used to deform
the base mesh. The placement of convolution ske-
leton uses a space time approach that ensures tem-
poral coherence. The implicit formulation enables
smooth appearance and disappearance of wrinkles
as well as fusion and separation. Results of this
technique are shown in Figure 1.42.

Skinning :

Skinning of character for animation can present a lot of artifacts near skeleton joints.
In [Blo02a], in order to reduce this artifact, a first skinning is used to animate the medial axis
of the shape which in turn is used to animate the surface itself. All the skinning weights are
automatically computed using convolution.

(a) (b) (c)

FIGURE 1.43 – Comparison between : (a) linear blending, (b) base implicit skinning, (c)

implicit skinning with bulge in contact. Figure from [VBG∗13].
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In [VBG∗13], skinning is improved by using implicit surfaces to handle skin contact and
other effects such as bulges in contact, providing better result that classical skinning techniques
and still performing in real-time. First the mesh is subdivided into parts that correspond to each
skinning bone. Each part is approximated by a Hermite RBF. These base primitives represent
an implicit version of the initial mesh after combination by union. The idea is to re-project the
vertex obtained from classic dual quaternion skinning onto the new implicit representation of
the shape. In order to keep details, each vertex of the initial mesh stores its initial iso-value and
is reprojected onto it. Furthermore, in order to prevent sliding of vertices, a tangential relaxation
is introduced. In order to introduce a bulge in contact special versions of the composition
operator can be used. Results are shown in figure 1.43.

1.7 CONCLUSION

To summarize, here are some of the main remaining drawbacks of convolution surfaces :
First, they lack complex skeletons that would enable shapes to be created along 3D curves.
Secondly, and more importantly, while blending problems have been handled with binary ope-
rators, the latter broke the main properties of convolution surfaces which is independence to
skeleton subdivisions. Furthermore, using too many binary operators makes the Blobtree more
complex, leading to more cumbersome manipulations for the user. Lastly, there is only few
methods to add structured details on implicit surfaces.
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Teaser Figure : Implicit modeling of a squid. Each tentacle is made of two helical primitives.

Publication :

ZANNI C., HUBERT E., CANI M.-P. : Warp-based Helical Implicit Primitives. In Shape Mo-

deling International (SMI) (Herzliya, Israël, June 2011), vol. 35, Issue 3 of Computers & Gra-
phics, pp. 517–523.

51



52 CHAPTER 2. COMPLEX PRIMITIVES BY WARPING

CONVOLUTION surfaces require a closed form expression of their field functions to
achieve reasonable computational time. So far, this has been found for planar ske-
letons such as line segments, arcs of circle, quadratic curves or triangles. For this

reason, 3D skeleton curves are typically approximated by a serie of planar curve segments.
Depending on the number of those planar primitives, either the computational efficiency or the
visual quality of the shape is impaired.

In this chapter, we introduce for the first time an analytical implicit primitive around the
simplest non planar space curve, the circular helix ; i.e. a curve with constant curvatures and
constant torsions. It is a promising high level primitive for tessellating arbitrary 3D curves
and can be used by itself for modeling realistically a wide range of organic shapes, from
hair locks [BAC∗06] to natural branching structures such as trees or antlers, see Figures 2.16
and 2.17.

Since deriving closed-form solution for integral surfaces along helices is difficult, the solu-
tion we explore is based on space warping : we show that warping techniques can be adapted
to efficiently generate convolution-like implicit primitives of varying radius along helices. As
we shall see, initial warping transformations such as twist do not preserve the circular shape of
the normal cross-section (i.e. the section orthogonal to the local helix tangent) of the primitive
(see Figure 2.11, first row), and thus cannot be applied as is for our purpose. Depending on a
single parameter of the helix, we warp it onto an arc of circle or onto a line segment, for which
closed form convolutions are known for entire families of kernels. The new warps introduced
preserve the circular shape of the cross section of the primitive.

Overview

Our work builds on both analytical convolution primitives and on space warps : we in-
troduce specific space warps to get artefact-free analytical implicit primitives along circular
helices.

Our first contribution, described in Section 2, is the introduction of convolution primitives
for arcs of circles with polynomial weights and families of infinite support kernel, a part of
the work mostly done by our collaborator Evelyne Hubert. A new piecewise defined warp then
provides analytical expressions for helical implicit primitives.

Our second contribution, presented in Section 3, is the introduction of artefact-free space
warps to generate helical primitives from line-segment ones.

We show in Section 4 that these two alternatives are complementary and can be combined
to provide helical convolution primitives covering the whole range of helical skeleton shapes.
We additionally show that, for a lower computational cost, the shapes based on our helical pri-
mitives are visually more appealing than those obtained with a standard tessellation into line
segments.

Notations : Without loss of generality we consider that the helical skeleton to be processed
is given by :







x = R cos(u)
y = ǫR sin(u)
z = S u

(2.1)

where ǫ = ±1 and u ∈ I ⊂ R. I is the interval defining the part of the helix used as skeleton.
The length of the latter is thus

√
R2 + S2|I|. The twist is defined as the ratio S

R ; we shall see
that it dictates the warp to be used. When this ratio tends to 0 (respectively to ∞) the helix
tends to a circle (respectively to a line segment). Figure 2.1 gives some examples of the shape
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S
R = 0.0 S

R = 0.2 S
R = 0.4 S

R = 1.0 S
R = ∞

FIGURE 2.1 – Shape of the helix for increasing value of SR .

of the helix according to the twist. The thickness of the primitive is assumed to be smaller than
the radius of curvature of the helix, as otherwise the warps run into singularities.

The Cartesian coordinates of a point P in 3D space are noted (x, y, z). Its cylindrical coor-
dinates are (r, θ, z) where θ is the planar angle with the x-axis (see Fig. 2.2(a)).

Our further derivations are applicable to common superset of Cauchy and power inverse
kernels of arbitrary orders.

The warps we make use of are space transformation W : R
3 → R

3 that maps the circular
helix to a simpler skeleton curve (see Fig. 2.2(b)). The helical primitive function f̃ we look for
is then defined from the simpler skeleton primitive f by :

f̃(P ) = f(W (P ))

FIGURE 2.2 – The z-axis helix in red can be warped either to the virtual segment in green

(right) or to the virtual circle in blue (left).

2.1 FROM CIRCLE TO HELICAL PRIMITIVES

In this section we first introduce closed form convolution primitives for arcs of circle with a
polynomial weight enabling to define varying radius, a case never solved so far. Our approach
applies uniformly to both Cauchy and power inverse kernels of even order ; we include as an
example the closed form expression for a linear weight in the case of the classical (i.e. order 4)
Cauchy kernel. We then present a warp that maps the helix onto a circle. This provides a first
method for computing an analytical helical primitive.
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2.1.1 Closed-form primitives for arcs of circles

When it comes to integration, rational functions are the dependable class [Bro05]. The main
ingredient in obtaining closed-form convolution primitives for arcs of circle is to introduce an
appropriate rational parameterization.

Let
⌢
AB define the arc of circle to be used as skeleton. We assume that the points O, A

and B (see Fig. 2.3) are not aligned, and such that |OA| = |OB| = r. They define a plane
in space and two arcs of the same circle, one of angle α the other of angle π + α, where

0 < α < π is given by α = arccos
(−→
OA·−−→OB
r2

)

. According to which of the two arcs we deal

with T = tan
(

α
4

)

or T = tan
(

π+α
4

)

.
Momentarily we consider the coordinate system (x, y, z) where the origin is the center of the
circle, the x-axis is the bisector of the chosen angle defined byO, A andB and the (x, y) plane
is the plane of the circle. A parametrization of the arc of circle is then given by

Γ : [−T, T ] −→ R
3

t 7→
(

r
2t

t2 + 1
, r
t2 − 1

t2 + 1
, 0

)

.

When t→ ±∞, Γ(t) tends to the point diametrically opposite to the mid-point of the arc. The
other points of the circle are obtained for a parameter t ∈ R. In terms of this parameter t the
infinitesimal arc length is |Γ′(t)| = 2 r

t2+1
.

Consider a point P (x, y, z) in space. We have

|PΓ(t)|2 =
αt2 − 2β t+ γ

t2 + 1

where α = x2 + (y − r)2 + z2, β = 2 r x, γ = x2 + (y + r)2 + z2. Note that

γ + α = 2 (|OP |2 + r2), (2.2)

αT 2 + 2β T + γ = (T 2 + 1) |AP |2, (2.3)

γ T 2 − 2β T + γ = (T 2 + 1) |BP |2, (2.4)

so that (α, β, γ) is actually the solution of a linear system that depends on T and the squares
of the distances of P to O, A and B. There is a unique solution provided that A, O and B are

FIGURE 2.3 – Parameterization of the arc of circle
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FIGURE 2.4 – The level sets of the convolution primitive for an arc of circle for constant (right)

and linear (left) weights.

not aligned, i.e. T (T 2 − 1) 6= 0. An explicit expression for (α, β, γ) is obtained by Cramer’s
rules.

Hence the weighted convolution primitive (eq. (1.14), which is the method usually used to
obtain varying radius) for the arc of circle with weight τ : [−T, T ] → R is given by :

fSk (OAB)(P ) = 2 r

∫ T

−T
τ(t)

(t2 + 1)
i
2
−1

(a t2 − 2 b t+ c)
i
2

dt (2.5)

where a = 1+s α, b = s β, c = 1+s γ for Cauchy kernels and a = α, b = β, c = γ for power
inverse kernels (of order i). Closed form expressions for the following integrals are given in
[HC12] :

Ik,i =

∫

tk

(a t2 − 2 b t+ c)
i
2

dt

which appear in line-segment primitives. When using even order Cauchy or power inverse ker-
nels those expressions also provide closed form primitives for arcs of circle with polynomial
weight function τ. It is just a matter of expanding the numerator. For odd order kernels, the
closed form primitives are expressed thanks to elliptic functions.

Effect of rational parametrization on weight control

If we look at equation 2.5, we can note that the weight τ is defined as a function of the
same parameter as the rational parametrization Γ which is not the arc-length parametrization.
Since the function τ defines the volume around the shape, it is important to see the difference
between the weight defined on the skeleton if we use a linear function of t and a linear function
of the arc-length s. We have :

s(t) =

∫ t

0

2r

u2 + 1
du

s(t) = 2r atan(t)

which is defined on [−T, T ] and take value in [− rα
2 ,

rα
2 ]. So, in order to have a weight function

τ̃ that depend on the arc-length s, we should have used :

τ(t) = τ̃(s(t))

which is equivalent to :
τ(t) = τ̃(2r atan(t)).
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For instance, if we want to use a weight function that varies linearly on the skeleton, that would
make appear a atan in the function to integrate which would not be cumbersome. In order to
simplify integration, we can approximate s(t) by :

ŝ(t) =
rα

2T
t

We can easily check that the error of approximation is zero in −T , 0 and T . The maximal error

is obtained for t = ±
√

1 − tan(α
4 )

α
4

. The error relative to the size of parameter’s interval is 0.03

for α = π
2 , 0.09 for π and 1.0 for 2π. Because the error is not too important for an arc of circle

of opening lower than π (on should take into account that the error is partly smoothed out due
to integration), it is possible to use this approximation to compute the convolution, thus we
obtain

τ(t) ≃ τ̃(
rα

2T
t)

and so if we want to set a polynomial function on the skeleton we can easily approximate it by
a polynomial function of parameter t of same degree.

Consider the particular case of an arc of circle with a linear weight defined by the two
endpoints weights τA and τB , that is : τ(t) = u t + v where u = τA−τB

2T , v = τB+τA

2 so
CAOB(P ). For the classical (order 4) Cauchy kernel the primitive (with weight approximation)
is given by

2r [u(I4,3(a, b, c) + I4,1(a, b, c) + v(I4,2(a, b, c) + I4,0(a, b, c))]
T

−T
.

The explicit expressions for I4,0, . . . , I4,3 are given in [HC12]. The left hand sides of Equa-
tions 2.2-2.4 arise as subexpressions and it is worth using those latter for a faster evaluation.
Figure 2.4 illustrates the level sets of this primitive in the case where τA = τB and in the case
where τA 6= τB .

2.1.2 Warp based extension to helical primitives

A first way to generate an analytical, convolution-like field along a helical skeleton is to
use a warping method, based on a piece-wise map of the helix onto arcs of a circle. More
precisely, we use a translation along the z-axis, where the amount of translation depends on

FIGURE 2.5 – Amount of translation along the z-axis according to the angle θ in cylindrical

coordinates
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FIGURE 2.6 – Left : for a thicker volume around the helix, a pinched blend occurs in the

vicinity of the axis if we use the warp of Section 2.1.2. Right : the lift of Section 2.1.3 erases

this unwanted singularity.

the θ coordinate of the query point P :

W (r, θ, z) =







r
θ

z − τ(θ)







with τ(θ) = ǫ S θ

For τ to be continuous, we use more than two arcs of circle for mapping a turn of the
helix (using a different warp per arc of circle) : this way, the warp is injective and O, A, B
are not aligned (see Section 2.1.1). More precisely, we define a warp of an arc of helix using
τ(θ) = ǫ.S θ on [−3π

4 ,
3π
4 ] which includes all the points of the helix arc. We use a cubic spline

junction to have a continuous warp defined everywhere in space (see Fig. 2.5). Results are
depicted on Figure 2.7.

2.1.3 Handling of thick helical primitives

The warp introduced in previous section is not well defined along the helix axis and bears
no continuous extension. As we go across the axis, from θ to θ + π, τ takes a non zero step
unless θ = 0,±π. As a result the scalar field for the primitive is singular along the axis.
Plotting its level sets in the vicinity of the axis is thus error prone. The situation is remedied
by increasing the dimension of the problem : a fourth coordinate t is introduced. This latter is
made to tend to ∞ when r tends to 0 and equals 0 when r ≥ R. The initial circle primitive
used for the definition of a convolution surface depends on three parameters, which are the
distances between a point in space and the points O, A and B. By introducing the parameter t,
the circle used for the convolution is actually embedded in a 4 dimensional space. As shown in
Figure 2.6, this allows us to remove the pinched area in the vicinity of the axis of the helix.

The improved warp allows us to generate implicit primitives for highly twisted helices.
This is illustrated in Figure 2.7. For the top row we used a constant weight function on the
circle. The helical primitive has then a constant radius as is expected. For the bottom row we
used a linear weight function. That reflects in a varying radius along the helix that we can wish
for.

The deformation introduced by the above circle based warp on the normal cross-section
to the helix becomes noticeable as S

R increases, i.e. when the helix becomes closer to a line-
segment. Typically, when S

R is greater than 0.6 the ratio between the incircle and excircle of
the section becomes smaller than 0.8. We thus offer next a helical primitive using a warp onto
a line-segment. Section 4 shows how to combine them to adequately span the full range of
circular helices.
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FIGURE 2.7 – Helical primitives based on warps to the circle. Top : constant weight. Bottom :

varying weight.

2.2 HELICAL PRIMITIVES BY WARPING TO A LINE SEGMENT

In this section we shall introduce warps of a helix to a line segment in order to provide better
quality when the twist RS increases. Our starting point is the inverse of Barr’s twist, which was
already used in [WO97] to create implicit primitives. We exhibit the imperfections of this warp
for our purpose and offer new transformations to compose it with, in order to obtain the desired
results. Those new warps form an essential part of our contribution in this chapter.

As a convention for the rest of this section we use the line segment parallel to the axis of
the helix and shown in green in Figure 2.2 (right). In contrast to the method of previous section,
any number of turns in the helix can be handled in a single warp.

2.2.1 Naive twist-based warps

Twisting back a helix of parameter S to a line-segment can be done by setting v to − ǫ
S in

the equation of a twist :

twist(v, (x, y, z)) =







x cos(v.z) − y sin(v.z)
x sin(v.z) + y cos(v.z)

z







We therefore define our basic warp as :

Wtwist(x, y, z) = twist(− ǫ

S
, (x, y, z))

As shown in the top row of Figure 2.11, the normal sections of the resulting primitives are not
circular. To get some insight we consider a helix with R = 1, ǫ = 1 and examine the linear
part, Wsimple, of the map Wtwist around (1, 0, 0) :

Wsimple(x, y, z) =







x
y − z

S
z







.

The preimage of the vector (0, 0, 1) is the tangent vector to the helix at the point (1, 0, 0), that is
(0, 1/S, 1). Figure 2.8(a) depicts a circular cylinder, the axis of which is given by this tangent
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FIGURE 2.8 – (a) Transformation Wsimple applied to an inclined cylinder, (b) Lateral view of

that cylinder

vector, and its image underWsimple. This latter is a cylinder with an elliptic section. Indeed the
intersection of the left hand side cylinder with a plane z = c is an ellipse E and the restriction
of Wsimple to that plane is a translation within this plane. Therefore the section of the image
cylinder is the same ellipse E . As explained on Figure 2.8(b) the ratio of the major and minor
radius of this ellipse is :

rmin
rmax

= sin(α) =
S√

R2 + S2
(2.6)

Scaling the warp along the y-axis will bring the horizontal section closer to a circle. The
resulting transformation is :

W̃ (x, y, z) =







x cos( ǫ
S
z) − y sin( ǫ

S
z)

S
√

R2+S2
(x sin( ǫ

S
z) + y cos( ǫ

S
z))

z







(a) (b)

FIGURE 2.9 – The principle behind the two naive warps and their results.
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However, this transformation still does not work for highly twisted helices (see figure 2.9(a)) :
our additional scaling component neglected the effect of the rotation (if we take again the
analogy with an oblique cylinder, the latter should rotate along the helix). It is more appro-
priate to apply the scaling correction to the angle in the cylindrical coordinates : W̄ (r, θ, z) =
{

r, S√
R2+S2

(θ − ǫ
S z), z

}

. This is equivalent to applying a rotation around the helix axis after

the twisting (see figure 2.9(b)). The angle of rotation depends on the polar coordinate after
twisting. However the rotation to be considered for a helix is a rotation around its center of
curvature.

2.2.2 Correctly handling the central part

The warps we described so far gave us some insight on the corrections required to get a
reasonably circular cross-section : a scaling should be applied after a rotation around the local
center of curvature of the helix. The center of curvature at a parameter t along the helix is given
by :

(

−S
2

R
cos(t), −S

2

R
sin(t), S t

)

.

When the helix tends to a line segment the centers of curvature wander off to infinity whereas,
when the helix tends to a circle, the centers of curvature are attracted toward the axis of the he-
lix. The correction we define thus varies smoothly from the value of W̃ to that of W̄ according
to the amount of twist of the helix.

Our new transformation can be written as :

W (x, y, z) = g(twist(− ǫ

S
, (x, y, z)))

where

g(x, y, z) =

8

>

<

>

:

(x+ S2

R
) cos(µψ(x, y, z)) − y sin(µψ(x, y, z)) − S2

R

(x+ S2

R
) sin(µψ(x, y, z)) + y cos(µψ(x, y, z))√

R2+S2

S
z

9

>

=

>

;

, (2.7)

µ =
S√

R2 + S2
− 1,

FIGURE 2.10 – Difference between the naive warps and our improved solution.
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FIGURE 2.11 – Comparison, for different values of S
R , between the classic twist (first row),

the solution with the end point problem (second row) and our final solution (third row).

and

ψ(x, y, z) = atan2(y, x+
S2

R
).

The restriction of g to a plane orthogonal at some point to the helix axis is a rotation
around the center of curvature of the helix at this point (see Figure 2.10). This is equivalent to
multiplying the polar coordinates, with respect to the center of curvature, of the point by the
ratio S√

R2+S2
(Equation 2.6). Another important feature is to ensure that the helical primitive

has the same thickness as the associated line segment primitive. The length of the skeleton
needs to be preserved to ensure this. As the last coordinate of g in Equation 2.7 discloses it,
this is obtained by scaling along the z-axis.

The primitives obtained with this new warp are illustrated in the second row of Figure 2.11.

2.2.3 Final solution for segment-based primitives

Figure 2.11 provides a comparison between the results obtained with the original twist and
those obtained with the presented new warp. A closer look at the leftmost image in the second
row reveals an unwanted artefact toward the end points of the shape. This artefact furthermore
prevents the seamless blends that are sought when the helix is part of a more complex skeleton.

The artefacts observed around the tips of the helical primitive can be explained through the
linearized warpWsimple already studied in Section 2.2.1. Figure 2.12 illustrates the cause of the
problem at the end points and how to measure the unwanted deformation in order to introduce
an appropriate correction. A translation along the z-axis, the norm of which depends linearly
on y in the deformed space, is enough to correct the tips in this linearized version. As before,
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FIGURE 2.12 – Idea justifying the correction of both ends of the primitive.

this correction is adapted to our main transformation through a translation that depends on the
polar coordinate with respect to the center of curvature. This is given explicitly by :

Wcorrect(x, y, z) = τ(W (x, y, z))

where

τ(x, y, z) =







x
y

z − ǫ R
2+S2

S ψ(x, y, z)







The map τ introduces a discontinuity of the field function when ψ = ±π. The latter can be
easily overcome through a linear or spline junction as was done for warps onto arcs of circles
(Figure 2.5).

The improvement introduced by this last adjustment can be easily appreciated by compa-
ring the second and third row in Figure 2.11.

To obtain a helical primitive with varying radius, we can simply assign a polynomial weight
function on the line-segment skeleton the helix is warped onto and use the results of [HC12].
Results are shown in Figure 2.13.

FIGURE 2.13 – Helical primitives with varying radius created by warping a single segment.
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FIGURE 2.14 – Transition between the two kind of primitives in function of SR

2.3 EVALUATION AND COMBINATION OF OUR SOLUTIONS

We presented two ways of obtaining a helical primitive by warping the helix either on arcs
of a circle or onto a line segment. We lead an experimental evaluation of the results obtained
through those two warps. On one hand, the warp to circle solution presented in Section 2 leads
to good results when S

R ∈ [0,≈ 0.5] (see Figure 2.1 to have an idea of the shape of the helix).
Beyond that the shape of the cross-section is noticeably deformed. We may think of improving
the situation by introducing corrections as was done for line segments in Section 3. On the other
hand, the solution based on warp to line segment developed in Section 3 gives good results for
all kinds of helices, except when the helix becomes highly twisted : for a helix close to a
circle, our solution still locally flattens the primitive around the end points of the helix. In our
experiments, this is negligible until S

R becomes lower than ≈ 0.35 (instead of ≈ 0.7 without
the final correction for the tips). Thus, the whole range of helices can be handled nicely by at
least one of the two methods we proposed, with good results.

Combination of the two methods

Since the quality of the result depends on the same ratio S
R , automatically choosing the

method to apply is very easy.
A first solution is to use a segment based primitive, which is computationally cheaper, when

S
R > 0.4, a circle based primitive when S

R < 0.3 and an intermediate solution in-between. This
intermediate solution is constructed by interpolation, for instance a cubic interpolation. In this
first approach, the evaluation of the helical primitive when 0.3 < S

R < 0.4 requires both the
evaluation of the circle based primitive and the line segment based primitive. A more efficient

FIGURE 2.15 – Helical primitive prolonged by a segment primitive for different values of SR
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segment helical helical
primitive from circle from segment

Time for 2003

field queries 1.45s 2.63s 3.27s

TABLE 2.1 – Computation time for a single primitive. CPU : 2.4 GHz Intel Core 2 Duo (only

one core used).

way to handle the transition zone of twisting, i.e. when 0.3 < S
R < 0.4, is to work with a warp

of a line segment for the middle part of the helix and only two warps onto arcs of circles for the
tips of the shape. Then interpolation between the two different primitives occurs only within a
limited range of the z coordinate (see figure 2.14).

In figure 2.15, the helix is prolonged by a line segment with continuous tangency. The
resulting shape remains smooth around the transition between the helical primitive and the line
segment primitive. Figure 2.17 emphasizes the quality of our global helical primitive in the
context of a more complex skeleton (each tentacles are created from two helices).

Computational efficiency

Table 2.1 compares the timings for the evaluations of our two analytical helical primitives
and of a line-segment primitive. This shows that when 3 segments or more are needed to ap-
proximate a helical skeleton, our new helical primitive is much more efficient. The fact that
the warp-to-circle solution used for highly twisted helices requires two primitives per turn does
not change this result, since more than 6 segments per turn would be needed then. To make
this comparison more visual, Figure 2.16 depicts the quality we would get, at constant com-
putational cost, by tessellating a skeleton into line-segments or into helices. For this level of
zoom, getting the same visual quality with a tessellation into line segments would respectively
multiply computational time by factors 2.71 for the octopus, which includes non helical parts,
and 5.84 for the antlers, which is only made of helices.

Manipulation of primitives

Having base primitives that are efficient both in term of shape representation and compu-
tational efficiency is not sufficient. The shape should also be easy to manipulate in order to
make the primitive useable. In our modeling framework, helices can be manipulated through
their end-points : when one end point is moved, we compute a deformation of the helix that

(a) 14 segments (b) 5 helix (c) 13 segments (d) 4 helices

FIGURE 2.16 – Comparison of model quality using a tessellation of 3D skeleton curves into

line-segments (left) compared to our helical primitives (right) when a given computational time

is allowed.
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FIGURE 2.17 – Two views of the same squid and octopus, all tentacles are created from 2

helices. Note that even without C1 transition between helix skeletons the resulting surface look

smooth.

has the property to pass through the two end point while minimizing the deformation of the
helix shape. In order to do so we decompose this transformation in two base one : the first one
is a rotation (the shape of the helix is unchanged) that aligns the two end points of the helix
and the aim. The second transformation is a global scaling of the helix which will ensure the
new end-point constraint (since it is a global scaling, it does not deform the helix shape, SR is
constant, it only change its scale). The helix can be modified by keeping its end point at a given
position. The first modification left the helix shape and scale unchanged, it is a rotation which
axis is the vector between the two end points. The two other deformations are the change of
radius and the change of stretch. Manipulating helices this way is quite easy, however there are
plenty of ways to improve how we create and manipulate our skeletons. For creation we could
use [CCM13] that compute a 3D curves from a sketch curve, the 3D curve being a helix by part.
An alternative solution could be to use [DJBDT13] that create a G1 helix by part from a spline.
While for manipulation, physical simulation [BAC∗06] would be an interesting alternative.
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2.4 CONCLUSION AND FUTURE WORK

We have introduced the first analytical formulation for helical implicit primitives. The me-
thod handles primitives of varying radius and can be used with arbitrary convolution kernels
such as power inverse and Cauchy kernels of arbitrary order. Indeed, a side, yet important,
contribution is a new general formulation for arc of circle convolution primitives, which allows
for varying radius.

Our solution for helices can be considered as a pseudo-convolution since it built on arcs of
circle and line-segment convolution primitives by warping. Similarly to convolution, the resul-
ting helical primitives can be used in complex configurations where the skeleton is tessellated
into several helices : as with direct closed-form convolution, the resulting curve is bulge-free.

We furthermore have set up the bases of a methodology to design advanced space warps
that progressively build complex primitives from simpler ones. That opens the door to further
extensions : the same methodology could be applied to get implicit primitives along 3D spiral
skeletons, which were shown to be very useful to represent a larger variety of natural shapes
such as seashells and horns [HT11]. Modifying our deformation to the sweeping of more ge-
neral cross-sections around the helix skeleton would also be a useful extension of this work,
made possible by our section preserving warp.
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SCALE-INVARIANT INTEGRAL
SURFACES

Teaser Figure : SCAle-invariant Integral Surfaces (SCALIS) makes interactive, skeleton-based

modeling intuitive (a), provides a direct reconstruction of complex shapes from their medial

axes (b) and is very convenient for sketch-based modeling (c).

Publication :

ZANNI C., BERNHARDT A., QUIBLIER M., CANI M.-P. : SCALe-invariant Integral Sur-
faces. Computer Graphics Forum (to appear).
ZANNI C., BERNHARDT A., QUIBLIER M., CANI M.-P. : Surfaces Implicites Homothé-
tiques. Revue Electronique Francophone d’Informatique Graphique - REFIG (to appear).
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GEOMETRIC skeletons, namely lower dimensional structures centered inside a shape,
have been instrumental in shape analysis, shape matching or as a tool for shape de-
formation for many years [Lon98, BL99]. A typical example is the medial axis of a

solid shape [SPB96], a non-manifold graph of curve and surface components, defined as the lo-
cus of the centers of maximal spheres included into the shape. Other examples are Reeb graphs
used for extracting topological information, or centered graphs of curves used for automati-
cally fitting animation skeletons [BGSF08, AHLD07]. With RigMesh, [BJD∗12] introduced a
sketch-based modeling method that unify modeling and rigging stages of the character anima-
tion pipeline, thus enabling the easy re-posing and animation of the created shape.

Easing the reverse operation, i.e. the generation of smooth 3D shapes from skeletons, would
bring many benefits : firstly, it would enable to store solid models in skeletal form, a highly
compact representation compared with B-reps due to their lower topological dimension ; se-
condly, using skeletons as modeling primitives would ease conceptual shape design as well as
subsequent deformation and animation, due to the high-level vision they provide on geometry
and topology ; Lastly, being able to generate shapes from skeletons would ease the reconstruc-
tion of smooth solids from raw data such as point-sets or voxels, for which skeleton extraction
techniques are already available.

Theoretically, skeletal structures are reversible shape representations when associated with
radius information. However, generating smooth solid models from skeletal information is in-
tricate. Convolution surfaces, namely iso-surfaces of scalar fields generated by convolving a
skeleton with a smoothing kernel, are probably the most attractive model to do so : individual
primitives generated by each skeleton component seamlessly blends when their field contri-
butions are summed, which makes modeling by parts straightforward. This model was suc-
cessfully used in both animation and sketch-based modeling applications [Blo02b, BPCB08].
Unfortunately, convolution surfaces also bring severe drawbacks, which restricted their use :
firstly, although the smoothing kernel can be weighted along the skeleton, there is no mecha-
nism for prescribing desired radii ; secondly, modeling large shapes with fine details is difficult,
as small size components are typically smoothed out when blended into larger ones ; even more
surprisingly, convolution surfaces are not scale invariant : depending of the scale of the work
space, blending produces quite different effects for the same input shapes. These drawbacks
make shape control very difficult and may be the reason why skeletons never spread as a mo-
deling primitive.

We therefore introduce SCAle-invariant Integral Surfaces (SCALIS), a new implicit mo-
del aimed at making skeleton-based modeling usable. Based on a combination of convolution
and space warps, SCALIS retains the advantages of convolution surfaces, namely making the
resulting shape independent from the degree of subdivision of the skeleton and producing seam-
less blends (using a simple sum of fields) when new skeletal branches are added. However, in
contrast with convolution surfaces, SCALIS avoids the three problems we listed : the radii of
the generated shapes can be explicitly tuned ; the level of smoothing, still controlled through
the choice of a smoothing kernel, is self-similar at different scales and brings scale-invariant
blending effects ; lastly, small shape components are not smoothed out anymore when blended
with larger shapes, which makes detailed modeling possible.
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3.1 DRAWBACKS OF WEIGHTED CONVOLUTION

As we have seen, Convolution surfaces are attractive because they create smooth shapes
around skeletons independently from the subdivision of the latter. Moreover, their extensions to
weighted convolution, standard formulation (1.14) and Hornus (1.15), enable to create shapes
with varying radii. However, they raised a number of issues :

1. Lack of radius control : There is no mechanism for prescribing a desired radius. This
comes from the non-linear dependency between the weighting function τ and the radius
of the iso-surface of interest (see figure 3.1(c)). In addition to preventing precise shape
control, this makes modeling non-intuitive (see figure 3.2(a) and 3.8(a,b)).

2. Blurring and vanishing details : Small scale details are smoothed out when blended
to a shape of larger size, especially using eq. (1.14) (see figure 3.3(a)). In addition, thin
surfaces tend to collapse (figure 3.1(a)). As noted in [JT02a], the Inverse kernel is the
only one that does not raise this problem due to the infinite field value on the skeleton.

3. Scale-dependent blending : The way two convolution surfaces blend when the asso-
ciated fields are added does not depend only on their shapes, but also on the scale at
which they were defined : as τ decreases, blending becomes smoother and smoother (see
figure 3.4).

weight !

Standard

Scalis

Hornus

thickness

(a) (b) (c)

FIGURE 3.1 – Primitives of decreasing radius (Cauchy kernel) : The standard formulation

(a) causes the surface to collapse at the center of the skeleton and then vanish, contrary to

SCALIS (b). (c) plots the thickness of the generated shape in function of τ for an infinite segment

skeleton.

(a) (b)

FIGURE 3.2 – Shapes generated when the weight li-

nearly falls to 0 : (a) standard formulation, (b) SCA-

LIS. Note the unwanted rounded extremities in (a).

Recent work in implicit mode-
ling has addressed some of these
issues. Two sketch-based modeling
systems based on convolution had to
cope with radius control [lTZkF04,
BPCB08]. They either used an op-
timization process to compute τ at
skeleton vertices from the 2D skele-
tons and from the radii extracted from
the sketch, or relied on a sketching
space of pre-defined size, combined
with pre-set correspondence between
weight and radius.
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(a) (b)

FIGURE 3.3 – Blending of thin primitives into a thick one. The details blur when the standard

formulation is used (a), but not with SCALIS (b).

The blurring details problem was recently overcome in an automatic way by introducing
a complex binary operator, based on an extra influence primitive generated at the intersection
of the input surfaces [BBCW10]. However, this operator is costly compared to the sum, does
not handle n-ary combinations, and as the previous ones, would not insure shape independence
from skeleton subdivision. We therefore develop a new model below, which tries to overcome
these limitations.

3.2 SCALIS : SCALE-INVARIANT INTEGRAL SURFACES

Since standard weighted convolutions do not generate a field that is a linear function of τ,
they are not scale-invariant (see figure 3.4 (a)) : both the relative radii of individual primitives
and the way they blend change when models are scaled. In practice, this prevents the use of
convolution primitives in general modeling systems, since shape resizing operations cannot be
applied.

In this work, we revise convolution surfaces in order to solve the three major problems we
have identified while maintaining their most attractive features, namely n-ary blending using
a simple sum and shape independence from skeleton subdivision. Our insight is that making
convolution scale invariant is sufficient to solve the three issues listed in section 2.4.

Figure 3.5 depicts the different strategies used by the two previous models to generate
radius variations : while equation (1.14) changes the height of the kernel while keeping the
width of the support unchanged, equation (1.15) generates a kernel of constant height, but of
varying support-size. Let us give some intuition on why the lack of scale-invariance is the main
problem. Let us look at skeleton as a density of charge that creates a potential field. A skeleton
with a small weight will create less energy than a larger one (but in a domain of the same size).
The problem is that the iso-surface corresponds to a given energy level. For this reason small
skeletons will have more difficulty to create a surface by themselves. If the energy was scale-
invariant, skeletons with small weights would generate the same energy in a given point in
space (although less energy in all the space), thus creating the expected surface. In comparison
to previous method, our new solution SCALIS, scales both the width of the support and its
height while keeping the area below the curve constant (which can be seen has a preservation
of energy). This brings scale invariance.
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This section develops our solution in the case of a primitives of constant weight τ. The
extension of SCALIS to primitives of varying radii is presented in Section 4.

3.2.1 Combining convolution with warping

As seen in the state-of-the-art and in the previous section, space warps can be used to
define complex primitives from simpler ones. We rely on this warping principle to define scale-
invariant integral surfaces.

To get two identical implicit primitives at different scales, not only in terms of shapes but
also in terms of blending behavior, their scalar fields should be scaled versions of each other.
To get this invariance property, the idea is to compute field values in a warped space, where
all skeletons have a unit weight, i.e. where the field is computed using the initial convolution
formulation of equation (1.9). This is done by using a warped primitive, where the warping W
is a simple scaling, applied to both the query point and the primitive parameters (skeleton Sk

and weight τc). See figure 3.6.
In summary, the new scalar field is defined by :

fτc,Sk (P ) = f̃Wτc (Sk )(Wτc(P )) (3.1)

where f̃Wτc (Sk ) is the application of the basic convolution (eq. (1.9)) along the warped skeleton
Wτc(Sk ). The scaling Wτc applied to a point is defined by :

Wτc(P ) = O +
1

τc

−−→
OP, (3.2)

where O is the origin of the coordinate system. In a consistent manner, the scaling applied to a
skeleton (a set of points) is defined by Wτc(Sk ) = {Wτc(P )/P ∈ Sk }.

If we look at the formula used to compute f̃Wτc (Sk )(Wτc(P )), we can see that the distance
to the skeleton points is the only way the query point is used. This means that the center of the
scaling has no effect on the result. Indeed the same scaling is applied to both the query point

FIGURE 3.4 – Scaling applied to both convolution skeletons and τ : (a) Standard formulation,

(b) Hornus formulation, (c) SCALIS. The first scaling factor is 1
3 and the second is 1

6 , for a

factor of 1
10 the surface for Hornus formulation would only exist on a small vicinity of the

intersection of the two skeletons. Presented results use Cauchy kernel.
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FIGURE 3.6 – Space warp used to get scale-invariant implicit primitives.

and to the skeleton and during a scaling all distances are multiplied by the ratio of the scaling
(due to Thalès’ theorem). Thereafter, since the center of the scaling has no effect, we will use
the following abuse of notation : αP and αSk to represent the scaling of ratio α and center O
respectively applied to a point P and to a skeleton Sk .

We can easily check that this new field is scale-invariant :

fατc,αSk (αP ) = f̃ α
ατc

Sk (
α

ατc
P ) = f̃ 1

τc
Sk

(
1

τc
P ) = fτc,Sk (P )

We also note that the good properties of convolution surfaces are maintained : if a segment-
skeleton splits into pieces, the two parts, transformed through the warp, are still two halves
of a segment, on which a standard convolution is computed. Therefore, SCALIS models are
independent of the degree of subdivision of the skeleton, and smoothly blend when fields are
summed (the proof is given in appendix B.1). As for convolution surfaces, this enables arbitrary
graphs of curve-segments and of surface-patches to be used as skeletons, the later being split
into adequate sets of line-segments or of triangles for computing f . However, as for convolu-
tion surfaces, modeling general shapes will require SCALIS primitives of non constant radius,
which we present next.
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FIGURE 3.7 – Passing the space warping method to the limit.

3.3 ENABLING RADIUS VARIATIONS

For sake of simplicity, we first extend SCALIS to non-constant radii in the case of curve-
skeletons. Then, the solution is generalized to higher-order skeletons. Finally, we discuss the
way to compute closed-form expressions in order to accelerate field queries.

3.3.1 Case of curve-skeletons

Suppose that a varying weight τ(s) has been defined along a curve-skeleton. The simple
idea developed in the previous section, namely using τ as the control parameter of a space-
warp (equation (3.1)) to get scale-invariance, cannot be applied anymore. However, we can
extend the model by passing it to the limit, i.e. by reasoning about different local warps (each
depending on the local weight value) applied to each infinitesimal arc-length of the skeleton.

Let us take a look at the field contribution of an infinitesimal element ds of a curve-skeleton,
as depicted in figure 3.7. The local space warp around s would modify distances by a factor

1
τ(s) . Thus the influence of the element ds is given by k( 1

τ(s)‖
−−−→
PΓ(s)‖). Nevertheless, we should

remember that the warp is also applied to the skeleton. Thus, the infinitesimal arc length be-
comes ds

τ(s) . Replacing the discrete sum over infinitesimal segments by an integral, this yields :

fSk (P ) =

∫

s∈Ω
k

(

‖
−−−→
PΓ(s)‖
τSk (s)

)

ds
τSk (s)

. (3.3)

If the integral is not parametrized by arc-length, the formula becomes :

fSk (P ) =

∫

t∈Ω
k

(

‖
−−−→
PΓ(t)‖
τSk (t)

)

|Γ′(t)| dt
τSk (t)

. (3.4)

Compared with the expression used by Hornus (equation (1.15)), our formulation consists in
giving a density to the skeleton, this latter being inversely proportional to the local weight.
Moreover, since integrating increases by one the degree of regularity of a function, our new field
function is C∞ for Inverse and Cauchy kernels and C⌊ i+1

2
⌋ for Compact Polynomial kernel.

3.3.2 Extension to skeletons of higher dimension

In the case of surface skeleton, the same method can be used. However, the resulting formu-
lation is slightly different, since scaling an infinitesimal surface element dudv requires scaling
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it in both directions, by dividing it by τ(u, v)2. Therefore, the expression of SCALIS of non-
constant radius on triangle-skeletons uses a factor 1

τ(u,v)2
instead of 1

τ(s) in eq. (3.3) :

fSk (P ) =

∫

(u,v)∈Ω
k

(

‖
−−−−−→
PΓ(u, v)‖
τSk (u, v)

)

|Γ′(u, v)| dudv
τSk (u, v)2

(3.5)

Similarly, the formulation would be easy to extend to elementary volume skeletons, as the ones
used in [PGMG09], but with a division of the elementary volume by the third power of τ.

3.3.3 Non-parametric formulation of Scale-invariant Integral Surfaces

It is possible to introduce a formulation of SCALIS that is closer to the initial formulation
of convolution in R

3 and thus that is independent from any parametrization. For this we will
re-use the description of the skeleton Sk as a set of point (with additional information) as it is
described in the state-of-the-art 1.1.1 :

fSk (P ) =

∫

R3

gSk (Q)

τSk (Q)d
K

(‖P −Q‖
τSk (Q)

)

dQ (3.6)

with gSk the distribution that depend of the dimension of the skeleton described in 1.1.4.
This new formulation, which is equivalent to the parametrical one, although less useful

for computation purpose, is helpful to demonstrate some properties. For instance, we use it to
demonstrate that the field function fSk is additive in relation to the skeleton Sk (which gives
the independence to skeleton subdivision : the main property of convolution surfaces). See
Appendix B.1.

Skeletons of 0-dimension : the case of points

In the case of 0-dimension skeleton, the distribution representing the skeleton is

gSk (P ) =
∑

Q∈S

δ(P −Q).

Injecting this equality in equation (3.6) leads to the definition of classic point primitives. In-
deed, for 0-dimension skeleton, the normalization of the arc-length is 1

τ
0 = 1. Thus in the

case of 0 dimension skeleton, SCALIS formulation and Hornus formulation are the same and
correspond to standard point definition, which is not the case of weighted convolution (the dif-
ference appears with Compact Polynomial kernel : the maximal radius does not depend on the
weight but only on the kernel and the sharpness of the primitive increase with the weight).

3.3.4 Closed-form solutions for SCALIS

Let us first stress that as for the convolution integral, providing closed-form solutions for the
SCALIS integral (equations (3.3) and (3.5) is essential to get efficient field queries. The only
alternative, when such expressions cannot be found, is numerical integration which implies
choosing a trade-of between efficiency and accuracy.
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Segment-primitive with linear radius

The case of segment-skeletons is the easiest. Indeed, general, closed-form solutions have
been developed for weighted convolution [HC12]. The integral used in SCALIS being very
similar, we extend these solutions below in the case of linear weight variations along segment-
skeletons : this is the most useful case in practice, since weights are generally assigned at
vertices along poly-line skeletons and linearly interpolated in-between. If needed, subdivision
can be used to get smoother variations [AC02].

Assume we have a segment of line [AB], with the following parametrization defined on
[0; 1]

Γ(t) = A+ t
−−→
AB.

Two weights are defined at both ends of the segment (τ0 in A and τ1 in B), in order to define
weight all along the skeleton the simplest way is to use a linear interpolation of the radius at
end points. Thus we introduce a weighting function τ defined on [0; 1] (which is the interval
used for the parametric definition of the segment)

τ(t) = τ0 + ∆τ t

with ∆τ = τ1 − τ0. Then, we have (with P the query point) :

‖−−−→PΓ(t)‖2 = ‖−−→AB‖2 t2 − 2
−−→
AB.

−→
AP t+ ‖−→AP‖2

Injecting this relation into equation (3.3) yields to the formulae given in table 3.1. The antide-
rivatives we get are either of the form :

∫

w(t)(at2 − 2bt+ c)
i
2 dt with w(t) polynomial and i ∈ Z

or
∫

(at2 − 2bt+ c)
i
2

(dt+ e)k
dt with k ∈ N

∗ and i ∈ N

Thus, we can obtain closed-form expressions of the scalar field by following the same principle
as in [HC12, Hub12] : we find the closed-form associated with the first formula by directly
applying the recurrence formula given in [HC12, Hub12]. If i is even, closed-form of the second
integral can be easily found by expanding the numerator and then applying k integrations by
part. The recurrence formulae are given in table 3.3 and 3.4.

Note that applying the differentiation rule under the integral sign (Leibniz’ rule) yields
closed-form expressions for the gradient of the scalar field as well. Indeed, it is sufficient to
know the differential of the following functions in order to obtain the expression of the gradient
as an integral :

* N : P 7→ ‖−→AP‖2 ⇒ ~∇N : P 7→ 2
−→
AP

* S : P 7→ −−→
AB.

−→
AP ⇒ ~∇S : P 7→ −−→

AB

* R : P 7→ 1

h(P )α
⇒ ~∇R : P 7→ −α

~∇h(P )

h(P )α+1

* M : P 7→ (h(P ))α ⇒ ~∇M : P 7→ α~∇h(P ).(h(P ))α−1

These integral formula are given in table 3.1. The same recurrence formula as for scalar fields
can be used to find closed-form solutions of the gradients, which was never done before with
previous models. In practice, as suggested in [HC12], we use Maple to unroll the recurrence
and create optimized code for the evaluation of our functions. The number of required ope-
rations for each field or gradient query is given in table 3.2. Note that when both f and its
gradient are needed, the number of operations can be optimized since many terms appear in
both expressions.
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Kernel Formula

Cauchy

Cg,i(P ) = ‖−→AB‖
Z 1

0

(∆τ t+ τ0)i−1

((l2 + ∆τ
2)t2 − 2(uv(P ) − ∆ττ0)t+ d(P )2 + τ

2
0)

i

2

dt

~∇Cg,i(P ) =
i‖−−→AB‖

σ2

Z 1

0

(∆τ t+ τ0)i−1

((l2 + ∆τ
2)t2 − 2(uv(P ) − ∆ττ0)t+ d(P )2 + τ

2
0)

i+2

2

−→
h (t, P ) dt

Inverse

Pg,i(P ) = ‖−→AB‖
Z 1

0

(∆τ t+ τ0)i−1

(l2t2 − 2 uv(P ) t+ d(P )2)
i

2

dt

~∇Pg,i(P ) =
i‖−−→AB‖

σ2

Z 1

0

(∆τ t+ τ0)i−1

(l2t2 − 2 uv(P ) t+ d(P )2)
i+2

2

−→
h (t, P ) dt

Comp. Poly.

Rg,i(P ) = ‖−→AB‖
Z l2

l1

((∆τ
2 − l2)t2 − 2(−∆ττ0 − uv(P ))t+ τ

2
0 − d(P )2)

i

2

(∆τ t+ τ0)i+1
dt

~∇Rg,i(P ) =
i‖−−→AB‖

σ2

Z l2

l1

((∆τ
2 − l2)t2 − 2(−∆ττ0 − uv(P ))t+ τ

2
0 − d(P )2)

i−2

2

(∆τ t+ τ0)i+1

−→
h (t, P ) dt

TABLE 3.1 – Integrals for SCALIS segments with linear variation of radius, we use

simplified notations : l2 = ‖−−→AB‖2/σ2, uv = (
−−→
AB.

−→
AP )/σ2, d(P )2 = ‖−→AP‖2/σ2 and

ovh(t, P ) =
−−→
AB t − −→

AP . For Compact Polynomial kernel, l1 and l2 are the parametric

coordinates of point of the segment at the limit of the kernel support.

f ∇f f,∇f
+ ∗ / √

, arctan, ln + ∗ / √
, arctan, ln + ∗ / √

, arctan, ln

SCALIS Cauchy 4 29 38 4 (1,2,1) 38 62 6 (1,2,0) 47 81 6 (1,2,1)
SCALIS Inverse 3 25 33 5 (5,0,1) 32 58 5 (2,0,0) 40 71 5 (5,0,1)
SCALIS Comp. Polynom. 4 43 82 3 (0,0,1) 37 67 3 (0,0,0) 50 102 3 (0,0,1)
SCALIS Comp. Polynom. 6 71 144 3 (0,0,1) 62 125 3 (0,0,0) 83 172 3 (0,0,1)

Standard Inverse 3 Linear 18 20 4 (2,0,0) 26 46 4 (2,0,0) 29 50 4 (2,0,0)
Standard Cauchy 4 Linear 21 26 4 (1,2,0) 29 40 6 (1,2,0) 32 58 6 (1,2,0)
Standard Cauchy 4 Cubical 27 34 4 (1,2,1) 36 59 6 (1,2,0) 45 77 6 (1,2,1)

TABLE 3.2 – Number of required operations for the evaluation of the closed-form solutions

associated to standard convolution and SCALIS, for different kernels.
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Ik,i(a, b, c) =

∫

tk

(at2 − 2bt+ c)
i
2

dt with k ∈ N and i ∈ Z

Base cases

I0,1(a, b, c) =
1√
a

ln

(

at− b√
a

+ (at2 − 2bt+ c)
1
2

)

I0,2(a, b, c) =
1√

ac− b2
arctan

(

at− b√
ac− b2

)

Recurrence for k = 0

(i− 2)(ca− b2)I0,i + a(3 − i)I0,i−2 =
at− b

(at2 − 2bt+ c)
i−2
2

Recurrence for k = 1

I1,i −
b

a
I0,i =

{

1
2a ln(at2 − 2bt+ c) if i = 2

1
a(2−i)

1

(at2−2bt+c)
i−2
2

otherwise

Recurrence for k ≥ 2

aIi−1,i − bIi−2,i − Ii−3,i−2 =
1

2 − i

ti−2

(at2 − 2bt+ c)
i−2
2

if k = i− 1

a(i− k − 1)Ik,i + b(2k − i)Ik−1,i − c(k − 1)Ik−2,i = − tk−1

(at2 − 2bt+ c)
i−2
2

otherwise

TABLE 3.3 – Recurrence formula for the computation of closed-form solution of the first

type of integral encountered. Note that the first recurrence for k = 0 is only valid if at2 −
2bt+ c > 0, for more detail refer to [HC12, Hub12].

Gk,i(d, q) =

∫

tk

(dt+ q)i
dt with k ∈ N and i ∈ N

∗

Base cases

G0,i(d, q) =

{

1
d ln (dt+ q) if i = 1
−1

(i−1)d
1

(dt+q)i−1 otherwise

Gk,1(d, q) = (−1)k
qk

dk+1
ln (dt+ q) +

k
∑

l=1

(

(−1)k+l

l

qk−l

dk−l+1
tl
)

Recurrence

Gk,i(d, q) =
1

(i− 1)d

(

k Gk−1,i−1(d, q) −
tk

(dt+ q)i−1

)

TABLE 3.4 – Recurrence formula for computation of closed-form solution of the second

type of integral encountered.
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Case of Inverse kernels :

Inverse kernel has a special property in comparison to other kernel. We note that the scale-
invariant formulation associated to Inverse kernel of order i corresponds to the use of the weight
(∆τ.t+τ0)

i−1 in the standard formulation (eq. 1.14). This is due to the fact thatK(d
τ
) = K(d)

K(τ) .
The other property will be seen in next section.

Case of Cauchy and Inverse kernels :

For even degree Cauchy and Inverse kernels, there is an important property from a com-
putational efficiency point of view. The evaluation of these scalar fields uses the sum of two
arctangent functions (see table 3.3) which amount for a non negligible part of the computa-
tional time. In order to improve efficiency when using those kernels, we can take advantage
of the fact that atan(x) + atan(y) = atan( x+y1−xy ) + kπ which in turn can be evaluated in a
numerical stable way by computing atan2(x + y, 1 + xy). For Cauchy kernel of degree 4, it
reduces computational time by 25 percent.

Case of Compact Polynomial kernels :

In order to compute the integral associated to Compact Polynomial kernels, one should first
select the part of the skeleton that is inside the finite support of the kernel. In order to do so, we
search t such as :

K

(

‖
−−−→
PΓ(t)‖
τ(t)

)

> 0,

with K a decreasing function. This is equivalent to studying :

1 − 1

σ2

(

‖
−−−→
PΓ(t)‖
τ(t)

)2

> 0,

or
‖
−−−→
PΓ(t)‖2 < σ2

τ
2(t)

with σ2
τ
2(t) = σ2∆τ

2 t2 + 2σ2∆ττ0 t+ σ2
τ
2
0.

This yields a second degree relation :

(‖−−→AB‖2 − σ2∆τ
2) t2

− 2(
−−→
AB.

−→
AP ) + σ2∆ττ0) t < 0

+ ‖−→AP‖2 − σ2
τ
2
0

We solve it by studying the sign of its discriminant. Note that from geometric considerations,
we are ensured that the solution is always a connected part of [0, 1] (which is important since
having to use two distinct intervals would double the evaluation cost), the proof can be found in
appendix A.2 along with the method to compute the clipping in a stable way. In appendix B.3.1,
we can find additional information for more numerically stable evaluation of the scalar field.

An example of scalar field obtained is shown in figure 3.8(c). We can note that the kernel
support smoothly changes along the skeleton, making it easier to model shapes with variation
of radius. It was also the case for Hornus integral surfaces, but the surfaces didn’t reproduce
the wanted radius at the end point (under a given weight the surface does not exist anymore so
objects with sharp features are difficult to create).
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(a) (b) (c)

FIGURE 3.8 – Scalar fields generated integrating a compact support kernel along a segment of

linearly varying weight, with a 0 value at one end. The iso-surface of interest is highlighted in

red. (a) Standard formulation (eq. 1.14), (b) Hornus formulation (eq. 1.15), (c) Scale-invariant

formulation (SCALIS). As we can see, only SCALIS formulation enables the creation of the nice

sharp point.

Other curves with linear radius

Helix primitives computed by warping to segments, as in chapter 2, can be used without
problem since we have the formula for segments. For arcs of circle, only the Inverse kernel
of even degree lead to closed form formula for polynomial weight (deduced directly from
the weighted convolution with high polynomial degree). Other kernel are only useable with
constant weight (method by warping).

Triangle-primitive with linear radius

In the case of triangle-skeletons, a number of closed-form solutions have been developed
for various kernels, but only for convolution with constant radius [She99d, JTZ09, Hub12,
ZJLZ12]. We directly derive our close-form SCALIS solution in the constant radius case from
these expressions, using the warping formulation.

!"#$%&"'()'*)%'(+&,(&)-$"./&

!"#$%&"'()'*)0,1"0,2)
3,#",&"'()'*)-$"./&

!
!"#

!
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4"05+'()
+%/$0$

FIGURE 3.9 – Numerical integra-

tion scheme for triangle skeletons.

We have not been able to derive closed-form for-
mula for triangle primitives with linear radius. Never-
theless, such primitives are of great interest. For this
reason, we introduce a numerical scheme that aims at
being both accurate and fast to evaluate. In order to do
so, we use the fact that if a linear weight is defined on
a triangle, there is at least one direction where the ra-
dius is constant. Because the case of constant radius for
SCALIS is less expensive to compute (notably for com-
pact polynomial), we decided to favor the direction of
constant radius in the integration. Thus, we perform a
semi-numerical integration scheme. We first integrate in
the direction of constant radius using closed-form for-
mula of the integral (one should remember that the nor-
malization of arc-length is 1

τ
2 instead of 1

τ
). We perform the integration in the second direction

(orthogonal to the previous one and corresponding to the maximal radius variation) using mul-
tiple Simpson scheme which size depends on the local weight τ, the smallest the weight the
denser should be the subdivision (see Figure 3.9).
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(a) (b) (c)

FIGURE 3.10 – Objects created using triangles primitives : (a) triangles with a constant

thickness using a closed-form solution ; (b) triangles with linearly varying thickness using nu-

merical integration ; (c) sharp edges are created by making thickness tend toward zero along

one of the edges of triangles.

Note that the integration scheme could still be improved either by taking into account the
query point position to better capture the function to integrate or by using better integration
scheme.

Figure 3.10 depicts two objects created using triangle primitives, note that by prescribing
radius close to zero we are able to obtain sharp edges.

3.4 ACHIEVING RADIUS CONTROL

This section presents our last contribution to the SCALIS model : we enhance scale-
invariant integral surfaces (SCALIS) with direct control of the surface radius along a skeleton.
We first present a simple modification of the model enabling to directly use τ to set the desired
radius. This radius is reached wherever the skeleton is long enough relative to the local width
of the kernel. In Section 3.4.2, we improve the model in order to provide radius control in other
cases as well for segment-skeletons.

3.4.1 Relating τ to the radius

Let us come back to the general expression for SCALIS on line-segments (equation (3.3)).
We first remark that a slight modification of this expression can bring an important benefit : the
model can be set so that τ(s) directly sets the radius of the resulting shape.

FIGURE 3.11 – Line used to define h(τc, d) which is used

for normalization of the scalar field.

This is done in the following way :
Let us consider a line (a segment-
skeleton of infinite length) of
constant weight τc, and define
h(τc, d) as the field value at a
distance d from the line (see Fi-
gure 3.11). Formula for the main
kernels (eq. (1.11), (1.12) and
(1.13)) are given in table 3.5 (for
the computation of this value, as
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Kernel Seed values Recurrence relation

Cauchy h2(τc, d) = πσ
1

r

“

d

τcσ

”

2
+ 1

h3(τc, d) = 2σ
1

“

d

τcσ

”

2
+ 1

hi(τc, d) =
i − 3

i − 2

1
“

d

τcσ

”

2
+ 1

hi−2(τc, d)

Inverse h2(τc, d) = πσ

„

τcσ

d

«

h3(τc, d) = 2σ

„

τcσ

d

«

2

hi(τc, d) =
i − 3

i − 2

„

τcσ

d

«

2

hi−2(τc, d)

Comp. Poly. h0(τc, d) = 2σ

s

1 −
„

d

τcσ

«2

hi(τc, d) =
i

i + 1

 

1 −
„

d

τcσ

«2
!

hi−2(τc, d)

TABLE 3.5 – Recurrence relation for the computation of h(τc, d) defined as the scalar field

generated at a distance d of a line of constant weight τc for scale-invariant integral surfaces

before normalization (eq. 3.3).

well as the one for 2D skeletons, we can refer to Appendix B.2). If we look at the h(τc, τc), it
happens that this value is independent of τc (this is due to the scale invariance of our model),
it only depends on the convolution kernel used. Let us now define Nk(c) = c

h(1,1) , and then
renormalize the scalar field by the inverse of this value. This sets the surface of interest, asso-
ciated to the iso-value c around the skeleton, to the prescribed distance τc from the line. The
normalization factor being independent from τc :

• we redefine SCALIS primitives generated by segment-skeleton as :

f(p) =
1

Nk(c)

∫

s∈Ω
K

(

‖
−−−→
PΓ(s)‖
τ(s)

)

ds

τ(s)
(3.7)

with Nk(c) a normalization factor depending only on the iso-value of interest c.
• Similarly, we redefine SCALIS triangle-primitives as :

f(p) =
1

Nk(c)

∫

(u,v)∈Ω
K

(

‖−−−−−→PΓ(u, v)‖
τ(u, v)

)

dudv

τ(u, v)2
(3.8)

Just note that the normalization factor depend on the dimension of the skeleton (to compute the
normalization factor for a triangle, one should compute the field value at a distance one of an
infinite plane).

This improved model provides an explicit control of the surface radius, directly controlled
by the choice of τ. Moreover, for Compact Polynomial kernels, the prescribed value is exactly
reached wherever there is a sufficient portion of segment-skeleton (respectively, of surface-
skeleton) of similar weight near the point of interest, which is due to their compact support.
The required length L to get a radius τ is given by the Pythagore theorem (see figure 3.12) :
τ
2 + (L2 )2 = (στ)2, so the needed length is :

L = 2τ

√

σ2 − 1.

Note that it is proportional to τ, so small, thin primitives can be set to a prescribed radius as
easily as large, wide ones.

Following is a small digression about Cauchy and Inverse kernels. As explained by Hubert
in [Hub12], there is only little difference between this two kernels from an algebraic point of
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FIGURE 3.12 – Exact radius control for compact polynomial primitives. The portion of skele-

ton that influences a point in space are the ones that are at a distance smaller than the kernel

radius. Therefore, a point at distance τ of the skeleton has to be in the area of influence of a

length L of skeleton for the iso-surface to pass through.

view. In this new normalized formulation we have the Cauchy scalar field that tend toward
the Inverse scalar field has σ tend toward zero. In fact, the Cauchy kernel is equivalent to the
new kernel introduced in [Hub12]. It is also important to note that for the formulation 3.7 the
Inverse scalar field does not depend on σ : the Inverse kernel has no real smoothing parameter
in contrary to Cauchy and Compact Polynomial kernels.

The radius of the generated primitive can still be smaller than τ at extremities of primitives,
for short skeletons and for extreme radii variations. A last extension of SCALIS that handles
these cases is presented next.

3.4.2 Guaranteeing radius in extreme cases

As mentioned in the previous section, the radius of a SCALIS primitive will be smaller than
the prescribed value τ if a given minimal length of skeleton of similar radius is not available
around the query point ; this length is proportional to the prescribed radius. Thus, the shape
typically gets thinner in a few typical situations :

- near the end-point of a skeleton,

- near parts of skeleton with a local maxima of radius.

We develop a practical solution when the skeleton is a graph of poly-lines, which eases skeleton-
based modeling and improves the reconstruction in sketch-based modeling applications (see
Section 6). It consists of automatically adding the lacking length of integration thanks to a
local analysis of the skeleton graph. More specifically, we apply a correction at some of the
nodes, depending on their "1-ring" neighborhood.

!

"

!

"

#$%&$'()#*$+$(,' #$%&$'()#*$+$(,'

!

!

!! !!

FIGURE 3.13 – Correction at end point of the skeleton,

the length of skeleton to be added is proportional to the

wanted radius (thanks to the scale-invariance).

Extremity : At the extremities
of the skeleton, we add an ex-
tra segment-skeleton of constant
weight in continuation of the en-
ding skeleton branch, set so that
the desired radius τ is exactly rea-
ched at the end-point of the shape.
The required length for this new
skeleton is easy to compute thanks
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FIGURE 3.14 – Correction of the scalar field around a node of maximal radius in the skeleton

graph. A "normalized" version of the node is used to compute the lacking field value.

to the scale-invariance property of SCALIS primitives : in the case of constant radius, this
length is proportional to τ. So, we just need to pre-compute, for the kernel used, the length l1
to be added for basic convolution (i.e. SCALIS when τ = 1), and set the length of the extra
skeleton to τ l1 in the other cases (see figure 3.13).

Maximal radius : The second case is more difficult to handle since there is no clear direction
in which to add a segment-skeleton. For this reason we choose to concentrate all the needed
length of skeleton at the point Smax of the skeleton with the maximal desired radius. This is
equivalent to adding a Dirac in the field integral or to adding a standard point-skeleton primitive
to the skeleton.

f(P ) = w K

(

‖−−−−→PSmax‖
τmax

)

(3.9)

with τmax the desired radius in Smax and w a weighting value computed as to get this required
radius. The weight w is computed by looking at a "normalized" version of the surface beha-
vior around this node of the skeleton graph : we consider that all the segments connected to
this graph node point to the same direction and that they continue until their prescribed radius
falls to zero (see figure 3.14). This was chosen to be independent from skeleton subdivision,
and it enables to have only a local processing. In this configuration, the lacking field value at
a distance τ is given by c − f(τ), where f(τ) is the field value of the normalized case at a
distance τ in a direction orthogonal to the segments primitives (see figure 3.14). From this, we
get w = c−f(τ)

k(1) . In addition to independence toward skeleton subdivision, this normalized case
also aim at avoiding strange behavior which would happen if we choose to evaluate the original
scalar field at a point around the graph node to be corrected. Furthermore, we would not know
where to evaluate the original scalar field.

In practice : The case of correction at the end point is, in fact, a bit more complicated. Indeed,
they can be both local maxima of wanted radius and end-points. If the variation of wanted
radius is important it is much more interesting to use a correction created by a point instead
of a segment (it will provide a better correction and is faster to evaluate). For this reason, we
propose in practice to interpolate between our two solutions, which can easily be done since we
only use summation blend. First, we compute them separately. Then if the variation of radius
∆τu (per length unit) is greater than 0.5 then we only use the point corrector. Otherwise, we
do a spline interpolation between the correction using the following formula for the weight of
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(a) (b)

FIGURE 3.15 – (a) Comparison between SCALIS models before (left) and after (right) radius

correction, (b) some simple correction of radii (appearing in red), just note that the "star"

shape does not have correction since the blending of all leaving branches is sufficient to obtain

the wanted radius in the "normalized" configuration.

the point :
wpoint ∗ = 1 − (1 − 2∆τu)

2

and adding a constant weight on the segment :

wsegment = (1 − 2∆τu)
2

Note that this solution for insuring prescribed radii does not require any optimization step,
which makes it fast and stable, and is coherent with the pleasant summation blend. Due to the
addition of a skeleton point, the level of regularity of the resulting field is now the one of the
kernel. Some base results are depicted in figure 3.15(b) and the correction is also used in more
complex models (Teaser figure and 3.17).

Barycentric blending of correction

Multiple corrections in the same area could lead to unwanted bulging in some special cases.
Even if those cases are unusual, it is possible to add safeguards by using a barycentric blending
to blend the correctors together :

∑

ci:corrector

wcifci
wci

where wci are chosen in order to use the main contribution when there is only one and lower
contribution when there is multiple correction with different influence, thus individual field
contribution fci are a good choice. This would prevent the added correction to be more impor-
tant than the maximal one.
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FIGURE 3.16 – Sketch based modeling examples, area affected by the radius correction me-

thod appear in purple.

3.5 RESULTS AND DISCUSSION

3.5.1 Implementation details

Kernel choice :

For all interactive applications, we used the Compact Polynomial kernel (equation (1.13))
of order i = 6. This choice is dictated by several consideration : thanks to its local support, it
saves computational time while limiting blending at distance. The improvement of efficiency
is due to the restriction of evaluation to tight bounding-boxes (with other kernel this would
impact field regularity and create local artifact). As the degree i increases both the degree of
continuity of the surface and computational cost increase. Thus we advice to use a degree i = 6
as a trade-off : it is the first one for which the Hessian of the field is continuous (ie - continuous
curvature along the surface). The shape of figure 3.8(b) cannot be modeled with a support of
constant radius (so, with standard convolution), since it has both a large smooth part and thin
sharp part.

Rendering method :

In order to provide interactive feedback during interactive modeling sessions, we used a
local marching cube method [Blo94], enabling to recompute only the edited parts of the surface.
Computation times for the whole meshes are given in Table 3.6. Just note that the efficiency is
impacted by the resolution required to get small details. This can become really problematic
when the difference between minimal and maximal radius becomes large. This is the case if
we want to mesh the whole ant model with a resolution that enable us to obtain good detail
quality that allows a close-up of the mandibles. For this reason, an improvement would be to
use a dual marching cube method on an octree [JLSW02] whose construction would be guided
by the BlobTree. First tests show that for a shape such as the ant, we can benefit from a speed-

Number of Triangle Computation Times

Dancer Teaser (a) 93 984 0.32s
Elf Teaser (b) 214 364 2.64s

Ant (middle Res) Fig.3.17(a) 190 058 0.72s
Ant’s Head (HiRes ) Fig.3.17(b) 166 568 0.73s

TABLE 3.6 – Computation time of a non-adaptative marching-cube on an Intel Core 2 Duo

(2.4 GHz, 1 core used).
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FIGURE 3.17 – Implicit ant on implicit branch. The zoom on the head of the ant show that the

details on the mandible are not blurred (they still look to have sharp points). The right picture

shows 2 drops of water created from 3 segment scale-invariant primitives each and by applying

the method of thickness correction.

up factor of ten, despite the fact that the code used can still be further optimized. For some
additional details on this method we can refer to appendix B.4.

3.5.2 Applications

We tested Scale-invariant Integral Surfaces (SCALIS) in three use cases : interactive construc-
tive modeling with skeletons, shape reconstruction from medial axis data, and sketch-based
modeling. In practice, we use our new implicit primitives in a BlobTree structure, enabling the
use of classical composition operators.

Skeleton-based modeling :

To validate the fact that skeleton-based modeling is a good paradigm at conceptual stages
of design, we set up a prototype of an interactive modeling system, where a user can create a
shape from scratch by manipulating segment and triangle skeletons and prescribing the desired
radii at the nodes of the resulting graph. Teaser picture depicts a dancer model created by a
computer artist, novice to our system, in less than one hour. Note that this model includes

(a) (b)

FIGURE 3.18 – Skeletons of the dancer and ant with the model in wireframe. The size of

VertexHandle in blue corresponds to the desired radius at extremities of segment skeletons.
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FIGURE 3.19 – Skeleton-based modeling : Examples modeled in SkimLab (a start-up company

with a modeling framework embedded in a web browser www.skimlab.com).

www.skimlab.com
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FIGURE 3.20 – Sketch-based modeling : Examples modeled in MATISS [BPCB08] using our

method.
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FIGURE 3.21 – Reconstruction of a drawing using different value of the parameter σ for

Compact Polynomial kernel (picture on the left is the initial drawing, for pictures on the right

σ is respectively equal to 1.2, 2.0 and 3.0 from left to right).

parts of quite different scales (the whole body and the hand), validating the benefits of our
approach. In practice, the hand model was designed at a larger scale and then scaled down to
be blended with the arm still enabling further editing.We also used our system to model an ant
with very sharp details (figure 3.17) validating the fact that thin details are not smoothed out
with SCALIS. Furthermore, we can note on figure 3.18 that the thickness of the iso-surface
matches the radii given at skeleton vertices. Additional objects created by a skeleton-based
method are depicted in Figure 3.19.

Sketch-based modeling :

In practice, moving skeletons in a 3D space can be intricate for novice users : A good way
to make interactive shape design even more intuitive is to set up a progressive sketch-based
modeling system. SCALIS is particularly well adapted to this end, since it is able to generate
3D shapes that fit 2D contours directly, with no optimization step, and to seamlessly blend
them into the current model using a simple sum of field contributions. Precise fitting of the
sketched 2D contour is achieved by converting it to a medial axis representation, and to use it
as the skeleton of a SCALIS model, as was done in [lTZkF04] for convolution surfaces. Since
for 2D figures, the medial axis is just a graph of polylines, with no surface parts, the methods
we described in Section 3 are sufficient to get a good fit of the contour (see figure 3.16). It is
now possible to choose the smoothness of the reconstruction (see figure 3.21).

FIGURE 3.22 – A Cacatoes created

using different σ parameter to create

more or less sharp part. For instance the

beak and the yellow crest use a smaller

value of σ to obtain sharper blending.

In figure 3.20, the central model (the elf head)
was created by using solely a summation blend. It
is possible to use different σ parameter on the dif-
ferent part of an object in order to obtain different
smoothness such as illustrated on figure 3.22. Ho-
wever, we also demonstrate in this modeling fra-
mework that our primitives can be used with other
kind of blending. The other examples of figure 3.20
were created by using Ricci blending and digging
by difference to combine the shape generated from
each drawing (of course, the base shape are crea-
ted with a summation blend). Just note that, for
digging, we use a slightly modified blend by diffe-
rence in order to obtain a positive scalar field with
C1 continuity.
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FIGURE 3.23 – A cherry tree reconstructed from its medial axis.

We just want to note that there is still space for improvement in the skeletonization process
used : the main one is the use of a filtering method on the skeleton, such as the Scale-axis
transform [GMPW09] (applied on the medial axis in 3D and not 2D since it doesn’t have the
same behavior), in order to remove unneeded skeleton elements (which can cause oscillation
on the surface due to the blending) .

Reconstruction from medial-axis :

Our last application is the off-line reconstruction of a model from a scanned object. We
used SCALIS to directly generate the shape from a medial axis already extracted from scanned
data of a real tree. SCALIS is a very good choice for this application : firstly, the field function
enables a pseudo-distance between data-points and the iso-surface of interest to be computed,
providing an error measure on the quality of reconstruction ; in addition, the resulting model
is very compact, and can be easily edited through direct skeleton manipulation ; lastly, the
scale-invariant blending behavior of SCALIS produces smooth and self-similar branching at
different scale, a very desirable behavior for a fractal-like, self-similar object such as a tree
(see Figure 3.23).

3.5.3 Discussion

We already mentioned the advantages of our model over convolution, namely radius control,
non-blurring and non-vanishing of details, and scale invariant blending. Based on these proper-
ties, SCALIS is able to capture smooth shapes with sharp features, as those of figure 3.17, 3.24
and 3.25 (see the ant’s mandible), that could not easily be modeled with previous implicit mo-
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(a) (b)

FIGURE 3.24 – (a) Hand of the dancer modeled with standard convolution, note the unwanted

blurring of the fingers, (b) hand modeled with SCALIS.

deling techniques. If we take a look at figure 3.24 with the hand of the dancer (in this case
modeled with Cauchy kernel), we can see that the shape we would have obtained using clas-
sic convolution is not acceptable : fingers are nearly lost. Furthermore, ant’s abdomen would
have been difficult to design with standard convolution model with Compact Polynomial kernel
since there is a large difference between maximal and minimal radius.

One should also note that SCALIS works with any of the Kernel functions of equations
(1.11), (1.12) and (1.13), and in particular for any choice of their parameter σ. Since our model
maintains the prescribed radius around skeletons and that σ controls the based width of kernel
support (hence the blending properties), our model can reconstruct shapes that tend toward an
exact reconstruction of the medial axis data : this is achieved by making σ tends towards 1 for
Compact Polynomial kernels. A last benefit of our approach is to provide closed form solutions
for both the field values and their gradient. A closed-form gradient is without doubt more pre-
cise than a numerical one (no error of discretization) but it is also more efficient, which is useful
to accelerate tessellation or ray-tracing of the models. Numerical scheme rely on either 4 or 6
evaluations of the base function in order to compute its gradient. In our case the closed-form
evaluation of the gradient needs at most twice the number of operation as the the basic function
(see table 3.2, for Compact Polynomial kernel, the evaluation of the gradient is even cheaper
than the evaluation of the function itself). Furthermore, if both f and its gradient should be
computed, it can be done more efficiently since they have some term in common.

(a) (b)

FIGURE 3.25 – The positioning of two scale-invariant primitives in a "V" shape illustrates the

good behavior of the SCALIS blending, which is the same at both extremities of the shape (we

can note that the thin extremity is not blurred). (a) blending with a "max", (b) blending with

a "+".
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(a) (b) (c)

FIGURE 3.26 – Comparison between two types of branching junction : (a) Standard convo-

lution model with τ1 + τ2 = τ, (b) SCALIS with τ1 + τ2 = τ (τ now controls the radius), (c)

SCALIS with τ
2
1 + τ

2
2 = τ

2.

SCALIS also brings a few drawbacks, discussed below :
– SCALIS is more expensive to compute than former models (see Table 3.2 for the compa-

rison between SCALIS and standard weighted convolution). However, SCALIS is parti-
cularly well adapted to compact support kernels, which enable local field queries. This
makes the use of our model still possible in interactive applications.

– Scale invariant blending may not be always sufficient : with Compact Polynomial kernel,
when a thin segment is blended into a thick one, the blend is sharper than one would
expect. A practical solution for the user is to split the thin segment and manually add the
desired transition of radius.

– Loss of "superposition" property : One of the advantages of standard convolution sur-
faces (equation (1.14)) is that whenever we stack two skeletons with weight τ1 and τ2,
then the resulting surface is equivalent to the one generated from a single segment of
weight τ1 + τ2. This property made it easy to create "Y" branching junctions where a
main branch subdivides into two thinner ones without suffering from any bulge. The loss
of this property is to be mitigated : the quality of the shape produced highly depends
on the kernel used and on its σ parameter (see figure 3.26 (a) versus figure 3.27(a)). In
case the shape produced by the superposition property is intuitive as in figure 3.26 (a),
SCALIS enables to model it using another rule : τ

2 = τ
2
1 + τ

2
2 (see figure 3.26(c)). τ

being the radius of the model, this new rule expresses the fact that the area of the cross
section of the shape before and after the branching point is preserved. In other cases (see
figure 3.27), we may need a different skeleton graph to get the same shape. Then our
skeleton is closer to the medial axis of the shape and thus more intuitive to manipulate.

(a) (b)

FIGURE 3.27 – (a) Superposition property for standard convolution with Compact Polynomial

kernel of degree 6 with σ = 2.0 and τ = 1.16, (b) similar shape designed with scale-invariant

integral surfaces. Note that the skeleton of (b) is much closer to the medial axis of the shape.
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3.6 BEYOND SCALIS

On one hand, with scale-invariant integral surfaces, we have a model providing better re-
sults than weighted convolution and whose behavior is both more intuitive and easier to analyze
(indeed it is the same at all scale). On the other hand, superposition property of weighted convo-
lution is still interesting in some cases. However this two models are not necessarily antinomic,
they can be combined in order to obtain the interesting properties of both models. This is done
by adding back a new density ω on the skeleton :

f(p) =
1

Nk(c)

∫

s∈Ω
ω(s) K

(

‖
−−−→
PΓ(s)‖
τ(s)

)

ds

τ(s)
(3.10)

This density would be constant and equal to 1 when the scale-invariant property is wanted. In
order to obtain closed-form expression of equation 3.10 for segment skeleton with linear wan-
ted radius τ and linear density ω, we re-use the recurrence relationship presented in table 3.3
and 3.4.

In the rest of this section, we present some examples in order to show what could be achie-
ved using this combination of existing models. It is important to note that those examples are
not achieved with automatic method but are the result of skeleton manipulation by hand.

Creating shape with non-circular cross section

FIGURE 3.28 – Non circular cross section.

SCALIS with density could ease the
creation of non circular cross section easy
to manipulate. In order to do so, we
can subdivide a skeleton in sub-skeletons
which summed density equal to one, this
skeleton can be moved in order to change
the cross section of the object. Since the
"energy" generated by the skeletons is
constant, the volume of the shape does not
vary too much when sub-skeletons are moved apart and if all the sub-skeletons are superposed
then the cross section is circular. Examples of objects created using this method are given in
Figures 3.28 and 3.29.

(a) (b)

FIGURE 3.29 – (a) the body of the the squid of picture 2.17 have been created using weighted

SCALIS. (b) main part of the starfish have been created with weighted SCALIS.
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Adding smooth material to an object

FIGURE 3.30 – Different degree of smoothness of the ad-

ded material.

For sketch-based modeling, it
would be interesting to be able to
add material on a surface while
choosing the smoothness of the
added material. On figure 3.30,
different smoothness of material
have been created by using both τ

and ω. The main difficulty to be
overcome is to succeed to choose
τ and ω automatically depending
on the shape to be deformed (basically τ of the added material should tend toward the one of
the base shape while ω should decrease to preserve the generated energy).

Reducing Bulges at skeleton junction

In the same spirit as segment shortening in [Blo95a], weighted SCALIS could help reduce
the bulging effect near branching junction of skeleton. The idea is to reduce the density ω of
the skeletons around the branching junction. The main constraint is having the sum of density
of each segment equal to 1 on the junction point. In figure 3.31, we present what kind of result
could be expected for different kinds of branching.

The idea would be to automatize the spread of density reduction in all branches by taking
into account wanted radius of each branches and the angles between them. Furthermore, the
potential of a line (equation 3.5) and the one of a half-infinite line (see Appendix B.2) should
help perform the automatization.

(a) (b)

FIGURE 3.31 – Two examples of bulge reduction using weighted SCALIS. The difference of

silhouette appears in red.

Improving correction of radius

FIGURE 3.32 – Adding density on segment could

help improve radius correction when the local

maxima of radius is a small segment with seg-

ments of fast decreasing radius on both side.

It should be possible to perform a bet-
ter correction of radius than the one pre-
sented in section 3.4.2. In order to do so,
the idea would be to perform a less local
analysis but still using the idea of normali-
zed cases which avoid the problem of glo-
bal optimization (as for current correction
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method all the skeleton would be collinear in the normalized case). Typically, the case that is
problematic in previous correction is the case of a short segment of constant radius which is a
local maxima with segment of fast decreasing radius on both side, example of what could be
obtained is shown in figure 3.32.

Note that a simpler alternative to improve the correction would be to add some constraints
on the skeletons that could be created.

Intuitiveness and automatization

While this combination of models enables to obtain interesting results, there is still a lot of
things to do before being really usable in practice. For bulge reduction and better correction a
full automatization transparent to the user is needed. For non-circular cross section, skeleton
manipulation should take into account some constraint such as maximal distance between sub-
skeleton to prevent creases to appear.

3.7 CONCLUSION AND FUTURE WORK

Despite the compactness of representation they provide and their interest for conceptual
shape design, skeleton-based implicit surfaces are not often used as a modeling primitive. In
this work, we solved the problem of generating smooth, solid shapes from skeletal structures
and radius information. This was done by introducing Scale invariant Integral Surfaces (SCA-
LIS). Built on convolution surfaces, SCALIS inherited their good properties such as blending
with a sum, and shape independence from skeleton refinement. But contrary to convolution
surfaces, they bring radius control mechanisms and behave similarly at different scales. This
allows reconstruction from medial data and yields intuitive editing.

Despite of the closed-form expressions we provided for f and for its gradient for segment
skeletons, there is room for improvement concerning the efficiency of the model : avenues
for future work include finding closed-form expressions for triangle with tri-linearly varying
weight (or improve the numerical integration scheme), or improving and parallelizing the eva-
luation of the scalar field and the meshing process.

Lastly, implicit surfaces are well known for their undesired blending at distance behavior.
All blending problems of implicit surfaces have been solved recently using complex binary
blending [BBCW10, GBC∗13]. However such blending do not preserve independence to ske-
leton subdivision. Furthermore, contrary to N-ary operators, their use complicates the Blobtree,
making its manipulation more cumbersome for the user. For this reason, in next section, we aim
at improving behaviors of our surfaces while keeping independence to skeleton subdivision, our
main focus being reducing topological problems.
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CHAPTER

4

TOWARDS
TOPOLOGY-PRESERVING

INTEGRAL SURFACES

Teaser Figure : A dragon created with a gradient-based field warping to prevent unwanted

topology changes : when the dragon’s tail fold back onto itself, it does not merge.

97
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THE most interesting property of Scale-invariant Integral Surfaces is independence from
skeleton subdivision through blending by summation. However, our new model, as all
implicit surfaces, does not guarantee that the topology of the resulting surface is the

one of the skeleton (not even the one of an infinite union of balls of desired thickness spread
along the skeleton, see Figure 4.1). The main cause is the use of the sum of fields contributions
which blend elements at distance leading to the well known "unwanted blending" problem.
As discussed in the state-of-the-art, a lot of work has been done in order to overcome this
problem. However, all the proposed solution rely on complex binary blending operators. By
using them, we would lose a fine property of our integral surfaces, which is their independence
from skeleton subdivision. Furthermore, a heavy use of binary operators make the handling of
the BlobTree more complicated. Besides, the resulting surface then depends on the blending
order.

(a) (b) (c)

FIGURE 4.1 – Example of unwanted blending behavior causing change in topology : (a) union

of ball defined thanks to the wanted radius around skeletons, (b) blending by summation does

not preserve the topology of the union of ball, (c) wanted behavior, the topology is preserved.

Our aim in this section is to avoid unwanted blending while keeping the independence to
skeleton subdivision. Improving the topological behavior of our surfaces is our main focus,
however it is not our sole interest. Indeed, while SCALIS primitives greatly improve blending
in comparison to other Integral Surfaces their behavior is still perfectible : beside topological
problems, bulges can still appear and really large difference of radius between primitives lead
to low quality blends (as mentioned in [WW00]). Our second goal is therefore an improved
blending behavior in these cases.

In this chapter we present two different approaches to solve these problems : the first one
is skeleton-based while the second one is a gradient-based solution.

4.1 FIRST DISCUSSION AND BASE CASES

The first thing to note is that when we refer to "topology preservation", we talk about the
topology of the skeleton given the specified radii around it, hence the topology of the union of
spheres whose centers are the skeleton points and whose radii are skeleton weights. The new
model should also be independent from skeleton subdivision as convolution surfaces were.

In order to obtain this property we believe that classic approach that combines field contri-
butions of each element of the skeleton cannot succeed (with the obvious exception of the
sum). Our point of view is that N-ary blending is far from being sufficient (for instance Ricci
blending would break the independence to skeleton subdivision property of integral surfaces)
and that we should find formulations that remain strongly linked to the summation blend : the
first method we propose relies on the choice of the part of the skeleton to be used to compute
a blend by sum while the other analyzes the result of a summation blend and corrects it to
preserve topology.



4.2. WITNESSED BLENDING 99

!"
!

!

!"
"

!

!"
!

!
!

!"
"

!
"

!

!!

"
!"

(a) (b) (c)

FIGURE 4.2 – Base cases that are representative of most situations where unwanted change

in topology can occur : (a) two parallel line skeletons with equal wanted thickness, (b) two

parallel line skeletons with different wanted thickness, (c) a torus skeleton (change of topology

happens when its radius is close to the desired thickness).

Here are the base cases for the skeleton and the desired thickness that we will use to study
the topological behavior of our new methods :

1. two parallel infinite lines of the same thickness,

2. two parallel lines with a large difference of thickness,

3. a circle of constant thickness.

The first one is the most basic test that we could think of with the goal of having the shapes
blend if and only if their distance is smaller than twice the radius. The second test is useful to
check the efficiency of the method in multi-scale cases. Lastly the circle is the "worse" case
since all the length of skeleton is at the same distance from its center : the problem here is the
persistence of the central hole until the radius is equal to the circle radius : see Figure 4.2.

Of course besides the base cases we also show more complex examples to illustrate blen-
ding behaviors.

4.2 WITNESSED BLENDING

The method presented in this part is inspired by several works : the graph-based blending
methods by Angelidis [AC02] and Hornus [HAC03] (presented in the state-of-the-art 1.2.2) and
by distance function to a probability measure [CCSM11] presented to us by Quentin Merigot.
The aim of this last method is to provide good geometric reconstruction from noisy data (the
method is robust to outliers). The idea behind this method, from a practical point of view, is to
compute a distance-like function to a set of point : the distance to the k-Nearest Neighbors :

dµΩ(X) =





1

k

∑

P∈NNk
Ω(X)

‖−−→PX‖2





1
2

with NNk
Ω(X) being the k nearest neighbors to X in Ω the initial point cloud.

Our method is named after the approximation scheme that is used to compute efficiently
this function : the Witnessed k-distance [GMM11]. Because the computation of k-distance
would require an exponential number of distance evaluations, it is approximated by the distance
to the barycenter of a set of k points (and a measure of the grouping of the set), one barycenter
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being computed from point of the initial set, the number of required distance computations is
linear with the size of the initial set.

4.2.1 From Witnessed k-distance to Witnessed blending

The main problem of graph-based method for avoiding unwanted blending of convolution
surfaces [AC02, HAC03] is that they are not fully independent from the skeleton subdivision.
The method we introduce tries to overcome this drawback. We first present the method for
convolution of unit weight (for historical reason since at the time we started working on this
model we had not introduced SCALIS primitives yet) and we will next see that it naturally
extends to SCALIS primitives. Note that we will only study our method for skeleton-curves.

The idea in common with [AC02, HAC03] is that we want to perform our convolution on
a subset of the initial skeleton, while the idea taken from k-nearest neighbor is that we will use
a fixed amount of data to perform our computations. For the k-nearest points, the initial set is
countable which is not the case for segments seen as a set of points. For this reason, instead of
using a fixed number of points, we will use a fixed amount of length. The basic idea consists in
considering the part of the data that is the closest to the computation point (which can be seen
as having more interest). Finding a given length L of skeleton that is the closest to a given point
P in space is equivalent to finding the radius of a ball centered in P that contains the wanted
length of skeleton (we will later see that this is the way the skeleton is clipped in practice).
Thus, the new definition of the field function for a given skeleton is :

fSk (P ) =

∫

Clipping(P,Sk ,L)
gSk (Q) K

(

‖−−→PQ‖
)

dQ,

with Clipping(P, Sk , L) the ball centered on the computation point that contains the length L
of skeleton. Efficient ways to implement this approach will be discussed in Section 4.2.2, in
the more general case of SCALIS primitives.

As we can see, the main difference with [AC02, HAC03] is the set on which convolution is
computed ; because the length of skeleton to be used is not dependent of the skeleton subdivi-
sion (it is just the closest one in space, a segment can therefore be only partly used), this yields
the property of independence to skeleton subdivision we were seeking for. We can note that
this is not the same thing as using a kernel with compact support since the radius of the ball in
which we are selecting skeleton parts varies with the local density of skeleton (see Figure 4.3).
This is exactly what will improve the blending behavior.

Varying radius : The question is what happens when one wants to deal with primitives of
varying radius ? Fortunately, things don’t change that much when using scale-invariant integral
surfaces (it would not be so simple for weighted convolution and Hornus integral surfaces).

Indeed, looking for closest skeleton points is the same as looking for the points that have
the most influence at the computation point (this is due to the fact that kernels are decreasing
functions of the distance). But looking for points with the greatest influence is quite easy for
SCALIS primitives due to their scale-invariant nature : the skeleton points of greatest field
contribution are simply the closest skeleton points in warped space. (which we will now called
homothetic space). In order to maintain coherence we should also consider the length of the
skeleton in the homothetic space : it is simply multiplied by 1

τ
; we will use the term mass

instead of length when we speak about length in homothetic space in order to avoid confusion.
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FIGURE 4.3 – With this new blending method we only used a fixed length of skeleton to perform

computation. This length of skeleton corresponds to the closest one to the computation point.

As we could see in (a), it is not the same thing as using the skeleton inside of a fixed region

(as kernels with compact support do), indeed the size of region to be used adapts to the local

density of skeleton. (b) smaller radius implies both higher distance and density of skeleton in

homothetic space leading to smaller clipped distance in real space.

Thus, the definition of our new blending becomes :

fSk (P ) = NK(c,m)

∫

HomotheticClipping(P,Sk ,m)
gSk (Q) K

(

‖−−→PQ‖
τSk (Q)

)

dQ
τSk (Q)

,

withHomotheticClipping(P, Sk , L) being the ball of center P that contains exactly the mass
m of skeleton in homothetic space, ie - the ball whose radius r verifies the equation :

∫

‖−−→PQ‖
τ(Q)

<r
gSk (Q)

dQ
τSk (Q)

= m.

Note the new normalization factor NK(c,m) that replaces the one used in SCALIS. Indeed the
latter is not adapted anymore since it assumed an infinite length of skeleton which is obviously
not the case anymore. This new factor is just equal to c

hm1,1 which is the field generated at a
distance 1 of a segment of length m and weight 1 in the plane that is orthogonal to the segment
and goes through its middle : this will ensure that the wanted radius is obtained along linear
parts whatever the clipped mass.

From scale-invariant integral surfaces to scale-invariant distance surfaces : When
we make the clipped mass tend toward zero, we tend toward scale-invariant distance surfaces
which are presented in Appendix A. Indeed, when the mass tends towards zero, all the points
used will be at the same distance dw (in warped space) and so have the same contribution
K(dw). For this reason, the integral will tend to be equal to :

f = NK(c,m)K(dw)

∫

HomotheticClipping(P,Sk ,m)
gSk (Q)

dQ
τSk (Q)

,

which, by definition of the clipping, is equal to :

f = NK(c,m)K(dw) m .
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m = 0.5 m = 2 m = 4 m = 6 Sum

FIGURE 4.4 – Effect of the mass m to be clipped (Cauchy 4 kernel with σ = 0.3 used) : when

m tends toward zero, we tend toward the union of balls with no blending while when m tends

toward the total mass of skeleton present in space we tend towards a sum.

The normalization factor NK(c,m) will tend toward c
mK(1) , which implies :

f =
cK(dw)m

mK(1)
=
cK(dw)

K(1)
.

This will be equal to the iso-value c if and only if dw = 1. This means that when the clipped
mass changes, we vary between an exact reconstruction of the generalized cylinders associated
to the skeleton (union of spheres) and scale-invariant integral surfaces (see Figure 4.4). In the
first case, the topology is guaranteed but there is no blending while in the second case there is
blending but no guarantee. For this reason, we can choose the amount of topology preservation.
It is important to note that the method has the most impact on the region where there is a high
density of skeleton, these regions are also the place where the blending is the most problematic.
This is why it should be possible to choose a mass value that will improve topological behavior
without impacting too much the smoothness of the surface.

4.2.2 Practical considerations

In the previous part, we have presented the theory behind our new blending method. Ho-
wever, some questions have to be answered in order to apply the method in practice.

Computation of the effective clipping

The main problem to solve in order to apply the method is to compute the clipping ball
around a given point in space that contains the wanted mass. Since we are not able to do it
analytically, we are obliged to do it through optimization. In order to do so, we have to be able
to solve the following sub-problem : "What is the mass inside of a given ball in homothetic

space ?". Since we want to apply the method when the skeleton is a set of segments, we can
obviously solve the sub-problem for each segment individually then add the mass that is in-
side of the ball in homothetic space for each segments. This can be subdivided into two steps :
first, computing the clipping, then, computing the mass of the segment clipped. The first step
has already been studied in previous chapter for the purpose of computing SCALIS with Com-

pact Polynomial kernel (section 3.3.4 and Appendix A.2). Knowing the clipping in homothetic
space, it is quite easy to compute the clipped mass in function of the end point parameters l1
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and l2 of the clipped part of the segment :

mclipped = L

∫ l2

l1

1

∆τt+ τ0
dt = L

[

1

∆τ

ln(∆τt+ τ0)

]l2

l1

=
1

∆τu
ln

(

∆τl2 + τ0

∆τl1 + τ0

)

with ∆τu the variation of radius per length unit. Note that when the latter becomes close to
zero the formula becomes numerically unstable, in this case we use a finite expansion of order
2.

Optimization : Knowing how to solve the subproblem, we have to perform an optimiza-
tion depending on a single parameter : the ball radius, until the ball contains the desired mass.
In order to do so, we use a Newton method (note that we can compute the closed-form deriva-
tives of the clipped mass). However, there are a few things that should be taken into account :
each time the sphere crosses a new segment end-point there is a tangent discontinuity in the
function to be optimized. This added to the fact that Newton method can perform badly in pre-
sence of inflection points forced us to add safeguard. We use bounds on minimal and maximal
possible radius that are updated at each step using the fact that the function to optimize is in-
creasing in function of the ball radius, if Newton step doesn’t fall in-between this bounds, we
use a dichotomy step instead.

!

"
!#$

"
#$#%

FIGURE 4.5 – Choice of the

initial radius for the optimiza-

tion method from the mass m to

be clipped and from the minimal

distance to skeleton in homothe-

tic space rmin.

In order to initialize the optimization, we use a simple
heuristic for computing the first radius and initial bounds.
The maximal radius is set either to the infinity or to the ker-
nel radius size factor σ depending if the kernel has a com-
pact support. The minimal radius rmin is set to the minimal
distance between the computation point and the segment in
homothetic space. The initial radius is chosen such as to
directly clip the right amount of mass if the computation
point is along a straight skeleton line with constant desired
radius (see Figure 4.5), which give the following formula :

rinit =

√

(m

2

)2
+ r2min

There is one problematic case for the clipping : there
can be a countable number of points in space where there
is an infinite mass of skeleton at the same distance. These
query points can arise in two particular positions : at the center of an arc of circle skeleton, but
also at a single point on the line defined by a segment skeleton with varying wanted radius (this
point correspond to the point of cancellation of desired radius if the segment was prolonged
with the same variation of radius, this is demonstrated in Appendix A.2). This fact has not
yet been taken into account in our implementation, we just limit the maximum number of
iteration to 30 in the optimization method in order to prevent infinite loops ; the main difficulty
to solve this problem is to detect it during the optimization. Indeed all the points having the
same influence K(r) (r being the ball radius just before the problematic points are clipped)
we just have to compute the lacking mass m−mclipped before they are clipped and add (m−
mclipped)K(r) to the field (note that this can create a gradient discontinuity at the problematic
point in space).
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Cauchy 4, σ = 0.3, m = 4.3 Compact Polynomial 6, σ = 2, m = 3.6

FIGURE 4.6 – In blue is the shape created with Witnessed blending, while in red is the shape

created with the blending by summation (light color correspond to a cross skeleton while dark

color correspond to an orthogonally bend skeleton). Note that the blend is only affected in

a small vicinity of the skeleton intersection and that for Cauchy kernel there is less change

in the blending shape between cross and bend skeleton for Witnessed blending than for the

summation.

Mass to be clipped

There is an important remaining question : how should we choose the mass to be clipped
in order to suppress or reduce unwanted blending ? Our point of view is that the chosen mass
should not change too much the blending in the case of an orthogonal bend in comparison to a
blending by sum. Furthermore, the blending should be the same for an orthogonal bend and a
cross. Because these are not exact constraints, we should choose the "minimal" mass meeting
them, indeed, this is the one that will reduce the most the unwanted blending behavior.

Here are the values we found empirically for the kernels we use the most : for Cauchy 4
with σ = 0.3 we use a clipped mass of 4.3 (which slightly reduces the blending in the case of
the orthogonal bend but keeps the same blend for the cross, which is not the case for the sum)
while for Compact Polynomial 6 with σ = 2 we use m = 3.6 which produce nearly the same
results has the sum. See Figure 4.6.

Computation of the gradient

FIGURE 4.7 – Relative error between nu-

merical gradient and the analytical approxi-

mation with constant clipping values, for

different values of the clipping length. The

maximum relative error is in red and corres-

ponds to 10−4 while the mean relative error

is around 10−6.

Because computing numerical gradients is
not efficient and the result tends to be noisy
when multi-scale objects are created, we would
prefer to have a closed form gradient for witnes-
sed integral surfaces, or at least a closed-form
approximation scheme if it is sufficiently pre-
cise. Our idea for the approximation scheme is
to compute the closed-form gradient using the
local clipping value. This means that we ne-
glect the fact that the radius of clipping sphere
is changing while evaluating the gradient. This
is much faster to evaluate than a numerical gra-
dient due to the fact that we only need one
clipping and that closed-form SCALIS gradient
is not much more costly than the evaluation
of the field. We performed some tests using
this approximation scheme and found that the
mean relative error with the numerical gradient
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is around 10−6 which is quite small. Furthermore the maxima of relative error tends to be
scattered over the shape (see Figure 4.7) and are still not very important (around 10−4) which
makes us think that they are mainly due to the numerical gradient.

Since the gradient using a local constant clipping value seems to be a good approximation
and that it is the exact gradient for both limit cases (clipped length approaching either zero or
the total length of skeleton present in the object), we use it in practice and suspect that it is in
fact the actual closed-form gradient of Witnessed blending (which we have not demonstrated).

4.2.3 Behavior of the model

As stated earlier in this section, Witnessed blending provides a way to smoothly transition
from a union of generalized cylinders to scale-invariant integral surfaces (SCALIS) by swit-
ching the mass parameter from 0 to the mass of the whole skeleton. It is important to note that
when the mass tends toward zero the quality of the scalar field is decreased (indeed for m = 0
there can be discontinuities of the gradient). We will present with more details how this new
model behaves.

Postponing topology changes

Since the area used to compute the field change with respect to the local density of skeleton,
the change of topology will tend to be postponed when two skeletons come close to one another.
Indeed, in this case, the local density of skeleton will increase leading to a smaller clipping
ball. The difference with the sum become more and more important as the local density of
skeleton increase, so the effect will be more important at the center of a circle than between
two segments. The difference of behavior for base cases (parallel segment of equal and different
radius and circle of constant radius) is shown in Figure 4.8. Note that even if the difference
between sum and Witnessed blending seems small in the graph for Compact Polynomial kernel
in the case of parallel segments it is really visible in practice as show Figure 4.9.
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FIGURE 4.8 – Graph of the minimal field between skeletons (where the gradient is null) value

in function of distance/radius for base cases. The interest of minimal field value is that when it

crosses the iso-value the topology changes. Note that the topology of the union of generalized

cylinders is lost for the minimal abscissa value for each case. We can see that the witnessed

blending has the more impact for the circle cases (which is due to a higher local density of

skeleton).
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FIGURE 4.9 – Comparison between SCALIS (left) and witnessed blending (right) for segment

primitives for Compact Polynomial 6 kernel with a clipped mass of 3.6 : the witnessed solution

avoids the unwanted blend in this case.

It is important to note that even if we can postpone change in topology, we are not able to
prevent them : indeed the only mass value which would give guarantee is 0 but it would not
create a smooth surface.

Reducing unwanted bulges

There is a maximal amount of bulge that can be created whatever the density of skeleton
used, it will be obtained when there is a mass m of skeleton concentrated on a unique point in
space. In this case, the field generated around this skeleton (assuming it is of constant wanted
thickness τ) is :

f(d) = NK(c,m) mK(
d

τ

)

so the maximal amount of bulge is :

d

τ

= K−1

(

1

mNK(c,m)

)

In Figure 4.10, we can see the effect of the bulge reduction.

Removing unwanted blending due to the global support of the kernel

In the case of kernel with infinite support, the total mass of skeleton can affect the obtained
radius : as the global mass augments the shape can slightly inflate which can become problema-
tic for preserving the topology of details. Witnessed blending adds a kind of local influence to
each primitive leading to a behavior more similar to kernel with compact support. An example
of this behavior is given in Figure 4.11.

(a) (b)

FIGURE 4.10 – Witnessed blending compared to sum (superimposed in red on the right part

of the figure) : (a) Cauchy 4 kernel with m = 4.3, (b) Compact Polynomial 6 kernel with

m = 3.6. Note that the witnessed solution reduces the bulge, but is not able to avoid it.
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(a) (b) (c) (d) (e)

FIGURE 4.11 – Localized influence with Witnessed blending : (a) a small handle is blending

with a sum into a larger primitive, Cauchy kernel is used. In (a,b,c,d) a second large primitive

is blended at the opposite of the handle. In (b), with Cauchy kernel and a blending by sum, the

topology is lost partly due to a subtle enlargement of the blue surface, while in (c) Witnessed

blending succeeds to preserve the topology. In (d) sum, and (e) witnessed blend, the Compact
Polynomial kernel is less affected by the additional primitive.

4.2.4 Discussion

Improvement to the standard blending problems : As we have seen in previous sec-
tion, Witnessed blending provides much better results than summation blending by reducing
the unwanted blending behavior. However, such a method can’t provide guarantee on the to-
pology, the only solution would be to use a mass to be clipped of 0 which would completely
remove blending.

Computation time : While the computational time is not really impacted for global sup-
port kernel (due to a lower number of integral computations), it is less the case for compact
support kernel (see Table 4.1).

If the method is to be applied to complex skeletons, it will become important to use optimi-
zation structures to reduce the number of segments to be taken into account when performing
the optimization. The main problem is that we are not working in an Euclidian space (for which
most optimization structures are intended) but in the warped space. In order to overcome this
problem a solution would be to group skeletons by range of wanted radius. Using the maximal
radius of a range to compute distance and the minimal radius to compute the clipped length
would simplify the problem of choosing the initial set of segments while ensuring to avoid
underestimation (not doing so would prevent the optimization to succeed).

Kernel Cauchy 4 Compact Polynomial 6

Mass m used 0.5 2 4 6 0.5 2 4 6

Computation time in
86% 102% 127% 132% 116% 140% 159% 259%

percentage of sum

Average number of
0.77 2.18 3.05 3.57 0,79 2,20 2,60 15,2

optimization step
per field evaluation

TABLE 4.1 – Computation time in percentage of the blending by sum and average required

number of optimization step to perform a single evaluation of scalar field, the error threshold

on the clipped mass being 10−6. Test was done on the skeleton used in figure 4.4.
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FIGURE 4.12 – The lack of smoothness of the clipping can impact the smoothness of the

surfaces creating visual artifacts.

Toward smooth clipping The main problem of the method has it stands is the smooth-
ness of the clipping : its lack of regularity (a point of the skeleton can’t be partially clipped,
there is no smooth transition between the clipped state and the ignored state) leads to a poor
field regularity. This is clearly visible in some cases as in Figure 4.12. This mainly happens
when the smallest contribution of a skeleton point is not small enough. It should be possible to
remedy to this problem by introducing a smooth clipping : instead of just selecting a massm of
skeleton, we could select an additional mass mt to smooth the clipping. This additional mass
would be used with an additional density as in Equation 3.10 : this density should be equal to
1 on the boundary of the main clipping ball and equal to 0 on the boundary of the new ball
corresponding to the transition area. In order to do so, the simplest way is to use a weighting
function that depends on the ball radius :

w(r(t)) =

(

1 −
(

r(t)2 − r2main
r2transition − r2main

)2
)2

with r(t) the distance between a skeleton point of parameter t and the computation point (the
clipping ball center). The reason for the use of r(t)2 is to obtain a polynomial weighting func-
tion : Indeed for segment skeletons r(t)2 is a second degree polynomial. The use of this weigh-
ting function would ensure a C2 clipping.

This idea has not yet been implemented. There is no theoretical reason against its applica-
tion (we already know how to compute a clipping, and formula are the same as SCALIS with
density of section 3.6). However the double clipping combined with an increased computation
cost in the transition area due to the new weighting function would probably increase too much
the computational time.

4.2.5 Conclusion

While the method we just presented gives interesting results in term of shape control for
all kernels, the one that really benefits from it are global kernels since the method gives them
a bounded region of influence. An interesting feature of this blending method is the fact that
the mass parameter used to tune clipping describes whether we want an exact reconstruction of
the required radius or a smoothed reconstruction. It should be interesting to have the mass used
vary in space in order to give more control on the blending.

The main drawback of the method is that it would require a smooth clipping in order to be
really usable in practice, however, such a clipping would probably increase too much compu-
tation time. Moreover, when it comes to control of topology we think that the gradient-based
method presented in next section is more promising.
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4.3 GRADIENT-BASED SCALIS

An important fact when it comes to the topology of implicit surfaces is that points where
topological changes can take place are characterized by the fact that the scalar field gradient at
this point is null [Har97].

This, combined to the recently introduced gradient-based implicit blend [GBC∗13], sug-
gest that the use of gradient is mandatory to produce high quality blending. In [GBC∗13], the
angle between gradients is used to parametrized the blend. The base parametrization ("camel"
controller), basically uses these three facts :

– collinear gradients require no blending to prevent unwanted bulges from appearing ;
– opposite gradients require no blending either to insure that the topology of the skeleton

(union of balls) is maintained ;
– orthogonal gradients, on the contrary, require blending to occur.

We cannot apply this method as it stands since it is intrinsically binary due to the use of
angle between two gradients . Moreover, applying this method to integral surfaces would ruin
the independence from skeleton subdivision. In this section, we try to adapt the idea of defining
blending through their gradient to integral surfaces, while preserving their good properties. In
order to do so, we introduce a gradient-based field warping which can be seen as a unary node
operator to add above a sum in the Blobtree.

Context : While we point out the fact that global support is not acceptable, we focus
in this part on the Inverse kernel. While this can seems irrational, this is motivated by some
properties of this kernel that will make our ideas easier to test. We will present in the discus-
sion section our idea to overcome the problems that arise with other kernels. Furthermore, our
method is first presented for skeleton-curves and later extended to skeleton of other dimension.

4.3.1 Gradient-based field warping

Basic idea : analyzing the gradient field of a "failed" blend

!
"

!
#

FIGURE 4.13 – The point P1 in the inner

part of the shape has a field value more

important than P2 but a smaller gradient,

this is due to multiple contribution that

are scattered around the query point in

the first case. In the second case, the field

is closer to the one of a line skeleton.

Since we would like to keep the property of in-
dependence from skeleton subdivision, let us try to
analyze the behavior of the gradient during a clas-
sical summation blend in order to deduce when un-
wanted bending occurs. Our aim would then be to
compute a corrected field :

fcorrected = warp(fS ,∇fS)

that will reduce the field fS obtained through a
summation blending when the latter was too im-
portant.

Let us characterize when we want the field to
remain unchanged versus when we want to reduce
it the most :

• Our reference for thickness being an infinite line skeleton (see Section 3.4.1), we would
like to keep the field unchanged in this case.
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• On the contrary, points that lie in-between skeletons (such as at the center of a torus, or
between two line skeletons) tend to have a smaller gradient than expected : while each
contribution of infinitesimal length of skeleton sums up together to obtain the resulting
field, it is not the case for the gradient for which small contributions cancel each other
since they tend to have opposite direction.

If we take a look at Figure 4.13, we can be more precise on the way to measure the unwan-
ted blending : the point P1 which is at the outside of the shape have a field value and gradient
that are closer to the one of a line skeleton than the point P2 which has a small gradient (due
to opposite contribution) in comparison to its field value. Thus, we should analyze gradient
behavior in comparison to field value.

Our main insight is to use this fact in order to compute a measure of the angle between
gradients - or the amount of unwanted blending - in a N-ary way. Using the result of a "fai-
led" summation blend to parametrize our blend, instead of explicitly computing angle between
gradients, is the main difference with classic gradient-based blends.

However, we cannot just use the field gradient as is in order to parametrize our correction,
since it depends on some other parameters. We will explain how it is used in practice.

Scale-invariant gradient

Scale-invariance is important to analyze things independently from the skeleton size (i.e.
desired radius). While the scalar field of Scale-invariant Integral Surfaces (SCALIS) is invariant
through scaling of the skeleton, it is not the case of their gradient. This is a problem for obtai-
ning a measure of the topological problem. For this reason, we will analyze a scale-invariant
gradient instead of the classical one. From this point we will note ∇fH the scale-invariant gra-
dient and fS the scale-invariant scalar field (SCALIS). From Equation 3.6, we can easily note
that we just have to multiply the classic gradient by τ in order to obtain scale-invariance. This
lead to the following definition :

∇fH(P ) = ∇
(

∫

R3

gSk (Q)

τSk (Q)d−1
K

(

‖−−→PQ‖
τSk (Q)

)

dQ

)

(4.1)

Note that in the case of skeletons of dimension 1, the gradient in (4.1) is equal to the gradient
of the Hornus integral surfaces [HAC03]. Furthermore, a closed-form solution can easily be
computed for classic kernels in the same way we have computed the gradient of SCALIS in
previous section. Lastly computing both ∇fH and fS can be done efficiently since their is some
redundant computation.

Reference case : Skeletons of infinite length

There is a remaining problem to obtain information on the amount of unwanted blending
in the classical summation blend : the norm of the scale-invariant gradient ∇fH does not only
tend to zero when there is topological problems, but also when the scalar field fS tends to zero.

Because we have a reference case that should stay unmodified by our correction method -
the case of infinite line skeleton - we will try to characterize the relationship between ‖∇fH‖
and fS in this canonical case in order to be able to correct the blending based on the relationship
between this two values.

This is where Inverse kernel is interesting : indeed it is the only classical kernel that brings
a bijective mapping between ‖∇fH‖ and fS in the case of a line skeleton (partly due to absence
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of inflection point in the kernel definition). The formula for the scalar field fS is obtained from
Table 3.5. By taking into account the normalization factor, we obtain :

fS(τc, d) =
(

τc

d

)i−1
(4.2)

From this formula, we first compute the norm of the SCALIS gradient (which is equal to the
partial derivative in function of the distance d to the line) and multiply it by τ to obtain the
formula for the scale-invariant gradient :

‖∇fH‖(τc, d) = (i− 1)
(

τc

d

)i
(4.3)

We can easily find the bijective mappings between these two values :

‖∇fH‖ = (i− 1)fS
i

i−1 (4.4)

and

fS =

(‖∇fH‖
i− 1

)
i−1

i

(4.5)

where i is the degree of the Inverse kernel. The mapping are thus respectively defined by the
two following functions :

g(x) = (i− 1)x
i

i−1 and h(y) =

(

y

i− 1

)
i−1

i

(4.6)

which verify h ◦ g(x) = x.

Replacing fS by a corrected field

We are trying to define a warping operator warp : R
+ × R

+ → R
+ that will reduce the

value fS when unwanted blending is detected.
We now have the relationship between the scale-invariant field and the norm of the scale-

invariant gradient in the case of an infinite line, defined through the bijective mapping g. As
stated earlier, the case where the skeletons form a partition of a line is our reference case where
blending should act like a sum. Thus, if ‖∇fH‖ = g(fS) is verified then our correction should
leave fS unchanged :

warp(fS , ‖∇fH‖) = fS if ‖∇fH‖ = g(fS)

Secondly, if we look at (fS , ‖∇fH‖) as a 2D point P , and name G the graph of g, what
will push away P from G is the blending (either desired or not). Let us have a look at two basic
cases to get more insight on the gradient behavior during blending :

1. two infinite line skeletons forming a cross (in this case the blending is desired), we will
focus on field behavior for points at equal distance from the two skeletons,

2. two parallel line skeletons (in this case some unwanted blending occurs if the two union
of balls come too close to each other), we are interested on field behavior in-between the
two skeletons,
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0 1 2 3 4 5 6 7

1

2

3

4

5

6

||∇ fH||

iso-value

G

Unwanted blending !
f
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FIGURE 4.14 – Comparison between the case of an infinite line skeleton (the graph G in

black) with several kind of blending behavior (curves drawn are graph of (fS , ‖∇fH‖) in

some particular cases). The kernel used for the example is the Inverse of degree 3. First case

are the point that lies at equal distance from two line skeleton forming a cross, this is the region

where the maximal blending should occur. The second case are the point that lie between two

parallel lines (ratio between distance and wanted radius displayed for 2, 2.2,
√

8 and 20 :

color varying from red to blue), depending of the distance between this skeletons the blending

can become problematic. If the two lines are far from one another (blue curve) then blending

is not a problem, on the contrary if the union of balls is in tangency (red curve) then there is

too much blending (the field is equal to 2 instead of 1), for the sum, the topology is lost for a

ratio of
√

8 instead of 2.

in both case, we are only interested in what happen in the plane defined by the two line skele-
tons. For both cases, curve corresponding to (fS , ‖∇fH‖), are drawn in Figure 4.14. We can
see that unwanted blending behavior occur in a restricted portion of the 2D plane (basically
under the green curve).

For this reasons, our idea is to push back P closer to G when it is too far from it, this would
give us a new point Q. We are only trying to compute a new field value, not the associated
gradient, which mean that the new field value will simply be the abscissa of the new point Q :

warp(fS , ‖∇fH‖) = Qx.

Since we want point P = (fS , ‖∇fH‖) to remain unchanged when it is on G, projection seems
a good way to do define the new point Q. Furthermore, it would have more influence when P
is far from G which is the desired behavior.

Various possible correction

There are different basic ways to project P onto the graph G : vertical and horizontal projec-
tions, projection in arbitrary fixed direction and projection to the closest point (see Figure 4.15).
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FIGURE 4.15 – Different strategies for projecting P = (fS , ‖∇fH‖) onto the graph of G :

vertical projection in red, horizontal in blue and projection onto the closest point of G in green.

Vertical projection : One of the simplest ways to pull back P onto the canonical case
is to perform a projection on G in the vertical direction, so the projected point Q = (qx, qy) is
such that Q ∈ G and qx = fS which imply qy = g(fS). Thus, we have :

Q =
(

fS , (i− 1)fS
i

i−1

)

.

However, doing so the abscissa of the projected point will be left unchanged which mean
that we will keep the same scalar field : this is classical blending by summation of scale-
invariant integral surfaces fv = fS . The behavior of this blending has already been studied in
the previous chapter.

Horizontal projection : The horizontal projection is more interesting : we are looking
for Q = (qx, qy) such that Q ∈ G and qy = ‖∇fH‖, so we should have qx = g−1(‖∇fH‖)
which in turn give qx = h(‖∇fH‖). So, in this case, the projected point is

Q =

(

(‖∇fH‖
i− 1

)
i−1

i

, ‖∇fH‖
)

and the new scalar field is :

fh =

(‖∇fH‖
i− 1

)
i−1

i

which means that the new blending in this case only depends on the scale-invariant gradient.
There is no direct dependence to the SCALIS field. However, it is important to note that if the
skeleton is a partition of an infinite line the obtained result is the same as SCALIS : the field
is only affected wherever there is significant blending. In unwanted blending area, fh will be
smaller than fS (P is under the graph G), which will increase the chance to preserve topology.
However, as we will see later, this solution would reduce blending too much.
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Projection on closest point : Another possible correction is the projection onto the clo-
sest point of G, this is equivalent to solve :

Q = argmin
x∈R+

∥

∥

∥

∥

∥

(

fS
‖∇fH‖

)

−
(

x

(i− 1)x
i

i−1

)∥

∥

∥

∥

∥

2

which in turn is equivalent to :

i(i− 1)Xi+2 +Xi−1 − i‖∇fH‖X2 − fS = 0

where X = i−1
√
x (as shown in Appendix C.1). This can be solved analytically for kernel

degree i up to 3.
As for the horizontal projection, this correction tend to reduce too much the blending.

Projection in some arbitrary fixed direction : This can be seen as an interpolation bet-
ween the two first projections. We will defined the direction of projection as an angle ψ, 0 being
the horizontal projection and π

2 being the vertical one.

The projected point is at the intersection between the graph G and the line D passing
through P with the prescribed direction :

D = {(x,− tan(ψ)x+ ‖∇fH‖ + tan(ψ)fS) / x ∈ R}.

The intersection can be computed analytically for low kernel degree (see Appendix C.2.1).
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FIGURE 4.16 – We approximate closest point

location by closest point to the line passing

through vertical and horizontal projection.

Practical solution : Analytical solution of
the projection cannot be computed for all ker-
nel degree, instead we use an approximation
scheme (which is faster and simpler to imple-
ment) based on the two first projections.

We compute the projection onto the line
passing through the two first solutions instead
of the projection onto the graph G (see Fi-
gure 4.16). The precision of this approxima-
tion increases as the point P comes closer to
the reference case (since in this case the two
previous projections are the identity), it also
increase with the kernel degree i.

Let lH being the distance between P and
the horizontal projection :

lH = fS − h(‖∇fH‖) ,

and lV being the distance between P and the vertical projection :

lV = g(fS) − ‖∇fH‖ ,

then the new corrected scalar field is defined as :

fψ = fS − lH lV
lV + lH tan(ψ)

.

Details to obtain this expression are given in Appendix C.2.2.



4.3. GRADIENT-BASED SCALIS 115

4.3.2 Blending behavior in function of the projection :

In comparison to classical blending by summation (vertical correction), the horizontal pro-
jection, and more generally projections in intermediate directions, have two main advantages :

– they help preserving the topology (see Figures 4.17 , 4.18 and 4.19),
– they help preserving shape of thin features (see Figures 4.19, 4.20 and 4.21 ).
In practice, the correction introduced by the horizontal projection is too important, delaying

too much the change of topology (see Figure 4.17) and limiting too much smooth blending
between shapes with large difference of radius (see Figure 4.20 and 4.21).

The projection to closest point is equivalent to a projection with a parametrized angle, this
angle is lower or equal to π

4 for field value higher to 0.5 (note that we use an iso-value equal to
1.0) for all Inverse kernel of degree higher or equal to 3, which mean that this projection will
do the same overcorrection as described above.

FIGURE 4.17 – Blending between parallel segments of equal radius. From left to right : union

of balls, vertical projection (SCALIS), projection with angle ψ = π
4 and horizontal projection.

The two latter help preserving the topology. However, for horizontal projection, the correction

can be too important (which increases the space between the two surfaces or can even postpone

too much the change of topology).

FIGURE 4.18 – Shape with a hole. From left to right : union of balls, vertical projection (SCA-

LIS), projection with angle ψ = π
4 and horizontal projection. The two latter help preserving

the topology of the skeleton.
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FIGURE 4.19 – Small handle blended into a larger segment. From left to right : vertical

projection (SCALIS), projection with angle ψ = π
4 and horizontal projection. Top row presents

the obtained iso-surface, bottom row presents the union of balls corresponding to the skeleton

in red. While the two latter help preserving the topology, they can create creases where the

angle between the small segment and larger one is small (in this case the gradient is small).

FIGURE 4.20 – Blending between primitives with a large difference of radius, the vertical

primitives have respectively a radius of 1
5 , 1

10 and 1
20 of the horizontal one. From left to right :

vertical projection (SCALIS), projection with angle ψ = π
4 and horizontal projection. Top row

presents the obtained iso-surface, bottom row presents the union of balls corresponding to the

skeleton in red. The two latter projections better preserved the shape of thin features.

FIGURE 4.21 – Blending between primitives with a large difference of radius (note that the

small segment is placed in tangency with the wanted radius of the larger skeleton, thus the

union of balls associated to each skeleton overlap). From left to right : vertical projection

(SCALIS), projection with angle ψ = π
4 and horizontal projection. While the intermediate

correction helps better preserving the shape of the thin primitive, the horizontal correction is

too important creating a crease in the larger primitive.
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FIGURE 4.22 – While the horizontal projection and the projection of angle ψ = π
4 help

preserving the topology, they have a major drawback, when the correction is too important :

when a shape with a hole is progressively closing, or when two parallel segments come too

close to one another, a small crease and then an internal cavity appear.

Despite some interesting properties, projections with an inclined correction present major
drawbacks (it is also the case of horizontal projection) : they can create creases and even ca-
vities. Creases can be seen in Figure 4.19 while cavity is visible in Figure 4.22 (note that it
also happens in the case of parallel segments in Figure 4.17). Fortunately, this problem always
arise in similar cases : high field values with gradient norm close to zero, which gives hope to
correct this drawback by using a direction of projection parametrized by (fS , ‖∇fH‖).

Note that the projection angle that provides the best results depends on the degree of the
kernel used, for instance for degree 3, best angles are around 0.25π while for degree 4 they
are around 0.35π. In Figure 4.23, we compare SCALIS to the gradient-based field warping
for projection angle of 0.35π which is close to the required value to preserve topology for
Inverse kernel of degree 4 if there wasn’t the handle problem. We can note that the topology
of the resulting shape is much closer to the one of the skeleton whatever the desired radius.
Furthermore, shapes still smoothly blend when they come closer to one another and overlap.

(a) (b) (c)

FIGURE 4.23 – Comparison between blending by summation and projection with angle ψ =
0.35π for Inverse 4 kernel. We can note that the obtained shape is much closer to the skeleton

in (c) than in (b). It almost preserves the topology of the union of balls, except at extremities

(note that we have not applied the correction method presented in previous chapter).
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4.3.3 Extension to skeletons of other dimensions

FIGURE 4.24 – Point with Inverse
kernel of degree 3 and segment with

Inverse kernel of degree 4 are used at

the same time.

While we have applied our correction methods to
one dimensional skeletons (i.e. segments), it is pos-
sible to do the same thing for skeletons of other di-
mension (point and triangle). Furthermore, provided
that the kernel is chosen according to the dimension, it
is possible to simply sum the fields of all primitives in-
dependently from their dimension, and apply the cor-
rection afterward.

The condition is that the canonical case for the
pair kernel/dimension are the same function of the dis-
tance. For instance if a kernel of degree i is used for
segments then a kernel of degree i− 1 should be used
for points, and degree i + 1 for triangles. Result for
points skeletons and segment skeletons used together
are illustrated in Figure 4.24.

4.3.4 Discussion and Future improvements

Since our method is only based on a summation blend, it does not depend on the skeleton
subdivision, so it preserves the main property of integral surfaces. In order to perform a test in
a more complex case, we have modeled a dragon with large difference of radius between the
primitives used (see Figure 4.25). Our method better preserves the topology than SCALIS with
the same kernel but also than Compact Polynomial kernel.

It is important to note that since our operator is based on a summation blend, it should help
to use efficient caching system for modeling, indeed if we store the field before correction, we
just have to subtract the contribution of the skeleton under modification to the cache and add
the new field value instead of recomputing all the field value in the modified area.

While the first results seem promising, there are still a number of improvements which
would be needed for our method to be usable in practice.

Analysis of the required behavior and parametrization of the correction

FIGURE 4.26 – Two parallel segments with dis-

tance (normalized by primitive radius) respecti-

vely equal to 2.1, 1.9 and 1.7. We can see that the

handle problem creates an awkward blend in the

middle image.

The handle problem previously descri-
bed is probably the main problem to be sol-
ved. Indeed, creating creases and/or cen-
tral cavities is problematic in the case of
two shapes close to being tangent to each
other (see Figure 4.26). It seems to be pro-
blematic only in the region where the gra-
dient is both small, and small in compari-
son to the field value.

Because the problem seems to appear
in particular cases, we think it is possible
to correct it by introducing a projection
method parametrized by the couple of va-
lues (fS , ‖∇fH‖). In order to do so, one
should study the case of two parallel lines.
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FIGURE 4.25 – Dragon created with only two Blobtree nodes : a max operator is used to

combine the eyes with the rest of the dragon which is created from a single gradient-based

field warping (used with Inverse 4 kernel). We present close-up with comparison to standard

blending by sum for the same kernel (upper left vignette) but also for Compact Polynomial
kernel of degree 6 (upper right vignette), the gradient-based field warping is presented in the

framed bottom central vignette. Note that gradient-based field warping is the only method that

keeps the topology in (c).
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FIGURE 4.27 – Base case to

study in order to adjust blending :

two parallel lines of unit radius

(shown here in cross-section). We

are mainly interested by the field

behavior at equal distances from

the two skeletons.

There are two important properties that should be ve-
rified by the parametrization of the projection :

1. the field defined in the plane at equal distance from
the two lines should be a decreasing function of h
whatever the distance d between the two lines (see
Figure 4.27).

2. the field value at equal distance of the two segments
for h = 0 should be a decreasing function of the
distance between the two segments, and it should
be equal to 1 in for d = 2 (which is the case of
tangency).

Of course, in order to limit the computation cost, the
function we are looking for should return tan(ψ) and not
the direction ψ itself.

The first thing to note is that for a given value of ‖∇fH‖, the projection in a fixed direction
already implies that the blending is a decreasing function of the field value fS (at least for the
analytical projection).

Furthermore, Figure 4.28 highlights two important facts. First, it explains the handle pro-
blem : it is normal to obtain it in the case of a projection in a fixed direction. Indeed, in the
base case of Figure 4.27, for a given distance d between two parallel line-skeletons, there are
two points with different values of h that have the same projection on G. Secondly, the dif-
ferent graphs of (fS , ‖∇fH‖) for different distances d between the line primitives do not cross
each other (this is proved in Appendix C.3). This means that it is possible to respect the first
constraint we previously described (preventing the appearance of the handle problem).

The parametrization of the correction that would meet our constraints is probably not
unique which means that we can have some freedom on the blend we will obtained (more
or less sharpness).

An important thing to note is that our field warping correction will not be able to exactly
keep the topology of the union of balls in both the case of parallel lines and in the case of a
circle skeleton. In both cases, the point where the topology should change (the one where the
union of spheres is made of tangential parts) has a null field gradient. In the case of the circle
skeleton the field value will be

fcircle =
1

i− 1
(2πτ)

(

τ

τ

)i 1

τ

=
2π

i− 1
,

whereas for two parallel line skeletons the field value is equal to 2. None coincidence of this
two values is the reason why topology cannot be guaranteed at the same time in both cases.
However, note that for the Inverse kernel of degree 4, the field values would not be that far
from one another (the ratio between them is around 1.04) which means that the topology in the
circle case would be preserved much longer than when using a sum.

Compact support

Using kernels of local influence, which can be either provided by compact support kernels
or by Witnessed blending, is a necessity for both efficiency and local shape control.
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FIGURE 4.28 – Each colored graph correspond to the graph of (fS , ‖∇fH‖) for the blending

of two line skeleton in the plane situated at equal distance of each skeleton from a distance of

0 in cyan to a distance of 3.16 in blue (the equation of the curves are given in Appendix C.3).

In red is the distance of 2 which corresponds to the tangential case between the two shapes to

be bended : the inclined line leaving from (2, 0), is the required direction of projection in order

to obtain exactly the wanted iso-value in the point of null gradient in the tangential case. This

figure emphasizes the facts that make us think that there exists a correction corresponding to

our constraint to obtain a good blending : the colored graphs do not cross one another which

means that we do not have contradictory constraint.

The first thing to note is that the behavior in a local neighborhood of the skeleton is not
that important if one wants to later convert the field into a field with an inner bound [CGB13].
Indeed, in order to do so, a transfer function should be used that will map all values above a
given threshold to a constant value (so field with infinite value on the skeleton are not so much
problematic provided that the generated field is converted before applying operations such as
digging).

The main difficulty in the application of the gradient-based field warping method to classic
local support kernels, is that they have a null gradient on the skeleton and they present an
inflection point, thus the inversion strategy we used cannot be applied anymore. We see three
main kinds of solutions to overcome this problem :

– The first one is to choose a classic Compact Polynomial kernel with parameter such that
inflection point of the scalar field is located far enough inside the iso-surface, so that
the relationship between normalized gradient and scalar field is invertible in the region
where the unwanted blending is problematic. Furthermore the method should be applied
with a polynomial of high degree in order to have a smooth gradient. A degree of 8 with
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a σ value of 1.8 should meet the previous constraints. The main difficulty will be to
find the relationship between fS and ‖∇fH‖ in the interval where it is invertible (or use
pre-computation).

– An alternative solution would be to introduce a new kernel which would be a product
of an Inverse kernel and a Compact Polynomial one. This would ensure both a compact
support and the absence of inflection point.

– The last alternative would be to continue using an Inverse kernel in combination with
either a Witnessed blending to compute the field to be analyzed (provided the future
work on smooth clipping gives good results, see section 4.2.4) or to use a fixed (and
smooth) clipping around the computation point (which would probably be the easiest
solution to implement).

Closed-form gradient

We do not have yet closed-form expressions for the gradient of the warped field. In order to
compute it, we should compute the gradient of ‖∇fH‖ : a Hessian which could be computed
efficiently since it as a lot of term in common with the gradient. However, the main difficulty
is probably to compute the part of the gradient that depends on the correction, we think that
the easiest way would be to rely on precomputed partial derivatives as it was done for gradient
blending.

4.3.5 Conclusion

We have presented a blending method based on summation blend followed by field war-
ping. It relies on the analysis of a summation blend in order to provide a better topological
behavior. Since the method only relies on a sum, it is intrinsically independent from the skele-
ton subdivision. While the first results are promising, some work still has to be performed in
order to make the method really usable in practice.

In addition to the improvements already discussed, it would be interesting to introduce a
family of projections described by a single parameter (which would describe the sharpness of
the required blending). We could then set this parameter as a skeleton attribute and interpolate it
on the fly during the evaluation in order to obtain a blending with a sharpness directly controlled
by the skeleton without making the Blobtree more complicated.

4.4 CONCLUSION

In this chapter, we have presented two approaches to improve the blending behavior of in-
tegral surfaces while preserving their independence to skeleton subdivision. They rely on two
very different strategies : the first one is a skeleton based method which selects a restricted
part of the skeleton for each field query, while the second one is a gradient-based method com-
bining the sum with some adequate warping of the resulting scalar field. Both methods show
very promising results such as reducing the blur of smooth details and improving topology
preservation. However, both still require some work to be really useable in practice.

It is important to note that these methods do not aim at replacing complex binary operators
such as gradient blending, since they already provide much more control. But being N-ary, they
enable to limit the use of such binary operators to the few cases when they are really required :
this would greatly reduce the height of the Blobtree, making it much easier to modify.
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Our insight is that combining the two methods we presented with some skeleton analysis,
such as proposed in section 3.6 (in order to reduce the bulge) would give the best results in
term of quality. However, from a computational point of view, it would probably be better to
focus only on gradient-based integral surfaces, while using skeleton analysis to reduce bulges.

Lastly, it would be interesting to find a way to add a sharpness parameter on the skeleton
in order to control the smoothness of the blending.
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CHAPTER

5

GEOMETRIC DETAILS ON
SKELETON-BASED IMPLICIT

SURFACES

Teaser Figure : Implicit modeling of a coral reef. All small scale details have been added with

our method.

Publication :

ZANNI C., BARES P., LAGAE A., QUIBLIER M., CANI M.-P. : Geometric Details on
Skeleton-based Implicit Surfaces. In Eurographics 2012 : Short Paper (Cagliari, Italie, May
2012).
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AS we have seen in part 1.4, implicit surfaces have long been restricted to the modeling
of smooth shapes, since most methods for adding geometric details require some local
parameterization. As stressed by Sherstyuk [She99c], the two main ways to enhance

implicit surfaces with geometric details are either to add small implicit primitives near the
surface, or to deform the scalar field with volumetric noise such as hypertextures [PH89]. In the
first case, in addition to the burden of adding many primitives by hand, small details may blur
when blended, requiring the use of costly blending mechanisms instead of the sum [BBCW10].
In the second case, controlling the distribution and orientation of details on the surface would
be difficult due to the volumetric nature of hypertextures, and small disconnected components
could appear near the main surface.

In this chapter we introduce the first extension of constructive implicit modeling to surfaces
with procedural geometric details. Our method enables the addition of well-distributed aniso-
tropic details over implicit primitives, provides an intuitive control of their orientation from the
skeletons that define the primitives, and contrary to [BIT04], extends the blending properties
of implicit surfaces without causing the details to blur. Although presented in the context of
skeleton-based implicit surfaces, our method is applicable to other implicit models as well, but
the user then needs to define some skeletal abstraction for the main shape feature.

5.1 BACKGROUND : ANISOTROPIC GABOR NOISE ON

SURFACES :

Our method for generating details on implicit surfaces is based on Gabor noise [LLDD09].
This is a sparse convolution noise that presents several interesting properties : accurate spectral
control, anisotropic noise, non-periodicity and lastly, it provide high quality filtering (which is
important for texturing). In addition to these qualities, it also has some practical advantages :
small memory footprint and fast evaluation.

The most basic form of Gabor noise, 2D anisotropic Gabor noise, is defined as

n (x;K, a, F0, ω0) =
∑

i

wig (x − xi;K, a, F0, ω0) , (5.1)

where the noise parameters K, a, F0 and ω0 control the amplitude, bandwidth, frequency and
direction of anisotropy of the noise. The random weights {wi} are distributed according to
a standard uniform distribution and the random positions {xi} are distributed according to a
Poisson process with mean λ. The Gabor kernel g is defined by :

g(x, y; a, F0, ω0) = Ke−πa
2(x2+y2)cos[2πF0(x cosω0 + y sinω0)].

By using random direction of anisotropy ω0, an isotropic noise is obtained ; this can also be
done more efficiently by using a modified noise kernel [LLD11]. In Figure 5.1, we can see

FIGURE 5.1 – Various noise patterns generated with different noise parameters, both aniso-

tropic noise and isotropic one are presented. Figure from [LLDD09].
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various examples of noise (both isotropic and anisotropic) obtained using different set of para-
meters. In practice Gabor kernels are truncated in order to be generated on the fly inside a grid
which cell size r is chosen according to noise properties.

Note that this 2D Gabor noise naturally extend to solid (3D) noise which can be used to
texture surfaces as if they were carved into a material. However, the extension that has the main
interest in our case is Surface Gabor noise.

(a) Projection.noise. (d) Aniso. surf. frames. (e) Aniso. surf. noise.

(a) (b) (c)

FIGURE 5.2 – (a) Creation of a local kernel

distribution by projection onto the local tan-

gent plane, (b) frame field used to orientate

noise anisotropy, and (c) resulting anisotropic

surface noise. Figure from [LLDD09].

Surface Gabor noise : This generaliza-
tion of 2D Gabor noise to surfaces provides a
way to map a noise onto a surface while pre-
serving its 2D pattern which is not the case of
solid noise.

In order to obtain surface noise, noise ker-
nels are locally projected onto the surface.
This is done by projecting the 3D distribution
{xi} onto the plane defined by the query point
and its normal ; note that only points xi in a
local neighborhood (a cylinder of radius r and
height 2r) are projected. Instead of generating
the random weights {wi}, weights are com-
puted thanks to the distance d from xi to its
projection using the formula wi = 1−d

r .
Surface Gabor noise is independent of the geometric representation of the surface. Evalua-

ting it only requires reference frames to be defined over the surface to express the direction
of anisotropy. In order to keep good properties of the noise, texture details should be small in
comparison to geometry detail.

While we will use this version of Gabor noise, it is important to note that they exist several
extensions, such as noise with controllable band-limits, which can be combined to weighted
sum of noises in order to obtain more complex noise patterns.

5.2 PROCEDURAL NOISE ON SKELETON-BASED IMPLICIT

SURFACES

Let S be the implicit surface to be enhanced with details and fS be the scalar field that
defines it. fS is generated thanks to a set of skeletons Sk = {Ski} generating individual fields
fi. This section explains how we define a smooth, anisotropic Gabor noise on S that seamlessly
follows this geometry.

Smooth vector field :

Generating a surface Gabor noise requires the definition of continuously varying local
frames over the surface. To reduce user input, we provide a method for automatically gene-
rating them from a meaningful spatial vector field, defined as a weighed sum of the skeleton
directions. Since the skeletons control the shape of S, this ensures that the frames will cohe-
rently follow the surface.
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Let us develop the method when the skeleton {Sk} defining S is a set of segments. Simi-
larly to the way smooth field values are computed from skeletons in convolution surfaces, we
generate a smoothly varying vector field by integrating the directions Sk(s) of the skeleton,
weighted by the field contribution of the associated infinitesimal arc length :

WdSk(P ) =

∫

s∈Sk
K(dSk(s, P )).Sk(s) ds. (5.2)
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FIGURE 5.3 – Weighted direction naturally

lend themselves to blending by summation.

The additivity of the integral leads to an addi-
tive property for the resulting vector field :

WdSk(P ) =
∑

i

WdSki(P ) (5.3)

Moreover, the direction Ski being constant
on a single segment, equation (5.2) combi-
ned with the formula of convolution (equa-
tion 1.10)), yields :

WdSki(P ) = fi(P ).Ski (5.4)

This results into a continuous space vector
field WdS(P ) that encodes the shape of S,
as depicted on Figure 5.4(a). Note that we can easily adapt the definition of the weighted di-
rection to all kind of integral surfaces (such as Hornus integral surfaces and SCALIS).

We extend the definition of Wd to all kinds of implicit primitives by using equation (5.3)
and (5.4), replacing Sk by Sk(P ), a meaningful direction which may vary in space, defined
from the primitive’s skeleton. For instance, for triangles we use any vector included in its
defining plane ; note that the orientation as well as the direction defined for each skeleton
affects the resulting vector field.

The implicit primitive is now associated with two smooth vector fields : the field gradient
(defining the normal N) and the weighted direction WdS we just defined. We use them for
computing smoothly varying local frames (n, t,b) (normal, tangent, bitangent) over the sur-
face by setting :

{n = N(P ), b = normalized (n ∧ WdS(P )) , t = n ∧ b}

(a) (b) (c)

FIGURE 5.4 – (a) weighted skeleton direction, (b) procedural frames, (c) resulting anisotropic

Gabor surface noise.
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The resulting local frames are depicted on Figure 5.4(b) ; in the case of tubular shapes, t tends
to be in the same direction as the weighted direction. In practice, we generate the frames ef-
ficiently using closed-form formula for convolution field gradients, derived from closed form-
formula for field function [HC12]. Note that our frame field is not only coherently defined on
the surface, but also in the surrounding space ; we will use this for another purpose in sec-
tion 5.3.

Anisotropic surface noise :

Once the frames are defined, they are used to generate surface Gabor noise as explained
in Section 5.1 (equation 5.1). The parameters defining the noise are the noise magnitude K,
the bandwidth a, and the orientation with respect to the local frame ω. For instance, we can
define noise that follows the main orientation of the surface, that is orthogonal to it or that
progressively swirls around it. Such anisotropic Gabor surface noise is depicted on Figure
5.4(c). It can directly be used for texturing an implicit surface.

5.3 GENERATING GEOMETRIC DETAILS FROM SURFACE NOISE

We now explain how we generate geometric details over an implicit surface from the noise
we just defined. We assume that the details to be added are small compared to the geometric
features of the initial shape, i.e. that there is enough room to add them in concave regions.

Basic method :

The goal is to use the noise for locally deforming the scalar field that defines the input
implicit surface. To save computational time, we only apply this deformation in a local neigh-
borhood of the iso-surface of interest. Let the interval [iso−d ; iso+d ] define the region, chosen
from the size of details, where the field is to be deformed (figure 5.5).

As we would have done with displacement mapping, the noise value on the surface will
be used to quantify the deformation. Thus, to deform the field around the surface, we must
associate to each point in space a point on the surface, in order to get the amount of deformation.
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FIGURE 5.5 – Principle of the method : (a) projection on surface to get noise value, (b) the

noise value is use to modulate the influence of a blob, (c) in red : iso-surfaces fS = iso−d and

fS = iso+d defining the deformation region.
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To compute this association in a coherent way, we project the evaluation point P on the
surface along stream-lines of the field, defined by following the field gradient ; this was also
used in [ZGVdF97], but here the aim is to obtain a space/surface mapping. This gives us both
a point PS on the surface (with the associated noise value) and a distance to it. The scalar
field fS(P ) of the input surface is then modulated as if there was a blob centered at PS . The
blob intensity is set from the noise value. Note that we also apply a cancellation factor to the
deformation factor in order to guarantee to have no influence outside of the range [iso−d ; iso+d ].

Note that projecting space points along streamlines insures that the resulting details remain
coherent in concave areas (neighboring details do not intersect nor blend). Moreover, the me-
thod can be used both for adding material and for carving the input surface, depending on the
positive vs. negative value of the noise.

Generating free-form and tilted details :

Our method provides easy ways to control the shape and orientation of details, since each
step of the algorithm below can be adequately parameterized : First, one can play on the noise
parameters to obtain a variety of details, the main parameters for the user are the frequency,
the bandwidth and the direction of anisotropy for the version of Gabor noise we are currently
using (band-limited Gabor noise would give some additional parameters and the possibility
to interpolate between anisotropic and isotropic noise). Furthermore, both the blob radius and
the deformation function D (that gives the blob height in function of the noise value) can be
parametrized in order to obtain a greater variety of details (for the influence of the function D
we can refer to Figure 5.6). Just note that the blob radius should be chosen in a coherent way
with the range of field value that are affected by the noise.

The algorithm for computing the new field value f(P ) is thus :

If fS(P ) /∈ [iso−d ; iso+d ] then f(P ) = fS(P ).

Else :







let PS = proj(P,vα,θ),
let noise = n (PS ; k, a, ω) ,

f(P ) = fS(P ) +D(noise).K
(

‖PPS‖
R

)

.

where (k, a, ω) are the noise parameter on the surface, vα,θ is the direction of projection, D is
a map that gives the amount of deformation from the noise value and R is the blob radius. We
use K(r) = (1 − r)6 to define the blob’s contribution.

Using an arbitrary direction vα,θ of projection from P to PS instead of projecting P along
streamlines enables us to tilt geometric details with respect to the normal of the main surface,

FIGURE 5.6 – Different kind of details obtained from the same noise by playing only on the

deformation map D. We currently use a cubic spline by part in order to define this function.
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FIGURE 5.7 – Effect of using a tilted direction of projection. The direction of projection is

parametrized in the local frame defined from the weighted direction : here it is the median

direction between tangent vector t and normal vector n.

leading to the generation of details that are not mere high fields (see figure 5.7). vα,θ is defined
within the frame computed in previous section.

Blending implicit surfaces carrying details :

The parameters defining geometric details can be set to vary from an implicit primitive to
the next. During blending, these parameters are smoothly interpolated according to the respec-
tive field contribution of each primitive at the evaluation point, or at the projected point for
noise parameters :

param(P ) =

∑

i fi(P ).parami(P )
∑

i fi(P ))
.

This leads to a smooth change of detail orientation and shape in blending regions. Note that
only scalar parameters can be interpolated this way ; yet, all the parameters of base Gabor noise
are scalars. This would not be the case anymore if one wants to use a combination of Gabor
noises, then a more complex interpolation scheme should be found.

5.4 RESULTS

As our results show, the method generates details that behave nicely in concave regions
(Figure 5.8(c)), instead of self-colliding as when displacement mapping is used : this is due to
the continuity of the gradient of the scalar field used which will guarantee that all the "bumps"
will be preserved in the concave region. Moreover, when implicit surfaces blend, the noise
values are smoothly interpolated, resulting in a natural behavior of details ; when details have

(a) (b) (c)

FIGURE 5.8 – (a,b,c) Smooth changes in details direction.
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FIGURE 5.9 – Examples emphasizing the variety of choices that can be made for details orien-

tation, all coherent with input shape.

FIGURE 5.10 – Dragon model showing the variety of details that can be generated.

FIGURE 5.11 – Object before and after applying details
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different orientations on the initial surfaces, their orientation smoothly varies in the blended
regions of the resulting shape (Figure 5.8(a,b)). Note that details variation depends on the range
of influence of the fields : for instance, the T-junction in Figure 5.8(b) affects the orientation of
details on the other side of the main cylinder, which would not be the case using sharper field
functions. More complex objects enhanced with details are depicted in Figure 5.10 and 5.11.

Limitations :

The complexity of the details we can generate is limited by the range of patterns that can
be obtained through Gabor noise. Moreover, generating frame field without any singularity is
not possible on some surfaces. In our case, singularities arise when WdS(P ) and ∇fS(P ) are
collinear. Fortunately, computing the scalar product between these two directions gives us a
distance to singular point, enabling us to locally cancel the noise. A solution would be to use
isotropic surface noise in this region, which can handle singularities.

Computational efficiency :

Timings are given in Table 5.1 ; due to the fact that migration along stream-lines can be
computationally expensive, we replaced it in practice by a projection in the initial gradient
direction. From our experiments, this solution is much more efficient and still leads to good
results due to the small size of details with respect to the variation of the main field function.
There is room for a lot of improvements in the performances of our method, from an efficient
caching system to the derivation of closed-form equations for the gradient of the part of the
field that represents details.

Triangles in Meshes Computational Time

Coral reef - (average per mesh) 326 920 102.3s
Dragon (figure 5.10) 226 828 88.4s

Figure 5.7 - (average per mesh) 285 622 90.8s
Figure 5.8(a,b) - (average per mesh) 125 174 9.7s

TABLE 5.1 – Computation time on a 2.4 GHz Intel Core 2 Duo (only one core used).

5.5 CONCLUSION

We have presented one of the first methods for extending constructive implicit modeling to
surfaces with geometric details, based on Gabor noise. Note that our method can be adapted to
non-skeleton-based primitives, provided that one or several reference axis are set to define their
global orientation. In addition to solving the problems listed in the discussion of results, our
future work will focus on improving the way details are defined : First, sketching the profile of
details should be a fast and intuitive way to set their parameters. Secondly, detail parameters
could be stored along the skeleton, which would enable them to vary over individual implicit
primitives.
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CHAPTER

6

CONCLUSION

THE WORK presented in this thesis can be divided into two main types of contributions to
implicit modeling : firstly, widening the kind of shapes that can be modeled ; secondly,
improving the blending behavior.

We have introduced a new implicit primitive with convolution-like properties in order to
ease the creation of more complex shapes : an helical primitive from warping. It is partly based
on the classical twisting operator. However, we modified it in order to reduce the deformation of
the cross section of the base primitive. This new primitive should make the creation of surfaces
with free-form skeletons easier.

Lack of details is one of the main problems of implicit surfaces. In order to remedy this
drawback, we have introduced geometric procedural surface details. This method is based on
the use of Gabor noise, providing a large choice of detail patterns. A coherent orientation of
the details with respect to the underlying shape is obtained by using the skeleton of the implicit
surface to parametrize the details. In addition to defining geometric details, this can also be
used to texture implicit surfaces.

Our second aim was to improve the blending behavior of skeleton-based implicit surfaces
while preserving independence to skeleton subdivision, which is the main benefit of convo-
lution surfaces. The first step was the introduction of a new model to generate surfaces with
varying thickness along their skeleton : SCALe-invariant Integral surfaces (SCALIS). As their
name suggests, one of the main properties of this surface is to obtain scale-invariance of the
generated shape leading to more intuitive behavior of the model. SCALIS enable radius to be
easily prescribed around skeleton and it also improves blending behavior of small details. Fur-
thermore, it enables an intuitive use of kernel with compact support that are required when
working with complex skeletons.
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The second step we presented to improve blending behavior builds upon the properties
of SCALIS that make the behavior of the model easier to analyze. We present two different
approaches in order to improve blending with a main focus on topological behavior, toward
having an implicit shape that always reflects the topology of its skeleton. Our aim was, while
doing so, to keep the property of independence from skeleton subdivision, which was never
achieved so far. The first method is a skeleton-based approach that selects a subset of skeleton
depending on the position of the query point : the Witnessed blending. While it does improve
behavior of the blending, it does not provide guarantee on the topology of the resulting shape.
On the opposite, the second approach, based on the use of the gradient of a blending by summa-
tion does provide guarantee in base cases such as parallel line skeletons. This method consists
in analyzing the relationship between the field value of SCALIS and a scale-invariant gradient,
in order to correct the field generated by the sum. Therefore, this can be seen as a field warping.
The second solution is more promising than the skeleton-based approach in term of topology
preservation. However it still needs to be adapted to compact support kernels in order to be
usable in practice with large skeletons. Note that both solutions could be combined in order to
obtain better guarantee of topology.

In the future, we would like to further improve blending of integral surfaces still without
breaking their property of independence from skeleton subdivision : our new goal would be
to provide more control over the sharpness of the blending by setting sharpness parameters
in addition to radius on the skeleton. While this could be done using a two step convolution,
this is not an acceptable solution since it would increase by a factor of two the computational
cost. The alternatives we have in mind are either a modification of the Witnessed blending we
presented, since it provides a way to interpolate between the union of balls and SCALIS, or a
parametrization of the correction of our gradient-based field warping.

What is really still lacking in skeleton-based modeling is the possibility of creating shapes
with sharp edges. While we can create them in some cases thanks to triangles primitives with
varying radius, this is not an intuitive way nor an easy one to define them. A path to investigate
would be a modification of the Warp Curve method of Sugihara [SWS10], the main difficulty
being the replacement of the differential warp which ensures a C2 continuity.

It would be important to improve the efficiency of the visualization which is the main
remaining lock to the use of implicit surfaces. First, existing algorithms could be adapted to
better use the graphics hardware : for instance a rough mesh with topological guarantee could
be computed on the CPU before being tessellated on the GPU (which are more adapted to brute
force algorithms) by taking into account the point of view to reduce the computational time.
In addition to octree-based method, B-Meshes are an interesting alternative to generate a mesh
since they provide quad-meshes of high quality : however the method should be adapted to take
into account skeletons without any constraint.

Skeleton manipulation by user should be improved, for instance it should take into account
hierarchy of skeletons (such as muscles on an arm). Furthermore, using at the same time sketch-
based modeling to create base shapes and then skeleton manipulation to deform them if desired
would be interesting.

There is probably some work to be done on animation of integral surfaces. For instance, it
would be interesting to introduce constraints such as constant volume deformation during ani-
mation or to provide skeleton with special behavior to model muscle. Hierarchal deformation
would also be required : for instance, if a skeleton has been created at the surface of an existing
shape, this property should be preserved during animation.



137

Lastly, we are working on a new application of integral surfaces to animation : the genera-
tion of animated volume hair such as the one present in cartoon animation : implicit surfaces
would provide the way to generate wisps that freely and smoothly merge and divide during ani-
mation. In order to obtain more natural blending behavior, wisps that are orthogonal should not
merge, this could be obtained by parametrizing the blending thanks to the weighted direction
we introduced for detail generation.

As a conclusion, we hope that this work will help making skeleton-based implicit more
popular for both modeling and animation.



138 CHAPTER 6. CONCLUSION



APPENDIX

A

SCALE-INVARIANT DISTANCE

The aim of this appendix is the study of scale-invariant distance to a segment, which we
will also call distance in homothetic space. This "distance" is defined as the Euclidian distance
to a skeleton point scaled by the inverse of the skeleton local weight :

dH(P,Q) =
‖−−→PQ‖
τ(Q)

There are two main reasons behind this study. The first one is that, given a point in space, it is
useful for both SCALIS with Compact Polynomial and Witnessed blending to find the skeleton
points whose individual influence are above a given threshold. Because kernel functions are
decreasing this is equivalent to finding the skeleton point whose homothetic distance are lower
to a given threshold. The second reason is that scale-invariant distance primitives is the limit
case of the Witnessed blending when the length used tend toward zero.

Notation : Assume we have a line segment [AB], with the following parametrization
defined on [0; 1]

Γ(t) = A+ t
−−→
AB,

and a weighting function defined on the same interval

τ(t) = τ0 + ∆τ t.

Then, we have (with P ∈ R
3 a query point) :

‖
−−−→
PΓ(t)‖2 = ‖−−→AB‖2 t2 − 2

−−→
AB.

−→
AP t+ ‖−→AP‖2

We will name −→u the unit vector that define the segment direction.
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Hypothesis : We assume that we only work with segments of positive weight :

∀t ∈ [0; 1], τ(t) > 0

Furthermore, without loss of generality, we consider that ∆τ is positive, thus that the maximal
radius on the segment is in B. This is done to reduce the number of cases to be treated, results
for negative value of ∆τ can easily be obtained by inverting the parametrization of the segment.
This means that the only parameter space that could have an interest is ] − τ0

∆τ
; +∞[ (indeed

we have then τ(t) > 0).

A.1 MINIMAL DISTANCE TO A SEGMENT

We are looking for the minimal distance in scale-invariant space between a point P ∈ R
3

and a weighted segment [AB] :

min
t∈[0;1]

‖
−−−→
Γ(t)P‖
τ(t)

‖
−−−→
Γ(t)P‖ and τ(t) are positive value, thus this is equivalent to studying :

min
t∈[0;1]

‖
−−−→
Γ(t)P‖2

τ(t)2
= min

t∈[0;1]
g(t)

with :

g(t) =
‖−−→AB‖2 t2 − 2

−−→
AB.

−→
AP t+ ‖−→AP‖2

(τ0 + ∆τ t)2
.

Studying g on ] − τ0
∆τ

; +∞[

In order to obtain the minimal value of g the simplest way to proceed is to study the sign
of its derivative and the function behavior at the limits of the interval of definition.

Limits :
lim

t→− τ0
∆τ

g(t) = +∞

lim
t→+∞

g(t) =
‖−−→AB‖2

∆τ
2

> 0

Derivative of g :

g′(t) =
2

(τ0 + ∆τ.t)3

(

t(τ0‖
−−→
AB‖2 + ∆τ

−−→
AB.

−→
AP ) − (τ0

−−→
AB.

−→
AP + ∆τ‖−→AP‖2)

)

Derivative sign on ] − τ

∆τ
; +∞[ :

First, as stated above, the denominator is positive on this interval, thus we only have to
study the sign of the numerator.

g′(t) ≥ 0 ⇔ t(τ0‖
−−→
AB‖2 + ∆τ

−−→
AB.

−→
AP ) ≥ (τ0

−−→
AB.

−→
AP + ∆τ‖−→AP‖2)

Two cases arise in function of the sign of τ0‖
−−→
AB‖2 + ∆τ

−−→
AB.

−→
AP , which is also the sign of :

τ0 + ∆τ

(

−→u .
−→
AP

‖−−→AB‖

)

= τ

(

−→u .
−→
AP

‖−−→AB‖

)
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which is the weight of the projection of the computation point on the segment. Two cases
should be studied depending of its sign.

Case 1 : −→u .
−→
AP

‖−→AB‖
≤ − τ0

∆τ
⇔ τ

(

−→u .
−→
AP

‖−→AB‖

)

≤ 0

In this case, we have :

g′(t) < 0 ⇔ t > τ0
−→
AB.

−→
AP+∆τ‖−→AP‖2

τ0‖
−→
AB‖2+∆τ

−→
AB.

−→
AP

⇔ t >
τ0

−→u .
−→
AP

‖−−→AB‖
+∆τ

‚

‚

‚

‚

−→
AP

‖−−→AB‖

‚

‚

‚

‚

2

τ0+∆τ
−→u .

−→
AP

‖−−→AB‖

From the Pythagore’s Theorem, we have h ∈ R such that :

∥

∥

∥

∥

∥

−→
AP

‖−−→AB‖

∥

∥

∥

∥

∥

2

=

(

−→u .
−→
AP

‖−−→AB‖

)2

+ h2

We obtain :

g′(t) < 0 ⇔ t > −→u .
−→
AP

‖−→AB‖

τ0+∆τ
−→u .

−→
AP

‖−−→AB‖
+∆τ

h2

−→u .
−→
AP

‖−−→AB‖

τ0+∆τ
−→u .

−→
AP

‖−−→AB‖

⇔ t > −→u .
−→
AP

‖−→AB‖
+ ∆τ h2

τ

„

−→u .
−→
AP

‖−−→AB‖

«

We have −→u .
−→
AP

‖−→AB‖
≤ − τ0

∆τ
and τ

(

−→u .
−→
AP

‖−→AB‖

)

≤ 0 and ∆τ h2 > 0 so :

−→u .
−→
AP

‖−−→AB‖
+

∆τh2

τ

(

−→u .
−→
AP

‖−→AB‖

) ≤ − τ0

∆τ

Because, we have t ∈] − τ0
∆τ

; +∞[, the condition for g′(t) < 0 is always satisfied. Thus g is
decreasing which imply

argmin
t∈[0;1]

g(t) = 1

FIGURE A.1 – Homothetic distance to a skeleton of varying radius (from τ = 0 to τ = 1)

with two different weight speed variation, the distance 1 is in red.



142 APPENDIX A. SCALE-INVARIANT DISTANCE

Case 2 : −→u .
−→
AP

‖−→AB‖
> − τ0

∆τ
⇔ τ

(

−→u .
−→
AP

‖−→AB‖

)

> 0

By re-using the reasoning of case 1, we can check that :

g′(t) < 0 ⇔ t < −→u .
−→
AP

‖−−→AB‖
+

h2

τ0 + ∆τ
−→u .

−→
AP

‖−→AB‖

We can easily deduce that the derivative of g is first positive then negative on ] − τ0
∆τ

; +∞[
which show that the minimum of g is obtained for the cancellation of its derivative. Thus we
obtain :

g′(t) = 0 ⇔ t(τ0‖
−−→
AB‖2 + ∆τ

−−→
AB.

−→
AP ) − (τ0

−−→
AB.

−→
AP + ∆τ‖−→AP‖2) = 0,

from which we can deduce :

argmin
t∈]− τ0

∆τ
;+∞[

g(t) =
τ0
−−→
AB.

−→
AP + ∆τ‖−→AP‖2

τ0‖
−−→
AB‖2 + ∆τ

−−→
AB.

−→
AP

Conclusion

To summarize we have :

argmin
t / τ(t)>0

‖
−−−→
Γ(t)P‖
τ(t)

=

{

τ0
−→
AB.

−→
AP+∆τ‖−→AP‖2

τ0‖
−→
AB‖2+∆τ

−→
AB.

−→
AP

if τ0‖
−−→
AB‖2 + ∆τ

−−→
AB.

−→
AP > 0

+∞ otherwise

Having the parameter for which minimal homothetic distance is obtained, the latter can be
easily computed (just note that the parameter’s value should be clipped in order to belong to
the segment skeleton).

A.1.1 Geometric interpretation

It is interesting to have a geometric interpretation of previous result. Assume that P ∈ R
3,

is such that
−−→
AB and

−→
AP are not collinear, we will work in the plane defined by (A,B, P ) and

we will use as abscissa axis the direction −→u =
−→
AB

‖−→AB‖
. In this new frame, we have :

A = (0, 0), B = (L, 0), P = (Px, Py).
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FIGURE A.2 – Geometric interpretation of the closest point on a scale-invariant segment.
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We use a parametrization of the weight τ by curvilinear abscissa : τ(t) = τ0 + t
L∆τ. We can

easily obtain the intersection of the line representing radius (see Figure A.2) with the abscissa
axis :

Z = (−τ0L

∆τ

, 0),

and we can define a local frame around P :

−→
dir =

−→
PZ = (−τ0L

∆τ

− Px,−Py) and
−−−→
ortho = (−Py,

τ0L

∆τ

+ Px)

We can define a line Ω of direction
−−−→
ortho and going through P :

Ω = {P + ω
−−−→
ortho / ω ∈ R}

We look for the intersection point between Ω and the abscissa axis :

(

P + ω
−−−→
ortho

)

y
= 0 ⇔ ω =

−Py
τ0L
∆τ

+ Px

By injecting this expression in the definition of the line Ω we obtain the abscissa of the inter-
section :

t = Px +
∆τPy

2

τ0L+ ∆τPx

which can be re-writed :

t =
τ0(PxL) + ∆τ(Px

2 + Py
2)

τ0L+ ∆τPx

If we renormalize the axis abscissa in order to fall back on the initial parametrization of the
segment, we obtain :

t̃ =
τ0(PxL) + ∆τ(Px

2 + Py
2)

τ0L2 + ∆τ(PxL)
,

which is the expression we previously demonstrate.

A.2 SPHERE CLIPPING OF SEGMENT IN HOMOTHETIC SPACE

Clipping a segment with a sphere in the homothetic space is equivalent to finding the part
of a segment which are included in a sphere of radius R scaled by the local weight defined on
the segment, this is equivalent to finding the following set :

{

t ∈ [0; 1] /
‖
−−−→
Γ(t)P‖
τ(t)

≤ R

}

,

which in turn is equivalent to studying the following second degree inequation :

(‖−−→AB‖2 −R2∆τ
2)t2 − 2(

−−→
AB.

−→
AP +R2∆ττ0)t+ ‖−→AP‖2 −R2

τ
2
0 ≤ 0

This can be easily solved by studying the discriminant ∆ of the equation, however some geo-
metric considerations can be taken into account in order to simplify the implementation, fur-
thermore solving second degree equation can be numerically ill-conditioned depending on the
polynomial coefficients.
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Geometric consideration

For each sign of the discriminant ∆ there is interesting geometrical consideration to take
into account in order to simplify the clipping. In order to study the different cases, we will
introduce new notations. The new parametrization is chosen in order to have τ(0) = 0 :

τ(t) = ∆τt.

We then have
‖
−−−→
Γ(t)P‖2 = h2 + (t− d)2

with d the distance between the query point P and the point of the segment of minimal weight.
The obtained inequation is :

t2(1 −R2∆τ
2) − 2td+ h2 ≤ 0,

its discriminant is :
∆ = d2 − (1 −R2∆τ

2)h2

∆ is negative : In this case, there can be no clipping. The only case that would lead to solutions
is if the coefficient of the second degree of the polynomial a = (1−R2∆τ

2) is negative which
is impossible. Indeed, since we have ∆ < 0 ⇔ d2 < ah2 that would require h2.

∆ is null : In this case there is only one point in space that could lead to an effective clipping.
Indeed, if a is negative then the set of solution is of measure zero (which is useless when it
comes to integration). On the other hand, we have d2 = ah2 which combine to a ≤ 0 means
that the only case it could happen is d = 0 and h = 0.

∆ is positive : In theory, a second degree inequation can have two unconnected interval, ho-
wever, we can show that the solution of interest are a connected set which is important from a
computational view-point. In order to have two disconnected intervals of solution, the coeffi-
cient of degree 2 should be negative, thus (1 −R2∆τ

2) < 0. The roots are :

−d±
√

d2 + (R2∆τ
2 − 1)h2

R2∆τ
2 − 1

We can see that
√

d2 + (R2∆τ
2 − 1)h2 ≥ d that lead to −d+

√
∆ ≥ 0 and −d−

√
∆ ≤ −2d.

Because d is positive we can come to the conclusion that the two roots are of opposed sign.
The only interval of interest it thus :

[

−d+
√

d2 + (R2∆τ
2 − 1)h2

R2∆τ
2 − 1

; +∞
[

indeed, on
]

−∞;
−d+

√

d2 + (R2∆τ
2 − 1)h2

R2∆τ
2 − 1

]

⊂ R
−

we have τ(t) < 0 (our initial hypothesis is that we are only working with positif radius).

To summary for ∆ ≤ 0 there is only one point in space that can lead to an effective clipping
and for ∆ > 0 there can be only a connected set as solution.
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Numerical consideration : Stable clipping

From an implementation view-point, one should be careful with second degree (in)equation
since numerical error can easily appear when the coefficient of the second degree tend toward
zero (and in some other cases). The document "Scilab Is Not Naive" is interesting since it ex-
plain the way solutions should be computed in order to avoid instability which we combine
with knowledge of our problem to minimize the number of required test.

The two roots of the inequation at2 − 2bt + c ≤ 0 when ∆ > 0 are x1 = b−
√

∆
a and

x2 = b−
√

∆
a which are linked by the two following relationships :

x1x2 =
c

a
and x1 + x2 =

2b

a

!"#

!$#

# %

&'% '(

# %

&'%'(

!)#

FIGURE A.3 – When ∆τ ≥ 0, compari-

son of x1 to 1 enable to discard cases for

all sign of a.

which can be used to rewrite x1 in a numerically
more stable way :

x1 =
c

b+
√

∆
.

Let us just remind that we are studying the case
where ∆τ ≥ 0, as it is the one we actually use in
practice (see Appendix B.3.1) we present a way to
minimize the number of required cases to be trea-
ted (indeed, conditional jump can slow done the
computation speed). For both sign of a we should
compare the value x1 to 1 as if it is lower there will
be no clipping (see Figure A.3). In the case where
a is strictly positive, on should also check the sign
of the second root since if it is negative, there is
nothing to clipped. The second root being equal to
c
ax1

and a being positive, it is possible to check x2 sign by looking at the sign of cx1. Note that
this last value is always positive for a ≤ 0, this mean that we could just check the two previous
statements to know if a clipping occurs. Here is the effective clipping code that we are using :

Algorithm 1 Clipping computation

Require: ∆τ ≥ 0
∆ = b2 − ac
if ∆ ≥ 0 then
δ = b+

√
∆

if (δ ≥ 0) & (δ > c) then
x1 = c/δ
l1 = (x1 < 0) ? 0 : x1

l2 = (2b < a(x1 + 1)) ? c/(ax1) : 1
return true

end if
end if
return false
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When we know that a clipping a occur, we still have to find the solution that are inside
[0; 1], which is done by comparing x1 to 0 for all sign of a and by comparing x2 to 1 for a > 0.
Note that this latter condition could be reworked to be independent from the sign of a.

Particular case

Provided that ∆τ 6= 0, there is one point in space at equal distance (in homothetic space)
to all the point of a segment skeleton. In order to demonstrate it, we will study the case of an
half-infinite line with the first point in (0, 0) with a weightτ(0) = 0 and direction (0, 1). So,
we are looking for P (x, y), such that :

∀t ∈ [0,+∞[,K(
‖
−−−→
Γ(t)P‖
τ(t)

) = cste,

the kernel K being a decreasing positive function this is equivalent to :

∀t ∈ [0,+∞[,
‖
−−−→
Γ(t)P‖2

τ(t)2
= cste with ‖

−−−→
Γ(t)P‖2 = (x− t)2 + y2 and τ(t)2 = ∆τ

2t2.

So if ∆τ 6= 0, we have
(x− t)2 + y2 = cste ∆τ

2t2

Yet, two polynomial are equal if and only if all there coefficient are equals, so there is equality
if and only if

cste =
1

∆τ
2

and x = 0 and y = 0,

which mean that there is only one point in space at equal distance to all the skeleton points, this
point being the point of the segment where τ fall to zero.



APPENDIX

B

SCALE-INVARIANT INTEGRAL
PRIMITIVES : ADDITIONAL

DETAILS

In this Appendix, we will give some additional details on Scale-Invariant Integral surfaces :
proof of one of its main property (namely independence to skeleton subdivision), additional
information on efficiency of closed-form gradient evaluation, the way to easily compute cha-
racteristic values of the field function and lastly some practical details for Compact Polynomial

kernel.

B.1 PROOF OF THE ADDITIVITY OF SCALIS IN RELATION TO

THE SKELETON

In order to demonstrate the additivity of the SCALIS field function fSk in relation to the
skeleton, we will use the formulation of equation (3.6) that is independent from any parametri-
zation (with the skeleton Sk defined in eq. (1.1)). We are mainly interested in demonstrating the
additivity of two skeletons of the same dimension (the proof could also be done for skeletons
of different dimension but with less convenient notations).

We just remind the definition of the distribution gSk that help define the integral surface for
a skeleton of constant dimension iSk :

gSk (P ) = δiSk ,SSk
(P )

where δiSk ,SSk
is the distribution that enable to fall back to an integral corresponding to the

dimension of the skeleton. For skeletons of dimension 1, we have
∫

R3 δi,S(P ).f(P ) dP =
∫

I f(Γ(s))ds, where Γ is the curvilinear parametrical representation of the skeleton Sk .
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Given two skeletons Sk 1 and Sk 2 with the same dimension i = iSk 1
= iSk 2

, we will show
that if we have :

∫

R3

gi,SSk 1
∩SSk 2

(P ) dP = 0 (H1)

then fSk 1∪Sk 2
= fSk 1

+ fSk 2
. If i = 3, we would like to point out the hypothesis (H1) is

equivalent to S1 ∩ S2 being a measure-zero set. Because τSk (Q) is the wanted radius around a
skeleton point Q, the logical definition of τSk 1∪Sk 2

and τSk 1∩Sk 2
is :

τSk 1∪Sk 2
(Q) = max(τSk 1

(Q), τSk 2
(Q))

τSk 1∩Sk 2
(Q) = min(τSk 1

(Q), τSk 2
(Q))

We will show that fSk 1
(P ) + fSk 2

(P ) − fSk 1∪Sk 2
(P ) is null under the hypothesis (H1).

First, we can note that SSk 1
\SSk 2

, SSk 2
\SSk 1

and SSk 1
∩SSk 2

form a partition of SSk 1
∪SSk 2

(and that the distributions gi,SSk 1
, gi,SSk 2

and gi,SSk 1
∪SSk 2

are null on R
3 \(SSk 1

∪SSk 2
) ), which

imply :

fSk 1
(P ) + fSk 2

(P ) − fSk 1∪Sk 2
(P ) =

∫

SSk 1
\SSk 2

gi,SSk 1
(Q)

τSk 1
(Q)i

K

(‖P −Q‖
τSk 1

(Q)

)

−
gi,SSk 1

∪SSk 2
(Q)

τSk 1∪Sk 2
(Q)i

K

( ‖P −Q‖
τSk 1∪Sk 2

(Q)

)

dQ

+

∫

SSk 2
\SSk 1

gi,SSk 2
(Q)

τSk 2
(Q)i

K

(‖P −Q‖
τSk 2

(Q)

)

−
gi,SSk 1

∪SSk 2
(Q)

τSk 1∪Sk 2
(Q)i

K

( ‖P −Q‖
τSk 1∪Sk 2

(Q)

)

dQ

+

∫

SSk 1
∩SSk 2

gi,SSk 1
(Q)

τSk 1
(Q)i

K

(‖P −Q‖
τSk 1

(Q)

)

+
gi,SSk 2

(Q)

τSk 2
(Q)i

K

(‖P −Q‖
τSk 2

(Q)

)

−
gi,SSk 1

∪SSk 2
(Q)

τSk 1∪Sk 2
(Q)i

K

( ‖P −Q‖
τSk 1∪Sk 2

(Q)

)

dQ.

Now, for all point Q ∈ SSk 1
\ SSk 2

(and reciprocally), we have gi,SSk 1
(Q) = gi,SSk 1

∪SSk 2
(Q)

and τSk 1
(Q) = τSk 1∪Sk 2

(Q) which imply :

∫

SSk 1
\SSk 2

gi,SSk 1
(Q)

τSk 1
(Q)i

K

(‖P −Q‖
τSk 1

(Q)

)

−
gi,SSk 1

∪SSk 2
(Q)

τSk 1∪Sk 2
(Q)i

K

( ‖P −Q‖
τSk 1∪Sk 2

(Q)

)

dQ = 0.

Thus, we have :

fSk 1
(P ) + fSk 2

(P ) − fSk 1∪Sk 2
(P ) =

∫

SSk 1
∩SSk 2

gi,SSk 1
(Q)

τSk 1
(Q)i

K

(‖P −Q‖
τSk 1

(Q)

)

+
gi,SSk 2

(Q)

τSk 2
(Q)i

K

(‖P −Q‖
τSk 2

(Q)

)

−
gi,SSk 1

∪SSk 2
(Q)

τSk 1∪Sk 2
(Q)i

K

( ‖P −Q‖
τSk 1∪Sk 2

(Q)

)

dQ.

Because all the manipulated quantities are either positives or null, this is equivalent to

|fSk 1
(P ) + fSk 2

(P ) − fSk 1∪Sk 2
(P )| ≤

∫

SSk 1
∩SSk 2

gi,SSk 1
(Q)

τSk 1
(Q)i

K

(‖P −Q‖
τSk 1

(Q)

)

+
gi,SSk 2

(Q)

τSk 2
(Q)i

K

(‖P −Q‖
τSk 2

(Q)

)

+
gi,SSk 1

∪SSk 2
(Q)

τSk 1∪Sk 2
(Q)i

K

( ‖P −Q‖
τSk 1∪Sk 2

(Q)

)

dQ.
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On SSk 1
∩ SSk 2

, we have gi,SSk 1
(Q) = gi,SSk 2

(Q) = gi,SSk 1
∪SSk 2

(Q) = gi,SSk 1
∩SSk 2

(Q),
τSk 1∩Sk 2

(Q) ≤ τSk 1
(Q) ≤ τSk 1∪Sk 2

(Q) and τSk 1∩Sk 2
(Q) ≤ τSk 2

(Q) ≤ τSk 1∪Sk 2
(Q), which

combined to the fact that K is a decreasing function on R
+ gives :

|fSk 1
(P ) + fSk 2

(P ) − fSk 1∪Sk 2
(P )| ≤ 3

∫

SSk 1
∩SSk 2

gi,SSk 1
∩SSk 2

(Q)

τSk 1∩Sk 2
(Q)i

K

( ‖P −Q‖
τSk 1∪Sk 2

(Q)

)

dQ

and thanks to hypothesis (H1), we have :

|fSk 1
(P ) + fSk 2

(P ) − fSk 1∪Sk 2
(P )| ≤ 0

which lead to :

fSk 1
(P ) + fSk 2

(P ) = fSk 1∪Sk 2
(P ) under the condition (H1).

B.2 SPECIAL VALUE COMPUTATION

In [HC12], an extended analysis of convolution is performed containing proof of the lo-
cation of particular direction in a scalar field generated by a segment skeleton. This direction
correspond to maximal and minimal distance between the skeleton and a given iso-value. This
direction are respectively the line (in 2D) going through the middle point of the segment and
orthogonal to it and the line defined by the segment.

1D skeletons :

Here, we are only interested in the special case of segment with infinite length since it is
required for the normalization of SCALIS. First, we will compute the convolution of constant
weight equal to one with a line as a function h of the distance d to the line. Knowing h, we
can deduce by applying integration by substitution the result for both Weighted convolution,
Hornus integral surfaces and Scale-invariant integral surfaces (all with a constant weight τ).
Indeed, we have the following relationship :

– Weighted convolution surfaces :

hC(d) = τh(d) (B.1)

– Hornus integral surfaces :

hH(d) = τh

(

d

τ

)

(B.2)

– Scale-invariant integral surfaces (before normalization) :

hS(d) = h

(

d

τ

)

(B.3)

!

!"#$
%

!"#$%&'$&'&()*#&')*+$*,)&-!(*.

FIGURE B.1 – Simplified computation of

special field values h.

In order to compute h more easily, we can rely
on a half line (see Figure B.1). The distance bet-
ween the computation point and the point of the
line of parameter t is defined by :

d(t)2 = d2 + t2
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For both Inverse and Cauchy kernel we have an infinite domain of integration. For instance for
the Cauchy kernel, we have (with i the degree of the kernel) :

hi(d)

2
=

∫ +∞

0

1
(

t2

σ2 + d2

σ2 + 1
) i

2

dt

which is equivalent to :

hi(d) = 2

(

σ2

d2 + σ2

)
i
2
∫ +∞

0

1
(

t2

d2+σ2 + 1
) i

2

dt = 2

(

σ2

d2 + σ2

)
i
2
[

I0,i(
1

d2 + σ2
, 0, 1)

]+∞

0

We just have to pass the recurrence formula of Table 3.3 to the limit, to obtain the result. First,
we can note that we have :

[

at− b

(at2 − 2bt+ c)
i−2
2

]+∞

0

=

{

a
1
2 if i = 3

0 if i > 3

So, if i > 3, we have

(i− 2)
1

d2 + σ2

[

I0,i(
1

d2 + σ2
, 0, 1)

]+∞

0

+
1

d2 + σ2
(3 − i)

[

I0,i−2(
1

d2 + σ2
, 0, 1)

]+∞

0

= 0

[

I0,i(
1

d2 + σ2
, 0, 1)

]+∞

0

=
i− 3

i− 2

[

I0,i−2(
1

d2 + σ2
, 0, 1)

]+∞

0

By injecting this equality in the expression of hi, we obtain :

hi(d) = 2

(

σ2

d2 + σ2

)
i
2 i− 3

i− 2

[

I0,i−2(
1

d2 + σ2
, 0, 1)

]+∞

0

⇔ hi(d) =

(

σ2

d2 + σ2

)

hi−2(d) =

(

1
(

d
σ

)2
+ 1

)

hi−2(d)

We just have to compute the initial case of the recurrence, hence h2 and h3. For i = 2, we
have :

[

I0,2(
1

d2 + σ2
, 0, 1)

]+∞

0

=
√

d2 + σ2 (arctan(+∞) − arctan(0)) =
√

d2 + σ2
π

2

and for i = 3 :
[

I0,3(
1

d2 + σ2
, 0, 1)

]+∞

0

=
(

d2 + σ2
)

1
2

By injecting this two formula in the expression of hi, we obtain :

h2(d) = π
σ2

(d2 + σ2)
1
2

= πσ
1

√

(

d
σ

)2
+ 1

and

h3(d) = 2
σ3

(d2 + σ2)
= 2σ

1
(

d
σ

)2
+ 1
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We just have to apply equation (B.3) in order to obtain the expression presented in Table 3.5.
The formula for the Inverse kernel can be computed the same way.

The main difference for the Compact Polynomial kernel, is that the interval of integration
is limited and depend on the kernel support. By applying the Pythagorean theorem, we directly
obtain the domain of integration :

[0;
√

σ2 − d2]

Thus, we have :

hi(d) = 2

∫

√
σ2−d2

0

(

1 − d2

σ2
− t2

σ2

)
i
2

dt

which is equivalent to

hi(d) = 2

(

1 − d2

σ2

)
i
2
∫

√
σ2−d2

0

(

1 − (σ2 − d2)t2
)

i
2 dt

hi(d) = 2

(

1 − d2

σ2

)
i
2
[

I0,−i(−(σ2 − d2), 0, 1)
]

√
σ2−d2

0

From this point, the same method as for Cauchy kernel should be applied.

2D skeletons :

The normalization factor to be used with SCALIS depend on the dimension of the skeleton.
For 2D skeleton, one should be able to compute the convolution with weight 1 of an infinite
plane in order to obtain the required normalization factor :

hi,2D(d) =

∫

R2

K(
√

d2 + x2 + y2) dxdy

The simplest way to compute this function is to express the integration in polar coordinates :

hi,2D(d) =

∫

[0;+∞]×[0;2π]
K(
√

d2 + r2) r drdθ

⇔ hi,2D(d) = 2π

∫

[0;+∞]
K(
√

d2 + r2) r dr

For Inverse, we obtain :

hi,2D(d) = 2π

∫ +∞

0

r
(

d2+r2

σ2

) i
2

dr

⇔ hi,2D(d) = 2π






− σ2

i− 2

1
(

d2+r2

σ2

)
i−2
2







+∞

0

⇔ hi,2D(d) = 2π
σ2

i− 2

1
(

d
σ

)i−2
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For Cauchy kernel, we have :

hi,2D(d) = 2π

∫ +∞

0

r
(

1 + d2+r2

σ2

) i
2

dr

⇔ hi,2D(d) = 2π

[

− σ2

k − 2

1

(1 + d2+r2

σ2 )
i−2
2

]+∞

0

⇔ hi,2D(d) = 2π
σ2

i− 2

1

(1 +
(

d
σ

)2
)

i−2
2

And finally, for Compact Polynomial kernel, we get :

hi,2D(d) = 2π

∫

√
σ2−d2

0
r

(

1 − d2 + r2

σ2

)
i
2

dr

⇔ hi,2D(d) = 2π

[

−σ2

i+ 2

(

1 − d2 + r2

σ2

)
i+2
2

]

√
σ2−d2

0

⇔ hi,2D(d) = 2π
σ2

i+ 2

(

1 − d2

σ2

)
i+2
2

Remark :

It is interesting to note that the field of infinite skeleton (line and plane) of constant weight
can be expressed, for all classic kernel, as a kernel of the same family which degree depend on
the dimension of the skeleton.

B.3 SCALIS SEGMENT PRIMITIVES WITH LINEAR RADIUS :
ADDITIONAL DETAILS

B.3.1 Compact Polynomial kernel : Better formulation for computation

With Compact Polynomial kernel, directly applying recurrence relationship to formula pre-
sented in 3.1 lead to a numerically ill-conditioned expression which can lead to numerical
instability when ∆τ tend toward zero.

A first solution to the problem would be to introduce an approximation scheme : the factor
ρ(t) = 1

(∆τ t+1)j+1 which causes all the trouble could be approximated by a polynomial func-
tion when ∆τ tend toward zero. It is possible to either use a finite expansion in 0 or an Hermite
interpolation with a spline of degree 3 of (ρ(0), ρ′(0), ρ(l), ρ′(l)). By doing polynomial ap-
proximation, we fall back on known primitives (see Table 3.3), however either the accuracy is
impaired or the computation cost increased (for polynomial of high degree).

We present in the following how to re-write the expression in a way that is both numeri-
cally stable, has great accuracy and does not cost more to evaluate. The increase in stability is
particularly useful if one want to perform computation on a GPU which use single precision
floating point.
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Reformulating the integral :

Wether the segment is parametrized from maximal radius to minimal radius or the inverse
is important for stability : we discover empirically that ∆τ should be positive to provide better
stability, we choose our parametrization accordingly.

The factor 1
(∆τ l1,2+τ0)j+1 that appear in the closed-form formula jeopardize stability if

∆τ l1,2 +τ0 is to small. In order to remove this problem we factorize τ0 from denominator and
bring it in the inside of the power i

2 of the numerator leading to the formula :

Rg,i(P ) =
‖−−→AB‖

τ0

∫ l2

l1

(

(
(

∆τ

τ0

)2
− l2

τ
2
0
)t2 − 2(−∆τ

τ0
− uv(P )

τ
2
0

)t+ 1 − d(P )2

τ
2
0

) i
2

(∆τ

τ0
t+ 1)i+1

dt.

This combined with the fact that ∆τ is positive ensure that 1
(∆τ l1,2+τ0)j+1 is never smaller

than 1. Because the inverse of the coefficient ∆τ

τ0
of the denominator appear in the closed-form

formula, we apply a change of variable : t 7→ τ0

‖−→AB‖
t̃ which give the following formula :

Rg,i(P ) =

∫ l̃2

l̃1

(

(∆τ
2
u − 1

σ2 )t̃2 − 2(−∆τu − 1
σ2

−→u .−−→P0P
τ
2
0

)t̃+ 1 − 1
σ2

‖−−→P0P‖2

τ
2
0

) i
2

(∆τu t̃+ 1)i+1
dt̃.

with ∆τu the variation of radius per unit of length. The last step in the reformulation is the use
of a "local segment" which will simplify the expression by having zero as the first bound of
the integral : after computing the clipping in the classical way, we compute the new formula
through Pythagorean theorem in order to minimize the number of required operations. Here is
what the new code to evaluate both f and its gradient looks like :

Algorithm 2 SCALIS with Compact Polynomial kernel

Require: ∆τu ≥ 0

uv = (−→u |−−→P0P )

d2 = ‖−−→P0P‖2

coeff [3] = {τ2
0 − 1

σ2 d2, −∆τu τ0 − 1
σ2 uv, ∆τ

2
u − 1

σ2 }
if HomotheticClipping(coeff , l1, l2)) then
ωm = 1.0/(τ0 + l1 ∆τu)
coeff [0] = 1.0 − 1

σ2 (l1(l1 − 2uv) + d2)ω2
m

coeff [1] = −∆τu − 1
σ2 (uv − l1)ωm

G_seg_FGradF_i( (l2 − l1)ωm, ∆τu, coeff , F0F1F2)
f = N1D F0F1F2[0]
F0F1F2[1]∗ = ωm
∇f = ( i

σ2N1Dωm)((F0F1F2[2] + l1 F0F1F2[1])−→u − F0F1F2[1]
−−→
P0P )

else
f = 0
∇f =

−→
0

end if
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Simplifying the obtained expression :

By applying the recurrence formula of Table 3.4, we arrive on an expression with division
by ∆τu which can become problematic when too close to zero. We will see how to remove
all these divisions (note that we apply our simplification on the expression obtained through
maple optimization).

The first kind of problematic expression is :

aj

(

...

(

a1

(

a0

(

1 − 1

(∆τu l + 1)k

)

1

∆τu
− l

(∆τu l + 1)k+1

)

1

∆τu
− ....

)

1

∆τu
− ...

)

(B.4)
with k belonging to [1; i] and k + j in [k; i]. First, we have :

1 − 1

(∆τu l + 1)k
=

(∆τu l + 1)k − 1

(∆τu l + 1)k

Using the following equality :

(∆τu l + 1)k − 1 = (∆τu l)

k−1
∑

n=0

(∆τu l + 1)n

we obtain :

1 − 1

(∆τu l + 1)k
= (∆τu l)

k
∑

n=1

1

(∆τu l + 1)n

This provide a way to simplify the division by ∆τu. By applying recursively this method in the
expression (B.4), we arrive on the following kind of expression :

(

l

∆τu l + 1

)k j
∑

n=0

bn
(∆τu l + 1)n

However, there is one case where this simplification can’t be applied. This is due to the
presence of a logarithm :

ai

(

...

(

a1

(

a0

(

ln(∆τu l + 1)
1

∆τu
− l

∆τu l + 1

)

1

∆τu
− l2

(∆τu l + 1)2

)

1

∆τu
− ...

)

1

∆τu
− ...

)

(B.5)
In order to simplify the division by ∆τu, we should express the logarithm as a series. While
we could use the classic finite expansion of the logarithm ln(1 + x) around 1, this series does
not converge outside [−1; 1]. Instead, we use the following series for the logarithm :

ln(x+ 1) = 2

+∞
∑

k=0

1

2k + 1

(

x

x+ 2

)2k+1

this series converge for all value of x in [−1; +∞] and has a better convergence rate on [−1; 1]
that the classic finite expansion.
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Here is the first step of the simplification :

I = a0

(

2
1

∆τu

+∞
∑

k=0

1

2k + 1

(

∆τu l

∆τu l + 2

)2k+1

− l

∆τu l + 1

)

1

∆τu

= a0

(

2
l

∆τu l + 2

+∞
∑

k=0

1

2k + 1

(

∆τu l

∆τu l + 2

)2k

− l

∆τu l + 1

)

1

∆τu

= a0
l

∆τu l + 2

(

2

+∞
∑

k=0

1

2k + 1

(

∆τu l

∆τu l + 2

)2k

− ∆τu l + 2

∆τu l + 1

)

1

∆τu

= a0
l

∆τu l + 2

(

2
+∞
∑

k=1

1

2k + 1

(

∆τu l

∆τu l + 2

)2k

+ 2 − ∆τu l + 2

∆τu l + 1

)

1

∆τu

= a0
l

∆τu l + 2

(

2
+∞
∑

k=1

1

2k + 1

(

∆τu l

∆τu l + 2

)2k

+
2(∆τu l + 1) − (∆τu l + 2)

∆τu l + 1

)

1

∆τu

= a0
l

∆τu l + 2

(

2

+∞
∑

k=0

1

2k + 3

(

∆τu l

∆τu l + 2

)2k+2

+
∆τu l

∆τu l + 1

)

1

∆τu

= a0
l

∆τu l + 2

(

2
∆τu l

∆τu l + 2

+∞
∑

k=0

1

2k + 3

(

∆τu l

∆τu l + 2

)2k+1

+
∆τu l

∆τu l + 1

)

1

∆τu

= a0

(

l

∆τu l + 2

)2
(

2

+∞
∑

k=0

1

2k + 3

(

∆τu l

∆τu l + 2

)2k+1

+
∆τu l + 2

∆τu l + 1

)

In addition to removing the division by ∆τu, this result in the cancellation of the first term of
the series. By applying recursively this kind of simplification to the expression B.5, we arrive
to the following formula (for degree i even) :

(

l

∆τu l + 2

)i+1
(

2
+∞
∑

k=0

1

2k + i+ 1

(

∆τu l

∆τu l + 2

)2k

+
1

i

(∆τu l + 2)
i−2
2

(∆τu l + 1)i
polyi−2(∆τu l)

)

where polyi−2(∆τu l) is a polynomial of degree i− 2 in ∆τu l. Note that this simplification is
made possible by the particular definition of the coefficients {aj}. There is no more divisions
by ∆τu and the first terms of the series that represent the logarithm has been canceled.

In practice, for kernel of degree 6, we truncate the new series at the rank 7 and evaluate
it through Horner’s method. This is equivalent to having use a truncation at rank 10 of the
logarithm series minus possible massive cancellation. The resulting evaluation code uses 70
multiplications, 43 additions and subtractions, 3 divisions and no special functions. For this
reason, in addition to being more stable than the naive computation code, it is also slightly
faster.
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B.4 SKELETON-BASED DUAL-MARCHING CUBES

In order to mesh objects with large difference of prescribed radii, we use a slightly modified
version of the dual-contouring algorithm [JLSW02].

We proceed in two main stages : firstly, the octree is subdivided in order to retrieve all the
unconnected part of the surface. In order to do so, we subdivide the octree in order to have
the length of cell edges lower or equal to the primitive radius in their bounding-boxes (we use
several bounding-boxes per primitive to handle variation of radius as well as long non axis
aligned primitives). The second step is a subdivision according to a smaller value (proportional
to the radius) which aims at obtaining a good looking surface : we subdivide only the cubes
from which at least one edge is crossed by the iso-surface until the edge length is smaller than
the given threshold.

FIGURE B.2 – If all the edges of a cell do not cross the surface (no change of sign between

the corner), then this cell cannot create a vertex, which can be problematic. Furthermore, in

the second step of our subdivision method, only the cells where the surface is detected are

subdivided which would lead us to ignore a part of the surface in the presented case.

However, this can introduce problematic cases (see Figure B.2). In order to prevent them,
we introduce an additional correction step : we propagate cell-subdivision to neighbor when
red-white-red or white-red-white edges are detected.

One of the advantages of such a meshing method is that it easily provide incremental sur-
faces improvement (the precision is not the same at rest and during user manipulation).

There is still a lot of possible improvements from better data-structure to the use of ad-
ditional subdivision criterion (in order to provide better reconstruction of blending or better
topological guarantee). Furthermore, in the context of dual meshing, several methods have
been presented for the reconstruction of sharp edges.



APPENDIX

C

GRADIENT-BASED SCALIS :
ADDITIONAL DETAILS

In this Appendix, we present additional information on gradient-based field warping of
Chapter 4. We remind that the graph G is defined as :

{(x, g(x)), x ∈ R}

with g(x) = (i− 1)x
i

i−1 , i being the degree of the Inverse kernel.

C.1 PROJECTION ON CLOSEST POINT

The projected point of P = (fS , ‖∇fH‖) onto closest point of G is defined by :

Q = argmin
x∈R+

∥

∥

∥

∥

∥

(

fS
‖∇fH‖

)

−
(

x

(i− 1)x
i

i−1

)∥

∥

∥

∥

∥

2

This is equivalent to find the cancellation of the derivative :
(

(fS − x)2 + (‖∇fH‖ − (i− 1)x
i

i−1 )2
)′

= 0

Since x is positive, we will look for X = x
1

i−1 , which lead to :
(

(fS −Xi−1)2 + (‖∇fH‖ − (i− 1)Xi)2
)′

= 0

⇔ 2(−(i− 1)Xi−2)(fS −Xi−1) + 2(−(i− 1)iXi−1)(‖∇fH‖ − (i− 1)Xi) = 0

⇔ 2(i− 1)Xi−2
(

Xi−1 − fS + iX2((i− 1)Xi − ‖∇fH‖)
)

= 0

So, we obtain a polynomial equation in X :

i(i− 1)Xi+2 +Xi−1 − i‖∇fH‖X2 − fS = 0

which can be solved analytically for i up to 3.
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C.2 PROJECTION AN ARBITRARY DIRECTION

C.2.1 Closed-form solution

The intersection between G and the line :

D = {(x,− tan(ψ)x+ ‖∇fH‖ + tan(ψ)fS) / x ∈ R}.
verify :

(i− 1)x
i

i−1 = − tan(ψ)x+ (‖∇fH‖ + tan(ψ)fS)

which can be rewritten, by using X = x
1

i−1 , as :

(i− 1)Xi + tan(ψ)Xi−1 − (‖∇fH‖ + tan(ψ)fS) = 0

This is a polynomial equation, therefore it can be solved analytically for degree i lower or equal
to 5. It seems that this equation has only one positive root (we do not have proved it), which
we will note r+. Then, the abscissa of the projected point is :

f = i−1
√
r+.

C.2.2 Approximation scheme
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FIGURE C.1 – Triangle formed by

the point P and vertical and ho-

rizontal projection, as well as the

line D.

We want to find the intersection between the line D
and the line defined by horizontal projected point QH
and vertical projected point QV .

In order to find it, we just have to do some trigono-
metry, let lH being the distance between P and the ho-
rizontal projection, and lV being the distance between
P and the vertical projection (see Figure C.1, all other
following notations refer to this figure). In this case we
will defined the abscissa of the intersection as :

fψ = fS − c

By applying the law of sines in two different triangles,
we obtain

lH
sin(π − (α+ ψ))

=
a

sin(α)

and
a =

a

sin(π2 )
=

c

sin(π − (π2 + ψ))

which implies :

c = lH sin(α)
sin(π2 − ψ)

sin(π − (α+ ψ))
= lH sin(α)

cos(ψ)

sin(α+ ψ)
.

Using the fact that sin(α+ ψ) = sin(α) cos(ψ) + cos(α) sin(ψ), we obtain :

c = lH
tan(α)

tan(α) + tan(ψ)
,

and by taking into account that tan(α) = lV
lH

, we get :

c =
lH lV

lV + lH tan(ψ)
.
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C.3 PARALLEL SKELETON ANALYSIS

In order to obtain the graph of figure 4.28, one have to find the relationship between fS
and ‖∇fH‖ in the case of point lying at equal distance from two parallel infinite line skeletons
(presented in figure 4.27). In this case the field value depend from two values : the distance d
between the line and the distance h to the plane containing the line. Since the contribution of
each line simply sum up, we directly obtained the field value from Equation 4.2 :

fS =
2

((d2)2 + h2)
i−1
2

.

Since gradient of the line skeletons are not collinear, we have to use their unit direction −→u in
addition to Equation 4.3 :

−→u =
1

√

d
2

2
+ h2

(

±d
2
h

)

.

By taking into account that the first coordinate of gradients cancel each other, we obtain :

‖∇fH‖ = (i− 1)
2h

((d2
2
+ h2))

i+1
2

.

In order to obtain the desired graph, we should express ‖∇fH‖ in function of fS . First, we
have to express h in function of fS :

h =

√

(

2

fS

) 2
i−1

−
(

d

2

)2

.

By injecting this expression in the gradient formula, we obtain :

‖∇fH‖ = 2(i− 1)

√

(

2

fS

) 2
i−1

−
(

d

2

)2(fS
2

)
i+1
i−1

So the graphs we are looking for are :

{Md = (x,md(x)), x ∈ R}

with md(x) = 2(i− 1)

√

(

2
x

)
2

i−1 −
(

d
2

)2 (x
2

)
i+1
i−1 .

We can easily check that these graphs have no point in common for distinct value of d.
If it was the case, we would have a x value such that md1(x) = md2(x), by computing

2

√

(

2
x

)
2

i−1 −
(

1
2

(

2
x

)
i+1
i−1 mdi

(x)
)2

we directly arrive to d1 = d2 which imply that two dis-

tinct graphs have no point in common.
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