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Abstract

The advent of many-core platforms is nowadays challenging our capabilities for effi-
cient and predictable design. To meet this challenge, designers need methods and tools
for guaranteeing essential properties and determining tradeoffs between performance and
efficient resource management.

In the process of designing a mixed software/hardware system, functional constraints
and also extra-functional specifications should be taken into account as an essential part
for the design of embedded systems. The impact of design choices on the overall behavior
of the system should also be analyzed. This implies a deep understanding of the interaction
between application software and the underlying execution platform.

We present a rigorous model-based design flow for building parallel applications run-
ning on top of many-core platforms. The flow is based on the BIP - Behavior, Inter-
action, Priority - component framework and its associated toolbox. The method allows
generation of a correct-by-construction mixed hardware/software system model for many-
core platforms from an application software and a mapping. It is based on source-to-
source correct-by-construction transformations of BIP models. It provides full support for
modeling application software and validation of its functional correctness, modeling and
performance analysis of system-level models, code generation and deployment on target
many-core platforms.

Our design flow is illustrated through the modeling and deployment of various software
applications on two different hardware platforms; MPARM and platform P2012. MPARM
is a virtual ARM-based multi-cluster manycore platform, configured by the number of clus-
ters, the number of ARM cores per cluster, and their interconnections. On MPARM, the
software applications considered are the Cholesky factorization, the MPEG-2 decoding,
the MJPEG decoding, the Fast Fourier Transform and the Demosaicing algorithm. Plat-
form 2012 (P2012) is a power efficient manycore computing fabric, which is highly modular
and based on multiple clusters capable of aggressive fine-grained power management. As
a case study on P2012, we used the HMAX algorithm.

Experimental results show the merits of the design flow, notably performance analysis
as well as correct-by-construction system level modeling, code generation and efficient
deployment.
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Résumé

L’objectif du travail présenté dans cette thèse est de répondre à un verrou fondamen-
tal, qui est “comment programmer d’une manière rigoureuse et efficace des applications
embarquées sur des plateformes multi-coeurs?”. Cette problématique pose plusieurs défis
: 1) le développement dune approche rigoureuse basée sur les modèles pour pouvoir garan-
tir la correction; 2) le “mariage ”entre modèle physique et modèle de calcul, c’est-à-dire,
l’intégration du fonctionnel et non-fonctionnel; 3) l’adaptabilité. Pour s’attaquer à ces
défis, nous avons développé un flot de conception rigoureux autour du langage BIP. Ce
flot de conception permet l’exploration de l’espace de conception, le traitement à diffèrent
niveaux d’abstraction à la fois pour la plate-forme et l’application, la génération du code
et le déploiement sur des plates-formes multi-cœurs. La méthode utilisée s’appuie sur des
transformations source-vers-source des modèles BIP. Ces transformations sont correctes-
par-construction.

Nous illustrons ce flot de conception avec la modélisation et le déploiement de plusieurs
applications sur deux plates-formes différentes. La première plate-forme considérée est
MPARM, une plate-forme virtuelle, basée sur des processeurs ARM et structurée avec des
clusters, o chacun contient plusieurs cœurs. Pour cette plate-forme, nous avons considéré
les applications suivantes: la factorisation de Cholesky, le décodage MPEG-2, le décodage
MJPEG, la Transformée de Fourier Rapide et un algorithme de demosaicing. La seconde
plate-forme est P2012, une plate-forme multi-cœur, basée sur plusieurs clusters capable
d’une gestion énergétique efficace. L’application considérée sur P2012 est l’algorithme
HMAX.

Les résultats expérimentaux montrent l’intérêt de notre flot de conception, notamment
l’analyse des performances ainsi que la modélisation au niveau du système, la génération
de code et le déploiement.
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- Chapter 1 -

Introduction - From Programs to Systems

General Context Embedded systems have become essential part of our daily lives. In
contrast to general purpose computer systems, embedded systems integrate software and
hardware, and are specifically designed to perform particular predefined tasks, which are
often critical. Usually, they are not standalone devices, but they constitute the comput-
erized part of a larger device. Mainly, we divide embedded systems in two categories:
the reactive systems that continuously interact with the environment and the transforma-
tional systems that compute a function and terminate. Embedded systems appeared in
the market in the early 1960s and since then they have become ubiquitous. Applications
can be found in a tremendous variety of domains covering medical equipment, telecommu-
nications, military applications, household appliances and consumer electronics, wireless
sensor networks, transportation and avionics. The complexity of embedded systems varies
from single micro-controller chip to multiple units and networks incorporated inside a
larger system.

Efficiency of embedded systems is of paramount importance. To construct efficient
systems optimizations are eligible upon design for energy cost, code size, execution time,
weight and dimension, performance and reliability for both the software and the hardware
part.

Embedded systems require a synergistic function between software and hardware de-
sign and development. The software is specific and often executed in a repeated fashion.
However, for reusability reasons software application are often platform independent and
immaterial. Conceptually, it is developed based on a high-level model which is decom-
posed into multiple components for the sake of complexity. A component-based model is
normally well structured and is ideally characterized by formal semantics.

A software application is designed to execute on a logical time rather than on a real-
time axis. Specifically, abstractions are considered about the behavior such as concurrent
execution, instantaneous computation and communication steps, atomicity of actions and
zero delays. The above abstractions should consider the functional constraints imposed
by the program specifications such as deadlocks, throughput and jitter. Along with the
software design, the hardware design should also be considered as a part of an efficient
embedded system design. Small homogeneous processing units connected by a Network-
on-Chip tend to succeed the complex superscalar architectures nowadays. The number
of cores to be integrated in a single chip is expected to rapidly increase in the coming
years, moving from multicore to manycore architectures. This leads to investigate new
approaches for embedded systems design. Many-core computing architectures require
correct design and programming methodologies which exploit parallelism, thus increasing
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16 Chapter 1. Introduction - From Programs to Systems

the performance, the scalability and the flexibility of the system. A correct design should
also include successful resource allocation and run-time power management. It should also
exploit the innovative capabilities of dynamic extension and reconfiguration, at run-time,
of the architecture template depending on a possible variable workload and an interactive
environment.

In the process of designing a mixed software/hardware system, functional constraints
and also extra-functional specifications should also be taken into account as an essen-
tial part for the design of embedded systems. The extra-functional specifications concern
the use of resources of the execution platform such as time, shared memory, semaphores,
queues, energy, distribution and communication of tasks and scheduling policies. Interact-
ing with the platform is real-time. Therefore, it becomes non-trivial the task of evaluating
if a software/hardware system preserves the timing properties of its application software.
It requires analysis of the impact of design choices on the overall behavior of the system. It
also implies a deep understanding of the interaction between application software and the
underlying execution platform. We currently lack approaches for modeling mixed hard-
ware/software systems. There are no rigorous techniques for deriving global models of a
given system from models of its application software and its execution platform.

System Level Design System design is the process leading to a mixed software/hardware
system meeting given specifications. It involves the development of application software
taking into account features of an execution platform. The latter is defined by its archi-
tecture involving a set of processors equipped with hardware-dependent software such as
operating systems as well as primitives for coordination of the computation and interac-
tion with the external environment. A simplified view of a system design is illustrated in
Figure 1.1.

Program

SW

HW

Specifications

Figure 1.1: Simplified View of a System Design

Design approaches are developed based on the experience and expertise of the design
teams. They tend to re-use, extend and improve existing solutions proven efficient and
robust. This favors increased productivity since design methodologies are re-used. Re-
usability of components is an important issue. Systems are built by reusing and assembling
components that are simpler sub-systems. This is the only way to master complexity and
to ensure correctness of the overall design, while maintaining or increasing productivity.
However, a design methodology may turn to be counter-productive and result to low
adaptivity upon new system requirements. Better solutions may be a priori excluded
because they do not fit the designers know-how. The main goal of a system design, albeit
the heterogeneity of the assembling components and the difficulties upon integration of
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different technologies, is the efficient prediction of the behavior of a software application
running on an execution platform.

A system design flow consists of steps starting from specifications and leading to an
implementation on a given execution platform. It involves the use of methods and tools
for progressively deriving the implementation by making adequate design choices.

We consider that a system design flow must meet the following essential requirements:

Functionality and Performance. The design flow must allow the satisfaction of both func-
tional and extra-functional properties. This means that functional properties such as
deadlock freedom, jitter, throughput and resources such as memory, time and energy are
first class concepts encompassed by formal models. Moreover, it should be possible to
analyze and evaluate efficiency in using resources, which conform with the functional re-
quirements, as early as possible along the design flow. Lack of adequate semantic models
does not allow consistency checking for timing requirements, or meaningful composition
of features.

Correctness. This means that the designed system meets its specifications. Ensuring
correctness requires that the design flow relies on models with well-defined semantics. Se-
mantics should be defined at both the execution and the interaction level of the models.
The models should consistently encompass system description at different levels of ab-
straction from application software to its implementation. Correctness can be achieved by
application of verification techniques. It is desirable that if some specifications are met at
some step of the design flow, they are preserved in all the subsequent steps. This can be
achieved by transforming the application software model to include the important physical
aspects of the target platform.

Heterogeneity and Adaptivity. Heterogeneity in systems design can be supported by de-
veloping high level domain-specific languages ease of expression. System model semantics
should encompass heterogeneity in computation, interaction and abstraction level to facili-
tate modeling mixed hardware/software systems. This should be accompanied by reusabil-
ity allowing the definition of libraries of components to be reused and the development of
component-based solutions. The design flow should not enforce any particular program-
ming or execution model. Specific programming models or implementation principles may
a priori exclude efficient solutions and parallelism. For instance, programming multimedia
applications in plain C may lead to designs obscuring the inherent functional parallelism
and involving built-in scheduling mechanisms that are not optimal. It is essential that
designers use adequate programming models. The above characteristics along with a tool
integration for programming, validation and code generation perceive a productive design
flow.

We call rigorous a design flow which allows guaranteeing essential properties of the
specifications. Most of the rigorous design flows privilege a unique programming model
together with an associated compilation chain adapted for a given execution model. For ex-
ample, synchronous system design relies on synchronous programming models and usually
targets hardware or sequential implementations on single processors [Hal93]. Alternatively,
real-time programming based on scheduling theory for periodic tasks, targets dedicated
real-time multitasking platforms [BW01].

A rigorous design flow should be characterized by the following:

• it is model-based, that is, both application software and mixed hardware/ software
system descriptions are modeled by using a single, semantic framework. As stated
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in [BBB+11], this allows maintaining the coherency along with the flow by proving
various transformations used to move from one description to another while preserv-
ing essential properties. This means that the semantic model is expressive enough
to directly encompass various types of component heterogeneity arising along the
design flow [HS06].

• it should be component-based, that is, it should provide primitives for building com-
posite components as the composition of simpler components. The use of compo-
nents reduces development time by favoring component reuse and provides support
for incremental analysis and design, as introduced in [BBNS08, BBNS09, BBL+10].

• it should be correct-by-construction, that is, all design flow steps concerning the
synthesis of the final model should be proven to guarantee the preservation of all
properties of the initial input model.

• it should be tool-supported, that is, all steps in the design flow should be realized
automatically by tools ensuring significant productivity gains.

1.1 System Design Flow

We propose a system construction method that is both rigorous and allows fine-grain
analysis of system dynamics. It is rigorous because it is based on formal models described
in BIP [BBS06], with precise semantics that can be analyzed by using formal techniques.
A system model in BIP is derived by progressively integrating constraints induced on
an application software by the underlying hardware architecture. In contrast to ad hoc
modeling approaches, the system model is obtained, in a compositional and incremen-
tal manner, from BIP models of the application software and respectively, the hardware
architecture, by application of source-to-source transformations that are proven correct-
by-construction. The system model describes the behavior of the mixed hardware/software
system and can be simulated and formally verified using the BIP toolset [bip]. The method
for the construction of mixed hardware/software system models is illustrated in Figure 1.2.
It takes as inputs: (i) the application software model, the hardware architecture and (iii)
the mapping between them. It proceeds in four main steps.

The first step is the generation of the application software model in BIP. This is
achieved by an automatic translation of the input application software model which should
be described in a process network with a well defined structure. The translation preserves
intact the behavior and the characteristics of the initial application software.

The second step is the synthesis of the hardware architecture model in BIP. A library
of BIP atomic components that characterize manycore architectures is defined, including
models for hardware components (e.g., processor, memory) and for hardware-dependent
software components (e.g., FIFO channel read/write, bus controllers, schedulers). Com-
bining the hardware architecture specifications and the suitable BIP library components,
we synthesize the hardware architecture model in BIP. The model is parametrized and al-
lows flexible integration of specific target architecture features, such as arbitration policy,
latency for buses and memories, scheduling policy etc.

The third step is the construction of the mixed software/hardware system model. This
model represents the behavior of the application software running on the hardware archi-
tecture according to the mapping, but without taking into account execution times for
the software actions. This step consists in progressively enriching the application software
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model by doing: (1) Application of a sequence of source-to-source transformations to syn-
thesize hardware dependent software routines implementing communication by using the
hardware components. (2) Integration of hardware components used in the system model.
The transformations are proved correct-by-construction, that is, they preserve functional
properties of the application software.

In the final step, the (bounds for) execution times are obtained by analysis or simulation
of the run of every software process in isolation on the platform. These bounds are injected
into the system model and lead to the calibrated system model. This final model allows
accurate estimation through simulation of real-time characteristics (response times, delays,
latencies, throughput, etc.) and indicators regarding resource usage (bus conflicts, memory
conflicts, etc.).

The above design flow sticks to the general principles of rigorous design introduced in
the previous section. Namely, it is model-based, component-based, correct-by-construction
and tool-supported.

����
����
����
����Platform

Hardware

BIP
System Model
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Application
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Figure 1.2: System Model Design Flow

1.2 Related Work in System Design

To the best of our knowledge, the BIP design flow is unique as it uses a single semantic
framework to support application modeling, validation of functional correctness, perfor-
mance analysis on system models and code generation for manycore platforms. Building
faithful system models is mandatory for validation and performance analysis of concurrent
software running on manycore platforms.

Synchronous languages [BB91] such as Esterel [BG92], Lustre [HCRP91] and Sig-
nal [BBGLG85] offer strong formal semantics that facilitate by construction verification
and code generation, but they have remained limited to safety-critical domains such as
aviation and automotive.

Simulink [Mat] and Stateflow [Sta] are synchronous formalisms that are mainly used
to generate quickly an input for an FPGA prototype implementation through Verilog and
VHDL.
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Many of the frameworks, which we present below, follow the Y-chart design princi-
ple [BCG+97, KDVvdW97] as we do in our design flow. Namely, these are DOL, SPADE,
Sesame, Polis, Metropolis, Artemis, Octopus and CoFluent. This means that they decou-
ple application from architecture by recognizing two distinct models for them. According
to the Y-chart approach, an application model -derived from a target application domain-
describes the functional behavior of an application in an architecture-independent manner.
The principle is illustrated in Figure 1.3.

Program HW

SW

HW

Figure 1.3: Software Application - Hardware Platform mapping of a System Design

DOL [TBHH07] introduces a framework for specifying and mapping parallel applica-
tions onto heterogeneous multiprocessor platforms. It defines abstraction models for the
application and architecture, as well as a format for the mapping specification. They
integrate an analytic performance analysis strategy to replace modeling and analyzing
a multiprocessor system using other methods. The system level performance analysis is
based on formal analysis techniques using Real Time Calculus [TCN02].

Polis [BCG+97] is considered as a pioneer method for platform-dependent design as it
set the separation of concern principle for architecture and function, communication, and
computation. Polis supports one model of computation described in finite-state machines
(FSM). It is focused on automotive application domain supporting architecture based on a
single microprocessor and peripherals. The supported tools were simulation, architectural
exploration with accurate and fast code execution time evaluation using automatically
generated from the FSMs model. However, Polis is considered limited both the model of
computation and in the target architecture.

Metropolis [BLP+02, BWH+03] is a framework which follows the mapping of function
to architecture paradigm in the Y-chart organization. Architectures are represented as
computation and communication services. The association of functionality to architec-
tural services allow Metropolis to evaluate characteristics (such as latency, throughput,
power, and energy) of an implementation of a particular functionality with a particular
platform instance. Metropolis has back-end tool connection with a SystemC simulator and
to verification of LTL and LOC constraints. MetroII [Aea07] is a framework extending
Metropolis to import heterogeneous IPs, to facilitates performance analysis and design
space exploration.

Artemis workbench [Pim08, PHL+01] begins with a Simulink representation of the
functionality of the design that is converted in Kahn Process Networks (KPN). KPNs are
also used to capture the architecture based on a set of virtual processors. Eventually,
Artemis generates VHDL to obtain an FPGA implementation.

Ptolemy [EJL+03, Lee09] develops another approach analyzing the behavior of inter-
faces to find whether two models can be composed in a semantic framework that support
this form of heterogeneity. In fact, interfaces are finite-state machines used for hetero-
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geneous modeling. Ptolemy uses Java as an imperative language and is more embedded
software oriented rather than dealing with hardware architectures.

CoFluent Studio [CoF] is developed for system architecting. It supports the MCSE
methodology (Méthodologie de Conception des Systémes Electroniques). It follows the
mapping of function to architecture in the Y-chart paradigm. The approach is dual:
one for the software developer to satisfy the functional specifications and one for the
architecture designer. Simulation and platform prototyping is supported.

Octopus [Tea10] is specifically designed to support Design-Space Exploration (DSE).
It allows the independent specification of applications, platforms, and mappings, following
the Y-chart approach, and aims to integrate existing formal analysis and simulation tools
in the DSE process.

SystemCoDesigner [HSKM08] is tool for Design Space Exploration (DSE) and proto-
typing. SystemCoDesigner starts from a behavioral SystemC model and generates hard-
ware accelerators and hardware/software solutions for DSE. It also provides the capability
for prototyping on an FPGA basis constructing a link between Electronic System Level
(ESL) and Register Transfer Level (RTL).

LusSy [MMMcMc] is a tool for the analysis of SystemC transactional models. Starting
from the source code of a SystemC design, it uses GCCs C++ front-end and the SystemC
library itself for parsing, then transform it into a set of automata, and finally dump it
in the Lustre language. Thus, it provides a way to express safety properties directly in
SystemC, by using identifying operational semantics for TLM models written in full Sys-
temC. Although the method has a working connection to verification tools, the semantics
remain abstract because Lustre is less expressive than a general-purpose language which
deals with dynamic data structures.

VISTA [MGN03], based on SystemC [Gro02], provides a methodology and tool for mod-
eling SoC virtual platform for SW development and system level performance analysis and
exploration. The SoC provides a cycle-accurate functional model of the architecture using
the basic SystemC Transaction Level Modeling (TLM) components provided by VISTA.
It supports cross-compilation on the target processor and back annotation, therefore by-
passing the use of an Instruction Set Simulator (ISS). However, it may hardly be used for
other purposes than performance analysis due to the lack of a formal specification of the
system.

A simulation based method is presented in [KDVvdW97]. The authors specify software
applications as Kahn graphs and they textually instantiate different architectures from
an architecture template. They obtain performance numbers by using a configurable
simulator in C++ that has been constructed for the architecture template, using multi-
threading and object oriented programming techniques. Even though the model is at a
high level of abstraction, the simulator can efficiently execute different types of dataflow
architectures at a level that is clock-cycle accurate.

The Sesame [EPTP07] modeling and simulation environment facilitates performance
analysis of embedded media systems architectures according to the Y-chart design prin-
ciple [BCG+97, KDVvdW97]. Sesame aims at early system evaluation and design space
exploration using model calibration and trace-driven cosimulation.

Daedalus [NTS+08] offers a fully integrated tool-flow in which design space exploration
(DSE), system-level synthesis, application mapping, and system prototyping of Multi-
Processor System on Chips (MP-SoCs) are highly automated. It is based on Sesame
framework [EPTP07] and automatically extends it to VHDL implementations of the MP-
SoC platform architecture generated by the ESPAM tool [NSD08, NSD06]. The Daedalus
high-level MP-SoC models aim at the accurate prediction of the overall system perfor-
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mance.
SPADE [LSvdWD01] is a method and tool for architecture exploration of heteroge-

neous signal processing systems used to evaluate alternative multi-processor architectures.
It follows the Y-chart paradigm for system level design, on which the application and ar-
chitecture are modeled separately and mapped onto each other in an explicit design step.
SPADE uses a trace-driven simulation technique and permits architectures to be modeled
at an abstract level using a library of generic building blocks.

SymTA/S [Hea05] is a system-level performance analysis approach based on formal
scheduling analysis techniques, event streams [RE02, RZJE02] and symbolic simulation.
The tool supports heterogeneous architectures and determines system-level performance
data such as end-to-end latencies, bus and processor utilization, and worst-case scheduling
scenarios.

In [AAM06] the authors suggest a method of timed automata, for solving optimal
scheduling problems. They demonstrate that the timed-automata-based methods can be
used to synthesize scheduling strategies for applications with uncertain task durations.
In [SBM09] the authors developed a methodology for automatic abstraction of systems
modeled by timed automata allowing them to analyze timed automata of greater size
and complexity. In [CMLS11], trade-offs between communication cost and computational
workloads are modeled addressing the problem of mapping applications to processors in a
multicore environment.

A hybrid approach for system level performance evaluation of embedded systems that
combines formal analysis methods with a simulation framework in presented in [KPBT06].
However, the current approach is limited to small systems.

1.3 Organization of the Document

This document is composed of four parts, the first presenting the context of the work
(Chapter 1 and Chapter 2), the second describing the system designer method which is
the thesis contribution (Chapters 3, 4, 5, 6, 7 and 8), the third presenting the results of
implementation and experimentation (Chapters 9, 10 and 11) describing the tool developed
and applying the methodology presented in the contribution, and the last part (Chapter
12) drawing the conclusion and perspectives. The details of all Chapters are as follows.
Chapter 2 describes the BIP component-based framework which is the foundation of this
work. Chapter 3 presents the BIP Language Factory and the construction of software
model in BIP using well structured models. The synthesis of HW Platforms in BIP and the
library of HW components is provided in Chapter 4. In Chapter 5 we analyze the method
and the necessary transformations used to efficiently map an application software model
in BIP with the HW Platform model. Chapter 6 presents the mixed software/hardware
system in BIP integrating all the HW platform constraints. Chapter 7 describes the two
methods of integration the run-time HW/SW constraints which are the execution times
of every software process in isolation. The method used for performance analysis and
the comparison with related work is found in Chapter 8. Chapter 9 described the whole
tool-flow developed to automatically generate an accurate system model in BIP. Chapter
10 and Chapter 11 present the two case studies considered in this work which respectively
concern two different HW platforms. Chapter 12 draws the conclusion of this work and
the futures perspectives.
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The BIP Framework

The BIP –Behaviour/Interaction/Priority– framework [BBS06] is aiming at design and
analysis of complex, heterogeneous embedded applications. BIP is a highly expressive,
component-based framework with rigorous semantical basis. It allows the construction
of complex, hierarchically structured models from atomic components characterized by
their behavior and their interfaces. Such components are transition systems enriched with
data. Transitions are used to move from a source to a destination location. Each time
a transition is taken, component data (variables) may be assigned new values, computed
by user-defined functions (in C/C++). Atomic components are composed by layered
application of interactions and priorities. Interactions express synchronization constraints
and define the transfer of data between the interacting components. Priorities are used to
filter amongst possible interactions and to steer system evolution so as to meet performance
requirements e.g., to express scheduling policies.

This chapter is structured as follows. The abstract model of BIP is described in Sec-
tion 2.1 as an abstract formalization of the layers of Behavior, Interactions and Priorities.
Section 2.2 describes the concrete model of BIP extended with data. We introduce the
concepts of Components and Connectors to build system models and we define the opera-
tional semantics of all three layers (behavior, interaction, priorities). Section 2.3 describes
the basic constructs of the BIP Language. Section 2.3 presents the BIP Tool-chain, the
BIP execution engines and the Distributed Implementation. Conclusions are given in the
last section.

Priorities

Interactions

B E H A V I O R

Figure 2.1: Structure of a BIP Model
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2.1 Abstract Model of BIP

We provide a formalization of the BIP model focusing on the individual layers of behavior,
interaction and priority glue (see Figure 2.1). In this section, we provide for each layer its
abstract model.

2.1.1 Modeling Behavior

An atomic component is the most basic BIP component which represents behavior. A
formal definition for the behavior of an atomic BIP component is given below:

1 Definition (Behavior)
A behavior B is a labeled transition system represented by a triple (Q,P,→), where:

• Q is a finite set of control states,

• P is a set of communication ports,

• →⊆ (Q× P ×Q) is a set of transitions, each labeled by a port.

For a pair of states q, q′ ∈ Q and a port p ∈ P , we write q
p−→ q′ ⇐⇒ (q, p, q′) ∈→ and

we say that p is enabled at q. If such q′ does not exist, we say that p is disabled at q.

2.1.2 Modeling Interactions

We compose a set of n atomic components behaviors {Bi = (Qi, Pi,→i)}ni=1 , by using
interactions. We assume that their respective sets of ports and sets of states are pairwise
disjoint, i.e., for all i 6= j, we have Pi ∩ Pj = ∅ and Qi ∩ Qj = ∅. We define the set
P =

⋃n
i=1 Pi of all ports in the system.

2 Definition (Interaction)
An interaction α is a non-empty subset α ⊆ P of ports. When we write α = {pi}i∈I′ ,
I ′ v [1, n]. For each i ∈ I ′, pi ∈ Pi.

The interaction model is specified by a set of interactions γ ⊆ 2P . Interactions of γ
can be enabled or disabled. An interaction α is enabled iff , for all i ∈ [1, n], the port
α ∩ Pi is enabled in Bi. That is, an interaction is enabled if each port that is involved in
this interaction is enabled. An interaction is disabled if there exists i ∈ [1, n], for which
the port α∩Pi is disabled in Bi. That is, an interaction is disabled if there exists at least
a port involved in this interaction, that is disabled.

2.1.3 Modeling Priorities

In a behavior, more than one interaction can be enabled at the same time, introducing a
degree of non-determinism. This can be restricted with priorities by filtering the possible
interactions based on the current global state of the system.

We compose a set of n atomic components behaviors {Bi = (Qi, Pi,→i)}ni=1.

3 Definition (Priority)
A priority is a partial order ≺ γ × γ, where:

• γ is the set of interactions,

For α ∈ γ and α′ ∈ γ, the priority (α, α′) ∈≺ is denoted as α ≺ α′. That is, interaction
α has less priority than α′.
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2.1.4 Composition of Abstract models

For a set of components {Bi = (Qi, Pi,→i)}ni=1, an interaction model γ and a priority
model π, the compound component is obtained by application of a glue GL.

The glue GL is composed of the two previous models γ and π and defined as GL = πγ,
where the interaction model γ is a set of interactions and the priority model π is a set of
priorities.

4 Definition (Composition for Interactions Model)
The composition of a set of atomic components {Bi}ni=1, parametrized by a set of inter-
actions γ ⊆ 2P , is a transition system B = (Q, γ,→γ), where:

• Q =
⊗n

i=1Qi,

• γ is the set of interactions γ ⊆ 2P , where P =
⋃n
i=1 Pi,

• For α = {pi}i∈I ∈ γ, we have (q1, . . . , qn)
α−→γ (q′1, . . . , q

′
n) in B if and only if, qi

pi−→i q
′
i

in Bi for all i ∈ I, and q′i = qi for all i /∈ I.

The obtained behavior B can execute a transition (α = {pi}i ∈ I) ∈ γ, if and only if,
for each i ∈ I, port pi is enabled in Bi.

5 Definition (Composition restricted from the Priority Model)
Given a behavior B = (Q, γ,→γ), its restriction by the priority model π is the behavior

B′ = (Q, γ,→π), where for α ∈ γ, we have q
α−→π q

′ in B′ if and only if, q
α−→γ q

′ in B and
for all α′ ∈ γ such that α ≺ α′, α′ is disabled.

The obtained behavior B′ can execute a transition α ∈ γ if and only if, each transition
α′ ∈ γ, with higher priority than α is disabled.

2.2 Concrete Model of BIP

2.2.1 Atomic Components

In BIP, atomic components are automata equipped with a set of ports and a set of variables.
Each transition is guarded by a predicate on the variables, triggers an update function,
and is labelled by a port. Ports are used for communication among different components
and are associated with variables of the component.

6 Definition (Port)
Each port is a pair (p,Xp), where p is the label and Xp is the set of variables associated
with p. For the sake of simplicity we denote a port (p,Xp) by p. We refer to internal ports
using the β character instead of p, which refers to communication ports.

7 Definition (Atomic Component: Syntax)
An atomic component is a labelled transition system extended with data B = (L,X, P, T )
where:

• L = {`1, `2, ..., `k} is a set of control locations,

• X = {x1, x2, ..., xn} is a set of variables,
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• P is a set of communication ports. Each port is a pair (p,Xp), where p is a label
and Xp ⊆ X is the set of variables associated with p. For the sake of simplicity we
denote a port (p,Xp) by p and we refer to port p that belongs to component B by
B.p,

• T is a set of transitions of the form τ = (`, p, g, f, `′) or (`, β, g, f, `′), where `, `′ ∈ L
are control locations, p ∈ P is a communication port, β is an internal port, g is
a guard, a predicate on X which can be true or false, and f(X,X ′) is an update
relation, a predicate on X (current) and X ′ (next) state variables. We represent
concretely update relations as sequential programs operating on data X. We use the
term skip to denote f(X,X ′) as empty, where X = X ′.

Let D be a universal data domain. Given a set of variables X, we define valuations for
X as functions v : X → D. The set of valuations is denoted as DX . Given two valuations
u : X → D and v : Y → D, we define the substitution u� v : X ∪ Y → D as a valuation
defined by:

(u� v)(x) =

{
u(x) :if x ∈ X \ Y
v(x) :if x ∈ Y

8 Definition (Atomic Component: Semantics)
The semantics of B = (L,P,X, T ) is a transition system (Q,Σ,→B) such that:

• Q = L×DX ,

• Σ = {p[v′′]|p ∈ P, v′′ ∈ DXp} ∪ {β} is the set of labels. A label p[v′′] marks instanta-
neous data change through the port p.

• →B is the set including transitions

– ((`, v), p[v′′], (`′, v′)) such that g(v)∧f(v�v′′, v′) for some τ = (`, p, g, f, `′) ∈ T .

As usual, if ((`, v), p[v′′], (`′, v′)) ∈→B we write (`, v)
p[v′′]−−−→B (`′, v′),

– ((`, v), β, (`′, v′)) such that g(v) ∧ f(v, v′) for some τ = (`, β, g, f, `′) ∈ T . As

usual, if ((`, v), β, (`′, v′)) ∈→B we write (`, v)
β−→B (`′, v′).

For a model built from a set of n atomic components {Bi = (Li, Pi, Xi, Ti)}ni=1 ,we
assume that their respective sets of ports and variables are pairwise disjoint, i.e. for any
two i 6= j in {1...n}, we require that Pi ∩Pj = ∅ and Xi ∩Xj = ∅. Thus, we define the set
P =

⋃n
i=1 Pi of all ports in the model as well as the set X =

⋃n
i=1Xi of all variables.

1 Example
Figure 2.2 shows a graphical representation of two atomic components in BIP, the Sender
and the Receiver. The behavior of Sender is described as a transition system with control
locations `1 and `2. It communicates through ports tick and out. Port out exports the
variable x. Initially, the Sender communicates through port out exporting the variable x.
Then, it ticks through the tick port at a maximum number of ten times. Finally, the guard
[10 ≤ c] enables the internal transition β. At the execution of the β transition the variable
x is reevaluated depending on a user-defined function f(). Respectively, the behavior of
Receiver has control locations `5 and `6 and communicates through port tick and port
in, which exports the variable z. Initially, the Receiver ticks through the tick port at a
maximum number of twenty times. Then, the guard [c ≤ 20] enables the communication
port in which exports the variable z. Finally, the internal transition β is enabled returning
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the component to the initial state. At the execution of the β transition the variable x is
reevaluated depending on a user-defined function f().

`1

`2

out
c = 0;

tick
c = c+1;

β
[10 ≤ c]

x = f(. . .);

Sender

out

tick

x

int x,c

`5

`6

in
[c ≤ 20]

tick
c = c+1;

β
c = 0;

Receiver

in

tick

z

int z,c

Figure 2.2: Sender (left) and Receiver (right) BIP atomic components

2.2.2 Interactions

9 Definition (Interaction)
An interaction α is a triple (Pα, gα, fα), where Pα ⊆ P is a set of ports, gα is a guard, and
fα is a data transfer function. We restrict Pα so that it contains at most one port of each
component, therefore we denote Pα = {pi}i∈I with pi ∈ Pi and I ⊆ {1...n}. gα and fα are
defined on the variables available on the interacting ports

⋃
p∈αXp.

Composition of components allows to build a system as a set of components that
interact by respecting constraints of an interaction model. Connectors are used to specify
possible interaction patterns between the ports of components.

10 Definition (Connector)
A connector γ defines sets of ports of atomic components Bi which can be involved in an
interaction. It is formalized by γ = (Pγ , Aγ , p) where:

• Pγ is the support set of γ, that is the set of ports that γ may synchronize.

• Aγ ⊆ 2Pγ is a set of interactions α each labeled by the triple (Pa, Ga, Fa) where:

– Pa is the set of ports pi, i ∈ I, I ⊆ [1, n] that takes part at interaction α,

– Ga is the guard of α, a predicate defined on variables
⋃
pi∈α Vpi ,

– Fa is the data transfer function of α, defined on variables
⋃
pi∈α Vpi .

• p is the exported port of the connector γ.

In BIP, we distinguish two models of synchronization on connectors:

• Strong synchronization or rendezvous, where the only feasible interaction of γ is the
maximal one, i.e., it contains all the ports of γ. We note Aγ = Pγ .

• Weak synchronization or broadcast, where all feasible interactions are those con-
taining a particular port ptrig which initiates the broadcast. We note Aγ = {α ∈
γ|α ∩ {ptrig} 6= ∅} where ptrig ∈ Pγ is the port that initiates the broadcast.

There is a graphical notation for interactions. In a rendezvous interaction all ports
(known as synchrons) are denoted by bullets. In a broadcast interaction, the port that
initiates the interaction, also called trigger, is denoted by a triangle and all the rest with
bullets.
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Hierarchical connectors We have seen that a connector has an option to define a port
and export it. This allows a connector to be used as a port in other connectors, and create
structured connectors. The representation of structured connectors require connectors
to be treated as expressions with typing and other operations on groups of connectors.
This led to a formalization of the algebra of connectors defined in [BS08a, BS08b]. The
Algebra of Connectors is a compact notation for algebraic representation and manipulation
of connectors and formalizes the concept of connectors supported by the BIP component
model.

2.2.3 Priorities

11 Definition (Priority)
A priority is a tuple (C,≺) where C is a state predicate (boolean condition) characterizing
the states where the priority applies and ≺ gives the priority order on the set of interactions
Aγ .

For α1 ∈ Aγ and α2 ∈ Aγ , a priority rule is textually expressed as C → α1 ≺ α2. When
the state predicate C is true and both interactions α1 and α2 specified in the priority are
enabled, the higher priority interaction, i.e., α2 is selected for execution.

2.2.4 Composition of Components

12 Definition (Composite Component: Syntax)
A composite component is defined by a set of atomic components, composed by a set of

interactions γ and a priority π ⊆ γ×γ. We denote by B
def
= πγ(B1, ..., Bn) the component

obtained by composing components B1, ..., Bn using the interactions γ and priority π. If
π is the empty relation, then we may omit π and simply write γ(B1, · · · , Bn).

A state of πγ(B1, ..., Bn) is defined by a pair (`, v), where ` = (`1, ..., `n) is the control
state of each component and v = (v1, ..., vn) is a valuation of component variables.

13 Definition (Composite Component: Semantics)
The behavior of a composite component πγ(B1, ..., Bn) without priority, where Bi =
(Li, Xi, Pi, Ti), is a labeled transition system (Q, γ,→γ), where Q =

⊗n
i=1 Li×

⊗n
i=1DXi .

We define →γ the least transition relation containing the interleaving of internal β-
transitions from components Bi and moreover, satisfying the interaction rule:

α = ({pi}i∈I , gα, fα) ∈ γ gα({vi}i∈I)

{v′′i }i∈I = fα({vi}i∈I) ∀i ∈ I(`i, vi)
pi[v
′′
i ]

−−−→Bi (`′i, v
′
i) ∀i 6∈ I. (`i, vi) = (`′i, v

′
i)

((`1, . . . , `n), (v1, . . . , vn))
α−→γ ((`′1, . . . , `

′
n), (v′1, . . . , v

′
n))

Intuitively, this inference rule specifies that a composite component B = γ(B1, ..., Bn)
can execute an interaction α ∈ γ, iff(1) for each port pi ∈ Pα, the corresponding atomic
component Bi allows a transition from the current state labelled by pi (i.e. the corre-
sponding guard gi evaluates to true), and (2) the guard gα of the interaction evaluates
to true. If these conditions hold for an interaction α at state (`, v), α is enabled at that
state. Execution of α modifies participating components’ variables by first applying data
transfer function fα on variables of all interacting components and then update functions
inside each interacting component. The (local) states of components that do not partici-
pate in the interaction remain unchanged. In order to comply with the trace equivalence
terminology we can simply refer to interactions as actions.
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We define the behavior of the composite component B = πγ(B1, . . . , Bn) with priority,
as the labeled transition system (Q, γ,→πγ) where →πγ is the least set of transitions
satisfying the rule:

(`, v)
α−→γ (`′, v′) ∀α′ ∈ γ. α ≺ α′ (`, v) 6 α

′
−→γ

(`, v)
α−→πγ (`′, v′)

The inference rule filters out interactions which are not maximal with respect to the
priority order. An interaction is executed only if no other one with higher priority is
enabled.

2 Example
Figure 2.3 shows a graphical representation of a composite component in BIP. It consists
of three atomic components, the Sender, the Buffer and the Receiver. The behavior of
Sender and Receiver is already introduced in Example 1. The behavior of Buffer has
control locations `3 and `4. It communicates through ports tick, in and out. Ports in,
out export the variable y. The Buffer ticks through the tick port to synchronize with the
Sender and the Receiver. It communicates through port in which modifies the variable y
interacting with Sender via connector io1. Then, the Buffer forwards the same variable to
Receiver through port and connector io2. The hierarchical connector tick2 which includes
connector tick1, synchronizes all the available components. The tick2 connector has also
the least priority among the connectors of the composite component.

`1

`2

out
c = 0;

tick
c = c+1;

β
[10 ≤ c]

x = f(. . .);

Sender

out

tick

x

int x,c

`3

`4

in

tick

tick

out

Buffer

in out

tick

y y

int y

`5

`6

in
[c ≤ 20]

tick
c = c+1;

β
c = 0;

Receiver

in

tick

z

int z,c

tick1

tick2

y = x z = y

io1 io2

priority : π1 : tick2 < io1
π2 : tick2 < io2

Figure 2.3: Sender/Buffer/Receiver model as a composition of BIP atomic components

14 Definition (Transition Sequence)
We define:

• A run θ is a finite sequence of transitions:

q0
a1−→γ q1

a2−→γ q2
a3−→γ ...

an−→γ qn , with ai ∈ γ ∪ {β}

We say that for each run θ

• Runs(C) is the set of all runs observed on a composition model in BIP, such as
C = πγ(B1, . . . , BN ).



30 Chapter 2. The BIP Framework

• Runs(q0) is the set of all runs started from q0.

• A run is maximal if qn has no successor.

• trace(θ) is the sequence of labels a1.a2 . . . an for a given run θ.

• Traces(C) is the set of all traces which correspond to the set of Runs(C), for a given
composition model in BIP, such as C = πγ(B1, . . . , BN ).

2.3 The BIP Language

The BIP language represents components of the BIP framework [BBS06]. BIP language is
a user-friendly textual language which provides syntactic constructs for describing systems.
It leverages on C style variables and data type declarations, expressions and statements,
and provides additional structural syntactic constructs for defining component behavior,
specifying the coordination through connectors and describing the priorities. The basic
constructs of the BIP language are the following:

• atomic: to specify behavior, with an interface consisting of ports. Behavior is de-
scribed as a set of transitions.

• connector: to specify the coordination between the ports of components, and the
associated guarded actions.

• priority: to restrict the possible interactions, based on conditions depending on the
state of the integrated components.

• compound: to specify systems hierarchically, from other atoms or compounds, with
connectors and priorities.

• model: to specify the entire system, encapsulating the definition of the components,
and specify the top level instance of the system.

3 Example
The BIP descriptions of the Sender atomic component of Figure 2.2(left) and Port types
used are illustrated below:

model S R Buffer

port type DataPort (int i)
port type EventPort
port type InternalPort

atomic type Sender

export port EventPort tick=tick
export port DataPort out(x)=out
port InternalPort β

place `1,`2
initial to `1 do {}
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on out from `1 to `2
do {c = 0; }

on tick from `2 to `2
do {c = c+ 1; }

on τ from `2 to `1 (provided 10 ≤ c)
do {x = f(); }

end

Three types of ports are defined: DataPort, EventPort and InternalPort. A port
type DataPort associates a port to an integer variable i. Variables associated to ports
may be modified when executing the interaction in which the port participates. The
port out is an instance of the type DataPort. A port type EventPort is an event port
and it is not associated with any variable. The port tick is an instance of the type
EventPort. All ports are exported at the interface of the component. Initially, the state
of the component is at the place `1, the only place with token. The BIP code uses
the constructs on...from...to˝to represent transitions from one place to the other. The
construct provided˝is used when the execution of a transition is restricted by a guard.
Moreover, if the transition is associated with a function, the C code inside the constructs
do {...}˝is executed .

Components are composed by using connectors. A connector defines the set of possible
interactions between ports of components and the corresponding data transfer between the
variables associated with the ports. The BIP language allows the definition of connector
types.

4 Example
Below is presented the syntax of two different types of connectors, RendezVous- Data and
BroadcastEvents connector.

connector type RendezVousData(DataPort out, DataPort in)
define out in
on out in

up ;
down in.i=out.i;

end

connector type BroadcastEvents(EventPort e1, EventPort e2)
define e1’ e2’
on e1
on e2
on e1 e2
export port EventPort e

end

The RendezVousData connector defines a strong synchronization between two ports of
type DataPort, in and out. The value i is copied from the port in to the port out each time
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the connector is executed. The BroadcastEvent connector defines a weak synchronization
between the ports e1 and e2 of EventPort type. At least one of the ports is required to
initiate the interaction. This interaction is exported to the environment through the
EventPort e.

A compound component is a new component type defined from existing components
by creating their instances, instantiating connectors between them and specifying the
priorities. A compound offers the same interface as an atom, hence externally there is no
difference between a compound and an atomic component.

5 Example
The BIP description of the Send/Buffer/Receiver compound component of Figure 2.3 is
given below.

compound type Compound S R Buffer

component Sender sender
component Receiver receiver
component Buffer buffer

connector RendezVousData io1 (sender.out, buffer.in)
connector RendezVousData io2 (buffer.out, receiver.in)

connector BroadcastEvent tick1 (sender.tick, buffer.tick)
connector BroadcastEvent tick2 (tick1.e, receiver.tick)

priority π1 if(true) tick2<io1
priority π2 if(true) tick2<io2

end

The three atomic components that constitute the Send/Buffer/Receiver model are instan-
tiated. For example component Sender sender, creates an instance of Sender compo-
nent named sender. Connectors are also instantiated, associating the ports of instantiated
components through the interactions defined by the connector type. Finally, priorities are
defined specifying an order between a pair of interactions.

2.4 The BIP Tool-Chain

This section presents the implementation of the BIP framework, formally described in the
previous sections, in the form of a tool-chain called the BIP tool-chain. The BIP Tool-
chain provides a complete implementation, with a rich set of tools for the modeling, the
execution and the verification (both static and on-the-fly) of BIP models.

The overview of the BIP tool-chain is shown in Figure 2.4. It includes the following
tools:

• The BIP language. It is used to build models using components, connectors and
priorities and describes components architecture. It is used for the BIP description
source.
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• Source-to-source transformation tools. They are used to transform various pro-
gramming models, using different languages, into BIP models. The translation
of a programming model into a BIP model allows its representation,in a rigorous
semantic framework. There exist several translations, including LUSTRE, MAT-
LAB/Simulink, AADL, GeNoM applications, NesC/TinyOS applications, C software
and DOL systems.

• The compiler. It generates a BIP model from the BIP description source. It uses The
BIP meta-model as the intermediate representation of BIP models and to implement
model transformations. It includes :

– The BIP meta-model. It represents a template of the structure of the interme-
diate model to be generated from a BIP program, using EMF. All the modeling
elements, presented in the BIP language, have a representation in the BIP
model in the form of the data-structure. Class diagrams are used to define
the relations between the different modeling elements, through inheritance and
containment.

– The parser. It analyzes a BIP description source and generates an intermediate
model conforming to the BIP meta-model. It performs syntactic analysis of the
input program conforming to the BIP grammar and reports the programming
errors.

– Model-to-model transformation tools. They are used in order to perform useful
static transformations for systems optimizations including run-time. The trans-
formations use a set of correct-by-construction models and preserve functional
properties. Moreover, they can take into account extra functional constraints.
There exist three types of transformations, architecture optimizations, such as
flattening the hierarchy and transforming structured connectors to flat connec-
tors [BJS09], distributed implementation [BBJ+10], such as the replacement of
atomic multiparty interactions by protocols using asynchronous message pass-
ing (send/receive primitives) and memory management.

– The code generator. It generates C++ code from the model produced by the
parser. The code generator has options for generating application code for the
single-threaded BIP Engine, the multi-threaded BIP Engine and the distributed
BIP implementation.

• D-Finder. It is a compositional verification tool for deadlock detection and gener-
ation of invariants [BBN+09, BGL+11]. Verification is applied only to high level
models for checking safety properties such as invariants and deadlock-freedom.

• The BIP Execution engines. They are middleware responsible for the coordination
of atomic components, that is, they apply the semantics of the interaction and
priority layers of BIP. Execution engines are used for execution, simulation, run-time
verifications, debug or state-space exploration( i.e. all traces) of BIP models. There
are currently three engines available, the single-threaded engine, the multi-threaded
engine and the engine supporting the distributed implementation of BIP.

2.4.1 The BIP Execution Engines

The BIP execution Engines and the distributed BIP implementations directly implement
the BIP operational semantics. It plays the role of the coordinator in selecting and exe-
cuting interactions between the components, taking into account the glue specified in the
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input component model. It monitors the state of the components and considering the
interaction model, finds all the enabled interactions. It then applies the priority rules to
eliminate the interactions with low priority, and selects one amongst the maximal enabled,
for execution.

Here is the presentation of the current Engines.

The Single-Threaded BIP Engine

From a BIP model, a compiler is used to generate C++ code for atomic components and
glue. The code is orchestrated by a sequential engine that interprets the BIP operational
semantic rules.

The Engine computes from the set of ports for each atomic components and defined by
connectors, the set of enabled interactions. It chooses an interaction α = {αi|i ∈ I} ∈ γs
enabled at state s. The choice of α depends on the considered scheduling policy. For
instance, EDF (Earliest Deadline First) scheduling policy can be used. It executes α
that corresponds to the execution of all atomic components involved in the interaction
αi, i ∈ I, followed by the execution of the data transfer function Fα and the update of
control locations.

Algorithm 1 gives an implementation of the Execution Engine for the composition of
BIP models. It basically consists of an infinite loop that first computes enabled interactions
at current state s of the composition. It stops if no interaction is possible from s (i.e.
deadlock). Otherwise, it chooses an interaction α, executes the data transfer function
Fα associated to it and executes α. Finally, the state s is updated in order to take into
account the execution of α.

Algorithm 1 Single Threaded Execution Engine

Require: Model M i = (Qi,→i), 1 ≤ i ≤ n, initial control location (q1
0, . . . , q

n
0 ), set of

interactions γ
s = (q1, . . . , qn)← (q1

0, . . . , q
n
0 )

loop
γs = EnabledInteractions(s)
if ∃α ∈ γs then
α = {αi|i ∈ I} ← EDFScheduler(γs)
ExecuteDataTransfer(Fα)
for all i ∈ I do
Execute(αi)
qi ← q′i

end for
else

exit(DEADLOCK)
end if

end loop

The Multi-Threaded BIP Engine

The implementation of the multi-threaded implementation with centralized engine is based
on the notion of partial state semantics where interactions are allowed to fire as soon as
only the involved components are stable [BBB+08]. Each atomic component is assigned
to a different thread (process), the engine being assigned to a thread as well. Each atomic



36 Chapter 2. The BIP Framework

component performs its computations locally and then, when it reaches a stable state, it
notifies the engine about the ports on which it is willing to interact. It waits for the engine
to select the port to be executed upon the chosen interaction.

The Engine is parametrized by an oracle. As depicted in Algorithm 2, the engine
computes feasible interactions available on state components. Then, if such interactions
exist and the oracle allows them, the engine selects one for execution and notifies the
involved components.

Iteratively, the Engine receives the sets of ports and the local states of components
ready to interact. Depending on this information, the engine computes the feasible in-
teractions. It chooses a feasible interaction, which is allowed by the oracle O. If such an
interaction exists, the engine executes it by notifying sequentially, in some arbitrary order,
all the involved components. Otherwise, it is a deadlock.

Algorithm 2 Multi-Threaded Execution Engine

Require: Model M i = (Qi,→i), 1 ≤ i ≤ n, initial control location (q1
0, . . . , q

n
0 ), set of

interactions γ
s = (q1, . . . , qn)← (q1

0, . . . , q
n
0 )

loop
wait(Pi)
γs = EnabledInteractions(Pi)
γo = restriction(γs, O)
if ∃α ∈ γo then
α = {αi|i ∈ I} ← EDFScheduler(γs)
ExecuteDataTransfer(Fα)
for all i ∈ I do
notify(Mi, αi)
qi ← q′i

end for
else

exit(DEADLOCK)
end if

end loop

2.4.2 The Distributed BIP Implementation

Currently, powerful hardware platforms are needed for executing applications on multicore
or many-core platforms. The application code should be optimally distributed over the
platform to take advantage of its computing power. Although distributed systems are
widely used nowadays, their implementation is still time-consuming and an error-prone
task. The distributed implementation in BIP provides a method for automatic generation
of efficient and correct-by-construction distributed model from a given application software
in BIP. Coordination in BIP is achieved through multi-party interactions (i.e., those across
multiple components), and scheduling by using dynamic priorities. Transforming the
semantics of BIP, which is based on a global state model, into a distributed implementation
is clearly a non-trivial task.

A generic framework allowing the transformation of high-level BIP models into dis-
tributed implementations has been recently developed [BBJ+10]. The method involves
BIP to BIP transformations preserving observational equivalence. It transforms multi-
party interactions into asynchronous message passing, that is, send/receive primitives.
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The target Send/Receive BIP model is structured in three layers (see Figure 2.5): (i) the
component layer corresponds to a modified behavior of the components of the original
model; (ii) the interaction protocol consists of a set of components such that each compo-
nent detects enableness of a subset of interactions of the original model using partial-state
knowledge, and executes them after resolving conflicts (e.g., regarding which interaction
to execute when there is more than one involving the same port) either locally or by
the help of the third layer; (iii) the reservation protocol resolves conflicts between com-
ponents of the interaction protocol layer using committee coordination algorithms such
as the token-ring distributed algorithm or the distributed dining philosophers algorithm.
Notice that the obtained Send/Receive BIP model depends on a user-defined partition of
the interactions of the original model, associating subsets of interactions to components
of the interaction protocol layer.
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Figure 2.5: Send/Receive BIP model obtained from BIP to BIP transformations.

A C++ code generator has been developed. Given a user-defined mapping of the com-
ponents of a Send/Receive BIP model, it generates the distributed implementations using
communication mechanisms offered by the platform. We have the following backends:
Unix processes communicating through TCP sockets, MPI, and threads using semaphores
and shared memory. Efficient monolithic code can be produced by merging components
using another BIP to BIP transformation, according to the mapping of the components.

The method has been fully implemented in a toolset allowing the automatic generation
of distributed implementations from BIP models. It is parametrized by the partitioning
of interactions, a committee coordination algorithm, and the mapping of components.

2.5 Conclusion

BIP [BBS06] (Behavior, Interaction, Priority) is a general framework encompassing rigor-
ous design. It uses the BIP language and an associated toolset supporting the design flow.
The BIP language is a notation which allows building complex systems by coordinating the
behavior of a set of atomic components. Behavior is described as a finite-state automaton
extended with data and functions described in C/C++. The transitions of the automata
are labeled with guards (conditions on the state of a component and its environment) as
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well as functions that describe computations on local data. The description of coordina-
tion between components is layered. The first layer describes the interactions between
components. The second layer describes dynamic priorities between the interactions and
is used to express scheduling policies. The combination of interactions and priorities char-
acterizes the overall architecture of a component. It confers BIP strong expressiveness
that cannot be matched by other languages [BS08b]. BIP has clean operational semantics
that describe the behavior of a composite component as the composition of the behaviors
of its atomic components. This allows a direct relation between the underlying semantic
model (transition systems) and its implementation.

The BIP design flow uses a single language to ensure consistency between the different
design steps. This is mainly achieved by applying source-to-source transformations be-
tween refined system models. These transformations are proven correct-by-construction,
that means, they preserve observational equivalence and consequently essential safety
properties. Functional verification is applied only to high level models for checking safety
properties such as invariants and deadlock-freedom. To avoid inherent complexity limita-
tions, the verification method applies compositionality techniques implemented in the
D-Finder tool. BIP has been successfully used to model complex systems and soft-
ware applications like the DALA robot [dal], the Heterogeneous Communication System
(HCS) [BBB+12], the NesC/TinyOS applications [BMP+07] and others which we refer in
the next chapter. In the next chapters we analyze the method of designing complex mixed
hardware/software systems using the BIP component-based framework.
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BIP Language Factory

In this chapter, we present the methods for generating BIP models out of languages and
various programming models. The ensemble of these methods consists the BIP Language
Factory. Most importantly, we describe the generation of Kahn Process Network (KPN)
software models in BIP. These models are used to model the software application part of
our system design.

The chapter structure is as follows. In Section 3.1, we epigrammatically present the
methods developed in Verimag which generate BIP models using different programming
models. In Section 3.2, we describe the KPN models using BIP. In the final Section 3.3,
we provide the method that we used to automatically generate KPN models in BIP and
then, we conclude the chapter.

3.1 Construction of Software Models

A general method for generating BIP models from languages is developed in Verimag
laboratory. The method is illustrated in Figure 3.1. The BIP semantic model is used to
structurally represent different programming models or domain specific languages and en-
able the available analysis and verification techniques provided by the BIP toolchain [bip].
In this section, we provide an overview of the set of languages and programming models
translated into BIP models and analyzed by the BIP toolchain.

Execution Engine

Application Software

Operational Semantics

BIP Model of the

Application Software

for L in BIP

written in L

of L

Figure 3.1: Translation method for a language in BIP
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From AADL to BIP AADL (Architecture Analysis and Design Language) [SAE09] is
a language dedicated to modeling and specification of complex Real-time embedded sys-
tems. It is used to describe component-based systems, where each component represents
the physical hardware or the application software. There are several types to describe,
on the one hand, the physical hardware such as processors, memories, buses and devices,
and on the other, the application software, such as processes, threads, data and functions.
In [CRBS08] the authors provide a translation from AADL to BIP. The BIP framework
provides a series of advantages compared to AADL. Such as concrete operational seman-
tics, an execution environment and formal verification techniques.

From Lustre to BIP Lustre [HCRP91] is a dataflow language for programming syn-
chronous reactive systems. In [BSS09] the authors present a modular translation of Lustre
into modal flow graphs described in synchronous BIP. The modal flow graphs are acyclic
graphs representing three different types of dependency between two events p and q: strong
dependency (p must follow q), weak dependency (p may follow q), conditional dependency
(if both p and q occur then p must follow q). Synchronous BIP is a subset of BIP which
describes systems of components which are strongly synchronized by a common action
that triggers the execution steps. The advantage is that the translation is modular and
exhibits not only data-flow connections between nodes but also their synchronization by
using clocks.

From MATLAB/Simulink to BIP MATLAB/Simulink [Mat] is a simulation envi-
ronment developed by Mathworks for analysis and model-based design of dynamic and
embedded systems. In [STS+10] a discrete-time fragment of Simulink is used to develop
a method for translation into synchronous BIP. There are several advantages, concerning
both MATLAB/Simulink to BIP and Lustre to BIP translations, related to the obtained
modal flow graphs in BIP. They are well-triggered, a property of modal flow graphs that
expresses consistency between the three types of dependency. It guarantees deadlock
freedom and deterministic behavior under some conditions of non interference of con-
current computations. The translations of these two synchronous formalisms open the
way for exploring problems regarding relations between synchronous and asynchronous
systems. They allow integration of synchronous systems theory in an all encompassing
component framework without losing advantages such as correctness-by-construction and
efficient code generation. This makes possible modeling mixed synchronous/asynchronous
systems without artifacts.

From LAAS/GeNom applications to BIP LAAS [ACF+98] is a framework used
to describe both the functional and the execution control level of a robot. The LAAS
framework is based on the componentization of GenoM [FHC97] Functional Modules.
Each module can integrate synchronous and asynchronous processes. It has a predictable
behavior and standard communication interfaces. A module description language is as-
sociated with an automatic module generator according to GeNom generic model. In
[BGL+08], the modeling of the functional part of a robotic system into a BIP model and
the synthesis of an execution controller are presented. Both the functional and the execu-
tion control level of the robot are described with the LAAS [ACF+98] framework and the
GenoM [FHC97] Functional Modules. The goal of the above construction methodology is
the verification and validation of essential ”safety” properties.
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From NesC/TinyOS applications to BIP TinyOS [Tin] is an embedded operating
system and platform written in the NesC programming language, which is a subset of the
C language optimized for sensor networks with strict memory limits. It is designed as a set
of cooperating tasks and processes and it targets low-power wireless devices. In [BMP+07],
the authors present a methodology for construction, analysis and verification of network
system models in BIP using the TinyOS operating system. The corresponding BIP model
is constructed based on the modeling of a NesC program describing the application and
based on models of TinyOS components. Different types of BIP connectors are used to
model the composition of components into network models. The use of BIP opens the
way for enhanced analysis and early error detection by using verifications techniques.

From C language to BIP A translation process from C code to a BIP model is
developed. The translator currently supports the C language. Any C function can be
translated into a BIP atomic component. The BIP component that models the function
call uses a BIP port and a BIP connector that interacts with the BIP component modeling
the body of the invoked function. This translation is used as a building block for the Kahn
Process Network to BIP model language factory described in the following sections.

3.2 From Kahn Process Networks to BIP

A Kahn Process Network (KPN) model [Kah74] is a set of autonomous processes that
communicate through unidirectional software channels. The channels are first-in first-out
(fifo) queues with blocking read and non-blocking write operations. The read operation is
blocking since the process suspends if the fifo queue is empty. Assuming that the queue
has an infinite size, the write operations are non-blocking. The communication through
the channels must occur in a finite and unspecified amount of time. A Kahn Process
Network program is deterministic; the result of a computation is independent from exe-
cution order. Sequential or parallel executions produce the same outcome. Determinism
separates the functionality of the application from the target hardware platform. More-
over, a KPN model provides separate analysis of computation and communication and
exposes functional parallelism. More restrictive models can be derived from KPNs such as
Synchronous Data Flows (SDF) [LM87] [LP95], Marked Directed Graphs [CHEP71] and
SW/HW Integration Medium (SHIM) [ET05].

In the next section, we present a construction of Kahn Process Networks using BIP
models. We consider KPNs with bounded size queues where both read and write operations
are blocking. The derived BIP model consists of process components and FIFO channel
components connected via send/receive data connectors.

3.2.1 BIP Process Component

A process component in BIP models the behavior of a KPN process. It contains Read
and Write communication primitives modeled as interactions with external components.
A Read operation retrieves the top most value stored in a the queue. The Write operation
stores a value in the next available cell of the queue. A process component in BIP uses
a set of ports Pw for Write, which are associated with the variable wr data and a set of
ports Pr for Read associated the the variable rd data. A generic process component is
defined below.
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15 Definition (Process Component)
We define the process component G = (L,X, P, T ), with Read and Write communication
primitives where:

• L = {`ini}∪{`1, `2, ..., `k}∪Lfin is the set of control locations, where `ini is the initial
control location, {`1, `2, ..., `k} are the intermediate control locations and Lfin the
set of possible final control locations such that:

Lfin =

{
∅ :if process never terminates
{`k+1, `k+2, ..., `k+m} :if process terminates

• X = {wr data, rd data} ∪ {x1, x2, ..., xn} is a set of variables,

• P = Pw ∪ Pr, where Pw the set of ports used for Write and Pr the set of ports used
for Read respectively, for each w ∈ Pw, w are associated with {wr data} and
for each r ∈ Pr, r are associated with {rd data}

• T is the set of transitions of the form τ = (`, w, true, skip, `′), τ = (`, r, true, skip, `′)
or (`, β, g, f, `′),

6 Example (Producer Component)
We assume a Producer Component that generates an integer value and sends it to an other
component. We define the BIP Producer Component GP = (LGP , XGP , PGP , TGP ), with
one Write communication primitive. There are two control locations `1,`2, the wr data
variable for the integer value, a Write port w associated with wr data and two transitions,
w and β. On transition w, the Producer exports the wr data variable and on transition β it
re-evaluates the wr data variable. Transition β is controlled by the guard g : [wr data < 2].
The Producer Component is illustrated in Figure 3.2.

rw

w r

f(rd_data);

wr_data=1;

wr_data rd_data

[wr_data<2]

wr_data=wr_data+1;

`1

`2

Consumer

β

`1

`2

Producer

β

Figure 3.2: Models of the Producer and Consumer Components in BIP

7 Example (Consumer Component)
We assume a Consumer Component that receives and prints an integer. We define the
Consumer Component GC = (LGC , XGC , PGC , TGC ), with one Read communication prim-
itive as it is illustrated in Figure 3.2. There are two control locations `1,`2, the rd data
variable to store an integer value, a Read port r associated with rd data and two tran-
sitions, r and β. On transition r, the Consumer exports the rd data variable and on
transition β it reads the rd data variable.

3.2.2 BIP FIFO Component

A FIFO channel in KPN is characterized by its size k, that is the maximal number of values
that can be stored. It has ports w (write) and r (read), and a single control location `.
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The component contains an array of values buff parametrized by k. The variable wr data
is associated with the port w and the rd data with r. On w, the received value is inserted
into buff . On r, the least recent value is sent and removed from the buffer. The variable
count records the number of values stored in the buffer. It is increased on a w (write) and
it is decreased on a r (read), respectively. The FIFO policy is implemented by using two
indices i and j, for respectively insertion/deletion into/from the (circular) buffer buff . A
formal definition is given below.

16 Definition (FIFO Component)
We define the FIFO atomic component F = (LF , XF , PF , TF ), where the behavior is
described in Figure 3.3.

Finally, we have:

• LF = {`},

• XF = {wr data, rd data, buff, i, j, k, count},

• PF = {w, r}, where w and r associated with {wr data} and {rd data} respectively.

• TF = {τw = (`, w, gw, fw, `), τr = (`, r, gr, fr, `)}

with gw : [count < k] and fw defined as a sequence of functions fw = fwm; fwn;, where:

• fwm : buff [i] = wr data;

• fwn : count = count+ 1; i = (i+ 1)%k;

and with gr : [count > 0] and fr defined as a sequence of functions fr = frm; frn where:

• frm : rd data = buff [j];

• frn : count = count− 1; j = (j + 1)%k;

A write operation always precedes the read operation on a given buffer place.

[count>0]

j=(j+1)%k;

r

[count<k]

i=(i+1)%k;

w

i=0; j=0; count=0;
rw

rd data=buff[j]; count–;buff[i]=wr data; count++;

`

var: wr data, rd data, i, j, count, buff[k]

FIFO

wr data rd data

Figure 3.3: Model of FIFO channel in BIP

3.2.3 BIP KPN model

Using the Process Component and the FIFO Component in BIP, defined above, we describe
below the composition of a Process Network in BIP modeling Kahn Process Network. We
will also further refer to the Process Network in BIP as application software model in BIP.
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17 Definition (Process Network Composition)
We define a Process Network in BIP as the composition N of Process Component G and
FIFO Components F such that N = πγ(G1, . . . , Gn, F1, . . . , Fk), where π is the priority
rule applied in the interactions γ, where the set γ contains two categories of interactions
such that γ = (αr, αw):

• read interactions αr of the form:
({F.r,G.rk}, true, fr), with rk ∈ Pr(G), fr : F.rd data = G.rd data;

• write interactions αw of the form:
({F.w,G.wk}, true, fw), with wk ∈ Pr(G), fw : G.wr data = F.wr data;

Every read/write port in the FIFO/processes are used in only one interaction and more-
over, every internal transition β has higher priority than any other interaction α ∈ γ.

8 Example (Producer-Consumer Composition)
We construct a composition using the Producer GP = (LGP , PGP , XGP , TGP ), the Con-
sumer GC = (LGC , PGC , XGC , TGC ) and the FIFO F = (LF , XF , PF , TF ) Components de-
fined earlier. We define the composition PC = γ(GP , F,GC), as illustrated in Figure 3.4,
where γ = {αw, αr}, αw = ({GP .w, F.w}, true, fαw), αr = ({F.r,GC .r}, true, fαr),
fαw : F.wr data = GP .wr data;,
fαr : F.rd data = GP .rd data;,

wr_data rd_data

[count>0]

j=(j+1)%k;

r

[count<k]

i=(i+1)%k;

w

i=0; j=0; count=0;
rw

w

wwr_data=1;

[wr_data<2]
wr_data=wr_data+1;

r

r

f(rd_data);rd data=buff[j]; count–;buff[i]=wr data; count++;

`

var: wr data, rd data, i, j, count, buff[k]
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β

`1
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Figure 3.4: Producer-Consumer Composition in BIP

The set of traces as defined in Definition 14 is represented as the interleavings below:

αw

αr

αw

GC .β

GP .β

αw

αr GC .βGC .βαr

3.3 Implementation using the DOL Framework

3.3.1 Distributed Operation Layer (DOL) Framework

DOL (Distributed Operation Layer) [TBHH07] is a framework devoted to the specifi-
cation and analysis of mixed software/hardware systems. DOL provides languages for
the representation of particular classes of applications software, multi-processor architec-
tures and their mappings. In addition, DOL provides tools for performance analysis and
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design-space exploration based on a combination of analytical and simulation-based tech-
niques [TCN02, KPBT06]. In DOL, application software is defined using a variant of
Kahn process network model [Kah74]. It consists of a set of deterministic, sequential pro-
cesses communicating asynchronously through FIFO channels. The hardware architecture
is described as interconnections of computational and communication devices such as pro-
cessors, buses and memories. The mapping associates application software components to
devices of the hardware architecture, that is, processes to processors and FIFO channels
to memories.

Application Software in DOL The application software in DOL consists of three
basic entities: Processes, FIFO channels, and Connections. The network structure is de-
scribed in XML. Each Process has input, output ports and sequential behavior. Processes
communicate by using FIFO channels. Each FIFO has a single input port and a single
output port, uniquely associated with ports of processes.

9 Example
We present in Figure 3.5 the process network model derived from the right-looking variant
of Cholesky factorization. The Cholesky application is an algorithm for solving numerically
linear equations and it is thoroughly described later in Section 10.7. It contains processes
Splitter, Joiner and three ”block” computational processes P11, P21 and P22. Process
Splitter splits the initial matrix into blocks and dispatches them to computational pro-
cesses. Each process Pij implements the computation required on a corresponding matrix
block Aij . The final matrix is re-constructed by process Joiner. Explicit communication
between Pij processes is used to enforce data dependencies. In this model, a dedicated
FIFO (F ) is used for every pair of dependent processes to transfer the result block from
the source to the target process. In Figure 3.6, we present a fragment of the DOL specifi-
cation of the Cholesky process network in XML. For each process, we specify the name of
the process, the number of input and output ports, the names of the ports, the respective
types and the location of the source C code describing the process behavior. For each
software channel (F ) we specify the name, the type the maximum capacity of data and
the input and output port. Finally, we define the connections between the processes and
the software channels by specifying the input and output ports which contribute in each
connection.
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Figure 3.5: Cholesky application in DOL

Process behavior is described using sequential C programs with a particular structure
(see Figure 3.7 for a concrete example). For a process P, its state is defined as an arbitrary
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<processnetwork>

<process name="splitter" basename="splitter">

<port name="OUT_0_0" type="output" basename="OUT" range="2;2"/>

<port name="OUT_0_1" type="output" basename="OUT" range="2;2"/>

<port name="OUT_1_0" type="output" basename="OUT" range="2;2"/>

<port name="OUT_1_1" type="output" basename="OUT" range="2;2"/>

<source location="splitter.c" type="c"/>

</process>

. . .

<process name="joiner" basename="joiner">

<port name="IN_0_0" type="input" basename="IN" range="2;2"/>

<port name="IN_0_1" type="input" basename="IN" range="2;2"/>

<port name="IN_1_0" type="input" basename="IN" range="2;2"/>

<port name="IN_1_1" type="input" basename="IN" range="2;2"/>

<source location="joiner.c" type="c"/>

</process>

<sw_channel name="FIFO_GEN_1_1" type="fifo" size="72000" basename="FIFO_GEN_1_1">

<port name="0" type="input" basename="0"/>

<port name="1" type="output" basename="1"/>

</sw_channel>

. . .

<sw_channel name="FIFO_2_1_2_2" type="fifo" size="72000" basename="FIFO_2_1_2_2">

<port name="0" type="input" basename="0"/>

<port name="1" type="output" basename="1"/>

</sw_channel>

<connection name="g-f_gen_1_1">

<origin name="splitter">

<port name="OUT_0_0"/>

</origin>

<target name="FIFO_GEN_1_1">

<port name="0"/>

</target>

</connection>

. . .

<connection name="f-p_2_1_2_2">

<origin name="FIFO_2_1_2_2">

<port name="1"/>

</origin>

<target name="p_2_2">

<port name="INx1x0"/>

</target>

</connection>

</processnetwork>

Figure 3.6: Fragment of the DOL description of the Cholesksy process network

C data structure named P state and its behavior as the program P init(); while (true)
P fire(); where P init(), P fire() are arbitrary functions operating on the process state.
The initial call of the P init() function is followed by an endless loop calling the P fire()
function. Communication is realized by using two particular primitives, namely write and
read for respectively sending and receiving data to FIFO channels. A read operation reads
data from an input port, and a write operation writes data to an output port. Moreover,
the P fire() method invokes a detach primitive in order to terminate the execution of the
process.
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10 Example
The description of the process P22 is shown in Figure 3.7. It defines the function p 2 2 init()
to initialize the process state and the function p 2 2 fire() to describe the cyclic behavior
of the process. A call to p 2 2 fire() implements all operations required by a factoriza-
tion. It reads the input block A22 from port IN SPLT, reads the result block of P21 from
port IN 2 1, performs the computation and writes the resulting L22 block to the port
OUT JOIN. The process terminates after a fixed number of operations, when the local
variable index exceeds len.

void p 2 2 init(DOLProcess *p) {
p->local->index = 0;

p->local->len = LENGTH;

}
int p 2 2 fire(DOLProcess *p) {

if (p->local->index < p->local->len) {
// read input block A22 from splitter
read((void*)IN SPLT, p->local->A,

(K)*(K)*sizeof(double), p);

// read result block L21 from P21

read((void*)IN 2 1, p->local->X,

(K)*(K)*sizeof(double), p);

// compute A22 = A22 − L21 × Lt21

SubtractTProduct(p->local->A,

p->local->X, p->local->X);

// compute L22 = seq-cholesky(A22)
Cholesky(p->local->L, p->local->A);

// send the result L22 to the joiner
write((void*)OUT JOIN, p->local->L,

(K)*(K)*sizeof(double), p);

p->local->index++;

else {
// termination
detach(p);

return -1;

}
return 0;

}

Figure 3.7: C code for the P22 process

3.3.2 DOL based representation in BIP (DOL to BIP translation)

The construction of the application software model in BIP requires the translation of the
software processes, FIFO channels and their connections. The construction is structure-
preserving: each process and each FIFO are independently translated to atomic compo-
nents in BIP and then connected according to their connections in the process network.
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Translation of Software Processes

The translation converts each software process to an atomic component in BIP. Each
atomic component port corresponds to a port in the process. The translation requires the
extraction of a control-flow graph from the C code. It starts by parsing the process code
into an intermediate, annotated abstract syntax tree (AST). The translation to BIP is
then completed in two steps.

1. In the first step, the interaction points in the AST are identified, that is, each call
to a read/write primitive is registered as an interaction point.

2. The second step involves the construction of an explicit control flow graph and
its representation as a finite state automaton extended with data in BIP. For each
interaction point, a control location is created. An outgoing transition is added from
this location, labeled by the port used in the read/write call. The transition models
the primitive call and requires synchronization with a FIFO channel.

The port of the transition is associated with data that is read/written by the primitive
invocation. Additional assignment statements are added to load/store the data into the
local variables in the function.

A block statement that contains interaction points is transformed into sequence of
control locations and transitions in the automaton. For such statements, e.g., condi-
tional (if-else, switch) or loop (for, while) or control statement (break, continue, return),
additional control locations are created and internal transitions guarded by the control
condition are added to model the control automaton.

For a conditional statement, a new control location is created with an incoming tran-
sition where the branch condition evaluation action is added. Outgoing transitions, one
for the positive branch and another for the negative branch are created. The branches are
finally merged to a new control location.

For a loop statement, a new control location is created with an incoming transition
where the loop initialization action and exit condition are added. Outgoing transitions,
one for the positive exit condition and the other for the negative exit condition are created.
For the negative exit branch, a transition back to the starting location of the loop is added,
with the exit condition action.

From the last control location generated in the automaton, a transition to the starting
control location is added. This models the invocation of the process behavior in a loop at
run-time. The termination of the process behavior is modeled as a move to a deadlocked
location, that corresponds to the detach primitive call.

Notice that functions that contain read/write calls (either directly or through nested
calls) are inlined in the BIP behavior. Consequently, the translation is restricted to pro-
grams without communication calls occurring within recursive functions. Additional re-
strictions are: no use of global variables, and no goto statements.

11 Example
Figure 3.8 shows the translation of the P22 process into an atomic component in BIP.
The C code for P22 is provided in Figure 3.7. The generated BIP component has ports
in split, in 2 1, out join, control locations `1 . . . `6 and variables index, len, A, L and X.
Transitions are labeled by ports in split, in 2 1, out join and β (internal). At `2, P22

awaits synchronization through in split corresponding to the read primitive call, where it
reads the matrix block denoted by the variable A. It then synchronizes through in 2 1
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L AX

[!index<len] in_split

Cholesky(L,A);

in_2_1

index++;
out_join

[index<len]

index=0; len=LENGTH;

var: index, len, A, L, X

out_join in_2_1 in_split

SubtractTProduct(A,X,X);

p→local→len = LENGTH;
}

if(p→local→index < p→local→len) {

// read result block L21 from P21

// compute A22 = A22 − L21 × Lt21

// compute L22 = seq-cholesky(A22)

// send the result L22 to the joiner

p→local→X, p→local→X);

Cholesky(p→local→L, p→local→A);

else {
// termination
detach(p);
return -1;

}
return -1;
}

int p 2 2 fire(DOLProcess *p) {

p→local→index = 0;

// read input block A22 from splitter

void p 2 2 init(DOLProcess *p) {

(K)*(K)*sizeof(double), p);

(K)*(K)*sizeof(double), p);
read((void*)in 2 1, p→local →X) {

read((void*)in split, p→local →len) {

SubtractTProduct(p→local →A,

write((void*)out join, p→local→L,

p→local →index++;
(K)*(K)*sizeof(double), p);

β

β

`4`5

`6 `1 `3

β

`2

Figure 3.8: C code and the corresponding BIP model of P22 process
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and obtains the result from P21. On the β transition from `4 to `5, it performs the actual
computations. Finally at `5, it awaits synchronization through out join corresponding
the write primitive call. At `1, the guarded outgoing internal transitions β models the
conditional (if) statement. Exit of the process on the detach is modeled by the final
location `6.

Translation of FIFO Channels and Connections

A FIFO channel in DOL is translated into a predefined BIP atomic component, as
presented in Section 3.2.2. Each connection in the application software is translated into a
BIP interaction which strongly synchronizes the corresponding ports. Interactions provide
the transfer of data implementing the read and write operations. An interaction imple-
menting write transfers data from a process to a FIFO, whereas the one implementing
read transfers data from a FIFO to a process.

12 Example
Figure 3.9 depicts the architecture of the BIP model obtained from the process network
example given in Figure 3.5.
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Figure 3.9: Cholesky(2) application software model in BIP

3.4 Conclusion

In this chapter, we presented the methods for generating BIP models out of languages and
various programming models. The ensemble of these methods consists the BIP Language
Factory. The semantic models of BIP preserve the structural representation of the input
models and provide analysis and verification techniques included in the rich BIP toolchain.
We analyzed the generation of KPN software models in BIP. The method receives as
input a KPN application software model described in DOL and produces the equivalent
representation in a BIP model. The construction is automated and fully preserves the
behavior of the software application. The characteristic of determinism of KPN process
networks enable separate analysis of computation and communication, exposes functional
parallelism and separates the functionality of the application from the target hardware
platform.



3.4. Conclusion 53

In the next chapter, we describe the hardware platform models used as the target
platforms which the application software will be mapped and run on.
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- Chapter 4 -

Modeling of HW Platforms in BIP

In the previous chapter, we presented the methods for generating BIP models out of
languages and various programming models. In this chapter we focus on the hardware
platforms by describing the Abstract Model of HW Platform in BIP. A BIP Hardware
Model should integrate both computation and communication constraints in a unified
model. The computation constraints are added with the use of processor components
and the profiling of the software processes. The communication constraints are integrated
with the use of cluster components modeling the communication paths using interconnects,
buses, Network-on-Chips and memories.

The chapter is structured as follows. First, we provide an introductory text describing
abstract models of manycore platforms in Section 4.1. Second, we specify the abstract
models of hardware platforms in BIP in Section 4.2. We describe the BIP components
needed to cover both computational and communication aspects of the hardware platforms.
In the final section, we conclude the chapter.

4.1 Abstract Model of Manycore Platforms

The growing need of efficient and fast execution of parallel applications has led to the
development of HW platforms designed to extend the capability of high parallelism in both
computation and communication level. These high performance platforms are composed of
multicore clusters which can be used as standard processing units or specific accelerators.
The construction of the platforms is realized by a synthesis of HW/SW resources. These
resources can be homogeneous or heterogeneous including clusters, shared memories, I/O
devices or sensors.

The clusters are computational units of the platform containing many processing ele-
ments (PE). According to the specification and the characteristics of a cluster, the number
of PEs can vary. In addition, there are different types of cluster buses, including the local
bus, the crossbar switch and the multiplexing interconnect. There are also local memories
for data and instruction caching. Figure 4.1 illustrates an example of a crossbar switch
interconnecting PEs with a shared memory. Figure 4.2 shows an example of a multiplexing
interconnect attached to a multi-bank memory.

The interconnecting structure needed for exchanging information on a chip is a major
characteristic. In the current work, we focus on the description of a Network-on-Chip
(NoC) composed by homogeneous manycore cluster IPs, as depicted in Figure 4.3. The
NoC offers a high speed, low latency, low power and reliable communication solution

55
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M 2 M 8M 1

PE 2PE 1 PE 8

INTERCONNECT

SM

Figure 4.1: Cluster Description

PE 1 PE 4PE 2 PE 3

M 3M 0 M 1 M 2

INTERCONNECT

Figure 4.2: Cluster Description

based on packet transmission. Each packet contains routing and arbitrating information
in order to be transported across the NoC. The packet routing is executed with the use of
Routers. A Router contains input and output ports towards each direction (North, South,
East, West), as well as towards the Local Cluster, which is connected to it via a Network
Interface (NI).

Router Router

RouterRouter

NI

NI

NI

NI

Cluster 1

Cluster 4

Cluster 2

Cluster 3

Figure 4.3: NoC Description

4.2 Abstract Models of HW Platforms in BIP

A HW platform consists of computational resources interconnected according to commu-
nication paths. Resources are used for computation (processors, memories) or for com-
munication (buses). Communication paths define the connections between computational
resources. More formally, we consider the family of HW platforms that can be represented
by the following grammar:

HW-Platform ::= HW-Resource+ . HW-Comm-Path+

HW-Resource ::= HW-Processor | HW-Memory | HW-Cluster-InterConnect |
HW-NI | HW-Router

HW-Comm-Path ::= HW-Processor . HW-InterConnect . HW-Memory

HW-InterConnect ::= HW-Cluster-InterConnect |
HW-Cluster-InterConnect . HW-NI . HW-Router+ .

HW-NI . HW-Cluster-InterConnect

The BIP model constructed from the HW platform represents explicitly, in an opera-
tional manner, the interconnect between the different resources as defined by the commu-
nication paths. This model is organized as a collection of interconnect, network interface,
router, bus, processor and memory components.
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The goal of the HW model in BIP is to capture the HW constraints which arise
upon the execution of a software application on a given platform. More specifically, these
constraints are characterized as non-functional and can include parameters such as time
delays, temperature and energy consumption. They are all affected by scheduling poli-
cies, conflicts, throughputs and response times. Therefore, the constraints exist both on
computation and on communication level. In the current model, we focus on integrating
non-functional constraints concerning time delays.

On the computation level, accurate measurements on the effects of a software applica-
tion running on a HW platform demand fine-grained analysis of the executable code and
the underlying processing elements of the platform. Initially, the executable code should
be analyzed at the instruction level. A pipeline model should be constructed along with
instruction and data caches. The above model will permit cycle-accurate performance
analysis of the basic operations of the processing element and the cache hit/miss costs. In
addition, the scheduling policies applied on the different processes can dramatically affect
the performance. The computation measurements are achieved with the use of a Processor
model described in the next section and the profiling of the software processes with the
corresponding timing delays as described in Chapter 7.

On the communication level, significant constraints derive from the use of buses, inter-
connects and memories. Namely, we have bus conflicts, bus throughputs and scheduling,
routing delays, routing policy and network throughput, memory data access, memory ac-
cess response and memory conflicts. The communication constraints are integrated with
the use of components modeling the communication paths from PEs towards the platform
memories and via versa. These components are crossbar switches, shared memories, multi-
plexing interconnects and multi-banked memories used to model intra-cluster communica-
tion and components such as network interfaces and routers for off-cluster communication.

4.2.1 Processor Abstract Model for Computation Constraints and Schedul-
ing

A Processor is a composite placeholder component with ports wr begin, wr end, rd begin,
rd end, corresponding to the initiation and termination of write and read operations. It is
composed by a set of software processes connected to the Processor Scheduler Component,
as it is illustrated in Figure 4.4. Although, it is filled with the software processes during
the next step, that is, the construction of the system model, we present below the Proces-
sor Scheduler Component and its functionality. The Processor Scheduler is responsible for
modeling the processor resource. It uses the acq (Acquire), rel (Release) ports to grant and
remove the control from the different processes which operate on the Processor. Initially,
the Processor Scheduler uses the acq port to authorize a software process to run. Each β
transition of the process is profiled with a delay to correspond with the amount of com-
putational workload executed. Using the get d (Get-Delay) port the Processor Scheduler
measures the computational delay and continues to the next β transition through the next
port. Finally, the software process reaches the point where the scheduler can release the
control and allow another process to run. The formal Definition 18 is given below.

18 Definition (Processor Scheduler Component)
We define the Processor Scheduler Component as SC = (LSC , XSC , PSC , TSC) with Ac-
quire and Release scheduling transitions, where the behavior is illustrated in Figure 4.5:

• LSC = {`1, `2, `3}, the set of control locations,
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acq relget id
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Scheduler

tick next

acq relget id

Process 1

next wb we

. . .

acq relget id

Process 2

next wb we

Processor

Figure 4.4: Processor Abstract Model in BIP

• XSC = {count, delay}, the set of variables,

• PSC = {acq, rel, get d, next, tick}, the set of ports,

• TSC = {
τacq = (`1, acq, true, facq, `2),
τrel = (`2, rel, true, skip, `1),
τd = (`2, get d, true, skip, `3),
τnext = (`3, next, gnext, skip, `2),
τtick = (`3, tick, gt, ft, `3),
τ ′rel = (`3, rel, grel, skip, `1)

} .

, with
facq : count = 0;
grel, gnext : [count == delay];
gt : [count < delay], ft : count+ +;

tick

acq rel

`2

`1

`3

rel

tick

next

get d

Processor Scheduler

get d next

[count == delay]

count + +;
[count < delay]

rel
[count == delay]

acq
count = 0;

Figure 4.5: Processor Scheduler Component in BIP

The concrete implementation of the Processor Component is done during the gener-
ation of the system model. The use of a Processor in the HW platform is illustrated in
Figures 4.10, 4.15. The above Processor model described in BIP, does not include pipeline
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model, instruction and data caches or DMAs. We chose not to provide a detailed model
of the Processor, so that we avoid explosion in the complexity, the size of the model and
the simulation time.

4.2.2 HW Components for Communication Constraints

Crossbar Switch Bus and Memory

A Crossbar Switch Bus Component is concretely defined as a scheduled collection of com-
munication path components, as it is shown in Figure 4.6. That is, for each write/read
path going on an interconnect, we consider the path fragment defined by the Bus Path
Component, which is responsible for the following operations:

• controlling the access of the communication path on the bus and initiates the write/read
operation.

• modeling effectively the transfer of data over the bus, from the processor once it gets
access to the bus, towards the memory.

• receiving data either from some software processes executing inside the processor or
from the previous path segment, depending on its position on the path. It acts like
a buffer and is needed to connect further either to the next path fragment or to the
memory.

The component is a timed BIP component [BBS06]. It is equipped with a set of
counters to measure the timing delays of all the operations. The delays counted are:

• the bus conflict, the time elapsed between the write/read request and the start of
the data transfer,

• the bus delay, the data transfer delay over the bus

• the next operation conflict, the conflict time passed until the next path fragment or
the memory becomes available.

There are used for observation purposes, as explained in Chapter 8.
For the transport of data the ports req (Request), ack (Acknowledge) are used to con-

nect with upper components, and op begin (Operation-Begin), op end (Operation-End) to
connect with lower components on the path. In addition, the ports acq (Acquire) and rel
(Release) are used to interact with the Bus Scheduler. The component is predefined and
belongs to the BIP hardware library. The formal definition is found below.

acq rel

BUS
Scheduler

acq rel req ack

BUS Path 1

tick opb ope

. . .

acq rel req ack

BUS Path n

tick opb ope

Crossbar Switch BUS

Figure 4.6: Crossbar Switch BUS Model in BIP
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19 Definition (Bus Path Component)
We define the Bus Path Component as BP = (LBP , XBP , PBP , TBP ), where:

• LBP = {`1, `2, `3, `4, `5, `6, `7},

• XBP = {count, bus delay, bus conflict, op conflict, proc id},

• PBP = {req, ack, acq, rel, tick, opb, ope}, where the port ope is binded with the
proc id variable.

• TBP = {
τ = (`1, req, true, freq, `2) ,freq : bus conflict = 0;
τ = (`2, tick, true, ft1 , `2) ,ft1 : bus conflict+ +;
τ = (`2, acq, true, fb, `3) fb : count = 0;
τ = (`3, tick, gt2 , ft2 , `3) ,gt2 : [count < bus delay]

, ft2 : count+ +;
τ = (`3, β, gβ, fβ, `4) ,gβ : [count == bus delay]

, fβ : op conflict = 0;
τ = (`4, tick, true, ft3 , `4) , ft3 : op conflict+ +;
τ = (`4, opb, true, skip, `5)
τ = (`5, ope, true, skip, `6)
τ = (`6, rel, true, skip, `7)
τ = (`7, ack, true, skip, `1)

}.

Each connection is realized using BIP connectors which strongly synchronize the cor-
responding ports. The behavior of the connector implements the transfer of data, its
address and size between the successive components, corresponding to the write and read
operations.

All the paths segments going over the same bus must share its transport capabilities
according to some predefined bus policy. The scheduling can be of one of fixed-priority,
round-robin or TDMA (Time Division Multiple Access). We model it explicitly by using
a Bus Scheduler Component, which interacts with all the Bus Path Components and
ensures exclusive access for transmission of data, according to the selected policy. The Bus
Scheduler acts as an arbiter to resolve the bus access conflicts. A simplified Bus Scheduler
Component is given below. It implements the basic mutual exclusion scheduling policy.

acq rel

`1

`2

acq rel

Bus Scheduler

Figure 4.7: Bus Scheduler Component in
BIP
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Figure 4.8: Bus Path Component in BIP

20 Definition (Bus Scheduler Component)
We define the Bus Scheduler Component as BS = (LBS , XBS , PBS , TBS), where:
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• LBS = {`1, `2},

• XBS = ∅,

• PBS = {acq, rel},

• TBS = {τ = (`1, acq, true, skip, `2), τ = (`2, rel, true, skip, `1)}.

The Memory is a timed component used to model the write/read memory operations
and measure the memory access delay. It is a component with ports opb (Operation-
Begin), ope (Operation-End) corresponding respectively to the beginning and ending of
the write/read. The use of Memory Component in the HW platform is shown in figure 4.9.
Formally, the component is defined as:

count++;

[count<mem_delay]count=0;

[count==mem_delay]

`1 `2

Memory

opb ope

tick tick

ope

opb

Figure 4.9: Memory Component in BIP

21 Definition (Memory Component)
We define the Memory Component as M = (LM , XM , PM , TM ), where:

• LM = {`1, `2},

• XM = {count,mem delay},

• PM = {opb, tick, ope},

• TM = {
τopb = (`1, opb, true, fopb , `2),
τtick = (`2, tick, gt, ft, `2),
τope = (`2, ope, gope , skip, `1)

}.

with,
fopb : count = 0;,
gt : [count < mem delay], ft : count+ +;,
gop e : [count == mem delay]

We assume a platform where there are k > 1 processors, one Crossbar Switch Bus and
a shared Memory.

22 Definition (Shared Memory Cluster Compound Component)
We define the Shared Memory Cluster Compound Component as MC = πγ(BUS,M) as
the Communication Model of a Cluster, where:
BUS = {BP1, . . . , BPk, BS}, where k the number of processors, BP the Bus Paths and
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BS the Bus Scheduler,
M the Memory Component. The set of interactions γ is defined as:
γ = {αopb , α

op
e , αacq, αrel|BP ∈ BUS} ∪ {αtick}

with,
αacq = ({BP.acq,BS.acq}, true, skip),
αrel = ({BP.rel, BS.rel}, true, skip),
αopb = ({BP.opb,M.opb}, true, skip),
αope = ({M.ope, BP.ope}, true, skip),
αtick = ({BS.tick,BP1.tick, . . . , BPk.tick,M.tick}, true, skip).

For each α ∈ γ, the priority rule π implies that the tick interaction αtick has lower
priority than any other interaction α. We export the tick port of the αtick interaction to
dynamically enable synchronization with other tick interactions. We will further refer to
the αtick interaction as MC.tick.

13 Example
Figure 4.10 shows the BIP model of a 4-processor (P) HW Platform and a shared memory.
Communication paths between the processors and the memory are implemented using the
previously defined set of bus components.

HW−Bus−

Scheduler
BP1 BP3

SB

BP2 BP4

SM

P 1 P 2 P 3 P 4

Figure 4.10: BIP model of a HW platform with four processors and one shared memory

Multiplexing Interconnect and MultiBank Memory

Another type of cluster bus is the Multiplexing Interconnect Component. The component
is designed to connect processors to a multi-banked memory. Data are forwarded using
routing and arbitration techniques. Based on address decoding, the requested address may
correspond to the intra-cluster multi-banked memory or the off-cluster NoC environment.
In case of simultaneous accesses in contiguous data, the number of the observed memory
conflicts is reduced due to fine-grained address interleaving.

The Multiplexing InterConnect is a composite component synthesized by a set of Bus
Interface Components and a set of connectors towards the multi-banked memory. An
abstract illustration is provided in Figure 4.11. The number of the Bus Interface Com-
ponents is the same as the number of processors used on the cluster. The Bus Interface
Component is intended to receive the write/read requests to the memory and carry out the
routing towards the corresponding Memory Bank. This is done with the use of address
decoding, as mentioned above. In the formal definition found below, we use a random
routing algorithm to forward the requests to the memory banks. The delay posed by the
interconnect is taken into account by the memory bank components described next.
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Bus Interface 1

req send mb req send og ack rec

. . .

req rec ack send

Bus Interface n

req send mb req send og ack rec

Multiplexing Interconnect

Figure 4.11: Multiplexing Interconnect Model in BIP

The Bus Interface Component has the following four ports: the req rec (Request-
Receive), req send (Request-Send) to receive and forward the memory access requests to
the memory, and the ack rec (Acknowledgment-Receive), ack send (Acknowledgment-Send)
to forward the executed requests back to the processor.

[dest_id==cluster_id]

mem_id=rand()%memBanks;

[dest_id!=cluster_id]

dest_id

proc_idproc_id,dest_idmem_id,proc_id

`1

`2

`3

`4

req send mb req send og

req rec

req rec

ack rec

Bus-Interface

ack send

ack rec

ack send

req send mb

req send og

Figure 4.12: Bus Interface Component in BIP

23 Definition (Bus Interface Component)
We define the Bus Interface Component as BI = (LBI , XBI , PBI , TBI), where:

• LBI = {`1, `2, `3, `4},

• XBI = {proc id,mem id,memBanks, dest id, cluster id},

• PBI = {req rec, req send mb, req send og, ack rec, ack send},

• TBI = {
τ = (`1, req rec, true, freq, `2) ,freq : mem id = rand()%(memBanks);
τ = (`2, req send mb, gmb, skip, `3) ,gmb : dest id == cluster id
τ = (`2, req send og, gog, skip, `3) ,gog : dest id! = cluster id
τ = (`3, ack rec, true, skip, `4) ,
τ = (`4, ack send, true, skip, `1)

}.
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The Memory Bank is a timed component used to synthesize the Multi-Bank Memory
Component, as illustrated in Figure 4.13. It is used to model the write/read memory oper-
ations and measure the interconnect and the memory access delay. It is a component with
ports opb, ope corresponding respectively to the beginning and ending of the write/read
and port tick for time synchronization. It can receive multiple requests from the Mul-
tiplexing InterConnect. The requests are stored to a buffer in case of conflict and upon
execution operation end acknowledgment is sent back to the local bus or the off-cluster
NoC.

opb ope

Memory Bank 1

tick

opb ope

Memory Bank n

tick

. . .

MultiBank Memory

Figure 4.13: MultiBank Memory Model in BIP

count=count+1;

incrBufValues(buf_req);

[count<mem_delay+interconnect_delay]

addFirst(buf_req,proc_id);

[!empty(buf_req)] [count==mem_delay+interconnect_delay]

mem_conflict=lastElement(buf_req);

deleteLast(buf_req);

count=1;

addFirst(buf_req,proc_id);

proc_id’=lastElement(buf_req);

mem_id,proc_id proc_id’

`1

`2
opb tick

opb

opetick

Memory Bank
tick

opb ope

Figure 4.14: Memory Bank Component in BIP

24 Definition (Memory Bank Component)
We define the Memory Bank Component as MB = (LMB, XMB, PMB, TMB), where:

• LMB = {`1, `2},

• XMB = {buf req,mem conflict, count,mem delay, interconnect delay, proc id, proc id′,mem id},

• PMB = {opb, tick, ope},

• TMB = {
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τopb = (`1, opb, true, fopb , `1),
τopb = (`2, opb, true, fopb , `2),
τtick1 = (`1, tick, gt1 , ft1 , `2),
τtick2 = (`2, tick, gt2 , ft2 , `2),
τope = (`2, ope, gope , skip, `1)

}

, with
fopb : addFirst(buf req, proc id);,
gt1 : [!empty(buf req)],
ft1 : mem conflict = lastElement(buf req);

proc id′ = lastElement(buf req);
deleteLast(buf req); count = 1;,

gt2 : [count < mem delay + interconnect delay],
ft2 : count+ +; incrBufV alues(buf req);,
gope : [count == mem delay + interconnect delay]

We assume a platform where there are k processors, one multiplexing interconnect and
a multi-banked memory.

25 Definition (Multi-Banked Memory Cluster Compound Component)
We define the Multi-Banked Memory Cluster Compound Component asMC = πγ(BUS,M)
as the Communication Model of a Cluster, where:
BUS = {BI1, . . . BIk}, where k the number of processors, BI the Bus Processor Inter-
faces
M = {MB1, . . . ,MBl} the Multi-Banked Memory Component, where l the number of
memory banks. The set of interactions γ is defined as:
γ = {γBI |BI ∈ BUS} ∪ {αtick},
where,
γBI = {αmb , αme |MB ∈M},

αmb = ({BI.req send mb,MB.opb}, g, f), with
g : [BI.mem id == MB.mem id], f : MB.proc id = BI.proc id; )

αme = ({MB.ope, BI.ack rec}, g, skip), with
g : [MB.proc id == BI.proc id]

αtick = ({BI1.tick, . . . , BIk.tick,MB1.tick, . . . , BIl}, true, skip).
For each α ∈ γ, the priority rule π implies that the tick interaction αtick has lower

priority than any other interaction α. We export the tick port of the αtick interaction to
dynamically enable synchronization with other tick interactions. We will further refer to
the αtick interaction as MC.tick.

Network On Chip

We model the network-on-chip in BIP using a composition of network components. These
components are network interface components, routers and the connections between them.
A network interface component is responsible for establishing a connection between the
intra-cluster bus and the off-cluster Network on Chip. It is modeled by two different com-
ponents: the Network Interface Outgoing Controller and the Network Interface Incoming
Controller, as shown in Figure 4.16.

The Network Interface Outgoing Controller Component receives write/read requests or
acknowledgments from the cluster bus and encapsulates them into packages. It forwards
them to the local router modeling the packaging and the forwarding delays. The ports
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PE 1 PE 2 PE 3 PE 4
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Figure 4.15: BIP model of a HW platform with four processors and a multi-banked
memory
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Figure 4.16: Network Interface Model in BIP
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req (Request), ack (Acknowledgment) are used to interact with the cluster bus. The port
send interacts with the local network router and the info port is used to receive packaging
information from the Network Interface Incoming Controller.

package=create(proc_id,dest_id);

[count<pack_delay]

count=0;

count=count+1;

[count==pack_delay]

package=create(pack_info);

ni_id

pack_info

package

proc_id,dest_id

`1

`2

`4

`3

info

info

send

send

tick

req

tick

req

NI-OG

ack

send

ack

Figure 4.17: Network Interface Outgoing Controller Component in BIP

26 Definition (Network Interface Outgoing Controller Component)
We define the Network Interface Outgoing Controller Component as
OG = (LOG, XOG, POG, TOG), where:

• LOG = {`1, `2, `3, `4},

• XOG = {count, pack delay, ni id, proc id, package, dest id, pack info},

• POG = {req, tick, send, info, ack}, where the ports send, info are binded with the
package variable.

• TOG = {
τ = (`1, req, true, freq, `2) ,freq : count = 0;

package = create(proc id, dest id);,
τ = (`2, tick, gt, ft, `2) ,gt : [count < pack delay], ft : count+ +;,
τ = (`2, send, gs, skip, `1) ,gs : [count == pack delay],
τ = (`1, info, true, skip, `3) ,
τ = (`3, ack, true, fack, `4) , fack : package = create(pack info);,
τ = (`4, send, true, skip, `1)

}.

The Network Interface Incoming Controller Component receives packages from the ex-
ternal network, extracts the important information and forwards the write/read requests
or acknowledgments to the cluster bus. The package reception from the NoC is real-
ized through the rec (Receive) port. The ports ack proc (Acknowledgment to Processor),
req mem (Request to Memory) forward the acknowledgment to the processor and respec-
tively, the request to the memory. The info port provides the Network Interface Outgoing
Controller with the packaging information needed to encapsulate the acknowledgments
received from the memory.

27 Definition (Network Interface Incoming Controller Component)
We define the Network Interface Incoming Controller Component as
IC = (LIC , XIC , PIC , TIC), where:
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[count==pack_delay && type==’ack’]

count=0;

type=getType(pack_info);

pack_info=unpack(package);

[count<pack_delay]

count=count+1;
[count==pack_delay && type==’req’]

mem_id=rand()%memBanks;

proc_id

package
pack_info

mem_id,ni_id
`1

`2 `3

req mem

ack proc

tick

tick

rec

NI-IC

req mem

info
rec

ack proc

info

Figure 4.18: Network Interface Incoming Controller Component in BIP

• LIC = {`1, `2, `3},

• XIC = {count, pack delay, proc id, package, pack info,mem id,memBanks},

• PIC = {rec, tick, ack proc, req mem, info}, where the ports rec pack, info are binded
with the package variable.

• TIC = {
τ = (`1, rec, true, frec, `2) ,frec : count = 0;

pack info = unpack(package);
type = getType(pack info);

τ = (`2, tick, gt, ft, `2) ,gt : [count < pack delay], ft : count+ +;
τ = (`2, ack proc, gack, skip, `1) ,gack : [count == pack delay && type ==′ ack′],
τ = (`2, info, ginfo, finfo, `3) ,ginfo : [count == pack delay && type ==′ req′],

finfo : mem id = rand()%memBanks;,
τ = (`3, req mem, true, skip, `1)

}.

We independently define the Cluster Components below. At the end of the current
section, we provide the complete definition of a NoC BIP model. We assume a HW
platform where there are k processors, one crossbar switch, a shared memory and a network
interface.

28 Definition (Shared Memory Cluster Compound Component with a Network Interface)
We define the Shared Memory Cluster Compound Component as CLSM = πγ(BUS,M,NI)
as the Communication Model of a Cluster, where:
BUS = {BP1, . . . BPk+k+1, BS}, where k the number of processors, BP the Bus Paths
and BS the Bus Scheduler.
NI = {OG, IC}.
M the Memory Component. The set of interactions γ is defined as:
γ = {αacq, αrel|BP ∈ BUS} ∪ {αmb , αme |BP ∈ {BP1 . . . BPk+1}}∪

{αoutb , αoute |BP ∈ {BPk . . . BPk+k}} ∪ {αinb , αine , αinfo, αtick},
with,
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αacq = ({BP.acq,BS.acq}, true, skip),
αrel = ({BP.rel, BS.rel}, true, skip),
αmb = ({BP.opb,M.opb}, true, skip),
αme = ({M.ope, BP.ope}, true, skip),
αoutb = ({BP.opb, OG.req}, true, skip),
αoute = ({IC.ack proc,BP.ope}, [IC.proc id == BP.proc id], skip),
αinb = ({IC.req mem,BP.req}, true, skip),
αine = ({BP.ack,OG.ack}, true, skip),
αinfo = ({IC.info,OG.info}, true, skip),
αtick = ({BS.tick,BP1.tick, . . . , BPk+k+1.tick,M.tick}, true, skip).

For each α ∈ γ, the priority rule π implies that the tick interaction αtick has lower priority
than any other interaction α. The Shared Memory Cluster Compound Component exports
the ports OG.send as send, the IC.rec as rec and the αtick interaction export the port
tick.

We assume a HW platform where there are k processors, a multiplexing interconnect,
a multi-banked memory and a network interface.

29 Definition (Multi-Banked Memory Cluster Compound Component with a Network Interface)
We define the Multi-Banked Memory Cluster Compound Component as CLMB = πγ(BUS,M,NI)
as the Communication Model of a Cluster, where:
BUS = {BI1, . . . BIk}, where k the number of processors, BI the BUS Processor Inter-
faces,
M = {MB1, . . . ,MBl} the Multi-Banked Memory Component, where l the number of
memory banks,
NI = {OG, IC} the network interface. The set of interactions γ is defined as:
γ = {γBI |BI ∈ BUS}∪ {αoutb , αoute |BI ∈ BUS}∪ {αinb , αine |MB ∈M}∪ {αinfo}∪ {αtick},
where,
γBI = {αmb , αme |MB ∈M},

αmb = ({BI.req send mb,MB.opb}, g, f),
g : [BI.mem id == MB.mem id], f : MB.proc id = BI.proc id;,

αme = ({MB.ope, BI.ack rec}, g, skip),
g : [MB.proc id == BI.proc id],

αoutb = ({BI.req send og,OG.req}, true, f),
f : OG.proc id = BI.proc id;OG.dest id = BI.dest id;,

αoute = ({IC.ack proc,BI.ack rec}, g, skip),
g : [IC.proc id == BI.proc id],

αinb = ({IC.req mem,MB.opb}, g, f),
g : [IC.mem id == MB.mem id], f : MB.proc id = IC.ni id;,

αine = ({MB.op end,OG.ack}, g, skip),
g : [MB.proc id == OG.ni id],

αinfo = ({IC.info,OG.info}, true, skip),
αtick = ({BI1.tick, . . . , BIk.tick,MB1.tick, . . . , BIl, IC.tick,OG.tick}, true, skip).
For each α ∈ γ, the priority rule π implies that the tick interaction αtick has lower

priority than any other interaction α. The Multi-Banked Memory Cluster Compound
Component exports the ports OG.send as send, the port IC.rec as rec and the αtick

interaction export the port tick.

In Figure 4.19, we illustrate an example of a BIP model of a HW platform with four
processors, a multiplexing interconnect, a multi-banked memory and a network interface.
The latter consists of the NI-IN (Network Interface Incoming) Component and the NI-OG
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(Network Interface Outgoing) Component, which are both connected to the multiplexing
interconnect.

PE 1 PE 2 PE 3 PE 4

NI−IN

NI−OG

TCDM MultiBank Memory

Logarithmic InterConnect

Figure 4.19: BIP model of a HW platform with four processors, a multiplexing inter-
connect, a multi-banked memory and a network interface

The key component which the NoC functionality is based on are the network routers.
The routers read the information contained inside a package and they are charged with the
task of routing and arbitrating the packages inside the NoC. We model the routers in BIP
using a composite component called Router. The Router is composed by a set of coupled
Router Incoming and Router Outgoing Port Components, as illustrated in Figure 4.20.
There is one couple Incoming and Outgoing Port Component for each routing direction.
The directions are North, South, East, West and local cluster. The port components are all
connected with all the other directions. That is, each Router Incoming Port Component is
connected with all the Router Outgoing Port Components of all the other directions. The
connection is modeled with a connector controlled by a guard depending on the routing
information of the package.

The Router Incoming Port Component uses the rec port to receive the incoming pack-
ages in the router. It simply forwards the packages to the guarded connectors sending
explicitly the routing information to it along with all the package through the fwd port.
The component is also timed, measuring the Router Outgoing Port conflict delays.

30 Definition (Router Incoming Port Component)
We define the Router Incoming Port Component as IR = (LIR, XIR, PIR, TIR), where:

• LIR = {`1, `2},

• XIR = {package, port id)},

• PIR = {rec, fwd}, where port rec is binded with the package variable and fwd port
is binded with the package and port id variables.

• TIR = {
τ = (`1, rec, true, skip, `2)}, frec : port id = route(package)
τ = (`2, fwd, true, skip, `1)}

}.

The standard routing delay of a package is modeled by the Router Outgoing Port
Component. Apart from the routing delay the link latency is also considered. The link
latency derives from the links connecting the routers on the NoC. This latency is integrated
in the Router Outgoing Port Component along with the routing delay. The ports rec and
send interact with the Incoming Port and the next Router Component respectively.

31 Definition (Router Outgoing Port Component)
We define the Router Outgoing Port Component as OR = (LOR, XOR, POR, TOR), where:
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Figure 4.20: Router Component in BIP

port_id=route(package);

[count<router_delay+link_latency]

count++;

count=0; [count==router_delay+link_latency]
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Figure 4.21: Router Incoming and Router Outgoing Port Components in BIP
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• LOR = {`1, `2},

• XOR = {package, count, routing delay, link latency, port id)},

• POR = {rec, tick, send}, where port rec is binded with the package and port id
variables and send port is binded with the package variable.

• TOR = {
τ = (`1, rec, true, fr, `2)} , fr : count = 0;,
τ = (`2, tick, gt, ft, `2)} , gt : [count < (routing delay + link latency)]

, ft : count+ +,
τ = (`2, send, gf , skip, `1)} , gf : [count == (routing delay + link latency)]

}.

32 Definition (Router Compound Component)
We define the Router Compound Component as
RT = πγ(IRN , IRS , IRE , IRW , IRL, ORN , ORS , ORE , ORW , ORL), where abbreviations
(N, S, E, W, L) stand for (North, South, East, West, Local) respectively. The set of
interactions γs is defined as:
γ = {αNS , αNE , αNW , αNL} ∪ {αSN , αSE , αSN , αSL} ∪ {αEN , αES , αEN , αEL}∪

{αWN , αWS , αWE , αWL} ∪ {αLN , αLS , αLE , αLW } ∪ {αtick},
αxy = ({IRx.fwd,ORy.rec}, g, skip), with

g : [IRx.port id == ORy.port id] and x, y ∈ {N,S,E,W,L},
αtick = ({ORN .tick,ORS .tick,ORE .tick,ORW .tick,ORL.tick}, true, skip).

For each α ∈ γ, the priority rule π implies that αtick has less priority that any other
interaction α ∈ γ. The Router Compound Component exports the ports IRx.rec as recx,
ORx.send as sendx
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Figure 4.22: NoC Component in BIP

We assume a four-cluster NoC platform.

33 Definition (Four-Cluster NoC Compound Component)
We define the Four-Cluster NoC Compound Component asNoC = πγ(CL1, . . . , CL4, R1, . . . , R4)
as the Communication Model of a NoC, where:
CL are the clusters and R are the routers. The set of interactions γ is defined as:
γ = {γR1, γR2, γR3, γR4} ∪ {αtick},
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where,
γR1 = {αinCL1, α

out
CL1, α

in
R1, α

out
R1 },

γR2 = {αinCL2, α
out
CL2, α

in
R2, α

out
R2 },

γR3 = {αinCL3, α
out
CL3, α

in
R3, α

out
R3 },

γR4 = {αinCL4, α
out
CL4, α

in
R4, α

out
R4 },

αinCL = {R.send,CL.rec},
αoutCL = {CL.send,R.rec},
αinR1 = {R1.rec,R2.send},
αoutR1 = {R1.send,R2.rec},
αinR2 = {R2.rec,R3.send},
αoutR2 = {R2.send,R3.rec},
αinR3 = {R3.rec,R4.send},
αoutR3 = {R3.send,R4.rec},
αinR4 = {R4.rec,R1.send},
αoutR4 = {R4.send,R1.rec},
αtick = ({CL1.tick, . . . , CL4.tick,R1.tick, . . . , R4}, true, skip).
For each α ∈ γ, the priority rule π implies that the tick interaction αtick has lower

priority than any other interaction α. We export the tick port of the αtick interaction to
dynamically enable synchronization with other tick interactions. We will further refer to
this interaction as NoC.tick.

4.3 Conclusion

In this chapter, we described the Abstract Model of HW Platform in BIP. A BIP Hardware
Model should integrate both computation and communication constraints in a unified
model. The computation constraints are added with the use of a Processor Scheduler
Components and the profiling of the software processes with the corresponding timing
delays as described in Chapter 7. The communication constraints are integrated with
the use of Cluster Compound Components modeling the communication paths from PEs
towards the platform memories and via versa. There are two types of Cluster used:

1. the Shared Memory Cluster using crossbar switch as a bus and shared memories.

2. the Multi-banked Memory Cluster using multiplexing interconnect as a bus and an
efficient multi-banked memory.

The clusters include network interface to be capable to interact with off-cluster inter-
connect. The off-cluster interconnect modeled is a 4 × 4 network-on-chip. The NoC is
implemented using Router Components modeling routing and arbitration policies. To
compose the HW Platform models, we defined a library of atomic and compound com-
ponents. These components can be parametrized, in order to model specific manycore
platforms as we present in Sections 10.1 and 11.1. The correct-by-construction synthesis
of the complete HW/SW model is analyzed in Chapter 6 considering the mapping of the
SW application on the HW platform introduced in the next Chapter 5.
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- Chapter 5 -

Binding BIP SW Model to HW Platforms

In the previous chapter, we specified the target HW platforms which we consider in our
work. We defined the abstract HW platform models in BIP and all the components types
needed for them. In this chapter, we introduce the mapping definition and the refine-
ment of the software application model in BIP in order to conform with the mapping
specification, thus accurately modeling the deployment on the HW platform. The refined
software application model in BIP is obtained by a series of correct-by-construction trans-
formations. We use a notion of trace equivalence, based on the principle of observational
equivalence [Mil80], to prove the correctness of the refined model. The aim is to show the
equivalence between the trace of the initial software application model and the final mixed
SW/HW System model which we define in Chapter 6.

The chapter is structured in two sections. In the first section, we describe the mapping
specification and in the second section, we define the refined software application model,
the intermediate refinement steps and we prove the correctness of the transformed model.

5.1 Mapping Specification

Given an Application-Software and a HW-Platform, a Mapping associates the software pro-
cesses to hardware processors and the software channels to hardware memories. Moreover,
the mapping also defines the scheduling policies for processors, formally:

Mapping ::= Mapping-Item+ . Scheduling-Policy+

Mapping-Item ::= SW-Process 7→ HW-Processor

| SW-Channel 7→ HW-Memory

As presented in Section 3.2.2 the FIFO Components contain behavior which controls
the data buffer. In order to deploy the application software on the HW platform, we need
a low level implementation model for the SW-Channels where the control and the data
are dissociated and moreover, the Write/Read operations are no longer atomic, since they
involve more than one component. As a result, we decompose the FIFO Component in
BIP, which models the SW-Channels, into three new components: the FIFO-Write, the
FIFO-Read and the FIFO-Buffer Component.

The FIFO-Write and FIFO-Read Components are used to model the Write/Read FIFO
access routines which control the buffer indices, the buffer size and the data counters.
Therefore, the FIFO-Write and FIFO-Read Components are binded with the Process con-
nected to them, and will be referred to as FIFO-Routine Components. The FIFO-Buffer
Component is used to model the store and load operations on the buffer. As a consequence
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of the above decomposition, the Write/Read operations are no longer atomic, since they
involve more than one component.

A more detailed Mapping associates a FIFO-Routine with the same hardware processor
as the Process which is connected to and associates each FIFO-Buffer with a hardware
memory.

5.2 Application-Software Model Refinement

Given an Application-Software model, the adjustment for connection with a hardware
model is performed in a series of transformations:

1. Breaking the atomicity of Write/Read operations. In the BIP implementation of
the Application-Software, the Write/Read are blocking operations. Since the next
transformation decomposes the SW-Channels to three different components, we need
to ensure the non-atomicity of the Write/Read operations, in order to preserve the
blocking functionality.

2. Decomposing the SW-Channels into Write/Read FIFO access routines and data
buffers to accurately map them to hardware processors and hardware memories.

3. Modifying Process and FIFO-routines Components to enable interaction with a hard-
ware processor.

The above transformations refine the Application-Software model in a correct-by-construction
manner and are described in the next Section 5.2.1.

5.2.1 Breaking Atomicity - Refinement

The first transformation consists in breaking atomicity of write and read operations. Every
transition involving an input/output port x is split into two transitions, labeled by fresh
ports, respectively xb (i.e., x-begin) and xe (i.e., x-end). This is obtained by adding new
control locations for each read/write operation in the behavior of a process and a FIFO
Component. The transformed components are called Refined and their formal definition
is given below.

34 Definition (Refined Process Component)
Given a Process Component G = (L,P,X, T ) as defined in Definition 15, we define the
Refined Process Component GR = (LR, X, PR, T R) with broken atomicity on the Read,
Write transitions, where the behavior is described in Figure 5.1:

• LR = L ∪ {`′′|τ ∈ T, port(τ) 6= β}, the set of control locations,

• PR = {wb, we|w ∈ Pw} ∪ {rb, re|r ∈ Pr}, the set of ports, where wb, re are paired
with wr data and rd data respectively,

• T R = {τb = (`, pb, true, skip, `
′′), τe = (`′′, pe, true, skip, `

′)|τ = (`, p, true, skip, `′) ∈
T } ∪ {τ = (`, β, g, f, `′)|τ ∈ T }, the set of transitions.

That is, we replace each transition τ labeled by a port p with two consecutive transi-
tions τb, τe labeled respectively by ports pb, pe. The first initiates the communication (write
or read) and is followed by the other that awaits for its completion. A transitive location
`′′ is added between transitions τb and τe. Internal β transitions are kept unchanged.
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14 Example (Refined Producer Component)
Given the Producer Component defined in Example 6, we illustrate in Figure 5.1 the Re-
fined Producer Component based on the Definition 34 of the Refined Process Component.

w

wwr_data=1;

wr_data

[wr_data<2]

wr_data=wr_data+1;

wr_data=1;

wr_data

[wr_data<2]
wr_data=wr_data+1;

`2

`1

`′′

`1

`2

Producer

β

Refined Producer

wb

we

we

wb

β

Figure 5.1: Model of the Producer Component (left) and model of the Refined Producer
Component in BIP (right).

35 Definition (Refined FIFO Component)
Given a FIFO Component F as defined in Definition 16, we define a Refined FIFO Com-
ponent as a BIP component FR = (LFR , XF , PFR , TFR), where the behavior is described
in Figure 5.2:

• LFR = {`, `w, `r},

• XFR = {wr data, rd data, buff, i, j, k, count},

• PFR = {wb, we, rb, re}, where wb and rb paired with {wr data} and {rd data} re-
spectively.

• TFR = {
τwb = (`, wb, gw, fwm, `w),
τwe = (`w, we, true, fwn, `),
τrb = (`, rb, gr, frm, `r),
τre = (`r, re, true, frn, `),

}.
We replace each transition τ labeled by a port p with two consecutive transitions τb, τe
labeled respectively by ports pb, pe. After evaluating the guard, the first transition executes
the Write or Read actions on the buffer. The second, increases or (resp. decreases) the
FIFO counter and adjusts the buffer indices.

36 Definition (Refined Process Network Composition)
For a Process Network N = γ(G1, . . . , Gn, F1, . . . , Fk) as defined in Definition 17, we define
the Refined Process Network NR = γR(GR1 , . . . , G

R
n , F

R
1 , . . . , F

R
k ), where GR Components

are defined in Definition 34, FR Components are defined in Definition 35 and the set of
interactions γR is defined as:
γR = {αwb , αwe |αw ∈ γ} ∪ {αrb , αre|αr ∈ γ},
where, if αw = ({G.w, F.w}, true, fαw) then: αwb = ({GR.wb, FR.wb}, true, fαw)

αwe = ({GR.we, FR.we}, true, skip)
and if αr = ({G.r, F.r}, true, fαr) then: αrb = ({GR.rb, FR.rb}, true, skip)

αre = ({GR.re, FR.re}, true, fαr)
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[count<k]

i=(i+1)%k;

w

w r
i=0; j=0; count=0;

i=(i+1)%k;
count−−;

i=0; j=0; count=0;

[count<k] [count>0]

j=(j+1)%k;
count++;

[count>0]

j=(j+1)%k;

r

buff[i]=wr data; count++;

wr data rd data

rd data

wr data

`
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var: wr data, rd data, i, j, count, buff[k]

`

`w `r

Refined FIFO

buff[i]=wr data; rd data=buff[j];

rbwb
we re
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var: wr data, rd data i, j, count, buff[k]

rd data=buff[j]; count–;

wb

we

Figure 5.2: Model of the FIFO channel (left) and the Refined FIFO channel in BIP
(right).

We split every interaction α into two consecutive interactions αb, αe, which depend
on the initial interaction type. If it is a Write interaction αw, the αwb will preserve the
behavior of the initial αw, and respectively for Read interactions αr, the αre transition will
execute the data transfer.

15 Example (Producer-Consumer Refined Composition)
Given a Producer-Consumer Process Network PC as defined in Example 8, we break
the atomicity of the interactions which belong to PC and we define the Refined Process
Network PCR = γR(GRP , F

R, GRC), where γR = {αwb , αrb , αwe , αre},
αwb = ({GRP .wb, FR.wb}, true, fαw), αrb = ({FR.rb, GRP .rb}, true, fαr),
αwe = ({GRP .we, FR.we}, true, skip), αre = ({FR.re, GRP .re}, true, skip)
The Producer-Consumer Refined Composition in BIP is illustrated in Figure 5.3.
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Figure 5.3: Producer-Consumer Refined Composition in BIP

The set of traces is represented as the interleavings in Figure 5.4.

Correctness

In this section, we prove trace equivalence between the above Refined Process Network
Composition and the initial Process Network.
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αwb

αwe

αwb

αwe

αrb αre GRC .β

αrb αre GRC .β

αwb

αwe

GRP .β

αrb αre GRC .β

Figure 5.4: Traces of the Refined Producer-Consumer Process Network.

37 Definition (Complete Run)
For a given composition C = γ(B1, B2, . . . , BN ), a run θ is called complete, if the number
of begin events equals the end events.

38 Definition (Trace Restriction of a Refined Process Network NR)
For a Refined Process Network NR:

• The restriction of a run θR to end events is defined by:

traceR(θR) =


ε ,if θR : ε

β.traceR(θ′R) ,if θR : q
β−→ q′.θ′R

α.traceR(θ′R) ,if θR : q
αb−→ q′

αe−→ q′′.θ′R,

where α ∈ γ and αb, αe use the same FIFO.

Let NR be the Refined Process Network for N .

1 Theorem
For each run θ in the Process Network N :

θ : q0
a1−→γ q1

a2−→γ q2
a3−→γ ...

an−→γ qn
There exists a complete run θR in the Refined Process Network NR:

θR : q0
aR1−−→γR q

R
1

aR2−−→γR q
R
2

aR3−−→γR ...
aRm−−→γR q

R
m

such that:

• qn = qRm

• trace(θ) = traceR(θR)

2 Theorem
For each complete run θR in the Refined Process Network NR:

θR : q0
aR1−−→γR q

R
1

aR2−−→γR q
R
2

aR3−−→γR ...
aRm−−→γR q

R
m

There exists a run θ in the Process Network N :
θ : q0

a1−→γ q1
a2−→γ q2

a3−→γ ...
an−→γ qn

such that:

• qn = qRm

• traceR(θR) = trace(θ)
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1 Lemma
For each complete run θ in the Refined Process Network NR:
θ : q0 → · · · → qn
There exists a complete run θ′ in the Refined Process Network NR starting from q0:
θ′ : q0 → · · · → qn′

such that:

• qn = qn′

• in θ′ any begin interaction is followed immediately by the corresponding end inter-
action.

1 Proof (Theorem 1)
We consider a run θ : q0

α1

−→γ q1
α2

−→γ ...
αn−−→γ qn in a Process Network N . Based on the

Definition 36 of the Refined Process Network, we break the atomicity of the Write and Read
interactions and we replace them with begin/end-Write/Read interactions. Since we do not
modify the β transitions we consider them hidden from the run. Thus, we obtain a run θR :

q0
α1
b−→γR q

R
1

α1
e−→γR q

R
2

α2
b−→γR q

R
3

α2
e−→γR ...

αRm−−→γR q
R
m, which belongs in the Refined Process

Network NR. According to the Definition 36 of the Refined Process Network Composition
as it is illustrated in the Example 15 and the Figure 5.3, we conclude that qn = qRm. In
addition, we have trace(θ) = α1.α2 . . . αn and trace(θR) = α1

b .α
1
e.α

2
b .α

2
e . . . α

n
b .α

n
e . Based

on the Definition 38, we restrict the trace θR such that traceR(θR) = α1.α2 . . . αn. So, we
conclude that trace(θ) = traceR(θR).

1 Proposition
Let a complete run θR : q0

α1

−→γR q1
α2

−→γR q2.θ
′, which belongs in the Refined Process

Network NR and trace(θR) = α1.α2.trace(θ
′). Suppose that the interactions α1, α2 modify

independent variables which do not impact the evaluation of any transition guard. Thus,
we can reverse their execution order:

θR : q0
α2

−→γR q
′
1
α1

−→γR q
′
2.θ
′ and trace(θR) = α2.α1.trace(θ

′),
preserving the equality of the ending states q′2 = q2 . The proof is evident and thus not
required.

2 Proof (Lemma 1)
Let a complete run θR : q0

α1

−→γR q1
α2

−→γR q2.θ
′, which belongs in the Refined Process

Network NR and trace(θR) = α1.α2.trace(θ
′). Based on Proposition 1 we can reverse the

execution order of interactions α1, α2: θR : q0
α2

−→γR q
′
1
α1

−→γR q
′
2.θ
′.

As we can see in Example 15 the traces of a Refined Process Network contain αwb , α
w
e , α

r
b , α

r
e

interactions. The order of execution of begin and end events is respected provided that
the Write/Read operate on the same FIFO. If the FIFOs are different we can have in-
terleavings of Write/Read and begin/end events. However, based on the Proposition 1
we can recursively relocate the execution order of begin events of the interactions which
operate on different FIFOs, so that they are followed immediately by their corresponding
end interaction. Thus, we can conclude that:

• the ending state of the new run is equal to the ending state of the old run

• in θR
′

any begin interaction is followed immediately by the corresponding end inter-
action
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3 Proof (Theorem 2)
We consider a run θR : q0

α1

−→γR q1
α2

−→γR . . .
αm−−→γR qm in a Refined Process Network NR.

Based on Lemma 1, we consider θR in NR such that any begin is immediately followed by

the corresponding end interaction θ′R : q0
α1
b−→γR q

′
1

α1
e−→γR . . .

αmb−−→γR q
′
m−1

αme−−→γR q
′
m. As a

consequence of Lemma 1, we have qm = q′m.
Additionally, based on the Definition 36 of the Refined Process Network as it is il-

lustrated in the Example 15 and the Figure 5.3, we replace the consecutive begin/end

interactions with a single Write or Read interaction. Thus, we obtain a run θ : q0
α1

−→γ

q2
α2

−→γ . . .
αm−−→γ qm such that θ belongs in Process Network N .

We have, trace(θ) = α1.α2 . . . αm and trace(θR) = α1
b .α

1
e.α

2
b .α

2
e . . . α

m
b .α

m
e . Based on

the restriction of traces in Definition 38, we also have traceR(θR) = α1.α2 . . . αm. So, we
conclude that traceR(θR) = trace(θ).

5.2.2 FIFO Decomposition - Refinement

Every SW-Channel in the application software is replaced by a composition of FIFO-Write,
FIFO-Read and a FIFO-Buffer atomic components (see Figure 5.5). The two former com-
ponents represent the control part of the software channel, that is, the hardware dependent
software routines implementing the read/write operations. The latter component simply
represents the buffer of data.

All the three components FIFO-Read, FIFO-Write, FIFO-Buffer are predefined BIP
components and belong to the BIP hardware dependent software library. The FIFO-
Read Component, illustrated in Figure 5.5, implements the read operation on channels. It
has the ports rb (Read-Begin), re (Read-End) for its interaction with a software process
read operation, and ports mrb (Memory Read-Begin), mre (Memory Read-End) for its
interaction with the buffer. The FIFO-Write Component implements the write action in
a similar manner.

Let us notice that the two routines, FIFO-Write and FIFO-Read, require extra syn-
chronization with each other in order to maintain a coherent value for the used space
within the buffer. This is realized by using strong synchronization between two control
ports, wu (Write Update)and ru (Read Update) and the Memory-End interactions.

39 Definition (FIFO-Write Component)
We define the FIFO-Write Component as a BIP Component FW = (LFW , XFW , PFW , TFW ),
where the behavior is described in Figure 5.5.

• LFW = {`1, `2, `3, `4},

• XFW = {wr data, i, k, count, buff},

• PFW = {wb,mwb,mwe, wu, we}, where wb associated with {wr data},

• TFW = {
τwb = (`1, wb, true, skip, `2),
τmwb = (`2,mwb, gw, skip, `3), with gw : [count < N ],
τmwe = (`3,mwe, true, fwn, `4), with fwn : count+ +;

i = (i+ 1)%N ;
buff [i] = data;,

τwe = (`4, we, true, skip, `1),
{τu = (`, wu, true, frc, `)|` ∈ LFW }, with frn : count−−;

}.
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40 Definition (FIFO-Read Component)
We define the FIFO-Read Component as a BIP component FR = (LFR, XFR, PFR, TFR),
where the behavior is described in Figure 5.5.

• LFR = {`1, `2, `3, `4},

• XFR = {rd data, j, k, count, buff},

• PFR = {rb,mrb,mre, ru, re}, where re associated with {rd data},

• TFR = {
τrb = (`1, rb, true, skip, `2),
τmrb = (`2,mrb, gr, skip, `3), with gr : [count > 0],
τmre = (`3,mre, true, frn, `4), with frn : count−−; j = (j + 1)%N ; data = buff [j];,
τre = (`4, re, true, skip, `1),
{τu = (`, ru, true, fwc, `)|` ∈ LFR}, with frn : count+ +;

}.

The FIFO-Buffer represents a passive component modeling the data storage. It has
ports opb (Operation Begin)) and ope Operation End for performing the write/read oper-
ations.

41 Definition (FIFO-Buffer Component)
We define the FIFO-Buffer Component as a BIP component FB = (LFB, XFB, PFB, TFB),
where the behavior is described in Figure 5.5.

• LFB = {`1, `2, },

• XFB = ∅,

• PFB = {opb, ope},

• TFB = {
τopb = (`1, opb, true, skip, `2),
τope = (`2, ope, true, skip, `1).

}.

42 Definition (Split-FIFO Process Network Composition)
Given a Refined Process Network NR as defined in Definition 36, we define a Split-FIFO
Process Network ND = γD(GR1 , . . . , G

R
n , FW1, FR1, FB1, . . . , FWk, FRk, FBk), where the

set of interactions γD is defined as:
γD = {αwb , αmwb , αmwe , αwe |αwb ∈ γR} ∪ {αrb , αmrb , αmre , αre|αrb ∈ γR},

αmwb = ({FW.mwb, FB.wb}, true, skip),
αmwe = ({FW.mwe, FB.we, FR.ru}, true, skip),
αmrb = ({FR.mrb, FB.rb}, true, skip),
αmre = ({FR.mre, FB.re, FW.wu}, true, skip).
The write/read operations are executed in two steps. The interactions αmwb , αmrb Mem-

ory Write/Read Begin and αmwe , αmre Memory Write/Read End are added to synchronize
the FIFO Buffer with the FIFO Routines.

16 Example (Producer-Consumer Split-FIFO Composition)
Given a Refined Producer-Consumer Process Network PCR, we decompose the FIFO
FR Component into three new components FW , FR, FB such that we obtain PCD =
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Figure 5.5: Model of the Producer-Consumer Split-FIFO System Model in BIP
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αwb

αmwb

αmwe

αwe

GDP .β

αwb

αmwb

αmwe

αwe

αrb αmrb αreαmreαmrbαrbGDC .β GDC .βαreαmre

Figure 5.6: Traces of Split-FIFO Producer-Consumer Process Network.

γD(GRP , FW,FR,FB,G
R
C) , where γD = {αwb , αrb , αmwb, αmwe, αrb , αwe , αre, αmrb, αmre}, as

illustrated in Figure 5.5, with
αmwb = ({FW.mwb, FB.wb}, true, skip),
αmwe = ({FW.mwe, FB.we, FR.ru}, true, skip),
αmrb = ({FR.mrb, FB.rb}, true, skip),
αmre = ({FR.mre, FB.re, FW.wu}, true, skip).
The set of traces is represented as the interleavings in Figure 5.6.

Correctness

In the current section, we prove the trace equivalence of a Split-FIFO Process Network
ND with a Refined Process Network NR. That is, the composition is a refined model of
the SW-Channel which fully preserves the input/output behavior of the software channel.

43 Definition (Trace Restriction of a Split-FIFO Process Network ND)
For a Split-FIFO Process Network ND, the restriction of a trace of a run θD to non-
memory events is defined by:

traceD(θD) =


ε ,if θD : ε

β.traceD(θ′D) ,if θD : q
β−→ q′.θ′D

traceD(θA).traceD(θB) ,if θD : θA.q
αmb−−→ q′

αme−−→ q′′.θB
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Let ND be the Split-FIFO Process Network for NR.

3 Theorem
For each run θR in the Refined Process Network NR:

θR : q0
aR1−−→γR q

R
1

aR2−−→γR q
R
2

aR3−−→γR · · ·
aRn−−→γR q

R
n

There exists a complete run θD in the Split-FIFO Process Network ND:

θD : q0
aD1−−→γD qD1

aD2−−→γD qD2
aD3−−→γD · · ·

aDm−−→γD qDm
such that:

• qRn = qDm, where qDm concerns the Process Components,

• trace(θR) = traceD(θD)

4 Theorem
For each complete run θD in the Split-FIFO Process Network ND:

θD : q0
aD1−−→γD qD1

aD2−−→γD qD2
aD3−−→γD ...

aDm−−→γD qDm
There exists a run θR in the Refined Process Network NR:

θ : q0
aR1−−→γR q

R
1

aR2−−→γR q
R
2

aR3−−→γR · · ·
aRn−−→γR q

R
n

such that:

• qRn = qDm, where qDm concerns the Process Components,

• traceD(θD) = trace(θR)

2 Lemma
For each complete run θ in the Split-FIFO Process Network ND:
θ : q0 → · · · → qn
There exists a complete run θ′ in the Split-FIFO Process Network ND starting from q0:
θ′ : q0 → · · · → qn′

such that:

• qn = qn′

• in θ′ any αwb or αrb interaction is followed immediately by the series of interactions
αmwb , αmwe , αwe and αmrb , αmre , αre respectively.

4 Proof (Theorem 3)
We consider a complete run θR in a Refined Process Network NR. Based on Lemma 1, we
re-order any begin interaction so that it is immediately followed by the corresponding end

interaction. Since we do not consider the β transitions, we have θR : q0
α1
b−→γR qR1

α1
e−→γR

qR2
α2
b−→γR qR3

α2
e−→γR ...

αne−−→γR qR. We refine the FIFO Component by replacing it with

FIFO-Write, FIFO-Read and FIFO-Buffer Components. We obtain a run θD : q0
α1
b−→γD

qD1
αm1
b−−→γD qD2

αm1
e−−→γD qD3

α1
e−→γD qD4

α2
b−→γD qD5

αm2
b−−→γD qD6

αm2
e−−→γD qD7

α2
e−→γD ...

αne−−→γD qD.
According to the Definition 42 of the Split-FIFO Process Network as it is illustrated in
the Example 16 and the Figure 5.5, we have qR = qD, where qD concerns the Process
Components.

In addition, we have

trace(θR) = α1
b .α

1
e.α

2
b .α

2
e . . . α

n
b .α

n
e
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and

trace(θD) = α1
b .α

m1
b .αm1

e .α1
e.α

2
b .α

m2
b .αm2

e .α2
e . . . α

n
e

Based on the Definition 43, we restrict the trace θD such that

traceD(θD) = α1
b .α

1
e.α

2
b .α

2
e . . . α

n
b .α

n
e

So, we conclude that trace(θR) = traceD(θD).

5 Proof (Lemma 2)
Let a complete run θD : q0

α1

−→γR q1
α2

−→γR q2.θ
′, which belongs in the Split-FIFO Process

Network NR and trace(θD) = α1.α2.trace(θ
′). Based on Proposition 1 we can reverse the

execution order of interactions α1, α2:

θD : q0
α2

−→γR q
′
1
α1

−→γR q
′
2.θ
′.

As we can see in Example 15 the traces of the Split-FIFO Process Network contain
αwb , α

mw
b , αmwe , αwe , α

r
b , α

mr
b , αmre , αre interactions. If interleavings of the above interactions

occur, we can recursively relocate the execution order according to Proposition 1. So, any
αwb or αrb interaction is followed immediately by the series of interactions αmwb , αmwe , αwe
and αmrb , αmre , αre respectively. Thus, we can conclude that:

• the ending state of the new run is equal to the ending state of the old run

• in θd
′

any αb interaction is followed immediately by the series of αmb , α
m
e , αe inter-

actions.

6 Proof (Theorem 4)
We consider a run θD : q0

αD−−→γR q1
α2

−→γD . . .
αk−→γD qk in a Split-FIFO Process Network

ND. Based on Lemma 2, we consider θ′D in ND such that any αb interaction is followed

immediately by the series of αmb , α
m
e , αe interactions such that θ′D : q0

α1
b−→γD q′1

αm1
b−−→γD

q′2
αm1
e−−→γD q′3

α1
e−→γD . . .

αke−→ q′k. As a consequence of Lemma 2, we have qk = q′k.

Additionally, based on the Definition 42 of the Split-FIFO Process Network as it is
illustrated in the Example 16 and the Figure 5.5, we replace the series of αb, α

m
b , α

m
e , αe

interactions with the couple of αb, αe interactions. Thus, we obtain a run θR : q0
α1
b−→γD

q1
α1
e−→γD . . .

αke−→ qk such that θR belongs in the Refined Process Network NR.

We have,

trace(θR) = α1
b .α

1
e.α

2
b .α

2
e . . . α

k
b .α

k
e

and

trace(θD) = α1
b .α

m1
b .αm1

e .α1
e.α

2
b .α

m2
b .αm2

e .α2
e . . . α

mk
e .αke

Based on the Definition 43, we restrict the trace θD such that

traceD(θD) = α1
b .α

1
e.α

2
b .α

2
e . . . α

n
b .α

n
e

So, we conclude that traceD(θD) = trace(θR).
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5.2.3 Mutual Exclusion and Computation Time Refinement

Several processes, together with their associated FIFO access routines, are potentially
mapped on the same hardware processor and must use it in mutual exclusion. The ports
acq and rel are added for interaction with the processor scheduler. The port acq is used
for acquiring and rel is for releasing the processor. The first time when a process acquires
the processor is the start of its execution. It releases the processor on its termination.

Processes that are mapped on the same processor cannot simultaneously utilize the
processor’s computational resource. Thus, we use a mutual exclusion scheduler with Ac-
quire and Release primitives. We add to the process components Acquire and Release
scheduling primitives as ports associated respectively with a new transition to the initial
`ini control location and with a new transition from each control location in Lfin. `fin
states of the process component. The Read and Write operations of the processes can be
blocked due to limited places of the FIFO buffer. Considering the above and the fact that
the FIFO mechanism is managed by the FIFO Read/Write Components, we add Acquire
and Release scheduling primitives in these components too. The modified process and
FIFO Components are defined below.

In addition, all processes contain computational hidden transitions β. Every β transi-
tion is profiled with a computational cost. In every transition β a delay variable is filled
with the computational cost of the executed fβ function. The methods used to obtain the
profiling value are explained in details in Chapter 7. This computational delay should be
pushed to the processor scheduler, which is responsible for modeling the computational
resource of the processor. We add the send d (Send Delay) and next primitives to the
process components. The send d sends the delay to the processor and the next allows the
process to continue to the next computational or communication step of the process. The
send d and next transitions are placed immediately after the β transitions. The Scheduled
Process Component is depicted in Definition 44.

44 Definition (Scheduled Process Component)
Given a Process Component GR = (LR, XR, PR, T R), we define the Scheduled Process
Component Gs = (Ls, P s, Xs, T s) with Acquire, Release scheduling transitions, where:

• Ls = LR ∪ {`0, `n} ∪ {`βp , `βq |τβ ∈ T R}, where n− 1 the number of states ∈ LR,

• P s = PR ∪ {acq, rel, send d, next},

• Xs = XR ∪ {delay},

• T s = T R ∪ {τacq = (`0, acq, true, skip, `ini), τrel = (`fin, rel, gexit, skip, `n)} ∪ {τ =
(`, β, g, f ′, `d), τ = (`d, send d, true, skip, `n), τ = (`n, next, true, skip, `

′)|τ = (`, β, g, f, `′)}

, with gexit the exiting condition and f ′ : f ; delay = prof value();.

Moreover, they also use the ports rel and acq for interaction with the processor
scheduler. These ports are used to release (resp. acquire) the processor whenever the
Read/Write operation is suspended (resp. resumed) due to lack (resp. presence) of avail-
able data (or available space) in the buffer.

The FIFO-Write and the FIFO-Read Components are also connected to the Processor
Scheduler. At the point which a process initiates a Write or a Read call, the FIFO
Components may be blocked due to the lack of availability of empty space in the buffer
or due to the absence of data to read, the FIFO Components should release the control
and re-acquire it when the buffer is in an utilizable state.
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45 Definition (Scheduled FIFO-Write Component)
Given a FIFO-Write Component FW , we define the Scheduled FIFO-Write Component
as
FW s = (LFW s , XFW s , PFW s , TFW s), where the behavior is described in Figure 5.7.

• LFW s = LFW ∪ {`5},

• XFW s = XFW ,

• PFW s = PFW ∪ {acq, rel}.

• TFW s = {
τwb = (`1, wb, true, skip, `2),
τmwb = (`2,mwb, gw, skip, `3),
τmwe = (`3,mwe, true, fwn, `4),
τwe = (`4, we, true, skip, `1),
τacq = (`5, acq, gw, skip, `2),
τrel = (`2, rel, !gw, skip, `5),
{τu = (`, wu, true, frc, `)|` ∈ LFW s}

}.

46 Definition (Scheduled FIFO-Read Component)
Given a FIFO-Read Component FR, we define the Scheduled FIFO-Read Component as
FRs = (LFRs , XFRs , PFRs , TFRs), where the behavior is described in Figure 5.7.

• LFRs = LFR ∪ {`5},

• XFRs = XFR,

• PFRs = PFR ∪ {acq, rel}.

• TFRs = {
τrb = (`1, rb, true, skip, `2),
τmrb = (`2,mrb, gr, skip, `3),
τmre = (`3,mre, true, frn, `4),
τre = (`4, re, true, skip, `1),
τacq = (`5, acq, gr, skip, `2),
τrel = (`2, rel, !gr, skip, `5),
{τu = (`, ru, true, fwc, `)|` ∈ LFRs}

}.

Correctness

This is an intermediate model, specifically modified to be connected with a Processor
Scheduler Component introduced in Section 4.2.1. The derived model is intended to
integrate the scheduling and computation delay constraints of the HW platform. The
formal definition and correctness are given in Section 6.1 in the next chapter.

5.3 Conclusion

In this chapter, we analyzed the mapping as it is used in the construction of the System
Model. We defined the refinement steps of the initial software application model in order
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to conform with the mapping, which models the accurate deployment on the HW platform.
For each step, the intermediate models obtained are equivalent with the initial model. To
prove the above, we used the notion of trace equivalence.
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Figure 5.7: Model of the Processor Scheduled System Model in BIP
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- Chapter 6 -

Integration of HW Constraints

In the previous chapter, we analyzed the refinement of the software application model in
BIP according to a given mapping on a HW platform. The goal of the refinement is the
accurate deployment on the HW platform. In this chapter, we focus on the integration of
the HW constraints which arise upon the execution of a software application on a given
platform. More specifically, we merge the refined software application model in BIP with
the target abstract model of a HW platform in BIP.

6.1 HW Constraints For Computation

In Section 4.2, we listed the HW constraints which characterize a HW platform. In this
section, we connect the HW computation model with the software application mode and
we prove the correctness of the generated mixed HW/SW model.

47 Definition (Processor Scheduled Process Network Composition)
-Addition of Mutual Exclusion Scheduler and Computational delays-
Let a Split-FIFO Process Network ND as defined in Definition 42 and a HW plat-
form using m processors. The processor resource is modeled by the Processor Sched-
uler Component defined in Definition 18. We define a Scheduled Process Network NS =
γS(GS1 , . . . , G

S
n , FW

S
1 , FR

S
1 , FB1, . . . , FW

S
k , FR

S
k , FBk, SC1, . . . , SCm), where the set of

interactions γS is defined as:
γS = γD ∪ {αtick} ∪ {αacqG , αrelG , αsend dG , αnextG |G ∈ NS} ∪ {αacqFW , αrelFW |FW ∈ NS} ∪ {αacqFR,
αrelFR|FR ∈ NS},

αacqG = ({G.acq, SC.acq}, true, skip),
αrelG = ({G.rel, SC.rel}, true, skip),
αsend dG = ({G.send d, SC.get d}, f, skip), with f : SC.delay = G.delay;
αnextG = ({G.next, SC.next}, true, skip),
αacqFW = ({FW.acq, SC.acq}, true, skip),
αrelFW = ({FW.rel, SC.rel}, true, skip),
αacqFR = ({FR.acq, SC.acq}, true, skip),
αrelFR = ({FR.rel, SC.rel}, true, skip),
αtick = ({SC1, . . . , SCm}, true, skip)
We export the tick port of the αtick interaction to dynamically enable synchronization

with other tick interactions. We will further refer to this interaction as NS .tick.

91



92 Chapter 6. Integration of HW Constraints
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Figure 6.1: Model of the Processor Scheduled System Model in BIP

17 Example (Processor Scheduled Producer-Consumer Composition)
Given a Split-FIFO Producer-Consumer Composition PCD = (GrP , FW,FR,FB,G

r
C),

we add computational delays and processor scheduling. We map the Producer and the
Consumer processes on a single processor. Consequently, GP and FW , which is directly
connected to GP , are connected to the Processor Scheduler SC1. Similarly, GC and FR
are connected to Processor Scheduler SC1, such that we obtain:
PCS = γS(GSP , FW

S , FRS , FB,GSC , SC1) as illustrated in Figure 6.1, where
γS = γD∪{αacq, αrel, αsend d, αnext|G ∈ NS}∪{αacqFW , αrelFW |FW ∈ NS}∪{αacqFR, αrelFR|FR ∈
NS}
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The set of traces is represented as the interleavings in Figure 6.2.

. . .

. . . . . .tickntick1 tickntick1

αwb

αmwb

αmwe

αwe

tickn

tick1

αrb αmrb αmre αre GsC.β send d next αrb αmrb αmre αre GsC.β send d next rel

GsP .β

αwb

αmwb

αmwe

αwe

acq

send d

next

rel

acq

Figure 6.2: Traces of Processor Scheduled Producer-Consumer Composition

Correctness

48 Definition (Trace Restriction of a Processor Scheduled Process Network Composition)
The restriction of a trace of a run θS to β events is defined by:

traceS(θS) =


ε ,if θS : ε

β.traceS(θ′S) ,if θS : q
β−→ q1

send d−−−−→ q2
tick1−−−→ · · · tickn−−−→ qk

next−−−→ q′.θ′S

traceS(θA).traceS(θB) ,if θS : q0
acq−−→ q1.θ

S
A.qk

rel−−→ qk+1.θ
S
B, with acq, rel /∈ θSA

Note that, θSB always starts with an acq and ends with a rel, so that we can recursively
apply the above rule.

Let NS be the Processor Scheduled Process Network Composition of ND.

5 Theorem
For each complete run θD in the Split-FIFO Process Network ND:

θD : q0
aD1−−→γD qD1

aD2−−→γD qD2
aD3−−→γD · · ·

aDn−−→γD qDn
There exists a complete run θS in the Processor Scheduled Process Network NS :

θS : q0
aS1−→γS q

S
1

aS2−→γS q
S
2

aS3−→γS · · ·
aSm−−→γS q

S
m

such that:
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• qDn = qSm, where qSm concerns the subsystem of the components which do not include
the Processor Scheduler,

• trace(θD) = traceS(θS)

6 Theorem
For each complete run θS in the Processor Scheduled Process Network NS :

θS : q0
aS1−→γS q

S
1

aS2−→γS q
S
2

aS3−→γS ...
aSm−−→γS q

S
m

There exists a complete run θD in the Split-FIFO Process Network ND:

θ : q0
aD1−−→γD qD1

aD2−−→γD qD2
aD3−−→γD · · ·

aDn−−→γD qDn
such that:

• qSn = qDm, where qSn concerns the subsystem of the components which do not include
the Processor Scheduler,

• traceS(θS) = trace(θD)

3 Lemma
For each complete run θ in the Processor Scheduled Process Network NS :
θ : q0 → · · · → qn
There exists a complete run θ′ in the Processor Scheduled Process Network NS starting
from q0:
θ′ : q0 → · · · → qn′

such that:

• qn = qn′

• each trace that contains interactions which concern a single process are always en-
closed between the acq, rel interactions,

• in θ′ any αβ interaction is followed immediately by the series of interactions

αsend d, αtick1 · · ·αtickn

7 Proof (Theorem 5)
We consider a complete run θD in the Split FIFO Process Network ND. Based on
Lemma 1, we re-order any begin interaction so that it is immediately followed by the cor-

responding end interaction. We have θD : q0
α1

−→γD qD1
α1
β−−→γD · · ·

α2

−→γD qD2
α2
β−−→γD qD. We

map each Process Component GD, along with the FIFO Routines FWD, FRD connected

to it, on a Processor Scheduler Component. We obtain a run θD : q0
acq−−→γS qS1

α1

−→γD

qD2
β1

−→γS q
S
3

send d−−−−→γS q
S
4

tick1−−−→γS · · ·
tickn−−−→γS q

S
5

next−−−→γS · · ·
α2

−→γD qD6
β2

−→γS q
S
7

send d−−−−→γS

qS8
tick1−−−→γS · · ·

tickn−−−→γS q
S
9

next−−−→γS q
S
10

rel−−→γS q
S .

According to the Definition 47 of the Processor Scheduled Process Network as it is
illustrated in the Example 17 and the Figure 6.1, we have qD = qS , where qS concerns the
subsystem of the components which do not include the Processor Scheduler.

In addition, we have:
trace(θD) = α1.β1.α2.β2

and

trace(θS) = acq.α1.β1.send d.tick1 . . . tickn.next.α
2.β2send d.tick1 . . . tickn.next.rel
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Based on the Definition 48, we restrict the trace θS by removing the send d, tick and
next interactions in the first step and by removing the acq, rel interactions in the second
step, such that

traceS(θS) = α1.β1.α2.β2

. So, we conclude that trace(θD) = traceS(θS).

8 Proof (Lemma 3)
Let a complete run θS : q0

α1

−→γr q1
α2

−→γr q2.θ
′, which belongs in the Processor Scheduled

Process Network N r and trace(θS) = α1.α2.trace(θ
′). Based on Proposition 1 we can

reverse the execution order of interactions α1, α2:

θS : q0
α2

−→γr q
′
1
α1

−→γr q
′
2.θ
′.

As we can see in Example 17 the traces of the Processor Scheduled Process Network
contain:

acq.α1.αmwb .αmwe .αwe .β.send d.tick1 . . . tickn.next . . . rel

Interleavings of the above interactions occur due to multiple Processor Schedulers that
run in parallel. In this case, we can recursively relocate the execution order according
to Proposition 1. So, any αwb or αrb interaction is followed immediately by the series of
interactions αmwb , αmwe , αwe and αmrb , αmre , αre respectively. In addition, any αβ interaction
is followed immediately by the series of interactions send d, tick1 . . . tickn, next. Also, the
traces that concern a single process are enclosed between the acq, rel interactions, due to
the Processor Scheduler resource demand. Thus, we can conclude that:

• the ending state of the new run is equal to the ending state of the old run,

• each trace that contains interactions which concern a single process are always en-
closed between the acq, rel interactions,

• in θs
′

any β interaction is followed immediately by the series
of send d, tick1 · · · tickn, next interactions.

9 Proof (Theorem 6)
We consider a run θ′S : q0

α′S−−→γr q
′
1
α′2−−→γS . . .

α′k−−→γS q
′
k in a Processor Scheduled Process

Network NS . Based on Lemma 3, we consider θS in NS such that:

• a trace that contains interactions which concern a single process are always enclosed
between the acq, rel interactions,

• any αβ interaction is followed immediately by the series of send d, tick1 · · · tickn, next

interactions such that θS : q0
β−→γS q1

send d−−−−→γS q2
tick1−−−→γS . . .

tickn−−−→γS
next−−−→γS . . .

αke−→
q.

As a consequence of Lemma 3, we have q′k = q.
Additionally, based on the Definition 47 of the Processor Scheduled Process Net-

work as it is illustrated in the Example 17 and the Figure 6.1, we replace the series
of β, send d, tick1 · · · tickn, next interactions with only the β interaction and we omit the

acq, rel interactions. Thus, we will obtain a run θS : q0
α1
b−→γS q1

αm1
b−−→γS q2

αm1
e−−→γS q3

α1
e−→γS

. . .
αke−→ q such that θS belongs in the Split-FIFO Process Network ND.
Since we have,

trace(θD) = α1
b .α

m1
b .αm1

e .α1
e.α

2
b .α

m2
b .αm2

e .α2
e . . . α

mk
e .αke
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and

trace(θS) = acq.α1
b .α

m1
b .αm1

e .α1
e.β

1.send d.tick1 . . . tickn.next.α
2
b .α

m2
b .αm2

e .α2
e.β

2αnb .α
n
e .rel

we conclude, considering the restriction of traces in Definition 48, that traceS(θS) =
trace(θD).

6.2 HW Constraints For Communication

Given a Processor-Scheduled Process Network

NS = γS(GS1 , . . . , G
S
n , FW

S
1 , FR

S
1 , FB1, . . . , FW

S
k , FR

S
k , FBk, SC1, . . . , SCm),

we replace the FB Components with a hardware template communication model and the
αm ∈ γS connectors with new ones depending on the mapping such as,

NS′ = γS(GS1 , . . . , G
S
n , FW

S
1 , FR

S
1 , . . . , FW

S
k , FR

S
k , SC1, . . . , SCm),

We assume a platform where there are k processors, with k ≥ 1, one Crossbar Switch
Bus and a shared Memory.

49 Definition (System Model Processor-Scheduled Process Network)
-NoC with four Shared Memory Clusters-

Given a Processor-Scheduled Process Network NS , we define NM = πγ(NS′ , NOC) as the
System Model of a Process Network on a HW platform, where NS′ is defined above and
NOC = πNOCγNOC(CL1, . . . , CL4, R1, . . . , R4) is defined as the Communication Model
of the system, where:
CL = πCLγCL(BUS,M,NI)
M is the Shared Memory Component and
BUS = πbusγbus(BP1, . . . , BPk, BS), where k the number of processors, BP the Bus
Paths, BS the Bus Scheduler,
γbus = {acqbus1 , relbus1 , . . . , acqbusk , relbusk , tickbus}, with

acqbusi = ({BS.acq,BPi.acq}, true, skip),
relbusi = ({BS.rel, BPi.rel}, true, skip), where i ∈ k,
tickbus = ({BP1.tick, . . . , BPk.tick}, true, skip).

and πbus giving priority on acqbus, relbus interactions over tickB. The FIFO Buffers are
mapped to the shared Memory M of a cluster CL. Thus, we replace the FIFO Buffers
with the Memory M . Since the FIFO Routines are mapped on a Processor, we connect
them with the Bus Path Components BP of the BUS which connect the Processor P with
the Memory M or with the Network Interface NI if the Memory is located in a different
cluster.. The set of interactions γ is defined as:
γ = γS

′ ∪ {αmb , αme |FIFO Routine ∈ NS′} ∪ {αµb , α
µ
e |BP ∈ BUS} ∪ {tick},

with,
αmb = ({FW.mwb, BP.req}, true, skip) or ({FR.mrb, BP.req}, true, skip),
αme = ({BP.ack, FW.mwe, FR.ru}, true, skip) or ({BP.ack, FR.mre, FW.wu}, true, skip),
αµb = ({BP.opb,M.opb}, true, skip),
αµe = ({BP.ope,M.ope}, true, skip),
tick = ({NS′ .tick,BUS.tick,M.tick}, true, skip).

For each interaction, tick has the lowest priority and the interactions acq, rel have the
highest priority of all, in order to prevent infinite ticking.
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18 Example (Processor-Scheduled Producer-Consumer Composition)
-Shared Memory Cluster-
Given a Processor Scheduled Producer-Consumer Composition
PCS = γS(GSP , FW

S , FRS , FB,GSC , SC1), we add communication delays. We map the
FIFO-Buffer FB on the shared memory such that we obtain:
PCM = γ(GS

′
P , FW

S , FRS , GSC , SC1, BUS1,M1), as illustrated in Figure 6.4, where:
BUS1 = πbusγbus(BP1, BP2), with γbus:

acqbus1 = ({BS.acq,BP1.acq}, true, skip),
relbus1 = ({BS.rel, BP1.rel}, true, skip),
acqbus2 = ({BS.acq,BP2.acq}, true, skip),
relbus2 = ({BS.rel, BP2.rel}, true, skip),
tickbus = ({BP1.tick,BP2.tick}, true, skip).
and γ = γS ∪ {αrw, αaw, αrr, αar, αmwb , αmwe , αmrb , αmre , tick}:
αmwb = ({FWS .mwb, BP1.req}, true, skip),
αmwe = ({FWS .mwe, BP1.ack, FR

S .ru}, true, skip),
αmrb = ({FRS .mrb, BP2.req}, true, skip),
αmre = ({FRS .mre, BP2.ack, FW

S .wu}, true, skip),
αµwb = ({BP1.opb,M1.opb}, true, skip),
αµwe = ({M1.ope, BP1.ope}, true, skip),
αµrb = ({BP2.opb,M1.opb}, true, skip),
αµre = ({M1.ope, BP2.ope}, true, skip),
tick = ({SC1.tick,BUS.tick,M1.tick}, true, skip)
For each α ∈ γ, the tick interaction has the lowest priority and the interactions

αacq, αrel have the highest priority of all, in order to prevent infinite ticking. A figure
illustrating the current example with the use of a Network-on-Chip is provided in Fig-
ure 6.5.

Correctness

50 Definition (Trace Restriction of a System Model Process Network Composition)
The restriction of a trace of a run θM is defined by:

traceM (θM ) =


ε ,if θM : ε

β.traceM (θ′M ) ,if θM : q
β−→ q′.θ′M

trace(θA).αmb .α
m
e .trace

M (θB) , if θM : θA.q0
αmb−−→ q1.θX .q2

αme−−→ q3.θB

where αmb α
m
e /∈ θX and all interactions in θX concern communication such as usage of

BUS, Memory and NoC. The restriction means that all the interactions which concern
communication and take place between mwb/mrb and mwe/mre can be omitted.

Let NM be the System Model Composition Composition of NS .

7 Theorem
For each complete run θS in the Processor Scheduled Process Network NS :

θS : q0
aS1−→γS q

S
1

aS2−→γS q
S
2

aS3−→γS · · ·
aSn−→γS q

S
n

There exists a complete run θM in the System Model Process Network NM :

θM : q0
aM1−−→γS q

M
1

aM2−−→γM qM2
aM3−−→γM · · ·

aMm−−→γM qMm
such that:
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Figure 6.3: Producer-Consumer System Model on a Shared Memory Cluster in BIP

• qSn = qMm , where qMm concerns the subsystem of the components which do not include
the communication model,

• trace(θS) = traceM (θM )
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Figure 6.4: Traces of Processor Scheduled Producer-Consumer Composition on a Shared
Memory Cluster

8 Theorem
For each complete run θM in the System Model Process Network NM :

θM : q0
aM1−−→γS q

M
1

aM2−−→γM qM2
aM3−−→γM ...

aMm−−→γM qMm
There exists a complete run θS in the Processor Scheduled Process Network NS :

θ : q0
aS1−→γS q

S
1

aS2−→γS q
S
2

aS3−→γS · · ·
aSn−→γS q

S
n

such that:

• qMn = qSm, where qMm concerns the subsystem of the components which do not include
the communication model,

• traceM (θM ) = trace(θS)

4 Lemma
For each complete run θ in the System Model Process Network NM :
θ : q0 → · · · → qn
There exists a complete run θ′ in the System Model Process Network NM starting from
q0:
θ′ : q0 → · · · → qn′

such that:
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Figure 6.5: Producer-Consumer System Model on a NoC in BIP

• qn = qn′

• θ′ : θA.q0
αmb−−→ q1.θX .q2

αme−−→ q3.θB,with αmb α
m
e /∈ θX , and all interactions in θX

concern communication such as usage of BUS, Memory and NoC.

10 Proof (Theorem 7)
We consider a complete run θS in the Processor Scheduled Process Network Composition
NS , such that we have:

θS : q0
acq−−→γS q

S
1

α1
b−→γS q

S
2

αm1
b−−→γS q

S
3

αm1
e−−→γS q

S
4

α1
e−→γS · · ·

rel−−→γS q
S

We map each FIFO Buffer Component FB upon the shared memory. We obtain a
run:

θS : q0
acq−−→γ q1

α1
b−→γ q2

αm1
b−−→γ q3

αtick1−−−−→γ · · ·
αtickn−−−−→γ q4

acqbus−−−−→γ q5

αtick1−−−−→γ · · ·
αtickn−−−−→γ

q6
αBP.β−−−−→γ q7

αtick1−−−−→γ · · ·
αtickn−−−−→γ q8

αopb−−→γ q9

αtick1−−−−→γ · · ·
αtickn−−−−→γ q10

αope−−→γ q11
relbus−−−→γ

q12
αm1
e−−→γ · · ·

rel−−→γ q
M .

We consider the Definition 49 of the System Model Processor-Scheduled Process Net-
work on a Shared Memory Cluster, as illustrated in Example 18 and in Figure 6.3, At
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the point where a FIFO routine Component does a mwb or a mrb to access a specific
address in the hardware memory, no other FIFO Routine can access the same hardware
memory address. The FIFO mechanism prevents this from happening. Only after the
corresponding mwe or a mre has been executed, should this particular memory address be
accessed again. Thus, all the communications interactions taking place between mwb/mrb
and mwe/mre that concern interconnects, memories and NoC can be omitted, since the
functional behavior of the initial process network and the FIFO functionality is always
respected. Thus, we conclude that qM = qS , where qMm concerns the subsystem of the
components which do not include the communication model. In addition we have,

trace(θS) = acq.α1
b .α

m1
b .αm1

e .α1
e . . . rel

and
trace(θM ) = acq.α1

b .α
m1
b .tick1 . . . tickn.acq

bus.tick1 . . . tickl.αBP.β.tick1 . . . tickj .α
µ
b .

tick1 . . . tickh.α
µ
e .relbusαm1

e .α1
e . . . rel, where n, l, j, h > 1.

Based on the Definition 50, we restrict the trace θM such that:

traceM (θM ) = acq.α1
b .α

m1
b .αm1

e .α1
e . . . rel

So, we conclude that trace(θS) = trace(θM ).

11 Proof (Lemma 4)
Let a complete run θ : q0

α1

−→γr q1
α2

−→γr q2.θ
′, which belongs in the System Model Process

Network N r and trace(θ) = α1.α2.trace(θ
′). Based on Proposition 1 we can reverse the

execution order of interactions α1, α2:

θ : q0
α2

−→γr q
′
1
α1

−→γr q
′
2.θ
′.

As we can see in Example 18 the traces of the System Model Process Network contain:
acq.αwb .α

mw
b .tick1 . . . tickn.acq

bus.tick1 . . . tickl.αBP.β.tick1 . . . tickj .α
µw
b .

tick1 . . . tickh.α
µw
e .relbusαmwe .αwe . . . rel, where n, l, j, h > 1.

Interleavings of the above interactions occur due to multiple communication resources,
such as interconnects, memories or NoC, that run in parallel. In this case, we can re-
cursively relocate the execution order according to Proposition 1. So, any αmwb or αmrb
interaction is followed immediately by the series of communication interactions such as
tick, acqbus, αµb , α

µ
b , rel

bus, etc. and always ends with the αmwe or αmre interaction respec-
tively. Thus, we can conclude that:

• the ending state of the new run is equal to the ending state of the old run,

• in θ′ any communication interaction, such as tick, acqbus, αµb , α
µ
b , rel

bus, etc., is en-
closed between αmwb , αmwe or αmrb , αmre interactions.

12 Proof (Theorem 7)
Proof evident based on Lemma 4 and Theorem 8.

6.3 Conclusion

In this chapter, we analyzed the method of integrating hardware platform components
in a given software application model. The hardware platform components are assigned
to model important functional and non-functional hardware constraints. Specifically, in
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the current model we have focused on the timing delays imposed by the underlying hard-
ware platform. These values vary in different implementations of the platform. They are
strongly dependent on the characteristics of each individual component of the platform.
Namely, these are the scheduling policies, interconnect throughput, routing protocols,
processor frequency and computing speed. However, the model of the processor does not
consider analysis of low-level assembly code and pipeline. Modeling the above would su-
perlatively increase the system’s complexity and considerably stall the performance analy-
sis. Thus, in order to bypass the above problem, we propose an instrumentation technique
of the software application process model. The instrumentation method is presented in
the next chapter.

The overall performance outcome of the system is highly affected by the mapping spec-
ification. Currently, we consider static mapping of processes upon the platform processors.
Important part of the future extension of this work would be to consider task migration
and dynamic mapping. Task migration protocol should be aware of all critical performance
metrics of the system leading to optimal mapping obtained on-the-fly. Except from timing
constraints, thermal values, power consumption and dynamic scheduling policies should
be considered. The latter properties of the hardware model should enrich the current
models of hardware components attributing to an extensive performance analysis of our
target system.



- Chapter 7 -

Integration of Runtime HW/SW Constraints (software
dependent)

In the previous chapter, we mentioned that the proposed hardware platform model does
not include a detailed processor model which implements instruction-level analysis and
pipelining. However, we have developed techniques to obtain cycle-accurate execution
delay values of the code included in the software processes running on a given hardware
processor. These values are integrated in the generated system model in order to calibrate
it so that it accurately models the computational delays derived from the use of a processor
CPU. In this chapter, we describe the system model calibration and the associated methods
we developed.

7.1 System Model Calibration

The generic procedure of the system model calibration includes the following steps. Firstly,
each block of code of the BIP Processes, except the read/write communication transitions,
is instrumented. The instrumentation is done by inserting function calls at the beginning
and at the end of the executable block of code which is associated with a transition. Sec-
ondly, these calls are used by a tool, depending on the methods given below, to provide
accurate execution times. We integrate the executions delay values to the system model
by profiling each transition code block with them, as it is illustrated in Figure 7.1. This
results to a faithful model of the HW/SW dependent run-time computational constraints.
Finally, the calibrated BIP system model is used as such by the BIP tool-chain for per-
formance analysis. The latter is achieved through compilation and execution using the
BIP simulator. The various measurements (i.e. execution time, delays) are recorded by
dedicated observers.

We enumerate the two different calibration methods below:

1. Instruction Weight Table.

2. Platform Dependent Code Generation.

7.1.1 Instruction Weight Table

The method and its supporting tool can provide simulation environment for performance
estimation on a given BIP system model. We adopted a strategy to dynamically obtain
accurate execution delay values based on fine-grained code analysis. The basic idea of this

103
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Figure 7.1: Process Profiling steps

strategy is to use gcov, which is a tool in conjunction with GCC to recover code coverage
information using BIP simulation and analyze the executable code of each line considering
the target platform. In order to get the execution result, the whole process is composed
of four stages: 1) instrumentation stage to generate C codes with API function calls; 2)
cross compilation with target platform; 3) GCC compilation with coverage parameters; 4)
analysis stage which combines target platform information, code coverage and performance
weight table to derive the execution delay values for each block of code in the initial System
model. An overview of the above stages is presented in Figure 7.2.
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Figure 7.2: Instruction Weight Table Profiling Flow

Instrumentation The SW Application part of the BIP system model contains blocks
of C code used to describe the behavior of each transition inside the BIP automata. API



7.1. System Model Calibration 105

functions calls are inserted in the beginning and at the end of each BIP transitions. These
functions are critical for the analysis stage which we describe later. More specifically,
there are four functions: wpapi init(), wpapi begin(), wpapi end() and wpapi over(). The
analysis stage is triggered when function wpapi init() is called. At the beginning some
necessary environment valuables are configured and initialized. When the API function
wpapi begin() is called, we analyze the following block of C code to measure the execution
delay on the target platform. The API function wpapi end() signals that the calculated
execution value is inserted back to the BIP System model to calibrate it. The API function
wpapi over() is used to terminate the process.

Cross compilation with target platform In the second stage, we cross compile the
SW Application part of the BIP system model with the target platform compiler. The
goal is to generate the corresponding low-level assembly codes which is necessary for the
detection of the CPU arithmetic or load/store operations included in every line of C code.

GCC compilation with coverage As shown in Figure 7.2, the SW Application is
compiled into an executable binary along with the API library with the use of GCC
coverage parameters. There are also some extra files generated with suffix .gcov for line
coverage statistics.
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Figure 7.3: Execution delay analysis

Analysis For the analysis stage we instantiate a process which runs in parallel with
the BIP simulation as shown in Figure 7.3. As soon as it receives the request from the
application process, it starts to analyze performance on the given range C code. There
are, mainly, four analysis steps in the analysis process. The first step is to receive the
message of API call and get the information about which lines are about to be profiled.
The second step is to analyze the C code with its coverage file (.gcov) and calculate its
total instruction cost according to the assembly code generated by the target platform
cross compiler. On the third step, we obtain the total cycle number of each given line
of the C code. In this step, the total execution cycle number is analyzed by taking into
account the instruction weight table. Other factors could also be considered such as the
pipeline control, the data hazards and memory access conflicts. In the final step, the
analysis process sends the profiling result back to the application process.
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7.1.2 Platform Dependent Code Generation

The platform dependent code generation provides a method to obtain cycle-accurate ex-
ecution times of SW-Processes by generating and deploying low level code on a virtual
target platform. The method is based on an infrastructure developed in Verimag, for
generating code from the system models in BIP. Seeking portability, the generated code
targets a particular run-time that can be eventually deployed and run on different plat-
forms, including P2012 (Section 11.1) and MPARM (Section 10.1). The run-time provides
a generic API for thread management, memory allocation, communication and synchro-
nization. The generated code is not bound to any particular platform and consists of the
functional code and the glue code.

The functional code is generated from the application components consisting of pro-
cesses and FIFOs. Processes are implemented as threads, and FIFOs are implemented
as shared queue objects provided by the Native Programming Layer (NPL) library. The
implementation in C contains the thread local data, queue handles and the routine imple-
menting the specific thread functionality. The latter is a sequential program consisting of
plain C computation statements and communication calls (e.g., queue API) provided by
the run-time. A read transition is substituted by a pop API call on the respective queue
handle. Similarly, a write transition is substituted by a push API call on its respective
queue handle.

The glue code implements the deployment of the application to the platform, i.e.,
allocation of threads to cores and the allocation of data to memories. The glue code
is essentially obtained from the mapping. Threads are created and allocated to cores
according to the process mapping. Data allocation deals with allocation of the thread
stacks and allocation of FIFO queues for communication. In particular, for MPARM
deployment, every thread stack is allocated into the L1 memory of the core to which
the thread is deployed. Queue handles and queue objects are allocated from the cluster
shared L2 memory. All these operations are implemented by using the API provided by
the run-time.
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Figure 7.4: Platform Dependent Code Generation Profiling Flow

The code generation flow is illustrated in Figure 7.4. The code generator, as a tool, has
been fully integrated into a tool-chain and connected to the BIP system model generation
flow. The code is linked with the run-time, hardware dependent library, to produce the
binary executable(s) for execution on the platform. The execution results concerning the
software applications computational results are used to calibrate the System Model in
BIP. However, the overall performance results obtained by the execution on the virtual
platform are also used as a means of comparison the performance results obtained by the
simulation of the corresponding System model in BIP.

For our experiments, we have used the Native Programming Layer (NPL), a common
run-time implemented for both P2012 and MPARM platforms. For P2012, the generated
code has been run on virtual platforms available in the P2012 SDK 2011.1, namely GEPOP
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- the P2012 POSIX-based simulator - and the P2012 TLM simulator. For MPARM, the
generated code is compiled by the arm-gcc compiler. The compiled code is linked with
the run-time library to produce the binary image for execution on the MPARM virtual
simulator.

7.2 Discussion

In this chapter, we presented the two methods we use to obtain accurate performance
estimation of all C code in the application software. These methods are namely, the
Instruction Weight Table and the Platform Dependent Code Generation.

The second method is considered more accurate than the first one, since it utilizes a
dedicated virtual platform developed to simulate the functionality of a target hardware
platform. The performance analysis results obtained from both methods are given in
Chapter 10 and Chapter 11 with the experimentation upon different use cases.

In the next chapter, we present the performance analysis techniques we use to obtain
performance results on the complete mixed hardware/software system model.
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Performance Analysis

In this chapter, we focus on the performance analysis model incorporated in our system
model generation dedicated to monitor the behavior of the target properties. In the
next two sections, we describe the performance model developed in this work and more
specifically the timed model in BIP extended with observers and we provide a discussion
about performance models in general and the contribution of our own in the domain.

8.1 Performance Model

In our BIP design flow, system models are used to integrate the (extra-functional) hard-
ware constraints into the software model according to some chosen deployment mapping.
The system model is constructed through a series of transformations from the BIP models
of respectively the application software and hardware platform. These two models are
composed according to the mapping. The construction has been presented in the previous
chapters. The transformations preserve functional properties of the application software
model.

The system model is then calibrated by including timing constraints for execution on
the chosen platform. These constraints define execution times for elementary functional
blocks, that is, BIP transitions within the application software model. More precisely, the
system model calibration is done by instrumenting the generated code with API function
calls. The API provides cycle accurate estimates for executing a block of code in each
processor. As analyzed in the previous chapter, the execution times are measured by two
methods: the Instruction Weight Table and the Platform Dependent Code Generation
method presented in the previous chapter. The Platform Dependent Code Generation
is more accurate than the Instruction Weight Table method, since it utilizes a virtual
platform to obtain the results.

The calibrated system model provides analysis of the non-functional properties such
as contention for buses and memory accesses, transfer latencies, contention for processors,
etc. All system properties are evaluated by simulation of the system model extended
with observers. Observers are regular BIP components that sense the state of the system
model and collect pertinent information with respect to the properties of interest i.e., the
delay for particular data transfers, the blocking time on buses, etc. Actually, we provide
a collection of predefined observers allowing to monitor and record specific information
for most common non-functional properties. In the current work, we focus on observing
the non-functional time properties. For this purpose, the generated system model in BIP
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is developed to incorporate a performance model equipped with accurate mechanisms to
capture time.

The performance model is specifically a timed model in BIP extended with observers.
We provide below the formal definition of the timed model which we consider.

51 Definition ( Timed Composition)
-Timing Model in BIP-
We define a Timed Composition T composed by k number of B Components as T =
γH(B1, . . . , Bk), where the set of interactions γH is defined as an hierarchical connector:
γH = γ1 ∪ . . . ∪ γk−1 with,
the initial connector γ1 connected to the two first components such that:
γ1 = ({B1.tick,B2.tick}, α1, tick) with
α1 = ({B1.tick,B2.tick}, true, skip)
and the rest of the connectors recursively connected with the first one such that:
For all i ∈ [2, k − 1] we define:
γi = ({γi−1.tick,Bi+1.tick}, αi, tick) with
αi = ({γi−1.tick,Bi+1.tick}, true, skip)
For all connectors γi, with i ∈ [1, k − 1] composing the hierarchical connector γH , the
corresponding description in the BIP language is given below.

connector type BroadcastTick(TickPort p1, TickPort p2)
define p1’ p2’
on p1

on p2

on p1 p2

export port TickPort tick
end

The connector of type BroadcastTick can be triggered even if only one component is
available for interaction.

Considering the γH as a composite hierarchical connector, we assume that the export-
ing port of the connector is the exported port of the top-most connector of the hierarchy.
Meaning, that the export γk−1.tick = γH .tick.

19 Example
In Figure 8.1, we illustrate an example of a timed model in BIP. It is a composition of four
BIP atomic components B and an hierarchical connector γH as defined in the Composition
Definition 51.

γ1

γ2

γ3

B1 B2 B3 B4

Figure 8.1: Timed Composition in BIP with hierarchical connectors.
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Let us assume the Timed Composition as defined in Definition 51. We measure the
maximum number of ticks that happened on the system by adding an Observer Component
connected to the hierarchical connector.

52 Definition ( Timed Composition with Observer)
Given a Timed Composition as defined in Definition 51, we define the Timed Composition
with an Observer Component Bob as Tob = γ(B1, . . . , Bk, Bob). γ = γH ∪ γob with,
γob = ({γH .tick,Bob.tick}, αob, tick)
, αob = ({γH .tick,Bob.tick}, true, skip)
The description in BIP language of the observation connector γob used to incorporate the
Observer Component to the Timed model is given below.

connector type ObserverTick(TickPort tick1, TickPort tick2)
define tick1 tick2

on tick1 tick2

export port TickPort tick
end

The connector of type ObserverTick implies strong synchronization between the Timed
Model and the Observer Component enabling the latter to sense all ticks taking place.
The hierarchy of the initial γH connector is extended by the added connector γob. The
latter can be connected further on with other Timed models synthesizing a larger Timed
Composition.

20 Example
In Figure 8.2, we illustrate an example of a timed model with observer in BIP. We extend
the timed model given in Example 19 by adding an observation connector (thick connector)
on top of the hierarchical one. The observation connector strongly synchronized the timed
model with an Observer Component which senses all ticks taking place.

���
���
���

���
���
���

γ1

γ2

γ3

B1 B2 BobB3 B4

γob

Figure 8.2: Timed Composition in BIP with hierarchical connector and an Observer
Component.

The sub-model used to capture the computational constraints of the system model
is given in Figure 8.3. Assuming a hardware platform with two processors, we connect
each processor with a Processor Computational Observer via observation connectors. The
latter are synchronized together with BroadcastTick type of connector, which eventually
is synchronized with a Global Computational Observer capturing the total computational
delay of the system.

A generic Observer Component in BIP is illustrated in Figure 8.4. We provide below
the formal definition.
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Figure 8.3: Computational Observers in BIP System Model.

53 Definition
We define the Observer Component as OB = (Lob, Xob, Pob, Tob), where:

• Lob = {`1, `2, `3},

• Xob = {count, LOG FILE},

• Pob = {tick, begin, end},

• Tob = {
τ = (`1, begin, true, f1, `2) ,f1 : count = 0;
τ = (`2, tick, true, f2, `2) ,f2 : count = count+ 1;
τ = (`2, end, true, f3, `3) ,f3 : write(LOG FILE, count);

}.

count=0;

count=count+1; write(LOG\_FILE, count);

`1

`2

`3

begin

end

end

begin

tick

Observer

tick

Figure 8.4: Observer Component in BIP System Model

The Observer Component has three control locations: the initial `1, the intermediate
observing location `2 and the final `3 location. Transitions begin and end signal the start-
ing and ending observation points of the component. The variable count is responsible
for capturing time and is stored in a given LOG FILE at the observation ending point.
Transitions begin and end are usually connected to software application components to
capture non-functional delay numbers concerning specific software application cycles.

Simulation is performed by using the native BIP simulation tool [bip]. The BIP system
model extended with observers is used to produce simulation code that runs on top of the
BIP engine, that is, the middleware for execution/simulation of BIP models. The out-
come of the simulation with the BIP engine is twofold. First, the information recorded by



8.2. Discussion 113

observers can be used as such to gain insight about the properties of interest. Second, the
same information can be used to build much simpler, abstract stochastic models. These
models can be further used to compute probabilistic guarantees on properties by using
statistical-model checking. This two-phase approach combining simulation and statisti-
cal model-checking has been successfully experimented in a different context [BBB+10].
It is fully scalable and allows (at least partially) overcoming the drawbacks related to
simulation-based approaches, that is, the long simulation times and the lack of confidence
in the results obtained.

8.2 Discussion

In this chapter, we described the performance analysis model developed in the this work.
The System Model in BIP is specifically a timed model extended with observers. All system
properties are evaluated by simulation and can be further used to evaluate probabilistic
guarantees with the help of statistical model-checking. The BIP design flow bridges the
gap between simulation based and formal methods by presenting a complete framework
based on BIP, which is a formal, rigorous and expressive language, and can be easily used
both for native simulation and code generation for simulation on a virtual platform.

Related work focusing in performance analysis include methods based on simulation,
trace-based co-simulation of different models, analytical models, analytical models with
timed automata and methods that combine simulation and analytical approach. Simula-
tion based methods use ad hoc executable system models such as [KDVvdW97] or tools
based on SystemC [MGN03]. The latter provide cycle-accurate results, but in general, they
have long simulation time as a major drawback. As such, these tools are not adequate
for thorough exploration of hardware platform dynamics, neither for estimating effects
on real-life software execution. Alternatives include trace-based co-simulation methods as
used in Spade [LSvdWD01], Sesame [EPTP07] or Daedalus [NTS+08]. Additionally, there
exist fast techniques that work on abstract system models such as DOL [TBHH07], which
is based on Real Time Calculus [TCN02], and SymTA/S [Hea05]. They use formal analyt-
ical models representing a system as a network of nodes exchanging streams. They often
oversimplify the dynamics of the execution characterized by execution times. Moreover,
they allow only estimation of pessimistic worst-case quantities (delays, buffer sizes, etc)
and require adequate abstract models of the application software. Building such models
entails an additional significant modeling effort. Similar difficulties arise in performance
analysis techniques based on Timed-Automata [AAM06, SBM09]. These can be used for
modeling and solving scheduling problems. An approach combining simulation and an-
alytic models is presented in [KPBT06], where simulation results can be propagated to
analytic models and vice versa through adequate interfaces.

In the forthcoming chapters of the document, we present the implementation and
experimentation part which describes the whole tool-chain supporting the design flow and
provides experimental results in two case studies targeting two different HW platforms.
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Tool

In this chapter, we provide the description of the tool-flow and all the individual tools
contributing in the System modeling and the performance analysis. The associated toolbox
is available in the website1 of Verimag.

In Figure 9.1 we illustrate the whole tool-flow. The flow mainly contains four different
sectors: Input Specification in DOL, System Model Generation, System Model Calibration
and Performance Analysis. We developed four different tools which traverse the above
sectors and automatize the tool-flow. The tools are given below:

• DOL2BIP, which generates the BIP SW Model.

• BIPWeaver, which constructs the BIP System Model.

• Weight Table Profiler, which provides a technique for System Model Calibration,
calculating execution delays of computational blocks of code.

• Code Generator, which generates code to be simulated on a Virtual HW Platform,
providing an alternative and more accurate method for calculating execution delays
of computational blocks of code.

Except the Weight Table Profiler, which is implemented in C Language and Perl
Scripts, all the other tools are implemented in Java. Details concerning the complexity
of the tools are given in the next sections.

9.1 DOL2BIP Tool

In Algorithm 3, we describe the algorithm we developed to generate a BIP SW Model out
of an input specification in DOL. The tool requires as an input the XML specification in
DOL of the Process Network and the corresponding source code in C of each process. The
Process Network XML file should conform with the process network XML Schema as it
is defined in DOL. Further details and information about the DOL input specification is
available in the following website2. In Figure 3.6 (Chapter 3), a process network example
is found. As described in Section 3.3, the process network consists of three XML entities:
process, sw channel and connection. Each process has input, output ports and behavior
written in C code. Each sw channel has a single input port and a single output port,

1http://www-verimag.imag.fr/BIP-System-Designer.html
2http://www.tik.ee.ethz.ch/ shapes/dol.html
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<variable value="3" name="N"/>

<iterator variable="i" range="N">

<process name="square">

<append function="i"/>

<port type="input" name="0"/>

<port type="output" name="1"/>

<source type="c" location="square.c"/>

</process>

</iterator>

<iterator variable="i" range="N + 1">

<sw_channel type="fifo" size="10" name="F">

<append function="i"/>

<port type="input" name="0"/>

<port type="output" name="1"/>

</sw_channel>

</iterator>

Figure 9.2: Fragment of the XML specification of the process network of Figure 9.3 using
an iterator.

uniquely associated with the ports of processes. Each connection defines the association
between the processes and the sw channels. A special element in the XML specification is
the iterator. Its purpose is to iterate on the number of the above XML entities, namely,
processes, sw channels and connections. An example of an XML code using iterators
is given in Figure 9.2. The variable N is used to bound the iteration number. The
corresponding process network is shown in Figure 9.3.
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Figure 9.3: Multiple Square application in DOL

Initially, the DOL2BIP tool flattens the Process Network XML description. The result
is an XML file where the iterator element is omitted and all children entities of iterator
are instantiated by evaluating the corresponding append elements. The flattened XML file
is parsed and the elements are loaded to Java Classes. The tool also parses the Process C
Source Code and builds up an AST (Abstract Syntax Tree).

After all the inputs are processed, the tool visits the C code of each process. It detects
the function calls and sets the interaction points of each BIP process atomic component.
These points are the DOL Write, DOL Read function call. For each one of them, a BIP
port is defined. Since the BIP ports are defined the tool completes the BIP process atomic
component.

At the next step, according to the process network specification, the tool instantiates
each BIP process component, the BIP SW channel components according to the process
network specification and creates the connectors between the above. The BIP SW model
is now generated.

As we depict in Table 9.1, the DOL2BIP tool along with the C2BIP part consists of
12 Java files and a sum of approximately 5920 lines of code.
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Algorithm 3 DOL2BIP Tool Algorithm

Require: Process Network XML, Process C Source Code
Ensure: BIP SW Model

load(Process Network XML)
load(Process C Source Code)
//Create atomic components
for all process (p) ∈ processList do
Cc = get source code(p)
create C Model(Cc)
fc = find function call(DOL Write, DOL Read)
inp = set interaction Points(fc)
create DOL Write Read Ports(inp)
construct BIP component transition system()

end for
//Create compound component
for all process (p) ∈ processList do

create component(p)
end for
for all SW channel (sw) ∈ SW channelList do

create component(sw)
end for
for all connection (cn) ∈ connectionList do
or = get origin component(cn)
tr = get targer component(cn)
if or is process then

create connectors(DOL write);
else

create connectors(DOL read);
end if

end for
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9.2 BIPWeaver

We present below the algorithm we use in our tool to generate the BIP System Model.
The algorithm is divided in five sections.

Firstly, we parse and load the input BIP SW Model into Java classes, the Library
of BIP System components, the Architecture XML and the Mapping XML specification.
The corresponding XML Schemata are found in the DOL website 3.

Secondly, we iterate on the Process Atomic Types breaking the atomicity of the
DOL Read and DOL Write actions.

Thirdly, we instantiate the Software components. In order to do this, we iterate on
each process creating the Process Components. For each port of the Process Components
we create the corresponding FIFO Write or FIFO Read Component and we connect the
process with them by creating BIP connectors. We complete this step by creating the
control connectors between each pair of FIFO Write and FIFO Read Components.

Fourthly, we create the Hardware components based on the Architecture specification.
For each cluster specified in the Hardware Architecture, we do the following: For each
processor, we create a HW Processor Scheduler Component. Respectively, for each cluster
memory we create a Memory Component and then, we create the Network Interface Com-
ponents. We iterate on the cluster interconnects specified on the architecture XML and
we instantiate the cluster interconnect models in BIP in two steps. In the first step, we
detect the Memory Components connected to the cluster interconnect. In the second step,
we iterate on the processors and for each one of them, we create the corresponding Cluster
Interconnect Components, after having checked if the processor uses the current cluster
interconnect or not. To complete this step, we create the connectors between the Clus-
ter Interconnect Components, the target Memory Component and the Network Interface
Components. After having completed the Cluster Interconnect model, we create a Router
Component for each cluster and we connect the Cluster Component via the Network Inter-
face Components with the Router Component. To complete the NoC interconnect model,
we create the connectors between the routers based on the specified network topology.

Finally, based on the Mapping XML specification, we create the necessary connectors
between the instantiated software and hardware BIP components. Each Process Compo-
nent is connected to the Processor Component (Processor Scheduler) which is mapped to.
Along with the process, the fifo rd and fifo wr associated with the process are also con-
nected to the same Processor Component. To complete the System model, we connect the
fifo rd and fifo wr components with the Cluster Interconnect Components which lead to
the Memory (local cluster or external cluster memory) which the initial FIFO Components
are mapped on.

As depicted in Table 9.1, the BIPWeaver tool consists of 25 Java files summing up 8873
lines of code. The BIP component Library which specifies the System Model Components,
the Software Model Components (i.e. FIFO Components) and the Performance Observer
Library is described by 4 files in 7200 lines of code. There are also 2 different files of 887
LoC, used for the XML description of HW Platform Architectures.

9.3 Weight Table Profiler Tool

In Section 7.1.1, we described the Weight Table Profiling method in details. In this section,
we briefly provide the Weight Table Profiler Tool algorithm and the tool’s complexity.

3http://www.tik.ee.ethz.ch/ shapes/dol.html
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Algorithm 4 BIPWeaver Tool Algorithm

Require: BIP SW Model, Architecture XML, Mapping XML, System Component BIP
Library, Performance Observer Library

Ensure: BIP System Model
load(BIP SW Model, System Component BIP Library)
load(Architecture XML, Mapping XML)
for all process (p) ∈ processList do

break atomicity(DOL Read, DOL Write methods)
end for
//Create software components
for all process (p) ∈ processList do

create component(p)
for all ports of process(p) do
fc = create components(fifo wr, fifo rd)
create connectors(fc, p)

end for
end for
//Create hardware components
for all cluster cl ∈ clusterList do

for all processor pr ∈ processorList do
create component(pr)

end for
//Create Cluster Communication Part
icn=create components(interconnect)
m=create components(memory)
ni=create components(network interface)
create connectors(icn, m, ni)
rt=create component(router)
create connectors(ni,rt)

end for
for all router rt ∈ routerList do
rt′=get neighbor router(rt)
create connectors(rt,rt′)

end for
//Create connectors between software and hardware components
for all process (p) ∈ processList do
pr = get processor(p)
create connectors(p, pr)
for all fifo wr/fifo rd fc used by p do

create connectors(fc, pr)
mc=get memory mapped to(fc)
for all interconnect component icn c used by pr do

if interconnect component leads to mc then
create connectors(fc, icn c)

end if
end for

end for
end for
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Table 9.1

#Files #Lines of Code

C2BIP 7 2892

DOL2BIP 5 3028

BIPWeaver 25 8873

BIP Library 4 7200

Architecture XML 2 887

Weight Table Profiler 22 4000

Code Generator 12 1744

As given in Algorithm 5, we initially load the BIP System Model in the tool. All the
blocks of C code of the BIP transitions are instrumented with profiling functions. Then,
we configure the HW Platform Cross Compiler and we generate the assembly code. Next,
we compile the instrumented BIP model with the profiling library. Finally, we simulate
the BIP model and we analyze the target blocks of code based on the low-level instructions
of the corresponding assembly code and the pre-defined operation weight table.

The tool is implemented both in C language and Perl Scripts. It consists of approxi-
mately 22 files and 4000 lines of code, as seen in Table 9.1.

Algorithm 5 Weight Table Profiling Tool Algorithm

Require: BIP System Model, HW Platform Cross Compiler, Operation Weight Table,
Profiling Library

Ensure: Calibrated System Model
load(BIP System Model)
sw i = instrument(BIP SW Application Components)
hwpcc = configure(HW Platform Cross Compiler)
assembly = cross compile(sw i, hwpcc)
compile(sw i, Profiling Library)
while simulate(sw i) is running do

analyze(sw i, assembly, Operation Weight Table)
end while

9.4 Code Generator Tool

As presented in Section 7.1.2, we developed a method for generating code for simulation
on a virtual hardware platform. In this section, we describe the tool algorithm we used
to implement the tool as given in Algorithm 6. Firstly, we load the SW part of the BIP
System Model, the Architecture details and the Mapping information into Java classes.
Secondly, we implement every process as a thread and every SW channel as shared queue
object of the NPL Library. Finally, the final step, before the generated code is completed,
is to allocate the threads to cores and the shared queues to memories.

The generated code is described in C language. The tool is implemented in Java and
it consists of approximately 12 files and 1744 lines of code, as seen in Table 9.1.
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Algorithm 6 Platform Dependent Code Generator Tool Algorithm

Require: BIP System Model, Virtual Target Platform, Architecture XML, Mapping XML
Ensure: Calibrated System Model

load(BIP System Model)
sys spec = load(Architecture XML, Mapping XML)
for all process (p) ∈ processList do
thread = implement as thread(p)

end for
for all SW channel (sw) ∈ SW channelList do
sh q ob = implement as shared queue object(sw)

end for
for all threads do

allocate to cores(thread, sys spec)
end for
for all data do

allocate to memories(data, sys spec)
end for

9.5 Conclusion

In this chapter, we presented the complete tool-flow developed to generate a complete
BIP System Model. The flow is completely automated and supported by a set of tools.
These tools are the DOL2BIP, the BIPWeaver, the Weight Table Profiler and the
Code Generator. DOL2BIP and BIPWeaver construct the BIP SW Model and the
initial BIP System Model, respectively. Weight Table Profiler and Code Generator
calibrate the System Model with accurate execution delay values of all the C code included
in the BIP transitions. Although, these two tools were developed independently, Code
Generator and specifically, simulation on the virtual hardware platform, has been proven
more accurate in providing execution delay values for the transition blocks of code.

In the next chapters, we present the experimental results obtain with the use of the
above tools. We applied the method in two different case studies: the MPARM and the
P2012 Platform using a various set of running applications.
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Case Study on MPARM Hardware Platform

In the previous chapter, we described the tools developed to support the complete design
flow from the high level software and hardware specifications to fine-grain performance
analysis.

In this chapter, we present the MPARM Hardware Platform, the corresponding hard-
ware model in BIP, and a set of software applications considered as case studies to run on
the MPARM Platform.

10.1 MPARM Hardware Platform

The MPARM [BBB+05, MPS] platform is a virtual ARM-based multi-cluster manycore
platform. It is configured by the number of clusters, the number of ARM cores per cluster,
and the interconnect between the clusters. The MPARM simulator allows experimentation
with at most four clusters, each with eight ARM7-TDMI processors. The clusters are
connected through a 2× 2 NoC interconnect. The architecture is shown in Figure 10.1.

ARM 1 ARM 2 ARM 8

Bus Bus Bus

L1L1L1

L2

Cluster 1

Router Router

RouterRouter

Cluster 4 Cluster 3

Cluster 2

NI

Cross−Bar

Figure 10.1: An MPARM architecture with four clusters

Inside a cluster, each ARM core is connected with its private DRAM (L1) memory
through a local bus. There is also a shared cluster memory SRAM (L2) which is connected
with the cores through a AMBA-AHB cross-bar interconnect. Although the MPARM is
highly parametrized, we present in Table 10.1, some typical MPARM settings. These
features characterize the MRARM processor speed, the memory access delays and the
cross-bar interconnect. A part of the description of an MPARM cluster in XML is given
in Figure 10.2.

A NoC-based infrastructure is used for inter-cluster communication, which consists of
a router, a link, and the network interface (NI) of the individual clusters. In Table 10.2,
we describe the characteristics of the NoC which we considered. The data transfer is
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<cluster name="C1" type="MPARM">

<processor name="P1" type="ARMv7">

<memory name="Private" type="L1">

<configuration name="cycles" value="1"/>

</memory>

<hw_channel name="local" type="Bus"> </hw_channel>

</processor>

. . .

<processor name="P8" type="ARMv7">

<memory name="Private" type="L1">

<configuration name="cycles" value="1"/>

</memory>

<hw_channel name="local" type="Bus"> </hw_channel>

</processor>

<hw_channel name="X-bar" type="CrossBar">

<configuration name="cyclesperbyte" value="1"/>

</hw_channel>

<memory name="Shared" type="L2">

<configuration name="cyclesperbyte" value="2"/>

</memory>

</cluster>

Figure 10.2: Fragment of the DOL description of an MPARM cluster

implemented using packages containing a set of flits in a specific order. There is a header
flit with all the routing information, internal flits which carry all the data, and the tail flit
which signals the end of a package. Consequently, important features are the packaging
delay, the flit size, the router latency, the link latency and the router throughput.

Table 10.1: MPARM Cluster Features

MPARM Cluster Features

CPU frequency 200MHz

DRAM Access Delay (conflict free) (L1) 0.5 cycles/byte

SRAM Access Delay (conflict free) (L2) 5.5 cycles/byte

AMBA-AHB 1 cycles/access (4 bytes)

The MPARM simulator provides cycle-accurate measurements for the execution of the
applications on the virtual platform. This is achieved via generation of low level code as
described in Section 7.1.2. The execution times of the SW-Processes are used to calibrate
BIP System Models to accurately model computational delays. Henceforth, we will use
the term MPARM execution to denote execution on the MPARM virtual simulator.

Another technique, used to obtain cycle-accurate measurements for ARM platforms, is
the Weight Table Profiling, described in Section 7.1.1. In order to model ARM7 processors,
we utilize the arm-rtems-g++ cross compiler for generation of instruction-level assembly
code and the ARM7 data sheet as an operation weight-table guideline.

10.2 MPARM Hardware Template Model in BIP

For the hardware model in BIP, we assumed all the local memories as DRAM with an
access time of 2 cycles. The shared memory is a SRAM with an access time of 22 cycles. All
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Table 10.2: NoC Features

NoC Features

Packaging Delay (header creation) 2 cycles

Flit size 72-76 bits

Router Latency 1.2 ns/flit

Link Latency 200 ps/flit

Router throughput 800 Mflit/sec

CPU frequencies are assumed to be 200MHz. Communication paths are defined between
all five processors (cores) using shared and local memories.

It is configured using five identical cores and a shared memory, connected via a shared
AMBA-AHB cross-bar interconnect.

In Table 10.3, we catalog the MPARM Cluster features used to parametrize the
MPARM virtual platform simulator and incorporated in the MPARM System Models
in BIP. These features are the CPU frequency, the memory and interconnect access delay
and the number of cores per cluster.

Table 10.3: MPARM Cluster Parameters

MPARM Cluster Parameters

CPU Frequency 200MHz

DRAM Access Delay (L1) (conflict free) 0.5 cycles/byte

SRAM Access Delay (L2) (conflict free) 6 cycles/byte

AMBA-AHB 1 cycles/byte

Cores/Cluster 8

For the sake of simplicity, we present below a subset of the complete MPARM cluster
model.

21 Example (MPARM Cluster Model in BIP)
Considering the parameters given in Table 10.3, we present an example of an MPARM
architecture model of a single MPARM Cluster, configured with eight cores, one shared
bus interconnect and one shared memory. Therefore, we firstly instantiate eight abstract
components of the processors. These components will be filled with software processes, fifo
routines and the processor scheduler, according to the given software application and the
mapping specification. The software processes are calibrated, in advance, with accurate
execution times with the instrumentation methods presented in Chapter 7. Secondly, we
use one Bus Scheduler Component and eight Bus Path Components parametrized with
the bus delay to model the Cross-bar interconnect. Lastly, the Bus Path Components
are connected to the Shared Memory Component which is parametrized with the memory
access delay. We illustrate the above in Figure 10.3.

The NoC parameters considered in both MPARM and P2012 platform models in BIP
are given in Table 10.4. They characterize the packaging delay, the router and link delay,
and the number of clusters and routers (network nodes).

In Figure 10.4, we illustrate the Router Component in BIP. It is composed using the
Router IN and Router OUT Components for each direction: the North, the South, the
East, the West and the Local Cluster. The parameters specifying the component are the
router delay and the link latency which is incorporated into the Router Components.
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[count==bus_delay]

bus_conflict++;

mem_conflict++;

bus_conflict=0;

[count==bus_delay]

bus_conflict++;

mem_conflict++;

bus_conflict=0;

count++;
[count<bus_delay]

count++;
[count<bus_delay]

count=0;

count++;

count=0;count=0;

[count<mem_delay]

[count==mem_delay]

. . .

mem_delay : 22 (cycles/access)

bus_delay : 4 (cycles/access)

. . .
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Figure 10.3: MPARM Cluster Model in BIP

Table 10.4: NoC Parameters

NoC Parameters

Packaging Delay (header creation) 2 cycles/package

Router Delay 2 cycles/package

Link Latency 1 cycle/package

Clusters 4

Routers 4
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router_delay :  2 cycles/package

link_latency :  1 cycle/package

count++;

[count<router_delay+link_latency]

count=0;

port_id=route(package);

[count<router_delay+link_latency]

count++;

[count==router_delay+link_latency]
count=0;
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In Table 10.5, we quote the complexity of the abstract model of MPARM considered.
The number of BIP types and BIP type instances needed to model the MPARM platform
in BIP are given in Table 10.6.

Table 10.5: MPARM architecture

Hardware Component Number

Cores 8

Local Memories 8

Local Buses 8

Shared Memories 1

Shared Buses 1

Network Interface 1

Clusters 4

Routers 4

Table 10.6: BIP MPARM Library

BIP types BIP type instances

Ports 8 268

Connectors 12 167

Atomic Components 53 78

Compound Components 4 8

Based on the MPARM Platform model in BIP described in the current section, we
generate various mixed hardware/software System models of a series of application case
studies. The experimentations conducted are presented in the forthcoming sections.

10.3 MPEG-2 Application on MPARM

The MPEG2 decoder application software decodes a set of moving pictures and associ-
ated audio information. The corresponding process network is depicted in Figure 10.5.
We used a case study where there are seven processes DispatchGops (DG), DispatchMb
(DM), DispatchBlocks (DB), TransformBlock (TB), CollectBlocks (CB), CollectMb (CM)
and CollectGops (CG) and six software FIFO channels C1, . . . , C6. The behavior of the
decoder is described in approximately 7000 lines of C code. The process and the FIFO
mappings are illustrated on Table 10.7.

ARM2 ARM3

Shared LM2 Shared LM3LM1

ARM1

C1 C2 C3 C4 C5 C6

Dispatch Dispatch CollectTransform CollectDispatch

Gops Mb Blocks Block Blocks Mb Gops

Collect

Figure 10.5: MPEG-2 Decoder application software and a mapping

For the MPEG-2 case study the BIP System Model contains about 90 BIP atomic
components, 340 BIP interactions and 30K lines of BIP code generating approximately
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Table 10.7: Mapping Description of the processes and the FIFOs

ARM1 ARM2 ARM3 ARM4 ARM5
1 all
2 DG, DM , DB, TBCB, CM , CG
3 DG, DM DB, TB CB, CM , CG
4 DG DM , DB TB CB, CM , CG
5 DG DM , DB TB CB, CM CG
6 DG, DM DB TB CB CM , CG
7 DG DM , DB TB CB, CM CG

Shared LM1 LM2 LM3 LM4 LM5
1 all
2 C4 C1, C2, C3 C5, C6
3 C2, C4 C1 C3 C5, C6
4 C1, C3, C4 C2 C5, C6
5 C1, C3, C4, C6 C2 C5
6 C2, C3, C4, C5 C1 C5
7 C1 C2, C3 C4 C5, C6

100K lines of C code. The method used for calibrating the System model was the Weight
Table Profiling, described in Section 7.1.1. The total computation and communication
delays for decoding 5 frames for different mappings are shown in Figure 10.6. The MPEG-
2 process network is characterized as computationally intensive. The more we distribute
the computational load to different CPUs, the smaller is the computational delay. Since
the FIFOs are few, there is small difference in the communication delays between the
different mappings, except for mapping (1) where all processes and FIFOs are mapped on
a single core. However, as we distribute the processes into more cores, the communication
delay increases and more bus conflicts occur.

Regarding the overall performance, we observe that Mapping (2) results into the worst
frame throughput due to high computational and communication delays. Although in
mapping (4) we use more CPUs than mapping (3), the overall performance decreased
due to higher occurrence of communication conflicts, as illustrated in Figure 10.7. The
best throughput is achieved in Mapping (7) due to the usage of five CPUs and their local
memories.
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Figure 10.6: Mpeg-2 Performance Analysis Results

10.4 MJPEG Application on MPARM

The MJPEG decoder application software reads a sequence of JPEG frames and displays
the decompressed video frames. The process network of the application software is shown
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Figure 10.7: Mpeg-2 Processor Performance Analysis Results

in Figure 10.8. It contains five processes SplitStream (SS), SplitFrame (SF), IqzigzagIDCT
(IDCT), MergeFrame (MF) and MergeStream (MS). The DOL description of the applica-
tion processes contains approximately 1600 lines of C code.

The system model in BIP contains 42 atomic components and 198 interactions, and
consists of approximately 7325 lines of BIP code.

ARM1 ARM2 ARM3 ARM4 ARM5

Shared

IqzigzagIDCTSplitFrame MergeStreamMergeFrameSplitStream

C6

C1

C2

C3

C4

C5

C7 C8

C9

Figure 10.8: Process Network of the MJPEG Decoder Application

To experiment on this case study we calibrated the BIP System model using both
profiling methods described in Chapter 7. We quote the results below.

Weight Table Profiling We analyzed the effect of eight different mappings on the total
computation and communication delay for decoding a frame. The process and the FIFO
mappings are illustrated on Table 10.8.

The total computation and communication delays for decoding a frame for different
mappings are shown in Figure 10.9. Mapping (1) produces the worst computation delay
as all processes are mapped to a single processor. Mapping (2) uses two processors, but
still the performance does not improve much. Mapping (3) drastically improves perfor-
mance as the computation load is balanced. The other mappings cannot further enhance
performance as the load cannot be further balanced, even if more processors are used.
The communication overhead is reduced if we map more FIFOs to the local memories of
the processors. The bus and memory access conflicts are shown in Figure 10.9. As more
FIFOs are mapped to the local memory, the shared bus contention is reduced. However,
this might increase the local memory contention, as shown for (8).
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Table 10.8: Mapping Description of the processes and the FIFOs

ARM1 ARM2 ARM3 ARM4 ARM5
1 all
2 SS, SF , IQ MF , MS
3 SS, SF IQ, MF , MS
4 SS, SF IQ MF , MS
5 SS, MS SF IQ MF
6 SS SF IQ MF MS
7 SS, SF IQ MF , MS
8 SS SF IQ MF MS

Shared LM1 LM2 LM3 LM4
1 all
2 C6, C7 C1, C2, C3, C4, C5 C8, C9
3 C3, C4, C5, C6 C1, C2 C7, C8, C9
4 C3, C4, C5, C6, C7 C1, C2 C8, C9
5 all
6 all
7 C6, C7 C1, C2, C3, C4, C5 C8, C9
8 C1, C2 C3, C4, C5, C6 C7 C8, C9
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Figure 10.9: Mjpeg Performance Analysis Results

Platform-Dependent Code Generation Profiling The implementation generated
for MPARM execution is approximately 3174 lines of code.

For the experiments, we mapped the application on a single MPARM cluster. Each
computational process is deployed into an ARM processor and all the FIFO buffers are
allocated to the L2 shared memory. The performance results per process obtained by
simulation of the system model are depicted in Figure 10.10. We remark that process
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IqzigzagIDCT is the heaviest in terms of computation, while process MergeStream stays idle
most of the time. The low values of memory conflicts highlights the restricted parallelism
within the application.

At system level, we measured the total execution time needed for the decompression of a
single frame. Using BIP system model simulation, this time is estimated at 472.88 Mcycles.
This result is very near to the cycle-accurate value obtained by measuring the MPARM
execution, which is 468.83 Mcycles. The relative error of our estimation is therefore less
than 0.87%. Regarding analysis time, BIP system model simulation outperforms execution
on (virtual) MPARM. The former completes in 9′46′′ and is approximately 5.2 times faster
than the second, which completes in 50′48′′. The above numbers are given in Table 10.9.
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Figure 10.10: Performance Results of Computational Processes in MJPEG Decoder

Table 10.9: Simulation Comparison in MPARM & BIP System Model (106 cycles)

Cycle Count MPARM 468.83
BIP System Model 472.88

Accuracy 0.87%

Simulation Time MPARM 50’ 48”
BIP System Model 9’ 46”

Speed-up 5.20

Notably, BIP System Model calibration using Platform-Dependent Code Generation
is time consuming, since it based on the MPARM execution on the virtual platform to
obtain accurate execution time delays of the SW-processes. However, since the derived
execution time delays involve pure computation parts of the processes and considering
that the virtual platform is configured with each process running on an independent CPU,
we assume that the calibration numbers remain the same for each mapping. Based on
these numbers, we apply a set of various mappings to analyze, through BIP simulation,
the performance of the System nodes on each case.

10.5 Fast Fourier Transform (FFT) Application on MPARM

A Fast Fourier transform (FFT) is an efficient algorithm to compute the Discrete Fourier
transform (DFT) and its inverse. A DFT decomposes a sequence of values into components
of different frequencies. This operation is useful in many fields but computing it directly
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from the definition is often too slow to be practical. An FFT is a way to compute the
same result more quickly.

Generator

fft_2_0_0

fft_2_0_3

fft_2_1_1

fft_2_1_2

fft_2_1_3

fft_2_2_1

fft_2_2_2

fft_2_0_1

fft_2_2_3

fft_2_1_0 fft_2_2_0

Consumer

fft_2_0_2

Figure 10.11: FFT application

The process network of the application software is shown in Figure 10.11. It contains
a Generator and a Consumer process and twelve intermediate FFT processes aligned in a
3× 4 matrix. The number of FIFO channels are 32. The process network is described in
DOL using approximately 1616 lines of code.

As target platform we considered the complete MPARM platform, configured with
four cluster and a NoC infrastructure. The generated System Model in BIP contains 168
atomic components, 706 interactions, and consists of approximately 9641 lines of BIP
code. The above implementation characteristics are depicted in Table 10.10.

Table 10.10: DOL, BIP Models and MPARM Implementation Characteristics

FFT

# processes 14
DOL Process Network # FIFOs 32

# lines of code 1616

# components 168
BIP System Model # interactions 706

# lines of code 9641

MPARM implementation # lines of code 3986

The calibration method used for the System Model was the Platform Dependent Code
Generation. We catalog the execution times of the SW-processes in Table 10.11. The code
generated for the MPARM execution on the virtual platform is around 3986 LoC.

We analyzed the effect of five different mappings illustrated in Figure 10.12. Each
process is mapped on an individual CPU located in different clusters and each FIFO is
mapped on a L2 cluster memory. More specifically, each FIFO is mapped on the same
cluster which the process reading from the FIFO is mapped on.

The performance results per process obtained by simulation of the system model are
depicted in Figure 10.13. The high communication and idle time delays observed at the
fft 2 2 0, fft 2 2 1, fft 2 2 0 and fft 2 2 2 processes are due to the blocking read operations,
which particularly for these processes are the most time-consuming since data are not im-
mediately available. Figure 10.14 illustrates the total communication delays per mapping,
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Table 10.11: Execution times for computational routines on FFT processes (in 106 cy-
cles)

FFT

FFT2 0 0 2.52

FFT2 0 1 2.51

FFT2 0 2 2.44

FFT2 0 3 0.13

FFT2 1 0 2.33

FFT2 1 1 32.35

FFT2 1 2 2.43

FFT2 1 3 32.32

FFT2 2 0 2.36

FFT2 2 1 32.41

FFT2 2 2 32.32

FFT2 2 3 34.09
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Figure 10.12: FFT Mappings on 4-Cluster MPARM Platform
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highlighting mapping 2 as the one with the lowest communication overhead. In terms of
total execution time, all mappings result at almost same value due to significantly higher
computation delay of the Generator and Consumer compared to the FFT processes.
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Figure 10.13: FFT Performance Analysis Results per process
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Figure 10.14: FFT Performance Analysis Results - Mapping1

10.6 Demosaicing Algorithm Application on MPARM

Demosaicing algorithm is a digital image processing algorithm used to reconstruct a full
color image from the incomplete color samples output from an image sensor, overlaid with
a color filter array (CFA). More specifically, the algorithm generates YUV components by
transformations on the initial raw image.

Demosaicing application works on 5× 5 matrices.The resulting pixels are the resulting
averages of centered points of each matrix, which results to the loss of four lines and four
columns of the initial image.

The process network of the application software is shown in Figure 10.15. It contains
a Splitter and a Joiner process, a pre-demosaicing (Demo pre) and a post-demosaicing
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Demo_postSplitter JoinerDemo_pre

Demo_1

Demo_2

Demo_3

Demo_4

Demo_5

Demo_6

Figure 10.15: Demosaicing application

(Demo post) process and six internal demosaicing Demo processes that run in parallel.
The number of FIFO channels are 28. The process network is described in DOL using
approximately 1672 lines of code.

As target platform we considered the complete MPARM platform, configured with
four cluster and a NoC infrastructure. The generated System Model in BIP contains 152
atomic components, 614 interactions, and consists of approximately 15366 lines of BIP
code. The above implementation characteristics are depicted in Table 10.12.

Table 10.12: DOL, BIP Models and MPARM Implementation Characteristics

Demosaicing Model(1× 6)

# processes 10
DOL Process Network # FIFOs 28

# lines of code 1672

# components 152
BIP System Model # interactions 614

# lines of code 15366

MPARM implementation # lines of code 10124

The calibration method used for the System Model was the Platform Dependent Code
Generation. We catalog the execution times of the SW-processes in Table 10.13. The code
generated for the MPARM execution on the virtual platform is around 3986 LoC.

Table 10.13: Execution times for computational routines on demosaicing processes (in
106 cycles)

Demosaicing Model(1× 6)

Demo 1 14.23

Demo 2 27.03

Demo 3 26.86

Demo 4 26.53

Demo 5 23.87

Demo 6 14.66

We analyzed the effect of three different mappings illustrated in Figure 10.16. Each
process is mapped on an individual CPU located in different clusters and each FIFO is
mapped on a L2 cluster memory. More specifically, each FIFO is mapped on the same
cluster which the process reading from the FIFO is mapped on.
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Figure 10.16: Demosaicing Mappings on 4-Cluster MPARM Platform

The performance results per process obtained by simulation of the system model are
depicted in Figure 10.17. The high communication and idle time delays observed at
the Demo 00 and Demo 05 processes are due to the blocking write operations, which
particularly for these processes are the most time-consuming. This is observed because
the Demo 00 and Demo 05 processes complete their computations quicker than the other
processes (see Table 10.13) and by the time they start writing the results to the Demo post
process they are conflicting with the read operations of the rest processes These read
operations are longer because they involve greater amount of data. Figure 10.18 illustrates
the total communication delays per mapping, highlighting mapping 1 as the one with the
lowest communication overhead. Mapping 1 is the only one with all the processes spread
onto all four available cluster resulting to greater communication delays. In terms of total
execution time, all mappings result at almost same value due to the significantly higher
computation delay of the Splitter, Joiner and the pre and post demosaicing processes
compared to the six internal demosaicing processes.
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Figure 10.17: Demosaicing Performance Analysis Results per process

10.7 Cholesky Decomposition Application on MPARM

Cholesky Factorization decomposes a Hermitian positively-defined real-valued matrix
A into the product L · LT of a lower triangular real-valued matrix L and its conjugate
transpose LT . The Cholesky decomposition is used for solving numerically linear equations
Ax = b. If A is symmetric and positive definite, then we can solve Ax = b by first
computing the Cholesky decomposition A = L ·LT , then solving Ly = b for y, and finally



140 Chapter 10. Case Study on MPARM Hardware Platform

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3

C
om

m
un

ic
at

io
n 

D
el

ay
s 

(1
03  c

yc
le

s)

Mapping Number

Communication Delays

Figure 10.18: Demosaicing Performance Analysis Results - Mapping3

Algorithm 7 Right-Looking Block-Based Cholesky Factorization

Require: A Hermitian, positive definite matrix
Ensure: A = L · LT , L lower triangular

for k = 1 to B do
Lkk := seq-cholesky(Akk)
L−Tkk := invert(transpose(Lkk))
for i = k + 1 to B do
Lik := Aik · L−Tkk

end for
for j = k + 1 to B do
LTjk := transpose(Ljk)
for i = j to B do
Aij := Aij − Lik · LTjk

end for
end for

end for
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solving LTx = y for x.

The sequential Cholesky factorization algorithm has computational complexity O(N3)
for matrices of size N × N . In this paper, our starting point is the sequential right-
looking block-based version [OS85] provided as algorithm 7 which provides immediate
support for parallelization. In this algorithm, B denotes the number of blocks composing
the original matrix A, that is A = (Aij)1≤j≤i≤B and every Aij is a block matrix of size
K = N/B. The algorithm computes the matrix L, block by block, such that A = L · LT .
Algorithm 7 is easily parallelizable by separating computations related to different ij-
blocks on different processes Pij . Nevertheless, interactions between these processes are
highly non-trivial. There are complex patterns for data dependencies, as illustrated in
Figure 10.19 for the cases B = 2, 3, 4. Moreover, the amount of computation carried by
each process is different. That is, as factorization proceeds, processes with higher indexes
(i, j) become computationally more intensive. Furthermore, both data dependencies and
the local amount of computation are tightly related to the decomposition size B as well
as to the block size K. Altogether, finding optimal implementation on multi-processor
platforms with fixed communication and computation resources is a non-trivial problem.
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Figure 10.19: Data dependencies for 2 × 2(A), 3 × 3(B) and 4 × 4(C) process decom-
position. Identical patterns indicate respectively a similar amount of local computation
(processes) or potential for parallel communication (data dependencies).

For every B, we denote by Cholesky(B) the Cholesky factorization using a B × B
block decomposition. For our experiments, we implemented three versions in DOL, for
respectively B = 2, 3, 4. In all cases, the process networks contain a Splitter process,
a Joiner process and the computational processes for each block (Pij)1≤j≤i≤B. Process
Splitter splits the initial A matrix into blocks and dispatches them to computational pro-
cesses. Every process Pij implements the computation required on its corresponding ma-
trix blocks Aij and Lij . As an example, the computational processes for Cholesky(4) are
P11, P21, P22, P31 . . .P44 as shown in Figure 10.19. The final L matrix is re-constructed
by the Joiner process. Explicit communication between Pij processes is used to enforce
data dependencies. In these models, a dedicated FIFO is used for every pair of depen-
dent processes to transfer the result block from the source to the target process. In the
MPARM implementation, each computational process is deployed into an ARM processor
and all the FIFO buffers are allocated to the L2 shared memory. It is to be noted that
for B = 2, 3 the implementation fits into a single cluster, and for B = 4, two clusters have
been used. The magnitude of the different representations produced along the BIP design
flow (number of processes, FIFOs, components, interactions, lines of code) is depicted
in Table 10.14. The calibration method used for the System Model was the Platform
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Dependent Code Generation.

Table 10.14: DOL, BIP Models and MPARM Implementation Characteristics

B = 2 B = 3 B = 4

# processes 5 8 12
DOL Process Network # FIFOs 8 20 40

# lines of code 864 1400 2171

# components 40 120 181
BIP System Model # interactions 182 445 882

# lines of code 5207 7491 13648

MPARM implementation # lines of code 1977 3163 4923

For every B = 2, 3, 4, we evaluate Cholesky(B) on 60 × 60 input matrices of double
precision floating point numbers. Therefore, computational processes operate on matrix
blocks of size 30 × 30, 20 × 20 and 15 × 15 for respectively B = 2, 3, 4. During the
calibration phase, each computational routine on matrix blocks is characterized by the
number of cycles required to execute it on an ARM processor. This is done by running
the generated application code on MPARM and by accurate measurement of the number
of cycles, for each routine. Table 10.15 reports the worst case execution times for different
size of matrix blocks.

Table 10.16 presents an overview of the system-level performance analysis results ob-
tained using two methods, respectively simulation of the system model vs. implementation
and measurement of code execution on the MPARM platform. For both methods, we re-
port the total execution time taken by the application to run on the platform and the
analysis time, that is, the time taken by the methods to produce the results. We point
out that simulation of BIP system models produces fairly accurate results (max 20.95%
relative error with respect to the cycle-accurate MPARM execution) while significantly
reducing the analysis time (up to 19 times, in some situations). Note that for B = 4, the
MPARM simulation did not terminate in 72 hours and the simulation data is unavailable.
However, an estimate is obtained from the BIP system model simulation. A higher cycle
count reflects the communication overhead due to the presence of two clusters with the
NoC interconnect.

Finally, Figure 10.20 presents a detailed view of execution times and communication
delays for computational processes for Cholesky(4). For each process, the idle time de-
notes the waiting time spent before it gets access to read or write on FIFO channels. The
communication time denotes the time effectively spent on reading or writing. The com-
putation time denotes the total execution time without the idle and the communication

Table 10.15: Execution times for computational routines on matrix blocks (in 106 cycles)

B = 2 B = 3 B = 4
K = 30 K = 20 K = 15

seq-cholesky 33.82 15.47 14.94

invert 34.85 16.06 15.47

transpose 0.13 0.08 0.08

multiply 115.64 53.23 47.16

tmultiply 104.80 45.01 34.89

subtract 1.66 1.05 1.05
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Table 10.16: Performance Analysis: MPARM Execution vs BIP System Model Simula-
tion

B = 2 B = 3 B = 4

Total Execution Time MPARM Execution 317.70 229.58 -
(in 106 cycles) BIP System Model Simulation 325.23 277.69 356.00

Accuracy 2.37% 20.95% -

Analysis Time MPARM Execution 69′49′′ 34′25′′ -
( in minutes) BIP System Model Simulation 3′43′′ 7′54′′ 26′5′′

Speed-up 18.78 4.35 -

 0

 50

 100

 150

 200

 250

P11 P21 P22 P31 P32 P33 P41 P42 P43 P44

C
om

pu
ta

tio
n 

D
el

ay
s 

(1
06  c

yc
le

s)

Computation
Idle Time

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

P11 P21 P22 P31 P32 P33 P41 P42 P43 P44

C
om

m
un

ic
at

io
n 

D
el

ay
s 

(1
06  c

yc
le

s)

Memory Conflict

Figure 10.20: Performance Results of Computational Processes in Cholesky(4)

time. The Figure 10.20 (left) confirms that processes with higher indexes (i, j) are indeed
computationally more intensive than the others. Additionally, the same processes are also
idle for longer time than the others. This happens because of an increased number of data
dependencies from processes with lower indexes (i, j). Communication time is impacted
by memory conflicts. Memory conflicts occur when two different processes try to access
simultaneously FIFO buffers located in the same shared memory. Figure 10.20 (right)
depicts the delays due to memory conflicts for each process.

10.8 Discussion

In this chapter, we presented the MPARM Hardware Platform, the corresponding hard-
ware model in BIP, and a set of software applications considered as case studies to run on
the MPARM Platform. The software applications were the MPEG-2 and the MJPEG de-
coders, the Fast Fourier Transform (FFT), the Demosaicing Algorithm and the Cholesky
Decomposition. For each case study, we created mixed hardware/software System Models
of the MPARM platform and the corresponding software application, based on different
mappings. Both profiling methods were used to calibrate the System Models, as presented
in Chapter 7. For the MPEG2, we used the Weight Table Profiling method. For MJPEG,
we used both the Weight Table Profiling and the Platform Dependent Code Generation.
For the rest, FFT, Demosaicing and Cholesky we calibrated the System Models using only
the Platform Dependent Code Generation , since it is considered to provide more accurate
execution times of the software processes. Both profiling methods are time consuming.
However, they are applied once for every case study and the results are re-used for all
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mapping configurations.
The experiments show the capability of the BIP design flow for fine grain performance

analysis on manycore platforms. It also shows the speedup compared to simulation based
techniques, without adversely affecting the accuracy of the measurements.
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Case Study on P2012 Hardware Platform

In the previous chapter, we experimented with the MPARM Hardware platform and a
series of software applications as case studies.

In this chapter, we present the Platform 2012 Hardware Platform, the corresponding
hardware model in BIP, and a software applications considered as case study to run on
the Platform 2012 Hardware Platform.

11.1 P2012 Hardware Platform

Platform 2012 (P2012) [SC10] is an area and power efficient manycore computing fabric,
jointly developed by STMicroelectronics and CEA. The P2012 computing fabric is highly
modular, as it is based on multiple clusters implemented with independent power and
clock domains, enabling aggressive fine-grained power, reliability and variability manage-
ment. Clusters are connected via a high-performance fully-asynchronous network-on-chip
(NoC), which provides scalable bandwidth, power efficiency and robust communication
across different power and clock domains. Each cluster features up to 16 tightly-coupled
processors sharing multi-banked level-1 instruction and data memories, a multi-channel
advanced DMA engine, and specialized hardware for synchronization and scheduling ac-
celeration. P2012 achieve extreme area and energy efficiency by aggressive exploitation of
domain-specific acceleration at the processor and cluster level. In the scope of this case
study, each processor has been specialized with modular extensions dedicated to floating-
point unit computation. Other extension such as vector units or other special-purpose
instructions may also be chosen at design-time.

P2012 is based on a modular infrastructure as depicted in Figure 11.1. Fabric-level
communication is based on an asynchronous NoC organized in a 2D mesh structure. The
routers of this NoC are implemented in a Quasi-Delay-Insensitive (QDI) asynchronous
(clock-less) logic. They provide a natural Globally Asynchronous Locally Synchronous
(GALS) scheme isolating the clusters logically and electrically. The number of clusters is
a parameter of the fabric. A configuration up to 32 clusters is supported in the current
implementation. The exact type of NoC is used for the MPARM Platform, described in
Chapter 10, where a set of important NoC features are given in Figure 10.2.

One significant characteristic of the fabric is that all local storage at the cluster level is
visible in a global memory map, which also includes memory-mapped peripherals. In this
non-uniform memory architecture (NUMA), remote memories (off-cluster or off-fabric) are
expensive to access. For this reason, DMA engines are available for hardware-accelerated

145
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Figure 11.1: P2012 Fabric Template

Figure 11.2: P2012 Cluster
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global memory transfers. At the fabric level, a configurable number of I/O channels,
implemented via multiple DMAs, can be used for connecting the fabric to the rest of the
SoC. Finally, a fabric controller serves as the control interface between the SoC and the
fabric.

A P2012 cluster (Figure 11.2) aggregates a multicore computing engine, called Encore
and a cluster controller. The Encore cluster includes a number of processing elements
(PEs) varying from 1 to 16. Each PE is built with a highly configurable and extensible
processor called STxP70-v4. It is a cost effective and customizable 32-bit RISC core
supported by comprehensive state-of-art toolset. The Encore 16 PEs do not have private
data caches or memories, therefore avoiding memory coherency overhead. Instead, the
PEs can directly access a L1-shared program cache (P$) and a L1-shared Tightly Coupled
Data Memory (TCDM). Each core therefore has two 64 bit-ports to the shared memories,
a read-only instruction port and a read/write data port. The P$ cache is a 256 KB, 64-
bank, direct mapped cache memory while the TCDM is a 256-KB, 32-bank memory. The
P$ and the TCDM have been architected with a banking factor of 4 and 2, respectively.
The P$ can therefore support a throughput of one instruction fetch per PE on each clock
cycle. Encore provides run-time acceleration by the means of the Hardware Synchronizer
(HWS). Various synchronization primitives such as semaphores, mutexes, barriers, joins,
etc. can be implemented using accelerated support of the HWS.

A logarithmic interconnect is used to access the TCDM memory. Data are forwarded
using routing and arbitration techniques. Based on address decoding, the requested ad-
dress may correspond to the intra-cluster, multi-banked memory or the off-cluster NoC
environment. In case of simultaneous accesses in contiguous data, reduced memory con-
flicts are observed due to fine-grained address interleaving. The crossing latency of the
interconnect consists of one clock cycle. In case of multiple conflicting requests, for fair
access to memory banks, a roundrobin scheduler arbitrates access and a higher number
of cycles is needed depending on the number of conflicting requests, with no latency in
between. In case of no banking conflicts data routing is done in parallel for each core,
thus enabling a sustainable full bandwidth for processors-memories communication. To
reduce memory access time and increase shared memory throughput, read broadcast has
been implemented and no extra cycles are needed when broadcast occurs.

A multi-ported, multi-banked, Tightly Coupled Data Memory (TCDM) is directly
connected to the logarithmic interconnect. The number of memory ports is equal to the
number of banks to have concurrent access to different memory locations. Once a read or
write requests is brought to the memory interface, the data is available on the negative
edge of the same clock cycle, leading to two clock cycles latency for conflict-free TCDM
access. If conflicts occur there is no extra latency between pending requests, once a given
bank is active, it responds with no wait cycles.

The cluster controller (CC) consists of a cluster processor subsystem, a DMA subsys-
tem, a CC interconnect and several interfaces: one to the Encore 16 PEs and one to the
asynchronous NoC. The cluster processor is designed around a STxP70-V4 dual-issue core
without extension and with 16-KB P$ and 16-KB of local memory.

The Platform 2012 Development Kit provides support for several platform program-
ming models (PPM). Standards-based programming models are based on industry stan-
dards that can be implemented effectively on P2012. The supported standards are OpenMP
and OpenCL. Another supported PPM is called Native Programming Layer (NPL). NPL
is an API which is closely coupled with the platform capabilities. It allows the highest level
of control on application to resource mapping at the expense of abstraction and platform
independence.
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The P2012 SDK also features platform models for the execution and the simulation
of applications running on the P2012 platform. For the scope of this paper, we used a
mono-cluster simulator of the fabric and an Encore engine featuring 16 PEs. We targeted
the NPL for fine-tuned control of the deployment of the application on the platform, and
to achieve better performance.

Figure 11.3: Abstract model of a P2012 Cluster

For the scope of this thesis, we target a simplified, preliminary version of the P2012
platform. This version consists of a mono-cluster version of the P2012 fabric and an Encore
engine featuring 16 PEs. Figure 11.3 presents the abstract model of this platform.

11.2 Platform 2012 Hardware Template Model in BIP

In this section, we provide the P2012 architecture model in BIP, along with all the pa-
rameters which characterize the model.

The NoC model parameters are the same as those used for the MPARM NoC model
presented in Table 10.4. The P2012 Cluster parameters, given in Table 11.1, specify
the Logarithmic Interconnect Access Delay and the TCDM access delay, considering zero
conflicts. Notably, the above parameters characterize the communication part of the
P2012 Cluster. As for the computation part, the execution times which profile each
software process of the given application is obtained via simulation on the P2012 Platform
simulator based on the method described in Section 7.1.2.

Table 11.1: P2012 Cluster Parameters

P2012 Cluster Parameters

Logarithmic Interconnect Delay (conflict free) 1 cycle/byte

TCDM Access Delay (conflict free) 1 cycle/byte

The complete abstract model of the P2012 architecture we considered consists of four
clusters, each of them enumerating sixteen processing elements, one 32-banked TCDM
memory and one Logarithmic Interconnect, as shown in Table 11.2. To concretely model
this abstract model in BIP, we need various BIP types and BIP type instances as depicted
below in Table 11.3.

In Figure 11.4, we illustrate the complete P2012 Cluster model in BIP. There are
eight cores (PEs), given as template components, which will be filled with the Processor
Scheduler Components, the software processes and the FIFO routines, based on the given
mapping. For the modeling of the logarithmic interconnect, there are eight Bus Interface
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Table 11.2: P2012 architecture

Hardware Component Number

Clusters 4

Processing Elements/Cluster 16

Logarithmic Interconnect/Cluster 1

TCDM/Cluster 1

Memory Banks/TCDM 32

Routers 4

Table 11.3: BIP P2012 Library

BIP types BIP type instances

Ports 5 122

Connectors 7 1094

Atomic Components 11 69

Compound Components 3 2

Components, each one per core, parametrized by the processor ID and the number of mem-
ory banks. They are connected via a set of guarded connectors with all the Memory Bank
Components of the TCDM memory and the Network Interface Components. The Mem-
ory Bank Components are parametrized by the memory bank ID and the communication
access delays, namely, the interconnect access delay and the multi-banked memory access
delay. Moreover, the Network Interface Components are parametrized by the packaging
delay, the number of memory banks and the cluster ID.

11.3 HMAX application on P2012

HMAX is a powerful computational model of object recognition [RP99] which attempts
to model the rapid object recognition of human brain. Hierarchical approaches to generic
object recognition have become increasingly popular over the years [SWP05, ML08], they
indeed have been shown to consistently outperform flat single-template (holistic) object
recognition systems on a variety of object recognition task. Recognition typically involves
the computation of a set of target features at one step, and their combination in the next
step. A combination of target features at one step is called a layer, and can be modeled
by a 3D array of units which collectively represent the activity of set of features (F) at a
given location in a 2D input grid.

HMAX starts with an image layer of gray scale pixels (a single feature layer) and
successively computes higher layers, alternating (S) and (C) layers:

• Simple (S) layers apply local filters that compute higher-order features by combining
different types of units in the previous layer.

• Complex (C) layers increase invariance by pooling units of the same type in the
previous layer over limited ranges. At the same time, the number of units is reduced
by subsampling.

In our case study experiment, we only considered the two first layers of the HMAX
model algorithm. In a pre-processing phase, the input raw image is converted to gray
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Figure 11.4: Platform 2012 Cluster Model in BIP

Figure 11.5: HMAX Computation Layers



11.3. HMAX application on P2012 151

scale input (only one input feature: intensity at pixel level) and the image is then sub-
sampled at several resolutions. For the S1 layer, a battery of three filters is applied to the
sub-sampled images (three features) and finally for C1 layer we take the spatial max of
computed filters across two successive scales. The process is illustrated in Figure 11.5.

In this application model, parallelism can be exploited at several levels. First at the
layer level, independent features can be computed simultaneously. Second, at the pixel
level, the atomic computation of contribution to a feature may be distributed among
computing resources. In the scope of this paper, we will consider parallelism at the layer
level.
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Figure 11.6: KPN model of the HMAX S1-C1 layers in DOL

Figure 11.6 presents the process network model constructed from the S1 layer of the
HMAX models algorithm. It contains processes Splitter, GFilter1 . . . GFilter12, MaxFil-
ter1 . . . MaxFilter11 and Joiner. The Splitter builds the 12 scales of the input image and
dispatches them to Filters. Each GFilter1 . . . GFilter12 implements a 2D-Gabor filter with
different orientation. Their results are then sent, feature by feature, to MaxFilters. Each
MaxFilter convolves outputs produced by two adjacent GFilters. The results are finally
gathered by the Joiner.
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Figure 11.7: BIP Model of a 2D-Gabor Filter
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Figure 11.7 presents the model of a 2D-Gabor filter as an atomic component in BIP.
This component consists of 6 control locations (START, S1, . . . , S4, DETACH) and two
ports, DOL read and DOL write. NDPF state, size and address are local data (variables)
of the component. The variables address and size are associated with the ports. The tran-
sitions are either internal transitions (internal step) where local computation and updates
are made, or port interactions, where the component exchanges data and synchronizes
with the other BIP components.

We restrict ourselves to the S1 layer of the HMAX models algorithm. The process
network in DOL consists of 14 processes and 24 FIFO channels. This DOL model is about
700 lines of XML (defining the process network structure) and 1500 lines of C (defining
the process behavior). The software model in BIP is constructed automatically from the
DOL model. It consists of 38 atomic components interconnected using 48 connectors.
The BIP software model is about 2000 lines of BIP code. The system model obtained
by deploying the S1 layer on a single P2012 cluster consists of 125 atomic components
interconnected using about 1500 connectors. The total BIP description totalizes about
13000 lines of BIP code. This description is compiled into about 50000 lines of C++ code,
used for simulation and performance analysis.

The execution time of 2D-Gabor filters on P2012 PEs ranges from 220 ·106 to 0.68 ·106

cycles, depending on the size of the input image (ranging from 100 × 100 to 15 × 15
pixels). By using these values in the system model, the total execution time of the S1
layer is estimated as 225 · 106 cycles. This overall execution time is negatively impacted
by the long access time (i.e., about 100 cycles) to the L3 memory (where all FIFOs are
mapped) as well as by the bus contention. A slightly better result is obtained if the FIFOs
are all mapped into the TCDM memory. In this case, the memory access time is about 1
cycle and there is no more contention. The total execution time reduces to about 220 ·106

cycles. However, such a mapping is not feasible due to memory size constraints, that is,
FIFOs cannot fit all simultaneously within the TCDM memory.

11.4 Conclusion

In this chapter, we presented the P2012 Hardware Platform, the corresponding hardware
model in BIP, and the HMAX software application to run on the MPARM Platform. We
created mixed hardware/software System Model of the P2012 platform and the HMAX
software application, based on different mappings. The Platform Dependent Code Gener-
ation method was used to calibrate the System Models, as presented in Chapter 7.
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- Chapter 12 -

Conclusion and Perspectives

Introductive We developed a rigorous and automated design flow for generating a
model which faithfully represents the behavior of a mixed hardware/software system from
a model of its application software and a model of its underlying hardware architecture.
The presented method allows generation of a correct-by-construction system model for
manycore platforms from an application software and a mapping. The method is based on
source-to-source correct-by-construction transformation of BIP models. It is completely
automated and supported by the BIP toolset.

Method Firstly, we generate the application software model in BIP. This is achieved
by an automatic translation of the input application software model which should be
described in a process network with a well defined structure. The translation preserves
intact the behavior and the characteristics of the initial application software.

Secondly, we model the hardware architecture in BIP. A library of BIP atomic compo-
nents that characterize multi-processor architectures is defined. Combining the hardware
architecture specifications and the BIP library components, we synthesize the hardware
architecture model in BIP.

Thirdly, we construct the mixed software/hardware system model. This model rep-
resents the behavior of the application software running on the hardware architecture
according to the mapping, but without taking into account execution times for the soft-
ware actions. This step consists in progressively enriching the application software model
by doing:

• Application of a sequence of source-to-source transformations to synthesize hardware
dependent software routines implementing communication by using the hardware
components.

• Integration of hardware components used in the system model.

The transformations are proved correct-by-construction, that is, they preserve func-
tional properties of the application software.

Finally, the (bounds for) execution times are obtained by analysis or simulation of the
run of every software process in isolation on the platform. These bounds are injected into
the system model and lead to the calibrated system model.

155



156 Chapter 12. Conclusion and Perspectives

Method Advantages and Comments The above method sticks to the general prin-
ciples of rigorous design as described in Chapter 1. Namely, it is model-based, component-
based, correct-by-construction and tool-supported.

The construction of the system model is incremental and structure-preserving. This
ensures scalability as the complexity of system models increases polynomially with the
size of the application software and of the target hardware architecture. Mastering system
model complexity is achieved thanks to the expressiveness of the BIP modeling frame-
work. All properties established for the initial model will hold for all the models obtained
by transformations. The transformations are correct-by-construction, that is, they are
proven to preserve a trace equivalence between the initial and the transformed model.
The complexity of the transformations is linear with the size of the transformed models.
So, correctness is ensured at minimal cost and by construction, thus overcoming obstacles
of design flows involving different and not semantically related languages and models.

The method clearly separates software and hardware design issues. It is also parametrized
and allows flexible integration of design choices related to resource management such as
scheduling policies, memory size and execution times, etc. This allows estimation of the
impact of each parameter on system behavior.

We have defined a library of BIP atomic components that characterize manycore ar-
chitectures, including models for hardware components (e.g., processor, memory) and for
hardware-dependent software components (e.g., FIFO channel read/write, bus controllers,
schedulers).

Using BIP as a unifying modeling formalism for both hardware and software confers
multiple advantages, in particular rigorousness. The obtained system models are correct-
by-construction. This is a main difference from other ad hoc model construction tech-
niques. The use of a single modeling framework allows to maintain the overall coherency
of the design flow by comparing different architectural solutions and their properties. This
is a significant advantage of our approach. Semantically related models are used for veri-
fication, simulation and performance evaluation. Designers use many different languages
e.g. programming languages, UML, SystemC, SES/Workbench. Code generation and
deployment is often independent from validation and evaluation.

Toolset The method has been implemented and integrated in the BIP toolset. We
used the DOL framework [TBHH07] as a frontend to describe the application software,
hardware architectures and mapping specifications. The backend of the tool produces the
system model in BIP, which can be analyzed by the BIP tool chain for:

• Code generation for simulation/validation on a Linux PC.

• Code generation for simulation/validation on two Virtual Platforms, the MPARM
and the P2012.

• Functional correctness using the D-Finder tool, checking for deadlocks.

• Performance analysis (e.g. delay computation) and design space exploration, based
on simulation and statistical model checking.

Experimentation and Case Studies Experimental results show the feasibility of the
system model for fine granular analysis of the effects of architecture and mapping con-
straints on the system behavior. The final model allows accurate estimation through simu-
lation of real-time characteristics (response times, delays, latencies, throughput, etc.) and
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indicators regarding resource usage (bus conflicts, memory conflicts, etc.). The method is
tractable and allows design space exploration to determine optimal solutions.

We have experimented on two case studies, the MPARM and the P2012/STHORM
Hardware Platform. We presented the MPARM hardware model in BIP, and a set of
software applications to run on the MPARM Platform. The software applications were the
MPEG-2 and the MJPEG decoders, the Fast Fourier Transform (FFT), the Demosaicing
Algorithm and the Cholesky Decomposition. For each software application, we created
mixed hardware/software System Models of the MPARM platform and the corresponding
software application, based on different mappings. Both profiling methods were used to
calibrate the System Models, as presented in Chapter 7.

The experiments show the capability of the BIP design flow for fine grain performance
analysis on manycore platforms. It also shows the speedup compared to simulation based
techniques, without adversely affecting the accuracy of the measurements.

Perspectives

Future work includes more experiments based on the P2012 hardware platform. In addi-
tion, formal verification using D-Finder could be applied at the level of software application
model in BIP described as KPN process networks.

An other extension should be to explore different programming models for the applica-
tion software and richer hardware architecture models that include DMA (Direct Memory
Access) Controller, Bus Bridge, Network on Chip communication and three dimensional
architectures.

Except from timing constraints, thermal values, power consumption and dynamic
scheduling policies should be considered. The latter properties of the hardware model
should enrich the current models of hardware components attributing to an extensive
performance analysis of our target system.

Moreover, we plan to include statistical model checking on the generated system models
consisting of multiple applications running on complex multicore architectures for perfor-
mance analysis, as in [BBB+10].

Finally, important part of the future extension of this work would be to consider task
migration and dynamic mapping. Task migration protocol should be aware of all critical
performance metrics of the system leading to optimal mapping obtained on-the-fly.



158 Chapter 12. Conclusion and Perspectives



List of Figures

1.1 Simplified View of a System Design . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 System Model Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Software Application - Hardware Platform mapping of a System Design . . 20

2.1 Structure of a BIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Sender (left) and Receiver (right) BIP atomic components . . . . . . . . . 27

2.3 Sender/Buffer/Receiver model as a composition of BIP atomic components 29

2.4 The BIP Tool-Chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Send/Receive BIP model obtained from BIP to BIP transformations. . . . . 37

3.1 Translation method for a language in BIP . . . . . . . . . . . . . . . . . . . 41

3.2 Models of the Producer and Consumer Components in BIP . . . . . . . . . 44

3.3 Model of FIFO channel in BIP . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Producer-Consumer Composition in BIP . . . . . . . . . . . . . . . . . . . . 46

3.5 Cholesky application in DOL . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Fragment of the DOL description of the Cholesksy process network . . . . . 48

3.7 C code for the P22 process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 C code and the corresponding BIP model of P22 process . . . . . . . . . . . 51

3.9 Cholesky(2) application software model in BIP . . . . . . . . . . . . . . . . 52

4.1 Cluster Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Cluster Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 NoC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Processor Abstract Model in BIP . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Processor Scheduler Component in BIP . . . . . . . . . . . . . . . . . . . . 58

4.6 Crossbar Switch BUS Model in BIP . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Bus Scheduler Component in BIP . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Bus Path Component in BIP . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Memory Component in BIP . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 BIP model of a HW platform with four processors and one shared memory 62

4.11 Multiplexing Interconnect Model in BIP . . . . . . . . . . . . . . . . . . . . 63

4.12 Bus Interface Component in BIP . . . . . . . . . . . . . . . . . . . . . . . . 63

4.13 MultiBank Memory Model in BIP . . . . . . . . . . . . . . . . . . . . . . . 64

4.14 Memory Bank Component in BIP . . . . . . . . . . . . . . . . . . . . . . . 64

4.15 BIP model of a HW platform with four processors and a multi-banked memory 66

4.16 Network Interface Model in BIP . . . . . . . . . . . . . . . . . . . . . . . . 66

4.17 Network Interface Outgoing Controller Component in BIP . . . . . . . . . . 67

4.18 Network Interface Incoming Controller Component in BIP . . . . . . . . . . 68

159



160 List of Figures

4.19 BIP model of a HW platform with four processors, a multiplexing intercon-
nect, a multi-banked memory and a network interface . . . . . . . . . . . . 70

4.20 Router Component in BIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.21 Router Incoming and Router Outgoing Port Components in BIP . . . . . . 71

4.22 NoC Component in BIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Model of the Producer Component (left) and model of the Refined Producer
Component in BIP (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Model of the FIFO channel (left) and the Refined FIFO channel in BIP
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Producer-Consumer Refined Composition in BIP . . . . . . . . . . . . . . . 78

5.4 Traces of the Refined Producer-Consumer Process Network. . . . . . . . . . 79

5.5 Model of the Producer-Consumer Split-FIFO System Model in BIP . . . . . 83

5.6 Traces of Split-FIFO Producer-Consumer Process Network. . . . . . . . . . 84

5.7 Model of the Processor Scheduled System Model in BIP . . . . . . . . . . . 89

6.1 Model of the Processor Scheduled System Model in BIP . . . . . . . . . . . 92

6.2 Traces of Processor Scheduled Producer-Consumer Composition . . . . . . 93

6.3 Producer-Consumer System Model on a Shared Memory Cluster in BIP . . 98

6.4 Traces of Processor Scheduled Producer-Consumer Composition on a Shared
Memory Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Producer-Consumer System Model on a NoC in BIP . . . . . . . . . . . . . 100

7.1 Process Profiling steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Instruction Weight Table Profiling Flow . . . . . . . . . . . . . . . . . . . . 104

7.3 Execution delay analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Platform Dependent Code Generation Profiling Flow . . . . . . . . . . . . . 106

8.1 Timed Composition in BIP with hierarchical connectors. . . . . . . . . . . . 110

8.2 Timed Composition in BIP with hierarchical connector and an Observer
Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3 Computational Observers in BIP System Model. . . . . . . . . . . . . . . . 112

8.4 Observer Component in BIP System Model . . . . . . . . . . . . . . . . . . 112

9.1 System Model Tool Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.2 Fragment of the XML specification of the process network of Figure 9.3
using an iterator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.3 Multiple Square application in DOL . . . . . . . . . . . . . . . . . . . . . . 119

10.1 An MPARM architecture with four clusters . . . . . . . . . . . . . . . . . . 125

10.2 Fragment of the DOL description of an MPARM cluster . . . . . . . . . . . 126

10.3 MPARM Cluster Model in BIP . . . . . . . . . . . . . . . . . . . . . . . . . 128

10.4 Router Component in BIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.5 MPEG-2 Decoder application software and a mapping . . . . . . . . . . . . 130

10.6 Mpeg-2 Performance Analysis Results . . . . . . . . . . . . . . . . . . . . . 131

10.7 Mpeg-2 Processor Performance Analysis Results . . . . . . . . . . . . . . . 132

10.8 Process Network of the MJPEG Decoder Application . . . . . . . . . . . . . 132

10.9 Mjpeg Performance Analysis Results . . . . . . . . . . . . . . . . . . . . . . 133

10.10Performance Results of Computational Processes in MJPEG Decoder . . . 134

10.11FFT application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10.12FFT Mappings on 4-Cluster MPARM Platform . . . . . . . . . . . . . . . . 136



List of Figures 161

10.13FFT Performance Analysis Results per process . . . . . . . . . . . . . . . . 137
10.14FFT Performance Analysis Results - Mapping1 . . . . . . . . . . . . . . . . 137
10.15Demosaicing application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.16Demosaicing Mappings on 4-Cluster MPARM Platform . . . . . . . . . . . 139
10.17Demosaicing Performance Analysis Results per process . . . . . . . . . . . . 139
10.18Demosaicing Performance Analysis Results - Mapping3 . . . . . . . . . . . . 140
10.19Data dependencies for 2 × 2(A), 3 × 3(B) and 4 × 4(C) process decompo-

sition. Identical patterns indicate respectively a similar amount of local
computation (processes) or potential for parallel communication (data de-
pendencies). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.20Performance Results of Computational Processes in Cholesky(4) . . . . . . 143

11.1 P2012 Fabric Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
11.2 P2012 Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
11.3 Abstract model of a P2012 Cluster . . . . . . . . . . . . . . . . . . . . . . . 148
11.4 Platform 2012 Cluster Model in BIP . . . . . . . . . . . . . . . . . . . . . . 150
11.5 HMAX Computation Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.6 KPN model of the HMAX S1-C1 layers in DOL . . . . . . . . . . . . . . . . 151
11.7 BIP Model of a 2D-Gabor Filter . . . . . . . . . . . . . . . . . . . . . . . . 151



162 List of Figures



List of Tables

9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.1 MPARM Cluster Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.2 NoC Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.3 MPARM Cluster Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.4 NoC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.5 MPARM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.6 BIP MPARM Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.7 Mapping Description of the processes and the FIFOs . . . . . . . . . . . . . 131
10.8 Mapping Description of the processes and the FIFOs . . . . . . . . . . . . . 133
10.9 Simulation Comparison in MPARM & BIP System Model (106 cycles) . . . 134
10.10DOL, BIP Models and MPARM Implementation Characteristics . . . . . . 135
10.11Execution times for computational routines on FFT processes (in 106 cycles)136
10.12DOL, BIP Models and MPARM Implementation Characteristics . . . . . . 138
10.13Execution times for computational routines on demosaicing processes (in

106 cycles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.14DOL, BIP Models and MPARM Implementation Characteristics . . . . . . 142
10.15Execution times for computational routines on matrix blocks (in 106 cycles) 142
10.16Performance Analysis: MPARM Execution vs BIP System Model Simulation143

11.1 P2012 Cluster Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
11.2 P2012 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
11.3 BIP P2012 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

163



164 List of Tables



Bibliography

[AAM06] Yasmina Abdeddaim, Eugene Asarin, and Oded Maler. Scheduling with
Timed Automata. Theoretical Computer Science, 354:272–300, 2006.

[ACF+98] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An ar-
chitecture for autonomy. INTERNATIONAL JOURNAL OF ROBOTICS
RESEARCH, 17:315–337, 1998.

[Aea07] Davare Abhijit et al. A next-generation design framework for platform-
based design. In DVCon 2007, February 2007.

[BB91] Albert Benveniste and Gerard Berry. The synchronous approach to reactive
and real-time systems. In Proceedings of the IEEE, pages 1270–1282, 1991.

[BBB+05] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco Menichelli,
and Mauro Olivieri. MPARM: Exploring the Multi-Processor SoC Design
Space with SystemC. Journal of VLSI Signal Processing Systems, 41:169–
182, 2005.

[BBB+08] Ananda Basu, Philippe Bidinger, Marius Bozga, Joseph Sifakis, and Joseph
Sifakis. Distributed semantics and implementation for systems with inter-
action and priority. In FORTE, pages 116–133, 2008.

[BBB+10] Ananda Basu, Saddek Bensalem, Marius Bozga, Benôıt Caillaud, Benôıt
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