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TITRE: Calculs de dynamique inélastique pour des collisions moléculaires

d’intérêt astrochimique.

RÉSUMÉ

L’analyse des conditions physico-chimiques régnant dans le milieu inter-

stellaire (ISM) nécessite de connâıtre les constantes de vitesse de collision

inélastique qui ont lieu plus fréquemment dans l’ISM. Nous avons à cette

fin calculées les surfaces d’énergie potentielles ainsi que les états liés des

complexes CS-H2, HCN-H2, HCN-He et C3-He. Nous avons déterminé pour

la collision CS-H2 les sections efficaces et les taux d’excitation collisionnels

pour les premiers niveaux rotationnels. Des observations récentes suggérent

que l’excitation des modes de pliage des molécules triatomiques doit être

prise en compte dans les modèles astrochimiques. Nous présentons donc

deux nouvelles approches théoriques permettant d’effectuer un traitement

Close Coupling des collisions inélastiques d’un atome avec une molécule tri-

atomique. Le couplage entre les mouvements de rotation et de pliage de

la molécule est traité soit exactement dans le cadre de l’approximation du

rigid bender (RBCC) ou de façon approximée en moyennant le potentiel

d’interaction atome-molécule sur le mode de pliage de la molécule (RBAA).

La méthode RBCC est appliquée à l’étude des collisions HCN-He et C3-

He pour lesquelles les sections efficaces de transition entre niveaux rota-

tionnels appartenant à des modes de pliage différents sont obtenues. Les

résultats sont comparés avec ceux fournis par l’approximation du rotateur

rigide linéaire. Dans le cas de la collision HCN-He ils sont aussi comparés

avec ceux obtenus en utilisant l’approche RBAA. Nous montrons que les

sections efficaces de transitions entre des niveaux rotationels appartenant à

des niveaux de bending différents doivent être calculées au niveau RBCC.

MOTS-CLÉS: surface d’énergie potentielle, dynamique quantique inélastique,

calcul d’états liés, couplage pliage-rotation, CS-H2, HCN-H2, HCN-He, C3-

He.



TITLE: Quantum molecular collision studies for processes of astrophysical

interest.

ABSTRACT

The analysis of the physico-chemical conditions taking place in the inter-

stellar medium (ISM) requires to know the inelastic rate coefficients of the

detected interstellar molecules in collisions with the most common colliders

in the ISM. We have computed the four dimensional potential energy sur-

faces, and the bound levels for the CS-H2, HCN-H2, HCN-He and C3 -He

complexes. For the collisions of CS with H2, we also determined the first

inelastic cross sections and rate coefficients. Several recent observations sug-

gest that the vibrational excitation of triatomic molecules in the ISM at least

in the bending motion needs to be considered in the collision mechanisms.

We present a new theoretical method to treat atom-rigid bender inelastic

collisions at Close the Coupling level (RBCC). The coupling between rota-

tion and bending is treated exactly within the rigid bender approximation

and we obtain the cross section for the rotational transition between levels

belonging to different bending levels. This approach is applied to the study

of HCN-He and C3-He. The results are compared with those obtained when

considering the molecules to be linear rigid rotors. In the case of HCN-He,

they are also compared with the cross sections determined using the inte-

raction potential averaged over the bending wavefunction. We demonstrate

that the cross sections involving vibrational transitions should be computed

using the RBCC method. For HCN-He, the linear rigid approach is found

to offer a good description of pure rotational transitions while for C3-He

this method is shown to overestimate the cross section for collision energies

higher than the first excited bending threshold.

KEYWORDS: potential energy surface, inelastic quantum dynamic, bound

states, bending-rotation coupling, CS-H2, HCN-H2, HCN-He, C3-He.



Résumé du travail de thèse

La thèse est présentée sous la forme de 7 chapitres dont un d’introduction et 

un  de  conclusion.  Hormis  ces  deux  chapitres  chacun  est  constitué  d’une 

introduction puis de la ou des publications correspondantes, soit un total de six 

publications dans des revues à comité de lecture.  

Le  premier  chapitre  introductif  situe  le  contexte  astrochimique  des 

problèmes traités. Cette thèse est en effet financée par un programme européen 

d’astronomie:  le  programme  Astronet  CATS.  Il  s’agit  donc  de  traiter  les 

collisions inélastiques entre les molécules détectées et H2 ou bien He qui sont 

les constituants les plus abondants des nuages interstellaires. Les modèles de 

chimie  des  nuages  interstellaires  se  sont  considérablement  améliorés  ces 

dernières années et un certain nombre de molécules triatomiques commencent à 

être  prise  en compte.  Les  systèmes  traités  dans  cette  monographie sont  tout 

d’abord  H2 +  CS  et  He  +  HCN  linéaire.  Ces  deux  systèmes,  même  s’ils 

nécessitent  de  calculer  les  surfaces  d’énergie  potentielle  impliquées  puis 

d’effectuer  la  dynamique,  sont  traités  avec  des  méthodes  existantes.  En 

revanche  la  deuxième  partie  de  la  thèse  est  dédiée  au  développement  de 

plusieurs méthodes originales permettant de décrire le couplage entre la rotation 

et le mouvement vibrationnel de pliage d’une molécule triatomique en collision 

avec un atome d’hélium.   Ces modèles sont appliqués à deux molécules : HCN 

et C3. Ce chapitre introductif justifie donc la nécessité de prendre en compte le 

couplage entre rotation et pliage pour ces molécules dans le milieu interstellaire 

et mentionne les études existantes au moment du début de ce travail de thèse. 

Le  chapitre  2  résume  les  connaissances  théoriques  fondamentales 

nécessaires  pour  aborder  le  traitement  quantique  d’une  collision  inélastique 

entre deux molécules. Il s’agit tout d’abord des méthodes ab initio de calcul de 

structure électronique qui permettent d’obtenir l’énergie d’interaction de deux 

molécules  pour  un  ensemble  de  points  dans  l'espace  des  coordonnées  du 

système bimoléculaire, dans le cadre de l’approximation de Born-Oppenheimer. 

Ces  énergies  sont  ensuite  utilisées  pour  obtenir  un  modèle  analytique  de  la 

surface d’énergie potentielle.  La deuxième partie du chapitre traite de la théorie 

de la diffusion tout d’abord pour les collisions élastiques.  Ce formalisme est 

ensuite  étendu  au  cas  des  collisions  entre  deux  molécules  linéaires  ou  plus 



précisément  de  deux rotateurs  couplés,  puis  au  cas  d’une collision  entre  un 

atome  et  une  toupie  symétrique.  Le  concept  de  résonance  est  introduit  au 

passage ainsi qu’une méthode de calcul des états liés rovibrationnels du système 

basée sur une utilisation particulière des équations de diffusion.  

Le chapitre  3 traite de la collision entre H2 et  CS. Il s’agit  d’obtenir les 

sections efficaces d’excitation rotationnelle de CS avec les deux espèces para et 

ortho de H2. A cette fin, la première surface d’énergie potentielle complète est 

calculée pour ce système et un premier test de la qualité de cette surface est 

effectué par le calcul des états liés du complexe. Ce travail est présenté dans une 

première  publication.  La  comparaison  de  ces  résultats  avec  les  données 

expérimentales  s’avère  excellente,  prouvant  ainsi  la  qualité  de  la  surface 

obtenue.  Puis les calculs  des sections efficaces  de collision sont effectués et 

comparés aux résultats précédents qui concernent la collision He-CS, ce qui fait 

l'objet d'une deuxième publication. Les astronomes ont en effet l’habitude de 

déduire les sections efficaces de collision avec para-H2 de celles obtenues pour 

l’hélium en faisant une simple multiplication des sections efficaces de collisions 

par la racine carrée du rapport des masses relatives. Cette approximation, qui ne 

peut fournir les taux avec ortho-H2, s’avère correcte pour ce système. Pour les 

collisions de para-H2 avec CS, une préférence pour les transitions rotationnelles 

avec j impair est observée pour les faibles énergies de collision tandis que cette 

tendance s’inverse pour les énergies de collision plus importantes.  La même 

observation  est  faite  pour  les  collisions  impliquant  ortho-H2,  l'inversion  se 

produisant toutefois à plus haute énergie de collision pour cette forme de H2. 

Le chapitre 4 présente une étude similaire, mais effectuée pour les collisions 

entre H2 et HCN. La surface d’énergie potentielle est calculée ainsi que les états 

liés du système, ce qui constitue la première publication.  La dynamique fait 

l’objet d’une publication séparée qui n’était pas encore soumise au moment de 

la soutenance de thèse. Les états liés obtenus sont en excellent accord avec les 

mesures expérimentales démontrant la qualité de la surface calculée. Le calcul 

de l’énergie de dissociation du complexe H2-CS donne 37.79 cm-1 pour l’espèce 

para et 60.26 cm-1 pour l’espèce  ortho de H2. Le nombre d’états liés supporté 

par le puits de potentiel est de 101 pour le complexe de CS avec para-H2 et de 

330 pour  celui  avec  ortho-H2.  Un résultat  particulièrement  intéressant  de ce 

travail  est  la  comparaison  de  la  surface  moyennée  sur  l’état  rotationnel 



fondamental de para-H2 avec la surface originale. En effet une expérience pour 

ce  système  avait  montré  que  le  complexe  He-HCN  devait  être  linéaire  en 

contradiction avec les seuls résultats théoriques disponibles à ce moment là. La 

surface moyennée donne un complexe linéaire  et confirme donc les résultats 

expérimentaux. 

Avec le chapitre 5, nous entrons dans la partie la plus novatrice de cette 

monographie.  Dans le cas des collisions non-réactives,  le calcul des sections 

efficaces  de  transition  rotationnelle  est  quasiment  toujours  réalisé  dans 

l'approximation des monomères rigides. En effet,  puisque les forces générées 

par les interactions intermoléculaires sont de bien plus faible intensité que les 

forces  intramoléculaires,  on  peut  considérer  que  le  couplage  entre  les 

mouvements  intramoléculaires  et  intermoléculaires  est  négligeable.  En 

diminuant le nombre de degré de liberté, cette approximation réduit fortement la 

complexité et le coût des calculs de dynamique quantique collisionnelle. Cette 

approximation permet d'obtenir  de très bons résultats  lorsque  les fréquences 

vibrationnelles  intramoléculaire  sont  bien  plus  grandes  que  les  fréquences 

associées  aux modes  de vibration  intermoléculaires.  On peut  citer  le  cas  du 

système H2 + CO pour lequel un excellent accord a été obtenu entre les données 

expérimentales et le calcul quantique du spectre de transition infrarouge, ainsi 

que pour  des  sections  efficaces  de collision  inélastique  à  basse température. 

Tant  que l'on considère des collisions  entre  molécules  diatomiques,  on reste 

dans le domaine d'application de l'approximation des monomères rigides. Mais 

si on s'intéresse aux molécules triatomiques (ou plus grandes) alors il est plus 

difficile de justifier cette approximation puisque certains modes de mouvement 

peuvent être associés à  des fréquences de vibration faibles.  C'est  le cas des 

mouvements de pliage pour certaines molécules triatomiques, et de torsion pour 

des molécules de taille supérieure. Dans ce chapitre, nous nous intéressons au 

cyanure d'hydrogène (HCN) en collision avec He. La fréquence de pliage de 

HCN est  ν2 =  712 cm-1.  Dans le  chapitre  suivant,  nous  traiterons  le  cas  du 

tricarbone, une molécule bien plus souple dont la fréquence de pliage est très 

basse, ν2 = 63 cm-1. HCN, et son isomère HNC, figurent parmi les molécules 

organiques les plus abondantes dans le milieu interstellaire. Les émissions de 

leurs  transitions  rotationnelles  constituent  un  marqueur  important  du  gaz 

moléculaire  dense dans les galaxies  qui sont particulièrement  brillantes  dans 



l'infrarouge.  Pour  remonter  à  l'abondance  de  HCN à partir  des  observations 

astronomiques, lorsque la densité du gaz est trop faible pour que s'établisse un 

équilibre  thermodynamique,  il  est  nécessaire  de  connaitre  les  constantes  de 

vitesse associées à l'excitation (ou désexcitation) rotationnelle par collision avec 

les espèces les plus abondantes, H2 et He. Pour étudier la collision de HCN avec 

He, nous avons défini un modèle mathématique de l'interaction entre HCN et 

He, où HCN est représenté par un modèle semi-rigide: l'angle de pliage est une 

variable dynamique alors que les distances internucléaires sont des constantes. 

Les paramètres de ce modèle ont été ajustés par la méthode des moindres carrés 

sur un ensemble de 43015 points dans l'espace des 4 coordonnées du système 

He-HCN. Les énergies ab initio ont été calculées par la méthode CCSD(T) avec 

une  base  aug-cc-pVQZ  à  laquelle  on  a  ajouté  un  jeu  d'orbitales  atomiques 

diffuses sur le centre de l'axe reliant HCN à He, ce qui permet d'améliorer la 

description de la liaison faible entre les deux monomères. Nous avons obtenu 

ainsi une surface d'énergie potentielle dont le minimum global a une énergie de 

dissociation de 30.35 cm-1 et une configuration géométrique linéaire He-H-C-N 

avec une distance R=7.94 Bohr entre He et le centre de masse de HCN. Le 

calcul des états liés de ce système a été réalisé par deux méthodes différentes: la 

première utilise l'approximation des monomères rigides (RMA), c'est-à-dire que 

l'on  considère  HCN  comme  une  molécule  linéaire  rigide,  et  la  deuxième 

méthode prend en compte le mouvement de pliage de HCN par le calcul d'un 

potentiel  d'interaction  moyen  sous  l'effet  de  la  densité  de  probabilité  de  la 

fonction d'onde de pliage (RBAA). Les deux méthodes donnent des énergies de 

transition  proches  des  valeurs  expérimentales,  la  deuxième  méthode  étant 

légèrement  plus  précise.  Pour  le  calcul  des  sections  efficaces  de  relaxation 

rovibrationnelle,  nous  avons  développé  une  troisième  méthode  entièrement 

nouvelle dans laquelle le mouvement de pliage de HCN et ses couplages avec la 

rotation  et  le  mouvement  de  He  sont  totalement  pris  en  compte  par  un 

formalisme de collision quantique (RBCC). Le traitement  exact  du couplage 

rovibrationnel pour une molécule linéaire telle que HCN permet de d'accéder au 

calcul du l-doubling, c'est-à-dire la levée de dégénérescence des états de pliage 

vibrationnel qui sont doublement dégénérés en l'absence de rotation. Dans le cas 

des transitions purement rotationnelles de HCN, les sections efficaces que nous 

avons  calculées  ne  montrent  pas  de  différences  majeures  entre  les  trois 



méthodes  RMA,  RBAA  et  RBCC.  Ceci  montre  que  l'approximation  des 

monomères  rigides reste  parfaitement  valable  pour une molécule triatomique 

dont la fréquence vibrationnelle de pliage n'est pas trop basse. Si on considère 

maintenant  les  transitions  rovibrationnelles  de  HCN,  alors  on  observe  des 

différences significatives entre les sections efficaces calculées avec la méthode 

RBAA et celles avec RBCC. L'ensemble de ces résultats a fait l'objet de deux 

publications.

Le  chapitre  6  est  dédié  au  système  He-C3.  Comme  dans  le  chapitre 

précédent, nous avons défini une surface de potentiel de haute qualité et calculé 

les états liés avec les méthodes RMA et RBCC. La différence avec HCN est que 

la molécule C3 est très souple, puisque sa fréquence de vibration de pliage est 

assez  proche  des  fréquences  vibrationnelles  associées  aux  modes  de 

mouvements  intermoléculaires.  Les  calculs  ab  initio de  26526  points  dans 

l'espace des coordonnées ont été réalisés avec la méthode CCSD(T) avec une 

base aug-cc-pVQZ à laquelle on a ajouté un jeu d'orbitales atomiques diffuses 

centré sur la liaison intermoléculaire. La géométrie d'équilibre du système He-

C3 ainsi calculée correspond à une structure en T légèrement dissymétrique, où 

le  monomère  C3 est  légèrement  non-linéaire  et  l'énergie  électronique  de 

dissociation est 26.9 cm-1. En raison de cette structure en T, la rotation de He 

autour  de  C3 correspond  à  un  potentiel  d'interaction  très  anisotrope.  La 

différence entre les énergies des états liés calculées par les méthodes RMA et 

RBCC  est  assez  faible,  ce  qui  montre  que  malgré  la  faible  fréquence 

vibrationnelle  de pliage  de C3,  le  couplage entre  ce mouvement  vibrationnel 

intramoléculaire et les mouvements intermoléculaires reste faible. Ce travail sur 

le système He-C3 a fait l'objet d'une publication.

Dans  le  dernier  chapitre,  nous  présentons  la  conclusion  générale   de 

l'ensemble des travaux présentés dans cette monographie. Quatre systèmes de 

van  der  Waals  ont  été  étudiés.  Pour  chacun,  nous  avons  modélisé  l'énergie 

d'interaction entre les deux monomères et calculé par des méthodes quantiques 

les énergies des états liés et les sections efficaces de collision inélastique. Les 

deux premiers  systèmes,  H2-CS et  H2-HCN ont  été  étudié  dans  le  cadre  de 

l'approximation des monomères rigides. Les deux suivants, He-HCN et He-C3 

ont  fait  l'objet  de  travaux  théoriques  plus  approfondis.  Le  mouvement 

intramoléculaire  de pliage est  pris  en compte dans la  dynamique,  aussi  bien 



pour les états liés que pour les sections efficaces de collision inélastique. Nous 

avons ainsi montré que l'approximation des monomères rigides donne de bons 

résultats pour les énergies des états liés et pour les sections efficaces tant que 

l'on s'intéresse seulement aux transitions rotationnelles. A partir d'une énergie 

de collision suffisante pour ouvrir le premier niveau vibrationnel excité, alors il 

est  nécessaire  d'utiliser  notre  nouvelle  méthode  RBCC  pour  calculer 

correctement les sections efficaces de transitions rovibrationnelles.
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CHAPTER 1

General Introduction

The knowledge of the interstellar medium (ISM) has changed dramatically

in the last century. From the idea of vacuum among the star, nowadays the

development of the astrochemistry has given us a clear understanding of the

main chemical and physical processes in different interstellar environments.

In 1926, Eddington proposed the hypothesis of the existence of matter

in the interstellar space [1]. However, the first observation of molecular lines

from the interstellar medium was done in 1934 [2], and in 1935 Rusell [3]

suggested that these lines had a molecular origin. Up to the 1950s, the

molecules detected in the ISM were limited to a few ones. In the 1960s,

the technical progresses of radio-astronomy allowed the detection of first

interstellar OH [4] and since then of many other molecules.

New recent observational facilities have opened the doors to the golden

age of the studies on the interstellar medium. The instruments of the Hub-

ble Space Telescope are able to examine the far-ultraviolet light and the

near-ultraviolet light. In the same domain is the FUSE (Far Ultravio-

let Spectroscopic Explorer) which also provides a large amount of data.

The SOFIA (Stratospheric Observatory for Infrared Astronomy) and the

Herschel Space Observatory provide complementary access to the infrared

and submillimeter wavelengths domain. Finally, we want to mention the

capabilities offered by ALMA (Atacama Large Millimeter/sub-millimeter

Array) interferometer, which exhibits an impressive sensitivity and a high
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spatial and spectral resolution. ALMA will be fully operational in 2015 and

will provide every day a huge amount of data of molecular lines observa-

tions. About eighty years after the first observation of a molecule line in

the ISM, the Cologne Database for Molecular Spectroscopy (CDMS) [5–7]

listed around 180 molecules detected in the ISM or in circumstellar shells

(March 2013).

The densest regions in the ISM are the molecular clouds. In these re-

gions, the formation of molecules is possible while the ionized gas is predom-

inant in other regions of the ISM. The molecular clouds are furthermore the

first stage in the formation of stars and for this reason they are of great in-

terest for the astronomers. The detected emission and absorption spectra of

molecules are the main source of the information on the ISM. Modelling the

intensity and observed profiles allows the determination of the main physico-

chemical characteristics, density, temperature, and chemical abundance of

the interstellar molecules. The two more important processes leading to

transitions among internal levels of molecules in a typical interstellar cloud

are the radiative and the collisional one with the most abundant neutral

species [8]. The analysis of the radiative processes requires the knowledge

of the Einstein coefficients, which are usually well known while for the col-

lisional processes, the collisional rate coefficients of the detected interstellar

molecules with the most common colliders in the ISM (e.x., H, He and H2)

are required and are usually unknown. If we consider collisions to be the

dominant process, it is possible to make the hypothesis of the local thermal

equilibrium (LTE). In this case, the rotational population is described by a

Boltzman distribution at a given temperature. As the ISM has a very low

density, the interactions are rare and the LTE is not a good approximation.

When the LTE does not apply, the analysis of observed spectra requires the

knowledge of the collisional rate between specific quantum levels. The rou-

tine analysis of the observation made in the ISM by the astronomers relies

on tracers molecules which can be in small quantity, but are easy to detect.

Among the most used molecules as dense mass tracers are the CO, HCN,

HCO+ and CS [9] molecules. For this reason, the study of the collision

dynamics of these molecules is of paramount importance.

The very specific physical conditions typical of the interstellar clouds

make the experimental approach rather complicated while the very low

temperature and density facilitates the theoretical studies by reducing the

number of open channels [8]. These two observations motivated the develop-
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ment of several quantum mechanical approaches to generate the requested

theoretical data. In the 1960s Arthurs and Dalgarno [10] developed the for-

malism of quantum scattering for an atom colliding a rigid rotor within a

time independent approach. Shortly after, the generalization to the collision

between two rigid rotors was done [11,12] and the corresponding computa-

tional packages started to be developed. Today, while a few groups like us

develop their own package [13,14] many studies are based on the use of the

MOLSCAT [15] or Hybridon [16] packages. The amount of theoretical data

available for the (de-)excitation of simple molecule by collisions with He, H2

and H has consequently grown over the years and the necessity was made

to develop data bases like BASECOL [17] where these informations can be

found. A recent review of Roueff and Lique [18] summarize these studies

(see references therein). An example of such studies will be presented in

Chapter 3 for the H2-CS collision.

While it was thought that these studies could be limited to the rota-

tional degrees of freedom, owing the very low temperature of the interstellar

clouds, several recent observations suggest that the vibrational excitation

of triatomic molecules in the ISM, ex. HCN [19,20] and C3 [21,22], at least

in the bending motion needs to be considered in the collision mechanisms.

The investigation of these new topics is an important part of the present

PhD work which is founded by the European Astronet network CATS. The

vibrational (de-)excitation of triatomic molecules by collision with an atom

or a diatomic molecule has motivated the development of several theoretical

approaches [23–25]. However, all these pioneering studies neglect the rota-

tional degree of freedom or are based on the use of drastic approximations

such as the infinite order sudden (IOS) approximation [26–30].

The most recent of these approaches, dedicated to the collision of CH2

with He, was published at the same time than our first paper dedicated

to the He-HCN collision. The authors treated both the rotational and the

bending motion [31, 32] at the ab initio level but averaged the interaction

potential over the bending wave function of the CH2 molecule before per-

forming the dynamics of the collision between He and the rigid equilibrium

structure of CH2. We developed a similar approach in our first paper ded-

icated to the He-HCN collisions as it will be presented below, the main

difference between these two studies being the equilibrium geometry of the

molecule which is linear for HCN leading to l-doubling while it is planar

for CH2. Another important difference between these two systems is the
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magnitude of the bending frequency which is 750 cm−1 for HCN [33] while

it is 963 cm−1 for CH2 [34]. The coupling between bending and rotation

which furthermore leads to l-doubling is then expected to be important for

HCN and required the development of new theoretical approaches going be-

yond the rigid bender averaged approximation. This exact treatment of the

bending-rotation interaction was made even more necessary by the recent

detection of the HCN l-type transitions in the ISM [35] which cannot be

accounted by the averaged potential over the bending wave function. This

new method will be presented and applied to HCN in Chapter 5. Among

the small carbon chains expected to play an important role as building

block in the formation of complex organic molecules in the ISM, the linear

C3 molecule has been detected through several of its rovibrational transi-

tion. Its very small bending frequencies, around ten times smaller than

HCN, makes furthermore of the He-C3 collision the ideal system to test our

method as will be shown in Chapter 6.

In summary, the present work gathers the studies of the collisions of

some interstellar molecules (CS, HCN and C3) with H2 and/or He. For the

two triatomic molecules, the bending-rotation interaction was included for

their collisions with He. The thesis is divided into seven chapters.

In Chapter 2, we introduce the general background of the electronic

calculations and we present the scattering formalism of two rigid rotors in

the space fixed frame. We also give a brief account of the close coupling

bound state method which we use to calculate the bound states energies of

the Van der Waals complexes.

In Chapter 3, we study the collision between CS and H2. Both molecules

are treated as rigid rotors. A new potential energy surface (PES) for the

CS-H2 calculated at coupled cluster level is first presented. We then report

the bound levels for the CS-para-H2 and CS-ortho-H2 complexes and the

results of the close coupling calculations which are compared to previous

works.

In Chapter 4, we present a new four dimensional analytical model of

the PES for the HCN-H2 system when treating both HCN and H2 as linear

rigid rotors. A first use of this PES to compute the bound energy levels

of HCN-para-H2 and HCN-ortho-H2 complexes is reported. The accuracy

of the PES is discussed by comparing the transition frequencies among the

calculated levels with the experimental data.
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In Chapter 5 which is the central one of the present manuscript, a new

4D PES for the He-HCN system is first reported which takes fully into

account the coupling between the rotation and bending of HCN. The details

of the two different methods which are developed to treat the dynamics of

the He-HCN collisions using this surface are then presented. In the first

approach which we call the rigid bender averaged approximation (RBAA)

the interaction potential is averaged over the bending wave function before

performing the dynamics while in the second, called rigid bender Close

coupling (RBCC), the coupling between rotation and bending is treated

exactly within the rigid bender approximation. The calculations of the

dynamics is then performed using both the RBAA and RBCC approaches

and the results discussed. The computation of the bound states of the

He-HCN complex are also reported first when treating the HCN molecule

like a rigid linear molecule while in a second time the bound levels of the

complex are calculated using the interaction potential averaged over the

bending wavefunctions. Both calculation are compared with the available

experimental and theoretical data.

In Chapter 6, we present a new PES for the C3-He complex which des-

cribes the coupling between bending and rotation and compute the bound

states using the RBCC method. We compare these levels with those ob-

tained treating C3 like a linear rigid rotor. The results of the dynamics

are presented and discussed for this system. Finally, the conclusions and

perspectives of this work are presented in the Chapter 7.
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In this chapter we will present a short overview of the theoretical meth-

ods used to calculate inelastic cross sections of two simple molecules. The

first traditional approximation which is used takes advantage of the dif-

ference of masses between the electron and the nuclei to assume that the

electrons can respond almost instantaneously to the displacements of the

nuclei. The use of this approximation allows dividing the theoretical work in

two parts. First the electronic energy has to be calculated for a grid of fixed

positions of the nuclei and the different methods available to perform this

computation will be presented in Section 2.2. The resulting grid of energy

points which is called a potential energy surface (PES) is then fitted using
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an analytical model. These models being system specific will be presented

in each chapter. The second main part of such studies is dedicated to the

dynamics of the nuclei and will be presented in Section 2.3.

2.1 Born-Oppenheimer approximation

The time-independent Schrödinger equation for a molecular system formed

by N atoms, without external field and relativist effects, is

HΨ(q,Q) = {TN(Q) + Te(q) + V (q,Q)}Ψ(q,Q) = EΨ(q,Q). (2.1)

Q are the nuclear coordinates while q correspond to all electron coordinates.

TN(Q) and Te(q) are the kinetic operator of the nucleus and the electrons,

respectively. Ψ is the wavefunction depending of q and Q, and E is the

total energy of the system. V (q,Q) is potential energy of the system and

include the nuclei-nuclei, electron-nuclei and electron-electron interactions.

The wavefunction can be expressed as the product of a function that

depend of the electronic coordinates (and parametrically of the nuclear co-

ordinates) and a function which depend only of the nuclear coordinates:

Ψ(q,Q) =
∞∑

i=1

ψi(q,Q)φi(Q). (2.2)

With 〈ψi(q,Q)|ψj(q,Q)〉q = δij, where the sub-index q means that the in-

tegration is over the electronic coordinate only. The ψi(q,Q) are the eigen-

functions of the electronic Hamiltonian,

[Te(q) + V (q,Q)]ψi(q,Q) = Eeψi(q,Q). (2.3)

If we substitute 2.2 in 2.1, use 2.3, multiply by ψ∗i (q,Q) on the left and

integrate over the electronic coordinates, we get

[
TN(Q) + Ee

]
φi(Q) + W(q,Q) = Eφi(Q). (2.4)

The term W is

W(q,Q) =
∞∑

j

~2

M

(
〈ψi|∇Q|ψj〉∇Q +

1

2
〈ψi|∇2

Q|ψj〉
)
φj(Q). (2.5)
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The quantity W is non-zero because ψi(q,Q) depend on the nuclear

coordinates and thus
∂ψi(q,Q)

∂Q
is non-zero. The nuclear mass M in the

denominator makes W small, and then it can be neglected.

The first step is to solve the electronic Schrödinger equation, which

can be done fixing the nucleus in a given configuration. If the process

is repeated for various molecular geometries, we obtain a set of electronic

energies depending of the nuclear coordinates. It is possible to used this set

of energies to get an energy surface V e(Q) which depend only of the nuclear

coordinates.

2.2 Ab-initio Approaches

The ab initio approaches solve the electronic Schrödinger equation without

using any empirical parameter. Indeed, the term ab initio comes from the

Latin words from the beginning. These methods choose a model for the

electronic wavefunction and solve the electronic Schrödinger equation using

only the values of the fundamental constants and the atomic numbers of

the nucleus.

The ab initio methods have been discussed extensively in several books

about electronic structure (ex. [36–39]), for that reason we will outline only

some aspects here. These methods are accurate at the expense of a high

computational cost. Several commercial package such as Molpro [40] and

Gaussian [41] implement most of these methods.

Hartree-Fock Approximation

The starting point for most of the ab-initio methods is the Hartree-Fock

(HF) or Self-Consistent Field (SCF) method. The electron-electron inter-

action is the main difficulty of the electronic calculations. The HF approxi-

mation considers each electron moving in the electrostatic field of the nuclei

and the average field of the other N -1 electrons. The wave function is a

Slater determinant constructed from a set of functions called spin-orbitals.

A spin-orbital is the product of a spatial wave function and a spin wave

function. This determinant satisfies the symmetry requirements imposed

by the Pauli principle.
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The solutions are generated by a variational procedure. A trial set of

spin-orbitals is used to solve the HF equations. A system with N electrons

can be expressed by m spin-orbitals (with m ≥ N). The calculated spin-

orbitals are used to construct a new Fock operator, which in turn is used to

determine new spin-orbitals. The procedure continues until the energy and

the spin-orbitals coefficients converge. At the end of the calculation, the

spin-orbitals are arranged in order of increasing energy. The first N spin-

orbitals are called the occupied spin-orbitals and the remaining are called

virtual spin-orbitals.

2.2.1 Electron Correlation

The HF approximation gives a quite good description of the electronic wave-

function. Indeed, the HF energy is generally more than 99% of the total

electronic energy. But this accuracy is not sufficient for the study of chemi-

cal processes. As a matter of fact, let’s consider some molecule with a

total energy of 100 Eh (for example some diatomic molecule with C or N

or O atoms). Then the missing 1% is 1 Eh and this error is dependent of

the nuclear coordinates. But the accuracy wanted for the study of chem-

ical processes is about 1 cm−1, i.e. 5 × 10−6 Eh. In other words, the HF

method gives the total energy with 2 or 3 correct digits while 8 or 9 are

needed. The difference between the HF energy and the exact electronic

energy is called the correlation energy. This energy arises from the pair-

wise electron-electron repulsions which is not taken into account in the HF

method because the quantum mechanical effect on electron distributions

due to the other N -1 electrons is treated only in an averaged way. Many

methods have been developed to calculate the contribution of electron cor-

relation to the total energy. We briefly present the main features of some

of them in the following paragraphs.

Configuration interaction

In order to calculate the correlation energy, the electronic wavefunction is

expressed as a linear combination of the HF determinant and many other

determinants built by substitution of one or more occupied spin-orbitals

by virtual spin-orbitals. The energy is then calculated by the variational

method. If only one substitution (or excitation) is made in all determinants,
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the method is called the configuration interaction with single-excitation

(CIS). In the case of the inclusion of single and double excitations, then it

is the CISD method. The full-CI includes all possible excitations and gives

the best possible treatment for nonrelativistic molecular system within the

limit of the basis of atomic orbitals used. However, it is very expensive in

computation time and memory computing.

Møller-Plesset many-body perturbation theory

The correlation energy being significantly smaller than the total energy, it

appears possible to apply the perturbation theory by considering the correla-

tion as a perturbation. In the Møller-Plesset perturbation theory (MPPT),

the zero-order Hamiltonian is the sum of one-electron Fock operators. The

ground state wavefunction is an eigenfunction of this Hamiltonian with an

eigenvalue given by the sum of the energies of all occupied spin-orbitals.

The perturbation is the difference between the averaged potential and the

exact electronic repulsion. The HF energy is the sum of the zero-order en-

ergy and first order correction energy. The correction to the energy arises

from the second-order perturbation theory (MP2). The use of third-order

(MP3) and fourth-order (MP4) is also usual. These calculations are faster

than the variational CI calculations, but of course do not obey to the varia-

tional principle. This means in practice that we cannot assume that the

lowest energy is the closest energy to the exact value.

The coupled-cluster method

The CISD method allows to compute a significant part of the correlation

energy, but has a major drawback, the size-consistency error. It has been

shown that the CISD energy of N non-interacting identical molecules is

not proportional to N . The attempts to suppress this error have resulted

in a new method, namely the coupled-cluster (CC) method. This is the

method used in this work, because it has been recognized more accurate

than CISD and perturbation methods. The CC methods introduce the

cluster C operator. This operator links the exact electronic wavefunction

and the HF wavefunction as:

ΨCC = eCΨ0, (2.6)
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where the exponential operator eC is defined by the Taylor series expansion

eC = 1 + C +
1

2!
C2 +

1

3!
C3 + · · · (2.7)

and where C is the sum of the one-electron excitation operator C1, two-

electron excitation operator C2 until the N -electron excitation operator:

C = C1 + C2 + · · ·+ CN . (2.8)

The operator Ci act over the HF wave function Ψ0 and generates a sum

of Slater determinants where i occupied spin-orbitals have been replaced by

virtual spin-orbitals. In the case of single and double excitations we can

write

C1Ψ0 =
∑

a,p

tpaΨ
p
a (2.9)

C2Ψ0 =
∑

a,b,p,q

tpqabΨ
pq
ab, (2.10)

where the tpa and tpqab are numerical coefficients called single-excitation am-

plitudes and double-excitation amplitudes, respectively.

Substituting the expressions 2.6- 2.8 in the Schrödinger equation and

taking only a few terms of the operator C, gives a set of not-linear equations

which are then solved for the excitation amplitudes. With these amplitudes,

one can determinate the CC wave function and the energy.

The CC method has different expansion orders, when C is approximated

only with C2 is called CCD. If it is included C1 and C2, the method is called

CCSD. The CCSDT furthermore includes the term C3, and the CCSD(T)

means that the triple excitations are included perturbatively rather than

exactly. This last method computes accurate energies with a tractable com-

putational time.

As this method uses the spin-orbitals computed within the single-reference

HF wave function, it is dependent of the quality of these spin-orbitals. Con-

sequently, it is only when the electronic wave function is well represented

by the HF determinant that the CC method can reach its maximum accu-

racy. Two criterion have been proposed to quantify the quality of the HF

wave function [42, 43]. The first practical indication of this quality, based

on single-excitation amplitudes, is the T1 diagnostic. The study of Lee and

Taylor [42] for several systems concluded that a T1 diagnostic less than 0.02
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indicates that the CCSD(T) energy is as accurate as possible. However the

study of molecular systems with a large number of electrons has shown that

the T1 diagnostic is less reliable than for the small systems. This happen

when the major part of a molecule is well described by the HF wave function

and that only a minor part is poorly described. To address this shortfall, a

more sensible criterion was proposed, the D1 diagnostic [43].

Finally, let us mention the explicitly correlated method. When applied

to the CCSD(T) method, this yield the CCSD(T)-F12 approximation [44].

In general, the explicitly correlated methods are based on the fact that the

Slater determinants fail to model the exact wave functions at short inter-

electronic distances [45]. To have a better representation of the correlation,

a term that depends explicitly of the inter-electronic distances is included

in the wave function.

Multiconfiguration and multireference methods

The electron correlation methods discussed so far are mono-reference meth-

ods. The starting point is the HF determinant. The HF orbitals remain

fixed in the subsequent calculations. There are many chemical cases where

the HF wave function is a poor representation of the electronic wave func-

tion. Let’s mention, in a non-exhaustive list, the cases of excited electronic

states, degenerated or quasi-degenerated states, biradical systems, bond

breaking or bond formation. In order to represent properly the electronic

wave functions for such cases, multiconfigurational methods are necessary.

In the multiconfiguration self-consistent field method (MCSCF) the wave

function is a linear combination of Slater determinants. The optimization

process is performed on both the orbitals and configurations coefficients

simultaneously. The simultaneous optimization makes this method com-

putationally expensive. One of the most efficient approach for solving the

MCSCF equations is the complete active-space self-consistent field method

(CASSCF). The orbitals are divided into three classes: inactive orbitals, ac-

tive orbitals and virtual orbitals. The inactive orbitals are occupied by two

electrons, a full-CI expansion is performed within the active space which is

span by the active orbitals, and the virtual orbitals are unoccupied.

Multireference (MR) methods include the instantaneous interactions

among the electrons. Multiconfigurational wave functions are the star-
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ting point of the MR methods. The multiconfigurational wave function

can be computed with a MCSCF, ex. a CASSCF method. Multireference

configuration interaction (MRCI) and multireference perturbation theory

(CASPT2) are commonly used while multireference coupled cluster me-

thods are still under development.

2.2.2 Basis sets

In all ab-initio methods, the selection of the basis sets has an important

role. Indeed, we need to expand the molecular orbital in a finite basis set.

That creates an error called basis-set truncation error and make necessary

to check the convergence of the basis set used.

Another important point to take into account is the form of functions.

The most common are the Slater-type orbitals (STOs) and the Gaussian-

type orbitals (GTOs). Owing to its mathematical form, a comparable rep-

resentation of the wave function requires a greater number of GTOs than

the STOs. In spite of this, the GTOs are more commonly used. The relative

ease of calculation of the integrals that involve these functions makes their

use more computationally efficient.

The basis set are classified according the number of functions used to

represent the atomic valence shells. In the minimal basis set, only one

function is used to represent each valence orbital. In the double-zeta (DZ)

basis set, two basis functions are used for each valence orbitals, and this

yield a significant improvement. Further basis sets, which can be formed in

the same way, are the called triple-zeta (TZ) basis set, quadruple-zeta (QZ)

basis set and quintuple-zeta (5Z) basis set.

The bond formed in molecules distort the atomic orbital due to the

adjacent atoms. Considering this displacement of the center of charge, it is

necessary to include polarization functions. These functions can be orbitals

with high values of l. Adding such polarization functions to a DZ basis

creates the called double-zeta plus polarization (DZP) basis set.

In the correlation-consistent (cc) basis set, the functions are designed for

a better description of the correlation energy. The basis set can be improved

also with the addition of diffuse functions (aug-). These are functions with a

small exponent that allow a better description of the wavefunction far from

the nucleus. For example, this can be necessary for anions, rydberg states,
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and long range interaction between two systems. Among all available basis

set with diffuse and polarization functions, let’s mention the widely used

augmented correlation consistent polarized triple, quadruple, and quintuple

zeta basis sets (aug-cc-pVnZ, with n = T,Q, 5).

In addition of diffuse functions, one can use bond functions [46] in the

calculation of weakly bound species such as van der Waals systems. In

the latter, the bond length is significantly large and using bond functions,

i.e. functions positioned at the middle of the bond length, can improve the

description of the interaction energy.

It is usual to compute the intermolecular interaction energy as the

difference between the energy of the system and the energy of the iso-

lated molecules (supermolecular approximation). One disadvantage of this

method is the impossibility to distinguish between the various intermole-

cular interactions (electrostatic, induction and dispersion). Moreover, the

calculated bond energy is overestimated. This error is called basis set super-

position error (BSSE) and arises from the fact that each monomer is better

described in the interacting dimer than when it is isolated. A method com-

monly used to minimize the BSSE is the counterpoise method of Boys and

Bernardi [47]. This consists in the calculation of the energy change of each

monomer when the basis set change from the monomer basis set up to the

dimer basis set.

The ab-initio calculations give in general very reliable results for the

energy, especially for small molecules. We want to close this section with

a comparison of the relative accuracy of the results for different single-

configuration methods presented by Young in [39]:

HF � MP2 < CISD ∼= MP4 ∼= CCSD < CCSD(T) < CCSDT < Full CI

2.3 Scattering formalism

The time independent approach of quantum scattering theory was deve-

loped in the second half of the last century. The formulation proposed by

Arthurs and Dalgarno [10] or Curtiss and Adler [48] for atom-diatom colli-

sions are the most commonly used [49]. Subsequent generalizations of their

methodologies have been done for larger systems [50] and for various open

shell cases [51,52]. The main differences between the different formulations
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come from the use of different frames: the body fixed (BF) or the space fixed

(SF) coordinates.

Pack [53] and Alexander and DePristo [54] compared the scattering for-

mulations using the SF and BF and concluded that both formulations have

their own advantages. The BF is the natural framework to describe the

potential energy surface and gives a simpler mathematical form of the rota-

tional sudden approximations. The SF formulation expresses the scattering

asymptotic boundary conditions more conveniently and does not require

any change of coordinates to obtain the S matrix. In this section, we des-

cribe the scattering between two systems in the SF frame as it is the one

we use and which is implemented in our scattering code.

2.3.1 Single-channel scattering

The main concepts of the scattering formalism can be introduced by analysing

first the elastic scattering of two structureless particles. Our starting point

is then the time-independent Schrödinger equation for single-channel scat-

tering (
− ~2

2µ
∇2 + V (r)

)
Ψ = EΨ, (2.11)

where µ is the reduced mass of the system, V (r) is the interaction potential

depending of the relative position of the particles which we assume to vanish

faster than r−1 for large value of r, and E the total energy. Before the

collision, i.e. when the particles are infinitely separated, the interaction

potential is zero and this equation reduces to the one of a plane wave directed

towards the target. The Z axis is put along the incident direction and the

incoming asymptotic solution is written:

φ(r)r→∞ = exp (ikz), (2.12)

where k is the wavevector associated with the relative motion such as

E = k2~2

2µ
. After the collision, the cylindrical symmetry is lost as all the

scattering directions are now possible and the outcoming asymptotic solu-

tion at infinite separation becomes now a spherical wave:

ϕ(r)r→∞ =
exp (ikr)

r
. (2.13)
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Taking into account that the amplitude of the outgoing wavefunction varies

with the scattering direction, a peculiar solution called the stationary scat-

tering wave function (SWF) of the Schrödinger equation satisfies these

asymptotic conditions:

Ψ(r)r→∞ = A

[
exp ikz + fk(θ, ϕ)

exp (ikr)

r

]
. (2.14)

In the expression 2.14, the scattering amplitude fk(θ, ϕ) contains all the

information about the collision process while the constant A is arbitrary

and independent of r and the SWF is not square integrable .

The cross section is the measurable quantity characterising a collision

processes. The differential cross section is defined as the outgoing flux

of particles scattered through the spherical surface r2dΩ divided by the

incident flux [38]. The flux density is defined as usual as

J =
1

2µ
(Ψ∗∇Ψ−Ψ∇Ψ∗). (2.15)

The flux density for the incident and for the scattered wave functions

are easily shown to be

Jin =
k~
µ
, (2.16)

Jsc =
k~|fk(θ, ϕ)|2

µr2
. (2.17)

The differential cross section is then dσ
dΩ

= |fk(θ, ϕ)|2, and the total cross

section is obtained by integration over the scattering angles,

σtot =

∫ π

0

∫ 2π

0

|fk(θ, ϕ)|2 sin θdθdϕ. (2.18)

It is worth noting that these expressions of the cross sections are inde-

pendent of the choice of the arbitrary coefficient A.
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Partial wave analysis

For a central potential, i.e. a potential depending only on r, the Hamiltonian

commutes with both the angular momentum operators L̂2 and L̂z. The

scattering wave function can then be expended in spherical harmonics.

Ψ =
1

r

∞∑

l=0

∑

m

ulm(k, r)Y m
l (θ, ϕ). (2.19)

The Schrödinger equation 2.11 is satisfied by the ulm functions and is

independent of m.

[
− d2

dr2
− k2 +

l(l + 1)

r2
+ V (r)

]
ulm(k, r) = 0. (2.20)

Therefore ulm is usually replaced by ul. We can now find the boundary

conditions respected by this wave function by looking again at the problem

of the free particle (i.e. when V (r) = 0)

The previous equation reduces to

[
− d2

dr2
− k2 +

l(l + 1)

r2

]
u0
l (k, r) = 0. (2.21)

There are two well known sets of linearly independent solutions of 2.21:

the (zjl(z) ,znl(z)) and (zh
(1)
l (z) ,zh

(2)
l (z)) sets, with z = kr. jl(z) and nl(z)

are the spherical Bessel and Neumann functions while zh
(1)
l (z) and zh

(2)
l (z)

are the spherical Hankel functions of the first and second kind.

The free particle wavefunction can be expressed as a linear combination

of any of these two sets as for example u0
l = A0

l zjl(z) + B0
l znl(z). If we

impose the condition that ul(r = 0) = 0, we obtain B0
l = 0 and thus:

u0
l (r) ≈ A0

l (k)(kr)jl(kr) = A0
l (k) sin

(
kr − lπ

2

)
. (2.22)

If V (r) tends towards zero faster than 1/r2 when r → ∞, then the

equation 2.20 is asymptotically identical to 2.21. The asymptotic solutions

of the equation 2.20 can be written

ul(r)r→∞ ≈ kr [Al(k)jl(kr) +Bl(k)nl(kr)] . (2.23)
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Which can be written as,

ul(r)r→∞ ≈ Al(k) sin

(
kr − lπ

2

)
+Bl(k) cos

(
kr − lπ

2

)
. (2.24)

or

ul ≈ Cl(k) sin

(
kr − lπ

2
+ δl(k)

)
, (2.25)

where the phase shift δl is

tan δ(k) =
Bl(k)

Al(k)
. (2.26)

The term in nl(kr) appears due to the action of the potential, and results

in a phase shift with contains the information of the collision. When the

potential is zero for all value of r, the phase shift is also zero. If the potential

is attractive, the phase shift is positive and the radial wave function is pulled

in with respect to the free radial wave function. In the case of a repulsive

potential the phase shift is negative and the radial wave function is pushed

out with respect to the free radial wave function.

The phase shift δl can be related with the cross section by rewriting the

first term in equation 2.14 as

exp (ikz) = exp (ikr cos θ) = (4π)
1
2

∑

l

il(2l + 1)
1
2 jl(kr)Yl0(r̂)

=
∑

l

il(2l + 1)jl(kr)Pl(cos θ), (2.27)

which asymptotically is

exp (ikz) =
∑

l

il(2l + 1)
sin
(
kr − lπ

2

)

kr
Pl(cos θ). (2.28)

Because we have chosen k to lie along the Z axis, the scattering amplitude

fk(θ, ϕ) depends only on θ. Then we can expand the scattering amplitude

in Legendre polynomials,

fk(θ) =
∞∑

l=0

fl(k)Pl(cos θ). (2.29)

Substituting 2.28 and 2.29 in 2.14, substituting 2.25 in 2.19 and com-
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paring both resultant expressions, we find the following relation:

il(2l + 1)
sin
(
kr − lπ

2

)

kr
+ fl(k)

exp (ikr)

r

=
Cl(k)

r
sin

(
kr − lπ

2
+ δl(k)

)
. (2.30)

After some algebraic work on the later expression, and grouping the

term with the same sign in the exponents one obtains the expressions:

Cl(k) =
il(2l + 1)

k
exp(iδl), (2.31)

fl(k) =
2l + 1

2ik
(exp (2iδl)− 1) . (2.32)

The factor Sl = exp(2iδl(k)) is called the scattering matrix element. The

transmission matrix is defined by Tl(k) = 1 − Sl(k). Both Sl(k) and Tl(k)

are complex quantities, but a real matrix can also be defined which is called

the reactance matrix Kl = tan(δl(k)). The T and K matrices are related by

Tl = −2iKl(k)[1 − iKl(k)]−1. The asymptotic radial wave function can be

written as a function of Kl as

ul(r) ≈ sin

(
kr − lπ

2

)
+Kl(k) cos

(
kr − lπ

2

)
. (2.33)

The scattering amplitude 2.18 is readily obtained to be

fk(θ) =
1

2ik

∞∑

l=0

(2l + 1) [exp (2iδl)− 1]Pl(cosθ) (2.34)

which give the following expression for the cross section as a function of the

T matrix:

σtot(k) =
∑

l

σl =
π

k2

∑

l

(2l + 1)|Tl(k)|2, (2.35)

or as a function of the phase shift:

σtot(k) =
∑

l

σl =
4π

k2

∑

l

(2l + 1) sin2 (δl(k)). (2.36)
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Resonances

The variation of the cross section as a function of collision energy is usually

quite slow. However, this variation can become rapid in a certain energy

interval. These peaks of the cross section are called resonances. Some of

them can be very simply related with the shape of the effective potential

and for this reason they are called shape resonances. Indeed, equation 2.20

can be rewritten as a function of an effective potential made of the sum of

the potential plus the centrifugal term. The centrifugal term is repulsive

for all values of r while the potential can be repulsive in some regions and

attractive in some others. For this reason at intermediate distances, a local

minimum can be found which is followed by a barrier for larger distances.

The particles can then be trapped for some time between the repulsive

barrier at short range and the centrifugal barrier before tunnelling out.

These states are also known as quasi-bound levels.

When the scattering energy crosses the energy of a quasi-bound state,

the resonant phase shift δl increases of π, and δl = π(n + 1/2) where n is

natural number. In this domain of energy, we can expand cot (δl(k)) in the

vicinity of the resonance energy Er,

cot (δl(k)) = cot (δl)|E=Er
+(E−Er)

d(cot (δl))

dE

∣∣∣∣
E=Er

+O[(E−Er)2]. (2.37)

The first term is zero and we can define Γ as:

d(cot (δl))

dE

∣∣∣∣
E=Er

= − 2

Γ
. (2.38)

If Γ is very small, the variation of δl(k) is very fast. Rewriting equation

2.36 in function of cot (δl(k)) and using 2.37 and 2.38, we get for the resonant

partial wave contribution to the cross section near the resonance:

σl =
4π

k2

(2l + 1)(Γ/2)2

(E − Er)2 + (Γ/2)2
. (2.39)

This expression is known as the Breit-Wigner form. As the others phase

shifts vary slowly in this domain of energy, the peak of σl causes a rapid

variation of the total cross section. Another frequently met type of reso-
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nance is known as a Feshbach resonance, and will be briefly described in

the next subsection.

2.3.2 Collision of two diatomic molecules

We can now generalize the single channel scattering to the multichannel

case. The Schrödinger equation for the collision between two linear rigid

rotors, in the SF coordinates located at the center of mass of the system,

can be written as [11]

[
H(R̂1, R̂2,R)− E

]
Ψ(R̂1, R̂2,R) = 0, (2.40)

where

H = H1(R̂1) + H2(R̂2) + V (R̂1, R̂2,R) + T(R). (2.41)

R are the coordinates of the vector linking the centers of mass of the

two molecules, R̂i are the angular coordinates of the molecule i, V is the

interaction potential, E is the total energy of the system, T is the inter-

molecular kinetic operator and Hi is the rigid rotor Hamiltonian of the

diatomic molecule i. The Schrödinger equation for each isolated diatomic

molecule is

HiYjimi(R̂i) = EiYjimi(R̂i), (2.42)

with Ei = Biji(ji + 1) and Bi is the rotational constant. The rotational

states of |j1m1〉 and |j2m2〉 of the diatoms can be changed by the colli-

sion process while the quantum numbers associated with the total angular

momentum and its projection along the Z space fixed axis are conserved.

The total angular momentum J is obtained by first coupling the two ro-

tors angular momenta: j12 = j1 + j2, and by coupling the resulting angular

momentum with the one associated with the relative angular momentum of

the two rotors: J = j12 + l. A similar procedure is followed to define an

angular basis set which is a set of eigenfunctions of J and Jz:

ΦJM
j1j2j12l

(R̂1, R̂2, R̂) =
∑

mj1mj2mj12
ml

〈j1mj1j2mj2|j12mj12〉

〈j12mj12lml|JM〉Yj1m1(R̂1)Yj2m2(R̂2)Ylm(R̂). (2.43)
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We use the latter basis set to expand the wave function of the system:

Ψ(R̂1, R̂2,R) =
1

R

∑

JMj1j2j12l

GJMj1j2j12l(R)ΦJM
j1j2j12l

(R̂1, R̂2, R̂). (2.44)

Substituting this expansion in equation 2.40, multiplying by 2.43 on the

left, integrating over all angular coordinates and using γ ≡ j1j2j12l, we get

the radial coupled equations:

(
d2

dR2
+ k2

γ −
l(l + 1)

R2

)
GJγ(R) =

2µ

~2

∑

γ′

W J
γγ′(R)GJγ′(R), (2.45)

where

W J
γγ′(R) =

∫
dR̂1dR̂2dR̂ΦJ

γ (R̂1, R̂2, R̂)V (R̂1, R̂2,R)

× ΦJ
γ′(R̂1, R̂2, R̂).

(2.46)

and where k2
γ = 2µ

~2 (E − E1 − E2). The quantum number M has been

dropped as the equation 2.45 is independent of it.

For a given total energy, these equations are solved for each value of

J giving a non-zero contribution to the cross section and the size of the

rotational basis set is varied up to convergence. If no other approximation

is used one speaks of close coupling calculations. The potential is expanded

in an angular basis set similar to the one proposed by Green [11]

V (R̂1, R̂2,R) =
∑

l1l2l

Al1l2l(R)Il1l2l((R̂1, R̂2, R̂) (2.47)

Il1l2l(R̂1, R̂2, R̂) =
∑

m1m2m

〈l1m1l2m2|lm〉Yl1m1(R̂1)Yl2m2(R̂2)Y ∗lm(R̂). (2.48)

The angular dependence of the interaction potential can equivalently be

expressed as a function of body fixed angles i.e in the body fixed frame which

is defined by setting the body fixed Z-axis along the collision coordinates

R̂ = (Θ,Φ) or in other words by using the angles that the axis of the

target and of the projectile make with the intermolecular axis, θ1 and θ2

such as cos(θi) = R̂i · R̂ and the associated dihedral angle ϕ = ϕ1 − ϕ2.

The two frames being simply related by the Euler rotation R(Φ,Θ, 0), it is
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straightforward to obtain the following expression:

Il1l2l(R̂1, R̂2, R̂) =

(
2l + 1

4π

) 1
2

[
〈l1l200|l0〉Pl10(θ1)Pl20(θ2) +

∑

m

(−1)m2〈l1l2m−m|l0〉Pl1m(θ1)Pl2m(θ2)× cos(mϕ)

]
. (2.49)

This body fixed basis set is the most commonly used in the analytical mo-

dels of potential energy surfaces developed for collision between two linear

rigid rotors. The coupling matrix elements W J
γγ′(R) can be obtained by

integrating over all angular coordinates:

W J
γγ′(R) =

∑

l1l2l

Al1l2l(R)(−1)J+j1+j2+j12(4π)−
3
2

×([l]2[l2][l2][j1][j2][j12][L][j′1][j′2][j′12][L′])
1
2

(
l L′ L

0 0 0

)(
l1 j′1 j1

0 0 0

)

×
(
l2 j′2 j2

0 0 0

){
L′ L l

j12 j′12 J

}


j′12 j′2 j′1
j12 j2 j1

l l2 l1




. (2.50)

The matrix elements W J
γγ′(R) are independent of M and vanish for dif-

ferent initial and final values of the spectroscopic parity, P = (−1)J+j1+j2+L.

This makes also P to be a good quantum number.

The radial part of the scattering wave function is propagated from the

classically forbidden region, where it is initialised to zero, up to an inter-

molecular distance large enough for the interaction potential to be negligible

and where it is requested to satisfy the boundary conditions of the scatter-

ing process. These conditions are presented below for the open channels

(for kγ > 0) by generalizing the equation 2.33 and writing it in a matrix

form proposed by Launay [12]

GJε(R) = JJε(R) +KJεNJε(R), (2.51)

where

JJεγj12lγ′j′12l
′(R) = δγγ′δj12j′12

δll′k
1/2
γ Rjl(kγR) (2.52)

NJε
γj12lγ′j′12l

′(R) = δγγ′δj12j′12
δll′k

1/2
γ Rnl(kγR). (2.53)
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Recalling that T = −2iK(1 − iK)−1, we can write the partial cross

section averaged over the initial states as

σJγ→γ′ =
π(2J + 1)

k2
γ(2j1 + 1)(2j2 + 1)

∑

j′12l
′j12lε

|T Jεγj12lγ′j′12l
′ |2, (2.54)

and the total cross section is

σγ→γ′ =
∞∑

J=0

σJγ→γ′ . (2.55)

Before closing this section, we can mention the Feshbach resonances.

These resonances, which are associated with the coupling between the open

and the closed channels, happen when the collision energy of a given open

channel allows the near opening of a closed quasi-bound state.

2.3.3 A symmetric top molecule in collision with an

atom

The collision of a symmetric top molecule with an atom was presented long

ago by Green [55]. It is shortly overviewed here as the same formalism will

be used in the Chapter 5 dedicated to the collision between an atom and

a triatomic rigid bender. The total Hamiltonian of the system is written

again in SF coordinates:

H = Hrot(Ω̂) + T(R) + V (Ω̂,R), (2.56)

where R is the collision coordinate, T(R) is the relative kinetic energy

and the rotor orientation is defined by the Euler angles Ω̂ = (αβγ) that

rotate the SF axis to the principal axis of inertia of the symmetric top. The

BF frame is again defined by the rotation aligning the SF z-axis along the

intermolecular coordinate.

The term Hrot in 2.56 is the symmetric top Hamiltonian. The eigen-

function of this Hamiltonian can be labelled by j, m and k which are the

quantum numbers associated with the total rotor angular momentum and

its projections over the SF z-axis and the BF z′-axis. The latter eigenfunc-

tion is proportional to the Wigner matrix associated with the Euler rotation
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R(αβγ):

|jkm〉 =

√
2j + 2

4π2
Dj∗
km(αβγ). (2.57)

The eigenvalues of Hrot for a symmetric top, in which the z′-axis is

chosen as the symmetric axis and I1 and I3 are the moment of inertia about

the principal axis x′ and z′, are

Ejk = ~2

{
1

2I1

j(j + 1) +

[
1

2I3

− 1

2I1

]
k2

}
. (2.58)

The degeneracy in k and −k is used to define a symmetrized linear

combination of the symmetric top eigenfunctions:

|jk̄mp〉 =
1√

1 + δk0

[
|jk̄m〉+ (−1)p |j − k̄m〉

]
, (2.59)

where k̄ is the absolute value of k and p = 0 or 1 except for k = 0 where only

p = 0 is possible. The parity of these symmetrized functions is (−1)(j+p).

The formalism presented here can be straightforwardly extended to the case

of an atom colliding with an asymmetric top because the asymmetric top

wave functions are linear combinations of the symmetric top ones.

The interaction potential is conveniently expressed in terms of spherical

harmonics in the SF frame,

V (R′,Θ′,Φ′) =
∑

λµ

υλµ(R′)Yλµ(Θ′,Φ′). (2.60)

Using the rotation which links the SF and BF coordinates, we can write the

same expansion as a function of body fixed angles

V (Ω̂,R) =
∑

λµν

υλµ(R)Dλ
µν(Ω̂)∗Yλµ(R̂). (2.61)

As spherical harmonics are complex, it is more convenient to use instead

the following real symmetrized combinations:

V (R′,Θ′,Φ′) =
∑

λ≥µ≥0

υλµ(R′)

(1 + δµ0)

[
Yλµ(R̂′) + (−1)µYλ,−µ(R̂′)

]
. (2.62)

The rotational angular momentum is coupled with the orbital angular
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momentum l in order to obtain eigenfunctions of J2 and JZ .

|JMjkl〉 =
∑

m

〈jmlml|JM〉|jkm〉|lml〉, (2.63)

where |lml〉 = Ylml(Θ,Φ) and all the projections are taken along the SF

z-axis. The scattering wave function is expanded in the latter angular basis

set

ΨJM
jkl =

1

R

∑

j′k′l′

GJMjkl
j′k′l′ (R)|JMj′k′l′〉. (2.64)

The resulting coupled equations can be written

(
d2

dR2
+ k2

j′k′l′ −
l(l + 1)

R2

)
GJMjkl
j′k′l′ (R) =

2µ

~
×
∑

j′′k′′l′′

〈JMj′′k′′l′′|V |JMj′k′l′〉GJMjkl
j′′k′′l′′(R), (2.65)

with k2
j′k′l′ = 2µ

~2 (E + Ejk − Ej′k′), where E is the kinetic energy and Ejk is

given by 2.58. The coupling matrix elements are

〈JMjkl|
∑

λµ

υλµ(R′)Yλµ(R̂′)|JMj′k′l′〉 =
∑

λµ

υλµ(R)(−1)j+j
′+k−J

×
√

[j][j′][l][l′][λ]

4π

(
l l′ λ

0 0 0

)(
j j′ λ

k −k′ µ

)
(2.66)

where the notation [i] = 2i + 1 is used. As can be seen, the matrix elements

are independents of M and there is no coupling between different value of J.

If we use the symmetrized symmetric top eigenfunctions 2.59 these matrix

elements become

υλµ〈Jjksl|[Yλµ + (−1)µYλ−µ]/(1 + δµ0)|Jj′k′s′l′〉

= υλµ
(1 + (−1)s+s

′+j+j′+λ+µ)

2
√

(1 + δk0)(1 + δk′0)
(ω〈Jjkl|Yλ±µ|Jj′k′l′〉

+(−1)s〈Jj − kl|[Yλµ|Jj′k′l′〉) , (2.67)

the first term contributes only if µ = ±(k′ − k), and

ω =

{
1, k′ − k ≥ 0

(−1)µ, k′ − k < 0.
(2.68)
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The second term in 2.67 contributes only if µ = k′ + k.

2.4 Bound states calculations

The bound states we are interested in are those which are associated with

the trapping of the particles by the interaction potential. Such states ex-

ist only if the potential is attractive enough. Efficient variational methods

(based on DVR/FBR methods) can be used to perform bound states calcu-

lations. However, we will present here another approach based on the use

of the scattering theory. It is based on the fact that the coupled equations

needed for scattering calculations are identical to those for bound states,

the only difference being the applied boundary conditions. For large values

of the collision coordinate R, the bound state wave function must vanish

whereas the scattering wave function keeps oscillating. This method is, for

example, coded in the BOUND program developed by Hutson [56] for the

log-derivative propagator and is described in great detail in the correspond-

ing paper. A first propagation is done outward starting from the classically

forbidden region using the usual nullity initial condition. It is stopped in the

region of the well at a value R = RBound and the corresponding R-matrix

RForward (RBound) or log-derivative matrix YForward (RBound) is stored. A

downward propagation is then performed starting in the asymptotic region

and using WKB initial conditions down to the same value of R where the

R-matrix RBackward (RBound) or log-derivative matrix YBackward (RBound)

is obtained. The continuity of the two kinds of propagated wave functions

and their derivatives is then imposed by diagonalising the matrix equal to

the difference between the two R-matrices or log-derivative matrices. The

total energy is varied from the bottom of the well up to zero and the bound

state energies are located by looking at the change in sign of the eigenvalues.

The convergence of the propagation method is a function of the step

size h. The error for the usual R-matrix and log-derivative propagators are

respectively proportional to h2 and h4. In the case of the log-derivative

propagator, the energy using a step h is

E(h) ≈ E(h = 0) + E(4)h4. (2.69)

The calculations are then done for two values of the step size, h1 and h2

giving the energies E1 and E2. The converged energy can be estimated from
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a Richardson extrapolation:

E(h = 0) = E1 −
h4(E2 − E1)

h4
2 − h4

1

. (2.70)
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3.1 Introduction to the study

Among the molecules containing sulfur detected in the ISM, we will focus

our attention in this study on one of the simplest: carbon monosulfide [57].

This molecule has been extensively observed not only in dense molecular

clouds [58–60] but also in diffuse interstellar clouds [61]. CS is one of the

molecules used commonly as a tracer to estimate the density in several

interstellar regions [62].

The first theoretical study of the collisions of CS with H2 was done

by Green and Chapman [8] using a PES adapted from the Gordon and

Kim electron gas model. Later, Turner et al [63] extended their work by

including more rotational states in the calculation, using the same PES.
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Figure 3.1: Set of coordinates used to describe the CS-H2 system. The
azimuthal angle ϕ is undefined when θ1 or θ2 is equal to 0◦ or 180◦.

They considered the first 21 rotational levels of CS but studied only the

collisions with para-H2.

Recently the collision of CS with He was studied by Lique et al [64, 65]

using a PES computed at coupled cluster level. The comparison of their

results with those of Green and Chapman [8] and Turner et al [63], based on

the relative mass ratio, shows remarkable differences. Astrophysicists often

use scaled He collisional rate coefficients to approximate excitation by H2.

The use of this approximation has previously been found to be inaccurate

for other systems like SiS [66, 67] or SO [68]. A new study of the collisions

of CS with H2 was then necessary.

Close coupling calculations were performed using the rigid rotor approx-

imation for both H2 and CS following the lines presented in the previous

chapter. The ab-initio energies for the CS-H2 complex were determined at

CCSD(T) level, using aug-cc-pVQZ basis set with bond functions. These

calculations were done for a grid of points defined in the space of the four

coordinates presented in Fig. 3.1. All the calculations were made using the

Molpro package [40].

The computed ab-initio energies were fitted to the analytical function

previously used for the H2-HF system [14]. This function has the general

form,

V (R, θ1, θ2, ϕ) =
6∑

l1=0

12∑

l2=0

min(l1,l2,2)∑

m=0

fl1l2m(R)

×P̄m
l1

(cos θ1)P̄m
l2

(cos θ2) cos(mϕ), (3.1)

where l1 is restricted to even values and P̄m
l (cos θ) are associated Legendre
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polynomials. In a first step, ab-initio data was fitted to the angular function

for each of the R values belonging to the grid, using a least squares proce-

dure. The radial coefficients were then interpolated using the cubic spline

method. The extrapolation was performed using two different radial func-

tions for the short range and the long range parts which take the following

form,

fSRl1l2m(R) = τml1l2 exp(−γml1l2R),

fLRl1l2m(R) = βml1l2R
−αml1l2 . (3.2)

The parameters of the long range part were adjusted to fit the ab-initio

grid in the asymptotic region while the βml1l2 and αl1l2 parameters were de-

termined by requiring the continuity of the radial functions and their first

derivatives at the smallest value of R computed.

The equilibrium structure of the CS-H2 complex is found to be linear,

with the carbon atom pointing toward H2. The bound levels of the CS-

para-H2 and CS-ortho-H2 complexes have been computed. This is the first

prediction of these bound levels. We then computed the cross section in-

volving 16 rotational levels of CS. These cross sections were also used to

determine the rate coefficients. In the joined publication we compare the

present results with those previously published for the collisions of CS with

para-H2. We report also the first cross sections and rate coefficients for the

collisions with ortho-H2. The approximation using the square root of the

relative mass of the colliders to obtain the rate coefficients of the collision

between a molecule and H2 from the scaling of the data available with He

is found to be a good qualitative approximation for the CS-para-H2 system.

In contrast, the rate coefficients based on the crude electron gas model show

strong discrepancy with the new results and have to be scaled by a factor

of 2 to get a good qualitative agreement.

3.2 Publications
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Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas
in the interstellar medium, often in regions where H2 is the most abundant collider. Predictions of
the rovibrational energy levels of the weakly bound complex CS-H2 (not yet observed) and also
of rate coefficients for rotational transitions of CS in collision with H2 should help to interpret the
observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy
levels. A new four-dimensional intermolecular potential energy surface for the H2-CS complex is
presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with
single and double excitations and a perturbative treatment of triple excitations, using a quadruple-
zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit
of the ab initio data. The equilibrium structure of the H2-CS complex is found to be linear with the
carbon pointing toward H2 at the intermolecular separation of 8.6 ao. The corresponding well depth is
−173 cm−1. The potential was used to calculate the rovibrational energy levels of the para-H2-CS
and ortho-H2-CS complexes. The present work provides the first theoretical predictions of these
levels. The calculated dissociation energies are found to be 35.9 cm−1 and 49.9 cm−1, respectively,
for the para and ortho complexes. The second virial coefficient for the H2-CS pair has also been
calculated for a large range of temperature. These results could be used to assign future experimental
spectra and to check the accuracy of the potential energy surface. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4771658]

I. INTRODUCTION

Carbon monosulfide (CS) is the first molecule containing
sulfur that has been detected in the interstellar space.1 Owing
to its strong emission, it is used as a tracer of molecular gas in
various regions of the interstellar medium in our galaxy and in
external galaxies. The scientific applications may range from
determining sulfur isotopic ratios in the galactic disk2 to study
the anatomy of a filament3 or tracing physical conditions in
protostellar envelopes or in hot cores.4

Analysis of observed spectra requires the knowledge of
accurate spectroscopic data such as frequencies and Einstein
coefficients when the molecules are in local thermal equilib-
rium (LTE), i.e., when the local gas density is above a criti-
cal density. When LTE does not apply the analysis of spectra
must consider collisional processes that lead to population or
depopulation of the energy levels of the observed molecule.
The physical conditions where CS is most commonly used as
a tracer correspond to regions where H2 is the most abundant
collider and therefore the collisional rate coefficients of CS by
H2 are included in the radiative transfer analysis of spectra.

The only available rate coefficients for the excitation of
CS with H2 are those of Turner et al.5 Their dynamical cal-
culations were based on the crude potential energy surface

a)Electronic mail: t.stoecklin@ism.u-bordeaux1.fr.

(PES) of Green and Chapman6 adapted from a Gordon and
Kim7 electron gas model for CS-He, treating the CS molecule
as a rigid rotor. For an intermolecular separation R > 8 ao, the
lowest 4 terms of the PES expansion were modified to join
smoothly with asymptotic electrostatic interaction8 of CS-H2.
Turner et al. extended the dynamical calculations of Green
and Chapman and provided rate coefficients calculations for
transitions between the first 21 rotational levels of CS and for
temperature between 20 K and 300 K. Those rate coefficients
have been used very recently to analyse hot cores.4

Astrophysicists often use scaled He collisional rate coef-
ficients to mimic excitation by para-H2 (pH2) and ortho-H2

(oH2) as it has been done recently in the study of the molec-
ular abundances of the inner layers of the carbon star IRC
+ 10216 (Ref. 9) where the recent rotational and rovibrational
rate coefficients of Lique and Spielfiedel10, 11 were used for
temperature up to 1500 K. While He and pH2(j = 0) results
are rather similar for heavy diatomic molecules, several recent
results for neutral diatomic and polyatomic molecules12–15

show that scaled He calculations cannot mimic collisions with
oH2(j = 1) as the latter have much larger rate coefficients. Re-
cent results on H2O-H2 (Ref. 16) show that rate coefficients
for collisions with pH2(j = 0, 2, 4) are found to be of the same
order of magnitude as rate coefficients for collisions with
oH2(j = 1) at temperature where those levels are populated
and that the influence of the rotational level of H2 is much

0021-9606/2012/137(23)/234301/7/$30.00 © 2012 American Institute of Physics137, 234301-1
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less pronounced for temperatures above 800 K. It is likely
that we can generalize this behaviour to diatomic molecules
and therefore the use of either scaled–He or pH2(j = 0) cal-
culations might be not adequate in regions corresponding to
temperatures in the range of 200-800 K, which is quite a large
part of the hot core regions and AGB stars envelops.

Considering the importance of CS for astrophysical ap-
plications, we have decided to provide a new state-of-the-art
PES allowing the computation of collisional rate coefficients
for the excitation of CS including the influence of the rota-
tional level of H2(j = 0, 1, 2). As a first use of this new PES,
we computed the rovibrational bound states energies of the
H2-CS complex as well as the interaction second virial co-
efficient for the H2-CS pair. The experimental infrared spec-
trum of H2-CS is not known. This first theoretical work will
not only help assigning the infrared spectrum when it will be
measured but aims to provide a good test of the PES which
is presented in this paper and which will be used to calculate
rotational excitation cross sections.

II. THEORY

A. Potential energy surface

The interaction potential of CS with H2 has been calcu-
lated within the supermolecular approach using the coupled-
cluster method with single and double excitations and a
perturbative treatment of triple excitations (CCSD(T)) and us-
ing the augmented correlation consistent polarized valence
quadruple zeta (aug-cc-pVQZ) basis set,17 supplemented with
a set of midbond functions.18 The interaction energy, cor-
rected for the basis set superposition error, was obtained by
subtracting the sum of the energies of the isolated monomers
H2 and CS from the energy of the H2-CS complex, each
monomer’s energy being calculated with the full basis set
used for the complex. This corresponds to the counterpoise
procedure of Boys and Bernardi19 applied to the rigid ro-
tor case. All calculations were performed with the MOLPRO

package.20

The bond length of the H2 monomer was set equal to
the vibrationally averaged value in the rovibrational ground
state, 〈r〉o = 1.448736 ao.21 For the CS monomer, the vibra-
tionally averaged bond length is expected to be very close to
the equilibrium bond length. Indeed, the vibrationally aver-
aged bond length of CO (Ref. 21) is close to the equilib-
rium bond length: the difference is 7 × 10−3 ao. For CS,
this difference is expected to be even smaller because both
the harmonic frequency and the anharmonicity constant are
smaller. Therefore we simply use the equilibrium bond length
re = 2.900619 ao.22

We used body fixed coordinates in which R, θ1, θ2, and ϕ

are the coordinates which describe the relative orientations of
the two molecules as shown in Fig. 1. The radial grid includes
73 points ranging from 6 to 30 ao along the R coordinate. By
taking into account the exchange symmetry of the H atoms
and the global inversion symmetry, we have reduced the in-
tervals of variation of the angles θ1, θ2, and ϕ to [0, 90◦],
[0,180◦], and [0, 90◦], respectively. For all angles, steps of
15◦ were used. Moreover, a supplementary set of points for R

R

H

H

2θ ϕ1θ

C

S

FIG. 1. Set of body fixed coordinates used to describe the diatom-diatom
system. The azimuthal angle ϕ is undefined when θ1 or θ2 is equal to 0◦ or
180◦.

ranging from 35 up to 50 ao by step of 5 ao was calculated.
These points, which have not been included in the fitting pro-
cess, were used to check the accuracy of the long-range part
of the fitted PES.

The functional form of the PES and the fitting proce-
dure have already been described in a previous work.23 Let
us recall here only some of the essential features. The angular
part of the functional form is represented by a product of nor-
malised associated Legendre functions and a cosine function,

ȳm
l1,l2

(θ1, θ2, ϕ) = P̄ m
l1

(cos θ1) P̄ m
l2

(cos θ2) cos(mϕ), (1)

with 0 ≤ l1 ≤ 6 and restricted to even values, 0 ≤ l2 ≤ 12, and
0 ≤ m ≤ 2. For each point of the radial grid, a least-square pro-
cedure has been performed to compute the coefficients of the
development on the angular functions. Then the radial func-
tions were obtained by cubic spline interpolation. Outside the
range of the radial grid, the radial functions were extrapolated
for shorter distances by exponential functions and for longer
distances by reciprocal power functions.

B. Bound states calculations

The method we use is widely employed to calculate the
rovibrational levels of atom-diatom or diatom-diatom24 van
der Waals complexes. It is based on the fact that the coupled
equations needed for scattering calculations differ from those
for bound states only in the applied boundary conditions. This
method, which is particularly well suited to obtain the higher
rovibrational bound levels which are difficult to converge us-
ing a variational method, is for example coded in the BOUND

program developed by Hutson with the log-derivative prop-
agator and is described in great detail in the corresponding
paper.25 We implemented the bound state calculations in our
diatom-diatom close coupling scattering code according to
the recommendation of Danby26 for an R-matrix propaga-
tor as our program uses the Magnus propagator and tested
it by reproducing the spectra of the H2-CO complex calcu-
lated by Jankowski and Szalewicz.21 We previously used the
same approach to calculate the bound states of several atom-
diatom complexes27–29 and the details of the implementation
of the bound state calculations in our code can be found in
Ref. 27. Briefly, our code solves the rovibrationally inelastic
close coupling equations in the space fixed frame and uses
the Jacobi coordinates. The vibrational levels of the H2-CS
van der Waals complex are calculated by performing calcula-
tions for all the values of the total angular momentum J and
parity ε leading to bound states. The rigid rotor calculations



3.2 Publications 34

234301-3 Denis-Alpizar et al. J. Chem. Phys. 137, 234301 (2012)

were performed separately for ortho- and para-H2 and the two
lowest rotational states of ortho/paraH2 were included in each
case. Fifteen rotational states were included in the basis set
describing the CS molecule. We used the rotational constant
B = 60.853 cm1 for H2 and B = 0.8200462 cm−1 for CS. The
maximum propagation distance was 50 ao. The calculations
were performed for two values of the propagator step size
(0.1 and 0.05 ao) and the values of the bound state energies
were obtained from a Richardson extrapolation as suggested
by Hutson.25

C. Second virial coefficient

In order to provide data for a future test of the quality of
our PES we have calculated the cross second virial coefficient
B12(T) within the classical approximation. The value of B12

for a given temperature T was calculated with the formula30

B12(T ) = NA

4

∫ 2π

0
dϕ

∫ π

0
dθ1 sin θ1

∫ π

0
dθ2 sin θ2

∫ ∞

0
R2dR

×
{

1 − exp

(−V (R, θ1, θ2, ϕ)

kbT

)}
(2)

in which V (R, θ1, θ2, ϕ) is the potential energy and kb and
NA are, respectively, the Boltzman and Avogadro constants.
This integral was evaluated numerically, using a Gauss–
Chebyshev quadrature of 20 points for the integration over
ϕ and a Gauss–Legendre quadrature with 20 points over θ1

and θ2. The radial integration was performed by the Romberg
method, with the integrand approximated by 1 for R <

3
√

3 Å
and by 0 for R > 100 Å.

III. RESULTS AND DISCUSSION

A. Potential energy surface

We found that the equilibrium structure of the H2-CS van
der Waals system is linear, with the carbon atom pointing to-
ward H2. This configuration is similar to the one of the iso-
valent system H2-CO.21 The energy and the geometry asso-
ciated with the minimum are, respectively, De = 173 cm−1,
θ1 = 0◦ (or 180◦), θ2 = 180◦, and R = 8.601 ao. Contour
plots of the PES are presented in Figs. 2–5. In Fig. 2, the CS
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FIG. 2. Contour plot of the rigid rotor PES for θ1 = 0◦. The contour lines
are equally spaced by 10 cm−1.
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FIG. 3. Contour plot of the rigid rotor PES for θ2 = 0◦. The contour lines
are equally spaced by 10 cm−1.

internuclear axis is rotated while the H2 molecule is aligned
along the intermolecular axis. In Figs. 3 and 4, the H2 inter-
nuclear axis is rotated while the CS molecule is aligned along
the intermolecular axis with the S atom (Fig. 3) or the C atom
(Fig. 4) pointing toward H2. In Fig. 5, both H2 and CS inter-
nuclear axis are rotated, while the intermolecular distance R
is relaxed and the dihedral angle ϕ is fixed to 0◦. We can see
two equivalent principal minima in Figs. 4 and 5 as a conse-
quence of the symmetry of permutation of hydrogen atoms.
The principal minimum is also seen in Fig. 2. No secondary
minimum has been found. The minimum point which is seen
in Fig. 3 is actually a saddle point as shown by Fig. 5. In this
last figure, we can observe that a high potential ridge sepa-
rate the two equivalent minima. Consequently, the most fa-
vorable pathway to convert from one minimum to the other
goes through a combined rotation where H2 do a half turn
while CS completes a full turn. Let us note that displacing
ϕ from 0◦ should not change strongly this topology because
the potential energy is independent of ϕ in all the configu-
rations where at least one diatomic axis is aligned along the
intermolecular axis.

The quality of the fitted PES has been checked by eval-
uating the root-mean-square (rms) of the differences between
the ab initio energies and the fitted energies. We have divided
the range of R spanned by the ab initio data in three regions:
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FIG. 4. Contour plot of the rigid rotor PES for θ2 = 180◦. The contour lines
are equally spaced by 10 cm−1.
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FIG. 5. Contour plot of the rigid rotor PES for ϕ = 0◦ and R relaxed. The
contour lines are equally spaced by 10 cm−1. The optimised values of R span
the range [7.10,9.77] ao.

the repulsive region from 6 ao up to 8.5 ao, the attractive re-
gion from 8.5 ao up to 15 ao, and the long-range region from
15 ao up to 50 ao. The rms of the errors in each region is
0.16, 0.015, and 0.0005 cm−1, respectively. This can be com-
pared to the rms of the potential energies in the same regions
which are 704.2, 25.5, and 1.28 cm−1, respectively. The FOR-
TRAN code of the PES is available from the authors upon
request.

B. Rovibrational bound states

The results of the bound states calculations for the pH2-
CS and oH2-CS complexes with J ≤ 2 are presented in
Tables I and II, respectively. All other energy levels with
J ≥ 3 are available as supplementary material.31 The pa-
rameters of the scattering calculations (i.e. the basis set,
the propagator step size) ensure that an accuracy of about
10−2 cm−1 is reached for the energy of bound states. However,
because the energy gap between some states can be as small as
10−4 cm−1, the search of the sign change in the difference be-
tween inward and outward R-matrices28 was performed with
a 10−6 cm−1 threshold. The maximum value of the total an-
gular momentum J leading to bound states was found to be 10
for pH2-CS and 12 for oH2-CS. The rovibrational energies are
given relative to the ground state energy of infinitely separated
CS and pH2. Hereinafter we denote by j1 and j2 the rotational
angular momentum of H2 and CS respectively. The spacing
between the levels j1 = 0 and j1 = 2 in the para form and
between the j1 = 1 and j1 = 3 levels in the ortho form are sig-
nificantly larger than the well depth of the potential. Therefore
all the ortho/para-H2-CS bound states wavefunctions are pre-
dominantly expanded on the ortho/para-H2 rotational ground
state. In Table I, we report the energy, the quantum num-
bers J and ε, and the approximate quantum numbers L and j2

TABLE I. Calculated rovibrational bound states of pH2-CS for J ≤ 2. For each state, we report the energy in cm−1, the total rotational quantum number J, the
parity ε, the CS rotational quantum number j2, the orbital quantum number L, and the percentage weight (w) of the leading basis set function. For some states,
several basis functions need to be given in order to distinguish them from lower states with same J and ε.

State State State

J ε j2 L w Energy J ε j2 L w Energy J ε j2 L w Energy

0 + 0 0 97 − 35.8716 1 − 3 2 88 − 21.7297 2 + 1 1 5 − 2.0243
0 + 1 1 89 − 32.0920 1 − 3 4 96 − 15.9052 1 3 5
0 + 2 2 80 − 25.7775 1 − 4 3 96 − 13.0722 2 0 6
0 + 3 3 93 − 19.2932 1 − 4 5 97 − 5.6069 2 2 13
0 + 4 4 98 − 9.5563 1 − 2 1 8 − 3.1860 2 4 36
0 + 1 1 14 − 3.6394 2 3 23 3 5 6

2 2 74 5 4 58 4 6 7
5 5 5 1 − 5 4 92 − 1.9849 5 3 15

0 + 0 0 6 − 1.0338 1 − 1 0 12 − 0.1433 2 + 1 3 5 − 1.5577
1 1 33 1 2 12 3 1 10
2 2 16 2 3 10 4 6 70
3 3 41 3 4 36 2 + 4 6 92 − 0.5862

1 + 1 1 98 − 33.8144 4 5 6 2 − 1 2 96 − 31.8691
1 + 2 2 98 − 27.6721 5 4 16 2 − 2 1 96 − 30.5297
1 + 3 3 95 − 19.2149 2 + 1 1 80 − 33.2079 2 − 2 3 89 − 25.2144
1 + 4 4 97 − 9.8959 2 + 0 2 76 − 33.0614 2 − 3 2 89 − 22.7255
1 + 1 1 6 − 1.5300 2 + 2 0 85 − 30.9901 2 − 3 4 96 − 16.0049

2 2 11 2 + 2 2 50 − 28.6911 2 − 4 3 96 − 13.1797
3 3 51 2 + 1 3 45 − 26.9339 2 − 4 5 98 − 5.6317
4 4 25 2 + 3 1 79 − 23.8148 2 − 5 4 97 − 2.1704
5 5 7 2 + 2 4 78 − 20.6995 2 − 2 3 7 − 0.4070

1 − 0 1 95 − 34.9375 2 + 3 3 79 − 19.8274 3 2 11
1 − 1 0 92 − 34.3308 2 + 4 2 94 − 15.6287 3 4 36
1 − 1 2 70 − 30.9609 2 + 3 5 97 − 11.7101 4 5 34
1 − 2 1 67 − 28.5378 2 + 4 4 98 − 9.6357
1 − 2 3 86 − 23.8440 2 + 5 3 97 − 5.3502
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TABLE II. Calculated energies (cm−1) of the rovibrational bound states of oH2-CS for J ≤ 2, along with the associated quantum numbers (J, ε).

State State State State State

J ε Energy J ε Energy J ε Energy J ε Energy J ε Energy

0 + 78.1927 1 + 105.7680 1 − 110.1782 2 + 102.9420 2 − 89.4881
0 + 84.9060 1 + 108.5430 1 − 112.9009 2 + 104.1448 2 − 91.2534
0 + 92.1872 1 + 110.7159 1 − 114.0169 2 + 106.1486 2 − 92.6863
0 + 98.4315 1 + 113.4028 1 − 114.5219 2 + 106.8613 2 − 95.1564
0 + 101.7227 1 + 113.8182 1 − 116.2404 2 + 107.3817 2 − 96.0826
0 + 104.1509 1 + 115.1382 1 − 117.3911 2 + 109.7498 2 − 97.7320
0 + 111.9908 1 + 117.7081 1 − 117.9314 2 + 110.4607 2 − 99.6486
0 + 112.2215 1 + 118.9015 1 − 118.4700 2 + 112.2532 2 − 101.3505
0 + 114.1382 1 + 120.3939 1 − 120.9221 2 + 113.1311 2 − 102.3588
0 + 117.1608 1 + 120.7320 2 + 71.8257 2 + 113.5232 2 − 103.8251
0 + 120.6376 1 − 73.9313 2 + 75.1621 2 + 114.3119 2 − 105.6296
0 − 87.2179 1 − 78.9144 2 + 78.8875 2 + 115.2841 2 − 106.4514
0 − 94.7724 1 − 82.4785 2 + 80.3857 2 + 115.7166 2 − 108.0734
0 − 104.9616 1 − 84.2987 2 + 84.2431 2 + 117.4254 2 − 110.1003
0 − 115.3423 1 − 87.1817 2 + 84.6973 2 + 117.7393 2 − 111.3348
0 − 120.0817 1 − 89.8010 2 + 87.5395 2 + 118.3457 2 − 111.7665
1 + 74.0346 1 − 91.7632 2 + 89.1242 2 + 119.0900 2 − 113.8275
1 + 82.5703 1 − 95.2903 2 + 90.4075 2 + 119.5686 2 − 115.4673
1 + 85.2856 1 − 98.5494 2 + 92.2985 2 + 120.4822 2 − 116.4560
1 + 88.0804 1 − 99.2229 2 + 94.2299 2 + 120.9077 2 − 117.0772
1 + 90.9907 1 − 99.7993 2 + 95.7337 2 + 121.1620 2 − 118.1388
1 + 92.4167 1 − 100.9420 2 + 97.1789 2 − 75.4563 2 − 118.6224
1 + 95.8193 1 − 104.9230 2 + 99.2674 2 − 78.9411 2 − 119.1144
1 + 99.5506 1 − 105.6870 2 + 100.7164 2 − 84.5982 2 − 120.3551
1 + 100.5843 1 − 108.0265 2 + 101.3734 2 − 85.5051 2 − 121.0159
1 + 102.0414 1 − 109.8234 2 + 101.8032 2 − 88.2248

associated with each pH2-CS bound state. The value of j1 is
assumed to be 0 for all the states. We report also the relative
weight, given in percent, of the dominant basis set functions
in the rovibrational wavefunction. The relative weights have
been obtained by multiplying by 100 the square of the largest
expansion coefficients. In most cases good quantum numbers
could be assigned to a given para bound state. There are, how-
ever, a few exceptions for J = 0, 1, 2, 3, 4 where a single attri-
bution was not possible. In Table II, we report only the energy
and the quantum numbers J and ε for each oH2-CS bound
state, while j1 is assumed to be 1. It was not possible to assign
more quantum numbers because we did not find any angu-
lar expansion coefficients of the wavefunction larger than 0.2.
Thus the oH2-CS spectrum appears considerably more com-
plex than the pH2-CS spectrum. The total number of bound
states supported by the present PES is 186 for pH2-CS and
553 for oH2-CS. There are about two times more states for
the ortho form than for the para form. This is related to the
fact that with j1 = 0, a single value of j12 is possible for any
given value of j2, while with j1 = 1, three values of j12 are
obtained. The same ratio was observed previously for the H2-
CO complex.24 However, the number of bound states is con-
siderably larger in the case of H2-CS, about five times more,
thereby suggesting a much higher complexity of the infrared
spectra. The dissociation energies of the ground states of the
para and ortho species are found to be only 35.87 cm−1 and
49.88 cm−1, respectively. Thus the energies of both ground
states are a significative part of the potential well depth, simi-

larly to the case of H2-CO. Let us note that the oH2-CS ground
state is found for J = 2, while it is J = 1 for oH2-CO.24

In the case of pH2-CS, for L = 0, the spacing between
bound states associated with two successive values of j2 are
reported in Table III. As it can be seen, the spacings are very
close to the rotational spacing of the free CS diatom. This
suggests that the CS monomer behaves like a weakly hindered
rotor. Indeed, Fig. 5 shows that the potential energy is below
the energy of the ground state of pH2-CS in almost the whole
coordinate space. Again, this is similar to the dynamics of the
H2-CO system.21

We also report in Table IV, for L = J, the energy spac-
ings between the para levels associated with successive val-
ues of L. If we assume that the energy levels are those of a free

TABLE III. Energy spacing (cm−1) between pH2-CS bound states associ-
ated with two successive values of j2 for L = 0.

Rotational spacing
Energy spacing of the free Relative

j2 ′ j2 ′′ between levels CS diatom difference (%)

1 0 1.54 1.64 6.1
2 1 3.34 3.28 1.8
3 2 4.65 4.92 5.5
4 3 6.99 6.56 6.6
5 4 8.26 8.20 0.8
6 5 9.66 9.84 1.9
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TABLE IV. Energy spacing (cm−1) between para bound levels associated
with successive values of L. Brel is the rotational constant of the two-body
system H2 + CS calculated from the spacing.

Energy spacing
j2 J′ = L′ J′′ = L′′ between levels Brel

0 1 0 0.93 0.47
2 1 1.88 0.47
3 2 2.52 0.42
4 3 4.28 0.54
5 4 4.98 0.50
6 5 5.13 0.43
7 6 6.34 0.45
8 7 6.97 0.44

Average 0.46
1 2 1 1.95 0.49

3 2 2.84 0.47
4 3 4.12 0.51
5 4 4.97 0.50
6 5 5.43 0.45
7 6 6.64 0.48
8 7 7.22 0.45

Average 0.48

rotator, i.e., follow a BrelL(L+1) law, then the value of Brel

can be calculated for each energy spacing. Table IV shows
that these values are distributed in a small range around an
average value of 0.47 cm−1. Furthermore, if we consider the
system H2-CS at the equilibrium intermolecular separation Re

= 8.601 ao, we can calculate the value of Brel with the equa-
tion Brel = ¯2/2μR2

e . We obtain a value of 0.42 cm−1 which
is in qualitative agreement with the average value deduced
from the energy spacings. This indicates that the respective
orbital motion of the two monomers is close to a free motion,
and therefore, the orbital motion is weakly interacting with
the rotation of CS. Again, this leads to conclude that the CS
monomer is almost freely rotating.
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FIG. 6. Cross second virial coefficient calculated with the present PES.

C. Second virial coefficient

The calculated cross second virial coefficient B12(T) is
shown in Fig. 6. There are unfortunately no experimental data
available for a mixture of H2 and CS which could be com-
pared with our results. Whenever available, they will provide
a good test of the accuracy of our surface. As a matter of
fact, we found recently32 that the B12 based scaling of the
H2-CO potential energy surface suggested by Jankowski and
Szalewicz24 was crucial to get good agreement between the-
oretical and experimental inelastic cross sections. The quan-
tum corrections of B12 where not calculated here since these
small corrections are expected to be significant only at low
temperatures.33

IV. CONCLUSION

A new four-dimensional analytical PES based on a large
grid of high-level ab initio calculations was obtained for the
H2-CS van der Waals complex. The single equilibrium struc-
ture of the H2-CS complex was found to be linear with the
carbon pointing toward H2. The corresponding well depth
is −173 cm−1. Within the rigid-rotor approximation, all the
rovibrational bound states of the H2-CS complex have been
calculated. The dissociation energies of the ground states of
the para and ortho species are found to be only 35.87 cm−1

and 49.88 cm−1, respectively, indicating the energies of both
ground states are a major part of the binding potential energy.

The PES supports a large number of bounds states, 136
for the para form and 553 for the ortho form. Rotational
quasi-quantum numbers L and j2 have been unambiguously
assigned to most of the bound states of pH2-CS. For the states
of oH2-CS, this assignment have not been possible, owing to
the strong mixing between basis set functions. This higher
complexity of the oH2-CS bound states results from the sig-
nificantly larger number of bound levels, which is a conse-
quence of the fact that j1 = 1 allows to build two more states
than j1 = 0.

In the case of the pH2-CS system, a simple examina-
tion of some levels spacing indicate that the CS monomer
behaves like a weakly hindered rotor. This is a consequence
of the large zero point energy which allows the pH2-CS sys-
tem the move freely in almost the whole angular coordinates
space.

1A. A. Penzias, P. M. Solomon, R. W. Wilson, and K. B. Jefferts, Astrophys.
J. 168, L53 (1971).

2M. Wang, Y.-N. Chin, C. Henkel, and J.-B. Whiteoak, Astrophys. J. 690,
580 (2009).

3R. J. Smith, R. Shetty, A. M. Stutz, and R. S. Klessen, Astrophys. J. 750,
64 (2012).

4E. Bayet, J. Yates, and S. Viti, Astrophys. J. 728, 114 (2011).
5B. E. Turner, K.-W. Chan, S. Green, and D.-A. Lubowich, Astrophys. J.
399, 114 (1992).

6S. Green and S. Chapman, Astrophys. J., Suppl. Ser. 37, 169 (1978).
7R. G. Gordon and Y. S. Kim, J. Chem. Phys. 56, 3122 (1972).
8A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).
9M. Agúndez, J. P. Fonfría, J. Cernicharo, C. Kahane, and F. Daniel, Astron.
Astrophys. 543, A48 (2012).

10F. Lique, A. Spielfiedel, and J. Cernicharo, Astron. Astrophys. 451, 1125
(2006).

11F. Lique and A. Spielfiedel, Astron. Astrophys. 462, 1179 (2007).
12J. Kłos and F. Lique, Mon. Not. R. Astron. Soc. 390, 239 (2008).



3.2 Publications 38

234301-7 Denis-Alpizar et al. J. Chem. Phys. 137, 234301 (2012)

13F. Daniel, M.-L. Dubernet, F. Pacaud, and A. Grosjean, Astron. Astrophys.
517, A13 (2010).

14N. Troscompt, A. Faure, L. Wiesenfeld, C. Ceccarelli, and P. Valiron,
Astron. Astrophys. 493, 687 (2009).

15J. Cernicharo, A. Spielfiedel, C. Balança, F. Dayou, M.-L. Senent, N.
Feautrier, A. Faure, L. Cressiot-Vincent, L. Wiesenfeld, and J. R. Pardo,
Astron. Astrophys. 531, A103 (2011).

16F. Daniel, M.-L. Dubernet, and A. Grosjean, Astron. Astrophys. 536, A76
(2011).

17D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 98, 1358 (1993).
18S. T. Cybulski and R. R. Toczylowski, J. Chem. Phys. 111, 10520 (1999).
19S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
20Written by H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz

et al., MOLPRO 2010.1 is a package of ab initio programs, 2010, see
http://www.molpro.net.

21P. Jankowski and K. Szalewicz, J. Chem. Phys. 108, 3554 (1998).
22K. P. Huber and G. Herzberg, “Constants of diatomic molecules” (data

prepared by J. W. Gallagher and R. D. Johnson III) in NIST Chemistry
WebBook, NIST Standard Reference Database Number 69, edited by P. J.
Linstrom and W. G. Mallard (National Institute of Standards and Technol-
ogy, Gaithersburg, MD, 2003), http://webbook.nist.gov.

23G. Guillon, T. Stoecklin, A. Voronin, and Ph. Halvick, J. Chem. Phys. 129,
104308 (2008).

24P. Jankowski and K. Szalewicz, J. Chem. Phys. 123, 104301
(2005).

25J. M. Hutson, Comput. Phys. Commun. 84, 1 (1994).
26G. Danby, J. Phys. B 16, 3393 (1983).
27F. Turpin, Ph. Halvick, and T. Stoecklin, J. Chem. Phys. 132, 214305

(2010).
28P. Halvick, T. Stoecklin, F. Lique, and M. Hochlaf, J. Chem. Phys. 135,

044312 (2011).
29F. Lique, P. Halvick, T. Stoecklin, and M. Hochlaf, J. Chem. Phys. 136,

244302 (2012).
30J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases

and Liquids (Wiley, New York, 1964).
31See supplementary material at http://dx.doi.org/10.1063/1.4771658 for the

Tables S1 and S2 which report the energy levels of bound states of the
pH2-CS and oH2-CS complexes, respectively, for J ≥ 3.

32S. Chefdeville, T. Stoecklin, A. Bergeat, K. M. Hickson, C. Naulin, and M.
Costes, Phys. Rev. Lett. 109, 023201 (2012).

33M. P. Hodges, R. J. Wheatley, G. K. Schenter, and A. H. Harvey, J. Chem.
Phys. 120, 710 (2004).



3.2 Publications 39

THE JOURNAL OF CHEMICAL PHYSICS 139, 204304 (2013)

Rotational relaxation of CS by collision with ortho- and para-H2 molecules
Otoniel Denis-Alpizar,1,2 Thierry Stoecklin,1,a) Philippe Halvick,1 and Marie-Lise Dubernet3
1Université de Bordeaux, ISM, UMR CNRS 5255, 33405 Talence, France
2Departamento de Física, Universidad de Matanzas, Matanzas 40100, Cuba
3Université Pierre et Marie Curie, LPMAA, UMR CNRS 7092, 75252 Paris, France and Observatoire de Paris,
LUTH, UMR CNRS 8102, 92195 Meudon, France

(Received 16 September 2013; accepted 6 November 2013; published online 22 November 2013)

Quantum mechanical investigation of the rotationally inelastic collisions of CS with ortho- and para-
H2 molecules is reported. The new global four-dimensional potential energy surface presented in our
recent work is used. Close coupling scattering calculations are performed in the rigid rotor approx-
imation for ortho- and para-H2 colliding with CS in the j = 0–15 rotational levels and for collision
energies ranging from 10−2 to 103 cm−1. The cross sections and rate coefficients for selected rota-
tional transitions of CS are compared with the ones previously reported for the collision of CS with
He. The largest discrepancies are observed at low collision energy, below 1 cm−1. Above 10 cm−1,
the approximation using the square root of the relative mass of the colliders to calculate the cross sec-
tions between a molecule and H2 from the data available with 4He is found to be a good qualitative
approximation. The rate coefficients calculated with the electron gas model for the He-CS system
show more discrepancy with our accurate results. However, scaling up these rates by a factor of 2
gives a qualitative agreement. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4832385]

I. INTRODUCTION

The emission spectrum of the CS molecule has been ex-
tensively observed in many interstellar objects since its first
detection in 1971.1 The large number of rotational transitions
detected is used to trace the different regions of circumstellar
envelopes as detailed for example in a recent study dedicated
to the carbon star IRC +10216.2 The analysis of the observed
spectra requires the knowledge of accurate spectroscopic data
such as radiative and collisional rates with the most abundant
atomic and molecular species of the interstellar medium: He
and H2. The rate coefficients for the CS-He system are now
well documented after the recent work by Lique et al.3 for
the first 31 rotational levels of CS and for temperatures rang-
ing from 10 to 300 K using a potential energy surface calcu-
lated at the coupled-cluster level. On the contrary, the accu-
racy of the rate coefficients available for the collisions of CS
with H2 can be questioned. The old calculations of Green and
Chapman,4 performed at the coupled states level, were based
on a semi empirical potential energy surface (PES) adapted
from a Gordon and Kim5 electron gas model for CS-He. More
recently, using the same semi-empirical surface, Turner et al.6

extended the dynamics calculations of Green and Chapman
and provided rate coefficients calculations for transitions be-
tween the first 21 rotational levels of CS and for temperature
between 20 K and 300 K still at the coupled states level. The
comparison between the rate coefficients obtained by Lique
et al. for CS-He and the results of Turner et al. for CS-para-
H2 (j = 0) show remarkable differences between the two sets
of rate coefficients, which cannot be accounted only by the
difference of mass of the colliders. A new study of the H2-CS
collisions based on an accurate PES appeared to be necessary

a)E-mail: t.stoecklin@ism.u-bordeaux1.fr

to make a more realistic comparison between the two systems.
A new four-dimensional intermolecular potential energy sur-
face for the CS-H2 collision was then developed and presented
in a recent publication.7 This surface based on a large grid of
ab initio energies calculated at the coupled-cluster level was
used to compute the bound state energies of the H2-CS com-
plex. In the present work we present the cross sections and
rate coefficients for the rotational transitions of CS in colli-
sions with para- and ortho-H2 for the 15 first rotational levels
of CS. We compare them with those available for this system
and with the recent calculations of Lique et al. for He-CS.3

This paper is organized as follows. In Sec. II, a brief ac-
count of the parameters of the close coupling calculations is
given, while the results are discussed in Sec. III.

II. METHOD

A. Potential energy surface

The surface used in the present work was recently de-
scribed in details by Denis-Alpizar et al.7 This is a 4D rigid
rotor PES, computed for the H2 distance being fixed at its vi-
brationally averaged value in the rovibrational ground state
(r0 = 1.448736 a0), while the equilibrium bond length is used
for CS (re = 2.900619 a0).8 The equilibrium structure of the
H2-CS complex is found to be linear with the carbon pointing
toward H2 at the intermolecular separation of 8.6 a0 and the
well depth is 173 cm−1. The corresponding energy curve and
those associated with secondary minima or saddle points are
presented in Figure 1. The level of accuracy of this surface
should be similar to the one obtained for similar systems like
H2-CO.9 Recent progresses in experimental techniques10 al-
lowed for the first time testing the accuracy of ab initio PES
in the low collision energy domain typical of astrochemical

0021-9606/2013/139(20)/204304/5/$30.00 © 2013 AIP Publishing LLC139, 204304-1
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FIG. 1. H2-CS interaction energy as a function of R for several attractive
angular configurations. The values of θ1, θ2, and ϕ are indicated for each
curve.

conditions. The agreement obtained between theory and ex-
periment by Chefdeville et al.10 for the H2-CO inelastic col-
lision cross sections in this domain of energy was quite good
and we expect to reach the same level of accuracy for H2-CS.

B. Scattering calculations

The close coupling calculations were performed using
our code DIDIMAT which was first applied to the H2-HF
collisions11 and also used recently to calculate the bound
states of the H2-CS van der Waals complex.7 The T matrix
elements are obtained and used to calculate the cross sections
for the transitions from an initial set of rotational levels of H2

and CS labeled by the quantum numbers (jH2 , jCS) to a final
set labeled by the quantum numbers (j ′

H2
, j′CS):

σjH2 ,jCS→j ′
H2

,j ′
CS

= π

(2jH2 + 1)(2jCS + 1)k2
jH2 ,jCS

×
∞∑

J=0

(2J + 1)

jH2 +jCS∑
j12=|jH2 −jCS|

j ′
H2

+j ′
CS∑

j ′
12=|j ′

H2
−j ′

CS|

×
|J+j12|∑

l=|J−j12|

|J+j ′
12|∑

l′=|J−j ′
12|

∣∣T J
jH2 ,jCS,j12;j ′

H2
,j ′

CS,j ′
12

∣∣2
,

where J, j12, l, j′12, and l′ are the quantum num-
bers associated with the total angular momentum �J and
with the operators �j12 = �jH2 + �jCS; �l = �J − �j12; �j ′

12 = �j ′
H2

+ �j ′
CS; �l′ = �J − �j ′

12. The magnitude of the wave vector
is defined by k2

jH2,jCS
= 2μ

¯2 [E − εjH2 ,jCS ], εjH2 ,jCS being the
eigenenergy associated with a given set of initial rotational
state (jH2 , jCS), E is the total energy, and μ the relative mass of
the system. In Sec. III, we also report the rotational quenching
cross sections of CS in collisions with H2 which are defined
as follows:

σjH2 ,jCS
=

∑
j ′
CS<jCS

σjH2 ,jCS→jH2 ,j ′
CS

.

TABLE I. Comparison between the inelastic cross section of CS colliding
with para-H2 and ortho-H2 for different rotational transitions of CS. In each
column the rotational basis set used for H2 is reported. The rotational basis
set used for CS included jCS values ranging from 0 to 18, while the kinetic
energy was set to 10 cm−1.

Transition
Para-H2 Ortho-H2

(jcs → j′cs) jH2 = 0 jH2 = 0, 2 jH2 = 1 jH2 = 1, 3

1 → 0 25.03 17.67 118.31 123.37
2 → 0 22.27 22.51 29.23 27.35
3 → 2 49.14 70.07 209.40 219.27
5 → 0 3.05 2.57 3.56 3.22
5 → 3 68.31 65.67 68.52 66.51
7 → 6 86.93 108.24 220.72 223.46
8 → 4 14.99 13.51 20.55 19.76
12 → 11 68.83 67.20 127.78 128.54

From the inelastic cross section, the corresponding thermal
rate coefficients at temperature T are readily obtained from

kjH2 ,jCS→j ′
H2 ,j′CS

(T )

=
√

8

πμ
(kBT )−

3
2

∞∫
0

dECσjH2 ,jCS→j ′
H2 ,j′CS

(EC)e
−

(
EC
kB T

)
,

where Ec is the collision energy of the channel labeled by jCS

and jH2 . Full close coupling calculations were performed us-
ing the rigid rotor approximation from 10–2 up to 1600 cm−1

with the rotational constants BCS = 0.8200462 cm−1 and BH2

= 60.853 cm–1. Transitions among all levels up to jcs = 15
were computed for collisions involving ortho- and para-H2.
The highest rotational level used in any calculation was jCS

= 30. For H2, the convergence of the rotational basis set was
investigated. The comparison of some state selected cross-
sections computed for a selected total energy and a selected
number of CS channels is presented in Table I. For the kinetic
energy considered, adding a second rotational function of H2

appears to change the cross section by 4% at the most in com-
parison with the calculation with only one rotational function.
Thus, in order to reduce computer time, only one rotational
level of H2 was included in the basis set for total energies
lower than the opening of the first excited para or ortho states
of H2. The propagation was carried out to a maximum dis-
tance of 100 ao for the lowest energy, and convergence was
checked as a function of the propagator step size.

III. RESULTS AND DISCUSSION

Figure 2 illustrates the energy dependence of the colli-
sional de-excitation cross sections of CS(jCS = 5) in collision
with para-H2. Apart from the usual many resonances associ-
ated with the H2-CS van der Waals well, a propensity to favor
odd �jCS over even �jCS can be noticed at low collision en-
ergy while even �jCS become favored over odd �jCS at higher
collision energy. This tendency was analyzed long ago by Mc-
Curdy and Miller12 in terms of an interference effect related
to the odd or even anisotropy of the PES. The same tendency
can be observed in Fig. 3 for collisions involving ortho-H2.
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FIG. 2. Rotational transition cross section of CS(jCS = 5) in collisions with
para-H2(jH2 = 0) as a function of the collision energy. The curves are labeled
by (jH2 , jCS) → (j ′
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However, the inversion in this case takes place at higher col-
lision energy.

The dependence of the propensity rule on the collision
energy and on the initial state of H2 can also be understood by
considering both the matrix elements of the potential (see, for
example, Green13) in a space fixed angular basis set and the
expansion coefficients V m

l1 ,l2
(R) of the potential in the Green

angular basis set Sm
l1 ,l2

:

Sm
l1 ,l2 = P̃ m

l1
(cos θ1)P̃ m

l2
(cos θ2) cos(mϕ).

In this expansion, θ1 and θ2 are the polar angles of the H2 and
CS molecules, respectively, and ϕ is the relative azimuthal
angle,7 while P̃ m

l (cos θ ) are normalized associated Legendre
polynomials. Our model PES7 uses even values of l1 rang-
ing from 0 to 6 for the H2 molecule, while the range is
0 ≤ l2 ≤ 12 for CS and 0 ≤ m ≤ 2. At the total energies
allowing only the H2 state jH2 = 0 to be populated, only the
l1 = 0 components of the potential expansion give non-zero
contributions to the potential matrix elements. At larger total
energies, when the channel jH2 = 2 opens, the contributions
due to the l1 = 0, 2, 4 components give non-zero matrix el-
ements and lead to the change of propensity rule appearing
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in Fig. 2. On the contrary, in the ortho case, the l1 = 0 and 2
components already contribute when only the channel jH2 = 1
is open. At higher energy, l1 = 0, 2, 4, 6 contribute when the
channel jH2 = 3 opens. Another element which explains the
differences of behavior observed between the ortho and para
case is the fact that the jH2 = 2 channel is 365 cm−1 above
the jH2 = 0 channel, while the jH2 = 3 channel is 600 cm−1

above the jH2 = 1 channel. This is illustrated in Fig. 4 which
displays the cross sections associated with the opening of the
jH2 = 2 channel in the para case and the jH2 = 3 channel in
the ortho case. This difference of energy spacing is the main
reason explaining why the cross sections of rotational excita-
tion of H2 in the para case are larger than those of the ortho
case. The rotational quenching cross section of CS in colli-
sion with para-H2(jH2 = 0) and ortho-H2(jH2 = 1) for initial
values of jCS = 1, 2, 3, 4, and 5 are presented, respectively,
in Figs. 5 and 6. While the very low collision energy interval
[0.01; 1] cm−1 is not very useful to calculate rate coefficients
at temperatures typical of the interstellar medium (ISM) it is
however represented in these figures as it shows a resonance
in this domain of energy for the rotational quenching cross
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FIG. 5. Rotational quenching cross section of CS(1 ≤ jCS ≤ 5) by collision
with para-H2(jH2 = 0) as a function of the collision energy. The initial rota-
tional quantum number jCS is reported on each curve.
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FIG. 6. Rotational quenching cross section of CS(1 ≤ jCS ≤ 5) by collision
with ortho-H2(jH2 = 1) as a function of the collision energy. The initial rota-
tional quantum number jCS is reported on each curve.
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FIG. 7. Contour plot of the averaged PES over the rotational wave function
of H2. Panel (a) corresponds to the average over (j1 = 0, k = 0); (b) corre-
sponds to the average over (j1 = 1, k = 0); (c) corresponds to the average over
(j1 = 1, k = ±1). Contour lines are equally spaced by 5 cm−1. Red contour
lines represent the repulsive interaction energies.
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FIG. 8. Comparison of the rotational quenching cross section of CS by col-
lision with 4He (green lines) and with para-H2(jH2 = 0) (red lines) as a func-
tion of the collision energy. The rotational transition jCS → j′CS is reported
in each panel.

section of CS(j = 1). The different number of partial waves
contributing to the intermolecular potential matrix elements
in the para and ortho cases which we discussed above ex-
plains the larger cross sections obtained in the ortho case.
This analysis may be supplemented by taking advantage of
the H exchange symmetry of the H2 molecule and averaging
our PES over the ortho and para rotational wave functions of
H2. We plotted the corresponding averaged potentials in Fig-
ure 7(a) for the para-H2 case and Figures 7(b) and 7(c) for the
ortho-H2 case. The ortho-H2 averaged potentials are deeper
than the ones obtained for para-H2. This result explains the
larger number of resonances obtained in the ortho case. In
Fig. 8, we compare the cross sections obtained for the col-
lision of CS with para-H2(jH2 = 0) with those calculated by
Lique et al. for the 4He-CS system for selected rotational tran-
sitions of CS. As seen in this figure, the largest differences
between the two types of cross sections are observed at low
energies, while at energies above 10 cm−1 the spacing be-
tween the two curves is more or less constant. The value of
the ratio between the para-H2-CS and the He-CS cross sec-
tions calculated for the transitions reported in Fig. 8 and av-
eraged over a set of collision energies (1, 50, 100, 500, 900,
1100 cm−1) is found to be equal to 1.34, which is very close
to the square root of the ratio of the masses of the targets
(i.e., 1.4). This approximation, which is frequently used by
astronomers, is then valid for this collision for the energies
above 1 cm−1.

The rate coefficients at 100 K for the de-excitation transi-
tions of CS(jCS = 15) in collisions with para-H2 and ortho-H2

are presented in Fig. 9, along with the scaled He-CS results of
Lique et al. available in the BASECOL2012 database.14 The
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FIG. 9. De-excitation rate coefficients of CS(jCS = 15) by collisions with H2
at 100 K as a function of �jCS = jCS − j′CS.

scaled He-CS rate coefficients are smaller than the H2-CS
coefficients for small �jCS, and larger for large �jCS. The
largest error factor is about 3. However, the agreement is good
for the small odd �jCS for para-H2-CS.

In the same figure we also present the rate coefficient cal-
culated by Turner et al. taken from BASECOL2012. These rate
coefficients are too small for all �jCS by a factor ranging from
1.2 to 2.5. This discrepancy is a consequence of the approx-
imations made by Turner et al. They used the crude PES of
Green and Chapman adapted from a Gordon and Kim elec-
tron gas model for CS-He calculations and the coupled states
approximation for the scattering calculations. From a compar-
ison between the electron gas model and a realistic PES for
the CO-He system, Turner et al. reported that rotational exci-
tation rates are in error by a factor of 2 or 3, which is similar
to the error factor we have obtained for the CS-H2 system.

IV. CONCLUSION

A new set of rigid rotor close coupling cross sections for
the inelastic collisions of CS with H2 was computed using
a new 4D potential energy surface. For the collision of CS
with para-H2, within the energy range from 0.1 to 1000 cm−1,
we observe a propensity to favor odd �jCS over even �jCS at
low collision energy while at energy close to 1000 cm−1, the

propensity rule is reversed. The same tendency is observed for
collisions involving ortho-H2. However, the inversion takes
place at higher collision energy. This effect is related to the
opening of the second channel of H2 (jH2 = 2 for para-H2 or
jH2 = 3 for ortho-H2).

The cross sections for the rotational transition of CS in
collision with para-H2 were compared with the scaled cross-
sections available for the collision of CS with He. The usual
square root of the relative mass of the colliders, which is
used by astronomers to obtain the cross sections between a
molecule and H2 from the data available with 4He, is found to
be a good qualitative approximation for this system.

The rate coefficients calculated with the crude electron
gas model show more discrepancy with our accurate results.
Nevertheless, the variation of the rate as a function of �jCS

is correctly reproduced. Scaling up this rate by a factor of 2
gives a good qualitative agreement.
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4.1 Introduction to the study

From the astrochemical point of view, HCN and HNC are very interesting

molecules. They are among the most abundant organic molecules in the

ISM. These molecules have been detected in several molecular clouds [69–

73], in planetary atmospheres [74], in comets [75], carbon star atmospheres

[76] and circumstellar masers [77].

In this chapter, we focus on HCN. Several investigations of the collision

of HCN with He and H2 have been done both theoretically [78–81] and ex-

perimentally [82–85]. However, in all the theoretical studies of the collision

with H2, the PES have been simplified. The interest of HCN from the as-

trophysical point of view has motivated us to present a new 4D PES for the

HCN-H2 complex and to compute its bound levels.
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Figure 4.1: Five coefficients νml1,l2(R) of the potential energy expansion for
the HCN-H2 system

The ab-initio points were computed by the group of François Lique (Uni-

versité du Havre) at the CCSD(T)-F12 level, using the aug-cc-pVTZ basis

set. Furthermore, they analysed the long range behaviour of the grid of

points computed with the latter ab-initio method.

We performed the fit of the ab-initio points to an analytical function

using the least-square procedure. The angular part of the function is rep-

resented by a product of the normalized associated Legendre functions and

a cosine function:

ȳml1,l2 = P̄m
l1

(cosθ′) P̄m
l2

(cosθ) cos(mϕ) (4.1)

where the angles θ and θ′ correspond to the relative orientation of the HCN

and the H2 molecules, and ϕ is the azimuthal angle. The first radial func-

tions, called νml1,l2 are represented in Fig 4.1. The ν0
0,0 is the isotropic term.

The equilibrium structure of the system is linear HCN-H2.

The PES of the HCN-H2 system have then been used for the calculation

of the bound states of the HCN-para-H2 and HCN-ortho-H2 complexes se-

parately. In these calculations, both molecules were treated as linear rigid

rotors. Also, we averaged the PES over the rotational wave function of the

H2 molecule to explain the remarkable difference between the dissociation

energies of the HCN-para-H2 and HCN-ortho-H2 species.
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Finally, we used the bound levels to compare the calculated frequencies

transition with the experimental values reported in the literature. The

agreement found was quite good, confirming the good quality of the PES.

4.2 Publication
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We present a new four-dimensional potential energy surface for the collisional excitation of HCN
by H2. Ab initio calculations of the HCN–H2 van der Waals complex, considering both molecules
as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double,
and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-
consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H2 with the nitrogen
pointing towards H2 at an intermolecular separation of 7.20 a0. The corresponding well depth is
−195.20 cm−1. A secondary minimum of −183.59 cm−1 was found for a T-shape configuration with
the H of HCN pointing to the center of mass of H2. We also determine the rovibrational energy lev-
els of the HCN–para-H2 and HCN–ortho-H2 complexes. The calculated dissociation energies for the
para and ortho complexes are 37.79 cm−1 and 60.26 cm−1, respectively. The calculated ro-vibrational
transitions in the HCN–H2 complex are found to agree by more than 0.5% with the available exper-
imental data, confirming the accuracy of the potential energy surface. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4833676]

I. INTRODUCTION

Hydrogen cyanide (HCN) is a central molecule in the
physical-chemistry of many media. For example, HCN is an
important intermediate in the combustion reactions of hydro-
carbon flames containing a nitrogen source.1 HCN is also an
important constituent of earth and planetary atmospheres2 and
plays a major role in the physical chemistry of these atmo-
spheres. For example, in Titan atmosphere, HCN rotational
emission is the dominant cooling process and is therefore re-
sponsible for the thermal structure of the thermosphere.3

From the astrophysical point of view, HCN is ubiquitous.
Hydrogen cyanide is one of the most observed molecule in
the interstellar medium (ISM). Owing to its large dipole mo-
ment, this molecule and its closely related molecule HNC are
frequently used by astronomers to determine the physical and
chemical conditions in many regions of the ISM.4–9 They are
also powerful probes of high density gas, as at the opposite
of molecules like CO or CS, they do not seem to deplete on
grain surfaces in the denser cold part of prestellar cores.10

The analysis of the astronomical HCN emission spectra
requires the knowledge of accurate spectroscopical data, as
well as collisional rate coefficients with the most abundant in-
terstellar species. Indeed, collisional processes contribute, in
competition with the radiative processes, to populate the ro-
vibrational levels of the molecules. Consequently, the calcu-

a)otonieldenisalpizar@gmail.com
b)francois.lique@univ-lehavre.fr

lation of rate coefficients for the rotational excitation of HCN
by H2 (H2 being the most abundant collisional partner is the
ISM) has been a major goal for astrochemistry.

The first work dedicated to the rotational excitation of
HCN by collisions with He atoms (as a model for H2) was
performed by Green and Thaddeus11 in 1974. Then, many
collisional studies of astrophysical interest have been devoted
to the HCN–He collisional system and we just mention here
the most recent ones.12–14 However, in all these studies, He
was used as a model for H2 and recent results on rotational
excitation of SO,15 SiS,16, 17 or HNC18 have pointed out that
rate coefficients for collisions with H2 are generally different
from those for collisions with He, particularly for the case of
collision with ortho-H2.

Recently, Ben Abdallah et al.19 have studied the rota-
tional excitation of HCN by collisions with H2 and pro-
vided rate coefficients for the rotational and hyperfine
(de-)excitation of the HCN by para-H2 at low temperature.
However, these authors computed and used a potential en-
ergy surface (PES) averaged over the H2 rotation, resulting
in simplified dynamical calculations only valid for the colli-
sional excitation by H2(j = 0) at low temperatures. Then, the
validity of the approximation used by Ben Abdallah et al.19

needs to be checked by comparing with calculations involving
a global PES. Moreover, as HCN is also observed in high tem-
peratures astrophysical environments, it seems also important
to compute a new global HCN–H2 PES in order to provide
new rate coefficients for the rotational excitation of HCN by
H2 (para- and ortho-H2) at high temperatures. These new data

0021-9606/2013/139(22)/224301/8/$30.00 © 2013 AIP Publishing LLC139, 224301-1
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will provide the astronomical community with the necessary
tools to interpret HCN emission that will be observed with
high spatial and spectral resolutions from the Atacama Large
Millimeter/sub-millimeter Array (ALMA) interferometer.

From the experimental point of view, to the best of
our knowledge, collisional excitation studies of HCN by
H2 are not available. However, several studies dedicated
to the measurement of the HCN–H2 van der Waals spec-
trum were performed during the last decade.20–23 High res-
olution infrared21, 22 and millimeter-wave spectroscopy com-
bined with a pulsed supersonic jet technique20 have been used
to study the van der Waals complex structure in great de-
tail. Very recently, Fourier-transform microwave spectroscopy
was applied to observe rotational transitions in the HCN–H2

complex (both para- and ortho-H2 species) in order to im-
prove hyperfine molecular constants of the complex.23 From
these studies, Ishiguro et al.20 and Moore et al.21 were able
to show that ortho-H2 and para-H2 bind at opposite ends
of HCN. Moore et al.22 used an average one-dimensional
ab initio model of the PES to justify this analysis.

In this paper, we present a new four-dimensional (4D)
potential energy surface for the HCN–H2 system obtained
from first principle calculations. As a first application and
in order to check the accuracy of the new PES, we compute
the bound energy levels of HCN–para-H2 and HCN–ortho-H2

complexes and compare the calculated HCN–H2 frequencies
with the experimental ones.20, 23 This paper is organized as
follows. The ab initio calculations and the analytical represen-
tation of the PES are described in Sec. II. Features of the PES
are discussed in Sec. III. The bound levels of the complexes
and the comparison of calculated and experimental transitions
frequencies are presented in Sec. IV.

II. Ab initio CALCULATIONS AND ANALYTICAL
REPRESENTATION

A. Ab initio calculations

In the present work, we use the Jacobi coordinate system
presented in Fig. 1. The origin of coordinates is placed at the
center of mass of the HCN molecule and the vector R con-
necting HCN and the center of the H2 bond is directed along
the z-axis. The rotation of HCN and H2 molecules is defined
by θ and θ ′ angles, respectively. ϕ is the dihedral angle.

A very recent study dedicated to the ro-vibrational exci-
tation of HCN by He14 showed that neglecting the bending
of HCN is a very reasonable approximation for treating the

FIG. 1. Jacobi coordinate system of the HCN–H2 system.

pure rotational rotational excitation at low and moderate tem-
peratures. Indeed, some of us computed a 4D PES taking in
account the bending angle of the HCN molecule and found
that the results for the pure rotational excitation were in good
agreement with those considering the collisional partner as
rigid. Consequently and as we are mainly interested in the
pure rotational excitation of the title system, the collision part-
ners are then considered as rigid (i.e., we neglect effects of the
normal mode vibrations of the HCN and H2).

As shown before,24 a better description of the intermolec-
ular potential is obtained by fixing the molecular distance at
its averaged value in the ground vibrational level rather than
at the equilibrium distance. Accordingly, we used a H2 bond
distance rH-H = 1.448736 a0.25 For HCN, we used the follow-
ing interatomic distances rCN = 2.17923 a0, rCH = 2.01350 a0

(corresponding to the linear equilibrium geometry of HCN26).
Ab initio calculations of the PES of the HCN–H2 van der

Waals complex being in its ground electronic state were car-
ried out at the explicitly correlated coupled cluster with single,
double, and perturbative triple excitations [CCSD(T)-F12a]27

level of theory using an augmented correlation-consistent
triple zeta (aVTZ) basis set.28 The calculations were per-
formed using Molpro 2010 package.29 Additionally to the
aVTZ basis set, density fitting and resolution of the iden-
tity techniques (needed for F12 calculations) require aux-
iliary basis sets. In the present study, we used the default
corresponding auxiliary basis sets30 from Molpro basis set
library.

In all calculations, the interaction potential V (R, θ, θ ′, ϕ)
was corrected by the basis set superposition error (BSSE) with
the Boys and Bernardi counterpoise scheme31

V (R, θ, θ ′, ϕ) = EHCN−H2 (R, θ, θ ′, ϕ)

−EHCN(R, θ, θ ′, ϕ) − EH2 (R, θ, θ ′, ϕ) ,

(1)

where the energies of HCN and H2 are computed in the full
basis set of the complex.

In order to evaluate the accuracy of CCSD(T)-F12a
method in comparison with the standard CCSD(T) method
using the aug-cc-pVXZ (X = D, T, Q) basis sets (hereafter
aVDZ, aVTZ, aVQZ) and including results extrapolated to
the Complete Basis Set (CBS) limit,32 we have carried out
additional calculations for selected angular orientations of the
HCN–H2 complex. The results are reported in Fig. 2.

As can be seen, the CCSD(T)-F12a together with diffuse
basis set of aVTZ quality fully reaches the CCSD(T)/CBS
accuracy as previously found for other van der Waals sys-
tems such as HCl–He33 or O2–He.34 This comparison shows
again that the CCSD(T)-F12a leads to an excellent description
of the interaction energies using a relatively limited atomic
basis set.

In order to accurately describe the anisotropy of the po-
tential energy surface, the calculations were carried out for a
large grid of angular orientations: we vary the θ angle from 0◦

to 180◦ with a step of 10◦, the θ ′ angle from 0◦ to 180◦ with a
step of 15◦, and the ϕ angle from 0◦ to 90◦ with a step of 15◦.
R-distances vary from 3.5 to 30 bohrs in order to get 39 radial
grid points for each angular orientation.
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FIG. 2. Potential energy cuts of 4D PES for several angular orientations.
Energy is in cm−1.

B. Analytical representation

The angular part of the analytical representation of the
PES is represented by a product of normalized associated
Legendre functions and a cosine function. Hence, the poten-
tial is expressed such as

V (R, θ ′, θ, ϕ) =
4∑

l1=0

17∑
l2=0

min(l1,l2,3)∑
m=0

νm
l1,l2

(R)

×̄P
m

l1
(cosθ ′) P̄ m

l2
(cosθ ) cos(mϕ), (2)

where νm
l1,l2

(R) are the radial functions. Only even values of
l1 are included in this expansion because of the H exchange
symmetry of H2. For each value of the radial grid, we fitted
the ab initio points using a least squares method. We used a
weight function for energies higher than 5000 cm−1 as

w(E(θ ′, θ, ϕ)) = V0

E(θ ′, θ, ϕ)
. (3)

By trial and error, the values of the weight function pa-
rameter were found to be V0 = 5000 cm−1. In total, we get
135 angular coefficients for each radial point.

The analytical representation of the radial coefficients
νm

l1,l2
(R) was divided in three parts, corresponding to the short-

range, the intermediate, and the long-range regions as detailed
in the three following expressions:

Fsr (R) =
10∑

n=0

e−αRRnC
m,n
l1,l2

R ≤ 6a0, (4)

Fir (R) =
11∑

k=4

C
m,k
l1,l2

Rk
6 < R < 11a0, (5)

Flr (R) =
8∑

k=4

tk(βR)

Rk
C

m,k
l1,l2

R ≥ 11a0, (6)

where the tk(x) is the Tang-Toennies damping function

tk(x) = 1 − e−x

k∑
i=0

xi

i!
(7)

and α = 1.8 a−1
0 , β = 4.0 a−1

0 . These analytical functions
allowed us to get an accurate representation of the PES us-
ing a least-square procedure to compute the final coefficients.
The quality of the fitted surface was checked by evaluating
the root-mean-square (RMS) of the differences between the
ab initio energies and the fitted energies. For negative ener-
gies, the RMS was on the order of 10−4 cm−1. For energies in
the range 0 ≤ E ≤ 1000 cm−1, the RMS was 0.008 cm−1

while for 1000 < E ≤ 10 000 cm−1 we found the RMS
= 3.656 cm−1. The analytical representation of the PES is
available from the authors upon request.

III. FEATURES OF THE POTENTIAL ENERGY
SURFACE

The global minimum (De = −195.20 cm−1) of the 4D
PES corresponds to a linear geometry of the HCN–H2 com-
plex with θ = 0◦, θ ′ = 0◦ or 180◦, and R = 7.20 a0. A sec-
ondary minimum of −183.59 cm−1 is found for the T-shape
configuration associated with θ ′ = 90◦, θ = 180◦, and R
= 7.75 a0. This finding is in good agreement with the ex-
perimental one of Moore et al.22 which concludes that linear
HCN–H2 is the most stable geometry of the complex.

The contour plots in Figs. 3 and 4 show the anisotropy
of the interaction with respect to the HCN and H2 rotation. In
Fig. 3, we present the anisotropy of the potential as a function
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FIG. 3. Contour plot of the PES for θ = 0◦. Contour lines are equally spaced
by 20 cm−1. Red contour lines represent the repulsive interaction energies.

of θ ′ for fixed values of θ and ϕ. As one can see, there is rel-
atively strong anisotropy of the PES with respect to the θ ′ Ja-
cobi angle. Figure 4 shows the interaction energies for ϕ = 0◦

with R relaxing in the range [7.0, 8.0] a0. Here again, we
found a relatively strong anisotropy of the PES with respect to
these two Jacobi angles. Therefore, we can anticipate that ro-
tational state of H2 will significantly influence the magnitude
of the HCN excitation cross sections.

In Fig. 4, we can see the secondary minimum associated
with the T-shape configuration (with the H of HCN pointing
to the center of mass of H2) which is only 11.61 cm−1 above
the global minimum. Then, we expect this configuration of
the HCN–H2 complex to be almost equally important for the
dynamics of the system.

The analysis of the PES features may be supplemented
by taking advantage of the H exchange symmetry of the H2

molecule and averaging our PES over the para and ortho rota-
tional wave function of H2 such as

Vav = 〈Y ∗
j1,k

(θ ′, ϕ)|V (R, θ ′, θ, ϕ)|Yj1,k(θ ′, ϕ)〉, (8)

where j1 denotes the rotational angular momentum of
H2. The projection of j1 on the intermolecular axis is k.
This integral was evaluated numerically, using a Gauss-
Chebyshev quadrature of 20 points for the integration
over ϕ and a Gauss-Legendre quadrature with 10 points
over θ ′.

Figure 5(a) shows the contour plot for the averaged po-
tential over para-H2(j1 = 0). The most stable configuration

FIG. 4. Contour plot of the PES for ϕ = 0◦ and R relax in the range [7.0, 8.0]
a0. Contour lines are equally spaced by 10 cm−1. Red contour lines represent
the repulsive interaction energies.

FIG. 5. Contour plot of the average PES over the rotational wave function
of H2. (a) corresponds to the average over (j1 = 0, k = 0); (b) corresponds to
the average over (j1 = 1, k = 0); (c) corresponds to the average over (j1 = 1,
k = ±1). Contour lines are equally spaced by 5 cm−1. Red contour lines
represent the repulsive interaction energies.

of the complex is obtained for the linear configuration of
HCN–H2 and for an intermolecular separation of 8.14 a0. This
surface can be compared with the approximate PES of Ben
Abdallah et al.19 Our averaged surface, with a minimum of
−79.23 cm−1, is 8.46 cm−1 deeper than the one presented
by Abdallah et al.19 while the secondary minimums obtained
in both cases for a value of θ close to 60◦, differ only by
1.1 cm−1. But the most interesting result is that they found
the most stable configuration for θ = 164◦ while we ob-
tained it for a linear configuration of HCN in agreement with
the conclusions of the experiments of Ishiguro et al.20 These
differences result from the fact that they averaged over ϕ and
θ ′ using only three different angular configurations of the
complex.

In the ortho-H2(j1 = 1) case, the wave function can
be (j1 = 1, k = 0) or (j1 = 1, k = ±1). We plotted the
two corresponding averaged potentials in Figs. 5(b) and 5(c).
These averaged potential are deeper than the one obtained for
para-H2. In both cases, the minimum corresponds to a linear
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configuration of the complex, but with θ = 0◦ or 180◦. These
two configurations of the HCN–ortho-H2 complex are corre-
sponding to the H atom and to the N atom of HCN pointing
towards H2, respectively, while experimental observations of
Moore et al.21, 22 lead to a linear configuration of the complex
with the H atom of HCN pointing towards H2.

Then, in order to understand the nature of interactions in
HCN–H2 system, we have performed analytical calculations
of interaction energy based on multipolar expansion. In the
framework of the long-range approximation,35 the potential
energy of two interacting systems can be written as

V = Eelec + Eind + Edisp, (9)

where Eelec, Eind, and Edisp are the electrostatic, induction, and
dispersion contributions to the total interaction energy of the
complex. For interacting HCN and H2 molecules, the electro-
static, induction, and dispersion terms from R−4 through the
order of R−8 are

Eelec = −1

3
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TABLE I. Molecular properties of monomers HCN and H2 calculated at
CCSD(T)/aV5Z level of theory using finite-field method. Literature values
are in parenthesis. All values are in a.u.

Param. Definition HCNa H2

μz Dipole moment − 1.188 (−1.180b) 0
�zz Quadrupole moment 1.703 (1.646b) 0.4823
�zzz Octupole moment − 9.822 (−9.762b) 0
�zzzz Hexadecapole moment 23.274 (22.45b) 0.3177
�zzzzz 5th-order multipole moment − 110.120 0

zzzzzz 6th-order multipole moment 352.377 0.1702
αxx Dipole polarizability 13.933 4.7284
αzz 22.248 6.7168
Az, zz Dipole-quadrupole polarizability − 11.714 0
Ax, zx − 1.489 0
Ex, xxx Dipole-octupole polarizability − 34.229 − 1.7800
Ez, zzz 100.156 4.4462
Cxx, xx Quadrupole polarizability 33.996 4.8331
Cxz, xz 39.886 4.4469
Czz, zz 67.184 6.3610

aProperties were calculated with respect to the origin at the center of mass with N atom
along the positive direction of z axis.
bTheoretical values by Maroulis and Pouchan.40

where α = (αxx + αyy + αzz)/3 is a mean polarizability.
Superscripts A and B denote molecules HCN and H2, re-
spectively. In the present work, we adopted the tensor no-
tations of Buckingham.35 Definition of multipole moments
and polarizabilities is presented in Table I. Tensor Tαβγ . . . ν

= ∇α∇β∇γ . . . ∇νR−1 is the symmetric tensor relative to
the permutation of any pair of subscripts. The tensor T of
rank n, T (n), is proportional to R−(n+1). There is a summa-
tion over repeated indexes. Expression (12) was obtained in
“constant-ratio” approximation,36 which allows to evaluate
dispersion contribution through static properties of subsys-
tems and isotropic C0

6 dispersion coefficient. One should note,
that all properties in Eqs. (10)–(12) are represented in the co-
ordinate system of the complex.

The values of multipole moments and polarizabilities
used in analytical calculations are presented in Table I.
These values were calculated in the coordinate system of
monomers at the CCSD(T)/aV5Z level of theory using finite-
field method of Cohen and Roothaan37 since it was not possi-
ble to compute them at the CCSD(T)-F12 level. The isotropic
dispersion coefficient C0

6 = 34.148 Eha
6
0 was calculated at the

CCSD PROPAGATOR method38 using the Molpro routine.39

In Fig. 6, we present the major contributions to the in-
teraction energy in long-range approximation for the equilib-
rium configuration of HCN–H2 complex. One can see that the
electrostatic interactions are dominant for this complex. The
leading electrostatic term is the H2 quadrupole–HCN dipole
interaction proportional to �μR−4; the H2 quadrupole–HCN
quadrupole and H2 quadrupole–HCN octupole interactions
proportional to ��R−5 and ��R−6, compensate each other.
The other contributions are relatively small and do not con-
tribute much to the behavior of the long range PES.

Figure 7 shows the curves of the interaction energy for
different orientations of monomers at long-range separations.
There is a good agreement between the CCSD(T)-F12a re-
sults and analytical calculations for R > 13 a0, which confirms
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FIG. 6. Different contributions to the interaction energy of HCN–H2 sys-
tem for equilibrium configuration with θ = 0◦ and θ ′ = 0◦. Energy is in
cm−1. Solid black line – CCSD(T)-F12a calculations; dashed black line – to-
tal interaction energy in long-range approximation; solid color lines – major
contributions to interaction energy from Eqs. (10) to (12).

that both analytical and ab initio calculations have a correct
physical behavior. This also means that the present PES can
be used with confidence to describe cold molecular collisions.

IV. BOUND STATES CALCULATIONS

We used a close coupling approach to compute the rovi-
brational energy levels of the HCN–H2 complex. As described
in a previous study,41, 42 we implemented the bound state
calculations in our diatom-diatom Close Coupling scattering
code according to the approach proposed by Danby43 and
Hutson44 for the R-matrix and log-derivative propagators, re-
spectively. Recently, we used the same approach to calculate
the bound states of several diatom-diatom complexes.45, 46

Briefly, our code solves the rovibrationally inelastic
Close Coupling equations in the space fixed frame using the
Jacobi coordinates. The vibrational levels of the van der Waals
complex are calculated by performing calculations for all the

FIG. 7. Comparison of ab initio and analytical calculations of the PES for
fixed angular arrangements. Energy is in cm−1. Solid lines – CCSD(T)-F12a
calculations; dashed lines – analytical calculations.

values of the total angular momentum J and parity leading to
bound states.

In the present study, we performed the diatom-linear
molecule calculations using for both HCN and H2, a rigid
rotor description. The calculations were done separately for
ortho- and para-H2. We used the vibrationally averaged ro-
tational constants for both molecules (B = 59.322 cm−1 for
H2

47 and B = 1.47822 cm−1 for the HCN48).
The convergence of the bound levels of HCN–H2 com-

plex with respect to the HCN and H2 rotational basis was
tested. Twelve rotational states were included in the basis set
describing the HCN molecule while for para-H2 we included
two rotational states. In the case of HCN–ortho-H2, we also
included two rotational states for ortho-H2 and 13 for HCN.
The maximum propagation distance was 50 a0.

The calculations were performed for two values of the
propagator step size (0.1 and 0.05 a0) and the values of the
bound state energies were obtained from a Richardson extrap-
olation as suggested by Hutson.44

The results of the lower bound states calculations are pre-
sented in Tables II and III. The other energy levels are avail-
able in the supplementary material.49 The rovibrational ener-
gies are given relative to the ground state energy of infinitely
separated HCN and para-H2. The spacing between the levels
j1 = 0 and j1 = 2 in the para form and between the j1 = 1 and
j1 = 3 levels in the ortho form are larger than the well depth
of the potential. Consequently, all the HCN–para-H2 bound
states are associated with j1 = 0 while those of HCN–ortho-
H2 involve only j1 = 1. For ortho-H2, the quantum number
associated with the angular momentum j12 = j1 + j2, where
j2 designates the HCN rotational state and is also necessary to
classify the levels as j1 is non-zero.

In Table II, we report, for the HCN–para-H2 complex, the
energy, the total angular momentum J, and the parity ε (where
ε = (−1)j1+j2+L) of the lower bound levels (E < 20 cm−1).
We also assign the approximate quantum number j2 and the
orbital quantum number L. In Table III, we report the same

TABLE II. Lower bound levels (E < 20 cm−1) of the HCN–para-H2 van der
Waals complex. The approximate quantum numbers j2 and L are also given.

Energy Energy
State State

J ε (j2, L) (cm−1) J ε (j2, L) (cm−1)

0 + (0,0) −37.79 2 − (1,0) −27.89
0 + (1,1) −31.46 2 − (2,1) −24.03
0 + (2,2) −23.87 3 − (0,3) −33.16
1 − (0,1) −37.00 3 − (1,2) −26.90
1 − (1,0) −31.27 3 − (1,4) −24.63
1 − (1,2) −29.09 3 − (2,1) −21.92
1 − (2,1) −25.39 3 + (1,3) −24.69
1 − (2,3) −20.68 3 + (2,2) −21.81
1 + (1,1) −30.08 4 + (0,4) −30.14
1 + (2,2) −23.28 4 + (1,3) −22.95
2 + (0,2) −35.45 4 + (1,5) −22.19
2 + (1,1) −29.69 4 − (1,4) −20.63
2 + (1,3) −26.30 5 + (0,5) −26.40
2 + (2,0) −25.51 6 + (0,6) −21.97
2 + (2,2) −22.08
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TABLE III. Lower bound levels (E < 77 cm−1) of the HCN–ortho-H2 van
der Waals complex. The approximate quantum numbers j2, j12 and L are also
given.

Energy Energy
State State

J ε (j2, j12, L) (cm−1) J ε (j2, j12, L) (cm−1)

0 + (0,1,1) 58.38 2 − (2,2,2) 72.97
0 + (1,2,2) 68.60 3 − (0,1,2) 63.48
0 + (2,3,3) 75.26 3 − (1,2,1) 67.74
1 − (0,1,2) 59.24 3 − (1,2,5) 69.42
1 − (1,1,1) 63.95 3 − (2,1,2) 74.41
1 − (1,2,1) 65.30 3 − (2,3,4) 76.65
1 − (2,2,2) 70.11 3 + (1,1,2) 67.91
1 − (2,3,2) 74.00 3 + (1,1,4) 70.33
1 + (1,1,0) 63.93 3 + (2,2,1) 75.85
1 + (1,1,2) 65.63 4 + (0,1,3) 66.83
1 + (2,3,3) 76.52 4 + (1,2,2) 70.61
2 + (0,1,1) 60.94 4 + (1,2,6) 73.03
2 + (1,2,0) 65.56 4 − (1,2,3) 70.94
2 + (1,1,2) 66.76 4 − (2,2,2) 74.22
2 + (2,2,1) 72.46 5 − (0,1,4) 70.97
2 + (3,4,2) 73.03 5 − (1,2,3) 74.25
2 + (3,4,4) 74.93 5 + (1,1,4) 74.69
2 − (1,1,1) 65.58 6 + (0,1,5) 75.88
2 − (1,1,3) 67.45

information for the lower bound levels (E < 77 cm−1) of the
the HCN–ortho-H2 complex. In addition, we also assign the
approximate quantum number j12. This attribution allowed us
to determine the transitions of the system in the ground state
of HCN and to compare them with the experimental results.

The maximum value of the total angular momentum J
leading to bound states is 9 for HCN–para-H2 and 11 for
HCN–ortho-H2. The total number of bound states supported
by our PES is 101 for HCN–para-H2 and 330 for HCN–ortho-
H2. There are around three times more states for the ortho
form than for the para form. This is related to the fact that
with j1 = 0, a single value of j12 is possible for any given value
of j2 , while with j1 = 1, three values of j12 are obtained. A
similar ratio between the number of ortho and para states was
observed previously for the H2–O2 complex.45 The dissocia-
tion energies of the ground states of the para and ortho species
are 37.79 cm−1 and 60.26 cm−1, respectively. These values
are at least more than 4 times the dissociation energy found
for the HCN–He complex (8.986 cm−1)14 confirming that van
der Waals complexes are generally more bonded with H2 than
with He. A comparison with the result of the bound levels cal-
culations for the isoelectronic CO–H2 complex,47 also shows
a smaller dissociation energy for the para-H2 complex than
for the ortho-H2 complex. However, the HCN–H2 complexes
have a larger dissociation energy than the complex CO–H2

(23.7 cm−1 for CO–para-H2 and 30.8 cm−1 for CO–ortho-
H2), as we expected given the difference between the wells
depths of these two surfaces.

The bound state energies were used to determine the
transitions frequencies in the HCN–H2 van der Waals com-
plex. In the frequencies calculations, we considered HCN in
its ground rotational state. These transitions are compared in
Table IV with the spectroscopic data available published by

TABLE IV. Comparison of observed and calculated transition frequencies
in MHz.

Transition
Frequencies

J′–J′ ′ Calculated Observed % difference

HCN–para-H2

1–0 23 649 23 665a 0.07
3–2 68 823 69 155b 0.48
4–3 90 616 90 933b 0.35
5–4 112 040 112 149b 0.10
6–5 133 024 133 575b 0.41

HCN–ortho-H2

1–0 25 723 25 768a 0.18
3–2 76 103 76 209b 0.14
4–3 100 446 100 590b 0.14
5–4 124 179 124 370b 0.15
6–5 147 368 147 614b 0.17

aAverage of hyperfine components from Ref. 23.
bAverage of hyperfine components from Ref. 20.

Ishiguro et al.20, 23 These authors reported several lines includ-
ing the splitting into several hyperfine components due to the
spin angular momentum of the nitrogen nucleus (I = 1). As
our calculations do not include the hyperfine structure and be-
cause the spin splitting is very small in comparison with the
spacings of the rotational lines, we compare our results with
those of Ishiguro et al.20, 23 averaged over the hyperfine com-
ponents. The agreement between our results and experimental
ones is better than 0.5% in all cases. It confirms the accuracy
of the new HCN–H2 PES.

V. CONCLUSION

We have developed a new 4D analytical PES for the
HCN–H2 van der Waals complex based on a large grid of
ab initio points obtained at CCSD(T)-F12a level and using
an aVTZ basis set. The equilibrium structure of the HCN–
H2 complex was found to be linear with the nitrogen pointing
towards H2. The corresponding well depth is 195.20 cm−1.
We found a secondary minimum only 11.61 cm−1 above the
global minimum in which the H atom of HCN is pointing to-
wards the center of mass of H2.

As a first application, the rovibrational bound states were
computed within the rigid-rotor approximation. The total
number of bound states supported by our PES is 101 for
HCN–para-H2 and 330 for HCN–ortho-H2. The dissociation
energies of the ground states of the para and ortho species
are 37.79 cm−1 and 60.26 cm−1, respectively. The calculated
transitions frequencies are found to be in very good agreement
with the experimental available data. This level of agreement
suggests that our PES is accurate enough for computing accu-
rate inelastic cross sections.

Finally, the present PES was also compared with the
previous existing models. The differences which were found
and taking into account the astrophysical importance of this
molecule give a supplementary interest to new Close Cou-
pling calculations of the inelastic cross sections which will be
performed using this new surface. In particular, inelastic cross
sections and rate coefficients will be provided for the first time



4.2 Publication 54

224301-8 Denis-Alpizar et al. J. Chem. Phys. 139, 224301 (2013)

for the ortho-H2 collisional partner. These results will be very
valuable for the astrophysical modeling of “hot environment”
where ortho-H2 is abundant.
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5.1 Introduction to the study

5.1.1 Background

Several triatomic molecules detected in the ISM have bending frequen-

cies [34] small enough to expect that the coupling between the internal

vibrational bending motion and the intermolecular motions should be taken

into account in the studies of the collisional dynamics. Furthermore, transi-

tions involving different rovibrational levels have recently been detected [20]
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in the ISM. For these reasons, we decided to study the collision of He with

two molecules often observed in the ISM, namely HCN and C3, and to

include the coupling of the lowest frequency vibrational mode with the in-

termolecular motion. When this work was started there was few examples

of such study. Let’s mention the pioneering works of Clary [24, 25], using

the IOS approximation, and later, Lan et al [86]. Recently, the group of

Dagdigian and Alexander [31, 32] computed the bending wave function of

the non-linear triatomic system CH2, averaged the interaction potential over

the bending motion and did the calculation of the collision with He. In our

first paper dedicated to the He-HCN collision, we developed a similar ap-

proach which we called rigid bender average approximation (RBAA). This

method is detailed below. In the rigid bender approximation, a triatomic

molecule is a 1D vibrational system: the bond lengths are fixed while the

bending motion is allowed. The main differences between the previous two

studies is that the equilibrium geometry of CH2 is a symmetric top and

its bending frequency is 963 cm−1 [34] while HCN is linear at equilibrium

and its bending frequency is 712 cm−1 [33]. The coupling between rotation

and bending in a linear molecule leads to l-doubling. Indeed, l-type tran-

sitions are observed in the ISM for the HCN molecule [35]. It appeared

then necessary to check the reliability of the RBAA method for describing

these transitions between almost degenerate levels by comparing with the

results of a more accurate method taking into account exactly the coupling

between the collisional motion and the bending motion. We developed such

a method using the rigid bender approximation within the close coupling

framework (RB-CC). This new method is presented below.

5.1.2 Rigid bender HCN molecule

The first step in the theoretical treatment of the collisions of He with rigid

bender HCN is to determine the bending energies and wave functions of

the triatomic molecule. The use of the rigid bender approximation requires

using internal coordinates which were very popular in the eighties. Dif-

ferent Hamiltonians in internal coordinates were proposed at that time for

different kind of triatomic systems [87, 88]. All these Hamiltonians have

no singularities for linear geometries and can then be used to treat linear

molecules. In our first work dedicated to HCN we neglected the coupling

between bending and rotation and calculated separately the bending ener-
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Figure 5.1: Potential energy of the rigid bender model for the HCN
molecule.

gies and wave functions of HCN for j=0. For non zero values of j we simply

added the linear rotational energies and used the same bending functions.

Within this approach, for j=0, we used a rigid bender restriction of the

Hamiltonian developed by Carter and Handy [87] and written in terms of

the two bond lengths and the bending angle. For the HCN molecule, the

stretching frequencies are quite larger than the bending one. Thus the rigid

bender approximation can be safely applied as long as we consider only

vibrational transitions with an energy smaller than the first excited stretch-

ing level. For j=0, the total Hamiltonian of the triatomic molecule can be

expressed as

H = HV + V (γ), (5.1)

where HV is the kinetic part of the Hamiltonian and V(γ) is the potential

which is a function of the bending angle γ.

An analytical form of this potential is obtained from its expansion in

Legendre polynomials, V (γ) =
3∑

n=0

CnPn(cos γ). This potential, shown in

Fig. 5.1, was fitted from a grid of 22 ab-initio points computed at the

CCSD(T) level using an aug-cc-pVQZ basis set.

The diagonalization of the rigid bender Hamiltonian for j = 0 in a

Legendre polynomials basis set gives the energies εn and the wave functions

χn(γ) which are then used to perform the rigid bender average calculations

as detailed below.
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In our second paper dedicated to HCN, the coupling between rotation

and bending was treated exactly within the rigid bender approximation

using the Hamiltonian developed by Sutcliffe and Tennyson [89, 90]. This

Hamiltonian is written

H = H
(1)
V +H

(2)
V +H

(1)
V R + V (γ). (5.2)

The two first terms are two contributions to the kinetic energy which are

independent of the rotation and HRV is the rovibrational term. The bending

part of the wave function is expended in normalised associated Legendre

polynomials χν =
∑
n

Cν
nP̄

K
n (cos γ) while the rotational part is expected to

be well described by an asymmetric top wave function,
∑
K̄≥0)

Apk|jK̄M, p〉 for

any bent configuration, where j is the total angular momentum of HCN, and

K and M are its projections along the BF z′-axis and SF z-axis, respectively.

K̄ is the absolute value of K. In order to dispose of wave functions of a

given parity, one uses the symmetrised basis set proposed by Sutcliffe and

Tennyson [90]

|jnK̄M, p〉 = P̄K
n (cos γ)|jK̄M〉+ (−1)pP̄−Kn (cos γ)|j − K̄M〉, (5.3)

where p takes the values 0 or 1 for K 6= 0, and can only be equal to zero

for K = 0. As the action of the parity operator on a symmetric top wave

function is Π|jK̄M〉 = (−1)K̄ |j − K̄M〉, one obtains, using the property

P̄ K̄
n (cos γ) = (−1)K̄P̄−K̄n (cos γ), that the total parity of the state |jnK̄M, p〉

is (-1)j+p. This basis set allows to derive the analytical matrix elements of

the Hamiltonian. From the diagonalisation of the Hamiltonian, we obtain

for each value of j and p, the rovibrational energies εpνj and the correspond-

ing wave functions which can be written as (in the second paper, there is a

misprint in equation 17),

χνpjM(γ) =
∑

K̄≥0

Γνp
j,K̄

(γ)
√

2(1 + δK̄0)

[
|jK̄M〉+ (−1)p+K̄ |j − K̄M〉

]
, (5.4)

where Γνp
j,K̄

(γ) =
∑
n≥K̄

Cνjp

nK̄
P̄ K̄
n (cos γ). For K > 0, the coupling between

rotation and bending results into the splitting of each level in two non

degenerate components. This splitting is called l-doubling.
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5.1.3 Rigid bender close coupling equations

The Schrödinger equation for the collision of HCN with He can be written

[
− ~2

2µR

∂2

∂R2
+

L2

2µR2
+HHCN + Vint(R, γ, θ, ϕ)

]
ψ = Etotψ, (5.5)

where µ is the collisional reduced mass, L2 is the relative angular momen-

tum, HHCN is the Hamiltonian of the isolated HCN molecule, and Vint is

the interaction potential between the atom and the rigid bender molecule.

This potential depends on the bending angle γ, the distance R from the

center of mass of HCN to the He atom, the angle ϕ of rotation around the

axis defined by the H atom and the center of mass of CN, and the angle θ

between the latter axis and the axis defined by the He atom and the center

of mass of HCN as can be seen in Fig. 5.2 We developed two different meth-

ods to solve this equation respectively presented in the two following joined

publications. In the first approach called rigid bender averaged approxima-

tion (RBAA), the rotation is decoupled from the bending motion and the
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equation 5.5 is solved using the PES averaged over the bending motion:

Vave(R, θ) = 〈χn|Vint(R, θ, ϕ = 0◦, γ)|χm〉. (5.6)

The problem becomes formally equivalent to the one of an atom colliding

with a rovibrating linear molecule, the vibration of the molecule being in

fact its bending vibration. The averaging of the potential can be done

either using the rigid bender wave functions of the j=0 Hamiltonian or

those of the Hamiltonian 5.1. In the first case, the rovibrational energies

used for the dynamics are the bending energies added of the rotational

energy Eνj = Bj(j + 1) + εν where B is the rotational constant of the

rigid linear HCN. In the second case, we use the rovibrational energies εpνj
obtained from the diagonalisation of the Hamiltonian 5.2.

Within the second approach called the rigid bender close coupling ap-

proach (RB-CC), equation 5.5 is solved exactly within the rigid bender

approximation. The angular basis set used to expand the wave functions of

equation 5.5 in the space fixed coordinates can be written as

|νjlpJM〉 =
∑
mj

∑
ml

√
2J+1

4π
〈jmjlml|JM〉Y ml

l (R̂)
∑
K̄≥0

Γνp
j,K̄

(γ)√
2(1+δK̄0)

×
[
Dj∗
mj ,K̄

(φRHCN , θRHCN , 0) + (−1)p+K̄Dj∗
mj ,−K̄(φRHCN , θRHCN , 0)

] (5.7)

In this expression, we coupled the HCN total angular quantum number j

with the relative momentum l to get angular wave functions for given values

of the total angular momentum J and of the parity ε = (−)j+l+p.

The resulting Close Coupling equations presented in the second joined

paper as well as those of the RBAA approach were implemented in the Bor-

deaux scattering code Newmat. The use of these two methods to calculate

bound states of the complex using the method presented in section 2.4 was

also included.

In the first joined paper, we determined the bound levels of the complex

in the rigid monomer approximation (RMA), in which HCN is treated as

a rigid linear molecule and we compared the results with those obtained

when using the RBAA method. The energies obtained at the RBAA level

are found to be systematically above those obtained using the RMA. This

can be understood by reminding that the minimum of the PES is associated

with the linear configuration of HCN as can be seen in Figure 5.1 while in the
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Figure 5.3: Rate coefficient for the collision of HCN with He for 4 ≤ T ≤
100 K. The initial and final states are indicated as (ν0, j0)→ (νf , jf ).

RBAA we averaged over the bending angles and then included contributions

from less attractive parts of the PES. Using these bound level energies,

we determined the transitions frequencies and compared them with the

experimental data available for this system. The RBAA method was found

to give a slightly better agreement with experiment than the RMA.

In the same paper, the cross section for several rovibrational transi-

tions were also computed using this RBAA and RMA approaches. The

very similar curves representing the cross section obtained show that the

RMA approach is quite satisfactory for the computation of pure rotational

transitions of the HCN molecule. In the second paper, the cross sections

for several rovibrational transitions were computed also using this RB-CC

approach. A comparison of the RMA, RBAA and RB-CC results shows

that the pure rotational transition in the ground vibrational level can be

accurately studied at the RMA level while the transitions involving different

vibrational levels should be studied using the RB-CC method as the RBAA

fails to give an accurate estimate of the magnitude of these cross sections.

In Figure 5.3, we present the rate coefficient for several transitions between

4 ≤ T ≤ 100 K. We included the l-doubling transition ν = 2 → ν = 1 for

j = 1. The cross section used for determine these rate coefficient were cal-

culated at the RB-CC level. We found that the rate coefficients associated
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with the l-doubling transitions are of the same order of magnitude than the

pure rotational transitions in the ground vibrational state in this domain of

temperature.

Before concluding this summary, it is worth mentioning that the z′′-axis

which is used in the calculations of the HCN rovibrational wave functions

differs by an angle α from the z-axis used to define the θ angle for the dynam-

ics (see Fig 5.2). This change of axis was called dynamic axis switching by

Band and Freed in their study of photodissociation of linear molecule [91].

In the present work, we have taken α = 0 which is valid only for the linear

configuration of HCN. When we average over the bending angle, as it is

done in the RBAA method, this identity is verified on the average. How-

ever at any given instantaneous displacement from linearity the axis system

differs slightly by the angle α.

α(γ) = arctan




sin γ√
1 +

(
CGCN
CH

)2

− 2CGCN
CH

cos γ


 , (5.8)

For γ in the interval [120,180]◦, this function is well approximated by

the linear law α = 0.64 [180− γ]. This means that the value of α which is

zero for γ = 180◦ reaches a value of 12 degrees for γ = 160. As bending

vibration is generally small in amplitude in the lowest bending states the

previous neglect seems to be a reasonable approximation if we consider the

lower bending states of a triatomic molecule which equilibrium geometry is

linear.

5.2 Publications



5.2 Publications 63

THE JOURNAL OF CHEMICAL PHYSICS 139, 034304 (2013)

The interaction of He with vibrating HCN: Potential energy surface,
bound states, and rotationally inelastic cross sections

Otoniel Denis-Alpizar,1,2 Thierry Stoecklin,1,a) Philippe Halvick,1,b) and Marie-Lise
Dubernet3,4

1Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
2Departamento de Física, Universidad de Matanzas, Matanzas 40100, Cuba
3Université Pierre et Marie Curie, LPMAA, UMR CNRS 7092, 75252 Paris, France
4Observatoire de Paris, LUTH, UMR CNRS 8102, 92195 Meudon, France

(Received 13 April 2013; accepted 24 June 2013; published online 16 July 2013)

A four-dimensional potential energy surface representing the interaction between He and hydrogen
cyanide (HCN) subjected to bending vibrational motion is presented. Ab initio calculations were car-
ried out at the coupled-cluster level with single and double excitations and a perturbative treatment
of triple excitations, using a quadruple-zeta basis set and mid-bond functions. The global minimum
is found in the linear He-HCN configuration with the H atom pointing towards helium at the in-
termolecular separation of 7.94 a0. The corresponding well depth is 30.35 cm−1. First, the quality
of the new potential has been tested by performing two comparisons with previous theoretical and
experimental works. (i) The rovibrational energy levels of the He-HCN complex for a rigid linear
configuration of the HCN molecule have been calculated. The dissociation energy is 8.99 cm−1,
which is slightly smaller than the semi-empirical value of 9.42 cm−1. The transitions frequencies
are found to be in good agreement with the experimental data. (ii) We performed close coupling
calculations of the rotational de-excitation of rigid linear HCN in collision with He and observed a
close similarity with the theoretical data published in a recent study. Second, the effects of the vi-
brational bending of HCN have been investigated, both for the bound levels of the He-HCN system
and for the rotationally inelastic cross sections. This was performed with an approximate method
using the average of the interaction potential over the vibrational bending wavefunction. While this
improves slightly the comparison of calculated transitions frequencies with experiment, the cross
sections remain very close to those obtained with rigid linear HCN. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4813125]

I. INTRODUCTION

The rigid monomer approximation (RMA), where the
monomer’s geometry is assumed to be independent of the
dimer configuration, is commonly used to simulate the dy-
namics of systems governed by weak intermolecular inter-
action and where no breaking or formation of chemical
bonds takes place. The decoupling of intramonomer and inter-
monomer motions reduces the dimensionality and thus sim-
plifies greatly the calculation of the dynamics. Intermolecular
bound states or cross sections for low collision energies can
be calculated within this approximation. The quality of the ap-
proximation can be improved by using the average of the in-
tramonomer coordinates over the internal stretching motions.1

When the ratio of intramonomer over intermonomer vibra-
tional frequencies is large (about 100), the RMA is very re-
liable. This has been demonstrated2, 3 by the excellent agree-
ment between experiment and calculation of the infrared spec-
trum of the H2-CO complex. For the same system, a good
agreement has also been obtained between calculations and
the first low temperature experimental inelastic cross section.4

a)Electronic mail: thierry.stoecklin@u-bordeaux1.fr
b)Electronic mail: philippe.halvick@u-bordeaux1.fr

However, in the case of a triatomic (or larger) monomer, the
RMA can be questioned because the coupling between the
internal bending motion and the intermonomer motion may
not be negligible. Bending motion may have large amplitude
and low frequency, inducing a significant change of the elec-
tronic cloud, and consequently, a significant change of the in-
termolecular forces. While the RMA can be questioned for
very floppy monomer (e.g., C3), it is not known if this method
can be accurate for rigid or semi-rigid monomers with vibra-
tional bending mode.

Hydrogen cyanide (HCN) and isocyanide (HNC) are
among the most abundant organic molecules in the interstellar
medium. Owing to a large dipole moment, both molecules de-
cay fast in their rotational energy ladder. The rotational emis-
sion lines of HCN and HNC are considered to be a major
tracer of dense molecular gas (star-forming molecular clouds)
in luminous and ultraluminous infrared galaxies.5–8 Rotation-
ally excited HCN and HNC suggests an excitation mechanism
fast enough to counter the decay, such as frequent collisions
with He and H2 in dense clouds. Consequently, the estima-
tion of abundances of both isomers in the interstellar clouds
has motivated theoretical studies of the rotational excitation in
collisions with He9–12 and H2.13 In these studies, the HCN or
HNC molecule was always considered as a linear rigid rotor.

0021-9606/2013/139(3)/034304/7/$30.00 © 2013 AIP Publishing LLC139, 034304-1
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However, vibrational excitation of HCN has been ob-
served in the interstellar medium. The rotational transitions of
vibrationally excited HCN have been used to probe14 the dust
formation region around the carbon-rich star IRC +10216.
The high vibrational levels are populated by radiation and
by collision, owing to the high temperature, high gas den-
sity and high radiation flux prevailing in the circumstellar en-
velope. Vibrationally excited HCN in the ν2 = 1 state has
been also observed15 in the nucleus of the luminous infrared
galaxy NGC 4418. Most likely, the molecule is pumped to the
excited level by infrared radiation and returned to the vibra-
tional ground state with rotational excitation.16, 17 These ob-
servations suggest that the vibrational excitation of HCN, at
least in the bending motion, deserves to be considered in the
collision mechanisms.

The first studies dedicated to the rotational excitation of
rigid linear HCN (l-HCN) by collisions with He atoms were
based on the potential energy surface (PES) of Green and
Thaddeus.9 This primitive PES was obtained using the uni-
form electron gas model. Several new intermolecular poten-
tials were later published in the last 20 years for the l-HCN-
He system. Drucker et al.18 calculated one at the MP4 level
and reported the first theoretical determination of the high-
resolution microwave and millimeter spectrum. Later Atkins
and Hutson19 obtained two empirical PESs based on two dif-
ferent functional forms using the experimental data avail-
able. Toczyłowski et al.20 reported a theoretical PES calcu-
lated at the CCSD(T) level, hereafter denoted by S01, which
was found to describe correctly the internal-rotational band
measured by Drucker et al.18 and with a global minimum of
−29.90 cm−1. The most recent studies of the rotational excita-
tion of l-HCN by He done by Sarrasin et al.11 and Dumouchel
et al.12 used this last surface. The latest PES published for the
l-HCN-He system is a semi-empirical one by Harada et al.21,
denoted by S02, which was obtained by modifying the S01
surface in order to reproduce the experimental transitions fre-
quencies.

The present paper focuses on the development of a PES
describing the collision between He and HCN considered as
a rigid bender. The vibrational bending motion of HCN is
treated quantally while the CH and CN bond lengths are set to
constant values. As a first test of this new PES, we determined
the rovibrational energy levels of the l-HCN-He system and
compared it to the existing theoretical and experimental data.
We also computed the l-HCN-He inelastic cross sections and
compared it with the theoretical data of Sarrasin et al. In the
second part of this work, the effects of the vibrational bending
of HCN have been investigated by using an interaction poten-
tial averaged on the bending wavefunctions.22, 23 Again, we
calculated the energies of the rovibrational bound states and
the inelastic cross sections and we compared these last results
with the previous ones.

II. AB INITIO CALCULATIONS AND POTENTIAL
FUNCTIONAL FORM

The body-fixed coordinates used in this work are shown
in Fig. 1. R, θ , and ϕ are the intermonomer coordinates which
describe the relative positions of the HCN molecule and He

FIG. 1. Definition of the body-fixed coordinate system for the He-HCN sys-
tem. The planar configuration represented here corresponds to ϕ = 180◦. The
angle ϕ is not defined for γ or θ equal to 0◦ or 180◦.

atom, while γ is the intramonomer coordinate which de-
scribes the bending angle of HCN. R is the distance from the
center of mass of the HCN to the He atom. ϕ is the angle of
rotation around the axis defined by the H atom and the center
of mass of CN. θ is the angle between the latter axis and the
axis defined by the He atom and the center of mass of HCN.
The C–H and C–N rigid bond lengths have been set to the
experimental values24 (rCH = 2.0135 a0, rCN = 2.1792 a0) at
which we have added the corrections for the averaging over
the ground vibrational state.25 This results to rCH = 2.0286 a0

and rCN = 2.1874 a0.
The interaction potential of HCN with He has been calcu-

lated in the framework of the supermolecular approach with
the coupled-cluster method with single and double excitations
and a perturbative treatment of triple excitations (CCSD(T)).
The interaction energy was corrected at all geometries for the
basis set superposition error (BSSE) with the counterpoise
procedure of Boys and Bernardi.26 A comparison of the inter-
action energies calculated with basis sets27 of triple, quadru-
ple, and quintuple-zeta quality is shown in Table I, with or
without an additional set of bond functions28 centered at mid-
distance between the He atom and the HCN center of mass.
The interaction energy, calculated at a configuration close to
the equilibrium geometry, is quite stable in respect of the size
of the basis set and the use of bond functions. For the largest
basis set, it is safe to assume that the convergence of the one-
electron basis is close to the complete basis set limit. Consid-
ering the computational cost associated with the various basis
sets, we have chosen the quadruple zeta basis set with bond
functions.

TABLE I. CCSD(T) interaction energy of the l-HCN-He system at R = 7.97
a0 and θ = 0◦. The use of bond functions is denoted by +bf.

Basis set Energy (cm−1) Relative computational cost

aug-cc-pVTZ+bf −29.85 1
aug-cc-pVQZ −29.64 3.3
aug-cc-pVQZ+bf −30.34 6.2
aug-cc-pV5Z −30.28 21.5
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The interaction energy was computed over a dense four-
dimensional grid of points defined by the product of four one-
dimensional grids associated to a single coordinate. The radial
grid included 35 points ranging from 3.8 a0 to 20.8 a0. The
bending grid included 11 points between 180◦ and 110◦. The
angular grids were spaced uniformly in steps of 10◦ for θ and
30◦ for ϕ, both in the range [0◦,180◦]. The total number of
points was 43015. All calculations were carried out with the
MOLPRO package.29

The ab initio energies were fitted to a parameterized func-
tional form defined as a sum of a short-range and a long-range
contribution,

Vint (R, θ, ϕ, γ )

= S(R)
14∑
l=0

min (l,3)∑
m=0

F SR

lm(R, γ )P̄lm(θ ) cos (mϕ)

+(1 − S(R))
5∑

l=0

min (l,3)∑
m=0

F LR

lm (R, γ )P̄lm(θ ) cos (mϕ). (1)

Here, P̄lm are normalized associated Legendre polynomi-
als. F SR

lm , F LR

lm , and S are the short-range radial functions, the
long-range radial functions, and the switching function, re-
spectively,

F SR

lm(R, γ ) = e−αR

9∑
n=0

Rn

3∑
j=0

Clmnj P̄j (cos γ ), (2)

F LR

lm (R, γ ) =
8∑

k=6

tk(βR)

Rk

3∑
j=0

Dlmkj P̄j (cos γ ), (3)

S(R) = 1

2
[1 − tanh (A0(R − R0))], (4)

where P̄j are normalized Legendre polynomials and tk is the
Tang-Toennies damping function,

tk(x) = 1 − e−x

k∑
i=0

xi

i!
. (5)

The nonlinear parameters α, β, A0, and R0 were set to
the values α = 1.91 a0

−1, β = 1.06 a0
−1, A0 = 1.69 a0

−1,
and R0 = 10.58 a0. These values were determined by the trial
and error method. The linear parameters Clmnj and Dlmkj were
calculated with the weighted linear least squares method. On
each ab initio point, we applied a weight w depending both
on the interaction energy E and the angle γ ,

w = γ0

(τ − γ )2
min

(
1,

V0

|E|
)

, (6)

with V0 = 1000 cm−1, γ 0 = 100◦, and τ = 181◦.
Let us note that the ab initio grid is restricted to

γ ≥ 110◦. Indeed, the rigid bender approximation used for
HCN is expected to be reliable only for the ground and
the first excited bending states, and possibly for the second
excited state. Moreover, the potential energy of the HCN
molecule at γ = 120◦ is 7130 cm−1. This value is much larger

than the energy at which the rigid bender approximation re-
main reliable, if we remind that ω2 is slightly larger than 700
cm−1. Therefore, because there is no need to represent the in-
teraction energy for γ ≤ 120◦, this value is used as a cut-off
limit. Below this limit, the interaction energy is set equal to
its value at γ = 120◦.

The total PES is the sum of the interaction energy of the
He-HCN complex plus the one-dimensional bending energy
of the isolated HCN molecule. The latter was calculated with
the same ab initio method and same basis set which were used
for the former. The ab initio calculations have been performed
for a grid of 22 values of the bending angle γ in the range of
50◦–180◦, with the same C–H and C–N rigid bond lengths
as defined previously. These bending potential energies were
fitted to a linear combination of four Legendre polynomials.

III. BOUND STATES AND SCATTERING
CALCULATIONS

We used the close coupling method to calculate both the
rovibrational energy levels and the inelastic cross section of
the He-HCN system. The coupled equations needed for scat-
tering calculations are identical to those for bound states,
the only difference being the applied boundary conditions. In
this study we compare two approaches. In the first one, the
bending motion is completely neglected and we use only the
linear configuration of HCN and perform usual atom linear
molecule calculations using for HCN a rigid rotor description.
In the second one, we fix the value of ϕ to 0 as the potential
varies slowly as a function of this angle and we calculate for
each value of the intermolecular coordinate R used in the dy-
namics calculations the following expansion of the interaction
potential in a Legendre polynomial Pl(cos θ ) basis set along a
grid of the bending angle γ ,

Vint (R, θ, ϕ = 0, γ ) =
∑

l

Dl (R, γ ) Pl(cos θ ). (7)

We then calculate the rigid bender energies and wave-
functions of HCN in internal coordinates using the bending
potential of HCN described in Sec. II and the Hamiltonian of
Carter and Handy,30

HJ=0
RB = −¯

2

2

[
1

μ1R
2
1

+ 1

μ2R
2
2

] [
∂2

∂γ 2
+ cot γ

∂

∂γ

]

− ¯2

2MCR1R2

{[
∂2

∂γ 2
+ cot γ

∂

∂γ

]
cos γ

+ cos γ

[
∂2

∂γ 2
+ cot γ

∂

∂γ

]}

+
∑

l

ClPl (cos γ ) , (8)

where 1
μ1

= 1
MH

+ 1
MC

, 1
μ2

= 1
MC

+ 1
MN

, and R1 and R2 are re-
spectively the CH and CN bond lengths.

It may be confusing to compare this Hamiltonian with
the different Hamiltonians published at that time30–32 as some
other terms are present in some of the three references (some-
time with different signs) and are not in others. This is
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probably because the matrix elements of these missing terms
in a Legendre polynomial basis set do compensate each other.
The matrix elements of this rigid bender Hamiltonian in a
Legendre polynomial basis set are

〈Pl|HJ=0
RB |Pk〉 = ¯

2

2

[
1

μ1R
2
1

+ 1

μ2R
2
2

]
δkl

2l (l + 1)

(2l + 1)

− ¯2

2MCR1R2

[
2l3

>δk,l±1

(2l> + 1) (2l> − 1)

]

+2
∑

n

Cn

(
l n k

0 0 0

)2

, (9)

where l> = max(l,k). The diagonalisation of this matrix gives
the rigid bender energies εn and wave functions χn(γ ) as a
function of the bending angle for the HCN rotational angu-
lar momentum j = 0. We take the same bending wavefunc-
tions for all the values of j since the variation of the bending
wavefunctions as a function of j is expected to be weak, at
least when j is not too large. The wavefunctions describing
the HCN motion within this very simple approach are then the
product of a bending wavefunction by a spherical harmonics
describing the rotation. Consequently, the energies of HCN
are

Enj = BHCNj (j + 1) + εn. (10)

For each value of the intermolecular coordinate R consid-
ered in the course of the propagation, the coefficients calcu-
lated in (7) are then averaged over the bending wavefunctions,

〈χn |Vint (R, θ, ϕ = 0, γ )| χm〉

=
∑

l

[∫
dγ {χn (γ ) Dl (R, γ ) χn (γ )}

]
Pl(cos θ )

=
∑

l

D̃
n,m
l (R) Pl(cos θ ). (11)

The problem is now formally equivalent to an atom col-
liding with a fictitious vibrating diatomic molecule where the
vibration of the diatomic molecule is in fact the bending vi-
bration. Using this very simple approach denoted in the fol-
lowing Rigid Bender Averaged Approximation (RBAA), we
can obtain state to state cross sections for the transition be-
tween two different bending and rotational levels of HCN as
well as bending averaged energies for the He-HCN complex.
We use our NEWMAT code both for the scattering and the
bound states calculations. This is a close coupling code work-
ing in the spaced fixed frame which has been described in
some of our recent works.33, 34

The rotational basis set for HCN included 20 functions
and the rotational constant of HCN was set to its experimen-
tal value35 BHCN = 1.478 22 cm−1. The maximum propaga-
tion distance was 80 a0 and two values of the propagator step
size (0.05 a0 and 0.01 a0) were used for the bound state calcu-
lations. The final bound state energies of the He-HCN com-
plex were obtained from a Richardson extrapolation as rec-
ommended by Hutson.36
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FIG. 2. Contour plot of the PES for selected values of γ and for ϕ = 0◦.
Negative contour lines (blue) are equally spaced by 3 cm−1.

IV. RESULTS AND DISCUSSION

A. Potential energy surface

The functional form defined above allowed us to obtain
an accurate representation of the PES. The root mean square
(RMS) of the differences between the ab initio and the inter-
polated total potential energies E is 0.016 cm−1 for the ener-
gies E ≤ 0 cm−1 (E = 0 cm−1 corresponds to the infinite sepa-
ration of monomers). For 0 < E ≤ 1000 cm−1, the RMS of the
relative errors is below 1%, and for 1000 < E ≤ 3000 cm−1,
it is about 2%.

Contour plots of the interaction PES are shown in Fig. 2
for several values of the bending angle γ and for ϕ fixed at 0◦.
The selected values of γ are lying in the range assumed to be
spanned by the first excited vibrational function. We observe
that the bending of HCN has a visible effect in the bottom
of the potential well and in the repulsive short-range interac-
tion. The long-range part of the potential is hardly changed
by the bending. For γ = 180◦, the potential is, by definition,
isotropic versus ϕ. In the range 150◦ ≤ γ ≤ 180◦, the poten-
tial remains nearly isotropic in respect of ϕ (not shown here),
except in the short-range repulsive region. Contour plots for ϕ

= 180◦ are shown in Fig. 3. For the same value of γ , the com-
parison with the contour plots at ϕ = 0◦ shows a significant
change only for γ = 150◦ and R ≤ 7 a0.

The global minimum of the total PES has a depth of 30.35
cm−1 and a linear He-HCN configuration: γ = 180◦, θ = 0◦,
and R = 7.94 a0. It is 0.45 cm−1 deeper than for the S01 PES.
The latter was calculated with a triple-zeta basis set, while we
use here a quadruple-zeta one. The discrepancy observed in
the well depth is mainly a consequence of the basis set quality,
and this is confirmed by the data shown in Table I. The differ-
ence due to the different analytical representations is probably
not significant. Moreover, the present PES has a well depth of
only 0.15 cm−1 deeper than the one of the semi-empirical sur-
face S02, which is a S01 PES modified in order to improve the
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FIG. 3. Contour plot of the PES for selected values of γ and for ϕ = 180◦.
Negative contour lines (blue) are equally spaced by 3 cm−1.

agreement with the experimental millimeter-wave spectrum.
A secondary minimum with a depth of 22.08 cm−1 and a bent
configuration is found at γ = 180◦, θ = 110.4◦, and R = 6.78
a0. This secondary minimum is very similar to the global min-
imum of the He-CN PES.37 The FORTRAN 90 code of the PES
is available on request by electronic mail to the authors.

B. Bound states and spectrum

The bound levels calculated in the RMA and RBAA with
the present PES are collected in Table II. The approximate ro-
tational quantum number of HCN and orbital quantum num-
ber, j and l, respectively, are also reported in this table. The

TABLE II. Bound levels of the He-HCN van der Waals complex.

RMA RBAA S02aState

l J ε Energy (cm−1) Energy (cm−1) Energy (cm−1)

νs = 0, j = 0
0 0 + −8.986 −8.859 −9.420
1 1 − −8.463 −8.337 −8.890
2 2 + −7.434 −7.307 −7.845
3 3 − −5.928 −5.801 −6.318
4 4 + −3.992 −3.865 −4.358
5 5 − −1.676 −1.550 −2.021

νs = 0, j = 1
0 1 − −5.619 −5.515 −6.128
1 0 + −5.207 −5.097 −5.653

1 + −5.089 −4.986 −5.617
2 + −5.004 −4.905 −5.506

2 1 − −4.153 −4.046 −4.617
2 − −3.954 −3.855 −4.470
3 − −3.822 −3.730 −4.316

3 2 + −2.588 −2.485 −3.044
3 + −2.278 −2.186 −2.774
4 + −2.079 −1.998 −2.556

4 3 − −0.532 −0.435 −0.971
4 − −0.096 −0.013 −0.565
5 − . . . . . . −0.257

νs = 0, j = 2
0 2 + . . . . . . −0.367

νs = 1, j = 0
0 0 + −0.095 −0.072 −0.248
1 1 + . . . . . . −0.222

aReference 21.
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FIG. 4. Interaction energy between He and l-HCN calculated with the
present PES (solid lines) and with the S02 PES (dashed lines), for θ = 0◦
(black), θ = 90◦ (blue), and θ = 180◦ (red).

energies calculated using the RBAA are systematically above
those obtained using the RMA. This is not surprising as the
most attractive bending angle is associated with the linear
configuration of HCN. The maximum value of the total angu-
lar momentum J leading to bound states is 5 in both cases. The
potential well supports 19 bound levels and the dissociation
energy is 8.986 cm−1. Harada et al.21 obtained a larger disso-
ciation energy of 9.420 cm−1 using the S02 PES, which was
optimized in order to reproduce the experimental transitions
frequencies. All the bound state energies calculated by Harada
et al.21 are lower than those calculated in the present work by
about a half cm−1 and they obtained three more bound states.
A comparison between the PES presented in this work and
the S02 PES is shown in Fig. 4. While the depth of the global
potential well (θ = 0◦) is almost the same in both PES, the
S02 PES is deeper by more than 1 cm−1 for the other angular
configurations. This allows the bound levels of the S02 PES
to be slightly lower than those of the present PES.

The calculated transitions frequencies using the RMA
and RBAA approaches are compared in Table III with the
spectroscopic data available.18, 21 Harada et al.21 reported
most of the Q- and R-branch lines including the splitting into
several hyperfine components due to the spin angular momen-
tum of the nitrogen nucleus (I = 1). As our calculation do not
include the hyperfine structure and because the spin splitting
is very small in comparison with the spacings of the rotational
lines, we compare our results with those of Harada et al.21

averaged over the hyperfine components. The agreement be-
tween our results and experiment is quite good, with a dif-
ference of less than 3.2% in the RMA in all cases, with the
exception of the transition at 4604 MHz for which the error
is about 13%. This is however better than the (∼30%) error
obtained by Toczyłowski et al.20 for this line while Harada
et al.21 did not mention it. The agreement between our results
and experiment is even better when using the RBAA approach
as the maximum error is now less than 2.4% again with the ex-
ception of the transition at 4604 MHz for which the error is
about 18.6%. This is the only transition which for the error is
increased when using the RBAA.

The transition ( j = 1←0)R(4) reported by Harada et al.21

is missing in our comparison as it involves the upper state (j, l,
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TABLE III. Comparison of observed and calculated transition frequencies
in MHz.

RMA RBAA

Transition Observed Calculated % error Calculated % error

j = 1 ← 0
P(1) 97034a 97696 − 0.7 97198 0,2
P(2) 96756a 98411 − 1.7 97823 1,1
P(3) 98149a 100188 − 2.1 99477 1,4
P(4) 101559a 103801 − 2.2 102900 1,3
Q(1) 98132b 101236 − 3.2 100534 2,4
Q(2) 101191b 104373 − 3.1 103545 2,3
Q(3) 106244b 109482 − 3.0 108453 2,1
Q(4) 113737b 116863 − 2.7 115565 1,6
R(0) 98696b 101006 − 2.3 100328 1,7
R(1) 101432c 103782 − 2.3 102962 1,5
R(2) 105795c 108350 − 2.4 107295 1,4
R(3) 112782a 115460 − 2.4 114074 1,1
R(4) 122944a . . . . . . . . . . . .
j = 0 ← 0
R(0) 15894c 15674 1.4 15669 1,4
R(1) 31325c 30895 1.4 30892 1,4
j = 1 ← 1
R(2) 4604c 3976 13,6 3750 18,6

aReference 21.
bAverage of hyperfine components from Ref. 21.
cReference 18.

J) = (1,4,5) which was not found to be bound using our PES.
For each couple (j = 1,l = n) with n ≥ 1, there are three levels
(J = n−1,n,n+1) which are very close in energy. In the present
calculation, the states (1,4,3) and (1,4,4) have the energies
−0.532 and −0.096 cm−1, respectively. Consequently, it is
not possible for the third state (1,4,5), which is expected to be
lying about ∼0.4 cm−1 above the state (1,4,4), to be bound.
With a potential well deeper by about a half cm−1 or with a
slightly more attractive long range interaction or less repulsive
short-range interaction, the missing state (1,4,5) could appear
in the calculations.

C. Inelastic cross sections

The inelastic cross sections were first calculated in the
RMA in order to compare with the previous work.11 Figure 5
shows the de-excitation cross sections for the first rotational
levels. The shape, the positions, and the amplitudes of the res-
onances supported by the van der Waals well which appear on
this figure are accurate fingerprints of the PES used in the cal-
culations. We do not intend here to analyse the characteristics
of these resonances which are typical of van der Waals sys-
tems and have been discussed in detail for similar systems by
several authors.38 We simply compare our results with those
of Sarrasin et al.,11 obtained using the S01 PES. A very close
similarity is observed between the latter cross sections and the
ones presented in Fig. 5, indicating that the S01 PES and the
present PES, restricted to the rigid linear HCN configuration,
are very similar.

The propensity for even �j transitions which can be ob-
served in Fig. 5 was previously examined by Sarrasin et al.11

This is related to the shape of the interaction potential. The
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FIG. 5. Comparison of the rotational transition cross sections of HCN in
collisions with He calculated using the RMA and the RBAA approaches for
even �j (top panel) and for odd �j (bottom panel).

radial even Legendre expansion coefficients are significantly
larger than the odd ones.

Then we investigated the bending dependence of the
cross section with the present PES, by computing the same ro-
tational transitions using the RBAA approach. This approach
does not include exactly the coupling between vibration and
rotation which will be the object of a future work but allows
checking significant variations of the PES as a function of the
bending angle. These results are compared to those obtained
using the RMA approach. The elastic cross sections, which
are not represented, are almost unchanged. In Fig. 5, the in-
elastic cross sections for the |�j| = 2 transitions are also very
close for both approaches. But discrepancies can be observed
for the |�j| = 1 transitions below the collision energy of
1 cm−1. There, the RMA cross sections are two or three times
larger or smaller than the RBAA cross sections. Nevertheless,
we can conclude that the RMA approach is quite satisfactory
above 1 cm−1 to calculate rotational excitation cross sections
for a linear triatomic molecule like HCN whose bending vi-
bration frequency39 is relatively small (711.98 cm−1) but still
large compared to the rotational constant35 (1.47822 cm−1).

V. CONCLUSION

We presented the first theoretical study of the collision
of HCN with He including the bending vibration of HCN.
We calculated a four dimensional analytical representation of
the PES based on supermolecular ab initio calculations us-
ing a quadruple zeta basis set with mid-bond functions and
BSSE correction. The van der Waals well was found to be
30.35 cm−1 deep and associated with the linear configuration
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(He–HCN) while a secondary minimum with a depth of 22.08
cm−1, associated with a bent configuration, was also iden-
tified. Bound states calculations were performed using this
PES. The results are in good agreement with the available ex-
perimental data. We checked that the restriction of the dynam-
ics to the rigid linear configuration of HCN gives similar close
coupling inelastic cross section than the previous theoretical
works. We also presented a simple method (RBAA) of cal-
culation of the rotational close coupling cross section which
uses the average of the interaction potential over the bending
wave functions of HCN. We found that taking into account the
bending motion through the RBAA method does not change
significantly the rotational excitation cross sections, while the
agreement of the calculated bound state transition frequencies
with the experiment is marginally improved. This first study
shows in any case that the RMA approach is quite satisfac-
tory for the computation of rotational excitation cross sections
for a linear triatomic molecule like HCN. The same accuracy
could also be expected for other rigid or semi-rigid triatomic
(and larger) molecules discovered in the interstellar medium.
This finding is particularly useful if we consider the calcu-
lations of rotational transitions of polyatomic molecules in
collision with H2 which are very computationally demand-
ing. Nevertheless, this preliminary conclusion needs to be
confirmed by a comparison of the RMA approach with ac-
curate calculations using an Hamiltonian which includes the
exact vibrotational coupling. Efforts in that direction are in
progress.
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We present a new theoretical method to treat atom-rigid bender inelastic collisions at the Close
Coupling (RB-CC) level in the space fixed frame. The coupling between rotation and bending is
treated exactly within the rigid bender approximation and we obtain the cross section for the rota-
tional transition between levels belonging to different bending levels. The results of this approach
are compared with those obtained when using the rigid bender averaged approximation (RBAA)
introduced in our previous work dedicated to this system. We discuss the validity of this approxi-
mation and of the previous studies based on rigid linear HCN. We find that l-type transitions cross
sections have to be calculated at the RB-CC level for the He-HCN collision while pure rotational
transitions cross sections may be calculated accurately at the RBAA level. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4822296]

I. INTRODUCTION

Because of their importance to model the chemistry of
interstellar clouds, quantum inelastic scattering calculations
involving small polyatomic molecules are the subject of many
theoretical studies.1 However most of them are limited to the
use of the rigid rotor approximation as it is expected to be
a quite accurate approach to calculate rotational transitions
which are the most probable at the typical temperature of in-
terstellar clouds. This is the case of most available studies of
energy transfer collisions involving an atom and a linear2 or
bent triatomic molecule.3 The neglect of the vibrational mo-
tion relies on the fact that the vibrational frequencies are com-
monly quite large compared to the rotational ones. The va-
lidity of this approximation was recently confirmed at low
collision energy by the excellent agreement between exper-
iment and calculation obtained for the H2-CO inelastic cross
sections.4 However, several authors pointed out that infrared
transition among the molecular vibrational levels could sig-
nificantly increase the intensities of the rotational transitions
by populating the upper rotational levels.5 The question of the
validity of this approximation was then recently investigated
by the group of Alexander and Dagdigian for CH2.6 They cal-
culated the bending levels of CH2 and averaged the He-CH2

potential over the bending angle using these functions in order
to reduce the problem to a fictitious atom-rigid asymmetric
top molecule collision. In a recent paper,7 hereafter denoted
Paper I, we used a similar approach which we called Rigid
Bender Average Approximation (RBAA) for a collision in-
volving this time He and a linear molecule: HCN. This last
molecule and isocyanide (HNC) are among the most abun-

a)Author to whom correspondence should be addressed. Electronic mail:
t.stoecklin@ism.u-bordeaux1.fr

dant organic molecules in the interstellar medium. The aver-
aging over the bending angle of the intermolecular potential
reduced the calculation in our case to even simpler atom lin-
ear molecule calculations. The bending frequency of HCN is
about a factor of 2 smaller than that of CH2 suggesting that the
exact treatment of the coupling between rotation and bend-
ing may be more important for this molecule. Therefore, the
present study is dedicated to the development of a method in-
cluding exactly the coupling between bending and rotation for
a collision between an atom and a rigid bender. This study was
furthermore motivated by recent astrophysical measurements
of vibrationaly excited HCN8, 9 in the interstellar medium.
The authors assumed that the molecule is pumped to the ex-
cited bending level by infrared radiation and return to the
vibrational ground state with rotational excitation.10,5 What
makes the exact treatment even more necessary is the recent
detection of HCN l-type transitions in hot planetary nebula11

as it involves nearly degenerate levels. Such transitions can be
calculated using the RBAA approach but it seems important
to check if the results given by this approximation are reliable
by comparing with the exact results.

In Sec. II of the present paper we give the close cou-
pling equations for atom rigid bender collisions. In Sec. III,
we compare our results to those given by the RBAA approach
and for pure rotational transitions with atom-linear HCN close
coupling results.

II. METHOD

We use the set of coordinates illustrated in Fig. 1 which
was defined in Paper I dedicated to the calculation of the He-
HCN rigid bender potential energy surface and we first cal-
culate the bending levels of HCN alone for each value of its

0021-9606/2013/139(12)/124317/8/$30.00 © 2013 AIP Publishing LLC139, 124317-1
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rotational angular momentum. While the problem of calculat-
ing the rovibrational states of a triatomic molecule in internal
coordinates was solved long ago and can be performed using
the MORBID code of Jensen12 we decided to give here a short
overview of the corresponding equations which we coded as
the literature of that time is full of contradicting terms and
misprints.

A. Calculation of the HCN rigid bender energies
and wave functions in internal coordinates

We solve the variational problem using the rigid bender
Hamiltonian of Sutcliffe13 which for the Z molecular axis is
along the intramolecular coordinate between H and the cen-
ter of mass of CN. This effective Hamiltonian is obtained by
fixing the CH and CN distances to their equilibrium values in

the linear configuration of HCN:

H = [
K

(1)
V + K

(2)
V + KV R

] + V (γ ), (1)

where K
(1)
V and K

(2)
V are the contributions to the kinetic op-

erator which are independent of rotation while KV R is the
rotation-bending interaction term. The bending angle is de-
noted as γ and V(γ ) is the one-dimensional bending potential
of HCN reported in Paper I,

K
(1)
V =

[
−¯

2

2

(
1

μ1R
2
1

+ 1

μ2R
2
2

) ((
∂2

∂γ 2

)
+ cot γ

∂

∂γ

)]
,

(2)

K
(2)
V = ¯2

μ12R1R2

[
cos γ

((
∂2

∂γ 2

)
+ cot γ

∂

∂γ

)
+ sin γ

∂

∂γ

]
,

(3)

KV R = 1

2

[(
1

μ1R
2
1

)
cot2 γ +

(
1

μ2R
2
2

)
1

sin2 γ
− 2 cos γ

sin2 γ

(
1

μ12R1R2

)]
�̂2

Z

+
(

1

2μ1R
2
1

) [
�̂2

x + �̂2
y

] +
[(

1

2μ1R
2
1

)
cos γ

sin γ
−

(
1

2μ12R1R2

)
1

sin γ

]
[�̂X�̂Z + �̂Z�̂X]

+ ¯
i

{(
1

μ1R
2
1

)[
∂

∂γ
+ 1

2
cot γ

]
−

(
1

2μ12R1R2

)[
1

sin γ
+ 2 cos γ

∂

∂γ

]}
�̂Y , (4)

with 1
μ1

= 1
MC

+ 1
MN

, 1
μ2

= 1
MC

+ 1
MH

, μ12 = MC.

And where R1 and R2 are respectively the CN and CH interatomic distances while �̂x, �̂y, �̂z are the projection over the
molecule fixed axis of the rotational angular momentum of the HCN molecule.

We then follow Sutcliffe and Tennyson14 and first take the matrix elements of H in a symmetric top basis set |jKM〉
=

√
2J+1

4π
D

j∗
M,K (φRHCN

, θRHCN
, 0) where M and K are the projections of the rotational angular momentum j of HCN along the Z

space fixed axis and along the Z molecular fixed axis, respectively, and where (φRHCN
, θRHCN

) are the spherical coordinates of
the vector �RHCN joining H to the center of mass of CN in the space fixed frame:

〈jK ′M|KV R|jKM〉 = δK,K ′

[(
1

2μ1R
2
1

)
[j (j + 1) − 2K2] + K2

2

1

sin2 γ

[
1

μ1R
2
1

+ 1

μ2R
2
2

− 2 cos γ

μ12R1R2

]]

+ δK+1,K ′C+
jK

(
1

2μ1R
2
1

) [
− ∂

∂γ
+ K cot γ

]
+ δK−1,K ′C−

jK

(
1

2μ1R
2
1

) [
∂

∂γ
+ K cot γ

]

+ δK+1,K ′C+
jK

(
1

2μ12R1R2

) [
cos γ

(
∂

∂γ
− K cot γ

)
− K sin γ

]

+ δK−1,K ′C−
jK

(
1

2μ12R1R2

) [
− cos γ

(
∂

∂γ
+ K cot γ

)
− K sin γ

]
, (5)

with C±
JK = √

J (J + 1) − K(K ± 1).
The second term of this expression cancels some other terms appearing in KV

(1) + KV
(2). The terms remaining in KVR are

split into the two following expressions:

〈jK ′M|K (1)
V R|jKM〉 = δK,K ′

[(
¯2

2μ1R
2
1

)
[j (j + 1) − 2K2]

]

+ δK+1,K ′C+
jK

(
¯2

2μ1R
2
1

) [
− ∂

∂γ
+ K cot γ

]
+ δK−1,K ′C−

jK

(
¯2

2μ1R
2
1

) [
∂

∂γ
+ K cot γ

]
(6)
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and

〈jK ′M|K (2)
V R|jKM〉 =

(
¯2

2μ12R1R2

) [
δK+1,K ′C+

jK

[
cos γ

(
∂

∂γ
− K cot γ

)
− K sin γ

]

+ δK−1,K ′C−
jK

[
− cos γ

(
∂

∂γ
+ K cot γ

)
+ K sin γ

]]
. (7)

A normalized associated legendre polynomial basis set
P̃ k

l (cos γ ) as defined by Green15 is then used to describe the
bending vibration.

YK
l (γ, ϕ) = (−)KP̃ K

l (cos γ )eiKϕ,

and we obtain for the different terms of the Hamiltonian (1)
the following matrix elements:

〈jK ′M|P̃ K ′
l (cos γ )

∣∣K (1)
V

∣∣P̃ K
l (cos γ )|jKM〉

= ¯
2

2
δK,K ′δl,l′

[
1

μ1R
2
1

+ 1

μ2R
2
2

]
, (8)

〈jK ′M
∣∣P̃ K ′

l′ (cos γ )
∣∣K (2)

V |P̃ K
l (cos γ )|jKM〉

= −¯2

μ12R1R2
δK,K ′δl′,l±1

√
(l> + m)(l> − m)

(2l> + 1)(2l> − 1)

{
l2

(l + 1)2

}
.

(9)

In this last expression the top and the bottom terms en-
closed in curly brackets are respectively associated with the
values l′ = l + 1 and l′ = l − 1 while l> is the maximum of l

R1

R

R
H_CN

2

FIG. 1. Definition of the body-fixed coordinate system for the He-HCN sys-
tem. The planar configuration represented here corresponds to ϕ = 180◦. The
angle ϕ is not defined for γ or θ equal to 0◦ or 180◦.

and l′.

〈jK ′M|P̃ K ′
l′ (cos γ )

∣∣K (1)
V R

∣∣P̃ K
l (cos γ )|jKM〉

= ¯2

2μ1R1
δl′,l[δK,K ′ [j (j + 1) − 2K2]

− δK ′,K+1C
+
JKC+

lK − δK ′,K−1C
−
JKC−

lK ], (10)

〈jK ′M|P̃ K ′
l′ (cos γ )

∣∣K (2)
V R

∣∣P̃ K
l (cos γ )|jKM〉

= ¯2

2μ12R1R2

{
δK ′,K+1C

+
jK

×
[
C+

lKδl′,l±1

√
(l> + K + 1)(l> − K − 1)

(2l> + 1)(2l> − 1)

−K (alKδl′,l+1 − blKδl′,l−1)

]

+ δK ′,K−1C
−
jK

[
C−

lKδl′,l±1

√
(l>−K+1)(l> + K − 1)

(2l> + 1)(2l> − 1)

+K(al−Kδl′,l+1 − bl−Kδl′,l−1)

]}
, (11)

where

alK =
√

(l + K + 1)(l + K + 2)

(2l + 3)(2l + 1)

and

blK =
√

(l − K − 1)(l − K)

(2l − 1)(2l + 1)
.

The potential is expanded in Legendre polynomials:

V (γ ) =
∑
L

CLPL(cos γ ), (12)

and we obtain the following expression for the matrix ele-
ments of the potential:

〈jK ′M|P̃ K ′
l′ (cos γ )|V (γ )|P̃ K

l (cos γ )|jKM〉
= δK ′,K

∑
L

CL(−)K
√

(2l + 1)(2l′ + 1)

×
(

l′ L l

0 0 0

) (
l′ L l

−K 0 K

)
. (13)

For each value of j, the diagonalisation of the resulting
hamiltonian matrix gives the rigid bender energies ενj and the
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corresponding space fixed rigid bender eigenfunctions

χjM
ν (γ ) =

∑
K

∑
n≥K

C
νj

n,KP̃ K
n (cos γ )|jKM〉

=
∑
K


ν
j,K (γ )|jKM〉, (14)

where ν designates the bending quantum number. This equa-
tion shows that the rovibrational functions obtained from the
rigid bender model can be put in the form of a product of
an asymmetric top rotational function by a vibrational bend-
ing function 
ν

j,K (γ ). This is in agreement with the intuitive
representation that the bending vibration of a linear triatomic
molecules makes it become an instantaneous asymmetric top,
the square of the 
ν

j,K (γ ) function giving the probability of a
given bending angle for a specific values of the quantum num-
bers associated with the bending state ν the rotational state j
and its projection along the molecular axis K. The calcula-
tion of the rigid bender energies and wave functions can be
simplified by using the parity defined basis set suggested by
Sutcliffe and Tennyson:14

|jnK̄M,p〉 = 1√
2(1 + δK̄0)

[|jnK̄M〉 + (−)p|jn − K̄M〉]
(15)

with

|jnK̄M〉 = P̃ K̄
n (cos γ )|jK̄M〉. (16)

Knowing that the action of the parity operator on a symmet-
ric top function is given by �|jK̄M〉 = (−)(j−K̄)|j − K̄M〉
and that P̃ −K̄

n (cos γ ) = (−)K̄ P̃ K̄
n (cos γ ) (see, for example,

Zare16), it is easily seen that the parity of the function (14)
is equal to (−)j+p with p = 0 or 1 and K̄ is the absolute value
of K. The use of this basis set gives parity selected rigid ben-
der energies ε

p

νj and eigenfunctions

χjM
νp (γ ) =

∑
K̄≥0

∑
n≥K

C̃
νjp

n,K̄
|jnK̄M,p〉

=
∑
K̄


̃
νp

j,K̄
(γ )√

2(1+δK̄0)
[|jnK̄M〉+(−)p+K |jn−K̄M〉]

(17)

with


̃
νp

j,K̄
(γ ) =

∑
n≥K̄

C̃
νjp

n,K̄
P̃ K̄

n (cos γ ). (18)

The matrix elements of the triatomic rigid bender Hamilto-
nian in this symmetrised basis set are readily obtained from
those given in expressions (9)–(12) from the simple rule:

〈j ′n′K̄ ′M,q|H |jnK̄M,p〉
= δpqf (p, q) 〈jK̄ ′M|P K̄ ′

n′ (cos γ )|H |P̃ K̄
n (cos γ )|jK̄M〉

(19)

with

f (p, q) = 1 for K = K′ = 0 or K′, K > 0

and

f (p, q) =
√

2 for K′ = 0, K > 0 or K′ > 0, K = 0.

B. Close coupling equations

The theory of the inelastic scattering of two rigid poly-
atomic molecules was developed long ago17 but studies
including both vibration and rotation of the fragments are sel-
dom. Most of such studies use the pioneering approaches de-
veloped by Clary18 or more recently by Bowman19 which rely
on the use of the Infinite order sudden approximation for the
rotation and the Close Coupling for the vibration (VCC-IOS).
We treat here the scattering of a rigid bender molecule collid-
ing with an atom. This approach takes only into account the
coupling between bending and rotation but could be easily
generalized to include the stretching vibrations. We use the
result of the previous paragraph to express the rovibrational
wave function of the He-HCN complex in space fixed coordi-
nates as

|νj lJM〉 =
∑
mj

∑
ml

√
2J + 1

4π
〈jmj lml|JM〉Yml

l (R̂)

×
∑
K


ν
j,K (γ )Dj∗

mj ,K
(φRHCN

, θRHCN
, 0), (20)

where R̂ are the spherical coordinates of the intermolecular
vector �R between He and the center of mass of HCN in the
space fixed frame. Following Green20 we now expand the in-
termolecular potential between the atom and the rigid bender
molecule in the body fixed coordinates defined in Fig. 1 of
Paper I like

VA−RB(R, γ, θ, ϕ) =
∑

λ

∑
μ

vλμ(R, γ )Yμ
λ (θ, ϕ), (21)

which can be written:

VA−RB(R, γ, θ, ϕ)

=
∑

λ

∑
μ≥0

vλμ(R, γ )[2 − δμ0]P̃ μ
λ (cos θ ) cos(μϕ). (22)

Expression (21) transformed by rotation in terms of space
fixed angles reads:

VA−RB

(
R, γ, φRHCN

, θRHCN
, R̂

)
=

∑
λ

∑
μ

vλμ(R, γ )
∑

ν

Dλ∗
μν

(
φRHCN

, θRHCN
, 0

)
Y ν

λ (R̂).

(23)

The matrix elements of the interaction potential VA-RB be-
tween the atom and the rigid bender molecule in the space
fixed coordinates are obtained from straightforward algebra:

[VA−RB]JM
νjl,ν ′j ′l′(R)

=〈νj lJM|VA−RB |ν ′j ′l′JM〉

=
∫ π

0
dγ sin γ

∑
K

∑
K ′


ν
j,K (γ )WJM

jKl,j ′K ′l′(R, γ )
ν ′
j ′,K ′(γ ),

(24)

where the WJM
jkl,j ′k′l′ are the atom symmetric top matrix ele-

ments in space fixed coordinates20

WJM
jKl,j ′K ′l′ (R, γ ) =

∑
λ

∑
μ

Vλμ(R, γ )XJM;λμ

jKl,j ′K ′l′ , (25)
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X
JM;λμ

jKl,j ′K ′l′ = δJ,J ′δM,M ′ (−1)[j+j ′+λ+J ]

×[(2j + 1)(2j ′ + 1)(2l + 1)(2l′ + 1)(2λ + 1)]
1
2

×
{

l j J

j ′ l′ λ

} (
l λ l′

0 0 0

) (
j λ j ′

−K −μ K ′

)
.

(26)

The Close Coupling equations to solve for an atom-triatomic
rigid bender collision and for given values of J and M are then[

d2

dR2
− l(l + 1)

R2
+ k2

νj (E) − [VA−RB]JM
νjl,ν ′j ′l′(R)

]

×GJM
νjl,ν ′j ′l′ (R) = 0, (27)

where k2
νj (E) = 2μHe−HCN [E − εnj ] and ενj are the rigid

bender energies calculated previously. From this expression
we see that the atom-triatom rigid bender equations are sim-
ilar in form to those of the atom linear molecule system, the
only differences being the matrix elements of the potential
and the rigid bender energies. Indeed if we put k = k′ = 0 and
fix γ = 180◦ we obtain the usual atom-linear molecule Close
Coupling equations in space fixed coordinates.21 The parity
of the triatomic molecule can be easily introduced in these
equations using instead of (20):

|νj lpJM〉 =
∑
mj

∑
ml

√
2J + 1

4π
〈jmj lml|JM〉Yml

l (R̂)

×
∑
K̄≥0


̃
νp

j,K̄
(γ )√

2(1 + δK̄0)

[
D

j∗
mj ,K̄

(
φRHCN

, θRHCN
, 0

)

+ (−)p+K̄D
j∗
mj ,−K̄

(φRHCN
, θRHCN

, 0)
]
. (28)

The global parity of this basis set is ε = (−) (j+l+p) while it
is (−)(j+l+p+K) for a atom-symmetric top collision and (−)(j+l)

for an atom colliding with a linear molecule. The calculations
can then be split into two non-interacting parity blocks for
each value of J. The matrix elements of the potential in this
basis set are

[VA−RB]JM
νjpl,ν ′j ′ql′ (R)

=〈νj lpJM|VA−RB |ν ′j ′l′qJM〉

=
∫ π

0
dγ sin γ

∑
K̄

∑
K̄ ′


̃
νp

j,K̄
(γ )W̃ JM

jK̄pl,j ′K̄ ′ql′ (R, γ )
̃ν ′q
j ′,K̄ ′ (γ )

(29)

with

W̃ JM
jK̄pl,j ′K̄ ′ql′ (R, γ ) =

∑
λ

∑
μ

Vλμ(R, γ )X̃JM;λμ

jK̄pl,j ′K̄ ′ql′ (30)

and following Green:20

X̃
JM;λμ

jK̄pl,j ′K̄ ′ql′

= δε,ε′

[(1 + δK̄0)(1 + δK̄ ′0)]
1
2

×{
ωX

JM;λ±μ

jK̄l,j ′K̄ ′l′ + (−)p+K̄ δμ,(K̄ ′+K̄)X
JM;λμ

j−K̄l,j ′K̄ ′l′
}
, (31)

where

ω =
{

1 if μ = K̄ ′ − K̄ ≥ 0

(−)μ if μ = K̄ − K̄ ′ ≥ 0
.

We have deliberately used the parity index ε in this expression
in order to show that the symmetrised matrix elements of the
potential are zero when the parity of the initial and final states
is different.

This expression shows that the results of the RBAA ap-
proach which uses the definition of parity for linear HCN can-
not be completely equivalent to those given by the rigid ben-
der inelastic collisions at the close coupling (RB-CC) method
for transitions between different bending levels as discussed
below.

III. CALCULATIONS AND RESULTS

We first give in Table I the rigid bender energies calcu-
lated using the approach presented in Sec. II A. These en-
ergies are compared to the experimental values reported by
Harris et al.22 As can be seen in this table the Rigid Ben-
der Approximation gives energies which are about 2% accu-
rate. The l doubling splitting is however over estimated by
this approach as its absolute value is in average approximately
multiplied by a factor five. This approach would then not be
valid for spectroscopic purpose but is expected to be accurate
enough to model the He-HCN collisional dynamics.

In the following we compare the results obtained with
the atom-linear molecule close coupling (ALM-CC), RBAA,
and RB-CC approaches and using our potential.7 In all calcu-
lations we use 20 rotational levels of HCN. For the RB-CC
and RBAA calculations we include in the basis set the three
first bending levels for each rotational level of HCN. For each
value of K (the projection of the rotational angular momentum
of HCN along the Z molecular fixed axis), we use 30 associ-
ated Legendre functions to calculate the bending levels using
the equations presented in Sec. II. The integral over the bend-
ing angle γ necessary to obtain the matrix elements of the
inter molecular potential (28) was performed using a Gauss
Legendre quadrature of 40 values of the bending angle.

We first consider the pure rotational transitions taking
place inside the fundamental bending level ν = 0. We repre-
sented in Figures 2–4 the elastic and de-excitation cross sec-
tions respectively of the levels (ν = 0, j = 1, 2, 3) of HCN.
For each transition represented, we can observe a group of
two curves which are almost identical and are associated with
the ALM-CC and RBAA approaches while the third curve
associated with the present RB-CC results is slightly differ-
ent. The differences between the cross sections obtained from
the three types of calculations are in any case negligible in
the [1:1000] cm−1 energy interval needed for Astrochemistry.
Only the very low energy range and the regions of the reso-
nances are slightly different. This demonstrate that for these
transitions the ALM-CC approach offers a level of accuracy
equivalent to the RBAA approach, as already concluded in
Paper I, and is, for the He-HCN system, almost equivalent to
exact calculations.
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TABLE I. HCN rigid bender energies in cm−1 relative to the fundamental level (ν = 0, j = 0). The experimental
HCN energies22 are also given in the parentheses for comparison.

ν = 0 ν = 1 ν = 2

jHCN ε E ε E ε E

0 + 0.0 + 1435.25 (1411.41) + 2869.69 (3311.48)
1 + 3.00 (2.96) + 723.22 (714.935) − 723.30 (714.95)
2 + 9.00 (8.87) + 729.24 (720.85) − 729.48 (720.89)
3 + 18.0 (17.72) + 738.27 (729.716) − 738.75 (729.78)
4 + 30.0 (29.54) + 750.31 (741.517) − 751.12 (741.667)
5 + 45.0 (44.39) + 765.367 (756.296) − 766.57 (756.52)
6 + 63.0 (62.14) + 783.43 (774.030) − 785.11 (774.344)
7 + 84.0 (82.85) + 804.50 (794.718) − 806.74 (795.137)
8 + 107.99 (106.39) + 828.58 (818.361) − 831.45 (818.899)
9 + 134.98 (133.14) + 855.67 (844.957) − 859.26 (845.630)
10 + 164.98 (162.72) + 885.77 (874.506) − 890.16 (875.328)
11 + 197.97 (195.053) + 918.88 (907.007) − 924.14 (907.993)
12 + 233.96 (230.75) + 955.00 (942.460)) − 961.21 (943.625)
13 + 272.96 (268.92) + 994.13 (980.86) − 1001.37 (982.22)
14 + 314.94 (310.28) + 1036.27 (1022.22) − 1044.61 (1023.784)
15 + 359.93 (354.58) + 1081.41 (1066.517) − 1090.94 (1068.309)
16 + 407.91 (401.84) + 1129.57 (1113.766) − 1140.35 (1115.796)
17 + 458.89 (452.04) + 1180.74 (1163.962) − 1192.85 (1166.245)
18 + 512.88(505.190) + 1234.91 (1217.103) − 1248.43 (1219.653)
19 + 569.85 (561.28) + 1292.10 (1273.188) − 1307.10 (1276.020)

As mentioned in the Introduction, l-type transitions of
HCN have been detected recently in hot molecular gas, for
example, in the proto-planetary nebula CRL 618. The double
degeneracy of the bending mode of HCN is indeed lifted when
the molecule is bending and rotating simultaneously giving
rise to l-type doubling for j ≥ 1. For the first excited bend-
ing mode and for j ≥ 1, every rotational level is split into
two sub-levels. Hereinafter we designate these two sub-levels
by ν = 1 and ν = 2 and examine the l-type transitions be-
tween these sub-levels. In Figs. 5 and 7, the elastic and the de-
excitation cross sections starting from the (ν = 2, j = 1) level
of HCN respectively calculated using the RBAA and RB-CC
approaches are represented as a function of the collision en-
ergy. The upper panels of each of these two figures show all

FIG. 2. Comparison of the elastic and de-excitation cross section of HCN
(ν = 0, j = 1) in collisions with He as a function of collision energy calcu-
lated using the RB-CC, RBAA and ALM-CC approaches. The final level is
indicated by one integer designating the rotational quantum number.

these transitions while the lower panels show a blow up in-
cluding only the transitions which are not labeled in the upper
panel. The only open rotational channel of de-excitation to-
wards the bending level ν = 1 is j = 1 as the (ν = 2, j = 1) and
(ν = 1, j = 1) levels are almost degenerate while the first ex-
cited bending energy of the level j = 0, which is exempt from
l-type doubling, is quite higher. The open rotational channel
of de-excitation towards the bending level ν = 0 are the lev-
els j = 0–19, j = 19 being the highest value of j considered
in our calculations. As it can be seen in these figures, the
RBAA gives at the best the right order of magnitude for some
of the transitions but is definitely not accurate enough even
for astrochemical purposes. The elastic and l-type transition
cross sections (towards the levels (ν = 2, j = 1) and (ν = 1,

FIG. 3. Comparison of the elastic and de-excitation cross section of HCN
(ν = 0, j = 2) in collisions with He as a function of collision energy calcu-
lated using the RB-CC, RBAA, and ALM-CC approaches. The final level is
indicated by one integer designating the rotational quantum number.
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FIG. 4. Comparison of the elastic and de-excitation cross section of HCN
(ν = 0, j = 3) in collisions with He as a function of collision energy calcu-
lated using the RB-CC, RBAA, and ALM-CC approaches. The final level is
indicated by one integer designating the rotational quantum number.

j = 1) are, for example, found to be almost equal at the RBAA
level while they differ by an order of magnitude at the RB-
CC level. As the number of transitions represented makes the
comparison difficult we compare in Fig. 6 the two types of re-
sults for a few selected transitions. We can see on this figure

FIG. 5. Elastic and de-excitation RBAA cross section of HCN(ν = 2,
j = 1) in collisions with He as a function of collision energy. The final level is
indicated by two integers designating the bending and the rotational quantum
numbers.

FIG. 6. Comparison of some of the de-excitation RBAA and RB-CC cross
section of HCN(ν = 2, j = 1) in collisions with He as a function of collision
energy. The final level is indicated by two integers designating the bending
and the rotational quantum numbers.

that the RBAA approach fails to give an accurate estimate of
the magnitude of the cross sections but gives at least the right
ranking of the transitions cross sections. Not surprisingly, we
find with both methods that the �j = 0 transitions are favored
and that the magnitude of the cross section decreases when �j

FIG. 7. Elastic and de-excitation RB-CC cross section of HCN(ν = 2,
j = 1) in collisions with He as a function of collision energy. The final level is
indicated by two integers designating the bending and the rotational quantum
numbers.
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FIG. 8. Comparison of the inelastic RBAA cross section of HCN(ν = 2,
j = 1 → ν′, j′ = 17) in collisions with He as a function of collision energy.
The final level is indicated by two integers designating the bending and the
rotational quantum numbers. The cross section associated with the opening
of the first excited bending level of the rotational state j′ = 0 of HCN is also
represented.

increases. Another interesting feature can be seen when com-
paring Figs. 5 and 7. A dip in the RBAA cross sections ap-
pear around 700 cm−1 on many curves while it is absent from
the RB-CC curves. This can be understood when looking at
Figs. 8 and 9 where the state selected (ν = 2, j = 1 → ν = 0,
j = 17) transition cross sections are represented respectively
at the RBAA and RB-CC levels. Clearly the dip appears at the
RBAA level while it is absent of the RB-CC cross section. On
the same figure the cross section associated with the opening
of the (ν = 1, j′) and (ν = 2, j′) channels are represented with
j′ = 15, 16, and 17. These levels are the most strongly cou-
pled with the channel (ν = 0, j = 17) as they both are linked
by the �j ≤ 2 rule. We can see in Fig. 8 that the minimum
of the dip of the RBAA curve corresponds approximately to
the opening of the (ν = 0, j = 15) channel while the RB-CC
(ν = 2, j = 1 → ν = 0, j = 17) cross section (Fig. 9) is reduced
but shows no dip. We conclude from these different compar-
isons that the RBAA approach overestimates the coupling be-

FIG. 9. Comparison of the inelastic RB-CC cross section of HCN(ν = 2,
j = 1 → ν′, j′ = 17) in collisions with He as a function of collision energy.
The final level is indicated by two integers designating the bending and the
rotational quantum numbers. The cross section associated with the opening
of the first excited bending level of the rotational state j′ = 0 of HCN is also
represented.

tween the bending levels. This analysis is confirmed when
comparing the RBAA and RB-CC (ν = 2, j = 1 → ν = 0,
j = 1) transition cross sections which are also represented in
Figs. 8 and 9. The RB-CC cross sections are effectively lower
than those calculated using the RBAA approach. This is not
really surprising as we use parity selected matrix elements
of the potential both in the RBAA and RB-CC approaches
while the definition of the parity for linear molecules used
for the RBAA calculations differs from the one valid for a
rigid bender which is used in the RB-CC method as detailed in
Sec. II.

IV. CONCLUSION

We presented a new method for calculating exactly ro-
vibrational cross sections for collisions between an atom and a
rigid bender triatomic molecule. This approach was applied to
the He-HCN collision and its results were compared to those
obtained when using the rigid bender averaged approxima-
tion. We find for this system that the RBAA approach is al-
most equivalent to exact calculations for pure rotational tran-
sitions taking place inside the fundamental bending level ν

= 0. On the contrary, for transitions involving two different
bending levels, the RBAA approach fails to give an accurate
estimate of the magnitude of the cross sections but gives most
of the time at least the right ranking of the transition cross sec-
tions. We then conclude that l-type transitions cross sections
have to be calculated at the RB-CC level for the He-HCN col-
lision while pure rotational transitions cross sections may be
calculated accurately at the RBAA level. This result should
hold for other triatomic molecules which have a similar bend-
ing frequency but needs to be tested on other systems.
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6.1 Introduction to the study

6.1.1 Background

The C3 molecule has been observed in the different regions of the ISM

[21, 22, 92–96] and a summary of these detections can be found in several

reviews [97, 98]. The study of this molecule in astrochemical conditions

is important as it is expected to be one of the building blocks of more

complex organic molecules such as carbon chains. It is furthermore a very

floppy molecule exhibiting one of the smallest bending frequency (around
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63 cm−1). Transitions involving several vibrational and rovibrational levels

of C3 have been observed. In some regions of the ISM, the LTE is not a

good approximation and the collisional rate coefficients of C3 with H2 and

He are needed to model its abundance.

Zhang et al [99] analysed the surfaces of the C3-He complex computed

with two methods: CCSD(T) and MP4 for the linear configuration of C3.

Also they compared these surfaces with one computed at CCSD(T) level

when C3 is bend, but only for a single bending angle (γ = 160◦). However, to

our knowledge, the collisional rate coefficients available for the C3 molecule

are only those calculated by Abdallah et al [100] for its collisions with

Helium, within the RMA. However, due to the opening of the vibrational

bending channel at very low temperature, their validity is limited to a low

temperature interval and a new study including the bending motion is then

necessary. Furthermore, the floppy character of this molecule makes of

the study of its collisions with He a peculiarly interesting test of the RB-

CC method. The building of a new PES including the bending of C3,

necessary to perform these calculations, is first presented in the present

chapter. The modifications of the RB-CC method needed to take advantage

of the symmetry of C3 are also presented as well as the computation of the

bound levels of C3-He complex. We report the cross section computed at

RMA and RBCC approach for the lower rotational levels and for the ground

and first excited bending modes.

6.1.2 Rigid bender C3 molecule

We cannot use for C3 the same rovibrational Hamiltonian than the one

introduced in our study of the HCN molecule [89] as it does not allow to

take into account the C atoms exchange symmetry. We use instead the

symmetrical Hamiltonian developed by Carter et al [101]. In this case, the

x-axis is the bisector of the bending angle γ, while the molecule is lying in

the xz plane. This system of coordinates is represented in Fig. 6.1. The

kinetic operator in internal coordinates used in this case is described in

details by Handy [102]. The Hamiltonian takes the form

H = HV +HRV + V, (6.1)
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Figure 6.1: Representation of the coordinates for the C3 molecule.
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R1 and R2 are the rigid interatomic distances. Π̂ is the total angular

momentum operator of the molecule relative to the body-fixed axes. µ1 and

µ2 are the reduced mass associated to each bond length as defined in the

previous chapter, while mB is the mass of the central atom.

The rigid bender potential of C3 is computed at the CCSD(T) level for

the CC distance fixed at its experimental equilibrium value and is fitted
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using seven Legendre polynomials.

The last two terms in expression 6.3 vanish in for the C3 molecule as R1

= R2 and µ1 = µ2. In this case, the matrix elements of the HV and HRV

in a symmetrised basis set, such as the one used previously for HCN, are

〈jK̄ ′M, q|P̄ K̄′

l′ |HV |P̄ K̄
l |jK̄M, p〉 = δp,qf(p, q)δK̄′,K̄
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and
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where i = 0, 1, 2, 3..., l< = min(l, l′), l> = max(l, l′) and

A±jK =
√

(j ±K + 1)(j ±K + 2)(j ∓K)(j ∓ k + 1), (6.6)

Bl>K =

√
(l> +K)(l> −K)

(2l> + 1)(2l> − 1)
, (6.7)
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and

NK
l,l′ =

√
(2l′ + 1)(2l + 1)(l′ −K)!(l −K)!

(l′ +K)!(l +K)!
. (6.8)

The resulting matrix is diagonalized and this gives the rovibrational

energies and the associated wave functions expanded over the symmetrised

basis set 5.3.

Symmetry considerations

The C3 molecule is made of three identical bosonic carbon atoms. The

total wave function of rigid bender C3 has then to be symmetrical under

the exchange of the two terminal atoms [38] and the rovibrational wave

function as well. The exchange of the two terminal atoms can be obtained

by a rotation of 180◦ around the x-axis and

C2(x)|jnK̄M, p〉 = (−1)j+K̄+p|jnK̄M, p〉, (6.9)

where |jnK̄M, p〉 was defined in 5.3. Then the sum of the three quantum

numbers j + K̄ + p has to be even and one level out of two cannot exist

as a result of the exchange symmetry. The resulting possible levels are

represented in Fig. 6.2.

6.1.3 Rigid bender close coupling calculations

The interaction PES of C3 with He has been computed at CCSD(T) levels

using an aug-cc-pVQZ basis set with bond functions. These ab-initio ener-

gies have been fitted to an analytical function using a least square procedure

similar to the one used for He-HCN. This four dimensional PES was used

to solve the radial close coupling equations presented in the previous chap-

ter. The bound levels of the C3-He complex have been calculated using two

different methods: first, by considering C3 to be a rigid linear molecule, i.e.

at the RMA level, while in the second case, C3 was considered to be a rigid

bender using the RB-CC approach. The well depth of the He-C3 complex

is about 30 cm−1 while the bending frequency of C3 is twice larger. This

means that the bound states of the complex involve only the fundamental

bending level of C3 and it implies that the coupling between bending and

rotation is not expected to be very important for these calculations. This is

indeed what is found and detailed in the joined publication. The same com-
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Figure 6.2: Representation of the allowed and not allowed states for the
C3 molecule.

parison is done for the calculations of the inelastic cross sections in order to

show the effect of the coupling between the bending and the rotation of C3

on to the dynamics. The RMA calculation are performed using a rotational

basis set of 20 functions for C3 and by taking the rotational constant to be

equal to its experimental value B = 0.4305 cm−1 [97]. In the rigid bender

calculations we included 20 rotational and 6 vibrational levels of C3. The

de-excitation and excitation cross section of C3 by collisions with He have

been computed for the lower rotational levels and for the ground and first

excited bending modes.

The variation of the cross sections of the pure rotational transitions (ν

= 0) from j = 2, 4 as a function of collision energy are presented in Fig. 6.3.

The RMA and RB-CC cross sections are found to be in excellent agreement

at low collision energy (E < 100 cm−1) while at higher energies, the cross

section computed at RB-CC level decreases faster than the RMA one. As
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rotational quantum numbers.
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Figure 6.5: Elastic and inelastic RB-CC cross section of C3 in collisions
with He as a function of collision energy from the initial level ν = 1, j = 3.
The final level is indicated by two integers designating the bending and the
rotational quantum numbers.

can be seen in this figure, this difference is due to the opening of the first

excited bending channels of C3 around 66 cm−1. Such an effect could not be

seen for the HCN-He system as the bending frequency of HCN is more than

ten times larger. We conclude that for C3, even if one is interested only in

pure rotational cross sections, the coupling between rotation and bending

has to be taken into account for energies larger than 100 cm−1 as the RMA

approach overestimates its value by 20% at 200 cm−1 (transition j = 4 →
j = 0). The cross sections involving two different vibrational levels are also

presented in Fig. 6.4 and 6.5 for the initial states ν = 1, j = 3 and ν = 1,

j = 1 respectively. Their magnitudes are comparable to those of the pure

rotational transitions cross sections showing that for this molecule bending

and rotation have to be treated on the same footing.

6.2 Publication (submitted article)

Article submitted to J. Chem. Phys. on January 20, 2014.
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Rovibrational energy transfer in the He-C3 collision: potential energy surface and

bound states
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We present a four-dimensional potential energy surface (PES) for the collision of

C3 with He. Ab initio calculations were carried out at the coupled-cluster level with

single and double excitations and a perturbative treatment of triple excitations, using

a quadruple-zeta basis set and mid-bond functions. The minimum of the interaction

potential is found to be -36.30 cm−1 and corresponds to an almost T-shaped structure

of the Van der Waals complex along with a bent configuration of C3. This PES is

used to determine the rovibrational energy levels of the He-C3 complex using the

rigid monomer approximation (RMA) and the recently developed atom-rigid bender

approach at the Close Coupling level (RB-CC). The calculated dissociation energies

are -9.56 cm−1 and -9.73 cm−1 respectively at the RMA and RB-CC levels. This is

the first theoretical prediction of the bound levels of the He-C3 complex.
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I. INTRODUCTION

Since their first detection in dense intermolecular clouds in the seventies1, the carbon

chains are expected to play an important role in the chemistry of interstellar and circum-

stellar clouds. It is especially interesting to estimate the abundance of the small pure carbon

molecules, such as C2, C3 and C5, because they are supposed to be the building blocks for

other more complex interstellar molecules. Pure carbon chains have no permanent dipole

moment but can be detected in dense and cold interstellar clouds through their infrared

active low-energy bending vibrations as suggested by Van Orden2. In the present study

we focus our interest on the carbon trimer C3. Its emission spectrum near 4050 Å was

observed3,4 first in comets as early as 1881, and it was identified5 in the laboratory in 1951.

Since then, C3 has been observed in several regions of the interstellar medium (ISM): in the

atmospheres of cool stars6, in circumstellar shell7 and in diffuse interstellar clouds8. Re-

cently, Cernicharo et al.9 have detected nine lines of the bending mode of C3 in Sagittarius

B2 and IRC +10216. Mookerjea et al. observed several rovibrational transitions between

the vibrational ground state and the low-energy bending mode in stars forming cores10. In

the dense interstellar medium (ISM) the presence of C3 was proven using its mid- and far-

infrared vibrational transitions7,9,11. C3 was also identified in the diffuse interstellar medium,

first by Maier et al.8 and later in several other studies12,13 along different lines of sight.

The detection of C3 in the ISM has motivated many experimental14–18 and theoretical19–22

studies dedicated to the spectroscopy of this molecule. Contradicting measurements and the-

oretical calculations have alternatively reported a linear or non-linear equilibrium geometry

for C3. Van Orden and Saykally23 reviewed all previous works and proposed a linear struc-

ture with a very flat bending potential. They also discussed the barrier to linearity which is

observed when the anti-symmetrical stretching is excited. A very small barrier to linearity

(0.3 cm−1) is observed in the semi-empirical potential energy surface (PES) obtained by

Špirko et al.21 from a fit to experimental data. In contrast, the high-level CCSD(T) calcula-

tions of Mladenovic et al20 resulted in a linear equilibrium geometry. While we can not still

conclude whether C3 is a linear or a quasi-linear molecule (i.e. a molecule with a barrier

to linearity much smaller than the bending frequency), a good quantitative agreement has

been obtained with the experimental energy levels20,21.

When the local thermal equilibrium (LTE) conditions do not apply, the determination

2
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of the abundance of C3 require a study of its (de-)excitation resulting from collisions. In

molecular clouds, the most abundant collider is usually H2, followed by He. Such calcu-

lations are usually performed within the rigid monomer approximation (RMA). However,

it must be noted that the bending frequency of C3 is small24 (63.4 cm−1), and therefore

a significant coupling of the vibrational bending with the intermonomer vibrational modes

can be expected. The small bending frequency of C3 brings a supplementary interest to the

investigation of collision with He, as it could be seen as a case study of rovibrational energy

transfer induced by collision.

We have recently developed the theory of rovibrational energy transfer for atoms colliding

with a linear triatomic molecule and applied it to the HCN-He systems25,26. In this previous

study26, denoted hereafter as Paper I, the coupling between rotation and vibrational bending

was treated exactly within the rigid bender approximation at the Close Coupling level (RB-

CC). Using this approach, we found that for the HCN-He collision, the pure rotational

transitions could be computed accurately using a vibrationally averaged PES, similarly as

was done in the investigations of CH2-He27, or even with the simple RMA. But for transitions

involving two different bending levels, the use of the RB-CC approach was needed. In order

to apply the latter approach to the C3-He inelastic collision, we will first focus, in the present

work, on the development of a four dimensional PES for the C3-He system, which takes into

account the bending motion. A first use of this PES to determine the bound states energies

of the C3-He complex will also be presented.

The paper is organised as follows. In Section 2, we summarise the ab-initio calculations

and detail the analytical form of the PES while the bound states calculations are presented

in Section 3. Finally, we present and discuss the results of this study in section 4.

II. AB-INITIO CALCULATIONS AND ANALYTICAL FORM OF THE

PES

A. Ab-initio calculations

The coordinate system used in this work is presented in Fig. 1. The center of coordinates

is the center of mass of the C3 molecule and R is the distance between this center of mass

and the He atom. The bending angle of the C3 molecule is γ, and the rotation of C3 is
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defined by θ while the azimuthal angle is ϕ. The C-C diatomic distance has been fixed to

its experimental value23 in the ground state of C3 , r = 2.413 a0.

X

Y

Z
He

θ

ϕ

R

γ

Figure 1. Body-fixed coordinates. The linear C3 molecule is along the z-axis, and the bent C3

molecule is in the plane xz. The angle ϕ is indefinite when γ = 180◦.

The interaction potential is symmetric under the transformations θ 7−→ π − θ and

ϕ 7−→ −ϕ. For the calculation of the ab initio points, these symmetries allow us to re-

duce the range of θ to [0,π/2] and the range of ϕ to [0,π].

Within the supermolecular approach, the potential energies of C3 with He have been

calculated with the coupled-cluster method with single and double excitations and a pertur-

bative treatment of triple excitations (CCSD(T)). The interaction energy was corrected at

all geometries for the basis set superposition error (BSSE) with the counterpoise procedure

of Boys and Bernardi28. A comparison of the interaction energies calculated with basis sets

of triple, quadruple, and quintuple-zeta quality is shown in Table I, with or without an

additional set of bond functions centred at mid-distance between the He atom and the C3

center of mass. The interaction energy, calculated at a configuration close to the equilibrium

geometry, is quite stable in respect of the size of the basis set and the use of bond functions.

For the largest basis set, it is safe to assume that the convergence of the one-electron basis

is close to the complete basis set limit. Considering the computational cost associated with

the various basis sets, we have chosen the quadruple zeta basis set with bond functions.

The potential energy has been computed for 12 values of the bending angle from 180◦ to

80◦. The radial grid included 34 points ranging from 4.1 a0 to 22.7 a0. The angular grids
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Table I. CCSD(T) interaction energy of the C3-He system at R = 6.8 a0, θ = 90◦ and γ = 180◦.

The use of bond functions is denoted by +bf.

Basis Energy (cm−1) relative time cost

aug-cc-pVTZ+bf -26,53 1

aug-cc-pVQZ -24,62 2,7

aug-cc-pVQZ+bf -26,64 4,8

aug-cc-pV5Z -25,62 16,5

aug-cc-pV5Z+bf -26,72 28,3

were spaced uniformly in steps of 10◦ for θ in the range [0,90]◦ and steps of 30◦ for ϕ in the

range [0,180]◦. The total number of points was 26526. All calculations have been carried

out with the MOLPRO package29.

The potential energy of the isolated C3 molecule has been computed using the same ab-

initio method and basis set as we used for the C3-He system. We computed the ab-initio

energy for 43 bending angles in the range from 50◦ to 180◦. These energies were fitted to a

linear combination of seven Legendre polynomials.

B. Analytical representation of the PES

The interaction potential is expanded as the sum of a short-range function V S and a

long-range function V L with the expansion coefficients defined by the switching function S.

Vint(R, θ, ϕ, γ) = S(R)V S(R, θ, ϕ, γ) + (1 − S(R))V L(R, θ, ϕ, γ) (1)

S(R) =
1

2
[1 − tanh (A0(R− R0))] (2)

The V S and V L functions are in turn the sum of two terms. The first term represents

the interaction energy in the case γ = π. Thus, it has no dependence in γ and ϕ. The

second term is different from zero only for γ < π. It can be seen as the difference between

the interaction energy at some γ < π and the interaction energy at γ = π, both at the same

value of θ and R.

V S(R, θ, ϕ, γ) =

12∑

l=0

F S

l (R)P̄l(cos θ) +

13∑

l=0

min (l,4)∑

m=0

GS

lm(R, γ)P̄lm(cos θ) cos (mϕ) (3)

5
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V L(R, θ, ϕ, γ) =
4∑

l=0

F L

l (R)P̄l(cos θ) +
4∑

l=0

min (l,2)∑

m=0

GL

lm(R, γ)P̄lm(cos θ) cos (mϕ) (4)

Due to the symmetry properties of the interaction potential (vide supra), the sum over

l in the first term of right-hand side of eqs. 3 and 4 is restricted to even value and in

the second term, the summation over l and m is restricted to even value of l − m. P̄l are

normalized Legendre polynomials and P̄lm are normalized associated Legendre polynomials.

F S

l (R) = e−α1R

11∑

n=0

RnAln (5)

F L

l (R) =

8∑

k=6

tk(β1R)

Rk
Clk (6)

GS

lm(R, γ) = e−α2R
5∑

j=0

Qm
j (γ)

10∑

n=0

BlmnjR
n (7)

GL

lm(R, γ) =
3∑

j=0

Qm
j (γ)

8∑

k=6

Dlmkj
tk(β2R)

Rk
(8)

where tk is the Tang-Toennies damping function:

tk(x) = 1 − e−x
k∑

i=0

xi

i!
(9)

The functions Qm
j (γ) were chosen for all values of m, with the exception of m = 1, as

Qm
j (γ) =

1 + P2j+1(cos γ)

2
(10)

and for m = 1,

Q1
j (γ) = sin(jγ) (11)

In eq. 10, we used non-normalized odd Legendre polynomials.

The ab-initio points were fitted to this function in four steps, and in each step the least

square procedure was used. In a first step, we fitted the linear case (γ = π), using the first

term in equations 3 and 4. In a second step, the difference between the linear potential and

the ab-initio points was fitted for each value of γ and R using the second term of 3 and 4.

These angular coefficients were interpolated using the functions 10 and 11. Finally we fitted

the radial part to get the coefficients Blmnj and Dlmkj.

6
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The non-linear parameters R0, A, α1, β1, α2, and β2 were set to the values R0 = 5.2 Å,

A0 = 5.6 Å−1, α1 = 4.8 Å−1, β1 = 2.20 Å−1, α2 = 2.2 Å−1 and β2 = 2.8 Å−1. These values

were determined by the trial and error method.

The ab-initio grid was computed only for γ ≥ 80◦ and the extrapolation was done just

until γ = 75◦. The rigid bender approximation used for C3 is expected to be reliable only

for the ground state and the first excited bending states. Considering that the potential

energy of the C3 molecule at γ = 75◦ is about 5400 cm−1 and the vibrational frequency

of the bending mode ν2 is around 63 cm−1, there is no need to represent the interaction

energy for γ ≤ 75◦. Therefore we used this value as a cut-off limit. Beyond this limit, the

interaction energy was set equal to its value at γ = 75◦ . A similar procedure has been

previously used25 in the study of HCN in collision with He without any drawback.

III. BOUND STATES CALCULATIONS

Two kinds of calculations were performed, the first one considering C3 as a linear rigid

molecule i.e. using the RMA and the second one modelling C3 by a rigid bender i.e. using

the RB-CC method. In both cases we used the coupled-channel bound state method intro-

duced long ago by Johnson30 and adapted to the log-derivative and R-matrix propagators

respectively by Huston31 and Danby32. This method was already used in our study dedi-

cated to the HCN-He system25. In the RMA approach, the rotational constant of the C3

molecule23 was taken equal to 0.43 cm−1. A modified version of our scattering code based

on the log-derivative propagator, was used following the recommendations of Hutson31. The

calculations were performed for two values of the propagator step size (0.05 a0 and 0.1 a0),

and the values of the bound state energies were obtained from a Richardson extrapolation31.

We tested the convergence of the bound state energies of the He-C3 complex as a function

of the size of the rotational basis set of C3. As the nuclear spin of the carbon atom is zero,

ten even values of the rotational quantum number were included in the basis set describing

C3 and the maximum propagation distance was set to 50 a0.

The RB-CC approach presented in paper I had to be adapted to take into account the

exchange symmetry of the C atoms inside C3 as the rigid bender Hamiltonian used in this

previous work cannot be used for symmetric triatomics. We use instead the symmetric

Hamiltonian developed by Carter et al33. Fig. 1 shows the coordinates used in this study
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for the C3 molecule. The x-axis is the bisector of the bending angle γ, while the molecule is

lying in the xz plane.

The symmetric form of the Hamiltonian developed by Carter et al33 is written as usual

as a sum of a vibrational, a rovibrational and a potential term

H = Hv + Hrv + V (γ) (12)

The vibrational term Hv developed by Carter and Handy34 is unchanged and its expression

can be found in our previous work25. The rigid bender approximation of the rovibrational

term Hrv takes the following form

Hrv =
3

4mR2
1

1

cos2(γ/2)
Π2

z +
1

4mR2
1

1

sin2(γ/2)
Π2

x +
1

2mR2
1

(
1 +

cos γ

2

)
Π2

y (13)

where R1 is the C-C equilibrium distance and m is the mass of the carbon atom while Πx,

Πy and Πz are the projections over the molecule-fixed axes of the total angular momentum

j of C3. As in our previous work, we use the following symmetrised rovibrational basis set

to diagonalise the Hamiltonian H

|jnK̄M, p〉 = |jnK̄M〉 + (−1)p|jn− K̄M〉 (14)

where M and K are the projections of j over the space-fixed z-axis and the body-fixed z-axis

respectively. K̄ is the absolute value of K, and p is equal to 0 or 1. Furthermore we have

|jnK̄M〉 = P̄ K̄
n (cos γ)|jKM〉 (15)

where

|jKM〉 =

√
2j + 1

4π
Dj∗

M,K(α, β, γ) (16)

is a symmetric top wave function while P̄ K̄
n (cos γ) is a normalized associated Legendre poly-

nomial describing the bending vibration. From the expression of Hrv we see that a value

of K can only be coupled with K ′ = K, K±2. In other words, at each rovibrational state

is associated a given parity of K. The calculation of the rovibrational wavefunctions are

performed for a given value of j and p which means for a given parity as

Π|jnK̄M, p〉 = (−1)j+p|jnK̄M, p〉 (17)

We can further take advantage of the symmetry of the total wave function under the exchange

of the bosonic C nuclei35 which implies that the rovibrational wave function has to be

8
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symmetric too. The exchange of the carbon nuclei, as shown in Fig. 1, can be obtained by

a rotation along the x-axis or equivalently by an inversion of the coordinates of the carbon

nuclei followed by a rotation along the z-axis,

Cz
2Π|jK̄M, p〉 = (−)j+p+K̄|jK̄M, p〉 (18)

This means that j + p + K̄ has to be even. As each rovibrational state is associated with a

given parity of K, we get immediately that for non-zero value of j one rovibrational state

in two is missing, as illustrated for example by Gendriesch et al18.

Finally, the eigenvalues and eigenfunctions of H have been used in the calculations of

the bound states of the He-C3 complex with the RB-CC method. All the details of the

RB-CC close coupling equations can be found in paper I. We included in the calculations six

bending eigenfunctions of C3 and ten rotational eigenfunctions for each bending functions.

The propagator step size was the same as for the RMA calculations.
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Figure 2. Contour plot of the interaction energy for selected values of γ and for ϕ = 180◦. Negative

contour lines (blue) are equally spaced by 4 cm−1. The lowest positive contour line (red) show the

4 cm−1 energy and there is a factor of 2 in energy between successive positive contour lines (red).
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Figure 3. Contour plot of the interaction energy for selected values of γ and for ϕ = 0◦. The

contour lines have the same spacing as in Fig. 2.

IV. RESULTS AND DISCUSSION

A. Features of the potential energy surface

The quality of the fit was checked by using the root means square (RMS) of the differences

between the ab initio and the interpolated energies. For this analysis, we have divided the

grid of points in two regions. As we focus on the collision dynamics at low temperature, we

can define the limit between the two regions by γ = 120◦. For such a bending angle, the

energy of the isolated C3 molecule is around 300 cm−1. Thus the region defined by γ < 120◦

may be represented with less accuracy. In the region γ ≥ 120◦, for the negative interaction

energies E the RMS is 0.09 cm−1, for 0 cm−1 ≤ E ≤ 100 cm−1 the RMS is 0.77 cm−1 and

for 100 cm−1 ≤ E ≤ 5000 cm−1 the RMS is equal to 13.17 cm−1. The second part of the

grid (γ < 120◦) has a RMS of 0.31, 2.68 and 35.46 cm−1 respectively. We have also checked

the quality of the fit of the bending potential of the isolated C3 molecule. The RMS for E <

500 cm−1 is 1.89 cm−1, and for higher energies the relative error is less than 5.4%.

We found that the isolated C3 molecule has a linear structure at equilibrium, with a flat

potential energy which extends from γ = 180◦ until about 160◦.

Figs. 2 and 3 show contour plots of the interaction energy for selected values of γ with ϕ

= 180◦ and ϕ = 0◦ respectively. For a linear configuration of C3, the minimum interaction

energy with He is -26.73 cm−1 at R = 6.82 a0 and θ = 81.4◦. By symmetry, there is a second

minimum at θ = 98.6◦. The barrier to the θ = 90◦ structure is 0.07cm−1. This double

minimum structure disappears when γ decreases as it can be observed in Fig. 2 for ϕ =

10
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180◦. Conversely, the double minimum is more pronounced for ϕ = 0◦ as seen in Fig. 3.

The potential well is 0.9 cm−1 deeper than the previous PES published by Abdallah et al36.

This small difference can arise from the use of a different basis set and a different distance

between the carbon atoms.
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Figure 4. Interaction energy versus the bending angle of C3. All other coordinates R, θ and ϕ are

relaxed.

For R close to the equilibrium value, we can see in Figs. 2 and 3 that the interaction

potential is strongly anisotropic. This is the consequence of the repulsion between He and the

terminal carbon atoms, while the equilibrium structure is almost T-shaped. By comparing

the different panels of Fig. 2, we observe that the long range energy is hardly changed while

the short range energy varies strongly with γ. Consequently, the minimum of the interaction

energy varies significantly with γ. Fig. 4 shows that the minimum of the interaction energy

occurs when C3 is bent. The global minimum of the interaction potential is -36,3 cm−1 and

corresponds to γ = 120◦, R = 6.57 a0, θ = 90◦ and ϕ = 180◦. Thus, the interaction with

He tend to displace the C3 molecule from its linear equilibrium structure, therefore inducing

a coupling between the internal bending motion and the intermonomer motions. But this

coupling is weak. Indeed, if we consider the total potential energy, i.e. the sum of the He-C3

interaction energy and the bending energy of C3, then the global minimum has the geometry

γ = 176.7◦, R = 6.77 a0, θ = 84.1◦ and ϕ = 180◦, with the energy -26.93cm−1. The structure

of this last minimum is close to the equilibrium structure found for γ = 180◦.

By the definition of the coordinates, there is no dependence of the interaction energy

with ϕ when γ = 180◦. But for smaller values of γ, this dependence becomes significant.

Fig 5 shows the contour plot of the interaction energy in function of θ and ϕ, with R and γ
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Figure 5. Contour plot of the interaction energy for γ = 120◦ and R = 6.57 a0. The contour lines

have the same spacing as in Fig. 2.

having the values found for the global minimum.

B. Bound states

In Table II, we report some of the lowest rovibrational energies obtained for the rigid ben-

der C3 molecule by diagonalising the Hamiltonian H (eq. 12), along with the corresponding

vibrational quantum number ν, the total angular quantum number j and its projection K,

and the value of the parameter p. As can be seen in this table, the rigid bender energies

differ from the experimental values by less than 5%. This qualitative agreement indicates

that the rigid bender model is a reliable approximation, at least for the lowest states.

The bound state energies of the He-C3 complex, calculated with the RMA and RB-CC

methods, are presented in Table III. The total angular momentum J and the parity ε

are also reported. The energies computed using the RMA are found to be above those

obtained using the RB-CC with only one exception at J = 4. This general behaviour can

be explained by two factors. First the RMA rotational constant used for C3 differs from

the one obtained from the rigid bender calculations. Secondly, the minimum of the He-C3

interaction potential is not in the linear configuration of C3 as seen in Fig. 4. For J = 4,
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Table II. The rovibrational energies of the rigid bender C3 molecule. The experimental values are

shown in parenthesis.

ν K j p Energy (cm−1)

0 0 0 0 0.00

0 0 2 0 2.65

0 0 4 0 8.83

0 0 6 0 18.53

0 0 8 0 31.76

1 1 1 0 66.41 (63.42)24

1 1 2 1 68.26

1 1 3 0 71.02

1 1 4 1 74.71

1 1 5 0 79.31

1 1 6 1 84.84

1 1 7 0 91.28

1 1 8 1 98.64

1 1 9 0 106.92

2 2 2 0 141.43 (133.07)14

2 2 3 1 144.30

2 2 4 0 148.11

2 2 5 1 152.89

2 2 6 0 158.58

2 2 7 1 165.31

2 2 8 0 172.82

2 2 9 1 181.52

with the RB-CC method, we also found two more bound levels than with the RMA method.

The maximum value of the total angular momentum J leading to bound states is 6 using

both methods. Since the ν = 0 → ν = 1 excitation energy of C3 is larger than the well depth

of the interaction potential, all the He-C3 bound levels correspond to the bending quantum

number of C3 ν = 0. The dissociation energy computed using the RMA is 9.56 cm−1 while it

is 9.73 cm−1 with the RB-CC method. The potential well supports 25 bound levels if C3 is in
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Table III. Bound levels of the C3-He complex.

State RMA RB-CC State RMA RC-CC

J ε Energy (cm−1) Energy (cm−1) J ε Energy (cm−1) Energy (cm−1)

0 + -9,56 -9,73 3 - -6,95 -7,09

0 + -2,89 -3,00 3 - -5,68 -5,81

1 + -3,39 -3,63 3 - -2,50 -2,68

1 - -9,09 -9,26 4 + -5,44 -5,55

1 - -3,85 -4,08 4 + -3,79 -3,92

1 - -2,11 -2,22 4 + – -1,26

2 + -8,19 -8,35 4 + – -1,02

2 + -7,07 -7,18 4 - -4,13 -4,23

2 + -3,40 -3,61 4 - -1,07 -1,01

2 + -0,89 -0,98 5 + -2,05 -2,13

2 - -7,10 -7,20 5 - -3,65 -3,74

2 - -2,32 -2,54 5 - -1,48 -1,62

3 + -5,82 -5,92 6 + -1,58 -1,64

3 + -0,77 -0,95

the linear rigid configuration, and 27 is the bending motion is allowed. The relatively small

differences between the results obtained with the RMA and RB-CC methods suggest that

the RMA approach is a good approximation to compute the bound levels of an atom-triatom

van der Waals complex, even for a very floppy molecule like C3.

V. CONCLUSION

We presented the first four dimensional analytical representation of the PES for the

C3-He complex, including the bending motion of the C3 molecule. This surface is based

on supermolecular ab initio calculations using a quadruple zeta basis set with mid-bond

functions and BSSE correction. The interaction potential has a minimum of -36,30 cm−1

at γ = 120◦, R = 6.57 a0, θ = 90◦ and ϕ = 180◦. The bound states calculations for the

C3-He complex were performed both at the RMA and at the RB-CC levels. The dissociation

energy computed using the RMA is 9.56 cm−1 while it is 9.73 cm−1 at the RB-CC level.
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The agreement between these two values shows that the RMA approach is valid for this

system, mainly because the interaction potential is too shallow to couple excited bending

states of C3, and also because the coupling between the inter- and intra-monomer motions

is weak. More bound levels of lower energy were found however at the RB-CC level as a

consequence of the non-linear geometry of C3 associated with the minimum of the interaction

potential. Future work dedicated to the rovibrational energy transfer in He-C3 collisions

will be presented shortly but we can however already expect that pure rotational transitions

should be calculated correctly at the RMA level.
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R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos,

A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert,

E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu,
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CHAPTER 7

General Conclusions

Conclusions

In this monograph the theoretical studies of four inelastic collisions of as-

trochemical interest were presented. The two first dedicated to the study of

the collisions between two linear molecule were presented in the first part of

this manucript while the two others were presented in the second part deal-

ing with collisions between an atom and a rigid bender triatomic molecule.

The conclusions reached in these two parts will now be reminded and the

possible extensions of this work will also be briefly mentioned.

Inelastic collisions between two rigid linear molecules

In a first part, two studies of collisions of H2 with a rigid linear molecules

were respectively presented for the H2-CS and H2-HCN collisions. For these

two systems a four dimensional PES was first developed. For the H2-CS

system, the ab initio calculations were carried out at the coupled-cluster

level with single and double excitations and a perturbative treatment of

triple excitations, using a quadruple- zeta basis set and midbond functions,

along with BSSE correction. This grid of points was fitted to an analytical

function describing accurately both the region of the well and the long range

asymptotic behaviour. The well depth of this PES is -173 cm−1, and the
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equilibrium configuration is linear with the carbon atom pointing toward

H2. All the rovibrational bound states of the H2-CS complex have been

calculated. The dissociation energies of the ground states of the para and

ortho species were found to be only 35.87 cm−1 and 49.88 cm−1 , respec-

tively, indicating the energies of both ground states are a major part of the

binding potential energy. We determined the cross sections for the first 16

rotational levels of CS, and the respective rate coefficients. In the case of

the para-H2 -CS system, a simple examination of some levels spacing indi-

cate that the CS monomer behaves like a weakly hindered rotor. This is

a consequence of the large zero point energy which allows the para-H2-CS

system to move freely in almost the whole angular coordinates space. A set

of rigid rotor close coupling cross sections for the inelastic collisions of CS

with H2 was also computed using this new 4D PES. For the collision of CS

with para-H2, we observed a propensity to favor odd jCS over even jCS at

low collision energy while at energy close to 1000 cm−1, the propensity rule

is reversed. The same tendency is observed for collisions involving ortho-H2.

However, the inversion takes place at higher collision energy. This effect is

related to the opening of the second channel of H2 (jH2 = 2 for para-H2

or jH2 = 3 for ortho-H2). The cross sections for the rotational transition

of CS in collision with para-H2 were also compared with the scaled cross-

sections available for the collision of CS with He. The usual square root of

the relative mass of the colliders, which is used by astronomers to obtain

the cross sections between a molecule and H2 from the data available with
4He, is found to be a good qualitative approximation for this system.

The second study was dedicated to the HCN-H2 collision considering

HCN to be a rigid linear molecule. The 4D analytical PES developed for

this system was based on a large grid of ab initio points computed at the

CCSD(T)-F12a level and using an aug-cc-pVTZ basis set. The equilibrium

structure of the HCN-H2 complex was found to be linear with the nitrogen

pointing towards H2. The corresponding well depth is 195.20 cm−1. A

secondary minimum was found only 11.61 cm−1 above the global minimum

in which the H atom of HCN is pointing towards the center of mass of

H2. As a first application, the rovibrational bound states were computed

within the rigid-rotor approximation. The total number of bound states

supported by our PES is 101 for HCN-para-H2 and 330 for HCN-ortho-H2.

The dissociation energies of the ground states of the para and ortho species

are 37.79 cm−1 and 60.26 cm−1, respectively. The calculated transitions
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frequencies are found to be in very good agreement with the experimental

available data. This level of agreement suggests that our PES is accurate

enough for computing accurate inelastic cross sections.

Inelastic collisions between an atom and a rigid bender triatomic

molecule

The second part of this manuscript is dedicated to the development of new

approaches allowing to include the bending-rotation interaction in the treat-

ment of the inelastic collisions of a triatomic molecule with an atom. The

two molecules considered are HCN and C3 which both have been detected in

several regions of the ISM and the latter is an archetypal example of a floppy

molecule. These two studies required first the construction of an analytical

model of PES including the bending vibration of the triatomic molecule. We

started with the He-HCN system by building a four dimensional analytical

representation of the PES based on supermolecular ab initio calculations

using a quadruple zeta basis set with mid-bond functions and BSSE cor-

rection. The van der Waals well was found to be 30.35 cm−1 deep and

associated with the linear configuration (He–HCN) while a secondary mini-

mum of 22.08 cm−1 was also identified for a bent configuration. We checked

first that the restriction of this PES to the rigid linear configuration of

HCN gives similar close coupling inelastic cross section than the previous

theoretical works and that the bound states calculated using this restricted

PES are also in good agreement with the available experimental data. We

also presented a simple method (RBAA) of calculation of the rotational

close coupling cross section which uses the average of the interaction po-

tential over the bending wave functions of HCN. We found that taking into

account the bending motion through the RBAA method does not change

significantly the rotational excitation cross sections, while the agreement

of the calculated bound state transition frequencies with the experiment

is marginally improved. This first study shows in any case that the RMA

approach is quite satisfactory for the computation of rotational excitation

cross sections for a linear triatomic molecule like HCN in its fundamental

bending level. In a second publication we presented a new method for cal-

culating exactly rovibrational cross sections for collisions between an atom

and a rigid bender triatomic molecule. The results of this approach called

RB-CC were compared to those obtained when using the RBAA approach.
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We found for this system that the RBAA approach is almost equivalent

to exact calculations for pure rotational transitions taking place inside the

fundamental bending level ν = 0. On the contrary, for transitions involving

two different bending levels, the RBAA approach fails to give an accurate

estimate of the magnitude of the cross sections but gives most of the time

at least the right ranking of the transition cross sections. We then conclude

that l-type transitions cross sections have to be calculated at the RB-CC

level for the He-HCN collision while pure rotational transitions cross sec-

tions may be calculated accurately at the RBAA level.

The last study presented in this manuscript was dedicated to the C3-He

collision. The first four dimensional analytical representation of this PES

which includes the bending motion of the C3 molecule was developed by

fitting a grid of CCSD(T) ab initio points calculated using a quadruple

zeta basis set with mid-bond functions and BSSE correction. The resulting

interaction potential has a minimum of -36,30 cm−1 at γ = 120◦, R = 6.57 a0,

α = 90◦ and ϕ = 180◦. The bound states calculations for the C3-He complex

were performed both at the RMA and at the RB-CC level. The dissociation

energy computed using the RMA is 9.56 cm−1 while it is 9.73 cm−1 at the

RB-CC level. The agreement between these two values shows that the RMA

approach is valid for this system, mainly because the interaction potential

is too shallow to couple excited bending states of C3. More bound levels of

lower energy were found however at the RB-CC level as a consequence of the

non-linear geometry of C3 associated with the minimum of the interaction

potential.

Perspectives

1. A first important use of the results of this work will be found in the

input of the new rate coefficients calculated for H2-CS in the astro-

physical models of the chemistry of dense and diffuse molecular clouds.

2. The cross section and the rate coefficients for the HCN-H2 collision

using the new PES determined in this work will have to be performed

before being also implemented in the same models.

3. An improvement of the RB-CC method will also be considered in the

calculations of the l-doubling transitions cross sections detected in the
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ISM. As we have seen that l-doubling splitting is overestimated when

using the rigid bender approximation, we will use the experimental

values of the rovibrational energies of HCN which are available while

using the rigid bender wave functions.

4. The calculation of the effect of dynamical switching, which is expected

to be small for the lowest bending states of a linear molecule like

HCN and was not taken into account in this first study, will also be

investigated at higher collision energy for this system.

5. While there is no dynamical switching for the He-C3 collision as we

use a different rigid bender Hamiltonian for C3, the test of the use of

experimental rovibrational energies of C3 on the dynamics will also be

of interest and the first determination of rovibrational rate coefficients

needed by the astronomers will be performed shortly.

6. As the RB-CC method applies to any triatomic molecule whether

linear or not, one can also think about many different use of the

RB-CC method for collisions of He with other triatomic molecules or

to model the collisions of these molecules by para or ortho-H2 using

available PES averaged over the H2 rotational state. However as we

know that this approximation sometime fails for the collision between

H2 and a rigid linear molecule, the extension of the RB-CC method

to the case of a rigid linear molecule like H2 interacting with a rigid

bender triatomic molecule will be considered in a future work.
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[6] H. S. Müller, F. Schlöder, J. Stutzki and G. Winnewisser; J. Mol. Struct.

742, 215 (2005)

[7] H. S. P. Müller, S. Thorwirth, D. A. Roth and G. Winnewisser; Astron.

Astrophys. 370, L49 (2001)

[8] S. Green and S. Chapman; Astrophys. J., Suppl. Ser. 37, 169 (1978)

[9] P. P. Papadopoulos; Astrophys. J. 656, 792 (2007)

[10] A. M. Arthurs and A. Dalgarno; Proc. R. Soc. London, Ser. A 256, 540

(1960)

[11] S. Green; J. Chem. Phys. 62, 2271 (1975)

[12] J. M. Launay; J. Phys. B: At. Mol. Phys. 10, 3665 (1977)

[13] T. Stoecklin, A. Voronin and J. Rayez; Physical Review A 66, 042703 (2002)

[14] G. Guillon, T. Stoecklin, A. Voronin and P. Halvick; J. Chem. Phys. 129,

104308 (2008)



BIBLIOGRAPHY 109

[15] J. M. Hutson and S. Green (1994); molscat computer code, version 14

(1994), distributed by Collaborative Computational Project No. 6 of the

Engineering and Physical Sciences Research Council (UK)

[16] The HIBRIDON package was written by M. H. Alexander, D. E.

Manolopoulos, H.-J. Werner, and B. Follmeg, with contributions by P.

F. Vohralik, D. Lemoine, G. Corey, R. Gordon, B. Johnson, T. Or-

likowski, A. Berning, A. Degli-Esposti, C. Rist, P. Dagdigian, B. Pouilly,

G. van der Sanden, M. Yang, F. de Weerd, S. Gregurick, and J. K los,

http://www2.chem.umd.edu/groups/alexander/

[17] M. Dubernet, M. Alexander, Y. Ba, N. Balakrishnan, C. Balança, C. Cec-

carelli, J. Cernicharo, F. Daniel, F. Dayou, M. Doronin et al.; Astron.

Astrophys. 553, 50 (2013)

[18] E. Roueff and F. Lique; Chem. Rev. 113, 8906 (2013)

[19] K. Sakamoto, S. Aalto, A. S. Evans, M. C. Wiedner and D. J. Wilner;

Astrophys. J. Lett. 725, L228 (2010)

[20] J. Cernicharo, M. Agúndez, C. Kahane, M. Guélin, J. Goicoechea,
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