
HAL Id: tel-01135355
https://theses.hal.science/tel-01135355

Submitted on 25 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to numerical methods for all Mach flow
regimes and to fluid-porous coupling for the simulation

of homogeneous two-phase flows in nuclear reactors
Chady Zaza

To cite this version:
Chady Zaza. Contribution to numerical methods for all Mach flow regimes and to fluid-porous coupling
for the simulation of homogeneous two-phase flows in nuclear reactors. Numerical Analysis [math.NA].
Aix Marseille Université, 2015. English. �NNT : �. �tel-01135355�

https://theses.hal.science/tel-01135355
https://hal.archives-ouvertes.fr

École Doctorale 184 – Mathématiques et Informatique

Doctorat Aix-Marseille Université

THÈSE

pour obtenir le grade de docteur délivré par

Aix-Marseille Université

Discipline doctorale “Mathématiques”

présentée et soutenue publiquement par

Chady ZAZA

le 2 février 2015

Contribution à la résolution numérique d’écoulements à

tout nombre de Mach et au couplage fluide-poreux en vue

de la simulation d’écoulements diphasiques homogénéisés

dans les composants nucléaires.

Jury

Mme. Ann ALMGREN, Chercheur, Lawrence Berkeley National Laboratory Rapporteur
M. Benôıt GOYEAU, Professeur, Ecole Centrale Paris Rapporteur
M. Cédric GALUSINSKI, Professeur, Université du Sud Toulon Var Examinateur
M. Thierry GOUDON, Directeur de Recherche, INRIA Sophia Antipolis Examinateur

M. Jean-Marc HÉRARD, Ingénieur Sénior, EDF R&D Examinateur
Mme. Raphaèle HERBIN, Professeur, Aix-Marseille Université Directeur
M. Philippe ANGOT, Professeur, Aix-Marseille Université Codirecteur
M. Michel BELLIARD, Ingénieur, CEA Cadarache Encadrant

éJ. K
Q 	k h. @ð 	QË @ ÉJ. �̄ Õæ� @ , A 	£A 	£ [ù 	®¢�Ó 	á�
Ó

@] �é 	JJ
Ó

@ ÐQk øQ» 	X ú

	̄

In the memory of Amina [Amin Mustapha] Zaza, née Kheraiba

Our doubts are traitors,
And make us loose the good we oft might win
By fearing to attempt.

William Shakespeare, Measure for Measure; I, 4

TABLE OF CONTENTS

Introduction 1

I All-Mach flow solver 5

1 A cell-centered solver for all-Mach flows 7
1.1 Introduction . 7
1.2 Space and time discretization . 9

1.2.1 Discretization of Ω . 9
1.2.2 Discrete gradient and divergence . 9
1.2.3 Upwind choice and discrete divergence operators 11
1.2.4 Time discretization . 12

1.3 Stability of the scheme and existence of a solution 13
1.4 Passing to the limit . 19

2 Application to shock hydrodynamics 29
2.1 The SLK scheme . 29

2.1.1 Time discretization . 29
2.1.2 Space discretization . 30

2.2 Numerical results . 32
2.2.1 One dimensional problems . 32
2.2.2 Two dimensional problems . 34

3 Application to low-Mach flows 43
3.1 Introduction . 43
3.2 Pressure correction scheme . 44
3.3 Spatial discretization . 44

3.3.1 Cell-centered scheme . 45
3.3.2 Staggered scheme . 46

3.4 Discrete properties . 47

3.5 Numerical results . 47

4 Application to two-phase flows 51
4.1 Homogeneous two-phase flow models . 51

4.1.1 GENEPI general model . 52
4.1.2 GENEPI simplified model . 53

4.1.3 Equation of state . 54

v

4.1.4 Drift velocity models . 54

4.2 Numerical method . 55

4.2.1 General projection algorithm . 55

4.2.2 Chisholm scalar slip . 57

4.3 Validation tests . 57

4.3.1 Problem setting . 57

4.3.2 Numerical results . 58

II Adaptive Mesh Refinement 63

5 Adaptive grids 65

5.1 Single hierarchical grid . 67

5.1.1 Representation . 67

5.1.2 Transversal search . 68

5.2 Hierarchy of nested grids . 69

5.2.1 Representation . 69

5.2.2 Grid generation . 70

5.2.3 Examples . 76

6 Solving on composite grids 79

6.1 Fine-fine interfaces . 80

6.1.1 Non-overlapping domain decomposition 81

6.1.2 Iterative substructuring algorithms . 86

6.1.3 Ghost-cell equivalent decomposition . 88

6.1.4 Numerical tests . 91

6.2 Coarse-fine interfaces . 96

6.2.1 Domain decomposition with non-matching grids 96

6.2.2 Composite discretizations using interpolation 98

6.3 Multigrid methods . 101

6.3.1 Multigrid on uniform grids . 101

6.3.2 Multigrid on adaptive grids . 103

7 Application to compressible flows 109

7.1 2D Riemann problem . 109

7.1.1 Problem setting . 109

7.1.2 Numerical results . 111

7.2 Double Mach Reflection . 112

7.2.1 Introduction . 112

7.2.2 Shock diffraction . 113

7.2.3 Problem setting . 117

7.2.4 Adaptive and uniform grid solutions . 120

7.2.5 Local refinement on the Mach reflections 121

III Fluid-porous interface problem 133

8 Modelling at different scales 135
8.1 Porous model in GENEPI . 135

8.1.1 Governing equations . 135
8.1.2 Discussion . 136

8.2 Modelling cross-flow filtration . 136
8.2.1 Filtration phenomena . 138
8.2.2 Fluid-porous models . 139

9 Convective regime 141
9.1 Previous work . 141

9.1.1 Experimental observations . 141
9.1.2 Interface models . 142

9.2 Proposed interface condition . 143
9.3 Problem setting . 143

9.3.1 Continuous problem . 143
9.3.2 Numerical methods . 144

9.4 Numerical Results . 147
9.4.1 Overview . 147
9.4.2 Interface condition parameters . 149
9.4.3 Validity for a channel flow . 150
9.4.4 Validity for a thin film flow . 151

Conclusion 163

Bibliography 173

INTRODUCTION

Industrial problem

The most widely built Generation II nuclear reactors are the Pressurized Water Reactors
(PWR). Figure 1 gives a simplified overview of the interaction between the different components
of a PWR. Water circulates inside the two independent loops with the help of two pumps. The
water of the primary loop (contaminated), in liquid state, is heated by the core’s fuel rods. This
heat is transferred to the secondary loop (uncontaminated) using a steam generator. The latter
generates steam at high pressure which later expands in a turbine, thereby producing electricity
injected into the power grid. The high pressure steam comes back to liquid state after passing
through a condenser. The nominal electric power generated by a PWR is about 1 GWe.

FIG. 1 – Diagram of a Pressurized Water Reactor (courtesy of U.S. NRC). The steam generator is
framed in red.

Within the LMEC (Component Scale Modelling Laboratory) at CEA and more broadly at
the STMF (Thermohydraulics and Fluid Mechanics Section) there is particular focus on steam
generators, either at the component scale (eg. design of steam generators with the GENEPI
code) or at the system scale (eg. nuclear safety analysis with the CATHARE code). Therefore
we are interested in global energy balances of steam generators at the component scale rather
than in the complex structure of the flow at the smallest scales therein.

An example of steam generator is depicted in figure 2. The main elements of a steam
generator are the evaporator and the dryers. The evaporator is constituted of about 3000 U-

1

tubes made of copper. This array of tubes is held by horizontal support plates and it features
anti-vibration bars at its outflow. The liquid water of the primary loop, at high temperature,
flows inside these tubes. Liquid water from the secondary loop is injected at the top of the
evaporator reaches the U-tubes at the bottom, perpendicularly to them. As the flow goes up,
a bubbly flow develops and at the top of the evaporator steam is generated, high pressure and
temperature. The dryers then further improve the vapor quality.

������
������
������

������
������
������

Secondary loop, outflow

(steam)

Secondary loop, inflow

(liquid)

Primary loop, inflow Primary loop, outflow

U−tubes (~3000)

3m

10m
Evaporator

Divider plate

FIG. 2 – Left: the upper part of a steam generator (courtesy of U.S. NRC). Right: simplified represen-
tation of a steam generator.

The geometry of a steam generator is thus very complex, and it is not affordable nor of
interest for our industrial applications to compute the flow at the typical scale separating the
U-tubes. In nuclear codes, in particular in the GENEPI code, the array of tubes is represented by
a porous medium. This equivalent porous medium has two interfaces with the plain fluid regions:
at the bottom where the liquid water of the secondary loop attacks the tubes perpendicularly
and then on the upper part (also called “chignon”) where a bubbly flow leaves the array of
U-tubes.

Layout of the thesis

Our aim is to contribute some efficient methods for the numerical simulation of pressurized water
reactors. We hope to do so by developing some efficient all Mach solvers with adaptive mesh
refinement, and by studying the modelling of the free fluid– porous interface. This thesis thus
consists in three parts, namely the development of all-Mach solver, followed by a construction
of of an adaptive mesh refinement procedure to implement it efficiently, and finally a study of
the fluid-porous interface problem. Let us now give a short description of each part.

All-Mach solver

The simulation of compressible two-phase flows in PWR is a very complex problem, involving
different flow regimes and several space scales. When dealing with accident scenarios such as
SBLOCA (Small Break Loss Of Coolant Accident) flow variables can exhibit very fast and
important variations and supersonic regions may appear. On the other hand, at the nominal
regime, the flow is in the low-Mach regime and is almost at steady state.

It is therefore of great interest to develop numerical methods that would be able to handle
any of these regimes, i.e. at all Mach numbers. Such a class of methods was recently introduced
for staggered finite volumes [87, 76]. Following the original ideas of [76], we introduce in
this first part a new pressure-correction scheme for cell-centered finite volumes for solving the
compressible Navier-Stokes and Euler equations at all Mach number. This numerical scheme is
proved to be well posed and to converge to weak form of the compressible Euler equations. The
pressure-correction scheme handles naturally low-Mach flows, and this is verified numerically.
More importantly, the scheme is tested on highly compressible flows with 1D and 2D Riemann
problems. The cell-centered discretization allows more easily the formulation of two-phase flow
models, which is the purpose of the last chapter of this part. Our pressure-correction scheme is
extended to the compressible two-phase flow models of the GENEPI code, and validated on a
dedicated benchmark.

Adaptive Mesh Refinement

Adaptive resolution techniques are of major interest in the industry, as they allow the simulation
of large scale problem with an optimal resolution in relevant regions. As a result, numerical
simulations can be performed with an accuracy beyond the limits which would be imposed by
available computing resources without adaptive refinement.

In this second part, we present an extension of our pressure-correction scheme to handle
adaptive grids. More precisely, block structured adaptive mesh refinement (SAMR) will be con-
sidered. The first part of this work is directed towards algorithms for adaptive mesh generation.
A clustering algorithm is tested and improved for the needs of our numerical methods. The
modified algorithms are assessed on several standard tests. Then the issue of the discretization
and of the resolution of semi-implicit schemes on adaptive grids is addressed. The classical
techniques for managing partitioned level grid are interpreted using domain decomposition con-
cepts. Finally a multigrid-AMR solver is presented for solving our pressure correction scheme on
adaptive grids. The numerical method is implemented in a numerical code “MNFD” developed
from scratch for the purpose of this work. The validation of the subsequent all-Mach adap-
tive pressure-correction scheme is tested on a 2D Riemann problem and on a Mach reflection
problem. An extensive analysis of the numerical results is provided in order to ultimately have
an insight on the suitability of our the adaptive scheme for complex flow regimes in nuclear
reactors.

Fluid-porous interface problem

As previously explained, porous models play an important role in the simulation of steam
generators. A particular problem of interest is the modelling at the interface between the
porous medium representing the evaporator and the free-fluid at the inflow and outflow.

In a bid to improve existing fluid-porous modelling in GENEPI, we focus on the classical
issue of fluid-porous interface model at the macroscopic scale. This is a two fold problem. On

the one hand, interface conditions have to be relevant with respect to the physical regimes under
consideration. On the other hand, these transmission conditions must be compatible with the
partial differential equation governing the free-fluid flow and the flow in the porous medium, so
as to the well-posedness of the coupled problem. In this part, we address the modelling side of
the problem for highly convective flow governed by the incompressible Navier-Stokes equations.
An interface condition derived from a kinetic energy balance is proposed and verified with direct
simulations on about a hundred of flow configurations.

Part I

All-Mach flow solver

5

Chapter 1

A CELL-CENTERED NAVIER-STOKES SOLVER FOR ALL-MACH
FLOWS

1.1 Introduction

In this work we address the issue of solving the compressible Navier-Stokes equations:

∂tρ+ div(ρu) = 0 (1.1.1a)

∂t(ρu) + div(ρu⊗ u) +∇ p− div(τ (u)) = 0 (1.1.1b)

∂t(ρE) + div(ρEu) + div(pu)− div(τ (u) · u) = 0 (1.1.1c)

ρ ≥ 0, e ≥ 0, p = (γ − 1)ρe, E =
1

2
|u|2 + e, (1.1.1d)

τ (u) = µ(∇u+∇t u)− 2

3
µdivu I (1.1.1e)

where u, ρ, p, E, e, µ and γ denote the velocity, the density, the pressure, the total energy, the
internal energy, the dynamic viscosity and the heat capacity ratio, with suitable boundary and
initial conditions on p, ρ and e. In the case of µ = 0 the system reduces to the compressible
Euler equations, which is the main concern of this work.

The problem is defined over Ω × (0, T), where Ω is an open bounded connected subset of
Rd, d = 1, 2 or 3 and (0, T) is a finite time interval. The system is complemented by initial
conditions for ρ, e and u, which are denoted by ρ0, e0 and u0, with ρ0 > 0 and e0 > 0. For
simplicity, in the exposition and in the study of the numerical scheme we shall consider the
boundary condition u ·n = 0, where n stands for the normal vector to the boundary, but other
conditions are also implemented (see section 2.2).

Defining a robust scheme for the numerical solution of the compressible Euler equations at
all Mach regimes is a challenging issue. Indeed in the zero Mach limit the pressure gradient has a
singular limit and the acoustic time scale vanishes [4]. As a result, approximate Riemann solvers
face severe limitations, among which the loss of accuracy of the pressure gradient approximation
and the time step limitation [42, 128, 73]. Pressure-correction methods may be relevant for
addressing this issue, in particular because of their built-in stability properties.

Pressure-correction schemes were originally introduced in the late 60’s by Chorin [43] and
Temam [123, 124] for the incompressible Navier-Stokes equations. One of the first attempts
to extend projection methods to compressible flows also dates back to 1968 with the ICE
method [74] of Harlow and Amsden. The implicitation of the incompressible terms avoids a
CFL time step restriction with respect to the speed of sound but because the method is not
conservative, shock speeds are miscalculated. Further approaches, this time limited to low-
Mach numbers, include the method of Colella and Pao [47] with a Hodge decomposition on all

7

8 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

flow variables and the SIMPLE algorithm of Karki and Patankar [85] with a projection step
on the mass balance. More recently Degond and Tang [48] introduced a scheme for solving the
isentropic Euler equations based on a splitting of the pressure gradient into an explicit part
and an implicit part. Their scheme is proved to be asymptotically preserving and numerical
experiments show correct shock speeds.

Having also in mind the extension of incompressible projection schemes to high Mach
regimes, we introduce an original pressure-correction scheme for cell-centered finite-volumes,
extending the ideas of [71, 77] developed for staggered finite volumes. We choose to formulate
the compressible Euler equations with the internal energy rather than with the total energy:

∂tρ+ div(ρu) = 0 in Ω× [0, T] (1.1.2a)

∂t(ρu) + div(ρu⊗ u) +∇ p = 0 in Ω× [0, T] (1.1.2b)

∂t(ρe) + div(ρeu) + p div(u) = 0 in Ω× [0, T] (1.1.2c)

ρ ≥ 0, e ≥ 0, p = (γ − 1)ρe (1.1.2d)

with suitable boundary conditions on p, ρ and e. Using an internal energy balance is often
more convenient for engineering applications and makes easier the extension of the scheme to
homogeneous two-phase flow models. But the main advantage of dealing with the internal
energy formulation lies in the ability to control the positivity of the internal energy through
the numerical scheme, thanks to an upwind procedure. However, it is well known that a blunt
discretization in non-conservative variables generally leads to non-entropic solutions. Indeed a
straightforward upwind discretization of system (1.1.2) introduces a numerical viscosity which
creates source terms in the internal energy balance and in the kinetic energy balance; these terms
are localized at shocks and their measure does not vanish as the space and time discretization
steps tend to zero. This becomes clear when deriving a discrete kinetic energy inequality from
equations (1.1.2b) and (1.1.2a), following the continuous method. A positive residual term
appears, yielding an L2 estimate on the solution which does not tend to zero with the mesh
size. A careful choice of a corrective term in the discrete internal energy balance must then
be performed to compensate this residual term in the discrete total energy balance and thus
ensure the consistency of the scheme.

Our scheme follows two steps. First a tentative velocity is computed from the momentum
balance. As in [77, 71], a scaling is introduced on the pressure gradient of the momentum
balance in order to allow the derivation a discrete kinetic energy balance. In a second step,
a non-linear system is solved to find a pressure correction to the velocity such that the mass
balance and the internal energy balance are satisfied.

We prove the existence of a discrete solution in the multi-dimensional case. The positivity
of the internal energy in the pressure-correction scheme is proved under the assumption that
the corrective source term is positive, which is ensured by construction. For a solution featuring
shocks we prove the consistency, in the sense that a limit of a converging sequence of solutions
is shown to satisfy the weak form of the Euler equations (1.1.1). Therefore our scheme preserves
the energy of the flow (i.e. the integral of the total energy over the computational domain),
and keeps the velocity and pressure constant across the 1-dimensional contact discontinuity.

This article is organized as follows. In section 2, we introduce the cell-centered finite-
volume discretization of the compressible Euler equations. Our pressure-correction scheme is
given in section 3 along with the derivation of the source term of the internal energy balance.
In section 4, we show several discrete properties of the numerical scheme. Section 5 introduces
another pressure correction scheme called SLK [102] which will be compared to our method in

§1.2] SPACE AND TIME DISCRETIZATION 9

the numerical experiments of section 6.

1.2 Space and time discretization

1.2.1 Discretization of Ω

Let T be a family of disjoint convex polygonal subsets of Ω, called control volumes, such that
Ω̄ = ∪K∈T K̄. For a control volume K, we denote ∂K = K̄ \ K its boundary and |K| its
d-dimensional measure.

The edges (d = 2) or faces (d = 3) of all control volumes of T form a family E of disjoint
subsets of Ω̄ such that for all σ ∈ E there exists H ⊂ Rd−1 and K ∈ T with σ̄ = ∂K ∩H 6= ∅.
The (d − 1)-dimensional measure of an edge σ ∈ E is denoted |σ|. We define EK the subset of
edges σ ∈ E verifying σ ∩ ∂K 6= ∅. Given two control volumes K,L ∈ T 2 with K̄ ∩ L̄ = σ̄ 6= ∅
we denote their common edge σ = K|L. The normal vector to a face σ pointing outwards the
control volume K ∈ T is denoted by nK,σ = nK|L = −nL|K .

dK,L

|σ|

K

L

nK,σ

σ

xK
xL

FIG. 1.1 – Cell-centered finite-volume discretization.

We define the family P = (xK)K∈T of points of Ω, where xK ∈ K. For an interface σ ∈ Eint

separating cells K and L, the point xσ of σ ∈ E is defined as the intersection between the line
segment xKxL and the hyperplane containing σ We define

dK,L = |xK − xL| and dK,σ = |xK − xσ|, (1.2.1a)

αK,L =
dL,σ
dK,L

and αL,K =
dK,σ
dK,L

. (1.2.1b)

where | · | is the L2 norm in Rd.
The set of strictly interior edges is denoted by Eint, and the set of edges lying on the boundary

is denoted by Eext. For simplicity, we shall assume in the exposition of the scheme that u ·n = 0
on the boundary ∂Ω.

We also introduce the size of a control volume hK = diam(K), the size of an edge hK|L =
(hK + hL)/2 and the global mesh size hT = supK∈T hK .

1.2.2 Discrete gradient and divergence

The discrete velocity divergence and pressure gradient operators are defined by duality; indeed,
we look for a discrete equivalent of the following statement: if u : Ω → Rd and p : Ω → R are

10 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

sufficiently regular functions such that u · n = 0 on ∂Ω then∫
Ω

(p divu+ u · ∇ p) dx = 0.

Lemma 1.2.1 (Discrete divergence and discrete gradient). Let T be a finite volume mesh as
defined in the previous section, and for K,L ∈ T , let αK,L and αL,K be defined by (1.2.1b).
Let (uK)K∈T be a discrete velocity field, (pK)K∈T be a discrete pressure field. We define the
discrete divergence of the velocity field by:

divK(u) =
1

|K|
∑

σ∈E(K)

|σ|uK,σ, ∀K ∈ T , (1.2.2)

where

uK,σ =

{
uσ,c · nK,σ ∀σ ∈ Eint,

0 ∀σ ∈ Eext,
and uσ,c = αL,KuK + αK,LuL for σ = σKL ∈ Eint. (1.2.3)

with σKL denoting the interface between cells K and L. Next we define the discrete gradient of
the pressure field by

∇Kp =
1

|K|
∑

L∈N (K)

|σKL|(αK,LpK + αL,KpL)nK,L +
∑

σ∈Eext∩EK

|σ|pKnK,σ, ∀K ∈ T , (1.2.4)

where N (K) denotes the set of the neighbouring cells to K. Then:∑
K∈T

|K| (uK · ∇Kp+ pK divK u) = 0. (1.2.5)

Furthermore,

uK · ∇Kp+ pK divK u = d̃ivK(pu),

with d̃ivK(pu) =
1

|K|
∑
σ∈EK

|σ|(p̃u)σ · nK,σ

and (p̃u)σ =

{
αL,KpLuK + αK,LpKuL for σ = K|L ∈ Eint,

0 if σ ∈ Eext.

(1.2.6)

Proof. From the definition (1.2.2) of the discrete divergence operator, we have∑
K∈T

|K|pK divK u =
∑
K∈T

pK
∑

L∈N (K)

|σKL|(αL,KuK + αK,LuL) · nK,L

=
∑
K∈T

pK
∑

L∈N (K)

|σKL|αL,KuK · nK,L +
∑
K∈T

pK
∑

L∈N (K)

|σKL|αK,LuL · nK,L

We rewrite the second sum of the right hand side as:∑
K∈T

pK
∑

L∈N (K)

|σ|αK,LuL · nK,L =
∑
σ∈Eint
σ=K|L

|σ|(pKαK,L)uLnK,L + pLαL,KuK · nL,K)

=
∑
K∈T

∑
L∈N (K)

|σKL|pLαL,KuK · nL,K ,

§1.2] SPACE AND TIME DISCRETIZATION 11

and therefore∑
K∈T

|K|pK divK u =
∑
K∈T

∑
L∈N (K)

|σKL|(αL,KpK − αL,KpL)uK · nK,L

= −
∑
K∈T

 ∑
L∈N (K)

|σKL|(αK,LpK + αL,KpL)uK · nK,L −
∑

σ∈Eext∩EK

|σ|pKnK,σ

 ,
thanks to the fact that αL,K = 1 − αK,L and that

∑
σ∈EK |σ|pKuK · nK,σ = 0. This concludes

the proof of (1.2.5).

Let us now turn to the proof of (1.2.6). By definition,

|K|(uK ·∇Kp+pK divK u) =
∑

L∈N (K)

|σKL| [(αK,LpK + αL,KpL)uK · nK,L + pK(αL,KuK + αK,LuL) · nK,L]

+ uK ·
∑

σ∈Eext∩EK

|σ|pKnK,σ.

Therefore,

|K|(uK · ∇Kp+ pK divK u) =
∑

L∈N (K)

|σKL| (αL,KpLuK · nK,L + pKαK,LuL · nK,L)

+
∑

L∈N (K)

|σ|pKuK · nK,L +
∑

σ∈Eext∩EK

|σ|pKuK · nK,σ

= d̃ivK(pu),

which concludes the proof.

1.2.3 Upwind choice and discrete divergence operators

We need to discretize the term div(ρu) in the mass equation (1.1.2a) and div(eρu) in the
momentum equation (1.1.2b). If ρ : Ω → R, e : Ω → R, and u → Rd are regular functions on
the cells of a given mesh T of Ω then the Stokes formula yields∫

Ω
div(ρu) =

∑
σ∈EK

∫
σ
ρu · nK,σ dγ = 0,

(where dγ denotes the integration with respect to the d− 1 dimensional measure on ∂Ω).

Consider now the functions ρ : Ω→ R, e : Ω→ R and u→ Rd which are piecewise constant
on the cells of a given mesh T of Ω. The numerical flux associated with the normal flux in the
Stokes formula reads:

FK,σ = |σ|ρσuK,σ (1.2.7)

where uK,σ is defined by (1.2.3) and the edge value ρσ at σ = K|L ∈ Eint is the upwind value
of ρ on edge σ. We recall that for a given piecewise constant function a, the upwind choice aσ
on an edge σ of the mesh is defined by:

aσ = εK,σaK + (1− εK,σ)aL with εK,σ =

{
1 if uK,σ > 0
0 else.

(1.2.8)

12 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

We may thus define a discrete divergence operator of the functions ρu and ρeu as:

divK(ρu) =
∑
σ∈EK

|σ|FK,σ and divK(ρeu) =
∑
σ∈EK

|σ|eσFK,σ, (1.2.9)

where eσ is the upwind value of e on the edge σ of the mesh, as defined by (1.2.8).
In the same spirit, we discretize the non linear convection term div(ρu⊗v) in the following

way. Let ρ : Ω→ R, u,v : Ω→ Rd be piecewise constant functions on the cells of a given mesh
T of Ω

divK(ρu⊗ v) =
∑
σ∈EK

|σ|vσρσuK,σ,

where vσ is the upwind edge value of v defined by (1.2.8) (componentwise).

1.2.4 Time discretization

We are now ready to introduce the space-time discretization of Problem (1.1.2). For the sake of
clarity, we start with an implicit-in-time scheme. Let δt be a time discretization step, which we
assume to be constant for the sake of simplicity. Let N ∈ N be the number of time discretization
steps, and let δt = T

N be the time step; the discrete time is defined as tn = nδt for n ∈ J0, NK.
The scheme is colocated; the discrete unknowns are therefore the discrete density, internal
energy and velocity fields {ρnK , enK ,unK ;K ∈ T , n ∈ J1, NK}. Assuming a given initial state
(ρ0
K ,u

0
K , e

0
K)K∈T and p0

K = (γ − 1)ρ0
Ke

0
K , the implicit-in-time discretization of the original

problem (1.1.2) reads:

∀K ∈ T , ∀n ∈ J0, N − 1K,
|K|
δt

(ρn+1
K − ρnK) + divK(ρn+1un+1) = 0, (1.2.10a)

|K|
δt

(ρnKu
n+1
K − ρn−1

K unK) + divK(ρnun ⊗ un+1) +∇Kpn = 0, (1.2.10b)

|K|
δt

(ρn+1
K en+1

K −ρnKenK) + divK(en+1ρn+1un+1) + pn+1
K divK(un+1) = Sn+1

K (1.2.10c)

pn+1
K = ℘(ρn+1

K , en+1
K), (1.2.10d)

where divK and ∇K denote the values of the discrete divergence and discrete gradient operators,
defined in Lemma 1.2.1. Sn+1

K is a corrective term needed for the scheme to converge to a weak
solution of the Euler equations and which is defined in the sequel.

In real-life applications, the implicit scheme is too expensive in terms of memory and CPU
requirements, and semi-implicit schemes are often preferred. We choose here a projection scheme
which was recently developed for staggered schemes in [77].

As in incompressible pressure-correction schemes, a tentative velocity is computed using the
momentum balance (4.2.3). Then a non-linear problem is solved in order to find a pressure
correction to the velocity (4.2.4) such that the mass balance (4.2.5) and the internal energy
balance (4.2.6) are verified. In some respect, the velocity update (4.2.4) can be interpreted as
a Hodge decomposition [91].

Initialization

∀K ∈ T , ρ0
K , u

0
K , p

0
K given; ρ−1

K = ρ0
K ; e0

K = p0
K/(γ − 1)ρ0

K ; (1.2.11)

Iterations for n = 0, 1, . . . , N − 1:

§1.3] STABILITY OF THE SCHEME AND EXISTENCE OF A SOLUTION 13

• Prediction: compute ũn+1
K by solving for all K ∈ T ,

|K|
δt

(ρnKũ
n+1
K − ρn−1

K unK) + divK(ρnun ⊗ ũn+1) + ∇̃Kp
n

= 0, (1.2.12)

with ∇̃Kp
n

=

√
ρnK
ρn−1
K

∇Kpn (1.2.13)

• Projection-correction: compute un+1
K , pn+1

K , en+1
K , ρn+1

K by solving the non-linear system
of equations for all K ∈ T ,

|K|
δt
ρnK
(
un+1
K − ũn+1

K

)
+ |K|

(
∇Kpn+1 − ∇̃Kp

n
)

= 0, (1.2.14a)

|K|
δt

(ρn+1
K − ρnK) + divK(ρn+1un+1) = 0, (1.2.14b)

|K|
δt

(ρn+1
K en+1

K − ρnKenK) + divK(en+1ρn+1un+1) + pn+1
K divK u

n+1 =Sn+1
K (1.2.14c)

pn+1
K = (γ − 1)ρn+1

K en+1
K . (1.2.14d)

1.3 Stability of the scheme and existence of a solution

Proposition 1.3.1 (Positivity of the internal energy). Assume that ∀K ∈ T , enK ≥ 0, Sn+1
K ≥ 0

and ρnK > 0, and let Sn+1
K and Sn+1

K satisfy (4.2.3)–(1.2.14d) then

∀K ∈ T , ρn+1
K and en+1

K ≥ 0,

Proof. The positivity of the density is a consequence of the upwind discretization of the mass
balance equation, see e.g. [65, Lemma 2.1]. We now show that the internal energy remains
positive as long as the source term Sn+1

K of the internal energy balance is positive.
Multiplying the internal energy equation (4.2.6) by (en+1

K)− we get:

T1 + T2 + T3 = 0,

with:

T1 = −
∑
K∈T

(en+1
K)−|K|

[
1

δt
(ρn+1
K en+1

K − ρnKenK) + divK(en+1ρn+1un+1)

]
T2 = −

∑
K∈T

|K|
[
pn+1
K (en+1

K)− divK(ρn+1un+1)
]

T3 =
∑
K∈T

[
(en+1
K)−Sn+1

K

]
.

The term T2 is equal to zero, thanks to the form of the EOS (1.2.14d) and to the fact
that (en+1

K)− = −min(0, en+1
K). The positivity of Sn+1

K ensures that T3 ≥ 0. By applying
Lemma 1.3.2 — which we recall below — on T1 we get:

T1 ≥
1

2

∑
K∈T

|K|
δt

{
ρn+1
K [(en+1

K)−]2 − ρnK [(enK)−]2
}

=
1

2

∑
K∈T

|K|
δt

(
ρn+1
K (en+1

K)−
)2

14 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

thanks to the fact that enK ≥ 0. Gathering all terms yields∑
K∈T

|K|
δt
ρn+1
K [(en+1

K)−]2 ≤ 0

As a result, for all K ∈ T , min(en+1
K , 0) = 0 and therefore en+1

K ≥ 0.

Lemma 1.3.2 (Lemma 2.2, [65]). Let (ρK)K∈T ⊂ R+, (ρ∗K)K∈T ⊂ R+ (uK,σ)K∈T ,σ∈EK ⊂ R be
three families of real numbers satisfying:

∑
K∈T

 |K|
δt

(ρK − ρ∗K) +
∑
σ∈EK

|σ|ρσuK,σ

 = 0

Then, for all real number yK we have:

−
∑
K∈T

(yK)−

 |σ|
δt

(ρKyK − ρ∗Ky∗K) +
∑
σ∈EK

|σ|yσρσuK,σ

 ≥ 1

2

∑
K∈T

|K|
δt

{
ρK [(yK)−]2 − ρ∗K [(y∗K)−]2

}

Let us now give a lemma which is a direct consequence of Lemma A.2 (ii) from [77], and
which is used to construct a positive corrective source term in the internal energy balance.

Lemma 1.3.3. Let T be a mesh of Ω, ρ = (ρK)K∈T , ρ∗ = (ρ∗K)K∈T , u = (uK)K∈T , u∗ =
(u∗K)K∈T . Let FK,σ and divKbe defined by (1.2.2)–(1.2.7); then the following result holds:[
|K|
δt

(ρKuK − ρ∗Ku∗K) + divK(ρu)

]
· uK =

|K|
2δt

(
ρK |uK |2 − ρ∗K |u∗K |2

)
+

1

2

∑
σ∈EK

uK · uLFK,σ

+
|K|
2δt

ρ∗K(uK − u∗K)2 +
1

4

∑
σ∈EK

(uK − uL)2 |FK,σ|

Proof. First we apply Lemma A.2 (ii) from [77] with ψ(s) = s2/2, which yields for all K ∈ T : |K|
δt

(ρKuK − ρ∗Ku∗K) +
∑
σ∈EK

uσFK,σ

·uK = −

 |K|
2δt

(
ρK |uK |2 − ρ∗K |u∗K |2

)
+

1

2

∑
σ∈EK

|uσ|2FK,σ


+
|K|
2δt

ρ∗K(uK − u∗K)2 − 1

2

∑
σ∈EK

(uσ − uK)2FK,σ.

Introducing the following decomposition of the upwind value uσ with respect to the numerical
flux FK,σ:

FK,σuσ =
FK,σ

2
(uK + uL) +

|FK,σ|
2

(uK − uL), ∀σ = K|L ∈ Eint, (1.3.1)

we can rewrite the two edge values as:

1

2

∑
σ∈EK

|uσ|2FK,σ−
1

2

∑
σ∈EK

(uσ−uK)2FK,σ =
1

2

∑
σ∈EK∩Eint
σ=K|L

uK ·uLFK,σ+
1

2

∑
σ∈EK∩Eint
σ=K|L

(uK−uL)·uK |FK,σ|.

§1.3] STABILITY OF THE SCHEME AND EXISTENCE OF A SOLUTION 15

We thus get |K|
δt

(ρKuK − ρ∗Ku∗K) +
∑
σ∈EK

uσFK,σ

 · uK =
|K|
2δt

(
ρK |uK |2 − ρ∗K |u∗K |2

)
+

1

2

∑
σ∈EK∩Eint
σ=K|L

uK · uLFK,σ +
|K|
2δt

ρ∗K(uK − u∗K)2 +
1

4

∑
σ∈EK∩Eint
σ=K|L

(uK − uL)2 |FK,σ|+ TK

(1.3.2)

with the residual term:

TK =
1

2

∑
σ∈EK∩Eint
σ=K|L

|σ|(uK − uL) · uKρσ|uK,σ| −
1

4

∑
σ∈EK∩Eint
σ=K|L

(uK − uL)2|FK,σ|

=
1

4

∑
σ∈EK∩Eint
σ=K|L

(|uK |2 − |uL|2)|FK,σ|.

Hence
∑

K∈T TK = 0, and we conclude the proof by summing (1.3.2) over K ∈ T .

Thanks to this lemma, we now derive a discrete kinetic energy balance from the momentum
balance (4.2.3), the mass balance (4.2.5) and the velocity update (4.2.4) in the same fashion as
in the staggered discretization [77].

Proposition 1.3.4 (Discrete kinetic energy balance). Let (ρnK , e
n
K ,u

n
K , ũ

n
K , p

n
K) K∈T

n∈J0,N−1K
be a

solution to (4.2.3)-(1.2.14); then the following local discrete kinetic energy balance holds for all
K ∈ T , n ∈ J0, N − 1K:

|K|
2δt

(
ρnK |un+1

K |2 − ρn−1
K |unK |2

)
+

1

2

∑
σ∈EK∩Eint
σ=K|L

ũn+1
K ·ũn+1

L FnK,σ+un+1
K ·∇Kpn+1 +Pn+1

K = Rn+1
K

(1.3.3)
where:

Rn+1
K = −|K|

2δt
ρn−1
K (ũn+1

K − unK)2 − 1

4

∑
σ∈EK∩Eint
σ=K|L

|ũn+1
K − ũn+1

L |2|FnK,σ|, (1.3.4)

Pn+1
K =

δt

2|K|ρnK

∣∣∇Kpn+1
∣∣2 − δt

2|K|ρn−1
K

|∇Kpn|2 . (1.3.5)

Proof. We start from the momentum balance (4.2.3) multiplied by the predicted velocity ũn+1
K ,

for a given control volume K ∈ T : |K|
δt

(ρnKũ
n+1
K − ρn−1

K unK) +
∑
σ∈EK

|σ|ũn+1
σ ρnσu

n
K,σ

 · ũn+1
K +

√
ρnK
ρn−1
K

ũn+1
K · ∇Kpn = 0

16 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

applying Lemma 1.3.3 we have:

|K|
2δt

[
ρnK |ũn+1

K |2 − ρn−1
K |unK |2

]
+

1

2

∑
σ∈EK∩Eint
σ=K|L

|σ|ũn+1
K · ũn+1

L ρnσu
n
K,σ

+
|K|
2δt

ρn−1
K (ũn+1

K − unK)2 +
1

4

∑
σ∈EK∩Eint
σ=K|L

|σ|(ũn+1
K − ũn+1

L)2ρnσ|unK,σ|

+

√
ρnK
ρn−1
K

ũn+1
K ∇Kpn = 0 (1.3.6)

The velocity update (4.2.4) can be rewritten as:

|K|
δt

√
ρnKu

n+1
K +

1√
ρnK
∇Kpn+1 =

|K|
δt

√
ρnKũ

n+1
K +

1√
ρn−1
K

∇Kpn

By taking the square of the previous equality and then multiplying by δt
2|K| we get:

|K|
2δt

ρnK |ũn+1
K |2 +

√
ρnK
ρn−1
K

ũn+1
K · ∇Kpn =

|K|
2δt

ρnK |un+1
K |2 + un+1

K · ∇Kpn+1

+
δt

2|K|ρnK

[
∇Kpn+1

]2 − δt

2|K|ρn−1
K

[∇Kpn]2 (1.3.7)

We conclude the proof by summing equations (1.3.7) and (1.3.6).

Let us now define the source term of the internal energy balance as Sn+1
K = −Rn+1

K :

Sn+1
K =

|K|
2δt

ρn−1
K (ũn+1

K − unK)2 +
1

4

∑
σ∈EK∩Eint
σ=K|L

|σ|
(
ũn+1
K − ũn+1

L

)2
ρnσ|unK,σ| (1.3.8)

which is obviously positive.
Furthermore with this definition of the source term Sn+1

K , the following discrete energy
balance holds:

Proposition 1.3.5 (Local total energy balance). Assume that ℘ is given by (1.2.14d), that
ρ0 ≥ 0 and e0 ≥ 0, and that {ρnK , enK ,unK ,K ∈ T , n ∈ J0, NK} is a solution to the scheme (4.2.1)–
(1.2.14). Then the following local total energy balance holds for all K ∈ T and n ∈ {0, . . . , N}:

|K|
δt

(
(ρ̃KEK)n+1 − (ρ̃KEK)n

)
+
∑
σ∈EK

|σ|en+1
σ ρn+1

σ un+1
K,σ +

1

2

∑
σ∈EK∩Eint
σ=K|L

|σ|ũn+1
K · ũn+1

L ρnσu
n
K,σ

+ |K|d̃ivK(pu) + Pn+1
K = 0, (1.3.9)

where

(ρ̃KEK)n = ρnKe
n
K +

1

2
ρn−1
K |unK |2 (1.3.10)

and where Pn+1
K is defined by (1.3.5).

§1.3] STABILITY OF THE SCHEME AND EXISTENCE OF A SOLUTION 17

Proof. From the definition of the source terms Rn+1
K and Sn+1

K , summing the kinetic energy
balance (1.3.3) and the internal energy balance (4.2.6) and using the property (1.2.6) yields the
total energy balance (1.3.9).

Remark 1.3.6 (Staggered scheme). A total energy balance can be recovered for staggered finite
volumes [77], but this balance only holds globally on Ω whereas we get a local balance from
equation (4.2.6).

Remark 1.3.7 (Error pressure term). The additional source term Pn+1
K is not compensated in

the internal energy balance but it does not impact the convergence of the scheme since Pn+1
K

vanishes when the time step tends to 0. Indeed formally it behaves like δt2(∂t∇ p)2. One may
avoid this pressure source term in the kinetic energy balance by removing the scaling of the
pressure gradient introduced in the momentum balance (4.2.3) and in the velocity update (4.2.4).
This would yield to a similar kinetic energy balance with a source term Rn+1

K which would now
read:

Rn+1
K = −|K|

2δt
ρn−1
K

(
ũn+1
K − unK

)2
+
|K|
2δt

ρnK
(
un+1
K − ũn+1

K

)2−1

4

∑
Σ∈EK

|σ|
(
ũn+1
K − ũn+1

L

)2
ρnσ
∣∣unK,σ∣∣

However this formulation is dangerous because the corresponding source term in the internal
energy balance Sn+1

K = −Rn+1
K may take negative values, and therefore we can no longer assert

that the internal energy remains positive as shown in proposition 1.3.1 hereafter.

Remark 1.3.8 (Source term for the centered scheme). If we were to use a centered scheme instead
of an upwind scheme for the edge value uσ of the advected velocity, the resulting corrective
source term would read:

Sn+1
K =

|K|
2δt

ρn−1
K (ũn+1

K − unK)2, K ∈ T , n ∈ N.

Regarding the non-linear projection step, the proof of existence relies on the topological
degree theory. The reader may find an introduction in [49] and an application to finite volume
discretizations of PDE in [56], chapter 6. We proceed in the same way as in section 6.4.1 of [56].

Theorem 1.3.9 (Existence of a solution to the scheme). Under the assumptions of Proposition
1.3.5, there exists a solution to the scheme (4.2.3)–(1.2.14d).

Proof. We have to show the existence of a solution to the linear system given by the prediction
step (4.2.3) and to the non-linear system (4.2.4)–(1.2.14d). We proceed by induction. Assume
that the existence of (ρkK , p

k
K , ũ

k
K ,u

k
K , e

k
K)K∈T is proved for 0 ≤ k ≤ n, and let us prove the

existence of (ρn+1
K , pn+1

K , ũn+1
K ,un+1

K , en+1
K)K∈T . The momentum balance (4.2.3) for a control

volume K ∈ T can be rewritten as follows:

AnKũ
n+1
K +

∑
σ=K|L∈EK

Bn
K,σũ

n+1
L = CnK

with the diagonal, off-diagonal and right-hand-side contributions to the linear system:

AnK =
|K|
δt
ρnK +

∑
σ∈EK

|σ|ρnσunK,σαnK,σ

Bn
K,σ = |σ|ρnσunK,σ(1− αnK,σ)

CnK =
|K|
δt
ρn−1
K unK −

√
ρnK
ρn−1
K

∇Kpn

18 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

and αnK,σ the scalar used to compute the upwind value ũnK,σ. Owing to the definition of the
scalar αK,σ in (1.2.8), we have:

|AnK | −
∑
σ∈EK

|Bn
K,σ| = AnK +

∑
σ∈EK

Bn
K,σ

Using the discrete mass balance (4.2.5) and assuming the positivity of the density yields:

|AnK | −
∑
σ∈EK

|Bn
K,σ| =

|K|
δt
ρn−1
K > 0

hence the diagonal dominance of the linear system associated with the prediction equation (4.2.3),
which is subsequently invertible and thus the existence of ũn+1

K .

Let us now prove the existence of (ρn+1
K , pn+1

K ,un+1
K , en+1

K)K∈T which satisfy (4.2.4)–(1.2.14d).
Let λ be a real number in [0, 1]. We consider the following non-linear system of equations, which
reads for all K ∈ T :

UN+1
T + λF(UN+1

T) = V N
T (1.3.11)

where

UN+1
T = [(uN+1

K)K∈T (ρN+1
K)K∈T (ρN+1

K eN+1
K)K∈T]t

V N
T = [(ũN+1

K)K∈T (ρNK)K∈T (ρNKe
N
K)K∈T]t

 ∈ RM , with M = 3 card T , and

F : W = ((uK)K∈T , (ρK)K∈T , (ρKeK)K∈T) 7→ F(W) = δt


1

ρnK

(
∇Kp− ∇̃Kp

)
divK(ρu)[

divK(ρeu) + pK divK u− Sn+1
K

]


with pK = (γ − 1)ρKeK and Sn+1
K defined by (1.3.8).

For λ = 1, (1.3.11) is the original projection-correction step at n = N . For λ = 0, the system
(1.3.11) is an invertible linear system. Using the second equation of (1.3.11) and summing over
all K ∈ T , we get by conservativity: ∑

K∈T
|ρK | ≤

∑
K∈T

|ρnK |

which yields a uniform (in λ) estimate on ρn+1
K . Moreover, with the same arguments as in the

proof of Proposition 1.3.1, we get that ρK ≥ 0 and eK ≥ 0.

We then take the inner product of the first equation of (1.3.11) with ρKuK and sum over
K ∈ T ; we sum the result with the summation of the third equation of (1.3.11) over the mesh
and obtain, thanks to the div-∇ duality and to conservativity, the following uniform (in λ)
estimate: ∑

K∈T
ρKeK +

1

2
ρnK |uK |2 ≤ C

where C ≥ 0 depends only on known quantities. The map H(λ, ·) = Id−λF defines a homotopy
between the map H(1, ·) associated with the original system UN+1

T +F(UN+1
T) = V N

T (for λ = 1)
and the identity function (obtained with λ = 0). Thanks to the uniform estimates, we can can

§1.4] PASSING TO THE LIMIT 19

define a closed ball B of Rm with radius large enough to include the set of the solution of
Problem (1.3.11), such that the following condition is satisfied:

V N
T /∈ H(λ, ∂B).

We can now define the topological degree d(H(λ, ·),B, V N
T) of the map H(λ, ·) on the set B,

associated with the problem H(λ,UT) = V N
T . Using the invariance of the topological degree for

an homotopy, we have:

d(H(1, ·),B, V N
T) = d(H(0, ·),B, V N

T) = d(Id,B, V N
T) = 1

We deduce that topological degree of the map Id − F is non zero. As a result the non-linear
problem has at least one solution in B ⊂ Rm.

1.4 Passing to the limit

In this section we are interested in the problem of showing that the limit of the discrete solution
to the pressure-correction scheme is a solution to the weak form of the continuous problem when
the time step and space discretization step tend to zero. In some respect, it means that the
shocks are correctly computed by the pressure-correction scheme since the Rankine-Hugoniot
conditions can be readily derived from the weak form the Euler equations.

First we need to introduce further notations and assumptions with respect to the discretiza-
tion of the problem:

• Discrete unknown functions and norms. Let (T , δt) be a space-time discretization. To a
set of discrete values {znK ,K ∈ T , n ∈ J0, N − 1K}, we associate the following piecewise
constant function:

zT,δt(x, t) =

N−1∑
n=0

∑
K∈T

znKχK(x)χn(t), ∀x ∈ Ω, ∀t ∈ [0, T),

with χK and χn defined by

χK(x) =

{
1 if x ∈ K,
0 otherwise,

and χn(t) =

{
1 if t ∈ [tn, tn+1),

0 otherwise.
(1.4.1)

For such a function zT,δt, we denote its L∞(Ω× [0, T) norm by

‖zT,δt‖∞ = max{znK ,K ∈ T , n ∈ N},

and introduce the following BV discrete semi-norms:

|zT,δt|BVx =
N∑
n=0

δt
∑

σ=K|L

|znL − znK |, |zT,δt|BVt =
∑
K∈T

|K|
N−1∑
n=0

|zn+1
K − znK |

Given a solution {ρnK ,unK , enK ,K ∈ T , n ∈ J0, N − 1K} of the scheme (4.2.1)–(1.2.14),
we may thus define the piecewise constant functions ρT,δt, pT,δt, uT,δt, eT,δt and their BV
semi-norms.

20 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

• Interpolates and discrete derivative operators. Let ϕ ∈ C∞c (Ω × [0, T]) be a given test
function. We denote by φT,δt its interpolate for the space–time discretization (T , δt),
defined by:

φT,δt(x, t) =

N−1∑
n=0

∑
K∈T

φnKχK(x)χn(t), where φnK = ϕ(xK , tn),∀K ∈ T ,∀n ∈ J0, N − 1K.

(1.4.2)

K

L

σ
=
K
|L Dσ

FIG. 1.2 – Primal mesh and dual mesh.

We may then define a discrete time-derivative operator ðt on the primal grid by:

ðtφT,δt(x, t) =
N−1∑
n=0

∑
K∈T

φn+1
K − φnK

δt
χK(x)χn(t),∀x ∈ Ω, ∀t ∈ [0, T).

Owing to the regularity of ϕ, the quantity ðtφT,δt converges uniformly to ∂tϕ as the mesh
size and time step tend to 0. It is convenient in the convergence analysis to define a discrete
gradient of the interpolate of a smooth function on a dual mesh which is composed of the
so called “diamond cells”, represented on Figure 1.2 and defined as follows. For a control
volume K ∈ T , σ ∈ EK , we define the half-diamond cell DK,σ by the cone with base σ
and vertex xK :

DK,σ = {txK + (1− t)y, t ∈ [0, 1], y ∈ σ} (1.4.3)

We denote |DK,σ| its d-dimensional measure. We then define the diamond cells Dσ as

Dσ =

{
DK,σ ∪DL,σ if σ = K|L ∈ Eint,

DK,σ if σ ∈ Eext and σ̄ = K̄ ∩ Ω̄.
(1.4.4)

A discrete gradient operator ∇EφT,δt of the interpolate φT,δt may then be defined as:

∇EφT,δt(x, t) =

N−1∑
n=0

∑
σ∈Eint
σ=K|L

|σ|
|Dσ|

(φnL − φnK)nK,Lχσ(x)χn(t), ∀x ∈ Ω, ∀t ∈ [0, T), (1.4.5)

where χσ is the characteristic function of the dual cell Dσ, σ ∈ Eint, defined by

χσ(x) =

{
1 if x ∈ Dσ,

0 otherwise.
(1.4.6)

The discrete gradient ∇EφT,δt is known to converge only weakly to ∇ϕ in Lp(Ω× (0, T))
with p < +∞: see [55, Proof of Lemma 8] for the case p = 2 of interest here, and [67,
Lemma 4.1] for the general case.

§1.4] PASSING TO THE LIMIT 21

• Assumptions on the estimates. Let (Tm, δtm)m∈N be a sequence of space-time discretiza-
tions of Ω× [0, T). Let us denote by (ρ(m), p(m), e(m), ũ(m), u(m))m∈N = (ρTm,δtm , pTm,δtm ,
eTm,δtm , ũTm,δtm , uTm,δtm)m∈N the piecewise constant functions reconstructed from the so-
lutions of the scheme (4.2.1)–(1.2.14) for (T , δt) = (Tm, δtm).

We assume the following estimates on the sequence (ρ(m), p(m), e(m), ũ(m), u(m))m∈N:

∃C > 0,∀K ∈ T , for 0 ≤ n ≤ N (m),∣∣∣∣ 1

(ρ(m))nK

∣∣∣∣+
∣∣∣(ρ(m))nK

∣∣∣+
∣∣∣(p(m))nK

∣∣∣+
∣∣∣(e(m))nK

∣∣∣+
∣∣∣(ũ(m))nK

∣∣∣+
∣∣∣(u(m))nK

∣∣∣ < C (1.4.7)

In addition we require for all m ∈ N:

|ρ(m)|BVx + |e(m)|BVx + |ũ(m)|BVx < C (1.4.8)

|ρ(m)|BVt + |u(m)|BVt < C (1.4.9)

Theorem 1.4.1 (Consistency of the pressure-correction scheme for the total energy balance).
Let (Tm, δtm) be a sequence of discretizations such that hT (m) and δt(m) tend to 0 when m→∞.
Let (ρ(m), p(m), ũ(m),u(m), e(m))m∈N be the sequence of piecewise constant functions correspond-
ing to the solution of the scheme (4.2.1)–(1.2.14) for T , δt = (Tm, δtm); we assume that these
functions satisfy (1.4.7) and (1.4.8), and that the sequence (ρ(m), p(m), ũ(m),u(m), e(m))m∈N
converges in Lp(Ω × (0, T))3+2d for 1 ≤ p < ∞ to a limit (ρ̄, p̄, ¯̃u, ū, ē) ∈ L∞(Ω × (0, T))3+2d.
Then ¯̃u = ū and (ρ̄, p̄, ū, ē) is a weak solution of the Euler equations, i.e. it satisfies

∀ϕ ∈ C∞c (Ω× [0, T),R), ∀ϕ ∈∈ C∞c (Ω× [0, T),Rd),∫ T

0

∫
Ω

(ρ̄∂tϕ+ ρ̄ū · ∇ϕ) dx dt +

∫
Ω
ρ0(x)ϕ(x, 0) dx = 0, (1.4.10)∫ T

0

∫
Ω

(ρ̄ū · ∂tϕ+ (ρ̄ū⊗ ū) : ∇ϕ) dx dt +

∫
Ω
ρ0(x)u0(x) ·ϕ(x, 0) dx = 0, (1.4.11)∫ T

0

∫
Ω

(
ρ̄Ē∂tϕ+ (ρ̄Ē + p̄)ū · ∇ϕ

)
dx dt+

∫
Ω
ρ̄0(x)Ē0(x)ϕ(x, 0) dx = 0, (1.4.12)

Ē = ē+
1

2
ρ̄|ū|2.

Proof. The velocity update (4.2.4) yields the following estimate for all K ∈ T , n ∈ N∗

∣∣un+1
K − ũn+1

K

∣∣ < δt
∥∥∥p(m)

∥∥∥
∞

∥∥∥∥ 1

ρ(m)

∥∥∥∥
∞
.

Thanks to the assumptions (1.4.7), we may pass to the limit in the above inequality and obtain:
¯̃u = ū.

We now turn to the process of taking the limit. Let ϕ ∈ C∞c (Ω× [0, T)) and ϕ ∈ C∞c (Ω×
[0, T),Rd); for a given discretization (T (m), δt(m)), the interpolate of ϕ and ϕ defined by (1.4.2)
are respectively denoted by φ(m) and φ(m) (componentwise for ϕ). For the sake of simplicity,
we shall sometimes drop the index (m) when it is does not hinder comprehension.

22 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

Let us first prove that (ρ̄, ū) satisfies the mass equation (1.4.10). Multiplying (4.2.5) by

δtφ
(m)
K and summing for n ∈ J0, N (m)K and K ∈ Tm yields

N(m)−1∑
n=0

∑
K∈T

|K|
δt

(
ρn+1
K − ρnK

)
φnK︸ ︷︷ ︸

T
(m)
1

+

N(m)−1∑
n=0

∑
K∈T

∑
σ∈EK

(
FnK,σ

)
δtφnK︸ ︷︷ ︸

T
(m)
2

= 0

Reordering the summation in T
(m)
1 yields

T
(m)
1 = −

N(m)−1∑
n=0

δt
∑
K∈T

|K|ρKn
φK

n+1 − φKn

δt

= −
∫ T

0

∫
Ω
ρ(m)ðtφ(m) dx dt −

∫
Ω

(ρ(m))0(x)φ(m)(x, 0) dx

→ −
∫ T

0

∫
Ω
ρ̄∂tϕdx dt −

∫
Ω
ρ0(x)ϕ(x, 0) dx as m→ +∞

thanks to the assumptions on the approximate solutions and the definition of the initial condi-
tions in the algorithm.

Recall that FnK,σ = |σ|ρnσunK,σ ; therefore reordering the summation in T
(m)
2 yields

T
(m)
2 = −

N−1∑
n=0

δt
∑

σ=K|L∈Eint

|Dσ|ρnσunσ ·
|σ|
|Dσ|

(φL
n − φKn)nK,σ

= −
∫ T

0

∫
Ω
ρ

(m)
E u

(m)
E ∇

(m)
E,δtφ

(m) dx dt

where ρ
(m)
E and u

(m)
E are piecewise constant functions on the dual mesh T (m) respectively equal

to ρnσ (the upwind choice) and unσ (average value defined by (1.2.3) on each dual cell Dσ). Thanks

to the assumptions on the approximate solutions, the function ρ
(m)
E (resp. u

(m)
E) converges to

ū (resp. ρ̄) in Lp, p ∈ [1,+∞); hence, thanks to the weak convergence of the discrete gradient,
we get ∫ T

0

∫
Ω
ρ(m)u

(m)
E ∇

(m)
E,δtφ

(m) dx dt→
∫ T

0

∫
Ω
ρ̄ū · ∇ϕdx dt as m→ +∞.

Let us then prove that (ρ̄, p̄, ū) satisfies the weak form of the momentum balance equation
(1.4.11). Multiplying (4.2.3) by δtφnK and summing for n ∈ J0, N (m) − 1K and K ∈ T yields:

N(m)−1∑
n=0

∑
K∈T

|K|
δt

(
ρnKũ

n+1 − ρn−1
K ũn

)
φnK︸ ︷︷ ︸

T
(m)
1

+
N(m)−1∑
n=0

∑
K∈T

|K|divK(ρnun ⊗ ũn+1)δt · φnK︸ ︷︷ ︸
T

(m)
2

+

N(m)−1∑
n=0

∑
K∈T

|K|∇̃Kp
n
δtφnK︸ ︷︷ ︸

T
(m)
3

= 0.

§1.4] PASSING TO THE LIMIT 23

With arguments that are similar to those used for the term T
(m)
1 in the mass equation, we get

T
(m)
1 → −

∫ T

0

∫
Ω
ρ̄ū · ∂tϕ−

∫
Ω
ρ0(x)u0(x) ·ϕ(x, 0) dx.

By the definition of the discrete div operator and of the numerical flux FK,σ, reordering the

summation in T
(m)
2 , we get:

T
(m)
2 =

N(m)−1∑
n=0

δt
∑
K∈T

∑
σ∈EK

FK,σũ
n+1
σ · φnK

=
d∑
i=1

N(m)−1∑
n=1

∑
σ=K|L∈E

|σ|ρn+1
σ (un+1

σ · nK,σ)δt(φnK,i − φnL,i)ũn+1
σ,i

where φnK,i (resp. ũn+1
σ,i) represents the i-th component of φnK (resp. ũn+1

σ). Therefore, T
(m)
2 =∑d

i=1(T (m)
2,i +R

(m)
2,i), with

T (m)
2,i =

N(m)−1∑
n=1

δt
∑

σ=K|L∈E

[
|DK,σ|

(
ũn+1
K,i ρ

n+1
K un+1

K

)
+ |DL,σ|

(
ũn+1
L,i ρ

n+1
L un+1

L

)]
· |σ|
|Dσ|

(φnK,i − φnL,i)nK,σ

R
(m)
2 =

N(m)−1∑
n=1

δt
∑

σ=K|L∈E

[
|DK,σ|(ũn+1

σ,i ρ
n+1
σ un+1

K,σ − u
n+1
K,i ρ

n+1
K un+1

K · nK,σ)

+|DL,σ|
(
ũn+1
σ,i ρ

n+1
σ un+1

K,σ − u
n+1
L,i ρ

n+1
L un+1

L · nK,σ
)]

(φnK,i − φnL,i).

We may then rewrite T (m)
2,i as

T (m)
2,i =

∫ T

0

∫
Ω
ũ

(m)
i ρ(m)u(m) · ∇E(m)φ

(m)
i dx,

where ∇E(m)ϕ(m) is the weak gradient defined by (1.2.4) which converges weakly to ∇ϕi, as
previously stated. Thanks to the assumptions of strong convergence in any Lp, 1 ≤ p < +∞ of
the approximate solutions e(m), ρ(m) and u(m), and to the fact that ũ(m) also converges to ū,
we get

T (m)
2 →

d∑
i=1

∫ T

0

∫
Ω
ūiρ̄ū · ∇ϕi dx =

∫ T

0

∫
Ω

(ρ̄ū⊗ ū) : ∇ϕ dx as m→ +∞.

It now remains to be proved that the remainder term R
(m)
2 vanishes when m → ∞. For the

sake of clarity, we drop the exponents related to the discrete time indexation. Thanks to the
L∞ and BV estimates, we have (dropping the time indexes for short)

|YK,σ| := |ũσ,iρσuK,σ − uK,iρKuK · nK,σ|
= |ũσ,iρσ(uσ − uK) · nK,σ|+ |ũσ,i(ρσ − ρK)uK |+ |ρK(ũσ,i − ũK,iuK) · nK,σ)|
≤ ‖ũi‖∞ (‖ρ‖∞|u|BVx + ‖u‖∞|ρ|BVx) + |ũi|BVx‖u‖∞‖ρ‖∞

24 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

and therefore R
(m)
2 → 0 as m→ +∞.

Using the definition (1.2.4) of the discrete pressure gradient and Lemma 1.4.2 given below
(see [57, Proposition 2.1], [58, Proof of Lemma 5.7] for similar results), we get that

T
(m)
3 → −

∫ T

0

∫
Ω
p̄ divϕ dx dt as m→ +∞.

Let us finally prove that the limit (ρ̄, p̄, ū) satisfies a weak form of the total energy balance
(1.4.12). Let ϕ ∈ C∞c (Ω× [0, T)); for a given discretization (T (m), δt(m)), we denote by φ(m) the
interpolate of ϕ as defined by (1.4.2). We momentarily drop for short the index (m), and denote
by φnK = ϕ(xK , tn), for K ∈ T and n ∈ {0, . . . , N}. We assume that the mesh is fine enough so
that φnK = 0 if K is a boundary cell. Multiplying the local total energy balance (1.3.9) by δtφnK
and summing over the mesh cells and the time steps, we get (still dropping the index (m) in
the summations):

N(m)−1∑
n=0

∑
K∈T

|K|
δt

(
(ρ̃KEK)n+1 − (ρ̃KEK)n

)
δtφnK︸ ︷︷ ︸

T
(m)
1

+

N(m)−1∑
n=0

∑
K∈T

∑
σ∈EK

(
|σ|en+1

σ ρn+1
σ un+1

K,σ

)
δtφnK︸ ︷︷ ︸

T
(m)
2

+

N(m)−1∑
n=0

∑
K∈T

|K|d̃ivK(pu)φnK︸ ︷︷ ︸
T

(m)
3

+
1

2

N(m)−1∑
n=0

∑
K∈T

∑
σ∈EK

(
|σ|ũn+1

K · ũn+1
L ρnσu

n
K,σ

)
δtφnK︸ ︷︷ ︸

T
(m)
4

+
N(m)−1∑
n=0

∑
K∈T

PnKδtφ
n
K︸ ︷︷ ︸

T5((m)

= 0

where (ρ̃KEK)n is defined in Proposition 1.3.5. The time-dependent term can be rewritten as:

T
(m)
1 = −

∑
K∈T

|K|(ρ̃KEK)0φ0
K −

N−1∑
n=1

∑
K∈T

|K|(ρ̃KEK)nδt

(
φnK − φ

n−1
K

δt

)

= −
∫

Ω
(ρ̃E)(m)(x, 0)φ(m)(x, 0) dx−

∫ T

0

∫
Ω

(ρ̃E)(m)(x, t)ðtφ(m)(x, t) dx dt

where (ρ̃E)(m) is the space-time piecewise constant (with respect to the discretization (T (m), δt(m)))
function defined by (1.3.10). Thanks to the regularity of ϕ, ðtφ(m) tends to ∂tϕ uniformly.
Thanks to the strong convergence of the discrete solution and to assumptions (1.4.7)–(1.4.8),
we thus get that for all ϕ ∈ C∞c (Ω× [0, T]),

lim
m→∞

T
(m)
1 = −

∫ T

0

∫
Ω
ρE(x, t) ∂tϕ(x, t) dx dt−

∫
Ω
ρ0(x)E0(x)ϕ(x, 0) dx.

Reordering the summation in T
(m)
2 , we get:

T
(m)
2 =

N(m)−1∑
n=1

∑
σ=K|L∈E

|σ|en+1
σ ρn+1

σ (un+1
σ · nK,σ)δt(φnK − ϕnL)

= T (m)
2 +R

(m)
2

§1.4] PASSING TO THE LIMIT 25

with

T (m)
2 =

N(m)−1∑
n=1

δt
∑

σ=K|L∈E

[
|DK,σ|

(
en+1
K ρn+1

K un+1
K

)
+ |DL,σ|

(
en+1
L ρn+1

L un+1
L

)]
· |σ|
|Dσ|

(φnK − ϕnL)nK,σ

R
(m)
2 =

N(m)−1∑
n=1

δt
∑

σ=K|L∈E

[
|DK,σ|(en+1

σ ρn+1
σ un+1

K,σ − e
n+1
K ρn+1

K un+1
K · nK,σ)

+ |DL,σ|
(
en+1
σ ρn+1

σ un+1
K,σ − e

n+1
L ρn+1

L un+1
L · nK,σ

) (φnK − ϕnL).

We may then rewrite T (m)
2 as

T (m)
2 =

∫ T

0

∫
Ω
e(m)ρ(m)u(m) · ∇E(m)ϕ(m) dx,

where ϕ(m) is a piecewise constant function on the cells of the mesh T (m) and ∇E(m)ϕ(m) is the
weak gradient defined by (1.2.4), which converges weakly to ∇ϕ as previously stated. Thanks
to the assumptions of strong convergence in any Lp, 1 ≤ p < +∞ of the approximate solutions
e(m), ρ(m) and u(m), we get

T (m)
2 →

∫ T

0

∫
Ω
ēρ̄ū · ∇ϕ dx as m→ +∞.

With similar arguments as in the case of its namesake in the momentum balance equation, it is

easily seen that the remainder term R
(m)
2 vanishes when m → ∞. Using the definition (1.2.6)

and reordering the summation, we may write the term T
(m)
3 as

T
(m)
3 =

N−1∑
n=1

δt
∑
K∈T

∑
L∈N (K)

|σKL|(p̃u)σφ
n
K

=

N−1∑
n=1

δt
∑
σ∈Eint
σ=K|L

|Dσ|(p̃u)σ
|σ|
|Dσ|

(φnK − ϕnL)

= −
∫ T

0

∫
Ω

(p̃u)(m)∇̃E(m)φ(m) dx dx,

where (p̃u)(m) is the piecewise constant function on the dual mesh (with respect to the dis-
cretization (T (m), δt(m))) defined by:

(p̃u)(m)(x, t) = (p̃nun)σ for x ∈ K and t ∈ [tn, tn+1),

with (p̃u)σ defined by (1.2.6) and ∇̃E(m)φ(m) the weakly converging discrete gradient defined by
(1.4.5). Thanks to assumptions (1.4.7–1.4.8), we have (p̃u)nT → pu in L2(Ω × (0, T)) as h(m)

and δt(m) tend to 0. By [55, Proof of Lemma], we have ∇̃T (m)ϕ(m) → ∇ϕ weakly in L2(Ω) as
h(m) and δt(m) tend to 0. Hence,

T
(m)
3 → −

∫ T

0

∫
Ω
puϕ dx dx as h and δt→ 0.

26 A CELL-CENTERED SOLVER FOR ALL-MACH FLOWS [CH.1

As for the second advection term, we can rewrite T
(m)
4 as:

T
(m)
4 =

N(m)−1∑
n=1

∑
σ=K|L∈E

δt|Dσ|ũn+1
Dσ
· ũn+1

Dσ
ρnDσu

n
Dσ

(
|σ|
|Dσ|

(φnK − φnL)nK,σ

)
+R

(m)
4

with the residual:

Rn4 =
N(m)−1∑
n=1

∑
σ=K|L∈E

[
|DK,σ|ũn+1

K · (ũn+1
L ρnσu

n
σ − ũn+1

K ρnKu
n
K)

+|DL,σ|ũn+1
L · (ũn+1

K ρnσu
n
σ − ũn+1

L ρnLu
n
L)
]
· δt

φnL − φnK
hσ

nK|L.

Proceeding in the same way as for the residual R
(m)
2 with the term (ũLρσuσ − ũKρKuK):

ũLρσuσ − ũKρKuK = (ε2
K,σ − 1)(ũL + ũK) [(ρK − ρL)(uK + uL) + (ρK + ρL)(uK − uL)]

+ (ũL − ũK)
[
(εK,σ + 1)2(ρK + ρL)(uK + uL) + (εK,σ − 1)2(ρK − ρL)(uK − uL)

]
A similar development can be made for the term (ũKρσuσ − ũLρKuK) which yields eventually
to:

|Rn4 | ≤ Cϕ(hT)d [|ũ|∞(|ρ|BVx |u|∞ + |ρ|∞|u|BVx) + |ũ|BVx(|ρ|∞|u|BVx + |ρ|BVx |u|∞))]

Using the same arguments as for the term T2, we have:

lim
m→∞

T
(m)
4 = lim

m→∞

∫ T

0

∫
Ω
ũ(m) · ũ(m)ρ(m)u(m)∇E(m)φT (m),δt(m) dx dt

=

∫ T

0

∫
Ω
ū · ūρ̄u · ∇ϕdx dt

The last term T
(m)
5 tied to the pressure residual PnK of the discrete kinetic energy balance

vanishes as the time step and the space discretization step tend to 0, thanks to the L∞ estimate
on ρ(m) and 1

ρ(m) , and the time.

Lemma 1.4.2 (Weak consistency of the pressure gradient). For a given polygonal mesh T of
Ω, consider a scalar field q = (qK)K∈T and let GT q be a piecewise constant discrete gradient
defined by

GT q(x) = GKq, ∀x ∈ K, with GKq =
∑

σ∈EK∩Eint

|σ|(qσ − qK)nK,σ.

where (qσ)σ∈Eint is a family of values such that if σ = K|L, then qσ is a convex combination of qK

and qL. Let Tm be a sequence of meshes such that hTm → 0 as m→ 0, and let q(m) = (q
(m)
K)K∈Tm

be a family of corresponding discrete scalar fields. We assume that

1. q(m) → q̄ in L1
loc(Ω) as m→ +∞,

2. there exists C ∈ R+ such that |u(m)|BVx ≤ C for any m ∈ N.

§1.4] PASSING TO THE LIMIT 27

Let ϕ ∈ C∞c (Ω) be a given test function; denote by φ(m) its interpolate on the mesh Tm, defined
by:

φ(m)(x) = ϕ(xK) for x ∈ K.

Then ∫
Ω
GT (m)q(m)(x)φ(m)(x)dx→ −

∫
Ω
q̄(x)∇ϕ(x)dx as m→ +∞.

Proof. We have∫
Ω
GT (m)q(m)(x)φ(m)(x)dx =

∑
K∈T

∑
σ∈EK∩Eint

|σ|(qσ − qK)nK,σφ
(m)
K

= T +R,

with

T (m) =
∑
K∈T

∑
σ∈EK∩Eint

|σ|(qσ − qK)nK,σφ
(m)
σ , where φ(m)

σ =
1

|σ|

∫
σ
ϕ(x)dγ(x)

R(m) =
∑
K∈T

∑
σ∈EK∩Eint

|σ|(qσ − qK)nK,σ(φ
(m)
K − φ(m)

σ)

We have

T (m) =
∑
σ∈Eint

|σ|(qL − qK)nK,σϕσ = −
∑
K∈T

∑
σ∈EK∩Eint

|σ|(φσ)nK,σqK = −
∑
K∈T

qK

∫
K
∇ϕ(x) dx,

so that thanks to Assumption (1), T (m) →
∫

Ω q(x)∇ϕdx as m→ +∞. Now

R(m) ≤
∑
σ∈Eint

|σ|||qL − qK ||nK,σ||φK − φσ| ≤ Cϕhm
∑
σ∈Eint

|σ||qL − qK | ≤ Cϕhm|q|BVx ,

so that, thanks to Assumption (2), R(m) → 0 as m→ +∞,

Chapter 2

APPLICATION TO SHOCK HYDRODYNAMICS

In our numerical experiments, our pressure-correction scheme is compared with another frac-
tional step scheme for compressible flows (compressible Euler equations, µ = 0), the SLK
scheme. This scheme was originally introduced in 2004 [102] and it is available in the Code Saturne
CFD code developed at EDF R&D.

2.1 The SLK scheme

In our numerical experiments, our pressure-correction scheme is compared with another frac-
tional step scheme for compressible flows, the SLK scheme. This scheme was originally intro-
duced in 2004 [102] and it is available in the Code Saturne CFD code developed at EDF R&D.
Among the differences between our scheme and the SLK scheme, it should be stressed first
that the latter is derived from the compressible Euler equations written with the total energy
balance (1.1.1). Furthermore thanks to a decomposition of the variation of the pressure into the
variations of the density and of the entropy (2.1.3), the projection-correction step (here taking
the form of an “acoustic step”) is linear.

2.1.1 Time discretization

Among the several variants of this algorithm we will consider the following semi-discrete algo-
rithm [12], which reads for all n ∈ N

Acoustic step (compute ρn+1,qn+1
ac)

ρn+1 − ρn

δt
+ div qn − div(δt(c2)n∇ ρn+1)− div(δtβn∇ sn) = 0 (2.1.1a)

qn+1
ac = qn − δt(c2)n∇ ρn+1 − δtβn∇ sn (2.1.1b)

Momentum and total energy steps (compute un+1, En+1)

ρn
un+1 − un

δt
− un+1 div qn+1

ac + div(un+1 ⊗ qn+1
ac) +∇ pn = 0 (2.1.2a)

ρn
En+1 − En

δt
− En+1 div qn+1

ac + div

[(
En+1 +

pn

ρn+1

)
qn+1
ac

]
= 0 (2.1.2b)

Pressure update (compute pn+1)

pn+1 = (γ − 1)ρn+1

(
En+1 − 1

2
un+1 · un+1

)
29

30 APPLICATION TO SHOCK HYDRODYNAMICS [CH.2

with q = ρu the mass flux, qac the acoustic mass flux, s the entropy, c the speed of the sound
and β = ργ . The derivation of the acoustic step is given in [102]. The variation of the pressure
is decomposed into the variation of the density and of the entropy:

∇ p = c2∇ ρ+ β∇ s (2.1.3)

During the acoustic step — and the acoustic step only — an isentropic flow is considered. As
a result the classical acoustic system can be written:{

∂tρ+ div q = 0
∂tq +∇ p = 0

with semi-discretization:

ρn+1 − ρn

δt
+ div qn+1

ac = 0 (2.1.4)

qn+1
ac − qnac

δt
+∇ pn+1 = 0 (2.1.5)

Combining the above equations yields:

div
(
(c2)n∇ ρn+1

)
=

div qnac + ρn+1−ρn
δt

δt

If qnac is replaced by its more up-to-date value qn then we recover step (2.1.1).

Remark 2.1.1. Assuming a homogeneous sound speed and using the mass balance (2.1.4) from
the previous time step we can obtain the wave equation at the discrete level:

ρn+1 − 2ρn + ρn−1

δt2
− (c2)n∆ρn+1 = 0

Remark 2.1.2. In some respect the SLK algorithm may be viewed as a projection scheme. Using
equations (2.1.4) and (2.1.5), we have:

qn+1
ac = qnac − δt∇ pn+1 (2.1.6a)

∆pn+1 =
div qnac + ρn+1−ρn

δt

δt
(2.1.6b)

The first equation is close to the Hodge decomposition for the mass flux which is at the basis
of incompressible projection methods. The second equation is similar to a projection step,
which would be aimed at enforcing the mass conservation constraint on the mass flux. Likewise
step (2.1.1) can be thought of as a projection of the last predicted mass flux qn on the space
of the mass fluxes satisfying the discrete mass balance (2.1.4). Using the density instead of the
pressure in the acoustic step allows to control the positivity of the density through the numerical
scheme.

2.1.2 Space discretization

We give the space-time discretization of the SLK scheme for cell-centered finite-volumes that
we actually used in the numerical tests:

Initialization

∀K ∈ T , ρ0
K , u

0
K , p

0
K given ; ρ−1 = ρ0 ; E0

K = p0
K/(γ − 1)ρ0

K −
1

2
u0
K · u0

K

Iterations for n = 0, 1, . . . , N − 1:

§2.2] THE SLK SCHEME 31

1. Update passive scalars for all K ∈ T

FnK,σ = ρnσu
n
σ · nK,σ ∀σ ∈ EK

snK = pnK/(ρ
n
K)γ

(c2)nK = γpnK/ρ
n
K

βnK = (ρnK)γ

2. Predict the density (ρn+1
K) solve for all K ∈ T

|K|
δt

(ρn+1
K − ρnK) +

∑
σ∈EK

|σ|FnK,σ −
∑
σ∈EK

|σ|δt(c2)nσ(∂nρ)n+1
σ −

∑
σ∈EK

|σ|δtβnσ (∂ns)
n
σ = 0

3. Update the acoustic mass flux (F̃n+1
K,σ) for all K ∈ T , σ ∈ EK

F̃n+1
K,σ = FnK,σ − δt(c2)nσ(∂nρ)n+1

σ − δtβnσ (∂ns)
n
σ

4. Compute the velocity (un+1
K) solve for all K ∈ T

|K|
δt
ρnK(un+1

K − unK)− un+1
K

∑
σ∈EK

|σ|F̃n+1
K,σ +

∑
σ∈EK

|σ|un+1
σ F̃n+1

K,σ +∇Kpn = 0

5. Compute the total energy (En+1
K) solve for all K ∈ T

|K|
δt
ρnK(En+1

K − EnK)− En+1
K

∑
σ∈EK

|σ|F̃n+1
K,σ +

∑
σ∈EK

|σ|
(
En+1
σ +

pnσ
ρn+1
σ

)
F̃n+1
K,σ = 0

6. Update the pressure (pn+1
K) for all K ∈ T

pn+1
K = (γ − 1)ρn+1

K

(
En+1
K − 1

2
un+1
K · un+1

K

)

F̃n+1
K,σ stands for the normal component of the discrete acoustic mass flux qac. The edge pressure

pσ of the discrete pressure gradient and the edge velocity uσ are centered. The fluxes F̃n+1

and pσ are discretized with a centered scheme. All the advected fluxes are discretized with an
upwind scheme with respect to the acoustic flux F̃n+1

K,σ . The edge values of passive scalars β and

c2 are computed with a harmonic scheme. For instance for an edge σ = K|L

βσ =
2βKβL
βK + βL

Lastly the normal gradients denoted “∂n” (for example for the density at an edge σ = K|L) are
discretized as:

(∂nρ)σ =
ρL − ρK
hσ

32 APPLICATION TO SHOCK HYDRODYNAMICS [CH.2

2.2 Numerical results

In a first section, we check the accuracy of our scheme and of the SLK [102] scheme on one-
dimensional Riemann problems. We observe an oscillatory behaviour near shocks though it does
not affect the L1 convergence of the error; it can be cured with an artificial viscosity method
such as [90]. In a second section several two-dimensional Riemann problems are performed. The
oscillatory behaviour only needs to be dealt with for strong shock problems. In all our tests,
the non-linear system for the projection-correction step is solved with a simple fixed-point
procedure. The sub-iterations are initialized with the most up-to-date flow variables. During
a sub-iteration we successively update the velocity with (4.2.4), solve the density with (4.2.5),
update the source term with (1.3.8), solve the internal energy with (4.2.6) and finally update
the pressure with the equation of state. The stopping criteria for these sub-iterations is defined
with respect to the relative L∞(Ω;BV (δt∗)) norm of each flow variables for a sub-iteration over
δt∗:

max

(
|u|∞,t,BV
|u|∞

,
|ρ|∞,t,BV
|ρ|∞

,
|e|∞,t,BV
|e|∞

,
|p|∞,t,BV
|p|∞

)
< ε

With the choice ε = 10−3, the number of sub-iterations in our numerical tests is always lower
than 5.

2.2.1 One dimensional problems

Accuracy tests

The accuracy of our scheme and of the SLK scheme is evaluated on four classical 1D Riemann
problems described in detail in [126] and for which an analytical solution is available. Test 1 is
a Sod shock tube ; test 3 has a left rarefaction, a contact discontinuity and a right shock ; test 4
has a left shock, a contact discontinuity and a right rarefaction ; test 5 has a two strong shocks
and a contact discontinuity. The domain is Ω = [−4, 4] with Dirichet boundary conditions on
∂Ω. The tests are carried out on 6 grids with 2m cells, 10 ≤ m ≤ 15. The initial states are given
in table 2.1 and the convergence orders for our scheme and for the SLK scheme in table 2.2.
The final state for test 5 is shown in figure 2.1.

Test ρL uL pL ρR uR pR T δt

1 1.0 0.0 1.0 0.125 0.0 0.1 0.25 h/2
3 1.0 0.0 1000.0 1.0 0.0 0.01 0.012 h/40
4 1.0 0.0 0.01 1.0 0.0 100.0 0.035 h/14
5 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950 0.035 h/40

TAB. 2.1 – 1D Riemman problems used for accuracy tests.

In all tests the order of convergence in L1 norm is between 0.5 and 1. With both schemes,
while shocks are sharply computed contact discontinuities are inaccurately calculated, which
is the main source of error in all the tests. SLK is often slightly more accurate than our
scheme but convergence orders are close. Both schemes suffer from oscillations near shocks.
Nevertheless although the magnitude of the oscillations does not decrease with the mesh size,
the measure of these oscillations vanishes. Therefore they do not have a significant impact on

§2.2] NUMERICAL RESULTS 33

the L1 convergence of error. The issue of the oscillatory behaviour is addressed in the next
subsection.

Variable Test 1 Test 3 Test 4 Test 5

ρ (our scheme) 0.652 0.536 0.525 0.529
ρ (SLK) 0.640 0.514 0.498 0.568
p (our scheme) 0.834 0.836 0.824 0.974
p (SLK) 0.827 0.858 0.824 1.008
u (our scheme) 0.884 0.860 0.836 0.981
u (SLK) 0.847 0.872 0.837 1.009

TAB. 2.2 – Convergence orders (L1 norm) for 1D Riemman problems with our scheme and with the
SLK scheme.

Remark 2.2.1 (Importance of the term SK). As outlined in the previous sections, the most
critical component of our method lies in the discrete source term SK added to the internal
energy balance. As observed in figure 2.2 the source term is localized at flow discontinuities and
its measure does not vanish when the space discretization step tend to zero. The density field
at the final time for test 5 is given for our scheme with SK (in blue) and without SK (in green).
The two profiles are similar, however the shocks speeds are different so are the intermediate
states. Without a reference solution, it would not be obvious to assess which numerical solution
matches best the entropy weak solution. This illustrates the fact that any discretization of the
Euler equation in non-conservative variables must be derived very carefully.

Oscillatory behaviour

In order to damp the oscillations in our pressure-correction scheme without impacting the
accuracy of the scheme we implement an adaptive artificial viscosity method, the Weak Local
Residual method [90]. This method consists in adding an artificial viscosity proportional to
a weak local residual (WLR), constructed from one of the balance equation in its weak form.
The discrete WLR is o(h) near shocks, o(hα) near contact waves with 1 < α ≤ 2 and o(h3) in
smooth regions [90]. We choose to use the weak residual of the mass balance:

WR =

∫ T

0

∫
Ω
ρ∂tϕ+

∫ T

0

∫
Ω
ρu · ∇ϕ ∀ϕ ∈ C∞c (Ω× [0, T])

The WLR as a localized indicator of flow features — shocks, contact waves — is deduced
from the weak residual using a decomposition of the test function ϕ on a basis of B-spline
functions [90].

Introducing WLR artificial viscosity with a strong diffusion factor C = 100 for our scheme
in test 5 significantly damps the oscillations (see figure 2.3). Despite the added diffusion the
global accuracy of the scheme is not noticeably affected. Indeed the convergence orders in L1

norms are 0.565 for the density, 0.956 for the pressure and 0.936 for the velocity.

34 APPLICATION TO SHOCK HYDRODYNAMICS [CH.2

5

10

15

20

25

30

35

40

45

50

-0.1 0 0.1 0.2 0.3 0.4 0.5

ρ

x

Density at T=0.035, N=4096

0

500

1000

1500

2000

2500

3000

-0.1 0 0.1 0.2 0.3 0.4 0.5

p

x

Pressure at T=0.035, N=4096

-5

0

5

10

15

20

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
x

x

Velocity at T=0.035, N=4096

0

50

100

150

200

250

300

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
x

x

Internal energy at T=0.035, N=4096

FIG. 2.1 – Final state for test 5 with our scheme (blue), SLK (green) vs the exact solution (red).

2.2.2 Two dimensional problems

Riemann problems

We now test a set of classical 2D Riemann problems, whose description can be found in [94].
The contours of the density for the 19 test cases are given in figures 2.4 to 2.22. The results
obtained with SLK and with our scheme are similar except for problems with strong shocks as
observed in configuration 3. Both schemes show an oscillatory behaviour near 1D shocks.

Two dimensional stabilization

In order to damp the oscillations of our scheme near strong shocks, we run test 3 (most de-
favorable configuration) with WLR artificial diffusion. We observe that 1D shocks are still
accurately computed and the oscillations are reduced significantly. However, 2D shock speeds
are inaccurate. This issue becomes worse as the artificial diffusion is increased. In fact when
adding artificial viscosity in the momentum prediction, a compensation term (positive) has to be
added in the right hand side of the internal energy balance in order to preserve the consistency
of the scheme. The source term SK is localized at flow discontinuities, so is this compensation
term. Maybe when the latter introduces too much diffusion the compensation term SK is too

§2.2] NUMERICAL RESULTS 35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

5

10

15

20

25

30

35

40

45

position

ρ

Density with and without S
K
 at T=0.035, N=4000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

10

20

30

ρ
(e

xa
ct

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

500

1000

1500

2000

S
K

position

Localization of the source term S
K
 at T=0.035, N=4000

FIG. 2.2 – Influence of the source term for test 5. Left: density at T = 0.035 with SK (blue), without
SK (green) and exact solution (red). Right: localization of SK (blue) with respect to the exact solution
(red).

30.9

31

31.1

31.2

31.3

31.4

31.5

31.6

31.7

31.8

0.32 0.34 0.36 0.38 0.4 0.42 0.44

ρ

x

Density without WLR (blue) and with WLR (green), N=16384

-1

-0.8

-0.6

-0.4

-0.2

0

-3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4

L
1

 e
rr

o
r

(l
o

g
)

hsize (log)

Convergence of the error for the density without WLR (blue) and with WLR (green) for test 5

FIG. 2.3 – Application of the WLR artificial viscosity method for our scheme in test 5.

weakened.

36 APPLICATION TO SHOCK HYDRODYNAMICS [CH.2

FIG. 2.4 – Density contours (40) for 2D Riemann problem 1 with our scheme (left) and SLK (right).

FIG. 2.5 – Density contours (40) for 2D Riemann problem 2 with our scheme (left) and SLK (right).

FIG. 2.6 – Density contours (40) for 2D Riemann problem 3 with our scheme (left) and SLK (right).

§2.2] NUMERICAL RESULTS 37

FIG. 2.7 – Density contours (40) for 2D Riemann problem 4 with our scheme (left) and SLK (right).

FIG. 2.8 – Density contours (40) for 2D Riemann problem 5 with our scheme (left) and SLK (right).

FIG. 2.9 – Density contours (40) for 2D Riemann problem 6 with our scheme (left) and SLK (right).

38 APPLICATION TO SHOCK HYDRODYNAMICS [CH.2

FIG. 2.10 – Density contours (40) for 2D Riemann problem 7 with our scheme (left) and SLK (right).

FIG. 2.11 – Density contours (40) for 2D Riemann problem 8 with our scheme (left) and SLK (right).

FIG. 2.12 – Density contours (40) for 2D Riemann problem 9 with our scheme (left) and SLK (right).

§2.2] NUMERICAL RESULTS 39

FIG. 2.13 – Density contours (40) for 2D Riemann problem 10 with our scheme (left) and SLK (right).

FIG. 2.14 – Density contours (40) for 2D Riemann problem 11 with our scheme (left) and SLK (right).

FIG. 2.15 – Density contours (40) for 2D Riemann problem 12 with our scheme (left) and SLK (right).

40 APPLICATION TO SHOCK HYDRODYNAMICS [CH.2

FIG. 2.16 – Density contours (40) for 2D Riemann problem 13 with our scheme (left) and SLK (right).

FIG. 2.17 – Density contours (40) for 2D Riemann problem 14 with our scheme (left) and SLK (right).

FIG. 2.18 – Density contours (40) for 2D Riemann problem 15 with our scheme (left) and SLK (right).

§2.2] NUMERICAL RESULTS 41

FIG. 2.19 – Density contours (40) for 2D Riemann problem 16 with our scheme (left) and SLK (right).

FIG. 2.20 – Density contours (40) for 2D Riemann problem 17 with our scheme (left) and SLK (right).

FIG. 2.21 – Density contours (40) for 2D Riemann problem 18 with our scheme (left) and SLK (right).

42 APPLICATION TO SHOCK HYDRODYNAMICS [CH.2

FIG. 2.22 – Density contours (40) for 2D Riemann problem 19 with our scheme (left) and SLK (right).

FIG. 2.23 – Density contours (40) for 2D Riemann problems 3 without stabilization (left) and with
WLR stabilization (right).

Chapter 3

APPLICATION TO LOW-MACH FLOWS

We give here some numerical tests which were performed for low Mach number flows and
compared with a staggered discretization. These results were presented at FVCA VII confer-
ence [125].

3.1 Introduction

We address in this Chapter the compressible Euler equations written with the internal energy
as energy variable:

∂tρ+ div(ρu) = 0, (3.1.1a)

∂t(ρu) + div(ρu⊗ u) + ∇p = 0, (3.1.1b)

∂t(ρe) + div(ρeu) + p div u = 0, (3.1.1c)

p = (γ − 1)ρe, (3.1.1d)

where t stands for the time ; ρ, u, p and e are the density, velocity, pressure and internal
energy respectively, and γ > 1 is a coefficient specific to the fluid. The problem is defined over
Ω× (0, T), where Ω is an open bounded connected subset of Rd, 1 ≤ d ≤ 3, and (0, T) is a finite
time interval.

Defining a robust scheme for the numerical solution of the compressible Euler equations at all
Mach number is a challenging issue. Indeed in the zero Mach limit, the pressure gradient has a
singular limit and the acoustic time scale vanishes [4]. As a result approximate Riemann solvers
face severe limitations, among which the loss of accuracy of the pressure gradient approximation
and the time step limitation. Pressure-correction methods may be relevant for addressing this
issue, in particular because of their built-in stability properties.

While pressure-correction schemes were originally introduced for the incompressible Navier-
Stokes equations [43, 123] many extensions to compressible flows have been attempted [74, 48].
In this work we compare two finite volume discretizations — staggered and cell-centered — of
an original pressure-correction scheme first introduced in [71, 76].

The use of the internal energy as energy variable is motivated by our will to control its posi-
tivity through the numerical scheme. The internal energy balance must be discretized carefully
in order to force the scheme to be consistent with the total energy equation. Indeed, similarly
to the continuous case, we obtain a (discrete) kinetic energy equation from the (discrete) mo-
mentum balance and the (discrete) mass balance in which there is a numerical diffusion term.
This term must be compensated in the discrete internal energy balance so that the sum of the
internal and kinetic energy equations yields the correct total energy equation.

43

44 APPLICATION TO LOW-MACH FLOWS [CH.3

3.2 Pressure correction scheme

We first introduce the pressure correction method in a semi-discrete time setting. Let δt be a
time discretization step. We define the discrete time tn = nδt with tN = T and N = bT/δtc.
The pressure-correction scheme reads:

• Solve for ũn+1:

1

δt

(
ρnũn+1 − ρn−1ũn

)
+ div

(
ρnũn+1 ⊗ un

)
+

√
ρn

ρn−1
∇pn = 0.

• Solve for pn+1, un+1, ρn+1 and en+1 the non-linear system:

ρn

δt

(
un+1 − ũn+1

)
+ ∇pn+1 −

√
ρn

ρn−1
∇pn = 0,

1

δt

(
ρn+1 − ρn

)
+ div

(
ρn+1un+1

)
= 0,

1

δt

(
ρn+1en+1 − ρnen

)
+ div

(
ρn+1en+1un+1

)
+ pn+1 div

(
un+1

)
= 0,

pn+1 = (γ − 1)ρn+1en+1.

The first step is a classical semi-implicit discretization of the momentum balance to obtain a
predicted velocity. The second step is a non-linear pressure correction step which combines the
mass balance and the internal energy balance. This non-linear coupling is important to ensure
the positivity of the energy. It is solved using Newton’s method.

3.3 Spatial discretization

We suppose that the boundaries of the domain are sections of hyperplanes normal to a coordinate
axis. Let T be a decomposition of Ω. The cells are either rectangles (d = 2) or rectangular
parallelepipeds (d = 3). By E and E(K) we denote the set of all (d− 1)-faces σ of the mesh and
of the element K ∈ T respectively. The set of faces included in the boundary of Ω is denoted by
Eext and the set of internal faces (i.e. E \ Eext) is denoted by Eint ; a face σ ∈ Eint separating the
cells K and L is denoted by σ = K|L. The outward normal vector to a face σ of K is denoted by
nK,σ. For K ∈ T and σ ∈ E , we denote by |K| the measure of K and by |σ| the (d−1)-measure

of the face σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E and E(i)
ext ⊂ Eext the subset of the faces of E

and Eext respectively which are perpendicular to the ith unit vector of the canonical basis of Rd.
The definition of the divergence operator is similar in both the cell-centered and the staggered
scheme. For (unσ)σ∈E , we set:

for K ∈ T , (div u)nK =
1

|K|
∑

σ∈E(K)

|σ| unK,σ, (3.3.1)

with unK,σ = unσ · nK,σ the advecting velocity.

§3.3] SPATIAL DISCRETIZATION 45

3.3.1 Cell-centered scheme

The unknowns are associated to the cells of the mesh T and are denoted by:

{ρK , eK , pK , uK , K ∈ T } .

We first explain the initial discrete conditions: ρ0, p0 and u0 are given ; then we set for K ∈ T
and 1 ≤ i ≤ d:

ρ0
K =

1

|K|

∫
K
ρ0(x) dx, e0

K =
1

|K|

∫
K
e0(x) dx, and u0

K,i =
1

|K|

∫
K

(u0(x))i dx.

The fully discrete scheme then reads, for n = 0, 1, . . . , N − 1:

• Velocity prediction step:

|K|
δt

(ρnK ũn+1
K − ρn−1

K unK) +
∑

σ∈E(K)

ũn+1
σ FnK,σ +

√
ρnK
ρn−1
K

|K|(∇p)nK = 0. (3.3.2)

• Projection step: solve the non-linear system

un+1
K = ũn+1

K − δt

ρnK

(
(∇p)n+1

K −
√

ρnK
ρn−1
K

(∇p)nK

)
, (3.3.3a)

|K|
δt

(ρn+1
K − ρnK) +

∑
σ∈E(K)

Fn+1
K,σ = 0, (3.3.3b)

|K|
δt

(ρn+1
K en+1

K − ρnKenK) +
∑

σ∈E(K)

en+1
σ Fn+1

K,σ + pn+1
K

∑
σ∈E(K)

|σ|un+1
K,σ − S

n
K = 0, (3.3.3c)

pn+1
K = (γ − 1)ρn+1

K en+1
K , (3.3.3d)

where ũn+1
σ in (3.3.2) is a centered interpolation of the velocity, Fn+1

K,σ = |σ|ρn+1
σ un+1

K,σ is the

mass flux and ρn+1
σ , en+1

σ are upwind interpolations with respect to the sign of un+1
K,σ and Fn+1

K,σ

respectively. In the expression of the advecting velocity, we use a centered interpolation of the
velocity at the face σ. In order to ensure the consistency of the scheme, the pressure gradient
is constructed by duality with the discrete divergence of the velocity and reads:

(∇p)nK =
1

|K|
∑

σ∈E(K)

|σ|pnσnK,σ, (3.3.4)

with pnσ a centered interpolation of the pressure at face σ.

The corrective term SnK is defined as:

SnK =
|K|
2δt

ρn−1
K (ũn+1

K − unK)2. (3.3.5)

46 APPLICATION TO LOW-MACH FLOWS [CH.3

3.3.2 Staggered scheme

The space discretization is staggered, using the Marker-And Cell (MAC) scheme. The degrees
of freedom for scalar variables are still associated to the cells of the mesh, but the degrees of
freedom for the ith component of the velocity are defined at the center of the faces σ ∈ E(i), so
the whole set of discrete velocity unknowns reads:{

uσ,i, σ ∈ E(i), 1 ≤ i ≤ d
}
.

We introduce dual meshes for each direction i centered on σ ∈ E(i), which are used for the finite
volume approximation of the time derivative and convection terms in the momentum balance.
For σ = K|L ∈ E(i), we build a dual cell Dσ made of two half cells DK,σ and DL,σ included
in K and L respectively. Each cell DK,σ is a rectangle or a rectangular parallelepiped of basis
σ and of measure |K|/2. We denote by |Dσ| the measure of Dσ and by ε = Dσ|Dσ′ the face

separating Dσ and Dσ′ . We denote by Ẽ the set of dual faces, Ẽ(i)
int the internal faces in the

direction i and Ẽ(Dσ) those belonging to Dσ.

We will only point out the major changes with respect to the cell-centered scheme. Initial
conditions differ from the cell-centered scheme only for the velocities, which are now defined on
the dual cells:

∀σ ∈ Eint, u0
σ,i =

1

|Dσ|

∫
Dσ

(u0(x))i dx. (3.3.6)

The definition of the divergence operator is the same as before but the discrete gradient is now
defined on the dual mesh:

∀σ = K|L ∈ Eint, (∇p)nσ =
|σ|
|Dσ|

(pL − pK)nK,σ. (3.3.7)

Equations for scalar variables have just minor changes. Unlike the cell-centered discretization
the convective fluxes un+1

K,σ are obtained without interpolation as the velocity unknowns are
defined on the edges. We still use an upwind interpolation for ρσ and eσ in (3.3.3b) and (3.3.3c)
respectively. We need to rewrite the velocity updates (3.3.2) and (3.3.3a) on the dual mesh,

which read for all i ∈ [1, d], for all σ ∈ E(i)
int :

|Dσ|
δt

(ρnDσ
ũn+1
σ,i − ρ

n−1
Dσ

unσ,i) +
∑

ε∈Ẽ(Dσ)

ũn+1
ε,i F

n
σ,ε +

√
ρnDσ
ρn−1
Dσ

|Dσ|(∇p)nσ = 0, (3.3.8)

un+1
σ,i = ũn+1

σ,i −
δt

ρnDσ

(
(∇p)n+1

σ −
√

ρnDσ

ρn−1
Dσ

(∇p)nσ

)
. (3.3.9)

The dual fluxes Fnσ,ε and densities ρDσ
are defined such that we recover a discrete mass balance

over the dual cells. As mentioned in the introduction this is critical for obtaining a discrete
kinetic balance. The corrective term SnK in the internal energy balance reads for all K ∈ T :

SnK =

d∑
i=1

SnK,i, with SnK,i =
1

2
ρn−1
K

∑
σ∈E(K)∩E(i)

|DK,σ|
δt

(ũn+1
σ,i − u

n
σ,i)

2. (3.3.10)

§3.5] DISCRETE PROPERTIES 47

3.4 Discrete properties

Thanks to the upwind choice for the density in the mass balance both schemes preserve the
positivity of the density, see [66, Lemma 2.2] for further details. With either discretization a
kinetic energy balance can be derived from the momentum prediction equation:

Proposition 3.4.1. (Discrete kinetic energy balance for the cell-centered discretization) A so-
lution to the cell-centered (resp. staggered) scheme satisfies (3.4.1) (resp. (3.4.2)):

|K|
2δt

[
ρnK(un+1

K)2 − ρn−1
K (unK)2

]
+

1

2

∑
σ∈E(K)

ũn+1
K ũn+1

L FnK,σ,

+ un+1
K ·

∑
σ∈E(K)

|σ|pn+1
σ nK,σ + Pn+1

K −Rn+1
K = 0. (3.4.1)

|Dσ|
2δt

[
ρnDσ

(un+1
σ,i)2 − ρn−1

Dσ
(unσ,i)

2
]

+
1

2

∑
ε∈Ẽ(Dσ)

ũn+1
σ,i ũ

n+1
σ′,i F

n+1
σ,ε

+ ũn+1
σ,i |Dσ|(∇pn+1)(i)

σ + Pn+1
σ −Rn+1

σ,i = 0, (3.4.2)

with the following source terms:

Rn+1
K = −|K|

2δt
ρn−1
K (ũn+1

K − unK)2, Rn+1
σ,i = −|Dσ|

2δt
ρn−1
Dσ

(ũn+1
σ,i − u

n
σ,i)

2,

Pn+1
K =

δt

2

[
1

ρnK

(
(∇p)n+1

K

)2 − 1

ρn−1
K

((∇p)nK)2

]
,

Pn+1
σ =

δt

2

|σ|2

|Dσ|2

[
1

ρnDσ

(
(∇p)n+1

σ

)2 − 1

ρn−1
Dσ

((∇p)nσ)2

]
.

In both schemes, the corrective term SnK in the internal energy balance is intended to
compensate the terms Rn+1

K and Rn+1
σ which tend to zero, hence the expression of the corrective

term SK given in (3.3.5) and (3.3.10). Note that SK is always positive, which ensures the
positivity of the internal energy thanks to the following proposition proved in Chapter 1:

Proposition 3.4.2. (Positivity of the internal energy) If ∀K ∈ T , enK ≥ 0, SnK ≥ 0 and
ρK > 0 then ∀K ∈ T , en+1

K ≥ 0

3.5 Numerical results

The two discretizations are tested with a recent benchmark introduced in [34]. This benchmark
aims at testing numerical schemes for the compressible Euler equations against their incom-
pressible limit when the Mach number M tends to zero. It consists in a Taylor vortex in a unit
square cavity Ω = [0, 1]× [0, 1]. The initial solution verifies the incompressible Euler equations
and reads in non-dimensional variables:

ρ0(x) = 1, u0(x) =

(
sin(πx) cos(πy)
− cos(πx) sin(πy))

)
, p0(x) =

1

γM2
+

1

4
(cos(2πx) + cos(2πy))

However it does not lead to a steady flow with the compressible Euler equations, as the ho-
mogeneous density induces variations of the entropy. The main idea is to study the behaviour

48 APPLICATION TO LOW-MACH FLOWS [CH.3

of the scheme at two scales: the macroscopic scale (slow variations associated with time vari-
able t) and the acoustic scale (fast variations associated with time variable τ = t/M). Each
flow variable is decomposed as X(x, τ, t) = X̄(x, t) + δX(x, τ, t) with X̄(x, t) its time average
over the acoustic scale and δX(x, τ, t) the fast time fluctuations. The asymptotic expansion of
the non-dimensional flow variables with respect to the Mach number yields [34]:

p(x, t) = p0(x) +MδP3(x, τ, 0) +M2(P̄4(x, t) + δP4(x, τ, t)) + o(M2),

ρ(x, t) = ρ0(x) +M2ρ̄2(x, t) +M3δρ3(x, τ, 0) +M4(ρ̄4(x, t) + δρ4(x, τ, t)) + o(M4).

The particular field chosen for initialization allows the derivation of an analytic solution well
suited for spectral analysis. We focus on two terms of the asymptotic expansion: ρ̄2, associated
with the slow variations and P3 = δP3(x, τ, 0)+M(P̄4(x, t)+δP4(x, τ, t)) associated with the fast
variations. In practice these two terms are computed as ρ̄2 = (ρ−ρ0)/M2 and P3 = (p−p0)/M .

Our numerical simulations are carried out on a 400× 400 grid with M = 0.1 and M = 0.01.
We observe very similar results for both cell-centered and staggered discretizations. At the
macroscopic scale, the upwind diffusion damps the main modes of the density, which looks
smooth at T = 8.8 (figure 3.1). As for the term ρ̄2, the oscillations of the solution are completely
damped after t = 4 (figure 3.2, left). The Mach number does not appear to have any influence
on this term. At the acoustic scale, the fluctuations of the pressure P3 on the short time interval
(0, 5) are also close with both discretizations (figure 3.2, center). After t = 0.5, the amplitude
of the main mode of P3 (frequency f =

√
10/2) is decreased by two orders of magnitude.

The results of this benchmark do not feature spurious pressure modes for the cell-centered
discretization as we might have expected. Indeed the internal energy balance (3.3.3c) can be
reformulated as a non-linear equation on the pressure using the velocity update (3.3.3a) and
the equation of state (3.3.3d):

M2

 |K|δt (Pn+1
K − PnK) +

∑
σ∈E(K)

|σ|(Pn+1
σ − (γ − 1)Pn+1

K)

[
δt

2
(gn+1
K,σ + gn+1

L,σ) · nK,σ

+ ũn+1
K,σ

]
− (γ − 1)SnK

}
+

∑
σ∈E(K)

|σ|
[
δt

2
(gn+1
K,σ + gn+1

L,σ) · nK,σ + ũn+1
K,σ

]
= 0

with the change of variables P = p− 1/(γM2), Pn+1
σ the upwind interpolation with respect to

Fn+1
K,σ and gn+1

K,σ = (ρn−1
K ρnK)−1/2(∇P)nK−(ρnK)−1(∇P)n+1

K for the cell-centered discretization. In
the zero Mach limit this equation degenerates to the classical Poisson equation of the projection
step of incremental pressure-correction schemes for incompressible flows. For the cell-centered
discretization the resulting discrete Laplace operator introduces a decoupling between neigh-
boring pressure unknowns, which is not the case with the staggered discretization. We managed
to introduce spurious pressure modes for the cell-centered discretization by adding artificially a
Dirac to the right hand side of this pressure equation at t = 0. However, these oscillations are
quickly damped by the boundary conditions. We expect sustained spurious pressure modes in
the case of an open boundary.

§3.5] NUMERICAL RESULTS 49

FIG. 3.1 – Density field for the staggered discretization at t = 0.5, t = 2, t = 4 and t = 8.8 for M = 0.1.
The density fields obtained with M = 0.01 and with the cell-centered discretization are the same.

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 2 4 6 8 10

rh
o
2

t

rho2 at (0.5,0.05) ; Ma=0.1

Staggered
Cell-centered

-0.1

-0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5

P
3

t

P3 at (0.66,0.05), N=400, M=0.1

Staggered
Cell-centered

-0.004

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

0 2 4 6 8 10

P
3

t

P3 at (0.66,0.05), N=400, M=0.1

Staggered
Cell-centered

FIG. 3.2 – Evolution of ρ̄2 (left) at position (0.5, 0.05) and P3 (middle and right) at position (0.66, 0.05)
for M = 0.1.

FIG. 3.3 – Checkerboard pressure when the RHS of the projection equation is perturbed with a Dirac.

Chapter 4

APPLICATION TO TWO-PHASE FLOWS

The GENEPI numerical code developed at CEA is used at industrial scale by AREVA to design
steam generators for Pressurized Water Reactors (PWR). The objective of this Chapter is to
extend the pressure-correction scheme introduced in Chapter 1 to the compressible homogeneous
two-phase flow models of Genepi and assess its validity on simple 1D problems. We first review
the two-phase flow model in GENEPI and its simplification. Then the projection scheme is
derived and numerical results are presented for an original benchmark from the GENEPI test
suite.

������
������
������

������
������
������

Secondary loop, outflow

(steam)

Secondary loop, inflow

(liquid)

Primary loop, inflow Primary loop, outflow

U−tubes (~3000)

3m

10m
Evaporator

Divider plate

Original steam generator

α, β

Γe

Γw

Γs

GENEPI model

x

xe

0

xs

L

1D model

FIG. 4.1 – Left: PWR Steam Generator. Center: macroscopic description using an equivalent porous
medium and mixture variables. Right: simplified 1D model for the purpose of testing the two-phase flow
model without the complications induced by the geometry.

4.1 Homogeneous two-phase flow models

We denote by T the temperature, u the fluid velocity, e the internal energy, h the enthalpy, ρ
density, p the pressure, q the heat flux from the primary fluid to the secondary fluid through
the U-tubes and L the latent heat. The physical problem is defined in the evaporator Ω. The
subscript K denotes a physical quantity belonging to phase K, either the liquid phase (K = L)

51

52 APPLICATION TO TWO-PHASE FLOWS [CH.4

or gas phase (K = G) of the secondary fluid, or the U-tubes with the primary fluid (K = P).
A flow variable without the aforementioned subscript is a mixture variable. For instance the
mixture density ρ is related to phase variables as:

ρ = αρG + (1− α)ρL (4.1.1)

with α the void fraction. The static quality X is ratio of the steam flow rate to the total
flow rate, defined as X = αρG/ρ. In the following all flow variables are assumed to be at
saturation T ∗.

We first present the general two-phase flow model implemented in GENEPI and then ex-
plain how the simplified model introduced hereafter is still relevant in complexity to assess the
relevance of our projection scheme for industrial two-phase flow models.

4.1.1 GENEPI general model

The GENEPI physical model is intended for the simulation of the secondary fluid flow in the
evaporator of the steam generator in the nominal regime. The latter considers a steady flow,
weakly compressible, for low Mach numbers. The fluid of the secondary loop is heated by the
primary fluid coming from the core and flowing in the U-tubes. This yields to a bubbly flow and
ultimately to the generation of steam. GENEPI treats this problem at the macroscopic scale.
The local Navier-Stokes equations are upscaled in such way that the complex geometry inside
the evaporator (figure 4.1, left) is accounted for with an equivalent porous medium of porosity
β (figure 4.1, center). After upscaling the flow is described using mixture variables only.

The original GENEPI model reads [39]:

ρPCP∂tTP + ρPCPuP · ∇TP − div(CPχTP ∇TP) = −γ0heq

βP0

(TP − TW)
(4.1.2)

β��∂tρ+ div(βρu) = 0
(4.1.3)

βρ∂tu + βρu · ∇u− div(β2µT (∇u +∇tu)) + β∇ p = βρg − βΛ · ρu
−div(βX(1−X)ρuR ⊗ uR)

(4.1.4)

βρ∂th+ βρu · ∇h− div(βχT ∇ j) = γ0heq(TP − TW) +�
�∂tp+����u · ∇ p

−div(βX(1−X)ρLuR)
(4.1.5)

Equation (4.1.2) gives the primary fluid energy balance. CP stands for the specific heat capacity,
χTP the turbulent thermal conductivity, heq the equivalent exchange coefficient, βP0 the bundle
primary porosity, γ0 the heating surface density between the primary loop and the secondary
loop and TW the temperature at the wall of the U-tubes. The right hand side models the heat
transfer between the primary fluid and the secondary fluid. Equation (4.1.3) is the secondary
fluid mass balance. Equation (4.1.4) gives the secondary fluid momentum balance. Here are
denoted by µT the turbulent viscosity, g the gravitational constant, Λ a friction tensor and uR
a drift velocity. Finally equation (4.1.5) gives the secondary fluid energy balance. This system
of equations is supplemented by a tabulated equation of state. The latter is accessed through
high order polynomials fitting these tabulated values [40].

Remark 4.1.1. GENEPI computes steady state solutions as the limit a “pseudo-transient”, hence
the presence of some unsteady terms. The missing terms with respect to a proper unsteady

§4.1] HOMOGENEOUS TWO-PHASE FLOW MODELS 53

model are the time derivatives ∂tp and ∂tρ and also the term u · ∇ p. The latter was deemed
negligible by the authors of GENEPI for the targeted industrial problems.

Remark 4.1.2. The tensor Λ models the friction with the tubes, the tube support plates and
the anti-vibration bars. It is determined through physical experiments.

Remark 4.1.3. The system always assumes a thermal equilibrium T ∗ though allowing a slight
kinematic imbalance. The latter is represented by the drift velocity uR ≡ uG − uL. In the
following we assume the so called slip model for the drift velocity: the gas and the fluid velocities
are linked by tensor S with uG = S · uL.

4.1.2 GENEPI simplified model

We now derive a simplified model of (4.1.2) to (4.1.5), which is based upon the following
assumptions:

1. The evaporator is represented by the 1D domain [xe, xs] depicted on figure 4.1 (right).

2. The heat flux from the primary fluid is constant, hence no coupling through (4.1.2).

3. The porosity is taken to β = 1, i.e. no obstacle in the evaporator.

4. The gravity, the viscous stress and the friction with the internal obstacles of the evaporator
are neglected.

The above assumptions may seem crude and oversimplifying w.r.t. the actual industrial ap-
plications but the very purpose of this chapter is to test the two-phase flow features of the
GENEPI model only. Therefore any term adding further complexity (eg. more realistic geom-
etry, unsteady flux from primary loop) and possibly substantial interference to the conclusion
that could be drawn upon our numerical tests are removed. The drift flux terms and the equa-
tion of state — detailed in the next section — are unchanged. The problem is now governed
by the following set of equations, identical to the compressible Euler equations but with the
addition of specific source terms:

∂tρ+ div(ρu) = 0 (4.1.6a)

∂t(ρu) + div(ρu⊗ u) +∇ p = −div(X(1−X)ρuR ⊗ uR) (4.1.6b)

∂t(ρe) + div(ρeu) + p div u = q − div(X(1−X)LρuR) (4.1.6c)

with q the constant heat flux from the primary loop. The energy balance is written using the
internal energy e = h − p/ρ as energy variable in order to be in line with the models used for
deriving our pressure-correction scheme. This is equivalent to solving:

∂t(ρh) + div(ρhu)− u · ∇ p− ∂tp = q − div(X(1−X)LρVR) (4.1.7)

The simplified model 4.1.6 suitable with GENEPI except for the term pdiv u in (4.1.6c) which
becomes −u · ∇ p − ∂tp in (4.1.7). In order to compare the numerical results of our pressure
correction scheme implemented in our own code to those obtained with GENEPI, a particular
heat source term q̃ = q − u? · ∇ p? is introduced. Here u? and p? stand respectively for the
velocity and for the pressure of the analytical solution at the steady state. As a result while
the transient calculated by our scheme the one calculated by GENEPI will be different (ours is
“physical”), the steady-state solution should match.

54 APPLICATION TO TWO-PHASE FLOWS [CH.4

4.1.3 Equation of state

We consider the equation of state of Freon R-114 gas so as to match the conditions of the
GENEPI test suite presented in reference [109]. A pressure-enthalpy diagram of Freon R-114 is
given in figure 4.5. The equation of state for Freon R-114 in the GENEPI code is defined using
polynomials fitting experiments carried out at CEA. The polynomials have the following form:

ρL(hL) = a0 + a1hL + a2h
2
L

hL(p) = b0 + b1p+ b2p
2 + b3p

3

L(p) = c0 + c1p+ c2p
2

ρG(p) = d0 + d1p+ d2p
2

(4.1.8)

The polynomial coefficients are found in the internal report [40]. Let us recall that all the
thermodynamic variables above are at saturation. In order to derive an equation of state
involving only the pressure, the density and the internal energy, we start from the definition of
the enthalpy:

p− ρ(h− e) = 0

Using the classical definition of the static quality X

X =
h− hL
L

yields:

p− ρ(hL − e) + ρLX = 0

The definition of mixture variable ρ in (4.1.1) combined with the expression of X with the void
fraction gives:

X =
ρG(ρL − ρ)

ρ(ρL − ρG)

Hence the following equation of state:

(p− (hL(p)− e)ρ)(ρL(hL(p))− ρG(p))− ρG(p)(ρL(hL(p))− ρ)L(p) = 0

This equation depends only on the mixture variables at saturation ρ, e and p. Using the
polynomial fittings previously introduced, we have:

(p− ρ(b3p
3 + b2p

2 + b1p+ b0 − e))(−d2p
2 − d1p− d0 + a2(b3p

3 + b2p
2 + b1p+ b0)2

+ a1(b3p
3 + b2p

2 + b1p+ b0) + a0)− (a2(b3p
3 + b2p

2 + b1p+ b0)2

+ a1(b3p
3 + b2p

2 + b1p+ b0) + a0 − ρ)(c2p
2 + c1p+ c0)(d2p

2 + d1p+ d0) = 0 (4.1.9)

The equation of state which will be effectively used in our scheme is a highly non-linear law in
the form of a multivariate polynomial with monomial terms elρmpn.

4.1.4 Drift velocity models

For a 1D problem, tensor S reduces to a scalar s and we have:

uG = s · uL

§4.2] NUMERICAL METHOD 55

Using the definition of the drift velocity uR ≡ uG−uL and the definition of the mixture velocity:

u = XuG + (1−X)uL

the following expression of uR can be established:

uR =
s− 1

(s− 1)X + 1
u

Two models for the slip coefficient s will be considered. The first one assumes s constant:

s = C (4.1.10)

with C ∈]0, 2]. The second one known as the Chisholm model [19] is more complex:

s = min(s1, s2) with


s1 =

[
1 +

(
ρL
ρG
− 1

)
Xd

]1/2

s2 =

(
ρL
ρG

)1/4
(4.1.11)

with Xd = X|uG|/|u| the dynamic quality, which can rewritten as:

Xd =
sX

1 + (s− 1)X

4.2 Numerical method

4.2.1 General projection algorithm

The same pressure correction scheme as in the first chapter for the compressible Euler equations
is used with a few differences:

• It is assumed that our physical problems will not feature shocks. Therefore source term
Sn+1
K is dropped.

• The drift flux is accounted for with explicit source terms.

• The static quality X is interpolated at cell edges with a centered scheme.

• The heat source term q̃K features the original heat flux from the primary fluid and the
constant correction u?K · (∇ p?)K so that the steady state matches that of GENEPI.

• The slip coefficient s may be constant or calculated with a specific procedure in the case
of the Chisholm model (as explained in the next section).

Finally the algorithm reads:

Initialization

h0
K , u0

K , p
0
K given ; ρ−1

K = ρ0
K deduced ; e0

K = h0
K − p0

K/ρ
0
K (4.2.1)

Iterations for n = 0, 1, . . . , N − 1:

56 APPLICATION TO TWO-PHASE FLOWS [CH.4

1. Explicit quantities:

Xn
K =

ρG(pnK) [ρL(hL(pnK))− ρnK]

ρnK
[
ρL(hL(pnK))− ρG(pnK)

]
(uR)nσ =

s− 1

(s− 1)Xn
σ + 1

unσ

(uR)nK,σ =
s− 1

(s− 1)Xn
σ + 1

unK,σ

(4.2.2)

2. Prediction: compute ũn+1
K by solving for all K ∈ T ,

|K|
δt

(ρnK ũn+1
K − ρn−1

K unK) +
∑
σ∈EK

|σ|ũn+1
σ ρnσu

n
K,σ +

√
ρnK
ρn−1
K

∑
σ∈EK

|σ|pnσnK,σ

= −
∑
σ∈EK

|σ|Xn
σ (1−Xn

σ)ρnσ(uR)nσ(uR)nK,σ (4.2.3)

3. Projection-correction: compute un+1
K , pn+1

K , en+1
K , ρn+1

K by solving the non-linear system
of equations for all K ∈ T ,

• Velocity update:

un+1
K = ũn+1

K − δt

ρnK |K|

∑
σ∈EK

|σ|pn+1
σ nK,σ −

√
ρnK
ρn−1
K

∑
σ∈EK

|σ|pnσnK,σ

 (4.2.4)

• Mass balance:

|K|
δt

(ρn+1
K − ρnK) +

∑
σ∈EK

|σ|ρn+1
σ un+1

K,σ = 0 (4.2.5)

• Energy balance:

|K|
δt

(ρn+1
K en+1

K − ρnKenK) +
∑
σ∈EK

|σ|en+1
σ ρn+1

σ un+1
K,σ

+ pn+1
K

∑
σ∈EK

|σ|Fn+1
K,σ = q̃K −

∑
σ∈EK

|σ|Xn
σ (1−Xn

σ)L(pnσ)ρnσ(uR)nK,σ (4.2.6)

• Equation of state:

[
pn+1
K − (hL(pn+1

K)− en+1
K)ρn+1

K

] [
ρL(hL(pn+1

K))− ρG(pn+1
K)

]
− ρG(pn+1

K)
[
ρL(hL(pn+1

K))− ρn+1
K

]
L(pn+1

K) = 0 (4.2.7)

The non-linear projection-correction step is solved using Newton’s method with the non-
linear system formed by the energy balance, the mass balance and the equation of state. Between
each Newton iteration, the velocity is updated using the velocity update equation.

In practice the Jacobian is automatically generated to Fortran using a Maxima. At each
Newton iteration, the linear system is solved using GMRES with ILU(0) preconditioner through
the PETSc library.

§4.3] VALIDATION TESTS 57

4.2.2 Chisholm scalar slip

In the GENEPI code, the slip from the Chisholm model is calculated using a fixed point pro-
cedure, which is slow and lacks robustness. However, it is possible to use the more effective
Newton’s method to solve directly s. Let us recall the Chisholm model:

s = min(s1, s2) with

{
s1 = [1 + (r − 1)Xd]

1/2

s2 = r1/4 (4.2.8)

with r = ρL/ρG. Solving s amounts to determine Xd. Given that r > 1 and Xd ∈ [0, 1], the
function s1(Xd) is monotonic increasing. Therefore, we have:

Xd <

√
r − 1

r − 1
⇒ s(Xd) = s1(Xd)

Xd >

√
r − 1

r − 1
⇒ s(Xd) = s2

As a result, if s2X/(1 + (s2 − 1)X) ∈ [(
√
r − 1)/(r − 1), 1] then Xd = s2X/(1 + (s2 − 1)X). If

not, we use Newton’s method to determine Xd with the following non-linear function:

F (Xd) = X(Xd − 1)(1 + (r − 1)Xd)
1/2 + (1−X)Xd

4.3 Validation tests

4.3.1 Problem setting

We consider the validation problem VE19 from GENEPI test suite presented in [109]. The
domain is Ω = [xe, xs] is a simplified representation of the evaporator (see figure 4.1, right).
The evaporator has a height of 10 m and a cross section of 1 m2. The use of buffer zones [0, xe] at
the inflow and [xs, L] at the outflow allows to deal more smoothly with the boundary conditions
of Ω.

The secondary fluid enters the evaporator in liquid state i.e. with X = 0 and h = hL. The
mass flow rate is Ge ≡ ρeue = 1 × 104 kg · s−1 ·m−2 and the enthalpy he = 1.2 × 105 J · kg−1.
This yields the following boundary conditions:

ρ|xe = ρL(p1)ρG(p1)/(ρG(p1) + (ρL(p1)− ρG(p1))X) with X = (he − hL(p1))/L(p1)
u|xe = Ge/ρe
e|xe = he − p1/ρe

(∂np)|xe = 0

with p1 the pressure in the first cell above x = 0. At the outflow, the fluid exits with pressure
ps = 9× 105 Pa. Consequently the boundary conditions are defined as such:

(∂nρ)|xs = 0
(∂nu)|xs = 0
(∂ne)|xs = 0

p|xs = ps

Along the evaporator, i.e. for xe < x < xs, the fluid is heated with a constant flux q =
4 × 105 W ·m−3. The slip coefficient is either constant and taken to s = 2 or calculated with

58 APPLICATION TO TWO-PHASE FLOWS [CH.4

the Chisholm model. At t = 0, the flow is initialized with a constant solution:

h0 = he
p0 = p0

X0 = (he − hL(p0))/L(p0)
ρ0 = ρL(p0)ρG(p0)/(ρG(p0) + (ρL(p0)− ρG(p0))X0)
u0 = Ge/ρe
e0 = he − p0/ρ0

ρ−1 = ρ0

The initial state is located by the orange mark on the enthalpy-pressure diagram of figure 4.5.
Note that the initial state of the benchmark is determined with CEA models of Freon R-114
whereas the diagram of figure 4.5 was produced by extracting the data from the original diagram
of E.I. du Pont de Nemours, thereby introducing errors. This may explain why the orange mark
is not located exactly on the saturated liquid curve.

4.3.2 Numerical results

The problem is discretized on a 550 cell grid and the timestep is chosen to δt = 11/550 = 0.2.
The final pressure and enthalpy solutions obtained with our scheme and with GENEPI are
shown on figure 4.2. Our results exhibit excellent agreement with the solution from GENEPI.
While further validation tests would be required, we can expect our scheme to be able to handle
every flow problem dealt by GENEPI.

In addition, the pressure-correction scheme is able to compute a transient. The transient for
the constant slip and for the Chisholm model are respectively given in figures 4.3 and 4.4 (top).
On the enthalpy-pressure diagrams, the transient consists of small variations around the initial
point on the saturated liquid curve. The convergence to the steady state is being accelerated
on some subsets of the parametric curve (h(t), p(t)). The steady state is clearly identified
by the very small variations between successive states. The evolution of the thermodynamic
variables on figures 4.3 and 4.4 (bottom) reveal a complex transient, though this does not bring
instabilities to the convergence to the steady solution.

§4.3] VALIDATION TESTS 59

Constant slip s = 2

0 2 4 6 8 10

0

1,000

2,000

3,000

4,000

5,000

6,000

Position (m)

P
re

ss
u

re
p
−
p
s

(P
a)

0 2 4 6 8 10

0

10

20

30

40

50

Position (m)

E
n
th

al
p
y
h
−
h
e

(J
·k

g
−
1
)

Chisholm slip s = min(s1, s2)

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

Position (m)

P
re

ss
u

re
p
−
p
s

(P
a
)

0 2 4 6 8 10

0

30

60

90

120

150

180

Position (m)

E
n
th

al
p
y
h
−
h
e

(J
·k

g
−
1
)

FIG. 4.2 – Comparison of the steady state pressure and enthalpy solutions obtained with our projection
algorithm (in blue) and GENEPI (in red).

60 APPLICATION TO TWO-PHASE FLOWS [CH.4

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Enthalpy h− he (J · kg−1)

P
re

ss
u

re
p
−
p
s

(P
a
)

0 5 10

0

2,000

4,000

6,000

Position (m)

P
re

ss
u

re
p
−
p
s

(P
a
)

0 5 10

0

50

100

150

Position (m)

E
n
th

a
lp

y
h
−
h
e

(J
·k

g
−

1
)

0 5 10

1.2

1.4

1.6

·10−2

Position (m)

X

FIG. 4.3 – Transient obtained with our projection algorithm for constant slip s = 2. On the enthalpy-
pressure diagram, the black marks denote the flow state at the half height of the evaporator, taken at 31
evenly spaced timesteps from t = 0 to t = 3000δt. The bottom curve feature thermodynamic variables at
initial (dashed curve) and final (solid curve) times in red and intermediate times (dashed for t = 300δt,
dotted for t = 600δt and solid for t = 900δt) in blue.

§4.3] VALIDATION TESTS 61

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Enthalpy h− he (J · kg−1)

P
re

ss
u

re
p
−
p
s

(P
a
)

0 5 10

0

0.5

1

·104

Position (m)

P
re

ss
u

re
p
−
p
s

(P
a
)

0 5 10

0

100

200

300

Position (m)

E
n
th

a
lp

y
h
−
h
e

(J
·k

g
−

1
)

0 5 10

1

1.5

·10−2

Position (m)

X

FIG. 4.4 – Transient obtained with our projection algorithm for the Chisholm slip s = min(s1, s2). On
the enthalpy-pressure diagram, the black marks denote the flow state at the half height of the evaporator,
taken at 31 evenly spaced timesteps from t = 0 to t = 2000δt. The bottom curve feature thermodynamic
variables at initial (dashed curve) and final (solid curve) times in red and intermediate times (dashed for
t = 400δt, dotted for t = 600δt and solid for t = 800δt) in blue.

62 APPLICATION TO TWO-PHASE FLOWS [CH.4

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
1

1.4

2

3

4

5
6

8

10

14

20

30

40

50
60

80

100

140

200

300

400

500
600

800

1,000

1,400

2,000

3,000

sa
tu

ra
te

d
li
q
u
id

sa
tu

ra
te

d
v
a
p

o
r

0.03

0.05

0.07

0.14

0.1

0.2

0.3

0.5

0.7

10

1.4

14

1

20

2

3

5

7

+
0 +

1
0
0

+
1
2
0

+
1
4
0

+
1
6
0

+
1
8
0

+
2
0
0

-2
0

+
2
0

+
2
2
0

+
2
4
0

+
2
6
0

+
2
8
0

+
3
0
0

+
3
2
0

+
3
4
0

+
3
6
0

+
3
8
0

+
4
0
0

-4
0

+
4
0

+
4
2
0

+
4
4
0

+
4
6
0

+
4
8
0

+
5
0
0

+
5
2
0

+
5
4
0

+
5
6
0

+
5
8
0

+
6
0

+
8
0

+600

+620

+640

+660

+680

+700

0
.1

6

0
.1

7

0
.1

8 0
.1

9 0
.2

0 0
.2

1 0
.2

2 0
.2

3

0
.2

4

0
.2

5
0
.2

6
0
.2

7
0
.2

8
0
.2

9
0
.3

0

Enthalpy (BTU/lb)

P
re

ss
u

re
(P

S
I)

FIG. 4.5 – Pressure-Enthalpy diagram for Freon R-114. Original data from E.I. du Pont de Nemours
(1944), see for instance [84, p. 82]. The lines of constant entropy (BTU/lb · ◦F) are in red (15 values,
S ∈ [0.16, 0.30]), the lines of constant volume (ft3/lb) in green (18 values, V ∈ [0.03, 20]) and the lines of
constant temperature (◦F) in blue (38 values, T ∈ [−40, 700]). The orange mark locates the initial state
in the verification benchmark.

Part II

Adaptive Mesh Refinement

63

Chapter 5

ADAPTIVE GRIDS

The purpose of adaptive mesh refinement is to adapt the space resolution of a numerical method
by decreasing the mesh size (h-refinement) and possibly increasing the order of the scheme
as well (hp-refinement) in regions where a higher spatial accuracy is desired. This leads to
considerable savings in memory and computational effort, and it allows computations with
a higher accuracy than the hardware limitations would permit. The scope of this Chapter
is limited to h-refinement without time refinement, i.e. the problem is solved on the whole
adaptive grid at every time step.

G0

Initial grid at ` = 0

G1 Ĝ0

First refinement

G2 = Ĝ2 Ĝ1 Ĝ0

Final refinement

FIG. 5.1 – Example of cell-by-cell refinement with respect to a level-set function.

An example of adaptive grid is shown on figure 5.1. The computational domain is Ω =
Ω0 = [0, 1] × [0, 1]. There are three levels 0 ≤ ` ≤ 2 matching regions of different refinement.
The levels are indexed from the coarsest with a discretization step h0 = 1/8 to the finest with
h2 = 1/32. The refinement factor nref = 2 is assumed to be constant, hence h` = h`+1 · nref. A
grid with space step h` is denoted G` and its associated subdomain Ω`.

The refinement procedure is recursive. Starting from a base grid G0 at level ` = 0, a
refinement criteria is evaluated cell-wise. This criteria can be arbitrary (eg. user-defined region)
or automatic using a refinement indicator. The indicator may depend on an error estimation
(eg. using Richardson extrapolation), on flow features (eg. shocks and contacts) or on geometric
features (eg. level-set function, in this example). The set of cells tagged for refinement (in light
blue on figure 5.1) defines the region of G` which will be replaced by a finer grid G`+1. The
new grid is the union of the previously generated grids at coarser levels {Ĝk = Gk \Gk+1; 0 ≤
k ≤ `} and the newly generated grid G`+1. The procedure is repeated on G`+1 until the finest

65

66 ADAPTIVE GRIDS [CH.5

levelset
at t+δt

initial
tagged
cells

added
buffer
cells

Level buffer cells

K

K ′

L

M

L′

σ = ∂K ∩ ∂L
σ′ = ∂K ′ ∩ ∂L′

Coarse-fine stencils

incorrect
refinement

Wrong nesting

no further
refinement
allowed

Proper nesting

FIG. 5.2 – Constrains on adaptive grids.

refinement level `max = 2 is reached.
The grid G` is the level grid associated with level `. The grid Ĝ` is the composite grid asso-

ciated with level `, defined as Ĝ` = G` \G`+1. The composite grid on the whole computational
domain is denoted Ĝ = ∪`≥0Ĝ`.

While the adaptive grid should represent as closely as possible the refinement indicators,
the resulting composite grid must satisfy several constrains (figure 5.2). Some are inferred by
the refinement procedure, others have to be enforced separately:

• Proper nesting : only coarse-fine interfaces between two consecutive levels ` and `+ 1 are
allowed. We may require a layer of more than one cell between two levels ` and `+ 2.

• Level buffers: when the refinement criterion is expected to change at the next time step
t+ δt, for instance a level-set (or a shock), further cells should be marked for refinement
so that the level-set does not leave the finest grid when the next time step is reached.

• Stencil constrains: stencils at coarse-fine interfaces may not be defined. On figure 5.2,
the stencil involves the two coarse and fine neighboring cell and an additional cell in the
tangential direction to the face. For face σ, the stencil is {K,L,M} but for face σ′ we
miss a coarse cell in the tangential direction. Therefore, depending the coarse-fine stencils,
some tag patterns must be avoided.

In this work, we choose to focus on a family of adaptive mesh refinement methods called
Structured AMR (SAMR) which will be dealt in depth in the next chapters. In this first chapter
after presenting the advantages and drawbacks of the other important family of adaptive mesh
refinement methods known as cell-by-cell refinement, we turn to the generation of SAMR grids
and the practical issues which were faced in this work.

The most natural way to refine a level ` is cell-by-cell: each cell tagged for refinement would
be replaced by ndref cells from the finer level. This results in a single grid which can be described
using a hierarchy of cells grouped by clusters of ndref. This adaptive grid matches exactly the
regions marked for refinement. On the other hand with Structured AMR, the adaptive grid is
represented as the superposition of level grids, which are defined as unions of Cartesian grids.
This yields a hierarchy of nested grids, which may match regions larger than those marked for
refinement.

§5.1] SINGLE HIERARCHICAL GRID 67

K6
K7

K8
K9

K10
K11

K12
K13

G2

K2

K3K4

K5G1

K1

G0

Level grids

K6 K7 K8 K9

K10 K11 K12 K13

K2 K3

Ĝ = Ĝ0 ∪ Ĝ1 ∪ Ĝ2

Composite grid

1

4

6 7 10 11

2 3 5

8 9 12 13

Quad-tree

Node for K1 (root)
parent = 0
children = [2,3,4,5]

Node for K4 (internal)
parent = 1
children = [6,7,10,11]

Node for K6 (leaf)
parent = 4
children = [0,0,0,0]

Data structure

FIG. 5.3 – Quadtree representation of a cell-by-cell adaptive grid.

5.1 Single hierarchical grid

The first cell-by-cell AMR approaches — often referred to as octree refinement after their
underlying data structures — were introduced in the 1991 paper of D. Young & al. [131] and
in the PhD thesis of W. Coirier in 1994 [44]. While refinement and de-refinement are quite
straightforward with these hierarchical grids, managing efficiently the connectivity in regard to
the memory use and the asymptotic complexity is much more challenging. In addition usual
numerical methods may need to be significantly modified to use such computational grids (eg.
multigrid methods).

5.1.1 Representation

The grid is represented by a spatial hierarchical datastructure: a binary tree in 1D, a quad-tree
in 2D and an octree in 3D. This datastructure arises naturally during the refinement process.
The root of the tree is a single cell at the coarsest level. When refined, this cell yields 2d finer
cells which may be themselves refined as well. If a cell is further refined, it simply plays the
role of an internal node in the tree. The leafs of the tree, which are not refined, are the cells
effectively defining the computational grid.

This representation allows the refinement procedure to match exactly the cells tagged for
refinement, which is generally not the case with the SAMR approach. Moreover the octree
datastructure features the connectivity between a given cell and the coarser cell its belongs to
(parent) and with the finer cells nested in it (children). However the overhead introduced by
this connectivity information (pointers to parent and children) is very high compared to SAMR
adaptive grids. Indeed, the connectivity is stored for every cell while in the SAMR approach,
this information is stored for rectangular clusters of cells. In 2D, it amounts to at least 5 words
of memory per cell (2d for children pointers and 1 for parent pointer).

In addition, implementing numerical methods with cell-by-cell refinement would require
access to further connectivity informations which are not inferred by the original octree datas-
tructure:

1. For a given cell K ∈ G`, loop over all its neighbors {L ∈ G`;K|L ∈ EK} at the same level

2. Find all the cells of any level which are contained in an arbitrary neighborhood

68 ADAPTIVE GRIDS [CH.5

A

2 5 4 3

B

6 7 10 11

C

8 9 12 13

Access to K8
through a
coarser cell
neighbor of
cluster B

Graph of FTT implementation

Cluster A for [K2,K3,K4,K5]
parent = 0
children = [0,C,B,0]
neighbors = [0,0,0,0]

Cluster B for [K6,K7,K10,K11]
parent = 4
children = [0,0,0,0]
neighbors = [5,0,0,2]

Data structure

FIG. 5.4 – FTT representation of the cell-by-cell adaptive grid introduced in figure 5.3.

Realizing these operations efficiently is difficult. Indeed, the path for accessing every single
neighbor of a cell may be as long as twice the depth of the tree (eg. the path from K7 to its
neighbor K8 is 7 → 4 → 1 → 3 → 8). One possible solution would be to store pre-computed
connectivity information with respect to the neighbors in every cell. But this would increase
the memory use to 9 words per cell (2d additional words for neighbor pointers).

5.1.2 Transversal search

Transversal search for operation (1) can be performed efficiently and with a smaller overhead
using Fully Threaded Trees (FTT) introduced by A. Khokhlov [88] instead of the original octree
datastructure. Regarding operation (2), an efficient neighbor search within an arbitrary region
can be performed using Alternating Digital Tree for searching over the octree [29].

Fully Threaded Tree

The FTT datastructure addresses several issues of the original octree representation [88]:

• Fast access to neighboring cells at the same level or at the coarser level

• Reduce the memory overhead of the tree data structure

In cell-by-cell adaptive grids a coarse cell is refined into 2d finer cells, so it would make
sense to store connectivity information between coarse cells and clusters of 2d finer cells. In a
FTT, cells are grouped by 2d as shown on figure 5.4. This provides a direct access to neighbor
information within the cluster. For accessing neighboring cells outside the cluster, either at
the same level or at a coarser level, the pointers to the 2d neighboring coarser cells are stored.
Likewise, each cells features a pointer to it child cluster. Thanks to this clustering, the overhead
is lower than one word per cell in 2D (in fact (1 + (2d+ 1)/2d)N words for N cells).

Alternating Digital Tree

Alternating Digital Tree datastructure, discussed in detail in [2] provide a more effective way
to handle the connectivity of the adaptive grid.

§5.2] HIERARCHY OF NESTED GRIDS 69

1

2

Ω1 = Ω1,1 ∪ Ω1,2

Clustering on G0 tags

1

2 3

4

5

6

Ω2 = ∪1≤i≤6Ω2,i

Clustering on G1 tags Final grid

FIG. 5.5 – Example of patch-based refinement with respect to a level-set function.

5.2 Hierarchy of nested grids

Patch-based AMR also known as Structured AMR (SAMR) methods were introduced by M. Berger
with J. Oliger [26] in 1984 and with P. Colella [25] in 1989. Each level grid G` is stored in-
dependently as an union of Cartesian grids G`,i called patches: G` = ∪iG`,i. It makes easier
the implementation of existing numerical methods for single grids as each level grids can be
accessed independently. Unlike cell-by-cell AMR, level grids usually cover regions larger than
those originally defined by the cells tagged for refinement. In that case the refinement is less
accurate and the number of unknowns for each level is not optimal. Moreover as level grids
are nested further unknowns (in overlapping regions between consecutive levels) which do not
belong to the composite grid have to be taken into account.

5.2.1 Representation

Description

The refinement procedure is very different from cell-by-cell AMR. Given a set of cells marked for
refinement on a level grid G`, a clustering algorithm generates a set of Cartesian grids (patches)
G`+1,i so as to match as closely as possible the tagged cells.

Matching exactly the cells tagged for refinement — and obtaining thereby a composite grid
identical as that of cell-by-cell refinement — comes at the expense of having to manage a large
number of patches when solving a problem on this adaptive grid. On the other hand, allowing
to match more loosely the tagged cells would yield fewer patches but more unknowns. On the
example of figure 5.5, there are 40 additional cells on G1 (24% overhead) and 112 additional
cells on G2 (30% overhead). A clustering without overhead would generate much more patches.
To control the balance between the number of patches needed and the number of additional
cells, a quantity called efficiency is introduced. It is defined as the ratio of the number of tagged
cells over the total number of cells of a level grid. On figure 5.5, the respective efficiencies of
level grid G1 and G2 are 77% and 78%.

The procedure is then repeated on the newly generated level grid G`+1 = ∪iG`+1,i.

70 ADAPTIVE GRIDS [CH.5

1

1

2

1

2 3

4

5

6

Patches at levels 0,1,2

Ω0,1

Ω1,1

Ω2,1 Ω2,2

Ω1,2

Ω2,3 Ω2,4 Ω2,5 Ω2,6

Graph of overlapping patches

Ω1,2

Ω1,1

coarse-fine
interface
with ` = 0

coarse-fine
interface
with ` = 2

fine-fine
interface

Interfaces for patchs at ` = 1

FIG. 5.6 – Connectivity information for SAMR grids.

Connectivity

In contrast to cell-by-cell refinement, the SAMR grid representation does not feature any con-
nectivity information. When implementing numerical methods on SAMR adaptive grids, the
following connectivity information should be available:

• Nesting between patches: for inter-level communication between two consecutive levels on
overlapping regions of level grids. In the graph of figure 5.6, a node Ω`,i is connected to
both overlapping coarser patches {E ∈ (Ω`−1,j)j ;E ∩ Ω`,i 6= {∅}} and overlapping finer
patches {E ∈ (Ω`+1,j)j ;E ∩ Ω`,i 6= {∅}}.

• Coarse-fine interfaces: for coupling two consecutive levels at the interface between their
respective composite grids. The boundary of a patch Ω`,i may intersect a coarse-fine

interface with the coarser level: {∂Ω`,i∩∂Ω̂`−1}. The faces of the cells of G`,i may intersect

a coarse-fine interface with the finer level: {Γ ∈ {∂K,K ∈ G`,i}; Γ ∩ Ω̂`+1 6= {∅}}.

• Fine-fine interfaces: level grids are decomposed into patches hence the need for domain
decomposition methods for coupling patches at fine-fine interfaces. The fine-fine interfaces
at level ` are defined as {∩iΩ`,i}.

5.2.2 Grid generation

Clustering method

Most clustering algorithms for SAMR are derived from the original algorithm introduced by
M. Berger and I. Rigoutsos in 1990 [24]. This is a recursive algorithm which uses ideas from
artificial intelligence and medical imaging [53, 15] for feature detection. The objective is to split
a given patch at a well chosen position such that the two newly generated patches match more
closely the tagged cells. This can be achieved by isolating blocks of untagged cells and having
them at the boundaries of the new patches, which can then be trimmed down.

These blocks are identified using image signatures. Let us denote Tij the two dimensional tag
field, set to one if cell Kij is tagged and zero else. In 2D, the horizontal and vertical signatures

§5.2] HIERARCHY OF NESTED GRIDS 71

split

3 4 4 7 7 7 4
4
4
3
6
6
7
6

x
Λx

y
Λ
y

1. Compute the signatures Sx, Sy

Sx(i) =
∑
j Tij

2. Evaluate the Laplacian of signatures Λx,Λy

Λx(i) = Sx(i+ 1)− 2Sx(i) + Sx(i− 1)

3. Find the steepest zero-crossing of Λ

4. Split and trim

FIG. 5.7 – Clustering by signatures.

are defined as

Sx(i) =
∑
j

Tij

Sy(j) =
∑
i

Tij

Let us start with the patch shown on figure 5.7. This patch inherits the tagged cells of its
level grid (in blue). In order to detect blocks of untagged cells from the signatures, M. Berger
and I. Rigoutsos use a simplification of the Marr–Hildreth edge detection method [99]. The
sharpest variation of the edge of the tag field shape is estimated at the steepest zero-crossing of
the Laplacian of the signatures. This Laplacian is computed using the classical finite-difference
formulae:

Λx(i) = Sx(i+ 1)− 2Sx(i) + Sx(i− 1)

Λy(j) = Sy(j + 1)− 2Sy(j) + Sy(j − 1)

On figure 5.7 the steepest zero crossing of Λ is located along the horizontal axis between i = 3
and i = 4. The patch is then split at this position into two new patches. The new left patch
is finally trimmed down by removing the 3 × 3 block of untagged cells. The algorithm is then
applied to the left and right new patches until the desired efficiency criterion is met.

Suboptimal clusterings

Some specific tag fields as presented in [24] can lead to a non-optimal splittings. A first example
of such tags is given in figure 5.8. When the standard Laplacian is used for edge detection, a
non-optimal choice of partition is made. Out of the two choices for split, either between cells
(7, 1) and (7, 2) or between cells (1, 6) and (1, 7), the second one is selected. The issue is that
the signatures only provide an “external” view of the tag pattern. It is not possible using solely
the signatures to predict that the split between cells (1, 6) and (1, 7) will come through the large
7 × 7 cell block. A possible workaround proposed by M. Berger and I. Rigoutsos in [24] is to

72 ADAPTIVE GRIDS [CH.5

7 7 7 7 7 7 7 3 4 4 4 4 4 3
7
7
7
7
7
7

12
7
7
7

x
Λx

y
Λ
y

Standard Laplacian Λ: fail

7 7 7 7 7 7 7 3 4 4 4 4 4 3
7
7
7
7
7
7

12
7
7
7

x

Λx
Sx

y

Λ
y

S
y

Scaled Laplacian Λ/S: pass

0 0 0 0 0 0101 0 0 0 0 1

0
0
0
0
0
5
9
0
0

x
Λ̃x

y
Λ̃
y

Modified Laplacian Λ̃: pass

FIG. 5.8 – Addressing the shortcomings of the clustering algorithm: irrelevant split.

use a scaled Laplacian, defined as:

Λx(i) =
Sx(i+ 1)− 2Sx(i) + Sx(i− 1)

Sx(i)

Λy(j) =
Sy(j + 1)− 2Sy(j) + Sy(j − 1)

Sy(i)

It balances the choices between the two space dimensions and leads to the correct choice for
splitting the patch. This improvement works on this specific example but it is not a definite
solution, as the indicator used for edge detection is still calculated upon the signatures. A
second solution was proposed by the same authors: “compute the sum of the absolute value of
the gradient, and difference the results to get the second derivative”. We the define the gradient
signatures as:

Gx(i+ 1/2) =
∑
j

|Ti,j − Ti+1,j |

Gy(j + 1/2) =
∑
i

|Ti,j − Ti,j+1|

The modified Laplacian is obtained from these quantities as:

Λ̃x(i) = Gx(i+ 1/2)−Gx(i− 1/2)

Λ̃y(j) = Gy(j + 1/2)−Gy(j − 1/2)

Another problematic tag field is shown on figure 5.9. From “outside” the patch, relying
solely on signature information, it is not possible to identify any edge. Nevertheless the ratio
between the number of tagged cells and the number of total cells indicates that an edge does
exist in this tag pattern. Using the modified Laplacian Λ̃, the internal variations of the shape
can be detected. Another, simpler alternative proposed in [24] consists in splitting the patch in
two equal grids, a process call bisection.

In practice, we will use the standard Laplacian with a bisection when necessary.

§5.2] HIERARCHY OF NESTED GRIDS 73

1010101010101010101010101010
14
14
14
14
14
14
14
14
14
14

x
Λx

y
Λ
y

Standard Laplacian Λ: fail

1010101010101010101010101010
14
14
14
14
14
14
14
14
14
14

x
Λx

y
Λ
y

Forced bisection: pass

0 0 0 0 0 0100 0 0 0 0 0

0
0
0
0

14
0
0
0
0

x
Λ̃x

y
Λ̃
y

Modified Laplacian Λ̃: pass

FIG. 5.9 – Addressing the shortcomings of the clustering algorithm: edge not detected.

G1, G2,i

Wrong nesting for G2

partition
of Ω̄1

Complement of G1

∈ Ḡ1 ∩G2

Extended Ḡ1

new patch
after splitting
G2,i

Proper nesting for G2

FIG. 5.10 – Enforce nesting between levels.

G0 Ω1,i

Stencil issue

Tags: Ω1
projected on
G0

Tags on coarser level

New patch
for Ω1

New patches Final clustering

FIG. 5.11 – Fix clustering incompatible with coarse-fine stencils.

74 ADAPTIVE GRIDS [CH.5

Incompatible clusterings

The generated composite grids must be compatible with the composite discretization stencils.
For instance, when computing the edge value of a gradient using the composite discretization
presented in next chapter, two coarse cells in the tangential directions are required. Therefore,
in the first clustering attempt of figure 5.11, such stencil problems are encountered at cell (3, 6).
A possible workaround would be fix the tag field prior to the clustering. However, an a priori fix
will never be a systematic solution for this problem: the clustering algorithm with an efficiency
lower than one generates a different level shape — slightly larger — that the one defined by
the tag field. The generated level has to be fixed a posteriori, using for example the following
procedure:

1. Generate a tentative clustering using the tags defined on G0.

2. Define a tag field on G0 by projecting the tentative clustering on G0.

3. Detect the untagged coarse cells responsible for the stencil definition issues. These cells
are tagged into a new tag field.

4. Use the clustering algorithm with efficiency set to one to generate patches defined by the
new tag field.

5. Append the newly generated patches to the tentative clustered level.

Another problem arising when clustered levels are generated with an efficiency lower than
one is the proper nesting between levels, an example of which is depicted on figure 5.10. On this
example, we require one buffer cell between consecutive levels and therefore two patches should
be re-generated. We use an idea proposed by R. Deiterding in [51] which consists in using the
complement of the tentative clustered level in order to identify the regions of it yielding to
nesting problems:

1. Generate a tentative clustering using the tags defined on G0.

2. Define the complement of the tentative level by using a modified clustering procedure with
efficiency set to one, which would consider the “complement” of the original tag fields

3. Extend every patch of the complement level according to the width of the buffer zone
required between two consecutive levels (one in the example of figure 5.10)

4. Look for the overlapping regions within each patch of the original clustered level and the
complement level. This defines a new tag field on individual patches which matches in
each individual patch the cells conflicting with the “proper nesting” condition.

5. On each problematic patch of the tentative clustering, the tagged cells define the region
which must be “removed” from the patch. On each patch use the clustering algorithm
with the new tag field, with efficiency set to one, to partition each of those patches.

6. Replace the problematic patches by their new partition.

§5.2] HIERARCHY OF NESTED GRIDS 75

Controlling patch shapes

The original clustering algorithm introduced by M. Berger and I. Rigoutsos features a control
over the shape of the entire level grid, not on the patches taken individually. It may be of
interest to have such control, so as to avoid very small patches or “highly flattened” patches. In
addressing these two issues, three criteria are introduced, defined for a given patch, an associated
tag field and a splitting position:

1. rvmin: the ratio between the volume of a newly generated patch and the parent patch

2. vmin: the volume of a newly generated patch, normalized by the space discretization step

3. lmin: the minimum of the lengths of a newly generated patch along each space dimension,
normalized by the space discretization step

Prior to assessing the optimal splitting for a given patch, an algorithm pre-computes these three
quantities for every possible split position. Then these criteria are used to discard potential
splitting positions based on the zeros crossings of the Laplacian of the signatures. The algorithm
for pre-computing the vmin quantity is given below:

PreComputeVmin(G, tag)
1: v1(:)← 0
2: for d← 1 to dim(G) do
3: pmin(:)← 1
4: pmax(:)← 0
5: i← sum(size(G, 1 : d− 1))
6: for j← 1 to dim(G) do
7: i← i + 1
8: [pmin, pmax]← ShapeBounds(G, ref1, size1,d, j)
9: v1(i)← j

10: for k← 1 to dim(G) do
11: if k 6= d then
12: v1(i)← v1(i) ∗ (pmax(k)− pmin(k) + 1)

13: v2(:)← 0
14: for d← 1 to dim(G) do
15: pmin(:)← 1
16: pmax(:)← 0
17: for j← dim(G) to step −1 do
18: i← sum(size(G), 1 : d− 1) + j− 1
19: [pmin,pmax]← ShapeBounds(G, ref1, size1,d, j)
20: v2(i)← size(G, d)− j + 1
21: for k← 1 to dim(G) do
22: if k 6= d then
23: v2(i)← v2(i) ∗ (pmax(k)− pmin(k) + 1)

24: for i← 1 to length(rv1) do
25: vmin(i)← min(v1(i), v2(i))

return vmin

ShapeBounds(G,j,d)
1: ref1(:) ← localRef(G)

76 ADAPTIVE GRIDS [CH.5

2: ref1(d) ← ref1(d) + j−1
3: size1(:) ← size(G)
4: size1(d) ← 1
5: for cell K in subregion (ref1,size1) of baseGrid(G) do
6: if tag(K)6=0 then
7: for i←1 to dim(G) do
8: if i6=d then
9: if pmax(i) < pmin(i) then

10: pmax(i) ← index(K,i)
11: pmin(i) ← index(K,i)
12: else
13: if index(K,i) > pmax(i) then
14: pmax(i) ← index(K,i)

15: if index(K,i) < pmin(i) then
16: pmin(i) ← index(K,i)

return [pmin,pmax]

The function PreComputeVmin returns the array vmin(:) indexed with the set ∪dim(G)
i=1 Ji,

length(Ji) = size(G, i). The local index k ∈ Jd is referring to a splitting of the parent patch
along the space dimension d between indices k and k + 1. It matches the global index j =∑d−1

i=1 length(Ji) + k − 1. The value vmin(j) gives the minimal volume among the two patches
that would be generated from this splitting, including the trimming of the latter. The function
ShapeBounds returns the minimal and maximal indices in the parent patch which bound a new
patch candidate along the selected space dimension. In practice, the selection of the splitting
position is as follows:

1. Most relevant zero crossing of the Laplacian of the signatures meeting vmin, rmin and
rvmin criteria

2. If (1) fails, most relevant zero crossing of the Laplacian of the signatures meeting vmin,
rmin criteria

3. If (2) fails and if the signatures match the pathologic case illustrated in figure 5.9, perform
a bisection

4. Else, no further split and the current patch is a final patch for the clustered level

5.2.3 Examples

Our version of the clustering algorithm is tested on the five original clustering problems pre-
sented in [24]. In each of those tests whose results are given in figures 5.12, 5.13 and 5.14 three
level grids are generated: on the left (a) with rvol = 0 and eff < 1, in the middle (b) with
rvol > 0 and eff < 1 and on the right (c) with eff = 1. The parameters for each of those are
specified in table 5.1. The input parameters are “eff” (minimal efficiency required in any final
patch), and (“rvmin”,“vmin”,“lmin”) presented earlier. The output indicators are eff-loc (worst
efficiency among all patches), “eff-lev” (global efficiency achieved on the level grid), “npatch”
(the total number of patches).

In tests (a) and (b), the clustering algorithm manages to generates levels with a global
efficiency greater than 0.8 while preserving a much lower number of patches compared to the

§5.2] HIERARCHY OF NESTED GRIDS 77

Test eff rvmin vmin lmin eff-loc eff-lev npatch

1a 0.7 0 4 2 0.79 0.91 11
1b 0.75 3/4 4 2 0.75 0.84 9
1c 1 0 0 0 1 1 31

2a 0.7 0 4 2 0.81 0.90 11
2b 0.7 1/3 4 2 0.63 0.84 13
2c 1 0 0 0 1 1 34

3a 0.75 0 4 2 0.67 0.85 24
3b 0.75 1/3 4 2 0.44 0.80 20
3c 1 0 0 0 1 1 75

4a 0.7 0 4 2 0.63 0.84 7
4b 0.7 2/3 4 2 0.5 0.81 6
4c 1 0 0 0 1 1 28

5a 0.7 0 4 2 0.67 0.87 8
5b 0.7 3/4 4 2 0.67 0.82 8
5c 1 0 0 0 1 1 37

TAB. 5.1 – Parameters and results for each clustering test.

level matching the tags exactly in tests (c) (generated with the efficiency set to one). In the
latter case, the number of patches is between 3 and 5 times greater. This yields to considerable
savings in computation time for a reasonable overhead. In tests (a) The use of vmin and lmin
criteria prevents the generation of patches of too small size so as to have a better balance between
subdomain unknowns. This balance can be further improved by using the rvmin criteria as
shown in tests (c), at the expense of a slightly greater overhead (inferior eff-lev values). The
most balanced level grids are obtained in tests (1b). The effectiveness of the clustering algorithm
is the worst for 45 degree straight edges in the tag shape, which is best seen on test (3). The
only way to match with a good accuracy such shapes is to use very small or very thin patches,
which can contradict the requirements set to the clustering algorithm.

78 ADAPTIVE GRIDS [CH.5

Test (1) Test (2)

FIG. 5.12 – Clustering tests (1) and (2) from [24].

Test (3)

FIG. 5.13 – Clustering test (3) from [24].

Test (4) Test (5)

FIG. 5.14 – Clustering tests (4) and (5) from [24].

Chapter 6

SOLVING ON COMPOSITE GRIDS

In this chapter, we investigate the numerical solution of elliptic and hyperbolic PDE (in line
with the projection scheme introduced in part 1) on level grids and composite grids. This
problem is two fold (see figure 6.1): first, as structured adaptive mesh refinements (SAMR)
grids are generated as an union of composite grids, we have to deal with the discretization at
the interface between two patches belonging to the same level, called fine-fine interfaces. Then
for composite grids, at coarse-fine interfaces a specific discretization is also required. The AMR
technique employs ghost-cells to cope with the interface problem. We show how these may be
seen in the domain decomposition framework. We then give some insight on the multigrid solver
that is implemented in the AMR code.

Coupling with neighboring patches

Physical boundary conditions

Synchronization for DDM

Composite discretizationL3

L2

L1

Patch generation Composite grid

FIG. 6.1 – Coarse-fine interfaces and fine-fine interfaces.

The issue fine-fine interfaces is not related to the discretization scheme but to the numerical
method for solving or relaxing (for multigrid) the discrete problem on a partitioned grid. A
common technique for SAMR methods is to solve or relax individual patches and use ghost
cells to synchronize them. After interpreting this ghost-cell technique in the broader context
of domain decomposition methods, several numerical tests are performed to assess its efficiency
and understand its behaviour either with solvers or relaxation methods.

As for coarse-fine interfaces, usual discretization schemes for computing a flux or an edge
value have to be extended to the configuration of an edge separating grids at different levels.
This specific discretization should involve both coarse cell values and fine cells values. At stake
is to define a consistent discretization which has the required accuracy (first order for our
pressure-correction scheme) and which does not add a significant computational expense nor

79

80 SOLVING ON COMPOSITE GRIDS [CH.6

∂Ω

Ω Ω1

Γ1

Ω2

Γ2

Ω = Ω1 ∪ Ω2

∂Ωi = (∂Ωi ∩ ∂Ω) ∪ Γi, i = 1, 2

For n = 0, 1, . . . solve in sequence:
∆un+1

1 = f in Ω1

un+1
1 = g on ∂Ω1 ∩ ∂Ω

un+1
1 = un2 on Γ1

∆un+1
2 = f in Ω2

un+1
2 = g on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on Γ2

FIG. 6.2 – Schwarz alternating algorithm on overlapping subdomains.

introduces further complications with respect to the implementation.

6.1 Fine-fine interfaces

SAMR grids, whether level grids or composite grids, are partitioned as an union of Cartesian
grids. We want to take advantage of existing numerical methods working on Cartesian grids for
solving or relaxing on level grids. The most natural approach is to use domain decomposition
methods: instead of solving a single problem on the level grid which may have a complex shape,
we solve a set of coupled problems on the individual Cartesian grids making up the level grid.

For the sake of simplicity, we will consider the Laplace equation although the following
results apply to other elliptic PDE and to hyperbolic PDE as well.

find u ∈ C2(Ω),

{
∆u = f in Ω
u = g on ∂Ω

(6.1.1)

Domain decomposition methods were originally introduced by Schwarz [119] in 1870 as an
analytic tool to prove the Dirichlet principle on complex domains [64], such as Ω in figure 6.2:{

u ∈
{
w ∈ C2(Ω), w|∂Ω = g

}
∆u = f in Ω

⇐⇒
{
J(u) = min

{
J(v), v ∈ C2(Ω), v|∂Ω = g

}
∀v ∈ C2(Ω), J(v) =

∫
Ω | ∇ v|

2 − fv

The Dirichlet principle was only proved on simple domains using Fourier analysis. On more
complex domains it was still an open question whether the infimum of the Dirichlet integral is
reached or not. Schwarz proposed a decomposition of complex domains into simpler domains
in which the Dirichlet principle could be proved (see figure 6.2). The two domains overlap, and
they are coupled through Dirichlet boundary conditions. The Schwarz alternating algorithm
starts with an initial guess u0

2, and the integration of the Dirichlet problem ∆un+1
1 = f in

Ω1 with boundary conditions un+1
1 |∂Ω1∩∂Ω = g and un+1

1 |Γ1 = un2 |Γ1 . It is then followed in
Ω2 by the integration of ∆un+1

2 = f in Ω2 with boundary conditions un+1
2 |∂Ω2∩∂Ω = g and

un+1
2 |Γ2 = un+1

1 |Γ2 . By alternating between integrations in the two subdomains and using a
maximum principle, Schwarz proved [119, 64] that the sequences (un1)n∈N and (un2)n∈N converge
uniformly and their respective limits u1 and u2 and verify u1|Γi = u2|Γi for i = 1, 2. It infers that
u1 and u2 are restrictions to Ω1 and Ω2 of the same function u verifying the original problem
on Ω. This algorithm is also referred to as multiplicative Schwarz (it can be interpreted as
the composition of several operators). The larger the overlap region Ω1 ∩ Ω2, the faster the
convergence of the algorithm.

§6.1] FINE-FINE INTERFACES 81

n1n2

Ω1 Ω2

Ω = Ω1 ∪ Ω2, Ω̊1 ∩ Ω̊2 = {∅},
Γ = Ω1 ∩ Ω2, n = n1

b

b

b

bΩ1 Ω2

Inflow boundaries: Γ2,in, Γ1,in, ∂Ωin

FIG. 6.3 – Non-overlapping domain decomposition.

Beyond its original use as an analytical tool, the Schwarz alternating algorithm is rather
used nowadays as an iterative method for solving problems on overlapping decomposed domains.
However overlapping Schwarz methods cannot be applied to our level grid decompositions, which
are generated without overlap by the clustering algorithm presented in the last chapter (though
an overlapping decomposition may be generated with another clustering algorithm). Therefore
we will rather consider another class of domain decomposition methods which appeared along
with the finite element method in the 60’s, substructuring domain decomposition methods.

6.1.1 Non-overlapping domain decomposition

Multi-domain formulation

We now turn to non-overlapping domain decompositions. An example of non-overlapping de-
composition is shown on figure 6.3. The domain Ω is partitioned into two subdomains Ω1 and
Ω2 with boundary ∂Ωi and normal vector ni. We denote Γ = Ω1 ∩ Ω2 and n = n1. We still
consider the Laplace equation with Dirichlet boundary conditions:

find u ∈ H1(Ω),

{
∆u = f in Ω
u = g on ∂Ω

(6.1.2)

The source term f is in L2(Ω) and the Dirichlet data g in H1/2(Ω). We would like to solve two
problems (possibly coupled) on Ω1 and Ω2 such that their solutions match the restriction of the
single-domain solution on their respective domains:

for i = 1, 2 : ui = u|Ωi

In order to establish the coupling between the two subdomains, the variational formulation
of (6.1.2) is introduced. Given a test function v ∈ H1

0(Ω), we integrate by parts the single
domain PDE. On the one hand, integrating by parts and noting that v = 0 on ∂Ω, we have:∫

Ω
(∆u)v =

∫
Ω
fv

⇔
∫

Ω
∇u · ∇ v =

∫
Ω
fv

82 SOLVING ON COMPOSITE GRIDS [CH.6

On the other hand, splitting the integral on the two subdomains and integrating by parts, we
get: ∫

Ω
(∆u)v =

∫
Ω1

∇u1 · ∇ v +

∫
Ω2

∇u2 · ∇ v

=

∫
Ω
∇u · ∇ v −

∫
Γ
(∇u1)v · n1 −

∫
Γ
(∇u2)v · n2

Therefore, we have ∫
Γ

[(∇u1 −∇u2) · n] v = 0,

Therefore solving (6.1.2) is equivalent to solving two coupled problems on Ω1 and Ω2 with
u|Ω1 = u1 and u|Ω2 = u2: 

∆u1 = f in Ω1

u1 = g on ∂Ω1 ∩ ∂Ω
u1 = u2 on Γ (TC1)

∂nu1 = ∂nu2 on Γ (TC2)
∆u2 = f in Ω2

u2 = g on ∂Ω2 ∩ ∂Ω

(6.1.3)

The subdomains Ω1 and Ω2 are coupled through the transmission conditions (TC1) and (TC2).
A multi-domain formulation can also be straightforwardly devised for a scalar conservation law.
The single domain problem is stated as:

find u ∈ H1(Ω),

{
au+ div(ub) = f in Ω
u = g on ∂Ωin,

(6.1.4)

where b denotes the advecting velocity and ∂Ωin the inflow boundary, i.e. the set of points of
∂Ω where bn > 0. We consider the decomposition given in figure 6.3 (right). Similarly the
inflow part of Γ = ∂Ω1∪∂Ω2 for Ω1 is denoted Γ1,in = Γ2,out and the outflow part Γ1,out = Γ2,in.
Multiplying by a test function and integrating by parts as in the case of the pure diffusion yields
the following transmission condition:

(b · n1)u1 = −(b · n2)u2 on Γ1in ∪ Γ1out

Hence the two-domain problem:
au1 + div(u1b) = f in Ω1

u1 = g on ∂Ω1 ∩ ∂Ωin

u1 = u2 on Γ (TC1)
au2 + div(u2b) = f in Ω2

u2 = g on ∂Ω2 ∩ ∂Ωin

(6.1.5)

Direct substructuring

Following [114], the above problems can reformulated as two Dirichlet problems coupled by an
interface equation involving the Steklov-Poincaré operator [112, 113]. We start with the elliptic
problem (6.1.2). Let λ be the trace of solution u to (6.1.2) on Γ. For i = 1, 2 we have:

∆ui = f in Ωi

ui = g on ∂Ωi ∩ ∂Ω
ui = λ on Γ

(6.1.6)

§6.1] FINE-FINE INTERFACES 83

The transmission condition (TC1) is given by u1|Γ = u2|Γ = λ. Enforcing condition (TC2)
yields to a first order partial differential equation on λ. Let us first introduce two new operators
after [114], Hi : H1/2(Γ)→ H1(Ω) and Qi : L2(Ω)→ H1(Ω) :

Hiµ = v with


∆v= 0 in Ωi

v= 0 on ∂Ωi ∩ ∂Ω
v= µ on Γ

and Qiρ = v with


∆v= ρ in Ωi

v= g on ∂Ωi ∩ ∂Ω
v= 0 on Γ

Qiρ is the solution to the Poisson problem with data ρ, homogeneous Dirichlet condition on Γ
and the original Dirichlet condition of the single domain problem (6.1.2) on ∂Ωi ∩ Ω. Hiµ is
the extension (with a Poisson kernel in the present case) of the trace µ in Ωi. As a result, any
solution to the problems in Ω1 and Ω2 can be decomposed into the solution of two subproblems:

ui = Hi(ui|Γ) +Qif (6.1.7)

Using this decomposition, the transmission condition (TC2) can be reformulated as:

∂nH1λ+ ∂nQ1f = ∂nH2λ+ ∂nQ2f

We introduce the Steklov-Poincaré operators S and Si for i = 1, 2:

Si : µ ∈ H1/2(Γ) 7→ Siµ = (∂niHiµ)|Γ
S = S1 + S2

The Steklov-Poincaré operator is often referred to as Dirichlet-to-Neumann map. Indeed Si
maps a Dirichlet condition on Γ to the matching Neumann condition for the extension in Ωi of
the trace associated with the Dirichlet condition. The form of the Steklov-Poincaré operator
depends on the PDE and it may not involve a normal derivative as in this example. An extensive
analysis of Steklov-Poincaré operators in the context of domain decomposition methods can be
found in references [112, 113, 3]. We eventually derive the interface equation from (TC2):

Sλ = χ with χ = ∂nQ2f − ∂nQ1f (6.1.8)

Upon solving the interface equation, problems (6.1.6) in Ω1 and Ω2 can be solved independently
using the value of λ just calculated for the transmission condition (TC1). This is approach is
called direct substructuring.

Substructuring domain decomposition methods were originally introduced by the structural
engineering community [111] as a technique for solving problems with a larger number of degrees
of freedom than the computer resources could handle with a single domain approach. The idea
was to partition a structure into substructures, which would be individually represented as a
single finite element [14]. These “super elements” would be coupled through artificial boundary
conditions at their respective boundaries. A new problem would be defined using this super
elements, equivalent to the interface problem (6.1.8) defined above. Upon solving this inter-
mediate problem, the boundary unknowns of each super elements would be then determined.
Thus the problems associated with each substructure could be solved independently.

For a scalar conservation law, the same arguments apply [113]. Let λ be the trace of solution
u to (6.1.2) on Γ. For i = 1, 2 we have:

aui + div(uib) = f in Ωi

ui = g on ∂Ωi ∩ ∂Ω
ui = λ on Γ

(6.1.9)

84 SOLVING ON COMPOSITE GRIDS [CH.6

G1 G2

G = G1 ∪G2 Ghost cell layers G∗1, G∗2 for G1, G2

G∗2 G2

FIG. 6.4 – Simple two-domain decomposition with Cartesian grids.

The transmission condition is given by u1|Γ = u2|Γ = λ. Let us introduce two operators
Hi : H1/2(Γ)→ H1(Ω) and Qi : L2(Ω)→ H1(Ω) :

Hiµ = v with


av + div(vb) = 0 in Ωi

v= 0 on ∂Ωi ∩ ∂Ωin

v= µ on Γi,in

; Qiρ = v with


av + div(vb) = ρ in Ωi

v= g on ∂Ωi ∩ ∂Ωin

v= 0 on Γi,in

The solution to the problem in Ω1 or Ω2 can be decomposed into the solution of two subproblems:

ui = Hi(ui|Γ) +Qif (6.1.10)

Using this decomposition, the transmission condition can be reformulated as:

(b · n)(H1λ+Q1f) = (b · n)(H2λ+Q2f) on Γ

The Steklov-Poincaré operators S and Si read for i = 1, 2:

Si : µ ∈ H1/2(Γ) 7→ Siµ = ((v · ni)Hiµ)|Γ
S = S1 + S2

We finally obtain the interface equation:

Sλ = χ with χ = (b · n)Q2f − (b · n)Q1f (6.1.11)

Algebraic formulation

The decomposition exposed at the continuous level also stands at the algebraic level. Let us con-
sider the cell-centered finite-volume discretization of (6.1.3) on Cartesian grids (see figure 6.4).
Despite all unknowns are defined as cell-averages, we introduce edge-average unknowns at the
internal interface Γ for the purpose of exposing the method. The full discrete cell-centered
scheme is recovered by substituting the discrete transmission conditions into the discretized
PDE of each subdomain. The discrete problems in each subdomain read for all K ∈ Gi,
i = 1, 2:

∑
σ∈EK

|σ|uiσ − uiK
h/2

= |K|fiK with

{
uiσ = (uiK + uiL)/2 if σ = K|L ∈ Eint

uiσ = giσ if σ ∈ Eext
(6.1.12)

§6.1] FINE-FINE INTERFACES 85

and the discrete transmission conditions (TC1) and (TC2) for σ ∈ EΓ, i = 1, 2 and j 6= i:

uiσ = ujσ ≡ uσ (6.1.13a)

uiσ − uiK
h/2

= −
ujσ − ujK

h/2
(6.1.13b)

For i=1,2 we denote Ui = (uiK)K∈Gi and UΓ = (uσ)σ∈EΓ . Fi is a vector of the same size as Ui.
The linear system arising from the discrete systems (6.1.12) and (6.1.13) read:A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ,1 +AΓΓ,2

U1

U2

UΓ

 =

F1

F2

0

 (6.1.14)

The first two block rows match respectively the discrete PDE in Ω1 and Ω2. In the flux balance,
a flux (∂nui)σ contributes to Aii if σ ∈ Eint, to both Aii and AiΓ if σ ∈ EΓ and to Aii and Fi
(for the Dirichlet boundary data) if σ ∈ Eext. The last block row matches the transmission
condition (6.1.13b): {(∂niui)σ, σ ∈ EΓ} = AΓiUi + AΓΓ,iUΓ. We can now define the algebraic
equivalent operators to Hi and Qi:{

HiΛ = V with AiiV +AiΓΛ = 0
QiFi = V with AiiUi = Fi

⇒
{
HiΛ = −A−1

ii AiΓΛ

QiFi = A−1
ii Fi

Note that here Fi embeds both the source term fiK and the Dirichlet boundary data giσ.
Likewise the discrete Steklov-Poincaré operator, which is formally the Schur complement, is
defined as:

SiΛ = (∂niHiλ)σ∈EΓ
= AΓi(HiΛ) +AΓΓ,iΛ

= (AΓΓ,i −AΓiA
−1
ii AiΓ)Λ

The algebraic equivalent of χ is simply X = −AΓ2A
−1
22 F2−AΓ1A

−1
11 F1 as homogeneous Dirichlet

conditions on Γ (or UΓ = 0) are used to define operator Qi. Thus following the same steps as
in the continuous formulation yields the algebraic form of the interface equation:

SΛ = X (6.1.15)

For a scalar conservation law, we choose the following discretization with an upwinding of
advected quantities with respect to b:

a|K|uiK +
∑
σ∈EK

|σ|uiσ(bσ · nK,σ) = |K|fiK (6.1.16)

with


uiσ = uiK if σ = K|L ∈ Eint and bσ · nK,σ < 0
uiσ = uiL if σ = K|L ∈ Eint and bσ · nK,σ ≥ 0
uiσ = giσ if σ ∈ Eext ∩ ∂Ωin

(6.1.17)

and the discrete transmission condition on σ = K|K ′ ∈ EΓi,in with K ∈ Gi and K ′ ∈ Gj , i = 1, 2
and j 6= i:

(bσ · nK′,σ)uiσ = (bσ · nK,σ)ujK′ (6.1.18)

The algebraic system is the same as (6.1.14). For matrices AΓi and AΓΓ,i the rows matching
Γi,out are filled with zeros. At the algebraic level the definition of operators Hi and Qi is the
same, and yields to the same interface equation (6.1.15).

86 SOLVING ON COMPOSITE GRIDS [CH.6

6.1.2 Iterative substructuring algorithms

While original substructuring methods relied on a direct resolution of the interface equation,
recent methods use an iterative resolution of the interface equation (iterative substructuring).
Two classical iterative algorithms are reviewed for elliptic PDE.

Dirichlet-Neumann algorithm

In the Dirichlet-Neumann algorithm [28, 14, 114] for two subdomains, starting with an initial
guess u0

1 in Ω1, u0
2 in Ω2, and λ0 = u0

1|Γ on Γ the following problems are solved in sequence for
n = 0, 1, . . .

∆un+1
1 = f in Ω1

un+1
1 = g on ∂Ω1 ∩ ∂Ω

un+1
1 = λn on Γ


∆un+1

2 = f in Ω2

un+1
2 = g on ∂Ω2 ∩ ∂Ω

∂nu
n+1
2 = ∂nu

n+1
1 on Γ

(6.1.19)

with next the update of the trace λ:

λn+1 = (1− θ)λn + θun+1
2 |Γ (6.1.20)

with θ ∈]0, 1[a relaxation parameter. When convergence is reached, both transmission con-
ditions (TC1) and (TC2) are satisfied. This algorithm can be interpreted as an interactive
resolution of the interface equation (6.1.8). Using decomposition (6.1.7) the Neumann condi-
tion on Γ for the problem on Ω2 yields:

∂nu
n+1
2 = ∂nu

n+1
1 on Γ

⇔ ∂n(un+1
2 −Q2f) = ∂n(un+1

1 −Q2f) on Γ

⇔ ∂n2H2(un+1
2 |Γ) = ∂n(Q2f −Q1f −H1λ

n) on Γ

⇔ S2(un+1
2 |Γ) = −S1λ

n + ∂n(Q2f −Q1f) on Γ

Then the iteration (6.1.20) can be reformulated as:

λn+1 = λn + θ(un+1
2 |Γ − λn)

= λn + θ(S−1
2 (S1λ

n − χ)− λn)

= λn + θS−1
2 (Sλn − χ)

Therefore the Dirichlet-Neumann algorithm is equivalent to solving the interface equation using
a Richardson iterative procedure with preconditioner S−1

2 and relaxation parameter θ. An
alternative formulation of the Dirichlet-Neumann algorithm consists in updating the trace λn

according to an iterative method preconditioned with S−1
2 , for instance preconditioned conjugate

gradient or GMRES which are scalable unlike Richardson iterations.
Using the same notations as in the previous section, we denote UΓ,i the trace of the solution

vector Ui on Γ. The Dirichlet-Neumann algorithm reads at the algebraic level, starting with
initial guess Λ0, for n = 0, 1, . . .

Solve first in Ω1 :

A11U
n+1
1 = F1 −A1ΓΛn

Then solve in Ω2 :{
A22U

n+1
2 +A2ΓU

n+1
Γ = F2

AΓ2U
n+1
2 +AΓΓ,2U

n+1
Γ = −(AΓ1U

n+1
1 +AΓΓ,1Λn)

followed by the update of trace Λn:

Λn+1 = (1− θ)Λn + θUn+1
Γ

§6.1] FINE-FINE INTERFACES 87

As exposed at the continuous level, this algorithm is equivalent to solving the discrete interface
equation using a Richardson iterative scheme:

AΓ2U
n+1
2 +AΓΓ,2U

n+1
Γ,2 = −(AΓ2U

n+1
2 +AΓΓ,2Λn)

⇔ AΓ2(Un+1
2 −AΓ2A

−1
22 F2) +AΓΓ,2U

n+1
Γ,2 = −(AΓ1U

n+1
1 +AΓ2A

−1
22 F2 +AΓΓ,1Λn)

⇔ −AΓ2A
−1
22 A2ΓU

n+1
Γ,2 +AΓΓ,2U

n+1
Γ,2 = −(AΓ1(A−1

11 F1 −A−1
11 A1ΓΛn) +AΓ2A

−1
22 F2 +AΓΓ,1Λn)

⇔ S2U
n+1
Γ,2 = −S1Λn −AΓ2A

−1
22 F2 −AΓ1A

−1
11 F1

hence:
Λn+1 = Λn + θS−1

2 (SΛn −X)

Neumann-Neumann algorithm

In the Neumann-Neumann algorithm [30, 14, 114] for two subdomains, starting with an initial
guess u0

1 in Ω1, u0
2 in Ω2, and λ0 = u0

1|Γ on Γ the following problems are solved in sequence for
n = 0, 1, . . .

∆un+1
i = f in Ωi

un+1
i = g on ∂Ωi ∩ ∂Ω

un+1
i = λn on Γ


∆ψn+1

i = 0 in Ωi

ψn+1
i = 0 on ∂Ωi ∩ ∂Ω

∂nψ
n+1
i = ∂nu

n+1
1 − ∂nun+1

2 on Γ

(6.1.21)

with next the update of the trace λ:

λn+1 = λn − (σ1ψ
n+1
1 |Γ − σ2ψ

n+1
2 |Γ) (6.1.22)

where σi ∈]0, 1[for i = 1, 2 are relaxation parameters. As for the Dirichlet-Neumann algorithm,
transmission conditions (TC1) and (TC2) are verified at convergence. The Neumann condition
on Ωi for the second problem of (6.1.21) yields:

ψn+1
i |Γ = S−1

i (∂nu
n+1
1 − ∂nun+1

2)

= S−1
i (∂nH1λ

n − ∂nH2λ
n − χ)

= S−1
i (Sλn − χ)

The iteration (6.1.22) can be reformulated as:

λn+1 = λn − (σ1S
−1
1 + σ2S

−1
2)(Sλn − χ)

Again, we have a Richardson iterative procedure preconditioned by (σ1S
−1
1 + σ2S

−1
2) which

could be replaced by a more efficient iterative scheme (eg. Krylov subspace methods).
Using the same notations as in the previous section, the Neumann-Neumann algorithm reads

at the algebraic level, starting with initial guess Λ0, for n = 0, 1, . . .

First solve for Ui, i = 1, 2 :

AiiU
n+1
i +AiΓΛn = Fi

Then solve for Ψi, i = 1, 2 :{
AiiΨ

n+1
i +AiΓΨΓ,i = 0

AΓiΨ
n+1
i +AΓΓ,iΨΓ,i = AΓ1U

n+1
1 +AΓ2U

n+1
2 +AΓΓΛn

with the iteration on Λn:

Λn+1 = Λn − (σ1Ψn+1
1 |Γ − σ2Ψn+1

2 |Γ)

Similarly the iteration can we rewritten as:

Λn+1 = Λn − (σ1S
−1
1 + σ2S

−1
2)(SΛn −X)

88 SOLVING ON COMPOSITE GRIDS [CH.6

6.1.3 Ghost-cell equivalent decomposition

In SAMR methods, a simple and common practice for solving (possibly inexact, eg. relaxation)
a discrete problem on a given level partitioned into Cartesian grids is to use ghost cells. Let us
start with the simple elliptic PDE dealt with previously.

Elliptic problems

The finite-volume discretization of the two-domain Poisson problem (6.1.2) using ghost cells
reads:

∑
σ∈EK

|σ|uiσ − uiK
h/2

= |K|fiK with


uiσ = (uiK + uiL)/2 if σ = K|L ∈ Eint

uiσ = giσ if σ ∈ Eext

uiσ = (uiK + u∗i L)/2 if σ = K|L ∈ EΓ

(6.1.23)

For an edge σ = K|L ∈ EΓ with K ∈ Gi, cell L belongs to the ghost-cell layers G∗i of grid Gi.
u∗i denotes a cell-average belonging to ghost cell layer G∗i , hence not a discrete unknown for Ωi.
Within an iterative algorithm we would solve the discrete problem on Ω1, then update ghost
cells of Ω2 using overlapping interior cells of Ω1, then solve the problem on Ω2 and update ghost
cells of Ω1. This algorithm can be equivalently described with interface transmission conditions
by introducing interface unknowns:

First solve in Ω1 Then solve in Ω2∑
σ∈EK

|σ|
u1
n+1
σ − u1

n+1
K

h/2
= |K|f1K

∑
σ∈EK

|σ|
u2
n+1
σ − u2

n+1
K

h/2
= |K|f2K

with: with:{
u1
n+1
σ =

u1
n+1
K +u1

n+1
L

2 if σ = K|L ∈ Eint

u1
n+1
σ = g1σ if σ ∈ Eext

{
u2
n+1
σ =

u2
n+1
K +u2

n+1
L

2 if σ = K|L ∈ Eint

u2
n+1
σ = g2σ if σ ∈ Eext

using transmission conditions on EΓ: using transmission conditions on EΓ:{
u2σ = u1

n+1
σ

u1
n+1
σ −u1

n+1
K

h/2 = −u2σ−u∗1
n+1
L

h/2

{
u1σ = u2

n+1
σ

u2
n+1
σ −u2

n+1
K

h/2 = −u1σ−u∗2
n+1
L

h/2

Update G2 ghost cells K ∈ G∗2 Update G1 ghost cells K ∈ G∗1
L ∈ G1 /L ∩K 6= {∅} : u∗2

n+1
K = u1

n+1
L L ∈ G2 /L ∩K 6= {∅} : u∗1

n+2
K = u2

n+1
L

It yields the following equivalent algorithm at the algebraic level:

First solve in Ω1 for U1 :{
A11U

n+1
1 +A1ΓU

n+1/2
Γ = F1

AΓ1U
n+1
1 +AΓ2 U

n
2 +AΓΓU

n+1/2
Γ = 0

Then solve in Ω2 for U2 :{
A22U

n+1
2 +A2ΓU

n+1
Γ = F2

AΓ1 U
n+1
1 +AΓ2U

n+1
2 +AΓΓU

n+1
Γ = 0

with AΓΓ = AΓΓ,1 + AΓΓ,2. The two vector variables Un2 and Un+1
1 are the counterpart of

the ghost-cell update steps of the discrete algorithm. Starting from the algebraic transmission
condition for the second substep (in Ω2):

AΓ2U
n+1
2 +AΓ1U

n+1
1 +AΓΓU

n+1
Γ = 0

⇔ AΓ2A
−1
22 (F2 −A2ΓU

n+1
Γ) +AΓ1A

−1
11 (F1 −A1ΓU

n+1/2
Γ) + (AΓΓ,1 +AΓΓ,2)Un+1

Γ = 0

⇔ AΓΓ,1(Un+1
Γ − Un+1/2

Γ) + S1U
n+1/2
Γ + S2U

n+1
Γ −X = 0

§6.1] FINE-FINE INTERFACES 89

FIG. 6.5 – More general domain decomposition with Cartesian grids.

A similar equation can be obtained for the first substep (in Ω1) as well:

AΓΓ,2(U
n+1/2
Γ − UnΓ) + S1U

n+1/2
Γ + S2U

n
Γ −X = 0

As a result this algorithm is equivalent to solving the discrete interface equation (6.1.15) with
an iterative procedure with two semi-implicit substeps. Let Λ = UΓ ; then we have:

(1) AΓΓ,2(Λn+1/2 − Λn) + S1Λn+1/2 + S2Λn −X = 0

(2) AΓΓ,1(Λn+1 − Λn+1/2) + S1Λn+1/2 + S2Λn+1 −X = 0

We can identify in the above scheme the original Peaceman–Rachford alternating direction
implicit method [108] with relaxation parameters AΓΓ,1 and AΓΓ,2.

However, the above configuration is not representative of the domain decomposition gener-
ated by the clustering algorithm applied to level grids. Indeed at a fixed level, we should rather
assume a number N > 2 of subdomains with an arbitrary connectivity between each. Therefore
it is important to define the underlying iterative scheme on the interface equation for this more
general case as well. A straightforward calculation gives the interface equation:

SΛ = X

The right hand side is defined as the block vector X = (XΓ)Γ∈{Ωi∩Ωj ,i 6=j} with

XΓ = −AΓiA
−1
ii Fi −AΓjA

−1
jj Fj , Γ = Ωi ∩ Ωj

and the Schur complement as the block matrix S = (SΓΓ′)Γ,Γ′∈{Ωi∩Ωj ,i 6=j} with

SΓΓ′ = SΓΓ,i + SΓΓ,j with SΓΓ,i = AΓΓ,i −AΓiA
−1
ii AiΓ if Γ′ = Γ = Ωi ∩ Ωj , i 6= j

SΓΓ′ = −AΓiA
−1
ii AkΓ′ if Γ = Ωi ∩ Ωj , Γ′ = Ωi ∩ Ωk, i 6= j 6= k

SΓΓ′ = 0 else

Using the same iterative algorithm with ghost-cells for enforcing transmission conditions, the
update of interface unknown UΓ with Γ = Ωi∩Ωj , resulting from the resolution of the subprob-
lem in domain Ωi takes the general form:

AΓΓ,j(U
φi,Γ
Γ − Uφi,Γ−1/2

Γ) + SΓΓ,iU
φi,Γ
Γ + SΓΓ,jU

φj,Γ
Γ

+
∑

Γ′ ∈ {Ωi ∩ Ωk}
k ∈ [[1, N]], k 6= i

SΓΓ′U
φi,Γ′

Γ′ +
∑

Γ′ ∈ {Ωj ∩ Ωk}
k ∈ [[1, N]], k 6= j

SΓΓ′U
φj,Γ′

Γ′ = XΓ

90 SOLVING ON COMPOSITE GRIDS [CH.6

The values of the superscript φi,Γ depend on the sequence in which the problems of each
subdomains are solved. In the above local interface equation, φi,Γ = φj,Γ + 1/2. For each
Γ′ ∈ (Ωi ∩ Ωk)1≤k≤N , φi,Γ ≥ φi,Γ′ ; for Γ′ ∈ (Ωj ∩ Ωk)1≤k≤N , φi,Γ ≥ φj,Γ′ . The local equations
verified by the interfaces of a subdomain are coupled together which makes it more difficult to
analyse the equivalent iterative algorithm solving the discrete interface equation.

As an example, let us consider a 2D rectangular domain partitioned into four subdomains
of equal size, indexed clockwise from Ω1 to Ω4. The interface between Ωi and Ωj is denoted
Γij = Γji. The same algorithm as with two subdomains is used. The subproblems are solved
sequentially starting with Ω1 then Ω2, Ω3 and Ω4. This procedure would be equivalent to solving
in sequence the linear systems:

(
AΓ41Γ41,4 0

0 AΓ12Γ12,2

)[(
U
n+1/2
Γ41

U
n+1/2
Γ12

)
−
(
UnΓ41

UnΓ12

)]
+

(
SΓ41Γ41,1 SΓ41Γ12

SΓ12Γ41 SΓ12Γ12,1

)(
U
n+1/2
Γ41

U
n+1/2
Γ12

)

+

(
SΓ41Γ41,4 0

0 SΓ12Γ12,2

)(
UnΓ41

UnΓ12

)
+

(
SΓ41Γ34U

n
Γ34

SΓ12Γ23U
n−1/2
Γ23

)
−
(
XΓ41

XΓ12

)
= 0

(
AΓ12Γ12,1 0

0 AΓ23Γ23,3

)[(
Un+1

Γ12

U
n+1/2
Γ23

)
−

(
U
n+1/2
Γ12

UnΓ23

)]
+

(
SΓ12Γ12,2 SΓ12Γ23

SΓ23Γ12 SΓ23Γ23,2

)(
Un+1

Γ12

U
n+1/2
Γ23

)

+

(
SΓ12Γ12,1 0

0 SΓ23Γ23,3

)(
U
n+1/2
Γ12

UnΓ23

)
+

(
SΓ12Γ41U

n+1/2
Γ41

SΓ23Γ34U
n−1/2
Γ34

)
−
(
XΓ12

XΓ23

)
= 0

(
AΓ23Γ23,2 0

0 AΓ34Γ34,4

)[(
Un+1

Γ23

U
n+1/2
Γ34

)
−

(
U
n+1/2
Γ23

UnΓ34

)]
+

(
SΓ23Γ23,3 SΓ23Γ34

SΓ34Γ23 SΓ23Γ23,3

)(
Un+1

Γ23

U
n+1/2
Γ34

)

+

(
SΓ23Γ23,2 0

0 SΓ34Γ34,4

)(
U
n+1/2
Γ23

UnΓ34

)
+

(
SΓ23Γ12U

n+1
Γ12

SΓ34Γ41U
n
Γ41

)
−
(
XΓ23

XΓ34

)
= 0

(
AΓ41Γ41,1 0

0 AΓ34Γ34,3

)[(
Un+1

Γ41

Un+1
Γ34

)
−

(
U
n+1/2
Γ41

U
n+1/2
Γ34

)]
+

(
SΓ41Γ41,4 SΓ41Γ34

SΓ34Γ41 SΓ34Γ34,4

)(
Un+1

Γ41

Un+1
Γ34

)

+

(
SΓ41Γ41,1 0

0 SΓ34Γ34,3

)(
U
n+1/2
Γ41

U
n+1/2
Γ34

)
+

(
SΓ41Γ12U

n+1/2
Γ12

SΓ34Γ23U
n+1
Γ23

)
−
(
XΓ41

XΓ34

)
= 0

This is clearly not the ADI iterative method though there are some similarities: in each
linear system the 2× 2 block matrices may be seen as a splitting of the matching block rows of
the Schur complement matrix S.

Hyperbolic problems

The same results apply for a scalar conservation law, except that ghost-cell synchronization is
only carried out at the inflow part of the interface between two subdomains.

§6.1] FINE-FINE INTERFACES 91

10
-5

10
-4

10
-3

10
-2

10
-1

0 50 100 150 200 250 300

L
2
 e

rr
o
r

in
 Ω

Iterations (total)

Poisson problem, domain decomposition with solving in each subdomain

16x8 grid
32x16 grid
64x32 grid

128x64 grid
256x128 grid
512x256 grid

10
0

10
1

10
2

10
2

10
3

10
4

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
 b

e
fo

re
 c

o
n
v
e
rg

e
n
c
e

Number of unknowns per subdomain

Two-domain decomposition, solving in each subdomain

Poisson
Conservation law

FIG. 6.6 – Solving subproblems with a two domain decomposition.

6.1.4 Numerical tests

First the ghost-cell domain decomposition algorithm is tested using a full resolution of each
subproblem, which is the usual way to proceed for solving decomposed problems. Then having
in mind the use of multigrid solvers we turn to a domain decomposition algorithm where a few
relaxation steps are performed in each subdomain instead of a full resolution.

Subdomain resolution

The efficiency of the ghost-cell domain decomposition is assessed on an elliptic problem and
on a hyperbolic problem. The elliptic problem under consideration is a Poisson problem on
Ω = [0, Lx]× [0, Ly]: {

∆u = f in Ω
u = g on ∂Ω

with right hand side f(x, y) = −8π2 sin(2πx) sin(2πy) and with Dirichlet boundary data g the
trace on ∂Ω of the exact solution uref(x, y) = sin(2πx) sin(2πy). The finite volume discretization
is the same as (6.1.12).

The hyperbolic problem is a simple scalar conservation law on Ω = [0, Lx]× [0, Ly]:{
∂tu+ div(ub) = 0 in Ω
u = g on ∂Ωin

with advecting velocity b = [2, 1]t. The initial data is u0 = 1 + exp[−(x2 + y2)/(1/20)]. The
exact solution is given by the method of characteristics by uref(x, y) = 1 + exp[−((x − bxt)2 +
(y− byt)2)/(1/20)]. The inflow boundary data on ∂Ωin is set to the trace of uref. Using a simple
time implicit Euler scheme with time step δt, the cell-centered finite-volume discretization of
the scalar conservation law is given by (6.1.16) with a = 1/δt and f = u0/δt. The timestep δt
is set to 1/128.

In the first test, we take Lx = 2Ly = 2. The domain Ω is decomposed into two subdomains
Ω1 and Ω2 of equal size. The objective is to evaluate the number of iterations of the domain
decomposition algorithm to reach convergence when the number of unknowns in each subdomain
increases. The respective grids of the two subdomains, G1 andG2, are set to 8×8, 16×16, 32×32,
64× 64, 128× 128 and 256× 256 cells. The solution is initialized by zero. At convergence, the
solution to the two-domain problem matches the solution of the single domain problem. For the

92 SOLVING ON COMPOSITE GRIDS [CH.6

10
0

10
1

10
2

10
3

0 50 100 150 200 250

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
 b

e
fo

re
 c

o
n
v
e
rg

e
n
c
e

Number of subdomains

N-domain decomposition, solving in each subdomain

Poisson
Conservation law

Residual, (8x8 sudomains, iter=70)

20

40

60

80

100

120

20 40 60 80 100 120

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Residual, (8x8 sudomains, iter=640)

20

40

60

80

100

120

20 40 60 80 100 120

-0.04

-0.02

0

0.02

0.04

Residual, (8x8 sudomains, iter=25600)

20

40

60

80

100

120

20 40 60 80 100 120

-3e-08

-2e-08

-1e-08

0

1e-08

2e-08

3e-08

FIG. 6.7 – Solving subproblems with more than two subdomains decompositions.

elliptic problem the energy norm of the consistency error decreases as o(h2), which is consistent
with the second order spatial discretization. Likewise a first order convergence is observed with
the conservation law, discretized with a first order scheme. When solving the Poisson problem
the number of iterations of the domain decomposition algorithm increases linearly with Nα,
denoting by N the number of unknowns and α > 0 (see figure 6.6). It clearly shows that this
algorithm is not scalable. A very different behaviour is observed with the scalar conservation
law: the method always converges always in one iteration. Indeed the first subdomain solved
(Ω1) has an outflow boundary Γ with its neighbor Ω2. As a result using a first order upwind
scheme the discrete PDE in Ω1 is decoupled from Ω2. This would not be the case had we started
with Ω2 instead of Ω1.

In the second test, we set Lx = Ly = 1. The domain Ω is partitioned into nd = 4k

subdomains of equal size, with 1 ≤ k ≤ 4. The aim is to observe the convergence of the
domain decomposition algorithm when the number of unknowns of the problem in Ω is fixed
while it is decomposed into an increasing number of subdomains. The subdomains are solved
in sequence and the order in which they are solved should affect the convergence. Only one
order will be dealt with, the order in which the subdomains have been created by the grid
generation algorithm. The solution is initialized by zero in each subdomain. The hyperbolic
problem always needs very few domain decomposition cycles. The number of cycles for the
elliptic problem is fairly stable around 102 (see figure 6.7). The evolution of the solution in
each subdomain and that of the local residuals can provide insightful information with respect
to the behaviour of the domain decomposition algorithm. On figure 6.7 right, the solution for
a 8 × 8 partition with the Poisson problem (first row) and the initial local residuals (second
row) are shown after respectively 1 cycle, 10 cycles and 400 cycles. The initial local residual is
useful in giving information on how well the transmission conditions are verified. After 1 cycle
and 10 cycles the order of magnitude of the residual is still 10−1: the transmissions conditions
(TC1) and (TC2) are very loosely satisfied. After 400 cycles, the order of magnitude of the
residual is 10−8: the transmission conditions are much better verified and the solution on ∪iΩi

is identical (up to machine precision) to the single domain solution on Ω. Furthermore, it may
be noticed that the transmission conditions are almost immediately verified where the solution
is almost constant whereas they show a large error where the steepest gradients of the solution
are located. The highest error on the transmission conditions is situated at the intersection
between subdomain interfaces — which would be the so-called crosspoints in finite element

§6.1] FINE-FINE INTERFACES 93

domain decompositions.

Subdomain relaxation

As a prelude to multigrid methods which will be discussed in the next chapter, we investigate
the use of smoothers instead of solvers in the ghost-cell domain decomposition algorithm. The
same discrete problems are considered. The linear system associated with a subdomain Ωi

reads:

AiUi = bi with


Ai = Aii −

∑
Γ=Ωi∪Ωj ,j 6=i

AiΓA
−1
ΓΓAΓi

bi = Fi +
∑

Γ=Ωi∪Ωj ,j 6=i
AiΓA

−1
ΓΓAΓjUj

Let us point out that further interpretations of smoothing on multiple domain exist: block
relaxation, local smoothing, line relaxation, grid partitioning approach, chaotic relaxation. We
prefer to view relaxation on partitioned domain as a relaxation on individual problems coupled
with relevant transmission conditions, hence the choice of the domain decomposition framework.

In domain decomposition methods, it can be somewhat questionable to solve to machine
precision subproblems while they are not provided with the “correct” transmission conditions (in
the sense the latter are “approximate”). The same concern stands when relaxing on subdomains:
is it possible to define an optimal number of relaxation iterations per subdomain? The aim of
the numerical tests will be to assess the impact of the partitioning and of number of local
relaxation iterations on the overall efficiency of the smoother.

Smoothers are relaxation methods which feature a smoothing property [33], i.e. to be very
efficient at damping the oscillatory (high frequency) components of the error while having a
small impact on the smooth (low frequency) ones. Note that in this section the error refers to
the error with respect to the discrete solution of the PDE (e = A−1b− U), not the consistency
error. Such iterative methods are usually very inefficient for solving linear systems because
of their slow convergence on the low frequency components of the error. In contrast the high
frequency components of the error are typically damped after a few iterations, and this is what
makes them a key component of multigrid. Common smoothers include the Jacobi method and
the Gauss-Seidel method with different choices of relaxation patterns (eg. Red-Black ordering).
We will only consider the Gauss-Seidel method with lexicographical ordering.

We define the splitting A = A` + Ad + Au with Ad the diagonal part of A, A` its lower
triangular part and Au its upper triangular part. The iteration scheme of lexicographical Gauss-
Seidel reads:

MUk+1 = NUk + b ⇔ Uk+1 = M−1NUk +M−1b

with M = Ad −A` and N = Au ; or put in more general form:

Uk+ν = RνUk +Rν−1b

with R = M−1N .

Now comes into question how efficient smoothers are when a domain is partitioned into
many subdomains. Also, how the number of relaxation steps in each subdomain impacts the
reduction of the high frequency components of the global error.

In the following tests, we will monitor the power spectrum of the global error. The base
grid G is a square Cartesian grid with N ×N cells. Assuming each cell is indexed by the pair

94 SOLVING ON COMPOSITE GRIDS [CH.6

10
-3

10
-2

10
-1

10
0

10
1

0 1 2 3 4 5 6 7 8 9 10

e
rr

o
r

(e
n

e
rg

y
 n

o
rm

)

domain decomposition cycles

Poisson problem, base grid 128x128, mode (k,l)=(63,0)

single domain
2x2 subdomains
4x4 subdomains
8x8 subdomains

16x16 subdomains

nd Init. Cycle 1 Cycle 2 Cycle 3 Cycle 10

1×1

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

2×2

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

4×4

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

8×8

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

16×16

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Normalized Power Spectrum

FIG. 6.8 – Poisson problem: base grid 128× 128 cells, single relaxation step per subdomain. Initializa-
tion: solution to the discrete PDE perturbed with the mode w(63). Left: evolution of the error in energy
norm with domain decomposition cycles. Right: normalized power spectrum after several cycles. The
power spectrum ranges from zero (black) to its highest value (white). The horizontal frequencies range
from mode k = −64 to k = 64 and the vertical frequencies from l = −64 to l = 64.

(i, j) ∈ [[1, N]]2, the 2D Fourier transform of the unknown uij reads:

Ukl =
1

N2

∑
1≤i,j≤N

uije
−J2π(ki+lj)/N

with J =
√
−1. The domain decomposition algorithm will be initialized with the solution to

the discrete PDE perturbed with a mode w(k) along the horizontal dimension, defined on the
base grid as:

∀i, j ∈ [[1, N]]2, w
(k)
ij = 10 sin

(
i
2πk

N

)
with −N/2 ≤ k ≤ N/2. Its Fourier transform results in two Diracs centered at frequencies
±k/N .

In the first test, we used as initial value a perturbation to the discrete solution with the
mode w(63) on a 128×128 base grid partitioned into 2×2, 4×4, 8×8 and 16×16 subdomains.
On this grid, the mode w(63) belongs to the highest frequencies. The number of relaxation steps
is set to ν = 1 and 10 domain decomposition cycles are performed. With the Poisson problem,
the reduction of the energy norm of the error is made up of two stages. First, a fast decrease
by several orders of magnitude: 4 orders in 10 cycles for the single domain problem, 3 orders
in 4 cycles for the 2 × 2 partition and only 1 order in 1 cycle for the other partitions. Then,
a slow decrease of the energy norm is observed until convergence (up to thousands of cycles).
During the first stage, the high frequency components of the error are damped but at the same
time some low frequency components are created. During the second stage, the total energy of
the error does not change much, but a transfer of energy from the high frequency components

§6.2] FINE-FINE INTERFACES 95

10
-20

10
-15

10
-10

10
-5

10
0

10
5

0 1 2 3 4 5 6 7 8 9 10

e
rr

o
r

(e
n

e
rg

y
 n

o
rm

)

domain decomposition cycles

Advection problem, base grid 128x128, mode (k,l)=(63,0)

single domain
2x2 subdomains
4x4 subdomains
8x8 subdomains

16x16 subdomains

nd Init. Cycle 1 Cycle 2 Cycle 3 Cycle 10

1×1

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

2×2

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

4×4

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

8×8

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

16×16

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Normalized Power Spectrum

FIG. 6.9 – Advection problem: base grid 128 × 128 cells, single relaxation step per subdomain. Ini-
tialization: solution to the discrete PDE perturbed with the mode w(63). Left: evolution of the error in
energy norm with domain decomposition cycles. Right: normalized power spectrum after several cycles.
The power spectrum ranges from zero (black) to its highest value (white). The horizontal frequencies
range from mode k = −64 to k = 64 and the vertical frequencies from l = −64 to l = 64.

to the low frequency ones occurs. The influence of the domain partitioning is very noticeable:
after the first iteration, further high frequency modes are created. With 16 subdomains and
more, these additional modes spread over the whole spectrum of the error. In the second stage
for nd > 16, the energy norm is almost steady ; nonetheless the next domain decomposition
cycles do play an important role in the reduction of the oscillatory modes with what seems to
be a transfer of energy from the high frequencies to the low frequencies.

As for the advection problem, the energy norm of the error decreases in less than 10 cycles
to the floating point error. At the same time the high frequency components disappear, new
components are created in the low frequency range of the error.

In the second test, we deal with the influence of the number of relaxation steps ν ∈
{1, 2, 3, 5, 10} carried out in each subdomain, i.e. the inner iterations of the algorithm in
contrast to the outer iterations corresponding to the domain decomposition cycles. The same
grid and the same initialization are used, with a fixed partition of 16 × 16 subdomains. Up
to two cycles of domain decomposition, the algorithm is less efficient at reducing the energy
norm of the error when using an increasing number of inner iterations. After three cycles and
more, this trend is reversed. Regarding the spectrum of the error, it appears that more inner
iterations help to concentrate the error in the low frequency components though the gain is not
significant.

As a conclusion of these numerical tests, when smoothing on a partitioned grid, very few
inner iterations (1 or 2) are necessary. The number of outer iterations should be greater or
equal to 2 to allow enough synchronizations between subdomain solutions.

96 SOLVING ON COMPOSITE GRIDS [CH.6

10
-3

10
-2

10
-1

10
0

10
1

0 1 2 3 4 5 6 7 8 9 10

e
rr

o
r

(e
n

e
rg

y
 n

o
rm

)

domain decomposition cycles

Poisson problem, base grid 128x128, mode (k,l)=(63,0)

single domain
nd=16x16, ν=1
nd=16x16, ν=2
nd=16x16, ν=5

nd=16x16, ν=10

ν Init. Cycle 1 Cycle 2 Cycle 3 Cycle 10

∗

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

1

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

2

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

5

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

10

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Normalized Power Spectrum

FIG. 6.10 – Poisson problem: base grid 128×128 cells, partition into 16×16 subdomains. Initialization:
solution to the discrete PDE perturbed with the mode (k, l) = (63, 0). Left: evolution of the error
in energy norm with domain decomposition cycles for several choices of relaxation steps ν. Right:
normalized power spectrum after several cycles. The power spectrum ranges from zero (black) to its
highest value (white). The horizontal frequencies range from mode k = −64 to k = 64 and the vertical
frequencies from l = −64 to l = 64.

6.2 Coarse-fine interfaces

6.2.1 Domain decomposition with non-matching grids

In the previous section, we presented non-overlapping domain decomposition methods for smooth-
ing a level grid partitioned into patches, i.e. a domain decomposition method involving the same
discretization in each subdomain. Coarse-fine interface can also could also be dealt with do-
main decomposition methods, more precisely with the Mortar method. The latter is intended
to couple subdomains featuring different space discretizations. This technique was studied in
a side work to this thesis [118] in collaboration with A. Samake, S. Bertoluzza, M. Pennacchio
and C. Prud’Homme. We never actually used it for AMR and we simply give here the basis of
the its formulation, as it is a relevant technique for coupling coarse grids and fine grids. The
notations introduced hereby hold for this section only.

The mortar finite element method was initially introduced by C. Bernardi, Y. Maday and
A. Patera in [27] as a method for solving domain decomposition problems with different finite
element discretizations in each subdomain. In the original mortar formulation, the transmission
conditions between subdomains were defined through a modification of the original functional
spaces of each subdomain. Later another formulation introduced by F. Ben Belgacem and
Y. Maday [20], which will be considered here, uses Lagrange multipliers defined on a common
trace space at subdomain interfaces to impose the weak transmission conditions. For a given
interface between two subdomains, the Lagrange multiplier is chosen to belong arbitrarily to
the trace space of one of the two subdomains.

§6.2] COARSE-FINE INTERFACES 97

Let us consider the simple Poisson problem{
−∆u= f in Ω

u= 0 on ∂Ω

with Ω ⊂ Rn, u ∈ H1
0 (Ω) and f ∈ L2(Ω). The weak formulation of the problem reads:∫

Ω
∇u · ∇ v︸ ︷︷ ︸
a(u,v)

=

∫
Ω
fv︸ ︷︷ ︸

f(v)

∀v ∈ H1
0 (Ω)

which is equivalent to find u ∈ H1
0 (Ω) by solving the minimization problem:

J(u) = min
v∈H1

0 (Ω)

{
1

2

∫
Ω
| ∇ v|2 −

∫
Ω
fv

}
= min

v∈H1
0 (Ω)

J(v)

Now domain Ω is decomposed into two subdomains Ω1 and Ω2 i.e. Ω = Ω1 ∪ Ω2 separated
by the interface Γ = Ω1 ∩ Ω2. The restriction of the solution u to subdomain Ωi is denoted
ui = u|Ωi . The minimization problem can now be reformulated as:

J(u1) + J(u2) = min
v1,v2∈E

{J(v1) + J(v2)}

assuming the following definition for functional space E:

E =
{

(u1, u2) ∈ H1(Ω1)×H1(Ω2) ; u1 = u2 on Γ and ui = 0 on ∂Ωi \ Γ
}

This is equivalent [5, Chapter 10] to search u1, u2 ∈ H1(Ω1)×H1(Ω2) and the Lagrange multi-
plier λ ∈ H1/2(Γ) such that:{

L(u1, u2, λ) = J(u1) + J(u2) +
∫

Γ λ(u1 − u2)

L(v1, v2, λ) < L(u1, u2, λ) < L(u1, u2, µ) ∀v1, v2 ∈ H1(Ω1)×H1(Ω2), ∀µ ∈ H1/2(Γ)

The last term on the right hand side stands for the weak form of the transmission condition
(presently the continuity of the unknown u) at interface Γ. The above problem can be approx-
imated by the following saddle point problem:

a1(u1, v1) + b(v1, λ) = f1(v1) ∀v1 ∈ H(Ω1)
a2(u2, v2) + b(v2, λ) = f2(v2) ∀v2 ∈ H(Ω2)

b(u1, µ)− b(u2, µ) = 0 ∀µ ∈ H1/2(Γ)

with the bilinear forms ai(u, v) =
∫

Ωi
uv and b(u, q) =

∫
Γ uq. When discretizing this system of

equations with the finite element method, the Lagrange multiplier must be chosen to belong to
the trace space of the finite element space of Ω1 or Ω2, as we assume different discretizations
in each subdomain. For instance to relate the present example to AMR, the meshes of both
subdomains could be Cartesian grids, with the mesh of Ω2 twice as much finer as the mesh
of Ω1.

An example of a four subdomain partition with non-matching grids is given in figure 6.11.
A possible algebraic formulation of the Mortar finite element reads:

98 SOLVING ON COMPOSITE GRIDS [CH.6

A0 u0

B0,4 B
t
0,4

B0,3

Bt0,3

A1 u1

B1,2 B
t
1,2 λ1,2

B1,3

Bt1,3

A2 u2

B2,4 B
t
2,4

B2,1

Bt2,1
λ2,1

A3 u3

B3,1

Bt3,1
λ3,1

B3,2 B
t
3,2 λ3,2

FIG. 6.11 – Example of Finite Element Mortar domain decomposition.



A0 0 . . . 0 Bt
0,3 Bt

0,4 0 0

0 A1
. . .

... 0 Bt
1,2 Bt

1,3 0
...

. . . A3 0 0 0 Bt
3,1 Bt

3,2

0 . . . 0 A2 Bt
2,1 0 0 Bt

2,4

B0,3 0 0 B2,1 0 0

B0,4 B1,2 0 0
...

. . .
...

0 B1,3 B3,1 0
...

. . .
...

0 0 B3,2 B2,4 0 0





u0

u1

u3

u2

λ2,1

λ1,2

λ3,1

λ3,2



=



F0

F1

F3

F2

0
...
...

0


The interfaces of a subdomain Ωi are denoted by Γi, j with j = 1 for the left interface, j = 2 for
the lower interface, j = 3 for the right interface and j = 4 for the upper interface. The jump
matrices Bi,j and the discrete Lagrange multipliers Λi,j use the same notation. For instance Λ0,4

belongs to the discrete trace space associated to Ω0 on its upper interface Γ0,4. In this example,
Ω3 hosts all the Lagrangian multipliers at its interfaces while Ω1 and Ω2 host respectively the
Lagrange multipliers of their lower and left interfaces.

The main issue with Mortar discretizations is to determine an appropriate preconditioning
to solve effectively the algebraic saddle-point problem arising from the discretization.

6.2.2 Composite discretizations using interpolation

The issue of the discretization at coarse-fine interfaces amounts to define a scheme for computing
edge values of a variable (eg. centered or upwind) or of its gradient on the fine side and on the
coarse side of the interface. A common approach consists in defining a ghost-cell at the fine
level using an interpolation scheme involving neighboring cells. This allows the definition of the
fine edge value with a stencil involving only fine grid cells. The coarse edge values would be
then deduced by averaging the fine edge values.

We first review a few techniques for computing such edge values at the fine level for the
example of an edge normal gradient. Then we give the actual discretization used to computing
centered or upwind values and edge gradients as well in our AMR implementation.

§6.2] COARSE-FINE INTERFACES 99

φf1

φf2

φc1 φc2 φc3

φf0 σ

φ̃f

(a) Ghost cell interpolation

φf

φc

σ

(b) Non-orthogonality

φf

φc

σ′ α

α

(c) Measure correction

FIG. 6.12 – Different choices of composite stencils.

Common approaches

When developing a second order Multigrid-SAMR method for the Poisson problem in 2D [100],
D.F. Martin and K.L. Cartwright used the following procedure to compute the fine edge normal
gradient. Let us consider the configuration of figure 6.12. First a quadratic interpolation with
coarse 1D stencil {φc1 , φc2 , φc3} is used to determine intermediate value φ̃f , i.e. in the present
configuration:

φ̃f =
5

32
φc1 +

15

16
φc2 −

3

32
φc3

Note that φ̃f is aligned with φf1 and φf2 . Quadratic interpolation is used again with the fine
1D stencil {φf1 , φf2 , φ̃f} to compute “ghost cell” value φf0 :

φf0 =
2

5
φf2 − φf1 +

8

5
φ̃f

=
2

5
φf2 − φf1 +

1

4
φc1 +

3

2
φc2 −

3

20
φc3

Finally, the normal edge gradient at face σ is calculated as:

(∇n φ)f1,σ =
φf0 − φf1

hf

with hf the space step of the fine level. Therefore it yields a 2D stencil, coupling coarse cells and
fine cells. The second order accuracy of this scheme has been verified on the Poisson problem
in [100]. According to the authors quadratic interpolations are compulsory for reaching second
order accuracy. This coarse-fine discretization was also used for cell-by-cell refinement in [110].

Linear interpolation is also often used [50, 97] in place of quadratic interpolation for com-
puting intermediate values. An even simpler choice was proposed in [36, 97], where only one
coarse cell and one fine cell define the stencil of the normal gradient at σ on the fine level side:

(∇n φ)f1,σ =
φc2 − φf1

|xc2 − xf1 |

The finite volume scheme was proved to converge in [36] provided the number of non conforming
interfaces is not too large; indeed, the numerical flux is not consistent on non conforming
interfaces. (Note however, such a two point scheme for the flux has the advantage of preserving

100 SOLVING ON COMPOSITE GRIDS [CH.6

φf

φf φf

σf

σf σf

Handling
corners

Accounting a
Dirichlet BC

Regular
configuration

φc′

φc

φc φc′
φc φc′

φ̃f

φ̃f φ̃f

FIG. 6.13 – Composite stencils actually used in our AMR implementation.

the physical bounds [56]). The theoretical convergence result was confirmed by numerical
experiments [36, 97]. One could also improve the computation of the numerical diffusive flux on
non conforming interfaces [54] by shifting the fine faces by an angle α as shown on figure 6.12
(right), and hence obtaining proper orthogonality. This scheme can be very simply implemented
by dividing the measure of the fine face by cosα.

High order discretizations at coarse-fines interfaces were also investigated by some authors,
see for instance [133].

Actual implementation

In our implementation of the SAMR method, we choose to use linear interpolation to define the
intermediate value φ̃f depicted on figure 6.13. Three specific configurations are identified for the
definition of the linear interpolation stencil {φc, φc′}. In the regular configuration, the nearest
coarse values are chosen. In the case of a corner, φ̃f lies outside the stencil, hence an expected
degradation of the accuracy of the scheme. Finally near a physical boundary a fictitious coarse
value φc′ is defined depending the boundary condition. In practice, level grid faces are tagged
whether they are purely internal, on an interface with a coarser level, on an interface with a
finer level or on a physical boundary.

In any case the intermediate value φ̃f is expressed as:

φ̃f = αφc + (1− α)φ′c

α = |x̃f − x′c|/|xc − x′c|

The fine grid normal gradient at face σ is then determined by:

(∇n φ)f,σ =
φ̃f − φf
|x̃f − xf |

§6.3] MULTIGRID METHODS 101

Likewise, a centered fine edge value is calculated as:

φσf = αφ̃f + (1− α)φf

α = |xσf − x̃f |/|xf − x̃f |

and for an upwind fine edge value:

φσf = αφ̃f + (1− α)φf

α = 1 if uσf · nσf < 0, else 0

For the consistency of the discretization, coarse level edge value are deduced from the average
of the fine level edge values:

|σc|φσc =
∑
σf⊂σc

|σf |φσf

In our implementation, this procedure is generalized to SAMR grids with any refinement
factor. Several simple tests are used to verify the implementation of coarse-fine discretization,
for instance the Poisson problem, the advection problem, and finally the full projection scheme
given in part I with smooth source terms.

6.3 Multigrid methods

Multigrid methods are very efficient for dealing with diffusion and advection equations, which
need to be solved at each iteration of the prediction-correction algorithm. We give here an
idea of the method when designed for uniform grids, and then turn to a particular choice of
implementation in the case of composite grids, which was adapted from [8, 100].

6.3.1 Multigrid on uniform grids

I``+1 I`+1
`

G`

G`+1

FIG. 6.14 – Prolongation and restriction operators on two level grids.

Multigrid methods are best understood with elliptic problems, because of the spectral prop-
erties of elliptic operators though all the following results can be applied to more complex
operators (eg. advection equation, advection-diffusion equation).

Consequently we will consider in this section the discrete Poisson problem (6.1.1) on a square
domain Ω with a hierarchy of Cartesian grids G`, ` ≥ 1 after the notations introduced in the
first chapter. For the record two grids G` and G`+1 are related by a constant refinement factor
nref = h`+1/h`. Each vector and matrix associated with grid G` bears the subscript “(`)”. For
instance, the algebraic problem on G` states:

A(`)u(`) = f(`)

102 SOLVING ON COMPOSITE GRIDS [CH.6

Two intergrid operators are defined: the prolongation operator I`+1
` and the restriction operator

I``+1 which are intended to approximate a discrete variable respectively from G` to G`+1 and
from G`+1 to G`. We will define the prolongation operator as a bilinear interpolation and the
restriction operator as a weighted average, though other choices exist.

Historical account

Multigrid methods are iterative methods for solving linear and non-linear problems which take
advantage of the representation of a problem at different space scales. Three ideas are at the
basis of multigrid: the use of smoothers, the correction scheme and the use of a good initial
guess.

Some of these ideas can be traced back to the beginning of the XXth century. Back then,
relaxation methods were very popular among the engineering community to solve linear systems.
Despite their simplicity, they were plagued with a very slow convergence rate and they were
not scalable. One way to improve the convergence of relaxation methods was to find a good
initial guess. In the 1920’s, R. Southwell introduced the idea of using a much coarser auxiliary
grid to compute an approximation to the discrete solution defined on the original grid. Once
interpolated back on the original grid, this approximation would make a very good initial guess.
This was formalized in his 1935 paper [121] and later in [122]. The idea could be further
extended using a set of even coarser grids in order to speed up the computation of initial guess.
It leads to the following algorithm, which starts at the coarsest grid ` = 1 with an initial guess
for u(1):

SouthwellRelax(`,u(`))
1: u(`) ← S(A(`), f(`);u(`), ν) with ν > 0 and |f(`) −A(`)u(`)| < ε
2: if ` < `max then
3: call SouthwellRelax(`+ 1,I`+1

` u(`))

It was already a great improvement over the usual practice of relaxation methods. However this
algorithm, which could be classified as one way multigrid [52], did not take full advantage of the
coarser problems. It is only in the 1960’s that the very first multigrid algorithm was introduced,
with the works of R.P. Fedorenko in the case of the Laplace equation (see [62] for numerical
experiments and [63] for an analysis of the algorithm). As outlined in the previous chapter,
smoothers eliminate the oscillatory components of the error in a few iterations but take a lot of
time to converge on the smooth components. Fedorenko proposed to solve the error equation
to eliminate the smooth components of the error, but on a much coarser grid in order to make
this step less computationally expensive: “the computer operating time necessary for this can
be reckoned insignificant.”[62]. The error would then be interpolated back on the original grid
to correct the solution. This cycle is repeated again until convergence. The method proposed
by Fedorenko was using only two levels and it started with ` = 2 and r` = f(2):

FedorenkoMG(`,r(`))
1: repeat
2: u(`) ← S(A(`), r(`);u

(`), ν)
3: r(`) ← f(`) −A(`)u(`)

4: if ` > 1 then
5: u(`) ← u(`) + I``−1FedorenkoMG(`− 1, I`−1

` r(`))

6: if ` < `max then return u(`)

§6.3] MULTIGRID METHODS 103

7: until |r(`)| < ε

While this algorithm is pretty close to the current form of multigrid algorithms, Fedorenko
did not investigate the effect of intergrid operators nor the correction scheme on the Fourier
components of the error. The ideas introduced by Southwell and Fedorenko were the starting
point of the fundamental work of A. Brandt [31] in the 1970’s which laid the basis of today’s
research on multigrid methods. A standard multigrid iteration reads [52], starting with ` = `max

and r` = f(`max):

StandardMG(`,r(`))
1: if ` = 1 then
2: u(`) = A−1

(`)r(`)

3: else
4: for i = 1 . . . µ(`) do

5: u(`) ← S(A(`), r(`);u
(`), ν1)

6: r(`) ← f(`) −A(`)u(`)

7: u(`) ← u(`) + I``−1StandardMG(`− 1,I`−1
` r(`))

8: u(`) ← S(A(`), r(`);u
(`), ν2)

return u(`)

Different variations of the algorithm are obtained with different choices for µ.

Interpretation

Let us write the simple two level multigrid cycle with no post-smoothing:

TwoLevelMG(u(2))
1: u(2) ← S(A(2), r(2);u(2), ν)
2: r(2) ← f(2) −A(2)u(2)

3: u(1) ← A−1
(1)I

1
2r(2)

4: u(2) ← u(2) + I2
1u(1)

At the fine level ` = 2, ν smoothing iterations are performed on the original linear system
A(2)u(2) = f(2), starting with the provided initialization for u(2). Then the residual r(2) is
transfered to the coarse level ` = 1 with the restriction operator I1

2 , providing the right hand
side to the coarse level error equation. Upon solving the error equation, the error u(1) is
transfered to the fine level with the prolongation operator I2

1 to correct the solution u(1).
The ν smoothing iterations eliminate the high frequency components of the error to the

solution u(2). On the other hand, the direct resolution at the coarsest level (line 3) ensures that
the remaining low frequency components of the error are completely removed.

To conclude, the definite features of multigrid methods are the nested nature of the smooth-
ing of the different components of the error and the coarse-grid correction procedure. Multigrid
methods are scalable and SAMR grids provide a natural framework for these methods.

6.3.2 Multigrid on adaptive grids

Multigrid-AMR algorithms

Multigrid methods extend intuitively to SAMR grids. The residual at a given level is not
defined solely with respect to the finest level. Rather the residual is composite in that the
regions of ∪`1≤`≤`2Ω` are somehow associated to a multigrid process between the corresponding

104 SOLVING ON COMPOSITE GRIDS [CH.6

We want to solve Ax = b by smoothing the error,
which satisfies Ae = r with r = b − Ax. Each
V-Cycle starts with relax(`finest).

relax(`):

Smooth composite error
e = 0
smooth(Acomp(c),r,e)
x̃ = x
x = x+ e

Prepare coarser residual
rc|Ωc\Ω = bc −Acomp(cf)xc
rc|Ωc∩Ω = rest(Ωc ∩ Ωf , r −Acomp(c)e)

Relax on coarser level
call relax(`− 1)

Correction from coarser level
ε = intp(Ωc ∩ Ω, ec)
e = e+ ε
x = x̃+ e

Remarks:

• Coarsest level: direct resolution

• Finest level defines its own residual

L1

L2

L3

Restriction
of residual

Restriction
of residual

correction

corrections

Interpolated

Interpolated

FIG. 6.15 – Example of multigrid-AMR algorithm with a two levels of refinement.

overlapping regions of level grids for levels ` ∈ [`1, `2]. A SAMR multigrid V-Cycle can be viewed
as several classical multigrid V-Cycle coupled at coarse-fine interfaces through the definition of
the residual of the original problem. A example of such procedure is illustrated on figure 6.15.
In practice, depending on the type of discretization, on the use of time refinement or not, several
complications may arise.

The possibility of extending multigrid methods to locally refined grids was first pointed by
A. Brandt [31, pp. 359–360]. Regarding the present class of SAMR methods, earliest works
include [6] where a multigrid-SAMR extension of a “particle-particle particle-mesh” method for
finite difference discretizations was introduced. This served as a basis of the multigrid-AMR
solver proposed later by D.F. Martin and K.L. Cartwright [100] for solving elliptic problems on
finite-volume discretizations. Our multigrid-AMR solver — presented hereafter — is actually a
simplification of the original algorithm of the latter authors.

Multigrid-AMR algorithms based on the original aforementioned methods were involved for
solving complex problems including, but not limited to the incompressible Euler equations [101],
high order elliptic problems [16], the variable density Navier-Stokes equations with time refine-
ment [7] and two-phase flows in porous media [107].

Implemented algorithm

We now describe the Multigrid-AMR algorithm as it was implemented in our numerical code,
given under a simplified form hereafter. The “RelaxLevel” function is a recursive function which
performs a complete V-Cycle for solving a linear system, itself obtained from the discretization

§6.3] MULTIGRID METHODS 105

of a hyperbolic or elliptic partial differential equation on the composite grid:

Au = b

Within the grid hierarchy, each patch Ω`,i at level `, ` ≤ `max features a local version of this
linear system:

A`,iu`,i = b`,i

The linear system sys={A`,i, b`,i} is assembled by function “asbOpr(sys,var,compwc,compcf)”.
The latter always take into account the physical boundary conditions attached to variable “var”
which are set by function “setPhysGC(var)”. The discretization at interfaces with the finer
level (located inside the patch) is taken into account when “compwf” flag is activated. Likewise
interfaces with the coarser level (located at the boundaries of the patchs) are accounted for
if “compwc” is activated. In practice the linear system “sys” is never fully reassembled, only
relevant rows of the linear system are redefined.

The “RelaxLevel” function is intended to be called first from the finest level, i.e. RelaxLevel(`max,
ndd, nsm). At the finest level, the algorithm first computes the residual of the current level r`,i
(lines 9 to 14). This residual is defined with respect to the composite problem, i.e. both inter-
faces with the coarser and the finer level are considered. Prior to the calculation of the residual,
the ghost-cells of all level variables u`,i are synchronized with “synAll” function (line 10).

The error equation of the current level is then relaxed (lines 17 to 26). The outer loop
controls the number of iterations of the ghost-cell domain decomposition technique, set to ndd.
The inner loop over each patch of the level performs nsm local relaxations with a Gauss-Seidel
smoother. The linear system associated with the error is coupled with the coarser level only
and is provided with homogeneous Dirichlet conditions. Once the error is relaxed on Ω`,i, the
ghost-cells of each neighboring patches are updated with “synFromSrc” function (line 26). At
the end of the level relaxation procedure the main unknown is updated (lines 28 to 30).

After that, the residual of the coarser level is calculated. First, the residual of the original
problem over the non-overlapping region is defined (lines 31 to 33). Therefore, the linear system
line 35 is assembled for the composite problem, i.e. by taking into account both the interface
with coarser and finer levels with respect to level `− 1. This amounts to start a new multigrid
cycle on the subset of the coarser level which does not overlap with the current level. In practice,
this coarser residual is defined everywhere on the coarser level. Indeed, on overlapping regions
between the current level and the coarser level, the coarser residual will feature the residual of
the error equation of the current level (lines 34 to 38). This correspond to a continuation the
multigrid cycle started at the current level or at a finer level if applicable.

Once the coarser residual is defined, the same operations are executed recursively up to the
coarsest level. At the coarsest level (` = 0), the error equation is solved directly up to machine
precision (lines 1 to 7). The V-Cycle then continues down to the finest level again, by importing
the correction calculated by the coarser levels to improve the solution (lines 40 to 49).

RelaxLevel(`, ndd, nsm)
1: if ` = 0 then
2: asbSys(sys={A`, b`}, var=e`)
3: b` ← r`
4: solve(sys={A`, b`}, var=e`)
5: u` ← u` + e`
6: setPhysGC(var=u`)
7: setPhysGC(var=e`)

106 SOLVING ON COMPOSITE GRIDS [CH.6

8: else
9: if ` = `max then

10: synAll(var=(u`,i)G`,i⊂G`)
11: for G`,i ⊂ G` do
12: asbOpr(sys={A`,i, b`,i}, var=u`,i, compwc=T , compwf=T)
13: r`,i ← s`,i − (A`,iu`,i − b`,i)
14: e`,i ← 0

15: û`,i ← u`,i ∀G`,i ⊂ G`
16: e`−1,i ← 0 ∀G`−1,i ⊂ G`−1

17: repeat ndd times
18: for G`,i ⊂ G` do
19: asbOpr(sys={A`,i, b`,i}, var=e`,i, compwc=T , compwf=F)
20: r′`,i ← r`,i − (A`,ie`,i − b`,i)
21: b`,i ← r′`,i
22: e′`,i ← 0
23: repeat nsm times
24: smooth(sys={A`,i, b`,i}, var=e′`,i)
25: e`,i ← e`,i + e′`,i
26: synFromSrc(var=e`,i)

27: setPhysGC(var=(e`,i)G`,i⊂G`)
28: u`,i ← u`,i + e`,i ∀G`,i ⊂ G`
29: synAll(var=(u`,i)G`,i⊂G`)
30: setPhysGC(var=(u`,i)G`,i⊂G`)
31: for G`−1,i ⊂ G`−1 do
32: asbOpr(sys={A`−1,i, b`−1,i}, var=u`−1,i, compwc=T , compwf=T)
33: r`−1,i ← s`−1,i − (A`−1,iu`−1,i − b`−1,i)

34: for G`,i ⊂ G` do
35: asbOpr(sys={A`,i, b`,i}, var=e`,i, compwc=T , compwf=F)
36: r′`,i ← r`,i − (A`,ie`,i − b`,i)
37: for G`−1,j ⊂ G`−1 s.t. G`−1,j ∩G`,i 6= {∅} do
38: r`−1,j |G`,i∩G`−1,j

← rest(var=r′`,i, set=G`,i ∩G`−1,j)

39: RelaxLevel(`− 1, ndd, nsm)
40: for G`,i ⊂ G` do
41: e′`,i ← 0
42: for G`−1,j ⊂ G`−1 s.t. G`−1,j ∩G`,i 6= {∅} do
43: e′`,i|G`,i∩G`−1,j

← e′`,i|G`,i∩G`−1,j
+ intp(var=e`−1,j , set=G`,i ∩G`−1,j)

44: e`,i = e`,i + e′`,i
45: u`,i = û`,i + e`,i

46: synAll(var=(e`,i)G`,i⊂G`)
47: setPhysGC(var=(e`,i)G`,i⊂G`)
48: synAll(var=(u`,i)G`,i⊂G`)
49: setPhysGC(var=(u`,i)G`,i⊂G`)

§6.3] MULTIGRID METHODS 107

Compressible Euler equations

The pressure-correction algorithm presented in part I straightforwardly to AMR if no time
refinement is involved. A simplified form of the algorithm implemented in our code is presented
below.

The prediction step is performed by solving the equivalent composite problem to (4.2.3) with
the multigrid AMR algorithm formerly introduced (lines 5 and 6). The non-linear projection-
correction step is carried out with a fixed point procedure. Though less robust than Newton’s
method, it was found to converge with no more than 5 iterations in our numerical tests. Within
these inner iterations, the density and the energy balance are solve on the AMR hierarchy
(lines 22 to 23).

Once the resolution of the problem is completed for the current timestep, the adaptive grid is
regenerated according to the new state of flow variables (line 25). The newly calculated solution
is transfered to the new hierarchy (line 26) either through a direct copy of cell values (eg. if
an old patch and new patch overlap) or by using a bilinear interpolation of coarser cell values
from the old AMR hierarchy. The linear system of each patch are also reinitialized (line 27).
The latter remain unchanged during a complete timestep at the exception of the rows affected
by the coarse-fine discretization.

SolveEuler
1: initAMR()
2: initGrid()
3: initOpr()
4: while t < tfinal do
5: solvePredUx()
6: solvePredUy()
7: setBC(var=ũx, physbc=T , compwc=T , compwf=T)
8: setBC(var=ũy, physbc=T , compwc=T , compwf=T)
9: setBC(var=ρ, physbc=T , compwc=T , compwf=T)

10: R← . . . according to (1.3.8)
11: p∗ ← . . . according to (1.2.14d)
12: synAll(var=p∗)
13: i← 0
14: while (i = 0 or |δp|L∞ > ε) or (i < 50) do
15: i← i+ 1
16: u∗x ← . . . according to (4.2.4)
17: u∗y ← . . . according to (4.2.4)
18: synAll(var=u∗x)
19: synAll(var=u∗y)
20: setBC(var=u∗x, physbc=T , compwc=T , compwf=T)
21: setBC(var=u∗y, physbc=T , compwc=T , compwf=T)
22: solveDensity()
23: solveInternalEnergy()
24: p∗ ← . . . according to (1.2.14d)

25: regrid()
26: reinitAMR()
27: initOpr()

Chapter 7

APPLICATION TO COMPRESSIBLE FLOWS

In this chapter, three numerical tests are carried out in order to assess our adaptive pressure-
correction scheme on shock hydrodynamic problems. The first section is dedicated to a 2D
Riemann problem already tested in part I on an uniform grid. The second section addresses
a more complex problem with Mach reflections. Mach reflection were originally discovered by
Ernst Mach in the late 1870’s. A large body of research on this phenomena was initiated
during Manhattan Project [68] and it constitutes nowadays a well-documented and challeng-
ing benchmark. The numerical calculations performed in this chapter will ultimately give an
appreciation on the suitability of our adaptive pressure-correction scheme for the weakly and
highly compressible flow problems in nuclear reactors.

The numerical method presented in the three previous chapters was implemented in our
numerical code MNFD, specially created for the purpose of this work. All the numerical results
were post-processed with VisIt visualization software [41], using in our code the HDF5 format
with a hierarchy compatible with the import format for Chombo AMR code [1] in VisIt.

7.1 2D Riemann problem

7.1.1 Problem setting

This preliminary AMR test deals with the 2D Riemann problem 12 presented in part I. Three
levels of refinement are used, reaching a space resolution of h3 = 1/400 at the finest level with
a refinement factor nref = 2. The refinement criteria is based on the variations of the density.
A cell K belonging to the level grid G` is flagged for refinement if the following condition is
satisfied:

max
L∈N (K)

|ρK − ρL| > h` · ε (7.1.1)

with ε = 1. The adaptive grid generation algorithm presented in chapter 5 is used with the
“standard Laplacian” for edge detection. The efficiency is set to emin = 0.6 and the shape of
the patches is controlled by parameters rvmin = 0.3 and vmin = lmin = 0.

The compressible Euler equations are solved with the Multigrid-AMR method presented in
Chapter 6. The stopping criterion for the multigrid solver is 10−10 on the absolute L∞ norm of
the composite residual. In each multigrid solve, the smoothing procedure on level grids consists
in three outer iterations over all the patches, with for each patch two smoothing steps (Gauss-
Seidel) with synchronization of ghost-cell values. The iterations of the fixed point procedure
for the non-linear projection-correction step end when the absolute L∞ norm of the pressure

109

110 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

Adaptive grid Uniform grid

D
en

si
ty

A
=
p
/ρ

γ
P

re
ss

u
re

x
−0.5 −0.3 −0.1 0.1 0.3 0.5

y

−0.5

−0.3

−0.1

0.1

0.3

0.5

x
−0.5 −0.3 −0.1 0.1 0.3 0.5

y

−0.5

−0.3

−0.1

0.1

0.3

0.5

x
−0.5 −0.3 −0.1 0.1 0.3 0.5

y

−0.5

−0.3

−0.1

0.1

0.3

0.5

x
−0.5 −0.3 −0.1 0.1 0.3 0.5

y

−0.5

−0.3

−0.1

0.1

0.3

0.5

x
−0.5 −0.3 −0.1 0.1 0.3 0.5

y

−0.5

−0.3

−0.1

0.1

0.3

0.5

x
−0.5 −0.3 −0.1 0.1 0.3 0.5

y

−0.5

−0.3

−0.1

0.1

0.3

0.5

FIG. 7.1 – Top to bottom: isopycnics (30 values) with a streamline leaving from (0, 0), iso-values of
A = p/ργ (30 values) and pressure field at t = 0.25 with the patches of the three levels of refinement.

§7.1] 2D RIEMANN PROBLEM 111
t

=
1
00
δt

t
=

2
00
δt

x−0.5 −0.4 −0.3 −0.2 −0.1

p

0.6

0.8

1

1.2

1.4

FIG. 7.2 – Top: close up view of the pressure field belonging to the level grid of the second level of
refinement. The red lines indicate the boundaries of the patches belonging to the third level of refinement.
Bottom: pressure profile at t = 100δt (in red) and t = 200δt (in blue) along the line delimited by the
two arrows in the pressure fields. For the record the timestep is δt = 1.25× 10−3.

increment with respect to the fixed point iterations is below 10−12. Finally the outer iterations
in time have a timestep tied to the finest grid step size as δt = h3/2 = 1.25× 10−3.

7.1.2 Numerical results

The results of the AMR simulation are compared on figure 7.1 to the numerical results obtained
in part I with the same problem. The latter were calculated on an uniform grid of space step
h = 1/400. The adaptive solution features the two static contact waves and the two straight
shocks moving to the top right corner of the domain. Two bow shocks grow between the contact
waves and the straight shocks. A jet is produced at the center of the domain towards the lower
left corner. The isopycnics confirm the symmetry of the solution. The three levels of refinement
are also symmetric, and they are concentrated at shocks, contacts and around the jet. Despite
the increase of resolution (factor 6 between the finest level and the base grid) shocks are poorly
calculated, which is quite unexpected for the two straight shocks present at initialization. The
jet grows as expected, as evidenced by the trajectory of the streamline leaving from the center
of the domain (blue line on figure 7.1).

However the main issue in this test is not the lack of resolution at shocks but the presence
of spurious pressure oscillations which grow in amplitude with time. This numerical noise is

112 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

located along the two contact waves and is visible on the contours of A = p/ργ . Figure 7.1
shows the pressure field on the second level of refinement (h2 = 1/200). The boundaries of
this second level are either physical boundaries or coarse-fine interfaces with the first level of
refinement. The patches of the third level of refinement help to locate the coarse-fine interfaces
with the latter. The spurious pressure modes are located solely on the composite grid of level 2,
which has only one cell in height.

A comparison of the pressure profiles on the composite grid at t = 100δt and t = 200δt shows
that the numerical disturbance grows in amplitude and is propagated along the contact wave to
the domain boundary. It seems to originate from a “triple corner”, i.e. a location at x = −0.11
where three corners from different levels are separated by only one cell. We believe the specific
coarse-fine discretization at this corner is responsible for the generation of this numerical noise.
Such spurious oscillations were never observed on further AMR tests of the same problem using
a single level of refinement. This issue could be addressed by imposing a buffer of at least two
cells between successive levels of refinement.

7.2 Double Mach Reflection

7.2.1 Introduction

In this section we present numerical simulations of a Double Mach Reflection problem (DMR)
using the all-Mach solver and the SAMR method respectively introduced in parts 1 and 2. The
problem under consideration is a shock diffraction with a concave corner. Depending the Mach
number MS of the shock, the heat capacity ratio γ of the fluid and the angle θ of the corner
different complex structures unfold. In our case this will be a Double Mach Reflection of type
“DMR+” with an attached shock, resulting from the interaction of a straight shock at MS = 10
of an ideal diatomic gas with a corner inclined by θ = 30◦.

In 1989, M.J. Berger and P. Colella presented the first adaptive mesh refinement algorithm
applied to the DMR problem [25]. The compressible Euler equations were solved using a second-
order Godunov-type scheme [45]. The adaptive mesh refinement method was based on the
patch-based AMR algorithm introduced by M.J. Berger and J. Oliger in [26]. The second order
accuracy in space and a refinement factor of 4 on two levels allowed the authors to perform
numerical simulations of the DMR problem at a resolution never reached before. A triple Mach
stem configuration was observed for the first time for the DMR problem with low γ.

Since then DMR has become a standard benchmark for assessing numerical codes for com-
pressible flows [130] and in particular AMR codes. Indeed the physics of DMR are rather
well understood nowadays [21, 78, 93] both qualitatively (eg. shock configurations) and quan-
titatively (eg. shock polars) and have been largely studied both through numerical simula-
tions [130, 69, 46] and physical experiments [22, 23, 46]. Moreover for the former the most
complex flow structures are only solved beyond a certain level of accuracy, which makes this
benchmark especially relevant for testing adaptive resolution methods.

In the original work of M.J. Berger and P. Colella [25] the numerical method was second
order in space and the finest level had a space step of h2 = 1/320. In contrast our all-Mach
pressure correction scheme, presented in the first part of this thesis, is only first order in space
and in our simulations, the space step at the finest level is h2 = 1/1600. Our objective is to
first evaluate the relevance of our numerical method with respect to the physics of DMR, then
to determine how close to [25] — where a five times coarser grid is used — the results of our
first order method can be.

§7.2] DOUBLE MACH REFLECTION 113

In a first section, we recall some background knowledge on shock wave diffraction which will
be at the basis of the analysis of our numerical results. Then a comparison of the simulation of
the DMR problem on adaptive grid and uniform grid is presented. Finally a refined simulation
of the DMR problem with adaptive refinement on the two Mach reflections is analyzed.

7.2.2 Shock diffraction

ξ′
R

A

1

2

0

(i)(r)

ξ

θ

RR

ξ′
I

A

T
3

4

1
2

0

(i)

(r)

(s)

(m)

ξ

θ

SMR

ξ′
I

K

A

T

3
4

1
2

0

(i)

(r)
(m′)

(s)

(m)

ξ

θ

TMR

ξ′
I

T ′

A

T

3 4

1
2

0

5

6

(i)

(r)

(s′)

(r′)

(m′)

(s)

(m)

ξ

θ

DMR

FIG. 7.3 – Shock systems for a RR, SMR, TMR and DMR. Solid line is a shock wave, dashed lined
is a contact wave. The subsonic regions in the self-similar frame of reference are in light blue. The
pseudo-streamlines of states (1) and (2) are in blue ; note that the former converge to point A.

Introduction

When a straight shock of Mach number MS with uniform induced flow (u2, p2, ρ2) moving
through still air (p1, ρ1) encounters a concave corner with angle θ, the shock wave diffraction
at the apex creates a complex self-similar structure which grows along the corner wall. Shock
diffractions can be of four types [95], all represented on figure 7.3 : Regular Reflection (RR), Sin-
gle Mach Reflection (SMR), Transitional-Mach Reflection (TMR) and Double Mach Reflection
(DMR). G. Ben-Dor and I.I. Glass proposed in [22, 23] an empirical delimitation of the domains
of these four shock diffraction in the (MS , θ) plane, reproduced on figure 7.6 for a diatomic gas.
A large body of studies is dedicated to the transition criteria between these different shock
diffractions, see for instance [21] and references therein. Two specific frames of reference will be
used, in addition to the laboratory frame of reference: the self-similar frame, more adapted to
the study of the physics of shock diffraction globally, and the frame of reference attached to a
triple point, more relevant for analyzing locally the corresponding oblique shock configurations.

The self-similar frame is defined through the change of variables (x, y, t) → (ξ, η, ζ) with
ξ = x/t, η = y/t and ζ = t. In this frame of reference instead of u we use the pseudo-
velocity ū = u− [x/t, y/t]t. As a result in a constant state, the uniform velocity field u in the
laboratory frame of reference will be radial in the self-similar frame of reference, with center the
point (ux, uy). The corresponding pseudo-Mach number is denoted M̄ = |ū|/a, with a =

√
γp/ρ

the speed of sound. Solving the compressible Euler equations (1.1.2) in the laboratory frame is

114 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

equivalent to solving the following stationary hyperbolic system in the self-similar frame [120]:

d̃iv(ρū) = −2ρ in Ω (7.2.1a)

d̃iv(ρū⊗ ū) + ∇̃p = −3ρū in Ω (7.2.1b)

d̃iv

((
1

2
ρ|ū|2 + ρe+ p

)
ū

)
= −2(ρ|ū|2 + ρe+ p) in Ω (7.2.1c)

ρ ≥ 0, e ≥ 0, p = (γ − 1)ρe (7.2.1d)

with d̃iv and ∇̃ the divergence and the gradient operators defined in the (ξ, η) coordinate
system. This system of equations is identical to the steady compressible Euler equations with
the addition of source terms (−2ρ), (−3ρū) and (−2(ρ|ū|2 + ρe + p)) respectively in the mass
balance, in the momentum balance and in the total energy balance. An extensive analysis of the
self-similar Euler equations in the context of shock diffraction is found in references [120, 83].

Deflection vs Reflection

As depicted on figure 7.4, a shock diffraction develops from the interaction between of two
phenomena [93, 95, 78] : flow deflection and shock reflection. Upstream at the wedge apex A,
a bow shock (b) deflects the flow along the corner wall. The bow shock can be either attached
or detached at point A. It generates compressive (resp. expansive) waves towards state (3)
when p0 < p3 (resp. p0 > p3). Downstream a shock reflection occurs with incident shock (i).
The most simple reflection is the Regular Reflection (RR). As shown on figure 7.4 (right) the
deflection of the streamline through the reflected shock of a RR ensures that the flow still
verifies the wall boundary condition. In addition to the classical [92] limitation on the incidence
angle α, such reflection can only subsist without the influence of the pressure perturbations
from the apex, i.e. the flow is supersonic in region (0) in the self-similar frame (see figure 7.3).

Flow Deflection Shock Reflection

x′

I

MS

α

A

T

3
4

1
2

0

(i)

(r)

(s)

(m)

x

θ

R

α

3 2

1

(r)

(i)

Regular Reflection

I

αT3

4

1

2 (i)(r)

(s)
(m)

Mach Reflection

x′

A

(b)

2
0

θ

Detached shock

x′

A

(b)
2

0

θ

Attached shock

FIG. 7.4 – Single Mach Reflection (center) ; flow deflections (left, laboratory frame of reference) and
shock reflections (right, local frame of reference). Solid line is a shock wave, dashed lined is a contact
wave.

§7.2] DOUBLE MACH REFLECTION 115

As suggested in [79] if the flow in region (0) is subsonic in the self-similar frame, a length
scale — that could be for example the distance [AR] — is communicated to the RR which turn
to a more complex shock system. The reflection point R is detached and a third shock called
Mach stem (m) links the reflection point to the wall at point I. The reflection now takes places
at triple point T , located at the intersection between the three shocks. Another consequence of
the pseudo-subsonic speed of the flow is the continuous curvature along the bow shock and the
reflected shock at T , the latter being straight (see figure 7.4, right) without the influence of the
compression waves [95]. This complex shock configuration is called Mach reflection, after Ernst
Mach who discovered it in 1878 (see [89] for a historical account). A SMR is a shock diffraction
featuring only a Mach reflection.

Note that the Mach stem has a finite length in contrast to (i) and (r), which is directly
related to the length scale communicated to it [75]. Unsurprisingly (m) is perpendicular to the
wall so that the streamlines close to the wall verify the boundary condition. The incoming flow
from state (1) reaches the region left to T either through the two shocks (i) and (r) or through
shock (m). The two flows from these two paths have different velocities, hence the appearance
of a contact discontinuity — named slipstream or vortex sheet. The slipstream (s) splits the
region left to T into state (3) and state (4).

Towards TMR and DMR

When the flow in state (3) becomes supersonic in the self-similar frame, the pressure pertur-
bations coming from the apex through the subsonic channel of region (0) stop at the sonic arc
delimiting states (0) and (3) in figure 7.3, middle right (see [95, 93]). This arc intersects with
the reflected shock (r) at point K. Therefore (r) stays straight up to point K. Left to K the
shock is curved under the influence of pressure perturbations in the subsonic channel. When the
latter are of compressive type this shock diffraction configuration is called Transitional-Mach
Reflection1 (TMR).

If the compression waves converge to form a shock wave — denoted (r′) in figure 7.3 — a
second Mach reflection arises, defined by triple point T ′, incident shock wave (r), reflected shock
wave (r′), Mach stem (m′) and slipstream (s′). This shock diffraction pattern is named Double
Mach reflection2 (DMR). It was discovered in 1951 by D.R. White [129]. When the angle χ
associated to T is lower than the angle χ associated to T ′, we have a DMR+ diffraction [21] (see
figure 7.5). When the first slipstream reaches the wall it is being “rolled” towards the Mach
stem, because of the compression waves. A jet is created in region (4), which has an impact on
the curvature of the Mach stem. An extensive study of the wall-jetting effect is found in [75].

Modelling DMR

For analysing the interaction between the flow deflection at A and the shock reflection at I it is
very convenient to use the self-similar frame of reference. In this self-similar frame of reference
regions (0), (5) and (5) are subsonic while region (3) is supersonic. As explained previously,
shock (r′) is created by the compression waves coming from the apex. In self-similar frame these
pressure signals are not coming from A but from A3 = A+ u3. In this stationary problem their
farthest reach is determined by a3 (the speed of sound in state (3)) i.e. by the arc of center A3

1TMR is also referred to as Complex Mach Reflection (CMR) and Transitional-Irregular Reflection (TIR)
2DMR is also known as Double Irregular Reflection (DIR)

116 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

and radius a3. Using a simple geometrical construction introduced by H. Li and G. Ben-Dor
for TMR, it is possible to determine u3 and therefore predict the position of this arc.

ξ′

I

T ′
T

χ

α

u2

a3

A

3
4

12

0

5

6

(i)

(r)

(s′)

(r′)

(m′)

(s)

(m)

ξ

θ

u3 A3

LT

First Mach reflection, frame of reference of T

shock i j

(i) 1 2
(r) 2 3
(m) 1 4

x
I

TT ′

φ2

θ2

φ3

θ3 φ4

θ4

2

1

6 5
3

4

Second Mach reflection, frame of reference of T ′

shock i j

(r) 2 3
(r′) 3 5
(m′) 2 6

x
I

TT ′
φ3

θ3
φ5

θ5

φ6

θ6

2

1

6
5

3

4

FIG. 7.5 – Modelling DMR. Left: geometric construction (in red) for locating the leading pressure
disturbance (in green) in the self-similar frame of reference. Right: notations for oblique shock (in red)
refractions in the two triple shock systems.

Let us focus on the refraction at shock (r) (figure 7.5) between states (2) and (3). According
to classical oblique shock theory [92] incident velocity u2 and refracted velocity u3 at shock (r)
have the same tangential component. As a result the vector u3 − u2 is orthogonal to (r). On
figure 7.5, point A3 will necessary be on the line perpendicular to (r) passing through A2. Now
let us switch to the self-similar frame: in the radial velocity field ū3 in state (3), which originates
in A3, we know that the streamline passing through T will be tangent to the slipstream (s).
Thus A3 will be at the intersection between the line coincident to the slipstream (s) and the
line perpendicular to (r) passing through A2.

Now we turn to the local Mach reflection at the two triple points. The flow being self-similar,
triple points T and T ′ move with a constant radial direction from A with respective angles χ
and χ′ defined on figure 7.5. The distances between A and the projections of T and T ′ on the
x-axis are denoted LT and LT ′ . Point T is tied to the incident shock (i) hence:

LT = |us|∆t

or LT = |us| in the self-similar frame. Regarding the trajectory of the second triple point,
the Law-Glass assumption states that point T ′ travels with the speed u2 of the incident shock
induced flow:

LT ′ = |u2|∆t

A physical justification of this assumption is found in [93]. A major concern over this approach is
that it does not take into account the compression waves generated by the deflection [95], which
is the very phenomenon causing the curvature reversal at T ′. Another approach was proposed
by H. Li and G. Ben-Dor in 1995 [95]. It consists in applying the general triple shock theory

§7.2] DOUBLE MACH REFLECTION 117

to the two Mach reflections of DMR. This requires a stationary shock system, hence the use of
the frame of reference attached to a triple point. This yields a complex non-linear system, the
resolution of which gives access to all three thermodynamic states, oblique shock angles and the
trajectory angle of the triple point. Instead, we will rather verify individually classical results
for the contact discontinuity and the three oblique shocks of each Mach reflection. For the
contact discontinuity, the slipstream matching condition from the triple shock theory states [21]
in the frame of reference of the triple point:{

pi = pj
θj = θk − θi

(7.2.2)

referring to the notations of figure 7.5, with θ the deflection angle. For the Mach reflection at T ,
we have i = 3, j = 4 and k = 2 and at triple point T ′, i = 6, j = 5 and k = 3. The second
equation of condition (7.2.2) ensures that the streamlines deflected by the Mach stem and on
the other hand by the incident shock and the reflected shock are parallel. As for the three
shocks of each Mach reflection, classical oblique shock theory [92] gives the deflection angle θj
and the thermodynamic state (pj , ρj , M̂j) behind the shock wave in the frame of reference of
the triple point:

pj = pi

(
1 +

2γ

γ + 1
(M̂2

i sin2 φj − 1)

)
(7.2.3)

ρj = ρi

(
1 +

2 + (M̂2
i sin2 φj − 1)

(γ − 1)M̂2
i sin2 φj + 2

)
(7.2.4)

tan θj =

[
tanφj

(
(γ + 1)M̂2

i

2(M̂2
i sin2 φj − 1)− 1

− 1

)]−1

(7.2.5)

M̂j =

(
2 + (γ − 1)M̂2

i

2γM̂2
i sin2 φj − (γ − 1)

+
2M̂2

i cos2 φj

2 + (γ − 1)M̂2
i sin2 φj

)1/2

(7.2.6)

referring to the notations of figure 7.5, with φj the incident angle, θj the deflection angle and
M̂i the Mach number in state (i) with respect to the triple point. The values of (i, j) for each
shock are given in the tables of figure 7.5.

7.2.3 Problem setting

Physical problem

The DMR configuration to be solved is defined in [130]. We recall here the geometry, the
physical problem and the implementation of the boundary conditions as given by the authors.
The computational domain Ω× [0, T] with Ω = [0, 4]× [0, 1] and T = 0.25 (see figure 7.6). The
angle of the corner is θ = π/6. In order to avoid the complications of the wedge geometry, the
wedge wall is taken horizontal and the incident shock is turned by an angle θ. The half-line
along the x-axis of figure 7.6 starting at x0 is the x′-axis of the wall in figure 7.4.

A shock with angle α = π/2−θ and Mach number MS = 10 moves through still air (γ = 1.4)
with density ρ1 = 1.4 and pressure p1 = 1 hence a shock speed of |uS | = 10. The post-shock
state is determined by the Rankine-Hugoniot jump conditions. The shock reaches the apex

118 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

A = (x0, 0) of the wedge at t = 0. The initial conditions are therefore defined as:

Pre-shock state Post-shock state

x > x0 + y tan θ x < x0 + y tan θ

ux1 = 0
uy1 = 0
ρ1 = 1.4
p1 = 1

ux2 = 8.25 cos(θ)
uy2 = −8.25 sin(θ)
ρ2 = 8
p2 = 116.5

(7.2.7)

The left boundary has inflow boundary conditions. The lower boundary for x < x0 and the
right boundary have outflow conditions. Regarding the upper boundary condition, an artificial
boundary condition is set to follow the shock as it moves to the right of the domain. The
intersection point between the shock and the upper boundary moves at speed |uS |/ cos(θ) and
is located at xS(t) = x0 + tan(θ) + |uS |/ cos(θ) t. This results in the following set of boundary
conditions:

x = 0 and y ∈ [0, 1]

ux = 8.25 cos(θ)
uy = −8.25 sin(θ)
ρ = 1.4

x = 4 and y ∈ [0, 1]

p= 1.4

x ∈ [x0, 4] and y = 0

∇n(ux) = 0
uy = 0

x ∈ [0, x0] and y = 0

p= 116.5

x ∈ [0, xS(t)] and y = 1

ux = 8.25 cos(θ)
uy = −8.25 sin(θ)
ρ = 1.4
p = 116.5

x ∈ [xS(t), 4] and y = 1

ux = 0
uy = 0

(7.2.8)

Numerical method

Our objective is to have an increased spatial resolution for shock waves, contacts waves and
for the jet as well. The first AMR test — presented in section 7.2.4 — features two levels of
refinement both determined with criteria (7.2.9). The refinement factor is nref = 2 and the
finest level step size is h2 = 1/200. Instead of focusing of the whole domain we may rather
assign all the computational effort to increase the resolution at the two Mach reflections. In the
second AMR test featured in section 7.2.5 two levels of refinement are used but the first level is
defined by the arbitrary window of refinement (7.2.10) encompassing the two triple points. The
second level of refinement is generated using criteria (7.2.9). The refinement factor is nref = 4
and the finest level step size is h2 = 1/1600.

The first refinement criteria is based on the variations of the density. A cell K belonging to
the level grid G` is flagged for refinement if the following condition is satisfied:

max
L∈N (K)

|ρK − ρL| > ε · h` (7.2.9)

with ε = 1 in the test of section 7.2.4 and ε = 50 in the test of section 7.2.5. The second refine-
ment criterion defines an arbitrary window of refinement focused on the two Mach reflections.

§7.2] DOUBLE MACH REFLECTION 119

1 2 4 6 8 10
0

10

20

30

40

50

60

SMR TMR

DMR

RR

MS

θ

x

y

4x00

1

0

xS(0)

α = π/2− θ

M
Su2

ρ2

p2

u1

ρ1

p1

FIG. 7.6 – Left: shock diffraction domains for a diatomic gas, reproduced from [22]. Solid curves are
the boundaries of different shock diffraction domains. Below the dashed curve the bow shock is attached,
above it detached. The blue mark matches the parameters of the benchmark. Right: domain for the
DMR problem to be solved under such parameters.

This window is moving with triple point T . The latter speed is |uT | = |uS |/ cos(θ + χ) and its
space coordinates are:

xT (t) = x0 + |uT | cos(χ)t
yT (t) = |uT | sin(χ)t

An empirical determination of χ yields xT (t) = x0 + 12.8t and yT (t) = 2t. A cell K belonging
to the level grid G` is inside the window of refinement at time t if the subsequent condition are
verified: 

xK > xT (t)−max(a, (xT (t)− x0)/4)
yK > 0
xK < xT (t) + a
yK < yT (t) + a

(7.2.10)

with a = 0.15. In the original work [25], a window of refinement was also used for the first level
but it constantly covered the height of the domain so that the incident shock would not cross
any coarse-fine interface in contrast to our refinement strategy. The impact of this choice will
be discussed in section 7.2.5.

The adaptive grid generation algorithm presented in chapter 5 is used with the “standard
Laplacian” for edge detection in the clustering algorithm. In the test of section 7.2.4 the
efficiency is set to emin = 1. In the test of section 7.2.5 the efficiency is set to emin = 0.5. It was
chosen not to add any restriction on the shape of the patches, i.e. rvmin = vmin = lmin = 0.

Once the composite grid has been generated, the compressible Euler equations are solved
with the Multigrid-AMR method presented in Chapter 6. The stopping criterion for the multi-
grid solver is 10−10 on the absolute L∞ norm of the composite residual. In each multigrid
resolution, the smoothing on each level consists in three outer iterations over all the patches,
with for each patch two smoothing steps (Gauss-Seidel) with synchronization of ghost-cell val-
ues. The iterations of the fixed point procedure for the non-linear projection-correction step
end when the absolute L∞ norm of pressure increment with respect to the fixed point iterations
is below 10−12. Finally the outer iterations in time have a timestep tied to the finest grid step
size as δt = h2/40 = 1.25× 10−4 in the test of section 7.2.4 and as δt = h2/20 = 3.125× 10−5

in the test of section 7.2.5.

120 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

7.2.4 Adaptive and uniform grid solutions

The aim of this first test is to compare two numerical simulations of the DMR problem, one with
adaptive mesh refinement — as described in the foregoing section — and one with an uniform
grid using the space step h2 = 1/200 of the finest AMR level. The uniform grid solution will
stand as a reference to assess the accuracy of the adaptive solution.

Self-similar solution

The evolution of the solution in the self-similar frame of reference is given in figure 7.7. In both
solutions the isopycnics allow to identify clearly the incident shock (i), the reflected shock (r)
connected to the attached bow shock (m′) through a curvature reversal and the Mach stem (m).
Triple points can be therefore located accurately and they appear to be perfectly aligned in the
self-similar frame at different timesteps (see green lines in figure 7.7). This confirms the self-
similarity property of the numerical solution with both adaptive and uniform grids.

Regarding the flow inside the diffraction pattern, the base grid in the adaptive solution (with
space step h0 = 1/50) is unfortunately too coarse for our first order pressure-correction scheme:
the variations of the density are too loose to trigger the aforementioned refinement criterion.
Thus only the uniform grid solution features the reflected shock (r′) and the slipstream (s).

The comparable sharpness of shock waves (i), (r), (m′) and (m) in both adaptive and
uniform grid solutions is misleading. Indeed the adaptive solution features a small though not
negligible error in the computation of these shocks. In the uniform grid solution, triple points
are located at T = (12.75, 2.04) and T ′ = (10.37, 1.98) while in the adaptive grid solution we
have T = (12.69, 1.94) and T ′ = (10.53, 1.94). We believe that this is difference is caused by
the difference of resolution in region (0) ∪ (3) ∪ (4) ∪ (5) ∪ (6), i.e. h2 = 1/200 for the uniform
grid solution and h0 = 1/50 for the adaptive grid solution.

Local refinement

The evolution of the number of unknowns for the adaptive grid calculation is compared to the
number of unknowns for the uniform grid case. The ratio between the two is given in the last
column:

Time Level 0 Level 1 Level 2 Composite Total Ratio

0 10000 1028 2408 1.3× 104 1.3× 104 0.08
250δt 10000 1632 5072 1.5× 104 1.7× 104 0.10
500δt 10000 2160 6776 1.7× 104 1.9× 104 0.12
750δt 10000 2684 8344 1.8× 104 2.1× 104 0.13

1000δt 10000 3104 9704 2.0× 104 2.3× 104 0.14
1250δt 10000 3596 11240 2.1× 104 2.5× 104 0.16
1500δt 10000 4120 12896 2.3× 104 2.7× 104 0.17
1750δt 10000 4620 14456 2.4× 104 2.9× 104 0.18
2000δt 10000 5160 16184 2.6× 104 3.1× 104 0.20

TAB. 7.1 – Evolution of the number of unknowns in adaptive and uniform grid calculations.

At t = 2000δt = 0.25, the number of unknowns with adaptive grids is five times smaller
than the number of unknowns with the uniform grid. The number of unknowns of finest level
being significantly larger than that of the first level of refinement, the composite grid size does

§7.2] DOUBLE MACH REFLECTION 121

not differ much from the total number of unknowns. The evolution of the number of patches is
given hereafter:

Time Level 0 Level 1 Level 2

0 1 66 66
250δt 1 61 95
500δt 1 68 105
750δt 1 86 121

1000δt 1 75 122
1250δt 1 93 128
1500δt 1 103 145
1750δt 1 117 157
2000δt 1 125 161

TAB. 7.2 – Evolution of the number of patches in adaptive grid calculation.

The refinement being concentrated on shocks, the clustering algorithm with efficiency set to
emin = 1 generates a large number of patches, which increases the computational cost of the
adaptive grid calculation.

Conclusion

This first numerical test emphasizes the need to start with a minimal resolution at the coarsest
level so that essential flow features can be detected by the refinement procedure. Moreover,
the refinement factor should be large enough to yield a sufficient increase of resolution between
two levels, which is an issue given the amount of diffusion generated by our first order pressure
correction scheme. In consequence in the next test the base grid will have a step size h0 = 1/200
and the refinement factor will be nref = 4.

7.2.5 Local refinement on the Mach reflections

Non-steady solution

Figure 7.9 gives an overview of the solution at different timesteps up to t = 0.25. The first triple
shock system and the curvature reversal are clearly seen on the isopycnics, thereby identifying
the two triple points. The green lines start at points T and T ′ of the solution at t = 8000δt
and are absolutely aligned with the triple points of the solution back to t = 4000δt. At earlier
timesteps, a small discrepancy is observed. Evidence of this error is more easily seen by locating
the intersection of the two green lines, which should cross at point A at t = 0. While for
t > 4000δt the solution seems perfectly self-similar it is expected to feature a slight error
introduced at earlier timesteps. This should have an impact for instance on the position of
point I.

Despite this small source of error the numerical solution we will be considered self-similar
hereafter. The numerical results will be analyzed using the solution at t = 8000δt = 0.25 in the
self similar frame of reference.

122 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

t
=

2
0
0
0
δt

t
=

1
7
5
0
δt

t
=

1
5
0
0
δt

t
=

1
2
5
0
δt

t
=

1
0
0
0
δt

t
=

7
5
0
δt

t
=

5
0
0
δt

t
=

2
5
0
δt

In
it

ia
li

za
ti

o
n

Adaptive grid Uniform grid

ξ′0 2 4 6 8 10 12 14 ξ′0 2 4 6 8 10 12 14

FIG. 7.7 – Evolution of the solution in the self-similar frame of reference between t = 3.125× 10−2 and
t = 0.25. For the record the timestep is δt = 1.25 × 10−4. Left: isopycnics (30 values, in black) of the
solution with AMR (finest level: h2 = 1/200) ; AMR patches for the two levels of refinement are in red.
Right: isopycnics (30 values) of the solution with uniform grid (h = 1/200). Note that the horizontal
axis starts at x0. The green lines follow the position of the two triple points.

§7.2] DOUBLE MACH REFLECTION 123

ξ′10 11 12 13

η′

0

0.8

1.6

2.4

Frame of reference of first triple point T

ξ′10 11 12 13

η′

0

0.8

1.6

2.4

Frame of reference of second triple point T ′

FIG. 7.8 – Isopycnics (in red, 100 contours, ρ ∈ [1.4, 17.6]), pseudo-subsonic region (in light blue) and
velocity streamlines (in blue) respectively in the frame of reference of triple points T (left) and T ′ (right).
The line segments approximating shocks (in black) and streamlines (in green) are used for measuring
oblique shock deflection angles.

Self-similar solution

The isopycnics and the isobars of the solution (figure 7.10) identify very clearly the discontinu-
ities of the density and of the pressure. Regarding the first triple shock system, the incident
shock wave (i), the reflected shock wave (r) and the Mach stem (m) are very sharp whereas the
contact discontinuity (s) features a lot of diffusion. The Mach stem hits the wall perpendicularly
at point I of coordinates (13.05, 0). The triple point T is found at coordinates (12.80, 2.19).
It makes an angle χ = 9.24◦ with the ξ′-axis, hence an expected speed |uT | = 12.91 which is
consistent with the position of T in the self-similar frame.

As for the second triple shock system, the incident shock wave (r) and the second Mach
stem (m′) are also very sharp. However we observe a lot of diffusion at the reflected shock (r′).
The latter features a small deviation at it reaches the first slipstream (s), whereas it should
have a continuous curvature. This issue will be addressed later on. The second slipstream (s′)
is not noticeable at all. It is known to be very difficult to observe experimentally [22] and to
compute accurately [25] due to the very slight variations of density across it. Nevertheless some
authors have succeeded to observe it using local mesh refinement [75]. The curvature reversal is
apparent and allows to identify the second triple point T ′ at (10.22, 1.94). The latter trajectory
angle is found to χ′ = 10.12◦, greater than χ and thereby confirming that we have a DMR“+”
shock diffraction. The expected speed of T ′ with the Law-Glass assumption is |uT ′ | = 10.79
which is coherent with the measured position of T ′ in the self-similar frame.

The pseudo-velocity streamlines on figure 7.10 provide a good understanding of the flow
in the different regions of the solution. In pseudo-supersonic regions (i.e. with respect to the
pseudo-Mach M̄) (2), (1) and (3) the density and the pressure are constant and the streamlines
are straight lines converging to three different sink points. The streamlines passing near triple
point T either through shocks (i), (r) or through (m) are parallel to the first slipstream. They
reach the wall at stagnation point P2 = (10.32, 0). At P2, part of the flow (actually from state (3)

124 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

is directed towards sink point P1 = (6.09, 0) in region (0) ∪ (5) ∪ (6). We believe the second
slipstream to be parallel to the streamlines leaving second triple point T ′ towards P1. Along the
wall between A and P2 the density has almost reached its minimal value at P1. Its maximum
is located at point A, which is in line with the experimental observations of G. Ben-Dor and
I.I. Glass in [22] for an attached bow shock.

A closer view of the two Mach reflections is provided in figure 7.12. At stagnation point P2

the streamlines belonging to state (4) form a jet along the wall in state (4) as observed by
P. Woodward and P. Colella in [130] for this very DMR configuration. The jet rolls up behind
point P3 = (12.75, 0) to form a vortex, which is correlated to the slight peak in the density
profile along the wall between P2 and I. This does not impact the general trend of the density
along this portion of the wall which increases from I to P2 as noticed experimentally in [22].
This indicates a compression of the flow along the wall. The jet has a strong influence on the
Mach stem, moving its foot forward. As a result the Mach stem features an inflexion point as
pointed out in [75]. The foot of the Mach stem is clearly perpendicular to the wall, which is in
accordance with the description of the Mach reflection given in the introductory section.

We use after [130] the iso-values of A = p/ργ (figure 7.10) to identify the numerical noise
to the solution. Three regions of disturbance stand out. First at the intersection between the
incident shock and the window of refinement, a severe disturbance is generated and propagates
along the incident shock towards the reflected shock and state (3). This issue was pointed out
by the authors of [25], who found the amplitude of the disturbances to be proportional to the
strength of the incident shock. Let us notice that in the previous test, where no shock was
crossing any coarse-fine interface, no such numerical noise was observed. Another issue, listed
in [130], is caused by the initial shock width being spread over a few cell in contrast to the
boundary condition at the upper wall which is “exact”. Finally an artificial boundary layer
spreading along the wall from the apex A adds further numerical error. The latter two distur-
bance were found to be impactless while the first one has a strong influence on the boundaries
pseudo-supersonic region (3).

Deflection vs reflection

As explained in the introductory section, shock diffraction results from the interaction between
flow deflection and shock reflection through the propagation of pressure disturbances. Using the
geometric construction presented in the foregoing part of this chapter, we will try to estimate the
origin of the pressure disturbance and their leading front. On figure 7.11, two half-lines starting
at triple point T extend the reflected shock (r) and the first slipstream (s). The constant velocity
vector u2 is represented using its theoretical value hence a length of |u2| = 8.25 in the self-similar
frame of reference. The line perpendicular to the extension of shock wave (r) passing through

the tip of u2 intersects the extension of the slipstream at point A3. Vector
−−→
AA3 matches the

velocity vector u3 of state (3). The norm of the velocity vector u3 obtained with the geometric
construction is |u3| = 7.3, which is in line with the measured value |u3| = 7.4 in our numerical
results. Pressure disturbances in the self-similar frame of reference originate at point A3 (which
is stationary) and move towards triple point T with the speed of sound a3 =

√
γp3/ρ3 = 4.95.

The resulting arc (in green) indicates the farthest theoretical reach of the pressure signals leaving
from A3. Remarkably the arc matches very closely pseudo-sonic line next to the slipstream.
This somehow confirms that the window which arbitrarily separates the flow defection from the
shock reflection does not have a significant impact on the propagation of pressure disturbances
from A3.

§7.2] DOUBLE MACH REFLECTION 125

Triple shocks systems

We now assess the deflection angles of the two triple shock systems. The streamlines in the
frame of reference of T and T ′ are shown on figure 7.8. Referring to the notations of figure 7.5,
classical oblique shock theory yields the following predictions:

FoR (i, j) φj Mi pi ρi θ∗j θj M̂∗j M̂j p∗j pj ρ∗j ρj
T (1, 2) 50.0 12.97 1 1.4 38.2 36.6 1.90 1.82 115 117 8.0 8.0
T (2, 3) 40.7 1.82 117 8.0 7.6 9.4 1.56 1.50 172 192 10.6 11.3
T (1, 4) 86.3 12.97 1 1.4 16.8 28.6 0.41 0.45 195 196 8.2 8.2
T ′ (2, 3) 56.5 1.44 117 8.0 8.1 9.0 1.13 1.08 176 192 10.7 11.3
T ′ (3, 5) 80.4 1.08 192 11.3 1.0 2.6 0.96 0.83 222 279 12.5 14.7
T ′ (2, 6) 111.5 1.44 117 8.0 10.5 8.3 0.90 0.70 225 284 12.7 14.8

TAB. 7.3 – Predicted and measured deflection angles and states at oblique shocks.

The two first columns indicate the frame of reference (FoR) and the oblique shock ((i, j)
indices, see figure 7.5). The four next columns give the data used to predict the deflection
angles and the state before the shock using equations (7.2.3). The next columns feature the
predicted value using oblique shock theory (with a star superscript) and the value obtained with
our numerical simulation.

For the first triple shock system, the predicted deflection angles are in quite good agreement
with measured angles except for the Mach stem (i = 1 and j = 4). However unlike the predicted
values, the deflection angles obtained from the numerical simulation do verify the slipstream
matching conditions:

θ3 − θ2 = 27.2
θ4 = 28.6

which is consistent with the two selected streamlines being parallel in figure 7.8. The error in
the prediction of the deflection angle θ?4 is probably to blame to the assumption of a straight
shock whereas (m) is curved. The Mach number, the pressure and the density predicted are in
rather good accordance with the numerical values.

As for the second triple shock system, the predictions are more difficult to carry out because
of the important variations of density and of pressure in states (5) and (6). The predicted
values and the numerical values of the deflection angle and of the state before the shocks
coarsely match.

Local refinement

The numerical solution obtained in the window of refinement is represented on figure 7.13 (left),
scaled to the self-similar frame of reference. The green lines follow the two triple points and
confirm the self-similarity of the numerical solution.

The refinement criterion is seen to match very accurately the regions of high density gradient
thanks to the fine space step of the first level of refinement (h1 = 1/800) and to the refinement
factor nref = 4. The second level of refinement covers the jet with its vortex and shock waves (i),
(r), (m′), (m), (r′) and (s). However the latter two waves feature a high amount of diffusion,
which results in larger patches and a higher computational cost.

126 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

A more serious concern is the propagation of the numerical disturbance along the incident
shock (figure 7.13, right). This noise originates to the intersection of the incident shock with
the coarse-fine interface of the window of refinement. Its influence is considerable at earlier
timesteps. At t = 2000δt the disturbance crosses reflected shock (r) into state (3) up to
stationary point P2. Clearly this moves the sonic line separating state (3) and state (5) to the
wall. Hopefully the amplitude of this numerical noise appears to decrease at later timesteps. The
sonic line recovers its shape though at t = 8000δt it still features a slight deviations towards P2.

The evolution of the number of unknowns as the diffraction pattern grows is given in the
table below. Compared to a numerical simulation with an uniform grid of space step equal to
h2, i.e. with 1.024 × 107 unknowns, the gains in computational effort with AMR are evident.
Thanks to the refinement factor nref = 4, the size of the problem at the final timestep is as little
as 5% of that of the uniform grid problem.

Time Level 0 Level 1 Level 2 Composite Total Ratio

0 40000 8192 7424 5.5× 104 5.6× 104 0.005
1000δt 40000 11264 65040 1.1× 105 1.2× 105 0.011
2000δt 40000 16576 107664 1.6× 105 1.6× 105 0.016
3000δt 40000 26320 166368 2.2× 105 2.3× 105 0.023
4000δt 40000 37392 181616 2.5× 105 2.6× 105 0.025
5000δt 40000 50384 226208 3.0× 105 3.2× 105 0.031
6000δt 40000 65296 262592 3.5× 105 3.7× 105 0.036
7000δt 40000 83520 301760 4.0× 105 4.3× 105 0.042
8000δt 40000 102432 351504 4.7× 105 4.9× 105 0.048

TAB. 7.4 – Evolution of the number of unknowns compare to the case of uniform grid.

In our numerical experiments, the inter patch operations with our current implementation
were found to be quite expensive and to impede the scalability with respect to the number of
patches (hence a soaring computational cost as the self-similar solution grows). This motivated
the choice of a low efficiency in the clustering algorithm with emin = 0.5. As a result the
number of patches increases at a much lower pace and stays below 100.

It should be emphasized that use of the procedure for fixing incompatible clusterings pre-
sented in chapter 5 was found to be compulsory. During the present calculation, as many
as 30539 new patches were generated by this procedure over the 8000 timesteps.

Time Level 0 Level 1 Level 2

0 1 1 23
1000δt 1 1 9
2000δt 1 1 13
3000δt 1 1 20
4000δt 1 1 45
5000δt 1 1 50
6000δt 1 1 57
7000δt 1 1 69
8000δt 1 1 90

TAB. 7.5 – Evolution of the number of patches.

§7.2] DOUBLE MACH REFLECTION 127

Finally the scalability of the Multigrid-AMR solver proved to be essential. The average
number of iterations was always between 3 and 5.

Conclusion

These numerical results are very insightful, as they demonstrate the capability to accurately
compute the complex shock systems of shock diffraction with a first order all-Mach pressure
correction scheme using a Multigrid-AMR method. In contrast the very first AMR simulation of
this problem was performed with an explicit AMR method based on a Godunov-type solver [25].

Ongoing work include a second order extension in a bid to recover the same accuracy as the
results from [25]. More broadly the numerical accuracy was found to play a critical role in the
ability of the AMR method to produce physically relevant results. An increased resolution in
some region of the flow is pointless if essential flow features are missed because of the refinement
criterion.

Finally, we should insist on the fact that the arbitrary window of refinement did not seem
to disturb the interaction between flow deflection and the shock reflection, which is quite re-
markable.

128 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

t
=

8
0
0
0
δt

t
=

7
0
0
0
δt

t
=

6
0
0
0
δt

t
=

5
0
0
0
δt

t
=

4
0
0
0
δt

t
=

3
0
0
0
δt

t
=

2
0
0
0
δt

t
=

1
0
0
0
δt

t
=

0

Density field Isopycnics

FIG. 7.9 – Growth of the self-similar solution between t = 0 and t = 0.25. For the record the timestep
is δt = 3.125× 10−5. Left column: density field. Right column: isopycnics (in black, 12 contours) with
patches (in red) for the two levels of refinement. Note that the horizontal axis has been trimmed down.
The green lines follow the trajectory of the two triple points and they intersect at the green cross.

§7.2] DOUBLE MACH REFLECTION 129

ξ′0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

η′

0

1

2

3

4

P1 P2 P3 IA

ξ′0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ρ(ξ′, 0)

0

4

8

12

16

20

ξ′0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

η′

0

1

2

3

4

ξ′0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

η′

0

1

2

3

4

FIG. 7.10 – Top: isopycnics (in red, 30 contours, ρ ∈ [1.4, 21.3]), pseudo-subsonic region (in light blue)
and pseudo-velocity streamlines (in blue). The dashed gray line delimits the first level of refinement.
Middle top: density profile along the wedge wall. Middle bottom: isobars (in green, 30 contours,
p ∈ [1, 624]). Bottom: contours of A = p/ργ (in black) with problematic regions overlayed in red.

130 APPLICATION TO COMPRESSIBLE FLOWS [CH.7

ξ
′

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

η
′

0

1

2

3

4

T

ξ

u2

u3
A3

a 3

FIG. 7.11 – Construction (in red) of the sonic line (in green) w.r.t. state (3), which gives an insight on
the location of the reflected shock (r′) of the second Mach reflection. The pseudo-subsonic region is in
light blue and the isopycnics are in black.

ξ′10 11 12 13

η′

0

0.8

1.6

2.4

ξ′10 11 12 13

η′

0

0.8

1.6

2.4

FIG. 7.12 – Close up view of the window of refinement. Left: isopycnics (in red, 100 contours, ρ ∈
[1.4, 17.6]), pseudo-subsonic region (in light blue) and pseudo-velocity streamlines (in blue). Right:
isobars (in green, 100 contours, p ∈ [1, 351]).

§7.2] DOUBLE MACH REFLECTION 131

t
=

20
00
δt

t
=

40
00
δt

t
=

60
00
δt

t
=

8
00

0
δt

Density A = p/ργ

ξ′10 11 12 13 14 15 ξ′10 11 12 13 14 15

FIG. 7.13 – Comparison of the Mach reflections in the window of refinement at different times, repre-
sented here in the self-similar frame of reference. The first column features the isopycnics (100 contours,
in black) and the right column the iso-values of A = p/ργ (100 contours, in black). The pseudo-subsonic
region is in light blue and the patches of the two levels of refinement are in red. The green lines follow
the two triple points.

Part III

Fluid-porous interface problem

133

Chapter 8

MODELLING AT DIFFERENT SCALES

In this chapter, we review the porous modelling in the GENEPI code at CEA. Then we recall the
classical approaches for modelling cross filtration at the mesoscopic scale and at the macroscopic
scale in the linear viscous regime.

8.1 Porous model in GENEPI

8.1.1 Governing equations

We recall here the two-phase flow model of GENEPI first presented in Chapter 4. For each
phase K of the secondary loop fluid (either liquid or vapour) the local conserved equations
read [104]:

∂t(ρK) + div(ρKuK) = 0 (8.1.1)

∂t(ρKuK) + div(ρKuK ⊗ uK) = −div(τ(uK)) + ρKFK (8.1.2)

∂t

(
eK +

|uK |2

2

)
+ div

(
ρK

(
eK +

|uK |2

2

)
uK

)
= −div(qK) + div(τ(uK) · uK)

+ρKFK · uK
(8.1.3)

where τ(u) the viscous stress tensor and FK an external force (eg. gravity). For the primary
fluid the local enthalpy balance reads:

∂t(ρPhP) + div(ρPuPhP) = −div(qP) + div(τ(uP) · uP) (8.1.4)

with hP denoting the enthalpy. The subscript P associates a variable with the primary loop
fluid. This set of equations is closed by the equation of state of the secondary fluid. This local
set of equations is then volume-averaged twice over a representative elementary volume (REV)
(see figure 8.1). The first averaging, over the two phases, yields an homogeneous two-phase flow
model. These equations are then averaged over the free-fluid regions and the obstacles within
the REV, introducing the “artificial” porosity β. The final averaged equations (see [104] for a
step-by-step derivation) give a balance of the system at the mesoscopic scale:

• Primary fluid, energy balance:

ρPCP∂tTP + ρPCPuP · ∇TP − div(CPχT ∇TP) = −γ0heq

βP0

(TP − TW)

135

136 MODELLING AT DIFFERENT SCALES [CH.8

• Secondary fluid, mass balance:

β∂tρ+ div(βρu) = 0

• Secondary fluid, momentum balance:

βρ∂tu + βρu · ∇u− div(β2µT (∇u +∇tu)) + β∇ p = βρg − βΛ · ρu
− div(βX(1−X)ρuR ⊗ uR)

• Secondary fluid, energy balance:

βρ∂th+ βρu · ∇h− div(βχT ∇h) = τγ0heq(TP − TW)

− div(βX(1−X)ρLuR) +Dp/Dt

• Secondary fluid, equation of state: tabulated values for water, fitted with high order
polynomials.

Here are denoted by T the temperature, C the specific heat capacity, χT the turbulent thermal
conductivity, heq the equivalent exchange coefficient, βP0 the bundle primary porosity, γ0 the
heating surface density between the primary loop and the secondary loop, TW the temperature
at the wall of the U-tubes, µT the turbulent viscosity, g the gravitational constant, Λ a friction
tensor and uR a drift velocity. The latter is associated with the static quality X defined in
chapter 4. In the above equations, ρ, T , u, p and h are all mixture variables.

8.1.2 Discussion

The above mesoscopic porous model is referred to as the continuous porosity approach. The
porosity and the flow variables present a continuous variation between the porous medium
representing the evaporator and the free-fluid, as outlined on figure 8.1 (center). The relevance
of this approach strongly depends on the space resolution of the numerical method in the
region of transition between the porous medium and the free-fluid. In practice for industrial
simulations, the accuracy in space in this region is not sufficient and an incoherent behaviour
is observed at the fluid-porous interface in the upper part of the evaporator. The flow rate is
higher than expected, which yields to the use of cumbersome workarounds.

Lately, an alternative modelling with a discontinuous porosity (figure 8.1, right) was consid-
ered. This model is defined at the macroscopic scale so proper transmission conditions must be
established. The third part of this thesis aimed at contributing to the derivation of such condi-
tions for realistic industrial flows, starting with the incompressible single-phase Navier-Stokes
equations.

8.2 Modelling cross-flow filtration

In what follows, we consider a viscous incompressible pressure-driven flow over a porous bed.
The flow is assumed to be near parallel [86]: the pressure gradient has the same order of
magnitude in the plain fluid region and in the porous medium. The dynamic viscosity of the
fluid is denoted by µ and the porous medium is characterized by its porosity φ ∈ [0, 1] and its
permeability tensor K. The physical domain extends over Ω = [0, L] × [−H,H] as shown on

§8.2] MODELLING CROSS-FLOW FILTRATION 137

Continuous porosity

M1 M2

M3

x

β

β0
1

Discontinuous porosity
Γ

M1 M2

M3

x

β

β0
1

Upper part (“chignon”)

FIG. 8.1 – Two modelling approaches for GENEPI: continuous porosity and discontinuous porosity.

figure 8.3. Three subdomains are defined: the “free-fluid region” Ωf , the “transition region”
Ωt and the “plain porous region” Ωp. They are separated by two interfaces Γf = Ωf ∩ Ωt and
Γp = Ωp ∩ Ωt.

Here, we consider a porous medium formed by an array of solid inclusions, the pores being
occupied by the fluid. The two subdomains Ωf and Ωp are homogeneous, in the sense that the
former contains only plain fluid and the latter only plain porous medium. The free-fluid and
the porous medium both overlap with the Ωt region. The surface tangent to the inclusions of
the porous medium is strictly above Γp and strictly below Γf .

For a variable ψ, the volume average over a representative elementary volume Vrev is de-
fined as:

〈ψ〉 =
1

Vrev

∫
Vrev

ψ(x, y) dx dy

Likewise the average along x:

〈ψ〉x =
1

L

∫ L

0
ψ(x, y) dx

y

xL

H

0

Σin Σout

〈ux〉x
Γf

Γp

Ωf

Ωp

Ωtτ

n

Poiseuille flow over a porous bed

M

`

2a

Vrev(M)

Representative Elementary Volume

FIG. 8.2 – Fluid-porous problem under consideration.

138 MODELLING AT DIFFERENT SCALES [CH.8

y

x

H

0

〈ux〉x
Γf

Γp

Ωf

Ωp

Ωt

Microscopic scale

y

x

H

0

φp < 1
Kp

φf = 1
Kf=∞

〈ux〉x
Γf

Γp

Ωf

Ωp

Ωt

Mesoscopic scale

〈ux〉x

y

x

H

0

φ < 1
K

Γf

Γp

Ωf

Ωp

Ωt

Uf

Ui

Up

Macroscopic scale

FIG. 8.3 – Filtration with a near parallel flow, viewed from three different space scales.

8.2.1 Filtration phenomena

The pressure gradient imposed between Σin and Σout generates in the free-fluid region Ωf a
Poiseuille flow with a zero velocity at the upper wall and a non-zero slip velocity on Γf caused
by the filtration into the porous medium (figure 8.2). The flow in Ωt and in Ωp can be described
from three different space scales [38]: microscopic, mesoscopic and macroscopic.

At the microscopic scale (figure 8.3, left), the flow is governed in the entire domain Ω =
Ωf ∪Ωt∪Ωp by the incompressible Navier-Stokes equations (or possibly the Stokes equations in
the linear viscous regime) using the local variables (u, p). As opposed to the simple Poiseuille
flow in Ωf , the flow between the inclusions in Ωt and Ωp is complex and depends on the structure
of the porous matrix.

At the mesoscopic scale (figure 8.3, center), the flow is described in the whole domain
Ωf ∪ Ωt ∪ Ωp by volume averaged variables (〈u〉 , 〈p〉). The domain can be seen as a single
porous medium characterized by a permeability varying continuously from a constant value Kp

in Ωp to Kf =∞ in Ωf with transition in Ωt. At this space scale, a boundary-layer of thickness
δ = O(

√
K) makes the transition between the flows in Ωf and Ωp. The flow in Ω is governed by

upscaled conserved equations, for instance by the Darcy-Brinkman equation at low Reynolds
number. Note that in Ωf volume averaged variables identify with local flow variables.

Finally at the macroscopic scale (figure 8.3, right), only Ωf and Ωp are considered. An
“abstract” interface Γ separates the two domains: Γ ∩ Ωf = Γf and Γ ∩ Ωp = Γp. Carefully
chosen transmission conditions on Γ make the coupling between Ωf and Ωp. These conditions
embed the physics of the transition region Ωt which is now reduced to the interface Γ. Across
Γ, volume-averaged flow variables can be discontinuous. If Ωt has a thickness δ = O(

√
K),

then Γ may embed the boundary-layer. Other definitions of Γ allow a boundary layer inside
Ωp. In Ωf , the flow is governed by the local (Navier-)Stokes equations while in Ωp which is
viewed from an upper scale, the Darcy law is used (or alternatively the Darcy-Brinkman law
for high porosities or also the Darcy-Forchheimer law at high Reynolds numbers). This issue of
the transmission condition is two-fold: first the condition has to be physically relevant, second
the coupled problem has to be well-posed.

§8.2] MODELLING CROSS-FLOW FILTRATION 139

8.2.2 Fluid-porous models

Mesoscopic scale modeling

As exposed in the previous section, at the mesoscopic scale the flow can be modeled by a
unique set of equations in the whole domain Ω = Ωf ∪ Ωt ∪ Ωp. The main advantage of
this approach is that no further modeling is required to compute the flow in Ω in contrast to
macroscopic models which depend on undetermined parameters. The downside is that the thin
boundary layer between the fluid flow and the porous medium must be accurately computed.
As a consequence mesoscopic models are more adapted to porous media which feature a smooth
transition of the permeability to the free-fluid.

An example of mesoscopic model is the generalized Brinkman equation [9] which embeds in
a single system of equations the Stokes flow in the fluid region and the Darcy-Brinkman flow in
the porous region: {

−div(µ̃∇u) +∇ p+
µ

K
u = 0 in Ω

div u = 0 in Ω
(8.2.1)

where µ̃ = µ/φ is the effective viscosity, µ the dynamic viscosity of the fluid, φ the porosity and
K the permeability tensor defined as:

K =


Kp in Ωp′ = Ωp ∪ Ωt

1

ε
in Ωf

with ε → 0. A similar approach was presented by E. Arquis and J.-P. Caltagirone [13] for
a flow governed by the Navier-Stokes equations in the fluid region. The following generalized
momentum equation was used:

ρ∂tu + ρu · ∇u = µ∆u−
(µ
K

u +∇ p+ ρg
)

(8.2.2)

A transition region of variable permeability (in the present case Ωt) where the generalized mo-
mentum equation is loosely equivalent to the Brinkman equation makes the transition between
two regions of constant permeability, respectively the fluid region Ωf (infinite permeability so
that (8.2.2) tends to the Navier-Stokes momentum equation) and the porous region Ωp (where
the Darcy term prevails in (8.2.2)). As for the generalized Brinkman equation (8.2.1) despite
being defined at the mesoscopic scale, it can be interpreted as a specific macroscopic model.
Indeed as proved by P. Angot in [9] the limit model of (8.2.1) is a two domain problem coupling
Stokes/Brinkman with continuity of the velocity and of the normal stress at the interface Γf :

−µ∆u +∇ p = 0 in Ωf

µ̃∆u +∇ p+
µ

K
u = 0 in Ωp ∪ Ωt

div u = 0 in Ωf ∪ Ωp ∪ Ωt

u|Ωf = u|Ωp∪Ωt on Γf
(−pn + µ∇u · n)|Ωf = (−pn + µ̃∇u · n)|Ωp∪Ωt on Γf

(8.2.3)

The equivalence between the single domain problem (8.2.1) and the two-domain problem (8.2.3)
has been confirmed with numerical experiments by B. Goyeau & al. in [70]. This so called
“two-domain” formulation leads us to classical two-domain interface conditions: two domains
are considered, Ωf and Ωp which are respectively governed by a different set of equations and
coupled on the interface Γ with proper jump conditions. Further discussion on the equivalence
between the single domain and the two domain approach is found in reference [82].

140 MODELLING AT DIFFERENT SCALES [CH.8

Ochoa-Tapia–Whitaker model

In 1995, J.A. Ochoa-Tapia and S. Whitaker used the homogenization technique to derive from
the local Stokes equations an interface condition for coupling the Stokes/Brinkman problem [105,
106]: µ̃∂n 〈uτ 〉 |Ωp − µ∂nuτ |Ωf =

µβ√
K
〈uτ 〉 |Ωp on Γ

〈uτ 〉 |Ωp = uτ |Ωf on Γ
(8.2.4)

with 〈uτ 〉 |Ωp the tangential component w.r.t Γ of the volume-average velocity in the porous
medium and β the parameter of the law. It was later re-derived by M. Chandesris and D. Jamet
using the method of matched asymptotic expansions [37]. The determination of β is still an
open problem: indeed in the derivation of OTW law, β depends on surface excess quantities
for which a closure problem is yet to be determined.

This condition yields a small boundary layer in the porous medium Ωp. As a result, the
Ochoa-Tapia–Whitaker (OTW) model may not be strictly considered as a macroscopic interface
model. The continuity of the tangential velocity and therefore of the convection term at the
interface Γ is attractive for modeling heat transfer at moderate Reynolds number. However the
relevance of the OTW condition depends on that of the Brinkman model, which seems limited
to porous media with high porosities [103] (typically φ ≥ 0.8).

Despite the OTW law allows a jump of the normal derivative of the tangential velocity, it is
closely tied to the mesoscopic model (8.2.1). Indeed in 2003, B. Goyeau & al. [70] established an
explicit expression of β as a function of the permeability, the effective viscosity, the thickness of
the transition region Ωt and the average fluid velocity in the porous medium, solution of (8.2.1).
A generalized methodology for determining such semi-analytical expression of β is exposed
in [127].

Beavers-Joseph model

A properly macroscopic interface model was introduced by G.S. Beavers and D.D. Joseph in 1967
upon physical experiments for coupling the Stokes/Darcy problem [17]:

µ∂nuτ |Ωf =
µα√
K

(uτ |Ωf − Up) on Γ (8.2.5)

(8.2.6)

where Up is the Darcy velocity in the porous medium and α the slip coefficient, only parameter
of the law. The latter is non-dimensional and according to Beavers and Joseph [17], it should
depend only on the structure of the porous medium (in particular close to the interface) and
not on the properties of the flow. This law is widely accepted for moderate Reynolds numbers
at low porosities and high porosities as well. For the case of a small Darcy velocity w.r.t the
slip velocity, P.G. Saffman [116] derived a simplified version of (8.2.5) in 1971 :

µ∂nuτ |Ωf =
µα√
K
uτ |Ωf on Γ (8.2.7)

(8.2.8)

The Beavers–Joseph–Saffman law was later rigorously derived using the theory of homogeniza-
tion by W. Jäger and A. Mikelić [80].

The issue of the well-posedness of the coupled Stokes/Brinkman problem with condition (8.2.4)
was investigated in [10] and that of the Stokes/Darcy problem with condition (8.2.5) in [35, 10].

Chapter 9

CONVECTIVE REGIME

In this chapter, we focus on an extension of the Beavers-Joseph interface condition for convective
flows. First we recall past studies on the dependence of Beavers-Joseph slip coefficient with
increasing advection. Then a non-linear interface condition derived from a kinetic energy balance
is proposed and evaluated against direct numerical simulations for different flow regimes and
porous mediums.

9.1 Previous work

9.1.1 Experimental observations

Notations refereed to in this section are defined on figure 9.1. The interface Γ is parallel to
the horizontal axis. The average of the velocity component tangent to the interface Γ along
direction x is denoted 〈ux〉x and the Darcy velocity Up.

y

x

H

0

〈ux〉x
Γf

Γp

Ωf

Ωp

Ωt

Microscopic scale

〈ux〉x

y

x

H

0

φ < 1
K

Γf

Γp

Ωf

Ωp

Ωt

Uf

Ui

Up

Macroscopic scale

FIG. 9.1 – Pressure-driven flow over a porous medium ; microscopic scale (left) and macroscopic scale
(right).

Few studies have challenged the validity of the Beavers-Joseph law for high speed flows
and no definite conclusion can be drawn yet from these prior works. In 1974, G.S. Beavers,
E.M. Sparrow and B.A. Masha performed several physical experiments [18] involving an air flow
over a sample of Foemetal for increasing Reynolds numbers in the same configuration as the
original experiment of G.S. Beavers and D.D. Joseph [17]. Their measured Reynolds number
Ref is based on the height and on the average velocity in the duct section. Their experiments
were performed with Ref up to 1000 and the corresponding values of the slip coefficient α did

141

142 CONVECTIVE REGIME [CH.9

not seem to show a dependence of α with Ref . The dispersion within the values of α deduced
from their measurements was lower than 5%.

M. Sahraoui and M. Kaviany investigated this issue in their 1991 paper [117] using direct
numerical simulations also in the same configuration as [17]. The incompressible Navier-Stokes
equations were solved in a 2D channel over an array of cylinders. The authors were interested
in the dependence of α with respect to a Reynolds number Rel defined by the length of the
porous periodic cell and the Darcy velocity. The slip coefficient α was found to increase with
the local Reynolds number Rel for 0.1 < Rel < 10.

Direct numerical simulations were also performed in 2011 by Q. Liu and A. Prosperetti [96]
in a configuration similar to [117] but with a porous medium instead of the upper solid wall.
The incompressible Navier-Stokes equations were solved in a 3D domain with spheric inclusions.
The Reynolds number of interest Rei was determined by the sphere diameter and by the local
fluid velocity at the interface. In the range of local Reynolds number tested 0.5 < Rei < 16 the
authors observe a linear increase of α with Rei.

9.1.2 Interface models

A first extension of the Beavers-Joseph law was proposed by Q. Liu and A. Prosperetti with a
variable slip coefficient [96]:

µ∂y 〈ux〉x =
µα(Rei)√

K
(〈ux〉x − Up)

with α(Rei) = α0(1 + θRei)

with Rei = 2aUi/µ, a the spheres’ radius and 〈ux〉x the horizontal fluid velocity at the inter-
face Γ. The parameters of this law are α0, θ ∈ R. This interface condition seems to fit the
authors’ numerical results within the range of local Reynolds number 0.5 < Rei < 16. While
this condition provides a first insight into the modeling of an extension to Beavers-Joseph law in
the convective regime, its validity has yet to be assessed on a wider range of Reynolds number.

On the other hand in 2013, A. Marciniak-Czochra and A. Mikelic introduced an extension
of Beavers-Joseph-Saffman law [98]. In addition to the Saffman hypothesis 〈ux〉x � Up the
authors assume a pressure-driven flow only in the fluid channel. Their interface condition
is derived rigorously using a specific technique for establishing interface conditions exposed
in detail in [81]. A first order interface condition is obtained using the theory of matched
asymptotic expansions [132]. Higher order “corrective” terms to the interface condition are
obtained by considering a boundary layer problem at the fluid-porous interface. The non-linear
interface condition takes the following form:

〈ux〉x = C(ε, η)
(
∂y 〈ux〉x

)
− ε3/2+η

〈
β
(x
ε

)
|Γ
〉 (
∂y 〈ux〉x

)2
+O(ε3/2+19η/12)

where ε is the characteristic pore size, η a parameter which depends on the Reynolds number
and on the order of magnitude of the fracture width and β(x/ε) a function which arises from
the boundary layer problem at the interface. This interface condition can be though as the
Beavers-Joseph-Saffman law with a high order correction introduced by the second term at the
right hand side. To our best knowledge this is the only interface condition derived rigorously
from local equations using the theory of homogenization.

§9.3] PROPOSED INTERFACE CONDITION 143

9.2 Proposed interface condition

When convection becomes significant, the dynamic pressure is not negligible and is expected
to grow accordingly. Therefore, a jump of velocity at the arbitrary interface Γ would result in
jump of the kinetic energy at the interface. We propose an interface condition where the normal
derivative of the tangential velocity is proportional to the jump of kinetic energy at interface Γ:

µ∂y 〈ux〉x =
µαkin

2 |〈ux〉x|
√
K

(
|〈ux〉x|

2 − |Up|2
)

(9.2.1)

This law relies only on a single parameter αkin, which we expect to depend only on the geometry
of the porous medium, not on the properties of the flow. This interface condition is thought as
an extension of the Beavers-Joseph law. Indeed the jump of kinetic energy can be reformulated
as:

µ∂y 〈ux〉x =
µαnl√
K

(〈ux〉x − Up) with αnl =
αkin

2

(
1 +

Up
〈ux〉x

)
(K1)

Remark 9.2.1. Another motivation for introducing the kinetic energy comes from recent works
on the well-posedness of the Stokes problem with non-linear outflow conditions [11].

Our numerical results have led us to propose a variation of (K1) with a second parameter
γ(φ) where the slip coefficient αnl is a convex function of 1 + Up/ 〈ux〉x. Unlike (K1), it is not
possible to link the jump condition to a local kinetic energy balance anymore except for γ = 1:

µ∂y 〈ux〉x =
µαnl√
K

(〈ux〉x − Up) with αnl =
αkin

2

(
1 +

Up
〈ux〉x

)γ(φ)

(K2)

Remark 9.2.2. For consistency with the viscous regime we set limRe→0 αnl = αBJ with αBJ the
original slip coefficient of Beavers-Joseph law.

9.3 Problem setting

In order to assess the validity of the proposed interface condition (K2), several numerical simula-
tions are performed with different porous medium. The incompressible Navier-Stokes equations
are solved in the fluid and the periodic porous region.

9.3.1 Continuous problem

The steady-state Navier-Stokes equations with an averaged pressure gradient 〈∇ p〉 imposed
are solved in non-dimensional form in Ω = [0, L] × [−H,H] with H = 2 and L = 2H/5 (see
figure 9.1). The problem is L-periodic, the fluid channel is located in the y > 0 region and
the porous medium in the y ≤ 0 region. The latter is made of a periodic array of elementary
porous cells [0, L] × [0, L] with either square inclusions of edge length a or cylinder inclusions
of diameter a. The unknowns are the velocity field u and the pressure perturbation p̃. The
continuous problem reads:

div(u⊗ u)− 1

Re
∆u +∇ p̃+ 〈∇ p〉 = 0 in Ω

∇ · u = 0 in Ω
u|Σin = u|Σout , p̃|Σin = p̃|Σout on ∂Ω
∂nux|Σinf

= 0, uy|Σinf
= 0, u|Σwall

= 0

144 CONVECTIVE REGIME [CH.9

y

x

Σin Σout

Σwall

Σinf

Re =
Uf ·H
2µ

Rei=
Ui·a
µ

=
2a·Uf ·Re

H

FIG. 9.2 – Direct numerical simulation of a pressure-driven near-parallel flow.

with 〈∇ p〉 = −1 · ex. The convection in the fluid channel is controlled by the global Reynolds
number Re:

Re =
Uf ·H

2µ

where Uf is the average fluid velocity over the channel section and H/2 the half-height of the
channel. A local Reynolds number Rei is also defined in order to have an insight on the amount
of advection in the region between the fluid and the porous medium:

Rei =
Ui · a
µ

where Ui ≡ 〈ux〉x is the fluid velocity at the interface Γ and a the characteristic size of the
inclusion. The two Reynolds numbers are related as:

Rei =
2a · Uf ·Re

H

9.3.2 Numerical methods

We will consider cell-centered finite-volume discretizations on a uniform N×10N Cartesian grid
with N ∈ {64, 128}. Two numerical methods were used to compute the steady-state Navier-
Stokes equations: a projection method where a transient must be solved in order to reach the
steady state and Newton’s method which allows a direct resolution of the steady-state. The
porous inclusions are taken into account using a first order immersed boundary method.

Projection method

For the only purpose of presenting the classical projection method used here, Dirichlet boundary
conditions are assumed for the velocity on the boundary ∂Ω. We recall briefly the formulation
of incremental pressure-correction schemes [43, 123, 124, 72] and how to address the issues

§9.3] PROBLEM SETTING 145

arising from the cell-centered finite-volume discretization. The aim is to solve the unsteady
incompressible Navier-Stokes equations, which read in semi-discrete form:

1

δt
(un+1 − un) + div(un+1 ⊗ un)− 1

Re
∆un+1 +∇ p̃n+1 + 〈∇ p〉 = 0 in Ω

div un+1 = 0 in Ω

un+1 = g on ∂Ω

(9.3.1)

The velocity and the pressure gradient are centered. The discretization is second order in
space and first order in time. The above system is solved in a decoupled fashion. First a
velocity prediction un+1/2 is calculated by solving a momentum balance without accounting the
incompressibility constrain:

1

δt
(un+1/2 − un) + div(un+1/2 ⊗ un)− 1

Re
∆un+1/2 +∇ p̃n + 〈∇ p〉 = 0 in Ω

un+1/2 = g on ∂Ω
(9.3.2)

The Helmholtz-Hodge decomposition [91] yields the following decomposition of the predicted
velocity un+1/2 into a solenoidal field and an irrotational field:

un+1/2 = un+1 + δt∇φ (9.3.3)

with φ = p̃n+1− p̃n for consistency with the original problem (9.3.1). Finding φ allows to correct
the predicted velocity un+1/2 so as to verify the incompressibility constrain div un+1 = 0. Using
this decomposition a Poisson problem is derived on the pressure increment φ:

∆φ =
1

δt
div un+1/2 in Ω (9.3.4)

with homogeneous Neumann boundary conditions for φ on ∂Ω in order to enforce un+1 · n =
un+1/2 · n on ∂Ω. This “non-natural” boundary condition introduces an error in the form the
classical artificial boundary layer on the pressure. However, the most critical accuracy issue
comes rather from the cell-centered discretization itself. It is well-known that the discrete
problem (9.3.1) is not well-posed [60]. The kernel of the cell-centered finite-volume pressure
gradient features constant pressures and checkerboard modes. Though system (9.3.1) cannot
be solved, it is still possible to obtain a solution using a projection method, which introduces a
decoupling between the velocity u and the pressure p̃.

The constant pressure issue is addressed by imposing the value of the pressure in one cell.
The apparition of checkerboard pressure modes is not systematic, and it can be treated for
instance using Rhie&Chow stabilization technique [115]. Let us first sum up the steps of the
projection method introduced here:

1. Predict velocity un+1 using (9.3.2)

2. Compute pressure increment φ = p̃n+1 − p̃n using (9.3.4)

3. Correct the velocity using (9.3.3)

We introduced the Rhie&Chow correction using the approach of S. Faure, J. Laminie and
R. Temam in [61]. A discrete quantity w is indexed as wij on the Cartesian grid with 1 ≤ i ≤ N
and 1 ≤ j ≤ 10N . The pressure contribution to the predicted horizontal velocity is of the form:

1

aij

h

2

(
p̃ni+1,j − p̃ni−1,j

)

146 CONVECTIVE REGIME [CH.9

with aij = h2

δt + 4
Re + 1

2(div un)ij . The contribution of this horizontal pressure gradient to the

divergence of the predicted velocity un+1/2 in the right hand side of 9.3.4 exhibits a decoupling
between neighboring pressure unknowns:

−h
4

[
1

ai−1,j
p̃i−2,j −

(
1

ai−1,j
+

1

ai+1,j

)
p̃ij +

1

ai+1,j
p̃i+2,j

]
Instead, a stabilization term is introduced in the right hand side of 9.3.4 so that the contribution
of the horizontal pressure gradient takes the following form:

−h
4

[
1

aij
p̃i−1,j −

(
1

ai−1,j
+

1

ai+1,j

)
p̃ij +

1

aij
p̃i+1,j

]
The complete correction term for the Rhie&Chow stabilization of the full pressure gradient from
the momentum equation 9.3.2 is then deduced:

Rij = h(wi+1/2,j − wi−1/2,j + wi,j+1/2 − wi,j−1/2)

wi+1/2,j = h
4

[(
1

ai+1,j
p̃i+2,j − 2

aij
p̃i+1,j + 1

ai+1,j
p̃ij

)
−
(

1
aij
p̃i+1,j − 2

ai+1,j
p̃ij + 1

aij
p̃i−1,j

)]
wi,j+1/2 = h

4

[(
1

ai,j+1
p̃i,j+2 − 2

aij
p̃i,j+1 + 1

ai,j+1
p̃ij

)
−
(

1
aij
p̃i,j+1 − 2

ai,j+1
p̃ij + 1

aij
p̃i,j−1

)]
In some respect this correction mimics the MAC scheme in that it attempts to build the classical
centered pressure gradient of the MAC scheme. This helps to damp the oscillations but on the
other hand it adds further diffusion to the pressure.

Convergence tests for the target configuration (square or cylindrical obstacle) and with ap-
propriate boundary conditions (periodic, Dirichlet, Neumann) were performed for the projection
method and are given in figure 9.3.

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

lo
g

1
0
(e

rr
)

log10(dt)

Square: convergence of the space-time discretization error (L
2
-norm) for the u

h=1/8
h=1/16
h=1/32
h=1/64

h=1/128
h=1/256

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

lo
g

1
0
(e

rr
)

log10(dt)

Cylinder: convergence of the space-time discretization error (L
2
-norm) for the u

h=1/8
h=1/16
h=1/32
h=1/64

h=1/128
h=1/256

FIG. 9.3 – Convergence test for the projection method: L2 space-time error for the velocity with a
square obstacle (left) and a cylindrical obstacle (right).

Newton’s method

The advantage of using a projection method to solve the steady state of the discrete prob-
lem (9.3.1) lies in its simplicity, and in the limited influence of checkerboard pressure modes
due to the loose coupling between the pressure and the velocity. On the other hand it is much
slower than a direct resolution of the steady-state Navier-Stokes equations as the entire transient

§9.4] NUMERICAL RESULTS 147

must be solved. Moreover, the relevance of the steady-state solution depends on the steady-state
criteria set to stop the pseudo-time iterations.

As a consequence we also considered solving directly the steady-state Navier-Stokes equa-
tions using Newton’s method i.e. solve the non-linear problem F(X) = 0 with:

F(X) =


∑
σ∈EK

|σ|uσuK,σ −
1

Re

∑
σ∈EK

|σ|uσ − uK
dK,σ

+
∑
σ∈EK

|σ|p̃σnK,σ + |K| 〈∇ p〉∑
σ∈EK

|σ|uK,σ

and the block unknown X = [(uK)K∈T (p̃K)K∈T]. The edge velocity is centered and the
pressure gradient as well. It is well known that this problem is not well-posed [60]. We address
this issue by adding a stabilization term, inspired by the Brezzi-Pitkäranta technique for the
finite element method [32, 59]:

F(X) =



∑
σ∈EK

|σ|uσuK,σ −
1

Re

∑
σ∈EK

|σ|uσ − uK
dK,σ

+
∑
σ∈EK

|σ|p̃σnK,σ + |K| 〈∇ p〉

∑
σ∈EK

|σ|uK,σ −λ
∑
σ∈EK

|σ|(hK + hL)(p̃L − p̃K)

with λ a stabilization parameter, which we set equal to:

λ = hT /10 (9.3.5)

If λ is too high, the stabilization introduces too much diffusion in the solution. On the other
hand the smaller λ, the worst the conditioning of the Jacobian matrix J(X) of functional F .
Nevertheless we defined λ according to (9.3.5) and avoided the issue of dealing with an ill-
conditioned Jacobian by computing its LU decomposition with a direct solver for iterating on
J(Xk)× (Xk+1 −Xk) = −F(Xk).

Immersed obstacles

Porous inclusions are taken into account using a first order embedded boundary method. The
boundary condition imposed on a piece-wise approximation of the original boundary are re-
ported on the respective mesh faces which form the staircase boundary (see figure 9.4). The
geometry of the square inclusions is chosen so as to always match the faces of the Cartesian grid
hence no further error introduced. As for cylinder inclusions, a o(h) error is introduced due to
the staircase approximation.

9.4 Numerical Results

9.4.1 Overview

Previous works [117, 96] have suggested that the slip coefficient of the Beavers-Joseph law
increases with advection. Our objective is to verify whether the parameters of interface condi-
tion (K2) — αnl and γ — depend only on the geometry of the porous matrix or on the fluid
flow as well.

148 CONVECTIVE REGIME [CH.9

FIG. 9.4 – Piecewise (red line) and staircase (black line) approximation of the obstacle boundary (blue
line).

Several numerical simulations are performed with a Reynolds number Re ranging from 10
to 100 by 10 increment. Two types of porous inclusions are tested matching a porosity between
φ = 0.2 and φ = 0.99. The shape of the inclusions is defined by characteristic size a — diameter
for the cylinders and edge length for squares. These configurations are listed in table 9.1 in the
case of a porous unit cell.

In configurations S1 to S5 a pressure-correction scheme was used whereas in configurations
C1 to C7 were handled with Newton’s method. For the pressure-correction scheme, the time-
step was δt = 0.1 and the stopping criteria:

max

(
|un+1
x − unx|L∞
|unx|L∞

,
∣∣αn+1

nl − α
n
nl

∣∣) < 10−4δt

with αnnl an estimation of the slip coefficient. For a 64× 640 Cartesian grid, between 5000 and
10000 iterations were needed to match the steady-state criteria. As for Newton’s method, the
stopping criteria for Newton’s iterations was:

∣∣∣Xk+1 −Xk
∣∣∣
L∞

< 10−9

About 3 to 7 iterations were needed to converge. The use of a direct solver, though expensive
with respect to the memory, allowed to perform every Newton iteration at a constant cost.

§9.4] NUMERICAL RESULTS 149

Name Shape a φ Kxx

S1 square 0.875 0.23 2.1× 10−4

S2 square 0.75 0.44 1.6× 10−3

S3 square 0.5 0.75 1.4× 10−2

S4 square 0.25 0.94 6.0× 10−2

S5 square 0.125 0.98 1.2× 10−1

C1 cylinder 0.85 0.43 1.1× 10−3

C2 cylinder 0.75 0.56 3.6× 10−3

C3 cylinder 0.65 0.67 8.4× 10−3

C4 cylinder 0.55 0.76 1.6× 10−2

C5 cylinder 0.45 0.84 3.0× 10−2

C6 cylinder 0.35 0.90 4.7× 10−2

C7 cylinder 0.25 0.95 7.2× 10−2

TAB. 9.1 – Configurations of the different periodic porous medium tested.

Remark 9.4.1. In order to compute the permeability of each porous medium tested, the Stokes
problem is solved in a porous unit cell Ω = [0, 1]× [0, 1] with periodic conditions on the entire
boundary ∂Ω. The dynamic viscosity is set to µ = 1 and an average pressure gradient 〈∇ p〉 is
imposed either in the horizontal or in the vertical direction.

−µ∆u +∇ p̃+ 〈∇ p〉 = 1
εu in Ω

div u = 0 in Ω
u, p̃ periodic on ∂Ω

The obstacle is taken into account using volume penalization: inside the inclusion the parameter
ε tends to 0 and outside it tends to +∞. Then the local velocities are upscaled using Darcy’s
law. The symmetry of the porous cell yields to Kxx = Kyy and Kxy = 0.

〈u〉 = − 1

µ

(
KxxKxy

KyxKyy

)
〈∇ p〉︸ ︷︷ ︸
=−1·ex

⇒ Kxx = 〈u〉 · ex

9.4.2 Interface condition parameters

Figure 9.5 (left) shows the velocity profile 〈ux〉x (y) in the first porous cell below the fluid
channel. The inclusion in this porous cell is here a square of edge length 0.05 centered at
y = −0.05. The cross marks match the center of the finite volumes cells of the Cartesian grid.
Figure 9.5 (right) gives a closer view on boundary layer between y = −0.04 and y = −0.015.

The interface Γ is defined as the plane above the surface tangent to the inclusions to a
distance h (position (a) on figure 9.5). Alternative choices such as (b) were too far from the
obstacle to capture the physics modeled by our interface condition. The choice of interface po-
sition for fluid-porous interface conditions is still subject to discussion, see for instance [37], [70]
and references therein.

Assuming the choice of interface position described above, the averaged velocity 〈ux〉x in-
creases almost linearly with y. The choice of the method for computing this normal derivative

150 CONVECTIVE REGIME [CH.9

−0.10 −0.08 −0.06 −0.04 −0.02 0.00

0.0

100.0

200.0

300.0

y

〈u
x
〉 x

(a) (b)

−4.00 −3.50 −3.00 −2.50 −2.00 −1.50

·10−2

0.0

50.0

100.0

150.0

y

〈u
x
〉 x

h

Γ

FIG. 9.5 – Choice of interface position and stencil for normal derivative.

does not have a significant impact on the verification of the law. We choose a second order finite-
difference formulae. The three-point stencil is located above the interface (markers circled in
red in figure 9.5, right).

(∂y 〈ux〉x)j+1/2 =
1

h

[
− (〈ux〉x)j+2 + 3 (〈ux〉x)j+1 − 2 (〈ux〉x)j

]
The evolution of the ratio ∂y 〈ux〉x /(〈ux〉x − Up) with (1 + Up/ 〈ux〉x)γ (which increases with
the Reynolds number Re) if linear would confirm the law and the slope would be αkin/(2

√
K).

9.4.3 Validity for a channel flow

Moderate porosity

The porosity deemed as “moderate” when lower than 0.75, i.e. for configurations S1, S2, S3, C1,
C2, C3 and C4. It seems we always have γ(φ) = 1, which is interesting as the interface condition
is effectively the kinetic energy jump at the interface (9.2.1). As for the non-linear slip coefficient,
it is found to be independent from the flow regime. For instance with configuration C1 the
local Reynolds number Rei varies between 4.4× 10−3 and 32 but we always have αnl/(2

√
K) =

6.4×103. It should be noted that the interface condition seem to match the numerical results for
flows compatible with the Saffman hypothesis (eg. with configuration C1, Up/ 〈ux〉x = 8×10−3)
and for flow where the Darcy velocity is close to the fluid velocity at the interface (eg. with
configuration C4, Up/ 〈ux〉x = 1.2× 10−1).

High porosity

Configurations S4, S5, C5, C6 and C7 are associated with high porosities (φ > 0.75) and Darcy
velocities closer to the fluid velocity at the interface, with a ratio 0.18 < Up/ 〈ux〉x < 0.67. This
time it is necessary to determine parameter γ(phi) > 1. Note that we don’t have a link to a
kinetic energy balance anymore. The non-linear slip coefficient, is found to be independent from
the flow regime. Regarding parameter γ, numerical results for cylinders and for squares as well
indicate that the higher the porosity (and the higher the ratio Up/ 〈ux〉x), the lower γ. It is not
clear whether γ depends only on the geometry (more specifically on φ) or also on the fluid flow.
Moreover, the transition from γ = 1 to high values of γ is not obvious from current results.

§9.4] NUMERICAL RESULTS 151

512

514

516

518

520

522

524

526

528

1.01425 1.0143 1.01435 1.0144 1.01445 1.0145 1.01455 1.0146 1.01465

∇
n
(U

)|
i/(

U
i-
U

D
)

1+UD/Ui

Inclusion: a=0.875, φ=0.23

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

10 7.0e-2 2.0e-2 2.9e-4
20 2.8e-1 4.0e-2 5.7e-4
30 6.3e-1 6.0e-2 8.6e-4
40 1.1 7.9e-2 1.1e-3
50 1.7 9.9e-2 1.4e-3
60 2.5 1.2e-1 1.7e-3
70 3.3 1.4e-1 2.0e-3
80 4.3 1.6e-1 2.3e-3

Re=10 Re=50 Re=80

FIG. 9.6 – Validity of the interface condition, configuration S1

9.4.4 Validity for a thin film flow

We now turn to the so-called thin-film configuration. This time the height of the fluid channel
is smaller with respect to the porous cells. The fluid domain extends to [0, L]× [0, H] and the
porous domain to [0, L]× [−5H/2, 0]. The computational domain is still a Cartesian grid, this
time of size N×7N . Only cylinder inclusions are considered here, and periodic porous mediums
of configurations T1 to T7 are respectively the same as configurations C1 to C7. In such
configurations, the Saffman hypothesis is generally not satisfied: we have 0.1 < Up/ 〈ux〉x < 1
for configurations T2 to T7.

The linearity sought after in the fittings of figures 9.18 to 9.22 is much more difficult to
obtain, even for optimal values of γ(φ). For the highest porosity at φ = 0.95, the ratio
∂y 〈ux〉x /(〈ux〉x − Up) does not even increases monotonically with (1 + Up/ 〈ux〉x)γ(φ).

Conclusion

The parameters of the proposed model for the channel fluid flow are summed up in table 9.2.
We recall the interface condition proposed for the non-linear regime:

µ∂y 〈ux〉x =
µαnl√
K

(〈ux〉x − Up) with αnl =
αkin

2

(
1 +

Up
〈ux〉x

)γ(φ)

Following the presentation of numerical results for several flow ranges and porous matrices
we draw the following conclusions:

152 CONVECTIVE REGIME [CH.9

330

340

350

360

370

380

390

1.07 1.072 1.074 1.076 1.078 1.08 1.082

∇
n
(U

)|
i/(

U
i-
U

D
)

1+UD/Ui

Inclusion: a=0.75, φ=0.44

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 1.0e-3 3.4e-3 2.4e-4
10 1.0e-1 3.3e-2 2.4e-3
20 3.9e-1 6.6e-2 4.7e-3
30 8.7e-1 9.7e-2 7.1e-3
40 1.5 1.3e-1 9.4e-3
50 2.3 1.5e-1 1.2e-2
60 3.3 1.8e-1 1.4e-2
70 4.4 2.1e-1 1.6e-2
80 5.6 2.3e-1 1.9e-2
90 7.0 2.6e-1 2.1e-2
100 8.6 2.9e-1 2.4e-2

Re=10 Re=50 Re=100

FIG. 9.7 – Validity of the interface condition, configuration S2

1. Parameter αnl only depends on the geometry

2. Parameter γ(φ) is constant for moderate porosities: γ(φ) = 1 if φ < 0.75.

3. For high porosities, γ(φ) is of order 101 and seems to decrease when φ → 1. For such
values of φ it may be relevant to consider a non-linear extension of Ochoa-Tapia–Whitaker
law.

4. At the limit φ → 1 we tend to a fluid-fluid configuration where our modeling does not
make sense anymore.

5. When γ(φ) = 1 the interface condition is equivalent to a jump of the kinetic energy

6. For thin film configurations the interface condition is more loosely verified but still stands
for φ ≤ 0.9.

To our best knowledge, this interface condition is the more accurate modelling proposed
so far for extending Beavers-Joseph law in the convective regime. Furthermore it has a strong
physical interpretation as it is derived from a kinetic energy balance at the interface.

§9.4] NUMERICAL RESULTS 153

150

160

170

180

190

200

210

220

230

240

1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.3 1.31 1.32

∇
n
(U

)|
i/(

U
i-
U

D
)

1+UD/Ui

Inclusion: a=0.5, φ=0.75

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 1.9e-3 9.3e-3 2.1e-3
10 1.8e-1 9.0e-2 2.1e-2
20 6.9e-1 1.7e-1 4.2e-2
30 1.5 2.4e-1 6.3e-2
40 2.5 3.1e-1 8.4e-2
50 3.7 3.7e-1 1.1e-1
60 5.1 4.3e-1 1.3e-1
70 6.8 4.8e-1 1.5e-1
80 8.6 5.4e-1 1.7e-1
90 11 5.9e-1 1.9e-1
100 13 6.4e-1 2.1e-1

Re=10 Re=50 Re=100

FIG. 9.8 – Validity of the interface condition, configuration S3

40

42

44

46

48

50

52

54

1.007 1.0075 1.008 1.0085 1.009

∇
n
(U

)|
i/(

U
i-
U

D
)

1+UD/Ui

Inclusion: a=0.85, φ=0.43

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 4.4e-3 2.6e-2 1.8e-4
10 4.4e-1 2.6e-1 1.8e-3
20 1.7 5.0e-1 3.5e-3
30 3.6 7.1e-1 5.3e-3
40 6.1 9.0e-1 7.0e-3
50 9.2 1.1 8.7e-3
60 1.3e+1 1.3 1.0e-2
70 1.7e+1 1.4 1.2e-2
80 2.1e+1 1.6 1.4e-2
90 2.6e+1 1.7 1.6e-2
100 3.2e+1 1.9 1.7e-2

Re=10 Re=50 Re=100

FIG. 9.9 – Validity of the interface condition, configuration C1

154 CONVECTIVE REGIME [CH.9

45

50

55

60

65

1.028 1.03 1.032 1.034 1.036 1.038

∇
n
(U

)|
i/(

U
i-
U

D
)

1+UD/Ui

Inclusion: a=0.75, φ=0.56

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 3.5e-3 2.3e-2 6.3e-4
10 3.5e-1 2.3e-1 6.3e-3
20 1.3 4.4e-1 1.3e-2
30 2.8 6.2e-1 1.9e-2
40 4.7 7.8e-1 2.5e-2
50 7.0 9.3e-1 3.1e-2
60 9.7 1.1 3.8e-2
70 1.3e+1 1.2 4.4e-2
80 1.6e+1 1.3 5.0e-2
90 2.0e+1 1.5 5.6e-2
100 2.4e+1 1.6 6.3e-2

Re=10 Re=50 Re=100

FIG. 9.10 – Validity of the interface condition, configuration C2

45

50

55

60

1.055 1.06 1.065 1.07 1.075

∇
n
(U

)|
i/(

U
i-
U

D
)

1+UD/Ui

Inclusion: a=0.65, φ=0.67

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 3.4e-3 2.6e-2 1.4e-3
10 3.3e-1 2.5e-1 1.4e-2
20 1.3 4.8e-1 2.8e-2
30 2.7 6.8e-1 4.3e-2
40 4.5 8.7e-1 5.7e-2
50 6.7 1.0 7.1e-2
60 9.3 1.2 8.5e-2
70 1.2e+1 1.4 9.9e-2
80 1.6e+1 1.5 1.1e-1
90 1.9e+1 1.6 1.3e-1
100 2.3e+1 1.8 1.4e-1

Re=10 Re=50 Re=100

FIG. 9.11 – Validity of the interface condition, configuration C3

§9.4] NUMERICAL RESULTS 155

45

50

55

60

1.095 1.1 1.105 1.11 1.115 1.12 1.125 1.13

∇
n
(U

)|
i/(

U
i-
U

D
)

1+UD/Ui

Inclusion: a=0.55, φ=0.76

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 3.1e-3 2.8e-2 2.6e-3
10 3.1e-1 2.8e-1 2.6e-2
20 1.2 5.2e-1 5.3e-2
30 2.4 7.4e-1 7.9e-2
40 4.1 9.4e-1 1.1e-1
50 6.2 1.1 1.3e-1
60 8.5 1.3 1.6e-1
70 1.1e+1 1.5 1.8e-1
80 1.4e+1 1.6 2.1e-1
90 1.8e+1 1.8 2.3e-1
100 2.1e+1 1.9 2.6e-1

Re=10 Re=50 Re=100

FIG. 9.12 – Validity of the interface condition, configuration C4

100

120

140

160

180

200

220

240

50 100 150 200 250

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=11.272

Inclusion: a=0.25, φ=0.94

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 2.1e-3 2.1e-2 8.6e-3
10 2.0e-1 2.0e-1 8.5e-2
20 7.5e-1 3.8e-1 1.7e-1
30 1.6 5.2e-1 2.5e-1
40 2.6 6.5e-1 3.3e-1
50 3.9 7.7e-1 4.1e-1
60 5.2 8.7e-1 4.9e-1
70 6.7 9.6e-1 5.6e-1
80 8.3 1.0 6.3e-1
90 10 1.1 7.0e-1
100 12 1.2 7.7e-1

Re=10 Re=50 Re=100

FIG. 9.13 – Validity of the interface condition, configuration S4

156 CONVECTIVE REGIME [CH.9

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=9.7535

Inclusion: a=0.125, φ=0.98

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 1.7e-3 3.5e-2 1.7e-2
10 1.7e-1 3.3e-1 1.7e-1
20 6.1e-1 6.1e-1 3.3e-1
30 1.2 8.3e-1 4.9e-1
40 2.0 1.0 6.4e-1
50 2.9 1.1 7.7e-1
60 3.8 1.3 9.0e-1
70 4.8 1.4 1.0
80 5.9 1.5 1.1
90 7.0 1.6 1.3
100 8.2 1.6 1.4

Re=10 Re=50 Re=100

FIG. 9.14 – Validity of the interface condition, configuration S5

40

45

50

55

60

25 30 35 40 45 50 55 60 65 70

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=23.519

Inclusion: a=0.45, φ=0.84

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 2.8e-3 3.1e-2 4.4e-3
10 2.7e-1 3.0e-1 4.4e-2
20 1.0 5.7e-1 8.9e-2
30 2.2 8.1e-1 1.3e-1
40 3.7 1.0 1.8e-1
50 5.5 1.2 2.2e-1
60 7.6 1.4 2.6e-1
70 1.0e+1 1.6 3.0e-1
80 1.3e+1 1.8 3.4e-1
90 1.6e+1 1.9 3.8e-1
100 1.9e+1 2.1 4.2e-1

Re=10 Re=50 Re=100

FIG. 9.15 – Validity of the interface condition, configuration C5

§9.4] NUMERICAL RESULTS 157

40

45

50

55

60

65

30 35 40 45 50 55 60 65 70

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=17.273

Inclusion: a=0.35, φ=0.9

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 2.4e-3 3.4e-2 7.1e-3
10 2.4e-1 3.4e-1 7.1e-2
20 8.9e-1 6.4e-1 1.4e-1
30 1.9 9.0e-1 2.1e-1
40 3.2 1.1 2.8e-1
50 4.7 1.4 3.5e-1
60 6.5 1.6 4.1e-1
70 8.6 1.7 4.7e-1
80 1.1e+1 1.9 5.3e-1
90 1.3e+1 2.1 5.8e-1
100 1.6e+1 2.3 6.4e-1

Re=10 Re=50 Re=100

FIG. 9.16 – Validity of the interface condition, configuration C6

50

60

70

80

90

40 50 60 70 80 90 100

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=12.133

Inclusion: a=0.25, φ=0.95

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 1.7e-3 3.5e-2 1.1e-2
10 1.7e-1 3.4e-1 1.1e-1
20 6.4e-1 6.4e-1 2.3e-1
30 1.3 9.0e-1 3.4e-1
40 2.2 1.1 4.4e-1
50 3.3 1.3 5.4e-1
60 4.5 1.5 6.3e-1
70 5.8 1.7 7.2e-1
80 7.2 1.8 8.1e-1
90 8.7 1.9 8.9e-1
100 1.0e+1 2.1 9.7e-1

Re=10 Re=50 Re=100

FIG. 9.17 – Validity of the interface condition, configuration C7

158 CONVECTIVE REGIME [CH.9

22

24

26

28

30

32

34

36

38

1.018 1.02 1.022 1.024 1.026

∇
n
(U

)|
i/(

U
i-
U

D
)

1+UD/Ui

Inclusion: a=0.85, φ=0.43

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 2.9e-2 6.7e-2 1.1e-3
10 2.7 6.2e-1 1.1e-2
20 9.5 1.1 2.2e-2
30 2.0e+1 1.5 3.3e-2
40 3.3e+1 1.9 4.4e-2
50 4.9e+1 2.3 5.5e-2
60 6.7e+1 2.6 6.5e-2
70 8.8e+1 3.0 7.6e-2
80 1.1e+2 3.3 8.7e-2
90 1.4e+2 3.6 9.7e-2
100 1.6e+2 3.9 1.1e-1

Re=10 Re=50 Re=100

FIG. 9.18 – Validity of the interface condition, configuration T1

30

35

40

45

15 20 25 30 35 40 45

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=40.984

Inclusion: a=0.75, φ=0.56

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 2.3e-2 6.2e-2 4.0e-3
10 2.1 5.7e-1 4.0e-2
20 7.6 1.0 8.0e-2
30 1.6e+1 1.4 1.2e-1
40 2.6e+1 1.7 1.6e-1
50 3.9e+1 2.1 2.0e-1
60 5.3e+1 2.4 2.3e-1
70 7.0e+1 2.7 2.6e-1
80 8.9e+1 3.0 2.9e-1
90 1.1e+2 3.2 3.2e-1
100 1.3e+2 3.5 3.5e-1

Re=10 Re=50 Re=100

FIG. 9.19 – Validity of the interface condition, configuration T2

§9.4] NUMERICAL RESULTS 159

25

30

35

40

45

50

20 25 30 35 40 45 50

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=22.544

Inclusion: a=0.65, φ=0.67

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 2.2e-2 6.9e-2 8.9e-3
10 2.0 6.2e-1 8.9e-2
20 7.1 1.1 1.8e-1
30 1.5e+1 1.5 2.6e-1
40 2.4e+1 1.9 3.4e-1
50 3.6e+1 2.2 4.1e-1
60 5.0e+1 2.6 4.8e-1
70 6.5e+1 2.9 5.4e-1
80 8.3e+1 3.2 6.0e-1
90 1.0e+2 3.5 6.6e-1
100 1.2e+2 3.7 7.1e-1

Re=10 Re=50 Re=100

FIG. 9.20 – Validity of the interface condition, configuration T3

25

30

35

40

45

50

55

20 25 30 35 40 45 50 55

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=14.808

Inclusion: a=0.55, φ=0.76

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 2.1e-2 7.6e-2 1.7e-2
10 1.9 6.8e-1 1.6e-1
20 6.6 1.2 3.3e-1
30 1.4e+1 1.6 4.7e-1
40 2.2e+1 2.0 6.0e-1
50 3.3e+1 2.4 7.2e-1
60 4.6e+1 2.8 8.4e-1
70 6.0e+1 3.1 9.5e-1
80 7.6e+1 3.4 1.1
90 9.3e+1 3.7 1.2
100 1.1e+2 4.0 1.3

Re=10 Re=50 Re=100

FIG. 9.21 – Validity of the interface condition, configuration T4

160 CONVECTIVE REGIME [CH.9

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=10.963

Inclusion: a=0.45, φ=0.84

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 1.9e-2 8.4e-2 2.8e-2
10 1.7 7.5e-1 2.8e-1
20 5.9 1.3 5.4e-1
30 1.2e+1 1.8 7.6e-1
40 2.0e+1 2.2 9.7e-1
50 3.0e+1 2.6 1.2
60 4.1e+1 3.0 1.4
70 5.3e+1 3.4 1.5
80 6.7e+1 3.7 1.7
90 8.2e+1 4.0 1.9
100 9.8e+1 4.3 2.1

Re=10 Re=50 Re=100

FIG. 9.22 – Validity of the interface condition, configuration T5

30

40

50

60

70

80

90

100

40 50 60 70 80 90 100

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=9.0179

Inclusion: a=0.35, φ=0.9

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 1.7e-2 9.5e-2 4.4e-2
10 1.5 8.4e-1 4.4e-1
20 5.1 1.5 8.2e-1
30 1.0e+1 2.0 1.2
40 1.7e+1 2.4 1.5
50 2.5e+1 2.8 1.8
60 3.4e+1 3.2 2.0
70 4.4e+1 3.6 2.3
80 5.6e+1 4.0 2.6
90 6.8e+1 4.3 2.9
100 8.2e+1 4.7 3.2

Re=10 Re=50 Re=100

FIG. 9.23 – Validity of the interface condition, configuration T6

§9.4] NUMERICAL RESULTS 161

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

100 200 300 400 500 600

∇
n
(U

)|
i/(

U
i-
U

D
)

(1+UD/Ui)
γ
, γ=8.6988

Inclusion: a=0.25, φ=0.95

Simulation
Linear least-squares fitting

Re Rei 〈ux〉x Up

1 1.3e-2 1.0e-1 7.2e-2
10 1.1 9.0e-1 7.0e-1
20 3.7 1.5 1.3
30 7.3 2.0 1.8
40 1.2e+1 2.4 2.3
50 1.7e+1 2.7 2.7
60 2.3e+1 3.1 3.2
70 3.0e+1 3.4 3.6
80 3.8e+1 3.8 4.1
90 4.6e+1 4.1 4.5
100 5.5e+1 4.4 4.9

Re=10 Re=50 Re=100

FIG. 9.24 – Validity of the interface condition, configuration T7

φ uD/ui Conf. αnl/(2
√

K) γ

0.23 1.4× 10−2 S1 3.7× 104 1
0.44 7.6× 10−2 S2 5.1× 103 1
0.75 2.8× 10−1 S3 9.6× 102 1
0.43 8.0× 10−3 C1 6.4× 103 1
0.56 3.3× 10−2 C2 1.8× 103 1
0.67 6.7× 10−2 C3 9.0× 102 1
0.76 1.2× 10−1 C4 5.6× 102 1
0.94 5.3× 10−1 S4 7.1× 10−1 11.3
0.98 6.7× 10−1 S5 1.0 9.8
0.84 1.8× 10−1 C5 4.8× 10−1 23.5
0.90 2.5× 10−1 C6 5.7× 10−1 17.2
0.95 4.0× 10−1 C7 6.9× 10−1 12.1

TAB. 9.2 – Numerical parameters of the non-linear interface condition.

CONCLUSION

Results

In the course of this thesis, a cell-centered pressure correction scheme and its extension to a
multigrid-AMR solver is presented. A numerical code was developed from scratch so as to test
extensively this numerical scheme. Finally a fluid porous interface model for convective flow
regimes is proposed and assessed with direct simulations.

In the first part, an original cell-centered pressure-correction scheme for solving the com-
pressible Navier-Stokes and Euler equations is presented. This scheme is intended to deal with
all Mach flows. The well-posedness and the convergence of the scheme are proved for the
compressible Euler equations.

The scheme is then tested in highly compressible regimes with strong shocks and compared
with another pressure-correction scheme, “SLK”. Excellent agreement is found with the liter-
ature for both schemes. Shocks are sharply calculated and possible numerical oscillations at
shocks are addressed with adaptive artificial diffusion. Our scheme is found more expensive
than SLK due to the non-linear projection step but it has the distinctive advantage of using an
internal energy balance instead of a total energy balance.

These properties have straightforward extension to two-phase flow models. The scheme
was thus modified to deal with a simplified model of the compressible two-phase flow model
of GENEPI. A comparison was carried out with GENEPI, which yield the conclusion that on
selected tests our numerical scheme is able to compute the exact steady state as with GENEPI.
Moreover, our scheme is also able to compute the full transient regime, which is not the case
with GENEPI. In the context of the ongoing upgrade of GENEPI, this makes our scheme a
serious asset for dealing directly with the models which are used at CEA both for low Mach
flows and highly compressible flows.

An advantage of the cell-centered discretization is that it provides a natural framework for
developing adaptive methods. The pressure-correction scheme introduced in the first part is
extended to a multigrid-AMR solver. First a thorough study of grid generation algorithms is
carried out and several improvement are proposed over the original clustering algorithm: specific
criteria for controlling the shape of the patches and more importantly a technique for avoiding
at all times adaptive grids incompatible with selected composite discretizations.

Then several aspects of the design of the multigrid-AMR extension of the projection scheme
are discussed. At fine-fine interfaces, the classical ghost-cell synchronization procedure is in-
terpreted with domain decomposition concepts. The efficiency of relaxation methods on levels
grids is investigated, providing a better understanding of the impact of grid partitioning. More-
over this gives an insight on the relevant parameters to be set for level relaxation of the targeted
multigrid solver. Then a multigrid-AMR algorithm is presented, and integrated to there reso-

163

164

lution of the compressible Euler equations with our projection scheme.
Finally extensive numerical tests are performed to assess the multigrid-AMR projection

scheme. The projection scheme naturally handles low Mach flows, hence a particular focus
on highly compressible flows in these tests. The 2D Riemann problem reveals the presence of
spurious pressure modes when corners between successive levels are too close. Next a standard
benchmark for the Double Mach Reflection problem is studied. The numerical results are
analyzed quantitatively and qualitatively using up-to-date knowledge of the DMR problem.
Despite issues of numerical noise and low accuracy (first order), the adaptive projection scheme
performs very well and the most relevant features of DMR are verified.

The last part of this work is devoted to fluid-porous interface modelling at the macroscopic
scale. The aim would be to ultimately derive an interface condition suitable with the complex
compressible two-phase flows of GENEPI. However even the extension of classical interface con-
ditions to Navier-Stokes regime is yet an open problem. In this context we propose an interface
condition derived from a kinetic energy balance intended for coupling the incompressible Navier-
Stokes equations with the Forchheimer equation. Direct simulations give excellent agreement
with our model except for very high porosities.

Perspectives

A second order formulation of the projection algorithm using a modified MUSCL scheme is
ongoing. This would yield more interesting results with adaptive mesh refinement as it has a
dramatic impact on the increase of resolution as further levels of refinement are added or as the
refinement factor is increased.

As for the multigrid-AMR method, the resolution of the non-linear projection-correction
step with Newton-Multigrid or with the full approximation scheme would make the scheme
much more robust. Regarding fine-fine interfaces for level relaxation, it would be interesting to
compare the smoothing efficiency of the ghost cell synchronization with advanced substructuring
methods such as the Robin-Robin method. The algorithm of resolution would save significant
computational efforts if time refinement was supported.

The transient regime for two phase flows obtained with our projection scheme needs further
investigation through new numerical tests. More realistic models including viscous and non-
viscous effects would allow to use the scheme on more realistic qualification benchmarks. In
addition the case of highly compressible two-phase flows is yet to be addressed.

Lastly, the fluid-porous interface condition introduced in part III is a first step towards the
mathematical analysis of the coupled Navier-Stokes/Forchheimer problem.

BIBLIOGRAPHY

[1] M. Adams, P. Colella, D. T. Graves, J. N. Johnson, N. D. Keen, T. J. Ligocki,
D. F. Martin, P. McCorquodale, D. Modiano, P. Schwartz, T. Sternberg,
and B. V. Straalen, Chombo Software Package for AMR Applications – Design Doc-
ument, Tech. Rep. LBNL-6616E, Lawrence Berkeley National Laboratory, 2012.

[2] M. J. Aftosmis, Solution adaptive cartesian grid methods for aerodynamic flows with
complex geometries, VKI Lecture Series, 2 (1997).

[3] V. I. Agoshkov, Poincaré-Steklov’s operators and domain decomposition methods in
finite dimensional spaces, in First International Symposium on Domain Decomposition
Methods for Partial Differential Equations, SIAM Philadelphia, 1988, pp. 73–112.

[4] T. Alazard, A minicourse on the low Mach number limit, Discrete and Continuous
Dynamical Systems-Series S, 1 (2008), pp. 365–404.

[5] G. Allaire, Analyse numérique et optimisation, Editions Ecole Polytechnique, 2005.

[6] A. Almgren, T. Buttke, and P. Colella, A Fast Adaptive Vortex Method in Three
Dimensions, Journal of Computational Physics, 113 (1994), pp. 117–200.

[7] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A
Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-
Stokes Equations, Journal of Computational Physics, 142 (1998), pp. 1–46.

[8] A. S. Almgren, T. Buttke, and P. Colella, A fast adaptive vortex method in three
dimensions, J. Comput. Phys., 113 (1994), pp. 177–200.

[9] P. Angot, Analysis of Singular Perturbations on the Brinkman Problem for Fictitious
Domain Models of Viscous Flows, Mathematical Methods in the Applied Sciences, 22
(1999), pp. 1395–1412.

[10] , On the well-posed coupling between free fluid and porous viscous flows, Applied
Mathematics Letters, 24 (2011), pp. 803–810.

[11] , On the unsteady Stokes problem with a nonlinear open artificial boundary condition
modelling a singular load, (in preparation), (2013).

[12] F. Archambeau, J.-M. Hérard, and J. Laviéville, Comparative study of pressure-
correction and Godunov-type schemes on unsteady compressible cases, Computers & Flu-
ids, 38 (2009), pp. 1495–1509.

165

166

[13] E. Arquis and J.-P. Caltagirone, Sur les conditions hydrodynamiques au voisinage
d’une interface milieu fluide-milieu poreux application la convection naturelle, C. R. Acad.
Sc. Paris – Série II, 299 (1984), pp. 1–4.

[14] B. Smith and P. Bjorstad and W. Gropp, Domain Decomposition: Parallel Mul-
tilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press,
1996.

[15] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, 1982.

[16] M. Barad and P. Colella, A fourth-order accurate local refinement method for Pois-
son’s equation, Journal of Computational Physics, 209 (2005), pp. 1–18.

[17] G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall,
Journal of Fluid Mechanics, 30 (1967), pp. 197–207.

[18] G. S. Beavers, E. M. Sparrow, and B. A. Masha, Boundary Condition at a Porous
Surface Which Bounds a Fluid Flow, AIChE Journal, 20 (1974), pp. 596–597.

[19] M. Belliard and S. Casaburi, Mémento des modélisations physiques et numériques
pour la simulation numérique d’un échangeur de type REP, Tech. Rep. 96/022, Commis-
sariat à l’Energie Atomique, CEA/DEN/DEC/SECA/LTEA, 1997.

[20] F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional
finite elements, M2AN, 31 (1997), pp. 289–302.

[21] G. Ben-Dor, Shock Wave Reflection Phenomena, Springer, 2007.

[22] G. Ben-Dor and I. I. Glass, Domains and boundaries of non-stationary oblique shock-
wave reflexions – 1. Diatomic gas, Journal of Fluid Mechanics, 92 (1979), pp. 459–496.

[23] , Domains and boundaries of non-stationary oblique shock-wave reflexions –
2. Monoatomic gas, Journal of Fluid Mechanics, 96 (1980), pp. 735–756.

[24] M. Berger and I. Rigoutsos, An algorithm for point clustering and grid generation,
IEEE Transactions on Systems, Man and Cybernetics, 21 (1991), pp. 1278–1286.

[25] M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynam-
ics, Journal of Computational Physics, 82 (1989), pp. 64–84.

[26] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differ-
ential equations, Journal of Computational Physics, 53 (1984), pp. 484–512.

[27] C. Bernardi, Y. Maday, and A. Patera, Domain decomposition by the mortar el-
ement method, in Asymptotic and Numerical Methods for Partial Differential Equations
with Critical Parameters, H. Kaper, M. Garbey, and G. Pieper, eds., vol. 384 of NATO
ASI Series, Springer Netherlands, 1993, pp. 269–286.

[28] P. E. Bjørstad and O. B. Widlund, Iterative methods for the solution of elliptic
problems on regions partitioned into substructures, SIAM Journal on Numerical Analysis,
23 (1986), pp. 1097–1120.

167

[29] J. Bonet and J. Peraire, An alternating digital tree (ADT) algorithm for 3D geomet-
ric searching and intersection problems, International Journal for Numerical Methods in
Engineering, 31 (1991), pp. 1–17.

[30] J. Bourgat, R. Glowinski, P. L. Tallec, and M. Vidrascu, Variational formu-
lation and algorithm for trace operator in domain decomposition calculations, in Sec-
ond International Symposium on Domain Decomposition Methods for Partial Differential
Equations, SIAM, Philadelphia, 1988, pp. 3–16.

[31] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of
Computation, 31 (1977), pp. 333–390.

[32] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of
the stokes equations, in Efficient Solutions of Elliptic Systems, W. Hackbusch, ed., vol. 10
of Notes on Numerical Fluid Mechanics, Vieweg+Teubner Verlag, 1984, pp. 11–19.

[33] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial: Second
Edition, SIAM, 2000.

[34] A. Cadiou, L. Le Penven, and M. Buffat, Asymptotic and numerical analysis of an
inviscid bounded vortex flow at low Mach number, Journal of Computational Physics, 227
(2008), pp. 8268–8280.

[35] Y. Cao, M. Gunzburger, F. Hua, and X. Wang, Coupled Stokes-Darcy model with
Beavers-Joseph interface boundary condition, Communications in Mathematical Science,
8 (2010), pp. 1–25.

[36] R. Cautrès, R. Herbin, and F. Hubert, The Lions domain decomposition algorithm
on non-matching cell-centred finite volume meshes, IMA J. Numer. Anal., 24 (2004),
pp. 465–490.

[37] M. Chandesris and D. Jamet, Boundary conditions at a planar fluid–porous inter-
face for a Poiseuille flow, International Journal of Heat and Mass Transfer, 49 (2006),
pp. 2137–2150.

[38] , Boundary conditions at a fluid–porous interface: An a priori estimation of the stress
jump coefficients, International Journal of Heat and Mass Transfer, 50 (2007), pp. 3422–
3436.

[39] J. Cheissoux, J. Haquet, M. Grandotto, M. Bernard, and E. de Langre,
Spécifications physiques du code GENEPI (Générateurs de vapeur des REP), Tech. Rep.
86/756, Commissariat à l’Energie Atomique, CEA/DEN/DRE/STRE/LGV, 1986.

[40] J. L. Cheissoux, T. Delorme, and P. Obry, Tables polynomiales des propriétés
thermophysiques des matériaux et des fluides dans le code Genepi (version 1), Tech. Rep.
90/1005, Commissariat à l’Energie Atomique, CEA/DEN/DTE/STRE/LGV, 1991.

[41] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller, B. J.
Whitlock, and N. Max, A contract-based system for large data visualization, in Pro-
ceedings of IEEE Visualization 2005, 2005, pp. 190–198.

168

[42] A. J. Chorin, A numerical method for solving incompressible viscous flow problems,
Journal of Computational Physics, 2 (1967), pp. 12–26.

[43] , Numerical Solution of the Navier-Stokes Equations, Mathematics of Computation,
22 (1968), pp. 745–762.

[44] W. L. Coirier, Simulation of steady viscous flow on an adaptively refined cartesian grid,
PhD thesis, University of Michigan, 1994.

[45] P. Colella, Multidimensional upwind for hyperbolic conservation laws, Journal of Com-
putational Physics, 87 (1990), pp. 171–200.

[46] P. Colella and L. F. Henderson, The von Neumann paradox for the diffraction of
weak shock waves, Journal of Fluid Mechanics, 213 (1990), pp. 71–94.

[47] P. Colella and K. Pao, A Projection Method for Low Speed Flows, Journal of Com-
putational Physics, 149 (1998), pp. 245–269.

[48] P. Degond and M. Tang, All speed scheme for the low Mach number limit of the
Isentropic Euler equation, Communications in Computational Physics, 10 (2011), pp. 1–
31.

[49] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.

[50] R. Deiterding, Block-structured Adaptive Mesh Refinement Methods for Conservation
Laws – Using the SAMR approach for elliptic and parabolic problems. Multi-resolution
Summer School, Fréjus, 2010.

[51] , Block-structured adaptive mesh refinement — theory, implementation and applica-
tion, ESAIM Proc., 34 (2011), pp. 97–151.

[52] C. C. Douglas, A review of numerous parallel multigrid methods, SIAM News, 25 (1992),
pp. 14–15.

[53] S. J. Dwyer, R. W. McLaren, and C. A. Harlow, Computer-Aided Diagnosis of
Breast Cancer from Thermography, in Pattern Recognition and Artificial Intelligence,
C. H. Chen, ed., Academic Press, New York, 1976, pp. 233–247.

[54] R. Eymard. Personal communication.

[55] R. Eymard and T. G. ;, H-convergence and numerical schemes for elliptic equations,
SIAM Journal on Numerical Analysis, 41 (2000), pp. 539–562.

[56] R. Eymard, T. Gallouët, and R. Herbin, The finite volume method, North Holland,
2000.

[57] R. Eymard, T. Gallouët, and R. Herbin, Convergence analysis of a colocated finite
volume scheme for the incompressible Navier-Stokes equations on general 2 or 3D meshes
, SIAM Journal on Numerical Analysis, 30 (2007), pp. 1–36.

[58] , Discretisation of heterogeneous and anisotropic diffusion problems on general non-
conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces, SIAM
Journal on Numerical Analysis, 30 (2010), pp. 1009–1043.

169

[59] R. Eymard, R. Herbin, and J.-C. Latché, Convergence analysis of a colocated fi-
nite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D
meshes, SIAM Journal on Numerical Analysis, 45 (2007), pp. 1–36.

[60] R. Eymard, R. Herbin, J.-C. Latché, and B. Piar, Convergence analysis of a lo-
cally stabilized collocated finite volume scheme for incompressible flows, M2AN, 43 (2009),
pp. 889–927.

[61] S. Faure, J. Laminie, and R. Temam, Colocated finite volume schemes for fluid flows,
Communications in Computational Physics, 4 (2008), pp. 1–25.

[62] R. P. Fedorenko, A relaxation method for solving elliptic difference equations, USSR
Computational Mathematics and Mathematical Physics, 1 (1962), pp. 1092–1096.

[63] , The speed of convergence of one iterative process, USSR Computational Mathemat-
ics and Mathematical Physics, 4 (1964), pp. 227–235.

[64] M. Gander, Schwarz methods over the course of time, Electronic Transactions on Nu-
merical Analysis, 31 (2008), pp. 228–255.

[65] L. Gastaldo, R. Herbin, and J.-C. Latché, A discretization of the phase mass
balance in fractional step algorithms for the drift-flux model, IMA Journal of Numerical
Analysis, 31 (2011), pp. 116–146.

[66] , A discretization of the phase mass balance in fractional step algorithms for the
drift-flux model, IMA Journal of Numerical Analysis, 31 (2011), pp. 116–146.

[67] L. Gastaldo, R. Herbin, J.-C. Latché, and N. Therme, A consistency result for
explicit staggered schemes for the Euler equations, (submitted), (2014).

[68] S. Glasstone and P. J. Dolan, The effects of nuclear weapons, U.S. Department of
Defense; U.S. Department of Energy, 1977, pp. 86–126.

[69] H. M. Glaz, P. Colella, I. I. Glass, and R. L. Deschambault, A numerical study
of oblique shock-wave reflections with experimental comparisons, Proceedings of the Royal
Society of London A – Mathematical and Physical Sciences, 398 (1985), pp. 117–140.

[70] B. Goyeau, D. Lhuillier, D. Gobin, and M. G. Velarde, Momentum transport
at a fluid–porous interface, International Journal of Heat and Mass Transfer, 46 (2003),
pp. 4071–4081.

[71] D. Grapsas, W. Kheriji, R. Herbin, and J.-C. Latché., An unconditionally stable
finite-element-finite volume pressure correction scheme for the compressible Navier-Stokes
equations, submitted, (2014).

[72] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for in-
compressible flows, Computer Methods in Applied Mechanics and Engineering, 195 (2006),
pp. 6011–6045.

[73] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach
number limit, Computers & Fluids, 28 (1999), pp. 63–86.

170

[74] F. H. Harlow and A. A. Amsden, Numerical calculation of almost incompressible
flow, Journal of Computational Physics, 3 (1968), pp. 80–93.

[75] L. F. Henderson, E. I. Vasilev, G. Ben-Dor, and T. Elperin, The wall-jetting
effect in Mach reflection: theoretical consideration and numerical investigation, Journal
of Fluid Mechanics, 479 (2003), pp. 259–286.

[76] R. Herbin, W. Kheriji, and J.-C. Latché, On some implicit and semi-implicit stag-
gered schemes for the shallow water and euler equations, ESAIM: Mathematical Modelling
and Numerical Analysis, 48 (2014), pp. 1807–1857.

[77] R. Herbin, W. Kheriji, and J.-C. Latché, On some implicit and semi-implicit stag-
gered schemes for the shallow water and Euler equations, M2AN, 48 (2014), pp. 1807–1857.

[78] H. Hornung, Regular and Mach reflection of shock waves, Annual Review of Fluid Me-
chanics, 18 (1986), pp. 33–58.

[79] H. G. Hornung, H. Oertel, and R. J. Sandeman, Transition to Mach reflexion of
shock waves in steady and pseudosteady flow with and without relaxation, Journal of Fluid
Mechanics, 90 (1979), pp. 541–560.

[80] W. Jäger and A. Mikelić, On the interface boundary conditions by Beavers, Joseph
and Saffman, SIAM Journal on Applied Mathematics, 60 (2000), pp. 1111–1127.

[81] , Modeling Effective Interface Laws for Transport Phenomena Between an Unconfined
Fluid and a Porous Medium Using Homogenization, Transport in Porous Media, 78 (2009),
pp. 489–508.

[82] D. Jamet, M. Chandesris, and B. Goyeau, On the Equivalence of the Discontinu-
ous One- and Two-Domain Approaches for the Modeling of Transport Phenomena at a
Fluid/Porous Interface , Transport in Porous Media, 78 (2009), pp. 403–418.

[83] D. M. Jones, P. M. E. Martin, and C. K. Thornhill, A Note on the Pseudo-
Stationary Flow behind a Strong Shock Diffracted or Reflected at a Corner, Proceedings
of the Royal Society of London A, 209 (1951), pp. 238–248.

[84] M. Karasabun, An experimental apparatus to study nucleate pool boiling of R-114 and
oil mixtures, PhD thesis, U.S. Navy Naval Postgraduate School, Monterey, California,
1984.

[85] K. C. Karki and S. V. Patankar, Pressure based calculation procedure for viscous
flows at all speeds in arbitrary configurations, AIAA Journal, 27 (1989), pp. 1167–1174.

[86] M. Kaviany, Principles of Heat Transfer in Porous Media, Mechanical Engineering Se-
ries, Springer, 1995.

[87] W. Kheriji, R. Herbin, and J.-C. Latché, Pressure correction staggered schemes for
barotropic one-phase and two-phase flows, Comput. & Fluids, 88 (2013), pp. 524–542.

[88] A. M. Khokhlov, Fully threaded tree algorithms for adaptive refinement fluid dynamics
simulations, Journal of Computational Physics, 143 (1998), pp. 519–543.

171

[89] P. Krehl and M. van der Geest, The discovery of the Mach reflection effect and its
demonstration in an auditorium, Shock Waves, 1 (1991), pp. 3–15.

[90] A. Kurganov and Y. Liu, New adaptive artificial viscosity method for hyperbolic sys-
tems of conservation laws, Journal of Computational Physics, 231 (2012), pp. 8114–8132.

[91] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon
and Breach, second ed., 1963, pp. 23–31.

[92] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 6: Fluid
Mechanics, Pergamon Press, 1959.

[93] C. K. Law, Diffraction of strong shock waves by a sharp compressive corner, Tech. Rep.
AFOSR 70-0767 TR, University of Toronto/IAS, 1970.

[94] P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynam-
ics by positive schemes, SIAM Journal on Scientific Computing, 19 (1998), pp. 319–340.

[95] H. Li and G. Ben-Dor, Reconsideration of pseudo-steady shock wave reflections and the
transition criteria between them, Shock Waves, 5 (1995), pp. 59–73.

[96] Q. Liu and A. Prosperetti, Pressure-driven flow in a channel with porous walls,
Journal of Fluid Mechanics, 679 (2011), pp. 77–100.

[97] F. Losasso, R. Fedkiw, and S. Osher, Spatially adaptive techniques for level set
methods and incompressible flow, Computers & Fluids, 35 (2006), pp. 995–1010.

[98] A. Marciniak-Czochra and A. Mikelić, A nonlinear effective slip interface law for
transport phenomena between a fracture flow and a porous medium, Discrete and Contin-
uous Dynamical Systems – Series S, 7 (2014), pp. 1065–1077.

[99] D. Marr and E. Hildren, Theory of edge detection, Proceedings of the Royal Society
of London, Series B, Biological Sciences, 207 (1980), pp. 187–217.

[100] D. Martin and K. Cartwright, Solving poisson’s equation using adaptive mesh re-
finement, Tech. Rep. UCB/ERL M96/66, EECS Department, University of California,
Berkeley, 1996.

[101] D. F. Martin and P. Colella, A Cell-Centered Adaptive Projection Method for the
Incompressible Euler Equations, Journal of Computational Physics, 163 (2000), pp. 271–
312.

[102] P. Mathon, F. Archambeau, and J.-M. Hérard, Implantation d’un algorithme com-
pressible dans Code Saturne, Tech. Rep. HI-83/03/016/A, EDF R&D / MF2E, 2004.

[103] D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in
a saturated porous medium and at an interface, International Journal of Heat and Fluid
Flow, 12 (1991), pp. 269–272.

[104] P. Obry and J.-L. Cheissoux, Etablissement des équations homogénéisées de conser-
vation (système à trois et quatre équations) du logiciel GENEPI (système TRIO), Tech.
Rep. 90/1014, Commissariat à l’Energie Atomique, CEA/DEN/DTE/STRE/LGV, 1990.

172

[105] J. A. Ochoa-Tapia and S. Whitaker, Momentum transfer at the boundary between
a porous medium and a homogeneous fluid – I. Theoretical development, International
Journal of Heat and Mass Transfer, 38 (1995), pp. 2635–2646.

[106] , Momentum transfer at the boundary between a porous medium and a homogeneous
fluid – II. Comparison with experiment, International Journal of Heat and Mass Transfer,
38 (1995), pp. 2647–2655.

[107] G. S. H. Pau, J. B. Bell, A. S. Almgren, K. M. Fagnan, and M. J. Lijewski,
An Adaptive Mesh Refinement Algorithm for Compressible Two-Phase Flow In Porous
Media, Computational Geosciences, 16 (2012), pp. 577–592.

[108] D. W. Peaceman and H. H. Rachford, The numerical solution of parabolic and
elliptic differential equations, Journal of the Society for Industrial & Applied Mathematics,
3 (1955), pp. 28–41.

[109] R. Plessier, Comparaison des résultats du logiciel Genepi version 1 à des
solutions analytiques, Tech. Rep. 91/006, Commissariat à l’Energie Atomique,
CEA/DEN/DER/SCC/LTDE, 1991.

[110] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations
in complex geometries, Journal of Computational Physics, 190 (2003), pp. 572–600.

[111] J. S. Przemieniecki, Theory of Matrix Structural Analysis, Dover Civil and Mechanical
Engineering, Dover, 1985.

[112] A. Quarteroni and A. Valli, Theory and Application of Steklov-Poincaré Operators
for Boundary-Value Problems, in Applied and Industrial Mathematics, R. Spigler, ed.,
vol. 56 of Mathematics and Its Applications, Springer Netherlands, 1991, pp. 179–203.

[113] , Theory and application of Steklov-Poincaré operators for boundary-value problems.
The heterogenous operator case, in Fourth International Symposium on Domain Decom-
position Methods for Partial Differential Equations, SIAM, Philadelphia, 1991, pp. 58–81.

[114] , Domain Decomposition Methods for Partial Differential Equations, Clarendon
Press, 1999.

[115] C. M. Rhie and W. L. Chow, Numerical study of the turbulent flow past an airfoil with
trailing edge separation, AIAA, 21 (1983), pp. 1525–1532.

[116] P. G. Saffman, On the boundary condition at the interface of a porous medium, Studies
Applied Mathematics, 1 (1971), pp. 93–101.

[117] M. Sahraoui and M. Kaviany, Slip and no-slip velocity boundary conditions at inter-
face of porous, plain media, International Journal of Heat and Mass Transfer, 35 (1992),
pp. 927–943.

[118] A. Samake, S. Bertoluzza, M. Pennacchio, C. Prud’homme, and C. Zaza, A
Parallel Implementation of the Mortar Element Method in 2D and 3D, ESAIM: Proc., 43
(2013), pp. 213–224.

[119] H. A. Schwarz, Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrss-
chrift der Naturforschenden Gesellschaft in Zürich, 15 (1870), pp. 272–286.

173

[120] D. Serre, Chapter 2: Shock reflection in gas dynamics, vol. 4 of Handbook of Mathe-
matical Fluid Dynamics, North-Holland, 2007, pp. 39–122.

[121] R. V. Southwell, Stress-calculation in frameworks by the method of” systematic re-
laxation of constraints”. i and ii, Proceedings of the Royal Society of London. Series
A-Mathematical and Physical Sciences, 151 (1935), pp. 56–95.

[122] , Relaxation Methods in Theoretical Physics, Clarendon Press, Oxford, 1946.

[123] R. Temam, Sur l’approximation de la solution des quations de Navier-Stokes par la mth-
ode des pas fractionnaires I, Archive for Rational Mechanics and Analysis, 32 (1969),
pp. 135–153.

[124] , Sur l’approximation de la solution des quations de Navier-Stokes par la mthode des
pas fractionnaires II, Archive for Rational Mechanics and Analysis, 33 (1969), pp. 377–
385.

[125] N. Therme and C. Zaza, Comparison of cell-centered and staggered pressure-correction
schemes for all-mach flows, in Finite Volumes for Complex Applications VII-Elliptic,
Parabolic and Hyperbolic Problems, vol. 78 of Springer Proceedings in Mathematics &
Statistics, Springer International Publishing, 2014, pp. 975–983.

[126] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction, Springer-Verlag, 1999.

[127] F. J. Valdés-Parada, J. Alvarez-Raḿırez, B. Goyeau, and J. A. Ochoa-Tapia,
Computation of Jump Coefficients for Momentum Transfer Between a Porous Medium
and a Fluid Using a Closed Generalized Transfer Equation, Transport in Porous Media,
78 (2009), pp. 439–457.

[128] G. Volpe, Performance of compressible flow codes at low Mach numbers, AIAA Journal,
31 (1993), pp. 49–56.

[129] D. R. White, An experimental survey of the Mach reflection of shock waves, Tech. Rep.
II-10, Princeton University Department of Physics, 1951.

[130] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid
flow with strong shocks, Journal of Computational Physics, 54 (1984), pp. 115–173.

[131] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, and S. S. Samant,
A locally refined rectangular grid finite element method: application to computational fluid
dynamics and computational physics, Journal of Computational Physics, 92 (1991), pp. 1–
66.

[132] R. K. Zeytounian, Asymptotic Modelling of Fluid Flow Phenomena, Springer, 2002.

[133] Q. Zhang, High-order, multidimensional, and conservative coarse-fine interpolation for
adaptive mesh refinement, Computer Methods in Applied Mechanics and Engineering, 200
(2011), pp. 3159–3168.

	Introduction
	I All-Mach flow solver
	A cell-centered solver for all-Mach flows
	Introduction
	Space and time discretization
	Discretization of
	Discrete gradient and divergence
	Upwind choice and discrete divergence operators
	Time discretization

	Stability of the scheme and existence of a solution
	Passing to the limit

	Application to shock hydrodynamics
	The SLK scheme
	Time discretization
	Space discretization

	Numerical results
	One dimensional problems
	Two dimensional problems

	Application to low-Mach flows
	Introduction
	Pressure correction scheme
	Spatial discretization
	Cell-centered scheme
	Staggered scheme

	Discrete properties
	Numerical results

	Application to two-phase flows
	Homogeneous two-phase flow models
	GENEPI general model
	GENEPI simplified model
	Equation of state
	Drift velocity models

	Numerical method
	General projection algorithm
	Chisholm scalar slip

	Validation tests
	Problem setting
	Numerical results

	II Adaptive Mesh Refinement
	Adaptive grids
	Single hierarchical grid
	Representation
	Transversal search

	Hierarchy of nested grids
	Representation
	Grid generation
	Examples

	Solving on composite grids
	Fine-fine interfaces
	Non-overlapping domain decomposition
	Iterative substructuring algorithms
	Ghost-cell equivalent decomposition
	Numerical tests

	Coarse-fine interfaces
	Domain decomposition with non-matching grids
	Composite discretizations using interpolation

	Multigrid methods
	Multigrid on uniform grids
	Multigrid on adaptive grids

	Application to compressible flows
	2D Riemann problem
	Problem setting
	Numerical results

	Double Mach Reflection
	Introduction
	Shock diffraction
	Problem setting
	Adaptive and uniform grid solutions
	Local refinement on the Mach reflections

	III Fluid-porous interface problem
	Modelling at different scales
	Porous model in GENEPI
	Governing equations
	Discussion

	Modelling cross-flow filtration
	Filtration phenomena
	Fluid-porous models

	Convective regime
	Previous work
	Experimental observations
	Interface models

	Proposed interface condition
	Problem setting
	Continuous problem
	Numerical methods

	Numerical Results
	Overview
	Interface condition parameters
	Validity for a channel flow
	Validity for a thin film flow

	Conclusion
	Bibliography

