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Abstract
The problem of transmission of information over the AWGN channel using lattices
is addressed. Firstly, infinite constellations are considered. A new family of integer
lattices built by means of Construction A with non-binary linear codes is introduced.
These lattices are called LDA (Low-Density Construction A) and are characterised
by sparse p-ary parity-check matrices, that put them in direct relation with LDPC
codes. Two results about the Poltyrev-capacity-achieving qualities of this family
are proved, respectively for logarithmic row degree and constant row degree of the
associated parity-check matrices. The second result is based on some expansion
properties of the Tanner graphs related to these matrices. Another topic of this
work concerns finite lattice constellations. A new proof that general random Con-
struction A lattices achieve capacity under lattice decoding is provided, continuing
and improving the work of Erez and Zamir (2004), Ordentlich and Erez (2012), and
Ling and Belfiore (2013). This proof is based on Voronoi lattice constellations and
MMSE scaling of the channel output. Finally, this approach is adapted to the LDA
case and it is shown that LDA lattices achieve capacity with the same transmis-
sion scheme, too. Once again, it is necessary to exploit the expansion properties
of the Tanner graphs. At the end of the dissertation, an iterative message-passing
algorithm suitable for decoding LDA lattices in high dimensions is presented.

Résumé
On étudie le problème de la transmission de l’information à travers le canal AWGN
en utilisant des réseaux. On commence par considérer des constellations infinies.
Une nouvelle famille de réseaux obtenus par Construction A à partir de codes li-
néaires non binaires est proposée. Ces réseaux sont appelés LDA (« Low-Density
Construction A ») et sont caractérisés par des matrices de parité p-aires creuses, qui
les mettent en rélation directe avec les codes LDPC. Deux résultats sur leur possi-
bilité d’atteindre la capacité de Poltyrev sont prouvés ; cela est d’abord démontré
pour des poids des lignes logarithmiques des matrices de parité associées, puis pour
des poids constants. Le deuxième résultat est basé sur certaines propriétés d’ex-
pansion des graphes de Tanner correspondants à ces matrices. Un autre sujet de ce
travail concerne les constellations finies de réseaux. Une nouvelle preuve est donnée
du fait que des réseaux aléatoires obtenus par Construction A générale atteignent
la capacité avec décodage de type « lattice decoding ». Cela prolonge et améliore le
travail de Erez et Zamir (2004), Ordentlich et Erez (2012), Ling et Belfiore (2013).
Cette preuve est basée sur les constellations de Voronoï et la multiplication par le
coefficient de Wiener (« MMSE scaling ») du signal en sortie du canal. Finalement,
ce résultat est adapté au cas des réseaux LDA, qui eux aussi atteignent la capacité
avec le même procédé de transmission. Encore une fois, il est nécessaire d’exploiter
les propriétés d’expansion des graphes de Tanner. À la fin de la dissertation, on pré-
sente un algorithme de décodage itératif et de type « message-passing » approprié
au décodage des LDA en grandes dimensions.
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Chapter 1

Introduction

English version

This thesis aims to give a contribution to the domain of information theory and
coding theory, addressing the problem of communication over the Additive White
Gaussian Noise (AWGN) channel. Coding over finite alphabets for this kind of chan-
nel has undergone a huge effort in order to achieve capacity with efficient decoding.
While this quest is arguably reaching its conclusion, the similar problem for infinite
alphabet coding has received much less attention and has been picking up momen-
tum only recently. In this work, we will deal with lattices and lattice codes, which
generalise linear codes over finite fields to the Euclidean space Rn. Lattices are infi-
nite and discrete sets of points, provided with some particular symmetric structure.
They possess by themselves an intrinsic theoretical interest and purely mathemat-
ical lattice theory was born and developed long before its communication-related
branch. The idea of employing lattices for error correction comes mostly from prac-
tical reasons, since lattice structures naturally arise in a number of contexts, like for
example network communication systems with multiple transmitters and receivers,
for which lattice coding schemes have sometimes even better performance than the
more classical ones based on random coding. Lattice codes are also useful for other
applications, like physical layer security and network coding.

The first notable work on the possibility of sending information with lattices over
the AWGN channel with satisfactory performance is due to de Buda and dates back
to 1975. More precisely, de Buda investigated the problem of achieving the capacity
of the AWGN channel with finite lattices constellations and lattice decoding. This
work has been the source of a research flow that has dealt with several different
aspects of the problem of communicating through lattice codes:

• achieving the capacity of the AWGN channel with finite lattice constellations
and optimal (Maximum Likelihood) decoding;

• achieving the capacity of the AWGN channel with finite lattice constellations
and suboptimal decoding (namely, lattice decoding);
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• efficiently communicating with infinite lattice constellations and the notion
of Poltyrev capacity (a way of analysing the performance of a lattice family
independently of the choice of the shaping region);

• finding implementable ML decoding algorithms for lattices (such as the Sphere
Decoding algorithm);

• finding low-complexity, eventually suboptimal, decoding algorithms for lattices
in high dimensions;

• constructively (and non-randomly) designing lattice families with good per-
formance over the AWGN channel.

It took some years after de Buda’s work before other main contributions to
the topic appeared and the most consistent results were published in the last two
decades. Once the theoretical problem of (non-constructively) achieving capacity
with ML decoding was solved, it left the place to the challenge of obtaining the same
result with lattice decoding. This turned out to be harder to prove than expected,
insomuch as it was also conjectured to be impossible. Finally, less than 10 years ago,
Erez and Zamir found the craved solution to the problem. In the mean time, since
2006, some constructive families of lattices adapted to iterative decoding have been
proposed, with the intention of translating into concrete evidence the theoretical
effort of showing that lattices are adequate to block coding in high dimensions for
the AWGN channel.

At the root of this dissertation there is the desire to somehow close the gap be-
tween the path traced by Erez and Zamir and the experiments and implementations
of well-performing lattice families with low-complexity decoding algorithms. At the
present moment and to the best of our knowledge, there is no way of making the
theoretical and practical points of view converge completely with finding a construc-
tive family of lattices which is both proved to be capacity-achieving and concretely
decodable in high dimensions. Nevertheless, at the end of this thesis, our main
results will be of having shown the existence of a lattice family which is

• Poltyrev-capacity-achieving (cf. Theorem 3.1 and Theorem 3.2);

• Shannon-capacity-achieving under lattice decoding (cf. Theorem 4.2);

• decodable with low-complexity in high dimensions and with satisfactory per-
formance under suboptimal, iterative decoding (see the numerical results of
Chapter 5).

This is the family of Low-Density Construction A lattices, also called LDA lat-
tices for brevity. To build it, we rely on an underlying finite-alphabet linear code
structure. Moreover, we depart from the classical binary alphabet choice (common
to almost all the constructions considered in the literature) and use codes over non-
binary alphabets. Then, we shall call upon the celebrated Construction A technique
to obtain lattices from those linear codes. Note that Construction A is not in it-
self a very restrictive scheme for lattice construction since it has been used, relying
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CHAPTER 1. INTRODUCTION

on codes over large alphabets, to produce (non-constructively) capacity-achieving
lattices. Construction A also yields some of the best asymptotic sphere-packing
densities.

The other main ingredient of the LDA recipe are LDPC codes: indeed, our choice
of linear codes for Construction A is restricted to them (after which the name “Low-
Density” Construction A lattices). The two features, Construction A structure and
LDPC skeleton, summarise the power of the LDA family. In a quite sketchy and
approximate way, we can say that

• Construction A allows us to show that LDA lattices are capacity-achieving
under lattice decoding, in the sense that non-LDPC Construction A lattices
are already known to achieve the same result and this property is not lost
when we move to a low-density underlying code structure;

• the LDPC foundation of the family makes it adaptable to iterative (hence
low-complexity, practically implementable) decoding and suggests that good
performance is obtainable.

Thus, the novelty of this work consists in finding strong information-theoretical and
competitive numerical results for a “more constructive and less random” family than
it is classically done.

Mathematically, this thesis contains a mix of Euclidean geometry, probability
theory and combinatorics. It should be readable by quite a large audience, assuming
that they have some familiarity with coding theory and information theory.

Structure of this dissertation

This thesis is organised as follows:

1. Chapter 2 will provide all the background which is needed to understand the
sequel. We will start with a number of basic definitions about lattices, which
will be mostly useful to fix some notation and to gently introduce the reader
to the main objects of our dissertation. Then, we will move to the application
of lattices to coding theory and communication over the AWGN channel. We
will define with care Construction A and mention other constructions of lat-
tices from linear codes, such as Construction B, C, D and D’. We will present
in detail our channel model, without forgetting to give some further historical
perspective and to duly present the problem of decoding infinite lattice con-
stellations; as a consequence, we will give the definition of Poltyrev capacity,
deeply used in Chapter 3. We will also spend some time talking about some
classical coding-related problems involving lattices, for which Construction A
provides a good solution. Finally, we will state (and where necessary prove) a
certain number of useful lemmas that will be applied many times in the main
proofs of Chapter 3 and Chapter 4.

2. Chapter 3 is dedicated to infinite LDA lattice constellations. We will show here
the first two main results of this work: namely, that two particular families of
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LDA lattices achieve Poltyrev capacity of the AWGN channel (cf. Theorem
3.1 and Theorem 3.2). These families are characterised by the parity-check
matrices associated with the LDPC codes underlying Construction A. Theorem
3.1 shows how Poltyrev capacity can be achieved with LDA lattices the parity-
check equations of which have degrees logarithmically growing in the dimension
of the lattices, while Theorem 3.2 goes a little beyond this result, showing that
Poltyrev capacity can be attained also by LDA lattices with constant parity-
check equation degrees. Chapter 3 contains also some expansion results about
the Tanner graph associated with our LDA lattices. These will be useful for
the proofs both of Theorem 3.2 and of Theorem 4.2 in the following chapters.

3. Chapter 4 deals with finite lattice constellations and lattice decoding. It con-
tains two main results: the first one is a proof that general random (hence
non-LDA) Construction A lattices can achieve the capacity of the AWGN
channel with lattice encoding and decoding (cf. Section 4.2 and Theorem 4.1).
This result was actually already shown by other authors, but we give a new
proof of it, which has some advantages with respect to the already existing
ones. The second result is that LDA lattices can achieve the capacity of the
AWGN channel with lattice encoding and decoding, too (cf. Section 4.3 and
Theorem 4.2). Summarising, this result is based on Voronoi constellations,
MMSE scaling of the AWGN channel output and the expansion properties of
the Tanner graphs associated with LDA lattices.

4. Chapter 5 is devoted to the presentation of a practical, iterative decoding
algorithm for LDA lattices. We will describe how to decode them and give
some detail about the practical implementation. Finally, we will provide some
numerical simulations that show the goodness of LDA lattices.

5. Chapter 6 will summarise the main achievements of our work and sketch some
perspectives of future development.

We have always tried to provide extensive and heuristic introductions to our
theoretical results, in order to make the reading simple and all proof strategies
clear. At this point, we simply wish you all to enjoy the reading.

16



CHAPTER 1. INTRODUCTION

Version française

Cette thèse se veut une contribution au domaine de la théorie de l’information et de
la théorie du codage, étudiant le problème de la communication à travers le canal
AWGN (c’est-à-dire soumis à un bruit gaussien blanc additif : « Additive White
Gaussian Noise channel »). Dans le cas du codage à alphabets finis pour ce type de
canal, il a fallu un effort important pour arriver à atteindre la capacité avec un déco-
dage efficace. Alors que cette quête est probablement proche d’aboutir, le problème
similaire pour le codage à alphabets infinis a été beaucoup moins étudié et n’est que
depuis peu sujet à une attention croissante. Dans ce travail, nous nous préoccupe-
rons de réseaux (« lattices ») et de constellations de réseaux (« lattice codes »), qui
généralisent les codes linéaires sur les corps finis à l’espace euclidien Rn. Les réseaux
sont des ensembles infinis et discrets de points, équipés d’une structure symétrique
particulière. Ils possèdent un intérêt théorique intrinsèque et la théorie des réseaux
purement mathématique est née et s’est développée bien avant sa branche appliquée
aux télécommunications. L’idée d’employer les réseaux pour la correction d’erreurs
vient principalement de raisons pratiques, étant donné que la structure de réseau
surgit naturellement dans plusieurs contextes. Cela se produit par exemple dans les
systèmes de communication à émetteurs et récepteurs multiples, pour lesquels les
procédés de codage basés sur les réseaux ont parfois des performances meilleures
que ceux plus classiques basés sur le codage classique aléatoire. Le codage avec le
réseaux est utile aussi pour d’autres applications, comme la sécurité de la couche
physique et le « network coding ».

Le premier travail remarquable sur la possibilité d’envoyer de l’information à
travers le canal AWGN avec les réseaux et des performances satisfaisantes est dû à
de Buda et date de 1975. Plus précisément, de Buda a étudié le problème d’atteindre
la capacité du canal AWGN avec des constellations finies de réseaux et un décodage
de type « lattice decoding ». Ce travail a été la source d’un courant de recherche
qui a traité plusieurs aspects du problème de la communication grâce aux codes de
réseaux :

• atteindre la capacité du canal AWGN avec des constellations finies de réseaux
et un décodage optimal (au maximum de vraisemblance – « ML decoding ») ;

• atteindre la capacité du canal AWGN avec des constellations finies de réseaux
et un décodage sous-optimal (notamment, « lattice decoding ») ;

• communiquer efficacement avec des constellations infinies de réseaux et la no-
tion de capacité de Poltyrev (une façon d’analyser les performances d’une
famille de réseaux indépendamment du choix de la région de « shaping ») ;

• trouver des algorithmes implémentables de décodage au maximum de vraisem-
blance pour les réseaux (tels que l’algorithme « Sphere Decoding ») ;

• trouver des algorithmes de décodage pour les réseaux en grande dimension qui
soient à faible complexité, même si sous-optimaux ;
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• concevoir d’une façon constructive (et non pas aléatoire) des familles de ré-
seaux qui aient de bonnes performances sur le canal AWGN.

Il a fallu quelques années après le travail de de Buda pour que d’autres contri-
butions majeures apparaissent et les résultats les plus importants ont été publiés
durant les deux dernières décennies. Une fois que le problème théorique d’atteindre
(non constructivement) la capacité avec un décodage optimal fut résolu, il restait
le défi d’obtenir le même résultat avec un décodage du type « lattice decoding ».
La preuve de cela s’est avérée être plus difficile que prévu, à tel point que son im-
possibilité fut conjecturée aussi. Finalement, il y a moins de 10 ans, Erez et Zamir
ont trouvé la solution si attendue de ce problème. Entre-temps, à partir de 2006,
certaines familles constructives de réseaux adaptées au décodage itératif ont été pro-
posées, avec l’intention de traduire en preuves concrètes la recherche théorique de
réseaux adéquats au codage par blocs en grandes dimensions pour le canal AWGN.

À la racine de cette dissertation il y a le désir de rapprocher deux aspects : le
chemin tracé par Erez et Zamir et les expériences et les implémentations des familles
de réseaux qui ont de bonnes performances avec des algorithmes de décodage à faible
complexité. À l’heure actuelle et à notre connaissance, il n’existe pas une façon de
faire converger complètement les points de vue théorique et pratique. Cela signi-
fierait trouver une famille constructive de réseaux qui atteigne mathématiquement
la capacité et qui soit concrètement décodable en grande dimension. Cependant, à
la fin de cette thèse, notre résultat principal consistera en avoir montré l’existence
d’une famille de réseaux qui

• atteint la capacité de Poltyrev (voir le Théorème 3.1 et le Théorème 3.2) ;

• atteint la capacité de Shannon avec un décodage de type « lattice deco-
ding » (voir le Théorème 4.2) ;

• est décodable en grandes dimensions avec performances satisfaisantes quand on
utilise un décodeur itératif sous-optimal à faible complexité (voir les résultats
numériques du Chapitre 5).

Il s’agit de la famille des réseaux LDA (Low-Density Construction A). Pour
la construire, nous nous basons sur une structure de code linéaire sous-jacente aux
réseaux. De plus, nous nous séparons du choix classique d’un alphabet binaire (com-
mun à presque toutes les constructions considérées dans la littérature) et nous utili-
sons des codes sur un alphabet non binaire. Puis, nous invoquons la célèbre Construc-
tion A pour obtenir des réseaux à partir de ces codes linéaires. Il faut remarquer
que la Construction A n’est pas un procédé très restrictif pour la construction de
réseaux, car elle a été utilisée pour produire (non constructivement) des réseaux
qui atteignent la capacité à partir de codes sur de grands alphabets. Grâce à la
Construction A on obtient aussi certaines des meilleures densités asymptotiques
d’empilement de sphères.

L’autre ingrédient principal de la recette LDA sont les codes LDPC (« Low-
Density Parity-Check ») : en effet, notre choix de codes linéaires pour la Construction
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CHAPTER 1. INTRODUCTION

A est restreint à ces derniers (d’ici le « Low-Density » qui fait partie du nom LDA).
Les deux caractéristiques, Construction A et squelette LDPC, résument la puissance
de la famille LDA. D’une manière sommaire, on peut dire que

• la Construction A nous permet de montrer que les réseaux LDA atteignent
la capacité avec un décodage de type « lattice decoding », au sens qu’il est
déjà connu que les réseaux construits par Construction A non LDPC ont la
même propriété ; celle-ci n’est pas perdue lorsque nous nous concentrons sur
une structure de base de type « low-density » ;

• les fondations LDPC de la famille la rendent adaptable à un décodage itératif
(donc à faible complexité, pratiquement implémentable) et elles suggèrent que
de bonnes performances peuvent être obtenues.

Ainsi, la nouveauté de ce travail consiste à produire des conclusions théoriques
fortes du point de vue de la théorie de l’information et de résultats numériques
compétitifs pour une famille « plus constructive et moins aléatoire » par rapport à
ce qui est fait classiquement.

Mathématiquement, cette thèse contient un mélange de géométrie euclidienne,
théorie des probabilités et calcul combinatoire. Elle devrait être lisible par un public
plutôt étendu, pourvu qu’il possède une certaine familiarité avec la théorie du codage
et de l’information.

Structure de cette dissertation

Cette thèse est organisée de la façon suivante :

1. Le Chapitre 2 fournit le contexte et les notions de base qui sont nécessaires pour
comprendre la suite. Nous commencerons avec un certain nombre de définitions
sur les réseaux, qui seront surtout utiles à fixer la notation et à introduire
progressivement le lecteur aux objets principaux de notre dissertation. Puis,
nous nous adresserons à l’application des réseaux à la théorie du codage et
à la communication à travers le canal AWGN. Nous définirons avec soin la
Construction A et mentionnerons d’autres constructions de réseaux à partir
de codes linéaires, telles que la Construction B, C, D et D’. Nous présenterons
en détail notre modèle de canal, sans oublier de donner d’autres informations
historiques et de présenter dûment le problème du décodage de constellations
infinies de réseaux ; par conséquent, nous donnerons la définition de la capacité
de Poltyrev, utilisée amplement dans le Chapitre 3. Nous nous attarderons un
peu sur certains problèmes classiques liés au codage qui impliquent les réseaux,
pour lesquels la Construction A offre une bonne solution. Finalement, nous
énoncerons (et prouverons, lorsque cela est nécessaire) un certain nombre de
lemmes utiles qui seront appliqués plusieurs fois dans les preuves principales
du Chapitre 3 et 4.

2. Le Chapitre 3 est dédié aux constellations infinies de réseaux LDA. Nous mon-
trerons ici les premiers deux résultats principaux de ce travail : notamment,
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que deux familles particulières de réseaux LDA atteignent la capacité de Pol-
tyrev du canal AWGN (voir le Théorème 3.1 et le Théorème 3.2). Ces familles
sont caractérisées par les matrices de parité associées aux codes LDPC sous-
jacents la Construction A. Le Théorème 3.1 montre comment la capacité de
Poltyrev peut être atteinte avec des réseaux LDA dont les équations de parité
ont un degré qui grandit logarithmiquement en la dimension des réseaux. Le
Théorème 3.2 va un peu au delà de ce résultat, en montrant que la capacité de
Poltyrev peut être atteinte aussi par des réseaux LDA avec degré d’équations
de parité constants. Le Chapitre 3 contient aussi des résultats d’expansion sur
les graphes de Tanner associés à nos réseaux LDA. Ces propositions seront
utiles pour les preuves du Théorème 3.2 et du Théorème 4.2 dans les chapitres
successifs.

3. Le Chapitre 4 traite de constellations finies de réseaux et de décodage de type
« lattice decoding ». Il contient deux résultats principaux : le premier est la
preuve que les réseaux obtenus avec une Construction A aléatoire et générale
(donc non LDA) peuvent atteindre la capacité du canal AWGN avec codage
et décodage de type « lattice » (voir la Section 4.2 et le Théorème 4.1). Ce
résultat a été déjà montré par d’autres auteurs, mais nous en donnons une
nouvelle preuve, qui a certains avantages par rapport à celles déjà existantes.
Le deuxième résultat est que les réseaux LDA eux aussi peuvent atteindre la
capacité du canal AWGN avec le même type d’encodage et décodage que la
Construction A générale (voir la Section 4.3 et le Théorème 4.2). Ce résultat
est basé en résumé sur : les constellations de Voronoï, la multiplication par
le coefficient de Wiener à la sortie du canal AWGN ainsi que les propriétés
d’expansion des graphes de Tanner associés aux réseaux LDA.

4. Le Chapitre 5 est dédié à la présentation d’un algorithme de décodage pratique
et itératif pour les réseaux LDA. Nous décrirons comment les décoder et nous
donnerons quelques détails concernant l’implémentation pratique. Finalement,
nous fournirons quelques simulations numériques qui montrent la qualité des
réseaux LDA.

5. Le Chapitre 6 résumera les résultats principaux de notre travail et donnera
une idée de développement futur.

Nous avons toujours essayé d’offrir une introduction complète et heuristique
aux résultats théoriques, afin de les simplifier et de rendre plus claires les
stratégies de démonstration. Il ne nous reste que vous souhaiter une bonne
lecture.
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Chapter 2

Background on lattices

The purpose of this chapter is to introduce the reader to the main topics of this
thesis. No mathematical novelty appears in this chapter and the experienced reader
can move directly to Chapter 3. Nevertheless, here we fix most of the notation that
will be employed later on. This chapter is structured in the following way:

• in Section 2.1, we quickly overview basic lattice definitions, with the main
intention of giving some simple examples and getting used with some objects
which will be useful in the sequel;

• in Section 2.2, we discuss some constructions of lattices from linear codes (with
a particular emphasis on Construction A);

• in Section 2.3, we focus our attention on the application of lattices to the
transmission of information, providing some history and a state of the art;

• in Section 2.4, we briefly describe four coding-related problems on lattices, for
which a particular Construction A lattice family turns out to be a solution;

• in Section 2.5, we list some lemmas that will be useful tools in the next chap-
ters.

2.1 Some basic definitions about lattices

The main object of this dissertation are lattices. This first section has the purpose
of introducing them, together with basic definitions and some examples. These will
be useful to recall the tools needed for reading this thesis and to fix the notation
which will be used through all the chapters. A good reference for more detail on
what follows is [CS99, Ebe13]. Mathematically, a lattice is defined as a module over
a certain ring and embedded in a vector space over a field. For our purposes, we
will only consider real lattices, that is Z-modules in the Euclidean space. They will
simply be discrete, additive subgroups of Rn, according to the following definition:
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2.1. SOME BASIC DEFINITIONS ABOUT LATTICES

Figure 2.1: A lattice in R2.

Definition 2.1 (Lattice). Given m and n two natural numbers, m ≤ n, and given a
set of m linearly independent vectors b1,b2, . . . ,bm ∈ Rn, an m-dimensional lattice
Λ is defined as the set of all integer linear combinations of the bi’s:

Λ =

{
x ∈ Rn : x =

m∑
i=1

zibi, ∃(z1, z2, . . . , zm) ∈ Zn
}
.

The bi’s are called a basis of the lattice and we say that they generate it.
A sublattice Λ′ of Λ is a lattice such that Λ′ ⊆ Λ.

An example of a 2-dimensional lattice in R2 is shown in Figure 2.1. By definition,
the point 0 ∈ Rn always belongs to a lattice. Furthermore, notice that the same
lattice has many different bases and there is no natural choice for one of them. We
will see in a while some parameters of lattices that are independent of the choice of
the basis.

From now on, we will only deal with full rank lattices, that is n-dimensional
lattices in an n-dimensional Euclidean space. Let us give some other definitions:

Definition 2.2 (Generator and Gram matrix). A generator matrix G of a lattice
Λ ⊆ Rn is a matrix whose rows generate Λ:

G =


b1

b2
...
bn

 and Λ = {x ∈ Rn : x = zG, ∃z ∈ Zn}.
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CHAPTER 2. BACKGROUND ON LATTICES

We have supposed that the lattice is full rank, so the bi’s are a basis of the lattice,
in the notation of Definition 2.1. The Gram matrix A of the lattice is given by

A = GGT .

Let || · || denote the usual Euclidean norm in Rn, that is, if y = (y1, y2, . . . , yn),
||y|| =

√
y2

1 + y2
2 + · · ·+ y2

n =
√

yyT . Let x = zG, for some z = (z1, z2, . . . , zn) ∈
Zn. Then

||x||2 = ||zG||2 = zGGTzT = zAzT .

The function f : Zn → Zn, f(z) = zAzT is the quadratic form associated with the
lattice Λ.

We will denote by Vol(·) the usual Euclidean volume of a set and, for a set S
and an element t, let t+ S = {t+ s : ∃s ∈ S}.

Definition 2.3 (Fundamental region). A set F ⊆ Rn is called a fundamental region
for a lattice Λ ⊆ Rn if the following conditions are satisfied:

1. Rn =
⋃

x∈Λ(x + F ) (space covering).

2. Vol ((x1 + F ) ∩ (x2 + F )) = 0, for every x1,x2 ∈ Λ, x1 6= x2 (no intersection
of non-zero measure).

This definition implies that every point y of the space can be written as y = x+f ,
for some x ∈ Λ and some f belonging to a fundamental region F . Moreover, if
(x1 +F )∩ (x2 +F ) = ∅ for every x1,x2 ∈ Λ, x1 6= x2, the decomposition y = x+ f
is unique. In this case, we say that the fundamental region is proper. If instead
(x1 +F )∩ (x2 +F ) 6= ∅, the intersection has to be contained in the boundary of the
two sets. F can be made proper by appropriately removing a part of its boundary,
still guaranteeing the space covering property. This leads to the definition of a
quantiser :

Definition 2.4 (Quantiser). Given a lattice Λ ⊆ Rn and a proper fundamental
region F for the lattice, the quantiser with respect to Λ and F is the function
QΛ,F (·) : Rn → Λ that associates to a y ∈ Rn the unique x ∈ Λ such that y = x+ f ,
for some f ∈ F .

Two classical examples of fundamental regions of a lattice are its fundamental
parallelotope and its Voronoi region:

Definition 2.5 (Fundamental parallelotope). The fundamental parallelotope of a
lattice Λ ⊆ Rn with basis B = {b1,b2, . . . ,bn} is the set

P (B) =

{
x ∈ Rn : x =

n∑
i=1

aibi, ∃(a1, a2, . . . , an) ∈ [0, 1)n

}
.
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(0, 0) (1, 0)

(1/2,
√

3/2)

b1

b2

Figure 2.2: The hexagonal lattice A2 ⊆ R2 is generated by the two basis vectors
b1 = (1, 0) and b2 = (1/2,

√
3/2). It is named after its Voronoi regions, which have

the shape of regular hexagons. The fundamental parallelotope associated with the
previous basis is shaded in gray.

Definition 2.6 (Voronoi region). Given a lattice Λ ⊆ Rn and a point x ∈ Λ, the
Voronoi region of x is defined by

V(x) = {y ∈ Rn : ||y − x|| ≤ ||y − z||, ∀z ∈ Λ, z 6= x}.

Equivalently, V(x) is the set of all the real vectors that are closer (or as close) to x
than to any other lattice point. The Voronoi region of 0 is conventionally called the
Voronoi region of the lattice and it is denoted by V(Λ).

The fundamental parallelotope is a proper fundamental region, while we need
to remove from the Voronoi region a part of its boundary to make it proper. The
quantiser with respect to Λ and (the proper version of) V(Λ) is simply denoted
by QΛ(·), the Voronoi region being the implicit fundamental region. Figure 2.2
represents a fundamental parallelotope and a Voronoi region for the hexagonal lattice
A2 ⊆ R2.

Note that, while the definition of fundamental parallelotope depends on the
choice of the lattice basis, the Voronoi region does not. The two geometric properties
listed in the definition and the lattice symmetry imply that any two fundamental
regions have the same volume. In particular, Vol(V(Λ)) = Vol(P (B)) for any basis
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B and it is known that the volume of a parallelotope is given by the absolute value of
the determinant of the matrix whose columns are the edges of the parallelotope that
meet at any fixed vertex. Explicitly, Vol(V(Λ)) = Vol(P (B)) = | det(G)|, where G
is the generator matrix of the lattice corresponding to B. This proves that | det(G)|
is a constant for Λ, independently of the choice of the basis, and therefore justifies
the following definition:

Definition 2.7 (Volume and determinant). The volume of a lattice Λ with generator
matrix G is defined by

Vol(Λ) = | det(G)|.

If A = GGT is the lattice Gram matrix, the determinant of the lattice is

det(Λ) = det(A) = Vol(Λ)2.

We can give another proof of the fact that the two definitions above are in-
dependent of the choice of the lattice basis: suppose that B = {b1,b2, . . . ,bn}
and B′ = {b1

′,b2
′, . . . ,bn

′} are two different basis of the same lattice Λ, with G
and G′ the generator matrices associated with B and B′ respectively. Then, for
every i ∈ {1, 2, . . . , n} we can write bi

′ = qiG, for some qi ∈ Zn. Therefore,
if Q is the matrix whose rows are the qi’s, G′ = QG and Q has to be invert-
ible within the matrices with integer coefficients. Equivalently, det(Q) = ±1 and
| det(G′)| = | det(Q) · det(G)| = | det(G)|.

Another parameter of a lattice which deserves investigation is the norm of the
smallest non-zero vector; since a lattice is symmetrical by lattice point translations,
this also coincides with the minimum distance between any two lattice points.

Definition 2.8 (Minimum distance). The minimum distance of a lattice Λ ⊆ Rn is

dmin(Λ) = min
x∈Λ
||x||.

Anticipating definitions and settings that we will deal with later, we remark that
this quantity can be guessed to be closely related to the performance of a lattice
for the transmission of information over a real channel with Gaussian noise. For
this reason, it is interesting to define a way of comparing the minimum distances of
two lattices, even when they have different volumes (a priori, a greater volume may
trivially imply a greater minimum distance). This motivates the following definition:

Definition 2.9 (Fundamental gain). The fundamental gain of a lattice Λ ⊆ Rn is

γ(Λ) =
dmin(Λ)2

Vol(Λ)
2
n

.

It is also known as the Hermite constant of the lattice.

Suppose that we compare two different lattices. For a fixed volume, the lattice
with bigger fundamental gain will have a tendency to withstand a stronger noise over
a Gaussian channel (under ML decoding, see 2.3.1); similarly, for a fixed minimum
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distance, the lattice with bigger fundamental gain will be the one for which the
smaller amount of energy is needed to send the same amount of information. This
explains why the fundamental gain is used as a lattice performance estimator, when
finer approaches are impracticable.

Another parameter which deserves to be mentioned is the kissing number ; it
simply counts the number of lattice points whose norm is the minimum distance of
the lattice:

Definition 2.10 (Kissing number). The kissing number of a lattice Λ ⊆ Rn is
defined as

τ(Λ) = |{x ∈ Λ : ||x|| = dmin(Λ)}|.

One may also be interested in counting the number of lattice points that have
any fixed norm and not only the minimum one. These numbers are collected by the
so-called theta series :

Definition 2.11 (Theta series). Let q = eπiz for some z ∈ C with Im(z) ≥ 0; let
Nm be the number of points of a certain lattice Λ ⊆ Rn whose squared Euclidean
norm is m. Then the theta series of Λ is defined by

ΘΛ(z) =
∑
x∈Λ

qxx
T

=
∞∑
m=0

Nmq
m.

Observe that, by the previous definition, we have τ(Λ) = Ndmin
(Λ).

2.2 Construction of lattices from codes
Lattices can be seen as the generalisation of linear codes over a finite field (Hamming
space) to the Euclidean space. In this perspective, we will present some classical ways
of obtaining lattices from linear codes. These strategies are very commonly employed
in the literature for the achievement of both theoretical and practical results [Loe97,
EZ04, ELZ05, GZ07, OE12, SBP06, BC08, SSP12, dPBZB12, dPBZB13, dPBZ13].

Definition 2.12 (Linear code). Let Fq be a finite field of cardinality q. A linear
code C ⊆ Fnq is simply a linear space of Fnq , seen as a vector space over Fq. We
denote by C[n, k]q a linear code of Fnq of dimension k over Fq and we write R = k/n
for the rate of the code.

All along this thesis, we will only deal with linear codes over Fp, with p a prime
number, not necessarily equal to 2. In the theoretical results of Chapter 3 and
Chapter 4, the size of p will tend to infinity with the space dimension n.

2.2.1 Construction A

For our purposes, Construction A is the most interesting construction that we
present. All the results of the next chapters concern lattices built in this way. We
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will start with a quite general definition of Construction A, actually more general
than what we will really need. Anyway, this is probably the nicest mathematical
approach and it is worth mentioning. Then we will specify the two Construction A
approaches that we will use in the rest of the thesis, namely Construction A over Z
and over Z[i] (the Gaussian integers).

So, let L be a lattice of small dimension m and let L′ be a sublattice of L such
that the quotient L/L′ is finite of prime cardinality p. The additive group L/L′

injects naturally into the finite field Fp through an additive group isomorphism, and
we assume identification of the two Abelian groups. We can define a lattice Λ of
dimension n = m` in the following way, which is the general setting for Construction
A in Conway and Sloane’s terminology [CS99]:

Definition 2.13 (Construction A). Let C = C[`, k]p be a linear code over Fp of
length `, dimension k, and rate R = k/` and let Π : L` → (L/L′)` be the natural
projection. The lattice Λ obtained by Construction A is defined as:

Λ = {x ∈ L` : Π(x) ∈ C}.

As anticipated before, in the following chapters we shall mainly focus on two
simple cases, namely:

1. L = Z and L′ = pZ.

2. L = Z[i] and L′ = φZ[i], where (φ) = (a+ bi) is a prime ideal of Z[i] of norm
a2 + b2 = p.

The first case is one of the more classical forms of Construction A, for which
we will derive some theoretical results in Chapter 3 and Chapter 4. Numerical
experiments of the Chapter 5 will concern both the first and the second construction.

When L = Z and L′ = pZ, then m = 1, ` = n and, by definition, the lattice Λ is

Λ = {x ∈ Zn : x mod p ∈ C}.

Moreover, let Φ : Fp → Z be the natural embedding of Fp into Z, typically with
Φ(Fp) = {−(p− 1)/2, . . . , (p− 1)/2}, then another way of describing Λ is

Λ = Φ(C) + pZn = {x ∈ Zn : x = Φ(c) + pz, ∃c ∈ C, z ∈ Zn}. (2.1)

To lighten notation, later we might simply write Λ = C+pZn, identifying Φ(C) and
C itself, since the embedding is trivial.

Notice that all the points of a lattice built in this way have integer coordinates;
moreover, pZn is always contained in Λ:

pZn ⊆ Λ ⊆ Zn.

This also implies that, if dC is the minimum Euclidean distance of the linear code
C (that is, if dc = minc∈C ||Φ(c)||), then

dmin(Λ) = min{p, dC}.
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Finally, if H is the parity-check matrix of the code C, another way of defining Λ
is

Λ = {x ∈ Zn : HxT ≡ 0T mod p}. (2.2)
If (Idk B) is a k× ` generator matrix in systematic form for the code C[n, k]p, then
it is easy to show that a generator matrix for Λ is

G =

(
Idk Φ(B)
0 p Idn−k

)
This straightforwardly implies that, if R = k/n,

Vol(Λ) = pn−k = pn(1−R). (2.3)

In the second, Gaussian integer case, m = 2 and C has length ` = n/2. Therefore
Λ can be seen as a Z[i]-module generated by the `× ` matrix

G′ =

(
Idk Φ(B)
0 φ Id`−k

)
where Φ is now an embedding of Fp into a suitable region of Z[i] via the isomorphism
Fp ' Z[i]/(φ): in other words, Φ(Fp) is a set of representatives for Z[i]/(φ). To
obtain a generator matrix for the real lattice Λ of dimension n = 2`, we simply
apply the transformation x+ iy 7→ (

x y
−y x ) to every coordinate of G′. In this case, if

R = k/n = k/2`, we obtain

Vol(Λ) = p`−k = p
1
2
n(1−R).

Figure 2.3 shows a suitable representation Φ(F41) of Z[i]/(4 + 5i) as a constellation
of Z[i] ' Z2: a particular family of codes over Z[i]/(4 + 5i) and their associated
lattices will be experimented with in Chapter 5.

We will see in the next chapters in more detail that it can be very fruitful to
build lattices from linear codes with Construction A. As far as we are concerned,
this is mainly for two reasons:
• because their structure allows a theoretical analysis, inspired by what is al-

ready known about linear codes (see for example [Loe97, EZ04, ELZ05, GZ07,
OE12, dPBZB13, dPBZ13]);

• because it is possible to take advantage of practical implementations of good
linear codes and generalise them to lattices: see the experimental results of
[dPBZB12, SS13] and Chapter 5.

2.2.2 Construction D and D’

Construction D and D’ involve chains of nested binary linear codes and are employed
to build lattices with a low-complexity iterative decoding algorithm (Low-Density
Parity-Check (LDPC) Lattices and Turbo Lattices). We refer the reader to [SBP06,
BC08, SSP12, SS13] to find all information about these lattice families and here we
stick to the simple mathematical presentation of the two constructions. We will not
give much information, but just introduce them as a complement to what we have
already said on Construction A.
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Figure 2.3: A system of representatives for Z[i]/(4 + 5i) ⊆ Z2.

Construction D

Construction D generalises Construction A over Z with p = 2. We keep the notation
of [SSP12] for our description, nevertheless, when compared to that paper, our
version of the construction will come out scaled; this is because we prefer to have
lattices contained in Zn. A good reference for Construction D is also [CS99].

Definition 2.14 (Construction D). Consider the chain of nested binary linear codes

Ca ⊆ Ca−1 ⊆ . . . ⊆ C1 ⊆ C0,

where C` = C`[n, k`]2 for ` = 0, 1, . . . , a (cf. Definition 2.12) and C0 = C0[n, n]2.
Denote by c1, c2, . . . , ck` the k` vectors of Fn2 that generate the `-th code.

We say that a lattice Λ ⊆ Rn is obtained by Construction D (with a + 1 levels)
when

Λ =

{
x ∈ Zn : x = z +

a∑
`=1

k∑̀
j=1

β
(`)
j 2a−`cj,∃z ∈ 2aZn, β(`)

j ∈ {0, 1}

}
.

Let ∗ denote the coordinate-wise product between any two binary codewords
c = (c1, c2, . . . , cn) and c′ = (c′1, c

′
2, . . . , c

′
n):

c ∗ c′ = (c1 · c′1, c2 · c′2, . . . , cn · c′n),

where · indicates the usual product operation of F2. If we suppose that for every
` < a,

{c ∗ c′ : c, c′ ∈ C`+1} ⊆ C`.
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then we can give a more compact formula to define the previously defined Λ:

Λ = Ca + 2Ca−1 + . . .+ 2a−2C2 + 2a−1C1 + 2aZn. (2.4)

Note that Construction A over Z with p = 2 is a particular case of Construction
D with a = 1 (compare (2.1) and (2.4); above here we have omitted to specify the
trivial embedding Φ of the codes in Zn).

Construction D’

Construction D’ is dual to Construction D. To describe it, we will mostly use the
same notation of [SBP06]; another reference to learn about it is [CS99]. Let α ∈
{1, 2} and consider, as for Construction D, the chain of nested binary linear codes

Ca ⊆ Ca−1 ⊆ . . . ⊆ C1 ⊆ C0, (2.5)

with C` = C`[n, k`]2 for ` = 0, 1, . . . , a. Every one of the codes is generated by
r` = n − k` parity-check equations. Let h1,h2 . . . ,hra ∈ Fn2 be the equations that
generate the smallest code Ca and suppose that C` is generated by h1,h2 . . . ,hr` .
This guarantees that the inclusions in (2.5) are respected.

Definition 2.15 (Construction D’). With the previous notation and imposing r−1 =
0, we say that a lattice Λ ⊆ Rn is built by Construction D’ (with a+ 1 levels) when

Λ = {x ∈ Zn : hjx
T ≡ 0 mod 2`+1,∀` = 0, 1, . . . , a and ra−`−1 + 1 ≤ j ≤ ra−`}.

Also in this case, Construction A over Z with p = 2 can be seen as a 1-level
Construction D’ (compare (2.2) and (2.15)).

2.2.3 Other constructions

For the sake of completeness, we integrate the presentation of infinite constellation
constructions from codes recalling that there exist also Construction B and C. These
are less employed in the literature that we refer to, so we do not give much detail
on them. We simply report that:

• Construction B employs a binary linear code C with minimum distance equal
to 8 to obtain a lattice whose points x are such that:

1. x is congruent modulo 2 to a codeword of C.

2. The sum of all the coordinates of x is divisible by 4.

• Construction C generates non-lattice constellations. Construction D is a mod-
ification of Construction C.

A deeper discussion of these constructions can be found in [CS99].
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Encoder + Decoder

Random AWG Noise

x y

w

Figure 2.4: The AWGN channel model: the output y equals the coded input x plus
the random noise w.

2.3 Lattices for the AWGN channel

2.3.1 The AWGN channel and Maximum Likelihood decod-
ing

This thesis in entirely dedicated to the application of lattices to channel coding.
In particular, the channel model that we deal with is the so-called Additive White
Gaussian Noise channel (or, briefly, AWGN channel). It is a real channel, meaning
that its effect is to add to the channel entry x a random noise vector w (see Figure
2.4). The coordinates of w are n i.i.d. random variables which follow a Gaussian
distribution with average 0 and fixed variance σ2. Moreover, the noise is independent
of the channel input x.

The motivation for investigating the AWGN channel lies in the fact that it is a
model for some very common communication channels, for example satellite links or
telephone channels (both wired and wireless). Of course, for any fixed noise variance,
it is easy in principle to design a code which allows reliable communication through
the AWGN channel. It suffices to take all codewords far apart one from another and
almost every instance of the random noise will be correctly decoded. Nevertheless,
this may a priori imply that the input ensemble has very large energy, which is not
a good assumption for practical reasons. The model becomes more interesting if we
add some power constraint: we assume that every codeword x = (x1, x2, . . . , xn) is
such that

1

n

n∑
i=1

x2
i ≤ P, (2.6)

that is, we impose a maximum squared Euclidean norm of nP to all the codewords,
for some fixed value P , called the average power per dimension. With this hypothe-
sis, it is a well-known result of Shannon (well presented in [CT91]) that the capacity
of the AWGN channel is

C =
1

2
log2

(
1 +

P

σ2

)
=

1

2
log2 (1 + SNR) bits per transmission. (2.7)
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Let X, Y andW be the random variables that represent respectively the channel
input, the channel output and the random noise. Correspondingly, let pX(x), pY (y)
and pW (w) be their probability density functions. In the case of AWG noise, the
channel is represented by the following transition probabilities (with standard nota-
tion for marginal and conditional):

pY |X(y|x) =
n∏
i=1

pYi|Xi(yi|xi)

=
n∏
i=1

pWi|Xi(wi|xi)

=
n∏
i=1

pWi
(wi)

=
n∏
i=1

1

σ
√

2π
exp

(
− w2

i

2σ2

)
, (2.8)

where the first equality holds because of the coordinate-wise independence of the
noise, the second one from the fact that yi = xi + wi, the third one from the noise
independence of x and the fourth one from the definition of the noise. The decoder
tries to guess from the output y what the transmitted message x is. Maximum A
Posteriori (MAP) decoding, which is optimal, consists in finding the codeword x̂(y)
that maximises pX|Y (x|y):

x̂(y) = arg max
codewords x

pX|Y (x|y)

= arg max
codewords x

pY |X(y|x)
pX(x)

pY (y)

= arg max
codewords x

pY |X(y|x)pX(x).

Notice that, if x belongs to a finite set, if pX(x) is uniform and there is no distinction
among the input probabilities, then

x̂(y) = arg max
codewords x

pY |X(y|x)

and this decoding rule is also known as Maximum Likelihood (ML) decoding. In
this case, writing wi = yi − xi and using (2.8), we get:

x̂(y) = arg max
codewords x

n∏
i=1

1

σ
√

2π
exp

(
−(yi − xi)2

2σ2

)
.

The decreasing nature of the exponential functions clearly implies that the codeword
that maximises the product on the right is simply the one for which |yi − xi| is
minimised for every i. In other words, we have just proved that for the AWGN
channel with equiprobable inputs, the optimal decoder just looks for the codeword
closest to the received point y. Unless differently specified, we will always suppose
that the inputs are equally distributed and talk without distinction of “optimal” and
“ML” decoding.
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2.3.2 Lattices and lattice codes

The problem that we want to investigate is how good can lattices be for the trans-
mission of information over the AWGN channel. In other words, we suppose that
the set of codewords consists of a subset of a lattice Λ. Typically, every message is
associated with a lattice point and we give the following definition:

Definition 2.16 (Lattice code). Given a lattice Λ ⊆ Rn and a bounded region
S ⊆ Rn, a lattice code (or lattice constellation) C is the intersection of Λ and S,
used as input set for the AWGN channel:

C = S ∩ Λ.

S is called the shaping region and, if M is the cardinality of the lattice code, its rate
is defined as

RC =
log2(M)

n
.

Desirable features of the lattice Λ and the shaping region are:

1. We would like Λ to be “geometrically good” in order to intrinsically be a “good”
noise corrector, independently of the shaping region.

2. Among all subsets of Λ that allow to encode our set of messages, we would like
to choose one which has the lowest total energy (in the sense of minimising P
in (2.6)).

The first point is stated in a quite vague way and for now we just would like
to point out the fact that not all lattices have the same performance. We will give
this concept proper treatment in a while, when we will talk about the unconstrained
AWGN channel and Poltyrev capacity (see also Section 2.4.4).

The second aspect can be translated into looking for the lattice that allows to
send the biggest number of messages for fixed volume and shaping region; equiva-
lently, we search for the lattice of given volume for which the biggest possible number
of lattice points lie inside the given shaping region. A complementary point of view
is to fix the shaping region and the rate of the lattice code and look for the lattice
whose intersection with the shaping region has the desired cardinality and which has
the greatest minimum distance. One can also remark that the problem of finding a
“good” lattice for the AWGN channel with ML decoder is also related to the problem
of finding a lattice with “good” fundamental gain (cf. Definition 2.9).

Some history

We would like to go into some more detail about the state of the art of lattice-
based information theory.The first work that is definitely worth mentioning is the
analysis made by de Buda in [dB75], dating 1975. He showed how lattice codes
whose shaping region is a sphere can be asymptotically reliably decoded at any rate
up to 1/2 log2(P/σ2) (in the notation of (2.7)) under lattice decoding.
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Lattice decoding is a decoding strategy that does not take into account the
shaping region defining the constellation. In other words, a lattice decoder simply
returns the closest lattice point to the decoder input, regardless of the fact that
it belongs to the constellation or not. As a consequence, the decoding decision
regions are all equivalent and coincide with the Voronoi regions of the lattice points
(cf. Definition 2.6). Of course, this method is suboptimal with respect to the real
ML decoder (also referred to as a nearest-neighbour or nearest-codeword decoder).
Nevertheless, its easier algorithmic nature, due to the fact that the shaping region
boundary does not affect it, makes it appealing for both theoretical analysis and
practical implementation.

The work by de Buda continued in [dB89] and was partially corrected by Linder,
Schlegel and Zeger in [LSZ93]. They were able to prove that lattice codes can
attain the capacity of the AWGN channel under optimal decoding, with shaping
determined by “thin” spherical shells. This peculiar shaping region actually makes
the code lose most of its lattice structure and look similar to a random code on a
sphere. Urbanke and Rimoldi filled this gap with the proof that lattice codes made
up of the intersection between a ball and a lattice are capacity-achieving under
nearest-codeword decoding (cf. [UR98]).

Thus, the theoretical problem of showing that lattice codes are capacity-achieving
was solved. Nonetheless, the question whether this result can be obtained under (a
priori non-optimal) lattice decoding remained answerless. It resisted the attempt
of Magalhães de Oliveira and Battail, too, whose proof in [MdOB90] contained a
mistake. Finally, once again they could not go beyond the limit of 1/2 log2(P/σ2) for
the maximum rate of a reliably decodable lattice code. In 1997, Loeliger proved the
achievability of 1/2 log2(P/σ2) with Construction A lattices over Fp and conjectured
that this limit could not be overcome with lattice decoding.

It has been necessary to wait for Erez and Zamir’s solution to the problem, based
on the MLAN (Modulo-Lattice Additive Noise) channel and Voronoi constellations
[EZ04] with Construction A lattices (cf. Definition 2.13). We invite the reader to go
to Section 4.1 and Section 4.2 to find a more detailed discussion on this strategy and
to see how we have been able to improve this result (cf. Theorem 4.1). More recently,
Belfiore and Ling have proposed a solution that involves a non-uniform distribution
on the channel inputs and an infinite (but probabilistically finite) codebook (cf.
[LB13]).

Poltyrev capacity

The particular interest sparked by lattice decoding and the intention of separating
the problem of finding a good shaping region from the problem of finding intrin-
sically “good” lattices, motivated Poltyrev to carry out his analysis of the uncon-
strained AWGN channel [Pol94]. It consists of the AWGN channel without the
power constraint (2.6). The codebook is then made by the whole unbounded lattice,
for which lattice decoding turns out to be optimal. Poltyrev showed once again
that the rate 1/2 log2(P/σ2) is achievable and he also extended his analysis to non-
lattice infinite constellations. He provided an exponential random coding bound for
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the decoding error probability and established the notion of normalised logarithmic
density. This concept allows one to compare the performance of different lattices in
this unbounded setting for which capacity equals infinity and the notion of coding
rate becomes meaningless.

Definition 2.17 (Normalised logarithmic density). Let Λ ⊆ Rn be a lattice. The
normalised logarithmic density (NLD) of Λ is

δ =
ln (Vol(Λ)−1)

n
.

We report now Poltyrev’s result, in a weaker version with respect to its statement
in [Pol94]; however, this will be sufficient for our purposes. A notational remark: we
denote by Pe the probability of making a decoding error, since it does not depend
on the sent lattice point because of the lattice symmetry and the unboundedness of
the codebook.

Theorem 2.1 (Poltyrev, 1997). For the unconstrained AWGN channel with noise
variance σ2, let δ∗ = 1/2 ln(1/(2πeσ2)). Then, the following statements hold:

1. There exists a sequence of lattices Λn ⊆ Rn of NLD equal to δ < δ∗ such that
Pe decreases to 0 exponentially in n.

2. For every sequence of lattices with NLD strictly greater than δ∗, the decoding
error probability Pe does not tend to 0 when n tends to infinity.

The theorem suggests the following definition:

Definition 2.18 (Generalised capacity). We give the name of generalised capacity
of the unconstrained AWGN channel to the quantity

δ∗ =
1

2
ln

1

2πeσ2
.

It is the threshold that separates the values for which reliable lattice decoding is
possible from values for which no reliably decodable sequence of lattices exists.

Note that the inequality

ln (Vol(Λ)−1)

n
= δ < δ∗ =

1

2
ln

1

2πeσ2

puts in relation the noise variance of the channel with the volume of the lattices
among which a reliably decodable sequence can be found. Symmetrically, for a fixed
lattice volume, we can make explicit the maximum noise variance value for which
reliable decoding of a sequence of lattices with that volume exists:

σ2 <
Vol(Λ)2/n

2πe
= σ2

max. (2.9)
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Definition 2.19 (Poltyrev-capacity-achieving families). We say that a family of
lattices Λn ⊆ Rn with fixed volume Vn achieves Poltyrev capacity if for all σ2 < σ2

max,
the probability of a decoding error for the unconstrained AWGN channel of noise
variance σ2 tends to 0 when n tends to infinity.

Observe that there is a slight abuse in this definition, due to the fact that it
is more usual to define the capacity as an intrinsic feature of the channel. Here,
instead, we prefer to define it as a maximum noise variance value, given a lattice
volume. This is the notion of Poltyrev capacity to which we will refer in Theorem
3.1 and Theorem 3.2. The probability of decoding error is meant with respect to
the randomness related to both the lattice family and the error distribution. It is
in this sense that the defintion above should be read.

We conclude the section recalling that Ingber, Zamir and Feder have very re-
cently revisited Poltyrev’s asymptotic results and extended them to finite-dimension
infinite constellations [IZF13].

2.4 Some problems involving lattices

In this section, we would like to introduce some problems that classically involve
lattices and that are related to coding theory in Euclidean space. Far from pro-
viding an extensive summary of all the classical problems concerning lattices, we
will only face the problems of sphere packing, sphere covering, channel coding and
quantisation. We present them because they are useful for the general background
and because they will be recalled in state of the art part of Chapter 4. Furthermore,
we want to mention that a simultaneous solution to all the four problems exists and
it will turn out to be of great relevance to us. Indeed, it has been shown by Erez,
Litsyn and Zamir [ELZ05] that there exists a random family of lattices that solve
all of these problems at the same time. This family is based on Construction A and
extensively used all along this dissertation, assuming a dominating role in our work.

Of course, these problems naturally arise from their binary Hamming space ana-
logue. The literature on this subject is extensively rich and many famous results
exist, showing how random codes can solve the different problems (we refer the
reader to [ELZ05] for a precise and concise introduction on that). As typically hap-
pens, the shortage of structure of fully random codes, despite its practicality for
probabilistic theoretical results, pushed the scientific community to look for linear-
code-based solutions. The step from linear codes in the Hamming space to lattices
in the Euclidean space is then conceptually brief and leads to the formulation of the
problems that we will present below here. We will substantially follow the descriptive
flow of [ELZ05], without adding any mathematical novelty.
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(0, 0) ρpack(A2)

ρcov(A2)

Figure 2.5: The packing and covering radius of the hexagonal lattice A2 in R2. It is
clearly visible how the Voronoi region of the lattice is included between the packing
and the covering spheres.

2.4.1 The sphere packing problem

Let Bc,n(ρ) ⊆ Rn be the ball centred at c of radius ρ. Given a lattice Λ ⊆ Rn, let

BΛ,n(ρ) =
⋃
x∈Λ

Bx,n(ρ).

This set is called a packing if

Bx,n(ρ) ∩By,n(ρ) = ∅,∀x,y ∈ Λ and x 6= y.

Definition 2.20 (Packing radius). The packing radius ρpack of a lattice Λ ⊆ Rn is
defined as

ρpack(Λ) = sup{ρ ∈ R : BΛ,n(ρ) is a packing}. (2.10)

For a fixed lattice volume, the sphere packing problem in dimension n consists in
looking for the Λ with the given volume such that its packing radius is the greatest
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possible. Observe that
Bx,n (ρpack(Λ)) ⊆ V(x) (2.11)

for every x ∈ Λ (see also Figure 2.5). This leads to say that a lattice with a big
packing radius is a lattice whose Voronoi region is “very spherical”. In other terms,
we look for lattices whose Voronoi regions are not too “narrow” or asymmetric,
so that they can contain a big packing sphere. More formally, let us express this
concept starting with another definition:

Definition 2.21 (Effective radius). The effective radius of a lattice Λ ⊆ Rn is the
radius ρeff(Λ) such that

Vol (B0,n (ρeff(Λ))) = Vol (V(Λ)) .

The inclusion in (2.11) implies that the quantity δpack(Λ) = ρpack(Λ)/ρeff(Λ),
often called packing efficiency of Λ, is smaller than 1 (in particular, it is equal to 1
only in dimension n = 1; otherwise, the inequality is strict). We would like to find
lattices whose packing efficiency is the closest possible to 1.

Mathematically speaking, this problem is probably the central one in lattice the-
ory and it has been (and still is) the object of profound investigation. Nevertheless,
it is far from being easy and it has not come to a complete solution. We briefly re-
call here two asymptotic results (as provided in [ELZ05]): if Λn denotes a generical
n-dimensional lattice, let

δ∗pack = lim sup
n→∞

sup
Λn

δpack(Λn)

be the optimal asymptotic packing efficiency. The Minkowski-Hlawka theorem
[Rog64] gives the best known lower bound for δ∗pack, namely δ∗pack ≥ 1/2. On
the other hand, it is known that δ∗pack is strictly smaller than 1 and in particular
δ∗pack ≤ 0.660211... (cf. [KL78, CS99]).

Definition 2.22 (Goodness for packing). We say that a sequence of lattices Λn is
(asymptotically) good for packing if

lim sup
n→∞

sup
Λn

δpack(Λn) ≥ 1

2
,

that is, if it achieves Minkowski’s bound.

As we have previously mentioned, Construction A lattices are shown to be good
for packing [ELZ05, Rog64].

2.4.2 The sphere covering problem

The sphere covering problem is somehow dual to the sphere packing problem. Keep-
ing the same notation as before, we say that the set BΛ,n(ρ) is a covering if
Rn = BΛ,n(ρ). This means that the ensemble of all the balls of radius ρ centred
at the points of Λ cover the whole space. Dually to the notion of packing radius, we
can give the following definition:
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Definition 2.23 (Covering radius). The covering radius of a lattice Λ ⊆ Rn is
defined as

ρcov(Λ) = min{ρ ∈ R : BΛ,n(ρ) is a covering}.

For a fixed lattice volume, the sphere covering problem consists in finding lattices
with the smallest possible covering radius. As it is represented in Figure 2.5, for
every lattice point x ∈ Λ,

V(x) ⊆ Bx,n (ρcov(Λ)) .

So, once again, “spherical” Voronoi regions imply that a lattice has a small covering
radius. We define the covering efficiency of a lattice Λ as the quotient δcov(Λ) =
ρcov(Λ)/ρeff(Λ). Of course, the smallest possible covering efficiency equals 1. Let
δ∗cov be the optimal asymptotic covering efficiency:

δ∗cov = lim inf
n→∞

inf
Λn
δcov(Λn);

Rogers [Rog59] showed that δ∗cov = 1 and we give the following definition:

Definition 2.24 (Goodness for covering). A sequence of lattices Λn is (asymptoti-
cally) good for covering if

lim inf
n→∞

inf
Λn
δcov(Λn) = 1,

that is, if it achieves Rogers’ equality.

Construction A lattices are good for covering too [ELZ05].

2.4.3 The quantisation problem

We defined in Section 2.1 what a lattice quantiser is (cf. Definition 2.4). In Mean
Squared Error (MSE) quantisation, the quantiser associated with the Voronoi region
of a lattice Λ is considered (we denoted it by QΛ(·)). A result of Gersho [Ger79] puts
in relation the distortion for high-resolution lattice quantisation of a source and the
following quantity:

Definition 2.25 (Normalised second moment). The normalised second moment of
a lattice Λ ⊆ Rn is defined as

G(Λ) =
1

nVol(V(Λ))1+2/n

∫
V(Λ)

||y||2dy.

Namely, the normalised second moment and the distortion are proportional.
The quantisation problem translates into finding lattices whose normalised second
moment is the smallest possible.

Let Λn be the generic lattice of Rn and let Gn = minΛn G(Λn). For geometric
reasons, Gn is greater than the normalised second moment of a sphere. Moreover,
it is known that the latter tends to 1/2πe when n goes to infinity. Rate-distortion
theory and the Shannon lower bound state that the random-code formula for the
distortion is the same as the distortion formula for a lattice family for which G(Λn)
tends to 1/2πe. This justifies the following definition:
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Definition 2.26 (Goodness for quantisation). We say that a lattice family Λn is
(asymptotically) good for quantisation if

lim
n→∞

G(Λn) =
1

2πe
.

Once again, “goodness” of lattices deals with their Voronoi region and lattices
for which it is “spherical” (this time, in the sense of the normalised second moment)
are good. It is known that there exist good lattice quantisers (cf. [ZF96]) and
Construction A lattices are among them (cf. [ELZ05]).

2.4.4 The channel coding problem

Finally, we mention the channel coding problem. It is simply the problem of coding
over the unconstrained AWGN channel, as it was formulated by Poltyrev in [Pol94]).
We have already introduced it in Section 2.3.2 and we have dedicated an entire para-
graph to the related concept of Poltyrev capacity. Now, we just want to complete
the formulation of this problem adding a definition of “goodness” for AWGN coding:

Definition 2.27 (Goodness for coding). We say that a lattice family Λn is good for
coding over the unconstrained AWGN channel with noise variance σ2, if:

1. It is Poltyrev-capacity-achieving (cf. Definition 2.19).

2. When the dimension n tends to infinity, its error decoding probability decreases
to 0 like e−nEU (Λn,σ2)+o(1), where EU(Λn, σ

2) is the error exponent derived by
Poltyrev in [Pol94] for random lattices.

Construction A lattices are good for coding, too [ELZ05].
For the sake of completeness, we report below here the values of EU(Λn, σ

2)
and we refer the reader to [Pol94] to learn how they are computed. Let ν =
Vol(Λn)2/n/2πeσ2. Recall that Theorem 2.1 states that reliable decoding is pos-
sible if ν > 1; vice versa, it is not possible if ν < 1 and ν = 1 corresponds to
Poltyrev capacity σ2

max (cf. (2.9)). Then

EU(Λn, σ
2) = EU(ν) =


1
2

((ν − 1)− ln ν) if 1 ≤ ν ≤ 2
1
2

ln(eν/4), if 2 ≤ ν ≤ 4

ν/8, if ν ≥ 4.

.

2.5 Some useful lemmas

The following lemmas deal with probability theory, combinatorics and geometry and
we list them one by one here below, even if for now they may appear unrelated.
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2.5.1 Chebyshev’s inequality

Chebyshev’s inequality is well-known and very useful. For the sake of completeness,
we give a short proof of it, following [Bal98].

Lemma 2.1 (Chebyshev’s inequality). Let X be a random variable and let τ > 0
be any positive quantity.

P {|X − E[X]| > τ} ≤ Var(X)

τ 2
.

Proof. Consider the auxiliary random variable

Y =

{
τ 2, if |X − E[X]| > τ

0, otherwise
.

If |X −E[X]| > τ , then (X −E[X])2 > τ 2 = Y and similarly, if |X −E[X]| ≤ τ , we
have (X −E[X])2 ≥ 0 = Y . Then (X −E[X])2 ≥ Y in both cases and we conclude:

Var(X) = E[(X − E[X])2] ≥ E[Y ] = τ 2P{|X − E[X]| > τ}.

2.5.2 The typical norm of a random noise vector

In the previous section we have mentioned additive white Gaussian noise. The next
classical lemma describes the “typical” norm of a random noise vector in very high
dimension. More formally:

Lemma 2.2 (Typical norm of the AWG noise). Consider n i.i.d. random variables
X1, . . . , Xn, each of them following a Gaussian distribution of mean 0 and variance
σ2. Let ρ =

√∑n
i=1X

2
i . Then, for every ε > 0,

lim
n→∞

P
{
σ
√
n (1− ε) ≤ ρ ≤ σ

√
n (1 + ε)

}
= 1.

Proof. It is known that, since Xi ∼ N (0, σ2), i = 1, . . . , n, then X2
i has a gamma

distribution and E[X2
i ] = σ2, Var(X2

i ) = 2σ4. Consequently, by the independence
of the Xi,

E[ρ2] = nσ2, Var(ρ2) = 2nσ4.

Lemma 2.1 with Y = ρ2 and τ = κ
√

2nσ2 for some κ > 0 gives

P
{
|ρ2 − nσ2| > κ

√
2nσ2

}
≤ 1

κ2
.

If we choose κ = κ(n) such that limn→∞ κ = +∞, then

lim
n→∞

P
{
|ρ2 − nσ2| ≤ κ

√
2nσ2

}
= 1. (2.12)
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As a consequence,

lim
n→∞

P

{
ρ2 ≤ σ2n

(
1 + κ

√
2

n

)}
= 1.

Taking for example κ = lnn, we have that limn→∞ κ
√

2/n = 0. This implies that
for n big enough and for every ε > 0√

1 + κ

√
2

n
< 1 + ε

and

P

ρ ≤ σ
√
n

√1 + κ

√
2

n

 ≤ P {ρ ≤ σ
√
n (1 + ε)

}
.

This is enough to conclude that

lim
n→∞

P
{
ρ ≤ σ

√
n (1 + ε)

}
= 1,

too, which proves the statement restricted to the second inequality. But notice that
(2.12) also implies that

lim
n→∞

P

{
ρ2 ≥ σ2n

(
1− κ

√
2

n

)}
= 1.

This leads to the conclusion that

lim
n→∞

P
{
ρ ≥ σ

√
n (1− ε)

}
= 1,

too, and the lemma is proved.

2.5.3 Integer points in a sphere

In the next chapters, we will often need to count the number of integer points inside
a sphere of a given radius. For this purpose, we will use the following lemma:

Lemma 2.3 (Integer points inside a sphere). Let Bc,n(ρ) = {x ∈ Rn : ||x−c||2 ≤ ρ2}
be the ball centred at c of radius ρ. Let N = |Zn ∩Bc,n(ρ)|. Then

Vol (Bc,n (ρ))

(
max

{
1−
√
n

2ρ
, 0

})n
≤ N ≤ Vol (Bc,n (ρ))

(
1 +

√
n

2ρ

)n
.

Proof. Consider, for every z ∈ Zn, the cube Cz centred at z of edge (and volume)
equal to 1. Let

U =
⋃

z∈Zn∩Bc,n(ρ)

Cz
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and notice that |Zn ∩Bc,n(ρ)| = Vol(U).
Now, let S1 be the sphere inscribed in U and S2 the one circumscribed to U . The

definition of U and the fact that the length of the diagonal of any Cz is
√
n imply

that the radius of S1 is at least ρ−
√
n/2, while the one of S2 is at most ρ+

√
n/2.

Therefore,

Vol (Bc,n(ρ))

(
1−
√
n

2ρ

)n
= Vol

(
Bc,n

(
ρ−
√
n

2

))
≤ Vol(S1) ≤ Vol(U)

and

Vol(U) ≤ Vol(S2) ≤ Vol

(
Bc,n

(
ρ+

√
n

2

))
= Vol (Bc,n(ρ))

(
1 +

√
n

2ρ

)n
.

Since |Zn ∩Bc,n(ρ)| = Vol(U), these two inequalities give us the wanted result.

2.5.4 Approximations of the binomial coefficient

We recall the following result:

Lemma 2.4 (Stirling’s approximation of the factorial function). Let n be a natural
number. Then

√
2πn

(n
e

)n
exp

(
1

12n
− 1

360n3

)
< n! <

√
2πn

(n
e

)n
exp

(
1

12n

)
(2.13)

and, asymptotically,
n! ∼

√
2πn

(n
e

)n
.

We omit the proof, which can be found in some classical handbooks of analysis
or number theory. Of course, the symbol ∼ indicates the “asymptotic equality”
relation: we say that a function f(n) is asymptotic to a function g(n) if

lim
n→∞

f(n)

g(n)
= 1

and we denote this relation by f(n) ∼ g(n). We move on recalling the following
definition:

Definition 2.28 (Binary entropy function). The binary entropy is the function:

h(x) = −x log2 x− (1− x) log2(1− x), for all 0 < x < 1.

By continuity, we extend the definition to h(1) = h(0) = 0.

This function is of help to establish an accurate approximation of the binomial
coefficient:
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Lemma 2.5. Let n be a natural number and let 0 ≤ θ ≤ 1 be any rational number
such that θn is natural, too. Then:

1√
8nθ(1− θ)

2nh(θ) ≤
(
n

θn

)
≤ 1√

2πnθ(1− θ)
2nh(θ).

The proof of the lemma, as it is proposed by [MS77], is nothing more than
a direct computation that employs inequality (2.13) to approximate the factorial
functions in the binomial coefficient.

2.5.5 The volume of a sphere

Lemma 2.6. Let B = Bc,n(ρ) ⊆ Rn be the ball centred at c of radius ρ. Then

Vol(B) =
(
√
πρ)n

Γ
(
n
2

+ 1
) ∼ 1√

πn

(√
2πeρ√
n

)n

,

where Γ(·) is Euler’s Gamma function.

We do not provide the proof of this result, which is classical; the asymptotic
approximation comes from Stirling’s formula.
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Chapter 3

Infinite LDA lattice constellations

This chapter is entirely dedicated to a particular family of lattices, called Low-
Density Construction A (LDA) lattices. In Section 2.3, we have already explained
what we mean by achieving Poltyrev capacity with an infinite constellation. We have
also recalled that this result is theoretically affordable when we consider Construc-
tion A families of lattices (see the proof of [Loe97]). Besides this non-constructive
achievement some lattice coding schemes have been put forward with the inten-
tion of finding families which have simultaneously practically manageable encoding
and decoding algorithms and close-to-capacity performance. Some of these fami-
lies are inspired by LDPC and turbo codes [SBP06, BC08, SFS08, SSP12, SS13].
The most recent of these works concerns polar lattices [YLW13, YL12], for which
a theoretical result about capacity achievement is available, too. However, to the
best of our knowledge no other analysis has been provided till now that gives both
a strong theoretical result and satisfactory numerical performance. This is actually
the purpose of this dissertation and this chapter concerns the abstract analysis of
the capacity-achieving properties of LDA lattices:

Definition 3.1 (LDA lattice). A lattice Λ ⊆ Rn is called a Low-Density Construc-
tion A (or briefly LDA) lattice if it is built with Construction A (cf. Definition
2.13) starting from an LDPC code.

LDA lattices were first envisaged in [Ere02] and we reintroduced them together
with an efficient iterative algorithm in [dPBZB12]. We also carried out a theoret-
ical analysis of their capacity-achieving qualities in [dPBZB13, dPBZ13]. Some of
those results are proposed anew and completed in this dissertation. LDA lattices
put together the strength of Construction A and LDPC codes (over a non-binary
prime field) and will be described and investigated in depth in the sequel. Their
main feature is that their corresponding parity-check matrix is sparse. As one can
guess, this is the key idea to reconduct their decoding to well-performing, imple-
mentable LDPC decoding algorithms. At the same time, a theoretical approach is
still manageable to mathematically prove the good properties of the families, even
if some sharper and more technical examination is required in contrast with the
more general Construction A results [Loe97, ELZ05, GZ07]. This is due to the “less
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random” nature of the ensemble we consider, that complicates but does not impede
the analysis.

In particular, we propose two different constructions of LDA lattices over a prime
field Fp and show that they both achieve Poltyrev capacity of the unconstrained
AWGN channel under lattice (ML) decoding. The difference between them concerns
the number of non-zero coefficients hi in a parity-check equation

∑n
i=1 hixi ≡ 0 mod

p. We call this number the degree of the parity-check equation. By definition of an
LDA lattice, it has to be small with respect to n. How small? We will consider the
two following settings:

1. The case in which the degree grows logarithmically with n. The corresponding
random ensemble is described in Section 3.2.1 and the capacity-achieving result
is given in Theorem 3.1. This setting is the direct generalisation to lattices of
the LDPC code theory. In fact, it was already shown by Gallager that binary
LDPC codes need logarithmically growing parity-check equation degrees to
achieve the capacity of the binary symmetric channel (see [Gal63, Mac99]).
Previous studies of non-binary LDPC codes for modulo additive channels
[EM05] similarly require parity-check equations with weight tending to in-
finity to achieve capacity. We take inspiration from these results and adapt it
to our LDA lattices.

2. The case in which the degree is (a well-defined) constant with respect to n.
We present this second LDA family in Section 3.3.3 and the capacity-achieving
result will be Theorem 3.2. In this case, the probabilistic model is different
and somewhat less natural; we also need a particular expansion result con-
cerning the Tanner graphs associated with the LDA random ensemble. This
is presented in Section 3.3.2. Moreover, we will also have a further condition
on the size of the prime p with respect to the lattice dimension n. At first
sight, it appears quite unexpected that LDA lattices achieve capacity even
with constant parity-check equation degrees. This definitely stands in sharp
contrast with the analogue for binary LDPC codes.

A final remark: in all the proofs of Chapter 3 and Chapter 4, we let the lattice
dimension n tend to infinity, as it is usual in this context. The prime number p also
needs to tend to infinity (see also [Loe97, EZ04, OE12]) and we define p = nλ for
some positive constant λ. It is clear that if n changes and λ is fixed, then it is not
true that nλ is always a prime number. It would be more precise to say that p(λ)
is the closest prime number to nλ, or that p = nλ(n) for some λ(n) assuming values
in an interval properly centred at our fixed value λ. Nevertheless, it is possible to
show that this variation of λ(n) concerns a range which is narrow enough not to
impact any of the asymptotic estimations that we compute letting n tend to infinity.
In other words, there always exists a prime number p close enough to nλ to make
accurate the approximation p = nλ. Despite the slight abuse of notation, we prefer
to keep it that way from now on, in order to write the proofs in the clearest way
possible and avoid the overabundance of symbols.
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CHAPTER 3. INFINITE LDA LATTICE CONSTELLATIONS

3.1 Poltyrev capacity for Construction A lattices

Before moving on to our main results, we just recall that when the channel random
noise is AWG, lattice decoding is equivalent to ML decoding in the case of infinite
constellations. Poltyrev capacity (cf. Definition 2.19) corresponds to the threshold
noise variance per dimension value that separates reliably decodable and undecod-
able noise (cf. Section 2.3.2). For n-dimensional lattices with fixed fundamental
volume Vn, this maximum “tolerable” noise variance per dimension is equal to (cf.
(2.9))

σ2
max =

V
2/n
n

2πe
.

Now, consider Construction A lattices over Z for some prime p (see Definition 2.13).
We have already computed (cf. (2.3)) that the volume of these lattices is equal to
pn(1−R), if R is the rate of the underlying linear code. This implies that for a fixed
R, Poltyrev capacity for Construction A lattices is equal to

σ2
max =

p2(1−R)

2πe
, (3.1)

independently of the dimension n. Moreover, this value is also independent of the
type of linear code that we use to construct the lattices.

3.2 Random LDA lattices achieve Poltyrev capacity

In this section we prove that there exists a Poltyrev-capacity-achieving random
family of LDA lattices with logarithmic-degree parity-check equations. This result
is inspired by what is already known about LDPC codes [Gal63, Mac99] and adapted
to non-binary Construction A over Z.

We will see very soon what is in detail the LDA lattice family that we consider
and the formal proof of our result. But before that, we would like to summarise
our strategy as an introduction that should help the reader not to get lost in the
mathematical details. Thus, the proof of Theorem 3.1 will develop in this way:

1. Given a random lattice Λ of the family presented in Section 3.2.1, we suppose
that the channel input is the point 0 ∈ Λ.

2. Given the AWGN channel output y, our aim is to show that it is closer to 0
than to any other lattice point.

3. Lemma 2.2 guarantees that for n tending to infinity the AWG noise typically
lies inside a sphere of a well-determined radius (function of the noise variance).
Equivalently, we can consider a sphere (called the decoding sphere) centred at
y with the same radius as before. This sphere will typically contain 0 and
we restrict the argument of the previous item only to lattice points inside this
sphere.
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4. We first get rid of all the points of pZn, showing that they will be typically
further from y than 0 (cf Lemma 3.1 and recall that pZn is always contained
in Λ).

5. All the other integer points of the decoding sphere have a well-determined
probability of belonging to the random lattice. We conclude the proof by an
average argument that shows that typically there is no other lattice point than
0 inside the decoding sphere.

Finally, we specify that we will let the lattice dimension n tend to infinity. The
prime number p also needs to tend to infinity and we define p = nλ for some positive
constant λ (see also the end of the introduction of this chapter for some further
comment about this choice). The proof of Theorem 3.1 does not need any condition
on λ, except that it is constant and positive.

3.2.1 The LDA random ensemble: logarithmic degree of the
parity-check equations

It is now the moment of describing our LDA random ensemble. As we have already
anticipated, we will do it starting from the associated parity-check matrices. Hence,
let p be a prime number and let H be a matrix of size n(1 − R) × n, for some
0 < R < 1 with entries in {0, 1, . . . , p − 1}. More precisely, let each row of the
matrix be a random vector, built independently from each other as follows. Let
0 ≤ ∆ ≤ n be an integer. For a given row of H, let us choose, following a uniform
random distribution, exactly ∆ coordinates among all the n ones. We assign to these
coordinates a value, chosen uniformly at random in {0, 1, . . . , p − 1}; furthermore,
we impose that all the other n − ∆ coordinates are deterministically equal to 0.
What we obtain is a matrix in which every row contains exactly n−∆ zeros and ∆
random entries, placed in random positions.

This matrix can be viewed as the parity-check matrix of a k-dimensional random
code C = C[n, k]p ⊆ Fpn, for which all parity-check equations have at most ∆ non-
zero coefficients. This implies that the rate of C it at least R (but it may also be
bigger, due to random choices of the entries).

Of course, if ∆ is small with respect to n, C is an LDPC code. We will take
into account the set of all LDA lattices Λ = C + pZn ⊆ Zn such that C is built at
random as we have just explained and ∆ = β lnn, for some constant β. Theorem
3.1 will need some (mild) conditions on this β.

3.2.2 A lemma on the points of pZn

We state and prove a lemma which is used in the proof of Theorem 3.1. It concerns a
particular subset of points of our random lattices: the points of pZn. They have the
characteristic property of always belonging to a lattice Λ = C + pZn, independently
of the random choice of the linear code C. For this reason, we treat them separately
with respect to the other (random) lattice points.
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We show here that if 0 is the sent point, the random noise produces a channel
output which is typically closer to 0 itself than to any other point of pZn. From
the point of view of the lattice decoder, this means that the points of pZn do not
typically induce a decoding error.

Lemma 3.1. Let Λ ⊆ Rn be a Construction A lattice, let 0 ∈ Λ be the lattice point to
be sent over the AWGN channel and let w be the random noise vector. Furthermore,
suppose that the noise variance per dimension is equal to σ2 = σ2

max(1 − δ)2, for
some constant 0 < δ < 1 and σ2

max = p2(1−R)/2πe (see (3.1)). Then, for every
z ∈ pZn r {0},

lim
n→∞

P{||w||2 ≥ ||w − z||2} = 0.

Proof. Since z belongs to pZn, a necessary condition when ||w||2 ≥ ||w−z||2 is that
at least one of the coordinates of w is bigger than p/2 in absolute value. Hence

P{||w||2 ≥ ||w − z||2} ≤ P{|wi| ≥ p/2,∃i ∈ {1, 2, . . . , n}}

≤
n∑
i=1

P{|wi| ≥ p/2}. (3.2)

Now, wi ∼ N (0, σ2) for every i ∈ {1, 2, . . . , n} and the probabilities in the previous
sum are all identical and independent from i.

Consider the function Q(·), the tail probability of the standard normal distribu-
tion:

Q(y) =
1√
2π

∫ ∞
y

exp

(
−u

2

2

)
du.

For positive y, the Chernoff bound states that

Q(y) ≤ 1

2
e−

y2

2 .

Hence, we can go back to (3.2) and write

n∑
i=1

P{|wi| ≥ p/2} ≤ nP{|w1| ≥ p/2}

= 2nQ
( p

2σ

)
≤ n exp

(
− p2

8σ2

)
= n exp

(
− πep2R

4(1− δ)2

)
,

which decreases to 0 because p = nλ.
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3.2.3 The capacity-achieving theorem

We have introduced all the useful elements for stating and proving the main result:

Theorem 3.1. Let n be a positive integer and let R be a real number such that
0 < R < 1. Let p = nλ be a prime number for some λ > 0. Let ∆ = β lnn be an
integer number, for some β ∈ R. If

β > λ+
3

2(1−R)
, (3.3)

then the n-dimensional LDA random ensemble of Section 3.2.1 achieves Poltyrev
capacity. The row degree in the parity-check matrix of the underlying LDPC codes
is at most ∆ and their rate at least R.

Proof. First of all, observe that β lnn is not always an integer, when n changes
and β is fixed. For this reason, we should properly write ∆ = bβ lnnc in all the
following computations. Anyway, we prefer to drop the integer part symbols and
slightly abuse in notation, pretending that β lnn is integer. This does not change
the substance of the proof and allows to lighten some formal analytical aspects.

Let Λ be a lattice of this family. Since we let n change all along the proof, we
may probably call it Λn. Anyway, we omit the index n for the sake of simplicity
and we simply keep implicit this dependence on the dimension. This will not lead
to any misunderstanding.

Because of the lattice symmetry and the independence between random noise
and channel input, we can suppose that the point of Λ transmitted over the channel
is the point 0. The AWG noise vector is w = (w1, w2, . . . , wn) and the channel
output is y = w. We suppose that the channel noise variance is σ2 = σ2

max(1− δ)2

for some 0 < δ < 1 that can be as small as wanted. Of course, σ2
max is the noise

variance value that corresponds to Poltyrev capacity, as made explicit in (3.1).
Lemma 2.2 states that, when n is very large, the vector y tends to lie within a

sphere of radius a bit greater than σ
√
n and centred at 0.

Let us consider the decoding sphere B = By,n(σ
√
n(1 + ε)) centred at y, with

ε > 0 chosen such that
ε <

δ

1− δ
; (3.4)

this last condition will be explained in the sequel.
When n goes to infinity, the point 0 is inside the decoding sphere with probability

tending to 1; if this occurs, the probability of making a decoding error with a lattice
decoder is smaller than the probability that one or more lattice points different from
0 lie inside the sphere: if 0 is the only lattice point in B, then lattice decoding gives
the correct answer; otherwise, an error will possibly come out. Furthermore, Lemma
3.1 guarantees that the possible presence of points of pZn inside the decoding sphere
does not actually impede good decoding.

Summarising, we are left to show that, if N is the random variable that counts
the number of lattice points inside B that do not belong to pZn, then

lim
n→∞

P{N = 0} = 1. (3.5)
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In order to do this, for every integer point x ∈ B ∩ Zn let Xx be the random
variable defined by

Xx =

{
1, if x ∈ Λ

0, if x /∈ Λ
.

By definition,
N =

∑
x∈Zn∩BrpZn

Xx

and to prove (3.5) it is sufficient to show that

lim
n→∞

E[N ] = 0. (3.6)

Observe that

E[N ] =
∑

x∈Zn∩BrpZn
E[Xx] =

∑
x∈Zn∩BrpZn

P{x ∈ Λ}. (3.7)

If H is the parity-check matrix of C,

P{x ∈ Λ} = P{HxT ≡ 0T mod p}

=
(
P{hxT ≡ 0 mod p}

)n(1−R)
,

where h represents any randomly built row of H (all rows of H are i.i.d., see Section
3.2.1). Then,

E[N ] =
∑

x∈Zn∩BrpZn

(
P{hxT ≡ 0 mod p}

)n(1−R)
. (3.8)

Given an integer point x ∈ Zn r pZn, its support is the set

Supp(x) = {i ∈ {1, 2, . . . , n} : xi 6= 0}.

Suppose that | Supp(x)| = s > 0, for some integer 1 ≤ s ≤ n. We define support of
the random vector h = (h1, h2, . . . , hn) the set of indices of the ∆ coordinates of h
that are not deterministically equal to 0. If I = {i ∈ Supp(x) ∩ Supp(h)}, we have

P{hxT ≡ 0 mod p} = P{hxT ≡ 0 mod p | |I| = 0}P{|I| = 0}
+ P{hxT ≡ 0 mod p | |I| 6= 0}P{|I| 6= 0}

= 1 · P{|I| = 0}+
1

p
· P{|I| 6= 0}

≤ P{|I| = 0}+
1

p
. (3.9)

There are two different situations:

51



3.2. RANDOM LDA LATTICES ACHIEVE POLTYREV CAPACITY

• If 1 ≤ s ≤ n−∆,

P{|I| = 0} =

(
n−s
∆

)(
n
∆

)
=
n−∆

n
· n− 1−∆

n− 1
· · · n− s+ 1−∆

n− s+ 1

=

(
1− ∆

n

)
·
(

1− ∆

n− 1

)
· · ·
(

1− ∆

n− s+ 1

)
≤
(

1− ∆

n

)s
=

(
1− β lnn

n

)s
(3.10)

≤ 1

nβs/n
; (3.11)

(3.10) comes from the hypothesis on ∆, while (3.11) comes from the fact that(
1− β lnn

n

)s
≤ 1

nβs/n

⇔ ln

(
1− β lnn

n

)
≤ ln

1

nβ/n
= −β lnn

n
,

which is true because

ln(1− x) ≤ −x for all x < 1.

Note that for n big enough ln(1−β lnn/n) is well-defined and 0 < β lnn/n < 1.

• If instead n−∆ < s ≤ n, P{|I| = 0} = 0.

Therefore, if n is big enough, putting together (3.8), (3.9) and what we have just
shown, recalling that p = nλ, we get

E[N ] =
∑

x∈Zn∩BrpZn

(
P{hxT ≡ 0 mod p}

)n(1−R)

≤
n−∆∑
s=1

∑
x∈Zn∩BrpZn
| Supp(x)|=s

(
1

nβs/n
+

1

nλ

)n(1−R)

(3.12)

+
n∑

s=n−∆+1

∑
x∈Zn∩BrpZn
| Supp(x)|=s

(
1

nλ

)n(1−R)

. (3.13)
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First of all, let us show that (3.13) goes to 0 when n tends to infinity.

n∑
s=n−∆+1

∑
x∈Zn∩BrpZn
|Supp(x)|=s

(
1

nλ

)n(1−R)

≤
∑

x∈Zn∩B

(
1

nλ

)n(1−R)

(3.14)

= |Zn ∩ B|
(

1

nλ

)n(1−R)

(3.15)

≤ Vol(B)

(
1 +

1

2(1 + ε)σ

)n(
1

nλ

)n(1−R)

(3.16)

∼ (σ
√

2πe(1 + ε))n√
πn

(
1 +

1

2(1 + ε)σ

)n(
1

nλ

)n(1−R)

(3.17)

=
((1− δ)(1 + ε))n√

πn

(
1 +

√
2πe

2(1 + ε)(1− δ)nλ(1−R)

)n

. (3.18)

Note that in (3.16) we have used Lemma 2.3, (3.17) follows by Lemma 2.6 and
(3.18) from the fact that σ = (1− δ)σmax. Now, one can show that the term in the
big parenthesis is either asymptotic to a constant or, at worst, subexponential (i.e.
asymptotic to exp(µnν), for some constants µ and 0 < ν < 1); hence the dominating
term in (3.18) is ((1− δ)(1 + ε))n. But (1− δ)(1 + ε) < 1, thanks to condition (3.4):

(1− δ)(1 + ε) < 1⇔ ε <
1

1− δ
− 1 =

δ

1− δ
.

This implies that (3.18) tends to 0 as n tends to infinity and the same holds for
(3.13).

At this point, we only have to study the behavior of (3.12). In order to do it,
we will separate the analysis into three subcases: let

1 < a < 1 +
2

3 + 2λ(1−R)

be a constant such that aλ/β < 1. We will consider separately:

1. 1 ≤ s ≤ λn/β;

2. λn/β < s < aλn/β;

3. aλn/β ≤ s ≤ n−∆.

Note that aλn/β is really less than n−∆ if n is big enough.
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First case. 1 ≤ s ≤ λn/β (that is, λ ≥ βs/n). First of all, recall that Bc,n(ρ)
is the n-dimensional sphere of radius ρ, centred at c. Observe that

|{x ∈ Zn ∩ B r pZn : | Supp(x)| = s}|
≤ |{x ∈ Zn ∩ B : | Supp(x)| = s}|

≤
(
n

s

)
|Zs ∩By,s(σ

√
n(1 + ε))|

≤ ns|Zs ∩ [−σ
√
n(1 + ε), . . . , σ

√
n(1 + ε)]s| (3.19)

≤ ns(2σ
√
n(1 + ε) + 1)s.

The restriction on s implies that

1

nβs/n
≥ 1

nλ
,

thus,

bλn/βc∑
s=1

∑
x∈Zn∩BrpZn
| Supp(x)|=s

(
1

nβs/n
+

1

nλ

)n(1−R)

≤
bλn/βc∑
s=1

ns(2σ
√
n(1 + ε) + 1)s

(
2

nβs/n

)n(1−R)

≤
bλn/βc∑
s=1

(
C1n

λ(1−R)+3/2−β(1−R)
)s
,

where C1 is a positive constant. The last inequality is obtained recalling that the
noise variance per coordinate is fixed to be σ = σmax(1− δ) = nλ(1−R)(1− δ)/

√
2πe.

We conclude by pointing out that the previous sum is a geometric series and it tends
to 0 because the exponent of n is negative, thanks to condition (3.3).

Second case. λn/β < s < aλn/β (and βs/n < aλ). First of all, notice that, if
we bound

(
n
s

)
with 2n instead of ns in (3.19), we have

|{x ∈ Zn ∩ B r pZn : | Supp(x)| = s}|
≤ 2n(2σ

√
n(1 + ε) + 1)s

≤ 2n(C2n
1/2+λ(1−R))s,

54



CHAPTER 3. INFINITE LDA LATTICE CONSTELLATIONS

where C2 is a positive constant. This implies that

baλn/βc∑
s=bλn/βc+1

∑
x∈Zn∩BrpZn
|Supp(x)|=s

(
1

nβs/n
+

1

nλ

)n(1−R)

(3.20)

=

baλn/βc∑
s=bλn/βc+1

∑
x∈Zn∩BrpZn
|Supp(x)|=s

(
1

nβs/n

)n(1−R) (
1 + n

βs
n
−λ
)n(1−R)

=

baλn/βc∑
s=bλn/βc+1

|{x ∈ Zn ∩ B r pZn : | Supp(x)| = s}|
(

1

nβ(1−R)

)s (
1 + n

βs
n
−λ
)n(1−R)

≤ 2n
(
1 + nλ(a−1)

)n(1−R) · C2
n

baλn/βc∑
s=bλn/βc+1

(
n1/2+λ(1−R)−β(1−R)

)s
.

Let γ = 1/2 + λ(1 − R) − β(1 − R). The summation is a (partial) geometric
series and it is equal to:

1− nγ(baλn/βc+1)

1− nγ
− 1− nγ(bλn/βc+1)

1− nγ
=
nγ(bλn/βc+1) − nγ(baλn/βc+1)

1− nγ
∼ nγ(bλn/βc+1),

since γ is negative by hypothesis (3.3) and a > 1.
This implies that (3.20) is bounded by a function which is asymptotic to

(2C2)nnn(λ(a−1)(1−R)+γ/n(bλn/βc+1)) ≤ (2C2)nnn(λ(a−1)(1−R)+γλ/β), (3.21)

which goes to 0 if (λ(a − 1)(1 − R) + γλ/β) is negative. Let us check that this is
true:

λ(a− 1)(1−R) + γλ/β = λ(a− 1)(1−R) +

(
1

2
+ λ(1−R)− β(1−R)

)
λ

β
< 0

⇔ β >
λ

2− a
+

1

2(2− a)(1−R)
.

This is true thanks to hypothesis (3.3) and the condition a < 1 + 2/(3 + 2λ(1−R)),
which imply

λ+
3

2(1−R)
>

λ

2− a
+

1

2(2− a)(1−R)
.

All of this allows us to conclude that (3.21) and (3.20) tend to 0 when n tends to
infinity.
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Third case. aλn/β ≤ s ≤ n−∆. We have

n−∆∑
s=baλn/βc+1

∑
x∈Zn∩BrpZn
| Supp(x)|=s

(
1

nβs/n
+

1

nλ

)n(1−R)

(3.22)

≤
∑

x∈Zn∩B

(
1

nλ

)n(1−R)(
1 +

1

nλ(a−1)

)n(1−R)

=

(
|Zn ∩ B|

(
1

nλ

)n(1−R)
)(

1 +
1

nλ(a−1)

)n(1−R)

.

We know that the left term is (asymptotically) bounded by (3.18) and goes to 0
exponentially. The right term is at most subexponential in n:(

1 +
1

nλ(a−1)

)n(1−R)

∼ exp
(
n1−λ(a−1)(1−R)

)
,

with a > 1 by hypothesis. Then, (3.22) is bounded by a quantity in which the
dominating term is ((1 + ε)(1− δ))n, which goes to 0 as n tends to infinity.

This ends the proof of (3.6), which is enough to conclude that the theorem is
true.

3.3 A stronger result with constant degrees
The result of the previous section is already sufficient to affirm that random LDA
lattices achieve Poltyrev capacity of the unconstrained AWGN channel under lat-
tice decoding. Nevertheless, an interesting question arises: is the condition on the
(logarithmically) growing row degree of the parity-check matrix strictly necessary?
For binary LDPC codes to achieve capacity of the binary symmetric channel, the
answer is known to be yes (see [Gal63, Mac99]), without possibility of change. Sur-
prisingly, for LDA lattices that hypothesis can be bypassed and relaxed. Namely,
in this section we show that Poltyrev capacity can be achieved by a random LDA
ensemble whose parity-check equations have degree bounded from above by con-
stants (cf. Theorem 3.2), even if the dimension is still taken to progressively tend
to infinity.

Construction A is again applied to LDPC codes over Fp for some prime p = nλ.
The value λ is constant as before, but now some further conditions will be necessary.
In other terms, we lose some flexibility in the choice of the prime p, but it still will
remain appreciably small and in particular smaller than n for typical values of the
LDPC code rate (see condition (3.56)).

The newest element in the proof of this result concerns the Tanner graphs of
the LDPC codes at the root of our LDA ensemble. Namely, we are interested in
some expansion properties of our family of random graphs. This will be properly
treated in Section 3.3.2, but we would like to give now a simplified explanation of
our argument.
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3.3.1 Overview of the proof for constant degrees

Geometrically, we follow the same path of the proof of Theorem 3.1 (see also the
beginning of Section 3.2). That is, after having defined a decoding sphere B, centred
at the channel output and containing (very probably) the channel input, we look
for lattice points inside this sphere. If the sent point is there and is the only one, no
decoding error occurs. More formally, we employ an average argument to show that
the probability that this does not happen tends to 0 when n tends to infinity. We
will end up to estimate the same summation as (3.7), depending on the probabilities
that the integer points inside the decoding sphere also belong to the lattice.

Now, it was already clear in the proof of Theorem 3.1 that in the case of LDA
lattices, because of the sparseness of the parity-check matrix, this probability de-
pends on the weight of the integer point we deal with (intended as the number of its
non-zero coordinates). A low-weight x ∈ Zn has a bigger probability of satisfying all
the parity-check equations than a high-weight one. For now, we have computed this
probability looking at every parity-check equation one by one and independently
and we have derived the expressions in (3.12) and (3.13). The new strategy will be
of examining all the parity-check equations at the same time. We will understand
what that means thanks to the following example: consider the parity-check matrix

H =


h1,1 0 0 h1,4 h1,5 0
0 h2,2 0 h2,4 h2,5 0
0 h3,2 h3,3 0 0 h3,6

h4,1 0 h4,3 0 0 h4,6

 ,
in which the zero entries are fixed and the hi,j’s are i.i.d. uniform random variables
which take value in Fp. Consider then a low-weight point x = (0, 0, 0, x4, x5, 0), with
x4, x5 6= 0. When we compute the product HxT , there are two possible situations:

1. First two parity-check equations: the intersection of their supports with the
support of x is non-empty and the probability that each one of them is satisfied
is equal to 1/p, depending on the random choice of the hi,j’s.

2. Second two parity-check equations: their support does not intersect the sup-
port of x and the probability that they are satisfied is 1, independently of the
random values taken by the hi,j’s.

Summarising,

P{HxT ≡ 0T mod p} =

(
1

p

)2

.

In particular, this probability is bigger than (1/p)4, the probability corresponding
to a full-weight x = (x1, x2, . . . , x6) with non-zero coordinates.

Generalising this argument, if Tx is the set of parity-check equations that are not
trivially satisfied by x, our average estimation will lead to show that the following
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sum tends to 0 when n tends to infinity (cf. equation (3.60)):

∑
x∈(Zn∩B)rpZn

1

p|Tx|
=

n(1−R)∑
t=1

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
.

The key argument concerns the estimation of |{x ∈ (Zn ∩ B) r pZn : |Tx| = t}|
for every single t ∈ {1, 2, . . . , n(1 − R)}. When t = n(1 − R), then everything
substantially works like in (3.14). When t is smaller, one has to hope that the
cardinality of {x ∈ (Zn ∩ B) r pZn : |Tx| = t} is small enough to compensate the
fact that (1/p)t > (1/p)n(1−R), in order to still have a vanishing summation.

How to ensure that? We exploit some expansion properties of the Tanner graph
associated with the parity-check matrices. Namely, we remark that the random
graphs in our family are typically such that any “small” subset of variable nodes
is linked to a “big enough” subset of check nodes (cf. Definition 3.3 and Lemma
3.3). This translates into the condition that, for any given value of the parameter t
that we defined before, the support of an x such that Tx = t cannot be too big (cf.
Lemma 3.2). Consequently, |{x ∈ (Zn ∩ B) r pZn : |Tx| = t}| is small, too.

We have given the intuitive guideline that lies behind our proof. The rest of the
section will present in much more detail and mathematical formalism:

1. The expansion properties of random graphs that we are interested in.

2. The random LDA ensemble that we use for the proof.

3. The proof itself, with all the similarities with the proof of Theorem 3.1 and
the novelties due to the “expansion approach”, as well.

3.3.2 Graph-theoretical tools

As we have already anticipated, the family of LDPC codes that we are interested in is
characterised by Tanner graphs with somewhat non-standard expansion properties.
It is now the time to formally state these properties and proving that random, big
enough bipartite graphs satisfy them with very high probability.

Let G = (V, P,E) be an undirected bipartite graph; V ∪ P is its set of vertices
and E its set of edges. Later, V and P will stand for the sets of variable and check
nodes of the Tanner graph respectively. Let |V | = n and |P | = n(1 − R), for some
0 < R < 1. Parallel edges are accepted, that is, there might be two or more edges
connecting the same two vertices.

Definition 3.2 (Neighbourhood). If S is a subset of vertices of a graph G, its
neighbourhood N(S) is defined as the set of vertices of the graph that are incident
to a vertex of S.

In a bipartite graph G = (V, P,E), the neighbourhood N(S) ⊆ P for every
S ⊆ V and, vice versa, N(T ) ⊆ S for every T ⊆ P . See Figure 3.1 for a simple
example.
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S

N(S)

Figure 3.1: A bipartite graph with an example of neighbourhood of a subset of
vertices. V is the set of round vertices, P is the set of square vertices. Observe that
S ⊆ N(N(S)) and the inclusion is generally strict.

From now on, we will consider only graphs with the following variation of the
biregularity property: the number of edges incident to any single vertex of V (resp.
P ) has constant cardinality ∆V (resp. ∆P ). Consequently, the neighbourhood of
any single vertex of V (resp. P ) has cardinality at most ∆V (resp. ∆P ). If the
graph has no parallel edges, these cardinalities are exactly ∆V and ∆P and the
graph is biregular, according to the standard definition. Denote by F(n,R,∆V ,∆P )
the family of graphs just defined. Note that biregularity implies the relations:

n×∆V = n(1−R)×∆P and ∆P =
∆V

(1−R)
. (3.23)

We are interested in some particular expansion properties of this kind of graphs.
Thus we give the following definition:

Definition 3.3 ((α,A, β,B)-good graphs). Let α,A, β and B be four natural num-
bers such that

A > α ≥ 1 and
1

(1−R)
< β < min

{
2

(1−R)
, B

}
. (3.24)

Let ε and ϑ be two small fixed positive constants (0 < ϑ, ε < 1). We say that a graph
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of F(n,R,∆V ,∆P ) is (α,A, β,B)-good if

1. For every S ⊆ V such that |S| ≤ dεne , then |N(S)| ≥ A|S|. (3.25)

2. For every S ⊆ V such that |S| ≤
⌈
n(1−R)

2α

⌉
, then |N(S)| ≥ α|S|. (3.26)

3. For every T ⊆ P such that |T | ≤ n(1−R)

2
, then |N(T )| ≥ β|T |. (3.27)

4. For every T ⊆ P such that |T | ≤ ϑn(1−R), then |N(T )| ≥ B|T |. (3.28)

The four conditions above mean in quantitatively different ways that all “small”
subsets of V or P have “big enough” sets of neighbours. Observe that the definition
of an (α,A, β,B)-good graph implicitly depends on the choice of ε and ϑ. This will
not lead to any ambiguity, since these constants will always be clearly and explicitly
fixed any time we will deal with these graphs.

Before going on, we would like to put in evidence a direct consequence of the
previous conditions:

Lemma 3.2. Let G ∈ F(n,R,∆V ,∆P ) be an (α,A, β,B)-good graph. The following
statements hold true for every S ⊆ V :

1. If |N(S)| < Adεne, then |S| ≤ |N(S)|/A. (3.29)
2. If |N(S)| < n(1−R)/2, then |S| ≤ |N(S)|/α. (3.30)
3. If |N(S)| ≥ n(1−R)/2, then |S| ≤ β|N(S)| − n(β(1−R)− 1). (3.31)
4. If |N(S)| ≥ (1− ϑ)n(1−R), then |S| ≤ B|N(S)| − n(B(1−R)− 1). (3.32)

Proof. We will only prove the second and third statement and we leave to the reader
the task of deducing (3.29) from (3.30) and (3.32) from (3.31). This will not require
a big effort, since the remaining proofs are substantially identical to the given ones,
after a minimal change of the parameters.

Let us start proving (3.30); in order to do this, we suppose that |S| > |N(S)|/α
and we will argue that this implies |N(S)| ≥ n(1−R)/2. Our hypothesis is equivalent
to |N(S)| < α|S|. Then (3.26) implies that |S| > dn(1 − R)/2αe. In particular,
this means that there exists some S ′ ⊆ S such that |S ′| = dn(1 − R)/2αe. We can
apply (3.26) and obtain |N(S ′)| ≥ α|S ′| = αdn(1− R)/2αe. But N(S ′) ⊆ N(S) by
definition and therefore

|N(S)| ≥ |N(S ′)| ≥ α|S ′| = α

⌈
n(1−R)

2α

⌉
≥ n(1−R)

2
.

For the proof of (3.31), let T = N(S) and let T c = P r T . The hypothesis
says that |T c| ≤ n(1 − R)/2 and (3.27) implies that |N(T c)| ≥ β|T c|. Note that
S ⊆ (V rN(T c)), hence

|S| ≤ n− |N(T c)| ≤ n− β|T c| = n− β(n(1−R)− |T |) = n(β(1−R)− 1) + β|T |.
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Let h(·) be the binary entropy function, already introduced in Definition 2.28.
We have set the necessary notation to state the following lemma:

Lemma 3.3. Let n,∆V ∈ N, with ∆V ≥ 3. Let 0 < R < 1 and let G be a graph
in F(n,R,∆V ,∆P ), chosen uniformly at random in the family. Fix α,A, β,B ∈ N
satisfying (3.24) and let ε and ϑ be two positive constants such that

0 < ε <
(1−R)(∆V − A− 1)

A(∆V − 2 +R)
, (3.33)

0 < ϑ <
∆V − (B + 1)(1−R)

B(1−R)(∆V − 2 +R)
. (3.34)

If

∆V > max

{
h
(

1−R
2α

)
+ 1−R

h
(

1−R
2α

)
− 1

2
h
(

1−R
α

) , R + 2α,A+ 1,
h(ε) + (1−R)h

(
Aε

1−R

)
h(ε)− Aε

1−Rh
(

1−R
A

) ,

1−R + h
(
β(1−R)

2

)
1− β(1−R)

2
h
(

1
β(1−R)

) , (2 + βR)(1−R)

2− β(1−R)
, (1−R)(B + 1), (3.35)

(1−R)h(ϑ) + h(Bϑ(1−R))

h(ϑ)−Bϑ(1−R)h
(

1
B(1−R)

)},
then

lim
n→∞

P{G is not (α,A, β,B)-good} = 0.

Remark: the proof of the previous lemma is inspired by the similar argument
that can be found in [Bas81]. Nevertheless, we have derived it from scratch and
adapted to our setting.

Proof. First of all, let us order the set V (putting it in bijection with {1, 2, . . . , n})
and the set P (in bijection with {1, 2, . . . , n(1 − R)}); let us also order the set
E of edges and call e1, e2, . . . , e∆V

the edges linked to the first element of V ,
e∆V +1, e∆V +2, . . . , e2∆V

the edges linked to the second element of V and so on.
At the same time, call f1, f2, . . . , f∆P

the edges linked to the first element of P ,
f∆P+1, f∆P+2, . . . , f2∆P

the edges linked to the second element of P and so on. Then,
a graph is determined by a permutation of {1, 2, . . . , n∆V } that assigns to every em
one of the fl.

By the union bound,

P{G is not (α,A, β,B)-good} ≤ P{G does not satisfy (3.26)} (3.36)
+ P{G does not satisfy (3.25)} (3.37)
+ P{G does not satisfy (3.27)} (3.38)
+ P{G does not satisfy (3.28)}. (3.39)
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We will separately evaluate these four probabilities, which corresponds to counting
the number of permutations of {1, 2, . . . , n∆V } that do not guarantee the expansion
properties.

Estimation of (3.36).

P{G does not satisfy (3.26)}
= P{∃S ⊆ V : |S| ≤ dn(1−R)/2αe and |N(S)| < α|S|}

≤
∑
S⊆V

1≤|S|≤dn(1−R)/2αe

P{|N(S)| < α|S|}

≤
∑
S⊆V

1≤|S|≤dn(1−R)/2αe

∑
T⊆P
|T |=α|S|

P{N(S) ⊆ T}

=
∑
S⊆V

1≤|S|≤dn(1−R)/2αe

(
n(1−R)

α|S|

)(
α|S|∆P

|S|∆V

)/( n∆V

|S|∆V

)

=

dn(1−R)/2αe∑
s=1

(
n

s

)(
n(1−R)

αs

)(
αs∆P

s∆V

)/(n∆V

s∆V

)
= n

(
n(1−R)

α

)(
α∆P

∆V

)/(n∆V

∆V

)
+

+

dn(1−R)/2αe∑
s=2

(
n

s

)(
n(1−R)

αs

)(
αs∆P

s∆V

)/(n∆V

s∆V

)

≤ C1n
(1+α−∆V ) +

dn(1−R)/2αe∑
s=2

(
n

s

)(
n(1−R)

αs

)(
αs∆P

s∆V

)/(n∆V

s∆V

)
, (3.40)

where C1 is a constant that depends on α,∆V and R. Now, let s = ζn; we have(
n(1−R)

αs

)
=

(
n(1−R)
ζα

(1−R)
n(1−R)

)
,(

αs∆P

s∆V

)
=

(
αζn∆P

(1−R)
α

αζn∆P

)
and, by Lemma 2.5,

(3.40) ≤ C1n
(1+α−∆V ) (3.41)

+ C2

dn(1−R)/2αe∑
s=2

2n(−(∆V −1)h(ζ)+(1−R)h(αζ/(1−R))+(∆V αζ/(1−R))h((1−R)/α)),

(3.42)

for some new constant C2, also recalling that ∆P = ∆V /(1−R) (cf. (3.23)). Let

γ(ζ) = −(∆V − 1)h(ζ) + (1−R)h

(
αζ

1−R

)
+

∆V αζ

1−R
h

(
1−R
α

)
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be the coefficient of n in the exponential function in (3.42). A simple computation
shows that the derivative of γ is

γ′(ζ) = −(∆V − 1) log2

(
1

ζ
− 1

)
+ α log2

(
1−R
αζ

− 1

)
+

α∆V

1−R
h

(
1−R
α

)
,

while the second derivative is

γ′′(ζ) =
∆V − 1

ζ(1− ζ)
− α(1−R)

ζ(1−R− αζ)
.

Recalling that ζ is limited to the range 2/n ≤ ζ ≤ (1−R)/2α, one can easily check
that γ′′(ζ) > 0 (the fact that ∆V > R + 2α by (3.35) is needed).

The positivity of γ′′(ζ) implies that γ′(ζ) is increasing. A simple computation
shows that

lim
n→∞

γ′
(

2

n

)
= −∞.

Hence, for big enough n, γ′(2/n) < 0 and its monotonicity implies that either it is
always negative or it has exactly one zero. In the first case, γ(ζ) is decreasing and

max
2/n≤ζ≤(1−R)/2α

γ(ζ) = γ

(
2

n

)
; (3.43)

in the second case,

max
2/n≤ζ≤(1−R)/2α

γ(ζ) = max

{
γ

(
2

n

)
, γ

(
1−R

2α

)}
;

but γ((1 − R)/2α) is constant and negative (it can be easily verified, consequence
of the fact that

∆V >
1−R + h

(
1−R
2α

)
h
(

1−R
2α

)
− 1

2
h
(

1−R
α

) (3.44)

by condition (3.35)), while

lim
n→∞

γ

(
2

n

)
= 0.

This implies that (3.43) is always true when n is big enough. Then, we can deduce
that

(3.41) + (3.42) ≤C1n
(1+α−∆V ) + C2n2nγ(2/n)

≤C1n
(1+α−∆V ) + C3n

(
n

2

)(
n(1−R)

2α

)(
2α∆P

2∆V

)/(n∆V

2∆V

)
, (3.45)

where C3 is a new constant and the last inequality is a consequence of Lemma 2.5.
Finally,

(3.45) ≤ C1n
(1+α−∆V ) + C4n

1+2(1+α−∆V ),

where, again, C4 is a constant, different from C3.
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Now, notice that the condition ∆V > A+ 1 (cf. (3.35)) implies that ∆V > α+ 2,
because A ≥ α + 1 by (3.24). Hence

1 + 2(1 + α−∆V ) ≤ 1 + 2(1 + α− α− 2) = −1 < 0.

Thus,

lim
n→∞

C1n
(1+α−∆V ) + C4n

1+2(1+α−∆V ) = 0

and as a consequence

lim
n→∞

P{G does not satisfy (3.26)} = 0, (3.46)

too.
Estimation of (3.37). We want to show that

lim
n→∞

P{G does not satisfy (3.25)} = 0. (3.47)

We will not treat all the details here, since this estimation is very similar to the
previous one. Namely, the argument is the very same as before, while in the explicit
computations one has just to substitute α with A and only consider sums for s going
from 1 to dεne. One obtains:

P{G does not satisfy (3.25)} ≤
dεne∑
s=1

(
n

s

)(
n(1−R)

As

)(
As∆P

s∆V

)/(n∆V

s∆V

)
.

Again, Lemma 2.5 allows us to approximate binomial coefficients with exponential
function and the same exponent coefficient γ(ζ) as before is found (again, with A
instead of α). Now, the choice of ε small enough (cf. (3.33)) guarantees that the
second derivative of γ(ζ) is positive, while the fact that

∆V >
h(ε) + (1−R)h

(
Aε

1−R

)
h(ε)− Aε

1−Rh
(

1−R
A

)
(cf. condition (3.35)) is the analogue of (3.44) for determining the maximum of γ(ζ)
in the range 1 ≤ ζ ≤ ε. Nothing more is required to conclude the analysis of (3.37)
and its limit is 0 when n tends to infinity.

Estimation of (3.38). We can now move our attention to the estimation of the
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following probability:

P{G does not satisfy (3.27)}
= P{∃T ⊆ P : |T | ≤ n(1−R)/2 and |N(T )| < β|T |}

≤
∑
T⊆P

1≤|T |≤n(1−R)/2

P{|N(T )| < β|T |}

≤
∑
T⊆P

1≤|T |≤n(1−R)/2

∑
S⊆V
|S|=β|T |

P{N(T ) ⊆ S}

=
∑
T⊆P

1≤|T |≤n(1−R)/2

(
n

β|T |

)(
∆V β|T |
|T |∆P

)/( n∆V

|T |∆P

)

=

bn(1−R)/2c∑
t=1

(
n(1−R)

t

)(
n

βt

)(
∆V βt

t∆P

)/(n∆V

t∆P

)

≤ C5n
1+β−∆V /(1−R) +

bn(1−R)/2c∑
t=2

(
n(1−R)

t

)(
n

βt

)(
∆V βt

t∆P

)/(n∆V

t∆P

)
, (3.48)

for some constant C5.
The strategy that we will employ is the same as the one employed previously. So,

define t = τn(1 − R). Thus, recalling that ∆V = ∆P (1 − R) and applying Lemma
2.5, we can write

(3.48) ≤ C5n
1+β−∆V /(1−R) + C6

bn(1−R)/2c∑
t=2

2nϕ(τ), (3.49)

where C6 is a new constant and the function ϕ(·) is equal to

ϕ(τ) = −(∆V − 1 +R)h(τ) + h(τβ(1−R)) + τβ(1−R)∆V h

(
1

β(1−R)

)
.

What can we say about ϕ? We will adopt the same approach that we have used
with γ. It is easy to compute that

ϕ′(τ) =− (∆V − 1 +R) log2

(
1

τ
− 1

)
+ β(1−R) log2

(
1

β(1−R)τ
− 1

)
+ β(1−R)∆V h

(
1

β(1−R)

)
and

ϕ′′(τ) =
∆V − 1 +R

τ(1− τ)
− β(1−R)

τ(1− βτ(1−R))
.

This second derivative is positive if and only if

τ <
∆V − 1 +R− β(1−R)

β(1−R)(∆V − 2 +R)
. (3.50)
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This holds true because

τ ≤ 1

2
<

∆V − 1 +R− β(1−R)

β(1−R)(∆V − 2)
,

thanks to the fact that ∆V > (2 + βR)(1− R)/(2− β(1− R)) by condition (3.35).
Therefore ϕ′(τ) is increasing and, since

lim
n→∞

ϕ′
(

2

n(1−R)

)
= −∞,

we deduce that ϕ′(τ) has at most one zero (for big enough n). Similarly to the case
of γ,

max
2/n(1−R)≤τ≤1/2

ϕ(τ) = max

{
ϕ

(
2

n(1−R)

)
, ϕ

(
1

2

)}
.

On the one hand,

lim
n→∞

ϕ

(
2

n(1−R)

)
= 0,

on the other one, ϕ(1/2) is negative and constant, because

∆V >
1−R + h

(
β(1−R)

2

)
1− β(1−R)

2
h
(

1
β(1−R)

) (3.51)

thanks to condition (3.35). This implies that for big enough n

max
2/n(1−R)≤τ≤1/2

ϕ(τ) = ϕ

(
2

n(1−R)

)
.

Applying this result to (3.49) and then using Lemma 2.5, we obtain

(3.49) ≤ C5n
1+β−∆V /(1−R) + C6

bn(1−R)/2c∑
t=2

2nϕ(2/n(1−R))

≤ C5n
1+β−∆V /(1−R) + C7n

(
n(1−R)

2

)(
n

2β

)(
2β∆V

∆V /(1−R)

)/( n∆V

2∆V /(1−R)

)
≤ C5n

1+β−∆V /(1−R) + C8n
1+2(1+β−∆V /(1−R)),

where, of course, C7 and C8 are some new constants.
The exponent 1 + 2(1 + β−∆V /(1−R)) is negative because our parameters are

such that ∆V /(1−R) > B + 1 ≥ β + 2 (cf. (3.35) and (3.24)). Thus, we can argue
that

1 + 2(1 + β −∆V /(1−R)) ≤ 1 + 2(1 + β − β − 2) = −1.

This allows us to conclude that

lim
n→∞

C5n
1+β−∆V /(1−R) + C8n

1+2(1+β−∆V /(1−R)) = 0
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and
lim
n→∞

P{G does not satisfy (3.27)} = 0. (3.52)

Estimation of (3.39). As one can guess, we will take inspiration from the
previous case to analyse this last probability, in the same way as the analysis of
(3.36) has established the pattern to estimate (3.37). If we replace β by B and
make the sum over t go to bϑn(1−R)c instead of bn(1−R)/2c, the same argument
as before tells that

P{G does not satisfy (3.28)} ≤ C9n
1+β−∆V /(1−R) + C10

bn(1−R)/2c∑
t=2

2nϕ(τ), (3.53)

for some appropriate constants C9 and C10 and

ϕ(τ) = −(∆V − 1 +R)h(τ) + h(τβ(1−R)) + τβ(1−R)∆V h

(
1

β(1−R)

)
is the same ϕ(·) as before with B instead of β.

We can conclude just with the same argument of the previous case, noticing the
fact that

ϑ <
∆V − (B + 1)(1−R)

B(1−R)(∆V − 2 +R)

(cf. (3.50) and (3.34)) guarantees that ϕ′′(τ) is positive. Moreover, τ ≤ ϑ and ϕ(ϑ)
can be shown to be a negative constant thanks to the fact that

∆V >
(1−R)h(ϑ) + h(Bϑ(1−R))

h(ϑ)−Bϑ(1−R)h
(

1
B(1−R)

)
(see (3.35) and compare it to its analogue (3.51)). Hence

lim
n→∞

P{G does not satisfy (3.28)} = 0. (3.54)

Conclusion. Finally, we are only left with putting together what we have shown
till now: (3.46), (3.47), (3.52) and (3.54) imply that

lim
n→∞

P{G is not (α,A, β,B)-good} = 0,

which is what we were looking for and the proof is concluded.

3.3.3 The new random LDA lattice ensemble

Let G be any (α,A, β,B)-good graph, in the sense specified by Definition 3.3. A
priori, it may contain parallel edges. Let us identify them and call again G the
new graph, with at most one edge between any two vertices. It is still bipartite
and (α,A, β,B)-good and represents also the Tanner graph of a binary LDPC code.
Let H be the binary parity-check matrix with Tanner graph G. Let p be a prime
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number and let us associate a label to every edge of G, independently of each other
and chosen uniformly at random in the set {0, 1, . . . , p − 1} of the representatives
of classes modulo p. Equivalently, we are choosing a parity-check matrix H with
entries in Fp. Let C = C[n, k]p ⊆ Fp be the k-dimensional linear code over the finite
field Fp with parity-check matrix H. The actual Tanner graph of H is a subgraph of
G which may differ from the whole graph G if some random coordinates are chosen
to be equal zero. Observe also that, for the same reason, the rate of C may be
greater than R = k/n.

Definition 3.4 (Skeleton matrix). In this context, we call the binary matrix H the
skeleton of the random matrix H.

Every i ∈ P represents a parity-check equation of C and a row of H, while a
j ∈ V is a coordinate of a codeword c ∈ C. If ∆V is small with respect to n, the
code is an LDPC code and column (resp. row) weights (or degrees) are bounded
from above by ∆V (resp. ∆P ).

3.3.4 LDA lattices achieve Poltyrev capacity with constant
parity-check matrix row degree

Theorem 3.2. Let n be a positive integer number and let 0 < R < 1. Let p = nλ

be a prime number for some λ > 0 and let σ2 = p2(1−R)(1 − δ)2/2πe be the AWG
noise variance per dimension, for some 0 < δ < 1. Let α,A, β,B be four natural
numbers that obey (3.24). Moreover, let ε and ϑ be two positive constants that satisfy
conditions (3.33) and (3.34) and suppose also that

ϑ <
δ

B(1−R)
. (3.55)

Finally, let ∆V ∈ N be a constant, big enough to satisfy (3.35). If

λ > max

{
1

2(α− 1 +R)
,

3

2(A− 1 +R)
,

1

B(1−R)− 1

}
, (3.56)

then there exists a Poltyrev-capacity-achieving family of LDA lattices Λn = Cn+pZn
such that the rate of Cn is at least R and the row degree in the parity-check matrix
of Cn is at most ∆V /(1−R) (this means that σ2 = σ2

max(1−δ)2, according to (3.1)).

Proof. In order to prove the theorem, we evaluate the probability of decoding error,
averaged over all LDA lattices built at random following the model described in
Section 3.3.3, which employs (α,A, β,B)-good graphs. Geometrically, the proof
follows the same path as the one of Theorem 3.1 and some analogies can be found
between them.

So, let G be a bipartite graph chosen at random in F(n,R,∆V ,∆P ); we know by
Lemma 3.3 that, if n is big enough, G is an (α,A, β,B)-good graph with very high
probability. Thus, we suppose that G is chosen to be (α,A, β,B)-good. If G was not
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good, we would simply treat it as a “bad” choice and change it with another random
graph of F(n,R,∆V ,∆P ). Let Λ = C + pZn be a random LDA lattice associated to
G, and suppose we use Λ for communication over the AWGN channel. Notice that
the dimension n will change and be sent to infinity all along the proof. Nevertheless,
we avoid the notation Cn and Λn, the indices being redundant and not necessary for
a full comprehension.

First of all, because of the lattice symmetry and of the independence between
random noise and channel input, we can suppose that the point of Λ sent over the
channel is 0. The AWG noise vector is w = (w1, w2, . . . , wn) and the channel output
is y = w.

Let us consider the sphere B = By,n(σ
√
n(1 + ξ)) ⊆ Rn centred at y, of radius

σ
√
n(1 + ξ), with ξ > 0, for some small ξ chosen such that

ξ <
δ

1− δ
; (3.57)

the latter condition has exactly the same utility in the proof as (3.4) for Theorem
3.1 (cf. (3.64)). Lemma 2.2 states that, when n tends to infinity, the point 0 is
inside the sphere with probability tending to 1. Moreover, Lemma 3.1 states that,
again with probability tending to 1, all non-zero vectors of pZn in B will be further
away from the received vector y than the transmitted (zero) vector itself.

We are therefore only concerned with ensuring that the decoder does not return
x̂ 6≡ 0 mod p. To this end let us introduce the random variable N that counts the
number of lattice points inside the sphere and not belonging to pZn. Our goal is to
show that

lim
n→∞

E[N ] = 0,

which is enough to prove the result.
For every integer point x ∈ B ∩ Zn, let Xx be the random variable defined by

Xx =

{
1, if x ∈ Λ

0, if x /∈ Λ
.

We have
N =

∑
x∈(Zn∩B)rpZn

Xx

and
E[N ] =

∑
x∈(Zn∩B)rpZn

P{x ∈ Λ}. (3.58)

If H is the parity-check matrix of the p-ary code C associated with Λ, an integer
point x belongs to Λ if and only if HxT ≡ 0T mod p. Remember that H is a sparse
matrix so, if some of the coordinates of x are equal to 0 (in Fp), some parity-check
equations will be trivially satisfied, no matter what its random coefficients are.

More precisely, let h be any row of the binary skeleton matrix H of H (cf.
Definition 3.4). We define the support of x (resp. h) to be the set of indices that
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correspond to non-zero coordinates of x (resp. h). We have that if the supports
of x and h have empty intersection then P{hxT ≡ 0 mod p} = 1. On the other
hand, if the supports of x and h intersect in at least one coordinate, then we see
that P{hxT ≡ 0 mod p} = 1/p (recall that we do not consider x ∈ pZn).

For a fixed x, if h1,h2, . . . ,hn(1−R) are the rows of H, let

Tx = {i ∈ {1, 2, . . . , n(1−R)} : Supp(hi) ∩ Supp(x) 6= ∅}. (3.59)

Note that Tx is the neighbourhood in the Tanner graph G of Supp(x). Now let
t = |Tx| be the number of parity-check equations that are not trivially satisfied by
x; then,

P{x ∈ Λ} =

(
1

p

)t
,

because the coefficients that define the parity-check equations are chosen indepen-
dently and therefore the events {x satisfies the i-th parity-check}i=1,...,n(1−R) are in-
dependent. This means that, by (3.58)

E[N ] =
∑

x∈(Zn∩B)rpZn

1

p|Tx|
=

n(1−R)∑
t=1

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
(3.60)

In order to clarify our strategy, let us start considering only the x’s such that
|Tx| = n(1−R). The partial summation corresponding to them is:∑

x∈(Zn∩B)rpZn
|Tx|=n(1−R)

1

pn(1−R)
≤ |Z

n ∩ B|
pn(1−R)

(3.61)

≤ Vol(B)

pn(1−R)

(
1 +

1

2(1 + ξ)σ

)n
(3.62)

∼ 1√
πn

(
(1 + ξ)

√
2πeσ

p(1−R)

)n(
1 +

1

2(1 + ξ)σ

)n
, (3.63)

where we have used Lemma 2.3 in (3.62) and Lemma 2.6 for the asymptotic expres-
sion in (3.63).

One can show that the term in the right parentheses is at worst subexponential
in n (i.e. asymptotic to exp(anµ), for some constants a and 0 < µ < 1); hence the
dominating term in (3.63) is the central one. We aim to prove that limn→∞ E[N ] = 0;
at least for the special (but most frequent) case of the x’s such that |Tx| = n(1−R),
we are done, since (3.63) goes to 0 when n tends to infinity. Indeed, the base of
the dominating exponential can be made smaller than 1 with a proper choice of ξ:
recalling that σ = σmax(1− δ) = p(1−R)(1− δ)/

√
2πe for an LDA lattice, we have

(1 + ξ)

√
2πeσ

p(1−R)
< 1⇔ σ = σmax(1− δ) < σmax

1 + ξ

⇔ ξ <
δ

1− δ
, (3.64)
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which is the condition that we imposed in (3.57).
What happens in the more general case, when |Tx| < n(1 − R)? A priori, the

power of p in (3.63) is not sufficient to guarantee the convergence to 0; this clearly
happens, for example, when |Tx| is a constant with respect to n. But in that case,
the inequality ∑

x∈(Zn∩B)rpZn
|Tx|=t<n(1−R)

1

pt
≤ |Z

n ∩ B|
pt

,

i.e. the analogue of (3.61), is not precise enough and it does not take into account
the fact that the integer points in B with such a small |Tx| are much less than
|Zn ∩ B|. We need a more detailed analysis, based on an efficient estimation of
|{x ∈ (Zn ∩ B) r pZn : |Tx| = t}|, which exploits the properties of (α,A, β,B)-good
graphs.

We begin by cutting the summation in (3.60) into four different parts, depending
on the constants ε and ϑ that we have already fixed in the statement of the theorem.
Namely, we will consider the following four cases:

1. t < Adεne;

2. Adεne ≤ t < n(1−R)/2;

3. n(1−R)/2 ≤ t < (1− ϑ)n(1−R);

4. (1− ϑ)n(1−R) ≤ t ≤ n(1−R).

First case. Lemma 3.2 tells that, according to the choice of ε and since G
is (α,A, β,B)-good, t < Adεne implies that | Supp(x)| ≤ t/A. As a consequence,
recalling that Bc,n(ρ) is the n-dimensional sphere centred at c of radius ρ, we have
that ∀t < Adεne

|{x ∈ (Zn ∩ B) r pZn : |Tx| = t}| (3.65)
≤ |{x ∈ (Zn ∩ B) r pZn : | Supp(x)| ≤ t/A}|

≤
(

n

bt/Ac

)
|Zbt/Ac ∩By,bt/Ac(σ

√
n(1 + ξ))|

≤ nt/A|Zbt/Ac ∩ Cbt/Ac(2σ
√
n(1 + ξ))|

≤ nt/A(2σ
√
n(1 + ξ) + 1)t/A, (3.66)

where Cbt/Ac(2σ
√
n(1 + ξ)) is the bt/Ac-dimensional cube of edge 2σ

√
n(1 + ξ).
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The first part of the summation (3.60) that we consider is:

Adεne−1∑
t=1

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt

=

Adεne−1∑
t=1

|{x ∈ (Zn ∩ B) r pZn : |Tx| = t}|
pt

≤
Adεne−1∑
t=1

nt/A(2σ
√
n(1 + ξ) + 1)t/A

pt

<

Adεne−1∑
t=1

(
Dn(3/(2A)+λ(1−R)/A−λ)

)t
, (3.67)

where D is a constant term. The last inequality holds because p = nλ and σ <
σmax = nλ(1−R)/

√
2πe (see (3.1)). Now, (3.67) is a geometric series and its limit for

n going to infinity is 0 if the exponent of n is negative; it is, thanks to hypothesis
(3.56).

Second case. Now Adεne ≤ t < n(1−R)/2; this case is almost identical to the
previous one. We will just change a little bit some estimations and adapt them to
the fact that the t’s we consider are at least linear in n.

We apply again Lemma 3.2 to say that for this range of t the corresponding x’s
are such that | Supp(x)| ≤ t/α. Then, we do exactly the same estimations done from
(3.65) to (3.66), with the only change that we replace A by α and bound

(
n
bt/αc

)
by

2n instead of nt/α; we get:

|{x ∈ (Zn ∩ B) r pZn : |Tx| = t}| ≤ 2n(2σ
√
n(1 + ξ) + 1)t/α

and
bn(1−R)/2c∑
t=Adεne

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
=

bn(1−R)/2c∑
t=Adεne

|{x ∈ (Zn ∩ B) r pZn : |Tx| = t}|
pt

≤
bn(1−R)/2c∑
t=Adεne

2nt/t(2σ
√
n(1 + ξ) + 1)t/α

pt

≤
bn(1−R)/2c∑
t=Adεne

2t/Aε(2σ
√
n(1 + ξ) + 1)t/α

pt

<

bn(1−R)/2c∑
t=Adεne

(
En(1/2α+λ(1−R)/α−λ)

)t
,

for some constant E. Similarly to the first case, it is condition (3.56) that ensures
that the exponent of n is negative and the sum converges to 0.
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Third case. Now we deal with the partial sum that corresponds to the range
n(1 − R)/2 ≤ t < (1 − ϑ)n(1 − R). Let us call γ = βt − n(β(1 − R) − 1). The
third statement of Lemma 3.2 implies that any x such that |Tx| = t also requires
| Supp(x)| ≤ γ. Then

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
(3.68)

=
∑
T⊆P
|T |=t

∑
x∈(Zn∩B)rpZn

Tx=T

1

pt

=
∑
T⊆P
|T |=t

|{x ∈ (Zn ∩ B) r pZn : Tx = T}| 1
pt

≤
∑
T⊆P
|T |=t

|Zbγc ∩B0,bγc(σ
√
n(1 + ξ))|

pt

≤
(
n(1−R)

t

)
Vol(B0,bγc(σ

√
n(1 + ξ))

pt

(
1 +

√
γ

2σ
√
n(1 + ξ)

)γ
(3.69)

∼
(
n(1−R)

t

)
1√
πbγc

(
n

bγc

)γ/2
((1− δ)(1 + ξ))γ nλ((1−R)γ−t)

(
1 +

√
γ

2σ
√
n(1 + ξ)

)γ
(3.70)

≤ 2n(1−R)

(
n

bγc

)γ/2
((1− δ)(1 + ξ))γ nλ((1−R)γ−t)

(
1 +

1

2σ(1 + ξ)

)γ
, (3.71)

where (3.69) is justified by Lemma 2.3, while the asymptotic expression in (3.70)
comes from Lemma 2.6. Now, observe that n(1−R)/2 ≤ t also implies

n

γ
=

1

βt/n− (β(1−R)− 1)
≤ 1

1− β(1−R)/2
.

So, for some positive constant F ,

(3.71) . F γnλ((1−R)γ−t).

The symbol . is used for brevity and indicates the “asymptotic inequality” relation:
we write f(n) . g(n) is there exists h(n) such that f(n) ≤ h(n) and h(n) ∼ g(n).
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Going on with our computation, we have

b(1−ϑ)n(1−R)c∑
t=dn(1−R)/2e

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
.
b(1−ϑ)n(1−R)c∑
t=dn(1−R)/2e

F γnλ(1−R)γ−λt

=

b(1−ϑ)n(1−R)c∑
t=dn(1−R)/2e

F γnλ(β(1−R)−1)(t−n(1−R))

≤
b(1−ϑ)n(1−R)c∑
t=dn(1−R)/2e

F nn−nλϑ(β(1−R)−1)(1−R).

The whole summation tends to 0, because the exponent of the dominating term is
negative (recall that β(1−R) > 1 by condition (3.24)).

Fourth case. We are left to study the case of the biggest t’s in our range:
(1 − ϑ)n(1 − R) < t ≤ n(1 − R). The same estimations done from (3.68) to (3.70)
still hold true if we substitute β with B in the definition of γ:

γ = Bt− n(B(1−R)− 1);

then, bounding the binomial coefficient by(
n(1−R)

t

)
=

(
n(1−R)

n(1−R)− t

)
≤ (n(1−R))n(1−R)−t ≤ nn(1−R)−t,

we obtain

n(1−R)∑
t=d(1−ϑ)n(1−R)e

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt

.
n(1−R)∑

t=d(1−ϑ)n(1−R)e

nn(1−R)−t
(
n

bγc

)γ/2
((1− δ)(1 + ξ))γ ·

· nλ((1−R)γ−t)
(

1 +
1

2σ(1 + ξ)

)γ
.

The addends of the summation are made of factors of three different kinds:

• the term ((1 + ξ)(1− δ)
√
n/bγc)γ is exponential in n;

• the term nn(1−R)−t+λ((1−R)γ−t) = n(n(1−R)−t)(1−λ(B(1−R)−1)) is superexponential
in n when t is close to (1− ϑ)n(1−R), while it is only polynomial in n when
t is close to n(1−R); in both cases, the fact that 1−λ(B(1−R)− 1)) < 0 by
condition (3.56) implies n(n(1−R)−t)(1−λ(B(1−R)−1)) ≤ 1.

• the right term (1 + 1/2σ(1 + ξ))γ is subexponential in n.
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Now, observe that

γ = Bt−n(B(1−R)−1) ≥ B(1−ϑ)n(1−R)−n(B(1−R)−1) = n−nB(1−R)ϑ.

Therefore, the closer to 0 is ϑ, the closer to n is γ. In other words, if ϑ is “small
enough”, then

√
n/bγc is very close to 1 and the product (1 + ξ)(1 − δ)

√
n/bγc

is smaller than 1 (in case, up to a proper choice of ξ, that can be taken as small
as we need); condition (3.55) is precisely required to ensure that and qualitatively
explicits the previous “small enough”.

Finally, our summation becomes

n(1−R)∑
t=d(1−ϑ)n(1−R)/2e

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
.

n(1−R)∑
t=d(1−ϑ)n(1−R)e

(√
n

bγc
(1− δ)(1 + ξ)

)(1−ϑ)n(1−R)

·

·
(

1 +
1

2σ(1 + ξ)

)n
,

that tends to 0 thanks to the exponential behaviour of the main factor.
Conclusion. Putting together all the four cases and recalling (3.60), we get

that limn→∞ E[N ] = 0 and this is the end of the proof of Theorem 3.2.

As a concluding remark, let us specify something about the values of all the
parameters involved in the proof of the previous theorem. What we would like to
point out is that these constants are typically very reasonable and in particular that
the required value of ∆V is generally small, what makes it suitable for practical
implementations. So, let us show this through an example; suppose that we target
a value of λ which is smaller than 1, say λ = 1/2, and suppose that R = 0.6 (a value
of the LDPC code rate that is experimented with in Chapter 5). The hypothesis of
Theorem 3.2 are satisfied if

• α = 2,

• A = 4,

• β = 3,

• B = 8

and the conditions of Lemma 3.3 only imply ∆V ≥ 9.
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Chapter 4

Finite lattice constellations

In this chapter we go a bit further with respect to the results presented in Chapter 3.
We address the problem of attaining the capacity of the AWGN channel with lattice
codes (or constellations, see Definition 2.16) and a lattice decoder and we abandon
the concept of Poltyrev capacity that has lead to Theorem 3.1 and Theorem 3.2.

We already mentioned in Section 2.3.2 that Linder et al. showed in [LSZ93] that
the capacity of the AWGN channel is achievable with spherical lattice codes under
ML decoding and that subsequently the challenge has been of reaching the same
goal with a lattice decoder, which is non-optimal for finite lattice constellations.

This goal was reached by Erez and Zamir [EZ04] and more recently Ordentlich
and Erez [OE12] and Ling and Belfiore [LB13] have revisited this result, giving
different proofs with respect to Erez and Zamir. [EZ04] and [OE12] are based on
the so-called Voronoi constellations and the MLAN (Modulo-Lattice Additive Noise)
channel; Ling and Belfiore, instead, propose a solution based on a “pseudo-Gaussian”
distribution on the AWGN channel set of inputs (which is of course a lattice). We
will briefly summarise their ideas in Section 4.1, putting in evidence their strategies,
their strength and their disadvantages. This will also allow us to fix in detail the
setting in which we will work.

In Section 4.2, we propose our demonstration that there exists a random Con-
struction A ensemble that achieves the capacity of the AWGN channel (cf. Theorem
4.1). This lattice family is very similar to the one considered by Ordentlich and Erez
and our proof presents some advantages with respect to the already existing ones.
Moreover, we have also been motivated in this redemonstration work because our
argument seems to be the most suitable to be adapted to LDA lattices. This is done
in Section 4.3.
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4.1 Previous work

4.1.1 Voronoi constellations and MLAN channel: Erez and
Zamir’s approach

We recall that a lattice decoder simply looks for the closest lattice point to the
received channel output (cf. Section 2.3.2). This strategy is suboptimal with respect
to MAP decoding of a finite constellation (or ML, when all codewords are a priori
equiprobable), since the decision regions do not take into account the boundaries of
the shaping region. This means that the decoder output is always a lattice point, but
it may not lie in the constellation and thus not be a codeword. Until Erez and Zamir’s
paper [EZ04], previously existing lattice coding schemes based on a “pure” lattice
decoder could not achieve the capacity of the AWGN channel [dB75, Pol94, Loe97]
and were stuck to the value 1/2 log2(SNR) for the maximum achievable rate. Then,
Erez and Zamir proposed a new encoding and decoding scheme that solves this
problem. To that end, they needed a certain number of ingredients, which we will
briefly introduce and describe in this section:

1. Voronoi constellations.

2. Modulo-Lattice Additive Noise channel.

3. “Good” lattices for the covering and the channel coding problem (see also
Section 2.4).

Voronoi constellations

Let Λ ⊆ Λf ⊆ Rn be two lattices. Λ and Λf are commonly called two nested lattices
and give rise to the following definition, proposed for the first time by Conway and
Sloane [CS82, For89]:

Definition 4.1 (Voronoi constellation). The Voronoi lattice code or Voronoi con-
stellation C generated by Λf and Λ is simply a lattice code (cf. Definition 2.16)
made of points of Λf for which the shaping region is V(Λ):

C = Λf ∩ V(Λ). (4.1)

Equivalently, it is the set of representatives of the equivalence classes of Λf/Λ that
have minimum norm.

Λf is called the fine lattice (what clarifies the choice of the index f) and Λ the
coarse or shaping lattice. An example of Voronoi constellation in dimension 2 is
given in Figure 4.1.
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(0, 0)

Figure 4.1: A Voronoi constellation of the hexagonal lattice in dimension 2. Filled
and empty circles are the points of Λf . Small hexagons represent their Voronoi
regions. Big hexagons are the Voronoi regions of Λ = 3Λf . The filled circles are the
32 = 9 points of the constellation Λf/Λ, contained in V(Λ).

Encoding, decoding and the MLAN channel

As we have already pointed out, lattice decoding on its own seemed not to be suffi-
cient to achieve the capacity of the Gaussian channel. That is the reason why Erez
and Zamir proposed to base their transmission scheme on a transformation of the
AWGN channel, firstly derived in [ESZ05]. This is called Modulo-Lattice Additive
Noise (or MLAN ) channel and involves the lattice Λ whose Voronoi region is the
shaping region of the finite constellation. When this lattice is accurately chosen,
one can show that the transition from AWGN to MLAN channel is information pre-
serving at any SNR, asymptotically in the lattice dimension n. Erez and Zamir also
proved in detail that reliable transmission of data is possible with this construction
when the dimension n goes to infinity. Furthermore, they provided a precise analysis
of the error probability exponents.

Let us introduce with some more precision the MLAN channel and the related
transmission strategy. We will give many details, in order to properly understand
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the construction, but we will skip all technical proofs (with the exception of Lemma
4.1) and refer the reader to [EZ04] for them.

The first key ingredient for this construction is a random variable u called a
dither, which is uniformly distributed over the shaping region V(Λ). Every instance
of the dither is known and shared by the sender and the receiver. Dithering is
commonly used in lattice quantisation for source coding [For92].

The second ingredient is given by the following definition (see also [EZ04]):

Definition 4.2 (Wiener coefficient). Let x be the random variable that represents
the AWGN channel input and let y = x+w be its random output, then the Wiener
coefficient is

α = arg min
β∈R

E[||x− βy||2],

The minimum in the previous formula is usually called Minimum Mean Squared
Error and the Wiener coefficient is also called MMSE coefficient.

Lemma 4.1. Let E[||x||2] = nP and suppose that the AWG noise variance per
dimension is σ2 (i.e. wi ∼ N (0, σ2)). Then

α =
P

P + σ2
.

Proof. Note that we have

E[||x− βy||2] = E[||(1− β)x− βw||2]

= (1− β)2E[||x||2] + β2E[||w||2]− 2(1− β)βE[xwT ]. (4.2)

Now, the coordinate-wise independent distribution of the Gaussian noise implies

E[||w||2] = E[wwT ] =
n∑
i=1

E[w2
i ] =

n∑
i=1

Var(wi) = nσ2.

Moreover, since xi and wi are independent for every i and E[wi] = 0,

E[xwT ] =
n∑
i=1

E[xiwi] =
n∑
i=1

E[xiwi] =
n∑
i=1

E[xi]E[wi] = 0.

We go on from (4.2) and we obtain

E[||x− βy||2] = (1− β)2nP + β2nσ2 = (nP + nσ2)β2 − 2nPβ + nP = f(β).

Minimising f(β) with a standard first derivative argument gives the wanted result.

The third ingredient for Erez and Zamir’s result is the “modulo-Λ” operation:
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Definition 4.3 (Reduction modulo a lattice). Any point y ∈ Rn can be written as
y = x + v, for some x ∈ Λ and v ∈ V(Λ). This decomposition is unique if we
consider the proper version of V(Λ) (see the comments after Definition 2.6). Hence,
we define

y mod Λ = y −QΛ(y) = v;

recall that QΛ(·) is the lattice quantiser associated with V(Λ) of Definition 2.4.

We are now ready to describe the transmission scheme:

1. Let t ∈ Λf/Λ be the coded message that we want to send (that would corre-
spond to the AWGN channel input).

2. Let u ∼ Unif(V(Λ)) be the dither; the encoder submits to the AWGN channel
the quantity

x = [t− u] mod Λ.

3. The receiver obtains the AWGN channel output y = x + w, where w is the
Gaussian noise. He multiplies it by the Wiener coefficient α and obtains:

y′′ = αy + u.

4. Finally, the receiver passes to the lattice decoder (with respect to Λf ) the point
y′′; this computes

t̂ = QΛf (y
′′) mod Λ ∈ Λf/Λ

which is the decoding scheme output.

Erez and Zamir proved that this transmission scheme is equivalent to the channel
whose input is t and whose output is y′ = [y′′ mod Λ]. It is properly the MLAN
channel and we notice that

y′ = [αy + u] mod Λ

= [α(x + w) + u] mod Λ

= [α([t− u] mod Λ) + w) + u] mod Λ

= [t− (1− α)(t− u) + αw] mod Λ.

We can say that the effective noise of the MLAN channel is the sum of two compo-
nents: the scaled Gaussian noise αw and the self-noise −(1−α)(t−u). The dither
u in the self-noise has the role of decorrelating the self-noise from the channel input
t.

The dither plays an important role in [EZ04] and [OE12], but it will turn out
that it is not strictly necessary to achieve the same goals. Indeed, our objective in
proving Theorem 4.1 is precisely to show that Voronoi constellations can achieve
capacity even without dithering.

On the other hand, the multiplication by α turns out to be the real key idea to
gain the “missing 1” in the formula 1/2 log2(SNR) and reach the capacity. MMSE
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scaling can be intuitively thought as a method of bringing the AWGN channel output
as close as possible to the channel input, before starting the lattice decoder (see also
Section 4.2.3). The combination of scaling by α and lattice decoding is sometimes
referred to as MMSE lattice decoding.

As a final remark, we put in evidence that in this setting the concept of lattice
encoding and decoding is somehow redefined and now involves the dither (i.e. a
source of shared randomness), the Wiener coefficient and, moreover, some reductions
modulo Λ, the shaping lattice. Nevertheless, from a computational point of view, a
reduction modulo Λ corresponds to an instance of the lattice decoder with respect
to Λ, while addition and subtraction of u or the multiplication by α are negligible.
Hence this scheme is concretely based on two lattice decoders (with respect to Λ
and Λf ) and we still can speak of lattice encoding and decoding.

Erez and Zamir’s results with “good” nested lattices

Erez and Zamir proved under some hypotheses that the MLAN channel and the
AWGN channel have (asymptotically) the same capacity and that it can be achieved
by a particular family of random lattice constellations [EZ04]. Namely, they need:

• the shaping lattice Λ to be good for the quantisation problem;

• the fine lattice Λf to be good for coding over the AWGN channel with lattice
decoding.

The reader can refer to Section 2.4 for the different definitions of “goodness” for
lattices.

The explicit construction that Erez and Zamir provide is based on Construction
A, whose properties of goodness are studied in [ELZ05]. It is a Construction A
over Z, with a very large p (exponential in n). Moreover, their shaping lattice has
the property of being “Rogers-good”, which concretely means good for the covering
problem. This implies goodness for quantisation (cf. [ELZ05]) and this requirement
is needed to accurately establish the error probability exponents that the modulo-
lattice scheme achieves.

Ordentlich and Erez’s simpler proof

Ordentlich and Erez gave in [OE12] a simpler proof of these capacity results, which
avoids the analysis of the error exponents and needs a much less technical approach.
It is worth the effort of presenting the family of nested lattices that they consider,
since it is substantially very similar to the one we use in Theorem 4.1: let Gf be
the generating matrix of a linear code Cf over Fp; suppose that Gf has dimension
kf × n. This code gives rise to the fine lattice Λf through (a scaled) Construction
A:

Λf = γp−1Cf + γZn,

where γ = 2
√
n SNR is chosen for some computational reasons.
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The coarse lattice comes from a subcode of Cf : let C be the linear code generated
by the first k rows of Gf ; then C ⊆ Cf and

Λ = γp−1C + γZn ⊆ Λf .

Of course, the family is a random ensemble and all the entries of Gf are i.i.d.
random variables uniformly distributed over Fp = {0, 1, . . . , p−1}. In order to make
the probability of having full rank matrices to be close to 1, the hypothesis kf < βn
for some 0 < β < 1 is made. Indeed, it can be shown that

P{rk(Gf ) < kf} < pkf−n (4.3)

(see [ELZ05] to justify the previous bound).
The last point that we would like to discuss is that Ordentlich and Erez fix

1/2n3/2 ≤ p ≤ n3/2. In the perspective of a practical application of these results,
this is a substantial improvement with respect to the construction of Erez and Zamir
(for which p is exponential in n). Nevertheless, they do not specify if powers of n
other than 3/2 (and possibly smaller) can be chosen, keeping the proof valid. In
Theorem 4.1, our range of admittable primes will be wider: the power 3/2 can be
replaced by any positive constant.

4.1.2 Lattice Gaussian coding: Ling and Belfiore’s approach

Before moving on to our own work, we report another recent result by Ling and
Belfiore [LB13]. Their strategy for achieving the AWGN channel capacity abandons
Voronoi constellations, involves only one lattice and works under the hypothesis
that SNR > 3. Their constellation could be defined as “probabilistically finite”,
because the codebook is a lattice good for coding and the a priori probability for
the codewords follows a discrete Gaussian distribution (and in particular is not
uniform over some set anymore). In such a way, even if the constellation is infinite,
high-energy codewords have a small probability of being transmitted and an average
power constraint is respected. So, there is no need of a shaping lattice and, moreover,
of the dither. On the contrary, the Wiener coefficient is still employed for adapting
the channel output and obtaining a better lattice decoding; MMSE lattice decoding
is proved to be equivalent to MAP decoding in this setting. Finally, a key tool in
Ling and Belfiore’s construction is the so-called flatness factor [LLBS12], that will
be introduced later.

Discrete Gaussian distribution over a lattice

We report here with our notation the definition of the distribution on the lattice
points that Ling and Belfiore have chosen for the channel a priori probabilities.

Take σ > 0 and consider the n-dimensional Gaussian density function centred
at c:

fσ,c(y) =
1

(
√

2πσ)n
exp

(
−||y − c||2

2σ2

)
.
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For simplicity, we write fσ(y) = fσ,0(y). From this distribution, we derive the
function

fσ,Λ(y) =
∑
x∈Λ

fσ,x(y) =
1

(
√

2πσ)n

∑
x∈Λ

exp

(
−||y − x||2

2σ2

)
,

which is periodic on a lattice Λ, in the sense that fσ,Λ(y) = fσ,Λ(y+x) for all x ∈ Λ.
One can easily see that this function, if restricted to Rn/Λ, is a probability density.

Definition 4.4 (Discrete Gaussian distribution). Let fσ,c(Λ) =
∑

x∈Λ fσ,c(x). The
discrete Gaussian distribution over the lattice Λ ⊆ Rn with center c ∈ Rn is the
following distribution, taking values in x ∈ Λ:

DΛ,σ,c(x) =
fσ,c(x)

fσ,c(Λ)
.

In the case of a shifted lattice Λ− c = {y ∈ Rn : y = x− c, ∃x ∈ Λ}, we define for
every x ∈ Λ:

DΛ−c,σ(x− c) =
fσ(x− c)

fσ,c(Λ)

and we have DΛ−c,σ(x− c) = DΛ,σ,c(x).

The flatness factor

Definition 4.5 (Flatness factor). Let σ > 0, let Λ ⊆ Rn be a lattice and let F be
any fundamental region of Λ. The flatness factor is

εΛ(σ) =
maxy∈F |fσ,Λ(y)− 1/Vol(Λ)|

1/Vol(Λ)
.

The flatness factor measures the maximum variation of fσ,Λ(y) and, namely, the
definition implies that

fσ,c(Λ) ∈ [1− εΛ(σ), 1 + εΛ(σ)]
1

Vol(Λ)
.

If the flatness factor is small (see the conditions below and [LLBS12] for more
detail), the lattice Gaussian distribution can be proved to behave like a continuous
Gaussian distribution from many respects. This is intuitively an advantage, because
it is known that continuous Gaussian distributions achieve the capacity of the AWGN
channel.

The encoding and decoding scheme

Let the SNR be given by P/σ2, for some average power constraint P and a fixed
AWGN variance per dimension σ2. Let Λ be a lattice which is good for unconstrained
AWGN channel coding. Furthermore, Ling and Belfiore supposed that the codebook
is given by a shifted version of the lattice Λ − c, since many practical applications

84



CHAPTER 4. FINITE LATTICE CONSTELLATIONS

require it. This will not change the geometric properties of the lattice, of course. As
already alluded, the encoder maps the information bits to the points y = x−c ∈ Λ−c
and the latter follow the lattice Gaussian distribution of parameter σ0

DΛ−c,σ0(y) =
e
− ||y||

2

2σ2
0

(
√

2πσ0)nfσ0,c(Λ)
.

After addition of the Gaussian noise w, the decoder multiplies the channel out-
put by the coefficient α′ = σ2

0/(σ
2
0 +σ2) and performs lattice decoding of the product

α′(y + w). In this setting, Ling and Belfiore showed explicitly that if the flatness
factor is “small”, α′ is asymptotically equal to the Wiener coefficient and this decod-
ing strategy is asymptotically equivalent to MAP decoding. The decoder output is
then

ŷ = QΛ−c(α
′(y + w)).

Ling and Belfiore’s analysis puts in evidence that under some hypotheses the
decoding error probability tends exponentially fast to 0 with the lattice dimension
growing to infinity. In particular, they need

• Λ to be good for coding (according to Definition 2.27);

• limn→∞ εΛ

(
σ2

0√
σ2

0+σ2

)
= 0 and εΛ

(
σ0

2

)
< 1;

• SNR > e.

So, actually, capacity is not achieved for every SNR, even if the previous requirement
is quite mild.

Moreover, if y ∼ DΛ−c,σ0 , it can be shown that (cf. [MR04, Ban93])

P{||y|| >
√

2πnσ0} <
1 + εΛ(σ0)

1− εΛ(σ0)
2−n.

Since εΛ(σ0) is lower and upper bounded by positive constants, we are allowed to
think that the points of the lattice which do not lie inside a sphere of radius

√
2πnσ0

are not transmitted. This is how lattice Gaussian distribution resembles a finite
constellation. On the other hand, the reader my be interested in [ZF96] to learn
how a uniform distribution over a Voronoi constellation with a quantisation-good
shaping lattice can be considered asymptotically close to a Gaussian distribution.

As a conclusion, we also recall that Ling and Belfiore’s techniques are applied
in another work by the same authors et al. [LLBS12], in which they address the
problem of transmitting information over the wiretap channel.

4.2 A new approach to achieve capacity
In this section we provide a new proof that there exists a random ensemble of lattices
that achieves capacity under (MMSE) lattice decoding when SNR > 1. Our result
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would like to put together some advantages of the results presented till now in the
chapter. At the same time, we try to overcome some less attractive aspects of them.
Our proof will present some novelties and its main features are listed below here.

• Our lattice family is a random Construction A ensemble. It is similar to the
family proposed by Ordentlich and Erez (cf. Section 4.1.1), the difference
being that it is defined by a set of parity-check matrices rather than generator
matrices (cf. Section 4.2.1).

• We still adopt the technique of Voronoi constellations.

• We do not need dithering anymore. This meets the purpose of Belfiore and
Ling of avoiding the unpractical sharing of common randomness between the
sender and the receiver. However, they pay the price of a randomised encoder.
Our proof instead does not need lattice Gaussian distribution and we still have
an a priori uniform distribution over the lattice constellation. Moreover, an
explicit bijection exists that maps uncoded messages to constellation points.
This is desirable when we think of practical implementations of our encoding
and decoding scheme.

• We still rely on the idea of scaling the AWGN channel output by the Wiener
coefficient, before performing lattice decoding. This enhances the strength of
the decoder.

• We restrict our construction to the case SNR > 1. The reasons of this choice
will be explained in Section 4.2.3.

• We decrease the size of the prime number needed for Construction A as a
function of n, with respect to Ordentlich and Erez’ construction (recall that
they have p ≈ n3/2), still attaining capacity. Again, this may have practical
advantages.

Our encoding and decoding scheme is summarised in Figure 4.2 and treated in
detail in the next sections.

4.2.1 The random ensemble of lattice codes

We still work with a random Construction A ensemble; it is simply given by a ran-
dom parity-check matrix, whose entries are independent random variables uniformly
distributed over {0, 1, . . . , p − 1} = Fp. In particular, let H be this matrix, of di-
mension n(1−R)×n for some 0 < R < 1 and let Hf be its lower submatrix formed
by the last n(1−Rf ) rows of H for some R < Rf < 1:

H =

(
H ′

Hf

)
(4.4)
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1. Generation of the random lattice. Choose with uniform distri-
bution over Fp a parity-check matrix H of dimension (`+ r)×n (with
` = n(Rf −R) and r = n(1−Rf ), see (4.4)).

2. Encoding of a message m ∈ F`p. Find a vector x ∈ Zn of smallest
norm such that HxT ≡ (m | 0)T ∈ F`p × Frp. The uncoded messages
are supposed to be uniformly chosen.

3. Decoding of the received vector y. MMSE lattice decoding of y:
x̂ = QΛf (αy), where α is the Wiener coefficient (Definition 4.2).

Figure 4.2: Our encoding and decoding scheme.

The submatrix Hf defines a linear code Cf over Fp and the whole matrix H defines
a subcode C of Cf . If Λ is the lattice obtained by Construction A from C and Λf

is the one coming from Cf , they are nested:

Λ = {x ∈ Zn : HxT ≡ 0T mod p} ⊆ {x ∈ Zn : Hfx
T ≡ 0T mod p} = Λf .

The Voronoi constellation that we consider is then given by Λf ∩ V(Λ). It should
be clear that this approach is dual to the one adopted by Ordentlich and Erez, who
described the random codes by the means of generator matrices.

Notice that we will let the dimension n change and tend to infinity all along
our proofs, so it would be more proper to call the lattices of the random ensemble
Λ(n) and Λ

(n)
f ; nevertheless, since this will not cause any ambiguity, we will keep the

lightened notation Λ and Λf .
If we suppose that all the rows of H are linearly independent, then R and Rf

are the real rates of the codes C and Cf respectively. We have

Vol(Λ) = pn(1−R) and Vol(Λf ) = pn(1−Rf ),

from which we deduce that the cardinality M of the lattice constellation is

M = |Λf/Λ| =
Vol(Λ)

Vol(Λf )
= pn(Rf−R). (4.5)

Notice that the probability that the rank of H is strictly smaller than n(1−R)
can be shown to decrease to 0 very fast when n tends to infinity (see also (4.3));
hence we will work as if H was always full-rank. In other terms, an H whose rows are
not independent has to be considered a “bad” choice and discarded; the contribution
of these “bad” matrices to the average arguments that we carry out asymptotically
vanishes and is completely negligible.
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4.2.2 Encoding and decoding

The points of the constellation (or equivalently the cosets of Λf/Λ) are indexed by
the pn(Rf−R) different syndromes of the form (s1, s2, . . . , sn(Rf−R), 0, . . . , 0)T associ-
ated with the matrix H, where all the si ∈ Fp. More explicitly, let ` = n(Rf − R)
and let F`p be (in 1-1 correspondence with) the set of messages; the bijection

ϕ : Λf ∩ V(Λ)→ F`p (4.6)

x 7→ H ′xT mod p

makes possible a constructive encoding (recall that H ′ is the upper submatrix of H,
see (4.4)). Our transmission scheme works as follows:

1. The sender pairs up a message and a syndrome and transmits x, the corre-
sponding constellation point (via ϕ−1), over the AWGN channel (no dithering
is required).

2. The receiver gets the channel output y = x+w and multiplies it by the Wiener
coefficient α.

3. Then he performs lattice decoding of αy and gets x̂ = QΛf (αy).

4. The decoded message will be the one associated with ϕ(x̂).

A final remark on the bijection ϕ: for every s′ ∈ F`p, let x ∈ Λf be any solution
of the linear system H ′xT ≡ s′ mod p. Then

ϕ−1(s′) = x−QΛ(x)

and encoding can be done substantially thanks to a lattice decoder, too.

4.2.3 How to achieve capacity - Overview and discussion on
our proof

We will try now to give a general description of our proof, by the means of a heuristic
argument that does not take into account all the probabilistic and asymptotic aspects
of the rigorous demonstration.

Geometric description

Our result is based on the following facts:

• The points of the constellation typically have the same norm and lie very close
to the surface of a sphere of a given radius (to be specified later, see Lemma
4.3).

• The AWGN noise is typically orthogonal to the sent vector, in the sense that,
if x is our transmitted constellation point and w is the noise, then xwT ≈ 0
(cf. Lemma 4.4).
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• The effective noise due to MMSE scaling and the sent point are not decorre-
lated. Consequently, it is not possible to show that (MMSE) lattice decoding
works with very high probability independently of the sent point. Neverthe-
less, Theorem 4.1 is based on the fact that the number of points for which this
does not happen is not big enough to perturb the average error probability of
the family.

• As in the proofs of Theorem 3.1 and Theorem 3.2, for a certain channel output
(MMSE-scaled, in this case), we look for lattice points inside a sphere centred
at it and with a typical radius to be specified later. There will be no error
decoding if the only point in this decoding sphere is the transmitted one.

Consider that when we use the adverb “typically”, we mean “with probability
tending to 1 when n tends to infinity”. The accurate proof will be treated in all
detail in the sequel, but let us try to understand the geometric sense of the elements
that we have just listed. So, suppose that the channel input is a point x whose
norm is fixed to be ||x|| =

√
nP , for some P > 0, which will turn out to be the

average (and asymptotically maximum) power of the constellation. Suppose also
that xwT = 0; if y = x+w is the channel output, then ||y||2 = ||x||2 + ||w||2. Now,
let us multiply y by a scalar value β such that the distance between x and βy is
minimised. Basic Euclidean geometry (see Figure 4.3) tells us that if ||w||2 = nσ2,
then β = P/(σ2 + P ) = α, the Wiener coefficient (cf. Lemma 4.1). This lets us
guess that MMSE lattice decoding helps in bringing the decoder input closer to the
sent point.

The receiver passes αy to the lattice decoder and there will be no decoding error
if there is no other lattice point closer to αy than x. We will show that this typically
happens if:

1. SNR > 1.

2. P ≈ p2(1−R)/2πe;

3. ||αy − x||2 asymptotically does not exceed np2(1−Rf )/2πe.

Notice that the previous bound concretely means that our constellation tolerates
an “effective” noise after MMSE scaling whose variance per dimension is at most as
strong as the noise corresponding to Potyrev capacity. We intuitively understand
that this can be the good condition, admitting that no issue comes from the fact
that the “effective” noise and the sent point x are not decorrelated (here, we have
no dither to guarantee that).

The condition on the signal-to-noise ratio can be simply understood with the
following argument: let us call h = αy− x and suppose that it takes the maximum
value according to the second condition above here, ||h||2 = np2(1−Rf )/2πe = nσ2

dec.
We use the index “dec” to indicate that the quantity corresponds to the (upper
bound of the) “decodable” effective noise and to the decoding sphere defined in the
proof of Theorem 4.1. If we want good decoding, we need αy to be closer to x than
to 0, because the latter always belongs to the lattice constellation; in other terms,
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y

w

αy

0

x

h

Figure 4.3: Geometric interpretation:

• x: transmitted constellation point. ||x||2 = nP .

• w: AWG noise vector. ||w||2 = nσ2.

• y: AWGN channel output. y = x + w.

• α: Wiener coefficient. α = P
P+σ2 .

• αy: lattice decoder input.

• h: effective noise corresponding to MMSE scaling.

it is necessary that ||αy||2 > ||h||2. Again, a Euclidean geometry argument based
on Figure 4.3 shows that (always supposing that xwT = 0)

nσ2
dec = ||h||2 =

||x||2||w||2

||y||2
=

n2Pσ2

nP + nσ2
=

nPσ2

P + σ2
, (4.7)

while
||αy||2 =

P 2(nP + nσ2)

(P + σ2)2
=

nP 2

P + σ2
.

Then, ||αy||2 > ||h||2 becomes

nP 2

P + σ2
>

nPσ2

P + σ2
,

that is P > σ2 or, equivalently, SNR > 1.
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Taking ||h||2 = nσ2
dec corresponds to a maximum rate for the constellation that

equals capacity, as can be understood from the following calculation (that, again, is
based on the approximations done till now and has only a demonstrative purpose):
from (4.7) we can derive that

σ2 =
Pσ2

dec

P − σ2
dec

.

This implies that

SNR =
P

σ2
=

P

σ2
dec

− 1.

Observe that the previous formula shows how decoding αy enhances the strength of
the constellation, as if we had an “effective” SNReff equal to P/σ2

dec = SNR +1.
This heuristically explains how we manage to gain the “plus 1” in the formula
1/2 log2(SNR). The same argument was pointed out in Erez and Zamir’s work
[EZ04]. To conclude, recall that we make the hypothesis that P = p2(1−R)/2πe; this,
together with (4.5) leads to

1

2
log2(1 + SNR) =

1

2
log2

(
P

σ2
dec

)
(4.8)

≈ 1

2
log2(p2(Rf−R))

=
1

n
log2(pn(Rf−R)), (4.9)

which is the rate of our constellation. A stronger rate would give a non-reliably
decodable constellation, since the “effective” noise would make ||h||2 exceed nσ2

dec

and no reliable decoding could be guaranteed.

Originality of our proof and lattice decoding of αy

What we have explained till now gives an intuitive description of the typical ge-
ometry that characterises the AWG noise and the random Voronoi constellations of
Construction A nested lattices. Nevertheless, it does not directly drop a hint on the
original idea behind our proof that allows to avoid dithering. It is worth the effort
of spending some words about that now, before moving on to the detailed proof.

The main argument is the following: if αy is the real point that the receiver
passes to the lattice decoder, we would like to ensure that the only lattice point
inside the decoding sphere Bαy,n(

√
nσdec) is the sent point. This is equivalent to

saying that lattice decoding does not fail. Of course, this does not happen for every
instance of the AWG noise and may not happen for every point of the constellation.
Nevertheless, one hopes to be able to apply a similar technique as the one of the
proofs of Theorem 3.1 and Theorem 3.2. In those settings, it was shown that the
probability of a decoding failure is asymptotically negligible, independently on the
sent point x. This last feature makes the big difference with the case of MMSE lattice
decoding. Indeed, the average argument that we apply will lead to the estimation
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of (a more elaborated version of) the following sum:∑
z∈Bαy,n(

√
nσdec)

P{z ∈ Λf | x ∈ Λf}.

In Theorem 3.1 and Theorem 3.2, the two events {z ∈ Λf} and {x ∈ Λf} were
independent, thanks to the action of the random noise. In our setting, instead, the
multiplication by α adds some correlation between x and αy. One can interpret
Erez and Zamir’s dithering technique as a method of eliminating this correlation.

We do not use dither and consequently there will a priori be some points x’s for
which the previous sum takes a “big” value. Our analysis shows that the proportion
of this kind of x’s in the constellation is very small and the total error decoding
probability still goes to 0 when n tends to infinity (see Lemma 4.5 and its application
to (4.35) in the proof of Theorem 4.1).

4.2.4 The detailed proof

From now on, we will go into all the technical aspects of our proof that there
exists a random capacity-achieving Construction A lattice family. This result will
be formally stated and proved in Theorem 4.1. For the sake of clearness, we have
taken out of the proof of the theorem a certain number of lemmas, that we present
below here. The experienced reader may prefer to directly go to the proof of Theorem
4.1 and then to go back to the demonstration of all the involved lemmas.

The typical norm of a constellation point

We treat here the problem of the typical norm of a constellation point. Let ρ(n)
eff be

the effective radius of the n-dimensional shaping lattice Λ (see also Definition 2.21).
It is the radius of the ball which has the same volume as V(Λ), the Voronoi region
of the shaping lattice: Vol(V(Λ)) = Vol(B0,n(ρeff)). Hence

ρ
(n)
eff = p(1−R) Vol(B0,n(1)−1/n) ∼

√
np(1−R)

√
2πe

,

by Lemma 2.6. We denote the asymptotic value

ρeff =

√
np(1−R)

√
2πe

. (4.10)

We claim that for n large enough almost all the points of the constellation lie very
close to the surface of the ball B0,n(ρeff). For this reason, we call it the shaping
sphere. Before formally proving this, we need the following lemma:

Lemma 4.2. Let B = Bc,n(ρ) be the n-dimensional ball of radius ρ and centre c.
Let x be any point of B ∩ Zn, let p be a prime number and let µ ∈ Fp. Then,

|{z ∈ B ∩ Zn : z ≡ µx mod p}| ≤ 1 +
4ρ2

p2

(
8nρ2

p2

)4ρ2/p2

.
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Proof. Let us start with the case µ = 1, that outlines the strategy for a more general
µ. If z ≡ x mod p, then x− z ∈ pZn. Hence, xi − zi = kip, for some ki ∈ Z. Let us
call N =

∑n
i=1 |ki|; we have

||x− z||2 =
n∑
i=1

(xi − zi)2 =
n∑
i=1

k2
i p

2 ≥ p2

n∑
i=1

|ki| = p2N.

This, together with the fact that both x and z lie in B, gives

p2N ≤ ||x− z||2 ≤ 4ρ2

and
N ≤ 4ρ2

p2
.

Then, the number of z’s equivalent to x in B is bounded by the number L of different
vectors (k1, k2, . . . , kn) ∈ Zn such that

∑n
i=1 |ki| ≤ b4ρ2/p2c. One of this vectors is

simply 0 ∈ Zn. Hence, L itself is bounded by 1 plus the number of possible ways of:

1. fixing m coordinates among n (with 1 ≤ m ≤ b4ρ2/p2c; m = 0 corresponds to
ki = 0 for every i and corresponds to the “1 plus”);

2. for every one of the m fixed coordinates, deciding if ki will be positive or
negative (and, for now, fix ki = 0);

3. choosing for b4ρ2/p2c times to increment one of the m coordinates ki’s of ±1
(according to the sign fixed at step 2).

As a consequence,

|{z ∈ B ∩ Zn : z ≡ x mod p}| ≤ L

≤ 1 +

b4ρ2/p2c∑
m=1

(
n

m

)
2mmb4ρ

2/p2c

≤ 1 +

b4ρ2/p2c∑
m=1

nm2mmb4ρ
2/p2c

≤ 1 +
4ρ2

p2
n4ρ2/p2

24ρ2/p2

(
4ρ2

p2

)4ρ2/p2

= 1 +
4ρ2

p2

(
8nρ2

p2

)4ρ2/p2

,

The lemma is proved for µ = 1. Now, let us consider the case in which µ takes
another value and let z′ be any point inside the sphere such that z′ ≡ µx mod p.
Then

|{z ∈ B ∩ Zn : z ≡ µx mod p}| = |{z ∈ B ∩ Zn : z ≡ z′ mod p}|
and the proof works exactly in the same way as before, with z′ instead of x.
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We are ready to state and demonstrate the lemma about the typical norm of a
constellation point. Of course, the constellation we consider is the one presented in
Section 4.2.1:

Lemma 4.3. Let s = (s1, s2, . . . , sn(Rf−R), 0, . . . , 0) ∈ Fn(1−R)
p r{0} be any non-zero

syndrome, keeping the previous notation. Suppose that p = nλ for some λ > 0 and
let ω be a positive constant such that

ω < min{λ(1−R), 2λR, 1}. (4.11)

If x is the random (over the choice of the matrix H) constellation point associated
with the syndrome s via ϕ−1 (cf. (4.6)), then

lim
n→∞

P
{
ρeff

(
1− 1

nω

)
≤ ||x|| ≤ ρeff

(
1 +

1

nω

)}
= 1. (4.12)

Proof. Let Xρ be the random variable that counts the number of points with syn-
drome s in the n-dimensional ball B0,n(ρ) centred at 0 with radius ρ. For any ρ ≥ 0
and for any x ∈ Zn ∩B0,n(ρ), we define the random variable

Xx =

{
1, if HxT ≡ sT mod p

0, otherwise

that of course depends on the random choice of H. In particular,

P{Xx = 1} =


(

1
p

)n(1−R)

, if x ∈ Zn ∩B0,n(ρ) r pZn

0, if x ∈ pZn ∩B0,n(ρ)

and clearly

Xρ =
∑

x∈Zn∩B0,n(ρ)

Xx.

We will split the proof into two parts. First of all, we argue that

lim
n→∞

P{Xρeff(1− 1
nω ) > 0} = 0. (4.13)

Later, we show that

lim
n→∞

P{Xρeff(1+ 1
nω ) = 0} = 0. (4.14)

These two results together imply (4.12).
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Proof of (4.13). When ρ = ρeff (1− 1/nω),

E[Xρ] =
∑

x∈Zn∩B0,n(ρ)

P{Xx = 1}

≤ |Zn ∩B0,n(ρ)|
(

1

p

)n(1−R)

(4.15)

≤ Vol

(
B0,n

(
ρ+

√
n

2

))(
1

p

)n(1−R)

= Vol (B0,n(1)) ρneff

(
1− 1

nω

)n(
1 +

√
n

2ρ

)n(
1

p

)n(1−R)

∼ 1√
πn

exp(−n1−ω) exp

(√
2πe

2
n−λ(1−R)n

(
1− 1

nω

)−1
)

=
1√
πn

exp

(√
πe

2

(
1− 1

nω

)−1

n−λ(1−R)+1 − n1−ω

)
, (4.16)

where we have used Lemma 2.6 for the asymptotic value of Vol (B0,n(1)). The whole
quantity tends to 0, since 1−ω > −λ(1−R) + 1 by (4.11) and the argument of the
exponential function goes to −∞; considering the fact that P{Xρ > 0} ≤ E[Xρ], we
also have

lim
n→∞

P{Xρeff(1− 1
nω ) > 0} = 0.

Proof of (4.14). Now, let ρ = ρeff (1 + 1/nω). Taking into account the fact that
|Zn ∩B0,n(ρ) r pZn| ∼ |Zn ∩B0,n(ρ)|, we have

E[Xρ] =
∑

x∈Zn∩B0,n(ρ)

P{Xx = 1} (4.17)

= |Zn ∩B0,n(ρ) r pZn|
(

1

p

)n(1−R)

(4.18)

∼ |Zn ∩B0,n(ρ)|
(

1

p

)n(1−R)

≥ Vol

(
B0,n

(
ρ−
√
n

2

))(
1

p

)n(1−R)

= Vol (B0,n(1)) ρneff

(
1 +

1

nω

)n(
1−
√
n

2ρ

)n(
1

p

)n(1−R)

∼ 1√
πn

exp(n1−ω) exp

(
−
√

2πe

2
n−λ(1−R)n

(
1 +

1

nω

)−1
)

=
1√
πn

exp

(
n1−ω −

√
πe

2

(
1 +

1

nω

)−1

· n−λ(1−R)+1

)
, (4.19)
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which tends to infinity, again thanks to (4.11). Hence

lim
n→∞

E[Xρ] = +∞.

Suppose now for a moment that Var(Xρ) ≤ f(n)E[Xρ] for some f(n) = o(E[Xρ]);
we would have

P{Xρ = 0} ≤ P{|Xρ − E[Xρ]| ≥ E[Xρ]}

≤ Var(Xρ)

E[Xρ]2
(4.20)

≤ f(n)

E[Xρ]
−→ 0,

where we have applied Chebyshev’s inequality (Lemma 2.1) to obtain (4.20). This
would be enough to prove (4.14) and conclude. For this reason, let us show that
Var(Xρ) ≤ f(n)E[Xρ]; to do this, we investigate the quantity

Cov(Xx, Xz) = E[XxXz]− E[Xx]E[Xz],

for x, z ∈ Zn∩B0,n(ρ). Observe that, by the definition of the two random variables,
if hi is the i-th row of H,

E[XxXz] = P{XxXz = 1}
= P{Xx = 1, Xz = 1}

=

n(1−R)∏
i=1

P{hixT ≡ si mod p,hiz
T ≡ si mod p}.

There are three possibilities:

1. If x 6≡ az mod p for all a ∈ Fp, let i be an index such that si 6= 0 (there always
exists, since s 6= 0); then

P{hixT ≡ si mod p,hiz
T ≡ si mod p}

= P{hixT ≡ si mod p}P{hizT ≡ si mod p} =

=

0, if x or z belong to pZn(
1
p

)2

, otherwise
.

and E[XxXz] = (1/p)2n(1−R) = E[Xx]E[Xz], that is Cov(Xx, Xz) = 0.

2. If x ≡ az mod p for some a ∈ Fp r {1}, again let i be an index such that
si 6= 0. Hence either ahizT ≡ si mod p or hiz

T ≡ si mod p, with no chance
that the two events happen together. Then

P{hixT ≡ si mod p,hiz
T ≡ si mod p} = 0,

E[XxXz] = 0 and Cov(Xx, Xz) ≤ 0.
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3. Finally, if x ≡ z mod p, then XxXz = X2
x and E[XxXz] = E[Xx]. That is,

Cov(Xx, Xz) ≤ E[Xx].

Putting all of this together, we have

Var(Xρ) = Var

 ∑
x∈Zn∩B0,n(ρ)

Xx


=

∑
x,z∈Zn∩B0,n(ρ)

Cov(Xx, Xz)

=
∑

x,z∈Zn∩B0,n(ρ)
x 6≡az

Cov(Xx, Xz) +
∑

x,z∈Zn∩B0,n(ρ)
x≡az, a6=1

Cov(Xx, Xz)

+
∑

x,z∈Zn∩B0,n(ρ)
x≡z

Cov(Xx, Xz)

≤
∑

x∈Zn∩B0,n(ρ)

∑
z∈Zn∩B0,n(ρ)

x≡z

E[Xx]

≤
∑

x∈Zn∩B0,n(ρ)

(
1 +

4ρ2

p2

(
8nρ2

p2

)4ρ2/p2
)
E[Xx] (4.21)

=

(
1 +

4ρ2

p2

(
8nρ2

p2

)4ρ2/p2
)
E[Xρ],

where (4.21) is a consequence of Lemma 4.2. The last thing we need to conclude is
that

lim
n→∞

f(n)

E[Xρ]
= lim

n→∞

1 + 4ρ2/p2 (8nρ2/p2)
4ρ2/p2

E[Xρ]
= 0.

Taking into account that ρ =
√
np(1−R)(1+1/nω)/2πe and p = nλ, one can compute

that the dominating term (up to some multiplicative constants in the exponent) of
the numerator is nn1−2λR

= exp(n1−2λR lnn). On the other hand, (4.19) and (4.11)
tell that the dominating term in the asymptotic lower bound for the denominator
is exp(n1−ω). Hence, the limit is 0 if

1− 2λR < 1− ω,

which is true, again by (4.11).

A property of the Gaussian noise

The following lemma formally explains in what (probabilistic, asymptotic) sense the
typical AWG noise vector is orthogonal to constellation point vectors. Explicitly, we
bound their scalar product by a quantity that in the proof of Theorem 4.1 turns out
to be negligible with respect to their squared norms. Hence ||x+w||2 ≈ ||x||2+||w||2.
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Lemma 4.4 (Orthogonal noise). Let x ∈ Rn and let w = (w1, w2, . . . , wn) be a
random AWG noise vector: wi ∼ N (0, σ2). Then, for every function f(n) such that
limn→∞ f(n) = +∞, we have

lim
n→∞

P{|xwT | ≤ f(n)σ||x||} = 1.

Proof. Of course, if x = 0, the statement is trivially true. So, suppose from now on
that x 6= 0. The scalar product xwT =

∑n
i=1 xiwi is a sum of i.i.d. Gaussian random

variables, weighted by the xi’s, then it is well-known that it follows a Gaussian
distribution, too. More precisely, E[xwT ] = 0 and

Var

(
n∑
i=1

xiwi

)
=

n∑
i=1

x2
i Var(wi) = σ2||x||2.

Consider Q(·), the tail probability of the standard normal distribution:

Q(y) =
1√
2π

∫ ∞
y

exp

(
−u

2

2

)
du.

For positive y, the Chernoff bound states that

Q(y) ≤ 1

2
e−

y2

2 .

We apply this bound to our probability and we have

P{|xwT | > f(n)σ||x||} = 2Q

(
f(n)σ||x||
σ||x||

)
≤ exp

(
−f(n)2

2

)
,

which tends to 0 because of the choice of f(n) by hypothesis.
Hence,

lim
n→∞

P{|xwT | ≤ f(n)σ||x||} = 1.

Multiple points modulo p in the decoding sphere

The following lemma may appear independent from the context and the discussion
that we have done till now. Nevertheless, it will be useful for the analysis of the
decoding error probability in the proof of Theorem 4.1.

If z ∈ Z we denote by z ∈ Z the element of the class of z modulo p with the
smallest absolute value; that is, z ≡ z mod p and z is the class representant lying in
{−(p− 1)/2,−(p− 3)/2, . . . , (p− 1)/2}.
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Lemma 4.5. Consider B = B0,n(ρeff(1 + 1/nω)) and let ρ = p1−Rf
√
n(1 + ε)/

√
2πe

(where ρeff =
√
np(1−R)/

√
2πe, p = nλ for some constant λ, ω is chosen as in Lemma

4.3, and R and Rf are the same that we have considered till now in this section).
Moreover, suppose that

R > 1/2.

Let µ ∈ Fp = {−(p− 1)/2,−(p− 3)/2, . . . , (p− 1)/2}r {0, 1, 2}. We define

N(µ) = |{x ∈ Zn ∩ B : ∃z ∈ Zn ∩Bx,n(2ρ) for which z ≡ µx mod p}|.

Then, if n is big enough,

N =
∑

µ∈Fpr{0,1,2}

N(µ) = o

(
pn(1−R)

h(n)

)
,

for every function h(n) subexponential in n.

Proof. First of all, notice that z ≡ µx mod p means z = µx + pk, for some k ∈ Zn.
Hence, if we call ν = 1− µ,

||x− z||2 = ||x− µx− pk||2

≥ ||(1− µ)x− pk||2

= ||(1− µ)x||2

= ||νx||2.

If ||νx||2 > 4ρ2, then ||x − z||2 > 4ρ2, too. In other words, z lies outside Bx,n(2ρ)
and x does not have to be counted among the ones contributing to N(µ). That is,

N(µ) ≤ |{x ∈ Zn ∩ B : ||νx||2 ≤ 4ρ2}| = N ′(µ).

Now, let C ≥ 3 be a constant to be fixed later. Given x, let

J =

{
i ∈ {1, 2, . . . , n} : |xi| <

√
p

C2

}
;

Let us prove that if n is large enough, then |J | ≥ γn for every constant 0 < γ < 1.
Indeed, suppose by contradiction that |J | < γn, then we would have at least (1−γ)n
coordinates xi of x such that |xi| ≥

√
p/C2. We employ the hypothesis R > 1/2 to

get:

||x||2 ≥ (1− γ)n
p

C4

> n
p2(1−R)

2πe

(
1 +

1

nω

)2

= ρ2
eff

(
1 +

1

nω

)2

≥ ||x||2,
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which is a nonsense (notice that the second - strict - inequality is true for n large
enough).

Before going on, for a given x = (x1, x2, . . . , xn) and for a subset of indices
I ⊆ {1, 2, . . . , n} we define x(I) to be the vector (x(I)1, x(I)2, . . . , x(I)n) such that

x(I)i =

{
0, if i ∈ I
xi, otherwise

.

First estimate: |ν| ≤ √p. When ν is “small”, denoting J c = {1, 2, . . . , n}r J ,
we have

||νx||2 ≥ ||νx(J c)||2 = ||νx(J c)||2 ≥ 4||x(J c)||2;

the equality holds by definition of J and because |ν| ≤ √p, while the second in-
equality comes from the hypothesis on the range of µ, that implies |ν| ≥ 2. Now, if
||x(J c)||2 > ρ2, then the previous chain of inequalities gives ||νx||2 > 4ρ2. Hence

N ′(µ) ≤ |{x ∈ Zn ∩ B : ||x(J c)||2 ≤ ρ2}| ≤ |Zn ∩B0,n(ρ)|,

noticing that B0,n(ρ) ⊆ B because ρeff(1 + 1/nω) > ρ (provided that ε is small
enough).

Second estimate: |ν| > √p. Let η be a constant to be fixed later such that
0 < η < 1. We say that x ∈ Zn ∩ B is heavy if for all I ⊆ {1, 2, . . . , n} such that
|I| ≤ (1− η)n, we have ||x(I)||2 > 4ρ2/C2. This definition qualitatively means that
a heavy x is such that every “quite small” subset of coordinates still gives a “big
enough” contribution to the total norm of x itself.

Now, let
I = {i ∈ {1, 2, . . . , n} : |νxi| < C|xi|}.

Suppose that x is heavy, then, if |I| ≤ (1− η)n,

||νx||2 ≥ ||νx(I)||2 ≥ C2||x(I)||2 > 4ρ2,

where the second inequality is a direct consequence of the definition of I. This
means that in this case

N ′(µ) ≤ |{x ∈ Zn∩B : x is not heavy}|+ |{x ∈ Zn∩B : x is heavy, |I| > (1−η)n}|.

Let us call N1(µ) the first addend and N2(µ) the second one and estimate them.
Estimation of N1(µ). If x is not heavy, there exists I ⊆ {1, 2, . . . , n} such that

|I| ≤ (1− η)n and ||x(I)||2 ≤ 4ρ2/C2. Notice that if this is true for I = ∅, then the
same property holds a fortiori for a bigger I. Then

N1(µ) ≤ |{x ∈ Zn ∩ B : ∃I ⊆ {1, 2, . . . , n} with |I| ≤ (1− η)n, ||x(I)||2 ≤ 4ρ2/C2}|
≤ |{x ∈ Zn ∩ B : ||x(I)||2 ≤ 4ρ2/C2 when I = ∅}|
= |{x ∈ Zn ∩ B : ||x||2 ≤ 4ρ2/C2}|
= |Zn ∩B0,n(2ρ/C)|
≤ |Zn ∩B0,n(ρ)|,
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since C ≥ 3 by definition.
Estimation of N2(µ). Let x be heavy and suppose that |I| > (1 − η)n. Now,

let us fix γ > η (say γ close to 1 and η close to 0) and let I ′ = I ∩ J . Then, |I ′| 6= 0
and

|I ′| ≥ |J | − |Ic| ≥ (γ − η)n.

Let S ⊆ B be the set of integer points whose cardinality is N2(µ) and that we have
to estimate. We will create a relation φ : S → B (a “function” with more than one
image per point), as follows: if x ∈ S, fix |I ′|/2 coordinates of I ′ and add to each
of them 1 or −1, in such a way that the new point is still in B. The set of images
of x is made of all the

( |I′|
|I′|/2

)
new points that we obtain with the

( |I′|
|I′|/2

)
different

choices of coordinates to modify. We denote it by φ(x) ⊆ B. We have implicitly
supposed that |I ′|/2 is integer, but nothing would substantially change if |I ′| were
odd. Observe that the number of images of each single x is bounded from below by(

|I ′|
|I ′|/2

)
≥ 1√

2|I ′|
2|I
′| ≥ 1√

2n
2(γ−η)n,

independently from I ′. Of course, we have used Lemma 2.5 to approximate the
binomial coefficient.

Now, let
S ′ = {x′ ∈ B : x′ ∈ φ(x),∃x ∈ B} ⊆ B.

It is possible that a certain x′ ∈ S ′ has more than one counterimage in S. We would
like to estimate how many they can be. In order to count them, pay attention to the
following facts: given an x in the set that we are considering, for all i ∈ I ′ = I ∩ J
we have that

• |xi| <
√
p/C2 (by definition of J),

• |νxi| < C|xi| (by definition of I).

The two conditions together say that |νxi| <
√
p/C, while |ν| > √p by hypothesis.

Then

|ν(xi ± 1)| = |νxi ± ν| >
√
p

(
1− 2

C

)
≥
√
p

C
≥ C|xi ± 1|.

Now, consider x′ ∈ φ(x) for some x ∈ S; what we have just shown implies that
all the coordinates x′i of x′ that are equal to a coordinate of x plus or minus 1 (i.e.,
all the “modified” coordinates of x), are such that |νx′i| ≥ C|x′i|. As a consequence
and by definition of I, every x′ ∈ S ′ has between |I ′|/2 and |I ′|/2+bηnc coordinates
such that |νx′i| ≥ C|x′i|. On the other hand, every x ∈ S has between 0 and bηnc
of them. This means that an upper bound for the number K of counterimages of
x′ ∈ S ′ is given by the number of possible modifications of plus or minus 1 (only
towards the surface of B, since φ always “pushes” a point towards the inner region)
of |I ′|/2 coordinates chosen among the at most |I ′|/2 + ηn such that |νx′i| ≥ C|x′i|;
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in formulae,

K ≤
|I′|/2+bηnc∑
k=|I′|/2

(
|I ′|/2 + bηnc

k

)
≤ ηn2|I

′|/2+bηnc

≤ ηn2
n
2

+ηn.

Summarising, we have created a relation φ that associates every point in S with
at least 2(γ−η)n/

√
2n points in S ′ and every point in S ′ with at most ηn2(1/2+η)n

counterimages in S. In other terms,

N2(µ)
1√
2n

2(γ−η)n ≤ |S ′|ηn2
n
2

+ηn ≤ |B ∩ Zn|ηn2( 1
2

+η)n

and
N2(µ) ≤

√
2ηn

3
2 2(2η+ 1

2
−γ)n|B ∩ Zn|.

Putting together the estimation of N1(µ) and N2(µ), we get

N ′(µ) ≤ |Zn ∩B0,n(ρ)|+
√

2ηn
3
2 2(2η+ 1

2
−γ)n|B ∩ Zn|.

Conclusion. We have shown that for every value of ν (hence of µ), it is true
that

N(µ) ≤ N ′(µ) ≤ |Zn ∩B0,n(ρ)|+
√

2ηn
3
2 2(2η+ 1

2
−γ)n|B ∩ Zn|.

Since the number of total different µ’s is bounded by p, we can multiply by p the
previous bound and get

N =
∑

µ∈Fpr{0,1,2}

N(µ) ≤ p|Zn ∩B0,n(ρ)|+ p
√

2ηn
3
2 2(2η+ 1

2
−γ)n|B ∩ Zn|.

Recall that the goal of this lemma is to prove that N = o(pn(1−R)/h(n)) for every
subexponential function h(n). Let us split the previous sum and analyse the two
addends separately. First of all, we claim that some standard computations, similar
to the ones already carried out in this thesis (see the proofs of Theorem 3.1 and
Lemma 4.3), tell that for some f(n) subexponential in n,

p|Zn ∩B0,n(ρ)|h(n)

pn(1−R)
.
pf(n)h(n)(1 + ε)npn(1−Rf )

pn(1−R)

=
pf(n)h(n)(1 + ε)n

pn(Rf−R)

=
pf(n)h(n)(1 + ε)n√

1 + SNR
n ;

this last equality comes from (4.8) and 4.9. The ratio tends to 0 when n tends to
infinity because ε can be taken as small as wanted.
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With the same techniques as before, let g(n) be the subexponential function in n
coming from the estimation of |B ∩Zn|. The second summand is treated as follows:

p
√

2ηn
3
2 2(2η+ 1

2
−γ)n|B ∩ Zn|h(n)

pn(1−R)
.
p
√

2ηn
3
2 2(2η+ 1

2
−γ)ng(n)h(n)pn(1−R)

pn(1−R)

= p
√

2ηn
3
2 2(2η+ 1

2
−γ)ng(n)h(n),

which tends to 0 because the dominating term is the exponential 2(2η+ 1
2
−γ)n and η

and γ can be chosen in such a way that the exponent is negative. This ends the
proof.

The proof that capacity is achieved

We are now ready to state and prove the main result of this section:

Theorem 4.1. The random ensemble of nested Construction A lattices introduced
in Section 4.2.1 achieves the capacity of the AWGN channel under MMSE lattice
decoding, when SNR > 1, R > 1/2 and p = nλ for some constant λ > (1 +R)−1.

Proof. The AWGN channel is defined by the SNR = P/σ2 > 1, for some AWG noise
variance per dimension σ2 and some power constraint P (cf. (2.6)). The capacity is
then known to be

C =
1

2
log2(1 + SNR).

We would like to show that for every fixed rate smaller than capacity, the random
ensemble of Section 4.2.1 corresponding to that rate can be reliably decoded.

Dually, let us fix 1/2 < R < Rf < 1 the rates of the Fp-linear codes generating
the nested lattice ensemble and p = nλ for some λ > (1+R)−1; then the constellation
C = Λf ∩ V(Λ) has rate

RC =
log2 p

n(Rf−R)

n

and asymptotically the power constraint gives (see Lemma 4.3 and (4.10))

P =
ρ2

eff

n
=
p2(1−R)

2πe
.

The inequality RC < C is equivalent to

σ2 <
P

|C|2/n − 1
=

p2(1−R)

2πe(p2(Rf−R) − 1)
= σ2

max. (4.22)

We have called σ2
max this upper bound, which is of course different from the σ2

max of
Chapter 3 (cf. (3.1)). Nevertheless, we keep the same notation because achieving
capacity in this setting is still equivalent to prove that a random lattice in our
ensemble can be reliably decoded (in big enough dimension) for every AWG noise
variance value σ2 = σ2

max(1− δ)2 with 0 < δ < 1, just like in the proofs of Theorem
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3.1 and Theorem 3.2. The rest of the proof will be consecrated to demonstrate the
previous statement.

The transmission scheme is of course the same that we have presented all along
this section and schematized in Figure 4.2. Hence, let us consider any syndrome
s = (s1, s2, . . . , sn(Rf−R), 0, . . . , 0)T ∈ Fnp representing an uncoded message. We
recall that the messages are supposed to be a priori equiprobable. Let x be the
associated coded point for some random constellation in the family. If w is the
channel noise (with coordinate-wise variance σ2) and α = P/(P + σ2) is the Wiener
coefficient, we claim that for every ε > 0,

lim
n→∞

P{||αy − x||2 ≤ αnσ2(1 + ε)2} = 1. (4.23)

If s = 0, then x = 0 and y = w. The claim is a straightforward consequence
of Lemma 2.2 (the fact that α < 1 is also used). If instead s 6= 0, let ε′ < ε be
a positive constant, let f(n) be a function such that limn→∞ f(n) = +∞ (to be
specified later) and let E1 be the event

E1 = {||x||2 ≤ nP (1 + ε′)2} ∩ {||w||2 ≤ nσ2(1 + ε′)2} ∩ {|xwT | ≤ f(n)σ||x||}.

Note that, provided that ε′ is small enough, the event E1 is (asymptotically) con-
tained in the event {||αy − x||2 ≤ αnσ2(1 + ε)2}: indeed, E1 implies

||αy − x||2 = (α− 1)2||x||2 + α2||w||2 + 2α(α− 1)xwT

≤ σ4

(P + σ2)2
||x||2 +

P 2

(P + σ2)2
||w||2 +

2σ2P

(P + σ2)2
|xwT |

≤ σ4nP (1 + ε′)2

(P + σ2)2
+
P 2nσ2(1 + ε′)2

(P + σ2)2
+

2σ2Pf(n)σ||x||
(P + σ2)2

≤ nPσ2

P + σ2

(
(1 + ε′)2 +

2f(n)σ
√
P (1 + ε′)√

n(P + σ2)

)
(4.24)

and

lim
n→∞

2f(n)σ
√
P (1 + ε′)√

n(P + σ2)
≤ lim

n→∞

2f(n) max{σ2, P}(1 + ε′)√
n(P + σ2)

≤ lim
n→∞

2f(n)(1 + ε′)√
n

= 0,

taking f(n) = o(
√
n). Thus, we can go back to (4.24) and obtain (for n big enough

and ε′ small enough with respect to ε) that

(4.24) ≤ nPσ2

P + σ2
(1 + ε)2 = αnσ2(1 + ε)2.

We are done, because

P{||αy − x||2 ≤ αnσ2(1 + ε)2} ≥ P{E1} → 1, (4.25)
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by Lemma 4.3, Lemma 2.2 and Lemma 4.4.
We have just shown that with very high probability when n is big enough, the

sent point x lies inside a sphere of radius ρdec =
√
αnσ(1 + ε) centred at αy. We

call this sphere the decoding sphere B and no decoding error occurs if the only point
of Λf ∩ B is x. Let us call the “good decoding” event E2 = {Λf ∩ B = {x}} and Ec2
its complement.

To conclude the proof, we will show that for every syndrome s, the probability
that αy is not well decoded tends to 0 for a randomly chosen lattice constellation in
the ensemble. Let us call Pe(s) this probability and let Xs be the random variable
that represents the constellation point associated to x; Xs takes a priori a different
(n-dimensional) value for every different choice of a random constellation.

Let us start with s = 0. In this case, P{Xs = 0} = 1. A very simple computation
implies ασ2 = p2(1−Rf )(1− δ)2/2πe (one can also deduce it from (4.7)); Lemma 3.1
states that with probability tending to 1 no point of pZn different from 0 inside B
can lead to bad decoding (notice that the multiplication by the Wiener coefficient
here does not change the proof of the lemma). Hence we will restrict our error
probability analysis only to points not belonging to pZn and

Pe(0) ∼ P{∃z ∈ Λf ∩ B r pZn and z 6= 0}

≤
∑

z∈(Zn∩B)rpZn
P{z ∈ Λf}

=
∑

z∈(Zn∩B)rpZn

(
1

p

)n(1−Rf )

≤ |Zn ∩ B|
(

1

p

)n(1−Rf )

. (4.26)

The estimation of the previous sum is exactly the same done from (3.15) to (3.18)
in the proof of Theorem 3.1, with Rf instead of R. In other words, we already know
that its limit is 0 when n tends to infinity, if we simply choose ε to satisfy (3.4).

Passing to the case s 6= 0 and observing that no point of pZn can be the codeword
associated to s, we have

Pe(s) =
∑
x∈Zn
P{Xs = x, Ec2}

=
∑

x∈ZnrpZn
P{Xs = x, Ec2}

≤
∑

x∈ZnrpZn
P{Xs = x,x 6∈ B}+

∑
x∈ZnrpZn

P{Xs = x,∃z ∈ Λf ∩ B and z 6= x}.

Let us call P1 the left summation and P2 the right one. We will separately show
that they tend to 0 when n tends to infinity, which is enough to conclude.

Estimation of P1. By the definition of conditional probability,

P1 =
∑

x∈ZnrpZn
P{x 6∈ B | Xs = x}P{Xs = x}.
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(4.23) tells us that the term P{x 6∈ B | Xs = x} is a vanishing term T1(n), indepen-
dently of x. Hence,

P1 ≤ T1(n)
∑

x∈ZnrpZn
P{Xs = x}

≤ T1(n)→ 0.

Estimation of P2. First of all, notice that, choosing ω as in (4.11), Lemma 4.3
implies that the P2 restricted to the x’s lying outside the sphere

Beff = B0,n(ρeff(1 + 1/nω))

tends to 0 when n tends to infinity. For this reason, we will only need to show that

lim
n→∞

∑
x∈(Zn∩Beff)rpZn

P{Xs = x,∃z ∈ Λf ∩ B and z 6= x} = 0. (4.27)

Before going on, let us start by making some considerations about the error
probability:

1. First of all, does the point z = 0 ∈ Λf typically induce a decoding error?
Actually not, since we claim that

lim
n→∞

P{||αy||2 > αnσ2(1 + ε)2} = 1.

This and (4.25) mean that

lim
n→∞

P{||αy − x||2 ≤ ||αy||2} = 1

and x is asymptotically closer to αy than 0. Let us prove the claim: the
condition ||αy||2 > αnσ2(1 + ε)2 is equivalent to

||y||2 > nσ2(1 + ε)2

α
=
nσ2(P + σ2)(1 + ε)2

P
=
n(P + σ2)(1 + ε)2

SNR
.

At the same time, Lemma 4.3, Lemma 2.2 and Lemma 4.4 imply that with
probability tending to 1 as n tends to infinity, the event

E ′1 = {||x||2 ≥ nP (1− ε′)2} ∩ {||w||2 ≥ nσ2(1− ε′)2} ∩ {|xwT | ≤ f(n)σ||x||}

occurs and

||y||2 = ||x||2 + ||w||2 + 2xwT

≥ nP (1− ε′)2 + nσ2(1− ε′)2 − 2f(n)σ||x||
≥ n(P + σ2)(1− ε′)2 − 2f(n)σ

√
nP (1 + ε′)

= n(P + σ2)

(
(1− ε′)2 − 2f(n)σ

√
P (1 + ε′)√

n(P + σ2)

)
∼ n(P + σ2)(1− ε′)2,
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where the last asymptotical equality can be derived with the same observations
done for (4.24). Thus, it is sufficient to say that

n(P + σ2)(1 + ε)2

SNR
< n(P + σ2)(1− ε′)2,

which is true because SNR is constant and bigger than 1 by hypothesis and
(1 + ε)2/(1 − ε′)2 can be taken to be as close to 1 as wanted, then a fortiori
smaller than SNR.

2. The previous argument states that 0 does not asymptotically cause any de-
coding error (with probability tending to 1). We would like now to treat the
case of all the other points z ∈ pZn. Notice that one of these points can be the
lattice decoder output only if it is closer to αy than 0 itself. That is, dangerous
points z ∈ pZnr {0} are such that ||αy− z|| ≤ ||αy||. This implies that there
exists i ∈ {1, 2, . . . , n} such that |αyi − zi| ≤ |αyi| and zi 6= 0; then, the fact
that z ∈ pZn means that |zi| ≥ p. Consequently, |αyi| has to be bigger than
p/2 and, a fortiori, |yi| > p/2, too, because α < 1. Now, yi = xi + wi and a
necessary condition for having |xi +wi| > p/2 is that at least one between |xi|
and |wi| is bigger than p/4. The probability that |wi| > p/4 can be shown to
decrease to 0 when n tends to infinity with the same argument used in Lemma
3.1 to treat (3.2). Hence, asymptotically speaking, there can be a decoding
error due to points z ∈ pZnr{0} only for the x’s such that |xi| > p/4 for some
i. Let us show that also this case does not does not represent a real problem:
recall that H is the parity-check matrix of Λ and consider the sum∑

x∈(Zn∩Beff)rpZn
|xi|>p/4, ∃i

P{Xs = x,∃z ∈ Λf ∩ B and z 6= x}

≤
∑

x∈(Zn∩Beff)rpZn
|xi|>p/4, ∃i

P{Xs = x}

≤
∑

x∈(Zn∩Beff)rpZn
|xi|>p/4, ∃i

P{HxT ≡ s mod p}

= |{x ∈ (Zn ∩ Beff) r pZn : |xi| > p/4, ∃i}|
(

1

p

)n(1−R)

≤ n

∣∣∣∣Zn−1 ∩B0,n−1

(√
ρ2

eff(1 + 1/nω)2 − p2/16

)∣∣∣∣ (1

p

)n(1−R)

≤ n
|Zn ∩ Beff |
pn(1−R)

(√
ρ2

eff(1 + 1/nω)2 − p2/16
)n

ρneff (1 + 1/nω)n

= n
|Zn ∩ Beff |
pn(1−R)

(√
1− p2

16ρ2
eff(1 + 1/nω)2

)n

.
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Now, the ratio |Zn ∩Beff |/pn(1−R) has substantially already been studied from
(4.15) to (4.16) (up to a slight modification of a sign in ρ) and it goes to
infinity subexponentially with n. Namely, |Zn ∩Beff |/pn(1−R) = O(exp(n1−ω)).
On the other hand, a simple computation shows that the square root to the
power n is O(exp(−Dn2λR)) for some constant D. Hence the whole quantity
tends to 0 as n grows to infinity when 2λR > 1−ω, that is ω > 1− 2λR. The
hypotheses R > 1/2 and λ > (1 +R)−1 > 1/2 guarantee that the condition on
ω does not contradict (4.11).

3. We treat separately also the case of the z’s such that z ≡ 2x mod p. Does this
kind of z induce any decoding error? For what x’s? The strategy to answer
these questions is the same that we have adopted in the previous two points.
Let us start by considering z = 2x. There is a decoding error due to z if
||αy − 2x||2 ≤ ||αy − x||2. It is very simple to algebraically show that this is
equivalent to say that (3−2α)||x||2−2αxwT > 0. It is then sufficient to show
that ||x||2 − 2xwT > 0 with probability tending to 1 when n tends to infinity.
If the event E ′1 occurs, then

||x||2 − 2xwT ≥ nP (1− ε′)2 − 2f(n)σ||x||
≥ nP (1− ε′)2 − 2f(n)σ

√
nP (1− ε′)

= nP (1− ε′)2

(
1− 2f(n)σ√

nP (1− ε′)

)
> nP (1− ε′)2

(
1− 2f(n)√

n(1− ε′)

)
∼ nP (1− ε′)2,

where the last inequality is due to the fact that SNR = P/σ2 > 1; the lower
bound is clearly asymptotically positive and we are done.
We have proved that z = 2x typically does not induce any error. Can we
say the same for all the other z ≡ 2x mod p? The only case that can lead to
bad decoding is the one of z ≡ 2x mod p such that ||αy − z||2 < ||αy − 2x||2
(otherwise, the previous computation concerning z = 2x is sufficient). Let
z = 2x+ pk for some k ∈ Zn r {0}. Then z can be closer to αy than 2x only
if there exists i such that

|αyi − 2xi| > |αyi − 2xi − pki|,

for some ki ≥ 1. This condition implies |αwi − (2− α)xi| = |αyi − 2xi| > p/2,
which in turn implies that at least one between |αwi| and (2 − α)|xi| has to
be greater than p/4. Now, one can conclude with an argument practically
identical to the one applied for the z of pZn above here.

4. What about the z’s such that z ≡ x mod p? Even if a z of this kind is closer
than x to αy, its syndrome HzT is equal to s, the syndrome of x, and this
does not give a decoding error. For this reason, we can actually omit these z’s
from the total sum and not consider them.
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Concretely, with the previous four points we have shown that we can restrict the
sum in (4.27) to the set

S = {x ∈ (Beff ∩ Zn) r pZn : z ≡ µx mod p produces no error,∀µ ∈ {0, 1, 2}}.

Recall that H = [(H ′)T | (Hf )
T ]T is the parity-check matrix of Λ, while Hf is

the submatrix of H that defines Λf . Hence, if s = (m | 0)T ∈ Fn(Rf−R)
p × Fn(1−Rf )

p ,
then the sum that we need to estimate is less than∑
x∈S

∑
z∈Zn

z 6≡µx, µ=0,1,2

P{Xs = x, z ∈ (Λf ∩ B) r {x}}

≤
∑
x∈S

∑
z∈Zn

z 6≡µx, µ=0,1,2

P{HxT ≡ sT mod p,Hfz
T ≡ 0T mod p, z ∈ B r {x}}

=
∑
x∈S

P{H ′xT ≡mT mod p}∑
z∈Zn

z 6≡µx, µ=0,1,2

P{Hfx
T ≡ 0T mod p,Hfz

T ≡ 0T mod p, z ∈ B r {x}}

=
∑
x∈S

(
1

p

)n(Rf−R)

∑
z∈Zn

z 6≡µx, µ=0,1,2

P{Hfx
T ≡ 0T mod p,Hfz

T ≡ 0T mod p, z ∈ B r {x}}

=
∑
x∈S

(
1

p

)n(Rf−R)

∑
z∈Zn

z 6≡µx, µ=0,1,2

P{Hfx
T ≡ 0T mod p,Hfz

T ≡ 0T mod p}P{z ∈ B r {x}},

where the last equality is true because the events related to the random choice of
Hf and the event related to the random noise are independent.

Recall that B is a random object, that depends on x and w. We have already
observed that x lies inside it with very high probability. Given this, z cannot be
simultaneously inside the ball and further than twice the radius of B from x. For
this reason we restrict our sum to the z’s inside the sphere B′ = Bx,n(2ρdec). We
will show that

lim
n→∞

∑
x∈S

(
1

p

)n(Rf−R)

(4.28)∑
z∈B′∩Zn

z 6≡µx, µ=0,1,2

P{Hfx
T ≡ 0T mod p,Hfz

T ≡ 0T mod p}P{z ∈ B r {x}} = 0.

(4.29)
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There are now two possible situations. If z 6≡ µx mod p for every µ ∈ Fp, then

P{Hfx
T ≡ 0T mod p,Hfz

T ≡ 0T mod p}
= P{Hfx

T ≡ 0T mod p}P{Hfz
T ≡ 0T mod p}

=

(
1

p

)2n(1−Rf )

.

If instead z ≡ µx mod p for some µ ∈ Fp, the fact that x belongs to Λf automatically
implies that z belongs to Λf , too. Hence,

P{Hfx
T ≡ 0T mod p,Hfz

T ≡ 0T mod p}
= P{Hfx

T ≡ 0T mod p}

=

(
1

p

)n(1−Rf )

.

Now, let S ′ be the subset of S of all the points x of the random constellation for
which there exists at least one z ∈ Br{x} such that z ≡ µx mod p (with µ 6= 0, 1, 2
by definition of S). Summarising what we have elaborated till now, we are left to
show that

lim
n→∞

∑
x∈S

(
1

p

)n(Rf−R) ∑
z∈B′∩Zn

z 6≡µx mod p

(
1

p

)2n(1−Rf )

P{z ∈ B r {x}} = 0 (4.30)

and

lim
n→∞

∑
x∈S′

(
1

p

)n(Rf−R) ∑
z∈B′∩Zn

z≡µx mod p,µ 6=0,1,2

(
1

p

)n(1−Rf )

P{z ∈ B r {x}} = 0. (4.31)

Proof of (4.30). As we have already recalled, B is a random object. Let S be
the set of all the balls of the space of radius ρdec. Then∑

z∈B′∩Zn
z 6≡µx mod p

P{z ∈ B r {x}} =
∑

z∈(B′∩Zn)r{x}
z 6≡µx mod p

∑
B∈S
z∈B

P{B = B}

=
∑
B∈S

∑
z∈(B′∩B∩Zn)r{x}

z 6≡µx mod p

P{B = B}

≤
∑
B∈S

|B ∩ Zn|P{B = B}

≤ Vol(B0,n(ρdec +
√
n/2))

∑
B∈S

P{B = B} (4.32)

= Vol(B0,n(ρdec +
√
n/2)).

where, of course, (4.32) comes from Lemma 2.3.
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Going back to (4.30) and using what we have just deduced, we have∑
x∈S

(
1

p

)n(Rf−R) ∑
z∈B′∩Zn

z 6≡µx mod p

(
1

p

)2n(1−Rf )

P{z ∈ B r {x}}

≤

(
|Zn ∩ Beff |

(
1

p

)n(1−R)
)(

Vol(B0,n(ρdec +
√
n/2))

(
1

p

)n(1−Rf )
)
. (4.33)

As we previously seen, the left factor can be shown to go to infinity subexponentially
in n. On the other hand, the right term exponentially decreases to 0, just like (4.26)
does. As a result, the dominating term is the latter and the whole product vanishes
when n tends to infinity.

Proof of (4.31). We have∑
x∈S′

(
1

p

)n(Rf−R) ∑
z∈B′∩Zn

z≡µx mod p,µ 6=0,1,2

(
1

p

)n(1−Rf )

P{z ∈ B r {x}}

≤
∑
x∈S′

(
1

p

)n(Rf−R) ∑
z∈B′∩Zn

z≡µx mod p,µ 6=0,1,2

(
1

p

)n(1−Rf )

≤
∑
x∈S′

(
1

p

)n(1−R)

|{z ∈ B′ : z ≡ µx mod p,∃µ ∈ Fp r {0, 1, 2}}|. (4.34)

Recall that for any fixed µ ∈ Fp Lemma 4.2 provides the following upper bound:

|{z ∈ B′ : z ≡ µx mod p| ≤ 1 +
16ρ2

dec

p2

(
32nρ2

dec

p2

)16ρ2
dec/p

2

,

hence

|{z ∈ B′ : z ≡ µx mod p, ∃µ ∈ Fp r {0, 1, 2}| ≤ p+
16ρ2

dec

p

(
32nρ2

dec

p2

)16ρ2
dec/p

2

= O
(
n(1−2λRf )n

(1−2λRf )
)
.

Let us call h(n) this last term, subexponential in n. Going on from (4.34), we get∑
x∈S′

(
1

p

)n(1−R)

|{z ∈ B′ : z ≡ µx mod p, ∃µ ∈ Fp r {0, 1, 2}}| ≤
|S ′|h(n)

pn(1−R)
, (4.35)

which vanishes asymptotically in n because of Lemma 4.5.
Putting together the estimations of P1 and P2, we can derive that

lim
n→∞

Pe(s) = 0,

quod erat demonstrandum.
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4.3 Achieving capacity with LDA lattices
We will now adapt the results of the previous section to LDA lattices, that we have
introduced in Chapter 3 and that we have shown to be Poltyrev-capacity-achieving
(see Theorem 3.1 and Theorem 3.2). In this section, we prove that they can achieve
the capacity of the AWGN channel under lattice decoding under similar hypotheses
to the ones of Theorem 4.1.

The geometrical approach to demonstrate our result as well as the encoding and
decoding scheme will be the very same that we have used for the more general
Construction A ensemble of Section 4.2. We will go once again along the same
steps that have led to the proof of Theorem 4.1. Some of these will need to be
modified and adapted to the LDPC structure of the parity-check matrices of the
LDA lattices. In particular, we will extensively employ the expansion properties of
the random Tanner graph associated with them.

Like in Theorem 3.2, also for this finite-constellation result the degree of the
parity-check equations associated with the LDA lattices is constant. Nevertheless,
for some technical reasons and because of some simplifications that lighten the math-
ematical analysis, the parameters involved in the proof are not completely optimised
and the resulting lower bounds for the degree are not the best possible. The same
holds for the value of the parameter λ and, as a consequence, the size of the prime
number p will have to be bigger than it is in all the other results of this dissertation.

4.3.1 The random LDA lattice codes ensemble

Once again, our lattice codes are given by Voronoi constellations of Construction A
lattices. Anyway, this time the parity-check matrix associated with the lattices is
sparse, giving rise to LDA lattice codes. So, let

H =

(
H ′

Hf

)
be a binary matrix of dimension n(1− R)× n for some 0 < R < 1. Hf is its lower
submatrix, formed by its last n(1− Rf ) rows, for some R < Rf < 1. Moreover, we
take H and Hf to be the skeleton matrices of two (α,A, β,B)-good graphs. So, we
suppose that they both have fixed row degree ∆V and that their column degrees
are ∆V /(1−R) and ∆V /(1−Rf ) respectively. Of course, ∆V has to be big enough
to guarantee the expansion properties. We will make some more remarks about the
constants α,A, β and B later in Section 4.3.3.

Now, we build the random ensemble of LDA Voronoi constellations by substi-
tuting the ones in the skeleton matrix H by random variables uniformly distributed
in {0, 1, . . . , p − 1}, for some prime number p. The random matrix that we obtain
is called

H =

(
H′

Hf

)
and it is the analogue of the parity-check matrix that generated the more general
Construction A lattices of Theorem 4.1 (see (4.4)). The random LDA lattice asso-
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ciated with H (respectively Hf ) is called Λ (respectively Λf ). Of course, they are
nested lattices (Λ ⊆ Λf ) and the Voronoi constellations that we will deal with are
given by Λf/Λ. Notice that nothing has substantially changed with respect to the
construction of the random ensemble of Section 4.2.1, except that our new random
matrix is sparse and guarantees some expansion properties of the graphs associated
with H ′ and Hf .

4.3.2 The encoding and decoding scheme

The encoding and decoding scheme that we apply to LDA Voronoi constellations is
the same that we have described in Section 4.2.2 and summarised in Figure 4.2 at
the beginning of Section 4.2 for the case of more general Construction A lattices.
Nothing changes at all and the fact that the lattices that we deal with now are LDA
does not affect the information transmission scheme.

4.3.3 Comments on the expansion properties of the Tanner
graphs

The expansion properties of the Tanner graph related to the random matrix H will
be the same that we have already considered in Section 3.3, deriving from Lemma
3.3. In other terms, we choose the skeleton matrices H and Hf to be associated with
a (α,A, β,B)-good Tanner graphs, like we have done to prove that LDA lattices
are Poltyrev-capacity-achieving (Theorem 3.2). Anyway, in this context we will
not employ the properties concerning α and β, while we will need some further
conditions on A and B and on the constants ε and ϑ that appear in the definition
of (α,A, β,B)-goodness (cf. Definition 3.3). These, in turn, imply some hypotheses
on ∆V . Let us make explicit all of these requirements and also recall the hypotheses
on the constants needed to guarantee the expansion:

1. A and B have to respect (3.24) both for Rf and R, which becomes:

A > 2 and B >
2

1−Rf

>
2

1−R
. (4.36)

2. Moreover, we impose that

B(1−R)2 > B(1−Rf )
2 > A, (4.37)

the first inequality being a consequence of the fact that Rf > R.

3. We fix ε and ϑ as functions of A and B:

ε =
1−R

A+ 1−R
>

1−Rf

A+ 1−Rf

(4.38)

ϑ =
1

B(1−Rf ) + 1
>

1

B(1−R) + 1
. (4.39)
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4. ∆V satisfies (3.33), (3.34) and (3.35) with both Rf and R.

Some of these conditions may appear curious for now, but notice that they give
rise to some important consequences that we will largely employ in the sequel. In
particular, the third condition together with (α,A, β,B)-goodness qualitatively state
that every “quite small” subset of variable nodes of the Tanner graph associated with
H or Hf has a “quite large” set of neighbours among the parity-check nodes and vice
versa. Indeed, consider for example a set of parity-check equation nodes of size a
bit greater than n(1−R)/(B(1−R) + 1) in the graph associated with H; it is not a
“big” set of nodes, but its neighbourhood has size at least B(1−R)n/(B(1−R)+1),
that is, it consists of almost the totality of the variable nodes.

Attention: from now on, till the end of the chapter, we will always suppose
that the graphs that we work with are (α,A, β,B)-good and that all the involved
constants obey the conditions listed above.

4.3.4 LDA lattices achieve capacity - Detailed proof

A useful lemma

In the sequel we will often need to compare the volumes of two (or more) spheres
with the same radius, but different dimensions. This lemma contains once for all
the computation that leads to this comparison.

Lemma 4.6. Consider the two balls Bc,n(ρ) and Bc′,n−m(ρ), with the same given
radius ρ, but with different dimensions n and n−m. Suppose also that 0 ≤ m ≤ n/2.
Then, if ρ >

√
n/2,

|Zn−m ∩Bc′,n−m(ρ)|
|Zn ∩Bc,n(ρ)|

.
(
√
n)n+1

(
√
n−m)n−m+1

(√
2πe
)−m

ρ−m
(

1 +
2
√
n

2ρ−
√
n

)n
.

Recall: the notation f(n) . g(n), that we have already used so far, indicates
that f(n) ∼ h(n) ≤ g(n) for some h(n); or, equivalently, that f(n) ≤ h′(n) ∼ g(n),
for some h′(n).

Proof. The proof of the lemma is a simple application of Lemma 2.3:

|Zn−m ∩Bc′,n−m(ρ)|
|Zn ∩Bc,n(ρ)|

≤
Vol
(
Bc′,n−m

(
ρ+

√
n−m
2

))
Vol
(
Bc,n

(
ρ−

√
n

2

)) ≤ Vol (Bc′,n−m (ρ))

Vol (Bc,n (ρ))

(
1 +

√
n

2ρ

)n
(

1−
√
n

2ρ

)n
∼ (

√
n)n+1

(
√
n−m)n−m+1

(√
2πe
)−m(2ρ+

√
n

2ρ−
√
n

)n
ρ−m

=
(
√
n)n+1

(
√
n−m)n−m+1

(√
2πe
)−m(

1 +
2
√
n

2ρ−
√
n

)n
ρ−m.
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The typical norm of a constellation point

The next lemma states that our Voronoi LDA constellation points have the same
typical norm of the more general Construction A constellation points of Section
4.2.4. The proof of the lemma traces the demonstration of Lemma 4.3, but needs
to be adapted to the LDA setting in which we work. This requires some tricky
combinatorial analysis of the structure of the Tanner graph associated with the
random lattices. The most interesting argument is probably the variance estimation
that starts from (4.48) and goes on till the end of the proof. Similar reasonings will
be used in the proof of Theorem 4.2, too.

Like in Section 4.2.4, let ρeff denote the quantity

ρeff =

√
np(1−R)

√
2πe

.

As before, it is the asymptotic effective radius of the lattice associated with the
parity-check matrix H.

Lemma 4.7. In the setting that we have fixed till now in Section 4.3, consider
s = (s1, s2, . . . , sn(Rf−R), 0, . . . , 0) to be any non-zero syndrome associated with an
uncoded message and a constellation point. Suppose that p = nλ for some λ > 0 and
let ω be a positive constant such that

ω < min{λ(1−R), 2λR, 1}.

If x is the random LDA constellation point whose syndrome is s (cf. (4.6)) and if λ
satisfies

λ > max

{
1

2R
,

1

1−R
,

2

A− 2
,

2

B(1−R)− 2
, 2

(
1− 1

AB − 1
− 1

A

)−1
}
, (4.40)

then
lim
n→∞

P
{
ρeff

(
1− 1

nω

)
≤ ||x|| ≤ ρeff

(
1 +

1

nω

)}
= 1.

Proof. Let Xρ be the random variable that counts the number of points with syn-
drome s in the n-dimensional ball B0,n(ρ) centred at 0 with radius ρ. For any ρ ≥ 0
and for any x ∈ Zn ∩B0,n(ρ), consider the random variable

Xx =

{
1, if HxT ≡ sT mod p

0, otherwise
.

Consequently,
Xρ =

∑
x∈Zn∩B0,n(ρ)

Xx.

Let hi be the i-th row of H, si be the i-th coordinate of s and let x be a given
point of (Zn r pZn) ∩B0,n(ρ).

115



4.3. ACHIEVING CAPACITY WITH LDA LATTICES

• If Supp(x) ∩ Supp(hi) 6= ∅, then P{hixT ≡ si mod p} = 1/p.

• If Supp(x) ∩ Supp(hi) = ∅ and si = 0, then P{hixT ≡ si mod p} = 1.

• If Supp(x) ∩ Supp(hi) = ∅ and si 6= 0, then P{hixT ≡ si mod p} = 0.

Let ` be the number of rows of H whose support intersects the support of x and,
just like in (3.59), let

Tx = {i ∈ {1, 2, . . . , n(1−R)} : Supp(hi) ∩ Supp(x) 6= ∅}.

Tx is identified with the set of the parity-check equation nodes of the Tanner graph
associated with H whose support intersects the support of x. Recall that we denote
P the set of all the parity-check equation nodes, so Tx ⊆ P .

The events {hixT ≡ si mod p}i=1,...,n(1−R) are independent, so

P{Xx = 1} =

0, if ∃i : Supp(x) ∩ Supp(hi) = ∅ and si 6= 0(
1
p

)`
, otherwise

.

Moreover, P{Xx = 1} = 0 for every x ∈ pZn ∩B0,n(ρ), since its syndrome is 0 6= s.
This is in particular the case for ` = 0, which coincides with x = 0 ∈ pZn.

Like for Lemma 4.3, we will split the proof into two parts. First of all, we deduce
that

lim
n→∞

P
{
Xρeff(1− 1

nω ) > 0
}

= 0. (4.41)

Later, that

lim
n→∞

P
{
Xρeff(1+ 1

nω ) = 0
}

= 0. (4.42)

Proof of (4.41). When ρ = ρeff (1− 1/nω),

E[Xρ] =
∑

x∈Zn∩B0,n(ρ)

P{Xx = 1}

≤
n(1−R)∑
`=1

∑
x∈Zn∩B0,n(ρ)
|Tx|=`

(
1

p

)`

=

bnB(1−R)/(B(1−R)+1)c∑
`=1

∑
x∈Zn∩B0,n(ρ)
|Tx|=`

(
1

p

)`
(4.43)

+

n(1−R)∑
`=bnB(1−R)/(B(1−R)+1)+1c

∑
x∈Zn∩B0,n(ρ)
|Tx|=`

(
1

p

)`
. (4.44)

116



CHAPTER 4. FINITE LATTICE CONSTELLATIONS

In order to estimate the first sum, notice that ` ≤ nB(1 − R)/(B(1 − R) + 1)
implies that the complement Jx of Tx in the set of parity-check nodes P of the
Tanner graph has a big enough cardinality:

|Jx| = |P r Tx| ≥
n(1−R)

B(1−R) + 1
,

which implies by the expansion properties of the graph that its neighbourhood has
big size, too (recall the conditions listed in Section 4.3.3 and Lemma 3.3):

|N(Jx)| ≥ B
n(1−R)

B(1−R) + 1
.

If we call Sx the complement of N(Jx) in the set of variable nodes of the graph V ,
we have

|Sx| = |V rN(Jx)| ≤ n− |N(Jx)| ≤ n

B(1−R) + 1
≤ n(1−R)

A+ 1−R
,

because B(1−R)2 > A by condition (4.37). Then, again by the expansion properties,

|N(Sx)| ≥ A|Sx|.

But Sx is the complement in V of N(Jx), so N(Sx) ⊆ Tx and we obtain

|Tx| ≥ A|Sx|.

Hence,

|{x ∈ Zn ∩B0,n(ρ) : |Tx| = `}| ≤ |{x ∈ Zn ∩B0,n(ρ) : |Sx| ≤ `/A}|

≤
(

n

b`/Ac

)
p`/A,

because once we fix the coordinates corresponding to Sx, each of them cannot take
more values than p: indeed, condition λ > (2R)−1 (cf. (4.40)) implies that asymp-
totically p > 2ρ, that is, p is bigger than the diameter of the sphere B0,n(ρ). For the
same reason, the coordinates of x corresponding to N(Jx) are fixed to be equal to 0
modulo p and this can happen only for one integer value. Going back to (4.43):

bnB(1−R)/(B(1−R)+1)c∑
`=1

∑
x∈Zn∩B0,n(ρ)
|Tx|=`

(
1

p

)`

≤
bnB(1−R)/(B(1−R)+1)c∑

`=1

(
n

b`/Ac

)
p`/A

(
1

p

)`

≤
bnB(1−R)/(B(1−R)+1)c∑

`=1

n`/Ap`/A
(

1

p

)`

=

bnB(1−R)/(B(1−R)+1)c∑
`=1

n`(1/A−λ(1−1/A)),
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whose limit is 0 when n tends to infinity, because λ > 2(A − 2)−1 > (A − 1)−1 (cf.
condition (4.40)).

The only thing which is left to finish the proof of (4.41) is the estimation of
(4.44). Let u = n(1−R)− `, then we have to bound the sum

bn(1−R)/(B(1−R)+1)c∑
u=0

∑
x∈Zn∩B0,n(ρ)
|Tx|=n(1−R)−u

(
1

p

)n(1−R)−u

. (4.45)

Notice that u is the cardinality of Jx and u ≤ n(1−R)/(B(1−R) + 1) implies that
|N(Jx)| ≥ B|Jx|. Once Jx is fixed, at least B|Jx| coordinates of x are equal to 0
(modulo p). Hence

|{x ∈ Zn ∩B0,n(ρ) : |Tx| = n(1−R)− u}| = |{x ∈ Zn ∩B0,n(ρ) : |Jx| = u}|

≤
(
n(1−R)

u

)
|Zn−Bu ∩B0,n−Bu(ρ)|

≤ nu|Zn−Bu ∩B0,n−Bu(ρ)|.

Applying Lemma 4.6 and substituting the real value of ρ to obtain (4.46), we deduce
that

(4.45) ≤
bn(1−R)/(B(1−R)+1)c∑

u=0

nu|Zn−Bu ∩B0,n−Bu(ρ)|
(

1

p

)n(1−R)−u

=

bn(1−R)/(B(1−R)+1)c∑
u=0

nupu
|Zn−Bu ∩B0,n−Bu(ρ)|
|Zn ∩B0,n(ρ)|

|Zn ∩B0,n(ρ)|
(

1

p

)n(1−R)

. |Zn ∩B0,n(ρ)|
(

1

p

)n(1−R)

(4.46)

·
bn(1−R)/(B(1−R)+1)c∑

u=0

(
1− 1

nω

)−Bu(√
n

n−Bu

)n−Bu+1
nupu

p(1−R)Bu

(4.47)

= |Zn ∩B0,n(ρ)|
(

1

p

)n(1−R)

·

·
bn(1−R)/(B(1−R)+1)c∑

u=0

(
1− 1

nω

)−Bu(
1 +

Bu

n−Bu

)(n−Bu+1)/2

nu(1−λ(B(1−R)−1)).

Now, it is easy to show (and we leave the details to the reader) that(
1− 1

nω

)−Bu(
1 +

Bu

n−Bu

)(n−Bu+1)/2

nu(1−λ(B(1−R)−1)) ≤ 1

and, in particular, it is o(1) whenever u > 0, provided that 1−λ(B(1−R)−1) < 0.
This is guaranteed by condition λ > 2(B(1−R)− 2)−1 (see (4.40)) and by the fact
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that B(1−R)− 1 > 0 by condition (4.36). Moreover, we already know that

lim
n→∞

|Zn ∩B0,n(ρ)|
(

1

p

)n(1−R)

= 0,

since we have already carried out this computation in the proof of Lemma 4.3,
from (4.15) to (4.16). Consequently, the whole sum tends to 0 when n tends to
infinity. Furthermore, this is true for the sums of (4.43) and (4.44), too, and finally,
considering that P{Xρ > 0} ≤ E[Xρ], we have

lim
n→∞

P
{
Xρeff(1− 1

nω ) > 0
}

= 0.

Proof of (4.42). Now, let ρ = ρeff (1 + 1/nω). We have

E[Xρ] =
∑

x∈Zn∩B0,n(ρ)

P{Xx = 1}

≥
∑

x∈Zn∩B0,n(ρ)rpZn
|Tx|=n(1−R)

(
1

p

)n(1−R)

≥
∑

x∈Zn∩B0,n(ρ)rpZn
∀i,xi 6=0

(
1

p

)n(1−R)

= |{x ∈ Zn ∩B0,n(ρ) r pZn : xi 6= 0,∀i = 1, 2, . . . , n}|
(

1

p

)n(1−R)

=
(
|Zn ∩B0,n(ρ) r pZn| − |{x ∈ Zn ∩B0,n(ρ) r pZn : xi = 0,∃i}|

)(1

p

)n(1−R)

≥

(
|Zn ∩B0,n(ρ) r pZn| −

n∑
i=1

|{x ∈ Zn ∩B0,n(ρ) r pZn : xi = 0}|

)(
1

p

)n(1−R)

= |Zn ∩B0,n(ρ) r pZn|
(

1− n |Z
n−1 ∩B0,n−1(ρ) r pZn−1|
|Zn ∩B0,n(ρ) r pZn|

)(
1

p

)n(1−R)

.

Now, we have already computed from (4.18) to (4.19) that

lim
n→∞

|Zn ∩B0,n(ρ) r pZn|
(

1

p

)n(1−R)

= +∞.

What about
n
|Zn−1 ∩B0,n−1(ρ) r pZn−1|
|Zn ∩B0,n(ρ) r pZn|

?

By Lemma 4.6, introducing the actual value of ρ and recalling that λ > (1 − R)−1

(see (4.40)), we can deduce that

n
|Zn−1 ∩B0,n−1(ρ) r pZn−1|
|Zn ∩B0,n(ρ) r pZn|

.
n

p(1−R)

(√
n

n− 1

)n
∼
√
en

p1−R → 0.
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This allows us to conclude that

lim
n→∞

E[Xρ] = +∞.

After that, we need to carry out a detailed estimation of Var(Xρ), like we have
done in the proof of Lemma 4.3 for the more general Construction A constellations.
We have

Var(Xρ) = Var

 ∑
x∈Zn∩B0,n(ρ)

Xx

 (4.48)

=
∑

x,z∈Zn∩B0,n(ρ)

Cov(Xx, Xz)

≤
∑

x,z∈Zn∩B0,n(ρ)

E[XxXz]

=
∑

x,z∈Zn∩B0,n(ρ)

P{XxXz = 1}

=
∑

x,z∈Zn∩B0,n(ρ)

P{Xx = 1, Xz = 1}

=
∑

x,z∈Zn∩B0,n(ρ)

P{HxT ≡ sT mod p,HzT ≡ sT mod p}

=
∑

x,z∈Zn∩B0,n(ρ)rpZn
P{HxT ≡ sT mod p,HzT ≡ sT mod p},

where the points of pZn are excluded because the probability that their syndrome
is s 6= 0 is 0.

Now, let h be a generic row of H; it represents a parity-check equation and we
also write h ∈ P , where P is the set of vertices of the Tanner graph associated with
H corresponding to the parity-check equations (recall that the notation is the same
of Section 3.3.2). This is a little abuse in notation, but it will help us to transfer
some arguments onto the Tanner graph and make clearer our demonstration. For a
given x ∈ Zn ∩B0,n(ρ), let xh be the subvector of x made only of the coordinates of
x itself that belong to the neighbourhood N(h) of h in the graph. In other words,
these are the coordinates of x that correspond to ones in the row of the skeleton
matrix corresponding to h.

Let us fix x, z ∈ Zn ∩ B0,n(ρ) and a row h of H and consider the vector space
generated by xh and zh, which has dimension 0, 1 or 2 over R. We call the latter
dim(x, z,h). Hence, denoting s the syndrome coordinate corresponding to h, we
have:

• if dim(x, z,h) = 0 and s = 0, then P{hxT ≡ s mod p,hzT ≡ s mod p} = 1;

• if dim(x, z,h) = 0 and s 6= 0, then P{hxT ≡ s mod p,hzT ≡ s mod p} = 0;

• if dim(x, z,h) = 1 and s = 0, then P{hxT ≡ s mod p,hzT ≡ s mod p} = 1/p;
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• if dim(x, z,h) = 1 and s 6= 0, then P{hxT ≡ s mod p,hzT ≡ s mod p} = 1/p
if zh ≡ xh mod p, otherwise it is 0;

• if dim(x, z,h) = 2, then P{hxT ≡ s mod p,hzT ≡ s mod p} = 1/p2.

Summarising, given x, z ∈ Zn ∩ B0,n(ρ), let us consider the partition of the set of
parity-check equations P given by the following three sets:

Jx,z = {h ∈ P : dim(x, z,h) = 0},
Ix,z = {h ∈ P : dim(x, z,h) = 1},
Tx,z = {h ∈ P : dim(x, z,h) = 2};

then, recalling that H has n(1−R) = |P | rows,

P{HxT ≡ sT mod p,HzT ≡ sT mod p} ≤
(

1

p

)2n(1−R)−|Ix,z|−2|Jx,z|

=

(
1

p

)2|Tx,z|+|Ix,z|

.

More precisely, if the equality above does not hold, then the probability is 0. Thanks
to what we have just pointed out, we can write

Var(Xρ) ≤
∑

x,z∈Zn∩B0,n(ρ)rpZn
P{HxT ≡ sT mod p,HzT ≡ sT mod p}

≤
∑
i,j,t

i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

(
1

p

)2n(1−R)−i−2j

=
∑
i,j,t

i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

(
1

p

)2t+i

.

We will split the sum into two different parts, corresponding to two different ranges
of j. Namely:

1. j > n(1−R)
B(1−R)+1

;

2. j ≤ n(1−R)
B(1−R)+1

.

First case: j > n(1 − R)/(B(1 − R) + 1). Since the graph is (α,A, β,B)-
good and because of the considerations done in Section 4.3.3 about its expansion
properties, we have that

|N(Jx,z)| ≥ nB(1−R)/(B(1−R) + 1),

which means that the neighbourhood of Jx,z in the Tanner graph consists of almost
the totality of the variable nodes. If we call Sx,z its complement in the set of variable
nodes V , Sx,z = V rN(Jx,z), then

|Sx,z| ≤
n

B(1−R) + 1
≤ n(1−R)

A+ 1−R
,
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because B(1 − R)2 ≥ A by hypothesis (cf. (4.37)). Moreover, the (α,A, β,B)-
goodness of the graph implies that |N(Sx,z)| ≥ A|Sx,z|. Observing that N(Sx,z) ⊆
Ix,z ∪ Tx,z, we deduce that |Ix,z ∪ Tx,z| = |Ix,z|+ |Tx,z| ≥ A|Sx,z|.

Now, notice that by definition of Jx,z the coordinates of x and z corresponding
to N(Jx,z) have to be congruent to 0 modulo p. Hence, they are fixed, because as
we recalled before, for every class modulo p there is at most one single value that
can be taken by a coordinate of an integer point in the sphere we are dealing with.
For this reason, the only coordinates that can take more than one value are the ones
corresponding to Sx,z. This helps us in counting the number of x’s and z’s such that
|Jx,z| = j and |Sx,z| = n− |N(Jx,z)|:

| {x, z ∈ Zn ∩B0,n(ρ) r pZn : |Jx,z| = j} | ≤
(

n

|Sx,z|

)
|Z|Sx,z| ∩B0,|Sx,z|(ρ)|2

≤ n|Sx,z|p2|Sx,z|,

where once again we have used the fact that the number of possible values taken by
a single coordinate of x or z is bounded by p. Then, using the fact that

2|Tx,z|+ |Ix,z| ≥ |Tx,z|+ |Ix,z| ≥ A|Sx,z| = A(n− |N(Jx,z)|),

we can bound our summation in the following way:∑
i,j,t

j>n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

(
1

p

)2t+i

(4.49)

≤ n

n(1−R)∑
j=dn(1−R)/(B(1−R)+1)e

∑
x,z∈Zn∩B0,n(ρ)rpZn

|Jx,z|=j

(
1

p

)A(n−|N(Jx,z)|)

≤ n

bn(1−R)/(A+1−R)c∑
s=1

∑
x,z∈Zn∩B0,n(ρ)rpZn

|Sx,z|=s

(
1

p

)As
(4.50)

≤ n

bn(1−R)/(A+1−R)c∑
s=1

nsp2s

(
1

p

)As

=

bn(1−R)/(A+1−R)c∑
s=1

n1+s(1−λ(A−2))

≤
bn(1−R)/(A+1−R)c∑

s=1

ns(2−λ(A−2)) → 0. (4.51)

This geometric series tends to 0 when n goes to infinity, because of condition (4.40):

λ >
2

A− 2
.
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Second case: j ≤ n(1−R)/(B(1−R)+1). Now j is “small” and the expansion
properties imply that |N(Jx,z)| ≥ B|Jx,z|.

Before estimating the sum, we will need to investigate the structure of Ix,z and
its neighbourhood. For this purpose, consider the graph G ′x,z that consists of the
bipartite subgraph of the whole Tanner graph (called G) given by the parity-check
equation nodes of Ix,z, the variable nodes of N(Ix,z), and the edges connecting them.
A priori, G ′x,z can be made of many different (bipartite) connected components,
depending for example on the size of Ix,z (even if G is connected with very high
probability, tending to 1 when n tends to infinity). The set of vertices of each one
of these components is made of a subset of N(Ix,z) (variable nodes) and a subset
of Ix,z (parity-check equation nodes). The connected components can be (trivially)
partitioned into two kinds: the ones whose set of parity-check equations has size
bigger than n(1 − R)/(B(1 − R) + 1) and the ones for which this does not hold.
So, if C is the generic connected component and PC ⊆ P is its set of parity-check
equation nodes, let us define:

Kx,z = {C ⊆ G ′x,z : |PC| ≤ n(1−R)/(B(1−R) + 1)} and
Mx,z = {C ⊆ G ′x,z : |PC| > n(1−R)/(B(1−R) + 1)}. (4.52)

Of course, G ′x,z = Kx,z ∪Mx,z and the union is disjoint. If we define

Kx,z =
⋃
{PC : C ∈ Kx,z} ⊆ P and

Mx,z =
⋃
{PC : C ∈ Mx,z} ⊆ P,

then we can also write Ix,z = Kx,z ∪Mx,z and the union is disjoint, too.

Now, every PC ⊆ C ∈ Kx,z is such that |N(PC)| ≥ B|PC|, so this holds for the
whole Kx,z, too:

|N(Kx,z)| ≥ B|Kx,z|. (4.53)

Another useful observation is that |Mx,z| ≤ 1; in other words, there cannot be
more than one connected component whose parity-check equation set is too big.
Indeed, every one of these sets is such that its neighbourhood has size at least
B(1 − R)n/(B(1 − R) + 1). If there were two (or more) connected components in
Mx,z, the union of these neighbourhoods would be greater than the whole set of
variable nodes of the Tanner graph itself, which is not possible.

We will consider separately the two cases |Mx,z| = 0 and |Mx,z| = 1 and split
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the summation into two more parts:

∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

(
1

p

)2n(1−R)−i−2j

=
∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

|Mx,z|=0

(
1

p

)2n(1−R)−i−2j

+ (4.54)

+
∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

|Mx,z|=1

(
1

p

)2n(1−R)−i−2j

(4.55)

A small remark before proceeding: a priori, we are summing also over the xs and
zs such that |Ix,z| = 0 = |Jx,z|. This implies that |Tx,z| = n(1−R) and that

P{HxT ≡ sT mod p,HzT ≡ sT mod p} = P{HxT ≡ sT mod p}P{HzT ≡ sT mod p}.

The consequence is that in this case Cov(Xx, Xx) = 0 and the actual contribution
to the variance of these couples of xs and zs is null. Consequently, we will suppose
from now on that i + j is always different from 0. We will recall this observation
when needed in the sequel.

1. If |Mx,z| = 0, then Ix,z = Kx,z and |N(Ix,z)| ≥ B|Ix,z|. For fixed i, j and t,
let us estimate the number of x’s and z’s such that |Ix,z| = i, |Jx,z| = j and
|Tx,z| = t in this case. We have already pointed out that |N(Jx,z)| ≥ B|Jx,z|,
too, because j is “small”. This implies that, just like in the previous case,
at least B|Jx,z| coordinates of x are fixed to 0 (modulo p). Choosing these
coordinates is equivalent to choosing the parity-check equations of |Jx,z|.
On the other hand, what can we say about z? Observe that, by definition,
xh and zh are multiple modulo p for every parity-check equation h that cor-
responds to a vertex of Ix,z. Hence, for a fixed x, the z’s that we take into
account cannot take more than p different values with respect to x in the co-
ordinates that correspond to N(Ix,z) (and we know that these coordinates are
at least B|Ix,z|). Fixing them is the same as fixing the parity-check equations
of |Ix,z|.
Putting together all of these observations, we obtain:

|{x, z ∈ Zn ∩B0,n(ρ) r pZn : |Ix,z| = i, |Jx,z| = j, |Tx,z| = t}|

≤
(
n(1−R)

j

)
|Zn−Bj ∩B0,n−Bj(ρ)|

(
n(1−R)

i

)
pi|Zn−Bi ∩B0,n−Bi(ρ)|

≤ n(j+i)pi|Zn−Bj ∩B0,n−Bj(ρ)||Zn−Bi ∩B0,n−Bi(ρ)|.
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Let us define the quantity

E(ρ) =
∑

x,z∈Zn∩B0,n(ρ)

(
1

p

)2n(1−R)

= |Zn ∩B0,n(ρ)|2
(

1

p

)2n(1−R)

. E[Xρ]
2.

We will use it in the following estimation:

∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

|Mx,z|=0

(
1

p

)2n(1−R)−i−2j

=
∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

|Mx,z|=0

E(ρ)

E(ρ)

(
1

p

)2n(1−R)−i−2j

=
∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

|Mx,z|=0

E(ρ)

|Zn ∩B0,n(ρ)|2
pi+2j

≤
∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

|Zn−Bj ∩B0,n−Bj(ρ)||Zn−Bi ∩B0,n−Bi(ρ)|
|Zn ∩B0,n(ρ)|2

·

· n(j+i)pipi+2jE(ρ)

.
∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

f(n)p−B(1−R)(j+i)n(j+i)p2(i+j)E(ρ), (4.56)

where the last asymptotical inequality comes from Lemma 4.6 and

f(n) =
(
√
n)2(n+1)

(
√
n−Bj)n−Bj+1(

√
n−Bi)n−Bi+1

(√
2πe
)−B(j+i)

·

·
(

1 +
2
√
n

2ρ−
√
n

)2n
ρ−B(j+i)

p−B(1−R)(j+i)

=
(
√
n)2(n+1)−B(j+i)

(
√
n−Bj)n+1−Bj(

√
n−Bi)n+1−Bi

(
1 +

2
√
n

2ρ−
√
n

)2n(
1 +

1

nω

)−B(j+i)

,

recalling that

ρ =

√
np(1−R)

√
2πe

(
1 +

1

nω

)
.

Let us go back to (4.56): besides f(n) and E(ρ), in the sum we have

p−B(1−R)(j+i)n(j+i)p2(i+j) = n(j+i)(1−λ(B(1−R)−2))
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and the exponent is strictly negative because (4.36) and (4.40) impose that

B >
2

1−R
and λ >

2

B(1−R)− 2
>

1

B(1−R)− 2
(4.57)

(recall also that j + i 6= 0, because the contribution to the variance of couples
of x’s and z’s corresponding to i = j = 0 is actually 0).

What can we say about f(n)? First of all that(
1 +

2
√
n

2ρ−
√
n

)2n

≤

(
1 +

2
√

2πe

2p(1−R) −
√

2πe

)2n

→ 1,

because we have imposed that λ > (1−R)−1 (see always (4.40)). Moreover,(
1 +

1

nω

)−B(j+i)

≤ 1.

Now, consider the term

fj(n) =

(√
n

n−Bj

)n−Bj+1

∼
(

1 +
Bj

n−Bj

)n−Bj+1
2

;

it is easy to show (and we leave this task to the reader) that if j 6= 0

fj(n)nj(1−λ(B(1−R)−2)) = o(1),

otherwise it is 1. Symmetrically, if i 6= 0,

fi(n)ni(1−λ(B(1−R)−2)) = o(1),

otherwise it is 1, but at least one of them is vanishing when n tends to infin-
ity. Consequently, the whole f(n) ∼ fj(n)fi(n) is always dominated by the
main term n(j+i)(1−λ(B(1−R)−2)). Furthermore, it is straightforward to see that
conditions (4.57) are actually sufficient to conclude that∑

i,j,t
j≤n(1−R)/(B(1−R)+1)

i+j+t=n(1−R)

f(n)p−B(1−R)(j+i)n(j+i)p2(i+j)E(ρ) . o(1)E(ρ). (4.58)

We will need this inequality later, after the estimation of the variance for the
case |Mx,z| = 1.

2. If |Mx,z| = 1, then G ′x,z contains a “big” connected component and |Mx,z| >
n(1−R)/(B(1−R) + 1), which implies that

|N(Ix,z ∪ Jx,z)| ≥ |N(Ix,z)| ≥ |N(Mx,z)| ≥
B(1−R)

B(1−R) + 1
n.
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If we call Rx,z the complement of N(Ix,z ∪Jx,z) in the set V of all the variable
nodes of the Tanner graph, we have that

|Rx,z| ≤ n/(B(1−R) + 1) ≤ (1−R)n/(A+ 1−R).

Moreover, N(Rx,z) ⊆ Tx,z and the expansion properties of the graph guarantee
that |N(Rx,z)| ≥ A|Rx,z|, from which we deduce that

|Tx,z|+ |Jx,z| ≥ |Tx,z| ≥ A|Rx,z|.

This will help us in counting the number of x’s and z’s such that |Ix,z|, |Jx,z|
and |Tx,z| are fixed to be respectively i, j and t. First of all, the same argument
of the case |Mx,z| = 0 holds for the x’s: at least B|Jx,z| of their coordinates
are fixed to be 0 (modulo p) and these coordinates are identified by the parity-
check equations of Jx,z. Concerning the z’s, given a fixed x, their coordinates
are fixed to 0 in the neighbourhood of Jx,z and can take up to p different
values in the neighbourhood of Ix,z (this values are the multiples modulo p of
the coordinates of x). If we call

r = |Rx,z| and k = |Kx,z|,

all of this allows us to conclude that

|{x, z ∈ Zn ∩B0,n(ρ) r pZn : |Ix,z| = i, |Jx,z| = j, |Tx,z| = t}|

≤
(
n(1−R)

j

)
|Zn−Bj ∩B0,n−Bj|

(
n(1−R)

t

)
pk+1|Zr ∩B0,r(ρ)|

≤ nj+tpk+1+r|Zn−Bj ∩B0,n−Bj|. (4.59)

Now, we would like to estimate k = |Kx,z|. Notice that, by definition of Kx,z

and thanks to the expansion properties, just like in the case |Mx,z| = 0 we
have that |N(Kx,z)| ≥ B|Kx,z|. We claim that

|Kx,z| ≤
|Tx,z|+ |Jx,z|
AB − 1

and we will show this taking into account the two (exhaustive) following cases:

• If |N(Kx,z)| ≤ n(1−R)/(A+ 1−R), then

|Jx,z|+ |Kx,z|+ |Tx,z| ≥ |N(N(Kx,z))| ≥ A|N(Kx,z)| ≥ AB|Kx,z|,

from which the claim follows directly.
• If |N(Kx,z)| > n(1−R)/(A+ 1−R), then

|Jx,z|+ |Kx,z|+ |Tx,z| ≥ |N(N(Kx,z))| ≥ A
n(1−R)

A+ 1−R

≥ A
n

B(1−R) + 1
= An

(
1− B(1−R)

B(1−R) + 1

)
≥ A (n− |N(Mx,z)|)

≥ A|N(Kx,z)| ≥ AB|Kx,z|

and we obtain the same conclusion as before.
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If we apply this estimation to (4.59), also recalling that |Jx,z|+|Tx,z| ≥ A|Rx,z|,
we get

|{x, z ∈ Zn ∩B0,n(ρ) r pZn : |Ix,z| = i, |Jx,z| = j, |Tx,z| = t}|
≤ nt+jp(t+j)/(AB−1)+1p(t+j)/A|Zn−Bj ∩B0,n−Bj|.

We can now go back to the main estimation and, again, introduce the quantity
E(ρ): ∑

i,j,t
j≤n(1−R)/(B(1−R)+1)

i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Ix,z|=i,|Jx,z|=j,|Tx,z|=t

|Mx,z|=1

(
1

p

)2n(1−R)−i−2j

=
∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

∑
x,z∈Zn∩B0,n(ρ)rpZn
|Jx,z|=j,|Tx,z|=t
|Mx,z|=1

(
1

p

)n(1−R)−2j+t+j

=
∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

nt+jp(t+j)/(AB−1)+1p(t+j)/A |Zn−Bj ∩B0,n−Bj(ρ)|
|Zn ∩B0,n(ρ)|

·

· p2j−t−j
√
E(ρ)

.
∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

g(n)p√
E(ρ)

(
p2

p(1−R)B

)j (
np1/(AB−1)p1/A

p

)t+j
E(ρ),

where we have applied Lemma 4.6 to obtain the asymptotical estimation and
g(n) is the analogue of f(n):

g(n) =

(√
n

n−Bj

)n−Bj+1(
1 +

2
√
n

2ρ−
√
n

)n(
1 +

1

nω

)−Bj
.

Now, very similarly to what happens in the case |Mx,z| = 0 (we omit some
easy details), conditions

B >
2

1−R
and λ > 2

(
1− 1

AB − 1
− 1

A

)−1

(cf. (4.36) and (4.40)) allow us to deduce that∑
i,j,t

j≤n(1−R)/(B(1−R)+1)
i+j+t=n(1−R)

g(n)p√
E(ρ)

(
p2

p(1−R)B

)j (
np1/(AB−1)p1/A

p

)t+j
E(ρ) . o(1)E(ρ).

(4.60)
Notice that E(ρ), is known to tend subexponentially to infinity when n grows
and so does its square root.
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Putting together (4.51), (4.58) and (4.60), we obtain that

Var(Xρ) . o(1)E(ρ).

By the means of the Chebyshev’s inequality (cf. Lemma 2.1) and taking into account
the fact that E(ρ) ≤ E[Xρ]

2, we finally arrive to the end of the proof:

P{Xρ = 0} ≤ P{|Xρ − E[Xρ]| ≥ E[Xρ]}

≤ Var(Xρ)

E[Xρ]2

.
o(1)E(ρ)

E[Xρ]2

.
o(1)E[Xρ]

2

E[Xρ]2
−→ 0,

that is,
lim
n→∞

P
{
Xρeff(1+ 1

nω ) = 0
}

= 0.

The proof that capacity is achieved with LDA lattices

Now that we have proved that in the case of LDA Voronoi constellations the sent
point has the same typical norm of the constellation points of the more general
Construction A, we are ready to prove the result that LDA lattices can achieve the
capacity of the AWGN channel under lattice decoding. As we have already said,
the transmission scheme is the same of Section 4.2.2 and the proof of the theorem
is then very similar to the one of Theorem 4.1. Nevertheless, we will have to adapt
it to the LDPC structure that gives rise to LDA lattices, just like we had to adapt
the proof of the previous lemma.

Theorem 4.2. The random ensemble of nested LDA lattices that we have described
till now in this section achieves the capacity of the AWGN channel under MMSE
lattice decoding, when SNR > 1, R > 1/2 and p = nλ for some constant λ such that

λ > max

(
1

1−Rf

,
2

A− 2
,

2

B(1−Rf )− 2
,

1

2Rf

, 2

(
1− 1

AB − 1
− 1

A

)−1
)

(4.61)

and such that condition (4.40) is satisfied, too.

Remark: the proof of this theorem strongly relies on the techniques that we
have already applied in the proofs of Theorem 4.1 and Lemma 4.7. For this reason,
we will skip some detail and some technical computation. Everything which is
not completely developed is a straightforward modification of some well-referenced
computation that was already done in another context. We strongly recommend
to get familiar with the arguments used in the demonstrations of Theorem 4.1 and
Lemma 4.7 before reading the sequel in depth.
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Proof. The geometric and probabilistic strategy to prove this theorem is the same
that we have applied to prove Theorem 4.1. Namely, the beginnings of the two
proofs are identical and almost everything coincides; the small differences can be
easily solved by a slight adaptation of what is done in the proof of Theorem 4.1. For
this reason, we claim that the only thing that we need to prove is that

lim
n→∞

(∑
x∈S

P{H′xT ≡mT mod p} (4.62)

·
∑

z∈B′∩Zn
z 6≡µx, µ=0,1,2

P{Hfx
T ≡ 0T mod p,Hfz

T ≡ 0T mod p}P{z ∈ B r {x}}

)
= 0.

(4.63)

This formula is the equivalent of (4.28) and (4.29). For the notation, we recall that:

• Beff is the n-dimensional ball centred at 0 with radius

ρeff

(
1 +

1

nω

)
=

√
np(1−R)

√
2πe

(
1 +

1

nω

)
,

where ω is the same constant of Lemma 4.7.

• m is the upper part of the syndrome s (cf. Figure 4.2 at the beginning of
Section 4.2).

• B′ is the n-dimensional ball centred at x, with radius equal to

2ρdec = 2
√
αnσ(1 + ξ),

where α is the Wiener coefficient used for MMSE scaling, σ is the noise vari-
ance per dimension and ξ is a fixed small constant (actually, in the proof of
Theorem 4.1, we had ε instead of ξ; here we change the notation to avoid any
misunderstanding with the ε involved in the definition of an (α,A, β,B)-good
graph).

• σ = σmax(1− δ), for some 0 < δ < 1 and σmax is defined like in (4.22).

• B is the decoding sphere, centred at αy (the MMSE-scaled channel output)
with radius ρdec.

• S is defined as the set of the x’s in (Beff∩Zn)rpZn for which for all µ ∈ {0, 1, 2},
all 0 ≤ ν < 1, and all z such that |{i ∈ {1, 2, . . . , n} : xi ≡ µzi mod p}| ≥
n−nν , the point z itself does not induce a decoding error (x being the channel
input). Showing that the previous sum can be restricted to the x’s in S
slightly generalises what is done to define the S of the proof of Theorem 4.1;
it also requires similar techniques to the ones that will be employed later on
to conclude this proof.
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First of all, let us deduce something about the non-zero subsyndrome m: how
many are the m ∈ Fn(Rf−R)

p such that mi 6= 0 for every i? We have:

|{m ∈ Fn(Rf−R)
p : mi 6= 0,∀i}| = (p− 1)n(Rf−R)

=

(
1− 1

p

)n(Rf−R)

pn(Rf−R)

=

(
1− 1

nλ

)n(Rf−R)

pn(Rf−R) → pn(Rf−R),

because λ > (1−Rf )
−1 > 1 (recall hypothesis (4.61)). This means that the propor-

tion of m’s that contain some 0 coordinates is vanishing with respect to the total
number of subsyndromes. For this reason, the contribution to the average error
probability of this messages is vanishing and we only need to show (4.62) for the
m’s such that mi 6= 0 for every i. From now on, we make this hypothesis, which
implies that

P{H′xT ≡mT mod p} ≤
(

1

p

)n(Rf−R)

,

since the intersection of the supports of x and any row of H′ is never empty. Note
that, if the inequality is strict, then the probability is 0.

Now, we would like to express the other probabilities of (4.63) that x and z have
a certain subsyndrome in the same form as in the proof of Lemma 4.7. For this
purpose, given a fixed x and a fixed z, let

Jfx,z = {h row of Hf : dim(x, z,h) = 0},
Ifx,z = {h row of Hf : dim(x, z,h) = 1},
T fx,z = {h row of Hf : dim(x, z,h) = 2},

where the definition of dim(x, z,h) is the same that we have given in the proof of
Lemma 4.7. Hence, if we define

Z = {z ∈ B′ ∩ Zn : z 6≡ µx mod p,∀µ ∈ {0, 1, 2}},

we obtain∑
x∈S

P{H′xT ≡mT mod p}·

·
∑

z∈B′∩Zn
z 6≡µx,µ=0,1,2

P{Hfx
T ≡ 0T mod p,Hfz

T ≡ 0T mod p}P{z ∈ B r {x}}

≤
∑
i,j,t

i+j+t=n(1−Rf )

∑
x∈S
z∈Z

|Ifx,z|=i,|Jfx,z|=j,|T fx,z|=t

(
1

p

)n(Rf−R)(
1

p

)2n(1−Rf )−i−2j

P{z ∈ B r {x}}.

131
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Now, observe that if S is the set of all the balls of the space of radius ρdec (the same
radius as B), then ∑

x∈S
z∈Z

|Ifx,z|=i,|Jfx,z|=j,|T fx,z|=t

P{z ∈ B r {x}}

=
∑
x∈S
z∈Z

|Ifx,z|=i,|Jfx,z|=j,|T fx,z|=t

∑
B∈S
z∈B

P{B = B}

=
∑
B∈S

∑
x∈S

z∈B∩Z
|Ifx,z|=i,|Jfx,z|=j,|T fx,z|=t

P{B = B}. (4.64)

Then, for a fixed x, if we call

Zijt = max
B∈S
|{z ∈ B ∩ Z} : |Ifx,z| = i, |Jfx,z| = j, |T fx,z| = t}|,

we can go on from (4.64) and write

(4.64) ≤
∑
x∈S

Zijt
∑
B∈S

P{B = B}

=
∑
x∈S

Zijt.

Consequently,∑
x∈S

P{H′xT ≡mT mod p}·

·
∑
z∈Z

P{Hfx
T ≡ 0T mod p,Hfz

T ≡ 0T mod p}P{z ∈ B r {x}}

≤
∑
i,j,t

i+j+t=n(1−Rf )

∑
x∈S

(
1

p

)n(Rf−R)

Zijt

(
1

p

)2n(1−Rf )−i−2j

=
∑
i,j,t

i+j+t=n(1−Rf )

∑
x∈S

(
1

p

)n(1−R)

Zijt

(
1

p

)n(1−Rf )−i−2j

.

Now, exactly like in the variance computation in the proof of Lemma 4.7, we will
split this sum into two parts, depending on the values of j. Namely, we will study
the convergence of the sum for:

1. j > n(1−Rf )/(B(1−Rf ) + 1).

2. j ≤ n(1−Rf )/(B(1−Rf ) + 1).
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First case: j > n(1 − Rf )/(B(1 − Rf ) + 1). This case develops in the same
manner as the “first case” of the proof of Lemma 4.7: we have

∑
i,j,t

j>n(1−Rf )/(B(1−Rf )+1)
i+j+t=n(1−Rf )

∑
x∈S

(
1

p

)n(Rf−R)

Zijt

(
1

p

)2n(1−Rf )−i−2j

≤
∑
i,j,t

j>n(1−Rf )/(B(1−Rf )+1)
i+j+t=n(1−Rf )

∑
x∈S

Zijt

(
1

p

)2n(1−Rf )−i−2j

≤
∑
i,j,t

j>n(1−Rf )/(B(1−Rf )+1)
i+j+t=n(1−Rf )

∑
x∈S

Zijt

(
1

p

)2t+i

. (4.65)

The very same argument used in the proof of Lemma 4.7 implies also that this sum
is bounded by the same bound as (4.49) (with Rf instead of R, of course). Notice
that in this particular case no problem comes from the fact that the radii of the
balls in the previous sum are different from the radii of the balls in (4.49); this is
because all of them are asymptotically smaller than p (thanks to condition (4.61):
λ > (1 − Rf )

−1 > (1 − R)−1)) and this somehow rough condition is the only one
that we need for our estimation. In conclusion,

lim
n→∞

∑
i,j,t

j>n(1−Rf )/(B(1−Rf )+1)
i+j+t=n(1−Rf )

∑
x∈S

(
1

p

)n(Rf−R)

Zijt

(
1

p

)2n(1−Rf )−i−2j

= 0,

thanks to the hypothesis λ > 2(A − 2)−1 (cf. (4.61) and the application of the
condition in (4.51)).

Second case: j ≤ n(1−Rf )/(B(1−Rf ) + 1). Once again, we take inspiration
from the proof of Lemma 4.7. There, the “second case” was splitted into two more
cases. We will do the same here and bound in two different ways the sum on the
x’s and z’s, depending on the fact that Mf

x,z is 0 or 1 (for the definition of Mf
x,z,

see the corresponding definition ofMx,z in the proof of Lemma 4.7 (cf. (4.52)).

1. If |Mf
x,z| = 0, a trivial adaptation of the argument used in the proof of Lemma
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4.7 for the corresponding case |Mx,z| = 0 says that∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
i+j+t=n(1−Rf )

∑
x∈S

(
1

p

)n(Rf−R)

Zijt

(
1

p

)2n(1−Rf )−i−2j

≤
∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
i+j+t=n(1−Rf )

ni+jpi|Zn−Bj ∩B0,n−Bj(ρeff(1 + 1/nω))|·

· |Zn−Bi ∩B0,n−Bi(ρdec)|
(

1

p

)n(Rf−R)(
1

p

)2n(1−Rf )−i−2j

.

Let us define

Q(ρeff , ρdec) = |Zn ∩ Beff |
(

1

p

)n(1−R)

|Zn ∩ B|
(

1

p

)n(1−Rf )

.

Then ∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
i+j+t=n(1−Rf )

∑
x∈S

(
1

p

)n(Rf−R)

Zijt

(
1

p

)2n(1−Rf )−i−2j

≤
∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
i+j+t=n(1−Rf )

|Zn−Bj ∩B0,n−Bj(ρeff(1 + 1/nω))||Zn−Bi ∩B0,n−Bi(ρdec)|
|Zn ∩ Beff ||Zn ∩ B|

·

· ni+jp2i+2jQ(ρeff , ρdec)

.
∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
i+j+t=n(1−Rf )

(√
n

n−Bj

)n−Bj+1(√
n

n−Bi

)n−Bi+1

·

· njp2j

pBj(1−R)

nip2i

pBi(1−Rf )
(1 + ξ)(1− δ)−BiQ(ρeff , ρdec)

= o(1)Q(ρeff , ρdec),

because condition (4.61) states

λ > max

(
2

B(1−R)− 2
,

2

B(1−Rf )− 2

)
=

2

B(1−Rf )− 2
.

Now, notice that we have already shown in the proof of Theorem 4.1 that

lim
n→∞

Q(ρeff , ρdec) = 0;

indeed, it is bounded from above by (4.33), which was shown to be vanishing
when n tends to infinity. This concludes the analysis of the case |Mf

x,z| = 0.
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2. Now, let |Mf
x,z| = 1 and suppose for now that t < nν for some ν < 1. Consider

the set of parity-check equation nodes of the Tanner graph associated with Hf

given by Ifx,z ∪ Jfx,z and the bipartite subgraph Hx,z that it induces, whose
set of parity-check equation nodes is Ifx,z ∪ Jfx,z, whose set of variable nodes is
N(Ifx,z ∪ Jfx,z) and whose edges are all the edges of the original Tanner graph
beween these two sets. A priori this graph is not connected; if we denote C
one of its connected component and PC its set of parity-check equation nodes,
we can partition Hx,z into the disjoint union of the two following graphs:

Lfx,z = {C ⊆ Hx,z : |PC| ≤ n(1−Rf )/(B(1−Rf ) + 1)} and
Dfx,z = {C ⊆ Hx,z : |PC| > n(1−Rf )/(B(1−Rf ) + 1)}.

As a consequence, Ifx,z ∪ Jfx,z is the disjoint union of

Lfx,z =
⋃
{PC : C ∈ Lx,z} and Df

x,z =
⋃
{PC : C ∈ Dx,z}.

The first observation that we can make is that since j ≤ n(1 − Rf )/(B(1 −
Rf ) + 1) and t < nν , then |Dx,z| = 1. Indeed, |Dx,z| ≤ 1 for the same reason
for which |Mx,z| ≤ 1 in the proof of Lemma 4.7 (see what follows equation
(4.53)); moreover, Dx,z 6= ∅ because otherwise Lfx,z = Ifx,z ∪ Jfx,z and these two
conditions would hold (at least asymptotically):

(a) Lfx,z has size n(1−Rf )− |T fx,z| ≥ n− nν .
(b) |N(Lfx,z)| ≥ B|Lfx,z| ≥ B(n− nν) > n.

The second one is clearly a nonsense and proves that |Dx,z| = 1.

We go on with this analysis and we claim that Lfx,z cannot be too big: |Lfx,z| ≤
t/(AB − 1). Indeed, the expansion properties imply that |N(Lfx,z)| ≥ B|Lfx,z|.
So,

• if |N(Lfx,z)| ≤ n/(A+ 1−Rf ), then

|Lfx,z|+ |T fx,z| ≥ |N(N(Lfx,z))| ≥ A|N(Lfx,z)| ≥ AB|Lfx,z|,

from which the claim follows directly;

• if instead |N(Lfx,z)| ≤ n/(A+ 1−Rf ), we can observe that

|Lfx,z|+ |T fx,z| ≥ |N(N(Lfx,z))| ≥ A
n(1−Rf )

A+ 1−Rf

≥ A
n

B(1−Rf ) + 1
= An

(
1− B(1−Rf )

B(1−Rf ) + 1

)
≥ A

(
n− |N(Df

x,z)|
)

≥ A|N(Lfx,z)| ≥ AB|Lfx,z|,

that allows us to deduce the claim once again.
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Substantially, we have just proved that when j ≤ n(1− Rf )/(B(1− Rf ) + 1)
and t < nν , then the parity-check equations associated with the big connected
component of Ifx,z ∪ Jfx,z are almost all the equations of the matrix Hf ; the
size of what is left (the set |T fx,z| plus the equations of the “small” connected
components) is O(nν).

The next thing we would like to prove is that the number of x ∈ Beff such that
there exists some z ∈ B′ satisfying the hypothesis on |T fx,z| and |Jfx,z| is very
small with respect to the total number of x. Hence, let

N =

∣∣∣∣∣
{
x ∈ Beff : ∃z ∈ B′ such that |T fx,z| < nν and |Jfx,z| ≤

n(1−Rf )

B(1−Rf ) + 1

} ∣∣∣∣∣.
Let us start observing that x and z have to be multiple modulo p on all
the coordinates of N(Df

x,z). Indeed, this holds by definition of Ifx,z on the
coordinates of N(Ifx,z ∩Df

x,z) and by the fact that they are fixed to 0 modulo
p for both x and z on the coordinates of N(Jfx,z ∩Df

x,z). In other terms, there
exists µ ∈ {3, 4, . . . , p − 1} - recall that the values 0, 1 and 2 are excluded by
the definition of S and Z - such that

|{l ∈ {1, 2, . . . , n} : xl ≡ µzl mod p}| ≥ n− |N(Lfx,z ∪ T fx,z)|
≥ n−B|Lfx,z ∪ T fx,z|

≥ n− |T fx,z|
(

1 +
1

AB − 1

)
≥ n− 2Bnν .

Let us define

N ′ = |{x ∈ B0,dn−2Bnνe(ρeff(1+1/nω)) : ∃z ∈ Bx,dn−2Bnνe(2ρdec),x ≡ µz mod p}|;

the previous estimation directly implies that

N ≤
(

n

b2Bnνc

)
|Zb2Bnνc ∩B0,b2Bnνc(ρeff(1 + 1/nω))|N ′ ≤ n2Bnνp2BnνN ′.

Now, let us consider the following summation, in which t is fixed to be smaller
than nν : ∑

i,j,t
j≤n(1−Rf )/(B(1−Rf )+1)

t<nν

i+j+t=n(1−Rf )

∑
x∈S

(
1

p

)n(Rf−R)

Zijt

(
1

p

)2n(1−Rf )−i−2j

. (4.66)

Zijt = 0 except for a subset of points x of size N . Moreover, once an x is
fixed, the z(s that guarantee the configuration of i, j and t are identified by:

(a) the choice of O(nν) coordinates.
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(b) the choice of at most p value for each of those coordinates.

Then,

(4.66) ≤
∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
t<nν

i+j+t=n(1−Rf )

N (np)O(nν)

(
1

p

)n(Rf−R)+2n(1−Rf )−i−2j

≤ |Zn ∩ Beff |
(

1

p

)n(1−R) ∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
t<nν

i+j+t=n(1−Rf )

(np)O(nν)N ′

|Zn ∩ Beff |

(
1

p

)t−j

≤

(
|Zn ∩ Beff |

(
1

p

)n(1−R)
)
n2nO(nν)N ′

|Zn ∩ Beff |
.

Now, the term in the parentheses is known to grow subexponentially to infinity
with n (see for example the comments concerning (4.33)). On the other hand,
Lemma 4.5 provides an upper bound for N ′ and it is possible to show that the
ratio on the right decreases exponentially to 0 (it is the analogue computation
to the one done at the end of the proof of Theorem 4.1). Hence, the latter is
the dominating term and whole quantity is vanishing when n tends to infinity.

We are left to study the sum corresponding to t > nν :

∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
t>nν

i+j+t=n(1−Rf )

∑
x∈S

(
1

p

)n(Rf−R)

Zijt

(
1

p

)2n(1−Rf )−i−2j

. (4.67)

For this estimation, we rely once again on the similar computations already
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4.3. ACHIEVING CAPACITY WITH LDA LATTICES

done in the proof of Lemma 4.7: based on that example, we can easily find:

(4.67) ≤
∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
t>nν

i+j+t=n(1−Rf )

(
np1/(AB−1)+1/A

)t+j
p

(
1

p

)n(1−R)+n(1−Rf )−i−2j

·

· |Zn−Bj ∩B0,n−Bj(ρeff(1 + 1/nω))|

≤ |Zn ∩ Beff |
(

1

p

)n(1−R) ∑
i,j,t

j≤n(1−Rf )/(B(1−Rf )+1)
t>nν

i+j+t=n(1−Rf )

(
np1/(AB−1)+1/A

p

)t+j
pp2j·

· |Z
n−Bj ∩B0,n−Bj(ρeff(1 + 1/nω))|

|Zn ∩ Beff |

.

(
|Zn ∩ Beff |

(
1

p

)n(1−R)
) ∑

i,j,t
j≤n(1−Rf )/(B(1−Rf )+1)

t>nν

i+j+t=n(1−Rf )

(√
n

n−Bj

)n−Bj+1

·

· p
(
np1/(AB−1)+1/A

p

)t+j (
p2

p(1−Rf )B

)j
.

Now, the term outside the sum goes subexponentially to infinity when n tends
to infinity, as we pointed out before; on the other hand, the sum converges to
0 thanks to conditions (4.36) and (4.61):

B >
2

1−Rf

and λ > 2

(
1− 1

AB − 1
− 1

A

)−1

;

taking ν big enough, it also dominates the left term. So, the whole quantity
tends to 0 when n tends to infinity.

Conclusion. Putting together the “first case” and the two distinguished parts
of the “second case”, we conclude that the limit in (4.62) holds true and this ends
the proof of the theorem.
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Chapter 5

Applications and numerical
experiments

This dissertation has dealt so far with information-theoretical results about the
capacity-achieving properties of lattices and most of them concerned LDA lattices.
This analysis integrates the work started by de Buda in 1975 [dB75] and carried
out successfully till nowadays by the international community, as summarised in
Section 2.3.2. Though, these results are non-contructive and from a practical point
of view not many lattice coding schemes have been proposed that have a chance of
approaching capacity. For large dimensions, the promising lattices are:

• Low-Density Parity-Check (LDPC) Lattices, based on an underlying binary
code structure: the binary code is chosen to be amenable to an iterative de-
coding algorithm and belongs to the LDPC families [SBP06, BC08, SS13];

• Low-Density Lattice Codes (LDLC), that are constructed directly so as to be
decodable by a scheme inspired by the LDPC techniques [SFS08];

• Turbo Lattices, based on binary, iteratively decodable turbo codes [SSP12];

• Polar Lattices, that, as the name suggests, take inspiration from polar codes
[YLW13, YL12].

As it may appear natural at this point, we ask ourselves the questions: can we
find an iterative decoding scheme for LDA lattices? Is their sparse parity-check
matrix underlying structure suitable for practical algorithmic implementation? Of
course, the answer is yes. Moreover, this is exactly the reason why we have turned
our attention to this kind of LDPC-based Construction A family. From a chrono-
logical point of view, the experimental results of [dPBZB12] come even before and
motivate the theoretical achievements of [dPBZB13, dPBZ13] and Chapter 3 and
Chapter 4. In the sequel of the chapter, we describe and discuss our LDA-adapted
decoder of infinite constellations, giving some specifics and some comments on the
choice of parameters for the LDA family we experiment with; we also discuss some
simulation results, compared to the ones of the other lattice families provided in the
literature.
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Figure 5.1: Factor graph of an LDA lattice.

5.1 Iterative decoding of infinite LDA constellations
In small dimensions, typically less than 100, optimal decoding algorithms for lattice
constellations are manageable, such as Sphere Decoding [VB99][BB03]. For higher
dimensions (n ≥ 1000), there is no method to handle decoding of lattices besides
iterative message passing algorithms. For this reason, we propose an iterative decod-
ing scheme for LDA lattices. Even if it is suboptimal with repsect to ML decoding
and we are not able to study its performance from a purely theoretical point of
view, it still reveals to be an interesting algorithm, thanks to its complexity and the
satisfactory numerical simulation results.

The complexity of iterative message passing is linear in n. In our setting, since we
work with non-binary LDPC codes underlying Construction A, a critical parameter
is also the size p of the finite field containing the linear code. Indeed, the p-ary LDPC
code C defining an LDA lattice Λ can be decoded via Belief Propagation (BP) or
Min-Sum Decoding [RU08]. The results that we show in Section 5.2 are obtained
with BP. Decoding of an LDPC checknode in C is made via the Forward-Backward
algorithm on the syndrome trellis [BCJR74], that has p2 transitions in its largest
section. For large p, checknode decoding should be done via Fast Fourier Transform
[HR76] to make it faster. We describe below the factor graph of Λ and the messages
propagating on its edges.

5.1.1 Factor graph for LDA lattices

The factor graph [KFL01] is derived from the lattice structure given in Section 2.2.1
(namely, see (2.1)):

Λ = Φ(C) + pZn,

where Φ is the embedding of C into Zn. Messages and constraints are given for
a Construction A lattice over Z transmitted over a memoryless AWGN channel,
with noise variance per dimension equal to σ2. The channel input is denoted by
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x = (x1, x2, . . . , xn) and the output is y = (y1, y2, . . . , yn). It is straightforward to
extend them to Construction A over the Gaussian integers Z[i] (through the formula:
Λ = Φ(C) +Z[i]n) and other types of memoryless channels. As shown in Figure 5.1,
the constraints are:

• The channel, where the output conditional distribution is yi ∼ N (xi, σ
2),

i = 1, . . . , n.

• The lattice constraint given by Construction A, i.e. by the fact that Λ is the
union of cosets of pZn. We have xi = Φ(ci) + pzi, where zi ∈ Z, ci ∈ Fp, and
c = (c1, c2, . . . , cn) ∈ C.

• The embedding Φ of Fp into the Euclidean space. For (L,L′) = (Z, pZ) and
` = n (the notation comes from Definition 2.13), the isomorphism Φ(ci) is
simply defined as the element of {−(p− 1)/2,−(p− 3)/2, . . . , (p− 1)/2} that
projects onto ci modulo p (of course, with p 6= 2). We will write ci instead of
Φ(ci) in order to simplify the notation.

• The LDPC constraint given by HcT ≡ 0 mod p, where H is the (sparse)
parity-check matrix of the LDPC code C.

5.1.2 Probabilistic messages for Construction A

Now, let us find the expressions of messages propagating from left to right in the
factor graph. The left-to-right message produced by xi is

p(xi|yi) ∝ exp

(
−(yi − xi)2

2σ2

)
, ∀xi ∈ Z, (5.1)

the symbol ∝ meaning “proportional to”. Since we have xi = ci + pzi ≡ ci mod p,
the left-to-right message received by ci is

p(ci|yi) =
∑
xi∈Z
xi≡ci

p(xi|yi). (5.2)

Let us move to describing the messages propagating right to left. The right-
to-left message produced by ci is the LDPC extrinsic information p(ci|C,y r {yi})
determined by multiplying all messages from its neighbouring checknodes [RU08].
The outgoing message from zi is 1 in the absence of a priori information. As shown
later for our practical implementation, there is a hidden constraint producing an a
priori information π(zi). Thus, the right-to-left message received by xi would be

p(xi|C,y r {yi}) ∝ π(zi) · p(ci|C,y r {yi})

From the above description and the fact that the a posteriori probability (APP)
of a variable node υ is determined by the product of the two messages in the two
opposite directions on any edge connected to υ (belief propagation on an a cyclic
graph [RU08]), we can state the following lemma.
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Lemma 5.1. Let Λ = C[n, k]p+pZn be an LDA lattice and x = (x1, x2, . . . , xn) be a
lattice point. A message passing decoder should maximise APP (xi), for i = 1, . . . , n,
where the a posteriori probability for a lattice component is given by

APP (xi) ∝ p(xi|yi) · π(zi) · p(ci|C,y r {yi}). (5.3)

5.1.3 Implementation

The summation over Z in (5.2) decays very quickly around yi because of the expo-
nential behaviour given in (5.1). Consider the real interval Wi = [yi −mσ, yi +mσ]
where σ2 is the AWG noise variance per dimension and m ∈ R+. We choose m
such that the probability of the transmitted xi being outside Wi is less than ε, i.e.
2Q(m) < ε where Q(·) is the Gaussian tail function. For example, m = 6.467 and
ε = 10−10. The observation for a code symbol becomes

p(ci|yi) ≈
∑
xi∈Wi
xi≡ci

p(xi|yi). (5.4)

Limiting the search for a lattice component xi = ci + pzi to Wi brings an a priori
on zi. For a given symbol value ci and a given channel observation yi, the search
for the unknown zi is now restricted to [(yi − ci − mσ)/p, (yi − ci + mσ)/p]. The
number of admissible integer translations zi is µi(yi, ci) given by

µi(yi, ci) = |{xi ∈ Wi : xi ≡ ci mod p}|.

Consequently, the prior on zi is given by π(zi) = 1/µi(yi, ci). The implementa-
tion can be further simplified if p is large enough. Indeed, taking 2mσ ≤ p yields
µi(yi, ci) = 1, for all yi and all ci. Since we consider variance noise values up
to Poltyrev capacity (cf. Definition 2.19), the latter condition is satisfied when
2mσmax ≤ p, where σ2

max is given by (3.1), which translates into pR ≥ 2m/
√

2πe.
Summarising, we decode an LDA (over Z) lattice point coordinate-wise as fol-

lows, for a fixed index i = 1, . . . , n:

• Initialisation: compute p(xi|yi) (5.1) for all xi ∈ Wi and add them as described
in (5.4) to get the p values of p(ci|yi).

• Iterations : apply Belief Propagation with input p(ci|yi) to compute the p
values of p(ci|C,y r {yi}).

• Final decision: for every xi ∈ Wi, compute the product in (5.3) and find the
xi = x̂i that maximises it.

An alternative strategy for the final decision consists in taking as x̂i the represen-
tant of the class modulo p that is the closest to yi and that maximises the extrinsic
probability p(ci|C,yr{yi}). Notice that, when p is large enough (or when the noise
is weak enough, too), the width of the window Wi is smaller than p itself and the
classes modulo p are represented by at most one integer around yi, as anticipated
before, and the two different strategies for the final decision eventually coincide.
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5.2 Optimisation and decoding performance

In this section, we present some details on the choice of the LDPC codes for the
construction of the LDA lattices that we have tested; after that, we conclude with
some simulation results and the comparison with the performance of already known
lattice families.

The core of the lattice is of course the p-ary LDPC code and its choice may be
optimised. In the classical binary setting, an LDPC code is identified by its parity-
check matrix and, equivalently, by the associated Tanner graph. When the entries
of the parity-check matrix are non-binary, the Tanner graph is built as usual, and in
addition, a label is associated to every edge; this label is equal to the corresponding
non-zero entry in the parity-check matrix of the code (see for example [SFS08]).

Optimising the choice of the p-ary code coincides with optimising the related
labelled Tanner graph. In the binary case, this is often reduced to choosing a graph
without small cycles. In the case of p-ary LDPC codes, we also choose in a clever
way the non-zero p-ary entries of the parity-check matrix (that is, the p-ary labels of
the graph edges). This aspect has a significant impact on iterative decoding, at least
for relatively small values of p, and has not been previously considered. The “non-
triviality” of the graph labels guarantees the existence of better codes with respect
to their binary equivalents, resulting in a more powerful and improved Construction
A.

5.2.1 Choice of the coefficients for the parity-check equations

In order to make a good choice for the coefficients of the parity-check matrix H of
the LDPC code, we investigate the single parity-check (SPC) code defined by each
parity-check equation (the rows of H). Formally, we define

CSPC = {c = (c1, c2, . . . , c∆) ∈ F∆
p : h1c1 + h2c2 . . .+ hscs ≡ 0 mod p}

as the SPC code associated with the non-zero coefficients h1, h2, . . . , h∆ ∈ Fp r {0}
of a row of H. We say that this row has degree equal to ∆.

Note that the message-passing decoder applies MAP decoding to the individual
SPC codes. Contrary to the binary case, there are many choices for an SPC code
and they may have a strong influence over MAP decoding. In particular, (5.1)
shows that the minimum Euclidean distance of the SPC code will be an important
parameter and we choose to optimise it. The Euclidean minimum distance is defined
as

dmin(CSPC) = min
c∈CSPCr{0}

||Φ(c)||

(where Φ, as before, is the embedding of the code into Z). Experiments confirm that
coefficients hi’s that maximise dmin(CSPC) yield a significantly improved performance
over random hi’s for Construction A over with Z.

We will focus for a moment on this kind of lattices and show how to implement
the good choice of the coefficients in the particular case for which we show the
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simulation results later. With these parameters, one can see that dmin(CSPC) cannot
be greater than

√
3. The condition dmin(CSPC) 6= 1 is an immediate consequence

of the fact that all the hi’s are non-zero. We can find how to avoid a Euclidean
minimum distance of

√
2 as follows: let (c1, c2, . . . , c∆) be a point of CSPC of smallest

Euclidean norm;

dmin(CSPC) =
√

2 ⇐⇒
√
c2

1 + c2
2 + . . .+ c2

∆ =
√

2

⇐⇒ ci, cj = ±1, ∃ i, j ∈ {1, . . . ,∆}
and ck = 0 ∀k 6= i, j.

Also, c must satisfy the parity-check equation, that becomes

±hi ± hj = 0, hi = ±hj.

This means that the condition

hi 6= ±hj, ∀i, j ∈ {1, . . . ,∆} (5.5)

suffices to impose dmin(CSPC) >
√

2.
Our simulations have directed us towards the choice ∆ = 5: in this case the first

value of p for which we may have dmin >
√

2 is p = 11 and experimentally, this has
turned out to be the optimum choice of p for regular LDPC codes.

5.2.2 Tanner graph construction

Generally, random graphs give good performance, provided that one manually re-
moves all 4-cycles and guarantees a girth of at least 6. We have anyway preferred
to use LDPC codes whose corresponding graph is built by means of the Progressive
Edge-Growth algorithm (PEG) [HEA05]. This algorithm builds the graph edge by
edge, in an iterative manner that locally maximises the current girth of the graph
during construction. Experimentally, we have seen that PEG-obtained graphs allow
to reach better symbol error rates (SER), thanks to a “deeper” error floor region
with respect to random graphs. At the same time, in the waterfall region of random
graphs, PEG-obtained graphs have very similar performance.

5.2.3 Simulation results

We will show here some simulation results and compare them with what is known
in the literature about other families of lattices used for the transmission of infor-
mation. As we have already specified, we decode infinite LDA constellations by the
means of the iterative algorithm that we have just presented. We will evaluate the
performance of LDA lattices as a function of the noise variance: the best lattices are
the ones which attain small symbol error rates for values of the noise variance that
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Figure 5.2: Symbol error rate versus distance to Poltyrev limit for LDA lattices.

are close to σ2
max. We will speak of distance from capacity, meaning the distance (in

dB) of the channel noise variance from σ2
max. We recall that

σ2
max =

{
1

2πe
p2(1−R), for (L,L′) = (Z, pZ),

1
2πe
p(1−R), for (L,L′) = (Z[i], φZ[i]).

Figure 5.2 presents our best experimental results. The values of the parameters
that we have fixed in the simulations are the ones that experimentally have given
the best performance till now. The number of decoding iterations has been fixed to
at most 200 in all simulations.

As far as LDA lattices obtained by p-ary Construction A over Z are concerned,
we have only investigated regular LDPC codes and similarly to the case of binary
LDPCs constructed as binary images of q-ary LDPCs [PFD06], we have found that
a degree 2 per variable node yields the best results. As mentioned before, the most
interesting case to come up was that of a (2, 5)-regular code with p = 11.

As described in Section 5.2.2, the graph is built using the PEG algorithm, with
the slight modification with respect to [HEA05] that the check nodes degree distri-
bution is fixed, too. The non-zero entries of the parity-check equations are chosen as
described in Section 5.2.1. Fig. 5.2 shows that for n = 1000, we attain a SER of less
than 10−6 at 1.5 dB from Poltyrev capacity. This corresponds to an improvement of
about 0.2 dB with respect to the performance of LDLC [SFS08] at a SER of 10−5.
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With a similar lattice in dimension n = 5000, we attain a SER of less than 10−6

at 1 dB from Poltyrev capacity, which corresponds to an improvement of more than
0.2 dB with respect to Irregular LDPC lattices and of about 0.8 dB with respect to
Regular LDPC lattices (see [BC08]).

In dimension n = 10000, our LDA Z-lattice provides a SER of 10−6 at 0.75 dB
from Poltyrev capacity, which is better than what LDLC do [SFS08].

An even more interesting result is given by the performance of LDA Z[i]-lattices
(construction A with (L,L′) = (Z[i], φZ[i]). As in the previous examples, the Tanner
graph is (2, 5)-regular, while the prime ideal used for the modulo operation is (4+5i),
corresponding to p = 41. In (real) dimension n = 1000 (` = 500), a SER of about
10−5 is attained at 1.25 dB from Poltyrev capacity, equalling the performance of
Turbo Lattices [SSP12], while, for n = 10000 (` = 5000), the same SER is attained
at about 0.7 dB from Poltyrev capacity.
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Chapter 6

Conclusion and ideas for future work

This thesis is devoted to the application of lattices to the transmission of information
over the AWGN channel. We have considered several aspects of this problem, that
can be summarised as follows:

• We have started by introducing the family of LDA lattices, that put together
the strength of Construction A and LDPC codes (cf. Definition 3.1).

• We have analysed the theoretical asymptotical performance of two families of
LDA lattices, when infinite constellations are taken into accounts. Namely, we
have proved that there exist two Poltyrev-capacity-achieving families of LDA
lattices (cf. Theorem 3.1 in Section 3.2.3 and Theorem 3.2 in Section 3.3.4).

– The first of these families is characterised by a logarithmically growing
parity-check equation degree. The field size of the LDPC codes underlying
the LDA family is a prime number p, whose order of magnitude is nλ, for
some constant λ that can be chosen a priori as small as wanted. Recall,
anyway, that for the proof we need to let n tend to infinity.

– The second family is characterised by a constant parity-check equation
degree. So, the Poltyrev-capacity-achieving result goes a little beyond the
previous one and requires a different random ensemble of LDA lattices.
This result strictly depends on the expansion properties of the Tanner
graphs associated with the LDA lattices. Lemma 3.3 quantitatively ex-
presses these properties. Once again, p is taken to be of the order of
nλ, though this time λ has to satisfy some lower bounds, that also imply
some lower bounds on the parity-check equation degree. Nevertheless,
these bounds are very reasonable and allow us to take a small p with
respect to n and still have a small parity-check equation degree.

• We have gone beyond the works of Erez and Zamir [EZ04], Ordentlich and
Erez [OE12], and Ling and Belfiore [LB13], giving a new proof that finite
Voronoi constellations of Construction A lattices can achieve the capacity of
the AWGN channel under (MMSE-scaled) lattice decoding (cf. Theorem 4.1
in Section 4.2.4), when SNR > 1. Our proof does not require the sharing of
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common randomness (dither) between the sender and the receiver and we give
an explicit encoding method of uncoded messages into lattice points for this
communication scheme. In this setting, the prime number p can be of the same
size as nλ for any positive constant λ big enough (the lower bound variating
between 1/2 and 2/3 depending on the underlying code structure). This is an
improvement with respect to other proofs that use Construction A, too.

• We have adapted the previous result to LDA lattices, that is we have shown
that they are Shannon-capacity-achieving, too (cf. Theorem 4.2 in Section
4.3.4). Once again, we have exploited the expansion properties of the Tanner
graphs associated with the LDA lattices. The value of the parameter λ in this
case is lower bounded by some bigger constants, as well as the column and row
degrees of the parity-check matrices associated with the lattice family. These
values depend on the rate of the underlying LDPC codes and on the expansion
constants that we fix.

• We have described an iterative decoding algorithm based on Belief Propagation
for LDA lattices that relies on their LDPC-code underlying structure. We have
also shown some satisfactory decoding simulation results of some particular
LDA lattices and compared them to the performance of other lattice families
proposed in the literature.

Finally, there are many directions in which the research on LDA lattices and
their applications can evolve. Here is a list of useful starting point:

• First of all, other simulations and numerical experiments could be carried out,
to optimize the parameters involved in the construction of well-performing
LDA lattices. Namely, for fixed dimensions, there is no deterministic way of
deciding what is the best prime number p, what are the best row and column
degrees for the parity-check matrices, what is the best rate of the underlying
LDPC code, what are the optimal labels for the Tanner graph...

• It would be interesting to experiment with other kinds of Construction A, for
example extending the construction to the Eisenstein integers Z[ω].

• The decoding algorithm implementation can be further optimised, allowing
simulations in higher dimensions than 1000 or 10000.

• Of course, a comparison to classical coded modulations with finite constella-
tions should be done. Our theoretical results suggest that an interesting test
would be to investigate the performance of LDA Voronoi constellations under
our iterative decoding. Now, the problem in this case is how to precisely de-
sign the constellation and encode the messages into lattice points. Our coding
scheme explicitely says how to do it, but it requires a lattice decoder, which
is computationally too complex to be applied in the high dimensions we are
interested in. On the other hand, our iterative decoder is not precise enough
to be good for encoding. To come up with a solution to this problem would
be a definitely valuable result.
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• The main application of LDA lattices in this paper was error correction on
a Gaussian channel, but other numerous potential applications exist such as
physical layer network coding and physical layer security. An interesting re-
search domain seems to be the application of LDA lattices to coding over the
wiretap channel.
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