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Chapitre 1
Introduction

La cryptographie est l’art de chiffrer un message, c’est-à-dire de l’écrire sous une forme
inintelligible pour quiconque ne connaît pas le processus de chiffrement. Associée à la
cryptanalyse qui peut être vue comme l’art de déceler des faiblesses dans ces processus de
chiffrement, ces notions forment les deux pans de la cryptologie, la science du secret.

De nombreux exemples d’utilisation de la cryptographie ponctuent l’Histoire, principa-
lement militaire, tel le code de César à l’ère romaine ou bien la machine Enigma durant
la Seconde Guerre mondiale. Mais ce n’est qu’à partir de la seconde moitié du xxe siècle
que cette science a significativement évolué grâce à une volonté de formalisation, l’avancée
des systèmes de communication et le développement de l’informatique. Ainsi, alors que
par le passé il était fréquent de garder secret la totalité des processus de chiffrement et
de déchiffrement, la cryptographie moderne repose sur le principe de Kerckhoffs énoncé
en 1883 selon lequel un schéma cryptographique ne devrait utiliser que des algorithmes
publics et seulement une petite information secrète, la clé. Deux avantages résultent de ce
principe. D’une part une clé secrète compromise peut être remplacée sans avoir à chan-
ger le schéma cryptographique en entier. D’autre part, lorsqu’un cryptographe propose un
nouveau schéma ou un nouvel algorithme, l’ensemble de la communauté, en particulier
les cryptanalystes, peuvent l’étudier et donner du crédit à sa sécurité en fonction de leurs
résultats.

Aujourd’hui, la cryptographie n’est absolument plus restreinte au domaine militaire et
fait même partie de notre vie quotidienne. Cartes de crédit, téléphones mobiles, réseaux
Wifi, navigateurs Internet et passeports sont des exemples de technologies utilisant des
algorithmes cryptographiques.

1.1 Cryptographie moderne

1.1.1 Généralités

L’objectif de la cryptographie moderne consiste à fournir diverses fonctionnalités de sé-
curité pour des communications via un canal non sécurisé comme un téléphone portable
ou Internet, c’est-à-dire un canal qui peut être espionné, voir manipulé. La plus naturelle
d’entre elles est la confidentialité des données : seule une personne avec la bonne clé secrète
doit être en mesure de comprendre les messages d’une communication. Mais deux autres
fonctionnalités tout aussi importantes pour de nombreuses applications sont offertes par
la cryptographie : l’authentification qui assure l’identité de l’expéditeur d’un message et
l’intégrité qui assure qu’un message n’a pas été modifié. Il en existe de nombreuses autres
disponibles selon les schémas proposés, on peut citer la signature électronique ou le calcul
distribué multi-parties. Ainsi, le cryptographe développe des schémas qui assurent ces pro-
priétés de sécurité alors que le cryptanalyste recherche des failles impliquant qu’elles ne
sont pas vérifiées. Il reste à définir comment mesurer la sécurité de ces schémas.
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La cryptographie moderne est basée sur l’impossibilité calculatoire : tout schéma crypto-
graphique peut théoriquement être cassé grâce à une recherche exhaustive de la clé secrète,
c’est l’attaque par force brute. Il suffit à l’attaquant d’avoir à disposition un message et son
chiffré, hypothèse tout à fait réaliste dans la plupart des applications, de lancer l’algorithme
de déchiffrement avec toutes les clés possibles et de comparer le résultat du déchiffrement
avec le message connu. Cependant, pour une clé secrète codée sur 128 bits le nombre de
candidats à tester s’élève à 2128. En d’autres termes, si un attaquant a accès à un mil-
liard d’ordinateurs capables d’effectuer chacun un milliard de déchiffrement par seconde
(ce qui est bien bien au-dessus des capacités actuelles), il lui faudrait 1.1 × 1013 années
(770 fois l’âge estimé de l’univers) pour effectuer les 2128 déchiffrements et retrouver la
clé secrète. Ainsi, avec des tailles de clé correctement choisies, la recherche exhaustive est
rendue impossible de manière calculatoire.

La cryptographie est divisée en deux branches bien distinctes : la cryptographie sy-
métrique également appelée cryptographie à clé secrète, et la cryptographie à clé publique
aussi dite asymétrique.

1.1.2 Cryptographie symétrique

La cryptographie symétrique est de loin la plus ancienne puisque tous les algorithmes
utilisés depuis l’Antiquité jusqu’en 1976 tombent dans cette catégorie. Elle repose sur le
principe relativement intuitif que deux personnes souhaitant communiquer de façon sécu-
risée partagent une clé secrète commune permettant de chiffrer et déchiffrer des messages.
Les schémas symétriques sont en général supposés sûrs s’il n’existe aucune attaque plus
efficace qu’une attaque par force brute. Cependant, l’absence de ce genre d’attaque ne
signifie pas qu’il n’en existe pas. La confiance en la sécurité d’une tel schéma ne peut en
conséquence être établie en général qu’après un certain nombre d’années d’analyse par la
communauté. Un autre inconvénient de ce type de schéma porte sur le caractère secret de
la clé. D’une part, une clé doit être générée pour chaque couple de personnes souhaitant
communiquer. Ainsi, si une personne souhaite recevoir des messages de x personnes, il doit
avoir en sa possession x clés secrètes. D’autre part, avant d’engager une conversation avec
une personne, il faut partager une clé secrète, ce qui requiert soit une rencontre physique
soit l’utilisation d’un schéma additionnel.

Les principales primitives, c’est-à-dire les briques de base d’un schéma, utilisées en
cryptographie symétrique se répartissent en quatre catégorie. En premier, citons les primi-
tives de chiffrement par bloc qui permettent de chiffrer et déchiffrer un bloc de message en
utilisant une clé secrète. Pour chiffrer des messages de taille arbitraire, on utilise un mode
opératoire qui définit la méthode pour enchaîner les appels à la primitive de chiffrement par
bloc. Les primitives de chiffrement par flot forme une deuxième catégorie de cette branche.
Elles produisent une suite aléatoire à partir d’une clé. Le chiffrement d’un message s’ef-
fectue en sommant ce dernier avec la suite obtenue et le déchiffrement est réalisé grâce
à l’opération inverse. Les fonctions de hachage sont des fonctions publiques qui doivent
se comporter comme des fonctions aléatoires et, plus précisément, il doit être difficile de
les inverser et de trouver des collisions. Il est important de préciser que ces fonctions ne
font intervenir aucun secret même si elles sont classées dans la famille de la cryptogra-
phie symétrique du fait de la similarité de leur construction avec celle des deux catégories
de primitives précédentes. Les fonctions de hachage sont utilisées dans de très nombreux
schémas cryptographiques à clé secrète et à clé publique. Enfin les codes d’authentification
de message ou MAC permettent d’authentifier l’auteur d’un message et l’intégrité de ce
message grâce à une clé secrète. Les MAC les plus répandus sont construits à partir d’une
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fonction de hachage ou d’un schéma de chiffrement par bloc.

1.2 Cryptographie à clé publique

En 1976, deux cryptographes américains Whitfield Diffie et Martin Hellman [DH76] ont
une idée qui va révolutionner le domaine de la cryptographie. Ils proposent en effet une
solution au problème de l’échange de clés et et à la signature électronique : cette solution est
la cryptographie à clé publique. Le principe repose sur une paire de clés : une clé publique
pk qui est utilisée pour chiffrer ou vérifier une signature, et une clé secrète sk qui sert à
déchiffrer ou à signer. La clé publique est, comme son nom l’indique, accessible à tous de
telle sorte que tout le monde est capable de chiffrer un message ou de vérifier une signature.
La clé secrète est quant à elle non diffusée donnant ainsi uniquement à son propriétaire la
capacité de déchiffrer les messages qui ont été chiffrés avec la clé publique associée, ou de
produire des signatures qui seront vérifiables avec cette même clé publique.

1.2.1 Schéma de chiffrement à clé publique

Un schéma de chiffrement à clé publique inclut une paire de fonctions : la fonction de
chiffrement Enc paramétrée par la clé publique pk et la fonction de déchiffrement Dec
paramétrée par la clé secrète sk. Ces deux fonctions sont de plus reliées par la relation
Decsk ◦ Encpk = Id. Pour assurer la confidentialité d’un message que l’on souhaite envoyer
à quelqu’un, on récupère tout d’abord sa clé publique pk. Le chiffrement du message m en
un message chiffré c est alors défini par c = Encpk(m). Pour retrouver le message initial,
le destinataire du message chiffré doit quant à lui effectuer l’opération m = Decsk(c). Pour
qu’un tel schéma soit sûr, il doit être calculatoirement impossible d’évaluer la fonction
de déchiffrement Dec sans avoir la clé secrète sk, même en ayant connaissance de la clé
publique pk.

Malgré un certain nombre d’avantages indéniables que proposent les schémas à clé
publique, ils ont également un inconvénient majeur : ils sont en pratique bien moins efficaces
que les schémas symétriques. En conséquence, on utilise souvent de nos jours des schémas
de chiffrement hybride qui utilisent un schéma à clé publique pour l’échange d’une clé
secrète, soit un mot de quelques octets, puis l’utilisation d’un schéma symétrique pour le
chiffrement des messages, mots de potentiellement plusieurs milliers d’octets.

1.2.2 Signature électronique

Les signatures électroniques ont le même rôle qu’une signature classique sur papier : elles
permettent d’authentifier l’auteur du document signé et de vérifier l’intégrité du message.
De plus, contrairement à d’autres méthodes d’authentification offertes par la cryptographie
symétrique comme les MAC, une autre propriété très importante, dans le domaine du
commerce par exemple, est offerte avec ce type de schéma : la non-répudiation, c’est-à-dire
l’impossibilité de remettre en cause la signature.

Tout schéma de chiffrement à clé publique peut également être utilisé pour la signa-
ture électronique de documents. Les deux fonctions mises en jeux sont ici la fonction de
signature Sign et la fonction de vérification Verif respectivement paramétrées par la clé
secrète sk et la clé publique pk. Ainsi la signature s d’un message m peut être obtenue
en effectuant l’opération s = Signsk(m). Toute personne ayant accès à m, s et la clé pu-
blique pk du prétendu signataire peut vérifier que le message est bien de lui grâce au test
Verifpk(s)

?
= m. La sécurité d’un schéma de signature électronique repose sur le fait qu’il
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est calculatoirement impossible d’évaluer, connaissant la clé publique pk, la fonction de
signature Sign sans la clé secrète sk.

1.3 Problèmes difficiles

La fonction de chiffrement Enc d’une primitive à clé publique doit être efficacement cal-
culable pour être concrètement utilisable et être très difficile à inverser pour empêcher
quiconque n’a pas la bonne clé secrète de retrouver le message m. En effet, le chiffré
c = Encpk(m) ne dépend potentiellement (si aucun aléa n’est mis en jeu) que de don-
nées considérées comme publiques (excepté m bien sûr) et peut circuler via un canal non
sécurisé, donc peut être intercepté. En d’autres mots, on souhaite que cette fonction de
chiffrement soit une fonction à sens unique mais l’existence de telles fonctions est toujours
un problème ouvert. En fait, leur existence prouverait que les classes de complexité P et NP
ne sont pas égales, ce qui résoudrait la question ouverte la plus célèbre de l’informatique
théorique. Ainsi, la cryptographie à clé publique repose sur des conjectures et les primitives
cryptographiques utilisent des problèmes NP supposés difficiles.

1.3.1 Factorisation et RSA

La première1 réalisation d’un primitive de chiffrement à clé publique est proposée en 1978
par Ron Rivest, Adi Shamir et Leonard Adleman [RSA78], et connue aujourd’hui sous le
nom de “textbook RSA”. Pour cette primitive, deux grands nombres premiers p et q sont
tirés aléatoirement et un module public N = pq est défini. Ensuite, on choisit un exposant
public e ∈ Z premier avec ϕ(N) = (p− 1)(q− 1) et, puisque e est inversible modulo ϕ(N),
il existe un entier d ∈ Zϕ(N) tel que e · d = 1 mod ϕ(N). La clé publique pk est représentée
par la paire (e,N) alors que la clé secrète sk est l’exposant secret d. Le chiffrement d’un
message m ∈ Z∗N s’effectue en calculant :

c = me mod N,

alors que le déchiffrement de c ∈ Z∗N s’obtient, grâce au théorème d’Euler, par le calcul :

m = cd mod N.

Le problème consistant à retrouver la clé secrète grâce à la clé publique est essentiel-
lement équivalent au problème de la factorisation de N . En effet, si l’on connaît les deux
facteurs de N , à savoir p et q, alors on peut calculer ϕ(N) puis l’inverse de e par cette
valeur. Réciproquement, si l’on connaît les deux exposants e et d, alors on peut calculer
un multiple de ϕ(N) puis ϕ(N) grâce à l’algorithme de Miller-Rabin. Enfin, à partir de
p + q = N − ϕ(N) + 1 et pq = N , il devient possible de retrouver p et q. Mais factoriser
un produit de deux grands nombre premiers, ici N , est une tâche difficile dans le sens où
on ne sait pas le faire efficacement : le meilleur algorithme connu, le crible algébrique, est
sous-exponentiel en la taille de N . Ainsi, la factorisation est aujourd’hui l’un des problèmes
supposés difficiles les plus utilisés en cryptographie.

Une autre possibilité pour cryptanalyser la primitive RSA consiste à retrouver m à
partir de c sans utiliser la clé secrète sk, autrement dit à calculer la racine e-ième de c

1En réalité, un document de 1969, mais déclassifié seulement dans les années 90, de James Ellis, qui
travaillait pour l’agence britannique de renseignement électronique (GCHQ), mentionne déjà le principe
de la cryptographie à clé publique. De plus, en 1973, Clifford Cocks, toujours du GCHQ, a développé une
primitive cryptographique complètement analogue à la primitive RSA, à savoir x→ xN mod N .
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modulo N . Ce problème, connu sous le nom de problème RSA, est a priori plus facile que
le problème de la factorisation puisque la factorisation de N permet de calculer des racines
e-ièmes, alors que retrouver la factorisation de N à partir de racines e-ièmes est toujours un
problème ouvert. Cependant le meilleur algorithme connu pour calculer des racines e-ièmes
est celui utilisé pour la factorisation. Il n’est ainsi pas clair à l’heure actuelle si les deux
problèmes sont équivalents (il existe des indices faisant penser que non [BV98]), mais bien
qu’il soit fréquent d’entendre que RSA repose sur la difficulté supposée de la factorisation,
une preuve de cette difficulté ne signifierait pas que RSA serait sûr.

Enfin, il est important de noter que le “textbook RSA” n’est pas sûr tel qu’il est présenté
car il est déterministe et ne possède donc pas une propriété de sécurité importante qui est
l’indistinguabilité des chiffrés. En effet, on souhaite qu’un même message chiffré à deux
moments différents ne donne pas le même résultat afin de ne donner aucune information
à une personne qui espionnerait le canal de communication. Plus généralement même,
on demande que le résultat d’un chiffrement soit indistinguable d’une valeur totalement
aléatoire et qu’aucun bit d’information sur le message ne puisse en être extrait. Il existe
aujourd’hui de nombreux schémas de chiffrement et de signature qui sont prouvés sûrs sous
l’hypothèse que le problème RSA l’est également et ces schémas sont parmi les plus utilisés
dans le monde même si leur hégémonie s’estompe peu à peu.

1.3.2 Logarithme discret et problèmes Diffie-Hellman

Comme précisé précédemment, l’idée de la cryptographie à clé publique est attribuée à
Whitfield Diffie et Martin Hellman [DH76] et leur première réalisation est un protocole
d’échange de clé sécurisé via un canal non sécurisé. Plus précisemment, en notant q un
grand nombre premier et g un générateur d’un grand sous-groupeG d’ordre premier p de Z∗q ,
l’échange se déroule de la façon suivante. Chacun des deux participants tire aléatoirement
un élément de Zp, noté x (respectivement y), puis envoie à son partenaire gx (respective-
ment gy). Ainsi les deux sont maintenant capables de calculer la valeur gxy = (gx)y = (gy)x

qui devient leur clé commune. Un adversaire peut voir passer sur le canal les valeurs gx

et gy et cassera le protocole s’il est capable, à partir de ces deux valeurs, de calculer gxy :
c’est le problème Diffie-Hellman calculatoire (CDH). La meilleure attaque consiste en fait à
retrouver x connaissant gx (ou similairement avec y), il s’agit ici du problème du logarithme
discret dans Z∗q . Ce dernier problème est solvable par un algorithme de crible algébrique
comme pour la factorisation. De nombreux schémas cryptographiques, basés sur le pro-
blème du logarithme discret ou le problème CDH voir une autre variante, existent tels que
le schéma El Gamal [Gam84] ou le très répandu schéma de signature DSA [FIP09].

En 1985, Neal Koblitz [Kob87] et Victor S. Miller [Mil85] ont indépendamment pro-
posé de porter le problème du logarithme discret sur les courbes elliptiques, c’est-à-dire
de considérer G comme un sous-groupe cyclique du groupe des points d’une courbe el-
liptique sur un corps fini : c’est la naissance de la cryptographie par courbes elliptiques.
L’avantage réside principalement dans le fait que le problème du logarithme discret (ou
un problème apparenté) a toujours, a priori, une complexité exponentielle sur les courbes
elliptiques alors qu’elle est sous-exponentielle dans les corps finis. En conséquence, la taille
des clés secrètes peut être significativement réduite, améliorant ainsi l’efficacité des sché-
mas cryptographiques. Cet argument de poids pousse le monde industriel a privilégier la
cryptographie par courbes elliptiques, qui devient de plus en plus populaire [BHH+13] et
menace ainsi l’hégémonie de schémas basés sur le problème RSA.
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1.3.3 Autres problèmes

Les problèmes décrits précédemment sont très majoritairement ceux utilisés concrètement
de nos jours, mais il en existe bien d’autres. On peut citer les problèmes de sac à dos, les
problèmes de décodage pour les codes linéaires ou encore les problèmes de résolution de
grands systèmes polynomiaux. Les problèmes associés aux réseaux, c’est-à-dire les sous-
groupes discrets de Rn, forment un sujet de recherche assez prolifique. Les deux principaux
sont la recherche d’un plus court vecteur non nul et la recherche d’un plus proche vec-
teur à un point donné de l’espace ambiant. Il existe un certain nombre de constructions
basées sur ces problèmes mais, bien qu’elles soient “asymptotiquement efficaces”, elles re-
quièrent concrètement des paramètres relativement grands, ce qui limite leur efficacité et
leur utilisation.

1.3.4 Sécurité heuristique et sécurité prouvée

Comme expliqué auparavant, la sécurité des primitives ou des schémas à clé publique re-
pose sur des problèmes conjecturés difficiles. Il s’agit maintenant de répondre à la question :
quand peut-on dire qu’un schéma cryptographique est (heuristiquement) sûr ? Le “textbook
RSA” ne l’est pas, même s’il repose sur le problème de la factorisation, car on peut déter-
miner si deux chiffrés correspondent au même message et on peut décrypter, c’est-à-dire
déchiffrer sans connaître la clé secrète, les chiffrés de messages trop courts (suffisamment
courts pour que la réduction modulo N ne se fasse pas).

Afin de prouver qu’un schéma à clé public est sûr, le cryptographe considère un scénario
d’attaque dans lequel un adversaire a accès au schéma en boîte noire. En d’autres mots,
il a à sa disposition les entrées (les messages) et les sorties (les chiffrés, les signatures...)
de cette boîte virtuelle contenant les différents algorithmes mis en jeu, algorithmes qu’il
connaît également selon le principe de Kerckhoffs. La clé secrète et les résultats intermé-
diaires restent par contre inaccessibles. L’objectif du cryptographe est alors de démontrer
qu’un tel adversaire ne peut rien tirer des informations qu’il possède. Il effectue pour cela
une preuve de sécurité par réduction en modifiant au fur et à mesure les calculs effectués
en boîte noire, en prouvant que ces modifications ne peuvent pas être perçues par l’adver-
saire (les sorties de la boîte noire lui semblent provenir du schéma initial), et ce jusqu’à
faire apparaître clairement un problème conjecturé difficile. Ainsi, si un adversaire est ca-
pable d’attaquer efficacement, comprendre en temps polynomial, le schéma visé alors il
peut résoudre efficacement le problème conjecturé difficile. Cependant, le problème étant
conjecturé justement difficile, il ne peut être résolu efficacement et donc un tel adversaire
ne peut exister.

1.4 Implémentation et cryptanalyse physique

1.4.1 Implémentation et problèmes

Le modèle de la boîte noire est très pratique pour caractériser la sécurité intrinsèque d’un
schéma cryptographique mais il ne permet pas de prouver sa sécurité dans le monde phy-
sique, la description mathématique du schéma étant remplacée par une implémentation
physique pour que des dispositifs, tels que les ordinateurs ou les cartes à puce, puissent
effectuer les calculs cryptographiques. Le problème majeur avec une implémentation phy-
sique exécutant ce genre de calculs est qu’elle laisse apparaître des informations physiques
observables sur les résultats intermédiaires voir la clé secrète. On peut citer le temps d’exé-
cution, la consommation électrique et les radiations électromagnétiques comme exemples
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d’information qui peut fuir du dispositif [Koc96, KJJ99]. De plus, une implémentation
physique n’est pas inviolable dans le sens où elle peut être altérée ou bien certains cal-
culs peuvent être perturbés. Ceci est réalisable grâce à une brève très forte augmentation
de tension ou avec l’aide d’un laser par exemple. Bien entendu, l’observation d’informa-
tions physiques, sauf potentiellement le temps d’exécution, et la perturbation de calculs
demandent d’avoir un accès physique à l’implémentation. Cet accès est en pratique pos-
sible pour les implémentations cryptographiques embarquées dans des produits comme les
cartes bancaires ou les cartes d’accès TV par exemple.

1.4.2 Cryptanalyse physique

Des attaques d’un genre différent ont ainsi émergé dans ce contexte et sont regroupées
sous le nom de cryptanalyse physique. Plus précisément, on peut distinguer deux catégories
d’attaques physiques qui utilisent des méthodes distinctes : les attaques par canaux cachés
et les attaques par faute. Les attaques par canaux cachés exploitent les fuites d’informations
physiques qui apparaissent lors de calculs cryptographiques. Ces fuites sont collectées et
analysées pour retrouver la clé secrète du schéma cryptographique qui peut, par ailleurs,
être prouvé sur dans le modèle de la boîte noire. Les attaques par faute sont quant à elles
invasives puisqu’elles consistent à gêner un calcul cryptographique, au travers d’injection
d’une ou plusieurs fautes. Le résultat de ce calcul est par conséquent incorrect mais son
analyse peut permettre de retrouver de l’information sur la clé secrète du schéma. Ce type
de cryptanalyse et le développement de contre-mesures pour s’en prémunir est un domaine
de recherche très actif de nos jours.

1.5 Générateurs d’aléas

Clés secrètes, modes opératoires, contre-mesures sont des exemples d’objets cryptogra-
phiques nécessitant de générer des suites de bits aléatoires. Il n’est cependant que ra-
rement détaillé comment obtenir de telles suites et les preuves de sécurité conjecturent
souvent qu’elles sont “de bonne qualité”. Or si la méthode de génération utilisée n’est pas
bonne, elle peut constituer une véritable faille de sécurité pour le schéma cryptographique
concerné [HDWH12, LHA+12, BCC+13]. Générer des suites de bits aléatoires est en réalité
une vraie difficulté car même si le hasard existe bien, comment en engendrer ? Comment
le mesurer ? On peut distinguer trois catégories de générateurs de nombres aléatoires : les
générateurs vraiment aléatoires ou TRNG, les générateurs pseudo-aléatoires ou PRNG, et
les générateurs hybrides ou HRNG.

1.5.1 Générateur vraiment aléatoire

Un générateur composé d’une source de bruit et d’un traitement simple qui corrige les
défauts ou biais de cette source est appelé générateur vraiment aléatoire. La source de
bruit correspond à la partie non-déterministe du générateur et provient de phénomènes
physiques dont le comportement est au moins partiellement aléatoire. On peut citer la
radioactivité, les bruits thermiques ou électromagnétiques et la mécanique quantique à
titre d’exemple. La sortie d’une source de bruit est une chaîne binaire. Le traitement,
déterministe, prend en entrée cette chaîne de bits potentiellement biaisée et renvoie une
suite binaire totalement imprédictible. Il doit prendre en compte le fait que la source de
bruit peut ne pas fonctionner comme prévue, par exemple si le phénomène physique est
perturbé par d’hypothétiques attaques. Pour qu’un tel générateur soit sûr, on demande que
la chaîne binaire finale ait de bonnes propriétés statistiques et qu’elle soit imprédictible
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(voir [BLMT11] pour un exemple d’analyse de sécurité). L’inconvénient de ce type de
générateur est qu’il est relativement lent.

1.5.2 Générateur pseudo-aléatoire

Un générateur pseudo-aléatoire est un algorithme déterministe qui prend en entrée une
graine aléatoire de k bits et renvoie une suite de K bits, avec K � k. Cette suite est
appelée suite pseudo-aléatoire et doit être difficilement distinguable d’une suite de bits
aléatoires.

Ces générateurs ont généralement de bonnes propriétés statistiques mais il faut s’assu-
rer, dans le cas d’une utilisation en cryptographie, d’une part que leur période est vraiment
grande sous peine d’avoir de la redondance, d’autre part qu’il est calculatoirement sûr,
c’est-à-dire qu’il doit être calculatoirement difficile de prédire, à partir d’une sous-suite
de la suite pseudo-aléatoire, l’élément précédent ou suivant de celle-ci. Par ailleurs, une
autre propriété est souhaitée pour parler de générateur pseudo-aléatoire cryptographique-
ment sûr : connaissant un élément de la suite et l’état interne du générateur au moment
du calcul de cet élément, on est logiquement capable de prédire les éléments suivants mais
il doit être calculatoirement difficile de remonter aux éléments précédents.

De nombreuses constructions de générateurs pseudo-aléatoires cryptographiquement
sûrs ont été proposés comme celle de Blum et Micali [BM84], celle de Blum, Blum et
Shub [BBS86] ou celle de Micali et Schnorr [MS91]. Ces générateurs reposent sur des
problèmes supposés difficiles et sont disposent d’une preuve de sécurité par réduction. Ils
sont toutefois très lents et ne sont utilisés en pratique que quand cette preuve de sécurité
de la suite pseudo-aléatoire est nécessaire.

1.5.3 Générateur hybride

La dernière catégorie de générateurs reprend le principe de fonctionnement du générateur
pseudo-aléatoire avec, en prime, introduction régulière d’aléa dans l’état interne pour le
rafraîchir afin d’empêcher que le générateur ne devienne prévisible si cet état est compromis,
à savoir connu ou modifié. L’aléa injecté provient d’un générateur vraiment aléatoire et on
appelle ces générateurs des générateurs hybrides. Ils sont en général construits à partir de
primitives cryptographiques fortes, dont la sécurité n’est pas prouvée mais admise, comme
la fonction de hachage SHA-256 ou l’algorithme de chiffrement par bloc AES, afin de gagner
en rapidité.

Bien entendu, cette introduction ne présente que quelques éléments de la cryptologie
avec un certain nombre de notions et principes. Ainsi, la cryptographie à clé publique
a largement été favorisée car elle est au cœur de ce manuscrit de thèse tout comme les
générateurs pseudo-aléatoires. Le livre [MVO96] est une excellente référence pour compléter
ce chapitre.
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Chapitre 2
Présentation des travaux

Les travaux présentés dans ce manuscrit ont principalement porté sur deux thèmes distincts
de la cryptologie, à savoir les générateurs pseudo-aléatoires et les schémas à clé publique,
essentiellement de signature. Ainsi, d’un côté nous avons étudié « l’aléa » généré par diffé-
rents générateurs pseudo-aléatoires algébriques, le terme aléa étant mis entre guillemets car
une majorité de nos travaux sont des cryptanalyses algébriques exploitant sa «mauvaise
qualité ». D’un autre côté nous nous sommes beaucoup intéressés aux schémas de signature
à clé publique, essentiellement les schémas RSA et ECDSA. Plus précisément, nous avons
analysé la sécurité d’implémentations pratiques de ces schémas et l’impact d’une injection
de fautes sur leur sécurité. Il aurait du coup été naturel de fractionner ce manuscrit en deux
parties mais les travaux sur RSA et sur courbe elliptique ont représenté le plus gros des
recherches, d’où un découpage en trois parties : la première porte sur l’impact des fautes
sur des implémentations du schéma de signature RSA, la seconde détaille nos travaux sur
courbe elliptique et plus spécifiquement des implémentations, la dernière partie est quant
à elle consacrée à l’étude de générateurs pseudo-aléatoires.

Concernant le schéma de signature RSA, nous avons concentré nos recherches sur RSA–
CRT qui permet de calculer bien plus rapidement des signatures. Nous avons proposé, dans
le cas d’une implémentation très utilisée en pratique, différentes attaques par injection de
faute qui permettent de retrouver la clé secrète quelque soit l’encodage du message utilisé.
L’idée de descendre de plus en plus bas dans les détails d’implémentation pour trouver des
failles exploitables nous a conduit à élaborer un outil qui recherche automatiquement des
attaques par faute à partir d’une implémentation précise et des modèles de faute que nous
voulions considérer. Enfin, nous avons proposé une contre-mesure infective pour protéger
le schéma RSA–PSS contre un certain nombre de fautes non aléatoires, le schéma ainsi
modifié ayant été prouvé formellement grâce à un outil de preuve assistée par ordinateur.

La seconde partie porte sur des implémentations de deux schémas sur courbe elliptique :
le schéma de signature ECDSA et un schéma nommé Elligator Squared qui participe à
la préservation de l’anonymat et la vie privée. Des implémentations très efficaces pour
accélérer les calculs de signatures ECDSA utilisent la décomposition GLV/GLS qui cible
le nonce utilisé dans le schéma. Nous avons montré que, en fonction de la méthode utilisée
pour générer ce nonce, nous pouvions soit prouver la bonne distribution de celui-ci soit
démontrer qu’il était biaisé sur un bit. Pour un module de 160 bits, ce biais a été exploité
pour retrouver la clé secrète, ce qui représente un record, les attaques existantes nécessitant
un biais plus élevé pour réussir. Nous avons également proposé une attaque par canaux
cachés pour une implémentation particulière et soumis des implémentations de ECDSA
à notre outil de recherche automatique d’attaques par faute, outil qui a trouvé plus de
cent combinaisons différentes de fautes sur une implémentation très bas niveau. Quant au
schéma Elligator Squared, il permet de transformer un point d’une courbe elliptique en
une chaîne de bits indistinguable d’une chaîne de bits aléatoire, ce qui permet de masquer
l’utilisation de protocoles cryptographiques à base de courbe elliptique sur un réseau. Nous
avons implémenté ce schéma pour la courbe Curve25519 afin de comparer son efficacité par
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rapport à un schéma similaire, et nous avons effectué un travail d’implémentation efficace
dans le cas d’une courbe sur un corps fini de caractéristique deux afin de démontrer que le
surcoût d’une telle protection est relativement minimal.

Enfin, la dernière partie est dédiée à la sécurité d’un certain nombre de générateurs
pseudo-aléatoires algébriques. Nous avons ainsi étudié tous les générateurs dont la fonction
de récurrence de l’état interne est un polynôme quelconque et proposé de meilleures bornes
d’attaque par rapport à la littérature, c’est-à-dire des attaques effectives quand moins de
bits sont générés par itération de ces générateurs par rapport à la quantité nécessaire aupa-
ravant. En outre, nous avons étudié la sécurité du générateur Micali-Schnorr, en analysant
ses faiblesses et les propriétés statistiques des bits générés. Finalement, nous avons proposé
une cryptanalyse de tout schéma à clé publique basé sur la factorisation ou le logarithme
discret dont la clé secrète est générée à partir d’un générateur congruentiel linéaire.

2.1 Fautes sur des implémentations du schéma de signature
RSA

Cette première partie est donc consacrée aux implémentations de schémas de signature
RSA et notamment sur l’impact de fautes sur leur sécurité. Les premiers travaux présentent
des attaques par faute, trouvées manuellement ou automatiquement alors que la dernière
contribution propose une preuve de sécurité contre certains modèles d’attaques par faute.

2.1.1 Attaquer des signatures RSA–CRT avec des fautes sur la multi-
plication de Montgomery [FGL+12, FGL+13]

Une des implémentations les plus efficaces pour calculer une signature à l’aide de l’algo-
rithme RSA consiste à combiner deux techniques. La première est connue sous le nom de
RSA–CRT et consiste à calculer la signature modulo p et modulo q, puis combiner les deux
résultats à l’aide du théorème des restes chinois (CRT) ou d’une variante, la formule de
Garner. Comparé à une classique exponentiation modulo N = pq, de complexité cubique
en la taille du module, le gain en temps de calcul est de l’ordre d’un facteur 4. La seconde
technique cible plus spécifiquement les calculs de multiplication modulaire qui sont le cœur
d’une exponentiation modulaire : il s’agit de la multiplication de Montgomery. Son intérêt
réside dans le fait qu’elle remplace les coûteuses divisions sur grands entiers par des mul-
tiplications non modulaires et des décalages. Ainsi une multiplication modulaire calculée
avec cette technique coûte l’équivalent de deux multiplications non modulaires.

Il faut cependant noter que les implémentations basiques de RSA–CRT sont très vul-
nérables aux attaques par faute. Ce fait a été initialement démontré en 1997 par Boneh,
DeMillo et Lipton et leur résultat a ouvert la voie à une nouvelle thématique de recherche
très prolifique : trouver d’une part des attaques par faute sur les signatures RSA et propo-
ser d’autre part des contre-mesures à ces attaques. L’attaque initiale, relativement simple
et très puissante, consiste à injecter une faute aléatoire pendant le calcul d’une signature
modulo p ou modulo q. La signature fautée permet alors de retrouver la factorisation du
module RSA grâce à un calcul de PGCD. Cependant, ce calcul n’est possible que si le mes-
sage est connu, ce qui est vrai si aucun encodage n’a été effectué sur le message en entrée
ou s’il est déterministe. Ainsi, si l’encodage est probabiliste, cette attaque n’est pas direc-
tement applicable même si des généralisations de celle-ci ont été publiés dans certains cas
comme les signatures ISO/IEC 9796-2 ou les signatures EMV. C’est dans ce contexte que
Coron et Mandal ont prouvé que le schéma d’encodage de Bellare et Rogaway RSA–PSS
est sûr contre les fautes aléatoires dans le modèle de l’oracle aléatoire.
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Il pourrait être tentant de conclure que l’utilisation de cet encodage dispense d’implé-
menter d’autres coûteuses contre-mesures supplémentaires. Nous avons démontré que cela
n’est pas vrai en nous plaçant dans le cas d’une implémentation utilisant la multiplication
de Montgomery. Plus précisément, nous avons proposé de nouvelles attaques par faute ap-
plicables quelque soit la technique de recombinaison utilisée, à savoir le théorème des restes
chinois ou la formule de Garner, et quelque soit l’encodage utilisé, probabiliste ou non. Ces
nouvelles attaques sont ainsi les premières à être efficaces contre RSA–PSS.

Nos attaques sont classées selon trois différents modèles de faute ciblant un petit registre
utilisé pendant les multiplications de Montgomery, typiquement de 16, 32 ou 64 bits. Dans
le premier modèle, qui est également le plus efficace, nous forçons la valeur contenue dans
un petit registre précis à zéro. La signature fautée résultante s’avère être alors un multiple
de p ou de q et un simple calcul de PGCD conclut l’attaque. Le deuxième modèle consiste
à forcer la valeur contenue dans un autre petit registre à une constante, potentiellement
inconnue, pendant un certain laps de temps. La signature fautée a dans ce cas la propriété
d’être un proche multiple de p ou de q et un algorithme de commun diviseur approché
permet de retrouver la factorisation de N . Enfin, dans un troisième modèle, nous forçons
un certain nombre de bits de poids fort d’une valeur contenue dans un petit registre à zéro.
Le résultat n’est alors pas assez proche d’un multiple de p ou de q mais l’obtention d’un
nombre modéré de signatures fautées selon ce dernier modèle permet tout de même de finir
l’attaque. Toutes nos attaques diffèrent selon la méthode de recombinaison utilisée, les plus
simples et efficaces étant dans le cas de la formule de Garner.

Enfin, nous avons discuté du réalisme de nos modèles de faute en analysant différentes
implémentations matérielles de la multiplication de Montgomery et nous démontrons, en
pointant les zones vulnérables, qu’une majorité de ces implémentations sont sensibles à nos
attaques.

2.1.2 Recherche automatique d’attaques par faute sur des implémenta-
tions cryptographiques [BDF+14b]

Une des leçons que nous avons tirées de nos résultats est que la recherche manuelle d’attaque
par faute sur une implémentation est une tâche relativement fastidieuse, surtout quand le
code de l’implémentation en question s’étale sur des dizaines de lignes (si on explicite
chaque multiplication modulaire par exemple) et qu’il met en jeu un grand nombre de
variables temporaires. Nous avons donc voulu automatiser cette recherche mais de manière
intelligente : une méthode naïve et extrêmement coûteuse consisterait à produire tous les
algorithmes fautés possibles selon le(s) modèle(s) de faute considéré(s) et de vérifier si les
signatures résultantes permettent de retrouver la clé secrète. Pour avoir un outil efficace et
performant, nous avons effectué des travaux dans deux directions.

Premièrement, nous avons identifié des conditions de faute, un nouveau concept, qui
peuvent être vues comme des propriétés mathématiques indépendantes de toute implémen-
tation, spécifiques à un schéma cryptographique et capturant suffisamment de conditions
nécessaires pour réussir une attaque, c’est-à-dire retrouver la clé secrète. Par exemple, un
attaquant ayant à sa disposition, dans le cadre de RSA, une valeur S qui est un multiple
de p mais pas de q peut retrouver la valeur de p grâce à un simple PGCD. Ceci est capturé
par la condition de faute :

S : S = 0 mod p ∧ S 6= 0 mod q.

Nous avons également considéré les deux conditions de faute suivantes dans le cadre de nos
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travaux :

∃α, β S = α p+ β q ∧ α, β < 2
n
2
−ε,

∃α, β S = α p+ β ∧ α < q, β < 2n/2−ε.

Deuxièmement, nous avons proposé une méthode automatisée pour découvrir des im-
plémentations fautées vérifiant la condition de faute souhaitée. Cette méthode peut être
perçue comme une instance de la synthèse de programme, dont l’objectif général est de
trouver, pour une spécification φ donnée, un ensemble de programmes satisfaisant φ. Plus
spécifiquement, notre algorithme prend en entrées une condition de faute φ, une implé-
mentation c, et cherche toutes les implémentations fautées de c satisfaisant φ. En outre,
la recherche est restreinte grâce à deux entrées supplémentaires : une politique de faute
qui décrit précisément quelles fautes peuvent être injectées dans le programme (plusieurs
modèles de fautes peuvent être englobés une politique de faute), et une borne supérieure
sur le nombre de fautes injectables.

Enfin, nous avons évalué notre approche sur l’implémentation de RSA–CRT avec mul-
tiplication de Montgomery. Nous avons ainsi retrouvé l’attaque utilisant le premier modèle
de faute, des variantes de celle-ci, et de nouvelles attaques. La politique de faute utili-
sée autorisait notre premier modèle de faute ainsi que les fautes sur le flot de contrôle.
Plus précisément, nous autorisions des fautes qui retiraient ou ajoutaient une ou plusieurs
itérations d’une boucle. Certaines des nouvelles attaques que nous avons trouvées sont par-
ticulièrement efficaces dans le cas de la recombinaison par le théorème des restes chinois.

2.1.3 Protéger RSA–PSS de façon prouvée contre des fautes non aléa-
toires [BDF+14a]

Après avoir analysé le schéma RSA–CRT d’un point de vue offensif, nous avons regardé
comment le protéger. Plus précisément, nous avons considéré le schéma de signature RSA–
PSS utilisant le théorème des restes chinois pour accéler le calcul de l’exponentiation mo-
dulaire et nous avons proposé une contre-mesure infective. Ce type de contre-mesure a
l’avantage de pouvoir résister à une attaque qui, en plus de fausser le calcul, tromperait le
résultat d’un test d’intégrité dont le but est de détecter une erreur de calcul : si celui-ci est
correct alors la signature est donnée en résultat, sinon un message d’erreur est retourné.
En effet, si on suppose que l’attaquant a la possibilité de passer outre les tests d’intégrité,
alors des attaques comme celles que nous avons présentées réussiront même si des calculs
de vérification intermédiaires ont été effectués. Les contre-mesures infectives infectent le
résultat de telle façon que si le calcul s’est déroulé correctement, alors la signature sera
correcte, sinon le résultat sera a priori inutilisable par l’attaquant.

Nous avons ainsi considéré le modèle d’attaque suivant : l’attaquant peut obtenir
une signature fautée de la forme (yd mod p, a) ∈ Z/pZ × Z, avec a une valeur de son
choix. En d’autres termes, nous l’autorisons à fauter le calcul pendant une des deux demi-
exponentiations et à fixer son résultat à une valeur précise. Ce modèle d’attaque englobe
donc les fautes aléatoires qui étaient prises en compte par Coron et Mandal, mais égale-
ment le résultat de notre attaque utilisant le premier modèle de faute, c’est-à-dire que la
signature modulo p ou q vaut zéro, en posant a = 0.

Sous ce modèle d’attaque, nous avons démontré que la sécurité de ce schéma protégé
de RSA–PSS se réduisait à la sécurité du problème RSA. En outre, notre preuve a été for-
mellement vérifiée grâce à l’utilisation d’un outil de preuve assistée par ordinateur nommé
EasyCrypt. Cet outil a par ailleurs révélé un léger problème dans la preuve initiale, ce qui

12



2.2. Sécurité d’implémentations de ECDSA, Efficacité de Elligator Squared

justifie encore davantage la nécessité croissante de vérifier formellement les preuves par des
outils tels que celui-là.

2.2 Sécurité d’implémentations du schéma ECDSA, Efficacité
du schéma Elligator Squared

La seconde partie de ce manuscrit détaille mes travaux sur courbe elliptique. Certains ont
porté sur l’algorithme de signature ECDSA alors que d’autres ont consisté à implémenter
efficacement un schéma qui masque l’échange des coordonnées d’un point d’une courbe
elliptique sur un réseau, Elligator Squared.

2.2.1 Décomposition GLV/GLS et sécurité d’implémentations du schéma
ECDSA [BDF+14b, AFG+14]

Lors du calcul d’une signature ECDSA, la multiplication scalaire [k]P , avec P un point
d’ordre premier n de la courbe elliptique utilisée et k un nonce de taille pleine, est l’étape
la plus coûteuse. C’est à partir de ce constat que sont apparues les techniques GLV de
Gallant, Lambert, Vanstone et GLS de Galbraith, Lin, Scott. Celles-ci sont assez similaires
à l’astuce RSA–CRT dans le sens où la multiplication scalaire avec le nonce k de taille pleine
est transformée en deux multiplications scalaires avec des nonces k1, k2 dont la taille est
de l’ordre de

√
n. Plus précisément, sur des courbes elliptiques dotées d’un endomorphisme

rapide et non trivial, le résultat du calcul [k]P peut se retrouver par le calcul (k1 + k2λ)P
avec λ une constante donnée. Deux possibilités sont offertes : générer aléatoirement k1 et
k2 puis calculer k, c’est la technique de recomposition, ou bien décomposer k en k1 et k2,
c’est la technique de décomposition.

En se plaçant sur des courbes obtenues par la méthode GLS, nous avons prouvé que
si les valeurs de k1 et k2 sont uniformément distribuées sur l’intervalle [0,

√
n), alors la

distribution de valeur de k obtenue par la technique de recomposition est statistiquement
proche de la distribution uniforme, et donc les protocoles résultants sont sûrs. Par contre, si
les valeurs de k1 et k2 sont choisies de la même façon mais sur un intervalle plus restreint, à
savoir [0, 2m) avecm = b1

2 log2 nc, alors nous avons montré que la valeur de k est légèrement
biaisée, de l’ordre de un bit.

Les biais sur le nonce k ont été la source de nombreuses publications permettant de
retrouver la clé secrète. L’idée consiste à exprimer le problème de reconstruction de la clé
secrète en une instance du problème du nombre caché (HNP). Les plus puissantes attaques
en terme de complexité et de quantité de signatures nécessaire sont basées sur la réduction
de réseau car le problème HNP se réduit au problème du plus proche vecteur (CVP).
Ainsi Liu et Nguyen ont proposé une attaque contre le schéma ECDSA pour un ordre de
160 bits quand le biais sur k est de deux bits. D’autres attaques existent pour attaquer
des courbes ayant un ordre plus grand mais le biais doit être significativement plus élevé.
Cependant, pour un biais de un bit, voir moins, l’utilisation des réseaux est impossible, le
biais minimum devant être de deux bits.

Bleichenbacher a proposé une attaque, jamais publiée, pour retrouver la clé secrète avec
un biais de un bit ou moins en exploitant le biais d’une manière particulière : réduire la
taille des signatures par combinaisons linéaires puis retrouver les bits de poids fort de la
clé grâce à la Transformée de Fourier Discrète dont les valeurs vont dépendre des biais.
L’inconvénient de cette attaque est sa complexité : pour un biais de moins d’un bit et une
courbe elliptique ayant un ordre de 160 bits, il faut environ 240 signatures, 247 en temps de
calcul et 241 en mémoire. À cette époque, il n’était pas possible de monter l’attaque et seules
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des simulations sur des valeurs réduites ont été réalisées. Nous avons, pour la première fois,
monté une attaque pour retrouver la totalité de la clé secrète d’un schéma ECDSA avec un
biais de un bit. Cette attaque a été réalisée sur une courbe elliptique standardisée (SEC
P160 R1) et sur une courbe obtenue par la méthode GLS. Dans le premier cas nos travaux
ont consisté à proposer des optimisations algorithmiques pour la phase de réduction des
signatures de l’attaque de Bleichenbacher ainsi qu’une implémentation efficace de l’attaque
complète, dans le second cas nous avons dû également modifier le biais à exploiter.

En outre, dans le cas d’une implémentation particulière de la technique de décomposi-
tion, décrite par Parker et al., nous avons décrit une attaque par canaux cachés utilisant
l’information qui fuit lors du calcul d’une multiplication. Cette information permet de re-
trouver un certain nombre de bits de poids faible du nonce k. Appliquée sur une petite
quantité de signatures, la clé secrète peut être retrouvée grâce à la réduction de réseau,
comme décrit précédemment. Ce type d’attaque peut se généraliser à d’autres implémen-
tations de la technique de décomposition à partir du moment où le nonce k est manipulé
avec des données connues par l’attaquant.

Enfin, nous avons appliqué notre outil de recherche automatique d’attaques par faute
sur une implémentation de ECDSA utilisant une implémentation particulière de la mul-
tiplication scalaire et nous avons ainsi trouvé de nombreuses nouvelles attaques. Celles-ci
ont toutes pour résultat la connaissance d’un certain nombre de bits de poids faible ou
de poids fort de k, ouvrant la voie aux attaques par réduction de réseau. L’application du
troisième modèle de faute présenté auparavant, des sauts d’instructions ou des fautes sur
une instruction de branchement conditionnel permettent d’arriver à ce résultat. En outre,
si on raffine l’analyse en prenant en compte une implémentation précise pour l’addition de
points, notre outil a trouvé plus de cent programmes fautés, c’est-à-dire combinaisons de
fautes permettant de retrouver des bits de k et in fine la clé secrète.

2.2.2 Elligator Squared en caractéristique 2 [AFQ+14]

Ce chapitre diffère des précédents dans le sens où il ne traite pas directement d’un schéma
de signature ni de sécurité, mais plutôt d’une implémentation efficace d’un schéma, nommé
Elligator Squared, pouvant être utilisé pour préserver d’une certaine façon l’anonymat et
la vie privée. Le constat est le suivant : un point d’une courbe elliptique, sous forme d’une
chaîne de bits, est facilement distinguable d’une chaîne de bits aléatoire. Ainsi, une analyse
du trafic réseau d’un protocole implémentant de la cryptographie à base de courbe elliptique
peut être aisément discriminé négativement (intercepté, bloqué, trafiqué...).

Bernstein et al. ont proposé en 2013 une approche efficace, appelée Elligator, pour pa-
rer à ce problème dans le cas des protocoles cryptographiques basés sur courbe elliptique.
Cette approche s’appuie sur l’utilisation d’un encodage injectif ι vers la courbe elliptique,
c’est-à-dire qu’un point P de la courbe est représenté par une chaîne de bits ι−1(P ). Les
inconvénients de cette approche sont que ces encodages n’existent que pour certaines fa-
milles de courbes et qu’ils n’atteignent que la moitié de tous les points possibles pour ces
courbes. En 2014 Tibouchi a proposé une variante appelée Elligator Squared pour élimi-
ner ces limitations. Au lieu d’utiliser un encodage injectif, il utilise un encodage ayant de
bonnes propriétés statistiques, de la forme f⊗2 : (u, v) 7→ f(u) + f(v) avec f un enco-
dage algébrique. Ces encodages existent pour toutes les courbes elliptiques et l’encodage
résultant f⊗2 est essentiellement surjectif, atteignant ainsi tous les points.

La comparaison entre les deux approches n’était jusqu’à présent pas claire en terme
de performance concrète. Nous avons ainsi comparé ces deux approches sur une courbe
supportée par Elligator (Curve25519) et donné les conclusions suivantes. Pour un proto-
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cole utilisant un point de base fixe, la génération d’un point aléatoire et le calcul de sa
représentation en chaîne de bits uniforme est environ 35 à 40% plus rapide avec Elligator.
Au contraire, pour des protocoles qui utilisent un point de base variable, Elligator Squared
est environ 30 à 35% plus rapide.

Par ailleurs, le cœur de nos travaux sur ce sujet a consisté à démontrer que Elligator
Squared peut être implémenté très efficacement sur une courbe elliptique de caractéristique
2. En effet, grâce à une version optimisée de l’encodage en caractéristique 2 de Shallue-van
de Woestijne et l’utilisation des coordonnées lambda, nous avons pu limiter l’utilisation de
la coûteuse opération que représente l’inversion, et utiliser principalement des multiplica-
tions, des calculs de trace et de demi-trace. Ainsi notre implémentation efficace de Elligator
Squared sur la courbe binaire de Oliveira et al. à CHES 2013 tourne en moyenne en 22850
cycles Haswell. Nous sommes, par ce résultat, bien plus rapide que l’implémentation opti-
misée de Elligator sur les courbes d’Edward et démontrons qu’il est possible de masquer
la transmission de points pour un surcoût minime.

2.3 Sécurité de générateurs pseudo-aléatoires

La dernière partie de ce manuscrit est consacrée à la sécurité des générateurs pseudo-
aléatoires non linéaires, du générateur Micali-Schnorr et la sécurité d’un schéma à clé
publique utilisant le générateur congruentiel linéaire pour générer sa clé secrète. Tous les
travaux suivants consistent en des cryptanalyses, le générateur Micali-Schnorr ayant fait
l’objet en outre d’une étude de ses propriétés statistiques.

2.3.1 Retrouver les clés secrètes générées avec des générateurs pseudo-
aléatoires faibles [FTZ13]

Le générateur pseudo-aléatoire le plus simple auquel on peut penser est le générateur
congruentiel linéaire dont l’état interne évolue selon la récurrence vi+1 = F (vi) mod N
avec F une fonction affine, N un entier et v0 la graine secrète, et qui, à chaque itération,
révèle une certaine quantité de bits de poids faible (ou de poids fort) de cet état interne. Ce
générateur est efficace, facile à implémenter, nécessite peu de mémoire et possède, pour de
bons paramètres, de bonnes propriétés statistiques. Il est donc tentant de l’utiliser comme
source d’aléa. Cependant, il n’est cryptographiquement pas sûr : avec une séquence plus ou
moins longue de sorties, la longueur dépendant du nombre de bits révélé à chaque itération,
il a été démontré que l’on peut retrouver la graine secrète en temps polynomial en utilisant
la réduction de réseau.

La question que nous nous sommes posés est la suivante : le générateur linéaire est
faible et non-sûr quand on a accès à des sorties consécutives de celui-ci. Qu’en est-il s’il
est utilisé en boîte noire dans un schéma à clé publique pour générer la clé secrète ? Ce
genre de question avait déjà été posé par Bellare, Goldwasser et Micciancio dans le cas
de la génération du nonce k pour le schéma de signature DSA et ils avaient démontré
l’insécurité d’une telle implémentation. Nous avons regardé un cas plus général dans le
sens où nous avons considéré n’importe quel schéma à clé publique basé sur la factorisation
ou le logarithme discret, c’est-à-dire les deux problèmes les plus utilisés en cryptographie.
Nous montrons que, connaissant la clé publique et les paramètres du générateur linéaire, si
la clé secrète est générée par concaténation des sorties de celui-ci alors nous pouvons dans
une majorité des cas retrouver cette clé secrète plus rapidement qu’avec une recherche
exhaustive sur la graine secrète.

La principale observation de notre travail est la suivante : si on coupe la graine secrète

15



2. Présentation des travaux

de k bits en deux morceaux (A · 2k/2 +B), la linéarité de ce générateur implique qu’il est
possible d’écrire, en oubliant les retenues qui peuvent être gérées indépendamment, la clé
secrète comme une somme U +V ·2k/2 avec U et V dépendant respectivement uniquement
de B et A. Ainsi, on peut effectuer une recherche sur la graine grâce à un compromis
temps-mémoire. Le cas du logarithme discret s’apparente à une attaque pas de bébé / pas
de géant alors que dans le cas de la factorisation l’attaque utilise l’évaluation polynomiale
multi-points.

2.3.2 Exploiter des séquences produites par des générateurs pseudo-
aléatoires non linéaires par les méthodes de Coppersmith [BVZ12]

Une suite naturelle des résultats précédents est de considérer des générateurs plus compli-
qués tels que les générateurs pseudo-aléatoires non linéaires, c’est-à-dire avec F un poly-
nôme de degré d > 1. De nombreux travaux ont été effectués pour analyser ces générateurs
ou des cas particuliers tels que le générateur quadratique (F (x) = ax2 + b) et le générateur
Pollard (F (x) = x2 + b). Leurs résultats démontrent globalement qu’il ne faut pas révéler
trop de bits par itération sous peine de pouvoir retrouver la graine secrète. Plus précisé-
ment, des bornes ont été déterminées telles que si le générateur ciblé révèle plus de bits
que cette borne à chaque itération, alors il peut être prédit, étant donné un certain nombre
d’itérations. Ces résultats ne prouvent par contre absolument pas que si moins de bits sont
révélés, alors le générateur est sûr.

Nos travaux ont consisté à utiliser les techniques de Coppersmith pour tenter d’amé-
liorer les bornes existantes. Coppersmith a présenté en 1996 une technique pour retrouver
des petites racines d’un polynôme modulaire univarié et une seconde pour retrouver des
petites racines d’un polynôme bivarié sur les entiers. Ces techniques, basées sur la réduction
de réseau, ayant eu un fort impact en cryptanalyse algébrique, de nombreuses reformula-
tions et simplifications ont été effectuées. En outre des discussions sur la généralisation
de ces techniques aux cas multivariés ont également été proposés car attaquer algébrique-
ment un schéma cryptographique nécessite souvent la manipulation de polynômes ayant
un nombre de variables relativement élevé. Dans notre cas, nous avons utilisé la technique
de Coppersmith pour des polynômes modulaires multivariés. Sans rentrer dans les détails,
l’étape la plus importante et la plus difficile de cette technique consiste à trouver une bonne
collection de polynômes avec certaines propriétés algébriques à partir des polynômes du
problème initial. Ce choix détermine totalement la taille maximale des racines pouvant être
retrouvées, et in fine les bornes d’attaque pour les générateurs que nous avons étudiés.

Ainsi, nous avons amélioré toutes les bornes existantes pour un polynôme quelconque
de degré d > 1, puis, par application plus ou moins direct, les bornes pour le générateur
quadratique, et enfin, en utilisant une astuce supplémentaire, les bornes pour le générateur
Pollard. Plus précisément, nous avons travaillé sur douze cas différents :

• F quelconque de degré d ou F (x) = ax2+b (générateur quadratique) ou F (x) = x2+b
(générateur Pollard),

• F est connu ou inconnu (le module est toujours considéré comme connu),

• très peu d’itérations consécutives sont connues ou une infinité sont à notre disposi-
tion.

Pour chacun de ces cas, nous avons amélioré plus ou moins significativement les bornes.
À titre d’exemple, nous avons montré que si un générateur utilisant un polynôme de degré
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d pour sa récurrence révèle plus de d/(d+1) des bits de poids fort sur deux itérations consé-
cutives, on peut retrouver la graine secrète, alors que la borne précédente était (d2 − 1)/d2.
Également, nous avons prouvé qu’asymptotiquement, révéler plus de 2/3 des bits de poids
fort pour un générateur quadratique aux paramètres inconnus est suffisant pour mener une
attaque, alors que la borne précédente était 11/12.

2.3.3 Sécurité du générateur Micali-Schnorr [FVZ13, FZ14]

Le dernier chapitre de cette partie est dédié à l’étude du générateur pseudo-aléatoire Micali-
Schnorr qui diffère au niveau de sa récurrence par rapport aux autres générateurs algé-
briques étudiés jusqu’à présent. En effet, pour ce générateur seul les bits n’ayant pas été
révélés sont utilisés pour calculer l’état interne suivant. En d’autres mots, en notant (e,N)
la clé publique RSA avec e petit comparé à logN et x0 ∈ [0, 2r) avec 2r � N la graine
secrète, il peut être défini de la façon suivante :

vi = xei−1 mod N et vi = 2kxi + wi pour i ≥ 1,

où wi représente la sortie de k bits du générateur à la i-ième itération.
Cette différence, bien qu’elle semble mineure, a un fort impact en terme de cryptanalyse.

En effet, si la taille de la graine secrète est trop petite, la mise à la puissance e peut ne
pas faire intervenir le module RSA. Dans ce cas, les équations engendrées par la relation
de récurrence sont sur les entiers et retrouver la graine devient facile grâce à l’utilisation
du lemme de Hensel. D’un autre côté, quand r ≥ logN/e, le problème devient difficile car
même si la partie qui reste cachée xi à chaque itération est relativement petite, les techniques
de Coppersmith ne peuvent pas nous aider, la borne asymptotique étant justement la borne
N/e.

Nous avons donc proposé dans un premier temps divers algorithmes de compromis
temps-mémoire-données basés sur les tables de Hellman afin de récupérer une valeur d’état
interne xi. Ces algorithmes sont similaires à ceux utilisés dans les attaques contre les
chiffrements par flot, et demandent donc de spécifier une fonction f . Pour les chiffrements
pas flot, l’idée consiste à générer au moins logS bits pour un état interne de S bits.
Dans notre cas, nous avons choisi de tronquer la sortie du générateur, ce qui peut sembler
étonnant étant donné que l’itération de cette fonction n’a plus de lien avec la relation
de récurrence, mais cela fonctionne car notre vrai besoin était de couvrir l’espace des
valeurs possibles des états internes xi. Il est important de préciser que nos algorithmes ne
fonctionnent que pour le générateur Micali-Schnorr, grâce à son itération particulière, et
ne peut s’appliquer aux générateurs que nous avons étudiés auparavant. Enfin, nous avons
proposé différentes manières, après avoir retrouvé une valeur xi, pour remonter jusqu’à la
graine secrète. Tous ces algorithmes sont en complexité exponentielle ce qui limite bien
évidemment leur utilisation mais permet de démontrer qu’une certaine marge de sécurité
est à prendre par rapport à la borne d’application du lemme de Hensel.

Dans un second temps, nous avons réfléchi à une preuve de sécurité pour ce générateur.
Celui-ci est prouvé sûr selon l’hypothèse relativement forte que la distribution de xe mod N ,
pour des entiers x de r bits, est indistinguable de la distribution uniforme des éléments
de (Z/NZ)∗ par tout test statistique en temps polynomial. Clairement cette hypothèse
n’est pas vraie si l’on ne se retreint pas les tests à des temps polynomiaux étant donné le
manque d’entropie apporté par l’entrée x. Micali et Schnorr ont proposé les paramètres
r = 2 logN/e, ce qui permet d’éviter l’attaque trivial mais reste très agressif afin d’avoir
une bonne efficacité.

Nous avons étudié les propriétés statistiques des k bits de poids faible de xe mod N pour
x étant choisi dans un petit intervalle [0,M) avec M < N . Plus précisément, nous avons
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prouvé deux bornes sur la distance statistique de ces k bits par rapport à la distribution
uniforme en fonction de N, e, k, la première dans le cas où M �

√
N et la seconde dans le

cas opposé. Notons que nous avons considéré un cas général dans le sens où logM +k peut
être strictement inférieur à la taille de l’état interne. Nous avons appliqué nos résultats sur
une itération du générateur Micali-Schnorr (avec donc logM + k = logN) et avons trouvé
une borne, dépendante de e et N , telle que la sortie de cette itération soit indistinguable
de la distribution uniforme. Cette borne, asymptotique en N , implique qu’un résultat
d’indistinguabilité est possible quand on sort moins de 1/3 des bits de poids faible de l’état
interne.

2.4 Perspectives et problèmes ouverts

Un certain nombre de ces travaux se sont conclus par des perspectives et/ou des problèmes
ouverts qui sont détaillés ci-dessous.

En premier lieu, notre outil de recherche automatique d’attaques par faute est très
récent et pourrait être approfondi, perfectionné et généralisé. Pour le moment, nous nous
sommes concentrés sur un nombre restreint d’implémentations d’un nombre restreint de
schémas tout en considérant peu de modèles de faute par rapport à tous ceux que l’on peut
trouver dans la littérature. Un premier gros travail serait à effectuer pour obtenir une liste
de toutes les conditions de fautes ayant mené à des attaques, et cela pour un maximum de
schémas à clé publique, ce travail paraissant difficilement automatisable. De même, ajouter
des modèles de faute demanderait un travail non négligeable surtout pour des modèles plus
complexes. Enfin, il pourrait être intéressant de généraliser l’outil pour des implémentations
de schémas à clé secrète telle que l’AES, ce qui demanderait probablement des conditions
de faute très éloignées du format actuel.

Pour ce qui est de notre preuve de sécurité de notre schéma modifié RSA–PSS, il est
clair que la suite consisterait à prendre en compte plus de types de faute mais aussi à donner
à l’attaquant plus de latitude sur les étapes qu’il peut fauter puisque seul l’exponentiation
modulaire peut être ciblée dans notre scénario actuel. Un autre problème à résoudre serait
le suivant : actuellement le résultat de l’exponentiation modulo q fautée est une constante
choisie par l’attaquant ; comment adapter la preuve dans le cas où ce résultat n’est plus
forcément connu de l’attaquant mais s’il dépend de valeurs secrètes telles que la clé secrète
ou le message encodé voir le résultat correct modulo q ?

Enfin, concernant le générateur Micali-Schnorr et notre étude de ses propriétés statis-
tiques, nous insistons sur le fait que nous ne regardons qu’une seule itération comme cela a
été fait dans d’autres travaux. Itérer sur plusieurs itérations consécutives notre borne sur
la distance statistique semble aujourd’hui être un problème difficile.
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PART I

FAULTS ON IMPLEMENTATIONS OF
THE RSA SIGNATURE SCHEME

The RSA signature scheme is one of the most used schemes nowadays. An RSA signature is
computed by applying some encoding function to the message, and raising the result to the
d-th power modulo N , where d and N are the RSA private exponent and the RSA public
modulus respectively. The modular exponentiation is the costliest part of the signature
generation, so it is important to implement it efficiently. A very commonly used speed-
up is RSA–CRT signature generation, where the exponentiation is carried out separately
modulo the two factors of N , and the results are recombined using the Chinese Remainder
Theorem (CRT). However, when unprotected, RSA–CRT signatures are vulnerable to the
so-called Bellcore attack first introduced by Boneh, DeMillo and Lipton in [BDL97], and
later refined in a number of subsequent publications [JLQ99, BDL01, YMH02, ABF+02]:
an attacker who knows the padded message and is able to inject a fault in one of the two
half-exponentiations can factor the public modulus using a faulty signature with a simple
GCD computation.

Physical attacks. Embedded devices often play a central role in security architectures
for large-scale software infrastructures. For instance, they are used pervasively for purposes
such as authentication, identity management, and digital signatures. As a consequence,
embedded devices are also a prime target for attackers. There are primarily two means
to retrieve secret material from embedded devices. The first one is to carry non-invasive
monitoring of the device and to obtain information from side-channels, such as timing
and power consumption, electromagnetic radiations, or even noise. The second one is to
perform active attacks, injecting faults that interfere with the normal execution of the
devices, and to recover the secret information through the devices normal interface, or
through side-channels. The effects of these faults vary: they may modify the control
flow of the program by skipping a conditional test [AK97] or induce behaviours similar
to buffer overflows [FLV12]. In the context of cryptographic attacks, they often allow the
adversary to directly recover secret keys. There are multiple ways to inject faults in devices;
examples include power spikes, glitches on the clock signal, temperature variations, and
electromagnetic radiations [AK97, JT12, BBBP13].

The existence of efficient fault attacks against cryptographic schemes was first demon-
strated in [BDL97], focusing the RSA–CRT implementation.

This first part is dedicated to some contributions in this prolific research area that is
the impact of fault injection on implementations of the RSA signature scheme. Chapter 3
describe some new fault attacks against an implementation using the Chinese Remainder
Theorem coupled with Montgomery multiplication. These attacks succeed whatever is the
encoding function, using a single or a few faulted signatures depending on the scenario.
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Chapter 4 is devoted to a new tool which automatically finds fault attacks given an imple-
mentation and the type of faults we authorize, which we call fault conditions. Finally, we
consider in Chapter 5 RSA–PSS [BR98, BR01, Kal03], which is the RSA signature scheme
with a specific probabilistic encoding function, and we propose a formally verified proof of
the security of an infective countermeasure against a large class of non-random faults.
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Chapter 3
Attacking RSA–CRT Signatures

with Faults on Montgomery
Multiplication

3.1 Introduction

In this chapter, we present several efficient fault attacks against implementations of RSA–
CRT signatures that use modular exponentiation algorithms based on Montgomery multi-
plication. They apply to any padding function, including randomized paddings. The new
attacks work provided that a small register can be forced to either zero, or a constant value,
or a value with zero high-order bits. We show that these models are quite realistic, as such
faults can be achieved against many proposed hardware designs for RSA signatures.

This work was presented at CHES 2012 [FGL+12] and appears in the Journal of Cryp-
tographic Engineering [FGL+13].

3.1.1 Background

Many workarounds have been proposed to patch the vulnerability found by Boneh, DeMillo
and Lipton in [BDL97], including extra computations and sanity checks of intermediate and
final results. A recent taxonomy of these countermeasures is given in [Riv09]. The simplest
countermeasure may be to verify the signature before releasing it. This is reasonably cheap
if the public exponent e is small and available in the signing device. In some cases, however,
e is not small, or even not given—e.g. the JavaCard API does not provide it [Ora]. Another
approach is to use an extended modulus. Shamir’s trick [Sha99] was the first such tech-
nique to be proposed; later refinements were suggested that also protect CRT recombination
when it is computed using Garner’s formula [BOS03, CJ05b, CGM+10, Vig08]. Finally, yet
another way to protect RSA–CRT signatures against faults is to use redundant exponentia-
tion algorithms, such as the Montgomery Ladder. Papers including [Gir06, Riv09] propose
such countermeasures. Regardless of the approach, RSA–CRT fault countermeasures tend
to be rather costly: for example, Rivain’s countermeasure [Riv09] has a stated overhead of
10% compared to an unprotected implementation, and is purportedly more efficient than
previous works including [Gir06, Vig08].

Relatedly, while Boneh et al.’s original fault attack does not apply to RSA signatures
with probabilistic encoding functions, some extensions of it were proposed to attack ran-
domized ad hoc padding schemes such as ISO 9796-2 and EMV [CJK+09, CNT10]. How-
ever, Coron and Mandal [CM09] were able to prove that Bellare and Rogaway’s padding
scheme RSA–PSS [BR98, BR01, Kal03] is secure against random faults in the random ora-
cle model. In other words, if injecting a fault on the half-exponentiation modulo the second
factor q of N produces a result that can be modeled as uniformly distributed modulo q,
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then the result of such a fault cannot be used to break RSA–PSS signatures. It is tempting
to conclude that using RSA–PSS should enable signers to dispense with costly RSA–CRT
countermeasures.

3.1.2 Our contributions

The RSA–CRT implementations targeted in this chapter use the state-of-the-art modular
multiplication algorithm due to Montgomery [Mon85], which avoids the need to compute
actual divisions on large integers, replacing them with only multiplications and bit shifts. A
typical implementation of the Montgomery multiplication algorithm will use small registers
to store precomputed values or short integer variables throughout the computation. The
size of these registers varies with the architecture, from a single bit in certain hardware
implementations to 16 bits, 32 bits or more in software. This chapter presents several
fault attacks on these small registers during Montgomery multiplication, that cause the
result of one of the half-exponentiations to be unusually small. The factorization of N
can then be recovered using a GCD, or an approximate common divisor algorithm such as
[HG01, CN12, CH11].

We consider three models of faults on the small registers. In the first model, one
register can be forced to zero. In that case, we show that causing such a fault in the
inverse Montgomery transformation of the result of a half-exponentiation, or a few earlier
consecutive Montgomery multiplications, yields a faulty signature which is a multiple of
the corresponding factor q of N . Hence, we can factor N by taking a simple GCD. In the
second model, another register can be forced to some (possibly unknown) constant value
throughout the inverse Montgomery transformation of the result of a half-exponentiation,
or a few earlier consecutive Montgomery multiplications. A faulty signature in this model
is a close multiple of the corresponding factor q of N , and we can thus factor N using
an approximate common divisor algorithm. Finally, the third model makes it possible to
force some of the higher-order bits of one register to zero. We show that, while injecting
one such fault at the end of the inverse Montgomery transformation results in a faulty
signature that isn’t usually close enough to a multiple of q to reveal the factorization of
N on its own, a moderate number of faulty signatures (a dozen or so) obtained using that
process are enough to factor N .

The RSA padding scheme used for signing, whether deterministic or probabilistic, is
irrelevant in our attacks. In particular, RSA–PSS implementations are also vulnerable.
Of course, this does not contradict the security result due to Coron and Mandal [CM09],
as the faults we consider are strongly non-random. Our results do suggest, however, that
exponentiation algorithms based on Montgomery multiplication are quite sensitive to a
very realistic type of fault attacks and that using RSA–CRT countermeasures is advisable
even for RSA–PSS.

3.1.3 Outline

In §3.2, we recall some background material on the Montgomery multiplication algorithm,
on modular exponentiation techniques, and on RSA–CRT signatures. Our attacks are then
described in §§3.3–3.5, corresponding to three different fault models: null faults, constant
faults, and zero high-order bits faults. Finally, in §3.6, we discuss the applicability of our
fault models to concrete hardware implementations of RSA–CRT signatures.
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3.2 Preliminaries

3.2.1 Montgomery multiplication

First proposed by Montgomery in [Mon85], the Montgomery multiplication algorithm pro-
vides a fast method for computing modular multiplications and squarings. Indeed, the
Montgomery multiplication algorithm only uses multiplications, additions and shifts, but
no explicit division or modular reduction of big integers. Its cost is about twice that of
a (non-modular) multiplication (compared to 2.5 times for a multiplication and a Barrett
reduction), without any constraint on the modulus.

Usually, one of two different techniques is used to compute Montgomery multiplica-
tion: either Separate Operand Scanning (SOS), or Coarsely Integrated Operand Scanning
(CIOS). Consider a device whose processor or coprocessor architecture has r-bit registers
(typically r = 1, 8, 16, 32 or 64 bits). Let b = 2r, q be the (odd) modulus with respect to
which multiplications are carried out, k the number of r-bit registers used to store q, and
R = bk, so that q < R and gcd(q,R) = 1. The SOS variant consists in using the Mont-
gomery reduction after the multiplication: for an input A such that A < Rq, it computes
Mgt(A) ≡ AR−1 (mod q), with 0 ≤ Mgt(A) < q. The CIOS mixes the reduction algorithm
with the previous multiplication step: considering x and y with xy < Rq, it computes
CIOS(x, y) = xyR−1 mod q with CIOS(x, y) < q.

Algorithm 3.1 presents the main steps of the CIOS variant, which will be used thereafter.
However, replacing the CIOS by the SOS or any other variant proposed in [KA96] does not
protect against any of our attacks.

Algorithm 3.1 The Montgomery multiplication algorithm. The xi’s and yi’s are the
digits of x and y in base b; q′ = −q−1 mod b is precomputed. The returned value is
(xy · b−k mod q). Since b = 2r, the division is a bit shift.
1: function CIOS(x, y)
2: a← 0
3: y0 ← y mod b
4: for j = 0 to k − 1 do
5: a0 ← a mod b
6: uj ← (a0 + xj · y0) · q′ mod b

7: a←
⌊
a+ xj · y + uj · q

b

⌋
8: end for
9: if a ≥ q then a← a− q
10: end if
11: return a
12: end function

Among all the variants proposed for this algorithm, the optimization of [Wal99] is well-
known: if Rq > xy, then the result of algorithm 3.1 without the final reduction (Step 9)
is between 0 and 2q. Therefore for an exponentiation algorithm, there is no need to carry
out this final reduction if R > 4q. Besides its efficiency, this variant has the advantage
of thwarting timing attacks [Sch00a, BB05, AScKK05], which essentially rely on detecting
whether the reduction is carried out or not. Nevertheless, these attacks do not easily work
with randomized paddings, since the attacker needs to carefully choose the message. In
contrast, our attacks work on any padding, with or without this reduction step.
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3.2.2 Exponentiation algorithms using Montgomery multiplication

Montgomery reduction is especially interesting when used as part of a modular exponen-
tiation algorithm. Many such exponentiation algorithms can be found in the literature,
including the Square-and-Multiply algorithm from either the least or the most significant
bit of the exponent, the Montgomery Ladder (which is used as a side-channel counter-
measure against cache analysis, branch analysis, timing analysis and power analysis), the
Square-and-Multiply k-ary algorithm (which boasts greater efficiency thanks to fewer multi-
plications) and the Sliding Window algorithm. The previous five exponentiation algorithms
will be considered in this chapter, and each of them (except the Square-and-Multiply MSB)
is detailed in Figure 3.1.

Note that using the Montgomery multiplications inside any exponentiation algorithm
requires all variables to be in Montgomery representation (x̄ = xR mod q is the Mont-
gomery representation of x) before applying the exponentiation process. In Step 2 of each
algorithm from Figure 3.1, the message is transformed into Montgomery representation
by computing CIOS(x,R2) = xR2R−1 mod q = x̄. At the end, the very last CIOS call
allows to revert to the classical representation by performing a Montgomery reduction, i.e.
CIOS(Ā, 1) = (Ā · 1)R−1 mod q = ARR−1 mod q = A. Finally the other CIOS steps com-
pute the product in Montgomery representation: CIOS(Ā, B̄) = (AR)(BR)R−1 mod q =
AB.

3.2.3 RSA–CRT signature generation

Let N = pq be a n-bit RSA modulus. The public key is denoted by (N, e) and the associ-
ated private key by (p, q, d). For a message M to be signed, we note S = md mod N the
corresponding signature, where m is deduced from M by an encoding function, possibly
randomized. A well-known optimization of this operation is RSA–CRT, which takes ad-
vantage of the decomposition of N into prime factors. By replacing a full exponentiation
of size n by two n/2, it divides the computational cost by a factor of about 4. As a result,
almost all implementations of RSA signatures use RSA–CRT, including OpenSSL [The]
and the JavaCard API [Ora].

Recovering S from its reductions Sp and Sq modulo p and q can be done either by the
usual CRT reconstruction formula (3.1) below, or using the recombination technique (3.2)
due to Garner [Gar59]:

S = (Sq · p−1 mod q) · p+ (Sp · q−1 mod p) · q mod N. (3.1)

S = Sq + q · (q−1 · (Sp − Sq) mod p). (3.2)

Garner’s formula (3.2) does not require a reduction modulo N , which is interesting
for efficiency reasons and also because it prevents certain fault attacks [BNNT11a]. On
the other hand, it does require an inverse Montgomery transformation Sq = CIOS(S̄q, 1),
whereas that step is not necessary for formula (3.1), as it can be mixed with the multi-
plication with p−1 mod q. This is an important point, as some of our attacks specifically
target the inverse Montgomery transformation. The main steps of the RSA–CRT signature
generation with Garner’s recombination are recalled in Figure 3.2.

3.3 Null Faults

We first consider a fault model in which the attacker can force the register containing the
precomputed value q′ = (−q−1 mod b) to zero in certain calls to the CIOS algorithm during
the computation of Sq.
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(a) Square-and-Multiply LSB (b) Montgomery Ladder

1: function ExpLSB(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = 0 to t do
5: if ei = 1 then
6: A← CIOS(A, x̄)
7: end if
8: x̄← CIOS(x̄, x̄)
9: end for

10: A← CIOS(A, 1)
11: return A
12: end function

1: function ExpLadder(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = t down to 0 do
5: if ei = 0 then
6: x̄← CIOS(A, x̄)
7: A← CIOS(A,A)
8: else if ei = 1 then
9: A← CIOS(A, x̄)

10: x̄← CIOS(x̄, x̄)
11: end if
12: end for
13: A← CIOS(A, 1)
14: return A
15: end function

(c) Square-and-Multiply k-ary (d) Sliding Window

1: function Expk-ary(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: x̄0 ← R mod q
4: for i = 1 to (2k − 1) do
5: x̄i ← CIOS(x̄i−1, x̄)
6: end for
7: A← R mod q
8: for i = t down to 0 do
9: repeat k times

10: A← CIOS(A,A)
11: A← CIOS(A, x̄ei) . (e in

base 2k)
12: end for
13: A← CIOS(A, 1)
14: return A
15: end function

1: function ExpSliding-Window(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: x̄1 ← x̄; x̄2 ← CIOS(x̄, x̄)
4: for i = 1 to (2k−1 − 1) do
5: x̄2i+1 ← CIOS(x̄2i−1, x̄2)
6: end for
7: A← R mod q; i← t
8: while i ≥ 0 do
9: if ei = 0 then

10: A ← CIOS(A,A); i ←
i− 1

11: else if ei = 1 then
12: l ← min{j | j ≥ 0, i− j +

1 ≤ k and ej = 1}
13: repeat i− l + 1 times
14: A← CIOS(A,A)
15: A← CIOS(A, x̄eiei−1···el)
16: i← l − 1
17: end if
18: end while
19: A← CIOS(A, 1)
20: return A
21: end function

Figure 3.1: Four of the exponentiation algorithms considered in this chapter. In each case,
e0, . . . , et are the bits (or in the k-ary case, the digits in base 2k) of the exponent e from
the least to the most significant, and R is the Montgomery coefficient.
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Algorithm 3.2 RSA–CRT signature generation with Garner’s recombination. The reduc-
tions dp, dq modulo p−1, q−1 of the private exponent are precomputed, as is π = q−1 mod p.
1: function SignRSA–CRT(m)
2: M ← µ(m) ∈ ZN . message encoding
3: Mp ←M mod p
4: Mq ←M mod q

5: Sp ←M
dp
p mod p

6: Sq ←M
dq
q mod q

7: t← Sp − Sq
8: if t < 0 then t← t+ p
9: end if

10: S ← Sq +
(
(t · π) mod p

)
· q

11: return S
12: end function

Under suitable conditions, we will see that such faults can cause the q-part of the
signature to be erroneously evaluated as S̃q = 0, which makes it possible to retrieve the
factor q of N from one such faulty signature S̃, as q = gcd(S̃, N).

3.3.1 Attacking CIOS(A, 1)

Suppose first that the fault attacker can force q′ to zero in the very last CIOS computation
during the evaluation of Sq, namely the computation of CIOS(A, 1). In that case, the
situation is quite simple.

Theorem 3.1. A faulty signature S̃ generated in this fault model is a multiple of q (for any
of the exponentiation algorithms considered herein and regardless of the encoding function
involved, probabilistic or not).

Proof. The faulty value q̃′ = 0 causes all of the variables u in the CIOS loop to vanish;
indeed, for j = 0, . . . , k − 1, they evaluate to:

ũj = (a0 +Aj · 1) · q̃′ mod 2r = 0.

As a result, the value S̃q computed by this CIOS loop can be written as:

S̃q =

⌊(⌊
· · ·
⌊(⌊

A0 · 2−r
⌋

+A1

)
· 2−r

⌋
+ · · ·

⌋
+Ak−1

)
· 2−r

⌋
.

Now, the values Aj are r-words, i.e. 0 ≤ Aj ≤ 2r − 1. It follows that each of the integer
divisions by 2r evaluate to zero, and hence S̃q = 0. As a result, the faulty signature S̃ is a
multiple of q as stated. �

It is thus easy to factor N with a single faulty signature S̃, by computing gcd(S̃, N).
Note also that if this last CIOS step is computed as CIOS(1, A) instead of CIOS(A, 1), the
formulas are slightly different but the result still holds.

3.3.2 Attacking consecutive CIOS steps

If Garner recombination is not used or the computation of CIOS(A, 1) is somehow protected
against faults, a similar result can be achieved by forcing q′ to zero in earlier calls to CIOS,
provided that a certain number of successive CIOS executions are faulty.
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We consider here the fault model where we force q′ to zero on consecutive CIOS steps.
We will examine how this plays out in each on the five exponentiation algorithms in turn.
For now, we let ` = dlog2dlog2 qee.

In all cases, we also assume, heuristically, that the values x̄, A in Montgomery represen-
tation involved in our computation are uniformly distributed modulo q before the first fault
is injected; this means, in particular, that they are smaller than 2dlog2 qe with probability
at least 1/2.

Square-and-Multiply LSB

We first consider a fault model in which the attacker can force the precomputed value q′

to zero during ` consecutive calls of CIOS(x̄, x̄) in the Square-and-Multiply LSB algorithm
(Step 8 in Figure 3.1(a)), during the computation of Sq. Then, we claim that with proba-
bility at least 1/2, a faulty signature S̃ generated in this fault model will be a multiple of
q, leading to the same key recovery as before.

Indeed, suppose faults are injected starting from iteration i = α in the loop of the
exponentiation algorithm, and that before then, |x̄| ≤ dlog2 qe− 1 where |x̄| represents the
bit length: this happens with probability at least 1/2. The fault q′ = 0 has to occur in
CIOS(x̄, x̄) (the CIOS in Step 6 does not modify x̄ and thus can be ignored in this case).
Then, the output x̄ of this faulty CIOS is, up to rounding errors:

x̃ ≈
⌊ x̄0x̄

2rk

⌋
+ · · ·+

⌊ x̄k−1x̄

2r

⌋
<
⌊ x̄k−1x̄

2r

⌋
+ 2r(k−1).

With our assumption on the size of x̄, we obtain |x̃| ≤ dlog2 qe−2. Therefore, for i = α+1
and with q′ = 0, the size of the output of CIOS(x̃, x̃) will be reduced to at most dlog2 qe−4,
and so forth. By induction, keeping the fault q′ = 0 up to iteration i = α+`−1, i.e. through
` executions of CIOS, brings the value x̄ down to 0. Clearly, the faulty half-exponentiation
thus outputs S̃q = 0, hence the stated result.

Square-and-Multiply MSB

The case of the Square-and-Multiply MSB exponentiation algorithm is similar. We claim
that if we can force q′ to zero during ` consecutive steps of the Square-and-Multiply MSB
loop (hence up to 2` calls to CIOS), then with probability at least 1/2, a faulty signature
S̃ generated in this model will be a multiple of q.

The idea is again to target the Montgomery squaring step, which in the MSB case is
A← CIOS(A,A). The main difference with the LSB case is that the other CIOS also affects
the same value A, and hence it is important that q′ be kept to zero during this other call
as well (typically, though, q′ is simply kept to zero throughout sufficiently many loops, so
this does not really matter in practice). Otherwise, the analysis is the same as in the LSB
case, and we find that ` consecutive faulty iterations are sufficient to have S̃q = 0 with
probability at least 1/2.

Remark. While a fault has to be injected during the execution of A← CIOS(A, x̄) as well,
this faulty execution has some probability of reducing the size of A too, if the size of x̄ is less
than dlog2 qe. Hence fewer iterations will be required in practice to reach A = 0. Moreover,
if faults are injected throughout ` loops of the Square-and-Multiply MSB algorithm starting
from the very beginning, we should get S̃q = 0 with probability 1. Indeed, the initial value
of A is equal to R mod q, and hence is less than dlog2 qe bits.
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Montgomery Ladder

In the case of the Montgomery Ladder, we obtain a similar result when q′ is forced to
zero in 2` − 1 suitable consecutive iterations: we then obtain, again, that S̃q = 0 with
probability at least 1/2.

Indeed, a sequence of 2` − 1 iterations of the Montgomery Ladder contains either at
least `Montgomery squarings of x̄ (in Step 10 of Figure 3.1(b)) or `Montgomery squarings
of A (in Step 7, ibid.), depending on whether the corresponding string of bits of e contains
more ones or zeros. The same analysis as in the Square-and-Multiply case shows that
keeping q′ to zero throughout the iterations containing those ` Montgomery squarings will
have a probability at least 1/2 of canceling x̄ or A respectively, and hence yield S̃q = 0.

Remark. The stated bound of 2`−1 iterations is quite pessimistic, and the attack performs
significantly better in practice, as both x̄ and A will tend to become shorter during faulty
Montgomery squarings, and hence both contribute to bringing each other’s size further
down in the CIOS calls that are not Montgomery squarings (Steps 6 and 9). Additionally,
if faults are injected starting from the beginning of the loop, then, like in the Square-and-
Multiply MSB setting, the attack succeeds with probability 1 in view of the initial value
of A.

Square-and-Multiply k-ary

For the Square-and-Multiply k-ary exponentiation, forcing q′ to zero during d`/ke consec-
utive iterations of the loop is enough to achieve a probability of 1/2 of getting S̃q = 0.

Indeed, the analysis is identical to the Square-and-Multiply MSB case of §3.3.2, except
that each loop contains k Montgomery squarings instead of only one.

Sliding Window

Finally, we consider the case where q′ can be forced to zero in consecutive iterations of the
main loop (Steps 8–18 in Figure 3.1(d)) of the Sliding Window exponentiation algorithm,
and claim that ` consecutive faulty iterations are enough to obtain S̃q = 0 with probability
1/2.

Again, the situation is analogous to the Square-and-Multiply MSB setting of §3.3.2, in
the sense that each iteration of the loop contains at least one Montgomery squaring of A,
hence ` iterations are enough to reach A = 0.

Simulation results

We have carried out a simulation of null faults on consecutive CIOS steps for the three
first exponentiation process algorithms, with varying numbers of faulty iterations; for the
Square-and-Multiply MSB and the Montgomery Ladder algorithms, two sets of experi-
ments have been conducted for each parameter set: one with faults starting from the first
iteration, and another one with faults starting from a random iteration somewhere in the
exponentiation loop. Results are collected in Table 3.1. As we can see, success rates are
noticeably higher than those claimed above. This is due to the fact that, with probability
1/2 at each faulted step of the exponentiation, the size of the focused value can decrease
more than the theoretical minimum.
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Table 3.1: Success rate of the null fault attack on consecutive CIOS steps, for a 512-bit
prime q and r = 16. 100 faulty signatures were computed for each parameter set. For the
Square-and-Multiply MSB and Montgomery Ladder algorithms, we compare success rates
when faults start at the beginning of the loop vs. at a random iteration.

S&M LSB S&M MSB Montgomery Ladder

Faulty iterations (%) Start (%) Anywhere (%) Start (%) Anywhere (%)

8 31 93 62 45 30

9 65 100 93 87 76

10 89 100 100 99 93

3.4 Constant Faults

In this section, we consider a different fault model, in which the fault attacker can force
the variables uj in the CIOS algorithm to some (possibly unknown) constant value ũ.

Just as with null faults, we consider two scenarios: one in which the last CIOS compu-
tation is attacked, and another in which several inner consecutive CIOS computations in
the exponentiation algorithm are targeted.

3.4.1 Attacking CIOS(A, 1)

Faults on all iterations. Consider first the case when faults are injected in all iterations
of the very last CIOS computation. In other words, the device will compute CIOS(A, 1),
except that the variables uj , j = 0, . . . , k − 1, are replaced by a fixed, possibly unknown
value ũ. In that case, we show that a single faulty signature is enough to factor N and
recover the secret key. The key result is as follows:

Theorem 3.2. Let S̃ be a faulty signature obtained in the fault model described above.
Then, (2r − 1) · S̃ is a close multiple of q with error size at most 2r+1, i.e. there exists an
integer T such that: ∣∣(2r − 1) · (S̃ + 1)− qT

∣∣ ≤ 2r+1.

Proof. Up to the possible subtraction of q, which clearly doesn’t affect our result, the value
S̃q computed in the faulty execution of CIOS(A, 1) can be written as:

S̃q =

⌊(⌊
· · ·
⌊
(A0 + ũ · q) · 2−r

⌋
+ · · ·

⌋
+Ak−1 + ũ · q

)
· 2−r

⌋
.

We claim that this value S̃q is close to the real number ũ · q/(2r − 1). Indeed, on the one
hand, by using the fact that bxc ≤ x for all x and Aj ≤ 2r − 1 for j = 0, . . . , k − 1, we
obtain:

S̃q ≤
A0 + ũ · q

2rk
+ · · ·+ Ak−1 + ũ · q

2r

≤ 1

2r − 1
(2r − 1 + ũ · q) ≤ ũ · q

2r − 1
+ 1.
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On the other hand, since bxc > x− 1 and Aj ≥ 0, we get:

S̃q >
ũ · q
2rk
− 1

2r(k−1)
+ · · ·+ ũ · q

2r
− 1

>
1− 2−rk

2r − 1
· (ũ · q − 2r)

>
ũ · q

2r − 1
− ũ

2r − 1
· q

2rk
− 2r

2r − 1
>

ũ · q
2r − 1

− 3

as we have both ũ ≤ 2r − 1 and q < 2rk. As a result, we obtain:∣∣∣∣(S̃q + 1)− ũ · q
2r − 1

∣∣∣∣ ≤ 2

and hence: ∣∣∣(2r − 1) · (S̃q + 1)− ũ · q
∣∣∣ ≤ 2r+1.

Since S̃ = S̃q + ((t̃ · π) mod p) · q, the stated result follows, with T = ũ + (2r − 1) · ((t̃ ·
π) mod p). �

Thus, a single faulty signature yields a value V = (2r−1) · (S̃+1) mod N which is very
close to a multiple of q. It is easy to use this value to recover q itself. Several methods are
available:

• If r is small (say 8 or 16), it may be easiest to just use exhaustive search: q is found
among the values gcd(V + X,N) for |X| ≤ 2r+1, and hence can be retrieved using
around 2r+2 GCD computations.

• A more sophisticated option, which may be interesting for r = 32, is the baby step,
giant step-like algorithm by Chen and Nguyen [CN12], which runs in time Õ(2r/2).

• Alternatively, for any r up to half of the size of q, one can use Howgrave-Graham’s
algorithm [HG01] based on Coppersmith techniques. It is the fastest option unless r
is very small (a simple implementation in Sage [S+14] runs in about 1.5 ms on our
standard desktop PC with a 512-bit prime q for a any r up to ≈ 160 bits, whereas
exhaustive search already takes over one second for r = 16).

Faults on most iterations. In fact, Howgrave-Graham’s algorithm is especially relevant
if the constant faults do not start at the very first iteration in the CIOS loop. More precisely,
suppose that the fault attacker can force the variables uj to a constant value ũ not for all
j but for j = j0, j0 + 1, . . . , k − 1 for some j0.

Then, the same computation as in the proof of Theorem 3.2 yields the following bound
on S̃q:

ũ · q
2r − 1

− 2rj0 − 2 < S̃q ≤
ũ · q

2r − 1
+ 2rj0 + 1.

It follows that (2r − 1) · S̃ is a close multiple of q with error size . 2r(j0+1).
Now note that Howgrave-Graham’s algorithm [HG01] will recover q given N and a close

multiple with error size at most q1/2−ε. This means that one faulty signature S̃ is enough
to factor N as long as j0 + 1 < k/2, i.e. the constant faults start in the first half of the
CIOS loop.

Moreover, if the faults start even later, a single signature will no longer suffice, but q
can be recovered if several faults are available, by using the generalization of Howgrave-
Graham’s algorithm due to Cohn and Heninger [CH11]. That algorithm is discussed in a
different context in §3.5.
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3.4.2 Attacking other CIOS steps

As in §3.3.2, if Garner recombination is not used or if CIOS(A, 1) is protected against
faults, we can adapt the previous attack to target earlier calls to CIOS and still reveal
the factorization of N . However, the attack requires two faulty signatures with the same
constant fault ũ.

For now, we focus on the Square-and-Multiply LSB algorithm and assume that constant
faults are injected in the evaluations of CIOS(x̄, x̄) and CIOS(A, x̄) during the exponentia-
tion process computing Sq. More precisely, suppose that ui = ũ (i = 0, . . . , k− 1) for these
particular CIOS, and write:

` = 2dlog2 qe−1

√
1− ũ

(2r − 1)2dlog2 qe−2
.

We claim that if the initial value of x̄ is such that ` < x̄ < 2dlog2 qe−1, then the computed
value A of the Square-and-Multiply LSB approaches `.

Indeed, one can see that the output x̃ of each faulty CIOS(x̄, x̄) is roughly:

x̃ ≈ x̄2

2dlog2 qe
+

ũq

2r − 1
− ε · q (ε ∈ {0, 1})

the variable ε being necessary since the result of algorithm 3.1 without the final reduction
(Step 9) is between 0 and 2q. Looking at the sequence vn+1 = f(vn) = av2

n + c with
a = 1

2dlog2 qe
, c = ũq

2r−1 and v0 represents the message in Montgomery representation. This

sequence will tend to a limit ` if ∆ = 1− 4ac > 0, i.e. ũ
2r−1 <

2dlog2 qe−2

q . Our assumption
on the value of v0 implies that f(I) ∈ I. Referring to the graph below, it appears then that
the sequence will tend to ` = min(`1, `2) where `1 and `2 denote the two roots of f(`) = `.

However, we want that this limit be reached before the end of the exponentiation
process. Let us determine the convergence speed of this sequence:

|vn+1 − `| = |f(vn)− f(`)| ≤ |f ′(`)| · |vn − l|
≤ |f ′(`)|n+1 · |v0 − `|

Since ` and v0 are integer values, we look for the condition |f ′(`)|n+1 · |v0 − `| ≤ 1.
Hence, the limit is reached for n such that:

n+ 1 ≥ − log2(|v0 − `|)
log2(|f ′(`)|)

For example, we search a condition in order to have CIOS(x̄, x̄) = ` before the half (|q|/2)
of the exponentiation process. Since log2(|v0− `|) ≈ |q|, this condition is −1

log2(|f ′(`)|) < 1/2,
i.e. |f ′(`)| < 1/4. Moreover, f ′(`) = 2a` = 1 −

√
∆ > 0 leads to 9/16 < ∆ and then to

ũ
2r−1 <

9
16

2dlog2 qe−2

q . We see on this example that the success of the attack will depend on
the ratio q/2dlog2 qe and on the ratio ũ/(2r − 1).

Looking at CIOS(A, x̄), the output Ã is roughly:

Ã ≈ Ax̄

2dlog2 qe
+

ũ

2r − 1
− ε · q (ε ∈ {0, 1})

and the associated sequence is a little more complicated:

g(wn) = wn+1 =

 wn if en+1 = 0

awnvn + c else
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Table 3.2: Success rate of the constant fault attack on successive CIOS steps, when using
Square-and-Multiply LSB exponentiation with random 512-bit primes q and r = 16.

q/2dlog2 qe 0.666 0.696 0.846 0.957

Success rate (%) 36 34.4 26.7 20.4

It is clear that if vn = `, wn will tend to this limit too. We just have to verify that this
sequence reaches ` before the end of the exponentiation process. In fact, both sequences
are linked by the following relation:

wn+1 − vn+1

wn − vn
=

vn

2dlog2 qe

With our assumption, the sequence (vn) is decreasing, and we have:

wdlog2 qe − vdlog2 qe

w0 − v0
<

1

2dlog2 qe

Hence the range between the two sequences constantly decreases during the exponentiation
process and if (vn) tends to ` before the end of the exponentiation process, then (wn) will
reach this value too.

The attack consists on computing two signatures S̃, S̃′ by faulting them with the same
fault ũ. In consequence, with a certain probability depending on the ratios q/2dlog2 qe and
ũ/(2r−1), these two signatures will be equal modulo q. Thus, we recover q as gcd(N, S̃−S̃′).
This attack works with the Square-and-Multiply LSB and Montgomery Ladder algorithms,
but not with the three other exponentiations.
Remark. In Table 3.2, the success rates are even better than expected. In fact, if ∆ < 0,
the value x̄ can enter in a cycle of a few different values. As a consequence, with some
probability, two messages can have the same value Sq. Graphically, that can be explained
by the representation of the function f ◦ · · · ◦ f which is flatter and can intersect the line
representing g(x) = x.

Simulation results are presented in Table 3.2. For various 512-bit primes q, the attack
has been carried out for 1000 pairs of random messages, with a random constant fault ũ for
each pair. It is successful if the two resulting faulty signatures S̃, S̃′ satisfy gcd(N, S̃−S̃′) =
q.

3.5 Zero High-Order Bits Faults

In this section, we consider yet another fault model, in which the fault attacker targets
the very last iteration in the evaluation of CIOS(A, 1) during the computation of Sq. We
assume that the attacker is able to force a certain number h of the highest-order bits of uk−1

to zero, possibly but not necessarily all of them (i.e. 1 ≤ h ≤ r and uk−1 < 2r−h). Then,
while a single faulty signature is typically not sufficient to factor the modulus, multiple
such signatures will be enough if h is not too small.

Theorem 3.3. Let S̃ be a faulty signature obtained in this fault model. Then, S̃ is a close
multiple of q with error size at most 2−h · q + 1, i.e. there exists an integer T such that
|S̃ − qT | ≤ 2−h · q + 1.
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Proof. The iterations numbered 0, 1, . . . , k− 2 in the evaluation of CIOS(A, 1) are all com-
puted correctly. Let a1, a2, . . . , ak−1 be the values of the variable a at the end of these
respective iterations. We have:

a1 =

⌊
0 +A0 + u0 · q

2r

⌋
≤ 0 + (2r − 1) + (2r − 1) · q

2r
≤ q + 1

a2 =

⌊
a1 +A1 + u1 · q

2r

⌋
≤ (q + 1) + (2r − 1) + (2r − 1) · q

2r
≤ q + 1

and it is then easy to see by induction that 0 ≤ ak−1 ≤ q + 1. Then, the computation of
the last iteration is attacked, with a value ũk−1 of u satisfying 0 ≤ ũk−1 ≤ 2r−h− 1. Thus,
the value of a after that iteration becomes:

ak =

⌊
ak−1 +Ak−1 + ũk−1 · q

2r

⌋
≤ (q + 1) + (2r − 1) + (2r−h − 1) · q

2r
≤ q

2h
+ 1.

In particular, ak < q, so that the q-part of the signature S̃q is ak, and hence |S̃q| ≤
2−h · q + 1. Since S̃q = S̃ − qT for T = (t · p) mod p, this concludes the proof. �

Note that exactly the same result still holds if, in addition to uk−1, previous values of
u are attacked in the same fashion as well, so there is no need to synchronize the attack
extremely precisely so as to target only the last iteration.

Now, recovering q from faulty signatures of the form S̃ is a partial approximate common
divisor (PACD) problem, as we know one exact multiple of q, namely N , and several close
multiples, namely the faulty signatures. Since the error size ≈ q/2h is rather large relative
to q, the state-of-the-art algorithm to recover q in that case is the one proposed by Cohn
and Heninger [CH11] using multivariate Coppersmith techniques.

The algorithm by Cohn and Heninger is likely to recover the common divisor q ≈ N1/2

given ` close multiples S̃(1), . . . , S̃(`) provided that the error size is significantly less than
N (1/2)1+1/` . Thus, we should have:

log2 q − h .
(

1

2

)1+1/`

log2N ≈ 21/` · log2 q.

Hence, if the faults cancel the top h bits of uk−1, we need ` of them to factor the
modulus, where:

` & − 1

log2

(
1− h

log2 q

) . (3.3)

In practice, if a few more faults can be collected, it is probably preferable to simply use
the linear case of the Cohn-Heninger attack (the case t = k = 1 in their paper [CH11]),
since it is much easier to implement (as it requires only linear algebra rather than Gröbner
bases) and involves lattice reduction in a lattice of small dimension that is straightforward

37



3. Attacking RSA–CRT Sign. with Faults on Montgomery Multiplication

Table 3.3: Theoretical minimum number ` of zero higher-order h-bit faulty signatures
required to factor a balanced 1024-bit RSA modulus N using the general Cohn-Heninger
attack or the simplified linear one.

Number h of zero top bits 48 40 32 24 16

Minimum ` with the general attack 8 9 11 15 22

Minimum ` with the linear attack 11 13 16 22 32

to construct. More precisely, reducing the lattice L generated by the rows of the following
matrix: 

B −S̃(1)

. . .
...

B −S̃(`)

N


where B = 2kr−h, gives a lattice basis consisting of affine forms the first ` of which vanish on
the vector of “error values”

(
S̃

(1)
q /B, . . . , S̃

(`)
q /B

)
if ` is large enough. More precisely, they

vanish on this vector modulo q, and also do over the integers provided that their coefficients
are much smaller than q. If we assume that L behaves like a random lattice, the length of
vectors in the reduced basis should be roughly det(L)1/dim(L) = (B` ·N)1/(`+1). This gives
the condition:

B` ·N � q`+1

`(log2 q − h) + log2N . (`+ 1) log2 q.

Hence, this method should recover the error vector and thus make it possible to factor N
provided that:

` &
log2 q

h
(3.4)

which is always a worse bound than (3.3) but usually not by a very large margin. Table 3.3
gives the theoretical number of faulty signatures required to factor N for various values of
h, both in the general attack by Cohn and Heninger and in the simplified linear case.

We carried out a simulation of the linear version of the attack on a 1024-bit modulus
N with various values of h, and found that it works very well in practice with a number
of faulty signatures consistent with the theoretical minimum. The results are collected in
Table 3.4. The attack is also quite fast: a naïve implementation in Sage runs in a fraction
of a second on a standard PC.

3.6 Fault Models

In this section we discuss how realistic the setup of the attacks described above can be.
In principle, all the RSA–CRT implementations using Montgomery multiplication may be
vulnerable, but we have to note that the fault setup (and how realistic it is) depends heavily
on implementation choices, since many variations around the algorithm from Figure 3.1
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Table 3.4: Experimental success rate of the simplified (linear) Cohn-Heninger attack with
` faulty signatures when N is a balanced 1024-bit RSA modulus. Timings are given for
our Sage implementation on a single core of a Core 2 CPU at 3 GHz.

Number ` of faulty signatures 11 12 13 14 15 16 17 18

Success rate with h = 48 (%) 23 100 100 100 100 100 100 100

Success rate with h = 40 (%) 0 0 2 100 100 100 100 100

Success rate with h = 32 (%) 0 0 0 0 0 0 99 100

Average CPU time (ms) 33 35 38 41 45 49 54 59

have been proposed in recent literature. After a discussion of the characteristics of the tools
needed to get the desired effects, we focus on several implementation proposals [TcKK99,
MMM04, HGKEG08, NMSiK01, Suz07, MSPV07, CELL10], chosen for their relevance,
and discuss whether our fault model is realistic in those settings.

3.6.1 Characteristics of the perturbation tool

First, all the perturbations needed to carry out our attacks need to be controlled and local
to some gates of the chip. Therefore, the attacker needs to identify the localization of the
vulnerable gates and registers. The null fault attacks described in §3.3 need either a q′ value
set to 0, or multiple consecutive faults in Step 6 of the main loop of CIOS(A, 1) or during
multiple consecutive CIOS. The attacks described in §3.4 also need these multiple consecu-
tive faults. Considering that state-of-art secure micro-controllers embed desynchronization
countermeasures such as clock jitters and idle cycles, if the target of the perturbation is
some shared logic with other treatments (like in the ALU of a CPU), the fault must be
accurately space and time controlled, and the effects must be repeatable as well. Identifi-
cation of the good cycles for injecting the perturbation may be a very difficult task, and
our attacks seem to be irrelevant. The only exception may be the null fault of §3.3, if the
fault is injected when the q′ register is loaded.

Nevertheless, many secure microcontrollers embed an isolated modular arithmetic ac-
celeration coprocessor. A large proportion of them specifically use the Montgomery multi-
plication CIOS algorithm (or one of its described variants [KA96]). Therefore, if the q′ or
the uj value is isolated in a specific small size register, a unique long duration perturbation
can be sufficient for our attack to succeed. The duration of the perturbation varies with
the implementation choices and can vary from one cycle to log2 q, which does not exceed
a hundred microseconds on actual chips. To get this kind of effect, laser diodes are the
best-suited tool, since the duration of the spot is completely controlled by the attacker
[Sko10].

3.6.2 Analysis of classical implementations of the Montgomery multipli-
cation

The Montgomery coprocessors proposed in the literature can be divided in 3 different
categories:
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Figure 3.2: Systolic Montgomery Multiplier of [TcKK99] and potential fault target.

• the first category [TcKK99, MMM04, HGKEG08] contains variations on the Tenca
and Koç Multiple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM)
[TcKK99], which can be seen as a CIOS algorithm with r = 1. The characteristic of
these implementations is that they use no multiplier architecture, and are therefore
really suitable for constrained ASIC implementations.

• the second category [Suz07, MSPV07] is an intermediate where r is a classical size
for embedded architecture, such as 8, 16 or 32 bits, or even 36 bits if we consider
FPGA architectures. These designs are better-suited for the FPGA setting, since
these technologies embed very powerful built-in multiplier blocks. Nevertheless they
can also be used in ASIC design for intermediate area/latency trade-offs.

• finally, the last category [NMSiK01, CELL10] proposes a version of CIOS/SOS with
only one loop, implying that r ≥ dlog2 qe. The main difficulty of these implementation
techniques is to deal with the very large multiplications they require (one r × r and
two half r × r multiplications per CIOS). For that purpose they use interpolation
techniques, like Karatsuba in [CELL10] or the Residue Number System (RNS) in
[NMSiK01]. These implementations are designed to achieve the shortest latency, and
are therefore area consuming.

Architectures based on MWR2MM: r = 1

In this kind of architecture, q′ cannot be manipulated, since it is always equal to 1, so no
wire or register carries its value. On the other hand, the value of uj is computed at every
loop of the CIOS, and since it is only one bit, a simple shot on the logic driving the register
during the final multiplication CIOS(A, 1) is sufficient to get an exploitable result (uj = 0
corresponds to the null fault of §3.3, and uj = 1 to the constant fault of §3.4).

The first proposal [TcKK99] is a fully systolic1 array of processing elements (PE) exe-
cuting consecutively line 6 of the CIOS algorithm in one cycle, and line 7 in k cycles from
LSB to MSB. Figure 3.2 proposes an overview of the architecture. Each PE consists of a
w-word carry save adder, able to compute a w word addition and to keep the carry for the
next cycle. In the figure, T (j) stands for the j-th least significant w word of T .

At each clock cycle, the PE presents the computed result ai(j) to the next one, and
the value ui is kept in the PE for the computation of the next word ai(j + 1). The

1Meaning that all the PEs are the same.
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Figure 3.3: Overview of the architecture from [HGKEG08] and potential fault target.

value of ui is computed before the word ai(0) is presented, and then is kept in each PE
during the whole computation of ai in a register. After a complete multiplication, the
result an is transformed from a carry save representation to binary thanks to the CS to
binary converter. This architecture has the great advantage of being completely scalable.
Whatever the number of PEs and the size ofM , this architecture can compute the expected
result as long as the RAM are correctly dimensioned.

To achieve our attack, the register keeping ui can be targeted, but every PE must be
targeted simultaneously in order to get the correct result. Therefore it is more interesting
to target the control logic responsible for the sequencing of the register loading, since all
the PEs are connected.

In [MMM04], the authors manage to get rid of the CS to binary converter by redesigning
the CS adder of every PE. The vulnerability to our attack is therefore the same, since the
redesign does not affect the targeted area.

Huang et al. [HGKEG08] proposed a new version of the data dependency in the
MWR2MM algorithm and rearranged the architecture of [TcKK99], in a semi systolic form.
Figure 3.3 gives an overview of the architecture. In this architecture, the intermediate value
ai is manipulated in carry save format (ai = ci + si). A specific PE, PE0 is specialized
in generating the ui values at each cycle, while the j-th PE is in charge of computing the
sequence ai(j). The scalability is lost in exchange for a better time/area trade-off.

This architecture is very vulnerable to our attacks, since a simple n-cycle long shot on
the right logic in PE0 (see Figure 3.3) is sufficient to get the expected result.

According to the authors, the design works at 100 MHz on their target platform (a
Xilinx Virtex II FPGA), therefore the duration of the perturbation is at least 10 µs for
a 1024 bits multiplication (2048 bits RSA) if the Garner recombination is used (using
the attack from §3.3.1 or §3.4.1). If classical CRT reconstruction is used, according to
Table 3.1, 200 µs will be enough for a null fault.

As a conclusion we can see that this kind of implementation is very vulnerable, since
the setup of the attack is quite simple.

High radix architecture: 1 < r < dlog2 qe

In this type of implementation choice the value q′ = −q−1 mod 2r is computed in a r-bit
register, unless the quotient pipelining approach [Oru95] is used. In all the implementa-
tions, the value q′ is an r-bit register and can be the target of the attack.
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Figure 3.4: Overview of the architecture from [MSPV07] and potential fault target.

For example, the implementation of [MSPV07] is described in Figure 3.4. It relies on
the coordinated usage of multiplier blocks of the Xilinx Virtex II together with specifically
designed carry save adders. The CIOS algorithm from Figure 3.1 is completely respected in
this implementation. The values uj can be the target of any fault described in this chapter,
but it may be easier to put once for all the q′ register to 0, with a 100% success rate for the
attack if properly carried out. Another implementation is mentioned in [MSPV07] with a
four-deep pipeline, but it suffers from the same vulnerability.

On the other hand, the attack may be more difficult to achieve on the architecture
described in [Suz07, Figure 4]. First, it uses quotient determination [Oru95], and therefore
does not need to store q′ anywhere. Second, the multiplier in charge of computing uj is
shared for all the Montgomery computation. In order to carry out the attack of §3.4 on
this architecture, the attacker has to determine the specific cycles where uj is computed
to generate a perturbation. For that particular design, the attacks seem out of reach.

Full radix architecture: r ≥ dlog2 qe

In this kind of implementation, a single round is enough to compute the Montgomery
algorithm. This implementation choice concentrates all the complexity in the design of
a log2 q × log2 q multiplier, used once in full during the multiplication process and twice
partially during the Montgomery reduction. To reduce the full complexity of the big mul-

��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��������������������������������������������������������������������

cox row1 row2

in main bus

rown

main bus

Memory

accumulator

Modular
multiplier main bus

Figure 3.5: Overview of the architecture from [NMSiK01]. The values of q′ and ui are
represented by dlog2 qe bits or more, but operations on them require a single clock cycle.
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tiplication, interpolation techniques are used. In [CELL10], a classical nested Karatsuba
multiplication is used, whereas [NMSiK01] relies on RNS. Both can be seen as derived from
the Lagrange interpolation, with different bases.

In these architectures, a specific laser shot must cancel all the u0 or q′ at the same time
to produce a null fault. To have a chance, a better solution is to use non-invasive attacks
(in the sense of [JcKKP03]), such as power or clock glitches. Indeed u0 or q′ are fully
manipulated on the same clock cycle (or in very few), therefore it may be more practical
to make the sequencer miss an instruction instead of aiming directly at the registers.

The zero high-order bits fault attack from §3.5 is also an option. In the architecture
of [CELL10], the most significant bits of u0 can be set to 0 with a focused shot. On the
other hand, the architecture of [NMSiK01] is less vulnerable to this attack, since the RNS
representation makes it impractical to modify the significant bits of u0 (see Figure 3.5).
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Chapter 4

Synthesis of Fault Attacks on
Cryptographic Implementations

4.1 Introduction

The main difference between the initial attack of Boneh, DeMillo and Lipton [BDL97]
and those we propose in Chapter 3 lies in their level of description of RSA-CRT: whereas
Boneh et al. consider a high-level algorithmic description in which modular exponentia-
tion is treated abstractly, we consider reasonably detailed implementations, going down to
algorithmic descriptions of modular multiplication. This example provides strong evidence
that analyzing implementations rather than algorithmic descriptions can lead to the dis-
covery of interesting attacks. However, it also highlights a number of difficulties with this
approach:

1. the number of faulted implementations grows exponentially in the length of the
original program, in particular if multiple faults are considered;

2. some fault attacks require to tamper with some (but not all) loop iterations, or to
add or remove some loop iterations; hence, the number of faulted implementations cannot
even be bounded solely based on the length of the original program;

3. analyzing the effects of faults becomes very involved and error-prone, in particular
for programs with loops;

4. there exist multiple implementations of basic arithmetic computations, requiring to
repeat the analysis for each of them;

5. there might exist numerous countermeasures against a fault attack, requiring to
repeat the analysis for each of the amended implementations.

In this chapter we propose, implement, and evaluate a new approach for finding fault
attacks against cryptographic implementations. Our approach is based on identifying
implementation-independent mathematical properties we call fault conditions. We choose
them so that it is possible to recover secret data purely by computing on sufficiently many
data points that satisfy a fault condition. Fault conditions capture the essence of a large
number of attacks from the literature, including lattice-based attacks on RSA. Moreover,
they provide a basis for discovering automatically new attacks: using fault conditions, we
specify the problem of finding faulted implementations as a program synthesis problem.
Using a specialized form of program synthesis, we discover multiple faulted implementa-
tions on RSA that realize the fault conditions, and hence lead to fault attacks. Several of
the attacks found by our tool are new, and of independent interest.

This work is to be presented at ACM CCS 2014 [BDF+14b].
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Table 4.1: Fault conditions for RSA signatures. The value of ε depends on the size n of
the modulus and is a multiple of the words size.

Informal description Fault condition Attack technique

S is a multiple of p (Prop. 4.1) S = 0 mod p ∧ S 6= 0 mod q GCD computation

S is an almost full linear combination
of p and q (Prop. 4.2)

∃α, β. S = α p+ β q ∧ α, β < 2
n
2
−ε Orthogonal lattices

S is an almost full affine transform of p
or q (Prop. 4.3)

∃α, β. S = α p+ β ∧ α < q, β < 2n/2−ε Orthogonal lattices

4.1.1 Our contributions

The thesis of this chapter is that it is beneficial to develop and implement rigorous method-
ologies for discovering fault attacks on cryptographic implementations. To support our
thesis, we propose and validate experimentally a principled, tool supported approach for
discovering fault attacks on cryptographic implementations. Our approach relies on two
broad contributions:

1. identifying fault conditions, a novel concept that captures the essence of fault attacks
in a logical, implementation independent setting;

2. applying a form of program synthesis on concrete cryptographic implementations to
automatically discover faulted implementations that realize fault conditions and lead to
attacks.
A third, more practical contribution is an evaluation of our approach on implementations
of RSA. During the process, we discover several faulted implementations, some of which
lead to new attacks of independent interest. We elaborate on these points below.

Fault conditions

The first contribution (Section 4.2) is of methodological nature, and rests on the intro-
duction of fault conditions. Informally, fault conditions are implementation-independent
mathematical properties, specific to a cryptographic system, which capture sufficient con-
ditions under which an attacker can launch a successful attack. Consider, for instance,
the case of RSA signatures with public RSA modulus N = pq of length n. Any adversary
with knowledge of a value S that is multiple of p but not multiple of q can obtain p by
performing a simple GCD computation, and then q by division. This is captured by the
fault condition

S : S = 0 mod p ∧ S 6= 0 mod q

Table 4.1 summarizes some relevant instances of fault conditions for RSA signatures. For
each of the fault conditions we consider, we exhibit an attack for retrieving the secret key.
Broadly speaking, the attacks fall into two categories. The first one encompasses attacks
that perform an elementary computation from a value satisfying the fault condition. The
second one covers attacks that require many values that satisfy the fault condition, and
involve more complex computations, typically based on lattice reductions. For the latter,
we implement the attacks in a computer algebra system, and we experimentally validate
their effectiveness for different choices of parameters.
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Fault Models and Policies

The literature offers a wide range of fault models, that affect both data flow (for example
the null fault model in which integer variables can be set to a null value) and control flow
(for example, the instruction skip fault model, where an instruction can be skipped). We
consider various fault policies, that subsume a wide range of such fault model and provide
fine-grained specifications of the faults that can be performed on implementations. They
model faults using replacement clauses of the form (x, e) where x is a variable and e is an
expression, or (c, c′), where c and c′ are commands. These clauses respectively state that
it is possible to replace x by e, and c by c′ in the execution of the program.

Automated synthesis of faulted implementations

Identifying fault conditions that allow efficient attacks to exist is a manual process that
requires cryptographic expertise, and some good understanding of the mathematical tools
available for cryptanalysis. The significant pay-off of fault conditions is that the process
of finding complying faulted implementations can be automated. Our second contribution
(Section 4.3) is a fully automated method for discovering faulted implementations that
verify the fault condition. Our method can be seen as an instance of program synthesis,
an area that is currently undergoing rapid and significant progress (see §4.1.2). Broadly
construed, the goal of program synthesis is to find, given a specification φ (for instance,
φ might capture the input/output behavior of a program), a set of programs that satisfy
φ. Because synthesis is computationally expensive, there exist many specialized forms of
program synthesis that restrict the search space using non-functional requirements or by
providing a partial description of the desired programs. We also specialize our synthesis
algorithm to keep it computationally reasonable.

Specifically, our algorithm takes as input a fault condition φ, an implementation c, and
searches for all faulted implementations of c that satisfy φ. The search is constrained by
two additional inputs. The first additional input is a fault policy; the second, optional,
input is an upper bound on the number of faults we allow.

Our algorithm exploits many of the standard techniques used in other approaches to
program synthesis, including weakest preconditions and invariant generation, and inter-
faces with SMT solvers for checking the validity of first-order formulae. In addition, our
algorithm relies on an automated prover to simplify the intermediate conditions generated
by weakest precondition computations; the prover is specialized to formulae that combine
arithmetic inequalities and size constraints; such formulae include many fault conditions,
including all those we explore in this chapter (see Table 4.1). On the other hand, our
algorithm noticeably departs from recent works on program synthesis by its simplicity:
indeed, physical limits on the number and nature of faults sufficiently constrain the search
space for faulted implementations, allowing us to dispense from using more elaborate tech-
niques that are required to manage very large search spaces (see §4.1.2). Experimental
results, which we report below, demonstrate that our synthesis algorithm performs well on
standard examples.

Application: old and new attacks on RSA

The third contribution of our work is a practical evaluation of our approach on RSA signa-
tures. We carry the evaluation using the computer algebra system SAGE, and the EasyCrypt
tool. Concretely, we use the former for estimating the effectiveness of lattice-based attacks
for different fault conditions, and the latter (or more precisely an implementation of our
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synthesis algorithm built on top of EasyCrypt) for synthesizing faulted implementations of
RSA signatures. During the process, we rediscover many known attacks; moreover, we also
discover many new attacks, several of which are efficient attacks of independent interest.
We summarize our main findings below:

1. For RSA–CRT signatures based on Garner’s recombination, we recover the basic and
most efficient attack of Chapter 3 which injects a null fault in the last call to CIOS during
the computation of modular exponentiation. We also discover a new efficient attack, based
on forcing additional iterations in the last call to CIOS. This attack yields almost full affine
transforms of p or q, a small number of which is sufficient to recover the factorization of
the RSA modulus using orthognal lattices or Simultaneous Diophantian Approximations
as in [FMP03, Lag82].

2. For RSA–CRT signatures based on the usual CRT recombination, we discover a new
fault attack; to our best knowledge, this is the first efficient fault attack that works with
randomized padding. The attack is based on forcing additional iterations in the last call
to CIOS and yields almost full linear combinations of p and q. From a small number of
such faulty signatures, the factorization of the RSA modulus can easily be recovered using
orthogonal lattices.

4.1.2 Related work

Formal methods for cryptography. Our work is more closely related to a recent series
of articles that apply formal methods to fault attacks. However, our emphasis is on finding
fault attacks against implementations, whereas other works focus on proving absence of
fault attacks against algorithmic descriptions or implementations. Two independent efforts
by Christofi, Chetali, Goubin and Vigilant [CCGV13] and by Rauzy and Guilley [RG13]
prove the absence of fault attacks against RSA-CRT with Vigilant countermeasure. In a
similar spirit, Moro et al. [MHER14] propose an approach based on redundancy to protect
implementations against instruction skip attacks. The next chapter is also strongly related
to formal methods for cryptography and more details about previous works will be given.

Another recent series of papers use type systems and SMT solvers for verifying whether
cryptographic implementations are correctly masked [MOPT12, BRNI13, EWS14]; in par-
ticular, Eldib and Wang [EW14] have developed a method for synthesis of masking coun-
termeasures.

Synthesis. Program synthesis is an active area of research that is undergoing rapid and
significant progress, thanks to novel and practically achievable approaches, and to advances
in SMT solvers. In contrast to the early works that pursue deductive program synthesis,
where the program is extracted from the proof of a theorem, typically a ∀∃ statement,
most of the current work focuses on inductive program synthesis, and uses SMT solvers.
Many works on inductive synthesis, notably early ones, have focused on loop-free pro-
grams [SLRBE05, GJTV11, JGST10]. Other recent works allow synthezing programs with
loops; for instance, Srivastava, Gulwani and Foster [SGF10] introduce proof-theoretic syn-
thesis, a variant of synthesis that combines inference of loop invariants and synthesis of
loop-free programs. However, this approach is limited to programs whose loop invariants
fall into a limited class of assertions. Syntax-guided program synthesis [ABJ+13] is a re-
cently proposed framework that subsumes many of the previous approaches to synthesis.
One ambition of this project is to develop a framework for testing and comparing differ-
ent implementations, and in particular to provide a common input format inspired from
SMT-LIB for synthesis tools. In the future, it would be interesting to suggest automated
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discovery of fault attacks as a challenge for syntax-guided synthesis competitions.
Our approach shares many similarities with program repair, an instance of program

synthesis that aims at automatically eliminating deficiencies in code. Informally, a program
repair algorithm takes as input a program p and a property φ that must be satisfied by the
output of p, and computes by small successive modifications of p a program p′ that satisfies
φ. There exist many approaches to program repair; some of them are based on genetic
algorithms [GNFW12], others are based on code contracts [WPF+10]. We refer the reader
to a recent overview [GFW13] for more information. The connection with program repair
is very direct; indeed, one can even view faulted implementations as a form of program
repair for the attacker. However, the techniques used in program repair are not immediately
applicable to finding fault attacks on cryptographic implementations.

4.2 Fault conditions

The primary goal of fault attacks is to induce outputs which satisfy an implementation-
independent, mathematical property that guarantees that the secret key or some other
confidential data can be efficiently recovered. Our approach critically relies on providing a
precise formalization of these mathematical conditions, using fault conditions. Informally,
a fault condition is a statement of the form

v1, . . . , vn : φ s1, . . . , sk

where φ is a logical formula that depend on v1, . . . , vn, and such that an attacker with
access to sufficiently many distinct tuples of values (v1, . . . , vn) satisfying φ is able to
recover secrets s1, . . . , sk (typically parameters of the cryptosystem) with high probability.
More formally, φ is a first-order formula over some first-order theory T , for instance modular
arithmetic, and moreover all variables that appear free in φ but not on the left of the colon
can only denote parameters of the cryptosystem.

In this section, we introduce several fault conditions for RSA and show how, given
sufficiently many satisfying values, one can efficiently retrieve either the factorization of
the modulus. Many of these conditions appear implicitly in some variant form in the
literature.

Convention. All the conditions we consider are of the form v1, . . . , vn : φ p, q. Since
the secret values s1, . . . , sk are determined by the case study, from now on we simply write
v1, . . . , vn : φ.

4.2.1 Background on lattices

Lattice reduction is a powerful tool that is extensively used in the cryptanalysis of public-
key cryptosystems. In this section, we provide a brief introduction to some key definitions
and algorithms that are used in the chapter.

A lattice L is a subgroup of Zn, i.e. a non-empty set of vectors closed under addition
and inverse. Every lattice L has a basis, i.e. a finite set of linearly independent vectors that
generate all elements in L. Conversely, every set (b1, . . . , b`) of linearly independent vectors
over Zn generate a lattice L = 〈b1, . . . , b`〉 consisting of all integer linear combinations of
the bi’s.

A central problem with lattices is to compute nearly reduced bases, i.e. bases that
consist of reasonably short and almost orthogonal vectors. There exist many efficient algo-
rithms for performing lattice reductions, including the celebrated Lenstra-Lenstra-Lovasz
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(LLL) algorithm [LLL82] and Block Korkin-Zolotarev (BKZ) variants [SE94]. Lattice re-
duction is an essential tool in cryptanalysis, and we use it extensively in our attacks. For
our purposes, it is sufficient to know that the norm of the reduced vectors for a lattice L of
dimension ` output by LLL can be approximated by α

√
`·(detL)1/`. Hadamard’s inequality

allows us to upper bound detL by
∏`
i=1 ‖bi‖. In theory, LLL outputs in polynomial-time a

reduced basis and each vector of the base is related to the shortest ones by an approxima-
tion factor which is exponential in the dimension. BKZ algorithms allow different tradeoff
between the quality of the approximation and the time complexity. In practice, LLL im-
plementations are very fast and when the dimension is much less than 200 [S+14], it is
expected that LLL produces shorter vectors than other algorithms since its approximation
factor is α ≈ 1.01, as shown experimentally in [GN08]. In larger dimensions, the approx-
imation factor increases (unless we greatly increase the time complexity) and the success
probability of our attack is reduced.

To any lattice L in Zn is associated its orthogonal lattice L⊥, defined as the set of
all vectors in Zn that are orthogonal to all vectors of L. The key properties of L⊥ are:
detL⊥ = detL and dimL⊥ = n− dimL. Consequently, orthogonal lattices are interesting
when their dimension is very small. Indeed, when the dimension of L⊥ is higher than that
of the original lattice, the bounds on the norm of the vectors in reduced bases imply that
the norm of the shortest vector in L⊥ is smaller than the norm of the shortest vector in
L. It is possible to reduce the computation of the orthogonal lattice to lattice reduction in
polynomial time [NS00]. Orthogonal lattices were introduced in cryptanalysis by Nguyen
and Stern in [NS97], and have since found many applications [NS00].

Finding the Shortest non-zero Vector Problem of a lattice (SVP) is a well-known NP-
hard problem, that is only approximated by LLL. When the dimension is small and α ≈ 1,
it is likely that LLL solves this problem. In the case of orthogonal lattices, we need good
properties for many reduced vectors and we assume that LLL solves this problem. In the
reduced bases output by LLL, vectors are ordered according to their norm, so the last
vector of the basis is also the longest. Finally, finding the closest vector of a lattice to some
point (CVP) is another NP-hard problem. There exist specific algorithms to solve this
problem, but in practice, we use the embedded technique, which is a heuristic reduction
from the CVP to the SVP problem.

4.2.2 Fault conditions for RSA signatures

Throughout this section, we assume that N is an RSA modulus of size n, product of two
large primes p and q.

Finding multiples of p or q

Our first fault condition considers faulted signatures that are a multiple of p or q. This
fault condition enables attacks on RSA by simple gcd computations.

Proposition 4.1. Given a single value S satisfying the condition:

S : S ≡ 0 mod p ∧ S 6≡ 0 mod q,

one can efficiently factor the RSA modulus N . Obviously the same result holds by switching
p and q.

Proof. One can retrieve the factorization of N by performing a simple gcd computation
between S and N .

�
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This fault condition is implicit for instance in Chapter 3.

Finding “almost full” linear combinations of p and q

Our second fault condition considers faulted signatures that are linear combinations of p
and q with almost full coefficients. A variant of this fault condition is implicit in [BNNT11a].

Proposition 4.2. Assume that N is a balanced RSA modulus, i.e. p, q such that p, q <
2n/2. Given a sufficient number of values that satisfy the fault condition:

S : ∃x, y. S = x · p+ y · q ∧ x, y < 2n/2−ε,

one can efficiently factor the RSA modulus N . The value ε depends on n and impacts the
efficiency and success probability of the algorithm to recover the factorization.

Proof. Assume given vectors S = (S1, · · · , S`), x = (x1, · · · , x`) and y = (y1, · · · , y`) such
that S1 . . . S` are pairwise distinct and Si = xi ·p+yi ·q with xi, yi < 2n/2−ε for i = 1, . . . , `,
so ‖x‖, ‖y‖ <

√
`2n/2−ε.

First, note that knowledge of x and y is sufficient to factorN since we can write a system
of two linear equations using S1 and S2 in two variables p and q. However, it is not possible
to gain knowledge of x and y directly and we will use orthogonal lattices to recover them,
along similar lines as [BNNT11a]. The idea is that the orthogonal lattice of S contains
`−2 vectors that are also orthogonal to x and y. More precisely, S⊥ = {x,y}⊥⊕u, where
⊕ denotes here the direct sum of lattices and u is a one dimensional lattice generated by
this vector since dimension of S⊥ is `− 1. It is easy to compute the orthogonal lattice of
S in polynomial-time using LLL. In the output basis, we can identify the direction u by
using some conditions on the reduced vector size thanks to the structure of the vectors in
{x,y}⊥ that we detailed later. By removing this direction from a reduced basis of (S)⊥,
we get a basis of {x,y}⊥. Finally, by computing the orthogonal lattice of {x,y}⊥, we
obtain a reduced basis {x′,y′} of the lattice {x,y}.

Note that x and y are short vectors (we have an upper bound on them). Of course,
there is no reason that they are the shortest vectors in the lattice, and x′ and y′ are likely
different from them, so we are not done yet. However, we know that x and y are not
too far from the reduced basis (we can estimate the size of the shortest vectors in {x,y}).
Therefore, we can enumerate all short vectors in the 2-dimensional lattice L′ = {x′,y′}
to recover x and y. The Gaussian heuristic allows us to estimate the number of vectors
having a prescribed length and in our case, we only have to test a constant number of
vectors. Indeed, vol(L′) ≈ ‖x‖ · ‖y‖ ≈ 2n−2ε and the number of lattice points of norm
shorter than d =

√
`2n/2−ε in L′ is d2/vol(L′) ≈ ` since the lattice L′ is a two-dimensional

lattice.
The technical part consists in proving that we can identify u in the reduced basis of

S⊥. This vector satisfies the condition

p · 〈u,x〉+ q · 〈u,y〉 = 0

since it is in S⊥, with 〈u,x〉 and 〈u,y〉 are non zero, otherwise u would also be orthogonal
to x and y. Consequently, the integers 〈u,x〉 and 〈u,y〉 satisfy p · a + q · b = 0 in the
integer unknown a and b. Then, (〈u,x〉, 〈u,y〉) is in the orthogonal lattice of (p, q), which
is a one-dimensional lattice. It is easy to see that the smallest non-zero vector is ±(q,−p)
and consequently, any non-zero vector has a length larger than 2n/2, and in particular this
implies that |〈u,x〉|, |〈u,y〉| > 2n/2−1. This allows us to derive a lower bound on ‖u‖ using
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Table 4.2: Minimal number of signatures ` to be faulted depending on the bitsize of xi, yi.
Almost full linear combinations of p and q.

p, q 512 (bits) 1024 (bits)

xi, yi 464 472 480 496 968 976 984 992

` 22 26 33 74 37 44 53 67

the Cauchy-Schwarz inequality: ‖u‖ ≥ 2ε/(2
√
`). Finally, to recover the vector u in the

reduced basis of S⊥ which is not in {x,y}⊥, we remove vectors which have a length larger
than 2ε/(2

√
`). In order to have only one such vector, we force vectors of the reduced basis

of {x,y}⊥ to have length shorter than this bound, and thus u will be easily and uniquely
distinguished. It is easy to estimate the size of the vectors in the lattice {x,y}⊥ using
its dimension ` − 2 and volume, which can be upper bounded by Hadamard’s inequality
to ‖x‖ · ‖y‖ ≈ 2n−2ε. Consequently, if

√
`(2n−2ε)1/`−2 < 2ε/(2

√
`), then u will be the

largest vector in the reduced basis of S⊥ and in practice it suffices to remove b`−1 from
the reduced basis since the output vectors of LLL are in increasing order.

�

Relating this fault condition with [BNNT11a, BNNT11b] In [BNNT11a], the
authors force random faults on the modulus during CRT recombination and obtain a fault
condition of the following form.

Ŝ : ∃α, β. Ŝ = α · p(p−1 mod q) + β · q(q−1 mod p) ∧ α, β < 2n/2.

If our condition is similar to theirs, the algorithmic problem ours captures is more
general. Indeed, in the analysis, the crucial parameter is the ratio between the size of p, q
and the size of α, β in the relation S = α · p+ β · q. The larger this ratio is, the easier the
attack is since the target vector, called u above is larger. In our case, the size of this vector
is close to 2ε/

√
` while [BNNT11a] consider a much larger one (their ratio is

√
N/`).

Finding “almost full” affine transforms of p or q

Our third fault condition considers faulted signatures that are almost full affine transforms
of p or q. This condition is implicit in Chapter 3.

Proposition 4.3. Assume that N is a balanced RSA modulus, i.e. p, q such that p, q <
2n/2. Given a sufficient number of values that satisfy the fault condition:

S : ∃x, y. S = x · p+ y ∧ x < q, |y| < 2n/2−ε,

one can efficiently factor the RSA modulus N . The value ε depends on n and impacts the
efficiency and success probability of the algorithm to recover the factorization.

Proof. Assume given vectors S = (S1, · · · , S`), x = (x1, · · · , x`) and y = (y1, · · · , y`) such
that S1 . . . S` are pairwise distinct and Si = xi · p + yi with xi < q, and |yi| < 2n/2−ε for
i = 1, · · · , `.

The proof is similar to the previous case, but here we are looking for the y vector since
it is sufficient to recover p by computing gcd(N,S1 − y1) and it is the only short vector as
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Table 4.3: Minimal number of signatures ` to be faulted depending on the bitsize of yi.
Almost full affine transforms of p or q.

p, q 512 (bits) 1024 (bits)

yi 464 472 480 496 968 976 984 992

` 23 28 35 77 39 46 56 71

x is as large as the unknown p. Consequently, we expect to recover y as the shortest vector
x′ in {x′,y′}. The Gaussian heuristic allows us to conclude that y will be the shortest
since the volume of L′ is ‖x‖ · ‖y‖ < 2n−ε using Hadamard and so ‖x′‖ ≈

√
22(n−ε)/2.

Consequently, ‖y‖ <
√
`2n/2−ε < ‖x′‖ for ` < 2ε+1.

The technical part is a little different as the condition for u is now:

p · 〈u,x〉+ 〈u,y〉 = 0

with 〈u,x〉 and 〈u,y〉 are non zero, otherwise u would also be orthogonal to x and y.
Consequently, the integers 〈u,x〉 and 〈u,y〉 satisfy p · a+ b = 0 in the integer unknown a
and b. Then, (〈u,x〉, 〈u,y〉) is in the orthogonal lattice of (p, 1), which is a one-dimensional
lattice. It is easy to see that the smallest non-zero vector is ±(1,−p) which implies
|〈u,y〉| > 2n/2−1. As before, we can derive a lower bound on ‖u‖ using Cauchy-Schwarz,
‖u‖ ≥ 2ε/(2

√
`). The end of the proof is the same except that since ‖x‖ <

√
`2n/2,

vol(L′) < 2n−ε, and so we expect to recover u provided
√
`(2n−ε)1/`−2 < 2ε/(2

√
`).

�

Implementation and evaluation of key recovery

Here, we describe how the attacks outlined in the previous paragraphs can be performed.
Moreover, we estimate the number of signatures required for recovering the factorization.

Implementation. We use the SAGE computer algebra system [S+14] to implement the
attacks. The attacks take as input a sufficient number of signatures S1, · · · , S` satisfy-
ing the fault condition given in Proposition 4.2 or Proposition 4.3. The implementation
heuristically recovers the factorization of the RSA modulus N as follows.

• Compute an LLL-reduced basis {b1, · · · , b`−1} of the lattice (S1, · · · , S`)⊥. This is
done by applying LLL to the lattice in Z1+` generated by the rows of the following
matrix: 

κS1 1 0
...

. . .

κS` 0 1


where κ is a suitably large constant, and removing the first component of each re-
sulting vector [NS97].
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• Compute an LLL-reduced basis {x′, y′} of the orthogonal lattice {b1, · · · , b`−2}⊥.
Again, this is done by applying LLL to the lattice in Z`−2+` generated by the rows
of 

κ′b1,1 · · · κ′b`−2,1 1 0
...

...
. . .

κ′b1,` · · · κ′b`−2,1 0 1


and keeping the last ` components of each resulting vector.

• For all the linear combinations z of x′ and y′ that satisfy the size constraints, compute
the test gcd(z1S2 − z2S1, N) or gcd(y1 − S1, N), depending on the fault condition
considered, which allows to recover the prime factors p and q.

Evaluation. We use our SAGE implementation to evaluate the number of signatures
required for the attacks to succeed. The results are given in Tables 4.2 and 4.3. We see
for instance that 35 values are required to retrieve the factorization of N when p and q are
1024-bit and the size of the xis and yis have size 960, i.e. 64 bits shorter than the full size.

4.2.3 Discussion

All the fault conditions considered above are intended to predicate over the output of
faulted signatures. However, fault conditions may also relate outputs of faulted and valid
signatures, or inputs and outputs of signatures. Examples of such fault conditions are
given by the original Bellcore attack and by Lenstra’s variant:

S1, S2 : S1 − S2 ≡ 0 mod p ∧ S1 − S2 6≡ 0 mod q

M, S : S −M e ≡ 0 mod p ∧ S −M e 6≡ 0 mod q

Both conditions can be further refined. For instance, the fault condition for the Bellcore
attack can be refined to express that one of the Si, say for instance S1, is a valid signature
of a message m, and S2 is a faulty signature of m. In fact, one can define a partial order
on fault conditions1 and prove that the above fault conditions are smaller than the fault
condition given in Proposition 4.1.

4.3 Synthesis of Faulted Implementations

In this section, we present an automated tool that synthesizes faulted implementations that
verify a fault condition. Our tool is built on top of EasyCrypt [BGHB11], a tool-assisted
framework for verifying the security of cryptographic constructions.

4.3.1 Programming and assertion language

We consider programs that are written in a core imperative language with deterministic and
probabilistic assignments, conditionals, loops, procedure calls, and sequential composition;
the syntax of programs is given in Figure 4.1. The programming language essentially

1 (v1, . . . , vn : φ) ≤ (w1, . . . , wm : ψ) if there exists an efficient and public n-ary function f that returns
m-tuples of values and such that for every v1, . . . , vn such that φ(v1, . . . , vn) holds and for every w1, . . . , wm
such that f(v1, . . . , vn) = (w1, . . . , wm), we also have ψ(w1, . . . , wm).
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C ::= skip

| C; C sequencing

| V ← E deterministic assignment

| V $← DE random assignment

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

| return E return expression

where V denotes the set of variables and E denotes the set of expressions and DE denotes
the set of distribution expressions and P denotes the set of procedures.

Figure 4.1: Syntax of programs

subsumes the language proposed in [BR06] and in particular is sufficiently expressive to
capture cryptographic implementations.

Expressions used in programs, for instance on the right-hand side of assignments or
as guards in conditional statements and loops are built inductively from user-defined con-
stants, operators, and variables. In this chapter, we specifically focus on expressions that
are built from operations for modular arithmetic.We use a simple type system for expres-
sions and programs, and we only consider well-typed programs.

Assertions are first-order formulae over the theories inherited from the expression lan-
guage. Reasoning about assertions is delegated to the EasyCrypt proof engine, which can
either use lemmas from libraries or invoke SMT solvers to prove the validity of an assertion.

4.3.2 Fault models and fault policies

Fault models

Fault models are high-level specifications of the type of faults that can be injected on
embedded devices; they generally target specific architectures, and are designed to reflect
the effects and capacities of specific perturbation techniques.

For the purpose of this chapter, it is sufficient to know that there exist two broad classes
of fault models. The first class captures faults that modify the dataflow, for instance by
setting a particular register to a default value (the null fault model) or to a constant
but unknown value (the constant fault model), or by setting part of the register to a
constant value (the zero high-order bits fault model and its variants). In practice, it
is often important to consider models that combine several kinds of faults; for instance,
one can consider a fault model which allows null faults on small registers, and constant
faults on larger registers. Such faults are considered for example in [FLV12], where the
authors also justify their practical feasibility. The second class captures faults that modify
the control flow, for instance by skipping an instruction (the instruction skip model), by
forcing a conditional instruction to enter into a specific branch (the branch fault model),
or by forcing the execution of a loop to be interrupted before the guard is set to false,
or continued after it is set to false (the loop fault model). These models are classic and
are considered in [PV04], for instance. Both models overlap, in the sense that one can
sometimes achieve the same effect by a dataflow fault attack, or by a control flow fault
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attack.

Fault policies

Instead of hardcoding the different fault models, our tool allows users to specify fine-
grained fault policies that delineate very precisely the space of faulted implementations by
describing which faults can be injected in the program. Fault policies are program specific,
and are given by two sets of replacement clauses.

The first set consists of variable replacement clauses of the form (x, e) where x is
a program variable and e is an expression; such a clause says that one can replace the
variable x by the expression e in the course of program execution. These declarations can
be used to model data faults; for instance, the null fault on x is captured by the clause
(x, 0), whereas the zero high order bits fault on x that sets r bits to zero is captured by
the clause (x,msbr(x)).

The second set consists of command replacement clauses of the form (c, c′), where c and
c′ are commands; such a clause says that one can replace the command c by the command
c′ in the course of program execution. These declarations can be used to model control flow
faults; for instance, instruction skip faults on an assignment c is captured by the clause
(c, skip), whereas branch faults are captured by the clause (if b then c1 else c2, ci) where
i = 1 if the goal is to force execution to go into the true branch, and i = 2, otherwise. By
convention, we require that all instruction replacements do not increase the set of modified
variables, i.e. the set of modified variables of a command c′ is a subset of the set of modified
variables of the command c it replaces. This is the case for all control flow attacks described
above, and is essential for the completeness of our tool.

Although it is useful in practice, fault policies do not currently include a mechanism
to impose any locality constraint on the clauses, i.e. replacements may occur anywhere in
the program. This can easily be circumvented by writing programs in pseudo-SSA form,
for instance by adding subscripts for the different occurences of the same variable in the
program.

Finally, fault policies may also include some upper bounds on the number of times a
clause can be used to fault an implementation. This is useful to constrain the space of
faulted implementations and to match physical constraints.

Discussion

There is a direct relation between fault models and fault policies, in the sense that every
fault model determines a unique fault policy for each program. However, many fault
attacks require multiple faults and can only be captured by hybrid fault models, that
combine several simpler ones. An example of hybrid fault model is one that considers
null faults on variables that denote small registers (for instance, variables that store values
smaller than 28), and constant faults on variables representing larger registers.

It would be interesting to develop a high-level language for describing hybrid fault mod-
els, and a compiler for generating automatically fault policies from high-level specifications.
However, building the compiler requires a significant amount of infrastructure, including
the ability to automatically infer program invariants: for the example discussed above, the
compiler would need to infer that the value held by a variable x is always smaller than 28

in order to generate the clause (x, 0). We leave the design of this high-level language and
the implementation of the compiler for future work, and require for now that fault policies
(albeit in some edulcorated form) are given as input to the tool.
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4.3.3 Algorithm

Our tool takes as input a (non-faulted) implementation written in the programming lan-
guage of EasyCrypt, a fault condition, and a fault model, and optionally a precondition ψ.
It outputs a set of faulted implementations that satisfy the fault condition and are valid
faults of the original implementation with respect to the fault model considered. The core
of the tool is an algorithm that interleaves the computation of weakest preconditions, logi-
cal simplifications, and generation of faults. For simplicity, we describe a non-deterministic
and inefficient version of the algorithm, whereas the implementation uses a more efficient
implementation, and some caching and early pruning techniques for the smart exploration
of the search space. We initially explain how the algorithm works on straightline programs,
i.e. programs without loops, conditionals, and procedure calls. Then, we explain how to
extend the algorithm to procedure calls and loops. First, we define the notion of faulted
instruction.

Faulted commands

The fault policy determines for each command c of the program a set of faulted instances,
consisting of commands c′ that can be obtained from c according to the fault policy. All
commands are faulted instances of themselves, and moreover the command c′ is a faulted
instance of c if there exists an instruction replacement clause (c, c′). Moreover, there are
some specific rules for each construct of the language.

• x ← e[e1, . . . , en/y1, . . . , yn] is a faulted instance of x ← e, provided for i = 1 . . . n,
the replacements of yi by ei are allowed by the fault policy.

• the commands while b do c′, and if b then c′;while b do c, and while b′ do c; if b then c′

are all faulted instances of while b do c, where c′ is a faulted instance of c, and b′ is
a guard that forces exactly one less iteration of the loop body.

The last clause captures faults on the first and last iteration of a loop, and can be extended
to model faults on the first and last k iterations of a loop, for k ≥ 1.

Straightline programs

The algorithm is given as input a fault policy, and manipulates triples of the form (c, φ, ĉ).
Initially, the algorithm is given the triple (c, φ, skip) consisting of the program being ana-
lyzed against fault attacks, the fault condition, and the empty statement. At each iteration,
the algorithm consumes the last command of c and outputs a new triple (c′, φ′, ĉ′) as follows;

1. c is decomposed into a sequence c′; i, where i is the last command of the program
(necessarily an assignment or a random sampling). If c is empty, then the algorithm
checks if φ is a consequence of the precondition, and returns ĉ if this is the case and
nothing otherwise;

2. the algorithm checks whether i affects φ, i.e. if any of the variables modified by i
occur in φ. If not, the algorithm breaks to the next iteration with (c′, φ, ĉ′), where
ĉ′ = i; ĉ;

3. if some variable modified by i occurs in φ, then the algorithm chooses non-deterministically
a faulted instance i′ of i;
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4. the algorithm computes the weakest precondition of i′ on φ. For instance, the rules
for computing weakest preconditions of deterministic and random assignments are:

WP(x← e, φ) = φ{x← e}

WP(x $← d, φ) = ∀v ∈ dom(d), φ{x← v},

where dom(d) is the set of values that have a non-zero probability in d. Note that the
weakest precondition computation takes an assertion and returns an assertion. This
is achieved by viewing probabilistic assignments as non-deterministic assignments
over the domain of the distribution from which the assignment is sampled;

5. the algorithm applies logical simplifications to the assertion φ output by the weakest
precondition computation. The output is a new assertion φ′ that has fewer free
variables than φ;

6. the algorithm proceeds to the next iteration with (c, φ′, ĉ′), where ĉ′ = i′; ĉ.

Breaking to the next iteration in step 2 and performing logical simplifications in Step 5
may in fact significantly prune the search space, without ruling out any potential attacks:
computing the weakest precondition on a command i whose left-hand-side does not appear
in the fault condition never changes that fault condition, whichever fault may be selected.
Indeed, our algorithm is sound and relatively complete for straightline code, in the sense
that, given an oracle that can decide logical implications, the algorithm would return all
faulted versions c′ of c such that the Hoare triple {ψ}c′{φ} is valid. In practice, logical
implications are verified using SMT solvers, and hence the implementation might actually
fail to find a valid fault attack.

Procedure calls

Our tool deals with programs that make non-recursive procedure calls by entering into the
code of the procedure when reaching a call. This is intuitively equivalent to inlining all
procedure calls and applying the non-procedural analysis to the inlined code. Although it is
certainly possible to develop more sophisticated approaches, including ones that deal with
recursive procedure calls, based on state-of-the-art techniques, our elementary approach
has the advantage of simplicity and is sufficient for most implementations of cryptographic
algorithms.

Loops

Dealing with loops is the main source of complexity for our tool, as computing weak-
est preconditions requires knowing some useful loop invariants, i.e. assertions that hold
throughout all iterations of the loop body. We provide two elementary mechanisms for
dealing with loops: an invariant generator, and an algorithm for turning (user-provided)
invariants for non-faulted loops into invariants for their faulted instances. There is ad-
mittedly significant scope for improving these mechanisms, in particular by building upon
recent developments in invariant generation; we leave this avenue for future work.

Pruning

We use two main pruning techniques for improving the efficiency of the search algorithm.
First, since SMT solvers are a clear performance bottleneck, we cache all SMT queries and
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their result. Second, we maintain a table of all intermediate statements (c, φ, ĉ), and abort
execution whenever the algorithm computes a triple which coincides in the first and second
component with an element of the table.

4.4 Applications on RSA–CRT signatures

Using our tool, we are able to discover many attacks on implementations of RSA–CRT
signatures. Several of these attacks are new, and of independent interest. In this section,
we review in some detail the most relevant attacks we find.

We consider a CRT-based implementation of RSA that uses the Montgomery ladder
(Figure 3.1) for modular exponentiation and the CIOS algorithm (Algorithm 3.1) for mod-
ular multiplication. We consider implementations using both Garner’s recombination al-
gorithm and the standard CRT recombination with optimizations. Most of the attacks
we find involve faults injected during the last call to CIOS in the ladder (line 13, Fig-
ure 3.1), which takes the result of the exponentiation back into its classical representation.
We assume that the parameter x in CIOS is stored in a shift-register, used to extract its
individual digits in base b.

Finding multiples of p or q

Using the fault condition from Proposition 4.1, and allowing null faults on small variables
(that contain integers mod b) we recover the most basic and efficient attack of Chapter 3,
which sets q′ to 0 during the final call to CIOS(S̄q, 1). In addition, the tool also finds several
variants of the fault, indicating which (combinations of) variables can be set to 0 to fulfill
the fault condition. For example, setting both uj and xj to 0 throughout the computation
still yields a null result.

This attack and its variants only work when the final call to CIOS occurs with 1 as
second argument. This is not always the case when CRT recombination is used, since the
call to CIOS can be used to optimize a multiplication away. In this case, by adding control
flow faults to the fault policy, our tool also finds that faulting q′ to 0 and doubling the
number of loop iterations during this final call forces its result to zero. Indeed, in this case,
after the normal number of iterations, the shift-register initially containing x now contains
zero and any further loop iteration simply shifts a to the right, eventually forcing it to
zero as well. A much simpler, albeit much less elegant, control flow fault involves simply
faulting the initial loop condition so no computation is performed.

Finding “almost full” linear transforms of p or q

It may not always be possible to skip the loop entirely, or to ensure that the loop is
run at least twice as many times as expected. However, it may be easier to inject faults
on loop counters that consistently add a small (possibly unknown) number of iterations.
Our tool automatically finds that such faults, when q′ is set to zero during the additional
loop iterations are in fact sufficient to guarantee the fault condition from Proposition 4.3
using both Garner and CRT recombination. For each additional iteration, the size of the
exponentiation’s result is reduced by the size of a base b digit, quickly leading to a result
that can be exploited by the classic lattice-based attacks described in Section 4.2.2.

Alternatively, instead of faulting the control flow and a variable, our tool also finds that
simply setting q′ and xj to zero during the last iterations of the loop leads to a similarly
faulted signature, that fulfills the desired fault condition.

59



4. Synthesis of Fault Attacks on Cryptographic Implementations

Finding “almost full” linear combinations of p and q

When given the fault condition from Proposition 4.2, our tool finds that running the pre-
vious size-reducing attacks on both half-exponentiations yields a suitable faulted signature
when using the classic CRT recombination rather than Garner’s. The relative efficiency
of the lattice-based attack from Section 4.2.2 compared to the one from Section 4.2.2 may
justify the additional faults.

4.5 Concluding remarks

We have presented a new approach to discover automatically fault attacks on cryptographic
implementations. The technical core of our approach is a new and practical form of program
synthesis. Pleasingly, the tool that implements our approach is able to discover new and
interesting attacks. An exciting perspective for further work is to apply our tool to an
extensive class of implementations. There are also interesting directions for improving
and extending our tool. The first one is to integrate state-of-the-art invariant generation
and synthesis techniques in the tool. Another one is to implement a synthesis algorithm
based on relational verification in order to deal with relational fault conditions, i.e. fault
conditions that relate faulted and valid signatures. Although cast in a different context,
the work reported in [BCG+13] provides an excellent starting point. Yet another one would
be to use synthesis for discovering countermeasures against fault attacks as done in [ÁH14]
for side-channel attacks.
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Chapter 5
Making RSA–PSS Provably

Secure Against Non-Random
Faults

5.1 Introduction

In this chapter, we prove the security of an infective countermeasure against a large class of
non-random faults; the proof extends Coron and Mandal’s result to a strong model where
the adversary can choose the value of the faulty signatures modulo one of the prime factors
of the RSA modulus. This fault model is clearly strictly more general than Coron and
Mandal’s. Such non-random faults induce, together with the infective countermeasure,
more complex probability distributions than in the original proof; we analyze them using
careful estimates of character sums over finite fields. The security proof is formally verified
using appropriate extensions of EasyCrypt, and provides the first application of formal
verification to provable (i.e. reductionist) security in the context of fault attacks.

This work was presented at CHES 2014 [BDF+14a].

5.1.1 Infective countermeasures

Checking results before release is a simple and practical security measure, but it is not
sufficient by itself, since simple tests can be easily bypassed by flipping the outcome of a
comparison [AK97, TK10]. Infective countermeasures are an alternate approach in which
results are released all the time, but become gibberish when faulty computations occur:
a fault (usually not controlled by the adversary) results in a random value, which conse-
quently makes the faulty signature random. From a security point of view, since faults
may not be random, we may not be able to prove that the faulty output is fully random.
However, one may ask that the output be independent of secret information even in the
presence of non-random faults.

Infective countermeasures have been used before by Canetti and Goldwasser [CG99]
to deal with fault-injecting adversaries when decrypting ciphertexts in a distributed man-
ner. One such countermeasure for RSA–CRT was proposed by Boscher, Handschuh and
Trichina [BHT10]. In their technique, the signer computes the signature S and recomputes
y′ = Se mod N to check the signature against the padded message y, before returning
S + y′p − (y mod p) + y′q − (y mod q) if y′ = y, and an error otherwise. Even if the ad-
versary bypasses the verification y′ = y, the output signature mixes the fault and correct
signature in a non-trivial way. Still, this countermeasure was later attacked by Trichina
and Korkikyan [TK10] for deterministic padding schemes.

We tackle the problem of masking faulty signatures so as to prevent the exploitation of
faults and protect validity checks.
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5.1.2 Our contributions

In this chapter we generalize the fault model from [CM09] and consider a very powerful
adversary able to inject non-random faults. More precisely, we let the adversary set the
value modulo q of the computed signatures to an arbitrary value of his choice. Clearly,
since he could choose that value randomly, the model is strictly more powerful than the one
considered by Coron and Mandal. In addition, it captures many other types of faults, such
as the “null faults” and “constant faults” which consist in putting the result of a computation
to zero or to a constant. Note that contrary to Chapter 3 where they are applied to a small
register, they reflect in this chapter the result of the whole exponentiation modulo q. If
such a signature is directly returned to the adversary, he can clearly factor the modulus,
but we consider a simple countermeasure to avoid that problem. The countermeasure,
described in Algorithm 5.1, uses infective techniques, mixing additional randomness into
faulty signatures in a provably secure way.

In practice, we show that our random infection masks faulty signatures enough for us
to prove the security of RSA–PSS under the RSA assumption in the random oracle model
if enough additional randomness is provided.

Concretely, we sample a random value r′ and add r′ · (y − y′) to the signature mod N ,
where y is the original padded message and y′ is the padded message recovered from the
signature. When the signature is computed correctly, (y−y′) is zero and the correct signa-
ture is returned. If the signature is faulty, we show that the masked output is statistically
close to uniform and hence leaks no secret information.

We prove such results in two key lemmas corresponding to [CM09, Lemmas 1, 2]. Since
our faults are non-random, the probability distributions are more complex; we use careful
estimates of exponential sums attached to corresponding rational functions to establish
their regularity. We only analyze this countermeasure when the validity check is performed
in the standard way (by computing the public permutation), but our random infection
might also be used to protect other checks such as Rivain’s [Riv09, LRT14].

In the same way, although we use RSA–CRT as a motivating example, our fault model
is in fact independent of the way the modular exponentiation is implemented, and is not
limited to fault attacks on RSA–CRT.

Algorithm 5.1 Protected signing algorithm.
1: function Sign(sk, pk,m) . sk = (dp, dq, αp, αq, N), pk = (e,N)
2: r ← {0, 1}k0 . Start of PSS padding
3: ω ← H (m, r)
4: st← G(ω)⊕ (r || 0kg−k0)
5: y ← os2ip(0 ||ω || st)
6: Sp ← ydp mod p . Signature computation
7: Sq ← ydq mod q
8: S ← (αp · Sp + αq · Sq) mod N . αp = q · (q−1 mod p) and similarly for αq
9: y′ ← Se mod N

10: r′ ← {0, 1}ρ\{0} . Infective countermeasure
11: S′ ← S + r′ · (y − y′) mod N
12: return i2osp(S′)
13: end function

The second contribution of the chapter is a formal proof of security of the countermea-
sure using EasyCrypt1, a computer-aided framework that has previously been used to reason

1https://www.easycrypt.info
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about the security of cryptographic constructions—but was never applied to fault attacks
and countermeasures. Our proof is the first application of formal verification to provable
security against fault attacks, as other works [CCGV13, MHER14, RG13] applying formal
verification to fault attacks are focused on proving the correctness of the countermeasures
(that is, that the protected program either returns the same result as the original program,
or fails), but do not provide any provable security guarantees. Apart from increasing our
confidence in the effectiveness of the countermeasure, our formal proof reveals a glitch in
the proof of Coron and Mandal [CM09], and also paves the way for formally verifying the
effectiveness of the countermeasures on standard implementations of PKCS probabilistic
signing, in the same way that [ABBD13] uses an older prototype of EasyCrypt [BGHB11]
to prove security of an implementation of PKCS encryption.

5.1.3 Related work

Christofi et al. [CCGV13] use a combination of program transformation and verification
techniques for proving Vigilant’s countermeasure for CRT-RSA. They take a source pro-
gram p and output a program p̂ that contains all possible faulty behaviors of p. Then,
they show that the program p̂ either returns a value that matches the value returned by
p on the same input, or else returns an error, they conclude that the program is correct
for all faults. While it is a natural guarantee to seek, their theorem does not constitute
a proof of security in the sense of provable security, but rather a heuristic to validate a
countermeasure implementation.

Rauzy and Guilley [RG13] develop symbolic methods to analyze fault attacks against
RSA–CRT implementations. They model arithmetic computations as algebraic expres-
sions, and define a simplification procedure for expressions. Given an expression e (rep-
resenting the algorithm to be attacked), their tool tests for all possible faulty variants ê
of e if the expression gcd(N, e − ê) simplifies to a prime factor of the RSA modulus. If
some expression ê is found, then the algorithm is considered insecure. Their tool is useful
to find fault attacks on an algorithm, but only provides guarantees of security against a
restricted class of attackers. Moreover, it is specialized to deterministic signature schemes
and cannot deal with randomized paddings like PSS.

Moro et al. [MHER14] focus on the specific class of instruction skip attacks, in which
an adversary forces to skip the execution of a targeted instruction. To protect against skip
attacks, they transform a program p into a fault-tolerant program p̂, by providing for each
instruction a possible replacement for execution in the presence of instruction skip faults.
Using a model checker, they establish the equivalence between executing the instruction
without faults and executing the replacement sequence of instructions with instruction skip
faults. Their approach is general, and significantly improves resistance against instruction
skip attacks. However, it is not suitable for obtaining the strong guarantees required by
provable security.

5.2 Our results

Instead of considering the many possible faults an adversary could inject in Figure 5.1, we
give the adversary access to two distinct oracles (Figure 5.1) that compute valid signatures
(oracle S) and generalize faulty signatures (oracle F ), as justified in §5.2.

As discussed, our fault model is independent of the algorithm used to compute modular
exponentiation. We therefore keep simpler definitions for public and secret key: i.e. pk =
(e,N) and sk = (d, p, q). Throughout the security proof, we assume that the modulus is
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1: oracle S(m)
2: r ← {0, 1}k0
3: ω ← H (m, r)
4: st ← G(ω)⊕ (r || 0kg−k0)
5: y ← os2ip(0 ||ω || st)
6: S ← yd mod N
7: return i2osp(S)

1: oracle V (m,S)
2: r ← ⊥
3: s← os2ip(S)
4: if 0 < s < N then
5: y ← se mod N
6: b ||ω || st← i2osp(y)
7: r || γ ← st⊕ G(ω)
8: ω′ ← H (m, r)
9: r = b = 0 ∧ ω = ω′ ∧ γ = 0kg−k0

10: end if
11: return r

1: oracle F (m, a)
2: r ← {0, 1}k0
3: ω ← H (m, r)
4: st ← G(ω)⊕ (r || 0kg−k0)
5: y ← os2ip(0 ||ω || st)
6: S ← yd mod N
7: r′ ← {0, 1}ρ\{0}
8: S′ ← yd · αp + (a+ r′ · (y − ae)) · αq
9: return i2osp(S′)

Figure 5.1: Oracles in our fault model

balanced, that is N = p · q is such that 2n−1 ≤ N < 2n and 2n/2−1 ≤ p < q < 2n/2.
PSS padding is computed using two hash functions H , outputting bitstrings of length

kh, and G , producing bitstrings of length kg, where kh + kg + 1 = n. In addition, the
padding scheme uses a random salt of length k0 < kg.

For simplicity, we model H as a function from {0, 1}∗ × {0, 1}k0 to {0, 1}kh , and G as
a function from {0, 1}kh to {0, 1}kg . This is done without loss of generality.

In algorithm and game descriptions, we denote with i2osp and os2ip the conversions
between integers and their binary representations. For simplicity, i2osp always produces a
bitstring of length n.

Under the Generalized Riemann Hypothesis, we reduce the UF -CMA security of the
faulty signature scheme presented in Fig. 5.1, where the adversary is given access to the
faulty signature oracle along with the valid signature oracle and the random oracles H and
G , to the one-way security of RSA. We consider a forgery valid even if it was produced by the
faulty signature oracle. In the rest of this chapter, we use S to denote the valid signature
oracle, F to denote the faulty signature oracle, K to denote the RSA key generation
algorithm, and V for the PSS verification algorithm. Subscripts identify the game in which
a particular oracle appears. We denote with Q X the set of query-response pairs for queries
made to oracle X so far.

1: game UF -CMA
2: (e, d,N)← K ()
3: (m, s)← AS ,F ,H ,G (e,N )
4: b← V (m, s)
5: win ← b ∧ (m, s) /∈ Q S

6: return win

1: game OW -RSA
2: (e, d,N)← K ()
3: x∗ ← [0..N)
4: y∗ ← x∗e mod N
5: x← I(e,N, y∗)
6: return x = x∗

Figure 5.2: Initial and Final Games
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Theorem 5.1 (UF -CMA security of protected PSS in the presence of faults). Assume that
the Generalized Riemann Hypothesis holds. For all δ > 0, there exists a constant κδ > 0
depending only on δ such that given a CMA adversary A against the faulty signature scheme
(K , S ,F ,V ) that makes at most qH queries to H , qG queries to G, qS queries to S and qF
queries to F , we build a one-way inverter I such that

Pr[UF -CMA : win] ≤ Pr[OW -RSA : x = x∗] + ε0

with

ε0 =
(qH + qS + qF ) · (qH + qG + qS + qF ) + qG · qF · 3 + 1

2kh
+
qG · qF

2kh/2

(qS + qF ) · (2 · qH + qS + qF ) + qH + qS

2k0
+

1

2
k
2
−1

+ qF · 2κδ · 2
nδ−ρ

2

Remark. The constant κδ is as in Lemma 5.1. As observed in Remark 5.3, for large enough
N , it suffices to take ρ slightly larger than a given ε to bound the final term by 2−ε. In
addition, as mentioned in Remark 5.3, we assume that ρ is chosen slightly larger than kh
so that the assumptions of Lemma 5.3 are satisfied.

Fault model justification

Our faulty signature oracle computes the correct padded message y, samples r′ and returns
S′ = yd · αp + (a+ r′(y − ae)) · αq with a ∈ Z chosen by the adversary.

We allow multiple faults to be injected, but only during the RSA–CRT computation
(lines 6-7 of the protected signing Fig. 5.1). More precisely, we consider a scenario where
the computation modulo p is correct whereas those modulo q is faulted to result in a
constant a chosen by the adversary, i.e. Sf = (yd mod p, a) ∈ Z/pZ× Z. Then, using our
countermeasure we obtain:

S′ = Sf + r′(y − Sef )

= ydαp + αqa+ r′(y − (ydαp + αqa)e)

= ydαp + (a+ r′(y − ae))αq.

Our fault model leverages the results of Coron and Mandal in [CM09] who treated the
case of random faults against PSS scheme and some of those described in Chapter 3. Indeed
we showed that “null faults” on a small register result in putting the signature modulo q
to zero. Moreover, we take into account all the highly non-random faults or combinations
of faults leading to such result, i.e. Sq = a with a a constant.

5.3 Statistical Lemmas

We need several results on the regularity of the probability distributions related to the
infective countermeasure. Recall that the statistical distance between a random variable
X on a finite set S and the uniform distribution is defined as:

∆1(X) =
1

2
·
∑
s∈S

∣∣∣Pr[X = s]− 1

|S|

∣∣∣.
We say that X is δ-statistically close to uniform when ∆1(X) ≤ δ.

Our proofs rely on Dirichlet characters and character sums over Z/qZ. The basic
definition of a character is as follows.
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Definition 5.1. Let q be a positive integer. A Dirichlet character modulo q is an arithmetic
function χ with the following properties:

• χ is periodic modulo q, i.e. χ(n+ q) = χ(n) for all n ∈ N.

• χ is completely multiplicative, i.e. χ(nm) = χ(n)χ(m) for all n,m ∈ N and χ(1) = 1.

• If (n, q) 6= 1 then χ(n) = 0, otherwise χ(n) = e2πiν/φ(q), for some ν ∈ N, with φ(q)
the Euler’s totient.

We denote by χ the inverse of a character χ with χ(n) = χ(n) and χ0 the principal
character modulo q defined by χ0(n) = 1 if (n, q) = 1 and 0 otherwise. The following
theorem, which establishes the orthogonality relations for Dirichlet characters, will be
useful for the next proof.

Theorem 5.2. Let q be a positive integer. For any integers n1, n2 ∈ N we have

∑
χ mod q

χ(n1) =

 φ(q) if n1 = 1 mod q

0 otherwise

∑
χ mod q

χ(n1)χ(n2) =

 φ(q) if n1 = n2 mod q and (n1, q) = 1

0 otherwise

where the summation runs over all Dirichlet characters modulo q.

The main statistical result can be stated as follows.

Lemma 5.1. Consider integer intervals X = [1, X],W = [w0, w0+W ) whose lengths X,W
satisfy X,W < q, and for all t ∈ Z/qZ, denote by T (X ,W; t) = XW

q ·
(
1 +V (X ,W; t)

)
the

number of solutions (x,w) ∈ X ×W of the congruence xw ≡ t (mod q). Assuming that the
Generalized Riemann Hypothesis holds, then for all δ > 0, there exists a constant κδ > 0
depending only on δ (and not q,X ,W) such that:∑

t∈Z/qZ

∣∣V (X ,W; t)
∣∣ ≤ κδq

3/2+δ

√
XW

.

In particular, the distribution of the products xw mod q is statistically close to uniform in
Z/qZ whenever XW � q1+3δ.

Proof. Note first that all elements of X are invertible modulo q, whereas at most one
element of W is divisible by q. Denote by W ∗ the number of elements of W which are
invertible modulo q, which is thus equal to W or W − 1. We then have:

T (X ,W; 0) = X · (W −W ∗) ≤ X and hence
∣∣V (X ,W; 0)

∣∣ ≤ q

W
.

On the other hand, for t 6= 0, we can express T (X ,W; t) as a sum over the multiplicative
characters modulo q. Indeed, the orthogonality of characters (Theorem 5.2)ensures that,
for all x,w, we have

∑
χ χ(xw)χ(t) = q − 1 if xw ≡ t (mod q) and 0 otherwise. Hence:

T (X ,W; t) =
1

q − 1

∑
χ

∑
(x,w)∈X×W

χ(xw)χ(t)

=
XW ∗

q − 1
+

1

q − 1

∑
χ6=χ0

∑
(x,w)∈X×W

χ(xw)χ(t),
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by putting aside the contribution of the principal character χ0. Write that equality as
T (X ,W; t) = XW ∗

q−1 ·
(
1 + V ∗(t)

)
. We then have:

V ∗(t) =
1

XW ∗

∑
χ6=χ0

∑
(x,w)∈X×W

χ(xw)χ(t),

and we can express the sum of the squared deviations
∣∣V ∗(t)∣∣2 as:

∑
t6=0

∣∣V ∗(t)∣∣2 =
1

(XW ∗)2

∑
χ,χ′ 6=χ0

∑
x,w,x′,w′

χ(xw)χ′(x′w′)
∑
t6=0

(χχ′)(t).

The sum over t on the right-hand side is equal to q − 1 if χ = χ′ and vanishes otherwise,
so that:∑

t6=0

∣∣V ∗(t)∣∣2 =
q − 1

(XW ∗)2

∑
χ6=χ0

∑
x,w,x′,w′

χ(xw)χ′(xw) =
q − 1

(XW ∗)2

∑
χ6=χ0

∣∣S(χ)
∣∣2,

where S(χ) =
∑

x∈X χ(x)
∑

w∈W χ(w). Now since X is an interval of the form [1, X], it
is classical that GRH implies, for any δ > 0,

∣∣∑
x∈X χ(x)

∣∣ ≤ cδX
1/2qδ for some constant

cδ > 0 (see e.g. [Mon71, Eq. (13.2)]). Hence:

∑
t6=0

∣∣V ∗(t)∣∣2 ≤ q − 1

(XW ∗)2
· c2
δXq

2δ ·
∑
χ

∑
(w,w′)∈W2

χ(w)χ(w′) ≤
c2
δq

2δ(q − 1)2

XW ∗

by using orthogonality again. Then, the Cauchy–Schwarz inequlity yields:

∑
t6=0

∣∣V ∗(t)∣∣ ≤
√
c2
δq

2+2δ

XW ∗
·
√
q − 1 ≤ cδq

δ(q − 1)3/2

√
XW

.

Finally, observe that for t 6= 0, we have:

V (X ,W; t) =
q

XW
T (X ,W; t)− 1 =

q

XW
· XW

∗

q − 1
·
(
1 + V ∗(t)

)
− 1

=
qW ∗

(q − 1)W
V ∗(t)− W − q(W −W ∗)

(q − 1)W
.

On the last line, the first term is bounded in absolute value by q
q−1

∣∣V ∗(t)∣∣, and the second
term by q

q−1W . As a result, we get:

∑
t∈Z/qZ

∣∣V (X ,W; t)
∣∣ ≤ q

q − 1

∑
t6=0

∣∣V ∗(t)∣∣+
q

W
+
∣∣V (0)

∣∣ ≤ cδq
3/2+δ

√
XW

+
2q

W

which yields the stated result for κδ = cδ + 2, say (as a coarse upper bound). �

We now discuss our key statistical lemmas. The first one ensures that the faulty
signature S′ = yd · αp +

(
a + r′(y − ae)

)
· αq is indistinguishable from a uniform random

element in Z/NZ if the nonce r′ is large enough. We write x instead of r′ in the rest of
this section.
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Lemma 5.2. Let N = pq be a n-bit balanced RSA modulus and e the public exponent,
0 ≤ y < 2n−1 a random integer and x a random nonzero ρ-bit integer. Fix an arbitrary
integer a. Assuming that the Generalized Riemann Hypothesis holds, the statistical distance
between the distribution of S′ = yd · αp +

(
a + x(y − ae)

)
· αq mod N and the uniform

distribution modulo N is bounded as:

∆1(S′) ≤ κδqδ
√

N

XY
≤ 2κδ · 2(δn−ρ)/2

for any δ > 0, with κδ as in Lemma 5.1.

Proof. The statistical distance between the distribution of S′ and the uniform distribution
can be written as:

∆1(S′) =
1

2

∑
(s,t)∈Z/pZ×Z/qZ

∣∣∣∣∣ Pr
(x,y)∈X×Y

[
S′ ≡ s (mod p)

S′ ≡ t (mod q)

]
− 1

N

∣∣∣∣∣
where X and Y are the integer intervals [1, X] and [0, Y ) with X = 2ρ − 1 and Y = 2n−1

respectively. Let us estimate the probability

P (s, t) = Pr
(x,y)∈X×Y

[
S′ ≡ s (mod p)

S′ ≡ t (mod q)

]
appearing in that equation for some fixed (s, t) ∈ Z/pZ× Z/qZ.

We have S′ ≡ s (mod p) if and only if yd ≡ s mod p, i.e. y ≡ se mod p. Hence, the
solutions of the first congruence are of the form y = (se mod p) + pw for w in the integer
interval [0,Ws), Ws = dY−(se mod p)

p e. Then, the second equation, which is equivalent to
a + x(y − ae) ≡ t (mod q), becomes x(pw + (se mod p) − ae) ≡ t − a (mod q). This can
be written in the form x(w + w0) = t0 (mod q), with w0 = (se mod p)−ae

p mod q and t0 =
t−a
p mod q. The number of solutions (x,w) is thus T (X ,Ws; t0), with Ws = [w0, w0 +Ws).

Hence:
P (s, t) =

1

XY
T
(
X ,Ws; t0

)
=
Ws

qY
+
Ws

qY
V
(
X ,Ws; t0

)
.

Note that Ws depends only on s (not on t), and that t 7→ t0 is a permutation of Z/qZ.
Thus, for fixed s, we can sum the previous equation over t ∈ Z/qZ, which gives:∑

t∈Z/qZ

∣∣∣∣P (s, t)− 1

N

∣∣∣∣ ≤ q · ∣∣∣Ws

qY
− 1

N

∣∣∣+
Ws

qY

∑
t∈Z/qZ

∣∣V (X ,Ws; t
)∣∣.

Now Y/p− 1 ≤Ws ≤ Y/p+ 1, so that the first term on the right-hand side is bounded by
1/Y . Thus, Lemma 5.1 yields:∑

t∈Z/qZ

∣∣∣∣P (s, t)− 1

N

∣∣∣∣ ≤ 1

Y
+
Ws

qY
· κδq

3/2+δ

√
XWs

=
κδq

1/2+δ√
XY · p/2

using the coarse upper bound Ws/Y ≤ 2/p. Summing further over s, we finally obtain:

∑
s,t

∣∣∣∣P (s, t)− 1

N

∣∣∣∣ ≤ p

Y
+ κδq

δ

√
2N

XY

and hence the desired result, since p ≤
√
N and Y > X.

�

68



5.3. Statistical Lemmas

Remark. Concretely, this result means that, for large enough N , it suffices to take ρ slightly
larger than a given ε to obtain a statistical distance of 2−ε.

If we do not want to rely on the Riemann Hypothesis, we can obtain an unconditional
bound by replacing the use of GRH in Lemma 5.1 by the Pólya–Vinogradov inequality (or
the Burgess bound). However, statistical indistinguishability from uniform then requires
somewhat larger values of ρ: at least n/4+ε+o(1) with Pólya–Vinogradov or n/8+ε+o(1)
with the Burgess bound.

The security proof requires another statistical lemma which ensures that the adversary
has a negligible probability of querying the correct value ω ← H (M, r) given a faulty
signature.

Lemma 5.3. Let N, e, a, δ, κδ be as in Lemma 5.2. Assume that ρ ≥ kh+ δn+2 log2(4κδ).
For any choice of S′ ∈ Z/NZ, except possibly a negligible fraction 2−kh/2 of them, and any
kh-bit value ω′, the probability that a solution (x, y) ∈ [1, 2ρ) × [0, 2n−1) of the equation
S′ ≡ yd · αp +

(
a + x(y − ae)

)
· αq (mod N) satisfies that the most significant kh bits

ω ∈ [0, 2kh) of y coincides with ω′ is bounded as:

Pr
[
ω = ω′|S′

]
≤ 3

2kh
.

Remark. Concretely, this result means that we must choose ρ larger than kh.

Proof. Suppose Y is of the form [0, Y ) with Y = mY0 for some integers m,Y0 ≥ 1, and
write Yω = [ωY0, (ω + 1)Y0) for ω = 0, 1, . . . ,m− 1. Let us denote by Tω(S′) the number
of solutions x, y of the equation S′ ≡ yd · αp +

(
a + x(y − ae)

)
· αq (mod N) such that

(x, y) ∈ X × Yω. We have:

Pr
[
y ∈ Yω | (x, y) ∈ X × Y and S′ ≡ yd · αp +

(
a+ x(y − ae)

)
· αq (mod N)] =

Tω(S′)

T (S′)
.

Since T (S′) = XY · P (s, t) with P (s, t) as in Lemma 5.2, we have, thanks to this lemma,
for all values of S′ except possibly a negligible fraction 2−kh/2 of them:∣∣∣∣T (S′)− XY

N

∣∣∣∣ ≤ XY · 2κδ · 2(δn−ρ)/2 · 2kh/2 ≤ α ·XY0,

with α = 2κδ · 2(δn−ρ+kh)/2. A proof similar to the one used for Lemma 5.2 leads to∣∣Tω(S)−XY0/N
∣∣ ≤ α ·XY0. We thus get:

1− α
m+ α

=
XY0
N · (1− α)

XY
N · (1 + α/m)

≤ Tω(S′)

T (S′)
≤

XY0
N · (1 + α)

XY
N · (1− α/m)

=
1 + α

m− α
.

It follows that:

− (m+ 1)α

m(m+ α)
=

1− α
m+ α

− 1

m
≤ Tω(S)

T (S′)
− 1

m
≤ 1 + α

m− α
− 1

m
=

(m+ 1)α

m(m− α)
.

And finally, if we bound (m+1)/m above by 2 and α by 1/2 (i.e. ρ ≥ kh+δn+2 log2(4κδ)),
we obtain: ∣∣∣∣Tω(S′)

T (S′)
− 1

m

∣∣∣∣ ≤ 2α

m− 1/2
=

4α

2m− 1
≤ 4α

m
.

Thus, Pr
[
ω = ω′|S′

]
≤ 4α

m + 1
m ≤

3
2kh

with m = 2kh . �
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Algorithm 5.2 Initial transition: extending state.

1: oracle H (m, r)
2: if (m, r) /∈ dom(h) then
3: h[m, r]← {0, 1}kh
4: end if
5: return h[m, r]

1: oracle H0 (m, r)
2: if (m, r) /∈ dom(h) then
3: ω ← {0, 1}kh
4: h[m, r]← (ω, c,⊥)
5: end if
6: return π1(h[m, r])

Pr[UF -CMAA,K ,S ,F ,V : win] = Pr[Game0 : win]

5.4 Security proof

The sequence of games presented in this Section and formal justifications for all transitions
between games are formalized in EasyCrypt. However, Lemmas 5.2 and 5.3 are stated as
axioms of the formalization. Formally proving these lemmas is outside the scope of this
work, as it would first require to formalize at least those properties of additive characters
used in our proof.

The hash functions G and H are modelled as random oracles. For clarity, we display
the initial definition of H on the left in Fig. 5.2. The initial definition of G is similar. We
assume two global maps h and g are used to build the random oracles. Our proof works
mostly by transforming the random oracle H . We therefore display the code for H for each
transition, only displaying other oracles when they suffer non-trivial changes.

Game 0

We initially transform both random oracles to keep track of the first caller to make a
particular query. It can be either the adversary (Adv), the signature oracle (Sig), or the
faulty signature oracle (FSig). Calls made by the experiment when checking the validity of
the forgery do not need to tag their query as they are the last queries made to the random
oracles and do not need to update its state. We also extend the internal state of H with
an additional field for use later in the proof, and currently set to a default value ⊥.

Games 1 and 2

In Game 1, we anticipate a call to G on the output of H every time H is called. When
H is called by either one of the signing oracles, we return the result of that call to G as
well as the result of the current H query, allowing broad simplifications to the signing
oracles. In Game 2, we deal with collisions on r and ω values in the signing oracles. In
later steps of the proof, we will need the control-flow of the faulty signature oracle to be
completely independent from both r and ω, and we modify the oracle to allow these later
transformations. Fresh queries are treated normally. Non-fresh queries made by the signing
oracles are resampled as fresh if the previous query had been made by the faulty signature
oracle. Non-fresh queries made by the faulty signature oracle are resampled, but not stored
into the state. Game 1 is perfectly indistinguishable from Game 0, and Game 2 can be
distinguished from Game 1 if either i. (lines 2, 5 and 6) the fresh r used in H -queries
made by the signing oracles collides with a previously used r (with probability at most
(qS + qF ) · (qH + qS + qF ) · 2−k0); ii. (lines 4, 7 and 8) or the fresh ω used in G-queries
made by the signing oracles collides with a previously used ω (with probability at most
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Algorithm 5.3 Games 1 and 2: anticipating calls to G and removing signing collisions.

1: oracle H1(c,m, r)
2: if (m, r) /∈ dom(h) then
3: ω ← {0, 1}kh
4: h[m, r]← (ω, c,⊥)
5: st ← G(c, ω)
6: else
7: ω ← π1(h[m, r])
8: if c = Adv then
9: st ← ⊥
10: else
11: st ← G(c, ω)
12: end if
13: end if
14: return (ω, st)

1: oracle H2(c,m, r)

2: if (m, r) /∈ dom(h) ∨ c = FSig ∨
(c = Sig ∧ π2(h[m, r]) = FSig)

then
3: ω ← {0, 1}kh
4: st ← {0, 1}kg
5: if c 6= FSig ∨ (m, r) /∈ dom(h)

then
6: h[m, r]← (ω, c,⊥)
7: end if
8: if c 6= FSig ∨ ω /∈ dom(g) then
9: g [ω]← (st⊕ (r || 0kg−k0), c)

10: end if
11: else
12: ω ← π1(h[m, r])
13: if c = Adv then
14: st ← ⊥
15: else
16: (ω, st)← ⊥
17: end if
18: end if
19: return (ω, st)

Pr[Game0 : win] ≤ Pr[Game2 : win] + (qH + qS + qF ) ·
(
qS + qF

2k0
+
qG + qH + qS + qF

2kh

)

(qH + qS + qF ) · (qG + qH + qS + qF ) · 2−kh). Note that the value stored in g[ω] at line 9 in
H2 is uniformly distributed since st is.

Game 3

Given that H now samples both bitstrings that compose the final padded message, we
compute the entire signature in H when called by either one of the signing oracles. We
transform the experiment to sample an integer x∗ and compute y∗ = x∗e mod N to serve
as one-way challenge. We embed it in the state when replying to H queries made by
the adversary. Everything up to this point has been set up so that the signing oracles
can simply use π3(h[m, r]) as the padded message for m with salt r. Game 3 includes
this simplification. We introduce additional notation for clarity in the rest of the proof.
Consider the function:

f(e,N),y∗,c : S 7→

 y∗ · Se mod N if c = Adv

Se mod N otherwise

For a set X ⊆ Z/NZ, we denote by pim(e,N),y∗,c(X) the uniform distribution on the set
S =

{
S ∈ Z/NZ | f(e,N),y∗,c(S) ∈ X

}
.

Game 3 is indistinguishable from Game 2 exactly when x∗ is invertible. Therefore,
the probability that the adversary distinguishes the two games is exactly p+q−1

p·q . We have
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Algorithm 5.4 Games 3 and 4: Embedding one-way challenge and oracle queries in F .

1: oracle H3(c,m, r)

2: if

(m, r) /∈ dom(h) ∨ c =
FSig ∨
(c = Sig ∧ π2(h[m, r]) =
FSig)

then

3: S ← pim(e,N),y∗,c

([
0..2n−1

))
4: y ← f(e,N),y∗,c(S)
5: b ||ω || st ← i2osp(y)
6: if c 6= FSig ∨ (m, r) /∈ dom(h)

then
7: h[m, r]← (ω, c, S)
8: end if
9: if c 6= FSig ∨ ω /∈ dom(g) then

10: g[ω]← (st⊕ (r || 0kg−k0), c)
11: end if
12: else
13: ω ← π1(h[m, r])
14: if c = Adv then
15: st ← ⊥
16: else
17: (ω, st)← ⊥
18: end if
19: end if
20: return (ω, st)

1: oracle H4(c,m, r)
2: if (m, r) /∈ dom(h) ∨ c = FSig then
3: S ← pim(e,N),y∗,c

([
0..2n−1

))
4: y ← f(e,N),y∗,c(S)
5: b ||ω || st ← i2osp(y)
6: if c 6= FSig then
7: h[m, r]← (ω, c, S)
8: g[ω]← (st ⊕ (r || 0kg−k0), c)
9: end if

10: else
11: ω ← π1(h[m, r])
12: if c = Adv then
13: st ← ⊥
14: else
15: (ω, st)← ⊥
16: end if
17: end if
18: return (ω, st)

Pr[Game2 : win] ≤ Pr[Game3 : win] + 2−
n
2

+2

Pr[Game3 : win] ≤ Pr[Game4 :
win]

+ qH ·qS
2k0

+
qG ·qF ·3

2kh
+

qG ·qF

2kh/2

p + q − 1 ≤ 2
n
2

+1 and 2n−1 ≤ p · q and we can therefore bound the probability of this
simulation failing by 2−

n
2

+2. Since the invertibility of x∗ is important in some later steps,
we in fact let H compute a response only when x∗ is invertible. In the inverter, since x∗ is
not public, we instead check the invertibility of y∗, which is equivalent. For simplicity, we
omit discussions regarding this detail in the rest of this section.

Game 4

In this game, we stop keeping track of the random oracle queries made by the faulty
signature oracle. This is an important step towards being able to apply Lemma 5.2, which
only discusses the statistical distance between two distributions on S′, rather than (ω, S′).
Note that, in Coron and Mandal’s proof, Lemma 5.2 is applied before this transition, in
a context in which its premises are not fulfilled. By removing data about random oracle
queries, we introduce observable changes in the game’s behaviour whenever the adversary
queries H with an r that was used previously in a faulty signature query, or whenever the
adversary queries G with an ω that was used previously in a faulty signature query. We
bound the probability of the adversary guessing an ω value using Lemma 5.3. Since the
view of the adversary does not depend on r values sampled by the faulty signature oracle
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Algorithm 5.5 Game 5: sampling faulty signatures.

1: oracle F4(m, ε, a)
2: r ← {0, 1}k0
3: S ← pim(e,N),y∗,c

([
0..2n−1

))
4: y ← Se mod N
5: r′ ← {0, 1}ρ \0
6: S′ ← yd ∗ αp + (a+ (y − ae)) ∗ αq
7: return i2osp(S′)

1: oracle F5 (m, ε, a)
2: r ← {0, 1}k0
3: S′ ← [0..N)
4: return i2osp(S′)

Pr[Game4 : win] ≤ Pr[Game5 : win] + qF · 2 · κδ · 2
δn−ρ

2

(see Fig. 5.5), the probability of the adversary guessing an r value used in generating a
faulty signature is easily bounded.

Game 5

Our main goal at this stage is to show that faulty signatures are in fact indistinguishable
from uniform randomness and can be simulated without using the random oracles. Once
this is done, we will be able to resume the proof of security following more standard PSS
proofs.

We now use Lemma 5.2 to completely simulate faulty signature oracle queries. We focus
on the faulty signature oracle, inlining and simplifying H knowing that c = FSig. On the
left, we display the simplified faulty signature oracle from Game 4 for reference. We make
use of elementary properties of the statistical distance and Lemma 5.2 to bound the prob-
ability of distinguishing Games 5 and 6. Note that sampling S in pim(e,N),y∗,c

([
0..2n−1

))
and applying the public RSA permutation to obtain y is perfectly equivalent to sampling
y in

[
0..2n−1

)
. In the bound, the δ and κδ are as in Lemma 5.1.

Game 6

With the faulty signature oracle simplified away, we can now focus on simulating the
signature oracle. From now on, the c argument to H can no longer be FSig. More generally,
it is impossible for any entry in h or g to be tagged with FSig. The signature oracle we
have defined at this point is not a valid simulator as it does not run in polynomial time. To
ensure that it does, we replace the sampling operation at line 3 in Fig. 5.4 (right) with the
loop displayed on the left of Fig. 5.6 to sample S. The adversary can distinguish the two
games whenever the loop finishes in a state where y does not start with a 0 bit. At each
iteration of the loop, the S sampled is invalid with probability at most 1

2 . The probability
that all iterations produce an invalid S is therefore bounded by 1

2k0
, since all samples are

independent. H7 may now be queried qH + qS times, allowing us to conclude.

Reduction

All the oracles are simulated without using any secret data. We now focus on building an
inverter. The adversary can win in two disjoint cases:

• either the H -query made by the verification algorithm is fresh (this occurs with
probability at most 2−kh),
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Algorithm 5.6 Game 6 and inverter: sampling S in polynomial time.

1: while (!0 ≤ y < 2n−1) ∧ i < k0 do
2: S ← [0..N )
3: y ← f(e,N),y∗,c(S)
4: i← i+ 1
5: end while

1: oracle I(e,N, y∗)
2: (m, s)← AH7 ,G7 ,S7 ,F7 (e,N)
3: S ← os2ip(s)
4: y ← Se mod N
5: b ||ω || st ← i2osp(y)
6: r || γ ← st ⊕ g[ω]
7: (ω′,Adv, u)← h[m, r]
8: return S · u−1

Pr[Game5 : win] ≤ Pr[Game6 : win] + qH +qS
2k0

Pr[Game6 : win] ≤
Pr[OW -RSAI : x = x∗] + 1

2kh
+

qH

2
n
2−1

• or the H -query made by the verification algorithm was previously made by the ad-
versary. If the query was made by the signature oracle, the forgery cannot be fresh
and the adversary cannot win.

In the latter case, the one-way challenge can then be recovered by the inverter shown on
the right of Fig. 5.6. The key observation is that, in case of a successful forgery, we have
y = Se mod N (line 4) and y = y∗ · ue mod N (by invariant on h). By definition of y∗

and the morphism and injectivity properties of RSA, we therefore have S = x∗ · u. We
need to also consider the case where a value u stored in the h map by the adversary is not
invertible, which occurs with probability at most qH · 2−n/2+1.

The final bound is obtained by transitively using the individual transition bounds.
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PART II

SECURITY OF IMPLEMENTATIONS OF
THE ECDSA SCHEME, EFFICIENCY OF
THE SCHEME ELLIGATOR SQUARED

The use of elliptic curves in cryptography has first been proposed independently by Koblitz
[Kob87] and Miller [Mil85] in 1985. Elliptic curves offer many advantages for public-
key cryptography compared to more traditional settings like RSA and finite field discrete
logarithms, including higher efficiency, a much smaller key size that scales gracefully with
security requirements, and a rich geometric structure that enables the construction of
additional primitives like bilinear pairings. On the Internet, adoption of elliptic curve
cryptography is growing in general-purpose protocols like TLS, SSH and S/MIME, as well
as anonymity and privacy-enhancing tools like Tor (which favors ECDH key exchange in
recent versions) and Bitcoin (which is based on the ECDSA signature scheme).

In this second part we present some contributions to two areas of elliptic curve cryp-
tography. First we analyze in Chapter 6 the security of implementations of the ECDSA
signature scheme, including fast ones using GLV/GLS decomposition. In some cases we
prove the security of the scheme whereas in other cases, we present different attacks, using
fault injection or a biased value or even a side-channel analysis. Second, we efficiently
implement in Chapter 7 the scheme Elligator Squared the purpose of which is to represent
uniformly random points on elliptic curves as uniformly random bit strings. This imple-
mentation is performed on a fast binary curve and we demonstrate that the overhead due
to this uniform bit string representation, which enhances anonymity and privacy, is quite
minimal.
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Chapter 6
GLV/GLS Decomposition and

Security of Implementations of
the ECDSA Scheme

6.1 Introduction

The fastest implementations of elliptic curve cryptography in recent years have been
achieved on curves endowed with nontrivial efficient endomorphisms, using generaliza-
tions of the techniques due to Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott
(GLS). In such implementations, a scalar multiplication of a curve point P of prime order
n is computed as a double multiplication [k1]P + [k2]ψ(P ) for k1, k2 half-size scalars and
ψ an efficient curve endomorphism: this evaluates to (k1 + k2λ)P for some constant λ.

In a protocol that needs to generate a random multiple of P , a first step common to
all GLV/GLS-like implementations is to generate the half-size scalars k1 and k2. Several
approaches have been suggested to do so, which can be roughly divided in two families:
those in which k1 and k2 are themselves generated at random, and those in which a full-size
scalar k is first selected at random and then decomposed as k = k1 + k2λ. The main goal
of this chapter is to discuss security issues that may arise during this decomposition step
using either approach.

On the one hand, if k1 and k2 are chosen uniformly at random in [0,
√
n) (using rejection

sampling, say), we show that, in the quadratic GLS setting, the resulting scalar k = k1+k2λ
is statistically close to uniform, and hence resulting protocols are secure. However, if they
are chosen uniformly at random integers of b1

2 log2 nc bits, the resulting k is slightly skewed,
and hence not suitable for use as a nonce in Schnorr-like signature schemes like ECDSA,
for example.

Indeed, for GLS curves, we show that this results in a bias of up to 1 bit on a suitable
multiple of k mod n, and that this bias is practically exploitable: while lattice-based attacks
cannot exploit a single bit of bias, we demonstrate that an earlier attack strategy by
Bleichenbacher makes it possible. In doing so, we set a record by carrying out the first
ECDSA full key recovery using a single bit of bias (on both a GLS curve and a standard
prime field SEC curve).

On the other hand, computing k1 and k2 by decomposing a uniformly random k ∈ [0, n)
solves all problems of statistical bias, but the decomposition algorithm itself is liable to leak
side-channel information. Early proposed algorithms to do so relied on lattice reduction
and exhibited a significant amount of timing channel leakage. More recently, constant-
time approaches have also been proposed, but we show that they are amenable to power
analysis: we describe a template attack that can be combined with classical lattice-based
attacks on ECDSA to achieve full key recovery on physiscal devices.

Finally, we present some fault attacks for implementations of ECDSA based on a par-
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ticular implementation of the scalar multiplication. Theses attacks have been found thanks
to our tool described in Chapter 4.

This work, except the part concerning the fault attacks, is to be presented at Asiacrypt
2014 [AFG+14].

6.1.1 The GLV/GLS techniques

Many record implementations of elliptic curve cryptography in software, including, most
recently, works such as [OLARH14, BCHL13, CHS14], rely on elliptic curves endowed with
fast endomorphisms, as constructed by the methods due to Gallant–Lambert–Vanstone
(GLV) [GLV01], Galbraith–Lin–Scott (GLS) [GLS11], and generalizations thereof. In such
implementations, the fast endomorphism ψ on the elliptic curve E/Fq is used to speed up
full size scalar multiplications [k]P by computing them as multi-exponentiation [k1]P +
[k2]ψ(P ), where k1 and k2 are roughly half of the size of k. Indeed, on a prime order
subgroup of E(Fq), ψ acts by multiplication by some constant λ, and thus, for a generator
P of that subgroup, we have [k1]P + [k2]ψ(P ) = [k1 + k2λ]P .

In order to compute random scalar multiplications with those techniques, two types of
approaches have been considered, as far back as in the earliest presentations of the GLV
method (such as Gallant’s talk at ECC’99 [Gal99]).

On the one hand, k1 and k2 can simply be chosen uniformly at random in a suitable
half-length interval. This appraoch, which we call the recomposition technique (since k is
“recomposed” as k = k1 +k2λ), results in a very simple implementation, and has been used
in several implementation records including [OLARH14], but Gallant expressed concerns
about possible biases in the resulting scalar k. Such concerns have been partially vindicated
by some numerical evidence provided by Brumley and Nyberg [BN09], who also described
a relatively general way to choose intervals for k1 and k2 so that the resulting choice of
k is in fact secure (in the sense that it has high entropy). However, the Brumley–Nyberg
method is a bit cumbersome, and no attack so far has been demonstrated against arbitrary
half-length uniform choices of k1 and k2, so that the security picture is somewhat unclear.

On the other hand, one can also pick k at random and subsequently deduce half-length
values k1 and k2, which eliminates concerns regarding possible biases in the distribution
of k. This decomposition technique usually relies on lattice reduction in dimension 2 (or
equivalently, continued fractions, a generalized Euclidean algorithm, etc.), as originally
described in the GLV paper [GLV01], and is significantly more computationally demanding
than recomposition. Simplifications of this method have later been proposed (particularly
in [PJKL02]), as well as higher-dimensional generalizations [NS04] to tackle decompositions
involving several endomorphisms (as recently used in [Smi13, GI13] for instance).

6.1.2 ECDSA attacks

Bias exploitation

The success of GLV/GLS method in implementations lately makes it desirable to recon-
sider these decomposition and recomposition techniques from a security viewpoint. We do
so in this chapter in the context of ECDSA signatures, one of the most widely deployed
elliptic curve cryptographic schemes, and an interesting target for the cryptanalyst (like
other Schnorr-like signature schemes) due to its sensitivity to biases in the distribution
of nonce values, as demonstrated by the powerful attack due to Howgrave-Graham and
Smart [HGS01] based on lattice reduction techniques, which breaks (EC)DSA when some
of the most significant bits of the nonces are known. This attack was analyzed in further
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details by Nguyen and Shparlinski [NS02, NS03] and carried out in practice in many con-
texts, including against physical devices (see e.g. [NNTW05, BH09] for some examples).
The basic idea is to express the key recovery problem as an instance of the Hidden Number
problem (HNP), which reduces to the closest vector problem (CVP) in a suitable lattice.
Since CVP is tractable in low-dimensional lattices, many practical instances of ECDSA
can be broken depending on key size and the number of leaked nonce bits. The largest
problem instance broken so far is the case of 2-bit nonce leaks on 160-bit curves, tackled
by Liu and Nguyen [LN13] using the most advanced known techniques for lattice reduction
(BKZ 2.0 [CN11]). Breaking 2-bit leaks on 256-bit curves, or 4-bit leaks on 384-bit curves
seems currently out of reach (see the discussions in [CN11, MHMP14]).

In any case, there is a hard limit to what can be achieved using lattice reduction: due
to the underlying structure of the HNP lattice, it is impossible to attack (EC)DSA us-
ing a single-bit nonce leak with lattice reduction. In that case, the “hidden lattice point”
corresponding to the HNP solution will not be the closest vector even under the Gaus-
sian heuristic (see [NT12]), so that lattice techniques cannot work. To break this “lattice
barrier”, the only known alternate attack is an algorithm due to Bleichenbacher [Ble00]
which predates the attack of Howgrave-Graham and Smart, but was generally considered
of mostly theoretical interest until it was recently revisited by De Mulder et al. [MHMP14]
to attack 384-bit curves. Bleichenbacher devised his attack to demonstrate a vulnerability
in DSS at the time, in which DSA nonces were generated by picking a random value of
`n bits, where `n is the bit length of the group order n, and then to reduce it modulo n.
Bleichenbacher showed that the resulting bias could be exploited in a very interesting way,
obtaining a key recovery using about 241 signatures and about 247 time and 241 memory
complexities. At that time, it was not possible to mount this attack and only simulations
on reduced numbers were possible and the paper was never published.

In the first stage, Bleichenbacher’s algorithm reduces the signatures from 160 bits to say
40 bits using linear combinations of the original signatures and then, during a second phase,
a Discrete Fourier Transform is used to recover the most significant bits of the secret key.
The bias of the reduced signatures is higher than the bias of the original signatures, that’s
the reason why Fourier technique is needed to extract this information. This algorithm is
very similar to Blum, Kalai and Wasserman algorithms [BKW03, LF06] for solving LPN
and LWE problems. For 384-bit order, the first stage of Bleichenbacher original attack is
not sufficiently efficient to reduce the signatures and more advanced techniques based on
LLL and BKZ are needed if the number of leaked bits is high enough [MHMP14]. The
modification of the first stage is not possible if less than one bit of nonces is available and we
turn back to Bleichenbacher’s original attack which requires a high number of signatures.

Fault injection

Biehl, Meyer and Müller [BMM00] (see also [CJ05a] for a generalization) were among the
first to consider fault attacks against elliptic curve cryptosystems; more specifically, they
consider an elliptic curve variant of ElGamal encryption. Their attacks exploit some of the
ideas from Boneh et al. for RSA–CRT and are cast in the setting of a high-level algorithmic
description of scalar multiplication between a field element and a point in the curve. Later,
Naccache, Nguyen, Tunstall and Whelan [NNTW05] exhibit fault attacks on implementa-
tions of DSA and its elliptic curve variant ECDSA. Their attack introduces a fault during
the generation of the nonce k and is cast in an algorithmic setting. In contrast, more
recent works [BBPS11, BJPW13, MMNT13] study fault attacks against implementations
of ECDSA, based on detailed accounts of integer multiplication, scalar multiplication, and
point doubling. For example, the attack on integer multiplication [BBPS11] by Barenghiet
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al. works by injecting faults during the integer multiplication of a known random value and
the secret key. Then, by considering the textbook multiplication implementation, they show
that it is possible to recover the secret key. Finally, the attack of [MMNT13] shows that
it is possible to inject a fault during the conversion from projective to affine coordinates.
These two attacks show that it is beneficial to consider all steps of an implementation-level
description when looking for fault attacks.

6.1.3 Our contributions

Our first contribution is the first implementation of Bleichenbacher’s attack against ECDSA
with a single-bit on nonce bias. We carry out this attack on the standardized SECG P160
R1 elliptic curve. On this 160-bit curve, we use 233 ECDSA signatures, and achieve a full
key recovery in a few hours of wall-clock time on a 64-core workstation. The most time-
consuming part of the attack is the first phase, in which a sorting algorithm is executed
several times. This is the first key recovery from a single bit of bias, which paves the way
to new applications. We stress again that this record cannot be achieved using lattice
reduction techniques based on HNP problem, since even if the HNP lattice satisfies the
Gaussian heuristic, a condition for finding the hidden lattice point is that the number
of known bits of the nonce must be greater than log2(

√
πe/2) ≈ 1.0471 (hence at least

2) [NT12], irrespective of the underlying lattice reduction algorithm.

As a second contribution, we show a security proof for the recomposition method on
curves obtained by the quadratic GLS method once the values k1 and k2 are uniformly
distributed in the interval [0,

√
n), where n is the prime group order. We prove that

the statistical distance between this distribution and the uniform distribution in [0, n) is
negligible. Furthermore, if k1 and k2 are taken at random in a small interval of the form
[0, 2m), where m = b1

2 log2 nc, the bias on the distribution on k used in Bleichenbacher’s
attack is negligible. However, we show that the bias of the distribution on tk where t is
the trace is sufficiently large and a Bleichenbacher’s attack allows to recover the secret key.
We also implement this attack and the complexities are similar to the previous part.

We also study the decomposition technique proposed in GLV with the implementation
described by Park et al. in [PJKL02]. To this end, we propose a very efficient side-channel
attack that uses the leakage on the multiplication in order to recover some of the least
significant bits of the nonces. Consequently, we can thus use lattice techniques to recover
the secret key.

Finally, we discover, using our tool described in Chapter 4, several new and efficient
fault attacks for implementations of ECDSA based on the implementation of scalar multi-
plication given in Algorithm 6.1. A first attack is based on skipping the last iterations in
the computation of scalar multiplication. A second attack is based on forcing the evalua-
tion of a conditional inside the loop executed for the computation. The largest group of
attacks (containing more than 100 faulted programs) is based on faulting the implementa-
tion of the point addition operation. Each faulted signature allows us to recover the least
or most significant bits of the nonce; we then finish the attack using classic techniques,
and obtain the secret key from a small number of faulty signatures. We also recover an
existing attack [NNTW05] that lets the faulted algorithm produce valid signatures that
may nevertheless be exploited in a similar fashion.
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Algorithm 6.1 Scalar Multiplication of an elliptic curve point by a field element. [2] ·
denotes point doubling operation, and + denotes addition.
1: function ECScalMul(k,P )
2: R0 ←∞
3: for i = t down to 0 do
4: R0 ← [2] ·R0

5: if ki = 1 then R0 ← R0 + P
6: end if
7: end for
8: return R0

9: end function

6.2 Preliminaries

6.2.1 Bias definition and properties

The measurement of the bias of random variables represents a significant part of our anal-
yses. We thus recall the definition of the bias which was proposed by Bleichenbacher
in [Ble00].

Definition 6.1. Let X be a random variable over Z/nZ. The bias Bn(X) is defined as

Bn(X) = E(e2πiX/n) = Bn(X mod n),

where E(X) represents the mean.
Similarly, the sampled bias of a set of points V = (v1, · · · , vL) in Z/nZ is defined by

Bn(V ) =
1

L

L−1∑
j=0

e2πivj/n.

The bias as defined above presents some useful properties we recall in Lemma 6.1.

Lemma 6.1. Let 0 < T ≤ n be a bound and X,Y random variables uniformly distributed
on the interval [0, T − 1].

(a) If X is uniformly distributed on the interval [0, n− 1], then Bn(X) = 0.

(b) If X and Y are independent, then Bn(X + Y ) = Bn(X)Bn(Y ).

(c) Bn(−X) = Bn(X) where a denotes the conjugate of a.

(d) Bn(X) = 1
T

∣∣∣∣ sin(πT/n)
sin(π/n)

∣∣∣∣ and Bn(X) is real-valued with 0 ≤ Bn(X) ≤ 1.

(e) Let a be an integer with |a|T ≤ n and Y = aX, then Bn(Y ) = 1
T

sin(πaT/n)
sin(πa/n)

6.2.2 ECDSA signature generation

ECDSA is a NIST standard and we describe the signature generation in Algorithm 6.2.
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Algorithm 6.2 ECDSA signature. P is a base point of order n and H : {0, 1}∗ → [0, n−1]
is a cryptographic hash function. The private key is an element x ∈ Z/nZ and the public
key is denoted by (p, n,H, P,Q) with Q = [x]P .
1: function SignECDSA(m)
2: k

$← [0, n− 1]
3: (u, v)← [k]P
4: r ← u mod n; if r = 0 then goto step 2;
5: s← k−1(H(m) + rx) mod n; if s = 0 then goto step 2;
6: return (r, s)
7: end function

6.3 Bleichenbacher’s Attack on single bit bias

In this part, we present our results on an ECDSA signature generation scheme where
the nonce k is 1-bit biased. We demonstrate that an attack proposed some years ago by
Bleichenbacher can succeed in retrieving the secret key in about 237 time and 233 memory
complexities given 233 signatures, for 160-bit order. This attack was initially focusing
on the DSA signature generation scheme but can be applied without any modification to
ECDSA we consider in this chapter.

The main idea consists in using the fact that the nonces kj are chosen from a biased
random variable K, i.e. k are not randomly and uniformly generated on [0, n−1]. Because
the values kj are biased and linked with the secret key x by the equations which are used
for the signature computations, these signatures, correctly manipulated, also present a bias
which will only be significant for the correct value of x. In other words the bias plays the
role of the distinguisher in this attack.

Obviously, for cryptographic sizes, evaluating the bias for all values in [0, n − 1] is
impractical. However, Bleichenbacher observed that it is possible to "broaden the peak"
of the bias in such a way that, with a value close the correct value of x, the bias will
remain significant. Thus the bias computations can be performed on a more sparse set of
candidates thanks to the Fast Fourier Transform. In return, it requires a non-negligible
work on the signatures which reduces the bias, and the attack returns an approximation
of the secret key, i.e. its most significant bits. The attack can be iterated to retrieve more
bits of the secrets and as soon as sufficiently many bits of x are known, Pollard’s lambda
method [Pol00] can be used to derive the remaining bits. Algorithm 6.3 presents the main
steps of the attack.

6.3.1 Attack analysis

We first explain why the bias can serve as a distinguisher and while doing so explain the
goal of the preprocessing phase, as it was done in [MHMP14], for the sake of completeness.
For that purpose, consider S ECDSA signatures (rj , sj) with biased nonces kj . We have
the following relation due to step 5 of Algorithm 6.2:

kj = H(mj)s
−1
j + rjs

−1
j x mod n for 0 ≤ j ≤ S − 1.

Now let hj = H(mj)s
−1
j mod n and cj = rjs

−1
j mod n. Then the set {hj + cjx}S−1

j=0 =

{kj}S−1
j=0 will show a significant nonzero sampled bias. Moreover, for any w 6= x, the

sampled bias from Vw = {hj + cjw}S−1
j=0 will be relatively small. Since hj and cj are
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Algorithm 6.3 Bleichenbacher’s attack given S ECDSA signatures. The parameters S, `
and ι have to be chosen accordingly to the bias.
Require: S biased ECDSA signatures (rj , sj) computed using a single secret key x.
Ensure: The ` most significant bits of x.

1: Preprocessing
2: for j = 0 to S − 1 do
3: hj ← H(mj) · s−1 mod n
4: cj ← rj · s−1

j mod n
5: end for

6: Reduction of the cj values (Sort-and-Difference Algorithm)
7: A← [(cj , hj)]0≤j≤S−1

8: for i = 1 to ι do
9: Sort A by the cj values . cj ≤ cj+1

10: for j = 0 to S − ι do
11: A[j]← A[j + 1]−A[j] . A[j] = (cj+1 − cj , hj+1 − hj)
12: end for
13: end for
14: Only keep the pairs (cj , hj) such that cj < 2`

15: Denote by L the number of such pairs

16: Bias computation using the inverse FFT
17: Z ← (0, · · · , 0) a vector of size 2`

18: for j = 0 to L− 1 do
19: Zcj ← Zcj + e2πihj/n

20: end for
21: W ← iFFT(Z) . Inverse FFT computation. The output is also a vector of complex

numbers.
22: Find the value m such that |Zm| is maximal
23: return msb`(mn/2`)

publicly computable, we thus have a way to determine the correct value of x by testing all
the value w ∈ [0, n− 1].

To have a practical test, we have to broaden the peak of the bias such that values of
w close to the correct value x will also show a significant bias. The peak will be broad if
the cj are relatively small. More precisely, by denoting 2` a bound such that 0 ≤ cj < 2`,
then we can find an approximation of x by evaluating the sampled bias of 2` evenly-spaced
values of w between 0 and n− 1.

The reduction of the cj , second phase in Algorithm 6.3, can be done using a sort-
and-difference algorithm. From S pairs (cj , hj), we first sort them according to their first
element. Then we subtract each cj from the next largest one and we take the differences
of the corresponding hj as well. We thus obtain a list of S − 1 pairs (c′j , h

′
j) whose values

c′j are on average log(S) bits smaller. More details about the analysis of this reduction are
given later. This reduction algorithm can be repeated in order to achieve the bound 2`.

Now let wm = mn/2`, with m ∈ [0, 2` − 1], be 2` evenly-spaced values between 0 and
n− 1. For sake of clarity, we keep the notation (cj , hj) for the reduced pairs with cj < 2`
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and we consider having L such pairs. Then

Bn(Vwm) =
1

L

L−1∑
j=0

e2πi(hj+cjmn/2
`)/n =

2`−1∑
t=0

(
1

L

∑
{j|cj=t}

e2πihj/n

)
e2πitm/2`

=

2`−1∑
t=0

Zte
2πitm/2`

with Zt = 1
L

∑
{j|cj=t} e

2πihj/n. Bn(wm) can be viewed as the inverse Fast Fourier Trans-
form of the vector Z = (Z0, · · · , Z2`−1). Thus the multiple bias computations can be
performed very efficiently using the FFT. From Step 17 to 20 in Algorithm 6.3, we com-
pute this vector Z. Step 21 outputs a vector of the sampled bias for the 2` candidates, i.e.
iFFT(Z) = (Bn(Vw0), Bn(Vw1), · · · , Bn(Vw

2`−1
)). Finally, the value of wm = mn/2` with

the largest sampled bias should share its ` most significant bits with the secret key x.

Choosing the parameters.

We first give some properties which will help to define the parameters for the attack. We
can estimate the sampled bias for a wrong candidate wm, i.e. a value wm which do not
share some most significant bits with the secret key x. More precisely, it can be shown
that for wm either significantly larger or smaller than x, we have Bn(Vwm) ≈ 1√

L
, which

corresponds to the average distance from the origin for a random walk on the complex
plane.

The second property concerns the cj reduction phase and gives a relation between the
number of signatures S and the number of reduced pairs L.

Proposition 6.1. Consider S ECDSA signatures of the form (cj , hj) and γ ∈ Z. The per-
centage of signatures (c′j , h

′
j) after the first application of the sort-and-difference algorithm

such that c′j < 2log q−logS+γ can be approximated by 1− e−2γ .

Lemma 6.2. Let X1, . . . , XN be N independent uniformly distributed random variables
over [0, 1], and for all i, denote by X(i) the i-th order statistic of the Xj’s (namely, X(i)

is the i-th smallest among the Xj’s). Then, the random variables Yi = X(i+1) − X(i) for
i = 1, . . . , N − 1 are identically distributed, and all follow the beta distribution B(1, N),
of probability density function (hereafter pdf) f(t) = N · (1 − t)N−1. As a result, for any
constant α > 0, we have Pr[Yi ≤ α/N ] = 1− e−α +O(1/N).

Proof. Indeed, a standard formula [DN03, 2.2.1] expresses the joint pdf of X(i) and X(i+1)

as:

fi,i+1(u, v) =

{
N !

(i−1)!(N−i−1)!u
i−1(1− v)N−i−1 for 0 ≤ u ≤ v ≤ 1,

0 otherwise.

Hence, the pdf fi of Yi is given by:

fi(t) =

∫ 1−t

0
fi,i+1(u, u+ t)du for t ∈ [0, 1].
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The change of variable u = (1− t)w gives:

fi(t) = (1− t)
∫ 1

0
fi,i+1

(
(1− t)w, (1− t)w + t

)
dw

= c(1− t)
∫ 1

0
(1− t)i−1wi−1(1− w − t+ wt)N−i−1dw

= c(1− t)i
∫ 1

0
wi−1(1− t)N−i−1(1− w)N−i−1dw

= c(1− t)N−1

∫ 1

0
wi−1(1− w)N−i−1dw,

where c = N !
(i−1)!(N−i−1)! . In particular, we have fi(t) = c′(1 − t)N−1 for some constant c′

and all t ∈ [0, 1], and since
∫ 1

0 fi = 1, we must have fi(t) = N(1− t)N−1 = f(t) as required.
As a result, we obtain:

Pr
[
Yi ≤

α

N

]
=

∫ α/N

0
N(1− t)N−1dt = 1−

(
1− α

N

)N
= 1− exp

(
N · (−α/N +O(1/N2))

)
= 1− e−α +O(1/N)

This concludes the proof. �

As an example consider a modulus n of size 160. Starting from 240 ECDSA signatures,
after one iteration of the sort-and-difference algorithm, about 86.5% of them will have a
value c′j < 2121. The percentage drops to 22.1% if we consider only those ones with a value
c′j < 2118. Note that this proposition is only true for the first iteration of the algorithm
where we really can consider variables as uniformly random and independently distributed.
Clearly they are not after this: if after the first round variables were uniformly distributed,
the ratio between γ = −2 and γ = 1 would be 0.125 = 1/23 where it is ≈ 0.255. Sadly, it
appears that the ratio progress in our disfavor when we want to iterate, i.e. the ratio after
ι iterations is less than (1− e−2γ )ι. We thus do not have a lower bound. However the ratio
can be experimentally determined and Table 6.1 gives an overview for different values of γ
up to 6 iterations.

Given S signatures, we have to choose a pair (γ, ι) such that log n− ι · (logS + γ) = `
is sufficiently small to perform a FFT in 2` log ` time and 2` memory complexities. The
algorithm complexity is O

(
S log(S) + ` log(`)

)
. Now a verification is necessary to be sure

that this set of parameters will give a successful attack. Indeed denote by Bn(K) the
initial bias which is fully determined by the number of most (or least) significant bits of
the ki which are known or set to zero (see Table 6.2 for some values). From properties (b)
and (c) of the Lemma 6.1, each iteration of the sort-and-difference algorithm reduces the
bias by raising it to the square of its norm (assuming that the variables are independant):
indeed, let X,Y be uniformly distributed and independent random variables on [0, n− 1],
then Bn(X) = Bn(Y ) and Bn(X − Y ) = Bn(X)Bn(Y ) = |Bn(X)|2. The final bias is then
approximated by |Bn(K)|2ι . Thus the following inequality holds since Bn(Vwm) ≈ 1/

√
L:

|Bn(K)|2ι � 1/
√
L,

where L represents as before the number of reduced pairs (cj , hj) with cj < 2`. Using
Table 6.1 which gives the ratio L/S for different choices of pairs (γ, ι), we obtain a relation
between S, ι, ` and n.
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Table 6.1: Experimental ratio between the ECDSA signatures of the form (c′j , h
′
j) such

that c′j < 2logn−ι·(logS+γ), and the S initial signatures, after ι iterations of the sort-and-
difference algorithm.

γ -2 -1 0 1 2

1st iteration 0.22 0.39 0.63 0.86 0.98

2nd iteration 0.031 0.12 0.36 0.75 0.94

3rd iteration 3.2 10−3 0.025 0.17 0.64 0.89

4th iteration 3.0 10−4 4.6 10−3 0.069 0.53 0.84

5th iteration 2.0 10−5 6.7 10−4 0.022 0.40 0.79

6th iteration 2.8 10−6 9.5 10−5 6.5 10−3 0.28 0.73

Table 6.2: Some values of bias for large n, when b most (or least) significant bits of k are
known, using Property (d) of Lemma 6.1.

b 1 2 3 4 5

Bn(K) 0.6366198 0.9003163 0.9744954 0.9935869 0.9983944

Note that contrary to previous reports in the literature [MHMP14, Ble00], we do not
need to center the kj around 0. Indeed sort-and-difference algorithm performs only sub-
tractions and does not mix subtractions and additions as is common with lattice reduction
or generalized birthday algorithms.

6.3.2 Implementation

We successfully implemented the attack. As our target, we chose the SECG P160 R1 curve,
published in 2000 by the SECG consortium [Res00] and still considered secure. We fixed
the most significant bit in the nonces and checked (with the help of the secret) that we
indeed got the expected bias: ≈ 0.63662. Our C++ implementation was based on the
RELIC toolkit (using its provided plain C integer arithmetic) [AG] and FFTW [FJ05]. We
parallelized it in a straightforward manner (including (quick)sorting phases) and tested it
on a multicore machine.

We generated 233 signatures and performed 4 sort-and-difference reduction phases. 450
millions (which is 52.5%) of our initial 233 signatures had their cj reduced down to 32
bits, as was expected from table 6.1. The bias after 4 reduction steps was 0.000743558
which is slightly greater than the expected 0.6366224 ≈ 0.00072792. We then computed
a FFT on 32 bits (we selected the reduced cj smaller than 232). The best candidate had
a score approximately 35% greater than the second. Both corresponding most significant
bits of the secret differed only by the 31st and 32nd most significant bits. The 3rd and
4th candidates were also very close to the two first ones, with score approximately 1/3
of the best candidate. Then, there was a number of random values with maximal score
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approximately 1/6 of the best one. We repeated the experiment several (5) times and got
similar results, always finding at least the 30 most significant bits of the secret with the
best candidate. We couldn’t repeat it more because of the high computational resources
involved.

The total memory used by the signatures and FFT tables was slightly more than 1
terabyte. To recover 32 bits of the private key, the attack took approximately 1150 CPU-
hours, most of it being data exchange, which we can decompose as follows:

• 70%: parallelised quicksort (the most memory-intensive phase)

• 18%: signature generation (approximately 250 to 430 kilocycles per signature de-
pending on the CPU, excluding hash computations)

• 10%: candidate selection and FFT table preparation

• ≈ 1%: the FFT itself.

We did not use more parallelizable sorts like Batcher odd-even mergesort [Bat68] but this
would clearly be the next thing to do from a performance perspective.

Next steps of the attack to recover the following bits of the secret were done as in
[MHMP14]. Basically, it amounts to a replay of algorithm 6.3 on the initial signatures,
putting the previously found most significant bits of the secret into hj . Write the private
key x as x02m + x1 where x0 is the recovered m most significant bits at the first round.
Then (hj) + (cj)x = (hj + cjx02m) + (cjx1) and we want to recover the most significant
bits of x1. We proceed as in the first round, except that we now keep the cj that are
smaller than 2`+m instead of 2` (thus when ` = m we just have to stop the reduction one
iteration earlier). Then we build the FFT table as Z[cj/2

m] = Z[cj/2
m] + e2πih′j/n. The

FFT recovers the next most significant chunk of bits of the secret key. The computation
restart makes it necessary to go back from the initial signatures, but there’s no need to
keep them in memory during the reduction. In practice we had barely enough memory to
keep them, but in order to reduce memory usage they should either be stored on disk and
retrieved to iterate the secret recovery, or tracked down through the reduction and rebuilt
afterwards.

In practice, it is advisable to take a small security margin and reinject only 30 bits of
the computed most significant bits of the secret to account for small variations of sampling
around the peak. In any case, if we recurse with a wrong secret, the FFT will not detect
any peak. Experiments indeed showed no peak in this case, with the highest score not being
statistically different from the other ones. This paves the way for a time/memory tradeoff:
suppose the hardware is limited in memory and can only work on (say) 231 signatures and
230 FFT size instead of the 233 needed for attacking 160 bits with 4 iterations with the
previous algorithm. We first reduce the cj from 160 to 40 bits with 4 reductions as usual.
We then simply guess the 10 most significant bits of the secret and build 230-sized FFT
tables accordingly. The guess will be correct on the only one FFT among the 210 which
shows a significant peak. Since FFTs are particularly efficient, much more than sorting,
this is of practical importance. Alternatively, if it’s possible to compute 241 signatures, we
can select only the expected 1/210 fraction of signatures whose corresponding cj have their
10 most significant bits already zeroes, that is to say that have 150 bits instead of 160 and
can be reduced to 30 with 4 iterations. Finally, since the FFT table takes less memory
than the signatures (a complex number occupies 16 bytes whereas a signature requires
at least 40), we could improve the attack further by either carrying out several FFTs in
parallel when guessing some bits of the secret, or by increasing the size of the FFT table
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slightly (with a corresponding increase of the selection bound on cj). This would have
two advantadges. Firstly, it would improve the sampling around the peak and reduce the
uncertainty. Secondly, the bound increase implies that some signatures would be selected
after the third round of reduction instead of the fourth, thus having a much better bias
and hopefully revealing more precise information about the secret.

Our experiments targeted a 160-bit curve, but it should be pointed out that larger
curves are susceptible to this attack as well. Roughly speaking, one can carry out the
key recovery attack with 1-bit nonce bias on an N -bit curve in time ≈ 2N/5 log2(N/5) and
memory ≈ 2N/5. For example, a 256-bit curve can be attacked in time ≈ 258 and memory
≈ 252: generate 252 signatures, perform 4 reduction steps (removing 4 · 51 = 204 bits on
approximately 86% of the data), keep signatures with cj less than 252 and carry out the
FFT on a table of size 252. One signature is 64 = 26 bytes, so that the total memory
needed for the attack is 218 terabytes of storage, which corresponds to 65536 of today’s
4 TB disks. This does not appear to be out of reach of well-funded adversaries.

6.4 Security analysis of the recomposition technique

The results presented so far had no direct connection with GLV/GLS curves. We now
turn to such curves, and first discuss in this section the security of what we called the
“recomposition technique” for GLV/GLS coefficients (namely, choose k1 and k2 uniformly
at random in some interval [0,K) to obtain k = k1 +k2λ mod n), whereas the next section
will focus on the “decomposition technique”.

To fix ideas, we consider an elliptic curve E obtained by the quadratic GLS method
over a prime field [GLS11, §2.1]. In other words, there is an elliptic curve E0 over the prime
field Fp such that E is the quadratic twist of E0 over Fp2 . If we denote by p + 1 − t the
order of E0(Fp) (where t is bounded as |t| ≤ 2

√
p by the Hasse–Weil theorem), the order

n of E(Fp2) satisfies:
n = (p− 1)2 + t2. (6.1)

We assume that this order n is prime, which is the main case of interest. Then, E is
endowed with an efficient endomorphism ψ (obtained by conjugating the Frobenius map
with the twisting isomorphism) which acts on the cyclic group E(Fp2) by multiplication by

λ ≡ t−1(p− 1) (mod n). (6.2)

In particular, λ2 ≡ (p− 1)2/t2 ≡ −t2/t2 ≡ −1 (mod n).
In this setting, we first prove in §6.4.1 that if k1 and k2 are chosen uniformly at random

in [0,
√
n), then k = k1 + k2λ is statistically close to uniform in Z/nZ, so that such a

choice of (k1, k2) can be used securely in any cryptographic protocol (and in particular
ECDSA). On the other hand, we show in §6.4.2 that if k1 and k2 are chosen in [0, 2m)
where m = b1

2 log2 nc instead, then k = k1 + k2λ may not be close to uniform anymore,
and we show that a variant of Bleichenbacher’s attack can apply. In §6.4.3, we describe an
implementation of that attack on a 160-bit GLS curve, similar to the attack of §6.3.

6.4.1 A secure choice of (k1, k2)

Let E be a curve of prime order n over Fp2 obtained by the quadratic GLS method as
above. In view of (6.1), we have:

(p− 1)2 ≤ n ≤ (p− 1)2 + (2
√
p)2 = (p+ 1)2,

90



6.4. Security analysis of the recomposition technique

and the inequalities are in fact strict, since n is prime. Thus, we have p− 1 <
√
n < p+ 1,

and it follows that the distribution of k = k1 + k2λ for (k1, k2) uniform in [0,
√
n)2 is

statistically close to the distribution of the same k for (k1, k2) uniform in [0, p − 1)2. We
will thus concentrate on the latter, and show that it is close to uniform in Z/nZ using the
following lemma.

Lemma 6.3. The following map is injective.

F : [0, p− 1)2 −→ Z/nZ
(k1, k2) 7−→ k1 + k2λ.

Proof. Consider two distinct pairs (k1, k2) 6= (k′1, k
′
2) such that F (k1, k2) = F (k′1, k

′
2). We

have:

(x− x′) + (y − y′)λ ≡ 0 (mod n)

(x− x′)2 ≡ λ2(y − y′)2 (mod n)

(x− x′)2 + (y − y′)2 ≡ 0 (mod n),

since λ2 ≡ −1 (mod n). Thus, the positive integer (x − x′)2 + (y − y′)2 is divisible by n,
and it is also smaller than 2(p − 1)2 < 2n, so we must have (x − x′)2 + (y − y′)2 = n. In
other words, (x − x′)2 + (y − y′)2 is a decomposition of n as a sum of two squares. Now
it is well-known that, as a prime number, n has at most one decomposition as a sum of
two squares up to order and sign (see e.g. [MM99, §3.6]), and (p − 1)2 + t2 is one such
representation. As a result, we must have either x−x′ = ±(p−1) or y−y′ = ±(p−1), and
neither is possible since those difference are bounded by p− 2 in absolute value. Hence, F
is injective as required. �

Theorem 6.1. The distribution of the values k = k1+k2λ for (k1, k2) uniform in [0, p−1)2

is statistically close to the uniform distribution on Z/nZ. More precisely, the statistical
distance:

∆1 =
∑

k∈Z/nZ

∣∣∣Pr
[
k = k1 + k2λ ; (k1, k2)

$← [0, p− 1)2
]
− 1

n

∣∣∣
is given by ∆1 = 2t2/n, which is negligible.

Proof. Indeed, since the function F above is injective by Lemma 6.3, the probability Pr
[
k =

k1 +k2λ ; (k1, k2)
$← [0, p− 1)2

]
is equal to 1/(p− 1)2 for each of the (p− 1)2 points in the

image of F , and 0 for each of the n− (p−1)2 = t2 points outside of that image. Therefore:

∆1 = (p− 1)2 ·
∣∣∣ 1

(p− 1)2
− 1

n

∣∣∣+ t2 ·
∣∣∣0− 1

n

∣∣∣ = 1− (p− 1)2

n
+
t2

n
=

2t2

n

as required. This is bounded above by 8p/(p− 1)2, which is indeed negligible. �

Remark. Theorem 6.1 means that it is secure, in any ECC protocol instantiated over the
GLS curve E, to sample random scalars k by picking k1 and k2 uniformly in [0, p− 1), or
equivalently [0,

√
n).

As we can see, the proof relies on the particular arithmetic properties of the quadratic
GLS method (mainly the fact that λ =

√
−1 in Z/nZ), so that the result does not readily

extend to different settings, like the GLV method on a curve of CM discriminant −3. And
indeed, in that case, Brumley and Nyberg have provided evidence that choosing (k1, k2)
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uniformly in [0,
√
n) may not yield a close to uniform distribution for k [BN09, Example 3].

They suggest an alternate approach to select intervals to choose k1 and k2 from and still
achieve high entropy in a more general setting, but since the quadratic GLS method is one
of the most used variants of GLV/GLS, we believe Theorem 6.1 is of significant practical
interest.

6.4.2 Breaking insecure choices of (k1, k2) with Bleichenbacher’s attack

In the quadratic GLS setting, we have just seen that choosing (k1, k2) uniformly in [0,
√
n)2

yields a close-to-uniform distribution of k = k1 +k2λ. However, we can reasonably suspect
that if we choose k1 and k2 uniformly in [0, 2m), m = b1

2 log2 nc (i.e. uniform bitstrings
of length just under half of the size of n), the distribution of k will no longer be uniform.
This is not immediately visible on the bias, however.

Indeed, if we let T = 2m and define K1,K2 as independent uniform random variables
over [0, T ) and K as the random variable in Z/nZ given by K = K1 + K2λ, we have, by
Lemma 6.1:

Bn(K) = Bn(K1) ·Bn(λK2) =
1

T

∣∣∣sin(πT/n)

sin(π/n)

∣∣∣ · 1

T

∣∣∣sin(πλT/n)

sin(πλ/n)

∣∣∣.
The first factor is very close to 1, but the second factor is usually negligible. For example,
on the 160-bit GLS curve (6.3) below, we have T = 279 and Bn(λK2) ≈ 1.52/T . As a
result, Bleichenbacher’s attack does not apply directly to this setting in general.

However, since λ ≡ t−1(p− 1) (mod n), we claim that there is a significant bias on the
values t · k. Indeed, we have:

Bn(tK) = Bn(tK1) ·Bn
(
(p− 1)K2

)
=

1

T

∣∣∣sin(πtT/n)

sin(πt/n)

∣∣∣ · 1

T

∣∣∣sin(π(p− 1)T/n)

sin(π(p− 1)/n)

∣∣∣
=

1

T

πtT/n+O((tT/n)3)

πt/n+O((t/n)3)
· 1

T

| sin(π(p− 1)T/n)|
π(p− 1)/n+O(((p− 1)/n)3)

=
(

1 +O
(
(tT/n)2 + (p/n)2

))
·
∣∣∣sin(π(p− 1)T/n)

π(p− 1)T/n

∣∣∣.
The big-O in the first factor is negligible since tT/n = Θ(p1/2 · p/p2) = Θ(p−1/2) and
p/n = Θ(p−1). On the other hand, (p − 1)T/n ≈ T/

√
n is roughly between 0.5 and 1

depending on how close n is to a power of two. Thus, the bias is significant in general,
and is maximal when (p− 1)T/n is smallest (close to 1/2), which happens when n is just
under a power of two. The bias Bn(tK) is then close to 1/(π · 1/2) = 2/π ≈ 0.637.

It is then straightforward to adapt Bleichenbacher’s attack to this setting by targetting
the values t · k instead of k. We can then break ECDSA signatures that use nonces of the
form k = k1 +k2λ above using that variant. An implementation of that attack is discussed
in the next subsection.

6.4.3 Implementation of Bleichenbacher’s attack in the GLS setting

We carry out the attack described above on the 160-bit GLS curve E defined as follows.
Over the 80-bit prime field1 Fp, p = 255 · 272 + 1, we define E0 : y2 = x3 − 3x/23 + 104.
Then, the elliptic curve E is the quadratic twist of E0 over Fp2 = Fp(

√
23), namely:

E : y2 = x3 − 3x+ 104 ·
√

23
3
over Fp2 . (6.3)

1This is an example of “optimal prime field” (OPF). See e.g. [WG12].
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The order of E0(Fp) is p + 1 − t for t = 776009485427, and E(Fp2) is of prime order
n = (p − 1)2 + t2. The theoretical value of the bias Bn(tK), computed using the exact
formula above, is then ≈ 0.634.

We performed the recovery of 32 most significant bits of a private key as in section 6.3.2.
We computed 233 signatures and unrolled the attack on (tcj mod n, thj mod n) instead
of (cj , hj). We checked the bias and obtained ≈ 0.634116 which is close to the theory. In
practice the attack took about 224 CPU-seconds, with 56% for the signature generation,
37% for the four sort-and-difference reduction steps, 5% for the candidate selection and
FFT table preparation and less than 0.5% for the FFT itself. In wall-clock time terms,
except for the signature generation which took (much) longer, other phases were identical
as 6.3.2. We attribute this unexpected increase in signing time to threshold effects: for
example, representing elements on a prime field with ≈ 2160 elements needs only 3 64-bit
words, whereas a on Fp2 we needed 4 ∗ 2 = 8 words.

6.5 Security analysis of the decomposition technique

In this section, we analyze the security of algorithms for computing the decomposition of the
nonces used in the GLV method from a side-channel analytic perspective. Many techniques
have been proposed, including [GLV01, PJKL02]. The original GLV method [GLV01] based
on LLL reduction of a lattice that depends on the nonce k, and variants thereof, have an
execution time that depends on k, and are therefore vulnerable to timing attacks.

Therefore, we examine the security of a potentially more secure approach, the Park et
al. [PJKL02] decomposition technique, using more involved power analysis technique.

6.5.1 Decomposition Algorithm

Park et al. provide an alternative decomposition to the GLV paper [GLV01] which reduces
the theoretical bound for the decomposition using the theory of µ-Euclidian algorithm and
is a little bit faster. The algorithm requires two short and independent vectors v1 and
v2 of the two-dimensional lattice L = {(x, y) : x + yλ = 0 mod n}. We can find these
vectors during a precomputation time using the Gauss reduction. The algorithm consists
in finding a vector in the lattice L = Zv1 + Zv2 that is close to (k, 0) using linear algebra.
Then, (k1, k2) is determined by the equation:

(k1, k2) = (k, 0)− (bb1ev1 + bb2ev2),

where (k, 0) = b1v1 + b2v2 is an element of Q×Q.

Algorithm 6.4 Decomposition technique of Park et al. in [PJKL02].
Require: k ≈ n, the shortest vectors v1 = (x1, y1), v2 = (x2, y2)
Ensure: (k1, k2) such that k = k1 + k2λ(modn)

1: D = x1y2 − x2y1, a1 = y2k, a2 = −y1k
2: zi = bai/De for i = 1, 2
3: k1 = k − (z1x1 + z2x2), k2 = z1y1 + z2y2 return (k1, k2)

The decomposition technique depicted in Algorithm 6.4 makes many computations
involving the sensitive nonce k. Particularly, the computation of a1 (resp. a2) is based on
a multiplication of the nonce k by y2 (resp. y1) which is assumed to be known since it is
a precomputed value obtained from public parameters using a deterministic algorithm.
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Suppose now that we obtain the knowledge of the least significant byte of ` nonces
k1, · · · , k`. The best strategy for finding the secret key x consists in performing classical
lattice attacks as proposed in [HGS01, NS02, NS03]. For a 160-bit modulus, the lattice
attack works consistently for ` & 27. However the side-channel attack may sometimes fail,
i.e. the returned byte of some kj can be a wrong value. Thus, by denoting 0 < c < 1 the
confidence rate, the side-channel attack has to be performed on m > d27/ce signatures.
Then:

• Select 27 signatures at random among them.

• Perform the attack using these signatures.

• If the attack fails, goto the first step.

The probability of success at each iteration of the lattice attack is
(
m·c
27

)
/
(
m
27

)
. As an

example, suppose we obtain m = 200 signatures, and can guess the least significant byte
with 90% accuracy (c = 0.9). Then the probability of success of the lattice attack is about
4.7% and 21 lattice reductions have to be performed on average. Since LLL reductions are
cheap, much lower success probabilities are tractable as well.

In the following, we discuss the side-channel attack that aims at recovering the first
byte of the nonce targeting the two aforementioned multiplications. We present the attack
in the particular case of a 8-bit implementation (that corresponds to the device we used in
experiments). Note that this attack may also work for 16-bit implementation but in this
case the computational cost will be larger and the success rate smaller.

6.5.2 Side-Channel Attack on this implementation

The details of the attack highly rely on the way the multiplication is implemented. Depend-
ing of the underlying algorithm, the attack may be more or less difficult. We present here
the attack corresponding to the implementation we target but we will discuss adaptations
to different algorithms. The multiplication we target is a schoolbook multiplication with
the nonce being scanned in the outter loop. Algorithm 6.5 outlines the implementation of
such multiplication for `n-bit nonces and `n/2-bit b.

Algorithm 6.5 Multiplication v = kb of k =
∑`n/8

i=0 ki2
8i times b =

∑`n/2/8

i=0 bi2
8i.

Require: `n-bit k and `n/2-bit b two integers, v = 0
Ensure: v = k × b

1: v ← 0
2: for i = 0 to i < `n/8 do
3: c0 ← 0
4: for j = 0 to j < `n/2/8 do
5: vi+j = (ki × bj + cj) & 0xFF

6: cj+1 = (ki × bj + cj) � 8

7: end for
8: end for return v

The idea is to take profit of all operations involving the first nonce-byte in the inner
loop to recover its value. This can be done by propagating a probability distibution from
an operation to another and updating it with the corresponding leakages. Since the nonce
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bits have to be recovered using a single trace (the nonce is randomly generated for each
signature) we place ourselves in the context of a profiled attack. The application of such
an attack in a non-profiled setting is left as an open question.

Template Attack on One Step. One step of the inner loop consists in a multiplication
of the first byte of the nonce k0, a byte of the auxiliary input bi and the carry ci. This results
in a value vi and a new carry ci+1. We may obtain leakages for each of these variables. We
denote by capital letters the output distributions of template exploitation corresponding
to small letter variables. For instance, after processing the leakage corresponding to ci, the
attacker gets a distribution

Ci =
(
Pr(ci = 0),Pr(ci = 1), . . . ,Pr(ci = 255)

)
.

Since these variables may be manipulated more than once during the computation, differ-
ent leakage points may be combined by multiplicating probabilities then normalizing the
resulting distribution. More precisely, let l1, l2, . . . , ll be leakages corresponding to variable
k0, then the distribution K0 obtained from these leakages is computed as

Pr(k0 = x) =
1

Z

l∏
j=1

Pr(k0 = x|lj),

where the normalizing coefficient Z is given by
∑

x

∏l
j=1 Pr(k0 = x|lj).

Propagating and Updating Distribution. Let us now discuss how to take profit of
all the leakages of the inner loop to gain information on the byte k0. The main idea is to
gather all the information from all variables of a given step i into distribution K0 and Ci+1

then do the same at step i+ 1 using the newly updated distributions. From a probabilistic
point of view we should compute the joint distribution of variables of step i then compute
marginalized distributions K0 and Ci+1. The following algorithm updates the distributions
K0 and Ci+1 according to the distributions of variables bi, vi and ci.

Algorithm 6.6 Information propagation for one step of the multiplication inner loop.
Require: distributions K0, Bi, Vi, Ci and Ci+1

Ensure: K ′0 and C ′i+1 updated distribution

1: K ′0 = (0, 0, . . . , 0)
2: for 0 ≤ k, b, c < 256 do
3: 28 · u+ v ← k × b+ c
4: K ′0(k)← K ′0(k) +K0(k) ·Bi(b) · Ci−1(c) · Vi(v) · Ci(u)
5: C ′i+1(u)← C ′i+1(u) +K0(k) ·Bi(b) · Ci(c) · Vi(v) · Ci+1(u)
6: end for
7: return K ′0/

∑
kK

′
0(k) and C ′i+1/

∑
uC
′
i+1(u)

The attacker starts with using Algorithm 6.6 for the first step. Then she uses the newly
updated distributions K0 and C1 and the initial distributions B1, V1 and C2 as inputs of
Algorithm 6.6 and so on . . . At the end, the attacker gets the final distribution K0 from
which she can derive the most likely value of the least significant bit (or more).

95



6. GLV/GLS Decomposition and Security of Implementations of ECDSA

6.6 Automatically finding fault attacks

We refer to Chapter 4 for the definition of fault conditions and the technical description of
the tool we used for automatically finding fault attacks.

6.6.1 Fault conditions for ECDSA signatures

Compared to the fault conditions for RSA signatures, those we consider here are of a
different nature, that rely on partial knowledge of the nonce k used in the computation.
We first consider a novel fault condition focusing only on faulting the scalar multiplication.
Then, we discuss an already-exploited fault condition where k can be faulted during both
the scalar multiplication and the computation of its inverse, as considered in [NNTW05].

In both cases, knowing some bits of the nonce k is sufficient to mount a classic lattice-
based attack.

In the following, we assume that the message to be signed is known and its hash value
is h and we denote abs the abscissa of an elliptic curve point, lsb`k the ` least significant
bits of k and � for the right-shift operator.

Faulting r

Our fault condition considers faulted signatures such that r is computed using only some
of the bits of k:

Proposition 6.2. Given sufficiently many values satisfying one of the fault conditions:

r, s : ∃k. r = abs([k � `] · P ) ∧ s = k−1(h+ rx) mod q (6.4)

r, s : ∃k. r = abs(±[2`] · [k � `] · P ) ∧ s = k−1(h+ rx) mod q (6.5)

one can efficiently retrieve the secret key x.

The proof of this proposition can be done in two parts, summed up by two facts.
We do the proof for condition (6.4). It should be clear that the same proof applies for
condition (6.5). In particular, Fact 6.2 tells us that it is sufficient to be able to recover
` bits of k to recover the secret key x, and the proof of Fact 6.1 clearly generalizes to
condition (6.5), since its proof revolves around computations on curve points ±[2`] · [k �
`] · P .

Fact 6.1. Given a single pair (r, s) that satisfies the fault condition:

r, s : ∃k. r = abs([k � `] · P ) ∧ s = k−1(h+ rx) mod q,

one can efficiently retrieve the ` least significant bits of k.

Proof. Indeed we have the following equalities:

[lsb`k] · P = [k] · P − [2`] · [k � `] · P,

[k] · P =

[
h

s

]
· P +

[
r

s

]
·Q,

the first one results from the property on the faulted value r and the second one from the
verification equation of ECDSA. The second equality implies that one can compute [k] · P
using public parameters and the signatures. Our goal is to recover lsb`k. To this end,
we show that we can compute the right hand side of the first equation since the first part
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is [k] · P and the second part is one of the points whose abscissa is r. Consequently, we
can recover ±[2`] · [k � `] · P by solving in y the quadratic equation y2 = r3 + ax + b if
the elliptic curve is the set of points (x, y) satisfying the equation y2 = x3 + ax + b. For
one of these two candidates, the point has a small discrete log related to P and we can
recover them using Pollard’s lambda method for instance in time O(2`/2). This algorithm
will succeed only for the correct candidate and will likely fail for the other one.

�

Now, given sufficiently many faulty signatures, the secret x can be recovered using a
technique based on lattices.

Fact 6.2. Given a sufficient number of ECDSA signatures whose nonces k are partially
known, one can efficiently retrieve the secret key x.

The idea of the proof consists in using the congruence:

xr = sk − h mod q.

This relation reveals nothing about x when k is chosen truly at random in Z/qZ, but when
some bits of k are known, some information about x is leaked since all other parameters
are publicly known. Intuitively, knowing ` bits of k should reveal ` bits of information
about x, so if q is n bits long, x should be recoverable from about n/` faulty signatures.
Moreover, the relation is affine in both x and k, and the problem can be attacked with
lattices. Efficient algorithms for recovering x from a set of such signatures can be found
in [HGS01, NS03, NT12].

Note to conclude that a similar result holds for the most significant bits. For example,
condition (6.4) in this case could be written as follows.

r, s : r = abs([k mod 2n−`]P ) ∧ s = k−1(h+ rx) mod q.

In this case, we retrieve the most significant bits of the nonces and it is not difficult to
adapt the lattice to this case.

Using short randomness: faulting r and s

We also consider the following fault condition, implicitly used in the original attack on
ECDSA by Nguyen et al. [NNTW05], where both the scalar multiplication and field inver-
sion are faulted to simulated short values for k (that is, values whose most significant or
least significant bits are zero).

Proposition 6.3 ([NNTW05]). Given a sufficient number of pairs (r, s) that satisfy the
fault condition:

r, s : ∃k. r = abs([lsb(k)] · P ) ∧ s = lsb(k)−1(h+ rx) mod q,

one can efficiently recover the secret key x.

Although we do not prove it, the validity of this fault condition is justified by its use
in existing attacks.

Implementation and evaluation

We also implement our key recovery attacks on ECDSA in Sage to evaluate their perfor-
mance. Some experimental values of (`, d) are given in Table 6.3.
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Table 6.3: Minimal number of signatures d to be faulted depending on ` using curves
brainpoolP160r1, brainpoolP256r1 and brainpoolP384r1. The percentage given in one
case represents the success rate of the attack and could be increased by increasing the
value of d.

q 160 (bits) 256 (bits) 384 (bits)

` 4 8 16 8 16 32 8 16

d 61 ( '70%) 23 11 38 17 9 61 26

6.6.2 Results of our tool

We run our tool on the ECDSA signature algorithm. We consider an implementation where
scalar multiplication is computed using MSB-first Double-and-Add (Algorithm 6.1). The
main challenge here is that the fault conditions we consider are very precise, in the sense
that they give a full functional description of the result depending on some (faulted) inputs.
We therefore need not only to be able to find the faults, but also to be able to prove the
functional correctness of the non-faulted algorithms.

Faults on the randomness

We first consider the fault condition from Proposition 6.3, that we generalized from the
attack of [NNTW05]. The tool finds that performing a zero-higher-order bit fault on k after
it is sampled is sufficient to guarantee the fault condition (as we then have k = k � `).
However, we do not automatically find more complex attacks (that use Proposition 6.3) on
the algorithms computing scalar multiplications and field element inversions. We believe
that our tool would in fact find such attacks given precise enough implementations for
these operations, and precise enough loop invariants for their non-faulted versions.

Faults on scalar multiplication

Fault condition (6.4) from Proposition 6.2 allows our algorithm to quickly focus the fault
search on the computation of the scalar multiplication in ECDSA. The tool discovers that
exiting the loop early when computing [k] · P , and letting all other computations occur
normally, yields signatures (r, s) that fulfill fault condition (6.4).

The second fault condition (6.5) from Proposition 6.2 leads to a slightly more flexible
overall attack, since it does not require the number of faulted iterations to be known. Given
this fault condition and an abstract algorithmic description of the ECDSA algorithm, our
tool finds that forcing the branch condition at line 5 (Algorithm 6.1) to false for a number
of iterations towards the end of the loop yields an exploitable result. Generalizing, faulting
line 5 or its implementation such that it computes R0 ← ±R0 instead of R0 ← R0 + P
would yield the same result.

Faults on point addition

This observation leads us to consider more concrete refinements of the point addition al-
gorithm. In particular, we consider a register-level algorithm for Jacobian-Jacobian point
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addition, as presented by Murdica [Mur14, Algorithm 36]. This algorithm, shown in Algo-
rithm 6.7, is only correct when applied to distinct curve points Q,R that are not at infinity
or inverse of each other. It assumes R is initially stored in registers (T1, T2, T3), and Q in
(T4, T5, T6). Note that the values of T4, T5 and T6 are untouched by the algorithm. All the
faults we detail are such that these registers are left untouched by the faulted algorithm as
well.

Given the implementation where the partial point addition algorithm is wrapped in tests
ensuring it is applied correctly (that is, Q,R 6= ∞ and Q 6= ±R), our tool quickly finds
that faulting the conditional checks is sufficient to force the fault condition: by faulting the
test that checks whether the second argument is infinite, we can easily force the wrapped
addition algorithm to return its first argument, forcing the fault condition.

However, since the base point P is of order q, and R0 is always a scalar multiple of
P , such checks can be optimized away when the addition algorithm is used for scalar
multiplication.

With an additional condition that none of the scalar multiples of P are on the vertical
axis our tool finds null faults, and some faults in combined models involving null faults
and instruction skips, that lead to the faulted computation of R0 + P returning −R0.
We describe three of them in Algorithm 6.7, variables marked with a symbol are set to
0 during the corresponding attack. Full lines marked with a symbol are skipped by the
corresponding attack.

Performing this fault during the last iterations of the Double-and-Add loop then yields
a faulted ECDSA signature that fulfills fault condition (6.5) and can be used in the lattice-
based attack. Our tool yields a list of more than 100 ways to fault point addition in a
useful way:
• 1 attack involving 3 null faults (marked using †);
• 116 attacks (some are variants of each other) involving 4 null faults (an example is

given using ◦);
• 9 attacks involving 2 null faults and 2 instruction skips (an example is shown using

?).

Algorithm 6.7 Elliptic curve point addition.

1: function EcAdd(R,Q)
2: T7 = T3 · T6;
3: T8 = T 2

3 {†, ◦};
4: T3 = T3 · T8;
5: T3 = T5 · T3;
6: T9 = T4 · T8;
7: T8 = T 2

6 ;
8: T1 = T1 · T8;
9: T8 = T8 · T6;
10: T2 = T2 · T8;
11: T9 = T9{?} − T1;
12: T8 = T3 − T2{†, ◦};
13: T3 = T7 · T9;

14: T7 = T 2
9 ;

15: T9 = T7{◦} · T9;
16: T7 = T1 · T7{†};
17: T2 = T2 · T9;
18: T1 = T 2

8 ;
19: T1 = T1{?} − T9;
20: T1 = T1 − T7; {?}
21: T1 = T1 − T7; {?}
22: T7 = T7 − T1;
23: T8 = T8 · T7;
24: T2 = T8 − T2{◦};
25: return (T1, T2, T3);
26: end function
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Chapter 7
Binary Elligator Squared

7.1 Introduction

Applications of elliptic curve cryptography to anonymity, privacy and censorship circum-
vention call for methods to represent uniformly random points on elliptic curves as uni-
formly random bit strings, so that, for example, ECC network traffic can masquerade as
random traffic.

At ACM CCS 2013, Bernstein et al. proposed an efficient approach, called “Elligator”,
to solve this problem for arbitrary elliptic curve-based cryptographic protocols, based on
the use of efficiently invertible maps to elliptic curves. Unfortunately, such invertible maps
are only known to exist for certain classes of curves, excluding in particular curves of
prime order and curves over binary fields. A variant of this approach, “Elligator Squared”,
was later proposed by Tibouchi (FC 2014) supporting not necessarily injective encodings
to elliptic curves (and hence a much larger class of curves), but, although some rough
efficiency estimates were provided, it was not clear how an actual implementation of that
approach would perform in practice.

In this chapter, we show that Elligator Squared can indeed be implemented very effi-
ciently with a suitable choice of curve encodings. More precisely, we consider the binary
curve setting (which was not discussed in Tibouchi’s paper), and implement the Elligator
Squared bit string representation algorithm based on a suitably optimized version of the
Shallue–van de Woestijne characteristic 2 encoding, which we show can be computed using
only multiplications, trace and half-trace computations, and a few inversions.

On the fast binary curve of Oliveira et al. (CHES 2013), our implementation runs in an
average of only 22850 Haswell cycles, making uniform bit string representations possible
for a very reasonable overhead—much smaller even than Elligator on Edwards curves.

We also compare implementations of Elligator and Elligator Squared on a curve sup-
ported by Elligator, namely Curve25519. We find that generating a random point and its
uniform bit string representation is around 35–40% faster with Elligator for protocols using
a fixed base point, but 30–35% faster with Elligator Squared in the case of a variable base
point. Both are significantly slower than our binary curve implementation.

This work was presented at SAC 2014 [AFQ+14].

7.1.1 Context

For censorship circumvention applications, however, ECC presents a weakness: points on
a given elliptic curve, when represented in a usual way (even in compressed form) are
easy to distinguish from random bit strings. For example, the usual compressed bit string
representation of an elliptic curve point is essentially the x-coordinate of the point, and
only about half of all possible x-coordinates correspond to valid points (the other half
being x-coordinates of points of the quadratic twist). This makes it relatively easy for an
attacker to distinguish ECC traffic (the transcripts of multiple ECDH key exchanges, say)
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from random traffic, and then proceed to intercept, block or otherwise tamper with such
traffic.

To alleviate that problem, one possible approach is to modify protocols so that trans-
mitted points randomly lie either on the given elliptic curve or on its quadratic twist (and
the curve parameters must therefore be chosen to be twist-secure). This is the approach
taken by Möller [Möl04], who constructed a CCA-secure KEM with uniformly random
ciphertexts using an elliptic curve and its twist. This approach has also been used in
the context of kleptography, as considered by Young and Yung [YY07, YY10], and has
already been deployed in circumvention tools, including StegoTorus [WWY+12], a cam-
ouflage proxy for Tor, and Telex [WWGH11], an anticensorship technology that uses a
covert channel in TLS handshakes to securely communicate with friendly proxy servers.
However, since protocols and security proofs have to be adapted to work on both a curve
and its twist, this approach is not particularly versatile, and it imposes additional security
requirements (twist-security) on the choice of curve parameters.

A different approach, called “Elligator”, was presented at ACM CCS 2013 by Bern-
stein, Hamburg, Krasnova and Lange [BHKL13a]. Their idea is to leverage an efficiently
computable, efficiently invertible algebraic function that maps the integer interval S =
{0, . . . , (p − 1)/2}, p prime, injectively to the group E(Fp) where E is an elliptic curve
over Fp. Bernstein et al. observe that, since ι is injective, a uniformly random point P in
ι(S) ⊂ E(Fp) has a uniformly random preimage ι−1(P ) in S, and use that observation to
represent an elliptic curve point P as the bit string representation of the unique integer
ι−1(P ) if it exists. If the prime p is close to a power of 2, a uniform point in ι(S) will have
a close to uniform bit string representation.

This method has numerous advantages over Möller’s twisted curve method: it is easier
to adapt to existing protocols using elliptic curves, since there is no need to modify them to
also deal with the quadratic twist; it avoids the need to publish a twisted curve counterpart
of each public key element, hence allowing a more compact public key; and it doesn’t impose
additional security requirements like twist-security. But it crucially relies on the existence of
an injective encoding ι, only a few examples of which are known [Far11, FJT13, BHKL13a],
all of them for elliptic curves of non-prime order over large characteristic fields. This makes
the method inapplicable to implementations based on curves of prime order or on binary
fields, which rules out most standardized ECC parameters [FIP09, Cer10, LM10, ANS11],
in particular. Moreover, the rejection sampling involved (when a point P is picked outside
ι(S), the protocol has to start over) can impose a significant performance penalty.

To overcome these limitations, Tibouchi [Tib14] recently proposed a variant of Elli-
gator, called “Elligator Squared”, in which a point P ∈ E(Fq) is represented not by a
preimage under an injective encoding ι, but by a randomly sampled preimage under an
essentially surjective map F2

q → E(Fq) with good statistical properties, known as an ad-
missible encoding following a terminology introduced by Brier et al. [BCI+10]. By results
due to Farashahi et al. [FFS+13], such admissible encodings are known to exist for all
isomorphism classes of elliptic curves, including curves of prime order and binary curves.
Since admissible encodings are essentially surjective, the approach also eliminates the need
for rejection sampling at the protocol level.

7.1.2 Our contributions

While the Elligator Squared approach is quite versatile, its efficiency is highly dependent
on how fast the underlying admissible encoding can be computed and sampled, and the
same can be said of Elligator in the settings where it can be used. Since, to the best of our
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knowledge, no detailed implementation results or concrete performance numbers have been
published so far for the underlying encodings, one only has some rough estimates to go by.
For Elligator, Bernstein et al. give ballpark Westmere cycle count figures based on earlier
implementation results [BHKL13b], and for Elligator Squared, Tibouchi provides some
average operation counts in [Tib14] for a few selected encoding functions. No performance-
oriented implementation is available for either approach.

In this chapter, we provide the first such implementation for Elligator Squared, and do
so in the binary curve setting, which had not been considered by Tibouchi. Binary curves
provide a major advantage for algorithms like Elligator Squared due to the existence of
a point encoding function, the binary Shallue–van de Woestijne encoding [SvdW06], that
can be computed without base field exponentiations. Using the framework of Farashahi et
al. [FFS+13], one can obtain an admissible encoding from that function, and hence use it
to implement Elligator Squared.

We propose various algorithmic improvements and computation tricks to obtain a fast
evaluation of the binary Shallue–van de Woestijne encoding and of the associated Elligator
Squared sampling algorithm. In particular, our description is much more efficient than the
one given in [BCI+09, Appendix E].

Based on these algorithmic improvements, we performed software implementations of
Elligator Squared on the record-setting binary GLS curve of Oliveira et al., defined over
F2254 [OLARH14]. We dedicate special attention to optimizing the performance-critical
operations and introduce corresponding novel techniques, namely a new point addition
formula in λ-affine coordinates and a faster approach for constant-time half-trace compu-
tation over quadratic extensions of F2m . Moreover, timings are presented for both variable-
time and constant-time field arithmetic.1 The resulting timings compare very favorably to
previously suggested estimates.

Finally, as a side contribution, we also propose concrete cycle counts on Ivy Bridge and
Haswell for both Elligator and Elligator Squared on the Edwards curve Curve25519 [Ber06]
based on the publicly available implementation of Ed25519 [BDL+12]. We find that, on this
curve, the Elligator approach is roughly 35–40% faster than Elligator Squared for protocols
that rely on fixed-base scalar multiplication, but conversely, for protocols that rely on
variable-base scalar multiplication, Elligator Squared is 30–35% faster. Both approaches
are significantly slower than what we achieve on the same CPU with our binary curve
implementation.

7.2 Preliminaries

Let E be an elliptic curve over a finite field Fq.

7.2.1 Well-bounded encodings

Some technical definitions are required to describe the conditions under which an “encoding
function” f : Fq → E(Fq) can be used in the Elligator Squared constructions. See [FFS+13,
Tib14] for details.

Definition 7.1. A function f : Fq → E(Fq) is said to be a B-well-distributed encoding for

1We point out that using constant-time arithmetic for Elligator Squared is not required in most realistic
adversarial models, but it does offer protection against very powerful distinguishing attackers, so the
paranoid may prefer that option nonetheless.
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a certain constant B > 0 if for any nontrivial character χ of E(Fq), the following holds:∣∣∣∣ ∑
u∈Fq

χ(f(u))

∣∣∣∣ ≤ B√q.
Definition 7.2. We call a function f : Fq → E(Fq) a (d,B)-well-bounded encoding, for
positive constants d,B, when f is B-well-distributed and all points in E(Fq) have at most
d preimages under f .

7.2.2 Elligator Squared

Let f : Fq → E(Fq) be a (d,B)-well-bounded encoding and let f⊗2 the tensor square
defined by:

f⊗2 : F2
q → E(Fq)

(u, v) 7→ f(u) + f(v).

Tibouchi shows in [Tib14] that if we sample a uniformly random preimage under f⊗2 of
a uniformly random point P on the curve, we get a pair (u, v) ∈ F2

q which is statistically
close to uniform. Moreover he proves that sampling uniformly random preimages under
f⊗2 can be done efficiently for all points P ∈ E(Fq) except possibly a negligible fraction
of them [Tib14, Theorem 1]. The sampling algorithm Tibouchi proposed is described as
Algorithm 7.1. The idea is to randomly pick a random u and then to compute a correct
candidate v such that P = f(u) + f(v). The last steps of the algorithm (step 5 to 7) are
also needed in order to ensure the uniform distribution of the output (u, v).

Algorithm 7.1 Preimage sampling algorithm for f⊗2.
1: function SamplePreimage(P )
2: repeat
3: u

$← Fq
4: Q← P − f(u)
5: i← #f−1(Q)

6: j
$← {1, · · · , d}

7: until j ≤ i
8: {v1, · · · , vt} ← f−1(Q)
9: return (u, vj)

10: end function

7.2.3 Shallue–van de Woestijne in Characteristic 2

In this section, we recall the Shallue–van deWoestijne algorithm in characteristic 2 [SvdW06],
following the more explicit presentation given in [BCI+09, Appendix E]. An elliptic curve
over a field F2n is a set of points (x, y) ∈ (F2n)2 verifying the equation:

Ea,b : Y 2 +X · Y = X3 + a ·X2 + b

where a, b ∈ (F2n)2. Let g be the rational function x 7→ x−2 · (x3 + a · x2 + b). Letting
Z = Y/X, the equation for Ea,b can be rewritten as Z2 + Z = g(X).
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Theorem 7.1. Let g(x) = x−2 · (x3 + a · x2 + b) where a, b ∈ (F2n)2. Let

X1(t, u) =
t · c

1 + t+ t2
X2(t, u) = t ·X1(t, u) + c X3(t, u) =

X1(t, u) ·X2(t, u)

X1(t, u) +X2(t, u)

where c = a+ u+ u2. Then g(X1(t, u)) + g(X2(t, u)) + g(X3(t, u)) ∈ h(F2n) where h is the
map h : z 7→ z2 + z.

From Theorem 7.1, we have that at least one of the g(Xi(t, u)) must be in h(F2n),
which leads to a point in Ea,b(F2n). Indeed, we have that h(F2n) = {z ∈ F2n | Tr(z) = 0},
where Tr is the trace operator Tr : F2n → F2 with:

Tr z =
n−1∑
i=0

z2i

(one inclusion is obvious and the other one follows from the fact that the kernel of the F2-
linear map h is {0, 1}, hence its image is a hyperplane). As a result,

∑3
i=1 Tr(g(Xi)) = 0

and therefore at least one of the Xi must satisfy Tr(g(Xi)) = 0 since Tr is F2-valued. Such
an Xi is indeed the abscissa of a point in Ea,b(F2n), and we can find its y-coordinate by
solving the quadratic equation Z2 + Z = g(Xi). That equation is F2-linear, so finding Z
amounts to solve a linear system over F2. This yields the point-encoding function described
in Algorithm 7.2.

In the description of that algorithm, the solution of the quadratic equation is expressed
in terms of a linear map QS : Ker(Tr)→ F2n (“quadratic solver”), which is a right inverse
of z 7→ z2 + z. It is chosen among such right inverses in such a way that membership in
its image is computed efficiently using a single trace computation. For example, when n
is odd, it is customary to choose QS(x) as the trace zero solution of z2 + z = x, in which
case QS is simply the half-trace map HTr defined as:

HTr : z 7→
(n−1)/2∑
i=0

z22i .

When n = 2m with m odd, we have F2n = F2m [w]/(w2 + w + 1) and we can define QS(x)
as the solution z = z0 +z1w of z2 +z = x such that Tr(z0) = 0 (and this clearly generalizes
to extension degrees with higher 2-adic valuation). The efficient computation of QS in that
case is discussed in §7.4.

Algorithm 7.2 Shallue–van de Woestijne algorithm in characteristic 2.
Require: a, b ∈ F2n and t, u ∈ F2n

Ensure: (x, y) ∈ Ea,b
1: c← a+ u+ u2

2: X1 ← t · c/(1 + t+ t2)
3: X2 ← t ·X1 + c
4: X3 ← X1 ·X2/(X1 +X2)
5: for j = 1 to 3 do
6: hj ← (X3

j + a ·X2
j + b)/X2

j

7: if Tr(hj) = 0 then return (Xj ,QS(hj) ·Xj)
8: end if
9: end for
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Algorithm 7.2 actually maps two parameters t, u to a rational point on the curve Ea,b.
One can obtain a map f : Fq → Ea,b(Fq) by picking one of the two parameters as a suitable
constant and letting the other one vary. In what follows, for efficiency reasons, we fix t
and use u as the variable parameter.

One can check that the resulting function is well-bounded in the sense of §7.2.1. Indeed,
the framework of Farashahi et al. [FFS+13] can be used to establish that it is a well-
distributed encoding: the proof is easily adapted from the one given in [FT12] for the odd
characteristic version of the Shallue–van de Woestijne algorithm. Moreover, each curve
point has at most 6 preimages under the corresponding function: there are at most two
values of u that yield a given value of X1, and similarly for X2, X3. Thus, we obtain a
(d,B)-well-bounded encoding for an explicitly computable constant B and d = 6.

7.2.4 Lambda affine coordinates

In order to have more efficient binary elliptic curve arithmetic, we will use lambda coordi-
nates [Knu99, Sch00b, OLARH14]. Given a point P = (x, y) ∈ Ea,b(F2n), with x 6= 0, its
λ-affine representation of P is defined as (x, λ) where λ = x+ y/x. The λ-affine equation
of the Weierstrass Equation of the curve y2 +xy = x3 + ax2 + b is (λ2 +λ+ a)x2 = x4 + b.
Note that the condition x 6= 0 is not restrictive in practice since the only point x = 0
satisfying Weierstrass equation is (0,

√
b).

7.3 Algorithmic aspects

We focus on Algorithm 7.1 proposed by Tibouchi in [Tib14], which we adapt for the specific
characteristic 2 finite field. More precisely, we consider an elliptic curve over a field F2n

that satisfies the equation in λ-coordinates:

Ea,b : (λ2 + λ+ a)x2 = x4 + b

where a, b ∈ (F2n)2. The (6, B)-well-bounded encoding we consider for our efficient Elliga-
tor Squared implementation is the binary Shallue–van de Woestijne algorithm recalled in
§7.2.3.

One of its properties is that among three candidates denoted X1, X2, X3, either exactly
one of them or all three are x-coordinate of a rational point over the binary elliptic curve
Ea,b, and the algorithm outputs the first correct one. Owing to this property, some ad-
ditional verifications are needed during preimage computation, since it is not always true
that SWChar2X(SWChar2−1

X (Xi)) = Xi for i = 2, 3 when it is true for i = 1, where we
denote by SWChar2X the x-coordinate of the binary Shallue–van de Woestijne algorithm,
and by SWChar2−1

X an arbitrary preimage thereof (see the discussion on the subroutine
PreimagesSW in §7.3.2 for more details). We also have to consider another property of
this algorithm, concerning the output. Indeed the y-coordinate has a specific form and
thus, before searching for some preimages of the point Q, one has to test whether this
property is verified (see the discussion on the overall complexity in §7.3.3 for more details).

The details of our preimage sampling algorithm in characteristic 2 are described in
Algorithm 7.3 with t fixed to a constant such that t(t + 1)(t2 + t + 1) 6= 0, i.e. t 6∈ F4.
Note that we make the choice to use the λ-coordinates for efficiency reasons justified in
§7.3.2. The rest of the section consists in describing the two subroutines SWChar2 and
PreimagesSW, as well as in evaluating the overall complexity of Algorithm 7.3.
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Algorithm 7.3 Preimage Sampling Algorithm in Characteristic 2

1: Precomputed: t1 = t
1+t+t2

, t2 = 1+t
1+t+t2

, t3 = t(1+t)
1+t+t2

2: function SamplePreimage(Ea,b, P )
3: repeat
4: repeat
5: u

$← F2n

6: R← SWChar2(Ea,b, u, t1, t2, t3)
7: Q← P −R
8: until λQ + xQ ∈ Im(QS) . Test fails by convention for Q at infinity
9: k, S = {v1, · · · , vk} ← PreimagesSW(Ea,b, Q, t1, t2, t3)

10: j
$← {1, · · · , 6}

11: until j ≤ k
12: return (u, vj)
13: end function

7.3.1 The subroutine SWChar2

The first subroutine represents the binary Shallue–van de Woestijne algorithm and its
pseudocode for our case is given as Algorithm 7.4. Given a value u ∈ F2n , it outputs the
lambda coordinates of a point over the binary elliptic curve Ea,b.

Algorithm 7.4 Efficient Binary Shallue–van de Woestijne Algorithm
1: function SWChar2(Ea,b, u, t1, t2, t3)
2: c← u2 + u+ a
3: c−1 ← 1/c
4: for j = 1 to 3 do . Compute hj and perform a trace test
5: Xj ← tj · c . or X3 ← X1 +X2 + c
6: X−j ← 1/tj · c−1 . 1/tj can also be precomputed
7: hj ← (X−j)

2 · b+Xj + a
8: if Tr(hj) = 0 then . At least one of the three potential tests will succeed
9: x← Xj

10: λ← QS(hj) + x
11: break . Only take into account the first correct solution
12: end if
13: end for
14: return (x, λ) . Lambda coordinates of a point over Ea,b
15: end function

Since the field inversion is by far the most expensive field operation (see [OLARH14]
for experimental timings and Table 7.2 below), we have modified Algorithm 7.2 so that
we have a single inversion of c to perform. Indeed Algorithm 7.2 requires at most 4 field
inversions: the first one at step 4 and the three others at step 6. However the parameters
Xi and 1/Xi for j = 1, 2, 3 can be expressed using c, 1/c and some constants depending
on t which can be precomputed (see Table 7.1). Note that X3 can be computed as c · t3,
or more efficiently as X1 +X2 + c but this requires to keep in memory X1 and X2. Finally
this algorithm requires a single field inversion, a QS computation and some negligible field
operations (multiplications, squarings and trace computations).
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Table 7.1: Efficient computation of values Xi and 1/Xi for i = 1, · · · 3. The values t1 =
t

1+t+t2
, 1/t1, t2 = 1+t

1+t+t2
, 1/t2 and 1/t3 = 1+t+t2

t(1+t) can be precomputed, with t a constant
such that t 6∈ F4.

X1 ← t1 · c X2 ← t2 · c X3 ← X1 +X2 + c

1/X1 ← 1/t1 · 1/c 1/X2 ← 1/t2 · 1/c 1/X3 ← 1/t3 · 1/c

7.3.2 The subroutine PreimagesSW

The second subroutine is useful to compute the number of preimages of the point Q =
(xQ, λQ) by Algorithm 7.4. Its pseudocode is detailed as Algorithm 7.5 and refers to the
steps 5 and 8 of Algorithm 7.1.

Algorithm 7.5 Preimages Computation by Algorithm 7.4
1: function PreimagesSW(Ea,b, Q = (xQ, λQ), t1, t2, t3)
2: k ← 0
3: S ← {}
4: for j = 1 to 3 do . From xQ = Xj(t, u)...
5: αj ← xQ · 1/tj + a
6: if Tr(αj) = 0 then . ...Test if there are some solutions
7: if j = 1 then . For X1, a solution is a preimage
8: u0 ← QS(αj)
9: u1 ← u0 + 1

10: k ← 2
11: S ← {u0, u1}
12: else . For X2, X3, a solution is not necessarly a preimage
13: X1 ← t1/tj · xQ
14: tmp← [(λQ + xQ)2 + (λQ + xQ) + xQ + a] · (tj/t1)2 . tmp = b/X2

1

15: h1 ← tmp+X1 + a
16: if Tr(h1) 6= 0 then . Test if X1 would also be a correct x-coordinate
17: u0 ← QS(αj)
18: u1 ← u0 + 1
19: k ← k + 2
20: S ← S ∪ {u0, u1}
21: end if
22: end if
23: end if
24: end for
25: return k, S . k: number of preimages, S: set of preimages
26: end function

This subroutine is more complex due to the properties of the Shallue–van de Woesti-
jne algorithm. More precisely, there is an order relation in Algorithm 7.4: if X1 cor-
responds to a x-coordinate of a point over the elliptic curve, then it will output this
point, even if X2 and X3 also correspond to a possible x-coordinate. Thus, the equality
SWChar2(SWChar2−1(Xj)) = Xj is true for j = 1 but not necessarily for j = 2, 3. In
others words, for j = 2, 3 a solution of SWChar2−1(Xj) is not necessarily a preimage of
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Xj by SWChar2.
Starting from the equations xQ = Xj(t, u) = c(u)·tj for j = 1, 2, 3, with c(u) = u2 +u+

a, the main idea of Algorithm 7.5 consists in testing if there exists some values of u which
satisfy these equations. If one finds some candidates for u, one also has to verify if they
really correspond to preimages by Algorithm 7.4. From an equation xQ = Xj(t, u) we can
obtain an equation u+u2 = xQ/tj+a = αj(a, t) which has two solutions if Tr(αj(a, t)) = 0
and no solution otherwise. As an example α1(a, t) is equal to xQ · (1 + t+ t2)/t+ a. The
solutions are then u1

0 = QS(αj(a, t)) and u1
1 = u1

0 + 1. There are thus at most 6 possible
solutions for all values of j. Now for the cases xQ = X2(t, u) and xQ = X3(t, u), it remains
to perform a verification. Actually, denoting u2

0 one of both solutions of the equation
xQ = X2(t, u) if it exists, the computation of SWChar2(u2

0) can result in X1(t, u2
0) instead

ofX2(t, u2
0), and this happens with probability 1/2 which is the probability that Tr(h1) = 0.

The same result holds for xQ = X3(t, u), however note that if X3 is solution but not X1

then X2 cannot be a solution since
∑3

i=1 Tr(g(Xi)) = 0 according to Theorem 7.1. Thus
the verification can focus only on X1.

Naive implementation of the verification. A simple way for implementing the ver-
ification would consist in computing QS(αj(a, t)) for j = 2, 3 and then calling twice the
subroutine SWChar2 (without the steps referring to X2 and X3) for testing if the test
on the trace is true or not. However this would require an additional inversion per call to
compute SWChar2. Moreover, with this naive implementation we have to compute the
half trace before testing if the result will be a preimage.

Efficient implementation of the verification. Since the verification focuses only on
X1 as explained above, we propose an efficient way to compute b/X2

1 , which is required in
order to perform the test Tr(h1) = Tr(X1 + a + b/X2

1 ), without any field inversion. This
trick is valuable when we are working in lambda coordinates. Our proposal has another
advantage: we do not need to compute the solutions, i.e. u0 = QS(αj(a, t)) and u1 = u0+1,
before to be sure that we will get two preimages. We thus save some quite expensive half
trace computations.

Consider the equation:

xQ = X2 = t2 · c = t2 ·X1/t1 with c = QS(α2(a, t))2 + QS(α2(a, t)) + a.

X1 can be expressed as t1/t2 ·xQ, whose computation is negligible for t1/t2 a precomputed
value. Now starting from the equation of the elliptic curve in affine coordinates, i.e. Ea,b :
Y 2 +X · Y = X3 + a ·X2 + b, we divide each term by X2 and we evaluate the equation in
the point Q. We then obtain:(

yQ
xQ

)2

+
yQ
xQ

= xQ + a+
b

x2
Q

,

and finally:
b

X2
1

=

(
t2
t1

)2

·
[(

yQ
xQ

)2

+
yQ
xQ

+ xQ + a

]
.

Assuming that (t2/t1)2 is a precomputed constant, the computation of b/X2
1 is not costly

if yQ/xQ does not require an expensive operation. That is the case when we are working
in λ-coordinates since λQ = yQ/xQ+xQ. The same result obviously holds for the equation
xQ = X3 by replacing t2 with t3.

To conclude, Algorithm 7.5 requires at most 3 QS computations and some negligible
field operations (multiplications, squarings and trace computations).

109



7. Binary Elligator Squared

7.3.3 Operation counts

We conclude this section by evaluating the average number of operations needed to evaluate
Algorithm 7.3.

Proposition 7.1. An evaluation of Algorithm 7.3 on uniformly random curve points re-
quires, on average and with an error term of up to O(2−n/2), 6 field inversions, 6 point
additions, 9 quadratic solver computations and some negligible operations such as field
multiplications, field squares and trace computations.

Proof. The proof consists in evaluating the probability for exiting the two loops. First
note that the output (x, λ) of Algorithm 7.4 has a specific property, namely λ+x is in the
image of QS. Since we want to retrieve the preimages of a point Q, we have to be sure that
λQ + xQ is indeed in that image, which we test for by verifying whether Tr(λQ + xQ) = 0.
Indeed, all elements of the form QS(z) have zero trace by definition, and the converse is
true for reasons of dimensions. The success probability of this test is exactly 1/2 since Q
is a uniformly random curve point. We thus have on average 2 field inversions, 2 point
additions and 2 quadratic solver computations for the internal loop (steps 4 to 8).

The complexity of the external loop demands to evaluate the probabilities for having
0, 2, 4 or 6 preimages of Q. Since all tests on the trace in Algorithm 7.5 succeed, inde-
pendently, with probability 1/2 + O(2−n/2),2 these probabilities are then, again with an
error term of O(2−n/2), 9/32 for 0 preimage, 15/32 for 2 preimages, 7/32 for 4 preimages,
and 1/32 for 6 preimages. Thus, the probability for exiting the external loop is equal
to 0 · 9/32 + 1/3 · 15/32 + 2/3 · 7/32 + 1 · 1/32 = 1/3. These probabilities also hold for
evaluating the average cost of an iteration of PreimagesSW in term of quadratic com-
putations. With probability 15/32 one such computation will be performed and so on. As
a consequence, one iteration of PreimagesSW cost on average 15·1+7·2+1·3

32 = 1 quadratic
solver computation.

To sum up, Algorithm 7.3 requires on average 3 · 2 field inversions, 3 · 2 additions of
points and 3 · (2 + 1) quadratic solver computations, up to a O(2−n/2) error term. �

Note that the efficiency of this algorithm can be improved further by choosing a sparse
value of b and a value of t that yields sparse precomputed constants. Many of the field
multiplications will then be computed faster.

7.4 Implementation aspects

Our software implementation targets modern Intel Desktop-based processors, making ex-
tensive use of the recently introduced AVX instruction set [FBJ+] accessible through com-
piler intrinsics. The curve choice is the GLS binary curve (λ2+λ+a)x2 = x4+b represented
in λ-coordinates and defined over the quadratic extension F2254 . The extension is built by
choosing the irreducible trinomial g(w) = w2 + w + 1 over the base field F2127 defined
with the irreducible trinomial f(z) = z127 + z63 + 1. In this set of parameters, a field
element a is represented as a = a0 +a1w, with a0, a1 ∈ F2127 . For simplicity, the parameter
t is chosen to be a random subfield element, allowing the computational savings by sparse
multiplications described in the previous section.

2This can be justified rigorously using the fact that the corresponding function field extensions are
pairwise linearly disjoint, exactly as in the image size computations of [FT12, §4]. For simplicity, we do
not include the tedious Galois extension computations involved.
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Squaring and multiplication

Field squaring closely mirrors the vector formulation proposed in [ALH10], with coeffi-
cient expansion implemented by table lookups performed through byte-shuffling instruc-
tions. The table lookups operate on registers only, allowing a very efficient constant-time
implementation. Field multiplication is natively supported by the carry-less multiplier
(PCLMULQDQ instruction), with the number of word multiplications reduced through
application of Karatsuba formulae, as described in [TFHA+11]. Modular reduction is im-
plemented with a shift-and-add approach, with careful choice of aligning vector word shifts
on multiples of 8, to explore the faster memory alignment instructions available in the
target platform.

Quadratic solver

For an odd extension degree m, the half-trace function HTr : F2m → F2m is defined
by HTr(c) =

∑(m−1)/2
i=0 c22i and computes a solution c ∈ F2m to the quadratic equation

λ2 +λ = c+ Tr(c). Let Tr′ : F22m → F2 denote the trace function in a quadratic extension.
The equation λ2 + λ = c can be solved for a trace zero element c = c0 + c1w ∈ F22m by
computing two half-traces in F2m , as described in [HKM09]. First, solve λ2

1 + λ1 = c1

to obtain λ1, and then solve λ2
0 + λ0 = c0 + c1 + λ1 + Tr(c0 + c1 + λ1) to obtain the

solution λ = λ0 + (λ1 + Tr(c0 + c1 + λ1))w. This approach is very efficient for variable-
time implementations and only requires two half-trace computations in the base field,
where each half-trace computation employs a large precomputed table of 28 · dm8 e field
elements [OLARH14].

A more naive approach evaluates the function by alternatingm−1 consecutive squarings
and (m − 1)/2 additions, with the advantage of taking constant-time (if squaring and
addition are also constant-time, as in the case here). We derive a faster way to compute
the half-trace function in constant-time over quadratic extension fields. Applying the naive
approach to a quadratic extension allows a significant speedup due to the linear property
of half-trace, by reducing the cost to essentially one constant-time half-trace computation
over the base field. Since Tr′(c) = 0, we have Tr(c1) = 0 and Tr(λ1) = 0 for the choice of
λ1 as the half-trace of c1 as solution of λ2

1 + λ1 = c1. This simplifies the expression above
to λ2

0 + λ0 = c0 + c1 + λ1 + Tr(c0). Substituting d = c0 + Tr(c0), the expression for λ0

becomes:

λ0 =

(m−1)/2∑
i=0

(d+ c1 + λ1)22i =

(m−1)/2∑
i=0

d+ c1 +

(m−1)/2∑
j=0

c22j

1

22i

.

The expansion of the inner sum allows the interleaving of the consecutive squarings.
The analysis can be split in two cases, depending on the format of the extension degree m:

λ0 =


c0 +

bm/4c−1∑
i=0

(c16
0 + d4 + c4

1 + c8
1)24i if m ≡ 1 (mod 4)

bm/4c∑
i=0

(c0 + d4 + c2
1 + c4

1)24i if m ≡ 3 (mod 4).

The value λ1 can then be computed as λ1 = λ2
0+λ0+d+c1, for a total of approximately

m squarings and m/4 additions, a cost comparable to a single constant-time half-trace in
the base field.
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Inversion

Field inversion is implemented by two different approaches based on the Itoh-Tsuji algo-
rithm [IT88]. This algorithm computes a−1 = a(2m−1−1)2, as proposed in [GP02], with
the cost of m − 1 squarings and a number of multiplications determined by the length
of an addition chain for m − 1. For a variable-time implementation, the squarings for
each 2i-power involved can be converted into multi-squarings [BKNS10], implemented as
a trade-off between space consumption and execution time. Each multi-squaring table re-
quires the storage of 24 ·dm4 e field elements. A constant-time implementation must perform
consecutive squarings and cannot benefit considerably from a precomputed table of field
elements without introducing variance in memory latency, potentially exploitable by an
intrusive attacker.

Point addition

The last performance-critical operation to be described is the point addition in λ-affine
coordinates. A formula for adding points P = (xP , yP ) and Q = (xQ, yQ) on the curve
is proposed in [OLARH14], with associated cost of 2 inversions, 4 multiplications and 2
squarings :

xP+Q =
xP · xQ(λP + λQ)

(xP + xQ)2
, λP+Q =

xQ · (xP+Q + xP )2

xP+Q · xP
+ λP + 1.

Simple substitution of xP+Q in the computation of λP+Q gives faster new formulas. By
unifying the denominators, one field inversion can be traded for 2 multiplications in the
formulas below, with associated cost of 1 inversion, 6 multiplications and 2 squarings:

xP+Q =
xP · xQ(λP + λQ)2

(xP + xQ)2(λP + λQ)

λP+Q =

[
(xP + xQ)2 + xQ · (λP + λQ)

]2
(xP + xQ)2(λP + λQ)

+ λP + 1.

7.5 Experimental results

The implementation was completed with help of the latest version of the RELIC toolkit [AG].
Random number generation was implemented with the recently introduced RDRAND instruc-
tion [Cor]. Software was compiled with a prerelease version of GCC 4.9 available in the
Arch Linux distribution with flags for loop unrolling, aggressive optimization (-O3 level)
and specific tuning for the Sandy/Ivy Bridge microarchitectures. Table 7.2 presents tim-
ings in clock cycles for field arithmetic and Elligator Squared in two different platforms
– an Intel Ivy Bridge Core i5 3317U 1.7GHz and a Haswell Core i7 4770K 3.5GHz. The
timings were taken as the average of 104 executions, with TurboBoost and HyperThreading
disabled to reduce randomness in the results.

The constant-time implementation results are mostly for reference: indeed, since the
Elligator Squared operation is efficiently invertible, there is no strong reason to compute
it in constant time: timing information does not leak secret key data like in the case
of a scalar multiplication. However, timing information could conceivably help an active
distinguishing attacker; the corresponding attack scenarios are far-fetched, but the paranoid
may prefer to choose constant-time arithmetic as a matter of principle.
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Table 7.2: Timings for Elligator Squared and underlying field arithmetic in two Intel
platforms. Results are in clock cycles and were taken as the average of 104 executions
with random inputs. FB/VB results refer to generating a random point with fixed-base
and variable-base scalar multiplication respectively, using the constant-time, timing-attack
protected scalar multiplication from [OLARH14], and computing its Elligator Squared
representation with variable-time arithmetic.

Operation Ivy Bridge Haswell

Field squaring 13 15

Sparse multiplication 80 44

Multiplication 94 48

Inversion 959 734

Constant-time inversion 1,783 1,610

Half-trace 55 50

Constant-time half-trace 1,213 1,245

Point addition 1,500 1,026

Constant-time point addition 2,367 2,137

Elligator Squared 23,680 22,850

Constant-time Elligator Squared 52,850 51,750

FB with Elligator Squared 127,430 80,180

VB with Elligator Squared 138,480 83,680

7.6 Comparison of Elligator 2 and Elligator Squared on Prime
Finite Fields

We have implemented Elligator 2 [BHKL13a] and the corresponding Elligator Squared
construction on Curve25519 [Ber06] using the fast arithmetic provided by Bernstein et al.
as part of the publicly available implementation of Curve25519 and Ed25519 [BDL+12] in
SUPERCOP, in order to compare the two proposed methods on Edwards curves in large
characteristic (and to see how they both perform compared to our binary implementation).

To generate a random point and compute the corresponding bitstring representation,
the Elligator method requires, on average, 2 scalar multiplications, 2 tests for the existence
of preimages and 1 preimage computation. On the other hand, for the same computation,
Elligator Squared requires, on average, 1 scalar multiplication, 2 tests for the existence of
preimages, 1 preimage computation and 2 computations of the Elligator 2 map function. As
a result, compared to the Elligator approach, the Elligator Squared approach requires one
scalar multiplication less, but two map function computations more. Therefore, Elligator
will be faster than Elligator Squared in contexts where a scalar multiplication is cheaper
than two map function evaluations and conversely. Elligator will thus tend to have an edge
for protocols using fixed base point scalar multiplication, whereas Elligator Squared will
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Table 7.3: Timings for Elligator Squared and Elligator 2 on Curve25519. Results are in
clock cycles and were taken as the average of 104 executions with random inputs. FB/VB
are as in Table 7.2

Operation Ivy Bridge Haswell

Scalar multiplication (fixed-base) 42,570 42,180

Scalar multiplication (variable-base, est.) 182,490 162,460

Map function 38,420 36,590

FB with Elligator Squared (on average) 157,500 141,200

FB with Elligator 2 (on average) 114,800 100,200

VB with Elligator Squared (on average, est.) 297,420 261,480

VB with Elligator 2 (on average, est.) 394,640 340,760

perform better for protocols using variable base point scalar multiplication.
This is confirmed by our implementation results, as reported in Table 7.3, which are

35–40% in favor of Elligator in the fixed-base case (FB) but 30–35% in favor of Elligator
Squared in the variable-base case (VB). Note that the variable-base scalar multiplication
results are estimates based on the SUPERCOP performance numbers on haswell and
hydra2. A comparison with Table 7.2 shows that the binary curve approach is 25% to
200% times faster than the fastest Curve25519 implementation. Observe that our results
were obtained using a binary GLS curve with efficient arithmetic implemented in processors
with native support to binary field arithmetic and may not translate directly to different
parameter choices or computing platforms.
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PART III

SECURITY OF PSEUDORANDOM
GENERATORS

One of the most fundamental cryptographic primitives is the pseudorandom bit generator.
It is a deterministic algorithm algorithm that expands a few truly random bits to a longer
sequence of bits that cannot be distinguished from uniformly random bits by a compu-
tationally bounded algorithm. It has numerous uses in cryptography, e.g. in signatures
schemes or public-key encryption schemes.

As a consequence, pseudorandom generators are one of the main component of security
products and their importance for security is hard to overestimate. A number of practical
attacks stem from problems with randomness generators. Indeed, it is difficult to obtain
randomness on computers and embedded devices, which tend to aggregate various more
or less reliable sources of entropy (mouse movements, passwords, network interrupts, elec-
tronic noise) and use pseudorandom number generators to expand them into arbitrarily
long, hopefully uniform-looking bit strings.

Such practical generators have been analyzed and a framework has been given by Barak
and Halevi [BH05] for the Linux generators, who discuss the importance of the randomness
collector which maintains a state of enough entropy and an extraction function whose aims
is to output random bitstring from the state, which is then expanded into an arbitrarily
long pseudorandom string. Cryptographers tend to concentrate on the second aspect: they
assume that a pseudorandom generator is seeded with a uniformly distributed bitstring and
the goal of the generator is to stretch the seed to a longer bitstring. They define security
notions and a generator is called secure if it is hard to distinguish its output from uniformly
distributed bitstring given the previous output bits.

The security of the first cryptographically secure generators has been based on some
number-theoretic hard problems, in the sense that the problem of distinguishing the outputs
from uniform is reduced to a number-theoretic problem. In 1981, Shamir proposed one
generator based on the strong RSA problem in [Sha81]; Blum and Micali proposed a
generator based on the discrete logarithm problem [BM84]; Blum, Blum and Shub proposed
a generator based on the factorization problem in [BBS86]; and Micali and Schnorr defined
another generator based on the problem of distinguishing small e-th root modulo a RSA
modulus from uniform values in [MS91]. These generators are interesting from a theoretical
point of view, but they are rather inefficient and in practice more efficient generators using
symmetric cryptographic functions have been preferred.

Number-theoretic pseudorandom generators work by iterating an algebraic map F (pub-
lic or private) over a residue ring ZΨ on a secret random initial seed value v0 ∈ ZΨ to
compute values vn+1 = F (vn) mod Ψ for n ∈ N. They output some consecutive bits of the
state value vn at each iteration and their efficiency and security are thus strongly related
to the number of output bits. The input v0 of the generator (and possibly the description
of F ) is called the seed and the output is called the pseudorandom sequence.
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The last part of this thesis is devoted to contributions in this area and more specifically
we analyze the security of some pseudorandom generators. In Chapter 8 we study a sce-
nario where the secret key of any cryptosystem, based on the factorization or the discrete
logarithm problem, is generated using a linear congruential generator. We show, in this
case, that we can mount an attack to recover the secret key, given the public one and the
parameters of the generator, faster than an exhaustive search of the seed. Chapter 9 is ded-
icated to the cryptanalysis of any nonlinear pseudorandom generator using Coppersmith’s
techniques. More precisely, we increase the existing bounds leading to the recovery of the
seed. Finally we study the security of the Micali-Schnorr generator in Chapter 10 by first
presenting some time/memory/data tradeoffs applicable to this particular generator, then
by analyzing the statistical properties of its (more or less) algebraic map.
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Chapter 8
Recovering Private Keys

Generated With Weak PRNGs

8.1 Introduction

Suppose that the private key of discrete logarithm-based or factoring-based public-key
primitive is obtained by concatenating the outputs of a linear congruential generator. How
seriously is the scheme weakened as a result?

While linear congruential generators are cryptographically very weak “pseudorandom”
number generators, the answer to that question is not immediately obvious, since an ad-
versary in such a setting does not get to examine the outputs of the congruential generator
directly, but can only obtain an implicit hint about them—namely the public key.

In this chapter, we take a closer look at that problem, and show that, in most cases,
an attack does exist to retrieve the key much faster than with a naive exhaustive search
on the seed of the generator.

The problem is similar to the one considered by Bellare, Goldwasser and Micciancio
regarding DSA and “pseudorandomness”, and this line of work arguably has renewed rele-
vance in view of the sensitive role that random number generation has been found to play
in a number of recent noted papers, such as the one by Lenstra et al. at CRYPTO 2012.

This work was presented at IMACC 2013 [FTZ13].

8.1.1 Linear Congruential Generators

Cryptographers have studied the security of the linear congruential generators (LCG),
widely used in simulation. These generators are efficient and have a very small memory
footprint. Moreover, with suitable parameters, they can have good statistical properties
such as a large period length and their output distribution is uniform. As they are also
very easy to implement, they tend to be used in the standard libraries of many languages
and compilers: the rand function proposed in the POSIX standard and the ones used
in many C/C++ standard libraries, Java’s java.util.Random, most implementations of
RAND in Fortran, etc. Their efficiency and ubiquity make them attractive to implementors,
especially in constrained environments, even in some security-sensitive applications.

Unfortunately, LCGs are cryptographically insecure: Boyar [Boy89b] proved that, with
a sufficiently long run of the pseudorandom sequence, one can recover the seed in polynomial
time in the size of the internal state and Stern [Ste87] proved that this is also the case even
if only the most significant bits of each successive states is revealed (see also [Boy89a, JS98,
FHK+88]). These attacks are based on lattice reduction, usually LLL [LLL82]. However,
Contini and Shparlinski have proposed a careful analysis of these algorithms in [CS05]
and established some limits to their applicability, indicating that with properly chosen
parameters, the generator might become secure.
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8. Recovering Private Keys Generated With Weak PRNGs

8.1.2 Related Work

In any case, these attacks assume that the adversary has direct access to a certain number
of outputs (although the parameters of the generator may remain unknown). As a result,
using such a cryptographically weak generator in a cryptographic protocol does not auto-
matically make the resulting protocol insecure, because an adversary against the protocol
may not have access to the actual outputs of the generator. This led Bellare et al. [BGM97]
to analyze the security of the Digital Signature Algorithm (DSA) when the random nonces
used in signature generation are computed using a linear congruential generator. They
showed that this does seriously break security: a few signatures are enough to recover the
secret key. This started an important line of research on the security of DSA when partial
information on the nonces is revealed. For instance, Smart and Howgrave-Graham [HGS01]
and later Nguyen and Shparlinski [NS02] showed that the knowledge of a small number of
the most significant bits of the nonces allows to efficiently recover the secret key using LLL.
Bleichenbacher even established [Ble00] that the bias on the single most significant bit of
the nonce that occurs when using some version of the NIST generator can be sufficient to
efficiently recover the secret key.

8.1.3 Our contributions

In this chapter, we investigate a question similar to the one considered by Bellare et al. but
in a different direction than the DSA cryptanalysis papers. We consider the problem of the
security of public-key schemes based on the hardness of the discrete logarithm problem or
the factoring problem when the secret keys are constructed by concatenating the outputs
of a linear congruential generator. Since the attacker does not get those outputs directly,
but only an implicit hint, namely the corresponding public key, recovering the secret key
is not trivial even if a cryptographically weak generator such as the LCG is used. We show
that this is usually enough to recover the secret key much faster than using the trivial
exhaustive search on the seed of the generator.

Our attack relies on the assumption that the secret key is obtained as the concatenation
of successive outputs of a linear congruential generator. We also assume as is usual in
cryptography that the parameters of the LCG are public and therefore an exhaustive
search on the seed allows to recover the secret key in time 2k where k is the size of the
seed. Typical parameters for the LCG are 32 bits or 64 bits internal state to allow fast
implementation without using a library for large integer arithmetic. The main observation
of our work is that if we split the seed of size k into two parts (A ·2k/2 +B) where A and B
are (k/2)-bit long, the linearity of the LCG makes it “almost” possible to write the secret
key as a sum U + V · 2k/2 where U (respectively V ) only depends on B (resp. A) and the
parameters of the LCG. This is correct up to carries, which do occur but can be taken care
of separately. As a result, we can obtain a time-memory tradeoff on the search for the LCG
seed when such generators are used to generate the secret key of a discrete logarithm-based
scheme or to the prime factors of an RSA modulus. The discrete logarithm case is mainly
a baby-step giant-step attack on the lower and upper halves of the seed, while the factoring
case proceeds similarly using multipoint polynomial evaluation.

The main advantage of these attacks is that they allow key recovery from the public key
alone, independently of any further information on the underlying cryptographic schemes.
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8.1.4 Organization of the chapter

The chapter is organized as follows. After some preliminaries in §8.2, we present our attack
in the discrete logarithm case in §8.3 and in the factoring case in §8.4. Finally, in §8.5, we
give an overview of the complexity of our attacks for typical parameter sizes.

8.2 Preliminaries

We first recall the definition of the linear congruential generator and fix some notations
which will be used in the following sections; then we briefly discussion multipoint evaluation
of univariate polynomials, which will be used in the factoring case.

8.2.1 Linear congruential generator

For M an integer of size m bits, we denote by ZM the ring of integers modulo M . The in-
ternal state of a linear congruential generator evolves according to the following recurrence
relation:

vi+1 = a · vi + b mod M (8.1)

where a and b are fixed constant in ZM (the parameters of the generator) and v0 = s is the
secret seed. The successive outputs oi of the generator are the k least (or most) significant
bits of vi at each iteration (for some fixed k ∈ {1, . . . ,m}). Note that the recurrence
equation is easily solved as:

vi = ai · s+ b · (1 + a+ · · ·+ ai−1) = ai · s+ bi (mod M). (8.2)

The following attacks rely on the assumption that a certain secret x is computed as
a concatenation of successive outputs of such a linear congruential generator, with known
parameters a, b and M . In other words, x can be written as:

x = o0 + 2ko1 + · · ·+ 2(r−1)kor−1 (8.3)

for some fixed constant r. The secret x is then of size rk bits.

8.2.2 Multipoint evaluation of univariate polynomials

Let P (x) ∈ ZN [x], with N an arbitrary integer, be a polynomial of degree less than
d = 2k. The multipoint evaluation problem is the task of evaluating P at d distinct points
α0, . . . , αd−1 ∈ ZN . Using Horner’s rule, it is easy to propose a solution that uses O(d2)
additions and multiplications in ZN but it is well-known that one can propose an algorithm
with quasi-linear complexity Õ(d) operations in ZN using a divide-and-conquer approach
[Fid72]; a better, more involved algorithm based on the middle product of polynomials
has later been proposed in some special cases by Bostan and Schost [BS05, BS04]. That
observation has found several applications in cryptanalysis [CN12, CJM+11].

Here is a succinct description of the classical approach, based on product and remainder
trees of polynomials. Let P0 =

∏d/2−1
`=0 (x− α`) and P1 =

∏d−1
`=d/2(x− α`) and let us define

R0 = P mod P0 and R1 = P mod P1. We have R0(αi) = P (αi) for all i ∈ {0, . . . , d/2− 1}
and R1(αi) = P (αi) for all i ∈ {d/2, . . . , d − 1} and this gives immediately a recursive
algorithm (i.e. compute P0, P1, R0, R1 and reduce the problem to the multipoint evaluation
of R0 and R1 of degree d/2 = 2k−1).

Let Ai(x) = (x − αi) for i ∈ {0, . . . , d − 1} and Pi,j = Aj2iAj2i+1 . . . Aj2i+2i−1 for
i ∈ {0, . . . , k} and 0 ≤ j < 2k−i. We have P0,j = Aj and Pi+1,j = Pi,2jPi,2j+1 so for
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X − α1 X − α2 X − α3 X − α4 X − αn−3 X − αn−2 X − αn−1 X − αn

(X − α1)(X − α2) (X − α2)(X − α3) (X − αn−1)(X − αn) (X − αn−1)(X − αn)

n∏
i=1

(X − αi)

n/2∏
i=1

(X − αi)
n∏

i=n/2+1

(X − αi)

Figure 8.1: Polynomial subproduct tree for the multipoint evaluation algorithm

P mod A1 P mod A2 P mod A3 P mod A4 P mod An−3 P mod An−2 P mod An−1 P mod An

P mod A1A2 P mod A3A4 P mod An−3An−2 P mod An−1An

P mod A1 . . . An

P mod A1 . . . An/2 P mod An/2+1 . . . An

Figure 8.2: Evaluation on the polynomial subproduct tree

i ∈ {0, . . . , k} we can compute recursively all polynomials Pi,j and 0 ≤ j < 2k−i in
2k−i−1O(M(2i)) = O(M(d)) operations in ZN where M(i) denotes the arithmetic com-
plexity to compute the product of two polynomials of degree i in ZN [x]. Overall, the
computation of all polynomials Pi,j requires O(M(d) log d) operations in ZN .

The polynomials R0 and R1 can be computed using O(M(d)) operations in ZN (using
a Newton inversion), hence the complexity T (d) of the recursive algorithm satisfies T (d) =
2T (d/2) + O(M(d)) and therefore T (d) = O(M(d) log d). Figures 8.1 and 8.2 detail both
trees used for this technique.

8.3 The discrete logarithm case

We now consider key generation in a public-key scheme whose security is related to the
discrete logarithm problem in some cyclic group G of prime order q and generator g.
Typically, for such a scheme, G, q and g are public parameters, the secret key contains a
random element x ∈ Zq, and h = gx is revealed as part of the public key.

Assume that x is obtained from the outputs of a linear congruential generator of known
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parameters, as in Equation (8.1). The problem is to recover x from the public data faster
than by an exhaustive search on the seed s.

Our approach in a nutshell is as follows. Separate the seed in its lower-order and higher-
order halves: s = u + 2k/2 · v (we can assume for simplicity’s sake that k is even). Then,
by Equation (8.1), the internal state of the generator can be written as:

vi =
(
ai · u+ 2k/2 · ai · v + bi

)
mod M.

Thus, the corresponding output oi can essentially be written, in turn, as the sum of a part
depending only on u and another part depending only on v—only “essentially” because of
possible carry bits and of possible overflows in the addition modulo M , but this can be
taken care of, and we will ignore that for the moment.

Then, x is itself of the form x = U + V where U is a publicly computable function of
u, and V of v. In the group G, this gives h = gU · gV , or equivalently:

gU = h · g−V .

Now, in time and space O(2k/2), we can find a collision between the lists of elements of G
of the form gU for all 2k/2 possible values of u on the one hand, and h · g−V for all 2k/2

possible values of v on the other hand, and hence recover the secret x = U + V .
The real algorithm has a slightly higher complexity due to the need to take carries and

overflows into account, which we work out below first when M = 2k (the output is the full
internal state) and then in the general case.

Note that since the parameters a and b are known, the constants bi can be computed
publicly and are thus irrelevant to the attack. To simplify notations, we can thus assume
without loss of generality that b = 0.

Remark. The attack discussed here is generic and can of course be carried out in any cyclic
group: it applies to (subgroups of) the multiplicative group of a finite field and to elliptic
curves or abelian varieties alike. In the case of an elliptic curve group, the problem is to
recover a secret value x from two points P,Q such that Q = xP , and when x is obtained
from a linear congruential generator as before, it is again possible to divide x into two parts
U and V , the first depending on u, the second on v. We can find a collision by checking
an equality of the form Q− UP = V P .

8.3.1 Attack for non-truncated linear congruential generators

We first work out the details of this attack for a non-truncated linear congruential generator,
which satisfies that M = 2k. The non-truncated linear congruential generator is the most
efficient of the linear congruential generator in the sense that it outputs the maximal
number of available bits at each iteration.

Theorem 8.1. Given two group elements g, h ∈ G with h = gx, where x is an (r ·
k)-bit exponent generated with a non-truncated linear congruential generator with public
parameters and k-bit state, there exists an algorithm which retrieves the secret x in time
and memory O(2

k+r
2 ).

Proof. As mentioned previously, we may assume without loss of generality that the LCG
has parameters such that b = 0. By Equation (8.2), its successive outputs are thus of the
form:

oi = vi = (ai · s) mod M = (ai · s) mod 2k.
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Now write the seed as s = u+ 2k/2 · v, with u, v of k/2 bits. We get:

oi =
(
ai · (u+ 2k/2 · v)

)
mod 2k.

We can expand that expression for oi using the following elementary lemma.

Lemma 8.1. For all α, β, γ ∈ Z, γ 6= 0, there exists ε ∈ {0, 1} such that:

(α+ β) mod γ = (α mod γ) + (β mod γ)− εγ.

Proof. Indeed, let L = (α+ β) mod γ and R = (α mod γ) + (β mod γ). Clearly, L and R
are congruent modulo γ, so they must differ by a multiple of γ. Moreover, 0 ≤ L < γ and
0 ≤ R < 2γ, hence −γ < R − L < 2γ, so R − L must be of the form ε · γ with ε ∈ {0, 1}
as required. �

Thus, for all indexes i (and any choice of the two seed halves u, v), there exists εi ∈ {0, 1}
such that:

oi = (ai · u mod 2k) + (ai · 2k/2v mod 2k)− εi · 2k

= (ai · u) mod 2k + 2k/2(ai · v mod 2k/2)− εi · 2k.

If u and v are the two halves of the correct seed used to generate x, summing the 2ikoi
yields, according to Equation (8.3):

x = U + V − Y

where:

U =
r−1∑
i=0

2ik · (aiu mod 2k)

V =
r−1∑
i=0

2ik+k/2 · (aiv mod 2k/2)

Y =

r−1∑
i=0

2(i+1)k · εi.

We can also decompose Y into a sum W +Z where each of W and Z consist of r/2 terms,
and obtain the relation U − Z = x+W − V , or equivalently:

gU−Z = h · gW−V . (8.4)

We can thus recover x by finding a collision between two lists of 2
k+r
2 elements of G,

namely the gU−Z (for all values of the half-seed u and all possible choices of the bits εi in
Z) on the one hand, and the h · gW−Z (for all values of the half-seed v and all possible
choices of the bits εi in W ) on the other. Using hash tables, this can be achieved in time
and space O(2

k+r
2 ).

More precisely, one first computes the 2k/2 possible values Ui, the 2r/2 possible values
Zj and stores i, j in a hash table under the key gUi−Zj . This table contains 2

k+r
2 different

values accessible in constant time. Then one computes the 2k/2 possible values Vs, the 2r/2

possible values Wt and tests, for each of them, whether h · gWt−Vs is a key of the hash
table. When the test succeeds, one obtains the correct values of u and v and can deduce
the value x. The attack is summarized in Algorithm 8.1. �

124



8.3. The discrete logarithm case

Algorithm 8.1 Attack overview in the discrete logarithm case.
Require: q, g, h = gx, a, b, M
Ensure: x such as h = gx

Compute the hash table H by storing i, j at H(gUi−Zj )
for each (Vs,Wt) do

if H(h · gWt−Vs) exists then return x← Ui + Vs − Zj −Wt

end if
end for

8.3.2 Attack for truncated linear congruential generators

We now consider a truncated linear congruential generator with a modulus M > 2k of size
m (with m < rk). It is typically less efficient than the non-truncated one, but may have
better properties in statistical and security terms. The attack we obtain has a slightly
worse complexity than in the non-truncated setting.

Theorem 8.2. Given two group elements g, h ∈ G with h = gx, where x is an (r · k)-bit
exponent generated with a truncated linear congruential generator outputting the k most
(or least) significant bits at each iteration, with public parameters and m-bit state, there
exists an algorithm which retrieves the secret x in time and memory O(2m/2 · 5r/2).

Proof. The principle of the attack remains similar however the carry is in a larger set of
values. As a consequence the complexity in time and in memory is increased. Indeed,
starting from Equation (8.2) with b = 0, the successive outputs are now of the form:

oi = vi mod 2k =
(
(ai · s) mod M

)
mod 2k

in the case where the least significant bits are output, and:

oi = vi � (m− k) =
(
(ai · s) mod M

)
� (m− k)

in the most significant bits case. By writing s as u+ 2m/2v, we get:

vi =
(
ai · (u+ 2m/2 · v)

)
mod M.

and Lemma 8.1 ensures that:

(ai · u) mod M + 2m/2(ai · v mod M) = vi or vi +M.

Using the same lemma and the fact that oi = vi mod 2k (LSB case), we obtain:

(ai · u mod M) mod 2k + (2m/2 · ai · v mod M) mod 2k =



oi

oi + 2k

oi + (M mod 2k)

oi + (M mod 2k) + 2k

oi + (M mod 2k)− 2k
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In the MSB case, we have (by denoting j = m− k) oi = vi � j and thus:

(ai · u mod M)� j + (2m/2 · ai · v mod M)� j =



oi

oi − 1

oi + (M � j)

oi + (M � j) + 1

oi + (M � j)− 1

Therefore, by applying the attack as before and using Equation (8.4), we have to find
a collision between two sets of 2m/2 · 5r/2, the factor 2m/2 coming from the search of U
(respectively V ) and the factor 5r/2 coming from the search of Z (respectively W ). �

8.4 The factoring case

The attacks extend to public-key schemes whose security is related to the hardness of
factoring, or of the RSA problem.

Denoting p and q two secret primes obtained from outputs of a linear congruential
generator, and N the resulting product published as part of the public key, we would like
to find p and q given N and the parameters of the generator.

The idea is again to separate the seed into a lower-order and a higher-order part, and
to obtain a time-memory tradeoff compared to exhaustive search. The key ingredient is
multipoint polynomial evaluation.

8.4.1 Basic prime generation

We first consider a prime number generation algorithm (see [MOV96]) which consists in,
from a random seed, computing the required number of outputs, concatenating them and
using a probabilistic primality test such as Miller-Rabin or a deterministic one such as the
AKS primality test. If the test fails, one selects another random seed and restarts the
algorithm: all primality tests are independent.

As before, we consider the case where the linear congruential generator is not truncated
and the case where it is truncated.

Theorem 8.3. Given a RSA modulus N with N = pq, where p is an (r · k)-bit prime
generated with a non-truncated linear congruential generator (resp. a truncated linear con-
gruential generator outputting the k most or least significant bits at each iteration), with
public parameters and k-bit state (resp. m-bit state), there exists an algorithm which factor-
izes N in time and memory Õ(2

k+r
2 ) (resp. Õ(2m/2 · 5r/2)) with overwhelming probability.

Proof. For simplicity, we will treat the case of the non-truncated LCG since the use of a
truncated one implies only a difference in the exhaustive search of the carry. By splitting
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the seed as s = u+ 2k/2 · v, we can write p as p = U + V − Y with:

U =

r−1∑
i=0

2ik(aiu mod 2k)

V =

r−1∑
i=0

2ik(2k/2(aiv mod 2k/2))

Y =
r−1∑
i=0

2(i+1)k · εi.

We can also cut Y into two r/2-bit elementsW,Z. Let us denote A = U−Z and B = V −W
and suppose having c(A+B) mod N = cp mod N with c an integer. Then, except the rare
case where c is a multiple of q, this value is necessarily a multiple of p. Indeed cp mod pq
can only have the values 0 (case where q|c), p, · · · , (q−1)p. Thus, a greater common divisor
computation (GCD) with N will reveal p.

As an attacker, one does not have access to the correct value of the seed. Since u and
v can take 2k/2 distinct values, one can compute the same amount of values U and V .
Moreover there are 2r/2 possibilities for W and Z. In other words, the values A = U − Z
and B = V −W are in two sets of 2

k+r
2 elements and we have to find a test in order to

determine the good ones.
More precisely, one first computes the 2

k+r
2 different values Bs,t by generating the values

Vs and Wt and we consider the following polynomial of degree 2
k+r
2 :

P (X) =
∏
s,t

(X +Bs,t) mod N

Then one computes the 2
k+r
2 possible values Ai,j by generating the values Ui and Zj and

proceeds a multi-evaluation of the polynomial P at the points Ai,j . The result is a set of
2
k+r
2 values of the form:{∏

s,t

(Ai,j +Bs,t) mod N | i = 0, · · · , 2k/2 − 1, j = 0, · · · , 2r/2 − 1
}
.

Finally one has to compute a test to detect the correct values A and B. It is done by
computing a GCD between each value (Ai,j) and the public modulus N . Since all the
values of the seed and all the values of the carry are efficiently tested, the prime p will
be recovered except if P (A) is equal to 0. However this failure case is extremely rare: it
requires that at least one of the d− 1 integers composing the product with p is the prime
q. The probability is thus equal to d−1

2log q
. The attack is summarized in Algorithm 8.2.

�

8.4.2 Improved prime generation: PRIMEINC Method

Since there is no link between each probabilistic primality test in the first prime number
generating algorithm, the failed tests are useless and free of cost from the point of view of
the attacker. We now propose another one with a link by using a counter.

The PRIMEINC algorithm is a prime number generating algorithm proposed by Brandt
and Damgård in [BD92] which basically picks a random number and increases it until a
prime is found. In other words, if p is not a prime (but odd), then p = p + 2 and repeat.
According to the prime number theorem, we expect to find a prime number after log p
trials on average.
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8. Recovering Private Keys Generated With Weak PRNGs

Algorithm 8.2 Attack overview in the factorization case.
Require: N = pq, a, b, M
Ensure: p such as N = pq
Generate the polynomial P (X) =

∏
s,t(X + Vs −Wt) mod N

Multi-evaluate P at the points Ai,j = Ui − Zj
for each point Ai,j do

if gcd(P (Ai,j), N) 6= 1 then return gcd(P (Ai,j), N)
end if

end for

Corollary 8.1. Considering the two cases of Theorem 8.3 coupled with the PRIMEINC
algorithm, there exists an algorithm which factorizes N in time and memory Õ(2

k+r
2 ) (resp.

Õ(2m/2 · 5r/2)) with overwhelming probability.

Proof. In our attack, we now search the correct value of p such as p = A+B+ 2ε with ε ∈
{0, · · · , log p} (see Remark 8.4.2 for the size of the set). Thus, after the multi-evaluation,
our algorithm should have computed a set covering the entire space of search as follows:{∏

s,t

(Ai,j +Bs,t + 2γ) mod N | i ≤ 2k/2 − 1, j ≤ 2r/2 − 1, γ ≤ log p
}
.

An efficient way to compute the search of the correct value of γ (i.e. γ = ε) consists in
applying the same trick as before, i.e. writing γ as γ = γMSB + γLSB by splitting the bits
into two parts.
In other words, in the first part of the algorithm, one computes the different values Bs,t and
the
√

log p values of γLSB. In the second part, one focus on the different values Ai,j and
the
√

log p values of γMSB. Thus, after the multi-evaluation, the resulted set corresponds
to 2

k+r
2
√

log p values of the form (case M = 2k):∏
s,t,γ

(Ai,j +Bs,t + 2(γMSB + γLSB)) mod N.

With overwhelming probability, the value containing p does not contain q too and the test
using the greatest common divisor will reveal p.

The modification due to the PRIMEINC method thus increases the complexity in time
and in memory by a factor of

√
log p, which disappears in the Õ since

√
log p = O(

√
rk) =

O
(
r+k

2

)
.

�

Remark. Brandt and Damgård prove in [BD92] that the failure is about equal to e−2`

when applying ` · log p iterations of the PRIMEINC algorithm. In the proof, we put ` = 1,
leading to a success rate of 86%.

8.5 Complexity estimates for concrete parameter sizes

Table 8.1 below presents the time complexity of our attack in the discrete logarithm case
for typical parameter LCG sizes, as found in implementation of the random functions of
common compilers and standard libraries, namely a modulus equal to either 232 or 264

(so that modular addition and multiplication can be implemented as simple operations on
standard size registers), and an output size equal to either the full modulus size or half
of it (corresponding to the top or bottom half of the state). The complexities are to be
compared with that of the trivial attack: exhaustive search on seed.
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Table 8.1: Overview of our Attacks complexities in the discrete logarithm case. When the
output size is smaller than the modulus, the first number corresponds to the LSB case,
and the second one to the MSB case.

Secret size Modulus Output size Attack complexity

160 232 32 218.5

160 232 16 223.9 227.7

160 264 64 233.5

160 264 32 236 237.8

256 232 32 220

256 232 16 228.7 234.6

256 264 64 234

256 264 32 238.3 241.3

512 232 32 224

512 232 16 241.4 253.2

512 264 64 236

512 264 32 244.7 250.6

1024 264 64 240

2048 264 64 248

Remarks on results of Table 8.1

Note that the differences of complexity between a linear congruential generator which
outputs the least significant bits or the most significant bits is due to the fact that there are
only three possibilities for the value of (ai ·u mod M) mod 2k+(2m/2 ·ai ·v mod M) mod 2k.
Indeed, taking M = 232 or M = 264 yields M mod 2k = 0.

In a few cases, for 16-bit output size, the complexity is in fact worse than the exhaustive
search on the seed. This happens in the truncated case only, when r (the number of LCG
outputs used to construct the secret) is particularly large, namely when 5r/2 (MSB case),
resp. 3r/2 (LSB case), is greater than 2m/2.

In the factoring case, the complexities are larger by a logarithmic factor, from the use
of quasilinear multipoint polynomial evaluation.
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Chapter 9
Inferring Sequences Produced by

Nonlinear Pseudorandom
Number Generators Using

Coppersmith’s Methods

9.1 Introduction

In this chapter, we revisit the security of number-theoretic generators by proposing better
attacks based on Coppersmith’s techniques for finding small roots on polynomial equations.
Using intricate constructions, we are able to significantly improve the security bounds
obtained by Blackburn et al..

This work was presented at PKC 2012 [BVZ12].

9.1.1 Background

Because of the weakness of the linear congruential generator, it was suggested to use a
non-linear algebraic map F in order to avoid the attacks but several works [BGPGS03,
BGPGS05, BGPGS06, GGI06, GGI05] showed that not too many bits can be output at
each stage. Blackburn, Gomez-Perez, Gutierrez and Shparlinski [BGPGS05, BGPGS06]
proved that some generators are polynomial time predictable if sufficiently many bits of
some consecutive bits of the pseudorandom sequence are revealed (even when F is kept
private). It remains open to know what is the maximum quantity of information that can
be output for each value vi allowing the generator to be efficient but still secure against
potential attackers

Blackburn et al.’s results are based on a lattice basis reduction attack, using a certain
linearization technique. A natural idea – already stated in [BGPGS05] – is instead of using
only linear relations in the attack, to use also relations that are derived by taking products
of them. This technique was proposed by Coppersmith to find small integer roots of
polynomial equations [Cop96a, Cop96b]. In Coppersmith’s method, a family of polynomials
is first derived from the polynomial whose roots are wanted. This family naturally gives a
lattice basis and short vectors of this lattice possibly provide the wanted roots. Blackburn et
al. claimed that “this approach does not seem to provide any advantages” and that “it may
be very hard to give any precise rigorous or even convincing heuristic analysis of this
approach”. Our goal in this chapter is to investigate this issue.

9.1.2 Our contributions

We show that if a sufficient number of the most significant bits of several consecutive
values vi of non-linear algebraic pseudorandom generator are given, one can recover the
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Table 9.1: Proportions of the most significant bits output from consecutive intermediate
state values necessary to predict the generator (comparison between existing bounds and
ours)

Basic proportion Asymptotic proportion

Prior result Our result Prior result Our result

Quadratic generator
a,b known 3/4 2/3 2/3 1/2

a,b unknown 18/19 11/12 11/12 2/3

Pollard generator
b known 9/14 3/5 9/14 1/2

b unknown 3/4 5/7 2/3 3/5

seed v0 (even in the case where the coefficients of F are unknown). We tackle these issues
with Coppermith’s lattice-based technique for calculating the small roots of multivariate
polynomials modulo an integer. This method is heuristic, which is also the case of some
arguments of Blackburn et al. showing that their basic results could be strengthened if
the number of pseudorandom bits known to the attacker is increased. If F is a polynomial
of degree d known to the attacker, Blackburn et al. [BGPGS06] proved that the generator
can be predicted if one outputs a proportion (d2− 1)/d2 of the most significant bits of two
consecutive intermediate state values. We improve this result (see section 9.3) by showing
that this is also the case if one outputs a proportion as large as d/(d + 1) of the most
significant bits of two consecutive intermediate state values (or (d − 1)/d for sufficiently
many consecutive intermediate state values).

In [BGPGS05, BGPGS03], Blackburn et al. focused on the well-known following
number-theoretic pseudorandom generators (where p is a prime, a ∈ Z∗p and b ∈ Zp):

• The Quadratic generator corresponding to the function F (x) = ax2 + b mod p

• The Pollard generator, a particular case of the quadratic generator when a = 1.

Our generic results apply to these settings and improve the previous bounds. Table 9.1
shows a comparison between the results we obtain in this chapter and what is known in
the literature. More precisely, it gives the proportion of most significant bits output from
each consecutive state values necessary to break the generator in (heuristic) polynomial
time. The basic proportion corresponds to the case where the adversary knows bits coming
from the minimum number of intermediate state leading to a feasible attack; while the
asymptotic proportion corresponds to the case when the bits known by the adversary come
from an infinite number of values.

The bounds on the quadratic generator are described in Section 9.4 and are direct
applications of our general results. The bounds on the Pollard generator relies on the
unravelled linearization technique introduced by Hermann and May in 2009 [HM09] and are
described in Section 9.5. An important consequence of our work is that the theoretical data
complexity of our attack is decreased compared to the attack from [BGPGS05, BGPGS06,
GGI06, GGI05] and if one still wants to use these generators to generate pseudorandom
numbers, the efficiency of the schemes is significantly degraded.
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9.2 Coppersmith’s techniques

In 1996, Coppersmith introduced two lattice-based techniques [Cop96a, Cop96b] for find-
ing small roots on polynomial equations. The first one works for a univariate modular
polynomial whereas the second one deals with a bivariate polynomial over the integers. As
these techniques had a wide range of cryptanalytic applications, some reformulations and
generalizations to more variables have been proposed, see for example Howgrave-Graham’s
simplifications [HG97, HG01] or also discussions on multivariate tasks [BM05, JM06, BJ07].

All these methods have allowed to attack many instances of public-key cryptosystems.
One of the most famous one is due to Boneh-Durfee, breaking the RSA scheme when using
a small private key [BD00]. In the following, we give more details explaining how such
techniques work in practice. For our purpose, we only focus on the multivariate modular
case.

Definition of the problem

Let f(y1, . . . , yn) be an irreducible multivariate polynomial defined over Z, having a root
(x1, . . . , xn) modulo a known integer Ψ, that is f(x1, . . . , xn) ≡ 0 mod Ψ. This root is
small in the sense that each of its components is bounded by a known value, namely
|x1| < X1, . . . , |xn| < Xn. The question thus remains to determine the size on the bounds
Xi allowing to recover the desired root in polynomial time.

Collection of polynomials

In a first step, one has to generate a collection of polynomials f1, . . . , fr having (x1, . . . , xn)
as a modular root. Usually, we consider multiples and powers of the original polynomial
f , namely fk = yk11 . . . yknn fk` , for k in {1, . . . , r}. By construction, such polynomials
satisfy the relation fk(x1, . . . , xn) ≡ 0 mod Ψk` , i.e. there exists an integer ck such that
fk(x1, . . . , xn) = ckΨ

k` . From now, let us denote as M the set of monomials appearing in
the collection {f1, . . . , fr}.

Construction of the matrix

The problem of finding small modular roots of f can now be reformulated in a vectorial
way. Indeed, each polynomial from our chosen collection can be expressed as a vector
over Zt by extracting its coefficients and putting them into a vector with respect to a
chosen order on M . From now, we construct a matrix M as described in Figure 9.1 and
we define as L the lattice generated by its rows. On that figure, every row of the upper
part is related to one monomial of the set M . The left-hand side contains the bounds on
these monomials (e.g. the coefficient X−1

1 X−2
2 is put in the row related to the monomial

y1y
2
2). Each column of the right-hand side contains one of the vectors coming from the

initial collection {f1, . . . , fr}. As this matrix is triangular, the determinant of L is easily
computable:

|det(L)| = Ψk1+···+kr∏
(y
a1
1 ...yann ∈M)X

a1
1 . . . Xan

n
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M =



1

X−1
1

. . .

X−a11 . . . X−ann

0

f1 . . . fr

↓ ↓ ↓

Ψk1

. . .

Ψkr



1

y1

...

ya11 . . . yann

Figure 9.1: Initial matrix for Coppersmith’s method.

A short vector in a sublattice

Let us now consider the vector r0 = (1, x1, . . . , x
a1
1 . . . xann ,−c1, . . . ,−cr). By multiplying

this vector by the matrixM, one easily obtains:

s0 =

(
1, (

x1

X1
), . . . , (

x1

X1
)a1 . . . (

xn
Xn

)an , 0, . . . , 0

)
By construction, this vector which, in some sense, contains the root we are searching for,
belongs to the lattice L. Moreover its norm is very small as ‖s0‖2 ≤

√
|M |. Thus if we can

find such a small vector in the lattice L, then the desired root (x1, . . . , xn) will be recovered.
In order to do that, we first restrict ourselves to searching in a more appropriated subspace.
Indeed, noticing that the last coefficients of s0 are all equal to zero, we know that this vector
belongs to a sublattice L′ whose last coordinates are composed by zero coefficients. By
doing elementary operations on the rows of M, one can easily reach that sublattice and
prove that its determinant is the same as those of L.

Concluding the method

From that point, one computes an LLL-reduction on the lattice L′ and performs a Gram-
Schmidt’s orthogonalization on the output basis (b1, . . . , bt), which gives (b?1, . . . , b

?
t). As

s0 belongs to L′, this vector can be expressed as a linear combination of the b?i ’s. Con-
sequently, if its norm is smaller than those of b?t , then (s0|b?t) = 0. Extracting the co-
efficients appearing in b?t , one can construct a polynomial p1 defined over M such that
p1(x1, . . . , xn) = 0. By then doing the same process with the vectors b?t−1, . . . , b

?
t−n+1,

this leads to the system {p1(x1, . . . , xn) = 0, . . . , pn(x1, . . . , xn) = 0}. Under the (heuris-
tic) assumption that all created polynomials are algebraically independent, the previous
system can be solved and the desired root recovered in polynomial time.

It thus remains to determine the conditions on the bounds Xi that make this method
work. The following lemma is helpful to find these ones.
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Lemma 9.1. Let B = (b1, · · · , bn) a LLL-reduced base and (b?1, · · · , b?n) the result of the
Gram-Schmidt’s orthogonalization on B. Then:

‖b?n‖2 ≥ 2−(n−1)/4(detL)1/n,

where L = 〈b1, . . . , b`〉.

The constructed polynomial p1 will have (x1, . . . , xn) as a root over the integers if
the norm of s0 is smaller than those of b?t . Knowing that s0 is small and that we
have an upper bound on ‖b?t‖2 (see Lemma 9.1), the more restrictive condition

√
|M | <

2−(t−1)/4(det(L))1/t will suffice. Removing all parameters that do not influence the asymp-
totic result, this relation can be simplified to |det(L)| > 1, leading to the following final
condition: ∏

(y
a1
1 ...yann ∈M)

Xa1
1 . . . Xan

n < Ψk1+···+kr (9.1)

For such techniques, the most complicated part is the choice of the collection of polynomials,
what could be a really intricate task when working with multiple polynomials.

9.3 Attacking a non-linear generator

For Ψ an integer of size π, we denote by ZΨ the field of Ψ elements. A pseudorandom
non-linear generator can be defined by the following recurrence sequence:

vi+1 = F (vi) mod Ψ (9.2)

where F (X) =
∑d

j=0 cjX
j is a polynomial of degree d in ZΨ[X] and v0 is the secret

seed. We assume that this generator outputs the k most significant bits of vi at each
iteration (with k ∈ {1, . . . , π}), i.e. if vi = 2π−kwi + xi, wi is output by the generator
and xi < 2π−k = Ψδ stays unknown. We want to recover xi < Ψδ for some i ∈ N from
consecutive values of the pseudorandom sequence (with δ as large as possible) knowing F
or not.

9.3.1 Case F known

Any non-linear pseudorandom generator defined by a known iteration function F can be
broken under the condition that sufficiently many bits are output by the generator at each
iteration. In the following, we determine that condition when two (theorem 9.1) then more
(theorem 9.2) consecutive outputs are known to the attacker.

2 consecutive outputs

Theorem 9.1. Let G be a non-linear pseudorandom generator defined by a known iteration
function F (X) of degree d. If an adversary has access to two consecutive outputs of G then
it will be able to predict the entire sequence that follows ; under the condition that at least
d
d+1π most significant bits are output at each iteration, that is :

δ <
1

d+ 1
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Proof. Suppose the adversary is given two approximations w0 and w1 of two consecutive
values v0 and v1 that satisfy (9.2). By denoting v0 as 2π−kw0 + x0 and v1 = 2π−kw1 + x1,
we obtain:

2π−kw1 + x1 −
d∑
j=0

cj(2
π−kw0 + x0)j = 0 mod Ψ

Let f(y0, y1) be the polynomial y1 + a0 + a1y0 + · · · + ady
d
0 where the values ai, that

explicitly depend on w0, w1 and the coefficients ci, are known to the adversary. The goal is
to compute the (small) modular root (x0, x1) of f(y0, y1) in polynomial time to reach the
entire values v0 and v1. To do so, let us consider the following collection of polynomials:

{yj0f
i(y0, y1) | di+ j ≤ dm ∧ i > 0}

where m ≥ 1 is a fixed integer. Knowing the shape of f , the list of monomials appearing
within this collection can be described as:

{yi1y
j
0 | di+ j ≤ dm}

Using Coppersmith’s method, the right-hand side (resp. the left-hand side) of (9.1) is then
equal to:

m∏
i=1

d(m−i)∏
j=0

Ψi = Ψ
1
6
m(m+1)(dm−d+3)

resp.
m∏
i=0

d(m−i)∏
j=0

ΨiδΨjδ = Ψ
1
12
m(m+1)(2d2m+2dm+6+d2+d)δ

 .

Thus, the algorithm (heuristically) outputs the root of f in polynomial time as soon
as:

δ <
1
6m(m+ 1)(dm− d+ 3)

1
12m(m+ 1)(2d2m+ 2dm+ 6 + d2 + d)

−−−−−→
m→+∞

1

d+ 1
(9.3)

what concludes the proof. �

This bound is better than those previously obtained by Blackburn et al. [BGPGS05].
Indeed, their result was approximately δ < 1/d2 when two consecutive outputs are known
to the attacker.

More consecutive outputs

Theorem 9.2. Let G be a non-linear pseudorandom generator defined by a known iteration
function F (X) of degree d. If an adversary has access to n+ 2 (n ≥ 1) consecutive outputs
of G then it will be able to predict the entire sequence that follows ; under the condition
that at least dn+1−dn

dn+1−1
π most significant bits are output at each iteration, that is :

δ <
dn − 1

dn+1 − 1
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Proof. Let us assume that the adversary knows n+ 2 consecutive outputs of the generator
w0, . . . , wn+1. Denoting as above vi = 2π−kwi + xi (for i ∈ {0, . . . , n + 1}) the goal is to
compute the (small) solution (x0, . . . , xn+1) of the multivariate polynomial system:

f0(y0, y1) = y1 + a00 + a01y0 + · · ·+ a0dy
d
0 mod Ψ

...
...

fn(yn, yn+1) = yn+1 + an0 + an1yn + · · ·+ andy
d
n mod Ψ

where each polynomial fi is constructed in the same way as for the “two consecutive
outputs” case. From now one, we use the following collection of polynomials:{

yj0f
i0
0 . . . f inn | d(i0 + di1 + · · ·+ dnin) + j ≤ dm ∧ i0 + · · ·+ in > 0

}
where m ≥ 1 is a fixed integer. As it seems to be a difficult task to describe the set of
monomials appearing in that collection for the general case, we first focus on what happens
with two polynomials f0 and f1. In that case, the set can be described by the powers of
these polynomials, that isyj0yi1︸︷︷︸

f0

yk1y
l
2︸︷︷︸

f1

| di+ j ≤ dm ∧ dl + k ≤ dm− di− j


Another way of expressing this set is

{
yj0y

i
1y
l
2 | di+ j + dl ≤ dm

}
. From that point,

by induction on n, we can show that the monomials appearing in the collection can be
described as: {

yj0y
i0
1 . . . yinn+1 | d(i0 + di1 + · · ·+ dnin) + j ≤ dm

}
As above, the right-hand side (resp. the left-hand side) of (9.1) is then equal to:

∏
d(i0+di1+···+dnin)+j≤dm

Ψ(i0+···+in)

resp.
∏

d(i0+di1+···+dnin)+j≤dm

Ψδ(i0+···+in+j)


From now on, it just remains to evaluate the obtained bound on δ. Let us denote δ = A(m,n)

B(m,n)
where:

A(m,n) =
m∑
i0=0

bm−i0
d
c∑

i1=0

. . .

d(m−
∑n
p=0 d

pip)∑
j=0

i0 + · · ·+ in

B(m,n) =
m∑
i0=0

bm−i0
d
c∑

i1=0

. . .

d(m−
∑n
p=0 d

pip)∑
j=0

i0 + · · ·+ in + j

Our goal is to simplify these two expressions, by doing an asymptotic analysis on m. We
want to reach a formula only depending on n, the number of outputs. It is quite clear that
the floor function appearing in the upper bound of the sums can be omitted as it does not
influence the asymptotic result. In that case, the formula becomes:

A(m,n) '
m∑
i0=0

m−i0
d∑

i1=0

. . .

d(m−
∑n
p=0 d

pip)∑
j=0

i0 + · · ·+ in

B(m,n) '
m∑
i0=0

m−i0
d∑

i1=0

. . .

d(m−
∑n
p=0 d

pip)∑
j=0

i0 + · · ·+ in + j
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In order to compute the multiples sums A(m,n) and B(m,n), we will use several times
a trick from [HM09] which consists in letting indices of a sum run over a larger range in
order to obtain a symmetric formula that is easier to evaluate. Basically, it relies on the
following observation which holds for any function f :

N∑
i=0

f(i) =
1

d

dN∑
i=0

f(b i
d
c)

Indeed, when i runs over {1, . . . , dN}, b idc takes each value in {1, . . . , N} exactly d times.
Applying this trick n times on our two expressions and omitting the integer part leads to:

A(m,n) ' 1
d . . .

1
dn

m∑
i0=0

m−i0∑
i1=0

. . .

d(m−
∑n
p=0 ip)∑

j=0

i0 +
1

d
i1 + · · ·+ 1

dn
in

B(m,n) ' 1
d . . .

1
dn

m∑
i0=0

m−i0∑
i1=0

. . .

d(m−
∑n
p=0 ip)∑

j=0

i0 +
1

d
i1 + · · ·+ 1

dn
in + j

In order to obtain a perfect symmetry of this two formula, we have to remove the factor d
in the upper bound of the sum over j. This manipulation depends of the variable we focus
on. It’s quite easy to understand that for i0, . . . , in, we just have to add a factor d to the
front, whereas for j, it’s a factor d2. Thus, we obtain:

A(m,n) ' d · 1
d . . .

1
dn

m∑
i0=0

m−i0∑
i1=0

. . .

m−
∑n
p=0 ip∑

j=0

i0 +
1

d
i1 + · · ·+ 1

dn
in

B(m,n) ' d · 1
d . . .

1
dn

m∑
i0=0

m−i0∑
i1=0

. . .

m−
∑n
p=0 ip∑

j=0

i0 +
1

d
i1 + · · ·+ 1

dn
in + dj

Let us denote by p1 the following quantity :

p1 =

m∑
i0=0

m−i0∑
i1=0

. . .

m−
∑n
p=0 ip∑

j=0

i0

Thanks to the obtained symmetry ours formula, one readily gets:

A(m,n) ' d · 1

d
. . .

1

dn
(1 +

1

d
+ · · ·+ 1

dn
)p1

B(m,n) ' d · 1

d
. . .

1

dn
(1 +

1

d
+ · · ·+ 1

dn
+ d)p1

We obtain in consequence the following bound:

δ <
dn − 1

dn+1 − 1
.

�

When the number of consecutive values known by the attacker tends to infinity, this
condition becomes δ < 1/d. Since d is the degree of the iteration function, this result seems
to be the optimal one when using Coppersmith’s technique.
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9.3.2 Case F unknown

In this section, we show that a non-linear pseudorandom generator defined by an un-
known iteration function F can also be break. Theorem 9.3 (respectively the discussion)
determines the condition that makes the attack succeed when d + 3 (respectively more)
consecutive outputs are known to the attacker.

d+ 3 consecutive outputs

In order to use Coppersmith’s technique to solve that problem, one needs to start the
construction with a known polynomial. Knowing that the iteration function F is unknown
to the attacker, it has to construct a new polynomial P of degree D (depending on d and
on the elimination technique that is used) from the equation vi+1 = F (vi) mod Ψ. Since
there are d + 1 unknown values (if one assumes that all coefficients appearing in F are
non-zero), one requires d+ 2 equations of that form, and thus d+ 3 consecutive outputs of
the generator. For instance, one could use the resultant computation technique to proceed
to such an elimination.

Theorem 9.3. Let G be a non-linear pseudorandom generator defined by an unknown
iteration function F (X) of degree d. If an adversary has access to d+3 consecutive outputs
of G then it will be able to predict the entire sequence that follows ; under the condition that
at least D2(d+3)−1

D(d+3) π most significant bits are output at each iteration, that is δ < 1
D2(d+3)

Moreover, if one assumes that the degree of the leading monomial of P is equal to D, then
this bound can be improved to:

δ <
1

D(d+ 3)
.

Note that in fact this attack works if there exists a monomial order such that the leading
coefficient of F is equal to 1 modulo Ψ. In the general case, this condition is almost always
satisfied and this is obviously true when Ψ is prime.

Proof. Let us assume that the attacker knows w0, . . . , wd+2. By manipulating the sys-
tem

(
vi+1 = F (vi) mod Ψ, i ∈ {0, . . . , d + 1}

)
one obtains an equation E(v0, . . . , vd+2) =

0 mod Ψ. Let us denote P as E(y0, . . . , yd+2). In that case, the polynomial satisfies
P (x0, . . . , xd+2) = 0 mod Ψ. Since the shape of P and its degree D both depend on the
technique used to manipulate the initial system, describing the monomials appearing in P
and therefore in Pm is an impossible task. Consequently, the only way to perform Cop-
persmith’s method is to choose a simpler but larger set of monomials which necessarily
contains those of Pm:{

yj00 . . . y
jd+2

d+2 | j0 + j1 + · · ·+ jd+2 ≤ Dm
}

The leading monomial of P , LM(P ), can be described as yα0
0 . . . y

αd+2

d+2 where at least one of
the αi is non negative. Without loss of generality, we can assume for now that α0 > 0. In
that case, one can apply Coppersmith’s method on the following collection of polynomials:{

yj11 . . . y
jd+2

d+2 P
i | Di+ j1 + · · ·+ jd+2 ≤ Dm ∧ 1 ≤ i ≤ m

}
As y0 only comes from the powers of P , the prohibition of the multiplication by y0 ensures
that the collection of polynomials will be linearly independent. The right-hand side (resp.
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the left-hand side) of (9.1) is then equal to Ψ to the power:

∑
1≤i≤m

∑
j1+···+jd+2≤Dm−Di

i

resp.
∑

j0+···+jd+2≤Dm
δ(j0 + · · ·+ jd+2)

 .

Let us denote δ = A(m,n)
B(m,n) where:

A(m,n) =
∑

1≤i≤m

∑
j1+···+jd+2≤Dm−Di

i

B(m,n) =
∑

j0+···+jd+2≤Dm
j0 + · · ·+ jd+2

As before, our goal consists in simplifying these two expressions by doing an asymptotic
analysis on m. In order to obtain perfect symmetric formula, we just have to remove the
factor D appearing in the sums on both A(m,n) and B(m,n) expressions. This can be
done using the following trick:∑

j0+···+jd+2≤Dm
1 ' Dd+3

∑
j0+···+jd+2≤m

1∑
j0+···+jd+2≤Dm

j0 ' Dd+4
∑

j0+···+jd+2≤m
j0

Such simplifications lead to the following formula:

A(m,n) ' Dd+2
∑
i≤m

∑
j1+jd+2≤m−i

i

B(m,n) ' Dd+4
∑

j0+···+jd+2≤m
j0 + · · ·+ jd+2

If we denote by p1 the following quantity
∑

i1+···+id+3≤m i1, then A(m,n) and B(m,n) can
be reformulated that way:

A(m,n) ' Dd+2p1

B(m,n) ' Dd+4(d+ 3)p1

In that case, the bound on δ can be expressed as:

δ <
1

D2(d+ 3)
.

In fact, this result can be improved if one assumes that the degree of LM(P ) is equal
to D. Indeed, this monomial can be described as yα0

0 . . . y
αd+2

d+2 with
∑d+2

i=0 αi = D. In
order to keep the linear independency between the polynomials, one should only consider
polynomials of the form Mon× P i such that Mon 6= LM(P ). This leads to the following
collection:yj00 y

j1
1 . . . y

jd+2

d+2 P
i

∣∣∣∣∣∣ Di+ j0 + j1 + · · ·+ jd+2 ≤ Dm ∧ 1 ≤ i ≤ m

∧ (j0 < α0) ∪ · · · ∪ (jd+2 < αd+2)


Using the same kind of tricks as before, the resulting asymptotic bound becomes:

δ < α0
1

D2(d+ 3)
+ · · ·+ αd+2

1

D2(d+ 3)
=

1

D(d+ 3)
.

�
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More consecutive outputs

We now want to generalize the previous attack when the adversary is given access to more
consecutive outputs. Let us assume, for example, that it has access to d+n+2 consecutive
values w0, . . . , wd+1+n ; its goal is then to compute the (small) solution (x0, . . . , xn+d+1)
of the multivariate polynomial system (P1(y0, . . . , yd+2), . . . , Pn(yn−1, . . . , yn+d+1)) where
the polynomials Pi of degree D, are defined as in the previous section. Exactly as before,
finding a general description of the monomials appearing in these polynomials seem to be
a challenging task. As a consequence, we consider a larger set of monomials, easier to
describe: {

yj00 . . . y
jd+1+n

d+1+n | j0 + j1 + · · ·+ jd+1+n ≤ Dm
}

Let us express the leading monomial of P1 as yα0
0 . . . y

αd+2

d+2 with at least one of the αi ≥ 1,
the leading monomial of P2 as yα0

1 . . . y
αd+2

d+3 and those of Pn as yα0
n−1 . . . y

αd+2

n+d+1, using a
monomial order such as lex or hlex with y0 < · · · < yd+1+n. Without loss of generality, we
can assume that α0 > 0. From that, one can apply Coppersmith’s method on the following
collection of polynomials:

yj1n . . . y
jd+2

n+d+1P
i1
1 . . . P inn

∣∣∣∣∣∣ D(i1 + · · ·+ in) + j1 + · · ·+ jd+2 ≤ Dm

∧ 1 ≤ i1 + · · ·+ in ≤ m


The prohibition of the multiplication by y0, . . . , yn−1 ensures that all the polynomials

of the collection are linearly independent. Thus, the right-hand side (resp. the left-hand
side) of (9.1) is equal to Ψ to the power:∑

1≤i1+···+in≤m

∑
j1+···+jd+2≤Dm−D(i1+···+in)

i1 + · · ·+ inresp.
∑

j0+···+jn+d+1≤Dm
δ(j0 + · · ·+ jn+d+1)

 .

By using the same kind of tricks as in the proof of Theorem 9.3, one can show that the
resulting asymptotic bound is:

δ <
n

Dn+1(n+ d+ 2)
.

Remark. Of course, this bound is not interesting as its value decreases when the adversary
is given access to more outputs. But in fact we are convinced that it can significantly
be improved. Indeed, using the same kind of techniques as in the previous case, we will
probably be able to gain a factor D for each involved polynomial, thus reaching the bound:

δ <
n

D(n+ d+ 2)
−−−−−→
m→+∞

δ <
1

D

In practice we notice that this conjecture seems to be true, see for instance the analysis
of the quadratic generator in section 9.4.1.
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9.4 Application: Attacking the quadratic generator

For p a prime of size π, we remind that the notation Zp refers to the field of p elements.
The quadratic generator is defined by the following recurrence sequence:

vi = av2
i−1 + b mod p (9.4)

In that particular case, the iteration function F (x) is defined as F (x) = ax2 + b where
a ∈ Z∗p and b ∈ Zp are constant values. Exactly as before, we denote the secret seed as
v0 ∈ Zp and we assume that the generator outputs the k most significant bits of vi at each
iteration (with k ∈ {1, . . . , π}). In other words, each value vi can be written as 2π−kwi+xi
where wi is output by the generator and xi < 2π−k = pδ stays unknown. Our goal consists
in recovering the value xi < pδ for some i ∈ N by using some consecutive values output by
the pseudorandom sequence (with δ as large as possible).

9.4.1 Case F known

If the adversary is given access to two consecutive outputs of the generator, then it can break
the scheme under the condition that sufficiently many bits are output by the generator
at each iteration. More precisely, for a fixed value m (that will define the size of the
corresponding lattice), the bound on δ should respect the following condition, directly
coming from equation (9.3) in theorem 9.1:

δ <
1

6
· 2m+ 1

m+ 1

In particular, taking m = 1 leads to the bound δ < 1/4 previously reached by Blackburn et
al. [BGPGS05]. This bound can be improved to δ < 1/3 when the quantity m goes to
infinity. This value is exactly the same as those previously obtained by Blackburn et al.
when the authors assume that the adversary is given access to an infinite number of outputs,
whereas it only requires here two outputs of the generator. Finally, when increasing the
number of known outputs to infinity, the condition becomes δ < 1/2 (see theorem 9.2).

9.4.2 Case F unknown

4 consecutive outputs

Because the coefficients a and b appearing in the iteration function F (x) = ax2 + b are
unknown to the attacker, the first step consists in expressing the relations between the
outputs of the generator exclusively in terms of known quantities. More precisely, by using
four consecutive outputs, the adversary is able to eliminate the quantities a and b by
considering the following polynomial P of degree 3:

P =c+ c0y0 + c1y1 + c2y2 + c3y3 + d0(y2
0 − y2

1) + d1(y2y0 − y0y3) + d2(y2
1 − 3y2

2 + 2y1y2)

+ d3(y2
2 − 3y2

1 + 2y1y3) + e(y2
2y1 − y3

1 + y2
1y3 − y3

2 − y2
0y3 + y2

0y2) mod p

Since each coefficient in this polynomial is inversible modulo p, one can consider that
LM(P )) = 1. Thus, applying theorem 9.3, one reaches the bound δ < 1/15, knowing that
the degree d of the iteration function F is equal to 2 and those of the polynomial P is 3.
In fact, this bound can be improved as the coefficient related to x in the iteration function,
is equal to zero. Indeed, the denominator in the formula given by theorem 9.3 can be
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expressed as D.`(n) where `(n) is the number of required outputs. In this particular case,
as `(n) is equal to 4, the bound thus becomes δ < 1/12. In the same scenario, Blackburn et
al. [BGPGS05] reached the value δ < 1/19.

More consecutive outputs

Let us now assume that the adversary is given access to more consecutive outputs. We
generalize the previous construction using the fact that the iteration function F contains
one zero coefficient. In that case, if the set of monomials stays easy to formulate, this is
not the case for the collection of polynomials. Indeed, when the set of monomials is given
by
{
yj00 . . . y

jn+2

n+2 | j0 + j1 + · · ·+ jn+2 ≤ 3m
}
, the collection is:

yj00 y
j1
1 y

a2
2 . . . y

an+1

n+1 y
jn+2

n+2 P
i1
1 . . . P inn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 < i1 + · · ·+ in ≤ m

∧ 0 ≤ a` ≤ min(2, 3m− 3
∑n

t=1 it −
∑`−1

t=2 at)

for ` ∈ {2, . . . , n+ 1}

∧ j0 + j1 + jn+2 ≤ K with

K = 3m− 3(i1 + · · ·+ in)− (a2 + · · ·+ an+1)


The estimation of the “weight” of these two sets is a challenging task, thus we consider a
smaller but simpler collection by restricting the condition on i1 + · · ·+ in:


yj00 y

j1
1 y

a2
2 . . . y

an+1

n+1 y
jn+2

n+2 P
i1
1 . . . P inn

∣∣∣∣∣∣∣∣∣∣∣

0 < i1 + · · ·+ in ≤ bm− 2
3nc

∧ 0 ≤ a` ≤ 2 for ` ∈ {2, . . . , n+ 1}

∧ j0 + j1 + jn+2 ≤ K with

K = 3m− 3(i1 + · · ·+ in)− (a2 + · · ·+ an+1)


This set is contained in the previous one but we are convinced that it gives the same

asymptotical bound even if the initial collection probably gives better results for small
values of n and m. Let us now determine the corresponding bound δ. To make the proof
more clear, we denote δ as A(m,n)

B(m,n) where:

A(m,n) =
∑

1≤i1+···+in≤bm−2/3nc

∑
a2,...,an+1≤2

∑
j0+j1+jn+2≤3m−

∑n+1
`=2 a`−3

∑n
k=1 ik

i1 + · · ·+ in

B(m,n) =
∑

j0+···+jn+2≤3m

j0 + · · ·+ jn+2

As before, our goal consists in simplifying these two expressions by doing an asymptotic
analysis on m. First of all, the sum over ij in the quantity A(m,n) can be taken from 1
to m instead of bm − 2/3nc. Indeed, the value 2/3n will not influence the highest power
of m appearing in this expression, it can then be omitted for the asymptotic analysis. By
using the same kind of argument, one can easily remove the value

∑n+1
`=2 a` in the upper

bound of the sum over j0, j1 and jn+2. In that case, A(m,n) can be rewritten as:

A(m,n) =
∑

1≤i1+···+in≤m

∑
0≤a2,...,an+1≤2

∑
j0+j1+jn+2≤3m−3

∑n
k=1 ik

i1 + · · ·+ in
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Table 9.2: Asymptotic bounds for the quadratic generator when F is unknown.

Number of outputs 4 5 6 7 8 9 10 11 12

Asymptotic bound 1/12 2/15 1/6 4/21 5/24 2/9 7/30 8/33 1/4

The next step will consist in removing the sums over the coefficients a2, . . . , an+1 from the
expression corresponding to A(m,n), what is permitted as they do not appear anywhere
in the expression. Making such a simplification allows us to rewrite A(m,n) that way:

A(m,n) = 3n
∑

1≤i1+···+in≤m

∑
j0+j1+jn+2≤3(m−

∑n
k=1 ik)

i1 + · · ·+ in

In this formula, one can see the appearance of a factor 3n due to the fact that the coefficients
ai were taken their values from the set {0, 1, 2}, thus reaching three possibilities. From now
on, it just remains to remove the factor “3” appearing in the sum over j on both A(m,n)
and B(m,n) expressions. This can be done using the following trick:

∑
j0+j1+jn+2≤3m

1 ' 33
∑

j0+j1+jn+2≤m
1∑

j0+j1+jn+2≤3m

j0 ' 34
∑

j0+j1+jn+2≤m
j0

Such simplifications lead to the following formula:

A(m,n) = 3n+3
∑

i1+···+in≤m

∑
j0+j1+jn+2≤m−

∑n
k=1 ik

i1 + · · ·+ in

B(m,n) = 3n+4
∑

j0+···+jn+2≤m
j0 + · · ·+ jn+2

If we denote by p1 the following quantity
∑

i1+···+in+3≤m i1, then A(m,n) and B(m,n) can
be reformulated that way:

A(m,n) = 3n+3np1

B(m,n) = 3n+4(n+ 3)p1

In that case, the bound on δ can be expressed as:

δ <
3n+3 · np1

3n+4(n+ 3)p1

When n tends to infinity, we obtain δ < 1
3 . This value seems to confirm the conjecture

δ < 1/D discussed in remark 9.3.2. Moreover, it significantly improves the bound δ < 1/12
previously obtained by Blackburn et al. in [BGPGS05]. Additionally, this method provides
interesting asymptotic bounds for small values of n (whenm goes to infinity), see Table 9.2.
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M =



1/U

1/X

1/X2

1/UX

1/U2

0

1 0

1 0

0 1

0 2

0 1

Ψ

Ψ2



u

x

x2

ux

u2

Figure 9.2: First trick of the unravelled linearization technique.

9.5 The Pollard generator

The recursive sequence of the Pollard generator is defined as vi = v2
i−1 + b mod p with

b ∈ Zp. In other words, it is a particular instance of the quadratic generator where the
constant a is equal to 1. As a consequence, the attack scenario is exactly the same as in
the previous section when b is known to the attacker. However, if one takes advantage of
the fact that a is fixed to 1, a specific analysis can be made and a better bound can be
obtained. To reach such a result, we use a novel technique, called unravelled linearization
whose description is provided below.

9.5.1 Unravelled linearization

In 2009, Hermann and May [HM09] introduced a new technique called unravelled lineariza-
tion that allows to work with smaller lattices by optimizing the way the initial polynomial
is written. The idea consists in improving the bounds, see equation (9.1), by reducing
the number of monomials in the set M while keeping the same amount of powers of Ψ
appearing in the right hand side of the equation.

Let us show what happens on a toy example, say f(x, y) = x2 + x + y having a root
(x0, y0) modulo Ψ where |x0| < X and |y0| < Y with X = Y . The idea is to find the
better way of linearizing f before proceeding to Coppersmith’s construction. Let us fix, as
an example, u = x2. In that case, the polynomial f becomes g(u, x, y) = u + x + y and
the bounds on the root can de determined by the following formula UXY < Ψ. Knowing
that U = X2, this leads to X = Ψ1/4. Now, let us take another smarter linearization,
say u = x2 + y, leading to the polynomial g(u, x) = u + x. This time, the formula
becomes UX < Ψ, what leads to the improved bound X = Ψ1/3. This result can easily be
understood by the fact that the “weight” of y is hidden in u by the weight of x2.

There is another tricky manipulation to do in order to conclude. Let us consider
again our toy example g(u, x) = u+ x and let us construct the original matrix defined by
Coppersmith taking the collection {g, g2}. This leads to the matrix M (see Figure 9.2),
thus reaching the asymptotic bound U4X4 < Ψ3, what gives X < Ψ1/4.

But here is the point: by definition of u, the monomial x2 can easily be written as u−y,
thus allowing to express the polynomial g2 as g2 = u2 + 2ux+ u− y. Such a manipulation
leads to the matrix M′ (see Figure 9.3). In this case, the obtained bounds on the root
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M′ =



1/U

1/X

1/Y

1/UX

1/U2

0

1 1

1 0

0 −1

0 2

0 1

Ψ

Ψ2



u

x

y

ux

u2

Figure 9.3: Second trick of the unravelled linearization technique.

can be reformulated as U4X2Y < Ψ3 what gives the improved result X < Ψ3/11. This
benefit can be understood by the fact that we have managed to decrease the weight of the
monomials in the set M by 1 while keeping the exact number of powers of Ψ appearing in
the right hand side of equation (9.1). Such manipulations are quite hard to proceed, they
strongly rely on the linearization chosen for the initial polynomial f .

9.5.2 Case F known

2 consecutive outputs

Let us first assume that the adversary is given access to two consecutive outputs of the
generator, namely w0 and w1. Knowing that v0 = 2π−kw0 + x0 and v1 = 2π−kw1 + x1, we
reach the same relation as those previously obtained for the quadratic case:

x1 − 2π−k+1w0x0 − x2
0−b+ 2π−kw1 − 4π−kw2

0 = 0 mod p

Let us denote by f(y0, y1) the polynomial y1 − c0y0 − y2
0 + d0 where the coefficients c0 =

2π−k+1w0 and d0 = −b + 2π−kw1 − 4π−kw2
0 are known to the attacker. As usual, its goal

consists in recovering the small modular root (x0, x1) of f(y0, y1).
To solve this problem, we use the unravelled linearization technique. As already stated,

the first step consists in choosing a good linearization for f . In this particular case, we set
u = y1− y2

0, what leads to the following polynomial g(y0, u) = u− c0y0 + c mod p. In that
case, the bound on u can thus be expressed as U = X2

0 .
Let us now consider the collection of polynomials defined as yj0g

i(y0, u) with i+ j ≤ m
and i > 0. The list of monomials appearing in that collection can be described as M ={
yj0u

i | i+ j ≤ m
}
. Initially, we use this set of polynomials to construct the matrix

defined by Coppersmith, as in section 9.2. In that case, the right-hand side (resp. the
left-hand side of) of (9.1) can easily be expressed as p to the power

m∑
i=1

m−i∑
j=0

i =
1

6
m3 + o(m3)

resp. δ
m∑
i=0

m−i∑
j=0

2i+ j =
δ

2
m3 + o(m3)


The idea of the unravelled linearization technique is to improve the bound on δ by decreas-
ing the weight of the monomials. To do so, one should proceed to a “back-substitution”
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in the constructed matrix, as explained in the previous section. In that particular case,
knowing that y2

0 = y1 − u, the following replacement is done (for all monomials µ such
that µ · y2

0 ∈ M): µ · y2
0 → µ · y1 − µ · u. It is obvious that the presence of µ · y2

0 in
the set M implies those of µ · u. As a consequence, doing such a manipulation allows to
replace the quantity µ · y2

0 by µ · y1 thus decreasing by “1” the weight on the monomials. If
we express the collection M as M =

{
y2b+a

0 ui | a ∈ {0, 1} ∧ a+ 2b+ i ≤ m
}
, after the

back-substitution, we obtain the set M ′ =
{
yb1y

a
0u

i | a ∈ {0, 1} ∧ a+ 2b+ i ≤ m
}
. In

that case, the new left-hand side in equation (9.1) becomes p raised to the power:

δ

1∑
a=0

m−a∑
i=0

bm−i−a
2
c∑

b=0

(a+ b+ 2i) = δ
5

12
m3 + o(m3)

Thus, the corresponding asymptotic bound on δ becomes:

δ <
1/6m3 + o(m3)

5/12m3 + o(m3)
−−−−−→
m→+∞

2

5
.

This bound is better than those previously obtained by Blackburn et al. [GGI06]. Indeed,
in this paper the authors managed to reach the asymptotic bound δ < 5/14 when working
with one polynomial. One can also notice that the fraction 2/5 is exactly the bound
obtained in [HM09] for attacking the Blum-Blum Shub generator using the same kind of
trick.

More consecutive outputs

When working with more outputs, one can easily generalize the method explained before
in the same way as what has been done for the Blum-Blum Shub generator, thus reaching
the bound δ < 1/2.

9.5.3 Case F unknown

3 consecutive outputs

Let us now consider the case of an adversary having access to three consecutive outputs of
the generator. In that case, writing two consecutive recurrence relations and substracting
both of them leads to: −x2

1 + x2
0 + x2 + c0x0 − c1x1 + c = 0 mod p with:

c0 = 2π−k+1w0

c1 = (2π−k+1w1 + 1)

c = 2π−kw2 − 2π−kw1 + 4π−kw2
0 − 4π−kw2

1

The goal is to recover the small modular root (x0, x1, x2) of the polynomial f(y0, y1, y2) =
−y2

1 + y2
0 + y2 + c0y0 − c1y1 + c. To do so, we use again the unravelled linearization

technique. In order to linearize the polynomial f , we set u = −y2
1 + y2

0 + y2 to reach
the new following expression g(u, y0, y1) = u + c0y0 − c1y1 + c. Let us now consider the
collection of polynomials defined as yk0y

j
1g
i with i+ j + k ≤ m and i > 0. In that case, the

list of involved monomials can easily be expressed as M =
{
uiyj1y

k
0 | i+ j + k ≤ m

}
.

Thus, the right-hand side of Coppersmith’s equation (9.1) is given by p to the power:

m∑
i=1

m−i∑
j=0

m−i−j∑
k=0

i =
1

24
m4 + o(m4).
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Instead of just evaluating the weight of the monomials appearing inM , we want to perform
some back-substitutions before. In this case, the rule given by the linearization is (for all
monomials µ such that µ · y2

1 ∈ M): µ · y2
1 → µ · y2

0 + µ · y2 − µ · u. One can easily notice
that the presence of the monomial µ · y2

1 in the set M automatically implies those of µ · y2
0

and µ · u. As a consequence, the previous linearization rule allows to replace a monomial
of the form µ · y2

1 by one of those µ · y2 in the constructed matrix, again decreasing by “1”
the weight on the involved monomials. The shape of the new constructed set of monomials
is then: {

uiyb2y
a
1y

k
0 | a ∈ {0, 1} ∧ i+ k + a+ 2b ≤ m

}
In that case, the new left hand side of equation (9.1) becomes:

δ
1∑

a=0

m−a∑
i=0

bm−i−a
2
c∑

b=0

m−i−a−2b∑
k=0

(a+ b+ 2i+ k) =
7δ

48
m4 + o(m4)

which leads to the following bound on δ:

δ < (1/24m4 + o(m4))/(7/48m4 + o(m4)) −−−−−→
m→+∞

2/7.

More consecutive outputs

Let us now assume that the attacker knows n + 2 consecutive outputs of the Pollard
generator for n ≥ 2. As before, we denote by fi the relation between two outputs defined
as

fi = 2π−kwi + yi − (2π−kwi−1 + yi−1)2 − b mod p i ∈ {1, . . . , n}

These polynomials have (xi, xi−1) as a root modulo p and if we denote by gi = fi+1 − fi
for i ∈ {1, . . . , n}, we have gi = −y2

i + y2
i−1 + yi+1 + ciyi−1 − diyi + ei mod p for some

constants ci, di, ei known to the adversary.
Each of these polynomials involves three consecutive outputs of the generator. Knowing

the set of polynomials {g1, . . . , gn}, the attacker wants to recover the unknown values xi.
To do so, we will use again the unravelled linearization technique. In that particular
case, we decide to choose ui = −y2

i + y2
i−1 + yi+1, thus leading to the following equations:

gi = ui + ciyi−1 − diyi + ei. Consider now the following collection of polynomials{
yk1y

j
0g
i1
1 . . . ginn | k + j +

n∑
l=1

2l−1il ≤ m ∧ i1 + . . . in > 0

}

In that case, the right hand side of equation (9.1) can be expressed as p raised to the power:

m∑
i1=0

. . .

m−
∑n
p=1 2p−1ip−j∑
k=0

i1 + · · ·+ in

The set of monomials appearing in that collection is equal to (using the same trick as in
section 9.3.1):

M =

{
yi11 y

j1
0 u

k1
1 y

j2
2 u

k2
2 . . . yjnn u

kn
n | i1 +

n∑
l=1

2l−1(jl + kl) ≤ m

}
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Now, let us use the following back-substitution rule (for µ · y2
i ∈M): µ · y2

i → −µ · ui + µ ·
y2
i−1 + µ · yi+1. As before, when µ · y2

i appears in the collection, it is easy to see that it is
also true for the monomials µ · y2

i−1 and µ · ui. As a consequence, such an operation allows
to replace each element of the form µ · y2

i by µ · yi+1 thus decreasing by 1 the weight on
the monomials in M . Note that this will not necessarily be the case if one considers any
rule for the back-substitution step, see Section 9.6 for a more detailed discussion on that
point. The final step thus consists in determining the new set we obtain after doing that
back-substitution. In fact, the collection of polynomials has been selected such that every
monomial of the form µ · yi+1 already belongs to the set M , the only exception being for
elements involving the last variable, say µ · yn+1.

To understand that, let us come back to the case of two polynomials. In this scenario,
the set of monomials is defined as {yi11 y

j1
0 u

k1
1 y

j2
2 u

k2
2 | i1 + j1 + k1 + 2j2 + 2k2 ≤ m}.

If i1 = 2b1 + a1, then the use of the back-substitution changes the description into
ya11 y2b1

1 yj10 u
k1
1 y

j2
2 u

k2
2  ya11 yb12 y

j1
0 u

k1
1 y

j2
2 u

k2
2 . Using the same argument as in section 9.3.1,

this new set can be rewritten as:{
ya11 yj10 u

k1
1 y

j2
2 u

k2
2 | a1 = 0, 1 ∧ a1 + j1 + k1 + 2j2 + 2k2 ≤ m

}
The shape of this set shows that each monomial appearing after the back-substitution step
µ · y2

1 → µ · y2 was already present in the initial collection. From now, it just remains to
consider the case µ · y2

2 → µ · y3. By fixing j2 = a2 + 2b2 as before, we obtain the following
new collection:{

ya11 ya22 yj10 u
k1
1 u

k2
2 y

b2
3 | a1, a2 ∈ {0, 1} ∧ a1 + 2a2 + j1 + k1 + 2k2 + 4b2 ≤ m

}
This concludes the analysis for the case of two polynomials g1, g2. By recurrence, the set
of monomials appearing after all back-substitutions for n polynomials can be expressed as:{
ya11 . . . yann yj10 u

k1
1 . . . uknn y

bn
n+1 | a1, . . . , an ∈ {0, 1} ∧ j1 +

n∑
`=1

2`−1(a` + k`) + 2nbn ≤ m

}
The left hand side of Coppersmith’s equation (9.1) is thus p to the power:

δ
∑

0≤a1,...,an≤1

∑
j1+

∑n
`=1 2`−1(a`+k`)+2nbn≤m

(
n∑
`=1

(a` + 2k`) + j1 + bn)

Coppersmith’s method allows to compute the solution of our multivariate system under
the condition:

δ <

∑m
i1=0 . . .

∑m−
∑n
l=1 2l−1il−j

k=0 i1 + · · ·+ in∑
0≤a1,...,an≤1

∑
j1+

∑n
l=1 2l−1(al+kl)+2nbn≤m a1 + · · ·+ an + j1 + 2(k1 + . . . kn) + bn

In order to make the proof more clear, we write the bound δ as A(m,n)
B(m,n) where:

A(m,n) =

m∑
i1=0

. . .

b
m−

∑n−1
p=1 2p−1ip

2n−1 c∑
in=0

m−
∑n
p=1 2p−1ip∑
j=0

m−
∑n
p=1 2p−1ip−j∑
k=0

i1 + · · ·+ in

B(m,n) =
∑

0≤a1,...an≤1

m−
∑n
p=1 2p−1ap∑
j1=0

m−j1∑
k1=0

. . .

b
m−j1−

∑n
p=1 2p−1(ap+kp)

2n
c∑

bn=0

b
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with b = a1 + · · ·+an+j1 +2(k1 + · · ·+kn)+bn. We will simplify these two expressions by
doing an asymptotic analysis on m. First of all, for B(m,n), we notice that the quantity
a1 + · · · + an doesn’t affect the highest power of m and can thus be removed. The same
argument allows us to omit the coefficients 2p−1ap in the upper bound of the sums over
j1, . . . , bn, on the one hand, and to remove the floor function, on the other hand. Finally
each sum over ai can be replaced by a factor 2, what gives a global factor 2n. At this step,
doing all these changes gives:

A(m,n) =

m∑
i1=0

. . .

m−
∑n−1
p=1 2p−1ip

2n−1∑
in=0

m−
∑n
p=1 2p−1ip∑
j=0

m−
∑n
p=1 2p−1ip−j∑
k=0

i1 + · · ·+ in

B(m,n) = 2n
m∑
j1=0

m−j1∑
k1=0

. . .

m−j1−
∑n−1
p=1 2p−1kp

2n−1∑
kn=0

m−j1−
∑n
p=1 2p−1kp

2n∑
bn=0

j1 + 2(k1 + · · ·+ kn) + bn

We now have to do the same trick as in the first proof in order to obtain a symmetric
formula easier to evaluate. Here we reach:

A(m,n) =
1

2
. . .

1

2n−1

m∑
i1=0

. . .

m−
∑n−1
p=1 ip∑

in=0

m−
∑n
p=1 ip∑

j=0

m−
∑n
p=1 ip−j∑
k=0

i1 +
1

2
i2 + · · ·+ 1

2n−1
in

B(m,n) = 2n · 1

2
. . .

1

2n

m∑
j1=0

m−j1∑
k1=0

. . .

m−j1−
∑n−1
p=1 kp∑

kn=0

m−j1−
∑n
p=1 kp∑

bn=0

b′

with b′ = j1 +2(k1 + 1
2k2 + · · ·+ 1

2n−1kn)+ 1
2n bn. Let us denote by p1 the following quantity:

p1 =
m∑
i1=0

m−i1∑
i2=0

. . .

m−
∑n+1
p=1 ip−j∑

in+2=0

i1

In these expressions, each variable plays the same role as the others, thus our two expres-
sions can be rewrote as follows:

A(m,n) = 1
2 . . .

1
2n−1 (1 + · · ·+ 1

2n−1 ) · p1

B(m,n) = 1
2 . . .

1
2n−1 (1 + 2(1 + · · ·+ 1

2n−1 ) + 1
2n ) · p1

As a consequence, we obtain the following bound:

δ <
2n−1
2n−1

1 + 2n+1−2
2n−1 + 1

2n

When n→∞, we find δ < 2
5 .

In that particular case, we think this bound could be improved to δ < 1/2, following
the discussion from remark 9.3.2.

9.6 Discussion on the unravelled linearization technique

In Hermann and May’s paper [HM09], the unravelled linearization technique is described
as follows: one first has to find a good way of linearizing the initial polynomial, then
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Table 9.3: Difference between two back-substitution for the Pollard’s attack with two
polynomials.

Initial values for u1→ y2 − y2
1 + y2

0 y2
1 → y2 − u1 + y2

0

p = 512 bits u2→ y3 − y2
2 + y2

1 y2
2 → y3 − u2 + y2

1

Value of m Size of sublattice Theo. output Exp. output Theo. output Exp. output

4 46 357 358 357 358

5 80 354 356 354 355

6 130 352 353 351 352

7 200 350 351 349 350

the back-substitution step should be proceed on the monomials of the set M . What has
not been said is that there exists many ways of doing the second step, say the back-
substitution, depending on the monomials that appear in the linearization. To illustrate
that fact, let us reconsider, as an example, what has been done for the Pollard’s attack
when b is unknown and having three outputs. In that case, we remind that we had the
following linearization: u = y2

0 − y2
1 + y2. From that formula, there are two ways of doing

the back-substitution, namely u → y2
0 − y2

1 + y2 or y2
1 → y2

0 − u + y2. If these two rules
seem to be exactly the same, in fact, they do not work the same way. Indeed, in the first
case, the presence of u in the set of monomials do not necessarily imply those of y2

0 (resp.
y2

1), what leads to particular conditions, which is not the case for the second rule. Despite
that, with only one linearization this difference do not influence the result. But when
the number of polynomials grows, that is the number of linearization rules, the choice of
the back-substitution will play a role for intermediate bounds and even asymptotic ones.
Table 9.6 presents the difference that can occur when two different rules are applied for
the back-substitution step, in the particular case of two polynomials.
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Chapter 10
Security of the Micali-Schnorr

generator

10.1 Introduction

In this chapter we first study two cryptographic computational problems related to the RSA
problem, using time/memory/data tradeoffs. Given a modulus N , product of two large
prime numbers, and an odd exponent e, coprime to ϕ(N) the order of the multiplicative
group Z∗N , the RSA problem consists in recovering the plaintext x ∈ Z∗N from a random
ciphertext y = xe mod N . The variants we look at consider particular instances of this
problem where the plaintext is small or where the plaintext is small and only a part of
the ciphertext is known. These two problems appear to be related to the security of a
pseudorandom generator proposed by Micali and Schnorr.

In a second time, we study the statistical properties of the k least (or most) significant
bits of xe mod N , where N is an RSA modulus and x only belongs to a small interval of
[0, N). We then provide the first rigorous evidence that the cryptographic pseudo-random
generator proposed by Micali and Schnorr is based on firm foundations. This proof is
missing in the original paper and does not cover the parameters chosen by the authors.
Consequently, we extend the proof to get a new result closer to these parameters using
recently new exponential sums results and we show some limitations of our technique.

This work was presented at COCOON 2013 [FVZ13] and COCOON 2014 [FZ14].

10.1.1 The Micali-Schnorr generator

Micali and Schnorr [MS91] proposed a variant of the RSA generator that on a secret
random initial seed value x0 ∈ Z∗N computes the intermediate values vi = xei mod N and
outputs, for some k ∈ N, the k least significant bits of vi. But the successor xi+1 of xi
is formed from a separate part of vi, the remaining most significant bits (contrary to the
incestuous RSA generator where xi+1 = vi). The security of Micali-Schnorr pseudorandom
generator relies on the (strong) assumption that the distribution of xe mod N for random
k-bit integers is indistinguishable from the uniform distribution on Z∗N . The generator
is insecure if (1 − 1/e) logN least significant bits are output per iteration but no better
attack was proposed since its proposal 25 years ago. It remains open to know what is the
maximum quantity of information that can be output per iteration allowing the generator
to be efficient but still secure against potential attackers.

10.1.2 The RSA assumption

The RSA assumption states that, given a random value y in Z/NZ where N is the product
of two large primes, it is difficult to compute a e-th root of y, i.e. find x such that y =
xe mod N . The RSA problem has been heavily studied by mathematicians and no attack
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more efficient than factoring the RSA modulus has been found since its discovery. Usually,
it is very difficult to prove a computational assumption such as RSA and cryptographers
try to prove that this one is at least as difficult as another one, for instance factoring.
However, some evidences for the non-equivalence of these two hard problems has been
provided by Boneh et Venkatesan in [BV98] while the RSA assumption seems to hold.

RSA is a valid cryptographic assumption since on average its difficulty seems to be
established thanks to its self-reducibility property. Indeed, it is well-known that if we are
able to invert RSA on a non-negligible subset of Z/NZ, then we can invert nearly all values
in Z/NZ with high probability. Based on this assumption, cryptographers have proposed
and proved that the RSA signature and encryption schemes using adequate padding func-
tions [BR96, BR94] are secure in the random oracle model [BR93]. The security proof of
RSA-OAEP for encryption appeared in [FOPS01].

Another direction to assess the security of a computational assumption consists in show-
ing that the values we are looking for are computationally or statistically indistinguishable
from the uniform distribution on bitstrings of the same size. Consequently, the best the
adversary can do is to guess this value until he finds it. For RSA, it is easy to see that the
value y is uniformly distributed if x is. Here we are interested in the short RSA problem:
given y and the promise that x < M � N , find x such that xe mod N .

10.1.3 Time/memory tradeoffs

As dynamic programming, time/memory tradeoffs is a well-known technique to reduce
the time complexity of a problem using memory. Shamir and Schroeppel in [SS81] have
described such algorithms for specific NP-complete problems such as knapsack problems. In
cryptography, this technique has been used many times to analyze the security of symmetric
primitives such as block ciphers or stream ciphers and some computational problems such
as the baby-step giant-step algorithm to compute discrete logarithms. Basically, some
computations can be done independently of other resources. For instance, using the public
key the adversary can precompute some values and store a small fraction of these values in
the offline phase. Then, the adversary gets some ciphertexts and his goal can be to recover
the secret key.

In [Hel80] Hellman described a technique to invert random looking functions. This
technique has been rigorously studied in [FN99] by Fiat and Naor to work for any functions
and rigorous lower bounds have been given in [BBS06] by Barkan, Biham and Shamir.
Oeschlin in [Oec03] described a variant of Hellman tradeoff, but this variant has been
show equivalent to Hellman tradeoff by Barkan et al. since many heuristics can be applied
to Hellman technique. Finally, Babbage [Bab95] and Golic [Gol97], then Biryukov and
Shamir [BS00] presented tradeoff for stream cipher by using more or less data. This
resource is a crucial parameter in cryptanalysis and it is important to present attacks
using as low data complexity as possible.

10.1.4 Our contributions

In the first part of this chapter, we use time/memory/data tradeoff techniques to propose
algorithms for two computational problems related to the security of the Micali-Schnorr
pseudorandom generator. The algorithms are decomposed into two phases: the preprocess-
ing one where the attacker constructs large hash tables using the structure of the focused
cryptosystem, and the realtime phase where it uses the data produced by the cryptosystem
and the hash tables to retrieve the secrets. The three tradeoffs algorithms we describe are
similar to the tradeoffs for stream ciphers. However, in order to construct such algorithms,
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we need to specify the function f we used. For stream ciphers, the main idea is to execute
from a hidden state the generator in order to have at least logS bits of output if the state
is of bitsize S. Here, we decide to truncate the output value. It is a bit weird to define
f in such a way since the iteration of such functions is no more related to the iteration
of the generator. However, the only things we need is to cover the space in such a way
that the inversion will be possible. This choice of function f is suitable for Micali-Schnorr
generator but does not work for the Blum-Blum-Shub or the RSA generator. Moreover,
in order to prove that the many Hellman tables algorithm works (our second algorithm),
we need to prove that each table uses an independent function. We provide such claim in
the analysis of the second algorithm. Indeed, this independence assumption is in fact the
tricky part of the analysis and Hellman paper relies on heuristic in order to provide lower
bounds on the time complexity of his scheme. Using a computational argument we prove
that the considered functions are independent.

Our algorithms do not contradict the strong assumption used for the Micali-Schnorr
pseudorandom generator. They can be applied even though only a small part of the
generator is output at each iteration. Moreover, we will show that once one value is
recovered using the algorithms we describe for the first problem, then we are also able to
retrieve the seed by using another time/memory tradeoff.

In the second part of this chapter, we will prove the following informal theorem for
different values of M .

Theorem 10.1. Let N = pq be a balanced RSA modulus, e the public exponent and
M < N . Let the function f : Z/MZ −→ Z/NZ defined as f(x) = xe mod N . The k least
significant bits of f(x) for k < logN are statistically indistinguishable from the uniform
distribution on {0, 1}k.

For M �
√
N , we will show it using classical bounds, and for N1/e � M �

√
N , we

will use more recent results proved by Wooley [Woo12]. This last bound is very close to
be optimal since for M ≤ N1/e, it is possible in polynomial-time to recover x ≤ M given
the k ≥ M least significant bits of f(x). Indeed, in this case the function f becomes non
modular and the problem of retrieving x is quite easy by using Hensel’s lifting.

We then show an application of these theorems for the Micali-Schnorr generator. Micali
and Schnorr original proof refers to the first bound M �

√
N when e = 3, or the second

one otherwise since they proposed M = N2/e. However the proof is missing and they
do not give any hint to explain their more aggressive choice of parameters. Indeed, it
would be possible to output less bits at each iteration of the generator, but the efficiency
of this generator would be less efficient than the Blum-Blum-Shub generator [BBS86] for
instance. Micali and Schnorr prefer to output more bits and avoid the previous attack
when M = N1/e. Our result allows us to propose parameters ensuring the randomness of
the output. We also explain that the parameters proposed by Micali and Schnorr are close
to be optimal in the special case of e = 3.

10.1.5 Outline

In Section 10.2, we present the first problem we look at and basics about the Micali-Schnorr
pseudorandom generator. We explain why the problem is easy for some small parameters.
In Section 10.3, we describe two time/memory algorithms for solving the first problem
using different tradeoffs. In Section 10.4, we show other tradeoffs to recover the seed of
the generator. Finally, in Section 10.5 we study Theorem 10.1 and propose an application
for the Micali-Schnorr generator.
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r
n/e

easy hard

polynomial-time exponential search

Figure 10.1: Difficulty of the problem depending of the value r

10.2 Micali-Schnorr Pseudorandom Generator

Let (e,N) a RSA public key with e small compared to logN and x0 ∈ [0, 2r) with 2r � N
a secret seed of bitsize r. The Micali-Schnorr pseudorandom generator proposed in [MS91]
is defined as follows:

vi = xei−1 mod N and vi = 2kxi + wi for i ≥ 1.

At each iteration, this generator outputs the k least significant bits of vi, denoted by
wi. In addition, denoting n the bitsize of the modulus N , only xi of bitsize r = n − k,
unknown, is reused for the next iteration. Since the generator outputs O(k/ log e) bits
per multiplication, one wants k to be as large as possible and e to be as small as possible
to be efficient. This pseudorandom generator is proven secure under the following strong
assumption:

Assumption 10.1. The distribution of xe mod N for random r-bit integers x is indistin-
guishable by all polynomial-time statistical tests from the uniform distribution of elements
of (Z/NZ)∗.

Clearly this assumption cannot be true if one does not restrain the tests to polynomial-
time ones only because of the lack of entropy in input. Micali and Schnorr have proposed
the parameters r = 2n/e and thus k = n(1− 2/e) which are very aggressive parameters in
order to increase the efficiency of the generator.

Description of the problem. Let (e,N) the RSA public key with N of bitsize n. Using
the equality vi = 2kxi + wi where vi ∈ ZN , wi ∈ [0, 2k) and xi ∈ [0, 2r), we consider the
recurrence sequence

∀i ≥ 1, vi = xei−1 mod N (10.1)

Given (e,N, r), {w1, · · · , wj} with j ∈ N, the problem consists in retrieving one value xc
with c ∈ {0, · · · , j − 1}.

For an attacker, finding one of the values xi using some iterations of the Micali-Schnorr
pseudorandom generator will lead to infer its next outputs. The difficulty of the above
problem depends highly on the value of r. Figure 10.1 sums up this hardness, with a
transition value equal to n/e. We first explain why it is easy to solve the problem when
the bitsize of r is less than n/e.

Theorem 10.2. Suppose that the value x0 of bitsize r is odd. If r ≤ n/e, given (e,N) and
w1, there exists a polynomial-time algorithm which retrieves the value x0.

Proof. If r ≤ n/e, the modular reduction is not performed in Equation (10.1), so v1 = xe0
over the integers and using v1 = 2kx1 + w1, one has the following modular equation:

xe0 = w1 mod 2k

where all the values except x0 are known. We now use the well-known Hensel’s lifting
lemma to retrieve this secret value.
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Lemma 10.1 (Hensel’s lifting lemma). Let p be a prime and c be a positive integer. One
denotes f a polynomial having a root x modulo pc which satisfies:

f(x) = 0 mod pc and f ′(x) 6= 0 mod p

Then, one can lift x to obtain an unique nontrivial root x∗ ∈ [0, pc+1) verifying:

f(x∗) = 0 mod pc+1 and x∗ = x mod pc

With Lemma 10.1, by using f(x) = xe−w1, one can reconstruct bit per bit x0 looking
at the powers of 2. The value x∗ can be efficiently computed by x∗ = x + λ · 2c where
λ = −f(x)

2c · (f
′(x))−1 mod 2.

�

Note that if the value x0 is even, one loses the uniqueness of the lift. However, com-
puting xe − w1 mod 2k for each candidate x of bitsize r can suffice to retrieve this value;
one can also test another output wi of the generator. Another possibility to retrieve the
seed consists in raising w1 to the power e−1 mod 2k−1 (notice that e is odd). However the
complexity of Hensel lifting is linear in the size of the root, contrary to this exponentiation.
To avoid this simple algorithm but to remain efficient, i.e. to output a maximum of bits
per iteration, the parameter k has to be smaller than bn(1− 1

e )c. Finally, it seems hard to
find a polynomial-time algorithm if r > n/e, for example by using Coppersmith techniques,
which are techniques bases on lattice reduction to find small modular roots.

10.3 Solving the Problem using Time/Memory/Data Trade-
offs

For now, we consider the problem in the case where r is larger than n/e and we will present
two similar algorithms that use different tradeoffs in order to solve the problem. These
algorithms use the fact that only the hidden information, i.e the value xi of a relatively
small bitsize r, is recycled for the next iteration contrary to some other pseudorandom
generators as the BBS or the RSA ones. We denote the five key parameters as follows:

• 2r represents the cardinality of the search space.

• P represents the time required by the preprocessing phase of the algorithm.

• M represents the quantity of access memory required for the algorithm.

• T represents the time required by the online phase of the algorithm.

• D represents the quantity of data required for the algorithm.

10.3.1 First algorithm

The first algorithm is quite simple to explain and to implement but not really efficient. The
preprocessing phase consists in storing the couples (x, lsbk(xe mod N)) for some different
values of x in a hash table. During the online phase, one tests for each value wi if it appears
in the hash table. For example, it will work by taking M = 2r/3 and D = T = 22r/3 or
even M = T = D = 2r/2.

Theorem 10.3. Given (e,N) and D consecutive values w1, · · · , wD, there exists an algo-
rithm which retrieves one of the values x0, · · · , xD−1 in time T , by using M random access
memory such that TM = O(2r) with D = O(T ).
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Proof. We first detail the algorithm and then its complexity.
Algorithm. The preprocessing phase of the first algorithm is quite simple: one takes
p random different values x1

0, · · · , x
p
0 and computes wi1 = LSBk((x

i
0)
e

mod N) for i =
1, . . . , p where LSBk(x) represents the k least significant bits of x. The storage of these
values can be done using a hash table where the keys are the wi1 and their associated values
the xi0.
During the online phase of the algorithm, one tests for each value wi ∈ {w1, · · · , wD}
if it has an image for the hash function. If the test succeeds, this image represents the
unknown value of the precedent iteration ; the problem is then solved, i.e the pseudorandom
generator becomes from this step fully predictable. If the test fails, one tries with an other
output.
Complexity. The preprocessing time P is equal toO(p). For each value wi, the probability
that a collision occurs with a value in the hash table is equal to p/2r. Then, one can expect
a collision when the number of tested values D is such that Dp = 2r. Moreover, the amount
of random access memory M and the time required by the online phase of the algorithm
T are easily quantifiable since M = p · O(1) and T = D · O(1), leading to the tradeoff
TM = O(2r) with D = O(T ).

�

Remark. During the preprocessing phase, even if P is larger than 2r/2, the birthday paradox
is not a problem because the values are stocked: one can impose the uniqueness of each
of them. However, during the online phase, if D > 2r/2, one has to manage with this
paradox. The problem consists in having D > 2r/2 distinct values over 2r possibilities,
which is the coupon collector’s problem [Tuc97]. A mathematical analysis shows that one
needs O(D · log(D)) values to achieve the algorithm.

10.3.2 Second algorithm using Hellman’s tables

The next algorithm is based on [Hel80, BS00]. Hellman then Biryukov and Shamir have
proposed different attacks using tradeoffs for breaking block ciphers and stream ciphers.
We define a special function in order to apply these attacks for solving our problem, and
thus for the Micali-Schnorr pseudorandom generator. With this second algorithm, one can
consider for instance the parameters P = T = 22r/3 and M = D = 2r/3, which require less
data than the first algorithm.

Theorem 10.4. Given (e,N) and D consecutive values w1, · · · , wD, there exists an algo-
rithm which retrieves one of the values x0, · · · , xD−1 in time T , by using M random access
memory such that TM2D2 = O(22r) with D2 ≤ T ≤ 2r.

Proof. As before, we detail the algorithm and then its complexity.
Algorithm. For sake of clarity we first describe the algorithm in the case of a single
Hellman’s table. Let f be the function defined by f(x) = lsbr(xe mod N) where lsbr(x)
represents the r least significant bits of x. The preprocessing phase consists in computing
for m random different values x1

0, · · · , xm0 the values f t(x1
0), · · · , f t(xm0 ) with m, t ∈ N and

where f t means that the function f is iterated t times. The construction of a hash table
containing the f t(xi0) as keys and the xi0 as associated values, for i ∈ {1, · · · ,m}, concludes
this phase.
The algorithm in online phase works as follows:

1. One selects a known value wj for j > 0.

2. One considers only the r least significant bits of wj , denoted by zj .
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3. For i ∈ {0, · · · , t}, one tests if f i(zj) is a key of the hash function. If the t+ 1 tests
fail, one selects the next known value and restarts the algorithm.

4. If a test succeeds, denoting the associated value xc0, one has:

f t−i(xc0) = zj = f(f t−i−1(xc0)︸ ︷︷ ︸
X

)

X is a value of size r that corresponds with high probability to the hidden part of the
generator at the previous iteration. A simple verification consists of the computation
of the value Xe mod N .

Figure 10.2 gives an overview of the algorithm by manipulating the hash table and using
the function f .

Now a set of tables covers a larger fraction of the possible output values and conse-
quently, the online phase need less data. Each table requires a specific function and, in
order to cover different independent output values, the functions need to be independent.
In [Hel80], Hellman rigorously calculated a lower bound on the expected coverage of images
by a single table which is essentially the same analysis we did in the previous algorithm.
However, the analysis for the full scheme (with many tables) is highly heuristic and is
based on the unjustifiable assumption that many simple variants of f are independent of
each other. Fiat and Naor in [FN99] propose to use k-wise independent functions in order
to propose an algorithm to invert any function, while Hellman assumes that the function is
random. In order to replace the heuristic, one could think of using independent functions
for each table by computing gi = hi ◦ f , where {hi}i is a family of k-wise independent
functions. The main drawback is that the number of such functions we need is exponential
and it is not easy to construct such functions. Here, we want to avoid Hellman heuris-
tic while similar heuristic could be made. For instance, we could define many functions
by considering any r bits among the n − r output bits which will give us

(
n−r
r

)
different

functions. However, many functions will have the same subset of bits and we cannot as-
sume independence between them. The analysis of the algorithm is based on the following
hypothesis:

Assumption 10.2. Denoting f(x) = lsbr(xe mod N), the distribution of f(x) for ran-
dom r′′-bit integers (r′′ ≥ r) x is indistinguishable by all polynomial-time statistical tests
from the uniform distribution of integers in [0, 2r).

Instead of using a single table, one thus uses ` = t/D hash tables of size mt (assuming
that t > D). First, one has to find which table covers the output value. Then one applies
the algorithm described above. Consequently, the search of the table requires to look for
each value in all tables in parallel.
Complexity. We cover a fraction mt/2r of the output values with one table. Now, using
` tables, we want to prove that the number of output values we cover is mt`. To prove such
result, we have to solve the independence problem, namely that to describe independent
functions for each table so that we are still able to invert f . Our idea is to use the fact
that f is a random function or that its outputs are indistinguishable from the uniform
distribution (Assumption 10.2). By using ` random and independent values zi ∈ [0, 2r

′
),

we can define ` functions as gi(x) = f(x+ zi · 2r) for i ∈ {1, · · · , `}. We claim that this set
of functions is independent, otherwise assumption 10.2 will be wrong for r′′ = r + r′.
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Value Hellman’s Matrix for our algorithm Key

x1
0

f−→ f(x1
0)

f−→ · · · f−→ f t−1(x1
0)

f−→ f t(x1
0)

...
...

xc
0

f−→ · · · f−→ X︸ ︷︷ ︸
step 4

f−→ zj
f−→ · · · f−→︸ ︷︷ ︸
step 3

f i(zj)

...
...

xm
0

f−→ f(xm0 )
f−→ · · · f−→ f t−1(xm0 )

f−→ f t(xm
0 )

Figure 10.2: Computation of our algorithm using a hash table

The number of different values in a single table can be estimated as follows (the end
value of each chain is not counted):

E(#{f j(xi0), 1 ≤ i ≤ m, 0 ≤ j < m}) =
m∑
i=1

t−1∑
j=0

Pr[Ai,j ]

where Ai,j the event [f j(xi0) /∈ {f j′(xi′0 ), i′ < i or j′ < j}]. Note that Ai,j ⊆ Ai,j−1 (since
f j(xi0) = f j−1(xi0)). Moreover, we have the following property:

Pr[Ai,j |Ai,j−1] ≥ 1− it

2r
⇒ Pr[Ai,j ] ≥

(
1− it

2r
)j+1

Hence, the probability p that the value we search is in one Hellman’s table is greater than
2−r

∑m
i=1

∑t−1
j=0(1− it

2r )j+1. Now the probability p′ that the value we search is in one of the

` Hellman’s tables is greater than 1 −
(
1 − 2−r

∑m
i=1

∑t−1
j=0(1 − it

2r )j+1
)` and p′ ≈ 2−rmt`

if mt2 � 2r. We clearly have M = O(m`), T = O(Dt`) and P = O(mt`). For ` = t/D,
we obtain the tradeoff TM2D2 = O(22r) with D2 ≤ T ≤ 2r.

�

10.4 Inverting RSA for Small Plaintext Problem

By using one of the previous algorithms, one knows the value of a hidden part of the
generator denoted xi for i ≥ 0. We now present two different ways to invert the Micali-
Schnorr generator, i.e to retrieve the secret seed x0.

Description of the problem. Let (e,N) be an RSA public key with N of size n and an
integer r ≤ n. Given (N, e, r) and y = xe mod N for x ∈ [0, 2r), the problem consists in
recovering x.

Remark. This problem is well-known to be solvable in polynomial time when r ≤ n/e since
as before the equality holds over the integers.

10.4.1 Multipoint evaluation of univariate polynomials

In our case, it is clear that using the multipoint evaluation of univariate polynomials (see
Section 8.2.2 for some recalls), will lead to retrieve the seed. For example suppose that we
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know the value of vi and want to retrieve the value of xi−1 of the generator. That can be
done by multipoint evaluating the polynomial of degree e(2r/2 + 1):

P (X) = (Xe − vi)((X + 1)e − vi)((X + 2)e − vi)...((X + 2r/2)e − vi) mod N

on the points k ·2r/2 for k = 0, · · · , 2r/2 in order to find kc such that P (kc ·2r/2) = 0 mod N .
Then, one searches the value of xi−1 on the form kc · 2r/2 + ` for ` = 0, · · · , 2r/2. This
technique requires Õ(e · 2r/2) operations in ZN and one has to store the first tree, i.e. 2r/2

polynomials.

Remark. This algorithm can be applied to attack the RSA encryption system when used
to encrypt a short secret key of a symmetric cipher. Our algorithm is slightly less efficient
than the one in [BJN00] but it always succeeds (whereas recovering a 40-bit plaintext for
instance is successful only with probability 0.39 in [BJN00]).

10.4.2 Coppersmith’s method

Another technique is based on the well-known Coppersmith’s method for the case of a
modular univariate polynomial (see Section 9.2 for some recalls). In our case, starting
from the equation xei−1 = vi mod N , we can define the following modular univariate
polynomial f as f(x) = xe − vi mod N . The value xi−1 represents a small modular root
of this polynomial. However, our root of size r is not enough small for this technique
which requires the root to be less than N1/e, i.e r < n/e (see [Cop96b]). To circumvent
this problem, one can guess j bits of x in order to have r − j < n/e and then apply
Coppersmith’s method for each guess. Instead of f , one uses the polynomial g of degree e:

g(x) = (λ+ x)e − vi mod N

with λ the guessed value of j bits. The truncated value of xi−1 denoted by xtri−1 is a small
modular root of g. Its degree being the same, the asymptotic condition on the size of the
root remains the same. We refer to Chapter 9 and more precisely to Section 9.3.1 for more
details.

10.4.3 Splitting probabilities for integers

The last reversing is based on the attack described by Boneh, Joux and Nguyen in [BJN00]1

and can be viewed as a meet-in-the-middle method. They use the fact that a relatively
small integer can often be expressed as a product of much smaller integers.

One starts from the equation xei−1 = vi mod N where vi is known by the attacker ; its
goal is to retrieve xi−1 of size r. Suppose that xi−1 = AB with A < 2α and B < 2β Then:

vi
Be

= Ae mod N

By building a table of size 2α containing all the possible values of Ae mod N , one just
has to test for each possible value of B if vi/Be mod N is in the table. Any collision will
reveal the value xi−1.
Using the tradeoff α = β = r/2, this attack requires 2r/2r bits of memory and the compu-
tation of 2 · 2r/2 modular exponentiations. The success probability of this attack is related
to the famous Erdös multiplication table problem. Given an integer N , let m(N) denote

1It is worth noting that this idea was already mentioned in Micali-Schnorr paper and attributed to a
personal communication by Pollard.
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the number of integers of the form ab with 1 ≤ a, b ≤ N . Erdös proved [Erd55, Erd60]
that limN→+∞m(N)/N2 = 0 and these products do not take up a positive proportion of
the integers up to N2 (see also [For08]). In particular, the success probability decreases
with r and since i is a large value, one cannot expect retrieve the seed by using only with
this attack.

10.5 Proof of Theorem 10.1 and application

In this section, we want to prove some good properties of the k least significant bits of
the function xe mod N . More precisely, to prove Theorem 10.1, we have to estimate the
statistical distance between the function lsbk(xe mod N) for x randomly chosen in Z/MZ
and the uniform distribution modulo 2k. In function of the values of N, e, k and M , we
will be able to show (or not) the statistically indistinguishability of these two probability
ensembles. More precisely the ratio between M and N is crucial in our analysis and we
propose two different techniques for estimating the statistical distance. The first one is
meaningful when M �

√
N (see Theorem 10.5) and the second one is useful for M �

√
N

(see Theorem 10.6).

10.5.1 Preliminaries

Statistical Distance

We will consider the collision probability of a random variable X on a finite set S, defined
as:

Col(X) =
∑
s∈S

Pr[X = s]2.

The link between the statistical distance, as defined in Chapter 5 and the collision
probability is given by the following lemma proven in [Sho06]:

Lemma 10.2. Let X be a random variable with values in a finite set S of size m. If X
has collision probability β and distance δ from uniform on S, then:

δ ≤ 1

2

√
mβ − 1.

Exponential Sums

Our proof of Theorem 10.1 relies on exponential sums in Z/mZ, so we first fix some
notations and recall useful standard results. For any integer m, we denote by em the
additive character Z/mZ → C∗ given by em(x) = exp(2iπx/m). The following results
hold.

Proposition 10.1 (Orthogonality). For all x ∈ Z/mZ, we have:
m−1∑
c=0

em(cx) =

{
0 if c 6≡ 0 (mod m),
m if c ≡ 0 (mod m).

Lemma 10.3 ([Vin54, Problem 11.c]). For any modulus2 m ≥ 60 and any non negative
integers h, k, we have:

m−1∑
c=1

∣∣∣∣ k+h∑
x=k

em(cx)

∣∣∣∣ ≤ (m− 1) logm.

2We assume that this bound onm holds for all moduli involved in our computations below, i.e. p, q > 60,
which is of course satisfied for all RSA moduli in practice.

162



10.5. Proof of Theorem 10.1 and application

Lemma 10.4 (Weil [LN96]). Consider a prime modulus p. For all polynomials g(X), h(X) ∈
Fp[X] such that the rational function f(X) = h(X)/g(X) is not constant on Fp, the bound:∣∣∣∣ ∑

x∈Fp
g(x)6=0

ep
(
f(x)

)∣∣∣∣ ≤ (max(deg g,deg h) + v − 1
)
· p1/2

holds, with v the number of distinct zeros of g(X) in the algebraic closure of Fp.

10.5.2 First Bound when M �
√
N

The first technique we propose uses mostly the technical lemmas on exponential sums.
We obtain a bound on the statistical distance which is negligible when the parameter M
is sufficiently larger than

√
N . With this first analysis we cannot hope to approach the

optimal bound, i.e. M � N1/e for e ≥ 3. However its advantage may lie in providing
concrete values of M and k for cryptographic sizes of modulus N . It is thus an useful
bound for our applications.

Theorem 10.5. Let N = pq be a balanced RSA modulus (i.e. N = pq for primes p, q
such that 60 < q < p < 2q), e the public exponent and M < N an integer such that
M �

√
N . Then the random variable X = lsbk(xe mod N) for x randomly chosen in

Z/MZ is δ-statistically close to uniform with:

δ =

√
2k

N
+

2k/2e2
√
N log3/2N

M
.

Proof. The values of the random variable X are taken in [0, 2k) with the following distribu-
tion: x is chosen uniformly at random in Z/MZ and we output f(x) = lsbk(xe mod N).
We are interested in bounding the collision probability of this random variable. By de-
noting K =

⌊
N−1

2k

⌋
, we can evaluate this probability using the orthogonality property of

additive characters (Prop. 10.1):

Col(X) =
1

M2
×
∣∣{(x, y) ∈ [0,M − 1]2 | ∃u ∈ J−K,KK, xe − ye = 2k · u mod N}

∣∣,
≤ 2

M2N

M−1∑
x=0

M−1∑
y=0

K∑
u=0

N−1∑
a=0

eN (a(xe − ye − 2k · u)).

We now define by B the value maxa |S(a,M)| where S(a,M) =
∑

0≤x<M eN (axe) to
uniformly bound

∑M−1
x=0

∑M−1
y=0 eN (axe − aye) = S(a,M)S(a,M) = |S(a,M)|2. The con-

tribution of a = 0 is exactly 2(K + 1)/N and if we put it aside we get:

Col(X) ≤ 2(K + 1)

N
+

2

M2N

N−1∑
a=1

|S(a,M)|2
∣∣∣∣ K∑
u=0

eN (−a2k · u)

∣∣∣∣.
The probability collision can be bounded using B and Lemma 10.3 since the function
a ∈ Z/NZ \ {0} → 2ka ∈ Z/NZ \ {0} is a bijection:

Col(X) ≤ 2(K + 1)

N
+

2

M2N

(
max

1≤a≤N−1
|S(a,M)|2

)N−1∑
a=1

∣∣∣∣ K∑
u=0

eN (−a2k · u)

∣∣∣∣,
Col(X) ≤ 2(K + 1)

N
+

2

M2N
B2 ·N logN. (10.2)
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It remains to bound B for all a ∈ Z/NZ \ {0}. The incomplete exponential sum S(a,M)
can be expressed using the complete one as follow:

S(a,M) =
∑
x<M

eN (axe) =
∑

x∈Z/NZ

eN (axe) ·
[
x ∈ J0,M − 1K

]
,

=
∑

x∈Z/NZ

eN (axe)
1

N

M−1∑
m=0

∑
b∈Z/NZ

eN (b(x−m)),

=
1

N

∑
b∈Z/NZ

M−1∑
m=0

eN (−bm)
∑

x∈Z/NZ

eN (axe + bx).

where [·] is the usual Iverson bracket notation: for a statement U , [U ] = 1 is U is true
and 0 otherwise. If we pick integers u, v such that up + vq = 1, we see that the sum in x
decomposes as:∑

x∈Z/NZ

eN (axe + bx) =
∑

x∈Z/NZ

eN
(
(up+ vq) · (axe + bx)

)
=
∑
xp∈Fp

ep
(
vga,b(xp) mod p

) ∑
xq∈Fq

eq
(
uga,b(xq) mod q

)
where the function ga,b is given by ga,b(x) = axe + bx. Now if a 6= 0 mod p , vga,b is a non
constant function in Fp, so Lemma 10.4 ensures:

|Tp| =
∣∣∣∣ ∑
xp∈Fp

ep(vga,b(xp) mod p)

∣∣∣∣ ≤ e√p.
On the other hand, if a = 0 mod p, we have:

∑
xp∈Fp

ep(vga,b(xp) mod p) =
∑
xp∈Fp

ep(vbx) =

{
p if b = 0 mod p,
0 otherwise.

A corresponding result holds for Tq =
∑

xq∈Fq eq(uga,b(xq) mod q) and as a result, to bound
|S(a,M)|, we have to separate the case when a is invertible modulo N from the case where
it is a multiple of p or q. When a is invertible modulo N , we directly have:

|S(a,M)| ≤ 1

N

∑
b∈Z/NZ

∣∣∣∣M−1∑
m=0

eN (−bm)

∣∣∣∣ · |Tp| · |Tq|,
≤ 1

N

∑
b∈Z/NZ

∣∣∣∣M−1∑
m=0

eN (−bm)

∣∣∣∣ · e√p · e√q ≤ 1

N
e2
√
N ·N logN

by Lemma 10.3. On the other hand, assume that a is a multiple of p. We have:

|S(a,M)| =
∣∣∣∣ pN ∑

b∈Z/NZ
b=0 mod p

M−1∑
m=0

eN (−bm)
∑
xq∈Fq

eq
(
uga,b(xq) mod q

)∣∣∣∣
≤1

q

q−1∑
b′=0

∣∣∣∣M−1∑
m=0

eN (−bm)

∣∣∣∣ · e√q ≤ e√q log q < e2
√
N logN,
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10.5. Proof of Theorem 10.1 and application

by applying Lemma 10.3. the same bound holds when a is a multiple of q, so that B ≤
e2
√
N logN . Together with (10.2), we obtain:

Col(X) ≤ 2(K + 1)

N
+

2e4N log3N

M2
.

Finally Lemma 10.2 provides a bound on the statistical distance ∆1(X):

∆1(X) ≤
√

2k(K + 1)

N
− 1 +

2k/2e2
√
N log3/2N

M
,

and to conclude the proof, it is easy to show that
∣∣K+1
N − 1/2k

∣∣ ≤ 1/N .
�

10.5.3 Second Bound when M �
√
N

Here we treat the case where M is smaller than
√
N , which will be interesting to approach

the optimal bound, i.e. M � N1/e. Even if the following lemma and corollaries do not
require anything on the size of M (except that it is less than N obviously), the bounds we
find for ∆1(X) are only interesting for small values of M , meaning M �

√
N .

Theorem 10.6. Let Let N , e, X be as in Theorem 10.5 and M < N an integer such that
M �

√
N . Then X is δ-statistically close to uniform with:

δ =

√
2k

N
+ 2k/2 log3/2N

(
1

M
+

N

M e

) 1
2e(e−1)+1

+
2k/2e log3/2N

M
.

Proof. This result is based on a more recent result proved by Wooley, which provides
another evaluation of the exponential sum S(a,M). We give here a specific version adapted
to our case:

Theorem 10.7 (Wooley, [Woo12]). Let e be an integer with e ≥ 2, and let a/N ∈ R.
Suppose that, for some c ∈ Z and N ∈ N with gcd(c,N) = 1, one has |a/N − c/N | ≤ N−2

and N ≤M e. Then one has:∑
1≤x≤M

eN (axe)�M1+ε(N−1 +M−1 +N ·M−e)σ(e) where σ(e)−1 = 2e(e− 1).

According to [Woo12], the factor M ε may be replaced by log(2M), if one increases
σ(e)−1 from 2e(e − 1) to 2e2 − 2e + 1. For sake of simplicity, we bound log(2M) by
logN (with the weak assumption that M ≤ N/2) and we neglect the term 1/N since it is
negligible compared to min(M−1, N ·M−e). Thus we obtain:

|S(a,M)| �M logN(M−1 +N ·M−e)
1

2e(e−1)+1 .

Note that this bound is correct for a ∈ (Z/NZ)∗ and because it is meaningful when
M �

√
N , one cannot bound as before the value |S(a,M)| for a 6∈ (Z/NZ)∗. Starting

from:

Col(X) ≤ 2(K + 1)

N
+

2

M2N

N−1∑
a=1

|S(a,M)|2
∣∣∣∣ K∑
u=0

eN (−a2k · u)

∣∣∣∣,
we decompose the sum in a as:

N−1∑
a=1

|S(a,M)|2
∣∣∣∣ K∑
u=0

eN (−a2k · u)

∣∣∣∣ = S∗ + Sp + Sq
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with S∗ the sum in a ∈ (Z/NZ)∗ and Sp (resp. Sq) the one in a ∈ Z/NZ \ {0} such
that a = 0 mod p (resp. a = 0 mod q). The sum S∗ is bounded using Theorem 10.7 and
Lemma 10.3, whereas we treat Sp (and similarly Sq) using an intermediate result from the
previous proof and Lemma 10.3, i.e.:

S∗ ≤M2 log2N(M−1 +N ·M−e)
2

2e(e−1)+1 ·N logN,

Sp ≤e2q log2 q ·
∑
ap∈F∗q

∣∣∣∣ K∑
u=0

eq(−ap2k · u)

∣∣∣∣ ≤ e2q2 log3 q ≤ e2N log3N.

We thus have:

Col(X) ≤ 2(K + 1)

N
+ 2 log3N(M−1 +N ·M−e)

2
2e(e−1)+1 +

4e2 log3N

M2

∆1(X) ≤
√

2k

N
+ 2k/2 log3/2N

(
1

M
+

N

M e

) 1
2e(e−1)+1

+
2k/2e log3/2N

M

�

To conclude, we extend ours theorems to the most significant bits case.

Corollary 10.1. Let N = pq the product of two large prime integers and M an integer
less than N . The results from Theorem 10.5 and Theorem 10.6 on the statistical dis-
tance between lsbk(xe mod N) for x randomly chosen in ZM and Uk are still valid for
msbk(xe mod N).

Proof. Indeed, the single difference appears in the evaluation of Col(X):

Col(X) =
1

M2
×
∣∣{(x, y) ∈ [0,M − 1]2 | ∃u ≤ K,xe − ye = u mod N}

∣∣,
≤ 2

M2N

M−1∑
x=0

M−1∑
y=0

K∑
u=0

N−1∑
a=0

eN (a(xe − ye − u)),

with K still equal to
⌊
N−1

2k

⌋
. Since

N−1∑
a=1

∣∣∣∣ K∑
u=0

eN (−a2k · u)

∣∣∣∣ =
N−1∑
a=1

∣∣∣∣ K∑
u=0

eN (−a · u)

∣∣∣∣,
the rest of the proof remains the same.

�

10.5.4 Application to the Micali-Schnorr generator

We do not contradict Assumption 10.1 since our theorems give upper bounds on δ but
note that it cannot be true if one does not restrain the tests to polynomial-time ones only
because of the lack of entropy in input. Micali and Schnorr have proposed the parameters
r = 2n/e and thus k = n(1−2/e) which are very aggressive parameters in order to increase
the efficiency of the generator.

Theorem 10.5 is useful to define the sizes of parameters k and r such that the statistical
distance is bounded as desired. Corollary 10.2 consists in determining the minimal size of
the input in order to have an indistinguishable output from the uniform distribution. This
is really interesting to note that when N tends to infinity, this bound tends to 2/3. In
other words we cannot expect to have a positive result of indistinguishability according to
our results if one outputs more than (logN)/3 of the least significant bits asymptotically.
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10.5. Proof of Theorem 10.1 and application

Corollary 10.2. Let (e,N) a RSA public key with e small compared to logN and d a
security parameter such that δ < 2−d. Let α ∈ (0, 1) such that Micali-Schnorr pseudo-
random number generator outputs the (1 − α) logN least significant bits at one iteration.
This output is indistinguishable from the uniform distribution on {0, 1}(1−α) logN if

α > 2/3 +
2d+ 4 log e

3 logN
+

log logN

logN
.

Proof. By denoting M = Nα with α < 1 and 2k ' N1−α, we obtain from Theorem 10.5:

δ ≤ N−α/2 +N1− 3
2
αe2
√
N log3/2N.

Since −α/2 < 1 − 3
2α is equivalent to α < 1 and e2

√
N log3/2N is quite large for crypto-

graphic parameters, we will neglect the first term. We bound the statistical distance by
2−d with d a security parameter and obtain the following condition on α:

α > 2/3 +
2d+ 4 log e

3 logN
+

log logN

logN
.

�

As a concrete example, forN = 21024, e = 3 and d = 80, that gives an input greater than
747 bits (and thus an output lesser than 277 bits). Note that we study a single iteration
of the generator as in [FS01] for example, the consideration of two or more consecutive
outputs is a more difficult task. Finally remark that Theorem 10.6 is useless for this
application because of the necessarily link between k and M : if M = Nα then 2k ' N1−α.
For M �

√
N , there is not enough entropy to prove the indistinguishability.
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Résumé

Dans cette thèse, nous nous intéressons à la sécurité de générateurs pseudo-aléatoires
et d’implémentations de schémas de signature.

Concernant les schémas de signature, nous proposons, dans le cas d’une implémenta-
tion répandue de RSA, différentes attaques par injection de faute effectives quelque soit
l’encodage du message. Nous présentons par ailleurs une contre-mesure infective prouvée
sûre pour protéger le schéma RSA–PSS contre un certain nombre de fautes non aléa-
toires. Nous étudions également le schéma ECDSA couplé aux techniques d’accélération
GLV/GLS. En fonction des implémentations, nous prouvons soit la bonne distribution du
nonce utilisé, soit qu’il présente un biais permettant une attaque. Enfin, nous élaborons un
outil qui recherche automatiquement des attaques par faute à partir d’une implémentation
et d’une politique de faute, outil appliqué avec succès sur des implémentations de RSA et
de ECDSA.

Concernant les générateurs pseudo-aléatoires algébriques, nous étudions les généra-
teurs non-linéaires et améliorons certaines attaques en diminuant l’information donnée à
l’adversaire. Nous nous intéressons également à la sécurité du générateur Micali-Schnorr à
travers quelques attaques et une étude statistique de son hypothèse de sécurité. Finalement
nous proposons une cryptanalyse de tout schéma à clé publique basé sur la factorisation
ou le logarithme discret dont la clé secrète est générée à partir d’un générateur linéaire.

Abstract

In this thesis, we are interested in the security of pseudorandom number generators
and of implementations of signature schemes.

Regarding the signature schemes, we propose, in the case of a widespread implemen-
tation of RSA, various fault attacks which apply to any padding function. In addition we
present a proven secure infective countermeasure to protect the RSA–PSS scheme against
some non-random faults. Furthermore we study the ECDSA scheme coupled with the
GLV/GLS speed-up techniques. Depending on the implementations, we prove either the
good distribution of the used nonce, or that it has a bias, thereby enabling an attack. Fi-
nally we develop a tool for automatically finding fault attacks given an implementation and
a fault policy, which is successfully applied to some RSA and ECDSA implementations.

Regarding pseudorandom number generators, we study the nonlinear ones and improve
some attacks by reducing the information available to the adversary. We also are interested
in the security of the Micali-Schnorr generator through various attacks and a statistical
study of its security assumption. Finally we propose a cryptanalysis of any public-key
scheme based on the factorization or the discrete logarithm when the secret key is generated
using a linear generator.
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