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 “Sometimes a silent partner, sometimes an irruptive presence,  

nature has always been my teacher.  

     

Shared between rational observation and unintelligible enchantment, 

my mind has  

been absorbed by her beauty and power.  

 

The overwhelming curiosity to undercover the mechanism underneath 

everything  

led me to the most vast and intriguing world of the natural sciences,  

βιολογία, the study of life...”   Alice S. 
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Résumé 

Les patterns de biodiversité et les mécanismes qui les maintiennent ont toujours intéressé les 

biologistes et ont été abordés en considérant des facteurs géologiques, évolutifs et écologiques. 

Les processus écologiques qui déterminent la co-occurrence des espèces diffèrent en fonction de 

l'environnement physique de l'écosystème. De nombreuses théories ont proposé des relations 

entre les tendances observées dans la diversité des espèces et les caractéristiques physiques de 

l’environnement à grande échelle. Dans les milieux terrestres et aquatiques, l’impact de la 

température sur la distribution de la biodiversité compte parmi les facteurs les plus influentes et 

étudiés. Toutefois, de nombreux taxa marins représentent des exceptions à cette influence 

primaire de la température, alors qu'une fraction dominante des espèces marines est planctonique 

ou à larves dispersibles. La dispersion par le transport physique a certainement un impact majeur 

sur les patterns d'abondance des espèces dans l’environnement marin. Certains courants 

océaniques peuvent en effet  contraindre la distribution des stades planctoniques de certaines 

espèces, même lorsque les paramètres démographiques et physiologiques des espèces sont 

insensibles aux propriétés de l'eau. Les mécanismes de transport peuvent donc influencer la 

distribution de la diversité à toutes les échelles, de l’individu aux populations jusqu’aux espèces. 

Contrairement aux écosystèmes terrestres, les écosystèmes en milieu marin sont sujets à une 

variabilité dont les échelles spatiales et temporelles sont dictées par les processus du transport 

physique turbulent. Cet aspect complique l’obtention d’informations synoptiques sur la 

distribution des espèces marines au niveau global et à haute résolution, alors que cette vision 

globale est essentielle pour pouvoir comprendre les patterns de biodiversité et les mécanismes 

impliqués dans leurs variations.  En outre, les hotspots de biodiversité sont d’importance primaire 

pour les efforts de conservation.  

Les objectifs de cet étude sont les suivants: identifier les hotspots de biodiversité pélagique des 

producteurs primaires à l'échelle globale et à haute résolution; déterminer les processus physiques 

de l'océan qui contrôlent la dynamique spatio-temporelle des hotspots, en se focalisant sur les 

mécanismes de transport, de dispersion, advection et mélange; étudier l'influence de ces 

mécanismes de structuration de la biodiversité sur les niveaux trophiques supérieurs. 

Pour obtenir ces résultats, les informations sur les parcelles d’eaux aux caractéristiques 

biophysiques cohérentes (‘niches fluido-dynamiques’) obtenues par satellite sont utilisées pour 
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identifier les hotspots de biodiversité microbienne comme région de forte variabilité spatiale de 

ces niches. Ces hotspots et le rôle du transport dans leur structuration sont étudiés par l'analyse 

des modèles écologiques et biophysiques de circulation globale (Modèle ECCO2-Darwin) et par 

l’examen de données moléculaires et morphologiques sur la structure de la communauté in-situ 

collectées par l'expédition Tara Oceans et Atlantic Meridional Transect. Les possibles effets 

‘bottom-up’ de la diversité des producteurs primaires sur les niveaux supérieurs de la chaine 

trophique sont évalués par comparaison avec des modèles globaux qui intègrent des bases de 

données in situ. 

Les modèles écologiques couplés avec la circulation océanique identifient comme hotspots de 

biodiversité des producteurs primaires les domaines parmi les plus dynamiques de l'océan 

mondial, caractérisés par une turbulence et un mélange développés et la présence de tourbillons. 

Ces caractéristiques océanographiques peuvent améliorer la productivité locale par le transport 

des nutriments dans la zone euphotique et augmenter la biodiversité par la juxtaposition des 

espèces typiques des différentes masses d'eau. De plus, les cartes de biodiversité microbienne 

suggèrent une propagation bottom-up de la biodiversitè au sein de l'écosystème, les hotspots des 

producteurs primaires étant corrélés positivement avec la distribution des espèces de prédateurs 

supérieures. 

Les effets du couplage biophysique sur la distribution de la biodiversité n'ont jamais étés 

observées auparavant à l’échelle globale, car la résolution spatio-temporelle des cartes de 

biodiversité estimée au milieu pélagique était insuffisante. La disponibilité des cartes satellitaires, 

l’accessibilité aux modèles de simulation globale à haute résolution et une forte collaboration 

interdisciplinaire entre océanographes, biologistes moléculaires et modélisateurs des écosystèmes 

va permettre de les explorer. En plus de l'impact scientifique sur la compréhension des processus 

structurant la biodiversité, les résultats de cette thèse ouvrent la voie à l'utilisation de données 

satellite pour la planification des sanctuaires marins internationaux et pour la gestion des 

ressources marines pélagiques. 
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Summary 

Patterns of biodiversity and the mechanisms that maintain them have always interested biologists 

and have been addressed considering geological, evolutionary and ecological factors. Ecological 

processes that determine the co-occurrence of species differ according to the physical 

environment of the ecosystem. Many theories have proposed relationships between patterns in 

species diversity and large-scale physical features. In terrestrial and aquatic environments, the 

impact of temperature on the distribution of biodiversity is among the most influent and studied 

factors. However, many marine taxa are exceptions in the primary influence of temperature, since 

a large fraction of marine species is planktonic or with dispersible larvae. In the marine 

environment, dispersal through physical transport has a major impact on patterns of species 

abundance. Some ocean currents can indeed determine the distribution of planktonic stages of 

some species, even when demographic and physiological features of the species are unaffected by 

water properties. Transport mechanisms may therefore influence the distribution of diversity at 

all scales, from the individual to populations and species. Contrarily to the terrestrial 

environment, marine ecosystems are characterized by a variability that has spatial and temporal 

scales defined by specific biophysical processes of turbulent transport. This aspect makes it 

challenging to provide synoptic information on the distribution of marine species at the global 

level and at high resolution, features that are essential to understand patterns of biodiversity and 

the mechanisms involved in their changes. Moreover, hotspots of biodiversity are of primary 

concerns for conservation efforts.   

The objectives of this study are therefore: to identify biodiversity hotspots of pelagic primary 

producers on a global scale and at high resolution; to determine the physical ocean processes that 

control the spatial and temporal dynamics of such hotspots, focusing on transport-driven 

mechanisms like dispersion, advection and mixing; study the role of these mechanisms in the 

structuring of biodiversity at higher trophic levels. 

To obtain these results, information on water masses with coherent biophysical characteristics 

('fluid-dynamical niches') obtained by remote sensing are used to identify hotspots of microbial 

biodiversity as regions of strong spatial patchiness. These hotspots and the role of transport in 

shaping their structure are studied by analysing ecological and biophysical global circulation 

models (Model-ECCO2 Darwin), together with molecular and morphological data on the 
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structure of the community, obtained using in-situ data collected during the Tara-Oceans 

expedition and Atlantic Meridional Transect. The possible bottom-up effects of the diversity of 

primary producers on the upper levels of the food chain are evaluated by comparing them with 

global models integrated with data collected in situ. 

The ecological models coupled with ocean circulation, identified as biodiversity hotspots of 

primary producers the most dynamic areas of the global ocean characterized by increased 

turbulence, mixing and the presence of vortices. These oceanographic features can improve local 

productivity by transporting nutrients in the photic zone and increase biodiversity by the mixing 

of species typical of different water masses. In addition, maps of microbial biodiversity suggest a 

bottom up propagation of biodiversity across the ecosystem, hotspots for primary producers 

being positively correlated with regions where highest number of top predator species are 

observed. 

The effects of the biophysical coupling on the distribution of biodiversity have never been 

observed before at the global scale, because the spatial and temporal resolution maps of the 

estimated pelagic biodiversity were insufficient. The availability of satellite maps, access to high-

resolution models and a strong interdisciplinary collaboration between oceanographers, 

molecular biologists and ecosystem modellers allow to explore them. In addition to the impact on 

scientific understanding of the processes structuring biodiversity, the results of this thesis may 

pave the way to the use of remote-sensing observations for the planning of international marine 

sanctuaries and in the management of pelagic marine resources. 
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Chapter 1 Introduction 

In this Chapter I will briefly define the conceptual framework of my thesis. My work has been an 

attempt to understand how global patterns of phytoplankton biodiversity can be detected and 

described for the pelagic open ocean realm by combining remote sensing, models, and in situ 

observations. In this introductory part I will briefly present a) the concept of biodiversity and its 

measures, b) the biology and biogeography of plankton, b) the interaction of plankton with 

physical processes acting at different spatial and temporal scales, and c) the techniques available 

to study biophysical processes and microbial responses in the ocean. More specifically, in this 

chapter, I will highlight how turbulent physical structures in the ocean, lead to persistent 

structures in marine populations. This mechanistic understanding has been applied to coupled 

biological–physical oceanographic models, which are one set of tools increasingly being used to 

predict dispersal patterns of marine species, and to satellite data. 
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1.1 Summary of the context 

Knowledge about Earth’s ecosystems has always privileged terrestrial environments due to their 

relative easy accessibility and primary interest for resource exploitation. For this reason, our view 

at oceanic systems has always been a terrestrial one, i.e., a look based more on the extrapolation 

of terrestrial ecology than on the development of concepts specific to the oceanic environment. 

Far from the coast the vast extension of the ocean surface was nothing more than a limitless 

desert of water to human eyes, a habitat far too extreme to support high diversity of life. This led 

to misleading conclusions about the features that characterize the oceans, the environment that 

constitutes 72% of the surface of the planet. Especially, open oceans were considered as 

homogeneous and less diverse environments and their importance for the planet and the non-

endless nature of their resources was still not clarified and recognized. 

In the last decades however, the advance in technology has allowed us to look at the ocean from a 

different angle: from the sky (satellite), from the surface (research vessel and buoys) and within 

the ocean (sounder, submarine, etc.). This new prospective has brought us one step closer to 

understand the true nature of the ocean, a highly dynamic, extremely heterogeneous and 

invaluable yet poorly known source of biological diversity. 

Oceans are the lifeblood of planet Earth and humankind. Oceans are responsible for the balance 

of biogeochemical cycles and are key contributors to ecosystem services and to the homeostasis 

(complex set of interacting reactions which maintain the planet in a revolving balance) of the 

planet. Ocean covers nearly three-quarters of the entire planet earth, and hold about 97% of the 

planet's water. Moreover they provide food and natural resources exploited worldwide.  

Oceans have a strong influence on the world climate as well. In the light of the on-going changes 

for the maintenance/viability of natural resources and ecosystem services, as well as in the 

perspective of a changing climate (Hutchinson 1959), the lack of information and still overall 

poor understanding of the marine ecosystem is now a strong challenge inspiring researchers all 

around the world. 

Most recent marine ecosystem studies have brought to the general attention the existence of a 

strong and complex interaction of marine biota with their fluid environment. However, one of the 

most common questions, how biodiversity is distributed across the oceans, still remains 
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unresolved. This question can re rephrased as: where are biodiversity hotspots geographically 

located? It is now clear that the ocean turbulent structures shape biodiversity, yet the studies 

attempting to analyse this process at both physical and biological level are few.  

In this study I used remote sensing, ocean circulation models and molecular techniques to explore 

global patterns of biodiversity in the open ocean. My main result is the development of a novel 

method for the identification of biodiversity hotspots for plankton (primarily phytoplankton and 

autotrophic bacteria also known as primary producers) at the global scale. Additionally I also 

identified which are some of the possible drivers of these hotspots and the implications for the 

conservation of diversity at the higher levels of the trophic chain. 

The existence of phytoplankton is of a fundamental importance for the stability and functioning 

of the oceanic ecosystem and ocean biogeochemical cycles (Ptacnik et al. 2008) as they 

contribute to 90% of ocean primary production corresponding to the 50% of the global oxygen 

production (Falkowski et al. 1998). Additionally together with the zooplankton form the base of 

the aquatic food webs, providing an essential ecological function for all aquatic life. The 

identification of biodiversity hotspots will allow to promote the conservation of areas including a 

wider range of species laying in the higher trophic level that directly or indirectly rely on 

plankton for their survival. 

The challenge is now how to integrate and interpret remote sensing observation with in-situ 

biological data to advance our understanding of the whole ecosystem and the processes 

underneath the newly discovered features. 

 

1.2 Biodiversity in the open ocean 

1.2.1 Biodiversity Hotspots: history, definition and challenges  

The concept of Biodiversity Hotspot was introduced to provide scientists and policy makers with 

a practical tool to face the problem of the current species extinction crisis (Koh et al. 2004; 

Briggs 2011). Since its introduction, the concept has received substantially coverage in the 

scientific literature, resulting in several slightly different definitions. The first definition was 

coined by Myers as “areas featuring an exceptional concentration of endemic species and 

experiencing an exceptional loss of habitat” (Myers 1990; Myers et al. 2000). In general 
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Biodiversity Hotspots have been used to identify areas particularly rich in number of species, in 

rare, in threatened or in endemic species. Despite numerous modifications of the original 

definition, high species richness appears to be the basic requirement for an area to be classified as 

a hotspot. The drawback of this approach is that the taxonomic classification at species level is 

extremely difficult and time consuming, and often requires a multidisciplinary approach 

(morphological, genetic and molecular) and advanced technologies. Therefore rather than relying 

on taxonomy at species level to reflect species richness, more recent studies have investigated 

other measures potentially correlated to species richness, such as habitat heterogeneity,  higher 

taxonomic levels, primary productivity, and functional diversity (Gaston 1996b; Kerr & Packer 

1997; Mittelbach et al. 2001; Heino & Soininen 2007). 

The assessment and application of some of these approaches are far more difficult in the marine 

environment than on land. The identification of pelagic hotspots in open ocean has been limited 

due to the difficulty of a) obtaining long-term distribution data on pelagic species; b) the dynamic 

character of pelagic habitats, and c) the difficulties in establish international relationships (Game 

et al. 2009). The ocean is a highly dynamic environment in constant change, therefore habitat 

based approaches are hard to apply. Additionally the remoteness nature of the ocean limits in-situ 

sampling to localised areas, limiting the scale of taxonomy based study. 

Today, thanks to the introduction and increased availability of remote sensing information, some 

of these challenges have been overcome (Zacharias & Roff 2001; Louzao et al. 2011). New 

imagery and data sets are now enabling remote sensing, in conjunction with ecological models, to 

shed more light on some of the fundamental questions regarding biodiversity hotspot. For 

example recent studies noted that large assemblages of oceanic predators coincided with areas of 

frontal systems, that aggregate also plankton species (Olson & Hood 1994; Cotté et al. 2007; Kai 

et al. 2009; Cotté et al. 2013). In this study I proposed a new biodiversity proxy based on 

seascape patchiness of dominant phytoplankton types to estimate global marine biodiversity 

hotspot of primary producers. These hotspots seem to be related to high diversity assemblages of 

higher trophic level species. 

 



  

 

26 

1.2.2 What is biodiversity and why is important 

The diversity of Nature has fascinated humankind since ancient times. Several Greek 

philosophers, among which Aristoteles, Thales, Pythagoras, Heraclitus, Parmenides, and 

Democritus, reflected on questions such as “Why are there so many kinds?”, “What is the relation 

of a kind to its individual representatives?”, “Are these kinds arranged in systematic ways?”, and 

“Why is there order in nature?”. Since the advent of Modern Science, attempting to describe and 

estimate biodiversity, along with understanding ecosystem characteristics that may 

determine/influence its patterns, has always been of primary concern for ecologists and 

conservationists. Darwin in primis observed and questioned the origins of geographical 

differences in the distribution of abundance and type of species (Darwin 1859). Concepts of rare 

and common species and high and low diversity assemblages emerged. Intuitively, assertion of 

inequality of species abundances and type, and changes with consequent loss of them have been 

present in the human thought.  

However, defining and quantifying biological diversity, above all over space and time, in a way 

that allows an explanation for the observable natural patterns, is a challenging task with uncertain 

outputs. The reason for this difficulty is that biological diversity is a multifaceted concept that 

cannot be captured by a single parameter, and hence it has been defined and measured in different 

ways.     

The first definition with juridical value appeared in 1992 in the Convention on Biological 

Diversity (http://www.cbd.int/), presented during the United Nations Conference on Environment 

and Development in Rio ("Earth Summit"). Here "Biological diversity" was defined as “the 

variability among living organisms from all sources including, inter alia, terrestrial, marine and 

other aquatic ecosystems and the ecological complexes of which they are part; this includes 

diversity within species, between species and of ecosystems”. 

More widely, “biological diversity” refers to the variety of life at every level of complexity of its 

organization, from molecules to biomes (defined as contiguous areas with similar climatic 

conditions on the Earth, such as communities of plants, animals, and soil organisms) (Wilson 

1992; Gaston 1996a; Mooney 2002; Hamilton 2005). In general it can be interpreted as the 

complexity of a system. Therefore evaluating biodiversity gives indications on the state of the 

ecosystem in a broad sense (Chesson 2000; Hamilton 2005). 
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Nowadays, the need for attention on this aspect of biological studies is even more urgent, due to 

the increasing loss, at an alarming rate, of diversity at all levels of the ecosystem (Myers et al. 

2000; Myers & Worm 2003; Butchart et al. 2010; Mora et al. 2011; Cardinale et al. 2012; 

Hooper et al. 2012). Indeed, evidence is increasing that biodiversity influences productivity, 

ecosystem processes and services and its stability and resilience, underlining the importance of 

characterization and preservation of diversity-rich environments (McGrady-Steed et al. 1997; 

Peterson et al. 1999; Tilman 2000; Cardinale et al. 2006; Worm et al. 2006; Cadotte et al. 2011; 

Flynn et al. 2011). 

 

1.2.3 What do we know about global patterns of biodiversity in the open ocean 

Robert May noted that if aliens visited our planet, one of their first questions would be, “How 

many distinct life forms (species) does your planet have? He also pointed out that we would be 

“embarrassed” by the uncertainty in our answer underlying our limited progress with this 

research topic thus far”(Hamilton 2005; Mora et al. 2011). 

In summary, we know very little about biodiversity in the open ocean, this is primarily due to the 

extent and remoteness of the oceanic environment coupled with the difficulty in acquiring 

detailed information about the whole marine community, particularly over a spatio-temporal 

scale that can be useful to clarify the contribution of environmental processes in determining 

biodiversity patterns.  

Recent predictions indicate that at least 8.7 million species of eukaryotes are found on Earth, 

including 2.2 million marine species, of which only about 9% have been taxonomically classified 

(Mora et al. 2011). However, these are luckily to be only underestimations, as the more recent 

phylogenetic studies have revealed an overall underestimated biodiversity in most groups of 

oceanic species. In particular, higher diversity has been detected in planktonic species, which 

questions the traditional morphological approach applied to define species in this group.  

Limited information is also available on the distribution of biodiversity and what influences its 

patterns in the open ocean (Tittensor et al. 2010). Previous studies about global patterns of ocean 

biodiversity found general relationships with latitude, temperature, energetic gradients (areas of 

sudden variation in flow direction or strength) and with environmental variability (so-called 
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macro-ecological patterns) (Gaston 2000). The general rule of life on earth is a decreasing 

diversity with increasing latitude (Longhurst 2010). In several taxonomic groups a so called 

“latitudinal species diversity gradient” has been observed (Rombouts et al. 2009; Tittensor et al. 

2010; Berke et al. 2014). This pattern was also reported for plankton (Yasuhara et al. 2012), 

although several exceptions exist. Indeed, the latitudinal gradient may vary once other variables 

such as for example longitudinal shifts, depth and topography come into play. 

Temperature in particular appeared to be one of the most important variables in describing 

biodiversity patterns (Rutherford et al. 1999). The temperature hypothesis postulates that: “higher 

temperatures increased metabolic rates may promote higher rates of speciation leading to greater 

diversity, or that range limits are set by thermal tolerance, with more species tolerant of warm 

conditions” (Rohde 1992; Currie et al. 2004; Allen et al. 2007). However, the positive correlation 

between diversity and temperature has not been observed within all species and regions 

(Yasuhara et al. 2012). Indeed, at local level also the effect of temperature on biodiversity may 

lose value for more important physical and biological forces. In these areas, for example, high 

biodiversity values may be better explained by other more important ecological drivers such as 

turbulent features, nutrient availability and stratification. Upwelling regions are among the most 

classic examples; here cold waters rich in nutrients are brought to the surface layers by local 

physical dynamics, creating indirectly areas of high biodiversity (Barton et al. 2010).  

Finally, a no-less important mechanism which may explain local variation in species diversity is 

dispersal, commonly defined as the active or passive movement of individuals from its birth site 

to a new area (Clayton et al. 2013; Levy et al. 2014). However, dispersal is a very complex 

mechanism which may result either in a declining diversity, through direct competition for 

habitat and resources, or in increasing diversity for those communities whose composition is 

driven by species interactions and competition (Cadotte 2006). 

In summary there is no single mechanism that can adequately explain any given biodiversity 

pattern. Biodiversity patterns may be affected by different forces at different spatio-temporal 

scales, larger scale processes may affect smaller ones, and finally variability is at the base of 

biodiversity. 
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1.2.4 Which kind of biodiversity to measure 

In the previous section I described what biodiversity is, and highlight some knowledge gaps. The 

first step needed in order to proceed further, is to pin the concept down. We cannot even think of 

superficially carve the mystery of biodiversity and even less understand accurately how much and 

fast are we loosing biodiversity, if we cannot measure it. Several indices, metrics, algorithms and 

models have been proposed as tools to study biodiversity. However, any effort to measure 

biodiversity has to rapidly face a common problem: what kind of biodiversity do we want to 

measure? 

Today, the increasing number of definitions available in the scientific literature is probably the 

only increasing component of biodiversity. The concept of “species richness” as basic arithmetic 

count of the number of species found in a specific area, still remains the more simple and pure 

facet of biodiversity.  For many years taxonomy has relied only on the use of morphological 

features to identify and distinguish different species. However, as molecular and microscopic 

techniques became widely available, it became evident that morphological features alone cannot 

always guarantee a correct classification at species level. In some cases for example, such as for 

cryptic species (species morphologically identic but reproductively isolated) morphological 

features alone cannot guarantee a correct taxonomic distinction. On the other hand, phylogenetic 

techniques are not always applicable. 

To overcome this problem, biologists around the world have found different strategies to explain 

observed biodiversity patterns. For example in microbial studies, where the classification at 

species level is highly questionable, higher-taxon or trait-based classifications are commonly 

used as proxy of overall diversity (Green et al. 2008). The main levels of biodiversity 

traditionally considered are: morphological, phylogenetic, molecular and functional diversity. 

These levels however are not totally separated but rather one level may depend on the diversity of 

the other (Lankau & Strauss 2007). 

Morphological diversity (assessment of diversity based on differences in physical features) is the 

most straightforward, it is often used to identify taxonomic classes, such as species, or to identify 

some functional traits used to classify functional groups. When differences or limitation exist in 

the methodologies applied to identify certain physical features, morphological diversity becomes 

a misleading method to estimate biodiversity of certain communities such as plankton. In these 
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cases diversity must be assessed at genetic level. 

Phylogenetic diversity derives from modern phylogenies that use DNA sequence data and 

explicit evolutionary relationships among taxa. The diversity is based on the evolutionary 

distance between the taxa, which is the time that each taxa has evolved independently. This 

distance represents a proxy for the magnitude of phenotypic differences between any two taxa 

(Cavender‐Bares et al. 2009). This kind of diversity has received great attention for conservation 

and community ecology studies. It also gives insights on the processes determining the structure 

and assemblage of the community (e.g. communities constrained by competition interactions are 

more likely to be composed by distant related taxa while communities constrained by tolerance to 

environmental conditions are more likely to be composed by closely related taxa). However, as it 

is essential to investigate the greatest possible variety of biological features, the preferred 

approach would be to support evidence in phylogenetic diversity with morphological distinctness 

(Vane-Wright et al. 1991). In some cases, such as for microbic communities, the combination of 

genetic and morphological analyses still does not guarantee a correct taxonomic classification. 

That is why for microbial communities molecular or functional diversity are most used.  

Molecular diversity (definition of taxa on the basis of DNA or RNA characteristics or 

biochemical compounds) is the finest and most critical level of diversity because it is the origin 

of all diversity (Lankau & Strauss 2007). Molecular methods are an advantage when organisms 

are rare, cryptic or difficult to identify (Appeltans et al. 2012). New high throughput techniques 

allow to use metagenomics and DNA barcoding to study biodiversity of all environments 

(Hingamp et al. 2013). These techniques detect DNA sequence variations in particular regions of 

mitochondrial, chloroplast and nuclear DNA depending on the resolution required, as markers. 

Nuclear genes are more conserved compared to the others and have a slow evolutionary rate, 

therefore they are used to reveal more ancient evolutionary processes (Simon et al. 1994). The 

most rapidly evolving sequences are non-coding regions of DNA, used for instance for 

population studies. For protist and bacterial diversity, ribosomal genes are used (Zehr 2011). 

Functional diversity (Cadotte et al. 2011) is based on the degree to which coexisting species vary 

in terms of their functional traits. It emphasizes the phenotypic difference among taxa while 

discounting phylogenetic relatedness, even if trait diversity is often closely associated with 

phylogenetic diversity. It affects species performances and ecosystem functioning (Chapin III et 
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al. 2000; Garnier et al. 2007). Its influence is primarily expected through complementarity or 

enhancement of ecosystem processes caused by increased efficiency and specialisation of 

resource use by organisms with a high degree of trait dissimilarity. Experimental, theoretical and 

observational studies show that the maintenance of ecosystem processes depend primarily on the 

functional diversity rather than the overall diversity (Hooper et al. 2005). 

 

1.2.5 How do we measure biodiversity: Indexes, Rank Abundance Distributions (RADs), 

Q-matrixes 

As pointed out in the previous paragraph, identifying meaningful measures to evaluate 

biodiversity is essential for detecting changes that could pinpoint acting ecological processes. In 

this regard diversity analysis in ecology has always been a highly debated field with many 

different ideas on how to numerically characterize biological diversity (Magurran & McGill 

2011). Multiple methods and biodiversity index have been used and introduced in ecological 

studies (Magurran & McGill 2011). Generally all these methods have been tested and advantages 

and limitations clearly described on either empirical or theoretical grounds, however 

recommendations of experts differ in describing which method to use. The choice of the method 

to be used depends on the aspect being investigated. Biodiversity can be described in terms of 

numbers of entities (e.g. how many genotypes, species, or ecosystems), the evenness of their 

distribution, the differences in some of their characteristics, often related to functional traits, and 

their interactions (Magurran 2004). The best approach, to have a complete understanding of an 

ecosystem, is to test different measures of diversity. 

The main metrics used in ecology to study biodiversity can be classified depending on the 

amount of information we are able to detect and on the type of investigation that can suit. 

Following an ascending order of the amount of information on the community captured by the 

method we can use indices, rank abundance distributions (RADs) and ecological distances (Q-

matrices).  

Indices differ primarily in the importance they give to the number of categories and their 

abundance (Magurran 2004). The categorization can include not only species, but it can reflect 

guild composition, trophic structure, functional diversity, phylogenetic diversity, molecular 

diversity and morphological diversity (Magurran 2004). As meaningful aspects of complexity, 
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involving interactions among individuals and between individuals and their environment, depend 

on population abundance, the frequencies of the different classes are considered when processes 

determining the structure and functioning of an ecosystem are investigated.  Diversity indices 

establish equivalence relations among communities, depending on the aspect of compositional 

complexity measured. Among the diversity indices that consider both species richness and 

abundance the most used one are the Shannon Entropy Index (Shannon 1948), where species are 

weighted by the logarithm of their abundances, and the Simpson Index (Simpson 1949), used 

primarily to quantify the biodiversity of an habitat by taking into account the number of species 

present, as well as the abundance of each species (Table 1).  

 

Table 1 Summary of the most common diversity indexes and characteristics 

Index Equation Description 

Richness Metrics  

Richness (S): S = ∑ n𝑖
𝑅
𝑖=1  Total number of species (or other 

categories) identified in the samples. 

Chao 

Estimated 

Diversity 

Schao = S+S1
2
/ 2S2 Allows to compare species richness (S) 

between sites with different sample 

sizes. S1 and S2 are singletons and 

doubletons respectively. 

Diversity metrics  

Shannon-

Wiener 

diversity 

HShannon= -∑ p𝑖lnp𝑖
𝑅
𝑖=1  Shannon’s information theory can be 

used to calculate the information of a 

community as an estimate of diversity. 

Simpson 

diversity 
HSimpson = ∑ 𝑝𝑖

2𝑅
𝑖=1

 

 

Gives the probability that two 

individuals drawn at random from an 

infinite community would belong to the 

same species. 

Linearized 

Shannon 

Index 

HexpSh = exp (HShannon) The rate of change is a linear function; 

allows to directly compare changes 

among communities.  

Taxonomic 

distinctness 
Δ= [∑∑ 𝜔𝑖𝑗𝑖<𝑗 ]/[𝑛(𝑛 −

1)/2] 

Describes the average taxonomic 

distance (ω) between two randomly 

chosen organisms through the phylogeny 

of all the species (n) in a data-set. 

Q-diversity 

Statistic 

“inter-quartile slope” of 

the cumulative species 

abundance curve 

A bridge between the abundance models 

and diversity indices. Provides an 

indication of community diversity. No 

weighting towards very abundant or rare 

species. 
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Evenness metrics  

Shannon 

evenness 

EShannon = HShannon/ln(S) Diversity (H) is a mixture of richness 

and evenness, therefore removing 

richness (S) should produce evenness. 

RADs (β) β = slope of log 

abundance vs. 

ascending rank 

The slope of the Rank Abundance 

Distribution of the community. 

pi is the real population frequency of the i-th species, with i ranging from 1 to S, 

which is the total number of species present. 
 

RADs are a representation of the community composition indicating its species diversity and 

abundance. Assuming there are S species at one site n, with n = (n1, n2, . . . , nS ), nk  (1 ≤ k ≤ S) 

is the relative abundance of the k
th

 species at this site, ordered from the most to the least abundant 

one (Wilson 1992). The advantage of this approach is that it is applicable to all environments 

(Gaston 1996a). RADs allow to compare samples taken from geographically separated locations 

that have few or no species in common. RADs are important because they take into account the 

community structure and therefore the type of abundance relationships between species.  

A Q-matrix is a squared symmetric distance matrix indicating the distance between samples, 

calculated from a n x p matrix indicating the abundance of each species (n) per sample (p). They 

are most used to estimate changes and rate of changes of both type of species and abundance 

among communities under certain spatial and temporal intervals. The most used in ecology is the 

Bray-Curtis Dissimilarity Index (Bray & Curtis 1957) which allows to describe modal 

relationships and estimate dissimilarity in community composition based only on taxa that occur 

at least in one sample. 

In contrast with indexes, RADs and Q-matrices allow to apply quantitative analyses to study the 

shape of the community. It can be related to processes acting in the environment, species 

interactions, etc. The distribution of abundant species (common and intermediate) is the first 

mark of characterization and the one less subject to sampling issues, therefore the most studied in 

classical ecology. However, advances in technology allow to define RADs as characterized by 

very long tails, indicating that the rare biosphere is a very important part of the community, 

especially for microbial assemblages, likely influencing the distribution of the abundant classes 

in spatio/temporal successions (Purvis & Hector 2000). 

Abundance distribution models have been developed to classify community structures based on 
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hypothesis on environmental resource partitioning. Geometric and logseries distributions 

(Motomura 1932; Fisher et al. 1943) are typical of species-poor communities characterized by 

minimal cooperativity where the community is structured by one or few factors and there are only 

one or few dominant species. Log-normal distributions (Preston 1948) are instead typical of 

large, mature communities where sequential breaking of empty niche space through ecological or 

evolutionary processes have created rare, intermediate and common classes (Sugihara 1980). 

Brocken stick (or Dirichlet with a=1) (MacArthur 1957) distribution hypothesizes a random niche 

boundary with no real relationship between original species diversity and the size of the habitat 

after subsequent arrivals. This is typical of narrowly defined communities of taxonomically 

related organisms. The abundance distribution model of the community under study can 

influence the value of diversity indices making them useless in certain conditions. It is therefore 

important to understand which kind of community we are investigating and avoid the most biased 

indexes. 

For more information about the index applied in this study, the Shannon-Wiener index, RADs, 

and Q-matrices (Bray-Curtis dissimilarity index) refer to Chapter 2 (Materials and Methods). 

 

1.2.6 Introducing the concept of functional types to study plankton community ecology 

Several studies have now demonstrated that simplifying biodiversity, to a level manageable by 

available mathematical models, by using the concept of “functional types”, is an acceptable and 

robust approach in global oceanographic studies. Furthermore there is an increasing evidence that 

functional diversity is more important in the maintenance of ecosystem functioning than species 

diversity (Cadotte et al. 2011). 

Plankton can then be subdivided based on common morphological and physiological traits into 

functional groups, i.e. group of species that, irrespective of taxonomic relatedness, share similar 

functional traits (Mora et al. 2011). A functional trait is “a defined, measurable property of 

organisms, usually measured at the individual level, and used comparatively across species” 

(McGill et al. 2006). Plankton functional type (PFT) based models are the most recent in a series 

of coupled ocean-ecosystem models developed to achieve a deeper understanding of ocean 

biogeochemistry. 
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Firstly, plankton can be divided into three general groups: bacterioplankton, autotrophic 

phytoplankton and heterotrophic zooplankton. However, the most common traits used to define 

functional groups in plankton is the size (Fig. 1). Based on size, plankton can be distinguished in 

picoplankton (less than 2 µm in diameter), nanoplankton (2-20 µm), microplankton (20-200 µm), 

mesoplankton (200-500 µm) and macroplankton (more than 500µm) (Karsenti et al. 2011).  

Plankton can be further subdivided based on the length of the planktonic life stage in: 

holoplankton, meroplankton and tychoplantkon. Holoplankton comprises organisms whom entire 

life cycle is planktonic, such as marine protists. Meroplankton includes organisms that spend 

only a portion of their life or life cycles in the plankton, such as planktonic larvae of benthic 

invertebrates, chordates and crustaceans. While Tychoplankton is composed by demersal 

zooplankton or even benthic diatoms that can be periodically inoculated into the plankton by 

bottom currents, waves and bioturbation. 

Finally, phytoplankton can also be distinguished by their biogeochemical roles, not considered 

under the size-only approached in: Nitrogen-fixers, Silicifiers and Calcifiers (Nair et al. 2008). 

Nitrogen-fixers are characterized by the ability to fix atmospheric nitrogen and have therefore an 

important impact on the nitrogen cycle and climate change. In the ocean they are represented by a 

variety of organisms among which the most abundant group is that of cyanobacteria (Tyrrell 

1999; Monteiro et al. 2010). Silicifiers are united by the use of silica to form their cell theca and 

include four taxonomic groups: Chrysophyta, Silicoflagellates, Xanthophyta and Bacillariophyta 

(Brownlee & Taylor 2002). Among the Silicifiers, diatoms (Bacillariophyta) are the dominant. 

While Calcifiers or Coccolithofores are characterised by the presence of external plates, called 

coccoliths, made of calcium carbonate (Nair et al. 2008).  

The major phytoplankton taxa can also be grouped using their pigment contents (chlorophylls a, 

b, c and carotenoids) as functional traits (Roy et al. 2011) (Table 2). Pigment content can be 

determined using the High Performance Liquid Chromatography for in vitro measurements (Uitz 

et al. 2006). 
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Table 2 Major marker pigment used for the classification of phytoplankton groups. The most 

common used pigment alga-class association are in bold. 

Pigment Taxonomic significant 

Fucoxanthin Diatoms, Prymnesiophytes, Chrysophytes, Dinoflagellates 

Peridinin Dinoflagellates 

19’-Hexanoyloxyfucoxanthin Prymnesiophytes, Chrysophytes, Dinoflagellates 

19’-Butanoyloxyfucoxanthin Pelagophytes, Prymnesiophytes 

Alloxanthin Crysophytes 

Chlorophyll-b Chlorophytes, Prasinophytes 

Divinyl-Chlorophyll-b Prochlorophytes 

Zeaxanthin Cyanobacteria, Chlorophytes, Prasinophytes, Crysophytes, 

Eunglenophytes 

 

 

Figure 1. SeaWiFs mission mean (Sep 1997-Dec 2007) maps of the PFT’s: (A) the percent 

volume concentration contribution of picoplankton-sized particles (0.5.2 µm in diameter), (B) the 

percent volume concentration contribution of nanoplankton-sized particles (2-20 µm) and (C) 

percent volume concentration contribution of microplankton-sized particles (20-50 µm). The 

percent contributions were calculated out of the total volume (0.5-50 um diameter range) as a 

function of the PSD slope ɛ. The figure and caption is taken from (Kostadinov et al. 2010). 
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1.3 Plankton as keystone component in the functioning of the marine 

ecosystem 

1.3.1 Overview of plankton ecology and biogeography 

Marine biological communities can be broadly distinguished into two functional groups: nekton 

and plankton. The term nekton includes all marine organisms that can actively move against the 

current. Whereas the term “Plankton” was coined to identify a highly diverse group of marine 

organisms such as viruses, bacterioplankton, phytoplankton and zooplankton (Fig.2) united by 

the small size and inability to swim against the current. As a result the movement of plankton in 

the water is primarily driven by transport processes such as advection, turbulence, upwelling and 

mixing. The large majority (45.5%) of the plankton community is composed by nanoplankton, 

followed by picoplankton (43.6%) and microplankton (10.9%) which is mainly found in the mid 

and high latitudes (Samuelsson et al. 2002).  

Plankton biogeography is controlled by the physical, chemical, and meteorological characteristics 

that shape ocean ecosystem dynamics. As a result plankton spatial distribution is patchy, with 

patches ranging from few meters to several kilometres. Patchiness depends on advective effects 

of water movements, physical-chemical boundary conditions, grazing and reproductive rates of 

the communities. Among these factors, ocean currents have been identified as one of the major 

mechanisms defining plankton distribution and linking biogeographical regions by influencing 

carbon, nutrient and primary production, eggs and larvae and fish populations by determining the 

genetic flow. Mesoscale physical structures for example are able to generate environmental 

heterogeneity that may persist long enough to drive planktonic species distribution and 

biodiversity (d’Ovidio et al. 2010; Levy et al. 2014), often resulting in large pelagic assemblages 

(Alvain et al. 2005; Longhurst 2010). This mechanism is one of the proposed processes that 

concur to explain the ‘paradox of the plankton’ (Hutchinson 1961), where under the competitive 

exclusion principle (Hardin 1960), the coexistence of so many species using the same few 

resources would be impossible, but it is observed (Huisman et al. 2001).  

In the ocean, physical and chemical characteristics of the water masses promote the dominance of 

certain plankton groups that delineate therefore different communities. Patchiness of the 

biophysical environment (abiotic plus microbes) varies in the ocean within spatial and temporal 

scales determined by the response of the demography of the plankton to the physical and 
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chemical characteristics. Under this view, regions characterized by these features have the 

attribute of ecotonal zones (regions of transitions between two biomes where two distinct 

communities may overlap) and transition zones (Sournia 1994), where alloctone populations 

(population displaced from its original natural habitat), are advected abundantly enough and with 

sufficient regularity to influence community structure and persist through time. Ecotones occur at 

multiple spatial scales, ranging from transitions between biomes to local small-scale transitions 

(Kark & Van Rensburg 2006). Ecotonal diversity is enhanced by additive blending of the 

different sources and by the emergence of ecotonal specialists. Zoogeographic studies of the 

North Atlantic revealed a peak in biodiversity resulted from a mixing of different faunal elements 

due to the major front between the South Atlantic Central Water and the North Atlantic Central 

Water (Angel 1993). The Gulf Stream region is an example of an ecological transition zone, 

where local physical structures can act as an interspecific barrier or as a mean of dispersal and 

distribution extension or again as a disruptor of abundance, distribution and genotypes frequency. 

The same happens for the southward extension of the California Current, for Kuroshio, Aghulas, 

Somalia and Easter Australian Currents. Patchiness by eddy formation is also favoured by the 

fast-moving equatorial recirculation systems (Longhurst 2010). 
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Figure 2. Graphic representation of the interaction between plankton and the biotic part of the 

marine ecosystem. This thesis focuses mostly on the phytoplanktonic component. 

 

1.3.2 Phytoplankton biology and distribution 

This study is primarily focused on phytoplankton and to a smaller extent on autotrophic 

bacterioplankton, also referred to as primary producers. Primary producers are responsible for 

almost all (97%) organic matter production in the sea, and indirectly to provide the food 

resources for the higher trophic levels. Primary productivity is defined as: “the rate at which 

radiant energy is stored by photosynthetic and chemosynthetic activity of producer organisms in 

the form of organic substances which can be used as food materials” (Leith & Whittaker 1975). 
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Primary producers play also active roles in global biogeochemical cycles and climate variability 

through the export of carbon between the surface ocean and the atmosphere to ocean depths, the 

transfer of energy and organic matter to higher trophic levels and the drawdown of nutrients 

essential for primary production (Falkowski et al. 1998). 

Phytoplankton are the major primary producers in the marine ecosystem and include a number 

(on the order of tens of thousands) of species (Jeffrey & Vesk 1997) which can be broadly 

divided in: diatoms, dinoflagellates, coccolitophores, silicoflagellates, cyanobacteria and green 

algae (Table 3).  

Phytoplankton take inorganic materials, such as nitrogen and carbon, and convert them into 

biomass via photosynthesis. Since photosynthesis relies on light, phytoplankton distribution is 

limited to the superficial euphotic layer, where sun light can penetrate. In the ocean, this layer 

roughly corresponds to the depth of the mixed layer (varying seasonally with latitude), where the 

motion of particles is driven by an intense turbulent mixing. 

 

Table 3. Summary of the major phytoplankton groups found in the ocean 

General Groups Description 

Diatoms 
Diatoms belong to the Phylum Ochrophyta, Class 

Bacillariophyceae and are distinguished in Centrales and 

Pennales. They vary in size between from few microns up to 1 

mm in length. Dominate phytoplankton communities in high 

latitudes, in the neritic zone of boreal and temperate waters 

and in areas of upwelling. They consist of single cells or cells 

chains with an external rigid silicate skeleton (frustule) which 

encases the vegetative protoplast. 

Dinoflagellates 
Dinoflagellates belong to the Phylum Dinophyta, Class 

Dinophycaea, and depending on the presence or absence of 

cellulose plates, they are distinguished in Peridiniales and 

Gymnodiniales. They vary in size between 5 μm to more than 

200 μm. Widely distributed, dominate phytoplankton 

communities in tropical and subtropical environments and in 

temperate and boreal autumn assemblages. Unicellular 

biflagellates mainly autotrophs but are presents also 

heterotrophic and symbiotic species. Some species produce 

toxins and are able to create massive mortality events (red 

tides).    

Coccolitophores 
Coccolitophores belong to the Phylum Haptophyta, Class 

Coccolithophyceae. Range in size from 5 to 100 μm. Mostly 

autotrophs, few taxa are heterotrophs in the aphotic zone. 
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They generally show maximum abundance in tropical and 

subtropical open ocean waters. They are unicellular 

biflagellates algae covered by calcareaous plates, embedded 

in a gelatinous sheath surrounding the cell. Coccolithophores 

reproduce asexually through binary fission. 

Silicoflagellates 
Silicoflagellates belong to the Phylum Heterokontophyta, 

Class Dictyochophyceae. Unicellular, uni or biflagellates less 

than 30 μm in diameter. Secrete an internal skeleton of 

siliceous spicules. The majority are photosynthetic but some 

heterotrophic taxa are present. Can predominate in temperate 

waters but are most abundant in cold nutrient rich 

environments. Asexual reproduction. 

Cyanobacteria (blue-green 

algae) 

Cyanobacteria belong to the Phylum Cyanophyta. At lower 

level the taxonomy is still highly debated. Cyanobacteria 

include prokaryotic organisms, less than 1 μm, but can form 

bigger chains. They are photosynthetic organism 

characterised by chitinous walls. Frequently found in shallow 

nearshore tropical seas. Asexual reproduction and spores.   

Green algae (Chlorophyta) Green algae is the most diverse group of algae. 

Chlorophyceae are one of the classes in which green algae are 

divided. They come in a wide variety of shapes and forms 

including unicellular, filamentous or colonial algae. They are 

found in both flagellated and non-flagellated forms, generally 

less than 70 μm in diameter. They are commonly found in 

estuaries and enclosed seas. 

 

Although with geographic and temporal variations, primary productivity displays an overall 

pattern of higher values in upwelling and shallow temperate waters, due to greater nutrient 

supply, and lower values in tropical regions. On a local scale the centres of ocean gyres with 

characteristically depleted nutrients have generally low productivity. In these regions a stably 

stratified thermocline precludes the vertical exchange of water in the ocean gyres, thereby 

preventing the replenishment of nutrients for phytoplankton in the photic zone. On the contrary,  

upwelling areas, where nutrient-rich deep cold waters replace on the surface the warmer and 

generally poor surface waters, are areas with high levels of primary productivity and thus rich in 

higher trophic level species (Chavez et al. 2011). Further, analysis of monthly climatologies show 

that intensive blooms are not stable but rather may occur only in specific periods and regions 

throughout the year (D'ortenzio et al. 2012). For example comparisons between January and June 

data showed that diatoms blooms occur in June (Fig. 3, 4, 5) only along coastal areas within mid 

and high latitudes. Although, a number of small patches dominated by diatoms can also be found 
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in open oceans associated with turbulent flows such as eddies. 

Light, temperature, nutrients and grazing are recognised as the most important environmental 

variables controlling photosynthesis and therefore primary production and phytoplankton growth. 

The photosynthesis is more efficient over certain range of intermediate to low light intensities, 

while can be inhibited at high light intensities. Despite the direct correlation between light and 

temperature, temperature dependent only reaction also exists. These reactions involve enzymes, 

such as RUBISCO (MacIntyre et al. 1996) which are responsible for catalysing the conversion of 

inorganic carbon to organic matter. The photosynthesis rate increases until the enzymes reached 

optimal temperature and stop when enzymes denaturate. The increasing temperature during 

spring is also responsible for the formation of a mixing layer that maintains both nutrient and 

phytoplankton in the euphotic zone therefore increasing productivity (Sverdrup 1953). 

Inorganic nutrients like nitrogen and phosphorus, silicon, macroelements and microelements and 

organic nutrients in both particulate and dissolved forms also control phytoplankton growth 

(Elmgren & Larsson 2001; Smith 2003), biomass (Cloern 2001; Bledsoe et al. 2004) and species 

composition (Duarte et al. 2000; Smayda & Reynolds 2001). Arguably Nitrogen and Phosphorus 

are the most important elements regulating phytoplankton growth (Tyrrell 1999). Nitrogen is the 

chief limiting element to primary production in surface waters (Conley et al. 2009). Whereas 

Phosphorus in the form of Orthophosphate (HPO4
-2 

and PO4
-3

) is the principal limiting nutrient 

of phytoplankton growth in coastal waters under the influence of freshwater discharges (Labry et 

al. 2002). 

Primary biomass is also indirectly affected by grazing (Lundry et al. 1997). A substantial decline 

in chlorophyll-a concentration has been observed in some areas, part of this decline was 

associated with an increase in the grazing pressure of microzooplankton associated to global 

warming (Chen et al. 2012). Additionally, selective feeding by zooplankton can indirectly affect 

primary production by modifying the composition of phytoplankton community. Biomass growth 

rates increase from picophytoplankton to medium-sized phytoplankton cells (Chen & Liu 2010). 

The extent to which each group of zooplankton contribute to grazing vary spatially within the 

bloom because the response rate of each group is quite different. 
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Figure 3. Partial contributions of diatoms, nanoplankton, haptophytes and Synechococcus + 

Prochlorococcus derived using the Hirata et al. (2011) method with SeaWiFS data from 1998-

2010 to obtain the January and June climatologies (IOCCG 2014). 

 

 
Figure 4. Maps of the dominant phytoplankton group taken from Alvain et al. (2005) 

(haptophytes in cyan, Prochlorococcus in green, SLC in yellow, and diatoms in red and 

nanoplankton in blue) for January 2002 obtained from the standard PHYSAT method of Alvain 

et al. (2005). 
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Figure 5. Global map of phytoplankton biogeography as predicted by the ECCO2-Darwin model. 

In the map are shown 4 functional phytoplankton groups: diatoms (red), Prochlorococcus (cyan), 

large eukaryotes (yellow) and small autotrophs (green). Courtesy of Mick Follows. 

 

 

1.3.3 Oceanographic structures shaping plankton distribution 

The ocean is a complex dynamic system regulated by a number of different processes (physical, 

chemical, biological, and atmosphere-ocean interactions) which operate and interact at different 

spatial and temporal scales (Cullen et. al 2002). On the spatial scale, ocean process can be 

distinguished in large scale (>1000 km), mesoscale (10-100 km) submesoscale (1-10 km) and 

microscale (cm) (Fig. 6). 
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The dynamics of the ocean at large scales are highly variable and are driven by multiple forcing 

factors (Earth motion, solar insolation, winds, tides and freshwater input). The instability of this 

large-scale circulation leads to the development of meso and submeso scale dynamics such as 

eddies (Garçon et al. 2001), fronts (Belkin 2009) and filaments (Lévy et al. 2001; Nieto et al. 

2012).  

At large scale plankton distribution is determined primarily by the distribution of macronutrients 

and large scale current systems (Fager & McGowan 1963; Pollard et al. 2007). At mesoscale 

eddies, fronts and filaments help to promote the concentration of nutrients (Horne & Platt 1984; 

Le Fèvre & Frontier 1988). These areas of high energy gradients provide optimal growth 

conditions for plankton and several other organisms at the base of the food chain (Hernández-

Figure 6.  Spatial and temporal scales in the ocean and associated processes from Chelton et 

al. 2001 (Chelton et al. 2001). 
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Garcıa & López 2004; Levy et al. 2014). Eddies, fronts  and filaments  play a significant role in 

ocean-scale biogeochemistry (Peterson et al. 1999; Lapeyre & Klein 2006) by affecting a range 

of biological processes, mostly related to the transport of organisms in the waters such as 

distribution and dispersal trough the physical processes of advection, diffusion, stirring and 

mixing. 

Eddies are physical hydrographic features widely distributed across the oceans, with radius 

ranging from tens to hundreds of kms, characterised by strong vorticity and with lifetime of few 

weeks up to more than one year. These structures are generated through barotropic and baroclinic 

instabilities of the mean currents at mesoscale and account for a large portion of ocean turbulent 

kinetic energy (McWilliams 1985; Stammer 1997).  

Eddies are made of a core and a periphery, these regions are characterised by different dynamics 

and therefore have substantially different effects on the dispersion of fluid parcels (Swearer et al. 

1999). The core of eddies is associated with areas of regular motion that act as a sink for the 

particles for time comparable with the eddy lifetime. Whereas peripheries are associated to a 

more turbulent motion with advection being the primary process controlling and promoting the 

transport and mixing of plankton (Babiano et al. 1994). Eddy can be divided in cold-core and 

warm-core eddies (Hyrenbach et al. 2000). Cold-core eddies are characterised by the upwelling 

of cold nutrient-rich waters in the centre, and downwelling of warm waters at the periphery. As a 

result upwelling within cold-core rings supports enhanced primary production. On contrary in 

Warm-core eddies the upwelling of cold nutrient-rich water occurs in the periphery.  

In contrast to the eddies observed at the mesoscale, high resolution observations show elongated 

filaments as the predominant features at the submesoscale (Pascual et al. 2010). The size of these 

structures is about 1 to 50 km wide and up to 100 km long and is extended vertically below the 

mixed layer. The time scale associated to filaments is of the order of days/weeks. Filaments affect 

different processes of the ocean dynamics. Horizontally the elongation of water masses in this 

structure intensifies local gradient enhancing dispersion and mixing (Lapeyre & Klein 2006). But 

they can also act as a barrier to water movement (Joseph & Legras 2002). Filaments can affect 

plankton pattern formation through lateral stirring (Lehahn et al. 2007). 

Fronts are highly dynamic narrows regions which can be identified by the presence of sharp 

gradients in hydrographic properties such as temperature, salinity, and nutrient concentrations 
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(Belkin 2009).  For example a front could be an interface between two water masses of different 

temperature or between two current systems. Such interaction produces areas of highly energetic 

mesoscale and submesoscale activity such as for example downwelling and upwelling flows. As 

a result fronts, often associated with intense vertical motions, play an important role in the 

vertical transport of nutrients or plankton. The extent of fronts is dependent on the structure 

involved in its formation, and can vary from few to hundreds of kilometres laterally and to 10
3
 m 

in depth and persist from few hours to virtual permanence (Owen 1981). 

 

1.3.4 The interaction between phytoplankton and the turbulent dynamics of the ocean 

One of the reasons for the inhomogeneity found in the marine environment lies in the presence of 

strong horizontal advection, associated with mesoscale turbulence, coupled with the spatial 

inhomogeneity of the nutrient input and the nonlinear dynamics of plankton populations (López 

et al. 2001; Seuront et al. 2001).  In the ocean the spatial distribution of all marine organisms is 

driven by the interaction between organism behaviour and physical structure and processes. To 

what extent behaviour or physical process affect organisms distribution depends on the 

swimming ability of the species under investigation (McManus & Woodson 2012). For 

microscopic organisms, such as plankton, behavioural movements have little effect on their larger 

scale distribution patterns and consequently the motion of the individual organisms and, on a 

larger scale, the distribution and concentration of entire populations are determined by fluid 

dynamics (Fig.7).  

 

us/Uh,v 

 

Figure 7. In this figure the influence of physics and behaviour in driving the distribution of 

organisms is plotted against the ratio of swimming velocity (us) to characteristic velocity (us/Uv,h) 

where Uv,h refers to vertical and horizontal flow, respectively. Organism groups are shown in 

B
eh

a
v
io

u
r 

P
h

y
si

cs
 



  

 

48 

approximate locations across this continuum. Pictures taken from McManus & Woodson 2012 

(McManus & Woodson 2012). 

 

The extent to which behavioural and physical forces affect the distribution of marine organisms 

can be investigated analysing the Reynolds numbers (Re) and the velocity ratio (the ability of an 

organism to swim against a flow) (Guasto et al. 2012): 

Re = usL/v; Velocity Ratio = us/Uv,h , 

where us is the organism’s swimming velocity, L is the organism’s length and v is kinematic 

viscosity and Uv,h refers to vertical and horizontal flow. For plankton both the Reynolds numbers 

and the velocity ratio are typically very small (<<1), therefore in these conditions physics is the 

dominating force over behaviour (McManus & Woodson 2012) (Fig.7). 

In the marine environment the velocity component can be expressed as the sum of the main 

component of the velocity (U) and its fluctuation term (u
1
) or turbulence (Reynolds 

decomposition). If a) the turbulence is considered homogeneous ( i.e. the variance of the 

velocities does not change in space), b) flow speed is constant (𝑑u/𝑑t = 𝑑v/𝑑t = 𝑑w/𝑑t = 0), c) 

horizontal velocities are larger than vertical (w << u, v), d) gravity is the only active force, and e) 

the resistance of the fluid is small, the motion of fluid in the ocean can be simply described using 

the geostrophic equation 

𝜕𝑝

𝜕𝑥
= 𝜌𝑓𝑣; 

𝜕𝑝

𝜕𝑦
= 𝜌𝑓𝑢; 

𝜕𝑝

𝜕𝑧
= 𝜌𝑔;  

where f = 2Ωsinφ is the Coriolis parameter and ρ is the concentration field. 

In reality fluids have a turbulent nature dominated by advection, diffusion stirring and mixing. 

Advection, diffusion, mixing and stirring are among the primary physical processes involved in 

the patchiness distribution of plankton in the euphotic layer (Platt 1972) in both the horizontal 

and vertical dimensions (Abraham 1998). Advection has been identified by many authors as a 

key process for shaping patterns observed in plankton bloom distributions at meso and submeso 

scales  (Olascoaga et al. 2008; Neufeld et al. 2010; Pérez-Muñuzuri & Huhn 2010). In simple 

terms, advection indicates the transport of a particle from one place to another under the fluid 

motion. Such transport can occur both on vertical, which is involved in the transport of nutrient in 
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the surface, and horizontal, responsible for the transport of plankton. Diffusion is the transport 

associated to irregular motions. Diffusion has two primary properties: it is random in nature, and 

transport is from regions of high to low concentration. Mixing can be described as the 

combination of advection and diffusion and is responsible for reducing inhomogeneities in the 

properties of a fluid medium. While stirring produces the stretching of the fluid resulting in 

strong gradients in the concentration field enhancing the effect of the diffusion and the mixing. 

The interplay of stirring and mixing is important in the ocean for temperature, salinity, 

chlorophyll and other natural tracers. 

In this turbulent environment the movement of organisms in the fluid (in two-dimensional 

turbulence) can be described by the reaction-diffusion-advection equations with the reaction 

terms representing the biological interactions: 

 
𝜕𝜌

𝜕𝑡
+ 𝒖∇𝜌 = 𝒇(𝜌) + 𝐷∇2𝜌,  

where, u the velocity vector field, D is the dispersion coefficient (assumed constant for all the 

components of the concentration field) and ρ is the concentration field. The vector quantity ρ is 

the concentration of different scalar fields undergoing biological interactions, and the vector 

quantity f(ρ) represents the reactions between the various components of ρ (Pasquero et al. 2001). 

 

1.3.5 Remote sensing a promising tool to investigate phytoplankton distribution  

In this paragraph I briefly described remote sensing, an invaluable tool to investigate 

phytoplankton distribution at global level. 

In situ observation and sampling (from oceanic expeditions, processed by microscopy, flow 

cytometry, chromatographic and genetic analysis) could never provide information at sufficient 

spatial frequency and short enough time interval to capture a synoptic view of oceanic features. 

The recognition of this issue stimulated scientists to find ways to identify oceanic physical 

structures and biological functional groups using remote sensing. 

Remote sensing is generally defined as the use of electromagnetic radiation to acquire 

information about a specific surface such as the ocean (Gordon & Morel 1983). In remote sensing 

data, in form of reflected radiation, images and datasets are collected indirectly with the aid of 

remote sensors mounted on the satellite. As satellites are not in direct contact with the 
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environment under study, data must be extrapolated by the energy signal of the emitted and 

reflected radiations using appropriate algorithms and models. Such data are therefore particularly 

useful in ocean global studies. 

The radiations used in remote sensing are those directly emitted from the ocean and derived from 

reflected solar radiation which can be recorded only during daylight by passive sensors, and 

reflected radiation derived from the pulse energy directly emitted by the satellite using active 

sensors.  

Satellite sensors are now able to receive and record a broad range of the electromagnetic 

spectrum from the visible to infrared and microwave wavelength regions. The visible spectrum 

only allows to obtain information on colour variation associated to phytoplankton or inorganic 

suspension up to 100 m in depth but it is limited to daylight hour and cloud free conditions. In the 

infrared it is possible to obtain information throughout the entire day but relative only to the 

superficial layer of the ocean and in cloud free conditions. Whereas, in the microwave spectrum 

the ocean surface can be viewed in all atmospheric conditions. 

In the past 40 years the introduction of remote sensing has revolutionized our vision and 

understanding of the ocean circulation. Today information available from remote sensing such as 

Sea Surface Height (SSH), Sea Surface Temperature (SST) and “Ocean Colour” provides a 

global, high resolution description of the sea level, ocean circulation variations and 

phytoplankton distribution at a resolution capable of resolving most of the mesoscale processes. 

More detailed information on SSH, SST and Ocean Colour are given in paragraph 2.2.1 

 

1.4 Objectives 

Biodiversity patterns are challenging to elucidate for the pelagic ocean realm, and causal effects 

of environmental processes on biodiversity are even more difficult to disentangle. With this 

work, I suggest an alternative and new approach to integrate biodiversity studies for the pelagic 

oceanic environment at the global level. I rely on recently developed knowledge about oceanic 

ecosystem processes to reduce remarkably the coverage, resolution, detectability and 

spatiotemporal scale issues common to most of the biodiversity studies.   

The primary objectives of my investigation are: 
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1. Can we describe plankton biodiversity hotspots at the global level? 

2. Can we estimate these hotspots based on an ecosystem functioning approach? 

3. Which are the drivers of these hotspots? 

4. Which are the implications for diversity at higher levels of the trophic chain?   

The answers to these questions require an interdisciplinary approach that utilizes the most 

advanced techniques and available information. That is why I chose to use global ecological and 

circulation models, remote sensing, and large in situ datasets of species occurrence based on 

morphological and genomic approaches. This broad application allows us to overcome issues of 

fragmented and heterogeneous information, combining biological and environmental context at 

the global level. I follow a ‘Study it all’ principle with the aim of integrating complementary 

sources towards a synoptic view of the ecosystem. 

I first explore the potential of a new method of estimating biodiversity of primary producers in 

the open ocean based on fluid dynamical processes, using a global ecological and circulation 

model. Then I apply this method to remote sensed data to highlight real spatial and temporal 

patterns of biodiversity and analyse match and mismatch with in situ information of ecological 

plankton communities. Finally I investigate the potential of bottom up effects of biodiversity 

trough the trophic chain in terms of biogeographical regions as stable hotpots.   

The organization of the manuscript is the following: in Chapter 2 I am going to illustrate the 

different methods. Chapter 3 is dedicated to the validation of the approach using modelling. In 

Chapter 4 I present the transfer of the approach on real remote sensed data. In Chapter 5 I 

extrapolate information about biodiversity hotspots of the whole ecological pelagic community. 

Chapter 6 presents case studies as perspective works that can be deepen to investigate the 

genomic biodiversity of plankton and its relation to other methods of estimating biodiversity and 

its meaning. Finally in Chapter 7 I present a detailed conclusion of the study with suggestions for 

its applications and insights. 
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Chapter 2 Materials and Methods 

In contrast with the terrestrial realm, marine ecosystems are embedded into a fluid dynamical 

environment whose characteristic timescales often overlap with the ecological ones. Therefore, a 

concerted effort in the fields of biology and physics is essential. Novel methodological and 

technological advancements have increased biological resolution: global circulation models 

(GCMs), ocean observing systems (OOS) and remote sensing, from the submeso- to the global-

scale. At the same time, high throughput -omics techniques permit to explore the depth of the 

microbial community structure in unprecedented details. This study has exploited both kind of 

advancements in technology, integrating global models, remote sensing and next generation 

molecular information about plankton communities to better understand biodiversity patterns in 

the open ocean. In this section I present a description of each method and dataset used in my 

thesis. 
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2.1 Modelling approaches to measure global biodiversity 

2.1.1 The Darwin model: coupled physical and ecological model of the global ocean 

In order to develop a novel measure of biodiversity, I have used a global ecological and physical 

circulation model, the MIT ECCO2-Darwin. In the context of this thesis, this model can be seen 

as a virtual environment where the physical and biological state of each point of the ocean is fully 

known. This model has allowed to validate several proxies of biodiversity against the modelled 

ground truth in the global ocean, and to study the reliability of these proxies against 

biogeographical or physical parameters. The peculiarity of the ECCO2-Darwin model is to create 

a global, high-resolution self-organizing planktonic ecosystem following a function-based 

approach where the community structure is an emergent property of the ecosystem itself. The 

Darwin model is based on the Massachusetts Institute of Technology general circulation model 

(MITgcm) (Marshall et al. 1997a; Marshall et al. 1997b), coupled with a biogeochemical and 

ecological component as described in (Dutkiewicz et al. 2009). The physics of the ocean 

circulation is simulated with a grid horizontal resolution of ca 20km, that resolves mesoscale 

structures in the tropical regions along with subpolar submesoscale features, and 50 vertical 

layers ranging in depth from 10 m near the surface to approximately 450 m at a maximum model 

depth of 6150 m. The ecological component includes 78 different phytoplankton types and 2 

classes of grazers. The planktonic community structure emerges from a range of possibilities 

determined by processes of dispersal, competition for resources, predation and physiological 

characteristics. Physiological parameters are determined stochastically from a broad range of 

realistic parameters that describe biomass growth as regulated by light and temperature 

sensitivity and nutrients affinity with allometric constrains. Biomass loss includes a linear 

mortality, sinking and dispersal and zooplankton predation, which is determined by a Holling 

type II functional response with prey preferences according to size and palatability. Depending 

on the species types physiology, 5 main phytoplankton functional groups are recognizable: 

diatom analogs as large cells that require silica, two Prochlorococcus analogs as cells that can or 

cannot assimilate nitrate, small photo-autotrophs and large eukaryotes.     

The model is nominally integrated from 1992 to 1999 and constrained by observations of 

hydrography and altimetry. All the biological and chemical components are modelled as tracers: 

organic and inorganic forms of nitrogen, phosphorous iron and silica distributions are initialised 
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from observed climatologies and plankton types are initialised with the same biomass in each 

grid. The diversity of the successful population is self-selected during the initial adjustment (spin 

off) of the ecosystem model. The system that emerges converges to acceptable patterns of surface 

nutrients, biomass, primary and export production and phytoplankton biogeography (Follows et 

al. 2007), showing that this virtual ecosystem is sufficiently complex to reflect processes 

analogous to those structuring the real ocean (Fig. 8). 

In this study, I consider only the surface layer, which corresponds to the ocean layer that is 

available to remote detection for comparison with other analysis (see Chapter 4 and 5). In any 

location of the surface layer, I retrieved from the model the biological and physical parameters on 

which all the analysis are based: abundance of every virtual species and of every functional 

group, total chlorophyll (Chl is diagnosed using the approach of Cloern et al. (Cloern & Jassby 

1995): the Chl:C ratio is computed as a function of light, temperature and nutrient-limited growth 

rate for each type at every time step)  (µg/C ), Sea Surface Temperature (degrees Celsius), 

nutrients concentration (nitrites, nitrates, ammonium, silicates, phosphorous, iron) and Eddy 

Kinetic Energy (m/s). EKE is a diagnostic of the mesoscale variability in the oceans and provides 

information of the turbulent component of the flow. The EKE per unit of mass is given by 

𝐸𝐾𝐸 =  
1

2
⟨𝑢′2 + 𝑣′2⟩, where u’ and v’ are the instant deviations in zonal and meridional 

velocities from the average over the selected period. 
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Figure 8. Daily snapshot of local (alpha) biodiversity estimated by the classical Shannon index 

using A) the functional groups and B) all the 78 phytoplankton types of the ECCO2-Darwin 

model. 

 

2.1.2 Computation and relationship of the ‘local’ and ‘seascape’ diversity in the model  

I chose to estimate the biodiversity of the virtual ecosystem using the Shannon-Wiener entropy 

index H= - ∑𝒑𝒊 log (𝒑𝒊) (Shannon & Weaver 1948), where both the virtual species and the 

functional groups are weighted by the logarithm of the frequency of their abundances (𝒑𝒊). I used 

this definition to calculate the classical local (alpha) diversity for each pixel. In my work I have 

extended this index to a ‘seascape’ diversity, spatial-based variant of the Shannon index. This 

novel index is calculated over a constant area of a 1 degree disk radius (ca 100Km) in which the 

frequencies of the species are substituted by the frequencies of the pixels occupied by each 

different most dominant phytoplankton group inside the given area (Fig. 9) (see Chapter 2.2). 

The switch from local abundances (traditional definition) to nearby abundances of only dominant 

types is an important conceptual and practical change. Conceptual, because it assumes that local 

biodiversity reflects the patchiness of the nearby communities; and practical, because it requires 

only information on the spatial distribution of dominant types. Note that the frequency of 

occurrence of a dominant type reflects spatial patchiness rather than local community diversity. 

B

) 
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Figure 9. The definition of a novel index of biodiversity has been a central step in my thesis 

work. This figure provides a schematic representation of how this spatial-based diversity index, 

proxy for planktonic biodiversity, is calculated. Squares of different colours represent the 

different most dominant species in that location. Species-abundance distribution histograms show 

the abundance of the dominant species only, in terms of occupied space in the given area. The 

more the most dominant species in the communities are heterogeneous over the considered disk 

area, therefore the species-abundance distributions are broad, the more the index will be high and 

vice versa, identifying regions of high and low diversity. The black circles which define the 

region over which the histogram is computed have been optimized to 1 degree (see Chapter 3 for 

details). 

 

To analyse how seascape diversity relates to measures of local biodiversity I calculated daily 

local biodiversity patterns based both on phytoplankton types and on functional groups of the 

model for 1997-1999. I then compared their climatology with annual climatologies of seascape 

diversity over the same temporal and spatial scale. Quantitative comparisons have been 

approached using zero-order correlation analysis and regression analysis to determine direction 

and strength of the relationship. The fitted regression model was chosen to be a non-linear 

function intercepting the y axis at a very small positive value (as local biodiversity cannot 

realistically be zero) and reaching the value of potential maximum biodiversity for that system. 

The maximum potential value of the Shannon index is the logarithm of the total number of 

species or functional groups in the ecosystem. The regression model combines an initial 

longitude 
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exponential increase and a linear tendency towards the maximum possible value of biodiversity 

after normalization for the maximum theoretical Shannon index reachable by our system for both 

indexes of local and seascape diversity.  The function is : Y = b1+ b2 (1-e
-45x

) +b3 (1-x) (1-e
-45x

), 

w here b1 = 0.06, b2 = 0.39, b3 = -0.31 vs types, p < 10
-4

 and b1 = 0.04, b2 = 1, b3 = -0.80 vs 

groups, p < 10
-4

. 

The choice of the best spatial scale (disk radius) to use on the global analysis have been done 

using the highest regression fits obtained using radia from 1 to 5 degrees and analysing the global 

maps of the residuals.  

Residuals obtained by regression analysis were studied in relation to the physico-chemical 

characteristics of the environment: Eddy Kinetic Energy, Chlorophyll, Sea Surface Temperature 

and its gradient and nutrients. To underline possible patterns, the values of the annual 

climatologies of the environmental variables where binned following equal intervals. The 

residuals of the regression analysis were averaged depending on the pixel location having 

environmental values corresponding to the bins. The bins of the environmental variables were 

plotted against the averaged residuals. The percentage corresponding to the surface cover of the 

ocean of the extreme values has been computed dividing by the total number of values 

representing the whole ocean.  

Biodiversity hotspots have been spatially defined, and mismatches between local and seascape 

diversity compared, using the seascape threshold value that maximizes the difference between 

hotspots and non-hotspots in local biodiversity.     

 

2.2 Remote sensing approaches to measure global biodiversity 

2.2.1 Remote sensing information to describe the marine environment 

To conduct ecological studies at local level, in situ sampling is fundamental to assess for instance 

possible consequences of human activity and climate change, but only in rare occasions can be 

used for large scale studies. Most importantly, in situ data cannot be collected to provide a 

synoptic view of the ocean. Today the use of remote sensing allows to have a real time, broad 

view of the entire ocean circulation and large and mesoscale biological processes. In my study I 

principally used three kinds of remote sensed biophysical data: Sea Surface Height (SSH), Sea 
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Surface Temperature (SST) and Chlorophyll concentration (Chl) from ocean color.  

Whereas altimetry data are more used to extrapolate information about currents and transport 

processes, SST and Chl can be used as tracers to detect boundaries of existing physical features in 

the ocean. Indeed, water masses of “colour” and temperature different to the average background 

values can be used to track dynamic physical features in the ocean over very large scale using 

sequential satellite imagery. 

2.2.1.1 The Sea Surface Height 

The Sea Surface Height (SSH = height of the ocean surface measured relative to the geoid) is 

provided by highly accurate satellite altimeters (TOPEX/Poseidon, Envisat, Jason-1, and 

OSTM/Jason-2). The SSH is derived by the combination of the time needed by the signal emitted 

from the satellite radar to travel to the surface and back to the antenna and the precise satellite 

location data.  

Today highly accurate real time SSH data are available thanks to the combination of 

measurements from two multiple satellite altimeters, the Topex/Poseidon (T/P) and the European 

Remote Sensing Satellite (ERS-1) (Ducet et al. 2000). This dataset includes information for 

about 17 years which can be downloaded from the French Archiving Validation and 

Interpretation of Satellite Oceanographic (AVISO) data centre.  

SSH is quantified from the reference geoid assuming that fluids are in a geostrophic balance (the 

pressure gradient is in balance with the Coriolis force). If sea depth is not taken into consideration 

and the sea surface is assumed to be homogeneous, SSH can be calculated as the difference 

between the satellite height (S) and the altimetric range (R): SSH= S - R. 

Altimetry has been reliably used to study mesoscale geostrophic circulation structures (fluid 

motion in balance between the pressure gradient force and the Coriolis force) with lifetimes of at 

least a week. In fact the AVISO dataset revealed the prevalence of mesoscale structures (in 

particular thousands of eddies) throughout most of the world’s ocean (Chelton et al. 2007). On 

the contrary, structures not in geostrophic balance (where the active forces are not in balance, 

such as upwelling and tidal mixing) are ephemeral and may disappear or evolve in bigger 

structures (mesoscale).  
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2.2.1.2 Principles to investigate transport processes: Eulerian and Lagrangian 

Lagrangian and Eulerian analysis constitute the conceptual framework of the analysis I applied to 

the topology and transport of the ocean flows using altimetry data.  

Fluid dynamics in the ocean can be observed and described using two principal methods: 

Lagrangian, which requires the observation of each individual molecule trajectory in the flow, 

and Eulerian, which is based on the observation of the fluid velocity at established locations. The 

Lagrangian methods are the most appropriate and efficient to describe the fluid dynamics, 

additionally the physical conservation laws are inherently Lagrangian since have been developed 

to describe a moving fluid. However, the Eulerian approach was chosen for the development of 

all the theory in fluid mechanics for its simplicity. 

Given the Eulerian velocity vector, v(x,t), which describes the fluid velocity at any space (x) and 

time (t), the motion of a fluid particle with initial localization x(0) is given by the following 

equation: 

𝑑𝑥

𝑑𝑡
 = 𝑢⃗ (t) = 𝑣 (𝑥 , t). 

When the location and time of the particle are known, the above equation is also valid to estimate 

the velocity of particles in a Lagrangian system. Several diagnostics are available to identify 

Eulerian and Lagrangian coherent structures (Boffetta et al. 2001b). In my study I used the 

Lyapunov exponent (Lagrangian) and the Eddy Kinetic Energy (Eulerian). Differences exist 

between the various diagnostics. The Lyapunov exponent performs better than other diagnostics 

in extracting, from geophysical flows, regions where the stretching rates are maximal, which are 

in turn candidate locations of tracer frontal structures and transport barriers (Haller & Yuan 

2000). While EKE is the preferred diagnostic to identify mesoscale variability in the oceans 

(Ferrari & Wunsch 2010). 

2.2.1.3 Lagrangian coherent structures to study transport processes 

I used altimetry data to be able to detect transport processes like fronts and mixing regions, by 

calculating from them Lagrangian diagnostics like the Lyapunov exponents. Here is a description 

of the principles and calculation. 

The Lagrangian theory is funded on the property that Lagrangian particles display a chaotic 
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motion, also known as ‘‘chaotic advection’’,  over a two-dimensional time dependent flow 

(Lapeyre 2002). The computation of the exponential rate of particle separation (also known as 

Lyapunov exponent) allows to quantify this chaotic non diffusive mixing. The Lyapunov theory 

states that “in the asymptotic limit in time, fluid particles separate with the same exponential 

growth rate”.  

Considering two particles trajectories, x(t0) = x0 and x(t) = x0 + Δx0, each of which will generate 

an orbit separated by a distance Δx(t0), the global Lyapunov exponent is defined by 

𝜆 =  lim
𝑡→∞

lim
δx(t0)→0

1

𝑡
𝑙𝑛

[δx(t)]

[δx(t0)]
 

The Lyapunov exponent "λ" is useful for distinguishing among the various types of orbits. It 

works for discrete as well as continuous systems. The λ values is an indication of the stability of 

the system. Negative exponents are characteristics of stable systems with decreasing value 

indicating greater stability. On the contrary positive values of the Lyapunov exponent indicate an 

unstable and chaotic system. Finally, a Lyapunov exponent of zero indicates steady state mode 

systems. 

The Lyapunov exponent can be calculated using two different methods: the finite-time Lyapunov 

exponent (FTLE), and the finite-size Lyapunov exponent (FSLE). The FTLE and FSLE are based 

on similar principles but provide slightly different information. The FTLE provides a measure of 

particles separated over a specific timeframe period, and for this reason has been proposed by 

Haller as an indicator of Lagrangian coherent structures (LCSs) (Haller & Yuan 2000). Whereas 

the FSLE is inversely proportional to the time at which two particles reach a prescribed 

separation. FSLE provides an alternative to FTLE as indicator for LCSs, and is commonly 

applied in oceanographic studies. Direct comparisons between FTLE and FSLE have been 

attempted and if appropriately calibrated, give similar results (Sadlo & Peikert 2007). However 

Boffetta et al. (Boffetta et al. 2001a) argued that: “the FTLE is not capable of recognizing the 

relevant structures, namely the boundaries between chaos and large-scale mixing”. Therefore 

FSLE technique appears to be the preferred option for oceanographic applications.  

More precisely, λ(x, t, δ0, δf ), the FSLE, at position x and time t, computed from the time τ, it 

takes for a trajectory starting at time t at a distance δ0 from x to reach a separation δf from the 
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reference trajectory that started at x: 

λ(x, t, δ0, δf ) =  
1

𝜏
 log 

𝛿𝑓

𝛿0
 

The FSLE depends on the choice of two length scales: the initial separation δ0 and the final one δf. 

Since I am interested in mesoscale structures, the other length, δf , will be chosen as δf < 1 degree, 

i.e., separations of less than ca. 110 Km. In this way the FSLE represents the inverse time scale 

for mixing up fluid parcels between length scales δ0 and δf  (Bettencourt et al. 2012). 

2.2.1.4 Sea Surface Temperature 

SSH measurements are now widely used to recover surface velocities especially in the open 

ocean in any meteorological conditions. However, the low accuracy of the results, due to the high 

signal noise can induce important errors in the location of mesoscale features. On the contrary, in 

clear sky conditions, Sea Surface Temperature (SST = temperature of the water on the superficial 

oceanic layer) measurements are able to accurately locate ocean structures either at mesoscale 

(microwave SST) or at higher spatial resolution (infrared SST). 

SST satellite measurements allow to get data over large regions of the oceans in near-real time 

(Wunsch & Schreiber 1992; Robinson 2004; Dzwonkowski et al. 2010). At the beginning of the 

satellite adventure, SST was indirectly recorded during clear days by a series of thermal infrared 

sensors, such as Advanced Very High Resolution Radiometer (AVHRR), deployed on 

operational meteorological satellites to record images of cloud top temperatures (Conway 1997). 

This problem was overcome with the launch on the AQUA, a multi-national NASA scientific 

research satellite, of AMSR-E, a new microwave thermal sensor. AMSR-E functions on 

microwave instead of infrared data, limiting weather influence (emission and attenuation by 

water vapor and clouds), particularly for the low-frequency channels (6.9 GHz and 10.7 GHz). 

However, AMSR-E cannot give information about SST close to the coast. 

Such accurate large-scale, long-time dataset is important to conduct a wide range of studies on 

climate change as well as studies on fish ecology, habitat modification and water acidification 

(Gentemann et al. 2003; Purkis & Klemas 2011). 

2.2.1.5 Ocean Colour 

The term ocean colour has been introduced to describe a particular effect derived from the 



  

 

62 

interaction between light and the particles within the upper ocean layer. In simple terms when the 

energy is emitted by the sun and hits the water surface, part of it is absorbed by the ocean while 

part of the energy is reflected at different intensities depending on the particles in suspension in 

the upper layer of the ocean. The amount of reflected light of different wavelength (within a 

range of 400-700 nm) can be measured on satellite through water color sensors (CZCS, SeaWiFs, 

MODIS among the most cited). Thus the “color of the ocean” is related to the spectrum of visible 

light emitted from the object focus of the study. This particular feature has been intensively used 

to study phytoplankton distribution. 

Phytoplankton uses pigment antennae (i.e. the sum of chlorophyll-a, divinyl-chlorophyll-a, and 

chlorophyllide a) to capture the energy of photons. Chlorophyll-a absorbs the red and blue 

wavelengths and reflects the green ones which are received by satellite. For this reason, in 

presence of high Chl-a concentration, in the satellite imagery the colour of the ocean changes 

from blue (true colour of the ocean when light is not absorbed by particles on the surface) to 

green. Additionally, the intensity of the absorption also provides a proxy of phytoplankton 

biomass. 

In the recent past, the analysis of ocean colour satellite data has moved beyond the estimation of 

chlorophyll-a concentration to include new parameters, such as the ability to determine the 

dominant phytoplankton groups in the surface waters (Aiken et al. 2009). This is possible 

because different phytoplankton groups with similar biogeochemical functions absorb light at 

different wavelengths accordingly to their pigment composition resulting therefore in blooms of 

different colour. For example, a characteristic, and easily visible from the satellite, milky-

turquoise, is produced by coccolithophores, whereas some cyanobacteria produced a 

characteristic golden yellow colour bloom.  

The first order signal retrieved from the ocean sensors colour, also known as the normalized 

water-leaving radiance (nLw), is particularly useful to quantify the ocean productivity as it 

depends only from Chl-a. However, as Chl-a is the only pigment present in all phytoplankton 

species, the first order signal does not provide any information on the composition of 

phytoplankton blooms. To bypass this limitation, several methods to retrieve PFT information 

from satellite ocean color data have been proposed (Uitz et al. 2006; Nair et al. 2008).  For 

example, Alvain et al. (Alvain et al. 2005; Alvain et al. 2008) developed the PHYSAT method, 
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also applied in this study, which is based on the second-order spectral effects of nLw and in-situ 

diagnostic pigment data to classify normalized spectra into six dominant phytoplankton groups 

(diatoms, nanoeukaryotes, Synechococcus, Prochlorococcus, Phaeocystis-like and 

Coccolitophorides) (See paragraph 2.2.4 for more information).  

Phytoplankton maps developed with this method can be used as proxy indicators of algal biomass 

distribution which ultimately supply food for fish. Combination of chl, SSH and SST is the most 

useful in understanding fish behaviour, allowing to collect important information on fish stock 

recruitment that is dependent on relative time of spawning and seasonal phytoplankton blooms 

(Cushing 1990). As well as to study the habitat utilization of higher predators in relation to the 

environment scales and also the impact of climate change on production.   

 

2.2.2 Remote sensing information about biodiversity 

To estimate a way of measuring global biodiversity in the real ocean by considering the spatial 

patchy distribution of diverse planktonic communities over a given scale, I used remote sensed 

information (Fig. 10). Several algorithms aim at extracting biologically relevant information from 

spectral anomalies in remotely sensed optical signals (Ciotti & Bricaud 2006; Raitsos et al. 2008; 

Kostadinov et al. 2009; Brewin et al. 2010; Hirata et al. 2011) or their heterogeneity (Rocchini et 

al. 2010).  

The PHYSAT algorithm (Alvain et al., 2005) provides a classification of bio-optical anomalies of 

Ocean color (http://oceancolor.gsfc.nasa.gov/) constructed on the detection of specific signatures 

of normalized water leaving radiances (nLw) measured by ocean color satellites (http://log.univ-

littoral.fr/Physat). This empirical method utilizes simultaneous in-situ pigments inventories (i.e. 

GeP&Co campaigns: Dandonneau et al., 2004) and remote sensing information collected by the 

SeaWiFS ocean color sensor. The magnitude and -to a lesser extent- the shape of specific 

anomalies (nLw*) are empirically associated with mainly 6 dominant groups: nanoeucaryotes, 

Prochlorococcus, Synechoccocus, diatoms, coccolitophorids and Phaeocystis-like (Alvain et al, 

2005; Alvain et al., 2008). The second order variability of the satellite signal, nLw*, is obtained 

by dividing the actual nLw by a mean nLw reference model which depends only on the standard 

Chlorophyll-a concentration. To characterize each group sampled in-situ in function of nLw* 

spectrum, a set of criteria has been defined. When applied to global daily remote sensing 



  

 

64 

measurements, these criteria allow to retrieve a global map of the most frequent group of 

dominant phytoplankton. When no dominant groups are detected, pixels are classified as 

'unidentified’. The geographical distribution and seasonal succession of PHYSAT groups have 

been studied using the global Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ten year 

archive. The information provided by PHYSAT is in accordance with previous studies based on 

in-situ observations (Alvain et al. 2008) and has been validated on independent in-situ 

measurements  to unveil the underlying theoretical explanation of the selected criteria using a 

realistic model of radiative transfer for surface open ocean waters (Alvain et al. 2012). 

PHYSAT, along with all the other approaches that try to estimate phytoplanktonic community 

composition from remote sensing, presents some limitations. Indeed, only a limited number of 

distinct bio-optical classes can be identified and related to properties of the ecosystem. Moreover, 

the categorization is subject to errors. Such uncertainty does not compromise the analysis, since 

the approach of deriving a biodiversity index from spatial heterogeneity does not rely on the 

identification of a specific group, but only requires regions where different communities are 

stirred to appear as a mosaic in terms of the different PHYSAT bio-optical anomalies. The 

misclassification or undetectability of some patches would affect the quantitative value of a 

biodiversity index at a given point, but not necessarily in a systematic way. Therefore, 

considering the temporal and spatial scale of the analysis, the maxima and minima of the estimate 

are generally unaffected. 
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Figure 10. Remote sensed information of biophysical processes characterizing the Brazilian and 

Malvinas currents confluence zone offshore Patagonia on a weekly snapshot. A) AMSR-E 

derived SST (C°); B) Lyapunov exponents describing transport fronts and coherent water masses 

rationally representing fluid-dynamical niches (day 
-1

); C) chlorophyll bloom; D) Physat detected 

dominant phytoplankton groups (different colours) showing zones of high and low spatial 

diversity (in the disk).  

 

2.2.3 Computation of a spatial-based diversity index and its relationship to local diversity  

The main advantage of the seascape biodiversity index defined in 2.1.2 - which is the main 

methodological result of my thesis - is that it only requires spatial information of the dominant 

phytoplanktonic types, and therefore can be formally applied to remote sensed biophysical 

patches like the ones detected by PHYSAT. I used patchiness in maps of PHYSAT bio-optical 

anomalies as an indicator of niche spatial heterogeneity at a given time, and assume that patches 

that are about 100 kms apart are typically mixed within a few weeks by oceanic turbulence 

A) B

) 

C) D

) 
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(d’Ovidio et al. 2010). With these assumptions a new index based on remote sensing as a proxy 

for diversity induced by horizontal stirring is proposed under the form of an area-based Shannon 

entropy of the distribution of bio-optical classes: 

τ = -∑𝒑𝒊 log (𝒑𝒊) 

The frequency pi is the fraction of pixels, within a circular area, falling in the i-th bio-optical 

class. τ is maximal when the bio-optical classes are all present and evenly distributed inside the 

area, and minimal when only one class is observed. The radius of 100 kms appears to be the best 

for a global analysis by numerical simulations (see Chapter 3), and for remote sensing data it is 

sufficiently large to provide a statistically meaningful frequency distribution, and sufficiently 

small for stirring to mix the area content on the time scale of a planktonic bloom. The index τ is a 

local measure of the heterogeneity in the ocean surface bio-optical properties at a certain scale, 

that is the radius of a disk over which the occurrence frequencies of remote-sensed bio-optical 

frequencies are estimated. 

The  basis for considering τ a possible proxy of biodiversity derives from the expectation of 

finding higher diversity at one point in the ocean, the more heterogeneous the distribution of 

planktonic communities - in this case, emerging as bio-optical anomalies - around that point. On 

the contrary, if the conditions at a given location are such to support high diversity, this high 

diversity will reflect on the ability of that local community to prosper in nearby niches shaped by 

transport, thus creating high spatial heterogeneity in the nearby environment. Water masses that 

are 100 kms apart are mixed on a time scale of the order of few weeks, comparable to that of a 

planktonic bloom (d'Ovidio et al., 2010), so that each of the communities present in the area are 

expected to be locally represented. On the other hand, communities that are locally present will 

be given the chance to colonize niches in that area before the bloom season is over. The concept 

of niches that are fixed in time, typical of terrestrial landscapes, does not apply to the open ocean 

environment. This is especially true at the scale ~10s of km (meso- and submesoscale), where 

microbial communities are disturbed (Connell 1978) by stirring on the same time scale of their 

demography. 
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2.2.4 Data analysis 

Spatial patterns of remote sensed diversity and regional validation.  

To obtain a global map of spatial patterns of biodiversity, I used 1-week global PHYSAT 

composites at 9 km resolution and for a focal point of the ocean surface, I computed the spatial-

based index τ. The obtained patterns were validated for the Atlantic Ocean using Atlantic 

Meridional Transect in situ data (for description of AMT data see Chapter 2.3.1). The AMT 

measures of biodiversity have been compared to the τ index by zero-order correlation analysis at 

their resolution, which is lower than that obtainable through the satellite measures. I used the τ 

index at the same geographical position of the AMT-2 stations and computed both the annual 

climatology (2003-2010) and the climatology restricted to the months in which the transect was 

run. The stations were also divided according to Northern and Southern Hemisphere locations and a 

linear relationship with τ evaluated.  

Both τ and AMT diversity were compared to average SST (2003-2010) by quadratic regression to 

evaluate consistency in already known macroecological patterns related to temperature.  

Temporal patterns of remote sensed diversity 

Seasonal climatologies were computed to evaluate seasonal changes in the τ index. I quantified 

seasonal changes using a Signal-to-Noise ratio. This ratio is the ratio of mean (average 

climatology) and standard deviation of a measurement or signal:  

. 

Commonly used in image processing with a spatial meaning, I transferred it to a temporal 

meaning to highlight zones of instability of the τ diversity through time. Following the Rose 

criterion, an SNR close to 5 allows to distinguish the signal with very low uncertainty. 

Annual successional patterns of plankton dominant community were estimated using Shannon 

index for each pixel counting how many functional groups appeared at each location through 

time.  

Annual successional diversity and τ diversity patterns were compared to average Chlorophyll 

climatology (2003-2010) by regression analysis. 
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2.3 In situ global biodiversity information 

The main challenge in global biodiversity patterns is that exploitable information about marine 

organisms shows a sparse resolution, especially for plankton, due to logistical reasons. Sampling 

design often lacks sufficient spatial and temporal consistency, replicates, consistent protocol, 

databases organization and diffusion. To gather large scale information about morphological 

related taxa diversity, here I exploited the most comprehensive one, the Atlantic Meridional 

Transect (AMT) that runs since 1997. On the other hand, to exploit the possibilities of new 

technological approaches in resolving biodiversity at finer levels, I referred to the Tara Oceans 

project. 

Recently, a relatively large amount of data has been collected by tracking the movement of 

marine predators. Regions with increased probability of localization of different species of 

marine predators have been identified (Block et al. 2011; Kaschner et al. 2011), and considered 

as hotspots of biodiversity for higher levels of the trophic chain. I used these literature derived 

information to globally compare remote sensed diversity of primary producers with diversity of 

top predators species. Moreover, to compare with diversity at higher levels of the trophic chain, I 

used integrated compilations of global biodiversity in situ observations with statistical models 

based on habitat predictions in order to have smooth global complete information. Specifically, 

Aquamaps integrates the most comprehensive databases and the best habitat modelling approach. 

 

2.3.1 Atlantic Meridional Transect 

2.3.1.1 The project, the sampling design and collection 

The Atlantic Meridional Transect programme (http://amt-uk.org/) samples the Atlantic Ocean 

twice a year, measuring biological, chemical and physical parameters. I consider here the AMT-2 

transect, that was run from 22 April to 28 May 1996, when the RRS James Clark Ross navigated 

from the Falkland Islands to the UK.  The main aim of the second AMT cruise was to study 

biological processes in the open Atlantic Ocean over very extensive spatial scales. The transect 

crosses different ecosystems, from sub-polar to tropical and from euphotic shelf seas and 

upwelling systems to oligotrophic mid-ocean gyres (Fig 11).  
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Stations are about 200 Km apart. Water samples were collected using Niskin bottles for 5-6 

depths for each station. 100 ml were taken at each sampling depth for counting and identification 

of nanoplankton and microplankton species (cyanobacteria, phytoplankton, heterotrophic 

plankton, ciliates). Samples were preserved in lugol iodine solution and examined following 

Uthermol sedimentation technique under inverted microscope. Bacteria were counted using 

epifluorescence technique. 

 

  

Figure 11. Map of the Atlantic Meridional Transect overlayed to ocean color data about 

chlorophyll concentration showing eutrophic (orange, yellow and green) and oligotrophic blue 

and violet) regions. From http://amt-uk.org. 

  

 

2.3.1.2 Morphological diversity from inverted microscopy analysis 

Community composition was measured in both cellular (n cells m
-3

) and carbon biomass (mg C 

m
-3

) by inverted microscopy. These data have already been analysed to investigate planktonic 

community structure (Marañón et al. 2000; Irigoien et al. 2004; Cermeño et al. 2008). I 
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computed the Shannon index 
 

by considering the abundance (integrated over the mixed layer) of 

the organisms classified in functional groups, and weighting organisms belonging to different 

size fractions by their carbon biomass, following Cermeño et al., 2008. The index was 

normalized with respect to the maximal value that would be attained if all genera observed in the 

cruise were equally represented at a single location. While considering depths separately, or using 

higher levels of taxonomic classification, the overall pattern is the same irrespective of the 

particular method of computation of the Shannon index. 

 

2.3.2 Aquamaps 

2.3.2.1 The model approach and data integration from global databases 

AquaMaps (www.aquamaps.org) (Kaschner et al. 2013) is a model that provides large-scale 

predictions of natural occurrences of marine species. It estimates environmental preferences of 

marine species with respect to depth, water temperature, salinity, primary productivity, and 

association with sea ice or coastal areas. These estimates of species preferences, called 

environmental envelopes, are derived from large sets of occurrence data available from online 

databases (i.e. GBIF www.gbif.org and OBIS www.iobis.org), and from independent knowledge 

from the literature about a given species distribution and its available habitat usage, (i.e.in 

FishBase, SeaLifeBase and AlgaeBase for non-fish). The environmental envelopes are matched 

against local environmental conditions to determine the suitability of a given area in the ocean for 

a particular species. The AquaMaps approach of incorporating species occurrences and expert 

knowledge into an environmental envelope is modified from an ecological niche model originally 

developed by Kaschner et al. 2006 (Kaschner et al. 2006) for predicting global distributions of 

marine mammals. Its advantage is to allow corrections for biases in occurrence data such as non-

representative coverage of a species’ distribution, biases in sampling effort and data provision, 

and species misidentifications. Moreover, this approach is applicable to a wide range of marine 

organisms, both fish and non-fish species. AquaMaps predictions have been validated using 

independent and effort-corrected survey data (Ready et al. 2010). The performance of the model  

was comparable with other presence-only species distribution models such as GARP-Genetic 

Algorithm for Rule Set Production (Anderson et al. 2003), Maxent -Maximum Entropy Modeling 

(Phillips et al., 2006), GLMs-generalised linear models and GAMs-generalized additive models 

http://www.aquamaps.org/
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(McCullagh & Nelder 1989).  

To compare the information about diversity of primary producers and the diversity of species of 

higher trophic levels, I compared the τ index calculated from remote sensed information of 

dominant plankton groups (see Chapter 2.2) with global species richness calculated from 

Aquamaps using just the species with probability higher than 0.5 of being present for each pixel. 

 

2.3.2.2 Relationship of remote sensed diversity of primary producers with diversity of 

consumers  

To analyse how remote sensed diversity of primary producers relates to measures of local 

biodiversity of the global ecosystem including multispecies distributions of higher levels of the 

trophic chain, I used 1) regional maps of top marine predators diversity estimated from fishery 

data from Worm et al. 2003 and from telemetry tracking from Block et al. 2011 for a qualitative 

comparison and 2) global predicted species richness of consumers for a quantitative comparison 

with annual climatologies (2003-2010) of remote sensed diversity. Quantitative comparisons 

have been approached using zero-order correlation analysis and regression analysis to determine 

direction and strength of the relationship. The best fitted regression model is a linear function. 

Residuals obtained by regression analysis were studied in relation to the physical and biological 

characteristics of the environment: Total Kinetic Energy (m/s), Chlorophyll (µg/l), Sea Surface 

Temperature (C°) and temperature gradient (C°). All the environmental variables are derived by 

computed annual climatologies (2003-2010) of remote sensed data L3: 9 km sea surface currents 

from altimetry data from AVISO, 9 km weekly composites of Chl from SeaWiFS and 9 km daily 

images of SST from AVHRR.    

To underline possible patterns, the values of the annual climatologies of the environmental 

variables where binned following equal intervals. The residuals of the regression analysis where 

averaged depending on the pixel location having environmental values corresponding to the bins. 

The bins of the environmental variables were plotted against the averaged residuals. The 

percentage corresponding to the surface cover of the ocean of the extreme values has been 

computed dividing by the total number of values representing the whole ocean.  

To identify hotspots of biodiversity detected by both indices, I used a congruence analysis. In 
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each map, I defined biodiversity hotspots as the top-valued pixels covering 20% of the total 

ocean surface. This percentage is set in agreement with the target chosen by the Convention on 

Biological Diversity, which aims at protecting at least 10% of the global ocean extension by 2020 

(Aichi Target 11). Spatial congruence is evaluated calculating the percentage of overlapping 

computed. 

 

2.3.3 Tara ocean expedition and global high throughput information 

The Tara Oceans project (oceans.taraexpeditions.org) is a 3 year (2009-2011) global-scale 

investigation of morphological, genetic and functional biodiversity of plankton organisms in 

relation to the dynamical physico-chemical parameters of the oceans. One of the primary 

objectives is to map biodiversity across scales spanning five orders of magnitude, from viruses to 

bacteria, archaea, protists and metazoans (Karsenti et al. 2011).  

The advantage of Tara Oceans, compared to other global scale genomics studies already launched 

(i.e. Global Ocean Sampling (GOS) expedition) is the integration of the genetic, morphological 

and functional diversity, and its environmental context at global scale and at multiple depths from 

viruses to zooplankton. Sampling was conducted over 153 stations (Fig. 12) and multiscaled 

according to allometric criteria. Plankton were collected from up to three depths: near the surface 

( ~5 m), at the depth of maximum chlorophyll a fluorescence ( 20–200 m) and in the mesopelagic 

layer (200–1000 m) to capture deep oceanographic features. 
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Figure 12. Worldwide layout of the Tara Oceans project transect and sampling stations. Courtesy 

of Tara Oceans project. 

 

Sampled plankton was size fractioned by 7 serial filtrations and volume proportional to organism 

size. When possible, samples were collected using a large peristaltic pump, otherwise using 

Niskin bottles mounted on a rosette equipped with physico-chemical sensors. Bongo nets were 

used for larger plankton (Fig. 13). 100 liters of seawater from each depth were first passed 

through 200- and 20-μm mesh filters to collect larger plankton, then passed in series through 5, 2, 

and 0.5 μm mesh filters.  

Samples were either collected on glass/microfibers polycarbonate filters and resuspended in vials 

for genetic analysis, morphological analysis with live or fixed organisms. Samples were then 

frozen accordingly. 

DNA was extracted from the filters using a modified CTAB (hexadecyltrimethylammonium 

bromide) protocol (Winnepenninckx et al. 1993). Between 100 and 250 μl of purified total 

metagenomic DNA was recovered per sample.  



  

 

74 

 

Figure 13. Graphical display of the plankton sampling process highlighting the different methods 

used for each size fractions. From Karsenti et al. 2011 (Karsenti et al. 2011). 

 

2.3.3.1 Morphological diversity from high throughput imaging 

Morphological data were gathered using four different high throughput imaging techniques 

targeting diverse plankton communities according to allometric constrains (Fig. 14). I focused on 

data elaborated by two of them: flow cytometry and FlowCam.   

 

Figure 14. Schematic example of high throughput imaging applied depending on the size classes. 

From Karsenti et al. 2011. 
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2.3.3.2 Seaflow 

2.3.3.2.1 Description 

New high frequency flow cytometers -SeaFlow (Ribalet et al. 2010) allow long continuous real-

time shipboard observations of microbial cells of 0.5-20 microns in size that can be automatically 

reconducted to predefined phytoplankton populations based on size and pigments and reflectance 

characteristics (Swalwell et al. 2011). Fluorescence and light-scatter properties of cells in liquid 

suspension passing one by one through a light field are measured. Scattering depends on the size, 

shape and refractive index of the cells. The scattering and autofluorescence properties are 

exploited to identify different phytoplankton. The pico (0.2–2 μm) and nano (2−20 μm) 

eukaryotes produce a greater lightscatter signal and brighter red fluorescence than the prokaryotic 

picoplankton and can be distinguished from them (Dubelaar & Jonker 2000). Prokaryotic 

picoplankton of similar sizes, such as Synechococcus and Prochlorococcus, can be distinguished 

based on the orange fluorescence signal produced by the phycoerythrin pigments present in large 

concentrations in Synechococcus.  

2.3.3.2.2 Data analysis in the Mediterranean transect case study 

I explored the Seaflow data from the Tara transect during the Mediterranean lag run from 23 

September to 1 October 2009 provided from F. Ribalet. Data were recorded each 3min interval 

along with GPS position. Data were checked for optical alignment and fluid stability. The 

FlowPhyto (Ribalet et al. 2011) software was set up to cluster six phytoplankton populations, of 

which the following were found during the cruise: Nanoplankton, Synechococcus, Ultraplankton, 

Picoplankton. Only validated data were used to cluster a pre-defined number of phytoplankton 

populations. Here is an example that shows the four populations on different cytograms (Fig. 15, 

provided by F. Ribalet). 
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Figure 15. Flow cytometric signatures of four phytoplankton populations: Nanoplankton, 

Synechococcus, Ultraplankton, Picoplankton. ‘fsc_small’ represents the forward angle light 

scatter, which is roughly proportional to cell size; ‘ch_small’ represents the red fluorescence from 

chlorophyll; ‘pe’ represents the orange fluorescence from phycoerythrin and is used to identify 

Synechococcus and Cryptophytes; ‘fsc_perp’ represents the polarized light scatter and is used to 

identify Coccolithophores. Courtesy of F. Ribalet. 

 

Indexes that use cytometric diversity capture the structure of a microbial community and 

indirectly its richness in physiological and genetic variations. They are based on the bio-optical 

properties of the community measured at the single cell level by flow cytometry. CytoDiv R 

package was used to compute the cytometric diversity indices as described in Li 1997 (Li 1997). I 

used the exponential of the Shannon index, also called linearized Shannon index, to qualitatively 

compare changes in microbial diversity along the transect, according to physical characteristics of 

the water masses. These characteristics were highlighted with multisatellite measurements in the 

context of the mesoscale fluid dynamical landscape. Satellite data used, corresponding to the 
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same time period of the cruise, were ocean color (SeaWiFS, ENVISAT and MODIS and MERIS) 

and surface currents from altimetry (Jason-2,Envisat). Multisatellite ocean color daily images at 4 

km resolution were used for surface chlorophyll-a distribution. Surface currents were analysed 

with Lagrangian diagnostics, in order to extract transport properties like transport fronts, mixing 

regions, and origin of water masses. This was achieved by constructing particle trajectories and 

computing Lyapunov exponents (FSLE). Physical data (Lagrangian diagnostics), biophysical 

data (chlorophyll) and biological data (cell type, density and assemblages) were combined 

together to investigate the contribution of horizontal transport in shaping planktonic community 

structure along a continuous surface transect. 

2.3.3.3 FlowCam 

2.3.3.3.1 Description 

The FlowCam is composed by a black and white digital camera (1024 X 768 pixels) equipped 

with a 4x objective, a 300 um depth flow cell, a green laser (532 nm), two channels of 

fluorescence detection (575 nm and >650 nm), a digital signal processor and an imaging 

processing software such as VisualSpreadsheet. The FlowCam can detect the image of particles 

in the range of 12 μm to 300 μm. Total Particles are detected and imaged at a regular user defined 

interval, typically at a rate of 7 camera images per second. The processing capability is 1-3 

ml/min and a density of 50,000 particles/ml.  In real time cells are counted, subimages are saved 

(segmentation), background is subtracted from the image and cell sizes are measured directly in 

images. More than 25 different image parameters are collected. Basic shape measurements 

include: Equivalent Spherical Diameter (ESD), Area Based Diameter (ABD), Length, Width, 

Aspect Ratio, Area, Volume Advanced; Morphology Measurements Include: Circularity, 

Elongation, Compactness, Circle Fit, Perimeter, Convex Perimeter, Edge Gradient, Fiber Curl; 

Gray-Scale and Color Measurements Include: Intensity, Average Intensity, Sigma Intensity, 

Transparency, Average Red, Green, Blue, R/G Ratio, R/B Ratio, G/B Ratio. Based on the 

acquired image parameters, taxonomic classification of the images utilizes a training set, machine 

learning algorithm and expert system (Fig. 16). 
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Figure 16. Example of plankton detected from FlowCam. Courtesy of Tara Oceans project. 

 

2.3.3.3.2 Data analysis in the Mediterranean Sea case study 

For this preliminary study on coherence of biodiversity information and community structure 

from different techniques, I focused on diatoms collected from three Mediterranean stations (Tara 

st 7, 23, 30, see Fig.12). I used surface samples of the 20-180 μm size fraction --as the size 

fraction containing most of the diatoms species— taxonomically identified with FlowCam in 

Auto Image mode at 10,000 particles for the morphological data (classification of FlowCam 

images improved by Noan Le Bescot with the help of expert taxonomists). For molecular data I 

used the V9 18S rDNA barcoding tags (see Chapter 2.3.3.4) obtained from the same samples. 

Only tags corresponding to diatoms species according to SILVA reference database were 

retained. As the morphological method does not have the same resolution as the genetic one, to 

make the two methods comparable, classes were collapsed at the genus level. Note however that 

most of the genera presented just one predominant species and another one or two very rare 

species. Therefore this re-categorization was not expected to have an influence on the 

comparison. Relative abundance distribution curves were created and compared to reference 

models for the distribution (e.g. exponetial, log-normal, etc). The slope of the interpolation model 



  

 

79 

curve was calculated to determine if the different groups could have been represented by the 

same distribution, characterized by its type and slope. K-dominance curves (cumulative relative 

abundances per genus rank) were compared for each group: usually the community having the 

lowest saturating curve is considered to be the most diverse. To capture various aspects of 

biodiversity and to be able to compare biodiversity between stations in a consistent way, genus 

richness, Q index, Shannon index, linearized Shannon index, Chao's estimation of Shannon index 

and taxonomic distinctness were considered (Magurran & McGill 2011). These indices are 

chosen because Q doesn't suffer the bias of the most rare and the most abundant species, Shannon 

weights the classes by their true frequency, the linearized Shannon index allows for comparisons 

of effect size, Chao's estimation (Chao 1984) includes also the probability of rare species not 

being detected and taxonomic distinctness gives different importance to the classes based on their 

taxonomic uniqueness in the community. Ecological distances such as Bray-Curtis Dissimilarity 

index was also calculated to compare the stations based on the change in composition of the 

community structure. 

2.3.3.4 Molecular diversity from barcoding 

2.3.3.4.1 Description 

Divers molecular techniques allow to explore different levels of biological organization such as 

the type of organism, its genome, and its expressed genes. Organismal composition of Tara 

Oceans samples was defined through sequencing of phylogenetic markers and environmental 

gene content/expression was derived through direct metagenomics/metatranscriptomics 

sequencing.  

Bacterial 16S and eukaryotic 18S ribosomal DNA (rDNA) genes contain nine "hypervariable 

regions" (V1-V9) that are proved to show substantial sequence diversity among different taxa. 

Species-specific sequences within a given hypervariable region represent valuable targets for 

biodiversity studies and other scientific investigations. No single region can differentiate among 

all bacteria and all eukaryotes; therefore, systematic studies that compare the relative advantage 

of each region are needed (Chakravorty et al. 2007).  

Multiplexing high-throughput sequencing was used to analyse the metabarcode, allowing to 

massively sequence key genetic markers for fast and semi-quantitative assessment of community 

composition. Diversity barcodes (300-400bp) have been developed (Roscoff and SILVA 
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database) for the total eukaryotic community (V4 or V9 regions of 18S rDNA), the total 

prokaryotic community (V3 and V6 region of 16S rDNA), the photosynthetic part of protistan 

community (chloroplastic 16S rDNA fragment), and the fine taxonomic structure of particularly 

important groups (fragments of mitochondrial COX1 gene or nuclear 28S rDNA) (Fig. 17). 

These sequences exhibit sufficient base conservation for the design of PCR primers of broad 

taxonomic range, but at the same time, enough variability to precisely identify the taxon they 

belong to. Barcodes were PCR-amplified from total-DNA or total-RNA (cDNA) extracts, and 

multiplexed and sequenced using ILLUMINA technology. An informatics pipeline for the primary 

analyses of the generated data (extraction of high-quality sequences/chimera detection and 

removal/taxonomic assignation using a home-made reference database), produced usable data for 

quantitative biodiversity analysis. 

Metagenomic tags were mapped to operational taxonomic units (OTUs) on 97% similarity 

clustering of reference sequences (SILVA and Roscoff databases). This cut off is used to group 

taxa to species level, but in microbes it can refer also to genus levels (Mende et al. 2013). 

Moreover, issues exist such as being related to the heuristic nature of the tags, intra-genomic gene 

copy number variation, etc. Constrains are discussed in Chapter 6.3.   

 

 

Figure 17. Shotgun Paired-end ILLUMINA sequenced genomic markers. From Karsenti et al. 

2011. 
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2.3.3.4.2 Analysis of phytoplankton community structure from metabarcoding  

I used metabarcode data to derive information about the planktonic community structure and 

diversity. As the rare biosphere plays a challenging role in biodiversity estimation, moreover if 

molecular diversity is considered, I investigated the community as composed by rare and 

common species and look at the difference of shape in the distribution. The slope of the fitted 

curve of the distribution was used as a parameter to compare communities between stations and 

to compare with the rare community counterpart. I constructed Rank Abundance Distributions for 

each of the 45 surface stations using just V9 barcodes of photosynthetic eukaryotic plankton. The 

variable axes were log-transformed. The noise and discretization problems of the curves were 

eliminated by discarding the classes with abundance less than log(10) reads. Different cutoff 

values were tested to define the tail of the distribution, therefore to define the rare species and 

common species abundance curves of the community. The chosen (and best) cutoff is at the 

classes with log(5000) reads and below. This cutoff was used to fit separately the part of the 

community composed by common and rare species. The distributions were fitted by a power-law 

function and the slope calculated. A Z-test was applied on the slope values to determine if all the 

curves had similar distributions across the different stations among common and rare species. A 

t-test was applied to determine if the average value of the slope was different between common 

and rare part of the community. To investigate if the extreme values corresponded to stations 

with particular environmental conditions at that time, I used multivariate analysis. First I 

investigated how similar stations were in terms of physical and biological environmental 

conditions. I used five remote sensed variables (Sea Surface Temperature, Chlorophyll, FSLE, 

latitudinal component of the Total Kinetic Energy and longitudinal component of the Total 

Kinetic Energy) and I used a Principal Component Analysis to eliminate redundancy of 

information and detect which variable was contributing the most to the dissimilarity of the 

stations in terms of the biophysical environment. These variables were used to graphically 

represent the dissimilarity among stations by use of a Multidimensional Scaling plot. 
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Chapter 3 Definition and robustness of a new 

biodiversity proxy. A study based on the ECCO2-

Darwin circulation model. 

Biodiversity of an ecosystem is quantified by indicators of species richness or by statistics based 

on the abundance of different types, such as the Shannon index, that require sampling the local 

community to sufficient depth. If dispersal is not a primary force in shaping species repartition, 

these indicators provide information about the processes that have shaped a community at a given 

location. In the open ocean, dispersal due to mixing acts on spatiotemporal scales that are shorter 

than in most land ecosystems, thus making local ecosystem composition heavily dependent on 

the surrounding ecological landscape. The analysis of a realistic numerical model for 

phytoplankton biogeography shows that local biodiversity can be estimated by spatial 

information on only dominant functional types. Such 'seascape' diversity index best represents 

local diversity in regions of medium to high energy currents, where mixing efficiently converts 

patchiness into local diversity. This result supports the use of spatially extended data with poor 

community resolution to evaluate and monitor biodiversity hotspots at the global scale.  

 

3.1  Introduction 

Biodiversity plays a key role for the homeostasis of the planet and for the resilience of many 

ecosystem services of key societal relevance (McGrady-Steed et al. 1997; Naeem & Li 1997).  

Biodiversity however is not evenly distributed and understanding what are the global patterns of 

its variability is a central issue in ecology, as well as an important step for setting effective 

conservation priorities (Hutchinson 1959; Gaston 2000; Myers & Worm 2003). Being at the base 

of the trophic chain, primary producers have received special attention in biodiversity studies 

(Jetz et al. 2009). The correlation between their diversity and that of consumers makes the 

understanding of phytoplankton biodiversity distribution particularly relevant for conservation of 

marine ecosystems (Duffy 2003; Jenkins et al. 2013). 

Primary production in the ocean is largely provided by planktonic microbes, and this feature 

poses several challenges to the establishment of biodiversity maps. Observation-wise, traditional 
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measures of biodiversity – typically used for macroscopic organisms with well-defined 

taxonomic classification – cannot be straightforwardly applied to microbial communities. These 

are indeed increasingly characterized by genomic methods, where no consensus has yet been 

reached on how to detect, or even define, microbial species (Konstantinidis et al. 2006; Achtman 

& Wagner 2008; Giovannoni et al. 2013). More fundamentally, the geographical arrangement of 

marine ecosystems, and planktonic ones in particular, changes on an extremely rapid time scale, 

that of the so-called 'ocean weather' (Williams et al. 2007; Levy et al. 2008). At the mesoscale 

(10-100 kms and days-weeks scale), the seascape's dynamics stands as a source of perturbation 

for the planktonic ecosystems, and turbulent mixing enhances dispersal, both factors potentially 

increasing biodiversity (Connell 1978; Cadotte & Fukami 2005; Clayton et al. 2013). In the open 

ocean, such transport-related processes are likely to prevail over mechanisms that root 

biodiversity in the adaptation to local environmental features. Finally, the dynamic nature of 

niches arrangement (d’Ovidio et al. 2010) blurs the species ranges and makes it impossible to 

neglect transport when assessing the global biogeography of species. 

3.2 What models and observations tell us about biodiversity and its drivers 

in the ocean? 

Model and observational studies have recently started to tackle these problems and to integrate 

ocean physics in the description of the biogeography of planktonic species. In the past decade, 

circulation models have yielded accurate and quantitative physical simulations of the global 

ocean dynamics down to the mesoscale and below; more recently, the ocean physics has been 

complemented with modules describing phytoplankton ecology in increasing detail (Follows et 

al. 2007; Barton et al. 2010; Levy et al. 2014). Such coupled models provide reliable virtual 

testbeds for studying the processes underlying global biodiversity patterns of oceanic primary 

producers and their relation to physical determinants like transport and mixing induced by 

mesoscale turbulence.  

Observations have also been providing new opportunities to the identification of biodiversity 

patterns in the ocean. Collections of decade-long observational records, together with 

advancements in statistical methods for habitat modelling, have produced global maps of species 

occurrence and richness for consumers and higher trophic levels, with resolutions in the range of 

1000-10000 kms (i.e., averaging out  mesoscale variability) (Irigoien et al. 2004; Worm et al. 
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2005; Tittensor et al. 2010; Kaschner et al. 2011; Acevedo‐Trejos et al. 2013; Soininen & Luoto 

2014). Sampling of microbial organisms has however started much later, and still remains too 

sparse to yield global biogeographical maps for phytoplankton. In situ sampling of marine 

microbial communities provided either coarse-grained macroecological biodiversity patterns (like 

latitudinal or temperature dependence (Fuhrman et al. 2006; Chust et al. 2013; Martiny et al. 

2013) or very detailed local snapshots.  

Satellite data, and in particular bio-optical anomalies derived from ocean color, have been 

recently exploited as a possible source of information on global phytoplankton diversity patterns 

(De Monte et al. 2013). Compared to in situ observations, data acquired by remote sensing 

contain very approximate and indirect biological information. On the other hand, though, they 

offer a high resolution (km/day or smaller) and have global coverage.  

3.3 Objectives 

In this study we use a numerical model to study the extent to which an index defined on minimal 

-but spatially resolved- information about the planktonic community -the 'seascape' diversity 

index- reliably assess local biodiversity. Both the physical and ecological dynamics underpinning 

global planktonic diversity patterns are accessible in the model, allowing us to uncover the 

physical basis of the correspondence between indexes, and to identify the regions of the global 

ocean where such a correspondence is most accurate. We show that the 'seascape' diversity index 

agrees with different, locally computed biodiversity indicators in great part of the world ocean, 

and it is best in moderately to highly energetic regions and out of blooms. 

3.4 How a local alpha diversity and an area-based diversity relate and why 

3.4.1 Quantitative relationship between local and seascape diversity of virtual species  

A 'seascape' biodiversity indexcan be defined as the Shannon index of the distribution of the 

relative spatial extension, within a disc of given radius, of areas dominated by a given community 

(see Chapter 2.1.2). The choice of basing an index on such minimal ecological information stems 

from the features of the data that are and will be available by remote sensing. Algorithms 

processing ocean color  indeed attribute to every pixel a tag that reflects some properties of the 

local ecosystem (different dominant planktonic types, e.g. diatoms and coccolitophores, are 
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distinguished in the classification), but have no power in describing finer features of the 

community (Alvain et al. 2008; Alvain et al. 2012). 

We use numerical simulations issued by a physical global circulation model coupled to a 

planktonic virtual ecosystem of 78 phytoplanktonic ‘types’ belonging to 5 distinguished 

'functional groups', and two zooplanktonic predators (see Chapter 2.1.1) (Follows et al. 2007; 

Dutkiewicz et al. 2009; Barton et al. 2010). This model has proved to reproduce realistic 

biogeographical patterns of dominant species, and grants a simultaneous access to the local 

community composition and to the seascape index. We can thus compare directly different 

biodiversity indexes over the whole ocean extent, thus including regions with different physical 

and ecological dynamic regimes. 

Local biodiversity is evaluated by computing the Shannon index based on the abundances of 

virtual species or of functional groups (Hooper et al. 2005; Follows & Dutkiewicz 2011; Barton 

et al. 2013). We consider different levels of 'taxonomic' resolution because the former best 

reflects the measures obtained by in situ sampling and sequencing, whereas the latter is expected 

to correlate better with the seascape index, being both derived from group-level abundances. The 

computation of diversity indexes are performed on daily maps at each grid point (1 degree 

resolution for most of the analysis presented here) and then averaged over 3 years of model runs 

in order to obtain the climatological global maps (Fig. 18 and 19). 

The comparison of the local and seascape biodiversity reveals strong correlations (Pearson’s 

correlation test r = 0.67 vs types and r = 0.76 vs functional groups, p < 10
-9

). It is surprising that 

even though the seascape diversity is better related to local diversity computed at the level of 

functional groups, a drastic increase in taxonomic resolution of the community (from 5 classes to 

78 virtual types) is not associated to a drop in such a correlation. 

The bivariate histogram plots of the seascape and local biodiversity indexes (Figs. 18 and 19) 

displays  a nonlinear relationship: the seascape index decreases at a faster rate than its local 

counterparts, while still providing a correct estimate when the Shannon index is strictly zero 

(only one species is present in the area). This is an expected consequence of the fact that the finite 

number of pixels in the considered area for the seascape diversity imposes a lower limit to the 

resolution of the seascape diversity indicator. Moreover close to the limit of resolution finite-size 
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effects render the estimation less effective. This limit does not exist for the local indexes, 

computed on continuous abundances. In order to correct for this bias and to improve the 

agreement in regions of high diversity, where the relationship between the indexes is expected to 

be linear, we fit the data with a nonlinear function that goes close to the origin and saturates to a 

straight line (see Chapter 2.1.2 and Fig. 18 and 19). This relationship allows to explain 54% and 

69% of the local biodiversity variability in terms of the seascape index (R2 = 0.54 vs types and 

R2 = 0.69 vs functional groups, p < 10
-9

).  

We repeated the previous analysis changing the radius of the disk upon which seascape diversity 

is evaluated. Being seascape diversity generated by horizontal transport, we expect the goodness 

of the match to local diversity to drop off when such a distance exceeds the reach of mesoscale 

mixing. On the other hand, such a radius cannot be too close to the spatial resolution, otherwise 

the signal would be blurred by noise. The goodness of fit indeed steadily degrades when the 

radius is increased until 5 degrees, and to a larger extent for species than for groups  (radius 

100Km R2 = 0.69; 200Km R2 = 0.68; 300Km R2 = 0.67; 400Km R2 = 0.65; 500Km R2 = 0.63 

vs functional groups; p < 10
-4; 

radius 100Km R2 = 0.54; 200Km R2 = 0.52; 300Km R2 = 0.50; 

400Km R2 = 0.49; 500Km R2 = 0.47 vs phytoplankton types; p < 10
-4

). This is however 

accompanied by a latitudinal shift in the distribution of errors, reflecting the fact that the radius 

associated to mesoscale turbulence, the Rossby radius, is smaller at higher latitudes, whereas 

larger radii are more appropriate to describe mixing in tropical regions of the ocean (Fig. 20 and 

21). This dependence can be taken into account when applying this method of biodiversity 

estimation to a particular region of the ocean, whereas for global studies a radius of one degree 

appears appropriate. 

To be able to define biodiversity hotspots using seascape, we distinguished hotspots regions of 

local biodiversity based on the global threshold of the spatial-based index = 0.16 (Fig. 22), that 

determines just hotspots locations in local biodiversity (Fig. 23). A majority of consistency was 

evident between hotspots identified by seascape and local diversity (Fig. 24), but few regions 

exist where high local and seascape diversity do not perfectly overlap. A fixed threshold for a 

global analysis can underestimate hotspots in regions characterized by high biodiversity with 

respect to regional maxima but not with respect of global maxima. Indeed, the main trend of the 

local biodiversity global pattern is detected for both the functional groups and phytoplankton 
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types with minor misclassifications, even if the degree of diversity inside the hotspots may not be 

the same.    

Although based on minimal knowledge of the biological community composition, the seascape 

index compensates the lack of ecological detail with spatial resolution. The trade-off between 

these two different sources of information is possible due to transport and mixing that transform 

spatial patchiness into local diversity on a time scale that is shorter than that of competitive 

exclusion. This implies that the estimate will not be equally accurate in all regions of the ocean, 

since the intensity of turbulent dynamics, as well as the distribution and demography of dominant 

types vary considerably. 

 

Figure 18. Bivariate histogram showing values frequency (color scale) and relationship between 

seascape diversity information (estimated at 1 degree disk radius) (x axis) with its relative map 

and local biodiversity estimated by Shannon index based on ECCO2-Darwin model functional 

groups (y axis) with its relative map. The distribution of the dominant groups (mosaic of plankton 

dominance) resulted from the model is also showed. 
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Figure 19. Bivariate histogram showing values frequency (color scale) and relationship between 

seascape diversity information (estimated at 1 degree disk radius) (x axis) with its relative map 

and local biodiversity estimated by Shannon index based on ECCO2-Darwin model 

phytoplankton types (y axis) with its relative map. The distribution of the dominant groups 

(mosaic of plankton dominance) resulted from the model is also showed. 
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Figure 20. Global map of residuals after regression analysis between seascape diversity 

information (estimated at 1 degree disk radius) and local biodiversity estimated by Shannon 

index based on ECCO2-Darwin model functional groups (A) and phytoplankton types (B).  
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Figure 21. A) Global annual climatology map of biodiversity hotspots estimated by seascape 

diversity information at 5 degree disk radius. Global map of residuals after regression analysis 

between seascape diversity and local biodiversity estimated by Shannon index based on ECCO2-

Darwin model functional groups (B) and phytoplankton types (C). 
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Figure 22. Determination of the threshold used to define biodiversity hotspots based on seascape 

diversity. X axis are values of seascape diversity index, y axis are mean values of local 

biodiversity A) estimated by Shannon index based on ECCO2-Darwin model functional groups 

and B) phytoplankton types, for hotspots locations (red) and non-hotspots locations (blue) 

defined by the seascape diversity threshold value in x. The optimal threshold value coincides 

with the non-hotspot mean starting to be asymptotic while the hotspots mean continues to 

increase, indicating that after that threshold, only hotspots locations for both indexes are 

considered and they coincide.  

 

 

Figure 23. Frequency histogram for values of local biodiversity classified as hotspots (red) and 

non-hotspots (blue) based on the optimal seascape diversity threshold 0.16 estimated in Fig 21. 

A) local biodiversity from functional groups, B) local biodiversity from phytoplankton types. 

 

A) B) 
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Figure 24. Hotspots (in white) estimated by seascape diversity information threshold 0.16 

(estimated at 1 degree disk radius) are overlaid to local biodiversity estimated by Shannon index 

based on ECCO2-Darwin model functional groups (A) and phytoplankton types (B). 

 

3.4.2 Environmental factors and accuracy of the estimation of the proxy 

For every location in the ocean, the model provides, besides biodiversity, a number of physical 

and ecological parameters. These parameters correspond to features that are globally available by 

remote sensing, and can be used to predict the expected error associated to using the seascape 

diversity as a proxy for local diversity. Since environmental variables are inhomogeneously 

distributed in the global ocean, the statistical analysis of their associations to errors in the 

estimate can uncover trends, useful to point out the mechanistic base of the correspondence 

between indices, rather than provide a method for quantitative error estimation. 

We analyzed the residuals of the fit in Fig.18 and 19, whose global distribution is displayed in  

Fig. 20, with respect to three physical variables (Sea Surface Temperature, SST gradient and 

Eddy Kinetic Energy), nutrient concentrations (nitrites, nitrates, ammonium, phosphates, 
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silicates, iron) and a biological variable (surface total chlorophyll concentration) (Fig. 25 and 26). 

The average error introduced by the seascape proxy is then evaluated for points corresponding to 

the same range of the environmental variables.  As shown in Figure 25, the general trends in the 

dependence of the error on environmental parameters is the same for the two local proxies at 

different taxonomic resolution, with the exception of the EKE that we discuss below. 

The error made in using the seascape diversity index as a proxy for local diversity is largely 

independent of temperature, indicating no latitudinal bias in the estimation (Fig 25a). However, it 

depends on SST gradient, and declines as the temperature difference increases (Fig 25b). This 

result is consistent with the fact that the seascape index evaluates the biodiversity component that 

is generated by mixing, as SST gradients characterize transport fronts corresponding to the 

boundaries between water masses of different origin. Regions with a low SST gradient typically 

have low spatial diversity, and thus follow in the range where the seascape index hits the lower 

boundary of its resolution, thus clumping in the same class cases having different, and low, local 

diversity (Levy et al. 2014). The entity of residues decreases with EKE (Fig. 25c), that quantifies 

the energy that is dissipated in small scale turbulence and fuels mixing below the mesoscale. 

Apart from a few points of extremely high EKE, that cover 0.01% of the ocean surface, the error 

in estimating species-based diversity declines as the energy increases. Contrary to the dependence 

on the SST gradient, there is a sudden drop in the error at about 0.2 m/s. This implies that the 

seascape diversity index represents best the local species diversity for moderate to high EKE 

values, that is if mixing occurs on a sufficiently rapid time scale. If the local biodiversity is 

instead evaluated based on types, then the error remains low for all EKE values, apart from the 

regions of very high energy that cover 0.05% of the ocean surface. This result hints to the fact 

that in regions of low mixing there is a possible coexistence of different virtual species within the 

same functional group. By mapping such regions in the global ocean, these regions correspond to 

major ocean gyres, where coexistence of different Phrochlorococcus-analogue ecotypes is known 

to occur in the model and in the real ocean (Follows et al. 2007). More puzzling is the increase of 

the error with chlorophyll concentration (Fig 25d), which may be a consequence of the fact that 

concentrations above 0.5 mg/ml are typical of regions characterized by strong planktonic blooms. 

In those cases, that correspond to 1.8% of the ocean surface, competitive exclusion is probably 

the dominant ecological process. According to what happens also in in situ measures of diversity 
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during a bloom, local diversity as estimated by the Shannon index drops because of the 

overwhelming abundance of the dominant type. High levels of chlorophyll concentrations are 

typically discarded by classification algorithms based on ocean color because of lack of 

resolution in the spectral anomalies used to detect the functional groups. It is hence likely that 

regions where the seascape proxy incurs an increase in error are actually not represented in the 

estimations by remote-sensing. 

The dependence of the estimation error on nutrients does not yield any pattern. Indeed it is not 

expected that single chemical species are good indicators of the amount of turbulence or 

disturbance of the ecosystem. 
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Figure 25. Study of the residuals of the regression between seascape diversity information 

a) 

b) 

c) 

d) 
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(estimated at 1 degree disk radius) and local diversity estimated by Shannon index based on 

ECCO2-Darwin model. The residual values have been averaged inside classes depending on the 

environmental characteristics present at each location. Extreme bin values that include less than 

0.1‰ of the ocean extent are not showed. A) annual climatology of Sea Surface Temperature 

(C°); B) annual climatology of Sea Surface Temperature gradients (C°/100km); C) annual 

climatology of Eddy Kinetic Energy (m/s); D) annual climatology of Chlorophyll (µg/l).  
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Figure 26. A) Map of average Eddy Kinetic Energy of the model for the 3 years of integration. B) 

Map of the average SST gradients of the model for the 3 years of integration; C) Map of the 

average SST of the model for the 3 years of integration; D) Map of the average Chlorophyll 

concentration of the model for the 3 years of integration. 

 

3.5 Discussion and conclusion 

The patchy nature of the environment has been recognized long ago as a possible determinant of 

higher biodiversity for terrestrial organisms (Hutchinson & Macartur 1959).  At that time, the 

open ocean upper waters were considered much less rich in diversity and “uniform and quasi 

horizontal” (Hutchinson 1958). In the following fifty years, remote sensing of the open ocean has 

revealed that inhomogeneities as large as those observed across basins also occur on much 

smaller spatial scales (~10-100km) and on temporal scales comparable to the demography of 

phytoplankton (days to weeks). These seascape inhomogeneities form a mosaic analogous to 

what one sees on land - but dynamically changing much faster than terrestrial environmental 

patches. Concomitantly, oceanic microbial diversity has been found as being higher than 

evaluated previous to the high-throughput analysis of microbial communities (Venter et al. 2004), 

and at the same time the species range to be so vast to question the importance of local adaptation 

in structuring the community. Together, these observations point to the fact that physical forcing 

and plankton demography concur in building up diversity through environmental fluctuations and 

dispersal. The interactions between transport and ecology have been shown to take place during 

blooms, that are events when one would expect competitive exclusion to take place faster 

(d’Ovidio et al. 2010). However, when the physical and demographic time scales entwine, the 

ecosystem is kept away from its local optimum by changes in the features of the water masses, as 

well as by immigration from the surrounding regions. If it is impossible to use remote sensing to 

follow the rearrangement of the local planktonic community, one can use information about the 

spatial variability of the ecosystem to infer the part of biodiversity that is a consequence of 

horizontal mixing alone. Although an index based on such an idea has been proposed (De Monte 

et al. 2013) and shown to follow a macroecological pattern in its temperature dependence, the 

demonstration that the underlying ansatz is valid at the global scale seems out of reach. 

We have therefore turned to numerical models to demonstrate that a seascape diversity index -- 

measurable by satellite -- indeed reflects the local diversity accessible by in situ sampling. The 

Darwin model, that simulates simultaneously ocean circulation and the ecology of planktonic 
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ecosystems, was used as testbeds to determine the extent to which local biodiversity can be 

inferred starting from crude, but spatially extended, measures of the planktonic community. 

Our results show that, in spite of the minimal ecological detail, a proxy for local biodiversity can 

be derived by information on the spatial distribution of dominant phytoplanktonic types. Our 

analysis evidenced that the correspondence between local and seascape diversity is not limited to 

considering the same depth of community description: similar results hold if local diversity is 

assessed at the level of virtual species or of functional groups, whereas only the latter are used to 

estimate the seascape index. Analogously, one can expect that the same mechanism holds for 

every species that is passively drifting, and not only for photosynthetic ones, so that hotspots 

identified by using bio-optical signatures may extend from primary producers to other component 

of the ecosystem, such as zooplankton and heterotrophic microbes.  

Considered in relation to environmental variables, the discrepancy between local and seascape 

diversity indexes appears to be minimal in regions where the turbulent energy of horizontal 

currents enhances mixing at the submesoscale. These regions can be identified by remote-sensing 

measurements of the eddy kinetic energy, and cover 30% of the ocean surface. This study hence 

paves the way to the systematic use of remote sensing in detecting and monitoring regions where 

high biodiversity is enhanced by turbulent mixing.  

The mechanism of transport-driven biodiversity enhancement is expected to be effective for 

passively transported organisms whose time scale of competitive exclusion is longer than the 

typical lifetime of submesoscale filaments (of the order of weeks). Whether this scenario is only 

possible under conditions of neutral selection (Hellweger et al. 2014), or it is compatible with 

selection acting on ephemeral niches (Sauterey et al. 2014), is an interesting evolutionary 

problem that is still open. 

Hotspots of seascape diversity are fed by communities that prosper in neighboring locations, and 

therefore are expected to be maintained even if the ocean circulation is modified as a 

consequence of climatic changes. The opportunity of identifying such hotpots as priorities for 

conservation thus depends crucially on the extent to which transport-induced diversity propagates 

to higher levels of the trophic chain. In order to assess such a possibility, further investigations 

are needed on the link between biodiversity hotspots of species that respond differently to the 
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physical forcing of oceanic currents.  

Chapter 4 Ecological relevance of remote sensing. 

Biodiversity hotspots estimated from space.  

Understanding the variability of marine microbial biodiversity is a fundamental challenge for 

biologist and oceanographers. Current observational programs are based on in situ studies, but 

their implementation at the global scale is difficult, due to the ocean extent, its temporal 

variability and the heterogeneity of the data sources on which collections are built. Here, I present 

the possibility of identifying phytoplankton biodiversity hotspots using remote sensing. I define a 

Shannon entropy index based on patchiness in ocean color bio-optical anomalies. This index 

provides an increased resolution compared to most available approaches, global coverage and 

temporal variability. It shows a relation to temperature and mid-latitude maxima in accordance 

with those previously evidenced in microbiological biodiversity model and observational studies. 

Regional maxima are in remarkable agreement with several known biodiversity hotspots for 

plankton organisms, as well as with some in situ planktonic biodiversity estimates (from Atlantic 

Meridional Transect cruise). These hotspots do not show a relationship with chlorophyll 

concentration, although temporal variability estimated as successions of dominant types are 

instead more related to chlorophyll. These results encourage to explore marine biodiversity by 

integrating approaches coming from different research disciplines. 

4.1 Introduction  

Defining global patterns of marine microbial diversity is a fundamental ecological issue, with 

important implications in understanding biogeochemical and climatic processes. However, the 

nature of the open ocean realm does not allow to strictly define boundaries for marine 

biodiversity hotspots. This difficulty is due to the multiplicity of ecological and physical scales 

involved in shaping oceanic ecosystems (Levin et al. 1992). 

Plankton biogeography and biodiversity is commonly assessed using in situ sampling. The locally 

observed species  can be characterized at the morphological, functional, and molecular  level of 

biological organization, while covariates related to their presence are found in the local physico-

chemical context (Jones 2007). Nonetheless, in situ sampling remains still too sparse to produce 
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global maps of phytoplankton species distribution. Until now, plankton sampling has unveiled 

either macroecological patterns (like latitudinal or temperature dependence of biodiversity) or 

very detailed but local snapshots of microbial diversity.  

The relationship between biodiversity and latitude and temperature gradients has been 

highlighted in many studies on both land and marine ecosystems (Hillebrandt 2004). The kinetic 

energy or temperature hypothesis predicts positive correlations with temperature, especially for 

ectoterms. It postulates that at higher temperatures increased metabolic rates may promote higher 

rates of speciation, leading to greater diversity. Further, range limits are set by thermal tolerance, 

with more species tolerant of warm conditions. In the ocean, latitudinal gradients have been 

shown to exist for species richness of planktonic marine bacteria (Fuhrman et al. 2008), and for 

functional diversity (Raes et al. 2011). However, quantitative differences in the latitudinal 

profiles, related to the relatively small number of observations and the heterogeneity of the 

conditions in which these have been performed, do not allow to go much beyond the qualitative 

conclusion that diversity decreases at high latitudes and that a mid-latitude maximum may exist.  

Another well studied aspect of biodiversity is the relationship with the productivity of an 

ecosystem. Large meta-analyses of terrestrial and aquatic ecosystems suggest that the shape of 

the productivity–diversity relationship is generally either positive or unimodal (Dodson et al. 

2000; Irigoien et al. 2004; Gillman & Wright 2006). For marine phytoplankton, there are less 

data available but a few large-scale studies also suggest a unimodal response with maximum 

diversity peaking at intermediate levels of productivity and minimum diversity during massive 

blooms that escape grazing predation (Vallina et al. 2014). Nonetheless, agreement exists on the 

fact that the trend of this relationship depends on the considered spatial and temporal scale 

(Chase & Leibold 2002; Whittaker & Heegaard 2003).  

The global distribution of phytoplankton has mostly been addressed by remote sensing of ocean 

at various spatial and temporal scales. Beyond the estimation of chlorophyll concentration, 

different spectral analyses allow to characterize phytoplankton biogeography at a resolution of 

few tens of kilometers and few days. Among those, the PHYSAT algorithm (Alvain et al. 2008) 

clusters spectral anomalies into classes of bio-optical properties. These classes correlate with the 

dominant phytoplankton types and provide a simple tool for identifying niches that sustain 
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distinct planktonic communities (d’Ovidio et al. 2010) and pave the way to studies that may go 

beyond the description of macroecological and biogeographical patterns. 

4.2 Objectives 

Here I propose an index based on remote sensing as a proxy for diversity induced by horizontal 

stirring, and show that such an index is consistent with many features of in situ studies of global 

biodiversity and macroecological patterns in the open ocean. To meet these objectives, I combine 

information on biological heterogeneity and fluid dynamics in order to estimate presumed 

biodiversity hotspots. I use patchiness in maps of bio-optical anomalies as an indicator of niche 

spatial heterogeneity, and assume that patches that are about 100 kms apart are typically mixed 

within a few weeks by oceanic turbulence (see Chapter 2.2).  

4.3 Plankton community dominance and diversity 

4.3.1 Reanalysis of chl spectra: towards an information on biogeography and diversity of 

planktonic communities  

Global distributions of functional dominant phytoplankton groups derived from the Physat 

reanalysis of chlorophyll spectra (Fig. 27) have been used to derive information about diversity 

of the planktonic community. The diversity index created, τ index, is a local measure of the 

heterogeneity in the ocean surface bio-optical properties at a certain scale, that is the radius of a 

disk over which the occurrence frequencies of remote-sensed bio-optical frequencies are 

estimated. 

The possibility to observe a higher diversity at one point in the ocean, the more heterogeneous 

the distribution of planktonic communities - in this case, emerging as bio-optical anomalies - 

around that point, is at the base of the conception of the τ index as a possible proxy of 

biodiversity. Consequently, if the conditions at a given location are such to support high diversity, 

these conditions will reflect on the ability of that local community to prosper in nearby niches 

shaped by transport, thus creating high spatial heterogeneity in the nearby environment.  

The global map of τ (Fig. 28) shows strong global patterns that extend across oceanic basins. 

High τ diversity occurs both in productive systems (upwellings; western boundary currents; 

islands’wakes; North Sea) and in moderately productive and oligotrophic regions (SW and NE 
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Pacific; North Pacific transition zone), highlighting two kinds of hotspots: confluence regions - 

where nearby communities are mixed by horizontal stirring - and geographical features, such as 

islands or reefs. 

The diversity index τ has been computed within disks of 100 km radius. Quantitatively, water 

masses that are 100 kms apart are mixed on a time scale of the order of few weeks, comparable to 

that of a planktonic bloom, so that each of the communities present in the area may also be 

locally represented. On the other hand, communities that are locally present will be given the 

chance to colonize niches in that radius before the bloom season is over. This measure exploits 

therefore a specific feature of oceanic ecosystems at the submesoscale, where horizontal transport 

and mixing occur on the same time scale of planktonic blooms.  

 

Figure 27. Global winter climatology of phytoplankton dominant functional groups as detected 

by Physat algorithm. Red = Synecococcus-like; Blue = Prochlorococcus-like; Green = Diatoms-

like; Pink = Phaeocystis-like; Cyan= Coccolitophores-like; Yellow = nanoplankton-like.  

 



  

 

103 

 

Figure 28. (a) Index τ for the global ocean: average of daily maps of τ computed over 7-day 

composites of PHYSAT data for the period 2003–2010. The hotspots emerging from this analysis 

characterize regions with a standing representation of several nearby communities, as identified 

by their dominant phytoplankton types (PHYSAT algorithm applied to SeaWiFS radiances). (b) 

Average of daily chlorophyll-a maps (SeaWiFS, 2003–2010). From De Monte, Soccodato et al. 

2013. 

 

4.3.2 Remote sensed τ diversity and global plankton biodiversity hotspots.  

Regions of high values of τ largely overlap with known biodiversity hotspots of primary 

producers (Barton et al. 2010) and even metazoan (Tittensor et al. 2010). The zonal average (Fig. 

28) of τ shows intermediate latitude maxima that are consistently reported in observational and 

model biodiversity studies (Raes et al. 2011). The comparison with in situ data from the AMT 

cruise (Fig. 29 and 30) (Irigoien et al. 2004; Cermeño et al. 2008) shows a latitudinal pattern of 
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nano- and microplankton biodiversity  in agreement with the value of the τ index computed at the 

sampling locations. Qualitatively, the in situ and satellite-estimated measures of biodiversity 

show a comparable latitudinal alternation of maxima and minima: from north to south, a shallow 

minimum centered in 15:30N, then a peak in the subtropics (15:20N); an equatorial peak around 

10S followed by a deep minimum; and a recovering trend for both curves when continuing from 

20S further poleward (Fig. 30). However, whereas the correlation is significant in the Southern 

hemisphere (Fig. 31a, Pearson's r = 0.7, p = 4 *10
-3

-

), in the Northern hemisphere the quantitative 

agreement is lost. The localization of Northern hemisphere AMT stations includes upwelling 

systems where vertical processes are more relevant than in the open ocean, and where possibly 

stirring may not be the dominant structuring process shaping biodiversity hotspots. The 

importance of the Mauritanian upwelling, that is regularly crossed by the AMT transect, in 

affecting picophytoplankton community composition has already been reported (Zubkov et al. 

1998). Additionally, the in situ biodiversity measure in stations 1 and 3 appears to be extreme 

with respect to the general trend of the temperature dependence of biodiversity (Fig.31b). 

The τ index displays a highly significant positive correlation with SST (Fig. 31b, R2 = 0.26, P < 

10
-4

), with a unimodal relation, corresponding to the latitudinal trend of increase in biodiversity 

when moving from the poles towards the tropics, consistent with what is previously reported 

(Rutherford et al. 1999; Worm et al. 2005; Tittensor et al. 2010). Both this trend and the zonal 

mean of the τ index show that diversity decreases at high latitudes and that a mid-latitude 

maximum exists. Altogether, the AMT data provide a picture of the variation of diversity with 

temperature that is consistent to what displayed for the τ index. Both regression lines show a very 

similar trend with a maximum at intermediate temperatures (Fig 31b). 
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Figure 29. Map of τ diversity for the global ocean showing the Atlantic Meridional Transect run 

on which the relationship between remote sensed and in situ plankton diversity has been 

investigated. τ diversity is the average of daily maps of τ computed over 7-day composites of 

PHYSAT data over the cruise monthly time lag (April-May, from 2003 to 2010). The hotspots 

emerging from this analysis characterize regions with a standing representation of several nearby 

communities, as identified by their dominant phytoplankton types (PHYSAT algorithm applied to 

SeaWiFS radiances). 

 

Figure 30. Diversity as a function of latitude: blue, normalized τ index calculated at the AMT 

transect positions and averaged over the months of April and May from 2003 to 2010; black, 

normalized τ index calculated at the AMT transect positions over the years 2003 to 2010; red, 

nano- and micro-plankton normalized Shannon index from the AMT-2 in-situ measures. 
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Figure 31. In figure (a) τ index versus AMT-2 cruise Shannon index (filled circles, Southern 

hemisphere; empty circles, Northern hemisphere). The black line is the best linear fit for the 

Southern hemisphere data, that shows a statistically significant correlation (r=0.7, p=4 10
-3

). (b) 

Shannon index (the number of the station is indicated next to the point) versus average Sea 

Surface Temperature. The best quadratic fit of the points relative to the in situ measures (red line, 

R
2
=0.26, p=0.038) is displayed together with the fit of the τ index and the confidence interval to 

one standard deviation (light blue lines). 

 

4.3.3 Remote sensed temporal patterns, stability and ecological successions 

Remote sensed biodiversity showed agreements with in situ data and macroecological patterns. In 

particular, τ index calculated on the same time lag than the AMT transect performed better than 

its annual average. Indeed, τ index can give also information of temporal variability of plankton 

diversity in the open ocean, as shown in Fig 32. The temporal change is particularly evident in 

areas characterized by seasonal regimes such as the temperate and subpolar regions, that host 

strong diatoms blooms. 

The analysis of the temporal stable signal, that indicates permanents hotspots (signal-to-noise 

ratio), confirms the fact that regions characterized by strong, seasonal, intermittent blooms are 

transient hotspots of diversity and appear mostly seasonally. On the other hand, stable hotspots of 

biodiversity are located at the equatorial front, in the Caribbean and Central America, in the 

Hawaii area, in the Indian Ocean, East of Australia and in general at the transition between the 

oligotrophic waters of the Pacific and Atlantic gyres and the more nutrient rich waters outside the 

gyres (Fig. 33). 

Transient hotspots regions characterized by strong seasonal blooms typically present diverse 

a) b) 
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ecological successions of dominant groups. Phytoplankton ecological successions and taxa 

turnover can also be described by remote sensing as shown in Fig.34, where the diversity of the 

dominant groups appearing at one location trough time is calculated and temperate and upwelling 

regions stand out. These regions are also considered among the most productive regions of the 

globe.          

To be able to investigate the relationship between global remote sensed diversity and 

productivity, we compared both the τ index and the temporal diversity in successions with 

average climatologies of chlorophyll concentration as proxy for ocean productivity. No 

significant correlation was evident between diversity and productivity if all the extreme high 

chlorophyll values were retained. On the other hand, for low to intermediate/high regimes of 

productivity (average chl < 0.5 μg/l), overall quantitative statistical analyses showed a significant 

unimodal function such as diversity of temporal successions increasing with chlorophyll 

concentration and peaking at intermediate levels of productivity (Fig. 35 and 36; regression R2 = 

0.25; p < 10
-9

; y = 0.562 +4.297x -7.005x
2
). The unimodal distribution can also significantly 

represent the relationship between τ index and productivity (Fig. 37 and 38; regression R2 = 0.14; 

p < 10
-9

; y = 0.323 + 1.970x - 3.437x
2
), although the fit is less accurate compared to the diversity 

of temporal successions. The relationship is stronger in the transition zones between oligotrophic 

and more nutrient rich waters, as showed in the map of the residuals (Fig. 38).  
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Figure 32. Index τ for the global ocean: average of daily maps of τ computed over 7-day 

composites of PHYSAT data for the period 2003–2010. a) Boreal Spring; b) Summer; c) Fall; d) 

Winter. 

 

 

Figure 33. Map of signal-to-noise ratio indicating the stability (strength of the signal) of the τ 

diversity index through time (2003-2010). 
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Figure 34. Average diversity (Shannon index) of temporal successions of dominant groups over 

the period 2003-2010. 

  

Figure 35. Bivariate histogram showing values frequency (color scale) and relationship between 

average climatology (2003-2010) of chlorophyll concentration (µg/l) at low and 

intermediate/high regimes of productivity and average diversity of remote sensed temporal 

successions (regression R2 = 0.25; p < 10
-9

). 
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Figure 36. Global map of residuals after regression analysis between average diversity of remote 

sensed temporal successions and average climatology (2003-2010) of chlorophyll concentration 

for low and intermediate/high productivity regimes. 

 

Figure 37. Bivariate histogram showing values frequency (color scale) and relationship between 

average climatology (2003-2010) of chlorophyll concentration (µg/l) at low and 

intermediate/high regimes of productivity and average climatology of remote sensed τ diversity. 

(regression R2 = 0.14; p < 10
-9

). 
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Figure 38. Global map of residuals after regression analysis between average climatology of 

remote sensed τ index and average climatology (2003-2010) of chlorophyll concentration for low 

and intermediate/high productivity regimes. 

 

4.4 Discussion and conclusion 

A new index of biodiversity based on remote sensed information about the spatial distribution of 

dominant phytoplankton groups has been proposed. This measure exploits a specific feature of 

oceanic ecosystems at the submesoscale, where horizontal transport and mixing occur on the 

same time scale of planktonic blooms. Indeed, the concept of niches that are fixed in time, typical 

of terrestrial landscapes, does not apply to the open ocean environment.  

This stirring-mediated diversity, which this approach tries to capture, is only one component of 

oceanic biodiversity at a given location, since other processes may occur, that do not appear to 

the level of the dominant type or cannot be captured by this area-based index. One example of 

physical mechanisms other than horizontal stirring which is likely to provide a strong structuring 

effect to marine communities is the vertical dynamics occurring in upwelling regions (Abbott & 

Zion 1985; García-Reyes et al. 2014).   

Upwelling regions, along with temperate and high latitude zones appear as transient biodiversity 

hotspots through time. Here the phytoplankton community structure is dominated by a strong 

ecological succession of different dominant types (Lindenschmidt & Chorus 1998; Cury et al. 

2000; Rossi et al. 2008). In the open ocean these regions correspond to regions of 

intermediate/high productivity where diversity of temporal ecological successions is related to 

chlorophyll concentration by a unimodal function already seen in numerous studies about 
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productivity-diversity relationship (Dodson et al. 2000; Irigoien et al. 2004; Gillman & Wright 

2006; Vallina et al. 2014). Also the τ index shows, to a less degree and mainly for low and 

intermediate level of productivity, a global relationship with chlorophyll. Both cases are in 

agreement with i) the functional diversity hypothesis, that states that productivity of a system can 

be maximized and maintained by the complementarity and redundancy of ecological roles 

(Tilman et al. 1997), and ii) the potential energy or ‘productivity-richness’ hypothesis, that 

predicts a positive effect of primary productivity on richness at coarse grain sizes, such as 

facilitating larger population sizes that avert extinctions or support niche specialists (Currie et al. 

2004; Tittensor et al. 2010). The non-relationship between diversity and productivity for 

high/extreme values of chlorophyll may be due to the fact that they are mostly typical of coastal 

waters and well localized strong blooms, where remote sensed derived information is expected to 

underperform and productivity to be influenced by additional factors (Longhurst 2010).    

Global remote sensed diversity patterns are also in agreement with latitudinal and temperature 

patterns already showed in macroecological studies, both in models and in in situ observations 

(Hillebrandt 2004; Fuhrman et al. 2008; Tittensor et al. 2010; Raes et al. 2011). 

Remote sensing provides a synoptic global-scale information with relatively high spatiotemporal 

resolution. Due to this advantage, its derived products can be useful to define other remotely 

sensed proxies of biodiversity. Together with the τ index I proposed here, such proxies would 

allow to describe the ecological context of in situ observations and to optimize sampling 

strategies. Moreover, the availability of long term ocean color data offers the opportunity of 

studying trends in biodiversity patterns from a new, global perspective. This work shows that 

remote sensing products may contain unexploited potential for biodiversity studies. However, 

only interdisciplinary efforts gathering together remote sensing specialists and marine biologists 

will allow to assess the power of satellite-based indexes in resolving biodiversity patterns. 
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Chapter 5 Can we derive information on higher levels of 

the trophic chain? 

Describing biodiversity patterns starting from primary producers have proven to be a powerful 

tool for understanding what determines the variety of life on Earth as well as for setting priorities 

for conservation efforts. Despite the importance of acquiring this information, the ecological 

characterization of important environments such as the open ocean is challenging, because of its 

extent and remoteness, its fluid dynamical environment and the mostly planktonic form of its 

primary producers. Identification of pelagic biodiversity hotspots still relies on sparse in-situ 

observations, or on global models. Here I use a remote sensed approach to show that most global 

pelagic biodiversity hotspots can be identified by considering the spatiotemporal features of 

oceanic niches sustaining different types of plankton. I attempt to assess the correspondence 

between the remote sensed diversity of primary producers estimated by τ index with the 

biodiversity patterns of upper trophic levels. These global patterns of biodiversity are shown to 

be highly congruent with consumers' hotspots of species richness, suggesting that remote sensing, 

when opportunely treated, has the potential of providing reliable candidates of areas of special 

biological interest for the entire pelagic marine ecosystem.    
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5.1 Introduction 

Biodiversity plays a key role for the functioning and the resilience of many ecosystems, and 

provides several services of societal relevance. However, biodiversity is not evenly distributed 

and understanding the global patterns of its variability is a central issue in ecology and an 

important step for setting effective conservation priorities (Hutchinson & Macartur 1959; Gaston 

2000; Myers et al. 2000).  It is generally recognized that top predators are receiving inadequate 

protection. This is more evident for species living in the open oceans (Game et al. 2009) where 

the effectiveness of the few existing conservation plans is hindered by the weakness of the 

international agreements. Indeed, large marine vertebrates are highly mobile, ranging great 

distances across different countries over the course of their lives.  

Migrations occur across entire ocean basins and habitat utilization varies according to regional 

oceanography and taxon-specific life-history characteristics. Regardless of the species under 

study, one of the primary drivers for their aggregation and movements is foraging. The formation 

and propagation of pelagic foraging habitats depends on complex oceanographic dynamics 

(Hazen et al. 2013), so habitat in the marine environment does not always refer to fixed 

geographical space, but to preferentially used areas that may shift and are difficult to identify 

(Scales et al. 2014). Finding a tool to identify these dynamical areas of aggregation that influence 

marine vertebrate distributions and diversity is therefore crucial for the effective conservation of 

the ‘High Seas’ and top predators (Hooker et al. 2011).  

As highlighted in the Introduction, meso- (10 - 100 kms) and sub-mesoscale (<10 kms) 

oceanographic dynamics are responsible of the development of ecologically significant features 

such as fronts and eddies (Godø et al. 2012). Within these turbulent features, convergence zones 

can enhance, by various mechanisms, plankton biomass, which is advected from surrounding 

water masses, driving bottom-up processes across multiple trophic levels including apex 

predators (Graham et al. 2001; Bakun 2006). The mechanisms linking physical processes, prey 

dynamics and top predator foraging are complex and scale dependent (Fauchald 2009). 

Being the base of the trophic chain, primary producers have received special attention in 

biodiversity studies (Jetz et al. 2009). It has been shown that their diversity strongly correlates 

with the diversity of consumers (Jenkins et al. 2013), and in some cases it has been suggested 
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that biogeographical diversity patterns estimated for primary producers may be used as a 

surrogate of patterns for higher levels of the trophic chain (Duffy et al. 2007).  

Global biodiversity patterns for primary producers have been extensively studied for terrestrial or 

coastal systems (Kerswell 2006). Although the amount of primary production in the ocean and on 

land is comparable, off-shore marine biodiversity patterns are comparatively much less known. 

Phytoplankton provide a similar contribution to the planetary primary production as terrestrial 

plants do, playing a key role in the climate system, and sustain critical services for humankind. 

Although the amount of primary production in the ocean is roughly comparable to that on land, 

there are two main differences that have challenged the application of terrestrial methods, such as 

Eulerian sampling and belt transects, to the open ocean: i) primary production is largely provided 

by microscopic organisms,  whose definition of diversity in terms of number of taxonomic units 

is still under debate (Komárek 2006), and ii) the ocean landscape is not static on ecological 

timescales, but has a strong transport processes and mixing dynamics which overlaps with the 

demographic time scales of phytoplankton.  

In the past years, circulation models and observational studies along with remote sensed 

information have circumvented some aspects of the two problems, although these solutions have 

not been integrated together yet. In the past decade circulation models have yielded accurate and 

quantitative physical simulations of the oceanic global dynamics up to the mesoscale. More 

recently the accuracy of these models have increased with the introduction of complex ecological 

components for phytoplankton (Follows et al. 2007; Stock et al. 2011). 

Observations have been providing new opportunities to the identification of biodiversity patterns 

in the ocean. Collections of observational records together with advancements in habitat 

modelling and satellite tracking of large vertebrates has led to global maps of cross-taxa species 

occurrence and richness at least at the 1000-10000 km scale (i.e., averaging out the mesoscale 

variability) (Selig et al. 2014). Complementary to in situ observations, observations by remote 

sensing contain very approximate and indirect biological information but have higher resolution 

(km/day) and global coverage.  

It is for this reason that satellite data, and especially ocean color, have been recently explored as a 

possible source of primary producers diversity information (De Monte et al. 2013).  It has been 
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shown that a Shannon biodiversity index can be formally defined on remote sensed ocean color 

by using an area-based algorithm which estimates the patchiness of putative different 

communities (identified for their different bio-optical anomaly) (De Monte et al. 2013). 

Mesoscale regions containing a mosaic of contrasted communities are marked by this algorithm 

as biodiversity hotspot candidates, assuming that they become mixed by the mesoscale 

turbulence. This index provides global maps which satisfy basic macroecological relations and 

responded positively to a global validation based on a physical and ecological circulation model 

(see Chapter 3 and 4). These maps can therefore be compared to information about the 

distribution of top predator species and biodiversity of consumers at global level.  

5.2 Objectives 

In this study, I used remote sensing, ecological models and observations to investigate the extent 

to which a biodiversity index defined on remote sensed information about the planktonic 

community (the τ diversity index) reliably assesses biodiversity patterns at multiple levels of the 

trophic chain. Both the physical and ecological dynamics underpinning global diversity patterns 

of primary producers are indirectly embedded in the index (see Chapter 3 and 4), allowing a kind 

of end-to-end approach.  

More specifically, to achieve such objective, I compared global biodiversity patterns of primary 

producers and consumers, taking into account that there is a transition from direct effects of 

oceanography (depending on the characteristics of the life stages of the species) on the 

distribution of organisms, to the indirect effects via predator and prey distribution and behavior. 

Hotspots of biodiversity of primary producers correspond to regions of aggregations of top 

predator species and in general to regions of higher cross-taxa biodiversity. These results suggest 

that the remote detection of marine biodiversity hotspots can be a tool in monitoring the health of 

marine ecosystems at the global scale. 

5.3 Bottom up effect of plankton seascape diversity on higher levels of the 

trophic chain.  

5.3.1 Remote sensing phytoplankton biodiversity and top predators aggregation   

A remote sensing biodiversity indexhas been defined as the Shannon index of the distribution 

of the relative spatial extension, within a disc of given radius, of areas dominated by a different 



  

 

117 

dominant phytoplankton community (see Chapter 2.2.3). Algorithms processing ocean color 

attribute to every pixel a tag that reflects some properties of the local ecosystem (different 

dominant planktonic types, e.g. diatoms and coccolitophores, are distinguished in the 

classification), but it is not possible to resolve finer features of the community. This approach 

provides global maps of phytoplankton biodiversity that have been regionally validated. 

In contrast to the observations of phytoplankton biodiversity, which provide a sparse coverage for 

many remote regions of the global oceans, a relatively larger amount of data has been collected in 

recent years by tracking the movement of marine predators. Regions with increased probability of 

localization of different species of marine predators have been identified (Block et al. 2011; 

Kaschner et al. 2011), and are considered as biodiversity hotspots of high trophic level species. 

Diversity hotspots estimated by the τ index appear to match several independent observations 

relative to marine top predators. The τ index is particularly high in the North Pacific Transition 

Zone (NPTZ) (Fig. 39). The NPTZ is a highly dynamic region that delineates the boundary 

between warm, oligotrophic subtropical gyres and cold, productive subarctic gyres, characterized 

by contrasted phytoplankton communities, and is a marine biodiversity hotspot of global 

significance (Sydeman et al. 2006). Numerous marine vertebrates with contrasting life histories 

preferentially use areas of the NPTZ, including northern elephant seals (Mirounga 

angustirostris), salmon shark (Lamna ditropis) and blue shark (Prionace glauca), Bluefin 

(Thunnus thynnus) and albacore tuna (Thunnus alalunga), Laysan (Phoebastria immutabilis) and 

black-footed albatrosses (Phoebastria nigripes), and loggerhead turtles (Caretta caretta) (Scales 

et al. 2014). The NPTZ is identified by Block et al., 2011 as a region where a high number of 

predator species concentrate, and attains high τ values more to the West, in proximity with the 

California Current large marine ecosystem. This ecosystem is one of the major Eastern boundary 

upwellings (e.g. Canary Current, Benguela Current, Humboldt Current) and is characterized by 

intense surface frontal activity between cool, nutrient-rich upwelled water and warmer 

oligotrophic waters further offshore and is considered also a hotspot of marine biodiversity 

(Chavez & Messié 2009). Bioaggregation in upwelling-driven frontal structures attracts foragers 

from diverse foraging guilds (Nur et al. 2011; Sabarros et al. 2013). On the contrary the area 

between the California Coast and the Hawaii is a region with minimum predator density (Block 

et al. 2011), and accordingly attains low τ values (Fig. 39).  
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Worm et al., (2003) (Worm et al. 2003) estimated the biodiversity of top predator species such as 

tunas and billfishes by fishing catches in few regions of the globe. Although data are not 

uniformly distributed, a large scale pattern correspondence between high τ values and the 

diversity rich zones of Hawaii and in the Caribbean Sea and low τ values with less biodiversity 

rich areas north of Hawaii and in the offshore Atlantic Ocean is evident (Fig. 40). In Central 

America, a strong latitudinal change in biodiversity (τ ) is also evident in proximity of the 

Galapagos. It is in correspondence of the Pacific Equatorial Front, manifesting between the 

equatorial upwelling to the South and warmer tropical waters to the North. It is characterized by 

steep gradients in temperature, salinity and nutrients (Ballance et al. 2006). It has been shown 

that planktivorous seabirds strongly associate with this feature, which entrains zooplankton in 

surface layers (Spear et al. 2001).   

On a more global scale, the τ index map shows similarities with the maps of marine mammal 

occurrence and species richness derived by predictions of global distributional ranges and 

empirical observations (Fig. 4 of Kaschner et al., 2011). Similarities are also evident considering 

coarse global patterns of species richness encompassing several phyla, from zooplankton to 

marine mammals (see Tittensor et al., 2010, Fig. 2d, reproduced in Fig 41). Global hotspots of 

biodiversity are described around the Philippines, Japan, China, Indonesia, Australia, India and 

Sri Lanka, South Africa, and the Caribbean and southeast USA. Cross-taxon oceanic diversity 

shows consistent bands of high average diversity at 30° latitude in both hemispheres. Within 

these latitudes, oceanic diversity peaks closer to the continents and along boundary currents such 

as the Gulf Stream and Kuroshio Current, probably owing to the availability of favorable habitat 

for foraging. The same is found in biodiversity patterns described by τ index and explanations 

were given in Chapter 3 and 4. 

The matching of areas considered hotspots for predator diversity with transport-induced hotspots 

is a feature that supports the bottom-up propagation of biodiversity across the trophic chain, and 

thus further supporting the possible use of the τ index for detecting biodiversity hotspot as well as 

habitat shift and degradation for higher tropic levels. 
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Figure 39. τ index map (on the left), centered in the North Pacific, where the North Pacific Transition 

Zone, the region East of Hawaii and the California current stand out as hotspots in agreement with 

biodiversity hotspots found by Block et al., 2011 in the Pacific (on the right). 

 

  

 

 

 

 

 

 

Figure 40.Top: τ index map, centered in Central America, where hotspots of biodiversity stand out in 

agreement with top predators biodiversity hotspots found by Worm et al., 2003 (A, species richness). 
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Figure 41. Global marine species richness for oceanic taxa. Cells with a bold outline are hotspots 

(defined as the 10% of cells with highest mean richness). Horizontal tick marks on color-bars 

indicate quartiles. From Tittensor et al. 2010.  

 

5.3.2 Covariance and congruence of primary production and consumers' diversity  

This possibility of mapping phytoplankton biodiversity from satellite-detected patchiness of their 

bio-optical signature allows to test whether the relation between global diversity patterns of 

primary producers and consumers, already observed on land, is present in the ocean. For 

consumers, I used AquaMaps species richness (see Chapter 2.3.2). In contrast with maps based 

on observations only, AquaMaps integrates records of species occurrence and knowledge of 

habitat modelling together, providing smoother patterns with a higher resolution that matches 

better the satellite-derived phytoplankton diversity maps. Covariance of the two global maps is 

presented in Fig. 42. A linear regression model indicates a strong correlation (Pearson’s r = 0.61; 

linear regression fit R2 = 0.38; p < 10
-9

, intercept -0.04; b1 = 1.697). In order to test whether this 

is a confounding effect due to a common environmental determinant, I studied the residuals of 

the regression analysis (Fig. 43) versus SST, gradient of SST, Chl, and TKE and also computed 

regressions of the AquaMaps diversity versus the same environmental variables (Fig 44). None of 

the environmental variables scored better than the satellite-derived diversity, indicating more a 

direct relationship than a common environmental determinant (TKE R2 = 0.06; SST R2 = 0.29; 

SSTgrad R2 = 0; Chl R2 = 0.004; p < 10
-9

). The goodness of fit for high-diversity regions is 

confirmed by the substantial overlap of the biodiversity hotspots defined according to the 

different indexes. In each map, I defined biodiversity hotspots as the top-valued pixels covering 

20% of the total ocean surface. This percentage is set in agreement with the target chosen by the 

Convention on Biological Diversity, which aims at protecting at least 10% of the global ocean 
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extension by 2020 (Aichi Target 11). Indeed, the seascape biodiversity hotspots overlap 

substantially with hotspots of diversity at multiple levels of the ecosystem covering 12% of the 

globe for 20% coverage of the highest values for each index (Fig. 45). 

 

Figure 42. Bivariate histogram showing values frequency (color scale) and relationship between τ 

diversity information (estimated at 1 degree disk radius) (x axis) with its relative map and cross-

taxa global biodiversity estimated by species richness based on AquaMaps (y axis) with its 

relative map. The distribution of the dominant phytoplankton groups resulted from PHYSAT 

reanalysis is also showed. 
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Figure 43. Study of the residuals of the regression between τ diversity information (estimated at 1 

degree disk radius) and global cross-taxa biodiversity estimated by species richness based on 

Aquamaps. The residual values have been averaged inside classes depending on the 

environmental characteristics present at each location. A) annual climatology of Total Kinetic 

Energy (m/s); B) annual climatology of Sea Surface Temperature gradient (C°/km); C) annual 

climatology of Sea Surface Temperature (C°); D) annual climatology of Chlorophyll (µg/l).   
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Figure 44. Remote sensed annual climatologies (2003-2010) of a) Total Kinetic Energy (m/s), b) 

Sea Surface Temperature gradients (C°/km), c) Sea Surface Temperature (C°), d) Chlorophyll 

concentration (μg/l). 
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Figure 45. Biodiversity hotspots covering 10% of the global ocean as estimated by overlaying the 

highest values of τ remote sensed diversity of primary producers and biodiversity of consumers 

estimated by AquaMaps.   

 

5.4 Discussion and conclusion 

Remote sensing have been showing that inhomogeneities as strong as basin scale also exists in 

the ocean on much shorter spatial scales (~10-100km) and on temporal scale comparable to the 

demography of phytoplankton (days to weeks). These inhomogeneities form a mosaic patchiness, 

similar to that on land, but more dynamic. Recently, the mesoscale environmental mosaic 

patchiness has been shown to reflect into a mosaic of contrasted optical properties that can be 

detected by satellite sensors and that are considered signature of phytoplankton communities 

dominated by different types. Spatial analysis of these remote sensed, fine scale mosaics formally 

yields a Shannon index that has been proposed to represent a proxy of marine biodiversity at the 

scale of 100kms (De Monte et al. 2013). Here I studied this index in relation with top predators 

and global consumers’ diversity, finding that the satellite-derived biodiversity recognizes most 

areas of aggregation for top predator species and has a good correspondence with consumer 

diversity in terms of both covariance and pattern congruence. However, not all the areas of high 

species richness overlap with diversity of primary producers, among them coastal areas of the 

Indonesian archipelago and waters surrounding Azores archipelago in the North Atlantic Ocean. 

These habitats are likely to be characterized by other ecological processes with strong influence 

on the species community structure. Moreover, the approach developed here seems to be more 

suitable for detecting areas of aggregation of large vertebrate pelagic species, because they base 
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their movements on the tracking of ephemeral and persistent oceanic hydrographical features that 

lead to the fast formation and dissipation of areas of high prey aggregation and diversity.    

Despite few mismatches, overall these results suggest that spatially extended data even with poor 

community resolution is a promising tool to evaluate and monitor biodiversity hotspots at the 

global scale. They also suggest that the planktonic biodiversity enhancement by physical forcing 

extends beyond primary producers to other levels of the trophic chain, even if the exact 

mechanisms are not fully elucidated (Leibold et al. 1997; Bakun 2006). They may support 

aggregation and higher biomass and diversity through the trophic chain and relax density 

dependent interactions by offering a wider set of competitive opportunities (Huston 1979; Strong 

1983; Griffin et al. 2008). Indeed, density and diversity of predators and preys affect the 

efficiency of trophic energy transfer. Under constant resource supply, the density of a species 

determines the strength of intraspecific and interspecific competition, which can also influence 

the effect of biodiversity on ecosystem functioning (Cardinale et al. 2006; Duffy et al. 2007). In 

case of environmental and resource heterogeneity, this strength can be weaken promoting 

coexistence through spatial and temporal niche partitioning and diversification of patterns of 

resource utilization.  

This result is somehow surprising because previous studies showed, for instance, little association 

between phytoplankton and zooplankton diversity at macroecological scales (Irigoien et al. 

2004). Possible causes of this discrepancy are the scale and the number of replicates of the 

sampling (regional in this case, i.e. local in Irigoien et al. 2004), the end to end approach that 

considers the ensemble of the trophic chain and not only zooplankton, and the two-

dimensionality of the maps. For instance, when computing the correlation between our satellite-

derived proxy and Aquamaps biodiversity georeferencing only in terms of the latitude, I still find 

a good association (Pearson’s r = 0.77, p< 10
-9

), showing that scale and number of replicates and 

an end-to-end approach are likely to be essential in global biodiversity studies.  

The strong association between phytoplankton biodiversity and top predators distributions and 

AquaMaps biodiversity suggests that phytoplankton biodiversity can be used as a surrogate first 

guess for cross-trophic biodiversity hotspots and indirectly to monitor the health of marine 

ecosystems at the global scale. The identification of priority areas, such as ‘hotspots’, has been an 

essential tool for conservation planning. However, identifying spatially explicit areas of high 
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biodiversity in the open ocean has been limited by the lack of data and in particular the small 

geographic coverage. Considering that the phytoplankton biodiversity was retrieved by remote 

sensing and had global coverage, this approach is therefore particularly promising to improve 

global conservation strategy efforts.  

Several studies can be envisaged in the future. Field studies assisted by real time processing of 

satellite data should help to better understand the strength and limitations of remote sensing of 

biological diversity, and suggest in which direction to develop next generation sensors for 

satellites. In particular, they may explore whether the reliability of the remote sensed proxy and 

the association between phytoplankton and consumer biodiversity hold at higher spatiotemporal 

resolutions. Moreover, specific trophic levels depending on the regional system under study can 

be isolated and the indirect influence of planktonic biodiversity investigated. This tool would be 

of invaluable importance to nominate areas of potential interest for conservation in the open 

ocean, as their establishment and enforcement is still highly debated (Halpern et al. 2008; Game 

et al. 2009; Grantham et al. 2011). The main issues are how to cense marine life in such a remote, 

vast and dynamical environment, how to recognize and define areas of aggregation of species 

characterized by different life stages and habits, how to enforce protection in zones beyond 

national jurisdiction. Because of these reasons, being able to describe and monitor the ecosystem 

at such temporal and spatial scales would represent a great step into the establishment of marine 

protected areas in the high seas.    
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Chapter 6 Perspectives-linking remote sensing to in-situ 

high-throughput information of plankton community. 

6.1 Introduction 

Comparing biodiversity in different places and times requires methods to quantify its extent and 

to track its changes. Many indicators of biodiversity are currently in use, most of which have 

been developed primarily for terrestrial macroscopic organisms (Magurran 2004). Whereas 

measuring the diversity of microscopic organisms especially those living in the marine 

environment such as phytoplankton is notoriously more problematic (Carstensen et al. 2005; 

Haegeman et al. 2013). Planktonic communities indeed include large numbers of species, mostly 

at very low abundance, whose quantification involves the application of field intensive sampling 

protocols. Sampling design must also take into account that phytoplankton exibit high species 

turnover as a response to changes in the environment, making their structure spatially and 

temporally variable (Dybern & Hansen 1989; Pannard et al. 2008). Furthermore the taxonomic 

classification of many species requires specialized and time-consuming methods (e.g. electron 

microscopy and high level of taxonomical expertise). Finally, the analytical methodologies 

available for analysing biodiversity pose several limitations depending on the used method with 

the result that, for instance, some organisms could be overrepresented while others never detected 

(Gotelli & Colwell 2001; Magurran 2004). Together, natural variability and human error may 

substantially affect the consistency of the quantification, thus invalidating expensive sampling 

efforts and analyses. The increasing availability of throughput imaging and sequencing 

technologies at acceptable costs (e.g. FlowCam and Illumina) (Logares et al. 2012) is now 

enabling the exploration of microbial diversity at an unprecedented scale. Indeed, they allow to 

analyse rapidly and cost effectively “en masse” large number of samples and to have a detailed 

view of the community composition. However, issues also exist related to these techniques. For 

instance, imaging better detects organisms with evident and distinctive morphological features 

and in a certain size range, whereas molecular tags can give different classifications (depending 

on the considered loci of the genome), are subjected to sequencing errors, require reference 

sequences for correct assignation of the taxon and usually define species boundaries based on a 

priori percent of sequence similarity with available databases (Moritz & Cicero 2004; Piganeau et 

al. 2011). 
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The objective of this chapter is to open perspectives onto the use of new generation high 

throughput techniques for studying how data type and analysis methods may bias biodiversity 

estimation.  Indeed, in order to compare in-situ with satellite-based diversity estimations, we need 

to bridge the gap between two different techniques; the former which yields very detailed, but 

geographically and temporally sparse data and the latter which provides data at high 

spatiotemporal resolution, but that is associated to an extremely shallow view of the community. 

In this Chapter I will investigate a) variation in morphological diversity in presence of physical 

structures like hydrographic fronts, b) the difference in biodiversity information obtained using a 

morphological or a genetic approach,  and c) the shape of the community structure using Rank 

Abundance Distributions. To do so I analysed different sources of data collected during the Tara 

ocean expedition (see Chapter 2.3.3). There is not one single way of looking at microbial 

communities in the ocean, but combining different approaches requires to first understand which 

features of the community different data allow to tackle (Magurran 2004). 

To analyse the morphological diversity structured by hydrographic context (fronts), I used 

data from a 100 km transect in the Balearic Sea (see Chapter 2.3.3). This region is characterized 

by complex circulation and hydrography with a high temporal and spatial variability (Mooney 

2002). Well-developed mesoscale filaments and eddies (Alborean gyres, Catalan fronts) have 

been described in the shelf/slope region of the continental side (Fig. 46). These are instabilities 

associated with a thermohaline front lying along the continental slope. A second thermohaline 

front is found along the islands slope. Exhaustive analysis of the spatial variability associated 

with these structures showed intensified density gradients associated with vertical motions up to 

50 m/day, about two orders of magnitude higher than the classical vertical motions typical of 

coastal upwelling conditions (Send et al. 1999). Within the Balearic sea, all four trophic regimes 

which characterize the Mediterranean Sea have been identified (coastal, blooming, intermittent 

and non-blooming) (D'ortenzio & Ribera d'Alcalà 2009). Together with the strong seasonality 

ruling the basin, such a diversity of regimes creates optimal conditions for the alternation of 

phytoplankton populations dominated by different functional groups and species (Chesson 2000). 

The West Mediterranean Sea is therefore a good case study to investigate how morphological 

diversity may be influenced by hydrographic context even at small scales. 

The second aspect that I investigated in this chapter is the robustness of taxonomic 
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classification performed through a morphological or a genetic approach. To conduct this 

analysis I used only diatom data collected from three stations in the Mediterranean Sea (the first 

three stations of the Tara Oceans expedition where the sequencing data were produced in a pilot 

study for protist metabarcoding). Although there have been some studies comparing marine 

community structures obtained using different molecular techniques (Piganeau et al. 2011), few 

studies compared diatoms communities identified morphologically and genetically (Amato et al. 

2007). Conventionally, phytoplankton taxonomy has been based on morphological features, with 

the underlying assumption that these defining characteristics were distinctive to a single species 

and related to specific physiological function (Sournia 1994; Tett & Barton 1995). Recently 

molecular techniques have been successfully applied to classify bacterial groups, plankton 

communities and eukaryotic diversity. These molecular techniques have revealed new lineages 

(Not et al. 2007) and suggested that the bacterial and eukaryotic diversity may be orders of 

magnitude greater than previously expected (Vaulot & Marie 1999; Massana & Pedrós-Alió 

2008). Morphological identification has a lower taxonomic resolution with respect to 

phylogenetic and molecular techniques, thus the direct comparison of observations based on these 

different techniques are intrinsically difficult. Here, I computed the most commonly applied 

biodiversity index to data issued by metabarcoding and by morphological classification. 

The structure of a community is also an important component of biodiversity to investigate, 

especially for highly complex community structures such as that of plankton. Quantitative 

analysis allows to study the abundance distribution of species composing the community. The 

Rank Abundance Distributions (RADs) can be related to processes acting in the environment as 

well as ecological processes determined by species interaction (MacArthur 1957). The count of 

abundant species (common) is the first mark of characterization of a community and the one less 

subject to sampling issues, therefore the most studied in classical ecology. However, advances in 

technology have allowed to observe microbial RADs possessing very long tails, indicating that 

the rare biosphere is a very important part of the community. Indeed, rare species are likely to 

influence the distribution of the abundant classes in spatio-temporal successions (Purvis & Hector 

2000; Lennon & Jones 2011). Rare species are often represented by organisms, in a quiescent 

state or with slow growing processes, that will burst when certain environmental variables will 

provide the optimum conditions to outcompete the dominant types. The bulk of the empirical 
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work has recognised two facts: RADs follow a “hollow curve” (on arithmetic scale), with many 

rare species and few common species in every system studied and within this broad constraint, 

there is great variation in the details (McGill et al. 2007). Several authors have also highlighted 

that many theoretical models can produce the same diversity distributions curve (McGill 2003; 

Mouquet & Loreau 2003), however to suggest hypothesis about the implicit model responsible of 

the shape of the RADs is not the purpose of this study. It is widely proposed that the abundance 

distribution of the species in a community, as numerous other biological phenomena (Solé et al. 

1999; Solé et al. 2000; Allen et al. 2001) can be represented by a power-law function (McGill 

2003; Pueyo 2006). Power-law distributions are characterized by very long heavy tails and are 

strictly related to logseries and lognormal distributions as they are all successive terms in a 

Taylor series expansion. I used this function to study the slope of the distribution of 

photosynthetic protists as an informative metric for the diversity of community structure to be 

eventually related to remote sensed diversity indexes. 

 

6.2 Tara cases study caveats and pitfalls 

6.2.1 Results: Morphological diversity structured by hydrographic context 

I analyzed horizontal stirring effects on the distribution of microbial marine communities due to 

hydrodynamical processes along a ~100Km transect in the Western Mediterranean Sea. The 

phytoplankton community has been characterized by cytometric diversity using Seaflow (see 

Chapter 2.3.3.2). Satellite chlorophyll images do not show any variation or trend along the 

transect, therefore the region seems homogeneous from the viewpoint of production (Fig. 46a). 

On the other hand, the calculation of the longitudinal advection shows a remarkable 

heterogeneity of the origin of water masses (Fig. 46b) and the calculation of the Lyapunov 

exponents shows the presence of eddies in the region and two strong fronts on the trajectory of 

the transect (Fig. 46c). Changes in biodiversity appear in correspondence with these ocean fronts. 

In particular, four different zones are identified: 1) a region of low biodiversity in the inner side 

of the eddy, 2) a region of higher biodiversity in the outer side, 3) a transition zone from low to 

high diversity close to the strongest front and 4) a sustained high biodiversity close to the coast   
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Figure 46. a) Chrorophyll concentration (µg/l); b) 15 days backwards longitudinal advection of 

water masses showing their origin; c) Lyapunov exponent showing transport barriers and 

overlayed differences in planktonic biodiversity along the transect, estimated by Seaflow (exp 

Shannon index).  

  

  

6.2.2 Results: Morphological and genetic diversities: crossvalidation 

I compared samples from 3 different stations in terms of methods used to estimate biodiversity 

robustness of taxonomic classification performed through a morphological or a genetic approach 

I compared biodiversity estimates obtained from in situ observations of samples from three 
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different stations of the Tara Oceans Expedition. These three stations in the Mediterranean Sea 

were the first to be released and constituted a pilot study for the development of different 

observation techniques. In particular, I used preliminary counts of diatoms obtained via 

morphological classification and via metabarcoding (see Chapter 2.3.3.3 and 2.3.3.4) and looked 

at consistency in the estimation of biodiversity using classification at genus level from the two 

methods. 

Station 7 stands out as the less biodiverse among the three Mediterranean stations, consistently 

through the different samplings and statistical methods. Stations 23 and 30 usually display very 

similar statistics. rDNA tags identify 46 diatom genera for station 23, 38 genera for station 30 and 

26 genera for station 7. K-dominance curves calculated on genetic tags show more similarity 

between station 23 and 30 compared to station 7, but with 23 being the most diverse (Fig. 47). 

Morphological analysis showed lower resolution (Fig. 48, 49, 50). Less than 10 diatom genera 

were detected by the FlowCam for station 23 and 30 (7 not available). Diatom surface diversity 

from K-dominance curves calculated on morphological data is very similar between stations 23 

and 30, only the first dominant species has a different relative abundance (Fig. 48).  

Biodiversity indices, ecological distance (β diversity metrics) and the decay exponent of the 

RADs are calculated for the surface samples (Magurran 2004; see paragraph 1.2.5). All the 

distributions fit a geometric model (p < 0.001), presenting almost only one dominant genus 

characterizing the community, even if the dominant genus changes using different methods for 

station 30 (Chaetoceros vs Hemiaulus) and, within the rDNA tags method, changes for station 7 

from Chaetoceros to Dytilum. This condition is in agreement with abundance distribution model 

theories, where geometric and logseries shapes (Motomura 1932; Fisher et al. 1943) are typical of 

species-poor communities characterized by minimal cooperativity where the community is 

structured by one or few factors and there are only one or few dominant species. This is in 

accordance also with a comprehensive study of RADs of Mediterranean plankton where the 

entire community is generally well represented by power law functions but only diatoms are best 

represented by logseries (Pueyo 2006). All the considered indices rank the stations consistently in 

terms of diversity, with some variation concerning station 23 and 30 (Table 4 and 5). Station 7 

results to be the less diverse for all the indices and its community structure is less similar to 

station 23 and 30, probably due to the influence of Atlantic water masses that come inside the 
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Mediterranean Sea through the Gibraltar Strait. Considering the rDNA Tags, station 23 appear to 

be the most diverse, but changing the method to FlowCam identification, station 30 results to be 

the most diverse. Taxonomic distinctness instead describes station 30 as the most taxonomically 

diverse, thus genus identified are less closely related compared to genus present in the other 

stations.  

In spite of the general agreement on the differences in biodiversity between stations, important 

inconsistencies appear when the relative abundance of diatom genera, identified by 

morphological and genetic methods, are compared within each station. Some genera identified by 

the FlowCam are not identified by the rDNA tags, even if the sequence for that genus was known 

(SILVA); the relative abundance of the dominant genus Chaetoceros is very different between the 

two methods for station 23 and moreover the dominant genus change completely in station 30, 

where Hemiaulus is enormously present in the FlowCam data and absent in the rDNA tags, even 

if the sequence is known (Fig. 49 and 50). These inconsistencies may reflect the preliminary 

nature of the assignation, that has proven particularly problematic for marine eukaryotes, due to 

the fact that a large proportion of species, and sometimes of genera, are still unknown. Some 

assignation problems of the Tara Dataset have been solved later, when the dataset has expanded 

to include more stations.

 

Figure 47. Comparison between K-dominance curves of station 7, 23 and 30 estimated by genetic 

diversity. 
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Figure 48. Comparison between K-dominance curves of station 23 and 30 estimated by 

morphological diversity. 

 

 

Figure 49. Comparison between diatoms community structure detected by morphological and 

genetic diversity for station 30. 
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Figure 50. Comparison between diatoms community structure detected by morphological and 

genetic diversity for station 23. 

 

 

Table 4. Biodiversity indexes calculated for the sampling stations 7, 23, 30 for morphological 

(red) and genetic (blue) diversity. 

 

S 

(genu

s 

richn

ess) 

Q 

(Kempto

n & 

Taylor 

1976) 

Shannon

-Wiener 

(Shanno

n 1948) 

Linearized 

Shannon 

(Jost 2006) 

(95% CI) 

Estimated 

Shannon 

(Chao & 

Shen 

2003) 

(95% CI) 

Taxonomic 

distinctness 

(Warwick & 

Clarke 1995) 

Interpolatio

n slope 

St 7 diatoms  

rDNA genus 
26 21,52 1,97 

7,17  

(6,85-7,9) 

1,99 

(1,93-2,07) 

4,96 
0,81 

St 23 diatoms 

rDNA genus 
46 30,87 3,05 

21,1 

(20,89-25,94) 

3,15 

(3,05-3,26) 

5,17 
0,92 

St 30 diatoms  

rDNA genus 
38 31 2,49 

12,06  

(11,69-15,18) 

2,6 

(2,47-2,73) 

5,35 
0,9 

St 23 diatoms  

FlowCam genus 
9 6,73 1,22 

3,39 

(3,09-3,78) 

1,23 

(1,13-1,33) 

3,9 
0,61 

St 30 diatoms  

FlowCam genus 
9 6,73 1,3 

3,67 

(3,26-4,39) 

1,34 

(1,19-1,49) 

3,86 
0,6 
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Table 5. Ecological distances (Bray-Curtis Dissimilarity Index) between 7, 23, 30 sampling 

stations for morphological and genetic diversity (blue) and between stations for genetic diversity 

only (red).  
Bray-Curtis Dissimilarity Index 

St 23 diatoms  

FlowCam genus 
0    

St 30 diatoms 

FlowCam genus 
0,62 0   

St 23 diatoms  

rDNA genus 
0,63 0,67 0  

St 30 diatoms  

rDNA genus 
0,54 0,67 0,24 0 

St 7 diatoms  

rDNA genus 
0    

St 23 diatoms  

rDNA genus 
0,68 0   

St 30 diatoms  

rDNA genus 
0,64 0,24 0  

 

 

6.2.3 Results: the shape of the community by abundance distributions 

I analysed the plankton community structure of all available Tara stations considering both the 

abundance and the diversity of photosynthetic eukaryotes at the taxonomic resolution of 97% 

OTUs (see Chapter 2.3.3.4). The shape of the RADs of the sampled communities varies from 

station to station. Differences in the RADs shapes are mostly related to the most abundant OTUs 

(Fig. 51), while the heavy tail is always present. All the distributions seem to follow a power-law 

function (p < 0.001) (Fig. 52), accordingly to results from comprehensive study of the 

distribution function of total phytoplankton community (Pueyo 2006). When the RAD is split in 

common and rare components, the means of the common versus rare slope are significantly 

different (p < 0.001). The interpolation curve presents similar slopes for the rare part of the 

community (Z-test p > 0.05) and different slopes for the common part (Z-test, p < 0.001) (Fig. 

53).  

I compared the slope of the interpolation curves of the common OTUs to the environmental 

context of the stations to see if the extreme values of the slope corresponded to extreme values of 

the environmental conditions. The non-redundant variables identified by the Principal 

Component Analysis (Fig. 54) describing the dissimilarities among stations are represented in the 
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Multi-Dimensional Scaling plot in Fig. 55. Stations outside the cloud are stations where the slope 

of the common OTUs curve are further away from the mean (i.e. station 85, 82, 84, 67, 6, 49). 

This is consistent with the expectation that the distribution of the common part of the 

photosynthetic community strongly responds to the contextual environment, thus affecting the 

shape of the RADs. This aspect can have evident impact on the interpretation of biodiversity 

indexes if the distribution of the community is not known. The most straightforward example is, 

if biodiversity indexes that consider both richness and abundance are applied on samples of 

communities in a blooming phase, they will be disproportionally influenced by the dominant 

species and will not correctly represent the true diversity of the community. 

 

 

Figure 51. Rank Abundance Distributions for each surface station using V9 barcodes of 

photosynthetic eukaryotic plankton. Classes with abundance less than log(10) reads have been 
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eliminated. Classes with less than log(5000) reads are considered rare. Common (red) and rare 

(blue) curves of the community are showed separately with their respective interpolation. 

   

 
Figure 52. Overlay of the interpolation curves for all the stations. Classes with abundance less 

than log(10) reads have been eliminated. Classes with less than log(5000) reads are considered 

rare (blue).  
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Figure 53. Scatterplot of the slopes for the common (red) and rare (blue) community interpolation 

curves for each station. Green circles represent the mean of the slope for the common and rare 

community. 

 

 

 

Figure 54.  Principal Component Analysis using satellite variables (1=Sea Surface Temperature, 

2=Chlorophyll, 3=Finite Size Lyapunov Exponent, 4=latitudinal component of Total Kinetic 

Energy and 5= longitudinal component of Total Kinetic Energy) indicates which variables are 

contributing the most in describing the dissimilarity among the stations in terms of their 

biophysical environmental context. 
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Figure 55. MultiDimensional Scaling showing a good representation (SStress = 0.19) of the 

dissimilarity among stations in terms of environmental context. 

 

6.3 Discussion and conclusion 

With this prospective chapter my overall intention was to highlight how biodiversity studies, 

weather based on remote sensing data, or morphological and molecular analyses, may be 

seriously biased if environmental variability and population characteristics are not taken into 

account. The complexity of this problem is further increased by the multiple ways proposed to 

measure biodiversity. Despite the advantage and disadvantages of all methods have been properly 

highlighted, an overall guide of how and when to use a specific method is not available. Different 

methods highlighted different aspects and all have limitations.  

In particular I focused on the high variability observed in data collected in-situ. In-situ data 

provide only a snapshot in time and space and if not properly contextualized with the local 

environmental and physical variability, it is difficult to extrapolate processes linked to ecosystem 

functions. The major problems associated to in-situ data are: a) high environmental heterogeneity 

even at small scale, b) high data noise, c) uncertainty in the comparisons across studies. In this 

study I showed how high variability may occur in biodiversity estimated even at small scale, 

suggesting that sampling replicates, if not conducted exactly within the same homogeneous 

location, may yield substantially different results. Consistency across replicates may also be 

affected by the increasingly variable weather patterns associated to climate change. I also 
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compared taxonomic classification based on morphological analyses and genetic techniques to 

show how data heterogeneity may also arise by differences in methodologies. As a result in-situ 

dataset may include an high signal noise which must be properly minimized or modeled in order 

to obtain reliable and robust results. In this respect remote sensing information could provide an 

important tool to improve in-situ sampling as it provides the global view helpful to develop 

appropriate sampling design by taking into account local heterogeneity. But most importantly, 

data from remote sensing can be integrated with information provided in situ to have a broader 

view of the context and correctly interpret the locally available information from in-situ data. 

The Mediterranean Sea is characterized by complex circulation and hydrography with 

characteristic water types present at different geographic locations (d'Ovidio et al. 2004; 

D'ortenzio & Ribera d'Alcalà 2009). These variable hydrographic patterns, in conjunction with 

plankton’s individual life histories, are important to shape the distribution of plankton 

communities across the basin (Volpe et al. 2007). Therefore in regions where diversity may be 

largely influenced by the hydrographic context even at small scale (i.e. Mediterranean Sea), the 

choice of the scale and the sampling method are fundamental aspects to consider in biodiversity 

studies along with incorporating information about the biological and environmental context.  

In the first case study, the data obtained by a continuous sampling technique (SeaFlow) 

evidenced that, on relatively small spatial scales (- in this case, ~10 kms), physical structures can 

constrain plankton distribution and affect biodiversity patterns.  The change in biodiversity was 

particularly evident passing from the inner to the outer side of the eddy, and at the border of the 

filament constituting a two-fold barrier between different communities.   

In the second case study I analysed the variation in the structure of diatoms communities among 

three stations considering morphological and molecular methods. I found substantially different 

structures across stations which can be related to the history of the water masses they belong to. 

Station 7 is likely to be strongly influenced by water masses coming from the Atlantic Ocean, 

which present peculiar physical and chemical characteristics and also transport species that are 

typical of another basin (Coll et al. 2010), therefore its dissimilarity compared to the other 

stations may not be surprising. The difference in the sampling time is also likely to have an 

effect. Indeed September, the month during which station 7 was sampled, is usually characterized 

by the late summer bloom (Garcés et al. 1999; Barale et al. 2008). According to the available 
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total Chl concentration data, station 23 is the most productive probably because of its proximity 

to the coast and anthropogenic activities. On contrary to station 7 and 23 which were chosen 

randomly, station 30, which also showed high biodiversity, was selected based on a satellite-

guided sampling strategy aimed at targeting the core of an hydrodynamically very stable and 

recurrent eddy (Menna et al. 2012). As a result, with the available data it is not possible to infer if 

these hydrographical conditions influenced or not the community structure of station 30. Other 

stations close to Cyprus would be worthwhile to be investigated. Another way to infer if physical 

controls are capable of structuring the communities and promote differentiation among stations is 

to consider more phytoplankton groups beyond diatoms because different groups have different 

responses to local environmental conditions. Furthermore, this would allow comparison with 

remote sensed data of phytoplankton dominant types and diversity. 

Some issues have been identified regarding the methods used in the pipeline leading from the real 

ecosystem to its representation in terms of biodiversity indicators. Errors occurring at any step 

between sampling and bioinformatic analysis may lead to inconsistent results in comparing 

various aspects of biodiversity at the different stations. First of all, it is important that the 

sampling effort is equal for all the stations and that the area is well represented (i.e. is 

environmental heterogeneity present?) (Cao et al. 2002). The statistical representativeness of the 

samples could be strengthened in different ways. One could use more replicates (i.e. Tara 

protocol provides 2 tubes for each fraction for each analysis, but replicates are not available yet) 

and include probabilistic analysis (Gotelli & Colwell 2001). Contextualizing with satellite and in-

situ physical and chemical environmental data would moreover allow to include spatial and 

temporal variability in the analysis (i.e. sampling was made in different times, spanning also 

different seasons, thus not directly comparable). 

Secondly, the need of a reference sequence for the identification of V9 rDNA tags and the 

statistical method used for the assignment leave out a great number of sequences that cannot be 

identified yet, but that should be quantified and included in the analysis in order to have a correct 

account of the abundances (Wilson et al. 2011). Moreover, multiple copies of the same sequence 

per individual could lead to an overestimation of abundances and a risk of change in the class 

frequencies (Kembel et al. 2012). Therefore, it is important to have an idea of the proportion of 

the number of copies for each taxa, or at least size fraction, to be able to do correct quantitative 
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analysis to study the ecology of the environment.  

Finally, some technical problems have been identified for FlowCam data coming from the 

Mediterranean stations. The first problem was that the lens focus is optimized for zooplankton 

and big diatoms and dinoflagellates. Therefore most of the images on which the FlowCam data of 

this study is based are blurry and not identifiable. For this reason species have unequal 

probabilities of being detected (i.e. risk of unreliable abundances) and a subjective 

misclassification (see Hemiaulus) may be present. Moreover, the protocol at 10,000 particles is 

not sufficient for having a good profile of the community composition at high taxonomic levels 

(see comparison between diatom tags and FlowCam) because 90% of the particles, and in some 

case more, are rejected as not cells or not identifiable, images of the living cells are difficult to 

identify, therefore the result is an underestimation of biomass, abundance and richness. 

Increasing the number of particles analysed, increasing the size and the resolution of the images 

captured to include all the features of the cells (avoiding blur) and refine the classification with 

the help of expert taxonomists will improve the power of this method. It would allow to use it not 

only for monitoring purposes (because only the dominant and big components of the community 

can be detected with very approximate quantitative indications), but also to study the community 

composition and the ecological relationships structuring it with a robust approach that can give 

results more comparable with the genetic method. Indeed, it is not possible to give the FlowCam 

method the same resolution of the genetic ones, but considering its data as a subsample of the 

more resolved DNA tag data, both should measure the same differences in the community 

structure and show a certain degree of agreement. Moreover, morphological data are needed for 

identifying new species or new ecotypes that cannot be resolved by the genetics because of recent 

divergence or of lack of reference sequence (Rynearson & Armbrust 2000). 

In the third case study I showed that the structure of the ecological community in terms of shape 

given by richness and abundance of its components is also an important aspect to be studied. 

Indexes are strongly influenced by the patterns of both common and rare species and they can 

imply important processes acting on the community assemblage. The shape reflects the changes 

in the community structure due to environmental context or acting ecological processes 

(Magurran 2004). If just a number (i.e. the value of an index) is considered, then all these 

changes could be masked or misinterpreted. Indexes are already challenging to interpret as the 
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change in their value is not proportionally related to a particular quantitative change in the 

community. Preliminary analyses run for all the stations suggested a power-law distribution of 

the community structure, with slope influenced by environmental context for the commons and 

similar for the heavy tails. Similarity of the slope of the rare part of the community can be due to: 

i) intrinsic property of the microbial ribosomial diversity (involving evolutionary processes) ; ii) 

intrinsic properties of the ocean (involving mixing and fluid-dynamical niches) ; iii) fractal 

organization of nature (involving biological and ecological processes related to body sizes such 

as metabolism and resource competition). To better investigate the law that best describes the 

rank abundance distributions and answer the above questions, OTUs should be classified at 

different percentages of similarity. Moreover, the distributions should be analysed for different 

size fractions and guilds separately. Finally, the relationship between OTUs present in the 

common’s part and OTUs present in the heavy tails should be investigated to elucidate 

aggregation or connectivity patterns.  

Clearly more dedicated studies are needed to better understand how biodiversity index behave in 

different situation and under different constraints. Arguably the most compelling issues are to 

determine if the remote sensed biodiversity resemble the “real” diversity and to develop new 

methods to interpolate data derived from all this sources. 
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Chapter 7 General Conclusions and perspectives 

7.1 General conclusions and perspectives 

The ocean has always fascinated humankind for its inaccessibility and mysterious content. Only 

relatively small areas of the ocean were long well known, above all for the interest in the 

exploitation of their resources, whereas open ocean environments were first ignored and 

considered homogeneous and poor of life (Hutchinson 1958). With the advent of technological 

development these ideas started to be reversed. Global explorations, observing systems and the 

development of remote sensing allowed to uncover a complex, dynamical and diversity rich 

environment (Longhurst 2010). Ecological and environmental studies showed the influence of the 

physical processes of the ocean on the growth and distribution of the species at the base of marine 

life: the plankton (Hernández-Garcıa & López 2004). Moreover, even species of higher levels of 

the trophic chain were described to aggregate in correspondence of particular hydrographic 

structures such as fronts and eddies (Hyrenbach et al. 2000; Rossi et al. 2008; Kai et al. 2009; 

Cotté et al. 2013). Nonetheless, determining which physical mechanisms and ecological 

interactions act to shape life and biodiversity in the pelagic ocean raises several technological and 

logistic problems that only recently, with the advent of high throughput techniques, high 

resolution global circulation models and multiple satellite missions for remote sensing, have 

started to be addressed. This improvement of the quality of data has allowed to resolve the 

interplay between physics and biology at the submesoscale. Indeed, at this scale, ocean variability 

is in accordance with the variability of the demography of the plankton. Not just one method is 

sufficient to describe and understand the physical and related biological processes acting in the 

marine environment and concurring to shape biodiversity. This understanding is however 

fundamental to manage natural resources and predict ecosystem responses.  

In the marine like in the terrestrial environments, remote sensing has emerged as a powerful tool 

for measuring and monitoring biological resources (Hardman-Mountford et al. 2008; Hansen et 

al. 2010). On land its use was pushed much further, allowing to estimate biodiversity of primary 

producers based on spectral heterogeneity of optical signals (Rocchini et al. 2010), paving the 

way to broad scale ecological studies. In the ocean, remote sensing has provided incomparable 

views of global spatio-temporal patterns of phytoplankton distribution and biomass (Field et al. 
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1998). However, even remote sensed data cannot alone elucidate the complexity of the oceanic 

realm. For example while primary productivity can be derived from satellite data, extrapolating 

information about biodiversity of primary producers and of consumers or inferring spatial and 

temporal variability in biological aggregations from these data, is an open challenge. 

In this work I tried to integrate the complementary advantages of models, in situ observations and 

remote sensing for shedding some light on the mechanisms that influence the formation of marine 

biodiversity rich areas and on the geographical identification of global biodiversity hotspots in 

the open ocean. To do this, I had to face several issues such as how to appropriately define 

biodiversity in the marine plankton ecosystem; which ecologically relevant spatial and temporal 

scales to measure; which synoptic environmental measure to produce and what technological 

limitations could have been overcome. Due to the dynamic nature of the vast ocean environment 

and to the microbic nature and passive dispersal of plankton, it is not possible to define local 

(alpha) diversity of the ecological community as on the terrestrial environment and for the same 

reasons it is difficult also to estimate the total regional (gamma) diversity and its turnover (beta). 

Therefore, I used an approach that considers the spatial distribution of water masses characterized 

by different plankton communities distinguished by their dominant phytoplankton group. This 

proxy can be seen as a mixture of alpha and beta diversities as the community changes with its 

dispersal mean. As the patchy distribution of plankton and its demography are influenced by the 

environmental physical heterogeneity of mesoscale and submesoscale structures, I considered 

spatial scales of few 100 kms and temporal scales of few weeks to estimate biodiversity. I used a 

remote sensing proxy to have a synoptic information that allows higher resolution and temporal 

variability. I also considered various levels of complexity of life when estimating biodiversity, 

comparing morphological, functional and molecular measures, integrating the different sources to 

overcome technological limitations.    

In Chapter 3 I used a physical and ecological global circulation model of a virtual plankton 

ecosystem to design and implement a mesoscale marine ecosystem metric and I applied it to 

identify areas of enhanced plankton biodiversity. The main advantage of this metric is that it can 

be defined without the need of having information about the whole community structure but just 

spatial information of dominant functional groups. I conceptualized a spatial-based index of 

biodiversity, analogous to other diversity indexes, such as the well-known Shannon entropy index 
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(Shannon & Weaver 1948; Shannon & Weaver 1949), that is predictably associated with local 

biodiversity of primary producers. I verified that the best global spatial scale to use to predict 

such a diversity is in the range of 1 degree. This scale is typical of the formation of 

hydrographical structures capable of creating fluid-dynamical niches where diverse dominant 

phytoplankton groups prevail and where stirring and mixing can act to merge different 

communities and/or favor the appearance of specialists, thus increasing biodiversity. The 

patchiness of the biophysical environment (abiotic plus microbes) varies in the ocean within the 

spatial and temporal scale determined by the response of the demography of the plankton to the 

physical and chemical characteristics (d’Ovidio et al. 2010). Turbulence allows mixing of 

communities at spatial and temporal scales notably inferior to scales of evolutionary and 

competitive exclusion, and the emergence of biodiversity hotspots. It is not surprising that the 

correspondence between spatial-based and local diversity is maximal for regions characterized by 

high kinetic energy, where biophysical patchiness and mixing are stronger. Meso and 

submesoscale structures depend on the scale of the radius of deformation of the flow due to 

rotational effects (Rossby radius). This radius varies according to latitude (decrease towards 

higher latitudes), therefore, in case of regional studies, the scale of the radius used to calculate the 

diversity proxy can be adjusted. In this modeled environment predation is very simple and 

plankton species are approximated by functional types and groups, therefore quantitative 

mismatches in the representation of global biodiversity compared to real data are envisageable. 

This is the reason why then I directly used remote sensing data to derive spatial-based diversity 

and compared them with corresponding in situ data for local diversity. 

In Chapter 4 I applied this approach to satellite-derived information and inferred a synoptic view 

of global biodiversity distribution of primary producers. Remote sensing data are able to show 

the patchy distribution of the different dominant phytoplankton groups, that is shaped by the 

physical structures on which the passive dispersal of plankton depends (Martin 2003; Alvain et 

al. 2008; d'Ovidio et al. 2010). I validated the global patterns of satellite-based diversity by 

comparison with independent observations at the regional scale, and in particular using in situ 

morphological data. Local biodiversity is enhanced by the contribution of physical dynamical 

processes such as advection, dispersal and mixing that typically create patches of water masses 

characterized by different communities but that can mix over short spatiotemporal scales. Indeed, 
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this enhancement is maximized in regions characterized by fronts, upwelling, boundary currents, 

biogeographical transition zones and island reefs. I found that the spatial-based diversity index 

displays relations with temperature and productivity in agreement with already known 

macroecological patterns where unimodal distributions show maximum biodiversity at 

intermediate levels of temperature and productivity (Hillebrandt 2004; Tittensor et al. 2010; Raes 

et al. 2011; Fuhrman et al. 2008; Dodson et al. 2000; Irigoien et al. 2004; Vallina et al. 2014). I 

showed seasonal variation in biodiversity patterns and I established the temporal stability of 

hotspots. Stable hotspots are mainly areas of transition among different ocean biogeographical 

provinces where spatial environmental heterogeneity stands out and exclude regions of strong 

ecological successions, typically strong upwelling and high temperate zones, where spatial 

heterogeneity depends strictly on seasonal temporal changes (Longhurst 2010). The fundamental 

role of heterogeneity for biological diversity at all levels of ecological organization and scale is 

long known (Levin & Paine 1974; Ives & May 1985; Tilman 1994). In landscape, patchiness 

highlights the spatial matrix of ecological processes and the fluxes of its biotic and abiotic 

components. Patchiness influences resource availability, niche partitioning, dispersal and 

connectivity of populations and succession of communities. Studies on terrestrial and marine 

ecosystems have pointed out the ecological perspective of habitat spatial and temporal 

heterogeneity being related to higher biodiversity due to the potential of more ecological niches 

to be exploited by different species. Spatiotemporal changes disrupt the continuity of the 

biological communities and are able to reduce competitive exclusion on wider spatiotemporal 

scales and promote species persistence and coexistence (e.g. communities on intertidal rocky 

platforms (Paine 1966; Levin & Paine 1974; Paine 1974), coral reefs and tropical forests (Porter 

1972; Connell 1978; Sousa 1984), deep seas (Dayton & Hessler 1972), general (Levin & 

Hesshaimer 2000; Tews et al. 2004). In the pelagic realm, transport processes are mainly 

responsible of these spatiotemporal changes. Global ocean biogeography is firstly defined by 

large scale circulations. Instabilities of large scale circulations give rise to meso and 

submesoscale structures that are able to create environmental heterogeneity. Plankton 

demography and distribution is in resonance with these structures. This peculiarity is at the base 

of the conception of this study aimed at estimating biodiversity using spatial-based information 

detectable from remote sensing. 
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In Chapter 5 I interpreted the association between remote sensed diversity and local biodiversity 

to reflect biophysical processes acting on the plankton community and beyond. Indeed, these 

processes act also indirectly on other levels of the ecosystem, promoting aggregation and trophic 

interactions among diverse species. Diversity at one trophic level can influence the effects of 

diversity at adjacent and nonadjacent trophic levels, and is also influenced by environmental 

context and intraguild predation (Bruno & O'Connor 2005). Therefore, relations between 

physical dynamics, diversity of primary producers and consumers both of the entire trophic chain 

and for separate guilds are to be elucidated as few studies exists that consider the effects of 

diversity at multiple levels. Biodiversity hotspots are areas of aggregation where density 

dependent effects may be reduced, negative interactions such as competition may be modified 

due to the possibility of differentiation in resource utilization and of development of positive 

interactions among diverse species. The new satellite based diversity index defined in Chapter 4 

may imply the fundamental food-web mechanisms claimed by Bakun 1996 (Bakun 1996), which 

include nutrient enrichment, concentration of prey, and aggregation of predators. The congruence 

showed between most of the spatial-based diversity hotspots of primary producers and local 

diversity of predators and in general of cross-taxa diversity, may also have implications for 

energy transfer from lower- to other upper-trophic-level species. For example, Ainley et al. 

(2009), Olson (1989), Sournia (1994), Young et al. (2014), and Cotté (2013 under revision) 

(Olson & Olson 1989; Sournia 1994; Ainley & Siniff 2009; Cotté et al. 2013; Young et al. 2014) 

showed spatial co-occurrence of divers predators, pelagic nekton and plankton at frontal systems, 

which are related to remote sensing diversity as they are present in areas of high biophysical 

heterogeneity. Submesoscale and mesoscale structures, such as eddies and fronts, can result in 

shear zones between different water masses or current flow speeds that allow bioaccumulation of 

preys (Menkes et al. 2002). This hydrographically induced bioaccumulation can give rise to the 

creation and dissipation of diversity hotspots faster than classical bottom‐up processes (Prairie et 

al. 2012).  

The purpose of Chapter 6 was to investigate which kind of biological information should be used 

to compare in-situ and satellite-based biodiversity proxies. Indeed these two measures provide 

very different ways of looking at the planktonic community: one that is very detailed, but 

geographically and temporally sparse, the other that has high spatiotemporal resolution, but that 
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is associated to an extremely shallow view of the community. I showed that a continuous in situ 

sampling technique evidenced plankton biodiversity patterns associated to physical frontal 

structures. I highlighted caveats and pitfalls of the case-study cross-validations, such as the not 

univocal correspondence between morphological and genetic diversity measured on the same 

sample, and the problem of applying biodiversity indexes to communities that are characterized 

by very different abundance distributions, depending on the time and place of the sampling.  

Certainly, the satellite-based diversity has limitations too as it can only represent transport-related 

features of the phytoplankton community assembly. Indeed, it mainly detects zones of increased 

diversity due to merging of different communities and it is not able to give information on the 

degree of diversity of the original communities. Therefore it is more related to proximate causes 

(physico-chemical and ecological) than ultimate causes (evolutionary based) of diversity. The 

satellite-based diversity proxy discussed here relies on the detection of bio-optical patches 

characterized by different biophysical features, therefore the classification is limited to such 

detectable features. Other algorithms exist that propose classifications of bio-optical signals 

(Volpe et al. 2007; Raitsos et al. 2008; Hirata et al. 2011; Palaczet et al. 2013). However, each 

method was developed for different sensors and has intrinsic proper limitations, beyond problems 

related to atmospheric corrections and instrument calibrations. Moreover, the area over which the 

diversity of patches is calculated cannot be too small, to allow statistical power, so a lower limit 

exist for the spatial resolution provided by this method so far. This limit is intrinsically related to 

the available resolution of ocean color satellite data. Limitations are also evident for high 

latitudes that are data-deficient for a considerable part of the year, when illumination levels are 

low and cloud coverage is high, limiting the power of observation closer to the poles. 

Furthermore, in case of very high chlorophyll concentration, the distinction of dominant groups 

can be biased (due to change in size abundance distribution of the plankton community during 

blooms and overwhelming abundance of chl-a), altering the validity of the remote sensed 

diversity index in highly productive zones, thus not allowing a correct estimation of local 

plankton diversity. Finally, satellite data can provide information only on the first 10s meters 

depth of the ocean (depth that vary depending on the region of the globe according to turbidity 

(Robinson 2004), but it is generally assumed that the plankton community that satellites detect 

can be representative of the mixed layer. Moreover, horizontal front that define (sub)mesoscale 
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structures responsible of the fluid-dynamical niches detected by satellite have associated vertical 

dynamics. To explore the role of vertical dynamics in the structuring of biodiversity patterns, 

congruencies between vertical velocities and biodiversity hotspots could be investigated.  

Future studies to be addressed include the improvement and ad hoc tuning of reanalysis of ocean 

color to be applied to specific oceanic regimes and biogeographical regions. This development 

would allow remote sensing diversity to be estimated also for ecosystems characterized by 

particular environmental conditions and that are of strong interest for management purposes. 

Among them, global coastal waters are subjected to high levels of suspended organic and 

inorganic matter thus turbidity, which hinders optical signal capacity. They are also the most 

exploited ecosystems of the world due to anthropic activities and the ones most in need of insight 

on the effects of biodiversity on ecosystem functioning and services. Future research should also 

target global ocean expeditions that provide so far high throughput molecular information to 

quantify the relationship between seascape patchiness and the very fine level of biological 

organization.  Indeed, high throughput molecular information provides, when opportunely 

treated, a high resolution image of the community with the potential to unveil changes in acting 

ecological processes. Finally, to better evaluate the bottom up effect of trophic transfer of 

biodiversity from plankton to mid- and higher levels, firstly, single guilds at a time should be 

examined. Then, regional studies that consider time series data of both key oceanographic 

features and successions of communities and aggregations of biomass and diversity at subsequent 

levels of the trophic chain could be used for comparisons with changes in remote sensed 

diversity. Upwelling systems typical of eastern boundary currents would represent a plausible 

candidate for such a kind of study, due to their well-known seasonal patterns and well-known 

supporting biological communities. Moreover, time specific data may be more valuable than time 

averaged data in studying such a highly dynamical environment in deeper detail. 

7.2 Implications for management and conservation 

The protection of biodiversity has been addressed by management policies around the world as 

the primary conservation concern. Like terrestrial and coastal ecosystems, the open ocean is not 

homogeneous, rather is a mosaic of high biodiversity areas, where many species aggregate, and 

areas with low biodiversity (Worm et al. 2003; Worm et al. 2005; Sydeman et al. 2006). Despite 
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the increasing conservation awareness, today open ocean waters remain poorly protected with 

only between 0.08% and 0.65% of the open ocean currently falling within Marine Protected 

Areas (MPAs) (Wood et al. 2008). Identifying offshore and pelagic areas of primary interest for 

management and protection is challenging but possible, especially if the mechanisms of 

persistence can be identified (Hyrenbach et al. 2000). Pelagic areas of ecological importance are 

found to be dependent on static bathymetric features (i.e. reefs, shelf break, submarine canyons, 

seamounts, islands ), persistent hydrographic features (fronts, boundary currents and gyres) and 

more ephemeral transport features (eddies, filaments, upwelling plumes) (Hyrenbach et al. 2000). 

The range of distribution of nektonic species mostly mirrors large scale oceanographic regimes 

and currents, known to influence productivity and plankton biogeography (Sund et al. 1981; 

Brodeur et al. 1999). At meso and submesoscale, predators’ distribution is influenced by 

dispersion and availability of preys (Hunt Jr & Schneider 1987; Rose & Leggett 1990). Dispersal 

and availability of preys depends on the bioaggregation and enhanced productivity effects 

generated by specific hydrological structures such as eddies, fronts and filaments (Franks 1992; 

Larson et al. 1994; Olson & Hood 1994). Novel methodologies to predict areas characterized by 

these more ephemeral structures are needed. Moreover, new approaches to describe connectivity 

patterns and source and sink areas of biodiversity in the open ocean should be developed. 

Despite the challenges typical of the conservation of natural resources in the open ocean, the 

improvement of integrative methods including remote sensing seems promising. For instance, a 

similar approach is already applied by the Pacific Hawaiian Fisheries to daily predict loggerhead 

turtle habitat based on their regular occurrence along offshore frontal systems (Etnoyer et al. 

2006). Developing applicable metrics that combine remote sensing data on diversity of primary 

producers with consumer distributions could be a valuable approach for understanding the spatial 

organization of large marine ecosystems and predict areas of species aggregations at particular 

point in time. These predicted areas require an adaptive management as their boundaries may 

vary in space and time in response to system dynamics (Hobday & Hartmann 2006). These kind 

of pelagic marine protected areas are under consideration for ecosystem protection (Halpern et al. 

2008), but synoptic global level information, especially at the scale of the whole ecosystem, is 

needed to efficiently and wisely choose the locations of potential protected sites.   

Because of its relatively high temporal and spatial resolution provided with minimum effort at the 
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global level and because of the variety of information detectable (both abiotic and biotic) about 

the ecosystem, including the diversity proxies proposed in this study, remote sensing applications 

can be strongly envisaged for the Ecosystem Based Management and Marine Spatial Planning 

frameworks of the high seas (Ardron et al. 2008; Game et al. 2009). On the other hand, remote 

sensing may not be appropriate to identify geographically small areas (<< 10000 km
2
) of 

particular high biodiversity values, such as hotspots of endemic species or of specific 

conservation priorities such as nursery and breeding grounds, which are not strictly related to 

trophic interaction processes. With the aim of providing a global biodiversity proxy, I applied the 

satellite-derived τ index to identify relatively large areas (~10000 km2) of predicted elevated 

biodiversity, which seems to concentrate mid- to upper-trophic-level consumers, particularly top 

predators, despite the inherent variability in the system. Areas identified as hotspots are mainly 

frontal zones, eastern boundary currents, biogeographical transition zones and coral reefs, most of 

them already known as areas of importance for aggregation and migration of endangered large 

marine vertebrates and for the presence of very rich biota (Sournia 1994; Hyrenbach et al. 2000; 

Cotté et al. 2007; Kai et al. 2009). Indeed, hotspots are predicted along boundary currents such as 

the California current, the Gulf Stream, the Kuroshio Current, upwelling regions off the coast of 

North America, South America and Africa, Agulhas Retroflection and Malvinas-Brasil 

Confluence zones and subpolar frontal systems, Indian and Pacific Ocean atolls and small islands 

and Australian and Indonesian coral reefs. Because these areas of high diversity are mainly 

located in biogeographic transition zones and in zones where transport regimes are of primary 

importance, the ability to monitor their spatial shifts and temporal persistence is of great concern 

in the perspective of climate change. Indeed, the same areas are predicted to be highly affected 

mainly due to temperature driven species range shifts and shift or strengthening or weakening of 

oceanographic processes such as upwelling, convergent fronts and current systems (Bellard et al. 

2012; Doney et al. 2012). In this light, the detection of pelagic biodiversity hotspots using remote 

sensing information (τ index) as a surrogate, can provide a feasible process based tool for the 

biological characterization of large areas at the global level without the need of in-situ census 

(Myers et al. 2000). 

Regardless of the advantages and limitations of the novel method here described, for 

conservation practices to be successful, international agreements to define protected areas and 
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ensure their enforcement must be developed. Indeed, the open ocean is part of the Areas Beyond 

National Jurisdiction, therefore no legal power is recognized and can be applied in these zones. 

Political forces often blame the potential fallibility of scientific knowledge and use this as an 

excuse not to act. At this point, making use of the best available science is the best available 

choice. Nonetheless, the true solution to the problem seems not to be found in the natural 

sciences, but rather in humanity. The ocean continues to suffer from the tragedy of the commons 

(Hardin 1968) and the world is not realizing that we are all actors of the same tragedy. Which 

will be the end depends on all of us. Let’s prove the most clever man in history was wrong: ‘Only 

two things are infinite, the universe and human stupidity, and I am not sure about the former’ (A. 

Einstein). 
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ANNEX 1 

The material presented in this work is subject of peer reviewed publications.  

The content of the entire Chapter 3 is under submission for the following research article in 

Global Ecology and Biogeography: Soccodato A., De Monte S., Follows M., Levy M., d’Ovidio 

F. Identification of global biodiversity patterns of planktonic communities by spatially-resolved 

observation of dominant functional types.  

The content of Chapter 4 is partially included in the following communication: De Monte S., 

Soccodato A., Alvain S., d’Ovidio F., (2013). Can we detect oceanic biodiversity hotspots from 

space? ISME J 7:2054-6 . My contribution to this paper is in the comparison of the satellite 

diversity index with extended in situ data and with known macroecological patterns related to 

diversity, such as temperature gradients. The content of the same Chapter relative to temporal 

variability of the satellite-based diversity and its relation with productivity in the ocean will be 

part of a future publication.   

The content of Chapter 5 is part of a following research article under preparation: Soccodato A., 

De Monte S., Levy M., d’Ovidio F. Seascape mosaic of plankton dominance reveals global 

biodiversity hotspots across the trophic chain.  

 

 


