
HAL Id: tel-01136131
https://theses.hal.science/tel-01136131v1

Submitted on 26 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elasticity in the Cloud
Ahmed El Rheddane

To cite this version:
Ahmed El Rheddane. Elasticity in the Cloud. Other [cs.OH]. Université Grenoble Alpes, 2015.
English. �NNT : 2015GREAM003�. �tel-01136131�

https://theses.hal.science/tel-01136131v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Ahmed El Rheddane

Thèse dirigée par Prof. Noël de Palma

préparée au sein du Laboratoire d’Informatique de Grenoble
et de L’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Élasticité dans le Cloud Computing
Elasticity in the Cloud

Thèse soutenue publiquement le 25 février 2015,
devant le jury composé de :

Prof. Noël de Palma
UJF, Directeur de thèse
Prof. Jean-Marc Pierson
LIP6, Rapporteur
Prof. Pierre Sens
IRIT, Rapporteur
Prof. Daniel Hagimont
ENSEEIHT, Examinateur
Prof. Jean-Marc Menaud
EMN, Examinateur

ii

Abstract

Real world workloads are often dynamic. This makes the static scaling of re-
sources fatally result in either the waste of resources, if it is based on the estimated
worst case scenario, or the degradation of performance if it is based on the average
workload. Thanks to the cloud computing model, resources can be provisioned on
demand and scaling can be adapted to the variations of the workload thus achiev-
ing elasticity. However, after exploring the existing works, we find that most elas-
ticity frameworks are too generic and fail to meet the specific needs of particular
applications. In this work, we use autonomic loops along with various elastic-
ity techniques in order to render different types of applications elastic, namely
a consolidation service, message-oriented middleware and a stream processing
platform. These elastic solutions have been implemented based on open-source
applications and their evaluation shows that they enable resources’ economy with
minimal overhead.

Keywords. Cloud computing; autonomic loop; elasticity; consolidation; mes-
saging; stream processing.

iii

iv

Résumé

Les charges réelles d’applications sont souvent dynamiques. Ainsi, le dimension-
nement statique de ressources est-il voué soit au gaspillage, s’il est basé sur une
estimation du pire scénario, soit à la dégradation de performance, s’il est basé
sur la charge moyenne. Grâce au modèle du cloud computing, les ressources
peuvent être allouées à la demande et le dimensionnement adpaté à la variation
de la charge. Cependant, après avoir exploré les travaux existants, nous avons
trouvé que la plupart des outils d’élasticité sont trop génériques et ne parvien-
nent pas à répondre aux besoins spécifiques d’applications particulières. Dans le
cadre de ce travail, nous utilisons des boucles autonomes et diverses techniques
d’élasticité afin de rendre élastiques différents types d’applications, à savoir un
service de consolidation, un intergiciel orienté messages et une plateforme de
traitement de données en temps-réel. Ces solutions élastiques ont été réalisées à
partir d’applications libres et leur évaluation montre qu’elles permettent d’économiser
les ressources utilisées avec un surcoût minimal.

Mots-clés. Cloud computing; boucle autonomique; elasticité; consolidation; mes-
sagerie; traitement temps-réel.

v

vi

Acknowledgments

My first thoughts go to my mother, Rabia Essarih, without whom neither this
thesis nor its author would have existed.

My special thanks go to my advisor, professor Noël de Palma, for his genuine
caring, extraordinary patience and valuable support throughout the duration of
this PhD work. My thanks also go to André Freyssinet for his availability and
help regarding the messaging part of this thesis.

I would also like to thank professor Jean-Marc Pierson, professor Pierre Sens,
professor Daniel Hagimont and professor Jean-Marc Menaud for accepting to
serve as my committee members as well as their precious feedback on my work.

A big thank you to all the members of the Erods team and former Sardes
team, particularly those downstairs, and even more particularly those in the eastern
office. I truly couldn’t ask for better colleagues and friends.

I would also like to thank my family and friends for their constant and uncon-
ditional support.

Finally, I would like to express my deepest gratitude to all the teachers and
professors that have made me, each in their own way, the person I am today.

vii

viii

Contents

Abstract iii

Résumé v

Acknowledgments vii

Contents ix

List of Figures xiii

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Contribution . 3
1.4 Organization . 4

2 Cloud Computing 5
2.1 From the Grid to the Cloud . 5
2.2 Key Characteristics . 6

2.2.1 On-demand Provisioning 7
2.2.2 Universal Access . 7
2.2.3 Enhanced Reliability . 7
2.2.4 Measured Services . 7
2.2.5 Multitenancy . 8

2.3 Cloud Layers . 8
2.3.1 Infrastructure as a Service (IaaS) 8
2.3.2 Platform as a Service (PaaS) 9
2.3.3 Software as a Service (SaaS) 9

2.4 Deployment Models . 9
2.4.1 Public Clouds . 10
2.4.2 Private Clouds . 10

ix

CONTENTS CONTENTS

2.4.3 Hybrid Clouds . 10
2.5 Challenges . 11
2.6 Conclusion . 11

3 Autonomic Computing 13
3.1 Definition . 13
3.2 Autonomic Loop . 14
3.3 Autonomic Properties . 15

3.3.1 Self-configuration . 15
3.3.2 Self-healing . 15
3.3.3 Self-protecting . 15
3.3.4 Self-optimization . 15

3.4 Conclusion . 16

4 Elasticity 17
4.1 Beyond Static Scalability . 17
4.2 Classification . 18

4.2.1 By Scope . 18
4.2.2 By Policy . 18
4.2.3 By Purpose . 19
4.2.4 By Method . 20

4.3 Existing Solutions . 20
4.3.1 Elastic Infrastructures 20
4.3.2 Elastic Platforms and Applications 22

4.4 Conclusion . 23

5 Elastic Consolidation 25
5.1 Context . 25

5.1.1 Consolidation . 25
5.1.2 Entropy . 26

5.2 Approach . 28
5.2.1 Autonomic Loop . 28
5.2.2 Partitioning . 28
5.2.3 Virtualization . 30
5.2.4 Scaling . 30
5.2.5 Performance Gain . 31

5.3 Evaluation . 32
5.3.1 Technical Context . 32
5.3.2 Methodology . 32
5.3.3 Distributed Entropy . 33
5.3.4 Elastic Entropy . 36

x

CONTENTS CONTENTS

5.4 Conclusion . 36

6 Elastic Queues 39
6.1 Context . 40

6.1.1 Message-oriented Middleware 40
6.1.2 Java Message Service . 40
6.1.3 Joram . 42

6.2 Scalablity Approach . 42
6.2.1 Scalability mechanism 42
6.2.2 Scalability Study . 43
6.2.3 Flow Control Policy . 45

6.3 Elasticity Approach . 46
6.3.1 Scaling decision . 46
6.3.2 Provisioning . 47

6.4 Evaluation . 50
6.4.1 Effect of co-provisioning 50
6.4.2 Effect of pre-provisioning 51
6.4.3 Size of the pre-provisioning pool 53

6.5 Conclusion . 54

7 Elastic Topics 55
7.1 Context . 55
7.2 Approach . 56

7.2.1 Topic Capacity . 56
7.2.2 Tree-based Architecture 57
7.2.3 Scaling Decision . 58
7.2.4 Implementation Details 58

7.3 Evaluation . 59
7.3.1 Scalability validation . 59
7.3.2 Elasticity validation . 60

7.4 Conclusion . 62

8 Elastic Stream Processing 63
8.1 Context . 63

8.1.1 Stream Processing . 63
8.1.2 Storm . 64

8.2 Approach . 65
8.2.1 Monitoring . 65
8.2.2 Scaling Decision . 66
8.2.3 Provisioning . 67
8.2.4 Architecture . 67

xi

CONTENTS CONTENTS

8.2.5 Implementation Details 68
8.3 Evaluation . 69

8.3.1 Context . 69
8.3.2 Elasticity Validation . 70

8.4 Conclusion . 72

9 Conclusion 73
9.1 Summary . 73
9.2 Perspectives . 74

9.2.1 Different elasticity approaches 74
9.2.2 Advanced stream processing elasticity 74

Bibliography 75

xii

List of Figures

3.1 Autonomic systems’ control loop 14

4.1 Classification of elastic solutions 19

5.1 Entropy’s reconfiguration loop 27
5.2 The effect of partitioning on consolidation 29
5.3 Dynamically scalable Entropy 31
5.4 Comparing consumption results, for 200 PMs 34
5.5 Comparing consumption results, for 200 PMs 35
5.6 Elastic Entropy’s error rates and number of workers 37

6.1 JMS architecture and workflow 41
6.2 Alias queue principle . 43
6.3 Elasticity algorithm outlines . 48
6.4 Queues’ throughtput with different setups 49
6.5 1 worker per VM, no provisioning 51
6.6 2 workers per VM, no provisioning 52
6.7 2 workers per VM, 1 pre-provisioned VM 52
6.8 2 workers per VM, 1 pre-provisioned VM 53
6.9 2 workers per VM, 2 pre-provisioned VMs 54

7.1 Topic trees with different subscribers 57
7.2 Topics’ scalability . 60
7.3 Topics’ elasticity . 61

8.1 Storm topology example . 65
8.2 Elastic Storm architecture . 68
8.3 Load prevision topology . 70
8.4 Throughput per component . 71
8.5 Parallelism per component . 71

xiii

LIST OF FIGURES LIST OF FIGURES

xiv

Chapter 1

Introduction

Contents
1.1 Context . 1

1.2 Motivation . 2

1.3 Contribution . 3

1.4 Organization . 4

1.1 Context
“If computers of the kind I have advocated become the computers
of the future, then computing may someday be organized as a public
utility just as the telephone system is a public utility... The computer
utility could become the basis of a new and important industry.”

–John McCarthy, speaking at the MIT Centennial in 1961

Computation as a utility. This is the main concept behind the old, yet newly
fashionable, cloud computing. Just as for the telephone or electricity grid, clients
would be provided with on-demand computational resources on the “cloud”, i.e.,
on the internet, and they would pay depending on their consumption. The phys-
ical infrastructure is entirely managed by the cloud provider, which provides its
clients with just the right level of abstraction they need, saving them the trouble
of handling themselves the issues related to the lower levels.

From the provider’s perspective, cloud computing is an ideal way to leverage
unused physical resources by “lending” them to consumers that are willing to pay
for their use. This multitenancy aspect –a cloud has usually multiple clients– has

1

1.2. MOTIVATION CHAPTER 1. INTRODUCTION

led to the virtualization of cloud computing infrastructures. Instead of managing
multiple clients on the same physical machine, isolated virtual machine instances
are assigned to each client and distributed over the available physical machines,
which renders the infrastructure more flexible and easier to manage.

Cloud computing is nowadays widely adopted and data centers are being built
everywhere. This naturally increases the energetic impact of such infrastructures
and makes energy-efficiency one of cloud computing’s most pressing challenges.
On the providers’ side, energy-efficiency can be achieved to some extent by op-
timizing the location of data centers to minimize the energy spent on cooling or
maximize the use of renewable energy. More energy can be saved by optimally
managing the resources within a given data center. However, Further energy-
efficiency requires the clients’ involvement as well, particularly with regard to the
design of their applications.

1.2 Motivation
Cloud computing offers a virtually unlimited sky of distributed resources. To
benefit from it, applications on the cloud need to be scalable, i.e., they should
be able to integrate additional resources and use them efficiently to handle more
important workloads. However, a scalable architecture is not enough to have an
efficient cloud application.

Applications are often scaled statically, on a worst-case based scenario. While
this may guarantee that a given application will meet its performance objectives at
all time, it fails to do so efficiently. Real-world applications do not have a uniform
workload, websites’ traffic for instance changes of magnitude between day and
night. In many cases, the workload is even bursty, i.e., it significantly grows in a
relatively short period of time, this can be due to a product release or a worldwide
event in social network related applications for instance, which makes even esti-
mating the worst case scenario uncertain. Thus, performance-driven static scaling
leads inevitably to over-provisioning, which means that, most of the time, an im-
portant part of the provisioned resources is simply wasted. This waste translates to
both a financial cost for the user paying for the resources and, more considerably,
a huge energetic footprint. On the other hand, Statically scaling an application
based on its average workload would take the risk of degrading performance in the
case of a workload burst, in which case the resources would be under-provisioned.

This issue can be solved thanks to cloud computing’s on-demand provision-
ing paradigm, i.e., resources on the cloud can be provisioned and payed for only
when needed. Thus, beyond static scalability, cloud applications should be flex-
ible enough to allow users to add and remove resources as they see fit. This
dynamic scalability can rely on various metrics, either those provided by the

2

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTION

cloud provider monitoring tools, or application metrics reported by the applica-
tions themselves. Thanks to autonomic computing techniques, these scaling op-
erations can be achieved automatically, without the need of human intervention.
This makes cloud applications seem to “magically” stretch their resources in order
to adapt to their current workloads, no resources are wasted and none are needed,
thus achieving both performance and cost-efficiency. This automatic scaling is
known as elasticity.

Naturally, since the emergence of cloud computing, many elastic solutions
have been developed, and most cloud providers offer an elasticity service, which
takes scaling decisions based on defined thresholds on generic metrics such as
CPU or memory usage. These generic elasticity tools fail oftentimes to charac-
terize the load of the applications they intend to make elastic, which limits their
usefulness. Therefore, elastic solutions should be tailored to applications, or at
least application classes, and take into account their custom metrics and internal
scalability mechanisms, in order to achieve even more efficiency.

1.3 Contribution

Provided the presented context, our contribution in this PhD work consists in the
design, development and evaluation of four elastic solutions:

• Elastic consolidation: We made the infrastructure management service in
charge of placing the virtual machine instances so as to minimize the num-
ber of running physical machines automatically adapt to the size of the cloud
to handle, particularly regarding the varying number of virtual machine in-
stances. This is based on the open-source consolidation tool Entropy. This
work has led to a conference publication [31]

• Elastic message queues: We developed queues that can automatically scale
based on the message production load, while maintaining protocol compati-
bility and reliability standards. This work has been accepted as a conference
publication [32].

• Elastic message topics: In the same context of message-oriented middle-
ware, we made message topics automatically adapt to the varying number
of subscribers. Both our messaging solutions are based on Joram, an open-
source message-oriented middleware.

• Elastic stream processing: Finally, we developed a stream processing plat-
form with fine grained scaling that independently adjusts the parallelism of

3

1.4. ORGANIZATION CHAPTER 1. INTRODUCTION

the different components in the processing chain. This solution is an en-
hancement of the popular open-source stream processing solution Apache
Storm.

1.4 Organization
After this introduction, the rest of the document is organized as follows:

Chapter 2 presents the literature related to cloud computing. It present its def-
inition, assets, standard classification as well as the different challenges it faces.
One of these challenges is energy efficiency which can be addressed using elas-
ticity.

Chapter 3 sets the basis for elasticity as it presents the context of autonomic
computing. It presents the different modules of the autonomic loop as well as the
properties an autonomic manager aims to guarantee.

Chapter 4 concludes the state of the art by presenting an overview of elasticity
in the literature. It presents a taxonomy of elastic solutions and illustrates it with
a variety of related works.

The next chapters present our contribution in this PhDwork. Chapter 5 presents
our elastic consolidation service. Chapters 6 and 7 present our elastic messaging
platforms and chapter 8 our Apache Storm based elastic stream processing.

Finally, chapter 9 concludes this document with a sum up and perspectives of
future work.

4

Chapter 2

Cloud Computing

Contents
2.1 From the Grid to the Cloud 5
2.2 Key Characteristics . 6

2.2.1 On-demand Provisioning 7

2.2.2 Universal Access . 7

2.2.3 Enhanced Reliability 7

2.2.4 Measured Services 7

2.2.5 Multitenancy . 8

2.3 Cloud Layers . 8
2.3.1 Infrastructure as a Service (IaaS) 8

2.3.2 Platform as a Service (PaaS) 9

2.3.3 Software as a Service (SaaS) 9

2.4 Deployment Models . 9
2.4.1 Public Clouds . 10

2.4.2 Private Clouds . 10

2.4.3 Hybrid Clouds . 10

2.5 Challenges . 11
2.6 Conclusion . 11

2.1 From the Grid to the Cloud
The growing speed of computer networks has made it possible to benefit from
the combined computing power of large computer clusters. These have led to the

5

2.2. KEY CHARACTERISTICS CHAPTER 2. CLOUD COMPUTING

emergence of grid computing. As defined by the CERN1,“the grid is a service
for sharing computer power and data storage capacity over the Internet” [4]. This
service can be centralized or distributed over multiple interconnected clusters in
different locations as is the case of the French Grid’5000. Grids have been mainly
targeted at large-scale scientific initiatives in the context of high performance com-
puting, and can be fairly complex to use. Cloud computing overcomes this and
offers the power of data centers to a broader public which does not necessarily
have a computer science background.

Cloud computing is a relatively new paradigm and there has been many at-
tempts to grasp its definition [9, 20, 25, 40, 27, 34], each focusing on a particular
aspect of the cloud. In [9], some experts join the definition we proposed in our in-
troduction and see cloud computing as the realization of utility computing, while
others focus on its user-friendliness and on-demand scalability which distinguish
it from grid computing. Knorr and Gruman [20] define cloud computing as the
online services it provides and McFedries in [25] believes that what sets cloud
computing apart is the massive data centers underneath.

Vaquero et al. [40] synthesize the different definitions they could find in the
literature in the following proposition: “Clouds are a large pool of easily usable
and accessible virtualized resources (such as hardware, development platforms
and/or services). These resources can be dynamically reconfigured to adjust to a
variable load (scale), allowing also for an optimum resource utilization. This pool
of resources is typically exploited by a pay per-use model in which guarantees are
offered by the Infrastructure Provider by means of customized SLAs”, SLAs being
the Service Level Agreements that guarantee certain quality of service metrics for
cloud users. This definition is also concordant with the ones Sarga presented later
on in [34].

2.2 Key Characteristics

From the cloud computing’s various definition, a certain set of key characteristics
emerges. This section presents what we believe characterizes cloud computing
the most, it does not only present the standard characteristics pinpointed by the
NIST2 in their definition [27] but tries to infer the most important features from
all the previously cited works as well.

1European Organization for Nuclear Research, http://home.web.cern.ch
2National Institute of Standards and Technology, http://www.nist.gov

6

CHAPTER 2. CLOUD COMPUTING 2.2. KEY CHARACTERISTICS

2.2.1 On-demand Provisioning

On-demand provisioning, we believe, is the single most important characteristic of
cloud computing, it allows the users to request or release resources whenever they
want. These demands are thereafter automatically granted by a cloud provider’s
service and the users are only charged for their usage, i.e., the time they were
in possession of the resources. The reactivity of a cloud solution, with regard to
resource provisioning, is indeed of prime importance as it is closely related to the
cloud’s pay-as-you-go business model.

2.2.2 Universal Access

Resources in the cloud need not only be provisioned rapidly but also accessed
and managed universally, using standard Internet protocols, typically via RESTful
web services. This enables the users to access their cloud resources using any type
of devices, provided they have an Internet connection. Universal access is a key
feature behind the cloud’s widespread adoption, not only by professional actors
but also by the general public that is nowadays familiar with cloud-based solutions
such as cloud storage or media streaming.

2.2.3 Enhanced Reliability

Cloud computing enables the users to enhance the reliability of their applications.
Reliability is already built in many cloud solutions via storage redundancy. Cloud
providers usually have more than one data center and further reliability can be
achieved by backing data up in different locations. This can also be used to ensure
service availability, in the case of routine maintenance operations or the rarer case
of a natural disaster. The user can achieve further reliability using the services of
different cloud providers.

2.2.4 Measured Services

Cloud computing refers generally to paid services. The customers are entitled
to a certain quality of service, guaranteed by the Service Level Agreement, that
they should be able to supervise. Therefore, cloud providers offer monitoring
tools, either using a graphical interface or via an API. These tools also help the
providers themselves for billing and management purposes.

7

2.3. CLOUD LAYERS CHAPTER 2. CLOUD COMPUTING

2.2.5 Multitenancy

As the grid before, the cloud’s resources are shared by different simultaneous
users. These users had to reserve in advance a fixed number of physical machines
for a fixed amount of time. Thanks to the cloud’s virtualized data centers, a user’s
provisioned resources no longer correspond to the physical infrastructure and can
be dispatched over multiple physical machines. They can also run alongside an-
other users’ provisioned resources thus requiring a lesser amount of physical re-
sources. Consequently, important energy savings can be made by shutting down
the unused resources or putting them in energy saving mode.

2.3 Cloud Layers

Cloud services can be classified based on the level of abstraction they propose.
There are three commonly accepted layers of abstraction in cloud computing, the
services from the upper layers usually rely on the layers underneath but can also
be provided as standalone services.

2.3.1 Infrastructure as a Service (IaaS)

The IaaS layer represents the lowest level of abstraction in the cloud. Users are
provided with virtual machine instances that can differ in the operating system
they are running, installed software as well as needed resources in terms of CPU
–frequency as well as number of virtual CPUs–, memory, bandwidth and storage
capacity. The IaaS provider also enables the users to manage the networking of
their VM instances either by restricting their access or setting up virtual networks.
Furthermore, the users can as well create snapshots of their instances as a means
of backup, or use the snapshot of a running VM instance to create a VM template
which can be later used to provision new clone instances.

Amazon has been a pioneer of IaaS with its Elastic Compute Cloud (EC2)3. It
nowadays provides three pricing models for its VM instances: (i) users can clas-
sically pay for their on-demand instances on an hourly basis, (ii) via a prepaid
fee, users can pay less for reserved instances that they plan on using heavily or
(iii) users can bid the price they are willing to pay for a spot instance and as long
as the price of these instances, computed over the different bids of the various
users, is less then the one they specified, the instances are provisioned. Naturally,
spot instances are to be used solely in order to optionally enhance performance as
they can be lost anytime should their computed price change. The users are also

3Amazon EC2, http://aws.amazon.com/ec2

8

CHAPTER 2. CLOUD COMPUTING 2.4. DEPLOYMENT MODELS

charged for out-going traffic and storage related to the instances disks’ or snap-
shots. Other IaaS providers such as Microsoft Azure4 or Google Compute Engine5

only provide on-demand instances with roughly the same features although they
might charge usage per minute instead of Amazon’s hourly increments.

2.3.2 Platform as a Service (PaaS)

In order to save the users the trouble of managing themselves the installation and
configuration of their machines, virtual as they may be, an extra level of abstrac-
tion is needed. Platform as a Service provides the users with integrated environ-
ments on which they can develop, test and deploy their cloud applications. PaaS
services can also include features related to the maintenance as well as the scala-
bility of these latters. An example of a PaaS solution can be Google App Engine6

which provides users with familiar development tools as well as underlying ser-
vices such as cloud-based databases and cache mechanisms.

2.3.3 Software as a Service (SaaS)

At its highest level of abstraction, the cloud’s SaaS layer provides the users with
ready to use applications, hosted on the cloud. The users are then completely
freed of the development and maintenance burdens. This is particularly interest-
ing for professionals that rely on IT for management purposes whereas it is not
their core business. SaaS virtually encompasses any website, but usually refers to
heavy applications hosted on the Internet such as Salesforce customer relationship
management service7 or the better known Google Docs office suite.

While these layers remain the standard classification of cloud services, special-
ized services may be referred to as XaaS but can still be ranged in one of the
above categories.

2.4 Deployment Models

The previous section classified cloud computing with regard to the level of ab-
straction of its services. In this one, we show the different classes of cloud com-
puting based on their deployment, purpose, and target users.

4Microsoft Azure, https://azure.microsoft.com
5Google Compute Engine, https://cloud.google.com/compute
6Google App Engine, https://cloud.google.com/appengine
7Salesforce, http://www.salesforce.com

9

2.4. DEPLOYMENT MODELS CHAPTER 2. CLOUD COMPUTING

2.4.1 Public Clouds

Unless otherwise specified, clouds refer to public clouds. These consist in huge
interconnected data centers managed by a cloud provider and open to use by the
general public on a charge-per-use basis. Public clouds are the incarnation of
utility computing as they enable the users to rent their computing power instead
of buying and maintaining it. This is made possible thanks to the economies of
scale that only data centers of important sizes can afford.

2.4.2 Private Clouds

As their name indicates, private clouds are privately managed by an organization
for its own use. These may or may not support the cloud’s charge-per-use model,
but they benefit from cloud infrastructures’ flexibility and user-friendliness while
guaranteeing the privacy of sensitive data. Many tools exist to leverage physical
clusters into Infrastructure as a Service private clouds either open-source such
as OpenStack8 and Eucalyptus9, both compliant with the Amazon EC2 API, or
commercial as VMware’s vSphrere10.

2.4.3 Hybrid Clouds

Privacy and data security are one of the main motivations for private clouds. How-
ever, most of an organization’s data and operations are not confidential. Therefore,
while having a private cloud for sensitive operations, an organization can benefit
from the resources of a public cloud when a high level of confidentiality is not
required, thus forming a hybrid cloud. Hybrid clouds can also be put in place as
a result of cloud bursting: when the private cloud is short of resources, the extra
load can be redirected to a public cloud. More generally, a hybrid cloud can be
formed by any two distinct clouds, private or public, in order to enhance reliability
or reduce the cost.

Hybrid clouds rise the issue of clouds’ compatibility, or the lack thereof, as a
standard cloud API is yet to see the light of day. The next section details some
other challenges that currently face cloud computing.

8OpenStack, http://www.openstack.org
9Eucalyptus, https://www.eucalyptus.com

10VMware vSphere, http://www.vmware.com/products/vsphere

10

CHAPTER 2. CLOUD COMPUTING 2.5. CHALLENGES

2.5 Challenges
Due to its lack of maturity, many challenges still hinder cloud computing’s full
adoption, these range from technical aspects as presented in [3] to more general
ones detailed in [34].

In order to benefit from the power of the cloud, a potential user has to mi-
grate its existing applications to the cloud. However, the lack of an established
cloud standard puts the users in a potential vendor lock-in as they would be tied
to the cloud service they first used. Once applications and data are in the cloud,
they have to be both secured and available. Security is still a top concern as, be-
yond identity management tools that are commonly put in place by cloud service
providers, data should be encrypted, which fairly degrades the performance of the
cloud. Availability can be enhanced by the use of hybrid clouds which is, once
again, hampered by the lack of a standard. For cloud applications to run properly,
the cloud’s resources need to be able to scale quickly and efficiently, particularly
with regard to storage and networking. Last but not least, as cloud applications
generally run in data centers that are big enough to offer the illusion of infinite
resources, optimizing energy efficiency is all the more important. This is the mo-
tivation behind this work and will be presented in chapter 4.

2.6 Conclusion
In this chapter, we have seen how cloud computing offers its users the possibility
to focus on their core businesses by taking care of all the IT complexities under-
neath. In order to do that at the large scale on which clouds generally operate,
automation is inevitable. The next chapter presents an overview of autonomic
computing, which is behind most cloud management tasks, and would be basis on
which we build our elasticity solutions.

11

2.6. CONCLUSION CHAPTER 2. CLOUD COMPUTING

12

Chapter 3

Autonomic Computing

Contents
3.1 Definition . 13

3.2 Autonomic Loop . 14

3.3 Autonomic Properties . 15

3.3.1 Self-configuration 15

3.3.2 Self-healing . 15

3.3.3 Self-protecting . 15

3.3.4 Self-optimization . 15

3.4 Conclusion . 16

3.1 Definition

Computer systems have been the ideal solution to replace tedious and complex
operations previously entitled to human agents. But as the formers become them-
selves bigger and more complex, their administration and maintenance gets out of
hands. Thus the need for autonomic systems capable of managing themselves. In
a 2001 manifesto [14], IBM was the first to coin the concept of autonomic com-
puting. To lay the basis for the then new paradigm, IBM set an architecture for
autonomic managers in the form of an autonomic loop. It also pointed out the
different properties of an autonomic system, each corresponding to a particular
purpose. The next sections detail these different elements.

13

3.2. AUTONOMIC LOOP CHAPTER 3. AUTONOMIC COMPUTING

3.2 Autonomic Loop
In [16], IBM proposed a model for autonomic control loops. This model details
the different components that allow an autonomic manager to achieve one of the
previously discussed self-managing properties, namely Monitor, Analyze, Plan,
Execute and Knowledge. The MAPE-K loop is depicted by figure 3.1 and dis-
cussed in the rest of this section.

Autonomic Manager

Monitor Execute

PlanAnalyze

Knowledge

Managed Element

Sensors Actuators

Figure 3.1: Autonomic systems’ control loop

The autonomic manager regularly monitors the managed element. This allows
the former to be up to date with regard to the evolution of the latter. Monitoring
can be done either passively, using provided system tools such as top for instance,
or actively, i.e., by modifying the code of the managed elements in order to enrich
the monitored information. Once the current state of the managed element is
captured, it is analyzed and a plan of the changes to be applied is established.
Planning follows rules that can be as simple as an event-condition-action policy
(ECA), which is easy to implement and fast to compute, or take the form of utility
functions, which try to optimize a given property of the managed systems and are,
thus, much more compute-intensive and hard to put in place. Planning naturally
relies the knowledge available to the autonomic manager. Knowledge is usually
a representation of the system. It can be statically put into the manager upon its

14

CHAPTER 3. AUTONOMIC COMPUTING3.3. AUTONOMIC PROPERTIES

creation but can also evolve by including the history of monitored values which
can be used by predictive policies. Once a plan is established it is executed on the
managed system and the autonomic manager loops back.

Many implementations of the autonomic loop have been made. For instance,
IBM provides a framework for autonomic managers’ development called Auto-
nomic Computing Toolkit [26] while Parekh et al. [30] present another imple-
mentation that focuses on adding autonomic capabilities to legacy applications.

3.3 Autonomic Properties
Self-management properties introduced by IBM have been detailed by Kephart
and Chess in [18]. They define the different purposes an autonomic system may
have and are detailed below.

3.3.1 Self-configuration
The self-configuration property enables a given system to reconfigure itself based
on high-level goals. An administrator would only have to specify a desired out-
come and the system would automatically adapt to accomplish it. This can in-
clude, for instance, the recognition and integration of new components that would
automatically join an existing infrastructure.

3.3.2 Self-healing
An autonomic system should be able to detect and diagnose its problems. These
may range from software bugs to hardware failures. If possible, the system tries
to fix them. If no solution can be found, the system should report the problem to
be fixed by a human administrator.

3.3.3 Self-protecting
The last autonomic property makes a system protect itself from both external in-
truders or repetitive failures that couldn’t be handled by self-healing. Ideally, a
self-protecting system would proactively anticipate security threats and act ac-
cordingly.

3.3.4 Self-optimization
Self-optimization is the ability to continually seek ways of optimizing efficiency
either with regard to performance or cost. This is typically the case of elasticity in

15

3.4. CONCLUSION CHAPTER 3. AUTONOMIC COMPUTING

the cloud. Optimization operations can be reactive to the environment’s state but
can also be initiated proactively.

Autonomic systems may exhibit one or more of these properties. They usually
have an autonomic manager for each one of them. In order to avoid conflicts, an
extra autonomic manager may be used for coordination.

3.4 Conclusion
In this chapter, we have presented a brief overview of autonomic computing, in-
cluding its characteristic MAPE-K loop and the different properties it aims to
achieve. A more thorough presentation of this field has been proposed by Hueb-
scher and McCann in [15]. In the next chapter, we will see how autonomic com-
puting techniques are used to insure elasticity, for it is nothing but an instance of
the autonomic MAPE-K loop with the purpose of achieving self-optimization.

16

Chapter 4

Elasticity

Contents
4.1 Beyond Static Scalability 17

4.2 Classification . 18

4.2.1 By Scope . 18

4.2.2 By Policy . 18

4.2.3 By Purpose . 19

4.2.4 By Method . 20

4.3 Existing Solutions . 20

4.3.1 Elastic Infrastructures 20

4.3.2 Elastic Platforms and Applications 22

4.4 Conclusion . 23

4.1 Beyond Static Scalability
Since the emergence of parallel and distributed systems, a great effort has been put
into making applications benefit efficiently from multiple computing resources.
Scalability, as defined in [17], characterizes this ability. It is measured by speedup,
i.e., the performance gain due to additional resources and efficiency, which shows
to which extent the resources are made useful and is given by the ratio of the
speedup over the amount of used resources. These can be used to scale a given
application, that is provision its resources, based on the expected workload.

As the workloads tend to significantly vary over time, scalability needs to
adapt automatically, in order to use just enough resources. Thanks to autonomic

17

4.2. CLASSIFICATION CHAPTER 4. ELASTICITY

computing techniques, elasticity does just that. According to [11], “Elasticity is
the degree to which a system is able to adapt to workload changes by provisioning
and deprovisioning resources in an autonomic manner, such that at each point in
time the available resources match the current demand as closely as possible.”
From this definition, we can see that efficiency, or precision when it comes to
matching the demand is still a top concern, as it avoids any waste of resources.
Elasticity also introduces a new important factor, which is the speed. Rapid pro-
visioning and deprovisioning are key to maintaining an acceptable performance
and are all the more important in the context of cloud computing where quality of
service is subjected to a service level agreement.

In this chapter, we present the different approaches through which elasticity
can be achieved as well as a variety of existing elastic solutions, particularly those
related to our contribution.

4.2 Classification
As proposed by Galante and de Bona in [7], elasticity solutions can be arranged in
different classes with regard to their scope, policy, purpose and method. Figure 4.1
presents this classification and the remaining of this section is dedicated to discuss
it.

4.2.1 By Scope
With regard to scope, elasticity can be implemented on any of the cloud layers.
Most commonly, elasticity is achieved on the IaaS level, where the resources to
be provisioned are virtual machine instances. Other infrastructure services can
also be scaled such as networks [39]. On the PaaS level, elasticity consists in
scaling containers or databases for instance. Finally, both PaaS and IaaS elasticity
can be used to implement elastic applications, be it for private use or in order to
be provided as a SaaS. Most cloud providers offer elasticity mechanisms as part
of their services, although these mechanisms alone tend to be generic and fail to
provide an efficient framework for applications other than web servers.

4.2.2 By Policy
With regard to policy, the authors of [7] believe that elastic solutions can be either
manual or automatic. A manual elastic solution would provide their users with
tools to monitor their systems and add or remove resources but leaves the scaling
decision to them, we believe that this cannot qualify as elasticity as the latter has
to be carried out automatically. Hence, elastic solutions can be either reactive or

18

CHAPTER 4. ELASTICITY 4.2. CLASSIFICATION

Scope

Infrastructure

Platform

Application

Policy

Reactive

Predictive

Purpose

Performance

Energy

Cost

Method

Horizontal

Replication

Vertical

Elasticity

Resizing

Migration

Figure 4.1: Classification of elastic solutions

predictive. An elastic solution is reactive when it scales a posteriori, based on
a monitored change in the system. These are generally implemented by a set of
Event-Condition-Action rules. A predictive –or proactive– elasticity solution uses
its knowledge of either recent history or load patterns inferred from longer periods
of time in order to predict the upcoming load of the system and scale according to
it.

4.2.3 By Purpose

An elastic solution can have many purposes. The first one to come to mind is nat-
urally performance, in which case the focus should be put on their speed. Another
purpose for elasticity can also be energy efficiency, where using the minimum
amount of resources is the dominating factor. Other solutions intend to reduce the
cost by multiplexing either resource providers or elasticity methods. Mixed strate-
gies that take into account different purposes and try to optimize a corresponding
utility function have also been put in place.

19

4.3. EXISTING SOLUTIONS CHAPTER 4. ELASTICITY

4.2.4 By Method

Finally, with regard to method, elasticity can be carried out either horizontally or
vertically [39]. Horizontal elasticity consists in replication, i.e., the addition –or
removal– of virtual machine instances. In this case, a load balancer with an appro-
priate load balancing strategy needs to be involved. This is the most commonly
used method as on-demand provisioning is supported by all cloud providers. Ver-
tical elasticity, on the other hand, changes the amount of resources linked to exist-
ing instances on-the-fly. This can be done in two manners. The first one consists
in explicitly redimensioning a virtual machine instance, i.e., changing the quota of
physical resources allocated to it. This is however poorly supported by common
operating systems as they fail to take into account changes in CPU or memory
without rebooting, thus resulting in service interruption. The second vertical scal-
ing method involves VM migration: moving a virtual machine instance to another
physical machine with a different overall load changes its available resources de
facto. Once again, migrating a virtual machine on-the-fly, a.k.a., live migration,
is technically limited as it can only be achieved in environments with network
shared disks.

4.3 Existing Solutions

4.3.1 Elastic Infrastructures

While all cloud infrastructures offer APIs that allow both monitoring and on-
demand provisioning of resources, most do not offer an automated elasticity ser-
vice. Amazon, however, has integrated an elasticity mechanism to its Elastic
Cloud Compute (EC2)1. An EC2 user can set an Auto Scaling Group (ASG)
containing an initial number of instances, he then defines Event-Condition-Action
(ECA) rules for scaling, i.e., adding or removing instances from the ASG, based
on the system metrics provided by Amazon CloudWatch, Amazon’s monitoring
tool. Amazon also allows the user to specify elastic load balancers that forward
requests to any of an ASG instances. This makes Amazon Auto Scaling a reactive
replication-based elasticity solution. Reservoir 2, an open-source IaaS manager,
allows the specification of these same ECA elasticity rules as an extension of the
Open Virtual Format standard [5]. As for the clouds with no elasticity capabilities,
cloud management services such as RightScale3 and Scalr4 offer the same reactive

1Amazon Auto Scaling, http://aws.amazon.com/autoscaling
2Reservoir, http://www.reservoir-fp-7.eu
3RightScale, http://www.rightscale.com
4Scalr, http://www.scalr.com

20

CHAPTER 4. ELASTICITY 4.3. EXISTING SOLUTIONS

replication-based mechanisms and present the advantage of being able to stretch
over different cloud providers.

Lim et al. [21] discuss the use of thresholds in reactive policies and introduce
proportional thresholds. The use of a single metric goal can lead to oscillation,
i.e., repetitive addition and removal of resources, which can be overcome by the
use of two thresholds in order to specify a range goal. However the speedup when
adding a second instance, which is roughly 100%, can not be comparable to the
addition of the 101st one, which is only 1%. This has to be taken into account
when scaling, thus the need for goals, i.e., thresholds, that are adaptive to the
current size and performance of the clusters to be scaled.

Gong et al. [10] present PRESS, an elasticity controller that analyzes the work-
load history using Fourier Fast Transform to detect any repeating pattern which
would allow future workload prediction. If no pattern can be found, PRESS uses a
discrete-time Markov chain to predict the near future workload. In order to avoid
resources under-estimation, which may lead to under-provisioning, PRESS pads
the predicted values by a small amount (5-10%). Roy et al. [33] use another statis-
tical model, autoregressive-moving-average, in order to predict future load based
on previously witnessed loads.

Vasić et al. [41] propose DejaVu, an elasticity framework based on a predic-
tive policy. The idea behind DejaVu is to organize the different workloads that
have been encountered into discrete classes using k-means clustering, remember
the preferred allocation setup for each class, i.e., the different virtual machine in-
stances used along with their sizes, and assign each class a signature. Thus, when
the system runs, each time it detects a workload change, it computes its signature,
go back to its cache and fetch the preferred allocation that it applies at once, thus
accelerating the allocation of the needed resources.

Meng et al. [28] propose Tide, a tool that offers elasticity for IaaS management
itself. The main idea behind Tide is to use the cloud’s resources themselves to
handle the cloud’s management workload. They implemented a custom predictive
model that focuses on provisioning needed resources all at once and as soon as
possible.

While the previous solutions mostly focus on performance, Sharma et al. [36]
propose Kingfisher, a cost-driven elasticity tool. Kingfisher takes into account the
costs of different virtual machines instances’ configurations and try to optimize
the overall cost, for a given workload. It also takes into account the cost of the
transition form a given VM instances configuration to another, upon a workload
change.

The above works propose different solutions to the elasticity problem. How-
ever, as they are meant to be generic, they fail to fit the specific need of particular
applications.

21

4.3. EXISTING SOLUTIONS CHAPTER 4. ELASTICITY

4.3.2 Elastic Platforms and Applications

Elastic platforms as elastic infrastructure, tend to be generic enough in order to tar-
get a wide range of applications, typically web servers and multi-tier applications.
This is the case for the two leading PaaS providers, namely Google AppEngine
and Microsoft Azure. Another elastic web hosting platform is the Cloud Hosting
Provider proposed by Fitó and Guitart [6], which consists in extending physical
resources with resources on the cloud in a cloud bursting fashion.

As for specific elastic solutions, in the context of messaging for instance, Tran
et al. [38] propose Elastic Queue Service (EQS). EQS scaling actions can be trig-
gered by a set of predefined Key Performance Indicators (KPIs). These include
throughput as well as the number of connected clients. Scaling involves adding
extra queues on extra instances and relocating clients’ connections to balance their
load on the existing queues. A limitation of this approach is that, at all times, all
the messages produced by a single client go the same queue instance whereas it
might be better to balance the messages over the different instances.

Taton et al. [37] propose a different approach to scaling messaging queues.
Instead of balancing clients’ connections over a set of independent queues, they
interconnect the different instances of a queue in a cluster. These different queues
balance their loads seamlessly in a work-stealing-like manner, i.e., underloaded
queues steal messages from the overloaded ones. Scaling occurs when the whole
cluster is overloaded or underloaded. Where as this approach is interesting, the
fact that a message on an overloaded queue has to wait to be stolen does introduce
an overhead, moreover, as clients connections are fixed, scaling in, i.e., reducing
the number of instances, has to wait for the last client on a queue to disconnect
before deleting it.

Stream processing has also been enhanced with elasticity as in the work pro-
posed by Schneider et al. [35]. The authors base their work on a code generation
tool for stream processing [1, 8]. The authors present an elastic operator and
propose to adapt the number of threads it is assigned to its changing workload.
This can naturally increase the performance provided that the total capacity of the
underlying resources is not reached.

Vijayakumar et al. [42] focus on adapting CPU allocation to the loads of a
generic stream processing application, which is an example of vertical elasticity.
Their model involves different linear stages of processing and induces the load of
each stage from the difference between its incoming and outgoing flows. This has
been inspired by a previous work on TCP congestion [29].

Knauth and Fetzer [19] also apply vertical elasticity to stream processing, this
time using migration. The main idea is to gather the processing instances on one
physical machine and stretch them over more resources as workload increases.

22

CHAPTER 4. ELASTICITY 4.4. CONCLUSION

4.4 Conclusion
In this chapter, we have presented the different approaches used to achieve elas-
ticity in the literature. We have also discussed a representative range of elastic so-
lutions, with focus on those related to our contributions. As we have seen, generic
elasticity frameworks do not necessarily fit specialized applications. In the next
chapters, we detail our contribution which consists in the development of different
specific elastic solutions based on open-source tools of different horizons.

23

4.4. CONCLUSION CHAPTER 4. ELASTICITY

24

Chapter 5

Elastic Consolidation

Contents
5.1 Context . 25

5.1.1 Consolidation . 25

5.1.2 Entropy . 26

5.2 Approach . 28

5.2.1 Autonomic Loop . 28

5.2.2 Partitioning . 28

5.2.3 Virtualization . 30

5.2.4 Scaling . 30

5.2.5 Performance Gain 31

5.3 Evaluation . 32

5.3.1 Technical Context 32

5.3.2 Methodology . 32

5.3.3 Distributed Entropy 33

5.3.4 Elastic Entropy . 36

5.4 Conclusion . 36

5.1 Context

5.1.1 Consolidation
One of the top concerns when dealing with large datacenters, which is the typical
case of cloud infrastructures, is energy efficiency. This aspect of the so-called

25

5.1. CONTEXT CHAPTER 5. ELASTIC CONSOLIDATION

green computing, or environment-friendly computing, is already promoted by
cloud computing, since gathering the computational resources in one big central-
ized infrastructure can considerably decrease the energy consumption. However,
since cloud computing often relies on a virtualized infrastructure, further energy
efficiency can be achieved through “consolidation”, which is basically minimiz-
ing the number of running physical machines by optimally placing the virtual
machines of the datacenter. Since the cloud ecosystem is highly dynamic and the
virtual machines’ needs in terms of resources (memory and CPU) vary, consoli-
dation has to be done periodically.

5.1.2 Entropy

Our work is based on Entropy [13] which is an open-source consolidation man-
ager. Based on a given infrastructure’s configuration (the mapping of the virtual
machines on the physical nodes, the virtual machines’ current memory and CPU
usage and the nodes’ total CPU and memory capacity), it would try to minimize
the cloud’s energy consumption and computes a new mapping, i.e., new configu-
ration, that would minimize the number of used nodes while guaranteeing enough
resources for the virtual machines to run normally, and then reconfigure the sys-
tem accordingly by issuing the appropriate migration commands. In its current
version, Entropy can either be executed periodically, as the system’s configura-
tion is highly dynamic in the context of cloud computing, particularly regarding
the number and placement of virtual machines, or on an event-driven basis, if we
want to insure a greater reactivity. Figure 5.1 depicts Entropy’s reconfiguration
loop.

Computing a new configuration is a linear optimization problem. In order to
solve it, Entropy uses ChocoSolver1. The optimization problem does not only
compute the minimal number of nodes needed to run the current virtual machines,
but computes a consolidation plan as a whole, which also minimizes the cost of
reconfigurations leading to such an optimal configuration. The cost of a reconfig-
uration roughly depends on the number of migration operations needed to go from
a given configuration to the newly computed one. Entropy also supports live mi-
gration to execute the computed reconfiguration plan, which makes the execution
fairly faster but requires the virtual machines’ disks to be stored in a distributed
file system such as NFS. More details on how Entropy works can be found in [13]
or in its newer version [12].

While Entropy is undeniably a useful tool, the fact that it relies on solving
a linear optimization problem makes it potentially unable to compute an accept-
able reconfiguration for realistic configurations’ sizes within reasonable timeouts,

1ChocoSolver, http://choco-solver.org

26

CHAPTER 5. ELASTIC CONSOLIDATION 5.1. CONTEXT

 Entropy
Decision
Module

Context switch
Module

ExecutionMonitoring

Cluster

Node 1

VM Monitor

Node 2

VM Monitor

Node 3

VM Monitor

VM1 VM2 VM3 VM4 VM5

Statistics (Ganglia)

Current configuration Reconfiguration plan

Run, stop, migrate

Figure 5.1: Entropy’s reconfiguration loop

27

5.2. APPROACH CHAPTER 5. ELASTIC CONSOLIDATION

hence the need to enhance its scalability. Since the cloud’s configuration and scal-
ability vary dynamically, we propose to scale Entropy dynamically as well.

5.2 Approach

The scaling of Entropy, as a service provided by the IaaS infrastructure, is driven
by the dynamic evolution of both the size and population of the datacenter, which
corresponds to the number of virtual machines and physical nodes. An important
point is that we do not take into consideration scalability requirements with regard
to the clients’ requests load.

The main principle behind our solution is to create just enough Entropy in-
stances so as to adapt to the configuration to be processed. To do so, we use (i)
a classical autonomic loop design, (ii) node partitioning for scalability purposes
and (iii) virtualization in order to enhance the flexibility of managing the Entropy
instances and insure elasticity.

5.2.1 Autonomic Loop

Our solution is an autonomous Entropy, that is capable of self-optimization, i.e.,
creating or deleting instances of itself so as to meet performance requirements.
Thus, it has to be both aware of its environment, and adaptive to its changes.
It interacts with its environment by the means of a classical MAPE-K control
loop. This control loop regularly reports information from the environment to an
autonomic manager which analyses it, takes decisions, and applies the necessary
changes. As Entropy already has an autonomic loop which periodically retrieves
the system’s configuration in order to optimize it, with regard to virtual machine
instances placement, we integrated our elastic controller which relies the this very
same configuration to plan elasticity related actions.

Our elasticity loop works as follows: the information retrieved is the configu-
ration of the system. After analysis, the control loop decides how many Entropy
VM instances ,i.e., workers, are necessary to handle the retrieved configuration;
execution finally creates the workers, launches them and distributes the configu-
ration to be optimized over the launched workers.

5.2.2 Partitioning

To distribute the configuration over the virtual workers, we made the choice of
having independent sub-configurations so as to avoid the very costly synchro-
nization of the whole-system’s state between our different workers. To do so,

28

CHAPTER 5. ELASTIC CONSOLIDATION 5.2. APPROACH

Reconfiguration Reconfiguration

Partitions

Free
slots

VMs

Nodes

Figure 5.2: The effect of partitioning on consolidation

the currently implemented policy is random node partitioning, which furthermore
guarantees that our workers will statistically have the same workload.

Once the number of necessary instances, that we call workers in the follow-
ing, is computed, the nodes are randomly distributed between the different groups.
This means that our partitioning is not persistent, even if two consecutive itera-
tions require the same number of instances, the computed sub-configurations will
not necessarily be the same. This is possible because Entropy does not store the
system’s state (mapping, CPU and memory usage), and retrieves it via the moni-
toring tool [24] anyway. Randomness guarantees load balancing; since the nodes
are not equally populated, it guarantees that, statistically, the random groups will
have about the same number of virtual machines.

Naturally, partitioning will affect the consolidation’s result, and the more par-
titions we have, the less effective our consolidation is. It is true that load balancing
significantly attenuates this effect, but we would still have an error up to the num-
ber of created partitions, on the minimum number of nodes needed to run the
current virtual machines, as shown by Figure 5.2.

29

5.2. APPROACH CHAPTER 5. ELASTIC CONSOLIDATION

We can see that consolidating the whole cloud enables us to free two physical
resources, whereas partitioning the cloud to three sub-clouds makes it impossible
for this optimization to take place. However, our evaluation shows that this effect
can be neglected in the context of big enough configurations, in which dynamic
scalability makes sense.

5.2.3 Virtualization

The created Entropy instances are virtualized, i.e., each instance runs on a dedi-
cated virtual machine. While it might seem that all we do is parallelize the com-
putation as could be done using a powerful multi-core machine, we argue that vir-
tualization for computation’s sake, allows us to benefit from the cloud’s resources
themselves, since the created instances would be on the cloud’s nodes. Besides,
even pure computational tasks can benefit from virtualization as we witness the
emergence of virtualized grids: Haizea2 for instance, allows scheduling and man-
agement of virtualized jobs, i.e., jobs running on virtual machines, to benefit from
the increased flexibility and reliability.

Since the cloud will contain both Entropy virtual instances and the clients’
VMs and to avoid any confusion in the remaining of this paper, the term VM
refers to a client’s VM unless we explicitly specify that it refers to an Entropy VM
instance.

5.2.4 Scaling

The estimation of necessary Entropy workers is done using the results of prior
“gauging” of Entropy: we measure the performance of Entropy with gradually in-
creasing workload and number of workers; this is done once and for all. Note that
we do not rely on a predictive algorithm to pre-provision the Entropy workers,
since the information that is needed to foresee the right number of instances is it-
self the information that is processed by Entropy. With this regard, any prediction
would only shift the period of our process.

Scaling up can only be done by provisioning extra instances. However, in
the case of Entropy, where two iterations are completely independent as Entropy
doesn’t keep knowledge of the system’s state, scaling down can be done in two
different ways:

• At the end of each iteration, delete all created instances. This way, every
iteration will create just the right number of instances it needs.

2Haizea, http://haizea.cs.uchicago.edu

30

CHAPTER 5. ELASTIC CONSOLIDATION 5.2. APPROACH

Serve subconfigs to workers

Partition the cloud's nodes

Compute number of workers

Entropy Server

Execute reconfiguration plan

Compute reconfiguration plan

Compute number of workers

Entropy Workers

W W

Partitions

System's
state

Manage
workers

Figure 5.3: Dynamically scalable Entropy

• Instances persist after their creation, and are only deleted if they haven’t
been needed for the last N iterations, N to be determined empirically.

The final design is given by Figure 5.3. In this design, the original Entropy
has been cut into two parts:

• The Entropy Server, that is centralized, which performs the partitioning and
triggers the creation, deletion or reconfiguration commands to the hypervi-
sors.

• The Entropy Worker, which consolidates the sub-configuration it is assigned
and issues the migration commands to its’ sub-configuration’s hypervisors.

The communication between the centralized part and the VM instance is done
on a poll basis: once an Entropy VM instance is created, it retrieves its sub-
configuration and starts processing it immediately.

5.2.5 Performance Gain
Let S be the size of the cloud (i.e., the number of virtual machines × the number
of physical machines) and Ent(S), the cost of the original Entropy. The cost of

31

5.3. EVALUATION CHAPTER 5. ELASTIC CONSOLIDATION

our virtualized version is given by:

Entvirt(S) = Ent(S1) + Cvirt

where S1 is the size that has been found to be the appropriate load for one entropy
instance and Cvirt is the cost of provisioning an Entropy virtual instance, it is not
a function of the number of instances to be created since provisioning will not
take place on the same nodes, and can thus be achieved in parallel. Moreover, this
constant is amortized thanks to the relative persistence of our virtual instances.

Thus, our approach guarantees a constant cost, with only a small trade-off due
to the partitioning mechanism, whereas applying Entropy to the cloud as a whole
grows exponentially with its size. He has never seen me work.

5.3 Evaluation

In this section, after briefly presenting the technical context and the methodology
of our experiments, we discuss their results in order to validate the efficiency of
our elastic consolidation manager.

5.3.1 Technical Context

The infrastructure used for our experiments is a private cloud managed by Open-
Stack, which is an EC2 compatible IaaS management solution, running on 2 racks
with 6 Intel(R) Xeon(R) CPU E5645 @2.40GHz cores and 32 GB of RAM each,
interconnected by a 1 Gbit/s isolated LAN. All the managed virtual machine in-
stances are of type m1.small as described by Amazon EC2, i.e., with 2 GB of
memory and 1 virtual CPU.

Note that this infrastructure is only used to host the Entropy VM instances, the
configurations being consolidated are generated in order to have loads big enough
to stress the scalability of Entropy.

5.3.2 Methodology

With this evaluation, our aim is to:

• see if we actually achieve any performance gain by using more workers,
keeping in mind the limitation discussed in Section 5.2.2;

• show the interest of having an elastic consolidation manager.

32

CHAPTER 5. ELASTIC CONSOLIDATION 5.3. EVALUATION

To do so, we consider a cloud infrastructure of 200 homogeneous physical
machines, each having 3GB of memory, consuming 100W when idle and at most
200W. For this infrastructure, we generate different virtual machines which have
variant requirements (CPU usage: 20%, 40% or 60%; memory: 500MB, 1GB or
2GB).

We first vary the load of our cloud infrastructure and compute the optimal
consumption using 1 up to 10 Entropy workers; the load is given by:

load = max

�
totalMemory

totalMemCapacity
,

totalCpu

totalCpuCapacity

�

Our metric when comparing the results given by the different sizes of workers
is the error with regard to the theoretical optimal consumption, that is:

error =
consumption− optimalConsumption

optimalConsumption

Note that the theoretical optimal consumption in which we use just enough phys-
ical machines is straightforward to have as it is given by:

A = totalCpu× consMax− consMin

100

B = ceil

�
totalCpu

totalCpuCapacity

�
× consMin

optimalConsumption = A+ B

where A linearly computes the ratio of consumption based on the total ratio of
CPU usage and B multiplies the minimum number of necessary physical ma-
chines by their minimum consumption.

What is actually hard is to find a configuration that corresponds to this optimal
consumption while maintaining the constraints related to the needs of each virtual
machine and the capacities of the physical machines, hence the interest of Entropy.

This first experiment will serve as a gauging on which we will base our scal-
ing decisions for the elasticity evaluation. Our program retrieves configurations
with random loads and try to compute a result within a given error margin by
provisioning as many workers as needed.

Note that for all the experiments, Entropy’s timeout is set to 1 minute.

5.3.3 Distributed Entropy
Figure 5.4 shows the results given by Entropy with different numbers of workers,
for the same loads which vary from 10 to 50%.

33

5.3. EVALUATION CHAPTER 5. ELASTIC CONSOLIDATION

 5000

 10000

 15000

 20000

 25000

 10 15 20 25 30 35 40 45 50

C
o
n
su

m
p
ti

o
n

Loading rate (%)

1 worker
2 workers
3 workers
4 workers
5 workers
6 workers

7 workers
8 workers
9 workers

10 workers
Initial
Ideal

Figure 5.4: Comparing consumption results, for 200 PMs

34

CHAPTER 5. ELASTIC CONSOLIDATION 5.3. EVALUATION

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 15 20 25 30 35 40 45 50

E
rr

o
r

(%
)

Loading rate (%)

1 worker
2 workers
3 workers
4 workers
5 workers

6 workers
7 workers
8 workers
9 workers

10 workers

Figure 5.5: Comparing consumption results, for 200 PMs

35

5.4. CONCLUSION CHAPTER 5. ELASTIC CONSOLIDATION

We can see that for a cloud loaded at only 10%, we do not always improve
the result by adding more workers which is justified by the limitation discussed
in 5.2.2. On the other hand, for more important loads, we do achieve better opti-
mization by using more workers.

Figure 5.5 depicts the error rates for this experiment. Based on these values, in
order to have a result within an error margin of 20%, we will need the following
minimum numbers of workers, depending on the load:

Loads 10% 20% 30% 40% 50%
Workers 4 6 8 9 10

5.3.4 Elastic Entropy
Now that we have gauged Entropy, we can use it to elastically adapt to any load
in order to provide a result with an error of no more than 20%. Figure 5.6 shows
a random load profile and the corresponding behavior of our elastic consolidation
manager.

We can see that the number of workers adapts to the load in order to guar-
antee an error rate of less than 20%. Note that in order to have that same per-
formance with a static provisioning, we will have to maintain 10 workers all the
time although the maximum number of 10 workers is only needed once, thus the
advantage of having an elastic solution.

5.4 Conclusion
In this chapter, we proposed an elastic consolidation service that adjusts its size
to the dynamic needs of the cloud environment. Our proposition relies on vir-
tualizing the consolidation service, which allows easily scaling this service by
provisioning dedicated virtual machines to process the consolidation. Since these
virtual machines persist for a certain period of time, the provisioning cost is amor-
tized and can thus be neglected. Any of these virtual machines is in charge of
consolidating a partition of the cloud environment, defined by a probabilistic node
partitioning policy. By doing so, the exponential cost of consolidation becomes
quasi-constant. Whereas our solution is quite simple, a performance evaluation
shows that it provides good results.

36

CHAPTER 5. ELASTIC CONSOLIDATION 5.4. CONCLUSION

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

L
o
a
d
 (

%
)

Load

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9
 0

 2

 4

 6

 8

 10

 12

 14

E
rr

o
r

(%
)

N
u
m

b
e
r

o
f

w
o
rk

e
rs

Iterations

Error
Number of workers

Figure 5.6: Elastic Entropy’s error rates and number of workers

37

5.4. CONCLUSION CHAPTER 5. ELASTIC CONSOLIDATION

38

Chapter 6

Elastic Queues

Contents
6.1 Context . 40

6.1.1 Message-oriented Middleware 40

6.1.2 Java Message Service 40

6.1.3 Joram . 42

6.2 Scalablity Approach . 42

6.2.1 Scalability mechanism 42

6.2.2 Scalability Study . 43

6.2.3 Flow Control Policy 45

6.3 Elasticity Approach . 46

6.3.1 Scaling decision . 46

6.3.2 Provisioning . 47

6.4 Evaluation . 50

6.4.1 Effect of co-provisioning 50

6.4.2 Effect of pre-provisioning 51

6.4.3 Size of the pre-provisioning pool 53

6.5 Conclusion . 54

39

6.1. CONTEXT CHAPTER 6. ELASTIC QUEUES

6.1 Context

6.1.1 Message-oriented Middleware
Message-oriented Middleware (MOM) is one of the most commonly used ways
to simply yet reliably integrate the different components of a distributed soft-
ware system. MOMs use messages as the only structure to communicate, coordi-
nate and synchronize, thus allowing the components to run asynchronously. They
offer two communication paradigms: one-to-one, producers send messages to a
queue where they are stored till they are consumed by one and only one consumer;
and one-to-many or publish-subscribe, a producer sends a message to a topic that
broadcasts it to all the subscribed consumers. MOMs have been widely adopted
due to the guarantees they offer, namely:

• Asynchrony: the asynchronous property decouples producers from queues.
They do not need to be both ready for execution at the same time. This
property enables a deferred access to queues and a loose coupling between
producers and consumers.

• Reliability: once a message is sent, it is guaranteed to be delivered despite
network failures or system crashes.

Message-oriented Middleware has been standardized by different communi-
ties on different levels. The most recent one is Advanced Message Queuing
Protocol (AMQP)1, which is an application layer protocol as is Message Queue
Telemetry Transport (MQTT)2. The latter is intended to be used by sensors and
other objects that require low code footprint. As for the Java world, Java Message
Service (JMS)3 has been adopted very early as the standard messaging API.

6.1.2 Java Message Service
JMS is part of Oracle’s Java Enterprise Edition platform and aims at allowing dif-
ferent Java applications to interconnect through a MOM. Its architecture is based
on the following elements:

• Provider: this is the MOM which implements the JMS API and intercon-
nects our Java applications; in our case it is Joram.

• Client: this can be any Java application or object that sends or receives
messages, it is then respectively a producer or a consumer.

1AMQP, http://www.amqp.org
2MQTT, http://mqtt.org
3JMS, http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

40

CHAPTER 6. ELASTIC QUEUES 6.1. CONTEXT

• Message: this is an object containing the data exchanged between JMS
clients.

• Queue: it is the structure where sent messages are stored till they are con-
sumed by a JMS consumer. A message is removed from the queue once it
has been consumed.

• Topic: the topic is a special message destination that broadcasts the mes-
sages it is sent to all the subscribed JMS consumers, if a topic has no sub-
scription, the messages it receives are lost.

• Connection: it encapsulates an open connection with the JMS provider, it
typically represents an open TCP/IP socket between a client and the MOM.

• Session: this is finally a single-threaded context for producing and/or con-
suming messages.

Connection

Session

JMS Client
Producer

Connection

Session

Message
Producer

JNDI

Connection
Factory

Session

JMS Client
Producer

Connection

Session

Message
Consumer

1 1
2

3

4

2

3

455

Figure 6.1: JMS architecture and workflow

Practically, as depicated by Figure 6.1, a JMS client would connect to a nam-
ing service, in this case a Java Naming and Directory Interface server, in order to
retrieve the connection factory and the destination it wants to reach. It then uses

41

6.2. SCALABLITY APPROACH CHAPTER 6. ELASTIC QUEUES

this connection factory to create a connection, and a session within this connec-
tion. Finally, based on whether it is a producer or a consumer, it creates the ap-
propriate object and starts communicating with the destination (i.e. either a queue
or a topic). Note that a client can create both producer and consumer objects and
alternate between the two roles.

6.1.3 Joram

Joram4 is an open-source pure Java implementation of the JMS standard, built
on ScaleAgent D.T.’s distributed agents platform. A cluster of Joram servers cor-
responds to a set of agent containers, interconnected through reliable channels.
Agents can be messaging destinations or client connections for instance. A user
would then be able to connect to any of the cluster’s servers and reliably connect
to any topic or queue, should it be on a different server of the same cluster. Jo-
ram also implements other messaging standards such as the AMQP and MQTT
protocols.

6.2 Scalablity Approach
In Message-Oriented Middleware, a queue is used to store the produced messages
until a message consumer retrieves them. Since the consumers often process the
messages they receive, they cannot always cope with the production speeds im-
posed by the message producers, and messages soon begin to pend on the message
queue. In this section, we propose a scalability mechanism that allows producers
to seemlessly send messages to a pool of queues along with their consumers and
distributes the messages between them. We first detail the scalability mechanism,
then study its scalability and finally present our flow control based load balancing
policy.

6.2.1 Scalability mechanism

In order to achieve queues’ scalability, we introduced the alias queue. An alias
queue is a special queue on the producer’s side, that automatically forwards the
messages it is sent to another, generally distant, queue on the consumers’ side,
see Figure 6.2. It is set to write-only mode as the “real” destination, on which the
messages are to be consumed, is the queue to whom the messages are forwarded.
Thus, once a producer connects to our alias queue, we will be able to internally
change the destination while maintaining the producer’s connection to the same

4Joram, http://joram.ow2.org

42

CHAPTER 6. ELASTIC QUEUES 6.2. SCALABLITY APPROACH

queue. We can also add or remove destinations, i.e., queues, and notify the alias
queue to take our modification into consideration. The alias queue mechanism
does not only insure JMS compatibility, it also guarantees a total decoupling be-
tween the producer and the consumers as it completely isolates the producer from
the consumption system: the producer will always be able to send messages to its
alias queue without taking into consideration any changes in the consumption rate
or availability of consumer queues. The system’s reliability is also increased as
the alias queue includes a fail-over mechanism and can resend a given message to
another queue if its initial destination is unavailable.

AQP Q1 C

AQP Q1 C

...

...

Figure 6.2: Alias queue principle

We will now compare the scalability of this load-balanced queues setup to that
of a single queue.

6.2.2 Scalability Study

In this sub-section, we define the parameters that affect the performance of our
system, first in the simple case of a single queue, before generalizing the results
to the case of load-balanced queues.

43

6.2. SCALABLITY APPROACH CHAPTER 6. ELASTIC QUEUES

Single Queue

Let p be the production rate on the queue and c the consumption rate. l being the
length of the queue, i.e. the number of waiting messages, we have:

Δl = p− c

Depending on the result, three cases can be identified:

• Δl > 0: This means that the queue receives more messages than it is asked
to deliver. The number of pending messages grows and we say that the
queue is unstable and flooded. This will eventually cause the unavailability
of the queue since it is allocated a finite memory.

• Δl < 0: In this case, the consumption rate is higher than the potential
reception rate. The queue is still unstable and we say that it is draining.
This means that the resources linked to this queue are not optimally utilized.

• Δl = 0: Here, the consumption rate matches the reception rate and the
queue is stable. This is the ideal case that we aim to achieve.

The stability of a queue is thus defined by the equilibrium between the messages’
production and consumption.

Load-Balanced Queues

In this case, the alias queues, to which the messages are sent, are wired to n
queues, on which the messages are received. Let P be the total production rate on
all the alias queues, ci the consumption rates on each of the consumers’ queues,
and li their respective lengths. The scalability of our distributed system can be
discussed on two different levels:

• Global scalability: Let L be the total number of waiting messages in all the
consumers’ queues. We have:

L =
n�

i=1

li

and:

ΔL = P −
n�

i=1

ci

The overall stability of our system is given by: ΔL = 0. This shows that,
globally, our system can handle the global production load. However, it
does not guarantee that on each consumer queue, the forwarded load is
properly handled. This will be guaranteed by local scalability.

44

CHAPTER 6. ELASTIC QUEUES 6.2. SCALABLITY APPROACH

• Local scalability: Depending on how we distribute the messages between
the different queues, each would receive a ratio ri of the total messages
produced on the alias queues. Thus, for each i ∈ {1..n} we have:

Δli = ri.P − ci

Local scalability is then given by:

∀i ∈ {1..n}; Δli = 0

Note that local scalability implies global scalability as:

∀i ∈ {1..n}; Δli = 0 ⇒ ΔL = Δ
n�

i=1

li =
n�

i=1

Δli = 0

This shows that, ideally, the forwarding rates (ri) of each queue should adapt
to its consumers’ consumption rate (ci). Note that we didn’t discuss the alias
queue’s load as, if our system works properly, it shouldn’t have any. As explained
earlier, the alias queue automatically forwards all the messages it is received.

6.2.3 Flow Control Policy
Our load balancing policy is flow control based. It is a consumption-aware policy
that aims at forwarding more messages to the queues with the highest consump-
tion rates. Practically, a controller periodically retrieves the consumption rates
on the different load-balanced queues, and computes the new forwarding rates as
the ratio between a queue’s consumption to the total consumption of our system
during the last round. Since this is a reactive policy, a significant change in the
consumption rates might result in the overload of some queues. Our policy tries
to distribute the overload over all the queues by artificially subtracting the differ-
ence between the queue’s load and the average load from the number of messages
it has consumed: if the queue’s load is greater than average, it is forwarded less
messages than it can handle so as it can consume some of its pending messages,
otherwise, it is forwarded more messages, which would increase its load, and we’d
have eventually the same load on all of our queues. This reduces the latency of our
system as it minimizes the maximum load per queue, thus reducing the amount of
messages that should be consumed before the last pending message can be con-
sumed. If we take up the parameters defined earlier, the forwarding rates based on
the values monitored on round k can be expressed as follows, ∀i ∈ {1..n}:

ri(k + 1) =
1

C
max(ci(k)− (l − lavg), 0)

45

6.3. ELASTICITY APPROACH CHAPTER 6. ELASTIC QUEUES

where:

C =
n�

i=1

ci(k) ; lavg =
1

n

n�

i=1

li

This load balancing policy has two key assets: (i) it adapts to the changing
consumption rates of the different load-balanced queues, and (ii) it distributes the
overload over all the queues. Provided that our static system can handle the pro-
duction load (global scalability), our flow control based policy guarantees, even-
tually, the local stability of each of the load-balanced queues. However, if the
global load of our system increases beyond its maximum consumption capacity,
all what our load balancing policy can do is cause the loads on the load-balanced
queues to grow uniformly. Thus the need for a dynamic provisioning of resources
to automatically cope with a global load change.

6.3 Elasticity Approach
In this section, we present the different elements of our elastic messaging solution.
We first describe when does our elasticity algorithm provision new queues (scaling
out) and remove unnecessary ones (scaling in), then we detail our provisioning
approach.

6.3.1 Scaling decision
In order to guarantee the scalability of our messaging system with regard to a
change in the global load, we have implemented an elasticity controller that peri-
odically: (i) monitors the different loads on the different queues of our system, (ii)
potentially adds or removes queues based on the monitored values. Note that we
base our decision solely on the queues’ loads, since the consumption capacity on
each queue may vary, particularly in the dynamic context of a cloud infrastructure.

Scaling up

This is achieved when we monitor that the average load of the system’s queues
is beyond an acceptable limit maxLoad. This guarantees that our system’s scal-
ability is beyond the scope of the flow control mechanism as the latter can only
bring the queues’ loads to this average load, whereas what is needed is to reduce
the average load itself, which can only be done by provisioning more resources.

Scaling down

This should be triggered when we see that the system is using too many resources
than it actually needs. We can suspect our system to be underloaded when all

46

CHAPTER 6. ELASTIC QUEUES 6.3. ELASTICITY APPROACH

its queues are underloaded, i.e., almost empty, practically when the average load
is below a threshold minLoad). This means that we have enough resources for
the messages to be consumed as soon as they are produced, possibly just enough
resources, in which case we shouldn’t proceed with the removal of any of the
queues. Thus, the scaling down decision can not be made at once.

To make sure that our system is effectively underloaded, when the elasticity
controller suspects the system’s overload, it elects a queue to be removed, and
starts decreasing the amount of messages it is forwarded gradually. If, doing so,
the average load goes above the specified limit, the scaling down plan is canceled
and the elected queue receives messages normally, as specified by our flow con-
trol policy. Otherwise, if the elected queue is no longer forwarded any messages
without the average load exceedingminLoad, then we can safely assume that this
queue is no longer needed and it is effectively removed from our system.

Figure 6.3 outlines our elasticity algorithm.
Now that we have presented when scaling should be done, the next section

details how it is actually achieved.

6.3.2 Provisioning
One a scaling decision is made, fast execution is of great importance to the proper
working of our solution. Or, provisioning a virtual machine instance (VM) is rel-
atively slow, for instance, it takes about a minute to provision a small Ubuntu
instance on Amazon EC2 [22]. To deal with this, our solution relies on co-
provisioning queues on a same instance and pre-provisioning a pool of VMs.

Co-Provisioning

Since we are using a cloud computing infrastructure, where the resource unit is a
virtual machine instance, an intuitive approach would be to add each queue on a
separate VM instance. However, Joram’s evaluation shows that due to the internal
functioning of Joram, and depending on the size of the VMs, two or more queues
can coexist on the same VM instance and still have comparable performance as
with a configuration where each runs on a separate VM instance. Figure 6.4,
shows the maximum throughput that can be achieved on a small EC2 VM on
queues in different setups with regard to persistency of the messages, connection
type and co-locality, with a message size of 100B. We can see that in a persistent
setup, which is the most reliable, we can fairly co-provision up to 2 queues without
significant performance decrease.

Thus, the resource unit is no longer the VM instance, but the available slots
that we can provision queues on. Co-provisioning allows us to diversify our pro-
visioning policies: if our main concern is performance, we might want to have

47

6.3. ELASTICITY APPROACH CHAPTER 6. ELASTIC QUEUES

while(TRUE) {
sleep(period);
monitorQueues();

/* Scaling down */
if (avgLoad > minLoad) {

// Cancel scaling down plan
toRemove = NULL;

}

if (avgLoad < minLoad && !toRemove) {
// Start a new scaling down plan
toRemove =

queues.electQueueToRemove();
}

if (toRemove) {
// Continue scaling down plan
toRemove.reduceRate()
if (toRemove.rate == 0) {

queues.remove(toRemove);
toRemove = NULL;

}
}

/* Scaling down */
if (avgLoad > maxLoad) {

queues.addNewQueue();
}

/* General case */
queues.applyFlowControlPolicy();

}

Figure 6.3: Elasticity algorithm outlines

48

CHAPTER 6. ELASTIC QUEUES 6.3. ELASTICITY APPROACH

Persistent Transient
Setup localCF tcpCF localCF tcpCF
1 queue 25 309 13 862 41 726 19 669
2 queues 25 052 13 456 33 971 16 828
4 queues 22 318 13 338 25 741 28 450

Figure 6.4: Queues’ throughtput with different setups

each queue on a new VM instance, and provided we are using a private cloud, we
might even want to create this VM instance on the least loaded physical machine.
Other policies might have energy efficiency as the main concern. This is the case
for the basic policy that we have implemented.

However, co-provisioning only reduces the impact of VM provisioning lag,
for once all the slots on an instance are filled we still have to provision a new VM.
Pre-provisioning deals with this issue once and for all.

Pre-provisioning

In order to optimize our solution even more, we have looked into reducing the
time needed to add new queues, particularly when it involves provisioning a new
virtual machine instance. The solution we propose is pre-provisioning a certain
number of unneeded VM instances, which will be maintained as long as our cloud
messaging system runs. This means that when a new node is needed, we use a
pre-existing node, which renders our system more reactive, the used VM is then
asynchronously replaced, which means that the creation of the new VM instance
will not affect the latency of our system, thus improving its performance.

In order to evaluate the number of necessary pre-provisioned VMs, we need
the Service Level Agreement to specify not only the maximum tolerated latency,
which defines our maxLoad, but also the maximum supported increase of the
production rate during a unit of time. Considering the following parameters:

• SLA.delta: The maximum increase of the production’s rate in 1s (msg/s2).

• VM.startup: The average startup time of virtual machines (s).

• VM.capacity: The maximum consumption capacity of a virtual machine,
provided all its slots are filled (msg/s).

The number of virtual machines to be pre-provisioned NPP is given by:

NPP = ceil(
SLA.delta× VM.startup

VM.capacity
)

49

6.4. EVALUATION CHAPTER 6. ELASTIC QUEUES

The numerator expresses, in the worst case, the extra production load that
might occur during the startup of a virtual machine. This should be handled by our
pool of pre-provisioned VMs, thus, it should be equal to NPP × VM.capacity,
hence the formula above.

Next, we present the implemented provisioning policy.

Provisioning policy

Our provisioning policy is energy-efficiency-driven and aims at having an auto-
matically consolidated park of queues. Should we have control over the cloud
infrastructure as well, this consolidation is achieved on both levels: (i) having our
virtual machines on the minimum possible number of physical machines (PM)
and (ii) having the provisioned queues on the minimum number of VMs.

This is achieved on scaling up, by always trying to provision the new queue
on an available slot in an existing VM instance, and only create a new instance if
all the available slots on the last created VM instance are filled; and when creating
the new VM instance always try to use the current physical machine and only use
another if the first cannot host the new instance. This automatically minimizes
both the numbers of utilized PMs an VM instances. On scaling down, in order to
maintain the automatic consolidation, we always remove the last added queue, if
it was the last one on its VM instance, than we can destroy one pre-provisioned
VM and if this VM was the last one on its corresponding PM, the latter can be put
into an energy-saving mode.

The next section studies the performance of our elastic cloud messaging sys-
tem and shows the specific improvement due to each optimization.

6.4 Evaluation
In this section, we validate our elastic messaging system and discuss its perfor-
mance. We will not only validate our implementation as a whole, but also high-
light the performance gain provided by each optimization, i.e., co-provisioning
and pre-provisioning. All the following experiments have been done on Amazon
EC2, using m1.small instances.

6.4.1 Effect of co-provisioning
In these two first experiments, the system is subjected to a production rate that
gradually goes up to 750msg/s, a single worker is configured to consume at most
100msg/s, our elasticity algorithm’s minLoad and maxLoad are respectively
50msg/s and 200msg/s.

50

CHAPTER 6. ELASTIC QUEUES 6.4. EVALUATION

Figure 6.5 shows the results of allowing at most one worker per VM, whereas
Figure 6.6 shows the results with provisioning up to two workers on the same VM.
In both cases, no VM has been pre-provisioned.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500
 0

 5

 10

 15

 20

 25

 30

N
u
m

b
er

 o
f

M
es

sa
g
es

N
u
m

b
er

 o
f

W
o
rk

er
s

Time (s)

Production
Maximum Load

Number of Workers

Figure 6.5: 1 worker per VM, no provisioning

As expected, the latency of VM provisioning results in overload pikes that
might require the provisioning of extra workers to be handled, even though our
algorithm has a safety interval in which he awaits the scaling decision to take
effect. We can see comparing both Figures 6.5 and 6.6 that the overload pikes
have been halved, as half the times in the second experiment, a worker doesn’t
have to wait for the provisioning of a new VM but can directly be provisioned on
an existing VM. It is as well worth mentioning that in the second case, we only
use half the number of virtual machines, which is a significant improvement in
terms of energy efficiency.

6.4.2 Effect of pre-provisioning
Using the same parameters as above, we made a third experiment, where, in ad-
dition to provisioning two workers on the same VM, we pre-provision a VM. The
results are depicted by Figure 6.7.

The pre-provisioned VM completely removed the impact of VM startup la-
tency on our system, as we no longer need to wait for a VM to start: we always
have an available VM to use and we replace it asynchronously.

51

6.4. EVALUATION CHAPTER 6. ELASTIC QUEUES

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500
 0

 5

 10

 15

 20

 25

 30
N

u
m

b
er

 o
f

M
es

sa
g
es

N
u
m

b
er

 o
f

W
o
rk

er
s

Time (s)

Production
Maximum Load

Number of Workers

Figure 6.6: 2 workers per VM, no provisioning

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500
 0

 5

 10

 15

 20

 25

 30

N
u
m

b
er

 o
f

M
es

sa
g
es

N
u
m

b
er

 o
f

W
o
rk

er
s

Time (s)

Production
Maximum Load

Number of Workers

Figure 6.7: 2 workers per VM, 1 pre-provisioned VM

52

CHAPTER 6. ELASTIC QUEUES 6.4. EVALUATION

6.4.3 Size of the pre-provisioning pool
In the previous experiment, one VM was enough for our system to work properly,
as the production rate’s acceleration was not very high. In the following two
experiments, we multiply this acceleration by eight. Figures 6.8 and 6.9 show the
results with respectively one and two pre-provisioned VMs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500
 0

 5

 10

 15

 20

 25

 30

N
u
m

b
er

 o
f

M
es

sa
g
es

N
u
m

b
er

 o
f

W
o
rk

er
s

Time (s)

Production
Maximum Load

Number of Workers

Figure 6.8: 2 workers per VM, 1 pre-provisioned VM

It is clear from Figure 6.8 that, in this case, provisioning one VM isn’t enough,
the provisioning of the four first workers happens normally, since they use the first
VM (the first two), and the pre-provisioned VM (the third and fourth), however,
when a fifth worker is needed, it has to wait for the new pre-provisioned VM to
start up, as it didn’t have enough time to launch.

This can be expected as, if we take up the formula expressed in 6.3.2, the pro-
duction rate increases by 100msg/s each 25s, which corresponds to an SLA.delta
of 4msg/s2, and given that the mean startup time of an EC2 linux instance is
VM.startup = 96.9s [22], and that each VM contains 2 workers which consume
100msg/s each, which means that VM.capacity = 200msg/s, the minimum
number of pre-provisioned VMs should be:

N = ceil(
4× 96.9

200
) = 2

Sure enough, pre-provisioning two VMs results in a proper functioning of our
system as shown by Figure 6.9.

53

6.5. CONCLUSION CHAPTER 6. ELASTIC QUEUES

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500
 0

 5

 10

 15

 20

 25

 30
N

u
m

b
er

 o
f

M
es

sa
g
es

N
u
m

b
er

 o
f

W
o
rk

er
s

Time (s)

Production
Maximum Load

Number of Workers

Figure 6.9: 2 workers per VM, 2 pre-provisioned VMs

6.5 Conclusion
We have presented an elastic message queuing system that adapts the number of
queues and consumers to the load of messages. Our system has 3 main assets, (i)
its flow control based load balancing makes sure that the provisioned resources are
used to their maximum capacity; (ii) in the case of overload, our pre-provisioning
and co-provisioning techniques achieve high reactivity while minimizing the cost
and (iii) removal of unnecessary resources is done gradually in order to minimize
the number of wrong decisions which would affect badly the performance of our
system. Our work has been evaluated on a public cloud and particular care has
been taken to show the benefit of each of our provisioning techniques. In the
future, we intend to study the impact of different provisioning strategies on the
behavior of our messaging system and generalize our approach to the one-to-many
messaging paradigm.

54

Chapter 7

Elastic Topics

Contents
7.1 Context . 55

7.2 Approach . 56

7.2.1 Topic Capacity . 56

7.2.2 Tree-based Architecture 57

7.2.3 Scaling Decision . 58

7.2.4 Implementation Details 58

7.3 Evaluation . 59

7.3.1 Scalability validation 59

7.3.2 Elasticity validation 60

7.4 Conclusion . 62

7.1 Context
In this section, having already presented the general context of messaging mid-
dleware as well as Joram, the messaging solution on which our work is based, we
will only present some specificities of the publish-subscribe paradigm.

The pure publish-subscribe paradigm, implemented by Joram, assumes that if
a publication doesn’t find any subscriber, it is simply lost. This is not the case of
other brokers where each topic has an underlying queue that stores publications
until they are consumed by at least one subscriber. Thus, while consumption
from a queue can be done in a transient manner, with a single HTTP request as
it is the case for cloud messaging providers such as Amazon SQS or IronMQ,

55

7.2. APPROACH CHAPTER 7. ELASTIC TOPICS

subscription to a pure topic needs a continuous connection, for the subscribers not
to miss any of the up-coming publications. Moreover, each of these subscribers
needs to receive a publication as soon as it is available. This makes the number of
subscribers to be handled an important scalability concern for topics’ providers.
Naturally, the load of publications is also a concern, but we believe this can be
addressed by a fairly simple adaptation of the solution proposed in the previous
chapter.

In this work, we focus on scaling topics with regard to the number of sub-
scribers. We propose a tree-based architecture to limit the number of connections
per topic depending on a given tolerated maximum latency or throughput. We as-
sume that the system is able to handle the production load to which it is subjected.

7.2 Approach

This section describes how we managed to make topics automatically adapt to the
varying load of subscribers’ connections. We first present the criterion on which
we base our decision, then our tree-based architecture and how it adapts to the
former’s variation.

7.2.1 Topic Capacity

When a topic receives a publication, it has to go through all its registered sub-
scribers in order to forward it to them. Obviously, The more subscribers a topic
has, the longer it takes for it to forward a publication and the more the last sub-
scriber has to wait before receiving it. Thus, for a given throughput, there is a
maximum latency, within the messaging system, that should not be exceeded, if
we want all the subscribers, particularly the last one, to be up to date with regard
to the pace of publications.

We define for each topic a capacityC(Tmax), function of the maximum through-
put of publications it can handle, which represents the number of connections this
topic can serve, without exceeding the latency corresponding to Tmax. Roughly:

Lmax =
1

Tmax

As, in the scope of this work Tmax remains constant, the lever of our elasticity
would be the number of subscribers, the more the subscribers the more topic nodes
are needed to process them smoothly. To achieve this, we propose an adaptive
tree-based architecture.

56

CHAPTER 7. ELASTIC TOPICS 7.2. APPROACH

T0

T3 T4

T1 T2

P

S1 S5S4S3S2

T0

T1 T2

S1 S3S2

P

Figure 7.1: Topic trees with different subscribers

7.2.2 Tree-based Architecture

The main idea behind our tree-based architecture is to keep the number of connec-
tions to each topic node under its defined capacity. Instead of having the number
of subscribers’ connections grow linearly on a single topic. We define a front-
end topic that receives the publications and forwards them to as many underlying
topics as necessary to handle the number of subscribers.

However, doing so would eventually lead the number of underlying topics
to exceed the capacity of the front-end topic. Thus the need of a multiple level
tree-based architecture. This means that we will have two different types of topic
nodes, even though they are functionally the same: intermediate nodes which for-
ward publications to other topic nodes, and final nodes, which represent the leaves
of our tree and forward the publications they receive to the subscribers. Figure 7.1
shows setup examples of our topic nodes, with a capacity of 2 connections per
topic and different numbers of subscribers.

Naturally, at each additional level of topics, an extra hop is added to the latency
of publication delivery. This overhead is however minimized by the fact that our
architecture is meant to be set on the provider’s side, in a local network. Moreover,
the evaluation presented in 7.3 shows that provided a large enough of subscribers,
we achieve a better latency using our solution.

Now that we have a scalable topic architecture, the next subsection shows how
we adapt it to the variations of the number of subscribers.

57

7.2. APPROACH CHAPTER 7. ELASTIC TOPICS

7.2.3 Scaling Decision
As it is the case in our previous contribution, elasticity is achieved by periodically
retrieving the state of the system, and take actions based on the guarantees we
would like to preserve.

In this case, the single rule that has to be respected is that the number of
subscribers per topic node should not exceed its capacity. As we retrieve the
state of our system, we consider two particular values: NS , the total number of
subscribers, and NFT the number of final topics, i.e., the leaves of our topic tree.
C being the capacity of a topic node, we have the following cases:

• NS > NFT × C: An extra topic node should be added.

• NS < (NFT − 1)×C and NFT > 1: We can remove one topic node as it is
no longer needed to handle the current number of subscribers.

• NFT − 1× C < NS < NFT × C: No scaling decision is needed.

Once the number of topic nodes is adapted, the subscribers are redistributed
uniformly over the final topic nodes. This fills the empty slots left by unsubscribed
subscriber and/or new ones due to the addition of resources. The next subsection
shows how this is practically carried out.

7.2.4 Implementation Details
This section discusses some aspects of our elastic topic implementation.

Subscribers’ redirection

This first aspect is key to our solution as it allows us, upon subscription, to redirect
a subscriber to one of the final topic nodes -on a round-robin basis-, thus relieving
the load on an otherwise over-capacity topic.

This is achieved by wrapping the subscriber’s client. All what the user has
to do is create a subscriber to given topic, which would correspond to our front-
end node, and start seamlessly receiving publications. What happens beneath is
that our subscriber’s wrapper would have received, upon its connection to the
front-end node, a special message with information about the new topic node to
connect to. Special messages are naturally not reported to the users, i.e., they are
not subjected to their defined callback method.

Redirection also occurs when our system tries to re-balance the subscribers. In
this case, our subscriber’s wrapper creates a new connection to the new node, and
keeps the first one open till it receives the first publication from the new topic node.
This guarantees that (i) no publication is lost during the re-connection process and
(ii) that each publication is processed at most once by the user’s callback method.

58

CHAPTER 7. ELASTIC TOPICS 7.3. EVALUATION

Subscribers’ re-balancing

As stated earlier, the fact that subscribers can end their subscription forces us to
re-balance the subscribers over the topic nodes.

In order to minimize the redirection impact during re-balancing, we do so by
sending re-balancing orders only to the over-capacity topic nodes. These orders
contain a list of topic nodes, which are obviously under-capacity, along with how
many subscribers to redirect to each one of them. These values are computed
based on the difference between the number of subscribers on each topic node
and the defined capacity.

7.3 Evaluation

In order to validate our implementation, we have conducted two experiments.
The first experiment shows that there is indeed a gain in using an extra level of
topics, in spite of the overhead introduced by the new hop between topics. In the
second experiment, we vary the number of subscriber and show how our elasticity
mechanism keeps latency within an accepted range.

These experiments have been carried out on Amazon’s public cloud, Elastic
Cloud Compute, using exclusively instance of type m1.small1.

7.3.1 Scalability validation

In this first experiments, we set different configurations by varying both the topics’
layouts and the number of subscribers. In the first setup all subscribers classically
connect to a single topic, on which the messages are produced. Next, we add
different numbers of children topics, to whom the messages produced on the root
topic are forwarded. Each topic runs on a separate VM instances, and the sub-
scribers are evenly distributed across 6 VM instances. The performance metric
we are interested in is the maximum latency, i.e., how much time does it take for
the last subscriber to receive the message. The results are given by Figure 7.2.

We can see that, provided a big enough number of subscribers, the overhead
of the extra hop between the root topic and the children is overcome by the gain
due to a lesser number of subscribers per topics. Naturally, using a single child
topic always performs worse than directly subscribing to the root as it introduced
the overhead without any counterpart. It is also worth noting that using more
children always reduces the maximum latency. However, it comes at the cost of
provisioning extra resources.

1EC2 instances, http://aws.amazon.com/ec2/previous-generation

59

7.3. EVALUATION CHAPTER 7. ELASTIC TOPICS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90 100

L
at

en
cy

 (
m

s)

Number of subscribers

Single topic
w/ 1 child

w/ 2 children
w/ 3 children

Figure 7.2: Topics’ scalability

7.3.2 Elasticity validation

This experiment shows how our elasticity controller adapts to the variation of
the number of subscribers in order to maintain a reasonable maximum latency.
Initially, our topics’ configuration consists in a root topic along with one sub-
topic, later on extra sub-topics are added as the number of subscribers grows. As
in the first experiment, the subscribers are created in a pool of 6 virtual machine
instances. For the sake of this experiment, the maximum number of subscribers
per topic is set to 50.

As shown by figure 7.3, at first, the latency increases as the number of sub-
scribers grows. However, the addition extra sub-topics and the balancing of the
subscribers over the existing sub-topics stops the linear increase of latency. Nat-
urally, as the number of subscribers goes down, the no longer needed topics are
deleted. The latency graph also shows punctual latency pikes occurring upon the
addition of removal of new sub-topics. This is due to the balancing of subscribers:
When adding the second sub-topic for instance, half of the first sub-topics’ sub-
scribers have to be redirected, and messages sent during this process are delayed.
Likewise, a sub-topic cannot be removed prior to the redirection of all its sub-
scribers. This overhead is however to be minimized as it only occurs when a
relatively important number of subscribers have to be redirected at once.

60

CHAPTER 7. ELASTIC TOPICS 7.3. EVALUATION

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700
 0

 1

 2

 3

 4

 5

N
u
m

b
er

 o
f

su
b
sc

ri
b
er

s

N
u
m

b
er

 o
f

su
b
-t

o
p
ic

s

Time (s)

Subscribers
Sub-topics

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

L
at

en
cy

 (
m

s)

Time (s)

Figure 7.3: Topics’ elasticity

61

7.4. CONCLUSION CHAPTER 7. ELASTIC TOPICS

7.4 Conclusion
In this chapter we have proposed a mechanism that automatically adapts messag-
ing topics to the varying load of their subscribers. Our solution relies on limiting
the number of subscribers per topic, and redirecting the subscribers to new topics
in order to respect this limit. The evaluation carried out on Amazon’s public cloud
validates our solution and highlights the performance gain it provides.

62

Chapter 8

Elastic Stream Processing

Contents
8.1 Context . 63

8.1.1 Stream Processing 63

8.1.2 Storm . 64

8.2 Approach . 65

8.2.1 Monitoring . 65

8.2.2 Scaling Decision . 66

8.2.3 Provisioning . 67

8.2.4 Architecture . 67

8.2.5 Implementation Details 68

8.3 Evaluation . 69

8.3.1 Context . 69

8.3.2 Elasticity Validation 70

8.4 Conclusion . 72

8.1 Context

8.1.1 Stream Processing
With the proliferation of connected devices, data is generated at an ever-growing
rate. This big data can be handled in two different ways. The first one to emerge
is batch processing where data is stored in huge databases to be later processed, as

63

8.1. CONTEXT CHAPTER 8. ELASTIC STREAM PROCESSING

a whole, usually on distributed computing infrastructures and using scalable pro-
gramming models such as Google’s MapReduce. However, data is most valuable
right after it is created, in Finance for instance, one can not afford to wait much
long before making a trading decision, the market fluctuates just too fast and its
analysis has to be reactive enough to follow. In other contexts, data is just too big
to be stored. This is the case for instance of the data generated by the CERN’s
Large Hadron Collider whose observations must be at least filtered in real-time.
Hence the need for the second big data paradigm: stream processing.

Stream processing platforms analyze data as it arrives in order to make the
most out of it. They put the emphasis on reactivity even if it is achieved on the
expense of precision. This is often not a problem as in the case of analyzing trend-
ing topics on social media where the exact number of occurrences is not of prime
importance. The recent years have witnessed the emergence of many stream pro-
cessing tools such as Yahoo’s S4, which is based on the actors’ model; Spark
Streaming, which mimics its batch processing older brother Spark by gathering
streams into small time-windowed batches. However, the most widely adopted
stream processing platform remains Apache Storm, which has first been devel-
oped internally at Twitter.

8.1.2 Storm
Storm is a fault-tolerant distributed event processing framework. It allows the
definition and deployment of component-based processing chains called topolo-
gies. A topology is composed of two types of components: spouts, which retrieve
data from a given source and format it as a stream of tuples, i.e., a list of named
objects; and bolts which receive one or more streams as inputs, define how each
tuple should be processed and emit a new stream of tuples. Storm also allows the
user to specify the parallelism of a component, i.e., how many instances of this
same component would be deployed. Doing so, the user should specify the load
balancing strategy to apply as well. Storm’s load balancing ranges from a random
policy, to sticky policies that group tuples by one or more fields. Figure 8.1 shows
an example of a topology.

Architecture-wise, Storm has a central node called nimbus to which the topolo-
gies to be deployed are submitted. Nimbus takes then care of deploying the topolo-
gies onto the Storm cluster’s nodes. Nimbus also receives some monitoring met-
rics from the supervisors, i.e., monitoring and configuration daemons on each of
the Storm nodes. For its distributed configuration, Storm relies on Zookeeper.
As Storm is a fault-tolerant platform, the failure of one node doesn’t result in the
whole system’s failure. Particularly, even if the nimbus node fails, the rest of
the Storm cluster would continue to function properly. Storm also discovers any
new nodes joining the cluster or the departure of others and rebalances the run-

64

CHAPTER 8. ELASTIC STREAM PROCESSING 8.2. APPROACH

Bolt

Bolt

Bolt

Bolt

BoltSpout

Spout

Figure 8.1: Storm topology example

ning topologies accordingly, although it does so simplistically in a round-robin
fashion.

While Storm allows scaling either by setting the parallelism of a component
or by changing the size of the cluster on the fly in order to adapt to load variation,
it falls short of doing so automatically. In this work, we propose a solution that
periodically monitors the state of a Storm topology and scales in or out one or
more of its components should the need to do so arise.

8.2 Approach
In order to make Storm elastic, i.e., able to scale dynamically, we had to address
three concerns: (i) how to monitor the platform and retrieve its current state, (ii)
when should scaling operations occur, and (iii) how to achieve the scaling, i.e.,
leverage the provisioned resources. This subsection shows our approach to each
of these concerns.

8.2.1 Monitoring
The first step prior to any scaling decision is to monitor the topology and select the
metrics that we consider relevant to characterize the load of a given component.
A Storm cluster can be monitored in a variety of ways. As for any cluster, system-
level metrics can be fetched using a tool such as Ganglia. Moreover, Storm also

65

8.2. APPROACH CHAPTER 8. ELASTIC STREAM PROCESSING

exposes application-metrics, such as the number of emitted or executed tuples.
We consider that these Storm metrics are the most fit to reflect the load of a Storm
component.

Basically, the state of a component is described by the difference between the
tuples it receives, i.e., the tuples that are emitted by all its input components, and
the tuples it is able to process within a given period of time. While this is straight
forward to compute, it takes into account virtually any type of bottlenecks a com-
ponent might encounter: should the processing of a tuple be CPU-intensive or
should it rely on an external web service or database connection, it would invari-
ably tell if a given component is able to keep up with the pace of its in-coming
stream of data.

8.2.2 Scaling Decision
Once we have the Storm metrics of the components and provided that load bal-
ancing among different instances of the same component is guaranteed, through a
random policy for instance, the scaling decision goes as follows:

• Scaling out: which is the addition of an extra component instance, should
occur when a given component receives more messages than it is able to
process, i.e., if 8.1 is verified, n being the current number of the compo-
nent’s instances.

Σinputsemitted > Σi<nexecutedi (8.1)

Before scaling out, we store the last witnessed capacity of the component’s
instances as described by 8.2. This will be later used to initiate scaling in.

capacity =
Σi<nexecutedi

n
(8.2)

• Scaling in: which is the removal of an unnecessary component instance,
should take place if we can guarantee that, with one instance less, the com-
ponent’s instances would still not be overloaded. Using the previously
stored capacity, that is updated upon each scaling out, scaling in is insti-
gated upon 8.3 verification.

Σinputsemitted > (n− 1)capacity (8.3)

Obviously, changing the number of component instances wouldn’t have the
desired effect on performance unless it is coupled with a correspondent change in
the amount of provisioned resources.

66

CHAPTER 8. ELASTIC STREAM PROCESSING 8.2. APPROACH

8.2.3 Provisioning
Elasticity is possible thanks to the flexibility of cloud computing infrastructures,
which allow on-demand addition and removal of computing resources. Thus, the
resource unit to be managed is a virtual machine instance.

As stated earlier, Storm deploys a topology by dispatching its components
evenly on available nodes, which would result in our components’ instances af-
fecting each others’ performance and bias our scaling decision. It is of course
necessary to mutualize resources in the case of a cluster of powerful physical
machines, but cloud computing provides us with the choice of the amount of re-
sources to provision not only in terms of total power, but also in granularity as
cloud providers usually have a wide range of virtual machine instances’ sizes. In
this work, we propose to put each component’s instance in a separate small virtual
machine instance, which isolates the components without wasting computational
power. The scaling and provisioning processes are thus transparent as adding a
component instance provides it automatically with the extra resource to run on
thus improving the performance of the component. Likewise, removing a compo-
nent instance automatically saves the cost of the virtual machine instance it used
to run on.

Of course, a multitude of policies can be imagined, and easily integrated to our
solution, favoring either performance or cost-efficiency. But the proposed provi-
sioning policy, despite its simplicity, proved to be good enough as will be shown
in Section 8.3. Now that we have presented the key principles of our solution,
this section presents its global architecture and details some of its implementation
aspects.

8.2.4 Architecture
Our elastic Storm solution consists of two main parts:

• Elastic Controller: It is the external agent that periodically fetches the
Storm cluster’s metrics and decides whether or not scaling should be done.
If scaling is needed, the controller requests the addition of a virtual machine
instance, then it changes the parallelism of the component to be scaled.
The deployment of the new component on the new virtual machine is then
handled by our custom scheduler, on nimbus’ side.

• Custom Scheduler: Storm allows users to plug a custom scheduler in order
to customize their deployment strategies. We took advantage of that and de-
veloped a Storm scheduler that makes sure that each component’s instance
is granted one and only one virtual machine instance. This can be used to
implement any other provisioning policy.

67

8.2. APPROACH CHAPTER 8. ELASTIC STREAM PROCESSING

Nimbus

Custom
Scheduler

Node 1 Node 2 Node 3 ...

Storm Cluster

Elastic Controller

Change the
parallelism

of components

Get Storm
metrics

Add/remove nodes
to/from cluster

Place new components
on new nodes

Figure 8.2: Elastic Storm architecture

Figure 8.2 shows the global architecture of our solution, and how it integrates
with a regular Storm cluster.

8.2.5 Implementation Details

We will now discuss some technical points about how we made Apache Storm
elastic.

Monitoring

There are different ways of monitoring a Storm cluster. Storm provides a UI
showing the metrics of its topologies, mainly number of executed tuples per com-
ponent, i.e., spout or bolt, and the average execution latency in different time
windows. This is how our elastic controller computes the capacity of each bolt
on which it bases its scaling decision. Our solution also uses Ganglia to retrieve

68

CHAPTER 8. ELASTIC STREAM PROCESSING 8.3. EVALUATION

system metrics, even though they are not currently involved in the scaling process.
Finally, for the sake of completeness, JMX API can as well be used to monitor
Storm as it runs on a Java Virtual Machine.

Scaling

So far, we have discussed the parallelism of components as the number of in-
stances of a component. Storm does actually have two levels of parallelism for its
spouts and bolts:

• Tasks: which correspond to the instances of a bolt or a spout running con-
currently.

• Executors: these are the threads on which a component’s tasks will run.

While Storm allows the number of executors to change on the fly, the number
of tasks per component is to be set once and for all throughout the lifetime of a
topology. In our solution, the number of tasks per each component is thus set to
a large enough number, and we scale the number of executors. Tasks are then
deployed evenly on the existing executors.

8.3 Evaluation
In this section, we use the DEBS Grand Challenge data-set to evaluate our work.
We first present our evaluation context before detailing the results of our different
experiments.

8.3.1 Context
Infrastructure

Our experiments are carried out on a VMware vSphere run private cloud, using
virtual machine instances with 1Mhz CPU, 2GB memory and 10GB disks.

Data-set

The data-set we use for our experimentation comes from the DEBS Grand Chal-
lenge 2014. It represents values reported by various home consumption sensors
in the format: id, timestamp, value, property, plug id, household id, house id, re-
spectively identifying the measurement, its value, whether it corresponds to load
or work, the plug the reporting sensor is plugged to, its household and its house
identifiers.

69

8.3. EVALUATION CHAPTER 8. ELASTIC STREAM PROCESSING

Spout Format Slice
Aggre-
gate

Predict

Figure 8.3: Load prevision topology

Application

Our application is a Storm topology that computes load’s prevision based on the
previously described data-set. Figure 8.3 describes the different components of
our topology.

The spout retrieves the data from an MQTT topic where it is published line
by line, these lines are then formatted into a list of values by the Format bolt.
Then, only the load-related tuples are filtered and enriched with a time slice based
on their timestamp and aggregated per house and time slice. Prevision is then
made given the recent time slice history and previous time slices and stored in a
Cassandra database.

8.3.2 Elasticity Validation
This experiment shows how our elastic solution is able to follow the variation of
the in-coming throughput by adding new nodes to the Storm cluster. The initial
cluster is set so as to have one worker per component of our topology, i.e., 6 virtual
machine instances including the Nimbus node. The in-coming throughput is then
varied gradually in order to see its impact on the behavior of our topology.

Figures 8.4 and 8.5 show the results of this experiment, components that have
not needed scaling have been omitted. We can see that at times, there is a decrease
in the number of emitted bolts (figure 8.4). This is detected by our elasticity
controller which instigate the corresponding scaling operation (figure 8.5). The
pikes following each scaling are due to accumulated non executed tuples when
scaling is carried out. Likewise, when the spout’s throughput is low enough our
controller removes unnecessary instances.

Note that different components are scaled separately. Format has been the first
to be scaled, and as it became able to process all the tuples its received, it emitted
more tuples which resulted in Slice being overloaded later on. Slice’s throughput
is roughly half the throughput of the previous components as it filters only load
related measurements which accounts for half the total reported measurements.

Thanks to its elasticity, our solution has been able to efficiently support the
increasing dataload it to which it has been subjected.

70

CHAPTER 8. ELASTIC STREAM PROCESSING 8.3. EVALUATION

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

(t
u
p
le

s/
s)

Time (min)

Spout
Format

Slice

Figure 8.4: Throughput per component

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

N
u
m

b
e
r

o
f

in
st

a
n
c
e
s

Time (min)

Format
Slice

Figure 8.5: Parallelism per component

71

8.4. CONCLUSION CHAPTER 8. ELASTIC STREAM PROCESSING

8.4 Conclusion
In this chapter, we have proposed an elastic stream processing solution based on
Apache Storm. It is non intrusive and allows Storm users to define their topologies
normally as well as benefit from the enhanced reliability of Apache Storm. The
different processing components are scaled separately when the need to do so
arises. Finally, this work has been validated through evaluation on a VMware
vSphere private cloud solution using a real-life dataset.

72

Chapter 9

Conclusion

Contents
9.1 Summary . 73

9.2 Perspectives . 74

9.2.1 Different elasticity approaches 74

9.2.2 Advanced stream processing elasticity 74

9.1 Summary

Elasticity is necessary to achieve energy efficiency in cloud computing environ-
ments. After a survey of existing elastic solutions and the techniques they put in
practice, we have experimented with elasticity using applications from different
horizons. In our elastic consolidation solution, the configuration to be consoli-
dated is partitioned and fed to an estimated number of necessary workers, in order
to speed the consolidation plan’s computation up. Our elastic queues handle the
load of published messages by introducing a flow control based load balancing
policy, and highlight the utility of co-provisioning, i.e., having more than one
replica per virtual machine instance and pre-provisioning, i.e., having a pool of
idle virtual machine instances in order to speed scaling up. The elastic topics we
proposed provide a seamless way of reconnecting JMS subscribers to dynamically
created sub-topics, in order to keep the delay of message reception acceptable. Fi-
nally our elastic stream processing solution automatically scales different compo-
nents independently in order to keep up with the varying throughput of in-coming
data. These works have been evaluated using private clouds run by OpenStack or
VMware vSphere, as well as Amazon EC2, the leading public cloud provider.

73

9.2. PERSPECTIVES CHAPTER 9. CONCLUSION

9.2 Perspectives

9.2.1 Different elasticity approaches
In this works’ contribution, we have limited ourselves to reactive elasticity poli-
cies as we believe it to be adapted to every type of workload. However, exper-
imenting with predictive policies, using different models, and comparing them
to reactive policies can be of great interest. Moreover, in our elastic solutions,
the scaling decisions have been mainly motivated by performance, defining util-
ity functions that take into account other parameters as well, and comparing their
result would be a relevant future contribution.

9.2.2 Advanced stream processing elasticity
With the outburst of big data and the increasing need for efficient stream process-
ing tools, we intend to focus our efforts on improving our elastic stream processing
tool. This can be achieved by integrating predictive models for scaling, as scaling
a component inevitably impacts the components that receive its results. We can
also integrate works on components’ placement such as [2] into our solution, or
go beyond them to achieve a better suited placement policy to elasticity. Finally
stream processing can also be improved by tuning the load balancing policies of
the different components, based on the frequency of particular tuple values for
instance.

74

Bibliography

[1] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard
King, Philippe Selo, Yoonho Park, and Chitra Venkatramani. Spc: A dis-
tributed, scalable platform for data mining. In Proceedings of the 4th inter-
national workshop on Data mining standards, services and platforms, pages
27–37. ACM, 2006.

[2] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. Adaptive on-
line scheduling in storm. In Proceedings of the 7th ACM international con-
ference on Distributed event-based systems, pages 207–218. ACM, 2013.

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. A view of cloud computing. Commun. ACM,
53(4):50–58, April 2010.

[4] CERN. The grid. 2006. https://cds.cern.ch/record/976156/
files/it-brochure-2006-002.pdf.

[5] Clovis Chapman, Wolfgang Emmerich, F Galan Marquez, Stuart Clayman,
and Alex Galis. Elastic service management in computational clouds. Cloud-
Man, 2010.

[6] Josep Oriol Fitó, Inigo Goiri, and Jordi Guitart. Sla-driven elastic cloud
hosting provider. In Parallel, Distributed and Network-Based Processing
(PDP), 2010 18th Euromicro International Conference on, pages 111–118.
IEEE, 2010.

[7] G. Galante and L.C.E. de Bona. A survey on cloud computing elasticity. In
Utility and Cloud Computing (UCC), 2012 IEEE Fifth International Confer-
ence on, pages 263–270, November 2012.

[8] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S Yu, and
Myungcheol Doo. Spade: the system s declarative stream processing en-

75

BIBLIOGRAPHY BIBLIOGRAPHY

gine. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, pages 1123–1134. ACM, 2008.

[9] Jeremy Geelan. Twenty-one experts define cloud computing. Virtualization
Journal, January 2009. http://virtualization.sys-con.com/
node/612375.

[10] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive elastic
resource scaling for cloud systems. In Network and Service Management
(CNSM), 2010 International Conference on, pages 9–16. IEEE, 2010.

[11] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in
cloud computing: What it is, and what it is not. In ICAC, pages 23–27,
2013.

[12] Fabien Hermenier, Julia Lawall, and Gilles Muller. Btrplace: A flexible
consolidation manager for highly available applications. IEEE Transactions
on dependable and Secure Computing, page 1, 2013.

[13] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Ju-
lia Lawall. Entropy: a consolidation manager for clusters. In Proceedings of
the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual exe-
cution environments, pages 41–50. ACM, 2009.

[14] Paul Horn. Autonomic computing: IBM’s Perspective on the State of Infor-
mation Technology. 2001.

[15] Markus C. Huebscher and Julie A. McCann. A survey of autonomic com-
puting—degrees, models, and applications. ACM Comput. Surv.,
40(3):7:1–7:28, 2008.

[16] IBM. An architectural blueprint for autonomic computing. Technical report,
IBM, 2003.

[17] P. Jogalekar and M. Woodside. Evaluating the scalability of distributed sys-
tems. Parallel and Distributed Systems, IEEE Transactions on, 11(6):589–
603, June 2000.

[18] Jeffrey O. Kephart and DavidM. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[19] Thomas Knauth and Christof Fetzer. Scaling non-elastic applications using
virtual machines. In Cloud Computing (CLOUD), 2011 IEEE International
Conference on, pages 468–475. IEEE, 2011.

76

BIBLIOGRAPHY BIBLIOGRAPHY

[20] Eric Knorr and Galen Gruman. What cloud comput-
ing really means. InfoWorld, April 2008. http:
//www.infoworld.com/d/cloud-computing/
what-cloud-computing-really-means-031.

[21] Harold C Lim, Shivnath Babu, Jeffrey S Chase, and Sujay S Parekh. Auto-
mated control in cloud computing: challenges and opportunities. In Proceed-
ings of the 1st workshop on Automated control for datacenters and clouds,
pages 13–18. ACM, 2009.

[22] Ming Mao and Marty Humphrey. A performance study on the vm startup
time in the cloud. In Cloud Computing (CLOUD), 2012 IEEE 5th Interna-
tional Conference on, pages 423–430. IEEE, 2012.

[23] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using clouds to
elastically extend site resources. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages 43–
52. IEEE Computer Society, 2010.

[24] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia dis-
tributed monitoring system: design, implementation, and experience. Paral-
lel Computing, 30(7):817–840, 2004.

[25] Paul McFedries. The cloud is the computer. IEEE Spectrum On-
line, August 2008. http://spectrum.ieee.org/computing/
hardware/the-cloud-is-the-computer.

[26] Brian Melcher and Bradley Mitchell. Towards an autonomic framework:
Self-configuring network services and developing autonomic applications.
Intel Technology Journal, 8(4), 2004.

[27] Peter Mell and Timothy Grance. The NIST definition of cloud computing.
Technical Report 800-145, National Institute of Standards and Technology
(NIST), September 2011.

[28] Shicong Meng, Ling Liu, and Vijayaraghavan Soundararajan. Tide: achiev-
ing self-scaling in virtualized datacenter management middleware. In Pro-
ceedings of the 11th International Middleware Conference Industrial track,
pages 17–22. ACM, 2010.

[29] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling
tcp throughput: A simple model and its empirical validation. In ACM
SIGCOMM Computer Communication Review, volume 28, pages 303–314.
ACM, 1998.

77

BIBLIOGRAPHY BIBLIOGRAPHY

[30] Janak Parekh, Gail Kaiser, Philip Gross, and Giuseppe Valetto. Retrofitting
autonomic capabilities onto legacy systems. Cluster Computing, 9(2):141–
159, 2006.

[31] Ahmed El Rheddane, Noël De Palma, Fabienne Boyer, Frédéric Dumont,
Jean-Marc Menaud, and Alain Tchana. Dynamic scalability of a consolida-
tion service. In Cloud Computing (CLOUD), 2013 IEEE Sixth International
Conference on, pages 748–754. IEEE, 2013.

[32] Ahmed El Rheddane, Noël De Palma, Alain Tchana, and Daniel Hagimont.
Elastic message queues. In Cloud Computing (CLOUD), 2014 IEEE Sixth
International Conference on. IEEE, 2014. (To appear).

[33] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient autoscal-
ing in the cloud using predictive models for workload forecasting. In Cloud
Computing (CLOUD), 2011 IEEE International Conference on, pages 500–
507. IEEE, 2011.

[34] Libor Sarga. Cloud compting: An overview. Journal of Systems Integration,
3(4):3–14, 2012.

[35] Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and Kun-
Lung Wu. Elastic scaling of data parallel operators in stream processing. In
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1–12. IEEE, 2009.

[36] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. A cost-
aware elasticity provisioning system for the cloud. InDistributed Computing
Systems (ICDCS), 2011 31st International Conference on, pages 559–570.
IEEE, 2011.

[37] Christophe Taton, Noel De Palma, Sara Bouchenak, and Daniel Hagimont.
Improving the performances of jms-based applications. International Jour-
nal of Autonomic Computing, 1(1):81–102, 2009.

[38] Nam-Luc Tran, Sabri Skhiri, and Esteban Zimányi. Eqs: An elastic and
scalable message queue for the cloud. In Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference on, pages
391–398. IEEE, 2011.

[39] Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynami-
cally scaling applications in the cloud. SIGCOMM Comput. Commun. Rev.,
41(1):45–52, January 2011.

78

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
A break in the clouds: Towards a cloud definition. SIGCOMM Comput.
Commun. Rev., 39(1):50–55, December 2008.

[41] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and Ri-
cardo Bianchini. Dejavu: accelerating resource allocation in virtualized en-
vironments. ACM SIGARCH Computer Architecture News, 40(1):423–436,
2012.

[42] Smita Vijayakumar, Qian Zhu, and Gagan Agrawal. Dynamic resource pro-
visioning for data streaming applications in a cloud environment. In Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second Inter-
national Conference on, pages 441–448. IEEE, 2010.

79

