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Introduction

The gravitational waves are predicted by the Einstein’s theory of General Relativity.

However, they have not been directly observed so far, despite they have been tracked

for fifty years with different instruments. The main reason is that the interaction of the

gravitational waves with the matter is very weak. Therefore, detecting their effect on

matter among the noise sources inherent to any instrument is a challenge. The advanced

gravitational wave interferometers, currently in development worldwide, are to the most

promising instruments for a first detection. To reach their target sensitivity, they will

use high power lasers. Unfortunately, they will also be very sensitive to thermal effects

occurring in the optical components that will decrease the quality of the laser beam

fundamental Gaussian mode. In particular, the matching of the main beam into the

interferometer will suffer from these defects, leading to power losses and noise coupling

and thus potentially affecting the detector sensitivity. It will be then crucial to correct

any optical aberration at the input of the interferometer.

The aim of this thesis is to propose a new system of adaptive optics especially dedicated

for Advanced Gravitational Interferometers, that is based on a new actuation device:

the Thermally Deformable Mirror (TDM). To meet the stringent requirements of the

noise and optical compatibility, the device is based on the thermal actuation: a high

quality optical substrate is in contact with a set of resistors which power can be tuned

individually. The absorption of the power in the substrate generates a temperature

gradient and therefore locally changes the value of the refractive index. A laser beam

that is going through the substrate and is reflected by its back side will experience a

phase variation that modifies its wavefront. By accurately choosing the power values of

the resistors, the TDM will be able to correct the wavefront aberrations of the incident

laser beam.

In Chapter 1, the main features of the gravitational waves, described as a consequence

of the General Relativity, are explained. One of the Advanced Gravitational Wave

Detectors, Advanced Virgo, is described with a brief summary of the main noise sources.

The thermal effects at different stages of the interferometer are also presented.
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Introduction 2

In Chapter 2, a review of the existing adaptive optics corrective devices is proposed,

together with a study of their compatibility for a gravitational detector environment.

In particular, an analysis of the thermal actuated systems is performed in order to

determine the compliance with our requirements. After the need of a new system is

established, we start the description of the TDM with a deep study of the actuation

properties in Chapter 3. The thermal and opto-mechanical features of several substrates

are compared to determine the best material choice. In Chapter 4 the system design is

proposed from the description of the aberrations encountered in an optical system. In

particular, the spatial frequency required for the set of actuators is justified. Afterwards,

two prototypes are characterized in Chapter 5. A deep analysis of the features of each

prototype through its ability to generate the aberrations studied is the previous chapter

is performed.

In the last two chapters, we study the implementation of the devices in an adaptive

optics system for improvement of the mode matching. First, in Chapter 6 we analyze

the suppression of high order modes with the combined actuation of two TDMs. We then

simulate a control scheme in different configurations. We deduce important features for

the experimental corrective setup that is presented in Chapter 7. With this system, we

are able to experimentally demonstrate the ability of the TDMs to improve the matching

into a cavity.



Chapter 1

Interferometric Detection of the

Gravitational Waves

At the beginning of the 20th century, Einstein introduced his Theory of General Rela-

tivity [1] which connects the matter and the space-time: the distribution of mass energy

induces the space-time curvature and the space-time curvature determines the motion

of the matter. The Gravitational Waves (GWs) can be described as perturbations of

the space-time metric propagating at the speed of light, produced by the acceleration

of bodies. The emission of GWs is particularly important in the case of binary systems,

for example binary system of neutron stars. Up to now, the existence of GWs has be

confirmed trough indirect observations. The first detection by kilometric interferometers

is expected within the next years and will open a new way in astronomical observations.

In this introduction chapter, the basics of the GW generation and their main character-

istics are first briefly described. Then, the principle of their interferometric detection is

explained and the main features of Advanced Virgo are summarized.

1.1 General Relativity and Gravitational waves

In General Relativity [2, 3], the infinitesimal space-time interval ds between two infinitely

close points is given by, using the Einstein summation convention:

ds2 = gµνdx
µdxν (1.1)

where dx is the infinitesimal coordinate change. The metric tensor gµν defines the metric

of the space time.

3



Chapter 1. Detection of Gravitational Waves 4

The relation between the energy matter distribution and the metric is then given by the

Einstein equation :

Rµν −
1

2
gµνR+ Λgµν =

8πG

c4
Tµν (1.2)

with Rµν the Ricci tensor describing the space curvature, R the curvature, Λ the Cos-

mological Constant, Tµν the stress-energy tensor describing the matter distribution, G

the Newton universal gravitation constant and c the speed of light in vacuum. When

the space time curvature is small, the metric gµν can be linearly approximated through:

gµν = ηµν + hµν (1.3)

with ηµν the metric describing the Minkowski space-time and hµν a small perturbation,

|hµν | � 1. The perturbation propagates as a tensor wave leading to write (using Lorenz

gauge) Eq.1.2 as :

�hµν︸ ︷︷ ︸
propagation term

= −16πG

c4
(Tµν −

1

2
gµνT

k
k )︸ ︷︷ ︸

source term

(1.4)

with the d’Alembertian � being:

� = ∇2 − 1

c2
∂2

∂t2
(1.5)

and

hµν = hµν −
1

2
h ηµν , h = ηµνhµν (1.6)

In the absence of a source term, the solution is a propagating wave called Gravitational

Wave (GW) which takes the general form of a plane wave:

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 e−i(ωt−kz) (1.7)

with h+ and h× the scalar amplitudes of the two states of polarization of the wave and

the matrix representing the effect of a GW on the space dimensions. As usual k is the

wavevector, ω the angular frequency and t the time.

In the Transverse Traceless (TT) gauge, a GW modifies the distance between free objects

placed with an effect rotated of π/2 between the h+ and h× polarizations. An example

is to consider a circle of free masses with a diameter L0 as in Fig.1.1 crossed in the

perpendicular direction by a GW. The circle will successively contract and expand by

δL in the x and y directions for the h+ polarization.
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Figure 1.1: Effect of a GW over a circle of free fall masses

We can show that the effect is directly proportional to the GW amplitude. Let’s con-

sider two objects infinitely close in A(x, y, z) = (0,0,0) and B(xB, yB, zB) in the TT

coordinates system, in which objects do not move. The distance between these objects

is:

L2 = gµν(xµB − x
µ
A)(xνB − xνA) = (δij + hTTij )xiBx

j
B (1.8)

With L0 = δijx
i
Bx

j
B and xiB = L0n

i with ~n the unit spatial vector between A and B, we

can rewrite:

L = (L2
0(δij + hTTij n

inj))1/2 (1.9)

L = L0(1 + hTTij n
inj)1/2 (1.10)

L ' L0(1 +
1

2
hTTij n

inj) (1.11)

We define δL = L− L0 and we have:

δL

L0
=
h

2
(1.12)

The relative change in the distances between free masses is directly proportional to the

amplitude of the GWs.

1.2 Gravitational wave sources

The gravitational luminosity L of a source is given by:

L =
G

5c5

〈...
Qij

...
Q
ij
〉

(1.13)
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with Qij the quadrupole momentum of the source:

Qij(t) =

∫
source

ρ(t, ~x)(xixj − 1

3
~x · ~xδij)d~x (1.14)

As an order of magnitude,

Q ∼ ε M R2 (1.15)

with M the object mass, R its typical size and ε the asymmetry factor. The typical time

scale is τ = R
v , leading to:

...
Q ∼ ε M

τ3
R2 (1.16)

By rewriting Eq.1.13 one can show that a source of GWs has to be relativist, compact

and asymmetric:

L ' c5

G
ε2
(
Rs
R

)2 (v
c

)6
(1.17)

with ε the source asymmetry, R the source extension, v its velocity and Rs the cor-

responding Schwarzshild radius. Rs/R represents the source compacity. According to

Eq. 1.13, the luminosity L becomes significant (about c5/G ' 5 · 1053 W), if all other

terms are close to unity. It means that the source has to be asymmetric, compact and

relativistic. We will see that even when these conditions are fulfilled, the generated GWs

have very small amplitude when arriving on Earth.

1.3 Sources

According to the previous criterion, some astrophysical objects are privileged sources for

GW emission. For example, the compacity and the term v/c are close to unity for stars

collapsing to a neutron star or to a black hole: the collapsing stars are likely important

sources of GWs if their asymmetry is sufficient or for binary systems involving compact

objects. In this section, we will review some of the main astrophysical sources.

1.3.1 Compact Binary Coalescence

The coalescence of an astrophysical object (black hole or neutron star) binary system is

the consequence of the energy loss of the system by emission of GW. The corresponding

GW signal, called chirp, is characterized by a distinct wave form: an increase of ampli-

tude and frequency over the time up to the final collapse. The research of such signals

is made with a template bank and can be triggered by electromagnetic observations.

The Binary Neutron Star (BNS) range is a standard figure of merit to express the sen-

sitivity of a GW interferometric detector. By definition, it corresponds to the volume-
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and orientation-averaged distance at which a compact binary coalescence consisting of

two 1.4 M� neutron stars (where M� = 1 solar mass ) gives a matched filter signal-to-

noise ratio of 8 in a single detector. Another often quoted number is the BNS horizon:

the distance at which an optimally oriented and located BNS system would be observed

with a signal to noise ratio of 8. The horizon is a factor of 2.26 larger than the range

[4]. A typical amplitude of these sources is h = 10−21 for a BNS range about 100 Mpc.

At their final sensitivity, the detectors should be able to detect 0.4 to 200 BNS per year.

1.3.2 ”Burst” sources

The transient sources are defined as GW emitters of ”brief” duration from sub-second

to weeks. For these sources, the GW wavefront is not well known and the GWs will be

identified by excess power events in the strain data. A lot of different sources can produce

short signals, such as protoneutron star convection, protoneutron rotational instabilities,

oscillations in the neutron stars, accretion disk instabilities and eccentric black hole

binaries. The observation of the GW emission from neutron stars will hopefully help to

study their structure, that nowadays is poorly understood. A typical transient source are

the explosions of a star into a supernova leading to a neutron star. The GW generated

with the typical amplitude are detectable only in our Galaxy, leading to a low expected

detection rate with one supernova every thirty years. The expected burst range at the

final sensitivity of the detectors is about 100 Mpc supposing an emission about 10−2

M�c
2.

1.3.3 Pulsars

Pulsars are neutron stars emitting a periodic radio pulse. The GW emission will occur

if the pulsar is not symmetrical with respect to its rotation axis. The frequency of the

GW signal will be the double of its rotation frequency, leading to quasi-monochromatic

signal which can be integrated over time in order to increase the signal to noise ratio.

The estimated amplitudes are about h ∼ 10−26 for known pulsars.

1.4 Proof of existence

Up to now, we have only indirect evidence of the GW existence, notably thanks to the

work of the physicists Hulse and Taylor in 1974. They observed the modifications of the

optical period of the double pulsar PSR B1913+16 and found that the energy loss of the
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system is compatible with the energy loss via GW predicted by the General Relativity.

Hulse and Taylor won the Physics Nobel prize in 1993.

1.5 Ground base observation

The very weak amplitude of the GWs makes their detection particularly delicate. Fortu-

nately, the detectors are sensitive to the amplitude of the GWs and not to their intensity,

as is the case for example for the sensors of the electromagnetic waves. The signal emit-

ted by the sources then only decreases with the inverse of the distance. Therefore, an

improvement of a factor 10 in the sensitivity of the detectors will increase the volume

of observable sources by a factor 1000.

Since the 60’s [5], several instruments have been constructed in the attempt to detect

GWs. The most sophisticated are the giant laser interferometers, which are currently

five around the world. Virgo, and its upgrade version Advanced Virgo, is one of them

and is presented thereafter.

As previously seen, a GW of amplitude h is changing by δL the distance L between free

masses according to:
δL

L
=
h

2
(1.18)

in the ideal case of a gravitational wave perpendicular to the plan of these masses.

It is known that an efficient way to detect the small length variations δL is to use

an interferometer. The principle is to compare the phase shift acquired by correlated

beams of wavelength λ following different paths by studying the recombined field after

the propagation. The interference in the recombined beam depends on the phase shift

δφ occurring from a difference of δL in the optical path length with:

δφ =
2π

λ
δL (1.19)

Based on this simple principle, the interferometer technique is developed in different

designs and is widely used in a lot of applications. One of the most simple interferometers

is the Michelson interferometer, invented by Michelson and Morlay at the end of the 19th

century [6]. With this instrument they performed the famous experiment that led to

prove the non-existence of ether by showing the invariance of the speed of light with

respect to the Earth motion (Physics Nobel price 1887).

Nowadays, the Michelson interferometer promises to be the key for the first detection of

the GWs and for the start of the GW astronomy. We will see what the features of the

instrument adapted to these new challenges are.
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1.6 Optical configuration of the interferometric instruments

Notation An optical field propagating in space described by the spatial coordinates

~r = x ~ux + y ~uy + z ~uz can be written at the instant t:

ψ(r, t) = ψ0e
−i(~k.~r−ωt) (1.20)

with ~k the wave vector,

|~k|2 = n
2π

λ
= n

ω

c
= k2x + k2y + k2z (1.21)

where λ is the wavelength, ω is the pulsation. The propagation along the z axis from

the plane z1 to z2 is written:

ψ(z2) = ψ(z1)e
−ik(z2−z1) (1.22)

The interaction of an incident optical field ψi with a reflecting surface is described using

the following convention:

ψr = irψi (1.23)

ψt = tψi (1.24)

with ψr the reflected field and ψt the transmitted field. The reflecting coefficient r and

the transmission coefficient t of the surface follow the energy conservation law:

r2 + t2 + L = 1 (1.25)

with L the losses produced by scattering or absorption.

1.6.1 The Michelson Interferometer

As shown in Fig.1.2, an input laser field ψin is injected in the interferometer where it

is divided in two fields of half-power by a beam splitter. Each of them is sent into a

so-called arm where it is reflected back by an end mirror. At the plane of the beam

splitter, the two fields are then recombined and sent to the output port. According to

the fields in Fig.1.2, we can write [7]:

ψ1 = irBSψin

ψ2 = −rY rBSe−2ikLY ψin

ψ3 = tBSψin

ψ4 = −irXtBSe−2ikLXψin
(1.26)

(1.27)
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Figure 1.2: Scheme of the Michelson interferometer. The field propagation is indicated
by the blue arrows.

The field at the output of the detector is then:

ψout = tBSψ2 + irBSψ4 (1.28)

ψout = −rBStBS(rXe
−2ikLX + rY e

−2ikLY )ψin (1.29)

We can consider that the beam splitter is perfectly dividing the input power Pin|ψin|2

into equal parts without losses:

rBS = tBS =
1√
2

(1.30)

A photodetector at the output port will then provide the power:

Pout = |ψout|2 =
1

4
(rX

2 + rY
2)(1 + C cos(2k∆L0))Pin (1.31)

From Eq.1.31 it appears that the output power is modulated by the optical path length

difference between the arms ∆L0 = LX − LY . It also depends on the end mirror

reflectivities and the contrast C is defined by:

C =
Poutmax − Poutmin
Poutmax + Poutmin

=
2rXrY

rX2 + rY 2
(1.32)

The contrast is equal to 1 (Poutmin = 0, Poutmax = Pin) when the interferometer has mir-

rors with equal reflectivity and has no losses. The output port is called the asymmetrical

port: it can only see the optical path differences between the arms. The common field

is rejected towards the input, that is called the symmetrical port.
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When a gravitational wave of amplitude h is passing through the interferometer, the

optical path length between the arms varies (see Eq1.18) and according to Eq.1.19, the

phase is:

φ = 2k

[(
LX +

δLX
2

)
−
(
LY −

δLY
2

)]
φ = 2k∆L0 + 2k

(
δLX + δLY

2

)
φ = φ0 + φGW

(1.33)

Reporting this in Eq.1.31, the power at the output port can be rewritten when the

dephasing from the gravitational wave is weak (φGW = 2kδL << 1):

Pout =
Pin
4

(rX
2 + rY

2) (1 + C [cos(φ0)− sin(φ0)φGW ]) (1.34)

The power variation induced by the gravitational wave:

δPout =
Pin
4

(
rX

2 + rY
2
)
C sin(φ0)φGW (1.35)

is maximal when rX ' rY ' 1

δPout =
Pin
2
C sin(φ0)φGW (1.36)

1.6.2 Sensitivity of the interferometer

The minimal amplitude h of a gravitational wave that an instrument is able to detect is

the sensitivity of this detector. This is given over a certain frequency range, in which we

are interested in the spectral content of the gravitational wave signal. The sensitivity

is then the amplitude spectral density expressed in 1/
√
Hz and is written h̃(f). The

sensitivity of the detector is inherently limited by the quantum noise: the Standard

Quantum Limit (SQL) is the sum of the shot noise and radiation pressure noise, and is

the lowest achievable noise.

1.6.2.1 Shot noise

Over the detection frequency range, the sensitivity is equally limited by the fundamental

noise related to the discreteness of the photons: the shot noise [? ]. For a photo-detector

with a perfect quantum efficiency, the probability distribution of the photon observation

is Poissonian. The detected power during a brief measurement time T can be written:

Pout = N
hpν

T
(1.37)
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with N the average number of photons reaching the detector, hp the Planck constant

and ν the frequency of the laser. The uncertainty on the power detected during a brief

measurement time T is:

σP = σN
hpν

T
(1.38)

Combining these equations with σN =
√
N , we find:

σP =

√
2hpνPout

T
(1.39)

The amplitude spectral density of the shot noise is then, with Eq. 1.31, and considering

only the positive frequencies:

δñshot =
√
hpν(1 + C cos(φ0))Pin (1.40)

We can only detect a gravitational wave signal which is higher than the shot noise level.

From Eq. 1.36, we have then:

δPout > δñshot (1.41)

that implies:
Pin
2
C sin(φ0)

2πLh̃

λ
>
√
hpν(1 + C cos(φ0))Pin (1.42)

The smallest signal we can detect is the sensitivity of the Michelson interferometer:

h̃shot =

√
λ

2π

1

L

√
hpc

2Pin

√
1 + C cos (φ0)

C sin (φ0)
(1.43)

The best sensitivity is obtained for C = 1 and φ0 = 2πq with q an integer. The difference

between the arms is a multiple of the wavelength. This condition is called the dark fringe

condition: the power exiting the interferometer is equal to zero. We get:

h̃shot =

√
λ

2π

1

L

√
hpc

2Pin
(1.44)

In practice the contrast is different from 1, due to the asymmetries in the end mirror

reflectivities. Then, the optimal sensitivity is then given by:

h̃shot =

√
λ

2π

1

L

√
hpc

2Pin

1√
1−
√

1− C2
(1.45)

From Eq. 1.44, we can infer that the sensitivity increases with the arm length increase

and the power increase. We aim to detect gravitational waves with a typical amplitude
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of |h| = 10−22. With a laser of 1064 nm at 100 W and an arm length of 1 m, the

sensitivity is: h̃ = 10−18 1/
√
Hz. According to Eq. 1.44, the solution is to increase the

power of the laser and to increase the length of the arms.

1.6.2.2 Radiation pressure

However, when the laser power increases the interferometer becomes sensitive to the

radiation pressure noise: the impact of the photons on the mirrors induces a mirror

displacement. This noise depends on 1/f2 of the motion frequency f . The radiation

pressure noise is given by:

h̃rad(f) =
1

mf2L

√
h̃Pin

2π3cλ
(1.46)

with m the mass of the mirror. This noise is expected to dominate the sensitivity at

low frequencies. The effects of the radiation pressure fluctuations can be reduced by

increasing the mass of the mirrors, or by decreasing the laser power at the expense of

degrading sensitivity at higher frequencies [8].

Fortunately, the performance of the Michelson can be improved by optically folding the

arms: we will use the so-called the Fabry-Perot cavities.

1.6.3 The Fabry-Perot cavity

Figure 1.3: A Fabry-Perot cavity of length L.

A Fabry-Perot cavity is composed of 2 mirrors M1 and M2 with the respective reflectivity

and transmission coefficients r1, r2, t1 and t2. We can write the fields propagating

through the cavity (see Fig1.3):

ψcav = t1 ψin − r1r2e−2ikL ψcav (1.47)

ψref = ir1 ψin + it1r2e
−2ikL ψcav (1.48)

ψtrans = t2e
−ikL ψcav (1.49)
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With Pin = |ψin|2, we can infer from Eq.1.47 that the power stored inside the cavity is:

Pcav = |ψcav|2 =
t21

|1 + r1r2e−2ikL|2
Pin (1.50)

The stored power in the cavity is maximal when e−2ikL = −1. This is the resonance

condition, defining the gain of the cavity:

Gcav =
t21

(1− r1r2)2
(1.51)

A small change in cavity length will affect the power stored inside the cavity:

Pcav =
Gcav

1 + [
2
√
r1r2

1−r1r2 sin(2πδLλ )]2
Pin (1.52)

The power stored inside the cavity is at its half value when:

sin(
2πδL

λ
) =

1− r1r2
2
√
r1r2

(1.53)

It means that the Full Width at Half Maximum (FWHM) of the Airy peak of the cavity

is:

δLFWHM =
λ

4F
(1.54)

with F the finesse of the cavity (see Fig. 1.4).

F =
π
√
r1r2

1− r1r2
(1.55)

Figure 1.4: Resonances of the fundamental in Fabry-Perot cavities exhibiting different
finesses. The FWHM of the Airy peak decreases with the finesse increase.
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We have then the following equation for the power of the cavity:

Pcav =
Gcav

1 + [2Fπ sin(2πδLλ )]2
P1 (1.56)

The field reflected by the cavity is (from Eq.1.48):

ψref = i
r1 + r2(t

2
1 + r21)e−2ikL

1 + r1r2e−2ikL
ψ1 (1.57)

Around the resonance, the phase of the reflected field is:

φFP =
4π

λ

2F
π
δL (1.58)

The dephasing is amplified with respect to a single mirror by a factor 2F
π . To compute

the sensitivity, we now have to take into account the frequency response of the cavity,

the Fabry-Perot cavity being a low-pass filter as we will see in the next section.

1.6.4 Frequency response of a Fabry-Perot cavity

Figure 1.5: A Fabry-Perot cavity with a motion of the end mirror

If we consider a sinusoidal motion of the end mirror with (see Fig. 1.5):

x(t) = x0 cos(ωst) (1.59)

we have [9] with ψcav the field inside the cavity before the end mirror:

ψmotion = ir2e
−2ikx(t)ψcav (1.60)

Supposing that the motion amplitude is very small, we have at the first order:

ψmotion = ir2(1− 2ikx0cosωst)ψcav (1.61)

ψmotion = ir2ψcav +
2π

λ
x0r2(e

iωst + e−iωst)ψcav (1.62)
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We observe that the motion is creating two sidebands at the frequencies ±fs. In the

same way, a gravitational wave will create two sidebands at audio frequencies. At the

sideband frequency and when the cavity is resonant for e−2ikL = −1:

ψmotion(ωs) = kx0r2
1

1− r1r2e2i
ωs
c
L
ψcav(0) (1.63)

And we obtain the field reflected by the cavity at the first order in ωsL:

ψref (ωs) = −2πr2
λ

x0
Gcav

1 + i fs
c

4LF

ψin (1.64)

with the pole of the cavity fc = c
4LF .

1.6.5 Impact on a Michelson interferometer

The Fabry-Perot cavity is equivalent to a mirror with a complex reflectivity:

rFP = ρFP e
iφFP with

{
ρFP = | r1−(r

2
1+t

2
1)r2

1−r1r2 |
φFP = 4π

λ
2F
π δL

(1.65)

It means that replacing the arms of the Michelson interferometer with Fabry-Perot cavi-

ties is equivalent to have a Michelson interferometer with complex reflecting coefficients

(see Fig. 1.6). We can rewrite the output power of a Michelson (Eq.1.31) with this new

reflectivity:

Pout =
1

4
(r2FPX + r2FPY )(1 + C cos(∆φFP ))Pin (1.66)

with the contrast:

C =
2rFPXrFPY
r2FPX + r2FPY

(1.67)

Figure 1.6: The interferometer with Fabry-Perot cavities is equivalent to a Michelson
interferometer with complex reflecting coefficients



Chapter 1. Detection of Gravitational Waves 17

We can now deduced the response of the detector with respect to a gravitational wave:

δP̃out(f) =
P0

2
Csin(φ0)δφ̃(f) (1.68)

δP̃out(f) =
P0

2
Csin(φ0)

4π

λ

2F
π

Lh̃

1 + i( f
fcav

)
(1.69)

By comparison with the shot noise, we can show that the sensitivity is given by:

h̃(f) = h̃Mich
π

2F
(1 + i

f

fcav
) (1.70)

The sensitivity is then increased by a factor 2F/π, but is also filtered by the poles of

the cavities.

Moreover, there is still room for improvement. We have seen that when the interferom-

eter is set on the dark fringe no power is exiting from the detection port. All the power

is reflected back to the input of the interferometer and is lost. In order to increase the

power inside the interferometer, we can re-inject it by placing a mirror in front of the

input port as shown in Fig. 1.7

1.6.6 Power Recycling (PR)

Figure 1.7: The Power Recycling (PR) configuration of the interferometer
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In this Power Recycling (PR) configuration, the maximal recycling gain is given at

resonance by:

GR =
t2R

(1− rRρFP )2
(1.71)

We can then rewrite the sensitivity directly from Eq.1.70:

h̃(f) =
1

GR
h̃Mich

π

2F
(1 + i

f

fcav
) (1.72)

The main effect of the power recycling mirror is to increase the power by the recycling

gain, and thus to increase the sensitivity. The power recycling mirror is only seen

by the fields common to the two arms, that are exciting the interferometer through

the symmetric port. The differential signals, like the audio-sidebands created by a

gravitational wave, are coming out the detector through the antisymmetric port. Then

the power recycling mirror has no effect on the audio-sidebands.

1.6.7 Signal Recycling (SR)

By placing a mirror Signal Recycling (SR) before the output of the interferometer, we

will affect the audio sidebands (hopefully from the gravitational waves) and we will be

able to shape the frequency response of the detector. This will allow to increase the

sensitivity in a particular frequency range, to improve the efficiency of the detection for

specific signals.

Figure 1.8: The Signal Recycling (SR) configuration
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The full response of the dual recycled interferometer for the sidebands is then:

ψout(ωs) =− 2tStR
1− rRR

t2i re
1− rire

eiφ

1− rsrFP (ωs)e2iφ
(1.73)

e−i
ωs
c L

1− riree−2i
ωs
c L

2π

λ
x0ψin (1.74)

We have the complex coefficients:

rFP (ωs) =
ri − re(1− L)e−2i

ωs
c L

1− riree−2i
ωs
c L

(1.75)

R =
ri − re(1− L)

1− rire
(1.76)

The dephasing of the SR cavity will shape the detector response as presented in Fig. 1.9

[9].

Figure 1.9: Response of a dual recycled detector to differential displacement as a
function of the signal frequency for different positions of the Signal Recycling mirror
[9].

1.6.8 Stability of the Recycling Cavitys (RCs)

The arm cavities are stable, that means that the resonance position of the fundamental

mode is well separated from the high order modes through the different Gouy phases (see

Appendix A) they have accumulated along the laser beam propagation. To have stable

RCs, it would be necessary to have kilometer long cavities as well. Therefore the RCs in
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Advanced Virgo have been chosen to be marginally stable for space reason and simplicity

of the system (no additional focusing elements). However it means that the resonance

position of any high order mode is close to the resonance position of the fundamental

mode. If for any reason, some power of the fundamental mode is coupled to a high order

mode, this mode can become resonant in the cavity. This is why the Advanced Virgo

interferometer will be very sensitive to the optical defects that can occur inside the RCs

for one side, and for the other side to the defects contained in the input laser beam

at the level of the injection. Therefore, the subject of this thesis is motivated amongst

others, as it will be explained in Section 1.9, by the necessity to provide a corrective

system ensuring that the beam is properly matched into the interferometer.

1.6.9 Optical configurations among the network

In order to have an efficient worldwide detection network, three Advanced Interferome-

ters are currently in construction or commissioning:

• the Advanced Virgo Interferometer, located in Cascina, near Pisa (Italy) is a three-

kilometer long Michelson interferometer with a dual recycling configuration (see

Fig. 1.10). The construction will be achieved in 2015 and the first data acquisition

campaigns, called Science Runs, are expected to start in 2016.

• the LIGO Livingston Observatory, located near Baton Rouge (LA) in the United-

States, is a four-kilometer long Michelson interferometer with a dual recycling

configuration. Unlike Advanced Virgo, the recycling cavities have been chosen

stable and the instrument will be less sensitive to the optical defects. The con-

struction is already done and the first locks of the full interferometer have been

achieved. The first Science Runs are expected for the next year (2015).

• the Handford LIGO Observatory, located in the state of Washington, in United

States, exhibits the same configuration as the Livingston Interferometer, but its

planning is shifted of few months forward.

LIGO will probably install a complementary detector in India, starting in 2018, with

the first runs planned in 2020. Another detector, KAGRA, is currently in construction

in Japan. It will benefit from different environmental conditions, being built under-

ground, and from different technologies with notably cryogenic systems. This network

of detectors will allow to reach good localization capabilities and sky coverage [4].
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Figure 1.10: Simplified layout of Advanced Virgo: main optical elements

1.7 Description of some subsystems

Simply building an interferometer in dual recycling configuration as previously exposed

does not ensure to reach the expected sensitivity. Indeed the detection of a gravitational

wave is a fight against the noise sources, coming from the environment of the detector

and from the detector itself. Among the environmental noise sources, we can distinguish

the Newtonian noise, associated with gravity gradient variations; the seismic noise and

the electromagnetic noise, from the natural or human activity. The technical noise

sources in the interferometer are the scattered light and the control noise. In addition

to the shot noise, when all the technical noises are under control, the main noise sources

are the seismic noise and the thermal noise. Different subsystems are ensuring that the

interferometer is kept under control and that the impact of the noise sources is minimal.

1.7.1 Prestabilized laser

The continuous wave high power laser system will deliver about 175 W in the funda-

mental mode (TEM00) at the stage of the injection. The frequency will be prestabilized
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on a reference cavity and it will be controlled in amplitude. The beam jitter and the

beam geometry will be cleaned by two short mode cleaner cavities.

1.7.2 Injection

After the laser beam has been produced by the pre-stabilization system, the injection

ensures that it is properly adapted in size, position and power and has the required noise

properties (frequency stabilization, power stabilization and beam jitter control) [10] to

be sent to the interferometer. The general scheme of the injection is given in Fig. 1.11.

The main elements of this subsystem are:

• the Electro-Optical Modulator that provides the five modulation frequencies for

the interferometer control

• the Faraday isolator to isolate the laser from the light reflected back from the

interferometer

• the Input Power Control that provides the required power during the lock acqui-

sition

• the Input Mode Cleaner (IMC). This is a triangular cavity (144-m long) ensuring

the purity of the fundamental mode TEM00 by filtering the incident beam. It also

reduces the amplitude and pointing fluctuations of the beam

• the reference cavity, that is a smaller triangular cavity (∼ 30 cm), used to stabilize

the laser frequency at the begin of the lock acquisition

• the Mode Matching Telescope (MMT) ensures the position and size of the beam

are adapted to the interferometer. It will greatly help in reducing the mismatch

due to the focus aberration (beam divergence).

1.7.3 Suspensions

1.7.3.1 Seismic noise

The seismic motion of the ground affects the test mass position through:

x̃ ' α/ν2 (1.77)

with the coefficient α depending on the site. For Cascina, α is about 10−7 m.
√
Hz3. To

have a good sensitivity, the seismic noise has to be attenuated by at least 10 orders of
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Figure 1.11: Scheme of the main elements of the injection subsystem

magnitude. All test masses, as well as some benches of the injection and the detection,

are then suspended to Superattenuators (see Fig. 1.12). Based on an inverted pendulum

with three legs, a superattenuator provides an attenuation at low frequencies (> 1 Hz),

leading to have a ”free fall” test mass above its eigen resonant frequency. This will

dump the seismic noises. The pendulum chain has a height of 8 m and provides the

required attenuation starting from about 4 Hz. However, the Earth curvature makes the

pendulum non parallel to each other (3.10−4 rad for the 3 km long cavities). Therefore,

the vertical motions of the suspensions necessarily couple to the horizontal motions, and

have to be attenuated as well. This is the role of the seismic filter chain: the suspensions

are made of several stages of passive and active filters, that are acting like oscillators.

1.7.3.2 Thermal noise

Thermal noise occurs at different level in the suspensions: in mirror substrate and

coating and in the suspension wires. It adds an a random motion to the test masses.

We can distinguish:

• the thermal noise in the pendular motion of the test mass and the suspensions, that

has a resonant frequency at 0.6 Hz and that is limiting the sensitivity between 3

and 50 Hz. It can be minimize by adequately choosing the suspension wire material

(for example silica) with a quality factor as the high as possible.

• the mirror thermal noise, limiting the sensitivity between 50 and 200 Hz.

• the vibration modes of the suspension wires, called violin modes, have some reso-

nant frequencies around 300 Hz.
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Figure 1.12: The Virgo superattenuator: the mechanical filter chain adopted to at-
tenuate seismic vibration in the detection band, the three-leg inverted pendulum, the
filters and the payload that contains the test mass are well visible.

1.7.4 Vacuum system

The whole system is placed under vacuum, to avoid the phase noise due to variations of

the air refraction index. The vacuum system is divided in two parts: the tubes and the

towers. The vacuum in the tubes has a very high quality (2.5 10−9 mbar), ensured by

various vacuum pumps. A serial of baffles, to trap the diffused light and reduce the phase

noise is installed all along the tubes. The ten towers contained the superattenuators and

the vacuum quality is lower to afford the presence of electronics. The link between the

towers and the tubes is made via cryotraps, that retains the residual contaminants

(notably water) inside the towers.
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1.7.5 Control of the interferometer

The control of the positions (longitudinal and angular) of the test masses and the bench

is made possible thanks to the information delivered by the Radio-Frequency (RF) on

the laser beam. Five modulation frequencies will be needed in AdV, three for the

interferometer control, one for the IMC cavity control and one to facilitate the lock

acquisition of the interferometer.

1.7.6 Detection

The aim of the detection system is to extract the gravitational wave signal from the

signal going out the interferometer through the anti-symmetric port, that is composed

of the dark fringe and the auxiliary beams. The High Order Modess (HOMs) contained

in the dark fringe are filtered by a so-called Output Mode Cleaner (OMC) to minimize

the contrast defect and maximize the detector sensitivity.

1.7.7 Mirrors

The main substrates are the four test masses (Input Test Masss (ITMs), End Test

Masss (ETMs)), and the Power and Signal Recycling. The other substrates in the main

cavities are the beam splitter, the IMC end mirror and the compensating plates for the

TCS.

The mirrors are 35 cm diameter fused silica substrates with 20 cm thickness and a flatness

better than 0.5 nm Root Mean Square (RMS). The maximum substrate absorption is of 3

ppm/cm and the maximum coating absorption is 2 ppm. The Radius of Curvature (RoC)

of the input test masses is of 1420 m and the RoC of the end test masses is 1683 m. The

recycling mirrors have about 1430 m of curvature. The RoC after polishing will not be

better than ± 10 m while the optical simulations show that ± 2 m are needed for the

ITM and ITM and ± 8 m for the RC mirrors. This already shows that complementary

systems will be needed to reach the specifications.

1.7.8 Thermal Compensation System (TCS)

This is the aim of the TCS subsystem, that will sense and correct the aberrations in the

core optics. The main corrective devices are presented in Chapter 2.
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Science Run Start End Objectives or Changes after the run

VSR1 05/2007 10/2007 Scattered light mitigation
TCS installation
Mirror magnets strength reduction
Start of the Virgo + installation

VSR2 07/2009 01/2010
VSR3 07/2010 10/2010 High Finesse Fabry Perot cavities

Monolithic suspensions
Decreased performances due to large
ROC asymmetry of the end mirrors

VSR4 06/2011 09/2011 Better performances thanks to
thermal compensation system

Table 1.1: Science runs of Virgo and Virgo+ with some noteworthy steps concerning
the thermal compensation systems

1.8 From Virgo to Advanced Virgo

The first Virgo Science Run (VSR) started on May 18th 2007 and the last science run

(VSR4) ended September 3rd 2011. Table 1.1 gives some highlights on the main steps

towards the final sensitivity.

During the commissioning, some problems concerning the optical aberrations has been

faced in the arm cavities and the use of the thermal compensation systems greatly

improved the performance of the interferometer (see Chapter 2). No gravitational wave

was detected neither in Virgo or LIGO but the results extracted from the data analysis

of the Science runs have allowed to set upper limits on astrophysical models. With the

reached sensitivity, the number of observable sources was a few per year in the best

optimistic case. In order to increase the volume of observable sources by a factor 1000,

the sensitivity has to be increased by a factor 10: this is the advanced generation of

detectors. The optical configuration of Advanced Virgo, with respect to Virgo +, is:

• addition of a signal recycling cavity: the Advanced Interferometer will be dual

recycled to be able to shape the sensitivity curve for astrophysical sources

• the beam size on the test masses is enlarged to reduce the thermal noise in the

mid-frequency range

• the cavity finesse is increased: from F = 150 (Virgo +) to F = 443

• the power at the input of the injection is increased by a factor 5: the power entering

the interferometer is 125 W after the IMC

• the radiation pressure becomes a limit in the arm cavities at low frequencies
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• the losses will reach 100 W around the mirrors and will create diffused light despite

the better coatings. New baffles will be installed to reduce the phase noise.

Then the design sensitivity curve of Advanced Virgo is presented in Fig. 1.13.

Figure 1.13: Contribution of the noise sources to the design sensitivity of Advanced
Virgo
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1.9 Need of adaptive optics for the mode matching correc-

tion

Since the laser power will dramatically increase in the next generation of detectors, the

thermal effects, that are present in many optical components, will occur in different

parts of the interferometers. The induced wavefront distortions will have an impact in

the main cavities, but also on some subsystems. If not compensated, they can be the

source of a noise that limits the performance of those detectors [11]. With the stringent

requirements on detector sensitivity, their correction in real time is one of the main

challenges for the next years.

First, the deformations generated by the thermal effects in the mirrors are presented.

This is particularly important for us, since our corrective device is based on a thermal

actuation (see Chapter 3). Then, we review the main consequences of the thermal

effects in Advanced Virgo and we highlight the need of a adaptive optics mode matching

correction system in some strategic places of the detector.

1.9.1 Basics of thermal effects

The thermal effects happen when a laser beam at high power is in interaction with an

optical element. A small amount of the laser power is absorbed by the coating and/or

by the substrate if it is going through it, and leads to the appareance of a temperature

gradient in the component. The analytical study of the temperature field in both mirror

substrate and coating heated by a laser beam has been conducted by P. Hello and J.-Y.

Vinet [12, 13]. In the typical case of the Virgo main cavity configuration, the theoretical

increase of temperature is 7 K for an absorption of 1 W in the coating (i.e. few ppm)

and is 2 K for an absorption of 1 W in the Fused Silica (FS) substrate.

Figure 1.14: Analytical temperature field generated by a laser beam of 21.5 mm
radius heating a FS cylindrical substrate of 0.2 m radius and 0.1 m thickness for 1 W
absorbed (a) in the coating and (b) in the substrate.
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Thermal Loss Mechanism Relative strength in Silica

Thermal lensing 1

Thermal expansion 0.06

Table 1.2: Relative strengths of thermal deformation in fused silica being normalized
with respect to the thermal lensing effect

Considering a laser beam going through a substrate of thickness d, the initial optical

path is given by:

S0 = nd (1.78)

The increase of temperature ∆T along the beam direction will induce a change in the

optical path [14, 15]:

∆S0 = n∆d+ d∆n = ∆STL + ∆STE (1.79)

The first effect is the thermal lensing effect: the local variation of the refraction index n

with respect to the temperature T generates an increase of the optical path difference:

∆STL =

∫ d

0
∆ndz =

dn

dT

∫ d

0
∆Tdz (1.80)

with dn
dT the thermooptic coefficient, that is constant over a given temperature range.

The second effect is the thermal expansion of the substrate along the optical axis through

the thermo-elastic deformation:

∆STE = α(1 + ν)n

∫ d

0
∆Tdz (1.81)

with α the thermal expansion coefficient and with ν the Poisson coefficient. In the

previous equations, we neglect the stress tensor and stress optical coefficients relative to

the beam polarization.

The Optical Path Length (OPL) along the beam direction is then given by the formula

[15]:

OPL = S0 + ∆STL + ∆STE (1.82)

OPL =

∫
d
(∆T [

dn

dT
+ α(1 + ν)n] + n)dz (1.83)

The relative magnitude of these effects for the FS substrate is given in Table 1.2: in this

case the thermal lensing is the dominant mechanism.
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For the Advanced Virgo Fabry-Perot cavities, with 125 W input power and a arm cavity

of finesse 443, the optical path increase due to substrate and coating thermal lensing in

a test mass is about 0.8 µm, corresponding to a focal length of 5 km. The thermo-elastic

deformation of the faces will be about 50 nm [10].

The main part of these thermal effects is axis-symmetric but the thermal effects can

lead to non uniform optical path distortions due to asymmetry in the heating pattern

and absorption inhomogeneities in the substrate and/or coating. This will produce

high spatial frequency wavefront deformations in the laser beam [16] that are not easily

predictable. These effects can also change over time.

1.9.2 Thermal effects in the ITF

1.9.2.1 In the arm cavities

When a beam circulates in a Fabry-Perot cavity, a small part will be absorbed in the

coatings generating a temperature gradient inside the substrate. This will slightly change

the RoC by thermal expansion. The mode of the cavity will then be modified. In the

example of the Advanced Virgo arms, where there will be much more power circulating

with respect to Virgo (from 20 kW to 700 kW), this effect becomes relevant: the cavity

will become less concentric and the spot size on the mirrors will decrease.

Figure 1.15: Thermal expansion in an Advanced Virgo arm due to absorption in
the input and end test masses as well as in the recycling cavity. The effect has been
dramatically amplified in the picture. Thermal lensing is experienced by the beam
inside the recycling cavity.

An immediate consequence is that the input beam will no longer match the cavity mode.

This mismatching will generate power coupling to the HOMs that might become resonant

in the cavity and lead to power losses. The stability of the arm cavities will help to limiy

this effect. If the thermal expansion is different in the two arms, the contrast defect will

increase on the dark fringe. As a consequence, the requirement for Advanced Virgo is

to keep the RoC value of the test masses at ± 2 m with respect to the design, and the
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asymmetry between mirrors lower than 5 m.

Moreover, the amplitude of the thermal lensing in the ITMs will increase by more than

one order of magnitude with respect to Virgo. This effect is not seen by the arm cavities,

thanks to the coating position, but will affect the recycling cavities (see Fig.1.15).

1.9.2.2 In the recycling cavities

The recycling cavities are affected by both the thermal expansion and thermal lensing.

The latter changes the cavity mode, leading to decrease the matching of the fundamen-

tal mode from the injection with the interferometer. As previously seen, the recycling

cavities of Advanced Virgo are not stable. It means that the position of the high or-

ders modes is very close to the resonance in the recycling cavities. So, when thermal

deformation occurs, the distortions in the fundamental mode lead to appareance of high

order modes that can potentially become resonant and thus produce power losses.

For the carrier, it is not a problem: being resonant in the arms, the stability of the

arm cavities is transposed to the recycling cavities. However, there is mismatch cre-

ated between the arm cavity mode and the output mode cleaner mode. Moreover, the

mode-healing effect can influence the transfer of the GW audio sidebands to the SRC

output.

But the RF sidebands used for the control are rejected by the arm cavities. Thermal

deformations decrease the recycling cavity gain and finally decrease the sideband power.

The recycling gain above 50% for the sidebands is required in order to afford a good

control of the interferometer. Optical simulations [10] have shown that the total distor-

tions have then to be lower than 2 nm RMS for both common and differential optical

path length distortions (see Fig.1.16). An adaptive optics system, with a high order

mode correction capability, is necessary to reach these specifications.

Thermal effects have then a huge impact on the main cavities of the interferometer,

through the fundamental phenomena discussed before: the thermal lensing and the

thermal expansion. To keep them under control, some systems have been especially

developed. They are briefly presented in Chapter 2.

1.9.3 Matching sensitive systems

Actually, it is not only the core optics of the Fabry–Perot cavities of gravitational wave

detectors that require adaptive optics corrections. Indeed, performance of some parts of

the detector are critically linked to the matching efficiency and, besides being sensitive
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Figure 1.16: Recycling gain of a RF sideband as a function of the optical defects
amplitude in the recycling cavity. The curves shows the dependence of recycling gain
on three types of distortions: RoC, astigmatism and general polishing errors. In order
to ensure a good control of the cavities, the gain has to be at least 50% of the ideal
gain, which corresponds to aberration amplitude below 2 nm RMS [10].

to the ”cold” defects, these systems will also likely suffer from thermal effects. For them

an adaptive optics system is also required, to be able to maintain permanently a optimal

matching into the various cavities.

We identified three systems for which the control of the matching is fundamental: at

the stage of the beam injection into the interferometer, into the Output Mode Cleaner

at the detection stage and generally for matching into squeezing systems.

1.9.3.1 At the injection

Important thermal effects have been already observed in Virgo in the injection system.

In Advanced Virgo the power will increase by almost a factor 5 and will reach 125 W at

the interferometer input. The thermal effects are then expected to occur in the different

stages, in particular in the Faraday isolators and at the output of the IMC. Thermal

effects in the last system will affect the laser beam coupling onto the interferometer,

leading to loss of power coupled into the interferometer and then to a direct loss in the

detector sensitivity for frequencies above 100 Hz. According to [11], the typical power

losses due to nonperfectly matched cavities, including the mode matching into the inter-

ferometer was typically more than 15% in Initial Virgo. With an adequate correction,

the power stored in the arms would have been increased by 10%, corresponding to an
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improvement of about 3% in the BNS range (see Section 1.1). Considering 1 ppm of

absorption in the IMC with 180 W of input power, it has been estimated that the mis-

match will reach 10 % when the coupling efficiency is required to be higher than 99% at

the input of the interferometer [10]. Fortunately, the main part of the mismatch will be

composed of defocus, that will be managed by the Mode Matching Telescope (MMT)

with optics position remotely controlled by translation stages. But the astigmatism pro-

duced by the IMC output mirror and the subsequent high order modes will still need to

be corrected to reach the required coupling into the interferometer.

1.9.3.2 At the detection

As seen previously, the goal of the OMC is to extract the dark fringe beam from the

output signal of the interferometer. The dark fringe signal will be read in DC, so the

OMC has to filter the high order modes from the carrier but also from the RF sidebands.

The high order modes and the sideband fields do not contribute to the signal but increase

the shot noise [17, 18] through the contrast defect. The light back-scattered by the cavity

should be low to avoid to add any phase noise to the sensitivity [19]. A matching equal

or better than 99% [10] has then to be ensured with the OMC, mostly controlled by

a MMT. However, as for the injection, it is not able to correct for high order modes,

especially astigmatism, that is foreseen to be the main power contributor to the dark

fringe [20]. The high order mode content is likely to be time varying with the thermal

effects occurring in the main cavities.

1.9.3.3 Squeezing

Assuming the thermal effects and all technical noises are under control, the main limit-

ing noise source of the interferometer is the quantum noise (see Section 1.6.2). In order

to improve the overall detector sensitivity and to go beyond the SQL, it is foreseen to

employs squeezed light. The Geo600 and LIGO collaborations have already observed an

improvement up to 3 dB by injecting squeezed light into the dark port of the interfer-

ometers [? ]. This corresponds to an improvement of a factor 2 for h amplitude and a

factor 8 for the detection rate.

However the squeezing efficiency depends strongly on the mismatching losses between

the various cavities that are on the squeezed light path [21]. For example, in Advanced

Virgo, the optical losses are expected to be about 24% overall the squeezing system

(see Fig.1.17 (a) [22]). This will limit the squeezing to 6 dB in the best case scenario.

With a system providing an optimal coupling into the interferometer and into the OMC



Chapter 1. Detection of Gravitational Waves 34

for example, the losses could be reduced to about 11%. The mismatch correction will

improve the squeezing by additional 2 dB (see Fig. 1.17 (b)).

Figure 1.17: [22] (a) Estimated losses in the different parts of a squeezing system
for Advanced Virgo . (b) The achievable squeezing factor depends both on the optical
losses an on the phase jitter noise. If the beam jitter fluctuations are kept around 20
mrad, a reduction of the mismatch from 24% to 11% will improve the squeezing by 2
dB.

1.10 Conclusion

In Advanced Virgo, the whole interferometer will be very sensitive to all defects that may

be present in the cavities due to static or thermal effects with the increase of laser power.

The crucial importance of compensation for axis-symmetric and non-axisymmetrics de-

fects has been enhanced since the Marginally Stable Recycling Cavities (MSRC) solution

has been adopted. In order to reach the design sensitivity, the optical path length dis-

tortions have to be corrected in many points of the interferometer, in the arm cavities

and in the recycling cavities, with the help of compensating systems that are briefly

presented in Chapter 2.

Moreover, the statics or time varying optical defects will also have a great impact on

some specific subsystems, in particular through the matching into various cavities. An

appropriate system, with the capability to correct high order mode aberrations in real

time, will therefore provide a great help in risk mitigation to reach the Advanced Virgo

sensitivity.
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The goal of this thesis is to propose an adaptive optics system for mode matching

correction that can be used in the different systems of the gravitational wave detectors.

In particular, we will focus on the requirements for the matching into the interferometer

at the injection stage. The work is centered on the design and proof-of-principle tests

of such a mode matching correction system.





Chapter 2

Adaptive Optics Systems for

Mode Matching

We saw in Chapter 1 how crucial it will be to maintain a high matching in the resonant

cavities of Advanced Virgo. In particular the matching into the main cavities at the last

stages of the injection, as well as into the detection filter cavities will be determinant to

reach the target sensitivity. Ensuring the matching into the filter cavities of a squeezing

system is also necessary to meet the requirements. In order to perform such matching,

we need a corrective device compatible with the various constraints on vacuum, noise

coupling and high optical quality for integration in the GW interferometer environment.

Furthermore, the matching must be kept under control even with time varying aberra-

tions, as it is the case with the thermal aberrations in the interferometer.

Since the beginning of the studies on interferometric GW detectors, thermal aberrations

are foreseen to be a source of problems and the idea to passively or actively compensate

them was present very early [12]. In the last years, different systems have emerged to face

troubles in the detectors and new prototypes are under development in anticipation of the

next generations. After a review of the GW interferometer environmental constraints,

we present some commercially available adaptive optics technologies. We determine

what limits their integration into the interferometer environment. Then we focus on the

existing systems for the GW detectors. Finally, given that a full adaptive optics system

for the mode matching is still missing, we show how the device we propose is able to

reach our stringent requirements, benefiting from being at the crossroad of the adaptive

optics devices and GW device families.

37
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2.1 General description of an adaptive optics system

Along its propagation through an optical system, a light beam interacts with several

optical components or media that can introduce static or time varying aberrations in

addition to the expected transformations. The term aberration is here understood in

the large meaning of any deviation from an ideal Gaussian beam. The signal at the

output can therefore suffer from distortions or information losses. To correct the defects

accumulated through the propagation, a system of adaptive optics is composed of three

elements: a sensor to detect the aberrations, a signal processor to compute the correction

and a corrective device placed along the beam path to apply the correction (see Fig.2.1).

Unlike a static or a passive compensation, the system is able to respond to situation

changes by controlled adjustments of the correction (feed-back).

Figure 2.1: General scheme of an adaptive optics system: the beam aberrations are
detected by a sensor that generates an error signal which is processed to compute the
actuation. The correction is then applied by the corrective device.

The adaptive optics technique was established during the 20th century to improve the

quality of the images received by the ground-based telescopes. The principle is to correct

in ”real time”, that means with a high frequency rate, the phase deformations introduced

by the atmosphere in order to retrieve the diffraction limit of the optical instruments.

More generally, an adaptive optics system has to correct in real time any deformation

that appears in an optical system and that reduces its performance. Some authors draw

a distinction between adaptive optics, active optics and active compensation, according

to criteria of time-scale, degrees of freedom, amplitude, design... Here adaptive optics

will be the generic term embracing all these techniques.

The simplicity of the adaptive optics systems, as well as the improvements along with

decreasing prices of the technologies, are ensuring them a large success. Recently adap-

tive optics have found a large range of new applications in ophthalmology [23] [24],

microscopy [25], astronomy [26] and laser fields [27] [28]. This diversity leads today to

a lot of different corrective devices, which size varies from the micrometer to the me-

ter scale, and as many sensing and control techniques. Design specifications are highly
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dependent on the application, so we will focus our study to the systems potentially

compatible with our requirements.

2.2 The control of aberrations in optical cavities

In the context of the GW interferometers, the optical aberrations are coming from both

static and dynamic defects of the optics along the beam path. The statics defects may

be due to the surface defects, from polishing or coating, to the substrate inhomogeneities

or to misalignments (distortions from the lenses, clipping). Some optical benches and

optics are suspended and beam misalignment or position changes with respect to the

optical elements may create dynamic defects. Power fluctuations will also modify the

thermal effects. Several adaptive optics systems will then be necessary to ensure that the

beam mode is preserved all along its propagation through the system and is well adapted

to the resonant cavities. For example, in a simple cavity system, the preservation of the

fundamental mode can be made in two complementary directions : correction of the

incident beam aberrations before it is entering the cavity and correction of the defects of

the cavity itself. These are respectively referred as mode matching and in situ corrections

(see Fig.2.2).

Figure 2.2: Adaptive optics can act at two stages for a simple resonant cavity: adap-
tation of the beam to the cavity through the mode matching and in situ correction of
the mirror defects

2.2.1 In-situ corrections

The aim of the in-situ corrections is to correct statics or thermal defects occurring inside

the cavity. For example, surface defects of the mirrors can convert the fundamental mode

into high order modes, increasing the round-trip losses and the scattered light [29]. At

high power, these defects together with substrate inhomogeneities may also become

sources of non-Gaussian repartition of the heat inside the substrates, leading to ”hot
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spots”. With an appropriate correction, the power losses may be reduced and the stored

power inside the cavity may increase.

Furthermore, as discussed before in Chapter 1, the thermal lensing changes the cavity

geometry. It can be an important source of mismatch, changing the fundamental reso-

nant mode properties and then reducing the overlap integral (Eq. 2.1) with the incident

beam. A correction that recovers the original mirror RoC and compensate the eventual

asymmetries will help in maintaining a cavity geometry close to the initial one even at

high power. Some systems presented thereafter are dedicated to in-situ corrections in

the main cavities.

2.2.2 Mode Matching

The mode matching correction consists in the correction of the beam before its injection

into the cavity that is supposed to be perfect. The aim is to ensure that the maximum

of power is coupled into the cavity set to the resonance of its fundamental mode. The

beam has to match the amplitude and phase distributions of the resonant mode of the

cavity: the waist size and waist position have to be adapted to the cavity geometry.

Moreover the high order modes introduced by the static or thermal aberrations have

to be canceled or reduced. The mode matching η is defined as the overlap integral of

the complex field ψi of the incident beam with the complex field ψ0 of the fundamental

mode of the cavity.

η =

(
|
∫
ψiψ

∗
0dS|

2∫
|ψi|2dS

∫
|ψ0|2dS

)2

(2.1)

The power stored in a cavity at the resonance Pcav can then be rewritten [30] (see Eq.

1.50) :

Pcav = G′cavPi (2.2)

with Pi the input power and G′cav the gain of the cavity:

G′cav = η
1− Li − r2i
(1− reri)2

(2.3)

where ri, re are respectively the reflection coefficients of the input and end mirrors, Li
the energy loss due to absorption and scattering in the input mirror and Gcav is the

cavity gain.

Coupling to high order modes The interaction with a cavity will lead to split of the

input field ψi into the fundamental mode for one side and the high order mode content
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in the other side. Indeed, while the fundamental mode resonates in the cavity, the

aberrations, including misalignment, gain an additional phase shift, called Gouy phase,

making them rejected by the cavity [31]. This can be understood through the projection

of ψi into the mode basis generated from ψ0. In Appendix A the demonstration of the

coupling to specific modes is given for different examples of misalignments.

We can then simply write this separation in two parts as:

Pi = P0 + Pa with

{
P0 = ηPi

Pa = (1− η)Pi
(2.4)

with Pi is the power of the fundamental mode at the input of the cavity and Pa the

power of the aberrations that will be reflected. It is straightforward that measuring Pa

in the absence of internal losses will give the amplitude of the mismatching at the input

of the cavity. Moreover the accurate determination of the mode content reflected by the

cavity will directly inform on the aberration nature.

The aim of our system will be to improve the matching of an incident beam into the

cavity, using an error signal from the cavity itself. A corrective device, a sensing method

and a control scheme are then needed to create a complete adaptive optics system.

In order to find a corrective device that is suitable for an integration in a Advanced

Gravitational Wave Detector environment, we now review the requirements.

2.3 Requirements for a Mode Matching system

The control of noise sources in a gravitational wave detector environment, as previously

demonstrated in Chapter 1 is a particularly sensitive subject. Before integrating a new

device on any bench of the interferometer, one has to be sure that is not introducing

noise at any level: diffused light, acoustic noise, electronic noise,... So the adaptive

system, especially the corrective device that will be in the laser beam path, has to be

compliant with very high requirements on optical quality and on system integration.

For example, an adaptive system placed on the suspended injection bench in Advanced

Virgo:

• has to be able to sustain high power laser (up to 100 W)

• must be polished and coated with a high precision, compatible with the surface

quality requirements of the other passive optical components present in the beam

path:

– the surface roughness has to be lower than 0.1 nm
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– the flatness better than λ/20

• has to be high vacuum compatible (10−6 mbar)

• must not be a source of noise (electronic, magnetic, mechanical...)

• can act over long time scales. The actuation frequency is not a key criterion as

the thermally induced aberrations are slowly varying (∼ 10 mHz).

The requirements for the detection bench would be similar, with in both cases the

constraint to ensure a matching better than 99%.

2.4 Corrective devices commercially available

The two main families of standard corrective devices are the Deformable Mirrors and

the Spatial Light Modulators. The Spatial Light Modulators are used for high resolution

phase correction with technologies that allows to reach a spatial resolution even better

than few hundreds of nm [32] with an amplitude of actuation about λ. The residual

defects are then very thin. However the inherent low damage threshold (few Watts)

made them unsuitable devices for our high continuous power application.

2.4.1 Deformable mirrors

The deformable mirrors can be classified in two types: segmented mirrors and continuous

shape mirrors. The segmented mirrors are often used for large scale mirrors, to reach a

good optical quality and to reduce the weight of the system. At the opposite side of the

scale, the Micro Electro Mechanical mirrors achieve a very high spatial resolution. But

the segmented mirrors are unsuitable for our application: the mirror edges may generate

diffraction effects. Furthermore, the Micro Electro Mechanical mirrors are not adapted

to high power laser beams (damage threshold around few Watts). Different technologies

are today commercially available for the continuous shape mirrors. They can be briefly

described as following:

Stack mirrors The Piezoelectric Deformable Mirrors or Stack Array Mirrors were

widely used technologies in adaptive optics. A thin reflective plate (Fig.2.3) is de-

formed by contact with piezoelectric actuators. Piezoelectric actuators are composed

of a stack of piezoelectric disks for which their thickness varies according to electric

field applied. This technology is today less employed due to some defects: high voltage

required for common correction, high inter-actuator spaces and hysteresis effects. The
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damage threshold could be high but the mirror is producing 1/f noise that will introduce

mechanical vibrations on a suspended bench.

Figure 2.3: Schematic section of a stack mirror: the piezoelectric actuators (black
and blue stripes) are mechanically deforming the reflective plate (in black).

Mono-morph and bi-morph mirrors Based on the same effect as the Piezoelec-

tric Deformable Mirrors, bi-morph mirrors (Fig.2.4) are constituted of two piezoelectric

plates bonded together between two glass plates. Thanks to the opposition of polar-

ization between plates, the application of an electrical field allows to have a differential

effect: when a one-plate contract, the other expands. Mono-morph mirrors are a par-

ticular configuration of bi-morph mirrors with one piezoelectric plate and thus offer

simplicity of conception. They really worth consideration as the optical substrate is

made from glass material and then can be polished to reach a high optical quality. They

can also be used for high power laser beams. Unfortunately they present the same

drawbacks as the Piezoelectric Deformable Mirrors: hysteresis and 1/f noise [33].

Figure 2.4: Schematic section of a bimorph mirror: the positive polarization is repre-
sented in red and the negative polarization is in blue. The laser beam can be reflected
on one side or the other depending on the coating position.

Electrostatic mirrors A membrane (Fig.2.5) in conductive material is spread over

an array of electrodes. The membrane is constrained at the edges and is deformed by

application of an electric field. These mirrors have high amplitudes of deformation but

are poorly linear. The optical quality of the surface is quite low in absence of tension,

with presence of visible defects in commercial devices [34]. Although this type of mirror

can sustain a 500 W laser beam, with special coatings to increase the damage threshold,

thermal distortions are compromising its operation and it has to be used with few Watts

of laser charge [35].

Figure 2.5: Schematic section of an electrostatic mirror: the conductive membrane
(in green) is deformed by the action of the array of electrodes (in blue).
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Electromagnetically actuated mirrors The voice-coil technology (Fig.2.6) is made

of permanent magnets that are bonded to a thin optical membrane. When a current

circulates into the coils, the plate is deformed thanks to the motion of magnets placed

in front of them due to the Lorentz force. They perform with a high dynamic range

of actuation and a high linearity. However the presence of electromagnetic fields could

interfere with the suspended bench environment. To limit the risk of noise coupling,

such a device is preferably not used in a GW interferometer, or has to be extensively

tested before. Moreover, the membrane generally achieves a optical quality over our

specifications in terms of surface RMS and reflectivity.

Figure 2.6: Schematic section of an electromagnetic mirror: the membrane (in black)
is deformed by the action of the coils (in orange) on the magnets (in green).

Table 2.1: Features of some deformable mirrors with respect to our specifications for
the integration in a Advanced GW detector
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2.4.2 Device study conclusion

The features of the different deformable mirrors are summarized in Table 2.1. It appears

that the current limits of the technologies are not providing any device fully compatible

with the requirements mentioned at the beginning of the chapter, in terms of optical

quality, noise requirements and high power sustainability. Furthermore, the critical

point is the vacuum compatibility, as the standard devices are generally not foreseen for

in-vacuum applications. Most of the scientific experiments are using the adaptive optics

system outside their vacuum system [27, 28, 36, 37] and therefore can use standard mirror

technologies. When it is necessary to put the system under vacuum, specific devices are

developed. For example the deformable mirror designed for the Laser Mega-Joule laser

facility looks very interesting (ILAOTM (Intense Laser Adaptive Optics) Deformable

Mirror): although the mirror substrate is a dielectric membrane, the device is vacuum

compatible and claims a very good optical surface quality (better than 10 nm rms in

active flat). It is low power consuming as it maintains the shape statically when the

correction is constant. However, the membrane is deformed by a mechanical actuation

that is excluded for the suspended benches due to the vibrations it may introduce.

2.5 Corrective devices for gravitational wave detectors

The thermal effects in the Advanced gravitational interferometers have been extensively

studied before the construction of GEO600, Virgo and LIGO [12, 13, 38]. The most re-

cent theoretical overview is available in [16]. These issues have given rise to a new family

of adaptive optics correction systems based on thermal actuation. First conceptual pro-

posals and proof of principle experiments were made between 2000 and 2004 [39–42].

They targeted the uniformity of the temperature distribution in the optics by different

means. Ring heaters [43, 44], external pump beams [45, 46] and radiative heaters [47]

were the first corrective systems tested and implemented in the interferometer gravita-

tional wave detectors. The selected solutions for the Advanced Virgo baseline are briefly

described in Section 2.5.1, together with a short analysis of their (un)compatibility for an

integration in a mode matching system. Their position in the interferometer is presented

in Fig.2.7.

The experience gathered with core optics thermal effects gave birth then to a second

family of adaptive optics systems aimed at optimizing the beam coupling into Fabry-

Perot cavities. The first real adaptive optics system was proposed in [48, 49]. Another

system using a segmented heater [50] was presented later on for its implementation in

Advanced LIGO. Both systems are described in Section 2.5.2.
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The new concept of Thermally Deformable Mirror (TDM) with proof of principle was

proposed in [11]. It is a complementary device to the injection mode matching optics.

It can further improve the matching of the fundamental mode of the laser beam into the

interferometer. This technology is more efficient than [50] since the correction is directly

applied in the laser beam path. This solution is described in Section 2.6.

Figure 2.7: [10] Position of some thermal corrective device in Advanced Virgo: Ring
Heaters (RHs) are placed around the test masses and the PR and SR. Two Compen-
sating Plates (CPs) are put in the recycling cavities. The position of the double axicon
scanning lasers are not indicated.

2.5.1 In situ corrective devices

We have seen that the control of the RoC of the test masses is necessary to increase the

precision of the curvature obtained after polishing and to control the thermal lensing

and expansion. The two first devices presented thereafter are based on the thermal

expansion of the substrate under the exposure to heat radiation. They both have one

degree of freedom.

2.5.1.1 The Ring Heater

The principle of the ring heater is to benefit from the power emitted by a circular

heater placed around the substrate. In order to couple the maximum of power into the

substrate, a reflective shield can be added around the heater.
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Control of the RoC in the cavities In Advanced Virgo, a ring heater [10] will be

placed around each of the suspended mirrors. The ring heater provides a negative RoC

correction with power increase over the test masses in both arms and in the recycling

cavities. It will be used to reach the nominal values of the RoCs, to equalize the two

arms and to control the thermal lensing in the mirrors due to the absorption of the main

laser.

Figure 2.8: Scheme of the ring heater position around a test mass. The ring heater
is composed of two emitting elements inside a circular shield. In the zoom picture, the
annular element of the prototype is made of glass and is surrounded by a gold coated
copper shield. Pictures are from the Advanced Virgo TCS group

.

Description The device is composed of 2 emitting elements. Each one is made of

an electrical wire wound around an insulated circle. They are both placed inside a IR

reflecting shield (see Fig.2.8). The DC current passing through the wire is heating the

device by Joule effect. The test mass is then heated radiatively: the heater creates a

thermal gradient inside the mirror. The thermal expansion decreases the RoC of the

front surface [43] in the arm cavities. The thermal lensing compensates the laser beam

thermal lensing in the recycling cavities. By tuning the current in the wire, the RoC

can be adjusted to the required value.

At the time of the writing, the final design of the ring heater is not yet determined: the

annular part will be made of glass or aluminum, circular or rectangular, and the wires

will be in manganine, nichrome or phosphorus bronze. It has to be surrounded by a

gold coated shield to reflected the maximum power into the test mass. The ring heater

will operate at high temperatures (100 − 200◦C). It will be positioned at 18 cm with a

precision of few millimeters from the High Reflective (HR) face of the mirror in order
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to have the maximal dynamic range (- 1.6 m/W). This is enough to reach the range

specifications and the required precision is easily achieved.

Suitability for a Mode Matching use This solution is non-invasive: the device is

heating the mirror radiatively, minimizing the noise sources and the impact on the test

masses. It can be switched off without any damage on the experiment.

The dynamic range is high but the correction is limited to the RoC compensation. It

is relatively high power consuming with respect to a central heating actuation system.

Being suspended around the test mass, the device provides a correction pattern that is

not perfectly uniform due to the mechanical contact to maintain the emitting elements

inside the shield [51]. Above all, it is not appropriate for our application: the suspension

is needless for a mode matching device, that do not have to behave as a free mass, and

is not suitable for small optical components.

2.5.1.2 Central Heating Radius of Curvature Correction (CHRoCC)

The CHRoCC was developed and used in Virgo+ [47]. It provides a positive RoC

correction with power increase by heating the high reflectivity side of a test mass. The

main difference in principle with the ring heater is that the heat is projected on the

central part of the mirror.

Control of the RoC in the main cavities In Advanced Virgo, it is planned to install

a CHRoCC on the end mirror of the 144 m Input Mode Cleaner with the objective of

having a fine adjustment of the RoC in order to avoid high order mode resonances. It

could also be used in the main cavities to increase and equalize the RoCs of their end

mirrors. Like for the Input Mode Cleaner, if these cavities are close to degeneracy, it

could also help to optically move these RoC values far from the resonance of high order

modes.

Description The CHRoCC is composed of a ceramic heater placed at the focus of

an ellipsoidal reflector, which the second focus is close to the high reflectivity surface

of the end mirror (see Fig.2.9). The maximum working temperature of the heater is

1200◦ C, that corresponds to 15 W absorbed by the substrate. At the middle range, it

corresponds to a RoC change of 325 m. This system has already given very good results

in Virgo+, allowing to equalize the RoCs of the arms and to remove the degeneracy for

the optical modes of 5th order.



Chapter 2. Adaptive Optics Systems 49

Figure 2.9: (a) Schematic representation of the CHRoCC in front of one Virgo+ end
mirror. (b) Thermal image of the end mirror heated by the CHRoCC at 500◦ C. [47]

Suitability for Mode Matching Like the ring heater, this solution is non invasive

and limited to the RoC correction. The projection makes the heating pattern slightly

astigmatic, that increases the RMS of the mirror surface. The dynamic range is very

high and the power consumption is low with respect to lateral heating systems [52]. The

space needed for the projection makes this device unsuitable for small systems, that is

a major inconvenient for a mode matching use.

In Chapter 1, we have seen that the control of the high order modes defects is crucial,

in particular in the recycling cavities. In the following, the systems have a higher degree

of actuation. The two first systems, based on the projection of a CO2 laser source, will

be implemented in Advanced Virgo. The third system, called CHRAC, is still under

development.

2.5.1.3 CO2 lasers devices

To perform the control of the optical defects in the recycling cavities independently from

the main cavity corrections, the proposed solution is to insert a compensating plate in

each of the recycling cavities, near to the input test masses of the long Fabry-Perot

cavities (ITMs) [10]. The objective is to modify the transmitted optical path length

by heating the compensating plate with the appropriate pattern. The compensative

plates will then be the target substrate for a CO2 laser: a double axicon will correct

the symmetric part and a scanning system will be in charge of the asymmetric or high-

frequency defects.

Description The double axicon system is a central heating system projecting two

circular independent heat patterns, that can be power modulated. A scheme of the

setup is presented in Fig.2.10. The double axicon system increases the flexibility of the

axis-symmetric correction with respect to a simple axicon. The theoretical results after
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correction exhibit a residual RMS of 0.4 nm leading to 6 ppm losses. The needed power

for the C02 laser is about 18 W.

With the scanning system using galvanometer actuators, the HR surface of the test mass

is scanned with a pick-off of the CO2 laser beam modulated in power by an acousto-optic

modulator (see Fig. 2.10 (b)). The scanning spot diameter is 1 cm. Thus, the correction

of the residual distortions is performed on a central square surface of 16×16 cm2. Its

allows to have an active surface larger than the interferometer beam waist (5 cm) to

reach the RMS specifications. Simulations show that the residual optical path length

RMS is reduced by a factor 20 for spatial correction below the frequency of 40 m−1, that

meets the requirements for Advanced Virgo.

Suitability for a Mode Matching use Whereas the double axicon is limited to a

very specific pattern of correction, the scanning system allows a very flexible correction

of the high order mode aberrations at low power. But the projection systems needed to

apply the correction on the optical substrate are again requiring an important space and

are therefore not suitable for a mode matching device. Furthermore, the CO2 scanning

system can make some high frequency phase noise due to the scanning.

Figure 2.10: (a) Scheme of the double axicon setup: a CO2 laser beam is divided in
two beams orthogonally polarized. Each beam is shaped individually with an axicon
lens. The heat pattern is then created by recombination and sent to the compensating
plate. (b) Scheme of the scanning system setup. The power after the AOM is monitoring
by the photodiode (c) Example of high spatial frequency correction: in left image,
possible optical path length at 25 W before correction. In the center, residual path
length after correction. At right, correction heating pattern performed by the scanning
system.
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2.5.1.4 Central Heating for Aberration Correction (CHRAC)

The CHRAC has been proposed [53] for high order mode correction in the main cavities

of the Advanced and future generations of the interferometers to reduce the scattered

light. In particular, the principle has been developed to help in reaching the surface

polishing specification for the Laguerre-Gauss cavities. The experimental demonstration

of its performance is still under study to confirm the theoretical expectations. Thence

their characteristics are unknown at the time of the writing of this document.

Description Composed of an array of Alumina ceramic heaters mounted outside of

the mirror payload vacuum tower, the thermal heat pattern can be projected on the HR

surface of a mirror through a ZnSe lens to modify the shape: the correction is made

by the thermal expansion of the mirror substrate (see Fig 2.11). The power emitted by

each heater is individually controlled.

Suitability for a Mode Matching use The main advantage of this device is, like

the scanning pattern, its capacity to correct high order mode aberrations. The imple-

mentation requires a projection system, limiting the use of this device to large systems.

Figure 2.11: Scheme of the CHRAC implementation for a suspended test mass. The
heater array is located outside the vacuum tower. The pattern is projected via a ZnSe
lens onto the HR surface of the test mass.
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2.5.2 Mode Matching devices

All devices presented in the previous section are based on the projection of a heat

pattern, requiring a large space for implementation and being unsuitable for the mode

matching on the one hand. On the other hand, the actuation is based on the thermal

expansion of the HR side of the test masses, expect for the C02 devices. The actuation

range is then smaller than the one expected from a thermal lensing actuation for the

fused silica substrate (see Table 1.2), that is currently mainly used in the detectors. A

device for the mode matching calls for large amplitudes of actuation and high order

modes correction. Two systems especially studied for the mode matching are presented

in the following section.

2.5.2.1 First Adaptive Optics system for GW interferometers

In [48] an adaptive optics system was proposed to ensure a suitable beam matching

with a mode cleaner, correcting the expected thermally induced aberrations in the next

generation of high power interferometers as well as the high temporal frequency beam

jitter noise.

Figure 2.12: Theoretical scheme of the elements for the correction of the matching
into the Input Mode Cleaner in the [48] proposal.

Description This adaptive optics system is composed of two deformable mirrors

placed beforehand an Input Mode Cleaner cavity. The sensing, done with a pixellated

photodiode, is based on the Ward technique [54](see Appendix A) to detect the high

order modes, taking the advantage of the filtering behavior of the triangular cavity.

A proof of principle of this experiment has been realized in a quite different configu-

ration [49] : a single deformable mirror was placed at the end of one of the arms of

a small Michelson interferometer. The interference pattern at the antisymmetric port
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was used to recover the high order mode composition. The actuation for the deformable

mirror was then computed in terms of Zernike decomposition and applied in one arm

of the Michelson. This experiment has been pursued with the successive use of two

commercially available mirrors: a membrane mirror and a piezoelectric mirror.

Analysis of the Mode Matching use The efficient detection scheme uses directly

the mismatching information, that is the modes rejected by the cavity, to compensate the

high order modes. However, the actuation part is not compatible with an integration

in the gravitational wave detectors. As we have seen previously in Section 2.4, the

proposed mirrors are not suitable for an use in Advanced Virgo. None of them is vacuum

compatible. The first one is not able to sustain high power due to the membrane

properties. The second one is piezo-actuated. Even if the noise measurements are

promising, noise disturbances are expected when integrated in a suspended bench as

explained in Section 2.4. But the use of standard devices allows to perform the correction

up to high time frequencies (up 50-60 Hz), that could not be achieved by thermal

actuation.

2.5.2.2 The LIGO Quadrant Ring Heater

The principle of the Quadrant Ring Heater [55] is based a ring heater design, with the

heater split in four independent sections. Therefore the device can reduce by transmis-

sion the divergence of a beam that is going through its substrate as well as compensate

the astigmatism of this beam in two directions. The heat transfer is made by conduction,

the actuators being in thermal contact with the substrate. This made it unsuitable for

a use with the suspended test masses of the interferometer: it is then reserved for cavity

matching applications.

Description The substrate is heated by four independently controlled heaters in ther-

mal contact with its barrel (see Fig 2.13 (a)). The conduction ensures a high power cou-

pling into the substrate while the use in transmission benefits from the thermal lensing

and increases the correction efficiency with respect to the thermal expansion provided

in reflection. Therefore this device exhibits a high dynamic range from minus infinity to

-10 m, that corresponds to a RoC of 4.5 m, assuming that the mirror acts like a plano-

lens. The maximum power required is 2.4 W per actuator, with a working temperature

of 200◦.

Analysis of the Mode Matching use The Quadrant Ring Heater is completely

dedicated to a mode matching correction and has made the experimental demonstration
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of its ability for compensating an astigmatic thermal lensing. The order of correction is

increased with respect to the ring heater (see Fig. 2.13 (b) and (c)) but is lower than

for a scanning system. This device has a high dynamic range and the substrate can be

chosen and prepared accordingly to meet the optical quality requirements mentioned at

the beginning of the chapter. The experimental tests exhibited a cross-coupling between

the position and the beam size when an astigmatic correction is performed but this

effect could be compensated by additional steering mirrors. Complementary tests to

determine the behavior under vacuum will enhance the promising results of this device.

Figure 2.13: [55] (a) Scheme of the Quadrant Ring Heater (b) Experimental ther-
mal image of a symmetric actuation (c) Experimental thermal image of an astigmatic
actuation.

2.5.3 Conclusion on the devices for the gravitational wave detectors

With respect to commercial devices, the advantages of thermal systems are considerable:

standard vacuum compatible substrates can be deformed without mechanical actuation

by local temperature changes. They can benefit from a high optical quality, with an

adequate choice of the substrates, polishings and coatings. Some of these systems are

already included in the next generation designs, especially the devices dedicated to

in situ corrections inside the main cavities. Concerning the mode matching, the most

suitable device presented here, the Quadrant Ring Heater, is unfortunately not able to

correct aberration modes higher than astigmatism (see Table 2.2). The techniques of-

fering higher degrees of actuation (Scanning system and CHRAC) will not be effective

in small optical systems where available space is reduced. The adaptive optics system

of [49] does not offer a solution to the problem of the correction device compatibility to

GW environment.

It appears from this study that ideally we would like to have a thermally actuating

device able to correct high order modes, based on the technologies of thermal compen-

sation systems, which have been proved to be efficient and compatible with our noise

requirements for one hand, and in the other hand to integrate the design of a stan-

dard deformable mirror, which has a high resolution correction and is an efficient way

to correct beam phase. Based on all this knowledge, we are now able to propose this
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innovative device together with a complete adaptive optics system dedicated to mode

matching in highly sensitive environment.

Device Heat transfer d.o.f.* Correction order

Ring Heater Radiation 1 RoC

CHRoCC Radiation 1 RoC

Quadrant Ring Heater Conduction 4 RoC
Astigmatism

Double Axicon Radiation 2 RoC

Scanning laser Radiation 16 High order modes

CHRAC Radiation 9 High order modes

Adaptive optics system none 2 ×19 High order modes
in the [49] proposal Beam jitter

Table 2.2: Summary of the device main features (* degree of freedom in the current
prototypes)

2.6 A new adaptive optics system

The proposed solution is a Thermally Deformable Mirror (TDM) that consists in a

standard mirror with an array of resistors in contact with its rear side. Each resistor

can be individually tuned to modify locally the temperature of the substrate. By this

way the optical path length of the beam in the substrate is locally changed by thermal

lensing. The laser beam is going through the substrate thanks to the anti reflective

coating in the front side and is reflected on the backside. With this technology, a

relevant choice of the mirror allows to meet the very high requirements on the optical

quality.

The cavity matching improvement will be performed with two TDMs placed in front

the cavity into which the matching has to be increased. They will be controlled thanks

to the detection of the high order modes reflected by the cavity. An example is given

in Fig.2.14 with the experimental proof-of-principle setup of Chapter 7. A proposition

for the integration of the mode matching system in the suspended injection bench of

Advanced Virgo is indicated in Fig. 2.15, where the needed space has been anticipated in

the design. They can be placed just before the input Mode Matching Telescope (MMT)

that controls the beam position of the beam and the beam size for its injection into the

interferometer. This means that the tip and tilt defects will be corrected independently

from the TDMs. Therefore, it is not necessary for the TDM to take care of these low

order aberrations: we will not study the possibility to correct neither the tip/tilt or the

focus with the TDMs.
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Figure 2.14: Proof-of-principle setup: two TDMs are correcting the matching into a
mode cleaner cavity. The sensing is made through the study of the transmission and
reflection port outputs.

Figure 2.15: Proposal for the position of the TDMs in the suspended injection bench
of Advanced Virgo [10]. They are placed at the end of the Injection subsystem, just
before the Mode Matching Telescope.
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The thermal properties of the actuation are extensively studied in the next chapter.

The device features are the subject of Chapter 4 where we propose a design analysis.

Afterwards, the experimental demonstration of the performance is realized in Chapter

5. The optimal position of the devices in the setup as well as the actuation scheme are

investigating in Chapter 6. Finally the experimental improvement of the mode matching

is discussed in Chapter 7.





Chapter 3

Thermally Deformable Mirror

Principle

The Thermally Deformable Mirror (TDM) is based on the control of the thermal lens-

ing inside an optical substrate. It is designed to correct high order mode aberrations

in order to ensure a very good matching of the laser beam onto an optical setup and

in particular to ensure a matching higher than 99 % for the injection of Advanced Virgo.

In this chapter, we study the theoretical behavior of the TDM and how it defines and

limits the features of the device. First of all, the temperature field generated by the

actuation is determined. The study is focused on the spatial behavior, as the temporal

response is not a critical parameter for our purpose and is measured in Chapter 5. We

see how the mirror can be modeled by a spatial filter.

Afterwards, we review the influence of the substrate material on the spatial frequency

and the amplitude of the actuation. We will be able to define the best glass properties

required for the realization of a prototype.

3.1 Principle of Actuation

As seen in Chapter 1, the optical path length experienced by a laser beam through a

substrate depends on its temperature. In order to control accurately the phase of the

beam, the TDM is a mirror in thermal contact with a body whose emitted power can

be tuned. It can be a resistor as proposed in [11], which is locally dissipating heat in

the substrate. The active area is then composed of an array of resistors to control the

optical path length with a relatively high spatial frequency. The mirror is used with

59
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the Anti Reflective (AR) coating on the front surface, in order to allow the beam to

propagate through the substrate and to be reflected back by the High Reflective (HR)

after propagation (see Fig.3.1). The dephasing φ(x, y) of a beam (wavelength λ) due to

the round-trip propagation in the substrate (thickness d) is (see Eq. 1.82 in Chapter 1

):

φ(x, y) =
4π

λ
(OPD + nd) (3.1)

with the Optical Path Difference (OPD) due to the temperature increase:

OPD =

[
dn

dT
+ α(1 + ν)(n− 1)

] ∫ d

z=0
∆T (x, y, z)dz (3.2)

with dn
dT the coefficient of variation of the refraction index n with respect to the tem-

perature T, α the coefficient of thermal expansion, ν the Poisson coefficient and ∆T the

temperature elevation in the substrate.

Figure 3.1: Schematic representation of the TDM principle: the wavefront of a laser
beam is modified by reflection on the back side of a substrate for which its temperature
is tuned by an array of resistors.

3.2 Temperature field in a substrate

We consider a perfectly homogeneous cylindric substrate placed under vacuum. The heat

transfer is made by conduction from the resistor to the mirror without losses. The heat

is absorbed in the coating and there is no internal heat generation inside the substrate.

The mirror is evacuating the heat only by radiation from all its sides (see Fig.3.2). We

want to understand what the shape of the deformation with respect to an incoming field

of power is.

The general heat equation is:

ρCp
∂T

∂t
(r, z, t)− κ∆T (r, z, t) = 0 (3.3)
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Figure 3.2: An input power field is applied on the back side of the TDM of thickness
d under vacuum and is absorbed in the HR coating. The heat transfer is made by
thermal conduction into the substrate. Then the heat is evacuated by radiation. To
solve the heat equation in the spatial frequency domain, the radius a is considered close
to the infinite.

with ρ the density of the substrate, Cp its heat capacity and κ its thermal conductivity.

In the steady-state, it simplifies to the Laplacian of the temperature distribution:

∆T (r, z) = 0 (3.4)

The heat flux F radiated by the surfaces can be linearized in the hypothesis of small

increases of temperature Tmax with respect to the external temperature Te [56]:

Tmax − Te
Te

� 1 (3.5)

and we have:

F = 4σεT 3
e δT (3.6)

with σ the Stefan-Boltzmann constant, ε the emissivity of the substrate and δT the

variation of temperature with respect to the external temperature (δT = T − Te).
The boundary conditions are, with P (r) the absorbed power distribution and z0 the

center of the substrate:

−κ ∂T
∂z

∣∣∣∣
z=z0−d/2

= P (r)− σεT 3
e δT (r, z0 − d/2) (3.7)

−κ ∂T
∂z

∣∣∣∣
z=z0+d/2

= σεT 3
e δT (r, z0 + d/2) (3.8)

−κ ∂T
∂r

∣∣∣∣
r=a

= σεT 3
e δT (a, z) (3.9)
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3.2.1 Solution in the Gaussian case with z0 = 0

When the mirror is heated by an incident laser beam, i.e. when the incident power

distribution has a Gaussian shape, the analytical solution is presented in [56]. We give

here the main results of this study.

A solution to the steady state equation (Eq. 3.4) can be written as a Dini series:

T (r, z) =
∑
m

[Ame
kmz +Bme

−kmz]J0(kmr) (3.10)

with J0 the Bessel function of the first kind of order 0. The coefficients Am and Bm are

given by the boundary conditions (Eq. 3.7 and 3.8):

Am =
εpma

κ
e−3ζmd/2a

ζm − τ
(ζm + τ)2 − (ζm − τ)2e−2ζmd/a

(3.11)

Bm =
εpma

κ
e−ζmd/2a

ζm + τ

(ζm + τ)2 − (ζm − τ)2e−2ζmd/a
(3.12)

with the input power P (r) written as a Dini series:

P (r) =
∑
m

pmJ0(ζm
r

a
) (3.13)

and ζm are the solutions to Eq. 3.9 with km = ζm/a and τ = 4σεT 3
e a/κ. The tempera-

ture distribution is then:

T (r, z) =
∑
m

pma

κ
e−ζmd/2a

(ζm − τ)e−ζm(d−z)/a + (ζm + τ)e−ζmz/a

(ζm + τ)2 − (ζm − τ)2e−2ζmd/a
J0(ζm

r

a
) (3.14)

In the case of a gaussian incident beam of power P and waist w, the intensity distribution

is:

I(r) =
2P

πw2
e−2r

2/w2
(3.15)

and the pm coefficients of the Dini distribution are, if the mirror is much larger than the

beam waist [57]:

pm '
P

πa2
ζ2m

(ζ2m + τ2)J0(ζm)2
exp(−1

8
ζ2m
w2

a2
) (3.16)

3.2.2 General axis-symmetric case: solution in the spatial frequency

domain

By solving the heat equation in the spatial frequency domain, the TDM can be modeled

by a spatial filter whose the transfer function can be found analytically. Again we

consider that the system is axis-symmetric with T (r, z) the temperature distribution
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inside the mirror. The two-dimensional Fourier Transform of an axis-symmetric function

f(r) is:

F(u) = FT [f(r)] (3.17)

F(u) =

+∞∫∫
−∞

f(r)e−2iπu·rdr (3.18)

with r the vector of the spatial coordinates and u the vector of the spatial frequencies.

Working with the polar coordinates (r, θ), we choose the origin of θ such as u · r =

ur sin θ. This leads to, with the sin parity:

F(u) =

+∞∫∫
−∞

f(r)re−2iπur sin θdrdθ (3.19)

F(u) = 2

+∞∫
−∞

f(r)r

π∫
0

cos (2πur sin θ)dθ

︸ ︷︷ ︸
πJ0(2πur)

dr (3.20)

where we recognize the J0 the Bessel function of the first kind of order 0. The two dimen-

sional Fourier transform of a circular symmetry function is then the Hankel Transform

(HT) H0(u) of order 0.

F(u) = 2π

∫ +∞

0
f(r)rJ0(2πur)dr (3.21)

F(u) = H0(u) = HT [f(r)] (3.22)

Writing Eq. 3.4 in the spatial frequency domain, we have:

HT [∆T (r, z)] = −u2Θ(u, z) +
∂2Θ

∂z2
(u, z) = 0 (3.23)

with Θ(u, z) = HT [T (r, z)], the temperature distribution in the spatial frequency do-

main.

The problem can be simplified supposing a mirror with infinite dimensions in the radial

direction, due to the small size of the actuator with respect to the mirror diameter.

The boundary conditions are then only Eq. 3.7 and Eq. 3.8, that we can rewrite, with
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z0 = d/2:

− ∂Θ(u, z)

∂z

∣∣∣∣
z=0

=
1

κ
Pin(u)− u0Θ(u, 0) (3.24)

− ∂Θ(u, z)

∂z

∣∣∣∣
z=d

= u0Θ(u, d) (3.25)

Pin(u) is the input power distribution and we define the fundamental spatial frequency

u0:

u0 =
4σεT 3

e

κ
(3.26)

We find the general solution:

Θ(u, z) = A(u)e−uz +B(u)euz (3.27)

Eq. 3.24 and Eq. 3.25 lead respectively to:

A(u) [u+ u0] =
Pin
κ
−B(u) [u− u0] (3.28)

B(u) =

[
u− u0
u+ u0

]
A(u)e−2ud (3.29)

Combining both solutions, we obtain:

A(u) =
Pin(u)

κ [u+ u0]

(
1 +

[
u−u0
u+u0

]2
e−2ud

) (3.30)

B(u) =
Pin(u)

κ [u+ u0]

(
1 +

[
u−u0
u+u0

]2
e−2ud

) [u− u0
u+ u0

]
e−2ud (3.31)

and the general solution is written from Eq. 3.27:

Θ(u, z) =
Pin(u)

κ [u+ u0]

(
1 +

[
u−u0
u+u0

]2
e−2ud

) [e−uz +

[
u− u0
u+ u0

]
e−2udeuz

]
(3.32)

3.2.3 Transfer function of the actuation

We now know the temperature distribution inside the substrate as a function of the

power applied at the back face. The temperature gradient experienced by a beam is

given by the integration of the temperature distribution over the thickness d of the

substrate. We define the temperature transfer function H(u) of the mirror by the ratio
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of the substrate temperature distribution and the input power distribution:

H(u) =

∫ d
0 Θ(u, z)dz

Pin(u)
(3.33)

H(u) =

(
1− e−ud

)
κu [u+ u0]

(
1 +

[
u−u0
u+u0

]
e−ud

)
(

1 +
[
u−u0
u+u0

]2
e−2ud

) (3.34)

This filter has not a ”standard” shape (see Fig.3.3). However, it can be approximated

by a band-pass filter (BP) of order 2 in series with low-pass filter (LP) of order 1 whose

equations are:

H(u) ' d

κ
BP (u).LP (u) (3.35)

BP (u) =
ud

u2 + ud+ uc1
uc1 = u0 (3.36)

LP (u) =
u2c2(u+ uc2)

u2 + uc2u+ u2c2
uc2 =

1

d
(3.37)

with uc1 and uc2 the cut-off frequencies of the filters. They respectively depend on u0,

that means on the thermal conductivity κ and the emissivity ε of the substrate, and

of the thickness d. For a FS substrate, u0 is about 4 m−1 and 1/d is 100 m−1 for a

thickness d = 10 mm.

Figure 3.3: H(u): Transfer function of the a Fused Silica substrate (u0 ' 4 m−1) with
a thickness of 1 cm (1/d = 100 m−1)
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In the approximation of low spatial frequencies (u→ 0) the filter becomes:

H ' ud

κu20
(3.38)

And in the approximation of the high spatial frequencies, (u→∞) the filter becomes:

H ' 1

κu2
(3.39)

This transfer function completely characterizes the TDM as a spatial filter of 2nd order

for the input power field. We can extract a rough indication on the substrate behav-

ior. The high spatial frequencies will be attenuated in 1/u2 while the low frequencies

will be reduced by ud. An increase of the thickness will increase the gain only at low

frequencies, so the response will have an higher amplitude but will also have a larger

width (see Fig.3.4). An increase of the thermal conductivity, lowering the fundamental

spatial frequency u0, will lead to a decrease in the impulse response amplitude at all

frequencies (see Fig.3.5). If u0 is greater than 1/d, the filter is equivalent to a band-pass

(see Fig.3.5, u0 ' 400 m−1 ).

An ideal substrate would preserve as much as possible the high frequencies, in order

to have a good resolution in the actuation, and would provide a high amplitude of

actuation for all frequencies as well. It means that a low thermal conductivity, that

gives a high u0, would be preferable. This could be understand instinctively: a low

thermal conductivity will limit the temperature homogenization all over the substrate.

For the thickness, a trade-off between the amplitude and the resolution has to be found.

Indeed, a larger thickness will give a higher amplitude response by integration but will

smooth the spatial frequencies. In the case of a correction over several tens of millimeter

square, as it is standard for laser beam corrections, the spatial frequencies above 100

m−1 are the most relevant. For these high frequencies, it appears from Fig.3.4 and

Fig.3.5 that the influence of the thickness will be relatively low whereas the variations

of u0 will dramatically impact the TDM response.

3.2.4 Impulse response in the spatial domain

In the spatial domain, the inverse Hankel transform of the transfer function H(u) gives

the impulse response shape of the actuation, whose important parameters are the am-

plitude and the Half Width Half Maximum (HWHM). Unfortunately, performing an

analytical inversion of the exact transfer function (Eq. 3.34) or of the approximations

(Eq. 3.35 ) is not possible due to divergence of the expressions for r = 0.
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Figure 3.4: H(u): Transfer function of the a Fused Silica substrate (u0 ' 4 m−1) with
a thickness d varying from 1 mm to 10 cm. Above 100 m−1 and for thicknesses greater
than 1 cm, the influence of d on the response becomes very low.

Figure 3.5: H(u): Transfer function of a 1 cm thickness substrate with the funda-
mental spatial frequency u0 varying from 40 m−1 to 0.04 m−1. An increase of u0 by a
factor 10 decreases the response amplitude in the high frequencies of about 20 dB.

The effect of the filter on some input power distributions Pin(u) is obtained numerically

by multiplying them in the spatial frequency domain with the transfer function H(u)

(or by a convolution with the impulse response h(r) in the spatial coordinates).

G(u) = Pin(u).H(u) (3.40)

The responses have a width that decreases with the decrease of the actuator size. For an

actuator smaller than 500 µm, the response is equivalent to the impulse response. The
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normalized results are presented in Fig.3.6 with g(r) the response in the spatial coordi-

nates. The fundamental spatial frequency u0 will dominate the response of the substrate.

Figure 3.6: Actuation responses g(r) for different actuator sizes, with a constant
input power Pin = 0.1 W. The simulation is made for a 1 cm thickness substrate with
the fundamental spatial frequency u0 ' 4 m−1.

G(u) has the dimension of a temperature field integrated over the mirror thickness, in

[K.m]. Then, in order to compute the OPD induced by the TDM, we can simply multiply

the filter by the opto-mechanical parameters of the substrate according to Eq. 3.2:

GOPD(u) =

[
dn

dT
+ α(1 + ν)(n− 1)

]
G(u) (3.41)

in the limit of small amplitudes, where dn
dT is constant.

However, our model is not completely accurate, as we neglected the lateral dimension of

the substrate. A numerical model will help in computation of the simulation with finite

radial dimensions. We will start by studying g(r), that is the response of the TDM G(u)

in spatial coordinates. Then we will focus on the optical properties of the substrate to

determine gOPD(r).

3.3 Characterization of the substrate parameters

A model of the previous situations has been set up with a Finite Element Analysis (FEA)

software (Comsol). In this chapter, we take as a reference configuration the following

model: a square actuator of 1x1mm2 is in contact with a plate of Fused Silica (FS)
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substrate of 50.8 mm diameter (2”) and 10 mm thickness. The coupled power into the

substrate is 100 mW. This is illustrated in Fig.3.7).

(a) (b)

Figure 3.7: FEA simulation of a square input of 1mm2 with 0.1 W absorbed in the
substrate: (A) View of the power input side of the mirror (B) View of a central slice.
The substrate material is made of fused silica (FS)

3.3.1 Approximation of the impulse response

The simulation is made for several power distribution inputs with square shape. For a

very small surface of actuation, we expect to have the mirror response dominated by

the thermal properties of the substrate and to be equivalent to the impulse response.

Due to the resolution of our model, the size of the smallest tested actuation is limited

to 50x50 µm2. Larger inputs with 100x100 µm2, 500x500 µm2 and 1x1 mm2 surfaces

have also been tested.

Unlike the analytical model and as as shown in Fig.3.8, the response shapes are super-

imposed. This global shape is due to the heat radiation by the barrel of the substrate

that dominates the low spatial frequencies. For example, if we increase by a factor 2 the

radius of the substrate, the response for an actuator of 1 mm is enlarged (see Fig.3.9)

The HWHM of the actuation is linearly dependent to the logarithm of actuator size:

for an increase of a factor 10 in the actuator side, the HWHM increases by more than

a factor 3. Near to the actuation in r = 0, the response amplitude increases with the

decrease of the actuator size, due to the power density increase. The largest input leads

to the largest output width and the smallest amplitude (see Fig.3.10). For 50x50 µm2

surface, the TDM response has a HWHM of 0.5 mm. For the 1x1 mm2 input, the

response is 2.3 mm width.
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Figure 3.8: Response of the fused silica substrate for different sizes of square actuators
coupling 0.1 W into the substrate, the other parameters being fixed.

Figure 3.9: Comparison of the normalized responses of the FS substrate to 1mm
actuator for a substrate of 2”diameter (blue) and 4” diameter (green).

3.3.2 Linearity with the temperature

An hypothesis of the analytical model developed in the previous paragraph is the small

increase of temperature. To determine the limit of the model, we check the domain of

linearity with the FEA simulation (see Fig.5.12). The linearity of the analytical model

is valid up to a few Watts for a FS substrate. At 1 W, it corresponds to a temperature

increase of 280 K inside the substrate. This figure is not realistic as we are above the

maximum temperature allowed for the coatings. We will now continue our study with a

1x1mm2 resistor at 0.1 W: it corresponds to a difference of δT = 40 K and a maximum

integrated temperature gmax = 0.04 K.m.
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Figure 3.10: Variation of the response parameters as a function of the actuator size
for the fused silica substrate and 0.1 W absorbed by the substrate, the other parameters
being fixed.

Figure 3.11: Amplitude of the substrate response gmax as a function of the input
power for the FS computed with the FEA simulation (in blue). The maximum tem-
perature difference inside the substrate δT is represented in green. In red is given the
linear behavior for sake of reference
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Material Thermal Optical Mechanical

Density Thermal Heat Thermal Refraction Poisson

conductivity capacity expansion index
∂n

∂T
ratio

ρ κ Cp α n ν
kg.m−3 W.m−1.K−1 J.kg−1.K−1 10−6 K−1 10−6 K−1

BK7 2510 1.114 858 7.1 1.5 2.4 0.206
FS 2202 1.38 745 0.55 1.47 8.7 0.17

SF57 5510 0.62 360 9.2 1.8 6.8 0.248
Zerodur 2530 1.46 820 0 1.54 14.3 0.243
CaF2 3180 9.71 854 18.85 1.43 -10 0.26

Sapphire 3980 40 764 9.03 1.75 13.1 0.02

Table 3.1: Material table from Handbooks. The emissivity of all substrates is fixed
at 0.9, emissivity of the Fused Silica, as we have seen that the emissivity has a very low
impact on the substrate response.

3.3.3 Material study

We compare some common substrates that are suitable for polishing and coating accord-

ing to the optical requirements for Advanced Virgo [11]: the Crown Borosilicate (BK7),

Fused Silica (FS), SF57, Zerodur, CaF2 and Sapphire. Their properties are summarized

in Table 3.1. The aim of this study is to find the material with the best features: high

amplitude of response and small increase of temperature with respect to the input power,

small width of the optical path length to reach an high precision.

3.3.3.1 Temperature field in different substrates

According to the model previously developed in the first part of this chapter, the temper-

ature distribution in a substrate depends on the thermal conductivity and the emissivity

of this substrate through u0 (see Eq. 3.34). We observe the response temperature distri-

bution for the different substrates. The geometrical parameters are fixed: the substrate

plate is 10 mm thick and has a diameter of 2”. The resistor is a square of 1 mm size,

coupling 0.1 W in the substrate.

The simulated responses are summarized in Fig.3.12. The maximum temperature in-

tegral is obtained for the SF57 with gmax = 96.5 10−3 K.m, whereas the minimum

temperature integral is obtained for the Sapphire with gmax = 1.6 10−3 K.m, leading

to almost a factor 50 between the 2 temperature fields. This is related to the thermal

conductivity κ of the material: when κ varies from 0.1 to 1000 W.m−1.K−1, the ampli-

tude of the temperature decreases by almost 4 orders of magnitude. The emissivity has

a much lower effect: the relative variation is lower than 2 % between substrates for the

emissivity variation from 0 to 1.

The important parameter in the fundamental spatial frequency u0 is then the thermal
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Figure 3.12: FEA simulation of the temperature increase in different substrates for
an input power of 0.1 W generated by a resistor of 1mm2, absorbed in a plate of 2”
diameter and 10 mm thickness

conductivity κ. Though we retrieve the behavior expected from the analytical simu-

lations in Section 3.2.3: the thermal conductivity has a great impact on the substrate

response g(r), whose amplitude is higher for substrates with a low thermal conductivity.

They would then be chosen in priority. However, the optical properties are determining

the final amplitude of the actuation.

3.3.3.2 Influence of the optical parameters

Amplitude of the response in different substrates From the temperature inte-

gration over the thickness, we compute the OPD in the substrates according to Eq. 3.2,

where all thermal effects defined in Chapter 1 are included in the computation. Indeed,

while the thermo-elastic effect can be neglected for the FS and the Zerodur, it becomes

relevant for the BK7, CaF2 and SF57 material. The relative strengths of the thermal

effects for each substrate are summarized in Table 3.2.

The substrate response depends on the following optical and mechanical parameters:

the refraction index n, ∂n
∂T , the thermal expansion coefficient α and the Poisson ratio ν.

In order to have the maximum OPD increase for a given temperature increase in the

substrate, i.e. for a given κ, we would like to have a high ∂n
∂T for the thermal lens part,

as well as a high α and ν for the thermo-mechanical part.

The largest OPD is obtained with the SF57 (see Table 3.3 and Fig.3.13). Even if their

optical and mechanical parameters are among the higher values, the Sapphire and the

CaF2 exhibit the smallest OPD of the substrate set. They will not be the preferred
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Material Thermal lens Thermo-Elastic Ratio
∂n
∂T α(n− 1)(ν + 1)

10−6 K−1 10−6 K−1

BK7 2.40 4.28 1.78
FS 8.70 0.29 0.03

SF57 6.80 6.85 1.01
Zerodur 14.3 0 0

CaF2 -10 10.2 1.02
Sapphire 13.1 6.91 0.53

Table 3.2: Relative strength of the thermal effects with respect to the thermal lensing
(in K−1, results from FEA simulations).

Figure 3.13: FEA simulation of the OPD increase in different substrates for an input
power of 0.1 W generated by a resistor of 1mm2, absorbed in a plate of 2” diameter
and 10 mm thickness

choice for our device.

A discriminant parameter between the remaining elements is the working temperature.

For a given input power, we are looking for the material that gives the maximum OPD

for the minimum ∆T , in order to keep the material at a reasonable temperature and to

ensure to stay in the linear domain. The Zerodur has an actuation range twice lower

than the SF57, both in amplitude and temperature. For a given power, the SF57 is then

a more efficient material, but the temperature increase should be accurately controlled.

For safety reasons, the Zerodur might be an appropriate solution, along with the FS and

the BK7 substrates that are a good trade-off with a reasonable increase of temperature

with respect to the SF57 (see Fig.3.14). Furthermore, the FS would be preferred to the

BK7 according to this criteria.

Resolution of the response in different substrates The width of the OPD (HWHM)

will determine the maximum achievable spatial resolution of the correction. Following
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Figure 3.14: Comparison of the OPD amplitude inside the different substrates as a
function of the amplitude of the integrated temperature gmax. The SF57 exhibits the
largest response both in amplitude and temperature.

Material ∆T (K) OPD Amplitude (nm) OPD HWHM (mm)

BK7 52.5 368 2.39
FS 43.1 400 2.41

SF57 91.2 1543 2.32
Zerodur 40.9 603 2.41

CaF2 9.0 1.4 2.48
Sapphire 4.6 31 2.49

Table 3.3: Material behaviors for a 1mm2 resistor dissipating 0.1 W input power in
the 10 mm thick substrate.

the study from [11], we can compute the width of the OPD for different κ, the other

parameters being fixed (see Fig.3.15). We can observe that the increase of the HWHM

is correlated to the temperature increase of the substrate, i.e. to the parameter κ. The

smallest width is obtained with the SF57, followed by the BK7, the FS and the Zerodur.

The results are given in Table 3.3. However, the relative variation of the HWHM be-

tween the substrates is lower than 5%. We can then consider that the HWHM is mainly

determined by the actuation and that is not a key criteria in the choice of the substrate.

3.3.4 Influence of the thickness

Once the substrate material is defined, the substrate geometry still needs to be deter-

mined. If the radial dimension of the mirror can be neglected, as it is much greater than

the actuator size, the thickness has an impact on both the amplitude and the width

of the response as shown before in the filter approximation (see Eq. 3.35 in Section

3.2.3). Computing the OPD for different thicknesses of the FS substrate with the FEA
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Figure 3.15: Influence of the thermal conductivity κ on the HWHM of the OPD
response.

.

simulation, we obtain that the larger the thickness, the larger the amplitude. The gain

of about 10 nm for a thickness increase of a factor 2, that corresponds to a relative

variation of about 2.5 %. The influence on the HWHM is also negligible (less than 5

% of variation). We then retrieve that the thickness has a very weak influence on the

behavior of the substrate response at high frequencies.

3.4 Conclusion

We have shown that an infinite radial dimension optical substrate that dissipates heat

radiatively is a linear spatial filter for an axis-symmetric input power distribution ab-

sorbed at one of its faces. The parameters of the filter are the fundamental spatial

frequency u0, characteristic of the substrate through the thermal conductivity, and the

thickness of the substrate. The high spatial frequencies are attenuated as 1/u2. The

FEA simulations have shown that the HWHM of the response highly depends on the

actuator size and is relatively independent of the substrate thickness or of the thermal

substrate properties. The global shape of the temperature distribution is given by the

heat radiation. The most important parameter determining the amplitude of actuation

is the thermal conductivity, weighted by the optical parameters of the substrate.

For the prototypes studied in Chapter 5, some commons materials like the BK7 or the

FS substrate with standard dimensions will be relatively efficient materials. In the case

of the FS material, the simulated response to an actuator of 1mm2 with 0.1 W absorbed
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power with a plate of 2” diameter for 10 mm thickness is a shape of 4.8 mm width with

an amplitude of 400 nm.





Chapter 4

Thermally Deformable Mirror

Design

In Chapter 3 we have defined the parameters of the spatial response of the system to

the input power delivered by one actuator located at the center of the mirror. The

response parameters are determined by the geometry of the system and by the substrate

thermal and optical properties. This Optical Path Difference (OPD) over the substrate

generated by one actuator i is called the influence function Ii(r, θ) of the system with i

indicating the actuator number.

We now examine the interaction of a set of actuators. We establish the design require-

ments in order to perform an efficient matching correction with the TDM. We express

them in terms of actuator density over the active area and propose a configuration for

the prototypes.

4.1 Correction of a wavefront

The influence matrix M(x, y) that contains the K influence functions of the K actuators

represents the device actuation capability. They can be known by analytical simulations

as in the previous chapter, or by experimental calibration of the TDM as we will do in

Chapter 5. The analytical influence fonction Ii(x, y) is given by:

Ii(x, y) = Ii(r, θ) = giOPD(r, θ) (4.1)

with giOPD(r, θ) the phase deformation produced by the actuator i over the TDM sub-

strate. When it is sampled with equal dimensions ns in both dimensions of the Cartesian

plan, Ii is a matrix of ns×ns points (see Fig.4.1), but it is often equivalently stored as a

79
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vector of n2s×1 dimensions. The influence matrix is then a three dimensional ns×ns×K

Figure 4.1: Construction of φTDM the wavefront deformation generated by the TDM
from the interaction matrix M and the actuation vector a.

matrix. The equivalent two dimensional representation is the n2s ×K matrix:

M2D =



I1(1) · · · Ii(1) · · · IK(1)
... · · ·

... · · ·
...

I1(j) · · · Ii(j) · · · IK(j)
... · · ·

... · · ·
...

I1(n
2
s) · · · Ii(n

2
s) · · · IK(n2s)


(4.2)

The phase deformation can be described by a linear superposition of the influence func-

tions of the mirror through the interaction matrix:

φTDM = M · a =

K∑
i=1

Ii(x, y)ai (4.3)

with a = (a1, · · · , ai, · · · , aK) the actuation vector driving the K actuators (see Fig.4.1).

Correcting an aberrated wavefront amounts to produce the opposite phase deformation

with the active device. To fit the incident wavefront φi, the deformable mirror has to

generate a phase deformation φTDM that minimizes the wavefront error φe:

φe = φi − γφTDM (4.4)

with the angle of incidence θi of the wavefront is given through γ = 2 cos(θi). We

consider that the correction is performed under normal incidence and that the factor 2

is included in the TDM phase deformation, leading to γ = 1 .

The deformation every actuator has to create is calculated in order to tune individually

the power coupled into the substrate. For the moment, we suppose that any wavefront

deformation produced by the device is a linear combination of the influence functions.

This will be checked experimentally in Chapter 5. Thus, finding the best values of ac-

tuation that will produce a known wavefront deformation, in sense of the least-square
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algorithm, is a basic problem in adaptive optics [58–60]. The general least-square solu-

tion is the actuation vector a that minimizes the error ε:

ε = ‖φe‖22 =

ns∑
k=1

ns∑
l=1

(φi(k, l)− φTDM (k, l))2 (4.5)

That is, with Eq. 4.3:

ε =
1

nes

ns∑
k=1

ns∑
l=1

(φi(k, l)−M(k, l) · a)2 (4.6)

We obtain analytically, minimizing ε:

a = (M tM)
−1
M tφi (4.7)

The inversion of the influence matrix can lead to ill-conditioned problem. It will be

discussed in Chapter 5.

The quality of the correction can be evaluated through the characteristics of the wave-

front error φe, that would be ideally flat. The mean value of the correction that is

equivalent to a flat phase shift of the wavefront, or piston, is not relevant since it is not

seen by the correction system. So, the root mean square of φe is a good figure of merit

of the correction:

σe =
√
ε (4.8)

for a wavefront sampled in ns × ns points.

The spectral content of the wavefront error gives information on the residual pattern

that will remain in the corrected wavefront. We define the spectra of the correction

through the 2-dimensional Fourier transform of φe:

Se = F [φe(x, y)] (4.9)

4.2 Key features of the correction

In addition to its dependence on the influence function parameters, the TDM perfor-

mance will depend on the number and density of actuators. We can intuitively say that

the higher the density, the better the reproduction of the incident wavefront will be.
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4.2.1 Spatial transfer function of the TDM

Following the work of [61] and [62], a deformable mirror can be considered as a high-pass

step filter for the wavefront aberrations, whose the frequency threshold is the inverse

of twice the actuator spacing or pitch δ (see Fig.4.2). This simplified approach allows

to have a rule of thumb of the mirror behavior: the low spatial frequencies will be

compensated by the TDM whereas it will not be able to correct frequencies higher than

the inverse of twice the actuator spacing.

Figure 4.2: Ideal high-pass step filter of a deformable mirror with actuators spaced
by the distance δ. The ideal wavefront correction leads to a null transfer function below
the threshold frequency 1/(2δ).

Nevertheless, an exact expression can be found for the mirror transfer function [61].

Applying the Fourier transform to Eq. 4.4, the exact transfer function of the mirror

characterized by the interaction matrix M is:

HTDM =
F [φe]

F [φi]
=

[
1− F [M · a]

F [φi]

]
(4.10)

It clearly appears from Eq. 4.10 that the transfer function depends on the incident

wavefront φi. The analysis of the TDM has then to be made with respect to a given

input. In the following, the performance of the deformable mirror is expressed relatively

to some standard aberrations, related to the basis of the Zernike polynomials (see Section

4.3). But first, a simple model in one dimension will show the relative importance of

the design parameters.

We consider a regularly deformed wavefront, like a sinusoid, of fixed spatial frequency

fWF . The actuators are a 1 D representation of the influence functions previously

computed from the Finite Element Analysis (FEA) model. They are spaced by an

initial distance δ = δ0: the mirror design frequency is then fm = 1/δ0. The amplitude

of actuation is computed by the least-square approach of Section 4.1.
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Figure 4.3: Illustration of the foot print produced by the TDM correction: the residual
(or output) wavefront in red contains a new frequency fp = 1/δ0

4.2.2 Illustration of the footprint

First, we choose δ0 = 1/(7fWF ), such as to have the ideal cut-off frequency of the TDM

fc = 1/(2δ0) higher than fWF . The incident wavefront, the correction generated by the

actuators and the residual wavefront are represented in Fig.4.3. The correction of the

input frequency is performed properly: the RMS of the wavefront σe is reduced by a

factor 40. However, we notice the appearance of a new sinusoid line, whose period is δ0,

that was initially not in the spectrum. It is clearly related to the actuator pattern and

is called the footprint of the actuators. Consequently the TDM will inject in the cor-

rected wavefront high spatial frequencies at fp = 1/δ0, that is above its ideal correction

frequency capability fc.

4.2.3 Effect of the density

To highlight the impact of the actuator density on the correction efficiency, the pitch δ

is made varying from 0.01 δ0 to 10 δ0. With respect to the input wavefront frequency,

the cut-off frequency of the ideal equivalent high-pass step filter would be fc = 2/(7δ0)

that is a pitch of 3.5 δ0.

The RMS σe of the residual wavefront increases with the increase of the pitch up to

reach the value of the input wavefront RMS when the correction becomes completely

inefficient after 5 δ0 (see Fig.4.4a). Up to the ideal fc, the correction ratio is better than

0.8. However, one can expect to reduce the incident wavefront RMS by a factor 10 for

example to obtain a satisfactory correction. In this case, the minimum inter-actuator

distance required will be about 1.5 δ0.

The observation of the spectrum Se gives information about the dominant frequency. As
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expected, it corresponds to the footprint fp and is shifted towards the high-frequencies

when the pitch decreases (see Fig.4.4b). Above the ideal cut-off frequency fc, the spec-

trum is dominated by the frequency of the input wavefront fWF , meaning that the input

wavefront is no more corrected.

According to these graphs, we can say that the TDM can perform a correction up to

δ of about 3 δ0 with σe ' 0.6 σi. That corresponds to an inter-actuator distance close

the one given by the rule of thumb. The density of actuators confirms to have a huge

impact on the TDM performance.

(a) Ratio of the residual wavefront RMS on the input wavefront RMS as a function of the
inter-actuator period. The RMS of the residual wavefront σe increases with the decrease of
the density. The first point is due to a numerical problem.

(b) Dominant frequency in the spectra Se of the residual wavefront as a function of the
inter-actuator period: above the ideal cut-off frequency, the spectra is dominated by the
input wavefront frequency fWF .

Figure 4.4: Study of the inter-actuation distance impact on the correction
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4.2.4 Effect of the coupling

For a given actuator density, the correction will be affected by the size and shape of

the influence functions. This can be evaluated by the actuator coupling, that is the

deformation produced at the site of an actuator by its neighbor actuator. It can be

defined through the equation (autocorrelation or overlap integral, see Fig.4.5b):

R = (I(x) ∗ I(−x))(δ) =

∫ ∞
−∞

I(x)I(x− δ)dx (4.11)

(a) Representation of the inter-actuator coupling by the hatched area for two actuators separated
by a pitch δ.

(b) Evolution of the correction ratio σi/σe as a function of the inter-actuator coupling R. The
best configuration is obtained when the coupling is about 0.98. The actuator pitch is δ = δ0 and
the input wavefront frequency is fWF = 1/(7δ0).

Here the amount of coupling is determined by the size of the resistors, filtered by the

thermal response of the mirror. The reference coupling R0 is equal to 0.97 and corre-

sponds to an actuator of 1 mm side. For a coupling varying of 5%, the correction ratio

σe/σi decreases by 16%. The actuator size is varying from a factor 100. The best cor-

rection ratio is obtained for a coupling of about 0.98. The coupling will always have the

tendency to be high in the TDM, due to the intrinsic width of the thermal actuation.

4.2.5 Lateral shift of the wavefront

The last effect is the lateral position of the wavefront with respect to the actuators.

Back to the initial configuration with the coupling R0, the actuator pitch δ0 and the

input wavefront frequency fWF = 1/(7δ0), the input wavefront is laterally shifted by
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from 0 to δ0. The relative variation of σe is lower 3%. In this case, the relative position

has then a very small impact on the correction performance. But it could have in case

of non asymmetric aberrations and a device with privileged correction directions.

4.2.6 Conclusion

We have estimated the relative influence of some parameters on σe and Se in a naive

model: the density of actuators fm is extremely decisive for the quality of the correction

performed by the mirror, especially for the amplitude of the output wavefront. It also

determines the value of the footprint frequency. It has then to be carefully choose to meet

the system performance requirements. The lateral position of the incoming wavefront

with respect to the actuators has a low impact on the correction in this model. The

actuator size, that is affecting the coupling which will be relatively high, has to be

carefully chosen. Now we have a better understanding of the some key parameters and

we can perform the analysis in two dimensions for realistic incoming wavefront.

4.3 Optical system aberrations

4.3.1 Aberrations defined in the Zernike polynomial basis

Here we call high order aberration any difference between the wavefront of a laser beam

and the corresponding ideal laser beam having the same curvature and divergence. That

means that the divergence correction as well as the tip/tilts are not taken into account

into the evaluation of the corrective device performance. Furthermore, this allows us to

work at the beam waist as a reference position. In this plane, any aberration can be

completely expressed by a unique decomposition in a given orthogonal basis.

In the context of an optical system that has a finite aperture dimension under homo-

geneous illumination, like a telescope or more generally any imaging optical system,

an analysis of the aberrations with a basis of orthogonal polynomials, for example the

Zernike polynomials, is a very useful tool for the wavefront description. In the other hand

however, for a Gaussian beam whose the intensity is no more uniform, more suitable

bases to describe the beam composition are the Hermite-Gauss basis in the Cartesian

coordinates or the Laguerre-Gauss basis in cylindrical coordinates. The Zernike inform

about the phase content whereas the Hermite-Gauss describe a complex field. The

relation between the Hermite-Gauss mode description and the Zernike description is

therefore not straightforward.
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Then, we will try to overcome this difficulty by studying a laser beam with the assump-

tion of small amplitude aberrations occurring in a given plane for a perfect Gaussian

beam amplitude. To work with the Zernike polynomials, we will see how we can re-

strain the study pupil area as a function of the beam waist w0. The impact on the

Hermite-Gauss composition will be studied in Chapter 6.

The Zernike polynomials define a complete orthogonal basis over the unit circle. They

are frequently used to describe the aberrations of an optical system, since the first

polynomials directly correspond to the fundamental aberrations (see Table 4.1). A

wavefront can be expressed in terms of Zernike polynomials according to [7]:

φ(r, θ) =
∑
n,m

cnmZ
m
n (r, θ) (4.12)

where cnm are the expansion coefficients, n,m are integers with n ≥ |m| and with n−|m|
even. The polar coordinates (r, θ) are restricted to 0 ≤ r ≤ 1. The Zernike polynomials

are:

Zmn (r, θ) = R|m|n (r)

{
Nm
n sin(mθ) for m < 0

−Nm
n cos(mθ) for m ≥ 0

(4.13)

where sin(mθ) and cos(mθ) are the azimuthal functions and the radial functions R
|m|
n

are:

R|m|n =

(n−|m|)/2∑
s=0

(−1)s
(n− s)!

s!(n+|m|2 − s)!(n−|m|2 − s)!
rn−2s (4.14)

The Nm
n normalization factor is chosen in order to have:

∫ 1

r=0

∫ 2π

θ=0
Zmn (r, θ)2rdrdθ = 1 that is Nm

n =

√
(2− δm,0)(n+ 1)

π
(4.15)

It means that the RMS of the wavefront can be easily accessed through the decomposi-

tion:

RMS(φ) =

√∑
n,m

c2n,m (4.16)

The first Zernike polynomials are reported in Table 4.1, where we use the single index

classification of the ANSI standard with the index j:

j =
n(n+ 2) +m

2
(4.17)

The order of the polynomials corresponds to the constant values of n. The spatial

representation of the Zernike polynomials is given in Appendix B.
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order j m n Zmn Optical Name

0 0 0 0 1 Piston

1 1 -1 1 r cos(θ) Tilt
2 1 1 r sin(θ) Tilt

2 3 -2 2 r2 cos(2θ) Astigmatism
4 0 2 2r2 − 1 Focus/Field curvature
5 2 2 r2 sin(2θ) Astigmatism

3 6 -3 3 r3 cos(3θ) Trefoil
7 -1 3 (3r3 − 2r) cos(θ) Coma
8 1 3 (3r3 − 2r) sin(θ) Coma
9 3 3 r3 sin(3θ) Trefoil

4 10 -4 4 r4 cos(4θ) Quadrifoil
11 -2 4 (4r4 − 3r2) cos(2θ) 2nd order astigmatism
12 0 4 6r4 − 6r2 + 1 Spherical aberration
13 2 4 (4r4 − 3r2) sin(2θ) 2nd order astigmatism
14 4 4 r4 sin(4θ) Quadrifoil

5 15 -5 5 r5 cos(5θ) Pentafoil
16 -3 5 (5r5 − 4r3) cos(3θ) 2nd order trefoil
17 -1 5 (10r5 − 12r3 + 3r) cos(θ) 2nd order coma
18 1 5 (10r5 − 12r3 + 3r) sin(θ) 2nd order coma
19 3 5 (5r5 − 4r3) sin(3θ) 2nd order trefoil
20 5 5 r5 cos(5θ) Pentafoil

Table 4.1: Zernike polynomials table

4.3.2 Size of the aperture pupil

According to the standard methods used in adaptive optics the mirror performance is

evaluated through the Zernike description. As the polynomials are defined over the unit

circle, we need to define the aperture pupil of our system. The radius of this active

area required to correct the aberrations properly can be inferred by the amount of beam

power we would like to control. The Gaussian power distribution of a laser beam at the

waist w0 is expressed over a radius a as a function of the total power P0:

P (a) =

∫ a

r=0

∫ 2π

θ=0
I(r, θ)rdrdθ (4.18)

P (a) = 2π I0

∫ a

r=0
re
−2 r

2

w2
0 dr (4.19)

P (a) = P0

(
1− e

−2 a
2

w2
0

)
P0 =

1

2
πw2

0I0 (4.20)

with I0 the maximum intensity at the beam center with coordinates (0,0). The pupil

radius rp is then defined by:

rp = w0

√
−1

2
ln

(
1− P

P0

)
(4.21)
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For a correction that acts on at least 99% of the power and at maximum 99.9% of the

power, we have a reasonable radius of the the aperture pupil rp:

0.99 ≤ Pcorr ≤ 0.999 (4.22)

1.52 w0 ≤ rp ≤ 1.86 w0 (4.23)

In the case of a 2.6 mm beam waist, the active area is within the interval of 4 and 4.8

mm radius. The minimum power Pmin = 0.99 will be used in the following to give the

minimum requirements on the actuation spatial frequency and amplitude.

Prototypes Now, we anticipate the prototypes described in the Chapter 5. They

have respectively an active area of 9 mm and 10.6 mm diameter and are then within the

specifications for the power correction. However, in the Zernike description, the high

spatial frequencies are located at the circumference [63, 64]. This implies to have an

aperture pupil smaller than the active area to benefit from extra-actuators at the edge

of the pupil. The actuators being about 1 × 1 mm2, we restrict the aperture pupil to

respectively 7 mm and 8.2 mm diameter. In the following of this chapter, focused on the

Zernike description, we will use this radius to compute the efficiency of correction and to

design the TDMs. In Chapters 6 and 7 focused on the mode matching, the description

will be different and the aperture pupil will not be relevant any more.

The Hermite-Gaussian TEMmn modes have a spatial expansion that depends on their

indexes n,m. In order to correct the beam up to the order n+m = 5, the pupil radius

might be increased by a factor
√

max(n,m) =
√

5. Here, we expect to have mainly a

Gaussian beam with a small amount of high order modes, such as the beam dimension

is dominated by the fundamental mode.

4.3.3 Spatial frequency requirements

4.3.3.1 Characteristic spatial frequency

For each order, the Zernike can be characterized by their spatial frequency. The spectrum

of the Zernike polynomials depends on the Bessel functions of the first kind [65]:

F [Zmn (r, θ)] =
Jn+1(2πk)

πk

{
im(−1)

n−m
2 sin(mη) for m < 0

im(−1)
n−m

2 cos(mη) for m ≥ 0
(4.24)

Each Zernike polynomial depends on the azimuthal spatial frequency η (through cos(mη)

or sin(mη)) and on the radial spatial frequency k by Jn+1(2πk)
πk . For each Zernike order
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Prototype 1 Pmin Prototype 2 Pmax
rp = 1.35w0 rp = 1.52w0 rp = 1.58w0 rp = 1.86w0

Order [mm] [mm] [w0 ] [mm] [mm] [w0 ]
2 3.0 3.4 (1 .3 ) 3.6 4.2 (1 .6 )
3 2.3 2.6 (0 .99 ) 2.7 3.2 (1 .2 )
4 1.8 2.1 (0 .8 ) 2.2 2.5 (0 .98 )
5 1.6 1.8 (0 .67 ) 1.8 2.1 (0 .82 )

Table 4.2: Maximum actuator pitch δnmax requirements as a function of the Zernike
order n. The distance are given in mm for the first and second prototypes with a waist
w0 = 2.6 mm and are also indicated as a multiple of the waist for the limits in the
pupil.

n, the dominant spatial frequency k0 corresponds to the maximum of Jn+1(2πk)
πk (see

Fig.4.6): it is the minimum spatial frequency a corrective device must achieve to have a

chance to correct properly the order n. According to the ideal high-pass step filter, the

maximum actuator pitch δnmax required is then at the order n:

fnmin = 2k0 ⇔ δnmax =
1

2k0

The results are given in Table 4.2 for the different pupil radius encountered in this

chapter. In order to correct the Zernike up to the order n = 5, the pitch has to be at

maximum of 1.6 mm in the case of the smallest pupil. However, this is just a rough

indication of the spatial density of the degree of actuation required and gives the lower

limit on our model. We are now able to refine our design.

Figure 4.6: Spectrum of the Zernike over the unit circle for the different orders n:

amplitude of the Jn+1(2πk)
πk as a function of the spatial frequency 1/r.
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4.3.3.2 Maximal effective spatial frequency

When looking at the Zernike polynomials, it should be noted that the spatial frequency

content is quite different between the polynomials of a same order: the characteristic

spatial frequency does not provide information about the effective maximal frequency

the Zernike contained in each mode.

This can be found by solving the radial expressions Zmn . For example, if we consider the

polynomials of the 3rd order, we have:

Z−13 = (3r3 − 2r) cos(θ) = 0 (4.25)

Z−33 = r3 cos(3θ) = 0 (4.26)

For those polynomials that have zeros along their radial dimension (other than 0), we

retain the zero closest to the perimeter, that gives the highest spatial frequency. We

are also only interested in the positive solutions since the polynomials are identical by

symmetry. For example, from the roots of Eq. 4.25 r0 = {0;±
√

2/3}, we focus on

r0 =
√

2/3. The maximum pitch δn,mmax is then given by the distance to the perimeter

divided by 2 (high-pass step filter rule):

δn,mmax = rp(1− r0)/2 (4.27)

For the polynomials that do not have zeros other than 0, for example Eq. 4.26, the

dominant spatial frequency is given by the frequency θ0 = 1/n of the azimuthal term

(sine or cosine) at the circumference. The pitch is given by:

δn,mmax = πrpθ0 (4.28)

In Table 4.3 we compute δn,mmax for the different pupil sizes. We can see that when the

order of the polynomial increases, the zero position is going closer to the edges. This

greatly changes the requirements, since in the maximum pitch between actuators has to

be 0.1 mm to correct the maximum spatial frequency of the highest Zernike polynomial.

We are now able to give the spatial resolution requirements for our device with the

minimum spatial frequency, from the characteristic Zernike frequency, and the maximum

spatial frequency, from the highest frequency of the Zernike. The value of maximum

spatial frequency gives very stringent constraints, that will be difficult to implement.

Fortunately, these high frequencies are located at the circumference of the pupil. With

the weighting of the Gaussian beam in the matching computation, they will likely not
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Prototype 1 Pmin Prototype 2 Pmax
rp = 1.35w0 rp = 1.52w0 rp = 1.58w0 rp = 1.86w0

Polynomial Zeros [mm] [mm] [w0 ] [mm] [mm] [w0 ]

3 θ0 = 1/4 2.8 3.1 (1 .2 ) 3.2 3.8 (1 .5 )

4 r0 =
√
2/2 0.5 0.6 (0 .2 ) 0.6 0.7 (0 .3 )

5 θ0 = 1/4 2.8 3.1 (1 .2 ) 3.2 3.8 (1 .5 )

6 θ0 = 1/6 1.8 2.1 (0 .8 ) 2.2 2.5 (1 .0 )

7 r0 =
√
2/3 0.3 0.4 (0 .1 ) 0.4 0.4 (0 .2 )

8 r0 =
√
2/3 0.3 0.4 (0 .1 ) 0.4 0.4 (0 .2 )

9 θ0 = 1/6 1.8 2.1 (0 .8 ) 2.2 2.5 (1 .0 )

10 θ0 = 1/8 1.4 1.6 (0 .6 ) 1.6 1.9 (0 .7 )

11 r0 =
√
3/2 0.2 0.3 (0 .1 ) 0.3 0.3 (0 .1 )

12 r0 =
√

(3 +
√
3/2) 0.2 0.2 (0 .1 ) 0.2 0.3 (0 .1 )

13 r0 =
√
3/2 0.2 0.3 (0 .1 ) 0.3 0.3 (0 .1 )

14 θ0 = 1/8 1.4 1.6 (0 .6 ) 1.6 1.9 (0 .7 )

15 θ0 = 1/10 1.1 1.2 (0 .5 ) 1.3 1.5 (0 .6 )

16 r0 = 2/
√
5 0.2 0.2 (0 .1 ) 0.2 0.3 (0 .1 )

17 r0 =
√

(6 +
√
6)/10 0.1 0.2 (0 .1 ) 0.2 0.2 (0 .1 )

18 r0 =
√

(6 +
√
6)/10 0.1 0.2 (0 .1 ) 0.2 0.2 (0 .1 )

19 r0 = 2/
√
5 0.2 0.2 (0 .1 ) 0.2 0.3 (0 .1 )

20 θ0 = 1/10 1.1 1.2 (0 .5 ) 1.3 1.5 (0 .6 )

Table 4.3: Maximal actuator pitch δn,mmax requirements for correction according to the
zero position for each Zernike polynomial. The distance are given in mm for the first
and second prototypes with a waist w0 = 2.6 mm and are also indicated as a multiple
of the waist for the limits in the pupil.

be dominant and the characteristic frequencies will have more importance as we will see

in Section 4.4.1.

4.3.4 Amplitude requirements

We have seen in Chapter 1 that the expected power mismatch in Advanced Virgo is

about 10%, mainly composed of focus. If we assume that the mismatch in a given

plane is carried only by one type of aberration, we can compute the corresponding

Zernike amplitude. We suppose that the phase aberration φ(r, θ) is only contained in

the aperture pupil:

φrp(r, θ) =

{
Zmn (r, θ) for r ≤ rp
0 for r > rp

(4.29)

and we compare the aberrated beam φ with the fundamental beam φ0 resonant in the

cavity at the waist plane (z = 0):

φw0 = E0e
− r2

w2
0 (4.30)

φrp,w0 = φw0e
−2iπ

λ
φrp (r,θ) (4.31)
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We remind here the power mismatch formula:

η2rp,w0
=

(
|
∫
φrp,w0φ

∗
w0
dS|2∫

|φrp,w0 |
2dS

∫
|φw0 |

2dS

)2

(4.32)

that is:

η2rp,w0
=


∣∣∣∫∞r=0

∫ 2π
θ=0E0 exp (− r2

w2
0
− 2iπλφrp(r, θ))rdrdθ

∣∣∣2∫∞
r=0

∫ 2π
θ=0

∣∣∣E0 exp (− r2

w2
0
− 2iπλφrp(r, θ))

∣∣∣2 rdrdθ · ∫∞r=0

∫ 2π
θ=0

∣∣∣E0 exp (− r2

w2
0
)
∣∣∣2 rdrdθ


2

(4.33)

With beam with a waist w′0 different from w0, if we choose a new r′p = rp
w′0
w0

then it is

straightforward that the mismatch is scaled invariant:

η2r′p,w′0
= η2rp,w0

= η2α for
r′p
w′0

=
rp
w0

= α, α ∈ R∗

It means that the amplitude is independent of the pupil radius and the beam waist if the

ratio is preserved. The computed values are presented in Table 4.4 for a different ratio

α, corresponding to the different active areas computed from Eq.4.22. The table can

be used to specify any system with the same α where we want to maintain a matching

better than 99%.

To correct a mismatch from 10% to better than 1% in power, we will need a device that

is able to perform a correction of 600 nm PtV or 85 nm RMS in amplitude. However, we

expect to have a mismatch mainly dominated by the focus term. It will likely be enough

to have a design able to correct 5% of mismatching, so we can divided the amplitude

requirements by 2.

4.4 Design analysis

From the simple computation above based on the Zernike polynomial properties, we

are able to roughly determine the spatial frequency and amplitude requirements for a

corrective device.

Now an accurate analysis can be performed using the influence function of the TDM in a

systematic way. In the following, we study the effect of the actuator density and coupling

to evaluate the theoretical performance of the prototypes. We implement a Matlab

model that computes the actuation provided by the prototypes from the least-square

minimization in each case presented thereafter and returns the residual mismatching.
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Prototype 1 Pmin Prototype 2 Pmax
Index rp = 1.35w0 rp = 1.52w0 rp = 1.58w0 rp = 1.86w0

3 278 346 384 535
57 71 78 109

5 277 346 384 533
57 71 78 109

6 332 444 514 841
59 79 91 149

7 203 213 216 224
36 38 38 40

8 203 213 216 224
36 38 38 40

9 332 444 514 841
59 79 91 149

10 365 521 625 1206
59 83 99 192

11 249 279 293 336
40 44 46 53

13 246 279 292 333
40 44 46 53

14 369 522 628 1216
59 82 99 192

15 396 584 727 1747
57 85 105 252

16 291 346 373 473
42 50 54 68

17 226 236 237 235
33 34 34 34

18 226 236 237 235
33 34 34 34

19 291 346 373 473
42 50 54 68

20 396 584 727 1747
57 85 105 252

Table 4.4: Amplitude (in nm) of the Zernike polynomials that are producing 10% of
mismatch in power in a determined plane (no propagation). For each Zernike refered
by the index j, the PtV is giving in the first row and the RMS in the second row
(gray color), both in nm. The maximum peak-to-valley (PtV) is about 1.7 µm and the
maximum RMS is about 260 nm.

Reference design In order to correct the Zernike aberrations up to the order 5, we

need a minimum spatial frequency of actuation of 1.8 mm over the active pupil (see

Table 4.2). According to the thermal simulations, the HWHM of actuation for a 1mm

side actuator is about 2 mm, slightly depending on the substrate. We propose to study

as a reference design 1 mm size actuators coupling power into a FS substrate. This

design is a realistic objective for the building of the prototypes. A simple pattern for

the TDM is to arrange the square actuators in square design. This gives for example

the design of Fig.4.7. Other solutions may an hexagonal or a concentric pattern [24].
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4.4.1 Correction characteristics with the reference design

4.4.1.1 Density study with 1 mm actuator size

For the aperture pupils corresponding to Pmin and Pmax with w0 = 2.6 mm (rminp =

1.52 w0 = 4 mm and rmaxp = 1.86 w0 = 4.4 mm), we let the pitch varying from 1 mm

to 2 mm for an actuator size of 1 mm. It is equivalent to the gap between actuators

varying from 0 to 1 mm. In order to have actuators at the circumference of the pupil,

the number of actuators varies to 102 to 72 actuators. This is presented in Fig.4.7. We

study the correction in the case of the largest amplitudes (corresponding to Pmax).

Figure 4.7: Example of the design for the gap of 0.5 mm with an actuator of 1x1
mm2. There are 72 actuators. The aperture pupils corresponding to Pmin and Pmax
are represented.

The correction efficiency is evaluated through the residual mismatch for the two pupil

sizes (see Fig.4.8 and 4.9). We can see that the residual mismatch is lower than 1% for

all Zernike if the gap is lower than 0.6 mm for the smallest aperture pupil. It is even

lower than 0.1% for a gap maintained below 0.1 mm. For the largest aperture pupil, the

results are very similar: the gap has also to be below 0.6 mm to maintain a mismatch

lower than 1 %. This gives the requirements for an actuator size of 1mm.

4.4.1.2 Coupling study

As expected from the simulations with the simple model, there is an optimal trade-off

between the size of the actuator and the gap to obtain the lowest mismatch. We make

the actuator size varying from 50 µm to 1.5 mm and the gap varying from 0 to 1mm,

and we compute the residual mismatch for each Zernike polynomial in each case. We

retain the maximum mismatch over all Zernike. The results are presented in Fig.4.10

for rp = 4.0 mm and in Fig.4.11 for rp = 4.4 mm. We can see that the case where the

constraints on the gap are the lowest ones is for a 1.5 mm actuator.
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Figure 4.8: Pupil size rmainp = 4.0 mm: Residual mismatch after the theoretical
correction of the Zernike modes: the gap between actuators varies from 0 to 1 mm.
The aperture pupil is 4 mm radius, corresponding to rminp . The actuators are 1 mm
size with a FS substrate. The number of actuators varies from 92 to 52 in a square
pattern.

Figure 4.9: Pupil size rmaxp = 4.4 mm: Residual mismatch after the theoretical
correction of the Zernike modes: the gap between actuators varies from 0 to 1 mm.
The aperture pupil is 4.4 mm radius, corresponding to rmaxp . The actuators are 1 mm
size with a FS substrate. The number of actuators varies from 102 to 52 in a square
pattern.
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Figure 4.10: Pupil size rminp = 4.0 mm. Maximum residual mismatch after correction
as a function of the actuator size and gap. The limits are marked by separation lines:
mismatch equal or lower than 1% (red line). For an actuator of 1 mm, the maximum
gap has to be 0.5 mm. For a gap of 0.5 mm, the best actuator size is 1.5 mm

Figure 4.11: Pupil size rmaxp = 4.4 mm: Maximum residual mismatch after correction
as a function of the actuator size and gap. The limits are marked by separation lines:
mismatch equal or lower than 1% (red line). For an actuator of 1 mm, the maximum
gap has to be 0.6 mm.

In conclusion of the study, we can say that for a size of 1 mm, the gap has to be maintain

up to 0.5 mm. It corresponds to a spatial frequency of the actuation about 1.6 mm,

that is in agreement with the characteristic spatial frequency of the Zernike computed

in Section 4.3.3.
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4.4.2 Prototypes for experimental demonstration

Design The prototypes that will be studied in the next chapter are build according to

the design presented in Fig.4.12. The first prototype (respectively the second prototype)

has the following features:

• the array is composed of a set of 61 actuators

• the size of the actuators is 0.9 × 0.9 mm2 (respectively 1 × 1 mm2)

• the gap between the actuators is 0.1 mm (respectively 0.2 mm)

• the active pupil area is a disk of 7 mm diameter (respectively 8.2 mm)

Figure 4.12: Prototype design for the TDM matrice array (a) actuator pattern with
a FS substrate (2” diameter and 10 mm thickness) seen from the side of the actuators.
The position of the actuators is indicated by the black holes (b) Zoom on the 61
actuators with the actuator pitch δ.

Expected performance We found that both designs allow to perform the required

correction (see Fig.4.13), with a residual mismatch much lower than 1%. In the case

of the first prototype, the worst correction is obtained for the mode 16 and 19. For

the second prototype, the higher residual values are also for the mode 15 and 20. All

these modes are from the order 5, that correspond to the highest spatial frequencies.

But according to Table 4.3, we would have expect to have the worst correction for

the mode 17, that contains the highest spatial frequency. By looking at the residual

shapes (see Fig.4.15), we can see that the correction is dominated by the residual at the

circumference of the pupil. For the other modes, the footprint of the actuators is clearly

visible, demonstrating that we are at the limit of the correction.

It should be noticed that the actuation limits have not been set for this study.
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Figure 4.13: Theoretical residual mismatch for the Zernike modes after the correction
has been performed for the two prototypes.

Figure 4.14: Simulation of the correction of the 5 order by the first prototype: the
upper figures are the modes to be corrected and the lower figures are the residual
shapes after correction: (a) Mode 15 (b) Mode 16 (c) Mode 17. Axis are in mm and
the colorscale is in nm.
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Figure 4.15: Simulation of the correction of the 5 order by the second prototype:
the upper figures are the modes to be corrected and the lower figures are the residual
shapes after correction: (a) Mode 15 (b) Mode 16 (c) Mode 17. Axis are in mm and
the colorscale is in nm.

4.5 Conclusion

In this chapter, we have studied the main characteristics of the TDM. We have demon-

strated that the size of the actuators and the distance between them are determinant

for the quality of the correction.

We have proposed an active area to control at least 99% of the power of a Gaussian beam.

The performance of the correction has been expressed in terms of Zernike polynomials.

We infer from their properties that the spatial requirements are between 1.8 and 0.2

mm. To correct 10% of mismatching, the required amplitude has been found to be at

least 580 nm PtV or 85 nm RMS. The gap and the dimension of the actuators have

to be carefully chosen to optimize the correction ability. Furthermore, anticipating the

experimental prototypes, we have demonstrated that their design allow to perform a

correction that fulfills the Advanced Virgo needs.
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Thermally Deformable Mirror

Experimental Performance

After the choice of the substrate and the determination of the geometry by the simu-

lations, an experimental setup has been designed to test the performance of two TDM

prototypes that have been successively realized. First, these prototypes and their main

characteristics are presented in this chapter. Then we test the fundamental properties

of the TDMs and determine the characteristics of their influence functions. Afterwards,

we study the generation of Zernike polynomials by the TDMs in order to be finally able

to deduce the mismatching correction they can perform.

5.1 Prototype description

All tests presented here are realized with two prototypes of the TDM designed to correct

the aberrations of a 2.6 mm radius beam. The array of resistors can be put in contact

with any kind of mirror substrate. Here we use a commercial fused silica with a 2” (50.8

mm) diameter, and 9.53 mm thick mirror with dielectric coatings. The mirror has a

wedge of 3o to separate any possible secondary reflections from the main probe beam.

The first surface is coated with an AR coating, and the array of resistors is acting on

the surface with a HR coating for 1064 nm. An interaction layer, like a glue or thermal

paste, provides good contact between the resistors and the HR surface of the substrate.

101
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5.1.1 First prototype

The actuators, made of resistive layers of 18 µm copper in contact with insulating layers

of polyimide (Dupont Pyralux AP), are printed onto a multilayer flex circuit. The

materials are designed to be used at a high temperature and could be manufactured to

guarantee no outgassing of the circuit board under vacuum. This technology allows a

high density of resistors: the actuation pattern is composed of 61 actuators of 0.9 mm x

0.9 mm each. The resistors are separated by a dead space of 100 µm (see Fig.5.1). They

have a mean value of 400 Ω, with a standard deviation of 100 Ω for the whole sample

(For example one of the tested array exhibits: Rmin = 330 Ω, Rmax = 850 Ω).

However, it should be noted that this prototype is relatively fragile: being at the limit of

resolution of the layer deposition process, the technology leads to have a high dispersion

in the quality of the resistors. It results in the heterogeneous values of resistors, whose

some of them are easily burned.

Figure 5.1: First prototype: (a) Scheme of the prototype array with the 61 resistors
in blue and the pupil of observation defined by the area enclosed by the red circle. The
resistors are separated by a dead space of 100 µm. (b) Picture of the prototype array

Temperature distribution To determine the distribution shape of the temperature

dissipated by the resistors of the TDM array, we observed directly the TDM array in

the focal plane of a ZnSe lens with a thermal camera (Fig 5.2 (a)). The temperature

emission is not uniform: it looks horseshoe-shaped. It is easily explained by the structure

of the resistor as made clear from Fig.5.2 (b). In the complete array, the orientation

of the shapes is alternated according to the design of Fig.5.1 (b). No coupling between

the resistors is apparent through this measurement. Moreover, we verified that the

temperature increase is linearly dependent on the electric power increase.

5.1.2 Second prototype

The first tests have demonstrated the weakness of the conductive layer technology for

our application. Due to the fragility of the matrix, it was difficult to obtain a bench of
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Figure 5.2: First prototype: (a) IR picture of two resistors (both of 310 Ω) switched
on at 10 mA. The particular shape is easily recognized from (b) where these resistors
are shown by the red circle. The temperature scale is not significant as the camera has
not been calibrated

resistors all working together. A second type of resistor array has then been ordered and

designed in order to have more reliability on the actuator quality. This time, the resistors

are of surface-mount devices (Surface Mount Device (SMD)). They are coming from two

suppliers (see specifications in Appendix C) and are 1 x 0.5 mm2. Two resistors of 1 kΩ

are set up in parallel to make a 1x1 mm actuator. According to the specifications, the

resistors are able to sustain high temperatures up to 70o C. Afterwards, their resistor

value starts to decrease. This would lead to non linear effects, that could be compensated

by a closed-loop control. The main advantage of having standard devices is the reliability

on their physical properties (their characteristics are well documented). The actuators

have a measured mean value of 500 Ω, with a standard deviation less than 2%, and this

for any copy of this prototype. Furthermore, the actuators are able to sustain larger

inputs (the power rating is about 140 mW ).

Figure 5.3: (Color online) (a) Scheme of the prototype array with the 61 resistors in
blue and the pupil of observation defined by the area enclosed by the red circle. The
actuators are separated by a dead space of 200 µm. (b) Picture of the prototype array
with a microscope

Temperature distribution With the new structure of the actuators, the thermal

shape is evidently very different from the first prototype one. In Fig.5.4 (a) we can see

one actuator switched on, with the two hot spots corresponding to the center of the
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Figure 5.4: Second prototype: (a) IR picture of one actuator (500 Ω) switched on
at 0.2 mW. The double construction is clearly seen. The temperature scale is not
significant as the camera has not been calibrated. In (b) one actuator made of two
resistors is seen with a microscope and indicated by the red circle.

resistors in parallel. We observe a heat coupling with the neighbor resistors through the

solder path. This has an impact on the barycenter position of the influence functions

as we will see in Section 5.3.2.1. The emission area of one actuator, determined by the

thick film resistive area of the two resistors is about 0.6 x 1 mm2.

5.1.3 Mounts

Figure 5.5: (a) Example of the first prototype mount (b) Example of the second
prototype mount [Credit: Sylvain Crouzier, Paris-Sud University]

The mirrors are installed in 2” standard optical mounts. Additional components pro-

vide an adequate pressure in the center of the arrays in order to ensure that they are

in good thermal contact with the back side (HR side) of the substrates (see Fig.5.5).
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Moreover, thermal layers inserted between the resistor array and the substrate favor an

homogeneous contact. They are made of thermal paste, thermal tape or glue.

5.2 Description of the setup

The setup shown in Fig.5.6 has been used to characterize the prototypes one after the

other. The tests are made in air. The TDM reflects the laser beam from a Nd:YAG

NPRO laser (λ = 1064 nm). A beam expander that generates a 2.6 mm radius beam

ensures complete coverage of the TDM active surface. The phase modifications are

imaged using a two-lens telescope and measured with a wavefront sensor from Phasics

(see Section 5.2 below). This instrument has a maximum precision of 3 nm RMS. The

tests were made with a 7 mm diameter pupil for the first prototype and 8.2 mm for the

second prototype: the working aperture is inside the mirror actuation space (see Fig.5.1

and 5.3) to benefit from the actuation on the pupil periphery as recommended in [63, 64]

and in Chapter 3.

For the Zernike characterization, the acquisition rate has been chosen to be 1 frame/s,

as the time response of the system is a few seconds (see Section 5.3.4). A computer

processes the data with a MATLAB program to determine the required current to be

applied on the resistors according to the algorithm presented in Section 5.4.

For the first prototype, a set of 61 Digital Analog Converters (DACs) controls the cur-

rents sent to the array of resistors. Each resistor is individually delivered to a specific

current value. This configuration allows to work with the tools developed for the actu-

ation software in Virgo. For the characterization tests, the DACs have a working range

limited to 8 mA.

For the second prototype, the setup was slightly different for what concerns the control

part. A printed board with a ”special” chip (see reference in Appendix C) is receiving

the actuation order from the computer via a USB2.0 connection and is driving the

actuators with the Pulse Width Modulation (PWM) method. The PWM consists in

applying current pulses of different lengths with a rate that will on average give the

required signal. With the large time constants (see Section 5.3.4) of our device, this will

have no impact on the resistor actuation. The driver is able to accept 30 V in input,

but we limit the input voltage to 10 V to respect the actuator range for which we have

a precision of 12 bits (4096). Pmax is then 0.25 W. The driving printed board being

directly connected to the resistor array printed board (see Fig.5.7) allows to have a light

(portable) device control.
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Figure 5.6: (a) Schematic of the adaptive optical setup of TDM characterization.
The CW laser beam is directly sent to the TDM and the phase deformations occurring
in the pupil area are analyzed by a wavefront sensor. The control scheme represented
here is the one of the first prototype: the DACs are driving the current sent to the
resistors. (b) View of the characterization setup in the laboratory.

Figure 5.7: (a) View of the second prototype resistor array (b) Side view of the second
prototype mount: the resistor array board and the control board are directly fitting
together

Measuring the wavefront In order to measure the phase deformations that our

device is introducing in the wavefront, we use a wavefront sensor that is based on the

lateral shearing interferometer principle (Phasics) [66] : with an appropriate chessboard

phase and intensity mask the incident wavefront is decomposed in four replicas that

are propagating in four directions slightly tilted compared to the optical axis. The

resulting interference pattern allows to recover the phase information for each point of the

intersection by a spectral filtering of its Fourier transform spectrum. This reconstruction

is made by the internal software of the wavefront sensor. Then, the phase maps are

recorded in order to be processed by a MATLAB code we have developed. Before

starting to use the system, we take a reference wavefront when no current is applied on

the actuators. Then, all measurements are made with respect to this reference. When
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using the TDM the tilt and focus contributions are subtracted numerically from the

measured wavefront. For the first prototype, the RoC that was typically subtracted is

of the order of 100 m to 50 m over the 7 mm pupil. The tilt subtracted was about 5

µrad. For the second prototype, the RoC that was typically subtracted is of the order

of 4.4 m over the 8.2 mm pupil. All the measurements are mean over few seconds of

data to lower the impact of environment (mainly air temperature fluctuations).

5.3 Actuator properties

5.3.1 Amplitude of response

Calibration Each actuator driven with a constant current produces a phase deforma-

tion: it is the individual spatial response of the actuator and may therefore be considered

as the actuator influence function. In Fig.5.8 we show examples of these influence func-

tions for three different actuators of the first prototype and of the second prototype.

Figure 5.8: Three experimental influence functions of the TDM (colorscale in nm)
with the resistor values and their corresponding position in the prototype array in
red (a) First prototype with a driving at 5 mA (b) Second prototype with 0.195 W
dissipated in each resistor (20 mA equivalent)

The first one is drived with 8 mA in each resistor. Due to the high heterogeneity in the

resistor values, the amplitude of the influence functions are highly different from one

resistor to its neighbors. For the second prototype, the resistor values are identical and

for the same three actuator positions, the difference in amplitude is much smaller. The

resistors are switched on at 0.195 W, that correspond to a driving current of 20 mA.
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As the system is linear with the input power (see Section 5.3.3), we retrieve the factor

5 in the amplitudes of the central influence functions between the two prototypes. In

Fig.5.9, we can observe the differences in actuation between the two prototypes. Despite

the resistor uniformity, there is a factor 2 in the amplitudes of the second prototype.

It comes from the measurement method (some responses are clipped by the working

aperture) and from the pressure of the resistor array on the mirror surface.

In order to extract the maximum information from the influence functions, we will use

the central actuator to measure some remarkable properties in the next sections.

Figure 5.9: Schematic maps of the amplitude of the influence functions according to
the actuator positions (a) First prototype with a driving at 8 mA (b) Second prototype
with 0.195 W dissipated in each resistor (20 mA equivalent)

In Fig.5.10 we compare the profile of the central actuator influence functions with the

simulations by FEA.

First prototype We see that the amplitude of the response is roughly equivalent for

a simulated absorbed power of 16.5 mW. The total calculated dissipated power of the

actuator is 27 mW. We may therefore conclude that approximately 61% of the total

power dissipated by the resistor is absorbed by the substrate; the remaining 39% are

presumably dissipated by convection on the backside of the heater array. The ampli-

tude of deformation of the TDM at the maximum of the actuation command may be

considered as the stroke of the actuator. In this case the stroke is 41 nm peak to valley

(PtV) for R = 419 Ω .

Second prototype We find that the power coupling is about 0.16 for the second

prototype, that corresponds to 30 mW absorbed in the substrate. The low coupling

probably comes from the shape of the resistor and the difficulty to have a uniform

contact between the resistor and the mirror. Furthermore, the heat could be dissipated

by the edges, contrary to the first layer prototype as seen in Fig.5.4. However, as the

power dissipated by the SMD resistor is much higher than the one dissipated by the
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Figure 5.10: Comparison of the first and second prototypes influence function profiles
of the central actuator to the FEA simulation. First prototype (in blue): the central
actuator is dissipating 27 mW. Simulation of a 0.9 × 0.9 mm2 actuator. Second proto-
type (in green): the central actuator is dissipating 200 mW. Simulation of 1 × 1 mm2

actuator

layer resistor, the effective amplitude of the influence function is higher. The stroke of

the second prototype is about 194 nm ( R = 500 Ω).

Actuator shape We also see in Fig.5.10 that the experimental profiles are wider than

the simulated. It could be due to the fact that the heat dissipation phenomena is not

only the radiation as simulated: the convection and the conduction are also contributing

to the heat evacuation. Performing the test in air slightly changes the shape at the edges

of the TDM [11] by convection. Furthermore, we can suppose that there is also heat

conduction from the TDM to the metallic optical mount. All these effects are not taken

into account into the FEA simulation.

5.3.2 Coupling

5.3.2.1 Overlap between actuators: inter-actuator coupling

Due to the difference in actuator size and position between the two prototypes, the

overlap of two neighbor actuation is slightly different. For the central actuator i, we

define the experimental inter-actuator coupling σ over its actuation area A as the ratio

of the deformation produced by the neighbor actuator j over the deformation produced

by the actuator i :

Rexp =

∫
AOPDjdA∫
AOPDidA

(5.1)

For the first prototype, the measured inter-actuator coupling with the neighbors is about

0.56. For the second prototype, it is about 0.62. From the simulations of the previous
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chapter, we expected a higher coupling of about 0.97, but if we consider the actuation

only inside the pupil, we retrieve the same results.

5.3.2.2 Power dissipation: influence on actuator position

For the second prototype, the computation of the barycenters shows that the position is

not homogeneous in the vertical directions whereas the horizontal positions are regularly

spaced (see Fig.5.11). The vertical positions are linked to the solder path positions: the

barycenters of the actuators are closer in the direction of the solder line, that indicates

some cross-coupling effect through the solder. It confirms that the heat coupling observed

with the thermal camera (see Fig.5.4) has an effective influence on the actuation.

Figure 5.11: Second prototype: the actuation barycenters are extracted from the
wavefront measurements and projected into a picture of the resistor array. They are
indicated by a blue point. A correlation between the barycenter position and the solder
lines can be inferred that indicates a cross-coupling effect through the heat dissipation
by the solder. The actuation is therefore affected by the inter-resistor heat coupling.

5.3.3 Linearity

A fundamental requirement for a deformable mirror is that the actuator response to a

command is linear. The RMS of the phase deformation is measured while increasing

the current injected into the central actuator of the first prototype. In Fig.5.12 we see

the resulting RMS as a function of dissipated power calculated from the current. We

observe that for low powers we are limited by the precision of the wavefront sensor, but

for higher powers we can state that the response of the actuator is proportional to the

power (square of the injected current). The final influence functions are then normalized

by the input power.

We checked experimentally that the wavefront response to the TDM correction is linear:

the effect of switching on two actuators is equal to the superposition of the effect of the
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Figure 5.12: RMS of the phase deformation as a function of power dissipated by the
central resistor in the substrate. The dots are the experimental measurement values.
The blue line corresponds to the best fit of the experimental data. The slope is indicated
by the red line and the offset by the green line: it corresponds to the noise level of the
wavefront sensor, that is lowered by average of experimental data.

single actuators. Furthermore, some early tests have demonstrated that the absorption

of the substrate was not modified by the temperature increase [67].

5.3.4 Time of response

Behavior of the mirror for one actuator The temporal behavior of the actuator

may be characterized by measuring the evolution of the phase deformation after switch-

ing on the current to a few milliamperes. The experimental measurements show that

the response can be modeled as a second-order system (sum of two exponentials). It has

been observed that the time constants depend greatly on the thermal contact between

the heater array and the mirror substrate. The use of thermal paste yields time con-

stants of τ1 ' 2s and τ2 ' 0.2 s, which is about three times faster than when using glue

as the thermal contact We can infer that there is a slow time constant for the heating of

the whole mirror to reach the steady-state and a faster time constant driven by the local

deformation. The measured time constants indicate that the actuation system should be

driven at frequencies lower than 0.15 Hz. Furthermore, no hysteresis was found through

the measurement campaign.
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Behavior of the mirror for all the actuators In case of all the actuators switched

together, the two time constants have larger values (see Fig.5.13 and 5.14). In this case

it takes about one minute for the TDM to reach the steady-state.

Figure 5.13: Establishment of the steady-state of the correction when all the actuators
are switched on at the same time. The values of the two time constants are about 12 s
for the fast time constant and more than 1 min for the slow time constant.

Figure 5.14: Back to the initial state with all the actuators are switched off at the
same time. The values of the two time constants are about 14 s for the fast time
constant and slightly less than 1 min for the slow time constant.

Moreover, the stability of the power supply is important to meet the noise requirements

for Advanced Virgo [11].

5.4 Control algorithm

Now that the main features of the TDM have been established, we need to control the set

of actuators to obtain the required wavefront correction. The first step is the calibration

of each prototype, that is performed as follow: a reference wavefront is registered. One

actuator is switched on and the mean actuation over few seconds is registered. The
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actuator is switched off. A new reference is taken. The influence function is the actuation

minus the mean of the two references. Thus the actuators are switched on one after

the other and the influence functions are registered. The influence functions can be

represented one by one in the interaction matrix M , obtained from the calibration of

the 61 actuators: this is the Zonal description, limited by the sampling of the phase

measurement. The Modal description expresses the TDM actuation in terms of Zernike

modes (or any other basis over the circular pupil, like the TDM eigenmodes). The

accuracy will be limited by the number of Zernike modes used for the projection. In

order to reduce the numerical complexity of the algorithm that computes the correction,

the influence matrix and the measured wavefronts are decomposed into Zernike modes.

Another advantage of the modal control is the possibility to remove the Zernike modes we

do not want to take into account in the correction by simply putting the corresponding

coefficient to 0. Indeed the piston, tilt and curvature modes are not relevant for the

performance of the TDM (as explained in Chapter 1). The measured wavefronts are

then expressed by:

φ =

n∑
i=1

αiZi (5.2)

where αi is the coefficient of the Zernike mode i. n is the number of Zernike modes used

in the decomposition.

As seen before in Chapter 4, the computation of the actuation values requires to ”inverse”

the m × n influence matrix M , with m the number of actuators and n the number of

Zernike modes used in the modal description. M likely being a non-square matrix, its

inversion is not straightforward.

5.4.1 Least Square Algorithm (LSQ)

The Least Square Algorithm (LSQ) approach yields a non bounded vector that can have

positive or negative values. The TDM is a one-directional actuation system, since we

can only heat the substrate. This issue can be addressed operating with a constant

added to each command. The so called bias operation consists of putting the actuators

at the middle of their dynamic range and to make them fit a simple shape (piston or

focus) before the calibration of the system. But both these methods are not taking into

account the physical actuation limits of the device: the LSQ solution (see Chapter 4)

might still give solutions out of the actuation range. These commands will be clipped

resulting in inaccuracies or even instabilities or losses of control in the system when the

actuators start to saturate.
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5.4.2 Singular Value Decomposition

A well-known technique is to use the diagonalized form of the matrix via a diagonaliza-

tion technique for a non square matrices, the Singular Value Decomposition. We suppose

that the phase is described with a number of Zernike modes larger than the number of

actuators: n > m. The m× n matrix can be decomposed in three sub-matrices:

M = U · Σ ·W T (5.3)

• Σ is the m×n diagonal matrix of eigenvalues (or singular values) λi. The n λi are

unique and the other values of the matrix are zeros.

• U is the m ×m matrix of eigenvectors (or left singular vectors). Being a basis of

the m-vector space, it is an orthogonal unitary matrix with U · UT = Im. The

eigenvectors are not unique.

• W T is the n × n matrix of eigenmodes (or right singular vectors). Basis of the

n-vector space, it is an orthogonal unitary matrix with V · V T = In. The w

vectors are not unique and the vectors wi with i > n have no contribution in the

recomposition of the matrix M .

The pseudo-inverse of M can now be computed from the reversible matrix Σ:

M+ = W · Σ+ · UT (5.4)

that verifies:

M+ ·M = In (5.5)

The vector a of actuation values to corrected the incident wavefront φi is then obtained

by:

M · a ' φi (5.6)

that is

a 'M+ · φi (5.7)

The eigenmodes, defined on the active pupil, are orthogonal and give information about

the mirror capabilities. The corresponding eigenvalues λi are sort along the diagonal of

Σ in a decreasing order (see Fig.5.15). The TDM will be efficiently described by the

first eigenmodes of the decomposition (high eigenvalues). The first eigenmodes contain

low spatial frequencies and are very close to the Zernike polynomials whereas we see

the typical pattern of the actuators position in the chessboard structure in the last

eigenmodes (see Fig.5.16). The last eigenmodes (low eigenvalues) have then a minor
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importance in the recomposition of the matrix M . They are close or inside the measure

noise and can be filtered ( = set to 0) without impacting the TDM description. This

will be an important point for the actuation determination.

Figure 5.15: Representation of the 61 eigenvalues λi as a function of their index in Σ.
The SVD has been made on the interaction matrix M obtained from the experimental
calibration of the second prototype

The precision in the phase description is determined by the sampling of the experimental

measurement and by the accuracy on the Zernike decomposition used to project the

zonal interaction matrix in the basis of the Zernike modes. However, we have seen

that some eigenmodes are not really significant in the description. When we reverse

the matrix, the high index values will be dominant and they will increase the actuation

required for a very low effect on the correction. We need then to filter the values at

an appropriate point, in order to keep a good precision in the actuation. Moreover,

the precision of the description has an impact on the actuation range of the system

response. To illustrate this point, we implement a small simulation. We compute the

actuation required to generate three Zernike modes with increasing spatial frequencies.

The interaction matrix is the one obtained experimentally from a calibration of the

second prototype and is described with the first 15 Zernike orders. As a function of the

applied filter value, the actuation range increases. For example, the range of actuation

is increased by a factor 5 for the mode Z4
4 . But a great increase of power will provide a

small improvement in the precision. The difficulty is then to set the filter value to the

appropriate point.

However, the LSQ and SVD are good solutions when the computing time can limit the

performance of the system, the pseudo-inverse of M being computed once before the

control loop starts the correction.
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Figure 5.16: First 35 eigenmodes wi in the decreasing order of the λi values. The SVD
has been made on the interaction matrix M obtained from the experimental calibration
of the second prototype

Figure 5.17: Maximum amplitude of actuation as a function of the value of the
maximum eigenvalue (simulation).
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5.4.3 Improved Least Square Algorithm

In order to improve the control of our system and to efficiently exploit the entire dynamic

range, we decided to use an algorithm [68] that allows us to choose lower bounds l and

upper bounds u for the command values a:

li ≤ ai ≤ ui with i = 1...61 (5.8)

where i indexes all the resistors. The optimal solution is still considered the one that

minimizes the error of Eq. 4.5. Its gradient must be zero at the optimal point, except

for those ai that are at the boundary: for those the corresponding gradient component

must be such that the decreasing direction points beyond the limit, or in other words to

improve the error it would be necessary to relax one of the constraints of Eq. (5.8).

These kinds of search algorithms are typically much more computationally demanding

than the simple least-square solution, taking about one third of a second for a standard

PC. This is not an issue in our application, since the time available for the computation

is long enough.

5.4.4 Closed-loop control

The constrained minimization algorithm can be used to find the best estimate of the

correction commands needed to reproduce a target wavefront. If all influence functions

were perfectly known, one single computation would be enough to find the optimal cor-

rection. To make the system more robust against uncertainties in the measured influence

function or changes in the system response, we implemented an iterative, closed-loop

scheme.

At the beginning the best correction is computed as previously explained and sent to

the TDM. After the settling time the residual wavefront φr is measured. This is used

as the new target for the algorithm. Since the new correction must be added to the

previous one, the boundaries are properly shifted in order to ensure that the total cor-

rection remains inside the allowed region. This iteration can be repeated as many times

as needed. As will be discussed in subsequent sections, it allows an improvement in the

actuation efficiency and the capability of tracking time-changing conditions.
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5.5 Wavefront correction characterization

5.5.1 Zernike generation

For the characterization of the TDM we decided to use target wavefronts composed of

single Zernike modes. In this way, as it will be shown in Section 5.5.2, we are able to

derive quantitative estimates of the TDM performance. Since the generation of higher

Zernike modes is limited by the spatial frequency of the actuator pattern, we restricted

our study to the first 20 modes (Zernike polynomials with order up to 5, except piston,

tilt and focus of first and second order).

Convergence The results shown are obtained in a closed-loop control configuration.

In Fig.5.18 we show an example of the evolution of residual RMS as a function of the

number of iterations. Each iteration allows a settling time of 10 s. After less than 10

iterations the resulting phase image is stable and corresponds to the best solution.

Figure 5.18: RMS of the residual image in a closed-loop control for the target mode
Z−33 at 50 nm PtV (9 nm RMS) (First prototype). The first iteration corresponds to
the residual RMS that may be obtained in an open-loop control.

Figure 5.19(b) shows an example of the Zernike mode Z−33 generated in this way by the

first prototype. In figure 5.19 (c) we see the residual wavefront after TDM correction.

This residual phase shape has a dominant spatial frequency of 0.5 mm−1 which is directly

related to the spatial frequency of the actuator array. This effect can therefore be

assimilated the actuator footprint.

In Fig.5.20 are examples of the Zernike modes generated by the second TDM prototype

at 150 nm PtV. We can see that the more the Zernike index increases, the higher is

the residual RMS and then the less accurate is the generation. The best reproduced

Zernike for each order are the modes exhibiting the lowest spatial frequencies computed

in Chapter 4.
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Figure 5.19: (a) Target Zernike mode. (b) Zernike mode Z−33 generated by theTDM
over a pupil of 7 mm. An RoC of 350 m and a horizontal tilt of 5 µrad have been
numerically subtracted. (c) The difference between the two modes is the residual phase
image (colorscales are in nm).

Actuation range In order to determine the linear working range of actuation in

terms of Zernike modes, the modes are generated in closed-loop within an amplitude

range adapted to each prototype ability.

The generation of the modes of the second- and third-order demonstrate a linear working

range of almost 20 nm RMS for the first prototype (see Fig.5.21a). The RMS value of

the residual phase images is about few nm RMS, with a quasi constant value in the

limits of the linear working range (see Fig.5.21b).

For the second prototype, a rule of thumb can be extracted from the experimental

results: the linear range decreases by a factor 2 each time the order increases. The

second order generation exhibits a linear range at least up to 160 nm RMS. The third

order reproduction is linear up to 80 nm RMS. The linear range of the forth order is less

than 40 nm RMS and for the fifth order it is about 20 nm RMS (see Fig.5.22). Again,

the RMS value of the residual phase images is almost constant with a maximum of about

10 nm RMS within the linear dynamic range limits of each order ( see Fig.5.23).
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Figure 5.20: Experimental Zernike modes generated in a closed-loop control by the
second prototype at 150 nm PtV. For each mode, the left picture is the phase defor-
mation produced and the right picture is the residual phase shape. The frames are
delimiting the orders.
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(a) First prototype: RMS value of the Zernike produced by the mirror for a full scan of the
Zernike modes from the second- and third-order.

(b) First prototype: RMS value of the residual image for a full scan of the Zernike modes from
the second- and third-order.

Figure 5.21: Scan results of the first prototype
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Figure 5.22: Second prototype: RMS value of the Zernike produced by the mirror for
a full scan of the Zernike modes from the second- and third-order in the range of 50 to
800 nm PtV

Figure 5.23: Second prototype: RMS value of the residual image for a full scan of
the Zernike modes from the second- and third-order in the range of 50 to 800 nm PtV.
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5.5.2 Efficiency and accuracy of the correction

We define two quantitative criteria that will help in evaluating the quality of the Zernike

mode generated by the TDM and in determining what is the limiting factor for the

correction. With the normalization chosen in Chapter 4, the RMS amplitude of the

wavefront is equal to the sum of the coefficients from the projection onto the Zernike

basis of N modes:

RMSφ =

√√√√ N∑
i=1

α2
i (5.9)

In the following, we assume that we want to generate a target Zernike mode Zt whose

amplitude is αt. After convergence in a closed-loop control, the resulting wavefront is

φTDM =
∑N

i=1 α
TDM
i Zi .

The efficiency E determines if the correction is limited by the dynamic range. To

evaluate this first criterion, we compare the amplitude αTDMt of the reproduced mode

to the amplitude αt of the target mode.

E = 1− |αt − α
TDM
t |

αt
(5.10)

The closer to 1 this parameter, the greater the efficiency of the TDM to reproduce the

target mode. A high efficiency indicates that the actuation is made within the dynamic

range of the TDM.

The second criterion concerns the generation of unwanted Zernike modes by the TDM.

This parameter is similar to the purity proposed in [24]. We define the accuracy A of

the mode generation as:

A =
αTDMt√∑20
i=1

(
αTDMi

)2 (5.11)

The closer to 1 this parameter, the fewer unwanted modes generated by the TDM. It

indicates that the mode coupling is relatively low: the Zernike mode can be generated

independently of others. The experimental results obtained in closed-loop control are

shown in figure 5.24 for Zernike modes up to 20 for Zernike target modes having a 10 nm

RMS for the first prototype. For the second prototype, the results are shown at 25 nm

RMS (see Fig.5.25), that is just up to the limit of linear range for the fifth order, and at

50 nm RMS (see Fig.5.26), that would be a desirable dynamic range for our application.

First prototype The accuracy is very high for all polynomials tested. The minimum

value obtained is for the mode 18. We may therefore conclude that the spatial resolution
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of the TDM is sufficient to correct up to the 20th Zernike mode with minimal mode

coupling. For modes below to the third order (modes 3 to 9), the efficiency is also close

to 1 with a minimum of 98.5, at which point the actuation is limited by the actuator

footprint. The efficiency is globally decreasing for the 4th and 5th order (modes 13

to 20). It reaches a minimum for the mode 18 at 46.6%. The reduced efficiency is

attributed to the increasing number of saturated actuators, thereby confirming that for

higher order Zernikes the TDM is limited by its dynamic range.

Figure 5.24: Characterization of the modes generated by the first prototype: for
each mode the efficiency is given in the green bars (right portions of the bars) and the
accuracy is given in the blue bars (left portions). All Zernike target modes have an
RMS of 10 nm.

Second prototype We perform the same study with the second prototype. As ex-

pected, the efficiency is much better for the 4th and 5th order due to the actuation

stroke larger by a factor 5. This is very clear at 25 nm RMS target, where the efficiency

is higher than 80 % at the minimum. We observe a slight decrease in the accuracy of

actuation, that might be attributed to the loss in homogeneity from the larger tem-

perature cross-coupling between the actuators. At 50 nm RMS, both efficiency and

accuracy are good for the 2nd and 3rd order, and acceptable for the 4th order, but the

efficiency is greatly reduced for the 5th order, with a minimum at 47%. Therefore this

prototype enables us to work with a good dynamic range if we limit the actuation to the

4 first Zernike orders. We now have to check what would be the equivalent matching

improvement.

5.5.3 Mismatch correction

In terms of mode matching applications, the target wavefront corresponds to the initial

mismatch to be corrected; the residual phase corresponds to the aberrations that will

limit the best achievable matching. We want to determine how the correction produced
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Figure 5.25: Characterization of the modes generated by the second prototype: for
each mode the efficiency is given in the green bars (right portions of the bars) and the
accuracy is given in the blue bars (left portions). All Zernike target modes have an
RMS of 25 nm.

Figure 5.26: Characterization of the modes generated by the second prototype: for
each mode the efficiency is given in the green bars (right portions of the bars) and the
accuracy is given in the blue bars (left portions). All Zernike target modes have an
RMS of 50 nm.

by the TDM can improve the matching. As performed in Chapter 4, the equivalent

mismatch correction that depends on the amplitude and the composition of the residual

can be computed by overlap calculation (see Eq. 4.32).

First prototype At almost 20 nm RMS, the 2nd and 3rd order modes are equivalent

to a mismatching of around 3% for each mode. The RMS value of the residual image

is between 1.2 nm and 4 nm RMS for the Zernike orders 2 and 3. From these results,

we can infer that if we have a mismatch due to aberrations composed of the second-

or third-order Zernike polynomials inside the tested range, the TDM is able to correct

them to reach a match better than 99% (see Table 5.27).
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— Extrapolated results of the TDM correction —

Zernike Matching

order mode initial (%) after correction (%)

2 3 96.10 99.99

5 96.10 99.99

3 6 97.08 99.92

7 97.21 99.93

8 97.21 99.86

9 97.08 99.83

Figure 5.27: Table of the correction of the mode matching by extrapolation of the
first prototype experimental results.

Second prototype Around 50 nm RMS, the correction is within the specifications

for Advanced Virgo for the order 2, 3 and 4 when the input amplitude deformation is

about 50 nm RMS (see Table 5.28). For the 5th order, the extrapolated matching is

below 99%. However, we have seen that the actuators are saturated . This confirms

that the TDM performance will be limited by the dynamic range to reach the Advanced

Virgo specifications.

Conclusion These experimental results show that the TDM is able to generate Zernike

polynomials up to the mode 20th and therefore to correct high order aberrations. The

limiting factors are the power of actuation and the residual footprint: the power of

actuation restricts the linear response range of the TDM while the residual footprint

limits the precision of the mode reproduction. The first prototype has a small dynamic

range and a low reliability. For the second prototype we can deduce by an overlap

integral calculation that if we have a mismatching due to aberrations composed of the

second, third or forth order Zernike polynomials introducing mismatch up to 10%, the

TDM is able to correct them to reach a matching better than 99%. Furthermore, it

will be able to correct the 5?th order aberrations at better than 99% if for 5% of initial

mismatch. It means that in the limits of its dynamic range the TDM can correct these

aberrations within the specifications for Advanced Virgo.
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— Extrapolated results of the TDM correction —

Zernike Amplitude Matching

order mode PtV (nm) RMS (nm) initial (%) after correction (%)

2 3 250 52 94.10 99.99

5 250 52 94.03 99.97

3 6 250 45 96.64 99.96

7 250 45 86.86 99.87

8 250 45 86.86 99.90

9 250 45 96.64 99.92

4 10 350 58 95.42 99.75

11 250 42 91.57 99.66

13 250 43 90.84 99.53

14 350 57 95.49 99.77

5 15 350 52 96.76 99.34

16 350 51 90.21 98.43

17 350 52 80.60 94.96

18 350 52 80.60 97.00

19 350 51 90.21 97.96

20 350 52 96.76 98.95

Figure 5.28: Table of the correction of the mode matching by extrapolation of the
second prototype experimental results for an initial amplitude of Zernike about 50 nm
RMS.

5.6 Possible improvements for the next prototype

5.6.1 Dynamic range and Homogeneity

The correction ability of the second prototype is mainly limited by the dynamic range.

However, we already operated at maximum with a power higher than the maximum

power rating recommended by the suppliers (0.1 W for 0.063 W of power rating). But,

according to our estimation, the power coupling into the substrate is relatively low.

Therefore a possible improvement would be to insert an interaction layer between the

resistor array and the substrate that favor a better power coupling. Furthermore, at

the maximum of actuation for the second prototype, the mirror coatings have been

damaged. We suspect an interaction with the thermal paste combined with a too high
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temperature. An additional interaction layer may protect the coating.

As seen in the thermal pictures of the resistors, the homogeneity is not perfect for the

two prototypes. In the first one, the homogeneity defect comes from the shape of the

resistor. In the second prototype, it comes also from the heat diffusion between the

resistors through the solder lines and from the structure of the actuators, that are made

of two resistors.

Based on these observations, we study the possibility to add a thermal conductive layer.

Copper homogeniser A solution based on a copper homogenizer is proposed. When

put in contact with the resistor array of the second prototype, this device should be able

to provide a better homogeneity at the substrate contact and minimizing the unwanted

coupling between actuators. Some simulations have been performed with a copper layer,

chosen for its high thermal conductivity (κ = 401 W.m−1.K−1): it appears that a

large thickness is necessary to recover an homogeneous temperature distribution at the

substrate level. It makes the requirements for this metallic piece very stringent.

Figure 5.29: FEA simulations of the temperature distribution after a copper layer
with different thicknesses (a) 10 µm (b) 50 µm (c) 100 µm (d) 300 µm (e) 500 µm (f)
1000 µm. The size of the square is 1 mm.

Some tests are performed with a copper homogenizer especially ordered: in a 0.5 mm

thick copper layer, 61 squares of 1 × 1 mm2 have been machined by laser ablation (see

Fig.5.30). The square hold together at their corner. The ablation was made with a

decreasing thickness along the copper layer high, so the space between the squares is 25

µm on the thinnest edge and 200 µm on the largest edge. However, the results are quite

disappointing. The heat is diffusing by conduction through the copper array instead of

to be coupled into the substrate. The spatial resolution is completely lost (see Fig.5.31),

enlarging the influence functions and reducing the mean amplitude by almost a factor 4.

The FWHM is increased by a factor 1.6. An explanation could be found in the probably

too large thickness of the bridge between actuators. The diffusion of the heat inside
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Figure 5.30: Homogeniser made of 61 copper squares hold together at their corners.
According to the manufacturer, the space between the squares is 25 um on the thinnest
edge and 200 um on the largest edge. The thickness of the homogenizer is 500 µm.

the homogenizer has to be studied (for example by observing the warm-up period) to

improve the design.

A solution to avoid the bridge inter-actuators should be to directly put the copper pieces

one by one in contact with the actuators. It is a complicated task and the danger is

to create short-cuts if a piece moves out of its regular position. Furthermore, as the

experimental results are already quite satisfying without an homogenizer, the priority

should be the thermal contact between the resistor array and the substrate. An efficient,

in-vacuum and protective solution should be found.

Figure 5.31: Actuation at 4000 PWM. The amplitude is slighlty lower than the
previous calibration because we added more thermal intercation layers in order to ensure
that there will be no short-cut between the copper layers and the resistors.

5.6.2 Density

It seems difficult to increase the density of actuators limited by the size of the resistors,

mainly because it will be difficult to have smallest devices able to sustain this load of

power. If needed an obvious solution is to increase the size of the beam. However, it

means that some supplementary optics are required, so the aberrations will potentially
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increase in the system.

In the next chapter, we will study the implementation of the TDM second prototypes

in a matching correction system to prepare the experimental tests of Chapter 7.



Chapter 6

Analytical Control of the Beam

Modal Content

We have experimentally demonstrated that the TDM is able to generate some common

aberrations up to the order 5 of the Zernike polynomials. The analysis was performed

in the plane of the TDM surface.

In this chapter, we explore the possibility to improve the input laser beam matching into

a cavity by reducing the high order modes with the help of the TDM. It should be noted

that some modes will be more or less harmful for different applications. This will lead

to different requirements. Here we propose a general scheme for the mode reduction. A

full description of the input beam is made through a decomposition in Hermite-Gaussian

modes. The initial modal content of a beam is preserved along the propagation if no

defect is encountered in the system. The propagation of the different modes is studied

here to understand how and where to act to reduce a specific mode power. This analysis

highlights the importance of the relative Gouy phase into the conception of a corrective

system. A the end of the chapter, we propose some recommendations to perform a mode

matching improvement by the TDMs based on the theoretical correction.

6.1 Propagation and correction of an aberrated beam

6.1.1 Hermite Gaussian beam

According to the solution of the paraxial wave equation, a laser beam is a combination

of modes: a fundamental mode E00 that corresponds to an ideal Gaussian beam and

some high order modes Emn produced by the aberrations (see Appendix A). Any laser

131
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beam can be decomposed in an unique way in an orthogonal basis. One can choose the

basis into which to solve the paraxial wave equation [69] according to the geometry of

the considered problem. In some cases, it could be useful to describe the modes reso-

nant into a cavity with a basis that is taking into account the ellipticity of the modes

(Ince-Gauss basis [70]). Here we consider the Hermite-Gaussian functions, as we are

making no assumption on the defects of the cavity or the aberrations in the laser beam

(axis-symmetric or non-axis-symmetric defects).

With E(x, y, z) the electric complex field, we can write the aberrated beam in the

Hermite-Gauss basis:

E(x, y, z) = a00E00(x, y, z) +
∑
mn

amnEmn(x, y, z) (6.1)

E(x, y, z) = E00(x, y, z)[a00 +
∑
mn

amn
1√

2m+nm!n!
Hm(

√
2x

w(z)
)Hn(

√
2y

w(z)
)e
i(m+n)atan( z

zR
)
]

(6.2)

with:

E00(x, y, z) =

√
2

π

1

w(z)
e
−ikz−i k

2q(z)
(x2+y2)+iatan( z

zR
)

(6.3)

a00 is the coefficient of the fundamental mode TEM00 and amn are the complex coeffi-

cients of the high order modes, with

|a200|+
∑
mn

|a2mn| = 1 (6.4)

We can clearly see from Eq.6.2 that the high order modes are adding a phase dependent

term and an amplitude dependent term. Both terms need to be suppressed to recover

an ideal Gaussian beam. A corrective device like a TDM is however able to act on the

phase dependent term only. But we know that any phase modification along the propa-

gation will affect the modal content and will therefore have an impact on the amplitude

term as well. With two devices adequately positioned to act in different phase planes, a

control of the modal content is possible as we will see straightaway.

6.1.2 Correction at the first order

6.1.2.1 Calculation

Let’s now consider 2 planes of coordinates z1 and z2 along the beam propagation. In

each plane, we assume we can act on the optical path length in the approximation of the

small amplitudes. In order to simplify the problem, we will first consider an aberrated
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Figure 6.1: Principle of the computation based of a FFT simulation: a laser beam
propagates from the waist plane and the phase is modified in the two planes TDM1
and TDM2 separated by the distance z2 − z1. A description of the simulation can be
found in section 6.2.

beam with only one high order mode Hmn. We can rewrite Eq.6.1:

E(x, y, z1) = E00(x, y, z1)[a00 + a′mnHmn(z1)e
φz1 ] (6.5)

with: 
φz1 = (m+ n)atan( z1zR )

a′mn = amn
1√

2m+nm!n!

Hmn(z1) = Hm(
√
2x

w(z1)
)Hn(

√
2y

w(z1)
)

(6.6)

We can apply a phase correction in the plane z1, that has the shape of the aberration

to correct:

φcorrection = b1Hmn (6.7)

that leads at the first order to:

eiφcorrection ' 1 + ib1Hmn (6.8)

with b1 ∈ R.

Ecorrected1 = E(x, y, z1)e
iφcorrection (6.9)

Ecorrected1 ' E00(x, y, z1)[a00 + a′mnHmn(z1)e
iφz1 + ia00b1Hmn(z1) + o(H2

mn(z1)) + ...]

(6.10)

Here, and subsequently, we neglect the H2
mn and upper terms. We then propagate the

corrected field to the plane z2:

E(x, y, z2) = E00(x, y, z2)[a00 + a′mnHmn(z2)e
i(φz1+φz2 ) + ia00b1Hmn(z2)e

iφz2 ] (6.11)

with φz2 the accumulated Gouy phase between the planes z1 and z2 with respect to the

fundamental mode:

φz2 = (m+ n)atan(
z2
zR

)− φz1 (6.12)
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We act again on the phase, this time in the plane z2, and again neglect the terms from

H2
mn. We have at the first order:

Ecorrected2 = E00(x, y, z2)[a00+a
′
mnHmn(z2)e

i(φz1+φz2 )+ia00b1Hmn(z2)e
iφz2+ia00b2Hmn(z2)]

(6.13)

From Eq.6.13, we can clearly see that it is possible to suppress the high order modes

by choosing appropriately the phase correction in the 2 planes. The general solution is

then:

a′mnHmn(z2)e
i(φz1+φz2 ) + ia00b1Hmn(z2)e

iφz2 + ia00b2Hmn(z2) = 0 (6.14)

The coefficient amn is a complex number, we obtain from Eq.6.14:{
<(a′mn) cos(φz1 + φz2)−=(a′mn) sin(φz1 + φz2)− a00b1 sin(φz2) = 0

<(a′mn) sin(φz1 + φz2) + =(a′mn) cos(φz1 + φz2) + a00b1 cos(φz2) + a00b2 = 0

(6.15)

defined only if φz2 6= 0[π]. We obtain the corrective phases: b1 = <(a′mn)
a00

cos(φz1+φz2 )

sin(φz2 )
− =(a

′
mn)

a00

sin(φz1+φz2 )

sin(φz2 )

b2 = −<(a
′
mn)

a00
(sin(φz1 + φz2) +

cos(φz1+φz2 )

tan(φz2 )
)− =(a

′
mn)

a00
(cos(φz1 + φz2)− sin(φz1+φz2 )

tan(φz2 )
)

(6.16)

6.1.2.2 Discussion of the results

In theory, as long as we stay in the small amplitudes approximation, we can completely

suppress a given mode by acting on the phase into two separate planes. The approxi-

mation is valid when b1,2 � 1. It means ‖ (amn) ‖Hmn� a00, so we have to consider

very low values of mismatching. The corrections that we will have to apply are:

b1,2Hmn =
2π

λ
δs1,2 (6.17)

with δs1,2 the optical path difference produced by the TDMs. It is worthy of notice that

the correction pattern of the mode we want to suppress is given by the spatial represen-

tation of the corresponding Hermite polynomial. We now have a direct information on

the maximal spatial frequency we need to correct a given set of aberrations.

According to these results, φz2 has to be in the interval ]0 ; π[ + kπ, k ∈ N. From the

Eq.6.12, we can rewrite the accumulated phase of the fundamental mode between the
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planes z1 and z2:

φ00z2 =
φz2

m+ n
(6.18)

The configuration of the setup has then to be choose to have the Gouy phase of the

fundamental mode different than π over the maximum order to suppress. For example,

in the case of the modes until the 5th order, a fundamental Gouy phase range allowed

is ] 0 ; π
5 [.

6.1.3 Effect of the correction at the second order

6.1.3.1 General case

In the previous section, we limit our calculation to the first order. We now want to have

an idea of the impact of the creation of the other modes. So let’s rewrite the equations

developed up to the second order. From the Eq.6.9, we have:

Ecorrected1 ' E00(x, y, z1)[ a00 +a′mnHmn(z1)e
iφz1 ][1 + ib1Hmn(z1)− ...

b21
2
H2
mn(z1))] (6.19)

Ecorrected1 ' E00(x, y, z1)[ a00 +a′mnHmn(z1)e
iφz1 + a00b1Hmn(z1)

+amnb
′
1Hmn(z1)

2eiφz1 − a00
b21
2
H2
mn(z1))] (6.20)

And then, after propagation and correction by the second TDM, the output field can be

expressed by:

Ecorrected2 = E00(x, y, z2)[a00 +Hmn(z2)(a
′
mne

i(φz1+φz2 ) + ia00b1e
iφz2 + ia00b2)

H2
mn(z2)(−a00(

b22
2

+ b1b2e
iφz2 +

b21
2
eiX) + ...

ia′mne
iφz1 (b1e

iX + b2e
iφz2 ))] (6.21)

We retrieve the terms in Hmn, that are suppressed according to Eq.6.14, so it remains:

Ecorrected2 = E00(x, y, z2)[a00 +H2
mn(z2)(−a00(

b22
2

+ b1b2e
iφz2 +

b21
2
eiX)

+ia′mne
iφz1 (b1e

iX + b2e
iφz2 ))] (6.22)
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The phase X depends on the high order Hermite-Gauss modes created by the correction

and propagated through the system. To express it, we have to know the development

of H2
mn in the Hermite-Gauss basis. According to the general formula [71] computing

the product of the Hmn modes, it leads to have new modes in the corrected beam.

Fortunately, Eq.6.22 shows that all these terms are of the second order. So, the main

aberration is effectively corrected at the first order, and the residual aberration contains

the modes predicted by [71].

6.1.3.2 Example of the modes m + n = 2

We compute the power of the Hermite-Gauss polynomials for the 6 first orders (see Table

A.1 in AppendixA), and in particular we obtain:

• m = 1, n = 1

H2
11 = H22 + 2H20 + 2H02 + 4H00 (6.23)

In this case, the mode H11 is completely suppressed at the second order. However,

the other modes of m + n = 2, and the ”harmonic” of the order 4 have been

created.

• m = 2, n = 0

H2
20 = H40 + 8H20 + 8H00 (6.24)

In this case, the mode H20 is only reduced. Again the harmonic of order 4 has

been created.

6.1.3.3 Example of the mode H30

In the same way the square of the mode H30 is:

H2
30 = H60 + 18H40 + 72H20 + 48H00 (6.25)

From this result, we can see that the square of any Hermite polynomial generates even

modes at each order. This is confirmed by the equation given in the Appendix A:

H2
i (x) =

i∑
k=0

k! 2k
(
i

k

)2

H2i−2k(x) (6.26)

Moreover some power is always sent to the fundamental mode H00 for any mode square.
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6.2 Simulations of the linear analytical model

To validate our analytical model and evaluate its limits, we implement a simple simu-

lation: an aberrated beam is propagating through two TDMs on which we apply the

corrections previously computed. We use a Matlab code based on the Fast Fourier

Transforms [72] to propagate the beam. This allows to have an accurate information on

the beam content and when the phase are added with the TDMs, to take into account

all the mode content and being limited by the sampling accuracy. The simulation is

made with an adaptive window [73]: the size of the window is adjusted to the beam size

that varies with the divergence. This solution allows to work with a good description

of the beam at each step of the propagation (see Fig.6.2). The TDMs are modeled by

simple infinite phase plates perfectively transmissive: there is no additional phase due to

the reflection, and no reflectivity/transmission coefficients. The corrections have a large

spatial resolution (no actuator pattern) and there is no limit of actuation amplitude.

Figure 6.2: Example of the adaptive window along a propagation: the beam at the
waist (left figure) and the beam after a propagation along 10 Rayleigh lengths (zR)
(right figure). The spatial coordinates are indicated on the axes in meters and the
amplitude are normalized.

6.2.1 Correction efficiency

We test our model with a simulation based on the following configuration: the laser

beam contains the fundamental mode H00 and a single high order mode Hmn. The initial

mode composition is normalized with ‖ amn ‖= 10−3. Two phase plates representing

the TDMs are separated by a phase φz2 = π
4 for the mode Hmn. We assume that all

modes are generated in the waist plane. On the first TDM, the mode Hmn has a phase

φz1 = π
4 . The modal projection is made with the modes up to the order 15 (136 modes).

We develop the result analysis for 2 cases: the mode HG11 and the mode HG20.
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Mode HG11 Let’s consider the mode H11 introducing a mismatch of 10−3. If we

have a look on the mode composition before the correction and after the correction (see

Fig.6.4), we can see that the correction factor for the mode considered is: 10−3

10−8 = 105.

Figure 6.3: Normalized composition of the laser beam before and after the correction
by the TDMs. The initial high order mode content is 10−3.

We can clearly see on the same figure that other modes that were not present in the

initial beam are also generated. The first interesting point is that the modes expected

from the second order calculation (see previous paragraph) are the main important

modes generated: we observe the modes H20 and H02, as well as the mode H22. The

second interesting point is that the modes are only generated in the even orders. The

mismatching after correction goes from 10−3 to 10−6.

Mode HG20

We perform the same analysis for the mode HG20. The mode composition after cor-

rection is different from the previous case: we retrieve the modes expected from the

analytical computation. The correction for the mode goes from 10−3 to 3.5 10−6, so a

factor almost 300 of correction is performed.

6.2.2 Model linearity

In order to estimate the validity domain of our analytical model, we perform the correc-

tion of the beam composed of the fundamental mode E00 with a varying proportion of
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Figure 6.4: Normalized composition of the laser beam before and after the correction
by the TDMs. The initial high order mode content is 10−3.

the mode H20. It is equivalent to different initial mismatches starting from 10−6 to 10−1.

We observe that the correction is very efficient when the initial mismatch is below 10−3:

the result is dominated by the numerical noise (see Fig.6.5). If the initial mismatch is

smaller or equal to 10−2, the mismatch is reduced by a factor 10 and we can say that it

is still worth to perform the correction. The linear model is then valid until an initial

mismatch of 10−3 and the correction is efficient for mismatch up to 10−1 when the phase

is reasonable.

Figure 6.5: Correction efficiency of the mode HG20 as a function of the inter-TDMs
phase for different initial mode content. The correction is perfectly performed up to an
initial mismatch of 10−3: we can see that the result is dominated by numerical noise.
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6.2.3 Position of the TDMs: Inter-TDMs phase

We have seen that the amplitude of correction required from the TDMs is related to

the complex amplitude of the mode composition, that is to the initial phase between

the fundamental mode and the mode to correct, as well as to the phase between the

two planes of correction (TDMs). According to Eq.6.16, there is no constraint on the

initial phase to perform a correction: it will be possible to reduce the high order mode

whatever will be the initial phase.

During the propagation from the waist to the positive infinite, the Gouy phase of the

fundamental mode varies from 0 to π
2 (see Fig.6.6). If the high order modes are in phase

with the fundamental mode at the waist, the Gouy phase of these modes φz2 with respect

to the fundamental mode varies from 0 to (m+ n)π2 .

Figure 6.6: Gouy phase of the fundamental mode

As discussed before, no correction is possible for a mode when the TDMs are separated

by φz2 = π for the mode to correct. With the simulation, we can illustrate that the

correction diverges when the phase between the TDMs is equal to π (see Fig.6.7).

6.2.4 Successive correction of several modes

In order to test the correction of several modes, we propagate a beam with three modes

at the input creating a mismatch of 6%. The initial beam contains 1.1% of HG11, 1%

of HG12 and 0.1% of HG13. The correction is performed by applying successively the

correction maps corresponding to the mode with the highest proportion (see Fig.6.8).

For example, we start with the correction of the mode HG11: it is reduced by a factor

400. Then the maps for the correction of the mode HG12 are applied and it is reduced

by a factor 10. Finally, the mode HG13 is reduced by a factor 60. We observe some
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Figure 6.7: Correction efficiency of different modes as a function of the fundamental
mode inter-TDMs phase. The correction is diverging for the values of π/(m+ n).

coupling between the modes, so the proportion of the first modes slightly increases again

after several corrections. After three iterations the matching is increased up to more

than 99% (see Fig.6.9).

Figure 6.8: Successive compositions of the beam at the output of the setup at the
beginning and after three successive corrections.
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Figure 6.9: Reduction of the mismatching value by applying three successive correc-
tions.

6.2.5 Physical constraints: towards a more realistic model

Strictly speaking, to perform the correction predicted by the previous computation a

device able to provide spatially infinite and high amplitude diverging phase would be

required. The TDM substrate defines a finite area that has large dimensions with respect

to the beam waist. The TDM substrate is 2” diameter, so the effect of the mirror clipping

will be very low. As said before, for the highest Hermite-Gauss mode we want to correct

(TEM50), the clipping has to be larger than 1.52
√

5 w0 ' 3.4 w0 to control more than

99% of the power. With a mirror of 2” diameter, the beam is not clipped at all even for

the mode TEM50.

The actuation is made over the active area in the center. The present study is performed

with the second prototype under the same conditions that have been tested in Chapter

5, so the active area is 10.2 mm diameter for a beam waist of 2.6 mm: it is large enough

to control more than 99.9% of the beam power contained in the fundamental mode, but

only 78.5% of the power in the mode TEM50. However, the correction is not limited to

the active area: the deformation produced by the edge actuators extends around thank

to the thermal deformation properties of the substrate. With actuators having a HWHM

of 2 mm, we would be able to control up to 88% of the power.

Unfortunately, the Hermite polynomials are impossible to reproduce with a TDM due to

their diverging shape at the edges of the active area. For instance, the first polynomials

Hn(x) are represented in Fig.6.10. The sampling of the phase with the TDM actuators
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will be another difference with respect to the ideal (unrealistic) case. A correction

compatible with the physical constraints of the TDM has then to be find.

Figure 6.10: Section of the Hermite polynomials Hn(
√
2x
w0

) over the TDM substrate
for a 2.6 mm waist. The active are is 5.1 mm radius.

6.3 Proposition of correction by the TDM

6.3.1 Identification of a set of correction maps

A simple solution is to weight the phase by the beam intensity, i.e. to apply the Hermite-

Gauss maps instead of the Hermite polynomials.

We then choose to apply the HGmn maps in the simulations.

Mapmn = HGmn (6.27)

Another solution have been proposed in [74] and in [29] for a pretty similar problem: the

correction of the mirror maps inside a cavity. For the correction of degenerate modes

inside a cavity (Hermite-Gauss or Laguerre-Gauss modes), correction maps have been

proposed to apply with a thermal corrective device on the reflective coating of the cavity

mirrors. The solution, found through the minimization of the error with the ideal non

reflective maps, or with a more analytical computation, is to correct modes of the same

order with the Hermite-Gauss maps weighted by the fundamental mode. And then to

orthogonalize the maps. It is proposed to reduce the mean square value of the difference

between the fundamental mode and the mode corrected by reflection on a mirror. The
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maps proposed by [29] are found to be:

Mapmn = HGmnHG00∗ (6.28)

However, we can say, anticipating the results of the next chapter, that we found exper-

imentally that these last maps are less efficient to act on the modal content than the

previous set.

6.3.2 Limits of the analytical model

We have demonstrated that it is possible to reduce a specific high order mode by choosing

appropriate maps two TDMs can generate and by selecting a distance between them

representing a Gouy phase shift for the high order mode.

To perform the correction predicted by the analytical model, we need to have a complete

information on the setup: exact phase between modes at both planes, knowledge of the

complex amplitude coefficient. This would be very complex to obtain experimentally.

So an experimental strategy to act on the TDMs is still to be determined. A simple

solution would be to apply the corrective pattern for the target mode, and to scan the

amplitudes of correction on both TDMs, to find the minimum of mismatch. This is

tested in the next chapter.



Chapter 7

Experimental Mode Matching

Control

This chapter is dedicated to the experimental proof-of-principle of the mode matching

improvement where we demonstrate that the high order mode content of the beam can

be reduced with a combination of two TDMs.

Two setups have been successively implemented to obtain a control on the modal com-

position of the beam. After a description of the first experimental setup, we review

some sensing methods that have been developed within the frame of the laser beam

control. Then, the early tests conducted with the first setup are explained: they have

demonstrated the possibility to correct the mismatch with the TDMs and the necessity

to implement some design changes to improve the performance. The second setup is

then described and some examples of matching control are shown.

7.1 Setup for the Mode Matching Control

The correction setup (see Fig.7.1) is based on two TDMs separated by a definite Gouy

phase which we have demonstrated the importance in the previous chapter. On each

TDM, the laser beam has the diameter required by design, that is 5.2 mm. Some

telescopes ensure that both conditions are met on the TDMs. The laser beam is sent

into a fixed cavity, while a sensing system (photodiodes and cameras) is measuring the

matching. The laser is frequency locked on the cavity by the mean of a Pound-Drever-

Hall control [75].

Triangular cavity The fixed cavity has a mode cleaner design: it is triangular that

allows to have a separation of the reflection and the transmission of the cavity. When the

145
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Figure 7.1: Scheme of a setup for the mode matching correction with two TDMs
(TDM1 and TDM2) and three telescopes (T1, T2, T3).

laser is locked on the cavity, the fundamental mode is transmitted and the aberrations

are rejected towards the perpendicular direction (see Fig.7.1). In a linear cavity, the

modes of the same order m + n = α are resonating at the same frequency that is

determined by the corresponding Gouy phase shift:

φG(α) = (α+ 1) arctan

(
z

zR

)
(7.1)

In a triangular cavity, there is a removal of degeneracy due to the geometry and only

the even modes of the same order α are superimposed at φG(α) while the odd modes

are resonating at φG(α) + π.

A scan of the cavity transmission provides the modal composition of the beam with an

indetermination about the relative weight of the degenerated modes. Moreover, some

modes are superimposed if the Gouy phase is the same multiple after several round-trips.

The degeneracy in the determination of the modal content is effectively a limiting factor

in our experiments (see Section 7.5).

7.2 First Mode Matching Setup description

A first setup has been built to control the matching of laser beam into the Reference

Cavity (RFC) of Virgo. It is composed of three telescopes that are determined with a

Matlab routine based on the ABCD matrices. The routine finds the telescope design

that meets a set of objectives: length, Gouy phase and waist, for a given set of available

lenses by an error minimization process. As for the characterization setup, the laser
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— Telescope 1: Input - TDM1 —

L1 L2

0.04 0.1

— Telescope 2: TDM1 - TDM2 —

L3 L4 L5

0.2 -0.1 -0.1

— Telescope 3: TDM2 - RFC —

L6 L7

0.1 -0.06

Figure 7.2: First Mode Matching setup: telescopes features as determined by the
Matlab routine. The focal lengths are given in meters.

beam is a pick-off from a Nd:YAG NPRO laser (λ = 1064 nm) with an input power of

about 1 mW.

TDM prototypes The thermal contact is made with a layer of thermal paste between

two layers of thermal tape. The substrate is a 2” HR mirror in fused silica. The two

TDMs are switched on at half of the power: it corresponds to a RoC of 4.4 m.

Telescopes The first telescope enlarges the beam from the collimator after the fiber

that brings the beam on the table (waist = 0.640 mm at 1.61 m from the output) to have

a beam radius of 2.6 mm on the first TDM. The constraints for the second telescope

(between TDM1 and TDM2) concern the beam size at the output, the Gouy phase that

is carefully chosen, and the maximum length. By design, the second telescope gives a

Gouy phase difference around 90 degrees for the fundamental mode between the TDMs

and ensures to keep the beam radius at 2.6 mm on the second TDM. We now know

that this Gouy phase value is not appropriate but the design of the setup was made

earlier than the analytical computation presented in Chapter 6. The third telescope is

used to match the beam into the cavity leading to have the main constraint on the beam

size at the telescope output. It allows to reduce the beam waist to 0.286 mm at the

input of the cavity. These last lenses are on translation stages to adjust more easily the

matching. The lens values of the different telescopes are presented in Table 7.2 and the

beam propagation is summarized in Fig.7.10.
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Beam propagation The whole setup was simulated with Matlab (see Fig.7.3). Af-

terwards, the beam propagation has been checked via a software especially developed

to design optical setups within the frame of Gravitational Wave Interferometers (Opt-

cad). This allows to verify the configuration with thick lenses. The result is presented

in Fig.7.4.

Fixed cavity The matching is studied into the RFC of Virgo. This cavity was used

in Virgo/Virgo+ as a long term length reference. It has been reinstalled in Advanced

Virgo for the same purpose. It is a 30 cm long triangular cavity [76] composed of two

planes silica mirrors at the input and the output at 45 degrees and a silica concave

mirror with a RoC of 0.5 m. The FSR of the cavity is about 472 kHz and the finesse for

the p -polarization is higher than 900. The laser is frequency locked on the RFC cavity.

The sidebands for the PDH lock are created at 8.35 MHz with the EOM at the input of

the setup. The index of modulation is about 0.17: the sidebands power is 1.4 % of the

total power and is the theoretical minimum power that could be reflected by the cavity.

Figure 7.3: Optical configuration of the first Mode Matching Setup: (top) the three
telescopes are presented with the lens values and the distances are given in the square
brackets. (bottom) the Gouy phase (blue) and the curvature (green) variation along
the propagation. Matlab presentation from H. Heitmann

Sensing We installed 2 cameras on the reflection path: a Near Field (NF) camera and

a Far Field (FF) camera in the aim to implement a phase diversity sensing.

The whole setup is very sensitive to air fluctuations and turbulences. With the air

conditioning system of the clean room, it was not possible to perform the test: the
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Figure 7.4: Optocad scheme to check the first Mode Matching setup design. The axis
are in meters. The beam is represented by the red lines with a section proportional
to the radius. The triangles represent the beam waists. The optical components are
represented in blue.

beam fluctuations were greater than the correction provided by the TDMs. So thermal

insulation covers have been added on the setup to protect it. We were able to observe a

great reduction of the reflection signal fluctuations: the fluctuation amplitude descreases

from 0.15 V to 0.005 V. The image was much more stable on the reflection cameras: it

was possible to start the observation of the TDM effects on the matching.

7.3 Choice of the sensing

According to the formula of Hermite-Gauss modes (see Eq.6.2), the information of the

modal composition is contained in the amplitude and the phase. Moreover the Gouy

phase shift directly depends on the mode order. If we have access to the Gouy phase

shift, we can try to observe the beam at different frequencies and retrieve the modal

content.
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Figure 7.5: Photo of the first Mode Matching setup with the RFC. The beam prop-
agation is represented by the red lines.

Spectra determination We can distinguish different sensing approaches, some of

them are based on the spectral content of the beam:

• the spectral decomposition with the cavity itself: the cavity will act like as a spatial

mode filter. We can recover the beam composition from a cavity scan. However,

this implies to unlock the cavity. One might use a scanning Fabry-Perot cavity

aside, but the modal composition can be different: one will have to assume that

the basis is the same Hermite-Gauss basis. In both cases, an additional camera is

helpful to identify the modes.

• with the heterodyne detection. Several methods are proposed to recover the modal

composition at a given frequency that corresponds to the aberrations [31, 77] with

the help of sidebands at the appropriate frequency (see Appendix A). Usually, one

would need a complementary spatial information to identify the mode (modes of

the same order at the same frequency)

We would like to use a method that allows to recover easily the modal content up to

the order 5. So the methods based on the sidebands are probably not flexible enough,

in the sense that we would need five sideband frequencies and a heavy material for the

setup. The time constraint is quite low: we would have few seconds to compute the
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mode content. Then a ”blind” minimization algorithm could be considered. It is more

flexible because it is not limited by the setup devices on the maximum mode content.

We then start with this approach.

Phase diversity The phase diversity methods are based on the spatial composition

of the modes: the principle is to observe the spatial content of a beam at different

Gouy phases and to deduce the mode content via different minimization algorithms [78].

Several methods have been developed to recover the composition of a beam from two

cameras at different Gouy phase planes.

Matching evaluation If it is not possible to recover the mode content, the matching

can be evaluated through a simple figure of merit, based on the relative power variations

in reflection or transmission. According to the energy conservation principle, the power

Pi of the laser beam sent into the cavity is:

Pi = Pr + Pt + L (7.2)

with Pr the power reflected by the cavity, Pt the power transmitted by the cavity and

L the losses from absorption and scattering.

If we neglect the losses, the matching is defined by the power transmitted by the cavity

over the incident power:

Matching =
Pt
Pi

=
Pi − Pr
Pi

(7.3)

This is the figure of merit we will experimentally use in the following, combined with

cavity scans, that will be explained in the next paragraphs. The main inconvenient of

this method, however, is that the matching is affected by simple misalignment or by a

wrong beam waist position or value without the possibility to tell the difference with

the high order mode content variation. This will be an impediment to go deeply into

the setup analysis.

7.4 Results for the first matching setup

7.4.1 Stochastic parallel gradient descent algorithm

The first tests on the RFC cavity have been made with a minimum search algorithm

[? ] to control independently the 122 actuators of the TDMs. The error signal was the

sum of the intensity on the 2 cameras (NF and FF) placed in reflection.
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The principle of the algorithm is an adaptation of the stochastic parallel gradient descent

algorithm:

1. The initial power P0 is read on the cameras.

2. Random values are sent to the TDMs to produce random maps of actuation and

the power Pi is read on the cameras.

3. If Pi is inferior to P0, we go back to step 1: these maps are the new initial values

and a new random try is made. P0 is updated to Pi.

4. If Pi is superior to P0, the gradient is computed to produce new maps of actuation

in the direction opposite to the gradient.

5. If the power Pi+1 is lower than P0, these maps are the new initial maps. Otherwise,

we go back to P0 and try new random maps.

After one night, we obtained the curve in Fig.7.6. After calibration of the signal with

the reflection photodiode and the power meter, the final mismatch corresponds to 2.3%

for an initial mismatch of 14%. The slowness of the minimum search was an impediment

to efficiently improve the algorithm and the setup. It was difficult to maintain the setup

conditions unchanged for long periods of time due to thermal variations and mechanical

drifts.

Figure 7.6: First Mode Matching setup: first tests with the SPGD algorithm and the
RFC.
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7.4.2 Golden search on gradient values

We applied an another algorithm that demonstrated to be faster in simulations. It

computes the gradient of the actuation and then searches the minimum of mismatch

along the gradient line with a golden search method [79].

Moreover, we decide to use a similar-Zernike polynomial basis to reduce the number

of space search dimensions and to start with the correction of low spatial frequencies.

At the time of these experiments, the computations about the analytical control of the

modal control of the beam were not already performed. Here we use progressively the 4

first order Zernike modes. We compute the mismatch by observing the power reflected

on the cavity. In Fig.7.7 is the convergence result. The reduction of the mismatch power

is in theory limited by the sidebands, but we are limited at an higher mismatching value

(over 2.5%) as for the stochastic algorithm.

In order to understand this limitation, we scan the cavity with a function generator at 10

mHz and 200 mV (triangular function) on the laser temperature. The results of the scan

are presented in Fig.7.8 where the modes are identified with the camera in transmission

of the cavity. For each mode, the top image is before correction and the down image is

with the correction. We can clearly see the effect of the TDMs that are reducing the

low spatial frequency modes.

However, the correction is saturated without cancelling completely the first modes what-

ever algorithm is implemented. For example, even after several attempts, we were not

able to correct the focus very efficiently and it was dominating the mismatch. We infer

that it is due to the fact that the TDMs are separated by a Gouy phase of 90 degrees

after performing the analytical computation in Chapter 6. Moreover, the high finesse of

the cavity does not make easy the mode management.

7.5 Second Matching Setup

The design of the second setup has been realized after the computations of Chapter

6. Therefore, the Gouy phase has been chosen to be 20 degrees in agreement with our

computations. An additional TDM, called TDM0, is placed at the entrance of the setup

(see Fig.7.12). It allows to play in a controlled way with the initial modal content of

the beam. As for the previous setup, three telescopes are designed. The first telescope

is here used to reach the good diameter on the TDM1. The details on the second setup

configuration are presented in Table 7.9 and Fig.7.10.
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Figure 7.7: First Mode Matching setup: first tests with the Golden search algorithm
and the Zernike maps with the RFC. The matching is increased by 2% in 80 iterations.

Figure 7.8: First Mode Matching setup: scan of the RFC before and after the cor-
rection by the TDMs. The modes are identified thanks to the images from the camera
in transmission of the cavity. For each mode, the corresponding pictures are indicated
by a red arrow: the top picture is the mode before correction and the bottom picture
is the mode after correction.
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— Telescope 1: TDM0 - TDM1 —

L1 L2

0.2 0.125

— Telescope 2: TDM1 - TDM2 —

L3 L4 L5

0.3 -0.1 -0.1

— Telescope 3: TDM2 - OMC —

L6 L7

0.25 0.3

Figure 7.9: Second Mode Matching setup: Telescopes features as determined by the
Matlab routine. The focal lengths are given in meters.

The cavity is the Output Mode Cleaner (OMC) cavity of Virgo/Virgo+, the RFC being

not available any more. The OMC cavity is a monolitic cavity made of Fused Silica.

The input faces of the crystal are flat whereas the end face has a RoC of 0.3 m. It has

a finesse of 50 and a FSR of 2 GHz (optical path of 7.5 cm). The input waist required

is 140 µm [80].

Figure 7.10: Optical configuration of the Second Mode Matching setup: (top) the
three telescopes are presented with the lens values and the distances in the square
brackets. (bottom) the Gouy phase (blue) variation along the propagation. Matlab
presentation from H. Heitmann
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Figure 7.11: Scheme of the OMC with the main geometrical features of this monolithic
cavity.

Sensing The reflected power read by a photodiode indicates the power changes to es-

timate the mismatch. A scan of the cavity transmission indicates the beam composition

with a photodiode and a camera in transmission completes the information by displaying

the modes. Therefore, there is no information about the mode degeneracy: we can not

separate the relative content in modes resonating at the same frequency in the cavity.

7.5.1 Increase of the high order mode content

7.5.1.1 Map set to control the modes

In order to apply the analytical HGcorr maps with the TDMs, the interaction matrix

M of one TDM is computed from the simulated influence functions. Thanks to the well

known formula:

Maptdm = M−1HGcorr (7.4)

we obtain the relative value of actuation for each actuator of the TDM. This result is

presented in Fig.7.13. First we apply some of the maps with the TDM0 to increase the

power of a particular mode.

7.5.1.2 Increase of the astigmatism

The HG11 map is applied with an amplitude maximum of 0.1 W delivered by resistor.

The actuation limit is set at 0.15 W. The mismatch increases. By scanning the OMC
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Figure 7.12: Second Mode Matching setup: photo of the installation at the CALVA
platform (Orsay) with the OMC cavity.

Figure 7.13: Correction maps Maptdm defined from the Hermite-Gauss modes and
projected on the TDM actuator basis thanks to the theoretical influence functions.
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cavity we check the increase of the HG11 amplitude (see Fig.7.14). The mode content

of the HG11 was increased by a factor 10. The tilt was manually corrected after the

actuation by adjusting the tip/tilt mirror in front of the cavity. We observe an increase

of the focus and some high order modes as well but they were not corrected manually.

7.5.1.3 Increase of the mode HG30

The HG30 map is applied on the TDM0 with an amplitude of 70 mW per resistor. The

mode content of the HG30 increases by a factor 2.5 (see Fig.7.14). Again, the tilt is

manually corrected after actuation. Some other modes increase as well but for these

modes are different than for the HG11 case.

Figure 7.14: Scans of the OMC transmission before (reference) and after the appli-
cation of the maps on the TDM0. Both scans have been renormalized to have an equal
integral content and the maximum of the transmission was adjusted with the matching
value when the OMC was locked.

7.5.2 Reduction of the high order modes

With the same set of maps, we now want to reduce these modes with the TDM1 and

TDM2. The amplitude of the actuation is found by scanning the amplitudes of the maps

on both TDMs to minimize the power reflected by the cavity.
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7.5.2.1 Control of the mode HG11

In Fig.7.15, we can observe that the mode HG11 is reduced by a factor 3. There is also

a slight coupling to some other modes, mainly to the defocus, tilt and the mode HG30.

This leads to the stop of the algorithm at a pseudo minimum: the correction is found

optimal otherwise the tilt and the focus will continue to increase. We are therefore

limited by the coupling to the low order modes.

7.5.2.2 Control of the mode HG30

In Fig.7.16, we can observe that the mode HG11 is reduced by a factor 1.9. There is also

a slight coupling to some other modes, mainly to the defocus and to the tilt.

7.6 Results discussion

We have been able to show experimentally that our system of combined TDMs is able

to improve the matching into a simple cavity. This was the first proof-of principle

that the modal content of the beam can be controlled by TDMs. We have shown that

some modes can be successively increased and reduced by applying the corresponding

actuation maps.

However, the correction is mainly limited by the coupling to the other high order modes

as a side effect. The TDMs are mainly introducing tilt and focus that have to be taken

under control to have the possibility to improve the correction. For this purpose, we

need a system of alignment to control the tip/tilt and a matching telescope to continu-

ously adjust the focus. Further investigation will continue to study the addition of an

automatic alignment and focus system.



Chapter 7. Mode Matching Experiments 160

Figure 7.15: Scans of the OMC transmission before (reference) and after the applica-
tion of the maps on the TDM1 and TDM2. The content in the mode HG11 is reduced
by a factor 3.

Figure 7.16: Scans of the OMC transmission before (reference) and after the applica-
tion of the maps on the TDM1 and TDM2. The content in the mode HG30 is reduced
by a factor 1.9.



Conclusion

We have demonstrated that the Thermally Deformable Mirror (TDM) is a promising

device, especially designed for the control and improvement of the matching of a laser

beam into resonant cavities within the environment of the Advanced gravitational wave

interferometers, notably at the input of the interferometer.

We have first established the spatial response of the substrate to an input power field

that leads to the definition of the substrate transfer function. This can be approximated

by a series of two spatial filters: a band-pass filter around the fundamental frequency

u0, that depends on the thermal conductivity, and a low-pass filter of second-order: the

high spatial frequencies are attenuated in 1/u2 with the cut-off frequency that depends

on the substrate thickness. However, we have seen that at high frequencies the influence

of the thickness on the substrate response is negligible. The analysis also allowed to

estimate that the thermal conductivity of the substrate will be determinant for the

resulting shape of the temperature field inside the substrate. Afterwards, we performed

accurate simulations with a finite element analysis tool to determine the exact shape of

the temperature field inside the substrate for different inputs, materials and thicknesses.

We found that the shape is enlarged by the radiation at the barrel of the substrate

and confirmed that the thickness is poorly influencing the response. We studied various

substrates and demonstrated that the Fused Silica is a good trade-off that gives a large

actuation but also a small temperature increase.

After establishing the influence function of a single actuator, we studied the full TDM

with 61 actuators. To produce the adequate correction, that minimizes the difference

with the input wavefront, the power delivered by the actuators can be found through

the inversion of the matrix that contains all influence functions. For a given influence

function, the quality of the correction mainly depends on the gap between the actuators.

Controlling the Zernike modes up to order 5 requires that this gap is lower than 0.5 mm.

We then demonstrated by simulation that built TDMs should be able to reach the

specifications on matching.
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Afterwards, the prototypes have been experimentally characterized by observing the

phase variations on a probe beam in the conjugate plane of the TDMs. We checked

the linearity of the response with the input power, the response time and the linear

superposition. We implemented a control loop for the Zernike polynomials generation

based on a least square algorithm. The experimental results shown that the TDM is

able to generate Zernike polynomials up to the order 5. The dynamic range is the main

limiting factor to reproduce the highest modes with the correct amplitude while the

mode coupling is very low and the residual footprint limits the precision of the mode

reproduction. We deduced that if the mismatch is due to aberrations lower than the 5th

order at the level of 5 %, the TDM is able to correct it to reach a matching better than

99%.

As a TDM is only able to modify the beam wavefront, a couple of devices placed at

different Gouy phases is therefore necessary. With a simple analysis, we demonstrated

that a correction with Hermite-shape maps is possible, suppressing a high order mode

in a first approximation and that the position of the TDMs have to be carefully chosen.

The linearity of the model and the successive correction of several modes have been

discussed.

Finally, we experimentally tested the mode matching correction, in particular with a

setup with 3 TDMs: one to have the possibility to generate known aberrations in the

system and two to correct the matching into a fixed triangular cavity. We have been

able to demonstrate that a TDM is able to generate a Hermite-Gauss mode from a

specific map of actuation. With a minimization algorithm on the power reflected by

the cavity, some Hermite-Gauss modes have also been reduced, leading to demonstrate

the possibility to control the matching with the TDMs. The study was limited by the

coupling of the modes to the alignment and the curvature of the beam.

The TDMs have then demonstrated, by simulations and experiments, their ability to

correct optical aberrations and to provide mode matching improvement in an adequate

system. They will hopefully be helpful devices in the correction of matching for Ad-

vanced gravitational interferometers in any place where the systems are sensitive to

mismatch losses, like at the injection, the detection or in squeezing systems.

The next step toward the completion of the study with these prototypes should be

to pursue the implementation of an automatic alignment and focus control, to reduce

the mode coupling into these fundamental modes. Then, an iterative method of mode

reduction may be tested and a systematic analysis of mode reduction efficiency may

be performed. Afterwards, one can focus on the sensing improvement to have a direct

access to the modal decomposition of the beam, without unlocking the system.



Conclusion 163

Furthermore, several improvements are necessary to deliver a device ready for an im-

plementation on Advanced detectors. Going deeply with the simulations, in particular

with the heat conduction in the mounts, would allow to precise the final design. The

thermal contact should be improved to increase the power coupling into the substrate

and thereby increase the dynamic range. A challenging task will be to build a vacuum

compatible prototype. Then, a new characterization of the device may be performed to

detect any difference with the in air measurements. Afterwards, the TDM should be

tested on a suspended bench to control the noise compatibility. In the end, it will be

possible to implement a complete adaptive optics system in Advanced detectors after an

appropriate error signal will have been found.





Appendix A

Gaussian modes and Resonant

cavities

A.1 Fundamental Gaussian mode

We will derive the Gaussian-spherical solution of the paraxial wave equation following

the simple method proposed by Born and Wolf using the complex point source derivation.

The wavelength is λ. In free space, the electromagnetic waves are propagating according

to the Paraxial wave equation:

[
∇2 + k2

]
Ẽ(x, y, z) = 0 (A.1)

We assume that the wave is propagating in the z direction, so the field will depends on

exp(−jkz). This exp(−jkz) has a spatial variation of one λ in the z direction. We can

separate the transverse variation of the field x, y and the longitudinal variation z. The

transverse variation depends on the longitudinal position z, so we can rewrite:

Ẽ(x, y, z) ' ũ(x, y, z)e−jkz (A.2)

The paraxial wave equation becomes:

∂2ũ

∂x2
+
∂2ũ

∂y2
+
∂2ũ

∂z2
− 2jk

∂ũ

∂z
= 0 (A.3)
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The paraxial approximation expresses the fact that the transverse variations due to the

z dependence are slow compare the the other dependences. That is:∣∣∣∣∂2ũ∂z2

∣∣∣∣� ∣∣∣∣∂2ũ∂x2

∣∣∣∣ or ∣∣∣∣∂2ũ∂y2

∣∣∣∣ or ∣∣∣∣2k∂ũ∂z
∣∣∣∣ (A.4)

The paraxial wave equation is the:

∇2
t ũ(s, z)− 2jk

∂ũ(s, z)

∂z
= 0 (A.5)

where s denotes the spatial coordinates (x, y) or (r, θ) and t refers to the transverse

plane.

One exact solution of the wave equation (Eq. A.1) is the uniform spherical wave emerging

from a point source r0 expressed by:

Ẽ(r, r0) =
exp[−jkρ(r, r0)]

ρ(r, r0)
(A.6)

The distance ρ(r, r0) from the point (s0), z0 to the observation point (s), z:

ρ(r, r0) =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 (A.7)

that can be approximated by:

ρ(r, r0) = z − z0 +
(x− x0)2 + (y − y0)2

2(z − z0)
+ ... (A.8)

So the wave equation is equivalent to ( = paraxial-spherical wave, exact analytical solu-

tion of the paraxial wave equation):

Ẽ(r, r0) =
1

z − z0
exp

[
−jk(z − z0)− jk

(x− x0)2 + (y − y0)2

2(z − z0)

]
(A.9)

Let’s consider a complex point source instead of a real one. The real point sources implies

to have an infinite transverse description of the field, that is to have an infinite energy.

We can retrieve a physical description with the complex number as demonstrated here.

We replace the quantity z0 by the complex quantity z0 − q̃0. We introduce the complex

radius of curvature q̃ = z − (z0 − q̃0). The real radius of curvature R(z) = R0 + z − z0.
The equation is then:

Ẽ(x, y, z) =
1

q̃(z)
exp

[
−jkq̃(z)− jk (x− x0)2 + (y − y0)2

2q̃(z)

]
(A.10)
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To retrieve the standard notation in laser beams, we write:

1

q̃(z)
=

1

R(z)
− λ

πw2(z)
(A.11)

Then:

Ẽ(x, y, z) =
1

q̃(z)
exp

[
−jkq̃(z)− jk (x− x0)2 + (y − y0)2

2q̃(z)

]
(A.12)

A.1.1 Fundamental mode

We can now write the main characteristics of the fundamental mode. From Eq. A.12,

we see that the transverse spatial distribution has a minimum in z0 that is the waist w0

of the beam:

w(z) = w0

√
1 + (

z

zR
)2 zR =

πw2
0

λ
(A.13)

R(z) = z

[
1 +

(zR
z

)2]
(A.14)

zR is the Rayleigh distance. From Eq. A.12, we recognize the term of amplitude:

Ẽ(x, y, , z) = E0
w0

w(z)
exp(− r2

w2(z)
) (A.15)

the term of the longitudinal phase:

exp(−j(kz − atan(
z

z0
))) (A.16)

and the term of the transverse phase:

exp(−j kr2

2R(z)
) (A.17)

We also can separate the longitudinal phase of the beam, that is called the Gouy phase:

φg = atan(
z

zR
) (A.18)

This term is an additional phase shift that depends on the mode that is propagating.
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A.2 High order Hermite-Gauss modes

We can decompose the beam in the basis of the Hermite-Gauss polynomials (Cartesian

coordinates). The solution of the equation in the cylindrical coordinates is the Laguerre-

Gauss mode basis.

For the mode mn, the general equation is then:

Emn(x, y, z) =

√
2

π

1

w(z)

1√
2m+nm!n!

Hm(

√
2x

w(z)
)Hn(

√
2y

w(z)
)e
−i

(
k

2q(z)
(x2+y2)+

(
kz−(m+n+1)atan( z

zR
)
))

(A.19)

The Gouy phase term is then:

φg = (m+ n+ 1)atan(
z

zR
) (A.20)

The Hermite polynomials are defined by:

H0(x) = 1 (A.21)

H1(x) = 2x (A.22)

Hj+1(x) = 2xHj(x)− 2jHj−1(x) (A.23)

Some of the modes are represented in Fig. A.1.

Figure A.1: Spatial representation of the Hermite-Gauss modes
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A.2.1 Times table of the first Hermite-Gauss polynomials (Physicist)

When we developed the correction with the TDMs in Chapter 6, we need to compute

the product of the Hermite-Gauss modes. The formula is given in [71]. The product of

two Hermite polynomials Hi(x) and Hj(x) is:

Hi(x)Hj(x) =

min(i,j)∑
k=0

k! 2k
(
i

k

)(
j

k

)
Hi+j−2k(x) (A.24)

In Table A.1 is the computation up to the 6th order.

mode m mode n Result

H1 H1 = H2 + 2H0

H1 H2 = H3 + 4H1

H1 H3 = H4 + 6H2

H1 H4 = H5 + 8H3

H1 H5 = H6 + 10H4

H2 H2 = H4 + 8H2 + 8H0

H2 H3 = H5 + 12H3 + 24H1

H2 H4 = H6 + 16H4 + 48H2

H3 H3 = H6 + 18H4 + 72H2 + 48H0

Table A.1: Table of the Hermite product

A.3 Coupling of aberrations with a cavity and high order

modes

A.3.1 Mode Matching

A stable cavity is characterized by a set of eigen spatial (TEM) modes.

We extend the definition given in [31]: ”Proper [matching] between an input laser beam

and a optical cavity means exactly this: that the laser beam couples completely to the

fundamental (longitudinal) spatial mode of the cavity and not at all to the higher-order

(off-axis) spatial modes.”

The term alignment is here used for angular orientation and transverse displacement:

a beam is properly aligned with respect to a cavity when the propagation axis corre-

sponds to the optical axis of the cavity and when the beam waist position and waist size

correspond to the waist of the cavity.

The misalignment of a beam with a cavity will produce coupling into the high order

modes. This is extensively described in [31] for a two mirror cavity, that has six degrees
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of freedom concerning the misalignment: x and y tips, x and y tilts and the waist size

and the waist position. In the following we recall the main results of this paper that can

be extended to a three mirrors (or Mode Cleaner) cavity.

The input beam is the fundamental modes ψ = AU0 with a small amount of the different

misalignments. At the waist, we have:

E0(x) =

(
2

πw2
0

)1/4

e
−
(
x
w0

)2

(A.25)

E1(x) =

(
2

πw2
0

)1/4 (2x

w0

)
e
−
(
x
w0

)2

(A.26)

A.3.2 Tip and Tilt

The tips and tilts are more easily described with the Cartesian coordinates. The cou-

pling with the Hermite-Gauss modes is described. The study of the x direction is only

performed, since the equations are the equivalent in the y direction. The results are

approximated at the first order.

Tip The input beam is translated by a:

ψ(x) = AU0(x− a) (A.27)

ψ(x) = A
2

πw2
0

exp

[
−(x− a)2

w2
0

]
(A.28)

ψ(x) ' A 2

πw2
0

(
1 + 2a

x

w2
0

)
e
−
(
x
w0

)2

(A.29)

ψ(x) ' A
(
E0(x) +

a

w0
E1(x)

)
(A.30)

Tilt If the beam misaligned by the optical axis, the phase of the beam becomes:

ψ(x) =
2π

λ
x sin(α) ' 2π

λ
xα (A.31)

Then

ψ(x) = A

(
2

πw2
0

)1/4

e
−
(
x
w0

)2

ei
2π
λ
xα (A.32)

ψ(x) ' A
(

2

πw2
0

)1/4

e
−
(
x
w0

)2 (
1 + i

2π

λ
xα

)
(A.33)

ψ(x) ' A
(

2

πw2
0

)1/4 (
E0(x) + i

π

λ
w0αE1(x)

)
(A.34)
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A.3.3 Position and size of the waist

The position and size of the waist is axisymmetric, so the Laguerre-Gauss description is

more appropriate.

We have, for the fundamental and the first modes:

V0(r) =

√
2

π

1

w0
e
− r2

w2
0 (A.35)

V1(r) =

√
2

π

1

w0

(
1− 2

r2

w2
0

)
e
− r2

w2
0 (A.36)

Waist size If the waist size is w′0 = w0(1 + ε), we have:

ψ(r) = A

√
2

π

(1 + ε)

w0
e
− r

2(1+ε)2

w2
0 (A.37)

ψ(r) ' A
√

2

π

(1 + ε)

w0
e
−2ε r

2

w2
0 e
− r2

w2
0 (A.38)

ψ(r) ' A
√

2

π

(1 + ε)

w0
(1− 2ε

r2

w2
0

) e
− r2

w2
0 (A.39)

ψ(r) ' A
√

2

π

1

w0
(1− 2ε

r2

w2
0

+ ε) e
− r2

w2
0 (A.40)

ψ(r) ' AV0(r) +AεV1(r) (A.41)

Waist position We have to consider the spatial variation of the modes

V0(r, z) =

√
2

π

1

w(z)
e
−r2

(
1

w(z)2
+i π

λR(z)

)
(A.42)

V1(r) =

√
2

π

1

w(z)

(
1− 2

r2

w(z)2

)
e
−r2

(
1

w(z)2
+i π

λR(z)

)
(A.43)

Now the beam position is shifted with respect to the cavity and we obtain:

ψ(r, z) ' A
(
V0 + i

λb

2πw2
0

εV1

)
(A.44)
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Zernike polynomials

The spatial representation of the Zernike polynomials Zmn is given in the figure below

with, for each mode, the ANSI index j under the polynomial.
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Appendix C

Datasheets

C.1 First prototype

We warmly thank Stevenage Circuits (Stevenage Circuits Ldt., Stevenage, UK) for their

cordial work and assistance in the construction of the resistor circuit array for the first

prototype.

C.2 Second prototype

The drivers for the second prototype have been designed and realized by Adam Kutynia

and the Smart Instruments company that we would like to warmly thank for their hard

work and enthusiasm.

Resistors of the second prototype The resistors circuit boards for the second

prototype have been made by the European Circuit Company that we thank for their

collaboration. Two types of resistors have been mounted on the boards: from Panasonic

(ERJ-2RKF1001X) and Vishay (CRCW0402). They have been both chosen for their

ability to support high temperatures and for their size. Here are summarized their main

characteristics as provided by the suppliers.
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P - ERJ2R V - 0402

Resistance [Ω] 1000 (±0.5%) 1000 (±0.5%)

Power rating [1] at 70deg [W] 0.063 0.063
Limiting Element Voltage [V] 50 50

Max. Overload Voltage [V] 100 > 75
Weight [mg] 0.8 0.65

Table C.1: Characteristic of the resistors. [1] The power dissipation on the resistor
generates a temperature rise against the local ambient, depending on the heat flow
support of the printed-circuit board (thermal resistance). The rated dissipation applies
only if the permitted film temperature of 155 deg is not exceeded.

Figure C.1: Scheme of a resistor from the Panasonic Company.

(a)

Length P - ERJ2R V - 0402

[mm] [mm]

L 1.00 (± 0.05) 1.00 (± 0.05)

w 0.50 (± 0.05) 0.50 (± 0.05)

a 0.20 (± 0.10) 0.20 (± 0.10)

b 0.25 (± 0.05) 0.25 (± 0.05)

t 0.35 (± 0.05) 0.35 (± 0.05)

(b)

Figure C.2: Dimensions of the resistor from the Panasonic Company (A) Scheme of
the resistor with dimension labelling (B) Table of the dimension figures.
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Abbreviations

D.1 List of Acronyms

GW Gravitational Wave

BNS Binary Neutron Star

SQL Standard Quantum Limit

PWM Pulse Width Modulation

TDM Thermally Deformable Mirror

RMS Root Mean Square

LSQ Least Square Algorithm

DAC Digital Analog Converter

AR Anti Reflective

HR High Reflective

RoC Radius of Curvature

CP Compensating Plate

ITM Input Test Mass

ETM End Test Mass

IMC Input Mode Cleaner

OMC Output Mode Cleaner
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MMT Mode Matching Telescope

RH Ring Heater

CHRoCC Central Heating Radius of Curvature Correction

ZnSe Zinc Selenite

CHRAC Central Heating for Aberration Correction

FF Far Field

NF Near Field

OPD Optical Path Difference

OPL Optical Path Length

FEA Finite Element Analysis

HWHM Half Width Half Maximum

FWHM Full Width at Half Maximum

FS Fused Silica

SMD Surface Mount Device

CW Continious Wave

TT Transverse Traceless

PR Power Recycling

SR Signal Recycling

RC Recycling Cavity

TEM Transverse Electromagnetic Mode

HOM High Order Modes

TCS Thermal Compensation System

VSR Virgo Science Run

RF Radio-Frequency

RFC Reference Cavity
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