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Abstract

This dissertation studies the problem of high dynamic range (HDR) image
generation from a statistical perspective. A thorough analysis of the camera
acquisition process leads to a simplified yet realistic statistical model describ-
ing raw pixel values. The analysis and methods then proposed are based on
this model.

First, the theoretical performance bound of the problem is computed for the
static case, where the acquisition conditions are controlled. Furthermore, a
new method is proposed that, unlike previous methods, improves the recon-
structed HDR image by taking into account the information carried by satu-
rated samples.

From a more practical perspective, two methods are proposed to generate
HDR images in the more realistic and complex case where both objects and
camera may exhibit motion. The first one is a multi-image, patch-based
method, that simultaneously estimates and denoises the HDR image. The
other is a single image approach that makes use of a general restoration method
to generate the HDR image. This general restoration method, applicable to a
wide range of problems, constitutes the last contribution of this dissertation.






Résumé

Cette these porte sur le probleme de la génération d’images a grande gamme
dynamique (HDR pour Panglais High Dynamic Range). Une analyse ap-
profondie du processus d’acquisition de la caméra conduit tout d’abord a
un modele statistique simplifié mais réaliste décrivant les valeurs brutes des
pixels. Les analyses et méthodes proposées par la suite sont fondées sur ce
modele.

Nous posons le probleme de estimation de I'irradiance comme un probléme
d’estimation statistique et en calculons la borne de performance. Les perfor-
mances des estimateurs d’irradiance classiques sont comparées a cette borne.
Les résultats obtenus justifient 'introduction d’un nouvel estimateur qui, au
contraire des méthodes de la littérature, prend en compte les échantillons
saturés.

D’un point de vue plus pratique, deux méthodes sont proposées pour générer
des images HDR dans le cas plus réaliste et complexe de scénes dynamiques.
Nous proposons tout d’abord une méthode multi-image qui utilise des voisi-
nages (patches) pour estimer et débruiter 'image HDR de fagon simultanée.
Nous proposons également une approche qui repose sur 'acquisition d’une
seule image. Cette approche repose sur une méthode générique, par patches,
de résolution des problemes inverses pour génerer 'image HDR. Cette méthode
de restauration, d’'un point de vue plus général et pour une large gamme
d’applications, constitue la derniére contribution de cette these.






Resumen

Esta tesis estudia el problema de la generacién de imégenes de amplio rango
dinamico (HDR por sus sigla en inglés: high dynamic range) desde una per-
spectiva de analisis estadistico. El estudio en profundidad del proceso de
adquisicién de una camara digital nos permite describir los valores de los
pixeles a través de un modelo estadistico simple y realista. Este modelo sirve
de base tanto para el andlisis teérico como para los métodos practicos presen-
tados en esta tesis.

La cota tedrica de maximo desempeno para este problema es calculada en
el caso estatico, donde las condiciones de adquisicién son controladas. Este
analisis motiva la creacion de un nuevo método que, a diferencia de los métodos
precedentes, mejora la calidad de la imagen reconstruida haciendo uso de la
informacién provista por las muestras saturadas.

Finalmente, desde un punto de vista mas practico, dos métodos son prop-
uestos para generar imagenes HDR en el caso mas realista y por tanto mas
complejo dado por las escenas dindmicas. El primero es un método multi-
imagen, que utiliza patches para realizar de forma simultdnea la estimacion
de la imagen HDR y la remocién de ruido en la misma. El segundo utiliza
una dnica imagen y hace uso de un método general de reconstruccién para
recomponer la informacién de amplio rango dindmico. Este método general
de restauracion, aplicable a un rango mas amplio de problemas, constituye la
ultima contribucion de esta tesis.
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1 Introduction

Imagine you are on holidays in some lost place. The sun is shining, the weather is sweet.
Suddenly, you see the most beautiful scene you want to keep forever engraved in your
memory. In the distance, the splendorous sun starts its countdown for sunset, still pow-
erful enough to light the calm sea. Close, vegetation stands, setting up a leafy frame,
ultimately reaching the mountain. The composition is just magnificent. You take your
camera and shoot your best shot. And... no... it is just not possible. The camera and you
are definitely not looking at the same scene. Otherwise, how could it give such a mediocre
and inexpressive result? Well, that’s when you need high dynamic range imaging.

High dynamic range (HDR) imaging is a field of image processing that aims at re-
producing an extended dynamic range of luminosity compared with that which can be
captured using a standard digital camera. The range of luminosity which a standard dig-
ital camera can capture is often not enough to produce a faithful representation of real
scenes. High dynamic range imaging techniques aim at narrowing the gap between what
our eyes can see and what can be registered in an image.

In the last few years, as a result of the widespread use of digital cameras, in particular
those built-into smart-phones, HDR images have become widely known and available for
the general public. The creation of HDR images is an automatic function in most modern
digital single-lens reflex (SLR) cameras and can be enabled in most smart-phones simply
by installing a specific application. High dynamic range imaging allows to go one step
further in the search for a faithful representation of real world scenes. With very simple
means, as a digital camera is nowadays, it allows the general public to create outstanding
photographs that would be unattainable some years ago.

But why standard digital cameras cannot capture the scenes as we see them? And how
HDR imaging techniques aim at overcoming this obstacle?

The photon bucket limitation The human visual system can capture scenes of very high
dynamic range, correctly perceiving details in both dark and bright regions. It can adapt
simultaneously to a range of intensity levels in the order of 17 stops' [Reinhard et al. 2010].
This is not the case for current standard digital cameras, which can reach up to 14.4 stops

"The dynamic range measured in stops is equal to the base-2 logarithm of the ratio between the brightest
and the darkest considered values.
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Figure 1.1: Top: High dynamic range (HDR) image of a HDR scene. Center: Photograph of a HDR scene
captured with a standard digital camera using a long exposure time. Details are lost in the bright regions
due to saturation. Bottom: Photograph of a HDR scene captured with a standard digital camera using a
short exposure time. Details are lost in the bright regions due to under-exposure. Details in both bright
and dark regions cannot be kept with a single shot of a HDR scene using a standard digital camera.
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Condition | lumination (candela/m?)

starlight 1073
moonlight 107!
indoor lighting 102
sunlight 10°
maximum intensity of common CRT monitors ‘ 102

Table 1.1: Typical ambient luminance levels for natural scenes (from [Reinhard et al. 2010]).

for modern SLR cameras (e.g., Nikon D8oo [DxO Labs]). Each image sensor cell, or pixel,
acts as a photon to electron converter, transforming all the incoming photons into elec-
trons. We can think of it as a bucket, called potential well, in which the electrons are
accumulated during a given period of time. That time, called shutter speed or exposure
time, is the length of time during which the camera’s shutter remains open. These elec-
trons are then read out as a potential difference, and the corresponding voltage value is
digitized to give the pixel value we obtain at the output. Neglecting noise sources, this is
exactly what raw pixel values are: a value proportional to the product flux of photons per
unit time (or irradiance) times the exposure time.

As with any sort of bucket, the potential well has a limited capacity. Hence, for the
bright regions of a scene, where the irradiance is very high, if a long exposure time is used,
the irradiance multiplied by the exposure time may become way too large to be stored in
the potential well. In those cases, pixels saturate resulting in information loss under the
form of censored data.

This problem can be easily solved by sufficiently reducing the exposure time. How-
ever, with this solution, a new problem arises for the dark regions of the scene. For dark
regions, the irradiance may be so low that very few photons reach the pixel per unit time.
Therefore, when using a short exposure, the number of photons, and hence of electrons,
accumulated in the potential well is very small and will be masked by the various sensor
noise sources. Table 1.1 gives typical ambient luminance levels for natural scenes [Reinhard
et al. 2010].

Take for example the HDR scene at the top of Figure 1.1. A single shot of this scene
captured with a long exposure gives the central image in Figure 1.1. The details in the
bright region of the Notre Dame cathedral are completely lost due to saturation. On the
other hand, if the exposure time is reduced in order to avoid saturation, the dark regions
become under-exposed and details are lost, as shown in the bottom image in Figure 1.1.
Therefore, the result of a single shot picture of an HDR scene, taken with a regular digital
camera, contains pixels which are either saturated or under-exposed, and cannot represent
the whole dynamic range of the scene.

The beginning of HDR  As early as in 1856, photographers were dealing with this prob-
lem and started developing the first techniques that laid out the basis of what we know
today as HDR imaging. The French photographer Gustave Le Gray, one of the pioneers
in this subject, was one of the first to capture an HDR scene, composed by sea and sky, by
combining two differently exposed negatives (Figure 1.2). This technique was known as
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Figure 1.2: Brig upon the water by Gustave Le Gray (1856). One of the first known examples of HDR
images, created by the combination of two differently exposed negatives using the technique known
as ciel rapporté.

ciel rapporté, since one negative was used for the landscape and another for the sky. His
technique, developed for analog photography, inspired the basic idea which is used today
to create HDR digital images, that is, to combine images acquired with different expo-
sures. To the best of our knowledge, this idea was first introduced in digital photography
by Mann and Picard in 1995.

HDR imaging: the numerical age Nowadays, the most common way to create HDR im-
ages is to combine multiple low dynamic range (LDR) photographs, acquired with differ-
ent exposure times 7y, 7o, . . . , 7p. Indeed, as previously mentioned, for a given irradiance
C' and exposure time 7;, the corresponding raw pixel value is a function of the received
luminous energy 7;C. Hence, using different exposure times controls the amount of re-
ceived luminous energy, avoiding saturation for at least some of the exposures.

This way of sampling the camera response function at different operating points make
it possible to capture details in both dark and bright regions. Figure 1.3 illustrates this
acquisition process, known as exposure bracketing. Of course, the more photographs
spanning the whole range of exposure times, the better the result. Ground-truth HDR
images are produced in such conditions, in a very controlled environment. However,
for practical limitations, exposure bracketing in real situations can rarely exceed a few
snapshots.

The problem faced by HDR image generation techniques is how to combine the dif-
ferently exposed images to create a single image, representing the irradiance map, that
correctly describes the whole dynamic range of the original scene. The characteristics of
the scene and the conditions of acquisition determine the level of complexity of the prob-
lem to be solved. For instance, the scene may be completely static or present moving
objects, and the camera may be fixed or hand-held.

The problem of imaging dynamic scenes using a hand-held camera is much more com-
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plicated than the one of static scenes using a fixed camera. As for all multi-imaging tech-
niques, motion is a hard obstacle to overcome. In most cases, images captured with a
hand-held camera need to be realigned and moving objects need to be identified in order
to compensate for motion. Otherwise, severe ghosting artifacts appear which are particu-
larly annoying in a final result and unacceptable for most applications.

An alternative to multi-image HDR is to modify the image sensor so as to increase its
dynamic range, which is typically defined as the ratio between the maximum achievable
signal (the potential well full capacity) divided by the smallest detectable signal, which is
determined by the sensor noise. Image sensor technology is constantly evolving and sev-
eral efforts have been made so as to enlarge their dynamic range (see for example [Rein-
hard et al. 2010] for a description of recent wide dynamic range sensors technology). One
possibility is noise reduction, so as to increase the potential well effective capacity. Another
option is to improve the acquisition strategy, performing for instance a multiple-capture,
where the sensor is filled and read out several times per acquisition period, or the so called
time-based image sensors, which encode luminance information by keeping track of the
time it takes a pixel to saturate instead of the output voltage [Guo et al. 2007; Kavusi and
El Gamal 2004]. Nayar and Mitsunaga [2000] proposed a new acquisition method that
consists in varying the pixel exposures by placing an optical mask with spatially varying
transmittance on top of the conventional sensor. This technique, known as spatially vary-
ing pixel exposures (SVE), has been developed further in recent years and extended to the
acquisition of multi-spectral images [Yasuma et al. 2010]. Nevertheless, these technologies
are still almost exclusively for professional use for specific applications and they are not
yet available to the general public.

Displaying HDR images High dynamic range imaging techniques are used to create
HDR images. Another problem arises at the moment of displaying these images in a con-
ventional display. Most existing displays provide a very limited contrast range if compared
to those attainable by HDR imaging techniques. Therefore, a technique is needed to com-
press the dynamic range of the HDR image in order to correctly display it on an standard
display. Such an operation is usually called tone mapping or HDR image rendering. A
summary of the existing tone mapping operators is included in Appendix A. Even though
HDR displays with extended contrast ranges exist, their use is not yet generalized and a
tone mapping operator is usually crucial for displaying HDR images. Figure 1.4 shows a
diagram of the pipeline of the HDR imaging process, from acquisition to display.

Outline This thesis focuses on the generation of HDR images. In the following chapters
we will study the HDR imaging problem from different perspectives. First, we start with
the simplest case, that is, the static case where both the camera and the scene are fixed. In
that context, we analyze the creation of HDR images and also the combined problem of
HDR imaging and super-resolution. Then, we continue with a more realistic case, that is
the case of dynamic scenes, where several moving objects appear, and images are captured
using a hand-held camera.

Finally, we study a more general reconstruction problem which is subsequently applied
to an HDR acquisition strategy that makes use of a single image captured with spatially

15



Co-registered input images

T1 T2 TN
For each pixel position: Input: pixel values 21, ..., 2N
A for exposure times 71,...,TN
HDR
generation
Irradiance Output: irradiance C
Map number of photos reaching

the pixel / unit time

Figure 1.3: Diagram of the exposure bracketing process. Several images are captured using different
exposure times. Bright regions are correctly captured with short exposures and dark regions with long
exposures. These images are then combined into a single HDR image or irradiance map, where each
pixel value represents the number of photons reaching that pixel per unit time.

varying pixel exposures.

The starting point of this work is the study of the digital camera acquisition process.
All along this thesis, we will work with raw image data because a sound statistical noise
model can be developed for it. Having a thorough understanding of the acquisition pro-
cess and an accurate noise model is imperative to develop well established methods to
tackle the aforementioned problems.

1.1 Camera model

After a thorough review of the acquisition process of digital cameras, from the photon
capture in the sensor to the output of the digital pixel value, we propose a simplified
yet realistic model describing the raw pixel values. This model takes into account the
main noise sources: the Poisson photon shot noise due to the discrete nature of light,
which can be approximated by a Gaussian distribution with equal mean and variance; the
thermally generated readout noise, which can be modeled by a Gaussian distribution; the
dark current shot noise; the spatial non-uniformities (photo-response non-uniformity
(PRNU) and dark-current non-uniformity); and quantization noise. After considering
the relative importance of the different noise sources we propose the following simplified
model for non saturated nor under-exposed raw pixel values:

Z ~ N(gatC + pg, g*atC + 0%), (11)

where ¢ is the camera gain, a is the PRNU factor, 7 is the exposure time, C' is the irradiance
reaching the pixel, ;1 and 0% are the readout noise mean and variance.
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HDR —_ Tone >
image

generation mapping

Figure 1.4: Pipeline of the HDR imaging process, from acquisition to display.

We will refer to this model several times throughout this work and will make use of it
in order to develop rigorous solutions to the addressed problems. Since we work with raw
data, we assume hereafter a linear camera response function. The camera parameters are
assumed to be known, obtained by a calibration procedure. The only unknown in (1.1) is
the irradiance C' that we seek to estimate in order to compute the HDR image or irradiance
map.

1.2 HDR imaging for static scenes and static camera

Mann and Picard [1995] considered the case where both the camera and the scene are
fixed so that the images are perfectly aligned. They proposed to create an HDR image
by computing the irradiance at each pixel p as a weighted average of the input samples

Zl, ..., 2} for that pixel, 1
— P
L _XLwtr
C,="2 T (1.2)
P T p .
> i1 Wi

were w! is the weight assigned to the exposure i for pixel p. They assign small weights to
extreme pixel values — very low or close to saturation — based on the idea that the camera
response function calibration is less accurate at these values. Saturated samples are dis-
carded. Several methods followed which proposed different weighting schemes [Debevec
and Malik 1997; Mitsunaga and Nayar 1999; Tsin et al. 2001; Reinhard et al. 2005; Robert-
son et al. 2003; Kirk and Andersen 2006; Granados et al. 2010]. A detailed description and
evaluation of several of these methods is presented in Chapter 3.

Performance bounds In this work, we aim at answering the following questions: what
is the performance bound of the HDR imaging problem in the static case? how far do
existing methods perform from this bound?

Assuming that we have 7" independent samples per pixel, following Model (1.1), we
compute the Cramér-Rao lower bound (crLB) for unbiased estimators. This gives us a
lower bound on the variance of any unbiased estimator of the irradiance computed from
those samples. Applying the Cramér-Rao theorem (see, for instance [Kay 1993]), we show
that this bound cannot be attained and therefore no efficient unbiased estimator exists for
the irradiance under the considered hypotheses.

An experimental analysis is then conducted, where the performance of various exist-
ing irradiance estimators is compared to the crLB. We find that the approximation of the
maximum likelihood estimator (MLE) proposed by Granados et al. [2010], shown to be
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the state-of-the-art [Granados et al. 2010], not only outperforms the other tested estima-
tors but also has a nearly optimal behavior.

The MLE is known to be asymptotically efficient. However, the estimation is here
performed with very few samples, thus the asymptotic assumption cannot be held. Some
theoretical hints are outlined, explaining this a priori unexpected nearly optimal behavior
for the MLE. Hence, we conclude that under the considered hypotheses, there is not much
room for improvement for the pixel-wise irradiance estimation.

Including saturation information The comparison of the crRLB computed from all in-
put samples with that computed when considering only non saturated samples, reveals the
highly negative impact of saturation in the irradiance estimation performance. To the best
of our knowledge, all existing irradiance estimators discard saturated samples. However,
the fact that a pixel saturates for a given exposure time carries some amount of informa-
tion with respect to the underlying irradiance value. Hence, part of the work presented
in Chapter 3 is devoted to the study of the impact that saturation has in the irradiance
estimation and whether it is possible to retrieve some information from saturated samples
instead of just discarding them.

From this analysis, we propose a modified likelihood function adding a term that ac-
counts for the probability of saturation of a given irradiance for a given exposure time.
This modified likelihood is inspired by the work by Dempster et al. [1977] for parame-
ter estimation in the case of censored data, which leads to the proposal of an expectation
maximization (EM) procedure for the likelihood maximization.

We compute the crrB for this modified likelihood function and show that the estima-
tion performance can be considerably improved with the inclusion of saturation informa-
tion for those irradiance values which are close to saturation.

Parameters uncertainty All existing irradiance estimation methods make use of some
kind of pre-processing step where the camera response function is estimated and its in-
verse is computed. In this work, for instance, we assume a linear camera response function
since we work with raw data, and we follow the procedure described in [Granados et al.
2010] to compute the camera parameters.

An important question, that does not seem to have drawn much attention, is the im-
pact that the uncertainty of the camera response function estimation has in the perfor-
mance of the estimators. Through an experimental analysis we show that an accurate
camera calibration is crucial for the MLE to achieve its nearly optimal performance.

Furthermore, at a more fundamental level, we show that an accurate estimation of the
camera parameters is fundamental in order to obtain a reliable ground-truth. In order to
evaluate an HDR imaging technique, if the ground-truth is to be built using a standard
digital camera (not a camera able to directly capture HDR information), an HDR method
must be used to compute it from the captured images. If the camera calibration is not
accurate enough, the ground-truth obtained in this manner will be biased and the estima-
tion results might be judged better than what they actually are. This analysis is presented
in Chapter 3.
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Input frames: camera + object motion

Result: ghosting artifacts

Figure 1.5: Left: Input misaligned images (these images are the result of demosaicking raw images,
white balance has not been performed). Right: Result of the combination of the input frames without
previous corregistration. Ghosting artifacts appear due to image misalignment.

Combined HDR and super-resolution The frequency content of a scene, as well as its
dynamic range, is truncated when we take a single shot of the scene using a regular dig-
ital camera. Super-resolution (SR) techniques aim at recovering the lost high frequency
information by combining multiple images captured with different sampling grids due to
camera motion. Hence, the reconstruction of the dynamic range and that of the frequency
content can be combined into a single problem and treated jointly.

From a collaboration with Yann Traonmilin, we propose an acquisition strategy that,
if the affine motion hypothesis holds and sufficiently long exposure time is available, guar-
antees the recovery of the real high dynamic range and high frequency information of the
original scene.

1.3 HDR imaging for dynamic scenes and hand-held cam-
era

The study of the static case, despite being necessary to fully understand the task of HDR
image generation, is often not directly applicable in practice. Indeed, most scenes present
moving objects and a tripod is rarely available to keep the camera at a fixed position.
The dynamic case brings very challenging problems to the generation of HDR images,
as it does to all multi-imaging techniques. Global misalignments due to camera motion
and local misalignments due to object motion make it impossible to directly combine
the input images according to (1.2). Figure 1.5 shows an example of the result obtained
when using (1.2) in the dynamic case. Ghosting artifacts appear all over the image giving
a completely unusable result.

Most HDR techniques for dynamic scenes, first use some kind of global alignment

19



Raw

TN Patches from
!nput . all images
images . Selected
To Patches

T1

— Irradiance
.22 > estimation

S

Y

Discarded
Patches

Figure 1.6: Diagram of the proposed method for multi-imaging HDR for dynamic scenes captured with
a hand-held camera.

Chose reference
image

method to correct camera motion and a de-ghosting technique to correct object mo-
tion [Srikantha and Sidibé 2012]. Moreover, the pixel-wise estimation proposed in (1.2)
does not take advantage of the redundant information existing in the input images, which
has been proven very useful to improve image quality in various patch-based denoising
techniques [Buades et al. 2008; Boracchi and Foi 2008].

In this work, we tackle these problems by taking advantage of the self-similarity exist-
ing in the input frames through a patch based approach. Two quite different approaches
are proposed. The first one is a multi-image approach making use of a standard digital
camera, as presented in the previous sections. The other is a single-shot acquisition strat-
egy, based on the idea of spatially varying pixel exposures (SVE) introduced by Nayar and
Mitsunaga [2000].

Non local HDR  We first propose a multi-image approach that we call non local HDR.
We address the previously mentioned problems by exploiting the self-similarity existing
in each input frame, as well as between frames, using a patch based strategy.

Figure 1.6 shows a diagram of the proposed method. First, a reference frame is chosen
among the 7" input frames captured with exposure times 7y, ..., 7. For each pixel p in
the reference frame, its set of similar patches is found comparing a neighborhood of p to
all patches contained in a search window centered at p in all the input frames. The patch
distance is equal to the L? distance normalized by the noise variance of the patches, which
is spatially variable and defined according to Model (1.1). If the patch distance to p is below
a threshold, the patch is kept, otherwise it is discarded.

As it will be shown in more detail in Chapter 5, for HDR imaging, having an accurate
model for the pixel’s noise variance is crucial in order to correctly threshold the patch
distance. Because images are captured with very different exposure times, they have very

20



Figure 1.7: Real data. Dynamic scene (pedestrians in the bridge and people next to the boat) acquired
using a hand-held camera. Left: Tone mapped irradiance estimation using the proposed non local
approach. No ghosting artifacts appear. Right first row: Input images (JPEG version). Right second
row: Extracts of the the normalized reference image. Right third row: Extracts of the results by Sen
et al. Sen et al. [2012]. Right fourth row: Extracts of the results by the proposed non local approach.
The result obtained by the proposed approach is far less noisy than the one by Sen et al.. Please see the
electronic copy for better color and details reproduction.

different noise levels, and a fixed threshold cannot correctly group very bright and very
dark patches at the same time.

The central pixels of the set of similar patches are assumed to share the same un-
derlying irradiance C,. Therefore, because we showed that the MLE is nearly optimal
for the irradiance estimation from 7" independent samples following the same distribu-
tion [Aguerrebere et al. 2014b] (Chapter 3), the irradiance at pixel p is computed as the
MLE from the central pixels of the similar patches.

The usage of a reference image and a patch similarity to restore this reference image
avoids the need of tedious global image registration and object motion detection. Indeed,
patch based denoising techniques have been applied in the multi-image case and have
been proven robust to image misalignments resulting from a hand-held camera as well
as to object motion [Buades et al. 2005b]. Furthermore, combining information from
multiple pixels gives a considerably less noisy result than current state-of-the-art HDR
methods.

Figure 1.7 shows an example of the results obtained with the proposed patch-based
approach. A comparison is made with the state-of-the-art method in HDR imaging for
dynamic scenes proposed by Sen et al. [2012]. The result is also compared with the in-
put reference image in order to show the original noise level. The denoising ability of
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Figure 1.8: Regular (left) and non-regular (right) optical masks for an example of 4 different filters.

the proposed approach can be verified in the extracted details. Moreover, since no im-
age alignment nor motion correction is needed, the result is completely free of ghosting
artifacts.

Single-shot HDR  Nayar and Mitsunaga [2000] were to our knowledge the first to in-
troduce an acquisition strategy to create HDR images from a single shot. The idea is to
place an optical filter, with spatially varying transmittance, adjacent to the conventional
image sensor in order to control the amount of light reaching each pixel. Hence, a single
shot captures an increased dynamic range compared to that of a conventional sensor. Fig-
ure 1.8 shows two examples of optical mask with four different transmittance levels. One
corresponds to a regular sampling pattern [Nayar and Mitsunaga 2000] and the other to a
random pattern [Schoberl et al. 2012a].

Being a single-imaging technique, this acquisition strategy leaves behind all the main
drawbacks of multi-imaging techniques, such as global image mis-alignment and ghost-
ing artifacts due to object motion. Another problem encountered by multi-imaging tech-
niques based on a reference image, as the non local HDR estimation presented above, is
the need to inpaint large unknown regions caused by saturation or under-exposure. SVE
acquisition, which avoids having large regions to inpaint, overcomes this problem.

However, new challenges appear. Unlike the multi-imaging techniques, where all the
pixels are correctly exposed in at least one of the input frames, in the single-shot acqui-
sition the brighter (darker) regions will become saturated (under-exposed) and need to
be restored somehow. Moreover, because less information is available in a single-shot
method, the noise problem is more dramatic, mainly in the darker regions, and definitely
needs to be addressed.

In this work, we propose to exploit the image self-similarity and the Gaussian mix-
ture models, which have been proven accurate at representing image patches [Yu et al.
2012; Zoran and Weiss 2011], in order to restore the unknown pixels (saturated or under-
exposed) and denoise the correctly exposed ones. A Bayesian general restoration method,
proposed in this work and presented in Chapter 6, is applied to reconstruct the dynamic
range content of the scene from a single image captured using SVE. As can be seen for
example in Figure 1.9, the proposed method manages to simultaneously reconstruct the
missing pixels and denoise the correctly exposed ones.
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Figure 1.9: Real data. Tone mapped version of the HDR image obtained by the proposed approach
(11.4 stops) and its corresponding mask of missing pixels (black). Please see the digital copy for a more
accurate visualization.
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1.4 A general image restoration method

The restoration method originally developed to generate HDR images from a single shot
acquired using SVE, introduced in the previous section, is actually a general restoration
method that can be used in several applications beyond HDR imaging. More precisely, it
can be used in any application that requires the simultaneous reconstruction of random
missing pixels and the denoising of existing ones.

Many examples can be found where this kind of degradation appears. For example
the combined additive and impulsive noise present in raw images, the limited resolution
and dynamic range as mentioned in Section 1.2, the noise and missing pixels as in the
single SVE image HDR acquisition strategy introduced in the previous section. It can also
applied, of course, to treat each problem separately, for the inpainting of random missing
pixels or the classical denoising of additive noise.

Many of the recent state-of-the-art restoration methods tackle this kind of problems
using patch-based approaches. Some of them rely on patch models and a Bayesian re-
construction method to restore degraded patches. In particular, Gaussian mixture models
(GMM) have been proven successful to model natural image patches and the Bayesian
framework has been proven adequate to exploit this patch prior and restore highly de-
graded patches.

In this work, we propose a new restoration approach that aims at simultaneously de-
noising and restoring missing pixels. It is inspired by the combination of two power-
ful patch-based restoration methods: the general framework for the resolution of inverse
problems proposed by Yu et al. [2012], called Piece-wise Linear Estimators (PLE) and the
non-local Bayesian based denoising algorithm (NLB) proposed by Lebrun et al. [2013].
We combine the strengths of both methods into a single algorithm. On the one hand, the
ability of PLE to restore missing pixels, and on the other hand the denoising capacity of
NLB.

The proposed method makes use of a Gaussian prior for image patches, whose mean y
and covariance matrix 3 are estimated locally from similar patches. In Bayesian statistics,
p and ¥ are known as hyperparameters, since they are the parameters of a prior distribu-
tion, while a prior on them is called an hyperprior. In order to deal with missing pixels,
which is not possible in NLB, we rely on an hyperprior for ;¢ and 3. This hyperprior is
used to compute a MAP estimator for the Gaussian parameters ;o and 3. Then, the patch
restoration is performed by computing the MAP estimator of the patches with the locally
estimated Gaussian prior.

The proposed approach has been tested in a series of experiments presenting differ-
ent degradation scenarios: random missing pixels with different masking rates, additive
Gaussian noise with different noise levels and a combination of both. Results show that the
restoration capability of the proposed approach outperforms that of PLE, both for plain
interpolation and in the case of combined interpolation and denoising. The advantage
of the proposed method is specially clear for high masking rates. On the other hand, the
denoising power is shown to be very similar to that of NLB, which was expected since in
the case of denoising only (no missing pixels) the estimation performed by both methods
is quite close.
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Outline of the document
This document is organized as follows:

Chapter 2: Introduces the camera acquisition model used throughout the work.

Chapter 3: Presents the computation of the performance bounds, the inclusion of satu-
ration information and the study of the influence of the uncertainty in the camera
parameters on the irradiance estimation.

Chapter 4: Presents the proposed HDR-SR acquisition strategy.

Chapter 5: Describes the proposed multi-image approach for HDR imaging with dy-
namic scenes and hand-held camera.

Chapter 6: Presents the proposed general Bayesian patch-based reconstruction method
with an application to HDR imaging from a single shot captured with spatially vary-
ing pixel exposures.

The bibliographic analysis for each subject is performed separately in the correspond-
ing chapters. Hence, the one corresponding to the static case can be found in Chapter 3,
the one for the dynamic case in Chapter 5 and the one for the single-image HDR in Chap-
ter 6.
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2 Camera acquisition model

The accurate modeling of the acquisition process in digital cameras is of great interest for
a wide variety of domains concerning the use of digital images. In particular, it is of great
utility in image processing, computational photography or computer vision applications.
For instance, the statistical characterization of image data allows to develop denoising
techniques suited to particular noise types, which may outperform general techniques.

In this chapter we present a detailed analysis of the digital image acquisition process
which allows us to introduce a statistical model of the sensor raw data. The accuracy of
this model is essential to its posterior utility. It is thus crucial to take into account all the
main noise and uncertainty sources in the proposed model. This model is fundamental for
the work presented hereafter since most of the performed analysis and proposed methods
are based on it.

Several articles present and make use of statistical models of the sensor raw data. In
HDR imaging, we can cite the works by [Tsin et al. 2001; Robertson et al. 2003; Kirk and
Andersen 2006; Granados et al. 2010; Foi et al. 2008]. Different levels of complexity can be
found among them. In particular, a model similar to the one presented in this chapter can
be found in [Kirk and Andersen 2006; Granados et al. 2010; Foi et al. 2008]. Nevertheless,
to the best of our knowledge, none of these articles present a detailed explanation of the
physical origin of each noise source and the corresponding justification of the statistical
model associated to each one of them. This rigorous analysis enables us to prioritize the
different noise sources and obtain a simplified model which is both usable and realistic.

2.1 Acquisition of digital images

Two technologies are used for camera sensors: charge-coupled devices (CCD) and com-
plementary metal-oxide—semiconductors (CMOS). Even if the operation principles of
both sensors differ, a very similar acquisition model can be proposed for both of them,
illustrated by a simplified diagram in Figure 2.1. In short, CCDs and CMOS both trans-
form incoming light photons into voltage output values. More precisely, these sensors
are silicon-based integrated circuits including a dense matrix of photo-diodes that first
convert light photons into electronic charge [Theuwissen 1996; Brouk et al. 2008]. Light
photons interact with the silicon atoms generating electrons that are stored in a poten-
tial well. When the potential well is full, the pixel saturates, and no further electrons are
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Figure 2.1: Simplified diagram of the main stages of the acquisition process and the principal noise
sources at each stage.

stored '.

In the case of CCDs, the accumulated charge may then be efficiently transferred from
one potential well to another across the chip, until reaching an output amplifier where
the charge is converted to a voltage output value. This voltage is then quantified to give
the corresponding pixel value. For the CMOS technology, the impinging photons are
also accumulated in the photo-diodes. However, unlike CCDs, CMOS pixels have con-
version electronics to perform the charge to voltage conversion at each location. This
extra circuitry increases noise and generates extra fixed pattern noise sources compared to
CCDs [Brouk et al. 2008].

The main uncertainty sources at each stage of the acquisition process are described in
more details in the following paragraphs, and listed in Figure 2.1. We divide them into two
categories: random noise sources, and spatial non-uniformity sources.

2.1.1 Random noise sources

Two physical phenomena are responsible for the random noise generation during the cam-
era acquisition process: the discrete nature of light, which is the cause of the photon shot
noise, and thermal agitation, which explains the random generation of electrons inside
the sensor when the temperature increases.

Photon shot noise The number of photons C? impinging the photo-diode p during a
given exposure time 7; follows a Poisson distribution, with expected value C,7;, where C,
is the radiance level (in photons per unit-of-time) reaching the photo-diode. If we sup-
pose that an electron is generated for each absorbed photon (this depends on the photon
energy, therefore on the considered wavelength), the number of electrons generated on
the potential well is also Poisson distributed. In an ideal case with no other noise sources,
the voltage measured at the sensor output should be proportional to the collected charge:

'In this case, additionally generated electrons may spill over the adjacent wells, resulting in what is called
blooming. This phenomena, well known in astronomic photography, is mostly observed with very long
exposures. We neglect it in this work.
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Figure 2.2: Noise variance vs. exposure time for dark frames (blue). The red “step” shows the mean noise
variance for the exposures below 1 second and then for those above 1 second. The band delimited by
the green lines represents one standard deviation from the mean value. Notice that the noise increases
for exposures above 1 second.

V' = g, CpTi, where C,7; is the number of absorbed electrons, and where g, is the equiv-
alent capacitance of the photo-diode.

Dark current Some of the electrons accumulated in the potential well do not come from
the photon to electron conversion but result from thermal generation. These electrons are
known as dark current, since they are present and will be sensed even in the absence of
light. Dark currents can be generated at different locations in the sensor and are related
to irregularities in the fundamental crystal structure of the silicon, e.g. metal impurities
(gold, copper, iron, nickel, cobalt) and crystal defects (silicon interstitials, oxygen precip-
itates, stacking faults, dislocations) [Theuwissen 1996]. For an electron to contribute to
the dark current it must be thermally generated but also manage to reach the potential
well. This last event happens independently for each electron. As a consequence, it can
be shown that the number of electrons D? thermally generated and reaching the poten-
tial well p is well modeled by a Poisson distribution with expected value D? [Theuwissen
1996], depending on the temperature and exposure time. This noise is generally referred
to as dark current shot noise or dark shot noise. In this paper, in order to make explicit the
dependence on the exposure time 7;, we name this dark shot noise D?.

It has been stated that dark currents can be neglected for exposure times under 1 sec-
ond [Martinec b]. The following experiment was conducted to verify this result for the
Canon 7D camera. Dark frames (frames acquired in a dark room with a camera without
lens and with the cap on) were acquired for exposure times in the range 1/8000 to 10 sec-
onds and ISO set to 100. The noise variance for each frame was computed as the variance
from all pixels. This variance includes the readout noise variance and the dark current
shot noise variance. Figure 2.2 shows the obtained results. The noise variance is nearly
constant up to 1 second and then increases with the exposure time for exposures above 1
second.

The dark current expected value increases with the exposure time. Since this behavior
is not observed for the variance values between 1/8000 and 1 second, we conclude that
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Figure 2.3: Readout noise. Green: histogram of the raw values taken by 200 realizations of one pixel
acquired with virtually no light (realizations are obtained from 200 bias frames acquired with a Canon 7D
camera set to its shortest exposure 1/8192.0 s). Violet: Gaussian probability density function with mean
and variance computed from the raw data. The distribution of the raw pixels is accurately approximated
by a Gaussian distribution.

the dark current variance is masked by the readout constant variance and is therefore
negligible with respect to it for exposure times below 1 second.

Readout noise In the readout stage of the acquisition process a voltage value is read for
each pixel. This voltage is read as a potential difference from a reference level which repre-
sents the absence of light. Thermal noise N, ., inherent to the readout circuitry, affects
the output values. In the literature, it is widely admitted that this noise is accurately mod-
eled as Gaussian distributed [Mancini 2002]. It is also known as reset noise, in reference to
the reference voltage, commonly named reset voltage.

Notice that modeling the noise source as Gaussian distributed means that pixels may
take negative values. In some cameras, the reference voltage is assigned a large enough
value in the AD conversion so that voltage values below the reference are assigned positive
pixel values. For this reason, the raw data for an image taken with the cap on will give pixel
values close to the offset value (e.g. 2048 for the 14 bits Canon 7D). Alike the raw pixels,
after subtracting the offset, the inverse of the camera response f~!(z) may take negative
values.

The readout noise N,,; includes also the remaining circuitry noise sources between the
photoreceptor and the AD circuitry. They are all thermally generated and thus modeled
as Gaussian noise. Some other minor sources include frequency dependent noise (flicker
noise) but we wont consider them in this analysis.

Figure 2.3 shows the histogram of the raw values taken by 200 realizations of one pixel.
These realizations are obtained from 200 bias frames (images acquired with virtually no
light, i.e, in a dark room with a camera without lens and with the cap on using the shortest
possible exposure) acquired with a Canon 7D camera set to its shortest exposure (1/8192.0
s). The camera acquires virtually no light, thus the pixel value captures the readout noise
in that pixel (the dark current can be neglected as shown in the previous experiment). The
Gaussian probability density function, with mean and variance computed from the raw
data, is superposed for comparison. The Gaussian distribution accurately approximates
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(a) Average bias frame. (b) Bias frame.

Figure 2.4: Column noise. Left: Average of 200 bias frames acquired with a CMOS sensor. Right: Bias
frame acquired with a CMOS sensor.

the readout noise distribution. Moreover, this experience shows the presence of the offset
value previously mentioned. Even if the images are acquired with no light, the mean pixel
value is not zero but 2048.

2.1.2 Spatial non-uniformity sources

Besides random noise sources, several uncertainty factors, all related to the spatial non-
uniformity of the sensor, should be taken into account in the acquisition model.

Fixed pattern noise sources

Photo-response non-uniformity (PRNU) The PRNU describes the differences in pixel
responses to uniform light sources. Different pixels will not produce the same number
of electrons from the same number of impacting photons. We assume one electron is
generated per absorbed photon, but not all the impinging photons will be absorbed in the
photo-diode. This is caused by variations in the pixel geometry, substrate material and
micro-lenses [Irie et al. 2008]. The effect of PRNU is proportional to illumination and is
prominent under high illumination levels.

The fact that a photon can be absorbed or not in the photo-diode is a binomial selec-
tion of the Poisson process of impinging photons. Hence the PRNU can be modeled as a
multiplicative factor a,, applied to the parameter of the Poisson variable C.

Dark-current non-uniformity (DCNU) The DCNU represents the variations in dark
current generation rates from pixel to pixel. This variation is intrinsic to the material
characteristics of the sensor cells and causes variations in the expected value of the dark
current from pixel to pixel. As the PRNU, the DCNU can be modeled as a multiplicative
factor d,, applied to the parameter of the Poisson variable D?.

CCD specific sources

Transfer efficiency After charge is collected at each pixel, the CCD must transfer it to
the output amplifier for readout. The transfer efficiency of a real CCD sensors is less

31



Signal Dependent Temperature Dependent  Exp. Time Dependent

Photon shot noise Thermal noise Photon shot noise
PRNU Dark current Dark current shot noise
Thermal noise

Table 2.1: Classification of the noise sources according to their dependence on signal, temperature and
exposure time.

than 1. Charge that is not correctly transferred is either lost or deferred to other transfers,
affecting other pixels count values. Current buried-channel CCD transfer efficiency is
above 0.99999 [Healey and Kondepudy 1994] thus it will not be taken into account in the
acquisition model.

CMOS specific sources

Column noise The readout for CMOS sensors is performed line by line. At a given time,
all columns of one line are readout through the output column amplifiers. Differences
from one column amplifier to another introduce a column fixed pattern. Because the
human eye is adapted to perceive patterns, column noise may be quite disturbing even if
its contribution to the total noise is less significant than that of white noise [Martinec a].

Figure 2.4a shows the average of 200 bias frames acquired with a CMOS sensor (Canon
7D set to exposure time 1/8192.0 s). The column pattern on the readout noise is clearly
visible. Figure 2.4b shows an example of one bias frame. The column pattern is not so
evident from just one frame, but a subtle column pattern is still noticeable.

Another interesting classification of the noise sources relies on their dependence on
signal, temperature and exposure time. Table 2.1 shows such a classification of the different
noise sources.

2.1.3 Quantization noise

A last source of noise in the acquisition process takes place during the conversion of the
analog voltage measures into digital quantized values or data numbers (DN). When the
signal variation is much larger than 1 DN *, the quantization noise can be modeled as
additive and uniformly distributed. In that case, it is usually negligible compared to the
readout noise [Healey and Kondepudy 1994]. This being even more remarkable for mod-
ern cameras, which can easily have 12 or 14 bits for quantization.

The following experiment was conducted to verify the previous statement. The vari-
ance of a bias frame gives the variance caused by the readout process including the quanti-
zation noise. Several tests were performed with a Canon 7D and a Canon 400D, acquiring
bias frames with different ISO settings. The variance values obtained are: Canon 400D,
ISO 100 var = 2.5, ISO 400 var = 6.3, ISO 800 var = 17.2. Similar values are found in [Grana-
dos et al. 2010] for a Canon 5D set to ISO 400 (var = 6.5) and a Canon PowerShot Ss set to

>This is the case for non low light conditions since under the Poisson model, the irradiance mean and
variance are equal so a low signal implies low variance.
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Figure 2.5: Camera response function for the linear + saturation model (raw data).

ISO 400 (var = 18). As previously stated, except in low light conditions, the quantization
noise can be modeled as uniformly distributed with variance equal to 1/12. Hence, in all of
the tested configurations, the contribution of the quantization noise to the total readout
variance is negligible (in the worst case 2.5 compared to 1/12). Moreover, the variance of
the quantization noise in the worst case scenario (regardless of the illumination level) is
1/4, the worst possible error being 1/2. Thus, the contribution of the quantization noise
to the total readout variance can also be neglected in low light conditions for the tested
configurations (1/4 compared to 2.5). However, the margin is not so large in that case and
counterexamples are certainly possible.

Given the recent advances in digital images acquisition techniques, and the corre-
sponding decrease on the readout noise values, it may be interesting to include the quan-
tization noise effects in order to develop a more precise camera acquisition model.

It is known that even if the power of quantization noise is negligible with respect to the
other noise sources, its structured nature (it is not white) may make it noticeable after non
linear post-processing. Nevertheless, when considering a noise model for raw data only,
i.e., before non linear post-processing, the hypothesis of negligible quantization noise,
except in low light conditions, remains valid.

2.1.4 Acquisition model

Equation (2.1) proposes a simplified model including the previous noise sources. Pixels
are modeled as independent and following the same model (the dependence on position
p is avoided to simplify the notation):

Zz' = f(gout [gcv (Cz + Dz) + Nreset] + Nout + Q>7 (2-1)

where Z; is the pixel value, f is the camera response function, g, is the camera gain, and
Q is the uniformly distributed quantization error. The term

Gout [gcv(cz + Dz) + Nreset] + Nout

can be rewritten as the addition of a Poisson distributed random variable with expected
value \; = ar;,C + dD;, multiplied by the gain factor ¢ = g.,gout> and a Gaussian dis-
tributed noise component Nz = gousNyeser + Noyu With mean pig and variance o'%.

A similar model is presented by Foi et al. [2008], where they propose to model digital
camera raw data as a mixed Poisson-Gaussian model. The difference between the models
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is the inclusion of the gain g.,, modeling charge to voltage conversion. This constant is
not included in Foi et al. model, but the general idea remains the same.

The previous model is valid for both CCD and CMOS sensors. In the CCD case, the
readout noise sources can be considered as identical for all pixels. Thus g, ;g and 0% are
spatially constant. On the contrary, in order to model column noise for CMOS sensors,
different g, yz and 0% parameters should be considered for each column. In this work we
decide not to include the column noise pattern in the proposed model and consider g, ;i
and 0% as spatially constant parameters.

For the values usually taken by \; = a7;C + dD;, the Poisson distribution can be
correctly approximated by a Gaussian distribution with mean and variance equal to ;.
Regarding the relative importance of each noise source, under low illumination conditions
the primary noise source is the reset noise, while for high illumination the major noise
source is the photon shot noise [Healey and Kondepudy 1994]. The dark currents can be
neglected for exposure times below 1 second [Martinec b; Aguerrebere et al. 2012] and,
except in low illumination conditions, the quantization noise can be neglected compared
to the readout noise [Healey and Kondepudy 1994; Aguerrebere et al. 2012].

Simplified model As a consequence of the previous statements, and assuming 7; < 1
second, we can assume that the variable f~!(Z;) follows a Gaussian distribution N'(gar; C+
g, 9*ar;,C + 0%). In the case of raw data, f is a linear function before attaining its sat-
uration threshold (see Figure 2.5). Thus for non saturated samples the model becomes

Z; ~ N (gar;C + pg, g*ar;C + 0%). (2.2)

This model will be used as a starting point in the analysis and methods proposed along
this work as presented in the following chapters.

2.2 Camera calibration procedure

In this section we describe the camera calibration procedure followed in this work in order
to estimate the camera parameters. This procedure is based on the work by Granados et al.
[2010].

Readout noise mean and variance The readout noise mean and variance are computed
from a bias frame. According to Model (2.2), where the readout noise mean and variance
do not depend on the pixel position, these can be obtained computing the empirical mean
and variance from all the pixel values of the bias frame,

N N
. 1 .
fr = 'E_ b; 6% N 1 32—1 (bj — pr)?, (2.3)
where b;, j = 1,..., N are the pixel values of the bias frame.

This estimation neglects the variance of the dark current and the quantization noise
with respect to that of the readout noise.
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Gain In order to estimate the camera gain we first note that, from Model (2.2), the mean
and variance of any pixel Z verify

pz = gatC + pg (2.4)
a% = ggaTC + 0%, (2.5)
thus we have )
Uz — 0
Oz — MR

Flat fields (i.e., images captured illuminating the sensor with a spatially uniform, narrow
band light source) are thus used to estimate the pixels mean and variance and compute
the corresponding g value. The pixels mean is computed according to

N

. 1
MZ:NZZ]‘7 (2'7)
j=1
where z;, j = 1, ..., N are the pixel values of a flat field. The pixels variance is computed

from the difference of two flat fields in order to compensate for the variance introduced

by the PRNU effect
N

. 1
0-% = m Z(Z; — Z?)Q, (2.8)
7=1

where z; and z are the corresponding pixels of the two flat fields. Finally we have,

ey e (7) — 7)) — o
g= TN : (2.9)
N 2je1% — MR

In practice, the creation of a flat field is not a trivial task and can highly complicate the
calibration procedure. An alternative to this is to compute the gain factor from image
sub-regions that correspond to flat regions. Instead of computing the gain factor from all
image pixels, we use all the pixels in the image sub-regions that correspond to the same
illumination level. This is possible since the gain factor is a global parameter (i.e. the
same for all pixel values), and its value should remain the same either computed from the
complete flat frame or from a corresponding sub-region. In order to have a more robust
estimate, the average of several estimates from flat sub-regions should be considered.

Photo response non uniformity Flat fields can also be used to estimate the spatially
varying factors of the photo response non uniformity. From Model (2.2) we have

7, = 9a;7C + i, (2:10)

where Z; denotes the j-th pixel location of the flat field. The mean (17, can be estimated
from M flat fields as

1 M
iz, = 77 > 7" (211)

m=1
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where 7" denotes the j-th pixel location of the m-th flat field. Then the PRNU factor at
location j can be estimated as

a; = Pz, — PR (2.12)

=T=n .
Nzhﬂ Kz, — HR

Saturation threshold Most saturated samples are clearly identifiable since they are as-
signed the maximum output pixel value. However, some saturated samples may be as-
signed a slightly inferior value due to readout noise. For this reason, the saturation thresh-
old should be set to a percentage (98% in our tests) of the maximum output pixel value.
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3 HDRimaging for static scenes and static
camera

As explained in the introduction, high dynamic range (HDR) imaging is the field of imag-
ing that seeks to accurately capture and represent scenes with the largest possible irra-
diance range. Due to technological and physical limitations of current optical sensors,
nowadays the most common way to reach high irradiance dynamic ranges is by com-
bining multiple low dynamic range photographs, acquired with different exposure times
T1, T, ..., 7r'. Indeed, for a given irradiance C' and exposure time 7;, the corresponding
pixel value is a function of the received luminous energy 7,C. Hence, using different ex-
posure times allows to sample the camera response function at different operating points
thus avoiding saturation for at least some of the exposures and keeping details in both
dark and bright regions. This acquisition process is called exposure bracketing. Of course,
the more photographs spanning the whole range of exposure times, the better the result.
However, for practical limitations, exposure bracketing in real situations can rarely exceed
a few snapshots, say 2 to 6.

In this chapter we concentrate on the problem of estimating the irradiance map, that
is the irradiance reaching each pixel, from a reduced number of photographs captured in
controlled conditions (static scene and static camera) with a given set of exposure times.
More precisely, we conduct a thorough analysis of the HDR image estimation problem, in
order to establish its performance limits and to determine if current estimation techniques
are close to these limits. Part of this study also consists in quantifying how these limits
are affected when samples saturate, and when uncertainties are introduced in the camera
parameters calibration process. The analysis presented in this chapter is conducted under
the following hypotheses:

1. The camera response function is assumed linear. The estimation is done from raw
samples for which, ignoring noise sources, the camera response function is linear.

2. The photographs are perfectly co-registered and possible radiometric changes have
been compensated.

3. The ISO setting is assumed to be fixed for all images, thus the gain factor is constant.

!An alternative method, using a single image acquired with spatially varying pixel exposures, is presented
in Chapter 6.
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4. The considered estimators are unbiased or nearly unbiased and the computed bounds
set the performance limits for unbiased estimators. This hypothesis is motivated
by the fact that most of the existing estimators, among them the best perform-
ing [Granados et al. 2010] and most well known ones [Kirk and Andersen 2006;
Mann and Picard 1995; Debevec and Malik 1997; Mitsunaga and Nayar 1999; Rein-
hard et al. 2005], are nearly unbiased. Biased estimators are sometimes preferred
since they may achieve a lower mean squared error (MSE) than unbiased ones.
Nevertheless, we do not study the performance bound for biased estimators since
it depends on the bias and must therefore be stated for each bias type. Notwith-
standing, notice that the methodology here conducted can be easily extended to a
given type of biased estimators by adapting the computation of the bound includ-
ing the corresponding correction term (first derivative of the bias) and repeating the
experimental stage.

Assuming that these hypotheses are satisfied, we analyze in this chapter the following as-
pects:

1. We present a study of the theoretical performance bounds of the HDR estimation
problem. More precisely, given a small number of samples per pixel (say 2 to 6), we
determine the lowest MSE that can be attained by combining these samples. One
question we address is why the MLE outperforms the other estimators proposed in
the literature, and how far it is from the optimal MSE. The optimality of the MLE
is far from obvious in such a non asymptotic case. We show, however, that there is
not much room for improvement.

2. Surprisingly, all the methods proposed in the literature discard saturated samples.
Nevertheless, saturated samples certainly carry some useful information. For in-
stance the exposure time at which they have saturated. As a second contribution,
we study the usefulness of this information, and we present a way to incorporate
it in the whole estimation process. Not surprisingly, the information contained in
saturated samples turns out to improve the irradiance estimation.

Another aspect treated in this work deals with a very significant problem that does not
seem to have received much attention in the literature: the sensitivity of irradiance esti-
mation to uncertainties in the camera parameters. This is a crucial question, since these
parameters are obtained through a calibration process, which is of course not error-free.
Through an experimental analysis, we show that irradiance can only be accurately esti-
mated if the camera parameters are very carefully calibrated. Moreover, a very careful
calibration is also found to be critical in order to obtain a reliable ground-truth for evalu-
ations with real data. Even if this part of the study is conducted with a limited number of
experiments, the interesting preliminary results open a path to explore this topic.

The work presented in this chapter has been published in the SIAM Journal on Imag-
ing Sciences [Aguerrebere et al. 2014b].

The chapter is organized as follows. In Section 3.1 we present a summary of existing
HDR methods for the case of static scene and static camera. In Section 3.2, we derive per-
formance bounds for the HDR estimation problem, and we compare some state-of-the-art
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estimators against the bound. The use of saturated samples in the irradiance estimation
problem is analyzed in Section 3.3. In Section 3.4 we present a sensitivity analysis of the
estimation problem with respect to uncertainties in camera parameters. The main con-
clusions of this chapter are summarized in Section 3.5.

3.1 Previous work

To the best of our knowledge, the first HDR imaging technique in the framework of digital
photography, based on exposure bracketing, was proposed in 1995 by Mann and Picard.
The method assumes that the camera radiometric response function f mapping luminous
energy to pixel values has been previously calibrated. Then, if z' denotes the image value
at pixel p for the exposure time 7;, the irradiance estimate at that position C’p is computed
from exposure times 7y, ..., Ty as

ZT w? (=)

i=1 "1 T
Cp = : TZ ’ (3.1)

Zz’:l wf

were w} is the weight assigned to the exposure ¢ for pixel p. In [Mann and Picard 1995],
small weights are assigned to extreme pixel values — very low or close to saturation — based
on the claim that the camera response function calibration is less accurate at these values.

This approach suffers from mainly two problems. The first one is that the weights are
somehow arbitrary and not derived from a noise model of the pixel values. The second
one is that the calibration of the camera response function is a problem on its own, and is
prone to errors that are directly transferred to the irradiance estimator. The work of Mann
and Picard represents a very important contribution, since it inspired several approaches
based on exposure bracketing, whose main difference relies on the way photographs are
combined, that is, on the choice of the weights w?!. See [Kirk and Andersen 2006; Grana-
dos et al. 2010] for an interesting review and comparison of these methods.

Irradiance estimation methods can be classified according to different criteria. One of
them is whether the method assumes a linear [Robertson et al. 2003; Kirk and Andersen
2006; Granados et al. 2010] or a non-linear camera response function f [Mann and Picard
1995; Debevec and Malik 1997; Mitsunaga and Nayar 1999; Tsin et al. 2001; Reinhard et al.
2005]. The former are meant to be used with the camera raw data, i.e. the pixel values
before any camera post-processing (demosaicking, white balance, etc). For raw data, the
camera response function is linear since, ignoring noise sources, each pixel value is pro-
portional to the number of photons reaching the corresponding sensor cell. The latter
need to define a method to estimate the camera response function and its inverse.

In this work we will assume a linear camera response. With the currently available
technology and storage capacity of cameras, it is entirely reasonable to assume that we
have access to the raw data or that the processing can be done directly on the raw data
inside the camera. For those methods like Mann and Picard’s, which consider non-linear
response functions, we will therefore consider the linear response counterpart based on
raw data.
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Another meaningful classification of irradiance estimation methods is based on the
objective function that is optimized. Three main groups can be distinguished, whether
the objective function is based on the camera response function [Mann and Picard 1995;
Debevec and Malik 1997], the SNR [Mitsunaga and Nayar 1999; Reinhard et al. 2005] or the
variance [Tsin et al. 2001; Robertson et al. 2003; Kirk and Andersen 2006; Granados et al.
2010; Hasinoff et al. 2010]. The methods in the first group [Mann and Picard 1995; Debevec
and Malik 1997] propose to compute the weights based on the uncertainty of the sample
values given by the camera response function. It is claimed that extreme pixel values are
less accurate. Therefore lower weights are assigned to those values and mid-range values
are prioritized. The SNR based methods [Mitsunaga and Nayar 1999; Reinhard et al. 2005]
weigh samples according to their SNR, which is computed from the input samples.

Variance based approaches are among the most recent ones. An idea common to all
of them is the use of a statistical model of the camera acquisition process. This model
takes into account several noise sources allowing to improve the irradiance estimation.
Tsin et al. [2001] were the first ones to propose this kind of approach. They characterize
each pixel as a random variable whose distribution parameters depend on the unknown
irradiance. Then they estimate the irradiance as an average weighted by the standard
deviation of the samples. Robertson et al. [2003] propose a statistical model where the
mean pixel value depends on the unknown irradiance. Then they compute the irradiance
with a maximum likelihood estimator (MLE). The MLE is the average of the input samples
weighted by the inverse of their variances. However, since they do not manage to estimate
these variances they fix their values by an ad-hoc procedure.

More recently, a new variance-based approach was introduced by Kirk and Ander-
sen [2006]. The main difference with the previous ones relies on the camera acquisition
model. In this model, both the mean and the variance of the pixels depend on the un-
known irradiance (because of the Poisson nature of the photon shot noise). They propose
to estimate the irradiance also using a MLE. However, under this model a closed-form
does not exist for the MLE. To overcome this limitation they ignore the variance depen-
dence on the irradiance and find a closed-form for the MLE which depends on the vari-
ance. Then, they use the known dependence of the variance on the irradiance to compute
the variance from the input samples.

The same line of work is followed by Granados et al. [2010] who propose a still more
accurate model and solve the variance-irradiance dependence problem with an iterative
method. Basically, at each iteration the weights are computed from the current irradiance
value and the irradiance is updated according to the MLE (the one obtained ignoring the
variance dependence on the irradiance).

In the imaging industry, a classical choice is the one obtained by setting w? = 7; in
Equation (3.1). The estimator thus obtained is the minimum variance unbiased estima-
tor when the input samples are assumed to follow a Poisson distribution with mean and
variance depending on the irradiance parameter. As presented in Chapter 2, the Poisson
distribution correctly models one of the main noise sources of digital images acquisition:
the photon shot noise.
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3.2 Performance Bounds

This section is devoted to the irradiance estimation problem and to the computation of
the corresponding performance bounds under the acquisition model introduced in Chap-
ter 2 (Section 2.1.4). Let us recall the basics of the problem. For each pixel of the sensor,
we observe the vector variable z = 7y, ..., zp corresponding to different exposure times
T1,...,Tr. Each z; is a realization of a random variable Z; following Model (2.2)

Zi ~ N(gariC + ug, g*at;iC + o%),

and we wish to estimate the irradiance (' at this pixel, i.e the average number of photons
reaching the pixel per unit time. This estimation will be done on a per-pixel basis, assum-
ing that images are perfectly registered. Throughout this section, we assume that saturated
samples have been discarded, as is done in all existent irradiance estimation methods. The
inclusion of saturated samples and its impact on the estimators performances will be stud-
ied in Section 3.3.

After an introduction on the irradiance estimation as a statistical problem, the section
addresses the computation of the Cramér-Rao lower bound (crLB) for this model and the
question of its attainability. We then proceed with the study of the comparative perfor-
mance of existent estimators against the crLB. We focus in particular on the MLE since
it was found to outperform experimentally other methods in [Kirk and Andersen 2006;
Granados et al. 2010].

3.2.1 Irradiance estimation: a statistical problem

Finding the optimal estimator C' of C' from the observations z; is not obvious in practice.
By “optimal”, we mean that the estimator C should minimize the quadratic risk (or mean
square error) E[|C' — C'|?]. The main difficulties in this estimation come from the small
sample size (between 2 and 6 samples in practice), and from the low SNR of the samples
when C' is low.

Biased or not biased? The MSE of C' can be decomposed as the sum of its squared bias
and its variance. One question that should be raised is thus the one of the right balance
between these two terms As underlined in the introduction, most of the irradiance esti-
-, with
weights w; summing to 1. In most cases, the weights depend on the input samples, thus

the estimators are a priori biased. However, since E [ ] = (), they are unbiased to a

qaT;
first order approximation *>. Only two methods differ from the others in this regard: the
approach by Debevec and Malik [1997], which is also unbiased to a first order approxima-
tion, but only as an estimator of In C', and the MLE-based approach by Granados et al.
[2010], which is unbiased only asymptotically. In practice, we checked that for all the

(E[lC—C[)”
C?2

tested estimators, the ratio remains very close to 0 whatever the value of C (see

>The delta method [Rice 1995] can be used to compute a first order approximation of the expected value
of the estimators.
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Section 3.2.4). This suggests that for all these estimators, the MSE is strongly dominated
by the variance. As a consequence, in the following we mainly focus on unbiased (or with
negligible biases) estimators.

Is MLE a good estimator of C'?  The second question coming naturally to mind concern-
ing C' is the one of the optimality of the MLE. Indeed, the MLE is known to be asymp-
totically efficient. However, in the HDR imaging problem the sample size is too small
(normally in the order of 2 to 6) to consider the asymptotic approximation. Yet, even with
a finite number of samples (less than 6 in our case), it can be shown that the MLE would
be an optimal solution in terms of MSE if the variance g?aC'r; 4+ 0% in Model (2.2) were a
constant or were proportional to C'.

The constant variance approximation is valid in very low irradiance conditions (¢?aC'r;
0%), resulting in a linear MLE, more precisely, it is the weighted average of the irradiance
estimations for each exposure. In high irradiance conditions, the variance can be approx-
imated as proportional to C' (g?aC't; > 0%). The MLE for that case is not linear but has
a closed-form. However, under Model (2.2), the MLE does not have a closed-form. The
solutions proposed in the literature to compute it numerically consist in simplifying the
model [Kirk and Andersen 2006] and making use of an iterative approach [Granados et al.
2010]. Nevertheless, the quality of the estimation in this general case cannot a priori be
easily stated. One of the goals of this section is to answer this question.

3.2.2 Cramér-Rao lower bound for irradiance estimation

The previous paragraphs motivate the study of the performance bounds of the estimation
problem. Once the expected performance limits are known, we may determine whether
they can be reached, and compare the results obtained by existing estimation methods
against them. This comparison states how close existing methods are to the limits, and
allows to quantify how much room is left for improvement.

The performance bound of the problem is given by the Cramér-Rao lower bound the-
orem. The Cramér-Rao lower bound states the minimum variance that we can expect to
achieve (for a given bias). Knowing that the samples distribution is given by (2.2), we
compute the Cramér-Rao lower bound for unbiased estimators.

Proposition 1. Given 7y, . .., Zy, independent Gaussian distributed random variables with
mean and variance given by j; = gar;C and 0? = g*at;C + 0% (Model (2.2)), the variance
of any unbiased estimator C' of the irradiance parameter C from zy, . . .,z observations of
these random variables verifies

(Cf) > c a (ga’Ti)Q + (gga/]—i)2 ( 2)
var RLB = E )
- = g?ar,C + 0% 2(g%aiC + 0%)? ’ 3

where Ty, . .., Tr are the considered exposure times.
Proof. The logarithm of the probability density function of Z = (Zy, ..., Z7) is

(Zi - gaTi0)2

T
1
Inp(Z,C) = 5 Zln(27r) +In(g*ar,C + o%) + g2ar,C + 0%

=1

(3.3)
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The second derivative is given by

*Inp(Z,C) 1 i (gari)*(g*ar;,C — 2¢%72 — 4g0%7; + g*0% — 20%,)

0C? T2 — (g%ar,C + 0%)3 (3-4)
The cruB is defined as
c ! 1 (3.5)
RLB = = ) )
I(C 82 1n p(Z,C
(©) ~ p[Pa

Using the linearity of the expectation, and that E(Z;) = gar;C, var(Z;) = g*a7;C + 0%, it
follows that

. 9 T 2.2 )?
E[M]:_(Q_Z 2or _loom) ) (36)

0C? 2 &= g?ariC + 0% (¢%amiC + 0})?

Then,

CRLB = [Z (gm—i)Q + (gQCLTi)Q )2] . (3.7)

P g*ar,C + 0% 2(g%ar,C + 0%

]

The MSE of any unbiased estimator is bounded by this expression. Notice that for high
irradiance values, where 012% can be neglected, the crLB does not depend on the specific
exposure times but on the total acquired time, i.e., the sum of the exposure times.

The immediate question to be raised is whether an efficient estimator exists (i.e. an
unbiased estimator that attains the crLB). The Cramér-Rao lower bound theorem states
that an unbiased estimator may be found that attains the bound for all C' if and only if the
first derivative of the probability density function can be factorized as

dlnp(Z,c)

5c — 1(O((Z) — o), (3.8)

for some functions h and /. In that case, the efficient estimator is C = h(Z), and its
variance is 1/1(C) [Kay 1993]. Equation (3.8) must be valid for any ¢ and any Z.

Proposition 2. For given zy, ..., zp, independent observations of the Gaussian distributed
random variables with ji; = gat;C and o? = g*ar;C + 0% (Model (2.2)) we have

. Olnp(z,c) 1 d .
L TP DL (59)
T
lim I(c)(h(z) —¢) = =Y ar; Vh(z). (3.10)
=1
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Proof. The log-likelihood function of z is given by (3.3) and its first derivative is

Olnp(z,c) 1 ZT: ati|(¢*amic + 0%,)? — (9z; + 0%)* + g°ar;(¢*amic + o%)]

de 2 — (g%aric + 0%)? - ()
Thus, for the given z,
T
. Olnp(zc 1
CILOO ai ) —5 2 aT;. (3.12)

Also,

lim 1(¢)(h(z) — ¢) = lim (Z gars)” | (gam)" )2)(h(z)—c). (3.13)

2 g 2 2. 2
c—00 c—00 pary gcar;c + og 2(g ar;c + Or

Now, since the function /(z) does not depend on ¢,

lim I(c)h(z) = lim (Z (gar:)” + (g ars) )2> h(z) (3.14)

c—00 oo \ & glamic+ o}, 2(g*amic + 0%
= (3.15)
and
lim I(c)e = 1 ET: (gar;)?c N (g%ar;)%c (316)
moo ¢ T ~ g*atic+op  2(g%aTic + o) -
T
= Z ar;. (3.17)
i=1
Then
T
lim I(e)(h(z) = ¢) = — 2 ar;. (3.18)
O

The results in (3.9) and (3.10) are different, which proves that an efficient estimator

does not exist for the problem.
Once the performance bounds of the problem have been determined, we are interested in
the comparative performance of existing irradiance estimation methods against the crLs.
As previously stated, we focus on the MLE since it was found to outperform experimen-
tally other methods in [Kirk and Andersen 2006; Granados et al. 2010].

The MLE for the irradiance under Model (2.2) does not have a closed-form. As a con-
sequence, it is not obvious to directly compute its variance to evaluate its performance
against the crLB. Instead, we propose in Section 3.2.4 a detailed experimental study of
its performance, together with that of other widely known irradiance estimation meth-
ods, relatively to this bound. Before the experimental study we present in Section 3.2.3
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some theoretical hints of the optimality of the MLE. This result is verified experimentally
afterward in Section 3.2.4.

It is interesting to remark that the previous bound can be directly extended to the case
of variable gain ¢. In this work we focus on the approach of HDR image generation by
the combination of images acquired with different exposure times, while keeping the same
gain parameter for all images (fixed ISO setting). However, another possible approach for
the generation of HDR images is the fusion of images acquired with different exposure
times and gain settings [Hasinoff et al. 2010]. The performance bound in that case is

T
(giaT)® (g7ar;)?
CRLB = + , 1
21: giar;C + 012% 2(g2ar;C + a?ﬁ,)2 (3.19)
where the i-th image is acquired with exposure time 7; and gain value g;. The readout
noise 0% changes with the ISO setting since part of this noise is amplified by the gain.
Regarding biased estimators, the performance bound for a given bias b(C') can be ob-

tained multiplying (3.2) by (1 + 82(00 ))2, where 82(0 is the first derivative of the bias.

3.2.3 How close is the MLE from the CRLB: Some theoretical hints

The lack of closed-form for the MLE under Model (2.2) motivates Granados et al. [2010]
to propose an iterative algorithm to approximate the MLE solution. We show in this sec-
tion that the variance of the first iteration of this iterative procedure is very close to the
CrLB. Let us begin by showing that this iterative procedure actually converges to the MLE
solution.

Convergence of Granados et al. iterative procedure Let us consider 7' observations
71, ...,z of the independent random variables Z, ..., Zy following Model (2.2). The
corresponding log-likelihood function is given by (3.3) and its first derivative is (3.11). Let
() be the irradiance value that vanishes (3.11). From (3.11) we have,

T
Z ar; g'ariCo + o, gzt oR)? g*ar; -0 (3.20)
=1 g?ariCy + 0% (g%ariCy+0%)?  ¢?ar;Co+ 0% ' :

Thus,

T T 212 2 2

(gat;)* (9z; + 0%) g*ar; + 0% }
C aT; — , 21
0 Z g*ar;Co + 0% 121: ' [ (g%ar;,Co + 0%)?  g*ar;Co + 0% (3.21)

ZT (gat;)? ' [ (gzi+0%3)2 _ gzaTi+a%2}
C i=1 g2a1;Co+o% | (¢%ariCoto%)g?ar; gZat;
0= N3 . (3.22)
ZT (9a7i)
1=1 92(17'1'00-"-0'1?a
The pixel values 7; can be expressed as

Z; = gaTZ‘C() =+ Ei, (323)
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where ¢; is an error term that according to Model (2.2) takes values with an order of mag-
nitude given by \/¢%a7;Cy + 0%. Thus, the term in square brackets can be rewritten as,

(gz; + 0%)? _ glari + o}, _ 1 [(g7; + 0%)(g%ar; + g&; + 0%) (3.24)
(g%am;,Cy + 0%)g%ar; g2at; g*ar; | (g%ar,Co + 0%)g%ar; '
—qar; + a?{] (3.25)
1 gei(gz; + 0%)
= i — gaTt; 4+ - .26
gar; _g(z ga;) g2ar;,Co + 0% (3.26)
2

=x;— 1+ + 2
’ gar;  ati(g?ar;Co + 0%) (3.27)
~ X;. (328)

where x; are the pixel values normalized to the irradiance domain according to x; =
ﬁ. The approximation is valid since, in general, the irradiance values verify x; >
1 and according to Model (2.2) ¢; takes values with an order of magnitude given by

v g%at;Cy + o%. Hence, from (3.22) and (3.28) we have

2
Yo pa (120)
ST 3.29
1=1 g2a7;Co+o%
which is the fixed point iteration proposed by Granados et al. [2010]° . This formula is
also obtained if we compute the first derivative of (3.3) neglecting the dependence of the
pixel’s variance on the irradiance C'.
Now, let us consider the function f : R — R, given by

C() ~

(9ai)?
=Y wi(O)xi withw(C) = —* “”C”R . (3.30)

S
h=1 g aThC+0'R

Proposition 3. For C' > 0, f(C) is bounded by

X < f(C) < xu, (3.31)
with X, and Xy, the minimum and maximum values of X; = gZiT_ Vi=1,...,T.
Proof. For the upper bound, since C' > 0, we have
T _(9ami)’x T (gami)’xum (9ami)?
C . Zi:l 92(17'1'04’0'?3 Zi:l gQaTiC+o' XM ZZ 1 g2a7; C+0’R i
f( ) - ZT (gar;)? = ZT (gat;)? - ZT (gar;)? = XMm- (3~32)
=1 gZ(ZTiCJrU"}Z% 1=1 gQa'riC#»(r?2 i=1 g2aTiC+U'}2%
Idem for the lower bound. O

IfC® > 0,x, <0 < x5 and CUHY) = f(CU)), with f bounded between x,,, and
Xz, the sequence C'9) is bounded and it has therefore a convergent subsequence.

In theory, the first derivative of f can verify | f’| > 1. However, we observe in practice
that | f’| < 1 in all our experiments and therefore, in those cases, f has a unique fixed
point.

3Unlike Granados et al. we neglect the dark currents since their contribution to global noise is minimal
for the exposures normally used in HDR image generation methods.
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Variance of the MLE approximation At iteration (j + 1) the irradiance CU*Y s esti-
mated according to

(gars)?
. Z; CU) o2
(G+1) : _ ¢ g2ar; R
U E wi(CV)x;  withx; = o Wi= o) (3.33)
gaT; Zh 1 2ar,Ci) 4o

It can be verified that in practice, if the weights are correctly initialized, the estimator
remains almost unchanged after the first iteration. A correct initialization is C(®) = ﬁ,
i.e. the weights are computed directly from the input samples.

Proposition 4. A first order approximation of the variance of the estimator after the first
iteration can be computed as

var(C) = [Z @L)Qz + E(o((Z — 1)*)). (3.34)

— g*ar,C' + o,

Proof. LetY = (Y4,..., Yy) be arandom vector, with Y; = Z;. Thus Y ~ N(p, X) with
/J’:(/J’17"‘7/’LT)7 Mi:gTiaC Vizlw":Ta (335)

Y =diag(o},...,07), o0f=g¢*raC+o% Vi=1,...,T. (3.36)
Consider the function
ZT gTiaY;
=1 gY.L-—&-U%
ZT (gTia)Q '
=1 gYﬁ-a%

Being Y Gaussian distributed, and noting that / is continuously differentiable and that

ZZUJ'P;\({ )a;\((k) >0, (3.38)

it follows from the Delta Method theorem [Rice 1995] that the variance of A(Y) can be
computed to a first order approximation as

h(Y) = (3.37)

T Ton(y ’
var(n(v)) = Y | 220 ] 7+ Eol(Y — ) (339
i=1 L vt Y=py
- ZT: L r [ loria) }2 (9°7:aC + 0%) + E(o((Z — p)*))
n = | ¢?1;aC + 0% | | ¢*1iaC + 0% 9T R "
(3.40)
[ rme? 17
~ {m} . (3.41)
O]
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Figure 3.1: HDR image taken as ground-truth for the synthetic tests. Dynamic range 12.7 stops.
From [Hasinoff et al.].

On the other hand, recall the crLB formula introduced in (3.2)

r -1
S lgem)” (g%am)?
C = . .

- Ll g*ariC + o}, * 2(g%ar;,C + 0%)? (3.42)

Hence the variance of C'") approaches the crLs if

2.9 9 4.9 9
g°a"T; gra"T; ,
’ > ! Vi=1,...,T, .
g?ar;,C + 0%~ 2(g?ar,C + 0%)? (3.43)
which can be rewritten as
1 2
aTiC>>——0—I; Vi=1,...,T. (3.44)
2 g

This inequality is verified in practice, even for small a7;C values, because the term 0%3 /g% is
much larger than 1/2 for most cameras (e.g. for the Canon 400D camera the 0% /¢? ratio
takes values 103 (ISO 200), 55 (ISO 400), 35 (ISO 800)). This suggests that the iterative
algorithm proposed by Granados et al. almost achieves the crLB after the first iteration.

3.2.4 How close are existing estimators from the CRLB: An experimen-
tal study

In Section 3.2.2 we showed that an efficient estimator for the irradiance does not exist
under Model (2.2). Yet it is of interest to study how close to the crLB existing methods
perform.

In the present section an experimental study is conducted to analyze the performance
of various methods widely known for the irradiance map estimation: MLE ( Granados
et al. [2010]), Kirk and Andersen [2006], Robertson et al. [2003], Debevec and Malik
[1997], Mitsunaga and Nayar [1999], Reinhard et al. [2005] and a quite simple weight-
ing scheme, classically used in the imaging industry, which we refer hereafter to as Poisson
approach. The estimator by Kirk and Andersen [2006] is computed according to expres-

sion (3.1), with the weights given by w! = Given that it does not take into account

7i
P, 3 -
9z; tog

the PRNU factors, the estimator thus obtained is biased. A trivial modification of these
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weights allows us to have a non-biased version of the estimator, with w! = ﬁ, which
i R

we will refer hereafter to as the Modified Kirk and Andersen’s method. With this modifica-
tion, we think the comparison with Kirk and Andersen’s method becomes more fair. Thus,
in the following, we will evaluate the modified version of Kirk and Andersen’s method.

The experimental study is performed with synthetic data only since the knowledge of
the exact ground-truth is imperative for the computation of the crLB.

Synthetic data generation Synthetic samples are generated from an HDR image taken
as ground-truth assuming the pixel values follow Model (2.2). Figure 3.1 shows a tone
mapped version of the ground-truth. Notice that a HDR image is taken as ground-truth
in order to consider a realistic dynamic range, and to easily visualize the results. However,
given that the estimation is done on a per-pixel basis, it only depends on each individual
pixel irradiance, independently of the pixels’ ordering or location in the image. In order
to evaluate the dependence on the shutter speeds, 6 sets of exposure times are tested:

- Two sets of relatively long exposure times with 4 and 6 elements:
- 1y, =(1,1/2,1/4,1/8)s,
- ror = (1,1/2,1/4,1/8,1/16,1/32)s;

- Two sets of relatively short exposure times with 4 and 6 elements:
- 145 = (1/50,1/100, 1/200,1/400)s,
- Tes = (1/50,1/100,1/200,1/400, 1/600, 1/800)s;

- Two sets of medium exposure times of 4 and 6 elements:
- e = (1/12.4,1/25,1/50,1/100)s,
- 7ear = (1/6.2,1/12.4,1/25,1/50,1/100, 1/200)s.

Two cameras are simulated*:

- Camera A, a Canon 7D set to ISO 200 (¢ = 0.87; 012% = 31.6; up = 2046; 2501 =
14042),

- Camera B, a Canon 400D set to ISO 400 (¢ = 0.33; 01212 = 6.2; up = 256; z5qs =
4056).

The PRNU factors at each pixel are simulated following a Gaussian distribution with mean
1and standard deviation 0.01 [Granados et al. 2010]. The dynamic range of the scene is 12.7
stops. The MLE estimation is computed using the implementation provided by Granados
et al. [2010]. The estimations are repeated 1000 times for each irradiance level. The MSE
and the variance of the estimators are computed from these 1000 repetitions.
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Figure 3.2: Comparison of the MSE curves and the CRLB for Camera A with 4 exposure times (results are
similar for the other configurations). In all cases the MSE of the MLE is very close to the CRLB.

Camera A

Granados Kirk Robertson Poisson Devebec Mitsunaga  Reinhard

avg std avg std avg std avg std avg std avg std

T4 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.004 0.011 0.009 0.025 0.007 0.021
Tgs 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.020 0.059 0.061 0.181 0.036 0.125
T4M 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.003 0.011 0.008 0.024 0.006 0.020
Tgam 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.019 0.069 0.084 0.311 0.044 0.204
T4, 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Tgf, 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.000 0.000

Camera B

Granados Kirk Robertson Poisson Devebec Mitsunaga  Reinhard

avg std avg std avg std avg std avg std avg std

T4 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.003 0.009 0.007 0.019 0.005 0.016
Tgs 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.017 0.054 0.055 0.174 0.031 0.120
T4pr 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.003 0.010 0.007 0.022 0.005 0.018
Teapr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.038 0.053 0.192 0.024 0.103
T4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
Tgr, 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.000 0.001

Table 3.1: Average and standard deviation of the ratio biasz/CQ. The estimators’ bias is negligible with
respect to the corresponding irradiance values.
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Evaluation Procedure First, we verify the validity of the hypothesis made in Section 3.1,
stating that the bias is negligible for all the evaluated methods. Table 3.1 shows the expected
ratio of the squared bias and the squared irradiance for all the tested configurations. In all
cases, the ratio is very close to zero implying that the bias is negligible with respect to the
irradiance values. Hence, the MSE of these methods can be fairly compared against the
Cramér-Rao lower bound for unbiased estimators.

The ratios obtained for Debevec and Malik, Mitsunaga and Nayar and Reinhard et al.
are slightly above zero for the shorter exposure times sets. These estimators assume that
both, the pixel values and the inverse of the camera response function, take positive values
only. However, this is not the case for some digital cameras, and in particular for the raw
data following Model (2.2). Under this model, the inverse of the camera response function
may take negative values after subtracting the mean up for very low irradiance values. In
consequence, the less realistic model proposed by these methods introduces some bias in
very low light conditions.

Table 3.2 shows the average and standard deviation of the ratio between the MSE of
each estimator and the crrB for all the tested configurations. The crLB is computed for
each pixel according to (3.2). In the crRLB computation we only take into account the expo-
sure times producing non saturated samples, since in practice the samples corresponding
to the other exposures would be saturated and therefore discarded (all methods discard
the saturated samples). In the following, the crLB computed from the non-saturated
exposures only will be referred to as CRLBg,;, while crLB refers to the bound computed
considering all the exposures (ideal case without saturation).

Results

Maximum Likelihood Estimation For the MLE (Granados et al. implementation, see
Equation (3.33)), in all cases the average ratio is very close to 1, with a standard deviation in
the order of 5%, meaning that the MSE of the MLE is very close to the cRLB,,,. Figure 3.2
shows the comparison of the MSE curves against the crLB and the crLB,,, as a function
of the irradiance C' for some of the tested configurations (similar results are found for all
configurations). In agreement with the results presented in Table 3.2, the MSE of the MLE
is very close to the CRLB,, (almost indistinguishable in these figures).

From Figure 3.2 it can be verified that, as expected, the MSE results for the low irradi-
ance regions are smaller for the long exposure times set than for the short exposures set.
What is not a priori expected is that the same behavior is found for the high irradiance
range. For high irradiance, the probability of saturation increases for the longer exposures
and this may increase the MSE. The reason for the MSE reduction in high irradiance is
that, even if the estimation is performed with less samples due to saturation, the short-
est exposure of the long exposures set (1/6.2 = 0.16) is roughly 4 times the sum of all the
exposures of the short times set ( 1/50 + 1/100 + 1/200 + 1/400 = 0.0375). As stated in Sec-
tion 3.2.2, for high irradiance values where 0% can be neglected, the crLB does not depend
on the specific exposure times but on the total acquired time, i.e., the sum of the exposure

4The camera parameters were obtained using the calibration procedure by Granados et al. [2010].
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Camera A

Granados Kirk Robertson  Poisson Devebec ~ Mitsunaga  Reinhard

avg std avg std avg std avg std avg std avg std avg std

T48 0.996 0.056 1.009 0.049 1.124 0.087 1.034 0.067 1.178 0.280 1.416 0.764 1.307 0.591
TS 0.995 0.065 1.013 0.056 1.157 0.114 1.051 0.079 1.609 1.059 3.013 3.960 2.164 2.907
T4 0.991 0.081 1.008 0.050 1.120 0.089 1.028 0.066 1.193 0.304 1.347 0.714 1.257 0.543
Tepm 0.988 0.090 1.011 0.055 1.153 0.104 1.047 0.080 1.655 1.251 4.141 7.742 2.660 5.592
T4, 0.985 0.102 1.007 0.049 1.141 0.079 1.011 0.054 1.126 0.296 1.039 0.100 1.056 0.091
T6r, 0.980 0.111 1.007 0.051 1.170 0.094 1.025 0.068 1.192 0.297 1.206 0.470 1.071 0.115

Camera B

Granados Kirk Robertson  Poisson Devebec ~ Mitsunaga  Reinhard

avg std avg std avg std avg std avg std avg std avg std

T4s 1..000 0.051 1.005 0.051 1.116 0.091 1.033 0.071 1191 0.278 1.380 0.671 1.254 0.489
T6S 0.997 0.053 1.005 0.054 1.144 0.113 1.045 0.080 1.600 1.004 3.013 3.894 2.086 2.823
T4 0.998 0.051 1.003 0.051 1.111 0.092 1.025 0.069 1.210 0.322 1.328 0.663 1.227 0.497
Tr 1.000 0.055 1.007 0.056 1.145 0.103 1.047 0.083 1.569 0.946 3.651 6.508 2.205 4.104
T47, 1.004 0.046 1.009 0.047 1.131 0.081 1.019 0.055 1.124 0.259 1.058 0.127 1.052 0.086
Tg7, 1.001 0.050 1.006 0.052 1.160 0.093 1.031 0.073 1.207 0.286 1.281 0.656 1.070 0.130

Table 3.2: Average and standard deviation of the ratio M .S E/CRLBs,; for all tested configurations. For
the MLE the ratio is very close to 1, meaning that the MSE of the MLE is very close to the CRLBs,r. Note
that average values for the ratio have an uncertainty given by the reported standard deviation, which
justifies average ratio values below 1.

Camera A

Granados Kirk Robertson  Poisson Devebec ~ Mitsunaga  Reinhard

avg std avg std avg std avg std avg std avg std

T4s 0.997 0.057 1.008 0.045 1.170 0.062 1.008 0.046 1.063 0.175 1.020 0.054 1.053 0.074
TS 0.997 0.064 1.013 0.047 1.222 0.076 1.022 0.055 1.077 0.140 1.076 0.128 1.075 0.076
T4l 0.992 0.085 1.010 0.048 1.142 0.078 1.016 0.053 1.111 0.242 1.058 0.127 1.063 0.091
T6M 0.987 0.096 1.009 0.047 1.193 0.078 1.022 0.058 1.159 0.232 1125 0.285 1.057 0.078

T4, 0.974 0.123 0.999 0.048 1.152 0.087 0.997 0.049 1.175 0.361 0.999 0.049 1.023 0.091
Tel 0.971 0.128 1.001 0.048 1.186 0.098 1.000 0.048 1.187 0.335 1.004 0.050 1.032 0.105

Camera B

Granados Kirk Robertson  Poisson Devebec  Mitsunaga  Reinhard

avg std avg std avg std avg std avg std avg std

T45 1.003 0.047 1.009 0.047 1.160 0.067 1.015 0.050 1.097 0.227 1.030 0.063 1.046 0.068
Teg 1.001 0.045 1.009 0.045 1.205 0.077 1..030 0.060 1.104 0.178 1.107 0.183 1.064 0.073
T4iM 1.001 0.047 1.007 0.048 1.131 0.082 1.021 0.057 1.141 0.281 1.081 0.175 1.063 0.100
TeM 1.002 0.050 1.007 0.051 1.180 0.083 1.029 0.070 1.204 0.286 1.159 0.339 1.056 0.095
T41, 1.002 0.047 1.004 0.048 1.145 0.087 1.003 0.048 1.161 0.315 1.004 0.048 1.019 0.080
T6I, 0.997 0.047 1.000 0.048 1.179 0.096 1.000 0.048 1.187 0.310 1.004 0.050 1.022 0.086

Table 3.3: Average and standard deviation of the ratio M S E//CRLBs,; for high irradiance only. The results
for all methods are quite close to the CRLBs,;. Note that average values for the ratio have an uncertainty
given by the reported standard deviation, which justifies average ratio values below 1.
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Figure 3.3: Logarithm of the ground-truth images with selected areas for the synthetic and real data
tests.

times.

Modified Kirk and Andersen The Modified Kirk and Andersen estimator is computed
according to expression (3.1), with the weights given by w! = g;gi 7. Recall that for all
methods, we assume a linear camera response function f. The results presented on Table
3.2 show that this estimator, like the MLE, performs very close to the crRLB,,. This is
expected since this modified version of the Kirk and Andersen’s estimator equals the first

iteration of the estimator proposed by Granados et al., given by (3.33).

Robertson et al. The results for the method by Robertson et al. are in the order of
15% above the CRLBg,,. Its performance decreases for the longer exposure time sets. The
irradiance is computed according to Equation (3.1) with the weights set to w! = 77 (and
again a linear camera response function). Hence, for the longer exposure time sets it
gives low importance to exposures long enough to better contribute to the estimation.
It is interesting to recall that this estimator is the MLE when assuming a noise model of
constant variance.

Poisson The estimator here named Poisson is the minimum variance unbiased estima-
tor, which also matches the MLE, when the input samples are assumed to follow a Poisson
distribution with mean and variance depending on the irradiance parameter. Hence, this
is the optimal estimator when neglecting all the other noise sources except the shot noise.
This estimator is obtained by setting w? = 7;. For high irradiance values, where the main
noise source is the shot noise, the results obtained are quite close to those obtained by the
MLE and thus quite close to the crRLBy,;. However, its performance is degraded in low
irradiance where the readout noise is not negligible.
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Debevec and Malik, Mitsunaga and Nayar, Reinhard etal. The results obtained for De-
bevec and Malik, Mitsunaga and Nayar and Reinhard et al. are considerably far from the
CRLBg,,. This is mainly due to their poor performance at low irradiance, as shown in Fig-
ure 3.2. Indeed, these weighting schemes are highly sensitive to noise in the input samples
(e.g. for the linear camera case, Mitsunaga and Nayar’s weights are the pixel values) and
therefore their performance is severely degraded for low irradiance where the SNR of the
samples is lower.

As can be verified in Figure 3.2, their performance highly improves for the high ir-
radiance range. Thus it is interesting to make a more local analysis of performance and
compute the mean ratio without considering the low irradiance range. These results are
presented in Table 3.3. The results are considerably better in high irradiance.

Debevec and Malik use a hat function to weigh the samples from Equation (3.1):

wP = n (3.45)

7 f P
Zmax — Z; lei > Zmed,

. { 2 — Zmin 7 < Ziea
with zp,;, and zp,, the minimum and maximum pixel values respectively and Zyeq =
(Zmax + Zmin)/2. For short exposures its weighting scheme is linearly increasing with
the exposure. The decreasing part of the hat function is applied for longer exposures.
Thus its performance decreases for the longer exposure times sets since a smaller weight
is assigned to longer exposures which yet have the higher SNR. The opposite behavior is
found for Mitsunaga and Nayar and Reinhard et al., since their weighting schemes are
SNR based. For Mitsunaga and Nayar weights are given by w! = z¥, while Reinhard et al.
use w? = 22(1 — (2 /2mea — 1)'?). Their performance increases for longer exposure time
sets.

Summary of results

The experimental analysis carried out in this section shows that the MLE performs quite
close to the criBg,, for all irradiance values and for small sample sized datasets. It is
important to remark that these results are for the small sample size case, since we have at
most (none of the samples saturated) 4 or 6 samples for the estimation on each pixel. The
performance of the MLE close to the crLB;,, was predicted in Section 3.2.3, where it was
shown that the variance of the irradiance estimator almost attained the bound after the
first iteration.

Moreover, even if the Cy,, is not unbiased, its bias is negligible with respect to the irra-
diance and its performance is very close to the best we can do among unbiased estimators.
It would be interesting to evaluate the performance of other biased estimators. However,
there are no a priori hints on the parametric form that such a bias could take. This analysis
also confirms the fact that the MLE outperforms other estimation methods, as observed
in [Kirk and Andersen 2006; Granados et al. 2010].

Finally, it is important to remark that as expected, the crLB using all samples is below
the CRLB,, (see Figure 3.2). This shows that discarding the saturated samples has a high
impact on the bounds of estimation performance.
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Figure 3.4: Synthetic data. Estimation in low-level irradiance range. Patch size 141 x 193. Top row:
Ground-truth, MLE, Modified Kirk and Andersen, Robertson et al. Bottom row: Poisson, Debevec and
Malik, Mitsunaga and Nayar, Reinhard et al. The results for MLE, Modified Kirk and Andersen, Robertson
et al. and Poisson are quite similar and less noisy than those of Debevec and Malik, Mitsunaga and Nayar
and Reinhard et al.

3.2.5 Visual quality of the estimators

In Section 3.2.4 we verified two facts: first the MLE performs quite close to the crLB and
second it outperforms other irradiance estimation methods. In this section we compare
the visual quality of the results obtained by these methods. Is the performance difference
among them noticeable in practice? To answer this question we compare their estimations
in sub-regions of a test image using both synthetic and real data.

Synthetic Data Figure 3.3a shows a sub-region of the logarithm of the ground-truth
image used for the synthetic experiments. The ground-truth image and the presented
results correspond to the green channel of the image in Figure 3.1, yet the results are also
valid for the red and blue channels. The results obtained for Camera A and 74, for the
two marked sub-regions are displayed in Figures 3.4 and 3.5.

The results presented in Figure 3.4 correspond to a region of low irradiance. In agree-
ment with the results presented in Section 3.2.4, the estimates produced by MLE, Modified
Kirk and Andersen, Robertson et al. and Poisson are quite close and less noisy than those
obtained by Debevec and Malik, Mitsunaga and Nayar and Reinhard et al. (see Figure
3.2b). Figure 3.5 presents the results observed in high irradiance. The difference between
all estimators is hardly noticeable.

Real Data Tests using real data are carried out using the images provided by Granados
et al.. The set of images was acquired with a Canon PowerShot S5 camera, using exposures
T = (1/1.5,1/6,1/25,1/100,1/400,1/1600)s. The camera configuration is provided
in [Granados et al. 2010]. The ground-truth image, shown in Figure 3.3b, is generated
using Granados et al. estimator on a set of almost noise-free images, obtained as the
average of 36 frames. For more details see [Granados et al. 2010]. The presented results
correspond to the red channel, but similar results and considerations hold for the green
and blue channels.
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Figure 3.5: Synthetic data. Estimation in high irradiance range. Patch size 301 x 259. Top row:
Ground-truth, MLE, Modified Kirk and Andersen, Robertson et al. Bottom row: Poisson, Debevec and
Malik, Mitsunaga and Nayar, Reinhard et al. The difference between all estimators is hardly noticeable.

Figure 3.6 shows examples for irradiance values in the low - mid-level range ranges. As
expected, the results for MLE, Modified Kirk and Andersen, Robertson et al. and Poisson
are quite similar while the results for Debevec and Malik and Reinhard et al. are better
than those of Mitsunaga and Nayar (see Figure 3.2b).

The examples in Figures 3.7 and 3.8 correspond to regions of mid-level and high irra-
diance. In both cases, as expected, all methods perform quite similarly (see Figure 3.2b).

3.3 Including saturation information

To the best of our knowledge, all approaches to irradiance estimation discard saturated
samples. However, the experiments presented in Section 3.2.4 show a great lost in per-
formance when comparing the crLB obtained from only non-saturated samples, with the
one obtained from all the samples. We therefore propose a method to include information
provided by the saturated samples in the irradiance estimation process.

3.3.1 Methodology

Although we do not know the exact value leading to a saturated sample, there is some
useful information given by the fact that this value exceeds a given threshold z,,. In
this section, we develop a variation of the classical MLE that includes extra information
provided by the saturated samples.

Let Zi,...,Z7 be T independent but not identically distributed random variables,
corresponding to the raw values observed at a given pixel p for the different exposure times
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a) Patch size 39 x 54. Top row: Ground-truth, MLE, Modlﬁed K|rk and Andersen, Robertson et
aI. Bottom row: Poisson, Debevec and Malik, Mitsunaga and Nayar, Reinhard et al.
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(b) Patch size 111 x 78. Top row: Ground-truth, MLE, Modified Kirk and Andersen, Robertson
et al. Bottom row: Poisson, Debevec and Malik, Mitsunaga and Nayar, Reinhard et al.

Figure 3.6: Real data. Estimation in low and mid-level irradiance range. The results for MLE, Modified
Kirk and Andersen and Robertson et al. are quite similar while the results for Debevec and Malik and
Reinhard et al. are better than those of Mitsunaga and Nayar.
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Figure 3.7: Real data. Estimation in mid-level irradiance range. Patch size 107 x 85. Top row: Ground-
truth, MLE, Modified Kirk and Andersen, Robertson et al. Bottom row: Poisson, Debevec and Malik,
Mitsunaga and Nayar, Reinhard et al. As expected, results are hardly distinguishable.

Ti,...,Tr. Because of saturation, each Z; can be written as Z; = min(X}, z5¢), where
X; is a random variable following the law N (11;(C), 0% (C)), with 11;(C') = gar;C and
05(C) = g*at;C + 0%. In the previous sections, saturated samples were discarded and an

estimator of the irradiance C' was obtained by maximizing the likelihood sz czoas Pi(Z55B)

as a function of ¢, where p;(z;; ¢) is given by the Gaussian law N'(11;(¢), 07 (¢)). In order
to take into account saturated samples, we propose to use instead the full likelihood of the

complete set of observations z = (71, ..., z7), which writes
T
9(7l6) = [ [ pi(a )" Pi(0)' ™, (3.46)
j=1

where k; = 1 for non-saturated samples, and 0 otherwise. P;j(¢) is the probability of the
j-th sample being saturated, given by

Pj(¢) = / pi(z; ¢)dz. (3.47)

Zsat
Observe that if none of the pixels saturate, g(z|¢) (the function defined by Equation (3.46))
is exactly the likelihood maximized by the MLE approach presented in the previous sec-
tions.
An efficient way to maximize the likelihood g¢(z|¢) is to use the Em algorithm [Demp-
ster et al. 1977]. In this setting, saturated samples are seen as censored data. Follow-
ing Dempster et al. [1977], we denote by x = (xy,...,xr) the data that would have been
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Figure 3.8: Real data. Estimation in high irradiance range. Patch size 147 x 76. Top row: Ground-
truth, MLE, Modified Kirk and Andersen, Robertson et al. Bottom row: Poisson, Debevec and Malik,
Mitsunaga and Nayar, Reinhard et al. As expected, results are hardly distinguishable.
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Figure 3.9: In blue the classical log-likelihood curve; in green function (3.63); in red the addition of the
two curves: function In g(Z|¢).

observed if the camera could record beyond the saturation threshold. Each x; is a realiza-
tion of the random variable X; defined above. We define the complete data likelihood of
the problem as

T
h(x|g) = [ [ pi(xs; 0)- (3.48)
j=1

Now, observe that h(x|¢) cannot be maximized in practice because it relies on some cen-
sored data. The idea of the Em algorithm is to maximize instead the average value of
In h(x|¢) knowing the observations z, i.e. Ex[lnh(X]|@)|z, ¢]. It can be shown that the
value ¢ maximizing this expectation is exactly the same as the one maximizing g(z|¢)
(this is a classical result of the em algorithm). The steps of the algorithm can finally be
written

1. Atiteration p 4+ 1 compute Q(gb]qj@)) := Ex[In h(X|9)|z, ¢(p)];

2. Find ¢®*Y = max, Q(¢|¢™).

3.3.2 Computation of Q(¢|¢"?))

To compute Q(¢|¢)) we separate the product (3.48) into two terms, one including the
known samples (N .S) and the other considering the saturated samples (5.

Q(8]6") = Ex[In h(X[6)|z, ¢'"']
= Z In p(z;|6;) +ZEzj (Inp(Z;|¢;) |z, 6] , (3.49)

JENS jES
(3.50)

(a) Since z; is known for j € NS, the value In p(z;|¢,) is no longer a random variable but
a deterministic value.
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For j € S we do not know Z; exact value but we know its distribution

Ez, [Inp(Z;]¢;)|z, o7 =/ In p(z;]¢;) (%) dz; (3.51)
Zsat ] J
e 15 L (pld)
= 5 [ln(Qﬂ—O—]) —+ O_] + — 0']2 /szat Zj (W dZJ PN
oy < (vl
Q?%M%<EW?) 7] 52
We now compute
<, (pl6?)\ | @
=P = 5(a)] + [ + PN, (354)
(3.55)

(a) Z, following the truncated normal distribution AV ( ug-p ), U?(p )) in the interval [2,4¢, 00).
Hence, with
Zsat — /jfgp) . ¢<Oé)

o M=o

o= i) = M) (M) — ), (3.56)
&(-) is the probability density function of the standard normal distribution and ®(-) is its
cumulative distribution function .

We continue with

(»)
[ plzl¢7) b
/ 7 (J—(f@ dz; 2 B[7,) (3:57)
Zsat Pj(¢j )
= 1" + 0 Ao, (3.58)
(b) Z; following the truncated normal distribution NV jp : a?(p )Y in the interval [z, 00).

Hence,

1 1
By, p(2165):67) = — [ineno) + 2 {1 — 200 + o Ay +..
J
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Thus, from (3.50) and (3.59)
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3.3.3 The modified log-likelihood

The logarithm of the likelihood function ¢(z|¢) is given by the sum of two terms,

In g(z|¢p) = Z Inp,(z;; ¢) + Z In Pj(¢ (3.62)

Jikj=1 Jikj=0
~ TV 4 ~ TV 4

term1 term 2

The first term is the sum of the log-likelihood function evaluated at the non-saturated
samples, i.e. the log-likelihood function of the MLE approach discarding the saturated
samples (classical MLE approach). The second term is the sum of the logarithm of the
probabilities of the saturated samples to be saturated. It can be written as

S P =Y /m;wexp{—%%wz—ww))?}dz L 66)

2 N
jik; =0 jik; =0 Zsat 4 [ 207 i

where 11;(¢) = gar;¢ and 0% (¢) = g*at;¢ + o%. Equation 3.63 is an increasing function
that converges to zero for large ¢, since large irradiance values have high probability to
saturate. When we add the term (3.63) to the classical log-likelihood, its maximum will
either: a) be almost unchanged, if it was reached on a value where (3.63) is almost zero; b)
otherwise, be reached at a larger value.

Figure 3.9 shows an example of this modified log-likelihood In g(z|¢) (red), the clas-
sical log-likelihood (blue), and the addition function (3.63) (green). In this example, the
classical MLE is reached at a value ¢ where (3.63) is clearly negative. Therefore, when
adding (3.63) and the classical log-likelihood, the maximum of the sum is reached for a
larger ¢. This example can be interpreted in the following way: if we use only the non-
saturated samples we obtain the classical estimator C'MLE However, knowmg that we have
saturated samples we increase CMLE, since according to (3.63), the value CMLE is not suffi-
ciently likely to saturate for the saturated exposure times. A higher value is representative
of both, the non-saturated samples through CMLE and the saturated samples through the
bias introduced by (3.63). Hence, the term (3.63) is adding a positive bias to C\ue when
needed.

Irradiance values close to the minimum value that saturates for a given exposure may
saturate due to noise. In those cases, incrementing the estimation with the saturation bias
may degrade the result if the classical MLE was already accurate. Nevertheless, it is seen
that these cases rarely occur in practice and in average adding the bias factor always im-
proves the results.

3.3.4 Modified Cramér-Rao Lower Bound

As performed in Section 3.2.2, the Cramér-Rao lower bound can be computed assuming
the samples follow the modified log-likelihood function (3.62).
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Figure 3.10: Comparison of the SNR obtained with the classical and the modified log-likelihoods. Both
curves match except for the irradiance values in the transition between two saturation levels.

Proposition 5. Given Zy,. .., Zr, independent Gaussian distributed random variables with
mean and variance given by ; = gar;C and 0? = g*ar;C + 0% (Model (2.2)), the Cramér-
Rao lower bound for the estimation of the irradiance parameter C' from zy, ..., zy observa-
tions of these random variables assuming the modified probability density function (3.62) is

given by
-1

82 In p( Z],C 0%1n P;(C)
N ) S S

The first term in the denominator is the Fisher information for the classical log-likelihood (3.6).
The second term can be computed as

CRLByop =

: (3.64)
]
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Proof. The modified probability density function can be expressed as
ng(Z|g) = > Inpi(Z;;6)+ Y mPy(e). (3.67)
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The crLB for the estimation of the parameter ¢ is computed as
-1
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B
-1
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Let us define
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The first derivative of In P;(¢) is given by
dln Pi(¢) 1 [ Aj(¢,7)dz)
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since A(¢, z) meets the conditions of the Leibnitz rule. Thus the second derivative is given

by
oo 92 7 00 Y 2
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Both curves, cRLBs,; and the Cramér-Rao lower bound for the modified log-likelihood
CRLB,,op, Match everywhere except in the transition zones between two saturation levels.
We name saturation level n the irradiance range for which the longest n exposures produce
saturated samples. This was expected since the contribution of the modified log-likelihood
to the CRLBg,; can be thought of as a measure of the information carried by the saturated
samples. The higher information is in the region of higher uncertainty on whether pixels
saturate or not. If we take the middle of the irradiance range between transition zones n
and n+ 1, the corresponding pixels are highly likely to saturate for the longest n exposures
and very unlikely to saturate for exposure n+ 1. Thus the information provided by the fact
that the pixel saturates for the longest n exposures is not significant. The same behavior
is found for the SNR curves and is illustrated in Figure 3.10. The curves differ in the
transition zones only. Yet we observe that the estimation performance can be considerably
increased for the concerned irradiance ranges.

3.3.5 Experiments

Synthetic data generation Synthetic samples are generated from a HDR image taken as
ground-truth assuming the Model (2.2) for pixel values. The simulated camera is Camera
A (c.f. Section 3.2.4). The exposure times are 7 = (1/4.2,1/16.8,1/67.2,1/268.8)s.
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Figure 3.11: Ground-truth image. From [Media] under Creative Commons License. The results for the
four marked sub-regions are shown in Figure 3.12.

Results Figure 3.12 shows the results for four sub-regions of the ground-truth image,
indicated on Figure 3.11. The pixels in these sub-regions have 2 or 3 saturated samples.
In all cases, the information provided by the saturated samples improves the result. The
improvement can also be verified in Table 3.4 where the values of PSNR for each sub-
region are presented.

3.4 Model parameters uncertainties and performance bounds

The results presented in Section 3.2.4 show that if the data follows Model (2.2), the MLE
performs extremely well in estimating the irradiance. The estimation bias is negligible,
and its variance gets very close to the crRLB,,,. However, up to now we have assumed that
the parameters that govern Model (2.2) are perfectly known. For practical purposes, this is
of course not a realistic assumption: the gain factor, the readout noise mean and variance
and the PRNU factors are unknown and have to be determined by means of a calibration
procedure. Hence the model parameters are subject to uncertainties, whose impact in
the irradiance estimation has to be quantified. The first part of this section is devoted to
present an experimental study to assess how sensitive the MLE estimation is to variations
in the model parameters.

In the second part of this section we concentrate on the consequences of ignoring the
model parameter uncertainties when evaluating the performance of HDR generation tech-
niques. Surprisingly, up to our knowledge, no previous work on HDR generation takes
these uncertainties into account. Uncertainties in model parameters play a fundamen-
tal role in the creation of a ground-truth image from real, regular digital camera images.
Hence, depending on how the ground-truth is generated, the impact of not considering
model parameters uncertainties on the reported performance may vary. In any case, as we
will see, ignoring these uncertainties may generally lead to overrated performances.
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Figure 3.12: Results for four sub-regions of the ground-truth image in Figure 3.12. The pixels in these
sub-regions have 2 or 3 saturated samples. Patch sizes from top to bottom 61 x 96, 84 x 81, 56 x 101,
107 x 69. First column: ground-truth. Second column: result obtained with the classical log-likelihood.
Third column: result obtained with the modified log-likelihood. In all cases, the results are improved by
the information provided by the saturated samples.

PSNR (dB)

REGION 1 REGION 2 REGION 3 REGION 4

MODIFIED LOG-LIKELIHOOD 37.7 38.7 39.3 38.1
CLASSICAL LOG-LIKELIHOOD 36.9 37.6 38.3 37.0

Table 3.4: PSNR for the classical and modified likelihood for the four sub-regions marked in Figure 3.11.
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Image size g 0% pr a(m=1) a(n=10) a(n=100)

100 x 100  0.013 0.447 0.056 0.013 0.004 0.001
200 x 200 0.006 0.224 0.028 0.013 0.004 0.001
500 x 500 0.003 0.089 0.011  0.013 0.004 0.001
1000 x 1000 0.001 0.045 0.006 0.013 0.004 0.001

Table 3.5: Standard deviation of the camera parameters estimated according to the procedure pre-
sented by Granados et al. [2010]. Real values are those of Camera A (g = 0.87, 0% = 31.6, ur = 2046).

3.4.1 Sensitivity of the MLE to variations in the model parameters

The sensitivity analysis can only be performed with simulated images, since knowledge of
the real parameter values is required. Synthetic data was generated according to Model (2.2),
taking as ground-truth the HDR image shown in Figure 3.1 and the set of exposure times
Tame. The two sets of camera parameters presented in Section 3.2.4 (Cameras A and B)
were tested. These parameters are considered the real model parameters and used to sim-
ulate the data. Then they are varied and the maximum likelihood estimation is performed
using the wrong parameters. The ratio between the MSE and the crLBg,, is computed in
order to compare the results with those obtained using the exact model parameters.

The first step in this study is to establish realistic ranges for the uncertainties in the
model parameters, which is given by the variance of the estimators used to find each pa-
rameter. The model parameters are estimated at the camera calibration stage and the
variance of the estimators clearly depends on the calibration procedure. To do so, we
consider the calibration procedure proposed by Granados et al. [2010]. They propose to
compute the spatial mean and variance of a bias frame (a frame acquired with the cap
on and with the shortest exposure) to find the mean and variance of the readout noise
respectively. The gain and PRNU factors are computed using flat frames (frames acquired
with uniform illumination). Using this calibration method we compute the variance of
each model parameter.

Table 3.5 shows the standard deviation for the gain, the readout noise variance, the off-
set and the PRNU factors. The leftmost column represents the image size used to estimate
the parameters. Several images are needed to estimate the PRNU factors, variable n rep-
resents the number images considered in each case. The real values of the parameters are
those of camera A (g = 0.87,0% = 31.6, ugr = 2046). The PRNU factors take Gaussian
distributed values of mean 1 and variance 0.01. Similar results were obtained for Camera
B.

The worst case standard deviations in Table 3.5 are used to define the variation range
of the model parameters, namely: for ¢ 1.5% of its value; 1.4% for o'%; 2.7e-3% for pp and
1.3% for the PRNU factors. Because the variance of the estimator of the g parameter
is so small, the influence of the uncertainty on this parameter is not analyzed. Thus,
the following variation ranges are considered for g, 0% and PRNU factors, respectively:
[0.985g,1.015g] in steps of 0.001g; [0.990%, 1.010%], in steps of 0.0015%; [0.985a, 1.015a]
in steps of 0.001a The influence of parameters uncertainties is analyzed individually: one
of them is varied in its corresponding range, while the rest are kept fixed at their real values.
For each tested (wrong) value, the estimation is repeated 1000 times for each irradiance
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Figure 3.13: Dependence of the performance of the MLE estimator on the uncertainty in model param-
eters for Camera A (the results for Camera B are equivalent). A great dependence is found on both g and
a. On the contrary, the variation for 0%, is negligible.

level in order to compute the MSE.

Figure 3.13 shows the results for Camera A (the results for Camera B are equivalent).
For each model parameter, the mean ratio of the MSE and the criBs,,; (blue) and the
band of £ one standard deviation (dotted line) are shown as functions of the parameter
deviation. The unity level is shown for reference.

As expected the curves of mean ratio reach 1 when using the real parameter value (zero
variation). A strong impact on the MLE is observed for both ¢ and PRNU factor (this
similar behavior is reasonable since they play a very similar role in the model). In both
cases, for small deviations (1.5% of the real value) the MSE of the MLE almost doubles the
CRLB,;. Regarding the readout noise variance 0%, the result of the MLE is not affected by
variations in the considered range.

3.4.2 Model parameters uncertainties and performance evaluation

In order to evaluate the performance of a HDR image generation technique with real
images, it is necessary to define a procedure to generate the ground-truth image. If the
ground-truth is to be built from images taken with a regular digital camera (not with
cameras able to capture directly HDR images), a HDR image generation technique has to
be chosen to generate the ground-truth image. It turns out that the precision of the model
parameters estimates plays a key role in this ground-truth image generation process.

A simple way to generate the ground-truth is to define a set of exposure times, take
several images for each exposure and take for each pixel the average value corresponding
to the best non saturated exposure. This ground-truth is clearly unbiased and for a large
enough number of images per exposure time, the noise should be considerably reduced.
Instead of taking the best exposure only, Granados et al. [2010] propose to combine the av-
eraged images using the MLE with the weights computed from the variance of the images.
If the model parameters are correctly estimated, both ground-truths are quite accurate.
Nonetheless, if the parameters are not accurate these ground-truths will be strongly bi-
ased. Moreover, it is not difficult to show that if the irradiance estimation is carried out
using the same parameters as the ground-truth generation, the bias present in both com-
putations will partially compensate and the result will seem better than what it really is.

68



Real gtruth
Granados real par.
Best exp. real par.
Granados

Best exp.

ratio mse / crlb ¢

L L L L L
0 0.2 0.4 0.6 0.8 1

-1 -08 -0.6 -0.4 -0.2
parameter variation (%)

Figure 3.14: Dependence of the ground-truth computation with the uncertainty in model parameters.
For small variations of the parameter the results of all computed ground-truths are almost equivalent.
Yet for variations above 0.2% the performance announced by both ground-truths computed with the
wrong parameters is highly superior than the real performance.

A synthetic experiment is performed to show this effect. Synthetic samples are gen-
erated as in the previous experiment, using Camera A configuration as real parameters
and 7s,. The gain spans the range [0.985¢, 1.0159] and the MLE is computed with the
wrong parameters. Five different ground-truths are considered to compute the MSE: the
real ground-truth (the image used to synthesize the samples), Granados’s ground-truth
obtained with the real parameters and with wrong parameters, the best exposure only
ground-truth obtained with the real parameters and with wrong parameters. Figure 3.14
shows the ratio between the MSE of the MLE and the crLBg,; as a function of the variation
in the gain. Each curve shows the results for a different ground-truth. For small variations
of g the result given for the computed ground-truths is quite accurate. The ratio for the
real ground-truth is below the other ratios, meaning that the result is actually better than
claimed by the computed ground-truths. On the contrary, for deviations of g above 0.2%,
the performance announced by both ground-truths computed with the wrong parameters
is highly superior than the real performance.

3.5 Conclusions

In this chapter we have presented a study of the performance bounds of the HDR estima-
tion problem, and we have analyzed the performance of current state-of-the-art estima-
tion methods. This study shows that, to a first order approximation, the MLE is efficient
even when using a very reduced number of samples. While its value can be computed
numerically by iterative procedures, an approximation of the MLE cannot be directly de-
rived since no closed-form exists. However, we observe that replacing the variance of each
sample by its empirical value, yields to a closed-form which is extremely close to the MLE.
Then we show that the first order Taylor expansion of the variance of this closed-form
estimator, exhibits a negligible difference with the Cramér-Rao bound, for all irradiance
values and for any number of samples. This result explains why, as previously claimed
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based on experimental evidence [Granados et al. 2010], the MLE outperforms other es-
timation methods. In Chapter 5, the near optimality of the MLE is used to choose the
irradiance estimator for a patch-based HDR imaging approach proposed for the case of
dynamic scenes and hand-held camera.

Moreover, we have proposed a method that differs from all methods in the literature,
in the sense that it integrates the information provided by saturated samples in the estima-
tion process. The proposed approach follows closely the Em algorithm, in the version that
considers censored data. Results confirm that saturated samples carry useful information
for irradiance estimation, that allows to improve the irradiance estimation near the satu-
ration values, without degrading the estimation in other irradiance ranges. Improvements
in the order of 1 dB are found in experimental examples.

Finally, we have raised a delicate point that had not been addressed in previous stud-
ies on HDR estimation. We have shown that small errors in the calibration of camera
parameters may severely degrade the estimation. In particular, when working with real
data, a very accurate camera calibration is needed in order to obtain a reliable ground-
truth. Otherwise, results may appear much better than what they are in reality. A natural
continuation of this work is to derive irradiance estimators that are more robust to uncer-
tainties on the camera parameters.
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4 Simultaneous HDR and super-resolution

Not only the acquisition of the dynamic range of the scenes is limited when using con-
ventional cameras, but also their frequency content. Even if the resolution of camera
sensors have had an enormous increase in recent years, it remains limited by several phys-
ical factors. The need to go beyond these limits finds an answer in super-resolution (SR)
methods, which aim at increasing the acquired frequency content by combining multiple
images. The difference between sampling grids caused by the motion of the camera is used
by super-resolution methods to generate a high resolution image. Considered as multi-
imaging approaches, HDR imaging and super-resolution, can be combined to generate a
super-resolved image with a full dynamic range.

In this chapter, we study the reconstruction error of high dynamic range super-resolution
imaging without regularization. From this study, we deduce a strategy for the choice of
the number of images and the exposure times which makes the unregularized problem
well conditioned. With these acquisition parameters, if an affine motion hypothesis holds
and sufficiently long exposure time is available, we show that the recovery of all the ampli-
tude and frequency content of the scene irradiance is guaranteed. This work presented in
this chapter is the result of a collaboration with Yann Traonmilin and has been accepted
for publication at the SIAM Journal on Imaging Sciences. A pre-print of the article is
available [Traonmilin and Aguerrebere 2014].

Super-resolution algorithms have been reviewed in several works [Farsiu et al. 2004;
Milanfar 2010; Tian and Ma 2011]. Most of them can be summarized with a variational
approach. The high resolution (HR) image is recovered by minimizing a regularized data-
fit functional. This data-fit is usually an L? norm fit. From Tychonov to total variation,
many regularization functionals are available. Such regularization is necessary when little
information is available (i.e. a small number of images). The resulting interpolation must
be considered as an inpainting result using a regularity model and not as the recovery of
missing high frequency information as the scene might not verify the regularity hypothe-
sis. It has been shown [Champagnat et al. 2009; Traonmilin et al. 2012a] that regularization
becomes less useful when a large number of images are available. It is then possible to re-
construct the real high frequency content of the acquired scene by minimizing only the
L?-norm data-fit.

As presented in Chapter 3, several HDR image generation algorithms have been pro-
posed since the seminal work by Mann and Picard [1995]. For static scenes, when the input
images can be perfectly registered, the irradiance at each pixel is computed as a weighted
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average of the corresponding samples acquired with different exposure times or gains.
Based on this idea, several methods have been proposed following different weighting
schemes [Debevec and Malik 1997; Mitsunaga and Nayar 1999; Reinhard et al. 2005; Kirk
and Andersen 2006; Granados et al. 2010; Hasinoff et al. 2010; Aguerrebere et al. 2014b].
These schemes have been studied in detail in Chapter 3. However, accurate registration of
aliased images is sometimes impossible and a joint HDR-SR method is thus needed.

In recent years, some algorithms have been proposed to perform SR and HDR simul-
taneously. The most conventional approach is to use a weighted least squares scheme,
as normally done for SR, but on the irradiance [Gunturk and Gevrekci 2006; Choi et al.
2009] or transformed irradiance domain [Bengtsson et al. 2012] instead of working di-
rectly with gray levels. A different approach [Zimmer et al. 2011] is to align low resolution
(LR) images using optical flow and minimize a regularized energy to achieve the combined
HDR-SR reconstruction. Ajdari Rad et al. [2007] propose to first align the input images
and then use a Delaunay triangulation and bicubic interpolation to perform the HDR-
SR estimation on the irradiance domain. The combined problem has also been studied
from a sensor design perspective, with proposed solutions based on specifically adapted
sensors [ Narasimhan and Nayar 2005; Nakai et al. 2008].

An aspect common to all these methods is the use of a regularization term, which
threatens multi-image super-resolution in terms of high frequency recovery capability.
The recovery of the spectrum of the real HR scene cannot be guaranteed. Moreover,
the latest results for HDR image generation, such as the near optimality of the weighting
scheme proposed by Granados et al., are not exploited [Aguerrebere et al. 2014b]. To the
best of our knowledge, the theoretical background for this problem, necessary to ensure
the simultaneous recovery of HDR and HR content, has not been studied in depth.

In this work, we study the HDR-SR imaging problem from the following perspec-
tive: which image acquisition configuration, i.e. number of acquired images and exposure
times, guarantees that the high frequencies and the full dynamic range of a scene will be
recovered? We use a realistic camera acquisition model with affine motion hypothesis and
propose an image reconstruction method that includes the weighting scheme shown to be
nearly optimal for HDR information recovery [Aguerrebere et al. 2014b]. We study theo-
retical bounds for the joint HDR-SR reconstruction error and find that a trade off must be
made between the total exposure time and the number of images. This result is illustrated
with synthetic and real data experiments. Moreover, we show how exposure times can be
selected and also that this selection can be decoupled from the SR problem to fulfill our
objective. This analysis leads to the proposal of an acquisition strategy which, if the affine
motion hypothesis holds and sufficiently long exposure time is available, guarantees the
recovery of the full dynamic range and high frequency content of the scene irradiance. Fi-
nally, experiments with real data show that our HDR-SR strategy manages to recover this
information.

The chapter is organized as follows. Section 4.1 introduces the image acquisition model
and the reconstruction method. In section 4.2, the strategy for the choice of exposure
times and number of images is proposed. Section 4.3 presents the study of the recon-
struction error bounds. In Section 4.4, we show how exposure times can be selected. An
optimal acquisition strategy and its corresponding experimental validation are presented
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in Section 4.5. Finally, conclusions are stated in Section 4.6.

4.1 HDR-SR acquisition and reconstruction

4.1.1  Acquisition model

We consider a monochromatic irradiance acquisition model with different exposure times

(7i)i=1,...nv for each raw low resolution image Z; € R™!. The acquisition operator A is
defined as

A RMZXMZ N RNx(lxl)
C— (Zi)izl,...,N = (QiGiSQiC)i:L...,Na

where NN is the number of LR images, C € RM*M! s the HR irradiance of size M1 x M,
Q; € RIMIXMOX(MEXML) are the affine motions associated with each LR image (Q;C is the
irradiance reaching the sensor), S € R(XDX(MIXMU) s the sub-sampling by a factor M
(M can be called the super-resolution zoom or factor) and G; = gr; € REXDX(XD s the
overall acquisition gain, including the camera gain ¢ (without loss of generality, we take
g = 1 to simplify expressions) and the exposure time 7; for the i-th LR image. Several
images may be acquired with the same exposure time. €; € R(>*D*(XD s 3 diagonal ma-
trix taking value 1 if pixel ;7 does not become saturated or under-exposed for the exposure
time 7; and zero otherwise. We assume 2 = (£2;);—;,.. v to be full rank (every pixel is at
least illuminated once).

This model is close to the one introduced in [Gunturk and Gevrekci 2006]. We use
a simplified version of it in order to facilitate the study. Unlike [Gunturk and Gevrekci
2006], the camera response function is here considered to be linear, which is a realistic
model for raw images. Our model does not take into account the point spread func-
tion of the camera, which can be deconvolved afterward if motion is small [Traonmilin
et al. 2012b]. Since we consider a monochromatic acquisition model, the Bayer pattern
is ignored. With our model, the production of a demosaicked color HR image without
regularization, would take the form of a separate inversion of the 3 color channels. Only
the motion due to the shift in the grid would have to be included in ;. Note that the
green channel would have 2 times more LR images than red and blue channels.

The digital LR images Z = (Z;);—1,... v are contaminated by additive noise N:

7 =AC+N. (4.2)

(4.1)

Considering the acquisition noise model introduced in Chapter 2, we take N to be a spa-
tially varying Gaussian noise
N = N¢ + Ng, (4.3)

where N¢ is a Gaussian noise with covariance matrix 3¢ proportional to the irradiance
(X¢ = diag(AC)) and Np, is a Gaussian readout noise with constant variance 0%. Thus
the covariance matrix of N is ¥ = diag(AC) + 071 (I = identity matrix). We do not take
into account the spatially variable gain caused by the photo-response non uniformity of
the sensor (see Chapter 2), which should be included for a more accurate modeling. The
objective is to recover C from Z.
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4.1.2 Image reconstruction

It has been shown in [Traonmilin et al. 2012a] that A/? images are necessary to perfectly
recover the HR image in the case of constant exposure times. Because we assume that the
HDR acquisition model is a full rank linear map, the composition of the two processes is
invertible with A/? LR images. We minimize the L? data-fit to recover an estimate of C

C = argmin|[WY(AC — 7)||2. (4.4)

Multiplying by W'/2 = 3~/ normalizes the noise to have constant variance, thus the
solution to (4.4) gives the minimum variance linear unbiased estimator of the irradi-
ance. Practically, this problem is solved with a linear conjugate gradient calculation of
(WH2A)PW1/2Z = (ATWA)TATWZ.

Since the weights W depend on the irradiance C, an iterative procedure is needed
to complete the estimation. The weights can be initialized with a smoothed version of
the LR images. In practice, it is found that one iteration yields good results, and the
irradiance remains almost unchanged after the first iteration. The iterative computation
of this estimator for the HDR image generation in the case of perfectly registered images,
is introduced by Granados et al. [2010] and shown to be nearly optimal in [Aguerrebere
et al. 2014b] (Chapter 3).

An experiment is conducted to evaluate the benefit of using the weights W. For this
purpose, synthetic samples are generated from a ground-truth HDR image (from [Hasi-
noff et al. 2010], see Figure 4.1) according to Model (4.2), and the reconstruction is per-
formed solving (4.4), with W/2 = > 2 and W = I. The experiment is repeated 100
times, with randomly chosen affine transformations and noise realizations. The signal-
to-noise ration (SNR) for each reconstructed pixel is computed from the ground-truth
value and the mean square error (MSE) at that pixel (MSE computed from the 100 exper-
iments). Figure 4.1 shows the SNR images in decibels for each weighting type. The results
greatly improve when the weights W'/? = 3~ /2 are included. The improvement (gain in
SNR) is more remarkable in the darker regions of the scene where the input samples are
noisier. An average gain of 3.9 dB (average SNR for all pixels) is found when comparing
the cases with weights (32.5 dB) and without weights (28.6 dB).

For image registration we use the variable projection [Traonmilin et al. 2012b] method
adapted to our joint HDR-SR reconstruction problem.

4.2 Strategy for the choice of acquisition parameters

In order to establish an HDR-SR reconstruction strategy, we must define the set of ex-
posure times and the number of images (per exposure time) to acquire. Given a set of
exposure times 7y, ..., Ty, the reconstruction error can be arbitrarily large because the
condition number of the acquisition operator A cannot be bounded. For instance, it is
infinite if the camera does not move (Q; = I). Therefore, it is not possible to find the
exposure times minimizing the reconstruction error for the HDR-SR combined problem
without knowledge of the camera motion. In practice, the motion is seldom known. In
particular, it is unknown for images acquired with a hand-held camera.
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Figure 4.1: Result of optimal reconstruction for HDR-SR. SNR for each pixel obtained from 100 experi-
ments with randomly chosen affine transformations and noise realizations. Left: Ground-truth image
from [Hasinoff et al.]. Center: SNR obtained without weights (W = I). Right: SNR obtained using
W2 = 3712, The improvement is more remarkable in the darker regions of the scene where the
input samples are noisier. An average gain of 3.9 dB (average SNR for all pixels) is found comparing the
cases with weights (32.5 dB) and without weights (28.6 dB).

Performing a joint optimization of exposure times and number of images for HDR-SR
would require a precise statistical model describing camera motion. Even with this infor-
mation, calculating precise estimates of the reconstruction error would be difficult be-
cause we would have to estimate the interaction between the local conditioning of super-
resolution [Traonmilin et al. 2012a] and the spatial variations of the SNR. Moreover, this
joint problem is a highly dimensional non-convex problem, which would be hard to em-
bed in a camera.

Hence, we propose to define a reconstruction strategy combining the optimality results
for each separate problem, HDR and SR, so as to minimize the worst case reconstruction
error of the combined problem. With HDR processing, we know that some parts of the
scene are illuminated by few images. From SR theory, these parts must be covered by
enough images to enable a reconstruction without regularization. Consequently, we pro-
ceed as follows.

Proposed strategy For the HDR reconstruction problem, an optimal HR HDR image is
obtained if p HR images with exposures 74, ..., 7, are combined, these exposures being
chosen to minimize the HDR reconstruction error (as will be detailed in Section 4.4).
Hence, we propose to consider the SR conditions which best estimate each of these p HR
images. This will guarantee that the joint HDR-SR reconstruction performs well.

Suppose that we find a set of motions associated with each 74, . . ., 7, leading to a good
SR reconstruction of the p HR images. Then a naive linear HDR-SR method would be to
perform a classical HDR technique, with these p reconstructed HR images, thus limiting
the final reconstruction noise. But we know that our joint method (minimization (4.4))
leads to the optimal L? reconstruction error, given this dataset. Consequently, by min-
imizing the reconstruction error of the separate HDR and SR problems, we guarantee a
good reconstruction error for the joint HDR-SR problem.

Given a set of exposure times 7y, ..., 7, that minimize the HR HDR reconstruction
error, two cases are to be considered. If the total exposure time and the total number of
images are not limited, the best strategy for each exposure (7;);—1,. , is to take as many
LR images as possible with this exposure in order to improve the SR reconstruction. With
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equal exposure times, the problem becomes a pure super-resolution problem where more
images improve the quality of the reconstruction [Champagnat et al. 2009; Traonmilin
et al. 2012a]. Longer exposures are not desirable since they increase the number of satu-
rated pixels thus increasing the reconstruction error. A much more realistic case, is that
of a limited total exposure time (e.g. because of scene motion). In order to ensure a cor-
rect HR reconstruction with a super-resolution factor (or zoom) M, the minimum total
exposure time for frames acquired with time 7; is M>27;. However, as it will be shown in
the following section, there is an optimal number of LR images N > M? for a fixed total
exposure time.

4.3 Reconstruction error bound for HDR-SR

In the following section we study the reconstruction error bounds for the HDR-SR es-
timation problem for a fixed total exposure time 7" and /N images acquired with equal
exposure T'/N, i.e. the reconstruction of the HR irradiance frame.

4.3.1 Optimal number of images for a fixed total exposure time

In a HDR context, when neglecting motion blur, the longer the exposure time without
saturation, the better. We show here that when we must perform SR at the same time (i.e.
compute the pseudo-inverse of A), taking more images with a shorter exposure can be
better. We study the case of HDR-SR for a given total exposure time 7" without saturation,
i.e. {); = I. N images are acquired with a total exposure time 7', each with equal exposure
time 7 = T'/N. Because the overall acquisition gain is linear, the problem is equivalent to
the acquisition of N LR irradiances Y with A’ = G~ A, with a noise N’ with covariance
matrix:

¥ = diag(A'C/7 + 0% /771). (4.5)

Then,
Y =A'C+N. (4.6)

A’ is the conventional super-resolution modeling operator, i.e. a super-resolution opera-
tor where acquisition gain is not considered. Thanks to this normalization, we will be able
to use results from the super-resolution literature directly.

The super-resolution of NV images with exposure 7'/N can be done solving the prob-
lem

C = argminy [[W"/2(A'C - Y)|13, (4.7)
with W = ¥'71,

Reconstruction error bound
Proposition 6. The noise in the reconstructed image N, is thus bounded by

2 272
||Nrec||§ < ﬂm l

72 (AN (1+7rN)N?, (4.8)
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where 1(N) is the conditioning of A" A’ (ratio of extremal eigenvalues of A" A"), 6,4, (A')
is the maximum singular value of A’, m = sup(C), m = inf(C), r = 0%/(Tm), 7 =
0% /(Tm) and [ is the size of the input images. Hence, the optimal number of images for a
fixed total time T is the one that minimizes ||N .| |%

Proof. First, using operator norm inequalities:

||NreCH§ = ‘|(AlHW,AI)71AIHWINin||§ (4.9)

< A WAN) AW Z W ANG 3 (4.10)
O_Zum(A,)U%um(W,l/2) 2

= (Wt (v Y (410

where 0, (A’) and 0,4, (A’) are the minimum and maximum singular values of A’ (re-

spectively for W') and [ is the size of input LR images. Let (V) be the conditioning of
A"MA de k(N) = ﬁ"%&,’;. Using the fact that W’ is diagonal and its definition from

equation (4.5),

k(N)? (mN/T + 02N?/T?)?
02,..(A") mN/T 4+ 02N?/T?

k(N)2 m2l*(1+rN)
=~ 02, (A) m(1+7N)

[Neeell3

IN

2N (4.12)

(14+7rN)N? (4.13)

where m = sup(C) = sup(A'C), m = inf(C) = inf(A'C), r = o%/(Tm), F =

0% /(Tm). Finally, making use of the inequality 81;%% < 1 we have
9 k(N)?  m?* N
||Nrec||2 S T2mm7(A,), " (1 +TN)N . (414)

]

In [Traonmilin et al. 2012a], it was shown that (V) can be bounded in probability by
a decreasing function of the number of images N. Moreover, it can be shown [Traonmilin
et al. 2013] that N/M? < ||A'||3 = ¢2,,,(A’) < N. Hence, to optimize the reconstruction
error bound, we minimize the function

F(N) = K(N)*(1+rN)N, (4.15)

with respect to N. When N is close to the critical case M?, k(N) can be large but de-
creases to 1 with NV [Traonmilin et al. 2012a]. The conditioning of the SR operator has
been also studied extensively in [Champagnat et al. 2009; Robinson and Milanfar 2006].
Consequently, f will have a minimum. Notice that the r factor is proportional to ¢% and
cannot be neglected in low light conditions. If we added saturation for a particular time
T /Ny with Ny > M?, the bound would still be valid for N > Njy. For N < Ny, matrix
A’ is not invertible, thus the error is not bounded.
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Figure 4.2: Plot of log(f(NV)) versus N (M = 2). First row: (left) Result for 100 experiments (blue) and
average (red) of 2D translational SR for each N with » = 0.03 . The minimum is reached at N = 12.
(right) Plot of the average log( f) for different values of r for translational SR. Minimum at 12 (r=0.3), 13
(r=0.03) and 30 (r=0.003). Second row: (left) Affine super-resolution, 20 experiments for each N. The
minimum is reached at N = 19, (right) Plot of average log(f(V)) versus N for different values of r for
affine SR. Minimum at 14 (r=0.3), 19 (r=0.03) and 34 (r=0.003).

Experimental study of f (V)

Synthetic data To illustrate the behavior of f(/N), we compute its curve for the case
of 2D translational super-resolution. For each number of images NV, we randomly sim-
ulate 100 translation parameters and compute the corresponding f (V) by explicitly cal-
culating x(/N) (which can be done because the SR is then a 2D Vandermonde system in
the frequency domain [Papoulis 1977; Ahuja and Bose 2006]). With the same procedure,
we generate the f(N) curve for the affine super-resolution case. Here x(IV) is approxi-
mated by the ratio || Nye||?/||Nin||?. Figure 4.2 shows the results obtained with A = 2 and
r = 0.03 (chosen with realistic values: 0% =30, T = 1/10, m = 10*).

It can be verified that the minimum of f is not reached at the critical case (N = M? =
4), meaning that it is better to take more than M? images with shorter exposure times.
This fact shows that a compromise must be made between the number of images needed
to perform super-resolution (more than M?) and the noise level on those images. Given
the total exposure time 7, a degradation of the performance can be observed for large
N. This can be explained by the fact that each image has a shorter exposure time. For
short enough exposures, the variance 0% of the readout noise becomes prominent. The
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Figure 4.3: Reconstruction error with respect to total exposure time and number of images (M = 2).
(a) Reconstruction error with respect to total time. (b) Reconstruction error with respect to number of
images. (c) SR result with 7 images at 1/41s. (d) One LR image with exposure 1/41s. (e) SR result with 10
images at 1/64s. (f) one LR image at with exposure 1/64s.

amount of noise in LR images becomes too big to be compensated by the averaging effect
of super-resolution, thus increasing the reconstruction error.

This can be verified with the results obtained for various r values in Figure 4.2. The r
factor can be thought of as the inverse of the dynamic range of the acquired scene, since it
is equal to the ratio between the constant noise variance 0% and the maximum acquired
irradiance mT" (up to the factor V). As the value of r decreases, the minimum of f(NV)
is reached at a larger N. This is due to the fact that both, decreasing 0% or increasing 7',
improve image quality and thus allow the use of shorter exposure times. Moreover, notice
that the error bound increases quite slowly after its minimum. Hence, whether we choose
anumber of images at the minimum or slightly above will have little impact on the results.
Curves of similar shape are obtained for larger M values, with the minimum reached for a
larger V. This is caused by the larger conditioning of the SR problem for larger A/ [Baker
and Kanade 2002].

Real data In order to experimentally verify the previous results, we take pictures of a
planar surface using a hand held camera (c.f Figure 4.3). The small hand motion gives
the sampling diversity needed for HDR-SR and guarantee that motion blur is not too
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large. The goal is to compare the HDR-SR reconstruction error (M = 2) obtained with
a constant total exposure time 7', but with two different exposure times, 77 = 1/41 and
Ty = 1/64, i.e. with a different number of images, Ny = T'/7; and Ny = T'/7,. In the
same way, the HDR-SR results are compared for the two different exposure times when
fixing the total number of images /N, i.e. for a different total exposure time N7; and
Ny in each case. The reconstruction error (estimated from the variance of gray parts)
with respect to the total exposure time and the number of images, for the two different
exposure times, is shown in figures 4.3 (a) and (d) respectively. In this example, for a
fixed number of images, it is better to take pictures at 1/41 seconds. However, for a fixed
total exposure time, it is better to combine more images with the shorter exposure 1/64
seconds. The same behavior can be observed in the extracts of the reconstructed images
shown in figures 4.3 (b) and (c). Hence, we verify that the longest exposure time is not
necessarily optimal.

4.3.2 Discussion and practical consequences

A trade-off must be made when performing HDR and SR simultaneously: in an HDR
setting, we look for the biggest exposure times which do not saturate (or saturate for the
fewest images possible) while with SR, more images are generally better. This leads to the
following remarks depending on the acquisition setup:

e With a fixed total exposure time, the number of images must be above the criti-
cal case for SR (M?), thus with a shorter exposure. However, it must not exceed
by much the critical case since for very short exposures the reconstruction noise
increases with V.

¢ With a fixed number of images, the more images with the longest possible exposure
time the best. However, the previous remark give us the knowledge that if this num-
ber of images is the optimal one from the previous section, then it is not possible to
do better with the same total exposure time.

e With any exposure time / number of images, the best strategy is taking as much
images as possible of the longest exposure time. Taking a lot of images with very
short times is not a good strategy.

In the following section we analyze the problem of the exposure times selection focus-
ing on the extension of the dynamic range of the image (M =1,Q; =1,S =1).

4.4 Exposure times selection for HDR reconstruction

The selection of the exposure times is a key aspect of the HDR imaging problem. Several
approaches can be found in the literature that tackle this problem from different perspec-
tives. Some of the proposed methods look for the optimal times set that ensures that
a predefined dynamic range will be captured [Grossberg and Nayar 2003; Barakat et al.
2008]. Another group of methods focuses on the quality of the reconstructed HDR im-
age and optimizes a risk function that depends on the mean squared error [Hirakawa and
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Wolfe 2010] or the signal to noise ratio of the reconstruction [Granados et al. 2010; Hasi-
noff et al. 2010]. These methods need a prior estimation of the scene irradiance, which is
assumed to be available for instance through the irradiance histogram.

In this chapter, we focus on the minimization of the HDR-SR reconstruction error,
and we seek for the exposure times set that minimizes the HDR reconstruction error for
a given number of exposures N'. The determination of the number of different exposure
times N’ is an important problem in HDR imaging, since it has a major impact on the
quality of the results and on the practical constraints of the acquisition. Given that it is
not the goal of this chapter to study this problem, we consider instead the value N’ as a
given parameter, which might eventually be set from the known irradiance histogram. An
histogram of the scene irradiance is assumed known. In this section we concentrate on
the extension of the dynamic range of the image (M = 1,Q; = I,S = I) and propose an
algorithm to find this exposure times set.

In this case, the solution to equation (4.4) gives the following estimator of the irradi-
ance at position j:

ZN’ 782 Zij
=1 Cjti+0'23
j t Qh] ° (4'16)

S 1 G tntol,

Thus the irradiance estimator variance in this case is given by

12M?

1
INelld = > < (417)

j=1 Zh 1Cth+gR

Then, we consider the optimal set of times as the one that minimizes (4.17).

If we neglect the readout noise variance 0%, the irradiance estimator variance ex-
pressed in (4.17) depends on the square root of the signal \/C_j . Thus, the minimization
of (4.17) prioritizes noise reduction in bright regions. We opt to normalize the estimator
variance by the signal as a way to counter this dependence and prioritize noise reduction
in low light pixels, since noise is generally amplified in those pixels by post-processing
tone mapping techniques used to display HDR images. Several tone mapping techniques
perform a contrast reduction of the irradiance image that magnifies the noise visibility
mainly in dark regions [Reinhard et al. 2010]. Nevertheless, this is clearly one possible
option among multiple valid options. Other approaches are also valid (e.g. normaliza-
tion by the squared signal C? so as to minimize the squared signal to noise ratio) and
may be incorporated into the proposed HDR-SR acquisition strategy by modifying (4.17)
accordingly. Therefore, we consider the normalized irradiance estimator variance

12 M2 12 M2

1
C; 1
Nl = W > B0, (4.18)

=1 2uh=1Gtpr0s -l PO 1 tn+o%/Cr

and the set of exposure times

ti,...,tx = arg Inl%l IN..|I5. (4.19)

17 SUN/
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Figure 4.4: Inverse of the normalized reconstruction error (inverse of Equation (4.18)) for the first example
scene of Section 4.5.

To minimize the non-convex function (4.18), we propose to use an exhaustive evaluation
method. First, the shorter exposure time is determined by the fact that all irradiance
values must be correctly acquired for at least one exposure time (matrix A is full rank).
For the same reason, a lower bound is determined for the longer exposure. Then, given
the number N’ of exposure times to acquire (which might be automatically extracted from
the scene histogram), we need to minimize function (4.18) with respect to the remaining
N'" — 1 times. We find this minimum by evaluating all combinations of available times.
This methodology is feasible and fast in practice since /N’ is usually in the order of 2 to 4
and the number of available exposures in the camera is about 50 (e.g. 55 for the Canon
7D).

Figure 4.4 shows the inverse of function (4.18) for the example scene presented on the
first experiment of Section 4.5 with N’ = 2. The large flat region for the longer exposure
times represents the large error caused by the saturation of most (or all) pixels in the
image. A large error is also found for very short exposure times, since the readout noise
becomes important for all irradiance values. The maximum of the function (minimum
of (4.18)) is reached between these two extremes, as a compromise between saturation and
noise level. This compromise is determined from the proportion of pixels belonging to
each irradiance range, which is derived from the irradiance histogram of the scene.

4.5 Acquisition strategy

From the results presented in previous sections we derive the following strategy for the
a regularized HDR-SR reconstruction that guarantees the recovery of the amplitude and
frequency content of the scene irradiance. The exposure times are first selected following
the procedure introduced in section 4.4. For this purpose, two images are taken to com-
pute the histogram of the scene irradiance and find the optimal exposure times for the
HDR reconstruction. One image must capture bright regions (no saturated pixels) and
the other must capture dark regions (no under-exposed pixels). From the concatenated
histograms of the two exposures, the high dynamic range histogram of the irradiance is
built. With this histogram, the minimization from equation (4.19) is performed for the
given number of exposure times.
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Figure 4.5: Practical set-up of the first experiment.

The number of images to take for each exposure time is thus defined from the study
presented in section 4.3. This number should be taken as the minimum of function f
according to the second remark in section 4.3.2. The function f, thus the optimal N,
depends on the scene irradiance. However, for M = 2, we find in practice that it is
reached at about N = 20 for a large range of irradiances. It can be larger for smaller r
values, but in those cases the function is quite flat and the result is not greatly affected
by this choice. Because N = 20 is a feasible number of shots for burst acquisition with
a hand-held camera, it can be taken as the reference number of images needed for each
exposure time. Hence, 20 hand-held pictures are taken for each of the selected exposures
and the joint HDR-SR is performed solving (4.4) with all images. As stated in Section 4.2,
the joint HDR-SR reconstruction gives the minimum L? reconstruction error and is thus
preferable over the separate reconstruction (super-resolution for each HDR exposure and
then HDR imaging to combine the HR frames). Moreover, separate registration for times
which saturate a large part of the image can fail (e.g. the series of images from 4.8 (c) (f)).

4.5.1 Experiments

The following experiments were conducted in order to test the capacity of the proposed
strategy to recover the dynamic and frequency information lost by a single image acquisi-
tion without the need of regularization hypothesis on the scene. To be as close as possible
to our model we used the raw images from a high end commercial camera (Canon 7D) for
real data experiments (second and third experiments)

Synthetic data In the experiment of Figures 4.6 and 4.7, we illustrate how taking the
advocated number of images yields a better reconstruction than a total variation regular-
ization with less images. We generate synthetic LR images, according to Model (4.2), from
an HR irradiance map (extracted from a real scene). For TV regularization, we generate 2
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LR images at the three exposure times 6%1, + and 3% seconds. We add a total variation reg-

ularization term to minimization (4.4) and choose the regularization parameter giving the
best PSNR. For the unregularized case, we generate 20 images for each of these times, and
perform minimization (4.4). The difference in reconstruction quality can be noticed both
qualitatively, and in terms of PSNR. The unregularized version has a 6 dB PSNR improve-
ment (43.48 dB for the regularized result and 49.92 dB for the proposed approach), and
the content of the image is not altered (frequencies are not distorted). The TV regularized
method altered edges, as for example in the small text areas.

High dynamic range planar surface We use a planar surface half illuminated by a strong
source, thus generating two levels of irradiance. The scene is shown in Figure 4.5. Ac-
quiring a plane matches the hypothesis of affine motion (small homography). In a more
complex scene, segmenting the image in parts where the affine motion hypothesis is valid
might be necessary.

The strategy introduced in section 4.5 is used first to find the 3 optimal exposure times
(which are enough to capture the two different illumination levels of the scene) for the
ﬁ, % and 3% seconds. Then, 20 hand-held pictures are taken for each of the three
selected exposures (total exposure time is approximately 1.1 second). Finally, the joint
HDR-SR is performed solving (4.4) for all images.

scene:

Figure 4.8 shows example images for each exposure time in the irradiance domain (i.e.
at the same scale) along with the corresponding saturation masks. We observe the in-
creasing saturation for increasing exposure time. In Figure 4.9, the result of the HDR-SR
reconstruction with factor M = 2 is displayed along with the result of a bi-cubic interpo-
lation of the reference image for comparison purposes. All images are at the appropriate
scale for a fair comparison. As expected, the HR image resulting from HDR-SR recon-
struction is sharper and less noisy than the bi-cubic interpolation. In this practical case,
the intrinsic frequency content of the scene is not very rich because the camera has a phys-
ical anti-aliasing filter that cuts much of the high frequencies. However, the recovery of
higher frequency information (which does not rely on any regularity model of the scene)
is visible, especially on the plot of frequency spectra.

Complex scene An HDR-SR experiment was conducted in the scene shown in Figure
4.10. The strategy introduced in section 4.5 is used to find 3 optimal exposure times for the
scene: é, ﬁ and % seconds. Then 20 hand-held pictures are taken for each of the three
selected exposures. The total exposure time is approximately 1.4 seconds. In order to
apply (4.4), the HDR-SR reconstruction must be performed in sub-regions of the images
verifying the affine motion hypothesis. The joint HDR-SR for each region is performed
solving (4.4) from the corresponding regions of all input images. Figure 4.11 shows the
HDR-SR reconstruction for a bright and a dark region of the scene. The recovery of high
resolution content is particularly visible in the focused part of the image (see figures 4.11(d)
and 4.12 ). In particular, the aliasing in the LR image (noticeable on the text) is greatly
reduced in the reconstruction. The improvement is less noticeable in the bright region
(see figure 4.11(b)) since that part of the image is out of focus.
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(a) One of the LR images. (b) HR image.

(c) Optimal TV regularization with 6 images (d) SR without regularization and with 60 im-
(PSNR=43.48 dB). ages (PSNR=49.92 dB).

Figure 4.6: Comparison between a regularized method with 6 images and the proposed non-regularized
method with 60 images. See details in Figure 4.7.
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- .
One of the LR images. b) HR image.

(c) Optimal TV regularization with 6 images (d) SR without regularization and with 60 im-
(PSNR=43.48 dB). ages (PSNR=49.92 dB).

Figure 4.7: Details of Figure 4.7.
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Saturation masks

Figure 4.8: Acquired LR irradiance images with different exposure times with their respective saturation

masks (saturated parts are in black). First row (left to right): reference image at ﬁ, image at %, image

at 31—0. Second row: saturation masks for the corresponding images above.

4.6 Conclusions

In this chapter, we exposed how the high dynamic range super-resolution (HDR-SR)
problem can be set-up as a minimization problem including state of the art techniques
from both sides of the problem. We showed that particular care is necessary when choos-
ing acquisition parameters for HDR-SR. A balance between noise generation due to the
conditioning of super-resolution and the noise intensity corresponding to the length of
exposure times should be found. We also showed how exposure times for HDR-SR can
be chosen. The main conclusion of the work presented in this chapter is the suggested
strategy which ensures that, if the affine motion hypothesis holds and sufficiently long ex-
posure time is available then all the information contained in the irradiance scene (both
in amplitude and in frequency) is recovered.
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Bicubic interpolation
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Figure 4.9: Result of HDR-SR with 60 images. First column (top to bottom): bicubic interpolation of the
first LR image, detail of the bicubic interpolation, 2D frequency spectrum of the bicubic interpolation.
Second column (top to bottom): result of the proposed HDR-SR approach, detail of the proposed
HDR-SR result, 2D frequency spectrum of the proposed HDR-SR result.
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(c) LRimage. (d) Result of the proposed HDR-SR.

Figure 4.11: Result of the proposed HDR-SR method with 60 images.
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(a) Detail of the result in Figure 4.11 (c). (b) Detail of the result in in Figure 4.11 (d).

Figure 4.12: Details of the result of the proposed HDR-SR method with 60 images shown in Figure 4.11.
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5 HDR imaging for dynamic scenes and
hand-held camera

As presented in Chapter 3, HDR images are usually generated by combining multiple pho-
tographs acquired with different exposure times. This approach, while effective, suffers
from various drawbacks. The irradiance estimation is performed by combining, for each
pixel, different exposure values at the same spatial position. This estimation scheme does
not take advantage of the redundancy present in most images. Moreover, images must be
perfectly aligned and objects must be in the exact same position in all frames in order to
combine the different exposures without introducing ghosting artifacts. Figure 5.1 shows
the result obtained when combining misaligned images. Ghosting artifacts appear all over
the image giving a completely unusable result.

In this chapter, we present a new HDR imaging approach that simultaneously copes
with these problems and exploits image redundancy to produce a denoised result. A ref-
erence image is chosen and a patch-based approach is used to find similar pixels that are
then combined for the irradiance estimation. This patch-based approach permits to ob-
tain a denoised result and is robust to image misalignments and object motion. Results
show significant improvements in terms of noise reduction over previous HDR imaging
techniques, while being robust to motion and changes between the exposures. The work
presented in this chapter has been published in the proceedings of the International Con-
ference on Computational Photography (ICCP) held at Boston, US, in April 2013 [Aguer-
rebere et al. 2013].

The chapter is organized as follows. We start in Section 5.1 with a summary of the
previous work on HDR imaging for dynamic scenes. In Section 5.2 we start with a short
reminder of the state-of-the-art in static HDR imaging techniques and then we describe
the different steps of our non local HDR estimation approach. Experiments and com-
parisons with state-of-the-art approaches are presented in Section 5.3. Conclusions are
presented in Section 5.4.

5.1 Previous work

There is a broad literature dedicated to the creation of HDR images for completely static
scenes and static camera (c.f. Chapter 3). This problem is simplified but nevertheless
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Input frames: camera + object motion

Result: ghosting artifacts

Figure 5.1: Left: Input misaligned images (these images are the result of demosaicking raw images,
white balance has not been performed). Right: Result of the combination of the input frames without
previous corregistration. Ghosting artifacts appear due to image misalignment.

particularly interesting. Knowing the physical model of the camera sensor and working
with raw data, the most recent approaches [Kirk and Andersen 2006; Granados et al. 2010;
Aguerrebere et al. 2014b] model the HDR creation as a statistical estimation problem, for
which the maximum likelihood estimator is shown to be nearly optimal [Aguerrebere et al.
2014b](Chapter 3). While powerful from the theoretical point of view, these approaches
greatly suffer in practice from small camera misalignments and cannot cope with moving
objects, which makes them hardly reliable in non controlled environments.

Several approaches have been proposed in the literature to overcome these limitations.
Most of them start by globally registering the frames in order to compensate for global
camera motion. As a result, the background of the scene can be seen as static, while
dynamic objects remain unregistered.

The first kind of methods makes use of optical flow techniques in order to compensate
the motion across the different frames, generally after a global exposure compensation
between the frames [Kang et al. 2003; Bogoni 2000; Zimmer et al. 2011]. Unfortunately,
explicit motion estimation remains an ill-posed and ambiguous problem (especially in the
presence of missing regions), and such methods are exposed to alignment errors.

A second variety of deghosting methods aims at reducing the influence of pixels of
moving objects on the HDR estimation. These pixels can be detected in a first step and
completely discarded for the estimation [Grosch 2006; Jacobs et al. 2008; Sidibé et al. 2009;
Gallo et al. 2009]. Alternatively, the pixel weights in the irradiance estimation can be
adapted in order to decrease the influence of suspicious pixels [Khan et al. 2006; Min et al.
2009; Pece and Kautz 2010; Heo et al. 2011]. For a recent and complete review on ghost
detection and removal, see [Srikantha and Sidibé 2012].

Another limitation of HDR imaging is that images created from different exposures
tend to be noisy. This comes from the fact that the HDR estimation is generally performed
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on a per-pixel basis (possibly after registration). For a given pixel, the estimation only
relies on the observed values at the same location for all the available exposures. Moreover,
this number is reduced if a moving object occurs or if the pixel is over or underexposed
in some frames. The recent work by Heo et al. [2011] proposes a first solution to this
problem, making use of a bilateral filtering during the frame fusion step. However, such a
local filtering cannot cope with large motions.

In this chapter, we propose to take advantage of the strong self-similarity property of
images in order to solve the HDR estimation problem. More precisely, we rely on the re-
dundancy of image patches to correctly estimate the irradiance at each pixel while avoiding
the fastidious image registration and motion estimation (or detection) steps. In particu-
lar, the patch similarities are sufficiently robust to handle camera motion and the possibly
large motion of objects. As an important by-product, the result of our non local HDR
algorithm is much less noisy than the results of state-of-the-art HDR approaches. This
denoising capacity is obviously true for the background scene, but also for objects in mo-
tion, whose different occurrences through the exposures are correctly retrieved thanks to
the patch-based approach.

5.2 HDR imaging for dynamic scenes and hand-held cam-
era

The methods presented in Chapter 3 assume that the images have been perfectly co-
registered. These methods work under the hypothesis that the camera is fixed with respect
to a static scene. As a consequence, their performance is highly affected by image mis-
alignments and moving objects. Indeed, the HDR estimation problem becomes far more
difficult in the case of dynamic scenes. A precise prior registration and some kind of mo-
tion estimation are seemingly essential to perform the frame combination if one wants to
avoid blur and ghosting artifacts. Now, motion estimation is often subject to ambiguities
and fine global registration becomes complicated for large camera motion.

In the following, we propose to solve the HDR estimation problem in the dynamic
case by exploiting the inherent redundancy of images. Drawing on the recent works on
multi-image denoising [Buades et al. 2008; Boracchi and Foi 2008], the idea is to combine
information from pixels potentially sharing the same underlying irradiance value. In the
process, we show that the HDR estimation of dynamic scenes does not require to apply
any special or dedicated motion estimation method. Let us begin with a reminder of the
HDR imaging technique that will then be needed in the proposed non-local approach.

5.2.1 HDR imaging for static scenes and camera

As presented in Chapter 3, several methods have been proposed to solve the HDR image
generation problem following a pixel-wise approach in the case of static scenes. The basic
idea, common to all of them, consists in combining 7" images acquired with exposure
times 71, . . ., 7p. The irradiance C), at each pixel p is then computed as a weighted average
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of the irradiance estimated from each frame,

p

LN -
Cp=> u? (—T : ) S wt =1, (51)
i=1 i i=1

where f~! is the inverse of the camera response function, 7 is the pixel value at position p
for the frame acquired with exposure 7; and w? is the weight assigned to the i-th exposure
for pixel p.

The most recent approaches [Granados et al. 2010; Aguerrebere et al. 2014b] propose to
exploit raw camera values (in that case, f is linear before attaining the saturation thresh-
old) and draw on a precise knowledge of the camera sensor noise to solve the irradiance
estimation problem. Under this noise model, non saturated samples are seen as realiza-
tions of random variables Z! distributed according to (c.f. Chapter 2)

78 ~ N(ga,m.Cp + g, gQapTiC'p + a%), (5.2)

where g is the camera gain, a, models the photo response non uniformity (PRNU) factor,
tr and 0% are the readout noise mean and variance.

Given that a closed formula for C, under Model (2.2) cannot be found for the MLE,
different numerical solutions have been proposed in the literature for its numerical esti-
mation. The most efficient one is due to Granados et al. [2010], which propose an iterative
algorithm: at each iteration, the irradiance C,, is computed as a weighted average of the ir-
radiance estimations from each frame x? with weights equal to the inverse of the variance
of each estimation O-]Qn"
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The weights are initialized directly from the input samples. Granados et al. also consider
the dark currents which we neglect here for being substantially smaller than the other
considered noise sources (c.f. Chapter 2).

The MLE approach by Granados et al. can be considered to be the state-of-the-art
in pixel-wise HDR generation for static scenes. Moreover, we showed [Aguerrebere et al.
2014b] that this MLE approximation performs very close to the Cramér-Rao lower bound
of the irradiance estimation problem. This result is proved for a pixel-wise estimation
discarding the saturated samples and raw pixel values following Model (2.2). Also we
showed [Aguerrebere et al. 2014b] that in most cases, the iterative approach of [Granados
et al. 2010] does not require more than one iteration to yield good results, the estimated
irradiance remaining almost unchanged after the first iteration.

5.2.2 The proposed non-local approach

The diagram presented in Figure 5.2 summarizes the proposed method. Given the T’
frames, we first choose a reference image (c.f. Section 5.2.2 for the reference frame se-
lection) and estimate the irradiance on each pixel by combining the information of sim-
ilar pixels present in all frames, i.e. the reference frame and the frames corresponding to
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Figure 5.2: Diagram of the proposed method for HDR imaging with hand-held camera and moving ob-
jects.

the other exposure times. Similar pixels are found by comparing the neighborhood of
the pixel in the reference image with those of pixels in all frames. Finding similar pixels
through patch comparison makes the method robust to image misalignments, resulting
from hand-held camera motion, and to moving objects without the need of image co-
registration or motion detection. We propose to work with raw data in order to exploit
the potential of the statistical noise model introduced in Chapter 2.

Finding similar pixels

The first step of the method is to determine which pixels share the same irradiance value.
For this purpose we propose to use a variation of the patch comparison used by the NL-
MEANS method [Buades et al. 2005a]. This variation is adapted to the noise Model (2.2).
The original NL-MEANS algorithm aims to denoise images corrupted with Gaussian noise
of constant variance. Under Model (2.2), the noise is Gaussian distributed but the variance
depends on both the irradiance and the exposure time. Therefore, the noise variance is
different for each pixel (different C}) in each frame (different 7).

Patches must be normalized by the exposure time in order to be comparable. Thus
the comparison is done in the irradiance domain. The proposed distance between a patch
centered at pixel p in the reference frame and a patch centered at pixel ¢ in another frame
is given by

I« Xm qu )?
N )

J=1

d(p,q) = (5.4)
where x,; (resp. xg;) is the irradiance of the j-th pixel of the patch centered at pixel p
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(resp. at ¢) in the reference frame (resp. in the other frame) and Ozj is the irradiance
variance, given by
— MR 2 9(2p; — 1r) + 0%

pJj
Xpj = ——, o.. = s .
P gapT P (gap7)2 55)

with 7,; the value of the j-th pixel of the patch centered at pixel p, 7 its exposure time
and N the number of non saturated pixels in the patch. Saturated samples are discarded
and only those patches with at least a minimum percentage of non-saturated samples are
considered. The camera parameters (g, a,, iz and 0%) needed to compute d(p, q) are
assumed to be known from a previous camera calibration step [Granados et al. 2010].

Distance thresholding It can be shown that if the two patches centered at p and ¢ come
from the same (un-noisy) underlying patch, the distance d(p, ¢) is proportional to a ran-
dom variable following a chi-squared distribution. This result is used to threshold the
distance judiciously and compute binary weights for the patches.

If x,; and x,; come from the same underlying irradiance C;, and we neglect the read-
out noise variance 0% and the difference between the PRNU factors at different positions,
from (5.13) we have

os. = — and o5 = —. (5.6)
with 7, and 7, the exposure times of the patches centered at positions p and ¢ respectively,
which may differ if the patches come from different frames. Hence,

N
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where ZN_ % follows a chi-squared distribution with mean /N and variance 2N.
=1 o¢2. 40

We can thus compute the mean and variance of the patch distance d(p, ¢) as

t+3) 0+ 2)
QN q

Pdpq) = 5 =—5 (5.10)
and )
(1+2) (1+2)°
2 _ Tq _ Tq
ad(p,q) - ( 2N 2N = IN . (5-11)

The distance thresholding is performed so as to keep patches within / standard deviations
from the mean distance

d(p,q) < pay,,, + hoa,, (5.12)
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Figure 5.3: The Bayer pattern is decomposed into four sub-images in order to speed up the similar patch
search.

If the distance between patches p and ¢ is below the threshold, pixels p and ¢ are as-
sumed to follow the same distribution and thus ¢ is used for the irradiance estimation of
p (g is assigned weight 1). Otherwise ¢ is discarded (¢ is assigned weight zero).

Irradiance estimation

The irradiance C’p at pixel p is computed as the first step of the MLE iterative approxi-
mation given by (5.3). The combined samples are the K pixels found to be similar to p
according to the patch distance (5.4)

K xk
—5— k k 2
P K 1 p ant. pk — ( T )2 ) 5.13
2=t 7 9T 9T
P

where z’; is the k-th pixel found to be similar to pixel p and 7y its exposure time.

Implementation details

The proposed algorithm works on raw data. Hence, the patch distance as well as the
irradiance estimator must be computed combining pixels of the same color channel.

For each frame, the Bayer pattern is decomposed into four sub-images (red, blue and
the two green channels separately considered). Patches are then considered as n x n x 4-
dimensional, where n is the patch size and the third dimension represents the four color
channels (see Figure 5.3). The distance between two n X n x 4-dimensional patches dr(p, q)
is the mean distance among corresponding channels

4

1
dr(p.q) = ; > d(pens gen), (5.14)

ch=1

where d(pep, ger,) is computed using (5.4). Note that this is equivalent to computing (5.4)
between two patches of size 2n x 2n in the original Bayer pattern. Then the two pixels are
assumed to follow the same distribution if dr(p, ¢) is below a given threshold as specified
in Section 5.2.2. In this way, a list of patches similar to p is created.
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Figure 5.4: Filling of the reference image.

The central pixel of a patch corresponds to four different pixels in the Bayer pattern
(one for each color channel). The irradiance estimator for each of these pixels is indepen-
dently computed. For instance, the estimator of the red channel is computed combining
the center pixels of the red components of selected patches. Note that the similar patches
are found once and used to compute the four irradiance estimators. Another option is
to do all processing on the Bayer image directly: center patches at each pixel, compute
distances according to (5.4) and combine samples of the corresponding channels. The
advantage of the proposed implementation is that the list of similar patches is computed
once and used to estimate four irradiance values, thus making it four times faster.

Following [Buades et al. 2008] similar patches are sought on a limited search window.
Since images are acquired with a hand held camera, a rough global translation estimation
is first performed in order to compensate large global translations and allow a reasonable
sized search window. The global euclidean distance between translated versions of each
frame and the reference frame is computed in order to estimate the translation motion.
Notice that this translation estimation is quite rough and only intends to correctly center
the patch search window. In all our tests the search window is of size 11 x 11 pixels (which
is equivalent to a window of 22 x 22 in the Bayer image).

Selection of the reference image

The selection of the reference image has a major impact on results. Indeed, the irradiance
values of over or underexposed regions of the reference image cannot be recovered using
the proposed method, since the patches lying on those regions do not contain reliable
information. Thus these regions need to be identified and filled judiciously. We do not
address this aspect of the problem in this work. We assume that it has been solved in a first
stage by a well chosen inpainting technique, as for instance the ones described in [Wexler
et al. 2007; Sen et al. 2012], which aim at filling these regions in the reference frame with
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Figure 5.5: Tone mapped version of the HDR image used as ground-truth for the synthetic test presented
in Section 5.3.1. From [Hasinoff et al.].

information taken from other frames. By doing so, we assume that an overexposed region
of the reference frame will appear as not saturated in at least one of the shorter exposures.
Conversely, we assume that underexposed regions can be retrieved from longer exposures.
In this process, the reference image has to be chosen carefully, in order to limit the size
of the regions to be inpainted. In practice, we choose this reference image as the shortest
exposure containing no underexposed region. The HDR generation procedure described
in Section 5.2 can then be directly applied using the filled reference image.

In this work, we make use of a classical inpainting technique, known as Poisson image
editing [Pérez et al. 2003], in order to fill the overexposed regions in the reference image.
The information is retrieved from other frames by comparing large patches surrounding
the region to be filled with similar patches in the other frames. Figure 5.4 illustrates the
filling process.

Another interesting possibility to complete the missing regions would be to rely on
the work recently published by Sen et al. [2012], which proposes to generate an HDR
image by choosing a reference frame and by filling the missing information through the
minimization of a global energy. The unknown information is retrieved from the other
frames keeping the coherence with the known regions of the reference image.

5.3 Results

5.3.1 Comparison to the case static scene / static camera

Releasing the hypothesis of aligned images is one of the key points that makes our method
robust to camera motion and object motion. However, the price to pay may be quite high
since that strong hypothesis carries a large amount of information implying that several
samples per pixel can be reliably combined. In practice, that lost information is to be
recovered by combining information from neighboring pixels.

In this section we present the results of an experiment conducted to evaluate the im-
pact on performance of releasing this assumption on a perfectly static case. Four synthetic
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Figure 5.6: Synthetic data. SNR curves obtained using the classical MLE method [Granados et al. 2010]
(green) and the proposed approach (violet). SNR values obtained with the non local approach are very
close to those obtained with the classical method. Even though our approach releases the alignment
hypothesis, it is close to the optimal result in a case where images are perfectly aligned.

images corresponding to four different exposures are generated according to Model (2.2)
taking as irradiance ground-truth an HDR image. A tone mapped version of the ground-
truth is shown in Figure 5.5. The camera parameters for the simulation are those of a
Canon 400D set to ISO 200. This corresponds to the ideal case of the classical MLE ap-
proach: static camera and static scene. Figure 5.6 shows the SNR curves obtained using the
classical MLE method [Granados et al. 2010] (green) and the proposed approach (violet).
It can be verified that the SNR values obtained with the non local approach are very close
to those obtained with the classical approach. Hence, releasing the alignment hypothe-
sis does not have significant impact on the algorithm performance in a case where this
hypothesis is perfectly satisfied.

This result was also verified using real data. Pictures of a static scene were acquired
using a static camera remotely controlled from a laptop. The data set is composed of four
images, corresponding to four exposure times acquired with a Canon 400D camera set to
ISO 800. The first row of Figure 5.7 shows JPEG versions of the input image set'. Since our
method treats raw data, a post-processing stage including demosaicking, white balance
and tone mapping must be performed to display the results. To perform demosaicking
we choose the technique by Hamilton and Adams [1997] because of its simplicity, it does
not modify the known samples, and offers better performance than a simple bilinear in-
terpolation. More evolved techniques were considered in order to avoid some artifacts
present in Hamilton and Adams results. However, they were discarded since they also per-
form denoising of the samples which would interfere with our denoising results. For tone
mapping we use the technique by Mantiuk et al. [2008].

Figure 5.7 shows the tone mapped version of the results obtained for the irradiance es-
timation of the scene. The second row shows the result obtained using the reference image

'All datasets and results are available at http://perso.telecom-paristech.fr/~gousseau/hdr_
denoising
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Figure 5.7: Real data. A static scene is acquired using a static camera. First row: Input images (JPEG
version). Second row: Tone mapped reference image normalized by the exposure time. The saturated
regions of the reference image were filled using the Poisson editing patch based approach described
in Section 5.2.2. Third row: Tone mapped irradiance estimation by the MLE approach [Granados et al.
2010]. Fourth row: Tone mapped irradiance estimation of the proposed non local estimation approach.
The result of the non local approach is less noisy than the one obtained using MLE. Thus releasing the
alignment hypothesis does not have a significant impact on the algorithm performance. Recall that
some demosaicking artifacts may appear due to the basic used technique. Please see electronic copy

for better color and details reproduction.
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Figure 5.8: Real data. Static scene except for one moving object (the postcard) acquired using a hand-
held camera. Left side. First row: Input images (JPEG version). Second row: Tone mapped irradiance
estimation using the proposed non local estimation approach. Right side. First row: Extracts of the
moving object (the postcard). No ghosting artifacts appear. Second / Third row: Extracts of the nor-
malized reference image (left), the method by Sen et al. [2012] (center) and the proposed non local
approach (right). The irradiance estimation of the proposed approach is considerably less noisy than
the one obtained using the reference frame only or the method by Sen et al.. Please see the electronic
copy for better color and details reproduction.

normalized by the exposure time. The saturated regions of the reference image were filled
using the Poisson editing patch based approach described in Section 5.2.2. We present this
result for comparison purposes, since the normalized reference frame is the simplest HDR
generation method we could use. The third row shows the results obtained using the MLE
approach [Granados et al. 2010] and the fourth row shows the results obtained using the
proposed non local estimation approach.

As expected, the noisier result is the one obtained with the normalized reference frame.
On the other hand, the result for the non local approach is less noisy than the one obtained
using MLE. The non local method gives a good quality result even if it does not make use
of the alignment hypothesis. Sub-pixel motion (e.g. due to the camera’s mirror) deviates
samples from perfect alignment thus degrading the MLE performance with respect to the
ideal case.

For this real example involving a static scene and a static camera, a ground-truth image
could have been computed from several pictures so as to compare the SNR results of the
different methods, in a way similar to [Granados et al. 2010; Hasinoff et al. 2010]. We de-
clined to do so since, as shown in [Aguerrebere et al. 2014b](Chapter 3), a highly accurate
knowledge of the camera model parameters is needed in order to obtain unbiased results,
putting a strong question mark on the validity of such ground-truth.

5.3.2 Dynamic scene / Hand-held camera

As previously discussed, three main problems must be handled when generating an HDR
image: camera motion (global motion), object motion and noise reduction of the irradi-
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Figure 5.9: Real data. Dynamic scene (pedestrians in the bridge and people next to the boat) acquired
using a hand-held camera. Left: Tone mapped irradiance estimation using the proposed non local
approach. No ghosting artifacts appear. Right first row: Input images (JPEG version). Right second
row: Extracts of the the normalized reference image. Right third row: Extracts of the results by Sen
et al. [2012]. Right fourth row: Extracts of the results by the proposed non local approach. The result
obtained by the proposed approach is far less noisy than the one by Sen et al.. Please see the electronic
copy for better color and details reproduction.

ance estimation. Several methods addressing these problems can be found in literature.
Nevertheless, to the best of our knowledge, none of them treats them simultaneously.
There exists a wide variety of HDR methods that treat camera and object motion [Srikan-
tha and Sidibé 2012]. In particular, the work recently presented by Sen et al. [2012], is
shown to be among the state-of-the-art methods treating these issues.

On the other hand, the literature is less vast concerning methods for noise reduction
of the irradiance estimation. The application of most classical denoising techniques is
not straightforward since the irradiance image does not respect the usually considered
hypothesis of additive white Gaussian noise with constant variance. Indeed, the noise
distribution varies depending on the estimation method and the variance is seldom con-
stant. Granados et al. [2010] propose to denoise the result of their irradiance estimation
using a bilateral filter. Their irradiance estimation method allows to compute an estimate
of the irradiance noise variance. Then the filtering parameter of the bilateral filter is set
according to the estimated noise variance. Although Granados et al. apply some bilateral
filtering after the MLE estimation, we chose not to include their results in the comparison
because two critical hypothesis of their approach are not verified. Neither the camera nor
the scene are fixed. Therefore, their results present severe ghosting problems on our test
sets. In the following we present a comparative evaluation of methods performing HDR

103



imaging for dynamic scenes acquired with hand-held cameras. Next, we present some re-
sults comparing our simultaneous HDR - denoising technique against the denoising as a
post-processing step after estimating the irradiance.

Evaluating simultaneous HDR imaging and denoising Here we present the results ob-
tained by the proposed HDR image generation method on three sets of images. Each set is
composed of pictures of a dynamic scene acquired with a hand-held camera. We compare
our results to those obtained by Sen et al. [2012]. We also present the results obtained
using the reference image normalized by the exposure time. The saturated regions of the
reference image are filled using the Poisson editing patch based approach described in Sec-
tion 5.2.2. We present this result for comparison purposes, since the normalized reference
frame is the simplest HDR generation method we could use.

As already explained in Section 5.3.1, results are displayed using the demosaicking tech-
nique by Hamilton and Adams [1997] and the tone mapping technique by Mantiuk et al.
[2008]. The first case is a static scene except for one moving object (the postcard). Images
are acquired using a hand-held camera (Canon 400D set to ISO 800). The second row
of Figure 5.8 shows a tone mapped version of the irradiance estimation obtained using
our non local estimation approach. Three extracts of the results obtained for the moving
object are shown in the first row (right side) of Figure 5.8. It can be verified that the re-
sult presents no ghosting artifacts. The second and third rows (right side) of Figure 5.8
present extracts of the results obtained with the normalized reference frame only (left),
Sen et al. approach (center) and the proposed non local estimation method (right). The
irradiance estimation of the proposed approach is far less noisy than the one obtained us-
ing the reference frame only or the method by Sen et al.. This example shows both, the
effectiveness in noise reduction and the robustness to camera and object motion of the
proposed approach.

Figures 5.9 and 5.10 present the results obtained for the two other test sets. These two
cases present dynamic scenes where several objects are moving: pedestrians in the bridge
and people next to the boat for the first example and pedestrians in the street and moving
cars for the second example. Images are acquired using a hand-held camera (Canon 400D
set to ISO 8oo for the bridge scene and to ISO 400 for the street scene). The result for the
proposed method is shown in Figures 5.9 and 5.10 (left). Extracts of the results obtained
for the moving objects are presented in Figure 5.11 (left for the bridge scene and right for
the street scene). It can be verified in both examples that no ghosting artifacts appear.
The denoising capacity of the method is shown on various extracts. As in the previous
example, the third and fourth rows of Figures 5.9 and 5.10 present extracts of the results
obtained with the normalized reference frame only (left), Sen et al. approach (center) and
the proposed non local estimation method (right).

It is interesting to remark that the non local approach is not likely to spread errors pos-
sibly introduced by the saturated region filling method. Recall that overexposed regions in
the reference image must be filled before performing the non local estimation. If artifacts
appear after hole filling, the created patches are not likely to appear elsewhere and thus
wont have a significant effect on the estimation.
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Figure 5.10: Real data. Dynamic scene (pedestrians in the street and moving cars) acquired using a
hand-held camera. Left: Tone mapped irradiance estimation using the proposed non local approach.
No ghosting artifacts appear. Right first row: Inputimages (JPEG version). Right second row: Extracts
of the normalized reference image. Right third row: Extracts of the results by Sen et al. [2012]. Right
fourth row: Extracts of the results by the proposed non local approach. The result obtained by the
proposed approach is significantly less noisy than the one by Sen et al.. Please see the electronic copy
for better color and details reproduction.

Figure 5.11: Real data. Extracts of the results obtained by the proposed non local estimation method
for moving objects present on the scenes of Figures 5.9 (left) and Figure 5.10 (right). Notice that no
ghosting artifacts appear in neither example.
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On other ways to denoise irradiance maps  Another possibility to denoise the irradiance
map is to apply existing denoising techniques after estimating the irradiance. However, as
previously mentioned, the application of most of these techniques is not straightforward
since the irradiance image does not respect the usually made assumption of additive white
Gaussian noise with constant variance. The noise distribution varies depending on the
estimation method and the variance is seldom constant. This complicates the setting of
parameters. Values chosen to correctly denoise bright regions will remove details in the
dark regions while values correctly denoising dark regions will not denoise bright regions.
To illustrate this behavior, the classical NL-MEANS algorithm? is applied to the normalized
reference image and to the result obtained by Sen et al.. The NL-MEANS parameters are
chosen so as to obtain a good visual compromise between removing noise and keeping
details. Figure 5.12 shows extracts of the obtained results. The proposed approach manages
to correctly denoise the bright regions (see the street panel) while still preserving details
on the dark regions (see the tree branches). On the contrary, this is not the case for the
two other examples. The denoising technique manages to remove part of the noise on the
bright regions but at the cost of blurring the dark zones.

For the same reason, applying a classical denoising technique to each raw LDR image
before the irradiance estimation is not a good option. Besides, information is lost when
denoising each LDR image independently (e.g. details are lost, blurred edges) which might
be kept in a multi-image denoising approach. Moreover, after denoising, the statistical
model known for input samples is no longer valid. Thus the nearly optimal irradiance es-
timation obtained with the MLE estimator is no longer justified and an alternative optimal
estimator should be found (which is not obvious given the new unknown model).

5.4 Conclusions

In this chapter we presented a new method for HDR image generation which copes simul-
taneously with three important problems: irradiance estimation noise, camera motion
(hand-held camera) and multiple objects motion (dynamic scenes). Previous methods
successfully handle these problems independently, but to the best of our knowledge none
of them treats them all. The noise reduction capacity and robustness to camera and object
motion of the proposed approach was experimentally verified in various real cases. The
results show good denoising performance and no ghosting artifacts. As future work, an
interesting research line is the improvement of the proposed algorithm including the re-
sults of the restoration method introduced in Chapter 6, which was not included at first
due to the chronological order of development of both methods.

*Implementation from [Buades et al. 2011].
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Figure 5.12: Real data. Left: Extracts from the NL-MEANS denoising of the normalized reference frame.
Center: NL-MEANS denoising of the result by Sen et al.. Right: Proposed non local approach. The pro-
posed approach manages to better denoise the bright regions (see the street panel) while better pre-
serving details on dark regions (see the tree branches). On the contrary, this is not the case for the two
other examples. The denoising technique manages to remove part of the noise on the bright regions
but at the cost of blurring the dark zones. Only the green channel irradiance is displayed in order to
avoid contrast changes introduced by the tone mapping techniques (needed to display HDR color im-
ages) and better visualize noise level differences.
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6 A general restoration method with an
application to single-image HDR

Image processing techniques aim at solving a wide variety of image restoration problems,
from the classical denoising of additive Gaussian or impulsive noise and the retrieval of
high frequency or high dynamic range information performed in super-resolution and
HDR imaging, to the inpainting of missing pixels, either in large regions or for single miss-
ing pixels, the removal of blur, etc. These degradations are often combined in practice, as
in raw digital images which present combined additive Gaussian noise and impulsive noise
due to the acquisition process; the limited resolution and dynamic range also combined
with noise as was treated in Chapter 4; or the missing pixels and noise present when using
specialized acquisitions methods, as will be developed later in this chapter (see Figure 6.14,
Section 6.4). In this work, we focus on the restoration of images simultaneously degraded
by noise and random missing pixels.

Recent state-of-the-art methods make use of patch models and a Bayesian based re-
construction to restore degraded images. Some of them are devoted to the denoising
problem [Lyu and Simoncelli 2009; Chatterjee and Milanfar 2012; Lebrun et al. 2013; Wang
and Morel 2013], while others propose a more general framework for the solution of in-
verse problems [Zoran and Weiss 2011; Yu et al. 2012; Wang 2013a], including for instance
inpainting, deblurring and super-resolution.

Patch models have been proven successful at image restoration and, in particular,
Gaussian mixture models (GMM) have been proven accurate at representing natural im-
age patches in the context of image restoration [Yu et al. 2012; Zoran and Weiss 2011].
Moreover, the Bayesian methods have been shown to be an adequate framework to exploit
this patch model prior and to combine the observed and prior information in a fruitful
manner. The work by Lebrun et al. [2013] presents a thorough and very interesting anal-
ysis of several recent restoration methods, revealing their a priori not obvious common
roots and their relationship with the Bayesian approach.

Two methods attract our attention in the aim of tackling the combined problem of
denoising and inpainting of random missing pixels, which as previously mentioned, finds
application in several practical problems. First, the piecewise linear estimators (PLE) in-
troduced by Yu et al. [2012], which constitutes a general framework for the resolution
of inverse problems. Their approach makes use of a GMM to model image patches and
a Bayesian method to restore the degraded patches. They obtain very promising results
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in applications such as interpolation of missing pixels, deblurring, zooming and denois-
ing. In particular, they show very good results in various cases of interpolation of ran-
dom missing pixels with high masking rates (above 70% of missing pixels). Regarding
the denoising problem, Lebrun et al. [2013] presented a non-local Bayesian based method
(NLB), that also makes use of a Gaussian distribution prior on the image patches, and
shows state-of-the-art results in several denoising examples with different noise levels. On
the one hand, the denoising capacity of NLB is generally better than that of PLE [Wang
2013b], mostly due to the local estimation of the patch model as opposed to that of PLE
which is done mainly globally in the image (actually regions of 128 x 128 are used). On
the other hand, the NLB algorithm is a denoising algorithm and thus it is not made to
interpolate missing pixels as PLE is. For these reasons, we propose a new Bayesian im-
age restoration method, inspired by the combination of the PLE and NLB approaches,
that tackles both problems simultaneously: image denoising and interpolation of random
missing pixels, making use of a local Gaussian model for image patches.

We propose to model image patches according to a Gaussian prior, whose parameters
will be estimated from local similar neighbors and a prior knowledge on the model. This
way, we combine the denoising power of the local model estimation of NLB with the
restoration power of PLE through the inclusion of a prior on the model. Then, the image
patches are restored using the maximum a posteriori (MAP) estimator with the computed
prior.

As will be made clear in the detailed explanation of the method in Section 6.3, unlike
the PLE and NLB methods, the proposed approach deals with two different priors. One,
also present in the PLE and NLB methods, is the prior on image patches. That is, a Gaus-
sian model for image patches whose parameters, mean y and covariance matrix ¥, must
be given or somehow estimated. The second, is a prior on x and 3, used to compute a
MAP estimate of these parameters. In Bayesian statistics, ;+ and 3 are known as hyper-
parameters, since they are the parameters of a prior distribution, while the prior on them
is called an hyperprior. The use of an hyperprior allows the estimation of ; and ¥ from
similar samples even in the case of a large number of missing pixels in the patch.

The work presented here is an ongoing work and thus several points should be fur-
ther analyzed and improved. Nevertheless, the results show that the proposed approach
accurately reconstructs the missing pixels and denoise the known ones in various different
conditions, ranging from low (20%) to high (70%) masking rates combined with differ-
ent noise levels. This opens up the possibility of applying the proposed approach to the
various restoration problems previously mentioned.

In particular, as will be presented in Section 6.4, the proposed method can be applied
to the generation of HDR images when using a single-shot acquisition strategy with spa-
tially varying pixel exposures (SVE). This acquisition technique, introduced by Nayar and
Mitsunaga [2000], allows to capture HDR scenes with a single shot. This single-shot ac-
quisition strategy overcomes the major drawbacks of the HDR multi-imaging techniques,
i.e. the ghosting artifacts and global mis-alignment problems. However, it introduces
new challenges to the HDR imaging problem. Unlike multi-image acquisition, where all
pixels are correctly exposed in at least one of the images, in the SVE acquisition strat-
egy the values of the saturated and under-exposed pixels are unknown and need to be
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somehow restored. Moreover, noise is a bigger problem in SVE acquisition than it is in
multi-imaging since there is considerably less information to help denoise the pixels (one
single image). This is particularly troublesome in dark regions where most pixels are ei-
ther under-exposed or close to become under-exposed and they have therefore a very low
signal-to-noise ratio.

In Section 6.4 we introduce the SVE acquisition technique and explain how the pre-
sented Bayesian reconstruction method can be applied to restore the high dynamic range
irradiance map from a single frame, simultaneously reconstructing the saturated and
under-exposed pixels and denoising the correctly exposed ones.

The chapter is organized as follows. In Sections 6.1 and 6.2, we start with a brief sum-
mary of the two main methods, PLE and NLB, on which the new method is based. Sec-
tion 6.3 is devoted to the presentation of the proposed approach. Section 6.4 presents the
application of the proposed method to the generation of HDR images from a single shot
acquired with spatially varying pixels exposures.

6.1 Piecewise linear estimators

Yu et al. [2012] introduced a general framework to solve image inverse problems using
piecewise linear estimators (PLE). They propose to model image patches according to a
Gaussian mixture model (GMM) and use the maximum a posteriori (MAP) estimator
of the degraded patch to reconstruct the original. Let z; be an observed degraded image
patch of size vVN x v/N, taken as a column vector of size N, considered to be drawn from
the random variable Z;,

Zi = chz + Ni7 (6.1)

where D; € RV*V is the degradation operator (e.g. random missing pixels), C; € R" is
the original image patch we seek to estimate, N; € RY is the Gaussian distributed patch
noise with zero mean and covariance matrix proportional to the identity matrix Xy = Io?
and theindex ¢ = 1, ..., I represents the patch position in the image.

The GMM describes image patches with K Gaussian distributions parametrized by
their means (i, and covariance matrices 3. Each patch C; is assumed to be drawn in-
dependently from one of these Gaussians, whose probability density function is given by

1
(2m) V2|3, |12

p(C) = exp (—%(C — ) "ZHC — uk)> (6.2)

If the Gaussian parameters fu and X, are assumed known, each patch C; and its corre-
sponding class k; can be computed as the MAP of the probability p(C;|z;, ., )

(Ci, k;) = arg max In p(Clz;, iy, ) (6.3)
G,
= argcr?ax (1np(ZZ|CJ Mk, Ek) + lnp(C, M, Ek)) (64)
Z; — DZC 2 _
= argcxlj?ln <% + (C — Mk)TEk 1(C — Mk) +In |Ek|> . (6.5)
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The probability is first maximized over C and then over k. The solution C¥ to the maxi-
mization over C is given by the Wiener filter

éf = EkDZT(DZEkDZT + 0'2]:)71(ZZ‘ — Dzll,k) + Mk - (6.6)

The best model &; is then selected as the one minimizing (6.5) over k assuming C =
éf , that is

k; = arg min (M (CF — )" (CF — ) +1n |2k]> . (6.7)

k o?

Because the Gaussian parameters p; and X are unknown, Yu et al. [2012] propose an
iterative procedure to perform the reconstruction. The Gaussian parameters for the K
classes are first initialized from a set of synthetic images covering a wide range of geometric
configurations (see Section 6.1.1). At the so called estimation step, Gl and l;;Z are computed
according to equations (6.6) and (6.7) respectively. At the so called model estimation step,
the classes parameters p; and 3y are updated computing the corresponding maximum
likelihood estimators iy and 3, from the patches assigned to each class (the k; assigned
at the previous step)

Z Z — )", (6.8)

zES zES

with S}, the set of all patches assigned to class k£ and |Sk| its cardinality. The covariance
matrix 3; may be badly conditioned due for example to a small number of patches in the
class. For this reason a regularization term €I is added to ensure the correct inversion of
the matrix [Yu et al. 2012]

>, =3, 4L (6.9)

The authors [Yu et al. 2012] analyzed the algorithm performance as a function of the
iteration number and concluded empirically that 3 iterations are usually sufficient for con-
vergence. The method is summarized in Algorithm 1.

In the experimental section of the work by Yu et al. [2012], the authors state that in all
the presented examples, the proposed algorithm was applied to image regions of size 128 x
128. The input images are decomposed into regions of size 128 x 128, half-overlapped
to avoid boundary effects, and the PLE algorithm is applied to each region. The estimates
are averaged at the end to obtain the final reconstruction. The reason for this processing
is that image content is usually more coherent locally than globally. Hence, it can be
more accurately described with a limited number of classes if considered semi-locally than
globally. This methodology is in line with the idea of performing a local processing as
proposed by Lebrun et al. [2013] and the new approach here introduced. However, PLE
remains a global approach if compared to the latter.

An interesting interpretation of this method, as described in [Yu et al. 2012], is that
of the sparse modeling. The dictionary atoms are the eigenvectors of the K covariance
matrices of the Gaussian models and a sparse representation of each patch is computed in
this basis. This representation is the result of a non-linear step, that is the choice of the
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Figure 6.1: Left: Example of synthetic contour black-and-white image used to initialize the PLE method.
Patches that touch the contour at different positions are randomly sampled from it and used to compute
the corresponding class covariance matrix. Middle: First 8 eigenvectors of the covariance matrix corre-
sponding to the largest eigenvalues. Right: Typical eigenvalues used for initialization. Image from [Yu
etal.2012].

Gaussian model, and the linear projection of the patch into the chosen basis. The first
non-linear step greatly reduces the degrees of freedom of the traditional sparse estimation
methods which is otherwise K times larger.

6.1.1 PLE initialization

A good initialization is very important for algorithms, such as PLE, that try to solve a
non-convex problem through an iterative approach. Yu et al. [2012] propose to initialize
the algorithm using covariance matrices learned from synthetic images of edges with dif-
ferent orientations as well as the DCT basis to represent isotropic patterns. As they state,
in dictionary learning, the most prominent atoms represent local edges which are useful
at representing and restoring contours. Hence, this initialization helps to correctly restore
corrupted patches even in quite extreme cases (e.g. more than 70% of missing pixels).
Each class corresponds to one of K — 1 orientations, uniformly sampled from directions
zero to 7. For a given orientation 6, a synthetic black-and-white image is generated and
patches that touch the contour at different positions are randomly sampled from it. Fig-
ure 6.1 illustrates this process. A covariance matrix is then computed from the sampled
patches. The first eigenvector of the covariance matrix, which is almost constant, is re-
placed by a constant vector. This allows a class of a given orientation to restore patches
having different mean. Up to a certain gray level difference, dark or bright edges with the
same orientation are correctly represented by the same class. A Gram-Schmidt orthogo-
nalization is computed on the other eigenvectors to ensure the orthogonality of the basis.
The eigenvalues of all bases are initialized with the same values, chosen to have a fast de-
cay. At last, the DCT basis is added to represent isotropic image patterns, making a total
of K classes. The mean of each class is initialized with zeros.

The authors claim that they have found in practice that 19 classes (i.e. 18 orientations,
10 degrees apart) give a correct reconstruction and are a good compromise between per-
formance and complexity for a patch size of 8 x 8. All their experiments are performed
with this fixed number of classes. The fact that the algorithm is applied in regions of size
128 x 128, and therefore localized, also explains why this a priori small number of classes
can be suitable to describe all image patches.
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Algorithm 1: Summary of the PLE algorithm.

1 Decompose the input image Z and D into overlapping patches.
» Initialize the K Gaussian parameters zi;, and 3.

3 for it =1 to maxlits do

4 for all patches do

5 Compute C; using (6.6).

6 Compute l?;i using (6.7) assuming C = Gf

7 end

8 Build the reconstructed image from restored patches.
9 Update i, and ¥, using (6.8).

10 end

u Build the final image from restored patches.

6.2 Non local Bayes

Non-local Bayes (NLB) [Lebrun et al. 2013] is an image denoising algorithm that restores
image patches by computing an approximation of the MAP of the observed patches as-
suming a Gaussian prior. Unlike PLE, the Gaussian prior is here computed locally from
the set of patches that are similar to the noisy patch and not from predefined classes.
Image patches are modeled according to (6.1) taking D, as the identity matrix (all
pixels are assumed known)
Zi = Cz + Ni7 (6.10)

and the MAP estimator C; from the observed noisy patch z; is computed as

C; = arg max In p(C|z;) (6.11)
C
= argmax In p(z;|C) + In (C) (6.12)
C
2
= arg min (% +(C— w)"'Z; H(C - ,ul)> . (6.13)
C

where y; and ¥; are the Gaussian prior mean and covariance matrix respectively.

The NLB algorithm consists of two steps. In the first step, because y; and X; are
unknown, they are estimated by computing their maximum likelihood estimators /i; and
3, from the set of patches found to be similar to the noisy patch z;. If the selected patches
are similar to those that would be obtained if compared to the original patch C;, then the
following approximation is valid

[ 1t and >, ~ 3 +0°1 (6.14)

Then, solving

~ P 2 ~
C; = argmin (M +(C = )" (2 — o’T)7H(C — [LZ)> , (6.15)

C o?
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yields the patch reconstruction equation

éi = (iz — 021)2;1(% — /11) + /jLZ (6.16)
Notice that (6.16) is very close to (6.6), except for the covariance matrix that is (53Z — 0?1)
instead of 33;. This difference is due to the fact that, in the PLE algorithm the covariance
matrix is computed from the restored patches while in the NLB algorithm it is computed
from the noisy patches and it needs to be corrected for the extra noise term 1.

The selection of similar patches is crucial in the performance of the NLB algorithm
since the quality of the Gaussian model parameters depends on it. The similar patches
are found by computing the L? distance to all the patches in a neighborhood of it. A fixed
number of patches is kept, which must be larger than the patch dimension to mitigate pos-
sible problems in the inversion of ;. Then the mean and covariance matrix are computed
according to

1 M
MZMZ% (6.17)
7j=1
and
1 M
ST i ~ i ~\T
Y= 1 ;(q]- — pa)(a; — ) (6.18)

where qé-, j = 1,..., M is the set of M patches similar to z;. Once the model param-
eters are estimated, all the similar patches are denoised simultaneously using (6.16) with
the computed ji; and 3;. Finally, since each pixel belongs to several patches, its value is
computed as the average of all the estimations of it coming from the denoised patches.
This process, called aggregation, is usually used in patch-based reconstruction methods to
rebuild the image from the restored patches.

The second step of the algorithm repeats the previous processing but takes the result
of the first step as an oracle to find the similar patches and to improve the computation of
the Gaussian parameters fi; and ZA]Z

1 &
fi =55 (6.19)
M’
and
1 X
. L
%=1 jZlm; — ) (@ — )" (6.20)

where q;l, j=1,..., M isthe set of M’ patches similar to C;.
Since the computation of 3, is performed with the denoised patches, the approxima-
tion (6.14) is no longer needed and the reconstruction equation becomes
Ci = i + Zi(Bi + 0°1) ™ (2 — fus). (6.21)
Then, all the similar patches are denoised simultaneously using (6.21) and aggregation
is performed to rebuild the image. The method is summarized in Algorithm 2.

Results from [Wang 2013b] show that NLB has a significantly better denoising power
than PLE. The PLE algorithm, however, treats a wider range of inverse problems.
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Algorithm 2: Summary of the NLB algorithm.

1 First Step:
2 Decompose the input image Z into overlapping patches.
s Find patches ,_, _ similar to current patch 7; according to the L* distance.

4+  Compute the Gaussian parameters /i; and 3, according to (6.17) and (6.18).

s Denoise all similar patches q,_, _y using (6.16) with the computed /i; and 3.
¢  Combine all restored patches to generate the reconstructed image C.

7 Second Step:

s Decompose the oracle C and the input image Z into overlapping patches.

o Find patches q)_, _,, similar to current patch C; according to the I? distance.
1o Compute the Gaussian parameters ji; and ﬁ)z according to (6.19) and (6.20).

u  Denoise all similar patches ¢_, _,, using (6.16) with the computed /i; and 3.
1 Combine all restored patches to generate the reconstructed image.

6.3 Proposed approach: Hyperprior Non Local Bayes

The ability of PLE to interpolate missing pixels and the denoising power of NLB can be
combined into a single algorithm that successfully treats images corrupted by additive
Gaussian noise and random missing pixels. Even if the PLE algorithm is capable of per-
forming both tasks, pixel interpolation and denoising, the superiority of NLB in terms of
denoising motivates the goal to combine these approaches to improve the restoration per-
formance of PLE. That is why we propose a new Bayesian image restoration method that
tackles both problems: image denoising and interpolation of random missing pixels. The
algorithm makes use of a local Gaussian model for image patches and an hyperprior on
the model parameters. The use of an hyperprior allows the local estimation of the Gaus-
sian model from similar samples even in the case of a large number of missing pixels in
the patch. This way, we combine the denoising power of the local model of NLB with the
restoration power of PLE. We refer hereafter to the proposed approach as Hyperprior Non
Local Bayes (HPNLB).

6.3.1 Patch model

The considered patch model is a generalization of the Model (6.1). Recall that in (6.1), the
noise term N; is a vector of i.i.d. random variables following a Gaussian law with zero
mean and constant variance o2, and thus independent of the signal C;. We propose here
to extend this model to consider the case of a noise term of independent random variables,
but not necessarily equally distributed nor independent of C,.

This more general framework opens up two possibilities: the consideration of noise
with spatially variable variance yet independent of the signal C;, and the more general
case of noise dependent on C;. The latter is particularly useful in the case of raw image
data. As was introduced in Chapter 2, the noise present in raw image pixels is independent
among pixels but its variance depends on the irradiance reaching the pixel, i.e. the noise
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is dependent on the signal C;.
The observed degraded patch z; € RY is assumed to be a realization of the random
variable Z;, following model
Zi = DZCZ + Ni7 (6.22)

where D; € RY*¥ is the degradation operator, C; € R" is the original patch we seek to
estimate, for which we assume a Gaussian prior N (p;, X;), and N; € RY is a noise term,
dependent on C;, with its j-th entry given by

N/ = f(CHel, j=1,...,N, (6.23)

where (55 )j=1,...n are i.i.d Gaussian random variables with zero mean and unit variance,
z—:g is independent of (CZ )j=1,...~ and f : R — R is the function describing the relation-
ship between the noise variance and the signal value at each pixel. The random variable
N; has a diagonal covariance matrix Xy,. The matrices DD;, 3y, and the function f are

assumed to be known. For example, in the case of raw image data, the function f is given
by

; 2a,7 DIC! + o2
(e = \/g r (g )? £ (6.24)

where g is the camera gain, a, models the PRNU factor, 7 is the exposure time, /1 and a?z
are the readout noise mean and variance (see Chapter 2, Equation (2.2), for a description
of the raw image data model).

6.3.2 Patch restoration

As presented in Section 6.1, under Model (6.1) where the noise is independent of the signal
and all considered vectors (Z;, C;, N;) are Gaussian, the MAP estimator (6.6) matches the
conditional mean estimator E[C;|Z;] and minimizes the Bayes risk E[(C; — C;)?]. This
result cannot be directly applied to Model (6.22) because N; is no longer independent
of C; nor Gaussian (due also to the dependence of N; on the random variable f(C;)).
Nevertheless, we show in the following that, among all affine estimators of C;, the one that
minimizes the Bayes risk under Model (6.22) is given by (6.6) (replacing the term oI by
2N)-

Proposition 7. The affine estimator C; that minimizes the Bayes risk E[(C; — C;)?] under
Model (6.22) is given by

Ci = ;D] (D;2;D} + Bx,) " (Zi — D) + i (6.25)
Proof. Let us first consider the case y; = 0. The estimator that minimizes the Bayes risk
E[(C; — C;)?] is equal to the conditional expected value E[C;|Z;]. If we consider linear

estimators only, we look for the matrix W that verifies

W = arg min E[(WZ; — C;)?. (6.26)
W
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Hence, W must verify .
E(WZ; — C))Z{] =0, (6.27)

and we have N
W = E[C,Z)(E[Z,Z1]) . (6.28)

From the patch Model (6.22), because ! is independent of C¥ Vp, ¢ = 1,..., N and has
zero mean we have

E[CIN]] = E[C7 F(C))=i] = BICY F(C)IE[e]] = 0. (6.29)
Notice that since £/ has zero mean we have
cov(C, Ni) = E[Cf(Ch)ej] — E[CIIE[£(CY)ei] = 0, (6.30)

thus (6.29) implies that C; and N; are not correlated. Hence, the element (p, ¢) of matrix
E[C;Z]] is given by

E[CiZ{ Jp.q = E[Ci(DiC;i + f(Ci)zi) g (6.31)
= E[C{(D.Ci)q + C7F(C)e]] (6.32)
= E[C7(D:Ci),] + E[CTf(C))IE[]] (6.33)
= E[C}(D;Cy),] (6:34)
= (EkDT)pyq- (6.35)

Also, from the patch Model (6.22), the element (p, q) of matrix E[Z;Z7] is given by
BZiZ{ ]pq = [(DC + [(C)e)(DiCi + f(Ci)e) g (636)
= E[(D;C),(D;Ci)J + (DiCi)p(f(Ci)es)y (6.37)
+(f ( 1)2:)p(DiCi)g + (f(Cier)p(f(Cidei)g] (6.38)
= (DiziDz’T)p,q + (En)pa- (6.39)

Hence we have, .

W =3%,D/(D,;Z,D! +=y,) L. (6.40)

In the general case, where i; # 0, we can always consider the centered version of the
patches (z; — D;p;) and apply the previous result to the affine case. Therefore, the estima-
tor of C; that minimizes the risk function E[(C — C;)?] among all affine estimators, under
Model (6.22), is given by

C =%;D](D;Z;D] +=n,) ' (zi — D) + pi, (6.41)
which matches (6.6) (replacing the term oI by Xy, ). O

Even if this result is not a priori obvious due to the dependence between C; and N;,
notice that it requires the non correlation of these variables (Equation (6.30)).

The same estimator is obtained if we compute the maximum of the posterior prob-
ability ignoring the dependence of X, on C;. Then an iterative procedure is needed to
update C; and Xy, at each step. Without ignoring the dependence of X, on C;, the min-
imization problem does not have an explicit solution and an approximate solution should
be iteratively computed.
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6.3.3 Estimation of the Gaussian parameters ; and X

Since y1; and 3; are unknown in practice, a method must be found to estimate them. Both
PLE and NLB propose to estimate these parameters computing their maximum likelihood
estimators. In the case of PLE, the MLE is computed from all the patches that belong to
the given class. In the case of NLB, the parameters are computed from the set of similar
patches chosen among the neighbors of the current patch.

In this work, instead of using the MLE, we propose to compute the MAP of the class
parameters y; and X; using a set of similar patches and a prior knowledge on them. In
Bayesian statistics, y; and 3; are known as hyperparameters, since they are the parame-
ters of a prior distribution, while the prior on them is called an hyperprior. Using similar
patches brings the advantages of the local estimation of NLB, while including the hyper-
prior allows to estimate the parameters in the case of missing pixels, which is possible with
PLE but not with the NLB method.

In order to estimate  and 3 we propose to compute their MAP estimators using a set
of M patches found to be similar to the current patch (according to the L? distance) and
an hyperprior on ; and 3. We will come back to the precise choice of these patches at
the end of the paragraph. For calculations simplicity we work with the precision matrix
A = ¥ !instead of the covariance matrix . As it is usual when considering hyperpriors,
we rely on a conjugate distribution. In our case, that boils down to assuming a Normal-
Wishart' prior for the couple (¢, A)

P, A) = N (| o, (kM) HYW(A|(vZ0) ", v) (6.42)
x |A|1/2 exp (—g(,u — o) A(p — MO)T> |A|(”_d_1)/2 exp <—%tr(l/EoA)>,
(6.43)

where i is a prior on p, 3 is a prior on 3, and k,v € R,k > 0, v > d — 1. The
matrix X, needs to be multiplied by v in (6.43) since the expected value of A under the
Normal-Wishart distribution is v times its prior (¥X;) L.

The likelihood of the M patches (z1, .. ., zys) is given by

M M
— * 1 *
p(z1s- - zm|p, A) = (2) "2 | | ’Aj‘l/Q exp (‘5 E :(Zj - Djﬂ)Aj (z; — DjM)T)
=1 j=1
(6.44)

with A* = (D;A™' D! + ,,)~". Then the MAP estimates /i and A are found by maxi-

"The Normal-Wishart distribution is the conjugate prior of a multivariate normal distribution with
unknown mean and covariance matrix. WV denotes the Wishart distribution.
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mizing the posterior probability

~

(1, A) = argmax p(u, Az, . .., 2ar) (6.45)
s
= arg r;laxp(zl, o 2| A)p(p, A) (6.46)
s
M | M
= arg rEaXH ]A;\UQ exp (—5 Z(zj — Djp)Aj(z; — Dju)T> (6.47)
f j=1 j=1

. - 1
|A|"? exp (—§(u L uo)T) [A|“= D exp (—§tr(l/EoA)>-
(6.48)

Computing the partial derivatives of p(u, A|z1, ..., zy) with respect to 1 and ¥ and
equating to zero we find (c.f. Appendix B)

M -1 M
[ = (F;I + Z AlDJTA;fDJ) (Z A’leA;‘-Zj + HM0> (6.49)

7j=1 7j=1
and -
A — H1H2, (650)
with
M —1
H, = ((V —d)T+) A—ID]TA;Dj) (6.51)
j=1
and
M
(Z AT'D;AN(z; — D)) (A DA (z; — D))" (6.52)
7=1
+ (= po) (1 — pro)" + Vﬁo) - (6.53)

From (6.49) we find that the MAP estimator of y is a weighted average of two terms:
the mean estimated from the similar patches (zy, ..., zy) after projecting them into the
“non-degraded” space

M:

A 'DjA})z;, (6.54)

J=1
and the prior py. The parameter « controls the confidence level on the prior. Notice that

the denominator term .

Y (A'D;A})D,; (6.55)
j=1
is the sum of the projected masks, giving the weights of the projected patches used in
(6.54) to compute the patch mean.
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With the same idea, we observe that the MAP estimator for A is a combination of the
covariance matrix estimated from the projected patches

M
Y (A 'D;Aj(z; — Djp))(A ' DAl (z; — D)), (6.56)

=1

the covariance imposed by p (since ;2 and A are not independent),

(1 = p10) (b = pro)" (6.57)
and the prior on A (or equivalently on 1),
=5t (6.58)

Since (6.49) depends on A and (6.50) depends on y and A those are not closed forms
for the estimators. Hence, we propose to compute them using an iterative approach, defin-
ing an initial value for A. As in the case of PLE, we have also observed that in practice 3
to 4 iterations is usually enough. Algorithm 3 summarizes the proposed method for the
computation of /i and A.

Algorithm 3: Computation of /i and A.

1 Set parameters: fig, 2g, K, V.

» Initialize A = 3.

3 Compute /i according to (6.49).

4 Set = fi.

s for it = 1 to maxlIts do

6 Compute A according to (6.50).

7 Set A = A.
s end
Search for similar patches The set of similar patches (zi,...,z) are those with L?

distance to the current patch below a given threshold. The threshold is set to a tolerance
parameter J times the distance to the closest neighbor.

Since the patch comparison is performed in an oracle image (see details in Section 6.3.5),
all pixels are assumed known. However, it may be useful to assign different confidence lev-
els to the known pixels (DI{; = 1) and to those originally missing and then interpolated
(D; = 0). For all the experimental results presented in Section 6.3.7, the distance between
patches p and ¢ is computed according to

ijl Wp.q
with | |
j 1 ifD) =D’ =1
i ; I=1,
“ra { 0.01 otherwise. (6.60)
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With this formulation, we are highly prioritizing the known pixels compared to the un-
known ones. Variations of these weights should be tested. Moreover, this is an arbitrary
way to define the patch distance, which should be revised in future work. In particular,
it may be useful to consider a patch distance normalized by the pixel’s variance, as per-
formed in Chapter 5 (Equation (5.4)), in order to account for the spatially variable pixel
noise.

6.3.4 Analysis of the parameters

Four parameters must be defined in order to compute y and X using (6.49) and (6.50).
That is the four parameters of the Normal-Wishart distribution: x, v, the prior mean
and the prior covariance matrix .

Setting of ;o and 3, Assuming an oracle is available (e.g., in an iterative approach, the
oracle is the result of the previous iteration), jio and 3 can be computed using the cor-
responding MLE estimators from the set of similar patches (Formulas (6.19) and (6.20)).
Notice that this is the same approach taken by NLB, which is possible here despite the
presence of unknown samples, since they are reconstructed in a previous iteration of the
algorithm using (6.25).

It is clear though that the initialization of the algorithm plays a key role, since a first
estimate of the unknown samples is needed in order to compute the corresponding o
and 3. For that purpose, we make use of the initialization scheme proposed by Yu et al.
[2012] for the PLE algorithm (c.f. Section 6.1).

The initialization of the proposed algorithm goes as follows. A fixed number of classes
K is defined and the corresponding covariance matrices are computed from (K — 1)
synthetic images of edges of different orientations plus the DCT to represent isotropic
patterns as explained in Section 6.1. The means of the classes are set to zero. Each image
patch is projected in each class using (6.6) and its best suited class is chosen using (6.7). A
first oracle is thus created aggregating the estimations of all patches corresponding to the
chosen class. This oracle is then used to initialize the proposed algorithm and compute
the MLE estimates of 11y and 3.

Settingof x and v The estimation of 1 is a combination of the mean estimated from the
similar patches after projection into the non-degraded space through (6.25) and the prior
mean fig. The parameter « is related to the degree of confidence we have on the prior
o. Hence, its value should be a trade-off between the confidence we have in the prior
accuracy and the confidence we have in the information provided by the similar samples.
The latter is related to the number of similar neighbors and the number of known pixels
in the current patch. A higher « is needed if few similar patches are available or a large
part of the patch is unknown.

Similarly, the v parameter should be set to define a trade-off between the information
provided by the similar samples and the prior 3. A higher v is needed if few similar
patches are available or a large part of the patch is unknown.
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Figure 6.2: Ground-truth images used for the experiments presented in Section 6.3.7.

Despite these intuitive insights, the setting of these parameters is not a trivial task
and should be the subject of further study. In the perspectives of this work, an in-depth
analysis of the role they play in the algorithm and a corresponding thorough setting, are
considered.

For this first version and the results presented in Section 6.3.7, the parameters are de-
fined as follows. Because the importance we give to the priors jy and X is controlled by
the relative importance of the value of x and v with respect to the diagonal values of the
term

N
Y ATUA, (6.61)
j=1

(see equations (6.49) and (6.51)), we decide to set k and v proportional to the mean value
of the diagonal entries of this matrix. The proportionality constant depends on the num-
ber of known pixels in the current patch and on the number of similar patches N. If the
number of known pixels and that of similar patches are above a threshold, the propor-
tionality constant takes a low value o, (the same for x and v) indicating confidence on
the similar patches. Otherwise it takes a high value oy (also the same for x and v). This
is of course a simplified and arbitrary procedure, which is in line with the intuitive way of
setting these parameters but which can be enhanced.

6.3.5 Summary of the proposed algorithm

The analysis presented in the previous sections leads to a method that is summarized in
Algorithm 4, that is an implementation of the Bayesian reconstruction method introduced
in Section 6.3. In practice, the algorithm is found to converge after 3 to 4 iterations.

6.3.6 PLE extension to Model (6.22)

The PLE algorithm can be adapted to images following Model (6.22). The estimation step
is performed using equation (6.25) instead of (6.6) to compute C¥, and the class selection
equation (6.7) becomes

ki = arg min ((zi — D,CHTS (7 — D,CE) + (CHT;'CF 4 1n yzk\) . (6.62)
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Algorithm 4: Summary of the proposed algorithm.

1 Decompose the input image Z and D into overlapping patches.

» Initialization:

3 Compute the covariance matrix of the K classes from synthetic images of edges
plus the DCT.

4 Project all patches into the K classes using (6.25) and chose the best class
using (6.62).

s Compute the first oracle aggregating the estimations of all patches for the chosen
class.

6 Start:

; for it =1 to maxIts do

8 for all patches not yet restored do

9 Find patches similar to the current z; computing L? distance in the oracle.
10 Compute MLE of 11y and 3 from similar patches in the oracle.

u Compute /i and 3 following Algorithm 3.

12 Restore the similar patches using (6.25) (colaborative filtering).

13 end

14 Perform aggregation to restore the image

15 The new oracle is equal to the restored image.

16 end

The rest of the algorithm remains unchanged.

The NLB algorithm may also be extended to the case of images following Model (6.22)
taking certain considerations for the first step. For the second step, the only modification
to be done is to replace Equation (6.21) by Equation (6.25) to estimate C..

6.3.7 [Experiments

In this section we summarize the results of a series of experiments conducted to verify
the ability of the proposed method to interpolate random missing pixels and denoise the
known ones. The interpolation and denoising capacities are evaluated both jointly and
separately. The interpolation capacity is evaluated using random masks with different
masking rates and the results are compared to those obtained with the PLE method. The
denoising capacity is tested adding Gaussian noise with different variance values and the
results are compared to those obtained by the NLB algorithm. Finally, the joint interpola-
tion and denoising is tested with images both masked and corrupted by additive Gaussian
noise. In this case, the algorithm performance is compared to that of the PLE method
only, since NLB was not conceived for pixel interpolation. The ground-truth images for
all the tests are shown in Figure 6.2.

Interpolation Random masks with 20%, 50% and 70% of missing pixels are applied to
the images in Figure 6.2. The interpolation is computed using the PLE method with the

parameters set as indicated in [Yu et al. 2012] (patch size 8 X 8, 0 = 3, e = 30). The
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PSNR (dB)

barbara boat traffic
% missing pixels PLE HPNLB PLE HPNLB PLE HPNLB

20 42.98 45.21 40.26 41.62 34.40 34.55
50 43.46  45.75 4110 41.93 36.12 36.16
70 39.13 4138 3774 38,54  32.97 33.31

Table 6.1: Results for the interpolation test with random masks with 20%, 50% and 70% of missing pixels.

PSNR (dB)

extract1 extract2 extract3 extract 4 extracts extract6

HPNLB  31.58 33.72 33.61 29.69 30.55 38.70
PLE 29.01 32.06 32.43 28.55 30.43 37.49

Table 6.2: PSNR values for the extracts shown in Figures 6.3 to 6.5. There are 70% of missing pixels for
extracts 1, 2 and 4; 50% for extracts 3 and 5; 20% for extract 6.

parameters for the proposed method are set to: patch size 8 X 8, ag = 1, ay, = 0.5 (ayg
and «;, define the values for x and v, see Section 6.3.4). The PSNR results are shown in
Table 6.1. Figures 6.3 to 6.5 show some extracts of the obtained results and the corre-
sponding difference image with respect to the ground-truth. The PSNR for these extracts
are shown in Table 6.2. As it can be verified in the presented extracts, the results obtained
by the proposed approach are sharper than the ones obtained by PLE. The improvement is
more noticeable comparing the difference images, which keep more structure in the result
obtained by PLE. This is quite noticeably in the extracts of barbara’s image (Figure 6.3) and
in the ropes and cables of the boat image in Figure 6.5. The difference is less noticeable for
the lower masking rate as can be seen in Figure 6.5. The gain in PSNR is also important
for the larger masking rates.

Denoising The following experiments are conducted in order to compare the denoising
ability of the proposed method to that of the NLB algorithm. The experiments are per-
formed with images corrupted with additive Gaussian noise with variance o = 10, 30, 50
and 80. For this experiment, there are no unknown pixels to interpolate (the mask D is the
identity matrix). From the corresponding algorithms descriptions in Sections 6.2 and 6.3,
with a correct parameter setting, the results obtained by these two algorithms should be
quite similar. The main difference between them lies in the computation of the mean and
covariance matrix of the Gaussian patch model. However, if the prior parameters py and
3} are computed in a similar way to what is done in NLB to compute the Gaussian model
parameters, and if the parameters « and v are large enough to highly prioritize 14y and ¥
in equations (6.49) and (6.50), then the Gaussian parameters in both methods will be very
close and both methods should lead to very similar results.

That is what we find in practice, with oy = a7 = 100 (ay and af, define the values
for x and v, see Section 6.3.4), as is exemplified in the results summarized in Table 6.3.
Figures 6.6 to 6.8 show some extracts that confirm the similarity of the obtained results
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Figure 6.3: Synthetic data. Interpolation of missing pixels 70% missing samples. Patch size 8 x 8.
Left to right: (first row) Ground-truth, result obtained using PLE, result obtained using the proposed
approach, (second row) input image, difference ground-truth - PLE, difference ground-truth - HPNLB.
Corresponding PSNR results in Table 6.2. Please see the digital copy for better details reproduction.
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Figure 6.4: Synthetic data. Interpolation of missing pixels 50% and 70% missing samples. Patch
size 8 x 8. Left to right: (first row) Ground-truth, result obtained using PLE, result obtained using the
proposed approach, (second row) input image, difference ground-truth - PLE, difference ground-truth -
HPNLB. Corresponding PSNR results in Table 6.2. Please see the digital copy for better details reproduc-
tion.
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Figure 6.5: Synthetic data. Interpolation of missing pixels 50% and 20% missing samples. Patch
size 8 x 8. Left to right: (first row) Ground-truth, result obtained using PLE, result obtained using the
proposed approach, (second row) input image, difference ground-truth - PLE, difference ground-truth -
HPNLB. Corresponding PSNR results in Table 6.2. Please see the digital copy for better details reproduc-
tion.
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PSNR (dB)

barbara boat traffic

o? NLB HPNLB NLB HPNLB NLB HPNLB

10 40.59 40.79 40.03 40.24 40.71 40.70
30 37.68 37.98 36.76 36.84 36.97 37.00
50 36.34 36.74 3546 3556 3523 35.28
80 3512 3558 34.32 3451 33.73 34.06

Table 6.3: Results for the denoising only test. Images corrupted with additive Gaussian noise with vari-
ance 10, 30, 50 and 80. Figures 6.6 to 6.8 show extracts of the obtained results.

PSNR (dB)

extract1 extract2 extract3 extract 4 extracts extract6

HPNLB 40.27 38.88 35.18 34.05 37.25 35.57
NLB 40.16 38.53 34.93 33.67 3729 35.05

Table 6.4: Denoising only test. Results for the extracts in Figures 6.6 to 6.8. Images corrupted with
additive Gaussian noise with variance 10 (extract 1), 30 (extracts 2 and 5), 50 (extract 3) and 80 (extracts
4 and 6). show extracts of the obtained results.

(see Table 6.4 for the PSNR values in these extracts). In order to further emphasize the
similarity between (1, 3o) and (i, 3) in this case, the proposed method is initialized
with the output of the first step of NLB instead of the PLE based initialization described
in Section 6.3.5. Notice that this change is possible in this experiment since there are no
unknown pixels to interpolate.

We might also think that the Gaussian parameters should be similar for both methods,
provided that yy and 3 are similar to the Gaussian parameters for NLB, even if x and v
are small. For instance, since the first term of (6.49) is the addition of the restored patches,
we might think that (6.49) should give a result similar to the one obtained by NLB for p
even if x is small. A similar reasoning can be done for (6.50) and small . However, this is
not the case in practice, the results obtained by NLB being better than those obtained by
the proposed method with small x and v. The reason for this is that 1y and 2, as well as ;1
and X in NLB, are computed from an oracle image resulting from the first restoration step.
This restoration includes not only the denoising of each patch, but also an aggregation step
that highly improves the final result. Therefore, the contribution of the first term of (6.49)
to the computation of i degrades the result compared to using 14 only (i.e. using a large
K).

Combined interpolation and denoising For this experiment, the ground-truth images
in Figure 6.2 are corrupted with additive Gaussian noise with variance 10, and a random
mask with 20% and 70% of missing pixels. The image restoration is computed using the
PLE method with the parameters set as indicated in [Yu et al. 2012] (patch size 8 x 8§,
o = 3, & = 30). The parameters for the proposed method are set to: patch size 8 x 8§,
ag = 1, ar = 0.5 (o and o, define the values for x and v, see Section 6.3.4). Table 6.5
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Figure 6.6: Synthetic data. Denoising Gaussian additive noise of variance 10 and 30. Patch size 8 x 8.
Left to right: (first row) Ground-truth, result obtained using PLE, result obtained using the proposed
approach, (second row) input image, difference ground-truth - PLE, difference ground-truth - HPNLB.
Corresponding PSNR results in Table 6.4. Please see the digital copy for better details reproduction.
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Figure 6.7: Synthetic data. Denoising Gaussian additive noise of variance 50 and 80. Patch size 8 x 8.
Left to right: (first row) Ground-truth, result obtained using PLE, result obtained using the proposed
approach, (second row) input image, difference ground-truth - PLE, difference ground-truth - HPNLB.
Corresponding PSNR results in Table 6.4. Please see the digital copy for better details reproduction.
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Figure 6.8: Synthetic data. Denoising Gaussian additive noise of variance 30 and 80. Patch size 8 x 8.
Left to right: (first row) Ground-truth, result obtained using PLE, result obtained using the proposed
approach, (second row) input image, difference ground-truth - PLE, difference ground-truth - HPNLB.
Corresponding PSNR results in Table 6.4. Please see the digital copy for better details reproduction.
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PSNR (dB)
barbara boat traffic
% missing pixels PLE HPNLB PLE HPNLB PLE HPNLB

20 37.87 3774 3702 3745 33.30 33.36
70 31.46 32.87 30.40 30.99 2578 25.91

Table 6.5: Results for the denoising and interpolation test. Images corrupted with additive Gaussian
noise of variance 10 and random masking with 20% and 70% of missing pixels.

PSNR (dB)

extract1 extract2 extract3 extract 4 extracts extract 6 extracty extract$8

HPNLB 37.10 36.79 33.22 30.52 30.37 27.80 28.21 26.37
PLE 37.09 36.57 31.25 28.64 29.87 26.98 26.61 26.07

Table 6.6: PSNR values for the extracts shown in Figures 6.9 to 6.12. Images corrupted with additive
noise with variance 10 and random masking with 20% (1-2) and 70% (3-8) missing pixels.

summarizes the PSNR values obtained by each method. Figures 6.9 to 6.12 show the results
obtained on some extracts and the corresponding difference images with respect to the
ground-truth. Table 6.6 shows the PSNR values for these extracts. For the masking rate of
20%, the results are very similar for both methods. However, a clear difference is observed
in the case of 70% masking rate, where the proposed method gives sharper results.

6.4 Application: single image HDR

The idea of using multiple differently exposed images to capture HDR scenes can be traced
back to 1856, when the French photographer Gustave Le Gray captured a high dynamic
range scene composed by sea and sky, by combining two differently exposed negatives.
As explained in Chapter 3, this idea was introduced in digital photography by Mann and
Picard in 1995 and several methods followed, proposing different ways to combine the im-
ages [Debevec and Malik 1997; Mitsunaga and Nayar 1999; Robertson et al. 2003; Granados
et al. 2010].

In the case of a static scene and a static camera, the combination of multiple images is
a simple and efficient solution. However, several problems arise when either the camera or
the elements in the scene move. As introduced in Chapter 5 for the HDR imaging problem
for dynamic scenes and hand-held camera, global alignment techniques must be used to
align images and de-ghosting methods must be applied to correct for the artifacts due to
object motion. These kind of artifacts are particularly annoying on the fused result.

The multi-image method introduced in Chapter 5 addresses these problems through
the use of patches, avoiding the need for image alignment and object motion detection.
However, since it uses a reference image, large saturated regions may need to be filled
before applying the patch based reconstruction. As will be explained in the following, the
single-image method here proposed overcomes this issue.
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Figure 6.9: Synthetic data. Combined interpolation and denoising of missing pixels 20% missing
samples + Gaussian noise 10. Patch size 8 x 8. Left to right: (first row) Ground-truth, result obtained
using PLE, result obtained using the proposed approach, (second row) input image, difference ground-
truth - PLE, difference ground-truth - HPNLB. Corresponding PSNR results in Table 6.6. Please see the
digital copy for better details reproduction.
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Figure 6.10: Synthetic data. Combined interpolation and denoising of missing pixels 70% missing
samples + Gaussian noise 10. Patch size 8 x 8. Left to right: (first row) Ground-truth, result obtained
using PLE, result obtained using the proposed approach, (second row) input image, difference ground-
truth - PLE, difference ground-truth - HPNLB. Corresponding PSNR results in Table 6.6. Please see the
digital copy for better details reproduction.

135



Figure 6.11: Synthetic data. Combined interpolation and denoising of missing pixels 70% missing
samples + Gaussian noise 10. Patch size 8 x 8. Left to right: (first row) Ground-truth, result obtained
using PLE, result obtained using the proposed approach, (second row) input image, difference ground-
truth - PLE, difference ground-truth - HPNLB. Corresponding PSNR results in Table 6.6. Please see the
digital copy for better details reproduction.
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Figure 6.12: Synthetic data. Combined interpolation and denoising of missing pixels 70% missing
samples + Gaussian noise 10. Patch size 8 x 8. Left to right: (first row) Ground-truth, result obtained
using PLE, result obtained using the proposed approach, (second row) input image, difference ground-
truth - PLE, difference ground-truth - HPNLB. Corresponding PSNR results in Table 6.6. Please see the
digital copy for better details reproduction.
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Figure 6.13: Regular (left) and non-regular (right) optical masks for an example of 4 different filters.

The concept of spatially varying pixel exposures (SVE) proposed by Nayar and Mit-
sunaga [2000] enables to capture a very large range of exposures in only one shot while
avoiding multi-imaging limitations. In this work, we propose a novel approach to generate
HDR images from a single shot acquired with spatially varying pixel exposures. Drawing
on a precise modeling of the camera acquisition noise, we make use of the new image
restoration technique introduced in Section 6.3. The proposed method reconstructs the
irradiance image by simultaneously estimating missing pixels and denoising existing ones,
showing considerable improvements over existing approaches.

This section is organized as follows. Section 6.4.1 presents a summary of the previous
work on single shot HDR imaging. In Section 6.4.2 we present the SVE acquisition model.
Section 6.4.3 is devoted to the irradiance reconstruction problem and the proposed solu-
tion. A summary of the performed experiments is presented in Section 6.4.4. Conclusions
are presented in Section 6.5.

6.4.1 Previous work

An alternative to HDR from multiple frames was introduced by Nayar and Mitsunaga
[2000]. They propose to perform HDR imaging form a single image using spatially vary-
ing pixel exposures. An optical mask with spatially varying transmittance (see Figure 6.13)
is placed adjacent to a conventional image sensor, thus controlling the amount of light
that reaches each pixel. This gives different exposure levels to the pixels according to the
given transmittance pattern, allowing a single shot to capture an increased dynamic range
compared to that of the conventional sensor.

The greatest advantage of this acquisition method is that it allows HDR imaging from
a single image, thus avoiding the need for alignment and motion estimation, which is the
main drawback of the classical multi-image approach. Another advantage is that the satu-
rated pixels are not organized in large regions. Indeed, some recent multi-image methods
tackle the camera and objects motion problems by taking a reference image and then es-
timating motion relative to this frame or by recovering information from other frames
through local comparison with the reference [Sen et al. 2012; Aguerrebere et al. 2013]
(Chapter 5). A problem encountered by this approach is the need for inpainting saturated
and underexposed regions in the reference frame, since the information is completely lost
in those areas. The SVE acquisition strategy prevents from having large saturated regions
to inpaint. In general, all scene regions are sampled by at least one of the exposures thus
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simplifying the inpainting problem.

The main drawback of the SVE acquisition is that, unlike the multi-image approach
where all pixels are assumed to be correctly exposed in at least one of the input images, for
the brighter and darker regions of the scene some exposure levels will be either too high or
too low and the corresponding pixels will be under or over exposed. Hence, those pixels
are unknown and need to be somehow reconstructed. Figure 6.14 illustrates this problem.
It shows an example of an HDR scene and the mask of known and unknown pixel values
of a single shot of the scene using SVE. Known pixels (white) are the correctly exposed
pixels and unknown (black) pixels are those either under or over exposed. Moreover, noise
reduction is of particular importance in this kind of acquisition setup since the pixels of
the lowest exposures tend to be quite noisy (mostly in dark regions) thus producing images
with high noise levels.

Hirakawa and Simon [2011] argue that different sensitivities are already implied by the
different translucencies of the three color filters in a regular Bayer Pattern. They propose a
clever demosaicking-inspired algorithm to jointly perform demosaicking and HDR imag-
ing from a single shot, with specially tailored color-filter translucencies. Moreover, they
propose to use an external optical filter in order to increase the differences between the
translucencies present in the color filters. Despite this solution may be, in certain condi-
tions, more limited than the SVE strategy, it is remarkably practical (no need to modify
the image sensor) and therefore very interesting from a feasibility point of view.

In the approach proposed by Nayar and Mitsunaga [2000], the varying exposures fol-
low a regular pattern as shown in Figure 6.13. Two methods are proposed to reconstruct the
under and over exposed pixels. The so called aggregation approach consists in averaging
the local irradiance values produced by the correctly exposed pixels. The interpolation ap-
proach consists in using a bi-cubic interpolation to simultaneously retrieve the unknown
pixels and denoise the known ones. A generalization of this kind of pixel varying acqui-
sition, and its application to high dynamic range and multi-spectral imaging is presented
in [Yasuma et al. 2010].

Motivated by the aliasing problems of regular sampling patterns, Schoberl et al. [2012a]
propose to use spatially varying exposures in a non-regular pattern. Figure 6.13 shows ex-
amples of both acquisition patterns: regular and random. The reconstruction of the irra-
diance image is then performed using the frequency selective extrapolation algorithm [Seiler
and Kaup 2010] which iteratively generates a sparse model for each image patch as a
weighted superposition of the two-dimensional Fourier basis functions. Moreover, Schoberl
et al. [2012b] present a practical methodology for the construction of a spatially varying
exposures mask with a non-regular pattern.

In [Aguerrebere et al. 2014a], we proposed a new HDR imaging technique that com-
bines the SVE acquisition strategy with an irradiance reconstruction using an extension
of the PLE method adapted to the noise present in raw digital images presented in Sec-
tion 6.3.6. That is, noise with variable variance dependent on the irradiance on each pixel
(c.f. Chapter 2). The raw images are first normalized to the irradiance domain (division
by the corresponding SVE gains) and the modified PLE method is applied to the set of
image patches. As will be shown in Section 6.4.4, the method presented in this section
outperforms the one introduced in [Aguerrebere et al. 2014a].
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Figure 6.14: Example of the acquisition of an HDR scene using spatially varying pixel exposures. Left:
Tone mapped HDR scene restored from the raw image. Right top: Raw image with spatially varying
exposure levels. Right bottom: Mask of correctly exposed pixels (white) and under or over exposed
pixels (black).

In this work, we propose to use the HPNLB method to reconstruct the irradiance
information of a scene from a single shot acquired with spatially varying pixel exposures
following a random pattern. We take advantage of the GMM, which has been proven accu-
rate at representing natural image patches, to reconstruct the unknown pixels and denoise
the correctly exposed ones. The new approach improves the irradiance reconstruction
with respect to the previous approaches.

6.4.2 Spatially varying exposure acquisition model

As presented in [Nayar and Mitsunaga 2000; Yasuma et al. 2010; Schoberl et al. 2012b], an
optical mask with spatially varying transmittance can be placed adjacent to a conventional
image sensor to give different exposure levels to the pixels. This optical mask does not
change the acquisition process of the sensor, whether using a conventional CCD or CMOS
sensor. As introduced in Chapter 2, the main noise sources for this kind of sensors are: the
Poisson photon shot noise, which can be approximated by a Gaussian distribution with
equal mean and variance; the thermally generated readout noise, which is modeled as an
additive Gaussian distributed noise; the spatially varying gain given by the photo response
non uniformity (PRNU); dark currents and quantization noise. Thus the following noise
model for the non saturated raw pixel value Z, at position p is applicable for this new
acquisition method*:

Zp ~ N (gopa,7Cp + g, g°0,a,7Cy + o), (6.63)

where g is the camera gain, o, is the variable gain due to the optical mask, a, models the
PRNU factor, 7 is the exposure time, C,, is the irradiance reaching pixel p, ur and 0% are

*Some noise sources not modeled in Chapter 2, such as blooming, might have a considerable impact in
the SVE acquisition strategy and should be considered in a more accurate image modeling.
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the readout noise mean and variance. Dark currents and quantization noise are neglected
(c.f. Chapter 2).

Two main aspects must be defined for the SVE acquisition strategy. One is the number
of different filters to be used, i.e. the different exposure levels to capture. This is related to
the problem of how many exposure times should be used in the classical HDR acquisition
strategy. The solution to this problem depends on the scene. Since the acquisition using
SVE uses an a priori fixed optical mask, the number of different exposures is fixed. In gen-
eral, 2 to 4 images are used for HDR imaging. An optical mask with 4 different exposure
levels appears a reasonable choice [Nayar and Mitsunaga 2000].

The second choice is whether the spatial distribution of the different filters is done ran-
domly or with a regular pattern. This determines the way the scene irradiance is sampled:
regular or random sampling. Figure 6.13 shows examples of the two sampling strategies.
This point is important in the acquisition strategy since, due to unknown under and over
exposed pixels, some regions of the image will almost certainly be sub-sampled and some
kind of interpolation will be needed to retrieve these pixels values. If the sampling pattern
is regular, aliasing artifacts will appear due to the characteristics of the spectrum of the
pattern (delta functions at the sampling frequencies). On the contrary, the spectrum of
a random pattern is concentrated in a single delta and has negligible values for the rest
of the frequencies, thus avoiding aliasing. This fact led us to choose a random pattern to
perform the acquisition.

6.4.3 Irradiance reconstruction

In order to reconstruct the dynamic range of the scene we need to solve an inverse prob-
lem, that is, to find the irradiance values from the input pixel values. Several widely known
methods solve image inverse problems decomposing the image into patches so as to take
advantage of accurate models developed to represent patches. In Section 6.3 we introduced
a new Bayesian reconstruction algorithm which is able to interpolate missing pixels and
denoise the existing ones making use of a Gaussian prior for image patches. This method
is well adapted to the problem of the reconstruction of the dynamic range of an image
acquired using the SVE acquisition strategy. In the following we present the details of how
to apply this method to the reconstruction of the irradiance map from such an image.

The inverse problem

The problem we want to solve is that of estimating the irradiance image C' from the input
raw image Z, knowing the exposure levels and the camera parameters. Let us consider Y,
the normalization of the input pixel Z,, to the irradiance domain

Zp — KR
GOopa,T
We take into account the effect of saturation and under-exposure by introducing the ex-
posure degradation factor D,, given by

Y, = (6.64)

|1 ifpr <Z, < zZsat,
D, = { 0 otherwise (6.65)
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with z4,; equal to the pixel saturation value, thus eliminating the under or overexposed
pixels. From (6.63), Y,, can be modeled as

(6.66)

Yp ~ N (DPCIJ; QQOpGpTDpCp i U%{)

(gopapT)2

Notice that (6.66) is the distribution of Y, for a given D,, since D,, is itself a random
variable that depends on Z,,. The exposure degradation factor must be included in (6.66)
since the variance of the over or under exposed pixels no longer depends on the irradiance
C, but is only due to the readout noise o%.

Then the problem of irradiance estimation can be stated as retrieving C' from the im-
age Y, which implies denoising the known Y, pixel values (D, = 1) and estimating the
completely unknown ones (D, = 0).

Hyperprior Non Local Bayes for irradiance reconstruction

In order to reconstruct C' from the irradiance image Y we make use of the Bayesian
restoration method introduced in Section 6.3, which is adapted to the noise present in
the raw irradiance values given by (6.66).

Patchmodel The irradiance image Y is decomposed into overlapping patches Y; of size
VN x /N,i=1,...,1 with I the number of patches in the image. From (6.66), each
patch Y; taken as a column vector of size N x 1 can be modeled according to

Y, = DiCi + =\’ (6.67)

Here, the degradation operator D; isa N x N diagonal matrix with the diagonal entries
equal to the degradation image D restricted to the patch i, C; is the patch on the irradiance
image we seek to estimate, Xy, isa N x N diagonal matrix with the j-th diagonal entry
given by

(Bn); = 90,0, 7(DiC), + 0%, (6.68)

(gopa,T)?

where (D;C;); is the j-th element of vector D;C; and ¢; is a Gaussian noise with zero
mean and identity covariance matrix. Notice that the degradation operator D is actually
a random variable, but we consider it here as a determinist known mask in order to be
able to apply the reconstruction method introduced in Section 6.3. A Gaussian prior is
chosen to describe image patches, parametrized by its mean y; and covariance matrix 3;.

Patchreconstruction The patch reconstruction is performed using the Bayesian method
introduced in Section 6.3. Hence, the restored patch C; is computed as

Ci = 5,D} (DD} + ;) ! (vi — Dis) + pis (6.69)
with the observed noisy irradiance patch y; given by

Zi — UR
gopa,T

Vi = (6.70)
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The model parameters j; and 3; are computed as detailed in Section 6.3.3, and an it-
erative procedure is performed to improve the accuracy of the parameters estimation as
summarized in Section 6.3.5. The proposed approach is summarized in Algorithm 5.

Algorithm 5: Summary of the proposed single-image HDR imaging method

1 Compute the irradiance image Y from the input image Z using (6.64).

» Compute the degradation mask D from the input image Z using (6.65).
3 Decompose Y and D into overlapping patches.

4 Use Algorithm 4 to compute the irradiance map.

PLE for irradiance reconstruction

The extension of the PLE method to the patch model 6.67 presented in Section 6.3.6 can
also be applied to the irradiance reconstruction from a single image captured using the
SVE strategy. This work was published in [Aguerrebere et al. 2014a] and is available at the
project site’.

The considered patch model is given by 6.67, and the patch space is represented by K
Gaussian distributions or classes, parametrized by their means z1;; and covariance matrices
¥k =1,..., K. Each patch C; is assumed to be drawn independently from one of these
K Gaussians, whose probability density functions are given by

1

p(C) :(27T)N/2|2k|1/2

exp <—%(C — ,uk)TE,;l(C — uk)> (6.71)

The method consists in two steps which are alternately iterated: the patch reconstruction
and the class update steps.

Patch reconstruction In the patch reconstruction step the classes parameters (1, )
are assumed to be known. The patch is reconstructed according to

Ch = £, D] (D;=D} + Ex,) " (vi = Dijue) + (672)

for all classes k = 1,..., K. Notice that~ 6.72 is equal to 6.69 with (yu, Xj) instead of
(147, 33;). Then the best representing class k; for each patch is chosen as

ki = argmin ( (v, — DiCHT S (s — D,CH) + (CHTS,Ch 4 y]) . (673)
k

Class update Once all patches have been assigned a class through 6.73, the class param-
eters (ux, 2 ) are updated computing their MLE estimators

I L
[in >.Ch Bp= A D (€= ) (Cy— )", (6.74)

[l JESk €Sk

Shttp://perso.telecom-paristech.fr/~gousseau/single_shot_hdr/
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Figure 6.15: Tone mapped version of the ground-truth image used for the experiments in Section 6.4.4.
Image from [Hasinoff et al.]. The results for the extracts are shown in Figures 6.16 to 6.21.

with Sy the set of all patches assigned to class & and | S| its cardinality. The covariance
matrix f)k may not be well conditioned as a result, for example, of a small number of
patches in the class. For this reason a regularization term ¢ is added to 3 to ensure the
correct inversion of the matrix [Yu et al. 2012].

The method is initialized as explained in Section 6.1.1. As mentioned in Section 6.1, the
input image is decomposed into regions of size 128 x 128 and the proposed approach is
applied to each region separately. Regions are half-overlapping to avoid boundary effects.
Because the image content is more coherent semi-locally than globally, this treatment al-
lows for a better reconstruction with a fixed number of classes K. This semi-local treat-
ment is especially important in the case of HDR images, where the considered dynamic
range may be very high and the number of classes needed to represent the image treated as
a whole would be very large. As in Yu et al. [2012], we use /' = 20 in all our experiments.
The algorithm is found to converge in 3 to 4 iterations.

6.4.4 Experiments

In this section we present the results obtained in a series of experiments conducted to ver-
ify the capacity of the proposed method to retrieve the complete irradiance map from a
single image acquired using spatially varying pixel exposures. The experiments are per-
formed using both synthetic and real data. The performance is compared to that obtained
using the previous methods by Schoberl et al. [2012a], Nayar and Mitsunaga [2000], and
the PLE method adapted to the case of noise with variable variance [Aguerrebere et al.
2014a], briefly introduced in the previous section, and hereafter called PLEV.
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PSNR (dB)
1 (Fig. 6.16) 2 (Fig. 6.17) 3 (Fig. 6.18) 4 (Fig. 6.19) 5 (Fig. 6.20) 6 (Fig. 6.21)

HPNLB 33.08 33.87 22.95 35.10 36.80 35.66

PLEV 29.65 30.82 22.77 33.99 36.42 34.73
Schéberl et al. 30.38 31.16 21.39 30.04 32.84 31.02
Nayar and Mitsunaga 29.39 30.10 23.24 25.83 30.26 26.90

Table 6.7: PSNR values for the extracts shown in Figures 6.16 to 6.21.

Synthetic data

Experiments using synthetic data are carried out in order to compare the reconstruction
obtained by the proposed and previous methods against a ground-truth, which is not pos-
sible (or highly prone to errors) using real data. For this purpose, sample images are gener-
ated according to Model (6.63) using the HDR image in Figure 6.15 as ground-truth. Both
arandom and a regular pattern with four equiprobable exposure levels o = {1, 8, 64,512}
are simulated. The exposure time is set to 7 = 1/200 seconds and the camera parame-
ters are those of a Canon 7D camera set to ISO 200 (¢ = 0.87, 0% = 30, ur = 2048,
Vet = 15000). The parameters for the proposed method are set to: patch size 8 x 8,
ag = 10, ar = 5 (ag and «af, define the values for x and v, see Section 6.3.4). For the
PLEV method, the patch size is set to 8 x 8 and ¢ = (.1. The parameters for the method
by Schoberl et al. were set to obtain the best PSNR value.

Figures 6.16 to 6.21 show extracts of the results obtained by the proposed method, by
PLEV and by Schoberl et al. for the random pattern and the results obtained by the bi-
cubic interpolation proposed by Nayar and Mitsunaga using the regular pattern. Together
with the results we show the corresponding input images and the difference of each result
with respect to the ground-truth image. Table 6.7 shows the PSNR values obtained in each
extract by each method.

The extract shown in Figure 6.16 presents a quite difficult reconstruction challenge
since it corresponds to a very dark region of the scene (the high ceiling that receives al-
most no light, see Figure 6.15) and thus almost all pixels are either under-exposed, and thus
unknown, or close to become under-exposed, and thus with a very low signal-to-noise ra-
tio. For that extract, 51% of the pixels are unknown and the other known half is very noise.
Nevertheless, the proposed approach manages to produce a quite correct reconstruction,
both visually and in terms of PSNR. Notice that even if the PLEV method manages to re-
construct the missing pixels, the reconstruction is quite smooth and the denoising results
are not satisfactory. A similar result can be seen in Figure 6.17.

The difference in the results is less obvious in the rest of the extracts, which correspond
to better lit areas. Nevertheless, the results obtained by the proposed approach remain
sharper than those produced by PLEV, as is also reflected in the PSNR values.

Real data

The feasibility of the SVE random pattern has been shown in [Schoberl et al. 2012b] and
that of the SVE regular pattern in [Yasuma et al. 2010]. Nevertheless, these acquisition
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Figure 6.16: Synthetic data. 51% missing pixels (for both random and regular pattern). First column:
Ground-truth (red), input image with random pattern (blue), input image with regular pattern (green).
Second column: Result by: PLEV, Schoberl et al., and their corresponding difference images with re-
spect to the ground-truth. Third column: Result by: proposed method, Nayar and Mitsunaga, and their
corresponding difference images with respect to the ground-truth. See PSNR values for these extracts
in Table 6.7. Please see the digital copy for better details reproduction.
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Figure 6.17: Synthetic data. 50% missing pixels (for both random and regular pattern). First column:
Ground-truth (red), input image with random pattern (blue), input image with regular pattern (green).
Second column: Result by: PLEV, Schoberl et al., and their corresponding difference images with re-
spect to the ground-truth. Third column: Result by: proposed method, Nayar and Mitsunaga, and their
corresponding difference images with respect to the ground-truth. See PSNR values for these extracts
in Table 6.7. Please see the digital copy for better details reproduction.
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Figure 6.18: Synthetic data. 64% missing pixels (for both random and regular pattern). First column:
Ground-truth (red), input image with random pattern (blue), input image with regular pattern (green).
Second column: Result by: PLEV, Schoberl et al., and their corresponding difference images with re-
spect to the ground-truth. Third column: Result by: proposed method, Nayar and Mitsunaga, and their
corresponding difference images with respect to the ground-truth. See PSNR values for these extracts
in Table 6.7. Please see the digital copy for better details reproduction.

148



Figure 6.19: Synthetic data. 43% missing pixels (for both random and regular pattern). First column:
Ground-truth (red), input image with random pattern (blue), input image with regular pattern (green).
Second column: Result by: PLEV, Schoberl et al., and their corresponding difference images with re-
spect to the ground-truth. Third column: Result by: proposed method, Nayar and Mitsunaga, and their
corresponding difference images with respect to the ground-truth. See PSNR values for these extracts
in Table 6.7. Please see the digital copy for better details reproduction.
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Figure 6.20: Synthetic data. 41% missing pixels. Patch size 8 x 8. Left to right: Ground-truth, result
obtained by: PLE, proposed approach, Schoberl et al., Nayar and Mitsunaga. Input image and difference
images. See PSNR results in Table 6.7. Please see the digital copy for better details reproduction.
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Figure 6.21: Synthetic data. 41% missing pixels (for both random and regular pattern). First column:
Ground-truth (red), input image with random pattern (blue), input image with regular pattern (green).
Second column: Result by: PLEV, Schoberl et al., and their corresponding difference images with re-
spect to the ground-truth. Third column: Result by: proposed method, Nayar and Mitsunaga, and their
corresponding difference images with respect to the ground-truth. See PSNR values for these extracts
in Table 6.7. Please see the digital copy for better details reproduction.
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systems are still not available for general usage. However, as stated in Section 6.4.2, the
only variation between the classical and the SVE acquisition is the optical filter, i.e. the
amount of light reaching each pixel. Hence, the noise at a pixel p captured using SVE
with an optical gain factor 0, and exposure time 7/0, and a pixel captured with a classical
camera using exposure time 7 should be very close. We take advantage of this fact in
order to evaluate the reconstruction performance of the proposed approach using real
data. For this purpose we generate an SVE image drawing pixels at random from four
raw images acquired with different exposure times. The four different exposure times
simulate the different filters of the SVE optical mask. The images are acquired using a
remotely controlled camera and a tripod so as to be perfectly aligned. Otherwise, artifacts
may appear from the random sampling of the four images to composite the SVE frame.
Notice that the SVE image thus obtained is very similar to the one obtained if such an
optical filter was placed adjacent to the sensor. This protocol does not allow us to take
scenes with moving objects. Let us emphasize, however, that using a real SVE device, this,
as well as the treatment of moving camera, would of course not be an issue.

Given the procedure we use to generate the SVE image form the input raw images, the
Bayer pattern of the latter is kept in the generated SVE image. The proposed irradiance
reconstruction method is thus applied to the raw SVE image with an overlap of v/N — 2
between patches (i.e. a shift of two pixels) in order to compare pixels of the corresponding
color channels. The parameters for the proposed method are set to: patch size 8§ x 8§,
ag = 1, a = 0.5 (ag and oy, define the values for x and v, see Section 6.3.4) in all
examples. The parameters for the PLEV method are set to: patch size 8 x 8, ¢ = 0.1 .
The demosaicking method by [Hamilton and Adams 1997] is then used to obtain a color
image form the reconstructed irradiance. To display the results we use the tone mapping
technique by Mantiuk et al. [2008].

A comparison against the methods by Nayar and Mitsunaga and Schoberl et al. is not
presented since they do not precise in their works how to treat raw images with a Bayer
pattern (how to treat color) and therefore an adaptation of their methods should be made
in order to process our data.

Figures 6.22 to 6.27 show the results obtained in three real scenes, together with the
mask of known (white) and unknown (black) pixels and some extracts. Recall that among
the unknown pixels, some of them correspond to saturated pixels and some of them to
under-exposed pixels. The proposed method manages to simultaneously denoise and re-
construct the unknown pixels in quite extreme conditions (more than 70% of the pixels
are missing). See the extracts for a comparison between the denoising capacity of PLEV
and the proposed methods. These examples show the capacity of the proposed approach
to reconstruct the irradiance information in both very dark and bright regions simulta-
neously. See for instance the example in Figure 6.25, where the dark interior of the build-
ing (which can be seen through the windows) and the highly illuminated part of another
building are both correctly reconstructed. Figure 6.28 is another example of this where the
dark region is particularly dark (please consult the pdf version of this chapter for better
visualization).
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Figure 6.22: Real data. Tone mapped version of the HDR image obtained by the proposed approach
(11.4 stops) and its corresponding mask of missing pixels (black). Marked regions appear in Figures 6.23
and 6.24. Please see the digital copy for better details reproduction.
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Figure 6.23: Real data. Zoom of the extracts in Figure 6.22. First column: Results by PLEV. Second
column: Results by the proposed approach. Please see the digital copy for better details reproduction.
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Figure 6.24: Real data. Zoom of the extracts in Figure 6.22. First column: Results by PLEV. Second
column: Results by the proposed approach. Please see the digital copy for better details reproduction.
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Figure 6.25: Real data. Tone mapped version of the HDR image obtained by the proposed approach
(15.6 stops) and its corresponding mask of missing pixels (black). Marked regions appear in Figures 6.23
and 6.24. Please see the digital copy for better details reproduction.
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Figure 6.26: Real data. Zoom of the extracts in Figure 6.25. First column: Results by PLEV. Second
column: Results by the proposed approach. Please see the digital copy for better details reproduction.
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Figure 6.27: Real data. Zoom of the extracts in Figure 6.25. First column: Results by PLEV. Second
column: Results by the proposed approach. Please see the digital copy for better details reproduction.

6.5 Conclusions

In this chapter we introduced a new Bayesian patch based reconstruction algorithm that
simultaneously handles additive noise and random missing data. The method makes use
of an hyperprior on the Gaussian model parameters in order to perform the parameter
estimation in the case of missing data. This way, it successfully combines the reconstruc-
tion capability of the PLE method with the denoising power of NLB. The reconstruction
capability of the proposed method is shown through various experiments conducted with
images degraded both by additive noise and random missing pixels. As previously stated,
the setting of the hyperprior parameters « and v is not a trivial task and should the subject
of further study in a future work.

Moreover, we present an application of the proposed method to the generation of HDR
images acquired with the single-image SVE strategy. The reconstruction method is clearly
adapted to this case since it presents additive noise, with variable variance dependent on
the pixel values, and random missing pixels, due to under and over saturated pixels. Ex-
periments conducted with synthetic and real data, acquired in similar conditions to the
real SVE acquisition, show the capacity of the method to generate HDR images.

A distance taking into account the variable variance of the pixels, as was considered
in the HDR imaging method introduced in Chapter 5, can be also useful in this method
since the compared patches have different noise levels.

In the proposed approach, both saturated and under-exposed pixels are equally treated
as missing pixels. However, valuable information exists in the fact that a pixel is either
saturated or under-exposed [Aguerrebere et al. 2014b](Chapter 3). Future work should
explore the possibility of different treatments for each of these two kind of pixels. It would
not be surprising that this strategy, if well implemented, may improve current results.
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Figure 6.28: Real data. Tone mapped version of the HDR image obtained by the proposed approach
(13.4 stops) and its corresponding mask of missing pixels (black). Marked regions appear in Figures 6.29
and 6.30. Please see the digital copy for better details reproduction.
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Figure 6.29: Real data. Zoom of the extracts in Figure 6.28. First column: Results by PLEV. Second
column: Results by the proposed approach. Please see the digital copy for better details reproduction.
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Figure 6.30: Real data. Zoom of the extracts in Figure 6.28. First column: Results by PLEV. Second
column: Results by the proposed approach. Please see the digital copy for better details reproduction.
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7 Conclusions and Perspectives

In this thesis we presented a thorough study of the generation of HDR images, both from a
theoretical point of view and with practical solutions to the problem. The starting point of
the work was the study of the camera acquisition process and the proposal of an accurate
and realistic, yet simple, noise model. The problem of the generation of HDR images was
then stated from a statistical perspective. More precisely, we considered the estimation of
the irradiance map from the observations of a set of random variables following the noise
model. This problem was analyzed in two different scenarios: the static and the dynamic
case.

The performance bounds for the irradiance estimation problem in the static case were
computed by means of the Cramér Rao lower bound theorem. We then showed that this
bound cannot be attained and therefore no efficient estimator exists for the irradiance un-
der the considered hypotheses: pixel-wise estimation from 7" independent samples follow-
ing Model (2.2). The performance of various existing irradiance estimators was compared
to the crLB. We found that all tested estimators perform close to the bound, and in partic-
ular, that an iterative approximation of the MLE [Granados et al. 2010] is nearly optimal.
This result shows that there is not much room for improvement under the considered
hypotheses. Hence, this motivates the search for alternatives to the pixel-wise unbiased
estimators classically used in the static case.

One option is the inclusion of the saturated samples. Following the statistical study, a
new irradiance estimator was proposed that, unlike existing estimators, includes saturated
samples. We showed that the information carried by the fact that a pixel saturates for
a given exposure time can be used to improve the estimation of the irradiance values
that are close to saturation. This was confirmed by the comparison of the performance
bounds computed with and without the saturation information, as well as by numerical
experiments.

Another option, taking advantage of the redundancy existing in natural images, is to
release the pixel-wise hypothesis and perform the irradiance estimation combining sam-
ples from different pixel positions. This idea, inspired from the classical denoising tech-
niques, is exploited in the algorithms developed for the dynamic case in Chapters 5 and 6
and was shown to highly improve the irradiance estimation.

Finally, another interesting option may be the computation of a biased estimator. Bi-
ased estimators have been shown useful in various applications, where the bias - variance
trade-off can be controlled to improve the obtained results. It is not a priori obvious which
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kind of bias would be appropriate for the irradiance estimation and further analysis should
be done in this sense.

Keeping the hypothesis of static scene and allowing small hand-held motion for the
camera, we studied the combined problem of HDR and super-resolution. From a col-
laboration with Yann Traonmilin, we proposed an acquisition strategy that, if the affine
motion hypothesis holds and sufficiently long exposure time is available, guarantees the
recovery of the real high dynamic range and high frequency information of the original
scene.

Next, in order to tackle the dynamic case of HDR image generation, where moving
objects are present and the acquisition is done using a hand-held camera, we proposed to
use a multi-image patch based approach that simultaneously reconstructs and denoises the
irradiance map. The use of patches has two main advantages. First, it avoids the need for
global image alignment and objects motion detection. This is particularly useful since the
ghosting artifacts resulting from image misalignment are extremely annoying. Second, as
previously mentioned, the irradiance estimation is performed combining several samples
(usually much more than in the static case, i.e., the number of input images) which gives
a denoised result.

The main drawback of this approach is the need for filling possibly large saturated
areas in the reference frame. We proposed to tackle this inpainting problem using the
Poisson editing technique. This is usually possible since the information missing in the
reference image can be found in at least one of the other input frames. Nevertheless,
other filling approaches should be studied. One possibility, inspired by the texture syn-
thesis technique by Efros and Leung [Efros and Leung 1999], could be using a patch-based
method to inpaint the unknown region taking the patches from the input frames where
the region is correctly exposed.

An interesting perspective for the improvement of this method is to include the results
of the restoration method introduced in Chapter 6, which were not included at first due
to the chronological order of development of both methods.

Further, a generic Bayesian patch-based restoration method was proposed that simul-
taneously handles additive noise and random missing pixels. This method was inspired by
the two powerful restoration methods, the Piece-wise Linear Estimators (PLE) [Yu et al.
2012] and the Non local Bayes (NLB) [Lebrun et al. 2013]. As in NLB, a Gaussian model is
assumed for image patches, whose parameters are estimated locally from similar patches.
The inclusion of an hyperprior on the Gaussian parameters makes it possible to extend
the denoising ability of NLB to the case of random missing pixels. Results show that the
proposed method keeps the inpainting capability of PLE while boosting its denoising per-
formance through the local model estimation inspired by NLB.

The setting of the hyperprior parameters is not a trivial task. A first setting proposal
was done in this work but this point should be the subject of further investigation.

Even if the method has only been tested for denoising and restoration of random miss-
ing pixels, it may also be conceived as a more general framework for solving inverse prob-
lems (such as interpolation of missing pixels on a regular pattern, zooming, deblurring)
as performed in [Yu et al. 2012]. Nevertheless, this extension is not obvious and needs fur-
ther analysis and testing. In particular, some considerations regarding the initialization of
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the method should be accounted for as explained in [Yu et al. 2012].

This reconstruction method was applied to the problem of single image HDR genera-
tion using the spatially varying pixel exposure (SVE) acquisition strategy. Being a single-
image technique, this approach avoids the ghosting problems caused by image misalign-
ment. However, serious noise problems arise as well as the need to inpaint missing pixels
(saturated and under-exposed pixels), which makes it a natural application for the pro-
posed restoration method. Hence, the method is adapted to the precise noise present in
these images in order to perform the simultaneous denoising and missing pixel restora-
tion. Examples using synthetic and real data acquired in similar conditions to that of SVE
show the ability of the method for the HDR image generation task.

The patch comparison, which is a very important aspect for the methods presented
in Chapters 5 and 6, should be further studied. Other approaches such as the likelihood-
based ones presented in [Deledalle et al. 2012] should be considered.

The vast experimental testing, done for the evaluation of the different proposed algo-
rithms, confirmed the importance of the choice of the exposure times on the quality of
the obtained irradiance map. As Model (2.2) shows, the noise level of the images, and so
their signal-to-noise ratio, is partly determined by the exposure time, thus affecting the
final result. As presented in Chapter 4, a trade-off must be made between the quality of
the correctly exposed pixels and the number of saturated ones. This aspect may be an
interesting problem for further analysis.

Finally, let us conclude by observing that an interesting continuation of this work may
be the study of the aforementioned problems in the context of the new image sensor tech-
nologies developed for HDR imaging in recent years, as for example, the Super CCD EXR
sensor developed by Fuji Film. New problems arise with these new technologies, as well as
new ways of thinking the HDR imaging.
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A Tone mapping operators

Tone mapping operators (TMOs) are a fundamental tool in HDR imaging since the dy-
namic range of these images greatly exceeds the contrast range possibly handled by most
conventional displays. These operators allow us to display HDR images so that they look
as similar as possible to the real scenes intended to be registered. A wide variety of TMOs
can be found in the literature. Here, we present a very brief summary of the existing meth-
ods. For a through classification and an in-depth analysis of TMOs we refer the reader to
the book by Reinhard et al. [2010].

Many of the existing TMOs are inspired by the behavior of the human visual system
(HVS) [Tumblin and Rushmeier 1993; Ward 1994; Ferwerda et al. 1996; Ward et al. 1997;
Tumblin et al. 1999; Pattanaik et al. 1998; Ashikhmin 2002; Ferradans et al. 2011]. Making
use of visual models, these perception based methods aim at producing a tone mapped
image similar to the result obtained by the HVS for the same scene. Among the percep-
tion based TMOs, we find the sigmoidal tone reproduction operators based on photore-
ceptor models. Electrophysiology studies show that the output voltage produced by pho-
toreceptors as a function of light intensity can be accurately described by a sigmoid-like
function [Reinhard et al. 2010]. Examples of these methods are the rational quantization
function proposed by Schlick [1995], inspired by this there is the work by Tumblin et al.
[1999], and the photoreceptor adaptation models by Pattanaik et al. [2000], Pattanaik and
Yee [2002] and Reinhard and Devlin [2005].

Another example of sigmoide-like tone reproduction operator is the photographic
tone reproduction. The idea is to inspire the tone mapping operators in the techniques
used in conventional photography developed to tackle the HDR imaging problem. One
such approach, proposed by Reinhard et al. [2002] consists in a initial linear scaling of
the image followed by a contrast adjustement, that can be global or local, inspired in the
dodging-and-burning technique used in conventional photography. This technique con-
sists in exposing a print for longer or shorter periods so as to control the exposure level of
different image regions according to its content (darker or brighter). Other examples of
HVS-based models include brightness preserving operators [Tumblin and Turk 1999] and
retinex-based operators [Rahman et al. 1996; Jobson et al. 1997].

Another class of TMOs tackles the problem from a different perspective, not neces-
sarily driven by visually inspired models but by mathematical or engineering principles.
Among these we find the histogram adjustment technique developed by Ward et al. [1997],
the fast bilateral filtering implementation by Durand and Dorsey [2002] and the gradient
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domain compression by Fattal et al. [2002].

Another possible classification for TMOs is into global and local methods [Devlin et al.
2002]. Global methods apply the same tone mapping operation to all image pixels [Tum-
blin and Rushmeier 1993; Ward 1994; Pattanaik et al. 2000; Ferwerda et al. 1996; Reinhard
and Devlin 2005]. The contrast adjustment parameters are often computed from the im-
age extrema and the mean irradiance of the whole image. On the one hand, the global
methods have the advantage of being computationally efficient and not presenting arti-
facts. On the other hand, they may have limited performance in examples of very large
dynamic range, since the globally chosen parameters might not be accurate enough to
represent regions of extreme luminance. For this reason, local methods are usually pre-
ferred, since they can outperform global methods in local contrast enhancement. Local
TMOs apply a different contrast transformation to each pixel [Durand and Dorsey 2002;
Reinhard et al. 2002; Fattal et al. 2002; Ferradans et al. 2011], this transformation being of-
ten defined by the luminance level of a set of neighboring pixels. A common drawback of
local TMOs are the halo artifacts, caused by an incorrect setting of the transformation pa-
rameters due to large lighting differences between the affected pixel and its neighborhood.
Combined spatial and radiometric distances, such as in the bilateral filtering [Durand and
Dorsey 2002], are of great help to reduce this kind of artifact.
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B MAP estimation of parameters

Let us consider the log-likelihood

Inp(p, Alzy,...,2x) =Inp(z1, ..., 25|, )—|—lnp(u,A) (B.a1)
N

1
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The partial derivative of In p(u, A|z1, ..., zy) with respect to A is
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And, assuming that A is a symmetric matrix, we have,
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where o is the Hadamard (elementwise) product.
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Equating to zero we have
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